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Holomorphic vector field with one zero
on the Grassmannian and cohomology

Zsolt Szilágyi

Abstract. We consider a holomorphic vector field on the complex Grassman-
nian constructed from a nilpotent matrix. We show that this vector field van-
ishes only at a single point. Using the Baum-Bott localization theorem we give a
Grothendieck residue formula for the intersection numbers of the Grassmannian.
Knowing that Chern classes of the tautological bundle generate the cohomology
ring of the Grassmannian we can compute the ideal of relations explicitly from
the residue formula. This shows that the cohomology ring of the Grassmannian
is determined by holomorphic vector field around its only zero.

Mathematics Subject Classification (2010): 14Cxx, 57Rxx.

Keywords: Cohomology ring, residues, localization, holomorphic vector field.

1. Introduction

In this article we show that the Baum-Bott localization formula [2, Theorem 1]
using holomorphic vector fields can be used to compute the cohomology ring and
the intersection numbers of the complex Grassmannian. Moreover, the holomorphic
vector field can be chosen such that it has only a zero point, hence the cohomology
ring of the Grassmannian is determined by this vector field near its single zero. From
the residue formula of Baum-Bott for Chern numbers we are able to deduce the
relations between the generators of the cohomology ring of the Grassmannian, hence
to compute its cohomology ring.

The structure of the article is as follows. In Section 2 we recall the definition
and properties of the Grothendieck residue which we use in the sequel. In Section 3
we recall the Baum-Bott localization theorem for holomorphic vector fields (Theorem
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3.1). In Section 4 we construct the holomorphic vector field on the Grassmannian
from the action of a nilpotent matrix of form (4.1). We show that this vector field has
only a zero point (Proposition 4.1). The vector field of same type of matrix on CPn−1

was considered in [5] and [4, §7] to demonstrate how vector fields with isolated zeroes
can be used in computing cohomology rings. In [1] this construction of holomorphic
vector fields with single zero is generalized toG/P , whereG is a connected linear group
algebraic group defined over a an algebraically closed field of characteristic zero and P
is a parabolic subgroup. We note that the Grassmannian Grk(n,C) can be viewed as
homogeneous space. Then we express this vector field in local coordinates around the
zero point (cf. (4.8)). In Section 5 we write up a residue formula for the Chern numbers
of the tangent bundle of the Grassmannian Grk(n,C) by the Baum-Bott theorem and
we simplify it by eliminating all but n variables (Theorem 5.6). In Section 6 we recall
the properties of Chern classes and the cohomology ring of the complex Grassmannian
in terms of Chern classes of the tautological and the quotient bundle. In Lemma 6.3
we show that when n 6= 2k then the Chern classes of the tangent bundle also generate
the cohomology ring. In Theorem 6.4 and Corollary 6.5 we reinterpret the results of
Theorem 5.6 to give the final version of the residue formula in terms of Chern classes
of the tautological and quotient bundle when n 6= 2k. Using the similarities between
Local Duality property (P2) of the Grothendieck residue and Poincaré duality we
can easily calculate the relations between the generators of the cohomology ring (see
Subsection 6.2.1).

Finally, in Section 7 we show the connection between the Grothendieck residue
formula (6.5) and the Jeffrey-Kirwan residue formula for the Grassmannian con-
structed as symplectic quotient (cf. (7.1) and [7, Proposition 7.2]).

2. The Grothendieck residue

In this section we recall the definition of the Grothendieck residue and its prop-
erties used in the sequel. Let h, f1, . . . , fr be holomorphic functions in an open neigh-
borhood U ⊂ Cr of a point p. Suppose that p ∈ U is the only common zero of f1, . . . , fr
in U .

Definition 2.1. The Grothendieck residue is defined as

Resp

(
h dz1 . . . dzr
f1| . . . |fr

)
=

1

(2π
√
−1)r

∫
Γ(ε)

h(z)dz1 . . . dzr
f1(z) . . . fr(z)

, (2.1)

where Γ(ε) = {z ∈ U : |fi(z)| = εi, i = 1, . . . , r} for a small regular value

ε = (ε1, . . . , εr) ∈ Rr>0

of (|f1|, . . . , |fr|) : U → Rr and the torus Γ(ε) is oriented according to the differential
form d(arg f1(z)) . . . d(arg fr(z)).

We note that the Grothendieck residue does not depend on the choice of the
small regular value ε. We list some properties of the Grothendieck residue, which we
will use in the sequel.



Holomorphic vector field with one zero 717

(P1) The functions f1, . . . , fr in the denominator of the residue anticommute. That
is, if σ is a permutation of indices then

Resp

(
h dz1 . . . dzr
f1| . . . |fr

)
= sgn(σ) · Resp

(
h dz1 . . . dzr
fσ(1)| . . . |fσ(r)

)
,

where sgn(σ) is the sign of the permutation σ. This sign is the result of changing
the orientation of the cycle Γ(ε) on which we integrate.

(P2) (Local Duality) We have Resp

(
hg dz1 . . . dzr
f1| . . . |fr

)
= 0 for any local holomor-

phic germ g ∈ Op if and only if h belongs to the ideal 〈f1, . . . , fr〉p ⊂ Op
(cf. [6, p.659]). Assume that f1, . . . , fr ∈ C[z1, . . . , zr] are polynomials and
{p} = {z ∈ Cr | f1(z) = . . . = fr(z) = 0} is their only common zero in Cr. We
note that this is the cases for isolated zero p = 0 ∈ Cr when f1, . . . , fr are graded
homogeneous polynomials, i.e. there are degrees di, δi ∈ Z>0, for i = 1, . . . , r
such that fi(t

d1z1, . . . , t
drzr) = tδifi(z1, . . . , zr) for all i = 1, . . . , r. Then we

have the following version of the Local Duality. Resp

(
hg dz1 . . . dzr
f1| . . . |fr

)
= 0

for any polynomial g ∈ C[z1, . . . , zr] if and only if h belongs to the ideal
〈f1, . . . , fr〉 ⊂ C[z1, . . . , zr] (cf. [9, p.44]).

(P3) When f = (f1, . . . , fr) is nondegenerate at p, i.e. the Jacobian determinant

Jf (p) = det

(
∂fi
∂zj

(p)

)r
i,j=1

6= 0 then Resp

(
h dz1 . . . dzr
f1| . . . |fr

)
=

h(p)

Jf (p)
, (cf. [6,

p.650]).
(P4) (Transformation Law) Let A = (Aij)

r
i,j=1 be an r-by-r matrix with holomorphic

coefficients Aij ∈ O(U) such that p is the only locally common zero of gi =∑r
j=1Aijfj , i = 1, . . . , r. Then

Resp

(
h dz1 . . . dzr
f1| . . . |fr

)
= Resp

(
hdet(A) dz1 . . . dzr

g1| . . . |gr

)
,

(cf. [6, p.657]). In the case of p = 0 ∈ Cr and gi = zµi

i , i = 1, . . . , r with
µi ≥ 1 the above residue becomes an iterated residue and can be evaluated by
expanding hdet(A) into power series in variables z1, . . . , zr around p = 0 ∈ Cr
and taking the coefficient of the term zµ1−1

1 . . . zµr−1
r .

(P5) Assume that 0 ∈ U is the only zero of polynomials f1, . . . , fr−1, fr = zr ∈
C[z1, . . . , zr] in the open set U ⊆ Cr and consider the inclusion ιr : Cr−1 → Cr,
ιr(z1, . . . zr−1) = (z1, . . . , zr−1, 0). Then by division with remainder with respect
to zr we have fj = ϕjzr +ρj , where ρj = ι∗rfj = fj ◦ ιr ∈ C[z1, . . . zr−1] non-zero
for all j = 1, . . . , r − 1. If we set ρr = zr, then ρi =

∑r
j=1Aijfj with Aii = 1,

1 ≤ i ≤ r, Air = −ϕi, 1 ≤ i ≤ r − 1 and Aij = 0 otherwise. Thus, det(A) = 1
and by (P4), (P2) we have

Res0

(
h dz1 . . . dzr
f1| . . . |fr−1|zr

)
= Res0

(
h dz1 . . . dzr

ι∗rf1| . . . |ι∗rfr−1|zr

)
= Res0

(
ι∗rh dz1 . . . dzr

ι∗rf1| . . . |ι∗rfr−1|zr

)
= Res0

(
ι∗rh dz1 . . . dzr−1

ι∗rf1| . . . |ι∗rfr−1

)
.
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(P6) (Pull-back) If ϕ = (ϕ1, . . . , ϕr) : Cr → Cr is a finite map, generically m-fold
cover then

Resp

(
h(z) dz1 . . . dzr
f1(z)| . . . |fr(z)

)
=

1

m

∑
ζ∈ϕ−1(p)

Resζ

(
h(ϕ(w))Jϕ(w) dw1 . . . dwr
f1(ϕ(w))| . . . |fr(ϕ(w))

)
.

(P7) Assume that zi has degree δi and fi ∈ C[z1, . . . , zr] are graded homogeneous
polynomials of degree di, for i = 1, . . . , r. Let h be also homogeneous polynomial
of degree d. Rescaling z 7→ λz = (λδ1z1, . . . , λ

δrzr) yields

Res0

(
h(z) dz1 . . . dzr
f1(z)| . . . |fr(z)

)
= Res0

(
h(λz)d(λδ1z1) . . . d(λδrzr)

f1(λz)| . . . |fr(λz)

)
= λD Res0

(
h(z) dz1 . . . dzr
f1(z)| . . . |fr(z)

)
,

where D = d+ δ1 + . . .+ δr − d1 − . . .− dr, hence the residue vanishes if D 6= 0,
i.e. when d 6= d1 + . . .+ dr − δ1 − . . .− δr.

3. The Baum-Bott localization theorem

We recall the Baum-Bott theorem from [2], which states that Chern numbers
of the tangent bundle can be computed by Grothendieck residues at zeroes of holo-
morphic vector fields. Let M be a compact complex analytic manifold of dimension
dimCM = r and let ϑ be a holomorphic vector field on M . We assume that ϑ vanishes
only at isolated points. We consider holomorphic local coordinates z1, . . . , zr on M
centered at a zero p, i.e. z1(p) = . . . = zr(p) = 0. In these local coordinates we can
write

ϑ =

r∑
i=1

ϑi
∂

∂zi
,

where ϑ1, . . . , ϑr are holomorphic functions in a neighborhood Up of p and this point
p is their only common zero in Up.

Let Vp =

(
∂ϑi
∂zj

)r
i,j=1

be the Jacobian. The Chern classes ci(Vp) of the matrix

Vp are defined by the formula

c(Vp; t) =

r∑
i=0

ci(Vp)t
i = det(I + tVp). (3.1)

Moreover, for any multidegree α = (α1, . . . , αr) ∈ Zr≥0 such that |α| = α1 + 2α2 +

. . .+ rαr = r the Chern numbers of Vp are given by cα(Vp) = c1(Vp)
α1 · · · cr(Vp)αr .

Denote ci(TM) ∈ H2i(M,C), i = 1, . . . , r the Chern classes of the holomorphic
tangent bundle TM . The theorem of Baum and Bott [2, Theorem 1] states that for
any multidegree α = (α1, . . . , αr) the Chern numbers

cα(TM) =

∫
M

c1(TM)α1 · · · cr(TM)αr (3.2)
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of the holomorphic tangent bundle TM can be computed by Grothendieck residues
at the zeroes of the holomorphic vector field ϑ as follows.

Theorem 3.1 ([2, Theorem 1]). Let ϑ be a holomorphic vector field on a compact
complex analytic manifold M of dimension dimCM = r. Assume that ϑ vanishes
at only isolated points. Then the Chern numbers of the tangent bundle of M can be
computed as

cα(TM) =
∑

p∈zeroes of ϑ

Resp

(
cα(Vp) dz1 . . . dzr

ϑ1| . . . |ϑr

)
. (3.3)

4. Nilpotent vector field on the Grassmannian

From the action of a nilpotent matrix of form (4.1) we construct a holomor-
phic vector field ϑ on the Grassmannian Grk(n,C), which vanishes at a single point
(Proposition 4.1). Moreover, in (4.8) we express this vector field in local coordinates
around its zero and we use it to compute the Chern numbers of the Grassmannian
(cf. (5.1)). The result of the computation is given in Theorem 5.6.

4.1. Definition of the vector field ϑ

On the complex vector space Mk,n(C) of k-by-n complex matrices we consider
the natural left action of the group GLk(C) by matrix multiplication. We assume
that k < n. On the subset of rank k matrices of Mk,n(C) the group GLk(C) acts
properly and freely. The quotient Grk(n,C), called the Grassmannian, is the set of
k-dimensional complex linear subspaces of Cn and it has the structure of a compact
complex analytic manifold. In particular, a full rank matrix P ∈Mk,n(C) represents
a point in Grk(n,C), namely the k-dimensional complex linear subspace spanned by
the rows of P .

On Mk,n(C) the multiplication by n-by-n matrices GLn(C) on the right com-
mutes with the action of GLk(n) on the left, hence this right action descends to the
Grassmannian Grk(n,C).

For any ` ≥ 2 we consider nilpotent matrices of the following form

N` =


0 1 0 . . . 0
0 0 1 . . . 0
...
0 0 0 . . . 1
0 0 0 . . . 0

 ∈M`(C). (4.1)

We consider the vector field ϑ on the Grassmannian induced by the nilpotent matrix
Nn ∈Mn(C) as follows. Let ϑ be the vector field associated with the holomorphic flow
Fl(t, P ) = P · exp(tNn), t ∈ C on the Grassmannian Grk(n,C), where P ∈ Mk,n(C)
is a rank k matrix representing a point on the Grassmannian.
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4.2. Zeroes of the vector field ϑ

The following proposition gives a description of matrices representing the zeroes
of the vector field ϑ and shows that they represent the same point on the Grassman-
nian.

Proposition 4.1. A matrix P ∈Mk,n(C) of rank k represents a zero of the vector field
ϑ on Grk(n,C) if and only if there exists matrix S ∈ Mk(C) such that SP = PNn.
Moreover, any solution (S, P ) ∈ Mk(C) ×Mk,n(C) of SP = PNn is of form S =
UNkU

−1 and P =
(
Ok,n−k U

)
, where U ∈ GLk(C) and Ok,n−k ∈ Mk,n−k(C) is

the zero matrix. The point in Grk(n,C) represented by P =
(
Ok,n−k Ik

)
is the only

zero of the vector field ϑ.

Proof. The zeroes of the vector field ϑ correspond to the fixed points of the flow Fl,
hence P represents a zero of ϑ if and only if there exists A(t) ∈ GLk(C) for all t ∈ C
such that A(t)P = P exp(tNn). Moreover, A(t) is differentiable and denote S = A′(0).
Therefore, from the previous relation we get SP = PNn by taking the differential
at t = 0. On the other hand, if there is a pair (S, P ) with P of rank k such that
SP = PNn, then SjP = PN j

n for all j ∈ Z≥0, hence exp(St)P = P exp(tNn). This
implies that P represents a zero of ϑ.

Consider a pair (S, P ) ∈Mk(C)×Mk,n(C) satisfying SP = PNn. In particular,
SnP = PNn

n = Ok,n−k and P has rank k, thus Sn = Ok, i.e. S is nilpotent. The
Jordan form of S ∈ Mk(C) implies that already Sk = Ok. Since Ok = SkP = PNk

n ,
thus we must have P =

(
Ok,n−k U

)
for some matrix U ∈ GLk(C) and S = UNkU

−1.

The rank k matrices
(
Ok,n−k U

)
and

(
Ok,n−k Ik

)
represent the same point

in Grk(n,C). �

4.3. Expression of the vector field ϑ in local coordinates at the zero point

The local parametrization on the Grassmannian around the point represented
by P of Proposition 4.1 is given by the matrix Z =

(
z Ik

)
with block z = (zi,j)i,j

of k× (n− k) complex coordinates zi,j , i = 1, . . . , k, j = 1, . . . , n− k. The ordering of
coordinates will be lexicographical.

First, we compute the flow Fl of ϑ as follows. We set matrices B(t) and D(t)
by the relation

(
B(t) D(t)

)
=
(
z Ik

)
exp(tNn), hence z(t) = D(t)−1B(t) gives the

local coordinates of the flow at the zero point. We note that B(0) = z, D(0) = Ik
and D(t) is a matrix of polynomials in t of degree at most n and has of form D(t) =
Ik +D1t+ . . .+Dnt

n with

D1 =


z1,n−k 1 0 . . . 0
z2,n−k 0 1 . . . 0

...
zk−1,n−k 0 0 . . . 1
zk,n−k 0 0 . . . 0

 . (4.2)

Finally, in local coordinates z the vector field ϑ can be computed as

ϑ =

k∑
i=1

n−k∑
j=1

d

dt

(
D−1(t)B(t)

)
i,j

(0)
∂

∂zi,j
=

k∑
i=1

n−k∑
j=1

(−D1z + zNn−k)i,j
∂

∂zi,j
.
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Note that zNn−k is the matrix got from z by shifting its columns to the right and

inserting zeroes in the first column. In more details, if ϑ =
∑k
i=1

∑n−k
j=1 ϑi,j

∂
∂zi,j

then

ϑi,1 = −zi,n−kz1,1 − zi+1,1, (i = 1, . . . , k − 1), (4.3)

ϑk,1 = −zk,n−kz1,1, (4.4)

ϑi,j = −zi,n−kz1,j − zi+1,j + zi,j−1, (i = 1, . . . , k − 1, j = 2, . . . , n− k), (4.5)

ϑk,j = −zk,n−kz1,j + zk,j−1, (j = 2, . . . , n− k). (4.6)

If we introduce notations zk+1,j = 0 for j = 1, . . . , n− k and zi,0 = 0 for i = 1, . . . , k
then we can give a uniform description for these functions. For any i = 1, . . . , k and
j = 1, . . . , n− k we have

ϑi,j = −zi,n−kz1,j − zi+1,j + zi,j−1. (4.7)

With these notations the nilpotent vector field around the zero equals to

ϑ =

k∑
i=1

n−k∑
j=1

(−zi,n−kz1,j − zi+1,j + zi,j−1)
∂

∂zi,j
. (4.8)

5. Residue formula for the Grassmannian

We start by writing up the Baum-Bott residue formula (3.3) for the vector
field (4.8) on the Grassmannian Grk(n,C) and we prove a series of lemmas about
the building blocks of this residue formula to reduce the number of variables from
k(n − k) to n. At the end of this section in Theorem 5.6 we get a simplified residue
formula for Chern numbers of the Grassmannian. In Section 6 this formula will be
reinterpreted in terms of Chern classes of the tautological and quotient bundle on the
Grassmannian (Theorem 6.4 and Corollary 6.5) to get an even simpler formula.

By Theorem 3.1 we get the following formula for Chern numbers (3.2) of the
tangent bundle of the Grassmannian:

cα(TGrk(n,C)) = Res0

(∏k
i=1

∏n−k
j=1 dzi,j∏k

i=1

∏n−k
j=1 ϑi,j

cα(V )

)
, (5.1)

where V =

(
∂ϑi,j
∂zh,l

)
(i,j),(h,l)

with lexicographical ordering on pairs (i, j) and (h, l).

This ordering is compatible with the ordering of functions ϑi,j in the denomina-
tor of (5.1). We will drop the vertical line notation from the denominator in the
Grothendieck residue, but we will keep track of the order of functions.

We make the following change of variables. We express the variables za,b, a =
1, . . . , k, b = 1, . . . , n − k in terms of z1,j , j = 1, . . . , n − k − 1, zi,n−k, i = 1, . . . , k,
and ϑi,j , i = 1, . . . , k − 1, j = 1, . . . , n− k − 1. We keep the common variables, while
the others can expressed in new variables as follows.
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Lemma 5.1. For any i = 1, . . . , k − 1 and j = 1, . . . , n− k − 1 we have

zi+1,j = −
min{i, j−1}∑

`=0

zi−`,n−k z1,j−` −
min{i−1, j−1}∑

`=0

ϑi−`,j−` (5.2)

with notation z0,n−k = −1.

Proof. We fix a pair (i, j) with 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ n− k − 1. From relations
(4.7) we construct the following recursion between variables on the same diagonal as
zi+1,j

zi+1−`,j−` = −zi−`,n−kz1,j−` + zi−`,j−1−` − ϑi−`,j−`, (5.3)

for ` = 0, . . . ,min{i− 1, j − 1}. We specify the following edge cases.
For ` = i− 1 = min{i− 1, j − 1} we have

z2,j−i+1 = −z1,n−kz1,j−i+1 + z1,j−i − ϑ1,j−i+1

= −z1,n−kz1,j−i+1 − z0,n−kz1,j−i − ϑ1,j−i+1,

with notation z0,n−k = −1. Moreover, for ` = j − 1 = min{i− 1, j − 1} we have

zi−j+2,1 = −zi−j+1,n−kz1,1 + zi−j+1,0 − ϑi−j+1,1

= −zi−j+1,n−kz1,1 − ϑi−j+1,1

by earlier introduced notation zi−j+1,0 = 0.
Finally, substituting the relations (5.3) into each other yields the statement of

the lemma. �

The differential form in the numerator of (5.1) can be expressed in terms of new
variables as follows.

Lemma 5.2.
k∏
i=1

n−k∏
j=1

dzi,j =

k−1∏
i=1

( n−k−1∏
j=1

dϑi,j

)
dzi,n−k

( n−k−1∏
j=1

dz1,j

)
dzk,n−k.

Proof. Taking the differential of (5.2) for every i = 1, . . . , k−1 and j = 1, . . . , n−k−
1, then substituting into the product of differentials basically replaces dzi+1,j with
−dϑi,j , thus we get

k∏
i=1

n−k∏
j=1

dzi,j = (dz1,1 . . . dz1,n−k−1dz1,n−k) ((−dϑ1,1) . . . (−dϑ1,n−k−1)dz2,n−k)

. . . ((−dϑk−1,1) . . . (−dϑk−1,n−k−1)dzk,n−k)

= (dϑ1,1 . . . dϑ1,n−k−1dz1,n−k) . . .

(dϑk−1,1 . . . dϑk−1,n−k−1dzk−1,n−k) (dz1,1 . . . dz1,n−k−1dzk,n−k)

=
( k−1∏
i=1

( n−k−1∏
j=1

dϑi,j

)
dzi,n−k

)( n−k−1∏
j=1

dz1,j

)
dzk,n−k.

�
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The functions ϑk,j , j = 1, . . . , n−k and ϑi,n−k, i = 1, . . . , k−1 in the denominator
of the residue (5.1) can be expressed in terms of new variables as follows.

Lemma 5.3. For i = k or j = n− k we have

ϑi,j = −
min{i,j−1}∑
h=−1

zi−h,n−k z1,j−h −
min{i−1,j−1}∑

h=1

ϑi−h,j−h (5.4)

with notations z1,n−k+1 = 1, z0,n−k = −1 and zk+1,j = 0.

Proof. In the first case when i = k we substitute (5.2) into (4.6) and we get

ϑk,j = −zk,n−k z1,j −
min{k−1,j−2}∑

`=0

zk−1−`,n−k z1,j−1−` −
min{k−2,j−2}∑

`=0

ϑk−1−`,j−1−`

= −zk,n−k z1,j −
min{k,j−1}∑

h=1

zk−h,n−k z1,j−h −
min{k−1,j−1}∑

h=1

ϑk−h,j−h

= −
min{k,j−1}∑
h=−1

zk−h,n−k z1,j−h −
min{k−1,j−1}∑

h=1

ϑk−h,j−h

by earlier introduced notation zk+1,j = 0.

In the second case when j = n − k, we substitute (5.2) into (4.5) in place of
zi,n−k−1 and we get

ϑi,n−k = − zi,n−k z1,n−k − zi+1,n−k −
min{i−1,n−k−2}∑

`=0

zi−1−`,n−k z1,n−k−1−`−

−
min{i−2,n−k−2}∑

`=0

ϑi−1−`,n−k−1−`

= − zi,n−k z1,n−k − zi+1,n−kz1,n−k+1 −
min{i,n−k−1}∑

h=1

zi−h,n−k z1,n−k−h

−
min{i−1,n−k−1}∑

h=1

ϑi−h,n−k−h

= −
min{i,n−k−1}∑

h=−1

zi−h,n−k z1,n−k−h −
min{i−1,n−k−1}∑

h=1

ϑi−h,n−k−h

by setting z1,n−k+1 = 1. �

We introduce notation for the first sum of (5.4)

ζi,j = −
min{i,j−1}∑
h=−1

zi−h,n−kz1,j−h for i = k or j = n− k, (5.5)
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and ζi,j = ϑi,j otherwise. Hence by (5.4) we have ζi,j = ϑi,j +
∑min{i−1,j−1}
h=1 ϑi−h,j−h

if i = k or j = n− k and ϑi,j = ζi,j otherwise.

Remark 5.4. The transformation matrix between (ϑi,j)i=1,k, j=1,n−k and

(ζi,j)i=1,k, j=1,n−k (lexicographically ordered) is lower triangular with 1 on the
diagonal.

Next, we compute the final component of the residue formula (5.1), namely
c(V ; t) (cf. (3.1)). We introduce the following notations:

ũi = −zi,n−k, i = 0, . . . , k + 1 and wj = z1,n−k+1−j = z1,j∗ , j = 0, . . . , n− k,
(5.6)

where j∗ = n− k+ 1− j. By earlier notations ũ0 = −z0,n−k = 1, w0 = z1,n−k+1 = 1,
ũk+1 = −zk+1,n−k = 0 and ũ1 = −w1 = −z1,n−k.

We associate with w = (w1, . . . , wn−k) the following matrix

Λw =


w1 −1 0 . . . 0
w2 0 −1 . . . 0
...

wn−k−1 0 0 . . . −1
wn−k 0 0 . . . 0

 . (5.7)

Lemma 5.5. Using notations of (5.6) we have

c(V ; t) = det
( k∑
i=0

ũit
i(I − tΛw)k−i

)
.

Proof. From (4.7) we can compute

∂ϑ1,n−k

∂z1,n−k
= −2z1,n−k,

∂ϑi,j
∂zi,n−k

= −z1,j

and
∂ϑi,j
∂z1,j

= −zi,n−k if i 6= 1 or j 6= n− k,
∂ϑi,j
∂zi+1,j

= −1,
∂ϑi,j
∂zi,j−1

= 1 and
∂ϑi,j
∂zh,`

= 0

otherwise.
Let W = [Wi,j ]

n−k
i,j=1 be the matrix with Wi+1,i = 1, Wi,n−k = −z1,i =

−wn−k+1−i and Wi,j = 0 otherwise (centrally symmetric image of −Λw). Denote

I = In−k and let Ui = −zi,n−kI = ũiI for i = 0, . . . , k. Then V =

(
∂ϑi,j
∂zh,`

)
(i,j),(h,`)

is the k(n − k)-by-k(n − k) matrix composed of (n − k)-by-(n − k) blocks V i,j ,
i, j = 1, . . . , k as follows. Let V 1,1 = U1 + W and for i > 1 let V i,1 = Ui, V

i,i = W
and V i,i+1 = −I, while other blocks are zeroes. Then we compute

c(V ; t) = det(Ik(n−k) + tV )

=

∣∣∣∣∣∣∣∣∣∣∣

tU1 + I + tW −tI 0 . . . 0 0
tU2 I + tW −tI . . . 0 0

...
tUk−1 0 0 . . . I + tW −tI
tUk 0 0 . . . 0 I + tW

∣∣∣∣∣∣∣∣∣∣∣
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as follows. To get rid of I+tW from the first (k−1) diagonal blocks, we add successively
to the (k−1)th, . . . , 1st columns of blocks the subsequent column of blocks multiplied
by t−1(I + tW ). After this step there will be blocks

tUk + t1−k(I + tW )k, t2−k(I + tW )k−1, . . . , t−1(I + tW )2, I + tW

in the last row. Next, we multiply the first k − 1 rows of blocks by

t1−k(I + tW )k−1, . . . , t−2(I + tW )2, t−1(I + tW )

respectively and we add them to the last row to get blocks of zeroes in the last row

except the first column, where there will be
∑k
i=0(I + tW )k−it1−k+iUi.

Summing up, we get a determinant with blocks −tI above the diagonal,
tU1, . . . , tUk−1 in the first (k − 1) rows of the first column, respectively, and∑k
i=0(I + tW )k−it1−k+iUi in the last row of the first columns, while other blocks

are zeroes. Finally, we move the first column of blocks to the end to get an block-

upper triangular determinant in exchange of a (−1)(k−1)(n−k)2 -sign. Hence,

det(Ik(n−k) + tV ) = (−1)(k−1)(n−k)2+(k−1)(n−k) · det
( k∑
i=0

(I + tW )k−itiUi

)
= det

( k∑
i=0

ũit
i(I + tW )k−i

)
= det

( k∑
i=0

ũit
i(I − tΛw)k−i

)
,

where the last equality is by reflecting the determinant first with respect to the diag-
onal and then to the anti-diagonal, which sends W to −Λw, and it is compatible with
matrix addition and multiplication. �

Consider the polynomial ring C[u,w] = C[u1, . . . , uk, w1, . . . , wn−k] and polynomials

P`(u, v) =
∑̀
s=0

usw`−s, ∀` = 1, . . . , n, (5.8)

with notations u0 = w0 = 1. We state the reshaped Baum-Bott residue formula for
the Grassmannian Grk(n,C) with only n variables.

Theorem 5.6. For any multidegree α = (α1, . . . , αk(n−k)) ∈ Zk(n−k)
≥0 with

|α| = α1 + · · ·+ αk(n−k) = k(n− k)

the Chern numbers can be computed as

cα(TGrk(n,C)) =

∫
Grk(n,C)

k(n−k)∏
s=1

cs(TGrk(n,C))αs

= Res0

(∏k
i=1 dui

∏n−k
j=1 dwj∏n

`=1 P`(u,w)
∆α(u,w)

)
,

where

∆(u,w; t) =

k(n−k)∑
`=0

∆`t
` = det

( k∑
i=0

uit
i(I − tΛw)k−i

)



726 Zsolt Szilágyi

and

∆α(u,w) = ∆α1 · . . . ·∆αk(n−k) .

Proof. By the Baum-Bott Theorem we have the residue formula (5.1). In this formula
we replace the differential form by the one in Lemma 5.2. We also reorder the functions
in the denominator and by (P1) the functions in the denominator are anti-commuting
just like the differential forms in the numerator. Thus, the residue (5.1) becomes

Res0

(∏k−1
i=1

(∏n−k−1
j=1 dϑi,j

)
dzi,n−k

(∏n−k−1
j=1 dz1,j

)
dzk,n−k∏k

i=1

∏n−k
j=1 ϑi,j

cα(V )

)
= (5.9)

= Res0

(∏k−1
i=1

∏n−k−1
j=1 dϑi,j

∏k
i=1 dzi,n−k

∏n−k−1
j=1 dz1,j∏k−1

i=1

∏n−k−1
j=1 ϑi,j

∏k
i=1 ϑi,n−k

∏n−k−1
j=1 ϑk,j

cα(V )

)
. (5.10)

Recall that we have relations ϑi,j = ζi,j−
∑min{i−1,j−1}
h=1 ϑi−h,j−h for i = k or j = n−k

by (5.5) and Lemma 5.3. Thus, when i = k or j = n− k we can replace ϑi,j with ζi,j
in (5.10) by Transformation Law (P4) and Remark 5.4 to get

Res0

(∏k−1
i=1

∏n−k−1
j=1 dϑi,j

∏k
i=1 dzi,n−k

∏n−k−1
j=1 dz1,j∏k−1

i=1

∏n−k−1
j=1 ϑi,j

∏k
i=1 ζi,n−k

∏n−k−1
j=1 ζk,j

cα(V )

)
. (5.11)

We note that cα(V ) depends only on z1,1, . . . , z1,n−k, . . . , zk,n−k (see Lemma 5.5).
Thus, applying property (P5) to (5.11) yields

Res0

(∏k
i=1 dzi,n−k

∏n−k−1
j=1 dz1,j∏k

i=1 ζi,n−k
∏n−k−1
j=1 ζk,j

cα(V )

)
=

= Res0

(∏k
i=1 dzi,n−k

∏n−k
j=2 dz1,j∗∏k

i=1 ζi,n−k
∏n−k
j=2 ζk,j∗

cα(V )

)
, (5.12)

where j∗ = n− k + 1− j.
By Lemma 5.5 we have c(V ; t) = ∆(ũ, w; t), hence cα(V ) = ∆α(ũ, w). Moreover,

from (5.5) and (5.6) for i = k and j = 1, . . . , n− k − 1 we have

ζk,j =

min{k,j−1}∑
h=−1

ũk−hwn−k+1−j+h = Pn+1−j(ũ, w),

hence ζk,j∗ = Pk+j(ũ, w). Similarly, from (5.5) and (5.6) for j = n−k and i = 1, . . . , k
we have

ζi,n−k =

min{i,n−k−1}∑
h=−1

ũi−hwh+1 = Pi+1(ũ, w).

We recall that ũ1 = −w1. Thus, (5.12) becomes

Res0

(∏k
i=1 dzi,n−k

∏n−k
j=2 dz1,j∗∏k

i=1 ζi,n−k
∏n−k
j=2 ζk,j∗

cα(V )

)
= Res0

(∏k
i=2 dũi

∏n−k
j=1 dwj∏n

i=2 Pi(ũ, w)
∆α(ũ, w)

)
.

(5.13)
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Finally, to get a more symmetric formula we separate ũ1 from w1. Therefore, let
P1 = P1(u,w) = u1 +w1 and ui = ũi for i = 2, . . . , k, hence u1 = P1 −w1 = P1 + ũ1.
Thus,

Res0

(∏k
i=1 dui

∏n−k
j=1 dwj∏n

i=1 Pi(u,w)
∆α(u,w)

)
(�)
=

(�)
= Res0

(
dP1

∏k
i=2 dui

∏n−k
j=1 dwj

P1

∏n
i=2 Pi(u,w)

∆α(u,w)

)
(�)
=

(�)
= Res0

(
dP1

∏k
i=2 dũi

∏n−k
j=1 dwj

P1

∏n
i=2 Pi(ũ, w)

∆α(ũ, w)

)
(��)
=

(��)
= Res0

(∏k
i=2 dui

∏n−k
j=1 dw̃j∏n

i=2 Pi(ũ, w)
∆α(ũ, w)

)
.

In (�) we replaced du1 with dP1. In (�) we made substitution u1 = P1 + ũ1 and,
moreover, we applied Local Duality (P2) to get rid of P1 from ∆α(u,w), appeared
after the substitution and to get ∆α(ũ, w). Furthermore, we used Transformation Law
(P4) to remove P1 from P2(u,w), . . . , Pn(u,w) after the aforementioned substitution
and to get P2(ũ, w), . . . , Pn(ũ, w) in the denominator. Last, in (��) we used property
(P5) to eliminate P1 from the residue and we got back the right hand side of (5.13). �

6. The residue formula and cohomological relations

We will give an interpretation of variables ui’s and wj ’s of Theorem 5.6 in terms
of Chern classes of the tautological and quotient bundle on the Grassmannian. Thus,
in Theorem 6.4 we can give an even simpler version of Theorem 5.6.

6.1. Cohomology ring of the complex Grassmannian

First, we recall the properties of Chern classes from [3, Ch. IV], then we recall
the generators and relations of the cohomology ring of the complex Grassmannian in
Theorem 6.1 (cf. [3, Proposition 23.2]).

6.1.1. Chern classes. To a complex vector bundle E (of rank p) over a manifold M
one can associate cohomological classes ci(E) ∈ H2i(M,C), i = 1, . . . , p, called the
ith Chern class (c0(E) = 1 and ci(E) = 0 when i > p). One can arrange them into
a sequence c(E ; t) = 1 + c1(E)t + . . . + cp(E)tp and c(E) = c(E ; 1) is called the total
Chern class.

Usually, one uses Chern roots to calculate with Chern classes. This is based
on the Splitting Principle ([3, Ch. IV, §21]): one can pretend that the bundle E is
a direct sum of complex line bundles. The Chern classes η1, . . . , ηp ∈ H2(M,C) of
these hypothetical line bundles are the Chern roots of E , hence ci(E) = ei(η) =∑

1≤`1<···<`i≤p η`1 · · · η`i is the ith elementary symmetric polynomial of the Chern

roots (e0(η) = 1) and c(E ; t) =
∏p
i=1(1 + tηi). For example, the dual bundle E∗ has

Chern roots −η1, . . . ,−ηp, hence c(E∗; t) = c(E ;−t). Or, if F is another bundle over M
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with Chern roots φ1, . . . , φq then E ⊕ F has Chern roots η1, . . . , ηp, φ1, . . . , φq, hence
c(E ⊕ F ; t) = c(E ; t)c(F ; t) (Whitney product formula, cf. [3, (20.10.3)]). Similarly,
E ⊗ F has Chern roots ηi + φj , i = 1, . . . , p, j = 1, . . . , q, hence c(E ⊗ F ; t) =∏p
i=1

∏q
j=1(1+tηi+tφj), which can be expressed in terms of Chern classes of ci(E) and

cj(F) (see Lemma 6.2). In particular, when E and F are line bundles then c1(E⊗F) =
c1(E) + c1(F) (cf. [3, (21.9)]). The Chern roots of the trivial bundle are zero, thus
c(M × Cs; t) = 1.

6.1.2. Generators and relations of the cohomology ring of the complex Grassman-
nians. There is a tautological exact sequence of complex vector bundles over the
complex Grassmannian Grk(n,C)

0→ L → Grk(n,C)× Cn → Q→ 0, (6.1)

where L = {(U, u) ∈ Grk(n,C) × Cn |u ∈ U} is the tautological (rank k) complex
vector bundle and Q is the quotient vector bundle (of rank n − k). The tautological
exact sequence (6.1) induces the relation of total Chern classes c(L)c(Q) = c(L⊕Q) =
c(Grk(n,C)×Cn) = 1, hence we get the following relations between the Chern classes
of L and Q: ∑

i+j=`

ci(L)cj(Q) = 0, ∀` = 1, . . . , n, (6.2)

(0 ≤ i ≤ k, 0 ≤ j ≤ n− k). From the first n− k relation one can recursively express
each Chern class of the quotient bundle Q in terms of Chern classes of the tautological
bundle L. Substituting them into the remaining k relations we get relations between
Chern classes of L.

The Chern classes c1(L), . . . , ck(L) of L generate the cohomology ring
H∗(Grk(n,C),C) with real coefficients, i.e. the ring homomorphism C[x1, . . . , xk] →
H∗(Grk(n,C),C), xi 7→ ci(L) is surjective. Moreover, the above mentioned relation
are the only relations between them in the cohomological ring. Nevertheless, one in-
cludes the Chern classes of the quotient bundle Q among the generators for easier
description of relations. In this latter case we have the following description of the
cohomology ring of the complex Grassmannian Grk(n,C).

Theorem 6.1 (cf. [3, Proposition 23.2]). The graded ring morphism induced by xi 7→
ci(L) and yj 7→ cj(Q) induces an isomorphism of graded rings

H(Grk(n,C),C) ' C[x1, . . . , xk, y1, . . . , yn−k]
/
〈P1(x, y), . . . , Pn(x, y)〉,

where P`(x, y) =
∑
i+j=` xiyj, ` = 1, . . . , n with convention x0 = y0 = 1 and deg xi =

2i for i = 1, . . . , k, deg yj = 2j for j = 1, . . . , n− k.

6.2. Reinterpretation of the residue formula in terms of tautological and quotient
bundle

Since Theorem 5.6 is in terms of the Chern classes of the tangent bundle we have
to show that they also generate the cohomology ring.

The tangent bundle of Grk(n,C) can be given as TGrk(n,C) ' Hom(L,Q) =
L∗⊗Q. Thus, if σ1, . . . , σk and τ1, . . . , τn−k are Chern roots of L and Q, respectively,
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then

c(TGrk(n,C); t) = c(L∗ ⊗Q; t) =

k∏
i=1

n−k∏
j=1

(1− tσi + tτj). (6.3)

Similarly to [8, Lemma 1] we have the following formula.

Lemma 6.2. If ei(σ) = ei(σ1, . . . , σk), i = 1, . . . , k and ej(τ) = ej(τ1, . . . , τn−k),
j = 1, . . . , n− k are elementary symmetric polynomials in formal variables σ` and τ`,
respectively, then

k∏
i=1

n−k∏
j=1

(1 + tσi + tτj) = det
( k∑
i=0

ei(σ)ti(I + tΛe(τ))
k−i
)
,

where Λe(τ) is defined in (5.7). Thus,

c(L∗ ⊗Q; t) = det
( k∑
i=0

ci(L∗)ti(I + tΛc(Q))
k−i
)
.

Proof. In the proof of [8, Lemma 1] it was shown that the matrix Λe(τ) is diagonal-

izable, Λe(τ) = Ediag (τ1, . . . τn−k)E−1, hence

det
( k∑
i=0

ei(σ)ti(I + tΛe(τ))
k−i
)

=

= det
( k∑
i=0

ei(σ)tiEdiag (1 + tτ1, . . . , 1 + tτn−k)k−iE−1
)

=

= det
(
Ediag

( k∑
i=0

ei(σ)ti(1 + tτ1), . . . ,

k∑
i=0

ei(σ)ti(1 + tτn−k)
)k−i

E−1
)

=

=

n−k∏
j=1

k∑
i=0

ei(σ)ti(1 + tτj)
k−i =

n−k∏
j=1

k∏
i=1

(1 + tτj + tσi).

�

Lemma 6.3. The Chern classes of the tangent bundle of the Grassmannian Grk(n,C)
also generate the cohomology ring when n 6= 2k.

Proof. The relation (6.2) reads as c`(Q)+c`−1(Q)c1(L)+c`−2(Q)c2(L)+· · ·+c`(L) = 0
for ` ≤ n− k, hence the Chern classes cj(Q) of the quotient bundle can be expressed
recursively in terms of Chern classes of the tautological bundle L,

cj(Q) = −cj(L) + polynomial of lower order classes of L. (6.4)
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Then by (6.3) and Lemma 6.2 we have

c(TGrk(n,C); t) = det
( k∑
i=0

ci(L∗)ti
(
I + tΛc(Q)

)k−i)
= det

( n−k∑
j=0

cj(Q)tj
(
I + tΛc(L∗)

)n−k−j)
,

thus c`(TGrk(n,C)) = (n − k)c`(L∗) + kc`(Q)+ polynomial of lower order
classes. Hence, by (6.4) we get c`(TGrk(n,C)) = [(−1)`(n − k) − k]c`(L) +
polynomial of lower order classes of L. If n 6= 2k then the coefficient of c`(L)
does not vanish, hence it can be expressed recursively in terms of Chern classes of the
tangent bundle. �

Theorem 5.6 can be reformulated using Chern classes of the tautological and the
quotient bundle.

Theorem 6.4. Assume that n 6= 2k. For any polynomial

R(x, y) ∈ C[x1, . . . , xk, y1, . . . , yn−k]

we have ∫
Grk(n,C)

R(c(L∗), c(Q∗)) = Res0

(∏k
i=1 dxi

∏n−k
j=1 dyj∏n

`=1 P`(x, y)
R(x, y)

)
, (6.5)

where P`(x, y) =
∑
i+j=` xiyj, with convention x0 = y0 = 1.

Proof. On the polynomial ring C[x1, . . . , xk, y1, . . . , yn−k] we consider the grading
induced by deg xi = 2i, i = 1, . . . , k and deg yj = 2j, j = 1, . . . , n − k. First, assume
that R(x, y) is graded homogeneous polynomial of degree 2k(n−k) = dimRGrk(n,C).
By (6.3) and Lemma 6.2 we have

c(TGrk(n,C); t) = c(L∗ ⊗Q; t) =

k∏
i=1

n−k∏
j=1

(1− tσi + tτj) =

=

k∏
i=1

n−k∏
j=1

(1− tσi − t(−τj)) = det
( k∑
i=0

ei(σ)(−t)i(I − tΛe(−τ))
k−i
)

=

= det
( k∑
i=0

ei(−σ)ti(I − tΛe(−τ))
k−i
)

=

= det
( k∑
i=0

ci(L∗)ti(I − tΛc(Q∗))
k−i
)

= ∆(c(L∗), c(Q∗); t),

hence c`(TGrk(n,C)) = ∆`(c(L∗), c(Q∗)) (cf. Theorem 5.6). Thus, we can write The-
orem 5.6 in the form∫

Grk(n,C)

∆α(c(L∗), c(Q∗)) = Res0

(∏k
i=1 dxi

∏n−k
j=1 dyj∏n

`=1 P`(x, y)
∆α(x, y)

)
,
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for any multidegree α = (α1, . . . , αk(n−k)) with |α| = k(n−k). Since the Chern classes
of the tangent bundle generate the cohomology ring, any polynomial R(c(L∗), c(Q∗))
can be expressed as a linear combination of ∆α(c(L∗), c(Q∗))’s, thus (6.5) follows.

Finally, when R is homogeneous of degree degR 6= 2k(n− k) then the left hand
side of (6.5) vanishes by definition. Moreover, the right hand side also vanishes by

(P7), since degR 6=
∑n
`=1 degP` −

∑k
i=1 2i−

∑n−k
j=1 2j. �

Corollary 6.5. Under the assumptions of Theorem 6.4 we have∫
Grk(n,C)

R(c(L), c(Q)) = (−1)k(n−k) Res0

(∏k
i=1 dxi

∏n−k
j=1 dyj∏n

`=1 P`(x, y)
R(x, y)

)
. (6.6)

6.2.1. Cohomology relations from the residue formula. One benefit of the formula
(6.5) or (6.6) is that we can easily deduce the relations of the cohomology ring using
Poincaré duality.

Proof of Theorem 6.1. We prove the theorem for n 6= 2k. By Poincaré duality a (ho-
mogeneous) cohomology class α = A(c(L), c(Q)) vanishes exactly when∫

Grk(n,C)

αβ = 0

for every class β = B(c(L), c(Q)). By (6.6) and Local Duality (P2) follows that
α = A(c(L), c(Q)) vanishes exactly when A(x, y) ∈ 〈P1(x, y), . . . , Pn(x, y)〉, hence
this latter being the ideal of relations. �

7. Iterated residues

Since the Chern classes ci(L∗), i = 1, . . . , k generates the cohomology ring, hence
we will give an iterated residue formula for

∫
Grk(n,C)

Φ(c(L∗)), where Φ is a polynomial

in k variables.
We introduce shorter notations t′ = (t1, . . . , tk) and t′′ = (tk+1, . . . , tn) and we

consider the finite map F : Cn → Cn defined by

F (t1, . . . , tn) = (e1(t′), . . . , ek(t′), e1(t′′), . . . , en−k(t′′)),

where ei denotes the ith elementary symmetric polynomial.
Below, we use property (P6) to pull back the residue (6.5) along F . We note

that F generically is a k!(n− k)!-fold cover and the pull-back of polynomials

F ∗P`(x, y) =
∑̀
i=0

ei(t
′)e`−i(t

′′) = e`(t1, . . . , tn) = e`(t).

Moreover, the Jacobian

JF (t) = det[ei−1(t1, . . . , t̂j , . . . , tk)]ki,j=1 · det[ei−1(tk+1, . . . , t̂k+j , . . . , tn)]n−ki,j=1

=
∏

1≤i<j≤k

(ti − tj)
∏

k+1≤h<l≤n

(th − tl),
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where t̂j means that tj is omitted.

Res0

[∏k
i=1 dxi

∏n−k
j=1 dyj∏n

i=1 Pi(x, y)
Φ(x)

]
=

=
1

k!(n− k)!
Res0

[∏k
i=1 dei(t

′)
∏n−k
j=1 dej(t

′′)∏n
`=1 e`(t)

Φ(e(t′))

]

=
1

k!(n− k)!
Res0

 ∏n
`=1 dt`∏n
`=1 e`(t)

∏
1≤i<j≤k

(ti − tj)
∏

k+1≤h<l≤n

(th − tl)Φ(e(t′))

 .
Next, we use the Transformation Law (P4) for the transformation[
tni
]n
i=1

=
[
(−1)j−1tn−ji

]n
i,j=1

[
ej(t)

]n
j=1

. Finally, the coefficient of tn−1
k+1 . . . t

n−1
n

in
∏
k+1≤h6=l≤n(th − tl)

∏k
i=1

∏n
h=k+1(th − ti) is (n− k)!. Thus,

1

k!(n− k)!
Res0

 ∏n
`=1 dt`∏n
`=1 e`(t)

∏
1≤i<j≤k

(ti − tj)
∏

k+1≤h<l≤n

(th − tl)Φ(e(t′))

 =

=
1

k!(n− k)!
Res0

∏n
`=1 dt`∏n
`=1 t

n
`

∏
1≤i<j≤k

(ti − tj)
∏

k+1≤h<l≤n

(th − tl)

∏
1≤a<b≤n

(tb − ta)Φ(e(t′))

 =

=
1

k!(n− k)!
Res0

∏n
`=1 dt`∏n
`=1 t

n
`

∏
1≤i6=j≤k

(ti − tj)
∏

k+1≤h6=l≤n

(th − tl)

k∏
i=1

n∏
h=k+1

(th − ti)Φ(e(t′))

]
=

=
1

k!
Res0

∏k
i=1 dti∏k
i=1 t

n
i

∏
1≤i 6=j≤k

(ti − tj)Φ(e(t′))

 =

=
1

k!
Res
t1=0

. . . Res
tk=0

∏k
i=1 dti∏k
i=1 t

n
i

∏
1≤i6=j≤k

(ti − tj)Φ(e(t′))

 ,
hence

∫
Grk(n,C)

Φ(c(L∗)) =
1

k!
Res
t1=0

. . . Res
tk=0


k∏
i=1

dti

k∏
i=1

tni

∏
1≤i6=j≤k

(ti − tj)Φ(e(t1, . . . , tk))

 .
(7.1)
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This iterated residue formula agrees with the Jeffrey-Kirwan formula for the Grass-
mannian constructed as symplectic quotient (cf. [7, Proposition 7.2]).
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1. Introduction

A function f = u + iv , continuous and defined in a simply connected complex
domain D is called harmonic in D if both u and v are real harmonic in D. If h, g are
analytic in D, then f can be written in the form

f = h+ g, (1.1)

where, h and g are the analytic and co-analytic parts, respectively. The necessary
and sufficient condition for f to be locally univalent and sense-preserving in D is that
|h′| > |g′| in D (see [17]).

The class of harmonic, univalent, and orientation preserving functions, of the
form (1.1) defined in E = {z : |z| < 1} is denoted by H, for which f(0) = f ′(0)−1 = 0.

Thus, for f = h+ g ∈ H , h and g can be expressed in the form:

h(z) = z +

∞∑
k=2

akz
k, g =

∞∑
k=1

bkz
k, |b1| < 1,
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then f is of the form:

f(z) = z +

∞∑
k=2

akz
k +

∞∑
k=1

bkzk. (1.2)

If the co-analytic part g ≡ 0, then H reduces to class S of normalized analytic
univalent functions.

Let H denotes the subclass of H consisting of functions f = h+ g such that h
and g given by

h(z) = z +

∞∑
k=2

akz
k, g = (−1)n

∞∑
k=1

bkz
k, |b1| < 1. (1.3)

Recently, several researchers studied classes of harmonic functions (see Aouf [3],
Aouf et al. [8, 10, 11], Dixit and Porwal [18], Porwal and Dixit [26, 27]).

For f ∈ S, and 0 < q < 1, the Jackson’s q−derivative is given by [22] (see also
[2, 4, 7, 12, 19, 20, 21, 28, 30, 31, 32]):

Dqf(z) =

{
f(z)−f(qz)

(1−q)z z 6= 0

0 z = 0
(z ∈ E) , (1.4)

where

[k]q =
1− qk

1− q
(0 < q < 1).

As q → 1−, [k]q → k and, so Dqf(z) = f ′(z).

For f(z) ∈ S, δ, l ≥ 0 and q ∈ (0, 1), Aouf and Madian [5, with p = 1] defined
the q−Catas operator by:

I0q (δ, l)f(z) = f(z),

I1q (δ, l)f(z) = (1− δ)f(z) +
δ

[l + 1]qzl−1
Dq(z

lf(z)) = Iq(δ, l)f(z)

= z +

∞∑
k=2

[l + 1]q + δ([k + l]q − [l + 1]q)

[l + 1]q
akz

k

...

Inq (δ, l)f(z) = (1− δ)In−1q (δ, l)f(z) +
δ

[l + 1]qzl−1
Dq(z

lIn−1q (δ, l)f(z))

(n ∈ N ,N = {1, 2, ...}).
That is

Inq (δ, l)f(z) = z +

∞∑
k=2

σnq,k(δ, l)akz
k .(n ∈ N0 = N ∪ {0}), (1.5)

where

σnq,k(δ, l) =

[
[l + 1]q + δ([k + l]q − [l + 1]q)

[l + 1]q

]n
. (1.6)

From (1.5) we have:

zδqlDq(I
n
q (δ, l)f(z)) = [l + 1]qI

n+1
q (δ, l)f(z)− {(1− δ)ql + [l]q}Inq (δ, l)f(z), δ 6= 0.
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Note that:
(i) limq→1−I

n
q (δ, l)f(z) = In(δ, l)f(z), (see [14]);

(ii) Inq (1, 0)f(z) = Dn
q f(z) (see Govindaraj and Sivasubramanian [21] and [9]);

(iii) Inq (δ, 0)f(z) = Dn
δ,qf(z) :{

f ∈ S : Dn
δ,qf(z) = z +

∞∑
k=2

[1 + δ([k]q − 1)]
n
akz

k

}
,

which reduces to Al-Oboudi operator when q → 1−, (see [1]) which is the Salagean
operator when δ = 1 (see [29] and [6]);

(iv) Inq (1, l)f(z) = Inq (l)f(z) which when q → 1− reduces to Inl f(z) (see Cho
and Srivastava [15], see also [16]).

Motivated with the definition of modified Salagean operator introduced by Ja-
hangiri et al. [23], Mostafa et al. [24], defined the modified Catas operator by

In (δ, l) f(z) = In (δ, l)h(z) + (−1)
n
In (δ, l) g(z),

where

In (δ, l)h(z) = z +

∞∑
k=2

(
l + 1 + δ(k − 1)

l + 1

)n
akz

k

and

In (δ, l) g(z) = (−1)n
∞∑
k=1

(
l + 1 + δ(k − 1)

l + 1

)n
bkz

k.

Now, we define the modified q−Catas operator by:

Inq (δ, l) f(z) = Inq (δ, l)h(z) + (−1)
n
Inq (δ, l) g(z), (1.7)

where

Inq (δ, l)h(z) = z +

∞∑
k=2

σnq,k(δ, l)akz
k

and

Inq (δ, l) g(z) =

∞∑
k=1

σnq,k(δ, l)bkz
k.

For 1 ≤ β < 4
3 , n ∈ N0, δ, l ≥ 0, q ∈ (0, 1) and for all z ∈ E , let Gnq (δ, l, β) denote the

family of harmonic functions f of the form (1.2) and satisfying:

Re

{
In+1
q (δ, l) f(z)

Inq (δ, l) f(z)

}
< β. (1.8)

Choosing different values of n, l, δ, β when q → 1−, we obtain many subclasses
of Gnq (δ, l, β) for example:

(1) Putting δ = 1, then it reduces to the class SH(n, l, β) studied by Porwal [25].

(2) Putting δ = 1 and l = 0, then it reduces to the class SH(n, β) studied by
Porwal and Dixit [27];
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(3) Putting n = 0, l = 0 and δ = 1, then it reduces to the class LH(β) studied
by Porwal and Dixit [26];

(4) Putting n = 1, l = 0 and δ = 1, then it reduces to the class MH(β) studied
by Porwal and Dixit [26];

(5) Putting n = 0 and n = 1 with l = 0, δ = 1, g ≡ 0, then it reduces to the
classes N (β) and M(β) studied by Uralegaddi et al. [33].

Also we can obtain the following subclasses:

i) Gnq (δ, 0, β) = Gnq (δ, β) :

Re

{
Dn+1
q (δ) f(z)

Dn
q (δ) f(z)

}
< β,Dn

q (δ) f(z) = Dn
q (δ)h(z) + (−1)

n
Dn
q (δ) g(z);

ii) Gnq (1, 0, β) = Gnq (β) :

Re

{
Dn+1
q f(z)

Dn
q f(z)

}
< β,Dn

q f(z) = Dn
q h(z) + (−1)

n
Dn
q g(z);

iii) Gnq (1, l, β) = Gnq (l, β) :

Re

{
In+1
q (l)f(z)

Inq (l)f(z)

}
< β, Inq (l)f(z) = Inq (l)h(z) + (−1)

n
Inq (l)g(z).

Let Gq
n
(δ, l, β) be the subclass of Gnq (δ, l, β) consisting functions f = h+ g such

that h and g given by (1.3).

2. Main results

Unless otherwise mentioned, we assume in the reminder of this paper that, 1 ≤ β <
4
3 , n ∈ N0, δ, l ≥ 0, q ∈ (0, 1), σnq,k(δ, l) is given by (1.6) and f is of the form (1.3).

