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A new member of the Pell sequences:
The pseudo-Pell sequence

Hasan Gökbaş

Abstract. In this study, we define a new family of the Pell numbers and estab-
lish some properties of the relation to the ordinary Pell numbers. We give some
identities the pseudo-Pell numbers. Moreover, we obtain the Binet’s formula, gen-
erating function formula and some formulas for this new type numbers. Morever,
we give the matrix representation of the pseudo-Pell numbers.

Mathematics Subject Classification (2010): 11B37, 11B83, 11C20.
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1. Introduction and preliminaries

Almost all branches of contemporary research, including computer sciences,
physics, economics, architecture, geostatistics, art, color image processing, and music,
employ a large number of integer sequences. One of mathematics’ most well-known
and intriguing number sequences, the Fibonacci sequence has been the subject of ex-
tensive research in the literature. The fascinating features of the Fibonacci sequence
have delighted scientific enthusiasts for years. The Fibonacci sequence is generated
by a recursive formula

Fn = Fn−1 + Fn−2

for n ≥ 2 with F0 = 0 and F1 = 1. The Fibonacci sequence has many interesting

properties. For example, the ratio
Fn+1

Fn
converges to the golden ratio

(
1 +
√

5

2

)
as

n tends to infinity. The Fibonacci sequence has been generalized in many ways, some
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by preserving the initial conditions and others by preserving the recurrence relation
[1, 4, 6, 7, 10, 11, 14, 16, 19, 18, 21, 22, 27, 29].

The pseudo-Fibonacci and pseudo Lucas sequences was introduced by Ferns [8]
as novel generalizations of the Fibonacci and Lucas sequences as follows

Ξn+1 = Ξn + Θn,

Θn+1 = Ξn+1 + ξΞn

with initial conditions Ξ1 = 1 and Θ1 = 1 in which ξ is a positive integer. We derive
the recursion formula by elimination

Ξn+2 = 2Ξn+1 + ξΞn,

Θn+2 = 2Θn+1 + ξΘn

with initial conditions conditions Ξ0 = 0, Ξ1 = 1 and Θ0 = Θ1 = 1 respectively.

The Binet formula for each of the pseudo-Fibonacci and pseudo Lucas sequences is

Ξn =
αn − βn

α− β

Θn =
αn + βn

2

where α = 1 +
√

1 + ξ, β = 1−
√

1 + ξ.

The Pell sequence is one of the most famous and interesting numerical sequences
in mathematics and has been widely studied in the literature. The Pell sequence is
generated by a recursive formula

Pn = 2Pn−1 + Pn−2,

for ≥ 2 with P0 = 0 and P1 = 1. Similarly, the Pell sequence has many interesting

properties. For example, the ratio
Pn+1

Pn
converges to the silver ratio (1 +

√
2) as n

tends to infinity.

The two basic ways that the Pell sequence has been generalized are either by
keeping the recurrence relation constant while changing the starting conditions or by
changing the recurrence relation while keeping the beginning circumstances constant.
A closed form for the nth term of the sequence, the sum of the first n terms of the
sequence, the sum of the first n terms with odd (or even) indices of the sequence,
an explicit sum formula, Catalan’s identity, Cassini’s identity, d’Ocagne’s identity,
Tagiuri’s identity, and generating function are just a few of the properties that have
been looked into by various researchers, among many others [2, 3, 12, 13, 15, 17, 20,
23, 24, 25, 26, 28].

In this work, a variety of algebraic properties of the pseudo-Pell and Pell-Lucas
numbers will be presented. Some identities will be given for the pseudo-Pell and Pell-
Lucas numbers sequences, such as Binet’s formula, the generating function formula,
and some sum formulas. A matrix representation of these sequences will also be given.
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2. The pseudo-Pell sequence

Several integer sequences exist, many of them with charming shapes and several
charming characteristics. For instance, two of the most well-known and attractive
number sequences are the Pell and Pell-Lucas sequences. The mathematical commu-
nity is still in awe of their universality and beauty. Additionally, there are count-
less possibilities to explore, locate, and estimate thanks to the Pell and Pell-Lucas
numbers. Mathematical friends, the Pell and Pell-Lucas numbers share many similar
characteristics. Our main aim here is to find alternatives to these two series of families.

In this section, a new generalization of the Pell and Pell-Lucas numbers is intro-
duced. We give some properties of the pseudo-Pell and Pell-Lucas numbers.

Definition 2.1. Let ξ > 0 be integer number. The pseudo-Pell and Pell-Lucas numbers
be recursively defined by

Pn+1 = 2Pn + Rn (2.1)

Rn+1 = 2Pn+1 + ξPn (2.2)

with initial conditions P1 = 1 and R1 = 2. Actually, by eliminating first the Pn’s
and then the Rn’s, from equations (2.1) and (2.2), following the pseudo-Pell and
Pell-Lucas numbers are obtained

Pn+1 = 4Pn + ξPn−1 (2.3)

Rn+1 = 4Rn + ξRn−1 (2.4)

with initial conditions conditions P0 = 0, P1 = 1 and R0 = 1, R1 = 2 respectively.

From equations (2.3) and (2.4), the associated characteristic polynomial

p(x) = x2 − 4x− ξ.
p(x) has the roots x1 = 2 +

√
4 + ξ and x2 = 2−

√
4 + ξ. Thus, it is apparent that

x1x2 = −ξ,
x1 + x2 = 4,

x1 − x2 = 2
√

4 + ξ,

x21 + x22 = 16 + 2ξ,

x21 − x22 = 8
√

4 + ξ,

x21 = 4x1 + ξ,

x22 = 4x2 + ξ.

The first terms of the pseudo-Pell and Pell-Lucas numbers
n Pn Rn

0 0 1
1 1 2
2 4 ξ + 8
3 ξ + 16 6ξ + 32
4 8ξ + 64 ξ2 + 32ξ + 128
5 ξ2 + 48ξ + 256 10ξ2 + 160ξ + 512
6 12ξ2 + 256ξ + 1024 ξ3 + 72ξ2 + 768ξ + 2048
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2.1. Binet’s formula for the pseudo-Pell sequence

The Fibonacci numbers are among the brightest points within a wide range of
integer sequences, according to Koshy. We can speculate that this sequence’s abun-
dance of intriguing features is one of the reasons it is referenced. Furthermore, Binet’s
formula can be used to obtain practically all of these features. We will state and prove
a general closed formula for the pseudo-Pell sequence.

Theorem 2.2. The Binet’s formula for the pseudo-Pell and Pell-Lucas numbers are

Pn =
xn1 − xn2
x1 − x2

,

Rn =
xn1 + xn2

2
where x1 = 2 +

√
4 + ξ, x2 = 2−

√
4 + ξ and ξ is a positive integer.

Proof. The pseudo-Pell sequence’s characteristic equation x2 − 4x − ξ = 0, and its
real roots are x1 = 2 +

√
4 + ξ and x2 = 2 −

√
4 + ξ. Then the sequences Pn =

η(x1)n + µ(x2)n, for n ≥ 0, and with η, µ real numbers are solutions of equation. Let
us determine the constants η and µ, considering that P0 = 0 and P1 = 1, and we
obtain the linear system,

η + µ = 0

ηx1 + µx2 = 1.

We find µ = − 1
x1−x2

and η = 1
x1−x2

. So we have that

Pn =
xn1 − xn2
x1 − x2

.

Similarly,

Rn =
xn1 + xn2

2
. �

Corollary 2.3. We let n = −m where m is a positive integer. From Binet’s formula,
we find the negative subscript terms of the pseudo-Pell and Pell-Lucas numbers.

P−n = − Pn
(−ξ)n

,

R−n =
Rn

(−ξ)n
.

Theorem 2.4. For n ≥ 0, the following identity holds

Rn+1 − 2Rn = (4 + ξ)Pn

where Pn and Rn are the nth pseudo-Pell and Pell-Lucas numbers, respectively.

Proof.

Rn+1 − 2Rn =
xn+1
1 + xn+1

2

2
− 2

xn1 + xn2
2

=
xn1 [x1 − 2] + xn2 [x2 − 2]

2

=
[xn1 − xn2 ]

√
4 + ξ

2
= (4 + ξ)Pn. �
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Corollary 2.5. In (2.3) and (2.4) let ξ = 4. We get Pn = 2n−1Pn and Rn = 2n−1Rn
where Pn and Rn are the nth Pell and Pell-Lucas numbers, respectively.

2.2. Generating function for the pseudo-Pell sequence

A strong method for resolving linear homogeneous recurrence relations is offered
by generating functions. We shall systematically apply generating functions for lin-
ear recurrence relations with nonconstant coefficients, even though they are usually
employed in conjunction with linear recurrence relations with constant coefficients.
Now, we consider the generating functions for the pseudo-Pell sequence.

Theorem 2.6. The generating formula for the pseudo-Pell and Pell-Lucas numbers are
∞∑
n=0

Pnt
n =

t

1− 4t− ξt2
,

∞∑
n=0

Rnt
n =

1− 2t

1− 4t− ξt2
.

Proof. Let h(t) be the generating function for the pseudo-Pell numbers as
∑∞
n=0 Pnt

n.
We get the following equations

4th(t) = 4

∞∑
n=0

Pnt
n+1 and ξt2h(t) = ξ

∞∑
n=0

Pnt
n+2.

After the needed calculations, the generating function for the pseudo-Pell numbers is
obtained as

∞∑
n=0

Pnt
n =

t

1− 4t− ξt2
.

Similarly,
∞∑
n=0

Rnt
n =

1− 2t

1− 4t− ξt2
. �

Theorem 2.7. The following identities holds

(4 + ξ)

n∑
i=0

Pi +

n∑
i=0

Ri = Rn+1 − 1, (2.5)

(2 + ξ)

n+1∑
i=0

Pi −
n+1∑
i=0

Ri = ξPn+1 (2.6)

where Pn and Rn are the nth pseudo-Pell and Pell-Lucas numbers, respectively.

Proof. The proof is carried out using elimination in the equations of theorem (2.4). �

Corollary 2.8. From equations (2.5) and (2.6), the following equations are obtained,

n+1∑
i=0

Pi =
(4 + ξ)Pn+1 + ξPn − 1

2

3 + ξ
,
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n+1∑
i=0

Ri =
(8 + 3ξ)Pn+1 + ξ(2 + ξ)Pn − (2 + ξ) 1

2

3 + ξ
.

2.3. Matrix representation for the pseudo-Pell sequence

A close connection between matrices and Fibonacci numbers was shown in
Charles’[9] work on what he called the Q matrix. An interesting pattern emerges
from this work. The power of matrices was exploited to obtain new identities and
results involving Fibonacci numbers. We will give the matrix representation of the
pseudo-Pell sequence.

Definition 2.9. The basic matrix of the pseudo-Pell and pseudo-Pell-Lucas sequence
is

Q =

[
4 ξ
1 0

]
where ξ > 0 is a integer. Based on the Cayley-Hamilton Theorem, the pseudo-Pell
and pseudo-Pell-Lucas’s characteristic polynomial is given as

p(λ) = det(λI −Q).

p(λ) = det(λI −Q) =

∣∣∣∣ λ− 4 −ξ
−1 λ

∣∣∣∣ = λ2 − 4λ− ξ.

Then, if p(λ) = λ2 − 4λ− ξ.

Theorem 2.10. Let n > 0 be an integer. The following equality holds

a)

[
4 ξ
1 0

]n [
P2 P1

P1 P0

]
=

[
Pn+2 Pn+1

Pn+1 Pn

]
b)

[
0 1
1
ξ − 4

ξ

]n [
P2 P1

P1 P0

]
=

[
P−n+2 P−n+1

P−n+1 P−n

]
c)

[
0 1
ξ 4

]n [
P0

P1

]
=

[
Pn

Pn+1

]
d)

[
− 4
ξ

1
ξ

1 0

]n [
P0

P1

]
=

[
P−n

P−n+1

]
e)

[
P1 P0

] [ 4 1
ξ 0

]n
=
[
Pn+1 Pn

]
f)

[
P1 P0

] [ 0 1
ξ

1 − 4
ξ

]n
=
[
P−n+1 P−n

]
Proof. For the prove, we utilize induction principle on n. The equality hold for n = 1.
Now assume that the equality is true for n > 1. Then, we can verify for n + 1 as
follows

a)

[
4 ξ
1 0

]n+1 [
P2 P1

P1 P0

]
=

[
4 ξ
1 0

] [
4 ξ
1 0

]n [
P2 P1

P1 P0

]
=

[
4 ξ
1 0

] [
Pn+2 Pn+1

Pn+1 Pn

]
=

[
Pn+3 Pn+2

Pn+2 Pn+1

]
.
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Thus, the first step of the theorem can be proved easily. Similarly, the other
steps of the proof are seen by induction on n. Matrix representations of the pseudo-
Pell-Lucas numbers are proved similarly. �

2.4. Sums of the pseudo-Pell sequence

Finite sums of sequences have always been important for people working in this
field. Some researchers examined the sum of product two consecutive terms, some
researchers examined the sum of squares. In a new sequence found, the study of the
sums of sequence terms became important. We present some results concerning sums
of terms of the pseudo-Pell and Pell-Lucas sequence.

Theorem 2.11. The following equalities hold

a)

n∑
i=0

P2i =
ξ2P2n −P2n+2 + P2

(ξ − 5)(ξ + 3)
,

b)

n∑
i=0

P2i+1 =
ξ2P2n+1 −P2n+3 + (1− ξ)

(ξ − 5)(ξ + 3)
,

c)

n∑
i=0

R2i =
ξ2R2n −R2n+2 −R2 + 2

(ξ − 5)(ξ + 3)
,

d)

n∑
i=0

R2i+1 =
ξ2R2n+1 −R2n+3 + 2(1− ξ)

(ξ − 5)(ξ + 3)
.

where Pn and Rn are the nth pseudo-Pell and Pell-Lucas numbers, respectively.

Proof.

a)

n∑
i=0

P2i =

n∑
i=0

x2i1 − x2i2
x1 − x2

=
1

x1 − x2

[
n∑
i=0

(x21)i −
n∑
i=0

(x22)i

]

=
1

x1 − x2

[
x2n+2
1 − 1

x21 − 1
− x2n+2

2 − 1

x22 − 1

]
=

1

(x21 − 1)(x22 − 1)

[
ξ2(x2n1 − x2n2 )− (x2n+2

1 − x2n+2
2 ) + (x21 − x22)

x1 − x2

]
=
ξ2P2n −P2n+2 + P2

(ξ − 5)(ξ + 3)

Other sums are shown in a similar way. �

Theorem 2.12. The sum of squares of the first n terms and the sum of products of
consecutive terms of the pseudo-Pell and Pell-Lucas sequence are

a)

n∑
i=0

P2
i =

ξ2R2n −R2n+2 − ξ − 7

2(ξ − 5)(ξ + 3)(ξ + 4)
+

(−ξ)n+1 − 1

2(ξ + 1)(ξ + 4)
,

b)

n∑
i=0

R2
i =

ξ2R2n −R2n+2 − ξ − 7

2(ξ − 5)(ξ + 3)
− (−ξ)n+1 − 1

2(ξ + 1)
,
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c)

n∑
i=0

PiPi+1 =
1

4(ξ + 4)

[
ξ2R2n+1 −R2n+3 + 2(1− ξ)

(ξ − 5)(ξ + 3)
+

2(−ξ)n+1 − 1

(ξ + 1)

]
,

d)

n∑
i=0

RiRi+1 =
1

2

[
ξ2R2n+1 −R2n+3 + 2(1− ξ)

(ξ − 5)(ξ + 3)
− 2(−ξ)n+1 − 1

(ξ + 1)

]
.

where Pn and Rn are the nth pseudo-Pell and Pell-Lucas numbers, respectively.

Proof.

a)

n∑
i=0

P2
i =

n∑
i=0

(
xi1 − xi2
x1 − x2

)2

=
1

(x1 − x2)2

[
n∑
i=0

(x21)i +

n∑
i=0

(x22)i − 2

n∑
i=0

(x1x2)i

]

=
ξ2R2n −R2n+2 − ξ − 7

2(ξ − 5)(ξ + 3)(ξ + 4)
+

(−ξ)n+1 − 1

2(ξ + 1)(ξ + 4)
.

Sums are shown in a similar way. �

Some special equalities well-known for the Pell and Pell-Lucas sequences have
also been calculated for the pseudo-Pell and Pell-Lucas numbers. The proofs of these
equations are omitted. Pn and Rn be the nth pseudo-Pell and Pell-Lucas numbers
such that ξ > 0 integer, respectively. Then, the following equalities hold:

a) Tagiuri’s Identity:

Pm+kPn−k −PmPn = −(ξ)n−kPkPm−n+k

Rm+kRn−k −RmRn = (ξ + 4)(ξ)n−kRkRm−n+k

b) d’Ocagne’s Identity:

Pm+1Pn−1 −PmPn = −(ξ)n−1Pm−n+1

Rm+1Rn−1 −RmRn = 2(ξ + 4)(ξ)n−1Rm−n+1

c) Catalan’s Identity:

Pn+kPn−k −PnPn = −(ξ)n−kP2
k

Rn+kRn−k −RnRn = (ξ + 4)(ξ)n−kR2
k

d) Cassini’s Identity:

Pn+1Pn−1 −PnPn = −(ξ)n−1

Rn+1Rn−1 −RnRn = 4(ξ + 4)(ξ)n−1
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3. Some numerical examples

In this section, we show four numerical examples for verify our theoretical results.
Let us examine the case ξ = 3 in some of the results we obtained. For ξ = 3, the
pseudo-Pell sequence will be

Pn+1 = 4Pn + 3Pn−1

and the characteristic equation will be p(x) = x2 − 4x− 3.

For ξ = 3, The basic matrix of the pseudo-Pell sequence is

Q =

[
4 3
1 0

]
.

For ξ = 3, some sum formulas will be as follows

n+1∑
i=0

Pi =
14Pn+1 + 6Pn − 1

12
,

n∑
i=0

P2i = −9P2n −P2n+2 + P2

12
,

n∑
i=0

P2i+1 = −9P2n+1 −P2n+3 − 2

12
,

n∑
i=0

P2
i = −9R2n −R2n+2 − 10

168
+

(−3)n+1 − 1

56
,

n∑
i=0

PiPi+1 = − 1

28

[
9R2n+1 −R2n+3 − 4

12
+

2(−3)n+1 − 1

4

]
.

Some well-known special equations for the pseudo-Pell sequence are obtained for
ξ = 3 as follows

a) Tagiuri’s Identity:

Pm+kPn−k −PmPn = −(3)n−kPkPm−n+k.

b) d’Ocagne’s Identity:

Pm+1Pn−1 −PmPn = −(3)n−1Pm−n+1.

c) Catalan’s Identity:

Pn+kPn−k −PnPn = −(3)n−kP2
k.

d) Cassini’s Identity:

Pn+1Pn−1 −PnPn = −(3)n−1.
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4. Discussion and conclusions

Cigler[5] obtained the Fibonacci and Lucas polynomials, which are defined by

Fn(x, s) = xFn−1(x, s) + sFn−2(x, s),

Ln(x, s) = xLn−1(x, s) + sLn−2(x, s),

where F0(x, s) = 0, F1(x, s) = 1, L0(x, s) = 2 and L1(x, s) = x.
There is a relationship between the special cases of pseudo-Pell and Pell-Lucas

numbers and the special cases of Fibonacci and Lucas polynomials defined by Cigler
as follows

Pn = Fn(4, ξ)

and

Rn =
Ln(4, ξ)

2
.

This study presents the pseudo-Pell and Pell-Lucas sequences. We obtain this
new sequence, which was not defined in the literature before. Some very important
properties of sequence, such as characteristic equation, generating functions, and Bi-
net’s formula, are investigated. We obtain the matrix representation of the pseudo-Pell
and Pell-Lucas numbers. There have been a large number of studies on numerical se-
quences in the literature lately, and these sequences have been employed extensively in
a variety of academic fields, including biology, finance, physics, architecture, nature,
and the arts. Since this study includes some new results, it contributes to the liter-
ature by providing essential information concerning the number sequences. Research
in these fields can benefit from the pseudo-Pell and pseudo-Pell-Lucas sequences as
well. Therefore, we hope that this new number system and properties that we have
found will offer a new perspective to the researchers. Some further investigations are
as follows:

• Studying the properties of the pseudo-Pell and pseudo-Pell-Lucas sequences
quaternions (hybrid, octonion, sedenion, etc.) might be intriguing.

• Examining the partial infinite sum obtained from the pseudo-Pell numbers and
pseudo-Pell-Lucas sequences’ reciprocals would be fascinating.

• Non-positive values of the integer ξ may also be worth examining.

Acknowledgment. The authors express their sincere thanks to the anonymous referees
and the associate editor for their careful reading, suggestions, and comments, which
improved the presentation of the results.
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[17] Kuloğlu, B. Özkan, E., Shannon, A.G., p-analogue of biperiodic Pell and Pell-Lucas
polynomials, Notes on Number Theory and Discrete Mathematics, 29(2023), no. 2, 336-
347.
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Stud. Univ. Babeş-Bolyai Math. 70(2025), No. 2, 189–209
DOI: 10.24193/subbmath.2025.2.02

On a unification of Mittag-Leffler function
and Wright function

Meera H. Chudasama

Abstract. We introduce here a function that unifies Mittag-Leffler function and
Wright function which is referred to here as an UMLW-function. This function
turns out to be a solution of an infinite order differential equation. With the aid
of this UMLW-function, an integral operator is constructed and shown that it
is bounded in Lebesgue measurable space. Further an eigen function property is
established for a particular UMLW-function with the help of hyper-Bessel opera-
tor and Caputo fractional derivative operator. Some well known functions occur
in the illustrations of these properties. At the end, the graphs of this UMLW-
function are plotted by suitably specializing the parameters and also compared
with the graph of exponential as well as Mittag-Leffler function.
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1. Introduction and main results

Gosta Mittag-Leffler [15], introduced the function given by

Eα(z) =

∞∑
n=0

zn

Γ(αn+ 1)
,

where z is a complex variable and α ∈ C with Re(α) > 0, which reduces to ez when
α = 1.
After some decades, its importance was realized due to its occurrence in many prob-
lems of Physics, Chemistry, Biology, and Engineering as a solution of fractional order
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differential or integral equations. During the course of time, this function was gen-
eralized and studied by many researchers among them Wiman [22], Prabhakar [16],
Kiryakova [11], Shukla and Prajapati [19], Srivastava and Tomovski [21], Garra and
Polito [10] are worth mentioning.
With the aid of L-exponential function

ek(z) =

∞∑
n=0

zn

(n!)k+1
=

∞∑
n=0

zn

Γk+1(n+ 1)
(1.1)

(of order k) due to Ricci and Tavkhelidze [18], Garra and Polito [10] defined and
studied a generalization of (1.1) in the form:

Eα;ν,γ(x) =

∞∑
n=0

xn

Γα+1(νn+ γ)
, (1.2)

wherein x ∈ R, α > −1, ν > 0, and γ ∈ R, which they called α−Mittag-Leffler
function. Noticing the rapid convergence of the series due to Sikkema [20]

∞∑
n=1

zn

n!n
=

∞∑
n=1

zn

Γn(n+ 1)
, (1.3)

we propose a more general series structure which would also encompass another func-
tion, namely the Wright function [12]

Wλ,µ(z) =

∞∑
n=0

zn

Γ(λn+ µ)n!
, λ > −1, µ ∈ C. (1.4)

This was introduced and investigated by the eminent British mathematician E. Mait-
land Wright (in a series of notes starting from 1933) in the framework of the asymp-
totic theory of partitions [12].
Aiming at the unification of the series given by (1.2), (1.3) and (1.4), we introduce
the function defined by the power series as follows.

Definition 1.1. For Re(αδ) ≥ 0, Re(βδ + σγ − δ
2 − r + 1) > 0, α, σ 6= 0, and µ, z ∈ C,

Eσ,ν,γα,β,δ(µ, r; z) =

∞∑
n=0

(µ)rn
Γδn(αn+ β) Γγ(σn+ ν)

zn

n!
, (1.5)

where (µ)rn = Γ(µ+rn)
Γ(µ) is generalized Pochhammer symbol.

We shall henceforth referred to this function as UMLW-function.

Remark 1.2. Chudasama M. H. and Dave B. I. studied `-Hypergeometric function,
its particular cases and their q-analogues in [4, 3, 7, 5, 6, 2]. In context of the study

of these, when r, σ, γ, α ∈ N ∪ {0} with z∗ = rr z
σσ
γ
αα Γδ(β)

, we have

Eσ,ν,γα,β,δ(µ, r; z) =
1

Γγ(ν)

× rH
α
σγ

[
µ
r ,

µ+1
r , . . . , µ+r−1

r ; z∗(
ν
σ

)γ
,
(
ν+1
σ

)γ
, . . . ,

(
ν+σ−1
σ

)γ
;
(
β
α ,

β+1
α , . . . , β+α−1

α : δ
)

;

]
.
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The particular cases of (1.5) are worth mentioning; all of them are corresponding
to the common choice δ = 0. The substitutions for the other parameters involved are
indicated in each special case below.

1. Exponential function : (γ = µ = r = ν = σ = 1)

ez =

∞∑
n=0

zn

Γ(n+ 1)
= E1,1,1

0 (1, 1; z).

2. Mittag-Leffler function [15] : (γ = µ = r = ν = 1)

Eσ(z) =

∞∑
n=0

zn

Γ(σn+ 1)
= Eσ,1,10 (1, 1; z).

3. Wiman function [22] : (γ = µ = r = 1)

Eσ,ν(z) =

∞∑
n=0

zn

Γ(σn+ ν)
= Eσ,ν,10 (1, 1; z).

4. Wright function [12] : (r = 0, γ = 1, σ 6= 0, ν arbitrary)

Wσ,ν(z) =

∞∑
n=0

zn

Γ(σn+ ν)n!
= Eσ,ν,10 (µ, 0; z).

5. Prabhakar’s function [16] : (r = γ = 1)

Eµσ,ν(z) =

∞∑
n=0

(µ)n z
n

Γ(σn+ ν)n!
= Eσ,ν,10 (µ, 1; z).

6. Cosine function : (γ = ν = µ = r = 1, σ = 2, z is replaced by −z2)

cos(
√
z) =

∞∑
n=0

(−1)nzn

Γ(2n+ 1)
= E2,1,1

0 (1, 1;−z).

7. Bessel Maitland function [14] : (γ = 1, r = 0, ν is replaced by ν+1, z is replaced
by −z)

Jµν (z) =

∞∑
n=0

(−z)n

Γ(σn+ ν + 1) n!
= Eσ,ν+1,1

0 (µ, 0;−z).

8. Mainardi’s functions [12] : (γ = 1, r = 0, σ is replaced by −σ with 0 < σ < 1)
(ν = 0 in Fσ(z)) (ν = 1− σ in Mσ(z))

Fσ(z) =

∞∑
n=1

(−z)n

Γ(−σn)n!
= E−σ,0,10 (µ, 0; z);

Mσ(z) =

∞∑
n=0

(−z)n

Γ(−σn+ 1− σ)n!
= E−σ,1−σ,10 (µ, 0; z).
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9. Kiryakova’s function [11] : (µ = r = 1, γ = m ∈ N, in (1.5); and putting
µ1 = · · · = µm = ν, 1

ρ1
= · · · = 1

ρm
= σ in [11, Eq.(13)])

Eσ,ν(z) =

∞∑
n=0

zn

Γm(σn+ ν)
= Eσ,ν,m0 (1, 1; z).

10. Garra and Polito’s function [10] : (µ = r = 1, z = x, ν = γ, γ = α+ 1, σ = ν)

Eα;ν,γ(x) =

∞∑
n=0

xn

Γα+1(νn+ γ)
= Eν,γ,α+1

0 (1, 1;x).

11. Shukla and Prajapati’s function [19] : (γ = 1, r ∈ N ∪ (0, 1))

Eµ,rσ,ν (z) =

∞∑
n=0

(µ)rn z
n

Γ(σn+ ν) n!
= Eσ,ν,10 (µ, r; z).

12. Srivastava and Tomovski’s function [21] : (γ = 1, Re(r) > 0)

Eµ,rσ,ν (z) =

∞∑
n=0

(µ)rn z
n

Γ(σn+ ν) n!
= Eσ,ν,10 (µ, r; z).

Now as a main results, the domain of convergence, differential equation and the
integral operator of the UMLW-function are discussed.

Theorem 1.3. For Re(αδ) ≥ 0, Re(βδ + σγ − δ
2 − r + 1) > 0, and α, σ 6= 0, the

UMLW-function (1.5) is an entire function.

Proof. We have

Eσ,ν,γα,β,δ(µ, r; z) =

∞∑
n=0

(µ)rn
Γδn(αn+ β)Γγ(σn+ ν)

zn

n!
=

∞∑
n=0

ϕnz
n (say). (1.6)

Using Cauchy-Hadamard formula:

1

R
= lim
n→∞

sup n
√
|ϕn| = lim

n→∞
sup

∣∣∣∣ (µ)rn

Γδn(αn + β)Γγ(σn + ν) n!

∣∣∣∣ 1n ,
and then applying Stirlng’s asymptotic Formula [9]

Γ(an+ b) ∼
√

2π e−(an+b) (an+ b)an+b− 1
2 (1.7)

for large n and for a = r, α, σ and b = µ, β, ν respectively we have

1

R
= lim

n→∞
sup

∣∣∣∣ Γ(µ+ rn)

Γ(µ) Γδn(αn+ β) Γγ(σn+ ν) Γ(n+ 1)

∣∣∣∣ 1n (1.8)

∼ lim
n→∞

sup

{∣∣∣∣∣
√

2π e−(µ+rn)(µ+ rn)µ+rn− 1
2

√
2π e−(µ)(µ)µ−

1
2

∣∣∣∣∣
1
n

×
∣∣∣∣ 1√

2π e−(αn+β)(αn+ β)αn+β− 1
2

∣∣∣∣δ
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×
∣∣∣∣ 1√

2π e−(σn+ν)(σn+ ν)σn+ν− 1
2

∣∣∣∣
γ
n
∣∣∣∣ 1√

2π e−(n+1)(n+ 1)n+1− 1
2

∣∣∣∣ 1n
}

= lim
n→∞

sup

{
|e−r|

∣∣∣∣∣∣ (rn)r+
µ
n−

1
2n

(
1 + µ

rn

) µ
n−

1
2n
(
1 + µ

rn

)r
µ
µ
n−

1
2n

∣∣∣∣∣∣
×
∣∣∣∣ eβδ

(
√

2π)δ

∣∣∣∣
∣∣∣∣∣∣∣

eαδn

(αn)δ(αn+β− 1
2 )
(

1 + β
αn

)αδn (
1 + β

αn

)βδ− δ2
∣∣∣∣∣∣∣

×|eσγ |

∣∣∣∣∣ e
γν
n

(
√

2π)
γ
n (σn)σγ+ γν

n −
γ
2n

(
1 + ν

σn

)σγ+ γν
n −

γ
2n

∣∣∣∣∣
×

∣∣∣∣∣∣ e1+ 1
n

(
√

2π)
1
nn1+ 1

n−
1
2n

(
1 + 1

n

)1− 1
n

∣∣∣∣∣∣
}

=

∣∣∣∣∣ eβδ+σγ−r+1 rr

(
√

2π)δσσγαβδ−
δ
2

∣∣∣∣∣ lim
n→∞

sup

{∣∣∣∣∣∣n
rr

µ
n−

1
2n (n

1
n )µ−

1
2

(
1 + µ

rn

) µ
n−

1
2n
(
1 + µ

rn

)r
µ
µ
n−

1
2n

∣∣∣∣∣∣
×

∣∣∣∣∣
(
e
α

)
n

∣∣∣∣∣
αδn

∣∣∣∣∣∣∣
1

nβδ−
δ
2

(
1 + β

αn

)αδn (
1 + β

αn

)βδ− δ2
∣∣∣∣∣∣∣

×
∣∣∣∣ e

γν
n

(
√

2π)
γ
nσ

γν
n −

γ
2n nσγ (n

1
n )γν−

γ
2n

∣∣∣∣
×

∣∣∣∣∣ 1(
1 + ν

σn

)σγ (
1 + ν

σn

)σγ
n −

γ
n

∣∣∣∣∣
∣∣∣∣∣∣ e

1
n

(
1 + 1

n

) 1
n−1

(
√

2π)
1
n n(n

1
n )

1
2

∣∣∣∣∣∣
}

(1.9)

=

∣∣∣∣∣ eβδ+σγ−r+1rr

(
√

2π)δσσγαβδ−
δ
2

∣∣∣∣∣
∣∣∣∣ 1

eβδ+1

∣∣∣∣ lim
n→∞


∣∣∣∣∣
(
e
α

)
n

∣∣∣∣∣
αδn ∣∣∣∣ 1

nβδ+σγ−
δ
2−r+1

∣∣∣∣


= 0,

provided that Re(αδ) ≥ 0, Re(βδ + γσ − δ
2 − r + 1) > 0, and α, σ 6= 0.

Thus, R =∞. �

Remark 1.4.

1. We stick to the conditions proved in Theorem 1.3 throughout the article unless
it is specified.

2. The series
∑
ϕnz

n thus, converges uniformly in any compact subset of C.

Next, to obtain the differential equation we define an operator as follows.
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Definition 1.5. Let f(z) =
∞∑
n=1

anz
n, 0 6= z ∈ C, p ∈ N ∪ {0} and α ∈ C with

Re(α) > 0. Define [4, 7]

p∆
θ
α(f(z)) =


∞∑
n=1

an(α)pn−1(θ + α− 1)pnzn, phif p ∈ N

f(z), phif p = 0
, (1.10)

where θ = z d
dz and (θ + c)n = (θ + c)(θ + c) . . . (θ + c)︸ ︷︷ ︸

n times

, c is a constant.

Using this operator, we have now obtained the differential equation of the
UMLW-function in the following theorem.

Theorem 1.6. If α = 1, γ ∈ N ∪ {0}, σ, r, δ ∈ N and β 6= 0,−1,−2, . . . then

w = Eσ,ν,γ1,β,δ(µ, r; z) =

∞∑
n=0

(µ)rn
Γδn(n+ β)Γγ(σn+ ν)

zn

n!

satisfies the differential equation :
[{

δ∆
θ
β

}(σ−1∏
i=0

(
θ +

ν + i

σ
− 1

)γ)
θ

]
− z∗

r−1∏
j=0

[
θ +

µ+ j

r

]w = 0, (1.11)

where z∗ = rr z
σσ
γ

Γδ(β)
.

In order to prove this theorem, we first prove the following lemma which allows us to
actually apply the operator δ∆

θ
β onto the operand w.

For the sake of brevity, we put{
δ∆

θ
β

} σ−1∏
i=0

(
θ +

ν + i

σ
− 1

)γ
θ = β,δΘσ,ν,γ .

In this notation, we have

Lemma 1.7. If α = 1, γ ∈ N ∪ {0}, σ, r, δ ∈ N and β 6= 0,−1,−2, . . . with

w = Eσ,ν,γ1,β,δ(µ, r; z) =

∞∑
n=0

(µ)rn
Γδn(n+ β)Γγ(σn+ ν)

zn

n!

and

β,δΘσ,ν,γ(w) =

∞∑
n=0

fn(µ, r, β, δ, σ, ν, γ; z) (say),

then the operator β,δΘσ,ν,γ is applicable to w provided that the series

∞∑
n=0

ϕn fn(µ, r, β, δ, σ, ν, γ; z)

converges (cf. [20, Definition 11, p.20]).
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Proof. We first write

1

Γγ(σn+ ν)
=

1

Γγ(ν)

Γγ(ν)

Γγ(σn+ ν)
=

1

Γγ(ν)

[
1

(ν)σn

]γ
,

then applying the formula [17, Lemma 6, p. 22]

(a)kn = kkn
(a
k

)
n
. . .

(
a+ k − 1

k

)
n

,

for a = µ, ν and k = r, σ respectively, we have

w =

∞∑
n=0

(µ)rn z
n

Γδn(n+ β)Γγ(σn+ ν) n!

Γδn(β)

Γδn(β)

=

∞∑
n=0

(µ)rn
(β)δnn Γγ(σn+ ν) n!

zn

Γδn(β)

=
1

Γγ(ν)

∞∑
n=0

(
µ
r

)
n
. . .
(
µ+r−1

r

)
n(

ν
σ

)γ
n
. . .
(
ν+σ−1
σ

)γ
n
n!

rrn zn

Γδn(β)σσγn(β)δnn
. (1.12)

Now take
rr z

σσγ Γδ(β)
= z∗,

then

w =
1

Γγ(ν)

∞∑
n=0

(
µ
r

)
n
. . .
(
µ+r−1

r

)
n(

ν
σ

)γ
n
. . .
(
ν+σ−1
σ

)γ
n

zn∗
(β)δnn n!

.

Now consider

β,δΘσ,ν,γ(w)

=
1

Γγ(ν)

{[{
δ∆

θ
β

}(σ−1∏
i=0

(
θ +

ν + i

σ
− 1

)γ)]

×
∞∑
n=1

(
µ
r

)
n
. . .
(
µ+r−1

r

)
n(

ν
σ

)γ
n
. . .
(
ν+σ−1
σ

)γ
n

zn∗
(β)δnn (n− 1)!

}

=
1

Γγ(ν)

{{
δ∆

θ
β

}(
θ +

ν − σ
σ

)γ (
θ +

ν − σ + 1

σ

)γ
. . .

(
θ +

ν − 1

σ

)γ}
×
∞∑
n=1

(
µ
r

)
n
. . .
(
µ+r−1

r

)
n(

ν
σ

)γ
n
. . .
(
ν+σ−1
σ

)γ
n

zn∗
(β)δnn (n− 1)!

=
1

Γγ(ν)

{{
δ∆

θ
β

}(
θ +

ν − σ
σ

)γ (
θ +

ν − σ + 1

σ

)γ
. . .

(
θ +

ν − 2

σ

)γ}
×
∞∑
n=1

(
µ
r

)
n
. . .
(
µ+r−1

r

)
n(

ν
σ

)γ
n
. . .
(
ν+σ−1
σ

)γ
n

zn∗
(β)δnn (n− 1)!

[
n+

ν − 1

σ

]γ
=

1

Γγ(ν)

{{
δ∆

θ
β

}(
θ +

ν − σ
σ

)γ (
θ +

ν − σ + 1

σ

)γ
. . .

(
θ +

ν − 2

σ

)γ}
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×
∞∑
n=1

(
µ
r

)
n
. . .
(
µ+r−1

r

)
n(

ν
σ

)γ
n
. . .
(
ν+σ−1
σ

)γ
n

zn∗
(β)δnn (n− 1)!

[
ν + σn− 1

σ

]γ
.

Continuing in this manner, we finally arrive at

β,δΘσ,ν,γ(w)

=
1

Γγ(ν)

{
δ∆

θ
β

}{ ∞∑
n=0

(
µ
r

)
n
. . .
(
µ+r−1

r

)
n(

ν
σ

)γ
n
. . .
(
ν+σ−1
σ

)γ
n

zn∗
(β)δnn ((n− 1)!

}

×
(
ν + σn− 1

σ

)γ (
ν + σn− 2

σ

)γ
. . .

(
ν + σn− σ

σ

)γ
=

1

Γγ(ν)

{
δ∆

θ
β

}{ ∞∑
n=1

(
µ
r

)
n
. . .
(
µ+r−1

r

)
n(

ν
σ

)γ
n−1

. . .
(
ν+σ−1
σ

)γ
n−1

zn∗
(β)δnn (n− 1)!

}

=
1

Γγ(ν)

∞∑
n=1

(
µ
r

)
n
. . .
(
µ+r−1

r

)
n(

ν
σ

)γ
n−1

. . .
(
ν+σ−1
σ

)γ
n−1

(β)δn−1 (θ + β − 1)δn zn∗
(β)δnn (n− 1)!

. (1.13)

Now, observe that for θ = z d
dz ,

(θ + β − 1) zn∗ = (θ + β − 1)

(
rr z

σσγ Γδ(β)

)n
=

(
rr

σσγ Γδ(β)

)n
(θ + β − 1)zn

=

(
rr

σσγ Γδ(β)

)n
(z nzn−1 + βzn − zn)

=

(
rr

σσγ Γδ(β)

)n
(n+ β − 1) zn

= (n+ β − 1) zn∗ .

Similarly (θ + β − 1)2 zn∗ = (n + β − 1)2 zn∗ and in general, for δ, n ∈ N ∪ {0}, (θ +
β − 1)δn zn∗ = (n+ β − 1)δn zn∗ . Using this in (1.13), we have

β,δΘσ,ν,γ(w) =
1

Γγ(ν)

∞∑
n=1

(
µ
r

)
n
. . .
(
µ+r−1

r

)
n(

ν
σ

)γ
n−1

. . .
(
ν+σ−1
σ

)γ
n−1

(β)δn−1(n+ β − 1)δn zn∗
(β)δnn (n− 1)!

=
1

Γγ(ν)

∞∑
n=1

(
µ
r

)
n
. . .
(
µ+r−1

r

)
n(

ν
σ

)γ
n−1

. . .
(
ν+σ−1
σ

)γ
n−1

zn∗
(β)δn−δn−1 (n− 1)!

=
z∗

Γγ(ν)

∞∑
n=0

(
µ
r

)
n
. . .
(
µ+r−1

r

)
n(

ν
σ

)γ
n
. . .
(
ν+σ−1
σ

)γ
n

(µ+ rn)r
rr

zn∗
(β)δnn n!

(1.14)

=

∞∑
n=0

fn(µ, r, β, δ, σ, ν, γ; z) (say).
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To complete the proof of lemma, it remains to show that

∞∑
n=0

ϕn fn(µ, r, β, δ, σ, ν, γ; z) =

∞∑
n=0

(µ)2
rn (µ+ rn)r

Γ2δn(n+ β) Γ2γ(σn+ ν)

zn+1
∗

(n!)2

is convergent.
For that take

ξn =
(µ)2

rn (µ+ rn)r
Γ2δn(n+ β) Γ2γ(σn+ ν) (n!)2

.

Using Cauchy Hadamard formula:

1

R
= lim
n→∞

sup n
√
|ξn| = lim

n→∞
sup

∣∣∣∣ (µ)2
rn (µ+ rn)r

Γ2δn(n + β) Γ2γ(σn + ν) (n!)2

∣∣∣∣ 1n ,
and then applying Stirlng’s asymptotic formula (1.7), we have

1

R
= lim

n→∞
sup

∣∣∣∣ Γ2(µ+ rn) Γ(µ+ rn + r)

Γ2(µ) Γ(r) Γ2δn(n + β) Γ2γ(σn + ν) Γ2(n + 1)

∣∣∣∣ 1n
= lim

n→∞
sup

∣∣∣∣∣ Γ(µ+ rn) Γ
1
2 (µ+ rn + r)

Γ(µ) Γ
1
2 (r) Γδn(n + β) Γγ(σn + ν) Γ(n + 1)

∣∣∣∣∣
2
n

.

Proceeding in the similar manner from (1.8) to (1.9), we get

1

R
∼

∣∣∣∣ e2(βδ+σγ−r+1)r2r

Γ2(µ)(
√

2π)2δσ2σγ

∣∣∣∣ ∣∣∣∣ 1

e2βδ+2

∣∣∣∣ lim
n→∞

∣∣∣ e
n

∣∣∣2δn ∣∣∣∣ 1

n2(βδ+σγ− δ2−r+1)

∣∣∣∣
= 0,

provided that Re(βδ + γσ − δ
2 − r + 1) > 0, and α, σ 6= 0.

This completes the proof of Lemma. �

Proof. (of Theorem 1.6) From (1.14), we have

β,δΘσ,ν,γ(w) =
z∗

Γγ(ν)

∞∑
n=0

(
µ
r

)
n
. . .
(
µ+r−1

r

)
n(

ν
σ

)γ
n
. . .
(
ν+σ−1
σ

)γ
n

(µ+ rn)r
rr

zn∗
(β)δnn n!

. (1.15)

On the other hand,

z∗


r−1∏
j=0

[
θ +

µ+ j

r

]w

=
z∗

Γγ(ν)

(
θ +

µ

r

)
. . .

(
θ +

µ+ r − 2

r

) ∞∑
n=0

(
µ
r

)
n
. . .
(
µ+r−1

r

)
n(

ν
σ

)γ
n
. . .
(
ν+σ−1
σ

)γ
n

(β)δnn n!

×
(
θ +

µ+ r − 1

r

)
zn∗

=
z∗

Γγ(ν)

(
θ +

µ

r

)
. . .

(
θ +

µ+ r − 2

r

)
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×
∞∑
n=0

(
µ
r

)
n
. . .
(
µ+r−1

r

)
n(

ν
σ

)γ
n
. . .
(
ν+σ−1
σ

)γ
n

zn∗
(β)δnn n!

(
µ+ rn+ r − 1

r

)

=
z∗

Γγ(ν)

(
θ +

µ

r

)
. . .

(
θ +

µ+ r − 3

r

) ∞∑
n=0

(
µ
r

)
n
. . .
(
µ+r−1

r

)
n(

ν
σ

)γ
n
. . .
(
ν+σ−2
σ

)γ
n

(β)δnn n!

×
(
µ+ rn+ r − 1

r

)(
θ +

µ+ r − 2

r

)
zn∗

=
z∗

Γγ(ν)

(
θ +

µ

r

)
. . .

(
θ +

µ+ r − 3

r

)
×
∞∑
n=0

(
µ
r

)
n
. . .
(
µ+r−1

r

)
n(

ν
σ

)γ
n
. . .
(
ν+σ−1
σ

)γ
n

zn∗
(β)δnn n!

(
µ+ rn+ r − 1

r

)(
µ+ rn+ r − 2

r

)
.

Proceeding in this way, we finally arrive at

z∗


r−1∏
j=0

[
θ +

µ+ j

r

]w

=
z∗

Γγ(ν) rr

∞∑
n=0

(
µ
r

)
n
. . .
(
µ+r−1

r

)
n(

ν
σ

)γ
n
. . .
(
ν+σ−1
σ

)γ
n

zn∗
(β)δnn n!

×(µ+ rn+ r − 1)(µ+ rn+ r − 2) . . . (µ+ rn+ 1)(µ+ rn)

=
z∗

Γγ(ν)

∞∑
n=0

(
µ
r

)
n
. . .
(
µ+r−1

r

)
n(

ν
σ

)γ
n
. . .
(
ν+σ−1
σ

)γ
n

(µ+ rn)r
rr

zn∗
(β)δnn n!

. (1.16)

The differential equation (1.11) now follows from (1.15) and (1.16). �

We next define an integral operator of Eσ,ν,γα,β,δ(µ, r;x) as follows.

Definition 1.8. For Re(ν) > 0,

Ia+ϕ(x) =

x∫
a

(x− y)ν−1Eσ,ν,γα,β,δ(µ, r;λ(x− y)σ)ϕ(y)dy. (1.17)

For this operator, we prove

Theorem 1.9. The operator Ia+ defined in (1.17) is bounded in L(a, b), the space of
all Lebesgue measurable functions on finite interval (a, b) and

‖ Ia+ ϕ ‖1 ≤ M ‖ ϕ ‖1,

where

M =

∞∑
n=0

|(µ)rn| |λ|n (b− a)Re(ν)+Re(σ)n

|Γδn(αn+ β)| |Γγ(σn+ ν)| n! (Re(ν) +Re(σ)n)
.

We need the following lemma for proving this theorem.
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Lemma 1.10. The series

∞∑
n=0

un =

∞∑
n=0

|(µ)rn| |λ|n (b− a)Re(ν)+Re(σ)n

|Γδn(αn+ β)| |Γγ(σn+ ν)| n! (Re(ν) +Re(σ)n)

converges absolutely under the convergence conditions as stated in Theorem 1.3.

The proof runs almost parallel to that of Theorem 1.3. Hence we omit the proof.

Proof. (of Theorem 1.9)
From the definition of integral operator (1.17), we have

‖ Ia+ϕ ‖1 =

b∫
a

∣∣∣∣∣∣
x∫
a

(x− y)ν−1Eσ,ν,γα,β,δ(µ, r;λ(x− y)σ)ϕ(y)dy

∣∣∣∣∣∣ dx
≤

b∫
a

x∫
a

(x− y)Re(ν)−1
∣∣∣Eσ,ν,γα,β,δ(µ, r;λ(x− y)σ)

∣∣∣ |ϕ(y)| dy dx.

Changing the order of integration, gives

‖ Ia+ϕ ‖1 ≤
b∫
a

b∫
y

(x− y)Re(ν)−1
∣∣∣Eσ,ν,γα,β,δ(µ, r;λ(x− y)σ)

∣∣∣ dx |ϕ(y)| dy.

Now taking x− y = u, we get

‖ Ia+ϕ ‖1 ≤
b∫
a

b−y∫
0

uRe(ν)−1
∣∣∣Eσ,ν,γα,β,δ(µ, r;λu

σ)
∣∣∣ du |ϕ(y)| dy

≤
b∫
a

 b−a∫
0

uRe(ν)−1
∣∣∣Eσ,ν,γα,β,δ(µ, r;λu

σ)
∣∣∣ du

 |ϕ(y)| dy.

Using the Definition 1.1 of Eσ,ν,γα,β,δ(µ, r;x), we obtain

‖ Ia+ϕ ‖1 ≤
∞∑
n=0

|(µ)rn| |λ|n

|Γδn(αn+ β)| |Γγ(σn+ ν)| n!

×
b−a∫
0

uRe(ν)+Re(σ)n−1du

b∫
a

|ϕ(y)| dy

=

∞∑
n=0

|(µ)rn| |λ|n (b− a)Re(ν)+Re(σ)n

|Γδn(αn+ β)| |Γγ(σn+ ν)| n! (Re(ν) +Re(σ)n)
‖ ϕ ‖1 .

The series on the r.h.s. is of real constants which converges absolutely by Lemma 1.10.
Hence denoting its sum by M , the theorem follows. �
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2. Other results

In this section, we derive some results involving certain fractional order deriva-
tives and obtain the eigen function property of the UMLW-function. At last, some
special cases and graphs of the UMLW-function are compared.

Definition 2.1. The Riemann-Liouville fractional integral (RL-integral) operator of
order α ∈ C,<(α) > 0 is defined as [13]

Iαa f(x) =
1

Γ(α)

x∫
a

(x− t)α−1f(t) dt, x > a. (2.1)

Definition 2.2. The Riemann-Liouville fractional derivative (RL-derivative) of order
α ∈ C,m− 1 < Re(α) ≤ m,m ∈ N is defined as [13]

Dα
a f(x) = Dm

a I
m−α
a f(x) =

1

Γ(m− α)
Dm


x∫
a

(x− t)m−α−1f(t) dt

 , x > a, (2.2)

where Dm = dm

dxm .

Definition 2.3. The Caputo derivative of order α ∈ C,m− 1 < Re(α) ≤ m,m ∈ N is
[13]

cD
α
a f(x) = Im−αa Dm

a f(x) =
1

Γ(m− α)

x∫
a

Dm(f(t))(x− t)α−1 dt, x > a, (2.3)

where Dm = dm

dxm .

Then following hold true.

(1) Iαa (x− a)β =
Γ(β + 1)

Γ(α+ β + 1)
(x− a)β+α, β > −1, α ≥ 0. (2.4)

(2) Dα
a (x− a)β =

Γ(β + 1)

Γ(α− β + 1)
(x− a)β−α, β > −1, α ≥ 0. (2.5)

We take a = 0 now onwards. We define below hyper-Bessel type operators.

