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New developments of fractional integral inequal-
ities and their applications

Adrian Naço , Artion Kashuri and Rozana Liko

Abstract. In this paper, we propose the so-called higher order strongly m-
polynomial exponentially type convex functions. Some of its algebraic properties
are given and a new fractional integral identity is established. Applying the class
of higher order strongly m-polynomial exponentially type convex functions, we
deduce some fractional integral inequalities using the basic identity. Furthermore,
we offer some applications to demonstrate the efficiency of our results. Our results
not only generalize the known results but also refine them.

Mathematics Subject Classification (2010): 26A33, 26A51, 26D07, 26D10, 26D15,
26D20.

Keywords: Hermite-Hadamard inequality, Hölder’s inequality, power mean in-
equality, higher order stronglym-polynomial exponentially type convex functions,
Bessel functions, bounded functions.

1. Introduction

A set T ⊂ R (R represents the set of real numbers) is said to be convex, if

ϑ ♭1 + (1− ϑ)♭2 ∈ T, ∀ ♭1, ♭2 ∈ T and ϑ ∈ [0, 1].

A function ℏ : T → R is called convex, if

ℏ(ϑ ♭1 + (1− ϑ)♭2) ≤ ϑ ℏ(♭1) + (1− ϑ)ℏ(♭2), ∀ ♭1, ♭2 ∈ T and ϑ ∈ [0, 1]. (1.1)

Moreover, ℏ is concave whenever −ℏ is convex.
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For the convex function the Hermite-Hadamard type integral inequality (H-H), is
given by [5]:

ℏ
(
♭1 + ♭2

2

)
≤ 1

♭2 − ♭1

∫ ♭2

♭1

ℏ(x)dx ≤ ℏ(♭1) + ℏ(♭2)
2

. (1.2)

The H-H integral inequality (1.2) has been applied to different types of convex
functions (see [3, 4, 9, 12, 13]).

Now, we recall some definitions of convex type functions.

Definition 1.1. [2] A function ℏ : T ⊆ R → R is said to be exponentially convex, if

ℏ(ϑ♭1 + (1− ϑ)♭2) ≤ ϑ
ℏ(♭1)
eς♭1

+ (1− ϑ)
ℏ(♭2)
eς♭2

(1.3)

holds for all ♭1, ♭2 ∈ T, ϑ ∈ [0, 1] and ς ∈ R.

Toply et al. [10] introduced the class of m-polynomial convex functions as follows:

Definition 1.2. Let m ∈ N. A function ℏ : T ⊆ R → R is said to be m-polynomial
convex, if

ℏ(ϑ♭1 + (1− ϑ)♭2) ≤
1

m

m∑
ı=1

[1− (1− ϑ)ı] ℏ(♭1) +
1

m

m∑
ı=1

[1− ϑı] ℏ(♭2) (1.4)

holds for all ♭1, ♭2 ∈ T and ϑ ∈ [0, 1].

With the help of the above definitions, we introduce the following definition.

Definition 1.3. Let m ∈ N and ς ∈ R. The function ℏ : T → R is called higher order
strongly m-polynomial exponentially type convex, if there exists a constant ζ > 0, such
that

ℏ(ϑ♭1 + (1− ϑ)♭2) ≤
1

m

m∑
ı=1

[1− (1− ϑ)ı]
ℏ(♭1)
eς♭1

+
1

m

m∑
ı=1

[1− ϑı]
ℏ(♭2)
eς♭2

(1.5)

− ζ [ϑp(1− ϑ) + ϑ(1− ϑ)p] |♭2 − ♭1|p

holds for every ♭1, ♭2 ∈ T, ϑ ∈ [0, 1] and p ≥ 1.

Remark 1.4. From Definition 1.3, we can observe that:

1. If m = 1 and ζ → 0+, then Definition 1.3 reduces to Definition 1.1.
2. If ς = 0 and ζ → 0+, then Definition 1.3 reduces to Definition 1.2.

Definition 1.5. Let ℓ > 0, ♭1 < ♭2 and ℏ ∈ L[♭1, ♭2]. Then the Riemann–Liouville
fractional integrals (R-L) of order ℓ are defined by

J ℓ
♭+1
ℏ(x) =

1

Γ(ℓ)

∫ x

♭1

(x− ϑ)ℓ−1ℏ(ϑ)dϑ, ♭1 < x

and

J ℓ
♭−2
ℏ(x) =

1

Γ(ℓ)

∫ ♭2

x

(ϑ− x)ℓ−1ℏ(ϑ)dϑ, ♭2 > x,

where Γ(·) is the gamma function.
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The H-H type integral inequalities are involved in fractional calculus models and
they has been applied for different types of convex functions (see [1, 6, 7]).

Motivated from above literatures our paper is organized as follows: In Section 2, we
introduce the higher order strongly m-polynomial exponentially type convex function
as a new class of convex functions with its algebraic properties. In Section 3, we derive
new integral inequality of H-H by using the new introduced definition. In Section 4,
we derive a generalized fractional identity and some related inequalities for the higher
order strongly m-polynomial exponentially type convex functions. In Section 5, we
give some applications of the Bessel functions and bounded functions to support the
main results from previous section. Finally, conclusions and future research are drawn
in Section 6.

2. Algebraic properties

Here we derive some algebraic properties of our new defined convex function.

Theorem 2.1. Let m ∈ N and ς ∈ R. Assume that ℏ, ℏ1, ℏ2 : T → R are three higher
order strongly m-polynomial exponentially type convex functions with respect to the
constants, ζ, ζ1 and ζ2, respectively, then

(1) ℏ1+ℏ2 is higher order strongly m-polynomial exponentially type convex function,
with respect to the constant ζ1 + ζ2.

(2) For nonnegative real number c, cℏ is higher order strongly m-polynomial expo-
nentially type convex function, with respect to the constant cζ.

Proof. The proof is evident, so we omit here. □

Theorem 2.2. Let m ∈ N, ς ∈ R and U = {ϖ ∈ [♭1, ♭2] : ℏ(ϖ) < +∞}. Assume that
ℏj : [♭1, ♭2] → R is a family of higher order strongly m-polynomial exponentially type
convex functions with respect to the constant ζ > 0 and ℏ(ϖ) := supj ℏj(ϖ). Then,
ℏ is an higher order strongly m-polynomial exponentially type convex function with
respect to the constant ζ on U .

Proof. Let ♭1, ♭2 ∈ U and ϑ ∈ [0, 1], then we have

ℏ(ϑ♭1 + (1− ϑ)♭2) = sup
j

ℏj(ϑ♭1 + (1− ϑ)♭2)

≤ 1

m

m∑
ı=1

[1− (1− ϑ)ı]
supj ℏj(♭1)

eς♭1
+

1

m

m∑
ı=1

(1− ϑı)
supj ℏj(♭2)

eς♭2

− ζ [ϑp(1− ϑ) + ϑ(1− ϑ)p] |♭2 − ♭1|p

=
1

m

m∑
ı=1

[1− (1− ϑ)ı]
ℏ(♭1)
eς♭1

+
1

m

m∑
ı=1

(1− ϑı)
ℏ(♭2)
eς♭2

− ζ [ϑp(1− ϑ) + ϑ(1− ϑ)p] |♭2 − ♭1|p < +∞,

which completes the proof. □
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3. Main results

The aim of this section is to find some fractional integral inequalities of H-H type for
higher order strongly m-polynomial exponentially type convex functions.

Theorem 3.1. Let ℓ > 0, m ∈ N and ℏ : [♭1, ♭2] → R be a higher order strongly m-
polynomial exponentially type convex function with respect to the constant ζ > 0. If
ℏ ∈ L[♭1, ♭2] and ς ∈ R, then we have

m

(
2m

2m(m− 1) + 1

)[
1

ℓ
ℏ
(
♭1 + ♭2

2

)
− ζ

2p+ℓ
(♭2 − ♭1)

p
(
β(p+ 1, ℓ) + I(p, ℓ)

)]
(3.1)

≤ 1

(♭2 − ♭1)
ℓ

[
Aℓ

ℏ,1(ς; ♭1, ♭2) +Aℓ
ℏ,2(ς; ♭1, ♭2)

]
≤ 1

(♭2 − ♭1)
ℓ

{[
Bℓ

1,m(ς; ♭1, ♭2) +Bℓ
4,m(ς; ♭1, ♭2)

] ℏ(♭1)
eς♭1

+
[
Bℓ

2,m(ς; ♭1, ♭2) +Bℓ
3,m(ς; ♭1, ♭2)

] ℏ(♭2)
eς♭2

}

− ζ

(♭2 − ♭1)
ℓ+1

[
Cℓ,ς

1 (♭2, ♭1, p) + Cℓ,ς
2 (♭2, ♭1, p)

]
,

where

Aℓ
ℏ,1(ς; ♭1, ♭2) :=

∫ ♭2

♭1

(♭2 − x)ℓ−1 ℏ(x)
eςx

dx, Aℓ
ℏ,2(ς; ♭1, ♭2) :=

∫ ♭2

♭1

(x− ♭1)
ℓ−1 ℏ(x)

eςx
dx

and

I(p, ℓ) :=

∫ 1

0

ϑp(1 + ϑ)ℓ−1dϑ,

Bℓ
1,m(ς; ♭1, ♭2) :=

1

m

m∑
ı=1

∫ ♭2

♭1

(♭2 − x)ℓ−1

eςx

[
1−

(
x− ♭1
♭2 − ♭1

)ı]
dx,

Bℓ
2,m(ς; ♭1, ♭2) :=

1

m

m∑
ı=1

∫ ♭2

♭1

(♭2 − x)ℓ−1

eςx

[
1−

(
♭2 − x

♭2 − ♭1

)ı]
dx,

Bℓ
3,m(ς; ♭1, ♭2) :=

1

m

m∑
ı=1

∫ ♭2

♭1

(x− ♭1)
ℓ−1

eςx

[
1−

(
♭2 − x

♭2 − ♭1

)ı]
dx,

Bℓ
4,m(ς; ♭1, ♭2) :=

1

m

m∑
ı=1

∫ ♭2

♭1

(x− ♭1)
ℓ−1

eςx

[
1−

(
x− ♭1
♭2 − ♭1

)ı]
dx,

Cℓ,ς
1 (♭1, ♭2, p) :=

∫ ♭2

♭1

(x− ♭1)
ℓ−1

eςx

[
(x− ♭1)(♭2 − x)p + (x− ♭1)

p(♭2 − x)
]
dx,

Cℓ,ς
2 (♭1, ♭2, p) :=

∫ ♭2

♭1

(♭2 − x)ℓ−1

eςx

[
(x− ♭1)

p(♭2 − x) + (x− ♭1)(♭2 − x)p
]
dx.

Here, β(·, ·) is the beta function.
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Proof. Let x, y ∈ [♭1, ♭2]. Applying definition of higher order strongly m-polynomial
exponentially type convex function with respect to the constant ζ > 0 of ℏ on [♭1, ♭2]
and taking ϑ = 1/2, we have

ℏ
(
x+ y

2

)
≤ 1

m

m∑
ı=1

[
1−

(
1

2

)ı] [ℏ(x)
eςx

+
ℏ(y)
eςy

]
− ζ

2p
|y − x|p. (3.2)

By making use of inequality (3.2) with x = ϑ♭2 + (1− ϑ)♭1 and y = ϑ♭1 + (1− ϑ)♭2,
we get

ℏ
(
♭1 + ♭2

2

)
≤ 1

m

m∑
ı=1

[
1−

(
1

2

)ı] [ℏ(ϑ♭2 + (1− ϑ)♭1)

eς(ϑ♭2+(1−ϑ)♭1)
+

ℏ(ϑ♭1 + (1− ϑ)♭2)

eς(ϑ♭1+(1−ϑ)♭2)

]
(3.3)

− ζ

2p
(♭2 − ♭1)

p|1− 2ϑ|p.

Multiplying both sides of (3.3) by ϑℓ−1 and integrating the result with respect to ϑ
over [0, 1], we obtain

1

ℓ
ℏ
(
♭1 + ♭2

2

)
≤ 1

m

(
m− 2m − 1

2m

)[∫ 1

0

ϑℓ−1 ℏ(ϑ♭2 + (1− ϑ)♭1)

eς(ϑ♭2+(1−ϑ)♭1)
dϑ+

∫ 1

0

ϑℓ−1 ℏ(ϑ♭1 + (1− ϑ)♭2)

eς(ϑ♭1+(1−ϑ)♭2)
dϑ

]

− ζ

2p
(♭2 − ♭1)

p

∫ 1

0

ϑℓ−1|1− 2ϑ|pdϑ

=
1

m

(
m− 2m − 1

2m

)
1

(♭2 − ♭1)
ℓ

[∫ ♭2

♭1

(♭2 − x)ℓ−1 ℏ(x)
eςx

dx+

∫ ♭2

♭1

(x− ♭1)
ℓ−1 ℏ(x)

eςx
dx

]

− ζ

2p
(♭2 − ♭1)

p 1

2ℓ
[β(p+ 1, ℓ) + I(p, ℓ)]

=
1

m

(
m− 2m − 1

2m

)
1

(♭2 − ♭1)
ℓ

[
Aℓ

ℏ,1(ς; ♭1, ♭2) +Aℓ
ℏ,2(ς; ♭1, ♭2)

]
− ζ

2p+ℓ
(♭2 − ♭1)

p [β(p+ 1, ℓ) + I(p, ℓ)] ,

which gives the left inequality of (3.5). In order to prove the right inequality of (3.5),
we use the definition of higher order strongly m-polynomial exponentially type convex
function with respect to the constant ζ > 0 of ℏ to get

ℏ(ϑ♭2 + (1− ϑ)♭1)

eς(ϑ♭2+(1−ϑ)♭1)
≤ 1

eς(ϑ♭2+(1−ϑ)♭1)

×

{
1

m

m∑
ı=1

[1− ϑı]
ℏ(♭1)
eς♭1

+
1

m

m∑
ı=1

[1− (1− ϑ)ı]
ℏ(♭2)
eς♭2

− ζ [ϑp(1− ϑ) + ϑ(1− ϑ)p] |♭2 − ♭1|p
}
.
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Similarly,

ℏ(ϑ♭1 + (1− ϑ)♭2)

eς(ϑ♭1+(1−ϑ)♭2)
≤ 1

eς(ϑ♭1+(1−ϑ)♭2)

×

{
1

m

m∑
ı=1

[1− ϑı]
ℏ(♭2)
eς♭2

+
1

m

m∑
ı=1

[1− (1− ϑ)ı]
ℏ(♭1)
eς♭1

− ζ [ϑp(1− ϑ) + ϑ(1− ϑ)p] |♭2 − ♭1|p,

where ϑ ∈ [0, 1]. Then, by adding the above inequalities, we have

ℏ(ϑ♭2 + (1− ϑ)♭1)

eς(ϑ♭2+(1−ϑ)♭1)
+

ℏ(ϑ♭1 + (1− ϑ)♭2)

eς(ϑ♭1+(1−ϑ)♭2)

≤ 1

eς(ϑ♭2+(1−ϑ)♭1)

×

{
1

m

m∑
ı=1

[1− ϑı]
ℏ(♭1)
eς♭1

+
1

m

m∑
ı=1

[1− (1− ϑ)ı]
ℏ(♭2)
eς♭2

− ζ [ϑp(1− ϑ) + ϑ(1− ϑ)p] |♭2 − ♭1|p +
1

eς(ϑ♭1+(1−ϑ)♭2)

×

{
1

m

m∑
ı=1

[1− ϑı]
ℏ(♭2)
eς♭2

+
1

m

m∑
ı=1

[1− (1− ϑ)ı]
ℏ(♭1)
eς♭1

− ζ [ϑp(1− ϑ) + ϑ(1− ϑ)p] |♭2 − ♭1|p.

(3.4)

Multiplying both sides of (3.4) by ϑℓ−1 and integrating the obtained inequality
with respect to ϑ from 0 to 1 and making the change of the variables, we get∫ 1

0

ϑℓ−1 ℏ(ϑ♭2 + (1− ϑ)♭1)

eς(ϑ♭2+(1−ϑ)♭1)
dϑ+

∫ 1

0

ϑℓ−1 ℏ(ϑ♭2 + (1− ϑ)♭1)

eς(ϑ♭1+(1−ϑ)♭2)
dϑ

≤
∫ 1

0

ϑℓ−1 1

eς(ϑ♭2+(1−ϑ)♭1)

×

{
1

m

m∑
ı=1

(1− ϑı)
ℏ(♭1)
eς♭1

+
1

m

m∑
ı=1

[1− (1− ϑ)ı]
ℏ(♭2)
eς♭2

− ζ [ϑp(1− ϑ) + ϑ(1− ϑ)p] |♭2 − ♭1|pdϑ+

∫ 1

0

ϑℓ−1 1

eς(ϑ♭1+(1−ϑ)♭2)

×

{
1

m

m∑
ı=1

(1− ϑı)
ℏ(♭2)
eς♭2

+
1

m

m∑
ı=1

[1− (1− ϑ)ı]
ℏ(♭1)
eς♭1

− ζ [ϑp(1− ϑ) + ϑ(1− ϑ)p] |♭2 − ♭1|pdϑ.
By simplifying it, we obtain

1

(♭2 − ♭1)
ℓ

[
Aℓ

ℏ,1(ς; ♭1, ♭2) +Aℓ
ℏ,2(ς; ♭1, ♭2)

]
≤ 1

(♭2 − ♭1)
ℓ

{[
Bℓ

1,m(ς; ♭1, ♭2) +Bℓ
4,m(ς; ♭1, ♭2)

] ℏ(♭1)
eς♭1
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+
[
Bℓ

2,m(ς; ♭1, ♭2) +Bℓ
3,m(ς; ♭1, ♭2)

] ℏ(♭2)
eς♭2

}

− ζ

(♭2 − ♭1)
ℓ+1

[
Cℓ,ς

1 (♭1, ♭2, p) + Cℓ,ς
2 (♭1, ♭2, p)

]
.

The proof of Theorem 3.1 is completed. □

Corollary 3.2. Theorem 3.1 with ς = 0 becomes

m

(
2m

2m(m− 1) + 1

)[
1

ℓ
ℏ
(
♭1 + ♭2

2

)
− ζ

2p+ℓ
(♭2 − ♭1)

p
(
β(p+ 1, ℓ) + I(p, ℓ)

)]
(3.5)

≤ 1

(♭2 − ♭1)
ℓ

[
Aℓ

ℏ,1(♭1, ♭2) +Aℓ
ℏ,2(♭1, ♭2)

]
≤ 1

(♭2 − ♭1)
ℓ

{[
Bℓ

1,m(♭1, ♭2) +Bℓ
4,m(♭1, ♭2)

]
ℏ(♭1)

+
[
Bℓ

2,m(♭1, ♭2) +Bℓ
3,m(♭1, ♭2)

]
ℏ(♭2)

}

− ζ

(♭2 − ♭1)
ℓ+1

[
Cℓ

1(♭2, ♭1, p) + Cℓ
2(♭2, ♭1, p)

]
,

where

Aℓ
ℏ,1(♭1, ♭2) :=

∫ ♭2

♭1

(♭2 − x)ℓ−1ℏ(x)dx, Aℓ
ℏ,2(♭1, ♭2) :=

∫ ♭2

♭1

(x− ♭1)
ℓ−1ℏ(x)dx

and

Bℓ
1,m(♭1, ♭2) :=

1

m

m∑
ı=1

∫ ♭2

♭1

(♭2 − x)ℓ−1

[
1−

(
x− ♭1
♭2 − ♭1

)ı]
dx,

Bℓ
2,m(♭1, ♭2) :=

1

m

m∑
ı=1

∫ ♭2

♭1

(♭2 − x)ℓ−1

[
1−

(
♭2 − x

♭2 − ♭1

)ı]
dx,

Bℓ
3,m(♭1, ♭2) :=

1

m

m∑
ı=1

∫ ♭2

♭1

(x− ♭1)
ℓ−1

[
1−

(
♭2 − x

♭2 − ♭1

)ı]
dx,

Bℓ
4,m(♭1, ♭2) :=

1

m

m∑
ı=1

∫ ♭2

♭1

(x− ♭1)
ℓ−1

[
1−

(
x− ♭1
♭2 − ♭1

)ı]
dx,

Cℓ
1(♭1, ♭2, p) :=

∫ ♭2

♭1

(x− ♭1)
ℓ−1
[
(x− ♭1)(♭2 − x))p + (x− ♭1)

p(♭2 − x)
]
dx,

Cℓ
2(♭1, ♭2, p) :=

∫ ♭2

♭1

(♭2 − x)ℓ−1
[
(x− ♭1)

p(♭2 − x)) + (x− ♭1)(♭2 − x)p
]
dx.
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Corollary 3.3. Theorem 3.1 with ℓ = 1 leads to

m

(
2m

2m(m− 1) + 1

)[
ℏ
(
♭1 + ♭2

2

)
− ζ

(p+ 1)2p
(♭2 − ♭1)

p

]

≤ 1

(♭2 − ♭1)

[
A1

ℏ,1(ς; ♭1, ♭2) +A1
ℏ,2(ς; ♭1, ♭2)

]
≤ 1

(♭2 − ♭1)

{[
B1

1,m(ς; ♭1, ♭2) +B1
4,m(ς; ♭1, ♭2)

] ℏ(♭1)
eς♭1

+
[
B1

2,m(ς; ♭1, ♭2) +B1
3,m(ς; ♭1, ♭2)

] ℏ(♭2)
eς♭2

}

− ζ

(♭2 − ♭1)
2

[
C1,ς

1 (♭2, ♭1, p) + C1,ς
2 (♭2, ♭1, p)

]
.

Corollary 3.4. Letting ζ → 0+ in Theorem 3.1, we have

m

ℓ

(
2m

2m(m− 1) + 1

)
ℏ
(
♭1 + ♭2

2

)
≤ 1

(♭2 − ♭1)
ℓ

[
Aℓ

ℏ,1(ς; ♭1, ♭2) +Aℓ
ℏ,2(ς; ♭1, ♭2)

]
≤ 1

(♭2 − ♭1)
ℓ

{[
Bℓ

1,m(ς; ♭1, ♭2) +Bℓ
4,m(ς; ♭1, ♭2)

] ℏ(♭1)
eς♭1

+
[
Bℓ

2,m(ς; ♭1, ♭2) +Bℓ
3,m(ς; ♭1, ♭2)

] ℏ(♭2)
eς♭2

}
.

Corollary 3.5. Theorem 3.1 with ς = 0, ℓ = 1 and ζ → 0+ becomes [10, Theorem 4].

4. Further results

We need the following lemma in order to proceed with our next results.

Lemma 4.1. Let ℏ : T ⊆ R → R be a differentiable function on T with ♭1, ♭2 ∈ T and
♭1 < ♭2. Also, let ℓ > 0 and m ∈ N. If ℏ′ ∈ L[♭1, ♭2], then we have

Qℓ
m(ℏ; ♭1, ♭2) : =

(
♭2 − ♭1
4m

)
Γ(ℓ+ 1)

×
m−1∑
ȷ=0

{(
2m

♭2 − ♭1

)ℓ+1

J ℓ(
(2(m−ȷ)−1)♭1+(2ȷ+1)♭2

2m

)−ℏ
(
(m− ȷ)♭1 + ȷ♭2

m

)

−
(

2m

♭1 − ♭2

)ℓ+1

J ℓ(
(2(m−ȷ)−1)♭1+(2ȷ+1)♭2

2m

)−ℏ
(
(m− ȷ− 1)♭1 + (ȷ+ 1)♭2

m

)}

−
m−1∑
ȷ=0

ℏ
(
(2(m− ȷ)− 1)♭1 + (2ȷ+ 1)♭2

2m

)
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=

(
♭2 − ♭1
4m

)
·
m−1∑
ȷ=0

{∫ 1

0

ϑℓℏ′
(
ϑ

2

(m− ȷ)♭1 + ȷ♭2
m

+
(2− ϑ)

2

(m− ȷ− 1)♭1 + (ȷ+ 1)♭2
m

)
dϑ

−
∫ 1

0

ϑℓℏ′
(
ϑ

2

(m− ȷ− 1)♭1 + (ȷ+ 1)♭2
m

+
(2− ϑ)

2

(m− ȷ)♭1 + ȷ♭2
m

)
dϑ

}
. (4.1)

Proof. Setting

J1 :=

∫ 1

0

ϑℓℏ′
(
ϑ

2

(m− ȷ)♭1 + ȷ♭2
m

+
(2− ϑ)

2

(m− ȷ− 1)♭1 + (ȷ+ 1)♭2
m

)
dϑ, (4.2)

and

J2 :=

∫ 1

0

ϑℓℏ′
(
ϑ

2

(m− ȷ− 1)♭1 + (ȷ+ 1)♭2
m

+
(2− ϑ)

2

(m− ȷ)♭1 + ȷ♭2
m

)
dϑ. (4.3)

By applying integration by parts on equality (4.2), we have

J1 =

(
2m

♭1 − ♭2

)[
ϑℓℏ

(
ϑ

2

(m− ȷ)♭1 + ȷ♭2
m

+
(2− ϑ)

2

(m− ȷ− 1)♭1 + (ȷ+ 1)♭2
m

) ∣∣∣∣1
0

− ℓ

∫ 1

0

ϑℓ−1ℏ
(
ϑ

2

(m− ȷ)♭1 + ȷ♭2
m

+
(2− ϑ)

2

(m− ȷ− 1)♭1 + (ȷ+ 1)♭2
m

)
dϑ

]

=

(
2m

♭1 − ♭2

)[
ℏ
(
(2(m− ȷ)− 1)♭1 + (2ȷ+ 1)♭2

2m

)

−
(

2m

♭1 − ♭2

)ℓ

Γ(ℓ+ 1)J ℓ(
(2(m−ȷ)−1)♭1+(2ȷ+1)♭2

2m

)−ℏ
(
(m− ȷ− 1)♭1 + (ȷ+ 1)♭2

m

)]
.

(4.4)

Similarly, from equality (4.3), we obtain

J2 =

(
2m

♭2 − ♭1

)[
ℏ
(
(2(m− ȷ)− 1)♭1 + (2ȷ+ 1)♭2

2m

)

−
(

2m

♭2 − ♭1

)ℓ

Γ(ℓ+ 1)J ℓ(
(2(m−ȷ)−1)♭1+(2ȷ+1)♭2

2m

)−ℏ
(
(m− ȷ)♭1 + ȷ♭2

m

)]
, (4.5)

for all ȷ = 0, 1, 2, . . . ,m−1. Then, by subtracting equality (4.5) from (4.4), multiplying

by the factor
(

♭2−♭1
4m

)
and summing over ȷ from 0 to m− 1, we can easily attain the

desired identity (4.1). □

Remark 4.2. Lemma 4.1 with m = 1 leads to

2ℓ−1Γ(ℓ+ 1)

(♭2 − ♭1)ℓ

{
J ℓ(

♭1+♭2
2

)+ℏ(♭2) + J ℓ(
♭1+♭2

2

)−ℏ(♭1)

}
− ℏ

(
♭1 + ♭2

2

)
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=
(♭2 − ♭1)

4

{∫ 1

0

ϑℓℏ′
(
ϑ

2
♭1 +

(2− ϑ)

2
♭2

)
dϑ−

∫ 1

0

ϑℓℏ′
(
ϑ

2
♭2 +

(2− ϑ)

2
♭1

)
dϑ

}
,

(4.6)

which is established in [8, Lemma 3].

Throughout the rest of this study, we consider

vm,ȷ :=
(m− ȷ)♭1 + ȷ♭2

m
and vm,ȷ+1 :=

(m− ȷ− 1)♭1 + (ȷ+ 1)♭2
m

.

Theorem 4.3. Let ℓ > 0, m ∈ N and ℏ : [♭1, ♭2] → R be a differentiable function
on (♭1, ♭2) such that ℏ′ ∈ L[♭1, ♭2]. If |ℏ′| is a higher order strongly m-polynomial
exponentially type convex function with respect to the constant ζ > 0 on [♭1, ♭2] and
ς ∈ R, then we have∣∣Qℓ

m(ℏ; ♭1, ♭2)
∣∣ ≤ ( ♭2 − ♭1

4m

)
[Tm,ℓ +Mm,ℓ]

m−1∑
ȷ=0

[
|ℏ′(vm,ȷ)|
eςvm,ȷ

+
|ℏ′(vm,ȷ+1)|
eςvm,ȷ+1

]
(4.7)

− mζ

2p

(
ℓ+ p+ 3

(ℓ+ p+ 1)(ℓ+ p+ 2)
− 2ℓ+p+2B 1

2
(ℓ+ 2, p+ 1)

) ∣∣∣∣ ♭2 − ♭1
m

∣∣∣∣p ,
where

Tm,ℓ :=
1

m

m∑
ı=1

∫ 1

0

ϑℓ

[
1−

(
1− ϑ

2

)ı]
dϑ, Mm,ℓ :=

1

m

m∑
ı=1

∫ 1

0

ϑℓ

[
1−

(
ϑ

2

)ı]
dϑ.

Here, Bx(·, ·) is the incomplete beta function for all 0 < x ≤ 1.

Proof. By making use of Lemma 4.1 and properties of modulus, we can deduce∣∣Qℓ
m(ℏ; ♭1, ♭2)

∣∣ ≤ ( ♭2 − ♭1
4m

)
×

m−1∑
ȷ=0

{∫ 1

0

ϑℓ

∣∣∣∣ℏ′(ϑ

2

(m− ȷ)♭1 + ȷ♭2
m

+
(2− ϑ)

2

(m− ȷ− 1)♭1 + (ȷ+ 1)♭2
m

)∣∣∣∣ dϑ
+

∫ 1

0

ϑℓ

∣∣∣∣ℏ′(ϑ

2

(m− ȷ− 1)♭1 + (ȷ+ 1)♭2
m

+
(2− ϑ)

2

(m− ȷ)♭1 + ȷ♭2
m

)∣∣∣∣ dϑ
}
.

Using the definition of higher order strongly m-polynomial exponentially type convex
function with respect to the constant ζ > 0 of |ℏ′|, we get∣∣Qℓ

m(ℏ; ♭1, ♭2)
∣∣ ≤ ( ♭2 − ♭1

4m

)m−1∑
ȷ=0

{∫ 1

0

ϑℓ

[
1

m

m∑
ı=1

[
1−

(
1− ϑ

2

)ı] |ℏ′(vm,ȷ)|
eςvm,ȷ

+
1

m

m∑
ı=1

[
1−

(
ϑ

2

)ı] |ℏ′(vm,ȷ+1)|
eςvm,ȷ+1

− ζ

[
(
ϑ

2
)p(1− ϑ

2
) +

ϑ

2
(1− ϑ

2
)p
] ∣∣∣∣ ♭2 − ♭1

m

∣∣∣∣p
]
dϑ

+

∫ 1

0

ϑℓ

[
1

m

m∑
ı=1

[
1−

(
1− ϑ

2

)ı] |ℏ′(vm,ȷ+1)|
eςvm,ȷ+1
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+
1

m

m∑
ı=1

[
1−

(
ϑ

2

)ı] |ℏ′(vm,ȷ)|
eςvm,ȷ

− ζ

[
(
ϑ

2
)p(1− ϑ

2
) +

ϑ

2
(1− ϑ

2
)p
] ∣∣∣∣ ♭2 − ♭1

m

∣∣∣∣p
]
dϑ

}

=

(
♭2 − ♭1
4m

)[
T ℓ
m +M ℓ

m

]m−1∑
ȷ=0

[
|ℏ′(vm,ȷ)|
eςvm,ȷ

+
|ℏ′(vm,ȷ+1)|
eςvm,ȷ+1

]

− mζ

2p

(
ℓ+ p+ 3

(ℓ+ p+ 1)(ℓ+ p+ 2)
− 2ℓ+p+2B 1

2
(ℓ+ 2, p+ 1)

) ∣∣∣∣ ♭2 − ♭1
m

∣∣∣∣p ,
which completes the proof. □

Corollary 4.4. Theorem 4.3 with ς = 0 leads to∣∣Qℓ
m(ℏ; ♭1, ♭2)

∣∣ ≤ ( ♭2 − ♭1
4m

)
[Tm,ℓ +Mm,ℓ]

m−1∑
ȷ=0

[|ℏ′(vm,ȷ)|+ |ℏ′(vm,ȷ+1)|] (4.8)

−mζ

2p

(
ℓ+ p+ 3

(ℓ+ p+ 1)(ℓ+ p+ 2)
− 2ℓ+p+2B 1

2
(ℓ+ 2, p+ 1)

) ∣∣∣∣ ♭2 − ♭1
m

∣∣∣∣p .
Corollary 4.5. Theorem 4.3 with m = 1 leads to∣∣∣∣∣2ℓ−1Γ(ℓ+ 1)

(♭2 − ♭1)ℓ

{
J ℓ(

♭1+♭2
2

)+ℏ(♭2) + J ℓ(
♭1+♭2

2

)−ℏ(♭1)

}
− ℏ

(
♭1 + ♭2

2

)∣∣∣∣∣
≤
(

♭2 − ♭1
4(ℓ+ 1)

)[
|ℏ′(♭1)|
eς♭1

+
|ℏ′(♭2)|
eς♭2

]
− ζ

2p

(
ℓ+ p+ 3

(ℓ+ p+ 1)(ℓ+ p+ 2)
− 2ℓ+p+2B 1

2
(ℓ+ 2, p+ 1)

)
|♭2 − ♭1|p .

(4.9)

Moreover, if ς = 0 and ζ → 0+, we get∣∣∣∣∣2ℓ−1Γ(ℓ+ 1)

(♭2 − ♭1)ℓ

{
J ℓ(

♭1+♭2
2

)+ℏ(♭2) + J ℓ(
♭1+♭2

2

)−ℏ(♭1)

}
− ℏ

(
♭1 + ♭2

2

)∣∣∣∣∣
≤
(

♭2 − ♭1
4(ℓ+ 1)

)
[|ℏ′(♭1)|+ |ℏ′(♭2)|] ,

which is established in the first step of proof of [8, Theorem 5].

Theorem 4.6. Let ℓ > 0, m ∈ N and ℏ : [♭1, ♭2] → R be a differentiable function on
(♭1, ♭2) such that ℏ′ ∈ L[♭1, ♭2]. If |ℏ′|q is higher order strongly m-polynomial exponen-
tially type convex function with respect to the constant ζ > 0 on [♭1, ♭2] and ς ∈ R,
then for q > 1, and 1

q + 1
r = 1, we have

∣∣Qℓ
m(ℏ; ♭1, ♭2)

∣∣ ≤ ( ♭2 − ♭1
4m

)(
1

ℓr + 1

) 1
r

×
m−1∑
ȷ=0

{(
Rm

|ℏ′(vm,ȷ)|q

eςvm,ȷ
+ Sm

|ℏ′(vm,ȷ+1)|q

eςvm,ȷ+1
− ζ

(p+ 1)(p+ 2)

∣∣∣∣ ♭2 − ♭1
m

∣∣∣∣p)
1
q
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+

(
Rm

|ℏ′(vm,ȷ+1)|q

eςvm,ȷ+1
+ Sm

|ℏ′(vm,ȷ)|q

eςvm,ȷ
− ζ

(p+ 1)(p+ 2)

∣∣∣∣ ♭2 − ♭1
m

∣∣∣∣p)
1
q

}
, (4.10)

where

Rm :=
1

m

m∑
ı=1

∫ 1

0

[
1−

(
1− ϑ

2

)ı]
dϑ = 1 +

2

m

m∑
ı=1

1

ı+ 1

(
1

2ı+1
− 1

)
and

Sm :=
1

m

m∑
ı=1

∫ 1

0

[
1−

(
ϑ

2

)ı]
dϑ = 1− 1

m

m∑
ı=1

1

2ı(ı+ 1)
.

Proof. By making use of Lemma 4.1, Hölder’s inequality and properties of modulus,
we can deduce∣∣Qℓ

m(ℏ; ♭1, ♭2)
∣∣ ≤ ( ♭2 − ♭1

4m

)m−1∑
ȷ=0

{∫ 1

0

ϑℓ

∣∣∣∣ℏ′(ϑ

2
vm,ȷ +

(2− ϑ)

2
vm,ȷ+1

)∣∣∣∣ dϑ
+

∫ 1

0

ϑℓ

∣∣∣∣ℏ′( (2− ϑ)

2
vm,ȷ +

ϑ

2
vm,ȷ+1

)∣∣∣∣ dϑ
}

≤
(
♭2 − ♭1
4m

)(∫ 1

0

ϑrℓdϑ

) 1
r

·
m−1∑
ȷ=0

{(∫ 1

0

∣∣∣∣ℏ′(ϑ

2
vm,ȷ +

(2− ϑ)

2
vm,ȷ+1

)∣∣∣∣q dϑ)
1
q

+

(∫ 1

0

∣∣∣∣ℏ′( (2− ϑ)

2
vm,ȷ +

ϑ

2
vm,ȷ+1

)∣∣∣∣q dϑ)
1
q

}
.

Applying the definition of higher order strongly m-polynomial exponentially type
convex function with respect to the constant ζ > 0 of |ℏ′|q, we get

∣∣Qℓ
m(ℏ; ♭1, ♭2)

∣∣ ≤ ( ♭2 − ♭1
4m

)(
1

ℓr + 1

) 1
r

×
m−1∑
ȷ=0

{(∫ 1

0

[
1

m

m∑
ı=1

[
1−

(
1− ϑ

2

)ı] |ℏ′(vm,ȷ)|q

eςvm,ȷ

+
1

m

m∑
ı=1

[
1−

(
ϑ

2

)ı] |ℏ′(vm,ȷ+1)|q

eςvm,ȷ+1

− ζ

[(
ϑ

2

)p(
1− ϑ

2

)
+

ϑ

2

(
1− ϑ

2

)p] ∣∣∣∣ ♭2 − ♭1
m

∣∣∣∣p
]
dϑ

) 1
q

+

(∫ 1

0

[
1

m

m∑
ı=1

[
1−

(
1− ϑ

2

)ı] |ℏ′(vm,ȷ+1)|q

eςvm,ȷ+1
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+
1

m

m∑
ı=1

[
1−

(
ϑ

2

)ı] |ℏ′(vm,ȷ)|q

eςvm,ȷ

− ζ

[(
ϑ

2

)p(
1− ϑ

2

)
+

ϑ

2

(
1− ϑ

2

)p] ∣∣∣∣ ♭2 − ♭1
m

∣∣∣∣p
]
dϑ

) 1
q
}

=

(
♭2 − ♭1
4m

)(
1

ℓr + 1

) 1
r

×
m−1∑
ȷ=0

{(
Rm

|ℏ′(vm,ȷ)|q
eςvm,ȷ + Sm

|ℏ′(vm,ȷ+1)|q
eςvm,ȷ+1 − ζ

(p+1)(p+2)

∣∣∣ ♭1−1

m

∣∣∣p) 1
q

+

(
Rm

|ℏ′(vm,ȷ+1)|q
eςvm,ȷ+1 + Sm

|ℏ′(vm,ȷ)|q

eςvm,ȷ
− ζ

(p+1)(p+2)

∣∣∣ ♭2−♭1
m

∣∣∣p) 1
q
}
,

which ends our proof. □

Corollary 4.7. Theorem 4.6 with ς = 0 leads to∣∣Qℓ
m(ℏ; ♭1, ♭2)

∣∣ ≤ ( ♭2 − ♭1
4m

)(
1

ℓr + 1

) 1
r

(4.11)

×
m−1∑
ȷ=0

{(
Rm|ℏ′(vm,ȷ)|q + Sm|ℏ′(vm,ȷ+1)|q −

ζ

(p+ 1)(p+ 2)

∣∣∣∣ ♭2 − ♭1
m

∣∣∣∣p)
1
q

(4.12)

+

(
Rm|ℏ′(vm,ȷ+1)|q + Sm|ℏ′(vm,ȷ)|q −

ζ

(p+ 1)(p+ 2)

∣∣∣∣ ♭2 − ♭1
m

∣∣∣∣p)
1
q}

. (4.13)

Corollary 4.8. Theorem 4.6 with m = 1 leads to∣∣∣∣∣2ℓ−1Γ(ℓ+ 1)

(♭2 − ♭1)ℓ

[
J ℓ(

♭1+♭2
2

)+ℏ(♭2) + J ℓ(
♭1+♭2

2

)−ℏ(♭1)

]
− ℏ

(
♭1 + ♭2

2

)∣∣∣∣∣ (4.14)

≤
(
♭2 − ♭1

4

)(
1

ℓr + 1

) 1
r
(
1

4

) 1
q

{(
|ℏ′(♭1)|q

eς♭1
+ 3

|ℏ′(♭2)|q

eς♭2
− ζ

(p+ 1)(p+ 2)
|♭2 − ♭1|p

) 1
q

(4.15)

+

(
3
|ℏ′(♭1)|q

eς♭1
+

|ℏ′(♭2)|q

eς♭2
− ζ

(p+ 1)(p+ 2)
|♭2 − ♭1|p

) 1
q

}
. (4.16)

Moreover, if ς = 0 and ζ → 0+, we get∣∣∣∣∣2ℓ−1Γ(ℓ+ 1)

(♭2 − ♭1)ℓ

{
J ℓ(

♭1+♭2
2

)+ℏ(♭2) + J ℓ(
♭1+♭2

2

)−ℏ(♭1)

}
− ℏ

(
♭1 + ♭2

2

)∣∣∣∣∣
≤
(
♭2 − ♭1

4

)(
1

ℓr + 1

) 1
r
(
1

4

) 1
q {

(|ℏ′(♭1)|q + 3|ℏ′(♭2)|q)
1
q + (3|ℏ′(♭1)|q + |ℏ′(♭2)|q)

1
q

}
,

which is established in [8, Theorem 6].
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Theorem 4.9. Let ℓ > 0, m ∈ N and ℏ : [♭1, ♭2] → R be a differentiable function on
(♭1, ♭2) such that ℏ′ ∈ L[♭1, ♭2]. If |ℏ′|q is higher order strongly m-polynomial exponen-
tially type convex function with respect to the constant ζ > 0 on [♭1, ♭2] and ς ∈ R,
then for q ≥ 1, we have

∣∣Qℓ
m(ℏ; ♭1, ♭2)

∣∣ ≤ ( ♭2 − ♭1
4m

)(
1

ℓ+ 1

)1− 1
q
m−1∑
ȷ=0

{[
Tm,ℓ

|ℏ′(vm,ȷ)|q

eςvm,ȷ
+Mm,ℓ

|ℏ′(vm,ȷ+1)|q

eςvm,ȷ+1

− ζ

2p+1

∣∣∣∣ ♭2 − ♭1
m

∣∣∣∣p( ℓ+ p+ 3

(ℓ+ p+ 1)(ℓ+ p+ 2)
− 2ℓ+p+2B 1

2
(ℓ+ 2, p+ 1)

)] 1
q

+

[
Tm,ℓ

|ℏ′(vm,ȷ+1)|q

eςvm,ȷ+1
+Mm,ℓ

|ℏ′(vm,ȷ)|q

eςvm,ȷ

− ζ

2p+1

∣∣∣∣ ♭2 − ♭1
m

∣∣∣∣p( ℓ+ p+ 3

(ℓ+ p+ 1)(ℓ+ p+ 2)
− 2ℓ+p+2B 1

2
(ℓ+ 2, p+ 1)

)] 1
q
}
, (4.17)

where Tm,ℓ and Mm,ℓ are as given in Theorem 4.3.

Proof. By making use of Lemma 4.1, the power mean inequality and properties of
modulus, we have

∣∣Qℓ
m(ℏ; ♭1, ♭2)

∣∣ ≤ ( ♭2 − ♭1
4m

)m−1∑
ȷ=0

{∫ 1

0

ϑℓ

∣∣∣∣ℏ′(ϑ

2
vm,ȷ +

(2− ϑ)

2
vm,ȷ+1

)∣∣∣∣ dϑ
+

∫ 1

0

ϑℓ

∣∣∣∣ℏ′( (2− ϑ)

2
vm,ȷ +

ϑ

2
vm,ȷ+1

)∣∣∣∣ dϑ
}

≤
(
♭2 − ♭1
4m

)(∫ 1

0

ϑℓdϑ

)1− 1
q m−1∑

ȷ=0

{(∫ 1

0

ϑℓ

∣∣∣∣ℏ′(ϑ

2
vm,ȷ +

(2− ϑ)

2
vm,ȷ+1

)∣∣∣∣q dϑ)
1
q

+

(∫ 1

0

ϑℓ

∣∣∣∣ℏ′( (2− ϑ)

2
vm,ȷ +

ϑ

2
vm,ȷ+1

)∣∣∣∣q dϑ)
1
q

}
.

By the definition of higher order strongly m-polynomial exponentially type convex
function with respect to the constant ζ > 0 of |ℏ′|q, we have∣∣Qℓ

m(ℏ; ♭1, ♭2)
∣∣ ≤ ( ♭2 − ♭1

4m

)(
1

ℓ+ 1

)1− 1
q

×
m−1∑
ȷ=0

{(∫ 1

0

ϑℓ

[
1

m

m∑
ı=1

[
1−

(
1− ϑ

2

)ı] |ℏ′(vm,ȷ)|q

eςvm,ȷ
+

1

m

m∑
ı=1

[
1−

(
ϑ

2

)ı] |ℏ′(vm,ȷ+1)|q

eςvm,ȷ+1

− ζ

[(
ϑ

2

)p(
1− ϑ

2

)
+

ϑ

2

(
1− ϑ

2

)p] ∣∣∣∣ ♭2 − ♭1
m

∣∣∣∣p
]
dϑ

) 1
q
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+

(∫ 1

0

ϑℓ

[
1

m

m∑
ı=1

[
1−

(
1− ϑ

2

)ı] |ℏ′(vm,ȷ+1)|q

eςvm,ȷ+1
+

1

m

m∑
ı=1

[
1−

(
ϑ

2

)ı] |ℏ′(vm,ȷ)|q

eςvm,ȷ

− ζ

[(
ϑ

2

)p(
1− ϑ

2

)
+

ϑ

2

(
1− ϑ

2

)p] ∣∣∣∣ ♭2 − ♭1
m

∣∣∣∣p
]
dϑ

) 1
q
}

=

(
♭2 − ♭1
4m

)(
1

ℓ+ 1

)1− 1
q
m−1∑
ȷ=0

{[
Tm,ℓ

|ℏ′(vm,ȷ)|q

eςvm,ȷ
+Mm,ℓ

|ℏ′(vm,ȷ+1)|q

eςvm,ȷ+1

− ζ

2p+1

∣∣∣∣ ♭2 − ♭1
m

∣∣∣∣p( ℓ+ p+ 3

(ℓ+ p+ 1)(ℓ+ p+ 2)
− 2ℓ+p+2B 1

2
(ℓ+ 2, p+ 1)

)] 1
q

+

[
Tm,ℓ

|ℏ′(vm,ȷ+1)|q

eςvm,ȷ+1
+Mm,ℓ

|ℏ′(vm,ȷ)|q

eςvm,ȷ

− ζ

2p+1

∣∣∣∣ ♭2 − ♭1
m

∣∣∣∣p( ℓ+ p+ 3

(ℓ+ p+ 1)(ℓ+ p+ 2)
− 2ℓ+p+2B 1

2
(ℓ+ 2, p+ 1)

)] 1
q
}
,

which completes the proof. □

Corollary 4.10. Theorem 4.9 with ς = 0 leads to

∣∣Qℓ
m(ℏ; ♭1, ♭2)

∣∣ ≤ ( ♭2 − ♭1
4m

)(
1

ℓ+ 1

)1− 1
q

(4.18)

×
m−1∑
ȷ=0

{[
Tm,ℓ|ℏ′(vm,ȷ)|q +Mm,ℓ|ℏ′(vm,ȷ+1)|q

− ζ

2p+1

∣∣∣∣ ♭2 − ♭1
m

∣∣∣∣p( ℓ+ p+ 3

(ℓ+ p+ 1)(ℓ+ p+ 2)
− 2ℓ+p+2B 1

2
(ℓ+ 2, p+ 1)

)] 1
q

+

[
Tm,ℓ|ℏ′(vm,ȷ+1)|q +Mm,ℓ|ℏ′(vm,ȷ)|q

− ζ

2p+1

∣∣∣∣ ♭2 − ♭1
m

∣∣∣∣p( ℓ+ p+ 3

(ℓ+ p+ 1)(ℓ+ p+ 2)
− 2ℓ+p+2B 1

2
(ℓ+ 2, p+ 1)

)] 1
q
}
.

Corollary 4.11. Theorem 4.9 with m = 1 leads to∣∣∣∣∣2ℓ−1Γ(ℓ+ 1)

(♭2 − ♭1)ℓ

{
J ℓ(

♭1+♭2
2

)+ℏ(♭2) + J ℓ(
♭1+♭2

2

)−ℏ(♭1)

}
− ℏ

(
♭1 + ♭2

2

)∣∣∣∣∣
≤
(
♭2 − ♭1

4

)(
1

ℓ+ 1

)1− 1
q

{(
1

2(ℓ+ 2)

|ℏ′(♭1)|q

eς♭1
+

ℓ+ 3

2(ℓ+ 1)(ℓ+ 2)

|ℏ′(♭2)|q

eς♭2
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− ζ

2p+1
|♭2 − ♭1|p

(
ℓ+ p+ 3

(ℓ+ p+ 1)(ℓ+ p+ 2)
− 2ℓ+p+2B 1

2
(ℓ+ 2, p+ 1)

)) 1
q

+

(
1

2(ℓ+ 2)

|ℏ′(♭2)|q

eς♭2
+

ℓ+ 3

2(ℓ+ 1)(ℓ+ 2)

|ℏ′(♭1)|q

eς♭1

− ζ

2p+1
|♭2 − ♭1|p

(
ℓ+ p+ 3

(ℓ+ p+ 1)(ℓ+ p+ 2)
− 2ℓ+p+2B 1

2
(ℓ+ 2, p+ 1)

)) 1
q
}
. (4.19)

Moreover, if ς = 0 and ζ → 0+, we get∣∣∣∣∣2ℓ−1Γ(ℓ+ 1)

(♭2 − ♭1)ℓ

{
J ℓ(

♭1+♭2
2

)+ℏ(♭2) + J ℓ(
♭1+♭2

2

)−ℏ(♭1)

}
− ℏ

(
♭1 + ♭2

2

)∣∣∣∣∣
≤
(

♭2 − ♭1
4(ℓ+ 1)

){(
ℓ+ 1

2(ℓ+ 2)
|ℏ′(♭1)|q +

ℓ+ 3

2(ℓ+ 2)
|ℏ′(♭2)|q

) 1
q

+

(
ℓ+ 1

2(ℓ+ 2)
|ℏ′(♭2)|q +

ℓ+ 3

2(ℓ+ 2)
|ℏ′(♭1)|q

) 1
q
}
,

(4.20)

which is established in [8, Theorem 5].

5. Applications

5.1. Bessel functions

Consider the function Bσ : (0,+∞) → [1,+∞) with σ > −1, given by

Bσ(x) := 2σΓ(σ + 1)x−σPσ(x),

where Pσ is the modified Bessel function of the first kind defined by (see [11, on page
77]):

Pσ(x) =

+∞∑
m=0

(
x
2

)σ+2m

m!Γ(σ + 1 +m)
, x ∈ R.

Following [11], we have

B′
σ(x) =

x

2(σ + 1)
Bσ+1(x), (5.1)

B′′
σ(x) =

x2Bσ+2(x)

4(σ + 1)(σ + 2)
+

Bσ+1(x)

2(σ + 1)
. (5.2)

Assume that all assumptions of the used corollaries in the following examples are
satisfied.

Example 5.1. Let 0 < ♭1 < ♭2 and σ > −1. Then, by using Corollary 4.5 with ℓ = 1
for ℏ(x) = B′

σ(x) and the identities (5.1) and (5.2), we have
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♭2 − ♭1
− (♭1 + ♭2)

4(σ + 1)
Bσ+1

(
♭1 + ♭2

2

)∣∣∣∣ ≤ ( ♭2 − ♭1
16(σ + 1)

)
×

[
1

eς♭1

(
♭21Bσ+2(♭1)

2(σ + 2)
+ Bσ+1(♭1)

)

+
1

eς♭2

(
♭22Bσ+2(♭2)

2(σ + 2)
+ Bσ+1(♭2)

)]

− ζ

2p

(
p+ 4

(p+ 2)(p+ 3)
− 2p+3B 1

2
(3, p+ 1)

)
|♭2 − ♭1|p .

Example 5.2. Let 0 < ♭1 < ♭2 and σ > −1. Then, by applying Corollary 4.8 with
ℓ = 1, ℏ(x) = B′

σ(x) and the identities (5.1) and (5.2), we get

∣∣∣∣Bσ(♭2)− Bσ(♭1)

♭2 − ♭1
− (♭1 + ♭2)

4(σ + 1)
Bσ+1

(
♭1 + ♭2

2

)∣∣∣∣ ≤ ( ♭2 − ♭1

4 q
√
4

)(
1

r + 1

) 1
r

×

{[
1

eς♭1

(
♭21Bσ+2(♭1)

4(σ + 1)(σ + 2)
+

Bσ+1(♭1)

2(σ + 1)

)q

+
3

eς♭2

(
♭22Bσ+2(♭2)

4(σ + 1)(σ + 2)
+

Bσ+1(♭2)

2(σ + 1)

)q

− ζ

(p+ 1)(p+ 2)
|♭2 − ♭1|p

] 1
q

+

[
3

eς♭1

(
♭21Bσ+2(♭1)

4(σ + 1)(σ + 2)
+

Bσ+1(♭1)

2(σ + 1)

)q

+
1

eς♭2

(
♭22Bσ+2(♭2)

4(σ + 1)(σ + 2)
+

Bσ+1(♭2)

2(σ + 1)

)q

− ζ

(p+ 1)(p+ 2)
|♭2 − ♭1|p

] 1
q

}
.