Theorem 2.1. Let f = h+ g be given by (1.2). Furthermore, let

∞∑
k=2

σnq,k(δ, l) {[l + 1]q + δ([k + l]q − [l + 1]q)− β[l + 1]q}
[l + 1]q(β − 1)

|ak|+

+

∞∑
k=1

σnq,k(δ, l) {[l + 1]q + δ([k + l]q − [l + 1]q) + β[l + 1]q}
[l + 1]q(β − 1)

|bk| ≤ 1. (2.1)

Then f (z) is sense-preserving, harmonic univalent in E and f (z) ∈ Gnq (δ, l, β).
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Proof. If z1 6= z2, then

∣∣∣∣f (z1)− f (z2)

h (z1)− h (z2)

∣∣∣∣ ≥ 1−
∣∣∣∣ g (z1)− g (z2)

h (z1)− h (z2)

∣∣∣∣ = 1−

∣∣∣∣∣∣∣∣
∞∑
k=1

bk
(
zk1 − zk2

)
(
zk1 − zk2

)
+
∞∑
k=2

ak
(
zk1 − zk2

)
∣∣∣∣∣∣∣∣

> 1−

∞∑
k=1

k |bk|

1−
∞∑
k=2

k |ak|

≥ 1−
σn
q,k(δ,l){[l+1]q+δ([k+l]q−[l+1]q)+β[l+1]q}

[l+1]q(β−1) |bk|

1− σn
q,k(δ,l){[l+1]q+δ([k+l]q−[l+1]q)−β[l+1]q}

[l+1]q(β−1) |ak|
≥ 0,

which proves univalence. f (z) is sense-preserving in E since∣∣∣h′(z)∣∣∣ ≥ 1−
∞∑
k=2

k |ak| |z|k−1

> 1−
∞∑
k=2

k |ak| ≥ 1−
∞∑
k=2

σnq,k(δ, l) {[l + 1]q + δ([k + l]q − [l + 1]q)− β[l + 1]q}
[l + 1]q(β − 1)

|ak|

≥
∞∑
k=1

σnq,k(δ, l) {[l + 1]q + δ([k + l]q − [l + 1]q) + β[l + 1]q}
[l + 1]q(β − 1)

|bn| ≥
∞∑
k=1

k |bk|

>

∞∑
k=1

k |bk|
∣∣∣zk−1

∣∣∣ ≥ ∣∣g′ (z)∣∣ .
Now to show that f ∈ Gnq (δ, l;β), we may show that if (2.1) holds then (1.8) is satisfied.
Using the fact that Re {w} < β if and only if |w − 1| < |w + 1 − 2β|, it suffices to
show that

∣∣∣∣∣∣∣∣∣
In+1
q (δ, l) f(z)

Inq (δ, l) f(z)
− 1

In+1
q (δ, l) f(z)

Inq (δ, l) f(z)
+ 1− 2β

∣∣∣∣∣∣∣∣∣ < 1. (2.2)

The L.H.S. of (2.2):

=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣


∞∑
k=2

σnq,k(δ, l) {[l + 1]q + δ([k + l]q − [l + 1]q)− [l + 1]q} akzk

+(−1)n+1
∞∑
k=1

σnq,k(δ, l) {[l + 1]q + δ([k + l]q − [l + 1]q) + [l + 1]q} bkzk
2(1− β)z +

∞∑
k=2

σnq,k(δ, l) {[l + 1]q + δ([k + l]q − [l + 1]q) + (1− 2β)[l + 1]q} akzk

+(−1)n+1
∞∑
k=2

σnq,k(δ, l) {[l + 1]q + δ([k + l]q − [l + 1]q)− (1− 2β)[l + 1]q} bkzk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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≤


∞∑
k=2

σnq,k(δ, l) {[l + 1]q + δ([k + l]q − [l + 1]q)− [l + 1]q} |ak| |z|k

+
∞∑
k=1

σnq,k(δ, l) {[l + 1]q + δ([k + l]q − [l + 1]q) + [l + 1]q} |bk| |z|k
2(β − 1)−

∞∑
k=2

σnq,k(δ, l) {[l + 1]q + δ([k + l]q − [l + 1]q)− (2β − 1)[l + 1]q} |ak| |z|k

−
∞∑
k=2

σnq,k(δ, l) {[l + 1]q + δ([k + l]q − [l + 1]q) + (2β − 1)[l + 1]q} |bk| |z|k

<


∞∑
k=2

σnq,k(δ, l) {[l + 1]q + δ([k + l]q − [l + 1]q)− [l + 1]q} |ak|

+
∞∑
k=1

σnq,k(δ, l) {[l + 1]q + δ([k + l]q − [l + 1]q) + [l + 1]q} |bk|
2(β − 1)−

∞∑
k=2

σnq,k(δ, l) {[l + 1]q + δ([k + l]q − [l + 1]q)− (2β − 1)[l + 1]q} |ak|

−
∞∑
k=2

σnq,k(δ, l) {[l + 1]q + δ([k + l]q − [l + 1]q) + (2β − 1)[l + 1]q} |bk|

,

which according to (1.8) is bounded by 1. The harmonic univalent function of the
form

f(z) = z +

∞∑
k=2

(β − 1)[l + 1]q
σnq,k(δ, l) {[l + 1]q + δ([k + l]q − [l + 1]q)− β[l + 1]q}

xkz
k

+

∞∑
k=1

(β − 1)[l + 1]q
σnq,k(δ, l) {[l + 1]q + δ([k + l]q − [l + 1]q) + β[l + 1]q}

ykzk, (2.3)

where
∞∑
k=2

|xk|+
∞∑
k=1

|yk| = 1, shows that the coefficient bound given by (2.1) is sharp.

It is worthy to note that the function of the form (2.3) belongs to the class Gnq (δ, l, β)

for all
∞∑
k=2

|xk|+
∞∑
k=1

|yk| ≤ 1 since (2.1) holds. �

Theorem 2.2. A function f ∈ Gq
n
(δ, l, β) if and only if

∞∑
k=2

σnq,k(δ, l) {[l + 1]q + δ([k + l]q − [l + 1]q)− β[l + 1]q} |ak| (2.4)

+

∞∑
k=1

σnq,k(δ, l) {[l + 1]q + δ([k + l]q − [l + 1]q) + β[l + 1]q} |bk|

≤ (β − 1)[l + 1]q.
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Proof. Since Gq
n
(δ, l, β) ⊂ Gnq (δ, l, β), we only need to prove the ”only if” part. The

condition (1.8) is equivalent to

Re



(β − 1)z −
∞∑
k=2

σnq,k(δ, l) {[l + 1]q + δ([k + l]q − [l + 1]q)− β[l + 1]q} |ak| zk

−(−1)2n−1
∞∑
k=1

σnq,k(δ, l) {[l + 1]q + δ([k + l]q − [l + 1]q) + β[l + 1]q} |bk| zk

z +
∞∑
k=2

σnq,k(δ, l) |ak| zk +
∞∑
k=1

(−1)2n−1σnq,k(δ, l) |bk| zk


> 0.

The above condition must hold for all z, |z| = r < 1. Choosing the values of z on the
positive real axis where 0 ≤ r < 1, we must have

Re



(β − 1)−
∞∑
k=2

σnq,k(δ, l) {[l + 1]q + δ([k + l]q − [l + 1]q)− β[l + 1]q} |ak| rk−1

−
∞∑
k=2

σnq,k(δ, l) {[l + 1]q + δ([k + l]q − [l + 1]q) + β[l + 1]q} |bk| rk−1

1−
∞∑
k=2

σnq,k(δ, l) |ak| rk−1 −
∞∑
k=1

σnq,k(δ, l) |bk| rk−1


≥ 0.

(2.5)

If condition (2.4) does not hold, then the numerator in (2.5) is negative for r suffi-
ciently close to 1. Hence there exist z0 = r0 ∈ (0, 1) for which the quotient in (2.5)

is negative. This contradicts the required condition for f (z) ∈ Gq
n
(δ, l, β). This com-

pletes the proof of Theorem 2.2. �

Theorem 2.3. Let f(z) ∈ Gq
n
(δ, l, β). Then for |z| = r < 1,we have

(1 + |b1|)r − 1
σn
q,2(δ,l)

(
(β−1)[l+1]q

σn
q,2(δ,l){[l+1]q(1−β)+δql+1} −

(β+1)[l+1]q
σn
q,2(δ,l){[l+1]q(1−β)+δql+1} |b1|

)
r2

≤ |f(z)| ≤

(1 + |b1|)r + 1
σn
q,2(δ,l)

(
(β−1)[l+1]q

σm−n
q,2 (δ,l){[l+1]q(1−β)+δql+1}

+
(β+1)[l+1]q

σn
q,2(δ,l){[l+1]q(1−β)+δql+1} |b1|

)
r2.

(2.6)

The results are sharp with equality for f(z) defined by

f(z)= z±b1z± 1
σn
q,2(δ,l)

(
(β−1)[l+1]q

σm−n
q,2 (δ,l){[l+1]q(1−β)+δql+1} −

(β+1)[l+1]q
σn
q,2(δ,l){[l+1]q(1−β)+δql+1} |b1|

)
z2,

(2.7)
where

σnq,2(δ, l) =

[
[l + 1]q + δql+1

[l + 1]q

]n
. (2.8)

Proof. We only prove the right-hand inequality and the proof of the left-hand is
similar and will be omitted. Let f(z) ∈ Gn(δ, l, β).Taking the absolute value of f we
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have:

|f(z)| ≤ (1 + |b1|)r + r2
∞∑
k=2

(|ak|+ |bk|)

= (1 + |b1|)r +
(β − 1) [l + 1]q

σnq,2(δ, l){[l + 1]q(1− β) + δql+1}

∞∑
n=2

(
σnq,2(δ, l){[l + 1]q(1− β) + δql+1

(β − 1) [l + 1]q
|ak|

+
σn
q,2(δ,l){[l+1]q(1−β)+δql+1}

(β−1)[l+1]q
|bk|
)
r2

≤ (1 + |b1|)r +
(β−1)[l+1]q

σn
q,2(δ,l){[l+1]q(1−β)+δql+1}

∞∑
k=2

(
σn
q,k(δ,l){[l+1]q+δ([k+l]q−[l+1]q)−β[l+1]q}

(β−1)[l+1]q
|ak|

+
{[l+1]q+δ([k+l]q−[l+1]q)+β[l+1]q}

(β−1)[l+1]q
|bk|
)
r2

≤ (1 + |b1|)r +
(β−1)[l+1]q

σn
q,2(δ,l){[l+1]q(1−β)+δql+1}

(
1− (1+β)

(β−1)
|b1|
)
r2

= (1 + |b1|)r +

(
(β−1)[l+1]q

σn
q,2(δ,l){[l+1]q(1−β)+δql+1} −

(1 + β) [l + 1]q
σnq,2(δ, l){[l + 1]q(1− β) + δql+1} |b1|

)
r2.

This completes the proof of the Theorem 2.3. �

Theorem 2.4. The function f (z) ∈ Gq
n
(δ, l, β) if and only if

f (z) =

∞∑
k=1

(γkhk(z) + ηkgk(z)) , (2.9)

where h1(z) = z,

hk(z) = z +
(β − 1)[l + 1]q

σnq,k(δ, l){[l + 1]q + δ([k + l]q − [l + 1]q)− β[l + 1]q}
zk, k = 2, 3, ...

(2.10)
and

gk(z)=z+(−1)
n−1 (β − 1)[l + 1]q

σnq,k(δ, l){[l + 1]q + δ([k + l]q − [l + 1]q) + β[l + 1]q}
zk, k=1, 2, ...,

(2.11)

γk ≥ 0, ηk ≥ 0,
∞∑
k=1

(γk + ηk) = 1 and the extreme points of the class Gq
n
(δ, l, β) are

{hk} and {gk} .

Proof. Suppose that

f (z) =

∞∑
k=1

(γkhk(z) + ηkgk(z))

= z +

∞∑
k=2

(β − 1)[l + 1]q
σnq,k(δ, l){[l + 1]q + δ([k + l]q − [l + 1]q)− β[l + 1]q}

γkz
k

+ (−1)
n
∞∑
k=1

(β − 1)[l + 1]q
σnq,k(δ, l){[l + 1]q + δ([k + l]q − [l + 1]q) + β[l + 1]q}

ηkzk.
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Then
∞∑
k=2

σn
q,k(δ,l){[l+1]q+δ([k+l]q−[l+1]q)−β[l+1]q}

(β−1)[l+1]q

(
(β−1)[l+1]q

σn
q,k

(δ,l){[l+1]q+δ([k+l]q−[l+1]q)−β[l+1]q}γk
)

+

∞∑
k=1

σn
q,k(δ,l){[l+1]q+δ([k+l]q−[l+1]q)+β[l+1]q}

(β−1)[l+1]q

(
(β−1)[l+1]q

σn
q,k

(δ,l){[l+1]q+δ([k+l]q−[l+1]q)+β[l+1]q}ηk
)

=
∞∑
k=2

γk +

∞∑
k=1

ηk = 1− γ1 ≤ 1

and so f (z) ∈ Gq
n
(δ, l, β).

Conversely, if f (z) ∈ Gq
n
(δ, l, β), then

|ak| ≤
(β − 1)[l + 1]q

σnq,k(δ, l){[l + 1]q + δ([k + l]q − [l + 1]q)− β[l + 1]q}

and

|bk| ≤
(β − 1)[l + 1]q

σnq,k(δ, l){[l + 1]q + δ([k + l]q − [l + 1]q) + β[l + 1]q}
.

Setting

γk =
σnq,k(δ, l){[l + 1]q + δ([k + l]q − [l + 1]q)− β[l + 1]q}

(β − 1)[l + 1]q
|ak| (k = 2, 3, ...)

and

ηk =
σn
q,k(δ,l){[l+1]q+δ([k+l]q−[l+1]q)+β[l+1]q}

(β−1)[l+1]q
|bk| (k = 1, 2, ...) ,

we have 0 ≤ γk ≤ 1 (k = 2, 3, ...) and 0 ≤ ηk ≤ 1 (k = 1, 2, ...) ,

γ1 = 1−
∞∑
k=2

γk −
∞∑
k=1

ηk ≥ 0,

then, f(z) can be expressed in the form (2.9).
For harmonic functions of the form:

f (z) = z +

∞∑
k=2

|ak| zk + (−1)n−1
∞∑
k=1

|bk| zk (2.12)

and

G (z) = z +

∞∑
k=2

|dk| zk + (−1)n−1
∞∑
k=1

|ck| zk, (2.13)

the convolution of f and G is given by

(f ∗G) (z) = (G ∗ f) (z) = z +

∞∑
k=2

|akdk| zk +

∞∑
k=1

|bkck| zk. �

The next theorem shows that the class Gq
n
(δ, l, β) is closed under convolution.

Theorem 2.5. For 1 ≤ β ≤ ζ < 4
3 , let f ∈ Gq

n
(δ, l, β) and G ∈ Gq

n
(δ, l, ζ). Then

f ∗G ∈ Gq
n
(δ, l, β) ⊂ Gq

n
(δ, l, ζ).
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Proof. Since G ∈ Gq
n
(δ, l, ζ) then |dk| ≤ 1 and |ck| ≤ 1. For f ∗G we have

∞∑
k=2

σn
q,k(δ,l){[l+1]q+δ([k+l]q−[l+1]q)−β[l+1]q}

(β−1)[l+1q
|akdk| zk

+

∞∑
k=1

σn
q,k(δ,l){[l+1]q+δ([k+l]q−[l+1]q)+β[l+1]q}

(β−1)[l+1q
|bkck| zk

≤
∞∑
k=2

σn
q,k(δ,l){[l+1]q+δ([k+l]q−[l+1]q)−β[l+1]q}

(β−1)[l+1q
|ak| zk

+

∞∑
k=1

σn
q,k(δ,l){[l+1]q+δ([k+l]q−[l+1]q)+β[l+1]q}

(β−1)[l+1q
|bk| zk

≤
∞∑
k=2

σn
q,k(δ,l){[l+1]q+δ([k+l]q−[l+1]q)−β[l+1]q}

(β−1)[l+1q
|ak|

+

∞∑
k=1

σn
q,k(δ,l){[l+1]q+δ([k+l]q−[l+1]q)+β[l+1]q}

(β−1)[l+1q
|bk|

≤ 1,

since f ∈ Gq
n
(δ, l, β). Therefore by Theorem 2.1, f ∗G ∈ Gnq (δ, l, β) ⊂ Gq

n
(δ, l, ζ). �

The class Gq
n
(δ, l, β) is closed under convex combinations by the following theorem.

Theorem 2.6. The class Gq
n
(δ, l, β) is closed under convex combination.

Proof. For i = 1, 2, 3, ..., let fi ∈ Gq
n
(δ, l, β), where fi is given by

fi = z +

∞∑
k=2

|aki | zk +

∞∑
k=1

|bki | zk. �

Then by using Theorem 2.1, we have

∞∑
k=2

σn
q,k(δ,l){[l+1]q+δ([k+l]q−[l+1]q)−β[l+1]q}

(β−1)[l+1]q
|aki |

+

∞∑
k=1

σn
q,k(δ,l){[l+1]q+δ([k+l]q−[l+1]q)+β[l+1]q}

(β−1)[l+1]q
|bki | ≤ 1. (2.14)

For
∞∑
k=1

µi = 1, 0 ≤ µi ≤ 1, the convex combination of fi may be written as

∞∑
i=1

µifi (z) = z +

∞∑
k=2

( ∞∑
i=1

µi |aki |

)
zk +

∞∑
k=1

( ∞∑
i=1

µi |bki |

)
zk. (2.15)
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Then by (2.14), we have

∞∑
k=2

σn
q,k(δ,l){[l+1]q+δ([k+l]q−[l+1]q)−β[l+1]q}

(β−1)[l+1]q

( ∞∑
i=1

µi |aki |

)

+
σn
q,k(δ,l){[l+1]q+δ([k+l]q−[l+1]q)+β[l+1]q}

(β−1)[l+1]q

∞∑
k=1

( ∞∑
i=1

µi |bki |

)

=

∞∑
i=1

µi

( ∞∑
k=2

σn
q,k(δ,l){[l+1]q+δ([k+l]q−[l+1]q)−β[l+1]q}

(β−1)[l+1]q
|aki |

+

∞∑
k=1

σn
q,k(δ,l){[l+1]q+δ([k+l]q−[l+1]q)+β[l+1]q}

(β−1)[l+1]q
|bki |

)

≤
∞∑
i=1

µi = 1.

By Theorem 2.2,
∞∑
i=1

µifi (z) ∈ Gq
n
(δ, l, β).

Let f(z) = h(z) + g(z) be defined by (1.2) then F (z) defined by

F (z) =
c+ 1

zc

∫ z

0

tc−1h(t)dt+
c+ 1

zc

∫ z

0

tc−1h(t)dt(c > −1),

have the representation

F (z) = z +

∞∑
k=2

c+ 1

k + c
akz

k + (−1)n−1
∞∑
k=1

c+ 1

k + c
bkz

k. (2.16)

Theorem 2.7. Let f(z) = h(z) + g(z) ∈ Gq
n
(δ, l, β), then F (z) defined by (2.16) also

belongs to Gq
n
(δ, l, β).

Proof. Since f(z) ∈ Gq
n
(δ, l, β), then (2.1) is satisfied.

Now,
∞∑
k=2

σn
q,k(δ,l){[l+1]q+δ([k+l]q−[l+1]q)−β[l+1]q}

(β−1)[l+1]q

c+ 1

k + c
|ak|

+

∞∑
k=1

σn
q,k(δ,l){[l+1]q+δ([k+l]q−[l+1]q)+β[l+1]q}

(β−1)[l+1]q

c+ 1

k + c
|bk|

≤
∞∑
k=2

σn
q,k(δ,l){[l+1]q+δ([k+l]q−[l+1]q)−β[l+1]q}

(β−1)[l+1]q
|ak|

+

∞∑
k=1

σn
q,k(δ,l){[l+1]q+δ([k+l]q−[l+1]q)+β[l+1]q}

(β−1)[l+1]q
|bk|

≤ 1,

that is, F (z) ∈ Gq
n
(δ, l, β). �
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Remark 2.8. (i) Taking δ = 1 and q → 1−, in the above results, we obtain the results
obtained by Porwal [25].

(ii) Specializing the parameters β, l, δ and n in the above results, we obtain the
corresponding results for the subclasses Gnq (δ, β),Gnq (β) and Gnq (1, β).

Acknowledgements. The authors thanks the referees for their valuable comments..
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Univalence conditions of an integral operator
on the exterior unit disk
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Abstract. Into this article, we consider the subclasses Vj , Vj,µ and
∑
j(p), with

j = 2, 3, ..., and generalize univalence conditions for the integral operator Gαi,β
of the analytic functions g in the exterior unit disk. We want to see if some
univalent conditions for analytic functions obtained on the interior unit disk can
be extended on the exterior unit disk, so we make use of the usual transformation

g(z) =
1

f( 1
z
)
.
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1. Introduction

Let O be the class of analytical functions g defined in the exterior of the unit
disk W = {z ∈ C|1 < |z| <∞}.

Let
∑

be the subclass of O which contains the univalent functions of W .
Let Oj be the subclass of O which contains the meromorphic, normalized and

injective functions g : W −→ C∞, that looks like [4]:

g(z) = z +

∞∑
k=j+1

bk
zk
, 1 < |z| <∞.

(j ∈ N∗1 := N− {0, 1} = {2, 3, ...})
(1.1)

With g(∞) =∞ , g′(∞) = 1.

Received 02 August 2023; Accepted 06 August 2024.
© Studia UBB MATHEMATICA. Published by Babeş-Bolyai University
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Let V be the subclass of univalent functions from O such that:∣∣∣∣∣g′(z)z2
+ 1

∣∣∣∣∣ > 1, z ∈W. (1.2)

Let Vj be the subclass of V , for which g(k)(∞) = 0, (k = 2, 3, ..., j). Let Vj,µ
be the subclass of Vj which contains the functions of the form (1.1) and satisfies the
condition: ∣∣∣∣∣g′(z)z2

+ 1

∣∣∣∣∣ > µ, z ∈W,

for µ > 1 and we denote Vj,1 ≡ Vj .
Let p ∈ R, with 1 < p ≤ 2, let

∑
(p) be the subclass of O with all the functions

g ∈ Oj such that: ∣∣∣∣∣
(
g(z)

z

)′′∣∣∣∣∣ ≥ p, z ∈W,∣∣∣∣∣g′(z)z2
+ 1

∣∣∣∣∣ ≥ p

|z|j
, z ∈W, j ∈ N∗1,

and we denote
∑

2(p) ≡
∑

(p).
Let A be the class of analytic functions f defined in the open unit disk

U := {z ∈ C : |z| < 1}

and normalized by the conditions f(0) = 0 = f ′(0)− 1.
Let S be the subclass of A consisting of univalent functions in U , of the form

[3]:

f(z) = z +

∞∑
k=2

akz
k.

It is known that between the S class and the
∑

class there are the following
links:

Proposition 1.1. [4]
(i) Let f ∈ S and g(ς) = 1/f(1/ς), ς ∈W . Then g ∈

∑
and g(ς) 6= 0, ς ∈W .

(ii) If g ∈
∑

and g(ς) 6= 0, ς ∈W , then f ∈ S where f(z) = 1/g(1/z), z ∈ U .

Let Fα1,α2,...,αn,β be the integral operator introduced by Daniel Breaz and
Narayanasamy Seenivasagan [10]:

Fα1,α2,...,αn,β(z) =

{
β

∫ z

0

tβ−1
n∏
i=1

[
fi(t)

t

] 1
αi

dt

} 1
β

∈ S,

and we take into account that fi(t) ∈ S.
When αi = α for all i = 1, 2, ..., n , Fαi,β(z) becomes the integral operator

Fα,β(z) considered in [1].
We may say that between A and O1 there is a bijection.
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We start from equation (1.2), and we apply the following transformations:

t→ 1

t
|()′,

dt→ −1

t2
dt,

gi(t) =
1

fi(
1
t )
∈ O1.

(1.3)

With gi(t) 6= 0; t ∈ O1.

We can form the integral operator from the definition below:

Definition 1.1. (see [9]) Let gi ∈ O1 with i = 1, 2, ..., n and α1, α2, ..., αn, β ∈ C we
define the integral operator Gα1,α2,...,αn,β : On1 −→ O1, considering |z| > 1:

Gαi,β(z) =

[
β

∫ z

1

t−1−β
n∏
i=1

(
t

gi(t)

) 1
αi

dt

] 1
β

. (1.4)

Theorem 1.1. (see [7]) Let α ∈ C, <(α) > 0 and f ∈ A. If the function f satisfies:

1− |z|2<(α)

<(α)
·
∣∣∣∣z · f ′′(z)f ′(z)

∣∣∣∣ ≤ 1, (z ∈ U),

then, for any complex number β with <(β) ≥ <(α), the integral operator:

Fβ(z) =

{
β

∫ z

0

tβ−1 · f ′(t)dt
} 1
β

,

is in the class S.

Lemma 1.1. (The Schwarz lemma) (see [2], [5], [6]) Let the analytic function f be
regular in the unit disk and let f(0) = 0. If |f(z)| ≤ 1, then:

|f(z)| ≤ |z|,

for all z ∈ U , where the equality can hold only if |f(z)| = K · z and K = 1.

Lemma 1.2. (General Schwarz Lemma) (see [6]) Let the function f be regular in the
disk UR = {z ∈ C : |z| < R}, with |f(z)| < M for fixed M . If has one zero with
multiplicity order bigger than m for z = 0, then:

|f(z)| ≤ M

Rm
· |z|m, (z ∈ UR).

The equality can hold only if f(z) = eiθ · MRm · z
m, where θ is constant.
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2. Main results

Lemma 2.1. Let the analytic function g be regular in the exterior of the unit disk and
let g(∞) =∞, g′(∞) = 1. If |g(z)| ≥ 1, then:∣∣∣∣f (1

z

)∣∣∣∣ ≤ ∣∣∣∣1z
∣∣∣∣ ,

1

|g(z)|
≤ 1

|z|

∣∣∣∣()−1,
|g(z)| ≥ |z|,

for all z ∈W , where the equality can hold only if |g(z)| = K · z and K = 1.

In Lemma 1.2 we apply the transformation from equation (1.3), and we get the
following Lemma:

Lemma 2.2. Let the function g be regular in the exterior unit disk

WR = {z ∈ C : |z| > R},

with |f(z)| > M for fixed M . If has one zero with multiplicity order bigger than m
for z =∞, then: ∣∣∣∣f (1

z

)∣∣∣∣ ≤ M

Rm
·
∣∣∣∣1z
∣∣∣∣m ,∣∣∣∣ 1

g(z)

∣∣∣∣ ≤ M

Rm
· 1

|z|m

∣∣∣∣∣()−1,
|g(z)| ≥ Rm

M
· |z|m,

for all z ∈ W , where the equality can hold only if f(z) = eiθ · R
m

M · zm, where θ is
constant.

Theorem 2.1. Let α ∈ C, <(α) > 0 and k ∈ O. If k satisfies:

|z|2<(α) − 1

<(α) · |z|2<(α)
·
∣∣∣∣ k′′(z)z · k′(z)

∣∣∣∣ > 1, (z ∈W ),

and ∣∣∣∣ k′′(z)zk′(z)

∣∣∣∣ > <(α) · |z|, (2.1)

then, for any complex number β with <(β) ≤ <(α), the integral operator:

Gβ(z) =

{
β

∫ z

1

t−β−1 · k′(t)dt
} 1
β

,

is in the class
∑

.

Proof. We apply in Theorem 1.1, the transformation z → 1
z |( )′.

We use k(z) = 1

h( 1
z )

,
∣∣∣ k′′(z)z·k′(z)

∣∣∣ > 1 (see [9]) and |k(z)| > 1.
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We multiply (2.1) with |z|2<(α)−1
<(α)·|z|2<(α) , and we get:

|z|2<(α) − 1

<(α) · |z|2<(α)
·
∣∣∣∣ k′′(z)z · k′(z)

∣∣∣∣ ≥ |z|2<(α) − 1

|z|2<(α)−1

≥ |z|
2<(α)−1 + |z|2<(α)−2 + ...+ |z|+ 1

|z|2<(α)−1
> 1.

We obtain that, for any complex number β with <(β) ≤ <(α), the integral operator:

Gβ(z) =

{
β

∫ z

1

t−β−1 · k′(t)dt
} 1
β

,

is in the class
∑

. �

Theorem 2.2. Let gi defined by:

gi(z) = z +

∞∑
k=j+1

bik
zk
, |z| > 1, (2.2)

be in the class Vj for i ∈ {1, 2, ..., n}, n ∈ N∗, j ∈ N∗1.
If |gi(z)| ≥Mi(Mi ≥ 1, z ∈W ).
Then the integral operator Gαi,β defined by (1.4) is in the class

∑
, with α, β ∈ C,

<(α) ≤
n∑
i=1

1

Mi|αi|
, (2.3)

and <(β) ≤ <(α).

Proof. We define a function:

k(z) =

∫ z

0

n∏
i=1

(
t

gi(t)

) 1
αi

dt,

then we consider that k(∞) =∞, k′(∞) = 1.
After computation (see [8]) we obtain:

k′′(z)

z · k′(z)
=

n∑
i=1

1

αi
·
(

1

z2
− g′i(z)

z · gi(z)

)
∣∣∣∣ k′′(z)z · k′(z)

∣∣∣∣ ≥ n∑
i=1

1

Mi|αi|
.

We apply Theorem 2.1 and we consider (2.3), so we get:

|z|2<(α) − 1

<(α) · |z|2<(α)
·
∣∣∣∣ k′′(z)z · k′(z)

∣∣∣∣ ≥ |z|2<(α) − 1

<(α) · |z|2<(α)
·
n∑
i=1

1

Mi|αi|
≥

≥ 1

<(α)
·
n∑
i=1

1

Mi|αi|
> 1.

Applying Theorem 2.1, we obtain that Gαi,β is univalent. �
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Corollary 2.1. Let gi defined by (2.2) be in the class Vj for i ∈ {1, 2, ..., n}, n ∈ N∗,
j ∈ N∗1. If |gi(z)| ≥M (M ≥ 1, z ∈W ).
Then the integral operator Gαi,β defined by (1.4) is in the class

∑
, where α, β ∈ C,

<(α) ≤
n∑
i=1

1

M |αi|
,

and <(β) ≤ <(α).

Proof. In Theorem 2.2, we consider M1 = M2 = ... = Mn = M . �

Corollary 2.2. Let gi defined by (2.2) be in the class Vj for i ∈ {1, 2, ..., n}, n ∈ N∗,
j ∈ N∗1. If |gi(z)| ≥M (M ≥ 1, z ∈W ).
Then the integral operator Gα,β defined by (1.4) is in the class

∑
, where α, β ∈ C,

<(α) ≤ n

M |α|
,

and <(β) ≤ <(α).

Proof. In Corollary 2.1, we consider α1 = α2 = ... = αn = α. �

Corollary 2.3. Let gi defined by (2.2) be in the class V2, for i ∈ {1, 2, ..., n}, n ∈ N∗,
If |gi(z)| ≥M , (M ≥ 1, z ∈W ).
Then the integral operator Gα,β defined by (1.4) is in the class

∑
, where α, β ∈ C,

<(α) ≤ n

M |α|
and <(β) ≤ <(α).

Proof. In Corollary 2.2, we consider j = 2. �

Corollary 2.4. Let gi defined by (2.2) be in the class V2 for i ∈ {1, 2, ..., n}, n ∈ N∗. If
|gi(z)| ≥ 1 (z ∈W ).
Then the integral operator Gα,β defined by (1.4) is in the class

∑
, where α, β ∈ C,

<(α) ≤ n

|α|
,

and <(β) ≤ <(α).

Proof. In Corollary 2.2, we consider j = 2 and M = 1. �

Theorem 2.3. Let gi defined by (2.2) be in the class Vj,µi for i ∈ {1, 2, ..., n}, n ∈ N∗,
j ∈ N∗1. If |gi(z)| ≥Mi (Mi ≥ 1, z ∈W ).
Then the integral operator Gαi,β defined by (1.4) is in the class

∑
, where α, β ∈ C,

<(α) ≤
n∑
i=1

1

(1 + µi)Mi|αi|
,

and <(β) ≤ <(α).

Proof. The proof of this theorem is very similar with the proof of Theorem 2.2. �
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Corollary 2.5. Let gi defined by (2.2) be in the class Vj,µi for i ∈ {1, 2, ..., n}, n ∈ N∗,
j ∈ N∗1. If |gi(z)| ≥M (M ≥ 1, z ∈W ).
Then the integral operator Gαi,β defined by (1.4) is in the class

∑
, where α, β ∈ C,

<(α) ≤
n∑
i=1

1

(1 + µi)M |αi|
,

and <(β) ≤ <(α).

Proof. In Theorem 2.3, we consider M1 = M2 = ... = Mn = M . �

Corollary 2.6. Let gi defined by (2.2) be in the class Vj,µi for i ∈ {1, 2, ..., n}, n ∈ N∗,
j ∈ N∗1. If |gi(z)| ≥M(M ≥ 1, z ∈W ).
Then the integral operator Gα,β defined by (1.4) is in the class

∑
, where α, β ∈ C,

<(α) ≤
n∑
i=1

1

(1 + µi)M |α|
,

and <(β) ≤ <(α).

Proof. In Corollary 2.5, we consider α1 = α2 = ... = αn = α. �

Corollary 2.7. Let gi defined by (2.2) be in the class Vj,µ for n ∈ N∗, j ∈ N∗1. If
|gi(z)| ≥M(M ≥ 1, z ∈W ).
Then the integral operator Gα,β defined by (1.4) is in the class

∑
, where α, β ∈ C,

<(α) ≤ n

(1 + µ)M |α|
,

and <(β) ≤ <(α).

Proof. In Corollary 2.5, we consider µ1 = µ2 = ... = µn = µ. �

Corollary 2.8. Let gi defined by (2.2) be in the class V2,µi for i ∈ {1, 2, ..., n}, n ∈ N∗.
If |gi(z)| ≥M(M ≥ 1, z ∈W ).
Then the integral operator Gαi,β defined by (1.4) is in the class

∑
, where α, β ∈ C,

<(α) ≤
n∑
i=1

1

(1 + µi)M |αi|
,

and <(β) ≤ <(α).

Proof. In Corollary 2.5, we set j = 2. �

Corollary 2.9. Let gi defined by (2.2) be in the class V2,µ for n ∈ N∗. If |gi(z)| ≥
M(M ≥ 1, z ∈W ).
Then the integral operator Gα,β defined by (1.4) is in the class

∑
, where α, β ∈ C,

<(α) ≤ n

(1 + µ)M |α|
,

and <(β) ≤ <(α).

Proof. In Corollary 2.7, we set j = 2. �
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Corollary 2.10. Let gi defined by (2.2) be in the class V2,µ for n ∈ N∗. If |gi(z)| ≥
(z ∈W ).
Then the integral operator Gα,β defined by (1.4) is in the class

∑
, where α, β ∈ C,

<(α) ≤ n

(1 + µ)|α|
,

and <(β) ≤ <(α).

Proof. In Corollary 2.7, we set j = 2 and M = 1. �

Theorem 2.4. Let gi defined by (2.2) be in the class
∑
j(pi) for i ∈ {1, 2, ..., n}, n ∈ N∗,

j ∈ N∗1. If |gi(z)| ≥Mi(Mi ≥ 1, z ∈W ).
Then the integral operator Gαi,β defined by (1.4) is in the class

∑
, where α, β ∈ C,

<(α) ≤
n∑
i=1

1

(1 + pi)Mi|αi|
,

and <(β) ≤ <(α).

Proof. The proof of this theorem is very similar with the proof of Theorem 2.2. �

Corollary 2.11. Let gi defined by (2.2) be in the class
∑
j(pi) for i ∈ {1, 2, ..., n},

n ∈ N∗, j ∈ N∗1. If |gi(z)| ≥M(M ≥ 1, z ∈W ).
Then the integral operator Gαi,β defined by (1.4) is in the class

∑
, where α, β ∈ C,

<(α) ≤
n∑
i=1

1

(1 + pi)M |αi|
,

and <(β) ≤ <(α).

Proof. In Theorem 2.4, we consider M1 = M2 = ... = Mn = M . �

Corollary 2.12. Let gi defined by (2.2) be in the class
∑
j(pi) for i ∈ {1, 2, ..., n},

n ∈ N∗, j ∈ N∗1. If |gi(z)| ≥M(M ≥ 1, z ∈W ).
Then the integral operator Gα,β defined by (1.4) is in the class

∑
, where α, β ∈ C,

<(α) ≤
n∑
i=1

1

(1 + pi)M |α|
,

and <(β) ≤ <(α).

Proof. In Corollary 2.11, we consider α1 = α2 = ... = αn = α. �

Corollary 2.13. Let gi defined by (2.2) be in the class
∑
j(p) for i ∈ {1, 2, ..., n},

n ∈ N∗, j ∈ N∗1. If |gi(z)| ≥M(M ≥ 1, z ∈W ).
Then the integral operator Gαi,β defined by (1.4) is in the class

∑
, where α, β ∈ C,

<(α) ≤
n∑
i=1

1

(1 + p)M |αi|
,

and <(β) ≤ <(α).

Proof. In Corollary 2.11, we consider p1 = p2 = ... = pn = p. �
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Corollary 2.14. Let gi defined by (2.2) be in the class
∑
j(p) for i ∈ {1, 2, ..., n},

n ∈ N∗, j ∈ N∗1. If |gi(z)| ≥M(M ≥ 1, z ∈W ).
Then the integral operator Gα,β defined by (1.4) is in the class

∑
, where α, β ∈ C,

<(α) ≤ n

(1 + p)M |α|
,

and <(β) ≤ <(α).

Proof. If in Corollary 2.12, we consider p1 = p2 = ... = pn = p or in Corollary 2.13
we consider α1 = α2 = ... = αn = α, we get the same result. �

Corollary 2.15. Let gi defined by (2.2) be in the class
∑

2(p) for i ∈ {1, 2, ..., n},
n ∈ N∗. If |gi(z)| ≥M(M ≥ 1, z ∈W ).
Then the integral operator Gαi,β defined by (1.4) is in the class

∑
, where α, β ∈ C,

<(α) ≤
n∑
i=1

1

(1 + p)M |αi|
,

and <(β) ≤ <(α).

Proof. In Corollary 2.13, we set j = 2. �

Corollary 2.16. Let gi defined by (2.2) be in the class
∑

2(p) for i ∈ {1, 2, ..., n},
n ∈ N∗. If |gi(z)| ≥M(M ≥ 1, z ∈W ).
Then the integral operator Gα,β defined by (1.4) is in the class

∑
, where α, β ∈ C,

<(α) ≤ n

(1 + p)M |α|
,

and <(β) ≤ <(α).

Proof. In Corollary 2.14, we set j = 2. �

Corollary 2.17. Let gi defined by (2.2) be in the class
∑

2(p) for i ∈ {1, 2, ..., n},
n ∈ N∗. If |gi(z)| ≥ 1(z ∈W ).
Then the integral operator Gα,β defined by (1.4) is in the class

∑
, where α, β ∈ C,

<(α) ≤ n

(1 + p)|α|
,

and <(β) ≤ <(α).

Proof. In Corollary 2.14, we set j = 2 and M = 1. �

3. Final remarks

The main issue of the class of analytic functions defined on the exterior unit disk
is that there are few studies in this branch. In this article, the authors studied some
univalent conditions in the subclasses Vj , Vj,µ and

∑
j(p) for analytic functions of an

integral operator defined on the exterior of the unit disk, in order to find out if in the
exterior unit disk and in the interior unit disk can be applied the same properties.
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Some applications of a Wright distribution series
on subclasses of univalent functions

Mallikarjun G. Shrigan , Sidharam D. Bhourgunde and
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Abstract. The purpose of the present paper is to find the sufficient conditions for
the subclasses of analytic functions associated with Wright distribution series to
be in subclasses of univalent functions and inclusion relations for such subclasses
in the open unit disk D. Further, we consider the properties of integral operator
related to Wright distribution series.

Mathematics Subject Classification (2010): 30C45.

Keywords: Analytic functions, starlike function, convex function, probability dis-
tribution, Wright distribution series.

1. Introduction

Let A denote the class of functions f of the form

f(z) =

∞∑
n=1

an z
n; (a1 := 1), (1.1)

which are analytic in the open unit disk given by U = {z ∈ C : |z| < 1}.
A function f ∈ A is said to be starlike of order γ(0 ≤ γ < 1), if and only if

Re (zf ′(z)/f(z)) > γ, which is denoted by S∗(γ). We also write S∗(γ) ⊆ S∗(0) := S∗,
where S∗ denotes the class of functions f ∈ A that f(U) is starlike with respect to
the origin. Also, a function f ∈ A is said to be convex of order γ(0 ≤ γ < 1), if and
only if Re (1 + (zf ′′(z)/f ′(z))) > γ. This function class is denoted by K(γ). We also
write K(γ) ⊆ K(0) := K, the well-known standard class of convex functions. It is an
established fact that f ∈ K(γ)⇔ zf ′ ∈ S∗(γ).
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A function f ∈ A is said to be starlike of reciprocal order γ(0 ≤ γ < 1), if and
only if

Re

(
f(z)

zf ′(z)

)
> γ, (z ∈ U). (1.2)

We denote the class of such functions by S∗r (γ). Also, a function f ∈ A is said to be
convex of reciprocal order γ(0 ≤ γ < 1), if and only if

Re

(
f ′(z)

f ′z) + zf ′′(z)

)
> γ, (z ∈ U). (1.3)

This function class is denoted by K∗r(γ). We also write S∗r (0) := S∗,K∗r(0) = K and
f ∈ K∗r(γ)⇔ zf ′ ∈ S∗r (γ).

In 2002, Owa and Srivastava [24] studied the classes of p-valent starlike and p-
valent convex functions of reciprocal order γ with γ > p, and further investigated by
Polatoglu et al. [25]. Uyanik et al. [36] introduced the classes of p-valently spirallike
and p-valently Robertson functions (cf. [31]). Frasin and Sabri [9] derived sufficient
condition for starlikeness of reciprocal order. Ravichandran and Kumar [30] inves-
tigated the argument estimates for the analytic functions f ∈ S∗r (γ). Al-Hawar and
Frasin [2] determine coefficient bounds and subordination results of analytic functions
of reciprocal order by means of Hadamard product. For more related results of some
associated classes, see [1, 4, 6, 13, 16, 20, 22, 32, 33, 37].

Frasin et al. [10] introduced the subclasses of analytic functions of reciprocal
order as

Definition 1.1. [10] A function f ∈ A is said to be in the class G−1(γ) of order γ if
and only if it satisfies the condition

Re

(
f(z)

zf ′(z)

)
> γ, (z ∈ U), (1.4)

for some γ > 1.

Definition 1.2. [10] A function f ∈ A is said to be in the class H−1(γ) of order γ if
and only if it satisfies the condition

Re

(
f ′(z)

f ′(z) + zf ′′(z)

)
> γ, (z ∈ U), (1.5)

for some γ > 1.

It can be seen from (1.4) and (1.5) that

f(z) ∈ H−1(γ) if and only if zf ′(z) ∈ G−1(γ).

Remark 1.3. Silverman [34], consider the condition∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ < 1− γ, (z ∈ U), (1.6)

for the class S∗(γ). This condition shows that the image of U by
zf ′(z)

f(z)
is inside of

the circle with the center at 1 and the radius 1 − γ, which is very small circle. If we
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consider the condition ∣∣∣∣zf ′(z)f(z)
− 1

2γ

∣∣∣∣ < 1

2γ
, (z ∈ U), (1.7)

for 0 < γ < 1 the condition (1.7) shows that

Re

(
f(z)

zf ′(z)

)
> γ, (z ∈ U),

which means that f(z) ∈ S∗r (γ). This condition (1.7) shows that the image of U

by
zf ′(z)

f(z)
is inside of the circle with the center at

1

2γ
and the radius

1

2γ
. Thus if

0 < γ < 1
2 , the condition (1.7) is better than (1.6). This is the motivation to discuss

of the classes S∗r (γ) and K∗r(γ).

Example 1.4. The function f(z) =
z

(1− z)2(1−γ)
, (0 < γ < 1) is a starlike function of

reciprocal order 0 in U ([23], Example 1).

Example 1.5. The function f(z) = ze(1−γ)z, (0 < γ < 1) is a starlike function of
reciprocal order 1/(2− γ) in U ([23], Example 2).

In recent years, several interesting subclasses of analytic functions were in-
troduced and investigated from different view points. Several researchers including
Altinkaya and Yalçin [3], Eker et al. [8], El-Deeb and Bulboacă [7], Nazeer et al.
[21], Porwal and Ahamad [26], Porwal and Kumar [27], Wanas and Khuttar [38], and
many more have studied interesting results on certain classes of univalent functions
for various distribution series (see also, [17, 32]).

In 1933, Wright [39] introduced a special function known as Wright functions, is
given by:

Wλ,κ(z) =

∞∑
n=0

1

Γ(λn+ κ)

zn

n!
, (1.8)

for λ > −1, κ ∈ C which is convergent for all z ∈ C, while for λ > −1 this is
absolutely convergent in U. Gorenflo et al. [11] and Mustafa [18] gave insight of some
characterizations and basic properties for the Wright functions. Prajapat [29] obtained
certain geometric properties including univalency, starlikeness, convexity and close-
to-convexity in the open unit disk U (see also, [15, 14, 19]). It is easy to see that the
series (1.8) is not in normalized form so we normalized it as

Wλ,κ = Γ(κ)zWλ,κ(z)

Wλ,κ(z) =

∞∑
n=0

Γ(κ)

Γ(λn+ κ)

zn+1

n!
, (1.9)

for λ > −1, κ > 0 and z ∈ U. Wright distribution recognized as a vitally important
distribution in its own right, first we define the series

Wλ,κ(s) =

∞∑
n=0

Γ(κ)

Γ(λn+ κ)

sn+1

n!
,
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which is convergent for all λ, κ, s > 0. The probability mass function of Wright dis-
tribution is given by

p(n) =
Γ(κ)

Γ(λn+ κ)Wλ,κ(s)

sn+1

n!
, λ, κ, s > 0;n = 0, 1, 2, · · · .

The Wright distribution is a particular case of the familiar Poisson distribution which
widely used as analysing traffic flow, fault prediction in electric cables, defects occur-
ring in manufactured objects such as castings, email messages arriving at a computer
and in the prediction of randomly occurring events or accidents.

Recently in 2022, Porwal et al. [28] invented Wright distribution series and gave
a nice application of it on certain classes of univalent functions. Porwal et al. [28]
introduce the Wright distribution series as follows

Kψ(λ, κ, s, z) = z +

∞∑
n=2

Γ(κ)sn

Γ(λ(n− 1) + κ)(n− 1)!Wλ,κ(s)
zn. (1.10)

Porwal et al. [28] introduced the linear operator I(λ, κ, s) : A → A defined by using
the Hadamard (convolution) product as

I(λ, κ, s)f(z) = Kψ(λ, κ, s, z)∗f(z) = z+

∞∑
n=2

Γ(κ)sn

Γ(λ(n− 1) + κ)(n− 1)!Wλ,κ(s)
anz

n. (1.11)

To establish our main results, we need to recall the following lemmas due to
Frasin et al. [10] and Dixit and Pal [5].

Lemma 1.6. [10] If f ∈ A satisfies
∞∑
n=2

(γn− 1)|an| ≤ γ − 1, (1.12)

for some γ > 1, then f(z) ∈ G−1(γ).

Lemma 1.7. [10] If f ∈ A satisfies
∞∑
n=2

n(γn− 1)|an| ≤ γ − 1, (1.13)

for some γ > 1, then f(z) ∈ H−1(γ).

Definition 1.8. A function f ∈ A is said to in the class Rτ (ϑ, δ), if it satisfies the
inequality ∣∣∣∣∣ (1− ϑ) f(z)z + ϑf ′(z)− 1

2τ(1− δ) + (1− ϑ) f(z)z + ϑf ′(z)− 1

∣∣∣∣∣ < 1, (z ∈ D),

where τ ∈ C \ {0}, δ < 1, 0 < ϑ ≤ 1.The class Rτδ (ϑ) was introduced by Swaminathan
[35].

Lemma 1.9. [5] If f ∈ Rτ (ϑ, δ) is of the form (1.1) then

|an| ≤
|τ |(ϑ− δ)

n
, n ∈ N \ {1}. (1.14)

The result is sharp.
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Motivated by the stated research works, we establish some sufficient con-
ditions for the Wright distribution series Kψ(λ, κ, s, z) belonging to the classes
G−1(γ) and H−1(γ). We also obtain inclusion relations for aforecited classes with
Rτ (C,D) by applying certain convolution operator I(λ, κ, s) defined by (1.11).

2. Main result

In this section, first we establish a sufficient condition for the function f ∈ A to
be in the class G−1(λ) and H−1(λ).

Theorem 2.1. Let λ, κ, s > 0 and for some γ(γ > 1). Then Kψ(λ, κ, s, z) ∈ G−1(γ) if

γΓ(κ)Wλ,κ+λ(s) ≤ (γ − 1)Γ(κ+ λ). (2.1)

Proof. To prove that Kψ(λ, κ, s, z) ∈ G−1(γ), according to Lemma 1.6, we must show
that

∞∑
n=2

(γn− 1)
Γ(κ)sn

Γ(λ(n− 1) + κ)(n− 1)!Wλ,κ(s)
≤ γ − 1

Now
∞∑
n=2

(γn− 1)
Γ(κ)sn

Γ(λ(n− 1) + κ)(n− 1)!Wλ,κ(s)

=

∞∑
n=2

{γ(n− 1) + γ − 1} Γ(κ)sn

Γ(λ(n− 1) + κ)(n− 1)!Wλ,κ(s)

=
1

Wλ,κ(s)

[ ∞∑
n=2

γΓ(κ)sn

Γ(λ(n− 1) + κ)(n− 2)!
+

∞∑
n=2

(γ − 1)Γ(κ)sn

(λ(n− 1) + κ)(n− 1)!

]

=
1

Wλ,κ(s)

[
γs

Γ(κ)

Γ(κ+ λ)
Wλ,κ+λ(s) + (γ − 1) {Wλ,κ(s)− s}

]
≤ γ − 1, by the given hypothesis.

This concludes the proof of Theorem 2.1. �

Theorem 2.2. Let λ, κ, s > 0 and for some γ(γ > 1). Then Kψ(λ, κ, s, z) ∈ H−1(γ) if

γs
Γ(κ)

Γ(κ+ 2λ)
Wλ,κ+2λ(s) + (3γ − 1)

Γ(κ)

Γ(κ+ λ)
Wλ,κ+λ(s) ≤ γ − 1. (2.2)

Proof. The proof is similar to Theorem 2.1. Therefore, we omit the details involved.
�

Theorem 2.3. Let λ, κ, s > 0, f ∈ Rτ (ϑ, δ) and for some γ(γ > 1).
Then I(λ, κ, s)f ∈ H−1(γ) if

(ϑ− δ)|τ |
Wλ,κ(s)

[
γs

Γ(κ)

Γ(κ+ λ)
Wλ,κ+λ(s) + (γ − 1) {Wλ,κ(s)− s}

]
≤ γ − 1. (2.3)
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Proof. To prove that I(λ, κ, s)f ∈ H−1(γ), according to Lemma 1.7, we must show
that

∞∑
n=2

n(γn− 1)
Γ(κ)sn|an|

Γ(λ(n− 1) + κ)(n− 1)!Wλ,κ(s)
≤ γ − 1.

Since f ∈ Rτ (ϑ, δ), from Lemma 1.9, we have |an| ≤ |τ |(ϑ−δ)n .
Now

∞∑
n=2

n(γn− 1)
Γ(κ)sn|an|

Γ(λ(n− 1) + κ)(n− 1)!Wλ,κ(s)

=
(ϑ− δ)|τ |
Wλ,κ(s)

∞∑
n=2

(γn− 1)
Γ(κ)sn|an|

Γ(λ(n− 1) + κ)(n− 1)!

=
(ϑ− δ)|τ |
Wλ,κ(s)

[ ∞∑
n=2

γΓ(κ)sn

Γ(λ(n− 1) + κ)(n− 2)!
+

∞∑
n=2

(γ − 1)Γ(κ)sn

(λ(n− 1) + κ)(n− 1)!

]

=
(ϑ− δ)|τ |
Wλ,κ(s)

[
γs

Γ(κ)

Γ(κ+ λ)
Wλ,κ+λ(s) + (γ − 1) {Wλ,κ(s)− s}

]
≤ γ − 1, by the given hypothesis.

This concludes the proof of Theorem 2.3. �

3. An integral operator

Theorem 3.1. If the function G(λ, κ, s, z) is given by

G(λ, κ, s, z) =

∫ z

0

Kψ(λ, κ, s, t)

t
dt, z ∈ U (3.1)

then G(λ, κ, s, z) ∈ H−1(γ) if

γΓ(κ)Wλ,κ+λ(s) ≤ (γ − 1)Γ(κ+ λ). (3.2)

Proof. Since

G(λ, κ, s, z) = z +

∞∑
n=2

Γ(κ)sn

n!Γ(λ(n− 1) + κ)Wλ,κ(s)
zn

by Lemma 1.7, we need only to show that
∞∑
n=2

n(γn− 1)
Γ(κ)sn|an|

n!Γ(λ(n− 1) + κ)Wλ,κ(s)
≤ γ − 1.

or, consistently
∞∑
n=2

(γn− 1)
Γ(κ)sn|an|

(n− 1)!Γ(λ(n− 1) + κ)Wλ,κ(s)
≤ γ − 1.

The enduring part of the proof of Theorem 3.1 is parallel to that of Theorem 2.1, and
so we omit the details. �
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4. Conclusions

In this paper we have considered the subclasses G−1(λ) and H−1(λ) of recip-
rocal order related with Wright distribution series. We obtained sufficient condition,
inclusion relation and properties related to integral operator for functions of these
subclasses related to Wright distribution series.

Acknowledgements. The author would like to thank the referee for his valuable sug-
gestions and comments which improve the presentation of the paper.
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[16] Mahmood, S., Sokó l, J., Srivastava, H.M., Malik, S.N., Some reciprocal classes of close-
to-convex and quasi-convex analytic functions, Mathematics, 7(2019), no. 4, 309.



766 Mallikarjun G. Shrigan, Sidharam D. Bhourgunde and Girish D. Shelake

[17] Murugusundaramoorthy, G., Subclasses of starlike and convex functions involving Pois-
son distribution series, Afr. Mat., 28(2017), 1357-1366.

[18] Mustafa, N., Geometric properties of normalized Wright function, Math. Comput. Appl.,
21, no. 14, (2016).

[19] Mustafa, N., Nezir, V., Dutta, H., Geometric properties of normalized Wright functions,
In: Dutta, H., Peters, J. (eds.) Applied Mathematical Analysis: Theory, Methods, and
Applications. Studies in Systems, Decision and Control, vol 177. Springer, Cham., 2020.

[20] Nafya, H.M., Cho, N.E., Adegani, E.A., Bulboacă, T.B., Geometric properties of nor-
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New subclasses of univalent functions on the unit
disc in C

Eduard Ştefan Grigoriciuc

Abstract. In this paper we consider a differential operator Gk defined on the
family of holomorphic normalized functions H0(U) that can be used in the con-
struction of new subclasses of univalent functions on the unit disc U. These new
subclasses are closely related to the families of convex, respectively starlike func-
tions on U. We study general results related to these new subclasses, such as
growth and distortion theorems, coefficients estimates and duality results. We
also present examples of functions that belongs to the subclasses defined.
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1. Preliminaries

Let us denote by U = U(0; 1) the open unit disc in the complex plane C and
H(U) the family of all holomorphic functions on the unit disc U. Also, let us denote
by H0(U) the class of normalized holomorphic functions on U, i.e. f ∈ H(U) with
f(0) = 0 and f ′(0) = 1. An important class that will be used in our paper is the
class of normalized univalent (holomorphic and injective) functions on the unit disc
U, denoted by S. For more details about the holomorphic functions and the class of
normalized univalent functions, one may consult [2], [3], [5], [10] and [16].

Let us consider α ∈ [0, 1). In [17] Robertson introduced two important subclasses
of the class S, namely the family

S∗(α) =

{
f ∈ H0(U) : Re

[
zf ′(z)

f(z)

]
> α, z ∈ U

}
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of normalized starlike functions of order α, respectively the family

K(α) =

{
f ∈ H0(U) : Re

[
1 +

zf ′′(z)

f ′(z)

]
> α, z ∈ U

}
of normalized convex functions of order α. In particular, we obtain that S∗ = S∗(0)
and K = K(0) are the usual families of starlike, respectively convex functions on the
unit disc U. For more details about these families of univalent functions, one may
consult [2], [3], [5], or [16].

An important result related to the class S is due to Noshiro and Warschawski
(see e.g. [2, Theorem 2.16]) and present a sufficient condition of univalence, as follows:

Theorem 1.1. Let f ∈ H0(U). If Ref ′(z) > 0, for all z ∈ U, then f is univalent on U.

Strongly related to the family S is the class of normalized holomorphic functions
whose derivative has positive real part (of order α), denoted by

R(α) =
{
f ∈ H0(U) : Ref ′(z) > α, z ∈ U

}
, α ∈ [0, 1).

In view of Theorem 1.1 it is clear thatR(α) ⊂ S. For more details about the classR(α)
of univalent functions whose derivatives have positive real part, one may consult [6],
[11], [12] and [13] . In particular, the class R(0) = R was studied by T.H. MacGregor
in [13].

In the following sections of this paper we introduce a differential operator Gk
defined on H0(U) that is useful in the construction of new subclasses of univalent
functions on U (denoted by Ek, respectively E∗k) closely related to the class of convex,
respectively starlike functions on the unit disc U. An interesting property of these
subclasses is that we can obtain coefficient estimates of the form |an| ≤ 1

(n−k)! , for

n ≥ k, where k ∈ N and ak, ..., an are the coefficients from the Taylor series expansion
of the function f ∈ H0(U).

Remark 1.2. It is important to mention that the operator Gk can be defined also
in the case of several complex variables (see [8]). Although for n = 1 we have that
E0(U) = E∗1 (U) = K(U), in the case of several complex variables we can prove that
E∗1 (Bn) ∩ K(Bn) 6= ∅, but E∗1 (Bn) 6= K(Bn), where K(Bn) is the family of convex
mappings on the Euclidean unit ball Bn (for details about univalent mappings in
higher dimensions, one may consult [5] and [9]). Another interesting property of E∗k
studied in [8] is related to the Graham-Kohr extension operator (introduced by I.
Graham and G. Kohr in [4]).

2. The differential operator Gk
In this section we introduce the differential operator Gk defined on the family

H0(U) of normalized holomorphic functions on U. For this operator we present some
properties related to the linearity and univalence on the unit disc U and we discuss
about how the convolution product is preserved under the action of the operator Gk.
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Definition 2.1. Let k ∈ N = {0, 1, 2, ...} and let Gk : H0(U)→ H(U) be the differential
operator defined on the class of normalized holomorphic functions on U, as follows

(Gkf)(z) =

{
zkf (k)(z) + ak−1z

k−1 + ...+ a2z
2 + a1z + a0, k ≥ 1

f(z) k = 0,
(2.1)

for all f ∈ H0(U) and z ∈ U. Notice that, for k ≥ 1, a0, ..., ak−1 are the first k
coefficients from the Taylor series expansion of the function f ∈ H0(U).

Remark 2.2. In view of the above definition, it is easy to see that the operator G0 (of
order 0) is the identity operator, i.e. G0f = f . Another particular form of the operator
Gk is for k = 1 (of order 1). In this case, (G1f)(z) = zf ′(z), for all z ∈ U.

Remark 2.3. Let us denote id : U → C the identity function on U, given by id(z) = z,
for all z ∈ U. Then Gk(id) = id, for all k ∈ N.

The connection between two differential operators of consecutive orders k − 1,
respectively k, where k ∈ N with k ≥ 1, is given in the following result:

Proposition 2.4. Let f ∈ H0(U). Then for any k ∈ N∗ = {1, 2, ...} the following
relation holds

(Gkf)(z) = z(Gk−1f)′(z)− (k − 1)(Gk−1f)(z) +

k−1∑
n=0

(k − n)anz
n, z ∈ U. (2.2)

Proof. We prove relation (2.2) by mathematical induction. Assume that

P (k) : (Gkf)(z) = z(Gk−1f)′(z)− (k − 1)(Gk−1f)(z) +

k−1∑
n=0

(k − n)anz
n

is true for a fixed k ∈ N with k ≥ 2. Then

z(Gkf)′(z)− k(Gkf)(z) = zk+1f (k+1)(z) +

k−1∑
n=0

(n− k)anz
n, z ∈ U.