Definition 2.4. For x ∈ R \ {0} and ` ∈ N ∪ {0}, the hyper-Bessel type operators
denoted and defined by

(xIα)n = Iαx−αIα . . . Iαx−αIα︸ ︷︷ ︸
(n+1) integrals

, for n = 0, 1, 2, . . ., (2.6)

and

(xDα)`n = DαxαDα . . .DαxαDα︸ ︷︷ ︸
(`n+1) derivatives

, for n = 0, 1, 2, . . ., (2.7)

where Iα denotes the RL-integral and Dα will be either RL-derivative Dα or Caputo
derivative cD

α defined in (2.1), (2.2) and (2.3) respectively for a = 0.
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Theorem 2.5. For UMLW-function (1.5) with α, β, δ, σ, ν, µ ∈ C, η > 0, x 6= 0 and
γ ∈ N, the hyper-Bessel type operators furnish

(xIη)γ
(
xν−1Eσ,ν,γ+1

α,β,δ (µ, r;xσ)
)

= xν+η−1Eσ,ν+η,γ+1
α,β,δ (µ, r;xσ) (2.8)

and

(xDη)γ
(
xν−1Eσ,ν,γ+1

α,β,δ (µ, r;xσ)
)

= xν−η−1Eσ,ν−η,γ+1
α,β,δ (µ, r;xσ), (2.9)

where xIη and xDη are as defined in the Definition 2.4.
That is, a fractional integration or differentiation transforms the function (1.5) with
the ν-parameter is increased or decreased by the order of integration or differentiation
respectively.

Proof. The equation (2.8) is proved below which uses (2.4). In fact,

(xIη)γ
(
xν−1Eσ,ν,γ+1

α,β,δ (µ, r;xσ)
)

= Iηx−ηIη . . . Iηx−ηIη︸ ︷︷ ︸
γ+1 integrals

∞∑
n=0

(µ)rn x
σn+ν−1

Γδn(αn+ β)Γγ+1(σn+ ν)n!

= Iηx−ηIη . . . Iηx−ηIη︸ ︷︷ ︸
γ integrals

∞∑
n=0

(µ)rn x
σn+ν−1

Γδn(αn+ β)Γγ+1(σn+ ν)n!

Γ(σn+ ν)

Γ(σn+ ν + η)

= . . . = Iη
∞∑
n=0

(µ)rn x
σn+ν−1

Γδn(αn+ β)Γγ+1(σn+ ν)n!

Γγ(σn+ ν)

Γγ(σn+ ν + η)

= xν+η−1
∞∑
n=0

(µ)rn x
σn

Γδn(αn+ β)Γγ+1(σn+ ν + η)n!

= xν+η−1Eσ,ν+η,γ
α,β,δ (µ, r;xσ).

We next prove (2.9).
Observing that

(xDη)γ
(
xν−1Eσ,ν,γ+1

α,β,δ (µ, r;xσ)
)

= DηxηDη . . . DηxηDη︸ ︷︷ ︸
γ+1 derivatives

∞∑
n=0

(µ)rn x
σn+ν−1

Γδn(αn+ β)Γγ+1(σn+ ν)n!

= DηxηDη . . . DηxηDη︸ ︷︷ ︸
γ derivatives

∞∑
n=0

(µ)rn x
σn+ν−1

Γδn(αn+ β)Γγ+1(σn+ ν)n!

Γ(σn+ ν)

Γ(σn+ ν − η)

= . . . = Dη
∞∑
n=0

(µ)rn x
σn+ν−1

Γδn(αn+ β)Γγ+1(σn+ ν) n!

Γγ(σn+ ν)

Γγ(σn+ ν − η)

= xν−η−1
∞∑
n=0

(µ)rn x
σn

Γδn(αn+ β)Γγ+1(σn+ ν − η)n!

= xν−η−1Eσ,ν−η,γα,β,δ (µ, r;xσ).
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Hence the required result. �

For deriving the eigen function property, we first define the following operator.

Definition 2.6. Let f(x) =
∞∑
n=1

anx
n, |x| < R, R > 0. Define an operator for x 6= 0 as

Ixf =

∞∫
0

e−
t
xx−1f(t) dt. (2.10)

With the aid of this and the Caputo fractional derivative, we next define the
eigen function operator below.

Definition 2.7. Let f(x) =
∞∑
n=0

anx
n, |x| < R, R > 0 and `, k ∈ N ∪ {0}. Define an

operator for x 6= 0 as

`
DxΩkI (f(xη)) = IxIx · · · Ix︸ ︷︷ ︸

` integrals

(xDη)k f
(
(xDη)`xη

)
, (2.11)

where xDη represents an operator defined in (2.7) with Dα as the Caputo derivative
and Ix is as defined in (2.10).

Theorem 2.8. For β = σ = µ = r = 1 and ν = α, n − 1 < Re(α) < n, n ∈ N,

the UMLW-function Eα,1,γ+1
α,1,δ (1, 1;λxα) =

∞∑
n=0

λn xαn

Γδn+γ+1(αn+1)
:= Eγα,δ(λxα), say, λ ∈

C, α, x > 0, is an eigen function of the operator `
Dx

ΩγI in (2.11).
That is,

δ
DxΩγI

(
Eγα,δ(λx

α)
)

= λ Eγα,δ(λx
α), λ ∈ R− {0}.

Proof. Note that

δ
DxΩγI

(
Eγα,δ(λx

α)
)

= IxIx · · · Ix︸ ︷︷ ︸
δ integrals

(xDα)γ Eγα,δ
(
λ(xDα)δxα

)
= IxIx · · · Ix︸ ︷︷ ︸

δ integrals

(xDα)γ
∞∑
n=0

λn

Γδn+γ+1(αn+ 1)
(xDα)δn xαn

= IxIx · · · Ix︸ ︷︷ ︸
δ integrals

∞∑
n=0

λn

Γδn+γ+1(αn+ 1)
(xDα)δn+γ xαn. (2.12)

For n = 0, (xDα)0+γ x0 = cD
αxαcD

α . . . cD
αxαcD

α︸ ︷︷ ︸
γ+1 derivatives

(1) = 0.

For n = 1,

(xDα)δ+γxα = cD
αxαcD

α . . . cD
αxαcD

α︸ ︷︷ ︸
δ+γ+1 derivatives

(xα). (2.13)
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Observing that

cD
αxα =

1

Γ(m− α)

x∫
0

α(α− 1) . . . (α−m+ 1) tα−m (x− t)m−α−1dt

=
α(α− 1) . . . (α−m+ 1)

Γ(m− α)
xm−α−1

x∫
0

tα−m
(

1− t

x

)m−α−1

dt

and substituting t = xu, we further have

cD
αxα =

α(α− 1) . . . (α−m+ 1)

Γ(m− α)

1∫
0

uα−m (1− u)
m−α−1

du

=
α(α− 1) . . . (α−m+ 1)

Γ(m− α)
Γ(m− α)Γ(α−m+ 1)

= Γ(α+ 1).

Using this repeatedly in (2.13), we finally arrive at

(xDα)δ+γ xα = Γδ+γ+1(α+ 1).

Now for n = 2,

(xDα)2δ+γ x2α = cD
αxαcD

α . . . cD
αxαcD

α︸ ︷︷ ︸
2δ+γ+1 derivatives

x2α.

We begin with

cD
α(x2α)

=
1

Γ(m− α)

x∫
0

(2α)(2α− 1) . . . (2α−m+ 1) t2α−m (x− t)m−α−1dt

=
(2α)(2α− 1) . . . (2α−m+ 1)

Γ(m− α)
xm−α−1

x∫
0

t2α−m
(

1− t

x

)m−α−1

dt

=
(2α)(2α− 1) . . . (2α−m+ 1)

Γ(m− α)
x2α−αΓ(m− α) Γ(2α−m+ 1)

Γ(2α− α+ 1)

=
Γ(2α+ 1)

Γ(2α− α+ 1)
x2α−α.

Therefore,

(xDα)2δ+γ x2α =
Γ2δ+γ+1(2α+ 1)

Γ2δ+γ+1(2α− α+ 1)
x2α−α.

In general,

(xDα)δn+γxαn =
Γδn+γ+1(αn+ 1)

Γδn+γ+1(αn− α+ 1)
xαn−α. (2.14)
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Now substituting (2.14) in (2.12) and then applying the operator defined in (2.10),
we find that

δ
DxΩγI

(
Eγα,δ(λx

α)
)

= IxIx · · · Ix︸ ︷︷ ︸
δ fold integrals

∞∑
n=1

λn

Γδn+γ+1(αn+ 1)

Γδn+γ+1(αn+ 1)

Γδn+γ+1(αn− α+ 1)
xαn−α

= IxIx · · · Ix︸ ︷︷ ︸
δ−1 fold integrals

∞∑
n=1

λn

Γδn+γ+1(αn− α+ 1)

∞∫
0

e−
t
x x−1 tαn−αdt

= IxIx · · · Ix︸ ︷︷ ︸
δ−1 fold integrals

∞∑
n=1

λn

Γδn+γ+1(αn− α+ 1)
xαn−α−1

∞∫
0

e−
t
x

(
t

x

)αn−α
dt

= IxIx · · · Ix︸ ︷︷ ︸
δ−1 fold integrals

∞∑
n=1

λn

Γδn+γ+1(αn− α+ 1)
xαn−α Γ(αn− α+ 1).

Continuing in this way by applying the operator Ix, δ − 1 times, we finally arrive at

δ
DxΩγI

(
Eγα,δ(λx

α)
)

=

∞∑
n=1

λn

Γδn+γ+1(αn− α+ 1)
xαn−α Γδ(αn− α+ 1)

=

∞∑
n=1

λn xαn−α

Γδn−δ+γ+1(αn− α+ 1)
.

Hence,

δ
DxΩγI

(
Eγα,δ(λx

α)
)

= λ Eγα,δ(λx
α). (2.15)

�

Remark 2.9. From the definition of Eγα,δ(x) in the Theorem 2.8, observe that

Eγα,δ(0) = 1 and from (2.15), δDxΩγI

(
Eγα,δ(λxα)

)
= λ Eγα,δ(λxα), λ ∈ R \ {0}.

3. Application

In the view of [8], we now discuss the application of particular UMLW-function
discussed in the Theorem 2.8. Let D be the bounded domain in Rd with sufficiently
smooth boundary ∂D. We consider the infinite order fractional evolution type problem

`
DxΩγI u(x, t) = ut(x, t), t ∈ [0, T ], T > 0; (3.1)

u(0, t) = f(t), (3.2)

where the operator `DxΩγI is as defined in (2.11) in L∞-space and is operating only on
the variable x and f(t) ∈ C[0, T ].
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Theorem 3.1. If δ, γ ∈ N ∪ {0}, n − 1 < Re(α) < n, n ∈ N then the solution of
(3.1)-(3.2) is given by

u(x, t) = Eγα,δ

(
xα

∂

∂t

)
f(t).

Proof. To prove the theorem, we prove that u(x, t) = Eγα,δ
(
xα ∂

∂t

)
f(t) satisfies the

problem described by (3.1)-(3.2).
Here, noticing that `

Dx
ΩγI is the operator operating only on the variable x, we have

from the Theorem 2.8,

`
DxΩγI u(x, t) = `

DxΩγI

{
Eγα,δ

(
xα

∂

∂t

)
f(t)

}
=

∂

∂t
Eγα,δ

(
xα

∂

∂t

)
f(t)

= ut(x, t).

To complete the proof of the theorem it sufficient to prove that

lim
x→0
||u(x, .)− f ||∞ = 0. (3.3)

Observe that

lim
x→0
||u(x, .)− f ||∞

= lim
x→0

∣∣∣∣∣∣∣∣Eγα,δ (xα ∂

∂t

)
f − f

∣∣∣∣∣∣∣∣
∞

= lim
x→0

||f ||∞

∣∣∣∣∣∣∣∣Eγα,δ (xα ∂

∂t

)
− 1

∣∣∣∣∣∣∣∣
∞
.

But lim
x→0

∣∣∣∣∣∣Eγα,δ (xα ∂
∂t

)
− 1
∣∣∣∣∣∣
∞

= 0 by Remark 2.9 and f ∈ C[0, T ] proves (3.3). �

Now, some of the special cases of the properties proved for UMLW-function are
shown.
Differential equation:
We illustrate the reducibility of the differential equation of Theorem 1.6 corresponding
to the special cases namely Garra and Polito’s function and Srivastava and Tomovski’s
function as follows.
(i) By taking δ = 0, µ = r = 1 and replacing γ by γ + 1, z by x in (1.11) we obtain
with x∗ = x

σσ(γ+1) , the equation{
σ−1∏
i=0

[
θ + ν+i

σ − 1
]γ+1

θ − x∗ (θ + 1)

}
w = 0,

where the solution w = Eγ;σ,ν(x) =
∞∑
n=0

xn

Γγ+1(σn+ν) is Garra and Polito’s function.

(ii) The Srivastava-Tomovski’s function w = Eµ,rσ,ν (z) =
∞∑
n=0

(µ)rn (z)n

Γ(σn+ν) n! satisfies the

differential equation{
σ−1∏
i=0

[
θ + ν+i

σ − 1
]
θ − z∗

r−1∏
j=0

[
θ + µ+j

r

]}
w = 0, with substitutions δ = 0 and γ = 1

in (1.11), and z∗ = rr

σσ z.



206 Meera H. Chudasama

Integral Operator:
(i) By taking δ = 0, µ = r = 1 and replacing γ by γ + 1, z by x in Theorem 1.9, we
obtain

M =

∞∑
n=0

|λ|n (b− a)Re(ν)+Re(σ)n

|Γγ+1(σn+ ν)| (Re(ν) +Re(σ)n)
,

which is a bound of integral operator of Garra and Polito’s function in Lebesgue
Measurable space.
(ii) In Theorem 1.9, on making substitutions δ = 0 and γ = 1, we find

M =

∞∑
n=0

|(µ)rn| |λ|n (b− a)Re(ν)+Re(σ)n

|Γγ(σn+ ν)| n! (Re(ν) +Re(σ)n)
,

which is nothing but the Integral operator of Srivastava and Tomovski’s function [21,
Theorem 2, Eq.(2.15)].
Eigen function property:
It is interesting to note that the substitutions δ = 0, µ = r = 1 and z = x in Theorem
2.8, yields the eigen function property of the Garra and Polito’s function [10, Theorem
3.6, p. 776]

Eγα,0(xα) = Eγ;α,1(xα) =

∞∑
n=0

xαn

Γγ+1(αn+ 1)

with respect to the operator (xDα)γ := 0
Dx

ΩγI .
Following are the graphs of UMLW-function for the specific values of the parameters
involved.

Figure 1. Graph A: exp(x), Graph B: E 1
2 ,

1
3
(x), Graph C : E

4,2, 12
1
2 ,

1
2 ,

1
3

(1, 2;x)
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Figure 2. Graph A : E
1
2 ,

1
2 ,1

1
2 ,

1
2 ,1

(1, 0;x), Graph B : E
1
2 ,1,0
1
2 ,1,1

(1, 0;x),

Graph C : E
1
10 ,1,4
1
2 ,1,2

( 1
2 ,

1
3 ;x), Graph D : E

4,2, 12
1
2 ,

1
2 ,

1
3

(1, 2;x)

In the Figure 1, a graph of particular UMLW-function
(
E

4,2, 12
1
2 ,

1
2 ,

1
3

(1, 2;x)
)

is compared with that of exponential function and ML-function in two param-
eters indicated by Graph C, Graph A and Graph B respectively. And in the
Figure 2, the graphs of certain specialized UMLW-functions are plotted. These
are indicated in Figure 2 as Graph A, Graph B, Graph C and Graph D. Click:
https://drive.google.com/file/d/0Bwly1qnYQNxZbEJnc0JQdW5tNE0/view?usp=
sharing for more detail.

4. Conclusion

As a specific instance of the hypergeometric function pFq if α ∈ N ∪ {0}, the
new function defined in (1.5) may clearly be viewed as an extension of the Mittag-
Leffler and Wright functions (1Fα and 0Fα), reduced to the hyper Bessel function

0Fq. However, in the power series, q in the second index and the summation index n
both go to infinity at this point. It’s also noteworthy to note that it solves an infinite
order differential equation, which may arise in the turbulence field or in a system
with an infinite number of degrees of freedom. Also, the integral involves this newly
defined UMLW function as a kernel is bouned in L(a, b). Notably, the specific instance
of this new function possessing an eigen function characteristic concerning the hyper
Bessel type fraction operators via which the infinite order evolution type problem is
formulated is also intriguing.
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Abstract. In this paper, we consider a class of p-valent functions. For functions
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1. Introduction

Let A(p) denote the class of functions of the form

f(z) = zp +

∞∑
k=1

ap+kz
p+k (1.1)

defined on the open unit disk U = {z ∈ C : |z| < 1}.
Note that for p = 1 we obtain A(1) = A which is the class of analytic functions

of the form

f(z) = z +

∞∑
k=2

akz
k. (1.2)

Let P be the the well known Carathéodory class of functions consisting of func-
tions q such that

q(z) = 1 +

∞∑
n=1

cnz
n (1.3)

which are analytic in the unit disc U and satisfy <q(z) > 0, z ∈ U (see [2]).
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The Hankel determinant of a function f , for q ≥ 1, n ≥ 1 was defined by Pom-
merenke ( [12]), [13]), as

Hq(n) =

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+q−1
an+1 an+2 . . . an+q

...
... . . .

...
an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣ (a1 = 1).

For our discussion in this paper , we consider the second order Hankel determi-
nant for the case q = 2 and n = p+ 1

H2(p+ 1) =

∣∣∣∣ ap+1 ap+2

ap+2 ap+3

∣∣∣∣ = ap+1ap+3 − a2p+2.

Bounds for this determinant, for different classes of p-valent functions, has been
investigated by several authors, see [1], [4], [5], [10] to mention only a few.

In a recent paper, Gupta et al. [3] extended Marx-Strohhäcker result [9], [14], to
multivalent functions f ∈ A(p) (p ≥ 2), by finding β and γ such that

<
{

1 +
zf ′′(z)

f ′(z)

}
> α =⇒ <

√
f ′(z)

pzp−1
> β =⇒ <f(z)

zp
> γ, z ∈ U . (1.4)

Starting from Marx-Strohhäcker implication (1.4), we consider the following class of
p-valent functions.

Definition 1.1. A function f ∈ A(p) (p ≥ 1) is said to be in the class SQ(p) if and
only if

<

√
f ′(z)

pzp−1
> 0, z ∈ U . (1.5)

In this paper, for the class SQ(p), we obtain sharp estimates for the coefficients
ap+1, ap+2, ap+3. We also find an upper bound for the second Hankel determinant
H2(p+ 1).

In order to obtain our results we will need the next two lemmas.

Lemma 1.2. [[6], [7]] If the function p ∈ P is given by (1.3), then

|cn| ≤ 2, n ≥ 1

2c2 = c21 + x(4− c21) (1.6)

4c3 = c31 + 2(4− c21)c1x− c1(4− c21)x2 + 2(4− c21)(1− |x|2)y (1.7)

for some x, y with |x| ≤ 1 and |y| ≤ 1.

The second lemma is a special case of a more general result due to Ohno and
Sugawa [11] (see also [8]).

Lemma 1.3. For some given real numbers A,B,C, let

Y (A,B,C) = max
z∈U

(|A+Bz + Cz2|+ 1− |z|2).
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If AC ≥ 0, then

Y (A,B,C) =


|A|+ |B|+ |C| , |B| ≥ 2(1− |C|)

1 + |A|+ B2

4(1− |C|)
, |B| < 2(1− |C|).

If AC < 0, then

Y (A,B,C) =


1− |A|+ B2

4(1− |C|)
, −4AC(C−2 − 1) ≤ B2 and |B| < 2(1− |C|)

1 + |A|+ B2

4(1 + |C|)
, B2 < min

{
4(1 + |C|)2,−4AC(C−2 − 1)

}
R(A,B,C), otherwise

where

R(A,B,C) =


|A|+ |B| − |C| , |C|(|B|+ 4|A|) ≤ |AB|
−|A|+ |B|+ |C| , |AB| ≤ |C|(|B| − 4|A|)

(|C|+ |A|)
√

1− B2

4AC
, otherwise.

2. Coefficient estimates

In this section we obtain sharp inequalities for the coefficients ap+1, ap+2 and
ap+3.

Theorem 2.1. Let f ∈ SQ(p) be given be (1.1). Then

|ap+1| ≤
4p

p+ 1
,

|ap+2| ≤
8p

p+ 2
,

|ap+3| ≤
12p

p+ 3
.

Proof. Since f ∈ SQ(p), we have that
√

f ′(z)
pzp−1 ∈ P. It results that there exists a

function q ∈ P such that √
f ′(z)

pzp−1
= q(z), z ∈ U . (2.1)

Equating the coefficients in (2.1), we obtain

ap+1 =
2p

p+ 1
c1,

ap+2 =
2p

p+ 2
(c2 +

c21
2

),

ap+3 =
2p

p+ 3
(c3 + c1c2).
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Since q ∈ P we have |c1| ≤ 2 and thus |ap+1| ≤
4p

p+ 1
. The inequality is sharp for

c1 = 2. In order to obtain |ap+2|, making use of Lemma 1.2 , we replace the coefficient
c2 from (1.6) and we get

ap+2 =
p

p+ 2
(2c21 + (4− c21)x), |x| ≤ 1.

Suppose now that c1 = c and 0 ≤ c ≤ 2. Then

|ap+2| =
p

p+ 2
|2c21 + (4− c21)x| ≤ p

p+ 2
(2c2 + 4− c2) ≤ 8p

p+ 2
.

The inequality is sharp for c = 2.

Since ap+3 =
2p

p+ 3
(c3+c1c2), making use of Lemma 1.2 and replacing the coefficients

c2 and c3, given by (1.6) and (1.7) respectively, we have

ap+3 =
p

p+ 3

[
3c3

2
+ 2cx(4− c2)− (4− c2)

cx2

2
+ (4− c2)(1− |x2|)y

]
.

In view of triangle inequality, after some calculations, we obtain

|ap+3| ≤
p(4− c2)

p+ 3

[
| 3c3

2(4− c2)
+ 2cx− cx2

2
|+ (1− |x2|)

]
.

To obtain the upper bound of |ap+3| we use Lemma 1.3 with

A =
3c3

2(4− c2)
, B = 2c, C = − c

2
.

It is easy to see that AC > 0 and −4AC(C−2 − 1) ≤ B2.
The inequality |B| < 2(1− |C|) holds true for c < 2

3 .

Thus, for the case c ∈ [0, 23 ), we have

|ap+3| ≤
p(4− c2)

p+ 3
Y (A,B,C) where Y (A,B,C) = 1− |A|+ B2

4(1− |C|)
.

By replacing A,B and C we obtain

Y (A,B,C) =
c3 + 6c2 + 8

2(4− c2)
,

which implies

|ap+3| ≤
p

2(p+ 3)
(c3 + 6c2 + 8).

Let ϕ(c) = c3 + 6c2 + 8, c ∈ [0, 23 ) with ϕ
′
(c) = 3c(c + 4). Since, ϕ

′
(c) ≥ 0, c ∈ [0, 23 )

we get ϕ(c) < 296
27 .

Therefore, if c ∈ [0, 23 ), we have |ap+3| ≤
148p

27(p+ 3)
.

We consider now the case 2
3 ≤ c ≤ 2 and we check the condition

B2 < min
{

4(1 + |C|2);−4AC(C−2 − 1)
}

(2.2)
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from Lemma 1.3, which is equivalent to

4c2 < min

{
4(1 + c+

c2

4
), 3c2

}
.

Hence, for c ∈ [
2

3
, 2] the inequality (2.2) is not satisfied. We check now the conditions

for R(A,B,C) from the same Lemma 1.3.

It is easy to obtain that |AB| ≤ |C|(|B| − 4|A|) for c ∈ [
2

3
,

2√
7

]. For c ∈ [
2

3
,

2√
7

] we

have Y (A,B,C) = R(A,B,C), where

R(A,B,C) =
10c− 4c3

4− c2
.

In this case,

|ap+3| ≤
p

p+ 3
(10c− 4c3).

Let µ(c) = 10c − 4c3, c ∈ [ 23 ,
2√
7
]. Then µ

′
(c) = 10 − 12c2. It follows that µ(c) is an

increasing function, so µ(c) ≤ µ( 2√
7
) =

108
√

7

49
, c ∈ [

2

3
,

2√
7

]. We obtain

|ap+3| ≤
p

p+ 3

108
√

7

49
.

Now, for c ∈ ( 2√
7
, 2] we get, |ap+3| ≤

p(4− c2)

p+ 3
R(A,B,C), where

R(A,B,C) = (|C|+ |A|)
√

1− B2

4AC
=

2 + c2

4− c2

√
16− c2√

3
.

Then,

|ap+3| ≤
p

p+ 3
(2 + c2)

√
16− c2√

3
.

We denote by η(c) = (c2 + 2)
√

16− c2, c ∈
(

2√
7
, 2
]
. Then

η′(c) =
3c(10− c2)√

16− c2
≥ 0, c ∈

(
2√
7

; 2

]
,

which shows that η(c) is an increasing function on
(

2√
7
; 2
]

and η(c) ≤ η(2) = 12
√

3.

Thus

|ap+3| ≤
12p

p+ 3
.

Finally, we get

|ap+3| ≤ max

{
148p

27(p+ 3)
;

108
√

7

49

p

p+ 3
;

12p

p+ 3

}
, p ≥ 1, c ∈ [0; 2]

which implies

|ap+3| ≤
12p

p+ 3
.
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The last inequality is sharp for c = 2.
Now, the proof of our theorem is completed. �

3. Second Hankel determinant

In this section we find an upper bound for the second order Hankel determinant

H2(p+ 1) = ap+1ap+3 − a2p+2.

Theorem 3.1. Let f ∈ SQ(p) be given be (1.1). Then

|H2(p+ 1)| ≤ 16p2

(p+ 1)(p+ 3)
.

Proof. Since f ∈ SQ(p), from the proof of Theorem 2.1, we have

ap+1 =
2p

p+ 1
c,

ap+2 =
2p

p+ 2
(c2 +

c2

2
),

ap+3 =
2p

p+ 3
(c3 + c2c).

Then

H2(p+ 1) =
4p2

(p+ 1)(p+ 3)
c(c3 + c2c)−

4p2

(p+ 2)2
(c2 +

c2

2
)

=
p2

(p+ 1)(p+ 2)2(p+ 3)
[4c2c2−c4−c4(p+1)(p+3)+4(p+2)2]cc3−4(p+1)(p+3)c22].

Making use of Lemma 1.2, we get

4c2c2 = 2c4 + 2c2(4− c2)x
4c22 = c4 + 2c2(4− c2)x+ (4− c2)2x2

4cc3 = c4 + 2c2(4− c2)x− c2(4− c2)x2 + 2(4− c2)c(1− |x|2)y,

where c ∈ [0, 2], and |x| ≤ 1, |y| ≤ 1.
After lengthy calculations, we obtain

|H2(p+ 1)| ≤ p2

(p+ 1)(p+ 3)
2c(4− c2)

{
A+Bx+ Cx2 + (1− |x|2)

}
,

where

A =
−c3(p2 + 2p)

2(p+ 2)2(4− c2)
< 0

B =
2c

(p+ 2)2
> 0

C = −c
2 + 4(p+ 1)(p+ 3)

2c(p+ 2)2
< 0.
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In order to obtain the upper bound of |H2(p + 1)|, we use Lemma 1.3 for the case
AC > 0. Since the inequality |B| < 2(1− |C|) is satisfied, then we have

Y (A,B,C) = 1 + |A|+ B2

4(1− |C|)

= 1+
c3

2(p+ 2)2(4− c2)

c2(p+ 2)2−2c(p2+4p)(p+2)2+4(p2 + 4p)(p+ 1)(p+ 3)− 16

c2 − 2c(p+ 2)2 + 4(p+ 1)(p+ 3)
.

It follows that

|H2(p+ 1)| ≤ p2

(p+ 1)(p+ 3)
2c(4− c2)Y (A,B,C)

=
2p2(4− c2)c

(p+ 1)(p+ 3)
+

p2c4

(p+ 1)(p+ 2)2(p+ 3)

u(c)

v(c)
,

where

u(c) = c2(p+ 2)2 − 2c(p2 + 4p)(p+ 2)2 + 4(p2 + 4p)(p+ 1)(p+ 3)− 16

and

v(c) = c2 − 2c(p+ 2)2 + 4(p+ 1)(p+ 3), c ∈ [0, 2], p ≥ 1.

We observe that u(2) = 0 and u(c) = (c− 2)[c− 2(p2 + 4p− 1)](p+ 2)2. Also v(2) = 0
and v(c) = (c− 2)[c− 2(p2 + 4p+ 3)].

It follows that

|H2(p+ 1)| ≤ 2p2(4− c2)c

(p+ 1)(p+ 3)
+

p2c4

(p+ 1)(p+ 3)

c− 2(p2 + 4p− 1)

c− 2(p2 + 4p+ 3)

=
p2

(p+ 1)(p+ 3)
c

[
2(4− c2) + c3

c− 2(p2 + 4p− 1)

c− 2(p2 + 4p+ 3)

]
=

p2

(p+ 1)(p+ 3)

{
2c(4− c2) + c4

[
1 +

8

c− 2(p2 + 4p+ 3)

]}
=

p2

(p+ 1)(p+ 3)
[f1(c) + 8f2(c)] ,

where f1(c) = 2c(4− c2) + c4 and f2(c) =
c4

c− 2(p2 + 4p+ 3)
, c ∈ [0, 2].

Since f
′

1(c) = 2(2c3−3c2+4) for c ∈ [0, 2], we have that f1(c) is an increasing function
and f1(c) ≤ f1(2) = 16.

Further f2
′(c) =

c3[3c− 8(p2 + 4p+ 3)]

[c− 2(p2 + 4p+ 3)]2
≤ 0, which shows that f2(c) is a decreasing

function on [0, 2] and f2(c) ≤ f2(0) = 0, c ∈ [0, 2].

Therefore

|H2(p+ 1)| ≤ 16p2

(p+ 1)(p+ 3)
.

The proof of theorem is now completed. �
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Abstract. In this paper, involving a convolution f ∗ g, two classes of normalized
analytic functions f are defined. Showing an inclusion relation between these
classes, various sufficient conditions for functions to be in these classes are es-
tablished. In particular, varied forms of univalency conditions of the convolution
function f ∗g are given which lead to some univalency conditions of several linear
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1. Introduction

Let H denote the class of functions analytic in the open unit disk

U = {z : |z| < 1} ,
and for k ∈ N = {1, 2, ...} and a ∈ C, let

H [a, k] =
{
f ∈ H : f(z) = a+ akz

k + ak+1z
k+1 + ...

}
.

Let A denotes a class of functions in H [0, 1] of the form

f(z) = z +

∞∑
k=1

ak+1z
k+1. (1.1)
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A subclass of univalent functions in A is denoted by S. Functions f ∈ A is said to be
in the class S∗, a class of starlike functions if

<
(
zf ′(z)

f(z)

)
> 0 in U.

A convolution (Hadamard product) ∗ of f ∈ A of the form (1.1) and g ∈ A of
the form

g(z) = z +

∞∑
k=1

bk+1z
k+1, (1.2)

is defined by

f(z) ∗ g(z) = z +

∞∑
k=1

ak+1bk+1z
k+1 = g(z) ∗ f(z). (1.3)

Note that the convolution preserves the class A.
Several linear operators have been studied in Geometric Function Theory so

far, which are defined in the form of convolution, differential, integral, and fractional
differintegral linear operators. Some of the known linear operators for the class A,
are the Dziok-Srivastava convolution operator [5], the Srivastava-Attiya linear oper-
ator [19], the Jung-Kim-Srivastava integral operator [7], a multiplier operator [16]
and a fractional differintegral operator introduced by Owa and Srivastava [10]. The
convolution representation of these operators may be given as follows:

The Dzoik-Srivastava operator [5]: pHq ([α1]) : A → A is defined by

pHq ([α1]) f(z) = z pFq(α1, ..., αp;β1, ..., βq; z) ∗ f(z) (1.4)

where

pFq(α1, ..., αp;β1, ..., βq; z) =

∞∑
k=0

p∏
i=1

(αi)k

q∏
i=1

(βi)k

zk

k!

(p ≤ q + 1, p, q ∈ N0 = {0, 1, 2, ...} , αi, βi ∈ C (βi 6= 0,−1,−2, ...); z ∈ U)

is the generalized hypergeometric function ([12, p. 19]). The symbol (λ)k is the
Pochhammer symbol defined by

(λ)k =
Γ (λ+ k)

Γ (λ)
= λ (λ+ 1) (λ+ 2) ... (λ+ k − 1) , k ∈ N; (λ)0 = 1.

The Srivastava-Attiya linear operator [19]: Ja,b : A → A is defined in terms of
generalized Hurwitz-Lerch Zeta function φ (b, a, z) [20] by

Ja,bf(z) = Ga,b(z) ∗ f(z), (1.5)

where

Ga,b(z) = (b+ 1)
a (
φ (b, a, z)− b−a

)
= z +

∞∑
k=1

(
b+ 1

b+ n

)a
zk+1

(b ∈ C (b 6= 0,−1,−2, ...) , a ∈ C; z ∈ U) .
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The fractional integral operator D−µz of order µ (µ > 0) for the function f ∈ A
is defined by (see [9])

D−µz f(z) =
1

Γ (µ)

z∫
0

f(t)

(z − t)1−µ dt (z ∈ U) ,

where the multiplicity of (z − t)µ−1
is removed by requiring log (z − t) to be real

when z− t > 0. Also, the fractional derivative operator Dλ
z of order λ (λ ≥ 0) for the

function f ∈ A is defined by

Dλ
z f(z) =

 1
Γ(1−λ)

d
dz

z∫
0

f(t)

(z−t)λ dt (0 ≤ λ < 1) ,

dn

dznD
λ−n
z f(z) (n ≤ λ < n+ 1, n ∈ N0 = N∪{0}) ,

where the multiplicity of (z − t)−λ is understood similarly.

Owa and Srivastava [10] introduced a fractional differintegral operator

Ωλz : A → A (−∞ < λ < 2)

by

Ωλzf(z) = Γ (2− λ) zλDλ
z f(z) (z ∈ U) ,

where Dλ
z f(z) is, respectively, the fractional integral of order λ( −∞ < λ < 0) and a

fractional derivative of order λ (0 ≤ λ < 2). The operator Ωλz for the function f ∈ A
is given in the form of convolution by

Ωλzf(z) = z 2F1 (2, 1; 2− λ; z) ∗ f(z) (−∞ < λ < 2; z ∈ U) . (1.6)

The Jung-Kim-Srivastava integral operator [7] Qαγ : A → A ( α > 0, γ > −1) is
defined by

Qαγ f(z) =

(
α+ γ
γ

)
α

zγ

z∫
0

(
1− t

z

)α−1

tγ−1f(t)dt (z ∈ U)

which can also be expressed as follows:

Qαγ f(z) = z 2F1 (γ + 1, 1;α+ γ + 1; z) ∗ f(z). (1.7)

The multiplier operator =mλ,µ : A → A, recently studied in [16] (see also [15, 18])

is defined for m ∈ Z = {...,−2,−1, 0, 1, 2, ...} , µ > −1, λ > 0, by

Jmλ,µf(z) =


f(z), m = 0,

µ+1
λ z1−µ+1

λ

z∫
0

t
µ+1
λ −2Jm+1

λ,µ f(t)dt, m ∈ Z− = {−1,−2, . . .} ,

λ
µ+1z

2−µ+1
λ

d
dt

(
z
µ+1
λ −1Jm−1

λ,µ f(z)
)
, m ∈ Z+ = {1, 2, . . .}

(1.8)
which may be given by

Jmλ,µf(z) = Φmλ,µ (z) ∗ f(z), (1.9)
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where

Φmλ,µ (z) =

∞∑
k=1

(
1 +

λ (k − 1)

µ+ 1

)m
zk.

Let f and g be analytic functions in the unit disc U. Then we say that f is
subordinate to g, and we write f ≺ g if there exists a function w analytic in unit disc
U, such that

w (0) = 0, |w (z)| < 1 (z ∈ U)

and

f(z) = g(w(z)),∀ z ∈ U.

In particular, if g is univalent in U, then we have the following equivalence:

f ≺ g ⇔ f(0) = g(0) and f(U) ⊂ g(U).

In [6], Janowski introduced the class S∗ [A,B] of functions f ∈ A satisfying the
condition:

zf ′(z)

f(z)
≺ 1 +Az

1 +Bz
(−1 ≤ B < A ≤ 1; z ∈ U) .

Geometrically, the above subordination condition means that the image of the unit

disc U by the function zf ′(z)
f(z) is in the open disc whose endpoints of the diameter

are 1−A
1−B and 1+A

1+B (in case B 6= −1) and in the positive half plane <
(
zf ′(z)
f(z)

)
>

1−A
2 (in case B = −1) .

For particular values of A,B, we get S∗[1,−1] = S∗, a class of starlike functions,
S∗[1− 2α,−1] = S∗ (α) (0 ≤ α < 1) , a class of starlike functions of order α;
S∗[1− α, 0] = S∗α and S∗[α,−α] = S∗[α] (see [2]).

On using convolution, we define following subclasses of the class A:

Definition 1.1. A function f ∈ A is said to be in the class S∗ [µ, g;A,B] if for

−1 ≤ B < A ≤ 1, µ ≥ −1 and for some g ∈ A with 0 6= (f∗g)(z)
z ∈ C, it satis-

fies (
z

(f ∗ g) (z)

)µ+1

(f ∗ g)
′
(z) ≺ 1 +Az

1 +Bz
(z ∈ U) , (1.10)

where only principle values of the exponent function are considered.

Remark 1.2. Let µ = 0 and g (z) = z
1−z (z ∈ U), we get S∗ [µ, g;A,B] = S∗ [A,B] .

Remark 1.3. If we put µ = 0, g (z) = z
(1−z)2 (z ∈ U) and A = 1 − 2α,B = −1 in

S∗ [µ, g;A,B] then we obtain the class K(α) convex functions of order α studied by
Robertson [17].

Definition 1.4. A function f ∈ A is said to be in the class B (g, µ;β) if for 1
2 < β ≤ 1,

µ ≥ −1 and for some g ∈ A with 0 6= (f∗g)(z)
z ∈ C, it satisfies∣∣∣∣∣

(
z

(f ∗ g) (z)

)µ+1

(f ∗ g)
′
(z)− β

∣∣∣∣∣ < β (z ∈ U), (1.11)

where only principle values of the exponent function are considered.
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Example 1.5. The following example µ = 0, f(z) = z
(1−z)2 and g (z) = z

1−z satisfies

the conditions of Definitions 1.1 and 1.4.

In particular, S∗ [µ, g; 1, 0] ≡ B (g, µ; 1) .

Remark 1.6. If β = 1 and µ = 1, the class condition (1.11) for the class B (g, µ;β)
provides a univalency criterion for the functions f∗g according to Ozaki and Nunokawa
[11], see also [1, 4].

In this paper, for a certain function g ∈ A, involving a convolution f ∗ g, two
classes S∗ [µ, g;A,B] and B (g, µ;β) of f ∈ A, are defined. Showing an inclusion
relation between these classes, various sufficient conditions for functions to be in
these classes are established. In particular, varied sufficient conditions for univalency
of the convolution function f ∗ g are given which lead to the univalency conditions of
various known linear operators.

2. Main results

We first prove an inclusion result for the classes S∗ [µ, g;A,B] and B (g, µ;β)
which is as follows:

Theorem 2.1. Let f ∈ A and 0 ≤ B < A ≤ 1, 1
2 < β ≤ 1 be such that

A ≤ 2B (1− β) + 2β − 1. (2.1)

Let the classes S∗ [µ, g;A,B] and B (g, µ;β) be defined, respectively, by Definitions
1.1 and 1.4.Then

S∗ [µ, g;A,B] ⊂ B (g, µ;β) .

Proof. If f ∈ S∗ [µ, g;A,B] , then there is a Schwarz function w analytic in U with
w(0) = 0 and |w(z)| < 1 (z ∈ U) , such that(

z

(f ∗ g) (z)

)µ+1

(f ∗ g)
′
(z) =

1 +Aw(z)

1 +Bw(z)
(z ∈ U) . (2.2)

Hence, for the given hypotheses (2.1) and for this Schwarz function w given by (2.2),
we get ∣∣∣∣∣

(
z

(f ∗ g) (z)

)µ+1

(f ∗ g)
′
(z)− β

∣∣∣∣∣ =

∣∣∣∣1 +
(A−B)w(z)

1 +Bw(z)
− β

∣∣∣∣
< 1 +

A−B
1−B

− β ≤ β

which implies that f ∈ B (g, µ;β). This proves Theorem 2.1. �

Example 2.2. The following example µ = 0, f(z) = z + z2

2 and g (z) = z
1−z satisfies

the condition of Theorem 2.1.

In view of Remark 1.6, for β = 1 and µ = 1, Theorem 2.1 provides following
univalency condition for the convolution f ∗ g:
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Corollary 2.3. Let f ∈ A and let for some g ∈ A with 0 6= (f∗g)(z)
z ∈ C,(

z

(f ∗ g) (z)

)2

(f ∗ g)
′
(z) ≺ 1 +Az

1 +Bz
(0 ≤ B < A ≤ 1; z ∈ U) .

Then f ∗ g is univalent in U.

Now, we prove certain sufficient conditions for functions to be in the class
S∗ [µ, g;A,B] , for this, we apply the method of admissible function used in the fol-
lowing lemma which is the special case of the result [8, (ii) Theorem 2.3h, p. 34].

Lemma 2.4. [8, (ii) Theorem 2.3h, p. 34] Let Ω be a subset of the complex plane C
and let an admissible function ψ : C2 × U→ C satisfies the condition

ψ(Meiθ,mMeiθ; z) /∈ Ω

for real M > 0 and m ≥ k ≥ 1 and z ∈ U. If the function w ∈ H [a, k] , then

ψ(w(z), zw′(z); z) ∈ Ω⇒ |w(z)| < M (z ∈ U) .

Theorem 2.5. Let f ∈ A and let for some θ ∈ R,m ≥ 1, −1 ≤ B < A ≤ 1,∣∣∣∣1 +
(A−B)meiθ

(1 +Aeiθ) (1 +Beiθ)

∣∣∣∣ ≥ 1. (2.3)

If for some g ∈ A with 0 6= (f ∗ g)
′
(z) · (f∗g)(z)

z ∈ C in U,∣∣∣∣1 +
z (f ∗ g)

′′
(z)

(f ∗ g)
′
(z)

+ (µ+ 1)

{
1− z (f ∗ g)

′
(z)

(f ∗ g) (z)

}∣∣∣∣ < 1, (2.4)

then f ∈ S∗ [µ, g;A,B] .

Proof. Let

p(z) =

(
z

(f ∗ g) (z)

)µ+1

(f ∗ g)
′
(z) (2.5)

and w ∈ H [0, 1] be defined by

p(z) =
1 +Aw(z)

1 +Bw(z)
(z ∈ U) , (2.6)

then w is analytic in U. To prove the theorem we only need to prove |w(z)| < 1. For
this purpose, we define an admissible function Ψ : C2 × U→ C by

Ψ (r, s; z) = 1 +
(A−B) s

(1 +Ar) (1 +Br)
(−1 ≤ B < A ≤ 1) , (2.7)

where r 6= − 1
A ,−

1
B (in case A,B 6= 0). Then, from (2.3), we have∣∣Ψ (eiθ,meiθ; z)∣∣ ≥ 1. (2.8)

Differentiating equations (2.6) and (2.5) logarithmically, we obtain

1 +
zp′(z)

p(z)
= 1 +

(A−B) zw′(z)

(1 +Aw(z)) (1 +Bw(z))
(2.9)

= 1 +
z (f ∗ g)

′′
(z)

(f ∗ g)
′
(z)

+ (µ+ 1)

{
1− z (f ∗ g)

′
(z)

(f ∗ g) (z)

}
.
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Let Ω be a subset of the complex plane C such that in C \Ω, the admissible function
Ψ satisfies (2.8). Hence, Lemma 2.4 for the case M = 1 reveals in view of (2.7), (2.9)
and (2.4), that

|Ψ (w(z), zw′(z); z)| < 1⇒ |w(z)| < 1 (z ∈ U) ,

which proves that

p(z) ≺ 1 +Az

1 +Bz
,

and hence f ∈ S∗ [µ, g;A,B]. �

Theorem 2.6. Let f ∈ A and −1 ≤ B < A ≤ 1, let

λ =

{
2
√
A|B|

1−AB , if AB < 0 with
∣∣(A+B)

(
1 + 1

AB

)∣∣ ≤ 4,
A−B

(1+|A|)(1+|B|) , if AB ≥ 0.
(2.10)

If for some g ∈ A with 0 6= (f ∗ g)
′
(z) · (f∗g)(z)

z ∈ C in U,∣∣∣∣z (f ∗ g)
′′

(z)

(f ∗ g)
′
(z)

+ (µ+ 1)

{
1− z (f ∗ g)

′
(z)

(f ∗ g) (z)

}∣∣∣∣ < λ, (2.11)

then f ∈ S∗ [µ, g;A,B] .

Proof. To prove the result, we define an admissible function φ : C2 × U→ C by

φ (r, s; z) = Ψ (r, s; z)− 1, (2.12)

where Ψ (r, s; z) is defined by (2.7). Then for some θ ∈ R and for some m ≥ 1∣∣φ (eiθ,meiθ; z)∣∣ =

∣∣∣∣ (A−B)meiθ

(1 +Aeiθ) (1 +Beiθ)

∣∣∣∣
=

(A−B)m

|(1 +Aeiθ)| |(1 +Beiθ)|

=
(A−B)m√

1 +A2 + 2At ·
√

1 +B2 + 2Bt

=
(A−B)m

h (t)
,

where t = cos θ ∈ [−1, 1]. Observe that

max
−1≤t≤1

h (t) =

{
(1 +A) (1 +B) , if 0 ≤ B < A ≤ 1,
(1−A) (1−B) , if − 1 ≤ B < A ≤ 0,

Hence, ∣∣φ (eiθ,meiθ; z)∣∣ ≥ A−B
(1 + |A|) (1 + |B|)

, if AB ≥ 0.

Further, if −1 ≤ B < 0 < A ≤ 1, i.e. if AB < 0, then the function h(t) attains its
maximum value at

t∗ = − (A+B)(1 +AB)

4AB
∈ [−1, 1].
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Hence, if AB < 0 with the condition: 4AB ≤ (A+B)(1+AB) ≤ −4AB or equivalently,∣∣(A+B)
(
1 + 1

AB

)∣∣ ≤ 4,

h(t∗) =
(A−B) (1−AB)

2
√
A |B|

.

So, ∣∣φ (eiθ,meiθ; z)∣∣ ≥ 2
√
A |B|

1−AB
, if AB < 0 with

∣∣∣∣(A+B)

(
1 +

1

AB

)∣∣∣∣ ≤ 4.

Hence, ∣∣φ (eiθ,meiθ; z)∣∣ ≥ λ, (2.13)

where λ is given by (2.10). Thus, in view of (2.12) and for p(z) defined by (2.5), we
get from (2.9),

|φ (w(z), zw′(z); z)| =

∣∣∣∣zp′(z)p(z)

∣∣∣∣ (2.14)

=

∣∣∣∣∣z (f ∗ g)
”

(z)

(f ∗ g)
′
(z)

+ (µ+ 1)

{
1− z (f ∗ g)

′
(z)

(f ∗ g) (z)

}∣∣∣∣∣ .
Let Λ be a subset of the complex plane C such that in C \Λ, the admissible function
φ satisfies (2.13). Hence, applying Lemma 2.4 (in case M = 1), from (2.14) and (2.11)

|φ (w(z), zw′(z); z)| < λ⇒ |w(z)| < 1 (z ∈ U) ,

which proves

p(z) ≺ 1 +Az

1 +Bz
.

This establishes Theorem 2.6. �

From Theorem 2.1 and Theorem 2.6, we obtain following result.

Corollary 2.7. Let f ∈ A and 0 ≤ B < A ≤ 1, 1
2 < β ≤ 1 be such that

A ≤ 2B (1− β) + 2β − 1. (2.15)

If for some g ∈ A with (f∗g)(z)
z 6= 0 in U and for µ ≥ −1,∣∣∣∣z (f ∗ g)

′′
(z)

(f ∗ g)
′
(z)

+ (µ+ 1)

{
1− z (f ∗ g)

′
(z)

(f ∗ g) (z)

}∣∣∣∣ < A−B
(1 +A) (1 +B)

(z ∈ U) , (2.16)

then f ∈ B (g, µ;β).

Proof. Applying Theorem 2.6 for 0 ≤ B < A ≤ 1, we get f ∈ S∗ [µ, g;A,B] if and
condition (2.16) holds, and from Theorem 2.1, S∗ [µ, g;A,B] ⊂ B (g, µ;β) if (2.15)
holds. Hence, this proves the result. �

Example 2.8. The following example µ = 0, f(z) = z + zn

n and g (z) = z
1−z satisfies

the condition of Corollary 2.7.

Again, in view of the Remark 1.6, for β = 1 and µ = 1, above Corollary 2.7
provides the following univalency condition for the convolution f ∗ g:
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Corollary 2.9. Let f ∈ A and 0 ≤ B < A ≤ 1. If for some g ∈ A with

0 6= (f ∗ g)
′
(z) · (f ∗ g) (z)

z
∈ C in U,∣∣∣∣z (f ∗ g)

′′
(z)

(f ∗ g)
′
(z)

+ 2

{
1− z (f ∗ g)

′
(z)

(f ∗ g) (z)

}∣∣∣∣ < A−B
(1 +A) (1 +B)

(z ∈ U) ,

then f ∗ g is univalent in U.
Also, for the special values: A = 1− 2α

(
0 ≤ α < 1

2

)
and B = −1, Theorem 2.6

provides following result:

Corollary 2.10. Let f ∈ A and 0 ≤ α < 1
2 , µ ≥ −1. If for some g ∈ A with

0 6= (f ∗ g)
′
(z) · (f ∗ g) (z)

z
∈ C in U,∣∣∣∣z (f ∗ g)

′′
(z)

(f ∗ g)
′
(z)

+ (µ+ 1)

{
1− z (f ∗ g)

′
(z)

(f ∗ g) (z)

}∣∣∣∣ < √1− 2α

1− α
(z ∈ U) ,

then (
z

(f ∗ g) (z)

)µ+1

(f ∗ g)
′
(z) ≺ 1 + (1− 2α) z

1− z
(z ∈ U) .

In our next result we give some more sufficient conditions for the class S∗ [µ, g;A,B]
in case B = 0.

Theorem 2.11. Let f ∈ A and let 0 < A ≤ 1. If for some g ∈ A with

0 6= (f ∗ g)
′
(z) · (f ∗ g) (z)

z
∈ C

in U, any one of the following conditions holds∣∣∣∣∣
(

z

(f ∗ g) (z)

)µ+1

(f ∗ g)
′
(z)[

z (f ∗ g)
′′

(z)

(f ∗ g)
′
(z)

+ (µ+ 1)

{
1− z (f ∗ g)

′
(z)

(f ∗ g) (z)

}]∣∣∣∣
< A (z ∈ U) , (2.17)∣∣∣∣∣

(
(f ∗ g) (z)

z

)µ+1
1

(f ∗ g)
′
(z)[

z (f ∗ g)
′′

(z)

(f ∗ g)
′
(z)

+ (µ+ 1)

{
1− z (f ∗ g)

′
(z)

(f ∗ g) (z)

}]∣∣∣∣
<

A

(1 +A)
2 (z ∈ U), (2.18)∣∣∣∣∣∣∣

[
z(f∗g)′′(z)
(f∗g)′(z) + (µ+ 1)

{
1− z(f∗g)′(z)

(f∗g)(z)

}]
(

z
(f∗g)(z)

)µ+1

(f ∗ g)
′
(z)− 1

∣∣∣∣∣∣∣ <
1

1 +A
(z ∈ U), (2.19)

then f ∈ S∗ [µ, g;A, 0] .
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Proof. Let p(z) be defined by (2.5). Then p ∈ H [1, 1] and by the hypothesis
0 6= p(z) ∈ C in U. Then from (2.9), we obtain

zp′(z) =

(
z

(f ∗ g) (z)

)µ+1

(f ∗ g)
′
(z) ×[

z (f ∗ g)
′′

(z)

(f ∗ g)
′
(z)

+ (µ+ 1)

{
1− z (f ∗ g)

′
(z)

(f ∗ g) (z)

}]
, (2.20)

zp′(z)

(p (z))
2 =

(
(f ∗ g) (z)

z

)µ+1
1

(f ∗ g)
′
(z)

× (2.21)[
z (f ∗ g)

′′
(z)

(f ∗ g)
′
(z)

+ (µ+ 1)

{
1− z (f ∗ g)

′
(z)

(f ∗ g) (z)

}]
,

and

zp′(z)

p (z) (p (z)− 1)
=

[
z(f∗g)′′(z)
(f∗g)′(z) + (µ+ 1)

{
1− z(f∗g)′(z)

(f∗g)(z)

}]
(

z
(f∗g)(z)

)µ+1

(f ∗ g)
′
(z)− 1

, (2.22)

where in (2.22) the singularity of the function at z = 0, is being removed by the
numerator. To prove the result, we use the similar method used in the above proofs
of Theorems 2.5 and 2.6 for the case if B = 0. Let u(z) be defined by

p(z) = 1 +Au(z). (2.23)

Then u(0) = 0 and now we prove |u(z)| < 1 in U. For this, we may define admissible
function ηi : C2 × U→ C for each i = 1, 2, 3, by

η1 (r, s; z) = As, (2.24)

η2 (r, s; z) =
As

(1 +Ar)
2

(
r 6= − 1

A

)
,

and

η3 (r, s; z) =
s

r (1 +Ar)

(
r 6= 0,− 1

A

)
.

