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Redacţia: 400084 Cluj-Napoca, str. M. Kogălniceanu nr. 1
Telefon: 0264 405300

CONTENTS
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Some operators of fractional calculus and their
applications regarding various complex functions
analytic in certain domains

Hüseyin Irmak

Abstract. In this academic research note, some familiar operators prearranged by
fractional-order calculus will first be introduced and various characteristic prop-
erties of those operators will next be propounded. Through the instrumentality of
various earlier results associating with both those operators and some complex-
exponential forms, and also in the light of certain special information in [1], [20],
[17] and [38], an extensive result together with a variety of its implications con-
sisting of several exponential type inequalities will then be determined. A number
of its possible implications will extra be pointed out.

Mathematics Subject Classification (2010): 26A33, 30A10, 34A40, 35A30, 41A58,
30C45, 30C55, 30C80, 33D15, 26E05, 33E20.

Keywords: Complex plane, domains, regular functions, complex exponential, se-
ries expansions, fractional calculus, operators of fractional calculus, exponential
type inequalities, differential inequalities.

1. Introduction and rudiments

In the literature consisted of mathematically academic studies, particularly,
fractional-order calculations have been continually encountering either as fractional-
order integral(s) or as fractional-order derivative(s) in metamathematics. The
mentioned-specially calculations, which are closely related to each other, are extensive
calculations that are frequently applied for both the functions with real variable and
the functions with complex variable. There are a wide range of both theoretical and
applied research in relation with those. In this respect, in particular, a great variety of
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scientific articles are also presented as extensive works in the section of the references
of this research. For instance, one may refer to certain main works in [4], [6], [7], [11],
[13], [24], [34], [39] and [40].

As indicated in the abstract, in this scientific note, various fundamental opera-
tors associating with fractional calculus, which are specially fractional type derivative
operators, will be firstly considered for certain complex functions which are regular
in certain domains of the complex plane. In special, in consideration of the fractional
derivative(s) operator, a fractional type operator, which is encountered as the Trem-
blay operator in the academic literature, will be then introduced here. Especially,
comprehensive studies are still ongoing regarding both this operator and the other
specified operators. Nevertheless, for related researchers, we can also offer the results
in the earlier papers given in [2], [9], [14], [20], [19] and [31] as a variety of examples.

Furthermore, as several applications of fractional (order) calculus used in various
different fields of sciences, numerous papers are also presented in the papers in [3],
[10], [12], [15], [16], [22], [25]-[27], [30], [32], [33] and [37]-[40] as examples.

We have given some literature information above. We can now begin to introduce
various special information, definitions and several important relationships between
those operators that will be necessary for our investigations.

Firstly, let the familiar notations:

U , C , R and N

represent, respectively, the open unit disk, the complex numbers’ set, the real numbers’
set and the natural numbers’ set.

Next, for the following numbers:

s ∈ N , α̃ ∈ C− {0} and α̃s ∈ C ,

the notation Hα̃(s) represents the family of the functions % := %(z) being of the forms
given by the complex-series expansion:

%(z) = α̃zs + α̃s+1z
s+1 + α̃s+2z

s+2 + α̃s+3z
s+3 + · · · , (1.1)

which are also regular in U.
Most especially, we indicate here that, as simpler expression and more conve-

nient, the following special classes of the regular-functions in the class Hα̃(s) :

H(s) := H1(s) and H := H(1)

can be pointed out as examples and they will also be played important roles for
investigations. For this reason, those (more) special classes will taken consideration
as revealing various applications of our basic result for researchers. We specially note
that, in the mathematical literature, the functions in the class Hα̃(s) are called as
multivalently (or s-valently) regular functions (in U) and the functions in the class
H are also called the normalized regular functions in the open set U. For their details
and some examples, see [3], [5], [8], [9], [16], [21] and [30].

Secondly, for a function % := %(z) ∈ Hα̃(s), we also denote the notation of
the Tremblay operator, which is specified by fractional derivative (of order λ (λ :=
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α− β; 0 ≤ λ < 1)), by any one of the equivalent notations:

Tα,βz [%]
(
or, Tα,βz [%(z)]

)
.

At that time, it is generally defined by

Tα,βz [%] =
Γ(β)

Γ(α)
z1−β Dα−β

z

[
zα−1%(z)

]
, (1.2)

where
β ∈

(
0, 1
]
, α ∈

(
0, 1
]
, α− β ∈

[
0, 1
)

and z ∈ U , (1.3)

and, for a function ζ := ζ(z), any one of the equivalent notations:

Dδ
z[ζ]

(
or, Dδ

z

[
ζ(z)]

)
denotes the Fractional Derivative Operator (of order δ) and it also identified as in the
form given by

Dδ
z[ζ] =

1

Γ(1− δ)
d

dz

∫ z

0

ζ(q)

(z − q)δ
dq

(
0 ≤ δ < 1

)
, (1.4)

where ζ is a regular function in a simply connected region of the complex plane
comprising its origin, and the multiplicity of (z−q)−δ is raised by behoving log(z−q)
to be real when z − q > 0.

By taking notice of the restricted conditions in (1.3), as a fairly simple imple-
mentation of the respective operators designated by (1.2) and (1.4), for a simple-
complex power function (just below), the following-special calculations can be easily
propounded:

Dδ
z

[
zs
]

=
Γ(s + 1)

Γ(s− δ + 1)
zs−δ (1.5)

and

Tα,βz
[
zs
]

=
Γ(β)Γ(s + α)

Γ(α)Γ(s + β)
zs , (1.6)

where

δ ∈
[
0, 1
)
, α ∈

(
0, 1
]
, β ∈

(
0, 1
]
, α− β ∈

[
0, 1
)

and s ∈ N. (1.7)

In the same time, in the light of the conditions created by (1.7) and also with
the help of the results (1.5) and (1.6), respectively, the following-extra-special results
can be also given by

z
d

dz

(
Dδ
z

[
zs
])
≡ zD1+δ

z

[
zs
]

=
Γ(s + 1)

Γ(s− δ)
zs−δ (1.8)

and

z
d

dz

(
Tα,βz

[
zs
])

=
sΓ(β)Γ(s + α)

Γ(α)Γ(s + β)
zs (1.9)

for all s ∈ N. For these determinations in (1.5)-(1.6) and (1.8)-(1.9) and also some of
their applications, one can see the recent works in [21] and [20].

In terms of this academic study, we specially note here that, for convenience,
both the indicated functions belonging to the general class Hα̃(n) (defined by any
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forms of the complex-series expansions like (1.1)) will be considered for our major
results and the fundamental definitions (given by (1.2) and (1.4) together with the
related special conclusions (determined by (1.5)-(1.9)) will be a quite basic-necessary
information for main results of this scientific investigations.

As both a final reminder of this introductory section and one of various properties
of the special operator advertised by (1.2), especially, for any regular function %(z)
having the form (1.1), the following two-important relationships consisting of a form of
the Srivastava-Owa operator and an identity transformation of the Tremblay operator:

T1,β
z [%(z)] ≡ Γ(β)z1−β D1−β

z

[
%(z)

] (
0 < β ≤ 1

)
(1.10)

and

Tγ,γz [%(z)] ≡ %(z)
(
0 ≤ γ < 1

)
(1.11)

can be easily ascertained in terms of the character of that operator as its implications
when the concerned parameters are then selected by letting

α := 1

and

α := γ and γ =: β ,

respectively.
Specially, for pertinent researchers, recently, by taking advantage of the men-

tioned fractional derivative operator, the main works (in relation with the Tremblay
operator) can be firstly presented and certain relations and also several elementary re-
sults for normalized analytic functions (with negative coefficient) are also determined.
(cf., e.g., [35]; and, see also [14].)

For various operators specified by fractional-order calculus, it can be looked over
the results in the papers in [8], [16] and [17]. By considering certain different methods
(or ideas), numerous interesting applications of related operators to certain functions
analytic in U can be given in [17], as examples.

Additionally, we also indicate that the fractional derivative(s) operator, identi-
fied by (1.4), has comprehensive implications of the well-recognized operator for the
literature, which also is the Srivastava-Owa fractional derivative operator being of
similar form like (1.10). For those and their special forms, one check the work in [1].
See also the results in [15], [16] and [17].

2. Lemmas and results

In this section, in order to get a line on our essential objective, we need some
fundamental lemmas with some of applications of fractional calculus (derivatives).
Those are only three lemmas, which will be taken advantage of starting and then
proving for principal results of this investigations.

Firstly, in the light of the conditions given in (1.7), the first assertion, which
is Lemma 2.1 just below, can be easily demonstrated by applying the elementary
results stated in (1.9) and (1.8) (a long with the results in (1.5) and (1.6)) to any
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function belonging to the class Hα̃(n). Accordingly, its detail is omitted here. For
similar results, one may also center upon the recent papers in [8, 21, 17, 19].

Lemma 2.1. Let a regular function %(z) have the series form given as in the family
Hα̃(n). For z ∈ U and any function % := %(z), the following basic result then holds:

Tα,βz [%] ≡ Tα,βz [%(z)]

= α̃
Γ(β)Γ(n+ α)

Γ(α)Γ(n+ β)
zn +

∞∑
`=n+1

α̃n
Γ(β)Γ(`+ α)

Γ(α)Γ(`+ β)
z`. (2.1)

The second assertion is just below and it is a special form of the well-known-
elementary results of complex exponential. For both it and some of its implications,
one may check the paper given in [18].

Lemma 2.2. Let ω ∈ R and also let z ∈ C − {0}. Then, the following-complex expo-
nentiation is true.

zω = |z|ω
[
Cos

(
ω arg(z)

)
+ i Sin

(
ω arg(z)

)]
. (2.2)

The last assertion, which is Lemma 2.3 just below, is a well-known important
tool and very useful auxiliary theorem proven in [28]. For some of its applications,
one can easily arrive at various works in the literature. For its detail, one may also
refer to the paper given by [23].

Lemma 2.3. Let ξ := ξ(z) be a regular function in the domain U and also be of the
form given as in (1.1). For z ∈ U and for any z0 ∈ U, if∣∣ξ(z0)

∣∣ = max
{ ∣∣ξ(z)∣∣ : |z| ≤ |z0|

}
, (2.3)

then there exists any positive number λ such that

z0ξ
′(z0) = λξ(z0), (2.4)

where λ ∈ R with λ ≥ n (n ∈ N).

In accordance with principal assertions, namely, Lemmas 2.1-2.3 just above, we
can then compose our comprehensive result appertaining to the functions belonging
to in the class Hα̃(n), which will be specified by the special operator (1.2).

Theorem 2.4. Under the mentioned conditions of both the parameters in (1.3) and the
definitions in (1.2) and (1.4), let the parameters Υ, Λ, ∇ and Θ have the conditions
determined as follows:

Υ ∈ R− {0} , Λ ≥ m , ∇ ∈ C and 0 ≤ Θ < 2π , (2.5)

where m ∈ N and 0 < |∇| < 1. Then, for some z ∈ U and for any function %(z) ∈
Hα̃(n), if any one of the statements given by

<e

{[
z
(

Tα,βz [%(z)]
)(n+1)

]Υ
}
6= ΛΥ|∇|ΥCos

(
Υ
[
Θ + Arg(∇)

])
(2.6)
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and

=m

{[
z
(

Tα,βz [%(z)]
)(n+1)

]Υ
}
6= λΥ|∇|ΥSin

(
Υ
[
Θ + Arg(∇)

])
(2.7)

is satisfied, then the statement given by∣∣∣∣(Tα,βz [%(z)]
)(n)

− α̃ Inn(α, β)

∣∣∣∣ < ∣∣∇∣∣ (2.8)

is satisfied, which also is quite clear that∣∣∣∣<e [(Tα,βz [%(z)]
)(n)

]
−<e

(
α̃
)
Inn(α, β)

∣∣∣∣ ≤ ∣∣∇∣∣ (2.9)

and ∣∣∣∣=m [(Tα,βz [%(z)]
)(n)

]
−=m

(
α̃
)
Inn(α, β)

∣∣∣∣ ≤ ∣∣∇∣∣ (2.10)

where (
Tα,βz [%(z)]

)(n)

:=
dn

dzn

(
Tα,βz [%(z)]

) (
n ∈ N ∪ {0}

)
(2.11)

and

Iuv (α, β) =
u!

(u− v)!

Γ(β)Γ(u+ α)

Γ(α)Γ(u+ β)

(
v < u;u ∈ N; v ∈ N

)
, (2.12)

and, also, here and throughout this research note, the values of the complex powers in
(2.6) and (2.7) are considered as their principal values.

Proof. Let the interested function % := %(z) be of the form in the class Hα̃(n). When
taking into account the equivalent relation in (2.11) and the determined result in (1.9)
(of Lemma 2.1), its nth derivative:(

Tα,βz [%]
)(n)

=
dn

dzn

(
α̃

Γ(β)Γ(n+ α)

Γ(α)Γ(n+ β)
zn

+ α̃n+1
Γ(β)Γ(n+ 1 + α)

Γ(α)Γ(n+ 1 + β)
zn+1 + · · ·

)
(2.13)

= α̃ Inn(α, β) + α̃n+1 In+1
n (α, β)z1 + α̃n+2 In+2

n (α, β)z2 + · · ·
can be easily calculated, where the notation Isr(α, β) above is defined by (2.12).

For the proof of Theorem 1, in the light of such information (2.12) and (2), for a n-
valently regular function like any form % := %(z) in Hα̃(n), there is a need to consider
a function Ω(z) in the form given by(

Tα,βz [%]
)(n)

= α̃ Inn(α, β) + Φ Ω(z)
(
0 < |Φ| < 1; z ∈ U

)
. (2.14)

In that case, as a result of simple elementary operations, one can easily distinguish
that the described function Ω(z) belongs to the class Hα̃(m) (m ∈ N). Thereby, both
the related function Ω(z) both is regular in the set U and it can be considered for the
proof of Theorem 2.4. By differentiating of both sides of (2.14) with respect to the
complex variable z, we then get that

d

dz

{(
Tα,βz [%(z)]

)(n)}
≡
(

Tα,βz [%]
)(n+1)

= Φ Ω′(z)
(
0 < |Φ| < 1; z ∈ U

)
. (2.15)
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We now assert that |Ω(z)| < 1 in U. In fact, if not, then, according to (2.3) (of
Lemma 2.3), there exists a point z0 belonging to U such that

max
{ ∣∣Ω(z)

∣∣ : |z| ≤ |z0|
(
z, z0 ∈ U

)}
=
∣∣Ω(z0)

∣∣ = 1 ,

which readily yields that

Ω(z0) = ei∆
(
0 ≤ ∆ < 2π; z0 ∈ U

)
.

In the present case, the expression (2.4) (of Lemma 2.3) also gives rise to

z0 Ω′(z0) = λΩ(z0) = λei∆
(
λ ≥ m;m ∈ N

)
.

Therefore, of course, for all λ ≥ m ≥ n (n,m ∈ N), by setting z := z0 and also
by means of the main relations (2.2) (of Lemma 2.2) and (2.4) (of Lemma 2.3), the
expression (2.15) lightly follows that

<e

{(
z
(

Tα,βz [%(z)]
)(n+1)

)r
∣∣∣∣∣
z:=z0

}

= <e
{(

Φ z0 Ω′
(
z0

))r
}

= <e
{(

ΦλΩ
(
z0

))r
}

= <e
{[
λΦei∆

]r}
(2.16)

= <e
{∣∣λΦei∆

∣∣∣reirArg
(
λΦei∆

)}
= <e

{∣∣λΦ
∣∣reirArg

(
Φei∆

)} (
since λ ≥ m ≥ 1)

= λr|Φ|rCos
[
rArg

(
Φei∆

)]
= λr|Φ|rCos

[
r
(
Arg(Φ) + Arg

(
ei∆
)]

= λr|Φ|rCos
[
r
(
∆ + Arg(Φ)

)]
and

=m

{(
z
(

Tα,βz [%(z)]
)(n+1)

)r
∣∣∣∣∣
z:=z0

}

= =m
{(

Φ z0 Ω′
(
z0

))r
}

= =m
{(

ΦλΩ
(
z0

))r
}

= =m
{[
λΦei∆

]r}
(2.17)

= =m
{∣∣λΦei∆

∣∣∣reirArg
(
λΦei∆

)}
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= =m
{∣∣λΦ

∣∣reirArg
(

Φei∆
)} (

since λ ≥ m ≥ 1)

= λr|Φ|rSin
[
rArg

(
Φei∆

)]
= λr|Φ|rSin

[
r
(
∆ + Arg(Φ)

)]
,

where λ ≥ m (m ∈ N), 0 ≤ ∆ < 2π, r ∈ R and Φ ∈ C (0 < |Φ| < 1). But, unfortu-
nately, the results determined as in (2.16) and (2.17) are, respectively, contradictions
with the hypotheses of Theorem 2.4, which are the mentioned results presented by
(2.16) and (2.17) when setting

λ := Λ , Φ := ∇ , r := Υ and ∆ := Θ.

This means that there is no z0 ∈ U satisfying the condition
∣∣Ω(z0)

∣∣ = 1. Therefore,

we decide upon that it has to be in the form
∣∣Ω(z)

∣∣ < 1 for all z ∈ U. Consequently,
for all functions %(z) ∈ Hα̃(n), the expression (2.14) follows that∣∣∣∣(Tα,βz [%(z)]

)(n)

− α̃ Inn(α, β)

∣∣∣∣ =
∣∣Φ Ω(z)

∣∣ < ∣∣Φ∣∣ (
0 < |Φ| < 1; z ∈ U

)
,

which is equivalent to the provision of Theorem 2.4, namely, the statement in (2.8)
when Φ := ∇. Finally, the basic relationships, which are both between (2.8) and(2.9)
and between (2.8) and (2.10), can be easily seen propositions. Thus, this ends the
desired proof. �

3. Conclusion and recommendations

In this part, which is the last part of this comprehensive-research note, we would
like to mention various special implications and suggestions relating to our investiga-
tions for our readers.

Here we want to bring forward certain conclusions and also to give implicit rec-
ommendations concerning our main results. As emphasized in the abstract of this
study, the main purpose of this comprehensive study was to present both the basic
concepts about some operators of fractional derivatives and to introduce a special
operator defined with the help of those, which is expressed as various works relating
with the Tremblay operator (cf., e.g., [1], [38], [15] and [8]), as indicated before. In
any case, these were also carried out in the first chapter. In fact, some important rela-
tionships between the respective operators as in (1.2) and (1.4), and also, for certain
regular functions like (1.1), a number of their basic applications were presented as in
(1.5), (1.6) and (1.8)-(1.11). Clearly, those relevant relations and special implications
play a big role both for our essential result given in this section above and for all
of its possible special consequences. By focusing especially on our main comprehen-
sive result, namely Theorem 2.4, and its proof, that is, with the help of the relevant
theorem and its proof, different analytical and geometrical new results specified by
the mentioned operators and naturally the mentioned functions (in the classes Hα̃(n)
or its special subclasses H(s) and H) can also be determined (or calculated) (cf.,
e.g., [5], [10], [13] and [28]). Lastly, most particularly, the parameter Υ, considered in
Theorem 2.4, can be chosen as complex number. For possible details of both this and
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other suggestions, one can check the works given in [8], [15], [21] and [17]-[22] as some
of different investigations.

We choose to leave the special details of the relationships between those opera-
tors of fractional calculus (that is, that derivatives) and a large number of possible-
logic implications of our principal result as an exercise for the interested researchers
(or readers). Nevertheless, we also want to find out only one private result together
with one of its special forms, which both associates with Theorem 2.4 and has wide
range of (more) special results according to the facts of suitable values of the related
parameters.

Inside of the extra information in the first section, through the instrumentality of
the special relation (1.11) together with taking α̃ := 1 in Theorem 2.4, the following-
extensive result can be easily designated for all nth derivative of any regular function
%(z) in the special class H(n) (of the general class Hα̃(n)), which also includes numer-
ous geometric properties of n-valently regular functions in U. Specifically, for more
detailed information in relation to those analytic-geometric properties, one may cen-
ter on the main works given by [3], [10] and [27].) Shortly, the desired-special result
can be easily constituted as in the following Proposition (just below).

Proposition 3.1. Under the mentioned conditions of both the parameters Υ, Λ, ∇ and
Θ designated as in (2.5) and for any n-valently regular function %(z) in the class
H(n), if any one of the statements given by

<e

{[
z
(
%(z)

)(n+1)
]Υ
}
≡ <e

{(
z%(n+1)(z)

)Υ}
6= ΛΥ|∇|ΥCos

(
Υ
[
Θ + Arg(∇)

])
and

=m

{[
z
(
%(z)

)(n+1)
]Υ
}
≡ =m

{(
z%(n+1)(z)

)Υ}
6= ΛΥ|∇|ΥSin

(
Υ
[
Θ + Arg(∇)

])
is true, then the statement given by∣∣∣%(n)(z)− n!

∣∣∣ < ∣∣∇∣∣
is also true, which also requires to more simple inequalities given by∣∣∣<e(%(n)(z)

)
− n!

∣∣∣ ≤ ∣∣∇∣∣
and ∣∣∣=m(%(n)(z)

)
− n!

∣∣∣ ≤ ∣∣∇∣∣
where

%(n)(z) :=
dn

dzn

(
%(z)

)
for all n ∈ N ∪ {0} and for some z ∈ U.
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By putting n := 1, and Λ := 1 in Proposition 3.1 (or, equivalently, by taking
α := γ, β := γ, Λ := 1 and n := 1 in the concerned theorem, i.e., in Theorem
2.4), one of the exclusive-special results of any normalized-regular function %(z) in
the more special class H (of the general class Hα̃(n)) can be easily determined as in
the following Proposition (below).

Proposition 3.2. Under the mentioned conditions of both the parameters Λ, ∇ and Θ
designated as in (16) and for any normalized regular function %(z) in the class H, if
any one of

<e
(
%′′(z)

)
6= Λ|∇|Cos

(
Θ + Arg(∇)

)
and

=m
(
%′′(z)

)
6= Λ|∇|Sin

(
[Θ + Arg(∇)

)
holds true, then

|%′(z)− 1| <
∣∣∇∣∣

also holds true, which also requires to∣∣∣<e(%′(z))− 1
∣∣∣ ≤ ∣∣∇∣∣ and

∣∣∣=m(%′(z))− 1
∣∣∣ ≤ ∣∣∇∣∣

where z ∈ U.

As a final note of this research, in the light of the two-special propositions of
our extensive result above or/and by considering certain extra conditions when there
needs any necessity, we want to present to the attention of the related researchers to
describe (or redescribe) each one of those possible-special results can be designated by
making use of various types of the normalized-regular functions (or the multivalently-
regular functions) in certain domains of the complex plane.
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Existence and Ulam stability of initial value
problem for fractional perturbed functional
q-difference equations

Nadia Allouch and Samira Hamani

Abstract. In this work, we discuss the existence and uniqueness of solutions to
the initial value problem for perturbed functional fractional q-difference equa-
tions involving q-derivative of the Caputo sense. By applying Banach contraction
principle and Burton and Kirk’s fixed point theorems. Further, we present the
Ulam-Hyers and Ulam-Hyers-Rassias stabilities results by using direct analysis
methods. Finally, we give two examples illustrating of the results.
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1. Introduction

Fractional calculus is a significant branch in mathematical analysis. Indeed,
Leibniz and Newton developed differential calculus, it has numerous applications in
various sciences, for example, mechanics, electricity, biology. Also, Fractional differ-
ential equations play a fundamental role in the modeling of a considerable number of
phenomena in many areas. Currently being addressed by many researchers of various
fields of science and engineering such as physics, chemistry, biology, economics,
control theory, and biophysics, etc. For more details, see the books of Hilfer [18] and
Tarasov et al. [35], Kilbas et al. [24] and Samko et al. [33], Podlubny [26] and Miller
et al. [25].
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The q-difference calculus is an interesting and old subject. In 1910, Jackson [21,
20] introduced and developed q-difference calculus or quantum calculus in a systematic
way, basic definitions and properties of q-difference calculus can be found in [16, 23].
Then, Al-Salam [11] and Agarwal [5] proposed the fractional q-difference calculus.
Due to it applicability in mathematical modeling in different branches like technical
sciences, engineering, physics and biomathematics, it has drawn wide attention to
many researchers.

Fractional q-difference equations initiated at the beginning of the nineteenth
century [4, 15] and received significant attention in recent years. While some inter-
esting details about initial and boundary value problems of fractional q-difference
equations can be found in books of Ahmad et al. [7] and Annaby et al. [12]; see the pa-
pers of Ahmed et al. [6], Abbas et al. [2, 3], Allouch et al. [9, 8, 10] and Samei et al. [32].

The stability of functional equations was originally emerged Ulam [36, 37] and
Hyers [19]. Thereafter, the stability of this type is called Ulam-Hyers Stability. In
1978, Rassias [29] provided a generalization of the Hyers theorem which allows the
Cauchy difference to be unbounded. Considerable attention has been given to the
study of the Ulam-Hyers and Ulam-Hyers-Rassias stability of all kinds of fractional
differential equations. See the papers of Rassias [29], Rus [30, 31], Abbes et al. [1, 3],
Jung [22], Taieb et al. [34] and Wang et al. [38].

In [13], Belarbi et al. studied the initial value problem (IVP for short) for per-
turbed fractional order functional differential equations of the form:

Dαy(t) = f(t, yt) + g(t, yt), for a.e. t ∈ J = [0, b], 0 < α < 1,

y(t) = φ(t), t ∈ [−r, 0],

where CDα is the Riemman-Liouville fractional derivative, f, g : J×C([−r, 0],R)→ R
are given functions and φ ∈ C([−r, 0],R) with φ(0) = 0. For any continuous function
y defined on [−r, b] and any t ∈ J , we denote by yt the element of C([−r, 0],R) defined
by:

yt(θ) = y(t+ θ), θ ∈ [−r, 0].

Here yt(.) represents the history of the state from time t− r up to the present time t.

Motivated by aforementioned work, in this paper, we concentrate on the exis-
tence, uniqueness and Ulam stability of solutions of the initial value problem (IVP
for short) for perturbed functional fractional q-difference equations of the form:

CDα
q y(t) = f(t, yt) + g(t, yt), for a.e. t ∈ J = [0, T ], 0 < α < 1, (1.1)

y(t) = ϕ(t), t ∈ J = [−d, 0], (1.2)

where T > 0, d > 0, q ∈ (0, 1), CDα
q is the Caputo fractional q-derivative of order α,

f, g : J × C([−d, 0],R)→ R are given functions and ϕ ∈ C([−d, 0],R) with ϕ(0) = 0.
For any continuous function y defined on [−d, T ] and any t ∈ J , we denote by yt the
element of C([−d, 0],R) defined by:

yt(θ) = y(t+ θ), θ ∈ [−d, 0].
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Here yt(.) represents the history of the state from time t− d up to the present time t.
The work is arranged as follows : In Section 2, we introduce some preliminary,

including basic definitions and properties of fractional q-calculus. In Section 3, we
prove the existence and uniqueness results for the problem (1.1)-(1.2), we give two
results, the first one is based on Banach contraction principle (Theorem 3.3), the
second is based on Burton and Kirk’s fixed point theorem (Theorem 3.4). In Section
4, Ulam-Hyers and Ulam-Hyers-Rassias stabilities theorems are presented. In Section
5, we give two examples to illustrate the obtained results. Finally, we end with the
conclusion.

2. Preliminaries

In this section, we present some basic definitions, lemmas and notations which
will be used in this paper.

Let T > 0, d > 0 and define J := [0, T ], J := [−d, 0]. By C(J,R) we denote
the Banach space of all continuous functions from J into R with the usual supremum
norm:

‖y‖∞ = sup{|y(t)| : 0 ≤ t ≤ T}.
Also, C(J,R) is endowed with the norm ‖.‖∗ defined by:

‖y‖∗ = sup{|y(t)| : −d ≤ t ≤ 0}.
Let C = {y : [−d, T ]→ R : y|[−d,0] ∈ C(J,R) and y|[0,T ] ∈ C(J,R)} is a Banach space
with the norm:

‖y‖C = sup{|y(t)| : −d ≤ t ≤ T}.
Now, we introduce some definitions and properties of fractional q-calculus [16,

23].
For 0 < q < 1, we set:

[a]q =
1− qa

1− q
, a ∈ R.

The q-analogue of the power (a− b)(n) is expressed by:

(a− b)(0) = 1, (a− b)(n) =

n−1∏
k=0

(a− bqk), a, b ∈ R, n ∈ N.

More generally, if α ∈ R, then

(a− b)(α) = aα
∞∏
k=0

(
a− bqk

a− bqk+α

)
, a, b ∈ R.

Note that if b = 0, then a(α) = aα.
Definition 2.1. [23] The q-gamma function is defined by:

Γq(α) =
(1− q)(α−1)

(1− q)α−1
, α ∈ R− {0,−1,−2, . . .}.

Notice that the q-gamma function satisfies Γq(α+ 1) = [α]qΓq(α).
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Definition 2.2. [23] The q-derivative of order n ∈ N of a function f : J → R, is
defined by (D0

qf)(t) = f(t),

(Dqf)(t) = (D1
qf)(t) =

f(t)− f(qt)

(1− q)t
, t 6= 0, (Dqf)(0) = lim

t→0
(Dqf)(t),

and

(Dn
q f)(t) = (D1

qD
n−1
q f)(t), t ∈ J, n ∈ {1, 2, . . .}.

Set Jt := {tqn : n ∈ N} ∪ {0}.
Definition 2.3. [23] The q-integral of a function f : Jt → R, is given by:

(Iqf)(t) =

∫ t

0

f(s)dqs =

∞∑
n=0

t(1− q)qnf(tqn),

provided that the series converges.

We note that (DqIqf)(t) = f(t), while if f is continuous at 0, then

(IqDqf)(t) = f(t)− f(0).
Definition 2.4. [5] Let α ∈ R+ and function f : J → R. The fractional q-integral of
the Riemann-Liouville type of order α is defined by (I0

q f)(t) = f(t), and

(Iαq f)(t) =

∫ t

0

(t− qs)(α−1)

Γq(α)
f(s)dqs, t ∈ J.

Note that for α = 1, we have (I1
q f)(t) = (Iqf)(t).

Lemma 2.5. [27] For α ∈ R+ and β ∈ (−1,+∞), we have:

(Iαq (t− a)(β))(t) =
Γq(β + 1)

Γq(α+ β + 1)
(t− a)(α+β), 0 < a < t < T.

In particular,

(Iαq 1)(t) =
1

Γq(α+ 1)
t(α).

Definition 2.6. [28] The fractional q-derivative of the Riemann-Liouville type of order
α ∈ R+ of a function f : J → R, is defined by (D0

qf)(t) = f(t), and

(Dα
q f)(t) = (D[α]

q I [α]−α
q f)(t), t ∈ J,

where [α] is the integer part of α.
Definition 2.7. [28] The fractional q-derivative of the Caputo type of order α ∈ R+

of a function f : J → R, is defined by (D0
qf)(t) = f(t), and

(CDα
q f)(t) = (I [α]−α

q D[α]
q f)(t), t ∈ J.

where [α] is the integer part of α.
Lemma 2.8. [28] Let α, β ∈ R+ and let f be a function defined on J . Then, the next
identities hold:

(i) (Iαq I
β
q f)(t) = (Iα+β

q f)(t).
(ii) (Dα

q I
α
q f)(t) = f(t).
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Lemma 2.9. [28] Let α ∈ R+ and let f be a function defined on J . Then, the following
equality holds:

(Iαq
CDα

q f)(t) = f(t)−
[α]−1∑
k=0

tk

Γq(k + 1)
(Dk

q f)(0).

In particular, if α ∈ (0, 1), then

(Iαq
CDα

q f)(t) = f(t)− f(0).

Next, we introduce the main fixed point theorems.

Theorem 2.10. (Banach Contraction Principle) [17]
Let M be a non-empty closed subset of a Banach space X, then any contraction
mapping F of M into itself has a unique fixed point.

Theorem 2.11. (Burton and Kirk) [14]
Let X be a Banach space, and A,B : X → X two operators satisfying:

(i) A is a contraction, and
(ii) B is completely continuous.

Then either

(a) the operator equation y = A(y) +B(y) has a solution, or
(b) the set Ω =

{
y ∈ X : λA

(
y
λ

)
+ λB(y) = y

}
is unbounded for λ ∈ (0, 1).

Finally, we state the following generalization of Gronwall’s lemma.

Lemma 2.12. (Gronwall lemma) [39]
Let u : J → [0,+∞) be a real function and v(.) is a nonnegative, locally integrable
function on J . Assume that there is a constant c > 0 and 0 < α < 1 such that

u(t) ≤ v(t) + c

∫ t

0

(t− s)−αu(s)ds.

Then, there exists a constant δ = δ(α) such that

u(t) ≤ v(t) + δc

∫ t

0

(t− s)−αv(s)ds, for every t ∈ J.

3. Existence and uniqueness results

In this section, we present the existence and uniqueness of solutions for the
problem (1.1)-(1.2).

Let us start by defining what we mean by a solution of the problem (1.1)-(1.2).

Definition 3.1. A function y ∈ C is said to be a solution of the problem (1.1)-(1.2) if y
satisfies the equation (CDα

q y)(t) = f(t, yt) + g(t, yt) on J , and satisfies the condition

y(t) = ϕ(t) on J .

For the existence of solutions for the problem (1.1)-(1.2), we need the following
auxiliary lemma.
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Lemma 3.2. Let h : J → R be continuous, the solution of the initial value problem:

(CDα
q y)(t) = h(t), t ∈ J = [0, T ], 0 < α < 1, (3.1)

y(t) = ϕ(t), t ∈ J = [−d, 0], (3.2)

is given by:

y(t) =

{
φ(t), t ∈ J = [−d, 0],∫ t

0
(t−qs)(α−1)

Γq(α) h(s)dqs, t ∈ J = [0, T ].
(3.3)

Proof. Applying the Riemann-Liouville fractional q-integral of order α to both sides
of equation (3.1), and by using Lemma 2.9, we have:

y(t) =

∫ t

0

(t− qs)(α−1)

Γq(α)
h(s)dqs+ c0.

Using the initial condition of the problem (3.1)-(3.2) and y(0) = φ(0) = 0, we obtain:

c0 = 0.

So,

y(t) =

∫ t

0

(t− qs)(α−1)

Γq(α)
h(s)dqs, t ∈ J = [0, T ],

and

y(t) = ϕ(t), t ∈ J = [−d, 0].

The proof is completed. �

In the following subsection, we prove uniqueness and existence results for the
problem (1.1)-(1.2) by means fixed point theorems.

The first result is based on Banach contraction principle (Theorem 2.10).

Theorem 3.3. Assume that the following hypotheses hold:

(H1) The functions f, g : J × C(J,R)→ R are continuous.
(H2) There exist Lf > 0, such that for each t ∈ J and each y, x ∈ R, we have:

|f(t, y)− f(t, x)| ≤ Lf |y − x|.

(H3) There exist Lg > 0, such that for each t ∈ J and each y, x ∈ R, we have:

|g(t, y)− g(t, x)| ≤ Lg|y − x|.

If

(Lf + Lg)T
(α)

Γq(α+ 1)
< 1. (3.4)

Then, the problem (1.1)-(1.2) has a unique solution.
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Proof. Transform the problem (1.1)-(1.2) into a fixed point problem, we consider the
operator

F : C −→ C
Defined by:

(Fy)(t) =

{
φ(t), t ∈ J = [−d, 0],∫ t

0
(t−qs)(α−1)

Γq(α) f(s, ys)dqs+
∫ t

0
(t−qs)(α−1)

Γq(α) g(s, ys)dqs, t ∈ J = [0, T ].

Clearly, the fixed points of operator F are solution of the problem (1.1)-(1.2).
Now, we shall prove that F is a contraction mapping on C.

Let y, x ∈ C, if t ∈ J , then we have:

|(Fy)(t)− (Fx)(t)| = |φ(t)− φ(t)| = 0.

Hence,

‖(Fy)(t)− (Fx)(t)‖∗ = 0. (3.5)

For t ∈ J , we have:

|(Fy)(t)− (Fx)(t)| =

∣∣∣∣∫ t

0

(t− qs)(α−1)

Γq(α)
(f(s, ys)− f(s, xs)) dqs

+

∫ t

0

(t− qs)(α−1)

Γq(α)
(g(s, ys)− g(s, xs)) dqs

∣∣∣∣ .
Therefore,

|(Fy)(t)− (Fx)(t)| ≤
∫ t

0

(t− qs)(α−1)

Γq(α)

(
|f(s, ys)− f(s, xs)|

+|g(s, ys)− g(s, xs)|
)
dqs.

By hypothesis (H2)-(H3), we get:

|(Fy)(t)− (Fx)(t)| ≤
∫ t

0

(t− qs)(α−1)

Γq(α)

(
 Lf |ys − xs|+ Lg |ys − xs|

)
dqs,

≤ (Lf + Lg)

∫ t

0

(t− qs)(α−1)

Γq(α)
‖ys − xs‖∗ dqs.

Thus,

‖(Fy)(t)− (Fx)(t)‖∞ ≤ (Lf + Lg)T
(α)

Γq(α+ 1)
‖y − x‖C . (3.6)

From equations (3.5) and (3.6), we conclude that:

‖(Fy)(t)− (Fx)(t)‖C ≤ (Lf + Lg)T
(α)

Γq(α+ 1)
‖y − x‖C .

By condition (3.4), F is a contraction operator, and by Banach contraction mapping
principle, we deduce that the operator F has a unique fixed point, which is the unique
solution of the problem (1.1)-(1.2). �
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The second result is based on Burton and Kirk’s fixed point theorem (Theo-
rem 2.11).

Theorem 3.4. Assume that the hypotheses (H1)-(H2)-(H3) are satisfied and

(H4) There exists constant Mg > 0, such that for each t ∈ J and each y ∈ R, we have:

|g(t, y)| ≤Mg.

If

LfT
(α)

Γq(α+ 1)
< 1. (3.7)

Then, the problem (1.1)-(1.2) has at least one solution.

Proof. Consider the operators

F1, F2 : C −→ C

Defined by:

(F1y)(t) =

{
0, t ∈ J = [−d, 0],∫ t

0
(t−qs)(α−1)

Γq(α) f(s, ys)dqs, t ∈ J = [0, T ].

And

(F2y)(t) =

{
φ(t), t ∈ J = [−d, 0],∫ t

0
(t−qs)(α−1)

Γq(α) g(s, ys)dqs, t ∈ J = [0, T ].

Then, the problem of finding the solution of the initial problem (1.1)-(1.2) is reduced
to finding the solution of the operator equation (F1y)(t)+(F2y)(t) = y(t), t ∈ [−d, T ].

Next, we shall show that the operators F1 and F2 satisfy all the conditions of
Theorem 2.11. For better readability, we break the proof into a sequence of steps.
Step 1: F1 is contraction operator.
Let y, x ∈ C, if t ∈ J , then we have:

|(F1y)(t)− (F1x)(t)| = 0.

Hence,

‖(F1y)(t)− (F1x)(t)‖∗ = 0. (3.8)

For t ∈ J , we have:

|(F1y)(t)− (F1x)(t)| =

∣∣∣∣∫ t

0

(t− qs)(α−1)

Γq(α)
(f(s, ys)− f(s, xs)) dqs

∣∣∣∣ .
Therefore,

|(F1y)(t)− (F1x)(t)| ≤
∫ t

0

(t− qs)(α−1)

Γq(α)
|f(s, ys)− f(s, xs)| dqs.
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By hypothesis (H2), we get:

|(F1y)(t)− (F1x)(t)| ≤
∫ t

0

(t− qs)(α−1)

Γq(α)
Lf |ys − xs| dqs,

≤
∫ t

0

(t− qs)(α−1)

Γq(α)
Lf ‖ys − xs‖∗ dqs.

Thus,

‖(F1y)(t)− (F1x)(t)‖∞ ≤ LfT
(α)

Γq(α+ 1)
‖y − x‖C . (3.9)

From equations (3.8) and (3.9), we conclude that:

‖(F1y)(t)− (F1x)(t)‖C ≤ LfT
(α)

Γq(α+ 1)
‖y − x‖C .

Consequently, the operator F1 is contraction.
Step 2: F2 is continuous.
Let {yn}n∈N be a sequence such that yn → y in C. If t ∈ J , then we have:

|(F2yn)(t)− (F2y)(t)| = |ϕ(t)− ϕ(t)| = 0.

Hence,

‖(F2yn)(t)− (F2y)(t)‖∗ = 0. (3.10)

For each t ∈ J , we have:

|(F2yn)(t)− (F2y)(t)| ≤
∫ t

0

(t− qs)(α−1)

Γq(α)
|g(s, yns)− g(s, ys)| dqs.

Thus,

‖(F2yn)(t)− (F2y)(t)‖∞ ≤ T (α)

Γq(α+ 1)
‖g(., yn.)− g(., y.)‖∞ .

Since g is a continuous function, we get:

‖F2(yn)− F2(y)‖∞ → 0 as n→∞. (3.11)

From equations (3.10) and (3.11), we conclude that:

‖F2(yn)− F2(y)‖C → 0 as n→∞.

Consequently, F2 is continuous in C.
Step 3: F2 maps bounded sets into bounded sets in C.
Indeed, it is enough to show that for any r > 0, there exists a positive constant R
such that for each y ∈ Br = {y ∈ C : ‖y‖C ≤ r} we have ‖F2(y)‖C ≤ R.
Let y ∈ Br. If t ∈ J , then we have:

|(F2y)(t)| = |ϕ(t)|.

Hence,

‖(F2y)‖∗ ≤ ‖ϕ‖∗. (3.12)
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For each t ∈ J , we have:

|(F2y)(t)| =

∣∣∣∣∫ t

0

(t− qs)(α−1)

Γq(α)
g(s, ys)dqs

∣∣∣∣ ,
≤

∫ t

0

(t− qs)(α−1)

Γq(α)
|g(s, ys)|dqs.

By hypothesis (H4), we get:

|(F2y)(t)| ≤ Mg

∫ t

0

(t− qs)(α−1)

Γq(α)
dqs.

Thus,

‖(F2y)‖∞ ≤ MgT
(α)

Γq(α+ 1)
:= l. (3.13)

From equations (3.12) and (3.13), we conclude that:

‖(F2y)‖C ≤ max{‖ϕ‖∗, l} := R. (3.14)

Consequently, the operator F2 is uniformly bounded in Br.
Step 4: F2 maps bounded sets into equicontinuous sets in C.
Let t1, t2 ∈ J, t1 < t2 and let Br be a bounded set of C as in Step 2. Let y ∈ Br, then
we have:

|(F2y)(t2)− (F2y)(t1)| =

∣∣∣∣∫ t2

0

(t2 − qs)(α−1)

Γq(α)
g(s, ys)dqs

−
∫ t1

0

(t1 − qs)(α−1)

Γq(α)
g(s, ys)dqs

∣∣∣∣ ,
=

∣∣∣∣∣
∫ t1

0

(
(t2 − qs)(α−1) − (t1 − qs)(α−1)

)
Γq(α)

g(s, ys)dqs

+

∫ t2

t1

(t2 − qs)(α−1)

Γq(α)
g(s, ys)dqs

∣∣∣∣ ,
≤

∫ t1

0

(
(t2 − qs)(α−1) − (t1 − qs)(α−1)

)
Γq(α)

|g(s, ys)|dqs

+

∫ t2

t1

(t2 − qs)(α−1)

Γq(α)
|g(s, ys)|dqs.

By hypothesis (H4), we get:

|(F2y)(t2)− (F2y)(t1)| ≤ Mg

Γq(α)

∫ t1

0

(
(t2 − qs)(α−1) − (t1 − qs)(α−1)

)
dqs

+
Mg

Γq(α)

∫ t2

t1

(t2 − qs)(α−1)dqs,

≤ Mg

Γq(α+ 1)

(
t
(α)
2 − t(α)

1

)
. (3.15)
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And if t1, t2 ∈ J , then we have:

|(F2y)(t2)− (F2y)(t1)| = |ϕ(t2)− ϕ(t1)|. (3.16)

The right hand sides of equations (3.15) and (3.16) tend to zero independently of
y ∈ Br as t1 → t2.
As a consequence of Steps 2 to 4, together with the Arzela-Ascoli theorem, we can
conclude that the operator F2 is completely continuous.
Step 5: A priori bound.
the set Ω = {y ∈ C : y = λF1

(
y
λ

)
+ λF2(y)} is bounded.

Let y ∈ Ω, then y = λF1

(
y
λ

)
+ λF2(y) for some 0 < λ < 1. If t ∈ J , then

y(t) = λϕ(t).

For each t ∈ J , we have:

y(t) = λ

∫ t

0

(t− qs)(α−1)

Γq(α)
f(s,

ys
λ

)dqs+ λ

∫ t

0

(t− qs)(α−1)

Γq(α)
g(s, ys)dqs.

Thus,

|y(t)| ≤
∫ t

0

(t− qs)(α−1)

Γq(α)
|f(s,

ys
λ

)|dqs+

∫ t

0

(t− qs)(α−1)

Γq(α)
|g(s, ys)|dqs,

≤
∫ t

0

(t− qs)(α−1)

Γq(α)
|f(s,

ys
λ

)− f(s, 0)|dqs+

∫ t

0

(t− qs)(α−1)

Γq(α)
|f(s, 0)|dqs

+

∫ t

0

(t− qs)(α−1)

Γq(α)
|g(s, ys)|dqs.

This implies by hypothesis (H2) and (H4) that for each t ∈ J , we get:

|y(t)| ≤
∫ t

0

(t− qs)(α−1)

Γq(α)
Lf |ys|dqs+

∫ t

0

(t− qs)(α−1)

Γq(α)
|f(s, 0)|dqs

+Mg

∫ t

0

(t− qs)(α−1)

Γq(α)
dqs,

≤ Lf

∫ t

0

(t− qs)(α−1)

Γq(α)
‖ys‖∗dqs+ f∗

∫ t

0

(t− qs)(α−1)

Γq(α)
dqs

+Mg

∫ t

0

(t− qs)(α−1)

Γq(α)
dqs,

≤ (Mg + f∗)T (α)

Γq(α+ 1)
+ Lf

∫ t

0

(t− qs)(α−1)

Γq(α)
‖ys‖∗dqs,

where f∗ = sups∈J |f(s, 0)|.
Now, we consider the function ρ defined by:

ρ(t) = sup{|y(s)| : 0 ≤ s ≤ t}, t ∈ J.

Then, there exists t∗ ∈ [−d, t] be such that ρ(t) = |y(t∗)|.
If t∗ ∈ J , then

ρ(t) = ‖ϕ‖∗. (3.17)



494 Nadia Allouch and Samira Hamani

If t∗ ∈ J , then by the previous inequality we have for t ∈ J :

ρ(t) ≤ (Mg + f∗)T (α)

Γq(α+ 1)
+ Lf

∫ t

0

(t− qs)(α−1)

Γq(α)
ρ(s)dqs.