Adding
∑k
n=0(k + 1− n)anz

n at the previous equality, we obtain

zk+1f (k+1)(z) +

k−1∑
n=0

(n− k)anz
n +

k∑
n=0

(k + 1− n)anz
n = (Gk+1f)(z),

for all z ∈ U and this completes the proof. �

Proposition 2.5. Let k ∈ N, α, β ∈ R and f, g ∈ H0(U). Then

Gk(αf + βg) = αGkf + βGkg. (2.3)

Proof. Let f, g ∈ H0(U) be such that f(z) = z+
∑∞
n=2 anz

n and g(z) = z+
∑∞
n=2 bnz

n,
for all z ∈ U, with a0 = b0 = 0 and a1 = b1 = 1. Then

Gk(αf + βg)(z) = zk(αf + βg)(k)(z) +

k−1∑
n=0

(αan + βbn)zn

= α(Gkf)(z) + β(Gkg)(z),

for all z ∈ U and α, β ∈ R. �
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Remark 2.6. For f ∈ H0(U), we can rewrite (2.1) as

(Gkf)(z) = z + a2z
2 + ...+ ak−1z

k−1 + k!akz
k + (k + 1)!ak+1z

k+1 + ...

...+
(k + n)!

n!
ak+nz

k+n + ...,

for all z ∈ U. In other words,

(Gkf)(z) = z +

∞∑
n=2

Anz
n, where An =

{
an, n ≤ k − 1
n!

(n−k)!an, n ≥ k,
(2.4)

for all z ∈ U.

Another interesting property of the operator Gk is related to the Hadamard
(convolution) product (for details, one may consult [2], [3], [5]). Let f, g ∈ H0(U) be
given by f(z) =

∑∞
n=0 anz

n and g(z) =
∑∞
n=0 bnz

n. We denote by

(f ∗ g)(z) =

∞∑
n=0

anbnz
n, z ∈ U (2.5)

the Hadamard (convolution) product of the functions f and g on U (see e.g. [2],
[3], [5]). There is a nice connection between the convolution product of two different
operators and the operator applied on a convolution product, as follows in the next
result.

Proposition 2.7. Let k ∈ N and f, g ∈ H0(U). Then

1. Gk(f ∗ g) = (Gkf) ∗ g = f ∗ (Gkg);
2. (Gkf) ∗ (Gkg) = Gk(Gk(f ∗ g)).

Proof. Let f, g ∈ H0(U) be such that f(z) = z+
∑∞
n=2 anz

n and g(z) = z+
∑∞
n=2 bnz

n,
for all z ∈ U, with a0 = b0 = 0 and a1 = b1 = 1. Then

(f ∗ g)(z) = z +

∞∑
n=2

anbnz
n,

for all z ∈ U. Moreover, taking into account Remark 2.6, we deduce that

Gk(f ∗ g)(z) = z +

k−1∑
n=2

anbnz
n +

∞∑
n=k

n!

(n− k)!
anbnz

n, z ∈ U. (2.6)

1. First, in view of (2.4) and the definition of the convolution product, we obtain

(
(Gkf) ∗ g

)
(z) =

(
z +

k−1∑
n=2

anz
n +

∞∑
n=k

n!

(n− k)!
anz

n

)
∗
(
z +

∞∑
n=2

bnz
n

)

= z +

k−1∑
n=2

anbnz
n +

∞∑
n=k

n!

(n− k)!
anbnz

n

= Gk(f ∗ g)(z)

for all z ∈ U. Similarly, we can prove that Gk(f ∗ g) = f ∗ (Gkg).
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2. For the second part, it is enough to consider relations (2.4) and (2.6). Then

Gk(Gk(f ∗ g))(z) = z +

k−1∑
n=2

anbnz
n +

∞∑
n=k

[
n!

(n− k)!

]2
anbnz

n

= (Gkf)(z) ∗ (Gkg)(z),

for all z ∈ U and this completes the proof.

�

Remark 2.8. Notice that we can obtain the second statement from Proposition 2.7 by
replacing f with Gkh (where h ∈ H0(U)) and using only the first part of the result.
Then

(Gkh) ∗ (Gkg) = f ∗ (Gkg) = Gk(f ∗ g) = Gk((Gkh) ∗ g) = Gk(Gk(h ∗ g))

and this completes the argument.

It is important that we can prove a sufficient condition of univalence for Gk (in
terms of modulus of coefficients an), as follows

Proposition 2.9. Let k ∈ N and f ∈ H0(U). Also, let σk be defined by

σk =



∞∑
n=2

n · n!

(n− k)!
|an|, k ≤ 2

k−1∑
n=2

n|an|+
∞∑
n=k

n · n!

(n− k)!
|an|, k ≥ 3.

(2.7)

If σk ≤ 1, then Gkf is univalent on the unit disc U. In particular, Gkf ∈ S.

Proof. It is easy to observe that (Gkf)(0) = 0, (Gkf)′(0) = 1 and Gkf is a holomorphic
function on U. In view of relation (2.7), we consider the following two cases:

• If k ≥ 3, then∣∣(Gkf)′(z)− 1
∣∣ =

∣∣∣∣1 +

k−1∑
n=2

nanz
n−1 +

∞∑
n=k

n!

(n− k)!
nanz

n−1 − 1

∣∣∣∣
≤ |z|

( k−1∑
n=2

n|an|+
∞∑
n=k

n!

(n− k)!
n|an|

)
< 1,

for all z ∈ U and k ≥ 3. Hence, (Gkf)′(z) ∈ U(1; 1), for all z ∈ U and this implies
that Re(Gkf)′(z) > 0, for all z ∈ U.

• Similarly, for k ≤ 2, we have∣∣(Gkf)′(z)− 1
∣∣ =

∣∣∣∣1 +

∞∑
n=2

n · n!

(n− k)!
anz

n−1 − 1

∣∣∣∣
≤ |z|

∞∑
n=2

n · n!

(n− k)!
|an| < 1,
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for all z ∈ U and k ≥ 2. As we seen before, we obtain that (Gkf)′(z) ∈ U(1; 1)
which implies that Re(Gkf)′(z) > 0, for all z ∈ U.

Finally, according to the univalence criterion given in Theorem 1.1 we deduce that
Gkf ∈ S, for all k ∈ N and this completes the proof. �

Remark 2.10. In particular, for k = 0, we obtain the well-known univalence condition
for a holomorphic function on the unit disc (see for example [5, Exercise 1.1.4]): if∑∞
n=2 n|an| ≤ 1, then f is univalent on U.

3. Subclasses of univalent functions

Using the differential operator Gk defined above, we can construct some par-
ticular subclasses of univalent functions on the unit disc U in C. These subclasses,
denoted here by E∗k(α), respectively Ek(α), where α ∈ [0, 1), are related to the classes
of starlike, respectively convex functions of order α on U.

3.1. The subclass E∗k(α)

First, we present some general results about the subclass E∗k(α) and connections
of this class with another important classes of univalent functions (for example, the
class of starlike functions of order α or the class of univalent functions introduced by
Sălăgean in [18]).

Definition 3.1. Let α ∈ [0, 1) and k ∈ N. Let Gk be the differential operator defined
by formula (2.1). Then

E∗k(α) =
{
f ∈ S : Gkf ∈ S∗(α)

}
is the family of normalized univalent functions f on the unit disc such that Gkf is
starlike of order α. In particular, we denote by E∗k = E∗k(0).

Remark 3.2. It is clear that E∗0 (α) = S∗(α) is the family of normalized starlike
functions of order α on U.

Remark 3.3. Taking into account the definition of starlikeness of order α, we deduce
that

E∗k(α) =

{
f ∈ S : Re

[
z(Gkf)′(z)

(Gkf)(z)

]
> α, z ∈ U

}
. (3.1)

Indeed, if f ∈ S, then Gkf ∈ H(U), (Gkf)(0) = 0 and (Gkf)′(0) = 1. Together with

the condition Re
[ z(Gkf)′(z)

(Gkf)(z)
]
> α, for all z ∈ U, all the assumptions from the definition

of starlikeness of order α are satisfied.

Proposition 3.4. Let α ∈ [0, 1). Then E∗1 (α) = K(α).

Proof. Indeed, according to the previous definition and Remark 2.2, we have that

E∗1 (α) =

{
f ∈ S : Re

[
z(G1f)′(z)

(G1f)(z)

]
> α, z ∈ U

}
=

{
f ∈ S : Re

[
1 +

zf ′′(z)

f ′(z)

]
> α, z ∈ U

}
= K(α),

for every α ∈ [0, 1) and this completes the proof. �
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Remark 3.5. As a consequence of the previous two remarks, we obtain that E∗0 = S∗

and E∗1 = K. It is important to mention here that the second equality is no longer
true in the case of several complex variables (see [8]).

Remark 3.6. It is very important to mention here that

E∗0 (α) = S0(α) and E∗1 (α) = S1(α),

where S0(α) and S1(α) are particular forms of the class Sn(α) introduced by Sălăgean
in [18] for α ∈ [0, 1). These equalities holds because

D0f(z) = f(z) = (G0f)(z) and D1f(z) = zf ′(z) = (G1f)(z),

for all z ∈ U, where Dn is the differential operator introduced by Sălăgean. However,
for n = k ≥ 2, we have that

E∗k(α) 6= Sn(α),

since the Sălăgean differential operator Dnf (see [18]) is different from the operator
Gkf , for every n = k ≥ 2. For example, if n = 2, then

D2f(z) = D(Df(z)) = z2f ′′(z) + zf ′(z) 6= z2f ′′(z) + z = (G2f)(z),

for all z ∈ U. Hence, the common results from this thesis and the ones obtained by
Sălăgean in [18] are only for the particular cases k = 0 and k = 1 (which are already
well-known, as reduces to the classes S∗(α), respectively K(α)).

Using a similar argument as in Proposition 2.9, we can prove the following result.
We mention here that this result is a general form of the theorem proved by Merkes,
Robertson and Scott in [14].

Theorem 3.7. Let α ∈ [0, 1), k ∈ N and f ∈ S. Also, let σk,α be defined by

σk,α =



∞∑
n=2

(n− α) · n!

(n− k)!
|an|, k ≤ 2

k−1∑
n=2

(n− α)|an|+
∞∑
n=k

(n− α) · n!

(n− k)!
|an|, k ≥ 3.

(3.2)

If σk,α ≤ 1− α, then f ∈ E∗k(α).

Proof. Let α ∈ [0, 1). Using (3.2) and Proposition 2.9, we obtain that Gkf is a nor-
malized univalent function on U. Morevoer,∣∣z(Gkf)′(z)− (Gkf)(z)

∣∣− (1− α)
∣∣(Gkf)(z)

∣∣ =

=

∣∣∣∣z +

∞∑
n=2

nAnz
n − z −

∞∑
n=2

Anz
n

∣∣∣∣− (1− α)

∣∣∣∣z +

∞∑
n=2

Anz
n

∣∣∣∣
≤
∞∑
n=2

(n− 1)|An||z|n − (1− α)

(
|z| −

∞∑
n=2

|An||z|n
)

≤ |z|
( ∞∑
n=2

(n− α)|An| − (1− α)

)
≤ 0,
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where An is given by relation (2.4). Since (Gkf)(z) 6= 0 for z 6= 0 and in view of
relation ∣∣z(Gkf)′(z)− (Gkf)(z)

∣∣− (1− α)
∣∣(Gkf)(z)

∣∣ ≤ 0,

we deduce that ∣∣∣∣z(Gkf)′(z)

(Gkf)(z)
− 1

∣∣∣∣ ≤ 1− α, (3.3)

for all z ∈ U. Therefore

Re

[
z(Gkf)′(z)

(Gkf)(z)

]
> α, z ∈ U

which implies Gkf ∈ S∗(α). According to Definition 3.1, we conclude that f ∈ E∗k(α)
and this completes the proof. �

In the next corollary we present two particular cases of the previous theorem
(results proved by Merkes, Robertson and Scott in [14]; see also [5]).

Corollary 3.8. Let f ∈ H0(U) and k ∈ {0, 1}.
1. If σ0,α =

∑∞
n=2(n− α)|an| ≤ 1− α, then f ∈ E∗0 (α) = S∗(α).

2. If σ1,α =
∑∞
n=2(n− α)n|an| ≤ 1− α, then f ∈ E∗1 (α) = K(α).

Remark 3.9. It is clear that for α = 0, we obtain the classical conditions for starlike-
ness, respectively convexity on the unit disc (see e.g. [2], [3], [5]).

In this subsection we present some results regarding to coefficient estimates and
distortion theorems for the class E∗k(α). For the proof of our first result, we use the
coefficient estimates for the class S∗(α) given by Robertson in [17] (see also [5]).

Theorem 3.10. Let α ∈ [0, 1), k ∈ N and f ∈ E∗k(α). Then

|an| ≤
(n− k)!

(n− 1)! · n!

n∏
m=2

(m− 2α), n ≥ k ≥ 2. (3.4)

Proof. Let f ∈ E∗k(α). Then f ∈ S and Gkf ∈ S∗(α). According to Remark 2.6 and
the coefficient bounds for the class S∗(α) given in [17] (see also [5]), we know that

|An| ≤
1

(n− 1)!

n∏
m=2

(m− 2α), (3.5)

for all n ≥ 2, where An are the coefficients of Gkf defined by relation (2.4). Since

|An| =

{
|an|, n ≤ k − 1
n!

(n−k)! |an|, n ≥ k,

we obtain that

|an| ≤
(n− k)!

(n− 1)! · n!

n∏
m=2

(m− 2α), n ≥ k.

Taking into account the product considered in the last relation, we impose the con-
dition n ≥ k ≥ 2 and this completes the proof. �
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Corollary 3.11. Let k ∈ N and f ∈ E∗k . Then

|an| ≤
n

n(n− 1)(n− 2) · ... · (n− k + 1)
=
n · (n− k)!

n!
, n ≥ k. (3.6)

Proof. In view of Theorem 3.10 for α = 0. �

Remark 3.12. As a consequence of the previous Corollary, we obtain the following
well-known results (see e.g. [2], [3], [5], [16]):

1. If k = 0, then E∗0 = S∗ and |an| ≤ n, for all n ≥ 0.
2. If k = 1, then E∗1 = K and |an| ≤ 1, for all n ≥ 1.

Following the idea presented by Duren in [2] and treated by Goodman in [3]
(also by Grigoriciuc in [7]), we can prove a general distortion result for the class E∗k .
In fact, we obtain upper bounds for the m-th derivative of a function f ∈ E∗k , where
m ∈ N such that m ≥ k.

Remark 3.13. Based on [7, Remark 2.5], we have that

1

(1− r)k
=

∞∑
n=0

(k + n− 1)!

n!(k − 1)!
rn, k ∈ N, r ∈ [0, 1).

Theorem 3.14. Let k ∈ N. If f ∈ E∗k , then∣∣f (m)(z)
∣∣ ≤ [m+ (1− k)|z|

]
· (m− k)!

(1− |z|)m−k+2
, (3.7)

for all m ≥ k and z ∈ U.

Proof. Let f ∈ E∗k . Then f ∈ S and Gkf ∈ S∗. Moreover, for m ∈ N, we have that

f (m)(z) =

∞∑
n=0

(m+ n)!

n!
am+nz

n, z ∈ U. (3.8)

Let r = |z| < 1. In view of relation (3.6), we obtain∣∣f (m)(z)
∣∣ =

∣∣∣∣ ∞∑
n=0

(m+ n)!

n!
am+nz

n

∣∣∣∣ ≤ ∞∑
n=0

(m+ n)!

n!
|am+n||z|n

=

∞∑
n=0

(m+ n)(m+ n− k)!

n!
rn

In view of Remark 3.13 and elementary computations we deduce that∣∣f (m)(z)
∣∣ ≤ ∞∑

n=0

(m+ n)(m+ n− k)!

n!
rn =

(m− k)!
[
m+ r(1− k)

]
(1− r)m−k+2

,

where r = |z| < 1. Finally, we conclude that∣∣f (m)(z)
∣∣ ≤ [m+ (1− k)|z|

]
· (m− k)!

(1− |z|)m−k+2
, z ∈ U,

for all m ≥ k ≥ 0 and this completes the proof. �
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Remark 3.15. Obviously, for k ∈ {0, 1} we obtain the classical results proved by
Goodman in [3].

Based on the previous theorem and the result proved in [7], we propose the
following conjecture (already proved for the particular cases k = 0, α = 0 and α = 1

2 ):

Conjecture 3.16. Let α ∈ [0, 1) and m, k ∈ N. If f ∈ E∗k(α), then∣∣f (m)(z)
∣∣ ≤ [m+ (1− k)(1− 2α)|z|

]
·B(m− k, α)

(1− |z|)m−k+2−2α , (3.9)

for all m ≥ k + 1 and z ∈ U, where

B(m− k, α) =


1
m (m− k)!, α = 1

2

1

1− 2α

m−k∏
j=1

(j − 2α), α 6= 1
2 .

(3.10)

Remark 3.17. It is clear that for k = 0, Conjecture 3.16 reduces to [7, Theorem 3.4].
Moreover, for α = 0, the previous Conjecture reduces to Theorem 3.14 proved in this
section.

Remark 3.18. If α = 1
2 , then (3.9) can be written as∣∣f (m)(z)

∣∣ ≤ (m− k)!

(1− |z|)m−k+1
,

for all m ≥ k + 1 and z ∈ U. Following a similar proof as in Theorem 3.14, we obtain
that∣∣f (m)(z)

∣∣ =

∣∣∣∣ ∞∑
n=0

(m+ n)!

n!
am+nz

n

∣∣∣∣ ≤ ∞∑
n=0

(m+ n)!

n!
|am+n||z|n

≤
∞∑
n=0

(m+ n)!(m+ n− k)!rn

n!(m+ n− 1)!(m+ n)!

m+n∏
j=2

(j − 1)

=
(m− k)!

(1− r)m−k+1
,

where r = |z| < 1. Hence, Conjecture 3.16 is true for α = 1
2 as we proposed above.

Remark 3.19. The main idea of the results presented in this section is that starting
from an index n ≥ k we can obtain better estimations for the coefficients an of
f ∈ E∗k(α), respectively upper bounds for the modulus of the m-th derivative of the
function f ∈ E∗k(α).

3.2. The subclass Ek(α)

Similarly as in the previous section, we can use the operator Gk to define the class
Ek(α) of holomorphic functions on the unit disc for which Gkf is a convex function
of order α on U. In the first part, we present some general results for the class Ek(α)
related to coefficient estimates and general distortion results. The final part of this
section is dedicated to the particular case k = 1.
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In this subsection we introduce the subclass Ek(α) together with some general
properties of it.

Definition 3.20. Let α ∈ [0, 1) and k ∈ N. Let Gk be the differential operator defined
by formula (2.1). Then

Ek(α) =
{
f ∈ S : Gkf ∈ K(α)

}
is the family of normalized univalent functions f on the unit disc such that Gkf is
convex of order α. In particular, we denote by Ek = Ek(0).

Remark 3.21. Taking into account the definition of convexity of order α (see [5], [17],
[16]), we deduce that

Ek(α) =

{
f ∈ S : Re

[
1 +

z(Gkf)′′(z)

(Gkf)′(z)

]
> α, z ∈ U

}
. (3.11)

It is clear that E0(α) = K(α) is the family of normalized convex functions of order α
on U.

Taking into account Theorem 3.7, we can prove a similar criteria for the family
Ek(α), as follows

Theorem 3.22. Let α ∈ [0, 1), k ∈ N and f ∈ S. Also, let σk,α be defined by

σk,α =



∞∑
n=2

n(n− α) · n!

(n− k)!
|an|, k ≤ 2

k−1∑
n=2

n(n− α)|an|+
∞∑
n=k

n(n− α) · n!

(n− k)!
|an|, k ≥ 3.

(3.12)

If σk,α ≤ 1− α, then f ∈ Ek(α).

Proof. Similar to the proof of Theorem 3.7. �

Remark 3.23. If k = 0, then E0(α) = K(α) and we obtain the sufficient condition for
convexity of order α (one may consult [5] or [14]).

Similar with Theorem 3.10, we can obtain some bounds for the coefficients of a
function f ∈ Ek(α), as follows

Theorem 3.24. Let α ∈ [0, 1), k ∈ N and f ∈ Ek(α). Then

|an| ≤
(n− k)!

n! · n!

n∏
j=2

(j − 2α), n ≥ k ≥ 2. (3.13)

Proof. Let f ∈ Ek(α). Then f ∈ S and Gkf ∈ K(α). According to Remark 2.6 and
the estimations proved by Robertson in [17] (see also [5]), we deduce that

|An| ≤
1

n!

n∏
j=2

(j − 2α), (3.14)
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for all n ≥ 2, where An are the coefficients of Gkf defined by relation (2.4). Since

|An| =

{
|an|, n ≤ k − 1
n!

(n−k)! |an|, n ≥ k,

we obtain that

|an| ≤
(n− k)!

n! · n!

n∏
j=2

(j − 2α), n ≥ k.

Taking into account the product considered in the last relation, we impose the con-
dition n ≥ k ≥ 2 and this completes the proof. �

Corollary 3.25. Let k ∈ N and f ∈ Ek. Then

|an| ≤
1

n(n− 1)(n− 2) · ... · (n− k + 1)
=

(n− k)!

n!
, n ≥ k. (3.15)

Proof. In view of Theorem 3.24 for α = 0. �

Remark 3.26. If k = 0, then E0 = K and we obtain the classical result related to the
coefficient estimates for convex functions (see e.g. [2]).

Following the remarks presented before Theorem 3.14, we can prove the following
general distortion result:

Theorem 3.27. Let k ∈ N. If f ∈ Ek, then∣∣f (m)(z)
∣∣ ≤ (m− k)!

(1− |z|)m−k+1
, (3.16)

for all m ≥ k and z ∈ U.

Proof. Let f ∈ Ek. Then f ∈ S and Gkf ∈ K. Moreover, for m ∈ N, we have that

f (m)(z) =

∞∑
n=0

(m+ n)!

n!
am+nz

n, z ∈ U.

Let r = |z| < 1. In view of relation (3.15), we obtain∣∣f (m)(z)
∣∣ =

∣∣∣∣ ∞∑
n=0

(m+ n)!

n!
am+nz

n

∣∣∣∣ ≤ ∞∑
n=0

(m+ n)!

n!
|am+n||z|n

≤
∞∑
n=0

(m+ n)!(m+ n− k)!rn

n!(m+ n)!
rn

= (m− k)!

∞∑
n=0

(m+ n− k)!

n!(m− k)!
rn

= (m− k)! · 1

(1− r)m−k+1
,

according to Remark 3.13. Finally, we conclude that∣∣f (m)(z)
∣∣ ≤ (m− k)!

(1− |z|)m−k+1
, z ∈ U,
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for all m ≥ k ≥ 0 and this completes the proof. �

Remark 3.28. It is clear that for k = 0 we obtain the result proved by Goodman in
[3, Theorem 9, Chapter 8].

3.2.1. The particular case k = 1 and α = 0. The next section is dedicated to the
study of a special form (k = 1 and α = 0) of the class Ek(α). Because we consider
such a particular case, we obtain some nice results and examples related to classical
properties of univalent functions on the unit disc. According to Definition 3.20, we
have that E1 is defined by

E1 =
{
f ∈ S : G1f ∈ K

}
,

where G1f(z) = zf ′(z), for all z ∈ U.

Remark 3.29. In view of the analytical characterization of convexity, we have the
following equivalent definition

E1 =

{
f ∈ S : Re

[
1 +

z2f ′′′(z) + 2zf ′′(z)

f ′(z) + zf ′′(z)

]
> 0, z ∈ U

}
. (3.17)

Indeed, f ∈ S implies that G1f ∈ H(U). Moreover, according to the analytical char-
acterization of convexity (see for example [5], [16]), it follows that (G1f)′(0) 6= 0 (in

fact, (G1f)′(0) = 1) and Re
[
1 + z(G1f)′′(z)

(G1f)′(z)
]
> 0, for all z ∈ U. In view of Definition

2.1, we have that

Re

[
1 +

z(G1f)′′(z)

(G1f)′(z)

]
= Re

[
1 +

z2f ′′′(z) + 2zf ′′(z)

f ′(z) + zf ′′(z)

]
> 0,

for all z ∈ U, which leads to the definition of E1 given by (3.17).

Example 3.30. Let f : U → C be given by f(z) = − log(1 − z), for all z ∈ U, where
log is the principal branch of the complex logarithm. Then f ∈ E1.

Proof. Indeed, f ∈ S and f ′(z) = 1
1−z , for all z ∈ U. Moreover,

G1f(z) = zf ′(z) =
z

1− z
, z ∈ U.

Then G1f ∈ S and G1f(U) =
{
w ∈ C : Rew > − 1

2

}
is a convex domain in C. Hence,

G1f ∈ K and this completes the proof. �

Next, we present an important result that establishes the connection between
classes E1 and K(1/2). In particular, we obtain that every function from E1 is also
convex. This proof of this result was given by the author and is based on the proof of
[5, Theorem 2.3.2] given by Suffridge.

Proposition 3.31. If f ∈ E1, then f ∈ K(1/2). This result is sharp.

Proof. Let f ∈ E1. Then f ∈ S and G1f ∈ K. Taking into account a classical result
given by Sheil-Small (see [19]) and Suffridge (see [20]; also, one may consult [5]), we
know that

G1f ∈ K ⇔ Re

[
2z(G1f)′(z)

(G1f)(z)− (G1f)(ζ)
− z + ζ

z − ζ

]
≥ 0,



782 Eduard Ştefan Grigoriciuc

for all z, ζ ∈ U. In particular, for ζ = 0, we obtain that G1f ∈ K is equivalent to

Re

[
z(G1f)′(z)

(G1f)(z)

]
≥ 0, z ∈ U.

In view of (2.1) and the minimum principle for harmonic functions, we deduce that

Re

[
z2f ′′(z) + zf ′(z)

zf ′(z)

]
= Re

[
1 +

zf ′′(z)

f ′(z)

]
> 0, (3.18)

for all z ∈ U. Hence, according to the definition of the convex functions of order α,
we conclude that f ∈ K(1/2). In order to prove that the result is sharp, it suffices to
consider the function f : U→ C, given by f(z) = − log(1−z), for all z ∈ U, where log
is the principal branch of the complex logarithm and this completes the proof. �

Remark 3.32. In order to prove that the inclusion E1 $ K(1/2) is strict, we can use
the example given in the proof of Theorem 3 from [8]. If we consider f : U→ C given
by f(z) = z + 1

6z
2, for all z ∈ U, then f ∈ K(1/2) \ E1.

Proof. Indeed, the main idea of the proof (cf. [8]) is the following: according to Corol-
lary 3.8 we have that f ∈ K(1/2). However, it is easy to prove that G1f 6∈ K, where
(G1f)(z) = zf ′(z), for all z ∈ U. Hence, f 6∈ E1 and this completes the proof. �

Proposition 3.33. If f ∈ E1, then f ∈ R(1/2), i.e. Ref ′(z) > 1/2, for all z ∈ U.

Proof. Let f ∈ E1. Then f ∈ S and G1f ∈ K, where (G1f)(z) = zf ′(z), for all z ∈ U.
In view of a result due to Marx and Strohhäcker (see for example [5]), we have that

1

2
< Re

[
(G1f)(z)

z

]
= Re

[
zf ′(z)

z

]
= Ref ′(z),

for all z ∈ U. Hence, Ref ′(z) > 1
2 , for all z ∈ U and this completes the proof. �

Theorem 3.34. Let f ∈ E1. Then

log(1 + |z|) ≤ |f(z)| ≤ − log(1− |z|) (3.19)

and
1

1 + |z|
≤ |f ′(z)| ≤ 1

1− |z|
, (3.20)

for all z ∈ U. All of these estimates are sharp.

Proof. Since f ∈ E1, we have that f ∈ S and G1f ∈ K, where (G1f)(z) = zf ′(z), for
all z ∈ U. According to distortion theorem for the class K (see e.g. [5], [16]), we know
that

r

1 + r
≤
∣∣zf ′(z)∣∣ ≤ r

1− r
,

where |z| = r. Then
1

1 + r
≤
∣∣f ′(z)∣∣ ≤ 1

1− r
, (3.21)

where |z| = r < 1 and we obtain the distortion result for the class E1. The up-
per bound in (3.19) follows easily by integrating the upper bound in (3.20) and the
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lower bound in (3.19) can be obtained using the arguments presented in the proof of
Theorem 2.2.8 from [5]. Hence,

log(1 + r) ≤ |f(z)| ≤ − log(1− r),

where |z| = r < 1. The sharpness of all of these estimates is ensured by the function
defined in Example 3.30. �

Corollary 3.35. If f ∈ E1, then f(U) contains the open disc Uln 2.

Proof. The result follows from the lower estimate in relation (3.19) on letting
r → 1. �

3.3. Connections between E∗k and Ek

Based on the Alexander’s duality theorem between convex and starlike functions
on U (see [1], [2], [16]), we prove in this section similar duality results for the subclasses
E∗k and Ek.

Lemma 3.36. Let k ∈ N and f, g ∈ S be such that g(z) = zf ′(z), for all z ∈ U. Then

z(Gkf)′(z) = (Gkg)(z), z ∈ U. (3.22)

Proof. It is clear that for k = 0, relation (3.22) reduces to the definition of g. Let us
consider k ≥ 1 and f, g ∈ S such that g(z) = zf ′(z), for all z ∈ U. By (2.1) we have

(Gkf)(z) = zkf (k)(z) + ak−1z
k−1 + ...+ a1z + a0,

for all z ∈ U, where a1 = 1 and a0 = 0. Then

z(Gkf)′(z) = zk+1f (k+1)(z) + kzkf (k)(z) +

k−1∑
n=1

nanz
n, (3.23)

for all z ∈ U. According to Leibniz’s formula, we deduce that

(Gkg)(z) = zkg(k)(z) + bk−1z
k−1 + ...+ b2z

2 + b1z + b0

= zk+1f (k+1)(z) + kzkf (k)(z) + bk−1z
k−1 + ...+ b2z

2 + b1z + b0

= zk+1f (k+1)(z) + kzkf (k)(z) +

k−1∑
n=1

nanz
n, (3.24)

for all z ∈ U. Finally, in view of (3.23) and (3.24) we obtain that

z(Gkf)′(z) = (Gkg)(z), z ∈ U

and this completes the proof. �

Based on the previous lemma, we can obtain an Alexander type theorem for the
families E∗k and Ek.

Theorem 3.37. Let k ∈ N and f, g ∈ S. Then f ∈ Ek if and only if g ∈ E∗k , where
g(z) = zf ′(z), for all z ∈ U.
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Proof. Let f ∈ Ek. According to the definition of the class Ek, we have that

f ∈ Ek ⇔ f ∈ S and Gkf ∈ K.
Moreover,

Gkf ∈ K ⇔ z(Gkf)′(z) ∈ S∗,
for all z ∈ U, in view of the Alexander’s duality theorem. Using Lemma 3.36 we can
rewrite the previous equivalence as

Gkf ∈ K ⇔ z(Gkf)′(z) = (Gkg)(z) ∈ S∗,
for all z ∈ U. Then

f ∈ Ek ⇔ Gkf ∈ K ⇔ Gkg ∈ S∗ ⇔ g ∈ E∗k ,
where g(z) = zf ′(z), for all z ∈ U, and this completes the proof. �

Remark 3.38. Since Theorem 3.37 is based on the Alexander’s duality theorem, it is
clear that for k = 0, we have that

f ∈ E0 = K ⇔ g ∈ E∗0 = S∗,

where g(z) = zf ′(z), for all z ∈ U.

Remark 3.39. Another interesting remark is that, taking into account Definition 2.1,
we can rewrite Theorem 3.37 as follows

f ∈ Ek ⇔ G1f ∈ E∗k , (3.25)

for all k ∈ N, where G1f is given by (2.1).

Theorem 3.40. Let k ∈ N. If f ∈ Ek, then f ∈ E∗k(1/2).

Proof. Let f ∈ Ek. Then f ∈ S and Gkf ∈ K. According to a result given by Sheil-
Small and Suffridge (see e.g. [5]), we know that

Re

[
z(Gkf)′(z)

(Gkf)(z)

]
> 0, z ∈ U.

Hence, since f ∈ S and Gkf ∈ S∗(1/2), it follows that f ∈ E∗k(1/2) and this completes
the proof. �

Remark 3.41. It is clear that Theorem 3.40 is a generalization of Proposition 3.31
(where k = 1). On the other hand, if k = 0, then Theorem 3.40 reduces to [5,
Theorem 2.3.2] due to Marx and Strohhäcker.

Finally, we end this section with some questions related to the subclasses Ek
and E∗k studied above. First question is a generalization of Proposition 3.31:

Question 3.42. Is it true that Ek+1 ⊂ Ek, for all k ∈ N?

Clearly, a similar question can be formulated also for the subclass E∗k . Another
important property of these subclasses is the compactness. Hence, one may ask

Question 3.43. Is it true that the subclasses Ek and E∗k are compact in H(U)?

Since E∗k and Ek are subclasses of the class S, it would be interesting to study
also other geometric and analytic properties of them.
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3.4. The subclass EN

Let k ∈ N and f ∈
⋂
k∈N

Ek. Then, for every k ∈ N, we have that f ∈ Ek.

Moreover, according to Corollary 3.25, it follows that for every k ∈ N

|an| ≤
(n− k)!

n!
, n ≥ k.

In particular, for n = k we obtain that |ak| ≤ 1
k! , for every k ∈ N. Let us denote by

EN =

{
f ∈ S : |an| ≤

1

n!
, n ≥ 2

}
. (3.26)

Then, we obtain the following remark

Remark 3.44. Let EN be the set defined by (3.26). Then
⋂
k∈NEk $ EN, i.e. the

intersection of all subclasses Ek is included in EN, but it is not equal with EN.

Indeed, we can construct an example of a function f ∈ S that belongs to the
family EN, but not to

⋂
k∈NEk (in fact, we prove that f 6∈ E1), as follows

Example 3.45. Let f : U → C be defined by f(z) = z + az2, for all z ∈ U, where
a = 1/2. Then f ∈ EN, but f 6∈

⋂
k∈NEk.

Proof. It is clear that f ∈ S and |a2| = |a| ≤ 1
2 . Hence, in view of relation (3.26) we

deduce that f ∈ EN. On the other hand,

(G1f)(z) = zf ′(z) = z(1 + 2az) = z + 2az2, z ∈ U, a = 1/2.

Let us denote

h(z) = 1 +
z(G1f)′′(z)

(G1f)′(z)
= 1 +

4az

1 + 4az
=

1 + 8az

1 + 4az
,

for all z ∈ U, where a = 1/2. Then h is a Möbius function on U such that h(0) = 1,
h(1) = 5

3 , h(i) = 9
5 + 2

5 i and h(−i) = 9
5 −

2
5 i. In other words, we obtain that

h(U) = C \ U
(
7/3, 2/3

)
=

{
x+ iy ∈ C :

(
x− 7

3

)2

+ y2 >

(
2

3

)2}
,

i.e., h(U) is the complementary part of the closed disc U
(
7
3 ,

2
3

)
of center w0 = 7

3 and

radius r = 2
3 . Moreover, for every point w ∈ h(U)∩

{
x+ iy ∈ C : x < 0

}
we have that

Rew < 0, i.e. there exists z0 ∈ U such that Reh(z0) < 0. For example, if z0 = − 1
3 ,

then z0 ∈ U and simple computations show that

Reh(z0) = Re

[
1 +

z0(G1f)′′(z0)

(G1f)′(z0)

]
= −1 < 0.

Hence, according to the behavior of the function h on U and the analytical charac-
terization of convexity (see for example [3] or [5]), we deduce that G1f 6∈ K.

Since f ∈ S, but G1f 6∈ K, we obtain (according to Definition 3.20) that f 6∈ E1.
Now, it is clear that f 6∈

⋂
k∈NEk and this completes the proof. �

Another interesting example (considered also in [15]) which generates important
remarks about the class EN is the following
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Example 3.46. Let f : U→ C be given by f(z) = ez − 1, for all z ∈ U. Then f ∈ EN.

Proof. Indeed, f ∈ S and

f(z) = ez − 1 =

∞∑
n=0

zn

n!
− 1 = z +

z2

2
+
z3

6
+ ... = z +

∞∑
n=2

anz
n,

where an = 1
n! , for all n ≥ 2. Hence, f ∈ EN. �

Taking into account relation (3.8), we can prove the following result

Proposition 3.47. Let m ∈ N. If f ∈ EN, then
∣∣f (m)(z)

∣∣ ≤ e|z|, for all z ∈ U.

Proof. Let f ∈ EN and |z| = r < 1. Then f ∈ S and in view of (3.8) we have that∣∣f (m)(z)
∣∣ =

∣∣∣∣ ∞∑
n=0

(m+ n)!

n!
am+nz

n

∣∣∣∣ ≤ ∞∑
n=0

(m+ n)!

n!
|am+n||z|n =

∞∑
n=0

rn

n!
= er,

where |z| = r < 1. Hence, we obtain that∣∣f (m)(z)
∣∣ ≤ e|z|,

for z ∈ U and this completes the proof. �

It is clear that Proposition 3.47 has the following consequence (for the particular
case z = 0):

Corollary 3.48. Let m ∈ N. If f ∈ EN, then |f (m)(0)| ≤ 1, for all m ∈ N.
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[7] Grigoriciuc, E.Ş., Some general distortion results for K(α) and S∗(α), Mathematica,
64(87)(2022), 222–232.
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Bounds of third and fourth Hankel determinants
for a generalized subclass of bounded turning
functions subordinated to sine function

Gagandeep Singh and Gurcharanjit Singh

Abstract. The objective of this paper is to investigate the bounds of third and
fourth Hankel determinants for a generalized subclass of bounded turning func-
tions associated with sine function, in the open unit disc E = {z ∈ C : |z| < 1}.
The results are also extended to two-fold and three-fold symmetric functions.
This investigation will generalize the resuls of some earlier works.
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1. Introduction

Let the complex plane is expressed by C. By A, let us denote the class of analytic
functions of the form f(z) = z +

∑∞
k=2 akz

k, defined in the open unit disc E = {z ∈
C : |z| < 1} and normalized by the conditions f(0) = f ′(0)− 1 = 0. By S, we denote
the subclass of A which consists of univalent functions in E.

Let f and g be two analytic functions in E. We say that f is subordinate to g
(denoted as f ≺ g) if there exists a function w with w(0) = 0 and |w(z)| < 1 for z ∈ E
such that f(z) = g(w(z)). Further, if g is univalent in E, then the subordination leads
to f(0) = g(0) and f(E) ⊂ g(E).

In the theory of univalent functions, Bieberbach [5] stated a result that, for f ∈ S,
|an| ≤ n, n = 2, 3, .... This result is known as Bieberbach’s conjecture and it remained
as a challenge for the mathematicians for a long time. Finally, L. De-Branges [8],
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proved this conjecture in 1985. During the course of proving this conjecture, various
results related to the coefficients were come into existence which gave rise to some
new subclasses of analytic functions.

For better understanding of the main content, let’s have a look on some funda-
mental subclasses of A:

S∗ =

{
f : f ∈ A, Re

(
zf ′(z)

f(z)

)
> 0 or

zf ′(z)

f(z)
≺ 1 + z

1− z
, z ∈ E

}
, the class of star-

like functions.

K =

{
f : f ∈ A, Re

(
(zf ′(z))′

f ′(z)

)
> 0 or

(zf ′(z))′

f ′(z)
≺ 1 + z

1− z
, z ∈ E

}
, the class of

convex functions.

Reade [24] introduced the class CS∗ of close-to-star functions which is defined

as CS∗ =

{
f : f ∈ A, Re

(
f(z)

g(z)

)
> 0 or

f(z)

g(z)
≺ 1 + z

1− z
, g ∈ S∗, z ∈ E

}
. Further for

g(z) = z, MacGregor [17] studied the following subclass of close-to-star functions:

R
′

=

{
f : f ∈ A, Re

(
f(z)

z

)
> 0 or

f(z)

z
≺ 1 + z

1− z
, z ∈ E

}
.

MacGregor [16] established a very useful class R of bounded turning functions
which is defined as

R =

{
f : f ∈ A, Re(f ′(z)) > 0 or f ′(z) ≺ 1 + z

1− z
, z ∈ E

}
.

Later on, Murugusundramurthi and Magesh [19] studied the following class:

R(α) =

{
f : f ∈ A, Re

(
(1− α)

f(z)

z
+ αf ′(z)

)
> 0, 0 ≤ α ≤ 1, z ∈ E

}
.

Particularly, R(1) ≡ R and R(0) ≡ R′
.

Various subclasses of S were investigated by associating to different functions.
Recently, Arif et al. [3], Cho et al. [7] and Khan et al. [11] studied the classes S∗sin, Ksin
andRsin, which are the subclasses of starlike functions, convex functions and bounded
turning functions associated with sine function, respectively. Getting motivated by
these works, now we define the following class of analytic functions by subordinating
to 1 + sinz.

Definition 1.1. A function f ∈ A is said to be in the class Rαsin (0 ≤ α ≤ 1) if it
satisfies the condition

(1− α)
f(z)

z
+ αf ′(z) ≺ 1 + sinz.

We have the following observations:
(i) R0

sin ≡ R
′

sin.
(ii) R1

sin ≡ Rsin.
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For q ≥ 1 and n ≥ 1, Pommerenke [21] introduced the qth Hankel determinant
as

Hq(n) =

∣∣∣∣∣∣∣∣
an an+1 ... an+q−1
an+1 ... ... ...
... ... ... ...

an+q−1 ... ... an+2q−2

∣∣∣∣∣∣∣∣ .
For specific values of q and n, the Hankel determinant Hq(n) reduces to the

following functionals:
(i) For q = 2 and n = 1, it redues to H2(1) = a3 − a22, which is the well known
Fekete-Szegö functional.
(ii) For q = 2 and n = 2, the Hankel determinant takes the form of H2(2) = a2a4−a23,
which is known as Hankel determinant of second order.
(iii) For q = 3 and n = 1, the Hankel determinant reduces to H3(1), which is the
Hankel determinant of third order.
(iv) For q = 4 and n = 1, Hq(n) reduces to H4(1), which is the Hankel determinant
of fourth order.

Ma [15] introduced the functional Jn,m(f) = anam − am+n−1, n,m ∈ N − {1},
which is known as generalized Zalcman functional. The functional J2,3(f) = a2a3−a4
is a specific case of the generalized Zalcman functional. The upper bound for the
functional J2,3(f) over different subclasses of analytic functions was computed by
various authors. It is very useful in establishing the bounds for the third Hankel
determinant.

On expanding, the third Hankel determinant can be expressed as

H3(1) = a3(a2a4 − a23)− a4(a4 − a2a3) + a5(a3 − a22),

and after applying the triangle inequality, it yields

|H3(1)| ≤ |a3||a2a4 − a23|+ |a4||a2a3 − a4|+ |a5||a3 − a22|. (1.1)

Also the expansion of fourth Hankel determinant can be expressed as

H4(1) = a7H3(1)− 2a4a6(a2a4 − a23)− 2a5a6(a2a3 − a4)− a26(a3 − a22)

+ a25(a2a4 − a23) + a25(a2a4 + 2a23)− a35 + a44 − 3a3a
2
4a5. (1.2)

A lot of work has been done on the estimation of second Hankel determinant by
various authors including Noor [20], Ehrenborg [9], Layman [12], Singh [26], Mehrok
and Singh [18] and Janteng et al. [10]. The estimation of third Hankel determinant is
little bit complicated. Babalola [4] was the first researcher who successfully obtained
the upper bound of third Hankel determinant for the classes of starlike functions,
convex functions and the class of functions with bounded boundary rotation. Further
a few researchers including Shanmugam et al. [25], Bucur et al. [6], Altinkaya and
Yalcin [1], Singh and Singh [27] have been actively engaged in the study of third
Hankel determinant for various subclasses of analytic functions. Now a days, the
study of fourth Hankel determinant for various subclasses of analytic functions, is an
active topic of research. A few authors including Arif et al. [2], Singh et al. [28, 29]
and Zhang and Tang [30] established the bounds of fourth Hankel determinant for
certain subclasses of A.
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In this paper, we establish the upper bounds of the third and fourth Hankel
determinants for the class Rαsin. Also various known results follow as particular cases.

Let P denote the class of analytic functions p of the form

p(z) = 1 +

∞∑
k=1

pkz
k,

whose real parts are positive in E.

In order to prove our main results, the following lemmas have been used:

Lemma 1.2. [3] If p ∈ P, then

|pk| ≤ 2, k ∈ N,

∣∣∣∣p2 − p21
2

∣∣∣∣ ≤ 2− |p1|
2

2
,

|pi+j − µpipj | ≤ 2, 0 ≤ µ ≤ 1,

|pn+2k − λpnp2k| ≤ 2(1 + 2λ), (λ ∈ R),

|pmpn − pkpl| ≤ 4, (m+ n = k + l;m,n ∈ N),

and for complex number ρ, we have

|p2 − ρp21| ≤ 2 max{1, |2ρ− 1|}.
Lemma 1.3. [3] Let p ∈ P, then

|Jp31 −Kp1p2 + Lp3| ≤ 2|J |+ 2|K − 2J |+ 2|J −K + L|.

In particular, it is proved in [22] that

|p31 − 2p1p2 + p3| ≤ 2.

Lemma 1.4. [13, 14] If p ∈ P, then

2p2 = p21 + (4− p21)x,

4p3 = p31 + 2p1(4− p21)x− p1(4− p21)x2 + 2(4− p21)(1− |x|2)z,

for |x| ≤ 1 and |z| ≤ 1.

Lemma 1.5. [23] Let m,n, l and r satisfy the inequalities 0 < m < 1, 0 < r < 1 and
8r(1−r)

[
(mn− 2l)2 + (m(r +m)− n)2

]
+m(1−m)(n−2rm)2 ≤ 4m2(1−m)2r(1−r).

If p ∈ P, then ∣∣∣∣lp41 + rp22 + 2mp1p3 −
3

2
np21p2 − p4

∣∣∣∣ ≤ 2.
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2. Coefficient bounds for the class Rα
sin

Theorem 2.1. If f ∈ Rαsin, then

|a2| ≤
1

1 + α
, (2.1)

|a3| ≤
1

1 + 2α
, (2.2)

|a4| ≤
1

1 + 3α
, (2.3)

and

|a5| ≤
1

1 + 4α
. (2.4)

Proof. Since f ∈ Rαsin, by the principle of subordination, we have

(1− α)
f(z)

z
+ αf ′(z) = 1 + sin(w(z)). (2.5)

Define p(z) =
1 + w(z)

1− w(z)
= 1 + p1z + p2z

2 + p3z
3 + ..., which implies w(z) =

p(z)− 1

p(z) + 1
.

On expanding, we have

(1−α)
f(z)

z
+αf ′(z) = 1+(1+α)a2z+(1+2α)a3z

2 +(1+3α)a4z
3 +(1+4α)a5z

4 + ...

(2.6)
Also

1 + sin(w(z)) = 1 +
1

2
p1z +

(
p2
2
− p21

4

)
z2

+

(
5p31
48
− p1p2

2
+
p3
2

)
z3 +

(
−p

4
1

32
+

5p21p2
16

− p3p1
2
− p22

4
+
p4
2

)
z4 + ... (2.7)

Using (2.6) and (2.7), (2.5) yields

1 + (1 + α)a2z + (1 + 2α)a3z
2 + (1 + 3α)a4z

3 + (1 + 4α)a5z
4 + ...

= 1 +
1

2
p1z +

(
p2
2
− p21

4

)
z2 +

(
5p31
48
− p1p2

2
+
p3
2

)
z3

+

(
−p

4
1

32
+

5p21p2
16

− p3p1
2
− p22

4
+
p4
2

)
z4 + ... (2.8)

Equating the coefficients of z, z2, z3 and z4 in (2.8) and on simplification, we obtain

a2 =
1

2(1 + α)
p1, (2.9)

a3 =
1

1 + 2α

[
p2
2
− p21

4

]
, (2.10)

a4 =
1

48(1 + 3α)

[
5p31 − 24p1p2 + 24p3

]
, (2.11)

and

a5 =
1

2(1 + 4α)

[
p41
16

+
p22
2

+ p3p1 −
5p21p2

8
− p4

]
. (2.12)
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Using first inequality of Lemma 1.2 in (2.9), the result (2.1) is obvious.
From (2.10), we have

|a3| =
1

2(1 + 2α)

∣∣∣∣p2 − 1

2
p21

∣∣∣∣ . (2.13)

Using sixth inequality of Lemma 1.2 in (2.13), the result (2.2) can be easily obtained.
(2.11) can be expressed as

|a4| =
1

48(1 + 3α)

∣∣5p31 − 24p1p2 + 24p3
∣∣ . (2.14)

On applying Lemma 1.3 in (2.14), the result (2.3) is obvious.
Further, on using Lemma 1.5 in (2.12), the result (2.4) is obvious. �

On putting α = 0, Theorem 2.1 yields the following result:

Remark 2.2. If f ∈ R′

sin, then

|a2| ≤ 1, |a3| ≤ 1, |a4| ≤ 1, |a5| ≤ 1.

For α = 1, Theorem 2.1 gives the following result due to Khan et al. [11]:

Remark 2.3. If f ∈ Rsin, then

|a2| ≤
1

2
, |a3| ≤

1

3
, |a4| ≤

1

4
, |a5| ≤

1

5
.

Conjecture. If f ∈ Rαsin, then

|an| ≤
1

1 + (n− 1)α
, n ≥ 2.

Theorem 2.4. If f ∈ Rαsin and µ is any complex number, then

|a3 − µa22| ≤
1

1 + 2α
max

{
1,

(1 + 2α)

(1 + α)2
|µ|
}
. (2.15)

Proof. From (2.9) and (2.10), we obtain

|a3 − µa22| =
1

2(1 + 2α)

∣∣∣∣p2 − (1 + α)2 + µ(1 + 2α)

2(1 + α)2
p21

∣∣∣∣ . (2.16)

Using sixth inequality of Lemma 1.2, (2.16) takes the form

|a3 − µa22| ≤
1

1 + 2α
max

{
1,

(1 + 2α)

(1 + α)2
|µ|
}
. (2.17)

�

Substituting for α = 0, Theorem 2.4 yields the following result:

Remark 2.5. If f ∈ R′

sin, then

|a3 − µa22| ≤ max {1, |µ|} .

Putting α = 1, Theorem 2.4 yields the following result due to Khan et al. [11]:
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Remark 2.6. If f ∈ Rsin, then

|a3 − µa22| ≤ max

{
1

3
,

1

4
|µ|
}
.

Putting µ = 1, Theorem 2.4 yields the following result:

Remark 2.7. If f ∈ Rαsin, then

|a3 − a22| ≤
1

1 + 2α
.

Theorem 2.8. If f ∈ Rαsin, then

|a2a3 − a4| ≤
1

1 + 3α
. (2.18)

Proof. Using (2.9), (2.10), (2.11) and after simplification, we have

|a2a3 − a4| =
1

48(1 + α)(1 + 2α)(1 + 3α)

.
∣∣(11 + 33α+ 10α2)p31 − (36 + 108α+ 48α2)p1p2 + 24(1 + α)(1 + 2α)p3

∣∣ . (2.19)

On applying Lemma 1.3 in (2.19), it yields (2.18). �

For α = 0, the following result is a consequence of Theorem 2.8:

Remark 2.9. If f ∈ R′

sin, then

|a2a3 − a4| ≤ 1.

On putting α = 1 in Theorem 2.8, we can obtain the following result due to
Khan et al. [11]:

Remark 2.10. If f ∈ Rsin, then

|a2a3 − a4| ≤
1

4
.

Theorem 2.11. If f ∈ Rαsin, then

|a2a4 − a23| ≤
1

(1 + 2α)2
. (2.20)

Proof. Using (2.9), (2.10) and (2.11), we have

|a2a4 − a23| =
1

96(1 + α)(1 + 2α)2(1 + 3α)

.
∣∣24(1 + 2α)2p1p3 − 24α2p21p2 + (−1− 4α+ 2α2)p41 − 24(1 + α)(1 + 3α)p22

∣∣ .
Substituting for p2 and p3 from Lemma 1.4 and letting p1 = p, we get

|a2a4 − a23| =
1

96(1 + α)(1 + 2α)2(1 + 3α)

∣∣∣∣− (4α2 + 4α+ 1)p4

−6(1+2α)2p2(4−p2)x2−6(1+α)(1+3α)(4−p2)2x2+12(1+2α)2p(4−p2)(1−|x|2)z

∣∣∣∣.
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Since |p| = |p1| ≤ 2, we may assume that p ∈ [0, 2]. By using triangle inequality and
|z| ≤ 1 with |x| = t ∈ [0, 1], we obtain

|a2a4 − a23| ≤
1

96(1 + α)(1 + 2α)2(1 + 3α)

[
(4α2 + 4α+ 1)p4 + 6(1 + 2α)2p2(4− p2)t2

+6(1+α)(1+3α)(4−p2)2t2+12(1+2α)2p(4−p2)−12(1+2α)2p(4−p2)t2
]

= F (p, t).

∂F

∂t
=

(4− p2)t

8(1 + α)(1 + 2α)2(1 + 3α)

[
α2p2 − 2(1 + 2α)2p+ 4(1 + α)(1 + 3α)

]
≥ 0,

and so F (p, t) is an increasing function of t for p ≤ 3
2 .

Therefore,

max{F (p, t)} = F (p, 1) =
1

192(1 + α)(1 + 2α)2(1 + 3α)

[
(α2 + 4α+ 1)p4

+12α2p2(4− p2) + 12(1 + 2α)2p2(4− p2) + 12(1 + α)(1 + 3α)(4− p2)2
]

= H(p).

H ′(p) = 0 gives p = 0. Also H ′′(p) < 0 for p = 0.

This implies max{H(p)} = H(0) =
1

(1 + 2α)2
, which proves (2.20). �

Putting α = 0, Theorem 2.11 gives the following result:

Remark 2.12. If f ∈ R′

sin, then

|a2a4 − a23| ≤ 1.

Substituting for α = 1 in Theorem 2.11, the following result due to Khan et
al. [11], is obvious:

Remark 2.13. If f ∈ Rsin, then

|a2a4 − a23| ≤
1

9
.

Theorem 2.14. If f ∈ Rαsin, then

|H3(1)| ≤ (2 + 8α+ 4α2)(1 + 3α)2 + (1 + 4α)(1 + 2α)3

(1 + 2α)3(1 + 3α)2(1 + 4α)
. (2.21)

Proof. By using (2.2), (2.3), (2.4), (2.18), (2.20) and Remark 2.7 in (1.1), the re-
sult (2.21) can be easily obtained. �

For α = 0, Theorem 2.14 yields the following result:

Remark 2.15. If f ∈ R′

sin, then
|H3(1)| ≤ 3.

For α = 1, Theorem 2.14 yields the following result due to Khan et al. [11]:

Remark 2.16. If f ∈ Rsin, then

|H3(1)| ≤ 359

2160
.
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Theorem 2.17. If f ∈ Rαsin, then

|H4(1)|≤ 2

(1 + 2α)2(1 + 4α)

[
1 + 4α+ 2α2

(1 + 2α)(1 + 6α)
+

3 + 12α+ 2α2

(1 + 4α)2
+

2 + 8α+ 4α2

(1 + 3α)(1 + 5α)

]
+

1

(1 + 3α)2

[
2 + 12α+ 9α2

(1 + 6α)(1 + 3α)2
+

3

(1 + 2α)(1 + 4α)

]
.

Proof. We have
|a2a4 + 2a23| ≤ |a2a4 − a23|+ 3|a3|2.

Applying the triangle inequality in (1.2) and using the above inequality along with
Theorem 2.1, Theorem 2.4, Theorem 2.8, Theorem 2.11 and Theorem 2.14, the proof
of the Theorem 2.17 is obvious. �

For α = 0, Theorem 2.17 yields the following result:

Remark 2.18. If f ∈ R′

sin, then

|H4(1)| ≤ 17.

For α = 1, Theorem 2.17 yields the following result due to Khan et al. [11]:

Remark 2.19. If f ∈ Rsin, then

|H4(1)| ≤ 0.10556.

3. Bounds of |H3(1)| for two-fold and three-fold symmetric functions

A function f is said to be n-fold symmetric if is satisfy the following condition:

f(ξz) = ξf(z)

where ξ = e
2πi
n and z ∈ E.

By S(n), we denote the set of all n-fold symmetric functions which belong to the class
S.
The n-fold univalent function have the following Taylor-Maclaurin series:

f(z) = z +

∞∑
k=1

ank+1z
nk+1. (3.1)

An analytic function f of the form (3.1) belongs to the family Rα(n)sin if and only if

(1− α)
f(z)

z
+ αf ′(z) = 1 + sin

(
p(z)− 1

p(z) + 1

)
, p ∈ P(n),

where

Pn =

{
p ∈ P : p(z) = 1 +

∞∑
k=1

pnkz
nk, z ∈ E

}
. (3.2)

Theorem 3.1. If f ∈ Rα(2)sin , then

|H3(1)| ≤ 1

(1 + 2α)(1 + 4α)
. (3.3)
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Proof. If f ∈ Rα(2)sin , so there exists a function p ∈ P(2) such that

(1− α)
f(z)

z
+ αf ′(z) = 1 + sin

(
p(z)− 1

p(z) + 1

)
. (3.4)

Using (3.1) and (3.2) for n = 2, (3.4) yields

a3 =
1

2(1 + 2α)
p2, (3.5)

a5 =
1

2(1 + 4α)

(
p4 −

1

2
p22

)
. (3.6)

Also

H3(1) = a3a5 − a33. (3.7)

Using (3.5) and (3.6) in (3.7), it yields

H3(1) =
1

4(1 + 2α)(1 + 4α)
p2

[
p4 −

(1 + 2α)2 + (1 + 4α)

2(1 + 2α)2
p22

]
. (3.8)

On applying triangle inequality in (3.8) and using fourth inequality of Lemma 1.2, we
can easily get the result (3.3). �

Putting α = 0, the following result can be easily obtained from Theorem 3.1:

Remark 3.2. If f ∈ R
′(2)
sin , then

|H3(1)| ≤ 1.

For α = 1, Theorem 3.1 agrees with the following result:

Remark 3.3. If f ∈ R(2)
sin, then

|H3(1)| ≤ 1

15
.

Theorem 3.4. If f ∈ Rα(3)sin , then

|H3(1)| ≤ 1

(1 + 3α)2
. (3.9)

Proof. If f ∈ Rα(3)sin , so there exists a function p ∈ P(3) such that

(1− α)
f(z)

z
+ αf ′(z) = 1 + sin

(
p(z)− 1

p(z) + 1

)
. (3.10)

Using (3.1) and (3.2) for n = 3, (3.10) gives

a4 =
1

2(1 + 3α)
p3. (3.11)

Also

H3(1) = −a24. (3.12)

Using (3.11) in (3.12), it yields

H3(1) = − 1

4(1 + 3α)2
p23. (3.13)
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On applying triangle inequality and using first inequality of Lemma 1.2, (3.9) can be
easily obtained. �

For α = 0, Theorem 3.4 yields the following result:

Remark 3.5. If f ∈ R
′(3)
sin , then

|H3(1)| ≤ 1.