Then for some θ ∈ R and for some m ≥ 1,∣∣η1

(
eiθ,meiθ; z

)∣∣ = Am ≥ A, (2.25)

∣∣η2

(
eiθ,meiθ; z

)∣∣ =
Am

|1 +Aeiθ|2
≥ A

(1 +A)
2 , (2.26)

and

|η3 (r, s; z)| = m

|1 +Aeiθ|
≥ 1

1 +A
. (2.27)
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Then from (2.23)

zp′(z) = zAu′(z), (2.28)

zp′(z)

(p (z))
2 =

zAu′(z)

(1 +Au(z))
2 , (2.29)

zp′(z)

p (z) (p (z)− 1)
=

zu′(z)

(1 +Au(z))u(z)
. (2.30)

Let for each i = 1, 2, 3, Ωi be a subset of the complex plane C such that in C \Ωi, the
admissible function ηi satisfies for each i = 1, 2, 3, the conditions, (2.25), (2.26) and
(2.27). Hence, by Lemma 2.4 for M = 1, in view of (2.20), (2.21) and (2.22), from the
conditions (2.17), (2.18) and (2.19) and using the values (2.28), (2.29) and (2.30), we
get

|η1 (u(z), zu′(z); z)| = |zp′(z)| < A⇒ |u(z)| < 1,

|η2 (u(z), zu′(z); z)| =

∣∣∣∣∣ zp′(z)(p (z))
2

∣∣∣∣∣ < A

(1 +A)
2 ⇒ |u(z)| < 1,

|η3 (u(z), zu′(z); z)| =

∣∣∣∣ zp′(z)

p (z) (p (z)− 1)

∣∣∣∣ < 1

1 +A
⇒ |u(z)| < 1.

This proves the Theorem 2.11. �

Using Theorem 2.1 for the case B = 0, we obtain following result from Theorem 2.11.

Corollary 2.12. Let f ∈ A and let 1
2 < β ≤ 1, 0 < A ≤ 2β − 1. If for some g ∈ A

with 0 6= (f ∗ g)
′
(z) · (f∗g)(z)

z ∈ C in U, any one of the conditions (2.17), (2.18) and
(2.19) in Theorem 2.11 holds, then f ∈ B (g, µ;β) .

In addition to the Corollaries 2.3 and 2.9, Corollary 2.12 provides for β = 1 and
µ = 1, the following univalency condition for the convolution function f ∗ g.

Corollary 2.13. Let f ∈ A and let 0 < A ≤ 1. If for some g ∈ A with

0 6= (f ∗ g)
′
(z) · (f ∗ g) (z)

z
∈ C in U,

f ∗ g satisfies any one of the following conditions:∣∣∣∣∣z2 (f ∗ g)
′
(z)

((f ∗ g) (z))
2

(
z (f ∗ g)

′′
(z)

(f ∗ g)
′
(z)

+ 2

{
1− z (f ∗ g)

′
(z)

(f ∗ g) (z)

})∣∣∣∣∣ < A (z ∈ U) ,

∣∣∣∣∣ ((f ∗ g) (z))
2

z2 (f ∗ g)
′
(z)

(
z (f ∗ g)

′′
(z)

(f ∗ g)
′
(z)

+ 2

{
1− z (f ∗ g)

′
(z)

(f ∗ g) (z)

})∣∣∣∣∣ < A

(1 +A)
2 (z ∈ U) ,

∣∣∣∣∣∣
z(f∗g)′′(z)
(f∗g)′(z) + 2

{
1− z(f∗g)′(z)

(f∗g)(z)

}
z2(f∗g)′(z)
((f∗g)(z))2 − 1

∣∣∣∣∣∣ < 1

1 +A
(z ∈ U) ,

then f ∗ g is univalent in U.
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Remark 2.14. For A = 1 and g(z) = z
1−z (z ∈ U), above Corollary 229 coincides with

the result [13, Corollary 3.2, p.361] for a function f ∈ A, and with the result [14,
Theorem 1, p. 2135] for the function f(z) = Kν,c(z), where Kν,c(z) is a normalized
form of generalized Bessel function defined in [3, 21] by

Kν,c(z) = z +

∞∑
k=2

(−c
4

)k−1

(ν + 1)k−1

zk

(k − 1)!
(c ∈ C, ν ∈ R, ν 6= −1,−2, ...; z ∈ U) .

3. Concluding remark

By considering special form of the function g, from our main results, we may
obtain results involving several linear operators of the class A, some of the known
linear operators are mentioned in the Introduction section. We give here only the
results giving varied univalency conditions of the Dzoik-Srivastava operator by taking
g(z) = z pFq(α1, ..., αp;β1, ..., βq; z). Results giving univalency conditions of other
linear operators mentioned in the Introduction section may similarly be obtained
by taking g(z) = Ga,b(z), z 2F1 (2, 1; 2− λ; z) , z 2F1 (γ + 1, 1;α+ γ + 1; z) and
Φmλ,µ (z) , respectively, in the Corollaries 2.3, 2.9 and 2.13.

Corollary 3.1. Let f ∈ A and pHq ([α1]) f be defined by (1.4) with

0 6= pHq ([α1]) f(z)

z
∈ C in U.

If (
z

pHq ([α1]) f(z)

)2

(pHq ([α1]) f)
′
(z) ≺ 1 +Az

1 +Bz
(0 ≤ B < A ≤ 1; z ∈ U) ,

then pHq ([α1]) f is univalent in U.

Corollary 3.2. Let f ∈ A and pHq ([α1]) f be defined by (1.4) with

0 6= (pHq ([α1]) f)
′
(z) · pHq ([α1]) f(z)

z
∈ C in U.

If ∣∣∣∣z (pHq ([α1]) f)
′′

(z)

(pHq ([α1]) f)
′
(z)

+ 2

{
1− z (pHq ([α1]) f)

′
(z)

pHq ([α1]) f(z)

}∣∣∣∣ < A−B
(1 +A) (1 +B)

(0 ≤ B < A ≤ 1; z ∈ U) ,

then pHq ([α1]) f is univalent in U.

Corollary 3.3. Let f ∈ A and pHq ([α1]) f be defined by (1.4) with

0 6= (pHq ([α1]) f)
′
(z) · pHq ([α1]) f(z)

z
∈ C in U.

If for 0 < A ≤ 1; z ∈ U, any one of the following conditions:∣∣∣∣∣z2 (pHq ([α1]) f)
′
(z)

(pHq ([α1]) f(z))
2

(
z (pHq ([α1]) f)

′′
(z)

(pHq ([α1]) f)
′
(z)

+ 2

{
1− z (pHq ([α1]) f)

′
(z)

pHq ([α1]) f(z)

})∣∣∣∣∣ < A,
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2

z2 (pHq ([α1]) f)
′
(z)

(
z (pHq ([α1]) f)

′′
(z)

(pHq ([α1]) f)
′
(z)

+ 2

{
1− z (pHq ([α1]) f)

′
(z)

pHq ([α1]) f(z)

})∣∣∣∣∣
<

A

(1 +A)
2 ,∣∣∣∣∣∣
z(pHq([α1])f)′′(z)
(pHq([α1])f)′(z)

+ 2
{

1− z(pHq([α1])f)′(z)

pHq([α1])f(z)

}
z2(pHq([α1])f)′(z)

(pHq([α1])f(z))2
− 1

∣∣∣∣∣∣ < 1

1 +A
,

holds, then pHq ([α1]) f is univalent in U.
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class of the Carathéodory functions and their applications, J. Inequal. Appl., 85(2020).

[5] Dziok, J., Srivastava, H.M., Classes of analytic functions associated with the generalized
hypergeometric functions, Appl. Math. Comput., 103(1999), 1-13.

[6] Janowski, W., Some extremal problems for certain families of analytic functions I, Ann.
Polon. Math., 28(1973), 297-326.

[7] Jung, I.B., Kim, Y.C., Srivastava, H.M., The Hardy space of analytic functions asso-
ciated with certain one-parameter families of integral operators, J. Math. Anal. Appl.,
176(1993), 138-147.

[8] Miller, S.S., Mocanu, P.T., Differential Subordinations, Theory and Applications, Marcel
Dekker, New York, Basel, 2000.

[9] Owa, S., On the distortion theorems I, Kyungpook Math. J., 18(1978), 53-59.

[10] Owa, S., Srivastava, H.M., Univalent and starlike generalized hypergeometric functions,
Canad. J. Math., 39(1987), 1057-1077.

[11] Ozaki, S., Nunokawa, M., The Schwartzian derivative and univalent functions, Proc.
Amer. Math. Soc., 33(2)(1972), 392-394.

[12] Ponnusamy, S., Vuorinen, M., Univalence and convexity properties for Gaussian hyper-
geometric functions, Rocky Mountain J. Math., 31(2001), 327-353.

[13] Prajapat, J.K., Some sufficient conditions for certain class of analytic and multivalent
functions, Southeast Asian Bull. Math., 34(2010), 357-363.

[14] Prajapat, J.K., Certain geometric properties of normalized Bessel functions, Appl. Math.
Lett., 24(2011), 2133-2139.



232 P. Sharma, A.K. Bajpai, O. Mishra and S. Porwal

[15] Raina, R.K., Sharma, P., Subordination preserving properties associated with a class of
operators, Le Math., 68(1)(2013), 217-228.

[16] Raina, R.K., Sharma, P., Subordination properties of univalent functions involving a new
class of operators, Electr. J. Math. Anal. Appl., 2(1)(2014), 37-52.

[17] Robertson, M.S., On the theory of univalent functions, Ann. Math., 37(1936), 374-408.

[18] Sharma, P., Raina, R.K., Soko l, J., Certain subordination results involving a class of
operators, Analele Univ. Oradea Fasc. Matematica, 21(2)(2014), 89-99.

[19] Srivastava, H.M., Attiya, A.A., An integral operator associated with the Hurwitz-Lerch
zeta function and differential subordination, Integral Transforms Spec. Funct., 18(2007),
207-216.

[20] Srivastava, H.M., Choi, J., Series Associated with the Zeta and Related Functions,
Kluwer Academic Publishers, Dordrecht, Boston, London, 2001.

[21] Szasz, R., Kupan, P.A., About the univalence of Bessel functions, Stud. Univ. Babeş-
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Existence results for a coupled system of
higher-order nonlinear differential equations
with integral-multipoint boundary conditions

Bashir Ahmad , Sotiris K. Ntouyas ,
Ahmed Alsaedi and Ammar B. Wali

Abstract. In this paper, we establish the existence and uniqueness criteria for
solutions of an integral-multipoint coupled boundary value problem involving a
system of nonlinear higher-order ordinary differential equations. We apply the
Leray-Schauder’s alternative to prove an existence result for the given problem,
while the uniqueness of its solutions is accomplished with the aid of Banach’s fixed
point theorem. Examples are constructed for illustrating the obtained results.
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1. Introduction

The topic of boundary value problems is an important area of investigation in
view of extensive occurrence of such problems in several diverse disciplines. Examples
include conservation laws [8], nano boundary layer fluid flow [4], magnetohydrody-
namic flow [18], magneto Maxwell nano-material [19], fluid flow problems [28], cellular
systems and aging models [1], etc.

Much of the literature on boundary value problems includes classical boundary
conditions. However, these conditions cannot model the physical and chemical pro-
cesses taking place within the given domain. In order to cope with this situation, the
concept of nonlocal conditions representing the changes happening at some interior

Received 13 October 2024; Accepted 10 January 2025.
© Studia UBB MATHEMATICA. Published by Babeş-Bolyai University
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points or sub-segments of the given domain was introduced. One can find the details
and applications of nonlocal boundary conditions in the articles [14, 11, 22, 16, 24, 15]
and the references cited therein.

Integral boundary conditions serve as an effective tool in the mathematical mod-
eling of the problems arising in the flow and drag phenomena in arteries [27], heat
conduction [9, 20, 10], biomedical CFD [23], etc. In fact, these conditions provide
a practical approach to fluid flow problems with arbitrary shaped blood vessels, for
instance, see [25]. For the boundary value problems involving integral boundary con-
ditions, for instance, see the papers [26, 21, 3, 7, 2, 6, 5, 13].

In [3], the authors obtained some existence results for nth-order ordinary dif-
ferential equations and inclusions supplemented with nonlocal multi-point integral
boundary conditions:

u(n)(t) = f(t, u(t)), u(n)(t) ∈ F (t, u(t))), t ∈ [0, 1],

u(0) = δ

∫ ξ

0

u(s)ds, u′(0) = 0, u′′(0) = 0, . . . , u(n−2)(0) = 0,

αu(1) + βu′(1) =

m∑
i=1

γi

∫ βi

0

u(s)ds, 0 < ξ < β1 < β2 < . . . < βm < 1,

where f : [0, 1]×R −→ R is a given continuous function, F : [0, 1]×R −→ P(R), P(R)
is the family of all nonempty subsets of R, and α, β, γi, δ, ξ, βi (i = 1, 2, . . . ,m)
are appropriately chosen real constants.

In this paper, motivated by [3], we formulate and investigate a boundary value
problem for a coupled system of higher-order nonlinear differential equations comple-
mented with coupled integral-multipoint boundary conditions given by

u(n)(t) = f(t, u, v), v(m)(t) = g(t, u, v), t ∈ [0, 1],

u(0) = δ1

∫ ξ

0

v(s) ds, u′(0) = 0, u′′(0) = 0, . . . , u(n−2)(0) = 0,

v(0) = δ2

∫ ξ

0

u(s) ds, v′(0) = 0, v′′(0) = 0, . . . , v(m−2)(0) = 0,

ε1u(1) + ζ1u
′(1) =

p∑
i=1

γi

∫ βi

0

v(s)ds+

q∑
j=1

ωjv(ηj),

ε2v(1) + ζ2v
′(1) =

p∑
i=1

γ̂i

∫ βi

0

u(s)ds+

q∑
j=1

ω̂ju(ηj),

(1.1)

where 0 < ξ < β1 < β2 < . . . < βp < η1 < η2 < . . . < ηq < 1, δ1, δ2, ε1, ε2,
ζ1, ζ2, γi, γ̂i, ωj , ω̂j ∈ R, i = 1, 2, . . . , p, j = 1, 2, . . . , q and f, g : [0, 1] × R2 → R are
given functions.

The objective of the present work is to develop the existence theory for the
problem (1.1) by applying the standard fixed point theorems. The outcome of the
proposed work will be a useful contribution to the existing literature on nonlinear
differential systems supplemented with coupled nonlocal integral boundary conditions.
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The rest of the paper is arranged as follows. In Section 2, we prove an auxiliary
lemma related to the linear variant of the problem (1.1). The main results for the
given problem are proved in Section 3. Section 4 contains examples illustrating the
main results.

2. An auxiliary lemma

In the following lemma, we solve a linear variant of the system (1.1) and use it
to convert the problem (1.1) into a fixed point problem.

Lemma 2.1. Let (J1K2 − J2K1) 6= 0, (1− δ1δ2ξ2) 6= 0 and y1, y2 ∈ C([0, 1],R). Then,
the linear boundary value problem

u(n)(t) = y1(t), v(m)(t) = y2(t), t ∈ [0, 1],

u(0) = δ1

∫ ξ

0

v(s) ds, u′(0) = 0, u
′′
(0) = 0, . . . , u(n−2)(0) = 0,

v(0) = δ2

∫ ξ

0

u(s) ds, v′(0) = 0, v
′′
(0) = 0, . . . , v(m−2)(0) = 0,

ε1u(1) + ζ1u
′(1) =

p∑
i=1

γi

∫ βi

0

v(s)ds+

q∑
j=1

ωjv(ηj),

ε2v(1) + ζ2v
′(1) =

p∑
i=1

γ̂i

∫ βi

0

u(s)ds+

q∑
j=1

ω̂ju(ηj),

(2.1)

is equivalent to a pair of integral equations

u(t) =

t∫
0

(t− s)n−1

(n− 1)!
y1(s)ds+N1(t)

ξ∫
0

(ξ − s)m

m!
y2(s)ds

+N2(t)

ξ∫
0

(ξ − s)n

n!
y1(s)ds

+N3(t)
[ p∑
i=1

γi

βi∫
0

(βi − s)m

m!
y2(s)ds+

q∑
j=1

ωj

ηj∫
0

(ηj − s)m−1

(m− 1)!
y2(s)ds

−
1∫

0

(1− s)n−2

(n− 1)!
[ε1(1− s) + ζ1(n− 1)]y1(s)ds

]

+N4(t)
[ p∑
i=1

γ̂i

βi∫
0

(βi − s)n

n!
y1(s)ds+

q∑
j=1

ω̂j

ηj∫
0

(ηj − s)n−1

(n− 1)!
y1(s)ds

−
1∫

0

(1− s)m−2

(m− 1)!
[ε2(1− s) + ζ2(m− 1)]y2(s)ds

]
, (2.2)
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and

v(t) =

t∫
0

(t− s)m−1

(m− 1)!
y2(s)ds+N5(t)

ξ∫
0

(ξ − s)m

m!
y2(s)ds

+N6(t)

ξ∫
0

(ξ − s)n

n!
y1(s)ds

+N7(t)
[ p∑
i=1

γi

βi∫
0

(βi − s)m

m!
y2(s)ds+

q∑
j=1

ωj

ηj∫
0

(ηj − s)m−1

(m− 1)!
y2(s)ds

−
1∫

0

(1− s)n−2

(n− 1)!
[ε1(1− s) + ζ1(n− 1)]y1(s)ds

]

+N8(t)
[ p∑
i=1

γ̂i

βi∫
0

(βi − s)n

n!
y1(s)ds+

q∑
j=1

ω̂j

ηj∫
0

(ηj − s)n−1

(n− 1)!
y1(s)ds

−
1∫

0

(1− s)m−2

(m− 1)!
[ε2(1− s) + ζ2(m− 1)]y2(s)ds

]
, (2.3)

where

N1(t) = ∆1 + ∆5t
n−1, N2(t) = ∆2 + ∆6t

n−1, N3(t) = ∆3 + ∆7t
n−1,

N4(t) = ∆4 + ∆8t
n−1, N5(t) = ∆9 + ∆13t

m−1, N6(t) = ∆10 + ∆14t
m−1,

N7(t) = ∆11 + ∆15t
m−1, N8(t) = ∆12 + ∆16t

m−1,

∆1 = ρ1 +
ρ4(nδ1ξ

mK1 +mδ1δ2ξ
n+1K2)− ρ6(nδ1ξ

mJ1 +mδ1δ2ξ
n+1J2)

M(1− δ1δ2ξ2)mn
,

∆2 = ρ2 +
ρ5(nδ1ξ

mK1 +mδ1δ2ξ
n+1K2)− ρ7(nδ1ξ

mJ1 +mδ1δ2ξ
n+1J2)

M(1− δ1δ2ξ2)n
,

∆3 =
(nδ1ξ

mK1 +mδ1δ2ξ
n+1K2)

M(1− δ1δ2ξ2)mn
, ∆4 =

(nδ1ξ
mJ1 +mδ1δ2ξ

n+1J2)

M(1− δ1δ2ξ2)mn
,

∆5 =
(ρ4K2 − ρ6J2)

M
, ∆6 =

(ρ5K2 − ρ7J2)

M
, ∆7 =

K2

M
, ∆8 =

J2
M
,

∆9 = ρ3 +
ρ4(nδ1δ2ξ

m+1K1 +mδ1ξ
nK2)− ρ6(nδ1δ2ξ

m+1J1 +mδ1ξ
nJ2)

M(1− δ1δ2ξ2)mn
,

∆10 = ρ1 +
ρ5(nδ1δ2ξ

m+1K1 +mδ1ξ
nK2)− ρ7(nδ1δ2ξ

m+1J1 +mδ1ξ
nJ2)

M(1− δ1δ2ξ2)mn
,
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∆11 =
(nδ1δ2ξ

m+1K1 +mδ1ξ
nK2)

M(1− δ1δ2ξ2)mn
, ∆12 =

(nδ1δ2ξ
m+1J1 +mδ1ξ

nJ2)

M(1− δ1δ2ξ2)mn
,

∆13 =
(ρ4K1 − ρ6J1)

M
, ∆14 =

(ρ5K1 − ρ7J1)

M
, ∆15 =

K1

M
, ∆16 =

J1
M
,

ρ1 =
1

1− δ1δ2ξ2
, ρ2 =

A2

1− δ1δ2ξ2
, ρ3 =

B2

1− δ1δ2ξ2
, ρ4 =

B2D1 − C1

1− δ1δ2ξ2
,

ρ5 =
D1 −A2C1

1− δ1δ2ξ2
, ρ6 =

B2E1 − F1

1− δ1δ2ξ2
, ρ7 =

E1 −A2F1

1− δ1δ2ξ2
,

J1 =
ε1δ1δ2ξ

n+1 − δ2ξnD1

n(1− δ1δ2ξ2)
+ ε1 + ζ1(n+ 1),

J2 =
δ1ξ

m(δ2ξD1 − ε1)

m(1− δ1δ2ξ2)
+D2, K1 =

δ1δ2ξ
n+1F1 − δ2ξn+1ε2
n(1− δ1δ2ξ2)

+ F2,

K2 =
δ1ξ

m(δ2ξε2 − F1)

m(1− δ1δ2ξ2)
+D2, M = J1K2 − J2K1,

D1 =

p∑
i=1

γiβi +

q∑
j=1

ωjηj , D2 =

p∑
i=1

γi
βmi
m

+

q∑
j=1

ωjη
m−1
j ,

F1 =

p∑
i=1

γ̂iβi +

q∑
j=1

ω̂j , F2 =

p∑
i=1

γ̂i
βni
n

+

q∑
j=1

ω̂jη
n−1
j . (2.4)

Proof. Solving the system of ordinary differential equations in (2.1), we get
u(t) =

∫ t

0

(t− s)n−1

(n− 1)!
y1(s)ds+ c0 + c1t+ . . .+ cn−1t

n−1,

v(t) =

∫ t

0

(t− s)m−1

(m− 1)!
y2(s)ds+ b0 + b1t+ . . .+ bm−1t

m−1,

(2.5)

where ci, bi ∈ R, i = 0, 1, . . . , n − 1,m − 1, are arbitrary constants. Making use of
the conditions u′(0) = 0, u′′(0) = 0, . . ., u(n−2)(0) = 0 and v′(0) = 0, v′′(0) = 0, . . .,
v(m−2)(0) = 0 in (2.5), we get c1 = c2 = . . . , cn−2 = 0, b0 = b1 = . . . , bm−1 = 0. In
consequence, (2.5) takes the form

u(t) =

∫ t

0

(t− s)n−1

(n− 1)!
y1(s)ds+ c0 + cn−1t

n−1,

v(t) =

∫ t

0

(t− s)m−1

(m− 1)!
y2(s)ds+ b0 + bm−1t

m−1.

(2.6)

Using (2.6) in the conditions u(0) = δ1
ξ∫
0

v(s)ds and v(0) = δ2
ξ∫
0

u(s)ds, we get

c0 = δ1

∫ ξ

0

(ξ − r)m

m!
y2(r)dr + δ1b0ξ + δ1bm−1

ξm

m
, (2.7)
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and

b0 = δ2

ξ∫
0

(ξ − r)n

n!
y1(r)dr + c0δ2ξ + cn−1δ2

ξn

n
. (2.8)

Now, inserting (2.6) in the conditions:

ε1u(1) + ζ1u
′(1) =

p∑
i=1

γi

βi∫
0

v(s)ds+

q∑
j=1

ωjv(ηj),

ε2v(1) + ζ2v
′(1) =

p∑
i=1

γ̂i

∫ βi

0

u(s)ds+

q∑
j=1

ω̂ju(ηj),

we obtain

c0ε1 + cn−1[ε1 + ζ1(n− 1)] +

∫ 1

0

(1− s)n−2[ε1(1− s) + ζ1(n− 1)]

(n− 1)!
y1(s)ds

= b0

 p∑
i=1

γiβi +

q∑
j=1

ωjηj

+ bm−1

 p∑
i=1

γi
βmi
m

+

q∑
j=1

ωjη
m−1
j


+

p∑
i=1

γi

∫ βi

0

(βi − s)m

m!
y2(s)ds+

q∑
j=1

ωj

∫ ηj

0

(ηj − s)m−1

(m− 1)!
y2(s)ds, (2.9)

b0ε2 + bm−1[ε2 + ζ2(m− 1)] +

∫ 1

0

(1− s)m−2[ε2(1− s) + ζ2(m− 1)]

(m− 1)!
y2(s)ds

= c0

 p∑
i=1

γ̂iβi +

q∑
j=1

ω̂j

+ cn−1

 p∑
i=1

γ̂i
βni
n

+

q∑
j=1

ω̂jη
n−1
j


+

p∑
i=1

γ̂i

∫ βi

0

(βi − s)n

n!
y1(s)ds+

q∑
j=1

ω̂j

∫ ηj

0

(ηj − s)n−1

(n− 1)!
y1(s)ds. (2.10)

We can express equations (2.7)-(2.10) in the form
c0 −A2b0 −A3bm−1 = A1,
−B2c0 + b0 −B3cn−1 = B1,
C1c0 −D1b0 + C2cn−1 −D2bm−1 = D3 − C3,
−F1c0 + E1b0 − F2cn−1 + E2bm−1 = F3 − E3,

(2.11)

where D1, D2, F1 and F2 are given in (2.4) and

A1 = δ1

[ ξ∫
0

(ξ − r)m

m!
y2(r)dr

]
, A2 = δ1ξ, A3 = δ1

ξm

m
,

B1 = δ2

[ ξ∫
0

(ξ − r)n

n!
y1(r)dr

]
, B2 = δ2ξ, B3 = δ2

ξn

n
,
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C1 = ε1, C2 = ε1 + ζ1(n− 1),

C3 =

∫ 1

0

(1− s)n−2[ε1(1− s) + ζ1(n− 1)]

(n− 1)!
y1(s)ds,

D3 =

p∑
i=1

γi

∫ βi

0

(βi − s)m

m!
y2(s)ds+

q∑
j=1

ωj

∫ ηj

0

(ηj − s)m−1

(m− 1)!
y2(s)ds,

E1 = ε2, E2 = ε2 + ζ2(n− 1),

E3 =

∫ 1

0

(1− s)m−2[ε2(1− s) + ζ2(m− 1)]

(m− 1)!
y2(s)ds, (2.12)

F3 =

p∑
i=1

γ̂i

∫ βi

0

(βi − s)n

n!
y1(s)ds+

q∑
j=1

ω̂j

∫ ηj

0

(ηj − s)n−1

(n− 1)!
y1(s)ds.

Solving the first two equations in (2.11) for c0 and b0 in term of cn−1 and bm−1and
using the notation in (2.12), we obtain

c0 = G1 +G2bm−1 +G3cn−1,

b0 = H1 +H2bm−1 +H3cn−1,

(2.13)

where

G1 =
A1 +A2B1

r1
, G2 =

A3

r1
, G3 =

A2B3

r1
, H1 =

A1B2 +B1

r1
,

H2 =
A3B2

r1
, H3 =

B3

r1
, r1 = 1− δ1δ2ξ2.

(2.14)

Substituting the values of c0 and b0 from (2.13) in the last two equations of (2.11),
we get {

cn−1J1 − bm−1J2 = J3,
cn−1K1 − bm−1K2 = K3,

(2.15)

where J1, J2,K1,K2 are given in (2.4) and

J3 =
A1(B2D1 − C1) +B1(D1 −A2C1)

r1
+D3 − C3,

K3 =
A1(B2E1 − F1) +B1(E1 −A2F1)

r1
+ E3 − F3.

(2.16)

Solving the system (2.15) for bm−1 and cn−1, we find that
cn−1 =

J3K2 − J2K3

J1K2 − J2K1
,

bm−1 =
J3K1 − J1K3

J1K2 − J2K1
.

(2.17)
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Inserting (2.17) in (2.13), we obtain
c0 =

G1(J1K2 − J2K1) +G2(J3K1 − J1K3) +G3(J3K2 − J2K3)

J1K2 − J2K1
,

b0 =
H1(J1K2 − J2K1) +H2(J3K1 − J1K3) +H3(J3K2 − J2K3)

J1K2 − J2K1
.

(2.18)

Substituting the above values of cn−1, bm−1, c0 and b0 into (2.6) together with the
notation (2.4), we obtain the solution (2.2) and (2.3). One can obtain the converse of
the lemma by direct computation. �

In the sequel, we set

N̄i = max
t∈[0,1]

|Ni(t)|, i = 1, 2, . . . , 8,

σ1 =
ξm+1

(m+ 1)!
, σ2 =

ξn+1

(n+ 1)!
,

σ3 =

p∑
i=1

|γi|
βm+1
i

(m+ 1)!
+

p∑
i=1

|ωj |
ηmj
m!

, σ4 =

(
|ε1|
n!

+
|ζ1|

(n− 1)!

)
,

σ5 =

p∑
i=1

|γ̂i|
βn+1
i

(n+ 1)!
+

p∑
i=1

|ω̂j |
ηnj
n!
, σ6 =

(
|ε2|
m!

+
|ζ2|

(m− 1)!

)
,

(2.19)

where Ni(t), i = 1, 2, . . . , 8, are given in (2.4).

3. Main results

In the forthcoming analysis, we need the assumptions:

(H1) There exist real constants m̂i, n̂i ≥ 0, i = 1, 2 and m̂0 > 0, n̂0 > 0 such that
∀u, v ∈ R,

|f(t, u, v)| ≤ m̂0 + m̂1|u|+ m̂2|v|, |g(t, u, v)| ≤ n̂0 + n̂1|u|+ n̂2|v|;
(H2) There exist positive constants `1 and `2 such that, ∀t ∈ [0, 1] and ui, vi ∈ R,

i = 1, 2,

|f(t, u1, v1)− f(t, u2, v2)| ≤ `1(|u1 − u2|+ |v1 − v2|),

|g(t, u1, v1)− g(t, u2, v2)| ≤ `2(|u1 − u2|+ |v1 − v2|).

For the sake of convenience in the mathematical computations, we set

Q0 = min{1− (Q1m̂1 +Q2n̂1), 1− (Q1m̂2 +Q2n̂2)},

Q1 = q1 + q2, Q2 = q̄1 + q̄2,

q1 = 1
n! + N̄2σ2 + N̄3σ4 + N̄4σ5, q̄1 = N̄1σ1 + N̄3σ3 + N̄4σ6,

q2 = N̄6σ2 + N̄7σ4 + N̄8σ5, q̄2 =
1

m!
+ N̄5σ1 + N̄7σ3 + N̄8σ6.

(3.1)
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Let X = {u(t) | u(t) ∈ C([a, b])} be the space equipped with norm

‖u‖ = sup{|u(t)|, t ∈ [a, b]}.

Then, (X , ‖·‖) is a Banach space and consequently, the product space (X×X , ‖(u, v)‖)
is also a Banach space endowed with the norm ‖(u, v)‖ = ‖u‖+‖v‖ for (u, v) ∈ X ×X .

By Lemma 1, we define an operator T : X ×X → X ×X associated with the problem
(1.1) as

T (u, v)(t) := (T1(u, v)(t), T2(u, v)(t)),

where

T1(u, v)(t)

=

t∫
0

(t− s)n−1

(n− 1)!
f(s, u, v)ds+N1(t)

ξ∫
0

(ξ − s)m

m!
g(s, u, v)ds

+N2(t)

ξ∫
0

(ξ − s)n

n!
f(s, u, v)ds+N3(t)

[ p∑
i=1

γi

βi∫
0

(βi − s)m

m!
g(s, u, v)ds

+

q∑
j=1

ωj

ηj∫
0

(ηj − s)m−1

(m− 1)!
g(s, u, v)ds

−
1∫

0

(1− s)n−2

(n− 1)!
(ε1(1− s) + ζ1(n− 1))f(s, u, v)ds

]

+N4(t)
[ p∑
i=1

γ̂i

βi∫
0

(βi − s)n

n!
f(s, u, v)ds+

q∑
j=1

ω̂j

ηj∫
0

(ηj − s)n−1

(n− 1)!
f(s, u, v)ds

−
1∫

0

(1− s)m−2

(m− 1)!
(ε2(1− s) + ζ2(m− 1))g(s, u, v)ds

]
, (3.2)

and

T2(u, v)(t)

=

t∫
0

(t− s)m−1

(m− 1)!
g(s, u, v)ds+N5(t)

ξ∫
0

(ξ − s)m

m!
g(s, u, v)ds

+N6(t)

ξ∫
0

(ξ − s)n

n!
f(s, u, v)ds+N7(t)

[ p∑
i=1

γi

βi∫
0

(βi − s)m

m!
g(s, u, v)ds

+

q∑
j=1

ωj

ηj∫
0

(ηj − s)m−1

(m− 1)!
g(s, u, v)ds

−
1∫

0

(1− s)n−2

(n− 1)!
(ε1(1− s) + ζ1(n− 1))f(s, u, v)ds

]
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+N8(t)
[ p∑
i=1

γ̂i

βi∫
0

(βi − s)n

n!
f(s, u, v)ds+

q∑
j=1

ω̂j

ηj∫
0

(ηj − s)n−1

(n− 1)!
f(s, u, v)ds

−
1∫

0

(1− s)m−2

(m− 1)!
(ε2(1− s) + ζ2(m− 1))g(s, u, v)ds

]
. (3.3)

3.1. Existence of solutions

In this subsection, we discuss the existence of solutions for the problem (1.1) by
using Leray-Schauder’s alternative [17], which is stated below.

Lemma 3.1. Let T : K → K be a completely continuous operator (that is, a map
restricted to any bounded set in K is compact). Let

ψ(T ) = {x ∈ K : x = ϕT (x) for some 0 < ϕ < 1}.
Then, either the set ψ(T ) is unbounded or T has at least one fixed point.

Theorem 3.2. Let f, g : [0, 1]×R2 → R be continuous functions. Assume that condition
(H1) holds, and

Q1m̂1 +Q2n̂1 < 1 Q1m̂2 +Q2n̂2 < 1,

where Q1 and Q2 are given by (3.1). Then, there exists at least one solution for the
problem (1.1) on [0, 1].

Proof. First of all, we show that the operator T : X × X → X × X is completely
continuous. Notice that the operator T is continuous as the functions f and g are
continuous. Let Ψ = {(u, v) ∈ X × X : ‖(u, v)‖ ≤ ρ}. For any u, v ∈ Ψ we have

|f(t, u, v)| ≤ m̂0 + m̂1|u|+ m̂2|v| ≤ m̂0 + (m̂1 + m̂2)(‖u‖+ ‖v‖)
≤ m̂0 + (m̂1 + m̂2)ρ := κf ,

and similarly

|g(t, u, v)| ≤ n̂0 + (n̂1 + n̂2)ρ := κg.

Then, for any (u, v) ∈ Bρ, we obtain

|T1(u, v)(t)|

≤ sup
t∈[0,1]

{∫ t

0

(t− s)n−1

(n− 1)!
|f(s, u, v)|ds+ |N1(t)|

∫ ξ

0

(ξ − s)m

m!
|g(s, u, v)|ds

+|N2(t)|
∫ ξ

0

(ξ − s)n

n!
|f(s, u, v)|ds

+|N3(t)|

[∫ 1

0

(1− s)n−2

(n− 1)!
[ε1(1− s) + ζ1(n− 1)]|f(s, u, v)|ds

+

p∑
i=1

γi

∫ βi

0

(βi − s)m

m!
|g(s, u, v)|ds+

q∑
j=1

ωj

∫ ηj

0

(ηj − s)m−1

(m− 1)
|g(s, u, v)|ds

]

+|N4(t)|

[∫ 1

0

(1− s)m−2

(m− 1)!
[ε2(1− s) + ζ2(m− 1)]|g(s, u, v)|ds
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+

p∑
i=1

γ̂i

∫ βi

0

(βi − s)n

n!
|f(s, u, v)|ds+

q∑
j=1

ω̂j

∫ ηj

0

(ηj − s)n−1

(n− 1)
|f(s, u, v)|ds

]}

≤ κf

[
1

n!
+ N̄2σ2 + N̄3σ4 + N̄4σ5

]
+ κg

[
N̄1σ1 + N̄3σ3 + N̄4σ6

]
≤ κfq1 + κg q̄1,

which implies that ‖T1(u, v)‖ ≤ κfq1 + κg q̄1, where q1 and q̄1 are given in (3.1).
Similarly, one can obtain that ‖T2(u, v)‖ ≤ κfq2 + κg q̄2, where q2 and q̄2 are defined
in (3.1). From the forgoing inequalities, we get ‖T (u, v)‖ ≤ κfQ1 + κgQ2, where Q1

and Q2 are given in (3.1), which shows that the operator T is uniformly bounded.
Next, we establish that T is equicontinuous. For t1, t2 ∈ [0, 1] with t1 < t2, we have

|T1(u1, v1)(t2)− T1(u2, v2)(t1)|

≤ κf

∣∣∣∣∫ t2

0

(t2 − s)n−1

(n− 1)!
f(s, u, v)ds−

∫ t1

0

(t1 − s)n−1

(n− 1)!
f(s, u, v)ds

∣∣∣∣
+|N1(t2)−N1(t1)|

ξ∫
0

(ξ − s)m

m!
|g(s, u, v)|ds

+|N2(t2)−N2(t1)|
∫ ξ

0

(ξ − s)n

n!
|f(s, u, v)|ds

+|N3(t2)−N3(t1)|

[∫ 1

0

(1− s)n−2

(n− 1)!
[ε1(1− s) + ζ1(n− 1)]|f(s, u, v)|ds

+

p∑
i=1

γi

∫ βi

0

(βi − s)m

m!
|g(s, u, v)|ds+

q∑
j=1

ωj

∫ ηj

0

(ηj − s)m−1

(m− 1)
|g(s, u, v)|ds

]

+|N4(t2)−N4(t1)|

[∫ 1

0

(1− s)m−2

(m− 1)!
[ε2(1− s) + ζ2(m− 1)]|g(s, u, v)|ds

+

p∑
i=1

γ̂i

∫ βi

0

(βi − s)n

n!
|f(s, u, v)|ds+

q∑
j=1

ω̂j

∫ ηj

0

(ηj − s)n−1

(n− 1)
|f(s, u, v)|ds

]}
≤ κf

n!
(2(t2 − t1)n + |tn2 − tn1 |) + |N1(t2)−N1(t1)|κgσ1 + |N2(t2)−N2(t1)|κfσ2

+|N3(t2)−N3(t1)|(κfσ4 + κgσ3) + |N4(t2)−N4(t1)|(κfσ5 + κgσ6),

which tends to zero as (t2 − t1)→ 0 independent of (u, v) ∈ Ψ. In a similar manner,
it can be shown that |T2(u1, v1)(t2)−T2(u2, v2)(t1)| → 0 as (t2− t1)→ 0 independent
of (u, v) ∈ Ψ. Thus, the operator T is equicontinuous.

Finally, it will be verified that the set ψ = {(u, v) ∈ X × X|(u, v) = ϕT (u, v),
0 < ϕ < 1} is bounded. Let (u, v) ∈ ψ. Then (u, v) = ϕT (u, v) for any t ∈ [0, 1].
Therefore, we have u(t) = ϕT1(u, v)(t), v(t) = ϕT2(u, v)(t). In consequence, it follows
by the assumption (H1) that

|u(t)| = q1m̂0 + q̄1n̂0 + (q1m̂1 + q̄1n̂1)‖u‖+ (q1m̂2 + q̄1n̂2)‖v‖, (3.4)

and

|v(t)| = q2m̂0 + q̄2n̂0 + (q2m̂1 + q̄2n̂1)‖u‖+ (q2m̂2 + q̄2n̂2)‖v‖, (3.5)
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where q1, q2.q̄1, and q̄2 are given in (3.1). From (3.4) and (3.5), we have

‖u‖+ ‖v‖ ≤ (q1 + q2)m̂0 + (q̄1 + q̄2)n̂0 + [(q1 + q2)m̂1 + (q̄1 + q̄2)n̂1]‖u‖
+[(q1 + q2)m̂2 + (q̄1 + q̄2)n̂2]‖v‖,

which, in view of (3.1), can be written as

‖(u, v)‖ ≤ Q1m̂0 +Q2n̂0
Q0

.

This shows that the set ψ is bounded. Hence, by Lemma 3.1, the operator T has at
least one fixed point. Therefore, the problem (1.1) has at least one solution on [0, 1].
This completes the proof. �

3.2. Uniqueness of solutions

Here, we establish the uniqueness of solutions for the problem (1.1) by means of
Banach’s contractions mapping principle [12].

Theorem 3.3. Suppose that f, g : [0, 1]×R2 → R are continuous functions, the assump-
tion (H2) and the following condition

Q1`1 +Q2`2 < 1, (3.6)

hold, where Q1 and Q2 are given in (3.1). Then, the problem (1.1) has a unique
solution on [0, 1].

Proof. Firstly, we show that T Br ⊂ Br, where Br = {(u, v) ∈ X × X : ‖(u, v)‖ ≤ r}
is a closed ball with

r ≥ Q1N1 +Q2N2

1− (Q1`1 +Q2`2)
. (3.7)

Let us set supt∈[0,1] |f(t, 0, 0)| = µ1 and supt∈[0,1] |g(t, 0, 0)| = µ2. Then, by the as-

sumption (H2), we have

|f(s, u(s), v(s))| = |f(s, u(s), v(s))− f(s, 0, 0) + f(s, 0, 0)|
≤ |f(s, u(s), v(s))− f(s, 0, 0)|+ |f(s, 0, 0)|
≤ `1(‖u‖+ ‖v‖) + µ1 ≤ `1‖(u, v)‖+ µ1 ≤ `1r + µ1.

Likewise, one can obtain that

|g(s, u(s), v(s))| ≤ `2r + µ2.

For (u, v) ∈ Br, we have

|T1(u, v)(t)|

≤ sup
t∈[0,1]

{∫ t

0

(t− s)n−1

(n− 1)!
|f(s, u, v)|ds+ |N1(t)|

∫ ξ

0

(ξ − s)m

m!
|g(s, u, v)|ds

+|N2(t)|
∫ ξ

0

(ξ − s)n

n!
|f(s, u, v)|ds

+|N3(t)|

[∫ 1

0

(1− s)n−2

(n− 1)!
[ε1(1− s) + ζ1(n− 1)]|f(s, u, v)|ds
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+

p∑
i=1

γi

∫ βi

0

(βi − s)m

m!
|g(s, u, v)|ds+

q∑
j=1

ωj

∫ ηj

0

(ηj − s)m−1

(m− 1)
|g(s, u, v)|ds

]

+|N4(t)|

[∫ 1

0

(1− s)m−2

(m− 1)!
[ε2(1− s) + ζ2(m− 1)]|g(s, u, v)|ds

+

p∑
i=1

γ̂i

∫ βi

0

(βi − s)n

n!
|f(s, u, v)|ds+

q∑
j=1

ω̂j

∫ ηj

0

(ηj − s)n−1

(n− 1)
|f(s, u, v)|ds

]}

≤ [`1r + µ1]
[ 1

n!
+ N̄2σ2 + N̄3σ4 + N̄4σ5

]
+ [`2r + µ2]

[
N̄1σ1 + N̄3σ3 + N̄4σ6

]
≤ q1(`1r + µ1) + q̄1(`2r + µ2),

which implies that

‖T1(u, v))‖ ≤ q1(`1r + µ1) + q̄1(`2r + µ2).

Similarly, we can get

‖T2(u, v))‖ ≤ q2(`1r + µ1) + q̄2(`2r + µ2).

From the above estimates together with (3.7), it follows that ‖T (u, v)‖ ≤ r. Since
(u, v) ∈ Br is an arbitrary element, therefore T Br ⊂ Br.
Now, we show that the operator T is a contraction. For (u1, v1), (u2, v2) ∈ X ×X , we
have

|T1(u1, v1)(t)− T1(u2, v2)(t)|

≤ sup
t∈[0,1]

{∫ t

0

(t− s)n−1

(n− 1)!
|f(s, u1, v1)− f(s, u2, v2)|ds

+|N1(t)|
∫ ξ

0

(ξ − s)m

m!
|g(s, u1, v1)− g(s, u2, v2)|ds

+|N2(t)|
∫ ξ

0

(ξ − s)n

n!
|f(s, u1, v1)− f(s, u2, v2)|ds

+|N3(t)|

[∫ 1

0

(1− s)n−2

(n− 1)!
[ε1(1− s) + ζ1(n− 1)]|f(s, u1, v1)− f(s, u2, v2)|ds

+

p∑
i=1

γi

∫ βi

0

(βi − s)m

m!
|g(s, u1, v1)− g(s, u2, v2)|ds

+

q∑
j=1

ωj

∫ ηj

0

(ηj − s)m−1

(m− 1)
|g(s, u1, v1)− g(s, u2, v2)|ds

]

+|N4(t)|

[∫ 1

0

(1− s)m−2

(m− 1)!
[ε2(1− s) + ζ2(m− 1)]|g(s, u1, v1)− g(s, u2, v2)|ds

+

p∑
i=1

γ̂i

∫ βi

0

(βi − s)n

n!
|f(s, u1, v1)− f(s, u2, v2)|ds

+

q∑
j=1

ω̂j

∫ ηj

0

(ηj − s)n−1

(n− 1)
|f(s, u1, v1)− f(s, u2, v2)|ds

]}
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≤ `1
[ 1

n!
+ N̄2σ2 + N̄3σ4 + N̄4σ5

]
(|u1 − u2|+ |v1 − v2|)

+`2
[
N̄1σ1 + N̄3σ3 + N̄4σ6

]
(|u1 − u2|+ |v1 − v2|)

≤ (`1q1 + `2q̄1)(|u1 − u2|+ |v1 − v2|),

which implies that

‖T1(u1, v1)− T1(u2, v2)‖ ≤ (`1q1 + `2q̄1)(|u1 − u2|+ |v1 − v2|). (3.8)

In a similar manners, we get

‖T2(u1, v1)− T2(u2, v2)‖ ≤ (`1q2 + `2q̄2)(|u1 − u2|+ |v1 − v2|). (3.9)

From (3.8) and (3.9), we deduce that

‖T (u1, v1)− T (u2, v2)‖ ≤ (Q1`1 +Q2`2)(‖u1 − u2‖+ ‖v1 − v2‖),

where Q1 and Q2 are given in (3.1). By the assumption (3.7), it follows from the above
inequality that the operator T is a contraction. Thus, by the Banach’s contraction
mapping principle, the operator T has a unique fixed point, which corresponds to a
unique solution to the problem (1.1) on [0, 1]. �

4. Examples

Example 4.1. Consider the integral-multipoint boundary value problem of nonlinear
differential equations

u(3)(t) =
1

t2 + 9
+

1√
t2 + 4

|u2|
(1 + |u|)

+
e−t

4 + t4
sin v, t ∈ [0, 1],

v(4)(t) =
e−t

16
+

u cos v√
t2 + 36

+
v

(t2 + 5)

|u2|
(1 + |u|)

, t ∈ [0, 1],

u(0) = δ1

∫ ξ

0

v(s)ds, u′(0) = 0, v(0) = δ2

∫ ξ

0

u(s)ds, v′(0) = 0, v′′(0) = 0,

ε1u(1) + ζ1u
′(1) =

4∑
i=1

γi

∫ βi

0

v(s)ds+

3∑
j=1

ωjv(ηj),

ε2v(1) + ζ2v
′(1) =

4∑
i=1

γ̂i

∫ βi

0

u(s)ds+

3∑
j=1

ω̂ju(ηj),

(4.1)
where n = 3, m = 4, δ1 = 1.2, δ2 = 1.5, ε1 = 0.7, ε2 = 0.4, ζ1 = 2.6, ζ2 = 2.1, ξ = 0.1,
β1 = 0.2, β2 = 0.3, β3 = 0.4, β4 = 0.5, η1 = 0.6, η2 = 0.7, η3 = 0.8, γ1 = 0.325,
γ2 = 0.572, γ3 = 0.811, γ4 = 0.124, ω1 = 0.267, ω2 = 0.489, ω3 = 0.712, γ̂1 = 0.452,
γ̂2 = 0.695, γ̂3 = 0.831, γ̂4 = 0.203, ω̂1 = 0.378, ω̂2 = 0.617, ω̂3 = 0.954.

Using the given data in (2.4), (2.19) and (3.1), we find that N̄1 ≈ 0.978509,
N̄2 ≈ 0.3632664, N̄3 ≈ 0.172781, N̄4 ≈ 0.020315, N̄5 ≈ 0.621273, N̄6 ≈ 1.038184,
N̄7 ≈ 0.035554, N̄8 ≈ 0.221574, σ1 ≈ 0.0000008, σ2 ≈ 0.000004, σ3 ≈ 0.017157,
σ4 ≈ 1.416667, σ5 ≈ 0.118329, q1 ≈ 0.413846, q2 ≈ 0.076591, q̄1 ≈ 0.010413,
q̄2 ≈ 0.123521, Q1 ≈ 0.490437, Q2 ≈ 0.133934.
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Also it is easy to find that |f(t, u, v)| ≤ 1/9 + 1/2|u| + 1/4|v|, |g(t, u, v)| ≤
1/16+1/6|u|+1/5|v|, Q1m̂1+Q2n̂1 ≈ 0.267541 < 1 and Q1m̂2+Q2n̂2 ≈ 0.149396 < 1.
Clearly all the assumptions of Theorem 3.2 are satisfied. Therefore, there exists at
least one solution to the problem (4.1).

Example 4.2. Consider the system of ordinary differential equations
u(3)(t) =

1√
t2 + 100

tan−1 u+
1

(t2 + 10)

|v|
(1 + |v|)

+
e−t

4
, t ∈ [0, 1],

v(4)(t) =
e−t

t2 + 2
sinu+

1√
t2 + 4

cos v +
t2 + 4√
t3 + 4

, t ∈ [0, 1],
(4.2)

subject to the boundary conditions in Example 4.1.

Observe that `1 = 1/10, `2 = 1/2 as

|f(t, u1, v1)− f(t, u2, v2)| ≤ 1

10
(|u1 − u2|+ |v1 − v2|),

|g(t, u1, v1)− g(t, u2, v2)| ≤ 1

2
(|u1 − u2|+ |v1 − v2|).

Moreover, Q1`1 + Q2`2 ≈ 0.088091 < 1. Thus, the hypotheses of Theorem 3.3 are
satisfied and hence its conclusion applies to the problem (4.2).