Then, from Lemma 2.12, there exists δ = δ(α) such that we get:

ρ(t) ≤ (Mg + f∗)T (α)

Γq(α+ 1)
+ Lfδ

∫ t

0

(t− qs)(α−1)

Γq(α)

(Mg + f∗)T (α)

Γq(α+ 1)
dqs.

Thus,

ρ(t) ≤ (Mg + f∗)T (α)

Γq(α+ 1)

(
1 +

LfδT
(α)

Γq(α+ 1)

)
=: k. (3.18)

Thus for any t ∈ J , ‖y‖C ≤ ρ(t), from (3.17) and (3.18), we conclude that:

‖y‖C ≤ max(‖ϕ‖C , k).

This shows that the set Ω is bounded.
As a consequence of Theorem 3.4, we deduce that F1(y) + F2(y) has a fixed point
which is an integral solution of the problem (1.1)-(1.2). �

4. Ulam stability results

In this section, we will define and study some types of Ulam stability for prob-
lem (1.1)-(1.2). The following definitions were adopted from [31].

Definition 4.1. The problem (1.1)-(1.2) is Ulam-Hyers stable if there exists a real
number C > 0 such that for each ε > 0 and for each solution x ∈ C of the following
inequality:

|(CDα
q x)(t)− f(t, xt)− g(t, xt)| ≤ ε, t ∈ J = [0, T ], (4.1)

there exists a solution y ∈ C of the problem (1.1)-(1.2) with the norm:

‖x− y‖C ≤ Cε.

Definition 4.2. The problem (1.1)-(1.2) is generalized Ulam-Hyers stable if there exists
ϑ ∈ C(R+,R+) with ϑ(0) = 0, such that for each ε > 0, and for each solution x ∈ C
of the inequality (4.1), there exists a solution y ∈ C of the problem (1.1)-(1.2) with
the norm:

‖x− y‖C ≤ ϑ(ε).

Definition 4.3. The problem (1.1)-(1.2) is Ulam-Hyers-Rassias stable with respect to
φ if there exists Cφ > 0 such that for each ε > 0 and for each solution x ∈ C of the
following inequality:

|(CDα
q x)(t)− f(t, xt)− g(t, xt)| ≤ εφ(t), t ∈ J = [0, T ], (4.2)

there exists a solution y ∈ C of the problem (1.1)-(1.2) with the norm:

‖x− y‖C ≤ Cφεφ(t), t ∈ J = [0, T ].
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Remark 4.4. A function x ∈ C is a solution of the inequality

|(CDα
q x)(t)− f(t, xt)− g(t, xt)| ≤ ε, t ∈ J = [0, T ],

if and only if there exists a function k ∈ C([0, T ],R) (which depend on y) such that:

(i) |k(t)| ≤ ε, t ∈ J = [0, T ].
(ii) (CDα

q x)(t) = f(t, xt) + g(t, xt) + k(t), t ∈ J = [0, T ].

Theorem 4.5. Assume that the hypotheses (H1)-(H2)-(H3) and condition (3.4) are
satisfied. Then, the problem (1.1)-(1.2) is Ulam-Hyers stable.

Proof. Let ε > 0 and let x ∈ C be a solution of the inequality (4.1) and let y ∈ C be
the solution of the problem (1.1)- (1.2). Then, we have:

y(t) =

{
φ(t), t ∈ J = [−d, 0],∫ t

0
(t−qs)(α−1)

Γq(α) f(s, ys)dqs+
∫ t

0
(t−qs)(α−1)

Γq(α) g(s, ys)dqs, t ∈ J = [0, T ].

From the inequality (4.1) for each t ∈ J , we obtain:∣∣∣∣x(t)−
∫ t

0

(t− qs)(α−1)

Γq(α)
f(s, xs)dqs−

∫ t

0

(t− qs)(α−1)

Γq(α)
g(s, xs)dqs

∣∣∣∣ ≤ Iαq ε,

≤ t(α)

Γq(α+ 1)
ε.

Using the hypotheses (H1)-(H2) and (H3), for each t ∈ J , we can write:

|x(t)− y(t)| ≤
∣∣∣∣x(t)−

∫ t

0

(t− qs)(α−1)

Γq(α)
f(s, ys)dqs−

∫ t

0

(t− qs)(α−1)

Γq(α)
g(s, ys)dqs

∣∣∣∣ ,
≤

∣∣∣∣x(t)−
∫ t

0

(t− qs)(α−1)

Γq(α)
f(s, xs)dqs−

∫ t

0

(t− qs)(α−1)

Γq(α)
g(s, xs)dqs

+

∫ t

0

(t− qs)(α−1)

Γq(α)
(f(s, xs)− f(s, ys)) dqs

+

∫ t

0

(t− qs)(α−1)

Γq(α)
(g(s, xs)− g(s, ys)) dqs

∣∣∣∣ ,
≤

∣∣∣∣x(t)−
∫ t

0

(t− qs)(α−1)

Γq(α)
f(s, xs)dqs−

∫ t

0

(t− qs)(α−1)

Γq(α)
g(s, xs)dqs

∣∣∣∣
+

∣∣∣∣∫ t

0

(t− qs)(α−1)

Γq(α)
(f(s, xs)− f(s, ys)) dqs

+

∫ t

0

(t− qs)(α−1)

Γq(α)
(g(s, xs)− g(s, ys)) dqs

∣∣∣∣ ,
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Thus,

|x(t)− y(t)| ≤ t(α)

Γq(α+ 1)
ε+

∫ t

0

(t− qs)(α−1)

Γq(α)
|f(s, xs)− f(s, ys)| dqs

+

∫ t

0

(t− qs)(α−1)

Γq(α)
|g(s, xs)− g(s, ys)| dqs,

≤ t(α)

Γq(α+ 1)
ε+ Lf

∫ t

0

(t− qs)(α−1)

Γq(α)
‖xs − ys‖∗ dqs

+Lg

∫ t

0

(t− qs)(α−1)

Γq(α)
‖xs − ys‖∗ dqs.

Hence,

‖x− y‖C ≤ T (α)

Γq(α+ 1)
ε+

(Lf + Lg)T
(α)

Γq(α+ 1)
‖x− y‖C .

By condition (3.4), we get:

‖x− y‖C ≤
T (α)

Γq(α+1)

1− (Lf+Lg)T (α)

Γq(α+1)

ε,

:= Cε.

Consequently, the problem (1.1)-(1.2) is Ulam-Hyers stable.
Taking ϑ(ε) = Cε; ϑ(0) = 0, we can state that the problem (1.1)-(1.2) is generalized
Ulam-Hyers stable. �

Theorem 4.6. Assume that the hypotheses (H1)-(H2)-(H3) and condition (3.4) are
satisfied and

(H5) Let φ ∈ C(J,R+) be an increasing function. There exists λφ > 0 such that for
each t ∈ J , we have:

Iαq φ(t) ≤ λφφ(t).

Then, problem (1.1)-(1.2) is Ulam-Hyers-Rassias stable.

Proof. Let ε > 0 and let x ∈ C be a solution of the inequality (4.2) and let y ∈ C be
the solution of the problem (1.1)-(1.2). Then, we have:

y(t) =

{
φ(t), t ∈ J = [−d, 0],∫ t

0
(t−qs)(α−1)

Γq(α) f(s, ys)dqs+
∫ t

0
(t−qs)(α−1)

Γq(α) g(s, ys)dqs, t ∈ J = [0, T ].

From the inequality (4.2) and (H5), for each t ∈ J , we obtain:∣∣∣∣x(t)−
∫ t

0

(t− qs)(α−1)

Γq(α)
f(s, xs)dqs−

∫ t

0

(t− qs)(α−1)

Γq(α)
g(s, xs)dqs

∣∣∣∣ ≤ εIαq φ(t),

≤ ελφφ(t).
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Using the hypotheses (H1)-(H2) and (H3), for each t ∈ J , we can write:

|x(t)− y(t)| ≤
∣∣∣∣x(t)−

∫ t

0

(t− qs)(α−1)

Γq(α)
f(s, ys)dqs−

∫ t

0

(t− qs)(α−1)

Γq(α)
g(s, ys)dqs

∣∣∣∣ ,
≤

∣∣∣∣x(t)−
∫ t

0

(t− qs)(α−1)

Γq(α)
f(s, xs)dqs−

∫ t

0

(t− qs)(α−1)

Γq(α)
g(s, xs)dqs

+

∫ t

0

(t− qs)(α−1)

Γq(α)
(f(s, xs)− f(s, ys)) dqs

+

∫ t

0

(t− qs)(α−1)

Γq(α)
(g(s, xs)− g(s, ys)) dqs

∣∣∣∣ ,
≤

∣∣∣∣x(t)−
∫ t

0

(t− qs)(α−1)

Γq(α)
f(s, xs)dqs−

∫ t

0

(t− qs)(α−1)

Γq(α)
g(s, xs)dqs

∣∣∣∣
+

∣∣∣∣∫ t

0

(t− qs)(α−1)

Γq(α)
(f(s, xs)− f(s, ys)) dqs

+

∫ t

0

(t− qs)(α−1)

Γq(α)
(g(s, xs)− g(s, ys)) dqs

∣∣∣∣ ,
≤ ελφφ(t) +

∫ t

0

(t− qs)(α−1)

Γq(α)
|f(s, xs)− f(s, ys)| dqs

+

∫ t

0

(t− qs)(α−1)

Γq(α)
|g(s, xs)− g(s, ys)| dqs,

≤ ελφφ(t) + Lf

∫ t

0

(t− qs)(α−1)

Γq(α)
‖xs − ys‖∗ dqs

+Lg

∫ t

0

(t− qs)(α−1)

Γq(α)
‖xs − ys‖∗ dqs.

Hence,

‖x− y‖C ≤ ελφφ(t) +
(Lf + Lg)T

(α)

Γq(α+ 1)
‖x− y‖C .

By condition (3.4), we get:

‖x− y‖C ≤ ελφφ(t)

1− (Lf+Lg)T (α)

Γq(α+1)

:= Cφεφ(t).

Consequently, the problem (1.1)-(1.2) is Ulam-Hyers-Rassias stable. �
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5. Examples

In this section, we give two examples illustrating our main results.

Example 5.1. Consider the following initial value problem of perturbed functional
fractional q-difference equations:

(CD
2
3
1
3

y)(t) = 1 + 2t+
sin(yt)

e−t + 1
+
e−t sin(yt)

t+ 6
, t ∈ J = [0, 1], 0 < α ≤ 1, (5.1)

y(t) = t2, t ∈ J = [−1, 0], (5.2)

where ϕ(t) = t2 and α = 2
3 , q = 1

3 , d = 1, T = 1, and

f(t, y) = 1 + 2t+
sin(y)

e−t + 1
, (t, y) ∈ J × R,

g(t, y) =
e−t sin(y)

t+ 6
, (t, y) ∈ J × R.

Clearly, the function f, g are continuous.
Let y, x ∈ R and t ∈ J . Then, we have:

|f(t, y)− f(t, x)| =

∣∣∣∣ sin(y)− sin(x)

e−t + 1

∣∣∣∣ ,
≤ 1

2
|y − x|,

|g(t, y)− g(t, x)| ≤ 1

6
|y − x|.

Hence, the hypothesis (H2)-(H3) are satisfied with Lf = 1
2 and Lg = 1

6 . Now, we
shall check that the condition (3.4) is satisfied with T = 1. Indeed,

(Lf + Lg)T
(α)

Γq(α+ 1)
=

(
1
2 + 1

6

)
Γ 1

3
( 5

3 )
,

= 0.7028 < 1.

Then, by Theorem 3.3, the problem (5.1)-(5.2) has a unique solution on [−1, 1], and
from Theorem 4.5, the problem (5.1)-(5.2) is Ulam-Hyers stable on [0, 1].
On the other hand, we have:

|g(t, y)| ≤ 1

6
, (t, y) ∈ J × R.

Thus, the condition (H4) holds. Next, we shall check that the condition (3.7) is
satisfied with T = 1. Indeed,

LfT
(α)

Γq(α+ 1)
=

1

2Γ 1
3
( 5

3 )
,

= 0.5271 < 1.

Then, by Theorem 3.4, the problem (5.1)-(5.2) has at least one solution on [−1, 1].
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Example 5.2. Consider the following initial value problem of perturbed functional
fractional q-difference equations:

(CD
1
2
1
4

y)(t) =
t2

et + 5

(
1 +

|yt|
1 + |yt|

)
+
t2sin(yt)

3
, t ∈ J = [0, 1], 0 < α ≤ 1, (5.3)

y(t) =
t

6 + t
, t ∈ J = [−2, 0], (5.4)

where ϕ(t) = t
6+t and α = 1

2 , q = 1
2 , d = 2, T = 1, and

f(t, y) =
t2

et + 5

(
1 +

|y|
1 + |y|

)
, (t, y) ∈ J × R,

g(t, y) =
t2sin(y)

3
∈ J × R.

Clearly, the function f, g are continuous.
Let y, x ∈ R and t ∈ J . Then, we have:

|f(t, y)− f(t, x)| =

∣∣∣∣ 1

et + 5

(
|y|

1 + |y|
− |x|

1 + |x|

)∣∣∣∣ ,
≤ 1

6
|y − x|,

|g(t, y)− g(t, x)| ≤ 1

3
|y − x|.

Hence, the hypothesis (H2)-(H3) are satisfied with Lf = 1
6 and Lg = 1

3 . Now, we
shall check that the condition (3.4) is satisfied with T = 1. Indeed,

(Lf + Lg)T
(α)

Γq(α+ 1)
=

(
1
6 + 1

3

)
Γ 1

4
( 3

2 )
,

= 0.5275 < 1.

Then, by Theorem 3.3, the problem (5.3)- (5.4) has a unique solution on [−2, 1], and
from Theorem 4.5, the problem (5.3) is Ulam-Hyers stable on [0, 1].
On the other hand, we have:

|g(t, y)| ≤ 1

3
, (t, y) ∈ J × R.

Thus, the condition (H4) holds. Next, we shall check that the condition (3.7) is
satisfied with T = 1. Indeed,

LfT
(α)

Γq(α+ 1)
=

1

6Γ 1
4
( 3

2 )
,

= 0.1758 < 1.

Then, by Theorem 3.4, the problem (5.3)-(5.4) has at least one solution on [−2, 1].
Now, let φ(t) = t2 for each t ∈ J, we have:

I
1
2
1
4

φ(t) =
Γ 1

4
(3)

Γ 1
4
( 7

2 )
t2+ 1

2 ≤ 5

4Γ 1
4
( 7

2 )
t2 = λφφ(t). (5.5)
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Thus, the condition (H5) is satisfied with φ(t) = t2 and λφ = 5
4Γ 1

4
( 7
2 )

. Then, it follows

from Theorem 4.6 that the problem (5.3)- (5.4) is Ulam-Hyers-Rassias stable on [0, 1].

6. Conclusions

In this work, we have provided sufficient conditions for the existence of solu-
tions for the initial value problem (IVP for short) for perturbed functional fractional
q-difference equations involving the Caputo’s fractional q-derivative. The uniqueness
result is obtained by applying the Banach contraction mapping principle, while the
existence result is obtained by using Burton and Kirk’s fixed point theorem. In ad-
dition, we presented some results for Ulam-Hyers stability and Ulam-Hyers-Rassias
stability. For the justification, examples are we given to illustrate the main results.
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Existence results for some fractional order
coupled systems with impulses and nonlocal
conditions on the half line

Khadidja Nisse

Abstract. In this paper, we deal with initial value problems for coupled systems
of nonlinear fractional differential equations, subject to coupled nonlocal initial
and impulsive conditions on the half line. Global existence-uniqueness results
are obtained under weak conditions allowing the reaction part of the problem to
increase indefinitely with time. Our approach relies mainly to some fixed point
theorem of Perov’s type in generalized gauge spaces. The obtained results im-
prove, generalize and complement many existing results in the literature. An
example illustrating our main finding is also given.
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1. Introduction

Recently, an intensive interest has been given to the investigation of differen-
tial equations of fractional order. This is motivated by the natural introduction of
fractional operators in the modeling of several phenomena whose nonlocal dynamics
involving long-term effects are taken into account. These models have been applied
successfully in many fields such as in mechanics, bio-chemistry, electrical engineering,
control, porous media, medicine, etc. (see [6, 11]).

On the other hand, differential equations involving impulse effects appear as
an appropriate model for some evolutionary problems. It is the case of many real-
world processes that are subject of abrupt of changes in certain moments of times
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and arising in a variety of disciplines, including biology, population dynamics, electric
technology, control theory, engineering, etc. For more details on this subject, we reefer
to the monographs [3, 12].

Banach’s contractive principle is one of the most useful tools in nonlinear func-
tional analysis that ensures the existence and uniqueness of a fixed point on complete
metric spaces. One of the extensions of this principle for contractive mappings on
spaces endowed with vector valued metrics, was done by Perov in [16] and Perov and
Kibento in [17]. Many other generalizations in this direction have been investigated.
In [15], Precup established the extension in Perov’s sens of some fixed point theorem
in spaces endowed with a family of pseudo-metrics. Many authors applied the vector
version’s fixed point theorems in the study of the existence of solutions for systems
of differential and integral equations, see for example [4, 5, 9, 10, 20] and the refer-
ences therein. In this line of research, we consider in this work, the following nonlinear
coupled system of fractional differential equations:{

CDα
0+u(t) = f(t, u(t), v(t)), t ∈ Ii = ]ti, ti+1] , i ∈ N

CDβ
0+v(t) = g(t, u(t), v(t)), t ∈ Ii = ]ti, ti+1] , i ∈ N

(1.1)

with coupled nonlocal initial conditions:{
u(0) = ϕ(u, v),

v(0) = ψ(u, v),
(1.2)

and subject to coupled impulsive conditions:{
∆u(ti) = Ii(u(ti), v(ti)), i ∈ N∗ = N\{0}
∆v(ti) = Ji(u(ti), v(ti)), i ∈ N∗ = N\{0}

(1.3)

where CDα
0+ and CDβ

0+ denote the Caputo fractional derivative operators with the fixed

lower limit equals zero, of order α and β in ]0, 1[ respectively, f, g : R+ × R2 −→ R
are nonlinear continuous functions, ∆u(ti) = u(t+i ) − u(t−i ), where u(t+i ) and u(t−i )
represent the right and left limits of u at t = ti and {ti}i∈N∗ is a sequence of points in
R+ such that ti < ti+1 for i ∈ N∗, Ii, Ji : R2 −→ R are nonlinear continuous functions,
φ, ψ : X −→ R are nonlinear continuous functional where X is a generalized complete
gauge space, which will be defined later.

It should be noted that the coupled nonlocal initial conditions (1.2) generalizes
many other types of initial conditions considered in the literature, such as: classical
initial conditions, multi-point conditions and integral conditions.

After converting (1.1)- (1.3) into an equivalent fixed point problem in generalized
gauge space, we apply some fixed point theorem of Perov’s type, established in [15].
Using this approach, we obtain a global existence-uniqueness results for (1.1)- (1.3)
under weak conditions allowing the nonlinearity to increase indefinitely with time,
which is not the case in many earlier results in the literature (see Remark 3.1). This
study allows us also, to improve and generalize some other existence results in the
literature for systems of fractional differential equations without impulses (see Remark
3.6).
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The rest of the paper is organized as follows. In Section 2 we recall some defini-
tions from fractional calculus. We introduce also the fixed point theorem in generalized
gauge spaces, on which our result is based, as well as some related concepts. The main
result concerning the global existence-uniqueness result for (1.1)- (1.3) is established
in Section 3. Finally, in Section 4, we provide an illustrative example.

2. Preliminaries

Let us recall the notion of the fractional derivatives. For further details on some
essential related properties, we refer to [6, 11].
Let n be a positive integer, α the positive real such that n − 1 < α ≤ n and dn/dtn

the classical derivative operator of order n.

Definition 2.1. The Riemann-Liouville fractional integral, and the Riemann-Liouville
fractional derivative, of a real function u defined on R+ of order α, are defined re-
spectively by

Iα0+u (t) :=
1

Γ (α)

∫ t

0

(t− s)α−1u (s) ds, t > 0,

Dα
0+u (t) :=

dn

dtn
In−α0+ u (t) :=

1

Γ (n− α)

dn

dtn

∫ t

0

(t− s)n−α−1u (s) ds, t > 0,

where Γ (.) is the Gamma function, provided that the right hand sides exist point
wise.

Definition 2.2. The Caputo fractional derivative of a real function u defined on R+

of order α, noted by CDα
0+ , is defined by

CDα
0+u (t) :=

(
Dα

0+

[
u−

n−1∑
k=0

u(k)(0)

k!
(.)k

])
(t) , t > 0,

provided that the right hand side exists point wise.

We denote by Mn(R+), the set of all square matrices of order n with positive
real elements, I the identity matrix of order n and by O the zero matrix of order n.

Definition 2.3. [18] A square real matrix M of order n, is said to be convergent to
zero, if Mk −→ O, as k −→∞.

Definition 2.4. [18] Let M ∈ Mn(R+) with eigenvalues λi, 1 ≤ i ≤ n, that is λi ∈ R
such that det(M − λiI) = O. Then

ρ (M) = max
1≤i≤n

|λi|

is called the spectral radius of M .

Lemma 2.5. [18] Let M ∈Mn(R+). The following assumptions are equivalent.

(i) M is convergent to zero.
(ii) The matrix I −M is non singular, and

(I −M)−1 = I +M +M2 + ...+Mn + ...,
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(iii) ρ (M) < 1.

As it is pointed out in [13], the following lemma follows immediately from the
characterization (iii) in Lemma 2.5.

Lemma 2.6. [13] If A is a square matrix that converges to zero and the elements of
another matrix B are small enough, then A+B also converges to zero.

We state now the extension of Gheorghiu’s theorem for generalized contractions
on complete generalized gauge spaces established in [15].

Let X be a generalized gauge space endowed with a complete gauge structure
D = {Dν}ν∈N , where N is an index set. For further details on gauge spaces and
generalized gauge spaces we reefer to [7, 15].

Definition 2.7. [15] (Generalized contraction) Let (X,D) be a generalized gauge space
with D = {Dν}ν∈N . A map T : D(T ) ⊂ X −→ X is called a generalized contraction,

if there exists a function w : N −→ N and M ∈ Mn(R+)N , M = {Mν}ν∈N such
that

Dν(T (u), T (v)) ≤MνDw(ν)(u, v), ∀u, v ∈ D(T ), ∀ν ∈ N (2.1)

and
∞∑
k=1

MνMw(ν)...Mwk−1(ν)Dwk(ν)(u, v) <∞, ∀u, v ∈ D(T ), ∀ν ∈ N (2.2)

Theorem 2.8. [15, Theorem 2.1] Let (X,D) be a complete generalized gauge space
and let T : X −→ X be a generalized contraction. Then, T has a unique fixed point
in X, which can be obtained by successive approximations starting from any element
of X.

2.1. Equivalent system of integral equations

In the fractional case, there are two different approaches defining the concept of
solutions for impulsive differential equations, which can be briefly described as follows
(see [1, 2]):

Fractional derivatives with a fixed lower limit at the initial time. This approach
(denoted respectively by V2 in [1] and by A1 in [2]) considers that the lower limit of
the fractional derivative is kept equal to the initial time on any interval between two
consecutive impulses, with only modified initial conditions.

Fractional derivatives with varying lower limits. This approach (denoted respec-
tively by V1 in [1] and by A2 in [2]) neglects the lower limit of the fractional derivative
at the initial time and moves it to each impulsive time.

In this work, we will adopt the case of fixed lower limit.
For any interval I of R+ (which may be unbounded), we denote by C(I) the

set of all real continuous functions on I and by ui the restriction of u ∈ C(R+) to
Ii = ]ti, ti+1] , (i ∈ N).

Let PC(R+) be the set of all real valued piece-wise continuous functions on R+:

PC(R+) = {u : R+ → R : ui ∈ C (Ii) andu(t+i ) exist for every i ∈ N} (2.3)
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endowed with the saturated family {dν : ν ∈ N} of pseudo-metrics, generating its
topology, defined by

dν (u, v) = max
t∈ν

{
e−λt |u (t)− v (t)|

}
, ∀u, v ∈ PC(R+), (2.4)

where ν runs over the set of all compact subsets of R+ denoted by N , and λ is a
positive real number to be specified later.

In what follows, we consider X = PC(R+) × PC(R+), endowed with the gen-
eralized complete gauge structure D = {Dν}ν∈N defined for W1 = (u1, v1),W2 =
(u2, v2) ∈ X by:

Dν (W1,W2) =

 dν(u1, u2)

dν(v1, v2)

 , (2.5)

where dν is the pseudo-metric on PC (R+) given in (2.4).
Reproducing the proof of [14, Lemma 1], in addition of [8, Lemma 2.6] with a

slight adaptation, we get the system of integral equations equivalent to (1.1)-(1.2)
given by the following lemma.

Lemma 2.9. Let f, g, Ii, Ji (i ∈ N∗) be continuous functions and ϕ,ψ continuous func-
tionals such that:

∀(u, v), (ũ, ṽ) ∈ X if u = ũ and v = ṽ on [0, t1[, then
ϕ (u, v) = ϕ (ũ, ṽ) and ψ (u, v) = ψ (ũ, ṽ)

(2.6)

Then, (u, v) ∈ X is a solution of (1.1)-(1.3) if and only if (u, v) is a solution of the
following system of integral equations

u(t) =


ϕ(u, v) +

∫ t

0

(t−s)α−1

Γ(α)
f(s,u(s),v(s))ds, t ∈ I0

ϕ(u, v) +

∫ t

0

(t−s)α−1

Γ(α)
f(s,u(s),v(s))ds+

i∑
j=1

Ij(u(tj),v(tj)), t ∈ Ii

v(t) =


ψ(u, v) +

∫ t

0

(t−s)β−1

Γ(β)
g(s,u(s),v(s))ds, t ∈ I0

ψ(u, v) +

∫ t

0

(t−s)β−1

Γ(β)
g(s,u(s),v(s))ds+

i∑
j=1

Jj(u(tj),v(tj)), t ∈ Ii

(2.7)

For i = 1, 2, let Ti : X → PC(R+) be the operators defined for every W :=
(u, v) ∈ X by

T1(W )(t) = ϕ(u, v) +

∫ t

0

(t−s)α−1

Γ(α)
f(s,u(s),v(s))ds+

∑
tj<t

Ij(u(tj),v(tj)) (2.8)

T2(W )(t) = ψ(u, v) +

∫ t

0

(t−s)β−1

Γ(β)
g(s,u(s),v(s))ds+

∑
tj<t

Jj(u(tj),v(tj)) (2.9)

Let us consider the operator: T : X → X defined by

T (u, v) = (T1(u, v), T2(u, v)), ∀(u, v) ∈ X, (2.10)

where T1 and T2 are given respectively by (2.8) and (2.9).
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Thus, according to Lemma 2.9, the solutions of (1.1)-(1.3) can be regarded as
fixed points of T .

3. Main results

In this section, we will prove a global existence-uniqueness result for (1.1)-(1.3),
to this end, we consider the following assumptions:

(H1) There exist continuous positive real valued functions Ai, Bi : i = 1, 2 defined on
R+, and satisfying
(i) |f (t, ξ1, η1)− f (t, ξ2, η2)| ≤ A1 (t) |ξ1 − ξ2|+A2 (t) |η1 − η2|
|g (t, ξ1, η1)− g (t, ξ2, η2)| ≤ B1 (t) |ξ1 − ξ2|+B2 (t) |η1 − η2| ,
whenever the left hand sides are defined.

(ii) For λ > 0, µ > 1, q := 1 + 1/α and q̃ := 1 + 1/β , we have

Sλ,µ :=

∫ +∞

0

Aq1 (s) e
−qλs
µ ds <∞ and S̃λ,µ :=

∫ +∞

0

Aq2 (s) e
−qλs
µ ds <∞

Rλ,µ :=

∫ +∞

0

Bq̃1 (s) e
−q̃λs
µ ds <∞ and R̃λ,µ :=

∫ +∞

0

Bq̃2 (s) e
−q̃λs
µ ds <∞

(H2) There exist fixed compacts Ki, K̃j and non negative real numbers

Li, L̃i,Mj , M̃j , (1 ≤ i ≤ l, 1 ≤ j ≤ m), satisfying what follows for every
(u1, v1), (u2, v2) ∈ X:

|ϕ (u1, v1)− ϕ (u2, v2)| ≤
l∑
i=1

(
LidKi(u1 − u2) + L̃idKi(v1 − v2)

)
|ψ (u1, v1)− ψ (u2, v2)| ≤

m∑
j=1

(
MjdK̃j (u1 − u2) + M̃jdK̃j (v1 − v2)

)
(H3) There exist positive real sequences {hi},{h̃i},{ki} and {k̃i} that converge to

H, H̃,K and K̃ respectively and satisfying for every ξ1, ξ2, η1, η2 ∈ R and i ∈ N∗,
the following estimations:

|Ii (ξ1, η1)− Ii (ξ2, η2)| ≤ hi |ξ1 − ξ2|+ h̃i |η1 − η2|
|ji (ξ1, η1)− ji (ξ2, η2)| ≤ ki |ξ1 − ξ2|+ k̃i |η1 − η2|

Remark 3.1. It is not hard to see that hypothesis (H1) includes as special cases
the Lipschitz condition with constant or integrable arguments, widely used in the
literature (see for example [9, 20, 19, 5]). This being said, we emphasize here that
hypothesis (H1.(ii)) allows the nonlinearity to increase indefinitely with time, which
can not be covered by the previous special cases (that is when Ai, Bi are constants or
Ai, Bi ∈ L1(R+)). Therefore, our work generalizes and complements many existing
results in the literature.
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For λ > 0 and µ > 1, let Mα,β (λ, µ) be the square matrix defined by:

Mα,β (λ, µ) :=


l∑
i=1

Li + Λαλ,µ +H
l∑
i=1

L̃i + Λ̃αλ,µ + H̃

m∑
i=1

Mi + Λβλ,µ +K
m∑
i=1

M̃i + Λ̃βλ,µ + K̃

 (3.1)

Where

Λαλ,µ = 1
Γ(α)λα

(
1

(α+1)α2 Γ(α2)
) 1

1+α

(Sλ,µ)
α

1+α

Λ̃αλ,µ = 1
Γ(α)λα

(
1

(α+1)α2 Γ(α2)
) 1

1+α
(
S̃λ,µ

) α
1+α

Λβλ,µ = 1
Γ(β)λβ

(
1

(β+1)β2 Γ(β2)
) 1

1+β

(Rλ,µ)
β

1+β

Λ̃βλ,µ = 1
Γ(β)λβ

(
1

(β+1)β2 Γ(β2)
) 1

1+β
(
R̃λ,µ

) β
1+β

(3.2)

Theorem 3.2. Let (H1)−(H3) and (2.6) hold true. Then, the system (1.1)-(1.3) admits
a unique global solution in X provided that: there exist λ > 0 and µ > 1 such that

The matrix Mα,β (λ, µ) given in (3.1), converges to zero. (3.3)

Proof. Recall that the solutions of (1.1)-(1.3) are the fixed points of the operator T
defined in (2.10). We shall prove that T is a generalized contraction in the sens of
Definition 2.7, to deduce the result from Theorem 2.8. To this end, let us define a
mapping w : N −→ N as follows:

w(ν) =

[
0, max

1≤i≤l,1≤j≤n
{νm, Km

i , K̃
m
j }
]
, (3.4)

where νm denotes max ν and Ki, K̃j are the compacts given by (H2).

Note that according to (3.4), it follows that

For every ν ∈ N : wn(ν) = w(ν), ∀n ≥ 2 (3.5)

Let ν ∈ N and t ∈ ν. Using (H1(i)) , (H2) , (H3), we get:

|T1(u1, v1) (t)− T1(u2, v2) (t)| ≤

∫ t

0

(t− s)α−1

Γ (α)
{A1 (s) |u1 (s)− u2 (s)|+A2 (s) |v1 (s)− v2 (s)|} ds

+
∑
ti<t

{
hi |u1 (ti)− u2 (ti)|+ h̃i |v1 (ti)− v2 (ti)|

}

+

l∑
i=1

{
LidKi(u1 − u2) + L̃idKi(v1 − v2)

}
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≤
∫ t

0

(t− s)α−1

Γ(α)

{
A1(s)eλs

µ−1
µ max

σ∈[0,t]
e−λσ |u1(σ)− u2(σ)|

+A2(s) eλs
µ−1
µ max

σ∈[0,t]
e−λσ |v1(σ)− v2(σ)|

}
ds

+
l∑
i=1

{
LidKi(u1 − u2) + L̃idKi(v1 − v2)

}
+Heλt max

σ∈[0,t]
e−λσ |u1 (σ)− u2 (σ)|+ H̃eλt max

σ∈[0,t]
e−λσ |v1 (σ)− v2 (σ)| ,

where λ is the positive parameter introduced in (2.4) and µ > 1. Note that according
to (3.4), the compacts [0, t] and Ki (1 ≤ i ≤ l) are included in w(ν). Hence

|T1(u1, v1) (t)− T1(u2, v2) (t)| ≤
{∫ t

0

(t− s)α−1

Γ(α)
A1(s)eλs

µ−1
µ ds

}
dw(ν)(u1 − u2)

+

{∫ t

0

(t− s)α−1

Γ(α)
A2(s)eλs

µ−1
µ ds

}
dw(ν)(v1 − v2)

+
l∑
i=1

{
Lidw(ν)(u1 − u2) + L̃idw(ν)(v1 − v2)

}
+Heλtdw(ν)(u1 − u2) + H̃eλtdw(ν)(v1 − v2)

Now, multiplying the above inequality by e−λt, we get:

e−λt |T1(u1, v1) (t)− T1(u2, v2) (t)| ≤{∫ t

0

(t− s)α−1

Γ(α)
e−λ(t−sµ−1

µ )A1(s)ds

}
dw(ν)(u1 − u2)

+

{∫ t

0

(t− s)α−1

Γ(α)
e−λ(t−sµ−1

µ )A2(s)ds

}
dw(ν)(v1 − v2)

+
l∑
i=1

{
Lidw(ν)(u1 − u2) + L̃idw(ν)(v1 − v2)

}
+Hdw(ν)(u1 − u2) + H̃dw(ν)(v1 − v2)

(3.6)

Let us find estimates for the integrals in (3.6):

I :=

∫ t

0

(t− s)α−1

Γ(α)
e−λ(t−sµ−1

µ )A1(s)ds =

∫ t

0

(t− s)α−1

Γ(α)
e−λ(t−s)A1(s)e

−λs
µ ds

Performing the change of variable X = λ(t− s), we get:

I =
1

Γ(α)λα

∫ λt

0

Xα−1e−XA1

(
t− X

λ

)
e−

λ
µ (t−Xλ )dX
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In view of (H1.(ii)), Hölder’s inequality gives:

I ≤ 1

Γ(α)λα

{∫ λt

0

(
Xα−1e−X

)1+α
dX

} 1
1+α

×

{∫ λt

0

(
A1

(
t− X

λ

)
e−

λ
µ (t−Xλ )

)1+ 1
α

dX

} α
1+α

Consequently: ∫ t

0

(t− s)α−1

Γ(α)
e−λ(t−sµ−1

µ )A1(s)ds ≤ Λαλ,µ (3.7)

In the same way, we can prove that∫ t

0

(t− s)α−1

Γ(α)
e−λ(t−sµ−1

µ )A2(s)ds ≤ Λ̃αλ,µ (3.8)

In view of (3.7) and (3.8), and after taking the maximum on ν, the estimation (3.6)
can be rewritten as:

dν (T1(u1, v1), T1(u2, v2)) ≤ Λαλ,µ dw(ν)(u1 − u2) + Λ̃αλ,µ dw(ν)(v1 − v2)

+
l∑
i=1

{
Lidw(ν)(u1 − u2) + L̃idw(ν)(v1 − v2)

}
+ Hdw(ν)(u1 − u2) + H̃dw(ν)(v1 − v2)

(3.9)

Similarly, we prove that the following inequality holds true for every (u1, v1), (u2, v2) ∈
X and every ν ∈ N :

dν (T2(u1, v1), T2(u2, v2)) ≤ Λβλ,µ dw(ν)(u1 − u2) + Λ̃βλ,µ dw(ν)(v1 − v2)

+
m∑
i=1

{
Midw(ν)(u1 − u2) + M̃idw(ν)(v1 − v2)

}
+ Hdw(ν)(u1 − u2) + K̃dw(ν)(v1 − v2)

(3.10)

Now, (3.9) together with (3.10) lead to what follows for every (u1, v1), (u2, v2) ∈ X
and every ν ∈ N :

Dν (T (u1, v1), T (u2, v2)) ≤Mα,β (λ, µ)Dw(ν) ((u1, u2) , (v1, v2)) (3.11)

That is (2.1) holds true with Mν = Mα,β (λ, µ), which is independent of ν. Conse-
quently the series (2.2) turns in our case into

∞∑
n=0

Mn+1
α,β (λ, µ)Dwn(ν) (u, v) (3.12)

According to (3.5), we have:

sup
{
Dwn(ν) (u, v) : n = 0, 1, 2, . . .

}
= sup

{
Dν (u, v) , Dw(ν) (u, v)

}
<∞.
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Since, moreover Mα,β (λ, µ) is convergent to zero, then the series in (3.12) converges
too. That is T is a generalized contraction and the result follows so, from Theorem
2.8 �

Remark 3.3. In view of Lemme 2.5, the following condition is equivalent to (3.3)√(
l∑
i=1

Li+Λαλ,µ+H−
m∑
i=1

M̃i−Λ̃βλ,µ−K̃
)2

+4

(
l∑
i=1

L̃i+Λ̃αλ,µ+H̃

)(
m∑
i=1

Mi+Λβλ,µ+K

)

+
l∑
i=1

Li + Λαλ,µ +H +
m∑
i=1

M̃i + Λ̃βλ,µ + K̃ < 2
(3.13)

The following Corollary provides a global existence-uniqueness result for a par-
ticular class of (1.1)-(1.3).

Corollary 3.4. Assume that in addition of (H1) − (H3) and (2.6), the following hy-
pothesis holds true:

∀ε > 0, ∃λ > 0, µ > 1, such that: Sλ,µ, S̃λ,µ, Rλ,µ, R̃λ,µ < ε. (3.14)

Then, (1.1)-(1.3) admits a unique global solution in X provided that:

Q :=


l∑
i=1

Li +H
l∑
i=1

L̃i + H̃

m∑
i=1

Mi +K
m∑
i=1

M̃i + K̃

 , converges to zero (3.15)

Proof. Note first that Mα,β (λ, µ) = Pα,β (λ, µ) +Q, where

Pα,β (λ, µ) :=

 Λαλ,µ Λ̃αλ,µ

Λβλ,µ Λ̃βλ,µ


It is not hard to see that under hypothesis (3.14), the elements of Pα,β (λ, µ) are

small enough.
Hence, in view of (3.15) together with Lemma 2.6, Mα,β (λ, µ) is convergent to

zero and the result follows so from Theorem 3.2. �

When Ii = Ji = 0 for every i ∈ N∗, that is by omitting the impulsive condition
(1.3), then the problem (1.1)-(1.3) is reduced to:

CDα
0+u(t) = f(t, u(t), v(t)), t > 0

CDβ
0+v(t) = g(t, u(t), v(t)), t > 0

u(0) = ϕ(u, v),

v(0) = ψ(u, v),

(3.16)

In this particular case, we have:

∆u(ti) := u(t+i )− u(t−i ) = Ii(u(ti), v(ti)) = 0

and

∆v(ti) := v(t+i )− v(t−i ) = Ji(u(ti), v(ti)) = 0
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Which means that the space X = PC(R+) × PC(R+), where PC(R+) is defined by
(2.3), becomes C(R+)× C(R+). So, as particular cases of Theorem 3.2 and Corollary
3.4, we have the following Corollary.

Corollary 3.5. Under hypotheses (H1) − (H2), the system (3.16) admits a unique
global solution in C(R+) × C(R+) provided that: there exist λ > 0 and µ > 1 such
that:

M̃α,β (λ, µ) =


l∑
i=1

Li + Λαλ,µ
l∑
i=1

L̃i + Λ̃αλ,µ

m∑
i=1

Mi + Λβλ,µ

m∑
i=1

M̃i + Λ̃βλ,µ

 converges to zero (3.17)

where Λαλ,µ, Λ̃
α
λ,µ,Λ

β
λ,µ, Λ̃

β
λ,µ are given by (3.2). If in addition, (3.14) holds true, then

(3.17) is weakened to

Q̃ :=


l∑
i=1

Li
l∑
i=1

L̃i

m∑
i=1

Mi

m∑
i=1

M̃i

 converges to zero. (3.18)

Remark 3.6. Note that (3.14) includes the Lipschitz condition with constant and

integrable arguments. In this case, the matrices Q in (3.15) and Q̃ in (3.18) are

independent of Ai, Bi (i = 1, 2). Moreover, with the classical initial conditions,
l∑
i=1

Li,

l∑
i=1

L̃i,
m∑
i=1

Mi and
m∑
i=1

M̃i vanish. All this, allows us to see clearly that Corollary 3.4

and Corollary 3.5 provide significant improvements and generalizations of many recent
results in the literature, such as [9, Theorem 15], [19, Theorem 3.3], [20, Theorem 3.1],
[20, Theorem 3.2] and [5, Theorem 3.2].

4. Example

Let us consider the following system:

CD
15
20

0+u(t) =
1

10
e
t
80 (2u(t) + v(t)), t > 0, t 6= ti = 10i, i ∈ N∗

CD
13
20

0+v(t) =
1

10
e
t
80 (u(t) + v(t)) , t > 0, t 6= ti = 10i, i ∈ N∗

∆u(ti) = 7
25i(i+1)(1+|u(ti)|) + 5

25i(i+1)(1+|v(ti)|) , i ∈ N∗

∆v(ti) = 6
25×2i(1+|u(ti)|) + 9

25×2i(1+|v(ti)|) , i ∈ N∗

u(0) = 1
10 sup
t∈[0, 1]

u (t) + 1
5 sup
t∈[0, 1

2 ]

v (t)

v(0) = 1
5sin

(
u( 1

6 ) + v( 1
3 )
)

(4.1)
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The problem (4.1) is identified to (1.1)-(1.3), with:

α = 15
20 , f (t, ξ, η) =

1

10
e
t
80 (2ξ + η) ,

Ii (ξ, η) =
7

25i(i+ 1) (1 + |ξ|)
+

5

25i(i+ 1) (1 + |η|)

β = 13
20 , g (t, ξ, η) =

1

10
e
t
80 (ξ + η) ,

Ji (ξ, η) =
6

25× 2i (1 + |ξ|)
+

9

25× 2i (1 + |η|)

ϕ(u, v) = 1
10 sup
t∈[0, 1]

u (t) + 1
5 sup
t∈[0, 1

2 ]

v (t) , ψ(u, v) = 1
5sin

(
u( 1

6 ) + v( 1
3 )
)

It is not hard to see that (H1.(i)) is satisfied with:

A1(t) =
1

5
e
t
80 , A2(t) = B1(t) = B2(t) =

1

10
e
t
80

A straightforward computation leads to:

Sλ,µ =
7λ

30µ
, S̃λ,µ =

λ

10µ
, Rλ,µ = R̃λ,µ =

23λ

260µ

Which means that (H1. (ii)) is satisfied too.
It can be easily seen that (H2) is satisfied with:

l = 2, L1 =
1

10
eλ, L2 = 0, L̃1 = 0, L̃2 =

1

5
e
λ
2 , K1 = [0, 1], K2 = [0, 1

2 ]

m = 2,M1 =
1

10
e
λ
6 ,M2 = 0, M̃1 = 0, M̃2 =

1

5
e
λ
3 , K̃1 = [0, 1

6 ], K̃2 = [0, 1
3 ]

For all i ∈ N∗ we have:

|Ii (ξ1, η1)− Ii (ξ2, η2) | ≤ 7

25i(i+ 1)
|ξ1 − ξ2|+

5

25i(i+ 1)
|η1 − η2|

|Ji (ξ1, η1)− Ji (ξ2, η2) | ≤ 6

25× 2i
|ξ1 − ξ2|+

9

25× 2i
|η1 − η2|

That is, (H3) is satisfied with:

{hi} =
{

7
25i(i+1)

}
, {h̃i} =

{
5

25i(i+1)

}
, {ki} =

{
6

25×2i

}
, {k̃i} =

{
9

25×2i

}
H = 7

25 , H̃ = 5
25 , K = 6

25 , K̃ = 9
25

If we choose λ = 1
2 and µ = 20, the matrix Mα,β (λ, µ) given in (3.1), becomes in this

case:

Mα,β (λ, µ) :=

 0.486788 0.498721

0.474757 0.495513

 ,
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which admits the following eigenvalues: λ1 = 0.977761 < 1 and λ2 = 0.00453945 < 1
and consequently Mα,β (λ, µ) converges to zero.

Hence, all conditions of Theorem 3.2 are fulfilled, and therefore the system (4.1)
admits a unique global solution in PC(R+)× PC(R+).

Note that f and g in (4.1) increase indefinitely with time, and therefore many
existing results in the literature fail to be applicable.
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Hankel and symmetric Toeplitz determinants
for Sakaguchi starlike functions
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Abstract. In this paper, we consider the class of starlike functions with respect to
symmetric points which are also known as Sakaguchi starlike functions. We de-
termine best possible bounds on Zalcman conjecture |a2n−a2n−1| and generalized
Zalcman conjecture |aman − am+n−1| for n = 2 and n = 4, m = 2, respectively
for such functions. Further, we compute estimate on third order and fourth or-
der Hankel determinants. As well, we also obtain estimates on third and fourth
symmetric Toeplitz determinants.
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1. Introductory text

Let A be the family of all normalized analytic functions f defined on D = {z ∈
C : |z| < 1} with series expansion f(z) = z + a2z

2 + a3z
3 + · · · . The subfamily

S ⊂ A contains univalent functions. Let S∗ and K represent the subfamily of S
containing starlike and convex functions, respectively. Analytically, S∗ = {f ∈ S :
Re (zf ′(z)/f(z)) > 0, z ∈ D} and K = {f ∈ S : 1 + Re (zf ′′(z)/f ′(z)) > 0, z ∈ D}
[11]. The class P consists of all analytic functions p : D → C satisfying conditions
p(0) = 1 and Re p(z) > 0. Recent results for a more general class of P can be found in
[3]. In 1959, Sakaguchi [33] studied the subclass S∗S of S consisting of starlike functions
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This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives

4.0 International License.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


518 Sushil Kumar, Swati Anand and Naveen Kumar Jain

with respect to the symmetric points. The analytical description of these functions is

S∗S =

{
f ∈ S :

2zf ′(z)

f(z)− f(−z)
∈ P, z ∈ D

}
.