For α = 1, Theorem 3.4 yields the following result:

Remark 3.6. If f ∈ R(3)
sin, then

|H3(1)| ≤ 1

16
.
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Subclass of analytic functions on q-analogue
connected with a new linear extended multiplier
operator
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Abstract. Using a new linear extended multiplier q-Choi-Saigo-Srivastava opera-
tor Dm,q

α,β (µ, τ) we define a subclass Θm,q
α,β (µ, τ,N,M) subordination and the newly

defined q-analogue of the Choi-Saigo-Srivastava operator to the class of analytic
functions. For this class, conclusions are drawn that include coefficient estimates,
integral representation, linear combination, weighted and arithmetic means, and
radius of starlikeness.

Mathematics Subject Classification (2010): 30C45, 30C80.

Keywords: q-derivative operator, analytic functions, q-analogue of Choi-Saigo-
Srivastava operator.

1. Introduction and preliminaries

Let A denote the normalized analytical function family f of the form:

f(ς) = ς +

∞∑
ϑ=2

aϑς
ϑ, ς ∈ D, (1.1)

in the open unit disc D := {ς ∈ C : |ς| < 1} . Let S ⊂ A be a class of functions which
are univalent in D. If f and ~ are analytic in D we say that f is subordinate to
~, denoted f(ς) ≺ }(ς), if there exists an analytic function $, with $(0) = 0 and
|$(ς)| < 1 for all ς ∈ D, such that f(ς) = }($(ς)), ς ∈ D. In addition, if } is univalent
in D, then the next equivalent ([8, 22] and [23]) holds:

f(ς) ≺ }(ς)⇔ f(0) = }(0) and f(D) ⊂ }(D).
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For f given by (1.1) and } of the form

}(ς) = ς +

∞∑
ϑ=2

bϑς
ϑ, ς ∈ D,

the well-known convolution product is

(f ∗ })(ς) := ς +

∞∑
ϑ=2

aϑbϑς
ϑ, ς ∈ D.

The class S∗(δ) of starlike functions of order δ, is said to include a function
f ∈ A if

Re

(
ςf ′(ς)

f(ς)

)
> δ, (0 ≤ δ < 1).

We observe that the class of starlike functions, S∗(0) = S∗, holds true. An

analytic function } with }(0) = 1 is definitely in the Ĵanowski class P [N,M ], iff

}(ς) ≺ 1 +Nς

1 +Mς
(−1 ≤M < N ≤ 1).

The class P [N,M ] of Ĵanowski functions was investigated by Ĵanowski [16].

Scholars have recently been inspired by the study of the q-derivative, it is useful
in mathematics and related fields. Jackson [13, 14], presented the q-analogue of the
derivative and integral operator and also suggested some of its applications. Kanas
and Raducanu [17] provided the q-analogue of the Ruscheweyh differential operator
and looked into some of its features by using the concept of convolution. Aldweby
and Darus [1], Mahmood and Sokol [20], and others looked into various sorts of
analytical functions defined by the q-analogue of the Ruscheweyh differential operator
see [2, 3, 7, 12, 15, 18, 21, 24, 29, 30] for further details.

The primary goal of the current study is to express a Choi-Saigo-Srivastava
operator q-analogue based on convolutions. It also offers a few intriguing applications
for this operator at the outset.We will now discuss the essential concept of the q-
calculus, which was created by Ĵackson [14] and is pertinent to our ongoing research.

Ĵackson [13, 14] defined the q-derivative operator Dq of a function f :

Dqf(ς) := ∂qf(ς) =
f(qς)− f(ς)

(q − 1)ς
, q ∈ (0, 1), ς 6= 0.

Remark that if the function f is in the type (1.1), thus, it implies

Dqf(ς) = Dq

(
ς +

∞∑
ϑ=2

aϑς
ϑ

)
= 1 +

∞∑
ϑ=2

[ϑ]qaϑς
ϑ−1, (1.2)

where [ϑ]q is

[ϑ]q :=
1− qϑ

1− q
= 1 +

ϑ−1∑
κ=1

qκ, [0]q := 0,

and
lim
q→1−

[ϑ]q = ϑ.
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The definition of the q-number shift factorial for every non-negative integer ϑ is

[ϑ, q]! :=

{
1, if ϑ = 0,
[1, q] [2, q] [3, q].. . . . [ϑ, q] , if ϑ ∈ N.

By combining the notion of convolution with a definition of the q-derivative,Wang et
al. introduced in [30] the q-analogue Choi-Saigo-Srivastava operator Iqα,β : A→ A,

Iqα,βf(ς) := f(ς) ∗ Fq,α+1,β(ς), ς ∈ D (α > −1, β > 0), (1.3)

where

Fq,α+1,β(ς) = ς +

∞∑
ϑ=2

Γq(β + ϑ− 1)Γq(α+ 1)

Γq(β)Γq(α+ ϑ)
ςϑ

= ς +

∞∑
ϑ=2

[β, q]ϑ−1
[α+ 1, q]ϑ−1

ςϑ, ς ∈ D, (1.4)

where [β, q]ϑ is the q-generalized Pochhammer symbol for β > 0 defined by

[β, q]ϑ :=

{
1, if ϑ = 0,
[β]q [β + 1]q . . . [β + ϑ− 1]q , if ϑ ∈ N. (1.5)

Thus,

Iqα,βf(ς) = ς +

∞∑
ϑ=2

[β, q]ϑ−1
[α+ 1, q]ϑ−1

aϑς
ϑ, ς ∈ D, (1.6)

while

Iq0,2f(ς) = ςDqf(ς) and Iq1,2f(ς) = f(ς).

Definition 1.1. [4] For µ ≥ 0, and τ > −1, with the aid of the operator Iqα,β we will

define a new linear extended multiplier q-Choi-Saigo-Srivastava operator Dm,q
α,β (µ, τ) :

A→ A as follows:

D0,q
α,β(µ, τ)f(ς) =:Dq

α,β(µ, τ)f(ς) = f(ς),

D1,q
α,β(µ, τ)f(ς) =

(
1− µ

τ + 1

)
Iqα,βf(ς) +

µ

τ + 1
ςDq

(
Iqα,βf(ς)

)
=ς +

∞∑
ϑ=2

(
[β, q]ϑ−1

[α+ 1, q]ϑ−1
· τ + 1 + µ ([ϑ]q − 1)

τ + 1

)
aϑς

ϑ,

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Dm,q
α,β (µ, τ)f(ς) =Dq

α,β(µ, τ)
(
Dm−1,q
α,β (µ, τ)f(ς)

)
, m ≥ 1,

where µ ≥ 0, τ > −1, m ∈ N0, α > −1, β > 0 and 0 < q < 1.

If f ∈ A given by (1.1), from (1.6) and the above definition Thus, it implies

Dm,q
α,β (µ, τ)f(ς) = ς +

∞∑
ϑ=2

ℵm,qα,β (ϑ, µ, τ)aϑς
ϑ, ς ∈ D, (1.7)
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where

ℵm,qα,β (ϑ, µ, τ) :=

(
[β, q]ϑ−1

[α+ 1, q]ϑ−1
· τ + 1 + µ ([ϑ]q − 1)

τ + 1

)m
. (1.8)

From (1.3) and (1.8), then

Dm,q
α,β (µ, τ)f(ς) =[(

Iqα,βf(ς) ∗ ℘qµ,τ (ς)
)
∗ . . . ∗

(
Iqα,βf(ς) ∗ ℘qµ,τ (ς)

)]
︸ ︷︷ ︸

n−times

∗ f(ς),

where

℘qµ,τ (ς) :=
ς −

(
1− µ

τ+1

)
qς2

(1− ς)(1− qς)
.

Remark 1.2. The operator Dm,q
α,β (µ, τ)f(ς) should be noticed that the following gen-

eralizes a number of other operators previously covered, for instance:
(i) For q → 1−, α = 1, β = 2, and τ = 0, we obtain the operator Dm

µ investigated
by Al-Oboudi [5];

(ii) If q → 1−, α = 1, β = 2, µ = 1 and τ = 0, we obtain the operator Dm

introduced by Sălăgean [27];
(iii) Taking q → 1−, α = 1 and β = 2, we obtain the operator Im(λ, κ) studied

Cătaş [9];
(iv) Considering α = 1, β = 2 and τ = 0, we get Dm

µ,q presented and analysed
by Aouf et al. [7];

(v) For α = 1, β = 2, µ = 1 and τ = 0, we obtain the operator Smq investigated
by Govindaraj and Sivasubramanian [12];

(vi) If q → 1− we obtain Dm,α
µ,τ,β presented and investigated by El-Ashwah et al.

[11] for q = 2, s = 1, α1 = β, α2 = 1, β1 = α+ 1;
(vii) If q → 1−, α = 1, β = 2 and µ = 1, we obtain the operator Imτ , τ ≥ 0,

investigated by Cho and Srivastava [10];
(viii) Given q → 1−, µ = τ = 0 and m = 1, we get Iqα,β presented and analysed

by Wang et al. [30];
(ix) Given q → 1−, α := 1− α, β = 2, and τ = 0, we obtain the operator Dm,α

µ

investigate by Al-Oboudi and Al-Amoudi [6];
(x) If α := 1− % and β = 2, we get Dm,λ,κ

q,% investigated by Kota and El-Ashwah
[18];

(xi) Given β = 2, µ = 0 and τ = 0, we obtain the q-analogue integral operator
of Noor Iqα,2 presented and investigated by [29];

(xii) If q → 1−, β = 2, µ = 0 and τ = 0, we get the differential operator Iϑ

studied in [25, 26];
(xiii) For q → 1−, β = 2, α := 1 − α, µ = 0 and τ = 0, we obtain the Owa-

Srivastava operator I1−α,2 presented and analysed in [28].

Definition 1.3. Let −1 ≤ M < N ≤ 1 and 0 < q < 1. f ∈ Θm,q
α,β (µ, τ,N,M) if it

satisfies
ς∂q(D

m,q
α,β (µ, τ)f(ς))

Dm,q
α,β (µ, τ)f(ς)

≺ 1 +Nς

1 +Mς
.
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Equivalently, f ∈ Θm,q
α,β (µ, τ,N,M) iff∣∣∣∣∣∣∣

ς∂q(D
m,q
α,β (µ,τ)f(ς))

Dm,qα,β (µ,τ)f(ς)
− 1

N −M
(
ς∂q(D

m,q
α,β (µ,τ)f(ς))

Dm,qα,β (µ,τ)f(ς)

)
∣∣∣∣∣∣∣ < 1. (1.9)

We must apply the following lemma in order to validate one of our findings.

Lemma 1.4. [19] Let −1 ≤M2 ≤M1 < N1 ≤ N2 ≤ 1. Then

1 +N1ς

1 +M1ς
≺ 1 +N2ς

1 +M2ς
.

Throughout this paper, we suppose that µ ≥ 0, τ > −1, m ∈ N0, α > −1, β > 0,
0 < q < 1 and −1 ≤ M < N ≤ 1, We furthermore assume that all coefficients an of
f are real positive numbers.

2. Main results

Theorem 2.1. Suppose that f ∈ A given by (1.1). Then f ∈ Θm,q
α,β (µ, τ,N,M) iff

∞∑
ϑ=2

[([ϑ] +N)− (M [ϑ] + 1)]ℵm,qα,β (ϑ, µ, τ)aϑ < N −M. (2.1)

Proof. Let (2.1) holds. then from (1.9) we have∣∣∣∣∣∣∣
ς∂q(D

m,q
α,β (µ,τ)f(ς))

Dm,qα,β (µ,τ)f(ς)
− 1

N −M
(
ς∂q(D

m,q
α,β (µ,τ)f(ς))

Dm,qα,β (µ,τ)f(ς)

)
∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∞∑
ϑ=2

([ϑ]q − 1)ℵm,qα,β (ϑ, µ, τ)aϑς
ϑ

(N −M)ς +
∞∑
ϑ=2

(N −M [ϑ]q)ℵ
m,q
α,β (ϑ, µ, τ)aϑςϑ

∣∣∣∣∣∣∣∣
≤

∞∑
ϑ=2

([ϑ]q − 1)ℵm,qα,β (ϑ, µ, τ)aϑ

(N −M)−
∞∑
ϑ=2

(N −M [ϑ]q)ℵ
m,q
α,β (ϑ, µ, τ)aϑ

< 1,

then from (1.2), (1.7), and (2.1) this completes the direct part.
Conversely, f ∈ Θm,q

α,β (µ, τ,N,M) then from (1.9) and (1.7), hence∣∣∣∣∣∣∣
ς∂q(D

m,q
α,β (µ,τ)f(ς))

Dm,qα,β (µ,τ)f(ς)
− 1

N −M
(
ς∂q(D

m,q
α,β (µ,τ)f(ς))

Dm,qα,β (µ,τ)f(ς)

)
∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∞∑
ϑ=2

([ϑ]q − 1)ℵm,qα,β (ϑ, µ, τ)aϑς
ϑ

(N −M)ς +
∞∑
ϑ=2

(N −M [ϑ]q)ℵ
m,q
α,β (ϑ, µ, τ)aϑςϑ

∣∣∣∣∣∣∣∣<1.

Since |<(ς)| ≤ |ς|, we get

<


∞∑
ϑ=2

([ϑ]q − 1)ℵm,qα,β (ϑ, µ, τ)aϑς
ϑ

(N −M) +
∞∑
ϑ=2

(N −M [ϑ]q)ℵ
m,q
α,β (ϑ, µ, τ)aϑςϑ

 < 1. (2.2)
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We now select ς values along the real axis such that
ς∂q(D

m,q
α,β (µ,τ)f(ς))

Dm,qα,β (µ,τ)f(ς)
is real. Then

for letting ς → 1−, we get (2.1). �

If we set α = 1, β = 2, and τ = 0 in Theorem 2.1 we have:

Corollary 2.2. f ∈ Θm,q
α,β (µ,N,M) iff

∞∑
ϑ=2

[
([ϑ]q +N)− (M [ϑ]q + 1)

]
(1 + µ ([ϑ]q − 1))

m
aϑ < N −M.

Theorem 2.3. Suppose that f ∈ Θm,q
α,β (µ, τ,N,M). Therefore

Dm,q
α,β (µ, τ)f(ς) = exp

 ln q

q − 1

ς∫
0

1

t

(
1 +Nϕ(t)

1 +Mϕ(t)

)
dq(t)

 ,

where |ϕ(t)| < 1.

Proof. Let f ∈ Θm,q
α,β (µ, τ,N,M) and putting

ς∂q(D
m,q
α,β (µ, τ)f(ς))

Dm,q
α,β (µ, τ)f(ς)

= ω(ς),

with

ω(ς) ≺ 1 +Nς

1 +Mς
,

equivalently, we can write ∣∣∣∣ ω(ς)− 1

N −Mω(ς)

∣∣∣∣ < 1,

hence, there is
ω(ς)− 1

N −Mω(ς)
= ϕ(ς),

such that |ϕ(ς)| < 1. Hence,

∂q(D
m,q
α,β (µ, τ)f(ς))

Dm,q
α,β (µ, τ)f(ς)

=
1

ς

(
1 +Nϕ(t)

1 +Mϕ(t)

)
.

Using simple calculation we get the result. �

Theorem 2.4. Let fj ∈ Θm,q
α,β (µ, τ,N,M) and

fj(ς) = ς +

∞∑
ι=1

aι,jς
ι, (j = 1, 2, 3, ..., κ).

Therefore F ∈ Θm,q
α,β (µ, τ,N,M), such that

f(ς) =

κ∑
j=1

cjfj(ς) with

κ∑
j=1

cj = 1.
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Proof. FromTheorem 2.1, hence

∞∑
ϑ=2


[
([ϑ]q +N)− (M [ϑ]q + 1)

]
ℵm,qα,β (ϑ, µ, τ)

N −M

 aϑ,j < 1.

Therefore, we get

f(ς) =

κ∑
j=2

cj(ς +

∞∑
ϑ=2

aϑ,jς
ϑ) = ς +

κ∑
j=2

∞∑
ϑ=2

cjaϑ,jς
ϑ = ς +

∞∑
ϑ=2

 κ∑
j=2

cjaϑ,j

 ςϑ.

However,

∞∑
ϑ=2

[
([ϑ]q +N)− (M [ϑ]q + 1)

]
ℵm,qα,β (ϑ, µ, τ)

N −M

 κ∑
j=2

cjaϑ,j


=

κ∑
j=2


∞∑
ϑ=2

[
([ϑ]q +N)− (M [ϑ]q + 1)

]
ℵm,qα,β (ϑ, µ, τ)

N −M
aϑ,j

 cj ≤ 1,

then F ∈ Θm,q
α,β (µ, τ,N,M) and the proof is complete. �

Theorem 2.5. If f, ~ ∈ Θm,q
α,β (µ, τ,N,M), then hj(j ∈ N) is in Θm,q

α,β (µ, τ,N,M), such
that hj denoted by

hj(ς) =
(1− j)f(ς) + (1 + j)~(ς)

2
. (2.3)

Proof. By (2.3), then

hj(ς) = ς +

∞∑
ϑ=2

[
(1− j)aϑ + (1 + j)bϑ

2

]
ςϑ.

To prove hj(ς) ∈ Θm,q
α,β (µ, τ,N,M), we need to show that

∞∑
ϑ=2

[
([ϑ]q +N)− (M [ϑ]q + 1)

]
N −M

{
(1− j)aϑ + (1 + j)bϑ

2

}
ℵm,qα,β (ϑ, µ, τ) < 1.

For this, consider

∞∑
ϑ=2

[
([ϑ]q +N)− (M [ϑ]q + 1)

]
N −M

{
(1− j)aϑ + (1 + j)bϑ

2

}
ℵm,qα,β (ϑ, µ, τ)

=
(1− j)

2

∞∑
ϑ=2

[
([ϑ]q +N)− (M [ϑ]q + 1)

]
N −M

ℵm,qα,β (ϑ, µ, τ)aϑ

+
(1 + j)

2

∞∑
ϑ=2

[
([ϑ]q +N)− (M [ϑ]q + 1)

]
N −M

ℵm,qα,β (ϑ, µ, τ)bϑ

<
(1− j)

2
+

(1 + j)

2
= 1,
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by using 2.1 we get the result. �

Theorem 2.6. Let fj ∈ Θm,q
α,β (µ, τ,N,M) with j = 1, 2, .....α(α ∈ N). Then

h(ς) =
1

α

α∑
j=1

fj(ς), (2.4)

also is in the class Θm,q
α,β (µ, τ,N,M).

Proof. By (2.4), therefore

h(ς) =
1

α

α∑
j=1

(
ς +

∞∑
ϑ=2

aϑ,jς
ϑ

)
= ς +

∞∑
ϑ=2

 1

α

α∑
j=1

aϑ,j

 ςϑ. (2.5)

Since fj ∈ Θm,q
α,β (µ, τ,N,M), Through (2.5) and (2.1), there will be

∞∑
ϑ=2

[
([ϑ]q +N)− (M [ϑ]q + 1)

]
ℵm,qα,β (ϑ, µ, τ)

 1

α

α∑
j=1

aϑ,j


=

1

α

α∑
j=1

( ∞∑
ϑ=2

[
([ϑ]q +N)− (M [ϑ]q + 1)

]
ℵm,qα,β (ϑ, µ, τ)aϑ,j

)

≤ 1

α

α∑
j=1

(N −M) = N −M,

the proof is completed. �

Theorem 2.7. Suppose that f ∈ Θm,q
α,β (µ, τ,N,M). Then f ∈ S∗(δ), for |ς| < r1, where

r1 =

 (1− δ)
[
([ϑ]q +N)− (M [ϑ]q + 1)

]
(ϑ− δ) (N −M)

ℵm,qα,β (ϑ, µ, τ)


1

ϑ−1

.

Proof. Let f ∈ Θm,q
α,β (µ, τ,N,M). To show that f ∈ S∗(δ), we need∣∣∣∣∣∣

ςf ′(ς)
f(ς) − 1

ςf ′(ς)
f(ς) + 1− 2δ

∣∣∣∣∣∣ < 1.

By using (1.1) along with some simple computations we have

∞∑
ϑ=2

(
ϑ− δ
1− δ

)
|aϑ| |ς|ϑ−1 < 1. (2.6)

Since f ∈ Θm,q
α,β (µ, τ,N,M), from (2.1), there are

∞∑
ϑ=2

[
([ϑ]q +N)− (M [ϑ]q + 1)

]
N −M

ℵm,qα,β (ϑ, µ, τ) |aϑ| < 1. (2.7)
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And then, (2.6) is true, if

∞∑
ϑ=2

(
ϑ− δ
1− δ

)
|aϑ| |ς|ϑ−1 <

∞∑
ϑ=2

[
([ϑ]q +N)− (M [ϑ]q + 1)

]
N −M

ℵm,qα,β (ϑ, µ, τ) |aϑ| ,

holds, which implies that

|ς|ϑ−1 <
(1− δ)

[
([ϑ]q +N)− (M [ϑ]q + 1)

]
(ϑ− δ) (N −M)

ℵm,qα,β (ϑ, µ, τ),

and thus we get the required result. �

If we set α = 1, β = 2, and τ = 0 in Theorem 2.7 we get:

Corollary 2.8. Suppose that f ∈ Θm,q
α,β (µ,N,M). Then f ∈ S∗(δ), for |ς| < r1, where

r1 =

 (1− δ)
[
([ϑ]q +N)− (M [ϑ]q + 1)

]
(ϑ− δ) (N −M)

(1 + µ ([ϑ]q − 1))
m


1

ϑ−1

.

Remark 2.9. For q → 1−, µ = τ = 0 and m = 1, in the above results we get the
results investigated by Wang et al. [30].

3. Conclusion

This study introduces a subclass Θm,q
α,β (µ, τ,N,M) of analytic functions on q-

analogue associated with a new linear extended multiplier q-Choi-Saigo-Srivastava
operator Dm,q

α,β (µ, τ) in the open unit disk D. We have obtain coefficient estimates, in-
tegral representation, linear combination, weighted and arithmetic means, and radius
of starlikeness belonging to the class Θm,q

α,β (µ, τ,N,M). Some of the earlier efforts of
numerous writers are generalized by our findings.

Acknowledgements. The author thank the referees for their valuable suggestions to
improve the paper.
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[9] Cătaş, A., On certain classes of p-valent functions defined by multiplier transformations,
in Proceedings of the International Symposium on Geometric Function Theory and
Applications: GFTA 2007 Proceedings (Istanbul, Turkey; 20-24 August 2007) (S. Owa
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Abstract. In this work we use the method of lower and upper solutions to develop
an iterative technique, which is not necessarily monotone, and combined with a
fixed point theorem to prove the existence of at least one solution of nonlinear
fractional differential equations with nonlocal boundary conditions of integral
type.
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1. Introduction

Numerous phenomena in the applied sciences can be described by fractional
differential equations. In fact, several monographs and research papers have been de-
voted to the study of fractional differential equations and related boundary value
problems. We can mention the following books [12], [16], [17], [23], [25], [32], the
research papers [1, 4, 11, 13, 14] and the references therein. Following [21], Picone,
in 1908, was the first to introduce nonlocal boundary conditions for linear systems
of ordinary differential equations. The following survey [19] contains a great number
of references on nonlocal boundary problems for second order differential equations.
The analysis of elliptic boundary value problems with nonlocal conditions were initi-
ated in the paper [5]. The nonlocal condition has been proven more appropriate and
more precise in many physical problems than the classical initial condition. We refer
the reader to [3, 6, 9] and the references therein for a motivation regarding nonlocal
conditions. The lower and upper solutions method has been proven instrumental for

Received 07 February 2023; Accepted 31 July 2023.
© Studia UBB MATHEMATICA. Published by Babeş-Bolyai University
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proving the existence and location of solutions of boundary value problems for ordi-
nary differential equation and partial differential equation problems of integer orders.
See for example [7, 10, 15, 26]. Many people have been interested in the study of the
existence of solutions to boundary value problems for fractional differential equations
with nonlocal conditions, see [8], [29], [28] and the references therein.To our modest
knowledge only few research articles using the lower and upper solutions method for
fractional differential equations are available. See [13, 18, 24].

In this paper, we consider the following class of fractional differential equations

Dαu(t) + f(t, u) = 0, t ∈ (0, 1) , 1 < α ≤ 2, (1.1)

with a Neumann condition at the initial point and a nonlocal boundary condition of
integral type at the terminal point

u′(0) = 0, u(1) =

1∫
0

g (u(t)) dt. (1.2)

Here Dα is the Caputo fractional derivative of order α ∈ (1, 2], f : [0, 1]×R→ R and
g : R→ R satisfy conditions that will be specified later. We use the lower and upper
solutions method to develop an iterative method, which is not necessarily monotone
(see [22], [30]) and combined with the Schauder fixed theorem to prove the existence
of at least one solution for problem (1.1) - (1.2).

The rest of this paper is organized as follows. In Section 2 we recall some basic
definitions and results that are needed in the rest of the paper. In Section 3, we develop
the iterative technique in order to prove our main result concerning the existence of
a solution of the problem (1.1) - (1.2). Finally, we give an example to illustrate our
main result.

2. Preliminaries

In this section, we recall some basic definitions, notations and few results from
fractional calculus that we shall use in the remainder of the paper. Let I denote the
compact real interval [0, 1] and let C(I) denote the space of continuous functions
ω : I → R, equipped with the norm

‖ω‖0 = max
t∈I
|ω(t)| .

Cn(I), n ∈ N, is the space of continuous functions ω : I → R, such that ω(k) ∈ C(I)
k = 0, 1, 2, ..., n, equipped with the norm

‖ω‖Cn =

n∑
k=0

max
0≤t≤1

∣∣∣ω(k)(t)
∣∣∣ .
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Definition 2.1. (see [16]) The Riemann-Liouville fractional primitive of order α > 0
of a function f : (0,∞)→ R is given by

Iαf(t) =
1

Γ(α)

t∫
0

(t− s)α−1 f(s)ds, (2.1)

provided that the right-hand side is pointwise defined on (0,+∞), and where Γ is the
gamma function.

For instance, Iαf exists for all α > 0, when f ∈ L1 (I). Notice, also, that when
f ∈ C (I), then Iαf ∈ C (I) and moreover Iαf (0) = 0. The law of composition
IαIβ = Iα+β holds for all α, β > 0.

Definition 2.2. (see [16]) The Caputo fractional derivative of order α > 0 of a Cn

function f : (0,∞)→ R is given by

Dαf(t) = In−αf (n)(t) =
1

Γ(n− α)

t∫
0

f (n)(τ)

(t− τ)
α−n+1 dτ, (2.2)

where n = [α] + 1 and [α] is the integer part of α, provided that the right-hand side
is pointwise defined on (0,+∞).

Notice that Dαc = 0, where c is a real constant.

Remark 2.3. It is well known ( see for instance [16, Lemma 2.22 page 96], [31, Lemma
3.6 page 6]) that for α > 0

IαDαu(t) = u(t) + c0 + c1t+ ...+ cn−1t
n−1, for all t ∈ I,

where n = [α] + 1, and c0, c1, ..., cn−1 are real constants.

Lemma 2.4. Let α > 0. Then the differential equation on I

Dαu(t) = 0

has solutions u(t) = c0 + c1t+ ...+ cn−1t
n−1, t ∈ I, c0, c1, ..., cn−1 are real constants

and n = [α] + 1.

Lemma 2.5. Let α ∈ (1, 2) . Then the homogeneous problem{
Dαu(t) = 0, t ∈ I

u′(0) = 0, u(1) = 0

has only the trivial solution u(t) = 0 for all t ∈ I.

Lemma 2.6. Let f ∈ C2(I). Then for any α ∈ (1, 2) Dαf exists and is continuous on
I.

Proof. It follows from (2.2) with α ∈ (1, 2) that

Dαf(t) = I2−αf ′′(t) =
1

Γ(2− α)

t∫
0

f ′′(τ)

(t− τ)
α−1 dτ,
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so that

|Dαf(t)| ≤ 1

Γ(2− α)

t∫
0

|f ′′(τ)|
(t− τ)

α−1 dτ ≤
‖f ′′‖0

Γ(2− α)

t∫
0

1

(t− τ)
α−1 dτ.

Since
t∫

0

1

(t− τ)
α−1 dτ =

t2−α

2− α
≤ 1

2− α

we obtain

‖Dαf‖0 ≤
‖f ′′‖0

(2− α) Γ(2− α)
.

To prove the continuity of Dαf on I, let t ≥ t0 ∈ I. Then

Dαf(t)−Dαf(t0) =
1

Γ(2− α)

t∫
0

f ′′(τ)

(t− τ)
α−1 dτ −

1

Γ(2− α)

t0∫
0

f ′′(τ)

(t0 − τ)
α−1 dτ

=
1

Γ(2− α)

t0∫
0

f ′′(τ)

(t− τ)
α−1 dτ+

1

Γ(2− α)

t∫
t0

f ′′(τ)

(t− τ)
α−1 dτ−

1

Γ(2− α)

t0∫
0

f ′′(τ)

(t0 − τ)
α−1 dτ

=
1

Γ(2− α)

t0∫
0

f ′′ (τ)

(
1

(t− τ)
α−1 −

1

(t0 − τ)
α−1

)
dτ +

1

Γ(2− α)

t∫
t0

f ′′(τ)

(t− τ)
α−1 dτ.

Notice that (t0 − τ)
α−1 ≤ (t− τ)

α−1
so that∣∣∣∣∣ 1

(t− τ)
α−1 −

1

(t0 − τ)
α−1

∣∣∣∣∣ =
1

(t0 − τ)
α−1 −

1

(t− τ)
α−1 .

Hence

|Dαf(t)−Dαf(t0)| ≤
‖f ′′‖0

Γ(2− α)

t0∫
0

(
1

(t0 − τ)
α−1 −

1

(t− τ)
α−1

)
dτ

+
‖f ′′‖0

Γ(2− α)

t∫
t0

1

(t− τ)
α−1 dτ.

Simple integrations give

t0∫
0

(
1

(t0 − τ)
α−1 −

1

(t− τ)
α−1

)
dτ =

1

2− α

(
(t− t0)

2−α
+ t2−α0 − t2−α

)
, (2.3)

and
t∫

t0

1

(t− τ)
α−1 dτ =

(t− t0)
2−α

2− α
.
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Using lemma 2 in [14] we have for t ≥ t0 and 1 > 2− α ≥ 0∣∣t2−α0 − t2−α
∣∣ ≤ (t− t0)

2−α
.

Combining the above computations we see that

|Dαf(t)−Dαf(t0)| ≤ 3 (t− t0)
2−α

(2− α) Γ(2− α)
.

If t0 > t, we interchange the role of t and t0 in the preceding computations and we
arrive at the same result. Therefore

lim
t→t0
|Dαf(t)−Dαf(t0)| = 0.

�

The following results play an important role in the proof of our main result.
Theorem 2.7. [2, Corollary 2.1 page 3] Let f ∈ C2(I) attains its minimum over the
interval I at the point t0 ∈ (0, 1) and f ′(0) ≤ 0. Then Dαf(t0) ≥ 0 for any α ∈ (1, 2) .

Changing f to −f we obtain

Theorem 2.8. Let f ∈ C2(I) attains its maximum over the interval I at the point
t0 ∈ (0, 1) and f ′(0) ≥ 0. Then Dαf(t0) ≤ 0 for any α ∈ (1, 2) .
Definition 2.9. [20]. Let E and F be Banach spaces. An operator T : E → F is called
a completely continuous operator if T is continuous and maps any bounded subset of
E into relatively compact subset of F.

Theorem 2.10. (Schauder fixed point theorem, [27]) If Ω is a closed bounded convex
subset of a Banach space E and T : Ω → Ω is completely continuous, then T has at
least one fixed point in Ω.

We shall use the following notation. For U, V ∈ C2(I), U ≤ V means U (t) ≤ V (t)
for all t ∈ I. Also, [U, V ] := {v ∈ C2(I); U ≤ v ≤ V }.

3. Main result

In this section, we shall apply the lower and upper solutions method to develop
an iterative technique to prove the existence of solutions to problem (1.1) - (1.2).

Definition 3.1. We call a function u a lower solution for problem (1.1) - (1.2), if u ∈
C2(I) and 

Dαu(t) + f(t, u(t)) ≥ 0, t ∈ (0, 1)

u′(0) = 0, u(1) ≤
1∫
0

g (u(t)) dt.

Definition 3.2. We call a function u an upper solution for problem (1.1) - (1.2), if u ∈
C2(I) and 

Dαu(t) + f(t, u(t)) ≤ 0, t ∈ (0, 1)

u′(0) = 0, u(1) ≥
1∫
0

g (u(t)) dt.
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Definition 3.3. A solution of (1.1) - (1.2) is a function u ∈ C2(I) that is both a lower
solution and an upper solution of the problem.

Define a truncation operator τ : C2(I)→ [u, u] by

τ (y) = max{u,min(y, u)}.
Then τ (y) = u if y ≤ u, τ (y) = y if y ∈ [u, u] and τ (y) = u if y ≥ u. Moreover τ is a
continuous and bounded operator. In fact, we have

‖τ (u)‖0 ≤ max (‖u‖0 , ‖u‖0) .

We now provide sufficient conditions on the nonlinearities f, g that will allow us to
investigate problem (1.1) - (1.2).
(H1) f : I × R → R is continuous and satisfies (f(t, v1)− f(t, v2)) (v1 − v2) < 0, for
all t ∈ I, v1 > v2.
(H2) g : R→ R is continuous and nondecreasing.

Theorem 3.4. Assume that Problem (1.1) - (1.2) has a lower solution u, an upper
solution u such that u(t) ≤ u(t), for all t ∈ I, and (H1), (H2) hold. Then Problem (1.1)
- (1.2) has at least one solution u∗ ∈ C2(I) such that u(t) ≤ u∗(t) ≤ u(t), t ∈ I.

Proof. The proof will be given in several steps.
Step1: Modification of the problem. Let φ : I × [u, u] → R and ψ : [u, u] → R be
defined, respectively, by

φ (t, u) = f (t, τ (u)) , ψ (u) = g (τ (u)) .

It is clear that φ, ψ are continuous and bounded. Moreover, for v1 > v2 in [u, u] , we
have τ (v1) = v1 and τ (v2) = v2, so that φ (t, v1) = f (t, v1) and φ (t, v2) = f (t, v2)
hence (φ (t, v1)− φ (t, v2)) (v1 − v2) < 0 for all t ∈ I and u ≤ v2 < v1 ≤ u. Similarly,
ψ (u) = g (u) , for all u ∈ [u, u] , so that ψ is nondecreasing in [u, u].

We consider the following modified boundary value problem
Dαu(t) + φ(t, u(t)) = 0, t ∈ (0, 1) , 1 < α ≤ 2

u′(0) = 0, u(1) =
1∫
0

ψ (u(t)) dt
(3.1)

We will show that the modified problem (3.1) has at least one solution u∗ ∈ [u, u] .
It follows that τ (u∗) = u∗ so that φ (t, u∗) = f (t, u∗) , ψ (u∗) = g (u∗). This implies
that u∗ is a solution of our original problem (1.1) - (1.2).
Step2. Let b ∈ R. Consider the auxiliary problem{

Dαu(t) + φ(t, u(t)) = 0, t ∈ (0, 1) , 1 < α ≤ 2
u′(0) = 0, u(1) = b

(3.2)

Claim. If (H1) is satisfied then ( 3.2) has a unique solution.
Proof. Uniqueness. Assume ( 3.2) has two solutions y, z. We show that y (t) = z(t)
for all t ∈ I. Suppose, on the contrary, that there is ξ ∈ I such that y (ξ) 6= z(ξ).
Assume, for definiteness that y (ξ) > z(ξ). Let w (t) = y (t)− z(t) for all t ∈ I. Then
w (ξ) > 0. By the continuity of w on I it follows that there exists ξ0 ∈ I such that
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w (ξ0) := max
t∈I

w(t) > 0. Then ξ0 ∈ [0, 1) because w′ (0) = w (1) = 0. Theorem 2.8

implies that Dαw(ξ0) ≤ 0. Then

0 ≥ Dαw(ξ0)w (ξ0) = (Dαy (ξ0)−Dαz (ξ0)) (y (ξ0)− z (ξ0)) .

It follows from the first equation in ( 3.2) and (H1) that

0 ≥ −(φ(ξ0, y(ξ0)− φ(ξ0, z(ξ0)) (y (ξ0)− z (ξ0)) > 0.

This contradiction shows that y (t) ≤ z(t) for all t ∈ I. Similarly we show that
z (t) ≤ y(t) for all t ∈ I. Therefore y (t) = z(t) for all t ∈ I.
Existence. It follows from Remark 2.3 that for u ∈ C2(I) and any α ∈ (1, 2) we have

IαDαu(t) = u(t)− c0 − c1t, for all t ∈ I,
where c0, c1 are real constants. The first equation in ( 3.2) implies that

u(t) = −Iαφ(t, u(t)) + c0 + c1t, for all t ∈ I.
Simple computations lead to

u(t) =

∫ 1

0

G(t, s)φ(s, u(s))ds+ b, (3.3)

where G(t, s) is Green’s function corresponding to the linear homogeneous problem.
This function exists because the homogeneous problem has only the trivial solution,
see Lemma 2.5. It is given by

G(t, s) =
1

Γ (α)

 (1− s)α−1 , 0 ≤ t < s ≤ 1

(1− s)α−1 − (t− s)α−1 , 0 ≤ s < t ≤ 1

.

Conversely, if u ∈ C(I) is a solution of ( 3.3) then u ∈ C2(I) and is a solution of (

3.2). Indeed, let v(t) =
∫ 1

0
G(t, s)φ(s, u(s))ds+ b. Then

v(t) = b− 1

Γ (α)

∫ t

0

(t− s)α−1 φ(s, u(s))ds+
1

Γ (α)

∫ 1

0

(1− s)α−1 φ(s, u(s))ds.

v(t) = b− Iαφ (·, u (·)) (t) + Iαφ (·, u (·)) (1)

Obviously v(1) = b. Also

v′(t) = −α− 1

Γ (α)

∫ t

0

(t− s)α−2 φ(s, u(s))ds,

so that v′(0) = 0. Moreover, it ias clear that v′ ∈ C1(I), i.e. v ∈ C2(I). By Lemma
2.6 Dαv(t) exists and

Dαv(t) = Dα (b− Iαφ (·, u (·)) (t) + Iαφ (·, u (·)) (1))

= −DαIαφ (·, u (·)) (t) = −φ (t, u(t)) .

Hence

Dαu(t) = −φ (t, u(t)) ,

i.e.

Dαu(t) + φ (t, u(t)) = 0.
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Now, define an operator T : C(I)→ C(I) by the right-hand side of ( 3.3), i.e.

(Tu) (t) =

∫ 1

0

G(t, s)φ(s, u(s))ds+ b, for all t ∈ I. (3.4)

We show that T is continuous and uniformly bounded. Let (un)n∈N be a sequence
in C(I) which converges uniformly to u. Then u ∈ C(I). It follows from the uniform
continuity ofG (., .) on the compact rectangle I×I there isG0 > 0 such that |G(t, s)| ≤
G0 for all (t, s) ∈ I × I. Also, φ : I × [u, u]→ R is continuous and bounded. It follows
that the exists Mφ > 0 such that |φ(t, u(t))| ≤ Mφ for all t ∈ I. The equation ( 3.4)
implies that

‖Tun − Tu‖0 ≤ G0

∫ 1

0

|φ(s, un(s))− φ(s, u(s))| ds→ 0 as n→∞.

Moreover

‖T (u)‖0 ≤ G0Mφ + |b| := ρ.

Let Ω := {u ∈ C(I); ‖u‖0 ≤ ρ}. Then Ω is a closed, bounded and convex subset of

C(I). Also, T (Ω) ⊂ Ω. Now, we show that T (Ω) is a compact subset of C(I). First,
T (Ω) is equicontinuous. Let (t, s) ∈ I × I with s ≤ t. Then for all u ∈ Ω

(Tu) (t)− (Tu) (s) =

∫ 1

0

(G(t, σ)−G(s, σ))φ(σ, u(σ))dσ.

It follows that

|(Tu) (t)− (Tu) (s)| ≤
∫ 1

0

|G(t, σ)−G(s, σ)| |φ(σ, u(σ))| dσ.

|(Tu) (t)− (Tu) (s)| ≤Mφ

∫ 1

0

|G(t, σ)−G(s, σ)| dσ. (3.5)

The uniform continuity of Green’s function implies that for every ε > 0 there is δ1 > 0
such that for all (t, s) ∈ I × I with |t− s| < δ1 we have

|G(t, σ)−G(s, σ)| ≤ ε

Mφ
.

It follows from (3.5) that for all (t, s) ∈ I × I with |t− s| < δ1 we have for all u ∈ Ω

|(Tu) (t)− (Tu) (s)| < ε.

Next, we show that T (Ω) is equicontinuous. Given ε > 0 there is δ > 0 such that for
any u ∈ Ω and |t− s| < δ we have

|(Tu) (t)− (Tu) (s)| < ε/3. (3.6)

Now, let v ∈ T (Ω). Then there is u ∈ Ω such that

‖v − T (u)‖0 ≤ ε/3, (3.7)

i.e.

|(Tu) (t)− v(t)| < ε/3.
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Hence for |t− s| < δ we have for all v ∈ T (Ω)

|v (t)− v(s)| ≤ |v (t)− (Tu) (t)|+ |(Tu) (t)− (Tu) (s)|+ |(Tu) (s)− v(s)| < ε.

By Ascoli-Arzela Theorem we conclude that T (Ω) is a compact subset of C(I). Hence
the operator T is completely continuous. Schauder fixed point theorem (see Theorem
2.10) implies that T has a fixed point v∗ in Ω, which is unique as shown earlier. So
that

v∗ (t) = T (v∗(t)) =

∫ 1

0

G(t, s)φ(s, v∗(s))ds+ b, for all t ∈ I. (3.8)

It follows from ( 3.8) that v∗ is the (unique) solution of the auxiliary problem ( 3.2).
Step3. We develop an iterative method to show that the modified problem has at
least one solution. Define a sequence (uk)k∈N in the following way. Let u0 = u and
for k ≥ 1 

Dαuk(t) + φ(t, uk(t)) = 0, t ∈ (0, 1) , 1 < α ≤ 2

u′k(0) = 0, uk(1) =
1∫
0

ψ (uk−1(t)) dt
(3.9)

Notice that u′k(0) and uk(1) do not depend on the unknown function uk. We see that
problem ( 3.9) is similar to the previous auxiliary problem ( 3.2). Therefore, for each
k ∈ N, ( 3.9) has a unique solution uk ∈ Ω. This implies that the sequence (uk)k∈N
is uniformly bounded. Hence it has convergent subsequence (ukj)j∈N . Observe that

the subsequence
(
ukj−1

)
j∈N may not converge to the same limit as the subsequence

(ukj)j∈N . We use a diagonalization process to have lim
kj→∞

ukj = lim
kj−1

ukj−1 = u∗. It

follows from ( 3.3) that ( 3.9) is equivalent to

uk(t) =

∫ 1

0

G(t, s)φ(s, uk(s))ds+

1∫
0

ψ (uk−1(t)) dt, for all t ∈ I.

Take limit as kj →∞, using the continuity of φ and ψ, we obtain

u∗(t) =

∫ 1

0

G(t, s)φ(s, u∗(s))ds+

1∫
0

ψ (u∗(t)) dt, for all t ∈ I.

Therefore


Dαu∗(t) + φ(t, u∗(t)) = 0, t ∈ (0, 1) , 1 < α ≤ 2

u∗
′
(0) = 0, u∗(1) =

1∫
0

ψ (u∗(t)) dt
(3.10)

Step4. To complete the proof of our main result we need to prove that u ≤ u∗ ≤ u,
i.e. for all t ∈ I

u (t) ≤ u∗ (t) ≤ u (t) .

We only show that u (t) ≤ u∗ (t) for all t ∈ I. We proceed by contradiction. Assume,
on the contrary that there is t1 ∈ (0, 1) such that u (t1) > u∗ (t1) . Let w (t) =
u (t) − u∗ (t) for all t ∈ I. Then w ∈ C (I) ∩ C2 (0, 1) and w (t1) > 0. It follows that
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there is t0 ∈ I such that w (t0) = max
t∈I

w (t) > 0. It follows from Theorem 2.8 that

Dαw (t0) ≤ 0. The first equation in ( 3.1) and assumption (H1) imply that

0 ≥ Dαw (t0) w (t0) = (Dαu (t0)−Dαu∗ (t0)) (u (t0)− u∗ (t0))

= − (φ (t0, u (t0))− φ (t0, u
∗ (t0))) (u (t0)− u∗ (t0)) > 0.

We arrive at a contradiction. Thus, w(t) = u (t)− u∗ (t) ≤ 0 for all t ∈ (0, 1) . Now,
if t0 = 0 we have w′(0) = 0. If w (0) > 0, it follows from the continuity of w that
there exists a small interval [0, a] ⊂ I such that w(t) > 0 for all t ∈ [0, a]. This is not
possible from the previous argument. Hence w (0) = u (0)−u∗ (0) ≤ 0. Also, if t0 = 1
we have from the definition of u and u∗ and the monotonicity of ψ

u (1)− u∗ (1) ≤
1∫

0

ψ (u(t)) dt−
1∫

0

ψ (u∗(t)) dt =

1∫
0

(ψ (u(t))− ψ (u∗(t))) dt ≤ 0.

Therefore u (t) ≤ u∗ (t) for all t ∈ I. Similarly we show that u∗ (t) ≤ u(t) for all t ∈ I.
We infer that u (t) ≤ u∗ (t) ≤ u(t) for all t ∈ I, i.e. u∗ ∈ [u, u] . We deduce that for
all t ∈ I

φ(t, u∗(t)) = f(t, u∗(t)), and ψ (u∗(t)) = g (u∗(t)) .

Consequently, 
Dαu∗(t) + f(t, u∗(t)) = 0, t ∈ (0, 1) , 1 < α ≤ 2

u′∗(0) = 0, u∗(1) =

1∫
0

g (u∗(t)) dt
.

Finally, we see that u∗ is the desired solution to our original problem. This completes
the proof of our main result. �

Example 3.5. We consider the following boundary value problem
D

3
2u(t)− 1 + e−u(t) = 0, t ∈ (0, 1)

u′(0) = 0, u(1) =

1∫
0

(
1− e−u(t)

)
dt.

(3.11)

We have α = 3/2, f(t, u) = −1 + e−u, and g(u) = 1 − e−u. We see that f, g are
continuous. For u > v the mean value theorem implies

f(t, u)− f(t, v) =
(
−1 + e−u

)
−
(
−1 + e−v

)
=
(
e−u − e−v

)
= −e−z (u− v) ,

where z is in the segment [v, u] . Hence (f(t, u)− f(t, v)) (u− v) = −e−z (u− v)
2
< 0.

Hence f satisfies (H1). Also, g′(u) = e−u > 0, so that g satisfies (H2). We see that
u(t) = 0 is a lower solution for problem ( 3.11) and u(t) = 1 is an upper solution
for problem ( 3.11). Applying Theorem 3.4, we see that the problem ( 3.11) has at
least one solution u∗ ∈ C2(I) with 0 ≤ u∗(t) ≤ 1, for all t ∈ I. Notice that we have
obtained the existence of a nonnegative solution.
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Coupled system of sequential partial
σ (., .)−Hilfer fractional differential equations
with weighted double phase operator: Existence,
Hyers-Ulam stability and controllability
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Abstract. In this paper, we are concerned by a sequential partial Hilfer fractional
differential system with weighted double phase operator. First, we introduce the
concept of Hyers-Ulam stability with respect to an operator L for an abstract
equation of the form u = LFu in Banach lattice by using the fixed point ar-
guments and spectral theory. Then, we prove the controllability and apply the
previous results obtained for abstract equation to prove existence and Hyers-
Ulam stability of a coupled system of sequential fractional partial differential
equations involving a weighted double phase operator. Finally, example illustrat-
ing the main results is constructed. This work contains several new ideas, and
gives a unified approach applicable to many types of differential equations.
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1. Introduction

Fractional order and Hilfer fractional order differential equations involving a p-
Laplacian operator are of great importance and are interesting class of problems. Such
kinds of problems have been studied by many authors, see [3, 4, 5, 17]. At the same
time, the studies of Hyers-Ulam stability have attracted a great deal of attention in
the last ten years, (see [1, 2, 9, 10, 11, 12, 15, 13, 16]), and the references therein.
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In [19], the authors discussed the existence of positive solutions for the double
phase differential equation

−Dp,q (u) (x) = f (x, u) , x ∈ Ω ⊂ Rn,

with double phase differential operator Dp,q (u) = ∆pu+ a.∆qu.
In [14], existence and uniquness of solutions to sequential fractional differential

equation

λDαu (t) +Dβu (t) = f (t, u (t))

was investigated.
In [8], the authors worked on the existence and Hyers–Ulam stability for the

following sequential fractional differential system:[
cDν

q + r.cDσ
q

]
u (t) = f

(
t, u (t) , u (αt) ,cDσ

q (αt)
)
, t ∈ (0, T )

where Dν , Dσ are the Caputo fractional derivatives of orders ν ∈ (1, 2] and σ ∈ (0, 1]
respectively.

Motivated by the works mentioned above, in this paper, we give the existence,
Hyers-Ulam stability and controllability results for the abstract equation LFu =
u and their application to the following coupled sequential partial Hilfer fractional
differential system with weighted double phase partial differential operator:

(
ζ1 (t) .Dα+1,ω,σ

0+,t +Dα,ω,σ
0+,t

)( ∂

∂x

(
φ

(
θ1 (x)

∂u1
∂x

)))
(t, x) + f1 (t, x, u1, u2) = 0,

t, x > 0,

(
ζ2 (t) .Dα+1,ω,σ

0+,t +Dα,ω,σ
0+,t

)( ∂

∂x

(
φ

(
θ2 (x)

∂u2
∂x

)))
(t, x) + f2 (t, x, u1, u2) = 0,

t, x > 0,

uj (0, x) = uj (t, 0) = lim
x→+∞

∂uj
∂x

(t, x) = 0, j ∈ {1, 2} ,
(1.1)

where Dα,ω,σ
0+,t is the partial σ (., .)−Hilfer fractional derivative with respect to the

variable t of order α and type 0 ≤ ω ≤ 1 with 0 < α < 1,

φ = φp− + φp+ , 1 < p− < p+

with

φpν (x) = |x|p
ν−2

.x, for ν ∈ {−,+} ,
and for j ∈ {1, 2} ,

ζj (t) = aj + t, aj > 0,

The function σ (t, x) is bounded and positive on R+×R+ having a continuous and posi-

tive derivative
∂σ

∂t
(t, x) > 0 with respect to the variable t on (0,+∞) with σ (0, x) = 0

for all x ≥ 0 and such that(
σ+
)α ∈ L1

(
R+
)

and σ+ (x) = lim
t→+∞

σ (t, x) .
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2. Abstract background

Let (E, ‖.‖) be a real Banach space. A nonempty subset P of E is said to be
a cone if P is closed and convex, P ∩ (−P ) = 0 and for all t ≥ 0, tP ⊂ P . In
this situation, P induces a partial order in the Banach space E defined by x ≤ y if
y − x ∈ P.

The mapping L : E → E is said to be bounded if it maps bounded subsets in
E into bounded subsets in E. L is said to be compact if it is continuous and maps
bounded subsets in E into relatively compact subsets in E.

Definition 2.1. A normed lattice E is a vector space with a norm ‖.‖ and a partial
ordering (≤) under which it is a Riesz space and the following condition holds:
if |x| ≤ |y| , then ‖x‖ ≤ ‖y‖ , where

|u| = sup {u,−u} .

If (E, ‖‖) is complete, it is called a Banach lattice.

Let us recall the definition and some properties of the resolvent:

Definition 2.2. [7, 18]Let L : E → E be a bounded and linear operator. The resolvent
set of L is the set

ρ (L) = {λ ∈ C : λI − L is invertible in Q (E)} ,

where Q (E) is the unital Banach algebra defined by

Q (E) = {f : E → E : f is linear and bounded}

and I : E → E is the identity.
The resolvent of L is rL : ρ (L)→ Q (E) defined by

rL (λ) = (λI − L)
−1 ∈ Q (E) .

The spectrum of L, σ (L) = C\ρ (L) is non-empty, compact and

r (L) = max
λ∈σ(L)

|λ| = lim
n→∞

‖Ln‖
1
n ,

called the spectral radius of L.

The serie’s representation of the resolvent: If |λ| > r (L) , then λ ∈ ρ (L) and
rL (λ) is given by

rL (λ) =

+∞∑
k=0

λ−k−1Lk.

Let E+ = {u ∈ E, u ≥ 0} be the positive cone of a real Banach lattice
(E, ‖.‖ ,≤) .

We consider an operator T : E → E defined by

Tu = LFu, u ∈ E

where L : E → E is a completely continuous operator and F : E → E is a continuous
and bounded map.
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Remark 2.3. T is completely continuous, because it is the composition of the com-
pletely continuous operator L and the bounded continuous map F .

We consider the equation
u = Tu. (2.1)

Definition 2.4. Equation (2.1) is said to be Hyers-Ulam stable in E with respect to L
( or L-Hyers-Ulam stable), if T = LF and there exists N > 0, such that the following
(pN ) property is satisfied: For all ε > 0 and all (v, w) ∈ E × B̄ (0, ε) \ {0} ,

if v = L (F (v) + w) then T admits a fixed point u ∈ G such that
‖u− v‖ ≤ N.ε.

(pN )

The main tools of this work are the following Theorems:

Theorem 2.5. [6] Let E be a Banach space, C be a nonempty bounded convex and
closed subset of E, and T : C → C be a compact and continuous map. Then T has
at least one fixed point in C.

3. Main results

3.1. Existence and Hyers-Ulam stability of abstract equation

Throughout this paper, we assume that the following hypothesis hold:{
There exists an operator L(k) : E+ → E+ such that, for all u ∈ E

|L (u)| ≤ L(k) (|u|) , (3.1)

where L(k) is bounded, increasing, k−positively homogeneous and sub-additive on E,
k ∈ (0, 1], with L(k) (E+\ {0}) ⊂ E+\ {0} .

F : E → E is a continuous mapping such that{
There exist (g, h) ∈ E+\ {0} × E+ such that

∥∥L(k) (g)
∥∥ < 1 and

|F (u)| ≤ g ‖u‖
1
k + h, for all u ∈ E.

(3.2)

Lemma 3.1. Assume that If the hypothesis (3.1) and (3.2) hold true, and let Then T
admits a fixed point u in B̄ (0, r), r > r0, where

r0 =

∥∥L(k) (h)
∥∥

1−
∥∥L(k) (g)

∥∥ ≥ 0.

Proof. Let u ∈ B̄ (0, r) , r > r0. So,

|Tu| = |LFu| ≤ L(k) (|Fu|) ≤ L(k)
(
‖u‖

1
k .g + h

)
≤ ‖u‖ .L(k) (g) + L(k) (h)

this implies that

‖Tu‖ ≤ r.
∥∥∥L(k) (g)

∥∥∥+
∥∥∥L(k) (h)

∥∥∥ = (r − r0) .
∥∥∥L(k) (g)

∥∥∥+ r0 ≤ r,

then T
(
B̄ (0, r)

)
⊂ B̄ (0, r) . From Schauder fixed point theorem, we deduce that T

has at least one fixed point u ∈ B̄ (0, r) . �
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Lemma 3.2. Assume that hypothesis (3.1) and (3.2) hold true.

If (v, w) ∈ E × B̄ (0, ε) \ {0} , ε > 0 such that

v = L (F (v) + w) ,

then v ∈ B̄ (0, rε), with

rε =

∥∥L(k) (h)
∥∥+ εkM

1−
∥∥L(k) (g)

∥∥ and M = sup
{∥∥∥L(k) (x)

∥∥∥ , x ∈ B̄ (0, 1)
}
.

Proof. Indeed, if v = L (Fv + w) , then

|v| = |L (Fv + w)| ≤ L(k) (|Fv|+ |w|) ≤ L(k)
(
‖v‖

1
k .g + h+ |w|

)
≤ ‖v‖ .L(k) (g) + L(k) (h) + L(k) (|w|) .

This leads

‖v‖ ≤ ‖v‖ .
∥∥∥L(k) (g)

∥∥∥+
∥∥∥L(k) (h)

∥∥∥+
∥∥∥L(k) (|w|)

∥∥∥ .
Thus

‖v‖ ≤
∥∥L(k) (h)

∥∥+
∥∥L(k) (|w|)

∥∥
1−

∥∥L(k) (g)
∥∥ ≤

∥∥L(k) (h)
∥∥+ εkM

1−
∥∥L(k) (g)

∥∥ . �

Let r∗ = max
{
r0, (r0)

1
k ‖g‖+ ‖h‖

}
≥ 0, where r0 is the constant given in

Lemma (3.1). We consider the following hypothesis:

There exist ρ ∈ E+\ {0} , λ > 0 and r > r∗ such that, for all u, v ∈ B̄ (0, r) ,

|Fu− Fv| ≤ ρ ‖u− v‖ , (3.3)

and

|L (u)− L (v)| ≤ λL+ |u− v| . (3.4)

where L+ is a linear, bounded and strictly positive operator on E.

Theorem 3.3. Assume that hypothesis (3.1), (3.2), (3.3) and (3.4) hold true, and

λ ∈
(

0, ‖L+ (ρ)‖−1
)
. (3.5)

Then, equation (2.1) is L-Hyers-Ulam stable in E.

Proof. Suppose that

v = L (F (v) + w) ,

where (v, w) ∈ E × B̄ (0, ε) \ {0} , ε > 0.

Let r > r∗ = max
{
r0, (r0)

1
k ‖g‖+ ‖h‖

}
be the constant given in the hypothesis (3.3).

We deduce from lemmas (3.1) and (3.2) that T admits a fixed point u ∈ B̄ (0, r)
and v ∈ B̄ (0, rε) , with

rε =

∥∥L(k) (h)
∥∥+ εkM

1−
∥∥L(k) (g)

∥∥ and M = sup
{∥∥∥L(k) (x)

∥∥∥ , x ∈ B̄ (0, 1)
}
.



830 Nadir Benkaci-Ali

Now, let x0 > 0 be the unique positive solution of the algebraic equation

(
r0 +

M

1−
∥∥L(k) (g)

∥∥ .xk
)1

k
‖g‖+ ‖h‖+ x− r = 0.

We distinguish the following three cases:

Case 1. If r < (rε)
1
k ‖g‖+ ‖h‖+ ε, then ε > x0. This leads

‖u− v‖ ≤ r + rε ≤ x−10

(
2r +

M.xk0
1−

∥∥L(k) (g)
∥∥
)
.ε.

Case 2. If r < rε, then ε > µ, with

µ =

[
(r − r0)

(
1−

∥∥L(k) (g)
∥∥)

M

]1

k
,

and so,

‖u− v‖ ≤ 2r +
εkM

1−
∥∥L(k) (g)

∥∥ ≤ µ−1
(

2r +
M.µk

1−
∥∥L(k) (g)

∥∥
)
.ε.

Case 3. If max
{
rε, (rε)

1
k ‖g‖+ ‖h‖+ ε

}
≤ r, then (Fu, (Fv) + w) ∈ B̄ (0, r) ×

B̄ (0, r) , and from hypothesis (3.4), it follows that

|L (Fu)− L (Fv + w)| ≤ λL+ |Fu− Fv − w| .