Example 5.3. Let 0 < ♭1 < ♭2 and σ > −1. Then, by using Corollary 4.11 with ℓ = 1,
ℏ(x) = B′

σ(x) and the identities (5.1) and (5.2), we obtain

∣∣∣∣Bσ(♭2)− Bσ(♭1)

♭2 − ♭1
− (♭1 + ♭2)

4(σ + 1)
Bσ+1

(
♭1 + ♭2

2

)∣∣∣∣ ≤ ( ♭2 − ♭1
4

)(
1

2

)1− 1
q

×

{[
1

6eς♭1

(
♭21Bσ+2(♭1)

4(σ + 1)(σ + 2)
+

Bσ+1(♭1)

2(σ + 1)

)q

+
1

3eς♭2

(
♭22Bσ+2(♭2)

4(σ + 1)(σ + 2)
+

Bσ+1(♭2)

2(σ + 1)

)q

− ζ

2p+1
|♭2 − ♭1|p

(
p+ 4

(p+ 2)(p+ 3)
− 2p+3B 1

2
(3, p+ 1)

)] 1
q

+

[
1

3eς♭1

(
♭21Bσ+2(♭1)

4(σ + 1)(σ + 2)
+

Bσ+1(♭1)

2(σ + 1)

)q

+
1

6eς♭2

(
♭22Bσ+2(♭2)

4(σ + 1)(σ + 2)
+

Bσ+1(♭2)

2(σ + 1)

)q

− ζ

2p+1
|♭2 − ♭1|p

(
p+ 4

(p+ 2)(p+ 3)
− 2p+3B 1

2
(3, p+ 1)

)] 1
q
}
.
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5.2. Bounded functions

Proposition 5.4. Let ℓ > 0, m ∈ N, ς ∈ R and ℏ : [♭1, ♭2] → R be a differentiable func-
tion on (♭1, ♭2) such that ℏ′ ∈ L[♭1, ♭2]. If |ℏ′| is a higher order strongly m-polynomial
exponentially type convex function, with respect to the constant ζ > 0 and |ℏ′| ≤ K
on [♭1, ♭2], then we have

∣∣Qℓ
m(ℏ; ♭1, ♭2)

∣∣ ≤ K
(
♭2 − ♭1
4m

)
[Tm,ℓ +Mm,ℓ]

m−1∑
ȷ=0

[
1

eςvm,ȷ
+

1

eςvm,ȷ+1

]
(5.3)

− mζ

2p

(
ℓ+ p+ 3

(ℓ+ p+ 1)(ℓ+ p+ 2)
− 2ℓ+p+2B 1

2
(ℓ+ 2, p+ 1)

) ∣∣∣∣ ♭2 − ♭1
m

∣∣∣∣p ,
where Tm,ℓ and Mm,ℓ are as given in Theorem 4.3.

Proposition 5.5. Let ℓ > 0, m ∈ N, ς ∈ R and ℏ : [♭1, ♭2] → R be a differentiable func-
tion on (♭1, ♭2) such that ℏ′ ∈ L[♭1, ♭2]. If |ℏ′|q is higher order strongly m-polynomial
exponentially type convex function with respect to the constant ζ > 0 and |ℏ′| ≤ K on
[♭1, ♭2], then for q > 1 and 1

q + 1
r = 1, we have

∣∣Qℓ
m(ℏ; ♭1, ♭2)

∣∣ ≤ K
(
♭2 − ♭1
4m

)(
1

ℓr + 1

) 1
r

×
m−1∑
ȷ=0

{(
Rm

eςvm,ȷ
+

Sm

eςvm,ȷ+1
− ζ

Kq(p+ 1)(p+ 2)

∣∣∣∣ ♭2 − ♭1
m

∣∣∣∣p)
1
q

+

(
Rm

eςvm,ȷ+1
+

Sm

eςvm,ȷ
− ζ

Kq(p+ 1)(p+ 2)

∣∣∣∣ ♭2 − ♭1
m

∣∣∣∣p)
1
q

}
, (5.4)

where Rm and Sm are as given in Theorem 4.6.

Proposition 5.6. Let ℓ > 0, m ∈ N, ς ∈ R and ℏ : [♭1, ♭2] → R be a differentiable func-
tion on (♭1, ♭2) such that ℏ′ ∈ L[♭1, ♭2]. If |ℏ′|q is higher order strongly m-polynomial
exponentially type convex function with respect to the constant ζ > 0 and |ℏ′| ≤ K on
[♭1, ♭2], then for q ≥ 1, we have

∣∣Qℓ
m(ℏ; ♭1, ♭2)

∣∣ ≤ K
(
♭2 − ♭1
4m

)(
1

ℓ+ 1

)1− 1
q

×
m−1∑
ȷ=0

{[
Tm,ℓ

eςvm,ȷ
+

Mm,ℓ

eςvm,ȷ+1

− ζ

Kq2p+1

∣∣∣∣ ♭2 − ♭1
m

∣∣∣∣p( ℓ+ p+ 3

(ℓ+ p+ 1)(ℓ+ p+ 2)
− 2ℓ+p+2B 1

2
(ℓ+ 2, p+ 1)

)] 1
q

+

[
Tm,ℓ

eςvm,ȷ+1
+

Mm,ℓ

eςvm,ȷ

− ζ

Kq2p+1

∣∣∣∣ ♭2 − ♭1
m

∣∣∣∣p( ℓ+ p+ 3

(ℓ+ p+ 1)(ℓ+ p+ 2)
− 2ℓ+p+2B 1

2
(ℓ+ 2, p+ 1)

)] 1
q

}
, (5.5)

where Tm,ℓ and Mm,ℓ are as given in Theorem 4.3.



New developments of fractional integral inequalities and their applications 389

6. Conclusion

In this article, we proposed the higher order strongly m-polynomial exponentially
type convex functions and some of its algebraic properties are given. Furthermore, we
deduced some fractional integral inequalities using the basic identity for the new class
of function. Moreover, we demonstrated the efficiency of our results via some appli-
cations. Our results not only generalized the previous known results but also refined
them. For future research in this direction, we will offer several new inequalities per-
taining to Hölder-İşcan, Chebyshev, Markov, Young and Minkowski type inequalities
for this generic class of convex functions in fractional and quantum calculus.
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dence results of coupled system of Hilfer frac-
tional stochastic pantograph equations with non-
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Abstract. This study explores the existence, uniqueness, and continuous depen-
dence of solutions for coupled system of Hilfer fractional stochastic pantograph
equations with nonlocal integral conditions. The existence of solutions is demon-
strated using topological degree theory for condensing maps. The uniqueness
is established via Banach’s contraction principle. To address continuous depen-
dence, the generalized Gronwall inequality is applied. Additionally, a numerical
example is provided to illustrate and confirm the theoretical findings.
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1. Introduction

Fractional derivatives provide a flexible tool for modeling intricate processes in various
fields by extending classical differentiation to non-integer orders. Several definitions of
fractional derivatives exist, including the Riemann-Liouville (R-L) and Caputo deriva-
tives. The R-L derivative offers a foundational approach to fractional differentiation
[14], while the Caputo derivative is often used in practical applications due to its com-
patibility with standard initial conditions [14]. To unify and extend these approaches,
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Hilfer introduced a generalized fractional differential operator that combines the Ca-
puto and R-L derivatives. This operator, called the fractional Hilfer derivative (HFD),
has shown great promise in modeling systems with complex boundary conditions and
temporal delays [3, 13, 20, 22, 30].

Fractional differential equations represent a substantial advancement in math-
ematical modeling, particularly in fields such as signal processing, biology, and
engineering. By incorporating non-integer order derivatives, these equations cap-
ture complex system dynamics. A significant category within this domain is frac-
tional pantograph delay differential equations, which integrate delays to model sys-
tems with memory effects. When combined with stochastic calculus, these equations
evolve into stochastic fractional pantograph differential equations, which are valuable
for describing systems influenced by both memory effects and random fluctuations
[5, 7, 8, 21, 23, 24, 25, 28, 29, 31, 32, 34, 35].

The continuous dependence of stochastic fractional differential equations is cru-
cial for ensuring that small changes in initial or nonlocal conditions lead to propor-
tionally small variations in the solutions. Research has shown that mild solutions
of mean-field stochastic functional differential equations exhibit sensitivity to initial
data and coefficients within an appropriate topological framework [4, 27, 36, 37, 38].
Similarly, generalized Cauchy-type problems involving HFD demonstrate continuous
dependence on the fractional order, supported by a generalization of Gronwall’s in-
equality [1, 9, 11, 27, 33]. Solutions to random fractional-order differential equations
with nonlocal conditions also maintain continuous dependence on initial conditions
[15].

Coupled system with nonlocal conditions are particularly useful for modeling
physical, chemical, or other processes that occur at multiple points within a domain
rather than being restricted to boundary conditions. El-Sayed [16] explored the con-
tinuous dependence of solutions for stochastic differential equations with nonlocal
conditions, while more recently, Arioui [6] studied the existence of coupled systems
of fractional stochastic differential equations involving HFD. For more study about
coupled systems, we refer to [2, 10, 17, 18, 19, 26, 39, 40]

To the best of our knowledge, no existing study has addressed the existence and
continuous dependence of solutions for coupled systems of Hilfer fractional stochastic
pantograph equations with nonlocal conditions. This paper aims to fill this gap by
introducing a novel class of coupled system of Hilfer fractional stochastic pantograph
equations with nonlocal integral conditions



HDp1,q1
0+,ι ϱ(ι) = ϖ1 (ι, ϱ(ι), ϱ (κι) , ξ(ι)) , ι ∈ J := (0, b],

HDp2,q2
0+,ι ξ(ι) = ϖ2 (ι, ϱ(ι), ξ (ι) , ξ(κι))

dW(ι)

dι
,

I1−γ1

0+,ι ϱ(0) =

∫ ι

0

g1 (s, ϱ(s), ξ(s)) dW(s), γ1 = p1 + q1 − p1q1,

I1−γ2

0+,ι ξ(0) =

∫ ι

0

g2 (s, ϱ(s), ξ(s)) ds, γ2 = p2 + q2 − p2q2,

(1.1)
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where I
1−γj

0+,ι and HD
pj ,qj
0+,ι are the fractional integral of order 1 − γj and the HFD

of order pj and type qj , respectively, j = 1, 2. Here, 1
2 < pj < 1, 0 < qj ≤ 1.

Let (W (ι))ι≥0 be 1-dimensional standard Brownian motion defined in the complete

probability space (Ω,Fι,P) with a normal filteration (Fι)ι≥0. ϖj , gj : J×R×R×R →
R are measurable functions and 0 < κ < 1.

2. Preliminaries

Let L2 (Ω,Fι,R) = L2 (Ω,R) is the Hilbert space of real-valued random variables
that are square-integrable with respect to the probability measure on (Ω,Fι). Let
C(J,L2 (Ω,R)) is the space of continuous time stochastic processes that are square-

integrable with the norm ∥ϱ∥2 = sup
{
E ∥ϱ(ι)∥2 : ι ∈ J

}
, where E is the mathematical

expectation. On the other hand, define the Banach space

Ej = C1−γj
(J, L2 (Ω,R))

=
{
ϱ : J → L2 (Ω,R) : ι1−γjϱ(ι) ∈ C(J, L2 (Ω,R))

}
, 0 < γj ≤ 1, j = 1, 2,

using the norm

∥ϱ∥2Ej
= sup

ι∈J
E
∥∥ι1−γjϱ(ι)

∥∥2 .
Furthermore, let E := E1 × E2 with the norm ∥ (ϱ, ξ) ∥E = max{∥ϱ∥E1

, ∥ξ∥E2
}. It is

clear that E forms a Banach space.

Definition 2.1. [14] For p > 0, the fractional R-L integral with order p for a continuous
function ϱ : [a,∞) → R can be written as

Ipa+,ιϱ(ι) =
1

Γ(p)

∫ ι

a

(ι− s)p−1ϱ(s)ds.

Definition 2.2. [14] For n− 1 < p ≤ n, the fractional R-L derivative with order p for
a continuous function ϱ is represented as

Dp
a+,ιϱ(ι) = DnIn−p

a+,ιϱ(ι) =
1

Γ(n− p)

(
d

dι

)n ∫ ι

a

(ι− s)n−p−1ϱ(s)ds.

Definition 2.3. [20] For n− 1 < p ≤ n, the HFD with order p and type 0 ≤ q ≤ 1 of
ϱ is represented as

HDp,q
a+,ιϱ(ι) = I

q(n−p)
a+,ι DnI

(1−q)(n−p)
a+,ι ϱ(ι) = I

q(n−p)
a+,ι Dθ

a+,ιϱ(ι),

where D = d
dι and θ = p+ q (n− p).

Lemma 2.4. [20] For n − 1 < p ≤ n, f ∈ L1(a, b), 0 ≤ β ≤ 1 , and I
(1−q)(n−p)
a+,ι ϱ ∈

ACk[a, b], then

Ipa+,ι
HDp,q

a+,ιϱ(ι) = ϱ(ι)−
n∑

k=1

(ι− a)θ−k

Γ(θ + 1− k)
· lim
ι−→+a

dk

dιk
I
(1−q)(n−p)
a+,ι ϱ(ι).
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Lemma 2.5. [20] Let p > 0 and q > 0. Following that ∀ι ∈ J there is

[
Ipa+,ι(ι)

q−1
]
(ι) =

Γ(q)

Γ(q + p)
ιq+p−1,

and [
Dp

a+,ι(ι)
p−1

]
(ι) = 0, 0 < p < 1.

Lemma 2.6. A stochastic process (ϱ, ξ) ∈ E is called a solution of problem (1.1) if
(ϱ, ξ) satisfies the following stochastic integral equation

ϱ(ι) =
ιγ1−1

Γ(γ1)

∫ b

0

g1 (s, ϱ(s), ξ(s)) dW(s)

+
1

Γ(p1)

∫ ι

0

(ι− s)p1−1ϖ1 (s, ϱ(s), ϱ (κs) , ξ(s)) ds

and

ξ(ι) =
ιγ2−1

Γ(γ2)

∫ b

0

g2 (s, ϱ(s), ξ (s)) ds

+
1

Γ(p2)

∫ ι

0

(ι− s)p2−1ϖ2 (s, ϱ(s), ξ (s) , ξ(κs)) dW(s).

Definition 2.7. [12] Let A : S −→ E be a bounded continuous map, where S ⊆ E. Then
A is

(i) ϑ-Lipschitz if there exists r ≥ 0 such that ϑ(A(K)) ≤ rϑ(K) for all bounded
subsets K ⊆ S;

(ii) Strict ϑ-contraction if there exists 0 ≤ r < 1 such that ϑ(A(K)) ≤ rϑ(K);
(iii) ϑ-condensing if ϑ(A(K)) < ϑ(K) for all bounded subsets K ⊆ S with ϑ(K) > 0,

where ϑ is the Kuratowski measure of non-compactness.

Proposition 2.8. [21] If A,B : S −→ E are ϑ-Lipschitz with respective constants r1
and r2, then A+ B is ϑ-lipschitz with constant r1 + r2.

Proposition 2.9. [21] If A : S −→ E is Lipschitz with constant r, then A is ϑ-lipschitz
with the same constant r.

Proposition 2.10. [21] If A : S −→ E is compact, then Z is ϑ-lipschitz with constant
r = 0.

Theorem 2.11. [21] Let C : S −→ E is ϑ-condensing and

Γδ = {ϱ ∈ C : there exists 0 ≤ δ ≤ 1 such that ϱ = δCϱ}.

If Γδ is a bounded set in E, then there exists a > 0 such that Γδ ⊂ Ba(0) and

Deg (I − δC, Ba(0), 0) = 1 for all δ ∈ [0, 1].

Thus, C has at least one fixed point, and the set of all fixed points of C lies in Ba(0).
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3. Existence and uniqueness results

In this part we will use the degree theory to prove the existence of solutions to the
problem (1.1).
First, we give the following essential hypotheses:
(H1): For arbitrary (ϱ1, ϱ2) , (ξ1, ξ2) ∈ E1×E2, there exist positive constants Lϖ1 , lϖ1 ,
mϖ1 and q1, q2 ∈ (0, 1) such that

∥ϖ1 (ι, ϱ1(ι), ϱ1(κι), ϱ2(ι))−ϖ1 (ι, ξ1(ι), ξ1(κι), ξ2(ι))∥2

≤ Lϖ1

(
ι2(1−γ1)2 ∥ϱ1 − ξ1∥2 + ι2(1−γ2) ∥ϱ2 − ξ2∥2

)
,

∥ϖ1 (ι, ϱ1(ι), ϱ1(κι), ϱ2(ι))∥2

≤ lϖ1

(
ι2q1(1−γ1)2 ∥ϱ1∥2q1 + ι2q2(1−γ2) ∥ϱ2∥2q2

)
+mϖ1 .

(H2): For arbitrary (ϱ1, ϱ2) , (ξ1, ξ2) ∈ E1×E2, there exist positive constants Lϖ2
, lϖ2

,
mϖ2 and q1, q2 ∈ (0, 1) such that

∥ϖ2 (ι, ϱ1(ι), ϱ2(ι), ϱ2(κι))−ϖ2 (ι, ξ1(ι), ξ2(ι), ξ2(κι))∥2

≤ Lϖ2

(
ι2(1−γ1) ∥ϱ1 − ξ1∥2 + 2ι2(1−γ2) ∥ϱ2 − ξ2∥2

)
,

∥ϖ2 (ι, ϱ1(ι), ϱ2(ι), ϱ2(κι))∥2

≤ lϖ2

(
ι2q1(1−γ1) ∥ϱ1∥2q1 + ι2q2(1−γ2)2 ∥ϱ2∥2q2

)
+mϖ2

.

(H3): For arbitrary (ϱ1, ϱ2) , (ξ1, ξ2) ∈ E1 × E2, there exist positive constants Lgj , lgj ,
mgj (j = 1, 2) and q1, q2 ∈ (0, 1) such that

∥gj (ι, ϱ1(ι), ϱ2(ι))− gj (ι, ξ1(ι), ξ2(ι))∥2

≤ Lgj

(
ι2(1−γ1) ∥ϱ1 − ξ1∥2 + ι2(1−γ2) ∥ϱ2 − ξ2∥2

)
,

∥gj (ι, ϱ1(ι), ϱ2(ι))∥2 ≤ lgj

(
ι2q1(1−γ1) ∥ϱ1∥2q1 + ι2q2(1−γ2) ∥ϱ2∥2q2

)
+mgj .

To make clarity, we set the following notations:

∆1j =
2bLgj

Γ2(γj)
, j = 1, 2,

∆2j =
2blgj
Γ2(γj)

, j = 1, 2,

∆3j =
bmgj

Γ2(γj)
,

∆4j =
3Lϖj b

2−2γj+2pj lϖj

Γ2(pj)2pj − 1
, j = 1, 2,

∆ = max {∆11 ,∆12} , ∆̄ = max {∆41 ,∆42} .
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Based on Lemma 2.6, we let the operators A,B, C : E1 × E2 −→ E1 × E2 defined by

A(ϱ, ξ)(ι) = (A1(ϱ, ξ)(ι),A2(ϱ, ξ)(ι)) , B(ϱ, ξ)(ι) = (B1(ϱ, ξ)(ι),B2(ϱ, ξ)(ι)) ,
C(ϱ, ξ)(ι) = A(ϱ, ξ)(ι) + B(ϱ, ξ)(ι),

where 
A1(ϱ, ξ)(ι) =

ιγ1−1

Γ(γ1)

∫ b

0

g1 (s, ϱ(s), ξ(s)) dW(s),

A2(ϱ, ξ)(ι) =
ιγ2−1

Γ(γ2)

∫ b

0

g2 (s, ϱ(s), ξ (s)) ds

and 
B1(ϱ, ξ)(ι) =

1

Γ(p1)

∫ ι

0

(ι− s)p1−1ϖ1 (s, ϱ(s), ϱ (κs) , ξ(s)) ds,

B2(ϱ, ξ)(ι) =
1

Γ(p2)

∫ ι

0

(ι− s)p2−1ϖ2 (s, ϱ(s), ξ (s) , ξ(κs)) dW(s).

We shall now prove, step-by-step, that the proposed operators satisfy the conditions
of Theorem 2.11.

Lemma 3.1. The operator A is ϑ-Lipschitz with a constant ∆. Furthermore, A adheres
to the inequality presented below

∥A(ϱ, ξ)∥2E ≤Λ + Λ̄∥(ϱ, ξ)∥2qE , where

Λ = max{∆31 ,∆32} and

Λ̄ = max{∆21 ,∆22}.
(3.1)

Proof. Let (ϱ1, ϱ2) , (ξ1, ξ2) ∈ E1 × E2, we have

E
∥∥ι1−γ1 (A1 (ϱ1, ϱ2) (ι)−A1 (ξ1, ξ2) (ι))

∥∥2
≤ 1

Γ2(γ1)
E

∥∥∥∥∥
∫ b

0

[g1 (s, ϱ1(s), ϱ2(s))− g1 (s, ξ1(s), ξ2(s))] ds

∥∥∥∥∥
2

.

By applying Ito isometry and (H3), we arrive at

E
∥∥ι1−γ1 (A1 (ϱ1, ϱ2) (ι)−A1 (ξ1, ξ2) (ι))

∥∥2
≤ Lg1

Γ2(γ1)

∫ b

0

[
s2(1−γ)E ∥ϱ1(s)− ξ1(s)∥2 + s2(1−γ2)E ∥ϱ2(s)− ξ2(s)∥2

]
ds.

Therefore,

E
∥∥ι1−γ1 (A1 (ϱ1, ϱ2) (ι)−A1 (ξ1, ξ2) (ι))

∥∥2 ≤ bLg1

Γ2(γ1)

(
∥ϱ1 − ξ1∥2E1

+ ∥ϱ2 − ξ2∥2E2

)
.

Consequently,

∥A1 (ϱ1, ϱ2)−A1 (ξ1, ξ2) ∥2E1
≤∆11∥ (ϱ1, ϱ2)− (ξ1, ξ2) ∥2E .

Similar by the Cauchy-Schwartz (C-S) inequality, we can obtain

∥A2 (ϱ1, ϱ2)−A2 (ξ1, ξ2) ∥2E2
≤∆12∥ (ϱ1, ϱ2)− (ξ1, ξ2) ∥2E .
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It follows that

∥A (ϱ1, ϱ2)−A (ξ1, ξ2) ∥2E ≤∆∥ (ϱ1, ϱ2)− (ξ1, ξ2) ∥2E .

Thus, A satisfies the Lipschitz condition with the constant ∆. By Proposition 2.9, A
is also ϑ-Lipschitz with the same constant ∆.
For the growth condition.
Let (ϱ, ξ) ∈ E1 × E2. Under the Ito isometry and (H3), we have

E
∥∥ι1−γ1A1 (ϱ, ξ) (ι)

∥∥2 ≤ 1

Γ2(γ1)

∫ ι

0

[
mg1 + lg1s

2q1(1−γ1)E ∥ϱ(s)∥2q1

+lg1s
2q2(1−γ2)E ∥ξ(s)∥2q2

]
ds.

Therefore,

E
∥∥ι1−γ1A1 (ϱ, ξ) (ι)

∥∥2 ≤ b

Γ2(γ1)

(
mg1 + lg1∥ϱ∥

2q1
E1

+ lg1∥ξ∥
2q2
E2

)
.

Consequently,

∥A1 (ϱ, ξ) ∥2E1
≤∆31 +∆21∥ (ϱ, ξ) ∥

2q
E ,

where q = max {q1, q2}.
Similarly, we find that

∥A2 (ϱ, ξ) ∥2E2
≤∆32 +∆22∥ (ϱ, ξ) ∥

2q
E .

It follows that

∥A(ϱ, ξ)∥2E ≤ Λ + Λ̄∥(ϱ, ξ)∥2qE .

□

Lemma 3.2. The operator B is continuous. Furthermore, B satisfies the inequality

∥B(ϱ, ξ)∥2E ≤Ξ + Ξ̄∥(ϱ, ξ)∥2qE , where

Ξ = max{b
2−2γ1+2p1mϖ1

Γ2(p1)2p1 − 1
,
b2−2γ2+2p2mϖ2

Γ2(p2)2p2 − 1
} and

Ξ̄ = max{3b
2−2γ1+2p1 lϖ1

Γ2(p1)2p1 − 1
,
3b2−2γ2+2p2 lϖ2

Γ2(p2)2p2 − 1
}.

(3.2)

Proof. For the continuity of B, let (ϱn, ξn) → (ϱ, ξ) in E . From the fact that ϖ1

and ϖ2 are continuous functions linking with the Lebesgue dominated convergence
theorem, we can obtain

∥B(ϱn, ξn)− B(ϱ, ξ)∥2E → 0 as n → ∞.

Moreover, B satisfies the growth condition.
Using the C-S inequality, we have

E
∥∥ι1−γ1B1(ϱ, ξ)(ι)

∥∥2
≤ι2(1−γ1)

ι

Γ2(p1)

∫ ι

0

(ι− s)2(p1−1)E ∥ϖ1 (s, ϱ(s), ϱ(κs), ξ (s))∥2 ds.
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Based on the assumptions (H1), it can be concluded that

E
∥∥ι1−γ1B1(ϱ, ξ)(ι)

∥∥2 ≤ t2−2γ1+2p1

Γ2(p1)2p1 − 1

(
mϖ1 + 2lϖ1∥ϱ∥

2q1
E1

+ lϖ1∥ξ∥
2q2
E2

)
.

Subsequently,

∥B1(ϱ, ξ)∥2E1
≤b2−2γ1+2p1mϖ1

Γ2(p1)2p1 − 1
+

3b2−2γ1+2p1 lϖ1

Γ2(p1)2p1 − 1
∥(ϱ, ξ)∥2qE .

Similarly,

∥B2(ϱ, ξ)∥2E2
≤b2−2γ2+2p2mϖ2

Γ2(p2)2p2 − 1
+

3b2−2γ2+2p2 lϖ2

Γ2(p2)2p2 − 1
∥(ϱ, ξ)∥2qE .

Thus,
∥B(ϱ, ξ)∥2E ≤Ξ + Ξ̄∥(ϱ, ξ)∥2qE , where

Ξ = max{b
2−2γ1+2p1mϖ1

Γ2(p1)2p1 − 1
,
b2−2γ2+2p2mϖ2

Γ2(p2)2p2 − 1
} and

Ξ̄ = max{3b
2−2γ1+2p1 lϖ1

Γ2(p1)2p1 − 1
,
3b2−2γ2+2p2 lϖ2

Γ2(p2)2p2 − 1
}.

□

Lemma 3.3. B is compact; consequently, B is ϑ-Lipschitz with a zero constant.

Proof. Let Bτ = {(ϱ, ξ) ∈ E1 × E2 : ∥(ϱ, ξ)∥ ≤ τ} and consider a bounded set K such
that K ⊂ Bτ . It remains to demonstrate that B(K) is relatively compact in E . For
this purpose, let (ϱ, ξ) ∈ K ⊂ Bτ and by (3.2), we derive

∥B(ϱ, ξ)∥2E ≤Ξ + Ξ̄∥(ϱ, ξ)∥2qE := Υ.

Thus, B(K) ⊂ Bτ , and as a result, B(K) is bounded.
It remains to prove the equicontinuity of B.
Let 0 ≤ ϵ1 < ϵ2 ≤ b and (ϱ, ξ) ∈ Bτ , then

E
∥∥∥ϵ1−γ1

2 (B1(ϱ, ξ)) (ϵ2)− ϵ1−γ1

1 (B1(ϱ, ξ)) (ϵ1)
∥∥∥2

≤2E
∥∥∥∥ 1

Γ(p1)

∫ ϵ1

0

[
ϵ
2(1−γ1)
2 (ϵ2 − s)p1−1 − ϵ

2(1−γ1)
1 (ϵ1 − s)p1−1

]
×ϖ1(s, ϱ(s), ϱ(κs), ξ(s))ds∥2

+ 2E
∥∥∥∥ 1

Γ(p1)

∫ ϵ2

ϵ1

ϵ
2(1−γ1)
2 (ϵ2 − s)p1−1ϖ1(s, ϱ(s), ϱ(κs), ξ(s))ds

∥∥∥∥2 .
By C-S inequality (H1), we obtain

E
∥∥∥ϵ1−γ1

2 (B1(ϱ, ξ)) (ϵ2)− ϵ1−γ1

1 (B1(ϱ, ξ)) (ϵ1)
∥∥∥2

≤2ϵ1 (mϖ1
+ 3lϖ1

τ q)

Γ2(p1)

∫ ϵ1

0

[
ϵ
2(1−γ1)
2 (ϵ2 − s)p1−1 − ϵ

2(1−γ1)
1 (ϵ1 − s)p1−1

]2
ds

+
2(ϵ2 − ϵ1) (mϖ1

+ 3lϖ1
τ q) ϵ

2(1−γ1)
2

Γ2(p1)2p1 − 1
(ϵ2 − ϵ1)

2p1−1 −→ 0, as ϵ1 −→ ϵ2.
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Similarly, we get

E
∥∥∥ϵ1−γ2

2 (B2(ϱ, ξ)) (ϵ2)− ϵ1−γ2

1 (B2(ϱ, ξ)) (ϵ1)
∥∥∥2

≤2ϵ1 (mϖ2
+ 3lϖ2

τ q)

Γ2(p2)

∫ ϵ1

0

[
ϵ
2(1−γ2)
2 (ϵ2 − s)p1−1 − ϵ

2(1−γ2)
1 (ϵ1 − s)p2−1

]2
ds

+
2(ϵ2 − ϵ1) (mϖ2 + 3lϖ2τ

q) ϵ
2(1−γ2)
2

Γ2(p2)2p2 − 1
(ϵ2 − ϵ1)

2p2−1 −→ 0, as ϵ1 −→ ϵ2.

Therefore, we find that

E
∥∥∥ϵ1−γ1

2 (B1(ϱ, ξ)) (ϵ2)− ϵ1−γ1

1 (B1(ϱ, ξ)) (ϵ1)
∥∥∥2 ,

E
∥∥∥ϵ1−γ2

2 (B2(ϱ, ξ)) (ϵ2)− ϵ1−γ2

1 (B2(ϱ, ξ)) (ϵ1)
∥∥∥2

approaches zero as ϵ1 → ϵ2. By applying the Arzelà-Ascoli theorem, it can be con-
cluded that the operator B is compact. As a result of Proposition 2.10, B is ϑ-Lipschitz
with a zero constant. □

Theorem 3.4. Assume that (H1)− (H3) hold and 0 < ∆ < 1. Then the problem (1.1)
has at least one solution on E. Moreover, the set of the solutions of the problem (1.1)
is bounded in E.

Proof. By Lemma 3.1, the operator A is shown to be ϑ-Lipschitz with a constant
∆ ∈ (0, 1). Similarly, from Lemma 3.3, the operator B is ϑ-Lipschitz with a constant
equal to zero. Consequently, based on Proposition 2.8 and Definition 2.7, the operator
C qualifies as a ϑ-contraction with the constant ∆. This implies that C is ϑ-condensing.
Now, consider the following set

Γδ = {(ϱ, ξ) ∈ E1 × E2 : (ϱ, ξ) = δC (ϱ, ξ) , for 0 ≤ δ < 1}.

We need to demonstrate that Γδ is bounded in E1 × E2. Let (ϱ, ξ) ∈ Γδ. Then, by
Lemma 3.1 and 3.2, it follows that

∥ (ϱ, ξ) ∥2E = δ2∥A (ϱ, ξ) + B (ϱ, ξ) ∥2E
≤ 2δ2

(
∥A (ϱ, ξ) ∥2E + ∥B (ϱ, ξ) ∥2E

)
≤ 2 (Λ + Ξ) + 2

(
Λ̄ + Ξ̄

)
∥ (ϱ, ξ) ∥2qE .

Thus, the set Γδ is bounded in E . If this is not true, by dividing the above inequality
by θ := ∥ (ϱ, ξ) ∥2E → ∞, we obtain

1 ≤ lim
θ→∞

1

θ

[
2 (Λ + Ξ) + 2

(
Λ̄ + Ξ̄

)
θq
]
= 0,

which is a contradiction. Consequently, Theorem 2.11 ensures that C has at least one
fixed point. Therefore, our problem (1.1) has at least one solution. □

Theorem 3.5. Assume assumptions (H1) − (H3) hold and 0 < 2
(
∆+ ∆̄

)
< 1, it

follows that the problem (1.1) has a unique solution.
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Proof. By applying the Banach contraction theorem, for any (ϱ1, ϱ2) , (ξ1, ξ2) ∈ E1 ×
E2, it follows from the arguments presented in the proof of Lemma 3.3 that

∥A (ϱ1, ϱ2)−A (ξ1, ξ2) ∥2E ≤∆∥ (ϱ1, ϱ2)− (ξ1, ξ2) ∥2E .

Next, by the C-S inequality, we obtain

E
∥∥ι1−γ1 (B1(ϱ1, ϱ2)(ι)− B1(ξ1, ξ2)(ι))

∥∥2
≤ι2(1−γ1)

ι

Γ2(p1)

∫ ι

0

(ι− s)2(p1−1)E ∥ϖ1 (s, ϱ1(s), ϱ1(κs), ϱ2 (s))

−ϖ1 (s, ξ1(s), ξ1(κs), ξ2 (s))∥2 ds.

Based on the assumptions (H1), it can be concluded that

E
∥∥ι1−γ1 (B1(ϱ1, ϱ2)(ι)− B1(ξ1, ξ2)(ι))

∥∥2
≤Lϖ1

t2−2γ1+2p1

Γ2(p1)2p1 − 1

(
2∥ϱ1 − ξ1∥2E1

+ ∥ϱ2 − ξ2∥2E2

)
.

Subsequently,

∥B1(ϱ1, ϱ2)− B1(ξ1, ξ2)∥2E1
≤3Lϖ1b

2−2γ1+2p1

Γ2(p1)2p1 − 1
∥(ϱ1, ϱ2)− (ξ1, ξ2)∥2E .

Similarly,

∥B2(ϱ1, ϱ2)− B2(ξ1, ξ2)∥2E2
≤3Lϖ2

b2−2γ2+2p2

Γ2(p2)2p2 − 1
∥(ϱ1, ϱ2)− (ξ1, ξ2)∥2E .

Therefore,

∥B(ϱ1, ϱ2)− B(ξ1, ξ2)∥2E ≤ ∆̄∥(ϱ1, ϱ2)− (ξ1, ξ2)∥2E .
Thus,

∥C(ϱ1, ϱ2)− C(ξ1, ξ2)∥2E ≤ 2
(
∥A(ϱ1, ϱ2)−A(ξ1, ξ2)∥2E + ∥B(ϱ1, ϱ2)− B(ξ1, ξ2)∥2E

)
≤ 2

(
∆+ ∆̄

)
∥(ϱ1, ϱ2)− (ξ1, ξ2)∥2E .

This implies that C is a contraction. As a result, the problem (1.1) has a unique
solution.

□

4. Continuous dependence of solutions

Now, we study the continuous dependence on the nonlocal conditions of the solutions
of problem (1.1).

Definition 4.1. The solution (ϱ, ξ) ∈ E1×E2 of problem (1.1) is said to be continuously
dependent on the nonlocal conditions g1 and g2 if for all ϵ > 0, ∃δ > 0 such that∥∥gj (s, ·, ·)− g∗j (s, ·, ·)

∥∥2 ≤ δ, j = 1, 2 implies that ∥(ϱ, ξ)− (ϱ̄, ξ̄)∥2E ≤ ϵ.

Theorem 4.2. Assume hypotheses (H1)-(H3) are fulfilled, then the solution of the
problem (1.1) is continuously dependent on g1 and g2.
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Proof. Let (ϱ, ξ) ,
(
ϱ̄, ξ̄

)
be the solutions of problem (1.1) such that

ϱ(ι) =
ιγ1−1

Γ(γ1)

∫ ι

0

g1 (s, ϱ(s), ξ(s)) dW(s)

+
1

Γ(p1)

∫ ι

0

(ι− s)p1−1ϖ1 (s, ϱ(s), ϱ (κs) , ξ(s)) ds

ξ(ι) =
ιγ2−1

Γ(γ2)

∫ ι

0

g2 (s, ϱ(s), ξ (s)) ds

+
1

Γ(p2)

∫ ι

0

(ι− s)p2−1ϖ2 (s, ϱ(s), ξ (s) , ξ(κs)) dW(s),

and 

ϱ̄(ι) =
ιγ1−1

Γ(γ1)

∫ ι

0

g∗1
(
s, ϱ̄(s), ξ̄(s)

)
dW(s)

+
1

Γ(p1)

∫ ι

0

(ι− s)p1−1ϖ1

(
s, ϱ̄(s), ϱ̄ (κs) , ξ̄(s)

)
ds

ξ̄(ι) =
ιγ2−1

Γ(γ2)

∫ ι

0

g∗2
(
s, ϱ̄(s), ξ̄ (s)

)
ds

+
1

Γ(p2)

∫ ι

0

(ι− s)p2−1ϖ2

(
s, ϱ̄(s), ξ̄ (s) , ξ̄(κs)

)
dW(s),

where ∥∥gj (s, ·, ·)− g∗j (s, ·, ·)
∥∥2 ≤ δ, j = 1, 2.

By the Ito isometry linking with the C-S inequality, we get

E
∥∥ι1−γ1 (ϱ(ι)− ϱ̄(ι))

∥∥2
≤ 2

Γ2(γ1)

∫ ι

0

E
∥∥g1 (s, ϱ(s), ξ(s))− g∗1

(
s, ϱ̄(s), ξ̄(s)

)∥∥2 ds
+

2ι2(1−γ1)ι

Γ2(γ1)

∫ ι

0

(ι− s)2(p1−1)E ∥ϖ1 (s, ϱ(s), ϱ (κs) , ξ(s))

−ϖ1

(
s, ϱ̄(s), ϱ̄ (κs) , ξ̄(s)

)∥∥2 ds
≤ 4

Γ2(γ1)

∫ ι

0

E
(
∥g1 (s, ϱ(s), ξ(s))− g∗1 (s, ϱ(s), ξ(s))∥

2

+
∥∥g∗1 (s, ϱ(s), ξ(s))− g∗1

(
s, ϱ̄(s), ξ̄(s)

)∥∥2) ds

+
2ι2(1−γ1)ι

Γ2(γ1)

∫ ι

0

(ι− s)2(p1−1)E ∥ϖ1 (s, ϱ(s), ϱ (κs) , ξ(s))

−ϖ1

(
s, ϱ̄(s), ϱ̄ (κs) , ξ̄(s)

)∥∥2 ds.
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By applying (H1) and (H3), we arrive at

E
∥∥ι1−γ1 (ϱ(ι)− ϱ̄(ι))

∥∥2
≤ 4b

Γ2(γ1)
δ +

4Lg1

Γ2(γ1)

∫ ι

0

[
s2(1−γ1)E ∥ϱ(s)− ϱ̄(s)∥2 + s2(1−γ2)E

∥∥ξ(s)− ξ̄(s)
∥∥2] ds

+
2b3−2γ1Lϖ1

Γ2(γ1)

∫ ι

0

(ι− s)2(p1−1)
[
s2(1−γ1)E ∥ϱ(s)− ϱ̄(s)∥2 + s2(1−γ1)E ∥ϱ(κs)− ϱ̄(κs)∥2

+s2(1−γ2)E
∥∥ξ(s)− ξ̄(s)

∥∥2] ds.
Let
φ1(ι) = sups∈(0,ι) E

∥∥ι1−γ1 (ϱ(s)− ϱ̄(s))
∥∥2 and

φ2(ι) = sups∈(0,ι) E
∥∥ι1−γ2

(
ξ(s)− ξ̄(s)

)∥∥2, for ι ∈ J .
We have E

∥∥ι1−γ1 (ϱ(s)− ϱ̄(s))
∥∥2 ≤ φ1(s)

E
∥∥ι1−γ2

(
ξ(s)− ξ̄(s)

)∥∥2 ≤ φ2(s),

and E
∥∥ι1−γ1 (ϱ(κs)− ϱ̄(κs))

∥∥2 ≤ φ1(s)

E
∥∥ι1−γ2

(
ξ(κs)− ξ̄(κs)

)∥∥2 ≤ φ2(s).

Then, for ι ∈ J , we get

E
∥∥ι1−γ1 (ϱ(ι)− ϱ̄(ι))

∥∥2 ≤ 4b

Γ2(γ1)
δ +

4Lg1

Γ2(γ1)

∫ ι

0

(φ1(s) + φ2(s)) ds

+
2b3−2γ1Lϖ1

Γ2(γ1)

∫ ι

0

(ι− s)2(p1−1) (2φ1(s) + φ2(s)) ds.

Then

φ1(ι) ≤
4b

Γ2(γ1)
δ +

4Lg1

Γ2(γ1)

∫ ι

0

(φ1(s) + φ2(s)) ds

+
2b3−2γ1Lϖ1

Γ2(γ1)

∫ ι

0

(ι− s)2(p1−1) (2φ1(s) + φ2(s)) ds.

Similar, we find that

φ2(ι) ≤
4b

Γ2(γ2)
δ +

4Lg2

Γ2(γ2)

∫ ι

0

(φ1(s) + φ2(s)) ds

+
2b3−2γ2Lϖ2

Γ2(γ2)

∫ ι

0

(ι− s)2(p2−1) (φ1(s) + 2φ2(s)) ds.

Take now φ = max{φ1, φ2}, it follows that

φ(ι) ≤ ℘δ + ℜ
∫ ι

0

φ(s)ds+ ℑ
∫ ι

0

(ι− s)2(p−1)φ(s)ds,
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where

℘ = max{ 4b
Γ2(γ1)

, 4b
Γ2(γ2)

}, ℜ = max{ 8Lg1

Γ2(γ1)
,

8Lg2

Γ2(γ2)
},

ℑ = max{ 6b3−2γ1Lϖ1

Γ2(γ1)
,
6b3−2γ2Lϖ2

Γ2(γ2)
}.

p = max{p1, p2}.

So,

φ(ι) ≤ ℘δ + ℜ
∫ ι

0

φ(s)ds+ ℑ
∫ ι

0

(ι− s)2(p−1)φ(s)ds.

By Generalised Gronwall inequality, we obtain

φ(ι) ≤
(
℘δ + ℜ

∫ ι

0

φ(s)ds

)
E2p−1

(
ℑΓ(2p− 1)ι2p−1

)
≤ ℵδ + ℏ

∫ ι

0

φ(s)ds,

where

ℵ = ℘E2p−1

(
ℑΓ(2p− 1)b2p−1

)
, ℏ = ℜE2p−1

(
ℑΓ(2p− 1)b2p−1

)
.

By Gronwall inequality, we obtain

φ(ι) ≤ ℵδeℏι.

Hence,

max{∥ϱ− ϱ̄∥2E1
, ∥ξ − ξ̄∥2E2

} ≤ ℵδeℏb = ϵ.

We conclude that the solution of the problem (1.1) is continuously dependent on g1
and g2.

□

5. An example

Consider the following coupled system of Hilfer fractional stochastic pantograph equa-
tions with nonlocal integral conditions

HD0.75,0.5
0+,ι ϱ(ι) = ϖ1 (ι, ϱ(ι), ϱ (0.5ι) , ξ(ι)) , ι ∈ (0, 1],

HD0.85,0.6
0+,ι ξ(ι) = ϖ2 (ι, ϱ(ι), ξ (ι) , ξ(0.5ι))

dW(ι)

dι
,

I1−γ1

0+,ι ϱ(0) =

∫ ι

0

g1 (ι, ϱ(ι), ξ(ι)) dW(s),

I1−γ2

0+,ι ξ(0) =

∫ ι

0

g2 (ι, ϱ(ι), ξ(ι)) ds,

(5.1)
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where

ϖ1 (ι, ϱ(ι), ϱ (0.5ι) , ξ(ι)) =
e−πι

√
13 + ι

+
1√

50 + ι
(|ϱ(ι)|+ |ϱ(κι)|+ | sin(ξ(ι))|) ,

ϖ2 (ι, ϱ(ι), ξ (ι) , ξ(0.5ι)) =
1

14
+

e−ι

4
√
5

(
|ϱ(ι)|+ | cos(ξ(ι))|+

√
|ξ(0.5ι)|

)
,

g1(ι, ϱ(ι), ξ(ι)) =
1

17
+

1

4
√
2
(|ϱ(ι)|+ | sin(ξ(ι))|) ,

g1(ι, ϱ(ι), ξ(ι)) =
e−ι2

3ι+
√
21

+
1

ι2 +
√
31

(| cos(ϱ(ι))|+ |ξ(ι)|) .

Here, p1 = 0.75, p2 = 0.85, q1 = 0.5, q2 = 0.6, κ = 0.5, γ1 = 0.875, γ2 = 0.94. The
assumptions (H1), (H2) and (H3) are satisfied with Lϖ1

= lϖ1
= 3

25 , Lϖ2
= lϖ2

= 3
40 ,

mϖ1
= 2

13 , mϖ2
= 1

7 , Lg1 = lg1 = 1
8 , Lg2 = lg2 = 4

31 , mg1 = 2
17 and mg2 = 2

21 .
Additionally, we find ∆ = 0.239329 < 1. Theorem 3.4 shows that problem (5.1) has
at least one solution. Further, 2

(
∆+ ∆̄

)
= 0.80914 < 1. Thus by Theorem 3.5 the

problem has a unique solution.
Next, we plot the approximate solution (ϱ(ι), ξ(ι)) of problem (5.1) for different values
of p1, p2, q1 and q2.

Figure 1. Solution (ϱ(ι), ξ(ι)) for p1 = 0.75, q1 = 0.5, p2 = 0.85,
q2 = 0.6.
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Figure 2. Solution (ϱ(ι), ξ(ι)) for p1 = 0.8, q1 = 0.6, p2 = 0.9, q2 = 0.7.

Figure 3. Solution (ϱ(ι), ξ(ι)) for p1 = 0.55, q1 = 0.65, p2 = 0.95,
q2 = 0.7.
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Seria Mat., 30(2022), 191–217.

[14] Diethelm, K., Ford, N. J., Analysis of fractional differential equations, J. Math. Anal.
Appl., 265(2002), 229–248.

[15] El-Sayed, A. M. A., Gaafar, F., El-Gendy, M., Continuous dependence of the solution
of random fractional-order differential equation with nonlocal conditions, Fract. Differ.
Calcul., 7(2017), 135-149.

[16] El-Sayed, A. M. A., Abd-El-Rahman, R. O., El-Gendy, M., Continuous dependence of
the solution of a stochastic differential equation with nonlocal conditions, Malaya J.
Math., 4(2016), 488–496.

[17] Ferhata, M., Blouhi, T., Topological method for coupled systems of impulsive neutral
functional differential inclusions driven by a fractional Brownian motion and Wiener
process, Filomat, 38(2024), 6193–6217.

[18] Fredj, F., Hammouche, H., Salim, A., On random fractional differential coupled systems
with Hilfer–Katugampola fractional derivative in Banach spaces, J. Math. Sci., (2024).

[19] Guida, K., Hilal, K., Ibnelazyz, L., Existence results for a class of coupled Hilfer frac-
tional pantograph differential equations with nonlocal integral boundary value conditions,
Adv. Math. Phys., 2020(2020), 1–8.

[20] Hilfer, R., Applications of fractional calculus in physics, World Scientific, Singapore,
1999.

[21] Isaia, F., On a nonlinear integral equation without compactness, Acta Math. Univ.
Comen., 75(2006), 233–240.



Hilfer fractional stochastic pantograph equations 407

[22] Jin, Y., He, W., Wang, L., Mu, J., Existence of mild solutions to delay diffusion equations
with Hilfer fractional derivative, Fractals and Fractional, 8(2024), 367.

[23] Kandouci, A., Existence of mild solution result for fractional neutral stochastic integro-
differential equations with nonlocal conditions and infinite delay, Malaya J. Matem.,
3(2015), 1-13.

[24] Kumar, A., Mohan, M. T., Well-posedness of a class of stochastic partial differential
equations with fully monotone coefficients perturbed by Lévy noise, Anal. Math. Phys.,
41(2024), 44.

[25] Levakov, A. A., Vas’kovskii, M. M., Properties of solutions of stochastic differential
equations with standard and fractional Brownian motions, Differ. Equ., 52(2016), 972-
980.

[26] Luo, D., Zada, A., Shaleena, S., Ahmad, M., Analysis of a coupled system of frac-
tional differential equations with non-separated boundary conditions, Adv. Differ. Equ.,
2020(2020), 1–24.

[27] Ma, Y. K., Raja, M. M., Vijayakumar, V., Shukla, A., Albalawi, W., Nisar, K. S.,
Existence and continuous dependence results for fractional evolution integrodifferential
equations of order r ∈ (1, 2), Alexandria Eng. J., 61(2022), 9929-9939.

[28] Mchiri, L., Exponential stability in mean square of neutral stochastic pantograph integro-
differential equations, Filomat, 36(2022), 6457–6472.

[29] Nisar, K. S., Efficient results on Hilfer pantograph model with nonlocal integral condition,
Alex. Eng. J., 80(2023), 342–347.

[30] Nisar, K. S., Jothimani, K., Ravichandran, C., Optimal and total controllability approach
of non-instantaneous Hilfer fractional derivative with integral boundary condition, PLoS
One, 19(2024), e0297478.

[31] Podlubny, I., Fractional Differential equation, Academic Press, San Diego, 1999.

[32] Radhakrishnan, B., Sathya, T., Alqudah, M. A., et al., Existence results for nonlin-
ear Hilfer pantograph fractional integro-differential equations, Qual. Theory Dyn. Syst.,
2024(2024), 237.

[33] Salamooni, A. Y., Pawar, D. D., Continuous dependence of a solution for fractional
order Cauchy-type problem, Partial Differ. Equ. Appl. Math., 4(2021), 100110.

[34] Sugumaran, H., Vivek, D., Elsayed, E., On the study of pantograph differential equations
with proportional fractional derivative, Math. Sci. Appl. E-Notes, 11(2023), 97-103.

[35] Sweis, H. A. A., Arqub, O. A., Shawagfeh, N., Hilfer fractional delay differential equa-
tions: Existence and uniqueness computational results and pointwise approximation uti-
lizing the Shifted-Legendre Galerkin algorithm, Alexandria Eng. J., (2023).

[36] Xiao, G., Wang, J., O’Regan, D., Existence, uniqueness and continuous dependence
of solutions to conformable stochastic differential equations, Chaos Solitons Fractals,
139(2020), 110269.

[37] Xiao, G., Wang, J., O’Regan, D., Existence and stability of solutions to neutral con-
formable stochastic functional differential equations, Qual. Theory Dyn. Syst., 21(2022),
1-22.

[38] Yang, H., Yang, Z., Wang, P., Han, D., Mean-square stability analysis for nonlin-
ear stochastic pantograph equations by transformation approach, J. Math. Anal. Appl.,
479(2019), 977-986.

[39] Zentar, O., Ziane, M., and Khelifa, S., Coupled fractional differential systems with ran-
dom effects in Banach spaces, Random Oper. Stoch. Equ., 29(2021), 251–263.



408 Ayoub Louakar, Devaraj Vivek, Ahmed Kajouni and Khalid Hilal

[40] Zhang, L., Liu, X., Some existence results of coupled Hilfer fractional differential system
and differential inclusion on the circular graph, Qual. Theory Dyn. Syst., 23(2024),
(Suppl 1), 259.