The functions f ∈ S∗S are also called Sakaguchi starlike functions. The coefficient
estimates related literature gives the geometric properties of univalent functions. The
bound on the initial coefficient a2 contribute in growth, distortion and covering theo-
rems. Zalcman conjecture and Hankel determinants are two of the coefficient problems
that have been discussed by several authors. In recent years, many authors have stud-
ied the Toeplitz determinant Tq(n) for various values of q and n for several subclasses
of analytic functions. A significant problem concerning the coefficients in the series
expansion of the the function f ∈ A is the Zalcman conjecture which is defined as

|a2n − a2n−1| ≤ (n− 1)2, n ≥ 2.

From [7], we observe that the Zalcman conjecture implies the Bieberbach conjecture.
Ma [24] verified Zalcman conjecture (n ≥ 4) for close-to-convex functions. Further,
Ma [25] explored the generalized Zalcman conjecture which is defined as

|aman − am+n−1| ≤ (m− 1)(n− 1); m ≥ 2, n ≥ 2

for the starlike functions and the univalent functions with real coefficients. In [32],
Ravichandran and Verma established the generalized Zalcman conjecture for certain
starlike and convex functions. In [34], the Zalcman conjecture and the generalized
Zalcman conjecture for the locally univalent functions were discussed using extreme
point theory. Recently, in [26] the Zalcman conjecture and the generalized Zalcman

conjecture were shown for the class U defined as U = {z ∈ A :
∣∣∣(z/f(z))

2
f ′(z)− 1

∣∣∣ <
1, z ∈ D}. For q ≥ 1 and n ≥ 1, the qth Hankel determinant Hq(n)(f) for a function
f ∈ S is given by Hq(n)(f) := det{an+i+j−2}qi,j , 1 ≤ i, j ≤ q, where a1 = 1. For q = 2

and n = 1, the Hankel determinant H2(1) = a3 − a22 is the Fekete Szegö functional.
The study of Hankel determinant was initiated by Pommerenke [27, 28] for the starlike
functions. Since then the growth of Hq(n)(f) has been studied for different subclasses
of univalent functions. One of the notable results in this direction is by Hayman [12]
giving the best possible upper bound as Mn1/2 on H2(n)(f), where M is an absolute
constant. For q = 2 and n = 2, Janteng et al.[13] obtained the sharp estimates on
second order Hankel determinant H2(2)(f) = a2a4− a23 for the classes of starlike and
convex functions. However, the sharp bound for the whole class S is not known till
now. For the class of Bazilevic functions, Krishna and RamReddy [16] determined
H2(2)(f). Recently, Anand et al. [4] studied the second order Hankel determinant for
a class of normalized analytic functions.

For q = 3 and n = 1, 2, 3, the third Hankel determinants are given as

H3(1)(f) = a3(a2a4 − a23) + a4(a2a3 − a4) + a5(a3 − a22) (1.1)

H3(2)(f) = a2(a4a6 − a25)− a3(a3a6 − a4a5) + a4(a3a5 − a24) (1.2)

H3(3)(f) = a3(a5a7 − a26)− a4(a4a7 − a5a6) + a5(a4a6 − a25). (1.3)
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The study of the third order Hankel determinant H3(1)(f) for the classes S∗ and
K was initiated by Babalola (2010) [6] which was later improved by Zaprawa [36].
However, the bounds obtained in [36] were not sharp. The best possible bound on third
order Hankel determinant H3(1)(f) for the class of convex functions was computed by
Kowalczyk et al. [15]. Also, Lecko et al. [23] computed the best possible upper bound
on H3(1)(f) for the starlike functions of order 1/2. Krishna et al. [17] obtained the
bound on H3(1)(f) for the class S∗S . Recently, Kumar et al. [20] improved the existing
bound for the class S∗S . For more recent developments on coefficient estimates and
third order Hankel determinant, see [14, 17, 29, 37, 22, 21, 35]. For q = 4 and n = 1,
the fourth order Hankel determinant is given by

H4(1)(f) = a7H3(1)(f)− a6∆1 + a5∆2 − a4∆3 (1.4)

where

∆1 = (a3a6 − a4a5)− a2(a2a6 − a3a5) + a4(a2a4 − a23),

∆2 = (a4a6 − a25)− a2(a3a6 − a4a5) + a3(a3a5 − a24)

and

∆3 = a2(a4a6 − a25)− a3(a3a6 − a4a5) + a4(a3a5 − a24).

Arif et al. [5] obtained the bound on H4(1)(f) for the functions with bounded turning.
Cho and Kumar [9] computed the bound on H4(1)(f) for starlike functions associated
with a lune-shaped region. For recent results on fourth order Hankel determinant,
see [19, 10]. For q ≥ 1 and n ≥ 1, the symmetric Toeplitz determinant Tq(n) for a
function f ∈ S is defined as

Tq(n) =

an an+1 · · · an+q−1
an+1 an · · · an+q

...
...

...
...

an+q−1 an+q · · · an

where a1 = 1. In particular, for q = 2 and n = 2, 3 the second Toeplitz deteminants
are given by T2(2) = a23 − a22 and T2(3) = a24 − a23.

For q = 3 and n = 1, 2 the third Toeplitz determinants are as follows

T3(1) = 1 + 2a22(a3 − 1)− a23 and T3(2) = (a2 − a4)(a22 − 2a23 + a2a4). (1.5)

For q = 4 and n = 2 the fourth Toeplitz determinant is given by

T4(2) = (a22 − a23)2 + 2(a23 − a2a4)(a2a4 − a3a5)− (a2a3 − a3a4)2 (1.6)

+ (a24 − a3a5)2 − (a3a4 − a2a5)2.

In 2019, Zhang et al. [38] computed the upper bound on the Toeplitz determinant
T3(2) for the starlike functions associated with the sine function. Ahuja et al. [1]
studied the Toeplitz determinants T2(2) and T3(1) for unified class of starlike and
convex functions. Recently, in [39], Zhang and Tang obtained the upper bound on
fourth Toeplitz determinant T4(2) for the starlike functions associated with the sine
function. For more recent details, see [2, 18]

In this manuscript, we prove Zalcman Conjecture |a2n − a2n−1| ≤ (n − 1)2 for
n = 2 and generalised Zalcman Conjecture |aman − am+n−1| ≤ (m − 1)(n − 1) for
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m = 2, n = 4. Further, we obtain the estimates on the third order Hankel determi-
nant H3(1)(f) for such functions which is an improvement to the existing estimate
computed in [20]. In addition, we compute the bounds on third order Hankel de-
terminants H3(2)(f), H3(3)(f) and the fourth order Hankel determinant H4(1)(f).
Moreover, bounds on the symmetric Toeplitz determinants T2(2), T2(3), T3(1),T3(2)
and T4(2) are also determined.

2. Inductive lemmas

In order to establish the main results, we need following lemmas related to
coefficient estimates.

Lemma 2.1. [30] Let w(z) = c1z + c2z
2 + · · · be a Schwarz function. Then

|c3 + µc1c2 + νc31| ≤ 1,

where 1/2 ≤ |µ| ≤ 2, 4(|µ|+ 1)3/27− (|µ|+ 1) ≤ ν ≤ 1.

Let B be the class of functions f ∈ A satisfying |f(z)| < 1 for all z ∈ D.

Lemma 2.2. [8] Let f(z) = a0 +
∞∑

n=1
anz

n be in B. Then

|a2n+1| ≤ 1− |a0|2 − |a1|2 − · · · − |an|2, n = 0, 1, · · · (2.1)

and

|a2n| ≤ 1− |a0|2 − |a1|2 − · · · − |an−1|2 −
|an|2

1 + |a0|
, n = 1, 2, · · · . (2.2)

Equality in (2.1) holds for

f(z) =
a0 + a1z + · · ·+ anz

n + εz2n+1

1 + (anzn+1 + an−1zn+2 + · · ·+ a0z2n+1)ε
, |ε| = 1

and in (2.2) for

f(z) =
a0 + a1z + · · ·+ an−1z

n−1 + an

1+|a0| + εz2n

1 + ( an

1+|a0|z
n + an−1zn+1 + · · ·+ a0z2n)ε

, |ε| = 1

where a0an
2ε is non-positive real.

In view of Lemma 2.2, for a Schwarz function w(z) = c1z + c2z
2 + · · · , we have

|c2| ≤ 1− |c1|2, |c3| ≤ 1− |c1|2 −
|c2|2

1 + |c1|
and |c4| ≤ 1− |c1|2 − |c2|2. (2.3)

Lemma 2.3. [33] Let f(z) = z +
∞∑

n=2
anz

n be univalent and starlike with respect to

symmetric points in D. Then
|an| ≤ 1, n ≥ 2

equality being attained by the function z/(1 + εz), |ε| < 1.
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Lemma 2.4. [31] If p(z) = 1 + p1z + p2z
2 + p3z

3 + · · · ∈ P then for all n,m ∈ N

|µpnpm − pm+n| ≤
{

2, 0 ≤ µ ≤ 1
2|2µ− 1|, elsewhere.

If 0 < µ < 1, the inequality is sharp for the function p(z) = (1 + zn+m)/(1− zn+m).
In other cases, the inequality is sharp for the function p(z) = (1 + z)/(1− z).

3. Zalcman conjecture

In this section, we first prove Zalcman conjecture (n = 2) for starlike functions
with respect to the symmetric space.

Theorem 3.1. If the function f ∈ S∗S is of the form f(z) = z + a2z
2 + a3z

3 + · · · .
Then

|a22 − a3| ≤ 1.

The inequality is sharp.

Proof. Let f ∈ S∗S . Then we have

2zf ′(z)

f(z)− f(−z)
≺ 1 + z

1− z
for all z ∈ D so that

2zf ′(z)

f(z)− f(−z)
= p(z)

where ≺ denotes subordination and p(z) = 1 + p1z + p2z
2 + · · · ∈ P. On comparing

the coefficients of like power terms on both sides, we get

a2 =
p1
2

; (3.1)

a3 =
p2
2

; (3.2)

a4 =
1

8
(p1p2 + 2p3); (3.3)

a5 =
1

8
(p22 + 2p4); (3.4)

a6 =
1

48
(4p2p3 + p1(p22 + 2p4) + 8p5); (3.5)

a7 =
1

48
(p32 + 6p2p4 + 8p6); (3.6)

It follows from (3.1) and (3.2) that

a22 − a3 =
p21
4
− p2

2
.

By using Lemma 2.4, we get

|a22 − a3| =
1

2

∣∣∣∣12p21 − p2
∣∣∣∣ ≤ 1.
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The inequality is sharp for the function

2zf ′(z)

f(z)− f(−z)
=

1 + z2

1− z2
= 1 + 2z2 + 2z4 + · · · (3.7)

by noting the fact a2 = 0, a3 = 1 implies |a22 − a3| = 1. �

Next we prove the generalized Zalcman conjecture for m = 2 and n = 4.

Theorem 3.2. Let the function f(z) = z + a2z
2 + a3z

3 + · · · ∈ S∗S . Then

|a2a4 − a5| ≤ 1.

The inequality is sharp.

Proof. If the function f ∈ S∗S , then using (3.1),(3.3) and (3.4), we get

a2a4 − a5 =
1

16
p1(p1p2 + 2p3)− 1

8
(p22 + 2p4)

=
1

8
p2

(
1

2
p21 − p2

)
+

1

4

(
1

2
p1p3 − p4

)
.

Using triangle inequality

|a2a4 − a5| ≤
1

8
|p2|

∣∣∣∣12p21 − p2
∣∣∣∣+

1

4

∣∣∣∣12p1p3 − p4
∣∣∣∣ .

Applying Lemma 2.4 and the fact |pn| ≤ 2, we get

|a2a4 − a5| ≤ 1.

The inequality is sharp for the function f defined by (3.7). �

4. Hankel determinants

Using the technique discussed in [37], the following theorem gives an improved
estimate on H3(1) for the functions f in the class S∗S .

Theorem 4.1. Let the function f ∈ S∗S be of the form f(z) = z + a2z
2 + a3z

3 + · · · .
Then

|H3(1)(f)| ≤ 329

400
' 0.8225.

Proof. Let f ∈ S∗S . Then we have

2zf ′(z)

f(z)− f(−z)
≺ 1 + z

1− z

so that
2zf ′(z)

f(z)− f(−z)
=

1 + w(z)

1− w(z)
, z ∈ D
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where ≺ denotes subordination and w(z) = c1z + c2z
2 + · · · is a Schwarz function.

On comparing the coefficients of like powers of z, we get

a2 = c1, a3 = c21 + c2, a4 =
1

2
(c3 + 3c1c2 + 2c31) (4.1)

a5 =
1

2
(c4 + 2c1c2 + 5c21c2 + 2c41 + 2c22). (4.2)

Therefore, in view of (1.1), (4.1) and (4.2) the third order Hankel determinant H3(1)
becomes

H3(1)(f) =
1

4
(c21c

2
2 + 2c1c2c3 − c23 + 2c2c4)

=
1

4
(−2c3(c3 − c1c2) + c23 + c21c

2
2 + 2c2c4).

Hence, applying Lemma 2.1 (µ = −1, ν = 0) and inequalities given in (2.3), we get

|H3(1)(f)| ≤ 1

4
(2

(
1− |c1|2 −

|c2|2

1 + |c1|

)
+

(
1− |c1|2 −

|c2|2

1 + |c1|

)2

+ |c1|2|c2|2 + 2|c2|
(
1− |c1|2 − |c2|2

)
)

=
1

4
G(|c1|, |c2|).

The function G(x, y) is given by

G(x, y) = g1(x, y) + g2(x, y) + g3(x, y),

where

g1(x, y) =

(
y

(1 + x)2
− 1

)
y3

g2(x, y) = 2(1− x2)y − 4− 3x2 − x3

1 + x
y2

g3(x, y) = −y3 + x4 − 4x2 + 3

where x = |c1| and y = |c2|. In view of |c2| ≤ 1 − |c1|2, we maximize the function
G(x, y) in the region

Ω = {(x, y) : x ≥ 0, y ≥ 0, y ≤ 1− x2}.

It is noted that

g1(x, y) ≤ 0. (4.3)

Since g2(x, y) is a quadratic expression in y, so it attains its maximum value at

y0 =
(1− x2)(1 + x)

4− 3x2 − x3
.

Also y0 < 1− x2 for all x ∈ [0, 1] and thus we have

g2(x, y) ≤ g2(x, y0) =
(1− x)(1 + x)3

(2 + x)2
=: f(x).
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A simple calcultaion shows that x2 = 0.3 is a critical point of the function f in (0, 1).
Hence,

g2(x, y) ≤ f(x2) =
29

100
. (4.4)

For the function g3(x, y), it is evident that

g3(x, y) ≤ g3(x, 0) = x4 − 4x2 + 3 =: h(x).

Now h′(x) = 4x(x2 − 2), so h(x) ≤ h(0). This gives

g3(x, y) ≤ h(0) = 3. (4.5)

Using (4.3), (4.4) and (4.5), we get G(x, y) ≤ 329/100.

Therefore, we have |H3(1)(f)| ≤ 329/400 ' 0.8225. �

Remark 4.2. The obtained upper bound 329
400 ' 0.8225 on H3(1)(f) (4.1) improves the

existing bound 5
4 ' 1.25 [20, Theorem 2.3, p.227] for the functions f ∈ S∗S .

Next theorem gives bound on H3(2) for the functions f ∈ S∗S .

Theorem 4.3. If f ∈ S∗S is of the form f(z) = z + a2z
2 + a3z

3 + · · · . Then

|H3(2)(f)| < 83

24
' 3.45.

Proof. On substituting the values of a4, a5 and a6 from (3.3), (3.4) and (3.5), respec-
tively in the expression a4a6 − a25, we have

a4a6 − a25 =
1

384
(p1p2 + 2p3)(4p2p3 + p1p

2
2 + 2p1p4 + 8p5)− 1

64
(p42 + 4p24 + 4p22p4)

=
1

384
(4p1p

2
2p3 + p21p

3
2 + 2p21p2p4 + 8p1p2p5 + 8p2p

2
3 + 2p1p

2
2p3 + 4p1p3p4

+ 16p3p5)− 1

64
p42 −

1

16
p24 −

1

16
p22p4

=
1

384
p21p

3
2 +

1

64
p1p

2
2p3 +

1

48
p2p

2
3 +

1

192
p21p2p4 +

1

96
p1p4p3 +

1

48
p1p2p5

+
1

24
p3p5 −

1

64
p42 −

1

16
p24 −

1

16
p22p4

=
1

64
p32

(
1

6
p21 − p2

)
+

1

16
p22

(
1

4
p1p3 − p4

)
+

1

24
p3

(
1

2
p2p3 + p5

)
+

1

16
p4

(
1

6
p1p3 − p4

)
+

1

48
p1p2

(
1

4
p1p4 + p5

)
.

By triangle inequality, we get

|a4a6 − a25| ≤
1

64
|p32|

∣∣∣∣16p21 − p2
∣∣∣∣+

1

16
|p22|

∣∣∣∣14p1p3 − p4
∣∣∣∣+

1

24
|p3|

∣∣∣∣12p2p3 + p5

∣∣∣∣
+

1

16
|p4|

∣∣∣∣16p1p3 − p4
∣∣∣∣+

1

48
|p1||p2|

∣∣∣∣14p1p4 + p5

∣∣∣∣ .
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Using Lemma 2.4 and the inequality |pn| ≤ 2, we get

|a4a6 − a25| ≤
19

12
. (4.6)

Again, on substituting the values of a3, a4, a5 and a6 from (3.2), (3.3), (3.4) and (3.5),
respectively in the expression a3a6 − a4a5, we have

a3a6 − a4a5 =
1

96
(4p22p3 + p1p

3
2 + 2p1p2p4 + 8p2p5)

− 1

64
(p1p

3
2 + 2p1p2p4 + 2p22p4 + 2p22p3 + 4p3p4)

=
1

96
p22p3 −

1

192
p1p

3
2 −

1

96
p1p2p4 +

1

12
p2p5 −

1

16
p3p4.

So that

|a3a6 − a4a5| ≤
1

16
|p3|

∣∣∣∣ 1

12
p22 − p4

∣∣∣∣+
1

192
|p22||p1p2 − p3|+

1

12
|p2|

∣∣∣∣18p1p4 − p5
∣∣∣∣ .

By Lemma 2.4 and the fact |pn| ≤ 2, we have

|a3a6 − a4a5| ≤
5

8
. (4.7)

On substituting the values of a3, a4 and a5 from (3.2), (3.3) and (3.4), respectively
in the expression a3a5 − a24, we have

a3a5 − a24 = − 1

16
p22

(
1

4
p21 − p2

)
− 1

8
p2

(
1

2
p1p3 − p4

)
− 1

16
p23

so that

|a3a5 − a24| ≤
1

16
|p2|2

∣∣∣∣14p21 − p2
∣∣∣∣+

1

8
|p2|

∣∣∣∣12p1p3 − p4
∣∣∣∣+

1

16
|p3|2.

Using Lemma 2.4 and the inequality |pn| ≤ 2, we have

|a3a5 − a24| ≤
5

4
. (4.8)

It follows from (1.2) that

|H3(2)(f)| ≤ |a2||a4a6 − a25|+ |a3||a3a6 − a4a5|+ |a4||a3a5 − a24|.

Using inequality (4.6), (4.7) and (4.8) and Lemma 2.3, we have |H3(2)(f)| ≤ 83/24 '
3.45. �

In the next theorem we estimate third order Hankel determinant H3(3) for f ∈ S∗S .

Theorem 4.4. If f(z) = z +
∞∑

n=2
anz

n ∈ S∗S , then

|H3(3)(f)| ≤ 89

24
' 3.7.
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Proof. On substituting (3.4),(3.5) and (3.6), we have

a5a7 − a26 =
1

384
(p52 + 6p32p4 + 8p22p6 + 2p32p4 + 12p2p

2
4 + 16p4p6)− 1

2304
(16p22p

2
3

+ p21p
4
2 + 4p21p

2
4 + 64p25 + 8p1p

3
2p3 + 16p1p2p3p4 + 64p2p3p5 + 4p21p

2
2p4

+ 16p1p
2
2p5 + 32p1p4p5)

=
1

96
p22

(
p6 −

2

3
p23

)
+

1

384
p42

(
p2 −

1

6
p21

)
+

1

192
p24

(
p2 −

1

3
p21

)
+

1

64
p32

(
p4 −

2

9
p1p3

)
+

5

192
p2p4

(
p4 −

4

15
p1p3

)
+

1

192
p22p4(

p2 −
1

3
p21

)
+

1

24
p4

(
p6 −

1

3
p1p5

)
+

1

96
p22

(
p6 −

2

3
p1p5

)
− 1

36
p25

− 1

36
p2p3p5.

Using triangle inequality, Lemma 2.4 and the fact |pn| ≤ 2, we get

|a5a7 − a26| ≤
4

3
. (4.9)

Again in view of (3.3),(3.4),(3.5) and (3.6), we have

a4a7 − a6a5 =
1

384
(p1p

4
2 + 6p1p

2
2p4 + 8p1p2p6 + 2p32p3 + 12p2p3p4 + 16p3p6)

− 1

384
(4p32p3 + 8p2p3p4 + p1p

4
2 + 4p1p

2
2p4 + 4p1p

2
4 + 8p22p5 + 16p4p5)

=
1

48
p22

(
1

4
p1p4 − p5

)
+

1

24
p4

(
1

8
p2p3 − p5

)
+

1

192
p2p3(p4 − p22)

+
1

24
p6

(
1

2
p1p2 + p3

)
+

1

96
p1p

2
4.

Using triangle inequality, by Lemma 2.4 and |pn| ≤ 2, we have

|a4a7 − a6a5| ≤
19

24
. (4.10)

It follows from (1.3) that

|H3(3)| ≤ |a3||a5a7 − a26|+ |a4||a4a7 − a6a5|+ |a5||a4a6 − a25|.

Using (4.6),(4.9), and (4.10) and Lemma 2.3, we have |H3(3)(f)| ≤ 89/24 ' 3.7. �

Next we compute an estimate on the fourth Hankel determinant H4(1).

Theorem 4.5. Let f ∈ S∗S be of the form f(z) = z + a2z
2 + a3z

3 + · · · . Then

|H4(1)(f)| ≤ 1.84.
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Proof. Since f ∈ S∗S , then in view of (1.4), (3.1), (3.2), (3.3), (3.4),(3.5) and (3.6), we
get

36864H4(1)(f) = p41(p22 − 4p4)2 + 8p31(p22 − 4p4)(p2p3 − 4p5)

− 32p1(2p42p3 − 2p22p3p4 − 2p32p5 + 12p3(−2p24 + p3p5)

+ p2(−3p33 + 20p4p5 − 12p3p6)) + 8(3p62 − 6p42p4 + 4p22(9p24 + 20p3p5)

− 4p32(p23 + 12p6) + 6(3p43 − 12p34 + 16p3p4p5 − 8p23p6)

− 32p2(3p23p4 + 2p25 − 3p4p6))− 8p21(p52 − 8p32p4

+ 16p2(p24 + p3p5)− p22(5p23 + 12p6) + 4(3p23p4 − 8p25 + 12p4p6)).

36864H4(1)(f) = p41p
4
2 − 8p21p

5
2 + 24p62 + 8p31p

3
2p3 − 64p1p

4
2p3 + 40p21p

2
2p

2
3

− 32p32p
2
3 + 96p1p2p

3
3 + 144p43 − 8p41p

2
2p4 + 64p21p

3
2p4 − 48p42p4

− 32p31p2p3p4 + 64p1p
2
2p3p4 − 96p21p

2
3p4 − 768p2p

2
3p4 + 16p41p

2
4

− 128p21p2p
2
4 + 288p22p

2
4 + 768p1p3p

2
4 − 576p34 − 32p31p

2
2p5 + 64p1p

3
2p5

− 128p21p2p3p5 + 640p22p3p5 − 384p1p
2
3p5 + 128p31p4p5

− 640p1p2p4p5 + 768p3p4p5 + 256p21p
2
5 − 512p2p

2
5 + 96p21p

2
2p6

− 384p32p6 + 384p1p2p3p6 − 384p23p6 − 384p21p4p6 + 768p2p4p6.

A simple calculation gives

36864H4(1)(f) = 8p41p
2
2

(
1

8
p22 − p4

)
+

1

2
p31

(
1

4
p22 − p4

)(
1

4
p2p3 − p5

)
− 64p21p

3
2

(
1

8
p22 − p4

)
− 64p1p

2
2p3(p22 − p4) + 32p22p

2
3

(
5

4
p21 − p2

)
+ 48p42

(
1

2
p22 − p4

)
− 96p1p3p4(p1p3 − p4) + 576p24(p1p3 − p4)

− 768p3p4(p2p3 − p5)− 96p1p
2
4(p1p2 − p3)− 640p2p3p5

(
1

5
p21 − p2

)
− 640p2p4(p1p5 − p6) + 384p3p6(p1p2 − p3)− 128p4p6(3p21 − p2)

+ 512p25

(
1

2
p21 − p2

)
+ 192p22p6

(
1

2
p21 − p2

)
+ 192p32

(
1

3
p1p5 − p6

)
− 384p1p

2
3

(
1

8
p2p3 − p5

)
− 288p2p

2
4

(
1

9
p21 − p2

)
− 144p33

(
−1

3
p1p2 − p3

)
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which implies

36864|H4(1)(f)| ≤ 8p41p
2
2

∣∣∣∣18p22 − p4
∣∣∣∣+

1

2
p31

∣∣∣∣14p22 − p4
∣∣∣∣ ∣∣∣∣14p2p3 − p5

∣∣∣∣
+ 64p21p

3
2

∣∣∣∣18p22 − p4
∣∣∣∣+ 64p1p

2
2p3|p22 − p4|+ 32p22p

2
3

∣∣∣∣54p21 − p2
∣∣∣∣

+ 48p42

∣∣∣∣12p22 − p4
∣∣∣∣+ 96p1p3p4|p1p3 − p4|+ 576p24|p1p3 − p4|

+ 768p3p4|p2p3 − p5|+ 96p1p
2
4|p1p2 − p3|+ 640p2p3p5

∣∣∣∣15p21 − p2
∣∣∣∣

+ 640p2p4|p1p5 − p6|+ 384p3p6|p1p2 − p3|+ 128p4p6|3p21 − p2|

+ 512p25

∣∣∣∣12p21 − p2
∣∣∣∣+ 192p22p6

∣∣∣∣12p21 − p2
∣∣∣∣+ 192p32

∣∣∣∣13p1p5 − p6
∣∣∣∣

+ 384p1p
2
3

∣∣∣∣18p2p3 − p5
∣∣∣∣+ 288p2p

2
4

∣∣∣∣19p21 − p2
∣∣∣∣+ 144p33

∣∣∣∣−1

3
p1p2 − p3

∣∣∣∣ .
Using Lemma 2.4 and the fact |pn| ≤ 2, we get

|H4(1)(f)| ≤ 4241

2304
' 1.84.

Thus, we have the required bound for |H4(1)(f)|. �

5. Toeplitz determinants

In this section, we first compute the bound on second Toeplitz determinant
T2(2).

Theorem 5.1. If f ∈ S∗S be of the form f(z) = z + a2z
2 + a3z

3 + · · · . Then
|T2(2)(f)| ≤ 2.

The inequality is sharp.

Proof. Since f ∈ S∗S , then on putting the values of a2 and a3 from (3.1) and (3.2) in
expression T2(2) = a23 − a22, we get

|T2(2)| = |a23 − a22| =
∣∣∣∣p224 − p21

4

∣∣∣∣ .
Applying triangle inequality and using the fact |pn| ≤ 2, we get

|T2(2)| ≤ 2.

The inequality is sharp for the function f : D→ C defined as

f(z) =
z

1− iz
.

It is noted that a2 = i, a3 = −1 and thus |a23 − a22| = 2. �

Next, we obtain an estimate for second Toeplitz determinant T2(3).
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Theorem 5.2. Let f ∈ S∗S be of the form f(z) = z + a2z
2 + a3z

3 + · · · . Then
|T2(3)(f)| ≤ 2.

The inequality is sharp.

Proof. For f ∈ S∗S , then on putting the values of a3 and a4 from (3.2) and (3.3) in
expression T2(3) = a24 − a23, we get

|T2(3)| = |a24 − a23| =
∣∣∣∣ 1

64
(p1p2 + 2p3)2 − p22

4

∣∣∣∣
=

∣∣∣∣∣ 1

16

(
−1

2
p1p2 − p3

)2

− p22
4

∣∣∣∣∣ .
Applying triangle inequality, Lemma 2.4 and the fact |pn| ≤ 2, we get

|T2(3)| ≤ 2.

To prove the sharpness, consider the function f : D→ C defined as

f(z) =
z

1− iz
.

Here a3 = −1 and a4 = −i and thus |a24 − a23| = 2. �

In the next theorem we obtain an estimate for the bound on third Toeplitz
determinant T3(1).

Theorem 5.3. If f ∈ S∗S be of the form f(z) = z + a2z
2 + a3z

3 + · · · . Then
|T3(1)(f)| ≤ 4.

The inequality is sharp.

Proof. Let f ∈ S∗S . Then in view of (1.5), (3.1) and (3.2), we get

|T3(1)| = |1 + 2a22(a3 − 1)− a23| =
∣∣∣∣1 + 2

p21
4

(p2
2
− 1
)
−
(
p22
4

)∣∣∣∣
=

1

4

∣∣4 + p21p2 − 2p21 − p22
∣∣

=
1

4

∣∣4 + p2(p21 − p2)− 2p21
∣∣ .

Using triangle inequality, we obtain

|T3(1)| ≤ 1

4
(4 + |p2||p21 − p2|+ 2|p21|).

Applying Lemma 2.4 and using the fact that |pn| ≤ 2, we get

|T3(1)| ≤ 4.

For the function f(z) =
z

1− iz
, we have a2 = i and a3 = −1. Thus, we get

|1 + 2a22(a3 − 1)− a23| = 4.

This proves the sharpness of the result. �
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Next we compute the bound on third Toeplitz determinant T3(2).

Theorem 5.4. Let f ∈ S∗S be of the form f(z) = z + a2z
2 + a3z

3 + · · · . Then

|T3(2)(f)| = |(a2 − a4)(a22 − 2a32 + a2a4)| ≤ 6.

Proof. In view of (3.1) and (3.3), we get

|T3(2)(f)|
= |(a2 − a4)(a22 − 2a32 + a2a4)|

=

∣∣∣∣(p12 − 1

8
(p1p2 + 2p3)

)(
p21
4
− p31

4
+
p1
16

(p1p2 + 2p3)

)∣∣∣∣
=

∣∣∣∣p318 − p41
8

+
1

32
p41p2 −

1

128
p31p

2
2 +

1

16
p31p3 −

1

32
p21p2p3 −

1

32
p1p

2
3

∣∣∣∣
=

∣∣∣∣p318 − p41
8
− 1

16
p31

(
−1

2
p1p2 − p3

)
+

1

32
p21p2

(
−1

4
p1p2 − p3

)
− 1

32
p1p

2
3

∣∣∣∣ .
Using triangle inequality, we obtain

|T3(2)(f)| ≤ 1

8
|p1|3 +

1

8
|p1|4 +

1

16
|p1|3

∣∣∣∣−1

2
p1p2 − p3

∣∣∣∣+
1

32
|p1||p3|2

+
1

32
|p1|2|p2|

∣∣∣∣−1

4
p1p2 − p3

∣∣∣∣ .
By using Lemma 2.4 and the inequality |pn| ≤ 2, we get |T3(2)(f)| ≤ 6. �

The following theorem gives an estimate on fourth Toeplitz deteminant T4(2).

Theorem 5.5. Let f ∈ S∗S be of the form f(z) = z + a2z
2 + a3z

3 + · · · . Then

|T4(2)(f)| =|(a22 − a23)2 + 2(a23 − a2a4)(a2a4 − a3a5)− (a2a3 − a3a4)2

+ (a24 − a3a5)2 − (a3a4 − a2a5)2| ≤ 15.12.
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Proof. In view of (1.6), (3.1), (3.2), (3.3) and (3.4) and on rearranging the terms, we
have

4096T4(2)(f)

= 256(p21 − p22)2 − 16p22(p1(−4 + p2) + 2p3)2 − 64(p2p3 − p1p4)2

+ ((p1p2 + 2p3)2 − 4p2(p22 + 2p4))2 − 32(p21p2 − 4p22 + 2p1p3)

(p21p2 + 2p1p3 − p2(p22 + 2p4))

= 256p41 − 768p21p
2
2 − 32p41p

2
2 + 256p21p

3
2 + 256p42 + 16p21p

4
2 + p41p

4
2

− 128p52 − 8p21p
5
2 + 16p62 − 128p31p2p3 + 512p1p

2
2p3 + 8p31p

3
2p3

− 32p1p
4
2p3 − 128p21p

2
3 − 128p22p

2
3 + 24p21p

2
2p

2
3 − 32p32p

2
3 + 32p1p2p

3
3

+ 16p43 + 64p21p
2
2p4 − 256p32p4 − 16p21p

3
2p4 + 64p42p4 + 256p1p2p3p4

− 64p1p
2
2p3p4 − 64p2p

2
3p4 − 64p21p

2
4 + 64p22p

2
4

= −256p21p
2
2

(
1

8
p21 − p2

)
+ 128p42

(
1

8
p21 − p2

)
− 16p52

(
1

2
p21 − p2

)
− 512p1p2p3

(
1

4
p21 − p2

)
− 64p42

(
1

2
p1p3 − p4

)
+ 32p22p

2
3

(
3

4
p21 − p2

)
+ 16p21p

3
2

(
1

2
p1p3 − p4

)
+ 64p2p

2
3

(
1

2
p1p3 − p4

)
+ 64p21p4(p22 − p4)

− 64p22p4(p1p3 − p4) + 256p41 − 768p21p
2
2 + 256p42 + p41p

4
2 − 128p21p

2
3

− 128p22p
2
3 + 16p43 − 256p32p4 + 256p1p2p3p4.

Using triangle inequality, we get

4096|T4(2)(f)| ≤ 256|p1|2|p2|2
∣∣∣∣18p21 − p2

∣∣∣∣+ 128|p2|4
∣∣∣∣18p21 − p2

∣∣∣∣
+ 16|p2|5

∣∣∣∣12p21 − p2
∣∣∣∣+ 512|p1||p2||p3|

∣∣∣∣14p21 − p2
∣∣∣∣+ 64|p2|4

∣∣∣∣12p1p3 − p4
∣∣∣∣

+ 32|p2|2|p3|2
∣∣∣∣34p21 − p2

∣∣∣∣+ 16|p1|2|p2|3
∣∣∣∣12p1p3 − p4

∣∣∣∣
+ 64|p2||p3|2

∣∣∣∣12p1p3 − p4
∣∣∣∣+ 64|p1|2|p4||p22 − p4|

+ 64|p2|2|p4||p1p3 − p4|+ 256|p1|4 + 768|p1|2|p2|2 + 256|p2|4

+ |p1|4|p2|4 + 128|p1|2|p3|2 + 128|p2|2|p3|2 + 16|p3|4 + 256|p2|3|p4|
+ 256|p1||p2||p3||p4|.

Applying Lemma 2.4 and the fact that |pn| ≤ 2, we get |T4(2)(f)| ≤ 15.12. �
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superordination and sandwich-type results
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Abstract. To obtain the main result of the present paper, we use the technique
of differential superordination. As special cases of our main result, we obtain
sufficient conditions for f ∈ A to be φ−like, parabolic φ−like, starlike, parabolic
starlike, close-to-convex and uniform close-to-convex. We also obtain sandwich-
type results regarding these functions. For demonstration of the results, we have
plotted the images of open unit disk under certain functions using Mathematica
7.0.
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1. Introduction

Let H denote the class of analytic functions in the unit disk E = {z ∈ C : |z| < 1}.
For a ∈ C and n ∈ N, let H[a, n] be the subclass of H consisting of the functions of
the form

f(z) = a+ anz
n + an+1z

n+1 + ....

Let A be the class of functions f , analytic in the unit disk E and normalized by the
conditions f(0) = f ′(0)− 1 = 0.
Let S denote the class of all analytic univalent functions f defined in the open unit
disk E which are normalized by the conditions f(0) = f ′(0)−1 = 0. The Taylor series
expansion of any function f ∈ S is

f(z) = z + a2z
2 + a3z

3 + ....
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Let the functions f and g be analytic in E. We say that f is subordinate to g written
as f ≺ g in E, if there exists a Schwarz function φ in E (i.e. φ is regular in |z| < 1,
φ(0) = 0 and |φ(z)| ≤ |z| < 1) such that

f(z) = g(φ(z)), |z| < 1.

Let Φ : C2 × E → C be an analytic function, p an analytic function in E with
(p(z), zp′(z); z) ∈ C2 × E for all z ∈ E and h be univalent in E. Then the function p
is said to satisfy first order differential subordination if

Φ(p(z), zp′(z); z) ≺ h(z), Φ(p(0), 0; 0) = h(0). (1.1)

A univalent function q is called dominant of the differential subordination (1.1) if
p(0) = q(0) and p ≺ q for all p satisfying (1.1). A dominant q̃ that satisfies q̃ ≺ q for
all dominants q of (1.1), is said to be the best dominant of (1.1). The best dominant
is unique up to the rotation of E.

Let Ψ : C2 × E → C be an analytic and univalent function in domain C2 × E, h be
analytic function in E, p be analytic and univalent in E with (p(z), zp′(z); z) ∈ C2×E
for all z ∈ E. Then p is called the solution of the first order differential superordination
if

h(z) ≺ Ψ(p(z), zp′(z); z), h(0) = Ψ(p(0), 0; 0). (1.2)

An analytic function q is called a subordinant of the differential superordination
(1.2) if q ≺ p for all p satisfying (1.2). A univalent subordinant q̃ that satisfies q ≺ q̃
for all subordinants q of (1.2), is said to be the best subordinant of (1.2). The best
subordinant is unique up to the rotation of E.

A function f ∈ A is said to be starlike in the open unit disk E, if it is univalent in E
and f(E) is a starlike domain. The well known condition for the members of class A
to be starlike is that

<
(
zf ′(z)

f(z)

)
> 0, z ∈ E.

Let S∗ denote the subclass of S consisting of all univalent starlike functions with
respect to the origin.
A function f ∈ A is said to be close-to-convex in E, if there exists a starlike function
g (not necessarily normalized) such that

<
(
zf ′(z)

g(z)

)
> 0, z ∈ E.

In addition, if g is normalized by the conditions g(0) = 0 = g′(0) − 1, then the class
of close-to-convex functions is denoted by C.
A function f ∈ A is called parabolic starlike in E, if

<
(
zf ′(z)

f(z)

)
>

∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ , z ∈ E, (1.3)
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and the class of such functions is denoted by SP .
A function f ∈ A is said to be uniformly close-to-convex in E, if

<
(
zf ′(z)

g(z)

)
>

∣∣∣∣zf ′(z)g(z)
− 1

∣∣∣∣ , z ∈ E, (1.4)

for some g ∈ SP . Let UCC denote the class of all such functions. Note that the
function g(z) ≡ z ∈ SP . Therefore, for g(z) ≡ z, condition (1.4) becomes:

< (f ′(z)) > |f ′(z)− 1| , z ∈ E. (1.5)

Ronning [11] and Ma and Minda [6] studied the domain Ω and the function q(z)
defined below:

Ω =
{
u+ iv : u >

√
(u− 1)2 + v2

}
.

Clearly the function

q(z) = 1 +
2

π2

(
log

(
1 +
√
z

1−
√
z

))2

maps the unit disk E onto the domain Ω. Hence the conditions (1.3) and (1.5) are,
respectively, equivalent to

zf ′(z)

f(z)
≺ q(z), z ∈ E,

and

f ′(z) ≺ q(z).
Let φ be analytic in a domain containing f(E), φ(0) = 0 and <(φ′(0)) > 0. Then,
the function f ∈ A is said to be φ− like in E, if

<
(
zf ′(z)

φ(f(z))

)
> 0, z ∈ E.

This concept was introduced by Brickman [2]. He proved that an analytic function
f ∈ A is univalent if and only if f is φ− like for some analytic function φ. Later,
Ruscheweyh [12] investigated the following general class of φ−like functions:
Let φ be analytic in a domain containing f(E), where φ(0) = 0, φ′(0) = 1 and
φ(w) 6= 0 for some w ∈ f(E)\{0}, then the function f ∈ A is called φ−like with
respect to a univalent function q, q(0) = 1, if

zf ′(z)

φ(f(z))
≺ q(z), z ∈ E.

A function f ∈ A is said to be parabolic φ− like in E, if

<
(
zf ′(z)

φ(f(z))

)
>

∣∣∣∣ zf ′(z)φ(f(z))
− 1

∣∣∣∣ , z ∈ E. (1.6)

Equivalently, condition (1.6) can be written as:

zf ′(z)

φ(f(z))
≺ q(z) = 1 +

2

π2

(
log

(
1 +
√
z

1−
√
z

))2

.
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In 2005, Ravichandran et al. [10] proved the following result for φ-like functions:
Let α 6= 0 be a complex number and q(z) be a convex univalent function in E.
Suppose h(z) = αq2(z) + (1− α)q(z) + αzq′(z) and

<
{

1− α
α

+ 2q(z) +

(
1 +

zq′′(z)

q′(z)

)}
> 0, z ∈ E.

If f ∈ A satisfies

zf ′(z)

φ(f(z))

(
1 +

αzf ′′(z)

f ′(z)
+
α(f ′(z)− (φ(f(z)))

′

φ(f(z))

)
≺ h(z),

then

zf ′(z)

φ(f(z))
≺ q(z), z ∈ E,

and q(z) is best dominant. Later on, Shanmugam et al. [13] and Ibrahim [9] also
obtained the results for φ-like functions similar to the above mentioned results of
Ravichandran [10].
In 2017, Kaur and Billing [4] investigated the following operator

a
zf ′(z)

φ(g(z))
+ b

(
1 +

zf ′′(z)

f ′(z)
− z(φ(g(z)))

′

φ(g(z))

)

to obtain φ−likeness, starlikeness and close-to-convexity of normalized analytic func-
tions.
Later, in 2019, Adegani et al. [1] studied the operator

λzf ′(z)

g(z)

(
1 +

1

λ
+
zf ′′(z)

f ′(z)
− zg′(z)

g(z)

)
and derived criteria for close-to-convexity of normalized analytic functions.
Recently, Mohammed et al. [8] studied the geometric properties of some subfamilies
of holomorphic functions in this direction.
In this paper, we obtain the superordination theorem for the differential operator(

zf ′(z)

φ(g(z))

)γ [
a
zf ′(z)

φ(g(z))
+ b

(
1 +

zf ′′(z)

f ′(z)
− z(φ(g(z)))

′

φ(g(z))

)]β
where f, g ∈ A and β, γ be complex numbers such that β 6= 0. Also φ is an analytic
function in a domain containing g(E) such that φ(0) = 0 = φ′(0) − 1 and φ(w) 6= 0
for w ∈ g(E)\{0}, for real numbers a, b( 6= 0). Further, we derive sandwich-type
theorem. As consequences of our main results, we obtain sufficient conditions for
φ-like, parabolic φ−like, starlike, parabolic starlike, close-to-convex, and uniform
close-to-convex functions.
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2. Preliminaries

We shall need the following definition and lemma to prove our main result.

Definition 2.1. ([7], Definition 2, p.817 ) Denote by Q, the set of all functions f(z)
that are analytic and injective on Ē \ E(f), where

E(f) =

{
ζ ∈ ∂E : lim

z→ζ
f(z) =∞

}
,

and are such that f ′(ζ) 6= 0 for ζ ∈ ∂E \ E(f).

Lemma 2.2. ([3]). Let q be univalent in E and let θ and ϕ be analytic in a domain D
containing q(E). Set Q1(z) = zq′(z)ϕ[q(z)], h(z) = θ[q(z)] +Q1(z) and suppose that
either
(i) Q1 is starlike and

(ii) <
(
θ′q(z)

ϕ(q(z)
)

)
> 0 for all z ∈ E.

If p ∈ H[1, 1] ∩Q with p(E) ⊂ D and θ[p(z)] + zp′(z)ϕ[p(z)] is univalent in E and

θ[q(z)] + zq′(z)ϕ[q(z)] ≺ θ[p(z)] + zp′(z)ϕ[p(z)], z ∈ E,
then q(z) ≺ p(z) and q is the best subordinant.

3. A superordination theorem

Theorem 3.1. Let β and γ be complex numbers such that β 6= 0 and a, b( 6= 0) are real
numbers. Let q(z) 6= 0 with q(0) = 1 be a univalent function in E, such that

(i) <
[
1 +

zq′′(z)

q′(z)
+

(
γ

β
− 1

)
zq′(z)

q(z)

]
> 0 and

(ii) <
[
a

b

(
1 +

γ

β

)
q(z)

]
> 0.

Let φ be analytic function in the domain containing g(E) such that φ(0) = 0 = φ′(0)−1

and φ(w) 6= 0 for w ∈ g(E)\{0}. If f, g ∈ A, zf ′(z)

φ(g(z))
∈ H[1, 1] ∩Q and

(
zf ′(z)

φ(g(z))

)γ [
a
zf ′(z)

φ(g(z))
+ b

(
1 +

zf ′′(z)

f ′(z)
− z(φ(g(z)))

′

φ(g(z))

)]β
is univalent in E, satisfy

(q(z))
γ

[
aq(z) + b

zq′(z)

q(z)

]β
≺
(
zf ′(z)

φ(g(z))

)γ
[
a
zf ′(z)

φ(g(z))
+ b

(
1 +

zf ′′(z)

f ′(z)
− z(φ(g(z)))

′

φ(g(z))

)]β
(3.1)

then

q(z) ≺ zf ′(z)

φ(g(z))
, z ∈ E,

and q(z) is the best subordinant.
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Proof. On writing p(z) =
zf ′(z)

φ(g(z))
, the superordination (3.1) can be rewritten as:

(q(z))γ
(
aq(z) + b

zq′(z)

q(z)

)β
≺ (p(z))

γ

(
ap(z) + b

zp′(z)

p(z)

)β
or

a(q(z))
γ
β+1 + b(q(z))

γ
β−1zq′(z) ≺ a(p(z))

γ
β+1 + b(p(z))

γ
β−1zp′(z)

Let us define the functions θ and φ as follows:

θ(w) = aw
γ
β+1 and φ(w) = bw

γ
β−1

Obviously, the functions θ and φ are analytic in domain D = C\{0} and φ(w) 6= 0
in D.
Therefore,

Q(z) = φ(q(z))zq′(z) = b(q(z))
γ
β−1zq′(z)

and

h(z) = θ(q(z)) +Q(z) = a(q(z))
γ
β+1 + b(q(z))

γ
β−1zq′(z)

On differentiating, we obtain

zQ′(z)

Q(z)
= 1 +

zq′′(z)

q′(z)
+

(
γ

β
− 1

)
zq′(z)

q(z)

and
θ′(q(z))

φ(q(z))
=
zh′(z)

Q(z)
− zQ′(z)

Q(z)
=
a

b

(
1 +

γ

β

)
q(z).