5. Conclusions

We have developed the existence and uniqueness results for a new class of coupled
systems of two nonlinear ordinary differential equations of order n and m subject to
the coupled integral-multipoint boundary conditions. Our results are not only new in
the given configuration but also yield some new ones by fixing the parameters involved
in the given boundary data. In future, we plan to develop the multivalued version of
the problem studied in this paper.
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On the stabilization of a thermoelastic laminated
beam system with microtemperature effects

Foughali Fouzia and Djellali Fayssal

Abstract. The present article investigates a one dimensional thermoelastic lam-
inated beam with microtemperature effects. Using the energy method we prove
in the case of zero thermal conductivity that the unique dissipation due to the
microtemperatures is strong enough to exponentially stabilize the system if and
only if the wave speeds of the system are equal. Our result is new and improves
previous results in the literature.
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1. Introduction

In this paper, we address the following thermoelastic laminated beams with
microtemperature effects

ρϕtt +G (ψ − ϕx)x = 0,

Iρ (3s− ψ)tt −D (3s− ψ)xx −G (ψ − ϕx) = 0,

3Iρstt − 3Dsxx + 3G (ψ − ϕx) + 4γs− δθ +mωx = 0,

cθt + κ1ωx + δst = 0,

αωt − κ2ωxx + κ3ω + κ1θx +mstx = 0,

(1.1)
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for (x, t) ∈ (0, 1) × R+, system (1.1) is complemented with the following boundary
conditions

ϕx(0, t) = ψ(0, t) = s(0, t) = θ(0, t) = ωx(0, t) = 0, t > 0,

ϕx(1, t) = ψ(1, t) = s(1, t) = θ(1, t) = ωx(1, t) = 0, t > 0, (1.2)

and the initial data

ϕ(x, 0) = ϕ0(x), ψ(x, 0) = ψ0(x), s(x, 0) = s0(x), x ∈ (0, 1),

ϕt(x, 0) = ϕ1(x), ψt(x, 0) = ψ1(x), st(x, 0) = s1(x), x ∈ (0, 1), (1.3)

θ(x, 0) = θ0(x), ω(x, 0) = ω0(x), x ∈ (0, 1),

where the functions ϕ(x, t) is the transversal displacement of the beam, ψ is the
volume fraction difference, (3s(x, t) − ψ(x, t)) is the effective rotation angle, θ is the
relative temperature and ω is the microtemperature difference and the coefficients,
ρ, Iρ, D, G, and γ are positive constant coefficients represent the density, the shear
stiffness, the mass moment of inertia, the flexural rigidity, and the adhesive damping
weight. And the coefficients γ, κ1, κ2, κ3, c, m and α are positive constants represent
the physical parameters describing the coupling between the various constituents of
the materials.

The initial data (ϕ0, ϕ1, ψ0, ψ1, s0, s1, θ0, ω0) are assumed to belong to a suitable
functional space.

The laminated beam model describes a vibrating structure of an interfacial slip.
It consists of two layered beams of uniform thickness which are attached by an adhe-
sive layer of small thickness in such a way that small amount of slip is possible while
they are continuously in contact with each other. And with the increasing demand
of advanced performance, the vibration suppression of the laminated beams has been
one of the main research topics in smart materials and structures, and these composite
laminates usually have superior structural properties such as adaptability.

The laminated beam problem was first introduced by Hansen and Spies in [14].
In that paper, the authors derived the mathematical model for two-layered beams
with structural damping due to the interfacial slip, namely

ρϕtt +G(ψ − ϕx)x = 0,

Iρ(3s− ψ)tt −D(3s− ψ)xx −G(ψ − ϕx) = 0,

3Iρstt − 3Dsxx + 3G(ψ − ϕx) + 4γs+ 4αst = 0.

(1.4)

In recent years, researchers have focused on the study of the well-posedness and
asymptotic stability properties of (1.4). With additional dampings on the first two
equations or some sort of boundary damping mechanism, the authors [4, 5, 20, 21,
22, 27, 28, 32] showed that system (1.4) can be stabilized exponentially.

Regarding thermoelastic laminated-beam models, Apalara [2] analyzed a lami-
nated beam system with thermal effect in the slip instead of the frictional damping
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(4αst). More precisely, he studied the following laminated beam system
ρϕtt +G(ψ − ϕx)x = 0,

Iρ(3s− ψ)tt −D(3s− ψ)xx −G(ψ − ϕx) = 0,

3Iρstt − 3Dsxx + 3G(ψ − ωx) + 4γs+ δθx = 0,

cθt − kθxx + δstx = 0,

and he came to the conclusion that an exponential stability result is achievable in the
case of equal wave speeds, that is,

ρ

G
=
Iρ
D
.

We refer the reader to [1, 3, 7, 6, 10, 8, 9, 11, 13, 17, 18, 16, 25, 26, 23, 29] and the
references cited therein for some other results.

In the matter of microtemperature effects, we bring up the study of Djeradi
et al. [12] where they examined the joint of microtemperature, nonlinear structure
damping, along with nonlinear time-varying delay term, and time- varying coefficient
on a thermoelastic laminated beam. They examined the system

ρϕtt +G (ψ − ϕx)x = 0,

Iρ (3s− ψ)tt −D (3s− ψ)xx −G (ψ − ϕx) = 0,

3Iρstt − 3Dsxx + 3G (ψ − ϕx) + 4γs+ δθx +mωx

+βb(t)h1(st(x, t)) + µb(t)h2(st(x, t− ς(t))) = 0,

cθt − κ0θxx + κ1ωx + δstx = 0,

αωt − κ2ωxx + κ3ω + κ1θx +mstx = 0,

and established a general decay result in the case of equal wave speeds and particular
assumptions related to nonlinear terms.

The coupled system we’ve described involves several physical phenomena, includ-
ing thermoelasticity, laminated beams, and microtemprature effects. For example, a
laminated beam consists of multiple layers of different materials bonded together,
thermoelasticity refers to the combined behavior of thermal and elastic properties of
the materials, and microtemperature refers to the consideration of temperature vari-
ations at a very small scale, which can influence the overall behavior of the coupled
system.

Taking the above observations into account, we consider the one-dimensional
thermoelastic laminated beam problem with microtemperature effects and without
thermal conductivity (1.1)-(1.3), and we establish that the dissipation due solely to
microtemperature is adequate to stabilize the system exponentially in the case of
equal wave speeds. i,e.

χ =
ρ

G
− Iρ
D

= 0. (1.5)

Concerning the stability of some thermoelastic systems with microtemperature effects
and without thermal conductivity, we refer the reader to [15, 24, 31].

In order to be able to use Poincaré’s inequality for ϕ and ω, we perform the
following transformation. From the first equation in (1.1) and boundary conditions,
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it follows that

d2

dt2

∫ 1

0

ϕ(x, t)dx = 0, ∀t ≥ 0,

and therefore ∫ 1

0

ϕ(x, t)dx = t

∫ 1

0

ϕ1(x, t)dx+

∫ 1

0

ϕ0(x, t)dx, ∀t ≥ 0.

Consequently, if we set

ϕ(x, t) = ϕ(x, t)− t
∫ 1

0

ϕ1(x)dx−
∫ 1

0

ϕ0(x)dx, t ≥ 0,

we get ∫ 1

0

ϕ(x, t)dx = 0, ∀t ≥ 0.

Now, from the fifth equation of (1.1) and the boundry conditions, we get

d

dt

∫ 1

0

ω(x, t)dx+
κ3
α

∫ 1

0

ω(x, t)dx = 0, ∀t ≥ 0,

thus ∫ 1

0

ω(x, t)dx =

(∫ 1

0

ω0(x)dx

)
e−

κ3
α t,

so, if we put

ω(x, t) = ω(x, t)−
(∫ 1

0

ω0(x)dx

)
e−

κ3
α t, t ≥ 0,

we obtain ∫ 1

0

ω(x, t)dx = 0, ∀t ≥ 0.

Clearly, the use of Poincaré’s inequality for ϕ and ω is justified, and (ϕ,ψ, s, θ, ω)
satisfies the same equations in (1.1)-(1.3). Subsequently, we work with ϕ and ω instead
of ϕ and ω but write ϕ, ω for simplicity of notation.

For completeness we present a short discussion of the well-posedness and the
semigroup formulation of (1.1)-(1.3). For this purpose, we denote by ξ the effective
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rotation angle, that is, ξ = 3s− ψ. Then, system (1.1)-(1.3) is equivalent to

ρϕtt +G (3s− ξ − ϕx)x = 0,

Iρξtt −Dξxx −G (3s− ξ − ϕx) = 0,

3Iρstt − 3Dsxx + 3G (3s− ξ − ϕx) + 4γs− δθ +mωx = 0,

cθt + κ1ωx + δst = 0,

αωt − κ2ωxx + κ3ω + κ1θx +mstx = 0,

ϕx(0, t) = ξ(0, t) = s(0, t) = θ(0, t) = ωx(0, t) = 0,

ϕx(1, t) = ξ(1, t) = s(1, t) = θ(1, t) = ωx(1, t) = 0,

ϕ(x, 0) = ϕ0(x), ξ(x, 0) = ξ0(x), s(x, 0) = s0(x),

ϕt(x, 0) = ϕ1(x), st(x, 0) = s1(x), ξt(x, 0) = ξ1(x),

θ(x, 0) = θ0(x), ω(x, 0) = ω0(x).

(1.6)

Clearly, by introducing the vector function U = (ϕ, φ, ξ, u, s, v, θ, ω)
T

, where φ = ϕt,
u = ξt, and v = st, system (1.6) can be written as{

d
dtU(t) = AU(t), t > 0,

U(0) = U0 = (ϕ0, ϕ1, ξ0, ξ1, s0, s1, θ0, ω0)
T
,

(1.7)

where A is a differential operator defined by

AU =



φ
−Gρ (3s− ξ − ϕx)x

u
1
Iρ

(
Dξxx +G (3s− ξ − ϕx)

)
v

1
3Iρ

(
3Dsxx − 3G (3s− ξ − ϕx)− 4γs+ δθ −mωx

)
− 1
c

(
κ1ωx + δv

)
1
α

(
κ2ωxx − κ3ω − κ1θx −mvx

)


.

We consider the following spaces

L2
∗(0, 1) =

{
Ψ ∈ L2(0, 1) :

∫ 1

0

Ψ(x) dx = 0

}
,

H1
∗ (0, 1) = H1(0, 1) ∩ L2

∗(0, 1),

H2
∗ (0, 1) =

{
Ψ ∈ H2(0, 1) : Ψx(0) = Ψx(1) = 0

}
.

The energy space

H = H1
∗ (0, 1)× L2

∗(0, 1)×H1
0 (0, 1)× L2(0, 1)×H1

0 (0, 1)× L2(0, 1)

× L2(0, 1)× L2
∗(0, 1)
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is a Hilbert space with respect to the inner product

〈U, Ũ〉H = ρ

∫ 1

0

φφ̃dx+ Iρ

∫ 1

0

uũdx+ 3Iρ

∫ 1

0

vṽdx+ c

∫ 1

0

θθ̃dx

+ α

∫ 1

0

ωω̃dx+G

∫ 1

0

(3s− ξ − ϕx)
(

3s̃− ξ̃ − ϕ̃x
)
dx (1.8)

+D

∫ 1

0

ξxξ̃xdx+ 4γ

∫ 1

0

ss̃dx+ 3D

∫ 1

0

sxs̃xdx,

for U = (ϕ, φ, ξ, u, s, v, θ, ω)
T ∈ H and Ũ =

(
ϕ̃, φ̃, ξ̃, ũ, s̃, ṽ, θ̃, ω̃

)T
∈ H.

The domain of A is then

D(A) =

{
U ∈ H

∣∣∣ ϕ, ω ∈ H2
∗ (0, 1) ∩H1

∗ (0, 1); ξ, s ∈ H2(0, 1) ∩H1
0 (0, 1);

φ ∈ H1
∗ (0, 1); u, v, θ ∈ H1

0 (0, 1)

}
.

Using the standard semigroup method (see, for instance [19, 30]), one easily establishes
the following well-posedness result:

Theorem 1.1. Let U0 ∈ H, then there exists a unique solution U ∈ C(R+,H) of
problem (1.1)-(1.3). Moreover, if U0 ∈ D(A). Then U ∈ C(R+,D(A)) ∩ C1(R+,H).

This paper is organized as follows. In section 2, we state and prove some technical
lemmas needed in the proof of our main results. In section 3, we show that the system
is exponentially stable under condition (1.5). In what follows, we use c1 to denote a
generic positive constant.

2. Technical lemmas

This section is devoted to the statements and proofs of some technical lemmas
needed for the proof of our stability result.

Lemma 2.1. Let (ϕ,ψ, s, θ, ω) be the solution of (1.1)-(1.3), then the energy functional
defined by

E(t) =
1

2

∫ 1

0

[
ρϕ2

t + Iρ (3st − ψt)2 + 3Iρs
2
t +D (3sx − ψx)

2

+ 3Ds2x + 4γs2 +G (ψ − ϕx)
2

+ cθ2 + αω2

]
dx, ∀t ≥ 0,

(2.1)

satisfies, along a strong solution of (1.1)-(1.3),

E′(t) = −κ2
∫ 1

0

ω2
xdx− κ3

∫ 1

0

ω2dx ≤ 0, ∀t ≥ 0. (2.2)

Proof. Equation (2.2) follows by multiplying the five equations of system (1.1) by
ϕt, (3st − ψt) , st, θ and ω respectively, integrating by parts over (0, 1), boundary con-
ditions (1.2) and summing up. �
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Lemma 2.2. The functional F1(t) defined by

F1(t) =
3αIρ
m

∫ 1

0

st

(∫ x

0

ω(y)dy

)
dx+

3κ1Iρ
m

∫ 1

0

sθdx

+
3κ1Iρδ

2mc

∫ 1

0

s2dx, (2.3)

satisfies, for any ε1, ε2, ε3 > 0, the estimate

F ′1(t) ≤ − Iρ
∫ 1

0

s2tdx+ ε1

∫ 1

0

s2xdx+ ε2

∫ 1

0

(ψ − ϕx)
2
dx

+ ε3

∫ 1

0

θ2dx+ c1

(
1 +

1

ε1
+

1

ε2
+

1

ε3

)∫ 1

0

ω2dx

+ c1

(
1 +

1

ε1

)∫ 1

0

ω2
xdx.

(2.4)

Proof. By taking the derivative of F1, using (1.1), integrating by parts and the fact

that
∫ 1

0
ω(x) dx = 0, we get,

F ′1(t) =− 3αD

m

∫ 1

0

sxωdx−
3αG

m

∫ 1

0

(ψ − ϕx)

∫ x

0

ω(y)dydx

− 4αγ

m

∫ 1

0

s

∫ x

0

ω(y)dydx+
αδ

m

∫ 1

0

θ

∫ x

0

ω(y)dydx

+ α

∫ 1

0

ω2dx+
3Iρκ2
m

∫ 1

0

stωxdx− 3Iρ

∫ 1

0

s2tdx

− 3Iρκ3
m

∫ 1

0

st

∫ x

0

ω(y)dydx− 3Iρκ
2
1

mc

∫ 1

0

sωxdx.

(2.5)

Using Young’s, Poincaré’s and Cauchy-Schwarz inequalities, we have, for any
ε1, ε2, ε3 > 0

−3αD

m

∫ 1

0

sxωdx ≤
ε1
4

∫ 1

0

s2xdx +
c1
ε1

∫ 1

0

ω2dx, (2.6)

−3αG

m

∫ 1

0

(ψ − ϕx)

∫ x

0

ω(y)dydx

≤ ε2

∫ 1

0

(ψ − ϕx)
2
dx +

c1
ε2

∫ 1

0

(∫ x

0

ω(y)dy

)2

dx

≤ ε2

∫ 1

0

(ψ − ϕx)
2
dx +

c1
ε2

∫ 1

0

ω2dx, (2.7)

similarly,

−4αγ

m

∫ 1

0

s

∫ x

0

ω(y)dydx ≤ ε1
4

∫ 1

0

s2xdx +
c1
ε1

∫ 1

0

ω2dx, (2.8)



258 Foughali Fouzia and Djellali Fayssal

αδ

m

∫ 1

0

θ

∫ x

0

ω(y)dydx ≤ ε3

∫ 1

0

θ2dx +
c1
ε3

∫ 1

0

ω2dx, (2.9)

3Iρκ2
m

∫ 1

0

stωxdx ≤ Iρ

∫ 1

0

s2tdx + c1

∫ 1

0

ω2
xdx, (2.10)

−3Iρκ3
m

∫ 1

0

st

∫ x

0

ω(y)dydx ≤ Iρ

∫ 1

0

s2tdx + c1

∫ 1

0

ω2dx, (2.11)

−3Iρκ
2
1

mc

∫ 1

0

sωxdx ≤
ε1
2

∫ 1

0

s2xdx +
c1
ε1

∫ 1

0

ω2
xdx. (2.12)

Estimate (2.4) follows by substituting (2.6)(2.12) into (2.5). �

Lemma 2.3. The functional F2(t) defined by

F2(t) =
αc

κ1

∫ 1

0

θ

(∫ x

0

ω(y)dy

)
dx, (2.13)

satisfies, the following estimate

F ′2(t) ≤ − c

2

∫ 1

0

θ2dx+ c1

∫ 1

0

s2tdx+ c1

∫ 1

0

ω2dx+ c1

∫ 1

0

ω2
xdx. (2.14)

Proof. Direct computations, using (1.1), integrating by parts and the fact that∫ 1

0
ω(x) dx = 0, yield

F ′2(t) =− c
∫ 1

0

θ2dx+ α

∫ 1

0

ω2dx− αδ

κ1

∫ 1

0

st

∫ x

0

ω(y)dydx

+
cκ2
κ1

∫ 1

0

θωxdx−
cκ3
κ1

∫ 1

0

θ

∫ x

0

ω(y)dydx− mc

κ1

∫ 1

0

θstdx.

(2.15)

By virtue of Young’s and Cauchy-Schwarz inequalities, we find

−αδ
κ1

∫ 1

0

st

∫ x

0

ω(y)dydx ≤ c1

∫ 1

0

s2tdx + c1

∫ 1

0

ω2dx, (2.16)

cκ2
κ1

∫ 1

0

θωxdx ≤
c

8

∫ 1

0

θ2dx + c1

∫ 1

0

ω2
xdx, (2.17)

−cκ3
κ1

∫ 1

0

θ

∫ x

0

ω(y)dydx ≤ c

8

∫ 1

0

θ2dx + c1

∫ 1

0

ω2dx, (2.18)

−mc
κ1

∫ 1

0

θstdx ≤
c

4

∫ 1

0

θ2dx + c1

∫ 1

0

s2tdx, (2.19)

which yields the desired result (2.14), by inserting (2.16)(2.19) into (2.15). �
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Lemma 2.4. The functional F3(t) defined by

F3(t) = −Dρ
G

∫ 1

0

ϕtsxdx+ Iρ

∫ 1

0

st (ψ − ϕx) dx, (2.20)

satisfies, for any ε4 > 0, the estimate

F ′3(t) ≤− G

2

∫ 1

0

(ψ − ϕx)
2
dx+ ε4

∫ 1

0

(3st − ψt)2 dx

+ c1

(
1 +

1

ε4

)∫ 1

0

s2tdx+ c1

∫ 1

0

s2dx+ c1

∫ 1

0

θ2dx

+ c1

∫ 1

0

ω2
xdx+Dχ

∫ 1

0

ϕtxstdx.

(2.21)

Proof. Differentiating F3, using (1.1) and intgrating by parts, we obtain

F ′3(t) =− Dρ

G

∫ 1

0

ϕtstxdx−G
∫ 1

0

(ψ − ϕx)
2
dx− 4

3
γ

∫ 1

0

s (ψ − ϕx) dx

+
δ

3

∫ 1

0

θ (ψ − ϕx) dx− m

3

∫ 1

0

ωx (ψ − ϕx) dx

+ Iρ

∫ 1

0

stψtdx− Iρ
∫ 1

0

stϕtxdx.

Using the simple equality ψt = − (3st − ψt) + 3st, we arrive at

F ′3(t) =−G
∫ 1

0

(ψ − ϕx)
2
dx− 4

3
γ

∫ 1

0

s (ψ − ϕx) dx+ 3Iρ

∫ 1

0

s2tdx

+
δ

3

∫ 1

0

θ (ψ − ϕx) dx− m

3

∫ 1

0

ωx (ψ − ϕx) dx

− Iρ
∫ 1

0

st (3st − ψt) dx+Dχ

∫ 1

0

ϕtxstdx.

(2.22)

Applying Young’s and Poincaré’s inequalities, for ε4 > 0, we get

−4

3
γ

∫ 1

0

s (ψ − ϕx) dx ≤ G

8

∫ 1

0

(ψ − ϕx)
2
dx + c1

∫ 1

0

s2dx, (2.23)

δ

3

∫ 1

0

θ (ψ − ϕx) dx ≤ G

8

∫ 1

0

(ψ − ϕx)
2
dx + c1

∫ 1

0

θ2dx, (2.24)

−m
3

∫ 1

0

ωx (ψ − ϕx) dx ≤ G

4

∫ 1

0

(ψ − ϕx)
2
dx + c1

∫ 1

0

ω2
xdx, (2.25)

−Iρ
∫ 1

0

st (3st − ψt) dx ≤ ε4

∫ 1

0

(3st − ψt)2 dx +
c1
ε4

∫ 1

0

s2tdx. (2.26)

By substituting (2.23)-(2.26) into (2.22), we obtain (2.21). �
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Lemma 2.5. The functional F4(t) defined by

F4(t) = −Dρ
G

∫ 1

0

ϕt (3sx − ψx) dx+ Iρ

∫ 1

0

(ψ − ϕx) (3st − ψt) dx, (2.27)

satisfies, the estimate

F ′4(t) ≤− Iρ
2

∫ 1

0

(3st − ψt)2 dx+G

∫ 1

0

(ψ − ϕx)
2
dx

+ c1

∫ 1

0

s2tdx+Dχ

∫ 1

0

(3st − ψt)ϕtxdx.
(2.28)

Proof. Direct differentiation of F4, using (1.1) and then integrating by parts, gives

F ′4(t) =− Dρ

G

∫ 1

0

ϕt (3sx − ψx)t dx+G

∫ 1

0

(ψ − ϕx)
2
dx

+ Iρ

∫ 1

0

(3st − ψt)ψtdx− Iρ
∫ 1

0

(3st − ψt)ϕtxdx.

By using the equality ψt = − (3st − ψt) + 3st, we obtain

F ′4(t) =− Iρ
∫ 1

0

(3st − ψt)2 dx+ 3Iρ

∫ 1

0

st (3st − ψt) dx

+G

∫ 1

0

(ψ − ϕx)
2
dx+Dχ

∫ 1

0

(3st − ψt)ϕtxdx.

Estimate (2.28) follows thanks Youngs inequality. �

Lemma 2.6. The functional F5(t) defined by

F5(t) = −ρ
∫ 1

0

(∫ x

0

ϕt(y)dy

)
sdx+ Iρ

∫ 1

0

stsdx, (2.29)

satisfies, for ε5 > 0, the estimate

F ′5(t) ≤− D

2

∫ 1

0

s2xdx− γ
∫ 1

0

s2dx+ ε5

∫ 1

0

ϕ2
tdx+ c1

∫ 1

0

θ2dx

+ c1

∫ 1

0

ω2
xdx+ c1

(
1 +

1

ε5

)∫ 1

0

s2tdx.

(2.30)

Proof. The derivative of F5, using (1.1), integration by parts and the boundary con-
ditions, give

F ′5(t) = −D
∫ 1

0

s2xdx−
4

3
γ

∫ 1

0

s2dx+
δ

3

∫ 1

0

θsdx− m

3

∫ 1

0

ωxsdx

+ Iρ

∫ 1

0

s2tdx− ρ
∫ 1

0

st

(∫ x

0

ϕt(y)dy

)
dx.

(2.31)

By using Young’s, Poincaré’s and Cauchy-Schwarz inequalities, for ε5 > 0, we have

δ

3

∫ 1

0

θsdx ≤ γ

3

∫ 1

0

s2dx + c1

∫ 1

0

θ2dx, (2.32)
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−m
3

∫ 1

0

ωxsdx ≤
D

2

∫ 1

0

s2xdx + c1

∫ 1

0

ω2
xdx, (2.33)

−ρ
∫ 1

0

st

(∫ x

0

ϕt(y)dy

)
dx ≤ ε5

∫ 1

0

ϕ2
tdx +

c1
ε5

∫ 1

0

s2tdx. (2.34)

Relation (2.30) follows by substituting (2.32)-(2.34) into (2.31). �

Lemma 2.7. The functional F6 defined by

F6(t) = −ρ
∫ 1

0

ϕtϕdx, (2.35)

satisfies, the estimate

F ′6(t) ≤ − ρ
∫ 1

0

ϕ2
tdx+

D

4

∫ 1

0

(3sx − ψx)
2
dx

+ c1

∫ 1

0

s2xdx+ c1

∫ 1

0

(ψ − ϕx)
2
dx. (2.36)

Proof. Direct differentiation of F6, using (1.1) and then integrating by parts, gives

F ′6(t) = −G
∫ 1

0

ϕx (ψ − ϕx) dx− ρ
∫ 1

0

ϕ2
tdx.

Using the simple relation ϕx = − (ψ − ϕx)− (3s− ψ) + 3s, we get

F ′6(t) =G

∫ 1

0

(ψ − ϕx)
2
dx+G

∫ 1

0

(ψ − ϕx) (3s− ψ) dx

− 3G

∫ 1

0

(ψ − ϕx) s dx− ρ
∫ 1

0

ϕ2
tdx.

Using Young’s and Poincaré’s inequalities, lead to the desired estimation. �

Lemma 2.8. The functional F7 defined by

F7(t) = Iρ

∫ 1

0

(3s− ψ) (3st − ψt) dx, (2.37)

satisfies, the estimate

F ′7(t) ≤ − D

2

∫ 1

0

(3sx − ψx)
2
dx+ Iρ

∫ 1

0

(3st − ψt)2 dx

+ c1

∫ 1

0

(ψ − ϕx)
2
dx. (2.38)

Proof. A simple differentiation of F7, using (1.1) together with integration by parts,
yield

F ′7(t) = Iρ

∫ 1

0

(3st − ψt)2 dx−D
∫ 1

0

(3sx − ψx)
2
dx

+G

∫ 1

0

(ψ − ϕx) (3s− ψ) dx.
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The use of Young’s and Poincaré’s inequalities lead to (2.38). �

3. Stability result

In this section, we prove under the condition of equal wave-speed propagation
(1.5) that the energy associated with (1.1)(1.3) is exponentially stable. To achieve
this goal, we define a Lyapunov functional L and show that it is equivalent to the
energy functional E.

Lemma 3.1. Let (ϕ,ψ, s, θ, ω) be the solution of (1.1)-(1.3) and assume χ = 0. Then,
for N, N1, N2, N3, N4, N5 > 0 to be chosen appropriately later, the functional defined
by

L(t) = NE(t) +N1F1(t) +N2F2(t) +N3F3(t) +N4F4(t)

+N5F5(t) + F6(t) + F7(t),
(3.1)

satisfies, for N sufficiently large,

τ1E(t) ≤ L(t) ≤ τ2E(t), ∀t ≥ 0, (3.2)

and the estimate

L′(t) ≤ −τ3E(t), (3.3)

where τ1, τ2 and τ3 are positive constants.

Proof. From (3.1) and the Lemmas in Section 2, it follows that

∣∣∣L(t)−NE(t)
∣∣∣ ≤3αIρ

m
N1

∫ 1

0

∣∣∣∣∣st
∫ x

0

ω(y)dy

∣∣∣∣∣dx+
3κ1Iρ
m

N1

∫ 1

0

∣∣∣∣∣sθ
∣∣∣∣∣dx

+
3κ1Iρδ

2mc
N1

∫ 1

0

s2dx+
αc

κ1
N2

∫ 1

0

∣∣∣θ ∫ x

0

ω(y)dy
∣∣∣dx

+
Dρ

G
N3

∫ 1

0

∣∣∣ϕtsx∣∣∣dx+ IρN3

∫ 1

0

∣∣∣st (ψ − ϕx)
∣∣∣dx

+
Dρ

G
N4

∫ 1

0

∣∣∣ϕt (3sx − ψx)
∣∣∣dx

+ IρN4

∫ 1

0

∣∣∣ (ψ − ϕx) (3st − ψt)
∣∣∣dx

+ ρN5

∫ 1

0

∣∣∣s∫ x

0

ϕt(y)dy
∣∣∣dx+ IρN5

∫ 1

0

∣∣∣sts∣∣∣dx
+ ρ

∫ 1

0

∣∣∣ϕtϕ∣∣∣dx+ Iρ

∫ 1

0

∣∣∣ (3st − ψt) (3s− ψ)
∣∣∣dx.



On the stabilization of a thermoelastic laminated beam system 263

Exploiting Young’s, Cauchy-Schwarz and Poincaré’s inequalities, we get∣∣∣L(t)−NE(t)
∣∣∣ ≤ c1

∫ 1

0

[
ϕ2
t + (3st − ψt)2 + s2t + (3sx − ψx)

2

+ s2x + s2 + (ψ − ϕx)
2

+ θ2 + ω2

]
dx.

Consequently, we have ∣∣∣L(t)−NE(t)
∣∣∣ ≤ c1E(t),

that is,

(N − c1)E(t) ≤ L(t) ≤ (N + c1)E(t).

By choosing N large enough, (3.2) follows. Next, to prove (3.3), we take the derivative
of L(t), use (2.2), (2.4), (2.14), (2.21), (2.28), (2.30), (2.36), (2.38), and set

ε1 =
DN5

4N1
, ε2 =

GN3

4N1
, ε3 =

cN2

4N1
, ε4 =

IρN4

4N3
, ε5 =

ρ

2N5
.

So, we arrive at

L′(t) ≤− ρ

2

∫ 1

0

ϕ2
tdx−

[
Iρ
4
N4 − Iρ

] ∫ 1

0

(3st − ψt)2 dx−
D

4

∫ 1

0

(3sx − ψx)
2
dx

−
[
IρN1 − c1N2 − c1N3

(
1 +

N3

N4

)
− c1N4 − c1N5 (1 +N5)

] ∫ 1

0

s2tdx

−
[
G

4
N3 −GN4 − c1

] ∫ 1

0

(ψ − ϕx)
2
dx−

[
D

4
N5 − c1

] ∫ 1

0

s2xdx

− [γN5 − c1N3]

∫ 1

0

s2dx−
[ c

4
N2 − c1N3 − c1N5

] ∫ 1

0

θ2dx

−
[
Nκ2 − c1N1

(
1 +

N1

N5

)
− c1N2 − c1N3 − c1N5

] ∫ 1

0

ω2
xdx

−
[
Nκ3 − c1N1

(
1 +

N1

N5
+
N1

N3
+
N1

N2

)
− c1N2

] ∫ 1

0

ω2dx.

At this point, we choose the constants carefully. First, let us take N4 > 4. We then
choose N3 large enough such that

G

4
N3 −GN4 − c1 > 0.

After that, we select N5 large enough so that

γN5 − c1N3 > 0 and
D

4
N5 − c1 > 0.

Next, we choose N2 large enough such that

c

4
N2 − c1N3 − c1N5 > 0.
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Then, we pick N1 so large that

IρN1 − c1N2 − c1N3

(
1 +

N3

N4

)
− c1N4 − c1N5 (1 +N5) > 0.

Finallay, we choose N very large enough (even larger so that (3.2) remains valid) such
that

Nκ2 − c1N1

(
1 +

N1

N5

)
− c1N2 − c1N3 − c1N5 > 0,

and

Nκ3 − c1N1

(
1 +

N1

N5
+
N1

N3
+
N1

N2

)
− c1N2 > 0.

Therefore, we arrive at

L′(t) ≤ −τ4
∫ 1

0

[
ϕ2
t + (3st − ψt)2 + s2t + (3sx − ψx)

2

+ s2x + s2 + (ψ − ϕx)
2

+ θ2 + ω2
x + ω2

]
dx, τ4 > 0.

We finally use Poincaré’s inequality to substitute −
∫ 1

0
ω2
xdx by −

∫ 1

0
ω2dx and, hence,

(3.3) is established. �

We are now ready to state and prove the following exponential stability result.

Theorem 3.2. Let (ϕ,ψ, s, θ, ω) be the solution of (1.1)-(1.3) and assume (1.5). Then,
there exist two positive constants λ1, λ2 such that the energy functional satisfies

E(t) ≤ λ1 e−λ2t, ∀t ≥ 0. (3.4)

Proof. The combination of (3.2) and (3.3) gives

L′(t) ≤ −λ2L(t), t ≥ 0, (3.5)

where λ2 = τ3
τ2

. A simple integration of (3.5) over (0, t) yields

L(t) ≤ L(0)e−λ2t, t ≥ 0.

which yields the desired result (3.4) by using the other side of the equivalence relation
(3.2) again. �
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Capacity solution for an elliptic coupled system
with lower term in Orlicz spaces

Yassine Ahakkoud, Jaouad Bennouna and Mhamed El Massoudi

Abstract. In this paper, we will deal with the capacity solution for a nonlinear
elliptic coupled system with a Leray-Lions operator Au = −div σ(x, u,∇u) acting
from Orlicz-Sobolev spaces W 1

0LM (Ω) into its dual, where M is an N -function.
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Keywords: Perturbed coupled system, capacity solution, nonlinear elliptic equa-
tions, weak solution, Orlicz-Soblev spaces.

1. Introduction

Let Ω be an open bounded in RN , N ≥ 1, and consider the coupled nonlinear
elliptic system

−div σ(x, u,∇u) + Φ(x, u) = κ(u) | ∇u |2 in Ω, (1.1)

div(κ(u)∇ϕ) = 0 in Ω, (1.2)

ϕ = ϕ0, u = 0 on ∂Ω. (1.3)

We assume that the following assumptions hold. Let M and P be two N -
functions such that P � M (P grows essentially less rapidly than Q) and M the
N -function conjugate to M (see preliminaries).
σ : Ω × R× RN → RN is a Carathéodory function such that for almost every x ∈ Ω
and for every s, s1, s2 ∈ R, ξ, ξ∗ ∈ RN ,

| σ(x, s, ξ) |≤ ν[a0(x) +M
−1
P (k1 | s |) +M

−1
M(k2 | ξ |)], (1.4)

| σ(x, s1, ξ)− σ(x, s2, ξ) |≤ ν[a1(x)+ | s1 | + | s2 | +P
−1

(k3M(| ξ |))], (1.5)
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(σ(x, s, ξ)− σ(x, s, ξ∗))(ξ − ξ∗) ≥ αM(| ξ − ξ∗ |), (1.6)

σ(x, s, 0) = 0, (1.7)

where a0(.) ∈ EM (Ω), a1(.) ∈ EP (Ω) ( EM (Ω) and EP (Ω) are specific Orlicz spaces)
and α, ν, ki > 0 (i=1, 2, 3), are given real numbers.
Furthermore, let Φ : Ω×R→ R be a Carathéodory function such that for a.e. x ∈ Ω
and for all s ∈ R, the growth condition

| Φ(x, s) |≤ h(x)M
−1
M

(
| s |
λC0

)
, (1.8)

where λ = diam(Ω) and ‖h‖L∞(Ω) <
α

2λ
and C0 is a constant large enough.

κ ∈ C(R) and there exists κ ∈ R such that 0 < κ(s) ≤ κ, for all s ∈ R, (1.9)

ϕ0 ∈ H1(Ω) ∩ L∞(Ω). (1.10)

In this paper, we will introduce a solution of the coupled system (1.1)-(1.3) called
the capacity solution. This type of solution will deal with the phenomena caused by
the possible degeneration of the (1.1)-(1.3). Indeed, one cannot use the weak solution
of (1.1) since κ can tend towards 0 when |u| tends to infinity and consequently the
equation becomes degenerate, no a priori estimates for ∇ϕ will be available and then
ϕ may not belong to a Sobolev space. To overcome this obstacle, we use the entire
function Φ = κ(u)∇ϕ instead of ϕ to show that Φ ∈ (L2(Ω))N .

The idea of capacity solution is inspired from the weak and renormalized so-
lutions and X. Xu is the first author who introduced the concept in [13] where
σ : RN → RN is a continuous function satisfying the conditions: ∃µ > 0, ∀ | ξ |� 1
(i.e. | ξ | is large enough), | a(ξ) |≤ µ | ξ |, and ∃α > 0, ∀ξ, ξ∗ ∈ RN , ξ 6= ξ∗,
(σ(ξ)− σ(ξ∗))(ξ− ξ∗) ≥ α | ξ− ξ∗ |2. Also, he used this concept in other papers with
various conditions (See [14]). Later, from other authors in [7], showed the existence
of a capacity solution to the problem (1.1)-(1.3) where σ = σ(x,∇u) is a Leray-Lions

operator from Lp(W 1,p) into Lp
′
(W−1,p′), p ≥ 2, 1

p + 1
p′ = 1 and Φ = Φ(x, s) satisfies

the sign condition, and | Φ(x, s) |≤ hr(x) with hr ∈ L1(Ω) , for all | s |≤ r, ∀r ≥ 0.
For the parabolic, we refer the reader to [10]. Recently, the existence of a capacity
solution in the context of Orlicz-Sobolev spaces with σ = σ(x, u,∇u) and H = 0 has
been established in [12].

The motivation behind the study of differential equations comes from appli-
cations of non Newtonian mechanics turbulence modelling to as an example of an
operator for which the present result can be applied, we give{

−∆Mu+ h(x)M−1M(αu) = ruζe
−s

kBu | ∇u |2 in Ω,
div(κ(u)∇ϕ) = 0 in Ω,

(1.11)

where ∆Mu = −div
(

(1+ | u |)2Du log(e+Du)
|Du|

)
, h(.) ∈ (L∞ (QT ))

N
and M(t) =

t log(e+ t) is an N -function, ϕ represent the electric motive force, u the temperature

inside the electrical conductor, and κ(u) = ruζe
−s

kBu , the electrical conductivity where
it means the ability of electrical material to pass charges, where u > 0, r, s ∈ R+,
ζ ∈ [−1, 1) and kB is the Boltzmann constant. Other applications of the stationary
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case of the thermostat problem can be found in [8, 15].
Our novelty in the present paper is to give the existence of a capacity solution

of (1.1)-(1.3) in the framework of Orlicz spaces with the presence of a perturbation
Φ(x, u). The difficulties encountered during the proof are that the term H satisfies
neither the coercivity condition nor the monotony nor the sign condition and the
nonlinearity described by N-functions M . The ∆2-condition is not imposed on the
N-functions M , we will lose the reflexivity of the space LM (Ω) and W 1

0LM (Ω). To
overcome this difficulty, we will first introduce and prove the existence of the solution
for the auxiliary elliptic problem (2.8) and by Schauder’s fixed point theorem, we
show the existence of the uniqueness of the weak solutions for two equations (1.2)
and (1.1). Secondly, with adequate approximate problems we establish some a priori
estimates for the approximate solution sequence. Finally, we draw a subsequence to
obtain a limit function and prove this function is a capacity solution in the sense of
Definition 4.1 by virtue of the convergence results of approximate solutions. Note that
the second lower order term H is controlled by a non-polynomial growth (see (1.8)).
It is similar to those in [2, 3]. Finally, it should be noted that this work is an extension
of the results of [12].

The contents of this article are summarized as follows: Section 2 presents the
mathematical preliminaries. In Section 3, we make precise all the basic assumptions
on σ, H, κ, ϕ and some technical results. Finally, in Section 4, we give the definition
of a capacity solution of (1.1)-(1.3) and we prove the main result (Theorem 4.2).

2. Preliminaries

Let M : R+ → R+ be an N-function, that is, M is continuous, convex,

with M(t) > 0 for t > 0,
M(t)

t
→ 0 as t → 0, and

M(t)

t
→ +∞ as t → +∞.

Equivalently, M admits the representation M(t) =

∫ t

0

a(s)ds, where a : R+ → R+ is

nondecreasing, right continuous, with a(0) = 0, a(t) > 0 for t > 0, and a(t)→ +∞ as

t → +∞. The N-function Mconjugate to M is defined by M(t) =

∫ t

0

a(s)ds, where

a : R+ → R+, is given by a(t) = sup
s≥0
{s : a(s) ≤ t}.

The N-function M is said to satisfy the ∆2-condition if, for some k, M(2t) ≤ kM(t)
for all t ∈ IR+.

We will extend these N-functions into even functions on all R. Let P andQ be two
N-functions. P � Q means that P grows essentially less rapidly than Q, that is, for

each ε > 0,
P (t)

Q(εt)
→ 0 as t→ +∞. This is the case if and only if lim

t→+∞

Q−1(t)

P−1(t)
= 0.

The Orlicz class KM (Ω) (resp. the Orlicz space LM (Ω)), is defined as the set of
(equivalence classes of) real valued measurable functions u on Ω such that∫

Ω

M(|u(x)|)dx < +∞
(

resp.

∫
Ω

M

(
|u(x)|
λ

)
dx < +∞ for some λ > 0

)
.
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The set LM (Ω) is Banach space under the norm

‖u‖M = inf

{
λ > 0 :

∫
Ω

M

(
|u(x)|
λ

)
dx ≤ 1

}
,

and KM (Ω) is a convex subset of LM (Ω) . The closure in LM (Ω) of the set of bounded
measurable functions with compact support in Ω is denoted by EM (Ω) . The dual of

EM (Ω) can be identified with LM (Ω) by means of the pairing

∫
Ω

uvdx and the dual

norm of LM (Ω) is equivalent to ‖u‖M,Ω. We now turn to the Orlicz-Sobolev space,

W 1LM (Ω) ) [resp. W 1EM (Ω) ] is the space of all functions u such that u and its
distributional derivatives up to order 1 lie in LM (Ω) [resp. EM (Ω) ]. It is a Banach
space under the norm

‖u‖1,M =
∑
|α|≤1

‖Dαu‖M .

Let W−1LM (Ω) [resp. W−1EM (Ω) ] denote the space of distributions on Ω
which can be written as sums of derivatives of order ≤ 1 of functions in LM (Ω) [resp.
EM (Ω)]. It is a Banach space under the usual quotient norm (for more details see [4]).

Lemma 2.1. ([11]) For all u ∈W 1
0LM (Ω) with meas(Ω) < +∞ one has∫

Ω

M

(
| u |
λ

)
dx ≤

∫
Ω

M(| ∇u |)dx. (2.1)

where λ = diam(Ω), is the diameter of Ω.

Statement of useful results.
We assume that there exists four positive constants γ0 and γ1 such that

|u|2 ≤ γ0M(u), and |u|2 ≤ γ1P (u) for all u ≥ 0, (2.2)

Hence, the following continuous inclusions hold true:

LM (Ω) ↪→ L2(Ω) ↪→ LM (Ω), and LP (Ω) ↪→ L2(Ω) ↪→ LP (Ω). (2.3)

And we also deduce that

W 1
0LM (Ω) ↪→ H1

0 (Ω), and H−1(Ω) ↪→W−1LM (Ω). (2.4)

Example 2.2. The N-function M(t) = tlog(e+ t) verifies the previous results.

Consider the following set W =

{
ω ∈ EM (Ω) :

∫
Ω

M(
| ω |
λC0

)dx ≤ 1

}
.

It is closed and convex. Indeed let ωn ∈ W such that ωn → ω strongly in EM (Ω),
then for any ε > 0, there exists n0 such that for all n ≥ n0 we have ‖ωn − ω‖M ≤ ε
and ‖ ω

λC0
‖M ≤ ‖ωn−ω

λC0
‖M + ‖ ωn

λC0
‖M ≤ ε

λC0
+ 1. Let tends as ε→ 0 we have ω ∈W;

Thus W is closed. And since M is convex function, we deduce that W is also convex.
Now, let is start by this first result that we will use later. Suppose that σ verifies the
following strong hypothesis: There exists a3(.) ∈ EM (Ω), and ν > 0 and k4 ≥ 0, such
that for almost every x ∈ Ω and for all s ∈ R, ξ ∈ RN ,

| σ(x, s, ξ) |≤ ν[a3(x) +M
−1

(M(k4 | ξ |))], (2.5)
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κ ∈ C(R) and there exist κ1 and κ2 ∈ R such that

0 < κ1 ≤ κ(s) ≤ κ2, for all s ∈ R. (2.6)

Then
div(κ(ω)ϕ∇ϕ) ∈ H−1(Ω). (2.7)

Proof. Let ω ∈W, we consider the elliptic problem{
div(κ(ω)∇ϕ) = 0 in Ω,
ϕ = ϕ0 on ∂Ω.

(2.8)

By applying Lax-Milgram’s theorem, we prove that there exists a unique solution
ϕ ∈ H1(Ω) to (2.8) and, by (1.10) and the maximum principle, we get

‖ϕ‖L∞(Ω) ≤ ‖ϕ0‖L∞(Ω). (2.9)

Multiplying the first equation of (2.8) by ϕ− ϕ0 ∈ H1
0 (Ω) we get∫

Ω

κ(ω)∇(ϕ− ϕ0) = 0,

therefore

κ1

∫
Ω

| ∇ϕ |2 dx ≤
∫

Ω

κ(ω) | ∇ϕ || ∇ϕ0 | dx ≤ κ2

∫
Ω

| ∇ϕ || ∇ϕ0 | dx.

We deduce from the Cauchy-Schwarz inequality that∫
Ω

| ∇ϕ |2 dx ≤ C = C(κ1, κ2, ϕ0). (2.10)

Notice that κ(ω) | ∇ϕ |2∈ L1(Ω), this term is also belongs to the space H−1(Ω).
Indeed, let ψ ∈ D(Ω) and taking ψϕ as a test function in (2.8), we have∫

Ω

κ(ω)∇ϕ∇(ψϕ)dx = 0,

then∫
Ω

κ(ω) | ∇ϕ |2 ψdx = −
∫

Ω

κ(ω)ϕ∇ϕ∇ψdx = 〈div(κ(ω)ϕ∇ϕ), ψ〉D′ (Ω),D(Ω).

Thus
κ(ω) | ∇ϕ |2= div(κ(ω)ϕ∇ϕ) in D

′
(Ω). (2.11)

Since κ(ω)ϕ∇ϕ ∈ L2(Ω)N , we deduce (2.7). �

3. Main result

Theorem 3.1. Assume (1.4)-(2.3), with (2.5) and (2.6) instead of (1.4) and (1.9),
respectively. Then there exists a weak solution (u, ϕ) to problem (1.1)-(1.3), that is,

u ∈W 1
0LM (Ω), σ(x, u,∇u) ∈ LM (Ω)N ,

ϕ− ϕ0 ∈ H1
0 (Ω) ∩ L∞(Ω),∫

Ω

σ(x, u,∇u)∇ψ +

∫
Ω

Φ(x, u)ψ = −
∫

Ω

κ(u)ϕ∇ϕ∇ψ, for all ψ ∈W 1
0LM (Ω),∫

Ω

κ(u)∇ϕ∇ψ = 0, for all ψ ∈ H1
0 (Ω).
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Proof. Let consider the following variational formulation problem


u ∈W 1

0LM (Ω), σ(x, ω,∇u) ∈ LM (Ω), Φ(x, ω) ∈ LM (Ω),∫
Ω

σ(x, ω,∇u)∇φ+

∫
Ω

Φ(x, ω)φ = −
∫

Ω

κ(ω)ϕ∇ϕ∇φ, for all φ ∈W 1
0LM (Ω),

u = 0 on ∂Ω.

(3.1)
Notice that div(κ(ω)ϕ∇ϕ) ∈ H−1(Ω) ↪→ W−1LM (Ω), and the existence of solution
to (3.1) is derived by an application of the result obtained in [11]. Also we can check
that the solution of (3.1) is unique [5].

Lemma 3.2. Let u be a weak solution of problem (3.1). Then we have | ∇u |∈ KM (Ω),
and the estimates ∫

Ω

M(| ∇u |)dx ≤ C1, (3.2)

‖σ(x, ω,∇u)‖M,Ω ≤ C2, (3.3)

Where C1 and C2 are two positive constants that do not depend on ω.

Proof. Let η > 0 such that
| ∇u |
η

∈ KM (Ω). Since ϕ ∈ H1(Ω) ⊂ W 1LM (Ω), there

exist β > 0 such that
κ2‖ϕ0‖L∞(Ω) | ∇ϕ |

β
∈ KM (Ω), we take ψ = u as a test function

in (3.1). In view of (1.6), (1.7), (1.8), (2.6), (2.9) and Young’s inequality, and Lemma
2.1, we get

α

ηβ

∫
Ω

M(| ∇u |)dx ≤ 1

ηβ

∫
Ω

σ(x, ω,∇u)∇udx

≤ λ

β

∫
Ω

| Φ(x, ω) | | u |
ηλ

dx+

∫
Ω

κ2‖ϕ0‖L∞(Ω) | ∇ϕ |
β

| ∇u |
η

dx

≤ λ

β

∫
Ω

h(x)M
−1
M

(
| ω |
λC0

)
| u |
ηλ

dx+

∫
Ω

κ2‖ϕ0‖L∞(Ω) | ∇ϕ |
β

| ∇u |
η

dx

≤
λ‖h‖L∞(Ω)

β

∫
Ω

M

(
| ω |
λC0

)
dx+

λ‖h‖L∞(Ω)

β

∫
Ω

M

(
| u |
ηλ

)
dx

+

∫
Ω

M

(
κ2‖ϕ0‖L∞(Ω) | ∇ϕ |

β

)
dx+

∫
Ω

M

(
| ∇u |
η

)
dx

≤
λ‖h‖L∞(Ω)

β
+
λ‖h‖L∞(Ω)

β

∫
Ω

M

(
| ∇u |
η

)
dx

+

∫
Ω

M

(
κ2‖ϕ0‖L∞(Ω) | ∇ϕ |

β

)
dx+

∫
Ω

M

(
| ∇u |
η

)
dx <∞.
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Then we deduce that | ∇u |∈ KM (Ω). Let prove the estimate (3.2), by (1.6), (1.7),
(1.8), (2.2) and Young’s inequality, and Lemma 2.1, we obtain

α

∫
Ω

M(| ∇u |)dx ≤
∫

Ω

σ(x, ω,∇u)∇udx

≤
∫

Ω

| Φ(x, ω) | | u |
λ
dx+

∫
Ω

κ2‖ϕ0‖L∞(Ω) | ∇ϕ || ∇u | dx

≤ λ
∫

Ω

h(x)M
−1
M

(
| ω |
λC0

)
| u |
λ
dx+

(κ2‖ϕ0‖L∞(Ω))
2

2αε

∫
Ω

| ∇ϕ |2 +
αε

2

∫
Ω

| ∇u |2 dx

≤ λ‖h‖L∞(Ω)

∫
Ω

M

(
| ω |
λC0

)
dx+ λ‖h‖L∞(Ω)

∫
Ω

M

(
| u |
λ

)
dx

+
(κ2‖ϕ0‖L∞(Ω))

2

2αε

∫
Ω

| ∇ϕ |2 dx+
αε

2

∫
Ω

| ∇u |2 dx

≤ λ‖h‖L∞(Ω) + λ‖h‖L∞(Ω)

∫
Ω

M(| ∇u |)dx

+
(κ2‖ϕ0‖L∞(Ω))

2

2αε
C(κ1, κ2, ϕ0) +

αεγ0

2

∫
Ω

M(| ∇u |)dx.

which implies, that

(α−λ‖h‖L∞(Ω)−
αεγ0

2
)

∫
Ω

M(| ∇u |)dx ≤ λ‖h‖L∞(Ω)+
(κ2‖ϕ0‖L∞(Ω))

2

2αε
C(κ1, κ2, ϕ0).

Then by choosing ε such that α− 2λ‖h‖L∞(Ω)−
αεγ0

2
> 0, as a consequence, we have

the estimate (3.2).

Remark 3.3.

• We take the constant C0 and C1 such that

λ‖h‖L∞(Ω) +
(κ2‖ϕ0‖L∞(Ω))

2

2αε
C(κ1, κ2, ϕ0) < C0

(
α− 2λ‖h‖L∞(Ω) −

αεγ0

2

)
and

C0 < C1. (3.4)

• It is clear that u belongs also to W and do not depends on ω.

On the other hand, from the previous prove and (1.6), we also have∫
Ω

σ(x, ω,∇u)∇udx ≤ C1

α
. (3.5)
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From (1.6), (3.5) and Young’s inequality, we get∫
Ω

σ(x, ω,∇u)∇ψdx ≤
∫

Ω

σ(x, ω,∇u)∇udx−
∫

Ω

σ(x, ω,∇ψ)(∇u−∇ψ)dx

≤ C1

α
+

∫
Ω

| σ(x, ω,∇ψ) || ∇u | dx+

∫
Ω

| σ(x, ω,∇ψ) || ∇ψ | dx

≤ C1

α
+ 4ν

∫
Ω

M

(
σ(x, ω,∇ψ)

2ν

)
+ 2ν

∫
Ω

[M(| ∇u |) +M(| ∇ψ |)] dx.

by (2.5), we get∫
Ω

M

(
σ(x, ω,∇ψ)

2ν

)
dx ≤

∫
Ω

1

2
(M(a3(x))dx+M(k4 | ∇ψ |))dx.