Ayoub Louakar
Laboratory of Applied Mathematics and Scientific Competing,
Sultan Moulay Slimane University
Beni Mellal, Morocco.
e-mail: ayoublouakar007@gmail.com

Devaraj Vivek
Department of Mathematics
PSG College of Arts & Science
Coimbatore-641 014, India.
e-mail: peppyvivek@gmail.com

Ahmed Kajouni
Laboratory of Applied Mathematics and Scientific Competing,
Sultan Moulay Slimane University
Beni Mellal, Morocco.
e-mail: Ahmed.kajouni@usms.ma

Khalid Hilal
Laboratory of Applied Mathematics and Scientific Competing,
Sultan Moulay Slimane University
Beni Mellal, Morocco.
e-mail: hilalkhalid2005@yahoo.fr

https://orcid.org/0009-0007-1523-9291
https://orcid.org/0000-0003-0951-8060
https://orcid.org/0000-0001-8484-6107
https://orcid.org/0000-0002-0806-2623
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Application of Riemann-Liouville fractional inte-
gral to fuzzy differential subordination of analytic
univalent functions

Sarika K. Nilapgol , Girish D. Shelake and Priyanka D. Jirage

Abstract. This paper focuses on geometric function theory, a subfield of complex
analysis that has been adapted for fuzzy set analysis. We construct new opera-
tor denoted by D−α

z NY n,η,σ
b,v,ϑ , formed by applying Riemann-Liouville fractional

integral to the linear combination of the Pascal and Catas operator. Using this
operator, we describe a specific fuzzy class of analytic univalent functions, pre-
sented by DNY F (n, η, σ, b, v, ϑ, α, ς) in the open unit disk. A number of novel
findings that are applicable to this class are found by applying the concept of
fuzzy differential subordination. Interesting corollaries are discovered using spe-
cific functions, and an example illustrates the practical usage of the results.
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Keywords: Univalent function, differential subordination, fuzzy differential sub-
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1. Introduction

Lotfi A. Zadeh established the concept of fuzzy sets in 1965 [36], and it has seen
remarkable development to become employed in numerous areas of science and tech-
nology nowadays. The constantly concerns of mathematicians about incorporating the
concept of fuzzy sets into mathematical theories that were already well-established led
to the combination of fuzzy sets theory and geometric function theory. The authors
highlight Lotfi A. Zadeh’s scholarly contributions in their 2017 review article [10] by
going over the progress of the idea of a fuzzy set and its applications in numerous
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fields.
Differential subordination was first proposed by S.S. Miller and P.T. Mocanu in

[17, 19]. These approaches made it easier to verify the conclusions that had previously
been produced and inspired a great deal of new research using techniques specific to
this theory. The book written by S.S. Miller and P.T. Mocanu[17] and released in
2000 contains the essential elements of the theory of differential subordination. It is
effectively developed over subsequent decades by other authors [18, 12, 5, 6, 20]. There
are a few instances of differential subordination in utilization [9, 33, 4].

The fuzzy differential subordination theory is based on the general theory of
differential subordination and it evolves by incorporating the majority of the classical
theory’s concepts to provide novel outcomes. The notion of differential subordination
was newly extended from fuzzy set theory to geometric function theory by authors
G. I. Oros and Gh. Oros[22, 23, 24]. Numerous authors have further expanded it
[32, 11, 25, 26, 14, 15, 21, 3, 13, 27], and they have produced findings using fuzzy dif-
ferential subordination. The progress made possible by the incorporation of quantum
calculus and elements of fractional calculus into geometric function theory.

Let U = {z ∈ C : |z| < 1} and H(U ) denote the class of analytic functions in
U . Denote

H[c, n] = {t : t ∈ H(U ) and t(z) = c+ cnz
n + · · · , z ∈ U },

An = {t : t ∈ H(U ) and t(z) = z + cn+1z
n+1 + · · · , z ∈ U } and A1 = A.

Definition 1.1. [23] Consider, X be a non-empty set. An application F : X → [0, 1] is
called fuzzy subset. An alternate definition, more precise would be the following:
A pair (S, FS), where FS : X → [0, 1] and S = {x ∈ X : 0 < FS(x) ≤ 1} is called fuzzy
subset. The function FS is called membership function of the fuzzy subset (S, FS).

Definition 1.2. [16] Let D is a set in C, z0 ∈ D is a fixed point and let the functions
f, g ∈ H(D). The function f is named a fuzzy subordinate to g and written as f ≺F g
if

1. f(z0) = g(z0)
2. Ff(D)f(z) ≤ Fg(D)g(z), z ∈ D.

Remark 1.3. 1. Let D ⊂ C, z0 ∈ D be a fixed point, and the functions f, g ∈ H(D).
If g is univalent function in D then f ≺F g if and only if f(z0) = g(z0) and
f(D) ⊂ g(D).

2. A function F : C → [0, 1], can be defined as, for example F (z) = |z|
1+|z| , F (z) =

1
1+|z| , | sin |z||, | cos |z||.

3. If D = U then the conditions become f(0) = g(0) and f(U ) ⊂ g(U ) which is
same as the classical definition of subordination.

Definition 1.4. [35] Let h be univalent in U and Ψ : C3 × U → C. If P is analytic in
U and satisfies the fuzzy differential subordination

FΨ(C3×U )(Ψ(P(z), zP ′(z), z2P ′′(z); z)) ≤ Fh(U )h(z) (1.1)

i.e.Ψ(P(z), zP ′(z), z2P ′′(z); z) ≺F h(z), z ∈ U
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then P is called a fuzzy solution of the fuzzy differential subordination. The univalent
function q is called a fuzzy dominant of the fuzzy solutions of the fuzzy differential
subordination, or more simple a fuzzy dominant, if P ≺F q for all P satisfying (1.1).
A fuzzy dominant q̃ that satisfies q̃(z) ≺F q(z), z ∈ U for all fuzzy dominant q of
(1.1) is said to be the best fuzzy dominant of (1.1).

Definition 1.5. [14] Let f(D) = supp(f(D), Ff(D))={z ∈ D : 0 < Ff(D) ≤ 1}, where
Ff(D) is the membership function of the fuzzy subset f(D) associated to the function
f .
The membership function of the fuzzy set (µf)(D) associated to the function µf co-
incides with the membership function of the fuzzy set f(D) associated to the function
f, i.e. F(µf)D = Ff(D), z ∈ D.
The membership function of the fuzzy set (g + h)(D) associated to the function g + h
coincide with the half sum of the membership functions of the fuzzy sets g(D) , re-
spectively h(D), associated to the function g, respectively h,

i.e. F(g+h)(D)((g + h)z) =
Fg(D)g(z) + Fh(D)h(z)

2
, z ∈ D.

Definition 1.6. [34] Let t ∈ A then a Pascal operator Y η
ϑ : A → A is given by

Y η
ϑ t(z) = z +

∞∑
r=2

(
r + η − 2

η − 1

)
ϑr−1crz

r;

(z ∈ U , η ≥ 1, 0 ≤ ϑ < 1).

Definition 1.7. [7] For t ∈ A, Catas defined the operator as follow:

Nn
b,vt(z) = z +

∞∑
r=2

{
1 + v + b(r − 1)

1 + v

}n

crz
r;

(n ∈ N0, z ∈ U , b, v ≥ 0).

Now we define the linear operator NY n,η,σ
b,v,ϑ : A → A as

NY n,η,σ
b,v,ϑ t(z) = (1− σ)Nn

b,vt(z) + σY η
ϑ t(z).

In series form, it is able to shown as

NY n,η,σ
b,v,ϑ t(z) = z +

∞∑
r=2

Ξr(n, η, σ, b, v, ϑ)crz
r,

with Ξr(n, η, σ, b, v, ϑ) =

[
(1− σ)

{
1 + v + b(r − 1)

1 + v

}n

+ σ

(
r + η − 2

η − 1

)
ϑr−1

]
(z ∈ U , η ≥ 1, 0 ≤ ϑ < 1, n ∈ N0, b, v, σ ≥ 0).

Definition 1.8. [8](see also [1, 2]) Given an analytical function t, the Riemann-
Liouville fractional integral of order α is

D−α
z t(z) =

1

Γ(α)

∫ z

0

t(t)

(z − t)1−α
dt, α > 0.
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where Γ(α) =
∫∞
0

e−ttα−1dt with Γ(1) = 1,Γ(α + 1) = αΓ(α), and t is an analytic
function in a simply connected region of the z-plane containing the origin and the
multiplicity of (z − t)1−α is removed by requiring log(z − t) to be real when z − t > 0.

Applying the Riemann-Liouville fractional integral of order α to the linear op-
erator NY n,η,σ

b,v,ϑ yields the following:

D−α
z NY n,η,σ

b,v,ϑ t(z) =
1

Γ(α)

∫ z

0

NY n,η,σ
b,v,ϑ t(t)

(z − t)1−α
dt.

After simple calculation which yields the series form

D−α
z NY n,η,σ

b,v,ϑ t(z) =
z(1+α)

Γ(2 + α)
+

∞∑
r=2

Ξr(n, η, σ, b, v, ϑ)
Γ(r + 1)

Γ(r + α+ 1)
crz

(r+α).

This study focuses on recent work in fuzzy differential subordination that in-
troduces new operators to construct and study a novel fuzzy class. Here, we discuss
multiple findings related to fuzzy differential subordination connected to the Riemann-
Liouville fractional integral from the linear combination of Pascal operator and Catas
operator. Fuzzy differential subordinations have been obtained in order to identify
the fuzzy best dominants. Specific functions are used to derive some corollaries of the
primary findings. A few examples are provided to illustrate the main findings.

Previous studies [28, 29, 30, 31] served as inspiration for this work.
To support our primary findings, we shall use the following Lemmas.

Lemma 1.9. [17] Let k ∈ A. If ℜ{1+ zk′′(z)
k′(z) } > −1

2 , z ∈ U , then 1
z

∫ z

0
k(t)dt is convex

function.

Lemma 1.10. [23] Let h be a convex function with h(0) = a and ρ ∈ C∗ such that
ℜ(ρ) ≥ 0. If P ∈ H[a, n] with P(0) = a and Ψ : C2 × U → C, Ψ(P(z), zP ′(z)) is
analytic in U , then

FΨ(C2×U )

[
P(z) +

1

ρ
zP ′(z)

]
≤ Fh(U )h(z),

implies

FP(U )P(z) ≤ Fg(U )g(z) ≤ Fh(U )h(z)

with the convex function g(z) = ρ

nz
ρ
n

∫ z

0
h(t)t

ρ
n−1dt, z ∈ U as the fuzzy best dominant.

Lemma 1.11. [23] Suppose that g be a convex function in U and h(z) = g(z) +
nλzg′(z), n ∈ N, λ > 0. If P ∈ H[g(0), n] and Ψ : C2 × U → C, Ψ(P(z), zP ′(z)) =
P(z) + λzP ′(z) is analytic in U , then

FΨ(C2×U ) [P(z) + λzP ′(z)] ≤ Fh(U )h(z),

implies sharp result,

FP(U )P(z) ≤ Fg(U )g(z), z ∈ U

and g is fuzzy best dominant.

We are going to define a new fuzzy class of univalent and analytic functions.
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Definition 1.12. If t ∈ A satisfies the following criteria, it is said to be in the class
DNY F (n, η, σ, b, v, ϑ, α, ς)

F(D−α
z NY n,η,σ

b,v,ϑ t)′(U )

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ t(z)

zα

)′

> ς;

(z ∈ U , η ≥ 1, 0 ≤ ϑ < 1, n ∈ N0, b, v, σ ≥ 0, α > 0, ς ∈ [0, 1)).

Remark 1.13. In particular, t(z) = z ∈ A with F (z) = 1
1+|z| belongs to the class

DNY F (n, η, σ, b, v, ϑ, α, 0).

2. Main results

Theorem 2.1. The class DNY F (n, η, σ, b, v, ϑ, α, ς) is a convex set.

Proof. Consider

tj(z) = z +

∞∑
r=2

cjrz
r, j = 1, 2,

belongs to the class DNY F (n, η, σ, b, v, ϑ, α, ς). We have to show that the function
h(z) = β1t1(z) + β2t2(z), β1, β2 ≥ 0, β1 + β2 = 1, belongs to the class
DNY F (n, η, σ, b, v, ϑ, α, ς).

Now, h′(z) = β1t
′
1(z) + β2t

′
2(z) and

(
Γ(2+α)D−α

z NY n,η,σ
b,v,ϑ h(z)

zα

)′

= β1

(
Γ(2+α)D−α

z NY n,η,σ
b,v,ϑ t1(z)

zα

)′

+ β2

(
Γ(2+α)D−α

z NY n,η,σ
b,v,ϑ t2(z)

zα

)′

.

We have

F(D−α
z NY n,η,σ

b,v,ϑ h)
′
U

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ h(z)

zα

)′

= F(D−α
z NY n,η,σ

b,v,ϑ (β1t1(z)+β2t2))
′
U

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ (β1t1(z) + β2t2(z))

zα

)′

= F(D−α
z NY n,η,σ

b,v,ϑ (β1t1+β2t2))
′
U

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ β1t1(z)

zα

)′

+ F(D−α
z NY n,η,σ

b,v,ϑ (β1t1+β2t2))
′
U

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ β2t2(z)

zα

)′

=
F
(D−α

z NY
n,η,σ
b,v,ϑ

t1)
′
U

(
Γ(2+α)D−α

z NY
n,η,σ
b,v,ϑ

t1(z)

zα

)′

+F
(D−α

z NY
n,η,σ
b,v,ϑ

t2)
′
U

(
Γ(2+α)D−α

z NY
n,η,σ
b,v,ϑ

t2(z)

zα

)′

2 .

As t1, t2 ∈ DNY F (n, η, σ, b, v, ϑ, α, ς), we have

ς < F(D−α
z NY n,η,σ

b,v,ϑ t1)
′
U

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ t1(z)

zα

)′

≤ 1,
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ς < F(D−α
z NY n,η,σ

b,v,ϑ t2)
′
U

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ t2(z)

zα

)′

≤ 1.

This implies,

ς <
F
(D−α

z NY
n,η,σ
b,v,ϑ

t1)
′
U

(
Γ(2+α)D−α

z NY
n,η,σ
b,v,ϑ

t1(z)

zα

)′

+F
(D−α

z NY
n,η,σ
b,v,ϑ

t2)
′
U

(
Γ(2+α)D−α

z NY
n,η,σ
b,v,ϑ

t2(z)

zα

)′

2

≤ 1

i.e.

ς < F(D−α
z NY n,η,σ

b,v,ϑ h)
′
U

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ h(z)

zα

)′

≤ 1.

□

Theorem 2.2. Considering g as a convex function and h(z) = g(z)+ 1
c+2zg

′(z), c > 0.

If t ∈ DNY F (n, η, σ, b, v, ϑ, α, ς) and G(z) = c+2
zc+1

∫ z

0
tct(t)dt, then

F(D−α
z NY n,η,σ

b,v,ϑ t)
′
U

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ t(z)

zα

)′

≤ Fh(U )h(z) (2.1)

implies the next sharp result

F(D−α
z NY n,η,σ

b,v,ϑ G)
′
U

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ G(z)

zα

)′

≤ Fg(U )g(z),

and g is fuzzy best dominant.

Proof. Let G(z) =
c+ 2

zc+1

∫ z

0

tct(t)dt.

Differentiating w.r.t. z, we get

(c+ 1)G(z) + zG′(z) = (c+ 2)t(z),

(c+ 1)

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ G(z)

zα

)
+ z

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ G(z)

zα

)′

= (c+ 2)

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ t(z)

zα

)
.

Again differentiating w.r.t z, we obtain(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ G(z)

zα

)′

+ 1
c+2z

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ G(z)

zα

)′′

=

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ t(z)

zα

)′

.
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Now, the Inequality (2.1) becomes

F(D−α
z NY n,η,σ

b,v,ϑ G)
′
U

[(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ G(z)

zα

)′

+
1

c+ 2
z(

Γ(2 + α)D−α
z NY n,η,σ

b,v,ϑ G(z)

zα

)′′

≤ Fg(U )

[
g(z) +

1

c+ 2
zg′(z)

]
.

Consider, p(z) = F(D−α
z NY n,η,σ

b,v,ϑ G)
′
U

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ G(z)

zα

)′

.

Here, p ∈ H[1, 1] and we obtain

Fp(U )

[
p(z) + 1

c+2zp
′(z)
]
≤ Fg(U )

[
g(z) + 1

c+2zg
′(z)
]
.

Employing Lemma 1.3, we have

F(D−α
z NY n,η,σ

b,v,ϑ G)
′
U

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ G(z)

zα

)′

≤ Fg(U )g(z),

and g is fuzzy best dominant. □

Theorem 2.3. Consider that h(z) = 1+(2ς−1)z
1+z and G(z) = c+2

zc+1

∫ z

0
tct(t)dt, ς ∈

[0, 1), c > 0 then

G[DNY F (n, η, σ, b, v, ϑ, α, ς)] ⊂ DNY F (n, η, σ, b, v, ϑ, α, ς∗),

where ς∗ = (2ς − 1) + 2(c+ 2)(1− ς)
∫ 1

0
tc+1

t+1 dt.

Proof. Given that h(z) = 1+(2ς−1)z
1+z is convex function and following the same steps

from Theorem (2.2), we conclude the following fuzzy differential subordination

Fp(U )

[
p(z) + 1

c+2zp
′(z)
]
≤ Fh(U )h(z)

where, p(z) =

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ G(z)

zα

)′

.

From Lemma 1.10, we may conclude that

F(D−α
z NY n,η,σ

b,v,ϑ G)
′
U

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ G(z)

zα

)′

≤ Fg(U )g(z) ≤ Fh(U )h(z),

where

g(z) =
c+ 2

zc+2

∫ z

0

tc+1

[
1 + (2ς − 1)t

1 + t

]
dt = (2ς − 1) +

(c+ 2)(2− 2ς)

zc+2

∫ z

0

tc+1

t+ 1
dt.

Since, g is convex function and g(U ) is symmetric with respect to real axis, we obtain

F(D−α
z NY n,η,σ

b,v,ϑ G)
′
U

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ G(z)

zα

)′

≥ min
|z|=1

Fg(U )g(z) = Fg(U )g(1)
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and ς∗ = g(1) = 2ς − 1 + (c+ 2)(2− 2ς)

∫ 1

0

tc+1

t+ 1
dt. □

Theorem 2.4. Let’s take g be a convex function such that g(0) = 1 and h(z) = g(z) +
zg′(z). If t ∈ A, the fuzzy differential subordination is satisfied

F(D−α
z NY n,η,σ

b,v,ϑ t)
′
U

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ t(z)

zα

)′

≤ Fh(U )h(z) (2.2)

implies the sharp result

F(D−α
z NY n,η,σ

b,v,ϑ t)U

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ t(z)

z1+α

)
≤ Fg(U )g(z),

and g is fuzzy best dominant.

Proof. The function p(z) =

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ t(z)

z1+α

)
belongs to H[1, 1].

Furthermore, we may write

zp(z) =

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ t(z)

zα

)
.

Now, differentiating w.r.t. z, we have

p(z) + zp′(z) =

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ t(z)

zα

)′

.

The Inequality (2.2), becomes

Fp(U )[p(z) + zp′(z)] ≤ Fh(U )h(z).

Lemma 1.11 is applied, and we find that

F(D−α
z NY n,η,σ

b,v,ϑ t)U

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ t(z)

z1+α

)
≤ Fg(U )g(z),

and g is fuzzy best dominant. □

Example 2.5. Take g(z) = 1−z
1+z ans is convex in U , with g(0) = 1,

g′(z) =
−2

(1 + z)2
.

Now h(z) = g(z) + zg′(z) =
1− z2 − 2z

(1 + z)2
.

Taking n = 0, σ = 0, η = 1 and t(z) = z+ z2, then we find that NY 0,1,0
b,v,ϑ t(z) = z+ z2.

D−α
z NY 0,1,0

b,v,ϑ t(z) =
1

Γ(α)

∫ z

0

NY 0,1,0
b,v,ϑ t(z)

(z − t)1−α
dt =

1

Γ(α)

∫ z

0

z + z2

(z − t)1−θ
dt

=
z1+α

Γ(2 + α)
+

2z2+α

Γ(3 + α)
.
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Implies,
Γ(2 + α)D−α

z NY 0,1,0
b,v,ϑ t(z)

zα
= z +

2z2

(2 + α)
.

After differentiation, we get(
Γ(2 + α)D−α

z NY 0,1,0
b,v,ϑ t(z)

zα

)′

= 1 +
4z

(2 + α)
.

Using Theorem 2.4 now, we can derive that the fuzzy subordination that follows

1 +
4z

2 + α
≺F

1− z2 − 2z

(1 + z)2

implies that

1 +
2z

2 + α
≺F

1− z

1 + z
.

Theorem 2.6. Let h be a analytic in U with h(0) = 1 and ℜ
(
1 + zh′′(z)

h′(z)

)
> −1

2 . If

t ∈ A, the fuzzy differential subordination

F(D−α
z NY n,η,σ

b,v,ϑ t)
′
U

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ t(z)

zα

)′

≤ Fh(U )h(z) (2.3)

implies that

F(D−α
z NY n,η,σ

b,v,ϑ t)U

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ t(z)

z1+α

)
≤ Fq(U )q(z),

where q(z) =
1

z

∫ z

0

h(t)dt is convex and it is fuzzy best dominant.

Proof. Given that ℜ
(
1 +

zh′′(z)

h′(z)

)
> −1

2
, z ∈ U , and from Lemma 1.9, we find

that q(z) =
1

z

∫ z

0

h(t)dt is convex function and it is solution of Fuzzy differential

subordination (2.3), h(z) = q(z) + zq′(z), so it is fuzzy best dominant.

Let zp(z) =

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ t(z)

zθ

)
Differentiating w.r.t z, we get

p(z) + zp′(z) =

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ t(z)

zα

)′

The fuzzy differential subordination (2.3) is transformed into

Fp(U )[p(z) + zp′(z)] ≤ Fh(U )h(z).

Using Lemma 1.11, we find that

F(D−α
z NY n,η,σ

b,v,ϑ t)U

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ t(z)

z1+α

)
≤ Fq(U )q(z).
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□

Corollary 2.7. Assuming that h(z) = 1+(2ξ−1)z
1+z , ξ ∈ [0, 1) is convex function in U . If

t ∈ A, the following fuzzy differential subordination

F(D−α
z NY n,η,σ

b,v,ϑ t)
′
U

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ t(z)

zα

)′

≤ Fh(U )h(z) (2.4)

implies that

F(D−α
z NY n,η,σ

b,v,ϑ t)U

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ t(z)

z1+α

)
≤ Fq(U )q(z),

where q(z) = (2ξ − 1) + 2(1− ξ)
ln (1 + z)

z
is convex and fuzzy best dominant.

Proof. Given h(z) = 1+(2ξ−1)z
1+z with h(0) = 1, h′(z) = 2(β−1)

(1+z)2 , h
′′(z) = −4(ξ−1)

(1+z)3 .

Consider

ℜ
(
1 + zh′′(z)

h′(z)

)
= ℜ

(
1−z
1+z

)
= ℜ

(
1−r cosϕ−ir sinϕ
1+r cosϕ+ir sinϕ

)
= 1−r2

1+2r cosϕ+r2 > 0 > − 1
2 .

Following the same steps from Theorem 2.6 with p(z) =(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ t(z)

z1+α

)
, the Inequality (2.4) becomes

Fp(U )[p(z) + zp′(z)] ≤ Fh(U )h(z).

Employing Lemma 1.10 with n = ρ = 1, we deduce that

F(D−α
z NY n,η,σ

b,v,ϑ t)U

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ t(z)

z1+α

)
≤ Fq(U )q(z),

where q(z) =
1

z

∫ z

0

1 + (2ξ − 1)t

1 + t
dt = (2ξ − 1) + 2(1− ξ)

ln (1 + z)

z
. □

Example 2.8. Consider h(z) =
1− z

1 + z
is convex in U .

Taking n = 0, σ = 0, η = 1 and t(z) = z+ z2, then we find that NY 0,1,0
b,v,ϑ t(z) = z+ z2.

D−α
z NY 0,1,0

b,v,ϑ t(z) =
1

Γ(α)

∫ z

0

NY 0,1,0
b,v,ϑ t(z)

(z − t)1−α
dt =

1

Γ(α)

∫ z

0

z + z2

(z − t)1−θ
dt

=
z1+α

Γ(2 + α)
+

2z2+α

Γ(3 + α)
.

Hence,

Γ(2 + α)D−α
z NY 0,1,0

b,v,ϑ t(z)

zα
= z +

2z2

(2 + α)
.

After differentiation, we get(
Γ(2 + α)D−α

z NY 0,1,0
b,v,ϑ t(z)

zα

)′

= 1 +
4z

(2 + α)
.
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Also, q(z) =
1

z

∫ z

0

1− t

1 + t
dt =

2 ln (1 + z)

z
− 1.

Utilizing Theorem 2.6, we now possess the fuzzy differential subordination

1 +
4z

2 + α
≺F

1− z

1 + z

implies the result

1 +
2z

2 + α
≺F

2 ln (1 + z)

z
− 1.

Theorem 2.9. Letting g be a convex function and consider that g(0) = 1. If t ∈ A, the
fuzzy differential subordination

F(D−α
z NY n,η,σ

b,v,ϑ t)
′
U

[
zD−α

z NY n+1,η,σ
b,v,ϑ t(z)

D−α
z NY n,η,σ

b,v,ϑ t(z)

]′
≤ Fh(U )h(z) (2.5)

implies the sharp result

F(D−α
z NY n,η,σ

b,v,ϑ t)U

[
D−α

z NY n+1,η,σ
b,v,ϑ t(z)

D−α
z NY n,η,σ

b,v,ϑ t(z)

]
≤ Fg(U )g(z),

and g is fuzzy best dominant.

Proof. Suppose p(z) =

[
D−α

z NY n+1,η,σ
b,v,ϑ t(z)

D−α
z NY n,η,σ

b,v,ϑ t(z)

]
.

Differentiating w.r.t. z, we have the relation

p(z) + zp′(z) =

[
zD−α

z NY n+1,η,σ
b,v,ϑ t(z)

D−α
z NY n,η,σ

b,v,ϑ t(z)

]′
.

Consequently, fuzzy differential subordination (2.5) turns into

Fp(U )[p(z) + zp′(z)] ≤ Fh(U )h(z) = Fg(U )[g(z) + zg′(z)].

Now, applying Lemma 1.11, we have

F(D−α
z NY n,η,σ

b,v,ϑ t)U

[
D−α

z NY n+1,η,σ
b,v,ϑ t(z)

D−α
z NY n,η,σ

b,v,ϑ t(z)

]
≤ Fg(U )g(z),

and g is fuzzy best dominant. □

Theorem 2.10. Let g be a convex function and consider that g(0) = 1 and h(z) =
g(z) + γzg′(z), γ, λ > 0. If t ∈ A and the fuzzy differential subordination

F(D−α
z NY n,η,σ

b,v,ϑ t)U

(Γ(2 + α)D−α
z NY n,η,σ

b,v,ϑ t(z)

z1+α

)λ−1(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ t(z)

zα

)′


≤ Fh(U )h(z)

(2.6)
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implies the following sharp result

F(D−α
z NY n,η,σ

b,v,ϑ t)U

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ t(z)

z1+α

)λ

≤ Fg(U )
g(z),

and g is fuzzy best dominant.

Proof. Let p(z) =

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ t(z)

z1+α

)λ

belongs to H[1, 1].

Differentiating w.r.t. z, we obtain

p′(z) = λ

[
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ t(z)

z1+α

]λ−1


(

Γ(2+α)D−α
z NY n,η,σ

b,v,ϑ t(z)

zα

)
z


′

.

Following a little computation, we have

p(z)+
1

λ
zp′(z) =

(Γ(2 + α)D−α
z NY n,η,σ

b,v,ϑ t(z)

z1+α

)λ−1(
Γ(2 + θ)D−α

z NY n,η,σ
b,v,ϑ t(z)

zα

)′
 .

Therefore, fuzzy differential subordination (2.6), becomes

Fp(U )[p(z) +
1

λ
zp′(z)] ≤ Fh(U )h(z) = Fg(U )[g(z) + γzg′(z)].

Applying Lemma 1.11, we obtain that

F(D−α
z NY n,η,σ

b,v,ϑ t)U

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ t(z)

z1+α

)λ

≤ Fg(U )
g(z),

and g is fuzzy best dominant. □

Example 2.11. Suppose g(z) =
1− z

1 + z
and h(z) = g(z) + zg′(z) =

1− 2z − z2

(1 + z)2
.

Take n = 0, σ = 0, η = 1 and t(z) = z + z2, then we find that NY 0,1,0
b,v,ϑ t(z) = z + z2.

D−α
z NY 0,1,0

b,v,ϑ t(z) =
1

Γ(α)

∫ z

0

NY 0,1,0
b,v,ϑ t(z)

(z − t)1−α
dt =

1

Γ(α)

∫ z

0

z + z2

(z − t)1−θ
dt

=
z1+α

Γ(2 + α)
+

2z2+α

Γ(3 + α)
.

Thus, we have

Γ(2 + α)D−α
z NY 0,1,0

b,v,ϑ t(z)

zα
= z +

2z2

(2 + α)
.

After differentiation, we get(
Γ(2 + α)D−α

z NY 0,1,0
b,v,ϑ t(z)

zα

)′

= 1 +
4z

(2 + α)
.



Riemann-Liouville fractional in-tegral to fuzzy differential subordination 421

The following fuzzy differential subordination is obtained by using Theorem 2.10(
1 +

2z

2 + α

)λ−1(
1 +

4z

2 + α

)′

≺F
1− 2z − z2

(1 + z)2

implies that (
1 +

2z

2 + α

)λ

≺F
1− z

1 + z
.

Theorem 2.12. Considering h as a convex function with h(0) = 1, λ > 0. If t ∈ A, the
fuzzy differential subordination

F(D−α
z NY n,η,σ

b,v,ϑ t)U

(Γ(2 + α)D−α
z NY n,η,σ

b,v,ϑ t(z)

z1+α

)λ−1(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ t(z)

zα

)′


≤ Fh(U )h(z)

(2.7)

implies the result

F(D−α
z NY n,η,σ

b,v,ϑ t)U

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ t(z)

z1+α

)λ

≤ Fg(U )
g(z),

where g(z) = 1
z

∫ z

0
h(t)dt is convex and fuzzy best dominant.

Proof. Following the same technique of Theorem 2.10 and taking

p(z) =

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ t(z)

z1+α

)λ

, we have

Fp(U )

[
p(z) +

1

λ
zp′(z)

]
≤ Fh(U )h(z).

Using Lemma 1.10, we deduce that

F(D−α
z NY n,η,σ

b,v,ϑ t)U

(
Γ(2 + α)D−α

z NY n,η,σ
b,v,ϑ t(z)

z1+α

)λ

≤ Fg(U )
g(z),

where g(z) = 1
z

∫ z

0
h(t)dt is convex and fuzzy best dominant. □

Example 2.13. Considering h(z) =
1− z

1 + z
with h(0) = 1 and it is convex function in

U .
Take n = 0, σ = 0, η = 1 and t(z) = z+ z2, then we obtain NY 0,1,0

b,v,ϑ t(z) = z+ z2, then
we find that

NY 0,1,0
b,v,ϑ t(z) = z + z2.

Now,

D−α
z NY 0,1,0

b,v,ϑ t(z) =
z1+α

Γ(2 + α)
+

2z2+α

Γ(3 + α)
.
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Thus,

Γ(2 + α)NY 0,1,0
b,v,ϑ t(z)

zα
= z +

2z2

(2 + α)
.

After differentiation, we obtain(
Γ(2 + α)NY 0,1,0

b,v,ϑ t(z)

zα

)′

= 1 +
4z

(2 + α)
.

Additionally,

g(z) =
1

z

∫ z

0

h(t)dt =
2 ln (1 + z)

z
− 1.

We have the fuzzy differential subordination described below using Theorem 2.12(
1 +

2z

2 + α

)λ−1(
1 +

4z

2 + α

)
≺F

1− z

1 + z

implies the result (
1 +

2z

2 + α

)λ

≺F
2 ln (1 + z)

z
− 1.

Theorem 2.14. Let g is a convex function with g(0) = 1 and h(z) = g(z) + zg′(z). If
t ∈ A, the fuzzy differential subordination

F(D−α
z NY n,η,σ

b,v,ϑ t)U

1− D−α
z NY n,η,σ

b,v,ϑ t(z)
(
D−α

z NY n,η,σ
b,v,ϑ t(z)

)′′
[(

D−α
z NY n,η,σ

b,v,ϑ t(z)
)′]2

 ≤ Fh(U )h(z), (2.8)

implies sharp result,

F(D−α
z NY n,η,σ

b,v,ϑ t)U

 D−α
z NY n,η,σ

b,v,ϑ t(z)

z
(
D−α

z NY n,η,σ
b,v,ϑ t(z)

)′
 ≤ Fg(U )g(z),

and g is fuzzy best dominant.

Proof. Suppose p(z) =
D−α

z NY n,η,σ
b,v,ϑ t(z)

z
(
D−α

z NY n,η,σ
b,v,ϑ t(z)

)′ belongs to H[1, 1] and z ∈ U .

Differentiating w.r.t. z, we have the relation

p(z) + zp′(z) = 1−

(
D−α

z NY n,η,σ
b,v,ϑ t(z)

)(
D−α

z NY n,η,σ
b,v,ϑ t(z)

)′′
[(

D−α
z NY n,η,σ

b,v,ϑ t(z)
)′]2 .

Inequality (2.8), becomes

Fp(U )[p(z) + zp′(z)] ≤ Fh(U )h(z),
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We now get the sharp fuzzy differential subordination using Lemma 1.11,

F(D−α
z NY n,η,σ

b,v,ϑ t)U

 D−α
z NY n,η,σ

b,v,ϑ t(z)

z
(
D−α

z NY n,η,σ
b,v,ϑ t(z)

)′
 ≤ Fg(U )g(z),

and g is fuzzy best dominant. □

3. Conclusion

At this point, we discussed a number of fuzzy differential subordination results of an-
alytic functions that are connected to the Riemann-Liouville fractional integral and
the linear combination of the Pascal and Catas operator. A new fuzzy class was also
developed, and fuzzy differential subordination results and a few examples were in-
ferred.

With reference to this operator, further subclasses of analytic functions can be
created, and some of their features, including coefficient estimates, distortion theo-
rems, and closure theorems, can be examined. Also, New fuzzy class identification,
fuzzy superordination results, higher-dimensional results extension, and the use of
fuzzy differential subordination to address practical issues are important topics for
development.
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a certain class of the Carathéodory functions and their applications, J. Inequal. Appl.,
85(2020), 1-14.

[10] Dzitac, I., Filip, F. G., Manolescu, M. J., Fuzzy logic is not fuzzy: world-renowned com-
puter scientist Lotfi A. Zadeh, International journal of computers communication &
control, 12(2017), no. 6, 748–789.

[11] El-Deeb, S.M., Oros, G.I., Fuzzy differential subordinations connected with the linear
operator , Mathematica Bohemica, 146(2021), no. 4, 397-406.

[12] Ibrahim, R. W., Darus, M., On a univalent class involving differential subordination
with applications, J. Math. Statistics, 7(2011), no. 2, 137-143.

[13] Khan, S., Ro, J. S., Tchier, F., Khan, N., Applications of fuzzy differential subordination
for a new subclass of analytic functions, Axioms, 12(2023), no. 8, 745-745.

[14] Lupas, A. A., Oros, G. I., New applications of Salagean and Ruscheweyh operators for
obtaining fuzzy differential subordinations, Mathematics, 9(2021), no. 16, 2000-2000.

[15] Lupas, A. A., Oros, G., On special fuzzy differential subordinations using Sălăgean and
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Abstract. In this work, we introduce and investigate a subclass Gh,p
Σm

(λ, γ) of

analytic and bi-univalent functions when both f and f−1 are m-fold symmetric
in the open unit disk U. Moreover, we find upper bounds for the initial coefficients
|am+1| and |a2m+1| for functions belonging to this subclass Gh,p

Σm
(λ, γ). The results

presented in this paper would generalize and improve those that were given in
several recent works.
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1. Introduction

Let A denote the class of functions of the following normalized form:

f(z) = z +

∞∑
j=2

ajz
j (1.1)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}.
Also, we denote by S the class of all functions in the normalized analytic function

class f ∈ A which are univalent in U.
Since univalent functions are one-to-one, they are invertible and the inverse

functions need not be defined on the entire unit disk U. The Koebe One-Quarter
Theorem [4] ensures that the image of U under every univalent function f ∈ S contains
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a disk of radius 1
4 . Hence, every function f ∈ S has an inverse f−1, which is defined

by

f−1(f(z)) = z (z ∈ U),

and

f(f−1(w)) = w

(
|w| < r0(f); r0(f) ≥

1

4

)
,

where

f−1(w) = w − a2w
2 + (2a22 − a3)w

3 − (5a32 − 5a2a3 + a4)w
4 + · · · . (1.2)

A function f ∈ A is said to be bi-univalent in U, if both f and f−1 are univalent in
U. The class consisting of bi-univalent functions are denoted by Σ.

Determination of the bounds for the coefficients an is an important problem in
geometric function theory as they give information about the geometric properties
of these functions. For example, the bound for the second coefficient a2 of functions
f ∈ S gives the growth and distortion bounds as well as covering theorems.

Lewin [8] investigated the class Σ of bi-univalent functions and showed that
|a2| < 1.51 for the functions belonging to Σ. Subsequently, Brannan and Clunie [2]

conjectured that |a2| ≤
√
2. Kedzierawski [7] proved this conjecture for a special case

when the function f and f−1 are starlike functions. Tan [14] obtained the bound for
|a2| namely |a2| ≤ 1.485 which is the best known estimate for functions in the class Σ.
Recently there are interest to study the bi-univalent functions class Σ (see [5, 6, 16, 17])
and obtain non-sharp estimates on the first two Taylor-Maclaurin coefficients |a2| and
|a3|. The coefficient estimate problem i.e. bound of |an| (n ∈ N−{1, 2}) for each f ∈ Σ
given by (1.1) is still an open problem. For each function f ∈ S the function h(z)
given by

h(z) = m
√
f(zm) (z ∈ U,m ∈ N)

is univalent and maps the unit disk U into a region with m-fold symmetry.
A function is called m-fold symmetric (see[11, 12, 13]) if the function f(z) has the
following normalized form:

f(z) = z +

∞∑
k=1

amk+1z
mk+1 (z ∈ U,m ∈ N) (1.3)

We denote by Sm the class of m-fold symmetric univalent functions in U, which
are normalized by the series expansion (1.3). In fact, the functions in the class S are
one-fold symmetric, that is

S1 = S
Analogous to the concept of m-fold symmetric univalent functions, we now introduce
the concept of m-fold symmetric bi-univalent functions. Each function f ∈ Σ generates
an m-fold symmetric bi-univalent function for each integerf ∈ N . The normalized
form of f is given as in (1.3). Furthermore, the series expansion for f−1 , which was
recently proven by Srivastava et al. [13], is given as follows:
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g(w) = w − am+1w
m+1 + [(m+ 1)a2m+1 − a2m+1]w

2m+1−[1
2
(m+ 1)(3m+ 2)a3m+1 − (3m+ 2)am+1a2m+1 + a3m+1

]
w3m+1 + · · · ,

where g = f−1 .
We denote by Σm the class of m-fold symmetric bi-univalent functions in U. In the
special case when m = 1, the formula (1.4) for the class Σm coincides with the formula
(1.2) for the class Σ. Some examples of m-fold symmetric bi-univalent functions are
given below: (

zm

1− zm

) 1
m

and [− log(1− zm)]
1
m

with the corresponding inverse functions given by(
wm

1− wm

) 1
m

and

(
ew

m − 1

ewm

) 1
m

respectively.
Quite recently, Wanas and Páll-Szabó [15] introduced two new general subclasses

ASΣm
(γ, λ;α) and AS∗

Σm
(γ, λ;β) of the m-fold symmetric bi-univalent function class

Σm consisting of analytic and m-fold symmetric bi-univalent functions in U and de-
rived the coefficient bounds for |am+1| and |a2m+1| for functions in each of these new
subclasses.

Definition 1.1. [15] A function f ∈ Σm given by (1.3) is said to be in the class
ASΣm(γ, λ;α) if it satisfies the following conditions:∣∣∣∣arg [(1− λ)

zf ′(z)

f(z)
+ λ

(
1 +

zf ′′(z)

f ′(z)

)]γ∣∣∣∣ < απ

2

and ∣∣∣∣arg [(1− λ)
wg′(w)

g(w)
+ λ

(
1 +

wg′′(w)

g′(w)

)]γ∣∣∣∣ < απ

2
,

where z, w ∈ U, 0 < γ ≤ 1, 0 ≤ λ ≤ 1, 0 < α ≤ 1, m ∈ N and g = f−1.

Theorem 1.2 ([15]). Let f ∈ ASΣm
(γ, λ;α) be given by (1.3). Then

|am+1| ≤
2α

m
√

2αγ(1 + λm) + γ(γ − α)(1 + λm)2

and

|a2m+1| ≤
2α2(m+ 1)

m2γ2(1 + λm)2
+

α

mγ(1 + 2λm)
.

Definition 1.3. [15] A function f ∈ Σm given by (1.3) is said to be in the class
AS∗

Σm(γ, λ;β), if it satisfies the following conditions:

ℜ
[
(1− λ)

zf ′(z)

f(z)
+ λ

(
1 +

zf ′′(z)

f ′(z)

)]γ
> β
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and

ℜ
[
(1− λ)

wg′(w)

g(w)
+ λ

(
1 +

wg′′(w)

g′(w)

)]γ
> β,

where z, w ∈ U, 0 < γ ≤ 1, 0 ≤ λ ≤ 1, 0 ≤ β < 1, m ∈ N and g = f−1.

Theorem 1.4 ([15]). Let f ∈ AS∗
Σm

(γ, λ;β) be given by (1.3). Then

|am+1| ≤
2

m

√
1− β

2γ(1 + λm) + γ(γ − 1)(1 + λm)2

and

|a2m+1| ≤
2(m+ 1)(1− β)2

m2γ2(1 + λm)2
+

1− β

mγ(1 + 2λm)
.

The main objective of this paper is to present an elegant formula for computing
the coefficients of the inverse functions for the class Σm of m-fold symmetric functions
by means of the residue calculus. As an application, we introduce a new subclass of bi-
univalent functions in which both f and f−1 are m-fold symmetric analytic functions
and obtain upper bounds for the coefficients |am+1| and |a2m+1| for functions in this

subclass. Our results for the bi-univalent function class Gh,p
Σm

(γ, λ), which we shall
introduce in section 2, would generalize and improve some recent works by Wanas
and Páll-Szabó [15] and some of other researchers[1, 9, 10]

2. Coefficient Estimates

In this section, we introduce and investigate the general subclass Gh,p
Σm

(γ, λ).

Definition 2.1. Let h, p : U → C be analytic functions and

min{ℜ(h(z)),ℜ(p(z))} > 0 (z ∈ U) and h(0) = p(0) = 1.

A function f given by (1.3) is said to be in the class Gh,p
Σm

(γ, λ), if the following
conditions are satisfied:[

(1− λ)
zf ′(z)

f(z)
+ λ

(
1 +

zf ′′(z)

f ′(z)

)]γ
∈ h(U) (2.1)

and [
(1− λ)

wg′(w)

g(w)
+ λ

(
1 +

wg′′w)

g′(w)

)]γ
∈ p(U) (2.2)

where z, w ∈ U , 0 < γ ≤ 1 , 0 ≤ λ ≤ 1 , m ∈ N and g = f−1.

Remark 2.2. There are many choices of the functions h, p which would provide in-

teresting subclasses of the general class Gh,p
Σm

(γ, λ). For example, if we set γ = 1, the

subclass Gh,p
Σm

(γ, λ) reduces to the subclass f ∈ Mh,p
Σm

(λ, 1) which was introduced by
Motamednezhad et al. [10].
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If we let

h(z) = p(z) =

(
1 + zm

1− zm

)α

= 1 + 2αzm + 2α2z2m + · · · (0 < α ≤ 1),

it can easily be verified that the functions h(z) and p(z) satisfy the hypotheses of

Definition 2.1. Thus, if we have f ∈ Gh,p
Σm

(γ, λ), then∣∣∣∣arg [(1− λ)
zf ′(z)

f(z)
+ λ

(
1 +

zf ′′(z)

f ′(z)

)]γ∣∣∣∣ < απ

2

and ∣∣∣∣arg [(1− λ)
wg′(w)

g(w)
+ λ

(
1 +

wg′′(w)

g′(w)

)]γ∣∣∣∣ < απ

2
.

In this case we say that f belongs to the subclass f ∈ ASΣm
(γ, λ;α). If we put

h(z) = p(z) =
(

1+zm

1−zm

)α

and γ = 1, the subclass Gh,p
Σm

(γ, λ) reduces to the subclass

MΣm
(α, λ, 1) which was considered by Motamednezad et al. [10].

Also, for h(z) = p(z) =
(

1+zm

1−zm

)α

, γ = 1 and λ = 0, the subclass Gh,p
Σm

(γ, λ)

reduces to the subclass Sα
Σm

which was considered by Altinkaya and Yalcin [1].

On the other hand, if we take

h(z) = p(z) =
1 + (1− 2β)zm

1− zm
= 1 + 2(1− β)zm + 2(1− β)z2m + · · · (0 ≤ β < 1).

then the conditions of Definition 2.1 are satisfied for both functions h(z) and p(z).

Thus, if f ∈ Gh,p
Σm

(γ, λ); then

ℜ
[
(1− λ)

zf ′(z)

f(z)
+ λ

(
1 +

zf ′′(z)

f ′(z)

)]γ
> β

and

ℜ
[
(1− λ)

wg′(w)

g(w)
+ λ

(
1 +

wg′′(w)

g′(w)

)]γ
> β.

In this case we say that f belonges to the subclass f ∈ AS∗
Σm

(γ, λ;β). If we put

h(z) = p(z) = 1+(1−2β)zm

1−zm and γ = 1, the subclass Gh,p
Σm

(γ, λ) reduces to the subclass

MΣm
(β, λ, 1) which was considered by Motamednezad et al. [10].

Also, for h(z) = p(z) = 1+(1−2β)zm

1−zm , γ = 1 and λ = 0, the subclass Gh,p
Σm

(γ, λ)

reduces to the subclass Sβ
Σm

which was considered by Altinkaya and Yalcin [1].

Remark 2.3. For one-Fold symmetric bi-univalent functions, we denote the subclass

Gh,p
Σm

(γ, λ) = Gh,p
Σ (γ, λ). Special cases of this subclass illustrated below:

(A) By putting h(z) = p(z) =
(

1+z
1−z

)α

and γ = 1, then the subclass Gh,p
Σ (λ, γ)

reduces to the subclass MΣ(α, λ) studied by Li and Wang [9].

(B) By putting h(z) = p(z) =
(

1+z
1−z

)α

, γ = 1 and λ = 0, then the subclass Gh,p
Σ (λ, γ)

reduces to the subclass S∗
Σ(α) studied by Brannan and Taha[3].
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(C) By putting h(z) = p(z) =
(

1+z
1−z

)α

, and λ = γ = 1, then the subclass Gh,p
Σ (λ, γ)

reduces to the subclass MΣ(α, 1) studied by Li and Wang [9].

(D) By putting h(z) = p(z) = 1+(1−2β)z
1−z and γ = 1, then the subclass Gh,p

Σ (λ, γ)

reduces to the subclass BΣ(β, λ) studied by Li and Wang [9].

(E) By putting h(z) = p(z) = 1+(1−2β)z
1−z , γ = 1 and λ = 0, then the subclass

Gh,p
Σ (λ, γ) reduces to the subclass S∗

Σ(β) of bi-starlike functions of order β(0 ≤
β < 1) studied by Brannan and Taha[3].

(F) By putting h(z) = p(z) = 1+(1−2β)z
1−z and λ = γ = 1, then the subclass Gh,p

Σ (λ, γ)

reduces to the subclass BΣ(β, 1) of bi-convex functions of order β(0 ≤ β < 1)
studied by Li and Wang [9].

We are now ready to express the bounds for the coefficients |am+1| and |a2m+1|
for the subclass Gh,p

Σm
(γ, λ) of the normalized bi-univalent function class Σm.

Theorem 2.4. Let the function f given by (1.3) be in the class Gh,p
Σm

(γ, λ). Then

|am+1| ≤ min

{√
|h2m|+ |p2m|

m2γ[2(1 + λm) + (γ − 1)(1 + λm)2]
,√

|hm|2 + |pm|2
2[mγ(1 + λm)]2

}
(2.3)

and

|a2m+1| ≤ min

{
|h2m|+ |p2m|
4γm(1 + 2λm)

+
(m+ 1)(|hm|2 + |pm|2)

4γ2m2(1 + λm)2
,∣∣2m(1 + λm) + 2(m+ 1)(1 + 2λm) +m(γ − 1)(1 + λm)2
∣∣

4m2γ(1 + 2λm)[2(1 + λm) + (γ − 1)(1 + λm)2]
|h2m|+∣∣2(m+ 1)(1 + 2λm)− 2m(1 + λm)−m(γ − 1)(1 + λm)2
∣∣

4m2γ(1 + 2λm)[2(1 + λm) + (γ − 1)(1 + λm)2]
|p2m|

}
. (2.4)

Proof. The main idea in the proof of Theorem 2.4 is to get the desired bounds for the
coefficient |am+1| and |a2m+1|. Indeed, by considering the relations (2.1) and (2.2),
we have [

(1− λ)
zf ′(z)

f(z)
+ λ

(
1 +

zf ′′(z)

f ′(z)

)]γ
= h(z) (2.5)

and [
(1− λ)

wg′(w)

g(w)
+ λ

(
1 +

wg′′(w)

g′(w)

)]γ
= p(z), (2.6)

where each of the functions h and p satisfies the conditions of Definition 1.3. In light
of the following Taylor-Maclaurin series expansions for the functions h and p, we get

h(z) = 1 + hmzm + h2mz2m + h3mz3m + · · · (2.7)
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and

p(w) = 1 + pmwm + p2mw2m + p3mw3m + · · · . (2.8)

By substituting the relations (2.7) and (2.8) into (2.5) and (2.6), respectively, we get

mγ(1 + λm)am+1 = hm, (2.9)

γm

[
(γ − 1)

2
m(1 + λm)2 − (λm2 + 2λm+ 1)

]
a2m+1

+2mγ(1 + 2λm)a2m+1 = h2m, (2.10)

−mγ(1 + λm)am+1 = pm (2.11)

and

γm

[(
3λm2 + 2(λ+ 1)m+ 1

)
+

(γ − 1)

2
m(1 + λm)2

]
a2m+1

−2mγ(1 + 2λm)a2m+1 = p2m. (2.12)

Comparing the coefficients (2.9) and (2.11), we obtain

hm = −pm (2.13)

and

2m2γ2(1 + λm)2a2m+1 = h2
m + p2m. (2.14)

Now, if we add (2.10) and (2.12), we get the following relation

m2γ
[
2(1 + λm) + (γ − 1)(1 + λm)2

]
a2m+1 = h2m + p2m. (2.15)

Therefore, from (2.14) and (2.15), we have

a2m+1 =
h2
m + p2m

2[mγ(1 + λm)]2
(2.16)

and

a2m+1 =
h2m + p2m

m2γ[2(1 + λm) + (γ − 1)(1 + λm)2]
, (2.17)

respectively.
Therefore, we find from the equations (2.16) and (2.17) that

|am+1|2 ≤ |hm|2 + |pm|2

2γ2m2(1 + λm)2

and

|am+1|2 ≤ |h2m|+ |p2m|
m2γ[2(1 + λm) + (γ − 1)(1 + λm)2]

,

respectively. We have thus derived the desired bound on the coefficient |am+1|.
The proof is completed by finding the bound on the coefficient |a2m+1|. Upon

subtracting (2.12) from (2.10), we get

a2m+1 =
h2m − p2m

4γm(1 + 2λm)
+

(m+ 1)

2
a2m+1. (2.18)
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Putting the value of a2m+1 from (2.16) into (2.18), it follows that

a2m+1 =
h2m − p2m

4γm(1 + 2λm)
+

(m+ 1)h2m + p2m
m2γ[2(1 + λm) + (γ − 1)(1 + λm)2]

.

Therefore, we conclude the following bound:

|a2m+1| ≤
|h2m|+ |p2m|
4γm(1 + 2λm)

+
(m+ 1)(|hm|2 + |pm|2)

4[γm(1 + λm)]2
. (2.19)

By substituting the value of a2m+1 from (2.17) into (2.18), we obtain

a2m+1 =
m[2(1 + λm) + (γ − 1)(1 + λm)2](h2m − p2m) + (m+ 1)(1 + 2λm)

4m2γ(1 + 2λm)[2(1 + λm) + (γ − 1)(1 + λm)2]
(2.20)

(h2m + p2m)

4m2γ(1 + 2λm)[2(1 + λm) + (γ − 1)(1 + λm)2]

which readily yields

|a2m+1| ≤
∣∣2m(1 + λm) + 2(m+ 1)(1 + 2λm) +m(γ − 1)(1 + λm)2

∣∣
4m2γ(1 + 2λm)[2(1 + λm) + (γ − 1)(1 + λm)2]

|h2m|+

(2.21)∣∣2(m+ 1)(1 + 2λm)− 2m(1 + λm)−m(γ − 1)(1 + λm)2
∣∣

4m2γ(1 + 2λm)[2(1 + λm) + (γ − 1)(1 + λm)2]
|p2m|. (2.22)

Finally, from (2.19) and (2.21), we get the desired estimate on the coefficient |a2m+1|
as asserted in Theorem 2.4. The proof of Theorem 2.4 is thus completed. □

3. Corollaries and Consequences

If we put

h(z) = p(z) =

(
1 + zm

1− zm

)α

= 1 + 2αzm + 2α2z2m + · · · ,

in Theorem 2.4, then it can be obtained the following result.