In view of the given condition (i) and (ii), we see that Q is starlike and

<
(
θ′(q(z))

φ(q(z))

)
> 0.

Therefore, the proof, now follows from the Lemma [2.2]. �

Remark 3.2. Together with the corresponding result for differential subordination
(see Kaur et al. [5]), we get the following ”sandwich result”.

4. Sandwich-type result and its applications

Theorem 4.1. Let β and γ be complex numbers such that β 6= 0 and a, b(6= 0) are real
numbers. Let q1, q2 (q1(z) 6= 0, q2(z) 6= 0, z ∈ E), be univalent functions in E, such
that

(i) <
[
1 +

zq′′i (z)

q′i(z)
+

(
γ

β
− 1

)
zq′i(z)

qi(z)

]
> 0 and

(ii) <
[
a

b

(
1 +

γ

β

)
qi(z)

]
> 0; i = 1, 2.
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Let φ be analytic function in the domain containing g(E) such that φ(0) = 0 = φ′(0)−1

and φ(w) 6= 0 for w ∈ g(E)\{0}. If f, g ∈ A, zf ′(z)

φ(g(z))
∈ H[1, 1] ∩Q and

(
zf ′(z)

φ(g(z))

)γ [
a
zf ′(z)

φ(g(z))
+ b

(
1 +

zf ′′(z)

f ′(z)
− z(φ(g(z)))

′

φ(g(z))

)]β
is univalent in E, satisfy

(q1(z))
γ

[
aq1(z) + b

zq′1(z)

q1(z)

]β

≺
(
zf ′(z)

φ(g(z))

)γ [
a
zf ′(z)

φ(g(z))
+ b

(
1 +

zf ′′(z)

f ′(z)
− z(φ(g(z)))

′

φ(g(z))

)]β

≺ (q2(z))
γ

[
aq2(z) + b

zq′2(z)

q2(z)

]β
(4.1)

then

q1(z) ≺ zf ′(z)

φ(g(z))
≺ q2(z), z ∈ E,

where q1(z) and q2(z) are the best subordinant and the best dominant respectively.

Remark 4.2. When we select q1(z) = 1 + m1z, q2(z) = 1 + m2z; 0 < m1 < m2 ≤ 1,
β = 1, γ = 0 in Theorem 4.1, we obtain:

Corollary 4.3. Let a, b(6= 0) are real numbers such that
a

b
> 0. Let φ be analytic

function in the domain containing g(E) such that φ(0) = 0 = φ′(0)− 1 and φ(w) 6= 0

for w ∈ g(E)\{0}. If f, g ∈ A, zf ′(z)

φ(g(z))
∈ H[1, 1] ∩Q with

a
zf ′(z)

φ(g(z))
+ b

(
1 +

zf ′′(z)

f ′(z)
− z(φ(g(z)))

′

φ(g(z))

)
is univalent in E and satisfy

a(1 +m1z) +
bm1z

1 +m1z
≺

[
a
zf ′(z)

φ(g(z))
+ b

(
1 +

zf ′′(z)

f ′(z)
− z(φ(g(z)))

′

φ(g(z))

)]

≺ a(1 +m2z) +
bm2z

1 +m2z

then

1 +m1z ≺
zf ′(z)

φ(g(z))
≺ 1 +m2z, where 0 < m1 < m2 ≤ 1, z ∈ E.

By selecting a = 1, b = 1, m1 = 1
3 , m2 = 1 in Corollary 4.3, we get
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Example 4.4. Let φ be analytic function in the domain containing g(E) such that

φ(0) = 0 = φ′(0) − 1 and φ(w) 6= 0 for w ∈ g(E)\{0}. If f, g ∈ A, zf ′(z)

φ(g(z))
∈

H[1, 1] ∩Q with

1 +
zf ′′(z)

f ′(z)
+

zf ′(z)

φ(g(z))
− z(φ(g(z)))

′

φ(g(z))

is univalent in E and satisfy

z2 + 9z + 9

3z + 9
≺ 1 +

zf ′′(z)

f ′(z)
+

zf ′(z)

φ(g(z))
− z(φ(g(z)))

′

φ(g(z))
≺ z2 + 3z + 1

z + 1

then

1 +
z

3
≺ zf ′(z)

φ(g(z))
≺ 1 + z, z ∈ E.

By selecting g(z) = f(z) in Example 4.4, we have

Example 4.5. Let φ be analytic function in the domain containing f(E) such that

φ(0) = 0 = φ′(0) − 1 and φ(w) 6= 0 for w ∈ f(E)\{0}. If f, g ∈ A, zf ′(z)

φ(f(z))
∈

H[1, 1] ∩Q with

1 +
zf ′′(z)

f ′(z)
+

zf ′(z)

φ(f(z))
− z(φ(f(z)))

′

φ(f(z))

is univalent in E and satisfy

z2 + 9z + 9

3z + 9
≺ 1 +

zf ′′(z)

f ′(z)
+

zf ′(z)

φ(f(z))
− z(φ(f(z)))

′

φ(f(z))
≺ z2 + 3z + 1

z + 1

then

1 +
z

3
≺ zf ′(z)

φ(f(z))
≺ 1 + z, z ∈ E.

i.e. f is φ−like.

By selecting φ(z) = z and g(z) = f(z) in Example 4.4, we get

Example 4.6. If f ∈ A, zf
′(z)

f(z)
∈ H[1, 1] ∩Q with 1 +

zf ′′(z)

f ′(z)
is univalent in E and

satisfies

z2 + 9z + 9

3z + 9
≺ 1 +

zf ′′(z)

f ′(z)
≺ z2 + 3z + 1

z + 1

then

1 +
z

3
≺ zf ′(z)

f(z)
≺ 1 + z, z ∈ E,

and hence f(z) is starlike.

By selecting φ(z) = g(z) = z in Example 4.4, we have
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Example 4.7. If f ∈ A, f ′(z) ∈ H[1, 1] ∩ Q, with f ′(z) +
zf ′′(z)

f ′(z)
is univalent in E

and satisfy

z2 + 9z + 9

3z + 9
≺ f ′(z) +

zf ′′(z)

f ′(z)
≺ z2 + 3z + 1

z + 1

then

1 +
z

3
≺ f ′(z) ≺ 1 + z, z ∈ E,

and hence f(z) is close-to-convex.

For illustration, in Figure 4.1, we plot the images of unit disk E under the functions

w1(z) =
z2 + 9z + 9

3z + 9
and w2(z) =

z2 + 3z + 1

z + 1
.

In Figure 4.2, the images of unit disk E under the functions

q1(z) = 1 +
z

3
and q2(z) = 1 + z

are given. In the light of Example 4.4, when the differential operator

1 +
zf ′′(z)

f ′(z)
+

zf ′(z)

φ(g(z))
− z(φ(g(z)))

′

φ(g(z))

takes values in the light shaded portion as shown in Figure 4.1, then
zf ′(z)

φ(g(z))
takes

values in the light shaded region as given in Figure 4.2. Consequently, in view of
Example 4.5, Example 4.6, Example 4.7, f(z) is φ− like, starlike and close-to-convex
respectively.
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Remark 4.8. When we select

q1(z) =

(
1 + z

1− z

)δ1
, q2(z) =

(
1 + z

1− z

)δ2
, 0 < δ1 < δ2 ≤ 1, β = 1, γ = 0

in Theorem 4.1, we obtain the following result:
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Corollary 4.9. For real numbers a, b(6= 0) with same sign. Let φ be analytic function
in the domain containing g(E) such that φ(0) = 0 = φ′(0) − 1 and φ(w) 6= 0 for

w ∈ g(E)\{0}. If f, g ∈ A, zf ′(z)

φ(g(z))
∈ H[1, 1] ∩Q with

a
zf ′(z)

φ(g(z))
+ b

(
1 +

zf ′′(z)

f ′(z)
− z(φ(g(z)))

′

φ(g(z))

)
is univalent in E and satisfy

a

(
1 + z

1− z

)δ1
+

(
2bδ1z

1− z2

)
≺ a zf

′(z)

φ(g(z))
+ b

(
1 +

zf ′′(z)

f ′(z)
− z(φ(g(z)))

′

φ(g(z))

)

≺ a
(

1 + z

1− z

)δ2
+

(
2bδ2z

1− z2

)
,

then (
1 + z

1− z

)δ1
≺ zf ′(z)

φ(g(z))
≺
(

1 + z

1− z

)δ2
; 0 < δ1 < δ2 ≤ 1, z ∈ E.

Selecting δ1 = 0.3, δ2 = 1 and a = 1, b = 1 in Corollary 4.9, we have:

Example 4.10. Let φ be analytic function in the domain containing g(E) such that

φ(0) = 0 = φ′(0) − 1 and φ(w) 6= 0 for w ∈ g(E)\{0}. If f, g ∈ A, zf ′(z)

φ(g(z))
∈

H[1, 1] ∩Q with

1 +
zf ′′(z)

f ′(z)
+

zf ′(z)

φ(g(z))
− z(φ(g(z)))

′

φ(g(z))

is univalent in E and satisfy(
1 + z

1− z

)0.3

+

(
0.6z

1− z2

)
≺ zf ′(z)

φ(g(z))
+

(
1 +

zf ′′(z)

f ′(z)
− z(φ(g(z)))

′

φ(g(z))

)

≺
(

1 + z

1− z

)
+

(
2z

1− z2

)
,

then (
1 + z

1− z

)0.3

≺ zf ′(z)

φ(g(z))
≺
(

1 + z

1− z

)
; z ∈ E.

By selecting g(z) = f(z) in Example 4.10, we get

Example 4.11. Let φ be analytic function in the domain containing f(E) such that

φ(0) = 0 = φ′(0) − 1 and φ(w) 6= 0 for w ∈ f(E)\{0}. If f, g ∈ A, zf ′(z)

φ(f(z))
∈

H[1, 1] ∩Q with

1 +
zf ′′(z)

f ′(z)
+

zf ′(z)

φ(f(z))
− z(φ(f(z)))

′

φ(f(z))
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is univalent in E and satisfy(
1 + z

1− z

)0.3

+

(
0.6z

1− z2

)
≺ zf ′(z)

φ(f(z))
+

(
1 +

zf ′′(z)

f ′(z)
− z(φ(f(z)))

′

φ(f(z))

)

≺
(

1 + z

1− z

)
+

(
2z

1− z2

)
,

then (
1 + z

1− z

)0.3

≺ zf ′(z)

φ(f(z))
≺
(

1 + z

1− z

)
; z ∈ E.

i.e. f is φ−like.

By selecting φ(z) = z and g(z) = f(z) in Example 4.10, we obtain

Example 4.12. If f ∈ A, zf
′(z)

f(z)
∈ H[1, 1]∩Q with 1 +

zf ′′(z)

f ′(z)
is univalent in E and

satisfies (
1 + z

1− z

)0.3

+

(
0.6z

1− z2

)
≺
(

1 +
zf ′′(z)

f ′(z)

)
≺
(

1 + z

1− z

)
+

(
2z

1− z2

)
,

then (
1 + z

1− z

)0.3

≺ zf ′(z)

f(z)
≺
(

1 + z

1− z

)
; z ∈ E.

i.e. f is starlike.

By selecting φ(z) = g(z) = z in Example 4.10, we have

Example 4.13. If f ∈ A, f ′(z) ∈ H[1, 1] ∩Q, with f ′(z) +
zf ′′(z)

f ′(z)
is univalent in E

and satisfy

(
1 + z

1− z

)0.3

+

(
0.6z

1− z2

)
≺ f ′(z) +

zf ′′(z)

f ′(z)
≺
(

1 + z

1− z

)
+

(
2z

1− z2

)
,

then (
1 + z

1− z

)0.3

≺ f ′(z) ≺
(

1 + z

1− z

)
; z ∈ E.

i.e. f is close-to-convex.

Using Mathematica 7.0, we plot the images of unit disk E under the functions

w3(z) =

(
1 + z

1− z

)0.3

+
0.6z

1− z2
and w4(z) =

1 + z

1− z
+

2z

1− z2
,

which are given by Figure 4.3 and the images of unit disk E under the functions

q1(z) =

(
1 + z

1− z

)0.3

and q2(z) =
1 + z

1− z
,
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which are shown in Figure 4.4. It follows from Example 4.10 that the differential ope-

rator
zf ′(z)

φ(g(z))
takes values in the light shaded region of Figure 4.4 when the differential

operator

zf ′(z)

φ(g(z))
+

(
1 +

zf ′′(z)

f ′(z)
− z(φ(g(z)))

′

φ(g(z))

)
takes values in the light shaded region of Figure 4.3. Therefore, from Example 4.11,
Example 4.12, Example 4.13, we can say that f(z) is φ − like, starlike and close-to-
convex respectively.
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Remark 4.14. When we select q1(z) = ez/2, q2(z) =
1 + z

1− z
, β = 1, γ = 0 in Theorem

4.1, we get the following result:

Corollary 4.15. For real numbers a, b(6= 0) of same sign. Let φ be analytic function
in the domain containing g(E) such that φ(0) = 0 = φ′(0) − 1 and φ(w) 6= 0 for

w ∈ g(E)\{0}. If f, g ∈ A, zf ′(z)

φ(g(z))
∈ H[1, 1] ∩Q with

a
zf ′(z)

φ(g(z))
+ b

(
1 +

zf ′′(z)

f ′(z)
− z(φ(g(z)))

′

φ(g(z))

)
is univalent in E and satisfy

aez/2 +
bz

2
≺ a zf

′(z)

φ(g(z))
+ b

(
1 +

zf ′′(z)

f ′(z)
− z(φ(g(z)))

′

φ(g(z))

)

≺ a
(

1 + z

1− z

)
+

(
2bz

1− z2

)
,

then

ez/2 ≺ zf ′(z)

φ(g(z))
≺ 1 + z

1− z
, 0 ≤ δ < 1, z ∈ E.

Selecting a = 1 and b = 1 in Corollary 4.15, we obtain:
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Example 4.16. Let φ be analytic function in the domain containing g(E) such that

φ(0) = 0 = φ′(0) − 1 and φ(w) 6= 0 for w ∈ g(E)\{0}. If f, g ∈ A, zf ′(z)

φ(g(z))
∈

H[1, 1] ∩Q with 1 +
zf ′′(z)

f ′(z)
+

zf ′(z)

φ(g(z))
− z(φ(g(z)))

′

φ(g(z))
is univalent in E and satisfies

ez/2 +
z

2
≺ zf ′(z)

φ(g(z))
+

(
1 +

zf ′′(z)

f ′(z)
− z(φ(g(z)))

′

φ(g(z))

)
≺ z2 + 4z + 1

1− z2
,

then

ez/2 ≺ zf ′(z)

φ(g(z))
≺ 1 + z

1− z
, 0 ≤ δ < 1, z ∈ E.

By selecting g(z) = f(z) in Example 4.16, we get

Example 4.17. Let φ be analytic function in the domain containing f(E) such that

φ(0) = 0 = φ′(0) − 1 and φ(w) 6= 0 for w ∈ f(E)\{0}. If f, g ∈ A, zf ′(z)

φ(f(z))
∈

H[1, 1] ∩Q with 1 +
zf ′′(z)

f ′(z)
+

zf ′(z)

φ(f(z))
− z(φ(f(z)))

′

φ(f(z))
is univalent in E and satisfy

ez/2 +
z

2
≺ zf ′(z)

φ(f(z))
+

(
1 +

zf ′′(z)

f ′(z)
− z(φ(f(z)))

′

φ(f(z))

)
≺ z2 + 4z + 1

1− z2
,

then

ez/2 ≺ zf ′(z)

φ(f(z))
≺ 1 + z

1− z
, 0 ≤ δ < 1, z ∈ E.

i.e. f is φ−like.

By selecting φ(z) = z and g(z) = f(z) in Example 4.16, we have

Example 4.18. If f ∈ A, zf
′(z)

f(z)
∈ H[1, 1]∩Q with 1 +

zf ′′(z)

f ′(z)
is univalent in E and

satisfies

ez/2 +
z

2
≺
(

1 +
zf ′′(z)

f ′(z)

)
≺ z2 + 4z + 1

1− z2
,

then

ez/2 ≺ zf ′(z)

f(z)
≺ 1 + z

1− z
, z ∈ E.

i.e. f is starlike.

By selecting φ(z) = g(z) = z in Example 4.10, we obtain

Example 4.19. If f ∈ A, f ′(z) ∈ H[1, 1] ∩Q, with f ′(z) +
zf ′′(z)

f ′(z)
is univalent in E

and satisfy

ez/2 +
z

2
≺ f ′(z) +

zf ′′(z)

f ′(z)
≺ z2 + 4z + 1

1− z2
,
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then

ez/2 ≺ f ′(z) ≺ 1 + z

1− z
, z ∈ E.

i.e. f is close-to-convex.

For demonstration, we plot the images of unit disk E under the functions

w5(z) = ez/2 +
z

2
and w6(z) =

z2 + 4z + 1

1− z2
,

which are shown by Figure 4.5. In Figure 4.6, the images of unit disk E under the
functions

q1(z) = ez/2 and q2(z) =
1 + z

1− z

are given. It follows from Example 4.16 that the differential operator
zf ′(z)

φ(g(z))
takes

values in the light shaded region of Figure 4.6 when the differential operator

zf ′(z)

φ(g(z))
+

(
1 +

zf ′′(z)

f ′(z)
− z(φ(g(z)))

′

φ(g(z))

)
takes values in the light shaded portion of Figure 4.5. Thus in view of Example 4.17,
Example 4.18, Example 4.19, f(z) is φ−like, starlike and close-to-convex respectively.
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Remark 4.20. When we select

q1(z) = ez/2, q2(z) = 1 +
2

π2

(
log

(
1 +
√
z

1−
√
z

))2

, β = 1, γ = 0

in Theorem 4.1, we derive the following result:

Corollary 4.21. For real numbers a, b(6= 0) of same sign. Let φ be analytic function
in the domain containing g(E) such that φ(0) = 0 = φ′(0) − 1 and φ(w) 6= 0 for
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w ∈ g(E)\{0}. If f, g ∈ A, zf ′(z)

φ(g(z))
∈ H[1, 1] ∩Q with

a
zf ′(z)

φ(g(z))
+ b

(
1 +

zf ′′(z)

f ′(z)
− z(φ(g(z)))

′

φ(g(z))

)
is univalent in E and satisfy

aez/2 +
bz

2
≺ a zf

′(z)

φ(g(z))
+ b

(
1 +

zf ′′(z)

f ′(z)
− z(φ(g(z)))

′

φ(g(z))

)

≺

a+
2a

π2

(
log

(
1 +
√
z

1−
√
z

))2

+

4b
√
z

π2(1−z) log
(

1+
√
z

1−
√
z

)
1 + 2

π2

(
log
(

1+
√
z

1−
√
z

))2


then

ez/2 ≺ zf ′(z)

φ(g(z))
≺ 1 +

2

π2

(
log

(
1 +
√
z

1−
√
z

))2

, z ∈ E.

Selecting a = 1 and b = 1 in Corollary 4.21, we obtain:

Example 4.22. Let φ be analytic function in the domain containing g(E) such that

φ(0) = 0 = φ′(0) − 1 and φ(w) 6= 0 for w ∈ g(E)\{0}. If f, g ∈ A, zf ′(z)

φ(g(z))
∈

H[1, 1] ∩Q with

1 +
zf ′′(z)

f ′(z)
+

zf ′(z)

φ(g(z))
− z(φ(g(z)))

′

φ(g(z))

is univalent in E and satisfies

ez/2 +
z

2
≺ zf ′(z)

φ(g(z))
+

(
1 +

zf ′′(z)

f ′(z)
− z(φ(g(z)))

′

φ(g(z))

)

≺

1 +
2

π2

(
log

(
1 +
√
z

1−
√
z

))2

+

4
√
z

π2(1−z) log
(

1+
√
z

1−
√
z

)
1 + 2

π2

(
log
(

1+
√
z

1−
√
z

))2


then

ez/2 ≺ zf ′(z)

φ(g(z))
≺ 1 +

2

π2

(
log

(
1 +
√
z

1−
√
z

))2

, z ∈ E.

By selecting g(z) = f(z) in Example 4.22, we get

Example 4.23. Let φ be analytic function in the domain containing f(E) such that

φ(0) = 0 = φ′(0)− 1 and φ(w) 6= 0 for w ∈ f(E)\{0}.

If f, g ∈ A, zf ′(z)

φ(f(z))
∈ H[1, 1] ∩ Q with 1 +

zf ′′(z)

f ′(z)
+

zf ′(z)

φ(f(z))
− z(φ(f(z)))

′

φ(f(z))
is

univalent in E and satisfies

ez/2 +
z

2
≺ zf ′(z)

φ(f(z))
+

(
1 +

zf ′′(z)

f ′(z)
− z(φ(f(z)))

′

φ(f(z))

)
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≺

1 +
2

π2

(
log

(
1 +
√
z

1−
√
z

))2

+

4
√
z

π2(1−z) log
(

1+
√
z

1−
√
z

)
1 + 2

π2

(
log
(

1+
√
z

1−
√
z

))2


then

ez/2 ≺ zf ′(z)

φ(f(z))
≺ 1 +

2

π2

(
log

(
1 +
√
z

1−
√
z

))2

, z ∈ E.

i.e. f is parabolic φ−like.

By selecting φ(z) = z and g(z) = f(z) in Example 4.22, we have

Example 4.24. If f ∈ A, zf
′(z)

f(z)
∈ H[1, 1]∩Q with 1 +

zf ′′(z)

f ′(z)
is univalent in E and

satisfy

ez/2 +
z

2
≺
(

1 +
zf ′′(z)

f ′(z)

)
≺

1 +
2

π2

(
log

(
1 +
√
z

1−
√
z

))2

+

4
√
z

π2(1−z) log
(

1+
√
z

1−
√
z

)
1 + 2

π2

(
log
(

1+
√
z

1−
√
z

))2


then

ez/2 ≺ zf ′(z)

f(z)
≺ 1 +

2

π2

(
log

(
1 +
√
z

1−
√
z

))2

, z ∈ E.

i.e. f is parabolic starlike.

By selecting φ(z) = g(z) = z in Example 4.22, we obtain

Example 4.25. If f ∈ A, f ′(z) ∈ H[1, 1] ∩Q, with f ′(z) +
zf ′′(z)

f ′(z)
is univalent in E

and satisfies

ez/2 +
z

2
≺ f ′(z) +

zf ′′(z)

f ′(z)
≺

1 +
2

π2

(
log

(
1 +
√
z

1−
√
z

))2

+

4
√
z

π2(1−z) log
(

1+
√
z

1−
√
z

)
1 + 2

π2

(
log
(

1+
√
z

1−
√
z

))2


then

ez/2 ≺ f ′(z) ≺ 1 +
2

π2

(
log

(
1 +
√
z

1−
√
z

))2

, z ∈ E.

i.e. f is uniform close-to-convex.

Using Mathematica 7.0, we draw the images of unit disk E under the functions

w7(z) = ez/2 +
z

2
and w8(z)=

1+
2

π2

(
log

(
1 +
√
z

1−
√
z

))2

+

4
√
z

π2(1−z) log
(

1+
√
z

1−
√
z

)
1 + 2

π2

(
log
(

1+
√
z

1−
√
z

))2
 ,

which are shown by Figure 4.7 and the images of unit disk E under the functions

q1(z) = ez/2 and q2(z) = 1 +
2

π2

(
log

(
1 +
√
z

1−
√
z

))2
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are given by Figure 4.8. Hence from Example 4.22, we can say that the differential

operator
zf ′(z)

φ(g(z))
takes values in the light shaded portion of Figure 4.8 when the

differential operator
zf ′(z)

φ(g(z))
+

(
1 +

zf ′′(z)

f ′(z)
− z(φ(g(z)))

′

φ(g(z))

)
takes values in the light

shaded region of Figure 4.7. Therefore, in light of Example 4.23, Example 4.24, Ex-
ample 4.25, f(z) is parabolic φ−like, parabolic starlike and uniform close-to-convex
respectively.
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δ-Caputo fractional differential equations with
nonlinear boundary conditions
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Abstract. In this article, we discuss the existence of extremal solutions for a
class of nonlinear sequential δ–Caputo fractional differential equations involving
nonlinear boundary conditions. Our results are founded on advanced functional
analysis methods. To be more specific, we use the monotone iterative approach
in conjunction with the upper and lower solution method to create adequate
requirements for the existence of extremal solutions. As an application, we give
an example to illustrate our results.
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1. Introduction

Nowadays, fractional differential equations appear in diverse fields such as
physics, fluid mechanics, viscoelasticity, biology, control theory, chemistry, and so
on, (see, for example, [19, 28, 31, 36]). For some fundamental results in the theory of
fractional calculus and fractional differential equations, we suggest the monographs
of several scientists [2, 3, 4, 20, 26, 29, 41, 42].

There are various techniques to defining fractional integrals and derivatives in the
literature, such as Riemann–Liouville, Caputo, Caputo–Hadamard, Hilfer, δ–Caputo
and δ–Hilfer. For more details, we refer the readers to [1, 5, 6, 7, 10, 11, 12, 14, 15,
17, 23, 32, 33, 34, 35, 37].
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On the other hand, much attention has been focused on the study of the existence
and uniqueness of solutions for initial and boundary value problems involving sequen-
tial fractional differential equations, we refer the reader to [8, 9, 25] and the references
cited therein. Additionally, it is well known that the monotone iterative technique [22]
combined with the method of upper and lower solutions is used as a fundamental tool
to prove the existence and approximation of solutions to many applied problems of
nonlinear differential equations and integral equations. Moreover, this technique has
more advantages, such as it not only proves the existence of solutions but also can
provide computable monotone sequences that converge to the extremal solutions in a
sector generated by upper and lower solutions. Recent results by means of the mono-
tone iterative method are obtained in [13, 16, 18, 24, 27, 38, 39, 40] and the references
therein. However, to the best of the author’s knowledge, no results yet exist for the se-
quential fractional differential equations involving the δ–Caputo fractional derivative
by using the monotone iterative technique.

Motivated by this fact together with recent works [5, 10, 18, 21, 24, 39], we in-
vestigate the existence of extremal solutions for the following boundary value problem
of δ–Caputo sequential fractional differential equations involving nonlinear boundary
conditions:{(

cDζ+1;δ
κ1

+ + λ cDζ;δκ1
+

)
ξ(ϑ) = Ψ(ϑ, ξ(ϑ)), ϑ ∈ Θ := [κ1, κ2],

Φ(ξ(κ1), ξ(κ2)) = 0, ξ′(κ1) = 0,
(1.1)

where cDζ;δκ1
+ is the δ–Caputo fractional derivative of order ζ ∈ (0, 1],Ψ: [κ1, κ2] ×

R −→ R, Φ: R × R −→ R are both continuous functions and λ is a positive real
number.

The following is how the paper is structured. We provide some essential defini-
tions and lemmas in section 2. The major findings are discussed in section 3. Lastly,
an illustration is provided to demonstrate the applicability of the generated results.

2. Preliminaries

In this part, we provide certain fractional calculus notations and concepts, as
well as definitions and lemmas that will be used later in our proofs.

Definition 2.1 ([10, 20]). For ζ > 0, the left-sided δ–Riemann-Liouville fractional
integral of order ζ for an integrable function ξ : Θ −→ R with respect to another
function δ : Θ −→ R that is an increasing differentiable function such that δ′(ϑ) 6= 0,
for all ϑ ∈ Θ is defined as follows

Iζ;δκ1
+ξ(ϑ) =

1

Γ(ζ)

∫ ϑ

κ1

δ′(%)(δ(ϑ)− δ(%))ζ−1ξ(%)d%. (2.1)

Definition 2.2 ([10]). Let β ∈ N and let δ, ξ ∈ Cβ(Θ,R) be two functions such that δ is
increasing and δ′(ϑ) 6= 0, for all ϑ ∈ Θ. The left-sided δ–Riemann–Liouville fractional
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derivative of a function ξ of order ζ is defined by

Dζ;δκ1
+ξ(ϑ) =

(
1

δ′(ϑ)

d

dϑ

)β
Iβ−ζ;δκ1

+ ξ(ϑ)

=
1

Γ(β − ζ)

(
1

δ′(ϑ)

d

dϑ

)β ∫ ϑ

κ1

δ′(%)(δ(ϑ)− δ(%))β−ζ−1ξ(%)d%,

where β = [ζ] + 1.

Definition 2.3 ([10]). Let β ∈ N and let δ, ξ ∈ Cβ(Θ,R) be two functions such that δ is
increasing and δ′(ϑ) 6= 0, for all ϑ ∈ Θ. The left-sided δ-Caputo fractional derivative
of ξ of order ζ is defined by

cDζ;δκ1
+ξ(ϑ) = Iβ−ζ;δκ1

+

(
1

δ′(ϑ)

d

dϑ

)β
ξ(ϑ),

where β = [ζ] + 1 for ζ /∈ N, β = ζ for ζ ∈ N.

In the sequel, we will employ the following:

ξ
[β]
δ (ϑ) =

(
1

δ′(ϑ)

d

dϑ

)β
ξ(ϑ). (2.2)

From the previous definition, it is clear that

cDζ;δκ1
+ξ(ϑ) =

{∫ ϑ
κ1

δ′(%)(δ(ϑ)−δ(%))β−ζ−1

Γ(β−ζ) ξ
[β]
δ (%)d% , if ζ /∈ N,

ξ
[β]
δ (ϑ) , if ζ ∈ N.

(2.3)

This generalization (2.3) yields the Caputo fractional derivative operator when δ(ϑ) =
ϑ. Moreover, for δ(ϑ) = lnϑ, it gives the Caputo–Hadamard fractional derivative.

We note that if ξ ∈ Cβ(Θ,R) the δ–Caputo fractional derivative of order ζ of ξ
is determined as

cDζ;δκ1
+ξ(ϑ) = Dζ;δκ1

+

[
ξ(ϑ)−

β−1∑
=0

ξ
[]
δ (κ1)

!
(δ(ϑ)− δ(κ1))

]
.

(For more details, see [10, Theorem 3]).

Lemma 2.4 ([12]). Let ζ,κ > 0, and ξ ∈ L1(Θ,R). Then,

Iζ;δκ1
+Iκ;δ

κ1
+ξ(ϑ) = Iζ+κ;δ

κ1
+ ξ(ϑ), a.e. ϑ ∈ Θ.

If ξ ∈ C(Θ,R), then Iζ;δκ1
+Iκ;δ

κ1
+ξ(ϑ) = Iζ+κ;δ

κ1
+ ξ(ϑ), ϑ ∈ Θ.

Next, we recall the property describing the composition rules for fractional δ-
integrals and δ-derivatives.

Lemma 2.5 ([12]). Let ζ > 0, The following holds:

• If ξ ∈ C(Θ,R), then

cDζ;δκ1
+Iζ;δκ1

+ξ(ϑ) = ξ(ϑ), ϑ ∈ Θ.
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• If ξ ∈ Cβ(Θ,R), β − 1 < ζ < β, then

Iζ;δκ1
+
cDζ;δκ1

+ξ(ϑ) = ξ(ϑ)−
β−1∑
=0

ξ
[]
δ (κ1)

!
[δ(ϑ)− δ(κ1)]


, ϑ ∈ Θ.

Lemma 2.6 ([12, 20]). Let ϑ > κ1, ζ ≥ 0, and κ > 0. Then

• Iζ;δκ1
+(δ(ϑ)− δ(κ1))κ−1 = Γ(κ)

Γ(κ+ζ) (δ(ϑ)− δ(κ1))κ+ζ−1,

• cDζ;δκ1
+(δ(ϑ)− δ(κ1))κ−1 = Γ(κ)

Γ(κ−ζ) (δ(ϑ)− δ(κ1))κ−ζ−1,

• cDζ;δκ1
+(δ(ϑ)− δ(κ1)) = 0, for all  ∈ {0, . . . , β − 1}, β ∈ N.

Now, we give the definitions of lower and upper solutions of problem (1.1).

Definition 2.7. A function ξ0 ∈ C(Θ,R) is called a lower solution of problem (1.1), if
it satisfies {(

cDζ+1;δ
κ1

+ + λ cDζ;δκ1
+

)
ξ0(ϑ) ≤ Ψ(ϑ, ξ0(ϑ)), ϑ ∈ (κ1, κ2],

Φ(ξ0(κ1), ξ0(κ2)) ≤ 0, ξ′0(κ1) = 0.
(2.4)

Definition 2.8. σ0 ∈ C(Θ,R) is an upper solution of problem (1.1), if it satisfies{(
cDζ+1;δ

κ1
+ + λ cDζ;δκ1

+

)
σ0(ϑ) ≥ Ψ(ϑ, σ0(ϑ)), ϑ ∈ (κ1, κ2],

Φ(σ0(κ1), σ0(κ2)) ≥ 0, σ′0(κ1) = 0.
(2.5)

Lemma 2.9. For any h ∈ C(Θ,R), the unique solution of the following sequential
fractional differential equation,(

cDζ+1;δ
κ1

+ + λ cDζ;δκ1
+

)
ξ(ϑ) = h(ϑ), ϑ ∈ Θ = [κ1, κ2], (2.6)

supplemented with the initial conditions

ξ(κ1) = ξκ1
, ξ′(κ1) = 0, (2.7)

is given by

ξ(ϑ) = ξκ1 +

∫ ϑ

κ1

δ′(%)e−λ(δ(ϑ)−δ(%))
(∫ %

κ1

δ′(r)(δ(%)− δ(r))ζ−1

Γ(ζ)
h(r)dr

)
d%. (2.8)

Proof. Applying the δ–Riemann–Liouville fractional integral of order ζ to both sides
of (2.6) and using Lemma 2.5, we get

ξ
[1]
δ (ϑ) + λξ(ϑ) = Iζ;δκ1

+h(ϑ) + c0, c0 ∈ R.

Using the notation of ξ
[1]
δ given by Eq (2.2) we obtain

ξ′(ϑ) + δ′(ϑ)λξ(ϑ) = δ′(ϑ)
(
Iζ;δκ1

+h(ϑ) + c0
)
. (2.9)

By multiplying eλ(δ(ϑ)−δ(κ1)) to both sides of (2.9), we can write(
ξ(ϑ)eλ(δ(ϑ)−δ(κ1))

)′
= δ′(ϑ)eλ(δ(ϑ)−δ(κ1))Iζ;δκ1

+h(ϑ) + c0δ
′(ϑ)eλ(δ(ϑ)−δ(κ1)).



Caputo sequential fractional differential equations 557

Integrating from κ1 to ϑ, we have

ξ(ϑ) = c1e
−λ(δ(ϑ)−δ(κ1)) +

c0
λ

+

∫ ϑ

κ1

δ′(%)e−λ(δ(ϑ)−δ(%))Iζ;δκ1
+h(%)d%, (2.10)

where c1 is an arbitrary constant. Differentiating (2.10), we obtain

ξ′(ϑ) = −λc1δ′(ϑ)e−λ(δ(ϑ)−δ(κ1)) + δ′(ϑ)Iζ;δκ1
+h(ϑ)

− λδ′(ϑ)

∫ ϑ

κ1

δ′(%)e−λ(δ(ϑ)−δ(%))Iζ;δκ1
+h(%)d%.

(2.11)

Using the initial conditions given by equation (2.7) together with equations (2.10)
and (2.11), we obtain

c0 = λξκ1
, c1 = 0.

Substituting the value of c0, c1 in (2.10) we get (2.8). The converse of the lemma
follows by direct computation. This completes the proof. �

Now consider the following linear fractional initial value problem.

Lemma 2.10. Let 0 < ζ ≤ 1 and p, q ∈ C(Θ,R). Then the following linear fractional
initial value problem{(

cDζ+1;δ
κ1

+ + λ cDζ;δκ1
+

)
ξ(ϑ)− p(ϑ)ξ(ϑ) = q(ϑ), ϑ ∈ Θ := [κ1, κ2],

ξ(κ1) = ξκ1 , ξ′(κ1) = 0,
(2.12)

has a unique solution ξ ∈ C(Θ,R), provided that

‖p‖ < λΓ(ζ + 1)

(δ(κ2)− δ(κ1))ζ
. (2.13)

Proof. It follows from Lemma 2.9 that problem (2.12) is equivalent to the following
integral equation:

ξ(ϑ) = ξκ1
+

∫ ϑ

κ1

δ′(%)e−λ(δ(ϑ)−δ(%))

×
(∫ %

κ1

δ′(r)(δ(%)− δ(r))ζ−1

Γ(ζ)

(
p(r)ξ(r) + q(r)

)
dr

)
d%.

Define the operator ℵ : C(Θ,R) −→ C(Θ,R) as follows

ℵx(ϑ) = ξκ1
+

∫ ϑ

κ1

δ′(%)e−λ(δ(ϑ)−δ(%))

×
(∫ %

κ1

δ′(r)(δ(%)− δ(r))ζ−1

Γ(ζ)

(
p(r)ξ(r) + q(r)

)
dr

)
d%, ϑ ∈ Θ.

Now, we have to show that the operator ℵ has a unique fixed point. To do this, we
will prove that ℵ is a contraction map.
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Let ξ, σ ∈ C(Θ,R) and ϑ ∈ [κ1, κ2]. Then, we have

|ℵx(ϑ)− ℵy(ϑ)| ≤
∫ ϑ

κ1

δ′(%)e−λ(δ(ϑ)−δ(%))

×
(∫ %

κ1

δ′(r)(δ(%)− δ(r))ζ−1

Γ(ζ)
|p(r)||ξ(r)− σ(r)|dr

)
d%

≤ (δ(κ2)− δ(κ1))ζ

Γ(ζ + 1)
‖p‖‖ξ − σ‖

∫ ϑ

κ1

δ′(%)e−λ(δ(ϑ)−δ(%))d%

≤ (δ(κ2)− δ(κ1))ζ

λΓ(ζ + 1)
‖p‖‖ξ − σ‖.

By (2.13) it follows that the operator ℵ is a contraction. Consequently, by Banach’s
fixed point theorem, the operator ℵ has a unique fixed point. That is, problem (2.12)
has a unique solution. This completes the proof. �

The following result will play a very important role in this paper.

Lemma 2.11 (Comparison result). Assume that p ∈ C(Θ,R∗+) and satisfies (2.13). If
θ ∈ C(Θ,R) satisfies the following inequalities{(

cDζ+1;δ
κ1

+ + λ cDζ;δκ1
+

)
θ(ϑ) ≥ p(ϑ)θ(ϑ), ϑ ∈ Θ := [κ1, κ2],

θ(κ1) ≥ 0, θ′(κ1) = 0,
(2.14)

then θ(ϑ) ≥ 0 on [κ1, κ2].

Proof. Let (
cDζ+1;δ

κ1
+ + λ cDζ;δκ1

+

)
θ(ϑ)− p(ϑ)θ(ϑ) = q(ϑ),

θ(κ1) = ξκ1
and θ′(κ1) = 0.

We know that
q(ϑ) ≥ 0, ξκ1

≥ 0.

Suppose that the inequality θ(ϑ) ≥ 0, ϑ ∈ [κ1, κ2] is not true. It means that there
exists at least a ϑ0 ∈ [κ1, κ2] such that θ(ϑ0) < 0. Without loss of generality, we
assume θ(ϑ0) = minϑ∈[κ1,κ2] θ(ϑ). Then by Lemma 2.10 we have

θ(ϑ) = ξκ1
+

∫ ϑ

κ1

δ′(%)e−λ(δ(ϑ)−δ(%))

×
(∫ %

κ1

δ′(r)(δ(%)− δ(r))ζ−1

Γ(ζ)

(
p(r)θ(r) + q(r)

)
dr

)
d%

≥ θ(ϑ0)

∫ ϑ

κ1

δ′(%)e−λ(δ(ϑ)−δ(%))

×
(∫ %

κ1

δ′(r)(δ(%)− δ(r))ζ−1

Γ(ζ)
p(r)dr

)
d%.

For ϑ = ϑ0, we can get

θ(ϑ0) ≥ θ(ϑ0)

∫ ϑ0

κ1

δ′(%)e−λ(δ(ϑ0)−δ(%))
(∫ %

κ1

δ′(r)(δ(%)− δ(r))ζ−1

Γ(ζ)
p(r)dr

)
d%.
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Therefore, keeping in mind that θ(ϑ0) < 0, we have

1 ≤
∫ ϑ0

κ1

δ′(%)e−λ(δ(ϑ0)−δ(%))
(∫ %

κ1

δ′(r)(δ(%)− δ(r))ζ−1

Γ(ζ)
p(r)dr

)
d%.

Hence,

‖p‖ ≥ λΓ(ζ + 1)

(δ(κ2)− δ(κ1))ζ
,

which is in contradiction to (2.13). Hence, θ(ϑ) ≥ 0 for all ϑ ∈ [κ1, κ2]. �

3. Main results

In this paper, we will apply the monotone iterative method to present a result
on the existence of the solution of problem (1.1).

Theorem 3.1. Let the function Ψ ∈ C(Θ× R,R). In addition assume that:

(H1) There exist ξ0, σ0 ∈ C(Θ,R) such that ξ0 and σ0 are lower and upper solutions
of problem (1.1), respectively, with ξ0(ϑ) ≤ σ0(ϑ), ϑ ∈ Θ.

(H2) There exists p ∈ C(Θ,R+) satisfies (2.13) such that

Ψ(ϑ,$2)−Ψ(ϑ,$1) ≥ p(ϑ)($2 −$1) for ξ0 ≤ $1 ≤ $2 ≤ σ0.

(H3) There exist k1 > 0 and k2 ≥ 0, where for ξ0(κ1) ≤ u1 ≤ u2 ≤ σ0(κ1), ξ0(κ2) ≤
v1 ≤ v2 ≤ σ0(κ2),

Φ(u2, v2)− Φ(u1, v1) ≤ k1(u2 − u1)− k2(v2 − v1).

Consequently, there exist monotone iterative sequences {ξβ} and {σβ}, which converge
uniformly on Θ to the extremal solutions of (1.1) in [ξ0, σ0], where

[ξ0, σ0] =
{
$ ∈ C(Θ,R) : ξ0(ϑ) ≤ $(ϑ) ≤ σ0(ϑ), ϑ ∈ Θ

}
.

Proof. First, for any ξ0, σ0 ∈ C(Θ,R), consider:{(
cDζ+1;δ

κ1
+ + λ cDζ;δκ1

+

)
ξβ+1(ϑ) = Ψ

(
ϑ, ξn(ϑ)

)
+ p(ϑ)

(
ξβ+1(ϑ)− ξβ(ϑ)

)
,

ξβ+1(κ1) = ξβ(κ1)− 1
k1 Φ

(
ξβ(κ1), ξβ(κ2)

)
, ξ′β+1(κ1) = 0,

(3.1)

and{(
cDζ+1;δ

κ1
+ + λ cDζ;δκ1

+

)
σβ+1(ϑ) = Ψ

(
ϑ, σn(ϑ)

)
+ p(ϑ)

(
σβ+1(ϑ)− σn(ϑ)

)
,

σβ+1(κ1) = σβ(κ1)− 1
k1 Φ

(
σβ(κ1), σβ(κ2)

)
, σ′β+1(κ1) = 0.

(3.2)

By Lemma 2.10, we know that (3.1) and (3.2) have a unique solutions in C(Θ,R).
We will divide the proof in the following steps.
Step 1: We prove that ξβ , σβ(β ≥ 1) are lower and upper solutions of problem (1.1),
respectively and

ξ0(ϑ) ≤ ξ1(ϑ) ≤ · · · ≤ ξβ(ϑ) ≤ · · · ≤ σβ(ϑ) ≤ · · · ≤ σ1(ϑ) ≤ σ0(ϑ), ϑ ∈ Θ. (3.3)

First, we prove that

ξ0(ϑ) ≤ ξ1(ϑ) ≤ σ1(ϑ) ≤ σ0(ϑ), ϑ ∈ Θ. (3.4)
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Set θ(ϑ) = ξ1(ϑ)− ξ0(ϑ). From (3.1) and Definition 2.7, we obtain(
cDζ+1;δ

κ1
+ + λ cDζ;δκ1

+

)
θ(ϑ) = Ψ

(
ϑ, ξ0(ϑ)

)
−
(
cDζ+1;δ

κ1
+ + λ cDζ;δκ1

+

)
ξ0(ϑ)

+ p(ϑ)θ(ϑ)

≥ p(ϑ)θ(ϑ).

Again, since θ′(κ1) = 0 and

θ(κ1) = − 1

k1
Φ
(
ξ0(κ1), ξ0(κ2)

)
≥ 0.

By Lemma 2.11, θ(ϑ) ≥ 0, for ϑ ∈ Θ. That is, ξ0(ϑ) ≤ ξ1(ϑ). Also, we have

σ1(ϑ) ≤ σ0(ϑ), ϑ ∈ Θ.

Now, let θ(ϑ) = σ1(ϑ)− ξ1(ϑ). From (3.1), (3.2) and (H2), we get(
cDζ+1;δ

κ1
+ + λ cDζ;δκ1

+

)
θ(ϑ) = Ψ

(
ϑ, σ0(ϑ)

)
−Ψ

(
ϑ, ξ0(ϑ)

)
+ p(ϑ)

(
σ1(ϑ)− σ0(ϑ)

)
− p(ϑ)

(
ξ1(ϑ)− ξ0(ϑ)

)
≥ p(ϑ)

(
σ0(ϑ)− ξ0(ϑ)

)
+ p(ϑ)

(
σ1(ϑ)− σ0(ϑ)

)
− p(ϑ)

(
ξ1(ϑ)− ξ0(ϑ)

)
= p(ϑ)θ(ϑ).

Since, θ′(κ1) = 0 and

θ(κ1) =
(
σ0(κ1)− ξ0(κ1)

)
− 1

k1

(
Φ
(
σ0(κ1), σ0(κ2)

)
− Φ

(
ξ0(κ1), ξ0(κ2)

))
≥ k2

k1

(
σ0(κ2)− ξ0(κ2)

)
≥ 0.