Choosing ψ ∈W 1
0EM (Ω) such that ‖∇ψ‖M,Ω =

1

k4 + 1
, then∫

Ω

σ(x, ω,∇u)∇ψdx ≤ C,

finally to deduce the estimate (3.3), we use the dual norm on LM (Ω). �

Now, let define the operator T : ω ∈W −→ u ∈ W 1
0LM (Ω) ↪→ EM (Ω), where u

is the unique solution to (3.1), then due to the estimate (3.2), T is a compact operator.
Moreover, from (3.2), (3.4) and Lemma 2.1, we have T (W) ⊂W. And to satisfy the
hypotheses of Schauder’s fixed point theorem for T , it remains to be shown that T is a
continuous operator. Indeed, taking a sequence (ωn) ⊂W such that ωn → ω strongly
in EM (Ω) and let un = T (ωn), ϕn, Fn = κ(ωn)ϕn∇ϕn and F = κ(ω)ϕ∇ϕ. We have
to show that

un → u = T (ω) strongly in EM (Ω).

Owing to (3.2), we have ∇u ∈ LM (Ω)N . We also have ωn → ω strongly in L2(Ω)
and thus, we may extract a subsequence, still denoted in the same way, such that
ωn → ω a.e. in Ω. Then it is easy task to show that ϕn → ϕ strongly in H1(Ω) and,
consequently, also for another subsequence denoted in the same way, Fn → F strongly
in L2(Ω).
Since (ωn) ⊂ LM (Ω) is bounded, we deduce for a subsequence,

un → U in EM (Ω), for some U ∈ EM (Ω), (3.6)

∇un → ∇U weakly in L2(Ω)N . (3.7)

By subtracting the respective equations of (3.1) for un and u, and taking φ = un − u
as a test function, we obtain∫

Ω

(σ(x, ωn,∇un)− σ(x, ω,∇u))(∇un −∇u)dx+

∫
Ω

(Φ(x, ωn)− Φ(x, ω))(un − u)dx

= −
∫

Ω

(Fn − F )(∇un −∇u)dx. (3.8)
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For the first term of the right hand-side of (3.8):
Using (1.6), we get

(σ(x, ωn,∇un)− σ(x, ω,∇u))(∇un −∇u) ≥ αM(| ∇(un − u) |)
+ (σ(x, ωn,∇u)− σ(x, ω,∇u))(∇un −∇u).

Let Bn = σ(x, ωn,∇u) − σ(x, ω,∇u), then | Bn |→ 0 a.e. in Ω. For a given positive
number δ0, to be chosen later, we have∫

Ω

| Bn∇(un − u) | =
∫
{|∇(un−u)|≤δ0}

| Bn∇(un − u) |

+

∫
{|∇(un−u)|>δ0}

| Bn∇(un − u) | (3.9)

For the first term of the right-hand side of (3.9), we have∫
{|∇(un−u)|≤δ0}

| Bn∇(un − u) | ≤ δ0
∫

Ω

| Bn |

= δ0

∫
{|Bn|≤4ν}

| Bn | +δ0
∫
{|Bn|>4ν}

| Bn | .

The first of these integrals converges to zero. As for the second one, using the fact

that
| Bn |

4ν
> 1 on the set {| Bn |> 4ν} and (2.2), it yields

δ0

∫
{|Bn|>4ν}

| Bn |≤ 4νδ0

∫
{|Bn|>4ν}

(
| Bn |

4ν

)2

≤ 4νγ1δ0

∫
Ω

P

(
| Bn |

4ν

)
.

In virtue of (1.5) and while P �M for εk3 ≤ 1, we deduce

P

(
| Bn |

4ν

)
≤ 1

4
(P (a1) + P (ω) + P (ωn) + k3M(| ∇u |)),

and since P (ωn) → P (ω) strongly in L1(Ω), by Lebesgue’s dominated theorem it
yields that

lim
n→∞

∫
Ω

P

(
| Bn |

4ν

)
= 0,

consequently,

lim
n→∞

∫
{|∇(un−u)|≤δ0}

| Bn∇(un − u) |= 0.

For the second term of the right-hand side of (3.9), we use Young’s inequality and
(2.2). It yields∫
{|∇(un−u)|>δ0}

| Bn∇(un − u) |≤ 1

αε0

∫
E

| Bn |2 +
αε0

4

∫
{|∇(un−u)|>δ0}

| ∇(un − u) |2

≤ 16γ1ν
2

αε0

∫
Ω

P

(
| Bn |

4ν

)
+
αγ1ε0

4

∫
{|∇(un−u)|>δ0}

P (| ∇(un − u) |).
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It has been already shown that the first of these terms converges to zero. As for the
second one, since P �M , we fix δ0 > 0 such P (s) ≤M(s) for all s > δ0. Then

αγ1ε0

4

∫
{|∇(un−u)|>δ0}

P (| ∇(un−u) |)dx ≤ αγ1ε0

4

∫
{|∇(un−u)|>δ0}

M(| ∇(un−u) |)dx.

By taking ε0 =
2

λ0
, we obtain

α

2

∫
{|∇(un−u)|>δ0}

P (| ∇(un − u) |)dx ≤ α

2

∫
{|∇(un−u)|>δ0}

M(| ∇(un − u) |)dx.

For the second term of the right hand-side of (3.8):∫
Ω

(Φ(x, ωn)−Φ(x, ω))(un − u)dx ≤
∫

Ω

| Φ(x, ωn)− Φ(x, ω) || un − u | dx

≤
∫

Ω

M

(
λ | Φ(x, ωn)− Φ(x, ω) |

α0

)
dx+ α0

∫
Ω

M

(
| un − u |

λ

)
dx

≤
∫

Ω

M

(
λ | Φ(x, ωn)− Φ(x, ω) |

α0

)
dx+ α0

∫
Ω

M(| ∇(un − u) |)dx.

(3.10)
From above, we deduce the following estimate, for some sequence (εn) such that
εn → 0,

(
α

2
− α0)

∫
Ω

M(| ∇(un − u) |)dx

≤
∫

Ω

| (Fn − F )∇(un − u) | dx+ α0

∫
Ω

M

(
λ | Φ(x, ωn)− Φ(x, ω) |

α0

)
dx+ εn.

(3.11)

Choosing α0 =
α

4
and by (2.3), we obtain

α

4γ0
‖∇(un − u)‖2L2(Ω) ≤

∫
Ω

| (Fn − F )∇(un − u) | dx

+ α0

∫
Ω

M

(
λ | Φ(x, ωn)− Φ(x, ω) |

α0

)
dx+ εn.

Using Poincare’s inequality, we get

‖un − u‖2L2(Ω) ≤ C
∫

Ω

| (Fn − F )∇(un − u) | dx

+ Cα0

∫
Ω

M

(
λ | Φ(x, ωn)− Φ(x, ω) |

α0

)
dx+ εn.

(3.12)

We have Fn → F strongly in L2(Ω)N and ∇(un − u) is bounded in L2(Ω)N . On the
other hand ωn → ω strongly in BR, we may extract a subsequence, still denoted the
same way, such that ωn → ω a.e. in Ω. In addition, the function H is continuous with
respect to its second argument, then from (1.8) and dominate convergence’s theorem∫

Ω

M

(
λ | Φ(x, ωn)− Φ(x, ω) |

α0

)
dx converges to 0.
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Then the right-hand side in (3.12) converges to zero. In conclusion, un → u
strongly in L2(Ω). Since this limit does not depend upon the subsequence one may
extract, it is in fact the whole sequence (un) which converges to u strongly in L2(Ω).
On other hand, in virtue of (3.6), we also have un → U strongly in L2(Ω), so that
u = U and we can rewrite (3.6) to give un → u strongly in EM (Ω). This shows that
T is continuous and this ends the proof of theorem 3.1. �

4. An existence result

The definition of a capacity solution of (1.1)-(1.3) can be stated as follows.

Definition 4.1. A triplet (u, ϕ,Φ) is called a capacity solution of (1.1)-(1.3) if the
following conditions are fulfilled:
(R1) u ∈W 1

0LM (Ω), σ(x, u,∇u) ∈ LM (Ω)N , Φ(x, u) ∈ L1(Ω),
Φ(x, u).u ∈ L1(Ω), ϕ ∈ L∞(Ω), Φ ∈ L2(Ω)N .
(R2) (u, ϕ,Φ) verifies the system of elliptic equations{

−div σ(x, u,∇u) + Φ(x, u) = div(ϕΦ) in Ω,
div(Φ) = 0 in Ω.

(R3) For every S ∈ C1
0 (Ω) = {φ ∈ C1(Ω)/supp(φ) is compact}, one has

S(u)ϕ− S(0)ϕ0 ∈ H1
0 (Ω), and S(u)Φ = κ(u)[∇(S(u)ϕ)− ϕ∇S(u)].

Our most general result reads as follows.

Theorem 4.2. Assume that (1.4)-(2.3) hold true. Then there exists a capacity solution
to problem (1.1)-(1.3).

Proof of the theorem 4.2
Step 1: Approximative problem.
For every n ∈ N∗, let us define the following approximation of κ, a and g:

κn(s) = κ(s) +
1

n
, σn(x, s, ξ) = σ(x, Tn(s), ξ), Φn(x, s) =

Φ(x, s)

1 +
1

n
| Φ(x, s) |

,

for all x ∈ Ω and ξ ∈ RN .
Let us now consider the approximate system

− div σn(x, un,∇un) + Φn(x, un) = κn(un) | ∇ϕn |2 in Ω, (4.1)

div(κn(un)∇ϕn) = 0 in Ω, (4.2)

un = 0, on ∂Ω, (4.3)

ϕn = ϕ0, on ∂Ω. (4.4)

From (1.4), we deduce

| σ(x, Tn(s), ξ) |≤ ν
[
a0(x) +M

−1
(P (k1 | Tn(s) |)) +M

−1
(M(k2 | ξ |))

]
,
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where
(
a0(x) +M

−1
(P (k1n))

)
∈ EM (Ω).

In view of (1.9), we have that

n−1 ≤ κn(s) ≤ κ+ 1 = κ3, for all s ∈ R. (4.5)

We have also | Φn(x, s) |≤| Φ(x, s) | and | Φn(x, s) |≤ n. Thus, we can apply
Theorem 3.1 to deduce the existence of a weak solution (un, ϕn) to the system (4.1)-
(4.4).
From the maximum principle

‖ϕn‖L∞(Ω) ≤ ‖ϕ0‖L∞(Ω); (4.6)

hence, there exists a function ϕ ∈ L∞(Ω) and a subsequence, still denoted ϕn, such
that

ϕn → ϕ, weakly- ∗ in L∞(Ω). (4.7)

Now let multiply (4.2) by ϕn − ϕ0 ∈ H1
0 (Ω) and integrate over Ω. We get

∫
Ω

κn(un)∇ϕn∇(ϕn − ϕ0)dx = 0;

hence ∫
Ω

κn(un) | ∇ϕn |2 dx ≤ C3, for all n ∈ N∗, (4.8)

where C3 = C(κ, ‖ϕ0‖L∞(Ω)). Consequently, the sequence (κn(un)∇ϕn) is bounded

in L2(Ω)N . Thus, there exists a function φ ∈ L2(Ω)N and a subsequence, still denoted
in the same way, such that

κn(un)∇ϕn → φ weakly in L2(Ω)N . (4.9)

This weak limit function φ ∈ L2(Ω)N is in fact the third component of the triplet
appearing in the defintion (4.1) of a capacity solution.
Taking un as a function test in (4.1), we obtain

∫
Ω

σ(x, Tn(un),∇un)∇undx+

∫
Ω

Φn(x, un)undx = −
∫

Ω

κn(un)ϕn∇ϕn∇undx.

(4.10)
Since un ∈W 1

0LM (Ω), and ϕn ∈ H1(Ω) ⊂W 1LM (Ω), there exist ηn and βn > 0 such

that |∇un|
ηn
∈ KM (Ω) and

κ3‖ϕ0‖L∞(Ω)|∇ϕn|
βn

∈ KM (Ω).
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From (1.6), (1.7), (4.4) and (4.6) and Young’s inequality, and Lemma 2.1, we obtain

α

∫
Ω

M(| ∇un |)dx ≤
∫

Ω

σ(x, Tn(un),∇un)∇undx

≤ 2λ‖h‖L∞(Ω)

∫
Ω

M

(
| un |
λC0

)
dx+ ηnβn

∫
Ω

M

(
κ3‖ϕ0‖L∞(Ω) | ∇ϕn |

βn

)
dx

+ ηnβn

∫
Ω

M

(
| ∇un |
ηn

)
dx

≤ 2λ‖h‖L∞(Ω)

∫
Ω

M(| ∇un |)dx+ ηnβn

∫
Ω

M

(
κ3‖ϕ0‖L∞(Ω) | ∇ϕn |

βn

)
dx

+ ηnβn

∫
Ω

M

(
| ∇un |
ηn

)
dx.

Therefore

(α− 2λ‖h‖L∞(Ω))

∫
Ω

M(| ∇un |)dx ≤ ηnβn
∫

Ω

M

(
κ3‖ϕ0‖L∞(Ω) | ∇ϕn |

βn

)
dx

+ ηnβn

∫
Ω

M

(
| ∇un |
ηn

)
dx <∞.

and thus | ∇un |∈ KM (Ω). On the other hand

α

∫
Ω

M(| ∇un |)dx ≤
∫

Ω

σ(x, Tn(un),∇un)∇undx

≤ 2λ‖h‖L∞(Ω)

∫
Ω

M

(
| un |
λC0

)
dx+

(κ3‖ϕ0‖L∞(Ω))
2

αε1

∫
Ω

κ(un) | ∇ϕn |2 dx

+
αε1
4

∫
Ω

| ∇un |2 dx

≤ 2λ‖h‖L∞(Ω)

∫
Ω

M(| ∇un |)dx+
(κ3‖ϕ0‖L∞(Ω))

2

αε1
C3+

αε1γ0

4

∫
Ω

M(| ∇un |)dx.

Then

(
αε1γ0

4
− 2λ‖h‖L∞(Ω))

∫
Ω

M(| ∇un |)dx ≤
(κ3‖ϕ0‖L∞(Ω))

2

α
C3.

Taking ε1 = 4
γ0

, we obtain ∫
Ω

M(| ∇un |)dx ≤ C4. (4.11)

It follows that (un) is bounded in W 1
0LM (Ω). Consequently, there exists a subse-

quence, still denoted (un), and a function u ∈W 1
0LM (Ω) such that

un ⇀ u in W 1
0LM (Ω) for σ(ΠLM ,ΠEM ), (4.12)

and since the embedding W 1
0LM (Ω) ↪→ EM (Ω) is compact, we also have

un → u strongly in EM (Ω) and a.e. in Ω, (4.13)
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On the other hand, let ψ ∈W 1
0EM (Ω)N be arbitrary with ‖∇ψ‖(M) =

1

k2 + 1
.

In view of the monotonicity of an, one easily has∫
Ω

σ(x, un,∇un)∇ψdx ≤
∫

Ω

σ(x, un,∇un)∇undx−
∫

Ω

σ(x, un,∇ψ)(∇un −∇ψ)dx

≤ C +

∫
Ω

| σ(x, un,∇ψ) || ∇un | dx+

∫
Ω

| σ(x, un,∇ψ) || ∇ψ | dx.

(4.14)
For the first integral in the right side, we use the Young’s inequality to have∫

Ω

| σ(x, un,∇ψ) || ∇un | dx ≤ 3ν

∫
Ω

[
M

(
σ(x, un,∇ψ)

3ν

)
+M(| ∇un |)

]
dx,

using (1.4) we have

3νM

(
σ(x, Tn(un),∇ψ)

3ν

)
≤ ν(M(a0(x)) + P (k1Tn(un)) +M(k2∇ψ)),

Since (un) is bounded in W 1
0LM (Ω), and owing to Poincare’s inequality, there exist

λ > 0 such that

∫
Ω

M
(un
λ

)
dx ≤ 1 for all n ∈ N∗. Also, since P � M , there exist

s0 > 0 such that P (k1s) ≤ P (k1s0) +M
( s
λ

)
for all s ∈ R.

Consequently,

3ν

∫
Ω

M

(
σ(x, Tn(un),∇ψ)

3ν

)
dx ≤ ν

∫
Ω

(
M(a0(x)) + P (k1Tn(un)) +M(k2∇ψ)

)
dx

≤ C,

and thus

∫
Ω

| σn(x, un,∇ψ) | . | ∇un‖dx ≤ C, for all n ∈ N∗ and ψ ∈ W 1
0EM (Ω)N

such that ‖∇ψ‖(M) =
1

k2 + 1
.

On the other hand, the second integral in (4.14), namely∫
Ω

| σn(x, un,∇un) | . | ∇un | dx ≤ C

can be dealt in the same way so that it is easy to check that it is also bounded.
Gathering all these estimates, and using the dual norm, one easily deduce that

(σn(x, un,∇un)) is bounded in LM (Ω)N . (4.15)

Thus, up to a subsequence, still denoted in the same way, there exists $ ∈ LM (Ω)N

such that

(σn(x, un,∇un)) ⇀ $ in LM (Ω)N for σ(ΠLM ,ΠEM ). (4.16)

Step 2: Almost everywhere convergence of the gradient.
In this step, we may extract a subsequence of (un), still denoted the same way, such
that

∇un → ∇u a.e. in Ω, as n→ +∞. (4.17)
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Let vj ∈ D(Ω) be a sequence that vj → u in W 1
0LM (Ω) for the modular convergence

see [9]. Setting for s > 0, Ωs = {x ∈ Ω :| ∇TK(u) |≤ s} and Ωjs = {x ∈ Ω :
|∇TK(vj) |≤ s} and denoting by χs and χjs the characteristic functions of Ωs and Ωjs
respectively. And we denote by ε(i, j, β, n) the quantities such that

lim
i→∞

lim
j→∞

lim
β→∞

lim
n→∞

ε(i, j, β, n) = 0.

For any η > 0 and n, j ≥ 1, we may use the admissible test function

ϕηn,j = Tη(un − TK(vj))

in (4.1). This leads to∫
Ω

σn(x, un,∇un)∇Tη(un − TK(vj))dx+

∫
Ω

Φn(x, un)Tη(un − TK(vj))dx

=

∫
Ω

κn(un) | ∇ϕn |2 ∇Tη(un − TK(vj))dx.

(4.18)

By Young’s inequality and Lemma 2.1, we have∫
Ω

|Φn(x, un) | Tη(un − TK(vj))dx ≤
∫

Ω

| Φ(x, un) | Tη(un − TK(vj))dx

≤
∫

Ω

h(x)M
−1
M

(
| un |
λC0

)
Tη(un − TK(vj))dx

≤ η‖h‖L∞(Ω)

∫
Ω

M(| ∇un |)dx+ η‖h‖L∞(Ω)M(1)meas(Ω)

≤ Cη.
Using (4.8) and above result, we get∫

Ω

σn(x, un,∇un)∇Tη(un − TK(vj))dx ≤ Cη. (4.19)

Let’s study the left-hand side of (4.19). We have∫
Ω

σn(x, un,∇un)∇Tη(un − TK(vj))dx

=

∫
{|un−TK(vj)|≤η}

σn(x, un,∇un)∇(un − TK(vj))dx

=

∫
{|un|>K}∩{|un−TK(vj)|≤η}

σn(x, un,∇un)∇(un − TK(vj))dx

+

∫
{|un|≤K}∩{|un−TK(vj)|≤η}

σn(x, un,∇un)∇(un − TK(vj))dx

=

∫
{|TK(un)−TK(vj)|≤η}

σn(x, Tn(un),∇Tn(un))(∇Tn(un)−∇TK(vj))dx

+

∫
{|un|>K}∩{|un−TK(vj)|≤η}

σn(x, un,∇un)∇undx

−
∫
{|un|>K}∩{|un−TK(vj)|≤η}

σn(x, un,∇un)∇TK(vj)dx.
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which yields, thanks to (1.6) and (1.7),

∫
Ω

σn(x, un,∇un)∇Tη(un − TK(vj))dx

≥
∫
{|un−TK(vj)|≤η}

σn(x, TK(un),∇TK(un))(∇Tn(un)−∇TK(vj))dx

−
∫
{|un|>K}∩{|un−TK(vj)|≤η}

σn(x, un,∇un)∇TK(vj)dx.

(4.20)

Let 0 < δ < 1, we define

Θn,K = (σ(x, TK(un),∇TK(un))− σ(x, TK(un),∇TK(u)))(∇TK(un)−∇TK(u)).

Using the similar technic as in [1], we obtain,∫
Ωr

Θδ
n,Kdx ≤ C1meas{x ∈ Ω :| TK(un)− TK(vj) |> η}1−δ + C2(ε(n, j, s, η))δ.

Which yields, by passing to the limit sup over n, j, s and η

lim sup
n→∞

∫
Ωr

(
(σ(x, TK(un),∇TK(un))− σ(x, TK(un),∇TK(u)))

×(∇TK(un)−∇TK(u))
)δ
dx = 0.

Thus, passing to a subsequence if necessary, ∇un → ∇u a.e. in Ωr, and since r is
arbitrary,

∇un → ∇u a.e. in Ω.

Remark 4.3. A consequence of (4.17) is that,

σ(x, un,∇un) ⇀ σ(x, u,∇u) in LM (Ω)N for σ(ΠLM ,ΠEM ). (4.21)

Step 3: Equi-integrability of the nonlinearitie Φn(x, un).
We shall now prove that Φn(x, un) → Φ(x, u) strongly in L1(Ω) by using Vitali’s
theorem. Since Φn(x, un)→ Φ(x, u) a.e in Ω, it is suffices to prove that Φn(x, un) are
equi-integrable in Ω. Indeed, let ε and for any measurable subset D ⊂ Ω. Using (1.8),
Young’s inequality and Lemma 2.1, we have∫

D

| Φn(x, un) | dx ≤
∫
D

h(x)M
−1
M

(
| un |
λC0

)
dx

≤ ‖h‖L∞(Ω)

∫
D

M(| ∇un |)dx+ ‖h‖L∞(Ω)M(1)meas(D).

According to Lemma 3.2 in [6], we have M(| ∇un |)→M(| ∇u |) in L1(Ω), and there
exists η(ε) > 0 such that

‖h‖L∞(Ω)

∫
D

M(| ∇un |)dx ≤
ε

2
and ‖h‖L∞(Ω)M(1)meas(D) ≤ ε

2
,

such that meas(D) < η(ε). Then, by Vitali’s theorem we conclude that

Φn(x, un)→ Φ(x, u) strongly in L1(Ω).
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Using again (1.8), Young inequality and Lemma 2.1, we obtain∫
D

| Φn(x, un) | . | un | dx ≤ λ
∫
D

h(x)M
−1
M

(
| un |
λC0

)
| un |
λ

dx

≤ 2λ‖h‖L∞(Ω)

∫
D

M(| ∇un |)dx.

and in the same way, we show that

Φn(x, un)un → Φ(x, u)u strongly in L1(Ω).

So that Φ(x, u)u ∈ L1(Ω).

Step 4: Passage to the limit.
The next result analyze the behavior of certain subsequences of (ϕn). They will allow
us, to pass to the limit in the approximate system (4.1)-(4.4) to show the existence
of a capacity solution to the system (1.1)-(1.3).

Lemma 4.4. [10] Let (un, ϕn) be a weak solution to the system (4.1)-(4.4), u ∈ EM (Ω)
and ϕ ∈ L∞(Ω) the limits functions appearing, respectively in (4.7) and (4.13). Then
for any function S ∈ C1

0 (R),

• there exists a subsequence, still denoted in the same way, such that

S(un)ϕn ⇀ S(u)ϕ weakly in H1(Ω). (4.22)

• Moreover, if 0 ≤ S ≤ 1, then there exists a constant C > 0, independant of S,
such that

lim sup
n→∞

∫
Ω

κn(un) | ∇(S(un)ϕn − S(u)ϕ) |2≤ C‖S
′
‖∞(1 + ‖S

′
‖∞). (4.23)

• There exists a subsequence (ϕnk
) ⊂ (ϕn) such that

lim
n→∞

∫
Ω

| ϕnk
− ϕ |= 0. (4.24)

Finally, the condition (R1) and (R2) of the Definition 4.1 are fulfilled. In order
to obtain the condition (R3), using (4.17), (4.22) and (4.24), it is enough to make
k → +∞ in the expression

S(unk
)κnk

(unk
)∇ϕnk

= κnk
(unk

)[∇(S(unk
)ϕnk

)− ϕnk
∇S(unk

)].

This completes the proof of theorem 4.2.
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Some saturation classes for deferred Riesz
and deferred Nörlund means

Şeyda Sezgek , İlhan Daǧadur and Cumali Çatal

Abstract. One of main problem in approximation theory is determination a sat-
uration class for given method. The problem of determining a saturation class
has been considered by Zamanski, Sunouchi and Watari and others. Mohaparta
and Russel have considered some direct and inverse theorems in approximation
of functions. Sunouchi and Watari have studied the Riesz means of type n. In
[5], Goel et al. have extended these results by considering Nörlund means. In this
paper, we examine some direct and inverse theorems in approximation of func-
tions under weaker conditions by considering Deferred Riesz means and Deferred
Nörlund means. Also, we extent above mentioned results.
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Keywords: Lipschitz class, Fourier series, deferred Riesz means, deferred Nörlund
means.

1. Introduction

Let f be a 2π-periodic function and f ∈ Lp := Lp[−π, π] for p ≥ 1, where Lp
consists of all measurable functions for which denote the Lp-norm with respect to x
and defined by

‖f‖p :=

{
1

2π

∫ π

−π
|f(x)|pdx

} 1
p

.

C2π denote the set of all continuous functions defined on [−π, π]. For p = ∞,
Lp[−π, π] space replace by the space C2π.
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Each f ∈ L1 has the Fourier series

f(x) ∼ 1

2
a0 +

∞∑
k=1

(ak cos kx+ bk sin kx) ≡
∞∑
k=0

Ak(x) . (1.1)

The partial sum of the first (n+ 1) terms of the Fourier series of f at a point x
is defined by

Sn(f ;x) =
1

2
a0 +

n∑
k=1

(ak cos kx+ bk sin kx) ≡
n∑
k=0

Ak(x) .

The conjugate series of the series (1.1) is
∞∑
k=1

Bk(x) =

∞∑
k=1

(bk cos kx− ak sin kx) .

and also the conjugate function f̃ of f is given by

f̃(x) =
1

2π

∫ π

0

{f(x+ t)− f(x− t)} cot
t

2
dt .

The integral is known as a Cauchy integral. Also, f̃ exists almost everywhere
whenever f is integrable.

Moreover, if ωp(δ, f) = O(δα), then f ∈ Lip(α, p), (p ≥ 1), where

ωp(δ, f) = sup
|h|≤δ
‖f(x+ h)− f(x)‖p

is the integral modulus of continuity of f ∈ Lp. Clearly, if f ∈ Lip(α, p) for some
α > 1, then f must be constant. So it is interesting only in case of 0 < α ≤ 1. Also
for p ≥ 1, the generalized Minkowski’s inequality is given in [7] as follow∥∥∥∥∫ f(x, t)dt

∥∥∥∥
p

≤
∫
‖f(x, t)‖pdt .

Throughout the paper, we consider Kp = {f ∈ Lp : f̃ ∈ Lip(1, p)} for 1 ≤ p <∞
and K∞ = {f ∈ C2π : f̃ ∈ Lip1} for p =∞.

In 1932, Agnew [1] defined the Deferred Cesàro mean of the sequence {sk} by

(Da,b, s)n :=
san+1 + san+2 + ...+ sbn

bn − an
=

1

bn − an

bn∑
k=an+1

sk

where a = {an} and b = {bn} are sequences of non-negative integers satisfying

an < bn , n = 1, 2, 3, ... and lim
n→∞

bn =∞ .

We note here that Da,b is clearly regular for any choice of {an} and {bn}.
Let {pn} be a sequence of non-negative real numbers. Deferred Riesz and De-

ferred Nörlund means of (1.1) are defined as follows

Db
aRn(f ;x) :=

1

P bnan+1

bn∑
k=an+1

pkSk(f ;x)
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and

Db
aNn(f ;x) :=

1

P bn−an−10

bn∑
k=an+1

pbn−kSk(f ;x)

where

P bnan+1 =

bn∑
k=an+1

pk 6= 0 , P bn−an−10 =

bn−an−1∑
k=0

pk 6= 0

(see [11], [2] and [12]).
Taking bn = n and an = 0, Deferred Riesz and Deferred Nörlund means give us

classically known Riesz and Nörlund means of the series (1.1), respectively. Also, in
case pk = 1 for all k, both of them yield Deferred Cesàro means of Sk(f ;x) as follows

Db
a(f ;x) :=

1

bn − an

bn∑
k=an+1

Sk(f ;x) .

Let gk(n) k = 1, 2, . . . be the summating function and consider a family of
transform of (1.1) of a summability method G,

Pn(x) =
1

2
a0 +

∞∑
k=1

gk(n)(ak cos kx+ bk sin kx) (1.2)

where the parameter n needs not be discrete.
If there are a positive non-increasing function φ(n) and a class K of functions

in such a way that

‖ f(x)− Pn(x) ‖ = o(φ(n)) implies f(x) = constant; (1.3)

‖ f(x)− Pn(x) ‖ = O(φ(n)) implies f(x) ∈ K; (1.4)

for every f ∈ K, one has ‖ f(x)− Pn(x) ‖ = O(φ(n)), (1.5)

then it is said that the method of summation G is saturated with order φ(n) and its
class of saturation in K ([3]).

Ever since the definition of saturation of summability methods was given by
Favard [4] many authors have studied the saturation property of operators which are
obtained as transforms of the n-th partial sum of the Fourier series by summability
methods. Zamanski [14] have studied the notion of determining a saturation class
by considering (C, 1). Sunouchi and Watari [13] have obtained the saturation order
and class for Cesàro, Abel and the (R, λ, k) method. Goel et al. [5] have examined
order and class of saturation of Nörlund means with supremum norms. Mohapatra
and Russell [10] have analyzed order and class of (N,c,d)-methods in the Lp spaces.
Kuttner, Mohapatra and Sahney [8] have obtained results on saturation for a general
class of summability methods in the supremum norm.

In this paper, our object is to extent some of these results under weaker condi-
tions by considering Deferred Riesz means and Deferred Nörlund means.

We shall give some well-known results that we will use them to prove our theo-
rems.
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Lemma 1.1. [6] If f belongs to Lip(1, p), 1 < p ≤ ∞, then f is equivalent to the
indefinite integral of a function belonging to Lp. Also, if f ∈ Lip1, then f is the
indefinite integral of a bounded function.

Lemma 1.2. [15] If f ∈ Lp, 1 < p <∞, then f̃ ∈ Lp. Moreover, S̃[f ] = S[f̃ ].

Lemma 1.3. [5]∣∣∣∣∫ π

t

sin(k + 1)u

u2
du

∣∣∣∣ ≤
{

2(k + 1) log
(

1
(k+1)t

)
, 0 < (k + 1)t < 1

e
2

(k+1)t2 , k ≥ 0, t > 0 .

Lemma 1.4. [9] Suppose that dnk ≥ 0 (∀n, k),
∑∞
k=0 dnk = 1 and

∞∑
k=1

dnk log k <∞ .

Let φ(n) be a positive function. In order that D should be saturated with order φ(n)
and some class, it is necessary and sufficient that

0 < lim inf
n→∞

φ(n)

dn0
<∞ .

2. Main results

If there are a positive non-increasing function φ(n) and a class of functions K
with the following properties

‖ f(x)−Db
aRn(f ;x) ‖ = o(φ(n)) ⇒ f is constant (2.1)

‖ f(x)−Db
aRn(f ;x) ‖ = O(φ(n)) ⇒ f ∈ K (2.2)

and

f ∈ K ⇒ ‖ f(x)−Db
aRn(f ;x) ‖ = O(φ(n)) (2.3)

then we say that Db
aRn(f ;x) is saturated with the order φ(n) and class K.

Now, we give interesting results for Deferred Riesz means.

Lemma 2.1. Let 1 ≤ p ≤ ∞ and

1

P bnan+1

bn∑
k=an+1

pk log k <∞.

If

‖ f(x)−Db
aRn(f ;x) ‖p= o

(
pbn
P bnan+1

)
then f is constant.

To proof the following lemma we use the same technique in [8].
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Proof. Let us write Db
aRn(x) instead of Db

aRn(f ;x). By definition of Db
aRn(x), we

get

1

π

∫ π

−π
Db
aRn(x+ t) cos ktdt =

1

π

∫ π

−π

1

P bnan+1

bn∑
r=an+1

prSr(x+ t) cos ktdt

=
1

P bnan+1

bn∑
r=an+1

pr
1

π

∫ π

−π
Sr(x+ t) cos ktdt

=
1

P bnan+1

bn∑
r=k

prAk(x),

since hypothesis and

1

π

∫ π

−π
Sr(x+ t) cos ktdt =

{
Ak(x), r ≥ k
0, r < k .

Hence, we obtain

Ak(x)− 1

P bnan+1

bn∑
r=k

prAk(x) = Ak(x)

(
1

P bnan+1

bn∑
r=k+1

pr

)
.

Sn(f) converges to f uniformly whenever f is continuous [15]. So, from hypothesis
and generalized Minkowski’s inequality we get∥∥∥∥ 1

π

∫ π

−π
Sr(x+ t) cos ktdt− 1

π

∫ π

−π
Db
aRn(x+ t) cos ktdt

∥∥∥∥
p

≤
∥∥∥∥ 1

π

∫ π

−π
Sr(x+ t) cos ktdt− 1

π

∫ π

−π
f(x+ t) cos ktdt

∥∥∥∥
p

+

∥∥∥∥ 1

π

∫ π

−π
f(x+ t) cos ktdt− 1

π

∫ π

−π
Db
aRn(x+ t) cos ktdt

∥∥∥∥
p

≤ 1

π

∫ π

−π
‖Sr − f‖pdt+

1

π

∫ π

−π
‖f −Db

aRn‖pdt

= o

(
pbn
P bnan+1

)
.

Therefore for all k ≥ 1 we have

Ak(x)

(
1

P bnan+1

bn∑
r=k+1

pr

)
= o

(
pbn
P bnan+1

)
i.e.,

Ak(x)

(
pk+1 + pk+2...+ pbn

pbn

)
= o(1).

Because of
(
pk+1+pk+2...+pbn

pbn

)
≥ 1 for each r ≥ 1, we get Ak(x) = 0. Consequently

f(x) = 1
2a0 which is a constant. �
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Lemma 2.2. Let the limit

lim
n→∞

pr
pbn

= 1

hold for a fixed an + 1 ≤ r < bn. If the equation

‖ f(x)−Db
aRn(f ;x) ‖p= 0

(
pbn
P bnan+1

)
is hold, then ∥∥∥∥∥

N∑
k=an+2

(k − an − 1)

(
1− k − (an + 2)

N − an − 1

)
Ak(x)

∥∥∥∥∥
p

= O(1).

Proof. Suppose that ∆n(x) := f(x)−Db
aRn(f ;x). In this case,

∆n(x) ∼
bn∑

k=an+2

(
1−

P bnk
P bnan+1

)
Ak(x).

Let N < bn, taking N -th arithmetic mean of ∆n(x) we get

σN [x; ∆n] =

N∑
k=an+2

(
1−

P bnk
P bnan+1

)(
1− k − an − 2

N − an − 1

)
Ak(x).

On account of ‖∆n‖ ≥ ‖σN [x; ∆n]‖, we obtain∥∥∥∥∥
N∑

k=an+2

(
1−

P bnk
P bnan+1

)(
1− k − an − 2

N − an − 1

)
Ak(x)

∥∥∥∥∥
p

= O

(
pbn
P bnan+1

)

⇒

∥∥∥∥∥
N∑

k=an+2

(
P bnan+1 − P

bn
k

pbn

)(
1− k − an − 2

N − an − 1

)
Ak(x)

∥∥∥∥∥
p

= O(1)

⇒

∥∥∥∥∥
N∑

k=an+2

lim
n→∞

(
pan+1 + pan+2 + ...+ pk−1

pbn

)(
1− k

N + 1

)
Ak(x)

∥∥∥∥∥
p

= O(1)

⇒

∥∥∥∥∥
N∑

k=an+2

(k − an − 1)

(
1− k

N + 1

)
Ak(x)

∥∥∥∥∥
p

= O(1).

This completes the proof. �

Lemma 2.3. Let

Mn(t) =
1

P bnan+1

bn∑
k=an+1

pk
cos(k + 1/2)t

sin(t/2)

and

Gn(t) =

∫ π

t

Mn(u)du. (2.4)
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If ∫ π

0

|Gn(t)| = O

(
pbn
P bnan+1

)
(2.5)

and f ∈ Kp (1 < p ≤ ∞) then ‖ f(x)−Db
aRn(f ;x) ‖p= O

(
pbn
P bn

an+1

)
.

Proof. Let S̃k(f̃ ;x) denote the partial sums of the conjugate series related to f̃(x).
So,

S̃k(f̃ ;x) =
1

2π

∫ π

0

{f̃(x+ t)− f̃(x− t)}cos(t/2)− cos(k + 1/2)t

sin(t/2)
dt.

With a simple analysis, we get

Db
aRn(S̃k(f̃ ;x)) =

1

P bnan+1

bn∑
k=an+1

pkS̃k(f̃ ;x)

=
1

P bnan+1

bn∑
k=an+1

pk
1

2π

∫ π

0

{f̃(x+ t)− f̃(x− t)} cot(t/2)dt

− 1

P bnan+1

bn∑
k=an+1

pk
1

2π

∫ π

0

{f̃(x+ t)− f̃(x− t)}cos(k + 1/2)t

sin(t/2)
dt.

By Lemma 1.2, f ∈ Lp (1 < p < ∞) implies f̃ ∈ Lp. So
˜̃
f ∈ Lp, and thus we obtain

S̃(f̃) = S(
˜̃
f). If p =∞ then it means that f̃ ∈ Lip1. Therefore, we say that −f + 1

2a0

is equal to
˜̃
f . As a result

˜̃
f −Db

aRn(Sk(
˜̃
f ;x)) is identical to f(x)−Db

aRn(Sk(f ;x)).
From hypothesis we get

f(x)−Db
aRn(f ;x) =

1

P bnan+1

bn∑
k=an+1

pk
˜̃
f(x)

− 1

P bnan+1

bn∑
k=an+1

pk
1

2π

∫ π

0

{f̃(x+ t)− f̃(x− t)} cot(t/2)dt

+
1

P bnan+1

bn∑
k=an+1

pk
1

2π

∫ π

0

{f̃(x+ t)− f̃(x− t)}cos(k + 1/2)t

sin(t/2)

=
1

P bnan+1

bn∑
k=an+1

pk
1

2π

∫ π

0

{f̃(x+ t)− f̃(x− t)} cot(t/2)dt

− 1

P bnan+1

bn∑
k=an+1

pk
1

2π

∫ π

0

{f̃(x+ t)− f̃(x− t)} cot(t/2)dt

+
1

P bnan+1

bn∑
k=an+1

pk
1

2π

∫ π

0

{f̃(x+ t)− f̃(x− t)}cos(k + 1/2)t

sin(t/2)
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=
1

2π

∫ π

0

{f̃(x+ t)− f̃(x− t)}Mn(t). (2.6)

As f ∈ Kp by Lemma 1.1, we get f̃ ′ ∈ Lp, p > 1. By integrating in (2.6) we have

f(x)−Db
aRn(f ;x) = − 1

2π

∫ π

0

{f̃ ′(x+ t) + f̃ ′(x− t)}Gn(t)dt.

By generalized Minkowski’s inequality, we obtain∥∥f(x)−Db
aRn(f ;x)

∥∥
p

=

∥∥∥∥− 1

2π

∫ π

0

{f̃ ′(x+ t) + f̃ ′(x− t)}Gn(t)dt

∥∥∥∥
p

≤
∫ π

0

∥∥∥{f̃ ′(x+ t) + f̃ ′(x− t)}
∥∥∥
p
|Gn(t)|dt

≤ M

∫ π

0

|Gn(t)|dt = O

(
pbn
P bnan+1

)
.

This completes the proof of Lemma. �

Theorem 2.4. Let 1 < p ≤ ∞, (an) and (bn) be sequences of non-negative integers
satisfying

an < bn, lim
n→∞

bn =∞

and {pn} be a sequence of non-negative real numbers such that

bn∑
k=an+1

|pk − pk+1| = O(pbn) (2.7)

pan+1 = 0, pbn+1 = 0. If f ∈ Kp, 1 < p ≤ ∞, then

‖ f(x)−Db
aRn(f ;x) ‖p= O

(
pbn
P bnan+1

)
. (2.8)

Proof. Due to Lemma 2.3, it is enough to show (2.5). By Abel’s transform, we get

Mn(t) =
1

2 sin2(t/2)

1

P bnan+1

{
bn∑

k=an+1

(sin(k + 1)t)(pk − pk+1)

}
Since

1

2 sin2(t/2)
=

2

t2
+O(1),

we have

Mn(t) =
2

t2
1

P bnan+1

{
bn∑

k=an+1

(sin(k + 1)t)(pk − pk+1)

}

+O

(
1

P bnan+1

{
bn∑

k=an+1

(sin(k + 1)t)(pk − pk+1)

})
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=
2

t2
1

P bnan+1

{
bn∑

k=an+1

(sin(k + 1)t)(pk − pk+1)

}
+O

(
pbn
P bnan+1

)
.

From the last equation we obtain∫ π

0

|Gn(t)|dt ≤ 1

P bnan+1

bn∑
k=an+1

|pk − pk+1|
∫ π

0

∣∣∣∣∫ π

t

sin(k + 1)u

u2
du

∣∣∣∣ dt.
To complete the proof, we shall show the following equation

I :=

∫ π

0

∣∣∣∣∫ π

t

sin(k + 1)u

u2
du

∣∣∣∣ dt = O(1) . (2.9)

By Lemma 1.3 we get

I :=

∫ π

0

∣∣∣∣∫ π

t

sin(k + 1)u

u2
du

∣∣∣∣ dt =

∫ 1/e(k+1)

0

∣∣∣∣∫ π

t

sin(k + 1)u

u2
du

∣∣∣∣ dt
+

∫ π

1/e(k+1)

∣∣∣∣∫ π

t

sin(k + 1)u

u2
du

∣∣∣∣ dt
≤

∫ 1/e(bk+1)

0

2(k + 1) log

(
1

(k + 1)t

)
dt

+

∫ π

1/e(bk+1)

2

(k + 1)t2
dt = O(1).

This completes the proof. �

Now, we can give our results for Deferred Nörlund means.
If there are a positive non-increasing function φ(n) and a class of functions K

with the following properties

‖ f(x)−Db
aNn(f ;x) ‖ = o(φ(n)) ⇒ f is constant (2.10)

‖ f(x)−Db
aNn(f ;x) ‖ = O(φ(n)) ⇒ f ∈ K (2.11)

and

f ∈ K ⇒ ‖ f(x)−Db
aNn(f ;x) ‖ = O(φ(n)) (2.12)

then we say that Db
aNn(f ;x) is saturated with the order φ(n) and class K.

Lemma 2.5. Let 1 ≤ p ≤ ∞ and

1

P bn−an−10

bn∑
k=an+1

pbn−k log k <∞.

If

‖ f(x)−Db
aNn(f ;x) ‖p= o

(
p0

P bn−an−10

)
then f is constant.
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Proof. Let us write Db
aNn(x) instead of Db

aNn(f ;x). Now we get

1

π

∫ π

−π
Db
aNn(x+ t) cos ktdt

=
1

π

∫ π

−π

1

P bn−an−10

bn∑
r=an+1

pbn−rSr(x+ t) cos ktdt

=
1

P bn−an−10

bn∑
r=an+1

pbn−r
1

π

∫ π

−π
Sr(x+ t) cos ktdt

=
1

P bn−an−10

bn∑
r=k

pbn−rAk(x) ,

since summation and integration can be replace by hypothesis and since

1

π

∫ π

−π
Sr(x+ t) cos ktdt =

{
Ak(x), r ≥ k
0, r < k.

Hence, we obtain

Ak(x)− 1

P bn−an−10

bn∑
r=k

pbn−rAk(x) = Ak(x)

(
1

P bn−an−10

bn∑
r=k+1

pbn−r

)
Sn(f) converges to f uniformly whenever f is continuous [15]. So, from hypothesis
and generalized Minkowski’s inequality we get∥∥∥∥ 1

π

∫ π

−π
Sr(x+ t) cos ktdt− 1

π

∫ π

−π
Db
aNn(x+ t) cos ktdt

∥∥∥∥
p

≤
∥∥∥∥ 1

π

∫ π

−π
Sr(x+ t) cos ktdt− 1

π

∫ π

−π
f(x+ t) cos ktdt

∥∥∥∥
p

+

∥∥∥∥ 1

π

∫ π

−π
f(x+ t) cos ktdt− 1

π

∫ π

−π
Db
aNn(x+ t) cos ktdt

∥∥∥∥
p

≤ 1

π

∫ π

−π
‖Sr − f‖pdt+

1

π

∫ π

−π
‖f −Db

aNn‖pdt

= o

(
p0

P bn−an−10

)
.

Hence we have

Ak(x)

(
1

P bnan+1

bn∑
r=k+1

pbn−r

)
= o

(
p0

P bn−an−10

)
for all k ≥ 1, i.e.,

Ak(x)

(
pbn−k−1 + pbn−k−2...+ p0

p0

)
= o(1).
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Because of
(
pbn−k−1+pbn−k−2...+p0

p0

)
≥ 1, Ak(x) = 0 for each r ≥ 1. Consequently

f(x) = 1
2a0 which is a constant. �

Lemma 2.6. Let the limit

lim
n→∞

pbn−k+1

p0
= 1

hold for a fixed an + 2 ≤ k < bn. If the equation

‖ f(x)−Db
aNn(f ;x) ‖p= O

(
p0

P bn−an−10

)
is hold, then ∥∥∥∥∥

N∑
k=an+2

(k − an − 1)

(
1− k − (an + 2)

N − an − 1

)
Ak(x)

∥∥∥∥∥
p

= O(1).

Proof. Suppose that ∆n(x) := f(x)−Db
aNn(f ;x). In this case,

∆n(x) ∼
bn∑

k=an+2

(
1− P bn−k0

P bn−an−10

)
Ak(x).

Let N < bn. Taking N -th arithmetic mean of ∆n(x) we have

σN [x; ∆n] =

N∑
k=an+2

(
1− P bn−k0

P bn−an−10

)(
1− k − an − 2

N − an − 1

)
Ak(x).

Since ‖∆n‖ ≥ ‖σN [x; ∆n]‖ we obtain∥∥∥∥∥
N∑

k=an+2

(
1− P bn−k0

P bn−an−10

)(
1− k − an − 2

N − an − 1

)
Ak(x)

∥∥∥∥∥
p

= O

(
p0

P bn−an−10

)
∥∥∥∥∥

N∑
k=an+2

(
P bn−an−10 − P bn−k0

p0

)(
1− k − an − 2

N − an − 1

)
Ak(x)

∥∥∥∥∥
p

= O(1)

∥∥∥∥∥
N∑

k=an+2

lim
n→∞

(
pbn−k+1 + ...+ pbn−an−1

p0

)(
1− k

N + 1

)
Ak(x)

∥∥∥∥∥
p

= O(1)

∥∥∥∥∥
N∑

k=an+2

(k − an − 1)

(
1− k

N + 1

)
Ak(x)

∥∥∥∥∥
p

= O(1).

This completes the proof. �

Lemma 2.7. Let

Mn(t) =
1

P bn−an−10

bn∑
k=an+1

pbn−k
cos(k + 1/2)t

sin(t/2)
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and

Gn(t) =

∫ π

t

Mn(u)du. (2.13)

If ∫ π

0

|Gn(t)| = O

(
po

P bn−an−10

)
(2.14)

and f ∈ Kp(1 < p ≤ ∞) then ‖ f(x)−Db
aNn(f ;x) ‖p= O

(
po

P bn−an−1
0

)
.

Proof. Let S̃k(f̃ ;x) denote the partial sums of the conjugate series related to f̃(x).
So,

S̃k(f̃ ;x) =
1

2π

∫ π

0

{f̃(x+ t)− f̃(x− t)}cos(t/2)− cos(k + 1/2)t

sin(t/2)
dt.

With a simple analysis, we get

Db
aNn(S̃k(f̃ ;x)) =

1

P ba−n−10

bn∑
an+1

pbn−kS̃k(f̃ ;x)

=
1

P ba−n−10

bn∑
an+1

pbn−k
1

2π

∫ π

0

{f̃(x+ t)− f̃(x− t)} cot(t/2)dt

− 1

P bnan+1

bn∑
an+1

pbn−k
1

2π

∫ π

0

{f̃(x+ t)− f̃(x− t)}cos(k + 1/2)t

sin(t/2)
dt.

By Lemma 1.2, f ∈ Lp (1 < p < ∞) implies f̃ ∈ Lp. So
˜̃
f ∈ Lp, and we get

S̃(f̃) = S(
˜̃
f). If p =∞ then it means that f̃ ∈ Lip1. Therefore, −f + 1

2a0 is equal to
˜̃
f . Thus

˜̃
f −Db

aNn(Sk(
˜̃
f ;x)) is identical to f(x)−Db

aNn(Sk(f ;x)). From hypothesis
we get

f(x)−Db
aNn(f ;x)

=
1

P ba−n−10

bn∑
an+1

pbn−k
1

2π

∫ π

0

{f̃(x+ t)− f̃(x− t)} cot(t/2)dt

− 1

P ba−n−10

bn∑
an+1

pbn−k
1

2π

∫ π

0

{f̃(x+ t)− f̃(x− t)} cot(t/2)dt

+
1

P ba−n−10

bn∑
an+1

pbn−k
1

2π

∫ π

0

{f̃(x+ t)− f̃(x− t)}cos(k + 1/2)t

sin(t/2)
dt

=
1

2π

∫ π

0

{f̃(x+ t)− f̃(x− t)}Mn(t). (2.15)

As f ∈ Kp by Lemma 1.1, we have f̃ ′ ∈ Lp, p > 1. By integrating in (2.15), we get

f(x)−Db
aNn(f ;x) = − 1

2π

∫ π

0

{f̃ ′(x+ t) + f̃ ′(x− t)}Gn(t)dt.
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By generalized Minkowski’s inequality, we obtain∥∥f(x)−Db
aNn(f ;x)

∥∥
p

=

∥∥∥∥− 1

2π

∫ π

0

{f̃ ′(x+ t) + f̃ ′(x− t)}Gn(t)dt

∥∥∥∥
p

≤
∫ π

0

∥∥∥{f̃ ′(x+ t) + f̃ ′(x− t)}
∥∥∥
p
|Gn(t)|dt

≤ M.

∫ π

0

|Gn(t)|dt = O

(
po

P bn−an−10

)
.

This completes the proof of Lemma. �

Theorem 2.8. Let 1 < p ≤ ∞, (an) and (bn) be sequences of non-negative integers
satisfying

an < bn , lim
n→∞

bn =∞

and {pn} be a sequence of non-negative real numbers such that

bn∑
k=an+1

|pbn−k − pbn−k−1| = O(p0), (2.16)

pbn−an−1 = 0 and p−1 = 0. If f ∈ Kp(1 < p ≤ ∞) then

‖ f(x)−Db
aNn(f ;x) ‖p= O

(
po

P bn−an−10

)
. (2.17)

Proof. Due to the Lemma 2.7, it is enough to show (2.14). From Abel’s transform,
we get

Mn(t) =
1

2 sin2(t/2)

1

P bnan+1

{
bn∑

k=an+1

(sin(k + 1)t)(pbn−k − pbn−k−1)

}
.