Corollary 3.1. Let the function f given by (1.3) be in the class ASΣm
(γ, λ;α). Then

|am+1| ≤ min

{
2α

mγ(1 + λm)
,

2α

m
√

γ[2(1 + λm) + (γ − 1)(1 + λm)2]

}
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and

|a2m+1| ≤ min

{
α2

mγ(1 + 2λm)
+

2(m+ 1)α2

γ2m2(1 + λm)2
,∣∣∣∣2m(1 + λm) + 2(m+ 1)(1 + 2λm) +m(γ − 1)(1 + λm)2

2m2γ(1 + 2λm)[2(1 + λm) + (γ − 1)(1 + λm)2]

∣∣∣∣α2 +∣∣∣∣2(m+ 1)(1 + 2λm)− 2m(1 + λm)−m(γ − 1)(1 + λm)2

2m2γ(1 + 2λm)[2(1 + λm) + (γ − 1)(1 + λm)2]

∣∣∣∣α2

}
.

Remark 3.2. For the coefficient |a2m+1| it is easily seen that

α2

mγ(1 + 2λm)
+

2(m+ 1)α2

γ2m2(1 + λm)2
≤ α

mγ(1 + 2λm)
+

2(m+ 1)α2

γ2m2(1 + λm)2
.

Therefore, clearly, Corollary3.1 provides an improvement over Theorem1.2.

By setting γ = 1 in Corollary 3.1, we conclude the following result.

Corollary 3.3. Let the function f given by (1.3) be in the subclass MΣm(α, λ, 1). Then

|am+1| ≤ min

{
2α

m(1 + λm)
,

2α

m
√

2(1 + λm)

}
=


2α

m
√

2(1+λm)
, 0 ≤ λ ≤ 1

m

2α
m(1+λm) , 1

m ≤ λ < 1

and

|a2m+1| ≤ min

{
m(1 + λm)2 + 2(m+ 1)(1 + 2λm)

m2(1 + 2λm)(1 + λm)2
α2,

(m+ 1)

m2(1 + λm)
α2

}
.

By setting λ = 0 in Corollary 3.3, we conclude the following result.

Corollary 3.4. Let the function f given by (1.3) be in the subclass Sα
Σm

. Then

|am+1| ≤ min

{
2α

m
,

√
2α

m

}
=

√
2α

m

and

|a2m+1| ≤ min

{
(3m+ 2)α2

m2
,
(m+ 1)α2

m2

}
=

(m+ 1)α2

m2
.

Remark 3.5. The bounds on |am+1| and |a2m+1| given in Corollary 3.4 are better
than those given by Altinkaya and Yalcin [1, Corollary 6], because of

√
2α

m
≤ 2α

m
√
α+ 1

and

(m+ 1)α2

m2
≤ α

m
+

2(m+ 1)α2

m2
.

By setting γ = 1 and m = 1 in Corollary 3.1, we conclude the following result.
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Corollary 3.6. Let the function f given by (1.1) be in the subclass MΣ(α, λ). Then

|a2| ≤ min

{
2α

1 + λ
, α

√
2

1 + λ

}
= α

√
2

1 + λ

and

|a3| ≤ min

{
λ2 + 10λ+ 5

(1 + 2λ)(1 + λ)2
α2,

2α2

1 + λ

}
=

2α2

1 + λ
.

Remark 3.7. The bounds on |a2| and |a3| given in Corollary 3.6 are better than those
given by Li and Wang [9, Theorem 2.2].

By setting λ = 0 in Corollary 3.6, we conclude the following result.

Corollary 3.8. Let the function f given by (1.1) be in the subclass S∗
Σ(α). Then

|a2| ≤
√
2α and |a3| ≤ 2α2.

Remark 3.9. The bounds on |a2| and |a3| given in Corollary 3.10 are better than those
given by Brannan and Taha [3].

By setting λ = 1 in Corollary 3.6, we conclude the following result.

Corollary 3.10. Let the function f given by (1.1) be in the subclass MΣ(α, 1). Then

|a2| ≤ α and |a3| ≤ α2.

Remark 3.11. The bound on |a3| given in Corollary 3.8 are better than those given
by Li and Wang [9, Theorem 2.2] for λ = 1.

By letting

h(z) = p(z) =
1 + (1− 2β)zm

1− zm
= 1 + 2(1− β)zm + 2(1− β)z2m + · · · (0 ≤ β < 1).

in Theorem 2.4, we deduce the following corollary.

Corollary 3.12. Let the function f given by (1.3) be in the class f ∈ AS∗
Σm

(γ, λ;β).
Then

|am+1| ≤ min

{
2(1− β)

mγ(1 + λm)
,
2

m

√
(1− β)

γ[2(1 + λm) + (γ − 1)(1 + λm)2]

}
and

|a2m+1| ≤ min

{
1− β

mγ(1 + 2λm)
+

2(m+ 1)(1− β)2

γ2m2(1 + λm)2
,∣∣∣∣2m(1 + λm) + 2(m+ 1)(1 + 2λm) +m(γ − 1)(1 + λm)2

2m2γ(1 + 2λm)[2(1 + λm) + (γ − 1)(1 + λm)2]

∣∣∣∣ (1− β) +∣∣∣∣2(m+ 1)(1 + 2λm)− 2m(1 + λm)−m(γ − 1)(1 + λm)2

2m2γ(1 + 2λm)[2(1 + λm) + (γ − 1)(1 + λm)2]

∣∣∣∣ (1− β)

}
.
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Remark 3.13. Clearly, Corollary 3.12 provides an improvement over Theorem1.4.

By setting γ = 1 in Corollary 3.12, we conclude the following result.

Corollary 3.14. Let the function f given by (1.3) be in the subclass MΣm
(α, λ, 1).

Then

|am+1| ≤ min

{
2(1− β)

m(1 + λm)
,
2

m

√
(1− β)

2(1 + λm)

}
and

|a2m+1| ≤ min

{
1− β

m(1 + 2λm)
+

2(m+ 1)(1− β)2

m2(1 + λm)2
,

m+ 1

m2(1 + λm)
(1− β)

}
.

By setting λ = 0 in Corollary 3.14, we conclude the following result.

Corollary 3.15. Let the function f given by (1.3) be in the subclass Sβ
Σm

. Then

|am+1| ≤ min

{
2(1− β)

m
,

√
2(1− β)

m

}
=


√

2(1−β)

m , 0 ≤ β ≤ 1
2

2(1−β)
m , 1

2 ≤ β < 1

and

|a2m+1| ≤ min

{
m(1− β) + 2(m+ 1)(1− β)2

m2
,
m+ (1− β)

m2

}

=


m+(1−β)

m2 , 0 ≤ β ≤ 1+2m
2(1+m)

m(1−β)+2(m+1)(1−β)2

m2 , 1+2m
2(1+m) ≤ β < 1.

Remark 3.16. Clearly,the bounds on |am+1| and |a2m+1| given in Corollary 3.15 are
better than those given by Altinkaya and Yalcin [1, Corolary 7].

By setting γ = 1 and m = 1 in Corollary 3.12, we conclude the following result.

Corollary 3.17. Let the function f given by (1.1) be in the subclass BΣ(β, λ) . Then

|a2| ≤ min

{
2(1− β)

1 + λ
,

√
2(1− β)

1 + λ

}
=


√

2(1−β)
1+λ , 0 ≤ β ≤ 1−λ

2

2(1−β)
1+λ , 1−λ

2 ≤ β < 1

and

|a3| ≤ min

{
1− β

1 + 2λ
+

4(1− β)2

(1 + λ)2
,
2(1− β)

1 + λ

}

=


2(1−β)
1+λ , 0 ≤ β ≤ 3+4λ−3λ2

4(1+2λ)

1−β
1+2λ + 4(1−β)2

(1+λ)2 , 3+4λ−3λ2

4(1+2λ) ≤ β < 1.
.
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Remark 3.18. The bounds on |a2| and |a3| given in Corollary 3.17 is better than that
given by Li and Wang [9, Theorem 3.2].

By setting λ = 0 in Corollary 3.17, we conclude the following result.

Corollary 3.19. Let the function f given by (1.1) be in the subclass S∗
Σ(β). Then

|a2| ≤ min
{
2(1− β),

√
2(1− β)

}
=


√

2(1− β) , 0 ≤ β ≤ 1
2

2(1− β) , 1
2 ≤ β < 1

and

|a3| ≤ min {(1− β)(5− 4β), 2(1− β)} =

 2(1− β) , 0 ≤ β ≤ 3
4

(1− β)(5− 4β) , 3
4 ≤ β < 1.

Remark 3.20. The bounds on |a2| and |a3| given in Corollary 3.19 are better than
those given by Brannan and Taha [3].

By setting λ = 1 in Corollary 3.17, we conclude the following result.

Corollary 3.21. Let the function f given by (1.1) be in the subclass BΣ(β, 1). Then

|a2| ≤ min
{
1− β,

√
1− β

}
= 1− β

and

|a3| ≤ min

{
(1− β) + 3(1− β)2

3
, 1− β

}
=


1− β , 0 ≤ β ≤ 1

3

(1−β)+3(1−β)2

3 , 1
3 ≤ β < 1.

Remark 3.22. The bounds on |a2| and |a3| given in Corollary 3.21 are better than
those given by Li and Wang [9, Theorem 3.2] for λ = 1.

4. Conclusions

In this paper, we introduce a new subclass Gh,p
Σm

(γ, λ) of analytic functions, charac-
terized by m-fold symmetric as a foundational framework. It is worth noting that
this subclass is a generalization of many well-known or new subclasses, mentioned in
section 2. Moreover, by Theorem 2.4, we obtained sharp bounds of the coefficients
for many well-known subclasses as consequences. That in certain cases our data has
improved the results of others.
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Certain subclass of close-to-convex univalent
functions defined with q-derivative operator

Gagandeep Singh and Gurcharanjit Singh

Abstract. The objective of this paper is to introduce a new subclass of strongly
close-to-convex functions defined with q-derivative operator and by subordinating
to generalized Janowski function. We establish several useful properties such as
coefficient estimates, distortion theorem, argument theorem, inclusion relations
and radius of convexity for this class. Some relevant connections of the results
investigated here with those derived earlier are mentioned.
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1. Introduction

Let A be the class of analytic functions in the open unit disc E = {z :| z |< 1} and
having the Taylor-Maclaurin expansion of the form

f(z) = z +

∞∑
n=2

anz
n. (1.1)

Further, let S be the class of functions f ∈ A which are univalent in E.

By U , we denote the class of Schwarzian functions w satisfying w(0) = 0 and
|w(z)| ≤ 1, which are analytic in E and of the form

w(z) =

∞∑
n=1

cnz
n, z ∈ E.
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For 0 ≤ α < 1, S∗(α) and K(α) denote the classes of starlike functions and
convex functions of order α respectively and are defined as

S∗(α) =

{
f : f ∈ A, Re

(
zf ′(z)

f(z)

)
> α, z ∈ E

}
and

K(α) =

{
f : f ∈ A, Re

(
(zf ′(z))′

f ′(z)

)
> α, z ∈ E

}
.

In particular, S∗(0) ≡ S∗ which is the class of starlike functions and K(0) = K, the
class of convex functions. For α = 1

2 , S
∗( 12 ) is the class of starlike functions of order

1
2 .

For the functions f(z) = z+
∑∞

n=2 anz
n defined in (1) and h(z) = z+

∑∞
n=2 bnz

n,
the Hadamard product(or convolution) of f and h is defined by

(f ∗ h)(z) = z +

∞∑
n=2

anbnz
n.

A function f ∈ A is said to be close-to-convex function if there exists a function
g ∈ S∗ such that

Re

(
zf ′(z)

g(z)

)
> 0(z ∈ E).

The class of close-to-convex functions is denoted by C and was established by
Kaplan [9].

Sakaguchi [18] established the class S∗
s of the functions f ∈ A which satisfy the

condition

Re

(
2zf ′(z)

f(z)− f(−z)

)
> 0.

The functions in the class S∗
s are called starlike functions with respect to symmetric

points. Clearly, the class S∗
s is contained in the class C of close-to-convex functions,

as
f(z)− f(−z)

2
is a starlike function [3] in E.

Getting inspired from the class S∗
s , Gao and Zhou [5] studied the class KS given

by

Ks =

{
f : f ∈ A, Re

(
−z2f ′(z)
g(z)g(−z)

)
> 0, g ∈ S∗

(
1

2

)
, z ∈ E

}
.

Kowalczyk and Les-Bomba [10] extended the class KS by introducing the class
KS(γ)(0 ≤ γ < 1) which is defined as

Ks(γ) =

{
f : f ∈ A, Re

(
−z2f ′(z)
g(z)g(−z)

)
> γ, g ∈ S∗

(
1

2

)
, z ∈ E

}
.

For γ = 0, the class KS(γ) reduces to the class KS .
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Later on, Prajapat [14] established that, a function f ∈ A is said to be in the

class χt(γ)(|t| ≤ 1, t ̸= 0, 0 ≤ γ < 1), if there exists a function g ∈ S∗
(
1

2

)
, such that

Re

[
tz2f ′(z)

g(z)g(tz)

]
> γ.

In particular χ−1(γ) ≡ KS(γ) and χ−1(0) ≡ KS .

For −1 ≤ B < A ≤ 1 and 0 ≤ α < 1, Polatoglu et al. [13] introduced
the class P(A,B;α), the subclass of A which consists of functions of the form

p(z) = 1 +
∑∞

k=1 pkz
k such that p(z) ≺ 1 + [B + (A−B)(1− α)]z

1 +Bz
. Also for α = 0,

the class P(A,B;α) agrees with P(A,B), which is a subclass of A introduced by
Janowski [8].

Let f and g be two analytic functions in E. Then f is said to be subordinate
to g (symbolically f ≺ g) if there exists a Schwarzian function w ∈ U such that
f(z) = g(w(z)). Further, if g is univalent in E, then f ≺ g is equivalent to f(0) = g(0)
and f(E) ⊂ g(E). Recently some subordination properties for certain classes of
analytic functions were studied in [16].

Using the concept of subordination, Singh et al. [20] introduced the class
χt(A,B)(|t| ≤ 1, t ̸= 0), which consists of functions f ∈ A with the conditions

tz2f ′(z)

g(z)g(tz)
≺ 1 +Az

1 +Bz
,−1 ≤ B < A ≤ 1, z ∈ E,

where g ∈ S∗ ( 1
2

)
. The following observations are obvious:

(i) χt(1− 2γ,−1) ≡ χt(γ).
(ii)χ−1(1− 2γ,−1) ≡ KS(γ).
(iii)χ−1(1,−1) ≡ KS .

Raina et al. [15] defined the class of strongly close-to-convex functions of order
β, as below:

C′
β =

{
f : f ∈ A,

∣∣∣∣arg{zf ′(z)g(z)

}∣∣∣∣ < βπ

2
, g ∈ K, 0 < β ≤ 1, z ∈ E

}
,

or equivalently

C′
β =

{
f : f ∈ A, zf

′(z)

g(z)
≺
(
1 + z

1− z

)β

, g ∈ K, 0 < β ≤ 1, z ∈ E

}
.

Quantum calculus is ordinary classical calculus which introduces q-calculus,
where q stands for quantum. Nowadays, q-calculus has attracted many researchers
as it is widely useful in various branches of Mathematics and Physics. The appli-
cation of q-calculus was initiated by Jackson [6, 7] and he developed q-integral and
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q-derivative in a systematic way. For 0 < q < 1, Jackson [6] defined the q-derivative
of a function f ∈ A as

Dqf(z) =

{
f(z)−f(qz)

(1−q)z for z ̸= 0,

f ′(0) for z = 0,
(1.2)

where D2
qf(z) = Dq(Dqf(z)).

From (1.2), it is obvious that

Dqf(z) = 1 +

∞∑
k=2

[k]qakz
k−1,

where [k]q = 1−qk

1−q = 1 + q + q2 + ... + qk−1 and [0]q = 0. If q → 1−, then [k]q → k.

Further Dqz
k = [k]qz

k−1 and limq→1− Dqf(z) = f ′(z). Recently a new subclass of
analytic functions defined with q-derivative operator is studied in [22].

The q-shifted factorial is given by

(a; q)n =

{
1 for n = 0,

(1− a)(1− aq)...(1− aqn−1) for n = 1, 2, ...

As a generalization of the hypergeometric series, Heine established the q-
hypergeometric series as

2F1[a, b; c : q, z] =

∞∑
n=0

(a; q)n(b; q)n
(q; q)n(c; q)n

zn.

Generalising the Heine’s series, we define the basic hypergeometric series rϕs as
below:

rϕs(a1, a2, ..., ar; b1, b2, ..., bs : q, z) =

∞∑
n=0

(a1; q)n(a2; q)n...(ar; q)n
(q; q)n(b1; q)n...(bs; q)n

[
(−1)nq(

n
2)
]1+s−r

zn,

(1.3)

where
(
n
2

)
= n(n−1)

2 , and q ̸= 0 when r > s + 1. In (1.3), it is supposed that the
parameters b1, b2, ..., bs are such that the denominator factors in the terms of the
series are never zero. In basic hypergeometric series, q is a fixed parameter with
q ∈ C and |q| < 1.

For complex parameteres a1, a2, ..., ar and b1, b2, ..., bs, (bj ∈ C \
Z−
0 = 0,−1,−2, ...; j = 1, 2, ..., s), the generalized q-hypergeometric function

rψs(a1, a2, ..., ar; b1, b2, ..., bs : q, z) is defined by

rψs(a1, a2, ..., ar; b1, b2, ..., bs; q, z) =

∞∑
n=0

(a1; q)n(a2; q)n...(ar; q)n
(q; q)n(b1; q)n...(bs; q)n

zn,

where r = s+ 1; r, s ∈ N0 = N ∪ {0}, z ∈ E.
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The function Gr,s(ai, bj ; q, z)(i = 1, 2, ..., r; j = 1, 2, ..., s) is defined by

Gr,s(ai, bj ; q, z) := zrψs(a1, a2, ..., ar; b1, b2, ..., bs : q, z).

Now we define the operator Jm
λ (a1, b1; q, z)f : E → E as

J 0
λ (a1, b1; q, z)f(z) = f(z) ∗ Gr,s(ai, bj ; q, z),

J 1
λ (a1, b1; q, z)f(z) = (1− λ)(f(z) ∗ Gr,s(ai, bj ; q, z)) + λzDq(f(z) ∗ Gr,s(ai, bj ; q, z),

(1.4)

Jm
λ (a1, b1; q, z)f(z) = J 1

λ (Jm−1
λ (a1, b1; q, z)f(z)). (1.5)

For f ∈ A, it can be easily deduced from (1.4) and (1.5), that

Jm
λ (a1, b1; q, z)f(z) = z +

∞∑
n=2

[1− λ+ [n]qλ]
mΓnanz

n,

where Γn = (a1;q)n−1(a2;q)n−1...(ar;q)n−1

(q;q)n−1(b1;q)n−1...(bs;q)n−1
and m ∈ N0 = N ∪ {0}, λ ≥ 0.

In particular
(i) For m = 0, the operator Jm

λ (a1, b1; q, z) agrees with the q-analogue of Dziok-
Srivastava operator [4].
(ii) For r = 2, s = 1, a1 = b1, a2 = q, λ = 1, the operator Jm

λ (a1, b1; q, z) reduces to
the well known Sãlãgean operator [19].

Motivated by the above mentioned work, now we introduce the following sub-
class of close-to-convex functions defined by subordinating to generalized Janowski
function.

Definition 1.1. Let Sλ,m
q,t (a1, b1;A,B;α;β)(|t| ≤ 1, t ̸= 0, 0 ≤ α < 1, 0 < β ≤ 1) denote

the class of functions f ∈ A which satisfy the conditions,

tz2[Jm
λ (a1, b1; q, z)f(z)]

′

[Jm
λ (a1, b1; q, z)g(z)][Jm

λ (a1, b1; q, z)g(tz)]
≺
(
1 + [B + (A−B)(1− α)]z

1 +Bz

)β

,

where Jm
λ (a1, b1; q, z)g(z) ∈ S∗ ( 1

2

)
, −1 ≤ B < A ≤ 1 and z ∈ E.

The following observations are obvious:

(i) For α = 0, β = 1, the class Sλ,m
q,t (a1, b1;A,B;α;β) reduces to Sλ,m

q,t (a1, b1;A,B),
the class studied by Murugusundaramoorthy and Reddy [12].
(ii) For m = 0, r = 2, s = 1, a1 = b1, a2 = q, α = 0, β = 1 and q → 1−, the class

Sλ,m
q,t (a1, b1;A,B;α;β) reduces to χt(A,B), the class studied by Singh et al. [20].

(iii) For m = 0, r = 2, s = 1, a1 = b1, a2 = q, α = 0, β = 1, A = 1 − 2γ,B = −1 and

q → 1−, the class Sλ,m
q,t (a1, b1;A,B;α;β) agrees with χt(γ), the class established by

Prajapat [14].
(iv) For m = 0, r = 2, s = 1, a1 = b1, a2 = q, α = 0, β = 1, A = 1, B = −1, t = −1 and

q → 1−, the class Sλ,m
q,t (a1, b1;A,B;α;β) reduces to Ks, the class introduced by Gao

and Zhou [5].
(v) For m = 0, r = 2, s = 1, a1 = b1, a2 = q, α = 0, β = 1, A = 1− 2γ,B = −1, t = −1

and q → 1−, the class Sλ,m
q,t (a1, b1;A,B;α;β) agrees with Ks(γ), the class studied by
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Kowalczyk and Les Bomba [10].

As f ∈ Sλ,m
q,t (a1, b1;A,B;α;β), therefore by the principle of subordination, it

follows that

tz2[Jm
λ (a1, b1; q, z)f(z)]

′

[Jm
λ (a1, b1; q, z)g(z)][Jm

λ (a1, b1; q, z)g(tz)]
=

(
1 + [B + (A−B)(1− α)]w(z)

1 +Bw(z)

)β

,

(1.6)
where w ∈ U .

In the present investigation, we obtain the coefficient estimates, inclusion
relation, distortion theorem, argument theorem and radius of convexity for the

functions in class Sλ,m
q,t (a1, b1;A,B;α;β). Our results extend the known results due

to various authors.
Throughout our discussion, we assume that −1 ≤ B < A ≤ 1, 0 < |t| ≤ 1, t ̸= 0, 0 ≤
α < 1, 0 < β ≤ 1,m ∈ N0, λ ≥ 0, z ∈ E.

2. Preliminary lemmas
Lemma 2.1. [1, 17] Let,(

1 + [B + (A−B)(1− α)]w(z)

1 +Bw(z)

)β

= (P (z))β = 1 +

∞∑
n=1

pnz
n, (2.1)

then

|pn| ≤ β(1− α)(A−B), n ≥ 1.

Lemma 2.2. [21] Let g ∈ S∗ ( 1
2

)
, then g(z)g(tz)

tz ∈ S∗.

On the lines of Lemma 2.2, the following result is obvious.

Lemma 2.3. Let Jm
λ (a1, b1; q, z)g ∈ S∗ ( 1

2

)
, then for

G(z) =
[Jm

λ (a1, b1; q, z)g(z)][Jm
λ (a1, b1; q, z)g(tz)]

tz
= z +

∞∑
n=2

dnz
n ∈ S∗, (2.2)

we have, |dn| ≤ n.

Lemma 2.4. [15] Let −1 ≤ B2 ≤ B1 < A1 ≤ A2 ≤ 1 and 0 < β ≤ 1, then(
1 +A1z

1 +B1z

)β

≺
(
1 +A2z

1 +B2z

)β

.
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3. Main results

Theorem 3.1. If f ∈ Sλ,m
q,t (a1, b1;A,B;α;β), then

|an| ≤
1

|Γn|[1− λ+ [n]qλ]m

[
1 +

β(1− α)(n− 1)(A−B)

2

]
. (3.1)

The result is sharp.

Proof. As f ∈ Sλ,m
q,t (a1, b1;A,B;α;β), therefore from (1.6) and (2.1), we obtain

tz2[Jm
λ (a1, b1; q, z)f(z)]

′

[Jm
λ (a1, b1; q, z)g(z)][Jm

λ (a1, b1; q, z)g(tz)]
= (P (z))β . (3.2)

Using (2.2), (3.2) takes the form

z[Jm
λ (a1, b1; q, z)f(z)]

′

G(z)
= (P (z))β . (3.3)

On expanding (3.3), it yields

1 +

∞∑
n=2

[1− λ+ [n]qλ]
mnΓnanz

n−1 =

(
1 +

∞∑
n=2

dnz
n−1

)(
1 +

∞∑
n=1

pnz
n

)
. (3.4)

Equating the coefficients of zn−1 in (3.4), we have

n[1− λ+ [n]qλ]
mΓnan = dn + dn−1p1 + dn−2p2 + ...+ d2pn−2 + pn−1. (3.5)

Using Lemma 2.1, Lemma 2.3 and applying triangle inequality in (3.5), it gives

n[1−λ+ [n]qλ]
m|Γn||an| ≤ n+β(1−α)(A−B)[(n− 1)+ (n− 2)+ ...+2+1]. (3.6)

After simplification, (3.1) can be easily obtained from (3.6).

Equality in (3.1) is attained for the function f defined by

tz2[Jm
λ (a1, b1; q, z)f(z)]

′

[Jm
λ (a1, b1; q, z)g(z)][Jm

λ (a1, b1; q, z)g(tz)]
=

(
1 + [B + (A−B)(1− α)]z

1 +Bz)

)β

.

□

For α = 0, β = 1, Theorem 3.1 gives the following result due to Murugusun-
daramoorthy and Reddy [12].

Remark 3.2. If f ∈ Sλ,m
q,t (a1, b1;A,B), then

|an| ≤
1

|Γn|[1− λ+ [n]qλ]m

[
1 +

(n− 1)(A−B)

2

]
.

For m = 0, r = 2, s = 1, a1 = b1, a2 = q, α = 0, β = 1 and q → 1−, Theorem 3.1
agrees with the following result by Singh et al. [20].
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Remark 3.3. If f ∈ χt(A,B), then

|an| ≤ 1 +
(n− 1)(A−B)

2
.

For m = 0, r = 2, s = 1, a1 = b1, a2 = q, α = 0, β = 1, A = 1 − 2γ,B = −1 and
q → 1−, Theorem 3.1 yields the below mentioned result established by Prajapat [14].

Remark 3.4. If f ∈ χt(γ), then

|an| ≤ 1 + (n− 1)(1− γ).

For m = 0, r = 2, s = 1, a1 = b1, a2 = q, α = 0, β = 1, A = 1, B = −1, t = −1
and q → 1−, Theorem 3.1 gives the following result for the class Ks.

Remark 3.5. If f ∈ Ks, then

|an| ≤ n.

Theorem 3.6. If −1 ≤ B2 = B1 < A1 ≤ A2 ≤ 1 and 0 ≤ α2 ≤ α1 < 1, then

Sλ,m
q,t (a1, b1;A1, B1;α1;β) ⊂ Sλ,m

q,t (a1, b1;A2, B2;α2;β).

Proof. As f ∈ Sλ,m
q,t (a1, b1;A1, B1;α1;β), so

tz2[Jm
λ (a1, b1; q, z)f(z)]

′

[Jm
λ (a1, b1; q, z)g(z)][Jm

λ (a1, b1; q, z)g(tz)]
≺
(
1 + [B1 + (A1 −B1)(1− α1)]z

1 +B1z

)β

.

As −1 ≤ B2 = B1 < A1 ≤ A2 ≤ 1 and 0 ≤ α2 ≤ α1 < 1, we have

−1 ≤ B1 + (1− α1)(A1 −B1) ≤ B2 + (1− α2)(A2 −B2) ≤ 1.

Thus by Lemma 2.4, it yields

tz2[Jm
λ (a1, b1; q, z)f(z)]

′

[Jm
λ (a1, b1; q, z)g(z)][Jm

λ (a1, b1; q, z)g(tz)]
≺
(
1 + [B2 + (A2 −B2)(1− α2)]z

1 +B2z

)β

,

which implies f ∈ Sλ,m
q,t (a1, b1;A2, B2;α2;β).

□

Theorem 3.7. If f ∈ Sλ,m
q,t (a1, b1;A,B;α;β), then for |z| = r, 0 < r < 1, we have(

1−[B+(A−B)(1−α)]r
1−Br

)β
. 1
(1+r)2

≤ |[Jm
λ (a1, b1; q, z)f(z)]

′| ≤
(
1 + [B + (A−B)(1− α)]r

1 +Br

)β

.
1

(1− r)2
(3.7)

and
r∫
0

(
1−[B+(A−B)(1−α)]t

1−Bt

)β
. 1
(1+t)2 dt

≤ |Jm
λ (a1, b1; q, z)f(z)| ≤

r∫
0

(
1 + [B + (A−B)(1− α)]t

1 +Bt

)β

.
1

(1− t)2
dt. (3.8)
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Proof. From (3.3), we have

|[Jm
λ (a1, b1; q, z)f(z)]

′| = |G(z)|
|z|

(P (z))β . (3.9)

Aouf [2] proved that

1− [B + (A−B)(1− α)]r

1−Br
≤ |P (z)| ≤ 1 + [B + (A−B)(1− α)]r

1 +Br
,

which implies(
1− [B + (A−B)(1− α)]r

1−Br

)β

≤ |P (z)|β ≤
(
1 + [B + (A−B)(1− α)]r

1 +Br

)β

.

(3.10)
By Lemma 2.3, G is a starlike function and so due to Mehrok [11], we have

r

(1 + r)2
≤ |G(z)| ≤ r

(1− r)2
. (3.11)

Using (3.10) and (3.11) in (3.9), (3.7) can be easily obtained. On integrating (3.7)
from 0 to r, (3.8) follows.

□

On putting α = 0, β = 1 in Theorem 3.7, the following result due to Muru-
gusundaramoorthy and Reddy [12] can be easily obtained.

Remark 3.8. If f ∈ Sλ,m
q,t (a1, b1;A,B), then for |z| = r, 0 < r < 1, we have(

1−Ar

1−Br

)
.

1

(1 + r)2
≤ |[Jm

λ (a1, b1; q, z)f(z)]
′| ≤

(
1 +Ar

1 +Br

)
.

1

(1− r)2

and
r∫

0

(
1−At

1−Bt

)
.

1

(1 + t)2
dt ≤ |Jm

λ (a1, b1; q, z)f(z)| ≤
r∫

0

(
1 +At

1 +Bt

)
.

1

(1− t)2
dt.

For m = 0, r = 2, s = 1, a1 = b1, a2 = q, α = 0, β = 1 and q → 1−, Theorem 3.7
gives the following result due to Singh et al. [20].

Remark 3.9. If f ∈ χt(A,B), then for |z| = r, 0 < r < 1, we have

1−Ar

(1−Br)(1 + r)2
≤ |f ′(z)| ≤ 1 +Ar

(1 +Br)(1− r)2

and
r∫

0

1−At

(1−Bt)(1 + t)2
dt ≤ |f(z)| ≤

r∫
0

1 +At

(1 +Bt)(1− t)2
dt.

For m = 0, r = 2, s = 1, a1 = b1, a2 = q, α = 0, β = 1, A = 1 − 2γ,B = −1
and q → 1−, Theorem 3.7 agrees with the following result established by Prajapat [14].
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Remark 3.10. If f ∈ χt(γ), then for |z| = r, 0 < r < 1, we have

1− (1− 2γ)r

(1 + r)3
≤ |f ′(z)| ≤ 1 + (1− 2γ)r

(1− r)3

and
r∫

0

1− (1− 2γ)t

(1 + t)3
dt ≤ |f(z)| ≤

r∫
0

1 + (1− 2γ)t

(1− t)3
dt.

For m = 0, r = 2, s = 1, a1 = b1, a2 = q, α = 0, β = 1, A = 1, B = −1, t = −1
and q → 1−, Theorem 3.7 gives the following result for the class Ks.

Remark 3.11. If f ∈ Ks, then for |z| = r, 0 < r < 1, we have

1− r

(1 + r)3
≤ |f ′(z)| ≤ 1 + r

(1− r)3

and
r∫

0

1− t

(1 + t)3
dt ≤ |f(z)| ≤

r∫
0

1 + t

(1− t)3
dt.

Theorem 3.12. If f ∈ Sλ,m
q,t (a1, b1;A,B;α;β), then for |z| = r, 0 < r < 1, we have

|arg[Jm
λ (a1, b1; q, z)f(z)]

′| ≤ βsin−1

(
(A−B)(1− α)r

1− [B + (A−B)(1− α)]Br2

)
+ 2sin−1r.

Proof. From (3.3), we have

[Jm
λ (a1, b1; q, z)f(z)]

′ =
G(z)

z
(P (z))β ,

which implies

|arg[Jm
λ (a1, b1; q, z)f(z)]

′| ≤ β|argP (z)|+
∣∣∣∣argG(z)z

∣∣∣∣ . (3.12)

As G is a starlike function and so due to Mehrok [11], we have∣∣∣∣argG(z)z
∣∣∣∣ ≤ 2sin−1r. (3.13)

Aouf [1], established that,

|argP (z)| ≤ sin−1

(
(A−B)(1− α)r

1− [B + (A−B)(1− α)]Br2

)
. (3.14)

Using (3.13) and (3.14) in (3.12), the proof is obvious.
□

On putting α = 0, β = 1 in Theorem 3.12, the following result for the class

Sλ,m
q,t (a1, b1;A,B) can be easily obtained.
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Remark 3.13. If f ∈ Sλ,m
q,t (a1, b1;A,B), then for |z| = r, 0 < r < 1, we have

|arg[Jm
λ (a1, b1; q, z)f(z)]

′| ≤ sin−1

(
(A−B)r

1−ABr2

)
+ 2sin−1r.

For m = 0, r = 2, s = 1, a1 = b1, a2 = q, α = 0, β = 1 and q → 1−, Theorem 3.12
gives the following result due to Singh et al. [20].

Remark 3.14. If f ∈ χt(A,B), then for |z| = r, 0 < r < 1, we have

|argf ′(z)| ≤ sin−1

(
(A−B)r

1−ABr2

)
+ 2sin−1r.

For m = 0, r = 2, s = 1, a1 = b1, a2 = q, α = 0, β = 1, A = 1 − 2γ,B = −1 and
q → 1−, Theorem 3.12 gives the following result for the class χt(γ).

Remark 3.15. If f ∈ χt(γ), then for |z| = r, 0 < r < 1, we have

|argf ′(z)| ≤ sin−1

(
2(1− γ)r

1 + (1− 2γ)r2

)
+ 2sin−1r.

For m = 0, r = 2, s = 1, a1 = b1, a2 = q, α = 0, β = 1, A = 1, B = −1, t = −1
and q → 1−, Theorem 3.12 gives the following result for the class Ks.

Remark 3.16. If f ∈ Ks, then for |z| = r, 0 < r < 1, we have

|argf ′(z)| ≤ sin−1

(
2r

1 + r2

)
+ 2sin−1r.

Theorem 3.17. Let f ∈ Sλ,m
q,t (a1, b1;A,B;α;β), then Jm

λ (a1, b1; q, z)f(z) is convex in
|z| < r1, where r1 is the smallest positive root in (0, 1) of the equation
B[B + (A−B)(1− α)]r3 − [B(B − 2) + (A−B)(1− α)(B − 1− β)]r2

−[(1− β)(A−B)(1− α) + (2B − 1)]r − 1 = 0. (3.15)

Proof. As f ∈ Sλ,m
q,t (a1, b1;A,B;α;β), we have

z[Jm
λ (a1, b1; q, z)f(z)]

′ = G(z)(P (z))β .

On differentiating it logarithmically, we get

(z[Jm
λ (a1, b1; q, z)f(z)]

′)′

[Jm
λ (a1, b1; q, z)f(z)]′

=
zG′(z)

G(z)
+ β

zP ′(z)

P (z)
. (3.16)

As G ∈ S∗, from [11], we have

Re

(
zG′(z)

G(z)

)
≥ 1− r

1 + r
. (3.17)

Also it can be easily verified that∣∣∣∣zP ′(z)

P (z)

∣∣∣∣ ≤ r(A−B)(1− α)

(1 +Br)(1 + [B + (A−B)(1− α)]r)
. (3.18)
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(3.16) can be expressed as

Re

(
(z[Jm

λ (a1, b1; q, z)f(z)]
′)′

[Jm
λ (a1, b1; q, z)f(z)]′

)
≥ Re

(
zG′(z)

G(z)

)
− β

∣∣∣∣zP ′(z)

P (z)

∣∣∣∣ . (3.19)

Using (3.17) and (3.18), (3.19) yields

Re

(
(z[Jm

λ (a1, b1; q, z)f(z)]
′)′

[Jm
λ (a1, b1; q, z)f(z)]′

)
≥ 1− r

1 + r
− β

r(A−B)(1− α)

(1 +Br)(1 + [B + (A−B)(1− α)]r)
.

(3.20)
After some simplification, (3.20) takes the form

Re

(
(z[Jm

λ (a1, b1; q, z)f(z)]
′)′

[Jm
λ (a1, b1; q, z)f(z)]′

)
≥ −B[B+(A−B)(1−α)]r3

(1+r)(1+Br)(1+[B+(A−B)(1−α)]r)

+ [B(B−2)+(A−B)(1−α)(B−1−β)]r2

(1+r)(1+Br)(1+[B+(A−B)(1−α)]r)

+
[(1− β)(A−B)(1− α)− (2B − 1)]r + 1

(1 + r)(1 +Br)(1 + [B + (A−B)(1− α)]r)
.

Hence, the function Jm
λ (a1, b1; q, z)f(z) is convex in |z| < r1, where r1 is the smallest

positive root in (0, 1) of the equation
B[B + (A−B)(1− α)]r3 − [B(B − 2) + (A−B)(1− α)(B − 1− β)]r2

−[(1− β)(A−B)(1− α) + (2B − 1)]r − 1 = 0.

□

On putting α = 0, β = 1 in Theorem 3.17, the following result due to Muru-
gusundaramoorthy and Reddy [12] can be easily obtained.

Remark 3.18. If f ∈ Sλ,m
q,t (a1, b1;A,B), then Jm

λ (a1, b1; q, z)f(z) is convex in |z| < r2,
where r2 is the smallest positive root in (0, 1) of the equation

ABr3 −A(B − 2)r2 − (2B − 1)r − 1 = 0.

For m = 0, r = 2, s = 1, a1 = b1, a2 = q, α = 0, β = 1 and q → 1−, Theorem 3.17
gives the following result due to Singh et al. [20].

Remark 3.19. If f ∈ χt(A,B), then f(z) is convex in |z| < r3, where r3 is the smallest
positive root in (0, 1) of the equation

ABr3 −A(B − 2)r2 − (2B − 1)r − 1 = 0.

For m = 0, r = 2, s = 1, a1 = b1, a2 = q, α = 0, β = 1, A = 1 − 2γ,B = −1 and
q → 1−, Theorem 3.17 gives the following result due to Prajapat [14].

Remark 3.20. If f ∈ χt(γ), then f(z) is convex in |z| < r4 = 2−
√
3.
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Results on ϕ−like functions involving Hadamard
product
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Abstract. In this paper, we derive a differential subordination theorem involving
convolution of normalized analytic functions. By selecting different dominants to
our main result, we find certain sufficient conditions for ϕ−likeness and parabolic
ϕ−likeness of functions in class A.
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1. Introduction

A function f is said to be analytic at a point z in a domain D if it is differentiable
not only at z but also in some neighbourhood of the point z. A function f is said to
be analytic in a domain D if it is analytic at each point of D. Let H be the class of
analytic functions in the open unit disk E = {z ∈ C : |z| < 1}. For a ∈ C and n ∈ N,
let H[a, n] be the subclass of H consisting of the functions of the form

f(z) = a+ anz
n + an+1z

n+1 + ....

Let A be the class of functions f , analytic in the unit disk E and normalized by the
conditions f(0) = f ′(0)− 1 = 0.
Let S denote the class of all analytic univalent functions f defined in the open unit
disk E which are normalized by the conditions f(0) = f ′(0)−1 = 0. The Taylor series
expansion of any function f ∈ S is

f(z) = z + a2z
2 + a3z

3 + ....
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This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives

4.0 International License.

https://orcid.org/0009-0006-0201-3122
https://orcid.org/0000-0002-5649-7904
https://orcid.org/0000-0002-6801-2521
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


456 Hardeep Kaur, Richa Brar and Sukhwinder Singh Billing

Let the functions f and g be analytic in E. We say that f is subordinate to g written
as f ≺ g in E, if there exists a Schwarz function ϕ in E (i.e. ϕ is regular in |z| <
1, ϕ(0) = 0 and |ϕ(z)| ≤ |z| < 1) such that

f(z) = g(ϕ(z)), |z| < 1.

Let Φ : C2 × E → C be an analytic function, p an analytic function in E with
(p(z), zp′(z); z) ∈ C2 × E for all z ∈ E and h be univalent in E. Then the function p
is said to satisfy first order differential subordination if

Φ(p(z), zp′(z); z) ≺ h(z), Φ(p(0), 0; 0) = h(0). (1.1)

A univalent function q is called dominant of the differential subordination (1.1) if
p(0) = q(0) and p ≺ q for all p satisfying (1.1). A dominant q̃ that satisfies q̃ ≺ q for
all dominants q of (1.1), is said to be the best dominant of (1.1). The best dominant
is unique up to a rotation of E.

Let f(z) =

∞∑
k=0

akz
k and g(z) =

∞∑
k=0

bkz
k be two analytic functions, then the

Hadamard product or convolution of f and g, written as f ∗ g is defined by

(f ∗ g)(z) =
∞∑
k=0

akbkz
k.

Ronning [8] and Ma and Minda [6] studied the domain Ω and the function q(z) defined
below:

Ω =
{
u+ iv : u >

√
(u− 1)2 + v2

}
.

Clearly the function

q(z) = 1 +
2

π2

(
log

(
1 +

√
z

1−
√
z

))2

maps the unit disk E onto the domain Ω. Let ϕ be analytic in a domain containing
f(E), ϕ(0) = 0 and ℜ(ϕ′(0)) > 0. Then, the function f ∈ A is said to be ϕ− like in
E, if

ℜ
(

zf ′(z)

ϕ(f(z))

)
> 0, z ∈ E.

This concept was introduced by Brickman [4]. He proved that an analytic function
f ∈ A is univalent if and only if f is ϕ− like for some analytic function ϕ. Later,
Ruscheweyh [9] investigated the following general class of ϕ−like functions:
Let ϕ be analytic in a domain containing f(E), where ϕ(0) = 0, ϕ′(0) = 1 and
ϕ(w) ̸= 0 for some w ∈ f(E)\{0}, then the function f ∈ A is called ϕ−like with
respect to a univalent function q, q(0) = 1, if

zf ′(z)

ϕ(f(z))
≺ q(z), z ∈ E.

A function f ∈ A is said to be parabolic ϕ− like in E, if

ℜ
(

zf ′(z)

ϕ(f(z))

)
>

∣∣∣∣ zf ′(z)

ϕ(f(z))
− 1

∣∣∣∣ , z ∈ E. (1.2)
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Equivalently, condition (1.2) can be written as:

zf ′(z)

ϕ(f(z))
≺ q(z) = 1 +

2

π2

(
log

(
1 +

√
z

1−
√
z

))2

.

In 2007, Shanmugham et al. [10] proved the following result for ϕ−like functions.

Theorem 1.1. Let q(z) ̸= 0 be analytic and univalent in E with q(0) = 1 such that
zq′(z)

q(z)
is starlike univalent in E. Let q(z) satisfy

ℜ
[
1 +

αq(z)

γ
− zq′(z)

q(z)
+

zq′′(z)

q′(z)

]
> 0.

Let

Ψ(α, γ, g; z) := α

{
z(f ∗ g)′(z)
ϕ(f ∗ g)(z)

}
+ γ

{
1 +

z(f ∗ g)′′(z)
(f ∗ g)′(z)

− z(ϕ(f ∗ g)(z))′

ϕ(f ∗ g)(z)

}
.

If q satisfies

Ψ(α, γ, g; z) ≺ αq(z) +
γzq′(z)

q(z)
,

then
z(f ∗ g)′(z)
ϕ(f ∗ g)(z)

≺ q(z)

and q is the best dominant.

Later in 2018, Brar and Billing [3] obtained the following result.

Theorem 1.2. Let q(z) ̸= 0, be a univalent function in E such that

(i) ℜ
[
1 +

zq′′(z)

q′(z)
+ (γ − 1)

zq′(z)

q(z)

]
> 0 and

(ii) ℜ
[
1 +

zq′′(z)

q′(z)
+ (γ − 1)

zq′(z)

q(z)
+

β(1− α)

α
(q(z))

β−γ
+ γ

]
> 0.

If f and g ∈ A satisfy

(1− α)

[
z(f ∗ g)′(z)
ϕ(f ∗ g)(z)

]β
+ α

[
z(f ∗ g)′(z)
ϕ(f ∗ g)(z)

]γ [
2 +

z(f ∗ g)′′(z)
(f ∗ g)′(z)

− z(ϕ((f ∗ g)(z)))′

ϕ((f ∗ g)(z))

]

≺ (1− α)(q(z))β + α(q(z))γ
(
1 +

zq′(z)

q(z)

)
,

then
z(f ∗ g)′(z)
ϕ(f ∗ g)(z)

≺ q(z), z ∈ E,

where α, β, γ are complex numbers such that α ̸= 0, and q(z) is the best dominant.
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In 2019, Adegani et al. [1] established sufficient subordination conditions for functions
to be close-to-convex.
Moreover, this study is also motivated by the findings of Cho et al. [5] and Adegani
et al. [2] who explored subordination conditions in geometric function theory.
The aim of the present investigation is to find sufficient conditions for parabolic
ϕ−likeness and ϕ−likeness of analytic functions.
To prove our main result, we shall use the following lemma of Miller and Mocanu.

Lemma 1.3. ([7], Theorem 3.4h, p.132). Let q be univalent in E and let θ and φ
be analytic in a domain D containing q(E), with φ(w) ̸= 0, when w ∈ q(E). Set
Q(z) = zq′(z)φ[q(z)], h(z) = θ[q(z)] +Q(z) and suppose that either

1. h is convex, or
2. Q is starlike.

In addition, assume that

3. ℜ
(
zh′(z)

Q(z)

)
> 0 for all z ∈ E.

If p is analytic in E, with p(0) = q(0), p(E) ⊂ D and

θ[p(z)] + zp′(z)φ[p(z)] ≺ θ[q(z)] + zq′(z)φ[q(z)], z ∈ E,
then p(z) ≺ q(z) and q is the best dominant.

2. A subordination theorem

In what follows, all the powers taken are principal ones.

Theorem 2.1. Let β and γ be complex numbers such that β ̸= 0. Let q(z) ̸= 0, be a
univalent function in E such that

(i)ℜ
[
1 +

zq′′(z)

q′(z)
+

(
γ

β
− 1

)
zq′(z)

q(z)

]
> 0 and

(ii)ℜ
[
1 + zq′′(z)

q′(z) +
(

γ
β − 1

)
zq′(z)
q(z) + a

c

(
γ
β + 1

)
q(z) + b

c

(
γ
β + 2

)
q2(z)

]
> 0, where

a, b and c are real numbers with c ̸= 0. Let ϕ be analytic function in the domain con-
taining (f ∗g)(E) such that ϕ(0) = 0 = ϕ′(0)−1 and ϕ(w) ̸= 0 for w ∈ (f ∗g)(E)\{0}.

If f, g ∈ A,
z(f ∗ g)′(z)
ϕ((f ∗ g)(z))

̸= 0, z ∈ E, satisfy[
z(f ∗ g)′(z)
ϕ((f ∗ g)(z))

]γ
·

·

{
a
z(f ∗ g)′(z)
ϕ((f ∗ g)(z))

+ b

[
z(f ∗ g)′(z)
ϕ((f ∗ g)(z))

]2
+ c

[
1 +

z(f ∗ g)′′(z)
(f ∗ g)′(z)

− z(ϕ((f ∗ g)(z)))′

ϕ((f ∗ g)(z))

]}β

≺ [q(z)]
γ

[
aq(z) + bq2(z) + c

zq′(z)

q(z)

]β
, (2.1)

then
z(f ∗ g)′(z)
ϕ((f ∗ g)(z))

≺ q(z), z ∈ E,

and q(z) is the best dominant.
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Proof. Define the function p by

p(z) =
z(f ∗ g)′(z)
ϕ((f ∗ g)(z))

, z ∈ E.

Then the function p is analytic in E and p(0) = 1.
Therefore, from equation (2.1), we get:

[p(z)]
γ

[
ap(z) + bp2(z) + c

zp′(z)

p(z)

]β
≺ [q(z)]

γ

[
aq(z) + bq2(z) + c

zq′(z)

q(z)

]β
or

a [p(z)]
γ
β+1

+ b [p(z)]
γ
β+2

+ c [p(z)]
γ
β−1

zp′(z)

≺ a [q(z)]
γ
β+1

+ b [q(z)]
γ
β+2

+ c [q(z)]
γ
β−1

zq′(z)

Let the functions θ and φ be defined as:

θ(w) = aw
γ
β+1 + bw

γ
β+2 and φ(w) = cw

γ
β−1

Clearly, the functions θ and φ are analytic in domain D = C\{0} and φ(w) ̸= 0 in D.
Therefore,

Q(z) = φ[q(z)]zq′(z) = c[q(z)]
γ
β−1zq′(z)

and
h(z) = θ[q(z)] +Q(z) = a[q(z)]

γ
β+1 + b[q(z)]

γ
β+2 + c[q(z)]

γ
β−1zq′(z)

On differentiating, we get

zQ′(z)

Q(z)
= 1 +

zq′′(z)

q′(z)
+

(
γ

β
− 1

)
zq′(z)

q(z)

and

zh′(z)

Q(z)
= 1 +

zq′′(z)

q′(z)
+

(
γ

β
− 1

)
zq′(z)

q(z)
+

a

c

(
γ

β
+ 1

)
q(z) +

b

c

(
γ

β
+ 2

)
q2(z).

In view of the given conditions (i) and (ii), we see that Q is starlike and

ℜ
(
zh′(z)

Q(z)

)
> 0.

Therefore, the proof, now follows from Lemma [1.3]. □

For g(z) =
z

1− z
in Theorem 2.1, we have

Theorem 2.2. Let β and γ be complex numbers such that β ̸= 0. Let q(z) ̸= 0, be a
univalent function in E which satisfy conditions (i) and (ii) of Theorem 2.1. Let ϕ be
analytic function in the domain containing f(E) such that ϕ(0) = 0 = ϕ′(0) − 1 and

ϕ(w) ̸= 0 for w ∈ f(E)\{0}. If f ∈ A,
zf ′(z)

ϕ(f(z))
̸= 0, z ∈ E, satisfy

{
zf ′(z)

ϕ(f(z))

}γ
{
a
zf ′(z)

ϕ(f(z))
+ b

(
zf ′(z)

ϕ(f(z))

)2

+ c

(
1 +

zf ′′(z)

f ′(z)
− z(ϕ(f(z)))

′

ϕ(f(z))

)}β

≺ (q(z))
γ

{
aq(z) + bq2(z) + c

zq′(z)

q(z)

}β

,
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where a, b and c are real numbers with c ̸= 0, then

zf ′(z)

ϕ(f(z))
≺ q(z), z ∈ E,

and q(z) is the best dominant.

3. Applications to parabolic ϕ−like functions

Remark 3.1. Selecting q(z) = 1 +
2

π2

(
log

(
1 +

√
z

1−
√
z

))2

, β = γ = 1 in Theorem 2.2,

then after having some calculations,

q′(z) =
4

π2
√
z(1− z)

log

(
1 +

√
z

1−
√
z

)

q′(z)

q(z)
=

4

π2
√
z(1− z)

[
log

(
1 +

√
z

1−
√
z

)]
1 +

2

π2

[
log

(
1 +

√
z

1−
√
z

)]2
q′′(z)

q′(z)
=

3z − 1

2z(1− z)
+

1
√
z(1− z) log

(
1+

√
z

1−
√
z

) .
Thus the conditions (i) and (ii) of Theorem 2.1 becomes

1 +
zq′′(z)

q′(z)
+

(
γ

β
− 1

)
zq′(z)

q(z)
= 1 +

zq′′(z)

q′(z)
=

1 + z

2(1− z)
+

√
z

(1− z) log
(

1+
√
z

1−
√
z

)
and

1 +
zq′′(z)

q′(z)
+

(
γ

β
− 1

)
zq′(z)

q(z)
+

a

c

(
γ

β
+ 1

)
q(z) +

b

c

(
γ

β
+ 2

)
q2(z)

= 1 +
zq′′(z)

q′(z)
+

2a

c
q(z) +

3b

c
q2(z)

=
1 + z

2(1− z)
+

√
z

(1− z) log
(

1+
√
z

1−
√
z

) +
2a

c

[
1 +

2

π2

(
log

(
1 +

√
z

1−
√
z

))2
]

+
3b

c

[
1 +

2

π2

(
log

(
1 +

√
z

1−
√
z

))2
]2

.