By Lemma 2.11, we get ξ1(ϑ) ≤ σ1(ϑ), ϑ ∈ Θ.
Next, we prove that ξ1(ϑ), σ1(ϑ) are lower and upper solutions of (1.1), respec-

tively. Since ξ0 and σ0 are lower and upper solutions of (1.1), by (H2), it follows
that(

cDζ+1;δ
κ1

+ + λ cDζ;δκ1
+

)
ξ1(ϑ) = Ψ

(
ϑ, ξ0(ϑ)

)
+ p(ϑ)

(
ξ1(ϑ)− ξ0(ϑ)

)
≤ Ψ

(
ϑ, ξ1(ϑ)

)
,

also ξ′1(κ1) = 0 and

0 = k1

(
ξ1(κ1)− ξ0(κ1)

)
+ Φ

(
ξ0(κ1), ξ0(κ2)

)
≥ Φ

(
ξ1(κ1), ξ1(κ2)

)
+ k2

(
ξ1(κ2)− ξ0(κ2)

)
.

Thus,

Φ(ξ1(κ1), ξ1(κ2)) ≤ 0.

Therefore, ξ1(ϑ) is a lower solution of (1.1). Also, we get that σ1(ϑ) is an upper
solution of (1.1).

By induction, we demonstrate that ξβ(ϑ), σβ(ϑ), (β ≥ 1) are lower and upper
solutions of problem (1.1), respectively and the following relation holds

ξ0(ϑ) ≤ ξ1(ϑ) ≤ · · · ≤ ξβ(ϑ) ≤ · · · ≤ σβ(ϑ) ≤ · · · ≤ σ1(ϑ) ≤ σ0(ϑ), ϑ ∈ Θ.
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Step 2: The sequences {ξβ(ϑ)}, {σβ(ϑ)} uniformly converge to their limit functions
ξ∗(ϑ), σ∗(ϑ).
Note that {ξβ(ϑ)} is monotone nondecreasing and is bounded from above by σ0(ϑ).
Also, since the sequence {σβ(ϑ)} is monotone nonincreasing and is bounded from
below by ξ0(ϑ), thus the pointwise limits ξ∗ and σ∗ exist. And, since {ξβ(ϑ)}, {σβ(ϑ)}
are sequences of continuous functions defined on [κ1, κ2], hence by Dini’s theorem [30],
the convergence is uniform. This is

lim
β→∞

ξβ(ϑ) = ξ∗(ϑ) and lim
β→∞

σβ(ϑ) = σ∗(ϑ),

uniformly on ϑ ∈ Θ and the limit functions ξ∗, σ∗ satisfy problem (1.1). Furthermore,
ξ∗ and σ∗ satisfy the relation

ξ0 ≤ ξ1 ≤ · · · ≤ ξβ ≤ ξ∗ ≤ σ∗ ≤ · · · ≤ σβ ≤ · · · ≤ σ1 ≤ σ0.

Step 3: ξ∗ and σ∗ are extremal solutions of problem (1.1) in [ξ0, σ0].
Let $ ∈ [ξ0, σ0] be any solution of (1.1). We assume that the following relation holds
for some β ∈ N:

ξβ(ϑ) ≤ $(ϑ) ≤ σβ(ϑ), ϑ ∈ Θ. (3.5)

Let θ(ϑ) = $(ϑ)− ξβ+1(ϑ). We have(
cDζ+1;δ

κ1
+ + λ cDζ;δκ1

+

)
θ(ϑ) = Ψ

(
ϑ,$(ϑ)

)
−Ψ

(
ϑ, ξβ(ϑ)

)
− p(ϑ)

(
ξβ+1(ϑ)− ξβ(ϑ)

)
≥ p(ϑ)

(
$(ϑ)− ξβ(ϑ)

)
− p(ϑ)

(
ξβ+1(ϑ)− ξβ(ϑ)

)
= p(ϑ)θ(ϑ).

(3.6)

Furthermore, θ′(κ1) = 0 and

0 = Φ
(
$(κ1), $(κ2)

)
− Φ

(
ξβ(κ1), ξβ(κ2)

)
+ k1

(
ξβ+1(κ1)− ξβ(κ1)

)
≥ k1

(
$(κ1)− ξβ(κ1)

)
− k2

(
$(κ2)− ξβ(κ2)

)
+ k1

(
ξβ+1(κ1)− ξβ(κ1)

)
= k1θ(κ1)− k2

(
$(κ2)− ξβ(κ2)

)
.

That is,

θ(κ1) ≥ k2

k1

(
$(κ2)− ξβ(κ2)

)
≥ 0.

By Lemma 2.11, we obtain θ(ϑ) ≥ 0, ϑ ∈ Θ, which means

ξβ+1(ϑ) ≤ $(ϑ), ϑ ∈ Θ.

Using the same method, we can show that

$(ϑ) ≤ σβ+1(ϑ), ϑ ∈ Θ.

Hence, we have
ξβ+1(ϑ) ≤ $(ϑ) ≤ σβ+1(ϑ), ϑ ∈ Θ.

Therefore, (3.5) holds on Θ for all β ∈ N. Taking the limit as β → ∞ on (3.5), we
obtain

ξ∗ ≤ $ ≤ σ∗.
Consequently, ξ∗ and σ∗ are the extremal solutions of (1.1) in [ξ∗, σ∗]. �
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Example 3.2. Consider the following boundary value problem:{(
cD

3
2

κ1
+ + 2√

π
cD

1
2

κ1
+

)
ξ(ϑ) = sin (ϑ)(ξ − 1) + e−ϑ, ϑ ∈ Θ := [0, 1],

ξ(0) = 1, ξ′(0) = 0.
(3.7)

Note that, this problem is a particular case of BVP (1.1), where

ζ =
1

2
, λ =

2√
π
, δ(ϑ) = ϑ,

Ψ(ϑ, ξ) = sin (ϑ)(ξ − 1) + e−ϑ, Φ(ξ, σ) = ξ − 1.

Obviously, Ψ ∈ C([0, 1]×R,R),Φ ∈ C(R×R,R). On the other hand, taking ξ0(ϑ) = 1

and σ0(ϑ) = 1 + ϑ
√
ϑ, it is not difficult to verify that ξ0, σ0 are lower and upper

solutions of (3.7), respectively, and ξ0 ≤ σ0. So condition (H1) holds.
Moreover, for ξ0 ≤ ξ ≤ σ ≤ σ0 we have

Ψ(ϑ, σ)−Ψ(ϑ, ξ) ≥ sinϑ(σ − ξ). (3.8)

And if ξ0(κ1) ≤ u1 ≤ u2 ≤ σ0(κ1), ξ0(κ2) ≤ v1 ≤ v2 ≤ σ0(κ2), we have

Φ(u2, v2)− Φ(u1, v1) ≤ (u2 − u1). (3.9)

In view of (3.8) and (3.9), we can choose p(ϑ) = sinϑ,k1 = 1 and k2 = 0 in Theorem
3.1. At last, by a simple computation, we have

(δ(κ2)− δ(κ1))ζ

λΓ(ζ + 1)
‖p‖ < 1.

Hence, all conditions of Theorem 3.1 are satisfied and consequently the problem (3.7)
has extremal solutions on [ξ0, σ0].

References

[1] Abbas, M.I., On the nonlinear sequential ψ–Hilfer fractional differential equations, In-
ternational Journal of Mathematical Analysis, 14(2020), 77–90.

[2] Abbas, S., Benchohra, M., Graef, J.R., Henderson, J., Implicit Fractional Differential
and Integral Equations: Existence and Stability, De Gruyter, Berlin, 2018.
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[4] Abbas, S., Benchohra, M., N’Guérékata, G.M., Topics in Fractional Differential Equa-
tions, Dev. Math., 27, Springer, New York, 2015.

[5] Abdo, M.S., Panchal, S.K., Saeed, A.M., Fractional boundary value problem with ψ-
Caputo fractional derivative, Proc. Indian Acad. Sci. (Math. Sci), 65(2019), 129.

[6] Agarwal, R.P., Benchohra, M., Hamani, S., A survey on existence results for boundary
value problems of nonlinear fractional differential equations and inclusions, Acta Appl.
Math., 109(2010), 973–1033.

[7] Aghajani, A., Pourhadi, E., Trujillo, J.J., Application of measure of noncompactness to
a Cauchy problem for fractional differential equations in Banach spaces, Fract. Calc.
Appl. Anal., 16(2013), 962–977.



Caputo sequential fractional differential equations 563

[8] Ahmad, B., Alghamdi, N., Alsaedi, A., Ntouyas, S.K., Multi-term fractional differential
equations with nonlocal boundary conditions, Open Math., 16(2018), 1519–1536.

[9] Ahmad, B., Nieto, J.J., Boundary value problems for a class of sequential integrodif-
ferential equations of fractional order, Journal of Function Spaces and Applications,
2013(2013), Article ID 149659, 8 pages.

[10] Almeida, R., A Caputo fractional derivative of a function with respect to another func-
tion, Commun. Nonlinear Sci. Numer. Simul., 44(2017), 460–481.

[11] Almeida, R., Fractional differential equations with mixed boundary conditions, Bull.
Malays. Math. Sci. Soc., 42(2019), 1687–1697.

[12] Almeida, R., Malinowska, A.B., Monteiro, M.T.T., Fractional differential equations with
a Caputo derivative with respect to a kernel function and their applications, Math. Meth.
Appl. Sci., 41(2018), 336–352.

[13] Al-Refai, M., Ali Hajji, M., Monotone iterative sequences for nonlinear boundary value
problems of fractional order, Nonlinear Anal., 74(2011), 3531–3539.

[14] Baitiche, Z., Guerbati, K., Benchohra, M., Zhou, Y., Solvability of fractional multi-point
BVP with nonlinear growth at resonance, J. Contemp. Math. Anal., 55(2020), 126-142.

[15] Bouriah, S., Salim, A., Benchohra, M., On nonlinear implicit neutral generalized Hil-
fer fractional differential equations with terminal conditions and delay, Topol. Algebra
Appl., 10(2022), 77-93.

[16] Chen, C., Bohner, M., Jia, B., Method of upper and lower solutions for nonlinear Caputo
fractional difference equations and its applications, Fract. Calc. Appl. Anal., 22(2019),
1307–1320.

[17] Derbazi, C., Hammouche, H., Salim, A., Benchohra, M., Measure of noncompactness
and fractional hybrid differential equations with hybrid conditions, Differ. Equ. Appl.,
14(2022), 145-161.

[18] Fazli, H., Sun, H., Aghchi, S., Existence of extremal solutions of fractional Langevin
equation involving nonlinear boundary conditions, International Journal of Computer
Mathematics, (2020).

[19] Hilfer, R., Applications of Fractional Calculus in Physics, World Scientific, Singapore,
2000.

[20] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J., Theory and Applications of Fractional
Differential Equations, vol. 204 of North-Holland Mathematics Sudies Elsevier Science
B.V. Amsterdam the Netherlands, 2006.

[21] Kucche, K.D., Mali, A., Vanterler da C. Sousa, J., On the nonlinear Ψ-Hilfer fractional
differential equations, Comput. Appl. Math., 38(2019), no. 2, Art. 73, 25 pp.

[22] Ladde, G.S., Lakshmikantham, V., Vatsala, A.S., Monotone Iterative Techniques for
Nonlinear Differential Equations, Pitman, Boston, 1985.

[23] Lazreg, J.E., Benchohra, M., Salim, A., Existence and Ulam stability of -generalized
ψ-Hilfer fractional problem, J. Innov. Appl. Math. Comput. Sci., 2(2022), 1-13.

[24] Lin, X., Zhao, Z., Iterative technique for a third-order differential equation with three-
point nonlinear boundary value conditions, Electron. J. Qual. Theory Differ. Equ., 2016,
Paper No. 12, 10 pp.

[25] Matar, M.M., Solution of sequential Hadamard fractional differential equations by vari-
ation of parameter technique, Abstr. Appl. Anal., 2018(2018), Article ID 9605353, 7
pages.



564 Z. Baitiche, C. Derbazi, A. Salim and M. Benchohra

[26] Miller, K.S., Ross, B., An Introduction to Fractional Calculus and Fractional Differential
Equations, Wiley, New YorK, 1993.

[27] Nieto, J.J., An abstract monotone iterative technique, Nonlinear Analysis, Theory, Meth-
ods and Applications, 28(1997), 1923-1933.

[28] Oldham, K.B., Fractional differential equations in electrochemistry, Adv. Eng. Softw.,
41(2010), 9–12.

[29] Podlubny, I., Fractional Differential Equations, Academic Press, San Diego, 1999.

[30] Royden, H.L., Real Analysis, Macmillan Publishing Company, New York, NY, USA, 3rd
edition, 1988.

[31] Sabatier, J., Agrawal, O.P., Machado, J.A.T., Advances in Fractional Calculus – Theo-
retical Developments and Applications in Physics and Engineering, Dordrecht: Springer,
2007.

[32] Salim, A., Ahmad, B., Benchohra, M., Lazreg, J.E., Boundary value problem for hybrid
generalized Hilfer fractional differential equations, Differ. Equ. Appl., 14(2022), 379-391.

[33] Salim, A., Benchohra, M., Graef, J.R., Lazreg, J.E., Initial value problem for hybrid ψ-
Hilfer fractional implicit differential equations, J. Fixed Point Theory Appl., 24(2022),
14 pp.

[34] Salim, A., Benchohra, M., Lazreg, J.E., Nonlocal k-generalized ψ-Hilfer impulsive initial
value problem with retarded and advanced arguments, Appl. Anal. Optim., 6(2022), 21-
47.

[35] Salim, A., Lazreg, J.E., Ahmad, B., Benchohra, M., Nieto, J.J., A study on k-generalized
ψ-Hilfer derivative operator, Vietnam J. Math., (2022).

[36] Tarasov, V.E., Fractional Dynamics: Application of Fractional Calculus to Dynamics of
Particles, Fields and Media, Springer, Heidelberg & Higher Education Press, Beijing,
2010.

[37] Vanterler da C. Sousa, J., Capelas de Oliveira, E., On the ψ–Hilfer fractional derivative,
Commun. Nonlinear Sci. Numer. Simul., 60(2018), 72-91.

[38] Wang, G., Sudsutad, W., Zhang, L., Tariboon, J., Monotone iterative technique for a
nonlinear fractional q-difference equation of Caputo type, Adv. Difference Equ., 2016,
Paper No. 211, 11 pp.

[39] Yang, W., Monotone iterative technique for a coupled system of nonlinear Hadamard
fractional differential equations, J. Appl. Math. Comput., 59(2019), no. 1-2, 585–596.

[40] Zhang, S., Monotone iterative method for initial value problem involving Riemann-
Liouville fractional derivatives, Nonlinear Anal., 71(2009), no. 5-6, 2087–2093.

[41] Zhou, Y., Basic Theory of Fractional Differential Equations, World Scientific, Singapore,
2014.

[42] Zhou, Y., Fractional Evolution Equations and Inclusions: Analysis and Control, Elsevier,
Acad. Press, 2016.

Zidane Baitiche
Laboratoire Equations Différentielles,
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New results on asymptotic stability of
time-varying nonlinear systems with applications

Abir Kicha, Hanen Damak and Mohamed Ali Hammami

Abstract. In this paper, we present a converse Lyapunov theorem for the new
notion of global generalized practical uniform h-stability of nonlinear systems
of differential equations. We derive some sufficient conditions which guarantee
the global generalized practical uniform h-stability of time-varying perturbed
systems. In addition, these results are used to study the practical h-stability of
models of infectious diseases and vaccination.
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1. Introduction

The most important stability concept used in the qualitative theory of differ-
ential equations is the uniform exponential stability. In some situations, particularly,
in the non-autonomous setting, the notion of uniform exponential stability is to re-
strictive and it is important to look for a more general behavior. In the last century,
Manual Pinto (see [21, 20]) introduced a new notion of stability called h-stability for
nonlinear differential equations on the Euclidean space Rn, with the intention of ob-
taining results about stability for a weakly stable system (at least, weaker than those
given exponential asymptotic stability) under some perturbations. Some important
properties about h-stability for various differential systems and nonlinear differential
systems are given. In [4], the authors investigated the h-stability properties for non-
linear differential systems using the notion of t∞-similarity and Lyapunov functions.
Goo and al. studied h-stability for the nonlinear Volterra integro-differential system
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(see [10]) and for the linear perturbed Volterra integro-differential systems (see [9]).
An interesting and fruitful technique that gained increasing significance and has given
decisive impetus for modern development of stability theory of differential equations
is Lyapunov’s method. The strength of this technique is that it is possible to ascertain
stability without solving the underlying differential equation. This method states that
if one can find an appropriate Lyapunov function, then the system has some stability
property (see [6, 18]). However, a system might be stable or asymptotically stable in
theory, nevertheless, it is actually unstable in practice because the stable domain or
the domain of the desired attractor is not large enough. Thus, from an engineering
point of view we need a notion of stability that more suitable in several situations
than Lyapunov stability. Such a concept is called practical stability (see [2, 5]). The
novelty of this paper is to present a new notion of stability called generalized prac-
tical uniform h-stability as an extension of the generalized exponential asymptotic
stability in [17] and practical uniform h-stability in [6, 7, 8]. In recent years, mathe-
matical models of infectious diseases have been studied by a numbers of authors, see
[11, 12, 13, 15, 19, 22] and many others. For instance, Ito in [12] considered a variety
of models of infectious diseases and vaccination through the language of iISS and ISS.
The method of Lyapunov functions is widely used to establish global stability results
for biological models (see [12, 13, 15]).
The remainder of this work is organized as follows. In Section 2, we recall a new
concept of stability and some tools used in the proofs. In Section 3, under growth
conditions on the perturbed term, we investigate the global practical uniform h-
stability of a nonlinear perturbed system using the Nonlinear Gronwall Inequality.
In addition, we propose sufficient conditions with the extended of a Lyapunov func-
tion to indicate the global generalized practical uniform h-stability of the nonlinear
system. The main result is provided in Section 4 in which the generalization of con-
verse Lyapunov theorem is established by requiring the existence of a continuously
non-differentiable Lyapunov function that satisfying certain properties. Moreover, a
practical approach is obtained of time-varying dynamical perturbed system using the
indirect Lyapunov’s method, the comparison principle and the Generalized Gronwall-
Bellman Inequality. However, Section 5 employs the notion of practical h-stability to
evaluate robustness of infectious diseases with respect to integrable perturbation of
the newborn/immigration rate and time-varying death rate. Finally, our conclusion
is proposed in Section 6.

2. Preliminaries

The notation used throughout this note is standard. R+ indicates the set of
non-negative real numbers, Rn denotes the n-dimensional Euclidean space and ‖ · ‖
stands for its Euclidean vector norm. Also, we denote by:

• I, J ⊂ R are two intervals that are not empty and not reduce to a singleton.
• BC(I, J) is the space of continuous bounded functions on I to J endowed with

the norm ‖f‖∞ = sup
t∈I
|f(t)|.

• C(I, J) is the space of continuous functions on I to J.
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• C1(I, J) is the space of continuous differentiable functions on I to J.

We consider the nonlinear non-autonomous differential system:

ẋ = f(t, x), x(t0) = x0, t ≥ t0 ≥ 0, (2.1)

where t ∈ R+ is the time, x ∈ Rn is the state and f ∈ C(R+ × Rn,Rn) is locally
Lipschitz in x, uniformly in t.
Let x(t) = x(t, t0, x0) be denoted by the unique solution of (2.1) through (t0, x0) ∈
R+ × Rn.

We assume that the Jacobian matrix fx =

[
∂f

∂x

]
exists and continuous on R+ × Rn.

We consider also the associated variational system:

ż(t) = fx(t, x(t, t0, x0))z(t), z(t0) = z0, t ≥ t0 ≥ 0. (2.2)

Theorem 2.1. (See [1]) If f is differentiable in Rn for t ∈ R+ and x(t, t0, x0) is in Rn
for t ∈ R+, then x(t, t0, x0) is differentiable with respect to x0 and

R(t, t0, x0) =
∂

∂x0
x(t, t0, x0)

is the fundamental matrix of solutions of the variational system (2.2), such that
R(t0, t0, x0) = I is the identity matrix which is independent of x0.

A precise definition of the global generalized practical uniform h-stability will
be given as follows.

Definition 2.2. Let h ∈ BC(R+,R?+).

• System (2.1) is called generalized practically uniformly h-stable if there exist
η ≥ 0 and a function K ∈ BC(R+,R?+), such that for any initial state x0, with
‖x0‖ ≤ r and for all t ≥ 0, we have

‖x(t)‖ ≤ η +K(t0)‖x0‖h(t)h(t0)−1, ∀ t ≥ t0. (2.3)

• System (2.1) is said to be globally generalized practically uniformly h-stable if
the previous definition is satisfied for any initial state x0 ∈ Rn.

Here, h(t)−1 =
1

h(t)
·

Remark 2.3. Definition 2.2 generalizes the notions of h-stability (see [20]). More pre-
cisely, when η = 0 we obtained the definition of global generalized uniform h-stability.
Moreover, for η > 0 and for some special cases of h, the generalized practical uniform
h-stability coincides with known practical types of stability:

- If K(t) = c > 0, we say that the system (2.1) is globally practically uniformly
h-stable (see [6]).

- The practical uniform exponential stability is a particular case of generalized
practical h-stability by taking K(t) = c > 0 and h(t) = e−βt with β > 0 (see
[2]).

- If h(t) =
1

(1 + t)γ
with γ > 0, we say that the system (2.1) is generalized

practically uniformly polynomially stable (see [6]).
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We are now in position to present the following lemmas which are important
tools in the subsequent discussion.

Lemma 2.4. (See [16]) Assume that x(t, t0, x0) and x(t, t0, y0) be any two solutions of
system (2.1) through (t0, x0) ∈ R+×Rn and (t0, y0) ∈ R+×Rn, respectively, existing
for t ≥ t0, such that x0 and y0 belong to a convex subset D of Rn. Then,

x(t, t0, x0)−x(t, t0, y0) =

∫ 1

0

R
(
t, t0, x0+s(y0−x0)

)
ds(y0−x0), t ≥ t0 ≥ 0, (2.4)

where R(t, t0, x0) is the fundamental matrix solution of system (2.2).

Lemma 2.5. The variational system (2.2) is globally generalized uniformly h-stable if
and only if there exist functions K ∈ BC(R+,R?+) and h ∈ BC(R+,R?+), such that for
all x0 ∈ Rn and all t0 ∈ R+, we have

‖R(t, t0, x0)‖ ≤ K(t0)h(t)h(t0)−1, ∀ t ≥ t0.

Definition 2.6. (Lyapunov Functions)
We define the upper-right hand derivative Lyapunov functions of (2.1) as follows:

D+V(2.1)(t, x) = lim sup
T→0+

1

T

(
V
(
t+ T, x+ Tf(t, x)

)
− V (t, x)

)
,

for (t, x) ∈ R+ × Rn and for the solution x(t) = x(t, t0, x0) of (2.1),

D+V (t, x(t)) = lim sup
T→0+

1

T

(
V
(
t+ T, x(t+ T )

)
− V (t, x)

)
.

Lemma 2.7. Assume that the continuous function V : R+×Rn → R is Lipschitz in x
for a function K ∈ BC(R+,R?+), that is,∣∣∣V (t, x)− V (t, y)

∣∣∣ ≤ K(t)|x− y|, ∀ t ≥ 0, ∀ x, y ∈ Rn,

Then,

D+V(2.1)(t, x) = D+V (t, x(t)).

Proof. We have,

V (t+ T, x(t+ T ))− V (t, x) = V (t+ T, x+ Tf(t, x) + ◦(T ))− V (t, x)

=
(
V (t+ T, x+ Tf(t, x) + ◦(T ))−

V (t+ T, x+ Tf(t, x)
)

+
(
V (t+ T, x+ Tf(t, x))− V (t, x)

)
.

Since V (t, x) is Lipschitz in x for a continuous function K(t) > 0 for all t ∈ R+, one
easily sees that

V (t+ T, x+ Tf(t, x) + ◦(T ))− V (t+ T, x+ Tf(t, x)) = ◦(T ).
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Therefore, by Definition 2.6 we immediately deduce that

D+V (t, x(t)) = lim sup
T→0+

1

T

(
V
(
t+ T, x(t+ T )

)
− V (t, x)

)
= lim sup

T→0+

1

T

(
V
(
t+ T, x+ Tf(t, x)

)
− V (t, x)

)
= D+V(2.1)(t, x).

�

Remark 2.8. If V (t, x) ∈ C1(R+ × Rn,Rn), then

D+V(2.1)(t, x) = D+V (t, x(t)) = V̇(2.1)(t, x) =
∂V

∂t
(t, x) +

∂V

∂x
(t, x)f(t, x).

We use also the following lemmas to prove our results.

Lemma 2.9. (Nonlinear Gronwall Inequality)
Let µ : R+ → R be a continuous function that satisfies the integral inequality

µ(t) ≤ d+

∫ t

t0

b(s)µα(s)ds, d ≥ 0, 0 ≤ α < 1, t ≥ t0,

where b is a non-negative continuous function on R+. Then, we have

µ(t) ≤
(
d1−α + (1− α)

∫ t

t0

b(s)ds

) 1
1−α

, ∀ t ≥ t0.

Proof. Let,

$(t) = d+

∫ t

t0

b(s)$α(s)ds, 0 ≤ α < 1, t ≥ t0.

Then,

$̇(t) = b(t)$(t))α, $(t0) = d, ∀ t ≥ t0.
It is follows that,

$1−α(t0) = d1−α + (1− α)

∫ t

t0

b(s)ds.

Therefore,

$(t) ≤
(
d1−α + (1− α)

∫ t

t0

b(s)ds

) 1
1−α

.

�

Lemma 2.10. (Generalized Gronwall-Bellman Inequality) (See [23])
Let ρ, ϕ : R+ → R be continuous functions and µ : R+ → R+ is a function, such that

µ̇(t) ≤ ρ(t)µ(t) + ϕ(t), ∀ t ≥ t0.
Then, for all t0 ≥ 0, we have

µ(t) ≤ µ(t0) exp
(∫ t

t0

ρ(τ)dτ
)

+

∫ t

t0

exp
(∫ t

s

ρ(τ)dτ
)
ϕ(s)ds, ∀ t ≥ t0.
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3. Sufficient conditions for practical h-stability results

We start this section by studying the global practical uniform h-stability of a
perturbed system under sufficient conditions on the perturbed term using the Nonlin-
ear Gronwall Inequality. We need Alekseev formula to compare between the solutions
of system (2.1) and the solutions of the following perturbed nonlinear system:

ẏ = f(t, y) + p(t, y), y(t0) = y0, t ≥ t0 ≥ 0, (3.1)

where p ∈ C(R+ × Rn,Rn). Let y(t) = y(t, t0, y0) represent the solution of the per-
turbed system passing through the point (t0, y0) ∈ R+ × Rn.
The next lemma is a generalization to nonlinear system of the variation of constants
formula on account of Alekseev (see [3]).

Lemma 3.1. If y0 ∈ Rn, then for all t ≥ t0, x(t, t0, y0) ∈ Rn and y(t, t0, y0) ∈ Rn, we
have

y(t, t0, y0)− x(t, t0, y0) =

∫ t

t0

R(t, s, y(s))p(s, y(s, t0, y0))ds.

Let consider the following theorem.

Theorem 3.2. We consider the perturbed system (3.1) with the perturbation p ∈
C(R+ ×Rn,Rn) is locally Lipschitz in x. Let the origin be globally uniformly h-stable
of system (2.1) and z = 0 of system (2.2) is globally uniformly h-stable. Assume that
p(t, x) satisfies the following condition:

‖p(t, y)‖ ≤ ϑ(t)‖y‖α + ν(t), 0 ≤ α < 1, ∀ y ∈ Rn, ∀ t ≥ 0, (3.2)

where ϑ, ν are non-negative continuous functions on R+ and there exist positive
constants M1 and M2, such that∫ t

0

ϑ(s)h(s)−1ds ≤M1,

∫ t

0

ν(s)h(s)−1ds ≤M2, ∀ t ≥ 0. (3.3)

Then, the system (3.1) is globally practically uniformly h-stable.

Proof. Let y(t) = y(t, t0, y0) and x(t) = x(t, t0, y0) be solutions of systems (3.1) and
(2.1), respectively, then by Lemma 3.1, we have

y(t) = x(t) +

∫ t

t0

R(t, s, y(s))p(t, y(s))ds.

Thus, from the global uniform h-stability of system (2.1), there exists c > 0, such
that

‖y(t)‖ = c‖y0‖h(t)h(t0)−1 + ch(t)

∫ t

t0

ϑ(s)h(s)−1‖y(s)‖αds+ ch(t)

∫ t

t0

ν(s)h(s)−1ds.

Hence,

h(t)−1‖y(t)‖ ≤
(
c‖y0‖h(t0)−1 + cM2

)
+ c

∫ t

t0

ϑ(s)h(s)α−1
(
h(s)−1‖y(s)‖

)α
ds.
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Let, ρ(t) = h(t)−1‖y(t)‖, then

ρ(t) ≤
(
cρ(t0) + cM2

)
+ c

∫ t

t0

ϑ(s)h(s)α−1ρα(s)ds.

Applying the Nonlinear Gronwall Inequality and the fact that

(λ1 + λ2)r ≤ 2r−1(λr1 + λr2),

for all λ1, λ2 ≥ 0 and r ≥ 1, we get

ρ(t) ≤ 2
α

1−α
(
cρ(t0) + cM2

)
+ 2

α
1−α

(
cM1(1− α)‖h‖α∞

) 1
1−α

,

with ‖h‖∞ = sup
t≥0
{h(t)}. This yields, for all y0 ∈ Rn and all t ≥ t0 the solution of

system (3.1) satisfies:

‖y(t)‖ ≤ η + c1‖y0‖h(t)h(t0)−1,

with c1 = 2
α

1−α c and η = 2
α

1−α cM2‖h‖∞ + 2
α

1−α

(
cM1(1− α)‖h‖∞

) 1
1−α

.

Consequently, system (3.1) is globally practically uniformly h-stable. This completes
the proof. �

The stability properties of the solutions of nonlinear differential equations can
be studied using the Lyapunov functions and the theory of differential and integral
inequalities. This interesting and useful technique is called Lyapunov’s second method.
The following theorem proves the global generalized practical uniform h-stability of
solutions of system (2.1) by requiring the existence of a continuously non-differentiable
Lyapunov function that satisfying sufficient conditions.

Theorem 3.3. Suppose that h is a positive bounded continuously differentiable function
on R+. Furthermore, assume that there exist a > 0, b ≥ 1, % ≥ 0, a function K ∈
BC(R+,R?+) and a continuously non-differentiable Lyapunov function V (t, x) defined
on R+ × Rn, such that the following conditions are hold.

1. V (t, x) is Lipschitzian in x for a function K ∈ BC(R+,R?+),

2. a‖x‖b ≤ V (t, x) ≤ K(t)‖x‖b, (t, x) ∈ R+ × Rn,

3. D+V(2.1)(t, x) ≤ h′(t)h(t)−1V (t, x)− %h′(t)h(t)−1, (t, x) ∈ R+ × Rn.

Then, the system (2.1) is globally generalized practically uniformly h
1
b -stable.

Proof. One has,

D+V(2.1)(t, x) ≤ h′(t)h(t)−1V (t, x)− %h′(t)h(t)−1.

We apply the comparison principle (see [14]), where

u̇(t) = h′(t)h(t)−1u(t)− %h′(t)h(t)−1, u(t0) = u0, t ≥ t0 ≥ 0, (3.4)
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with V (t0, x0) ≤ u0 ≤ K(t0)‖x0‖b. Then, by using the Generalized Gronwall-Bellman
Inequality, the maximal solution of the scalar equation (3.4) is as follows:

u(t) ≤ u0h(t)h(t0)−1 − %
∫ t

t0

exp

(∫ t

s

h′(τ)h(τ)−1dτ

)
h′(s)h(s)−1ds

= u0h(t)h(t0)−1 − %h(t)

∫ t

t0

h′(s)(h(s)−1)2ds

≤ %+K(t0)‖x0‖bh(t)h(t0)−1.

Hence, for all x0 ∈ Rn and all t ≥ t0, we have

‖x(t)‖ ≤
(%
a

) 1
b

+

(
K(t0)

a

) 1
b

‖x0‖h(t)
1
b h(t0)−

1
b .

Consequently, the system (2.1) is globally generalized practically uniformly h
1
b -stable.

�

4. Converse theorem

The purpose of this section is to represent a converse Lyapunov result for nonlin-
ear time-varying systems that are globally generalized practically uniformly h-stable.

Theorem 4.1. Assume that the system (2.1) is globally generalized practically uni-
formly h-stable and the solution z = 0 of system (2.2) is globally generalized uniformly
h-stable. Suppose further that h ∈ C1(R+,R?+) is a decreasing function. Then, there
exist K ∈ BC(R+,R?+), a positive constant η and a continuously non-differentiable
Lyapunov function V (t, x), such that the following properties are hold.

1. V (t, x) is Lipschitzian in x for a function K ∈ BC(R+,R?+),

2. ‖x‖ ≤ V (t, x) ≤ K(t)‖x‖+ η, (t, x) ∈ R+ × Rn,

3. D+V(2.1)(t, x) ≤ h′(t)h(t)V (t, x)− ηh′(t)h(t)−1, (t, x) ∈ R+ × Rn.

Proof. Since system (2.1) is globally generalized practically uniformly h-stable, then
there exist η ≥ 0, functions K ∈ BC(R+,R?+) and h ∈ BC(R+,R?+), such that for all
t, τ ∈ R+ and all x ∈ Rn, we have

‖x(t+ τ, t, x)‖ ≤ η +K(t)‖x‖h(t+ τ)h(t)−1,

We define the Lyapunov function V : R+ × Rn → R+ as

V (t, x) = sup
τ≥0

(
h(t+ τ)−1h(t)(‖x(t+ τ, t, x‖ − η)

)
+ η,
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where x(t+ τ, t, x) is the solution of system (2.1) through (t, x) ∈ R+ × Rn.
To prove the Lipschitzian of V (t, x), let (t, x), (t, y) ∈ R+ × Rn, then one has∣∣∣V (t, x)− V (t, y)

∣∣∣ =
∣∣∣ sup
τ≥0

(
‖x(t+ τ, t, x)‖ − η

)
h(t+ τ)−1h(t)

− sup
τ≥0

(
‖x(t+ τ, t, y)‖ − η

)
h(t+ τ)−1h(t)

∣∣∣
≤ sup

τ≥0

∥∥x(t+ τ, t, x)− x(t+ τ, t, y)
∥∥h(t+ τ)−1h(t).

Since for each x and y in a convex subset D ⊂ Rn, thus by Lemma 2.4, we obtain the
following inequalities∣∣∣V (t, x)− V (t, y)

∣∣∣ ≤ ‖x− y‖h(t+ τ)−1h(t) sup
ρ∈D
‖φ(t+ τ, t, ρ)‖

≤ K(t)h(t+ τ)−1h(t)h(t)−1h(t+ τ)‖x− y‖
= K(t)‖x− y‖,

where K ∈ BC(R+,R?+) and D is a convex subset of Rn containing x and y. Then,
the first inequality holds.
We show next the continuity of V (t, x). For that, let T ≥ 0, then∣∣∣V (t+ T, x̂)− V (t, x)

∣∣∣ ≤ ∣∣∣V (t+ T, x̂)− V (t+ T, x)
∣∣∣

+
∣∣∣V (t+ T, x)− V

(
t+ T, x(t+ T, x(t+ T, t, x))

)∣∣∣
+

∣∣∣V (t+ T, x(t+ T, x(t+ T, t, x))
)
− V (t, x)

∣∣∣.
Since V (t, x) is Lipschitzian in x and x(t + T, t, x) is continuous in T, the first two
terms on the right-hand side of the proceeding inequality are small when ‖x− x̂‖ and
T are small.
Let us consider the third term. We have,∣∣∣V (t+ T, x(t+ T, t, x)

)
− V (t, x)

∣∣∣ =
∣∣∣ sup
τ≥0

(
‖x(t+ τ + T, t+ T, x(t+ T, t, x))‖

−η
)
h(t+ τ + T )−1h(t+ T )

− sup
τ≥0

(
‖x(t+ τ, t, x)‖ − η

)
h(t+ τ)−1h(t)

∣∣∣
=

∣∣∣ sup
τ≥T

(
‖x(t+ τ, t, x)‖ − η

)
h(t+ τ)−1

h(t+ T )− sup
τ≥0

(
‖x(t+ τ, t, x)‖ − η

)
h(t+ τ)−1h(t)

∣∣∣.
Put,

α(T ) = sup
τ≥T

(
‖x(t+ τ, t, x)‖ − η

)
h(t+ τ)−1h(t+ T ).
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We notice that, the function α(T ) is non-decreasing and since
(
‖x(t + τ, t, x)‖ −

η
)
h(t + τ)−1h(t) is a bounded continuous function for all τ ≥ 0, then α(T ) → α(0)

as T → 0. Hence,∣∣∣V (t+ T, x(t+ T, t, x)
)
− V (t, x)

∣∣∣ =
∣∣∣α(T )− α(0)

∣∣∣
implies that the third term tends to zero as T → 0+. Consequently, the continuity of
V (t, x) is satisfied. On the other hand, we have

V (t, x) = sup
τ≥0

(
h(t+ τ)−1h(t)(‖x(t+ τ, t, x‖ − η)

)
+ η ≥ (‖x(t, t, x)‖ − η) + η = ‖x‖.

In addition,

V (t, x) ≤
(
h(t+ τ)−1h(t)

(
K(t)‖x‖h(t+ τ)h(t)−1 + η − η

))
+ η = K(t)‖x‖+ η.

Hence, the second property of the theorem is satisfied.
The last property can be proved using the uniqueness of solutions and the definition
of generalized practical h-stability.

D+V (t, x(t)) = lim sup
T→0+

1

T

[
V (t+ T, x(t+ T, t, x))− V (t, x)

]
= lim sup

T→0+

1

T

[
sup
τ≥0

(
h(t+ τ + T )−1h(t+ T )(

‖x(t+ τ + T, t+ T, x(t+ T, t, x))‖ − η
))

− sup
τ≥0

(
h(t+ τ)−1h(t)

(
‖x(t+ τ, t, x)‖ − η

)]
= lim sup

T→0+

1

T

[
sup
τ≥T

(
h(t+ τ)−1h(t+ T )

(
‖x(t+ τ, t, x)‖ − η

))
− sup

τ≥0

(
h(t+ τ)−1h(t)

(
‖x(t+ τ, t, x)‖ − η

)]
≤ lim sup

T→0+

1

T

[(
h(t+ T )h(t)−1 − 1

)
sup
τ≥0

(
h(t+ τ)−1h(t)(

‖x(t+ τ, t, x)‖ − η
))

+ η
(
h(t+ T )h(t)−1 − 1

)
− η
(
h(t+ T )h(t)−1 − 1

)]
≤ h′(t)h(t)−1V (t, x)− ηh′(t)h(t)−1.

Since, for small T > 0

V (t+ T, x+ Tf(t, x))− V (t, x) ≤
∣∣V (t+ T, x+ Tf(t, x)

)
− V

(
t+ T, x(t+ T, t, x)

)∣∣
+

∣∣V (t+ T, x(t+ T, t, x)
)
− V (t, x)

∣∣
≤ K(t)‖x+ Tf(t, x)− x(t+ T, t, x)‖
+

∣∣V (t+ T, x(t+ T, t, x)
)
− V (t, x)

∣∣,
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therefore

D+V(2.1)(t, x) ≤ h′(t)h(t)−1V (t, x)− ηh′(t)h(t)−1.

This ends the proof. �

Next, we use Lyapunov’s indirect method and the Generalized Gronwall-Bellman
Inequality to show the global generalized practical uniform h-stability of perturbed
systems.

Theorem 4.2. Consider the perturbed system:

ẋ = f(t, x) + p(t, x), x(t0) = x0, t ≥ t0 ≥ 0, (4.1)

where p ∈ C(R+×Rn,Rn) is locally Lipschitz in x and satisfies the following condition:

‖p(t, x)‖ ≤ ϑ(t)‖x‖+ ν(t), ∀ x ∈ Rn, ∀ t ≥ 0, (4.2)

where ϑ and ν are non-negative continuous and integrable functions on R+. Let the
origin be globally generalized practically uniformly h-stable of system (2.1) with h ∈
C1(R+,R?+) is a decreasing function and the solution z = 0 of system (2.2) is globally
generalized uniformly h-stable. Then, the perturbed system (4.1) is globally generalized
practically uniformly h-stable.

Proof. From Theorem 4.1, there exists a Lyapunov function V (t, x) satisfies the prop-
erties in that theorem. Then, we have

D+V(4.1)(t, x) ≤ D+V(2.1)(t, x) +K(t)‖p(t, x)‖
≤ h′(t)h(t)−1V (t, x)− ηh′(t)h(t)−1 +K(t)ϑ(t)‖x‖+K(t)ν(t)

=
(
h′(t)h(t)−1 +K(t)ϑ(t)

)
V (t, x) +K(t)ν(t)− ηh′(t)h(t)−1.

By applying the comparison principle, where

u̇(t) =
(
h′(t)h(t)−1 +K(t)ϑ(t)

)
u(t) +K(t)ν(t)− ηh′(t)h(t)−1, u(t0) = u0, (4.3)

for t ≥ t0 ≥ 0, such that V (t0, x0) ≤ u0 ≤ K(t0)‖x0‖ + η and using the Generalized
Gronwall-Bellman Inequality, the maximal solution of (4.3) is given by:

u(t) ≤ u0h(t)h(t0)−1 exp

(∫ t

t0

K(s)ϑ(s)ds

)
+ h(t)

∫ t

t0

h(s)−1

exp

(∫ t

s

K(τ)ϑ(τ)dτ

)(
K(s)ν(s)− ηh′(s)h(s)−1

)
ds

≤ K(t0)e‖K‖∞Mϑ‖x0‖h(t)h(t0)−1 + ηe‖K‖∞Mϑh(t)h(t0)−1 + e‖K‖∞Mϑ(
‖K‖∞Mν + η

)
− ηe‖K‖∞Mϑh(t)h(t0)−1

= e‖K‖∞Mϑ
(
‖K‖∞Mν + η

)
+K(t0)e‖K‖∞Mϑ‖x0‖h(t)h(t0)−1,

where ‖K‖∞ = sup
t∈R+

{K(t)}, Mϑ =

∫ ∞
0

ϑ(t)dt and Mν =

∫ ∞
0

ν(t)dt.

Therefore, for all x0 ∈ Rn and all t ≥ t0, the solution x(t) of system (4.1) satisfies

‖x(t)‖ ≤ η1 +K1(t0)‖x0‖h(t)h(t0)−1,
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with K1(t0) = K(t0)e‖K‖∞Mϑ and η1 = e‖K‖∞Mϑ
(
‖K‖∞Mν +η

)
. Consequently, the

system (4.1) is globally generalized practically uniformly h-stable. �

Proposition 4.3. Consider the perturbed system (4.1). If the nonlinear system (2.1) is
globally practically uniformly h-stable with h ∈ C1(R+,R?+) is a decreasing function,
the solution z = 0 of system (2.2) is globally uniformly h-stable and p(t, x) satisfies the
condition (4.2) where ϑ and ν are non-negative continuous and integrable functions
on R+. Then, the system (4.1) is globally practically uniformly h-stable.

A particular case of Theorem 4.2 is given in the following corollary.

Corollary 4.4. Consider the perturbed system (4.1). Assume that the system (2.1) is
globally generalized practically uniformly h-stable with h ∈ C1(R+,R?+) is a decreasing
function, the solution z = 0 of system (2.2) is globally generalized h-stable. Suppose
that the perturbed term p(t, x) satisfies the condition:

‖p(t, x)‖ ≤ γ(t), ∀ t ≥ 0, (4.4)

where γ is a non-negative continuous and integrable function on R+. Hence, the system
(4.1) is globally generalized practically uniformly h-stable.

5. Applications

In this section, the systematic method developed and applied to various diseases
models to illustrate several aspects of these methods.

5.1. SIR model

We consider the solution x(t) = (S(t), I(t), R(t))T ∈ R3
+ of the ordinary differ-

ential equation: 
Ṡ = B(t)− µ(t)S − βIS, t ≥ t0 ≥ 0,

İ = βIS − νI − µ(t)I,

Ṙ = νI − µ(t)R,

(5.1)

defined for any x(t0) = (S(t0), I(t0), R(t0))T ∈ R3
+, any continuous function µ :

R+ → R+ and any continuous and integrable function B : R+ → R+. Here, the
variable S(t) describes the number of susceptible population and I(t) is the number
of infected individuals, while R(t) is of individuals recovered with immunity. B(t) is
the newborn/ immigration rate. µ(t) is the death rate. The positive number β and ν
are parameters describing the contact rate and the recovery rate, respectively.
Select the appropriate state variable as x1 = S, x2 = I and x3 = R. Thus, the
equations describing a SIR Model can be written as ẋ1 = B(t)− µ(t)x1 − βx2x1,

ẋ2 = βx2x1 − νx2 − µ(t)x2,
ẋ3 = νx2 − µ(t)x3.

(5.2)
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The state model (5.1) is equivalent to system (4.1), where x = (x1, x2, x3)T ∈ R3
+ and

f(t, x) =

 −µ(t)x1 − βx2x1
βx2x1 − νx2 − µ(t)x2
νx2 − µ(t)x3

 .

and p(t, x) = (B(t), 0, 0)T . We consider the following Lyaunov function

V (t, x) = x1(t) + x2(t) + x3(t).

The derivative of V in t along the solution of the system ẋ = f(t, x) leads to

D+V (t, x) = ẋ1 + ẋ2 + ẋ3

= −µ(t)V (t, x).

Then, the nominal system ẋ = f(t, x) is uniformly h-stable with K(t) = 1 and

h(t) = exp

(
−
∫ t

0

µ(s)ds

)
.

On the other hand, the perturbed term p(t, x) satisfies the condition (4.4) with γ(t) =
B(t), which is non-negative, continuous and integrable function on R+. Thus, all
assumptions of Corollary 4.4 are satisfied. We conclude that the SIR Model (5.1) is
practically uniformly h-stable.
From Figure 1, we can see that the SIR Model (5.1) is practically uniformly h-stable

with h(t) =
1

1 + t
· In this case, for integrable newborn/immigration rate B(t) the

convergence of I(t), S(t) and R(t) to a neighborhood of the origin are guaranteed
where the initial values S(0) = 600, I(0) = 100 and R(0) = 60. The parameters of
SIR Model (5.1) are β = 0.0002 and ν = 0.020.