Since
1

2 sin2(t/2)
=

2

t2
+O(1),

we have

Mn(t) =
2

t2
1

P bn−an−10

{
bn∑

k=an+1

(sin(k + 1)t)(pbn−k − pbn−k−1)

}

+O

(
1

P bn−an−10

{
bn∑

k=an+1

(sin(k + 1)t)(pbn−k − pbn−k−1)

})

=
2

t2
1

P bn−an−10

{
bn∑

k=an+1

(sin(k + 1)t)(pbn−k − pbn−k−1)

}

+O

(
p0

P bn−an−10

)
.
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From the last equation we get∫ π

0

|Gn(t)|dt ≤ 1

P bn−an−10

bn∑
k=an+1

|pbn−k − pbn−k−1|
∫ π

0

∣∣∣∣∫ π

t

sin(k + 1)u

u2
du

∣∣∣∣ dt.
By Theorem 2.4 and hypothesis, we have∫ π

0

|Gn(t)| = O

(
po

P bn−an−10

)
.

This completes the proof. �

If we take pk = 1 for all k, both of them yield Deferred Cesàro means of the
series (1.1). So we get following corollary.

Corollary 2.9. Let

Mn(t) =
cos[((bn + an + 2)/2)t] sin[((bn − an)/2)t]

(bn − an) sin2(t/2)

and

Gn(t) =

∫ π

t

Mn(u)du.

If ∫ π

0

|Gn(t)| = O

(
1

bn − an

)
(2.18)

and f ∈ Kp(1 < p ≤ ∞) then ‖ f(x)−Db
a(f ;x) ‖p= O

(
1

bn−an

)
.

If we take pk = 1 for all k, an = 0 and bn = λ(n), where λ(n) is a strictly increas-
ing sequence of positive integers, both of them yield Cλ-method. So, we immediately
get following corollary.

Corollary 2.10. Let

Mn(t) =
1

λ(n)

(
cos((λ(n) + 2)/2)t. sin((λ(n)− 1)/2)t

sin2(t/2)

)
and

Gn(t) =

∫ π

t

Mn(u)du.

If ∫ π

0

|Gn(t)| = O

(
1

λ(n)

)
(2.19)

and f ∈ Kp (1 < p ≤ ∞) then ‖ f(x)− σλn(f ;x) ‖p= O
(

1
λ(n)

)
.
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Study on interval Volterra integral equations
via parametric approach of intervals

Subhajit Das , Md Sadikur Rahman ,
Ali Akbar Shaikh and Asoke Kumar Bhunia

Abstract. This work investigates the interval Volterra integral equation (IVIE)
and its solution techniques through the parametric representation of intervals.
First, the general form of the second-kind IVIE is expressed in both lower-upper
bound format and its equivalent parametric form. Next, the methods of succes-
sive approximations and resolvent kernel are developed to solve the IVIE, utiliz-
ing parametric approaches and interval arithmetic. The solutions are presented
in both parametric and lower-upper bound representations. Lastly, a series of
numerical examples are provided to illustrate the application of these methods.
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Keywords: Interval IVP, interval integral equation, parametric approach, succes-
sive approximation method, resolvent kernel.

1. Introduction

Integral equations play a crucial role in various fields of applied mathematics,
with numerous applications in real-world problems such as radioactive decay, diffu-
sion and heat transfer analysis, energy systems, web security, and population growth
models. In these cases, the parameters involved are often not fixed but fluctuate
within certain ranges due to randomness or uncertainty, making the problem impre-
cise. Based on the nature of these problems, the theory of integral equations can be
categorized into two types:

• Precise integral equations
• Imprecise integral equations
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Historically, integral equations have been studied in a crisp environment, where all
variables (dependent and independent) are deterministic. Numerous works have fo-
cused on solving these crisp integral equations. However, as uncertainty in areas such
as technology, energy, communications, and financial security continues to grow ex-
ponentially, scientists, engineers, and system analysts face increasing challenges in
solving decision-making problems under inexact conditions. To address this uncer-
tainty, researchers have introduced various approaches, such as stochastic, fuzzy, and
interval methods. Imprecise integral equations, therefore, can be classified as:

• Stochastic integral equations
• Fuzzy integral equations
• Interval integral equations

In stochastic integral equation, all the imprecise known and unknown functions are
represented by the random variables with suitable distribution functions. In this sec-
tor, many researchers and mathematicians contributed their works, among those some
excellent pieces are reported here. Mao [15] investigated the results on existence of
the solutions of a stochastic delay integral equation. Ogawa [20, 21]studied Fredholm
stochastic integral equation in random environment whereas Mirzaee et al. [16], Yong
et al. [30] derived computational method and backword method respectively for solv-
ing non-linear Volterra integral equations in stochastic environment. Recently, Mo-
hammadi [17], Samadyar and Mirzaee [24, 25] contributed their works on stochastic
integral equation.

In fuzzy integral equation, the imprecise functions are presented precisely by using
fuzzy set having appropriate membership functions or fuzzy numbers. In this area,
Subrahmanyam et al. [27], Agarwal et al. [2], Attari et al. [6] established different
methods of solving Volterra integral equations in fuzzy environment. Later Mordeson
and Newman [18] studied the different solution approaches of fuzzy integral equation.
Babolian et al. [7], Abbasbandy et al. [1] established some numerical technique for
solving Fredholm integral equation in fuzzy environment. Also, Bica and Popescu [8]
together developed a methodology for approximate solution of nonlinear Hammer-
stein fuzzy integral equation. Recently, Zakeri et al. [31], Ziari et al. [32], Agheli and
Firozja [3]and Noeiaghdam et al. [19] accomplished their works on different types of
fuzzy integral equations.

Alternatively, if the known and unknown functions of an imprecise integral equation
are presented in the form of intervals, then that imprecise integral equation is called
as interval integral equation (or IIE). The general form of an interval integral equation
(or IIE) is given below:

[gL, gU ] (u) [yL, yU ] (u) = [fL, fU ] (u) + λ

u oru1∫
u0

K (u, z) [yL, yU ] (z) dz

where [fL, fU ] , [gL, gU ] : [u0, u1]→ Kc defined by

[fL, fU ] (u) = [fL (u) , fU (u)] ,

[gL, gU ] (u) = [gL (u) , gU (u)]
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and
K : [u0, u1]× [u0, u1]→ R

which are known function whereas,

[yL, yU ] (u) = [yL (u) , yU (u)]

is unknown function.

In the above-mentioned integral equation, if the upper limit is fixed or variable, then
the integral equation is called interval Fredholm or interval Volterra integral equation
respectively. With the help of this concept of interval environment in the mathematical
lingua franca of these variables/parameters, the concepts of interval differential equa-
tion or interval system of differential equations have been formulated mathematically
for those real-life problems. The interval differential equations have been studied by
several researchers representing the imprecise parameters by random variables/fuzzy
sets/intervals. Among of them, the contributions of Kaleva et al. [11], Buckley et
al. [9], Vorobiev et al. [28], Stefanini et al. [26], Malinowski [13], Ramezanadeh et
al. [23], Wang et al. [29], de Costa et al. [10] and Ahmady [4] are noteworthy. On
the other hand, very few works on integral equations in interval environment were
accomplished among which works of An et al. [5], Otadi and Mosleh [22], Lupulescu
and Van [12] are worth mentioning. An et al. [5] in their work, studied the Fredholm
integral equation in interval environment using interval arithmetic and Hukuhara dif-
ferentiation. Otadi and Mosleh [22] developed simulation technique for the evaluation
of linear fuzzy Fredholm type integral equations. Further, Lupulescu and Van [12]
extended the theory of RiemannLiouville fractional integral to develop the theory of
the Abel integral equation in interval environment.

In this work, the theory of interval Volterra integral equation is studied using
parametric representation of intervals and parametric differentiation. To navigate
the derivation of the theorems properly, the concepts of set of parameterizations of
intervals, continuous parametric interval-valued functions along with metric with
respect to which their different analytical properties (like continuity, differentiability,
integrability etc.) are discussed. After that the class of all parametric interval valued
L2−functions is defined, over which all the discussions of interval Volterra interval
equations have been performed. Beside these, two types of solution methodologies of
interval Volterra integral equations named as successive approximation and Resolvent
kernel theorems are developed in the parametric form of intervals.

2. Basic notations and definitions

Let Kc = {[αL, αU ] : αL, αU ∈ R } the set of closed and bounded intervals.

Definition 2.1. Parametric representations of [αL, αU ] can be defined in the following
manner:

• Increasing form (IF):

[αL, αU ] = {α (ζ) = αL + ζ (αU − αL) : 0 6 ζ 6 1}
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• Decreasing form (DF):

[αL, αU ] = {α (ζ) = αU + ζ (αL − αU ) : 0 6 ζ 6 1}

Therefore, the set of all parametric intervals KP is defined as follows:

KP = {α (ζ) : α (ζ) is parametric form of the interval [αL, αU ] ∈ Kc} .

Definition 2.2. Let I1 = {α (ζ1) : ζ1 ∈ [0, 1]} , I2 = {β (ζ2) : ζ2 ∈ [0, 1]} ∈ Kp be the
parametric forms of two intervals [αL, αU ] and [βL, βU ] respectively and λ ∈ R. Then,

• Addition:

I1 + I2 = {α (ζ1) + β (ζ2) : ζ1, ζ2 ∈ [0, 1]}
• Subtraction:

I1 − I2 = {α (ζ1)− β (ζ2) : ζ1, ζ2 ∈ [0, 1]}
• Parametric difference:

I1	pI2 = {α (ζ)− β (ζ) : ζ ∈ [0, 1]}
• Multiplication:

I1I2 = {α (ζ1)β (ζ2) : ζ1, ζ2 ∈ [0, 1]}
• Division:

I1/I2 =

{
α (ζ1)

β (ζ2)
: ζ1, ζ2 ∈ [0, 1]

}
• Scalar multiplication:

λI1 = {λα (ζ) : ζ ∈ [0, 1]}
• Equality of two intervals:

I1 = I2 ⇔ α (ζ) = β (ζ) , ∀ζ ∈ [0, 1]

Proposition 2.3. Let I1 = [αL, αU ] , I2 = [βL, βU ] ∈ Kc, λ ∈ R and their paramet-
ric representations be I1 = {α (ζ1) : ζ1 ∈ [0, 1]} and I2 = {β (ζ2) : ζ2 ∈ [0, 1]}. The
different arithmetic operations on the set Kc can be obtained as follows:

• Addition:

I1 + I2 =

[
min

ζ1,ζ2∈[0,1]
(α (ζ1) + β (ζ2)) , max

ζ1,ζ2∈[0,1]
(α (ζ1) + β (ζ2))

]
• Subtraction:

I1 − I2 =

[
min

ζ1,ζ2∈[0,1]
(α (ζ1)− β (ζ2)) , max

ζ1,ζ2∈[0,1]
(α (ζ1)− β (ζ2))

]
• Parametric difference:

I1	pI2 =

[
min
ζ∈[0,1]

(α (ζ)− β (ζ)) , max
ζ∈[0,1]

(α (ζ)− β (ζ))

]
• Multiplication:

I1I2 =

[
min

ζ1,ζ2∈[0,1]
(α (ζ1)β (ζ2)) , max

ζ1,ζ2∈[0,1]
(α (ζ1)β (ζ2))

]
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• Division:

I1/I2 =

[
min

ζ1,ζ2∈[0,1]

(
α (ζ1)

β (ζ2)

)
, max
ζ1,ζ2∈[0,1]

(
α (ζ1)

β (ζ2)

)]
, 0 /∈ I2

• Scalar multiplication:

λI1 =

[
min
ζ∈[0,1]

(λα (ζ)) , max
ζ∈[0,1]

(λα (ζ))

]
Definition 2.4. The distance function on Kp is a function ρp : Kp ×Kp → R+ ∪ {0}
be a function defined by

ρp (α (ζ) , β (ζ)) = sup
ζ∈[0,1]

|α (ζ)− β (ζ)| , ∀α (ζ) , β (ζ) ∈ Kp.

Clearly ρp is a metric on Kp.

Proposition 2.5. Let α (ζ) , β (ζ) ∈ Kp, then

sup
ζ∈[0,1]

|α (ζ)− β (ζ)| = max
ζ∈{0,1}

|α (ζ)− β (ζ)| .

Corollary 2.6. Let ρ1p : Kp ×Kp → R+ ∪ {0} be defined by

ρ1p (α (ζ) , β (ζ)) = max
ζ∈{0,1}

|α (ζ)− β (ζ)| , ∀α (ζ) , β (ζ) ∈ Kp.

Then ρ1p is a metric on Kp.

Corollary 2.7. Let ρc : Kc ×Kc → R+ ∪ {0} be defined by

ρc ([αL, αU ] , [βL, βU ]) = max {|αL − βL| , |αU − βU |} , ∀ [αL, αU ] , [βL, βU ] ∈ Kc.

Then ρc is a metric on Kc.

Corollary 2.8. The metrics ρ1p and ρc are equivalent.

2.1. Parametric form of interval valued functions (IVF)

Definition 2.9. An IVF is a function [fL, fU ] : I ⊆ R → Kc given by [fL, fU ] (u) =
[fL (u) , fU (u)] , where fL, fU : I → R are real valued functions with fL (u) 6
fU (u) , ∀u ∈ I.

Definition 2.10. The parametric form (in IF) of IVF [fL, fU ] (u) is denoted as fζ∈[0,1] :
I → Kp and it is defined by

fζ∈[0,1] (u) = {fL (u) + ζ (fU (u)− fL (u)) : ζ ∈ [0, 1]} , ∀u ∈ I.

Let us consider an IVF in parametric form fζ∈[0,1] : I → Kp defined by

fζ∈[0,1] (u) = {fL (u) + ζ (fU (u)− fL (u)) : ζ ∈ [0, 1]} , ∀u ∈ I.

Definition 2.11. The IVF in parametric form fζ∈[0,1] : I → Kp is called continuous at

u0 ∈ I if the real valued function f̃ : I × [0, 1]→ R defined by

f̃ (u, ζ) = fL (u) + ζ (fU (u)− fL (u))

is continuous at (u0, ζ) , ∀ζ ∈ [0, 1] .
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Definition 2.12. The IVF in parametric form fζ∈[0,1] : I → Kp is called differentiable

at u0 ∈ I if the real valued function f̃ : I × [0, 1]→ R defined by

f̃ (u, ζ) = fL (u) + ζ (fU (u)− fL (u))

is differentiable at (u0, ζ) , ∀ζ ∈ [0, 1] . And the derivative is obtained by the following
limit:

∂f̃ (u, ζ)

∂u

∣∣∣∣∣
u=u0

= f̃u (u0, ζ) = lim
u→u0

f̃ (u, ζ)− f̃ (u0, ζ)

u− u0
.

The parametric derivative of fζ∈[0,1] at u0 is denoted by f ′ζ∈[0,1] (u0) .

Proposition 2.13.
1. The IVF fζ∈[0,1] is continuous at u0 iff both the bounds fL and fU are continuous
at u0.
2. The IVF fζ∈[0,1] is differentiable at u0 iff both the bounds fL and fU are differen-
tiable at u0.

Proposition 2.14. If the IVF in parametric form fζ∈[0,1] is differentiable at u0, then

f ′ζ∈[0,1] (u0) =
{
fL
′ (u0) + ζ

(
fU
′ (u0)− f ′L (u0)

)
: ζ ∈ [0, 1]

}
.

Definition 2.15. Let I be a Lebesgue measurable set. The IVF in parametric form
fζ∈[0,1] is said to be a Lebesgue measurable parametric interval valued function over

I if for every fixed ζ∗ ∈ [0, 1] , the function f̃ (u, ζ∗) is a measurable function.

Definition 2.16. The IVF in parametric form fζ∈[0,1] is said to be integrable over I if

for every fixed ζ∗ ∈ [0, 1] , the function f̃ (u, ζ∗) is integrable in over I and∫
I

fζ∈[0,1] (u) du = {IL + ζ (IU − IL) : ∀ζ ∈ [0, 1]} ,

where

IL =

∫
I

fL (u) du , IU =

∫
I

fU (u) du.

Proposition 2.17. The IVF fζ∈[0,1] is integrable over I iff both the bounds fL and fU
are integrable over I.

Definition 2.18. The IVF fζ∈[0,1] is said to be a parametric L2− function over I if

ρp

∫
I

fζ∈[0,1] (u) du, 0

 <∞.

Proposition 2.19. The IVF fζ∈[0,1] is L2− function over I iff both the bounds fL and

fU are L2− functions over I.

Remark 2.20. The set of all parametric L2− function over I is denoted by L2
p (I) .
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2.2. Interval initial value problem (Interval IVP)

Let [yL, yU ] : [u0, u1]→ Kc be a p-differentiable function and the IVF [fL, fU ] :
[u0, u1]→ Kc be a continuous, then a second order interval valued initial value prob-
lem can be defined as follows:

d2

du2
([yL (u) , yU (u)]) + a1 (u)

d

du
([yL (u) , yU (u)]) + a2 (u) [yL (u) , yU (u)] (2.1)

= [fL (u) , fU (u)]

with [yL (u0) , yU (u0)] = [yL0, yU0] and
d

du
[yL (u) , yU (u)]

∣∣∣∣
u=u0

= [yL1, yU1]

where a1 (u) , a2 (u) are real valued continious functions over [u0, u1] .

The interval initial value problem (2.1) can be represented in parametric form as
follows:

y′′ζ∈[0,1] (u) + a1 (u) y′ζ∈[0,1] (u) + a2 (u) yζ∈[0,1] (u) = fζ∈[0,1] (u)

with yζ∈[0,1] (u0) = {y0 (ζ) : ζ ∈ [0, 1]} and y′ζ∈[0,1] (u0) = {y1 (ζ) : ζ ∈ [0, 1]}
where y0 (ζ) = y0L + ζ (y0U − y0L) and y1 (ζ) = y1L + ζ (y1U − y1L) .

3. Interval Volterra integral equation (IVIE)

In this section, we have presented some theoretical aspects regarding an IVIE
of second kind. Also, the different solution approaches viz. general solution method,
method of series solutions and resolvent kernel for solving an IVIE of second kind
are discussed.

The general form of an IVIE is

[gL, gU ] (u) [yL, yU ] (u) = [fL, fU ] (u) + λ

u∫
u0

K (u, z) [yL, yU ] (z) dz (3.1)

where [fL, fU ] , [gL, gU ] : [u0, u1]→ Kc are known functions. However, [yL, yU ] (u) is
an unknown function and λ is a non-zero real number. Here we discuss IVIE of second
kind only.
An IVIE of second kind is defined as

[yL, yU ] (u) = [fL, fU ] (u) + λ

u∫
u0

K (u, z) [yL, yU ] (z) dz (3.2)

The parametric form of (3.2) is of the following form:

yζ∈[0,1] (u) = fζ1∈[0,1] (u) + λ

u∫
u0

K (u, z) yζ∈[0,1] (z) dz (3.3)

where yζ∈[0,1] and fζ1∈[0,1] are respectively parametric forms of [yL, yU ] and [fL, fU ] .
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Remark 3.1. Here the real valued function K (u, z) is a L2− function and the para-
metric interval valued functions yζ∈[0,1] and fζ1∈[0,1] are taken from L2

p [u0, u1] .

Remark 3.2. For, yζ∈[0,1] and fζ1∈[0,1] the parametric forms are given by

ỹ (u, ζ) = yL (u) + ζ (yU (u)− yL (u)) and f̃ (u, ζ1) = fL (u) + ζ1 (fU (u)− fL (u)) .

Proposition 3.3. The interval Volterra integral equation (3.2) is equivalent to its para-
metric form (3.3).

Definition 3.4. The interval valued function [yL (u) , yU (u)] is called a solution of (3.2)
if it satisfies the equation (3.2). Similarly, the solution of (3.3) can be defined.

Proposition 3.5. The solutions of (3.2) and (3.3) are equivalent.

Proof. Proof follows from the equality of two intervals in parametric form. �

Before to discuss the solution procedures of the IVIE, an important formula
for converting multiple integrals into a single integral for integrable interval valued
functions is presented in the next subsection.

3.1. Conversion of multiple integrals into a single integral for interval integrals

Theorem 3.6. Let [yL, yU ] : [u0, u1]→ Kc be given by

[fL, fU ] (u) = [fL (u) , fU (u)] , ∀u ∈ [u0, u1]

be an integrable interval valued function. Then it satisfies the following integral for-
mula:

u∫
u0

[fL (z) , fU (z)] dzn =

u∫
u0

(u− z)n−1

(n− 1)!
[fL (z) , fU (z)] dz (3.4)

To prove this theorem, we have required the following Lemma:

Lemma 3.7. Let g, h : [u0, u1] → R be two differentiable functions with non-negative
derivatives over [u0, u1] . Then,

d

du

 h(u)∫
g(u)

[fL (z) , fU (z)] dz

 = [fL (h (u)) , fU (h (u))]
dh (u)

du
(3.5)

	p [fL (g (u)) , fU (g (u))]
dg (u)

du

Proof. From the parametric representation of [fL, fU ], it can written as

fζ∈[0,1] (u) =
{
f̃ (u, ζ) = fL (u) + ζ (fU (u)− fL (u)) : ζ ∈ [0, 1]

}
, ∀u ∈ I.
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From the Leibnitz’s rule of differentiation under the sign of integration for real valued
functions, it follows that

d

du

 h(u)∫
g(u)

f̃ (z, ζ) dz

 = f̃ (h (u) , ζ)
dh (u)

du
− f̃ (g (u) , ζ)

dg (u)

du
, ∀ζ ∈ [0, 1]

⇒

 d

du

 h(u)∫
g(u)

f̃ (z, ζ) dz

 : ζ ∈ [0, 1]


=

{
f̃ (h (u) , ζ)

dh (u)

du
− f̃ (g (u) , ζ)

dg (u)

du
: ζ ∈ [0, 1]

}

⇒

 d

du

 h(u)∫
g(u)

f̃ (z, ζ) dz

 : ζ ∈ [0, 1]


=

{
f̃ (h (u) , ζ)

dh (u)

du
: ζ ∈ [0, 1]

}
	p
{
f̃ (g (u) , ζ)

dg (u)

du
: ζ ∈ [0, 1]

}

⇒

 d

du

 h(u)∫
g(u)

f̃ (z, ζ) dz

 : ζ ∈ [0, 1]


=
{
f̃ (h (u) , ζ) : ζ ∈ [0, 1]

} dh (u)

du
	p
{
f̃ (g (u) , ζ) : ζ ∈ [0, 1]

} dg (u)

du
since, g′, h′ are non - negative

⇒ d

du

 h(u)∫
g(u)

[fL (z) , fU (z)] dz


= [fL (h (u)) , fU (h (u))]

dh (u)

du
	p [fL (g (u)) , fU (g (u))]

dg (u)

du
.

This completes the proof. �

Now, we have proved the Theorem 3.6.

Proof of Theorem 3.6

Proof. Let us consider the interval integral

[JLn, JUn] (u) =

u∫
u0

(u− z)n−1 [fL (z) , fU (z)] dz (3.6)
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Differentiating (3.6) successively with respect to u for k times and using Lemma 3.7,
we get

dk [JLn (u) , JUn (u)]

duk
= (n− 1) (n− 2) · · · (n− k) [JLn−k (u) , JUn−k (u)] , for n > k.

(3.7)

Therefore from (3.6) and (3.7), it follows that:

dn [JLn (u) , JUn (u)]

dun
= (n− 1)! [fL (u) , fU (u)] (3.8)

From (3.8), we get the following recurring integrals:

[JL1 (u) , JU1 (u)] =

u∫
u0

[fL (z1) , fU (z1)] dz1

[JL2 (u) , JU2 (u)] =

u∫
u0

z∫
u0

[fL (z1) , fU (z1)] dz1 dz

Proceeding similarly, one can get the following relation:

[JLn (u) , JUn (u)] = (n− 1)!

u∫
u0

z∫
u0

· · ·
zn−1∫
u0

[fL (zn−1) , fU (zn−1)] dzn−1dzn−2 · · · dz

(3.9)

=⇒ [JLn (u) , JUn (u)] = (n− 1)!

u∫
u0

[fL (u) , fU (u)] dzn, (3.10)

which is the required relation. �

3.2. General solution procedure for solving IVIE

Since the equations (3.2) and (3.3) are equivalent, to get the solution of (3.2), it
is sufficient to solve (3.3). Also, since the equation (3.3) represents the crisp Volterra
integral equation for each fixed ζ, ζ1 ∈ [0, 1], (3.3) can be solved by using any existing
method for solving the Volterra integral equation. Let ỹ (u, ζ) be the solutions of
(3.3). Then it satisfies (3.3). Thus,

∴ ỹ (u, ζ) = f̃ (u, ζ1) + λ

u∫
u0

K (u, z) ỹ (z, ζ) dz

Therefore, from IPF of intervals, it follows that

yL (u) = min
ζ∈[0,1]

{ỹ (u, ζ)} and yU (u) = max
ζ∈[0,1]

{ỹ (u, ζ)}

So, from Proposition 2.5, it follows that,

yL (u) = min
ζ∈{0,1}

{ỹ (u, ζ)} and yU (u) = max
ζ∈{0,1}

{ỹ (u, ζ)} (3.11)
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and y (u) = [yL (u) , yU (u)] is the desired solution of (3.2).

3.3. Solution of interval Volterra integral equation of second kind by iterative method

Theorem 3.8. Let us consider an IVIE of second kind of the form

[yL, yU ] (u) = [fL, fU ] (u) + λ

u∫
u0

K (u, z) [yL, yU ] (z) dz (3.12)

satisfying the following conditions:

a) kernel K be a non-negative real valued continuous function on [u0, u1] × [u0, u1]
and ∃α > 0 such that

|K (u, z)| 6 α, ∀ (u, z) ∈ [u0, u1]× [u0, u1] . (3.13)

b)[fL, fU ] is an interval valued continuous function over [u0, u1] and ∃β > 0 such that

ρc (f (u) , 0) 6 β, ∀u ∈ [u0, u1] . (3.14)

c) λ > 0 be a non-negative constant.
Then the IVIE (3.12) has a series solution as follows:

[yL, yU ] (u) = [fL, fU ] (u) + λ

u∫
u0

K (u, z) [fL, fU ] (z) dz (3.15)

+λ2
u∫

u0

K(u, z)

z∫
u0

K (z, z1) [fL, fU ] (z1) dz1dz + · · ·

Proof. From Proposition 3.5, the given IVIE is equivalent to its parametric form

yζ∈[0,1] (u) = fζ1∈[0,1] (u) + λ

u∫
u0

K (u, z) yζ∈[0,1] (z) dz (3.16)

Therefore for fixed ζ, ζ1 ∈ [0, 1]

ỹ (u, ζ) = f̃ (u, ζ1) + λ

u∫
u0

K (u, z) ỹ (z, ζ) dz (3.17)

After nth substitution, the equation (3.17) gives

ỹ (u, ζ) = f̃ (u, ζ1) + λ

u∫
u0

K (u, z) f̃ (z, ζ1) dz+λ2
u∫

u0

K (u, z)

z∫
u0

K (z, z1)f̃ (z1, ζ1) dz1dz

+ · · ·+ λn
u∫

u0

K (u, z)

z∫
u0

K (z, z1) · · ·
zn−2∫
u0

K (zn−2, zn−1)f̃ (zn−1, ζ1) dzn−1 . . . dz1dz

+ R̃n+1 (u, ζ) (3.18)
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where,

R̃n+1 (u, ζ) = λn+1

u∫
u0

K (u, z)

z∫
u0

K (z, z1) · · ·
zn−1∫
u0

K (zn−1, zn)ỹ (zn, ζ) dzn . . . dz1dz.

Let

M̃n (u, ζ1)=λn
u∫

u0

K (u, z)

z∫
u0

K (z, z1) · · ·
zn−2∫
u0

K (zn−2, zn−1)f̃ (zn−1, ζ1) dzn−1 . . . dz1dz,

then from the conditions (a) and (b) and by the equivalency of the metrics ρcand ρp,
we get ∣∣∣M̃n (z, ζ1)

∣∣∣ 6 |λ|nαn (b− a)
n

n!
β, ∀ζ1 ∈ [0, 1] , ∀u ∈ [u0, u1] (3.19)

Now
∑
n
|λ|nαn (b−a)n

n! β is convergent and hence
∑
n
M̃n (u, ζ1) is uniformly convergent

over [u0, u1], for every choice of ζ1 ∈ [0, 1].
So, if (3.17) has a solution, clearly it can be expressed by (3.19). Therefore ỹ (u, ζ) is
continuous over [u0, u1] and hence bounded.
Thus, let

|ỹ (u, ζ)| 6 γ (ζ) , ∀ζ ∈ [0, 1] . (3.20)

Now,∣∣∣R̃n+1 (u, ζ)
∣∣∣ =

∣∣∣∣∣∣λn+1

u∫
u0

K (u, z)

z∫
u0

K (z, z1) · · ·
zn−1∫
u0

K (zn−1, zn)ỹ (zn, ζ) dzn . . . dz1dz

∣∣∣∣∣∣
6 |λ|n+1

αn+1 (u1 − u0)
n+1

(n+ 1)!
max
ζ∈{0,1}

γ (ζ)→ 0 as n→∞.

Hence (3.17) has a series solution

ỹ (u, ζ) = f̃ (u, ζ1) + λ

u∫
u0

K (u, z) f̃ (z, ζ1) dz

+λ2
u∫

u0

K (u, z)

z∫
u0

K (z, z1)f̃ (z1, ζ1) dz1dz + · · ·

Therefore,

yζ∈[0,1] (u) = fζ1∈[0,1] (u) + λ

u∫
u0

K (u, z) fζ1∈[0,1] (z) dz

+λ2
u∫

u0

K (u, z)

z∫
u0

K (z, z1)fζ1∈[0,1] (z1) dz1dz + · · · .
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Hence,

[yL, yU ] (u) = [fL, fU ] (u) + λ

u∫
u0

K (u, z) [fL, fU ] (z) dz

+ λ2
u∫

u0

K(u, z)

z∫
u0

K (z, z1) [fL, fU ] (z1) dz1dz + · · ·.

�

3.3.1. Solution of interval Volterra integral equation by the method of Resolvent
Kernel.

Theorem 3.9. Consider an IVIE of the form

[yL, yU ] (u) = [fL, fU ] (u) + λ

u∫
u0

K (u, z) [yL, yU ] (z) dz. (3.21)

Then it has a solution of the form

[yL, yU ] (u) = [fL, fU ] (u) + λ

u∫
u0

R (u, z;λ) [yL (z) , yU (z)] dz, (3.22)

where, R (u, z;λ) =
∞∑
n=1

λn−1Kn (x, z) is the resolvent kernel.

Proof. Here the iterated kernel Kn (u, z) is defined as

K1 (u, z) = K (u, z) , Kn (u, z) =

u∫
z

K (u, z1)Kn−1 (z1, z) dt.

From Proposition 3.5, (3.21) is equivalent to

yζ∈[0,1] (u) = fζ1∈[0,1] (u) + λ

u∫
u0

K (u, z) yζ∈[0,1] (z) dz

Therefore for fixed ζ, ζ1 ∈ [0, 1]

ỹ (u, ζ) = f̃ (u, ζ1) + λ

u∫
u0

K (u, z) ỹ (z, ζ) dz

Let

ỹ0 (u, ζ) = f̃ (u, ζ1) . (3.23)
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Then,

ỹ1 (u, ζ) = f̃ (u, ζ1) + λ

u∫
u0

K (u, z) ỹ0 (z, ζ) dz

= f̃ (u, ζ1) + λ

u∫
u0

K (u, z) f̃ (z, ζ1) dz

Proceeding in this way and using (3.23), we get

ỹn (u, ζ) = f̃ (u, ζ1) + λ

u∫
u0

K (u, z) f̃ (z, ζ1) dz + λ2
u∫

u0

K2 (u, z) f̃ (z, ζ1) dz + · · ·

+λn
u∫

u0

Kn (u, z) f̃ (z, ζ1) dz.

Therefore, ∀ζ ∈ [0, 1],

ỹ (u, ζ) = lim
n→∞

ỹn (u, ζ) = f̃ (u, ζ1) +

u∫
u0

( ∞∑
n=1

λnKn (u, z)

)
f̃ (z, ζ1) dz

= f̃ (u, ζ1) + λ

u∫
u0

R (u, z;λ)f̃ (z, ζ1) dz

This gives,

{ỹ (u, ζ) : ζ ∈ [0, 1]} =

f̃ (u, ζ1) + λ

u∫
u0

R (u, z;λ)f̃ (z, ζ1) dz : ζ1 ∈ [0, 1]

 .

i.e.,

ỹζ∈[0,1] (u) = f̃ζ1∈[0,1] (u) + λ

u∫
u0

R (u, z;λ)f̃ζ1∈[0,1] (z) dz.

Hence, by the equivalency of parametric form, we have

[yL, yU ] (u) = [fL, fU ] (u) + λ

u∫
u0

R (u, z;λ) [yL (z) , yU (z)] dz.

This completes the proof. �
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4. Illustrative examples

To validate all the methods, three numerical examples are considered and solved.

Example 4.1. Let us consider the interval IVP:

d2

du2
[yL (u) , yU (u)] + u

d

du
[yL (u) , yU (u)] + [yL (u) , yU (u)] = 0

with the initial conditions

[yL (0) , yU (0)] = [1, 2] and [y′L (0) , y′U (0)] = [0, 1] . (4.1)

Solution. The parametric form of (4.1) is

y′′ζ∈[0,1] (u) + uy′ζ∈[0,1] (u) + yζ∈[0,1] (u) = 0

with the initial conditions

yζ∈[0,1] (0) = {1 + ζ : ζ ∈ [0, 1]} and y′ζ∈[0,1] (0) = {ζ : ζ ∈ [0, 1]} . (4.2)

Therefore, for a fixed ζ ∈ [0, 1], we have

y′′ (u, ζ) + uy′ (u, ζ) + y (u, ζ) = 0.

Let us take,

v (u, ζ1) = y′′ (u, ζ) . (4.3)

Integrating (4.3) from 0 to u and using the second initial condition of (4.2), we obtain

y′ (u, ζ) =

∫ u

0

v (z, ζ1) dz + ζ. (4.4)

Again, integrating (4.4) from 0 to u and using (4.2), it gives

y (u, ζ) =

∫ u

0

(u− z) v (z, ζ1) dz + ζu+ 1 + ζ. (4.5)

Now, multiplying (4.3) by 1, (4.4) by u and (4.5) by 1 and adding, we get,

v (u, ζ1) = −
∫ u

0

(2u− z) v (z, ζ1) dz − (1 + ζ)− 2ζu.

Therefore, the required interval integral equation is

[vL (u) , vU (u)] = − [1, 2u+ 2]−
∫ u

0

(2u− z) [vL (z) , vU (z)] dz.

This is the required interval Volterra integral equation.

Example 4.2. Consider the following interval Volterra integral equation:

[yL, yU ] (u) =
[
eu

2

, 3eu
2
]

+

∫ u

0

eu
2−z2 [yL (z) , yU (z)] dz (4.6)

Solution. The parametric representation of the equation (4.6) is

ỹ (u, ζ) = f̃ (u, ζ1) +

∫ u

0

eu
2−z2 ỹ (z, ζ) dz , ∀ζ, ζ1 ∈ [0, 1] (4.7)

where f̃ (u, ζ1) = (1 + 2ζ1) eu
2

and ỹ (u, ζ) = yL (u) + ζ (yU (u)− yL (u)).
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Therefore, by the method of successive approximation, the solution of (4.7) is

ỹ (u, ζ)= f̃ (u, ζ1)+

u∫
0

K (u, z) f̃ (z, ζ1) dz+

u∫
0

K (u, z)

z∫
0

K (z, z1)f̃ (z1, ζ1) dz1dz + · · ·

⇒ ỹ (u, ζ) = (1 + 2ζ1) eu
2

+ (1 + 2ζ1) eu
2

u+ (1 + 2ζ1) eu
2 u2

2!
+ · · ·

⇒ ỹ (u, ζ) = (1 + 2ζ1) eu
2+u

Therefore, the solution of the equation (4.6) is

[yL (u) , yU (u)] =
[
eu

2+u, 3eu
2+u
]
.

Example 4.3. Consider the following interval Volterra integral equation:

[yL, yU ] (u) = [1, 2] +

∫ u

0

[yL (z) , yU (z)] dz. (4.8)

Solution. The parametric representation of the equation (4.8) is

ỹ (u, ζ) = f̃ (u, ζ1) +

∫ u

0

ỹ (z, ζ) dz , ∀ζ, ζ1 ∈ [0, 1]

where f̃ (u, ζ1) = 1 + ζ1 and ỹ (u, ζ) = yL (u) + ζ (yU (u)− yL (u))

(4.9)

Here,

Kn (u, z) =

∫ u

z

K1 (u, z1)Kn−1 (z1, z) dz1 =
(u− z)n−1

(n− 1)!
, n = 1, 2, 3, . . .

Therefore, the resolvent kernel for this problem is of the form

R (u, z; 1) =
∑∞

n=1
Kn (u, z) =

∑∞

n=1

(u− z)n−1

(n− 1)!
= e(u−z).

Therefore, the solution of the equation (4.9) is of the form

ỹ (u, ζ) = 1 + ζ1 +

∫ u

0

(1 + ζ) eu−zdz ∀ζ, ζ1 ∈ [0, 1] .

Hence, the required solution of the equation (4.8) is

[yL (u) , yU (u)] = [eu, 2eu] .

5. Conclusion

In this work, the concept imprecise Volterra integral equation is introduced in
the interval form with a brief motivation. Then the solution procedure of interval
Volterra integral equation is derived in parametric form in a simple way. Then all
the results including solution procedure regarding interval Volterra integral equation
are derived in a simple way. In these derivations, all the results are presented in
parametric form of intervals. After that, a set of examples have been solved for the
illustration of the solution procedure. This concept of imprecise Volterra integral
equation can be implemented in various real-life problems viz. analyses of diffusion
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and heat transferring, power sector, web-security problems in which fluctuation of
parameters is occurred due to the uncertainty.

For future research, one may develop the same for nonlinear interval Volterra type
integral equations. One can develop the numerical methods for solving an interval
Volterra integral equation. Also, this concept can be extended by introducing interval-
valued kernels etc.
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bourg, 25(1991), 324-329.

[21] Ogawa, S., Stochastic integral equations of Fredholm type, in ”Harmonic, Wavelet and
P-Adic Analysis”, (2007), 331-342.

[22] Otadi, M., Mosleh, M., Simulation and evaluation of interval-valued fuzzy linear Fred-
holm integral equations with interval-valued fuzzy neural network, Neurocomputing,
205(2016), 519-528.

[23] Ramezanzadeh, M., Heidari, M., Fard, O., Borzabadi, A., On the interval differential
equation: Novel solution methodology, Adv. Differ. Equ., (2015), 10.1186/s13662-015-
0671-8.

[24] Samadyar, N., Mirzaee, F., Numerical solution of two-dimensional weakly singular sto-
chastic integral equations on non-rectangular domains via radial basis functions, Eng.
Anal. Bound. Elem., 101(2019), 27-36.

[25] Samadyar, N., Mirzaee, F., Orthonormal Bernoulli polynomials collocation approach for
solving stochastic Ito-Volterra integral equations of Abel type, Int. J. Numer. Model.,
33(2020), no. 1, e2688.

[26] Stefanini, L., Bede, B., Generalized Hukuhara differentiability of interval-valued func-
tions and interval differential equations, Nonlinear Anal. Theory Methods Appl.,
71(2009), no. 3-4, 1311-1328.

[27] Subrahmanyam, P.V., Sudarsanam, S.K., A note on fuzzy Volterra integral equations,
Fuzzy Sets Syst., 81(1996), no. 2, 237-240.

[28] Vorobiev, D., Seikkala, S., Towards the theory of fuzzy differential equations, Fuzzy Sets
Syst., 125(2002), no. 2, 231-237.

[29] Wang, B., Zhu, Q., Stability analysis of Markov switched stochastic differential equations
with both stable and unstable subsystems, Syst. Control Lett., 105(2017), 55-61.

[30] Yong, J.M., Backward stochastic Volterra integral equations – A brief survey, Appl.
Math. J. Chin. Univ., 28 (2013), no. 4, 383-394.

[31] Zakeri, K.A., Ziari, S., Araghi, M.A.F., Perfilieva, I., Efficient numerical solution to a
bivariate nonlinear fuzzy Fredholm integral equation, IEEE Trans. Fuzzy Syst., (2019).

[32] Ziari, S., Perfilieva, I., Abbasbandy, S., Block-pulse functions in the method of successive
approximations for nonlinear fuzzy Fredholm integral equations, Differ. Equ. Dyn. Syst.,
(2019), 1-15.

Subhajit Das
Bhagalpur College of Engineering, Sabour,
Bhagalpur-813210, Bihar, India

e-mail: mathsubhajitdas@gmail.com

https://orcid.org/0000-0002-6626-6544


Study on interval Volterra integral equations 319

Md Sadikur Rahman
Khalisani Mahavidyalaya, Department of Mathematics,
Khalisani, Chandannagar Hooghly - 712138, West Bengal, India
(Corresponding author)
e-mail: mdsadikur.95@gmail.com

Ali Akbar Shaikh
University of Burdwan, Department of Mathematics,
Burdwan-713104, West Bengal, India
e-mail: aliashaikh@math.buruniv.ac.in

Asoke Kumar Bhunia
University of Burdwan, Department of Mathematics,
Burdwan-713104, West Bengal, India
e-mail: akbhunia@math.buruniv.ac.in

https://orcid.org/0000-0002-3559-1993
https://orcid.org/0000-0001-6479-7002
https://orcid.org/0000-0001-8193-3141
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Approaching the split common solution problem
for nonlinear demicontractive mappings by means
of averaged iterative algorithms

Vasile Berinde and Khairul Saleh

Abstract. We consider new iterative algorithms for solving split common solu-
tion problems in the class of demicontractive mappings. These algorithms are
obtained by inserting an averaged term into the algorithms previously used in
[He, Z. and Du, W-S., Nonlinear algorithms approach to split common solu-
tion problems, Fixed Point Theory Appl. 2012, 2012:130, 14 pp] for the case of
quasi-nonexpansive mappings. In this way, we are able to solve the split common
solution problem in the larger class of demicontractive mappings, which strictly
includes the class of quasi-nonexpansive mappings. Our investigation is based on
the embedding of demicontractive operators in the class of quasi-nonexpansive
operators by means of averaged mappings. For the considered algorithms we prove
weak and strong convergence theorems in the setting of a real Hilbert space.
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1. Introduction

Let C and D be nonempty subsets of the real Hilbert spaces H1 and H2, respec-
tively, and A : H1 → H2 be a linear bounded operator. Let also f : C × C → R and
F : D ×D → R be two bi-functions.

The split equilibrium problem (SEP), see [10], is asking to find a point c ∈ C
such that

f(c, c) ≥ 0, for all c ∈ C (1.1)
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This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives

4.0 International License.

https://orcid.org/0000-0002-3677-795X
https://orcid.org/0000-0003-3811-249X
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


322 Vasile Berinde and Khairul Saleh

and

d = Ac ∈ D is such that F (d, d) ≥ 0, for all d ∈ D. (1.2)

Problem (1.1) alone is the classical equilibrium problem (EP) and its solution set is
usually denoted by EP (f).

Several important problems in nonlinear analysis, e.g., the optimization prob-
lems, variational inequalities problems, saddle point problems, the Nash equilibrium
problems, fixed point problems, complementary problems, bilevel problems, and semi-
infinite problems, are special cases of the classical equilibrium problem and have rele-
vant applications in mathematical programming with equilibrium constraint, see [11]
and references therein.

In turn, the split equilibrium problem (SEP) (1.1)+(1.2) defines a way to split
the solution between two different subsets such that the solution of the equilibrium
problem (1.1) and its image by the linear bounded operator A leads to the solution
of the second equilibrium problem (1.2).

Let G : C → C be a mapping with Fix(G) := {v ∈ D : Gv = v} 6= ∅ and
f : D ×D → R a bi-function.

In this paper, our interest is to study the following split common solution problem
(SCSP) for equilibrium problems and fixed point problems:

find u ∈ C such that u ∈ Fix (G)

and

Au ∈ D with f(Au, v) ≥ 0, for all v ∈ D.
Denote the set of solutions of this problem by

Ω := {u ∈ Fix(G) : Au ∈ EP (f)}.

Example 1.1. Let H1 = H2 = R, C = [0, 1] and D = [−100,−7/8]. Let Au = −u for
all u ∈ R and

Gu =

{
7/8, if 0 ≤ u < 1

1/4, if u = 1.
(1.3)

The mapping G defined on C is 2
3 -demicontractive but it is neither quasi-nonexpansive

nor nonexpansive [3]. Define f : D ×D → R by f(u, v) = u− v for all u, v ∈ D. It is
clear that A is a linear bounded operator, Fix(G) =

{
7
8

}
and A

(
7
8

)
= − 7

8 ∈ EP (f).
Thus, Ω = {u ∈ Fix(G) : Au ∈ EP (f)} 6= ∅.

Example 1.2. Let H1 = R2, H2 = R with the standard norms. Let C = {u ∈ R2 :
‖u‖ ≤ 1} and D = [−100,−5/6]. Let Au = −u2 for all u = (u1, u2) ∈ R2 and

Gu =

{
(0, 5/6), if u 6= (0, 1)

(0, 1/3), if u = (0, 1).
(1.4)

It is easy to see that G defined on C is a 1
2 -demicontractive mapping.

Define f : D × D → R by f(v, w) = v − w for all v, w ∈ D. It is clear that A is
a linear bounded operator, Fix(G) =

{
(0, 56 )

}
and A

(
0, 56
)

= − 5
6 ∈ EP (f). Thus,

Ω = {u ∈ Fix(G) : Au ∈ EP (f)} 6= ∅.
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He and Du [11] presented some new iterative algorithms for solving the split
common solution problems for equilibrium problems and fixed point problems of non-
linear quasi-nonexpansive mappings.

Our aim in this paper is to construct new averaged iterative algorithms for
solving the split common solutions problem in the setting of Hilbert spaces for the
the larger class of demicontractive mappings, thus extending the main results in He
and Du [11].

Our results are obtained by considering new averaged iterative algorithms for
which we prove weak and strong convergence theorems.

2. Preliminaries

Let H be a real Hilbert space with norm ‖ ·‖ and inner product 〈·, ·〉. Let D ⊂ H
be a closed convex set, and consider the operator G : D → D.

Recall that the mapping G is said to be

(a) nonexpansive if

‖Gu−Gv‖ ≤ ‖u− v‖, for all u, v ∈ D; (2.1)

(b) quasi-nonexpansive if Fix(G) 6= ∅ and

‖Gv − v∗‖ ≤ ‖v − v∗‖, for all v ∈ D and v∗ ∈ Fix(G); (2.2)

(c) α-demicontractive if Fix(G) 6= ∅ and there exists a positive number α < 1 such
that

‖Gv − v∗‖2 ≤ ‖v − v∗‖2 + α‖v −Gv‖2, (2.3)

for all v ∈ D and v∗ ∈ Fix(G);
(d) firmly nonexpansive if

‖Gu−Gv‖2 ≤ ‖u− v‖2 − ‖u− v − (Gu−Gv)‖2, (2.4)

for all u, v ∈ D.

By the above definitions, it is clear that any firmly nonexpansive mapping is non-
expansive, any nonexpansive mapping G with Fix(G) 6= ∅ is demicontractive and
that any quasi-nonexpansive mapping is demicontractive, too, but the reverses are no
longer true, as illustrated by the previous Examples 1.1 and 1.2.

It is well known, see [15], that any Hilbert space H satisfies the Opial’s condition,
that is, if {up} is a sequence in H which converges weakly to a point u ∈ H, then we
have

lim inf
p→∞

‖up − u‖ < lim inf
p→∞

‖up − v‖, for all v ∈ H, v 6= u.

The following lemmas and proposition are very important in the proof our main
results.

Lemma 2.1. [2] Let H be a real Hilbert space and D ⊂ H a closed and convex set. If
G : D → D is α-demicontractive, then for any ϕ ∈ (0, 1− α), the map

Gϕ = (1− ϕ)I + ϕG

is quasi-nonexpansive.
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Lemma 2.2. [11] Let H be a real Hilbert space, D ⊂ H a closed and convex set and
G : D → D a mapping. Then, for any ϕ ∈ (0, 1), we have Fix(Gϕ) = Fix(G).

Definition 2.3. [13] Let D be a nonempty, closed, and convex subset of a real Hilbert
spaceH and G a mapping from D into D. The mapping G is said to be zero-demiclosed
if, for any sequence {up} which weakly converges to u, and if the sequence {Gup}
strongly converges to zero, then Gu = 0.

Proposition 2.4. [11] Let D be a nonempty, closed, and convex subset of a real Hilbert
space with zero vector 0 and G a mapping from D into D. Then the following asser-
tions hold.

(i) G is zero-demiclosed if and only if I −G is demiclosed at 0;
(ii) If G is a nonexpansive mappings and there is a bounded sequence {up} ⊂ H such

that ‖up −Gup‖ → 0 as p→ 0, then G is zero-demiclosed.

Lemma 2.5. [7] Let D be a nonempty, closed, and convex subset of H and f : D×D →
R be a bi-function that satisfies the following conditions.

(C1) f(v, v) = 0 for all v ∈ D;
(C2) f is monotone, that is, f(u, v) + f(v, u) ≥ 0;
(C3) for every u, v, w ∈ D, lim supt→0 f(tw + (1− t)u, v) ≤ f(u, v);
(C4) for every u ∈ D, F (v) ≡ f(u, v) is convex and lower semi-continuous.

Let µ > 0 and u ∈ H. Then there exists w ∈ D such that

f(w, v) +
1

µ
〈v − w,w − u〉 ≥ 0

for all v ∈ D.

Lemma 2.6. [9] Let D be a nonempty, closed, and convex subset of H and let f be a
bi-function from D ×D into R that satisfies (C1)-(C3). For µ > 0 and u ∈ H, define
a mapping

T fµ (u) =

{
w ∈ D : f(w, v) +

1

µ
〈v − w,w − u〉 ≥ 0, for all v ∈ D

}
. (2.5)

Then the following assertions hold:

(a) T fµ is single-valued and f(T fµ ) = EP (f) for any µ > 0 and EP (f) is closed and
convex;

(b) T fµ is firmly nonexpansive.

Lemma 2.7. [8] The following assertions hold for all u, v ∈ H.
(a) ‖u+ v‖2 ≤ ‖v‖2 + 2〈u, u+ v〉 and ‖u− v‖2 = ‖u‖2 + ‖v‖2 − 2〈u, v〉.
(b) ‖au+ (1− a)v‖2 = a‖u‖2 + (1− a)‖v‖2 − a(1− a)‖u− v‖2 for a ∈ [0, 1].

Lemma 2.8. [10] Let T fµ be as in (2.5). Then for µ, τ > 0 and u, v ∈ H,

‖T fµu− T fτ v‖ ≤ ‖u− v‖+
|τ − µ|
τ

∥∥T fτ v − v∥∥ .
In particular, T fµ is nonexpansive for any µ > 0.
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The next lemma is due to Li and He [12] and will be useful in proving our main
results.

Lemma 2.9. [12] Let F1, · · · , Fn : H1 → H1 be quasi-nonexpansive mappings and set
T =

∑n
i=1 biFai , where bi ∈ (0, 1) with

∑n
i=1 bi = 1, and Fai = (1− ai)I + aiFi with

ai ∈ (0, 1), i = 1, 2, · · · , n. Then T is quasi-nonexpansive and

Fix(T ) =

n⋂
i=1

Fix(Fi) =

n⋂
i=1

Fix(Fai).

3. Split common solutions in the class of demicotractive mappings

In this section we prove convergence theorems for averaged algorithms used for
finding split common solutions for demicontractive mappings. Let H1 and H2 be two
Hilbert spaces.

In the following theorem, we prove the weak convergence of an averaged algo-
rithm used for solving the split common solution for equilibrium problems and fixed
point problems of nonlinear demicontractive mappings.