Therefore, for real numbers a, b, c with c ̸= 0 and
a

c
,
b

c
≥ 0, we notice that q(z)

satisfy conditions (i) and (ii) of Theorem 2.1. Thus, we derive the following result
from Theorem 2.2.
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Theorem 3.2. Let ϕ be analytic function in the domain containing f(E) such that

ϕ(0) = 0 = ϕ′(0)− 1 and ϕ(w) ̸= 0 for w ∈ f(E)\{0}. If f ∈ A,
zf ′(z)

ϕ(f(z))
̸= 0, z ∈ E,

satisfy

a

(
zf ′(z)

ϕ(f(z))

)2

+ b

(
zf ′(z)

ϕ(f(z))

)3

+cz

{
[ϕ(f(z))] [zf ′′(z) + f ′(z)]− zf ′(z) [ϕ(f(z))]

′

[ϕ(f(z))]
2

}

≺ a

[
1 +

2

π2

(
log

(
1 +

√
z

1−
√
z

))2
]2

+ b

[
1 +

2

π2

(
log

(
1 +

√
z

1−
√
z

))2
]3

+
4c
√
z

π2(1− z)
log

(
1 +

√
z

1−
√
z

)
,

where a, b, c are real numbers such that c ̸= 0 and
a

c
,
b

c
≥ 0, then

zf ′(z)

ϕ(f(z))
≺ 1 +

2

π2

(
log

(
1 +

√
z

1−
√
z

))2

, z ∈ E.

Hence f is parabolic ϕ-like.

Remark 3.3. Selecting q(z) = 1+
2

π2

(
log

(
1 +

√
z

1−
√
z

))2

, β = 1 and γ = 0 in Theorem

2.2, then after having some calculations, we have

q′(z) =
4

π2
√
z(1− z)

log

(
1 +

√
z

1−
√
z

)

q′(z)

q(z)
=

4

π2
√
z(1− z)

[
log

(
1 +

√
z

1−
√
z

)]
1 +

2

π2

[
log

(
1 +

√
z

1−
√
z

)]2
q′′(z)

q′(z)
=

3z − 1

2z(1− z)
+

1
√
z(1− z) log

(
1+

√
z

1−
√
z

) .
Thus the conditions (i) and (ii) of Theorem 2.1 becomes

1 +
zq′′(z)

q′(z)
+

(
γ

β
− 1

)
zq′(z)

q(z)
= 1 +

zq′′(z)

q′(z)
− zq′(z)

q(z)

=
1 + z

2(1− z)
+

√
z

(1− z) log

(
1 +

√
z

1−
√
z

) −

4
√
z

π2(1− z)

[
log

(
1 +

√
z

1−
√
z

)]
1 +

2

π2

[
log

(
1 +

√
z

1−
√
z

)]2
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and

1 +
zq′′(z)

q′(z)
+

(
γ

β
− 1

)
zq′(z)

q(z)
+

a

c

(
γ

β
+ 1

)
q(z) +

b

c

(
γ

β
+ 2

)
q2(z)

= 1 +
zq′′(z)

q′(z)
− zq′(z)

q(z)
+

a

c
q(z) +

2b

c
q2(z)

=
1 + z

2(1− z)
+

√
z

(1− z) log

(
1 +

√
z

1−
√
z

) −

4
√
z

π2(1− z)

[
log

(
1 +

√
z

1−
√
z

)]
1 +

2

π2

[
log

(
1 +

√
z

1−
√
z

)]2
+
a

c

[
1 +

2

π2

(
log

(
1 +

√
z

1−
√
z

))2
]
+

2b

c

[
1 +

2

π2

(
log

(
1 +

√
z

1−
√
z

))2
]2

.

Therefore, for real numbers a, b, c with c ̸= 0 and
a

c
,
b

c
≥ 0, we notice that q(z)

satisfy conditions (i) and (ii) of Theorem 2.1. Thus, we derive the following result
from Theorem 2.2.

Theorem 3.4. Let ϕ be analytic function in the domain containing f(E) such that

ϕ(0) = 0 = ϕ′(0)− 1 and ϕ(w) ̸= 0 for w ∈ f(E)\{0}. If f ∈ A,
zf ′(z)

ϕ(f(z))
̸= 0, z ∈ E,

satisfy

a
zf ′(z)

ϕ(f(z))
+ b

(
zf ′(z)

ϕ(f(z))

)2

+ c

(
1 +

zf ′′(z)

f ′(z)
− z(ϕ(f(z)))

′

ϕ(f(z))

)

≺ a

[
1 +

2

π2

(
log

(
1 +

√
z

1−
√
z

))2
]
+ b

[
1 +

2

π2

(
log

(
1 +

√
z

1−
√
z

))2
]2

+

4c
√
z

π2(1−z)

[
log
(

1+
√
z

1−
√
z

)]
1 + 2

π2

[
log
(

1+
√
z

1−
√
z

)]2 ,
where a, b, c are real numbers such that c ̸= 0 and

a

c
,
b

c
≥ 0, then

zf ′(z)

ϕ(f(z))
≺ 1 +

2

π2

(
log

(
1 +

√
z

1−
√
z

))2

, z ∈ E.

Hence f is parabolic ϕ-like.

4. Applications to ϕ−like functions

Remark 4.1. By taking q(z) = 1 + tz, 0 < t ≤ 1, β = γ = 1 in Theorem 2.2, then
after having some calculations we have

1 +
zq′′(z)

q′(z)
= 1
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and

1 +
zq′′(z)

q′(z)
+

2a

c
q(z) +

3b

c
q2(z) = 1 +

2a

c
(1 + tz) +

3b

c
(1 + tz)2.

Thus for real numbers a, b and c (̸= 0) such that 0 ≤ a

c
≤ 1,

0 ≤ b

c
≤ 1, we observe that q(z) satisfy conditions (i) and (ii) of Theorem 2.1.

Therefore, we immediately, arrive at the following result from Theorem 2.2.

Theorem 4.2. Let ϕ be analytic function in the domain containing f(E) such that

ϕ(0) = 0 = ϕ′(0)− 1 and ϕ(w) ̸= 0 for w ∈ f(E)\{0}. If f ∈ A,
zf ′(z)

ϕ(f(z))
̸= 0, z ∈ E,

satisfy

a

(
zf ′(z)

ϕ(f(z))

)2

+ b

(
zf ′(z)

ϕ(f(z))

)3

+cz

{
[ϕ(f(z))] [zf ′′(z) + f ′(z)]− zf ′(z) [ϕ(f(z))]

′

[ϕ(f(z))]
2

}
≺ a(1 + tz)2 + b(1 + tz)3 + ctz,

where a, b, c are real numbers such that c ̸= 0, 0 ≤ a

c
≤ 1 and 0 ≤ b

c
≤ 1, then

zf ′(z)

ϕ(f(z))
≺ 1 + tz, 0 < t ≤ 1, z ∈ E.

Therefore, f is ϕ-like in E.

Remark 4.3. When we select q(z) = ez, β = γ = 1 in Theorem 2.2, a little calculation
yields that

1 +
zq′′(z)

q′(z)
= 1 + z

and

1 +
zq′′(z)

q′(z)
+

2a

c
q(z) +

3b

c
q2(z) = 1 + z +

2a

c
ez +

3b

c
e2z.

For real numbers a, b, c such that c ̸= 0,
a

c
≥ 0.4 and

b

c
= 1, we see that q(z) satisfy

conditions (i) and (ii) of Theorem 2.1. Hence, we obtain the following result from
Theorem 2.2.

Theorem 4.4. Let ϕ be analytic function in the domain containing f(E) such that

ϕ(0) = 0 = ϕ′(0)− 1 and ϕ(w) ̸= 0 for w ∈ f(E)\{0}. If f ∈ A,
zf ′(z)

ϕ(f(z))
̸= 0, z ∈ E,

satisfy

a

(
zf ′(z)

ϕ(f(z))

)2

+ b

(
zf ′(z)

ϕ(f(z))

)3

+cz

{
[ϕ(f(z))] [zf ′′(z) + f ′(z)]− zf ′(z) [ϕ(f(z))]

′

[ϕ(f(z))]
2

}
≺ ae2z + be3z + czez,
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where a, b, c are real numbers such that c ̸= 0,
a

c
≥ 0.4 and

b

c
= 1, then

zf ′(z)

ϕ(f(z))
≺ ez, z ∈ E,

i.e. f is ϕ-like.

Remark 4.5. By selecting q(z) = 1 +
2

3
z2, β = γ = 1 in Theorem 2.2, we have

1 +
zq′′(z)

q′(z)
= 2

and

1 +
zq′′(z)

q′(z)
+

2a

c
q(z) +

3b

c
q2(z) = 2 +

2a

c

(
1 +

2

3
z2
)
+

3b

c

(
1 +

2

3
z2
)2

.

For real numbers a, b, c such that c ̸= 0,
a

c
≥ −0.6 and

b

c
≥ 0, we notice that q(z)

satisfy conditions (i) and (ii) of Theorem 2.1. Hence, we obtain the following result
from Theorem 2.2.

Theorem 4.6. Let ϕ be analytic function in the domain containing f(E) such that

ϕ(0) = 0 = ϕ′(0)− 1 and ϕ(w) ̸= 0 for w ∈ f(E)\{0}. If f ∈ A,
zf ′(z)

ϕ(f(z))
̸= 0, z ∈ E,

satisfy

a

(
zf ′(z)

ϕ(f(z))

)2

+ b

(
zf ′(z)

ϕ(f(z))

)3

+cz

{
[ϕ(f(z))] [zf ′′(z) + f ′(z)]− zf ′(z) [ϕ(f(z))]

′

[ϕ(f(z))]
2

}

≺ a

(
1 +

2

3
z2
)2

+ b

(
1 +

2

3
z2
)3

+
4

3
cz2,

where a, b, c are real numbers such that c ̸= 0,
a

c
≥ −0.6 and

b

c
≥ 0, then

zf ′(z)

ϕ(f(z))
≺ 1 +

2

3
z2, z ∈ E.

Thus f is ϕ-like.

Remark 4.7. By taking q(z) =

(
1 + z

1− z

)δ

; 0 < δ ≤ 1, β = γ = 1 in Theorem 2.2, we

get

1 +
zq′′(z)

q′(z)
=

1 + 2δz + z2

1− z2

and

1 +
zq′′(z)

q′(z)
+

2a

c
q(z) +

3b

c
q2(z) =

1 + 2δz + z2

1− z2
+

2a

c

(
1 + z

1− z

)δ

+
3b

c

(
1 + z

1− z

)2δ

.
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For real numbers a, b, c such that c ̸= 0, b = 0 and
a

c
≥ 0, we notice that q(z)

satisfy conditions (i) and (ii) of Theorem 2.1. Hence, we obtain the following result
from Theorem 2.2.

Theorem 4.8. Let ϕ be analytic function in the domain containing f(E) such that

ϕ(0) = 0 = ϕ′(0)− 1 and ϕ(w) ̸= 0 for w ∈ f(E)\{0}. If f ∈ A,
zf ′(z)

ϕ(f(z))
̸= 0, z ∈ E,

satisfy

a

(
zf ′(z)

ϕ(f(z))

)2

+ b

(
zf ′(z)

ϕ(f(z))

)3

+cz

{
[ϕ(f(z))] [zf ′′(z) + f ′(z)]− zf ′(z) [ϕ(f(z))]

′

[ϕ(f(z))]
2

}

≺ a

(
1 + z

1− z

)2δ

+ b

(
1 + z

1− z

)3δ

+ cz

(
2δ

1− z2

)(
1 + z

1− z

)δ

,

where a, b, c are real numbers such that c ̸= 0, b = 0 and
a

c
≥ 0, then

zf ′(z)

ϕ(f(z))
≺
(
1 + z

1− z

)δ

; 0 < δ ≤ 1, z ∈ E.

Remark 4.9. When we put q(z) =
1 + (1− 2η)z

1− z
; 0 ≤ η < 1, β = γ = 1 in Theorem

2.2, a little calculation yields that

1 +
zq′′(z)

q′(z)
=

1 + z

1− z

and

1 +
zq′′(z)

q′(z)
+

2a

c
q(z) +

3b

c
q2(z) =

1 + z

1− z
+

2a

c

[
1 + (1− 2η)z

1− z

]
+
3b

c

[
1 + (1− 2η)z

1− z

]2
.

For real numbers a, b, c such that c ̸= 0, b = 0 and
a

c
≥ 0, we see that q(z) satisfy

conditions (i) and (ii) of Theorem 2.1. Therefore, we obtain the following result from
Theorem 2.2.

Theorem 4.10. Let ϕ be analytic function in the domain containing f(E) such that

ϕ(0) = 0 = ϕ′(0)− 1 and ϕ(w) ̸= 0 for w ∈ f(E)\{0}. If f ∈ A,
zf ′(z)

ϕ(f(z))
̸= 0, z ∈ E,

satisfy

a

(
zf ′(z)

ϕ(f(z))

)2

+ b

(
zf ′(z)

ϕ(f(z))

)3

+cz

{
[ϕ(f(z))] [zf ′′(z) + f ′(z)]− zf ′(z) [ϕ(f(z))]

′

[ϕ(f(z))]
2

}
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≺ a

[
1 + (1− 2η)z

1− z

]2
+ b

[
1 + (1− 2η)z

1− z

]3
+ cz

[
2(1− η)

(1− z)2

]
,

where a, b, c are real numbers such that c ̸= 0, b = 0 and
a

c
≥ 0, then

zf ′(z)

ϕ(f(z))
≺ 1 + (1− 2η)z

1− z
, z ∈ E, 0 ≤ η < 1,

i.e. f is ϕ-like in E.

Remark 4.11. When we select q(z) =
α′(1− z)

α′ − z
; α′ > 1, β = γ = 1 in Theorem 2.2,

after a little calculation, we obtain

1 +
zq′′(z)

q′(z)
=

α′ + z

α′ − z

and

1 +
zq′′(z)

q′(z)
+

2a

c
q(z) +

3b

c
q2(z) =

α′ + z

α′ − z
+

2a

c

[
α′(1− z)

α′ − z

]
+
3b

c

[
α′(1− z)

α′ − z

]2
.

For real numbers a, b, c such that c ̸= 0, b = 0 and
a

c
≥ 0, we see that q(z) satisfy

conditions (i) and (ii) of Theorem 2.1. Thus, we get the following Theorem from
Theorem 2.2.

Theorem 4.12. Let ϕ be analytic function in the domain containing f(E) such that

ϕ(0) = 0 = ϕ′(0)− 1 and ϕ(w) ̸= 0 for w ∈ f(E)\{0}. If f ∈ A,
zf ′(z)

ϕ(f(z))
̸= 0, z ∈ E,

satisfy

a

(
zf ′(z)

ϕ(f(z))

)2

+ b

(
zf ′(z)

ϕ(f(z))

)3

+cz

{
[ϕ(f(z))] [zf ′′(z) + f ′(z)]− zf ′(z) [ϕ(f(z))]

′

[ϕ(f(z))]
2

}

≺ a

[
α′(1− z)

α′ − z

]2
+ b

[
α′(1− z)

α′ − z

]3
+ cz

[
α′(1− α′)

(α′ − z)2

]
,

where a, b, c are real numbers such that c ̸= 0, b = 0 and
a

c
≥ 0, then

zf ′(z)

ϕ(f(z))
≺ α′(1− z)

α′ − z
, z ∈ E, α′ > 1,

i.e. f is ϕ-like.

Remark 4.13. By taking q(z) = 1+ tz, 0 < t ≤ 0.8, β = 1 and γ = 0 in Theorem 2.2,
then after having some calculations we have

1 +
zq′′(z)

q′(z)
− zq′(z)

q(z)
=

1

1 + tz
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and

1 +
zq′′(z)

q′(z)
− zq′(z)

q(z)
+

a

c
q(z) +

2b

c
q2(z) =

1

1 + tz
+

a

c
(1 + tz) +

2b

c
(1 + tz)

2
.

Thus for real numbers a, b, c such that c ̸= 0 and
a

c
,
b

c
≥ 0, we observe that q(z)

satisfy conditions (i) and (ii) of Theorem 2.1. Therefore, we immediately, arrive at
the following result from Theorem 2.2.

Theorem 4.14. Let ϕ be analytic function in the domain containing f(E) such that

ϕ(0) = 0 = ϕ′(0)− 1 and ϕ(w) ̸= 0 for w ∈ f(E)\{0}. If f ∈ A,
zf ′(z)

ϕ(f(z))
̸= 0, z ∈ E,

satisfy

a
zf ′(z)

ϕ(f(z))
+ b

(
zf ′(z)

ϕ(f(z))

)2

+ c

(
1 +

zf ′′(z)

f ′(z)
− z(ϕ(f(z)))

′

ϕ(f(z))

)
≺ a (1 + tz) + b (1 + tz)

2
+

ctz

1 + tz
,

where a, b, c are real numbers such that c ̸= 0 and
a

c
,
b

c
≥ 0, then

zf ′(z)

ϕ(f(z))
≺ 1 + tz, 0 < t ≤ 0.8, z ∈ E.

Therefore, f is ϕ-like.

Remark 4.15. When we select q(z) = ez, β = 1 and γ = 0 in Theorem 2.2, a little
calculation yields that

1 +
zq′′(z)

q′(z)
− zq′(z)

q(z)
= 1

and

1 +
zq′′(z)

q′(z)
− zq′(z)

q(z)
+

a

c
q(z) +

2b

c
q2(z) = 1 +

a

c
ez +

2b

c
e2z.

For real numbers a, b, c such that c ̸= 0,
a

c
≥ 0 and 0 ≤ b

c
≤ 0.8, we see that q(z)

satisfy conditions (i) and (ii) of Theorem 2.1. Hence, we obtain the following result
from Theorem 2.2.

Theorem 4.16. Let ϕ be analytic function in the domain containing f(E) such that

ϕ(0) = 0 = ϕ′(0)− 1 and ϕ(w) ̸= 0 for w ∈ f(E)\{0}. If f ∈ A,
zf ′(z)

ϕ(f(z))
̸= 0, z ∈ E,

satisfy

a
zf ′(z)

ϕ(f(z))
+ b

(
zf ′(z)

ϕ(f(z))

)2

+ c

(
1 +

zf ′′(z)

f ′(z)
− z(ϕ(f(z)))

′

ϕ(f(z))

)
≺ aez + be2z + cz,

where a, b, c are real numbers such that c ̸= 0,
a

c
≥ 0 and 0 ≤ b

c
≤ 0.8, then

zf ′(z)

ϕ(f(z))
≺ ez, z ∈ E,
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i.e. f is ϕ-like.

Remark 4.17. By selecting q(z) = 1+
2

3
z2, β = 1 and γ = 0 in Theorem 2.2, we have

1 +
zq′′(z)

q′(z)
− zq′(z)

q(z)
=

6

3 + 2z2

and

1 +
zq′′(z)

q′(z)
− zq′(z)

q(z)
+

a

c
q(z) +

2b

c
q2(z) =

6

3 + 2z2
+

a

c

(
1 +

2

3
z2
)

+
2b

c

(
1 +

2

3
z2
)2

.

For real numbers a, b, c such that c ̸= 0,
a

c
≥ 0.6 and 0 ≤ b

c
≤ 0.7, we notice that

q(z) satisfy conditions (i) and (ii) of Theorem 2.1. Hence, we obtain the following
result from Theorem 2.2.

Theorem 4.18. Let ϕ be analytic function in the domain containing f(E) such that

ϕ(0) = 0 = ϕ′(0)− 1 and ϕ(w) ̸= 0 for w ∈ f(E)\{0}. If f ∈ A,
zf ′(z)

ϕ(f(z))
̸= 0, z ∈ E,

satisfy

a
zf ′(z)

ϕ(f(z))
+ b

(
zf ′(z)

ϕ(f(z))

)2

+ c

(
1 +

zf ′′(z)

f ′(z)
− z(ϕ(f(z)))

′

ϕ(f(z))

)

≺ a

(
1 +

2

3
z2
)
+ b

(
1 +

2

3
z2
)2

+
4cz2

3 + 2z2
,

where a, b, c are real numbers such that c ̸= 0,
a

c
≥ 0.6 and

0 ≤ b

c
≤ 0.7, then

zf ′(z)

ϕ(f(z))
≺ 1 +

2

3
z2, z ∈ E.

Thus f is ϕ-like.

Remark 4.19. By taking q(z) =

(
1 + z

1− z

)δ

; 0 < δ ≤ 0.5, β = 1 and γ = 0 in Theorem

2.2, we get

1 +
zq′′(z)

q′(z)
− zq′(z)

q(z)
=

1 + z2

1− z2

and

1 +
zq′′(z)

q′(z)
− zq′(z)

q(z)
+

a

c
q(z) +

2b

c
q2(z) =

1 + z2

1− z2
+

a

c

(
1 + z

1− z

)δ

+
2b

c

(
1 + z

1− z

)2δ

.

For real numbers a, b, c such that c ̸= 0 and
a

c
,
b

c
≥ 0, we notice that q(z) satisfy

conditions (i) and (ii) of Theorem 2.1. Hence, we obtain the following result from
Theorem 2.2.



Results on ϕ−like functions involving Hadamard product 469

Theorem 4.20. Let ϕ be analytic function in the domain containing f(E) such that

ϕ(0) = 0 = ϕ′(0)− 1 and ϕ(w) ̸= 0 for w ∈ f(E)\{0}. If f ∈ A,
zf ′(z)

ϕ(f(z))
̸= 0, z ∈ E,

satisfy

a
zf ′(z)

ϕ(f(z))
+ b

(
zf ′(z)

ϕ(f(z))

)2

+ c

(
1 +

zf ′′(z)

f ′(z)
− z(ϕ(f(z)))

′

ϕ(f(z))

)

≺ a

(
1 + z

1− z

)δ

+ b

(
1 + z

1− z

)2δ

+
2δcz

1− z2
,

where a, b, c are real numbers such that c ̸= 0 and
a

c
,
b

c
≥ 0, then

zf ′(z)

ϕ(f(z))
≺
(
1 + z

1− z

)δ

; 0 < δ ≤ 0.5, z ∈ E.

Remark 4.21. When we put q(z) =
1 + (1− 2η)z

1− z
; 0 ≤ η < 1, β = 1 and γ = 0 in

Theorem 2.2, a little calculation yields that

1 +
zq′′(z)

q′(z)
− zq′(z)

q(z)
=

1 + z

1− z
− 2z(1− η)

(1− z) [1 + (1− 2η)z]

and

1 +
zq′′(z)

q′(z)
− zq′(z)

q(z)
+

a

c
q(z) +

2b

c
q2(z) =

1 + z

1− z
− 2z(1− η)

(1− z) [1 + (1− 2η)z]

+
a

c

[
1 + (1− 2η)z

1− z

]
+

2b

c

[
1 + (1− 2η)z

1− z

]2
.

For real numbers a, b, c such that c ̸= 0, b = 0 and
a

c
≥ 0, we see that q(z) satisfy

conditions (i) and (ii) of Theorem 2.1. Therefore, we obtain the following result from
Theorem 2.2.

Theorem 4.22. Let ϕ be analytic function in the domain containing f(E) such that

ϕ(0) = 0 = ϕ′(0)− 1 and ϕ(w) ̸= 0 for w ∈ f(E)\{0}. If f ∈ A,
zf ′(z)

ϕ(f(z))
̸= 0, z ∈ E,

satisfy

a
zf ′(z)

ϕ(f(z))
+ b

(
zf ′(z)

ϕ(f(z))

)2

+ c

(
1 +

zf ′′(z)

f ′(z)
− z(ϕ(f(z)))

′

ϕ(f(z))

)

≺ a

[
1 + (1− 2η)z

1− z

]
+ b

[
1 + (1− 2η)z

1− z

]2
+ cz

[
2(1− η)

(1− z)(1 + (1− 2η)z)

]
,

where a, b, c are real numbers such that c ̸= 0, b = 0 and
a

c
≥ 0, then

zf ′(z)

ϕ(f(z))
≺ 1 + (1− 2η)z

1− z
, z ∈ E, 0 ≤ η < 1,

i.e. f is ϕ-like.



470 Hardeep Kaur, Richa Brar and Sukhwinder Singh Billing

Remark 4.23. When we select q(z) =
α′(1− z)

α′ − z
; α′ > 1, β = 1 and γ = 0 in Theorem

2.2, after a little calculation, we obtain

1 +
zq′′(z)

q′(z)
− zq′(z)

q(z)
=

α′ − z2

(1− z)(α′ − z)

and

1 +
zq′′(z)

q′(z)
− zq′(z)

q(z)
+

a

c
q(z) +

2b

c
q2(z) =

α′ − z2

(1− z)(α′ − z)
+

a

c

[
α′(1− z)

α′ − z

]
+
2b

c

[
α′(1− z)

α′ − z

]2
.

For real numbers a, b, c such that c ̸= 0,
a

c
≥ 0 and

b

c
≥ 0, we see that q(z) satisfy

conditions (i) and (ii) of Theorem 2.1. Thus, we get the following Theorem from
Theorem 2.2.

Theorem 4.24. Let ϕ be analytic function in the domain containing f(E) such that

ϕ(0) = 0 = ϕ′(0)− 1 and ϕ(w) ̸= 0 for w ∈ f(E)\{0}. If f ∈ A,
zf ′(z)

ϕ(f(z))
̸= 0, z ∈ E,

satisfy

a
zf ′(z)

ϕ(f(z))
+ b

(
zf ′(z)

ϕ(f(z))

)2

+ c

(
1 +

zf ′′(z)

f ′(z)
− z(ϕ(f(z)))

′

ϕ(f(z))

)

≺ a

[
α′(1− z)

α′ − z

]
+ b

[
α′(1− z)

α′ − z

]2
+

(1− α′)cz

(1− z)(α′ − z)
,

where a, b, c are real numbers such that c ̸= 0,
a

c
≥ 0 and

b

c
≥ 0, then

zf ′(z)

ϕ(f(z))
≺ α′(1− z)

α′ − z
, z ∈ E, α′ > 1,

i.e. f is ϕ-like.

5. Conclusion

Using the differential subordination technique involving convolution, we derived new
conditions under which normalized analytic functions exhibit ϕ-likeness and parabolic
ϕ-likeness. These results contribute to a deeper understanding of geometric function
theory and open pathways for further applications.
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a p-Laplacian impulsive differential equation with Dirichlet boundary conditions
on the half-line by using Browder theorem.

Mathematics Subject Classification (2010): 34B37, 47H05, 74H25, 34B40.

Keywords: Monotone operator, Browder theorem, p-Laplacian, impulsive BVPs,
uniqueness, monotone theory, half-line.

1. Introduction

In this paper, we consider the following second-order p-Laplacian impulsive difierential
equation with Dirichlet boundary conditions on the half-line −(ρ(x)|u′|p−2u′)′ + |u|p−2u = f(x, u), x ̸= xj , a.e. x ≥ 0,

△(ρ(xj)|u′(xj)|p−2u′(xj)) = g(xj)Ij(u(xj)), j ∈ N∗,
u(0) = u(∞) = 0,

(1.1)

where p > 1, ρ : [0,∞) → (0,∞) satisfies ρ−
1

p−1 ∈ L1[0,∞) and

M0 =

(∫ ∞

0

(∫ ∞

x

ρ−
1

p−1 (s)ds

)
dx

)
< ∞.

The functions f ∈ C([0,∞)× R,R), Ij : R → R and g : [0,∞) → (0,∞) are assumed
to be continuous with

∑∞
j=1 g(xj) < ∞, 0 = x0 < x1 < x2 < ... < xj < ... < xm → ∞,

as m → ∞, are the impulse points, and

△(ρ(xj)|u′(xj)|p−2u′(xj)) = ρ(x+
j )|u

′(x+
j )|

p−2u′(x+
j )− ρ(x−

j )|u
′(x−

j )|
p−2u′(x−

j ),
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such that u′(x±
j ) = limx→x±

j
u′(x) for j ∈ N∗.

Recently, there is increasing interest in the existence and multiplicity of solutions
for several types of differential equations with a p-Laplacian operator by applying
variational methods and critical point theory. Meanwhile, some people begin to study
p-Laplacian differential equations with impulsive effects, for example, see [1, 2, 4, 7,
8, 9] and the references therein.

Motivated by the works cited above, in this paper, we shall discuss the existence
of solutions for problem (1.1) on the half-line by adoptting Browder theorem. The
results obtained here improve some existing results in the literature.

2. Variational structure

Let define the following reflexive Banach space

X =
{
u ∈ W 1,p(0,∞) : u(0) = u(∞) = 0, ρ

1
pu′ ∈ Lp(0,∞)

}
,

equipped with the norm

∥u∥ =

 +∞∫
0

ρ(x)|u′(x)|pdx+

+∞∫
0

|u(x)|pdx


1
p

,

or the equivalent norm

∥u∥X = ∥ρ
1
pu′∥p + ∥u∥p.

Also consider the space

C0[0,+∞) =
{
u ∈ C([0,+∞),R) : lim

x→∞
u(x) = 0

}
,

endowed with the norm

∥u∥∞ = sup
x∈[0,+∞)

|u(x)|.

In what follows, we shall convert the problem (1.1) into an integral equation.
Multiply the two sides of the equality

−(ρ(x)|u′|p−2u′)′ + |u|p−2u = f(x, u),

by v ∈ X and integrate from 0 to ∞, to obtain,

−
+∞∫
0

(ρ(x)|u′(x)|p−2u′(x))′v(x)dx+

+∞∫
0

|u(x)|p−2u(x)v(x)dx =

+∞∫
0

f(x, u(x))v(x)dx.

Let consider the first term

−
+∞∫
0

(ρ(x)|u′(x)|p−2u′(x))′v(x)dx =

∞∑
j=0

x−
j+1∫

x+
j

−(ρ(x)|u′(x)|p−2u′(x))′v(x)
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=

+∞∫
0

ρ(x)|u′(x)|p−2u′(x)v′(x)dx+

∞∑
j=1

[
ρ(x+

j )|u
′(x+

j )|
p−2u′(x+

j )

− ρ(x−
j )|u

′(x−
j )|

p−2u′(x−
j )

]
v(xj)

=

+∞∫
0

ρ(x)|u′(x)|p−2u′(x)v′(x)dx+
∞∑
j=1

△(ρ(xj)|u′(xj)|p−2u′(xj))v(xj)

=

+∞∫
0

ρ(x)|u′(x)|p−2u′(x)v′(x)dx+

∞∑
j=1

g(xj)Ij(u(xj))v(xj),

and then, we have

+∞∫
0

ρ(x)|u′(x)|p−2u′(x)v′(x)dx+

+∞∫
0

|u(x)|p−2u(x)v(x)dx+

∞∑
j=1

g(xj)Ij(u(xj))v(xj)

=

+∞∫
0

f(x, u(x))v(x)dx.

This leads us to introduce the following concept for the solution for (1.1).

Definition 2.1. We say that a function u ∈ X is a weak solution of the impulsive
problem (1.1) if u satisfies

+∞∫
0

ρ(x)|u′(x)|p−2u′(x)v′(x)dx+

+∞∫
0

|u(x)|p−2u(x)v(x)dx+

∞∑
j=1

g(xj)Ij(u(xj))v(xj)

−
+∞∫
0

f(x, u(x))v(x)dx = 0.

Concerning the previous spaces, we have the following vital embeddings.

Lemma 2.2. Let u ∈ X. Then

∥u∥pp ≤ M0∥u∥p, (2.1)

where

M0 =

∫ ∞

0

(∫ ∞

x

ρ−
1

p−1 (s)ds

)
dx.

Proof. For u ∈ X, we find

|u(x)| =
∣∣∣ ∫ ∞

x

u′(s)ds
∣∣∣ = ∣∣∣ ∫ ∞

x

ρ
1
p (s)u′(s)ρ−

1
p (s)ds

∣∣∣.
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Then, by the Hölder inequality, we obtain

|u(x)|p ≤
(∫ ∞

x

ρ(s)|u′(s)|pds
)(∫ ∞

x

ρ−
1

p−1 (s)ds

)
≤

(∫ ∞

0

ρ(s)|u′(s)|pds
)(∫ ∞

x

ρ−
1

p−1 (s)ds

)
.

Hence, ∫ ∞

0

|u(x)|pdx ≤
(∫ ∞

0

(∫ ∞

x

ρ−
1

p−1 (s)ds

)
dx

)(∫ ∞

0

ρ(s)|u′(s)|pds
)
.

As a result we obtain (2.1). □

Lemma 2.3. Let u ∈ X. Then

∥u∥∞ ≤ M∥u∥,

where M = ∥ρ−
1

p−1 ∥
p−1
p

1 .

Proof. For u ∈ X, we get

|u(x)| =
∣∣∣ ∫ x

0

u′(s)ds
∣∣∣

≤
∫ x

0

ρ−
1
p (s)ρ

1
p (s)|u′(s)|ds

≤
(∫ ∞

0

ρ−
1

p−1 (s)ds

) p−1
p

(∫ ∞

0

ρ(s)|u′(s)|pds
) 1

p

≤ ∥ρ−
1

p−1 ∥
p−1
p

1 ∥u∥.

Hence, ∥u∥∞ ≤ M∥u∥. □

To prove that X embeds compactly in C0[0,+∞) we need the following Cor-
duneanu compactness criterion.

Lemma 2.4. [5] Let D ⊂ C0([0,+∞),R) be a bounded set. Then D is relatively compact
if the following conditions hold:
(a) D is equicontinuous on any compact sub-interval of R+, i.e.

∀ J ⊂ [0,+∞) compact,∀ ε > 0, ∃ δ > 0, ∀x1, x2 ∈ J :

|x1 − x2| < δ =⇒|u(x1)− u(x2)| ≤ ε,∀u ∈ D;

(b) D is equiconvergent at +∞ i.e.,

∀ ε > 0,∃T = T (ε) > 0 such that

∀x : x ≥ T (ε) =⇒ |u(x)− u(+∞)| ≤ ε, ∀u ∈ D.

Lemma 2.5. The embedding X ↪→ C0[0,∞) is compact.
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Proof. Let D ⊂ X be a bounded set. Then, D is bounded in C0[0,∞) by Lemma 2.3.
Let R > 0 be such that ∥u∥ ≤ R for all u ∈ D. We will apply Lemma 2.4.

(a) D is equicontinuous on every compact interval of [0,+∞). Let u ∈ D and
x1, x2 ∈ J ⊂ [0,+∞) where J is a compact sub-interval. Using Hölder inequality, we
have

|u(x1)− u(x2)| =
∣∣∣ ∫ x2

x1

u′(s)ds
∣∣∣

=
∣∣∣ ∫ x2

x1

ρ−
1
p (s)ρ

1
p (s)u′(s)ds

∣∣∣
≤

(∫ x2

x1

ρ−
1

p−1 (s)ds
) p−1

p
(∫ x2

x1

ρ(s)|u′(s)|pds
) 1

p

≤
(∫ x2

x1

ρ−
1

p−1 (s)ds
) p−1

p ∥u∥ ≤ R
(∫ x2

x1

ρ−
1

p−1 (s)ds
) p−1

p −→ 0,

as |x1 − x2| → 0.

(b) D is equiconvergent at +∞. For x ∈ [0,+∞) and u ∈ D, using the fact that
u(∞) = 0 and by Hölder inequality, we have

|u(x)− u(∞)| = |u(x)|

=
∣∣∣ ∫ ∞

x

u′(s)ds
∣∣∣

≤
(∫ ∞

x

ρ
1
p (s)|u′(s)|ds

)(∫ ∞

x

ρ−
1

p−1 (s)
) p−1

p

≤
(∫ ∞

x

ρ−
1

p−1 (s)ds
) p−1

p ∥u∥

≤ R
(∫ ∞

x

ρ−
1

p−1 (s)ds
) p−1

p −−−−→x → ∞0.

□

Finally, we present the Browder Theorem which will be needed in our argument.

Definition 2.6. [6] Let X be a reflexive real Banach space and X∗ its dual. The operator
L : X → X∗ is called to be demicontinuous if L maps strongly convergent sequences
in X to weakly convergent sequences in X∗.

Lemma 2.7 (Browder theorem). [3], [6] Let X be a reflexive real Banach space. More-
over, Let L : X → X∗ be an operator satisfying the following conditions:
(i) L is bounded and demicontinuous;

(ii) L is coercive, that is, lim∥u∥→∞
⟨L(u), u⟩

∥u∥
= +∞;

(iii) L is monotone on the space X; that is; for all u, v ∈ X; one has

⟨L(u)− L(v), u− v⟩ ≥ 0. (2.2)
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Then the equation L(u) = f∗ has at least one solution u ∈ X for every f∗ ∈ X∗.
If, moreover, the inequality (2.2) is strict for all u, v ∈ X, u ̸= v, then the equation
L(u) = f∗ has precisely one solution u ∈ X for all f∗ ∈ X∗.

3. Results

Suppose the following hypotheses hold:

(H1) The function f(x, u) is decreasing about u, uniformly in x ∈ [0,∞); and Ij(u)
(j ∈ N∗) are increased functions with u.

(H2) There exist αj , βj > 0 and γ ∈ [1, p) with
∑∞

j=1 αjg(xj) < ∞,
∑∞

j=1 βjg(xj) <
∞, such that

|Ij(u)| ≤ αj + βj |u|γ−1, for all u ∈ R and j ∈ N∗.

(H3) There exist positive functions c1, c2 ∈ L
p

p−1 [0,∞) and a constant µ ∈ (0, p− 1)
such that

|f(x, u)| ≤ c1(x) + c2(x)|u|µ, ∀(x, u) ∈ [0,∞)× R.
Let L be the operator defined from X into X∗ by

⟨L(u), v⟩ = ⟨L1(u), v⟩+ ⟨L2(u), v⟩ − ⟨L3(u), v⟩, ∀u, v ∈ X,

where

⟨L1(u), v⟩ =
+∞∫
0

ρ(x)|u′(x)|p−2u′(x)v′(x)dx+

+∞∫
0

|u(x)|p−2u(x)v(x)dx,

⟨L2(u), v⟩ =
∞∑
j=1

g(xj)Ij(u(xj))v(xj),

⟨L3(u), v⟩ =
+∞∫
0

f(x, u(x))v(x)dx.

We search for a weak solution of problem (1.1) which is a solution for the operator
equation L(u) = 0.

Theorem 3.1. Assume that (H1)-(H3) hold. Then (1.1) has a unique weak solution.

Proof. The proof consists of four steps:
Claim 1. L is bounded and demicontinuous.
It is sufficient to show that the operators Li(i = 1, 2, 3) are bounded and continuous.
Firstly, we prove that L is bounded.
Using Hölder inequality, together with the following result

∀a, b, c, d > 0 ∀β ∈ (0, 1) : (a+ b)β(c+ d)1−β ≥ aβc1−β + bβd1−β ,

we obtain for all u, v ∈ X, (see [7]),

|⟨L1(u), v⟩| =
∣∣∣ +∞∫

0

ρ(x)|u′(x)|p−2u′(x)v′(x)dx+

+∞∫
0

|u(x)|p−2u(x)v(x)dx
∣∣∣
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≤

 +∞∫
0

ρ(x)|u′(x)|pdx+

+∞∫
0

|u(x)|pdx


p−1
p

×

 +∞∫
0

ρ(x)|v′(x)|pdx+

+∞∫
0

|v(x)|pdx


1
p

≤ ∥u∥p−1∥v∥
< ∞,

as a result, L1 is bounded.
Now, we prove the boundedness of L2 and L3 respectively. Using Lemma 2.3 and
(H2), gives

|⟨L2(u), v⟩| =
∣∣∣ ∞∑
j=1

g(xj)Ij(u(xj))v(xj)
∣∣∣

≤
∞∑
j=1

g(xj)|Ij(u(xj))||v(xj)|

≤
∞∑
j=1

g(xj)(αj + βj |u(xj)|γ−1)|v(xj)|

≤
∞∑
j=1

(αjg(xj) + βjg(xj)∥u∥γ−1
∞ )∥v∥∞

≤ M
( ∞∑

j=1

αjg(xj) +Mγ−1∥u∥γ−1
∞∑
j=1

βjg(xj)
)
∥v∥

< ∞, ∀u, v ∈ X,

that implies L2 is bounded.
From the condition (H3), we get

|⟨L3(u), v⟩| =
∣∣∣ +∞∫

0

f(x, u(x))v(x)dx
∣∣∣ ≤ +∞∫

0

(c1(x) + c2(x)|u(x)|µ) |v(x)|dx,

by the Hölder inequality, Lemma 2.2 and Lemma 2.3, we arrive immediately at

|⟨L3(u), v⟩| ≤
(∫ +∞

0

|c1(x)|
p

p−1 dx
) p−1

p
(∫ +∞

0

|v(x)|pdx
) 1

p

+ ∥u∥µ∞(∫ +∞

0

|c2(x)|
p

p−1 dx
) p−1

p
(∫ +∞

0

|v(x)|pdx
) 1

p

≤ ∥c1∥ p
p−1

∥v∥p + ∥u∥µ∞∥c2∥ p
p−1

∥v∥p

≤ M
1
p

0

(
∥c1∥ p

p−1
+Mµ∥c2∥ p

p−1
∥u∥µ

)
∥v∥

< ∞,



480 Meriem Djibaoui

as a consequence, L3 is bounded. We deduce that L is a bounded operator.
Secondly, we prove that L is demicontinuous.
For un → u in X, we have

|⟨L1(un)− L1(u), un − u⟩| ≤
( +∞∫

0

ρ(x)
(
|u′

n(x)|p−2u′
n(x)− |u′(x)|p−2u′(x)

) p
p−1

dx

+

+∞∫
0

(
|un(x)|p−2un(x)− |u(x)|p−2u(x)

) p
p−1

dx
) p−1

p ∥un − u∥.

Since limn→∞ ∥un − u∥ = 0, the last integral tends to zero. We see that L1 is contin-
uous.
To show the continuity of L2, we prove that L2 is strongly continuous, that is, if
un ⇀ u in X then L2(un) → L2(u), as n → ∞.
Assume un ⇀ u in X, Lemma 2.5 guarantees that (un) converges uniformly to u on
[0,∞), as n → ∞. Since Ij are continuous, then

Ij(un(xj)) → Ij(u(xj)), n → ∞, j ∈ N∗,

moreover, from (H2) we get

∞∑
j=1

g(xj)Ij(un(xj)) < ∞,

by applying Lebesgue’s dominated convergence theorem, we obtain

∞∑
j=1

g(xj)Ij(un(xj)) →
∞∑
j=1

g(xj)Ij(u(xj)) as n → ∞,

concequently,

|⟨L2(un)− L2(u)⟩| → 0 as n → ∞,

that means L2 is strongly continuous and therefore it is continuous.
In what follows, we discuss the continuity of L3.
Let (un) be such that un ⇀ u in X. So (un) is bounded in X and by Lemma 2.5, we
have that (un) is bounded in C0[0,+∞). By Lemma 2.5, un → u in C0[0,+∞). We
have

∥L3(un)− L3(u)∥X∗ = sup
∥v∥≤1

|⟨L3(un)− L3(u)⟩|

= sup
∥v∥≤1

∣∣∣ +∞∫
0

[
f(x, un(x))− f(x, u(x))

]
dx

∣∣∣
≤ sup

∥v∥≤1

( +∞∫
0

|f(x, un(x))v(x)|dx
)
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+ sup
∥v∥≤1

( +∞∫
0

|f(x, u(x))v(x)|dx
)

≤ sup
∥v∥≤1

( +∞∫
0

(c1(x)|v(x)|+ c2(x)|un(x)|µ|v(x)|)dx
)

+ sup
∥v∥≤1

( +∞∫
0

(c1(x)|v(x)|+ c2(x)|u(x)|µ|v(x)|dx
)

≤ 2∥c1∥ p
p−1

+
(
∥un∥µ∞ + ∥u∥µ∞

)
≤ 2∥c1∥ p

p−1
+Mµ∥c2∥ p

p−1

(
∥un∥µ + ∥u∥µ

)
≤ 2∥c1∥ p

p−1
+ CMµ∥c2∥ p

p−1
.

for some constant C > 0. Since un → u, n → ∞ in C0[0,+∞), we obtain

+∞∫
0

(f(x, un(x))− f(x, u(x))) v(x)dx → 0 as n → ∞,

this implies that L3 is continuous. Thus the operator L is continuous and hence it is
demicontinuous. So assumption (i) of Lemma 2.7 holds.

Claim 2. L is monotone.
By (H1), for all u, v ∈ X, we have

⟨L(u)− L(v), u− v⟩ =
+∞∫
0

ρ(x)
[
|u′(x)|p−2u′(x)− |v′(x)|p−2v′(x)

]
(u′(x)− v′(x))dx

+

+∞∫
0

[
|v(x)|p−2v(x)− |v(x)|p−2v(x)

]
(u(x)− v(x))dx

−
+∞∫
0

[
f(x, u(x))− f(x, v(x))

]
(u(x)− v(x))dx

+

∞∑
j=1

[
g(xj)Ij(u(xj))− g(xj)Ij(v(xj))

]
(u(xj)− v(xj))

≥
+∞∫
0

ρ(x)
[
|u′(x)|p−2u′(x)− |v′(x)|p−2v′(x)

]
(u′(x)− v′(x))dx

+

+∞∫
0

[
|v(x)|p−2v(x)− |v(x)|p−2v(x)

]
(u(x)− v(x))dx
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≥
(
∥u∥p−1 − ∥v∥p−1

)(
∥u∥ − ∥v∥

)
≥ 0,

so, L is monotone.
Claim 3. L is coercive.
For all u, v ∈ X, we have

⟨L(u), u⟩ = ∥u∥p +
∞∑
j=1

g(xj)Ij(u(xj))u(xj)−
+∞∫
0

f(x, u(x))u(x)dx.

From Lemma 2.2 and Lemma 2.3, combining assumption (H2) and (H3), we find

⟨L(u), u⟩ ≥ ∥u∥p −
∞∑
j=1

g(xj)Ij(u(xj))u(xj)−
+∞∫
0

f(x, u(x))u(x)dx

≥ ∥u∥p −
∞∑
j=1

g(xj)
(
αj + βj |u(xj)|γ−1

)
u(xj)

−
+∞∫
0

(
c1(x) + c2(x)|u(x)|µ

)
|u(x)|dx

hence,

⟨L(u), u⟩ ≥ ∥u∥p −
( ∞∑

j=1

αjg(xj) +

∞∑
j=1

βjg(xj)∥u∥γ−1
∞

)
∥u∥∞ −

+∞∫
0

c1(x)|u(x)|dx

−
+∞∫
0

c2(x)|u(x)|µ|u(x)|dx

≥ ∥u∥p −
( ∞∑

j=1

αjg(xj) +

∞∑
j=1

βjg(xj)∥u∥γ−1
∞

)
∥u∥∞ − ∥c1∥ p

p−1
∥u∥p

− ∥u∥µ∞∥c2∥ p
p−1

∥u∥p

≥ ∥u∥p −
(
M

∞∑
j=1

αjg(xj) +M
1
p

0 ∥c1∥ p
p−1

)
∥u∥ −

(
Mγ

∞∑
j=1

βjg(xj)
)
∥u∥γ

−M
1
p

0 Mµ∥c2∥ p
p−1

∥u∥µ+1,

so lim∥u∥→∞
⟨L(u),u⟩

∥u∥ = +∞.

Lemma 2.7 guarantees that problem (1.1) has a weak solution.
Claim 4. Uniqueness.
For all u, v ∈ X, u ̸= v, we have

⟨L(u)− L(v), u− v⟩ ≥
(
∥u∥p−1 − ∥v∥p−1

)(
∥u∥ − ∥v∥

)
> 0,
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so L is strictly monotone. □

Example 3.2. Let p = 4 and γ = 5
2 . Consider the problem

−(e3x|u′|u′)′ + |u|u = e−x − 2e−3xu2, a.e. x ̸= xj , x ≥ 0,

△(e3ju′(j)) = e−j
(

1
j + 1

j2 |u(j)|
3
2

)
, j ∈ N∗,

u(0) = u(∞) = 0,

where c1(x) = e−x, c2(x) = 2e−3x and g(x) = e−x.
It’s clear that (H1)− (H3) hold true. Hence, we may apply Lemma 2.7 and conclude
that (1.1) has precisely a weak solution.

Next, we consider the limit case µ = p− 1.

Theorem 3.3. Assume that (H1) and (H2) are hold both with

(H4) There exist positive functions c1, c2 ∈ L
p

p−1 [0,∞) such that

|f(x, u)| ≤ c1(x) + c2(x)|u|p−1, ∀(x, u) ∈ [0,∞)× R.

with

M
1
p

0 Mp−1∥c2∥ p
p−1

< 1.

Then (1.1) has a unique weak solution.

Proof. Arguing as in the proof of Theorem 3.1, we prove that L is bounded, demi-
continuous and monotone.
We check that L is a coercive. Indeed, under (H2), (H4), in view of Lemma 2.2 and
Lemma 2.3, it is easy to verify that

⟨L(u), u⟩ ≥ ∥u∥p −
( ∞∑

j=1

αjg(xj) +

∞∑
j=1

βjg(xj)∥u∥γ−1
∞

)
∥u∥∞ −

+∞∫
0

c1(x)|u(x)|dx

−
+∞∫
0

c2(x)|u(x)|p−1|u(x)|dx

≥ ∥u∥p −
( ∞∑

j=1

αjg(xj) +

∞∑
j=1

βjg(xj)∥u∥γ−1
∞

)
∥u∥∞

− ∥c1∥ p
p−1

∥u∥p − ∥u∥p−1
∞ ∥c2∥ p

p−1
∥u∥p

≥ ∥u∥p −M
( ∞∑

j=1

αjg(xj) +Mγ−1∥u∥γ−1
∞∑
j=1

βjg(xj)
)
∥u∥ −M

1
p

0 ∥c1∥ p
p−1

∥u∥

−M
1
p

0 Mp−1∥c2∥ p
p−1

∥u∥p

≥
(
1−M

1
p

0 Mp−1∥c2∥ p
p−1

)
∥u∥p −

(
M

∞∑
j=1

αjg(xj) +M
1
p

0 ∥c1∥ p
p−1

)
∥u∥
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−
(
Mγ

∞∑
j=1

βjg(xj)
)
∥u∥γ ,

we conclude that lim∥u∥→∞
⟨L(u),u⟩

∥u∥ = +∞.

Theorem 3.3 guarantees that problem (1.1) has a unique weak solution. □

Example 3.4. Let p = 2 and γ = 1
2 . Consider the problem

−(ex|u′|u′)′ + |u|u = e−
1
2x − e−x|u|, a.e. x ̸= xj , x ≥ 0,

△(eju′(j)) = e−j
(

1
j + 1

j2 |u(j)|
1
2

)
, j ∈ N∗,

u(0) = u(∞) = 0,

where c1(x) = e−
1
2x, c2(x) = e−x, ∥c2∥2 = 1√

2
, g(x) = e−x and M = M0 = 1.

It’s clear that (H1), (H2) and (H4) hold true. Hence, from Lemma 2.7 we find that
problem (1.1) has precisely a weak solution.
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Segel system in critical Besov-Morrey spaces with
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Abstract. This article is devoted to studying the generalized Keller-Segel system
(GKS) in homogeneous variable exponent Besov-Morrey spaces. By making use
of the Littlewood-Paley theory and the Chemin mono-norm methods, we obtain,
when 1

2
< β ≤ 1, a global well-posedness result for GKS system with small initial

data in the critical variable exponent Besov-Morrey spaces N
−2β+ n

q(·)
r(·),q(·),h (Rn) with

1 ≤ r(·) ≤ q(·) < ∞, 1 ≤ h ≤ ∞. In the limit case β = 1
2
, we show the global

well-posedness for small initial data in N
−1+ n

q(·)
r(·),q(·),1(R

n) with 1 ≤ r(·) ≤ q(·) < ∞.
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1. Introduction

We are concerned with the generalized Keller-Segel system given by the following
fractional diffusion:

ut + (−∆)βu = −∇ · (u∇ψ) in Rn × (0,∞),

−∆ψ = u in Rn × (0,∞),

u(x, 0) = u0(x) in Rn,

(1.1)
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where n ≥ 2, u = u(x, t) denotes the unknown density of cells, ψ = ψ(x, t) represents
the unknown concentration of the chemo-attractant, u0 is the initial data, ∇ is the
gradient operator, (−∆)β is the Laplacian operator, which is the Fourier multiplier
with symbol |ξ|2β , and 1

2 ≤ β ≤ 1, that is, the abnormal (normal) diffusion is modeled
by a fractional power of the Laplacian.

Note that the function ψ, which is determined by the Poisson equation, is given
by the second equation of (1.1) as the volume potential of v:

ψ(x, t) = (−∆)−1u(x, t).

We can therefore eliminate ψ from the system (1.1) and get the following equivalent
problem: {

ut + (−∆)βu = −∇ · (u∇(−∆)−1u) in Rn × (0,∞),

u(x, 0) = u0(x) in Rn.
(1.2)

For β = 1, (1.1) corresponds to the classical Keller-Segel equation which is a
simplified system of

ut −∆u = −∇ · (u∇ψ) in Rn × (0,∞),

ψt −∆ψ = u− ψ in Rn × (0,∞),

u(x, 0) = u0(x), ψ(x, 0) = ψ0(x) in Rn.