Time (s)
0 5 10 15 20 25 30

x(
t)

0

100

200

300

400

500

600

S(t)
I(t)
R(t)

Figure 1. Populations of the SIR model with B(t) = 1
1+t2 and

µ(t) = 1
1+t ·

Remark 5.1. If we suppose that µ(t) = µ̃ is constant and B(t) is a measurable and
locally essentially bounded, then by using Theorem 3.3 the SIR Model (5.1) is prac-
tically uniformly h-stable with h(t) = exp(−µ̃t).
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5.2. SEIS model

Let x(t) = (S(t), E(t), I(t))T ∈ R3
+ for

Ṡ = B(t)− µ(t)S − βIS + νI, t ≥ t0 ≥ 0,

Ė = βIS − εE − µ(t)E,

İ = εE − νI − µ(t)I,

(5.3)

with x(t0) = (S(t0), E(t0), I(t0))T ∈ R3
+, any continuous function µ : R+ → R+ and

any continuous and integrable function B : R+ → R+. The variable E individuals
move to the class I at the rate ε. Model (5.3) is refereed to as the SEIS model [15]
when µ(t) is constant. The SEIS model is known to be useful for describing diseases
which have non-negligible incubation periods and also consider infections which do
not give long lasting immunity and recovered individuals become susceptible again.
Select the appropriate state variable as x1 = S, x2 = E and x3 = I. Thus, the
equations describing a SEIS model can be written as: ẋ1 = B(t)− µ(t)x1 − βx3x1 + νx3,

ẋ2 = βx3x1 − εx2 − µ(t)x2,
ẋ3 = εx2 − νx3 − µ(t)x3.

(5.4)

The state model (5.3) is equivalent to system (4.1), where x = (x1, x2, x3)T ∈ R3
+,

f(t, x) =

 −µ(t)x1 − βx3x1 + νx3
βx3x1 − εx2 − µ(t)x2
εx2 − νx3 − µ(t)x3


and p(t, x) = (B(t), 0, 0)T . Let

V (t, x) = x1(t) + x2(t) + x3(t).

The derivative of V in t along the solution of the nominal system ẋ = f(t, x) leads to

D+V (t, x) = ẋ1 + ẋ2 + ẋ3

= −µ(t)V (t, x).

Then, the nominal system ẋ = f(t, x) is uniformly h-stable with K(t) = 1 and

h(t) = exp

(
−
∫ t

0

µ(s)ds

)
. On the other hand, the perturbed term p(t, x) satisfies

the condition (4.4) with γ(t) = B(t) which is non-negative, continuous and integrable
function on R+. We deduce that all hypothesis of Corollary 4.4 are satisfied. Therefore,
the SEIS model (5.3) is practically uniformly h-stable.
From Figure 2, we can see that the SEIS model (5.3) is practically uniformly h-stable
with h(t) = exp(−t2). The parameters of SEIS model are ε = 0.15, β = 0.002 and

ν = 0.032 with the initial state is
(
S(0), E(0), I(0)

)
= (100, 60, 200).
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Figure 2. Populations of the SEIS model with B(t) = 1
1+t2 and

µ(t) = t.

5.3. SEIR model

Let x(t) = (S(t), E(t), I(t), R(t)T ∈ R4
+ for

Ṡ = B(t)− µ(t)S − βIS, t ≥ t0 ≥ 0,

Ė = βIS − εE − µ(t)E,

İ = εE − νI − µ(t)I,

Ṙ = νI − µ(t)R,

(5.5)

which called the SEIR model. The analysis of SEIR model is almost the same as the
SIR Model.
Select the appropriate state variable as x1 = S, x2 = E, x3 = I and x4 = R.
Thus, the equations describing a SEIR Model can be written as:

ẋ1 = B(t)− µ(t)x1 − βx3x1,
ẋ2 = βx3x1 − εx2 − µ(t)x2,
ẋ3 = εx2 − νx3 − µ(t)x3,
ẋ4 = νx3 − µ(t)x4.

(5.6)

The state model (5.5) is equivalent to system (4.1), where x = (x1, x2, x3, x4)T ∈ R4
+

and

f(t, x) =


−µ(t)x1 − βx3x1
βx3x1 − εx2 − µ(t)x2
εx2 − νx3 − µ(t)x3
νx3 − µ(t)x4

 .

and p(t, x) = (B(t), 0, 0, 0)T . Let

V (t, x) = x1(t) + x2(t) + x3(t) + x4(t).

The derivative of V in t along the solution of the system ẋ = f(t, x) leads to

D+V (t, x) = ẋ1 + ẋ2 + ẋ3 + ẋ4

= −µ(t)V (t, x).
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Then, the nominal system ẋ = f(t, x) is uniformly h-stable with K(t) = 1 and

h(t) = exp

(
−
∫ t

0

µ(s)ds

)
. On the other hand, the perturbed term p(t, x) satisfies

the condition (4.4) with γ(t) = B(t) which is non-negative, continuous and integrable
function on R+. Thus, all assumptions of Corollary 4.4 are satisfied. We conclude that
the SEIR Model (5.5) is practically uniformly h-stable.

5.4. Vaccination models

One way of eradicating infections diseases is to vaccinate newborns and entering
individuals. Let P ∈ (0, 1) the vaccination fraction. Considering a vaccine giving
lifelong immunity [11], the SIR model can be modified as

Ṡ = B(t)(1− P )− µ(t)S − βIS, t ≥ t0 ≥ 0,

İ = βIS − νI − µ(t)I,

Ṙ = νI − µ(t)R,

Ȧ = B(t)P − µ(t)A,

(5.7)

where A is the number of vaccinated individuals.
Select the appropriate state variable as x1 = S, and x2 = I, x3 = R and x4 = A.
Thus, the equations describing a SIR Model can be written as:

ẋ1 = B(t)(1− P )− µ(t)x1 − βx2x1,
ẋ2 = βx2x1 − νx2 − µ(t)x2,
ẋ3 = νx2 − µ(t)x3.
ẋ4 = B(t)P − µ(t)x4.

(5.8)

The state model (5.8) is equivalent to system (4.1), where x = (x1, x2, x3, x4)T ∈ R4
+

and

f(t, x) =


B(t)(1− P )− µ(t)x1 − βx2x1
βx2x1 − νx2 − µ(t)x2
νx2 − µ(t)x3
B(t)P − µ(t)x4

 .

and p(t, x) = (B(t), 0, 0, 0)T . Let

V (t, x) = x1(t) + x2(t) + x3(t) + x4(t).

The derivative of V in t along the solution of the system ẋ = f(t, x) leads to

D+V (t, x) = ẋ1 + ẋ2 + ẋ3 + ẋ4(t)

= −µ(t)V (t, x).

Then, the nominal system ẋ = f(t, x) is uniformly h-stable with K(t) = 1 and h(t) =

exp

(
−
∫ t

0

µ(s)ds

)
. Moreover, the perturbed term p(t, x) satisfies the condition (4.4)

with γ(t) = B(t) which is non-negative, continuous and integrable function on R+.
Thus, all assumptions of Corollary 4.4 are satisfied. We conclude that the SIR Model
(5.8) is practically uniformly h-stable.
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Figure 3 is the simulation result of the SIR Model (5.8) with the initial values S(0) =
600, I(0) = 150, R(0) = 70 and A(0) = 50. The parameters of SIR Model are
β = 0.0002, ν = 0.035 and P = 0.5.
From the simulation, we see that the states trajectories converge eventually to a small
neighborhood of the origin.

Time (s)
0 10 20 30 40 50 60 70 80 90 100

x(
t)

0

100

200

300

400

500

600

S(t)
I(t)
R(t)
A(t)

Figure 3. Populations of Vaccination model with B(t) = exp(−t)
and µ = 0.0015.

Another way to model the newborn vaccination within the SIR model is
Ṡ = B(t)(1− P )− µ(t)S − βIS, t ≥ t0 ≥ 0,

İ = βIS − νI − µ(t)I,

Ṙ = νI − µ(t)R+B(t)P.

(5.9)

In the same way as of the model (5.9), we have the newborn vaccination model is

practically uniformly h-stable with h(t) = exp

(
−
∫ t

0

µ(s)ds

)
.

If non-newborns/non-immigrants are vaccinated [19, 22] with a continuous function
µ : R+ → R+, a way to modifier the SIR model is

Ṡ = B(t)− ρS − µ(t)S − βIS, t ≥ t0 ≥ 0,

İ = βIS − νI + µ(t)I,

Ṙ = νI − µ(t)R,

Ȧ = ρS − µ(t)A,

(5.10)

where ρ ∈ R+ is the vaccination rate. The analysis is the same as of the model (5.9),
the model (5.10) also is practically uniformly h-stable with

h(t) = exp

(
−
∫ t

0

µ(s)ds

)
.
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6. Conclusion

Non-differentiable Lyapunov-like function is proposed for obtaining the global
generalized practical uniform h-stability of the nonlinear system. Sufficient conditions
are given to study the practical approach of nonlinear time-varying perturbed systems
using Lyapunov’s indirect method, the comparison principle and some generalizations
of Gronwall’s inequality. This results can be viewed as an extension of [4] and [17]. The
models considered in this paper are practically uniformly h-stable. This conclusion is
valid for non-autonomous systems.
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Stud. Univ. Babeş-Bolyai Math. 69(2024), No. 3, 587–612
DOI: 10.24193/subbmath.2024.3.08

q-Deformed and λ-parametrized A-generalized
logistic function induced Banach space valued
multivariate multi layer neural network
approximations

George A. Anastassiou

Abstract. Here we research the multivariate quantitative approximation of Ba-
nach space valued continuous multivariate functions on a box or RN , N ∈ N, by
the multivariate normalized, quasi-interpolation, Kantorovich type and quadra-
ture type neural network operators. We investigate also the case of approxima-
tion by iterated multilayer neural network operators of the last four types. These
approximations are achieved by establishing multidimensional Jackson type in-
equalities involving the multivariate modulus of continuity of the engaged func-
tion or its partial derivatives. Our multivariate operators are defined by using a
multidimensional density function induced by a q-deformed and λ-parametrized
A-generalized logistic function, which is a sigmoid function. The approximations
are pointwise and uniform. The related feed-forward neural network are with one
or multi hidden layers.
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1. Introduction

The author in [2] and [3], see chapters 2-5, was the first to establish neural net-
work approximations to continuous functions with rates by very specifically defined
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neural network operators of Cardaliaguet-Euvrard and ”Squashing” types, by employ-
ing the modulus of continuity of the engaged function or its high order derivative, and
producing very tight Jackson type inequalities. He treats there both the univariate
and multivariate cases. The defining these operators ”bell-shaped” and ”squashing”
functions are assumed to be of compact support. Also in [3] he gives the Nth order
asymptotic expansion for the error of weak approximation of these two operators to a
special natural class of smooth functions, see chapters 4-5 there. The author started
with [1].

Motivations for this work are the article [14] of Z. Chen and F. Cao, also by
[4]-[13], [15], [16].

Here we perform a q-deformed and λ-parametrized, q, λ > 0, A > 1, A-
generalized logistic sigmoid function based neural network approximations to con-
tinuous functions over boxes or over the whole RN , N ∈ N and also iterated, multi
layer approximations. All convergences here are with rates expressed via the multi-
variate modulus of continuity of the involved function or its partial derivatives and
given by very tight multidimensional Jackson type inequalities.

We come up with the ”right” precisely defined multivariate normalized, quasi-
interpolation neural network operators related to boxes or RN , as well as Kantorovich
type and quadrature type related operators on RN . Our boxes are not necessarily
symmetric to the origin. In preparation to prove our results we establish important
properties of the basic multivariate density function induced by the q-deformed and
λ-parametrized A-generalized logistic sigmoid function.

Feed-forward neural networks (FNNs) with one hidden layer, the only type of
networks we deal with in this article, are mathematically expressed as

Nn (x) =

n∑
j=0

cjσ (〈aj · x〉+ bj) , x ∈ Rs, s ∈ N,

where for 0 ≤ j ≤ n, bj ∈ R are the thresholds, aj ∈ Rs are the connection weights,
cj ∈ R are the coefficients, 〈aj · x〉 is the inner product of aj and x, and σ is the acti-
vation function of the network. In many fundamental network models, the activation
function is a kind of logistic sigmoid function. About neural networks read [17] - [19].

2. Preliminaries

We consider the q-deformed and λ-parametrized function

ϕq,λ (x) =
1

1 + qA−λx
, x ∈ R, where q, λ > 0, A > 1. (2.1)

This is an A-generalized logistic type function.
We easily observe that

ϕq,λ (+∞) = 1, ϕq,λ (−∞) = 0. (2.2)

Furthermore we have

1− ϕ 1
q ,λ

(−x) = 1− 1

1 + 1
qA

λx
=

1 + 1
qA

λx − 1

1 + 1
qA

λx
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=

1
qA

λx

1 + 1
qA

λx
=

1
1

1
qA

λx + 1
=

1

1 + qA−λx
= ϕq,λ (x) ,

proving
ϕq,λ (x) = 1− ϕ 1

q ,λ
(−x) . (2.3)

We also have that

ϕq,λ (0) =
1

1 + q
. (2.4)

Consider the activation function

Gq,λ (x) :=
1

2
(ϕq,λ (x+ 1)− ϕq,λ (x− 1)) , x ∈ R. (2.5)

Then

Gq,λ (−x) =
1

2
(ϕq,λ (−x+ 1)− ϕq,λ (−x− 1))

=
1

2

(
1− ϕ 1

q ,λ
(x− 1)− 1 + ϕ 1

q ,λ
(x+ 1)

)
=

1

2

(
ϕ 1
q ,λ

(x+ 1)− ϕ 1
q ,λ

(x− 1)
)

= G 1
q ,λ

(x) . (2.6)

That is
Gq,λ (−x) = G 1

q ,λ
(x) , ∀ x ∈ R. (2.7)

We have

ϕ′q,λ (x) =
((

1 + qA−λx
)−1)′

= −1
(
1 + qA−λx

)−2
q (lnA)A−λx (−λ) = qλ (lnA)

(
1 + qA−λx

)−2
A−λx > 0. (2.8)

So that ϕq,λ is a strictly increasing function over R.
Hence it holds

ϕ′q,λ (x) =
qλ (lnA)

(1 + qA−λx)
2
Aλx

=
qλ (lnA)

(1 + q2A−2λx + 2qA−λx)Aλx
=

qλ (lnA)

(Aλx + q2A−λx + 2q)
. (2.9)

That is
ϕ′q,λ (x) = qλ (lnA)

(
Aλx + q2A−λx + 2q

)−1
. (2.10)

Therefore it holds

ϕ′′q,λ (x) = qλ (lnA) (−1)
(
Aλx + q2A−λx + 2q

)−2 (
(lnA)Aλxλ+ q2 (lnA)A−λx (−λ)

)
= qλ2 (lnA)

2 (
Aλx + q2A−λx + 2q

)−2 (
q2A−λx −Aλx

)
. (2.11)

That is

ϕ′′q,λ (x) = qλ2 (lnA)
2 (
Aλx + q2A−λx + 2q

)−2 (
q2A−λx −Aλx

)
∈ C (R) . (2.12)

We have

q2A−λx −Aλx > 0, iff q2A−λx > Aλx, iff q2 > A2λx, iff q > Aλx,

iff logA q > λx, iff x <
logA q

λ
.

So, ϕ′′q,λ (x) > 0, for x < logA q
λ and there ϕq,λ is concave up.
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When x > logA q
λ , we have ϕ′′q,λ (x) < 0 and ϕq,λ is concave down.

Of course

ϕ′′q,λ

(
logA q

λ

)
= 0.

So, ϕq,λ is a sigmoid function, see [12].
We have that

G′q,λ (x) =
1

2

(
ϕ′q,λ (x+ 1)− ϕ′q,λ (x− 1)

)
.

We got that ϕ′q,λ is strictly increasing for x < logA q
λ . Let x < logA q

λ − 1, then

x− 1 < x+ 1 <
logA q

λ
.

Hence ϕ′q,λ (x+ 1) > ϕ′q,λ (x− 1) . Thus G′q,λ > 0, i.e. Gq,λ is strictly increasing over(
−∞, logA qλ − 1

)
.

Let now x > logA q
λ +1, then x+1 > x−1 > logA q

λ , and ϕ′q,λ (x+ 1) < ϕ′q,λ (x− 1), by

ϕ′q,λ being strictly decreasing over
(

logA q
λ ,+∞

)
. Hence G′q,λ < 0, and Gq,λ is strictly

decreasing over
(

logA q
λ ,+∞

)
.

Let now logA q
λ − 1 ≤ x ≤ logA q

λ + 1. We have that

G′′q,λ (x) =
1

2

(
ϕ′′q,λ (x+ 1)− ϕ′′q,λ (x− 1)

)
=
qλ2 (lnA)

2

2

[ (
q2A−λ(x+1) −Aλ(x+1)

)(
Aλ(x+1) + q2A−λ(x+1) + 2q

)2 −
(
q2A−λ(x−1) −Aλ(x−1)

)(
Aλ(x−1) + q2A−λ(x−1) + 2q

)2
]

(2.13)

=
qλ2 (lnA)

2

2

[ (
q2 −A2λ(x+1)

)(
Aλ(x+1) + q2A−λ(x+1) + 2q

)2
Aλ(x+1)

−
(
q2 −A2λ(x−1))(

Aλ(x−1) + q2A−λ(x−1) + 2q
)2
Aλ(x−1)

]

=
qλ2 (lnA)

2

2

[ (
q −Aλ(x+1)

) (
q +Aλ(x+1)

)(
Aλ(x+1) + q2A−λ(x+1) + 2q

)2
Aλ(x+1)

−
(
q −Aλ(x−1)

) (
q +Aλ(x−1)

)(
Aλ(x−1) + q2A−λ(x−1) + 2q

)2
Aλ(x−1)

]
.

By logA q
λ ≤ x+ 1⇔ logA q ≤ λ (x+ 1)⇔ q ≤ Aλ(x+1) ⇔ q −Aλ(x+1) ≤ 0.

By x ≤ logA q
λ + 1 ⇔ x − 1 ≤ logA q

λ ⇔ λ (x− 1) ≤ logA q ⇔ Aλ(x−1) ≤ q ⇔
q −Aλ(x−1) ≥ 0.

Clearly, when logA q
λ − 1 ≤ x ≤ logA q

λ + 1 by the above we get that G′′q,λ (x) ≤ 0,

that is G′′q,λ is concave down there.

Clearly Gq,λ is strictly concave down over
(

logA q
λ − 1, logA qλ + 1

)
.
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Overall Gq,λ is a bell-shaped function over R.
Of course it holds G′′q,λ

(
logA q
λ

)
< 0.

We have that

G′q,λ

(
logA q

λ

)
=

1

2

(
ϕ′q,λ

(
logA q

λ
+ 1

)
− ϕ′q,λ

(
logA q

λ
− 1

))
=
qλ (lnA)

2

[
1

A
λ( logA q

λ
+1)+q2A−λ( logA q

λ
+1)+2q

− 1

A
λ( logA q

λ
−1)+q2A−λ( logA q

λ
−1)+2q

]
(2.14)

=
qλ (lnA)

2

 A
λ( logA q

λ
−1)+q2A−λ( logA q

λ
−1)−Aλ(

logA q
λ

+1)−q2A−λ( logA q
λ

+1)(
A
λ( logA q

λ
+1)+q2A−λ( logA q

λ
+1)+2q

)(
A
λ( logA q

λ
−1)+q2A−λ( logA q

λ
−1)+2q

)


(2.15)

=
qλ (lnA)

2

[
qA−λ + q2q−1Aλ − qAλ − q2q−1A−λ

(qAλ + q2q−1A−λ + 2q) (qAλ + q2q−1A−λ + 2q)

]
=
qλ (lnA)

2

[
qA−λ + qAλ − qAλ − qA−λ

(qAλ + qA−λ + 2q) (qAλ + qA−λ + 2q)

]
= 0. (2.16)

So logA q
λ is the only critical number of Gq,λ over R. Therefore Gq,λ

(
logA q
λ

)
is the

maximum of Gq,λ.
We calculate it:
We have that

Gq,λ

(
logA q

λ

)
=

1

2

(
ϕq,λ

(
logA q

λ
+ 1

)
− ϕq,λ

(
logA q

λ
− 1

))

=
1

2

 1

1 + qA
−λ
(

logA q

λ +1
) − 1

1 + qA
−λ
(

logA q

λ −1
)
 (2.17)

=
1

2

(
1

1 + qq−1A−λ
− 1

1 + qq−1Aλ

)
=

1

2

(
1

1 +A−λ
− 1

1 +Aλ

)
=

1

2

(
Aλ −A−λ

(1 +A−λ) (1 +Aλ)

)
=

Aλ − 1

2 (Aλ + 1)
.

The global maximum of Gq,λ is

Gq,λ

(
logA q

λ

)
=

Aλ − 1

2 (Aλ + 1)
. (2.18)

Finally we have that

lim
x→+∞

Gq,λ (x) =
1

2
(ϕq,λ (+∞)− ϕq,λ (+∞)) = 0, (2.19)

and

lim
x→−∞

Gq,λ (x) =
1

2
(ϕq,λ (−∞)− ϕq,λ (−∞)) = 0. (2.20)

Consequently the x-axis is the horizontal asymptote of Gq,λ. Of course Gq,λ (x) > 0,
∀ x ∈ R.
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We need

Theorem 2.1. It holds
∞∑

i=−∞
Gq,λ (x− i) = 1, ∀ x ∈ R, ∀ q, λ > 0, A > 1. (2.21)

Proof. We observe that
∞∑

i=−∞
(ϕq,λ (x− i)− ϕq,λ (x− 1− i))

=

∞∑
i=0

(ϕq,λ (x− i)− ϕq,λ (x− 1− i)) +

−1∑
i=−∞

(ϕq,λ (x− i)− ϕq,λ (x− 1− i)) .

Furthermore (λ ∈ Z+)
∞∑
i=0

(ϕq,λ (x− i)− ϕq,λ (x− 1− i)) (2.22)

= lim
λ→∞

λ∗∑
i=0

(ϕq,λ (x− i)− ϕq,λ (x− 1− i)) (telescoping sum)

= lim
λ∗→∞

(ϕq,λ (x)− ϕq,λ (x− (λ∗ + 1))) = ϕq,λ (x) .

Similarly, it holds

−1∑
i=−∞

(ϕq,λ (x− i)− ϕq,λ (x− 1− i)) = lim
λ∗→∞

−1∑
i=−λ∗

(ϕq,λ (x− i)− ϕq,λ (x− 1− i))

= lim
λ∗→∞

(ϕq,λ (x+ λ∗)− ϕq,λ (x)) = 1− ϕq,λ (x) . (2.23)

Therefore we derive
∞∑

i=−∞
(ϕq,λ (x− i)− ϕq,λ (x− 1− i)) = 1, ∀ x ∈ R, (2.24)

and
∞∑

i=−∞
(ϕq,λ (x+ 1− i)− ϕq,λ (x− i)) = 1, ∀ x ∈ R. (2.25)

Adding the last two equations we get
∞∑

i=−∞
(ϕq,λ (x+ 1− i)− ϕq,λ (x− 1− i)) = 2, ∀x ∈ R. (2.26)

Since

Gq,λ (x) =
1

2
(ϕq,λ (x+ 1)− ϕq,λ (x− 1)) ,

we have that

Gq,λ (x− i) =
1

2
[ϕq,λ (x+ 1− i)− ϕq,λ (x− 1− i)] , (2.27)
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giving
∞∑

i=−∞
Gq,λ (x− i) = 1.

Thus
∞∑

i=−∞
Gq,λ (nx− i) = 1, ∀ n ∈ N, ∀ x ∈ R. (2.28)

Similarly, it holds
∞∑

i=−∞
G 1
q ,λ

(x− i) = 1, ∀ x ∈ R. (2.29)

But G 1
q ,λ

(x− i) (2.7)
= Gq,λ (i− x), ∀ x ∈ R.

Hence
∞∑

i=−∞
Gq,λ (i− x) = 1, ∀ x ∈ R, (2.30)

and
∞∑

i=−∞
Gq,λ (i+ x) = 1, ∀ x ∈ R. (2.31)

�

It follows

Theorem 2.2. It holds ∫ ∞
−∞

Gq,λ (x) dx = 1, λ, q > 0, A > 1. (2.32)

Proof. We observe that∫ ∞
−∞

Gq,λ (x) dx =

∞∑
j=−∞

∫ j+1

j

Gq,λ (x) dx =
∞∑

j=−∞

∫ 1

0

Gq,λ (x+ j) dx (2.33)

=

∫ 1

0

 ∞∑
j=−∞

Gq,λ (x+ j) dx

 =

∫ 1

0

1dx = 1.

�

So that Gq,λ is a density function on R; λ, q > 0, A > 1.
We need the following result

Theorem 2.3. Let 0 < α < 1, and n ∈ N with n1−α > 2. Then
∞∑

 k = −∞
: |nx− k| ≥ n1−α

Gq,λ (nx− k) < max

{
q,

1

q

}
1

Aλ(n1−α−2) = γA−λ(n
1−α−2),

(2.34)

where q, λ > 0, A > 1; γ := max
{
q, 1q

}
.
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Proof. Let x ≥ 1. That is 0 ≤ x − 1 < x + 1. Applying the mean value theorem we
obtain

Gq,λ (x) =
1

2
(ϕq,λ (x+ 1)− ϕq,λ (x− 1))

=
1

2
· 2 · ϕ′q,λ (ξ) = qλ (lnA)

A−λξ

(1 + qA−λξ)
2 , (2.35)

where 0 ≤ x− 1 < ξ < x+ 1.

Notice that

Gq,λ (x) < qλ (lnA)A−λξ < qλ (lnA)A−λ(x−1), ∀ x ≥ 1. (2.36)

Thus, we observe that

∞∑
 k = −∞

: |nx− k| ≥ n1−α

Gq,λ (|nx− k|)

< qλ (lnA)

∞∑
 k = −∞

: |nx− k| ≥ n1−α

A−λ(|nx−k|−1) ≤ qλ (lnA)

∫ ∞
n1−α−1

A−λ(x−1)dx

(2.37)

= qλ (lnA)

∫ ∞
n1−α−2

A−λzd (z)
(y=λz)

= q (lnA)

∫ ∞
n1−α−2

A−ydy

= (−q)
∫ ∞
n1−α−2

(
− (lnA)A−y

)
dy = −q

(∫ ∞
n1−α−2

dA−y
)

= (−q)
(
A−y

∣∣∞
n1−α−2

)
= q

(
A−y

∣∣n1−α−2
∞

)
= q

(
A−λz

∣∣n1−α−2
∞

)
= qA−λ(n

1−α−2) =
q

Aλ(n1−α−2) .

We have proved that

∞∑
 k = −∞

: |nx− k| ≥ n1−α

Gq,λ (|nx− k|) < q

Aλ(n1−α−2) , (2.38)

for n1−α > 2, n ∈ N; λ, q > 0, A > 1.

If (nx− k) > 0, then

∞∑
 k = −∞

: |nx− k| ≥ n1−α

Gq,λ (nx− k) <
q

Aλ(n1−α−2) . (2.39)
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Similarly, it holds

∞∑
 k = −∞

: |nx− k| ≥ n1−α

G 1
q ,λ

(|nx− k|) < 1

qAλ(n1−α−2) , λ, q > 0, A > 1. (2.40)

Assume now that nx− k ≤ 0, then

∞∑
 k = −∞

: |nx− k| ≥ n1−α

Gq,λ (nx− k)
(2.7)
=

∞∑
 k = −∞

: |nx− k| ≥ n1−α

G 1
q ,λ

(− (nx− k))

<
1

qAλ(n1−α−2) , λ, q > 0, A > 1. (2.41)

Therefore, it holds (by (2.39), (2.41))

∞∑
 k = −∞

: |nx− k| ≥ n1−α

Gq,λ (nx− k) < max

{
q,

1

q

}
1

Aλ(n1−α−2) , (2.42)

where q, λ > 0, A > 1.
The claim is proved. �

Let d·e the ceiling of the number, and b·c the integral part of the number.

Theorem 2.4. Let x ∈ [a, b] ⊂ R and n ∈ N so that dnae ≤ bnbc. For q > 0, λ > 0,
A > 1, we consider the number λq > z0 > 0 with Gq,λ (z0) = Gq,λ (0) and λq > 1.
Then

1
bnbc∑

k=dnae
Gq,λ (nx− k)

< max

 1

Gq,λ (λq)
,

1

G 1
q ,λ

(
λ 1
q

)
 =: K (q) . (2.43)

Proof. By Theorem 2.1 we have

∞∑
i=−∞

Gq,λ (x− i) = 1, ∀ x ∈ R, ∀ λ, q > 0; A > 1,

and by (2.30), we have that

∞∑
i=−∞

Gq,λ (i− x) = 1, ∀ x ∈ R, ∀ λ, q > 0; A > 1. (2.44)

Therefore we get

∞∑
i=−∞

Gq,λ (|x− i|) = 1, ∀ x ∈ R, ∀ λ, q > 0; A > 1. (2.45)
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Hence

1 =

∞∑
k=−∞

Gq,λ (|nx− k|) >
bnbc∑

k=dnae

Gq,λ (|nx− k|) > Gq,λ (|nx− k0|) , (2.46)

∀ k0 ∈ [dnae , bnbc] ∩ Z.

We can choose k0 ∈ [dnae , bnbc] ∩ Z, such that |nx− k0| < 1.

Notice that |nx− k0| could be S logA q
λ . If 0 ≤ |nx− k0| < logA q

λ , by down

concavity of Gq,λ over R, we can choose z ∈ [ logA qλ ,+∞) such that Gq,λ (|nx− k0|) =

Gq,λ (z). If |nx− k0| ≥ logA q
λ we just set z := |nx− k0|. Next, we can choose large

enough λq > 1, and such that λq > z0 > 0 where Gq,λ (z0) = Gq,λ (0). Clearly, it is
z ≤ z0 < λq.

Since Gq,λ is decreasing over [ logA qλ ,+∞) we get that

Gq,λ (|nx− k0|) ≥ Gq,λ (λq) .

Consequently,

bnbc∑
k=dnae

Gq,λ (|nx− k|) > Gq,λ (λq) ,

and
1

bnbc∑
k=dnae

Gq,λ (|nx− k|)
<

1

Gq,λ (λq)
, (2.47)

∀ λ, q > 0; A > 1.

If nx− k > 0, by (2.47), we get

1
bnbc∑

k=dnae
Gq,λ (nx− k)

<
1

Gq,λ (λq)
, ∀ λ, q > 0; A > 1. (2.48)

We have also that

1
bnbc∑

k=dnae
G 1
q ,λ

(|nx− k|)
<

1

G 1
q ,λ

(
λ 1
q

) , ∀ λ, q > 0; A > 1. (2.49)

Let now nx− k ≤ 0, then

1
bnbc∑

k=dnae
Gq,λ (nx− k)

(2.7)
=

1
bnbc∑

k=dnae
G 1
q ,λ

(− (nx− k))

(2.49)
<

1

G 1
q ,λ

(
λ 1
q

) , (2.50)

∀ λ, q > 0; A > 1.
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Consequently, it holds

1
bnbc∑

k=dnae
Gq,λ (nx− k)

< max

 1

Gq,λ (λq)
,

1

G 1
q ,λ

(
λ 1
q

)
 , (2.51)

∀ λ, q > 0; A > 1.

The claim is proved. �

We make

Remark 2.5. (i) We also notice for q ≥ 1 that

1−
bnbc∑

k=dnae

Gq,λ (nb− k) =

dnae−1∑
k=−∞

Gq,λ (nb− k) +

∞∑
k=bnbc+1

Gq,λ (nb− k)

> Gq,λ (nb− bnbc − 1) (2.52)

(call ε := nb− bnbc, 0 ≤ ε < 1)

= Gq,λ (ε− 1) = Gq,λ (− (1− ε)) = G 1
q ,λ

(1− ε)

(0 < 1
q ≤ 1 and 0 < 1− ε ≤ 1)

(G 1
q ,λ

is decreasing on [0,+∞)).

≥ G 1
q ,λ

(1) > 0.

Therefore

lim
n→∞

1−
bnbc∑

k=dnae

Gq,λ (nb− k)

 > 0, q ≥ 1, λ > 0; A > 1. (2.53)

(ii) Let now 0 < q ≤ 1, then we work as in (i), and we have

1−
bnbc∑

k=dnae

Gq,λ (nb− k) > G 1
q ,λ

(1− ε) (2.54)

(ε := nb− bnbc, 0 ≤ ε < 1).

That is 1
q ≥ 1, and choose λ : 0 < 1− ε ≤ 1 < λ, where λ >

logA
1
q

λ = − logA q
λ .

First assume that 1− ε ∈ [− logA q
λ ,+∞). Hence

G 1
q ,λ

(1− ε) > G 1
q ,λ

(
λ
)
> 0, (2.55)

by G 1
q ,λ

being decreasing on [− logA q
λ ,+∞).

If 0 < 1− ε < − logA q
λ , then we use the concavity-bell shape of Gq,λ.
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So, there exists zε ∈
(
− logA q

λ ,+∞
)

such that G 1
q ,λ

(1− ε) = G 1
q ,λ

(zε). We

also consider z0 ∈
(
− logA q

λ ,+∞
)

such that G 1
q ,λ

(z0) = G 1
q ,λ

(0) . Clearly it holds

− logA q
λ < zε ≤ z0 and we choose λ : z0 < λ. Therefore, it holds

G 1
q ,λ

(1− ε) ≥ G 1
q ,λ

(0) ≥ G 1
q ,λ

(
λ
)
> 0,

by G 1
q ,λ

being decreasing on [− logA q
λ ,+∞).

Again it holds

lim
n→∞

1−
bnbc∑

k=dnae

Gq,λ (nb− k)

 > 0, 0 < q ≤ 1, λ > 0, A > 1. (2.56)

(iii) Similarly, (q > 0)

1−
bnbc∑

k=dnae

Gq,λ (na− k) =

dnae−1∑
k=−∞

Gq,λ (na− k) +

∞∑
k=bnbc+1

Gq,λ (na− k)

> Gq,λ (na− dnae+ 1)

(call η := dnae − na, 0 ≤ η < 1) (2.57)

= Gq,λ (1− η) , etc.

Acting as in (i), (ii) we derive that

lim
n→+∞

1−
bnbc∑

k=dnae

Gq,λ (na− k)

 > 0. (2.58)

Conclusion: (i) We have that

lim
n→+∞

bnbc∑
k=dnae

Gq,λ (nx− k) 6= 1, for at least some x ∈ [a, b] , (2.59)

where λ, q > 0.
(ii) Let [a, b] ⊂ R. For large n we always have dnae ≤ bnbc. Also a ≤ k

n ≤ b, iff
dnae ≤ k ≤ bnbc. In general it holds

bnbc∑
k=dnae

Gq,λ (nx− k) ≤ 1. (2.60)

We make

Remark 2.6. We introduce

Zq,λ (x1, . . . , xN ) := Zq,λ (x) :=

N∏
i=1

Gq,λ (xi) , x = (x1, . . . , xN ) ∈ RN , (2.61)

λ, q > 0, A > 1, N ∈ N.
It has the properties:
(i) Zq,λ (x) > 0, ∀ x ∈ RN ,
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(ii)
∞∑

k=−∞

Zq,λ (x− k) :=

∞∑
k1=−∞

∞∑
k2=−∞

. . .

∞∑
kN=−∞

Zq,λ (x1 − k1, . . . , xN − kN ) = 1,

(2.62)
where k := (k1, . . . , kn) ∈ ZN , ∀ x ∈ RN ,
hence

(iii)
∞∑

k=−∞

Zq,λ (nx− k) = 1, (2.63)

∀ x ∈ RN ; n ∈ N,
and

(iv) ∫
RN

Zq,λ (x) dx = 1, (2.64)

that is Zq is a multivariate density function.
Here denote ‖x‖∞ := max {|x1| , . . . , |xN |}, x ∈ RN , also set ∞ := (∞, . . . ,∞),

−∞ := (−∞, . . . ,−∞) upon the multivariate context, and

dnae := (dna1e , . . . , dnaNe) ,

bnbc := (bnb1c , . . . , bnbNc) ,
(2.65)

where a := (a1, . . . , aN ), b := (b1, . . . , bN ) .
We obviously see that

bnbc∑
k=dnae

Zq,λ (nx− k) =

bnbc∑
k=dnae

(
N∏
i=1

Gq,λ (nxi − ki)

)

=

bnb1c∑
k1=dna1e

. . .

bnbNc∑
kN=dnaNe

(
N∏
i=1

Gq,λ (nxi − ki)

)
=

N∏
i=1

 bnbic∑
ki=dnaie

Gq,λ (nxi − ki)

 .

(2.66)
For 0 < β∗ < 1 and n ∈ N, a fixed x ∈ RN , we have that

bnbc∑
k=dnae

Zq,λ (nx− k)

=

bnbc∑
 k = dnae∥∥ k

n − x
∥∥
∞ ≤

1
nβ∗

Zq,λ (nx− k) +

bnbc∑
 k = dnae∥∥ k

n − x
∥∥
∞ > 1

nβ∗

Zq,λ (nx− k) . (2.67)

In the last two sums the counting is over disjoint vector sets of k’s, because the
condition

∥∥ k
n − x

∥∥
∞ > 1

nβ∗
implies that there exists at least one

∣∣kr
n − xr

∣∣ > 1
nβ∗

,

where r ∈ {1, . . . , N} .
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(v) By Theorem 2.3 and as in [10], pp. 379-380, we derive that

bnbc∑
 k = dnae∥∥ k

n − x
∥∥
∞ > 1

nβ∗

Zq,λ (nx− k) < γA
−λ
(
n1−β∗−2

)
, 0 < β∗ < 1, (2.68)

with n ∈ N : n1−β
∗
> 2, x ∈

∏N
i=1 [ai, bi] .

(vi) By Theorem 2.4 we get that

0 <
1∑bnbc

k=dnae Zq,λ (nx− k)
< (K (q))

N
, (2.69)

∀ x ∈
(∏N

i=1 [ai, bi]
)

, n ∈ N.

It is also clear that

(vii)
∞∑

 k = −∞∥∥ k
n − x

∥∥
∞ > 1

nβ∗

Zq,λ (nx− k) < γA
−λ
(
n1−β∗−2

)
, (2.70)

0 < β∗ < 1, n ∈ N : n1−β
∗
> 2, x ∈ RN .

Furthermore it holds

lim
n→∞

bnbc∑
k=dnae

Zq,λ (nx− k) 6= 1, (2.71)

for at least some x ∈
(∏N

i=1 [ai, bi]
)
.

Here
(
X, ‖·‖γ

)
is a Banach space.

Let f ∈ C
(∏N

i=1 [ai, bi] , X
)
, x = (x1, . . . , xN ) ∈

∏N
i=1 [ai, bi] , n ∈ N such that

dnaie ≤ bnbic, i = 1, . . . , N.

We introduce and define the following multivariate linear normalized neural net-

work operator (x := (x1, . . . , xN ) ∈
(∏N

i=1 [ai, bi]
)

):

An (f, x1, . . . , xN ) := An (f, x) :=

∑bnbc
k=dnae f

(
k
n

)
Zq,λ (nx− k)∑bnbc

k=dnae Zq,λ (nx− k)

=

∑bnb1c
k1=dna1e

∑bnb2c
k2=dna2e . . .

∑bnbNc
kN=dnaNe f

(
k1
n , . . . ,

kN
n

) (∏N
i=1Gq,λ (nxi − ki)

)
∏N
i=1

(∑bnbic
ki=dnaieGq,λ (nxi − ki)

) .

(2.72)
For large enough n ∈ N we always obtain dnaie ≤ bnbic, i = 1, . . . , N .
Also ai ≤ ki

n ≤ bi, iff dnaie ≤ ki ≤ bnbic, i = 1, . . . , N .



q-Deformed and λ-parametrized A-generalized logistic function 601

When g ∈ C
(∏N

i=1 [ai, bi]
)

we define the companion operator

Ãn (g, x) :=

∑bnbc
k=dnae g

(
k
n

)
Zq,λ (nx− k)∑bnbc

k=dnae Zq,λ (nx− k)
. (2.73)

Clearly Ãn is a positive linear operator. We have that

Ãn (1, x) = 1, ∀ x ∈

(
N∏
i=1

[ai, bi]

)
.

Notice that An (f) ∈ C
(∏N

i=1 [ai, bi] , X
)

and Ãn (g) ∈ C
(∏N

i=1 [ai, bi]
)
.

Furthermore it holds

‖An (f, x)‖γ ≤
∑bnbc
k=dnae

∥∥f ( kn)∥∥γ Zq,λ (nx− k)∑bnbc
k=dnae Zq,λ (nx− k)

= Ãn

(
‖f‖γ , x

)
, (2.74)

∀ x ∈
∏N
i=1 [ai, bi] .

Clearly ‖f‖γ ∈ C
(∏N

i=1 [ai, bi]
)
.

So, we have that

‖An (f, x)‖γ ≤ Ãn
(
‖f‖γ , x

)
, (2.75)

∀ x ∈
∏N
i=1 [ai, bi], ∀ n ∈ N, ∀ f ∈ C

(∏N
i=1 [ai, bi] , X

)
.

Let c ∈ X and g ∈ C
(∏N

i=1 [ai, bi]
)

, then cg ∈ C
(∏N

i=1 [ai, bi] , X
)
.

Furthermore it holds

An (cg, x) = cÃn (g, x) , ∀ x ∈
N∏
i=1

[ai, bi] . (2.76)

Since Ãn (1) = 1, we get that

An (c) = c, ∀ c ∈ X. (2.77)

We call Ãn the companion operator of An.
For convenience we call

A∗n (f, x) :=

bnbc∑
k=dnae

f

(
k

n

)
Zq,λ (nx− k)

=

bnb1c∑
k1=dna1e

bnb2c∑
k2=dna2e

. . .

bnbNc∑
kN=dnaNe

f

(
k1
n
, . . . ,

kN
n

)( N∏
i=1

Gq,λ (nxi − ki)

)
, (2.78)

∀ x ∈
(∏N

i=1 [ai, bi]
)
.

That is

An (f, x) :=
A∗n (f, x)∑bnbc

k=dnae Zq,λ (nx− k)
, (2.79)
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∀ x ∈
(∏N

i=1 [ai, bi]
)

, n ∈ N.
Hence

An (f, x)− f (x) =
A∗n (f, x)− f (x)

(∑bnbc
k=dnae Zq,λ (nx− k)

)
∑bnbc
k=dnae Zq,λ (nx− k)

. (2.80)

Consequently we derive

‖An (f, x)− f (x)‖γ
(2.69)

≤ (K (q))
N

∥∥∥∥∥∥A∗n (f, x)− f (x)

bnbc∑
k=dnae

Zq,λ (nx− k)

∥∥∥∥∥∥
γ

,

(2.81)

∀ x ∈
(∏N

i=1 [ai, bi]
)
.

We will estimate the right hand side of (2.81).

For the last and others we need

Definition 2.7. ([11], p. 274) Let M be a convex and compact subset of
(
RN , ‖·‖p

)
,

p ∈ [1,∞], and
(
X, ‖·‖γ

)
be a Banach space. Let f ∈ C (M,X) . We define the first

modulus of continuity of f as

ω1 (f, δ) := sup
x, y ∈M :
‖x− y‖p ≤ δ

‖f (x)− f (y)‖γ , 0 < δ ≤ diam (M) . (2.82)

If δ > diam (M), then
ω1 (f, δ) = ω1 (f, diam (M)) . (2.83)

Notice ω1 (f, δ) is increasing in δ > 0. For f ∈ CB (M,X) (continuous and
bounded functions) ω1 (f, δ) is defined similarly.

Lemma 2.8. ([11], p. 274) We have ω1 (f, δ) → 0 as δ ↓ 0, iff f ∈ C (M,X), where

M is a convex compact subset of
(
RN , ‖·‖p

)
, p ∈ [1,∞] .

Clearly we have also: f ∈ CU
(
RN , X

)
(uniformly continuous functions), iff

ω1 (f, δ)→ 0 as δ ↓ 0, where ω1 is defined similarly to (2.82). The space CB
(
RN , X

)
denotes the continuous and bounded functions on RN .

Let now f ∈ Cm
(
N∏
i=1

[ai, bi]

)
, m,N ∈ N. Here fα denotes a partial derivative

of f , α := (α1, . . . , αN ), αi ∈ Z+, i = 1, . . . , N, and |α| :=
N∑
i=1

αi = l, where l =

0, 1, . . . ,m. We write also fα := ∂nf
∂xn and we say it is of order l.

We denote
ωmax
1,m (fα, h) := max

α:|α|=m
ω1 (fα, h) . (2.84)

Call also
‖fα‖max

∞,m := max
|α|=m

{‖fα‖∞} , (2.85)
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where ‖·‖∞ is the supremum norm.

When f ∈ CB
(
RN , X

)
we define,

Bn (f, x) := Bn (f, x1, . . . , xN ) :=

∞∑
k=−∞

f

(
k

n

)
Zq,λ (nx− k)

:=

∞∑
k1=−∞

∞∑
k2=−∞

. . .
∞∑

kN=−∞

f

(
k1
n
,
k2
n
, . . . ,

kN
n

)( N∏
i=1

Gq,λ (nxi − ki)

)
, (2.86)

n ∈ N, ∀ x ∈ RN , N ∈ N, the multivariate quasi-interpolation neural network opera-
tor.

Also for f ∈ CB
(
RN , X

)
we define the multivariate Kantorovich type neural

network operator

Cn (f, x) := Cn (f, x1, . . . , xN ) :=

∞∑
k=−∞

(
nN
∫ k+1

n

k
n

f (t) dt

)
Zq,λ (nx− k)

=

∞∑
k1=−∞

∞∑
k2=−∞

. . .

∞∑
kN=−∞

(
nN
∫ k1+1

n

k1
n

∫ k2+1
n

k2
n

. . .

∫ kN+1

n

kN
n

f (t1, . . . , tN ) dt1 . . . dtN

)

·

(
N∏
i=1

Gq,λ (nxi − ki)

)
, (2.87)

n ∈ N, ∀ x ∈ RN .
Again for f ∈ CB

(
RN , X

)
, N ∈ N, we define the multivariate neural network

operator of quadrature type Dn (f, x), n ∈ N, as follows.
Let θ = (θ1, . . . , θN ) ∈ NN , r = (r1, . . . , rN ) ∈ ZN+ , wr = wr1,r2,...rN ≥ 0, such

that
θ∑
r=0

wr =
θ1∑
r1=0

θ2∑
r2=0

. . .
θN∑
rN=0

wr1,r2,...rN = 1; k ∈ ZN and

δnk (f) := δn,k1,k2,...,kN (f) :=

θ∑
r=0

wrf

(
k

n
+

r

nθ

)

=

θ1∑
r1=0

θ2∑
r2=0

. . .