Theorem 3.1. Let C ⊂ H1 and D ⊂ H2 be two nonempty closed convex sets. Let
G : C → C be a zero-demiclosed α-demicontractive mapping and f : D ×D → R be a
bi-function with

Ω = {u ∈ Fix(G) : Au ∈ EP (f)} 6= ∅,
where A : H1 → H2 is a bounded linear operator with its adjoint A∗. Consider the
sequences {up} and {vp} generated as follows:

v1 ∈ C,
up = T fµp

Avp, {µp} ⊂ (0,∞),

vp+1 = (1− ap)wp + ap [(1− ϕ)wp + ϕGwp] , ϕ ∈ (0, 1− α),

wp = PC(vp + βA∗(T fµp
− I)Avp), β ∈

(
0, 1
‖A∗‖

)
, for all p ∈ N,

(3.1)
where lim infp→∞ µp > 0, PC is the projection operator from H1 onto C and {ap} is a
sequence in [ε, 1− ε] with ε ∈ (0, 12 ). Then {vp} converges weakly to v∗ ∈ Ω, and {up}
converges weakly to Av∗ ∈ EP (f).

Proof. Since G is an α-demicontractive mapping, in view of Lemma 2.1 the averaged
mapping

Gϕ := (1− ϕ)I + ϕG (3.2)

is quasi-nonexpansive for ϕ ∈ (0, 1 − α). Here I is the identity mapping. Hence, in
Algorithm (3.1) we can write

vp+1 = (1− ap)wp + apGϕwp.

Let Ωϕ := {u ∈ Fix(Gϕ) : Au ∈ EP (f)} 6= ∅ and u ∈ Ωϕ. Using Lemma 2.6 and
Lemma 2.7, it is easy to see that for any p ∈ N,

‖T fµp
Avp −Au‖2 ≤ ‖Avp −Au‖2 − ‖T fµp

Avp −Avp‖2. (3.3)
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We also obtain

2β〈vp − u,A∗
(
T fµp
− I
)
Avp〉

= 2β〈A(vp − u) + (T fµp
− I)Avp − (T fµp

− I)Avp, (T
f
µp
− I)Avp〉

≤ 2β

(
1

2
‖(T fµp

− I)Avp‖2 − ‖(T fµp
− I)Avp‖2

)
= −β‖(T fµp

− I)Avp‖2.

Since for any p ∈ N,

‖A∗(T fµp
− I)Avp‖2 ≤ ‖A∗‖2‖(T fµp

− I)Avp‖2, (3.4)

and Gϕ is quasi-nonexpansive, we have

‖vp+1 − u‖2

= (1− ap)‖wp − u‖2 + ap‖Gϕwp − u‖2 − (1− ap)ap‖wp −Gϕwp‖2

≤ ‖wp − u‖2 − ε2‖wp −Gϕwp‖2 (Since ε ∈ [ap, 1− ap])

= ‖PC(vp + βA∗(T fµp
− I)Avp)− PCu‖2 − ε2‖wp −Gϕwp‖2

≤ ‖vp + βA∗(T fµp
− I)Avp − u‖2 − ε2‖wp −Gϕwp‖2

= ‖vp−u‖2 + ‖βA∗(T fµp
−I)Avp‖2 + 2β〈vp − u,A∗(T fµp

− I)Avp〉 − ε2‖wp −Gϕwp‖

≤ ‖vp − u‖2 + β2‖A∗‖2‖(T fµp
− I)Avp‖2 − β‖(T fµp

− I)Avp‖2 − ε2‖wp −Gϕwp‖

= ‖vp − u‖2 − β(1− β‖A∗‖2)‖(T fµp
− I)Avp‖2 − ε2‖wp −Gϕwp‖. (3.5)

Since β ∈ (0, 1
‖A∗‖2 ) and β(1− β‖A∗‖2) > 0, we have

‖vp+1 − u‖ ≤ ‖wp − u‖ ≤ ‖vp − u‖ (3.6)

and by (3.5),

ε2‖wp −Gϕwp‖2 + β(1− β‖A∗‖2)‖(T fµp
− I)Avp‖2 ≤ ‖vp − u‖2 − ‖vp+1 − u‖2, (3.7)

for any p ∈ N. Note that since u ∈ Fix(Gϕ), it follows that the sequence {‖vp − u‖}
is convergent. Inequalities (3.6) and (3.7) imply that

lim
p→∞

‖vp − u‖ = lim
p→∞

‖wp − u‖, (3.8)

lim
p→∞

‖wp −Gϕwp‖ = 0

and

lim
p→∞

‖(T fµp
− I)Avp‖ = 0. (3.9)

We obtain

‖wp − vp‖ = ‖PC
(
vp + βA∗(T fµp

− I)Avp

)
− PCvp‖

≤ β‖A∗(T fµp
− I)Avp‖ → 0 as p→∞.
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Since limp→∞ ‖vp−u‖ exists, {vp} is bounded and thus, {vp} has a weakly convergence
subsequence {vpk}. Let v∗ ∈ C be the weak limit of {vpk}. Hence,

Avpk → Av∗ ∈ D, ypk → v∗

and

T fµpk
Avpk → Av∗.

Since Gϕ is a zero-demiclosed mapping, and ypk → v∗, we obtain v∗ ∈ Fix(Gϕ).
Applying Lemma 2.6, EP (f) = Fix(T fµ ) for any µ > 0. We claim that T fµAv

∗ = Av∗.

Suppose T fµAv
∗ 6= Av∗. Since Avp−T fµp

Avp = (I−T fµp
)Avp → 0 as p→∞, applying

the Opial’s property and Lemma 2.8 yields

lim inf
j→∞

‖Avpk −Av∗‖ < lim inf
j→∞

‖Avpk − T fµAv∗‖

≤ lim inf
j→∞

(
‖Avpk − T fµpk

Avpk‖+ ‖T fµpk
Avpk − T fµAv∗‖

)
= lim inf

j→∞
‖T fµAv∗ − T fµpk

Avpk‖

≤ lim inf
j→∞

(
‖Avpk −Av∗‖+

|µpk − µ|
µpk

‖T fµpk
Avpk −Avpk‖

)
= lim inf

j→∞
‖Avpk −Av∗‖,

which lead to a contradiction. So Av∗ ∈ Fix(T fµ ) = EP (f), and hence

v∗ ∈ Ωϕ = {u ∈ Fix(Gϕ) : Au ∈ EP (f)}.

Now we prove that {vp} converges weakly to v∗ ∈ Ωϕ. Otherwise, there exists a sub-
sequence {vpl} of {vp} such that vpl → u∗ ∈ Ωϕ with u∗ 6= v∗. By Opial’s condition,

lim inf
l→∞

‖vpl − u∗‖ < lim inf
l→∞

‖vpl − v∗‖ < lim inf
l→∞

‖vpl − u∗‖.

This is a contradiction. Hence, {vp} converges weakly to an element v∗ ∈ Ωϕ.
Finally, we prove that {up} converges weakly to Av∗ ∈ EP (f). Since vp → v∗, we
have Avp → Av∗ as p→∞. Therefore, up := T fµp

Avp → Av∗ ∈ EP (f). �

Corollary 3.2. Let C ⊂ H1 and D ⊂ H2 be two nonempty closed convex sets. Let
G : C → C be a zero-demiclosed α-demicontractive mapping and f : D ×D → R be a
bi-function with

Ω = {u ∈ Fix(G) : Au ∈ EP (f)} 6= ∅,
where A : H1 → H2 is a bounded linear operator with its adjoint A∗. Consider the
sequences {up} and {vp} generated as follows:

v1 ∈ C,
up = T fµp

Avp, {µp} ⊂ (0,∞),

vp+1 = (1− ap)wp + apGwp,

wp = PC(vp + βA∗(T fµp
− I)Avp), β ∈

(
0, 1
‖A∗‖

)
, p ∈ N,

(3.10)
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where lim infp→∞ µp > 0, PC is the projection operator from H1 onto C and {ap} is a
sequence in [ε, 1− ε] with ε ∈ (0, 1). Then {vp} converges weakly to v∗ ∈ Ω, and {up}
converges weakly to Av∗ ∈ EP (f).

Proof. Consider Gϕ given in (3.2). By Lemma 2.2, for any ϕ ∈ (0, 1), we have
Fix(Gϕ) = Fix(G). We have

(1− ap)wp + apGϕwp = (1− ap)wp + ap((1− ϕ)wp + ϕGwp)

= (1− apϕ)wp + apϕGwp.

To obtain exactly the iterative scheme (3.10), we simply denote ap := ϕap ∈ (0, 1) for
all p ∈ N. �

Next we prove a strong convergence theorem of an iterative method to split
common solution for a demicontractive mapping.

Theorem 3.3. Let C ⊂ H1 and D ⊂ H2 be two nonempty closed convex sets. Let
G : C → C be a zero-demiclosed α-demicontractive mapping and f : D × D → R be
a bi-function with Ω = {u ∈ Fix(G) : Au ∈ EP (f)} 6= ∅, where A : H1 → H2 is
a bounded linear operator with its adjoint A∗. Consider the sequence {up} and {vp}
generated as follows:

v1 ∈ C,
up = T fµp

Avp, {rn} ⊂ (0,∞),

yp = (1− ap)wp + ap[(1− ϕ)wp + ϕGwp], ϕ ∈ (0, 1− α),

wp = PC(vp + βA∗(T fµp
− I)Avp), β ∈

(
0, 1
‖A∗‖2

)
Cp+1 = {v ∈ Cp : ‖yp − v‖ ≤ ‖wp − v‖ ≤ ‖vp − v‖} , with C1 = C,

vp+1 = PCp+1
(v1), p ∈ N.

(3.11)

where lim infp→∞ rn > 0, PC is the projection operator from H1 onto C, and {ap} is
a sequence in [ε, 1− ε], ε ∈ (0, 1). Then vp → v∗ ∈ Ω and up → Av∗ ∈ EP (f).

Proof. Consider the mapping Gϕ given in (3.2). Similar to the proof of Theorem 3.1,
the sequence {yn} in Algorithm (3.11) can be written as

yp = (1− ap)wp + apGϕwp.

Let Ωϕ = {u ∈ Fix(Gϕ) : Au ∈ EP (f)} 6= ∅. We claim that Ωϕ ⊂ Cp for p ∈ N.
In fact, let u ∈ Ωϕ. Following the same argument as in the proof of Theorem 3.1, we
have

2β〈vp − u,A∗(T fµp
− I)Avp〉 ≤ −β‖(T fµp

− I)Avp‖2, (3.12)

and for any p ∈ N,

‖A∗(T fµp
− I)Avp‖2 ≤ ‖A∗‖2‖(T fµp

− I)Avp‖2. (3.13)
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For any p ∈ N, we obtain

‖yp − u‖ ≤ ‖wp − u‖2 − (1− ap)ap‖wp −Gϕwp‖2

≤ ‖vp + βA∗(T fµp
− I)Avp − u‖2 − ε2‖wp −Gϕwp‖2

= ‖vp−u‖2 + ‖βA∗(T fµp
−I)Avp‖2 + 2β〈vp − u,A∗(T fµp

− I)Avp〉 − ε2‖wp −Gϕwp‖2

≤ ‖vp − u‖2 + β2‖A∗‖2‖(T fµp
− I)Avp‖2 − β‖(T fµp

− I)Avp‖2 − ε2‖wp −Gϕwp‖2

≤ ‖vp − u‖2 − β(1− β‖A∗‖2)‖(T fµp
− I)Avp‖2 − ε2‖wp −Gϕwp‖2.

Since β ∈
(

0, 1
‖A∗‖2

)
, β
(
1− β‖A∗‖2

)
> 0, it follows that

‖yp − u‖ ≤ ‖wp − u‖ ≤ ‖vp − u‖, (3.14)

and thus p ∈ Cp for all p ∈ N. Hence, Ω ⊂ Cp and Cp 6= ∅ for all p ∈ N.
Now we prove that Cp is a closed convex set for each p ∈ N. It is not hard to verify
that Cp is closed for each p, so it suffices to verify that Cp is convex for each p ∈ N.
Indeed, let x1, x2 ∈ Cp+1. For any γ ∈ (0, 1), since

‖yp − (γx1 + (1− γ)x2‖2

= ‖γ(yp − x1) + (1− γ)(yp − x2)‖2

= γ‖yp − x1‖2 + (1− γ)‖yp − x2‖2 − γ(1− γ)‖x1 − x2‖2

≤ γ‖wp − x1‖2 + (1− γ)‖wp − x2‖2 − γ(1− γ)‖x1 − x2‖2

= ‖wp − (γx1 + (1− γ)x2‖2,
the following inequality holds

‖yp − (γx1 + (1− γ)x2)‖ ≤ ‖wp − (γx1 + (1− γ)x2)‖.
Similarly, we also have

‖wp − (γx1 + (1− γ)x2)‖ ≤ ‖vp − (γx1 + (1− γ)x2)‖,
which implies that γx1 + (1− γ)x2 ∈ Cp+1. Hence, Cp+1 is convex.
Notice that Cp+1 ⊂ Cp and vp+1 = PCp+1

(v1) ⊂ Cp. Then ‖vp+1−v1‖ ≤ ‖vp−v1‖ for
n > 2. It follows that limp→∞ ‖vp − v1‖ exists. Hence {vp} is bounded, which yields
{wp} and {yp} are bounded. For any k, p ∈ N with k > p, from vk = PCk

(v1) ⊂ Cp
and the character (iii) of the projection operator P, we have

‖vp − vk‖2 + ‖v1 − vk‖2 = ‖vp − PCk
(v1)‖2 + ‖v1 − PCk

(v1)‖2 ≤ ‖vp − v1‖2. (3.15)

Since limp→∞ ‖vp − v1‖ exists, it follows that limp→∞ ‖vp − vk‖ = 0, which implies
that {vp} is a Cauchy sequence.
Let vp → v∗. One can claim that v∗ ∈ Ω. Firstly, by the fact that

vp+1 = PCp+1
(v1) ∈ Cp+1 ⊂ Cp,

we have

‖yp − vp‖ ≤ ‖yp − vp+1‖+ ‖vp+1 − vp‖ ≤ 2‖vp+1 − vp‖ → 0, as p→∞ (3.16)

and

‖wp − vp‖ ≤ ‖wp − vp+1‖+ ‖vp+1 − vp‖ ≤ 2‖vp+1 − vp‖ → 0, as p→∞. (3.17)
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Setting ρ = β(1− β‖A∗‖2), we obtain

ρ‖(T fµp
− I)Avp‖2 + ε2‖wp − Twp‖2 ≤ ‖vp − v∗‖2 − ‖yp − v∗‖2

≤ ‖vp − yp‖ (‖vp − v∗‖+ ‖yp − v∗‖) .

So

lim
p→∞

‖Gϕwp − wp‖ = 0

and

lim
p→∞

‖(T fµp
− I)Avp‖ = 0.

Let r > 0. Since vp → v∗ as p→∞, Lemma 2.8 implies that

‖T fµp
Av∗ −Av∗‖ ≤ ‖T fµp

Av∗ − T fµp
Avp‖+ ‖T fµp

Avp −Avp‖+ ‖Avp −Av∗‖

≤ 2‖Avp −Av∗‖+

(
1 +
|rn − r|
rn

)
‖T fµp

Avp −Avp‖ → 0, as p→∞.

So T fµAv
∗ = Av∗, which says that Av∗ ∈ Fix(T fµp

) = EP (f). On the other hand,
since vp − wp → 0 and vp → v∗, we conclude that wp → v∗. Notice that Gϕ is zero-
demiclosed quasi-nonexpansive, Gϕv

∗ = v∗. We also deduce that {up} := {T fµp
Avp}

converges strongly to Av∗ ∈ EP (f). �

Corollary 3.4. Let C ⊂ H1 and D ⊂ H2 be two nonempty closed convex sets. Let
G : C → C be a zero-demiclosed α-demicontractive mapping and f : D × D → R be
a bi-function with Ω = {u ∈ Fix(G) : Au ∈ EP (f)} 6= ∅, where A : H1 → H2 is
a bounded linear operator with its adjoint A∗. Consider the sequences {up} and {vp}
generated as follows:

v1 ∈ C,
up = T fµp

Avp, {rn} ⊂ (0,∞),

yp = (1− ap)wp + apGwp,

wp = PC(vp + βA∗(T fµp
− I)Avp), β ∈

(
0, 1
‖A∗‖2

)
Cp+1 = {v ∈ Cp : ‖yp − v‖ ≤ ‖wp − v‖ ≤ ‖vp − v‖} , with C1 = C,

vp+1 = PCp+1(v1), p ∈ N.

(3.18)

where lim infp→∞ rn > 0, PC is the projection operator from H1 onto C, and {ap} is
a sequence in [ε, 1− ε], ε ∈ (0, 1). Then vp → v∗ ∈ Ω and up → Av∗ ∈ EP (f).

Proof. Consider the mapping Gϕ given in (3.2). By Lemma 2.2, for any ϕ ∈ (0, 1),
we have Fix(Gϕ) = Fix(G). We have

(1−ap)wp+apGϕwp = (1−ap)wp+ap((1−ϕ)wp+ϕGwp) = (1−apϕ)wp+apϕGwp.

To obtain exactly the iterative scheme (3.18), we simply denote ap := ϕap ∈ (0, 1) for
all p ∈ N. �

We close this section by stating the strong convergence of an iterative scheme for
a split common solutions problem with a finite number of demicontractive mappings.
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Theorem 3.5. Let C ⊂ H1 and D ⊂ H2 be two nonempty closed convex sets. Let

G1, · · · , Gn : C → C

be a finite number of zero-demiclosed α-demicontractive mappings with

n⋂
i=1

Fix(Gi) 6= ∅

and f : D ×D → R be a bi-function with

Ω =

{
u ∈

n⋂
i=1

Fix(Gi) : Au ∈ EP (f)

}
6= ∅,

where A : H1 → H2 is a bounded linear operator with its adjoint A∗. Consider the
sequences {up} and {vp} generated as follows:

v1 ∈ C,
up = T fµp

Avp, {rn} ⊂ (0,∞),

yp = (1− ap)wp + ap
∑n
i=1 ci[(1− ϕi)wp + ϕiGwp], ci, ϕi ∈ (0, 1),

∑n
i=1 ci = 1,

wp = PC(vp + βA∗(T fµp
− I)Avp), β ∈

(
0, 1
‖A∗‖2

)
Cp+1 = {v ∈ Cp : ‖yp − v‖ ≤ ‖wp − v‖ ≤ ‖vp − v‖} , with C1 = C,

vp+1 = PCp+1(v1), p ∈ N.
(3.19)

where lim infp→∞ rn > 0, PC is the projection operator from H1 onto C, and {ap} is
a sequence in [ε, 1− ε], ε ∈ (0, 1). Then vp → v∗ ∈ Ω and up → Av∗ ∈ EP (f).

Proof. Let F =
∑n
i=1 ciGϕi

, where Gϕi
= (1 − ϕi)I + ϕiG. Lemma 2.9 implies that

F is a quasi-nonexpansive mapping. Furthermore,

Fix(F ) =

n⋂
i=1

Fix(Gϕi
) =

n⋂
i=1

Fix(Gi) 6= ∅.

It is straightforward to see that F is zero-demiclosed. The rest of the proof is similar
to that of Theorem 3.3. �

4. Conclusion

(1) We have proven a weak convergence theorem for an iteration scheme used to
approximate split common solutions for demicontractive mappings in Hilbert
spaces, which is derived from an associated weak convergence theorem in the
class of a quasi-nonexpansive operators.

(2) We also have established a strong convergence theorem for an iteration scheme
used to approximate split common solutions of demicontractive mappings in
Hilbert spaces, which is derived from a corresponding strong convergence theo-
rem in the class of a quasi-nonexpansive operators.
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(3) Our investigation is based on an embedding technique by means of an averaged
mapping: if G is α-demicontractive, then for any ϕ ∈ (0, 1− α),

Gϕ = (1− ϕ)I + ϕG

is a quasi-nonexpansive mapping.
(4) For some very recent developments on related topics we refer the reader to

Alakoya et al. [1], Berinde and Saleh [5] [6], Berinde and Păcurar [4], Onah et
al. [14], Rathee and Swami [16], Wang and Pan [17],Yao et al. [18], Zhu et al.
[19], etc., to which a similar approach seems to be applicable.
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An elastic-viscoplastic contact problem with
internal state variable, normal damped response
and unilateral constraint

Lamia Chouchane and Dounia Bouchelil

Abstract. In this manuscript, we study a contact problem between an elastic-
viscoplastic body and an obstacle. The contact is quasistatic and it is described
with a normal damped response condition with friction and unilateral constraint.
Moreover, we use an elastic-viscoplastic constitutive law with internal state vari-
able to model the material’s behavior. We present the classical problem then we
derive its variational formulation. Finally, we prove that the associated variational
problem has a unique solution. The proof is based on arguments of quasivaria-
tional inequalities and fixed points.
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1. Introduction

Contact problems represent an important topic both in Applied Mathematics
and Engineering Sciences. References in the field include [1, 5, 6, 11, 13, 12, 14,
15, 16, 17]. In this work, we deal with a model of the frictional contact between
an elastic-viscoplastic body and an obstacle named foundation, for the purpose of
modelling and establishing variational analysis of this one. This analysis is done within
the infinitesimal strain theory. We model the material’s behavior with the following
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constitutive law with internal state variable

σ (t) = Aε( .u (t)) + Bε(u (t)) +

t∫
0

G(σ (s)−Aε( .u (s)), ε(u (s)),k (s)) ds, (1.1)

in which the viscosity operator A and the elasticity operator B are assumed to be
nonlinear and G represents a nonlinear function. Also, u denotes the displacement
field, σ represents the stress tensor and ε(u) is the linearized strain tensor. The
internal state variable k is a vector-valued function whose evolution is governed by
the following differential equation

.

k (t) = ϕ
(
σ (t)−Aε( .u (t)), ε(u (t)),k (t)

)
, (1.2)

in which ϕ is a nonlinear constitutive function with values in Rm , m being a positive
integer. Elastic-viscoplastic models can be found in [3, 4, 9, 10]. In particular, the
reader can refer to [7, 8, 16] where he finds a detailed analysis of elastic-viscoplastic
contact problems with internal state variables.
In this paper, we assume that the part of the body’s boundary which will be in contact
with the foundation is covered by a thin lubricant layer. Lubricants make sliding of
rubbing surfaces easier by interposing a smooth film between these parts. We can find
examples of lubrication in many fields such as oil rigs and car mechanics. To model
lubrication, we usually use a normal damped response contact condition in which
the normal stress on the contact surface depends on the normal velocity, see [1, 2].
However, in this manuscript, we model the contact with normal damped response
and unilateral constraint for the velocity field, associated with a version of Coulomb’s
law of dry friction. These boundary conditions model the contact with a foundation
in such a way that the normal velocity is restricted by a unilateral constraint. Also,
when the body moves towards the obstacle, the contact is described with a normal
damped response condition associated with the friction law. On the other hand, when
the body moves in the opposite direction then the reaction of the foundation vanishes.
More details on the normal damped response boundary condition with friction and
unilateral constraint can be found in [1].
The main novelty of this paper is to describe a frictional contact with the normal
damped response and unilateral constraint in velocity for elastic-viscoplastic materi-
als with internal state variable.
The rest of the paper is divided into three sections. Section 2 contains both nota-
tions and preliminary material. In section 3, we list assumptions on the data that
are required to solve the variational problem derived in the same section. Section 4
deals with different steps taken to prove the main existence and uniqueness result,
Theorem 4.1.

2. Notations and preliminaries

In this short section, we make an overview of the notation we shall use and
some preliminary material. The notation N is used to represent the set of positive
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integers. For d ∈ N, we denote by Sd the space of second-order symmetric tensors on
Rd (d = 2, 3). We define the inner products and norms of Rd and Sd by

u .v = uivi , ‖v‖ = (v .v)
1
2 ∀u,v ∈Rd,

σ .τ = σijτij , ‖τ‖ = (τ .τ )
1
2 ∀σ, τ ∈ Sd.

Note that the indices i and j run between 1 to d and that the summation convention
over repeated indices is used. Also, an index that follows a comma represents the
partial derivative with respect to the corresponding component of the spatial variable,
e.g. ui,j = δui/δxj .

Let Ω ⊂ Rd (d = 1, 2, 3) be a bounded domain with a Lipschitz continuous
boundary Γ and let Γ1 be a measurable part of Γ such that meas (Γ1) > 0. We
use x = (xi) for a generic point in Ω ∪ Γ and we denote by ν = (νi) the outward
unit normal at Γ. We use the standard notation for the Lebesgue and Sobolev spaces
associated with Ω and Γ; moreover, we consider the spaces

H =
{
u = (ui)/ui ∈ L2(Ω)

}
,

H =
{
σ = (σij)/σij = σji ∈ L2(Ω)

}
,

H1 =
{
u = (ui)/ui ∈ H1(Ω)

}
,

H1 = {σ ∈ H/Divσ ∈ H} .

The spaces H,H, H1 and H1 are real Hilbert spaces with the inner products
(u,v)H =

∫
Ω
uivi dx,

(σ, τ )H =
∫

Ω
σijτij dx,

(u,v)H1
= (u,v)H + (ε(u), ε(v))H,

(σ, τ )H1
= (σ, τ )H + (Div σ, Div τ )H ,

respectively, where ε : H1 −→ H andDiv : H1 −→ H are respectively the deformation
and the divergence operators defined by

ε(u) = (εij(u)) , εij(u) =
1

2
(ui,j + uj,i) , Divσ = (σij,j).

The associated norms on H,H, H1 and H1 are denoted by ‖.‖H , ‖.‖H, ‖.‖H1
and

‖.‖H1
respectively.

Next, for the displacement field, we introduce the closed subspace V of H1 defined as
follows

V = {v ∈ H1/v = 0 on Γ1}.
We consider on V the inner product given by

(u,v)V = (ε(u), ε(v))H ∀u,v ∈ V,
and the associated norm

‖v‖V = ‖ε(v)‖H ∀v ∈ V. (2.1)

Completeness of the space (V, ‖.‖V ) follows from the assumption meas (Γ1) > 0, since
the use of Korn’s inequality is allowed.
Moreover, for an element v ∈ V, we still write v for the trace of v on the boundary.
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In addition, vν and vτ denote the normal and the tangential components of v on the
boundary Γ gave by

vν = v.ν, vτ = v − vνν.
Let Γ3 be a measurable part of Γ. We can see from the Sobolev trace theorem that
there exists a positive constant c0 which depends on Ω, Γ1 and Γ3 such that

‖v‖L2(Γ3)d ≤ c0 ‖v‖V ∀v ∈ V. (2.2)

For a regular function σ ∈ H, σν and στ denote the normal and the tangential
components of the vector σν on Γ, respectively, and we recall that

σν = (σν).ν, στ = σν − σνν.

Moreover, we recall the following Green’s formula,∫
Ω

σ.ε(v) dx +

∫
Ω

Div σ.v dx =

∫
Γ

σν.v da ∀v ∈ V. (2.3)

Furthermore, for the internal state variable, we introduce the notation

Y = L2(Ω)m m ∈ N. (2.4)

Finally, for a given Banach space X we use the notation C (0, T ;X) and C1 (0, T ;X)
for the space of continuous and continuously differentiable functions defined on [0, T ]
with values in X, respectively. The spaces C (0, T ;X) and C1 (0, T ;X) are Banach
spaces endowed with the following norms

‖v‖C(0,T ;X) = max
t∈[0,T ]

‖v (t)‖X ,

‖v‖C1(0,T ;X) = max
t∈[0,T ]

‖v (t)‖X + max
t∈[0,T ]

‖v̇ (t)‖X .

The following fixed point result will be used in section 4 of the paper.

Theorem 2.1. Let (X, ‖.‖X) be a Hilbert space and let K be a nonempty closed subset
of X. Let Λ : C(0, T ;K) −→ C(0, T ;K) be a nonlinear operator. Assume that there
exists h ∈ N with the following property: there exists b ∈ [0, 1) and c ≥ 0 such that

‖Λη1(t)− Λη2(t)‖hX ≤ b‖η1(t)− η2(t)‖hX + c
∫ t

0
‖η1(s)− η2(s)‖hX ds,

∀η1, η2 ∈ C(0, T ;K), ∀t ∈ [0, T ]. Then, there exists a unique element η∗ ∈ C(0, T ;K)
such that Λη∗ = η∗.

Note that here and below, the notation Λη (t) means the value of the function
Λη, i.e. Λη (t) = (Λη) (t) .

Next, we recall a second result proved in [15] which will be used in section 4.
To this end, we introduce the following setting. Let X be a real Hilbert space with
the inner product (., .)X and the associated norm ‖.‖X and let K be a subset of X.
Let consider the operator A : K → X and the functionals j : K × K → R and
f : [0, T ]→ X such that

K is a nonempty closed convex subset of X. (2.5)
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(a) There exists MA > 0 such that

(Au1 −Au2,u1 − u2)X ≥MA ‖u1 − u2‖2X ∀u1, u2 ∈ K.
(b) There exists LA > 0 such that
‖Au1 −Au2‖X ≤ LA ‖u1 − u2‖X ∀u1, u2 ∈ K.

(2.6)



(a) The function j (u, .) is convex and lower
semicontinuous on K, for all u ∈ X.
(b) There exists α ≥ 0 such that
j (u1,v2)− j (u1, v1) + j (u2,v1)− j ( u2,v2)
≤ α ‖u1 − u2‖X ‖v1 − v2‖X ,
∀u1, u2 ∈ X, ∀v1, v2 ∈ K.

(2.7)

f ∈ C (0, T ;X) . (2.8)

Moreover, we assume that
MA > α, (2.9)

where MA and α are the constants in (2.6) and (2.7) respectively.
We have the following result.

Theorem 2.2. Assume that (2.5)-(2.9) hold. Then there exists a unique function
u ∈ C (0, T ;K) such that

(Au (t) ,v − u (t))X + j (u (t) ,v)− j (u (t) ,u (t))
≥ (f (t) ,v − u (t))X ∀v ∈ K. (2.10)

We can see that (2.10) is a time-dependent quasivariational inequality governed
by the functional j which depends on the solution.

3. Problem statement and variational formulation

We consider an elastic-viscoplastic body that occupies a bounded domain
Ω ⊂ Rd, (d = 1, 2, 3) with a Lipschitz continuous boundary Γ, divided into three
measurable parts Γ1, Γ2 and Γ3, such that meas (Γ1) > 0. The body is acted upon
by body forces of density f0 and surface tractions of density f2 act on Γ2. We assume
that the body is clamped on Γ1, and therefore, the displacement field vanishes there.
The body may come in contact over Γ3 with an obstacle, the so-called foundation.
Moreover, on Γ3 we describe the contact with:
a) A unilateral constraint in velocity given by

u̇ν ≤ g,
where g > 0 is a given bound. Here we assume the nonhomogeneous case and, there-
fore, g is a function that depends on the spatial variable x ∈ Γ3.
b) A normal damped response condition associated to Coulomb’s law of dry friction,
as far as the normal velocity does not reach the bound g. When the normal velocity
reaches the limit g, friction follows the Tresca law. Also, We assume a given compat-
ibility condition to accommodate conditions in b) and to ensure the continuity of the
friction bound when the normal velocity reaches its maximum value g. Therefore, we
can see a natural transition from the Coulomb law (which is valid as far as 0 ≤ u̇ν ≤ g)
to the Tresca friction law (which is valid when u̇ν = g). Consequently, we obtain the
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following frictional contact conditions with normal damped response and unilateral
constraint {

u̇ν(t) ≤ g, σν(t) + p(u̇ν(t)) ≤ 0,
(u̇ν(t)− g)(σν(t) + p(u̇ν(t))) = 0,

on Γ3 × [ 0, T ] ,


‖στ (t)‖ ≤ µ p(u̇ν(t))

− στ (t) = µ p(u̇ν(t))

.
uτ (t)∥∥ .uτ (t)

∥∥ if
.
uτ (t) 6= 0,

on Γ3 × [ 0, T ] ,

where p is a positive function such that p(r) = 0 for r ≤ 0 and µ denotes the coefficient
of friction. More details on these contact conditions can be found in [1].
Furthermore, we assume that the process is quasistatic since the forces and tractions
vary slowly in time and, therefore, we neglect the acceleration of the system. Hence,
the classical formulation of the contact problem is as follows.

Problem P . Find a displacement field u : Ω × [0, T ] → Rd, a stress field σ :
Ω× [0, T ]→ Sd and an internal state variable k : Ω× [0, T ]→ Rm such that

σ (t) = Aε( .u (t)) + Bε(u (t))

+
t∫
0

G(σ (s)−Aε( .u (s)), ε(u (s)),k (s)) ds in Ω× [0, T ] ,
(3.1)

.

k (t) = ϕ
(
σ (t)−Aε( .u (t)), ε(u (t)),k (t)

)
in Ω× [0, T ] , (3.2)

Div σ (t) + f0(t) = 0 in Ω× [0, T ] , (3.3)

u (t) = 0 on Γ1 × [0, T ] , (3.4)

σ (t) .ν = f2(t) on Γ2 × [0, T ] , (3.5){
u̇ν(t) ≤ g, σν(t) + p(u̇ν(t)) ≤ 0,
(u̇ν(t)− g)(σν(t) + p(u̇ν(t))) = 0,

on Γ3 × [ 0, T ] , (3.6)


‖στ (t)‖ ≤ µ p(u̇ν(t))

− στ (t) = µ p(u̇ν(t))

.
uτ (t)∥∥ .uτ (t)

∥∥ if
.
uτ (t) 6= 0,

on Γ3 × [ 0, T ] , (3.7)

u (0) = u0, k (0) = k0 in Ω. (3.8)

Now, we describe the problem (3.1)-(3.8). First, equations (3.1) and (3.2) represent
the elastic-viscoplastic constitutive law with internal state variable as well as the
evolution equation of the latter. Equation (3.3) is the equilibrium equation while
conditions (3.4)-(3.5) are the displacement-traction boundary conditions respectively.

The boundary conditions (3.6)-(3.7) describe the mechanical conditions on the
contact surface Γ3 that represents the frictional contact conditions with normal
damped response and unilateral constraint in velocity. Finally, (3.8) represents the
initial conditions in which u0 and k0 are the initial displacement and the initial state
variable respectively.
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We turn now to the variational formulation of the Problem P . To this end, we
assume that the viscosity operator A, the elasticity operator B and the nonlinear
constitutive function G satisfy



(a) A : Ω× Sd → Sd.
(b) There exists LA > 0 such that
‖A (x, ε1)−A (x, ε2)‖ ≤ LA ‖ε1 − ε2‖
∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(c) There exists MA > 0 such that

(A (x, ε1)−A (x, ε2)) . (ε1 − ε2) ≥ mA ‖ε1 − ε2‖2

∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω.
(d) The mapping x 7→ A (x, ε) is measurable on Ω,

for any ε ∈ Sd.
(e) The mapping x 7→ A (x,0) belongs to H.

(3.9)



(a) B : Ω× Sd → Sd.
(b) There exists LB > 0 such that
‖B (x, ε1)− B (x, ε2)‖ ≤ LB ‖ε1 − ε2‖
∀ ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(d) The mapping x 7→ B (x, ε) is measurable on Ω,
for any ε ∈ Sd.

(e) The mapping x 7→ B (x,0) belongs to H.

(3.10)



(a) G : Ω× Sd × Sd × Rm → Sd.
(b) There exists LG > 0 such that
‖G (x,σ1, ε1,k1)− G (x,σ2, ε2,k2)‖
≤ LG (‖σ1 − σ2‖+ ‖ε1 − ε2‖+ ‖k1 − k2‖)
∀ σ1, σ2, ε1, ε2 ∈ Sd, k1, k2 ∈ Rm, a.e. x ∈ Ω.

(c) The mapping x 7→ G (x,σ, ε,k) is measurable on Ω ,
for any σ, ε ∈ Sd , k ∈ Rm.

(e) The mapping x 7→ G (x,0,0,0) belongs to H.

(3.11)

Also, we assume that the constitutive function ϕ : Ω × Sd × Sd × Rm → Rm
satisfies 

(a) There exists Lϕ > 0 such that
‖ϕ (x,σ1, ε1,k1)− ϕ (x,σ2, ε2,k2)‖
≤ Lϕ (‖σ1 − σ2‖+ ‖ε1 − ε2‖+ ‖k1 − k2‖)
∀ σ1, σ2, ε1, ε2 ∈ Sd, k1, k2 ∈ Rm, a.e. x ∈ Ω.

(b) The mapping x 7→ ϕ (x,σ, ε, k) is measurable on Ω,
for any σ, ε ∈ Sd , k ∈ Rm.

(c) The mapping x 7→ ϕ (x,0,0,0) belongs to Y.

(3.12)
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The function p : Γ3 × R −→ R+ satisfies

(a) ∃ Lp > 0 such that
|p(x, r1)− p(x, r2)| ≤ Lp |r1 − r2| ∀r1, r2 ∈ R, a.e. x ∈ Γ3.

(b) (p(x, r1)− p(x, r2))(r1 − r2) ≥ 0 ∀r1, r2 ∈ R, a.e .x ∈ Γ3.
(c) The mapping x 7−→ p(x, r) is measurable on Γ3,
for all r ∈ R.

(d) p(x, r) = 0 ∀r ≤ 0, a.e. x ∈ Γ3.

(3.13)

The friction coefficient µ satisfies

µ ∈ L∞(Γ3), µ ≥ 0 a.e. x ∈ Γ3. (3.14)

The densities of body forces and surface tractions are such that

f0 ∈ C (0, T ;H), f2 ∈ C (0, T ;L2(Γ2)d). (3.15)

Finally, the initial data verify

u0 ∈ U. (3.16)

k0 ∈ Y. (3.17)

After that, we introduce the set of admissible velocities U defined by

U = {v ∈ V : vν ≤ g a.e. on Γ3}. (3.18)

We note that U is a nonempty, closed, convex subset of the space V and, on U , we
use the inner product of V .
Next, we use the Green formula (2.3) to find that

(σ(t), ε(v − u̇(t))H + (Div σ(t),v − u̇(t))H =
∫

Γ
σν (t) (v − u̇(t)) da

=
∫

Γ1
σν (t) (v − u̇(t)) da+

∫
Γ2
σν (t) (v − u̇(t)) da+

∫
Γ3
σν (t) (v − u̇(t)) da,

for all v ∈ U . Since v − u̇(t) = 0 on Γ1, σν(t) = f2(t) on Γ2 and Div σ(t) = −f0(t)
in Ω , we obtain

(σ(t) , ε(v − u̇(t)))H = (f0(t),v − u̇(t))H
+
∫

Γ2
f2(t).(v − u̇(t)) da +

∫
Γ3
σν(t).(v − u̇(t)) da.

(3.19)

On the other hand, we use Riesz’s theorem to define the element f(t) ∈ V by

(f(t) , v)V =

∫
Ω

f0(t).v dx +

∫
Γ2

f2(t).v da ∀v ∈V, (3.20)

where f : [0, T ] → V . It follows from hypotheses (3.15) that the integral (3.20) is
well-defined and we have

f ∈ C (0, T ;V ) . (3.21)

Now, we note that

σν(t)(v − u̇(t)) = σν(t)(vν − u̇ν(t)) + στ (t)(vτ − u̇τ (t)) on Γ3 × [0, T ] .

We combine (3.19), (3.20) and the last equality to obtain

(σ(t), ε(v − u̇(t)))H = (f(t),v)V
+
∫
Γ3

σν(t)(vν − u̇ν(t)) da+
∫
Γ3

στ (t)(vτ − u̇τ (t)) da ∀v ∈ U. (3.22)
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Next, we write

σν(t)(vν − u̇ν(t)) = [σν(t) + p(u̇ν(t))] (vν − g)
+[σν(t) + p(u̇ν(t))] (g − u̇ν(t))− p(u̇ν(t)) (vν − u̇ν(t)),

for all v ∈ U . Moreover, (3.4), (3.6) and (3.18) show that

u̇(t) ∈ U , u(t) ∈ V. (3.23)

Thus, we deduce that vν − g ≤ 0 and u̇ν − g ≤ 0; in addition, we use the contact
conditions (3.6) to obtain

σν(t)(vν − u̇ν(t)) ≥ −p(u̇ν(t)) (vν − u̇ν(t)) on Γ3.

We integrate the last inequality on Γ3 to find that∫
Γ3

σν(t)(vν − u̇ν(t)) da ≥ −
∫
Γ3

p(u̇ν(t))(vν − u̇ν(t)) da. (3.24)

Also, we use (3.7) to see that, if u̇τ 6= 0, we have

στ (vτ − u̇τ ) = −µ p(u̇ν)
u̇τvτ
‖u̇τ‖

+ µ p(u̇ν) ‖u̇τ‖ . (3.25)

Using the Cauchy-Schwartz inequality, we obtain

−µ p(u̇ν)
u̇τvτ
‖u̇τ‖

+ µ p(u̇ν) ‖u̇τ‖ ≥ −µ p(u̇ν) ‖vτ‖+ µ p(u̇ν) ‖u̇τ‖ .

Now, from (3.25) and the last inequality we find that

στ (vτ − u̇τ ) ≥ µ p(u̇ν)(‖u̇τ‖ − ‖vτ‖) if u̇τ 6= 0. (3.26)

On the other hand, if u̇τ = 0, then

στ (vτ − u̇τ ) = στvτ .

From the Cauchy-Schwartz inequality and (3.7), we obtain

στ .vτ ≥ −‖στ‖ . ‖vτ‖
≥ −µ p(u̇ν). ‖vτ‖ .

Since u̇τ = 0, the last inequality can be written as follows

στ .vτ − στ .u̇τ ≥ −µ p(u̇ν) ‖vτ‖+ µ p(u̇ν) ‖u̇τ‖ ,

which yields

στ (vτ − u̇τ ) ≥ µ p(u̇ν)(‖u̇τ‖ − ‖vτ‖) if u̇τ = 0. (3.27)

We conclude from (3.26) and (3.27) that∫
Γ3
στ (t)(vτ − u̇τ (t)) da ≥

∫
Γ3
µ p(u̇ν(t))(‖u̇τ (t)‖ − ‖vτ‖) da. (3.28)

We gather (3.22),(3.24) and (3.28) to find that

(σ(t), ε(v − u̇(t)))H ≥ (f(t),v − u̇(t))V +
∫

Γ3
p (u̇ν(t)) (u̇ν(t)− vν) da

+
∫

Γ3
µ p (u̇ν(t)) (‖u̇τ (t)‖ − ‖vτ‖) da.

(3.29)
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To finalize the variational formulation of Problem P , we use again the Riesz’s theorem
to define the operator P : V → V by

(Pu,v)V =

∫
Γ3

p(uν) vν da ∀ u, v ∈ V. (3.30)

It follows from (2.2) and hypotheses (3.13) that

(Pu− Pv,u− v)V ≥ 0, ‖Pu− Pv‖V ≤ c20Lp‖u− v‖V ∀u,v ∈ V, (3.31)

which means that P : V → V is monotone and Lipschitz continuous.
Finally, we define the function j : U × U → R+ by

j(u,v) =

∫
Γ3

µ p (uν) ‖vτ‖ da ∀u,v ∈ U. (3.32)

We use now (3.30) and (3.32) to see that (3.29) becomes

(σ(t), ε(v − u̇(t)))H + (P u̇(t),v − u̇(t))V
+j(u̇(t),v)− j(u̇(t), u̇(t)) ≥ (f(t),v − u̇(t))V , ∀v ∈ U.

(3.33)

Lastly, we integrate (3.2) from 0 to t by using initial conditions (3.8) and we use (3.33)
and (3.1) to obtain the following variational formulation of Problem P .
Problem PV . Find a displacement field u : [0, T ] → U , a stress field σ : [0, T ] → H
and an internal state variable k : [0, T ]→ Y such that

σ(t) = Aε(u̇(t)) + Bε(u(t)) +

∫ t

0

G(σ(s)−Aε(u̇(s)), ε(u(s)),k(s)) ds, (3.34)

k(t) =

∫ t

0

ϕ(σ(s)−Aε(u̇(s)), ε(u(s)),k(s)) ds+ k0, (3.35)

(σ(t), ε(v)− ε(u̇(t)))H + (P u̇(t),v − u̇(t))V
+j(u̇(t),v)− j(u̇(t), u̇(t)) ≥ (f(t),v − u̇(t))V ∀v ∈ U,

(3.36)

u(0) = u0. (3.37)

4. Existence and uniqueness result

In this section, we study the existence and the uniqueness of the solution of the
variational problem PV introduced in section 3. We summarize this study in the
following result.
Theorem 4.1. Assume that hypotheses (3.9) - (3.17) are satisfied. Then, there exists
a constant L0 > 0 such that, if Lp < L0, then the problem PV has a unique solution
{u,σ,k}. Moreover , the solution satisfies

u ∈ C1(0, T ;V ),
σ ∈ C(0, T ;H1),
k ∈ C1(0, T ;Y ).

(4.1)
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Now let’s move on to the proof of Theorem 4.1 which will be carried out in several
steps. We assume in what follows that hypotheses (3.9)-(3.17) are satisfied. We use
the product space H× Y endowed with the norm

‖η‖H×Y = ‖η(1)‖H + ‖η(2)‖Y ∀η = (η(1),η(2)) ∈ H × Y. (4.2)

Step 1. For all η = (η(1),η(2)) ∈ C(0, T ;H× Y ) , we consider the following interme-
diate variational problem.
Problem PVη. Find a displacement field uη : [0, T ]→ U such that

(Aε(u̇η(t)), ε(v)− ε(u̇η(t)))H + (η(1)(t), ε(v)− ε(u̇η(t)))H
+(P u̇η(t),v − u̇η(t))V + j(u̇η(t),v)− j(u̇η(t), u̇η(t))

≥ (f(t),v − u̇η(t))V ∀v ∈ U.
(4.3)

uη(0) = u0. (4.4)

We have the following existence and uniqueness result.
Lemma 4.2. If Lp < L0, then there exists a unique solution uη to Problem PVη such
that uη ∈ C1(0, T ;V ). Moreover, if ui = uηi are two solutions to Problem PVη
corresponding to ηi ∈ C(0, T ;H×Y ), i = 1, 2, then there exists a constant c > 0 such
that

||u̇1(t)− u̇2(t)||V ≤ c ‖η1 (t)− η2 (t)‖H×Y ∀t ∈ [0, T ]. (4.5)

Proof. First, we use Riesz’s Theorem to define the operator A : V → V and the
function fη : [0, T ]→ V by equalities

(Au,v)V = (Aε(u), ε(v))H + (Pu,v)V , (4.6)

(fη (t) ,v)V = (f (t) ,v)V − (η(1) (t) , ε(v))H, (4.7)

for all u,v ∈ V and t ∈ [0, T ]. Hence, (4.3) becomes

(Au̇η(t),v − u̇η(t))V + j(u̇η(t),v)− j(u̇η(t), u̇η(t))
≥ (fη(t),v − u̇η(t))V ∀v ∈ U,

(4.8)

and using the notation wη(t) = u̇η(t), we can see that the last inequality can be
written as follows

(Awη(t),v −wη(t))V + j(wη(t),v)− j(wη(t),wη(t))
≥ (fη(t),v −wη(t))V ∀v ∈ U,

(4.9)

Next, we apply Theorem 2.2 for K = U and X = V . First, we note that the space U
defined in (3.18) satisfies conditions (2.5). Next, we consider w1,w2 ∈ V and we use
the monotonicity of the operator P expressed in (3.31) as well as (3.9)(c) and (2.1)
to obtain

(Aw1 −Aw2,w1 −w2)V ≥MA||w1 −w2||2V . ∀w1,w2 ∈ V,
which shows that A is strongly monotone with constant MA = MA.
On the other hand, for w1,w2,v ∈ V , we use the Lipschitz continuity of P expressed
in (3.31) as well as (3.9)(b) and (2.1) to find

(Aw1 −Aw2,v)V ≤ (LA + c20 Lp) ||w1 −w2||V ||v||V .
By choosing v = Aw1 −Aw2 in the last inequality we obtain

||Aw1 −Aw2||V ≤ (LA + c20 Lp) ||w1 −w2||V ,
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which means that A is a Lipschitz continuous operator with constant LA = LA+c20 Lp.
We conclude that conditions (2.6) are satisfied.
Now we prove conditions (2.7) on the function j. First, it is easy to see that j(w, .)
is a semi-norm on V , for all w ∈ V . Moreover, we recall that ‖vτ‖ ≤ ‖v‖ and we use
(3.13), (3.14) and (2.2) to see that for all w ∈ V ,

j(w,v) ≤ c ‖v‖V .

We conclude that j(w, .) is a continuous semi-norm on V and thus it is convex and
lower semi-continuous on V , which means that it satisfies condition (2.7)(a) of Theo-
rem 2.2. Now, for all w1,w2,v1,v2 ∈ V , we use assumptions (3.13) (a) and (3.14),
after a simple calculation we obtain

j(w1,v2)− j(w1,v1) + j(w2,v1)− j(w2,v2)
≤ µLp

∫
Γ3
|w1ν − w2ν | | ‖v1τ‖ − ‖v2τ‖ | da .

Next, it is well known that |w1ν−w2ν | ≤ ‖w1−w2‖ , | ‖v1τ‖−‖v2τ‖ | ≤ ‖v1−v2‖.
Thus, we obtain

j(w1,v2)− j(w1,v1) + j(w2,v1)− j(w2,v2)
≤ µLp ‖w1 −w2‖L2(Γ3)d ‖v1 − v2‖L2(Γ3)d .

Hence, inequality (2.2) yields

j(w1,v2)− j(w1,v1) + j(w2,v1)− j(w2,v2)
≤ c20 µLp ‖w1 −w2‖V ‖v1 − v2‖V ,

(4.10)

for all w1,w2,v1,v2 ∈ V . We note that the last inequality shows that the condition
(2.7) (b) is satisfied for α = c20 µLp.
Moreover, we use (3.21) and (4.7) and we recall that η ∈ C(0, T ;H×Y ) to deduce that
fη ∈ C(0, T ;V ); i.e. fη satisfies (2.8). Finally, for the condition (2.9) to be satisfied,

we choose L0 =
MA
c20 µ

. As a consequence, if Lp < L0, then MA > c20 µLp, which means

that condition (2.9) of Theorem 2.2 is now satisfied. We conclude that there exists a
unique solution wη ∈ C(0, T ;U) to the quasivariational (4.9). Now, we use (4.4) and
we define the displacement uη by

uη(t) =

t∫
0

wη(s) ds+ u0. (4.11)

It results from the last equality and hypothesis (3.16) that uη ∈ C1(0, T ;V ) is the
unique solution of the quasivariational inequality (4.8). Finally, we can see that, by
substituting (4.6)-(4.7) in (4.8), we find that uη ∈ C1(0, T ;V ) is the unique solution
of PVη, which concludes the existence and uniqueness part of Lemma 4.2.
We turn now to the proof of estimate (4.5). To this end, let consider

η1 = (η
(1)
1 ,η

(2)
1 ), η2 = (η

(1)
2 ,η

(2)
2 ) ∈ C(0, T ;H× Y )

and let use the notations u1 = uη1 , u2 = uη2 . We write (4.3) for uη(t) = u1(t) and
v = u̇2 (t) and then for uη(t) = u2(t) with v = u̇1 (t), after a simple calculation we
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obtain

(Aε( .u1 (t))−Aε( .u2 (t)), ε(
.
u1(t))− ε( .u2(t)))H

+(P u̇1(t)− P u̇2(t), u̇1(t)− u̇2(t))V

≤ (η
(1)
1 (t)− η(1)

2 (t) , ε(
.
u2(t))− ε( .u1(t)))H

+j(u̇1(t),
.
u2(t))− j(u̇1(t),

.
u1(t)) + j(u̇2(t),

.
u1(t))− j(u̇2(t),

.
u2(t)).

On the one hand, we note that ui ∈ C1(0, T ;V ), i = 1, 2; this implies u̇i(t) ∈ V ,
i = 1, 2. Then, we use (3.9) (c), the monotonicity of P expressed in (3.31) and (2.1)
to find

(Aε( .u1 (t))−Aε( .u2 (t)), ε(
.
u1(t))− ε( .u2(t)))H

+(P u̇1(t)− P u̇2(t), u̇1(t)− u̇2(t))V

≥MA
∥∥ .u1(t)− .

u2(t)
∥∥2

V
.