(1.3)

The system (1.3) was introduced by Keller and Segel [17] in 1970. It describes a
chemotaxis mathematical model, and it is also linked to astrophysical models of grav-
itational auto-interaction of huge particles in a cloud or nebula, the reader may refer
to [6]. The well-posedness of classical Keller-Segel models has been studied by several
researchers in various spaces. Recently, making use of the smoothing effect of the
heat semigroup, Iwabuchi [16] proved the global well-posedness of the system (1.3)

in Ḃ
−2+n

p
p,∞ (Rn) where n ≥ 1 and max {1, n/2} < p < ∞, under the condition of

smallness of the initial data. Later, by the same method, Nogayama and Sawano [18]
extended this well-posedness result, where they established global well-posedness in

the Besov-Morrey spaces Ṅ−2m+n
p

p,h,∞ (Rn) with max
{
1, n2

}
< p <∞ and 1 ≤ h ≤ p.

For the general case 1
2 < β < 1, (1.1) was initially considered by Escudero [11], in

which it was utilized to characterize the spatio-temporal distribution of a population
density of random walkers subjected to Lévy flights. Furthermore, in that paper, it
has been established that (1.1) in this case, has global in time solutions. There are
many studies on (1.1) by several researchers in various spaces. Recently, Zhao [21]

obtained well-posedness results of (1.1) in the classical Besov spaces Ḃ
−2β+n

p
p,r (Rn)

with 1
2 ≤ β ≤ 1 and 1 ≤ p, r ≤ ∞. We mention that certain aspects of these results

were also extended to the fractional power bipolar type drift-diffusion system. Further
information on this topic can be found in [14, 12] and the relevant references cited
therein.

Inspired by this work, we aim to investigate, by making use of the Chemin mono-
norm methods, global well-posedness of the generalized Keller-Segel system (1.1) with

initial data in the critical variable exponent Besov-Morrey spaces N
−2β+ n

q(·)
r(·),q(·),h (R

n) with
1
2 ≤ β ≤ 1, 1 ≤ r(·) ≤ q(·) <∞ and 1 ≤ h ≤ ∞.
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In general, variable exponent function spaces have garnered significant attention
from researchers in recent times. This interest extends beyond theoretical aspects,
encompassing their pivotal role in various applications, such as fluid dynamics [20]
and resolving specific equations [10, 4]. Notably, variable exponent Besov-Morrey
space, based on variable exponent Morrey spaces, is a new large framework compared
to Besov space, i.e. variable exponent Besov-Morrey spaces are strictly broader than
classical Besov spaces (also refer to Remark 2). However, there are many challenges
in addressing the well-posedness of equations in these spaces. Replacing the Lp-norm

by the Mq(·)
r(·)-norm is not sufficient to ensure a direct transition from Besov spaces

to variable exponent Besov-Morrey spaces. One of the main difficulties comes from
the collapse of certain essential embedding features and the inapplicability of certain
classical theories, like the multiplier theorem and Young’s inequality, within Besov-
Morrey spaces with variable exponents, unlike classical Besov spaces. To overcome
these challenges, the present paper primarily relies on the properties described in
Section 2 to look at the global well-posedness result. For an in-depth exploration of
these variable exponent function spaces, we direct the reader to [1, 8, 9, 10, 19, 13,
20, 15, 2, 3] and the associated references therein.

To address the system (1.1), passing via (1.2), we think about the following
equivalent integral equations:

u(t) = e−t(−∆)βu0 −
∫ t

0

e−(t−t′)(−∆)β∇ ·
(
u∇(−∆)−1u

)
dt′, (1.4)

where e−t(−∆)β := F−1(e−t|ξ|2βF) is the fractional heat semigroup operator.

Organization of the paper: In Section 2, we present some basic background
information on the Littlewood-Paley theory and some different laws on products in
variable exponent Besov-Morrey spaces, and then, in Section 3, we state and prove
our main theorem.

2. Preliminaries

We introduce some background knowledge on Littlewood-Paley theory and variable
exponent Besov-Morrey spaces, and present some propositions relevant to our objec-
tives. Firstly, we start by introducing some of the notations used in the present paper,
E ≲ H designates having a constant C > 0, which can be different at different places,
such that E ≤ CH and E ∼ H designates having two constants C1, C2 > 0 such that
C1H ≤ E ≤ C2H. We define, for two Banach spaces X and Y , and u ∈ X ∩ Y , the
norm ∥·∥X∩Y as

∥u∥X∩Y := ∥u∥X + ∥u∥Y .

Definition 2.1. [3] For the measurable function r(·), let

P0(Rn) :=

{
r(·) : Rn → (0,∞]; 0 < r− = essinf

x∈Rn
r(x), esssup

x∈Rn

r(x) = r+ <∞
}
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The Lebesgue space with variable exponent is defined by

Lr(·) (Rn) =

{
u : Rn → R is measurable,

∫
Rn

|u(x)|r(x)dx <∞
}
,

with norm

∥u∥Lr(·) := inf
{
λ > 0 : ϱr(·)(u/λ) ≤ 1

}
= inf

{
λ > 0 :

∫
Rn

(
|u(x)|
λ

)r(x)

dx ≤ 1

}
.

We use the following notation to separate variable exponents from constant
exponents: r(·) for variable exponents, r for constant exponents. Also (Lr(·) (Rn) ,
∥u∥Lr(·)) is a Banach space.

Lr(·) doesn’t have the same features as Lr. Therefore, to assure the boundedness
of the maximal Hardy-Littlewood operator M on Lr(·)(Rn), the following standard
conditions are assumed:

1. (Locally log-Hölder’s continuous)[3] There exists a constant Clog(r) such that

|r(x)− r(y)| ≤ Clog(r)

log (e+ |x− y|−1)
, for all x, y ∈ Rn, x ̸= y.

2. (Globally log-Hölder’s continuous)[3] There exist two constants Clog(r) and r∞
such that

|r(x)− r∞| ≤ Clog(r)

log(e+ |x|)
, for all x ∈ Rn.

Clog(Rn) denotes the set of all functions r(·) : Rn → R that satisfy 1 and 2.

Definition 2.2. [2] Let r(·), q(·) ∈ P0(Rn) with 0 < r− ≤ r(·) ≤ q(·) ≤ ∞, the variable

exponent Morrey space Mq(·)
r(·) := Mq(·)

r(·)(R
n) is defined as the set of all measurable

functions on Rn such that

∥u∥Mq(·)
r(·)

:= sup
x0∈Rn,R>0

∥∥∥R n
q(x)

− n
r(x)u

∥∥∥
Lr(·)(B(x0,R))

<∞.

Here we give an important lemma.

Lemma 2.3. [2] Let r(·) ∈ P0(Rn). Then for any measurable function u

sup
x0∈Rn,R>0

ϱr(·)
(
uχB(x0,R)

)
= ϱr(·) (u) ,

and ∥u∥Mr(·)
r(·)

= ∥u∥Lr(·) .
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We now recall the Littlewood-Paley decomposition (refer to [5] for further infor-
mation). Consider φ ∈ S(Rn) a smooth radial function such that

0 ≤ φ ≤ 1,

supp φ ⊂
{
ξ ∈ Rn :

3

4
≤ |ξ| ≤ 8

3

}
,∑

j∈Z

φ
(
2−jξ

)
= 1, for all ξ ̸= 0,

and we denote φj(ξ) = φ(2−jξ). Then for every u ∈ S ′(Rn), we define the frequency
localization operators for all j ∈ Z, as follows

∆ju = F−1φj ∗ u and Sju =
∑

k≤j−1

∆ku. (2.1)

One observes here that ∆̇j has frequency {|ξ| ∼ 2j} and that Ṡj has frequency {|ξ| ≲
2j}, and one also notes that the quasi-orthogonality property holds for the Littlewood-
Paley decomposition, that is, for every u, v ∈ S ′(Rn)/P(Rn),

∆̇i∆̇ju = 0 if |i− j| ≥ 2, ∆̇i

(
Ṡj−1u∆̇jv

)
= 0 if |i− j| ≥ 5, (2.2)

with P(Rn) denoting the collection of all polynomials over Rn.

All through this document, we will use the following Bony paraproduct decom-
position:

uv = Tuv + Tvu+R(u, v), (2.3)

with

Tuv =
∑
j

Sj−1u∆jv, R(u, v) =
∑
j

∑
|j−l|≤1

∆ju∆lv.

Definition 2.4. [2] Let r(·), q(·), h(·) ∈ P0(Rn) with r(·) ≤ q(·), the mixed Morrey-

sequence space ℓh(·)(Mq(·)
r(·)) is the set of all sequences {aj}j∈Z of measurable functions

on Rn such that

∥ {aj}j∈Z ∥ℓh(·)(Mq(·)
r(·))

:= inf

{
λ > 0 : ϱ

ℓh(·)(Mq(·)
r(·))

({aj/λ}j∈Z) ≤ 1

}
,

where

ϱ
ℓh(·)(Mq(·)

r(·))
({aj}j∈Z) :=

∑
j∈Z

inf

ν > 0 :

∫
Rn

(
|R

n
q(x)

− n
r(x) ajχB(x0,R)|

ν
1

h(x)

)r(x)

dx ≤ 1


Notice that if h+ <∞ and r(·) ≤ h(·), then

ϱ
ℓh(·)(Mq(·)

r(·))
({aj}j∈Z) :=

∑
j∈Z

sup
x0∈Rn,R>0

∥∥∥∥(R n
q(x)

− n
r(x)u

)h(x)∥∥∥∥
L

r(·)
h(·) (B(x0,R))

.
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Definition 2.5. [2] Let s(·) ∈ Clog(Rn) and r(·), q(·), h(·) ∈ P0(Rn) ∩ Clog(Rn) with
0 < r− ≤ r(·) ≤ q(·) ≤ ∞. The variable exponent homogeneous Besov-Morrey space

N s(·)
r(·),q(·),h(·) is defined by

N s(·)
r(·),q(·),h(·) :=

{
u ∈ D′ (Rn) : ∥u∥N s(·)

r(·),q(·),h(·)
<∞

}
,

with norm

∥u∥N s(·)
r(·),q(·),h(·)

:=

∥∥∥∥{2js(·)∆ju
}
j∈Z

∥∥∥∥
ℓh(·)(Mq(·)

r(·))

,

and D′ (Rn) represents the dual space of

D (Rn) = {u ∈ S (Rn) : (Dαu) (0) = 0, for all multi-index α} .

For T > 0 and 1 ≤ h, ρ ≤ ∞. The mixed space-time space Lρ
(
0, T ;N s(·)

r(·),q(·),h

)
is the set of all tempered distribution u satisfying

∥u∥Lρ
(
0,T ;N s(·)

r(·),q(·),h

) :=

∑
j∈Z

∥∥∥2js(·)∆ju
∥∥∥h
Lρ

T

(
Mq(·)

r(·)

)
 1

h

<∞,

where

∥u∥
Lρ

T

(
Mq(·)

r(·)

) :=

(∫ T

0

∥u(·, t)∥ρ
Mq(·)

r(·)
nt

) 1
ρ

.

With the standard modification if h = ∞ or ρ = ∞.

Proposition 2.6. The following inclusions hold for variable exponent Morrey spaces.

1. (Hölder’s inequality)[1] Let r(·), r1(·), r2(·), q(·), q1(·), q2(·) ∈ P0(Rn) satisfying
r(·) ≤ q(·), ri(·) ≤ qi(·)(i = 1, 2), 1

r(·) =
1

r1(·) +
1

r2(·) and 1
q(·) =

1
q1(·) +

1
q2(·) . Then

for all u ∈ Mq1(·)
r1(·) and v ∈ Mq2(·)

r2(·), there is a constant C depending only on r−
and r+ such that

∥uv∥Mq(·)
r(·)

≤ C ∥u∥Mq1(·)
r1(·)

∥v∥Mq2(·)
r2(·)

. (2.4)

And for all u ∈ L∞(Rn) and v ∈ Mq(·)
r(·), there is a constant C such that

∥uv∥Mq(·)
r(·)

≤ C ∥u∥L∞ ∥v∥Mq(·)
r(·)

. (2.5)

2. (Sobolev-type embedding) [1] Let r1(·), r2(·), q1(·), q2(·) ∈ P0(Rn), 0 < h < ∞
and s1(·), s2(·) ∈ L∞ ∩ Clog(Rn) with s1(·) > s2(·). If 1

h and

s1(·)−
n

r1(·)
= s2(·)−

n

r2(·)
are locally log-Hölder continuous, then

N s1(·)
r1(·),q1(·),h ↪→ N s2(·)

r2(·),q2(·),h. (2.6)
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3. (Mollification inequality) [2] Let r(·), q(·) ∈ P0(Rn) ∩Clog(Rn) and ϕ ∈ L1(Rn),

suppose Φ(y) = supx/∈B(0,|y|) |ϕ(x)| is integrable. Then for all u ∈ Mq(·)
r(·), there

is a constant C depending only on d such that

∥u ∗ ϕε∥Mq(·)
r(·)

≤ C ∥u∥Mq(·)
r(·)

∥Φ∥L1 , (2.7)

where ϕε =
1
εd
ϕ(ε).

Lemma 2.7. [2] Let C be a ring, and B a ball in Rn, and let k ∈ N, j ∈ Z, λ > 0, and
r(·), q(·) ∈ P0(Rn) ∩ Clog(Rn) with r(·) ≤ q(·) <∞.

1. Assume that u ∈ Mq(·)
r(·) satisfying suppF(u) ⊂ λB, then

sup
|α|=k

∥∂αu∥Mq(·)
r(·)

≤ Ck+1λk ∥u∥Mq(·)
r(·)

.

2. Assume that u ∈ Mq(·)
r(·) satisfying suppF(u) ⊂ λjB, then

∥u∥L∞ ≤ Cλj
n

q(·) ∥u∥Mq(·)
r(·)

.

where C is a constant independent of λ.

Lemma 2.8. Let m ∈ R, s(·) ∈ Clog(Rn), r(·), q(·) ∈ P0(Rn) ∩ Clog(Rn) with r(·) ≤
q(·), and let 0 < h <∞ . Then

∂mξ : N s(·)+m
r(·),q(·),h → N s(·)

r(·),q(·),h

is bounded.

Proof. For the proof, we can use the same idea as in [14, Lemma 2] □

Lemma 2.9. ([5, Lemma 5.5]) Let X be a Banach space with norm ∥·∥X and B be a
bounded bilinear operator from X ×X to X satisfying

∥B(x1, x2)∥X ≤ C0 ∥x1∥X ∥x2∥X ,

for all x1, x2 ∈ X and a constant C0 > 0. Then for any a ∈ X such that ∥a∥X < 1
4C0

,

the equation x = a + B(x, x) has a solution x in X. Moreover, the solution is such
that ∥x∥X ≤ 2 ∥a∥X , and it is the only one such that ∥x∥X < 1

2C0
.

3. Well-posedness

In this section, we state our main theorem, and then prove it for the case 1
2 < β ≤ 1

and the case β = 1
2 in Subsection 3.1 and in Subsection 3.2, respectively.

Theorem 3.1. Let n ≥ 2, 1 ≤ r(·) ≤ q(·) <∞ and 1 ≤ h ≤ ∞.

1. Let 1
2 < β ≤ 1. Then there exists a constant ε > 0 such that for any u0 ∈

N
−2β+ n

q(·)
r(·),q(·),h satisfying ∥u0∥

Ṅ
−2β+ n

q(·)
r(·),q(·),h

≤ ε, the system (1.1) admits a unique time-

global solution u ∈ Xε, where

Xε :=
{
u ∈ X 0 ∩ X 1 : ∥u∥X 0 <∞, ∥u∥X 1 ≲ ε

}
,
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with

X 0 := L∞
(
R+;N

−2β+ n
q(·)

r(·),q(·),h

)
,

X 1 := Lγ1

(
R+;N s1(·)

r(·),q(·),h

)
∩ Lγ2

(
R+;N s2(·)

r(·),q(·),h

)
,

and

γ1 =
2β

2β − 1 + ε
, γ2 =

2β

2β − 1− ε
, 0 < ε < 2β − 1,

s1(·) = −1 +
n

q(·)
+ ε, s2(·) = −1 +

n

q(·)
− ε.

2. Let β = 1
2 . Assume that u0 ∈ N

−1+ n
q(·)

r(·),q(·),1 is small enough. Then the system (1.1)

admits a unique global solution v satisfying

u ∈ L∞
(
R+;N

−1+ n
q(·)

r(·),q(·),1

)
.

The above result requires some further comments.

Remark 3.2.

1. The results of this work remain valid if we take variable exponent Besov space

Bs(·)
r(·),h(·) instead of variable exponent Besov-Morrey space N s(·)

r(·),q(·),h(·). Indeed,

if we have r(·) = q(·), then N s(·)
r(·),r(·),h(·) = Bs(·)

r(·),h(·).

2. Theorem 3.1 extends the corresponding well-posedness results of [21], where the
author considered the system (1.1) in Besov spaces, which is a particular case

of our framework which is variable exponent Besov-Morrey spaces N s(·)
r(·),q(·),h(·).

Moreover, we have N s(·)
r(·),q(·),h(·) ̸⊂ Ḃs′

p′,r′ for any s′ ∈ R, 1 ≤ p′ < ∞ and

1 ≤ r′ <∞.

In order to prove Theorem 3.1, we consider the following linear equation:{
ut + (−∆)βu = f in Rn × (0,∞),

u(x, 0) = u0(x) in Rn,
(3.1)

for which we get the following linear estimate:

Proposition 3.3. (Linear estimate) Let 0 < T ≤ ∞, 1
2 ≤ β ≤ 1, s(·) ∈ Clog(Rn),

1 ≤ h, γ ≤ ∞, and let r(·), q(·) ∈ P0(Rn) ∩ Clog(Rn) with 1 ≤ r(·) ≤ q(·) < ∞.

Assume that u0 ∈ N s(·)
r(·),q(·),h and f ∈ Lγ(0, T ;N s(·)+ 2β

γ −2β

r(·),q(·),h ). Then (3.1) has a unique

solution v satisfying, for any ρ ∈ [γ,∞],

∥u∥
Lρ

(
0,T ;N

s(·)+ 2β
ρ

r(·),q(·),h

) ≤ C

∥u0∥N s(·)
r(·),q(·),h

+ ∥f∥
Lγ

(
0,T ;N

s(·)+ 2β
γ

−2β

r(·),q(·),h

)
 , (3.2)

where C > 0 is a constant depending only on β and d.

Before proving this proposition, we need to get estimates for the localisations of

the fractional heat semigroup {e−t(−∆)β}t≥0 in our framework.



Global well-posedness for the generalized Keller-Segel system 493

Proposition 3.4. Let t > 0, j ∈ Z and 1 ≤ r(·) ≤ q(·) < ∞. Then for all u ∈ S ′(Rn)

satisfying ∆ju ∈ Mq(·)
r(·), we have∥∥∥∆j(e

−t(−∆)βv)
∥∥∥
Mq(·)

r(·)

≤ Ke−κt22βj

∥∆jv∥Mq(·)
r(·)

,

where K and κ are tow constants independent of j and t.

Proof. Recalling that supp(F(∆jv)) ⊂ 2jC (∆j is a frequency to {|ξ| ∼ 2j}), and
considering a function ϕ ∈ C∞

0 (Rn \ {0}) with ϕ ≡ 1 in a neighborhood of the ring C,
then one has

∆j(e
−t(−∆)βv) = e−t(−∆)β∆jv

= ϕ(2j ·)e−t(−∆)β∆jv

= F−1
(
ϕ(2jξ)e−t|ξ|2β

)
∗∆jv.

Hence, Proposition 2.6, gives∥∥∥∆j(e
−t(−∆)βv)

∥∥∥
Mq(·)

r(·)

≤
∥∥∥F−1

(
ϕ(2jξ)e−t|ξ|2β

)∥∥∥
L1

∥∆jv∥Mq(·)
r(·)

≤ Ke−κt22βj

∥∆jv∥Mq(·)
r(·)

,

as desired. □

Proof of Proposition 3.3. Since u0 ∈ S ′(Rn)/P and f ∈ S ′([0, T ) × Rn)/P, we can

obtain u ∈ S ′([0, T )× Rn)/P. And then, applying ∆j to (3.1) and taking the Mq(·)
r(·)-

norm, we get

∥∆ju(t)∥Mq(·)
r(·)

≤
∥∥∥e−t(−∆)β∆ju0

∥∥∥
Mq(·)

r(·)

+

∫ t

0

∥∥∥e−(t−t′)(−∆)β∆jf(t
′)
∥∥∥
Mq(·)

r(·)

dt′.

According to Proposition 3.4, we obtain for some κ > 0,

∥∆ju(t)∥Mq(·)
r(·)

≲ e−κt22βj

∥∆ju0∥Mq(·)
r(·)

+

∫ t

0

e−κ22βj(t−t′) ∥∆jf(t
′)∥Mq(·)

r(·)
dt′.

Set 1
θ = 1 + 1

ρ − 1
γ . Young’s inequality in Lρ gives us,

∥∆ju(t)∥Lρ
T (Mq(·)

r(·))

≲

(
1− e−κT22βjρ

κ22βjρ

) 1
ρ

∥∆ju0∥Mq(·)
r(·)

+

(
1− e−κT22βjθ

κ22βjθ

) 1
θ

∥∆jf(t
′)∥

Lγ
T (Mq(·)

r(·))

≲ 2−
2β
ρ j ∥∆ju0∥Mq(·)

r(·)
+ 2−2β(1+ 1

ρ−
1
γ )j ∥∆jf(t

′)∥
Lγ

T (Mq(·)
r(·))

.

Finally, multiplying by 2(s(·)+
2β
ρ )j , and taking lh-norm of both sides in the above

inequality, we obtain the desired estimate. And this completes the proof of Proposition
3.3. □
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3.1. Proof of Theorem 3.1 (1) (The case 1
2 < β ≤ 1)

In this part, we aim at proving global well-posedness for small initial data of the

system (1.1) in critical variable exponent Besov-Morrey spaces N
−2β+ n

q(·)
r(·),q(·),h with 1

2 <

β ≤ 1, 1 ≤ r(·) ≤ q(·) <∞ and 1 ≤ h ≤ ∞. Firstly, we get the following key bilinear
estimate.

Lemma 3.5. Let 0 < T ≤ ∞, s(·) ∈ Clog(Rn), r(·), q(·) ∈ P0(Rn) ∩ Clog(Rn) with
s(·) > −1, 1 ≤ r(·) ≤ q(·) < ∞, and let 1 ≤ h, γ, γ1, γ2 ≤ ∞ satisfying 1

γ = 1
γ1

+ 1
γ2
.

Then for any ε > 0, one has∥∥f∇(−∆)−1g + g∇(−∆)−1f
∥∥
Lγ
(
0,T ;N s(·)

r(·),q(·),h

)
≲ ∥f∥Lγ1

(
0,T ;N s(·)+ε

r(·),q(·),h

) ∥g∥
Lγ2

(
0,T ;N

−1+ n
q(·)−ε

r(·),q(·),h

)
+ ∥g∥Lγ1

(
0,T ;N s(·)+ε

r(·),q(·),h

) ∥f∥
Lγ2

(
0,T ;N

−1+ n
q(·)−ε

r(·),q(·),h

) . (3.3)

Proof. Using the following paraproduct decomposition due to J. M. Bony [7],

f∇(−∆)−1g + g∇(−∆)−1f := J1 + J2 + J3, (3.4)

where,

J1 :=
∑
l∈Z

∆lf∇(−∆)−1Sl−1g +∆lg∇(−∆)−1Sl−1f,

J2 :=
∑
l∈Z

Sl−1f∇(−∆)−1∆lg + Sl−1g∇(−∆)−1∆lf,

J3 :=
∑
l∈Z

∑
|l−l′|≤1

∆lf∇(−∆)−1∆l′g +∆lg∇(−∆)−1∆l′f.

Below, we estimate J1, J2 and J3 separately. For J1, we consider the estimate of its
first term only, while the second one can be treated similarly. So, by the facts (2.1)
and (2.2), Proposition 2.6, Hölder’s inequality in Lp-space, and Lemmas 2.7 and 2.8,
when ε > 0, one has∥∥∥∥∥∆j

∑
l∈Z

∆lf∇(−∆)−1Sl−1g

∥∥∥∥∥
L

γ
T
(Mq(·)

r(·))

≲
∑

|l−j|≤4

∥∥∥∥∥∥F−1φj

∥∥
L1

∥∥∆lf∇(−∆)−1Sl−1g
∥∥
Mq(·)

r(·)

∥∥∥∥
L

γ
T

≲
∑

|l−j|≤4

∥∆lf∥Lγ1
T

(Mq(·)
r(·))

∥∥∇(−∆)−1Sl−1g
∥∥
L

γ2
T

(L∞)

≲
∑

|l−j|≤4

∥∆lf∥Lγ1
T

(Mq(·)
r(·))

∑
k≤l−2

2
k
(
−1+ n

q(·)

)
∥∆kg∥Lγ2

T
(Mq(·)

r(·))
,
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then, ∥∥∥∥∥∆j

∑
l∈Z

∆lf∇(−∆)−1Sl−1g

∥∥∥∥∥
L

γ
T
(Mq(·)

r(·))

≲
∑

|l−j|≤4

∥∆lf∥Lγ1
T

(Mq(·)
r(·))

 ∑
k≤l−2

2εkh
′

1/h′

∥g∥
Lγ2

(
0,T ;N

−1+ n
q(·)−ε

r(·),q(·),h

)

≲ 2−s(·)j
∑

|l−j|≤4

2−s(·)(l−j)2(s(·)+ε)l ∥∆lf∥Lγ1
T

(Mq(·)
r(·))

∥g∥
Lγ2

(
0,T ;N

−1+ n
q(·)−ε

r(·),q(·),h

) .

Multiplying by 2s(·)j , and taking lh-norm of both sides in the above estimate, we
obtain∥∥∥∥∥∑

l∈Z
∆lf∇(−∆)−1Sl−1g

∥∥∥∥∥
Lγ
(
0,T ;N s(·)

r(·),q(·),h

) ≲ ∥f∥Lγ1

(
0,T ;N s(·)+ε

r(·),q(·),h

)

× ∥g∥
Lγ2

(
0,T ;N

−1+ n
q(·)−ε

r(·),q(·),h

) ,
which implies that

∥J1∥Lγ
(
0,T ;N s(·)

r(·),q(·),h

) ≲ ∥f∥Lγ1

(
0,T ;N s(·)+ε

r(·),q(·),h

) ∥g∥
Lγ2

(
0,T ;N

−1+ n
q(·)−ε

r(·),q(·),h

)
+ ∥g∥Lγ1

(
0,T ;N s(·)+ε

r(·),q(·),h

) ∥f∥
Lγ2

(
0,T ;N

−1+ n
q(·)−ε

r(·),q(·),h

) . (3.5)

Similarly for J2: By applying Hölder’s inequality and Lemma 2.7, we get∥∥∥∥∥∆j

∑
l∈Z

Sl−1f∇(−∆)−1∆lg

∥∥∥∥∥
Lγ

T (Mq(·)
r(·))

≲
∑

|l−j|≤4

∥∥Sl−1f∇(−∆)−1∆lg
∥∥
Lγ

T (Mq(·)
r(·))

≲
∑

|l−j|≤4

∑
k≤l−2

2k
n

q(·) ∥∆kf∥Lγ2
T (Mq(·)

r(·))

∥∥∇(−∆)−1∆lg
∥∥
L

γ1
T (Mq(·)

r(·))
,

Lemma 2.8 gives us again,∥∥∥∥∥∆j

∑
l∈Z

Sl−1f∇(−∆)−1∆lg

∥∥∥∥∥
Lγ

T (Mq(·)
r(·))

≲
∑

|l−j|≤4

∑
k≤l−2

2(−1+ n
q(·)−ε)k2(1+ε)k ∥∆kf∥Lγ2

T (Mq(·)
r(·))

2−l ∥∆lg∥Lγ1
T (Mq(·)

r(·))

≲
∑

|l−j|≤4

2−l ∥∆lg∥Lγ1
T (Mq(·)

r(·))

 ∑
k≤l−2

2(1+ε)kh′

1/h′

∥f∥
Lγ2

(
0,T ;N

−1+ n
q(·)−ε

r(·),q(·),h

) .
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Since ε > 0, then

∥∥∥∥∥∆j

∑
l∈Z

Sl−1f∇(−∆)−1∆lg

∥∥∥∥∥
Lγ

T (Mq(·)
r(·))

≲
∑

|l−j|≤4

2−sl2(s(·)+ε)l ∥∆lg∥Lγ1
T (Mq(·)

r(·))
∥f∥

Lγ2

(
0,T ;N

−1+ n
q(·)−ε

r(·),q(·),h

) .

Hence, we arrive at

∥∥∥∥∥∑
l∈Z

Sl−1f∇(−∆)−1∆lg

∥∥∥∥∥
Lγ
(
0,T ;N s(·)

r(·),q(·),h

) ≲ ∥g∥Lγ1

(
0,T ;N s(·)+ε

r(·),q(·),h

)

× ∥f∥
Lγ2

(
0,T ;N

−1+ n
q(·)−ε

r(·),q(·),h

) .

Thus, we get

∥J2∥Lγ
(
0,T ;N s(·)

r(·),q(·),h

) ≲ ∥f∥Lγ1

(
0,T ;N s(·)+ε

r(·),q(·),h

) ∥g∥
Lγ2

(
0,T ;N

−1+ n
q(·)−ε

r(·),q(·),h

)
+ ∥g∥Lγ1

(
0,T ;N s(·)+ε

r(·),q(·),h

) ∥f∥
Lγ2

(
0,T ;N

−1+ n
q(·)−ε

r(·),q(·),h

) . (3.6)

We are now moving on to the last term J3. We use the following formula, based on
an analysis of the algebraic structure of Equation (1.1) [21]:

(J3)i =
∑
l∈Z

∑
|l−l′|≤1

∆lf∂i(−∆)−1∆l′g +∆lg∂i(−∆)−1∆l′f = K1
i +K2

i +K3
i ,

for i = 1, 2, ..., n. Where (J3)i is the i-th exponent of (J3) and

K1
i :=

∑
l∈Z

∑
|l−l′|≤1

(−∆)
[(
(−∆)−1∆lf

) (
∂i(−∆)−1∆l′g

)]
,

K2
i :=

∑
l∈Z

∑
|l−l′|≤1

2∇ ·
[(
(−∆)−1∆lf

) (
∂i∇(−∆)−1∆l′g

)]
,

K3
i :=

∑
l∈Z

∑
|l−l′|≤1

∂i
[(
(−∆)−1∆lf

)
∆l′g

]
.

In order to estimate the above three terms, we use Hölder’s inequality in Lp-space

and Mq(·)
r(·)-space (2.5), and Lemma 2.8 as follows: From (2.2), there is d0 ∈ N such
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that∥∥∆jK
1
i

∥∥
Lγ

T (Mq(·)
r(·))

≲ 22j
∑

l≥j−d0

∑
|l−l′|≤1

∥∥((−∆)−1∆lf
) (
∂i(−∆)−1∆l′g

)∥∥
Lγ

T (Mq(·)
r(·))

≲ 22j
∑

l≥j−d0

∑
|l−l′|≤1

2−2l ∥∆lf∥Lγ1
T (Mq(·)

r(·))
2(−1+ n

q(·) )l
′
∥∆l′g∥Lγ2

T (Mq(·)
r(·))

≲
∑

l≥j−d0

2−s(·)j2−(2+s(·))(l−j)2(s(·)+ε)l ∥∆lf∥Lγ1
T (Mq(·)

r(·))
∥g∥

Lγ2

(
0,T ;N

−1+ n
q(·)−ε

r(·),q(·),h

) ,
(3.7)

∥∥∆jK
2
i

∥∥
Lγ

T (Mq(·)
r(·))

≲ 2j
∑

l≥j−d0

∑
|l−l′|≤1

∥∥((−∆)−1∆lf
) (
∂i∇(−∆)−1∆l′g

)∥∥
Lγ

T (Mq(·)
r(·))

≲ 2j
∑

l≥j−d0

∑
|l−l′|≤1

2−2l ∥∆lf∥Lγ1
T (Mq(·)

r(·))
2

n
q(·) l

′
∥∆l′g∥Lγ2

T (Mq(·)
r(·))

≲
∑

l≥j−d0

2−s(·)j2−(1+s(·))(l−j)2(s(·)+ε)l ∥∆lf∥Lγ1
T (Mq(·)

r(·))
∥g∥

Lγ2

(
0,T ;N

−1+ n
q(·)−ε

r(·),q(·),h

) ,
(3.8)

and∥∥∆jK
3
i

∥∥
Lγ

T (Mq(·)
r(·))

≲ 2j
∑

l≥j−d0

∑
|l−l′|≤1

∥∥((−∆)−1∆lf
)
∆l′g

∥∥
Lγ

T (Mq(·)
r(·))

≲ 2j
∑

l≥j−d0

∑
|l−l′|≤1

2−2l ∥∆lf∥Lγ1
T (Mq(·)

r(·))
2

n
q(·) l

′
∥∆l′g∥Lγ2

T (Mq(·)
r(·))

≲
∑

l≥j−d0

2−s(·)j2−(1+s(·))(l−j)2(s(·)+ε)l ∥∆lf∥Lγ1
T (Mq(·)

r(·))
∥g∥

Lγ2

(
0,T ;N

−1+ n
q(·)−ε

r(·),q(·),h

) .
(3.9)

Thus, (3.7), (3.8) and (3.9) give us, when s(·) + 1 > 0,

∥J3∥Lγ
(
0,T ;N s(·)

r(·),q(·),h

) ≤
n∑

i=1

3∑
k=1

∥∥Kk
i

∥∥
Lγ
(
0,T ;N s(·)

r(·),q(·),h

)
≲ ∥f∥Lγ1

(
0,T ;N s(·)+ε

r(·),q(·),h

) ∥g∥
Lγ2

(
0,T ;N

−1+ n
q(·)−ε

r(·),q(·),h

) . (3.10)

Finally, by combining (3.5), (3.6) and (3.10) with (3.4), we get (3.3). This completes
the proof of Lemma 3.5. □
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Now, by using Lemma 2.9, we can start to prove the existence of local and global
solutions of the system (1.1) in the case 1

2 < β ≤ 1. We define

X 1 := Lγ1

(
R+;N s1(·)

r(·),q(·),h

)
∩ Lγ2

(
R+;N s2(·)

r(·),q(·),h

)
,

with

s1(·) = −1 +
n

q(·)
+ ε, s2(·) = −1 +

n

q(·)
− ε, γ1 =

2β

2β − 1 + ε
,

γ2 =
2β

2β − 1− ε
, 0 < ε < 2β − 1.

Due to Duhamel’s principle, the solution of the system (1.1) can be written as

u(t) = e−t(−∆)βu0 −
∫ t

0

e−(t−t′)(−∆)β∇ ·
(
u∇(−∆)−1u

)
dt′. (3.11)

Set

A(u,w) :=

∫ t

0

e−(t−t′)(−∆)β∇ ·
(
u∇(−∆)−1w

)
dt′.

We note that A(u,w) can be considered as the solution of the dissipative equation
(3.1) with u0 = 0 and f = ∇ ·

(
u∇(−∆)−1w

)
. Then by applying Proposition 3.3 and

Lemma 3.5, with γ = β
2β−1 , we see that

∥A(u,w)∥Lγ1

(
R+;N s1(·)

r(·),q(·),h

) ≲
∥∥∇ ·

(
u∇(−∆)−1w

)∥∥
L

β
2β−1

(
R+;N

−2+ n
q(·)

r(·),q(·),h

)
≲
∥∥u∇(−∆)−1w

∥∥
L

β
2β−1

(
R+;N

−1+ n
q(·)

r(·),q(·),h

)
≲ ∥u∥Lγ1

(
R+;N s1(·)

r(·),q(·),h

) ∥w∥Lγ2

(
R+;N s2(·)

r(·),q(·),h

)
+ ∥w∥Lγ1

(
R+;N s1(·)

r(·),q(·),h

) ∥u∥Lγ2

(
R+;N s2(·)

r(·),q(·),h

)
≲ ∥u∥X 1 ∥w∥X 1 ,

and similarly,

∥A(u,w)∥Lγ2

(
R+;N s2(·)

r(·),q(·),h

) ≲ ∥u∥X 1 ∥w∥X 1 .

Thus,

∥A(u,w)∥X 1 ≤ C ∥u∥X 1 ∥w∥X 1 . (3.12)

On the other hand, e−t(−∆)βu0 can also be considered as the solution of the dissipative
equation (3.1) with u0 = u0 and f = 0. Then we can directly deduce from Proposition
3.3 that, ∥∥∥e−t(−∆)βu0

∥∥∥
X 1

≤ C ∥u0∥
Ṅ

−2β+ n
q(·)

r(·),q(·),h

.

So, if ∥u0∥
N

−2β+ n
q(·)

r(·),q(·),h

≤ ε with ε = 1
4C2 , then by Lemma 2.9, the integral equation (3.11)

admits a unique solution u such that ∥u∥X 1 ≤ 2Cε, which is the unique solution of
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the system (1.1). Furthermore, Proposition 3.3 and Lemma 3.5 once again give us

∥u∥
L∞

(
0,T ;N

−2β+ n
q(·)

r(·),q(·),h

) ≲ ∥u0∥
N

−2β+ n
q(·)

r(·),q(·),h

+ ∥u∥2X 1 <∞.

Finally, u ∈ Xε. This completes the proof of the first assertion of Theorem 3.1.

3.2. Proof of Theorem 3.1 (2) (The case β = 1
2 )

In this part, we establish the global well-posedness for the system (1.1) in the limit case

β = 1
2 , with initial data in critical variable exponent Besov-Morrey spaces N

−1+ n
q(·)

r(·),q(·),1
with 1 ≤ r(·) ≤ q(·) < ∞. Firstly, by making a slight modification to the proof of
Lemma 3.5, we obtain the following estimate:

Lemma 3.6. For any f, g ∈ L∞
(
R+;N

−1+ n
q(·)

r(·),q(·),1

)
, one has∥∥f∇(−∆)−1g + g∇(−∆)−1f

∥∥
L∞

(
R+;N

−1+ n
q(·)

r(·),q(·),1

) ≲ ∥f∥
L∞

(
R+;N

−1+ n
q(·)

r(·),q(·),1

)
× ∥g∥

L∞
(
R+;N

−1+ n
q(·)

r(·),q(·),1

) . (3.13)

Proof. We estimate the first term of J1 as follows:∥∥∥∥∥∆j

∑
l∈Z

∆lf∇(−∆)−1Sl−1g

∥∥∥∥∥
L∞

∞(Mq(·)
r(·))

≲
∑

|l−j|≤4

∥∆lf∥L∞
∞(Mq(·)

r(·))

∥∥∇(−∆)−1Sl−1g
∥∥
L∞

∞(L∞)

≲
∑

|l−j|≤4

∥∆lf∥L∞
∞(Mq(·)

r(·))

∑
k≤l−2

2k(−1+ n
q(·) ) ∥∆kg∥L∞

∞(Mq(·)
r(·))

≲
∑

|l−j|≤4

∥∆lf∥L∞
∞(Mq(·)

r(·))
∥g∥

L∞
(
R+;N

−1+ n
q(·)

r(·),q(·),1

) .

Multiplying by 2(−1+ n
q(·) )j , and taking l1−norm of both sides in the above estimate,

we obtain∥∥∥∥∥∑
l∈Z

∆lf∇(−∆)−1Sl−1g

∥∥∥∥∥L∞
(
R+;N

−1+ n
q(·)

r(·),q(·),1

)
≲ ∥f∥

L∞
(
R+;N

−1+ n
q(·)

r(·),q(·),1

) ∥g∥
L∞

(
R+;N

−1+ n
q(·)

r(·),q(·),1

) .
And then,

∥J1∥
L∞

(
R+;N

−1+ n
q(·)

r(·),q(·),1

) ≲ ∥f∥
L∞

(
R+;N

−1+ n
q(·)

r(·),q(·),1

) ∥g∥
L∞

(
R+;N

−1+ n
q(·)

r(·),q(·),1

) . (3.14)



500 A. El Idrissi, F. Ouidirne, B. El Boukari and J. El Ghordaf

Similarly, for J2,∥∥∥∥∥∆j

∑
l∈Z

Sl−1f∇(−∆)−1∆lg

∥∥∥∥∥
L∞

∞(Mq(·)
r(·))

≲
∑

|l−j|≤4

∑
k≤l−2

2(−1+ n
q(·) )k2k ∥∆kf∥L∞

∞(Mq(·)
r(·))

2−l ∥∆lg∥L∞
∞(Mq(·)

r(·))

≲
∑

|l−j|≤4

∥∆lg∥L∞
∞(Mq(·)

r(·))
∥f∥

L∞
(
R+;N

−1+ n
q(·)

r(·),q(·),1

) ,
which gives us that∥∥∥∥∥∑

l∈Z
Sl−1f∇(−∆)−1∆lg

∥∥∥∥∥L∞
(
R+;N

−1+ n
q(·)

r(·),q(·),1

)
≲ ∥g∥

L∞
(
R+;N

−1+ n
q(·)

r(·),q(·),1

) ∥f∥
L∞

(
R+;N

−1+ n
q(·)

r(·),q(·),1

) .
Thus, we get

∥J2∥
L∞

(
R+;N

−1+ n
q(·)

r(·),q(·),1

) ≲ ∥f∥
L∞

(
R+;N

−1+ n
q(·)

r(·),q(·),1

) ∥g∥
L∞

(
R+;N

−1+ n
q(·)

r(·),q(·),1

) . (3.15)

Moreover for the final term J3 = K1 +K2 +K3, and since K3 is similar to K2, we
only estimate K1and K2 as follows:∥∥∆jK

1
i

∥∥
L∞

∞(Mq(·)
r(·))

≲ 22j
∑

l≥j−d0

∑
|l−l′|≤1

2−2l ∥∆lf∥L∞
∞(Mq(·)

r(·))
2(−1+ n

q(·) )l
′
∥∆l′g∥L∞

∞(Mq(·)
r(·))

≲ 2(1−
n

q(·) )j
∑

l≥j−d0

2−(1+ n
q(·) )(l−j)2(−1+ n

q(·) )l ∥∆lf∥L∞
∞(Mq(·)

r(·))
× ∥g∥

L∞
(
R+;N

−1+ n
q(·)

r(·),q(·),1

) ,
and∥∥∆jK

2
i

∥∥
L∞

∞(Mq(·)
r(·))

≲ 2j
∑

l≥j−d0

∑
|l−l′|≤1

2−2l ∥∆lf∥L∞
∞(Mq(·)

r(·))
2

n
q(·) l

′
∥∆l′g∥L∞

∞(Mq(·)
r(·))

≲ 2(1−
n

q(·) )j
∑

l≥j−d0

2−
n

q(·) (l−j)2(−1+ n
q(·) )l ∥∆lf∥L∞

∞(Mq(·)
r(·))

∥g∥
L∞

(
R+;N

−1+ n
q(·)

r(·),q(·),1

) (3.16)

Hence, from (??) and (3.16), we arrive at

∥J3∥
L∞

(
R+;N

−1+ n
q(·)

r(·),q(·),1

) ≤
n∑

i=1

3∑
k=1

∥∥Kk
i

∥∥
L∞

(
R+;N

−1+ n
q(·)

r(·),q(·),1

)
≲ ∥f∥

L∞
(
R+;N

−1+ n
q(·)

r(·),q(·),1

) ∥g∥
L∞

(
R+;N

−1+ n
q(·)

r(·),q(·),1

) . (3.17)

Finally, putting the estimates (3.14), (3.15) and (3.17) together, we get (3.13). The
proof of Lemma 3.6 is complete. □
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We are now in a position to demonstrate the second assertion of Theorem 3.1.

By considering the resolution space L∞(R+;N
−1+ n

q(·)
r(·),q(·),1) and returning to the integral

equation (3.11), Proposition 3.3 with β = 1
2 and γ = ∞, and Lemma 3.6, give us

∥A(u,w)∥
L∞

(
R+;N

−1+ n
q(·)

r(·),q(·),1

) ≤ C
∥∥∇ ·

(
u∇(−∆)−1w

)∥∥
L∞

(
R+;N

−2+ n
q(·)

r(·),q(·),1

)
≤ C ∥u∥

L∞
(
R+;N

−1+ n
q(·)

r(·),q(·),1

) ∥w∥
L∞

(
R+;N

−1+ n
q(·)

r(·),q(·),1

) .
Applying Proposition 3.3 for β = 1

2 again, we can obtain∥∥∥∥e−t(−∆)
1
2 u0

∥∥∥∥
L∞

(
R+;N

−1+ n
q(·)

r(·),q(·),1

) ≤ C ∥u0∥
N

−1+ n
q(·)

r(·),q(·),1

.

If ∥u0∥
N

−1+ n
q(·)

r(·),q(·),1

is sufficiently small, by using the fixed point argument as in Subsection

3.1, we get the global solution of the system (1.1) in L∞
(
R+;N

−1+ n
q(·)

r(·),q(·),1

)
. The proof

of Theorem 3.1 is complete, as desired.

References

[1] Abidin, M. Z., Chen, J., Global well-posedness for fractional Navier-Stokes equations in
variable exponent Fourier-Besov-Morrey spaces, Acta Mathematica Scientia, 41(2021),
164-176.

[2] Almeida, A., Caetano, A., Variable exponent Besov-Morrey spaces, Journal of Fourier
Analysis and Applications, 26(2020), no. 1, 5.
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[9] Butakın, G., Pişkin, E., Çelik, E., Blowup and Global Solutions of a Fourth-Order Par-
abolic Equation With Variable Exponent Logarithmic Nonlinearity, Journal of Function
Spaces, 2024(2024), no. 1, 2847533.

[10] Chems Eddine, N., Ragusa, M.A., Repovš, D.D., On the concentration-compactness
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Threshold results of blow-up solutions to Kirch-
hoff equations with variable sources

Nadji Touil and Abita Rahmoune

Abstract. This paper analyzes an initial boundary value problem for variable
source Kirchhoff-type parabolic equations. We aim to derive a new sub-critical
energy threshold for finite-time blow-up, a new blow-up condition, and estimates
for lifespan and upper bounds for blow-up time across various initial energy cases.

Mathematics Subject Classification (2010): 35B40, 35B44, 35K55 .

Keywords: Kirchhoff, potential well method, arbitrary initial energy, blow-up,
bounds of the blow-up time, Lp(.)(Ω) Sobolev space.

1. Introduction

In recent years, there has been a significant interest among numerous mathematical
researchers in examining the blow-up time properties of solutions to equations used
for describing the transverse vibrations of a stretched string while taking into account
the change in the string length. These equations, proposed by Kirchhoff [19], [26] are
widely employed in engineering disciplines like automotive, aerospace, and large-scale
structures. The extensive applications of these materials have led to a growing desire
among researchers to establish findings related to the presence and control of elasticity
problems. Almeida Junior et al. [25] studied polynomial stability for the equations of
porous elasticity in one-dimensional bounded domains. Iesan et al. [16, 17, 18] studied
the theory of thermoelastic materials with voids. Santos et al. [30] considered a porous
elastic system with porous dissipation In recent years, there has been a significant
amount of research focused on developing mathematical models for nonlocal diffusion.
These models are formulated by using parabolic equations that combine linear or non-
linear diffusion with a Kirchhoff term. The Kirchhoff problems are a type of problem
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that includes the term M
(∫

Ω
|∇u|2dx

)
, which causes the equation to no longer be a

pointwise identity
ut −M

(∫
Ω
|∇u|2dx

)
∆u = g (x, u) , (x, t) ∈ Ω× (0, T ),

u = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

The Kirchhoff problems are a type of problem that includes the term M
(∫

Ω
|∇u|2dx

)
,

which causes the equation to no longer be a pointwise identity. The nonlinear Kirchhoff
equation (NLKE) is a partial differential equation used to describe the transverse
vibrations of a stretched string while taking into account the change in the string
length [19]. It is also used to describe the movement of a semi-infinite string [26] and
is an underlying equation of quantum mechanics. Partial differential equations have a
wide range of applications, as listed in reference [33]. The study of Kirchhoff equations
has a long history and was examined in detail in Lions research [23], where it became
possible to investigate the existence, uniqueness, and regularity of the solutions in
Kirchhoff’s equations. For more information, interested readers can refer to [10, 11, 24]
and the references therein. This paper studies a parabolic problem with a nonlocal
diffusion coefficient, where a nonlinear source term modeled by an operator appears
in the Kirchhoff equation.

ut −M
(∫

Ω
|∇u|2dx

)
∆u = |u|q(x)−1u, (x, t) ∈ Ω× (0, T ),

u = 0, (x, t) ∈ ∂Ω× (0, T ),

u(x, 0) = u0(x), x ∈ Ω,

(1.1)

where Ω ⊂ Rn (n ≥ 1) is a bounded domain with smooth boundary ∂Ω, we assume
that u0 ∈ H1

0 (Ω) and u0(x) ̸≡ 0, the diffusion coefficient has the specific form M(s) =
a+ bs with positive parameters a, b, Ω ⊂ Rn, q is constant and satisfy

(H1)3 < q1 ≤ q (x) ≤ q2 ≤ n+ 2

n− 2
if n ≥ 3, x ∈ Ω; (1.2)

(H2) 1 < q1 ≤ q (x) ≤ q2 < 3 if n ≥ 1, x ∈ Ω.

We consider a mathematical model, where u0 belongs to the Sobolev space H1
0 (Ω) and

−∆ denotes the Laplace operator concerning the spatial variables. Our focus is on the
explosion property in finite time. To this end, we use the potential well method and
various inequality techniques to establish the the blow-up of weak solutions within
a finite time and obtain a new blow-up criterion. Additionally, we determine the
lifespan and an upper bounds for the blow-up time in different initial energy cases. It
is important to note that the model (1.1) is called degenerate when a = 0, and when
a > 0, we refer to it as a non-degenerate model. The exponent q(.) is a measurable
function on Ω that satisfies certain conditions.

1 < q1 = ess inf
x∈Ω

q (x) ≤ q (x) ≤ q2 = ess sup
x∈Ω

q (x) < ∞, (1.3)

and the following Zhikov–Fan uniform local continuity condition. There exist a con-
stant k > 0 such that for all points x, y in Ω with 0 < |x− y| < 1

2 , we have the
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inequality
|q (x)− q (y)| ≤ k (|x− y|) , (1.4)

where k(r) satisfies

lim sup
r→0+

k(r) ln

(
1

r

)
= c < ∞.

This problem has its origin in the mathematical explanation of system in real world
from the mathematical modeling for axially moving viscoelastic materials, they ap-
pear in numerous applications in the natural sciences, for instance models of flows
of electro-rheological fluids or fluids with temperature-dependent viscosity, nonlinear
viscoelasticity, filtration processes through a porous media [3, 4, 28], and the process-
ing of digital images [2, 9, 22], and can all be linked with problem (1.1), further details
on the subject can be seen in [5, 6, 29] and the other references contained therein.
In recent years, the study of mathematical nonlinear models with variable exponent
nonlinearity has attracted the attention of many researchers. Let us highlight some
of these issues. For example, Pinasco [27] established the local existence of positive
solutions for the parabolic problem.

ut −∆u = f(u) in Ω× (0, T )

u = 0, in ∂Ω× (0, T )

u(x, 0) = u0(x) in Ω

where the source term is of the form

f(u) = a(x)up(x) or f(u) = a(x)

∫
Ω

uq(y)dy.

He also proved that with sufficiently large initial data, solutions blow up in a finite
time. Alaoui et al. [21] considered the following nonlinear heat equation,

ut − div
(
|∇u(x)|m(x)−2∇u

)
= |u|p(x)−2u+ f.

Under appropriate conditions on m and p, and with f = 0, they demonstrated
that any solution with a nontrivial initial condition will experience a blow-up in
finite time. Additionally, they provided numerical examples in two dimensions to
illustrate their findings. Autuori et al. [7] investigated a nonlinear Kirchhoff system
involving the p(x, t)-Laplace operator, a nonlinear force f(t, x, u), and a nonlinear
damping term Q = Q(t, x, u, u t). They established a global nonexistence result
under suitable conditions on f , Q, and p. In the classical case of constant exponent
(q(x) =constant= q), this equation has its origin in the nonlinear vibration of an
elastic string, were the source term uq−1u forces the negative-energy solutions to
explode in finite time. It’s known that several authors have looked at problem (1.1)
concerning the findings of the global existence and blow-up of solutions, and a
powerful method for treating it is the ”potential well method,” which was founded by
the first author Sattinger [31] in 1968 and later been enhanced by Liu and Zhao [32]
by introducing the so-called family of potential wells which later became a significant
technique for the study of nonlinear evolution equations and has also given many
interesting results. Recently, authors of [14, 15] discussed in a bounded domain of Rn

with 3 < q < n+2
n−2 the global existence and finite time blow-up of solutions to problem
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(1.1) when the initial data are at different energy levels E(u0) < d, E(u0) = d, and
E(u0) > d respectively. If we know that the solutions of a given system explode in
finite time, it is important to estimate the bounds of the explosion time from both
above and below, which is the main goal of this work. We will expand the assumptions
about the given q in the aforementioned works, assuming a new assumption on the
critical exponent q (.) such that 1 < q1 ≤ q (x) ≤ q2 < (n + 2)/(n − 2), under some
sufficient conditions we giving a new blow-up criterion for problem (1.1) if the initial
energy is not -negative, and derive the upper and lower bounds of this blow-up time.
The table below provides a summary of the background for our work.