θN∑
rN=0

wr1,r2,...rN f

(
k1
n

+
r1
nθ1

,
k2
n

+
r2
nθ2

, . . . ,
kN
n

+
rN
nθN

)
, (2.88)

where r
θ :=

(
r1
θ1
, r2θ2 , . . . ,

rN
θN

)
.

We set

Dn (f, x) := Dn (f, x1, . . . , xN ) :=

∞∑
k=−∞

δnk (f)Zq,λ (nx− k) (2.89)

=

∞∑
k1=−∞

∞∑
k2=−∞

. . .

∞∑
kN=−∞

δn,k1,k2,...,kN (f)

(
N∏
i=1

Gq,λ (nxi − ki)

)
,

∀ x ∈ RN .
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In this article we study the approximation properties of An, Bn, Cn, Dn neural
network operators and as well of their iterates, that is acting with multilayer neural
networks. Thus the quantitative pointwise and uniform convergence of these operators
to the unit operator I.

3. Multivariate general Neural Network Approximations

Here we present several vectorial neural network approximations to Banach space
valued functions given with rates.

We give

Theorem 3.1. Let f ∈ C
(∏N

i=1 [ai, bi] , X
)
, 0 < β∗ < 1, q, λ > 0, A > 1, x ∈(∏N

i=1 [ai, bi]
)
, N, n ∈ N with n1−β

∗
> 2. Then

1)

‖An (f, x)− f (x)‖γ

≤ (K (q))
N

[
ω1

(
f,

1

nβ∗

)
+ 2γA

−λ
(
n1−β∗−2

) ∥∥∥‖f‖γ∥∥∥∞
]

=: λ1 (n) , (3.1)

and
2) ∥∥∥‖An (f)− f‖γ

∥∥∥
∞
≤ λ1 (n) . (3.2)

We notice that lim
n→∞

An (f)
‖·‖γ
= f , pointwise and uniformly.

Above ω1 is with respect to p =∞.

Proof. We observe that

∆ (x) := A∗n (f, x)− f (x)

bnbc∑
k=dnae

Zq,λ (nx− k)

=

bnbc∑
k=dnae

f

(
k

n

)
Zq,λ (nx− k)−

bnbc∑
k=dnae

f (x)Zq,λ (nx− k)

=

bnbc∑
k=dnae

(
f

(
k

n

)
− f (x)

)
Zq,λ (nx− k) . (3.3)

Thus ∥∥∆ (x)
∥∥
γ
≤

bnbc∑
k=dnae

∥∥∥∥f (kn
)
− f (x)

∥∥∥∥
γ

Zq,λ (nx− k)

=

bnbc∑
 k = dnae∥∥ k

n − x
∥∥
∞ ≤

1
nβ∗

∥∥∥∥f (kn
)
− f (x)

∥∥∥∥
γ

Zq,λ (nx− k)
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+

bnbc∑
 k = dnae∥∥ k

n − x
∥∥
∞ > 1

nβ∗

∥∥∥∥f (kn
)
− f (x)

∥∥∥∥
γ

Zq,λ (nx− k)

(2.63)

≤ ω1

(
f,

1

nβ∗

)
+ 2

∥∥∥‖f‖γ∥∥∥∞
bnbc∑

 k = dnae∥∥ k
n − x

∥∥
∞ > 1

nβ∗

Zq,λ (nx− k)

(2.68)

≤ ω1

(
f,

1

nβ∗

)
+ 2γA

−λ
(
n1−β∗−2

) ∥∥∥‖f‖γ∥∥∥∞ . (3.4)

So that ∥∥∆ (x)
∥∥
γ
≤ ω1

(
f,

1

nβ∗

)
+ 2γA

−λ
(
n1−β∗−2

) ∥∥∥‖f‖γ∥∥∥∞ . (3.5)

Now using (2.81) we finish the proof. �

When X = R, next we discuss the high order of approximation.

Theorem 3.2. Let f ∈ Cm
(
N∏
i=1

[ai, bi]

)
, 0 < β∗ < 1, n,m,N ∈ N, n1−β

∗ ≥ 3, A > 1,

λ > 0, q > 0, x ∈
(
N∏
i=1

[ai, bi]

)
. Then

i)∣∣∣∣∣∣∣∣Ãn (f, x)− f (x)−
m∑
j=1

∑
|α|=j

fα (x)
N∏
=1
αi!

 Ãn

(
N∏
i=1

(· − xi)αi , x

)
∣∣∣∣∣∣∣∣ (3.6)

≤(K (q))
N

{
Nm

m!nmβ∗ ω
max
1,m

(
fα,

1

nβ∗

)
+

(
‖b− a‖m∞ ‖fα‖

max
∞,mN

m

m!

)
2γA

−λ
(
n1−β∗−2

)}
.

ii) ∣∣∣Ãn (f, x)− f (x)
∣∣∣ ≤ (K (q))

N
(3.7)

m∑
j=1

∑
|α|=j

 |fα (x)|
N∏
=1
αi!


[

1

nβ∗j
+

(
N∏
i=1

(bi − ai)αi
)
γA
−λ
(
n1−β∗−2

)]
+

Nm

m!nmβ∗ ω
max
1,m

(
fα,

1

nβ∗

)
+

(
‖b− a‖m∞ ‖fα‖

max
∞,mN

m

m!

)
2γA

−λ
(
n1−β∗−2

)}
.

iii) ∥∥∥Ãn (f)− f
∥∥∥
∞
≤ (K (q))

N
(3.8)
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m∑
j=1

∑
|α|=j

‖|fα|‖∞N∏
=1
αi!


[

1

nβ∗j
+

(
N∏
i=1

(bi − ai)αi
)
γA
−λ
(
n1−β∗−2

)]
+

Nm

m!nmβ∗ ω
max
1,m

(
fα,

1

nβ∗

)
+

(
‖b− a‖m∞ ‖fα‖

max
∞,mN

m

m!

)
2γA

−λ
(
n1−β∗−2

)}
.

iv) Assume fα (x0) = 0, for all α : |α| = 1, . . . ,m; x0 ∈
(
N∏
i=1

[ai, bi]

)
. Then∣∣∣Ãn (f, x0)− f (x0)

∣∣∣ (3.9)

≤(K (q))
N

{
Nm

m!nmβ∗ ω
max
1,m

(
fα,

1

nβ∗

)
+

(
‖b− a‖m∞ ‖fα‖

max
∞,mN

m

m!

)
2γA

−λ
(
n1−β∗−2

)}
,

notice in the last the extremely high rate of convergence at n−β
∗(m+1).

Proof. As similar to [10], pp. 389-391, is omitted. �

We continue with

Theorem 3.3. Let f ∈ CB
(
RN , X

)
, 0 < β∗ < 1, x ∈ RN , q > 0, λ > 0, A > 1,

N,n ∈ N with n1−β
∗
> 2, ω1 is for p =∞. Then

1)

‖Bn (f, x)− f (x)‖γ ≤ ω1

(
f,

1

nβ∗

)
+ 2γA

−λ
(
n1−β∗−2

) ∥∥∥‖f‖γ∥∥∥∞ =: λ2 (n) , (3.10)

2) ∥∥∥‖Bn (f)− f‖γ
∥∥∥
∞
≤ λ2 (n) . (3.11)

Given that f ∈
(
CU
(
RN , X

)
∩ CB

(
RN , X

))
, we obtain lim

n→∞
Bn (f) = f , uniformly.

Proof. We have that

Bn (f, x)− f (x)
(2.63)

=

∞∑
k=−∞

f

(
k

n

)
Zq,λ (nx− k)− f (x)

∞∑
k=−∞

Zq,λ (nx− k) (3.12)

=

∞∑
k=−∞

(
f

(
k

n

)
− f (x)

)
Zq,λ (nx− k) .

Hence

‖Bn (f, x)− f (x)‖γ ≤
∞∑

k=−∞

∥∥∥∥f (kn
)
− f (x)

∥∥∥∥
γ

Zq,λ (nx− k)

=

∞∑
 k = −∞∥∥ k

n − x
∥∥
∞ ≤

1
nβ∗

∥∥∥∥f (kn
)
− f (x)

∥∥∥∥
γ

Zq,λ (nx− k)
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+

∞∑
 k = −∞∥∥ k

n − x
∥∥
∞ > 1

nβ∗

∥∥∥∥f (kn
)
− f (x)

∥∥∥∥
γ

Zq,λ (nx− k)

(2.63)

≤ ω1

(
f,

1

nβ∗

)
+ 2

∥∥∥‖f‖γ∥∥∥∞
∞∑

 k = −∞∥∥ k
n − x

∥∥
∞ > 1

nβ∗

Zq,λ (nx− k)

(2.70)

≤ ω1

(
f,

1

nβ∗

)
+ 2γA

−λ
(
n1−β∗−2

) ∥∥∥‖f‖γ∥∥∥∞ , (3.13)

proving the claim. �

We give

Theorem 3.4. Let f ∈ CB
(
RN , X

)
, 0 < β∗ < 1, x ∈ RN , q > 0, λ > 0, A > 1,

N,n ∈ N with n1−β
∗
> 2, ω1 is for p =∞. Then

1)

‖Cn (f, x)− f (x)‖γ ≤ ω1

(
f,

1

n
+

1

nβ∗

)
+ 2γA

−λ
(
n1−β∗−2

) ∥∥∥‖f‖γ∥∥∥∞ =: λ3 (n) ,

(3.14)
2) ∥∥∥‖Cn (f)− f‖γ

∥∥∥
∞
≤ λ3 (n) . (3.15)

Given that f ∈
(
CU
(
RN , X

)
∩ CB

(
RN , X

))
, we obtain lim

n→∞
Cn (f) = f , uniformly.

Proof. We notice that∫ k+1
n

k
n

f (t) dt =

∫ k1+1
n

k1
n

∫ k2+1
n

k2
n

. . .

∫ kN+1

n

kN
n

f (t1, t2, . . . , tN ) dt1dt2 . . . dtN

=

∫ 1
n

0

∫ 1
n

0

. . .

∫ 1
n

0

f

(
t1 +

k1
n
, t2 +

k2
n
, . . . , tN +

kN
n

)
dt1 . . . dtN =

∫ 1
n

0

f

(
t+

k

n

)
dt.

(3.16)
Thus it holds (by (2.87))

Cn (f, x) =

∞∑
k=−∞

(
nN
∫ 1

n

0

f

(
t+

k

n

)
dt

)
Zq,λ (nx− k) . (3.17)

We observe that
‖Cn (f, x)− f (x)‖γ

=

∥∥∥∥∥
∞∑

k=−∞

(
nN
∫ 1

n

0

f

(
t+

k

n

)
dt

)
Zq,λ (nx− k)−

∞∑
k=−∞

f (x)Zq,λ (nx− k)

∥∥∥∥∥
γ

=

∥∥∥∥∥
∞∑

k=−∞

((
nN
∫ 1

n

0

f

(
t+

k

n

)
dt

)
− f (x)

)
Zq,λ (nx− k)

∥∥∥∥∥
γ
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=

∥∥∥∥∥
∞∑

k=−∞

(
nN
∫ 1

n

0

(
f

(
t+

k

n

)
− f (x)

)
dt

)
Zq,λ (nx− k)

∥∥∥∥∥
γ

(3.18)

≤
∞∑

k=−∞

(
nN
∫ 1

n

0

∥∥∥∥f (t+
k

n

)
− f (x)

∥∥∥∥
γ

dt

)
Zq,λ (nx− k)

=

∞∑
 k = −∞∥∥ k

n − x
∥∥
∞ ≤

1
nβ∗

(
nN
∫ 1

n

0

∥∥∥∥f (t+
k

n

)
− f (x)

∥∥∥∥
γ

dt

)
Zq,λ (nx− k)

+

∞∑
 k = −∞∥∥ k

n − x
∥∥
∞ > 1

nβ∗

(
nN
∫ 1

n

0

∥∥∥∥f (t+
k

n

)
− f (x)

∥∥∥∥
γ

dt

)
Zq,λ (nx− k)

≤
∞∑

 k = −∞∥∥ k
n − x

∥∥
∞ ≤

1
nβ∗

(
nN
∫ 1

n

0

ω1

(
f, ‖t‖∞ +

∥∥∥∥kn − x
∥∥∥∥
∞

)
dt

)
Zq,λ (nx− k)

+2
∥∥∥‖f‖γ∥∥∥∞


∞∑

 k = −∞∥∥ k
n − x

∥∥
∞ > 1

nβ∗

Zq,λ (|nx− k|)


≤ ω1

(
f,

1

n
+

1

nβ∗

)
+ 2γA

−λ
(
n1−β∗−2

) ∥∥∥‖f‖γ∥∥∥∞ , (3.19)

proving the claim. �

We also present

Theorem 3.5. Let f ∈ CB
(
RN , X

)
, 0 < β∗ < 1, x ∈ RN , q > 0, λ > 0, A > 1,

N, n ∈ N with n1−β
∗
> 2, ω1 is for p =∞. Then

1)

‖Dn (f, x)− f (x)‖γ ≤ ω1

(
f,

1

n
+

1

nβ∗

)
+ 2γA

−λ
(
n1−β∗−2

) ∥∥∥‖f‖γ∥∥∥∞ = λ4 (n) ,

(3.20)
2) ∥∥∥‖Dn (f)− f‖γ

∥∥∥
∞
≤ λ4 (n) . (3.21)

Given that f ∈
(
CU
(
RN , X

)
∩ CB

(
RN , X

))
, we obtain lim

n→∞
Dn (f) = f , uniformly.

Proof. Similar to the proof of Theorem 3.4, as such is omitted. �
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Definition 3.6. Let f ∈ CB
(
RN , X

)
, N ∈ N, q > 0, λ > 0, A > 1, where

(
X, ‖·‖γ

)
is

a Banach space. We define the general neural network operator

Fn (f, x) :=

∞∑
k=−∞

lnk (f)Zq,λ (nx− k) =


Bn (f, x) , if lnk (f) = f

(
k
n

)
,

Cn (f, x) , if lnk (f) = nN
∫ k+1

n
k
n

f (t) dt,

Dn (f, x) , if lnk (f) = δnk (f) .

(3.22)

Clearly lnk (f) is an X-valued bounded linear functional such that

‖lnk (f)‖γ ≤
∥∥∥‖f‖γ∥∥∥∞ .

Hence Fn (f) is a bounded linear operator with
∥∥∥‖Fn (f)‖γ

∥∥∥
∞
≤
∥∥∥‖f‖γ∥∥∥∞.

We need

Theorem 3.7. Let f ∈ CB
(
RN , X

)
, N ≥ 1, λ, q > 0, A > 1. Then

Fn (f) ∈ CB
(
RN , X

)
.

Proof. It is very lengthy and very similar to [13], pp. 167-171. As such is omitted. �

Remark 3.8. By (2.72) it is obvious that
∥∥∥‖An (f)‖γ

∥∥∥
∞
≤
∥∥∥‖f‖γ∥∥∥∞ < ∞, and

An (f) ∈ C
(
N∏
i=1

[ai, bi] , X

)
, given that f ∈ C

(
N∏
i=1

[ai, bi] , X

)
.

Call Ln any of the operators An, Bn, Cn, Dn.
Clearly then∥∥∥∥∥L2

n (f)
∥∥
γ

∥∥∥
∞

=
∥∥∥‖Ln (Ln (f))‖γ

∥∥∥
∞
≤
∥∥∥‖Ln (f)‖γ

∥∥∥
∞
≤
∥∥∥‖f‖γ∥∥∥∞ , (3.23)

etc.
Therefore we get ∥∥∥∥∥Lkn (f)

∥∥
γ

∥∥∥
∞
≤
∥∥∥‖f‖γ∥∥∥∞ , ∀ k ∈ N, (3.24)

the contraction property.
Also we see that∥∥∥∥∥Lkn (f)

∥∥
γ

∥∥∥
∞
≤
∥∥∥∥∥Lk−1n (f)

∥∥
γ

∥∥∥
∞
≤ . . . ≤

∥∥∥‖Ln (f)‖γ
∥∥∥
∞
≤
∥∥∥‖f‖γ∥∥∥∞ . (3.25)

Here Lkn are bounded linear operators.

Notation 3.9. Here q > 0, λ > 0, A > 1, N ∈ N, 0 < β∗ < 1. Denote by

cN :=

{
(K (q))

N
, if Ln = An,

1, if Ln = Bn, Cn, Dn,
(3.26)

ϕ (n) :=

{
1
nβ∗

, if Ln = An, Bn,
1
n + 1

nβ∗
, if Ln = Cn, Dn,

(3.27)
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Ω :=

 C

(
N∏
i=1

[ai, bi] , X

)
, if Ln = An,

CB
(
RN , X

)
, if Ln = Bn, Cn, Dn,

(3.28)

and

Y :=


N∏
i=1

[ai, bi] , if Ln = An,

RN , if Ln = Bn, Cn, Dn.
(3.29)

We give the following combined result.

Theorem 3.10. Let f ∈ Ω, 0 < β∗ < 1, x ∈ Y ; q > 0, λ > 0, A > 1, n, N ∈ N with
n1−β

∗
> 2. Then

(i)

‖Ln (f, x)− f (x)‖γ ≤ cN
[
ω1 (f, ϕ (n)) + 2γA

−λ
(
n1−β∗−2

) ∥∥∥‖f‖γ∥∥∥∞
]

=: τ (n) ,

(3.30)
where ω1 is for p =∞,
x and

(ii) ∥∥∥‖Ln (f)− f‖γ
∥∥∥
∞
≤ τ (n)→ 0, as n→∞. (3.31)

For f uniformly continuous and in Ω we obtain

lim
n→∞

Ln (f) = f,

pointwise and uniformly.

Proof. By Theorems 3.1, 3.3, 3.4, 3.5. �

Next we talk about iterated multilayer neural network approximation (see also
[9]).

We give

Theorem 3.11. All here as in Theorem 3.10 and r ∈ N, τ (n) as in (3.30). Then∥∥∥‖Lrnf − f‖γ∥∥∥∞ ≤ rτ (n) . (3.32)

So that the speed of convergence to the unit operator of Lrn is not worse than of Ln.

Proof. As similar to [13], pp. 172-173, is omitted. �

We also present the more general

Theorem 3.12. Let f ∈ Ω; q > 0, λ > 0, A > 1, N, m1,m2, . . . ,mr ∈ N : m1 ≤ m2 ≤
. . . ≤ mr, 0 < β∗ < 1; m1−β∗

i > 2, i = 1, . . . , r, x ∈ Y, and let (Lm1
, . . . , Lmr ) as

(Am1
, . . . , Amr ) or (Bm1

, . . . , Bmr ) or (Cm1
, . . . , Cmr ) or (Dm1

, . . . , Dmr ), p = ∞.
Then ∥∥Lmr (Lmr−1 (. . . Lm2 (Lm1f))

)
(x)− f (x)

∥∥
γ

≤
∥∥∥∥∥Lmr (Lmr−1

(. . . Lm2
(Lm1

f))
)
− f

∥∥
γ

∥∥∥
∞
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≤
r∑
i=1

∥∥∥‖Lmif − f‖γ∥∥∥∞
≤ cN

r∑
i=1

[
ω1 (f, ϕ (mi)) + 2γA

−λ
(
n1−β∗−2

) ∥∥∥‖f‖γ∥∥∥∞
]

≤ rcN
[
ω1 (f, ϕ (m1)) + 2γA

−λ
(
n1−β∗−2

) ∥∥∥‖f‖γ∥∥∥∞
]
. (3.33)

Clearly, we notice that the speed of convergence to the unit operator of the multiply
iterated operator is not worse than the speed of Lm1

.

Proof. As similar to [13], pp. 173-175, is omitted. �
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Modified inertia Halpern method for split null
point problem in Banach spaces

Hammed Anuoluwapo Abass, Godwin Ugwunnadi and Ojen Narain

Abstract. In this paper, we study split null point problem in reflexive Banach
spaces. Using the Bregman technique together with a modified inertial Halpern
method, we approximate a solution of split null point problem. Also, we establish
a strong convergence result for approximating the solution of the aforementioned
problems. It is worth mentioning that the iterative algorithm employ in this study
is design in such a way that it does not require prior knowledge of operator norm.
We display some numerical examples to illustrate the performance of the proposed
iterative method. The result discuss in this paper extends and complements many
related results in literature.

Mathematics Subject Classification (2010): 47H06, 47H09, 47J05, 47J25.

Keywords: Monotone variational inclusion problem, split feasibility problem,
firmly nonexpansive-type mapping, fixed point problem, inertial method.

1. Introduction

Let E be a reflexive Banach space with E∗ its dual and Q be a nonempty closed and
convex subset of E. Let g : E → (−∞,+∞] be a proper, lower semicontinuous and
convex function, then the Fenchel conjugate of g denoted as g∗ : E∗ → (−∞,+∞] is
define as

g∗(x∗) = sup{〈x∗, x〉 − g(x) : x ∈ E}, x∗ ∈ E∗.

Let the domain of g be denoted as dom(g) = {x ∈ E : g(x) < +∞}, hence for any
x ∈ intdom(g) and y ∈ E, we define the right-hand derivative of g at x in the direction
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of y by

g0(x, y) = lim
t→0+

g(x+ ty)− g(x)

t
.

Let g : E → (−∞,+∞] be a function, then g is said to be:

(i) Gâteaux differentiable at x if limt→0+
g(x+ty)−g(x)

t exists for any y. In this case,

g0(x, y) coincides with ∇g(x) (the value of the gradient ∇g of g at x);
(ii) Gâteaux differentiable, if it is Gâteaux differentiable for any x ∈ intdomg;
(iii) Fréchet differentiable at x, if its limit is attained uniformly in ‖y‖ = 1;
(iv) Uniformly Fréchet differentiable on a subset Q of E, if the above limit is attained

uniformly for x ∈ Q and ‖y‖ = 1.
(v) essentially smooth, if the subdifferential of g denoted as ∂g is both locally

bounded and single-valued on its domain, where

∂g(x) = {w ∈ E : g(x)− g(y) ≥ 〈w, y − x〉, y ∈ E};

(vi) essentially strictly convex, if (∂g)−1 is locally bounded on its domain and g is
strictly convex on every convex subset of dom ∂g;

(vii) Legendre, if it is both essentially smooth and essentially strictly convex. See
[8, 9] for more details on Legendre functions.

Alternatively, a function g is said to be Legendre if it satisfies the following conditions:

(i) The intdom(g) is nonempty, g is Gâteaux differentiable on intdom(g) and
dom∇g = intdom(g);

(ii) The intdomg∗ is nonempty, g∗ is Gâteaux differentiable on intdomg∗ and
dom∇g∗ = intdom(g).

Let E be a Banach space and Bs := {z ∈ E : ‖z‖ ≤ s} for all s > 0. Then, a function
g : E → R is said to be uniformly convex on bounded subsets of E, [ see pp. 203 and
221] [51] if ρst > 0 for all s, t > 0, where ρs : [0,+∞)→ [0,∞] is defined by

ρs(t) = inf
x,y∈Bs,‖x−y‖=t,α∈(0,1)

αg(x) + (1− α)g(y)− g(α(x) + (1− α)y)

α(1− α)
,

for all t ≥ 0, with ρs denoting the gauge of uniform convexity of g. The function g
is also said to be uniformly smooth on bounded subsets of E, [ see pp. 221] [51], if
limt↓0

σs
t for all s > 0, where σs : [0,+∞)→ [0,∞] is defined by

σs(t) = sup
x∈B,y∈SE ,α∈(0,1)

αg(x) + (1− α)ty) + (1− α)g(x− αty)− g(x)

α(1− α)
,

for all t ≥ 0, and uniformly convex if the function δg : [0,+∞)→ [0,+∞) defined by

δg(t) := sup
{1

2
g(x) +

1

2
g(y)− g(

x+ y

2
) : ‖y − x‖ = t},

satisfies limt↓0
δg(t)
t = 0.

Definition 1.1. [11] Let E be a Banach space. A function g : E → (−∞,∞] is said
to be proper if the interior of its domain dom(g) is nonempty. Let g : E → (−∞,∞]



Modified inertia Halpern method 615

be a convex and Gâteaux differentiable function. Then the Bregman distance corre-
sponding to g is the function Dg : dom(g)× intdom(g)→ R defined by

Dg(x, y) := g(x)− g(y)− 〈x− y,∇gE(y)〉, ∀ x, y ∈ E. (1.1)

It is clear that Dg(x, y) ≥ 0 for all x, y ∈ E.

It is well-known that Bregman distance Dg does not satisfy all the properties of a
metric function because Dg fail to satisfy the symmetric and triangular inequality
property. However, the Bregman distance satisfies the following so-called three point
identity: for any x ∈ dom(g) and y, z ∈ intdom(g),

Dg(x, z) = Dg(x, y) +Dg(y, z) + 〈x− y,∇gE(y)−∇gE(z)〉. (1.2)

In particular,

Dg(x, y) = −Dg(y, x) + 〈y − x,∇gE(y)−∇gE(x)〉, ∀ x, y ∈ E.

The relationship between Dg and ‖.‖ is guaranteed when g is strongly convex with
strong convexity constant ρ > 0 i.e.

Dg(x, y) ≥ ρ

2
‖x− y‖2, ∀ x ∈ dom(g), y ∈ intdom(g). (1.3)

Let g : E → R be a strictly convex and Gâteaux differentiable function and T :
Q → intdom(g) be a mapping, a point x ∈ Q is called a fixed point of T , if for all
x ∈ Q, Tx = x. We denote by Fix(T ) the set of all fixed points of T . Furthermore,
a point p ∈ Q is called an asymptotic fixed point of T if Q contains a sequence {xn}
which converges weakly to p such that lim

n→∞
‖Txn − xn‖ = 0. We denote by ˆFix(T )

the set of asymptotic fixed points of T .
Let Q be a nonempty closed and convex subset of int(dom g), then we define an
operator T : Q→ int(domg) to be :

(i) Bregman relatively nonexpansive, if Fix(T ) 6= ∅, and

Df (p, Tx) ≤ Df (p, x), ∀ p ∈ Fix(T ), x ∈ Q and ˆFix(T ) = Fix(T ).

(ii) Bregman quasi-nonexpansive mapping if Fix(T ) 6= ∅ and

Df (p, Tx) ≤ Df (p, x),∀ x ∈ Q and p ∈ Fix(T ).

(iii) Bregman firmly nonexpansive (BFNE), if

〈∇gE(Tx)−∇gE(Ty), Tx− Ty〉 ≤ 〈∇gE(x)−∇gE(y), Tx− Ty〉, ∀ x, y ∈ E.

Definition 1.2. [20] Let Q be a nonempty, closed and convex subset of a reflexive
Banach space E and g : E → (−∞,+∞] be a strongly coercive Bregman function.
Let β and γ be real numbers with β ∈ (−∞, 1) and γ ∈ [0,∞), respectively. Then a
mapping T : Q→ E with Fix(T ) 6= ∅ is called Bregman (β, γ)-demigeneralized if for
any x ∈ Q and p ∈ Fix(T ),

〈x− p,∇gE(x)−∇gE(Tx)〉 ≥ (1− β)Dg(x, Tx) + γDg(Tx, x), ∀ x ∈ E and p ∈ F (T ).
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For modelling inverse problems which arises from phase retrievals and medical image
reconstruction, (see [12]), Censor and Elfving [17] introduced the Split Feasibility
Problem (SFP) in 1994, which is to find

u∗ ∈ C such that Ku∗ ∈ Q; (1.4)

where C and Q are nonempty, closed and convex subsets of real Banach spaces E1 and
E2 respectively, and K : E1 → E2 is a bounded linear operator. The SFP have been
well studied in the framework of real Hilbert spaces, uniformly convex and uniformly
smooth Banach spaces, see ([2, 19, 24, 43] and other references contained in). Different
optimization problems have been formulated in terms of SFP (1.4), for instance, If
Q = {b} in SFP (1.4) is a singleton, then we have the following convexly constrained
linear inverse problem (in short, CCLIP) defined as follows:

Find a point u∗ ∈ C such that Ku∗ = b.

The Split Null Point Problem (SNPP) introduced by Bryne et al. [13] is formulated
as finding a point

x ∈ H1 such that 0 ∈ B1(x) and 0 ∈ B2(Kx), (1.5)

where H1 and H2 are real Hilbert spaces, B1 : H1 → 2H1 and B2 : H2 → 2H2 are
multivalued mappings and K : H1 → H2 are real Hilbert spaces.
In 2018, Jailoka and Suantai [23] introduced the following Halpern iterative method
for approximating the split null point and fixed point problems for maximal monotone
operators and multivalued demicontractive mapping T as follows:

u, x1 ∈ H1,

yn = JB1

λn
(xn + γK∗(JB2

λn
− I)Kxn),

un = (1− δ)yn + δzn,

xn+1 = αnu+ (1− αn)un, n ≥ 1,

where zn ∈ Tyn. Also, Oyewole et al. [33] introduced a new iterative method with
self adaptive step-size for approximating solutions of a SFP for sum of two monotone
operators and fixed point problem of a demimetric mapping in real Hilbert spaces.
Strong convergence result was proved and numerical experiment to illustrate the
performance of the algorithm were displayed.
In the framework of uniformly convex and smooth Banach spaces, Takahashi and
Takahashi [45] introduced a shrinking projection method to approximate a solution
of SNPP. Using their iterative method, they proved a strong convergence theorem.
Question: Can the results of [3, 6, 13, 22, 23, 32, 33, 45] be establish in a more
general Banach spaces (reflexive Banach spaces)?

Let B : E → 2E
∗

be a set-valued mapping. We define the domain and range
of B by domB = {x ∈ E : Bx 6= ∅} and ranB =

⋃
x∈E Bx, respectively. The graph

of B denoted by G(B) = {(x, x∗) ∈ E × E∗ : x∗ ∈ Bx}. The mapping B ⊂ E × E∗
is said to be monotone [38] if 〈x− y, x∗ − y∗〉 ≥ 0 whenever (x, x∗), (y, y∗) ∈ B. It is
also said to be maximal monotone [37] if its graph is not contained in the graph of
any other monotone operator on E. If B ⊂ E × E∗ is maximal monotone, then the
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set B−1(0) = {z ∈ E : 0 ∈ Bz} is closed and convex. Also, the resolvent associated
with B and λ for any λ > 0 is the mapping JgλB : E → 2E with Fix(JgλB) = B−1(0)
defined by

JgλB := (∇gE + λB)−1 ◦ ∇gE .

It is worth mentioning that a mapping B : E → 2E
∗

is called Bregman inverse strongly
monotone (BISM) on the set C if

C ∩ (domg) ∩ (int dom g) 6= ∅,

and for any x, y ∈ C ∩ (int dom g), η ∈ Ax and ξ ∈ Ay, we have

〈η − ξ, (∇g
∗

E∗(x)− η)−∇g
∗

E∗(∇gE(y)− ξ)〉 ≥ 0.

The anti-resolvent Bgλ : E → 2E associated with the mapping b : E → 2E
∗

and λ > 0
is defined by

Bgλ := ∇gE ◦ (∇gE − λB). (1.6)

Let A : E → E∗ be a single-valued monotone mapping and B : E → 2E
∗

be a multival-
ued monotone mapping. Then, the Monotone Variational Inclusion Problem (MVIP)
(also known as the problem of finding a zero of sum of two monotone mappings) is to
find x ∈ E such that

0∗ ∈ A(x) +B(x). (1.7)

We denote by Ω, the solution set of problem (1.7).
A simple and efficient method for solving (1.7) is the forward-backward splitting
method introduced by Lions and Mercier [26] in a Hilbert space H. It is known that
this method converges weakly to an element in (1.7) under the assumption that A
is α-inverse strongly monotone. Note that the inverse strongly monotonicity of A is
a strict assumption. To avoid this assumption, Tseng [48] introduced the following
algorithm which is known as Tseng’s splitting algorithm for solving (1.7) as follows:

x1 ∈ H,
yn = JBλn(xn − λnAxn),

xn+1 = yn − λn(Ayn −Axn), ∀ n ≥ 1,

(1.8)

where A : H → H is monotone and L-Lipschitz continuous and {λn} is the sequence
of suitable stepsize in (0, 1

L ). He proved that the sequence {xn} generated by (1.8)
converges weakly to an element in (1.7). It is well-known that the step size of Tseng’s
splitting method requires prior knowledge of the Lipschitz constant of the mapping.
However, from a practical point of view, the Lipschitz constant is very difficult to
approximate.
It is well known that many interesting problems arising from mechanics, economics,
finance, nonlinear programming, applied sciences, optimization such as equilibrium
and variational inequality problems can be solved using MVIP. Considerable efforts
have been devoted to develop efficient iterative method to approximate solutions of
MVIP in which the resolvent operator technique is one of the vital technique.
Many authors have considered approximating solutions of (1.7) together with fixed
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point problems in real Hilbert and Banach spaces, see [3, 1, 5, 33, 42].
For instance, Okeke and Izuchukwu [32] studied and analysed an iterative method
for approximating split feasibility problem and variational inclusion problem in p-
uniformly convex Banach spaces which are uniformly smooth, they proved a strong
convergence result for approximating the solution of the aforementioned problems.
Shehu [40] considered the splitting method for finding zeros of the sum of maximal
monotone operator and Lipschitz continuous monotone operator in Banach space.
He proved weak and strong convergence results and give some applications of his
main result. In the framework of 2-uniformly convex real Banach spaces which are
also uniformly smooth, Abass et al. [4] investigated a shrinking algorithm for finding
zeros of the sum of maximal monotone operators and Lipschitz continuous monotone
operators which is also a common fixed point for finite family of relatively quasi-
nonexpansive mappings.
Suppose A = 0 in (1.7), then (1.7) reduces to the following Monotone Inclusion
Problem (MIP), which is to find x ∈ E such that

0∗ ∈ B(x). (1.9)

Many results on MIP have been extended by authors from real Hilbert spaces to more
general Banach spaces. For instance, Reich and Sabach [36] introduced some iterative
algorithms and proved two strong convergence results for approximating a common
solution of a finite family of MIP (1.9) in a reflexive Banach spaces. Recently, Timnak
et al. [47] introduced a new Halpern-type iterative scheme for finding a common zero
of finitely many maximal monotone mappings in a reflexive Banach spaces and prove
the following strong convergence theorem.

Theorem 1.3. Let E be a reflexive Banach space and f : E → R be a strongly coercive
Bregman function which is bounded on bounded subsets and uniformly convex and
uniformly smooth on bounded subset of E. Let Ai : E → 2E

∗
, i = 1, 2, ..., be N

maximal monotone operators such that Z := ∩Ni=1A
−1
i (0∗) 6= ∅. Let {αn}n∈N and

{βn}n∈N be two sequences in (0, 1) satisfying the following control conditions:

(i) lim
n→∞

αn = 0 and
∞∑
n=1

αn =∞;

(ii) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1.

Let {xn}n∈N be a sequence generated by
u ∈ E, x1 ∈ E chosen arbitrarily,

yn = ∇f∗[βn∇f(xn) + (1− βn)∇f(ResfλnAN ) · · · (Resfr1A1
(xn))],

xn+1 = ∇f∗[αn∇f(u) + (1− αn)∇f(yn)],

(1.10)

for n ∈ N, where ∇f is the gradient of f . If ri > 0, for each i = 1, 2, ..., N , then the

sequence {xn}n∈N defined in (1.10) converges strongly to projfZu as n→∞.

Very recently, Ogbuisi and Izuchukwu [30] introduced an iterative algorithm and
obtained a strong convergence result for approximating a zero of sum of two maximal
monotone operators which is also a fixed point of a Bregman strongly nonexpansive
mapping in the framework of a reflexive Banach spaces.
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We will also like to emphasize that approximating a common solution of SNPP
have some possible applications to mathematical models whose constraints can be
expressed as SNPP. In fact, this happens in practical problems like signal processing,
network resource allocation, image recovery, to mention a few, (see [21]). It is
worth mentioning that the problem considered in this article generalizes the ones in
[6, 18, 29].

Inspired by the results discussed above, we introduce an iterative algorithm
which does not require the prior knowledge of operator norm as this may give
difficulty in computing, to approximate a solution of split null point problem
involving single-valued, multi-valued monotone and Lipschitz continuous monotone
mappings in reflexive Banach spaces. Using our iterative algorithm, we prove a strong
convergence result for approximating solutions of the aforementioned problems.
Finally, we illustrate some numerical experiments to show the performance and
behavior of our main result. The result discussed in this paper complements and
extends many related results in literature.
We state our contributions in this article as follows:

1. The main result in this paper generalizes the results in [10], [?] and [32] from
p-uniformly Banach spaces which are also uniformly smooth to reflexive Banach
spaces and [5, 6, 18, 29, 31, 32, 47] from real Hilbert spaces to a reflexive
Banach spaces.

2. The iterative method defined in this article is design in such a way that it does
not depend on the operator norm, see [20, 33].

3. We proved a strong convergence result which is more desirable than the weak
convergence result obtained in [44].

4. The sequence of stepsizes of our algorithms is chosen without the prior knowledge
of the Lipschitz constant and the uniform smoothness constant of the mapping,
see [40].

2. Preliminaries

We state some known and useful results which will be needed in the proof of our
main result. In the sequel, we denote strong and weak convergence by ”→” and ”⇀”,
respectively.

Definition 2.1. A function g : E → R is said to be strongly coercive if

lim
‖x‖→∞

g(x)

‖x‖
=∞.

Definition 2.2. A mapping T : C → E is said to be demiclosed at p if {xn} is a
sequence in C such that {xn} converges weakly to some x∗ ∈ C and {Txn} converges
strongly to p, then Tx∗ = p.
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Lemma 2.3. [47] Let E be a Banach space, s > 0 be a constant, ρs be the gauge of
uniform convexity of g and g : E → R be a strongly coercive Bregman function. Then,
(i) For any x, y ∈ Bs and α ∈ (0, 1), we have

Dg

(
x,∇g

∗

E∗ [α∇gE∇
g
E(y) + (1− α)∇gE(z)]

)
≤ αDg(x, y) + (1− α)Dg(x, z)

− α(1− α)ρs(‖∇gE(y)−∇gE(z)‖),

(ii) For any x, y ∈ Bs := {z ∈ E : ‖z‖ ≤ s}, s > 0,

ρs(‖x− y‖) ≤ Dg(x, y).

Lemma 2.4. [16] Let E be a reflexive Banach space, g : E → R be a strongly coercive
Bregman function and V be a function defined by

V (x, x∗) = g(x)− 〈x, x∗〉+ g∗(x∗), x ∈ E, x∗ ∈ E∗.
The following assertions also hold:

Dg(x,∇g
∗

E∗(x∗)) = V (x, x∗), for all x ∈ E and x∗ ∈ E∗.

V (x, x∗) + 〈∇g
∗

E∗(x∗)− x, y∗〉 ≤ V (x, x∗ + y∗) for all x ∈ Eand x∗, y∗ ∈ E∗.
Also, following a similar approach as in Lemma 2.4 and for any x ∈ E, y∗, z∗ ∈ Br
and α ∈ (0, 1), we have

Vg(x, αy
∗ + (1− α)z∗) ≤ αVg(x, y∗) + (1− α)Vg(x, z

∗)− α(1− α)ρ∗r(‖y∗ − x∗‖).
(2.1)

Lemma 2.5. [20] Let E1 and E2 be two Banach spaces. Let F : E1 → E2 be a bounded
linear operator and T : E2 → E2 be a Bregman (φ, σ)-demigeneralized for some
φ ∈ (−∞, 1) and σ ∈ [0,∞). Suppose that K = ran(A) ∩ Fix(T ) 6= ∅ (where ran(A)
denotes the range of (A). Then for any (x, q) ∈ E1 ×K,

〈x− q, F ∗(∇g2E2
(T (Fx)))〉 ≥ (1− φ)Dg2(Fx, T (Fx)) + σDg2(T (Fx), Fx)

≥ (1− φ)Dg2(Fx, T (Fx)). (2.2)

So, given any real numbers ξ1 and ξ2, the mapping L1 : E1 → [0,∞) and L2 : E2 →
[0.∞) formulated for x ∈ E1 as

L1(x) =

{ Dg2 (Fx,TFx)

D∗
g1

(F∗(∇g2E2
(Fx)),F∗(∇g2E2

(TFx))
, if (I − T )Fx 6= 0,

ξ1, otherwise,
(2.3)

and

L2(x) =


D∗
g1

(∇g1E1
(x)−γF∗(∇g2E2

(Fx)−∇g2E2
(TFx)),∇g1E1

(x))

D∗
g1

(F∗(∇g2E2
(Fx)),F∗(∇g2E2

(TFx))
, if , (I − T )Fx 6= 0,

ξ2, otherwise,
(2.4)

are well-defined, where γ is any nonnegative real number. Moreover, for any (x, p) ∈
E1 ×K, we have

Dg1(q, y) ≤ Dg1(q, x)− (γ(1− φ)L1(x)− L2(x))Dg∗1
(F ∗(∇g2E2

(Fx)), F ∗(∇g2E2
(TFx)),

(2.5)
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where

y = (∇g1E1
)−1[∇g1E1

(x)− γF ∗(∇g2E2
(Fx)−∇g2E2

(TFx))].

Remark 2.6. From Definition 2.2 of [20], It can be seen that JgλB is (0, 1)− demigen-
eralized. Therefore, we conclude from (2.5) that

Dg1(q, y) ≤ Dg1(q, x)− (γL1(x)− L2(x))Dg∗1
(F ∗(∇g2E2

(Fx)), F ∗(∇g2E2
(JgλBFx)),

(2.6)

where T = JgλB and B : E → 2E
∗

is a maximal monotone operator.

Lemma 2.7. [16] Let E be a Banach space and g : E → R a Gâteaux differentiable
function which is uniformly convex on bounded subsets of E. Let {xn}n∈N and {yn}n∈N
be bounded sequences in E. Then,

lim
n→∞

Dg(yn, xn) = 0⇒ lim
n→∞

‖yn − xn‖ = 0.

Lemma 2.8. [7] Let A : E → E∗ be a monotone, hemicontinuous and bounded operator,
and B : E → 2E

∗
be a maximal monotone operator. Then A+B is maximal monotone.

Lemma 2.9. [36] Let g : E → R be a Gâteaux differentiable and totally convex function.
If x0 ∈ E and the sequence {Dg(xn, x0)} is bounded, then the sequence {xn} is also
bounded.

Definition 2.10. Let C be a nonempty closed and convex subset of a reflexive Banach
space E and g : E → (−∞,+∞] be a strongly coercive Bregman function. A Bregman
projection of x ∈ int(dom(g)) onto C ⊂ int(domg) is the unique vector P gC(x) ∈ C
satisfying

Dg(P
g
C(x), x) = int{Dg(y, x) : y ∈ C}.

Lemma 2.11. [34] Let C be a nonempty closed and convex subset of a reflexive Banach
space E and x ∈ E. Let g : E → R be a strongly coercive Bregman function. Then,
(i) z = P gC(x) if and only if 〈∇gE(x)−∇gE(z), y − z〉 ≤ 0, ∀ y ∈ C.
(ii) Dg(y, P

g
C(x)) +Dg(P

g
C(x), x) ≤ Dg(y, x), ∀ y ∈ C.

Lemma 2.12. [50] Let {an}, {γn}, {δn} and {tn} be sequences of nonnegative real
numbers satisfying the following relation:

an+1 ≤ (1− tn − γn)an + γnnan−1 + tnsn + δn, ∀n ≥ 0,

where
∞∑

n=n0

tn = +∞,
∞∑

n=n0

δn < +∞, for each n ≥ n0 (where n0 is a positive integer)

and {γn} ⊂ [0, 1
2 ], lim sup

n→∞
sn ≤ 0. Then, the sequence {an} converges weakly to zero.

Lemma 2.13. [27] Let Γn be a sequence of real numbers that does not decrease at
infinity, in the sense that there exists a subsequence {Γnk}k≥0 of {Γn} which satisfies
Γnk ≤ Γnj+1 for all j ≥ 0. Also, consider a sequence of integers {τ(n)}n≥n0 defined
by

τ(n) := max{k ≤ n | Γnk ≤ Γnk+1}.
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Then {τ(n)}n≥n0
is a nondecreasing sequence satisfying limn→∞ τ(n) =∞. If it holds

that Γτ(n) ≤ Γτ(n)+1 for all n ≥ n0 then we have

Γτ (n) ≤ Γτ(n)+1.

3. Main result

Throughout this section, we assume that

Assumption 3.1.
1. E1 and E2 be two reflexive Banach spaces, g1 : E1 → (−∞,+∞] and
g2 : E2 → (−∞,+∞] be strongly coercive Bregman functions which are bounded
on bounded subsets and uniformly convex and uniformly smooth on bounded
subsets of E1 and E2 with constant β > 0, respectively.

2. ∇g1E1
and ∇g2E2

be the gradients of E1 dependent on g1 and E2 dependent on g2

respectively.

3. A1 : E1 → E∗1 be a monotone and L-Lipschitz continuous mapping, B1 : E1 →
2E

∗
1 and B2 : E2 → 2E

∗
2 are maximal monotone mappings respectively, and Jg2λB2

be the resolvent of g2 on B2 for λ > 0, and λn = ρlmn where mn is the smallest
nonnegative integer such that

λn‖A1zn −A1yn‖ ≤ µ‖zn − yn‖. (3.1)

4. Suppose that K : E1 → E2 is a bounded linear operator such that K 6= 0 and
K∗ : E∗2 → E∗1 be the adjoint of K. Given that ρ > 0, l ∈ (0, 1), µ ∈ (0, σ),
where σ is a constant given by (1.3).

5. The control sequence {αn}, {βn} and {δn} are sequences in (0, 1) such that αn+
βn + δn = 1, {θn} ⊂ [0, 1

2 ] and the following conditions are satisfied:

(i) lim
n→∞

αn = 0,
∞∑
n=1

αn =∞,

(ii) 0 < lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1,

(iii) 0 < a ≤ θn < δn ≤ 1
2 , ∀ n ≥ 1.

Algorithm 3.2. Define a sequence {xn}∞n=1 generated arbitrarily by chosen x0, x1 ∈ E1

and any fixed u ∈ E1, such that

wn = (∇g1E1
)−1[∇g1E1

(xn) + θn(∇g1E1
(xn−1)−∇g1E1

(xn))],

zn = (∇g1E1
)−1
[
∇g1E1

(wn)− γK∗(∇g2E2
(Kwn)−∇g2E2

(Jg2λB2
Kwn))

]
yn = Jg1λnB1

[
(∇g1E1

)(zn)− λnA1zn
]

un = (∇g1E1
)−1
[
∇g1E1

(yn)− λn(A1yn −A1zn)
]
,

xn+1 = (∇g1E1
)−1
[
αn∇g1E1

(u) + βn∇g1E1
(xn) + δn∇g1E1

(un)
]
.