On the othor hand, we use (4.10) to deduce that

(Aε( .u1 (t))−Aε( .u2 (t)), ε(
.
u1(t))− ε( .u2(t)))H

+(P u̇1(t)− P u̇2(t), u̇1(t)− u̇2(t))V

≤
∥∥∥η(1)

1 (t)− η(1)
2 (t)

∥∥∥
H

∥∥ε( .u2(t))− ε( .u1(t))
∥∥
H

+c20 µLp ‖u̇1(t)− u̇2(t)‖V
∥∥ .u1(t)− .

u2 (t)
∥∥
V

.

We combine the two last inequalities and we recall (2.1) to find

MA
∥∥ .u1(t)− .

u2 (t)
∥∥
V
≤
∥∥∥η(1)

1 (t)− η(1)
2 (t)

∥∥∥
H

+ c20 µLp ‖u̇1 (t)− u̇2 (t)‖V .

Now we use (4.2) to deduce that∥∥∥η(1)
1 (s)− η(1)

2 (s)
∥∥∥
H
≤ ‖η1 (s)− η2 (s)‖H×Y .

Then, we combine the last two inequalities to obtain

(MA − c20 µLp)
∥∥ .u1(t)− .

u2(t)
∥∥
V
≤ ‖η1(t)− η2(t)‖H×Y .

Finally, we recall that the condition (2.9) of Theorem 2.2 is satisfied for MA = MA
and α = c20µLp, which yields MA > c20 µLp; i.e. MA−c20µLp > 0. Hence, we conclude
that the estimate (4.5) is satisfied. �

Step 2. In the second step of the proof of Theorem 4.1, we denote by kη ∈ C(0, T ;Y )
the function defined by

kη(t) =

t∫
0

η(2)(s) ds+ k0. (4.12)

Step 3. The third step of the proof consists of using the displacement field uη which
was obtained in Lemma 4.2 and the function kη defined in (4.12) to consider the
following problem.
Problem Qη. Find a stress field ση : [0, T ]→ H such that

ση(t) = Bε(uη(t)) +

∫ t

0

G(ση(s), ε(uη(s)),kη(s)) ds, (4.13)
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In the study of Problem Qη we have the following result.
Lemma 4.3. There exists a unique solution to Problem Qη which satisfies ση ∈
C(0, T ;H). Moreover, for all ηi ∈ C(0, T ;H×Y ), i = 1, 2, if σi = σηi and ui = uηi
represent the solutions of Problems Qη and PVη respectively and ki = kηi , i = 1, 2
are defined by (4.12) then there exists c > 0 such that

‖ σ1(t)− σ2(t)‖H ≤
c
(
‖u1(t)− u2(t)‖V +

∫ t
0
‖u1(s)− u2(s)‖V ds+

∫ t
0
‖k1(s)− k2(s)‖Y ds

)
,

(4.14)

∀t ∈ [0, T ].

Proof. We introduce the operator Λη : C(0, T ;H) −→ C(0, T ;H) defined by

Λησ(t) = Bε(uη(t)) +

∫ t

0

G(σ(s), ε(uη(s)),kη(s)) ds. (4.15)

First, we can see that assumptions (3.10) and (3.11) on B and G show that the
operator Λη is well-defined. Next, for all σ ∈ C(0, T ;H) and t ∈ [0, T ], we consider
σ1,σ2 ∈ C(0, T ;H) and we use (4.15) and (3.11)(b) to obtain for all t ∈ [0, T ],

‖Λησ1 (t)− Λησ2 (t)‖H ≤ LG
∫ t

0
‖σ1 (s)− σ2 (s)‖H ds .

The reiteration of the last inequality p times yields∥∥Λpησ1 (t)− Λpησ2 (t)
∥∥
H ≤ (LG)p

∫ t

0

∫ s

0

...

∫ r

0︸ ︷︷ ︸
p times

‖σ1 (l)− σ2 (l)‖H dl,

which implies ∥∥Λpησ1 − Λpησ2

∥∥
C(0,T ;H)

≤ cp T p

p!
‖σ1 − σ2‖C(0,T ;H) .

It results from the last inequality that for p large enough, limp→+∞
cpT p

p!
= 0; and

therefore the operator Λpη is a contraction on the Banach space C(0, T ;H). So we can
deduce that there exists a unique function ση ∈ C(0, T ;H) such that

Ληση = ση.

The last equality combined with (4.15) shows that ση is a solution of Qη. Its unique-
ness follows from the uniqueness of the fixed point of the operator Λη.
Now, let consider η1,η2 ∈ C(0, T ;H × Y ) and, for i = 1, 2, we use the notations
uηi = ui,σηi = σi and kηi = ki. We use assumptions (3.10)(b) and (3.11)(b) on B
and G as well as (2.1) to find

‖σ1 (t)− σ2 (t)‖H ≤ c (‖u1 (t)− u2 (t)‖V +
∫ t

0
‖u1 (s)− u2 (s)‖V ds

+
∫ t

0
‖σ1 (s)− σ2 (s)‖H ds +

∫ t
0
‖k1 (s)− k2 (s)‖Y ds),

(4.16)

for all t ∈ [0, T ]. We use now (4.16) and a Gronwell argument to deduce the estimate
(4.14). �
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Step 4. In this step, we use the properties of B, G and ϕ to define the operator
Λ : C(0, T ;H × Y ) → C(0, T ;H × Y ) which maps every element η = (η(1),η(2)) ∈
C(0, T ;H× Y ) into the element Λη given by

Λη(t) =(
Bε(uη(t)) +

t∫
0

G (ση(s), ε(uη(s)),kη(s)) ds, ϕ (ση(t), ε(uη(t)),kη(t))

)
.

(4.17)

Here, for all η ∈ C(0, T ;H × Y ), uη and ση represent respectively the displacement
field and the stress field provided in Lemmas 4.2 and 4.3. Moreover, kη is the internal
state variable given by (4.12). We have the following result.
Lemma 4.4. The operator Λ has a unique fixed point η∗ ∈ C(0, T ;H× Y ).

Proof. Let consider η1,η2 ∈ C(0, T ;H×Y ) and let use the notations uηi = ui, σηi =
σi, kηi = ki, for i = 1, 2. We use (4.17),(4.2), (3.10)(b), (3.11)(b), (3.12)(a) and (2.1)
to obtain

‖Λη1 (t)− Λη2(t)‖H×Y
≤ c (‖σ1 (t)− σ2 (t)‖H + ‖u1 (t)− u2 (t)‖V + ‖k1 (t)− k2 (t)‖Y )

+c
t∫

0

(‖σ1 (s)− σ2 (s)‖H + ‖u1 (s)− u2 (s)‖V + ‖k1 (s)− k2 (s)‖Y ) ds .
(4.18)

On the one hand, definition (4.12) yields

‖k1 (t)− k2 (t)‖Y ≤
∫ t

0

∥∥∥η(2)
1 (s)− η(2)

2 (s)
∥∥∥
Y
ds ,

and, by using (4.2), we deduce that

‖k1 (t)− k2 (t)‖Y ≤
∫ t

0
‖η1 (s)− η2 (s)‖H×Y ds ∀t ∈ [0, T ]. (4.19)

On the other hand, we use the initial condition (3.8) to write

ui = u0 +
∫ t

0
u̇i(s) ds , i = 1, 2.

Hence,

‖u1(t)− u2 (t)‖V ≤
∫ t

0
‖u̇1(s)− u̇2(s)‖V ds .

The last inequality combined with the estimate (4.5) implies

‖u1(t)− u2 (t)‖V ≤ c
∫ t

0
‖η1 (s)−η2 (s)‖H×Y ds, (4.20)

Now, we combine (4.18)-(4.20) and the estimate (4.14) to deduce that

‖Λη1 (t)− Λη2 (t)‖H×Y
≤ c

∫ t
0
‖η1 (s)− η2 (s)‖H×Y ds+ c

∫ t
0

(∫ s
0
‖η1 (r)− η2 (r)‖H×Y dr

)
ds

+c
∫ t

0

(∫ s
0

(
r∫
0

‖η1 (l)− η2 (l)‖H×Y dl

)
dr

)
ds,

which yields

‖Λη1 (t)− Λη2 (t)‖H×Y ≤ c
∫ t

0

‖η1 (s)− η2 (s)‖H×Y ds.
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Finally, we apply Theorem 2.1 to conclude that there exists a unique fixed point
η∗ ∈ C(0, T ;H× Y ) of the operator Λ . �

Now we have all the ingredients to prove Theorem 4.1.

Proof. Existence. Let η∗ = (η(1)∗,η(2)∗) ∈ C(0, T ;H × Y ) be the fixed point of the
operator Λ which is defined by (4.17). We use the notations

u (t) = uη∗ (t) (4.21)

k (t) = kη∗ (t) (4.22)

σ (t) = Aε (u̇ (t)) + ση∗ (t) . (4.23)

We prove that (u,σ,k) is a solution of the Problem PV with regularity (4.1). In fact,
we write (4.13) for η = η∗ and we use the notations (4.21)-(4.23) to obtain (3.34).
Next, we write (4.3) for η = η∗ and we use (4.21) to find that

(Aε (u̇ (t)) , ε (v)− ε (u̇(t)))H +
(
η(1)∗ (t) , ε (v)− ε (u̇(t))

)
H

+(P u̇(t),v − u̇(t))V + j(u̇(t),v)− j(u̇(t), u̇(t)) ≥ (f (t) ,v − u̇(t))V ,
(4.24)

for all v ∈ V and t ∈ [0, T ]. Now, we recall that Λη∗ = η∗ = (η(1)∗,η(2)∗). Hence,
definition (4.17) and the notations (4.21)-(4.23) yield

η(1)∗ (t) = Bε(u(t)) +
t∫

0

G (σ (s)−Aε (u̇ (s)) , ε (u (s)) ,k (s)) ds, (4.25)

η(2)∗ (t) = ϕ (σ (t)−Aε (u̇(t)) , ε (u (t)) ,k (t)) . (4.26)

We use (4.26) and (4.12) to see that (3.35) is satisfied. Next, we substitute (4.25) in
(4.24) and we use (3.34) to see that (3.36) is also satisfied.
Finally, (3.37) and the regularities of u and k which are given in (4.1) follow from the
Lemma 4.2 and (4.12), combined with the fact that η(2)∗ ∈ C(0, T ;Y ).
Moreover, for the stress tensor σ, we use (4.23), (3.9) and we recall that from Lemma
4.3 we have ση∗(t) ∈ H; hence, we deduce that σ(t) ∈ H. As for the regularity of σ,
we use again (4.23) to find that for all t1, t2 ∈ [0, T ],

‖σ (t1)− σ (t2)‖H ≤ ‖Aε (u̇ (t1))−Aε (u̇ (t2))‖H + ‖ση∗ (t1)− ση∗ (t2)‖H .

Thus, hypothesis (3.9)(b) on the operator A and (2.1) yield

‖σ (t1)− σ (t2)‖H ≤ LA ‖u̇ (t1)− u̇ (t2)‖V + ‖ση∗ (t1)− ση∗ (t2)‖H .

The last inequality combined with regularities u ∈ C1(0, T ;V ) and ση∗ ∈ C(0, T ;H)
derived respectively from Lemmas 4.2 and 4.3 shows that σ ∈ C(0, T ;H). In order to
obtain the regularity σ ∈ C(0, T ;H1), we test (3.36) with v = u̇ + ϕ and then with

v = u̇ − ϕ, where ϕ ∈ C∞0 (Ω)
d

and we recall that j is a positive function; after a
simple calculation, we obtain

(σ (t) , ε (ϕ))H = (f (t) ,ϕ)V ∀t ∈ [0, T ] , ∀ϕ ∈ C∞0 (Ω)
d
.

Then we use (3.20) to deduce that

(σ (t) , ε (ϕ))H = (f0 (t) ,ϕ)H .
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Thus, from the definition of weak divergence we conclude that

(−Div σ (t) ,ϕ)H = (f0 (t) ,ϕ)H ∀ϕ ∈ C
∞
0 (Ω)

d
.

Since the space C∞0 (Ω)
d

is dense in L2 (Ω)
d

we deduce that

Div σ (t) = − f0 (t) ∀t ∈ [0, T ] . (4.27)

The last equality combined with the hypothesis (3.15) on f0 implies Div σ (t) ∈ H
and, therefore, σ(t) ∈ H1. Finally, we note that the norm on H1 allows us to write

‖σ (t1)− σ (t2)‖2H1
= ‖σ (t1)− σ (t2)‖2H + ‖Div (σ (t1))−Div (σ (t2))‖2H .

Thus, (4.27), (3.15) and the regularity σ ∈ C(0, T ;H) imply σ ∈ C(0, T ;H1); which
completes the proof of the existence of a solution (u,σ,k) to Problem PV with
regularity (4.1).
Uniqueness. The uniqueness of the solution (u,σ,k) of Problem PV follows from the
uniqueness of the fixed point of the operator Λ combined with the unique solvability
of the intermediate problems PVη and Qη guaranteed by Lemmas 4.2 and 4.3. �
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On the stability of KdV equation with
time-dependent delay on the boundary
feedback in presence of saturated source term

Toufik Ennouari and Ahmat Mahamat Taboye

Abstract. The current paper investigate the question of stabilizability of the
Korteweg-de Vries equation with time-varying delay on the boundary feedback
in the presence of a saturated source term. Under specific assumptions regarding
the time-varying delay, we have established that the studied system is well-posed.
Moreover, using an appropriate Lyapunov functional, we prove the exponential
stability result. Finally, we give some conclusions.
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1. Introduction

In recent years a lot of work has come out on the study of Korteweg-de Vries
equation with time-delay (see e.g. [25, 2, 36]). The Korteweg-de Vries equation (KdV)

ut + ux + uxxx + uux = 0 (1.1)

is a nonlinear one dimensional equation, more precisely the KdV equation is a mathe-
matical model of waves on shallow water surfaces. In recent decades, the study of the
Korteweg-de Vries equation has yielded intriguing results, particularly with regard to
its controllability and stabilizability properties. This studies can be attributed to the
efforts made by Russell and Zhang in [32]. Subsequently, significant research efforts
have been dedicated to the examination of both controllability and stabilizability. For
a comprehensive review of these studies, interested readers can refer to various works
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(such as [31, 37]), as well as the following references [3, 9, 5]. In the majority of these
papers, the following system have been studied:

ut(t, x) + ux(t, x) + uxxx(t, x) + f = 0, t ≥ 0, x ∈ [0, L];

u(t, 0) = u(t, L) = ux(t, L) = 0, t ≥ 0;

u(0, x) = u0(x),

(1.2)

In a general context, the feedback control f in (1.2) is chosen to fulfill specific objec-
tives. As a result, it must consistently adhere to predefined constraints. In particular,
equation (1.2) has been the subject of investigation, with two distinct approaches
studied in the literature: one involving distributed control (as examined in [29, 27])
and another involving boundary control (as discussed in [18, 4]). Notably, in [29],
the authors demonstrate that the linear feedback control f(t, x) = a(x)u(t, x), where
a = a(x) is a nonnegative function that satisfies certain conditions, makes the origin
exponentially stable. It’s worth mentioning as well that when a equals zero, the au-
thors also prove that the linear Korteweg-de Vries (KdV) equation without control is

exponentially stable under the conditions L /∈
{

2π
√

k2+n2+kn
3 | n, k ∈ N∗

}
.

One of the most well-known constraints that can affect the proper functioning
of the control system is the saturation constraint, which has been discussed in various
works (see, for instance, [20, 24, 16, 17, 10, 6]. The issue of input saturation in the
control system is inevitable. Physical constraints or practical limitations can cause the
restriction of input signal amplitudes, leading to unfavorable and even catastrophic
outcomes for the control system.

In the literature, there are several articles that studies the stability result of
KdV equation with input saturation (see e.g. [20, 34, 19]. In particular, [34] looks at
the study of the following KdV equation:

ut(t, x) + ux(t, x) + uxxx(t, x) + sat(a(x)u(t, x) = 0, t ≥ 0, x ∈ [0, L];

u(t, 0) = u(t, L) = ux(t, L) = 0, t ≥ 0;

u(0, x) = u0(x),

(1.3)

where a = a(x) ∈ L∞([0, L]) satisfying a1 ≥ a = a(x) ≥ a0 > 0 on ω ⊆ [0, L] (ω
is a nonempty open subset of [0, L]), and the saturation function sat(.) is defined as
follows

sat(t) =

t, if ‖t‖L2(0,L) ≤ 1
t

‖t‖L2(0,L)
, if ‖t‖L2(0,L) ≥ 1

(1.4)

The well-posedness of the closed-loop system for the linear KdV equation (1.3)
has been proved through the application of nonlinear semigroup theory. Moreover,
the authors have demonstrated that the origin of the KdV equation (1.3) in closed-
loop system with the saturated control (1.4) is exponentially stable. The asymptotic
stability of KdV equation with a saturated internal control has been studied by [19].
In their work , they considered the system (1.2) with

f(t, x) = asat(u),
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where a is a positive constant and the saturation function is defined as follows

sat(t) =


−u0, if t ≤ −u0
t, if − u0 ≤ t ≤ u0
u0, if t ≥ u0

(1.5)

where u0 represent a positive constant. The authors prove the well-posedness by
applying nonlinear semigroup theory. Additionally, using Lyapunov theory for infinite-
dimensional systems, they also establish that the origin is asymptotically stable.

In this paper, we are interested in the study of time-varying delay on the bound-
ary of the Korteweg-de Vries equation in the presence of a saturated source term.
That is to say, we consider the same problem as in [34] with time-varying delay on
the boundary feedback.

In general, the presence of delay in scientific phenomena is a multifaceted con-
sideration. It is widely acknowledged that even a minor delay in the feedback mecha-
nism can potentially induce instability in a system, as discussed in various references
[12, 7, 21]. Alternatively, delays can be used as a tool to improve performance by in-
troducing beneficial phase shifts to optimize system behavior, as studied in references
such as [1, 30]. When delays become time-varying, the complexity of analyzing system
stability significantly increases. Several studies have examined the stability of partial
differential equations (PDEs) involving time-varying delay, with notable references
including [22, 8, 26, 13].

In recent years, researchers have shown increasing interest in solving stability
and robustness problems related to constant delay for the Korteweg-de Vries equa-
tion. Notable contributions have been made by researchers such as Baudouin et al.
and Parada et al., as mentioned in [2, 23], where they studied the Korteweg-de Vries
equation with time-delay feedback, establishing the well-posedness and proving expo-
nential stability through the use of the observability inequality. For more details on
the KdV equation with time-delay, the readers can find more details in [35, 11, 15].
Concerning the Korteweg-de Vries equation with time-varying delay, there is a no-
tably singular study conducted by Parada et al. [25]. This study examined the issue of
time-varying delay both on the boundary or internal feedback. With specific assump-
tions concerning time-varying delay, they proved the well-posedness and the stability
results is analyzed, using an appropriate Lyapunov functional. However, in the litera-
ture to the best of our knowledge, there has been no prior work addressing this issue
in the context of the Korteweg-de Vries equation with a saturated source term.

In our paper, we focus on the Korteweg-de Vries equation with time-varying
delay on the boundary feedback in presence of saturated source term. The equation
under investigation is given as follows:

ut(x, t) + ux(x, t) + uxxx(x, t) = f(x, t), t > 0, x ∈ [0, L];

u(0, t) = u(L, t) = 0, t > 0;

ux(L, t) = αux(0, t) + βux(0, t− θ(t)), t > 0;

u(x, 0) = u0(x), x ∈ [0, L];

ux(0, t− θ(0)) = z0(t− θ(0)), 0 < t < θ(0),

(1.6)
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with

f(x, t) = −sat(a(x)u(t;x)), (1.7)

where a(·) ∈ L∞([0, L]) is a nonnegative function satisfying some conditions, and
sat(.) is the same given by (1.4). The main contribution of this paper is to study the
well-posedness and exponential stability of the linear KdV equation with time-varying
delay on the boundary feedback, as given in equation (1.6)-(1.7). The well-posedness
of the system (1.6)-(1.7) is proven under some conditions. By using an appropriate
Lyapunov functional, we demonstrate that the KdV equation (1.6)-(1.7) with the
saturated source term (1.4) is exponentially stable.

Our paper is organized as follows. In the next section, we formulate our problem.
In section 3, we examine the well-posedness of (1.6)-(1.7). Section 4 is dedicated to
the exponential stabilization of (1.6)-(1.7). Finally, we present some conclusions in
section 5.

2. Problem statement

The aim of this paper is to study the following KdV equation with time-varying
delay

ut(x, t) + ux(x, t) + uxxx(x, t) = −sat(a(x)u(x, t)), t > 0, x ∈ [0, L];

u(0, t) = u(L, t) = 0, t > 0;

ux(L, t) = αux(0, t) + βux(0, t− θ(t)), t > 0;

u(x, 0) = u0(x), x ∈ [0, L];

ux(0, t− θ(0)) = z0(t− θ(0)), 0 < t < θ(0),

(2.1)

where where a = a(x) ∈ L∞[0, L] satisfying{
a = a(x) ≥ a0 > 0 on ω ⊆ [0, L],
ω is a nonempty open subset of [0, L],

(2.2)

Moreover, suppose that the delay θ(·) ∈ W 2,∞[0, T ] for all T > 0 and satisfies the
following conditions

0 < θ0 ≤ θ(t) ≤ K, for all t ≥ 0, (2.3)

and

θ̇(t) ≤ d ≤ 1, for all t ≥ 0, (2.4)

where d ≥ 0.
Furthermore, we define the matrix M1 by

M1 =

(
α2 − 1 + |β| αβ

αβ β2 + |β|(d− 1)

)
(2.5)

Where α, β and d are real constants that satisfy the following inequality

|α|+ |β|+ d < 1. (2.6)



On the stability of KdV equation 357

If (2.6) is satisfied, then the matrix M1 is definite negative according to [25].
In this context, we introduce a new variable z(µ, t) = ux(0, t − θ(t)µ) for µ ∈ [0, 1]
and t > 0. Then, z(·, ·) satisfies the following system θ(t)zt(µ, t) + (1− θ̇(t)µ)zµ(µ, t) = 0, t > 0, µ ∈ [0, 1];

z(0, t) = ux(0, t), t > 0;
z(µ, 0) = z0(−θ(0)µ), µ ∈ [0, 1].

(2.7)

For more detail about a new variable z that takes into account θ(·) (see [21, 22]).
Therefore, we investigate the following semi-linear system

ut(x, t) + ux(x, t) + uxxx(x, t) = −sat(a(x)u(x, t)), t > 0, x ∈ [0, L];

θ(t)zt(µ, t) + (1− θ̇(t)µ)zµ(µ, t) = 0, t > 0, µ ∈ [0, 1];
u(0, t) = u(L, t) = 0, t > 0
ux(L, t) = αux(0, t) + βux(0, t− θ(t)), t > 0;
u(x, 0) = u0(x), x ∈ [0, L];
ux(0, t− θ(0)) = z0(t− θ(0)), 0 < t < θ(0).
z(0, t) = ux(0, t), t > 0;
z(µ, 0) = z0(−θ(0)µ), µ ∈ [0, 1].

(2.8)

Let Y =

(
u
z

)
, then the system (2.8) can be rewritten as the following first-order

system  Yt = A(t)Y (t) +

(
−sat(a(x)u)

0

)
, t > 0,

Y (0) =
(
u0, z0(−θ(0))

)T
.

(2.9)

Where the operator A(t) is defined by

D(A(t)) = {(u, z) ∈ H3([0, L])×H1([0, L]), u(0) = u(L) = 0

z(0) = ux(0), ux(L) = αux(0, t) + βux(0, t− θ(t))}

A(t)

(
u
z

)
=

(
−ux − uxxx
θ̇(t)µ−1
θ(t) zµ

)
for all

(
u
z

)
∈ D(A(t)). (2.10)

It has been proved in [25] that the domain of operator A(t) is independent of t, i.e.

D(A(t)) = D(A(0)).

Let the Hilbert space H = L2[0, L]×L2[0, 1] equipped with the following usual inner
product 〈(

u
z

)
,

(
u1
z1

)〉
H

=

∫ L

0

uu1dx+

∫ 1

0

zz1dµ,

and its norm ∥∥∥∥( u
z

)∥∥∥∥2
H

=

∫ L

0

u2dx+

∫ 1

0

z2dµ

We introduce a new inner product on H. This inner product is dependent to time t
and define as follows〈(

u
z

)
,

(
u1
z1

)〉
t

=

∫ L

0

uu1dx+ |β|θ(t)
∫ 1

0

zz1dµ,



358 Toufik Ennouari and Ahmat Mahamat Taboye

with associated norm denoted by ‖ · ‖t. Using (2.3), the norm ‖ · ‖t and ‖ · ‖H are

equivalent in H. Indeed, for all t ≥ 0, and all

(
u
z

)
∈ H, we have

(1 + |β|θ0)

∥∥∥∥( u
z

)∥∥∥∥2
H

≤
∥∥∥∥( u

z

)∥∥∥∥2
t

≤ (1 + |β|K)

∥∥∥∥( u
z

)∥∥∥∥2
H

(2.11)

Now, we recall the definition of mild solution.
Let us consider the abstract system in a Hilbert space Z{

u̇(t) = Au(t) + f(t), t > 0,
u(0) = u0,

(2.12)

where A is an infinitesimal generator of linear C0−semigroup (T (t))t≥0 defined on its
domain D(A) ⊆ H, where Z is a Hilbert space and f ∈ L1

loc([0, T ], Z).

Definition 2.1. [28, Definition 2.3] Let A be the infinitesimal generator of a
C0−semigroup (T (t))t≥0. Let u0 ∈ Z and f ∈ L1(0, T, Z). Then the function
u ∈ C([0, T ], Z) given by

u(t) = T (t)u0 +

∫ t

0

T (t− s)f(s)ds 0 ≤ t ≤ T, (2.13)

is the unique mild solution of the initial value problem (2.12) on [0, T ].

We recall that the saturation function is Lipschitzian in L2[0, L].

Lemma 2.2. [33, Theorem 5.1] For all (u, v) ∈ L2[0, L], we have

‖sat(u)− sat(v)‖L2[0,L] ≤ 3‖u− v‖L2[0,L]

3. Well-posedness

Before stating the well-posedness result system (2.9), we recall the result of well-
posedness of the following linear system without source term which has been treated
by Parada et al. [25]

ut(x, t) + ux(x, t) + uxxx(x, t) = 0, t > 0, x ∈ [0, L];
θ(t)zt(µ, t) + (1− θt(t)µ)zµ(µ, t) = 0, t > 0, µ ∈ [0, 1];
u(0, t) = u(L, t) = 0, t > 0
ux(L, t) = αux(0, t) + βux(0, t− θ(t)), t > 0;
u(x, 0) = u0(x), x ∈ [0, L];
ux(0, t− θ(0)) = z0(t− θ(0)), 0 < t < θ(0).
z(0, t) = ux(0, t), t > 0;
z(µ, 0) = z0(−θ(0)µ), µ ∈ [0, 1].

(3.1)

As previously, let Y =

(
u
z

)
, then the system (3.1) can be rewritten as the following

first-order system {
Yt = A(t)Y (t), t > 0,

Y (0) =
(
u0, z0(−θ(0))

)T
.

(3.2)
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Where A(t) is given by (2.10). The well-posedness of (3.2), is proved in [25, Theorem
2.2]. To prove the well-posedness of (3.2), they used the following Theorem

Theorem 3.1. Assume that

1. D(A(0)), is a dense subset of H.
2. D(A(t)) = D(A(0)) ∀t ≥ 0.
3. For all t ∈ [0, T ] A(t) generates a strongly continuous semigroup on H and

the family A = {A(t) : t ∈ [0, T ]} is stable with stability constant C and m
independent of t, i.e. the semigroup (Tt(s))s≥0 generated by A(t) satisfies

‖Tt(s)Y ‖H ≤ Cems‖Y ‖H , for all Y ∈ H, and s ≥ 0.

4. ∂tA(t) belong to L∞∗ ([0, T ], B(D(A(0)))), the space of equivalent of essen-
tially classes bounded strongly measure functions from [0, T ] into the set
B(D(A(0)), H) of bounded operator from D(A(0) to H.

Then the system (3.2) has a unique solution Y ∈ C([0, T ], D(A(0))) ∩ C1([0, T ], H)

More precisely, in [25], the authors demonstrated that, if (2.3)-(2.6) holds,
the operator A(t) satisfy all assumptions of Theorem 3.1 and the system (3.2)
has a unique solution u ∈ C([0,+∞[, H). Moreover if Y0 ∈ D(A(0)), then
Y ∈ C([0,+∞[, D(A(0))) ∩ C1([0,+∞[, H).

The following result gives the conditions for the existences and the uniqueness
of the solution of (2.9).

Theorem 3.2. Let (u0, z0) ∈ H and suppose that (2.3)-(2.6) holds. Assume also that
a = a(x) ∈ L∞[0, L] satisfying (2.2) and u ∈ L2(0, T,H1[0, L]). Then, there exists a
unique solution Y = (u, z) ∈ C([0,+∞[, H) of (2.9).

Proof. Let G(u) =

(
−sat(a(x)u)

0

)
. By assumption u ∈ L2(0, T,H1[0, L]), hence(

−sat(a(x)u)
0

)
∈ L1(0, T,H). Indeed, let u1, u2 ∈ L2(0, T,H1[0, L]), by using the

Holder inequality, ([20, Proposition 3.4]) and ([33, Theorem 5.1]), we get

‖G(u1)−G(u2)‖L1(0,T,H) =

∫ T

0

‖G(u1)−G(u2)‖Hdt

=

∫ T

0

‖sat(au1)− sat(au2)‖L2[0,L]) + ‖0‖L2[0,1]dt

=

∫ T

0

‖sat(au1)− sat(au2)‖L2[0,L])dt

≤ 3

∫ T

0

‖au1 − au2‖L2[0,L])dt

≤ 3‖a‖L∞[0,L]

∫ T

0

‖u1 − u2‖L2[0,L])dt

≤ 3‖a‖L∞[0,L]

√
T
√
L‖u1 − u2‖L2(0,T,H1[0,L]) < +∞.
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Therefore,

(
−sat(a(x)u)

0

)
∈ L1(0, T,H). Moreover, from [25, Theorem 2.2] the

operator A(t) satisfy all assumption of Theorem 3.1. Thus, since

(
−sat(a(x)u)

0

)
∈

L1(0, T,H), then if Y0 ∈ H, the system (3.2) has a unique solution Y = (u, z) ∈
C([0,+∞[, H), according to [14, Theorem 2].

Furthermore, sat(ã(x)u) ∈ L1(0, T, L2[0, L]), hence if

(
u0
z0

)
∈ D(A(0)), then from

[2, Proposition 2] the solution of (2.9) is a regular solution. �

4. Exponential stability

Consider the following energy

E(t) =
1

2

∫ L

0

u2(x, t)dx+
‖β‖

2
θ(t)

∫ 1

0

u2x(0, t− θ(t)µ)dµ. (4.1)

The following lemma proves that the energy (4.1) does not increase.

Lemma 4.1. Assume that assumptions (2.3), (2.4) and (2.6) are satisfied. Moreover
suppose also that u ∈ L2(0, T,H1[0, L]) and a = a(x) ∈ L∞[0, L], satisfying (2.2).
Then, for any regular solution of (2.9), the energy (4.1) satisfies the following in-
equality

d

dt
E(t) ≤

(
ux(0, t)
z(1, t)

)T (
1

2
M1

)(
ux(0, t)
z(1, t)

)
≤0.

(4.2)

Proof. Let u a regular solution of (2.1). By definition z(µ, t) = ux(0, t− θ(t)µ), hence
we rewrite the energy (4.1) as follows

E(t) =
1

2

∫ L

0

u2(x, t)dx+
‖β‖

2
θ(t)

∫ 1

0

z2(µ, t)dµ.

Differentiating E(·), we get

d

dt
E(t) =

∫ L

0

uutdx+
|β|
2
θ̇(t)

∫ 1

0

z2dµ+ |β|θ(t)
∫ 1

0

zztdµ

=−
∫ L

0

uuxdx−
∫ L

0

uuxxxdx−
∫ L

0

sat(au)udx

+
|β|
2
θ̇(t)

∫ 1

0

z2dµ+ |β|θ(t)
∫ 1

0

zztdµ

(4.3)

After some integrations by parts, we obtain

−
∫ L

0

uuxdx = 0; −
∫ L

0

uuxxxdx =
1

2
u2x(L, t)− 1

2
u2x(0, t),
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and

|β|θ(t)
∫ 1

0

zztdµ =|β|θ(t)
∫ 1

0

θ̇(t)µ− 1

θ(t)
zzµdµ

=|β|θ̇(t)
∫ 1

0

µzzµdµ− |β|
∫ 1

0

zzµdµ.

Thus

|β|θ̇(t)
∫ 1

0

µzzµdµ =
|β|
2
θ̇(t)

[
µz2(µ, t)

]1
0
− |β|

2
θ̇(t)

∫ 1

0

z2(µ, t)dµ

=
|β|
2
θ̇(t)z2(1, t)− |β|

2
θ̇(t)

∫ 1

0

z2(µ, t)dµ

(4.4)

and

−|β|
∫ 1

0

zzµdµ =− |β|
2

[
z2(µ, t)

]1
0

=− |β|
2

[
z2(1, t)− z2(0, t)

]
=
|β|
2
u2x(0, t)− |β|

2
z2(1, t).

(4.5)

Using (2.8), (4.3), (4.4) and (4.5), we get

d

dt
E(t) =

1

2
(αux(0, t) + βz(1, t))2 − 1

2
u2x(0, t)−

∫ L

0

sat(au)udx

+
|β|
2
θ̇(t)

∫ 1

0

z2dµ+ |β|θ̇(t)
∫ 1

0

µzzµdµ− |β|
∫ 1

0

zzµdµ

=
1

2
α2u2x(0, t) + αβux(0, t)z(1, t) +

1

2
β2z2(1, t)− 1

2
u2x(0, t)

−
∫ L

0

sat(au)udx+
|β|
2
θ̇(t)

∫ 1

0

z2dµ+
|β|
2
θ̇(t)z2(1, t)

− |β|
2
θ̇(t)

∫ 1

0

z2dµ+
|β|
2
u2x(0, t)− |β|

2
z2(1, t)

=
1

2
(α2 − 1 + |β|)u2x(0, t) + αβux(0, t)z(1, t)

+
1

2

(
β2 + |β|(θ̇(t)− 1)

)
z2(1, t)−

∫ L

0

sat(au)udx.
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Therefore using (2.4), we obtain

d

dt
E(t) +

(
ux(0, t)
z(1, t)

)T (
−1

2
M1

)(
ux(0, t)
z(1, t)

)
≤ 1

2
(α2 − 1 + |β|)u2x(0, t) + αβux(0, t)z(1, t)

+
1

2

(
β2 + |β|(θ̇(t)− 1)

)
z2(1, t)−

∫ L

0

sat(au)udx

+

(
ux(0, t)
z(1, t)

)T (
−1

2
M1

)(
ux(0, t)
z(1, t)

)
= −

∫ L

0

sat(au)udx

≤ 0.

Because

∫ L

0

sat(au)udx ≥ 0, indeed, if ‖au‖L2 ≤ 1, then

sat(au)u = au2 ≥ 0.

If ‖au‖L2 ≥ 1,

sat(au)u =
au

‖au‖L2

u =
au2

‖au‖L2

≥ 0,

where a = a(x) is a nonnegative function. Consequently, using (2.6), we have

d

dt
E(t) ≤

(
ux(0, t)
z(1, t)

)T (
1

2
M1

)(
ux(0, t)
z(1, t)

)
≤ 0. �

The following lemmas play an important role to prove the exponential stability
of (2.8). Before that, consider the following lyapunov function

V (t) = E(t) + λV1(t) + γV (t)2, (4.6)

where λ, γ ≥ 0, E(·) is given by (4.1), and

V1(t) =

∫ L

0

xu2(x, t)dx (4.7)

V2(t) = θ(t)

∫ 1

0

(1− µ)u2(x, t− θ(t)µ)dµ. (4.8)

Lemma 4.2. Assume that a = a(ax) ∈ L∞[0, L] satisfies (2.2),

(
u0
z0

)
∈ D(A(0))

and u ∈ L2(0, T,H1[0, L]), then for any regular solution of (2.1), the following equa-
tion is satisfied

V̇1(t) =L(α2u2x(0, t) + 2αβux(0, t)ux(0, t− θ(t)) + β2u2x(0, t− θ(t))

+

∫ L

0

u2dx− 3

∫ L

0

u2xdx−
∫ L

0

xsat(au)udx
(4.9)
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Proof. Let us consider a regular solution, then Differentiate V1(·) we have

V̇1(t) = 2

∫ L

0

xuutdx

= −2

∫ L

0

xuuxdx− 2

∫ L

0

xuuxxxdx− 2

∫ L

0

xsat(au)udx

After some integrations by parts, we obtain

−2

∫ L

0

xuuxdx =

∫ L

0

u2dx;

−2

∫ L

0

xuuxxxdx = Lu2(L, t)− 3

∫ L

0

u2xdx

= L(αux(0, t) + βux(0, t− θ(t)))2 − 3

∫ L

0

u2xdx

Using the last equations, we get

V̇1(t) =

∫ L

0

u2dx+ L(αux(0, t) + βux(0, t− θ(t)))2

− 3

∫ L

0

u2xdx− 2

∫ L

0

xsat(au)udx

= L(α2u2x(0, t) + 2αβux(0, t)ux(0, t− θ(t)) + β2u2x(0, t− θ(t)))

+

∫ L

0

u2dx− 3

∫ L

0

u2xdx− 2

∫ L

0

xsat(au)udx

�

Lemma 4.3. Assume that (2.4) is satisfied. Suppose also

(
u0
z0

)
∈ D(A(0)) and

u ∈ L2(0, T,H1[0, L]), then for any regular solution of (2.1), the following inequality
is satisfied

V̇2(t) ≤ −(1− d)

∫ 1

0

u2x(0, t− θ(t)µ)dµ+ u2x(0, t). (4.10)

Proof. Consider a regular solution, then differentiate V2(·), we have

V̇2(t) =θ̇(t)

∫ 1

0

(1− µ)u2
x(0, t− θ(t)µ)dµ

+2θ(t)

∫ 1

0

(1− µ)∂tux(0, t− θ(t)µ)ux(0, t− θ(t)µ)dµ

=θ̇(t)

∫ 1

0

(1− µ)u2
x(0, t− θ(t)µ)dµ+ 2

∫ 1

0

θ(t)∂tux(0, t− θ(t)µ)ux(0, t− θ(t)µ)dµ

−2

∫ 1

0

µθ(t)∂tux(0, t− θ(t)µ)ux(0, t− θ(t)µ)dµ

(4.11)
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After some integration by parts and using the following equation

−θ(t)∂tux(0, t− θ(t)µ) = (1− θ̇(t)µ)∂µux(0, t− θ(t)µ),

we obtain

2

∫ 1

0

θ(t)∂tux(0, t− θ(t)µ)ux(0, t− θ(t)µ)dµ =u2x(0, t)− (1− θ̇(t))u2x(0, t− θ(t))

−θ̇(t)
∫ 1

0

u2x(0, t− θ(t)µ)dµ

(4.12)

and

−2

∫ 1

0

µθ(t)∂tux(0, t− θ(t)µ)ux(0, t− θ(t)µ)dµ =(1− θ̇(t))u2x(0, t− θ(t))

−
∫ 1

0

u2x(0, t− θ(t)µ)dµ

+2

∫ 1

0

µθ̇(t)u2x(0, t− θ(t)µ)dµ

(4.13)

We deduce from (4.11), (4.12), (4.13) and (2.4) that

V̇2(t) = −
∫ 1

0

u2x(0, t− θ(t)µ)dµ

+ θ̇(t)

∫ 1

0

µu2x(0, t− θ(t)µ)dµ+ u2x(0, t)

≤ −
∫ 1

0

u2x(0, t− θ(t)µ)dµ+ d

∫ 1

0

µu2x(0, t− θ(t)µ)dµ+ u2x(0, t)

= −(1− d)

∫ 1

0

u2x(0, t− θ(t)µ)dµ+ u2x(0, t)

�

Now, we are able to state and prove the main result of this section.

Theorem 4.4. Assume that a = a(x) ∈ L∞[0, L] satisfying (2.2), and L < π
√

3.
Moreover suppose that the assumptions (2.3) , (2.4) and (2.6) are satisfied. Then,
there exists r > 0 such that for every (u0, z0) ∈ H satisfying ‖(u0, z0)‖H ≤ r, there
exists δ > 0 and M > 0 such that

E(t) ≤Me−2δtE(0), ∀t > 0. (4.14)

where for λ and γ sufficiently small, the two positive constants δ and M satisfy the
following inequality:

δ ≤ min

{
(9π2 − 3L2 − 2L

3
2 rπ2)

3L2(1 + 2Lλ)
λ,

γ

h(2γ + |β|)

}
(4.15)
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and

M ≤ 1 + max

{
Lλ,

2γ

|β|

}
.

Where λ and γ, satisfying the following inequality

λ ≤
{

(1− |β|)(1− |β| − d) + α2(d− 1) + 2γ(|β|+ d− 1)

2L(|β| − α2(d− 1)− β2 − 2γ|β|)
1− α2 − β2 − |β|d+ 2γ

2L(α2 + β2)

}
.

(4.16)

and

γ ≤
{

1− α2 − β2 − |β|d
2

(1− |β|)(1− |β| − d) + α2(d− 1)

2(1− |β| − d)

|β| − α2(d− 1)− β2

2β

}
.

(4.17)

Remark 4.5. The Lyapunov function V (·) and the energy E(·) are equivalent. Indeed,

E(t) ≤ V (t) ≤M1E(t) ∀t > 0, (4.18)

where M1 = 1 + max
{
Lλ, 2γ

|β|

}
> 0. Thanks to inequality (4.18), in order to prove

the exponential stability of system (2.1), it is sufficient to show that for all δ > 0,

d

dt
V (t) + 2δV (t) ≤ 0.

Proof. Let

(
u0
z0

)
∈ D(A(0)) such that ‖

(
u0
z0

)
‖0 ≤ r, with r > 0 chosen later.

Using (4.2), (4.9) and (4.10), we get

V̇ (t) ≤1

2
YM1Y + Lλα2u2x(0, t) + 2Lλαβux(0, t)ux(0, t− θ(t))

+Lβ2u2x(0, t− θ(t)) + λ

∫ L

0

u2dx− 3λ

∫ L

0

u2xdx

−
∫ L

0

xsat(au)udx− γ(1− d)

∫ 1

0

u2x(0, t− θ(t)µ)dµ+ γu2x(0, t)

=Y T
[

1

2
M1 +M2

]
Y + λ

∫ L

0

u2dx− 3λ

∫ L

0

u2xdx

−
∫ L

0

xsat(au)udx− γ(1− d)

∫ 1

0

u2x(0, t− θ(t)µ)dµ,

where Y =

(
ux(0, t)

ux(0, t− θ(t))

)
and M2 =

(
Lλα2 + γ Lλαβ
Lλαβ Lλβ2

)
and the matrix M1

is given by (2.5).
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Since x ∈ [0, L] and sat(au)u ≥ 0, we deduce that
∫ L
0
xsat(au)udx ≥ 0. Consequently

we deduce that

V̇ (t) ≤Y T
[

1

2
M1 +M2

]
Y + λ

∫ L

0

u2dx− 3λ

∫ L

0

u2xdx

−γ(1− d)

∫ 1

0

u2x(0, t− θ(t)µ)dµ.

(4.19)

Now, we calculate 2δV (t), using (2.3), we have

2δV (t) =2δE(t) + 2δλV1(t) + 2δγV2(t)

=δ

∫ L

0

u2dx+ δ|β|θ(t)
∫ 1

0

u2x(0, t− θ(t)µ)dµ+ 2δλ

∫ L

0

xu2dx

+2δγθ(t)

∫ 1

0

u2x(0, t− θ(t)µ)dµ− 2δγθ(t)

∫ 1

0

µu2x(0, t− θ(t)µ)dµ

≤δ
∫ L

0

u2dx+ δ|β|K
∫ 1

0

u2x(0, t− θ(t)µ)dµ

+2δλL

∫ L

0

u2dx+ 2δγK

∫ 1

0

u2x(0, t− θ(t)µ)dµ

(4.20)

According to [25, Theorem 3.2], for λ and γ small enough, the matrix 1
2M1 + M2 is

definite negative, and from (4.19) and (4.20) we deduce that

V̇ (t) + 2δV (t) ≤Y T
[

1

2
M1 +M2

]
Y + (λ+ δ + 2Lλδ)

∫ L

0

u2dx− 3λ

∫ L

0

u2xdx

+(δ|β|K + 2γδK − γ(1− d))

∫ 1

0

u2x(0, t− θ(t)µ)dµ

≤(λ+ δ + 2Lλδ)

∫ L

0

u2dx− 3λ

∫ L

0

u2xdx

+(δ|β|K + 2γδK − γ(1− d))

∫ 1

0

u2x(0, t− θ(t)µ)dµ

(4.21)

By using the Poincaré inequality, we get

V̇ (t) + 2δV (t) ≤
(
L2

π2
(λ+ δ + 2Lλδ)− 3λ

)∫ L

0

u2xdx

+ (δ|β|K + 2γδK − γ(1− d))

∫ 1

0

u2x(0, t− θ(t)µ)dµ.

(4.22)

�

By assumption L < π
√

3, then from [2], it is possible to choose r small enough

to have r <
3(π2 − L2)

2L
3
2π2

. Consequently, we can choose δ > 0 such that (4.15) holds in
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order to obtain that
L2

π2
(λ+ δ + 2Lλδ)− 3λ ≤ 0,

and

δ|β|K + 2γδK − γ(1− d) ≤ 0,

therefore

V̇ (t) + 2δV (t) ≤ 0 ∀t ≥ 0.

Hence, we deduce that

V (t) ≤ Ce−2δtV (0) ∀t ≥ 0.

By (4.18), we get

E(t) ≤ Ce−2δtE(0) ∀t ≥ 0.

Using the density of D(A(0)), we conclude the proof by extending the result to any
initial condition within H.

5. Conclusion

In this work, we investigated the linear Korteweg-de Vries equation with a time-
varying delay on the boundary feedback in the presence of a saturated source term.
This study has illustrated that the incorporation of a time-varying delay in the
Korteweg-de Vries equation, along with a saturated source term, leads to a well-
posed system under some conditions. Using a suitable Lyapunov functional, we prove
that the system (2.1) is locally exponentially stable. An inserting topic for further
research is the analysis of exponential stability of the non-linear KdV equation with
time-variyng delay in presence of non-linear source term.
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[24] Parada, H., Crépeau, E., Prieur, C., Global well-posedness of the KDV equation on a
star-shaped network and stabilization by saturated controllers, SIAM J. Control Optim.,
60(2022), no. 4, 2268-2296.



On the stability of KdV equation 369

[25] Parada, H., Timimoun, C., Valein, J., Stability results for the KdV equation with time-
varying delay, Syst. Control Lett., 177(2023), 105547.

[26] Park, P., Ko, J.W., Stability and robust stability for systems with a time-varying delay,
Automatica, 43(2007), no. 10, 1855-1858.

[27] Pazoto, A.F., Unique continuation and decay for the Korteweg-de Vries equation with
localized damping, ESAIM Control Optim. Calc. Var., 11(2005), no. 3, 473-486.

[28] Pazy, A., Semigroups of Linear Operators and Applications to Partial Differential Equa-
tions, Springer Sci. Business Media, 1983.

[29] Perla Menzala, G., Vasconcellos, C.F., Zuazua, E., Stabilization of the Korteweg-de Vries
equation with localized damping, Q. Appl. Math., 60(2002), no. 1, 111-129.

[30] Pyragas, K., Delayed feedback control of chaos, Philos. Trans. R. Soc. A, 364(2006), no.
1846, 2309-2334.

[31] Rosier, L., Exact boundary controllability for the Korteweg-de Vries equation on a
bounded domain, ESAIM Control Optim. Calc. Var., 2(1997), 33-55.

[32] Russell, D., Zhang, B.-Y., Exact controllability and stabilizability of the Korteweg-de
Vries equation, Trans. Am. Math. Soc., 348(1996), no. 9, 3643-3672.

[33] Slemrod, M., Feedback stabilization of a linear control system in Hilbert space with an a
priori bounded control, Math. Control Signals Syst., 2(1989), 265-285.

[34] Taboye, A.M., Laabissi, M., Exponential stabilization of a linear Korteweg-de Vries equa-
tion with input saturation, Evol. Equ. Control Theory, 11(2022), no. 5, 1519-1532.

[35] Tang, X.-Y., Liu, S.-J., Liang, Z.-F., Wang, J.-Y., A general nonlocal variable coefficient
KdV equation with shifted parity and delayed time reversal, Nonlinear Dyn., 94(2018),
693-702.

[36] Valein, J., On the asymptotic stability of the Korteweg-de Vries equation with time-
delayed internal feedback, Math. Control Relat. Fields, 12(2022), 667-694.

[37] Zhang, B.-Y., Exact boundary controllability of the Korteweg-de Vries equation, SIAM
J. Control Optim., 37(1999), no. 2, 543-565.

Toufik Ennouari
Department of Mathematics, Faculty of Sciences,
Chouaib Doukkali University, El-Jadidda, 24000, Morocco
e-mail: ennouari.t@ucd.ac.ma

Ahmat Mahamat Taboye
Department of Mathematics, Faculty of Sciences,
Chouaib Doukkali University, El-Jadidda, 24000, Morocco
e-mail: as.ahmat.taboye@gmail.com

https://orcid.org/0000-0002-1586-1925
https://orcid.org/0000-0001-9416-3203

	0_cover1
	0_editorial_i_ii
	00_Content_175_176
	01Gokbas_177_188
	1. Introduction and preliminaries
	2. The pseudo-Pell sequence
	2.1. Binet's formula for the pseudo-Pell sequence
	2.2. Generating function for the pseudo-Pell sequence
	2.3. Matrix representation for the pseudo-Pell sequence
	2.4. Sums of the pseudo-Pell sequence

	3. Some numerical examples
	4. Discussion and conclusions
	. Acknowledgment

	. References

	02Chudasama_189_209
	1. Introduction and main results
	2. Other results
	3. Application
	4. Conclusion
	. References
	Blank Page

	03Proca_Raducanu_211_218
	1.  Introduction
	2. Coefficient estimates
	3. Second Hankel determinant
	. References

	04Sharma_etal_219_232
	1. Introduction
	2. Main results
	3. Concluding remark
	. References

	05Ahmad_etal_233_249
	1. Introduction
	2. An auxiliary lemma
	3. Main results
	3.1. Existence of solutions
	3.2. Uniqueness of solutions

	4. Examples
	5. Conclusions
	. References
	Blank Page

	06Fouzia_Fayssal_251_266
	1. Introduction
	2. Technical lemmas
	3. Stability result
	. References

	07Ahakkoud_etal_267_284
	1. Introduction
	2. Preliminaries
	3. Main result
	4. An existence result
	. References

	08Sezgek_etal_285_299
	1. Introduction
	2. Main results
	. References
	Blank Page

	09Das_etal_301_319
	1. Introduction
	2. Basic notations and definitions
	2.1. Parametric form of interval valued functions (IVF)
	2.2. Interval initial value problem (Interval IVP)

	3. Interval Volterra integral equation (IVIE)
	3.1. Conversion of multiple integrals into a single integral for interval integrals
	3.2. General solution procedure for solving IVIE 
	3.3. Solution of interval Volterra integral equation of second kind by iterative method
	3.3.1. Solution of interval Volterra integral equation by the method of Resolvent Kernel


	4. Illustrative examples
	5. Conclusion
	. References
	Blank Page

	10Berinde_Saleh_321_333
	1. Introduction
	2. Preliminaries
	3. Split common solutions in the class of demicotractive mappings
	4. Conclusion
	. References
	Blank Page

	11Chouchane_Bouchelil_335_352
	1. Introduction
	2. Notations and preliminaries
	3. Problem statement and variational formulation
	4. Existence and uniqueness result
	. References

	12Ennouari_Taboye_353_369
	1. Introduction
	2. Problem statement
	3. Well-posedness
	4. Exponential stability
	5. Conclusion
	. References
	Blank Page

	Blank Page