Table 1: Main results.

Main results q Initial data Blow-up(
B1√
a

)−q1+1

(2.4) E (u0) < E1, Blow-up (2.6)

Theorem 2 (H1) ≥

 a∥∇u0∥22

+
b

2
∥∇u0∥42


q1+1

2

> α1 E1 as in (2.4) lim
t→T̂

∥u(t)∥22 = ∞

E (u0) < 0 Blow-up
E (u0) ≤ Ed,

Ed as in (1.11) lim
t→T∗

∫ t

0
∥u(τ)∥22dτ

Theorem 3 (H1) u0∈ H1
0 (Ω), u0 ̸= 0 0 ≤ E (u0) = ∞

< C0 ∥u0∥22 (iii)

E(u0) Blow-up

Theorem 3 (H2) u0 ∈ H1
0 (Ω) < − q1+1

q1+5
b
4εc (ε)

(2.21),(2.22) lim
t→T

∥u(t)∥22 = ∞.

Table 2: The estimate of blow-up time.
E(u0) Upper bound estimate Lower bound estimate

E (u0) < E1
√

E (u0) < 0
√

E (u0) = 0 ? ?
E (u0) < Ed

√

0 ≤ E (u0) < C0 ∥u0∥22
√

E(u0) < − q1+1
q1+5

b
4εc (ε)

√
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1.1. Modified potential wells

For u ∈ H1
0 (Ω), we define the functionals

E(u (t)) =: E(t) =
a

2
∥∇u∥22 +

b

4
∥∇u∥42 −

∫
Ω

1

q(x) + 1
|u|q(x)+1dx,

I(u (t)) =a∥∇u∥22 + b∥∇u∥42 −
∫
Ω

|u|q(x)+1dx.

M(u (t)) =: M(t) =
1

2
∥u (t) ∥22.

(1.5)

and testing (1.1) by ut we have E(t) is nonincreasing, i.e.,

d

dt
E(t) = −∥ut(t)∥22 ≤ 0, (1.6)

and

E(t) +

∫ t

0

∥ut(t)∥22 ds ≤ E(u0) a.e. t ∈ (0, T ), (1.7)

L′(t) = −I(u (t)) a.e. t ∈ (0, T ). (1.8)

We then have the following lemma.

Lemma 1.1. For q(x) be (1.4) and u ∈ H1
0 (Ω)\{0}. Let F : [0,+∞) → R the Euler

functional defined by

F (λ) =
λ2

2
a∥∇u∥2 + λ4

4
b∥∇u∥4 −

∫
Ω

λq(x)+1

q(x) + 1
|u|q(x)+1dx,

then, F keeps the following properties:

(i) . limλ→0+ F (λ) = 0 and limλ→+∞ F (λ) = −∞.
(ii). There is at least one solution to the equation F ′(λ) = 0 on the interval [λ1, λ2] ,

where

λ1 = min
[
ρ (u)

−1
1−q2 , ρ (u)

−1
3−q1

]
, λ2 = max

[
ρ (u)

−1
1−q2 , ρ (u)

−1
3−q1

]
, (1.9)

and

ρ (u) :=
a∥∇u∥2 + b∥∇u∥4∫

Ω
|u|q(x)+1dx

.

(iii) . There exists a λ∗ = λ∗(u) > 0 such that F (λ) gets its maximum at λ = λ∗.
Furthermore, we have that 0 < λ∗ < 1, λ∗ = 1 and λ∗ > 1 provided I(u) < 0,
I(u) = 0 and I(u) > 0, respectively.

Proof. Since q(x) ∈ C+(Ω̄) =

{
p ∈ C(Ω̄) : inf

x∈Ω̄
q (x) > 3

}
, the assertion (i) is shown

by the following:

F (λ) ≤ λ2

2
a∥∇u∥2 + λ4

4
b∥∇u∥4 −min

{
λq1+1, λq2+1

}∫
Ω

1

q(x) + 1
|u|q(x)+1dx,

and

F (λ) ≥ λ2

2
a∥∇u∥2 + λ4

4
b∥∇u∥4 −max

{
λq1+1, λq2+1

}∫
Ω

1

q(x) + 1
|u|q(x)+1dx,
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For (ii). We have

F ′(λ) = λa

∫
Ω

|∇u(x)|2dx+ λ3b∥∇u∥4 −
∫
Ω

λq(x)|u|q(x)+1dx,

which implies that F ′(λ) lies in the following two inequalities

F ′(λ) ≥ λa

∫
Ω

|∇u(x)|2dx+ λ3b∥∇u∥4 −max {λq1 , λq2}
∫
Ω

|u|q(x)+1dx

= max {λq1 , λq2}

 min
{
λ1−q1 , λ1−q2

}
a

∫
Ω

|∇u(x)|2dx

+min
{
λ3−q1 , λ3−q2

}
a

∫
Ω

|∇u(x)|4dx−
∫
Ω

|u|q(x)+1dx

 ,

and

F ′(λ) ≤ λa

∫
Ω

|∇u(x)|2dx+ λ3b∥∇u∥4 −min {λq1 , λq2}
∫
Ω

|u|q(x)+1dx

= min {λq1 , λq2}

 max
{
λ1−q1 , λ1−q2

}
a

∫
Ω

|∇u(x)|2dx

+max
{
λ3−q1 , λ3−q2

}
a

∫
Ω

|∇u(x)|4dx−
∫
Ω

|u|q(x)+1dx

 ,

Since q2 ≥ q1 > 3, we signify that F ′(λ) has at least one zero point λ satisfying (1.9).
So we get (ii). The definition of λ∗ and the relation I(λu) = λF ′(λ) and

F ′(λ) ≤ (λ− λq2) a

∫
Ω

|∇u(x)|2dx+
(
λ3 − λq2

)
b

∫
Ω

|∇u(x)|4dx+λq2I(u), for λ ∈ (0, 1),

and

F ′(λ) ≥ (λ− λq2) a

∫
Ω

|∇u(x)|2dx+
(
λ3 − λq2

)
b

∫
Ω

|∇u(x)|4dx+λq2I(u), for λ ∈ (1,∞),

lead to the last claim (iii). Completeness of the proof. □

1.2. Assumptions and main results

As E is the Fréchet-differentiable functional with derivative E′, let suppose that u ̸= 0
is a critical point of E, i.e., E′(u) = 0. Then necessarily u is contained in the set

N =
{
u ∈ H1

0 (Ω)\{0} : I(u) = ⟨E′(u), u⟩ = 0
}
,

so N is a natural constraint for the problem of finding nontrivial critical points of E,
N is called the Nehari manifold associated with the energy functional E. By Lemma
1.1 we know that N is not empty set. It is clear that E(u) is coercive on N . The
depth of the potential well, denoted as d, characterized by

d = inf
u∈N

E(u). (1.10)

Under the appropriate conditions we have d is a positive finite number and is therefore
well-defined. For Ed is a constant given by

Ed =
q1 − 1

q1 + 1

q2 + 1

q2 − 1
d ≤ d, (1.11)
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we define the modified stable and unstable sets as follows

W =
{
u ∈ H1

0 (Ω) : E(u) < Ed, I(u) > 0
}
∪ {0},

U =
{
u ∈ H1

0 (Ω) : E(u) < Ed, I(u) < 0
}
.

2. Blow-up and bounds of blow-up time

In this section, we get new bounds for the blow-up time to problem (1.1) if the
variable exponent q(.) and the initial data satisfy some conditions. Before stating our
main results, without proof, we preferably give the following theorem of existence and
uniqueness, as well as the regularity:

Definition 2.1 (Weak solution). [20]A function u(x, t) is said to be a weak solu-
tion of problem (1.1) defined on the time interval [0, T ], provide that u(x, t) ∈
L∞ (0, T ;H1

0 (Ω)
)
with ut ∈ L2

(
0, T ;L2(Ω)

)
, if for every test-function η ∈ H1

0 (Ω)
and a.e. t ∈ [0, T ], the following identity holds:

(ut, η)Ω +
(
a+ b∥∇u∥22

)
(∇u,∇η)Ω =

(
|u|q(x)−1u, η

)
Ω
, a.e. t ∈ (0, T ), (2.1)

with u(x, 0) = u0 ∈ H1
0 (Ω).

Without proof, we give the local existence of a solution of (1.1) that can be ob-
tained by the Faedo-Galerkin methods together with the Banach fixed point theorem
[1, 8].

Theorem 2.2. Assume that (1.3)-(1.4) hold. Then the problem (1.1) for given u0 ∈
H1

0 (Ω) admits a unique local solution

u ∈ C
(
[0, Tmax) ;H

1
0 (Ω)

)
, ut ∈ C

(
[0, Tmax) ;L

2(Ω)
)
,

where Tmax > 0 is the maximal existence time of u(t).

2.1. Function spaces and lemmas

In this section, we present some preliminary concepts and notations that we shall
employ in our further analysis. Let us start by introducing the variable-order Lebesgue
space Lp(.)(Ω), which is defined for all p : Ω → [1,+∞] a measurable function as

Lp(.)(Ω) :=

{
u : Ω → R measurable :

∫
Ω

|u(x)|p(x) dx < +∞
}
.

We then know that Lp(.)(Ω) is a Banach space, equipped with the Luxemburg-type
norm

∥u∥p(.) := inf

{
λ > 0,

∫
Ω

∣∣∣∣u(x)λ

∣∣∣∣p(x) dx ≤ 1

}
.

Next, we define the variable-order Sobolev space W 1,p(.)(Ω) as

W 1,p(.)(Ω) :=
{
u ∈ Lp(.)(Ω) : ∇u ∈ Lp(.)(Ω)

}
,

equipped with the norm

∥u∥W 1,p(.)(Ω) = ∥u∥2p(.) + ∥∇u∥2p(.). (2.2)
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Moreover, in what follows we will need the following embedding result from [12, 13].

Lemma 2.3. Let Ω ⊂ Rn be a bounded regular domain. It holds the following.

1. If p ∈ C(Ω) and q : Ω → [1,+∞) is a measurable function such that

ess inf
x∈Ω

(
p∗(x)− q(x)

)
> 0,

with p∗ defined as in (1.2), then W
1,p(.)
0 (Ω) ↪→ Lq(.)(Ω) with continuous and

compact embedding.

2. If p satisfy (1.3), then ∥u∥p(.) ≤ C∥∇u∥p(.) for all u ∈ W
1,p(.)
0 (Ω). In particular,

∥u∥1,p(.) = ∥∇u∥p(.) defines a norm on W
1,p(.)
0 (Ω) which is equivalent to (2.2).

It is not difficult to set up the following lemma’s, so we will ignore its proof here.

Lemma 2.4. Allow (1.3)-(1.4) to apply. Let u(t) := u(x, t) be a local solution to prob-
lem (1.1). Then, the following assertions hold:

(i). If there is a time t0 ∈ [0, Tmax) such that u (t0) ∈ W and E (t0) < d, then u(t)
stays within the set W for all t ∈ [t0, Tmax).

(ii). If there is a time t0 ∈ [0, Tmax) such that u (t0) ∈ U and E (t0) < d, then u(t)
stays within the set U for all t ∈ [t0, Tmax).

Lemma 2.5. Suppose that a positive, twice-differentiable function φ (t) satisfies on
t ≥ 0 the inequality

φ′′φ− (1 + α) (φ′)
2 ≥ 0, α > 0.

If

φ(0) > 0, and φ′(0) > 0,

then, then there exists t1 ∈
(
0, φ(0)

αφ′(0)

)
such that

φ (t) → ∞ as t → t1.

Lemma 2.6. Let Ω be a bounded domain of Rn, q(.) satisfies (1.2) and (1.4), then

B ∥∇u∥2 ≥ ∥u∥q(.)+1 , for all u ∈ W 1,2
0 (Ω). (2.3)

where the optimal constant of Sobolev embedding B is depends on q1,2 and |Ω|.

Lemma 2.7. Assuming (u0, u1) are in H1
0 (Ω)×L2(Ω) and that u0 is an element of U ,

the following holds:

d ≤
(
1

2
− 1

q2 + 1

)
a∥∇u(t)∥22 +

(
1

4
− 1

q2 + 1

)
b∥∇u(t)∥42, for t ∈ [0, Tmax) .

Proof. Because u0 ∈ U , according to Lemma 2.4 u(t) ∈ U for t ∈ [0, Tmax) and thus
I(u(t)) < 0. By Lemma 1.1 there exists λ∗ ∈ (0, 1) such that I (λ∗u) = 0, i.e.∫

Ω

(λ∗)
q(x)+1 |u(t)|q(x)+1dx = a (λ∗)

2 ∥∇u∥22 + b (λ∗)
4 ∥∇u∥42
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Thanks to λ∗ < 1 we can derive from the definition of d

d ≤ E (λ∗u(t)) = a
(λ∗)

2

2
∥∇u(t)∥22 + b

(λ∗)
4

4
∥∇u∥42 −

∫
Ω

(λ∗)
q(x)+1

q(x) + 1
|u(t)|p(x)dx

≤ a
(λ∗)

2

2
∥∇u(t)∥22 + b

(λ∗)
4

4
∥∇u∥42 −

1

q2 + 1

∫
Ω

(λ∗)
q(x)+1 |u(t)|q(x)+1dx

=

(
1

2
− 1

q2 + 1

)
(λ∗)

2
a∥∇u(t)∥22 +

(
1

4
− 1

q2 + 1

)
(λ∗)

4
b∥∇u(t)∥42 +

1

q2 + 1
I (λ∗u(t))

≤
(
1

2
− 1

q2 + 1

)
a∥∇u(t)∥22 +

(
1

4
− 1

q2 + 1

)
b∥∇u(t)∥42.

The proof is completed. □

Suppose there are positive constants B1, α1, α0, and E1 that satisfy the following
argument:

B1 = max (1, B) , α0 =

√
a∥∇u0∥22 +

b

2
∥∇u0∥42,

α1 =

(
B2

1

a

)
− q1+1

2(q1−1) ,E1 =

(
1

2
− 1

q1 + 1

)
α2
1.

(2.4)

Based on equations (2.3) and (2.1), we can come to a conclusion that

E (t) ≥a

2
∥∇u∥22 +

b

4
∥∇u∥42 −

1

q1 + 1
max

(
∥u∥q2+1

q(.)+1 , ∥u∥
q1+1
q(.)+1

)
≥a

2
∥∇u∥22 +

b

4
∥∇u∥42 −

1

q1 + 1
max

((
B2

1 ∥∇u∥22
) q2+1

2

,
(
B2

1 ∥∇u∥22
) q1+1

2

)

≥1

2
α2 − 1

q1 + 1
max

(B2
1

a

) q2+1
2

αq2+1,

(
B2

1

a

) q1+1
2

αq1+1

 := g (α) ∀α ≥ 0,

(2.5)

where α =
√

a∥∇u∥22 + b
2∥∇u∥42.

To the best of our knowledge, no evidence has been found regarding the blow-up
of solutions to this equation in Rn, given the initial data at a high energy level. This
paper aims to investigate this matter by examining the finite-time explosion of weak
solutions in the initial boundary value problem provided.

In the following sections, we will present our main theorems

For 3 < q1 ≤ q (x) ≤ q2 ≤ n+2
n−2 , we have the following result

2.2. Results on the blow-up time

Theorem 2.8. Supposed that q satisfies (H1). If u0 ̸= 0 is chosen in such a way that

E(u0) < E1 and
(

B1√
a

)−q1+1

≥
(
a∥∇u0∥22 + b

2∥∇u0∥42
) q1+1

2 > α1. Then the solution

of the problem (1.1) will eventually blow-up in finite time T . Moreover, the blow-up



512 Nadji Touil and Abita Rahmoune

time T can be estimated from above by T̂ , where

T̂ = max



(q1 + 1) |Ω|
q1−2

2
(∫

Ω
u2
0dx
) 1−q1

2

(q1 − 1) (q1 − 3)

(
1−

(
(q1 + 1)

(
1
2 − E(u0)

α2
1

))−q1−1
q1−1

) ,

(q1 + 1) |Ω|
q1−2

2
(∫

Ω
u2
0dx
) 1−q2

2

(q2 − 1) (q1 − 3)

(
1−

(
(q1 + 1)

(
1
2 − E(u0)

α2
1

))−q1−1
q1−1

) .


(2.6)

Lemma 2.9. Let define h : [0,+∞) → R as

h (α) =
1

2
α2 − 1

q1 + 1

(
B2

1

a

) q1+1
2

αq1+1. (2.7)

Then, under the assumptions of Theorem 2.8, the following properties hold :

(i). h is increasing for 0 < α ≤ α1 and decreasing for α ≥ α1;
(ii). lim

α→+∞
h (α) = −∞ and h (α1) = E1.

Proof. By the assumption that B1 > 1 and p1 > 1, h(α) = g (α) , for 0 < α ≤(
B1√
a

)−q1+1

. Moreover, h(α) is continuous and differentiable in [0,+∞).

h′(α) = α−
(
B2

1

a

) q1+1
2

αq1 , 0 ≤ α <

(
B1√
a

)−q1+1

.

Then (i) follows. Since q1− 1 > 0, we have lim
α→+∞

h (α) = −∞. A typical computation

yields to h(α1) = E1. This means that (ii) is true. □

Lemma 2.10. According to Theorem 2.8, it can be assumed that there is a positive
constant α2 > α1 such that√

a∥∇u∥22 +
b

2
∥∇u∥42 ≥ α2, t ≥ 0, (2.8)

∫
Ω

1

q (x) + 1
|u (x, t)|q(x)+1

dx ≥ 1

q1 + 1

(
B2

1

a

) q1+1
2

αq1+1
2 , (2.9)

and

α2

α1
≥
(
(q1 + 1)

(
1

2
− E(u0)

α2
1

)) 1
q1−1

> 1. (2.10)

Proof. According to Lemma 2.9, since E(u0) < E1, there must be a positive constant
α2 > α1 such that E(u0) = h(α2). Using equation (2.5), we can see that h(α0) =
g(α0) ≤ E(u0) = h(α2). With the help of Lemma 2.9(i), we can conclude that α0 ≥ α2,
which proves that (2.8) holds for t = 0. Now, to prove (2.8) by contradiction, let’s

assume that there exists a t∗ > 0 with
√
a∥∇u (t∗) ∥22 + b

2∥∇u (t∗) ∥42 < α2. By the
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continuity of
√
a∥∇u (., t∗) ∥22 + b

2∥∇u (., t∗) ∥42 and α2 > α1, we may take t∗ such that

α2 >
√
a∥∇u (t∗) ∥22 + b

2∥∇u (t∗) ∥42 > α1, then it follows from (2.5) and (2.7) that

E(u0) = h(α2) < h

(√
a∥∇u (t∗) ∥22 +

b

2
∥∇u (t∗) ∥42

)
≤ E (t∗) ,

which contradicts to (1.6), and (2.8) follows. By (2.1) and (??), we obtain∫
Ω

1

q (x) + 1
|u (x, t)|q(x)+1

dx ≥a

2
∥∇u∥22 +

b

4
∥∇u∥42 − E(u0)

≥1

2
α2
2 − h(α2) =

1

q1 + 1

(
B2

1

a

) q1+1
2

αq1+1

(2.11)

and (2.9) follows. Since E(u0) < E1, by a simple calculation, we can check(
(q1 + 1)

(
1

2
− E(u0)

α2
1

)) 2
q1−1

> 1,

then the second inequality in (2.10) holds, and we only need to show the first in-
equality. Denote β = α2

α1
, then β > 1 by the fact that α2 > α1. So it results from

E(u0) = h(α2), B1 > 1 and (2.4) that

E(u0) = h(α2) = h (βα1) =α2
1

(
1

2
β2 − 1

q1 + 1

1

a
q1+1

2

Bq1+1
1 βq1+1αq1−1

1

)
= α2

1β
2

(
1

2
− 1

q1 + 1
βq1−1

)
≥α2

1

(
1

2
− 1

q1 + 1
βq1−1

)
,

which implies that the first inequality in (2.10) holds. □

Consider H(t) = E1 − E(t) for t ≥ 0, the following lemma holds.

Lemma 2.11. According to Theorem 2.8, the functional H(t) mentioned earlier has
the following estimates:

0 < H(0) ≤ H(t) ≤
∫
Ω

1

q (x) + 1
|u (x, t)|q(x)+1

dx, t ≥ 0. (2.12)

Proof. By (1.6), H(t) is nondecreasing in t. Thus

H(t) ≥ H(0) = E1 − E(u0) > 0, t ≥ 0. (2.13)

Combining (2.1), (2.4), (2.8) and α2 > α1, we have

H(t)−
∫
Ω

1

q (x) + 1
|u (x, t)|q(x)+1

dx =E1 −
1

2

(
a∥∇u∥22 +

b

2
∥∇u∥42

)
≤
(
1

2
− 1

q1 + 1

)
α2
1 −

1

2
α2
1 < 0, t ≥ 0.

(2.14)

(2.12) follows from (2.13) and (2.14). □

With the three lemmas presented above, we can give the proof of the Theorem
2.8.
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Proof of Theorem 2.8. Let define the function

φ (t) =
1

2

∫
Ω

u (x, t)
2
dx, (2.15)

According to the definitions of E(t) and H(t), the derivative of φ′(t) meets the re-
quirements

φ′ (t) =

∫
Ω

u (x, t)ut (x, t) dx

=

∫
Ω

u (x, t)

(
M

(∫
Ω

|∇u|2dx
)
∆u+ |u|q(x)−1

u

)
dx

=− a

∫
Ω

|∇u (x, t)|2 dx− b

∫
Ω

|∇u (x, t)|4 dx+

∫
Ω

|u|q(x)+1
dx

≥
(
−4E(t) + a∥∇u∥22 − 4

∫
Ω

1

q(x) + 1
|u|q(x)+1dx

)
+

∫
Ω

|u|q(x)+1
dx

≥− 4 (E1 −H (t)) +

(
1− 4

q1 + 1

)∫
Ω

|u (x, t)|q(x)+1
dx

≥− 4E1 + 2H (t) +
q1 − 3

q1 + 1

∫
Ω

|u (x, t)|q(x)+1
dx

(2.16)

By (2.4) and (2.8), we see

4E1 =4
q1 − 1

2 (q1 + 1)

(
B2

1

a

)
− q1+1

q1−1 = 2
q1 − 1

q1 + 1

(
B2

1

a

) q1+1
2

αq1+1
1

=2
q1 − 1

q1 + 1

(
α1

α2

)q1+1
(B2

1

a

) q1+1
2

αq1+1
2


≤2

q1 − 1

q1 + 1

(
α1

α2

)q1+1 ∫
Ω

|u (x, t)|q(x)+1
dx

≤q1 − 3

q1 + 1

(
α1

α2

)q1+1 ∫
Ω

|u (x, t)|q(x)+1
dx.

(2.17)

According to Lemmas 2.11, (2.16) and (2.17), this result

φ′ (t) ≥ γ

∫
Ω

|u (x, t)|q(x)+1
dx (2.18)

where

γ =
q1 − 3

q1 + 1

(
1−

(
α1

α2

)q1+1
)

> 0

According to Hölder’s inequality we have

φ
q1+1

2 (t) ≤ C1

∫
Ω

|u|q1+1
dx,

φ
q2+1

2 (t) ≤ C2

∫
Ω

|u|q2+1
dx

(2.19)
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where

C1 = |Ω|
q1−2

2

(
1

2

) q1+1
2

, and C2 = |Ω|
q2−1

2

(
1

2

) q2+1
2

.

|Ω| is the Lebesgue measure of Ω. Then it follows from (2.18) and (2.19) that

φ′ (t) ≥γmin

(∫
Ω

|u (x, t)|q1+1
dx,

∫
Ω

|u (x, t)|q2+1
dx

)
≥γmin

(
φ

q2+1
2 (t)

C2
,
φ

q1+1
2 (t)

C1

)
,

this implies

φ(t) ≥ min



((
1

2

∫
Ω

u2
0dx

) 1−q1
2

− γ (q1 − 1)

2C1
t

) −2
q1−1

,

((
1

2

∫
Ω

u2
0dx

) 1−q2
2

− γ (q2 − 1)

2C2
t

) −2
q2−1


.

Now, let

0 < T ∗ := max

(
2

q1
2 C1

γ (q1 − 1)

(∫
Ω

u2
0dx

) 1−q1
2

,
2

q2
2 C2

γ (q2 − 1)

(∫
Ω

u2
0dx

) 1−q2
2

)
< ∞,

(2.20)
then φ(t) blows up at time T ∗. Hence, u(x, t) discontinues at some finite time T ≤ T ∗,
that is to means, u(x, t) blows up at a finite time T . Next, we estimate T . By (2.10)
and the values of γ, C1, C2, we have

2
q1
2 C1

γ (q1 − 1)
≤ (q1 + 1) |Ω|

q1−2
2

(q1 − 1) (q1 − 3)

(
1−

(
(q1 + 1)

(
1
2 − E(u0)

α2
1

))−q1−1
q1−1

) ,

2
p2
2 C2

γ (q2 − 1)
≤ (q1 + 1) |Ω|

q1−2
2

(q2 − 1) (q1 − 3)

(
1−

(
(q1 + 1)

(
1
2 − E(u0)

α2
1

))−q1−1
q1−1

) .

The pair of inequalities shown above coupling (2.20) imply that T ≤ T ∗ ≤ T̂ , with T̂
being a fixed in (2.6). □

For 1 < q1 ≤ q (x) ≤ q2 ≤ n+2
n−2 , we have the following blow-up results

Theorem 2.12. Let u(x, t) the weak solution to problem (1.1) with the initial data
u0 ∈ H1

0 (Ω) are such that u0 ̸= 0.

1. Let q satisfy (H1). Suppose that one of the following claims holds:
(i). E (u0) < 0,
(ii). E (0) ≤ Ed,
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(iii). 0 ≤ E (u0) < C0 ∥u0∥22 ≜ min
(

a(q1−1)
q1+1 λ1,

b(q1−3)
2(q1+1)λ

2
1∥u0∥22

)
∥u0∥22, where

λ1 > 0 is the first eigenvalue of −∆ in Ω with homogeneous Dirichlet
boundary condition.
Then u(x, t) blows up in finite time. Moreover, the upper bound for T has

the following proprieties:

In case (i), T ≤ ∥u0∥2
2

(1−q21)E(u0)
.

In case (ii), when E(u0) < Ed, then the T can be bounded above as:

T ≤
4q1 ∥u0∥22

(q1 − 1)2 (q1 + 1) (Ed − E(0))
.

In case (iii), T ≤ 4q1∥u0∥2
2

(q1−1)2
(
min

(
a(q1−1)λ1,

b(q1−3)
2 λ2

1∥u0∥2
2

)
∥u0∥2

2−(q1+1)E(u0)
) .

2. Let q satisfy (H2) . Suppose that the following claim holds: E(u0) < − q1+1
q1+5

b
4εc (ε),

where

0 < c (ε) = max


3− q1

4

(
Bε−

q1+1
4

q1 + 1

4

) 4
3−q1

,

3− q2
4

(
Bε−

q2+1
4

q2 + 1

4

) 4
3−q2

 , (2.21)

and

0 < ε ≤ b (q1 + 1)
2

16
(2.22)

. Then T < +∞, which implies that u(x, t) blows up in finite time. Moreover,
the upper bound for T has the following form

T ≤
∥u0∥22

(1− q21)
(

q1+5
q1+1E(u0) +

b
4εc (ε)

) .
Proof. 1. (I) Set

M(t) =
1

2
∥u(t)∥22, J(t) = −E(u(t)) ≜ −E(u(x, t)),

then M(0) > 0, J(0) > 0. By (1.7) we have J′(t) = − d
dtE(u(t)) = ∥ut(t)∥22 ≥ 0,

which infers that J(t) ≥ J(0) > 0 for all t ∈ [0, T ). Evoking (1.5), (1.8) and the
fact that q1 > 3, we gain, for any t ∈ [0, T ), that

M′(t) = −I(u(t)) ≥ − (q1 + 1)E(u) + (q1 − 1)
a

2
∥∇u∥22 +

b

4
(q1 − 3) ∥∇u∥42

≥ (q1 + 1)J(t),
(2.23)

This, when combined with the Cauchy-Schwarz inequality, results

M(t)J′(t) =
1

2
∥u(t)∥22 ∥ut(t)∥22 ≥ 1

2
∥u(t)∥22 ∥ut(t)∥22

≥1

2
(u, ut)

2
=

1

2
(M′(t))

2 ≥ q1 + 1

2
M′(t)J(t).

(2.24)
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Based on direct calculations, it can be inferred from (2.24) that(
J(t)M− q1+1

2 (t)
)′

= M− q1+3
2 (t)

(
J′(t)M(t)− q1 + 1

2
J(t)M′(t)

)
≥ 0.

Therefore,

0 < κ := J(0)M− q1+1
2 (0) ≤ J(t)M− q1+1

2 (t)

≤ 1

q1 + 1
M′(t)L− q1+1

2 (t) =
2

1− q21

(
M

1−q1
2 (t)

)′
. (2.25)

By integrating (2.25) over the interval [0, t], where t belongs to the open interval
(0, T ), and taking into consideration that q1 > 3, we can derive the following
result

κt ≤ 2

1− q21

(
M

1−q1
2 (t)−M

1−q1
2 (0)

)
,

or equivalently

0 ≤ M
1−q1

2 (t) ≤ M
1−q1

2 (0)− q21 − 1

2
κt, t ∈ (0, T ). (2.26)

It is clear that (2.26) cannot hold for all t > 0, implying T < +∞. Furthermore,
it can be deduced from (2.26) that

T ≤ 2

(q21 − 1)κ
M

1−q1
2 (0) =

∥u0∥22
(1− q21) E (u0)

.

(II) Assuming the existence of u(t) globally, we will use contradiction and define
the following function:

θ(t) =

∫ t

0

∥u(s)∥22ds+ (T0 − t) ∥u0∥22 + β (t+ t0)
2
, t ∈ [0, T0], t0 > 0. (2.27)

where t0, T0 and β are positive constants to be determined later. Then we have

θ′(t) =∥u(t)∥22 − ∥u0∥22 + 2β (t+ t0)

=

∫ t

0

d

ds
∥u(s)∥22ds+ 2β (t+ t0)

=2

∫ t

0

∫
Ω

ut(s)u(s)dxds+ 2β (t+ t0) ,

(2.28)

and

θ′′(t) = 2

∫
Ω

ut(t)u(t)dx+ 2β. (2.29)

Using (1.1), and (2.29) we deduce that

θ′′(t) = −a∥∇u∥22 − b∥∇u∥42 +
∫
Ω

|u|q(x)+1dx+ 2β. (2.30)
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Based on (2.27), (2.28) and (2.30), it can be concluded that

θ′′(t)θ(t)−q1 + 1

2
(θ′(t))

2

=2θ(t)

[
−a∥∇u∥22 − b∥∇u∥42 +

∫
Ω

|u|q(x)+1dx+ β

]
− q1 + 1

2

(
2

∫ t

0

∫
Ω

ut(s)u(s)dxds+ 2β (t+ t0)

)2

=2θ(t)

[
−a∥∇u∥22 − b∥∇u∥42 +

∫
Ω

|u|q(x)+1dx+ β

]
+ 2 (q1 + 1)

[
η(t)−

(
θ(t)− (T − t) ∥u0∥22

)(
β +

∫ t

0

∥ut(s)∥22ds
)]

(2.31)

where η : [0, T ] → R is the function given by

η(t) =

(
β (t+ t0)

2
+

∫ t

0

∥u(s)∥22ds
)(

β +

∫ t

0

∥ut(s)∥22 ds
)

−
(
β (t+ t0) +

∫ t

0

∫
Ω

ut(s)u(s)dxds

)2

. (2.32)

By utilizing the Cauchy-Schwarz and Young’s inequalities, we can ensure that:(∫
Ω

u(t)ut(t)dx

)2

≤∥u(t)∥22 ∥ut(t)∥22 ,

2β (t+ σ)

∫ t

0

∫
Ω

ut(s)u(s)dxds ≤β (t+ t0)
2
∫ t

0

∥ut(s)∥22 ds+ β

∫ t

0

∥u(s)∥22ds
(2.33)

By (2.33), we get

η(t) ≥ β (t+ t0)
2
∫ t

0

∥ut(s)∥22 ds+ β

∫ t

0

∥u(s)∥22ds+
∫ t

0

∥ut(s)∥22 ds
∫ t

0

∥u(s)∥22ds

−2β (t+ t0)

∫ t

0

∫
Ω

ut(s)u(s)dxds−
(∫ t

0

∫
Ω

ut(s)u(s)dxds

)2

≥ 0, ∀t ∈ [0, T ].

(2.34)
From (2.31) and (2.34) we obtain

θ′′(t)θ(t)− q1 + 1

2
(θ′(t))

2 ≥ θ(t)ζ(t), (2.35)

where ζ(t) is given by

ζ(t) = −2a∥∇u∥22−2b∥∇u∥42+2

∫
Ω

|u|q(x)+1dx+2β−2 (q1 + 1)

(
β +

∫ t

0

∥ut
..
(s)∥22ds

)
(2.36)
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We will now make an estimation of ζ(t), using equations (1.7), and (2.36) yields

ζ(t) =− 2a∥∇u∥22 − 2b∥∇u∥42 + 2

∫
Ω

|u|q(x)+1dx

+ 2 (q1 + 1)E (u)− 2 (q1 + 1)E(u0)− 2q1β

≥− 2a∥∇u∥22 − 2b∥∇u∥42 + (q1 + 1) a∥∇u∥22

+
b

2
(q1 + 1) ∥∇u∥42 − 2 (q1 + 1)E(u0)− 2q1β

=(q1 − 1) a∥∇u∥22 +
q1 − 3

2
b∥∇u∥42 − 2 (q1 + 1)E(u0)− 2q1β

=2 (q1 + 1)


(
1

2
− 1

q1 + 1

)
a∥∇u∥22 +

(
1

4
− 1

q1 + 1

)
b∥∇u∥42

−E(u0)−
q1

q1 + 1
β



(2.37)

Let β be a positive value such that β ∈
(
0, q1+1

q1
(Ed − E(u0))

]
, and since u0 ∈ U

by Lemma 2.7, we have:

d ≤
(
1

2
− 1

q2 + 1

)
a∥∇u(t)∥22 +

(
1

4
− 1

q2 + 1

)
b∥∇u(t)∥42. (2.38)

And by assuming E(u0) < Ed we get

E(u0) <
q1 − 1

q1 + 1

q2 + 1

q2 − 1
d ≤ d

≤
(
1

2
− 1

q2 + 1

)
a∥∇u(t)∥22 +

(
1

4
− 1

q2 + 1

)
b∥∇u(t)∥42.

(2.39)
If we connect (2.37) and (2.39) we obtain

ζ(t) > ρ > 0. (2.40)

From (2.35) and (2.40), we reach at

θ′′(t)θ(t)− q1 + 1

2
(θ′(t))

2 ≥ ρθ(t). (2.41)

By the continuity of θ and equation (2.38), we can infer that there exists a
positive constant c such that θ(t) ≥ c for t in the interval [0, T ]. Therefore,
equation (2.41) produces

θ′′(t)θ(t)− q1 + 1

2
(θ′(t))

2 ≥ cρ. (2.42)

In this case, we prove that T cannot be infinite, meaning there is no weak solution
at all times. We use Lemma 2.5 to infer that θ(t) → ∞ as t → T∗, where

T∗ ≤ θ(0)

(q1 − 1)θ′(0)
=

T0 ∥u0∥22 + βt20
(q1 − 1)βt0

,
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there exists a T ∗ < T∗ which

lim
t→T∗

∫ t

0

∥u(s)∥22ds+ (T0 − t) ∥u0∥22 + β (t+ t0)
2
= +∞.

Let’s choose appropriate values for t0 and T0. We can set t0 to any number that
depends only on q1, d− E(0) and u0

t0 >
∥u0∥22

(q1 − 1)β

If t0 is fixed, then T0 can be chosen as

T0 =
T0 ∥u0∥22 + βt20
(q1 − 1)βt0

,

so that

T0 =
βt20

(q1 − 1)βt0 − ∥u0∥22
.

The lifespan of the solution u(x, t) is bounded by a certain number as

T0 = inf
t≥t0

βt2(
(q1 − 1)βt− ∥u0∥22

) =
4 ∥u0∥22

(q1 − 1)2β
=

4q1 ∥u0∥22
(q1 − 1)2 (q1 + 1) (Ed − E(u0))

.

Due to the arbitrariness of T0 < T it follows that

T ≤
4q1 ∥u0∥22

(q1 − 1)2 (q1 + 1) (Ed − E(u0))
.

(III) To deal with the case 0 ≤ E(u0) < C0 ∥u0∥22, first, it follows from the
definitions of I(u), E(u) and the assumption (ii) that

I (u0) = (q1 + 1)E (u0)−
a(q1 − 1)

2
∥∇u0∥22 −

b(q1 − 3)

4
∥∇u0∥42

= (q1 + 1)
(
E (u0)− C0 ∥u0∥22

)
− a(q1 − 1)

2

(
∥∇u0∥22 − λ1 ∥u0∥22

)
− b(q1 − 3)

4
∥∇u0∥42 < 0.

We claim that for all t ∈ [0, T ), I(u(t)) < 0. Otherwise, there would exist a
t0 ∈ (0, T ) such that I(u(t)) < 0 for all t ∈ [0, t0) and I (u (t0)) = 0. By (2.23),
we have that ∥u(t)∥22 and ∥u(t)∥42 are strictly increasing in t for t ∈ [0, t0), and
therefore

0 ≤ E (u0) < C0 ∥u0∥22 < C0 ∥u (t0)∥22 . (2.43)
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On the other hand, we can deduce from the monotonicity of E(u(t)) and
(1.5)

E (u0) ≥E (u (t0)) =
a(q1 − 1)

2(q1 + 1)
∥∇u (t0)∥22 +

b(q1 − 3)

4(q1 + 1)
∥∇u (t0)∥42 +

1

q1 + 1
I (u (t0))

≥min

(
a(q1 − 1)

(q1 + 1
λ1,

b(q1 − 3)

2(q1 + 1)
λ2
1∥u0∥22

)
∥u (t0)∥22 = C0 ∥u (t0)∥22 ,

Therefore, since (2.43) is contradictory, we have I(u(t) < 0 for all t ∈ [0, T ).
Then, ∥u(t)∥22 is strictly increasing on [0, T ) and ∥u(t)∥42 is also strictly increasing
on [0, T ). For any T0 ∈ (0, T ), β > 0, and t0 > 0, we define

F (t) =

∫ t

0

∥u(τ)∥22dτ − (T0 − t) ∥u0∥22 + β(t+ t0)
2, t ∈ [0, T0] . (2.44)

Through a direct calculations

F ′(t) =∥u(t)∥22 − ∥u0∥22 + 2β(t+ t0) =

∫ t

0

d

dτ
∥u(τ)∥22dτ + 2β(t+ t0)

=2

∫ t

0

(u, uτ ) dτ + 2β(t+ t0),

F ′′(t) =2 (u, ut) + 2β = −2I(u(t)) + 2β

=− 2(q1 + 1)E(u(t)) + a(q1 − 1)∥∇u(t)∥22 +
b(q1 − 3)

2
∥∇u(t)∥42 + 2β

=− 2(q1 + 1)E (u0) + 2(q1 + 1)

∫ t

0

∥uτ (τ)∥22 dτ + a(q1 − 1)∥∇u(t)∥22

+
b(q1 − 3)

2
∥∇u(t)∥42 + 2β.

(2.45)

For t ∈ [0, T0], set

θ(t) =

(∫ t

0

∥u(τ)∥22dτ + β(t+ t0)
2

)(∫ t

0

∥uτ∥22 dτ + β

)
−
(∫ t

0

(u, uτ ) dτ + β(t+ t0)

)2

.

By applying Cauchy-Schwarz and Hölder’s inequalities, we can show that F (t) is
non-negative on the interval [0, T0]. As a result, we can use equation (2.44)-(2.45)
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and the monotonicity of ∥u(t)∥22 and ∥u(t)∥42 to conclude

F (t)F ′′(t)− q1 + 1

2
(F ′(t))

2

=F (t)F ′′(t)− 2(q1 + 1)

(∫ t

0

(u, uτ ) dτ + β(t+ t0)

)2

=F (t)F ′′(t) + 2(q1 + 1)

[
θ(t)−

(
F − (T − t) ∥u0∥22

)(∫ t

0

∥uτ∥22 dτ + β

)]
≥F (t)F ′′(t)− 2(q1 + 1)F (t)

(∫ t

0

∥uτ∥22 dτ + β

)
=F (t)

[
−2(q1 + 1)E (u0) + 2(q1 + 1)

∫ t

0

∥uτ∥22 dτ + a(q1 − 1)∥∇u(t)∥22

+
b(q1 − 3)

2
∥∇u(t)∥42 + 2β − 2(q1 + 1)

∫ t

0

∥uτ∥22 dτ − 2(q1 + 1)β

]
≥F (t)

[
−2(q1 + 1)E (u0) + a(q1 − 1)λ1∥u(t)∥22 +

b(q1 − 3)

2
λ2
1∥u(t)∥42 − 2q1β

]
≥F (t)

[
−2(q1 + 1)E (u0) + min

(
a(q1 − 1)λ1,

b(q1 − 3)

2
λ2
1∥u0∥22

)
∥u0∥22 − 2q1β

]
=2(q1 + 1)F (t)

[
C0 ∥u0∥22 − E (u0)−

q1β

q1 + 1

]
≥ 0.

(2.46)

Choosing 0 < β < q1+1
q1

(
C0 ∥u0∥22 − E (u0)

)
. Then using Lemma 2.5, to infer

F (t) → ∞ as t → T ∗, where

T ∗ ≤ F (0)

(q1 − 1)F ′(0)
=

T0 ∥u0∥22 + βt20
(q1 − 1)βt0

. (2.47)

Let’s choose appropriate values for t0 and T0. We can set t0 to any number that
only depends on q1, d− E(0) and u0 as

t0 >
∥u0∥22

(q1 − 1)β
.

Fix t0, then T0 can be picking a

T0 =
T0 ∥u0∥22 + βt20
(q1 − 1)βt0

,

so that

T0 =
βt20

(q1 − 1)βt0 − ∥u0∥22
.

Therefore, the lifespan of the solution u(x, t) is bounded by

T0 = inf
t≥t0

βt2

(q1 − 1)βt− ∥u0∥22
=

4q1 ∥u0∥22
(q1 − 1)2 (q1 + 1)

(
C0 ∥u0∥22 − E (u0)

) ,
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due to the arbitrariness of T0 < T it follows that

T0 ≤
4q1 ∥u0∥22

(q1 − 1)2 (q1 + 1)
(
min

(
a(q1 − 1)λ1,

b(q1−3)
2 λ2

1∥u0∥22
)
∥u0∥22 − E (u0)

) .
2. To handle the case where 1 < q1 ≤ q (x) ≤ q2 ≤ 3, we modify the energy

functional E by setting

M(t) =
1

2
∥u(t)∥22, J(t) = −E(u(t))−

(
4

q1 + 1
E(0) +

b

4ε
c (ε)

)
≜ −E(u(x, t))−

(
4

q1 + 1
E(u0) +

b

4ε
c (ε)

)
,

then M(0) > 0, J(0) > 0. By (1.7) we also have

J′(t) = − d

dt
E(u(t)) = ∥ut(t)∥22 ≥ 0.

It implies that J(t) ≥ J(0) for all t ∈ [0, T ). Additionally, Lemma 2.6 states that
for any ε > 0∫

Ω

|u|q(x)+1dx ≤ Bmax
(
∥∇u∥q1+1

2 , ∥∇u∥q2+1
2

)

≤ max


ε∥∇u∥42 +

3− q1
4

(
B

ε
q1+1

4

q1 + 1

4

) 4
3−q1

,

ε∥∇u∥42 +
3− q2

4

(
B

ε
q2+1

4

q2 + 1

4

) 4
3−q2


≤ ε∥∇u∥42 + c (ε) ,

which give

∥∇u∥42 ≥ 1

ε

∫
Ω

|u|q(x)+1dx− 1

ε
c (ε) ,

and from (1.5)

E(u) =
a

2
∥∇u∥22 +

b

4
∥∇u∥42 −

∫
Ω

1

q(x) + 1
|u|q(x)+1dx

≥ a

2
∥∇u∥22 +

b

4

1

ε

∫
Ω

|u|q(x)+1dx− 1

q1 + 1

∫
Ω

|u|q(x)+1dx− b

4ε
c (ε) ,

also using (1.5), and (1.5)2 we have

b∥∇u∥42 ≤ 4E(0) +
4

q1 + 1

∫
Ω

|u|q(x)+1dx,

in which (1.5)2 becomes

I(u) ≤ a∥∇u∥22 + 4E(u0) +
4

q1 + 1

∫
Ω

|u|q(x)+1dx

−
∫
Ω

|u|q(x)+1dx+
a(q1 − 1)

2
∥∇u0∥22
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thus we obtain, for any t ∈ [0, T ), that

(q1 + 1)E(u)− I(u)

≥ q1 − 1

2
a∥∇u∥22 +

b (q1 + 1)

4ε

∫
Ω

|u|q(x)+1dx−
∫
Ω

|u|q(x)+1dx

−4E(u0)−
b (q1 + 1)

4ε
c (ε)− 4

q1 + 1

∫
Ω

|u|q(x)+1dx+

∫
Ω

|u|q(x)+1dx

≥
(
b (q1 + 1)

4ε
− 4

q1 + 1

)∫
Ω

|u|q(x)+1dx− 4E(u0)−
b (q1 + 1)

4ε
c (ε)

≥ −4E(u0)−
b (q1 + 1)

4ε
c (ε) ,

this meaning that

M′(t) = −I(u) ≥ − (q1 + 1)E(u)− 4E(u0)−
b (q1 + 1)

4ε
c (ε) = − (q1 + 1) J(t),

which, together with Cauchy-Schwarz inequality, yields

M(t)J′(t) =
1

2
∥u(t)∥22 ∥ut(t)∥22 ≥ 1

2
(u, ut)

2
=

1

2
(M′(t))

2 ≥ q + 1

2
M′(t)J(t).

By direct computations as previously, it follows that

0 ≤ M
1−q1

2 (t) ≤ M
1−q1

2 (0)− q21 − 1

2
J(0)M− q1+1

2 (0)t, t ∈ (0, T ). (2.48)

It is obvious to see that (2.48) cannot hold for all t > 0. Therefore, T < +∞.
Moreover, it can be inferred that

T ≤ 2

(q21 − 1) J(0)L− q1+1
2 (0)

M
1−q1

2 (0) =
∥u0∥22

(1− q21)
(

q1+5
q1+1E(u0) +

b
4εc (ε)

) .
□

Remark 2.13. It is not possible to compare the conditions in Theorem2.8 and The-
orem2.12, which use Ed, E1, and E(u0). However, when 1 < q1 ≤ q (x) ≤ q2 ≤ 3,
instead of 3 < q1 ≤ q (x) ≤ q2 ≤ 2∗, and n ≥ 3, three new blow-up criteria are
obtained which have not been addressed before in [14, 15].
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The Minty-Browder theorem for nonlinear ellip-
tic equations involving p-Laplacian with singular
coefficients under form boundary conditions
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Abstract. We consider the elliptic parabolic partial differential equation with
singular coefficients under the rather general form boundary conditions. We
proved that the bounded operator associated with the elliptic equation satisfies
monotony, coercivity, and semicontinuity conditions. Employing Minty-Browder
arguments, we establish the existence and uniqueness of the weak solution to the
elliptic equation with singular coefficients under form-boundary conditions.
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1. Introduction

In this article, we consider the existence of the weak solution to a quasi-linear elliptic
differential equation in the divergent form

λu |u|p−2 − d

dxi
ai (x, u, ∇u) + b (x, u, ∇u) = 0

with a positive parameter λ, where the divergent term is given by

d

dxi
ai (x, u, ∇u) =

∑
i=1, ..., l

∂ai (x, u, ∇u)
∂xi

in domain Ω ⊆ Rl, l ≥ 3. As a model example of the main term, we can consider the

operator ∆pu ≡ div
(
∇u |∇u|p−2

)
and lower term b (x, u, ∇u) = c (x)u |u|p−2

.
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Due to the plethora of applications of elliptic partial differential equations, the
theory of the existence of solutions is well developed. There are many approaches
to the solvability theory for elliptic equations, such as the mountain pass theorem,
method of sub-super solutions, degree theory, and fixed point theory to name a few.
A general version of the Minty-Browder theorem states that if an operator A from
real, separable, reflexive Banach space X into its dual space X∗ is semicontinuous,
monotone, and coercive, then for each ψ ∈ X∗ there is a solution f ∈ X to the equa-
tion A (f) = ψ. The classical results of the Minty-Browwder theorem can be found in
[3 – 5, 15, 16], where the method of monotone operators was developed and its appli-
cation to the Dirichlet problem for a quasi-linear elliptic partial differential equation
in the divergence form was considered [16]. In [4, 5], nonlinear elliptic boundary value
problems were considered in Hilbert spaces by the method of monotone operators,
the semi-boundedness was employed instead of the positivity condition, also, the per-
turbation of such operators by compact operators was studied.

In this article, we consider elliptic differential equations in the divergent form
under form-boundary conditions on its coefficients. The local singularities of the co-
efficients are supposed such that they belong to certain classes PK (β).

Definition 1.1. For a given number β ∈ (0, 1), the class of form-boundary functions
PK (β) consists of all functions f ∈ L1

loc (Ω) such that the inequality

∥fϕ∥2L2 ≤ β ∥∇ϕ∥2L2 + c (β) ∥ϕ∥2L2 , (1.1)

holds with a positive constant c (β) and for all ϕ ∈W 2
1 (Ω).

Some additional information on this type of form-boundary condition can be
founded in [22, 23, 24].

From the definition of form-boundary class, assuming γ ≥ 0 and γ
1
2 ∈ PK (β),

we obtain ∫
Ω

γ |ϕ|p dx ≤ β
p2

4
∥ϕ∥p−2

Lp ∥∇ϕ∥2Lp + c (β) ∥ϕ∥pLp ,

for all ϕ ∈W p
1 (Ω) and p ≥ 2. Indeed, we estimate∫

Ω
γ |ϕ|p dx =

∫
Ω

(
|γ|

1
2 |ϕ|

p
2

)2

dx =
∥∥∥|γ| 12 |ϕ| p2 ∥∥∥2

L2

≤ β
∥∥∇ (

ϕ
p
2

)∥∥2
L2 + c (β)

∥∥ϕ p
2

∥∥2
L2

= β

∫
Ω

(
∇
(
ϕ

p
2

))2
dx+ c (β)

∫
Ω

(
|ϕ|

p
2

)2

dx

= β

∫
Ω

(
p
2ϕ

p
2−1∇ϕ

)2
dx+ c (β)

∫
Ω
|ϕ|p dx

= β p2

4

∫
Ω
ϕp−2 (∇ϕ)2 dx+ c (β) ∥ϕ∥pLp .

Next, applying the Holder inequality, we obtain∫
Ω
γ |ϕ|p dx ≤ β p2

4

∥∥ϕp−2
∥∥
L

p
p−2

∥∥∥(∇ϕ)2∥∥∥
L

p
2
+ c (β) ∥ϕ∥pLp

= β p2

4 ∥ϕ∥p−2
Lp ∥∇ϕ∥2Lp + c (β) ∥ϕ∥pLp .
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The form-boundary condition guarantees the coercitivity of the associated qua-

dratic form in L2, namely, the linear operator −∆ + f⃗ · ∇ is coercive in L2 if∣∣∣f⃗ ∣∣∣ ∈ PK (β).

We proved that the operator A : W p
1 (Ω) → W p

1 (Ω) given in (2.1), satisfies the
monotony, coercivity, and semi-continuity conditions. The existence and the unique-
ness of the weak solution to the considered equation follow from the Minty-Browder
theorem applied to the operator A.

2. An elliptic partial differential equation

2.1. Basic properties of Sobolev spaces

Let Ω be a smooth domain in Rl for l ≥ 3. The Sobolev space W p
k (Ω) is a Banach

space consisting of all elements u ∈ Lp (Ω) such that for all multy-index α with
|α| ≤ k, the distributional mixed partial derivative

Dαu = u(α) =
∂|α|u

∂xα1
1 ...∂xαl

l

exists and belongs to Lp (Ω), i.e.,
∥∥u(α)∥∥

Lp <∞. The norm in W p
k (Ω) is defined by

∥u∥Wp
k
=

∫
Ω

|u|p +
∑

m=1, ..., k

∑
(m)

∣∣∣D(m)u
∣∣∣p
 dx

 1
p

,

or equivalent form in the sense of equivalence of norms

∥u∥∼Wp
k
= ∥u∥Lp +

∑
m=1, ..., k

∑
(m)

∥∥∥D(m)u
∥∥∥
Lp
,

where the symbol
∑

(m) means summation by all possible derivatives of u up to order

m. For the domains Ω with smooth enough boundaries ∂Ω, the spaceW p
k (Ω) coincides

with the closure of the set C∞ (Ω) of all infinitely differentiable functions in clos (Ω).
In particular, the norm of W p

1 (Ω) is given by

∥u∥Wp
1
= (∥u∥pLp + ∥∇u∥pLp)

1
p ,

or equivalent form in the sense of equivalence of norms

∥u∥∼Wp
1
= ∥u∥Lp + ∥∇u∥Lp .