And by using (3.3), we obtain

|u− v| ≤ λL+ |Fu− Fv − w|
≤ λL+ |Fu− Fv|+ λL+ (|w|)

≤ λ. ‖u− v‖L+ (ρ) + λεL+

(
|w|
‖w‖

)
thus

‖u− v‖ ≤
(

λ ‖L+‖
1− λ. ‖L+ (ρ)‖

)
.ε.

Consequently,

‖u− v‖ ≤ N.ε
where

N = max

{
γ′1

(
2r +

M.γ′2
1−

∥∥L(k) (g)
∥∥
)
,

(
λ ‖L+‖

1− λ. ‖L+ (ρ)‖

)}
,

with

γ′1 = max
{
x−10 , µ−1

}
and γ′2 = max

(
xk0 , µ

k
)
.

Proving our claim. �
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Now, we replace the hypothesis (3.3) and (3.4) by the following conditions:
There exists λ0 > 0 and r > r∗ such that, for all u, v ∈ B̄ (0, r) ,

|F (u)− F (v)| ≤ λ0 |u− v| , (3.6)

and

|L (u)− L (v)| ≤ L0 |u− v| , (3.7)

where L0 : E → E is a linear, compact and strictly positive operator.

Theorem 3.4. Assume that hypothesis (3.1), (3.2), (3.6) and (3.7) hold, and

r(L0) < λ−10 . (3.8)

Then equation (2.1) is L-Hyers-Ulam stable in E.

Proof. Suppose that v = L (F (v) + w) , (v, w) ∈ E × B̄ (0, ε) \ {0} , ε > 0.

Let r > r∗ = max
{
r0, (r0)

1
k ‖g‖+ ‖h‖

}
is the constant given in the hypothesis (3.6).

It follows from lemmas (3.1) and (3.2), that v ∈ B̄ (0, rε) and T admits a fixed point
u ∈ B̄ (0, r) , with

rε =

∥∥L(k) (h)
∥∥+ εkM

1−
∥∥L(k) (g)

∥∥ and M = sup
{∥∥∥L(k) (x)

∥∥∥ , x ∈ B̄ (0, 1)
}
.

We have seen in the proof of theorem (3.3) that, if

r ≤ max
{
rε, (rε)

1
k ‖g‖+ ‖h‖+ ε

}
,

then ε ≥ max {µ, x0}, where x0 > 0 is the positive solution of the algebraic equation

(
r0 +

M

1−
∥∥L(k) (g)

∥∥ .xk
)1

k
‖g‖+ ‖h‖+ x− r = 0

In this case, we have

‖u− v‖ ≤ γ′1

(
2r +

M.γ′2
1−

∥∥L(k) (g)
∥∥
)
.ε,

where

γ′1 = max
{
x−10 , µ−1

}
and γ′2 = max

(
xk0 , µ

k
)
.

Now, we assume that max
{
rε, (rε)

1
k ‖g‖+ ‖h‖+ ε

}
≤ r. Then (Fu, (Fv) + w) ∈

B̄ (0, r)× B̄ (0, r) , and by using hypothesis (3.4), it follows that

|L (Fu)− L (Fv + w)| ≤ L0 |Fu− Fv − w| . (3.9)

By using (3.6), inequality (3.9) leads

|u− v| ≤ L0 |Fu− Fv − w|
≤ L0 |Fu− Fv|+ L0 (|w|)
≤ λ0.L0 (|u− v|) + ε.πw,
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where

πw = L0

(
|w|
‖w‖

)
∈ E+\ {0} .

Then

z = |u− v| ≤ λ0.L0 (z) + εL0

(
|w|
‖w‖

)
≤ λ0.L0 (z) + επw

≤ λ0.L0 (λ0.L0 (z) + επw) + επw

≤ λ30.L
3
0 (z) + ε.

(
λ20.L

2
0 (πw) + λ0.L0 (πw) + πw

)
≤ λn0 .L

n
0 (z) + ε.

n−1∑
k=0

λk0L
k
0 (πw) ∈ E+\ {0} , for all n ∈ N∗.

As λ0.r (L0) = λ0. limn→∞
n
√
‖Ln0‖ < 1 then limn→∞ λn0 .L

n
0 (z) = 0, λ−10 ∈ ρ (L0)

and (I − λ0.L0) is invertible. The serie’s representation of the resolvent rL0 at λ−10 is
given by

rL0

(
λ−10

)
=
(
λ−10 I − L0

)−1
=

+∞∑
k=0

(λ0)
k+1

Lk0 .

Then
+∞∑
k=0

λk0L
k
0 (πw) = (I − λ0.L0)

−1
(πw) ∈ E+\ {0} .

Thus,

‖u− v‖ ≤
∥∥∥(I − λ0.L0)

−1
(πw)

∥∥∥ .ε ≤ ∥∥∥(I − λ0.L0)
−1
∥∥∥ ‖L0‖ .ε.

Consequently,

‖u− v‖ ≤ N.ε
where

N = max

{
γ′1

(
2r0 +

M.γ′2
1−

∥∥L(k) (g)
∥∥
)
,
∥∥∥(I − λ0.L0)

−1
∥∥∥ ‖L0‖

}
.

Proving our claim. �

3.2. Existence and Hyers-Ulam stability of coupled system IVS

In this section, we use the results obtained in the previous section to prove ex-
istence and Hyers-Ulam stability of the coupled system of sequential time σ−Hilfer
fractional differential equations (1.1), where Dα,ω,σ

0+,t is the σ−Hilfer fractional deriva-

tive with respect to the variable t of order α and type 0 ≤ ω ≤ 1 with 0 < α < 1,

φ = φp− + φp+ , 1 < p− < p+

with

φpν (x) = |x|p
ν−2

.x, for ν ∈ {−,+} ,
and for j ∈ {1, 2} ,

ζj (t) = aj + t, aj > 0.
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We suppose that the following conditions hold,
fj ∈ C

(
R+ × R+ × R2,R

)
, 1
θj
∈ L1 (R+,R+)

and
σ+ ∈ Lα (R+) ,

(3.10)

with

0 < σ+ (x) = sup {σ (t, x) , t ≥ 0} <∞, ∀x ≥ 0.

Next, we recall the definitions of σ−Hilfer fractional orders integrals and derivatives
of order α and type 0 ≤ ω ≤ 1, where J ⊂ Rn and σ : I × J → R+ is the positive

function on I×J ⊂ R+×R+ having a continuous and positive derivative
∂σ

∂t
(t, x) > 0

with respect to the variable t on (0,+∞) with σ (0, x) = 0 for all x ≥ 0.

Definition 3.5. [17] Let a ∈ R+, α > 0 and J ⊂ Rn. Then the σ−left-sided fractional
integral of a function u with respect to t on R+ is defined by

Iα,σa+,tu(t, x) =
1

Γ (α)

∫ t

a

∂σ

∂t
(t, x) (σ (t, x)− σ (τ, x))

α−1
u(τ, x)dτ.

In the case α = 0, this integral is interpreted as the identity operator I0,σa+ u = u.

Definition 3.6. [17] Let α ∈ (n− 1, n) with n ∈ N, u and σ two functions such that
t 7→ u (t, .) ∈ Cn (R+,R) and t 7→ σ (t, .) ∈ Cn (R+,R) . The σ-Hilfer fractional
derivative Dα,ω,σ

a+,t of u with respect to t of order n − 1 < α < n and type 0 ≤ ω ≤ 1

is defined by

Dα,ω,σ
a+,t u (t, x) = I

ω(n−α),σ
a+,t

(
1

σ′t(t, x)

∂

∂t

)n
I
(1−ω)(n−α),σ
a+,t u (t, x) ,

where σ′t(t, x) =
∂σ

∂t
(t, x) .

Let’s also recall the following important result ([17]):

Theorem 3.7. If t 7→ u (t, x) ∈ Cn (R+) , n − 1 < β < α < n, 0 ≤ ω ≤ 1 and
ξ = α+ ω (n− α) , then

Iα,σa+,t.D
α,ω,σ
a+,t u (t, x)

= u(t, x)−
n∑
k=1

(σ(t, x)− σ(a, x))
ξ−k

Γ (ξ − k + 1)

(
1

σ′t(t, x)

∂

∂t

)n−k
I
(1−ω)(n−α),σ
a+,t u (a, x) .

Moreover,

Iα,σa+,tI
β,σ
a+,t (u) = Iα+β,σa+,t , Dα,ω,σ

a+,t

(
Dβ,ω,σ
a+,t u

)
= Dα+β,ω,σ

a+,t u,

D1,ω,σ
a+,t u = D1

t u =
∂u

∂t
and Dα,ω,σ

a+,t I
α,σ
a+,t (u) = u.
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Remark 3.8. In this paper, we assume that σ : R+ × R+ → R+ is continuous having

a positive and continuous derivative
∂σ

∂t
(t, x) on R+ × R+ such that σ (0, x) = 0, for

all x ∈ R+. If α ∈ (0, 1) , then n = 1 and for t, x > 0

Iα,σ0+,t.D
α,ω,σ
0+,t u (t, x) = u(t, x)− (σ(t, x))

ξ−1

Γ (ξ)

(
I
(1−ω)(1−α),σ
0+,t u

) (
0+, x

)
.

Moreover, if u is continuous, then

lim
t→0+

(
I
(1−ω)(1−α),σ
0+,t u

)
(t, x) = 0, ∀x ≥ 0

and so Iα,σ0+,t.D
α,ω,σ
0+,t u (t, x) = u(t, x).

Definition 3.9. We say that IVS (1.1) has the Hyers-Ulam stability in a Banach space
E = G×G if there exits a constant N > 0 such that for every ε > 0, v = (v1, v2) ∈ E,
if

∣∣∣∣(ζ1 (t) .Dα+1,ω,σ
0+,t +Dα,ω,σ

0+,t

)( ∂

∂x

(
φ

(
θ1 (x)

∂v1
∂x

)))
(t, x) + f1 (t, x, v1, v2)

∣∣∣∣ ≤ ε,
t, x > 0,∣∣∣∣(ζ2 (t) .Dα+1,ω,σ

0+,t +Dα,ω,σ
0+,t

)( ∂

∂x

(
φ

(
θ2 (x)

∂v2
∂x

)))
(t, x) + f2 (t, x, v1, v2)

∣∣∣∣ ≤ ε,
t, x > 0,

vj (0, x) = vj (t, 0) = lim
x→+∞

∂vj
∂x

(t, x) = 0, j ∈ {1, 2} ,
(3.11)

then there exists a solution u ∈ E of IVS (1.1), such that

‖u− v‖ ≤ N.ε. (3.12)

We call such N a Hyers-Ulam stability constant.

Let E = G×G be a real Banach space with

G =

{
u ∈ C(R+ × R+,R) : sup

t,x≥0
|u(t, x)| <∞

}
equipped with the norm ‖(u, v)‖ = max (‖u‖0 , ‖v‖0) where

‖u‖0 = sup
t,x∈R+

(|u(t, x)|) .

Remark 3.10. E is a Banach lattice under the partial ordering (≤) defined by

(u1, u2) ≤ (v1, v2)⇔ u1 (x) ≤ v1 (x) and u2 (x) ≤ v2 (x) for all x ≥ 0.

under which it is a Riesz space and |(u, v)| = (|u| , |v|).
Moreover, E+ = {(u, v) ∈ E, (u, v) ≥ 0} is the positive cone of (E, ‖.‖ ,≤) .
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We consider the operator T : E → E defined by

T (u1, u2) = LF (u1, u2) , (u1, u2) ∈ E

where

L (u1, u2) = (L1 (u1, u2) , L2 (u1, u2)) and F (u1, u2) = (F1 (u1, u2) , F2 (u1, u2)) ,

such that for j ∈ {1, 2}

Lj (u1, u2) (t, x) =

∫ x

0

1

θj (z)
ψ

(∫ +∞

z

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

(uj) (τ, s) dτ

)
(t, s) ds

)
dz,

Fj (u1, u2) (t, x) = fj (t, x, u1 (t, x) , u2 (t, x)) ,

where ψ = φ−1 : R→ R is the inverse function of sum of pi-Laplacian operators

φ =

i=N∑
i=1

φpi ,

with φpi (x) = |x|pi−2 .x and ψpi is the inverse function of φpi .

We denote

T = (T1, T2)

with

Tj = LjF, j ∈ {1, 2} .

Remark 3.11. Let p− = min {p1, p2...pN} and p+ = max {p1, p2...pN}. For all x ≥ 0,
i ∈ {1, 2...N}

φpi (x) ≤ φ (x) ≤ N.φ+ (x)

where

φ+ (x) =

{
φp+ (x) if x ≥ 1
φp− (x) if x ≤ 1

and so, we conclude that

ψ+
( x
N

)
≤ ψ (x) ≤ ψpi (x) (3.13)

where

ψ+
( x
N

)
=

{
ψp+

(
x
N

)
if x ≥ 1

ψp−
(
x
N

)
if x ≤ 1.

Moreover, for x ≥ y ≥ 0,
ψp (x+ y) ≤ ψp (x) + ψp (y) , if p ≥ 2,

ψp (x+ y) ≤ (2)

2− p
p− 1 . [ψp (x) + ψp (y)] , if p < 2.

(3.14)

Remark 3.12. The condition (3.10) makes that the operator Lj is completely contin-
uous and Fj is bounded for each j ∈ {1, 2} , and so, T is completely continuous.
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Lemma 3.13. Let h1, h2 ∈ C (R+ × R+,R+) be continuous and bounded functions.
(u1, u2) ∈ C1 (R+ × R+)× C1 (R+ × R+) is solution of IVS (3.15)

(
ζ1 (t) .Dα+1,ω,σ

0+,t +Dα,ω,σ
0+,t

)( ∂

∂x

(
φ

(
θ1 (x)

∂u1
∂x

)))
(t, x) + h1 (t, x) = 0,

t, x > 0,

(
ζ2 (t) .Dα+1,ω,σ

0+,t +Dα,ω,σ
0+,t

)( ∂

∂x

(
φ

(
θ2 (x)

∂u2
∂x

)))
(t, x) + h2 (t, x) = 0,

t, x > 0,

uj (0, x) = uj (t, 0) = lim
x→+∞

∂uj
∂x

(t, x) = 0, j ∈ {1, 2} ,
(3.15)

if and only if

uj(t, x)=

∫ x

0

1

θj (z)
ψ

(∫ +∞

z

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

hj (τ, s) dτ

)
(t, s) ds

)
dz, for j ∈ {1, 2} .

(u1, u2) is fixed point of T (i.e T (u1, u2) = (u1, u2)).

Proof. First, assume that (u1, u2) ∈ E is a solution of IVS (3.15), then for each
j ∈ {1, 2}, The function uj satisfies equation

D1
t

(
(aj + t) .Dα,ω,σ

0+,t

[
∂

∂x

(
φ

(
θj (x)

∂uj
∂x

))])
(t, x) = −hj (t, x) ,

where φ = φp− + φp+ . Integrating, we have

Dα,ω,σ
0+,t

[
∂

∂x

(
φ

(
θj (x)

∂uj
∂x

))]
(t, x) =

−1

aj + t

∫ t

0

hj (τ, x) dτ, t > 0. (3.16)

Applying Iα,σ0+,t on both sides of equation (3.16) and using Lemma (3.7) and initial

condition
∂uj
∂x

(0, x) = 0, we obtain

∂

∂x

(
φ

(
θj (x)

∂uj
∂x

))
(t, x) = −Iα,σ0+,t

(
1

ζj (t)

∫ t

0

hj (τ, x) dτ

)
(t, x)

By integrating on [x,+∞[ and using the boundary conditions

uj (t, 0) = lim
x→+∞

∂uj
∂x

(t, x) = 0,

we have

φ

(
θj (x)

∂uj
∂x

)
=

∫ +∞

x

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

hj (τ, s) dτ

)
(t, s) ds

and so

uj (t, x) =

∫ x

0

1

θj (z)
ψ

(∫ +∞

z

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

hj (τ, s) dτ

)
(t, s) ds

)
dz.
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Conversely, assume that (u1, u2) ∈ E such that for j ∈ {1, 2} ,

uj (t, x) =

∫ x

0

1

θj (z)
ψ

(∫ +∞

z

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

hj (τ, s) dτ

)
(t, s) ds

)
dz.

Then uj ∈ C1 (R+ × R+) and verifies

uj(x, 0) = uj (0, x) = 0.

Moreover, by derivating with respect to the variable x, we obtain

∂uj
∂x

(t, x) =
1

θj (x)
ψ

(∫ +∞

x

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

hj (τ, s) dτ

)
(t, s) ds

)
, (3.17)

and so
∂

∂x
φ

(
θj (x)

∂uj
∂x

)
= −Iα,σ0+,t

(
1

ζi (t)

∫ t

0

hj (τ, x) dτ

)
(t, x) . (3.18)

Applying Dα,ω,σ
0+,t on both sides of equation (3.18) and using Lemma (3.7) we have

ζj (t) .Dα,ω,σ
0+,t

[
∂

∂x

(
φ

(
θj (x)

∂uj
∂x

))]
(t, x) = −

∫ t

0

hj (τ, x) dτ,

so, uj is solution of the equation

D1
t

(
ζj (t) .Dα,ω,σ

0+,t

[
∂

∂x

(
φ

(
θj (x)

∂uj
∂x

))])
(t, x) = −hj (t, x) .

Now, we show that lim
x→+∞

∂uj
∂x

(t, x) = 0. Let Hj = sup {hj (t, x) , t, x ≥ 0}. We have

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

hj (τ, s) dτ

)
(t, s) ≤ Hj .I

α,σ
0+,t (1) (t, s) =

Hj

Γ (α+ 1)
σα (t, s) ,

then ∫ +∞

x

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

hj (τ, s) dτ

)
(t, s) ds ≤ Hj

Γ (α+ 1)

∫ +∞

x

σα (t, s) ds

so, it follows from equation (3.17) that

∂uj
∂x

(t, x) ≤ 1

θj (x)
ψ

(
Hj

Γ (α+ 1)

∫ +∞

x

σα (t, s) ds

)
≤ 1

θj (x)
ψ

(
Hj

Γ (α+ 1)

∫ +∞

0

(
σ+
)α

(s) ds

)
Since

1

θi (x) .
∈ L1 (R+,R+) then

lim
x→+∞

∂uj
∂x

(t, x) = 0.

Thus, (u1, u2) is solution of IVS (3.15). This completes the proof. �

Remark 3.14. We deduce from Lemma (3.13) that, (u1, u2) ∈ C1 (R+ × R+,R) is
solution of IVS (1.1) if and only if (u1, u2) is a fixed point of T .
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Lemma 3.15. If equation (2.1) is L-Hyers-Ulam stable in E then IVS (1.1) has the
Hyers-Ulam stability in E.

Proof. Assume that equation (2.1) is L-Hyers-Ulam stable in E. Let ε > 0 and
v = (v1, v2) ∈ E verifying inequalities (3.11). Let w = (w1, w2) ∈ B̄E (0, ε) such that

wj (t)=−
(
ζj (t) .Dα+1,ω,σ

0+,t +Dα,ω,σ
0+,t

)( ∂

∂x

(
φ

(
θj (x)

∂vj
∂x

)))
(t, x)−fj (t, v1 (t) , v2 (t)) ,

j ∈ {1, 2} .
We have from Lemma (3.13) that

vj (x) = Tj (v1, v2) (x) == Lj (F (v1, v2) + w) ,

then

v = L (F (v) + w) .

If w = (0, 0) then v is a fixed point of T , and so, u = v is solution of IVS (1.1) and
we have

‖u− v‖ = 0 ≤ N.ε.
Now, if w ∈ B̄E (0, ε) \ {0} , as (2.1) is L-Hyers-Ulam stable then there exists a fixed
point u of T which is solution of IVS (1.1) such that

‖u− v‖ ≤ N.ε.

Thus, IVS (1.1) has the Hyers-Ulam stability in E. �

Lemma 3.16. Assume that

p+ ≥ 2. (3.19)

Then L verifies the condition (3.1), with L(k) =
(
L
(k)
1 , L

(k)
2

)
such that

k =
1

p+ − 1
≤ 1,

where for j ∈ {1, 2}

L
(k)
j (u1, u2) (t, x) =

∫ x

0

1

θj (z)
ψp+

(∫ +∞

z

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

uj (τ, s) dτ

)
(t, s) ds

)
dz.

Proof. Let u = (u1, u2) ∈ E. For j ∈ {1, 2}

|Lj (u1, u2) (t, x)| =

∣∣∣∣∫ x

0

1

θj (z)
ψ

(∫ +∞

z

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

uj (τ, s) dτ

)
(t, s) ds

)
dz

∣∣∣∣
≤

∫ x

0

1

θj (z)
ψ

(∫ +∞

z

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

|uj (τ, s)| dτ
)

(t, s) ds

)
dz.

By using the inequality (3.13) we find that for all t, x ≥ 0,

|Lj (u1, u2) (tx)| ≤
∫ x

0

1

θj (z)
ψp+

(∫ +∞

z

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

|uj (τ, s)| dτ
)

(t, s) ds

)
dz

= L
(k)
j (|u1| , |u2|) (x)
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and then |L (u)| ≤ L(k) (|u|) . Moreover, L(k) is bounded, increasing, k−positively
homogeneous and verifies

L(k)
(
E+\ {0}

)
⊂ E+\ {0} .

And the condition (3.14) leads that L(k) is sub-additive. �

Lemma 3.17. Assume that
1 < p− ≤ 2. (3.20)

Then For all r > 0 and for all u, v ∈ B̄ (0, r) ,

|L (u)− L (v)| ≤ λL+ |u− v| .
where

L+ = (L+,1, L+,2)

with

L+,j (u1, u2) =

∫ x

0

1

θj (z)

∫ +∞

z

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

uj (τ, s) dτ

)
(t, s) dsdz, j ∈ {1, 2} ,

λ = λ (r) =
1

p− − 1

(
r.
∥∥(σ+)

α∥∥
L1

Γ (α+ 1)

)2− p−

p− − 1
> 0,

and
σ+ (x) = lim

t→∞
σ (t, x) .

Proof. Let r > 0 and u, v ∈ B̄ (0, r) , for each j ∈ {1, 2} ,we have

|Lj (u)− Lj (v)|

=

∣∣∣∣∫ x

0

1

θj (z)

[
ψ

(∫ +∞

z

Iα,σ0+,t (Bjuj (t, s)) ds

)
− ψ

(∫ +∞

z

Iα,σ0+,t (Bjvj (t, s)) ds

)]
dz

∣∣∣∣
≤
∫ x

0

1

θj (z)

∣∣∣∣ψ(∫ +∞

z

Iα,σ0+,t (Bjuj (t, s)) ds

)
− ψ

(∫ +∞

z

Iα,σ0+,t (Bjvj (t, s)) ds

)∣∣∣∣ dz,
where

Bjuj (t, s) =
1

ζj (t)

∫ t

0

uj (τ, s) dτ ≤ ‖u‖ , for all u ∈ E.

Let t, x > 0 such that uj 6= vj on [0, t]× [x,+∞[, and let χt,x ∈ [bt,x, ct,x] \ {0} where

bt,x = min

(∫ +∞

z

Iα,σ0+,t (Bjuj (t, s)) ds,

∫ +∞

z

Iα,σ0+,t (Bjvj (t, s)) ds

)
and

ct,x = max

(∫ +∞

z

Iα,σ0+,t (Bjuj (t, s)) ds,

∫ +∞

z

Iα,σ0+,t (Bjvj (t, s)) ds

)
,

such that

ψ

(∫ +∞

z

Iα,σ0+,t (Bjuj (t, s)) ds

)
− ψ

(∫ +∞

z

Iα,σ0+,t (Bjvj (t, s)) ds

)
= A (χt,x)

∫ +∞

z

Iα,σ0+,t (Bj (uj − vj)) (t, s) ds



840 Nadir Benkaci-Ali

where

A (χt) =
1

(p+ − 1) |ψ (χt,x)|p
+−2

+ (p− − 1) |ψ (χt,x)|p
−−2 .

We have

A (χt) =
1

(p+ − 1) (ψ (|χt,x|))p
+−2

+ (p− − 1) (ψ (|χt,x|))p
−−2

≤ (ψ (|χt,x|))2−p
−

p− − 1

≤
(
ψp− (|χt,x|)

)2−p−
p− − 1

.

Moreover,

|χt,x| ≤ |ct,x|

≤ max

(∫ +∞

z

Iα,σ0+,t (Bj (|uj |) (t, s)) ds,

∫ +∞

z

Iα,σ0+,t (Bj (|vj |) (t, s)) ds

)
≤ r.

∫ +∞

z

Iα,σ0+,t (Bj (1)) ds

≤ r.

∫ +∞

0

Iα,σ0+,t (1) ds = r.

∫ +∞

0

σα (s, t)

Γ (α+ 1)
ds

≤ r.

∥∥(σ+)
α∥∥

L1

Γ (α+ 1)
,

this leads∣∣∣∣ψ(∫ +∞

z

Iα,σ0+,t (Bjuj (t, s)) ds

)
− ψ

(∫ +∞

z

Iα,σ0+,t (Bjvj (t, s)) ds

)∣∣∣∣
≤ λ

∫ +∞

z

Iα,σ0+,t (Bj (|uj − vj |)) (t, s) ds

and so,

|Lj (u)− Lj (v)| ≤ λ
∫ x

0

1

θj (z)

∫ +∞

z

Iα,σ0+,t (Bj (|uj − vj |)) (t, s) ds.

Thus

|L (u)− L (v)| ≤ λL+ |u− v| . �

Remark 3.18. Since L+ is linear, bounded and strictly positive on E, then Lemma
(3.17) implies that the condition (3.4) holds for all r∗ > 0. Moreover, the operator

L0 = λL+ = (λL+,1, λL+,2)

is linear, compact and strictly positive operator, so, the condition (3.7) is also satisfied.
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Lemma 3.19. Let θ0 = min {θ1, θ2} . Then

r (L0) ≤ β =
λ
∥∥(σ+)

α∥∥
L1

Γ (α+ 1)

∫ ∞
0

dt

θ0(t)
, (3.21)

where r (L0) is the spectral raidus of L0.

Proof. Assume that (3.21) holds. Let u = (u1, u2) ∈ ∂BE (0, 1) . For j ∈ {1, 2}

L0,j (u) = λ

∫ x

0

1

θj (z)

∫ +∞

z

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

uj (τ, s) dτ

)
(t, s) dsdz

≤ λ

∫ x

0

1

θ0 (z)

∫ +∞

z

Iα,σ0+,t (1) (t, s) dsdz

≤
λ
∥∥(σ+)

α∥∥
L1

Γ (α+ 1)

∫ ∞
0

dz

θ0 (z)
,

then for all n ∈ N∗,
Ln0 (µ) ≤ (βn, βn) .

Thus,

r (L0) = lim
n→+∞

n

√
‖Ln0‖ ≤ β. �

We consider the following hypothesis:
There exist (g1, g2) ∈ E+\ {0} and (h1, h2) ∈ E+ such that∥∥L(k) (g1, g2)

∥∥ < 1, and for all (t, x, y1, y2) ∈ R+ × R+ × R2

|fj (t, x, y1, y2)| ≤ gj (t, x) . (max (|y1| , |y2|))
1
k + hj (t, x) , ∀j ∈ {1, 2} .

(3.22)

Let r∗ = max
{
r0, (r0)

1
k ‖(g1, g2)‖+ ‖(h1, h2)‖

}
and

r0 =

∥∥L(k) (h1, h2)
∥∥

1−
∥∥L(k) (g1, g2)

∥∥ .
Theorem 3.20. Assume that the condition (3.22) holds and

1 < p− ≤ 2 ≤ p+.

If there exist r > r∗, ρ
∗ > 0 and ρ0 ∈ G\ {0} such that for all j ∈ {1, 2} , fj verifies

one of the following conditions for all t, x ∈ R+ and all (x1, x2) , (y1, y2) ∈ [−r, r]2;
|fj (t, x, x1, x2)− fj (t, x, y1, y2)| ≤ ρ0 (t) .max (|x1 − y1| , |x2 − y2|)

and

λ < ‖L+ (ρ0, ρ0)‖−1
(3.23)

or 
|fj (t, x, x1, x2)− fj (t, x, y1, y2)| ≤ ρ∗. |xj − yj | ,

and
λ.
∥∥(σ+)

α∥∥
L1

Γ (α+ 1)

∫∞
0

dt

θj(t)
< (ρ∗)

−1
,

(3.24)

then IVS (1.1) is Hyers-Ulam stable in E.
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Proof. We have from hypothesis (3.22) and remark 3.18 that the conditions (3.1),
(3.2), (3.4) and (3.7) hold.
1. Assume that the condition (3.23), this means that the hypothesis (3.3) and (3.5)
hold with

ρ = (ρ1, ρ2) = (ρ0, ρ0) ,

so, it follows from theorem 3.3) that equation (2.1) is L-Hyers-Ulam stable, and from
Lemma (3.15) that IVS (1.1) is Hyers-Ulam stable in E.
2. Now, assume that f verifies (3.24). It follows from Lemma (3.19) and (3.24) that

r(L0) ≤ β =
λ.
∥∥(σ+)

α∥∥
L1

Γ (α+ 1)

∫ ∞
0

dt

θ0(t)
< (ρ∗)

−1

and so, the conditions (3.6) and (3.8) of theorem (3.4) hold with

λ0 = ρ∗.

Consequently, IVS (1.1) is Hyers-Ulam stable in E. �

3.3. Existence and controllability

In this section, we assume that for all (t, x, u1, u2) ∈ (R+)
2 × R2 :

f (t, x, u1, u2) = G (t, x, u1, u2) + h (t, x) ,

where h ∈ E is the control function of IVS (1.1) and G ∈ E+ such that, for each
j ∈ {1, 2} ,

Gj (u1, u2) ≤ λ̄max
(
|u1|p

+−1
, |u2|p

+−1
)
, (3.25)

with

λ̄

∥∥∥∥ 1

θj

∥∥∥∥p+−1
L1

(∥∥(σ+)
α∥∥

L1

Γ (α+ 1)

)
< 1. (3.26)

We denote by C1
0,φ (R+) the set

C1
0,φ

(
R+
)

=

{
u ∈ C1

(
R+
)

: φ (u) ∈ AC
(
R+
)
, u (0) = lim

x→+∞
u′ (x) = 0

}
.

Definition 3.21. IVS (1.1) is said to be controllable in E at ∞, if given any x∞ ∈
C1

0,φ (R+) × C1
0,φ (R+) , there exists a control function h ∈ E, such that the solution

u of IVS (1.1) satisfies lim
x→+∞

u (t, x) = x∞.

Lemma 3.22. We have lim
t→∞

Iα,σ0+,t

(
t

ζj(t)

)
(t, x) > 0, ∀x ≥ 0.
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Proof. Let x ≥ 0. Since
∂σ

∂t
(t, x) > 0;

lim
t→∞

Iα,σ0+,t

(
t

ζj (t)

)
=

1

Γ (α)
lim
t→∞

∫ σ(t,x)

0

Tσ′t (T, x)

ζj (T )
(σ (t, x)− σ (T, x))

α−1
dT

≥ 1

Γ (α)
lim
t→∞

∫ σ(t,x)

σ(1,x)

Tσ′t (T, x)

aj + T
(σ (t, x)− σ (T, x))

α−1
dT

≥ lim
t→∞

σ (1, x)

Γ (α) (aj + σ (t, x))

∫ σ(t,x)

σ(1,x)

σ′t (T, x) (σ (t, x)− σ (T, x))
α−1

dT

≥ lim
t→∞

σ (1, x)

Γ (α) (aj + σ (t, x))

∫ σ(t,x)

σ(1,x)

(σ (t, x)− σ)
α−1

dσ

≥ σ (1, x)

Γ (α+ 1) (aj + σ+ (x))

(
σ+ (x)− σ (1, x)

)α
> 0.

�

Theorem 3.23. Assume that (3.25) and (3.26) hold true. Then for all h ∈ E, IVS
(1.1) admits a solution.

Proof. Let h ∈ E. We show that there exists R > 0 such that T
(
B̄ (0, R)

)
⊂ B̄ (0, R)

and then we deduce from Schauder’s theorem that the compactness of T guarantees
the existence of at least one fixed point of T which is, from Lemma (3.13), a solution
of IVS (1.1).

Assume on the contrary that for all n ∈ N∗, there is u(n) =
(
u
(n)
1 , u

(n)
2

)
∈ B̄ (0, n) ,

(t, x) ∈ R+ × R+ and j ∈ {1, 2}, such that

n ≤
∣∣∣Tj (u(n)) (t, x)

∣∣∣
=

∣∣∣∣∫ x

0

1

θj (z)
ψ

(∫ +∞

z

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

(
Gj

(
u
(n)
1 , u

(n)
2

)
+ hj

)
(τ, s) dτ

)
ds

)
dz

∣∣∣∣ .
By using the inequality (3.13) of Remark (3.11), it follows:

1≤ 1

n

∫ x

0

1

θj (z)
ψp+

(∫ +∞

z

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

(
Gj

(
u
(n)
1 , u

(n)
2

)
+ |hj |

)
(τ, s) dτ

)
ds

)
dz

≤
∫ x

0

1

θj (z)
ψp+

∫ +∞

z

Iα,σ0+,t

 1

ζj (t)

∫ t

0

Gj
(
u
(n)
1 , u

(n)
2

)
+ |hj |

np+−1

 (τ, s) dτ

ds
dz

≤ ψp+
(
λ̄+

‖hj‖0
np+−1

)∫ x

0

1

θj (z)
ψp+

(∫ +∞

z

Iα,σ0+,t

(
t

ζj (t)

)
ds

)
dz

≤ ψp+
(
λ̄+

‖hj‖0
np+−1

)∫ x

0

1

θj (z)
ψp+

(∫ +∞

0

Iα,σ0+,t (1) ds

)
dz
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≤
(
λ̄+

‖hj‖0
np+−1

) 1
p+−1

∥∥∥∥ 1

θj

∥∥∥∥
L1

(∥∥(σ+)
α∥∥

L1

Γ (α+ 1)

) 1
p+−1

.

Letting n→∞, we have

λ̄

∥∥∥∥ 1

θj

∥∥∥∥p+−1
L1

(∥∥(σ+)
α∥∥

L1

Γ (α+ 1)

)
≥ 1.

This contradicts hypothesis (3.26) and the proof is finished. �

Theorem 3.24. Assume that (3.25) and (3.26) hold true. Then IVS (1.1) is control-
lable.

Proof. For each u∞ = (u∞1 , u
∞
2 ) ∈ C2

0 (R+)× C2
0 (R+ × R+) , let

h (t, x) = − 1

lim
t→∞

Iα,σ0+,t

(
t

ζj(t)

) ( ∂

∂x
φ

(
θj .
∂u∞j
∂x

)
(x)

+ lim
t→∞

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

Gj (u1, u2) (τ, x) dτ

))
. (3.27)

Let u = (u1, u2) ∈ C1 (R+ × R+)× C2 (R+ × R+) be solution of IVS (1.1). We have
from Lemma (3.13) that for each j ∈ {1, 2} ;

uj (t, x) =

∫ x

0

1

θj (z)
ψ

(∫ +∞

z

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

(Gj (u1, u2) + hj) (τ, s) dτ

)
ds

)
dz.

This means that for every x ≥ 0,

yj (x) = lim
t→∞

uj (t, x)

=

∫ x

0

1

θj (z)
ψ

(∫ +∞

z

lim
t→∞

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

(Gj (u1, u2) + hj) (τ, s) dτ

)
ds

)
dz

⇒ − ∂

∂x
φ

(
θj .
∂yj
∂x

)
(x) = lim

t→∞
Iα,σ0+,t

(
1

ζj (t)

∫ t

0

(Gj (u1, u2) + hj) (τ, x) dτ

)
⇒ − ∂

∂x
φ

(
θj .
∂yj
∂x

)
(x)− lim

t→∞
Iα,σ0+,t

(
1

ζj (t)

∫ t

0

Gj (u1, u2) (τ, x) dτ

)
= lim
t→∞

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

hj (τ, x) dτ

)
.

then

− ∂

∂x
φ

(
θj .
∂yj
∂x

)
(x)− lim

t→∞
Iα,σ0+,t

(
1

ζj (t)

∫ t

0

Gj (u1, u2) (τ, x) dτ

)
= lim
t→∞

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

hj (τ, x) dτ

)
. (3.28)

Substituting (3.27) into (3.28), we find that

∂

∂x
φ

(
θj .
∂u∞j
∂x

)
(x) =

∂

∂x
φ

(
θj .
∂yj
∂x

)
(x) ,
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and using lim
x→∞

∂u∞j
∂x

(x) = lim
x→∞

∂yj
∂x

(x) = 0 and the fact that φ is invertible, we can

get

∂u∞j
∂x

(x) =
∂yj
∂x

(x) ,

and also, from u∞j (0) = yj (0) , it follows that

lim
t→∞

uj (t, x) = yj (x) = u∞j (x) .

Thus, at the stat ∞, u (∞, .) = u∞j . So, IVS (1.1) is controllable. �

Example 3.25. Let α = 1
2 , σ(t, x) = π

4 (1− e−t)2 e−2x and φ (x) = |x|−
1
2 .x + |x| .x.

For j ∈ {0, 1}, we have

fj (t, x, x1, x2) = Gj (t, x, x1, x2) + hj (t, x) ,

θj(x) = 1 + x2,

where hj (t, x) ∈ E is a control function.
1. If Gj (t, x, x1, x2) = gj (t, x) .xj , with

gj (t, x) =
1

π2
= λ̄.

Then p− = 3
2 < 2 < p+ = 3,

∥∥(σ+)
α∥∥

L1 =
∥∥∥√σ+

∥∥∥
L1

=

√
π

2

σ+ (x) =
π

4
e−2x.

We have λ̄ =
1

π2
and

λ̄

∥∥∥∥ 1

θj

∥∥∥∥p+−1
L1

(∥∥(σ+)
α∥∥

L1

Γ (α+ 1)

)
= λ̄

(π
2

)2( 1

Γ
(
3
2

)√π

4

)
=

1

4
< 1.

So, the conditions (3.25) and (3.26) of theorems (3.23) and (3.24) hold true. Then
IVS (1.1) is controllable.
2. Now, we assume that Gj (t, x, x1, x2) = gj (t, x) .x2j and hj (t, x) = η ∈ R+

with

gj (t, x) =
1

π2
= g+

and η verifies

η < min

{√
π

4π
,

√
π
√
π

2 (2π + 1)

}
. (3.29)
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We have

L
(k)
j (g1, g2) (t, x) =

∫ x

0

1

θj (z)
ψp+

(∫ +∞

z

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

gj (τ, s) dτ

)
(t, s) ds

)
dz

=

∫ x

0

1

1 + z2

√
g+
(∫ +∞

z

Iα,σ0+,t (1) (t, s) ds

)
dz

≤
∫ x

0

dz

1 + z2

√
g+ ‖(σ+)

α‖L1

Γ
(
3
2

)
≤

∫ x

0

dz

1 + z2

√√√√√g+
√
π

2
Γ
(
3
2

) =
√
g+. arctan (x) ,

then ∥∥∥L(k) (g1, g2)
∥∥∥ ≤ 1

2
< 1.

This means that 3.22 holds.
Moreover,

L
(k)
j (h1, h2) ≤

∫ x

0

1

θj (z)

√(∫ +∞

z

Iα,σ0+,t

(
1

ζj (t)

∫ t

0

η.dτ

)
(t, s) ds

)
dz

<
π

2

√
η

then

r0 =

∥∥L(k) (h1, h2)
∥∥

1−
∥∥L(k) (g1, g2)

∥∥ ≤ 2
∥∥∥L(k) (h1, h2)

∥∥∥ < π
√
η.

Then, from (3.29), we have

r∗ = max

{
r0,

2

π
(r0)

2
+ ‖(h1, h2)‖

}
≤ max {π√η, (2π + 1) .η}

<

√
π
√
π

2
.

Now, let r > 0 such that

r∗ < r <

√
π
√
π

2
.

For all t, x ≥ 0, (x1, x2) [−r, r]2 , (y1, y2) ∈ [−r, r]2 we have

|fj (t, x, x1, x2)− fj (t, x, y1, y2)| = gj (t, x) .
∣∣x2j − y2j ∣∣

≤ 2.r.g+. |xj − yj | = ρ∗. |xj − yj | ,

where

ρ∗ =
2.r

π2
,
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and

λ =
1

p− − 1

(
r.
∥∥(σ+)

α∥∥
L1

Γ (α+ 1)

) 2−p−

p−−1

=
4√
π
r.

As r <

√
π
√
π

2
, we have

ρ∗

Γ (α+ 1)

∫ ∞
0

∥∥(σ+)
α∥∥

L1

θj(t)
dt ≤ 2.r

π2

∫ ∞
0

1

1 + t2
dt

≤ r

π
<

√
π

4r
= λ−1.

Then, hypothesis (3.24) is also satisfied. Thus, we deduce from theorem (3.20) that
IVS (1.1) is Hyers-Ulam stable in E.
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Existence results for some anisotropic
possible singular problems via
the sub-supersolution method

Abdelrachid El Amrouss , Hamidi Abdellah and Kissi Fouad

Abstract. Using the sub-super solution method, we prove the existence of the
solutions for the following anisotropic problem with singularity:

−
N∑
i=1

∂i

(
|∂iu|pi−2∂iu

)
= f(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

where Ω ⊂ RN is a bounded domain with smooth boundary and a given singular
nonlinearity f : Ω× (0,∞) −→ [0,∞).

Mathematics Subject Classification (2010): 35B50, 35B51, 35J75, 35J60.

Keywords: Anisotropic problem, singular nonlinearity, sub-super solution, strong
maximum principle.

1. Introduction

Partial differential equations with anisotropic operators appear in several scien-
tific domains, in physics for example, such kind of operators models the dynamics of
liquids with different conductivities in different directions. Furthermore, in biology
for example, such type of operators are related to model describing the spread of epi-
demics in heterogeneous environments. Regarding the mentioned examples, we point
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out the references [14, 18, 23, 24].
Problems involving anisotropic operators ~p-Laplacian

−∆~p u = −
N∑
i=1

∂i

(
|∂iu|pi−2

∂iu
)
, (1.1)

are extensively studied in the literature and we cite them as examples [1, 3, 6, 7, 11].
We note that the operator (1.1) becomes the Laplacian operator in the case of pi = 2
and the p-Laplacian operator that is ∆pu = div

(
|∇u|p−2∇u

)
in the case of pi = p for

all i. There are many studies on Laplacian and p-Laplacian problems with singularity
in the second member, we refer to [19, 4, 22, 16, 25]. There is now a substantial body
of work and growing interest in singular problems involving anisotropic operators,
some recent results can be found in [2, 20, 17, 14].

In this paper, we study the following anisotropic problem with singularity:
−

N∑
i=1

∂i

(
|∂iu|pi−2

∂iu
)

= f(x, u) in Ω,

u > 0 in Ω,

u = 0 on ∂Ω,

(1.2)

where Ω ⊂ RN (N ≥ 3) be a bounded domain with smooth boundary and
f : Ω × (0,∞) → [0,∞) is a continuous function such that f(., t) is in Cθ(Ω) with
0 < θ < 1. Without loss of generality, we assume that p1 ≤ ... ≤ pN .

Against several works that used the approximation methods, we focuse in this
work on singular problems which have applications in anisotropic operator using the
sub and supersolution method. More precisely, we generalize the existence results
existing in [21] through replacing the p-Laplacian operator by the anisotropic one.
Moreover, we have weakened conditions given on f . In other part, this work generalise
the second member existing in [20, 17] with keeping the same anisotropic operator.

The natural functional space relevant to the problem (1.2) is the anisotropic
Sobolev spaces

W 1,~p(Ω) =
{
v ∈W 1,1(Ω); ∂iv ∈ Lpi(Ω)

}
,

and

W 1,~p
0 (Ω) = W 1,~p(Ω) ∩W 1,1

0 (Ω),

endowed by the usual norm

‖v‖
W 1,~p

0 (Ω)
=

N∑
i=1

‖∂iv‖Lpi (Ω) .

Where ∂ui denotes the i− th weak partial derivative of u.
In the following, we assume that p < N , with

1

p
=

1

N

N∑
i=1

1

pi
,

N∑
i=1

1

pi
> 1,
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p∗ =
pN

N − p
and p∞ = max {p∗, pN} .

Then for every r ∈ [1, p∞] the embedding

W 1,~p
0 (Ω) ⊂ Lr(Ω),

is continuous, and compact if r < p∞. We refer to see [13].
Owing to the absence of a strong maximum principle, we will usually assume that
pi ≥ 2 for all i.

Definition 1.1. We will say that u ∈ W 1,~p
0 (Ω) is a solution to (1.2) if and only if, the

following equality holds:

N∑
i=1

∫
Ω

|∂iu|pi−2
∂iu∂iϕ dx =

∫
Ω

f(x, u)ϕ dx , (1.3)

for all ϕ ∈W 1,~p
0 (Ω).

Now, we are in a position to present our first results. For this, let g be a continu-
ous positive function on (0,∞). Assume that f and g satisfy the following conditions

(G) g(0+) = lim
t→0+

g(t) = +∞.

(H0) ςµ(x) = sup
t≥µ

f(x, t) ∈ Lr(Ω) for each µ > 0 with r >
N

p
.

(H1) There exist two measurable nontrivial functions β, γ and a positive constant

λ such that

β(x) ≤ f(x, s) 6 γ(x)g(s) for every 0 < s < λ, a.e. x ∈ Ω,

with 0 ≤ β(x) ≤ γ(x) a.e. x ∈ Ω, γ ∈ Lr(Ω), r >
N

p
.

Theorem 1.2. If (H0) − (H1), (G) hold and g is non-increasing, then problem (1.2)

has a solution in W 1,~p
0 (Ω).

Theorem 1.3. If (H0)− (H1), (G) hold and g satisfies the following condition

lim sup
t−→0+

tg(t) < +∞,

then problem (1.2) has a solution in W 1,~p
0 (Ω).

Remark 1.4. Consider g(s) = 1
sαlnβ(s+1)

, with 0 < α < 1 and β ≥ 1−α. The function

g satisfies the conditions of Theorem 1.2, however g doesn’t verify the condition (3)
of (G2) of Theorem3.1 in [21].
Also, the function g given by g(t) = 1

tθ
satisfies the conditions of Theorem 1.2 for

each θ > 0, but the same function g verifies the condition (3) of (G2) of Theorem [21]
for only θ > 1.

This paper is organized as follows: in section 2, we recall some necessary defini-
tions of the classical anisotropic operator, also we mention a technical Lemma and we
prove it. In section 3, by using comparison principle and sub-supersolution method,
we give the proofs of our results.
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2. Preliminaries

Consider the following anisotropic problem:{
−
∑N
i=1 ∂i

(
|∂iu|pi−2

∂iu
)

= f(x, u) in Ω,

u = τ on ∂Ω,
(2.1)

where τ in W 1,~p(Ω).

Definition 2.1. Let u ∈W 1,~p(Ω) such that u− τ ∈W 1,~p
0 (Ω), u is a solution of (2.1) if

and only if for every ϕ ∈W 1,~p
0 (Ω)∫

Ω

(
N∑
i=1

|∂iu|pi−2
∂iu∂iϕ − f(x, u)ϕ

)
dx = 0 . (2.2)

Definition 2.2. Let (u, ū) ∈W 1,~p(Ω)×W 1,~p(Ω),
u is called a subsolution of the problem (2.1), if∫

Ω

N∑
i=1

|∂iu|pi−2
∂iu∂iϕdx ≤

∫
Ω

f(x, u)ϕdx and (u− τ)+ ∈W 1,~p
0 (Ω),

u is said a supersolution of the problem (2.1), if∫
Ω

N∑
i=1

|∂iu|pi−2
∂iu∂iϕdx ≥

∫
Ω

f(x, u)ϕdx and (u− τ)− ∈W 1,~p
0 (Ω),

for all functions 0 ≤ ϕ ∈W 1,~p
0 (Ω).

Now, we need to proved the following lemma.

Lemma 2.3. Let f satisfies (H0) and τ ∈ W 1,−→p (Ω) with τ > 0 in Ω. Let φsub and
φsuper be sub-solution and super-solution of (2.1) respectively with φsuper > φsub a.e.
in Ω.
If 0 < µ < φsub a.e. in Ω, where µ is a constant, then the problem (2.1) has at least

one positive solution u ∈W 1,−→p (Ω) such that φsub < u < φsuper a.e. in Ω.

Proof. Let T : Ω× R −→ R be defined by

T (x, t) :=

{
f(x, µ) if t < µ,

f(x, t) if t > µ.

We will consider the following problem−
N∑
i=1

∂i

(
|∂iu|pi−2

∂iu
)

= T (x, u) in Ω,

u = τ on ∂Ω.

(2.3)

It is easy to see that φsub and φsuper are sub and super-solution respectively of
this problem. Since T (x, .) is Hölder continuous in R for each x ∈ Ω, |T (x, t)| ≤ ςµ(x)

in Ω× R and ςµ ∈ Lr(Ω) with r > N
p , then by [[5], Theorem 4.14] the problem (2.3)
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has a solution u ∈ W 1,−→p (Ω) such that φsub ≤ u ≤ φsuper, a.e. in Ω. Since µ < φsub
a.e. in Ω, then T (x, u) = f(x, u) a.e. in Ω. Finally, we note that u is a solution of (2.1)
as claimed. �

3. Proof of the main results

Proof of Theorem 1.2. Let φ be a solution of the following problem−
N∑
i=1

∂i

(
|∂iu|pi−2

∂iu
)

= γ(x) in Ω,

u = 1 on ∂Ω.

(3.1)

As γ ∈ Lr(Ω) with r ≥ N
p , then according to [[6], Theorem 2.1], we have φ ∈W 1,~p(Ω)∩

L∞(Ω). Using comparison lemma in [[10], Lemma 2.5], we get φ ≥ 1 a.e. in Ω. We
can assume without loss of generality that φ < λ a.e. in Ω. If not, we replace λ by
λ∗ = max{λ , ‖φ‖L∞(Ω) + 1}.
From (H1) and as φ ≥ 1 a.e. in Ω, then∫

Ω

f(x, φ)ϕ ≤
∫

Ω

γ(x)g(φ)ϕ

=

∫
{φ≥1}

γ(x)g(φ)ϕ

≤
∫
{φ≥1}

γ(x)g(1)ϕ.

Without lost of generality, by replacing γ by g(1)γ and g by g
g(1) , we deduce that∫

Ω

f(x, φ)ϕ ≤
∫

Ω

γ(x)ϕ. (3.2)

Let k ∈ N∗, we consider the following problem

(Pk)

−
N∑
i=1

∂i

(
|∂iu|pi−2

∂iu
)

= f(x, u) in Ω,

u = 1
k on ∂Ω.

From the inequality (3.2) and the condition (H0), we obtain∫
Ω

N∑
i=1

|∂iφ|pi−2
∂iφ∂iϕdx−

∫
Ω

f(x, φ)ϕdx

≥
∫

Ω

N∑
i=1

|∂iφ|pi−2
∂iφ∂iϕdx−

∫
Ω

γϕdx = 0,

for all positive function ϕ ∈ W 1,~p
0 (Ω) and (φ − 1

k )− ∈ W 1,~p
0 (Ω). Thus, φ is a super-

solution of the problem (Pk) in Ω for all k = 1, 2, ....
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Take φk be the solution of−
N∑
i=1

∂i

(
|∂iu|pi−2

∂iu
)

= βk(x) in Ω,

u = 1/k on ∂Ω,

(3.3)

for k = 1, 2, ..., where βk(x) = min{β(x)k+1
k }, for x ∈ Ω.

Let φ∞ the solution of (3.3) when k = ∞ and β∞(x) = min{β(x)}. As βk ∈ Lr(Ω)
with r > N

P
, it follows that φk ∈ L∞(Ω) ( see [[6], Theorem 2.1] ). By the comparison

lemma in [[10], Lemma 2.5 ], we have

0 ≤ φ∞ ≤ φk ≤ φ1 a.e. in Ω, for all k = 1, 2, ...

Moreover φk ≥ k−1 a.e. in Ω for all k = 1, 2, ...
Since β∞ ∈ L∞(Ω), β∞ 6= 0 in Ω and p1 ≥ 2, using the Strong Maximum Principle
see ([8], Corollary 4.4.) and ([7], Theorem 1.1), we easily see that φ∞ > 0 for all
compact K in Ω.
By comparison lemma in [[10], Lemma 2.5 ], since 0 ≤ β ≤ γ a.e. x in Ω, we deduce
that φk ≤ φ for a.e. x in Ω and every k = 1, 2, ...
Then from the condition (H0) and since φk ≤ φ < λ a.e. in Ω for all k = 1, 2, ..., we get

∫
Ω

N∑
i=1

|∂iφk|pi−2
∂iφk∂iϕdx−

∫
Ω

f(x, φk)ϕdx

≤
∫

Ω

N∑
i=1

|∂iφk|pi−2
∂iφk∂iϕdx−

∫
Ω

γϕdx = 0,

for all positive function ϕ in W 1,~p
0 (Ω) and (φk − 1

k )+ ∈ W 1,~p
0 (Ω). Hence φk is a

sub-solution of (Pk) for all k = 1, 2, ...
Now let j ∈ N∗, by Lemma 2.3 there exist a solution uj of the problem (Pj) such that
φj ≤ uj ≤ φ a.e. in Ω. Moreover uj is a super-solution of (Pj+1), using again Lemma
2.3, there is a solution uj+1 of the problem (Pj+1) where φj+1 ≤ uj+1 ≤ uj a.e. in
Ω. By continuing to do so, we build a sequence (uk) of solutions of the problem (Pk)
such that for every k ≥ j we have

φ∞ ≤ uk+1 ≤ uk ≤ ... ≤ uj ≤ φ a.e. in Ω.

We should also note that uk ≥ k−1 a.e. in Ω. We define u(x) = lim
k→∞

uk(x) a.e in Ω.

Now, as φ∞ is locally Hölder continuous in Ω (see [7]) and φ∞ > 0 for all compact K
in Ω, hence inf

supp(φ)
φ∞ > 0. Take

ζk =
uk − k−1

g

(
inf

supp(φ)
φ∞

)
as a test function, then in view of (H0) and [[12], Theorem 1.3.], we distinguish two
cases:
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If g

(
inf

supp(φ)
φ∞

)
≥ 1, we get the following inequality

‖ζk‖p0
W 1,−→p

0 (Ω)

NpN−1
−N ≤

N∑
i=1

∫
Ω

|∂iζk|pidx

≤ 1

g

(
inf

supp(φ)
φ∞

) N∑
i=1

∫
Ω

|∂iuk|pidx

=

∫
Ω

f(x, uk)
uk − k−1

g

(
inf

supp(φ)
φ∞

)dx
≤
∫

Ω

f(x, uk)
uk

g

(
inf

supp(φ)
φ∞

)dx ,
where p0 = p1 if ‖ζk‖W 1,−→p

0 (Ω)
≥ 1 and p0 = pN if ‖ζk‖W 1,−→p

0 (Ω)
< 1.

From (H1) and since uk ≤ φ < λ for all k = 1, 2, ..., a.e. in Ω, we obtain

‖ζk‖p0
W 1,−→p

0 (Ω)

NpN−1
−N ≤

∫
Ω

γ(x)g(uk)
φ

g

(
inf

supp(φ)
φ∞

)dx
=

∫
supp(φ)

γ(x)g(uk)
φ

g

(
inf

supp(φ)
φ∞

)dx.
On the other hand as g is non-increasing, g (uk) ≤ g(φ∞) a.e. in Ω and g (φ∞) ≤

g

(
inf

supp(φ)
φ∞

)
a.e. in supp(φ). Then according to the above equality, we find

‖ζk‖p0
W 1,−→p

0 (Ω)
≤ λNpN−1‖γ‖L1(Ω) +NpN .

If g

(
inf

supp(φ)
φ∞

)
< 1, we have

‖uk − k−1‖p0
W 1,−→p

0 (Ω)

NpN−1
−N ≤

N∑
i=1

∫
Ω

|∂i
(
uk − k−1

)
|pidx

=

∫
Ω

f(x, uk)
(
uk − k−1

)
dx

≤
∫
supp(φ)

γ(x)g(uk)φdx ,

where p0 = p1 if ‖uk − k−1‖
W 1,−→p

0 (Ω)
≥ 1 and p0 = pN if ‖uk − k−1‖

W 1,−→p
0 (Ω)

< 1.

Since g (uk) ≤ g

(
inf

supp(φ)
φ∞

)
< 1 a.e. in supp(φ) and φ < λ for a.e. in Ω, then we
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obtain

‖uk − k−1‖p0
W 1,−→p

0 (Ω)
≤ λNpN−1‖γ‖L1(Ω) +NpN ,

which implies the inequality

‖ζk‖p0
W 1,−→p

0 (Ω)
=

1

g

(
inf

supp(φ)
φ∞

)p0 ‖uk − k−1‖p0
W 1,−→p

0 (Ω)

≤ 1

g

(
inf

supp(φ)
φ∞

)p0 (λNpN−1‖γ‖L1(Ω) +NpN
)

and thus

‖ζk‖p0
W 1,−→p

0 (Ω)
≤
λNpN−1‖γ‖L1(Ω) +NpN

g

(
inf

supp(φ)
φ∞

)p0 .

Finally, we conclude that ζk ∈W 1,−→p
0 (Ω) ∩ L∞(Ω) for every k.

Since (ζk) is bounded in W 1,−→p
0 (Ω), it follows that ζk ⇀ v in W 1,−→p

0 (Ω) and (ζk)

converge weakly to the same limit in W 1,−→p (Ω). As (uk) is bounded in W 1,−→p (Ω), we

have uk ⇀ u in W 1,−→p (Ω), strongly in Lp(Ω) and almost everywhere in Ω.

In other part, we have uk = g

(
inf

supp(φ)
φ∞

)
ζk+k−1 ⇀ g

(
inf

supp(φ)
φ∞

)
v in W 1,−→p (Ω),

strongly in Lp(Ω) and almost everywhere in Ω. Therefore, we can conclude that

u = g

(
inf

supp(φ)
φ∞

)
v almost everywhere in Ω, we easily see that v ∈W 1,−→p

0 (Ω) which

implies that u ∈W 1,−→p
0 (Ω).