Property. For p ∈ (1, ∞) and for each integer m ≥ 0, the Sobolev space W p
k (Ω)

is a reflexive separable Banach space with the dual W q
−k (Ω), where

1
p +

1
q = 1. The set

C∞ (clos (Ω)) is dense subset of W p
k (Ω). The subspace W p

k,0 (Ω) is dense in W p
k (Ω).

In W p
1,0, the following inequality holds true (Poincare inequality)

∥u∥Lp ≤ c ∥∇u∥Lp ,

for all u ∈W p
1,0 (Ω), where the constant c depends only on the domain Ω and exponent

p.
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The Sobolev embedding theorem establishes that if m ≥ s andm− l
p ≥ s− l

r then

the embedding W p
k (Ω) ⊆ W r

s (Ω) is continuous, and moreover, when m− l
p > s− l

r

then the embedding is completely continuous, i.e., each relatively weakly compact
subset maps into a relatively compact subset.

In this paper, we use the following Holder inequality∫
Ω

|fgφ| dx ≤ ∥f∥Lp ∥g∥Lq ∥φ∥Lr ,

where 1
p + 1

q + 1
r = 1. Also, for all x, y ≥ 0, we use the Young inequality

xy ≤ 1

a
(εx)

a
+

1

b

(y
ε

)b

for all a, b ≥ 1 such that 1
a + 1

b = 1, and all ε > 0.

2.2. A nonlinear elliptic partial differential equation involving p-Laplace operator

Let Ω be a smooth domain in Rl for l ≥ 3, which can coincide with whole Rl. For
some λ > 0, we consider a nonlinear elliptic partial differential equation

A (u) ≡ λu |u|p−2 − div (ai (x, u, ∇u)) + b (x, u, ∇u) = 0, (2.1)

where u (x) an unknown function in Ω ⊆ Rl.
Functions ai (x, u, ξ) and b (x, u, ξ) are defined for all x ∈ clos (Ω) and all

u ∈ R, ξ ∈ Rl; ai (x, u, ξ) and b (x, u, ξ) are continuous at u and ξ.
We assume the following conditions∑

i

ai (x, u, ξ) ξi ≥ ν |ξ|p , (2.2)

∑
i

(ai (x, u, ξ)− ai (x, v, η)) (ξi − ηi) > ν1 |ξ − η|p > 0, (2.3)

|ai (x, u, ξ)| ≤ µ |ξ|p−1
+ γ1 (x) |u|p−1

+ γ2 (x) , (2.4)

|ai (x, u, ξ)− ai (x, v, η)| ≤ µ3 |ξ − η|p−1
+ γ6 (x) |u− v|p−1

, (2.5)

|b (x, u, ξ)| ≤ µ1 |ξ|p−1
+ γ3 (x) |u|p−1

+ γ4 (x) , (2.6)

|b (x, u, ξ)− b (x, v, η)| ≤ µ2 |ξ − η|p−1
+ γ5 (x) |u− v|p−1

, (2.7)

for all ξ ∈ Rl. We assume

γ1
q
2 , γ3

q
2 , γ5

q
2 , γ6

q
2 ∈ PK (β) , γ3

1
2 , γ5

1
2 ∈ PK (β) ,

and

γ4 ∈ Lq (Ω) .

We remark that the inequalities(
ξ |ξ|p−2 − η |η|p−2

, ξ − η
)
≥ c (p) |ξ − η|p

and ∣∣∣x |x|p−2 − y |y|p−2
∣∣∣ ≤ (p− 1) |x− y|

(
|x|p−2

+ |y|p−2
)
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hold for all ξ, η ∈ Rl and x, y ∈ R with the constant c (p) = 22−p. Employing this

estimate, we obtain that p-Laplacian a (u) = ∆p (u) = div
(
∇u |∇u|p−2

)
satisfies our

conditions.

Definition 2.1. The function u (x, t) is called a weak solution to the equation (2.1) if
u ∈W p

1 (Ω) and the identity

λ

∫
Ω

|u|p−2
ϕdx+

∫
Ω

ai (x, u, ∇u)∇iϕdx+

∫
Ω

b (x, u, ∇u)ϕdx = 0 (2.8)

holds for all ϕ ∈ W p
1, 0 (Ω). The solution u is called a bounded weak solution to the

equation (2.1) if essmax
Ω

|u| <∞.

Definition 2.2. The operator A : W p
1 (Ω) → W q

−1 (Ω) is called monotone if the
inequality

⟨A (u)−A (v) , (u− v)⟩ ≥ 0 (2.9)

holds for all u, v ∈W p
1,0 (Ω).

The operator A : W p
1 (Ω) →W q

−1 (Ω) is called strictly monotone if the inequality

⟨A (u)−A (v) , u− v⟩ > 0 (2.10)

holds for all u, v ∈W p
1,0 (Ω), u ̸= v.

Definition 2.3. The operator A : W p
1 (Ω) →W q

−1 (Ω) is called coercive if the inequal-
ity

⟨A (u) , u⟩
∥u∥Wp

1

∥u∥W
p
1
→∞

−→ ∞. (2.11)

Definition 2.4. The operator A : W p
1 (Ω) → W q

−1 (Ω) is called semicontinuous if the
mapping t 7→ ⟨A (u+ tv) , w⟩ is continuous for all u, v, w ∈W p

1,0 (Ω).

Below, we assume that the operator A : W p
1 (Ω) →W q

−1 (Ω) is associated with
the elliptic equation (2.1).

Lemma 2.5. Let p ≥ 2 and let q be its conjugate, i.e., 1
p+

1
q = 1. Assume the conditions

(2.2)-(2.8) are satisfied. Then, the operator

A : W p
1 (Ω) →W q

−1 (Ω)

is bounded.

Proof. For all u, v ∈W p
1,0 (Ω), we have

|⟨A (u) , v⟩| ≤ λ

∫
Ω
λ |u|p−1 |v| dx

+

∫
Ω

(
µ |∇u|p−1

+ γ1 (x) |u|p−1
+ γ2 (x)

)
|∇v| dx

+

∫
Ω

(
µ1 |∇u|p−1

+ γ3 (x) |u|p−1
+ γ4 (x)

)
|v| dx

≤ λ ∥u∥p−1
Lp ∥v∥Lp + µ ∥∇u∥p−1

Lp ∥∇v∥Lp +
∥∥∥γ1 1

p−1u
∥∥∥p−1

Lp
∥∇v∥Lp

+ ∥γ2∥Lq ∥∇v∥Lp + µ1 ∥∇u∥p−1
Lp ∥v∥Lp

+
∥∥∥γ3 1

p−1u
∥∥∥p−1

Lp
∥v∥Lp + ∥γ4∥Lq ∥v∥Lp .



532 Mykola Yaremenko

Applying the Young inequality for a = p
p−2 and b = p

2 , and the form-boundary

condition, we have∫
Ω

γ1
q |u|p dx ≤ β

∫
Ω

(
∇
(
|u|

p
2

))2

dx+ c (β)

∫
Ω

|u|p dx

≤ β p2

4

(
2

ε
p
2 p

∥∇u∥pLp + (p− 2) ε
p

p−2

p ∥u∥pLp

)
+ c (β) ∥u∥pLp ,

and similarly, we obtain∫
Ω
γ3

q |u|p dx

≤ β p2

4

(
2

ε
p
2 p

∥∇u∥pLp + (p− 2) ε
p

p−2

p ∥u∥pLp

)
+ c (β) ∥u∥pLp ,

so we conclude

|⟨A (u) , v⟩| ≤ λ ∥u∥p−1
Lp ∥v∥Lp + µ ∥∇u∥p−1

Lp ∥∇v∥Lp

+

 β p2

4

(
2

ε
p
2 p

∥∇u∥pLp + (p− 2) ε
p

p−2

p ∥u∥pLp

)
+

+c (β) ∥u∥pLp

p−1

∥∇v∥Lp

+ ∥γ2∥Lq ∥∇v∥Lp + µ1 ∥∇u∥p−1
Lp ∥v∥Lp

+

 β p2

4

(
2

ε
p
2 p

∥∇u∥pLp + (p− 2) ε
p

p−2

p ∥u∥pLp

)
+

+c (β) ∥u∥pLp

p−1

∥v∥Lp

+ ∥γ4∥Lq ∥v∥Lp ,

thus, the operator A is bounded.

Lemma 2.6. Let p ≥ 2 and let q be its conjugate, i.e., 1
p+

1
q = 1. Assume the conditions

(3)-(8) are satisfied. Then, the operator

A : W p
1 (Ω) →W q

−1 (Ω)

is monotone.

Proof. For all u, v, w ∈W p
1,0 (Ω) , we have

⟨A (u)−A (v) , u− v⟩

= λ

∫
Ω

(
u |u|p−2 − v |v|p−2

)
(u− v) dx

+

∫
Ω
(ai (x, u, ∇u)− ai (x, v, ∇v)) (∇iu−∇iv) dx

+

∫
Ω
(b (x, u, ∇u)− b (x, v, ∇v)) (u− v) dx

≥ λc (p) ∥u− v∥pLp + ν1 ∥∇ (u− v)∥pLp

−
∫

Ω

(
µ2 |∇ (u− v)|p−1

+ γ5 (x) |u− v|p−1
)
(u− v) dx

≥ λc (p) ∥u− v∥pLp + ν1 ∥∇ (u− v)∥pLp

−
(
µ2

1
εpp ∥u− v∥pLp + µ2

εq

q ∥∇ (u− v)∥pLp

)
−
∫

Ω
γ5 (x) |u− v|p dx.
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We assume γ5
1
2 ∈ PK (β). Applying the form-boundary condition, we have∫

Ω
γ5 (x) |u− v|p dx

≤ β

∫
Ω

(
∇
(
|u− v|

p
2

))2

dx+ c (β)

∫
Ω
|u− v|p dx

≤ β p2

4

(
2

ε
p
2 p

∥∇ (u− v)∥pLp + (p− 2) ε
p

p−2

p ∥u− v∥pLp

)
+c (β) ∥u− v∥pLp ,

so, we conclude

⟨A (u)−A (v) , u− v⟩
≥

(
λc (p)− µ2

1
εpp − β (p− 2) ε

p
p−2 p

4 − c (β)
)
∥u− v∥pLp

+
(
ν1 − µ2

εq

q − β p

ε
p
2 2

)
∥∇ (u− v)∥pLp > 0,

thus, the operator A is strictly monotone.

Lemma 2.7. Let p ≥ 2 and let q be its conjugate, i.e., 1
p+

1
q = 1. Assume the conditions

(3)-(8) are satisfied. Then, the operator

A : W p
1 (Ω) →W q

−1 (Ω)

is coercive.

Proof. From the definition, we obtain

⟨A (u) , u⟩ = λ

∫
Ω
|u|p dx

+

∫
Ω
ai (x, u, ∇u)∇iudx+

∫
Ω
b (x, u, ∇u)udx

≥ λ ∥u∥pLp + ν ∥∇u∥pLp −
∫

Ω

(
µ1 |∇u|p−1

+ γ3 (x) |u|p−1
+ γ4 (x)

)
udx

≥
(
λ− µ1

1
ε1pp

)
∥u∥pLp +

(
ν − µ1

ε1
q

q

)
∥∇u∥pLp

−
∫

Ω
γ3 (x) |u|p dx−

∫
Ω
γ4 |u| dx,

for all u ∈W p
1,0 (Ω). By form-boundary condition, we have∫

Ω
γ3 (x) |u|p dx ≤ β p2

4

(
2

ε
p
2 p

∥∇u∥pLp + (p− 2) ε
p

p−2

p ∥u∥pLp

)
+c (β) ∥u∥pLp ,

thus, it follows that

⟨A (u) , u⟩ ≥
(
λ− β p

4 (p− 2) ε
p

p−2 − εp

p − µ1
1

ε1pp

)
∥u∥pLp

+
(
ν − µ1

ε1
q

q − β p

ε
p
2 2

)
∥∇u∥pLp − εq

q ∥γ4∥qLq ,

and
⟨A(u), u⟩
∥u∥Lp

≥
(
λ− β p

4 (p− 2) ε
p

p−2 − εp

p − µ1
1

ε1pp

)
∥u∥p−1

Lp

+
(
ν − µ1

ε1
q

q − β p

ε
p
2 2

)
∥∇u∥p

Lp

∥u∥Lp
− εq

q

∥γ4∥q
Lq

∥u∥Lp

∥u∥Lp→∞
−→ ∞,

so, A is a coercive operator.
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Lemma 2.8. Let p ≥ 2 and let q be its conjugate, i.e., 1
p+

1
q = 1. Assume the conditions

(3)-(8) are satisfied. Then, the operator

A : W p
1 (Ω) →W q

−1 (Ω)

is semicontinuous.

Proof. Due to the arbitrarity of the element v ∈ W p
1,0 (Ω) in the definition of

semicontinuity, we conclude that the operator A : W p
1 (Ω) →W q

−1 (Ω) is semicontin-
uous if the limit

⟨A (u+ tv) , w⟩ t→0−→ ⟨A (u) , w⟩

holds for all u, v, w ∈W p
1,0 (Ω). So, it is sufficient to show that

|⟨A (u+ tv)−A (u) , w⟩| t→0−→ 0,

for all u, v, w ∈W p
1,0 (Ω).

For u, v, w ∈W p
1,0 (Ω), we calculate

|⟨A (u+ tv)−A (u) , w⟩|

= λ

∫
Ω

(
(u+ tv) |u+ tv|p−2 − u |u|p−2

)
wdx

+

∫
Ω
(ai (x, u+ tv, ∇ (u+ tv))− ai (x, u, ∇u))∇iwdx

+

∫
Ω
(b (x, u+ tv, ∇ (u+ tv))− b (x, u, ∇u))wdx

≤ λt (p− 1)

∫
Ω
|v|

(
|u+ tv|p−2

+ |u|p−2
)
wdx

+t

∫
Ω

(
µ2 |∇v|p−1

+ γ6 (x) |v|p−1
)
|∇w| dx

+t

∫
Ω

(
µ3 |∇v|p−1

+ γ5 (x) |v|p−1
)
|w| dx.

Applying Holder inequality and form-boundary condition, we estimate∫
Ω

(
µ2 |∇v|p−1

+ γ6 (x) |v|p−1
)
|∇w| dx

+

∫
Ω

(
µ3 |∇v|p−1

+ γ5 (x) |v|p−1
)
|w| dx

≤ µ2 ∥∇v∥Lp
p−1 ∥∇w∥Lp

+

(
β p2

4

(
2

ε
p
2 p

∥∇v∥pLp + (p− 2) ε
p

p−2

p ∥v∥pLp

)
+ c (β) ∥v∥pLp

) 1
q

∥∇w∥Lp

+µ3 ∥∇v∥Lp
p−1 ∥w∥Lp

+

(
β p2

4

(
2

ε
p
2 p

∥∇v∥pLp + (p− 2) ε
p

p−2

p ∥v∥pLp

)
+ c (β) ∥v∥pLp

) 1
q

∥w∥Lp .
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Using the Holder inequality, we deduce

|⟨A (u+ tv)−A (u) , w⟩|
≤ λt (p− 1)

(
∥v∥Lp ∥u+ tv∥Lp

p−2 ∥w∥Lp + ∥v∥Lp ∥u∥Lp
p−2 ∥w∥Lp

)
+tµ2 ∥∇v∥Lp

p−1 ∥∇w∥Lp + tµ3 ∥∇v∥Lp
p−1 ∥w∥Lp

+t

(
β p2

4

(
2

ε
p
2 p

∥∇v∥pLp + (p− 2) ε
p

p−2

p ∥v∥pLp

)
+ c (β) ∥v∥pLp

) 1
q

∥∇w∥Lp

+t

(
β p2

4

(
2

ε
p
2 p

∥∇v∥pLp + (p− 2) ε
p

p−2

p ∥v∥pLp

)
+ c (β) ∥v∥pLp

) 1
q

∥w∥Lp

t→0−→ 0.

3. The Minty-Browder theorem

To complete our investigation, we present the scheme of the proof of the existence and
uniqueness of the solution. The proof is based on Minty’s ideas [9, 16] and on a variant
of the Galerkin method, which are applied to the operator A : W p

1 (Ω) → W q
−1 (Ω),

and employment of limits in weak topology.

Theorem 3.1 (Minty-Browder). Let p ≥ 2 and q its conjugate i.e., 1
p +

1
q = 1. Assume

conditions (3) – (8) are satisfied. Then the elliptic equation (2) has a unique weak
solution in the Sobolev space W p

1 (Ω) .

Proof. Let
A : W p

1 (Ω) →W q
−1 (Ω)

be the operator associated with equation (2.1). Under conditions (2.2)-(2.8), the op-
erator

A : W p
1 (Ω) →W q

−1 (Ω)

is a bounded, monotone, coercive, and semi-continuous operator. Thus, we are going
to show that there exists a solution u ∈ W p

1 (Ω) to the operator equation A (u) = φ
for each fixed φ ∈W q

−1,0.

Let {vi} be a basis in W p
1,0 and Xk be a linear span of {v1, ..., vk}. We compose

the nonlinear Galerkin approximation system

⟨A (uk)− φ, vi⟩ = 0,

where uk ∈ Xk, i = 1, ..., k so we denote uk =
∑

i=1,...,k cikvi with coefficients cik to
be calculated.

Since the operator A is coercive there exists a number R > 0 such that

⟨A (u)− φ, u⟩ > 0

for all u ∈W p
1,0, ∥u∥ ≥ R. Therefore, we have the system〈

A

 ∑
i=1,...,k

cikvi

− φ, vj

〉
= 0

with an unknown real vector {c1k, ..., ckk}. The function

u 7→ ⟨A (u)− φ, vi⟩
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is continuous on W p
1,0 with respect to variables {c1k, ..., ckk}. The system

∑
j=1,...,k

〈
A

p(·)
λ

 ∑
i=1,...,k

cikvi

− φ, vj

〉
cjk > 0

has a solution for all uk ∈ Xk, i = 1, ..., k such that uk ∈W p
1,0, ∥uk∥Wp

1
= R.

The fixed point theorem states that: let function〈
A

 ∑
i=1,...,k

cikvi

− φ, vj

〉
: clos (B (0, R)) → R

be continuous for each j = 1, ..., k and

∑
j=1,...,k

〈
A

 ∑
i=1,...,k

cikvi

− φ, vj

〉
cjk > 0

for all uk ∈W p
1,0, ∥uk∥Wp

1
= R; then the system〈
A

 ∑
i=1,...,k

cikvi

− φ, vj

〉
= 0

has a solution for all uk ∈W p
1,0, ∥uk∥Wp

1
≤ R. □

From

⟨A (u)− φ, u⟩ = 0

and statement that

⟨A (u)− φ, u⟩ > 0

for all u ∈ W p
1,0, ∥u∥Wp

1
≥ R, we deduce that ∥u∥Wp

1
≤ R, which provides us with

a priori solution estimate.
The sequences {uk} and {A (uk)} are bounded since the operator A is bounded,

therefore, A (uk)
weakly−→ φ in W q

−1,0 and there exists a subsequence
{
uk̃

}
⊂ {uk} such

that uk̃
weakly−→ u. Thus, we have〈

A
(
uk̃

)
, uk̃

〉
=

〈
φ, uk̃

〉 k̃→∞−→ ⟨φ, u⟩ .

In finite-dimensional Banach spaces, the strong and weak convergences coincide. We

choose subsequence
{
uk̃

}
⊂ {uk} such that uk̃

weakly−→ u and

A
(
uk̃

) weakly−→ φ,

and 〈
A
(
uk̃

)
, uk̃

〉 k̃→∞−→ ⟨φ, u⟩ .
So, we have

uk̃
weakly−→ u
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and

A
(
uk̃

) weakly−→ A (u) .

Thus, the equationA (u) = 0 has a solution inW p
1 (Ω), which proves the existence

of a weak solution to elliptic equation (2.1) under the conditions (2.2)-(2.8).
Let u ∈ W p

1 (Ω) and v ∈ W p
1 (Ω) be two different solution to (2.1) so that

A (u) = 0 and A (v) = 0. On another hand, the strict monotony yields that from

⟨A (u)−A (v) , u− v⟩ = 0

follows u = v, thus we have proved the uniqueness of the solution.
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Abstract. The focus of this paper will be on studying the existence of solutions
in the sense of distribution, for a class of nonlinear partial differential equations
defined by a variable exponent anisotropic elliptic operator with a growth condi-
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1. Introduction

Our goal is to prove the existence of at least one distributional solution to the −→p (·)−
nonlinear elliptic partial differential equations of the type :−

N∑
i=1

∂i
(
σi(x, u, ∂iu)

)
+ g(x, u) = f , in Ω,

u = 0 , on ∂Ω.

(1.1)

Where, Ω ⊂ RN (N ≥ 2) is a bounded open set with Lipschitz boundary ∂Ω,

f ∈ L
−→
p′ (·)(Ω)(=

N⋂
i=1

Lp′
i(·)(Ω)), with p′i(·)(=

pi

pi−1 , i = 1, . . . , N) denotes the Hölder

congugate of pi(·), σi : Ω × R × R → R, i = 1, . . . , N , are Carathéodory functions

Received 28 January 2025; Accepted 10 June 2025.
© Studia UBB MATHEMATICA. Published by Babeş-Bolyai University
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fulfilling for almost everywhere x ∈ Ω and every s, η, η′ ∈ R, (η, η′) ̸= (0, 0), the
following :

| σi(x, s, η) |≤ c1K(| s |) (| η | + | ϑi |)pi(x)−1
, (1.2)

σi(x, s, η)η ≥ c2K(| s |) | η |pi(x), (1.3)

(σi(x, s, η)− σi(x, s, η
′)) (η − η′) ≥ Θi (x, η, η

′) , (1.4)

Θi (x, η, η
′) =

{
c3 | η − η′ |pi(x), if pi(x) ≥ 2

c4
|η−η′|2

(|η|+|η′|)2−pi(x) , if 1 < pi(x) < 2

where, cl, l = 1, . . . , 4 are positive constants, ϑi ∈ Lpi(·)(Ω), i = 1, . . . , N , and
K(·) : R+ −→ R∗

+ is a continuous function such that,

K(| ξ |) ≥ α | ξ |r(x), for all | ξ |≥ λ, (1.5)

with, α > 0, λ > 0 and r(·) ∈ C(Ω), where r(·) > 0 in Ω.
For some β > 0

K(| s |) ≥ β, for all s ∈ R. (1.6)

g : Ω× R → R is a Carathéodory function and satisfies ;
a.e. x ∈ Ω the following conditions:

g(x, s)(s− s′) ≥ 0, ∀s, s′ ∈ R, | s |=| s′ |, (1.7)

sup
|s|≤t

| g(x, s) |∈ L1(Ω), ∀s ∈ R and ∀t > 0, (1.8)

|g(x, s)| ≤ c

N∑
i=1

|s|pi(x)−1, ∀s ∈ R. (1.9)

As a typical example, we can consider the following model equation

(σi(x, u, ∂iu) = K(| u |)|∂iu|pi(x)−2∂iu, g(x, u) = u
N∑
i=1

|u|pi(x)−2):−
N∑
i=1

∂i
(
K(| u |)|∂iu|pi(x)−2∂iu

)
+ u

N∑
i=1

|u|pi(x)−2 = f(x), in Ω,

u = 0, on ∂Ω,

where f ∈ L
−→
p′ (·)(Ω), and the continuous function K(·) is defined for any fixed x ∈ Ω

as follows:

∀η ≥ 0 : K(η) =

{
1 + λr(x), if η < λ,

1 + ηr(x), if η ≥ λ,

where λ > 0, and r(·) ∈ C(Ω) with r(·) > 0 in Ω.
Our boundary-value problems entails an −→p (x)-nonlinear elliptic differential op-

erartor wherein those sorts of operators have many makes use of withinside the car-
ried out discipline of diverse sciences, amongst them modeling of image processing
and electro-rheological fluids(see [9, 21, 3]). From the theoretical side related to the
existence of solutions, we can refer , without limitation, to [11, 12, 13, 10, 14, 15, 16,
17, 18, 19, 20].
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This paper seeks to prove the existence results of ditributional solutions for a
class of anisotropic nonlinear elliptic problems with variable exponents and growth
conditions given by a real positive continuous function, will provide us regular so-

lutions in the anisotropic space W
1,−→q (·)
0 (Ω) such that, −→q (·) = (q1(·), . . . , qN (·)), be

restricted as in Theorem 3.2.
The proof of our main result requires proving the existence of a sequence of suit-

able approximate solutions (un) by applying the main Theorem of pseudo-monotone
operators and the results obtained in [12, 13]. Prior estimates are then used to show the
boundedness of the solutions un and the almost everywhere convergence of their par-
tial derivatives ∂iun, i = 1, . . . , N , which can be converted into strong L1-convergence.
Through this, we can pass to the limit by L1−strongly sense for σi(x, Tn(un), ∂iun),
and for g(x, un), then we conclude the convergence of un to the solution of (1.1).

The paper is divided into several sections, in Section 2 we discuss variable ex-
ponents anisotropic Lebesgue-Sobolev spaces and their key characteristics, as well as
mentioning some embedding theorems. The main theorem and its proof can be found
in Section 3.

2. Preliminaries and basic concepts

In this section, we will learn about anisotropic Lebesgue-Sobolev spaces with variable
exponent and their most important distinctive properties, as explained, for example,
in the papers [6, 4, 5].

Let Ω ⊂ RN (N ≥ 2) is a bounded open subset, and let the following set
be:

C+(Ω) = {continuous function p(·) : Ω 7−→ R, p−(= min
x∈Ω

p(x)) > 1}.

Assume p(·) ∈ C+(Ω). The variable exponent Lebesgue reflexive Banach space(
Lp(·)(Ω), ∥ · ∥p(·)

)
defined by

Lp(·)(Ω) := {measurable functions u : Ω 7→ R,
∫
Ω

|u(x)|p(x)dx < ∞},

under the Luxemburg norm

u 7→ ∥u∥p(·) := ∥u∥Lp(·)(Ω) = inf
{
s > 0 : ϱp(·)(

u

s
) ≤ 1

}
.

The function

ϱp(·) : u 7→
∫
Ω

|u(x)|p(x)dx is called the convex modular.

The variable exponents Sobolev Banach space
(
W 1,p(·)(Ω), ∥ · ∥1,p(·)

)
defined as fellows

W 1,p(·)(Ω) :=
{
u ∈ Lp(·)(Ω) : |∇u| ∈ Lp(·)(Ω)

}
,

such that

u 7→ ∥u∥1,p(·) := ∥∇u∥p(·). (2.1)
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We define also the reflexive and separable Banach space
(
W

1,p(·)
0 (Ω), ∥ · ∥1,p(·)

)
by

W
1,p(·)
0 (Ω) := C∞

0 (Ω)
W 1,p(·)(Ω)

.

The following Hölder type inequality holds :∣∣∣∣∫
Ω

uv dx

∣∣∣∣ ≤ (
1

p−
+

1

p′−

)
∥u∥p(·)∥v∥p′(·) ≤ 2∥u∥p(·)∥v∥p′(·),

where, p′(·) denotes the Hölder conjugate of p(·) (i.e. 1
p(·) +

1
p′(·) = 1 in Ω).

Next results(see [4, 5]) we need to use them later. Let u ∈ Lp(·)(Ω), then:

min

(
ϱ

1

p+

p(·)(u), ρ
1

p−

p(·)(u)

)
≤ ∥u∥p(·) ≤ max

(
ϱ

1

p+

p(·)(u), ϱ
1

p−

p(·)(u)

)
, (2.2)

min
(
∥u∥p

−

p(·), ∥u∥
p+

p(·)

)
≤ ϱp(·)(u) ≤ max

(
∥u∥p

−

p(·), ∥u∥
p+

p(·)

)
. (2.3)

We will now define the variable exponents anisotropic Sobolev spaces W 1,−→p (·)(Ω).
Let pi(·) ∈ C

(
Ω, [1,+∞)

)
, i ∈ {1, . . . , N}, and ∀x ∈ Ω we set that

−→p (x) = (p1(x), . . . , pN (x)), p+(x) = max
1≤i≤N

pi(x), p−(x) = min
1≤i≤N

pi(x),

1

p(x)
=

1

N

N∑
i=1

1

pi(x)
.

The Banach space W 1,−→p (·)(Ω) is defined by

W 1,−→p (·)(Ω) =
{
u ∈ Lp+(·)(Ω) and ∂iu ∈ Lpi(·)(Ω), i ∈ {1, . . . , N}

}
,

equipped with the following norm :

u 7→ ∥u∥−→p (·) = ∥u∥p+(·) +

N∑
i=1

∥∂iu∥pi(·) . (2.4)

The Banach space
(
W

1,−→p (·)
0 (Ω), ∥ · ∥−→p (·)

)
defined as follows

W
1,−→p (·)
0 (Ω) = C∞

0 (Ω)
W 1,−→p (·)(Ω)

,

Let p(·) ∈ C+(Ω), the variable exponent Marcinkiewicz space Mp(·)(Ω) is defineed by

Mp(·)(Ω) := {measurable functions u : Ω 7→ R;

∃M > 0 :

∫
{|u|>s}

tp(x) dx ≤ M, ∀s > 0}.

The truncation function ∀t > 0, Tt : R −→ R is defined as

Tt(s) :=

{
s, if |s| ≤ t,
s
|s| t, if |s| > t,

(2.5)
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and its derivative (see [11]) given by

(DTt)(s) =

{
1, |s| < t,
0, |s| > t.

(2.6)

3. Statement of results and proof

Definition 3.1. The function u : Ω −→ R is a distributional solution for (1.1) if and

only if u ∈ W 1,1
0 (Ω), and ∀φ ∈ C∞

c (Ω) :∫
Ω

N∑
i=1

σi(x, u, ∂iu)∂iφdx+

∫
Ω

g(x, u)φdx =

∫
Ω

f(x)φdx.

The main result is that.

Theorem 3.2. Let pi(·) ∈ C
(
Ω, ]1,+∞)

)
, i = 1, . . . , N , such that p < N . Assume

that f ∈ L
−→
p′ (·)(Ω), and g, σi, i = 1, . . . , N, be Carathéodory functions that satisfy

(1.2)-(1.4), and (1.7)-(1.9). If we have

p(·)(N − 1)

N(r(·) + 1)(p(·)− 1)
< pi(·) <

p(·)(N − 1)

(r(·) + 1)(N − p(·))
, in Ω, i = 1, . . . , N (3.1)

where, r(·) defined in (1.5) and satisfies

r(·) < N − p(·)
N(p(·)− 1)

in Ω. (3.2)

Then (1.1) has at least one solution u in the sense of distributions in W
1,−→q (·)
0 (Ω),

where −→q (·) = (q1(·), . . . , qN (·)), and

max{1, (r(·) + 1)pi(·)− 1} < qi(·) <
Npi(·)(p(·)− 1)(r(·) + 1)

p(·)(N − 1)
in Ω, i = 1, . . . , N.

(3.3)

Remark 3.3. The assumption (3.2) ensure that

p(·)(N − 1)

N(r(·) + 1)(p(·)− 1)
> 1 in Ω, i = 1, . . . , N.

Remark 3.4. The upper bound in (3.1) implies that

Npi(·)(p(·)− 1)(r(·) + 1)

p(·)(N − 1)
> (r(·) + 1)pi(·)− 1 in Ω, i = 1, . . . , N. (3.4)

3.1. Existence of approximate solutions

Let (fn) be a sequence of bounded functions defined in Ω which converges to f in

L
−→
p′ (·)(Ω).

It should be noted here that:

Since fn ∈ L
−→
p′ (·)(Ω), then from (2.2), we obtain

∥fn∥p′
i(·) ≤ 1 + ρ

1

p′−
i

(·)

p′
i(·)

(fn) ≤ 2 + ρ

1

p′−−
pi (fn) < ∞.



544 Mokhtar Naceri

Through this, we conclude that

fn is bounded in Lp′
i(·)(Ω), i = 1, . . . , N. (3.5)

Lemma 3.5. Let pi(·) ∈ C
(
Ω, ]1,+∞)

)
, i = 1, . . . , N , such that p < N , and let f is

in L
−→
p′ (·)(Ω). Let g, σi, i = 1, . . . , N, be Carathéodory functions satisfying (1.2)-(1.4),

and (1.7)-(1.9). Then, there exists at least one weak solution un ∈ W
1,−→p (·)
0 (Ω) to the

approximated problems

−
N∑
i=1

∂i
(
σi(x, Tn(un), ∂iun)

)
+ g(x, un)) = fn, in Ω,

un = 0, on ∂Ω,

(3.6)

in the sense that; for every φ ∈ W
1,−→p (·)
0 (Ω) ∩ L∞(Ω)

N∑
i=1

∫
Ω

σi(x, Tn(un), ∂iun)∂iφdx+

∫
Ω

g(x, un)φdx =

∫
Ω

fnφdx. (3.7)

Proof. Consider the problem

−
N∑
i=1

∂i
(
σi(x, Tn(unk

), ∂iunk
)
)
+ gk(x, unk

) = fn, in Ω,

unk
= 0, on ∂Ω,

(3.8)

where,

gk(x, ξ) =
g(x, ξ)

1 + |g(x,ξ)|
k

, ∀k ∈ N∗.

Note that,

| gk(x, ξ) |≤| g(x, ξ) |, and | gk(x, ξ) |≤ k.

In a similar manner to the results obtained in [12] or in [13] by applying the main
Theorem on pseudo-monotone operators, we conclude that there exists a solution

unk
∈ W

1,p⃗(·)
0 (Ω) to problem (3.8), which satisfies

N∑
i=1

∫
Ω

σi(x, Tn(unk
), ∂iunk

)∂iφdx+

∫
Ω

gk(x, unk
)φdx

=

∫
Ω

fnφdx, ∀φ ∈ W
1,p⃗(·)
0 (Ω),

(3.9)

And also in a similar way, we can obtain (3.7) by passing to the limit in (3.9). □

3.1.1. A priori estimates.

Lemma 3.6. Let un ∈ W
1,−→p (·)
0 (Ω)∩L∞(Ω) be a solution to problem (3.6). Then, there

exists a constant C, such that

N∑
i=1

∫
{|un|≤t}

| ∂iun |pi(x) dx ≤ C(t+ 1), ∀t > 0, (3.10)
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Ω

| g(x, un) | dx ≤ C, (3.11)

N∑
i=1

∫
{K(|un|)<t}

(t+ 1)−1 | ∂i(K(| un |)) |pi(x) dx ≤ C, ∀t > 0. (3.12)

Proof. By choosing φ = Tt(un) in (3.7) and use (1.3), (1.6), (2.5), and (2.6), we find
that, for all t > 0

C

N∑
i=1

∫
|un|≤t

| ∂iun |pi(x) dx+t

∫
|un|>t

un

| un |
g(x, un) dx

≤ ct+

∫
|un|<t

| un || g(x, un) | dx. (3.13)

Then, from (1.8), and the fact that

un

| un |
g(x, un) ≥| g(x, un) | . (3.14)

Which is produced by the following: due (1.7) we get
un

|un|g(x, un)− | g(x, un) |= 1
|un|g(x, un)

(
un− | un | g(x,un)

|g(x,un)| ) ≥ 0], we obtain

C

N∑
i=1

∫
|un|≤t

| ∂iun |pi(x) dx+ t

∫
|un|>t

| g(x, un) | dx ≤ c′t. (3.15)

So, (3.15) give us (3.10), and also, for all t > 0∫
|un|>t

| g(x, un) | dx ≤ c′. (3.16)

From (3.16) and (1.8) we get (3.11).
In order to prove (3.12), we choose φ = Tt(K(| un |)) in (3.7) with the use of (1.3),
(1.6), (2.5), and (2.6), we can get for all t > 0

c2β

N∑
i=1

∫
{K(|un|)<t}

| ∂i(K(| un |)) |pi(x) dx+ t

∫
K(|un|)>t

g(x, un) dx

+ β

∫
K(|un|)≤t

g(x, un) dx ≤ ct. (3.17)

Then, we get

c2β

N∑
i=1

∫
{K(|un|)<t}

| ∂i(K(| un |)) |pi(x) dx

≤ ct+ t

∫
{(K(|un|)>t}

| g(x, un) | dx+ β

∫
{K(|un|)≤t}

| g(x, un) | dx. (3.18)



546 Mokhtar Naceri

Let’s simplify the second side to (3.18).
By (1.8) and (3.16), we obtain∫

{K(|un|)>t}
| g(x, un) | dx =

∫
{K(|un|)>t}∩{|un|>t}

| g(x, un) | dx

+

∫
{K(|un|)>t}∩{|un|≤t}

| g(x, un) | dx

≤
∫
{|un|>t}

| g(x, un) | dx+

∫
{|un|≤t}

| g(x, un) | dx ≤ C,

and ∫
{(K(|un|)<t}

| g(x, un) | dx =

∫
{(K(|un|)<t}∩{|un|>t}

| g(x, un) | dx

+

∫
{(K(|un|)<t}∩{|un|≤t}

| g(x, un) | dx

≤
∫
{|un|>t}

| g(x, un) | dx+

∫
{|un|≤t}

| g(x, un) | dx ≤ C ′.

Through this we find that, (3.18) gives us

N∑
i=1

∫
{K(|un|)<t}

| ∂i(K(| un |)) |pi(x) dx ≤ c(t+ 1). (3.19)

Then, from (3.17) we obtain (3.12). □

Remark 3.7. (3.10) implies that∫
{|un|≤t}

(t+ 1)−1 | ∂iun |pi(x) dx ≤ C, ∀t > 0. (3.20)

Remark 3.8. The relationship (3.14) implies that

ung(x, un) ≥ 0. (3.21)

We need the following technical Lemma that came in [11] and scalar case in [2]

Lemma 3.9. (see [2, 11]) Let −→p (·) = (p1(·), . . . , pN (·)) ∈
(
C+(Ω)

)N
with p(·) < N ,

and let f be a nonnegative function in W
1,p⃗(·)
0 (Ω). Suppose that there exists a constant

c such that
N∑
i=1

∫
{f≤t}

| ∂if |pi(x) dx ≤ c(t+ 1), ∀t > 0. (3.22)

Then there exists a constant C, depending on c, such that∫
{f>t}

th(x) dx ≤ C, ∀t > 0, h(x) =
N(p(x)− 1)

N − p(x)
, ∀x ∈ Ω. (3.23)
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Lemma 3.10. Let un ∈ W
1,−→p (·)
0 (Ω) ∩ L∞(Ω) be a solution to problem (3.6). Then,

∂i(K(| un |)) is bounded in M
Npi(·)(p(·)−1)

p(·)(N−1) (Ω), i = 1, . . . , N (3.24)

∂iun is bounded in M
Npi(·)(p(·)−1)(r(·)+1)

p(·)(N−1) (Ω), i = 1, . . . , N. (3.25)

Proof. For all i = 1, . . . , N setting αi(·) = pi(·)
h(·)+1 where h(x) = N(p(x)−1)

N−p(x) , ∀x ∈ Ω,

then we have:
If 0 < t < 1, we have trivially that∫

{|∂i(K(|un|))|αi(x)>t}
th(x) dx ≤| Ω | .

If t ≥ 1, using (3.12), Lemma 3.9 ( due (3.10), and the fact that | ∂i | un ||≤| ∂iun |
un ̸= 0, i = 1, . . . , N), we get that∫

{|∂i(K(|un|))|αi(x)>t}
th(x) dx ≤

∫
{|∂i(K(|un|))|αi(x)>t}∩{K(|un|)<t}

th(x) dx

+

∫
{|∂i(K(|un|))|αi(x)>t}∩{K(|un|)≥t}

th(x) dx

≤
∫
{|∂i(K(|un|))|αi(x)>t}∩{K(|un|)<t}∩{|un|≤t}

th(x) dx

+

∫
{|∂i(K(|un|))|αi(x)>t}∩{K(|un|)<t}∩{|un|>t}

th(x) dx

+

∫
{|∂i(K(|un|))|αi(x)>t}∩{K(|un|)≥t}∩{|un|≤t}

th(x) dx

+

∫
{|∂i(K(|un|))|αi(x)>t}∩{K(|un|)≥t}∩{|un|>t}

th(x) dx

≤2

∫
{K(|un|)<t}

th(x) dx+ 2

∫
{|un|>t}

th(x) dx

≤2

∫
{K(|un|)<t}

th(x)
(
| ∂i(K(| un |)) |αi(x)

t

) pi(x)

αi(x)

dx

+ 2

∫
{|un|>t}

th(x) dx

≤2

∫
{K(|un|)<t}

t−1 | ∂i(K(| un |)) |pi(x) dx+ c

≤4

∫
{K(|un|)<t}

(2t)−1 | ∂i(K(| un |)) |pi(x) dx+ c

≤4

∫
{K(|un|)<t}

(t+ 1)−1 | ∂i(K(| un |)) |pi(x) dx+ c ≤ C ′.
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Then, for all i = 1, . . . , N , | ∂i(K(| un |)) |αi(·) is bounded in Mh(·)(Ω).
This gives us, for all i = 1, . . . , N , | ∂i(K(| un |)) | is bounded in Mh(·)αi(·)(Ω) where

h(·)αi(·) =
pi(·)h(·)
h(·) + 1

=
Npi(·)(p(·)− 1)

p(·)(N − 1)
.

Now we will prove (3.25), For αi(·), i = 1, , N and h(·) defined previously, we find
that
If 0 < t < 1, we get that∫

{||∂iun|))|αi(x)(r(x)+1)>t}
th(x)) dx ≤| Ω | .

If t ≥ 1, by (3.12), Lemma 3.9 ( due (3.10), and the fact that
| ∂i | un ||≤| ∂iun |, un ̸= 0, i = 1, . . . , N), we obtain that∫

{|∂iun|αi(x)(r(x)+1)>t}
th(x) dx ≤

∫
{|∂iun|αi(x)(r(x)+1)>t}∩{|un|≤t}

th(x) dx

+

∫
{{|∂iun|αi(x)(r(x)+1)>t}∩{|un|>t}

th(x) dx

≤
∫
{|un|≤t}

th(x)
(
| ∂iun |αi(x)(r(x)+1)

t

) pi(x)

αi(x)(r(x)+1)

dx

+

∫
{|un|>t}

th(x) dx

≤
∫
{|un|≤t}

th(x)r(x)−1 | ∂iun |pi(x) dx+ c. (3.26)

By noting that the assumption (3.2) is equivalent to:

h(·)r(·)− 1 < 0, in Ω,

and through the positivity of r(·) and h(·), we find that

h(·)r(·)− 1 ≥ −1, in Ω.

So, we get that

(h(·)r(·)− 1) ∈ [−1, 0), in Ω. (3.27)

By using (3.27) in (3.26), and thanks to (3.20), we can obtain that∫
{|∂iun|αi(x)(r(x)+1)>t}

th(x) dx ≤
∫
{|un|≤t}

t−1 | ∂iun |pi(x) dx+ c

≤ 2

∫
{|un|≤t}

(2t)−1 | ∂iun |pi(x) dx+ c

≤ 2

∫
{|un|≤t}

(t+ 1)−1 | ∂iun |pi(x) dx+ c ≤ C. (3.28)

Hence, we can obtain,

| ∂iun |αi(·)(r(x)+1) is bounded in Mh(·)(Ω) i = 1, . . . , N.
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From this we conclude that

| ∂iun | is bounded in Mh(·)αi(·)(r(·)+1)(Ω) i = 1, . . . , N,

where,

h(·)αi(·)(r(·) + 1) =
pi(·)h(·)(r(·) + 1)

h(·) + 1
=

Npi(·)(p(·)− 1)(r(·) + 1)

p(·)(N − 1)
.

□

We need the following Lemma (see [22]) to prove the Lemma after it

Lemma 3.11 ([22]). Let v(·), w(·) ∈ C(Ω), such that w− > 0, (v − w)− > 0.
If u ∈ Mv(·)(Ω), then | u |w(·)∈ L1(Ω).
In addition to that, Mv(·)(Ω) ⊂ Lw(·)(Ω) for all v(·), w(·) ≥ 1.

Lemma 3.12. Let f, g and pi, σi, i = 1, . . . , N be restricted as in Theorem 3.2. Then,
for all i = 1, . . . , N ,

un is bounded in Lqi(x)(Ω), (3.29)

∂iun is bounded in Lqi(x)(Ω), (3.30)

where qi(·), i = 1, . . . , N satisfying (3.3).

Proof. From (3.24), thanks to Lemma 3.11, we deduce that

∂i(K(| un |)) is bounded in Lhi(·)(Ω), i = 1, . . . , N, (3.31)

where, 1 < hi(·) < Npi(·)(p(·)−1)
p(·)(N−1) , i = 1, . . . , N .

So, we can obtain

K(| un |) is bounded in Lhi(·)(Ω), i = 1, . . . , N, (3.32)

where, 1 < hi(·) < Npi(·)(p(·)−1)
p(·)(N−1) , i = 1, . . . , N .

By condition (1.5) we can get

C | K(| un |) |≥| un |r(·)+1, | un |≥ λ, i = 1, . . . , N. (3.33)

Then, through (3.33) and (3.32) we obtain∫
Ω

| un |hi(·)(r(·)+1) d x =

∫
{|un|≥λ}

| un |hi(·)(r(·)+1) d x

+

∫
{|un|<λ}

| un |hi(·)(r(·)+1) d x

≤ c

∫
Ω

| K(| un |) |hi(·) d x+ (1 + λhi
+
+(r+++1)) | Ω |≤ C.

(3.34)

Then, (3.34) implies that, for all i = 1, . . . , N

un ∈ Lqi(·)(Ω), (3.35)

where, qi(·), i = 1, . . . , N satisfying (3.3).
From (2.2) and (3.35) we deduce (3.29).
Finally, by (3.25), Lemma 3.11, and (2.2), we can get (3.30). □
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Remark 3.13. Lemma 3.12 implies that

un is bounded in W
1,−→q (·)
0 (Ω), (3.36)

where, −→q (·) = (q1(·), . . . , qN (·)), such that qi(·), i = 1, . . . , N satisfying (3.3).

Lemma 3.14. For all i = 1, . . . , N

lim
n−→+∞

∆i,n = 0, (3.37)

where,

∆i,n =

∫
Ω

(σi(x, Tn(un), ∂iun)− σi(x, Tn(un), ∂iu)) (∂iun − ∂iu) dx.

Proof. From (3.36), we can conclude that the sequence (un) is bounded in

W
1,q−−
0 (Ω), where q−− = min

1≤i≤N
min
x∈Ω

qi(x).

So, a sequence (still denoted by (un)) can be extracted from them, such that

un −→ u strongly in W
1,q−−
0 (Ω) and a.e in Ω, (3.38)

and, ∂iun ⇀ ∂iu weakly in Lpi(x)(Ω), i = 1, . . . , N. (3.39)

Note that, for all i = 1, . . . , N ,

∆i,n = ∆
(1)
i,n −∆

(2)
i,n

where

∆
(1)
i,n =

∫
Ω

σi(x, Tn(un), ∂iun)(∂iun − ∂iu) dx

∆
(2)
i,n =

∫
Ω

σi(x, Tn(un), ∂iu)(∂iun − ∂iu) dx.

First, let’s prove for all i = 1, . . . , N

lim
n−→+∞

∆
(1)
i,n = 0. (3.40)

Choose φ = un − u as a test function in (3.7), we get

N∑
i=1

∫
Ω

σi(x, Tn(un), ∂iun)(∂iun − ∂iu) dx

+

∫
Ω

g(x, un)(un − u) dx =

∫
Ω

fn(un − u) dx. (3.41)

By using (1.9), and that un ∈ Lpi(·)(Ω), i = 1, . . . , N , we can get∫
Ω

| g(x, un) |p
′
i(x) dx ≤

∫
Ω

| un |pi(x) dx ≤ c, (3.42)

then (3.42) implies that,

(g(x, un)) is bounded in Lp′
i(·)(Ω). (3.43)
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So, from (3.43), and (3.38), we get

lim
n−→+∞

∫
Ω

g(x, un)(un − u) dx dx = 0. (3.44)

Now, by (1.2), Young’s inequality, and that ∂iun, K(Tn(un)) ∈ Lpi(·)(Ω), i =
1, . . . , N , we deduce that∫

Ω

| σi(x, Tn(un), ∂iun) |p
′
i(·) dx ≤ c

∫
Ω

| K(Tn(un)) |pi(x) dx

+ c′
∫
Ω

| ∂iun |pi(x) dx+ c′′ ≤ C,

and this implies the boudedness of (σi(x, Tn(un), ∂iun)) in Lp′
i(·)(Ω).

Thanks to this and (3.39) we get

lim
n−→+∞

∫
Ω

σi(x, Tn(un), ∂iun)(∂iun − ∂iu) dx = 0. (3.45)

Then, from (3.38), (3.44), (3.45), and (3.5), we get (3.40).
Now, from (1.2), and that ∂iu ∈ Lpi(·), we obtain for all i = 1, . . . , N∫

Ω

| σi(x, Tn(un), ∂iu) |p
′
i(·) dx ≤ c

∫
Ω

| ∂iu |pi(x) dx+ c′ ≤ C.

And therefore

(σi(x, Tn(un), ∂iu)) is bounded in Lp′
i(·)(Ω), i = 1, . . . , N. (3.46)

Then, (3.46) and (3.39) implies that

lim
n−→+∞

∆
(2)
i,n = 0. (3.47)

So, by (3.40) and (3.47), we derive (3.37). □

Lemma 3.15. For all i = 1, . . . , N

∂iun −→ ∂iu, a.e. in Ω. (3.48)

Proof. Through (1.4) we conclude that, for all i = 1, . . . , N

(σi(x, Tn(un), ∂iun)− σi(x, Tn(un), ∂iu)) (∂iun − ∂iu) > 0. (3.49)

Then, (3.49) and (3.37) gives us, for all i = 1, . . . , N

(σi(x, Tn(un), ∂iun)− σi(x, Tn(un), ∂iu)) (∂iun − ∂iu) −→ 0, strongly in L1(Ω).
(3.50)

Extracting a subsequence (still denoted by (un) ), we have for all i = 1, . . . , N

(σi(x, Tn(un), ∂iun)− σi(x, Tn(un), ∂iu)) (∂iun − ∂iu) −→ 0 a.e. in Ω. (3.51)

Then, by the same techniques used in [11, 8] we can obtain (3.48). □
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3.2. Proof of the Theorem 3.2 :

By (3.38), we have

g(x, un) −→ g(x, u) a.e. in Ω. (3.52)

Let E ⊂ Ω be any measurable set, we write∫
E

| g(x, un) | dx =

∫
E∩{|un|≤t}

| g(x, un) | dx+

∫
E∩{|un|>t}

| g(x, un) | dx.

Let 0 < M < t, and observe that

|Tt(un)| ≤ |Tt(un)|1{|un|≤M} + |Tt(un)|1{|un|>M} ≤ M + t1{|un|>M}. (3.53)

Then, after taking φ = Tt(un) in (3.7) and using (3.53), yields

t

∫
{|un|>t}

|g(x, un)| dx ≤ M

∫
Ω

|fn| dx+ t

∫
{|un|>M}

|fn| dx. (3.54)

From (3.54) and (3.11), we conclude the equi-integrability of g(x, un) in L1(Ω).
Through this, (3.52), and Vitali’s theorem we get

g(x, un) −→ g(x, u) strongly in L1(Ω). (3.55)

From (3.29) and (3.48), we have

σi

(
x, Tn(un), ∂iun

)
−→ σi

(
x, u, ∂iu

)
a.e. in Ω. (3.56)

Now, we prove that

σi (x, Tn(un), ∂iun) −→ σi (x, u, ∂iu) strongly in L
qi(·)

pi(·)−1 (Ω),

where qi(·), i = 1, . . . , N are a continuous functions on Ω satisfying (3.3).
Then, we have, for all x ∈ Ω

1 <
qi(x)

pi(x)− 1
<

N(p(x)− 1)pi(x)(r(x) + 1)

p(x)(N − 1)(pi(x)− 1)
, i = 1, . . . , N. (3.57)

The choice of qi(x)
pi(x)−1 > 1 is possible since we have (3.4).

Using (1.2), and (3.30), we get that,∫
Ω

| σi(x, Tn(un), ∂iun) |
qi(x)

pi(x)−1 dx ≤ c

∫
Ω

| ∂iun |qi(x) +C dx ≤ C ′, i = 1, . . . , N.

(3.58)
Then, by (3.58) and using (2.2), we conclude that, for all i = 1, . . . , N ,(

σi

(
x, Tn(un), ∂iun

))
uniformly bounded in L

qi(·)
pi(·)−1 (Ω).

So, by (3.56) and Vitali’s theorem, we derive, for all i = 1, . . . , N ,

σi

(
x, Tn(un), ∂iun

)
−→ σi

(
x, u, ∂iu

)
strongly in L1(Ω). (3.59)

So, by passing to the limit in (3.7), we have completed the proof.
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