Let Ω0 be a compact domain in Ω. We define µ = min
Ω0

φ∞, from ([7], Theo-

rem 1.1), φ∞ > 0 a.e. in Ω, we have µ > 0. Hence

|(f (x, uk)− f (x, uj)) (uk − uj)| 6 4ςµ(x)φ,

which implies that

N∑
i=1

∫
Ω0

(
|∂iuk|pi−2

∂iuk − |∂iuj |pi−2
∂iuj

)
∂i (uk − uj) dx→ 0 (3.4)

as k, j →∞. From ([15], Proposition 1.) and (3.4), we get

N∑
i=1

∫
Ω0

|∂iuk − ∂iuj |pidx→ 0, k, j →∞. (3.5)

We observe that

uk −→ u in Lpi(Ω0). (3.6)

From (3.5), (3.6), we obtain that (uk) is Cauchy sequence in W 1,−→p (Ω0) which is a

Banach space, therefore uk −→ u in W 1,−→p (Ω0). We conclude that for any compact
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set Ω0 in Ω, there exist a subsequence (uk) such that uk −→ u in W 1,−→p (Ω0).
We mention the following estimates. We have for all pi ≥ 2 with i ∈ {1, 2, ..., N}

‖ (|∂iuk|+ |∂iu|)
(pi−2)pi
pi−1 ‖Lpi−1/(pi−2)(Ω0) =

(∫
Ω0

(|∂iuk|+ |∂iu|)pi dx
)pi−2/(pi−1)

≤ 2pi−2

(∫
Ω0

|∂iuk|pi + |∂iu|pidx
)pi−2/(pi−1)

≤ 2pi−2M, (3.7)

where M is a positive constant independent of x. Using Hölders inequality, we get∫
Ω0

(|∂iuk|+ |∂iu|)(pi−2)p′i dx ≤‖ (|∂iuk|+ |∂iu|)
(pi−2)pi
pi−1 ‖Lpi−1/(pi−2)(Ω0)(|Ω0|pi−1).

(3.8)

By the inequality (3.7), we have∫
Ω0

(|∂iuk|+ |∂iu|)(pi−2)p′i dx ≤2pi−2M |Ω0|pi−1. (3.9)

Using again Hölders inequality, we obtain

N∑
i=1

∫
Ω0

|∂iuk − ∂iu| (|∂iuk|+ |∂iu|)pi−2
dx

≤
N∑
i=1

‖∂iuk − ∂iu‖Lpi (Ω0)‖ (|∂iuk|+ |∂iu|)pi−2 ‖
Lp
′
i (Ω0)

,

from the inequality (3.9), we deduce that

N∑
i=1

∫
Ω0

|∂iuk − ∂iu| (|∂iuk|+ |∂iu|)pi−2
dx

≤ M2pN−2 (|Ω0|+ 1)
pN−1

N∑
i=1

‖∂iuk − ∂iu‖Lpi (Ω0)

≤ M2pN−2 (|Ω0|+ 1)
pN−1 ‖uk − u‖W 1,−→p (Ω0). (3.10)

Now, we recall the fallowing useful inequality (see [9]) that hold for all a, b in RN and
pi ≥ 2 for all i = 1, 2, ..., N

||a|pi−2a− |b|pi−2b| ≤ c(|a|+ |b|)pi−2|a− b|, (3.11)

where c is a positive constant independent of a and b. By estimation (3.10) and
inequality (3.11), it follows that

lim
k→+∞

N∑
i=1

∫
Ω0

||∂iuk|pi−2∂iuk − |∂iu|pi−2∂iu|dx = 0 . (3.12)
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Let ξ ∈ C∞0 (Ω) such that supp (ξ) ⊆ Ω0 ⊂ Ω. From the limite (3.12), we conclude
that

N∑
i=1

∫
Ω

|∂iuk|pi−2∂iuk∂iξ dx −→
N∑
i=1

∫
Ω

|∂iu|pi−2∂iu∂iξ dx as k −→ +∞. (3.13)

On the other hand, since |f(x, uk)ξ| ≤ Cςµ(x) a.e. in Ω0, where C is a positive
constant independent of x and ςµ ∈ L1(Ω), we obtain∫

Ω

f (x, uk) ξ dx→
∫

Ω

f(x, u)ξ dx. (3.14)

Hence by (3.13) and (3.14), we conclude that for all ξ ∈ C∞0 (Ω)

N∑
i=1

∫
Ω

|∂iu|pi−2∂iu∂iξ dx =

∫
Ω

f(x, u)ξ dx.

Consequently, the identity (1.3) holds for every ξ in C∞0 (Ω). Now it remains to shows

that identity (1.3) is satisfied for every ξ ∈ W 1,−→p
0 (Ω). Let ν ∈ W 1,−→p

0 (Ω), choose a
sequence (ηk) of non-negative functions in C∞0 (Ω) such that

ηk → |ν| in W 1,−→p
0 (Ω).

For subsequence if necessary, we can suppose that ηk → |ν| a.e. in Ω, then through
the Fatou’s lemma and Hölder’s inequality, we have∣∣∣∣∫

Ω

f(x, u)ν

∣∣∣∣ ≤ ∫
Ω

f(x, u)|ν| ≤ lim inf
k→∞

∫
Ω

f(x, u)ηk

= lim inf
k→∞

N∑
i=1

∫
Ω

|∂iu|pi−2∂iu∂iηk

≤ lim inf
k→∞

N∑
i=1

‖|∂iu|pi−2∂iu‖Lp′i (Ω)
‖∂iηk‖Lpi (Ω)

≤ lim inf
k→∞

N∑
i=1

‖∂iu‖pi−1
Lpi (Ω)‖∂iηk‖Lpi (Ω)

≤‖u‖q−1

W 1,−→p
0 (Ω)

lim inf
k→∞

N∑
i=1

‖∂iηk‖Lpi (Ω)

≤‖u‖q−1

W 1,−→p
0 (Ω)

lim inf
k→∞

‖ηk‖W 1,−→p
0 (Ω)

≤‖u‖q−1

W 1,−→p
0 (Ω)

‖ν‖
W 1,−→p

0 (Ω)
,

with q = p1 if ‖u‖
W 1,−→p

0 (Ω)
< 1 and q = pN if ‖u‖

W 1,−→p
0 (Ω)

≥ 1 . Now for ξ ∈W 1,−→p
0 (Ω),

choosing again a sequence (ξk) of function in C∞0 (Ω) such that ξk → ξ. By taking
ν = ξk − ξ in the previous inequality, we get

lim
k→∞

∫
Ω

f(x, u)ξk dx =

∫
Ω

f(x, u)ξ dx .
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Furthermore

lim
k→+∞

N∑
i=1

∫
Ω

|∂iu|pi−2∂iu∂iξk dx =

N∑
i=1

∫
Ω

|∂iu|pi−2∂iu∂iξ dx.

Hence (1.3) holds for every ξ in W 1,−→p
0 (Ω). Consequently u ∈ W 1,−→p

0 (Ω) is a solution
of (1.2) such that φ∞ ≤ u ≤ φ a.e. in Ω. �

Proof of Theorem 1.3. From Lemma 2.3 and comparison lemma in [[10], Lemma 2.5
], and by following the same steps of the proof of Theorem 1.2, we can build a sequence
(uk) of solutions of the problem (Pk) such that

φ∞ ≤ uk+1 ≤ uk ≤ ... ≤ uj ≤ φ a.e. in Ω, for k ≥ j,

where (Pk) is defined in the proof of Theorem 1.2. We also note that uk ≥ k−1 a.e.
in Ω. We define u(x) = lim

k→∞
uk(x) a.e in Ω.

We take ζk = uk−k−1 as a test function. From the condition (H0) and [[12], Theorem
1.3.], we have

‖ζk‖p0
W 1,−→p

0 (Ω)

NpN−1
−N ≤

N∑
i=1

∫
Ω

|∂iuk|pidx

=

∫
Ω

f(x, uk)
(
uk − k−1

)
dx

≤
∫

Ω

f(x, uk)uk dx

≤
∫
supp(uk)

γ(x)g(uk)uk dx , (3.15)

where p0 = p1 if ‖ζk‖W 1,−→p
0 (Ω)

≥ 1 and p0 = pN if ‖ζk‖W 1,−→p
0 (Ω)

< 1.

Since lim sup
t−→0+

tg(t) < +∞, then there exist tow positive constants C and ε such that

tg(t) 6 C for all 0 < t < ε.

If 0 < uk < ε, we obtain

γ(x)g(uk)uk ≤ Cγ(x) a.e. in supp(uk). (3.16)

If ε ≤ uk ≤ λ, as g is continuous on (0,∞), we get

γ(x)g(uk)uk ≤ λMγ(x) a.e. in supp(uk), (3.17)

with M is a constant positive such that g(s) < M for all ε ≤ s ≤ λ. By the inequality
(3.16) and (3.17), we deduce

γ(x)g(uk)uk ≤ max{λM,C}γ(x) a.e. in supp(uk). (3.18)

From the inequality (3.15), (3.18) and as γ ∈ Lr(Ω) with r > N
p̄ , we obtain

‖ζk‖p0
W 1,−→p

0 (Ω)
< max{λM,C}NpN−1‖γ‖L1(Ω) +NpN .
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Thus the sequence (ζk) is bounded in W 1,−→p
0 (Ω).

Following the same techniques of the proof of Theorem 1.2. We prove the existence
of solution
u ∈W 1,−→p

0 (Ω) of the problem (1.2) such that φ∞ ≤ u ≤ φ a.e. in Ω. �

Remark 3.1. Note that if the conditions (H0)− (H1), (G) are satisfied and we replace
the condition of g in the Theorem 1.2 by h(s) = sg(s) where s > 0 is nondecreasing.
Then the problem (1.2) has a solution.
It suffices to show that ∫

Ω

f (x, uk)uk dx <∞.

In fact ∫
Ω

f (x, uk)uk dx ≤
∫

Ω

γ(x)g(uk)uk dx.

As h is nondecreasing for all s > 0, it follows that∫
Ω

f (x, uk)uk dx ≤
∫
supp(φ)

γ(x)g(φ)φdx

≤
∫
supp(φ)

γ(x)g(‖φ‖L∞(Ω))‖φ‖L∞(Ω) dx

≤ g(‖φ‖L∞(Ω))‖φ‖L∞(Ω)‖γ‖L1(Ω) <∞ .

Corollary 3.2. Let g be a nonincreasing function from (0,∞) to (0,∞), satisfies (G).
Suppose that ∫ λ

0

g(x) dx < +∞

for same λ > 0. If f(x, t) = γ(x)g(t) for some non-trivial and non-negative γ ∈ Lr(Ω)

with r > N
p , then (1.2) has a weak solution in W 1,−→p

0 (Ω).

Proof. Using the fact that f(x, t) = γ(x)g(t) and γ ∈ Lr(Ω) with r > N
p , then

conditions (H0) − (H1) are satisfied. Hence, similar to the proof of Theorem 1.3, we
can build a sequence (uk) of solutions of the problem (Pk) such that

φ∞ ≤ uk+1 ≤ uk ≤ ... ≤ uj ≤ φ a.e. in Ω, for k ≥ j.

In addition, since
∫ λ

0
g(x) dx < +∞, then tg(t) ≤ M for all 0 < t < λ and some

positive constant M, thus

γ(x)g(uk)uk ≤ Mγ(x) a.e. in supp(uk).

As in the proof of Theorem 1.3, we combine the above inequality with (3.15), we get

‖ζk‖p0
W 1,−→p

0 (Ω)
< MNpN−1‖γ‖L1(Ω) +NpN ,

where ζk = uk − k−1. Thus ζk is bounded in W 1,−→p
0 (Ω). The proof is completed. �
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non-homogeneous anisotropic elliptic systems
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Abstract. We study the existence of infinitely many weak solutions for a new class
of nonhomogeneous Neumann elliptic systems involving operators that extend
both generalized Laplace operators and generalized mean curvature operators in
the framework of anisotropic variable spaces.
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1. Introduction

In the recent years, the anisotropic variable exponent Sobolev space W 1,~z(·)(Ω)
have captured the attention of many mathematicians, physicists and engineers. The
impulse for this mainly comes from their important applications in modelling real
world problems in electrorheological, magneto-rheological fluids, elastic materials and
image restoration (see for example [11, 20, 21]). Predominantly, the focus lies on
boundary value problems featuring generalized Laplace operators or generalized mean
curvature operators. An attractive proposal is to employ operators of greater gener-
ality, capable of producing both Laplace-style and mean curvature-style operators.
This includes equations structured as follows:

−
N∑
i=1

∂xi

(
∂3Ai

(
·, u, ∂xi

u
))

= f(x, u) in Ω,

N∑
i=1

∂3Ai

(
·, u, ∂xi

u
)
γi = 0 on ∂Ω,

(1.1)
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where Ai : Ω × R × R −→ R for i = 1, . . . , N are Carathéodory functions satisfy
suitable conditions.

Moreover, on one hand the operator introduced in the previous equation has the
potential to be transformed into the ~z(·)-Laplace anisotropic operator given by

∆~z(·)u =

N∑
i=1

∂xi

(
|∂xiu|zi(x)−2∂xiu

)
, (1.2)

when

Ai(x, u, t) =
1

zi(x)
|t|zi(x)

which fulfills the assumptions (H1)-(H4) in section 3. It is clear that by selecting
z1(·) = · · · = zN (·) = z(·), we find an operator known as the z(·)-orthotropic operator,
which possesses analogous characteristics to the variable exponent z(·)-Laplace oper-
ator, the relation between the ~z(·)-Laplace anisotropic operator, the z(·)-Laplacian,
and the z(·)-orthotropic operator is noteworthy. When z1, . . . , zN are constant func-
tions, we find the ~z-Laplacian operator. Noting that ~z(·)-Laplacian operator acts as a
versatile bridge between these different operational modes, facilitating the analysis of
diverse situations. For some existing results for strongly nonlinear elliptic equations
in the anisotropic variable exponent Sobolev spaces, see [4, 13, 26]. Notice that the
general operator given by (1.2) can admit degenerate and singular points. It is no
surprise to find that there are already papers treating problems with this kind of
operator. To give some examples, we refer the reader to [8, 17, 18], where the authors
were concerned with Dirichlet problems. We, on the other hand, are interested in a
Neumann problem. We refer the reader to [1, 12].

On the other hand, the operator in (1.1) generalized the operator corresponding
to the anisotropic variable mean curvature given by

N∑
i=1

∂xi

(
(1 + |∂xiu|2)

zi(x)−2

2 ∂xiu
)
, (1.3)

when

Ai(x, u, t) =
1

zi(x)
(1 + |t|2)

zi(x)

2

which satisfies the assumptions (H1)-(H4) in section 3.

Despite the fact that a specialized form of the operator described in (1.1) with
Ai(x, u, t) = ai(x, t) was initially addressed by Boureanu in [9], it is essential to
emphasize that the assumptions we have employed in our research are entirely unique.
As a result, our outcomes are distinct, stemming from the utilization of a variational
principle presented by Ricceri in [24].
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In this paper, we are interested in the following problem:

(P)



−
N∑
i=1

∂xi

(
∂4Ai

(
·, u, v, ∂xiu, ∂xiv

))
+ a0(x, u, v) = η(x)f(u, v) in Ω,

−
N∑
i=1

∂xi

(
∂5Bi

(
·, u, v, ∂xiu, ∂xiv

))
+ b0(x, u, v) = η(x)g(u, v) in Ω,

N∑
i=1

∂4Ai

(
·, u, v, ∂xiu, ∂xiv

)
γi = 0 on ∂Ω,

N∑
i=1

∂5Bi

(
·, u, v, ∂xiu, ∂xiv

)
γi = 0 on ∂Ω,

where Ω ⊂ RN be a rectangular-like domain, ∂4Ai (resp ∂5Bi) stands for the partial
derivative with respect to the fourth variable of Ai (resp the fifth variable of Bi),
satisfying some conditions in Section 3.

Boureanu in [10] revolves around exploring the concept of weak solvability in the
context of two distinct anisotropic systems characterized by variable exponents. The
first system is situated within a rectangular like domain and is governed by no-flux
boundary conditions, while the second system is located within a general bounded do-
main and is subject to zero Dirichlet boundary conditions. Both systems incorporate
Leray-Lions type operators which is a particular case of the operator introduced in
(1.1) and involve a function F exhibiting sublinear behavior at both zero and infinity.
The operators we consider encompass a wide range of possibilities, including gen-
eralized Laplace operators, generalized orthotropic Laplace operators, Laplace-type
operators stemming from capillary phenomena, and generalized mean curvature oper-
ators. The operators considered encompass a wide spectrum of possibilities, including
generalized Laplace operators, generalized orthotropic Laplace operators, Laplace-
type operators arising from capillary phenomena, and generalized mean curvature
operators. The problem under consideration is characterized by carefully crafted hy-
potheses tailored to capture its unique intricacies, rendering it challenging to encap-
sulate within a single equation. The provided examples of function F illustrate the
diversity inherent in our approach, and the multiplicity results are established through
the application of critical point theory.

A large number of papers was devoted to the study the existence of solutions of
elliptic systems under various assumptions and in different contexts for a review on
classical results, see [2, 3, 6, 7, 20, 21, 25].

The main difficulties in this kind of problem are the framework of anisotropic
Sobolev spaces and the fact that we have new class of non-homogeneous Neumann
elliptic systems that make some difficulties in the application of Theorem 1.1.

We introduce the following theorem, which will be essential to establish the
existence of weak solutions for our main problem.

Theorem 1.1. (See [24], Theorem 2.5 ). Let X be a reflexive real Banach space, and
let Φ,Ψ : X −→ R be two sequentially weakly lower semi-continuous and Gâteaux
differentiable functionnals. Assume also that Ψ is (strongly) continuous and satisfies
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lim
‖u‖→+∞

Ψ(u) = +∞. For each ρ > infX Ψ, put

ϕ(ρ) = inf
u∈Ψ−1(]−∞,ρ[)

Φ(u)− inf
v∈Ψ−1(]−∞,ρ[)w

Φ(v)

ρ−Ψ(u)
, (1.4)

where Ψ−1(]−∞, ρ[)
w

is the closure of Ψ−1(]−∞, ρ[) in the weak topology.
Furthermore, set

γ = lim inf
ρ→+∞

ϕ(ρ), (1.5)

and

δ = lim inf
ρ→(infX Ψ)+

ϕ(ρ). (1.6)

Then, the following conclusions hold:
(a) For each ρ > infX Ψ and each t > ϕ(ρ), the functional Φ + tΨ has a critical point
which lies in Ψ−1(]−∞, ρ[).
(b) If γ < +∞, then, for each t > γ, the following alternative holds: either Φ + tΨ
has a global minimum, or there exists a sequence (un)n of critical points of Φ + tΨ
such that lim

n→∞
Ψ(un) = +∞.

(c) If δ < +∞, then, for each t > δ, the following alternative holds: either there
exists a global minimum of Ψ which is a local minimum of Φ + tΨ, or there exists
a sequence of pairwise distinct critical points of Φ + tΨ which weakly converges to a
global minimum of Ψ.

This paper is organized as follows: In Section 2, we present some necessary
preliminary knowledge on the anisotropic Sobolev spaces with variable exponents. We
introduce in the Section 3, some assumptions for which our problem has a solutions
and we prove the existence of infinitely many weak solutions for our Neumann elliptic
problem.

2. Preliminaries results

In this section we summarize notation, definitions and properties of our frame-
work. For more details we refer to [14]. Let Ω be a bounded domain in RN , we
define:

C+(Ω) =
{

measurable function p(·) : Ω −→ R such that 1 < p− ≤ p+ <∞
}
,

where
p− = ess inf

{
p(x) / x ∈ Ω

}
and p+ = ess sup

{
p(x) / x ∈ Ω

}
.

We define the Lebesgue space with variable exponent Lp(·)(Ω) as the set of all mea-
surable functions u : Ω 7−→ R for which the convex modular

ρp(·)(u) :=

∫
Ω

|u|p(x)dx,

is finite, then

‖u‖Lp(·)(Ω) = ‖u‖p(·) = inf
{
λ > 0 : ρp(·)(u/λ) ≤ 1

}
,
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defines a norm in Lp(·)(Ω), called the Luxemburg norm. The space (Lp(·)(Ω), ‖ · ‖p(·))
is a separable Banach space. Moreover, the space Lp(·)(Ω) is uniformly convex, hence

reflexive, and its dual space is isomorphic to Lp
′(·)(Ω), where

1

p(·)
+

1

p′(·)
= 1. Finally,

we have the Hölder type inequality:∣∣∣∣∫
Ω

uv dx

∣∣∣∣ ≤ ( 1

p−
+

1

(p′−)

)
‖u‖p(·)‖v‖p′(·), (2.1)

for all u ∈ Lp(·)(Ω) and v ∈ Lp′(·)(Ω).
An important role in manipulating the generalized Lebesgue spaces is played by the
modular ρp(·) of the space Lp(·)(Ω). We have the following result.

Proposition 2.1. (See [14, 17].) If u ∈ Lp(·)(Ω), then the following properties hold
true:

(i). ‖u‖p(·) < 1(respectively,= 1, > 1)⇔ ρp(·)(u) < 1(respectively, = 1, > 1),

(ii). ‖u‖p(·) > 1⇒ ‖u‖p
−

p(·) < ρp(·)(u) < ‖u‖p
+

p(·),

(iii). ‖u‖p(·) < 1⇒ ‖u‖p
+

p(·) < ρp(·)(u) < ‖u‖p
−

p(·).

We define the Sobolev space with variable exponent by:

W 1,p(·)(Ω) =
{
u ∈ Lp(·)(Ω) and |∇u| ∈ Lp(·)(Ω)

}
,

equipped with the following norm

‖u‖W 1,p(·)(Ω) = ‖u‖1,p(·) = ‖u‖p(·) + ‖∇u‖p(·).

The space (W 1,p(·)(Ω), ‖ · ‖1,p(·)) is a separable and reflexive Banach space. We refer
to [14] for the elementary properties of these spaces.

Remark 2.2. Recall that the definition of these spaces requires only the measurability
of p(·). In this work, we do not need to use Sobolev and Poincaré inequalities. Note
that the sharp Sobolev inequality is proved for p(·)-log-Hölder continuous, while the
Poincaré inequality requires only the continuity of p(·) (see [14]).

Now, we present the anisotropic Sobolev space with variable exponent which is
used for the study of our main problem.

Let p1(·), . . . , pN (·) be N variable exponents in C+(Ω). We denote

~p(·) =
{
p1(·), . . . , pN (·)

}
, and Diu =

∂u

∂xi
for i = 1, . . . , N,

and for all x ∈ Ω we put

pM (·) = max
{
p1(·), ..., pN (·)

}
and pm(·) = min

{
p1(·), ..., pN (·)

}
.

We define

p = min
{
p−1 , p

−
2 , . . . , p

−
N

}
then p > 1, (2.2)

and

p = max
{
p+

1 , p
+
2 , . . . , p

+
N

}
. (2.3)
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The anisotropic variable exponent Sobolev space W 1,~p(·)(Ω) is defined as follows

W 1,~p(·)(Ω) =
{
u ∈ LpM (·)(Ω) and Diu ∈ Lpi(·)(Ω), i = 1, 2, . . . , N

}
,

endowed with the norm

‖u‖W 1,~p(·)(Ω) = ‖u‖1,~p(·) = ‖u‖LpM (·)(Ω) +

N∑
i=1

‖Diu‖Lpi(·)(Ω). (2.4)

(Cf. [5, 22, 23] for the constant exponent case). The space
(
W 1,~p(·)(Ω), ‖ · ‖1,~p(·)

)
is a

reflexive Banach space (cf [15]). The theory of such spaces was developed in [ 15, 16,
17, 19].

3. Essential assumptions and main results

Here and in the sequel, we assume that Ω is a rectangular like domain and let
p1(·), . . . , pN (·) and q1(·), . . . , qN (·) be 2N variable exponents in C+(Ω) satisfying that
so called log-Hölder continuity, there exists a positive constant L > 0 such that

|pi(x)− pi(y)| ≤ − L

log(x− y)
, for all x, y ∈ Ω with |x− y| ≤ 1

2
, (3.1)

|qi(x)− qi(y)| ≤ − L

log(x− y)
, for all x, y ∈ Ω with |x− y| ≤ 1

2
, (3.2)

and we suppose also

p > N and q > N. (3.3)

The previous assumption gives the following result.

Proposition 3.1. Since W 1,~p(·)(Ω) (respectively W 1,~q(·)(Ω)) is continuously embedded
in W 1,p(Ω)(respectively W 1,q(Ω)), and since W 1,p(Ω) and W 1,q(Ω) are compactly
embedded in C0(Ω) (the space of continuous functions), thus the spaces W 1,~p(·)(Ω)
and W 1,~q(·)(Ω) are compactly embedded in C0(Ω).

Then we can set

C1 = sup
u∈W 1,~p(·)(Ω)\{0}

‖u‖∞
‖u‖1,~p(·)

. (3.4)

C2 = sup
u∈W 1,~q(·)(Ω)\{0}

‖u‖∞
‖u‖1,~q(·)

. (3.5)

We would like to highlight the relevance of the upcoming density result, as it is
instrumental in assuring the sound definition of weak solutions pertaining to system
(P).

Theorem 3.2. (See [10, 15].) Let Ω be a rectangular-like domain of RN . Under the
assumptions (3.1) and (3.2), it can be affirmed that C∞(Ω) serves as a dense subset
within both W 1,~p(·)(Ω) and W 1,~q(·)(Ω).

We present now the characteristics of the functions Ai, Bi : Ω×R×R×R×R→ R,
i = 1, . . . , N , and A0, B0 : Ω× R× R −→ R.
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(H1). For all i = 0, . . . , N , Ai and Bi are continuous in x and of class C1 in (s, t),
with Ai(x, 0, 0, 0, 0) = Bi(x, 0, 0, 0, 0) = 0 for a.e. x ∈ Ω.

(H2). For all i = 1, . . . , N , there are positive constants αi and non-negative func-

tions ci ∈ Lp
′
i(·)(Ω) such that∣∣∣∂rAi(x, s, t, r, σ)

∣∣∣+
∣∣∣∂σBi(x, s, t, r, σ)

∣∣∣ (3.6)

≤ αi
(
ci(x) + |s|pi(x) + |t|qi(x) + |r|pi(x)−1 + |σ|qi(x)−1

)
, for a.e. x ∈ Ω,

and all s, t, r, σ ∈ R, and, there are non-negative functions λ1, λ2 ∈ L1(Ω) such
that∣∣∣A0(x, s, t)

∣∣∣ ≤ λ1(x)
(
|s|pM (x) + |t|qM (x)

)
, for a.e. x ∈ Ω and all s, t ∈ R.∣∣∣B0(x, s, t)

∣∣∣ ≤ λ2(x)
(
|s|pM (x) + |t|qM (x)

)
, for a.e. x ∈ Ω and all s, t ∈ R,

where A0(x, s, t) =
∫ s

0
a0(x, σ, t)dσ and B0(x, s, t) =

∫ t
0
b0(x, s, σ)dσ.

(H3). For all i = 1, . . . , N and for all s, t, σ, r 6= r′ ∈ R and all x ∈ Ω, one has

N∑
i=1

(
∂sAi

(
x, s, t, r, σ

)
− ∂sAi

(
x, s, t, r′, σ

))
(r − r′) > 0,

N∑
i=1

(
∂tBi

(
x, s, t, r, σ

)
− ∂tBi

(
x, s, t, r, σ′

))
(σ − σ′) > 0

and,(
∂sA0(x, s, t)− ∂sA0(x, s, t′)

)
(t− t′) > 0, for all s, t 6= t′ ∈ R, and all x ∈ Ω.

(
∂sB0(x, s, t)− ∂sB0(x, s, t′)

)
(t− t′) > 0, for all s, t 6= t′ ∈ R, and all x ∈ Ω.

(H4). There are constants δ0, δ1, θ0, θ1 > 0 such that, for all i = 1, . . . , N we have

Ai(x, s, t, r, σ) ≥ δ0|r|pi(x), for all x ∈ Ω and s, t, r, σ ∈ R,

Bi(x, s, t, r, σ) ≥ δ1|σ|qi(x), for all x ∈ Ω and s, t, r, σ ∈ R,

A0(x, s, t) ≥ θ0|s|pM (x), for all x ∈ Ω and s, t ∈ R,

and,

B0(x, s, t) ≥ θ1|t|qM (x), for all x ∈ Ω and s, t ∈ R.

(H5). η ∈ C(Ω) and f, g ∈ C(R2) such that the differential form f(u, v)du+g(u, v)dv
is exact.

Remark 3.3. (H5) implies that exists H : R2 7−→ R is the integral of the differential
form f(u, v)du+ g(u, v)dv such that H(0, 0) = 0.
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Let X be the Cartesian product between Sobolev spaces W 1,~p(·)(Ω) and

W 1,~q(·)(Ω) with the norm ‖(u, v)‖X =
√
‖u‖21,~p(·) + ‖v‖21,~q(·) or another equivalent

to it.
We introduce the functionals Ψ(·, ·), Φ(·, ·) : W 1,~p(·)(Ω)×W 1,~q(·)(Ω) 7−→ R by

Ψ(u, v) =

N∑
i=1

∫
Ω

Ai

(
x, u, v, ∂xiu, ∂xiv

)
dx+

N∑
i=1

∫
Ω

Bi

(
x, u, v, ∂xiu, ∂xiv

)
dx

+

∫
Ω

A0(x, u, v)dx+

∫
Ω

B0(x, u, v)dx, (3.7)

and

Φ(u, v) = −
∫

Ω

F (x, u(x), v(x)) dx, (3.8)

where F : Ω× R× R −→ R is defined as F (x, u, v) = η(x)H(u, v).

Lemma 3.4. (See [9]). The functionals Ψ(·, ·) and Φ(·, ·) are well defined on X. In
addition, Ψ(·, ·) and Φ(·, ·) are of class C1(X,R) and

Ψ′(u, v)(w, φ) =

N∑
i=1

∫
Ω

∂4Ai

(
x, u, v, ∂xi

u, ∂xi
v
)
∂xi

wdx

+

N∑
i=1

∫
Ω

∂5Bi

(
x, u, v, ∂xi

u, ∂xi
v
)
∂xi

uφdx

+

∫
Ω

∂2A0(x, u, v)wdx+

∫
Ω

∂3B0(x, u, v)φdx, (3.9)

and

Φ′(u, v)(w, φ) = −
∫

Ω

η(x)
(
∂1H(u(x), v(x))w(x) + ∂2H(u(x), v(x))φ(x)

)
dx, (3.10)

for all (u, v)(w, φ) ∈ X.

Lemma 3.5. (See [9]). Under the hypothesis (H1)-(H5) and (3.3) the functionals Ψ(·, ·)
and Φ(·, ·) are weakly lower semi-continuous.

Lemma 3.6. Under the hypothesis (H1)-(H5) the functional Ψ(·, ·) is coercive, that is,

Ψ(u, v) −→ +∞ as ‖(u, v)‖X −→ +∞ for (u, v) ∈ X.

Proof. Let (u, v) ∈ X. One has

Ψ(u, v) =

N∑
i=1

∫
Ω

Ai

(
x, u, v, ∂xiu, ∂xiv

)
dx+

N∑
i=1

∫
Ω

Bi

(
x, u, v, ∂xiu, ∂xiv

)
dx

+

∫
Ω

A0(x, u, v)dx+

∫
Ω

B0(x, u, v)dx,
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then by using (H4), we get

Ψ(u, v) ≥
N∑
i=1

∫
Ω

δ0

∣∣∣∂xi
u
∣∣∣pi(x)

dx+

N∑
i=1

∫
Ω

δ1

∣∣∣∂xi
v
∣∣∣qi(x)

dx+ θ0

∫
Ω

|u|pM (x)
dx

+θ1

∫
Ω

|u|qM (x)
dx

≥ min
(
δ0, θ0

)[ N∑
i=1

∫
Ω

∣∣∣∂xiu
∣∣∣pi(x)

dx+

∫
Ω

|u|pM (x)
dx

]

+ min
(
δ1, θ1

)[ N∑
i=1

∫
Ω

∣∣∣∂xiv
∣∣∣qi(x)

dx+

∫
Ω

|v|qM (x)

]
dx

≥ min
(
δ0, θ0

)[ 1

Np−1

( N∑
i=1

∥∥∥∂xi
u
∥∥∥
pi(·)

)p
+ ‖u‖ppM (·) −N − 1

]

+ min
(
δ1, θ1

)[ 1

Nq−1

( N∑
i=1

∥∥∥∂xi
v
∥∥∥
qi(·)

)q
+ ‖u‖qqM (·) −N − 1

]

≥ min
(
δ0, θ0

)[ 1

(2N)p−1

( N∑
i=1

∥∥∥∂xi
u
∥∥∥
pi(·)

+ ‖u‖pM (·)

)p
−N − 1

]

+ min
(
δ1, θ1

)[ 1

(2N)q−1

( N∑
i=1

∥∥∥∂xi
v
∥∥∥
qi(·)

+ ‖u‖qM (·)

)q
−N − 1

]

=
min

(
δ0, θ0

)
(2N)p−1 ‖u‖p1,~p(·) +

min
(
δ1, θ1

)
(2N)q−1 ‖u‖q1,~q(·) −K2

≥ K1

(
‖u‖p1,~q(·) + ‖v‖q1,~q(·)

)
−K2

≥ K1‖(u, v)‖X −K2,

where K1,K2 > 0 constants.
Thus, if ‖(u, v)‖X −→ +∞ then Ψ(u, v) −→ +∞. �

Now, we set η1 =
(

C1

θ0meas(Ω)

)p
and η2 =

(
C2

θ1meas(Ω)

)q
,

µ = min

{
1

ηp1
,

1

η
p

1

}
, and ν = min

{
1

ηq2
,

1

η
q

2

}
.

The sets A(r), B(r), r > 0, below satisfied, play an important role in our exposition

A(r) =
{

(ξ, η) ∈ R2 such that µF~p(·)(ξ) + νF~q(·)(η) ≤ r
}

and

B(r) =

{
(ξ, ζ) ∈ R2 :

∫
Ω

A0(x, ξ, ζ)dxD~p(·)(ξ) +

∫
Ω

B0(x, ξ, ζ)dxD~q(·)(ζ) ≤ r
}
,
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where D~r(·)(t) = max(|t|r, |t|r) and F~r(·)(t) = min(|t|r, |t|r) with ~r(·) ∈ {~p(·), ~q(·)}
and t ∈ {ξ, η}.

Lemma 3.7. For all r > 0, we have

B(r) ⊂ A(r).

Proof. We observe that, by the definition of constants C1 and C2, we have

‖u‖∞ ≤ C1‖u‖1,~p(·),∀u ∈W 1,~p(·)(Ω),

and

‖v‖∞ ≤ C2‖v‖1,~q(·),∀v ∈W 1,~q(·)(Ω).

For u ≡ v ≡ 1, we get

1 ≤ ηp1θ0meas(Ω) ≤ ηp1
∫

Ω

A0(x, ξ, η)dx,

and,

1 ≤ ηq2θ1meas(Ω) ≤ ηq2
∫

Ω

B0(x, ξ, η)dx.

Thus, we obtain

µ ≤ 1

ηp1
≤
∫

Ω

A0(x, ξ, η)dx, and ν ≤ 1

ηq2
≤
∫

Ω

B0(x, ξ, η)dx.

Since

F~p(·)(t) ≤ D~p(·)(t), and F~q(·)(t) ≤ D~q(·)(t),∀t ∈ R.
Thus, the inequality

µF~p(·)(ξ) + νF~q(·)(ζ) ≤
∫

Ω

A0(x, ξ, η)dxD~p(·)(ξ) +

∫
Ω

B0(x, ξ, η)dxD~q(·)(ζ),

holds for every (ξ, ζ) ∈ R2 and therefore the inclusion

B(r) ⊂ A(r),∀r > 0,

holds. �

Definition 3.8. We say that (u, v) ∈ X a weak solution to the problem (P) if for all
(w, φ) ∈ X, we have

N∑
i=1

∫
Ω

∂4Ai

(
x, u, v, ∂xi

u, ∂xi
v
)
∂xi

wdx

+

N∑
i=1

∫
Ω

∂5Bi

(
x, u, v, ∂xi

u, ∂xi
v
)
∂xi

φdx

+

∫
Ω

∂uA0(x, u, v)w dx+

∫
Ω

∂vB0(x, u, v)φdx

=

∫
Ω

η(x)
(
∂uH(u(x), v(x))w(x) + ∂vH(u(x), v(x))φ(x)

)
dx.

Remark 3.9. Note that the weak solutions of (P) are precisely critical points of Ψ+Φ.
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Our first main result is the following theorem.

Theorem 3.10. Suppose that Ψ(·, ·) and Φ(·, ·) are as in (3.7) and (3.8) and (H1)-(H5)
and (3.3) hold true. If there exist ρ0 > 0, (ξ0, η0) ∈ R2 with (ξ0, ζ0) ∈ Int(B(ρ0))(
Int(B) is the interior of B

)
and maxA(ρ0)H(ξ, ζ) = H(ξ0, ζ0). Then, problem (P)

admits a weak solution (u, v) ∈ X such that Ψ(u, v) < ρ0.

Proof. We apply the part (a) of Theorem 1.1 for showing that ϕ(ρ0) = 0 ( here ϕ is
the function defined in the Theorem 1.1 and t = 1 is assumed).
First, we observe that, for all (u, v) ∈ Ψ−1(]−∞, ρ0[), one has

0 ≤ ϕ(ρ0) = inf
Ψ−1(]−∞,ρ0[)

Φ(u, v)− inf
(Ψ−1(]−∞,ρ0[))

w
Φ(u, v)

ρ0 −Ψ(u, v)

≤
Φ(u, v)− inf

Ψ−1(]−∞,ρ0[)
w

Φ(u, v)

ρ0 −Ψ(u, v)
. (3.11)

Let u0(x) = ξ0, v0(x) = ζ0, ∀x ∈ Ω. Then ∇un = ∇v0 = 0, and since (ξ0, ζ0) ∈
Int(B(ρ0)), one has

Ψ(u0, v0) =

∫
Ω

[
A0(x, ξ0, ζ0) +B0(x, ξ, ζ0)

]
dx < ρ0.

Then, for almost evrey x ∈ Ω and ∀(u, v) ∈ Ψ−1(]−∞, ρ0[)
w

, one has

µF~p(·)(u(x)) + νF~q(·)(v(x)) ≤ Ψ(u, v) ≤ ρ0. (3.12)

The first inequality in (3.12) is obtained by the Proposition 2.1, while the second

inequality in (3.12) follows from the fact that Ψ−1(]−∞, ρ0[)
w

= Ψ−1(]−∞, ρ0]).
Thus, since (u(x), v(x)) ∈ A(ρ0) and H(u(x), v(x)) ≤ H(ξ0, ζ0), ∀x ∈ Ω.

Hence −Φ(u, v) ≤ −Φ(u0, v0) ∀(u, v) ∈ Ψ−1(]−∞, ρ0[)
w

. Because,

−Φ(u0, v0) = sup
Ψ−1(]−∞,ρ0[)

w
(−Φ(u, v)) = − inf

Ψ−1(]−∞,ρ0[)w

Φ(u, v),

and since Φ(u0, v0) < ρ0, it follows that

Φ(u0, v0)− inf
Ψ−1(]−∞,ρ0[)

w
Φ(u, v) = Φ(u0, v0)− Φ(u0, v0) = 0.

Then, by choosing (u, v) = (u0, v0) in the inequality (3.11), one has ϕ(ρ0) = 0.
The conclusion (a) of the Theorem 1.1 assures that there is a critical point of Ψ+Φ. �

Now, we announce our second main result.

Theorem 3.11. Suppose that Ψ(·, ·) and Φ(·, ·) are as in (3.7) and (3.8) and (H1)-(H5)
and (3.3) hold true. If there exist a sequences, (ρn)n ⊂ R+ with ρn →∞ as n→ +∞
and (ξn)n, (ζn)n ⊂ R such that (ξn, ζn) ∈ Int(B(ρn)) and

max
A(ρn)

H(ξ, η) = H(ξn, ζn), ∀n > 0
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and if

lim sup
(ξ,ζ)→+∞

H(ξ, ζ)

∫
Ω

η(x)dx[
D~p(·)(ξ) +D~p(·)(ζ)

] ∫
Ω

A0(x, ξ, ζ)dx+
[
D~q(·)(ξ) +D~q(·)(ζ)

] ∫
Ω

B0(x, ξ, ζ)dx

>
(
‖λ1‖L1(R) + ‖λ2‖L1(R)

)
max

(ξ,ζ)∈R2

 1∫
Ω

A0(x, ξ, ζ)dx

,
1∫

Ω

B0(x, ξ, ζ)dx

 .

Then, the problem (P) admits an unbounded sequence of a weak solutions in X.

Proof. From the part (a). we know that ϕ(ρn) = 0, ∀n ∈ N.
Then, since

lim
n→∞

ρn = +∞,

one has

lim inf
ρ→∞

ϕ(ρ) ≤ lim inf
n→∞

ϕ(ρn) = 0 < 1 = t.

Now, we fix h satisfying that

lim sup
(ξ,ζ)→+∞

H(ξ, ζ)

∫
Ω

η(x)dx[
D~p(·)(ξ) +D~p(·)(ζ)

] ∫
Ω

A0(x, ξ, ζ)dx+
[
D~q(·)(ξ) +D~q(·)(ζ)

] ∫
Ω

B0(x, ξ, ζ)dx

> h >
(
‖λ1‖L1(R) + ‖λ2‖L1(R)

)
max

(ξ,ζ)∈R2

 1∫
Ω

A0(x, ξ, ζ)dx

,
1∫

Ω

B0(x, ξ, ζ)dx

 .

and we choose a sequence (ςn, τn)n in R2 such that
√
ς2n + τ2

n ≥ n and ∀n ∈ N one
has

H(ςn, τn)

∫
Ω

η(x)dx

> h
[
D~p(·)(ςn) +D~p(·)(τn)

] ∫
Ω

A0(x, ςn, τn)dx

+
[
D~q(·)(ςn) +D~q(·)(τn)

] ∫
Ω

B0(x, ςn, τn)dx.
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If we denote by un and vn the constant functions on Ω which take the ςn and τn
values respectively, by using assumptions (H2) we have

Φ(un, vn) + Ψ(un, vn)

= Φ(ςn, τn) + Ψ(ςn, τn)

= −H(ςn, τn)

∫
Ω

η(x)dx+

∫
Ω

A0(x, ςn, τn)dx+

∫
Ω

B0(x, ςn, τn)dx

≤ −hD~p(·)(ςn)

∫
Ω

A0(x, ςn, τn)dx− hD~p(·)(τn)

∫
Ω

A0(x, ςn, τn)dx

−hD~q(·)(ςn)

∫
Ω

B0(x, ςn, τn)dx− hD~q(·)(τn)

∫
Ω

B0(x, ςn, τn)dx

+‖λ1‖L1(R)

[
D~p(·)(ςn) +D~q(·)(τn)

]
+ ‖λ2‖L1(R)

[
D~p(·)(ςn) +D~q(·)(τn)

]
=

(
‖λ1‖L1(R) + ‖λ2‖L1(R) − h

∫
Ω

A0(x, ςn, τn)dx

)
D~p(·)(ςn)

+

(
‖λ1‖L1(R) + ‖λ2‖L1(R) − h

∫
Ω

B0(x, ςn, τn)dx

)
D~q(·)(τn)

−hD~p(·)(τn)

∫
Ω

A0(x, ςn, τn)dx− hD~q(·)(ςn)

∫
Ω

B0(x, ςn, τn)dx

< 0, ∀n ∈ N.

Since (
√
ς2n + τ2

n)n is unbounded, at least one of the two sequences (ςn)n or (τn)n
admits one divergent subsequence.
Hence (D~p(·)(τn))n and (D~q(·)(τn))n admit one divergent subsequence, thus, the func-
tional Φ + Ψ is unbounded from below.
The conclusion (b) of the Theorem 1.1 assures that there is a sequence (xn, yn)n of
critical points of Φ + Ψ such that limn→+∞Ψ(xn, yn) = +∞.
Moreover, since Ψ is bounded on each bounded subset of X, the sequence (xn, yn)n
must be unbounded in X. �

The following result is a practicable form of Theorem 3.11.

Corollary 3.12. Let (an)n and (bn)n be two sequences in R+ satisfying

bn < an ∀n ∈ N, lim
n→+∞

bn = +∞, lim
n→+∞

an
bn

= +∞,

and let

An =
{

(ξ, ζ) ∈ R2 : µF~p(·)(ξ) + νF~q(·)(η) ≤ an
}
,

Bn =
{

(ξ, ζ) ∈ R2 :

∫
Ω

A0(x, ξ, ζ)dxD~p(·)(ξ) +

∫
Ω

B0(x, ξ, ζ)dxD~q(·)(ζ) ≤ bn
}
,



876 Ahmed Ahmed and Mohamed Saad Bouh Elemine Vall

be such that supAn\IntBn
H ≤ 0 for all n ∈ N.

Finally, let us assume that

lim sup
(ξ,ζ)→+∞

H(ξ, ζ)

∫
Ω

η(x)dx[
D~p(·)(ξ) +D~p(·)(ζ)

] ∫
Ω

A0(x, ξ, ζ)dx+
[
D~q(·)(ξ) +D~q(·)(ζ)

] ∫
Ω

B0(x, ξ, ζ)dx

>
(
‖λ1‖L1(R) + ‖λ2‖L1(R)

)
max

(ξ,ζ)∈R2

 1∫
Ω

A0(x, ξ, ζ)dx

,
1∫

Ω

B0(x, ξ, ζ)dx

 .

Then, Problem (P) admits an unbounded sequence of weak solutions in X.

Proof. Since bn < an it follows that Bn ⊆ An.
Let

γ = min{µ, ν} > 0

δ =
(
‖λ1‖L1(R) + ‖λ2‖L1(R)

)
max

(ξ,ζ)∈R2

 1∫
Ω

A0(x, ξ, ζ)dx

,
1∫

Ω

B0(x, ξ, ζ)dx

 > 0.

Then δ
γ > 0 and in virtue of limn→+∞

an
bn

= +∞, then we get δ
γ <

an
bn

for n ∈ N large

enough.
Let ρn = γan . Then {ρn}n ⊂ R+ is a divergent sequence and for n large enough, the
following inclusions hold

IntBn ⊆ Bn ⊆ B(ρn) ⊆ A(ρn) ⊆ An.

Then, since H is negative in the set An \ IntBn for all n ∈ N, we have

max
IntBn

H = max
An

H,

in particular, we have maxIntBn
H = maxA(ρn)H for n ∈ N large enough, i.e. there

exist at least one sequence (ξn, ζn)n ⊂ IntBn such that for n large enough, we have

max
A(ρn)

H(ξ, ζ) = H(ξn, ζn).

Thus, the sequences (ξn)n, (ζn)n and (ρn)n have got the properties required in The-
orem 3.10(b).
This completes the proof. �

Our third main result reads as follows.

Theorem 3.13. Suppose that Ψ(·, ·) and Φ(·, ·) are as in (3.7) and (3.8) and (H1)-
(H5) and (3.3) hold true. If there exist sequence, (ρn)n ⊂ R+ with ρn −→ 0 as n −→
+∞ and (ξn)n, (ζn)n ⊂ R such that (ξn, ζn) ∈ Int(B(ρn)) and maxA(ρn)H(ξ, ζ) =
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H(ξn, ζn), ∀n > 0 and if

lim sup
(ξ,ζ)→(0,0)

H(ξ, ζ)

∫
Ω

η(x)dx[
D~p(·)(ξ) +D~p(·)(ζ)

] ∫
Ω

A0(x, ξ, ζ)dx+
[
D~q(·)(ξ) +D~q(·)(ζ)

] ∫
Ω

B0(x, ξ, ζ)dx

>
(
‖λ1‖L1(R) + ‖λ2‖L1(R)

)
max

(ξ,ζ)∈R2

 1∫
Ω

A0(x, ξ, ζ)dx

,
1∫

Ω

B0(x, ξ, ζ)dx

 .

Then the problem (P) admits a sequence of non trivial weak solutions which strongly
converges to (u, v) in X.

Proof. We apply the part (c) of Theorem 1.1. As before, from the (a). we know that
ϕ(ρn) = 0, ∀n ∈ N.
Therefore after observing that infX Ψ = Ψ(u, v) = 0, since limn→∞ ρn = 0, we have

δ = lim inf
ρ→0+

ϕ(ρ) ≤ lim inf
n→+∞

ϕ(ρn) = 0 < 1 = t.

Now, we fix h satisfying

lim sup
(ξ,ζ)→(0,0)

H(ξ, ζ)

∫
Ω

η(x)dx[
D~p(·)(ξ) +D~p(·)(ζ)

] ∫
Ω

A0(x, ξ, ζ)dx+
[
D~q(·)(ξ) +D~q(·)(ζ)

] ∫
Ω

B0(x, ξ, ζ)dx

> h >
(
‖λ1‖L1(R) + ‖λ2‖L1(R)

)
max

(ξ,ζ)∈R2

 1∫
Ω

A0(x, ξ, ζ)dx

,
1∫

Ω

B0(x, ξ, ζ)dx

 .

and choose a sequence ((ςn, τn))n in R2 \ {(0, 0)} such that
√
ς2n + τ2

n ≤ 1
n and for all

n ∈ N, one has

H(ςn, τn)

∫
Ω

η(x)dx > h

([
D~p(·)(ςn) +D~p(·)(τn)

] ∫
Ω

A0(x, ςn, τn)dx

+
[
D~q(·)(ςn) +D~q(·)(τn)

] ∫
Ω

B0(x, ςn, τn)dx

)
.

Once more if we denote by un and vn the constant functions on Ω which equal ςn and
ςn respectively.
Then, from Proposition 2.1 the sequence ((un, vn))n strongly converges to (u, v) in X
and one has

Φ(un, vn) + Ψ(un, vn) = Φ(ςn, τn) + Ψ(ςn, τn)
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= −H(ςn, τn)

∫
Ω

η(x)dx+

∫
Ω

A0(x, ςn, τn)dx+

∫
Ω

B0(x, ςn, τn)dx

≤ −hD~p(·)(ςn)

∫
Ω

A0(x, ςn, τn)dx− hD~p(·)(τn)

∫
Ω

A0(x, ςn, τn)dx

−hD~q(·)(ςn)

∫
Ω

B0(x, ςn, τn)dx− hD~q(·)(τn)

∫
Ω

B0(x, ςn, τn)dx

+‖λ1‖L1(R)

[
D~p(·)(ςn) +D~q(·)(τn)

]
+ ‖λ2‖L1(R)

[
D~p(·)(ςn) +D~q(·)(τn)

]
=

(
‖λ1‖L1(R) + ‖λ2‖L1(R) − h

∫
Ω

A0(x, ςn, τn)dx

)
D~p(·)(ςn)

+

(
‖λ1‖L1(R) + ‖λ2‖L1(R) − h

∫
Ω

B0(x, ςn, τn)dx

)
D~q(·)(τn)

−hD~p(·)(τn)

∫
Ω

A0(x, ςn, τn)dx− hD~q(·)(ςn)

∫
Ω

B0(x, ςn, τn)dx

< 0, ∀n ∈ N.
Since Φ(u, v) + Ψ(u, v) = 0 in virtue of the last inequality (u, v) can’t be a local
minimum of Φ + Ψ.
Then, since (u, v) is the only global minimum of Ψ, the conclusion (c) of the Theorem
1.1 assures that there is a sequence of pairwise distinct critical points of Φ+Ψ such that
limn→∞Ψ(xn, yn) = 0 with xn, yn ⇀ 0, thus (xn, yn)n must be in norm infinitesimal.

�

As an immediate consequence of Theorem 3.13 we get the following corollary.

Corollary 3.14. Let (an)n and (bn)n be two sequences in R+ satisfying

bn < an ∀n ∈ N, lim
n→+∞

an = 0, lim
n→+∞

an
bn

= +∞,

and let

An =
{

(ξ, ζ) ∈ R2 : µF~p(·)(ξ) + νF~q(·)(η) ≤ an
}
,

Bn =
{

(ξ, ζ) ∈ R2 :

∫
Ω

A0(x, ξ, ζ)dxD~p(·)(ξ) +

∫
Ω

B0(x, ξ, ζ)dxD~q(·)(ζ) ≤ bn
}
,

be such that supAn\IntBn
H ≤ 0 for all n ∈ N.

Finally, let us assume that

lim sup
(ξ,ζ)→(0,0)

H(ξ, ζ)

∫
Ω

η(x)dx[
D~p(·)(ξ) +D~p(·)(ζ)

] ∫
Ω

A0(x, ξ, ζ)dx+
[
D~q(·)(ξ) +D~q(·)(ζ)

] ∫
Ω

B0(x, ξ, ζ)dx

>
(
‖λ1‖L1(R) + ‖λ2‖L1(R)

)
max

(ξ,ζ)∈R2

 1∫
Ω

A0(x, ξ, ζ)dx

,
1∫

Ω

B0(x, ξ, ζ)dx

 .

Then, problem (P) admits a sequence of non-zero weak solutions which strongly con-
verges to (u, v) in X.
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Proof. Likewise, by applying Theorem 1.1 part (c), we get the Corollary 3.14, whose
proof will be omitted. �

References

[1] Ahmed, A., Ahmedatt, T., Hjiaj, H., Touzani, A., Existence of infinitly many weak so-
lutions for some quasi-linear ~p(·)-elliptic Neumann problems, Math. Bohem., 142(2017),
no. 3, 243-262.

[2] Ahmed, A., Elemine Vall, M.S.B., Touzani, A., Benkirane, A., Existence of infinitely
many solutions the Neumann problem for quasi-linear elliptic systems involving the p(·)
and q(·)-Laplacian, Nonlinear Stud., 24(2017), no. 3, 687-698.

[3] Ahmed, A., Elemine Vall, M.S.B., Touzani, A., Benkirane, A., Infinitely many solutions
to the Neumann problem for elliptic systems in anisotropic variable exponent Sobolev
spaces, Moroccan J. Pure and Appl. Anal., 3(2017), no. 1, 70-82.

[4] Ahmed, A., Hjiaj, H., Touzani, A., Existence of infinitely many weak solutions for a Neu-
mann elliptic equations involving the ~p(·)-Laplacian operator, Rend. Circ. Mat. Palermo
(2), 64(2015), no. 3, 459-473.

[5] Bendahmane, M., Chrif, M., El Manouni, S., An approximation result in generalized
anisotropic Sobolev spaces and application, Z. Anal. Anwend., 30(2011), no. 3, 341-353.

[6] Bendahmane, M., Mokhtari, F., Nonlinear elliptic systems with variable exponents and
measure data, Moroccan J. Pure and Appl. Anal., 1(2015), no. 2, 108-125.

[7] Boccardo, L., Figueiredo, D.G.De., Some Remarks on a system of quasilinear elliptic
equations, NoDEA Nonlinear Differential Equations Appl., 9(2002), no. 3, 309-323.

[8] Boureanu, M.M., Infinitely many solutions for a class of degenerate anisotropic elliptic
problems with variable exponent, Taiwanese J. Math., 15(2011), no. 5, 2291-2310.

[9] Boureanu, M.M., A new class of nonhomogeneous differential operators and applications
to anisotropic systems, Complex Var. Elliptic Equ., 61(2016), no. 5, 712-730.

[10] Boureanu, M.M., Multiple solutions for two general classes of anisotropic systems with
variable exponents, Journal d’Analyse Mathématique, 150(2023), 685-735.
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Abstract. In this paper, we consider the existence of a distributional solution
for nonlinear elliptic system governed by (p(x),q(x))-Laplacian operators. We
show that the system has at least one solution by using the topological degree
theory. Our results improve and generalize existing results with another technical
approach.
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1. Introduction

The main purpose of this paper is to obtain existence of distributional solution
for the following nolinear elliptic system

−div(|∇u|p(x)−2∇u) = f(x,w,∇w) in Ω,

−div(|∇w|q(x)−2∇w) = h(x, u,∇u) in Ω,

u = w = 0 on ∂Ω,

(1.1)

where Ω is a bounded domain in RN with smooth boundary ∂Ω, p(·), q(·) ∈ C+(Ω̄).
We assume also that p(·), q(·) are log-Hölder continuous functions (see Lemma 2.10).

For it’s various applications in various fields, the study of elliptic equations or
systems with variable exponents became the most interesting and fascinating area of
research (see [1, 11, 28, 29, 34] and so on).
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In the previous decades, the existence of the nontrivial solutions for elliptic
equation involving p and p(x)-Laplacian have been a large investigation. We refer the
interested readers to [4, 9, 10, 14, 15, 16, 17, 18, 13, 20, 2, 25, 26, 27, 30, 23, 31, 24]
and the references therein. Now let us briefly comment certain known results of them.

In [10], Chabrowski and Fu studied the p(x)-Laplacian problem{
−div(a(x)|∇u|p(x)−2∇u) + b(x)|u|p(x)−2u = f(x, u), x ∈ Ω,

u = 0 on ∂Ω,
(1.2)

wheere Ω is a bounded domain in Rn, 0 < a0 ≤ a(x) ∈ L∞(Ω), 0 ≤ b0 ≤ b(x) ∈
L∞(Ω), p is Lipschitz continuous on Ω̄ and satisfies 1 < p1 ≤ p(x) ≤ p2 < n. When
f(x, u) is assumed to satisfy their prototype cases, they obtained the existence of
nontrivial and nonnegative solutions for problem (1.2).

Fan and Zhang [18] presents several sufficient conditions for the existence of
solutions for the problem (1.2) with a(x) ≡ 1 and b(x) = 0. Especially, an existence
criterion for infinite many pairs of solutions for the problem was obtained by them.
By using the degree theory for p(x) is a constant function with values in (2, N), Kim
and Hong [20] studied the problem{ −∆pu = u+ f(x, u,∇u), x in Ω,

u = 0 on ∂Ω,
(1.3)

where Ω is a bounded domain in RN with smooth boundary. When p(x) is a variable
function, Ait Hammou et al [2] studied the problem on bounded domains. Under
certain conditions, they established some results on the existence of solutions by the
topological degree theory for a class of demicontinuous operators of generalized (S+)
type.

Inspired by the works mentioned above, especially by [20, 2], we try to extend
the results in [2] to the system (1.1). More precisely, the aim of this paper is to
show the existence of solutions for (1.1) in the variational frame work by using the
topological degree constructed by Kim and Hong [20]. This method may be one of
the most effective tools in the study of nonlinear equations. For more details about
the important stages in the history of this method, the reader can see [3, 6, 7, 8, 22].

The rest of this paper is organized as follows. In Section 2, we introduce
some classes of mappings of generalized (S+) type, topological degree, some basic
properties for variable exponent Sobolev spaces and we present several important
properties of p(x)−Laplacian which will be later needed. In Section 3, we give our
basic assumptions and we prove the main results of this paper. Finally, in Section 4,
we present a discussion about our research results.

Notation. Throughout this paper, we shall denoted by ”→” and ”⇀” the strong
and weak convergence. We use BR(a) to denote the open ball in the Banach space X
of radius R > 0 centered at a. The symbol ”↪→” means the continuous embedding.
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2. Mathematical preliminaries

2.1. Classes of mappings and topological degree

For the reader’s convenience, we bring in some necessary properties and defini-
tions of the classes of mappings mentioned in the introduction which will be the key
to proving the existence solution of system (1.1).

Definition 2.1. Let X and Y be two real separable, reflexive Banach spaces and Ω a
nonempty subset of X. A mapping F : Ω ⊂ X → Y is

1. demicontinuous, if for each u ∈ Ω and any sequence (un) in Ω, un → u implies
F (un) ⇀ F (u).

2. bounded, if it takes any bounded set into a bounded set.
3. compact, if it is continuous and the image of any bounded set is relatively com-

pact.

Definition 2.2. Let X be a real separable reflexive Banach space with dual space X∗.
An operator F : Ω ⊂ X → X∗ is said to be

1. of class (S+), if for any sequence (un) in Ω with un ⇀ u and
lim sup〈Fun, un − u〉 ≤ 0, we have un → u.

2. quasimonotone, if for any sequence (un) in Ω with un ⇀ u, we have
lim sup〈Fun, un − u〉 ≥ 0.

Definition 2.3. Let T : Ω1 ⊂ X → X∗ be a bounded mapping such that Ω ⊂ Ω1. For
any mapping F : Ω ⊂ X → X, we say that

1. F satisfies condition (S+)T , if for any sequence (un) in Ω with un ⇀ u,
yn := Tun ⇀ y and lim sup〈Fun, yn − y〉 ≤ 0, we have un → u.

2. F has the property (QM)T , if for any sequence (un) in Ω with un ⇀ u,
yn := Tun ⇀ y, we have lim sup〈Fun, yn − y〉 ≥ 0.

Now, let O be the collection of all bounded open set in X. For any Ω ⊂ X, we
consider the following classes of operators:

F1(Ω) := {F : Ω→ X∗|F is bounded, demicontinuous and of class (S+)},
FT,B(Ω) := {F : Ω→ X|F is bounded, demicontinuous and of class (S+)T },
FT (Ω) := {F : Ω→ X|F is demicontinuous and of class (S+)T },
FB(X) := {F ∈ FT,B(G)|G ∈ O, T ∈ F1(G)},
F(X) := {F ∈ FT (G)|G ∈ O, T ∈ F1(G)}.

Here, T ∈ F1(G) is called an essential inner map to F .

Lemma 2.4 ([5], Lemmas 2.2 and 2.4). Let T ∈ F1(G), G ∈ O, be continuous and
S : DS ⊂ X∗ → X a bounded demicontinuous mapping such that T (G) ⊂ DS. Then
the following statements are true:

1. If S is quasimonotone, then I + SoT ∈ FT (G), where I denote the identity
operator.

2. If S of class (S+), then SoT ∈ FT (G).
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Definition 2.5. Let F, S ∈ FT (G) and let G be a bounded open subset of a real
reflexive Banach space X. The affine homotopy H : [0, 1]×G→ X given by

H(λ, u) := (1− λ)Fu+ λSu, for (λ, u) ∈ [0, 1]×G
is called an admissible affine homotopy with the continuous essential inner map T .

Remark 2.6. [5] The above affine homotopy satisfies condition (S+).

Now, we introduce the Berkovits topological degree for the class FB(X). For
more details see [5].

Theorem 2.7. There exists a unique degree function

degB : {(F,G, h)|G ∈ O, T ∈ F1(G), F ∈ FT,B(G), h /∈ F (∂G)} → Z
that satisfies the following properties:

1. (Existence) If degB(F,G, h) 6= 0, then the equation Fu = h has a solution in G.
2. (Normalization) For any h ∈ G, we have degB(I,G, h) = 1.
3. (Additivity) Let F ∈ FT,B(G). If G1 and G2 are two disjoint open subsets of G

such that h /∈ F (G \ (G1 ∪G2)), then we have

degB(F,G, h) = degB(F,G1, h) + degB(F,G2, h).

4. (Homotopy invariance) If H : [0, 1] × G → X is a bounded admissible affine
homotopy with a common continuous essential inner map and h :: [0, 1] ×X is
a continuous path in X such that h(λ) /∈ H(λ, ∂G) for all λ ∈ [0, 1], then the
value of degB(H(λ, ·), G, h(λ)) is constant for all λ ∈ [0, 1]

2.2. Notation and preliminary results

In order to solve the problem (1.1), we need some necessary properties on variable

exponent spaces Lp(x)(Ω) and W
1,p(x)
0 (Ω). For a deeper treatment on these spaces,

we refer to [12, 14, 15, 17, 19, 21], and the references therein.
In the sequel, we consider a bounded domain Ω ⊂ RN , N ≥ 2 with a Lipschitz

boundary ∂Ω and the set

C+(Ω) = {g ∈ C(Ω) | inf
x∈Ω

g(x) > 1},

g− = min
x∈Ω

g(x), g+ = max
x∈Ω

g(x), for any g ∈ C+(Ω).

For any p ∈ C+(Ω), we define the generalized Lebesgue space Lp(x)(Ω) by

Lp(x)(Ω) =

{
u | u : Ω→ R is a measurable function, ρp(x)(u) <∞

}
,

where

ρp(x)(u) =

∫
Ω

|u(x)|p(x)dx,

this space endowed with the Luxemburg norm

‖u‖p(x) = inf{λ > 0 | ρp(x)(
u

λ
) ≤ 1},

and (Lp(x)(Ω), ‖ · ‖p(x)) becomes a Banach space.
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Lemma 2.8. [21]

1. The space Lp(x)(Ω) is a separable and reflexive Banach space.

2. The conjugate space of Lp(x)(Ω) is Lp
′(x)(Ω), where 1/p(x) + 1/p′(x) = 1. Then

for any u ∈ Lp(x)(Ω) and w ∈ Lp′(x)(Ω), we have the following Hölder inequality∣∣∣ ∫
Ω

uwdx
∣∣∣ ≤ ( 1

p−
+

1

p′−

)
‖u‖p(x)‖w‖p′(x) ≤ 2‖u‖p(x)‖w‖p′(x).

3. If p1, p2 ∈ C+(Ω), p1(x) ≤ p2(x) for any x ∈ Ω, then there exists the continuous
embedding Lp2(x)(Ω) ↪→ Lp1(x)(Ω)

Lemma 2.9. [19, 33] If u, un ∈ Lp(x)(Ω), then the following assertions hold true:

1. ‖u‖p(x) < 1 (= 1, > 1)⇔ ρp(x)(u) < 1 (= 1, > 1).

2. ‖u‖p(x) < 1⇒ ‖u‖p
+

p(x) ≤ ρp(x)(u) ≤ ‖u‖p
−

p(x).

3. ‖u‖p(x) > 1⇒ ‖u‖p
−

p(x) ≤ ρp(x)(u) ≤ ‖u‖p
+

p(x).

4. lim
n→∞

‖un − u‖p(x) = 0⇔ lim
n→∞

ρp(x)(un − u) = 0.

5. ‖u‖p(x) ≤ ρp(x)(u) + 1.

6. ρp(x)(u) ≤ ‖u‖p
−

p(x) + ‖u‖p
+

p(x).

Now, we define the usual Sobolev space with variable exponent W 1,p(x)(Ω) as

W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) | |∇u| ∈ Lp(x)(Ω)},

whose norm is defined as

‖u‖W 1,p(x) = ‖u‖p(x) + ‖∇u‖p(x). (2.1)

Let W
1,p(x)
0 (Ω) denote the subspace of W 1,p(x)(Ω) which is the closure of C∞0 (Ω) with

respect to the norm (2.1).

Lemma 2.10. [12, 19, 21]

1. The two spaces W
1,p(x)
0 (Ω) and W 1,p(x)(Ω) are a Banach spaces separable and

reflexive.
2. If p(x) satisfies the log-Hölder continuity condition, i.e., there is a constant α > 0

such that for every x, y ∈ Ω, x /∈ y with |x− y| ≤ 1
2 one has

|p(x)− p(y)| ≤ α

− log |x− y|
,

then there exists a constant C > 0, such that

‖u‖p(x) ≤ C‖∇u‖p(x), ∀u ∈W 1,p(x)
0 (Ω).

3. If p ∈ C+(Ω) for any x ∈ Ω, then the imbedding W
1,p(x)
0 (Ω) ↪→ Lp(x)(Ω) is

compact.

Remark 2.11. By (2) of Lemma 2.10, we know that ‖∇u‖p(x) and ‖u‖ are equivalent

norms on W
1,p(x)
0 (Ω).
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The dual space of W
1,p(x)
0 (Ω) is W−1,p′(x)(Ω), which endowed with the norm

‖w‖−1,p′(x) = inf
{
‖w0‖p′(x) +

N∑
i=1

‖wi‖p′(x)

}
,

where the infinimum is taken on all possible decompositions w = w0 − divF with
w0 ∈ Lp

′(x)(Ω) and F = (w1, · · · , wN ) ∈ (Lp
′(x)(Ω))N .

Let us define V = W
1,p(x)
0 (Ω)×W 1,q(x)

0 (Ω) endowed with the norm ‖(u,w)‖V =
max(‖u‖1,p(x), ‖w‖1,q(x)) where ‖u‖1,p(x) = ‖∇u‖p(x) and (V, ‖ · ‖) is a Banach space,
separable and reflexive.

2.3. Properties of (p(x), q(x))-Laplacian operators

In the present subsection, we discuss the properties of (p(x), q(x))-Laplacian
operators

−∆p(x)u = −div(|∇u|p(x)−2∇u),

and

−∆q(x)w = −div(|∇w|q(x)−2∇w).

We consider the following functional:

J (u,w) =

∫
Ω

|∇u|p(x)

p(x)
dx+

∫
Ω

|∇w|q(x)

q(x)
dx.

It is well known that J ∈ C1(V,R) and for any (ϕ, φ) ∈ V

〈J ′(u,w), (ϕ, φ)〉

=

∫
Ω

|∇u|p(x)−2∇u∇ϕdx+

∫
Ω

|∇w|q(x)−2∇w∇φdx, ∀u,w ∈ V.

Denote M = J ′ : V → V ∗.

Theorem 2.12. [18]

1. M : V → V ∗ is a mapping of type (S+).
2. M : V → V ∗ is a continuous, bounded and strictly monotone operator.
3. M : V → V ∗ is a homeomorphism.

The proof of the above theorem can be found in [18].

3. Hypotheses and the main results

3.1. Hypotheses

Let Ω be a bounded domain in RN (N ≥ 2) with a Lipschitz boundary ∂Ω.
Let p, q ∈ C+(Ω̄), 1 < p− ≤ p(x) ≤ p+ < ∞, 1 < q− ≤ q(x) ≤ q+ < ∞ and
f, h : Ω× R× RN → R are a real-valued functions such that

(A1). (Continuity) f, h are the Carathéodory functions ( i.e., f(x, ·, ·) is continuous
in (s1, s2) for almost every x ∈ Ω and f(·, s1, s2) is measurable in x for each
(s1, s2) ∈ R× RN )
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(A2). (Growth) There exist a positive constants c1, c2, b ∈ Lp′(x)(Ω), d ∈ Lq′(x)(Ω)
and 1 < α− ≤ α(x) ≤ α+ < p−, 1 < β− ≤ β(x) ≤ β+ < q−, such that

|f(x, s1, s2)| ≤ c1(b(x) + |s1|α(x)−1 + |s2|α(x)−1),

|h(x, ξ1, ξ2)| ≤ c2(d(x) + |ξ1|β(x)−1 + |ξ2|β(x)−1).

3.2. Main results

The main tool that we shall use to prove the existence of weak solutions of the
problem (1.1) is the degree theory introduced in section 2.

Definition 3.1. We say that (u,w) ∈ V is a distributional solution of the system (1.1)
if for any (ϕ, φ) ∈ V we have∫

Ω

|∇u|p(x)−2∇u∇ϕdx+

∫
Ω

|∇w|q(x)−2∇w∇φdx

=

∫
Ω

f(x,w,∇w)ϕdx+

∫
Ω

h(x, u,∇u)φdx

(3.1)

Lemma 3.2. Assume that (A1) and (A2) hold. Then the operator T : V → V ∗ given
by 

(u,w) ∈ V,

〈T (u,w), (ϕ, φ)〉 = −
∫

Ω

f(x,w,∇w)ϕdx−
∫

Ω

h(x, u,∇u)φdx, ∀(ϕ, φ) ∈ V

is compact.

Proof. First, let χ : W
1,p(x)
0 → Lp

′(x)(Ω), π : W
1,q(x)
0 → Lq

′(x)(Ω) be two operators
defined by

χu(x) = −h(x, u,∇u) for u ∈W 1,p(x)
0 and x ∈ Ω,

and
πw(x) = −f(x,w,∇w) for w ∈W 1,q(x)

0 and x ∈ Ω.

We divide the proof into three steps.

Step 1. We show that χ and π are bounded.

For each u ∈ W 1,p(x)
0 (Ω), we have by (5), (6) of Lemma 2.9 and the assumption

(A2) that

‖χu‖p′(x) ≤ ρp′(x)(χu) + 1

=

∫
Ω

|h(x, u(x),∇u(x))|p
′(x) + 1

≤ const
(∫

Ω

(
|d|+ |u|β(x)−1 + |∇u|β(x)−1

)p′(x)

dx
)

≤ const
(
ρp′(x)(d) + ργ(x)(u) + ργ(x)(∇u)

)
+ 1

≤ const
(
‖d‖p

′−

p′(x) + ‖d‖p
′+

p′(x) + ‖u‖γ
−

γ(x) + ‖u‖γ
+

γ(x) + ‖∇u‖γ
−

γ(x)

+ ‖∇u‖γ
+

γ(x)

)
+ 1,
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where

γ(x) = (β(x)− 1)p′(x) < p(x).

By (2) of Lemma 2.10 and the continuous embedding Lp(x) ↪→ Lγ(x), we get

‖χu‖p′(x) ≤ const
(
‖d‖p

′−

p′(x) + ‖d‖p
′+

p′(x) + ‖u‖γ
−

1,p(x) + ‖u‖γ
+

1,p(x)

)
+ 1,

which implies that χ is bounded on W
1,p(x)
0 .

Similarly, we can show that π is bounded on W
1,q(x)
0 .

Step 2. We show that χ and π are continuous.
Let (un, wn) converge to (u,w) in V . Then

un → u and ∇un → ∇u in W
1,p(x)
0 ,

wn → w and ∇wn → ∇w in W
1,q(x)
0 .

Hence there exist two subsequences denote again by (un), (wn) and measurable func-
tions g1 (resp. g2) in Lp(x)(Ω) (resp. in Lq(x)(Ω)) and g∗1 (resp.g∗2) in (Lp(x)(Ω))N

(resp. in (Lq(x)(Ω))N ), such that

un(x)→ u(x) and ∇un(x)→ ∇u(x),

wn(x)→ w(x) and ∇wn(x)→ ∇w(x),

|un(x)| ≤ g1(x), |∇un(x)| ≤ |g∗1(x)|
and

|wn(x)| ≤ g2(x), |∇wn(x)| ≤ |g∗2(x)|,
for almost all x ∈ Ω and all n ∈ N . From (A1) and (A2), we have

h(x, un(x),∇un(x))→ h(x, u(x),∇u(x)) for almost all x ∈ Ω,

and

|h(x, un(x),∇un(x))| ≤ const
(
d(x) + |g1(x)|β(x)−1 + |g∗1(x)|β(x)−1

)
,

for almost all x ∈ Ω and all n ∈ N and

d+ |g1|β(x)−1 + |g∗1 |β(x)−1 ∈ Lp
′(x)(Ω).

Taking into account the equality

ρp′(x)(χun − χu) =

∫
Ω

|h(x, un(x),∇un(x))− h(x, u(x),∇u(x))|p
′(x)dx,

the equivalence (4) of Lemma 2.9 and the Lebesgue dominated convergence theorem
imply that

χun → χu in Lp
′(x)(Ω),

which shows that the entire sequence (χun) is continuous.
Similarly, we obtain that the entire sequence (πwn) is continuous.

Step 3. As the embedding I : V → U is compact, it is known that the adjoint operator
I∗ : U∗ → V ∗is also compact. So the compositions I∗oχ and I∗oπ : V → V ∗ are
compact, which completes the proof. �
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Let us now mention our main result in this paper:

Theorem 3.3. Under conditions (A1) and (A2), problem (1.1) has a distributional
solution (u,w) in V .

Proof. Let T be an operator from V into its dual V ∗ as defined in Lemma 3.2, ant
let M : V → V ∗, as in subsection 2.3, given by


(u,w) ∈ V,

〈M(u,w), (ϕ, φ)〉 =

∫
Ω

|∇u|p(x)−2∇u∇ϕdx+

∫
Ω

|∇w|q(x)−2∇w∇φdx,

for all (ϕ, φ) ∈ V . Then (u,w) ∈ V is a distributional solution of (1.1) if and only if

M(u,w) = −T (u,w). (3.2)

Thanks to Lemma 3.2, the operator T is bounded, continuous and quasimonotone.
On the other hand, according to the properties of the operator M seen in Theorem
2.12 and by using the Minty-Browder Theorem (see [32], Theorem 26A), the inverse
operator N = M−1 : V ∗ → V is bounded, continuous and satisfies condition (S+).

Therefore, equation (3.2) is equivalent to

(u,w) = N(ϕ, φ) and (ϕ, φ) + ToN(ϕ, φ) = 0. (3.3)

To solve (3.3), we shall using the degree theory introduced in subsection 2.1. For this,
we first show that the set

Σ = {(ϕ, φ) ∈ V ∗|(ϕ, φ) + λToN(ϕ, φ) = 0 for some λ ∈ [0, 1]}

is bounded. Indeed, let (ϕ, φ) ∈ Σ and take (u,w) = N(ϕ, φ), then

‖N(ϕ, φ)‖V = ‖(u,w)‖V = max(‖∇u‖p(x), ‖∇w‖q(x)).

If ‖∇u‖p(x) ≤ 1 and ‖∇w‖q(x) ≤ 1, then ‖N(ϕ, φ)‖V is bounded.

If ‖∇u‖p(x) > 1 and ‖∇w‖q(x) > 1, then by using the assumption (A2), (3), (6) of
Lemma 2.9, (2) of Lemma 2.8 and the Young inequality, we obtain the estimate
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‖N(ϕ, φ)‖min(p−,q−)
V = ‖(u,w)‖min(p−,q−)

V

≤ ρp(x)(∇u) + ρq(x)(∇w)

= 〈M(u,w), (u,w)〉
= 〈(ϕ, φ), N(ϕ, φ)〉
= −λ〈ToN(ϕ, φ), N(ϕ, φ)〉

= λ
(∫

Ω

f(x,w,∇w)udx+

∫
Ω

h(x, u,∇u)wdx
)

≤ const
(
‖b‖p′(x)‖u‖p(x) +

1

α′−
ρα(x)(w) +

1

α−
ρα(x)(u)

+
1

α′−
ρα(x)(∇w) +

1

α−
ρα(x)(u) + ‖d‖q′(x)‖w‖q(x)

+
1

β′−
ρβ(x)(u) +

1

β−
ρβ(x)(w) +

1

β′−
ρβ(x)(∇u)

+
1

β−
ρβ(x)(w)

)
≤ const

(
‖u‖p(x) + ‖w‖α

+

α(x) + ‖u‖α
+

α(x) + ‖∇w‖α
+

α(x)

+ ‖w‖q(x) + ‖u‖β
+

β(x) + ‖w‖β
+

β(x) + ‖∇u‖β
+

β(x)

)
.

By (2) of Lemma 2.10 and the continuous embedding Lp(x) ↪→ Lα(x) and Lq(x) ↪→
Lβ(x), we get

‖N(ϕ, φ)‖min(p−,q−)
V ≤ const (‖N(ϕ, φ)‖V + ‖N(ϕ, φ)‖max(α+,β+)

V ).

If ‖∇u‖p(x) > 1 and ‖∇w‖q(x) ≤ 1 (resp. if ‖∇u‖p(x) ≤ 1 and ‖∇w‖q(x) > 1), we can
also get that ‖N(ϕ, φ)‖V is bounded.
Consequently {N(ϕ, φ)|(ϕ, φ) ∈ Σ} is bounded.

Since the operator T is bounded, it is obvious from (3.3) that the set Σ is
bounded in V ∗. Hence, we can choose a positive constant R such that

‖(ϕ, φ)‖V ∗ < R for all (ϕ, φ) ∈ Σ.

It follows that

(ϕ, φ) + λToN(ϕ, φ) 6= 0 for all (ϕ, φ) ∈ ∂BR(0) and all λ ∈ [0, 1],

where BR(0) is the ball of radius R and center 0 in V ∗.
By Lemma 2.4, we have

I + ToN ∈ FT (BR(0)) and I = MoN ∈ FT (BR(0)).

Since the operators I, T and N are bounded, I + ToN is also bounded. We conclude
that

I + ToN ∈ FT,B(BR(0)) and I ∈ FT,B(BR(0)).

Now, we consider an affine homotopy H : [0, 1]×BR(0)→ V ∗ given by

H(λ, ϕ, φ) := (ϕ, φ) + λToN(ϕ, φ) for (λ, ϕ, φ) ∈ [0, 1]×BR(0).
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All those properties allow us to apply the homotopy invariance and normalization
property of the degree degB stated in Theorem 2.7 and obtain

degB(I + ToN,BR(0), 0) = degB(I,BR(0), 0) = 1,

consequently, there exists a point (ϕ, φ) ∈ BR(0) such that

(ϕ, φ) + ToN(ϕ, φ) = 0.

This implies that (u,w) = N(ϕ, φ) is a distributional solution of (1.1). The proof is
complete. �

4. Conclusion

In this paper, we have studied the existence of distributional solutions for a
nonlinear elliptic systems with variable exponents. By using the topological degree
theory, we showed that system (1.1) has at least one solutions when the functions f
and h satisfying some suitable conditions. This study can be extend in the futur works
to more general boundary value problems involving fractional derivatives models.
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Abstract. Extending an earlier estimate for the degree of approximation of overit-
erated univariate Bernstein operators towards the same operator of degree one,
it is shown that an analogous result holds in the d-variate case. The method em-
ployed can be carried over to many other cases and is not restricted to Bernstein-
type or similar methods.
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1. Introduction and historical remarks

The question behind this note is well-known. What is a classical Bernstein op-
erator doing if its powers are raised to infinity?

For the univariate version of this operator the answer is known. Already in 1966
the Dutch mathematician P.C. Sikkema proved in the Romanian journal Mathematica
(Cluj) that for each function f ∈ R[0,1] the powers Bknf , n fixed, k →∞ converge to
the linear function interpolating f at 0 and 1 (see [15]). Later on his result become
known as the Kelisky-Rivlin (1967) or Karlin-Ziegler (1970) theorem (cf. [10, 9]).

However, even earlier T. Popoviciu [12] posed this problem in an (informal)
problem book of 1955. We learned this from the note [3] by Albu cited by Precup
[13]. The latter author also deals with multivariate operators but from a different
point of view.
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Some notation is needed here. For x ∈ [0, 1], n ≥ 1, and f ∈ R[0,1] the Bernstein
operator is given by

Bn(f, x) :=

n∑
k=0

f

(
k

n

)
pn,k(x)

:=

n∑
k=0

f

(
k

n

)(
n

k

)
xk(1− x)n−k.

Thus Bn is a polynomial operator, is linear and positive, reproduces all affine
linear functions l(x) = ax+ b, and for each f the polynomial Bnf is of degree ≤ n.

Moreover, for any k, n ∈ N, Gonska et al. [6] proved in 2006, extending earlier
work of Nagel [11] and Gonska [4],

|Bkn(f, x)−B1(f, x) ≤ 9

2
ω2

f ;

√
x(1− x)

(
1− 1

n

)k , x ∈ [0, 1]. (1.1)

Here ω2(f ; ·) is the classical second order modulus of f . Hence the right hand side
converges to 0 as n is fixed and k →∞ (some more general situations are possible). It
also shows that the powers are interpolatory at 0 and 1 and keep reproducing linear
functions. Moreover, the convergence is uniform with respect to ‖ · ‖∞.

When it comes to multivariate Bernstein operators, all the time operators on
generalized simplices or hypercubes are meant. While for simplices the convergence
of powers was investigated by, e.g., Wenz [16] and many others, the hypercube case
remained allegedly open until a 2009 article of Jachymski [8] appeared. However, for
the bivariate case a paper by Agratini and Rus was published already in 2003, cf. [2].

In this note we will use the term tensor product although in other publications
one might find ’product of parametric extensions’ meaning exactly the same (see, e.g.,
[5]).

Using functional-analytic methods Jachymski showed the following. For l,m ≥ 1
let the bivariate tensor product operator

((Bl ⊗Bm)f) (x, y) := (sBl ◦ tBm) (f(s, t);x, y)

be given by

l∑
i=0

m∑
j=0

f

(
i

l
,
j

m

)
pl,i(x) · pm,j(y), f ∈ C([0, 1]2), x, y ∈ [0, 1].

Theorem A. For any l,m ∈ N fixed, the sequence ((Bl ⊗Bm)n)n∈N uniformly con-
verges to the operator L (independent of l and m) given by the following formula for
f ∈ C([0, 1]2) and x, y ∈ [0, 1]:

(Lf)(x, y) = f(0, 0) + (f(1, 0)− f(0, 0))x+ (f(0, 1)− f(0, 0))y

+ (f(0, 0) + f(1, 1)− f(1, 0)− f(0, 1))xy

= (1− x, x)

(
f(0, 0) f(0, 1)
f(1, 0) f(1, 1)

)(
1− y
y

)
.
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In other words, Lf = (B1 ⊗B1)f .

Jachymski [8] also gave the limit of n-powers of d-variate Bernstein operators,
i.e., of

((Bl1 ⊗ · · · ⊗Bld)f) (x1, . . . , xd)

= (s1Bl1 ◦ · · · ◦ sdBld) (f(s1, . . . , sd);x1, . . . , xd) .

They map C([0, 1]d) into Πl1,...,ld , the space of d-variate polynomials of total degree

≤
d∑
δ=1

lδ.

The limiting operator in this case is

(Lf)(x1, . . . , xd) =
∑

(ε1,...,εd)∈V

f(ε1, . . . , εd)pε1(x1) · · · · · pεd(xd),

where V = {0, 1}{1,...,d}, and for s ∈ [0, 1], p0(s) := 1 − s and p1(s) := s. Thus L
equals B1 ⊗ ...⊗B1.

In the present note we will show first that the fixpoint approach of (Agratini
and) Rus also works in the d-variate case. Our main emphasis is on the quantitative
situation where we will demonstrate how the pointwise ω2-result may be carried over
to d dimensions.

2. The non-quantitative approach of Agratini and Rus revisited

As mentioned above, Jachymski used a functional-analytic framework to derive
his result. Here we show that a more elementary approach does the job as well. We
recall the three papers by Rus and Agratini & Rus and present their approach for d
dimensions.

Some reminders concerning d-variate hypercubes are in order. More details are
available in the German Wikipedia, keyword ”Hyperwrfel” [17]. Such a hypercube in

d dimensions possesses
(
d
0

)
2d−0 = 2d 0-dimensional boundary elements (vertices), in

the bivariate case these are the 4 corners of [0, 1]2. Adopting the above notation these
are all d-tuples

(ε1, . . . , εd) ∈ V, V = {0, 1}{1,...,d}.
We will now follow Rus’ proof of his Theorem 1. First introduce the sets

Xα1,...,αd = {f ∈ C([0, 1]d) : f(ε1) = α1, . . . , f(εd) = αd},

(ε1, . . . , εd) ∈ V, α1, . . . , αd ∈ R. Note that

(a) Xα1,...,αd is a closed subset of C([0, 1]d);
(b) Xα1,...,αd is an invariant subset of Bl1 ⊗ · · · ⊗ Bld , for all α1, . . . , αd ∈ R and

l1, . . . , ld ∈ N;

(c) C([0, 1]d) =
⋃

α1,...,αd∈R
Xα1,...,αd is a partition of C([0, 1]d).
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Next it is shown that

(Bl1 ⊗ · · · ⊗Bld)|Xα1,...,αd

maps Xα1,...,αd onto itself and is a contraction.
For f, g ∈ Xα1,...,αd we have

|((Bl1 ⊗ · · · ⊗Bld)f) (x1, . . . , xd)− ((Bl1 ⊗ · · · ⊗Bld)g) (x1, . . . , xd)|

=

∣∣∣∣∣
l1∑

λ1=0

· · ·
ld∑

λd=0

(f − g)

(
λ1
l1
, . . . ,

λd
ld

)
pl1,λ1

(x1) · · · · · pld,λd(xd)

∣∣∣∣∣ ≤∑
(λ1,...,λd)∈{0,...,l1}×···×{0,...,ld}\V

∣∣∣∣(f − g)

(
λ1
l1
, . . . ,

λd
ld

)
pl1,λ1(x1) · · · · · pld,λd(xd)

∣∣∣∣
≤ ‖f − g‖∞

∑
(λ1,...,λd)∈{0,...,l1}×···×{0,...,ld}\V

pl1,λ1
(x1) · · · · · pld,λd(xd)

≤ ‖f − g‖∞

1−min
∑

(λ1,...,λd)∈V

pl1,λ1
(x1) · · · · · pld,λd(xd)


= ‖f − g‖∞ ·

(
1−min

{[
(1− x1)l1 + xl11

]
· · · · ·

[
(1− xd)ld + xldd

]})
≤ ‖f − g‖∞ ·

(
1− 1∏d

δ=1 2lδ−1

)
< 1.

Thus Bl1 ⊗· · ·⊗Bld on Xα1,...,αd is a contraction for all α1, . . . , αd ∈ R. On the other
hand, (Lf)(x1, . . . , xd) is a fixed point of Bl1 ⊗ · · · ⊗Bld .

So f ∈ C([0, 1]d) is in Xf(ε1),...,f(εd) and from the contraction principle we have

lim
n→∞

(Bl1 ⊗ · · · ⊗Bld)
n
f = Lf.

We summarize our observation in

Theorem 2.1. (Jachymski [8]) For fixed l1, . . . , ld ∈ N = {1, 2, . . . } one has

lim
n→∞

(Bl1 ⊗ · · · ⊗Bld)
n
f = Lf uniformly.

Here Bl1 ⊗ · · · ⊗Bld is the d-variate tensor product operator on C([0, 1]d) and

(Lf)(x1, . . . , xd) =
∑

(ε1,...,εd)

f(ε1, . . . , εd)pε1(x1) · · · · · pεd(xd), V = {0, 1}{1,...,d}.

In particular, for d = 2 we have the representation of Theorem A.

3. The Zhuk extension in the bi- and d-variate cases

Since the articles of Zhuk [18] and Gonska & Kovacheva [7] are hard to obtain,
we briefly describe the extension in the univariate situation, then carry it over to the
bivariate case and finally show what has to be done in d variables.
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3.1. Zhuk construction-univariate case

For f ∈ C[0, 1] and 0 < h ≤ 1

2
(b− a) define fh : [a− h, b+ h]→ R by

fh(x) :=


P−(x), a− h ≤ x < a,

f(x), a ≤ x ≤ b,
P+(x), b < x ≤ a+ h.

‖f − P−‖C[a,a+2h] = E1(f ; a, a+ 2h),

‖f − P+‖C[b−2h,b] = E1(f ; b− 2h, b).

Here P− and P+ denote the best approximations in Π1 on the intervals indicated and
with respect to the uniform norm.

Zhuk put

Sh(f ;x) :=
1

h

∫ h

−h

(
1− |t|

h

)
fh(x+ t)dt, x ∈ [a, b].

He showed [18, Lemma 1]: For f ∈ C[a, b], 0 < h ≤ 1

2
(b− a),

‖f − Shf‖∞ ≤
3

4
ω2(f ;h),

‖(Shf)′′‖L∞[a,b] ≤
3

2
h−2ω2(f ;h).

3.2. Construction of the bivariate Zhuk extension

Let f ∈ C([0, 1]2). On a fixed y-level we extend the partial function fy(x) =
f(·, y) from [0, 1]×{y} to [−h, 1+h]×{y} in complete analogy to the univariate case.
After integration, for each y ∈ [0, 1], we obtain

Sh(fy;x) :=
1

h

∫ h

−h

(
1− |t|

h

)
(fy)h(x+ t)dt, x ∈ [0, 1],

satisfying for 0 < h ≤ 1

2
:

‖fy − Shfy‖∞ ≤
3

4
ω2(fy;h),

‖(Shfy)′′‖L∞[0,1] ≤
3

2
h−2ω2(fy;h).

(On each y-level we could have even chosen hy with 0 < hy ≤
1

2
).

The same procedure we carry out for fx(y), y ∈ [0, 1], producing functions Shfx
such that

‖fx − Shfx‖C ≤
3

4
ω2(fx;h),

‖(Shfx)′′‖L∞[0,1] ≤
3

2
h−2ω2(fx;h).
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This can be done for all x ∈ [0, 1].
More explicitly,

ω2(fy;h) = sup{|fy(x− δ)− 2fy(x) + fy(x+ δ)| : |δ| ≤ h, x± δ ∈ [0, 1]}
= sup{|f(x− δ, y)− 2f(x, y) + f(x+ δ, y)| : |δ| ≤ h, x± δ ∈ [0, 1]}
≤ sup
y∈[0,1]

sup{|f(x− δ, y)− 2f(x, y) + f(x+ δ, y)| : |δ| ≤ h, x± δ ∈ [0, 1]}

= ω2(f ;h, 0).

Also, ω2(fx;h) ≤ ω2(f ; 0, h).
The quantities ω2(f ;h, 0) and ω2(f ; 0, h) are called ”partial moduli of smooth-

ness”. We have thus constructed auxiliary extensions of fy(·), y ∈ [0, 1], and fx(∗),
x ∈ [0, 1], on the domain shown below

y

1+h

y

x

0-h

0-h

1+h

x

Sh(fy; ·) and Sh(fx; ∗) are given on the inner (white) square only.

3.3. Zhuk extension, d-variate case

The construction described for the bivariate case can be easily generalized for
d ≥ 3 dimensions. To this end fix d− 1 ≥ 2 variables, say s2, . . . , sd. Then extend the

partial function fs2,...,sd(s1), 0 ≤ s1 ≤ 1, to −h ≤ s1 ≤ 1 + h, 0 < h ≤ 1

2
, and define

Sh(fs2,...,sd)(s1) :=
1

h

∫ h

−h

(
1− |t|

h

)
· (fs2,...,sd)h (s1 + t)dt.

This gives

‖fs2,...,sd − Shfs2,...,sd‖∞ ≤
3

4
ω2(fs2,...,sd ;h),

‖(Shfs2,...,sd)′′‖L∞[0,1] ≤
3

2
h−2ω2(fs2,...,sd ;h),

for each fixed s2, . . . , sd ∈ [0, 1]. Moreover, a common upper bound is

ω2(fs2 , . . . , sd;h) ≤ ω2(f ;h, 0, . . . , 0), for all s2, . . . , sd ∈ [0, 1],

and a corresponding inequality holds for any other choice of sδ, 2 ≤ δ ≤ d.
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4. An estimate for d-variate tensor product Bernstein operators

We first recall our 2006 estimate for the univariate case:

|Bnl (f ;x)−B1(f ;x)| ≤ 9

4
ω2

(
f ;

√
x(1− x)

(
1− 1

l

)n)
.

In two dimensions, it can be easily derived that

|(Bl ⊗Bm)n(f ;x, y)− (B1 ⊗B1)(f ;x, y)|
|[(Bnl −B1)⊗ (Bnm −B1)] (f ;x, y)|

≤ 9

4

[
ω2

(
f ;

√
x(1− x)

(
1− 1

l

)n
, 0

)
+ ω2

(
f ; 0,

√
y(1− y)

(
1− 1

m

)n)]
.

This extends to d dimensions. Here we have

|(s1Bl1 ◦ · · · ◦ sdBld)
n

(f(s1, . . . , sd);x1, . . . , xd)

− (s1B1 ◦ · · · ◦ sdB1) (f(s1, . . . , sd);x1, . . . , xd)|

≤ 9

4

d∑
δ=1

ω2

(
f ; 0, . . . , 0,

√
xδ(1− xδ)

(
1− 1

lδ

)n
, 0, . . . , 0

)
.

For d dimensions it is, without additional effort, possible to show∣∣(
s1B

n1

l1
◦ · · · ◦ sdB

nd
ld

)
(f(s1, . . . , sd);x1, . . . , xd)

− (s1B
n1
1 ◦ · · · ◦ sdB

nd
1 ) (f(s1, . . . , sd);x1, . . . , xd)|

=
[
(s1B

n1

l1
−s1 B1) ◦ · · · ◦ (sdB

nd
ld
−sd B1)

]
(f(s1, . . . , sd);x1, . . . , xd)

≤ 9

4

d∑
δ=1

ω2

(
f ; 0, . . . 0,

√
xδ(1− xδ)

(
1− 1

lδ

)nδ
, 0, . . . , 0

)
.

Note that for n = n1 = · · · = nδ the difference from above becomes

(s1Bl1 ⊗ · · · ⊗ sdBld)
n − (s1B1 ⊗ · · · ⊗ sdB1)

and is this the multivariate quantity considered by Jachymski. However, there is no
need to restrict oneself to this case.

5. Optimality

Questions are in order in how far our estimates are ”optimal”.

1. The constant
9

4
appearing repeatedly in this note most likely is not. There is

need for work in this direction.
2. If the function f is d-linear, then the sum of d ω2 -terms equals zero. If the

sum is zero, then each of its terms does so. This may occur if
(i) (x1, . . . , xd) is at a ’corner’ of the hypercube, and/or
(ii) lδ, the degree of Blδ , is equal to 1 for 1 ≤ δ ≤ d.
In any other case f must be d-linear to fulfill the condition ω2(f ; . . . ) = 0 for all

d terms and for an interior point of the hypercube while lδ ≥ 2, 1 ≤ δ ≤ d.
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From (i) and (ii) it is evident that the sum of d ω2-terms is the correct expression
for tensor product Bernstein approximation over a (generalized) hypercube.

6. Concluding remark

It should have become clear that our, or a similar approach, may be used to
prove analogous results for many other operator sequences (which different authors
may consider). We feel that sums of partial moduli of smoothness are among the right
tools for tensor product approximation since they show the mutual independence of
the variables. Nonetheless, even better pointwise results are available but do not really
contribute to a better understanding.
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Abstract. In this paper, we discuss the existence of nonnegative solutions to a
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1. Introduction

In the present paper, we investigate the following fourth order singular differen-
tial equation with parameter

v(4) = λg(t)f(v(t)), 0 < t < 1, (1.1)

subject to the boundary conditions

v(0) = a1, v(1) = a2, v′′(0) = a3, v′′(1) = a4, (1.2)

where aj ≥ 0, j ∈ {1, 2, 3, 4}, are given constants,

(H1). f ∈ C([0,∞)),

0 < A1 ≤ f(x) ≤ A2 +

k∑
j=0

Bjx
j , x ∈ [0,∞),

A2 ≥ A1 > 0 and Bj ≥ 0, j ∈ {0, . . . , k}, k ∈ N0, are given constants.
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(H2). g : (0, 1) → R+ is continuous and may be singular at t = 0 or/and t = 1 ,

g 6≡ 0 on (0, 1) and
∫ 1

0
s(1− s)g(s)ds <∞.

Fourth order two-point boundary value problems (BVPs for short) have been
received much attention by many authors due to their importance in physics. Usually,
they are essential in describing a vast class of elastic deflections with several types
of boundary conditions such as whose ends are simply-supported at 0 and 1 (v(0) =
v(1) = v′′(0) = v′′(1) = 0). A great number of research has been devoted to investigate
the existence of positive solutions to this class of problems, see [2, 1, 3, 4, 8, 9, 10,
11, 12, 13] and the references therein. The authors in [2] discussed the existence,
uniqueness and multiplicity of positive solutions to the following eigenvalue BVP by
means of fixed point theorem and degree theory

v(4) = λf(t, (v(t)), 0 < t < 1, (1.3)

v(0) = v(1) = v′′(0) = v′′(1) = 0, (1.4)

where λ > 0 is a constant and f : [0, 1] × [0,∞) → [0,∞) is continuous. In [12] by
applying a Krasnosel’skii fixed point theorem of cone expansion and compression
the author obtained the existence and multiplicity results of equation (1.3) with
boundary conditions v(0) = v(1) = v′(0) = v′(1) = 0. In the literature, there
are few papers devoted to study fourth order singular eigenvalue problems. In the
case when aj = 0, j ∈ {1, 2, 3, 4}, the BVP (1.1)-(1.2) is investigated in [7] when
f ∈ C([0,∞)), f > 0 on [0,∞), f is nondecreasing on [0,∞) and there exist δ > 0,
m ≥ 2 such that f(u) > δum, u ∈ [0,∞), and g ∈ C(0, 1), g > 0 on (0, 1) and

0 <
∫ 1

0
s(1− s)g(s)ds <∞. In [7], Feng and Ge used the method of upper and lower

solutions and the fixed point index to discuss the existence of positive solutions.

Our main result is as follows where we do not require any monotonicity assump-
tions on f , and we do not assume that f is either superlinear or sublinear.

Theorem 1.1. Suppose that (H1) and (H2) hold. Then there is a λ∗ > 0 such that the
BVP (1.1)-(1.2) has at least one nonnegative solution for λ = λ∗.

Note that our main result, in the particular case aj = 0, j ∈ {1, 2, 3, 4}, is valid
in the case when f is decreasing on [0,∞), while the corresponding result in [7] is
not valid. For instance, f(x) = 1 + 1

1+x2 , x ∈ [0,∞), satisfies (H1) for A1 = 1,

A2 = 2, Bj = 0, j ∈ {0, . . . , k}, and f is decreasing on [0,∞), whereupon it does not
satisfy the conditions in [7]. Also, the conditions for g in [7] are more restrictive than

(H2). For instance, g(t) =
( 1

2−t)
2

t(1−t) , t ∈ (0, 1), satisfies (H2) and does not satisfy the

conditions in [7] because g
(
1
2

)
= 0. Thus, we can consider the particular case of our

main result, aj = 0, j ∈ {1, 2, 3, 4}, as a complementary result to the result in [7].
The approach used in this paper is to rewrite the (BVP) (1.1)-(1.2) into a perturbed
integral equation of which we search for solutions in a suitable subset of a Banach
space by means of recent fixed point theorem of Birkhoff-Kellogg type developed by
Calamai and Infante in [5]. Note that this fixed point theorem has been applied very
recently to discuss the solvability of fourth order retarded equations in [6].
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The paper is organized as follows. In Section 2, we give some auxiliary results
needed for the proof of our main result. In Section 3, we prove our main result. In
Section 4, we give an example.

2. Auxiliary results

Let X be a real Banach space.

Definition 2.1. A mapping F : Ω ⊂ X → X is said to be completely continuous if it
is continuous and maps bounded sets into relatively compact sets.

Definition 2.2. A closed, convex set K of X is said to be cone if

1. αx ∈ K for any α ≥ 0 and for any x ∈ K,
2. x,−x ∈ K implies x = 0.

For a given y ∈ X, we consider the translate of a cone K, namely

Ky = K + y = {x+ y : x ∈ K}.
Given an open bounded subset D of X we denote DKy

= D ∩ Ky, an open subset of
Ky.

Theorem 2.3. [5, Corollary 2.4] Let (X, ‖ ‖) be a real Banach space, K ⊂ X be a
cone, and D ⊂ X be an open bounded set with y ∈ DKy and DKy 6= Ky. Assume that

F : DKy
→ K is a completely continuous map and assume that

inf
x∈∂DKy

‖Fx‖ > 0.

Then there exists x∗ ∈ ∂DKy
and λ∗ ∈ (0,∞) such that

x∗ = y + λ∗F (x∗).

Let

y1(t) =
(
a1 +

a4
6

)
(1− t) + a2t+

a3
6

(1− t)3 +
a4
6

(t3 − 1) +
a3
6

(t− 1), t ∈ [0, 1].

We have
0 ≤ y1(t) ≤ a1 + a2 + a3 + a4, t ∈ [0, 1],

and

y′1(t) = −a1 −
a4
6

+ a2 −
1

2
a3(1− t)2 +

1

2
a4t

2 +
a3
6
, t ∈ [0, 1].

y′′1 (t) = a3(1− t) + a4t, t ∈ [0, 1].

Hence,
y1(0) = a1, y1(1) = a2, y′′1 (0) = a3, y′′(1) = a4.

Set
y(t) = −y1(t), t ∈ [0, 1].

Now, consider the BVP

u(4) = λg(t)f(u(t)− y(t)), 0 < t < 1,

u(0) = u(1) = u′′(0) = u′′(1) = 0,
(2.1)
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where f and g satisfy (H1) and (H2), respectively.
Let X = C([0, 1]) be endowed with the norm ‖u‖ = max

t∈[0,1]
|u(t)|. Define

K = {u ∈ X : u(t) ≥ 0, t ∈ [0, 1]}.

Since 0 ≤
∫ 1

0
s(1− s)g(s)ds <∞, there exists a nonnegative constant C0 such that∫ 1

0

s(1− s)g(s)ds = C0.

Because g 6≡ 0 on (0, 1), there are C1 > 0, s0 ∈ (0, 1) and ε > 0 such that s0−ε, s0+ε ∈
(0, 1) and

g(s) ≥ C1, s ∈ (s0 − ε, s0 + ε).

Define

G(t, s) =

 t(1− s) 2s−s2−t2
6 , 0 ≤ t ≤ s ≤ 1,

s(1− t) 2t−t2−s2
6 , 0 ≤ s ≤ t ≤ 1.

We have

0 ≤ G(t, s) ≤ 1

6
s(1− s) ≤ 1

6
, 0 ≤ t, s ≤ 1,

Note that∫ 1

0

G(s0 + ε, s)g(s)ds ≥
∫ s0+ε

s0−ε
G(s0 + ε, s)g(s)ds

≥ C1

∫ s0+ε

s0−ε
G(s0 + ε, s)ds

= C1

∫ s0+ε

s0−ε
s(1− s0 − ε)

2(s0 + ε)− (s0 + ε)2 − s2

6
ds

≥ 2

3
C1ε(s0 − ε)2(1− s0 − ε)2

> 0.

For u ∈ X, define the operator

Tu(t) =

∫ 1

0

G(t, s)g(s)f(u(s)− y(s))ds, t ∈ [0, 1].

In [7], it is proved that any fixed point u ∈ X of the operator λT is a solution to the
BVP (2.1). Fix C2 > a1 + a2 + a3 + a4 arbitrarily. Define

D = {u ∈ X : ‖u‖ < C2}.

We have that D is an open bounded set in X, y ∈ D and DKy
= D ∩Ky 6= Ky. Note

that for any u ∈ DKy , we have

u(t) = y(t) + z(t), t ∈ [0, 1],
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for some z ∈ K, and so u(t)− y(t) = z(t) ≥ 0, t ∈ [0, 1], and

f(u(t)− y(t)) ≤

A2 +

k∑
j=0

Bj(u(t)− y(t))j


≤

(
A2 +

k∑
j=0

Bj2
j
(
|u(t)|j + |y1(t)|j

))

≤
(
A2 +

k∑
j=0

Bj2
j
(
Cj2 + (a1 + a2 + a3 + a4)j

))
, t ∈ [0, 1].

2.1. Proof of the main result

Since f ∈ C([0,∞)) and g ∈ C(0, 1), we have that T : DKy → K is a continuous

operator. Next, for u ∈ DKy
, we have

Tu(t) =

∫ 1

0

G(t, s)g(s)f(u(s)− y(s))ds

≤ 1

6

A2 +

k∑
j=0

Bj2
j
(
Cj2 + (a1 + a2 + a3 + a4)j

)∫ 1

0

s(1− s)g(s) ds

=
1

6
C0

A2 +

k∑
j=0

Bj2
j
(
Cj2 + (a1 + a2 + a3 + a4)j

) , t ∈ [0, 1],

whereupon

‖Tu‖ ≤ C0

A2 +

k∑
j=0

Bj2
j
(
Cj2 + (a1 + a2 + a3 + a4)j

) .

Then, T (DKy ) is uniformly bounded. Moreover, for u ∈ DKy and t1, t2 ∈ [0, 1], t1 < t2,
the Lebesgue dominated convergence theorem guarantees that

|Tu(t1)− Tu(t2)|

≤
∫ 1

0

|G(t1, s)−G(t2, s)|g(s)f(u(s)− y(s))ds ds

≤

A2 +

k∑
j=0

Bj2
j
(
Cj2 + (a1 + a2 + a3 + a4)j

)∫ 1

0

g(s)|G(t1, s)−G(t2, s)|ds

→ 0, t1 → t2,

Therefore, T (DKy
) is equicontinuous. According to the Arzelà-Ascoli compactness

criterion, we conclude that the operator T : DKy
→ K is completely continuous.
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Observe that, for u ∈ ∂DKy
,

max
t∈[0,1]

|Tu(t)| ≥ Tu(s0 + ε) =

∫ 1

0

G(s0 + ε, s)g(s)f(u(s)− y(s))ds

≥ A1

∫ 1

0

G(s0 + ε, s)g(s)ds

≥ 2

3
A1C1ε(s0 − ε)2(1− s0 − ε)2

> 0.

Consequently

inf
u∈∂DKy

‖Tu‖ ≥ 2

3
A1C1ε(s0 − ε)2(1− s0 − ε)2 > 0.

Now, applying Theorem 2.3, we conclude that there are λ∗ ∈ (0,∞) and u∗ ∈ ∂DKy

such that

u∗(t) = y(t) + λ∗
∫ 1

0

G(t, s)g(s)f(u∗(s)− y(s))ds, t ∈ [0, 1].

Let

v∗(t) = u∗(t)− y(t), t ∈ [0, 1].

Then

v∗(0) = u∗(0)− y(0) = a1,

v∗(1) = u∗(1)− y(1) = a2,

v∗′′(0) = u∗′′(0)− y′′(0) = a3,

v∗′′(1) = u∗′′(1)− y′′(1) = a4

and

v∗(t) = λ

∫ 1

0

G(t, s)g(s)f(v∗(s))ds, t ∈ [0, 1],

whereupon

v∗(4)(t) = λg(t)f(v∗(t)), 0 < t < 1.

Since u∗ ∈ ∂DKy
, we have that u∗(t) = y(t) + z∗(t), t ∈ [0, 1], for some z∗ ∈ K, and

then

v∗(t) = u∗(t)− y(t) = z∗(t) + y(t)− y(t) = z∗(t) ≥ 0, t ∈ [0, 1].
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3. An example

Consider the BVP

u(4) = λ
( 1

2−t)
2

t(1−t)

(
1 + 1

1+(u(t))2

)
, t ∈ (0, 1),

u(0) = 0, u(1) = 1, u′′(0) = 1
2 , u′′(1) = 1.

(3.1)

Here

f(x) = 1 +
1

1 + x2
, x ∈ [0,∞), g(t) =

(
1
2 − t

)2
t (1− t)

, t ∈ (0, 1),

and

a0 = 0, a1 = 1, a2 =
1

2
, a3 = 1.

By our main result, it follows that the BVP (3.1) has at least one nonnegative solution.
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Optimal control of a frictional contact problem
with unilateral constraints

Rachid Guettaf and Arezki Touzaline

Abstract. We consider a mathematical model that describes a static contact with
a nonlinear elastic body and a foundation. The contact boundary is composed
of two measurable parts. In one part, the contact is frictionless with Signorini’s
conditions. In the other part, the normal stress is given and associated with
Coulomb’s friction law. We state an optimal control problem that consists of
leading the stress tensor as close as possible to a given target by acting with a
control on the boundary. Then, we study the penalized and regularized control
problem for which we establish a convergence result.
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1. Introduction

Contact problems involving deformable bodies are very common in industry and
everyday life and play a large role in structural and mechanical systems. Given the
significance of these processes, considerable effort has been devoted to modelling and
numerical simulation of these problems. The first of frictional contact problems in
the context of variational inequalities was carried out in [9]. To get a background in
contact mechanics from the mathematical or engineering point of view, the reader can
consult for instance [2,12,14,18,21,22,26,23,24,25]. In addition to the numerical study
of contact problems at present, we are also interested in studying the optimal control
of such problems. Recall that the theory of optimal control of variational inequalities
is very elaborate, see for instance [10,18]. In [19], we find the study of the optimal
control of linear or nonlinear elliptic problems and variational inequalities. However,
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the optimal control issues for contact models are very significant, but they are not
overly developed, see [1,3,4,5,6,7,8,10,13,15,16,18,19,20,26] and the references therein.
Recently, in [16,17] two optimal control problems for elastic frictional contact models
were studied. In particular, in [17], the authors investigated the optimal control of a
frictional contact problem with normal compliance.

In this paper, we consider a nonlinear elastic body which is in static contact
with a foundation. The boundary contact is divided into two measurable parts such
that their measures must not equal zero at the same time. In one part, the contact
is frictionless with unilateral constraints. In the other part, the normal stress is given
and the contact is described by Coulomb’s friction law. This model of contact was
used in [27] to study a viscoelastic contact problem with a long memory. Thus, we
contribute by proposing the model from which we derive a variational formulation
(Problem P2) of the mechanical problem and prove the existence and uniqueness of
a weak solution. Next, the optimal control problem concerning this model is denoted
by C1. It consists of minimizing a cost functional which is convex and continuous.
Indeed, we are interested to led the stress tensor field as close as possible to a given
target when we act with control on the boundary of the body. We prove that Problem
C1 admits at least one solution, and then we introduce a penalized and regularized
problem (Problem Pδ) such that the solution converges to the solution of Problem
P2. Also, we introduce a regularized and penalized optimal control problem C2 and
obtain a convergence result.

The paper is structured as follows. In section 2, we describe the mechanical
model, introduce some notations, establish a variational formulation and prove its
weak solvability, Theorem 2.1. In section 3, we state the optimal control problem C1
and prove that it has at least one solution, Theorem 3.2. In section 4, we state and
analyze a penalized and regularized optimal control problem, Theorem 4.4.

2. The model and its weak solvability

We denote by Sd the space of second order symmetric tensors on Rd(d = 2, 3),
while ‘.’ and |.| represent the inner product and the norm on Sd. Thus, for every σ,

τ ∈ Sd, σ.τ = σijτij , |τ | = (τ.τ)
1
2 . Here and below, the indices i and j lie between 1

and d and the summation convention over repeated indices is adopted. We also use
the usual notation for the normal components and the tangential parts of vectors
and tensors, respectively, given by vν = v.ν = viνi, vτ = v − vνν, σν = σν.ν and
στ = σν − σνν.

We consider the following physical setting. Let an elastic body occupy a bounded
Lipschitzian domain Ω ⊂ Rd (d = 2, 3). The boundary Γ of Ω is partitioned into three
measurable parts such that Γ = Γ1 ∪ Γ2∪ Γ3, where Γi, i = 1, 2, 3, are disjoint and
meas (Γ1) > 0. The body is subjected to volume forces of density ϕ0 and tractions ϕ
on Γ2. On Γ1, the displacement vanishes and the body is clamped here. Γ3 is divided
into Γ3,1 and Γ3,2 such that their measures must not equal zero at the same time.
This latter hypothesis allows that where one of the two subsets Γ3,1 and Γ3,2 is empty,
then the corresponding contact condition below is suppressed from the problem. We
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assume a frictionless contact with Signorini’s conditions on Γ3,1, and Coulomb’s law
of dry friction on Γ3,2.

Under these conditions, the classic formulation for the contact problem is as
follows.
Problem P1. Find a displacement field u : Ω→ Rd such that

divσ (u) = −ϕ0 in Ω, (2.1)

σ (u) = Fε (u) in Ω , (2.2)

u = 0 on Γ1, (2.3)

σν = ϕ on Γ2, (2.4)

uν ≤ 0, σν ≤ 0, σνuν = 0, στ = 0 on Γ3,1, (2.5)

−σν = S, |στ | ≤ µ |σν | ,
−στ = µ |σν |

uτ
|uτ |

if uτ 6= 0

}
on Γ3,2. (2.6)

Here (2.1) represents the equilibrium equation where σ = σ (u) denotes the stress
tensor and divσ = σij,j is the divergence of σ. Next, equation (2.2) is the elastic con-
stitutive law in which ε (u) is the strain tensor defined by ε (u) = (εij (u)) , εij (u) =
1
2 (∂jui + ∂iuj) and F is a given nonlinear function. Equations (2.3) and (2.4) are
the displacement and traction boundary conditions, respectively, in which ν denotes
the unit outward normal vector on Γ and σν represents the Cauchy stress vector.
Over Γ3,1, (2.5) describes the frictionless contact with Signorini’s conditions. On Γ3,2,
Coulomb’s law of dry friction with the hypothesis that the normal stress is given. In
(2.6) S is a nonnegative function, µ is a coefficient of friction and µS a friction bound.

To proceed with the variational formulation, Problem P1, we need additional
notations and need to recall some assumptions in the sequel.

H = L2 (Ω)
d
, Q =

{
τ = (τij) ; τij = τji ∈ L2 (Ω)

}
H1 =

{
u = (ui) |ui ∈ H1(Ω), i = 1, d

}
, Q1 = {σ ∈ Q |div σ ∈ H }

H, Q, H1, Hd are real Hilbert spaces endowed with the respective inner products:

(u, v)H =

∫
Ω

uividx, 〈σ, τ〉Q =

∫
Ω

σijτijdx,

(u, v)H1
= 〈u, v〉H + (ε(u), ε(v))Q , (σ, τ)Hd = 〈σ, τ〉Q + (div σ, divτ)H .

We denote respectively the norms associated with ‖.‖H , ‖.‖Q, ‖.‖H1
and ‖.‖Hd .

Recall that the following Green’s formula holds:
For every element v ∈ H1, we also write v for the trace of v on Γ. Recall that if

σ is a regular function, then the following Green’s formula holds:

(σ, ε (v))Q + (divσ, v)H =

∫
Γ

σν.vda ∀v ∈ H1,

where da is the measure surface element.
Next, let V be the closed subspace of H1 defined by

V = {v ∈ H1; v = 0 on Γ1} .
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Since meas (Γ1) > 0, the following Korn’s inequality holds [9],

‖ε (v)‖Q ≥ cΩ ‖v‖H1
∀v ∈ V, (2.7)

where cΩ > 0 is a constant which depends only on Ω and Γ1. We equip V with the
inner product given by

(u, v)V = (ε (u) , ε(v))Q,

and let ‖.‖V be the associated norm. It follows from (2.7) that the norms ‖.‖H1
and

‖.‖V are equivalent and (V, ‖.‖V ) is a real Hilbert space. Moreover, by Sobolev’s trace
theorem, there exists a constant dΩ > 0 depending only on the domain Ω, Γ1 and Γ3

such that

‖v‖
(L2(Γ3))d

≤ dΩ ‖v‖V ∀v ∈ V. (2.8)

We introduce the closed convex set of admissible displacements defined as

K = {v ∈ V ; vν ≤ 0 a.e. on Γ3,1} .
For the study of Problem (P ) we adopt the following assumptions on the data:

The operator of elasticity F satisfies

(a) F : Ω× Sd → Sd;
(b) there exists M > 0 such that

|F (x, ε1)−F (x, ε2)| ≤M |ε1 − ε2|
∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω;

(c) there exists m > 0 such that

(F (x, ε1)−F (x, ε2)) . (ε1 − ε2) ≥ m |ε1 − ε2|2
∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω;

(d) the mapping x→ F (x, ε) is Lebesgue measurable on Ω,
for all ε ∈ Sd;

(e) F (x, 0Sd) = 0 for a.e. x ∈ Ω.

(2.9)

Examples of nonlinear elasticity operators can be found in [11, 28] .
We assume that the densities of the body force and the surface traction satisfies

ϕ0 ∈ H, ϕ ∈
(
L2 (Γ2)

)d
. (2.10)

Finally, the coefficient of friction µ and the normal stress S are assumed to satisfy

µ ∈ L∞ (Γ3,2) and µ ≥ 0 a.e. on Γ3,2, (2.11)

S ∈ L2 (Γ3,2) and S ≥ 0 a.e. on Γ3,2. (2.12)

Next, we define the functional j : V → R by

j (v) =

∫
Γ3,2

(Svν + µS |vτ |)da, ∀v ∈ V.

Using Riesz representation theorem, there exists f ∈ V such that

(f, v)V = (ϕ0, υ)H + (ϕ, υ)(L2(Γ2))d ∀v ∈ V.
A standard procedure allows us to derive the following variational formulation from
the mechanical P1.
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Problem P2. Find u ∈ K such that

(Au, v − u)V + j (v)− j (u) ≥ (f, v − u)V , ∀v ∈ K. (2.13)

Here, the operator A is defined by

(Au, v)V = (Fε (u) , ε (v))Q, ∀u, v ∈ V.
The main result of this section is on the existence and uniqueness of the weak

formulation P2. One has the following theorem.

Theorem 2.1. Let (2.9), (2.10), (2.11) and (2.12) hold. Then, there exists a unique
solution of Problem P2.

Proof. We use (2.9) (b), (2.9) (c) to show that the operator A is Lipschitz continuous
and strongly monotone. Using (2.11) and (2.12), we see that the functional j : V → R
is proper, convex and lower semicontinuous; K is a non empty closed convex of V .
Then, it follows from the theory of elliptic variational inequalities (see [24]) that the
inequality (2.13) has a unique solution. �

3. The optimal control problem

For a fixed ϕ0 ∈ H, we consider the state problem below.
Problem Q1. For a given ϕ ∈ (L2 (Γ2))d (called control), find u ∈ K such that{

(Au, v − u)V + j (υ)− j (u)
≥ (ϕ0, υ − u)H + (ϕ, υ − u)(L2(Γ2))d , ∀v ∈ K.

(3.1)

Theorem 3.1. Let (2.9), (2.10), (2.11) and (2.12) hold. Then Problem Q1 has a unique
solution.

By the same arguments used in the proof of Theorem 2.1, this problem has a
unique solution u = u (ϕ) .

Now, by acting the control on the boundary Γ2, we focus that the resulting stress
be as close to a given target σd. We assume that σd = Fε(ud) where ud ∈ V and
recall that σ = Fε(u). Then we have ‖σ − σd‖Q ≤ M ‖u− ud‖V and we see that if

‖u− ud‖V is sufficiently small, it follows that σ approach σd in the sense of Q−norm.
Thus, we consider the cost functional L : V × (L2 (Γ2))d → R+ defined as

L (u, ϕ) = α ‖u− ud‖2V + β ‖ϕ‖2(L2(Γ2))d , (3.2)

where α, β > 0. We define the set Uad of admissible pairs by

Uad =
{

(u, ϕ) ∈ (K × (L2 (Γ2))d), such that (3.1) is satisfied
}
.

Then we consider the following optimal control problem.
Problem C1. Find (u∗, ϕ∗) ∈ Uad such that

L (u∗, ϕ∗) = min
(u,ϕ)∈Uad

L (u, ϕ) .

Theorem 3.2. Assume (2.9), (2.10), (2.11) and (2.12). Then Problem C1 has at least
one solution.
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Proof. We put v = 0V in (3.1), then, using (2.7), (2.8) and (2.9) (c), we deduce that
the solution u of Problem Q1 is bounded in V as

‖u‖V ≤
c0
m

(
‖ϕ0‖H + dΩ ‖ϕ‖(L2(Γ2))d + dΩ ‖S‖L2(Γ3,2)

)
,

where c0 > 0. This estimate below implies that

inf
(u,ϕ)∈Uad

{L (u, ϕ)} <∞.

Now, let us denote

inf
(u,ϕ)∈Uad

{L (u, ϕ)} = θ. (3.3)

Then, there exists a minimizing sequence (un, ϕn) ⊂ Uad such that

lim
n→∞

L (un, ϕn) = θ. (3.4)

The sequence (un, ϕn) is bounded in V × (L2 (Γ2))d, so there exists an element

(u∗, ϕ∗) ∈ V × (L2 (Γ2))d

such that passing to a subsequence still denoted by (un, ϕn), we deduce that as n→∞,

un → u∗ weakly in V. (3.5)

We note that K is a closed convex subset of the space V and (un) ⊂ K. Then the
convergence (3.5) implies that u∗ ∈ K.

ϕn → ϕ∗ weakly in (L2 (Γ2))d. (3.6)

Now, we need to prove that

un → u∗ strongly in V as n→∞. (3.7)

Indeed, as (un, ϕn) ∈ Uad , then un is the solution of the inequality below.{
(Aun, v − un)V + j (v)− j (un)
≥ (ϕ0, υ − un)H + (ϕn, υ − un)(L2(Γ2))d , ∀υ ∈ K.

(3.8)

Using (2.9) (c) and (3.8), we deduce that

m ‖un − u∗‖2V ≤ (Aun −Au∗, un − u∗)V
≤ −(Au∗, un − u∗)V + j (u∗)− j (un)
+ (ϕ0, u

n − u∗)H + (ϕn, un − u∗)(L2(Γ2))d .
(3.9)

Using (3.5), we have that

lim
n→∞

(Au∗, un − u∗)V = 0.

On the other hand, since un → u∗ weakly in V implies un → u∗ strongly in H, then
lim

n→+∞
(ϕ0, u

n − u∗)H = 0. Also, as (ϕn) is bounded in (L2 (Γ2))d, then using that

(3.5) implies un → u∗ strongly in (L2 (Γ2))d. It follows that

lim
n→∞

(ϕn, un − u∗)(L2(Γ2))d = 0 and lim
n→∞

j (un) = j (u∗) .

Thus, the right hand side of inequality (3.9) tends to zero as n → +∞ and then we
get (3.7) . Moreover, using (3.6) and (3.7), we pass to the limit as n→ +∞ in (3.8) to
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obtain that u∗ satisfies the inequality (3.1) with ϕ = ϕ∗. Hence, from Theorem 3.1,
we deduce that

(u∗, ϕ∗) ∈ Uad. (3.10)

On the other hand, the functional L is convex and lower semicontinuous, then it is
weakly lower semicontinuous. So we deduce that

lim inf
n→+∞

L (un, ϕn) ≥ L (u∗, ϕ∗) . (3.11)

It follows now from (3.4) and (3.11) that

θ ≥ L (u∗, ϕ∗) . (3.12)

In addition, (3.3) yields

L (u∗, ϕ∗) ≥ θ. (3.13)

Then, to end the proof, it suffices to combine the inequalities (3.12) and (3.13) .� �

4. The penalized and regularized optimal control problem

Let δ > 0, we replace the contact condition (2.5) by the condition

σ
δν (u) = −1

δ
(uν)+

where we recall that for r ∈ R, r+ = max (r, 0), and consider the smooth function

ψ (x) =
√
x2 + δ2.

Now, we introduce the following penalized and regularized problem.
Problem Pδ. Find uδ ∈ V such that

(Auδ, υ − uδ)V +
1

δ

(
(uδν)+, vν − uδν

)
L2(Γ3,1)

+

∫
Γ3,2

µS
(
ψ (vτ )− ψ

(
uδτ
))
da

+

∫
Γ3,2

S
(
vν − uδν

)
da ≥ (f, υ − uδ)V ∀υ ∈ V.

(4.1)

Theorem 4.1. Assume that (2.9), (2.10), (2.11) and (2.12) hold.Then, there exists a
unique solution of Problem Pδ.

Proof. We define the operator B : V → V by

(Bu, v)V = (Au, v)V +
1

δ

(
(uν)+ , vν

)
L2(Γ3,1)

∀u, v ∈ V .

Using that for a, b ∈ R, (a− b) (a+ − b+) ≥ (a+ − b+)
2

and |a+ − b+| ≤ |a− b|, we
deduce by (2.8) and (2.9) that the operator B is Lipschitz continuous and strongly
monotone as for all u, v ∈ V :

‖Bu−Bv‖V ≤ (M +
d2

Ω

δ
) ‖u− v‖V ,

(Bu−Bv, u− v)V ≥ m ‖u− v‖
2
V .
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So, there exists a unique solution uδ of (4.1). In addition, take v = 0 in (4.1) and use
(2.7), (2.8) and (2.9) (c) implies that∥∥uδ∥∥

V
≤ c0
m

(‖ϕ0‖H + dΩ ‖ϕ‖(L2(Γ2))d + dΩ ‖S‖L2(Γ3,2)). (4.2)

�

Now for a fixed ϕ0 ∈ H, we define the penalized and regularized state problem
as follows.
Problem Q2. For a given ϕ ∈ (L2 (Γ2))d (called control), find uδ ∈ V such that

(Auδ, υ − uδ)V +
1

δ

(
(uδν)+, vν − uδν

)
L2(Γ3,1)

+

∫
Γ3,2

µS
(
ψ (vτ )− ψ

(
uδτ
))
da

+

∫
Γ3,2

S (vν − uν) da ≥ (ϕ0, υ − uδ)H + (ϕ, υ − uδ)(L2(Γ2))d ∀υ ∈ V.

With the same arguments used in Theorem 4.1 this problem has a unique solu-
tion. Moreover, we define the set of admissible pairs as

Uδad =
{

(u, ϕ) ∈ V × (L2 (Γ2))d, such that (4.1) is satisfied
}
.

Then using the functional L, given by (3.2), we formulate below the regularized
and penalized optimal control problem.
Problem C2. Find (ūδ, ϕ̄δ) ∈ U δad such that

L
(
ūδ, ϕ̄δ

)
= min

(u,ϕ)∈Uδad
{L (u, ϕ)} .

With arguments similar to those used in Theorem 3.1, the following result can
be proved.

Theorem 4.2. Assume (2.9) , (2.10), (2.11) and (2.12) hold.Then, Problem C2 has at
least one solution.

In the first part of this section, we prove that the unique solution of the penalized
and regularized state problem Q2 converges to the unique solution of the state problem
Q1. More precisely, the following theorem takes place.

Theorem 4.3. Assume that (2.9), (2.10), (2.11) and (2.12) hold. Then, the following
strong convergence holds:

uδ → u strongly in V as δ → 0. (4.3)

Proof. Taking into account (4.2), it follows that there exists an element ũ ∈ V such
that passing to a subsequence still denoted in the same way, we have the convergence:

uδ → ũ weakly in V as δ → 0. (4.4)

Now take v ∈ K in (4.1) and taking account that for a, b ∈ R,

(a+ − b+) (a− b) ≥ (a+ − b+)
2
,
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we deduce that

(Auδ, υ − uδ)V +

∫
Γ3,2

µS
(
ψ (vτ )− ψ

(
uδτ
))
da+

∫
Γ3,2

S(vν − uδν)da

≥ (ϕ0, υ − uδ)H + (ϕ, υ − uδ)(L2(Γ2))d ∀υ ∈ K.

(4.5)

Using (2.11) and (2.12), we have that

∫
Γ3,2

µS(ψ (vτ )− |vτ |)da = O (δ), then∫
Γ3,2

µS(ψ (vτ ))→
∫

Γ3,2

µS |vτ | da as δ → 0. (4.6)

On the other hand, we have∫
Γ3,2

µSψ
(
uδτ
)
da =

∫
Γ3,2

µS(ψ
(
uδτ
)
−
∣∣uδτ ∣∣)da+

∫
Γ3,2

µS
∣∣uδτ ∣∣ da.

By (2.11) and (2.12), we have that∫
Γ3,2

µS(ψ
(
uδτ
)
−
∣∣uδτ ∣∣)da = O (δ) .

Then, ∫
Γ3,2

µSψ
(
uδτ
)
da = O (δ) +

∫
Γ3,2

µS
∣∣uδτ ∣∣ da. (4.7)

With compactness arguments, as uδτ → ũτ strongly in
(
L2 (Γ2)

)d
, we have that∫

Γ3,2

µS
∣∣uδτ ∣∣ da→ ∫

Γ3,2

µS |ũτ | da as δ → 0.

Then from (4.7) we deduce that∫
Γ3,2

µSψ
(
uδτ
)
da→

∫
Γ3,2

µS |ũτ | da as δ → 0. (4.8)

Then using (2.11), (2.12), (4.4), (4.5), (4.6), (4.8) and the compact imbedding

H
1
2 (Γ) ↪→ L2 (Γ) , yields

lim sup
δ→0

(
Auδ, uδ − v

)
V
≤ (ϕ0, ũ− v)H + (ϕ, ũ− v)(L2(Γ2))d (4.9)

+ j(ũ)− j (v) ∀v ∈ K.
Using now the pseudo-monotonicity of A, we deduce that

lim inf
δ→0

(
Auδ, uδ − v

)
V
≥ (Aũ, ũ− v)V ∀v ∈ V. (4.10)

Then, we combine (4.9) and (4.10) to get that{
(Aũ , v − ũ)V + j (v)− j(ũ)
≥ (ϕ0, v − ũ)H + (ϕ, v − ũ)(L2(Γ2))d ∀v ∈ K.

(4.11)

On the other hand, take v = 0 in (4.1) implies that(
(ũδν)+, ũ

δ
ν

)
L2(Γ3,1)

≤ δ
(

(ϕ0, u
δ)H + (ϕ, uδ)(L2(Γ2))d −

(
S, uδν

)
L2(Γ3,2)

)
.
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Then, from this inequality, we deduce that

‖(ũν)+‖L2(Γ3,1) ≤ lim inf
δ→0

∥∥(uδν)+

∥∥
L2(Γ3,1)

≤

lim
δ→0

√
c0δ

m

(
‖ϕ0‖H + dΩ ‖ϕ‖(L2(Γ2))d + dΩ ‖S‖L2(Γ3,2)

)
.

This inequality above implies that ‖(ũν)+‖L2(Γ3,1) = 0, then (ũν)+ = 0 a.e. on Γ3,1.

Hence, it follows that ũ ∈ K. Then, we deduce that ũ is a solution of Problem P1, so
that u = ũ from the uniqueness part of Theorem 2.1. Now, we have all ingredients to
end the proof of Theorem 4.2. Indeed, by the arguments used above, it follows that
any weakly convergent subsequence of the sequence (uδ) ⊂ V converges weakly to
the unique solution u of Problem P2. Estimate (4.2) implies that the sequence (uδ)
is bounded in V . Thus, by a standard compactness argument, we conclude that the
whole sequence (uδ) converges weakly to u. Then we use (2.9) (c) to have

m
∥∥uδ − u∥∥2

V
≤ (Auδ −Au, uδ − u)V

= (Auδ, uδ − u)V − (Au, uδ − u)V (4.12)

Now take v = u in (4.5) and (4.9), then as u = ũ, we get

0 ≤ lim inf
δ→0

(
Auδ, uδ − u

)
V
≤ lim sup

δ→0

(
Auδ, uδ − u

)
V
≤ 0.

Hence,

lim
δ→0

(
Auδ, uδ − u

)
V

= 0.

Moreover, from (4.12) since lim
δ→0

(
Au, uδ − u

)
V

= 0, we deduce that

lim
δ→0

∥∥uδ − u∥∥
V

= 0.

Then, we obtain (4.3). �

Next, we prove the convergence result below.

Theorem 4.4. Assume that (2.9), (2.10), (2.11), (2.12) hold and let (ūδ, ϕ̄δ) be a
solution of Problem C2. Then, there exists a solution (ū, ϕ̄) of Problem C1 such that
after passing to a subsequence still denoted in the same way, the following convergences
as δ → 0 hold :

(a) ūδ → ū strongly in V, (4.13)

(b) ϕ̄δ → ϕ̄ weakly in (L2(Γ2))d.

Proof. Let uδ0 ∈ V be the unique solution of Problem Q2 with ϕ = 0(L2(Γ2))d . We
have

L
(
uδ0, 0(L2(Γ2))d

)
= α

∥∥uδ0 − ud∥∥2

V
≤ 2α

(∥∥uδ0∥∥2

V
+ ‖ud‖2V

)
.

On the other hand, by (2.7), (2.8) and (2.9) (c), we have∥∥uδ0∥∥V ≤ c1
m

(
‖ϕ0‖H + dΩ ‖S‖L2(Γ3,2)

)
,
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where c1 > 0. Then, denote
c1
m

(
‖ϕ0‖H + dΩ ‖S‖L2(Γ3,2)

)
= C, we deduce that

L
(
ūδ, ϕ̄δ

)
≤ L

(
uδ0, 0(L2(Γ2))d

)
≤ 2α(C2 + ‖ud‖2V ).

Therefore,
(
ūδ, ϕ̄δ

)
is a bounded sequence in V ×(L2(Γ2))d. Consequently, there exists

(ū, ϕ̄) ∈ V × (L2(Γ2))d such that passing to a subsequence still denoted in the same
way, we have the convergences as δ → 0 :

ūδ ⇀ ū weakly in V,

ϕ̄δ ⇀ ϕ̄ weakly in (L2(Γ2))d.

Moreover, denote jδ (v) =

∫
Γ3,2

(Sµψ (vτ ) + Svν)da, we see that

m
∥∥ūδ − ū∥∥2

V
≤

(
Aū−Aūδ, ū− ūδ

)
V

≤
(
Aū, ū− ūδ

)
V

+ jδ (ū)− jδ
(
ūδ
)

+(ϕ0, ū− uδ)H + (ϕ, ū− uδ)(L2(Γ2))d .

Then, taking in mind that ūδ ⇀ ū weakly in V implies that ūδ → ū strongly in
(L2(Γ2))d, it follows that jδ (ū) − jδ

(
ūδ
)
→ 0 as δ → 0. Hence we deduce that the

right hand side of the above inequality tends to zero, thus we obtain (4.13) (a). Also,
we must prove that (ū, ϕ̄) ∈ Uad. Indeed, using (4.3), it follows that as δ → 0, the
following convergences hold:

(Aūδ, v − ūδ)V → (Aū, v − ū)V ,

lim
δ→0

(jδ (v)− jδ (ū)) = j (v)− j (ū) ,

(ϕ0, υ − uδ)H + (ϕ, υ − uδ)(L2(Γ2))d → (ϕ0, υ − ū)H + (ϕ, υ − ū)(L2(Γ2))d .

Therefore, passing to the limit as δ → 0 in (4.5), we deduce that (ū, ϕ̄) satisfies (3.1)
and (ū, ϕ̄) ∈ Uad.Let now (u∗, ϕ∗) be a solution of Problem C1 and let us consider
the sequence

(
uδ
)
δ

such that, for each δ > 0, uδ is the unique solution of Problem Q2

with ϕ∗ ∈ (L2(Γ2))d. Obviously, for every δ > 0,
(
uδ, ϕ∗

)
∈ Uδad. Using Theorem 4.3

we deduce that (
uδ, ϕ∗

)
→ (u∗, ϕ∗) in V × (L2(Γ2))d as δ → 0. (4.14)

Since the functional L is convex and continuous, we have

L (u∗, ϕ∗) ≤ lim
δ→0

inf L
(
ϕ̄δ, ūδ

)
. (4.15)

Also, as
(
ūδ, ϕ̄δ

)
is a solution of Problem C2, we have

lim
δ→0

supL
(
ūδ, ϕ̄δ

)
≤ lim
δ→0

supL
(
uδ, ϕ̄

)
. (4.16)

Using (4.13), we have

lim
δ→0

supL
(
uδ, ϕ̄

)
= L (ū, ϕ̄) , (4.17)

and as (ū, ϕ̄) is a solution of Problem C1, then

L (ū, ϕ̄) ≤ L (u∗, ϕ∗) . (4.18)
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Thus, from (4.15)-(4.18) , we deduce that L (ū, ϕ̄) = L (u∗, ϕ∗) . �
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Some aspects of a coupled system of nonlinear
integral equations

Binayak S. Choudhury , Nikhilesh Metiya and Sunirmal Kundu

Abstract. In the present work we take a system of two integral equations and
prove the existence and uniqueness of their solution. We investigate four aspects
of the problem, namely, error estimation and rate of convergence of the iteration
leading to the solution, Ulam-Hyers stability, well-posedness and data dependence
of the solution sets. We give some new definitions pertaining to the system we
analyze here. In order to establish our results we utilize the coupled contraction
mapping principle due to Bhaskar and Lakshmikantham (Nonlinear Anal. TMA
65(2006), 1379-1393) and several related results which we deduce here.
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1. Introduction

In this paper, we consider a system of two coupled nonlinear Fredholm type
integral equations. Coupled integral equations are of great practical value. Some ex-
amples of works are [3], [11], [12] and [20] where they have been applied to contact
problems, magnetostatic problems, solidification problems and scattering of nucleons.
Problem I. The problem is to solve the coupled system of nonlinear equations

u(t) = g(t) + λ
∫ b

a
K(t, s) h(s, u(s), v(s)) ds and

v(t) = g(t) + λ
∫ b

a
K(t, s) h(s, v(s), u(s)) ds, λ ≥ 0,

}
(1.1)

for all t ∈ [a, b] under some appropriate conditions on g, h and K.
The organization of our work is following.
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• First we describe the coupled contraction mapping theorem of Bhaskar et al.
[13]. This result is pivotal to our study here.

• In section 3, we solve Problem I under certain conditions. We also establish
that this solution is unique if we take some extra assumptions.

• In section 4, we study the rate of convergence and error estimation for the
iteration obtained in section 3.

• In section 5, we discuss the Ulam-Hyers stability of the problem. It is a stability
concept of general character which is applicable to diverse domains of mathematics.
The essence of the stability is to see whether a mathematical object having approxi-
mate behaviour of a given class of objects can actually be approximated by a member
of that class.

• In section 6, we investigate the well-posedness aspect of the problem.
• In section 7, we obtain a data dependence result for the solution of the problem.
• In both sections 6 and 7, we offer new definitions pertaining to the problem.
In our analysis we consider the structure of partial order on a metric space.

2. Review of coupled fixed point result of Bhaskar et al.[13]

Here we review a coupled fixed point result due to Bhaskar et al. [13]. This result
is instrumental to establishing our results in the following sections of the paper.

Although coupled fixed point was introduced by Guo et al. [14] some time back
in 1987, it was only after Bhaskar et al. [13] produced their result in 2006, there have
been wide spread interest in this subject. Some prominent references on this topic,
amongst others, are [2, 7, 8, 16]. Fixed point method is well known in several areas
of mathematics. Coupled fixed point theorems have also been used to solve several
problems of mathematics like these discussed in [14, 15]. In the present paper we
derive results by use of such methodologies.

In the paper, the notation X2 stands for X×X and the notation (X, d,�) stands
for a partially ordered metric space.

A coupled fixed point of a mapping F : X2 → X is an element (s, t) ∈ X2

satisfying s = F(s, t) and t = F(t, s).
Problem P. Let (X, d,�) be a metric space with a partial order. The problem is to
find a coupled fixed point of a mapping F : X2 → X under suitable conditions.

Definition 2.1 ([13]). A mapping F : X2 → X, where (X,�) is a partially order set,
is called mixed monotonic if for any u, v ∈ X,

t1, t2 ∈ X, t1 � t2 implies F(t1, v) � F(t2, v)

and
s1, s2 ∈ X, s1 � s2 implies F(u, s2) � F(u, s1).

Starting with (X,�) we define a partial order “ ≤ ” on the product space X2

as follows: for (s, t), (u, v) ∈ X2, (u, v) ≤ (s, t)⇔ u � s and t � v.

Definition 2.2 ([13]). A partially ordered metric space (X, d,�) is regular if
(i) xn � t, for all n, whenever {xn} is any nondecreasing sequence converging

to t;
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(ii) t � xn, for all n, whenever {xn} is any nonincreasing sequence converging
to t.

Theorem 2.3 ([13]). Let (X, d,�) be a complete metric space with a partial ordered
having regular property. Let F : X2 → X be a mixed monotonic function such that for
all (s, t), (u, v) ∈ X2 with u � s, t � v,

d(F(s, t), F(u, v)) ≤ ξ

2
[d(s, u) + d(t, v)], where ξ ∈ [0, 1). (2.1)

If there exist x0, y0 ∈ X satisfying x0 � F(x0, y0) and F(y0, x0) � y0, then the
sequence {(xn, yn)} obtained for all n ≥ 1 as

xn = F(xn−1, yn−1) = Fn(x0, y0) and yn = F(yn−1, xn−1) = Fn(y0, x0) (2.2)

converges to a coupled fixed point (x, y) of F, that is, xn → x and yn → y with
x = F(x, y) and y = F(y, x).

Theorem 2.4 ([13]). The coupled fixed point is unique in Theorem 2.3 if it is further
assumed that for every (x1, y1), (x2, y2) ∈ X2 there exists an element (x3, y3) ∈ X2

which is comparable to both (x1, y1) and (x2, y2).

3. Existence and uniqueness of solution of Problem I

In this section we deal with system of nonlinear integral equations and we apply
Theorem 2.4 ([13]) to establish the existence and uniqueness of solution of the system
in a complete metric space. The system (1.1) will be considered under some suitable
conditions.

In this section, we present our main finding, we take help of the coupled results
discussed in previous section to prove existence of the unique solution of (1.1).

We take the coupled system of nonlinear integral equations

x(t) = g(t) + λ
∫ b

a
K(t, s) h(s, x(s), y(s)) ds and

y(t) = g(t) + λ
∫ b

a
K(t, s) h(s, y(s), x(s)) ds, λ ≥ 0,

}
where the unknown functions x(t) and y(t) are real valued and continuous on [a, b].
That is, we investigate the possibility of continuous solution of (1.1).

Consider the metric space X = C[a, b], the space of all real valued continuous
functions defined on [a, b], endowed with the metric

d(x, y) = sup
t∈[a, b]

| x(t)− y(t) | . (3.1)

Assume that this metric space is endowed with the following partial ordered relation
�. Let in X, the relation x � y holds if x(t) ≤ y(t), whenever a ≤ t ≤ b.

We designate the following assumptions by I1, I2, I3, I4 and I5.
I1: g ∈ X and h : [a, b] × R × R → [0,∞), K : [a, b] × [a, b] → [0,∞) are

continuous mappings.
I2: For x, y, u, v ∈ X and s ∈ [a, b], x � u implies h(s, x(s), y(s)) ≤

h(s, u(s), y(s)) and y � v implies h(s, x(s), v(s)) ≤ h(s, x(s), y(s)).
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I3: | h(s, x(s), y(s))−h(s, u(s), v(s)) |≤ M(x, y, u, v), for (x, y), (u, v) ∈ X2 with
u � x and y � v, where

M(x, y, u, v) = sup
s∈[a, b]

| x(s)− u(s) | + | y(s)− v(s) |
2

.

I4: | K(t, s) |≤ m and ξ = λ (b− a) m with 0 ≤ ξ < 1.
I5: There exist x0, y0 ∈ X satisfying the following two inequalities:

x0(t) ≤ g(t) + λ

∫ b

a

K(t, s) h(s, x0(s), y0(s)) ds, for all t ∈ [a, b]

and

g(t) + λ

∫ b

a

K(t, s) h(s, y0(s), x0(s)) ds ≤ y0(t), for all t ∈ [a, b].

Theorem 3.1. Let (X, d) = (C[a, b], d), h, g, K(t, s) satisfy all the assumptions
I1, I2, I3, I4 and I5. Then the system of equations (1.1) has a unique solution
(x(t), y(t)) in X2 and there exist sequences {xn} and {yn} in X converging respec-
tively to x and y uniformly in [a, b].

Proof. Define F : X2 → X as

F(x, y)(t) = g(t) + λ

∫ b

a

K(t, s) h(s, x(s), y(s)) ds, for all a ≤ t ≤ b. (3.2)

Take x, y, u, v ∈ X with x � u and y � v. By I1, I2, we obtain

F(x, y)(t) = g(t) + λ

∫ b

a

K(t, s)h(s, x(s), y(s))ds

≤ g(t) + λ

∫ b

a

K(t, s)h(s, u(s), y(s))ds = F(u, y)(t),

F(x, y)(t) = g(t) + λ

∫ b

a

K(t, s)h(s, x(s), y(s))ds

≥ g(t) + λ

∫ b

a

K(t, s)h(s, x(s), v(s))ds = F(x, v)(t),

that is, F(x, y) � F(u, y) and F(x, v) � F(x, y). Hence F is a mixed monotonic map-
ping.

By assumptions I1, I3 and I4, for all (x, y), (u, v) ∈ X2 with u � x, y � v and
for all a ≤ t ≤ b, we get

|F(x, y)(t)− F(u, v)(t)| = λ |
∫ b

a

K(t, s)[h(s, x(s), y(s))− h(s, u(s), v(s))]ds|

≤ λ
∫ b

a

m | [h(s, x(s), y(s))− h(s, u(s), v(s))]ds |

≤ λ m
∫ b

a

M(x, y, u, v)ds
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= λ m

∫ b

a

sup
s∈[a,b]

| x(s)− u(s) | + | y(s)− v(s) |
2

ds

≤ λ m [d(x, u) + d(y, v)]

2

∫ b

a

ds

= λ m (b− a)
[d(x, u) + d(y, v)]

2
=
ξ

2
[d(x, u) + d(y, v)],

that is,

d(F(x, y), F(u, v)) ≤ ξ

2
[d(x, u) + d(y, v)],

where ξ = λ m (b − a) and ξ ∈ [0, 1). From the definition of F and the assumption
I5, we have x0, y0 ∈ X satisfying x0 � F(x0, y0) and F(y0, x0) � y0.

Let {xn} be a sequence in X such that xn → x ∈ X as n → ∞. If {xn} is
nondecreasing then xn � xn+1, for n > 0, that is, xn(s) ≤ xn+1(s), for all n and
s ∈ [a, b]. Then xn(s) ≤ x(s), for n > 0 and s ∈ [a, b], that is, xn � x, for n > 0. If
{xn} is nonincreasing then xn+1 � xn, for n > 0, that is, xn+1(s) ≤ xn(s), for n > 0
and s ∈ [a, b]. Then x(s) ≤ xn(s), for n > 0 and s ∈ [a, b], that is, x � xn, for n > 0.
Therefore, X has regular property.

By application of Theorem 2.3, we get x, y ∈ X satisfying

x(t) = F(x, y)(t) = g(t) + λ

∫ b

a

K(t, s) h(s, x(s), y(s)) ds

and

y(t) = F(y, x)(t) = g(t) + λ

∫ b

a

K(t, s) h(s, y(s), x(s))ds,

for all t ∈ [a, b], and corresponding to (2.2) there exist two sequences {xn} and {yn}
such that

xn+1(t) = F(xn, yn)(t) = g(t) + λ
∫ b

a
K(t, s) h(s, xn(s), yn(s)) ds,

yn+1(t) = F(yn, xn)(t) = g(t) + λ
∫ b

a
K(t, s) h(s, yn(s), xn(s)) ds,

}
(3.3)

and limn→∞ xn = x and limn→∞ yn = y in X. Then

sup
t∈[a, b]

| xn(t)− x(t) |→ 0 and sup
t∈[a, b]

| yn(t)− y(t) |→ 0, as n→∞,

that is, limn→∞ xn = x and limn→∞ yn = y uniformly on [a, b], as n→∞.

Let x, y ∈ X. Define z(t) = max {x(t), y(t)} and w(t) = min {x(t), y(t)}, for
t ∈ [a, b]. Then x � z, y � z and w � x, w � y. Therefore, for any x, y ∈ X, there
exist z and w ∈ X such that z is upper bound of x, y and w is lower bound of x, y.

By application of Theorem 2.4, we have that (x(t), y(t)) is the unique coupled
fixed point of F, that is, (x(t), y(t)) is the unique solution of the system (1.1).

Example 3.2. Consider the metric space X = C[0, 1] with the metric

d(x, y) = sup
t∈[0, 1]

| x(t)− y(t) |
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and with a partial ordered relation � defined as x � y if and only if x(t) ≤ y(t),
whenever x, y ∈ X and 0 ≤ t ≤ 1. Let h : [0, 1]×R×R→ [0,∞), K : [0, 1]× [1, 0]→
[0,∞), and g ∈ X be defined respectively as follows:

h(s, u, v) =

{
u−v
3 , if u ≥ v

0, otherwise,

K(x, y) = y, for x, y ∈ [0, 1] and g(t) = 0, for t ∈ [0, 1].

Take m = 1 and λ = 1
2 . Let x0 = 0 and y0 = c(> 0) be two points in X. Then all the

conditions of Theorem 3.1 are satisfied and here (x(t), y(t)) = (0, 0) is the unique
solution of the system of equations (1.1). Consider the sequence {xn} and {yn}, where
xn = 0 for all n ≥ 0 and y0 = c, yn = c

3 4n for all n ≥ 1. Here the sequences {xn} and
{yn} in X converge respectively to x = 0 and y = 0 uniformly in [0, 1].

4. Error estimation and rate of convergence

We investigate some aspects of the coupled fixed point problem considered by
Bhaskar et al. [13] in this section. We make an error estimation of the coupled fixed
point iteration which we construct in this paper. We also investigate the rate of
convergence of the iteration process. Such considerations have appeared in the fixed
point theory through works like [4].

We now study the rate at which the iteration method of finding the coupled
fixed point of Problem P converges if the initial approximation of the coupled fixed
point is sufficiently close to the desired coupled fixed point. For this purpose we first
define the order of convergence of the Problem P.

Definition 4.1. Problem P is said to be of order r or has the rate of convergence r
with respect to {(xn, yn)} given by equation (2.2) if (i) F admits a unique coupled
fixed point (x, y), (ii) r is a positive real number for which there exists a finite fixed
C > 0 for which Rn+1 ≤ C (Rn)r, where Rn = d(x, xn) + d(y, yn) is the error in n-th
iterate and (xn, yn) is the n-th approximation of the coupled fixed point (x, y). The
constant C is called the asymptotic error.

We study here the rate at which the iteration method of finding the solution of
system of integral equations converges if the initial approximation of the solution of
the system is sufficiently close to the desired solution of the system. For this purpose
we define the order of convergence of the solution of system of integral equations.

Definition 4.2. Problem I is said to be of order r or has the rate of convergence r with
respect to {(xn, yn)} given by equation (3.3) if (i) the system of integral equations
(1.1) has a unique solution (x, y), (ii) r is a positive real number for which there exists
a finite fixed C > 0 for which Rn+1 ≤ C (Rn)r, where Rn = sups∈[a, b][ | x(s)−xn(s) |
+ | y(s)−yn(s) | ] is the error in n-th iterate and (xn, yn) is the n-th approximation of
the solution (x, y) of the system of integral equations (1.1). The constant C is called
the asymptotic error.
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Theorem 4.3. Let (x0, y0) ∈ X2 be the initial approximation of the unique coupled

fixed point (x, y) of F in Theorem 2.4. Then Rn+1 ≤
ξn+1

(1− ξ)
[d(x1, x0) + d(y1, y0)],

where Rn = d(x, xn) + d(y, yn) is the error in n-th iterate and (xn, yn) is the n-th
approximation of the coupled fixed point (x, y).

Proof. Following the same techniques used in establishing Theorem 2.4 (see [13]), we
have the sequence {(xn, yn)} in X2 given by equation (2.2). Also,

• xn � xn+1 and yn+1 � yn, for all n ≥ 0,
• both {xn} and {yn} are Cauchy sequences in X and {(xn, yn)} converges to

a coupled fixed point of F in X2.
As, we consider that (x, y) is the unique coupled fixed point of F, we have

limn→∞ xn = x and limn→∞ yn = y. By equation (2.2) and the regularity assumption,
xn � x and y � yn, for n ≥ 0. Using (2.1), we have

d(x, xn+1) = d(F(x, y), F(xn, yn)) ≤ ξ

2
[d(x, xn) + d(y, yn)].

Similarly,

d(y, yn+1) = d(F(y, x),F(yn, xn)) ≤ ξ

2
[d(x, xn) + d(y, yn)].

Therefore,

Rn+1 = d(x, xn+1) + d(y, yn+1) ≤ ξ [d(xn, x) + d(yn, y)] = ξ Rn. (4.1)

Let,
rn = d(xn, xn+1) + d(yn, yn+1).

It follows from (4.1) that

Rn+1 = d(x, xn+1) + d(y, yn+1) ≤ ξ [d(xn, x) + d(yn, y)]

≤ ξ [d(xn, xn+1) + d(yn, yn+1) + d(xn+1, x) + d(yn+1, y)] = ξ [Rn+1 + rn],
(4.2)

which implies that

Rn+1 ≤
ξ

(1− ξ)
rn. (4.3)

Using (2.2), we obtain

rn+1 = d(xn+1, xn+2) + d(yn+1, yn+2)

= d(F(xn, yn), F(xn+1, yn+1)) + d(F(yn, xn), F(yn+1, xn+1))

= d(F(xn+1, yn+1), F(xn, yn)) + d(F(yn, xn), F(yn+1, xn+1))

≤ ξ

2
[d(xn+1, xn) + d(yn+1, yn)] +

ξ

2
[d(yn, yn+1) + d(xn, xn+1)]

= ξ [d(xn, xn+1) + d(yn, yn+1)] = ξ rn.

Applying (4.3) repeatedly and using the above inequality, we get

Rn+1 ≤
ξn+1

(1− ξ)
r0 =

ξn+1

(1− ξ)
[d(x1, x0) + d(y1, y0)]. (4.4)
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Remark 4.4. In general, the speed of the iteration depends on the value of ξ; the
smaller is the value of ξ, the faster would be the convergence.

Remark 4.5. Above theorem shows that if 0 < ξ < 1, the error in n-th iterate does not

exceed
ξn

1− ξ
[d(x1, x0) + d(y1, y0)]. This error can be made less than a preassigned

real number ε > 0 by taking n ≥ max
{[ log(

d(x1, x0) + d(y1, y0)

ε (1− ξ)
)

log (
1

ξ
)

]
, 0

}
+ 1, where

[y] denotes the greatest integer function. This gives the number of iterations n needed
to bring the point (xn, yn) within ε distance of the actual coupled fixed point.

Theorem 4.6. Assume that the conditions of Theorem 3.1 are satisfied and Rn is the
error at nth stage of approximation of solution of the system (1.1). Then

Rn+1 ≤
[λ (b− a)m]n+1

1− λ (b− a)m
sup

s∈[a,b]
[| x1(s)− x0(s) | + | y1(s)− y0(s) |],

where (x0, y0) is the initial approximation of the solution of (1.1),

x1(t) = g(t) + λ

∫ b

a

K(t, s) h(s, x0(s), y0(s))ds,

y1(t) = g(t) + λ

∫ b

a

K(t, s) h(s, y0(s), x0(s))ds

and m is given in I4.

Proof. Define F : C[a, b]×C[a, b]→ C[a, b] as in (3.2). Applying Theorems 3.1 and
4.3, we have

Rn+1 ≤
ξn+1

(1− ξ)
[d(x1, x0) + d(y1, y0)]

=
[λ (b− a) m]n+1

[1− λ (b− a) m]
sup

s∈[a, b]

[ | x1(s)− x0(s) | + | y1(s)− y0(s) | ] [ by I4].

5. Ulam-Hyers stability

In present section, we investigate Ulam-Hyers stability of the above fixed point
problem of coupled mapping. It is a type of stability which was initiated by a mathe-
matical question by Ulam [27] and subsequent partial answer by Hyers [17] and Ras-
sias [23]. The investigation of such stability has been of profound interest in various
contexts of mathematics like functional equations, isometries [24], etc.

We consider the issue of stability of the afore-mentioned coupled fixed points.
The kind of stability we consider is known as Hyers - Ulam stability which is also
known as Hyers - Ulam - Rassias stability or H-U-S stability in contemporary liter-
atures. It has its origin in the work of Ulam [27] and was extended by Hyers [17],
Rassias [23] and many others. Its generality makes it applicable to a wide variety of
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domains like functional equations [9], isometries [24], group homomorphisms [18] and
the like. In fixed point theory this kind of stability was considered in recent works like
[5, 6, 19]. In [25] one can find the following definition as well as some related notions
concerning the Ulam-Hyers stability which is relevant to the present consideration.

Let S : M → M , where (M,d) be a metric space. We say that the fixed point
problem x = Sx is Ulam-Hyers stable if for each ε > 0 and y ∈ X satisfying d(y, Sy) ≤
ε there exists x0 ∈ X for which x0 = Sx0 and d(y, x0) ≤ ε. The essence of the
problem of stability is to investigate the fact whether approximate fixed points are
approximations of actual fixed points at the same level of accuracy as is evident from
the above statement.

Definition 5.1 ([6]). Problem P is Ulam-Hyers stable if for each ε > 0 and for each so-
lution (u∗, v∗) ∈ X2 of the inequalities d(x, F(x, y)) ≤ ε and d(y, F(y, x)) ≤ ε there
exists a solution (x∗, y∗) ∈ X2 of Problem P satisfying max{d(u∗, x∗), d(v∗, y∗)} ≤
φ(ε), where φ : [0, ∞) → [0, ∞) is monotone increasing and continuous at 0 with
φ(0) = 0.

Being inspired by above definition we give the following definition in case of the
system of equations (1.1).

Definition 5.2. Coupled system of nonlinear equations (1.1) is called Ulam-Hyers
stable if for each ε > 0 and for each solution (u∗, v∗) of the inequations

supt∈[a,b] | x(t)− g(t)− λ
∫ b

a
K(t, s) h(s, x(s), y(s)) ds |< ε and

supt∈[a,b] | y(t)− g(t)− λ
∫ b

a
K(t, s) h(s, y(s), x(s)) ds |< ε, λ ≥ 0,

}
there exists a solution (x∗, y∗) of (1.1) satisfying

sup
s∈[a, b]

max{| u∗(s)− x∗(s) |, | v∗(s)− y∗(s) |} ≤ φ(ε),

where φ : [0, ∞)→ [0, ∞) is monotone increasing and continuous at 0 with φ(0) = 0.

We use the following assumption to assure the Ulam-Hyers stability of fixed
point problem of mixed monotone mapping:

(A1): If (x∗, y∗) be any solution of Problem P, then x � x∗, y∗ � y, for any
(x, y) ∈ X2.

Theorem 5.3. Problem P is Ulam-Hyers stable if the assumption (A1) is included in
Theorem 2.4.

Proof. By Theorem 2.4, F has a unique coupled fixed point (x∗, y∗) (say). Therefore,
(x∗, y∗) is a solution of Problem P. Let ε > 0 and (u∗, v∗) ∈ X2 be a solution of the
inequalities d(x,F(x, y)) ≤ ε and d(y,F(y, x)) ≤ ε. Then d(u∗, F(u∗, v∗)) ≤ ε and
d(v∗, F(v∗, u∗)) ≤ ε. By the assumption (A1), we have u∗ � x∗, y∗ � v∗. Using
(2.1), we have

d(x∗, u∗) = d(F(x∗, y∗), u∗) ≤ d(F(x∗, y∗), F(u∗, v∗)) + d(F(u∗, v∗), u∗)

≤ ξ

2
[d(x∗, u∗) + d(y∗, v∗)] + ε.
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Similarly, we have

d(y∗, v∗) ≤ ξ

2
[d(x∗, u∗) + d(y∗, v∗)] + ε.

Therefore,

max {d(x∗, u∗), d(y∗, v∗)} ≤ ξ

2
[d(x∗, u∗) + d(y∗, v∗)] + ε

≤ ξ max {d(x∗, u∗), d(y∗, v∗)}+ ε,

which implies that

max {d(x∗, u∗), d(y∗, v∗)} ≤ ε

(1− ξ)
. (5.1)

Define φ : [0, ∞)→ [0, ∞) as φ(t) =
t

(1− ξ)
. Then

max {d(x∗, u∗), d(y∗, v∗)} ≤ ε

(1− ξ)
= φ(ε). (5.2)

Since φ is monotone increasing, continuous at 0 with φ(0) = 0. Therefore, Problem
P is Ulam-Hyers stable.

Now we establish Ulam-Hyers stability of the system (1.1).
Take the following system of integral inequations

supt∈[a, b] | x(t)− g(t)− λ
∫ b

a
K(t, s) h(s, x(s), y(s)) ds |≤ ε,

supt∈[a, b] | y(t)− g(t)− λ
∫ b

a
K(t, s) h(s, y(s), x(s)) ds |≤ ε,

where λ ≥ 0, t ∈ [a, b] and ε > 0.

 (5.3)

In the next theorem, we take an extra assumption for assuring the Ulam-Hyers
stability of (1.1).

(I6) If (x∗, y∗) is any solution of (1.1), then u � x∗ and y∗ � v for any (u, v) ∈
X ×X.

Theorem 5.4. The solution of (1.1) is Ulam-Hyers stable if the assumption (I6) is
included in Theorem 3.1.

Proof. With the help of Theorem 3.1 we get a unique point (x∗, y∗) ∈ X2 which
satisfies (1.1). Hence it is the unique coupled fixed point of F defined in (3.2). Let
(u∗, v∗) be a solution of the system of integral inequation (5.3). Hence (u∗, v∗) is a
solution of d(x, F(x, y)) ≤ ε and d(y, F(y, x)) ≤ ε. Also by (I6), we have u∗ � x∗ and
y∗ � v∗. By (5.2) of Theorem 5.3, we obtain

sup
s∈[a,b]

max{| u∗(s)− x∗(s) |, | v∗(s)− y∗(s) |} = max {d(x∗, u∗), d(y∗, v∗)}

≤ ε

(1− ξ)
=

ε

1− λ (b− a) m
= φ(ε).

Therefore, the solution of (1.1) is Ulam-Hyers stable.
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6. Well-Posedness

In the current section, we also investigate the well-posedness of the fixed point
problem considered here. The study of well-posedness has appeared in several recent
works related to fixed point theory as, for instances, in [21, 26].

The notion of well-posedness of a fixed point problem has evoked interests of
several mathematicians (see for example [1, 19, 22]). Let S : M → M , where (M,d)
is a metric space. The fixed point problem x = Sx is well-posed if S admits a unique
fixed point x ∈ X and d(xn, x) → 0 as n → ∞ for any sequence {xn} in X with
d(xn, Sxn)→ 0 as n→∞.

Incorporating the ideas and technicalities described above, the followings are the
corresponding concepts for coupled mapping and also for system of equations (1.1).

Definition 6.1 ([6]). Problem P is well-posed if (i) F has a unique coupled fixed point
(x∗, y∗), (ii) xn → x∗ and yn → y∗ as n→∞, whenever {(xn, yn)} is any sequence
in X2 satisfying d(xn, F(xn, yn))→ 0 and d(yn, F(yn, xn))→ 0, as n→∞.

Definition 6.2. The coupled system of nonlinear integral equations (1.1) is well-posed
if

(i) the system has a unique unique solution (x∗, y∗),
(ii) xn → x∗ and yn → y∗ as n → ∞, whenever {(xn, yn)} is any sequence of

functions satisfying

sup
t∈[a, b]

| xn(t)− g(t)− λ
∫ b

a

K(t, s) h(s, xn(s), yn(s)) ds | → 0

and

sup
t∈[a, b]

| yn(t)− g(t)− λ
∫ b

a

K(t, s) h(s, yn(s), xn(s)) ds | → 0,

as n→∞, where λ ≥ 0.

We consider the following condition for the well-posedness of mixed monotone
mapping.

(A2): If (x∗, y∗) is any solution of Problem P and {(xn, yn)} is any sequence
in X2 with limn→∞ d(xn,F(xn, yn)) = 0 and limn→∞ d(yn,F(yn, xn)) = 0, then
x∗ � xn, yn � y∗, for n > 0.

Theorem 6.3. Problem P is well-posed, if (A2) is taken as the additional assumption
in Theorem 2.4.

Proof. By Theorem 2.4, F has a unique coupled fixed point (x∗, y∗) (say). Then
(x∗, y∗) is a solution of Problem P. Let {(xn, yn)} ∈ X2 be a sequence for which
d(xn, F(xn, yn))→ 0 and d(yn, F(yn, xn))→ 0 as n→∞. By the assumption (A2),
we have x∗ � xn, yn � y∗, for all n. Using (2.1), we have

d(xn, x
∗) = d(xn, F(x∗, y∗)) ≤ d(xn, F(xn, yn)) + d(F(xn, yn), F(x∗, y∗))

≤ d(xn, F(xn, yn)) +
ξ

2
[d(xn, x

∗) + d(yn, y
∗)].
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Similarly,

d(yn, y
∗) ≤ d(yn, F(yn, xn)) +

ξ

2
[d(xn, x

∗) + d(yn, y
∗)].

Therefore,

d(xn, x
∗) + d(yn, y

∗) ≤ d(xn, F(xn, yn)) + d(yn, F(yn, xn))

+ ξ [d(xn, x
∗) + d(yn, y

∗)],

which implies that

d(xn, x
∗) + d(yn, y

∗) ≤ d(xn, F(xn, yn)) + d(yn, F(yn, xn))

(1− ξ)
.

Taking limit as n→∞, we have

lim
n→∞

[d(xn, x
∗) + d(yn, y

∗)] ≤ lim
n→∞

d(xn, F(xn, yn)) + d(yn,F(yn, xn))

(1− ξ)
= 0,

which implies that limn→∞[d(xn, x
∗) + d(yn, y

∗)] = 0, that is, limn→∞ d(xn, x
∗) = 0

and limn→∞ d(yn, y
∗) = 0, that is, xn → x∗ and yn → y∗, as n→∞. Hence Problem

P is well-posed.

In the next theorem, we take an assumption for assurance the well-posedness for
the system (1.1).

(I7) For any sequence {(xn, yn)},

sup
t∈[a, b]

| xn(t)− g(t)− λ
∫ b

a

K(t, s) h(s, xn(s), yn(s)) ds | → 0 and

sup
t∈[a, b]

| yn(t)− g(t)− λ
∫ b

a

K(t, s) h(s, yn(s), xn(s)) ds | → 0,

as n→∞ imply x∗ � xn and yn � y∗, for all n, where (x∗, y∗) is a solution of (1.1).

Theorem 6.4. The system (1.1) is well-posed if (I7) holds in Theorem 3.1.

Proof. Applying Theorem 3.1, we get a unique point (x∗, y∗) in X2 which satisfies
(1.1). Hence it is a unique coupled fixed point of F defined in (3.2). Let {(xn, yn)}
be a sequence such that

sup
t∈[a, b]

| xn(t)− g(t)− λ
∫ b

a

K(t, s) h(s, xn(s), yn(s)) ds | → 0 and

sup
t∈[a, b]

| yn(t)− g(t)− λ
∫ b

a

K(t, s) h(s, yn(s), xn(s)) ds | → 0,

as n → ∞. By the assumption (I7), we have x∗ � xn and yn � y∗, for all n. Hence
we have d(xn, F(xn, yn)) → 0 and d(yn, F(yn, xn)) → 0, as n → ∞ with x∗ � xn
and yn � y∗, for all n, where F defined in (3.2). As ( by application of Theorem 6.3 )
Problem P is well-posed, the coupled system of nonlinear equations (1.1) is also so.
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7. Data dependence result

Let S1, S2 : M →M be two mappings, where (M,d) is a metric space such that
d(S1x, S2x) ≤ η for all x ∈ X, where η is some positive number. Then the problem
of data dependence is to estimate the distance between the fixed points of these two
mappings. Several research papers on data dependence have been published in recent
literatures of which we mention a few in references [6, 10, 25].

Our problem of data dependence is with coupled mappings and their coupled
fixed point sets. Such problems for coupled fixed point sets have already appeared in
work of Chifu et al. [6]. We formulate a version of the problem suitable to our needs.

Being inspired of the aforesaid ideas we give definitions of data dependence for
the case of aforementioned system of integral equations.

Definition 7.1. Let (x∗, y∗) be a solution of (1.1) and (u∗, v∗) be a solution of the
following system

x(t) = f(t) + λ
∫ b

a
K1(t, s) h1(s, x(s), y(s)) ds and

y(t) = f(t) + λ
∫ b

a
K1(t, s) h1(s, y(s), x(s)) ds, λ ≥ 0,

}
for all t ∈ [a, b]. The problem of data dependence is to find

sup
t∈[a,b]

[| x∗(t)− u∗(t) | + | y∗(t)− v∗(t) |].

Theorem 7.2. Let (X, d,�) be a complete and partially ordered metric space having
regular property and F : X2 → X. Suppose that all the assumptions of Theorem 2.4 are
satisfied. Then F has a unique coupled fixed point (x∗, y∗). Moreover, let T : X2 → X
has nonempty coupled fixed point set. Assume that there exists M > 0 for which
d(F(x, y), T (x, y)) ≤ M , whenever (x, y) ∈ X2 and for any coupled fixed point (x, y)
of the mapping T , x � F(x, y) and F(y, x) � y hold. Then

d(x, x∗) + d(y, y∗) ≤ 4M

(1− ξ)
,

whenever (x, y) is any coupled fixed point of T .

Proof. From Theorem 2.4, F has a unique coupled fixed point (x∗, y∗). Suppose that
(x, y) is a coupled fixed point of T . Take x0 = x and y0 = y. Then

x0 = T (x0, y0) and y0 = T (y0, x0). (7.1)

Let x1 = F(x0, y0) and y1 = F(y0, x0). Then

d(x0, x1) = d(T (x0, y0), F(x0, y0)) ≤M
and

d(y0, y1) = d(T (y0, x0), F(y0, x0)) ≤M.

 (7.2)

Applying the assumption of the theorem, we get x0 � x1 and y1 � y0. Let x2 =
F(x1, y1) and y2 = F(y1, x1). Then by a property of F, it follows that x1 � x2 and
y2 � y1. Then taking the technicalities as in establishing of Theorem 2.4 (see [13]),
we have a sequence {(xn, yn)} in X2 given by equation (2.2) and
• xn � xn+1 and yn+1 � yn, for all n ≥ 0;
• both {xn} and {yn} are two Cauchy sequences in (X, d) and there exist u, v ∈ X
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such that limn→∞ xn = u and limn→∞ yn = v;
• (u, v) is a coupled fixed point of F. As coupled fixed point of F unique, we have
u = x∗, v = y∗.

Using (2.1), we obtain

rn+1 = d(xn+1, xn+2) + d(yn+1, yn+2)

= d(F(xn, yn), F(xn+1, yn+1)) + d(F(yn, xn), F(yn+1, xn+1))

= d(F(xn+1, yn+1), F(xn, yn)) + d(F(yn, xn), F(yn+1, xn+1))

≤ ξ

2
[d(xn+1, xn) + d(yn+1, yn)] +

ξ

2
[d(yn, yn+1) + d(xn, xn+1)]

= ξ [d(xn, xn+1) + d(yn, yn+1)] = ξ rn,

where rn = d(xn, xn+1) + d(yn, yn+1).
Applying the above inequality repeatedly, we get

rn+1 ≤ ξ rn ≤ ξ2 rn−1 ≤ ...ξn r1 ≤ ξn+1 r0.

Using (7.2) and the above inequality, we have

d(x0, x
∗) = d(x0, u) ≤

n∑
i=0

d(xi, xi+1) + d(xn+1, u)

≤
n∑

i=0

ri + d(xn+1, u) ≤
n∑

i=0

ξi r0 + d(xn+1, u)

and

d(y0, y
∗) = d(y0, v) ≤

n∑
i=0

d(yi, yi+1) + d(yn+1, v)

≤
n∑

i=0

ri + d(yn+1, v) ≤
n∑

i=0

ξi r0 + d(yn+1, u).

Using (7.2), we obtain

d(x0, u) ≤
∞∑
i=0

ξir0 =
r0

(1− ξ)
=
d(x0, x1) + d(y0, y1)

(1− ξ)
≤ 2 M

(1− ξ)
and

d(y0, v) ≤
∞∑
i=0

ξir0 =
r0

(1− ξ)
=
d(x0, x1) + d(y0, y1)

(1− ξ)
≤ 2 M

(1− ξ)
.

Hence, d(x0, u) + d(y0, v) ≤ 4 M

(1− ξ)
, that is, d(x, x∗) + d(y, y∗) ≤ 4 M

(1− ξ)
.

Theorem 7.3. In Theorem 3.1, we also assume that if (x, y) is any solution of the
following system

x(t) = f(t) + λ
∫ b

a
K1(t, s) h1(s, x(s), y(s)) ds and

y(t) = f(t) + λ
∫ b

a
K1(t, s) h1(s, y(s), x(s)) ds, λ ≥ 0 for all t ∈ [a, b],

}
(7.3)
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then for a ≤ t ∈ b,

x(t) ≤ g(t) + λ

∫ b

a

K(t, s) h(s, x(s), y(s)) ds

and

g(t) + λ

∫ b

a

K(t, s) h(s, y(s), x(s)) ds ≤ y(t).

Further suppose that there exist ν, η > 0 such that

sup
t∈[a,b]

|K1(t, s) h1(s, x(s), y(s))−K(t, s) h(s, x(s), y(s))| ≤ η

and

sup
t∈[a,b]

|f(t)− g(t)| ≤ ν.

If (x, y) is any solution of the system (7.3) and (x∗, y∗) is any solution of the system
(1.1), then

sup
t∈[a, b]

[ | x(t)− x∗(t) | + | y(t)− y∗(t) | ] ≤ 4 [ ν + λ η (b− a) ]

(1− ξ)
,

where ξ is given in I4.

Proof. Applying Theorem 3.1, we get that the system (1.1) has a unique solution
(x∗, y∗) (say). Define T : X2 → X, where X = C[a, b], by

T (x, y)(t) = g(t) + λ

∫ b

a

K1(t, s) h1(s, x(s), y(s)) ds, for all a ≤ t ≤ b. (7.4)

Since (x, y) is a solution of (7.3), it is a coupled fixed point of T . By the assumptions
of the theorem, we have x(t) ≤ F(x, y)(t) and F(y, x)(t) ≤ y(t), for all t ∈ [a, b],
which imply that x � F(x, y) and F(y, x) � y. Also,

| F(x, y)(t)− T (x, y)(t) |

=| f(t)− g(t) + λ

∫ b

a

[K(t, s) h(s, x(s), y(s))−K1(t, s) h1(s, x(s), y(s))]ds |

≤| f(t)− g(t) | + | λ
∫ b

a

[K(t, s) h(s, x(s), y(s))−K1(t, s) h1(s, x(s), y(s))]ds |

≤ ν + λ

∫ b

a

| [K(t, s) h(s, x(s), y(s))−K1(t, s) h1(s, x(s), y(s))] | ds

≤ ν + λ

∫ b

a

η ds = ν + λ η (b− a) = M (say ), for all t ∈ [a, b],

which means that supt∈[a, b] | F(x, y)(t) − T (x, y)(t) |≤ M , whenever (x, y) ∈ X2,

that is, d(F(x, y), T (x, y)) ≤M , whenever (x, y) ∈ X2. By application of Theorem 7.2,
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we have

sup
t∈[a,b]

[ | x(t)− x∗(t) | + | y(t)− y∗(t) | ] = d(x, x∗) + d(y, y∗)

≤ 4M

(1− ξ)
=

4 [ ν + λ η (b− a) ]

(1− ξ)
.
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