(3.2)
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Suppose that Ω := {p ∈ (A1 + B1)−1(0) : Kp ∈ B−1
2 (0)} 6= ∅, let γ > 0, let the

sequences {ξ1,n}n∈N and {ξ2,n}n∈N satisfy the following conditions:

(i) there exists a positive real number φ1 such that

0 < φ1 < lim inf
n→∞

ξ2,n
ξ1,n

< γ,

where

ξ1,n =


Dg2 (Kwn,J

g2
λnB2

wn)

D∗
g1

(K∗(∇g2E2
(Kwn)),K∗(∇g2E2

(J
g2
λnB2

Kwn))
, if (I − Jg2λnB2

)Kwn 6= 0,

ξ1, otherwise,

and

ξ2,n =


D∗
g1

(∇g1E1
(wn)−γK∗(∇g2E2

(Kwn)−∇g2E2
(J
g2
λnB2

Kwn)),∇g1E1
(wn))

D∗
g1

(K∗(∇g2E2
(Kwn)),K∗(∇g2E2

(J
g2
λnB2

Kwn))
,

if (I − Jg2λnB2
)Kwn 6= 0,

ξ2, otherwise.

Then, the sequence {xn} generated iteratively converges strongly to z = P g1Ω u, where
P g1Ω is the Bregman projection of E1 onto Ω.

Proof. It can be seen in Lemma 3.2 of [44] that the Armijo linesearch rule defined by
(3.1) is well-defined and

min
{
ρ,
µl

L
} ≤ λn ≤ ρ.

Now, let x∗ ∈ Ω then, using definition of un in (3.2) we have from (1.1) that

Dg1(x∗, un) = Dg1

(
x∗, (∇g1E1

)−1[∇g1E1
(yn)− λn(A1yn −A1zn)]

)
= g1(x∗)− g1(un)− 〈x∗ − un,∇g1(yn)− λn(A1yn −A1zn)〉
= g1(x∗)− g1(un)− 〈x∗ − un,∇g1(yn)〉+ λn〈x∗ − un, A1yn −A1zn〉
= g1(x∗)− g1(yn)− 〈x∗ − yn,∇g1(yn)〉+ 〈x∗ − yn,∇g1(yn)〉
+ g1(yn)− g1(un)− 〈x∗ − un,∇g1(yn)〉+ λn〈x∗ − un, A1yn −A1zn〉
= g1(x∗)− g1(yn)− 〈x∗ − yn,∇g1(yn)〉 − g1(un) + g1(yn)

+ 〈un − yn,∇g1(yn)〉+ λn〈x∗ − un, A1yn −A1zn〉
= Dg1(x∗, yn)−Dg1(un, yn) + λn〈x∗ − un, A1yn −A1zn〉. (3.3)

Using (1.2), we get

Dg1(x∗, un) = Dg1(x∗, zn)−Dg1(yn, zn) + 〈x∗ − yn,∇g1(zn)−∇g1(yn)〉. (3.4)
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On substituting (3.4) into (3.3), we obtain

Dg1(x∗, un) = Dg1(x∗, zn)−Dg1(yn, zn)−Dg1(un, yn)

+ 〈x∗ − yn,∇g1(zn)−∇g1(yn)〉+ λn〈x∗ − un, A1yn −A1zn〉
= Dg1(x∗, zn)−Dg1(yn, zn)−Dg1(un, yn) + 〈x∗−yn,∇g1(zn)−∇g1(yn)〉
+ λn〈yn − un, A1yn −A1zn〉 − λn〈yn − x∗, A1yn −A1zn〉
= Dg1(x∗, zn)−Dg1(yn, zn)−Dg1(un, yn) + λn〈yn − un, A1yn −A1zn〉
− 〈yn − x∗,∇g1(zn)−∇g1(yn)− λn(A1zn −A1yn)〉. (3.5)

By applying the definition of yn, we have ∇g1(zn)−λnA1zn ∈ ∇g1(yn)+λnB1. Since
B1 : E1 → 2E

∗
1 is a maximal monotone mapping, there exists an ∈ B1yn such that

∇g1(zn)− λnA1zn = ∇g1(yn) + λnan, it follows that

an =
1

λn
(∇g1(zn)−∇g1(yn)− λnA1zn). (3.6)

Since 0 ∈ (A1 +B1)x∗ and A1yn + an ∈ (A1 +B1)yn, it follows from Lemma 2.8 that
A1 +B1 is maximal monotone, hence

〈yn − x∗, A1yn + an〉 ≥ 0. (3.7)

On substituting (3.6) into (3.7), we get

1

λn
〈yn − x∗,∇g1(zn)−∇g1(yn)− λnA1zn + λnA1yn〉 ≥ 0.

That is

〈yn − x∗,∇g1(zn)−∇g1(yn)− λn(A1zn −A1yn)〉 ≥ 0. (3.8)

Combining (3.5) and (3.8), and using (1.3), we have

Dg1(x∗, un) ≤ Dg1(x∗, zn)−Dg1(yn, zn)−Dg1(un, yn) + λn〈yn − un, A1yn −A1zn〉
≤ Dg1(x∗, zn)−Dg1(yn, zn)−Dg1(un, yn) + λn||yn−un|| ||A1yn−A1zn||
≤ Dg1(x∗, zn)−Dg1(yn, zn)−Dg1(un, yn) + µ‖yn − un‖ ‖yn − zn‖
≤ Dg1(x∗, zn)−Dg1(yn, zn)−Dg1(un, yn) + µ

(
‖yn − un‖2 + ‖yn−zn‖2

)
≤ Dg1(x∗, zn)−

(
1− µ

σ

)
Dg1(yn, zn)−

(
1− µ

σ

)
Dg1(yn, un) (3.9)

≤ Dg1(x∗, zn). (3.10)
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Also, from (2.6) and (3.2), we get

Dg1(x∗, zn) = Dg1

(
(∇g1E1

)−1
(
∇g1E1

(wn)− γK∗(∇g2E2
(Kwn −∇g2E2

(Jg2λB2
Kwn)))

))
≤Dg1(x∗, wn)−(γξ1,n−ξ2,n)Dg∗1

(
K∗(∇g2E2

(Kwn)),K∗(∇g2E2
(Jg2λB2

Kwn))
)

(3.11)

≤ Dg1(x∗, wn) (3.12)

= Dg1

(
x∗, (∇g1E1

)−1
(
∇g1E1

(xn) + θn(∇g1E1
(xn−1)−∇g1E1

(xn))
))

≤ (1− θn)Dg1(x∗, xn) + θnDg1(x∗, xn−1). (3.13)

From (2.1), (3.2), (3.9) and (3.10), we get

Dg1(x∗, xn+1) ≤ Dg1

(
x∗, (∇g1E1

)−1
(
αn∇g1E1

(u) + βn∇g1E1
(xn) + δn∇g1E1

(un)
))

≤ Vg1
(
x∗, αn∇g1E1

(u) + βn∇g1E1
(xn) + δn∇g1E1

(un)

)
= g1(x∗)− 〈x∗, αn∇g1E1

(u) + βn∇g1E1
(xn) + δn∇g1E1

(un)〉
+ g∗1

(
αn∇g1E1

(u) + βn∇g1E1
(xn) + δn∇g1E1

(un)
)

≤ αng1(x∗) + βng1(x∗) + δng1(x∗)− βn〈x∗,∇g1E1
(xn)〉

− δn〈x∗,∇g1E1
(un)〉 − αn〈x∗,∇g1E1

(u)〉+ βng
∗
1(∇g1E1

(xn))

+ δng
∗
1(∇g1E1

(un)) + αng
∗
1(∇g1E1

(u))− βnδnρ∗r(‖∇
g1
E1

(xn)−∇g1E1
(un)‖)

− βnδnρ∗r(‖∇
g1
E1

(xn)−∇g1E1
(u)‖)

≤ βn
(
g1(x∗)− 〈x∗,∇g1E1

(xn)〉+ g∗1(∇g1E1
(xn))

)
+ δn

(
g1(x∗)− 〈x∗,∇g1E1

(un)〉+ g∗1(∇g1E1
(un))

)
+ αn

(
g1(x∗)− 〈x∗,∇g1E1

(u)〉+ g∗1

(
∇g1E1

(u))

)
− βnδnρ∗r

(
‖∇g1E1

(xn)−∇g1E1
(un)‖

)
= βnVg1(x∗,∇g1(xn)

E1
) + δnVg1(x∗,∇g1E1

(un)) + αnVg1(x∗,∇g1E1
(u))

− βnδnρ∗r
(
‖∇g1E1

(xn)−∇g1E1
(un)‖

)
≤ βnDg1(x∗, xn) + δnDg1(x∗, un) + αnDg1(x∗, u)

− βnδnρ∗r
(
‖∇g1E1

(xn)−∇g1E1
(un)‖

)
≤ βnDg1(x∗, xn)

+ δn

(
Dg1(x∗, wn)−

(
1− µ

σ

)
Dg1(yn, zn)−

(
1− µ

σ

)
Dg1(yn, un)

− (γξ1,n − ξ2,n)Dg∗1

(
K∗(∇g2E2

(Kwn)),K∗(∇g2E2
(Jg2λB2

Kwn))
)
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+ αnDg1(x∗, u)− βnδnρ∗r
(
‖∇g1E1

(xn)−∇g1E1
(un)‖

)
≤ βnDg1(x∗, xn) + δn(1− θn)

(
Dg1(x∗, xn) + δnθnDg1(x∗, xn−1)

− δn
(
1− µ

σ

)(
Dg1(yn, zn)−Dg1(yn, un)

)
− δn(γξ1,n − ξ2,n)Dg∗1

(
K∗(∇g2E2

(Kwn)),K∗(∇g2E2
(Jg2λB2

Kwn))
)

+ αnDg1(x∗, u)− βnδnρ∗r
(
‖∇g1E1

(xn)−∇g1E1
(un)‖

)
≤ (1− αn − δnθn)Dg1(x∗, xn) + δnθnDg1(x∗, xn−1) + αnDg1(x∗, u)

− δn
(
1− µ

σ

)(
Dg1(yn, zn)−Dg1(yn, un)

)
− δn(γξ1,n − ξ2,n)Dg∗1

(
K∗(∇g2E2

(Kwn)),K∗(∇g2E2
(Jg2λB2

Kwn))

− βnδnρ∗r
(
‖∇g1E1

(xn)−∇g1E1
(un)‖

)
(3.14)

≤ (1− αn − δnθn)Dg1(x∗, xn) + δnθnDg1(x∗, xn−1) + αnDg1(x∗, u)

≤ max{Dg1(x∗, xn), Dg1(x∗, xn−1), Dg1(x∗, u)}, ∀ n ≥ 1. (3.15)

By induction, we obtain that

Dg1(x∗, xn) ≤ max{Dg1(x∗, x1), Dg1(x∗, x0), Dg1(x∗, u)}.

Hence, {Dg1(x∗, xn)} is bounded and therefore we conclude that from Lemma 2.9 that
{xn} is bounded. More so, {wn}, {zn}, {yn} and {un} are bounded. The remaining
proof is divided into two cases.
Case A: If there exists n0 ∈ N such that {Dg1(x∗, xn)}Nn=n0

is decreasing, then
{Dg1(x∗, xn)}n∈N is convergent. Thus, we have that Dg1(x∗, xn)−Dg1(x∗, xn+1)→ 0,
as n→∞. Hence, from (3.14), we have that

δn
(
1− µ

σ

)(
Dg1(yn, zn)−Dg1(yn, un)

)
− δn(γξ1,n − ξ2,n)Dg∗1

(
K∗(∇g2E2

(Kwn)),K∗(∇g2E2
(Jg2λB2

Kwn))
)

≤ (1− αn)D∗g1(x∗, xn)−Dg1(x∗, xn+1) + δnθn
(
Dg1(x∗, xn−1)−Dg1(x∗, xn)

)
+ αnDg1(x∗, u). (3.16)

On applying condition (i) and (ii), we obtain that

lim
n→∞

Dg1(yn, zn) = 0 = lim
n→∞

Dg1(yn, un). (3.17)

From Lemma 2.7, we get that

lim
n→∞

‖yn − zn‖ = 0 = lim
n→∞

‖yn − un‖. (3.18)

Since g1 is bounded and uniformly smooth on bounded sets of E1, it follows that ∇g1E1

is uniformly continuous on bounded subsets of E1. Thus, we conclude from (3.18)
that

lim
n→∞

‖∇g1E1
(yn)−∇g1E1

(zn)‖ = 0. (3.19)
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From (3.18), we have

lim
n→∞

‖un − zn‖ = 0. (3.20)

Also, from (3.16), we have

lim
n→∞

βnδnρ
∗
r

(
‖∇g1E1

(xn)−∇g1E1
(un)‖

)
= 0 (3.21)

= lim
n→∞

δn(γξ1,n − ξ2,n)Dg∗1

(
K∗(∇g2E2

(Kwn)),K∗(∇g2E2
(Jg2λB2

Kwn))
)
. (3.22)

By Lemma 2.7 and from properties of the functions ρr, D
∗
g1 and K, we have

lim
n→∞

‖K∗(∇g2E2
(Kwn))−K∗(∇g2E2

(Jg2λB2
Kwn))‖ = 0, (3.23)

and

lim
n→∞

(‖∇g1E1
(xn)−∇g1E1

(un)‖) = 0. (3.24)

Employing Lemma 2.7, we arrive at

lim
n→∞

‖Kwn − Jg2λB2
Kwn) = 0. (3.25)

and

lim
n→∞

‖un − xn‖ = 0. (3.26)

In view of (3.2), we obtain that

lim
n→∞

‖zn − wn‖ = 0. (3.27)

From (3.20) and (3.26), we ge that

lim
n→∞

‖un − xn‖ = 0. (3.28)

From (3.2), it is easy to see that

‖∇g1E1
(xn+1)−∇g1E1

(xn)‖ ≤ αn‖∇g1E1
(u)−∇g1E1

(xn)‖+ βn‖∇g1E1
(xn)−∇g1E1

(xn)‖
+ δn‖∇g1E1

(un)−∇g1E1
(xn)‖. (3.29)

Hence, we have from (3.29) and condition (i) of (3.2) that

lim
n→∞

‖∇g1E1
(xn+1)−∇g1E1

(xn)‖ = 0. (3.30)

Since ∇g1E1
is norm to norm uniformly continuous on bounded subset of E∗1 , we have

lim
n→∞

‖xn+1 − xn‖ = 0. (3.31)

From (3.18) and (3.26), we get that

lim
n→∞

‖yn − xn‖ = 0. (3.32)

From (3.2), we obtain from (3.31)

‖∇g1E1
(wn)−∇g1E1

(xn)‖ = θn‖∇g1E1
(xn−1)−∇g1E1

(xn)‖ → 0, as n→∞.. (3.33)
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Using the fact that ∇g1E1
is norm to norm uniformly continuous on bounded subset of

E∗1 , we have

lim
n→∞

‖wn − xn‖ = 0. (3.34)

Lastly, with (3.27) and (3.34), we arrive at

lim
n→∞

‖zn − xn‖ = 0. (3.35)

Since {xn}n∈N is bounded and E1 is reflexive, we deduce that there exists a sub-
sequence {xnj}j∈N of {xn}n∈N which converges weakly to z. Also, from (3.28),
(3.32), (3.34) and (3.35), we have that there exist subsequences {unj}j∈N of {un}n∈N,
{ynj}j∈N of {yn}n∈N, {wnj}j∈N of {wn}n∈N and {znj}j∈N of {zn}n∈N converge weakly
to z respectively. Hence, from (3.25) and the demiclosedness principle we have
that Jg2λB2

(Kz) = Kz, therefore we conclude that Kz ∈ B−1
2 (0). To show that

z ∈ (A1 + B1)−1(0). Let (v, w) ∈ G(A1 + B1), we have w − A1v ∈ B1v. From the
definition of yn, we observe that

∇g1E1
(zn)− λnA1zn ∈ ∇g1E1

(yn) + λnB1yn,

or equivalently

1

λn
(∇g1E1

(zn)−∇g1E1
(yn)− λnA1zn) ∈ B1yn.

By the maximal monotonicity of B1, we get

〈v − yn, w −A1v +
1

λn
(∇g1E1

(zn)−∇g1E1
(yn)− λnA1zn)〉 ≥ 0.

Also, from the monotonicity of A1, we have〈
v − yn, w〉 ≥ 〈v − yn, A1v +

1

λn
(∇g1E1

(zn)−∇g1E1
(yn)− λnA1zn)

〉
= 〈v − yn, A1v −A1zn〉+

1

λn
〈v − yn,∇g1E1

(zn)−∇g1E1
(yn)〉

= 〈v − yn, A1v −A1yn〉+ 〈v − yn, A1yn −A1zn〉

+
1

λn
〈v − yn,∇g1E1

(zn)−∇g1E1
(yn)〉

≥ 〈v − yn, A1yn −A1zn〉+
1

λn
〈v − yn,∇g1E1

(zn)−∇g1E1
(yn)〉. (3.36)

Since A1 is Lipschitz continuous and ynj ⇀ z, it follows from (3.18) and (3.19) that

〈v − z, w〉 ≥ 0.

By the monotonicity of A1 +B1, we get 0 ∈ (A1 +B1)z, that is z ∈ (A1 +B1)−1(0).
Hence z ∈ Ω.
Next, we show that {xn} converges strongly to z, where z = P g1Ω u.
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From Lemma 2.11, we have

lim sup
n→∞

〈xn − x∗,∇g1E1
(u)−∇g1E1

(x∗)〉 = lim
j→∞
〈xnj − x∗,∇

g1
E1

(u)−∇g1E1
(x∗)〉

= 〈z − x∗,∇g1E1
(u)−∇g1E1

(x∗)〉
≤ 0, (3.37)

and hence from (3.31), we obtain

lim sup
n→∞

〈xn+1 − x∗,∇g1E1
(u)−∇g1E1

(x∗)〉 ≤ 0. (3.38)

Using Lemma 2.4, (3.10) and (3.12), we obtain

Dg1(z, xn+1) ≤ Dg1

(
z, (∇g1E1

)−1(βn∇g1E1
(xn) + δn∇g1E1

(un) + αn∇g1E1
(u))

)
= Vg1(z, βn∇g1E1

(xn) + δn∇g1E1
+ αn∇g1E1

(u))− αn(∇g1E1
(u)−∇g1E1

(z))

+ αn〈xn+1 − z,∇g1E1
(u)−∇g1E1

(z)〉
= βnDg1(z, xn) + δnDg1(z, un) + αn〈xn+1 − z,∇g1E1

(u)−∇g1E1
(z)〉

≤ βnDg1(z, xn) + δnDg1(z, wn) + αn〈xn+1 − z,∇g1E1
(u)−∇g1E1

(z)〉
≤ βnDg1(z, xn) + δn((1− θn)Dg1(z, xn) + θnDg1(z, xn−1))

+ αn〈xn+1 − z,∇g1E1
(u)−∇g1E1

(z)〉
≤ (1− αn − δnθn)Dg1(z, xn) + δnθnDg1(z, xn−1)

+ αn〈xn+1 − z,∇g1E1
(u)−∇g1E1

(z)〉. (3.39)

By applying (3.39) and Lemma 2.12, we have that xn → z.
Case B: Assume {Dg1(z, xn)} is non-decreasing. Set Γn of Lemma 2.13, as Γn :=
Dg1(z, xn) and let τ : N→ N be a mapping for all n ≥ n0 (for some n0 large enough),
defined by

τ(n) := max{k ∈ N : k ≤ n,Γk ≤ Γk+1}.

Then τ is non-decreasing sequence such that τ(n)→∞ as n→∞. Thus

0 < Γτ(n) ≤ Γτ(n)+1, ∀ n ≥ n0,

this implies that

Dg1(z, xτ(n)) ≤ Dg1(z, xτ(n)+1), n > n0.

Since {Dg1(z, xτ(n))} is bounded, therefore limn→∞Dg1(z, xτ(n)) exists. Then the
following estimates can be obtained, using same argument as in case A above.

lim
n→∞

‖yτ(n) − zτ(n)‖ = 0,

lim
n→∞

‖Kwτ(n) − Jg2λB2
Kwτ(n)‖ = 0,

lim
n→∞

‖zτ(n) − xτ(n)‖ = 0,

lim
n→∞

‖wτ(n) − xτ(n)‖ = 0,

lim sup
n→∞

〈xτ(n) − z,∇g1E1
(u)−∇g1E1

(z)〉 ≤ 0.

(3.40)
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From (3.39) and Γτ(n) ≤ Γτ(n)+1, we have

Dg1(z, xτ(n)) ≤ (1− ατ(n))Dg1(z, xτ(n)) + δτ(n)θτ(n)

(
Dg1(z, xτ(n)−1 −Dg1(z, xτ(n))

)
+ ατ(n)〈xτ(n)+1 − z,∇g1E1

(u)−∇g1E1
(z)〉.

and hence

lim
n→∞

Γτ(n) = lim
n→∞

Γτ(n)+1 = 0,

for all n ≥ n0, we have Γτ(n) ≤ Γτ(n)+1, if n 6= τ(n) (that is, τ(n) < n), because
Γk+1 ≤ Γk, for τ(n) ≤ k ≤ n. This gives for all n ≥ n0

0 < Γn ≤ max{Γτ(n),Γτ(n)+1} = Γτ(n)+1.

This implies that lim
n→∞

Γn = 0 which yields that lim
n→∞

Dg1(z, xn) = 0. Hence, xn →
z = P g1Ω u as n→∞. �

Remark 3.3. Our main result improve and generalize the main results of [22, 23, 33,
40, 45] in the following ways:

(i) We extend Theorem 3.1 of [40] from 2-uniformly Banach spaces which are
uniformly smooth to a reflexive Banach space and also extend the results of
[22, 23, 45] from real Hilbert spaces to reflexive Banach spaces.

(ii) We relax the strict assumption of the mapping A in [22, 23, 33] with the weaker
assumption that A is a monotone and L-Lipschitz continuous mapping.

4. Numerical examples

In this section, we give a couple of examples to implement our main result.

Example 4.1. This is an implementation of our result in infinite dimensional Hilbert
space with our application to split feasibility problem. Let C and Q be nonempty,
closed and convex subsets of real Hilbert spaces H1 and H2, respectively. Let K :
H1 → H2 be a bounded linear operator with its adjoint K∗ and Θ denote the solution
set of (1.4). Let H1 = H2 = L2([0, 1]) with norm

‖x‖2 =

(∫ 1

0

|x(t)|2dt
) 1

2

,

and inner product

〈x, y〉 =

∫ 1

0

x(t)y(t)dt,

for all x, y ∈ L2([0, 1]).
Now, let

C = {x ∈ L2([0, 1]) : ‖x‖ ≤ 1},
and

Q = {x ∈ L2([0, 1]) : 〈 t
2
, x〉 = 0}.
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Let K : L2([0, 1]) → L2([0, 1]) be a mapping defined by (Kx)(t) = x(t)
3 for all x ∈

L2([0, 1]). Then, we have (K∗x)(t) = x(t)
3 and ‖K‖ = 1

3 . We see that the Θ 6= ∅
because x∗(t) = 0 is a solution. We define

A1(x) = ∇
(

1

2
‖Kx− PQKx‖2

)
= K∗(I − PQ)Kx, B1(x) = NC(x)

and

B2(x) = NQ(x) for all x ∈ L2([0, 1]).

For our algorithm, we take

αn =
1

12n+ 3
, βn =

8n+ 1

12n+ 3
, δn =

4n+ 1

12n+ 3
,

γ = 0.002, l = 0.0001, µ = 0.03 and θn =
1

4
.

We present the result of this experiment in Figure 1 with ‖xn+1 − xn‖2 = 10−4 and
varying initial values of x0 and x1 as follows:

(I) x0 = t
2
3 + 11t and x1 = t;

(II) x0 = 2t and x1 = cos t;
(III) x0 = −2t+ 5 and x1 = t+ 1;

(IV) x0 = 2t and x1 = 7t2

11 ;

Example 4.2. Let E1 = E2 = E = R2 be the two-dimensional Euclidean space of the
real number with an inner product 〈·, ·〉 : R2 × R2 → R be defined by

〈x, y〉 = x · y = x1y1 + x2y2

where x = (x1, x2) ∈ R2 and y = (y1, y2) ∈ R2 and a usual norm ‖ · ‖ : R2 → R
be defined by ‖x‖ = (x2

1 + x2
1)

1
2 where x = (x1, x2) ∈ R2. Let B1 : R2 → R2 and

B2 : R2 → R2 be defined respectively by

B1 =

(
1 2
0 1

)
, B2 =

(
1 2
2 5

)
.

Since B1 and B2 are positive definite, they are maximal monotone operators. Also,
let A1 : R2 → R2 be defined by

A1(x) =

(
3 0
0 3

)(
x1

x2

)
.

Now, define hi : R→ (−∞,+∞] by hi(x) = x2

2 for i = 1, 2, then ∇hi(x) = x. We also
define g1 = g2 = g by

g : R2 → (−∞,+∞], g(x) = h1(x1) + h2(x2) =
x2

1

2
+
x2

2

2
, x = (x1, x2).

Therefore, we have

∇g(x) = (∇h1(x1),∇h2(x2)) = (x1, x2) =

(
1 0
0 1

)(
x1

x2

)
.
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Figure 1. Example 4.1. Top left: Case I, Top right: II, Bottom left:
III, Bottom right: IV.

For λ > 0, we compute the resolvents of B1 and B2 as follows:

Jg1λB1
= ∇g1 + rB1 =

(
1 + λ 2λ

0 1 + λ

)
, (∇g1 + rB1)−1 =

1

(1 + λ)2

(
1 + λ −2λ

0 1 + λ

)
and

Jg2λB2
= ∇g1 + rB2 =

(
1 + λ 2λ

2λ 1 + λ

)
,

(∇g1 + rB2)−1 =
1

1 + 6λ+ λ2

(
1 + 5λ −2λ
−2λ 1 + λ

)
.

Let the operator K : R2 → R2 be defined by

K(x) = (2x1 − x2, x1 + 2x2) for all x = (x1, x2) ∈ R2
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and K∗ : R2 → R2 be defined by

K∗(y) = (2y1 − y2, y1 + 2y2) for all y = (y1, y2) ∈ R2.

For this experiment, we choose the parameters

αn =
3n

4n2 + 5n+ 3
, βn =

n2 + 3

4n2 + 5n+ 3
, δn =

3n2 + 2n

4n2 + 5n+ 3
,

γ = 0.002, l = 0.0001, µ = 0.03 and θn =
1

4
.

For u = 0.1 and initial values of x0 and x1, we report our test for the following cases
in Figure 2 with ‖xn+1 − xn‖ = 10−5.
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Figure 2. Example 4.2. Top left: Case 1, Top right: Case 2, Bottom
left: Case 3, Bottom right: Case 4.
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Case 1. x0 = [5,−5] and x1 = [3, 5];

Case 2. x0 = [−5,−5] and x1 = [10, 10];

Case 3. x0 = [10, 10] and x1 = [20, 20];

Case 4. x0 = [10,−5] and x1 = [5, 15].
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Existence of positive solutions to impulsive
nonlinear differential systems of second order
with two point boundary conditions
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Abstract. In this paper the authors consider the existence of positive solutions
to a two point boundary value problem for nonlinear second-order impulsive
systems. They use a vector version of Krasnosel’skii’s fixed point theorem in
cones in their proofs. Examples are provided to illustrate the results.
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1. Introduction

The existence of positive solutions to second order impulsive differential equa-
tions and systems has been studied by many authors such as in [7, 9, 10, 11, 12].

Liu et al. [10, 11, 12] studied the existence of one and multiple positive solutions
to two point boundary value problems for systems of nonlinear second-order singular
impulsive differential equations by using fixed point index theory. In [7], He inves-
tigated the existence of positive solutions to second order periodic boundary value
problems with impulse actions by applying fixed point index theory.

The existence and location of positive solutions for ordinary differential systems
has been studied in [4, 8, 13, 14] by using a technique based on a vector version of
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Krasnosel’skii’s fixed point theorem in cones. In [8], Herlea considered the system of
first order equations with integral boundary conditions

u′1(t) = f1(t, u1, u2),
u′2(t) = f2(t, u1, u2),
u1(0)− a1u1(1) = g1[u1],
u2(0)− a2u2(1) = g2[u2],

where fi, f2 ∈ C([0, 1]×R2
+,R+) and gi : C[0, 1]→ R, i = 1, 2, are linear functionals

given by

gi[u] =

∫ 1

0

u(s)dγi, i = 1, 2

with gi[1] < 1 and γi ∈ C1[0, 1] is increasing and satisfies 0 < ai < 1 − gi[1] for
i = 1, 2. Herlea obtained the existence and the location of positive solutions by using
a vector version of Krasnosel’skii’s fixed point theorem in cones.

Precup [14] also used the vector version of Krasnosel’skii’s fixed point theorem to
study the existence and localization of positive solutions of the nonlinear differential
system 

u′′1(t) + f1(t, u1, u2) = 0,
u′2(t) + f2(t, u1, u2) = 0,
u1(0) = u1(1) = 0,
u2(0) = u2(1) = 0.

Other authors have recently studied the existence of solution for system of im-
pulsive differential equations using vector versions of fixed point theorems, such as in
[1, 3, 2, 5, 6].

With this background in mind, in this paper we examine the existence and
location of positive solutions of the two point boundary value problem for the system
of nonlinear second-order impulsive differential equations

−u′′1(t) = f1(t, u1(t), u2(t)), t ∈ J ′,
−u′′2(t) = f2(t, u1(t), u2(t)), t ∈ J ′,
−∆u′1 |t=tk= I1,ku1(tk), k = 1, 2, · · · ,m,
−∆u′2 |t=tk= I2,ku2(tk), k = 1, 2, · · · ,m,
αu1(0)− βu′1(0) = 0, αu2(0)− βu′2(0) = 0,
γu1(1) + δu′1(1) = 0, γu2(1) + δu′2(1) = 0,

(1.1)

where α, β, γ, δ ≥ 0, ρ = βγ + αγ + αδ > 0, J = [0, 1], 0 < t1 < t2 < · · · <
tm < 1, J ′ = J \ {t1, t2, · · · , tm}, fi ∈ C(J × R × R,R), Ii,k ∈ C(R,R), i = 1, 2,
k ∈ {1, 2, · · · ,m}. Here, ∆u′ |t=tk= u1(t+k )− u1(t−k ) and ∆u′2 |t=tk= u2(t+k )− u2(t−k ),

where u′1(t+k ) and u′2(t+k ), (u′1(t−k ) and u′2(t−k )) denote the right (left) hand limits of
u′1(t) and u′2(t) at t = tk, respectively.

Motivated by the work mentioned above, here we study the existence and loca-
tion of positive solution of the system (1.1) using the vector version of Krasnosel’skii’s
fixed point theorem in cones given in [13]. As we will see, this approach allows the
nonlinear terms and impulses in the system to have different types of behaviors in
their variables.
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2. Preliminaries

In this paper we need the following concepts. For a normed linear space (X, ‖·‖),
a cone K ⊂ X is a closed and convex set with K \ {0} 6= ∅, λK ⊂ K for all λ ∈ R+,
and K ∩ (−K) = {0}. A cone K in X induces a partial order relation in X that we
will denote by �; we write u � v if and only if v − u ∈ K. We say that u ≺ v if
v − u ∈ K \ {0} and u ⊀ v if v − u /∈ K \ {0}. Finally, u � v means v � u.

Consider two cones K1 and K2 in X and the corresponding cone K := K1×K2

in X2. We use the same symbol � to denote the partial order relation induced by
K in X2 as we do for K1 or K2 in X. In X2, u = (u1, u2) ≺ v = (v1, v2) means
ui ≺ vi for i = 1, 2. For r, R ∈ R2

+ with r = (r1, r2) and R = (R1, R2), we will write
0 < r < R to mean 0 < r1 < R1 and 0 < r2 < R2. Also, we set

(Ki)ri,Ri := {u ∈ Ki : ri ≤ ‖u‖ ≤ Ri}, i = 1, 2,

Kr,R := {u ∈ K : ri ≤ ‖ui‖ ≤ Ri for i = 1, 2},
and we see that Kr,R = (K1)r1,R1 × (K2)r2,R2 .

The following vector version of Krasnosel’skii’s fixed point theorem in a cone
[13, Theorem 2.1] will be used to obtain our main existence result.

Theorem 2.1. Let (X, ‖ · ‖) be a normed linear space, K1, K2 ⊂ X be two cones in X,
K := K1×K2, r, R ∈ R+ with 0 < r < R, and N : Kr,R → K given by N = (N1, N2)
be a compact map. Assume that for each i ∈ {1, 2}, one of the following conditions is
satisfied in Kr,R:

(a) Ni(u) ⊀ ui if ‖ui‖ = ri and Ni(u) � ui if ‖ui‖ = Ri;
(b) Ni(u) � ui if ‖ui‖ = ri and Ni(u) ⊀ ui if ‖ui‖ = Ri.

Then N has a fixed point u in K with ri ≤ ‖ui‖ ≤ Ri for i ∈ {1, 2}.

3. Main Result

We first formulate problem (1.1) as a fixed point problem for a vector-valued
mapping N = (N1, N2). Then, u := (u1, u2) will satisfy an operator system{

u1 = N1(u1, u2),
u2 = N2(u1, u2),

(3.1)

in the vector conical shell Kr,R with u ∈ K and

r1 ≤ ‖u1‖ ≤ R1, r2 ≤ ‖u2‖ ≤ R2.

We denote by G(t, s) the Green’s function for the boundary value problem −x
′′(t) = 0,

αx(0)− βx′(0) = 0,
γx(1) + δx′(1) = 0.

(3.2)

It is given explicitly by

G(t, s) =
1

ρ

{
(γ + δ − γt)(β + αs), 0≤ s≤t≤1
(β + αt)(γ + δ − γs), 0≤t≤s≤1.
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The function G(t, s) is positive and satisfies the properties (see [10, p. 552], [11, p.
3775]):

G(t, s) ≤ G(s, s), for all t, s ∈ [0, 1], (3.3)

0 < σG(s, s) ≤ G(t, s), t ∈ [a, b], s ∈ [0, 1], (3.4)

where a ∈ [0, t1], b ∈ [tm, 1] and 0 ≤ σ = min{ (1−b)γ+δγ+δ , aα+βα+β } ≤ 1.

In this paper, we consider the space

PC(J,R+) = {x : [0, 1] −→ R+ | xk ∈ C(J ′,R), k = 1, . . . ,m,

x(t−k ) and x(t+k ) exist, k = 1, . . . ,m, and x(t−k ) = x(t)}.
We see that PC(J,R+) is a Banach space with the norm

‖x‖PC = sup
t∈J
|x(t)|.

Let P be the cone of all nonnegative functions in PC([0, 1],R+).

Definition 3.1. A pair (u1, u2) ∈ PC(J,R+)×PC(J,R+) is called a solution of system
(1.1) if it satisfies system (1.1).

The following lemma is obvious.

Lemma 3.2. The vector (u1, u2) ∈ PC(J,R+)×PC(J,R+) is a solution of the differ-
ential system (1.1) if and only if (u1, u2) ∈ PC1(J,R+) × PC1(J,R+) is a solution
of the integral system

u1(t) =

∫ 1

0

G(t, s)f1(s, u1(s), u2(s))ds+

m∑
k=1

G(t, tk)I1,k(u1(tk)),

u2(t) =

∫ 1

0

G(t, s)f2(s, u1(s), u2(s))ds+

m∑
k=1

G(t, tk)I2,k(u2(tk)).

(3.5)

Let N : P 2 → P 2 be the completely continuous map N = (N1, N2) given by

Ni(u(t)) =

∫ 1

0

G(t, s)fi(s, u(s), v(s))ds+

m∑
k=1

G(t, tk)Ii,k(ui(tk)) i = 1, 2.

Then (3.5) is equivalent to the fixed point problem

u = N(u), u ∈ P 2.

If v ∈ P ,

ui(t) :=

∫ 1

0

G(t, s)v(s)ds+

m∑
k=1

G(t, tk)Ii,k(ui(tk)),

and if ui(t
′) = ‖ui‖PC , then in view of (3.4), for every t ∈ [0, 1], we have

ui(t) ≥ σ
∫ 1

0

G(s, s)v(s)ds+ σ

m∑
k=1

G(tk, tk)Ii,k(ui(tk)).
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If t′ 6= tk for k = 1, 2, · · · ,m, then

ui(t) ≥ σ

∫ 1

0

G(t′, s)v(s)ds+ σ

m∑
k=1

G(tk, tk)Ii,k(ui(tk))

≥ σ

∫ 1

0

G(t′, s)v(s)ds+ σ

m∑
k=1

G(t′, tk)Ii,k(ui(tk)) = σui(t
′) = σ‖u‖PC .

If t′ = tk for k = 1, 2, · · · ,m, then

ui(t) ≥ σ

∫ 1

0

G(s, s)v(s)ds+ σ

m∑
k=1

G(t′, tk)Ii,k(ui(tk))

≥ σ

∫ 1

0

G(t′, s)v(s)ds+ σ

m∑
k=1

G(t′, tk)Ii,k(ui(tk)) = σui(t
′) = σ‖u‖PC .

Define the cones Ki in P by

Ki = {ui ∈ P : ui(t) ≥ σ‖ui‖PC for all t ∈ [a, b]}, i = 1, 2,

and the product cone K = K1 × K2 in X2. Then N(K) ⊂ K. Before we state our
main result we introduce the following notations. For any αi, βi > 0 with αi 6= βi, let
ri = min{αi, βi}, Ri = max{αi, βi}, and

γ1 = min{f1(t, u1, u2) : a ≤ t ≤ b, σβ1 ≤ u1 ≤ β1, σr2 ≤ u2 ≤ R2},

γ2 = min{f2(t, u1, u2) : a ≤ t ≤ b, σr1 ≤ u1 ≤ R1, σβ2 ≤ u2 ≤ β2},

Γ1 = max{f1(t, u1, u2) : 0 ≤ t ≤ 1, σα1 ≤ u1 ≤ α1, σr2 ≤ u2 ≤ R2},

Γ2 = max{f2(t, u1, u2) : 0 ≤ t ≤ 1, σr1 ≤ u1 ≤ R1, σα2 ≤ u2 ≤ α2}.
Also, let

B = max{G(t, s) : 0 ≤ t ≤ 1, 0 ≤ s ≤ 1},

A = min{G(t, s) : a ≤ t ≤ b, a ≤ s ≤ b},

λ1 = min
1≤k≤m

{min{I1,k(u1) : σβ1 ≤ u1 ≤ β1}},

λ2 = min
1≤k≤m

{min{I2,k(u2) : σβ2 ≤ u2 ≤ β2}},

Λ1 = max
1≤k≤m

{max{I1,k(u1) : σα1 ≤ u1 ≤ α1}},

Λ2 = max
1≤k≤m

{max{I2,k(u2) : σα2 ≤ u2 ≤ α2}}.

Theorem 3.3. Assume that there exist αi, βi > 0 with αi 6= βi, i = 1, 2, such that

B(Γ1 + Λ1m) ≤ α1, A(γ1(b− a) + λ1m) ≥ β1,
B(Γ2 + Λ2m) ≤ α2, A(γ2(b− a) + λ2m) ≥ β2.

(3.6)

Then (1.1) has a positive solution u = (u1, u2) with ri ≤ ‖ui‖PC ≤ Ri, i = 1, 2,
where ri = min{αi, βi}, Ri = max{αi, βi}. Moreover, the corresponding orbit of u is
included in the rectangle [σr1, R1]× [σr2, R2].
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Proof. If u ∈ Kr,R, then r1 ≤ ‖u1‖PC ≤ R1 and r2 ≤ ‖u2‖PC ≤ R2, so from the
definition of K,

σr1 ≤ ‖u1‖PC ≤ R1 and σr2 ≤ ‖u2‖PC ≤ R2,

for t ∈ [a, b], that is, for t ∈ [a, b], u(t) ∈ [σr1, R1] × [σr2, R2]. Also, if ‖u1‖PC = α1,
then u1(t) ≤ α1 for t ∈ [0, 1], and

σα1 ≤ u1(t) ≤ α1 for all t ∈ [a, b].

We wish to show that for every u ∈ Kr,R and each i ∈ {1, 2}, we have

‖ui‖PC = αi implies ui ⊀ Ni(u),
‖ui‖PC = βi implies ui � Ni(u).

(3.7)

If ‖u1‖PC = α1 and u1 ≺ N1(u), then

u1(t) < N1(u)(t) ≤ B(Γ1 + Λ1m) ≤ α1

for t ∈ [0, 1], which leads to the contradiction α1 < α1.

If ‖u1‖PC = β1 and u2 � N2(u), then for t ∈ [a, b], we obtain

u1(t) > N1(u)(t) ≥
∫ b

a

G(t, s)f1(s, u1(s), u2(s))ds+

m∑
k=1

G(t, tk)I1,k(u1(tk))

≥ A(γ1(b− a) + λ1m) ≥ β1,

yielding the contradiction β1 > β1. Hence, (3.7) holds for i = 1. In a similar way we
can show that (3.7) holds for i = 2. By Theorem 2.1, we see that N has at least one
nonzero fixed point in K. Therefore, system (1.1) has at least one positive solution.
This completes the proof of the theorem. �

Analogous to the discussion by Precup in [13] and [14], we examine the situation
where f1 and f2 are independent of t, i.e., suppose f1 = f1(u1, u2) and f2 = f2(u1, u2).
If f1, f2, I1,k, and I2,k, k = 1, 2, .....,m, satisfy various monotonicity conditions, then
we can obtain specific estimates for γ1, γ2, Γ1, Γ2, λ1, λ2, Λ1, Λ2. As examples, we
have the following cases.

Case 1. If f1 and f2 are nondecreasing in u1 and u2, and I1,k and I2,k are nondecreasing
respectively in u1 and u2 for k = 1, 2, . . . ,m, then

Γ1 = f1(α1, R2), γ1 = f1(σβ1, σr2),
Γ2 = f2(R1, α2), γ2 = f2(σr1, σβ2),

Λ1 = max
1≤k≤m

{I1,k(α1)}, λ1 = min
1≤k≤m

{I1,k(σβ1)},

Λ2 = max
1≤k≤m

{I2,k(α2)}, λ2 = min
1≤k≤m

{I2,k(σβ2)}.

Case 2. If f1 is nondecreasing in u1 and u2, f2 is nondecreasing in u1 and non increasing
in u2, and on the other hand I1,k are nondecreasing in u1 and I2,k are non increasing
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in u2 for k = 1, 2, . . . ,m, then

Γ1 = f1(α1, R2), γ1 = f1(σβ1, σr2),
Γ2 = f2(R1, σα2), γ2 = f2(σr1, β2),

Λ1 = max
1≤k≤m

{I1,k(α1)}, λ1 = min
1≤k≤m

{I1,k(σβ1)},

Λ2 = max
1≤k≤m

{I2,k(σα2)}, λ2 = min
1≤k≤m

{I2,k(β2)}.

Case 3. If f1 is nondecreasing in u1 and non increasing in u2, f2 is non increasing in
u1 and nondecreasing in u2, and on the other hand I1,k are non increasing in u1 and
I2,k are nondecreasing in u2 for k = 1, 2, .....,m, then

Γ1 = f1(α1, σr2), γ1 = f1(σβ1, R2),
Γ2 = f2(σr1, α2), γ2 = f2(R1, σβ2),

Λ1 = max
1≤k≤m

{I1,k(σα1)}, λ1 = min
1≤k≤m

{I1,k(β1)},

Λ2 = max
1≤k≤m

{I2,k(α2)}, λ2 = min
1≤k≤m

{I2,k(σβ2)}.

Case 4. If f1 and f2 are nondecreasing in u1 and nonincreasing in u2, and I1,k are
nondecreasing in u1 and I2,k are nonincreasing in u2 for k = 1, 2, . . . ,m, then

Γ1 = f1(α1, σr2), γ1 = f1(σβ1, R2),
Γ2 = f2(R1, σα2), γ2 = f2(σr1, β2),

Λ1 = max
1≤k≤m

{I1,k(α1)}, λ1 = min
1≤k≤m

{I1,k(σβ1)},

Λ2 = max
1≤k≤m

{I2,k(σα2)}, λ2 = min
1≤k≤m

{I2,k(β2)}.

4. Examples

We conclude this paper with two examples to illustrate Theorem 3.3 in the
Cases 1 and 4 above.

Example 4.1. Consider the second-order impulsive system

u′′1(t) + uθ1 + uε2 = 0, 0 < θ < ε < 1, t 6= 1
4 , 0 ≤ t ≤ 1,

u′′2(t) + uε1 + uθ2 = 0, 0 < θ < ε < 1, t 6= 1
4 , 0 ≤ t ≤ 1,

−∆u′1 |t= 1
4
= c
√
u1
(
1
4

)
, c > 0,

−∆u′2 |t= 1
4
= d
√
u2( 1

4 ), d > 0,

u1(0)− u′1(0) = 0, u1(1)− u′1(1) = 0,
u2(0) + u′2(0) = 0, u2(1) + u′2(1) = 0.

(4.1)
We can establish that system (4.1) has at least one positive solution u = (u1, u2).
Here,

f1(u1, u2) = uθ1 + uε2, f2(u1, u2) = uε1 + uθ2,

I1,1

(
u1

(
1

4

))
= c

√
u1

(
1

4

)
, I2,1

(
u2

(
1

4

))
= d

√
u2

(
1

4

)
.



646 H. Kadari, A. Oumansour, J.R. Graef and A. Ouahab

System (4.1) is equivalent to the integral system u1(t) =
∫ 1

0
G(t, s)[u1(s)θ + u2(s)ε]ds+ cG

(
t, 14
)√

u1
(
1
4

)
,

u2(t) =
∫ 1

0
G(t, s)[u1(s)ε + u2(s)θ]ds+ dG

(
t, 14
)√

u2
(
1
4

)
.

where G(t, s) is the Green’s function

G(t, s) =
1

3

{
(2− t)(1 + s), 0 ≤ s ≤ t ≤ 1
(2− s)(1 + t), 0 ≤ t ≤ s ≤ 1

ClearlyB = 9
4 andA = σ. In this case f1(u1, u2) and f2(u1, u2) are both nondecreasing

in u1 and u2, while I1,1 and I2,1 are nondecreasing respectively in u1 and u2 for u1,
u2 ∈ R+, so we are in Case 1. We choose α1 = α2 =: α∗ and β1 = β2 =: β∗, with
β∗ < α∗, and so r1 = r2 = β∗, R1 = R2 = α∗, and γi = fi(σβ

∗, σβ∗), Γi = fi(α
∗, α∗),

Λi = Ii,1(α∗), λi = Ii,2(σβ∗) for i = 1, 2. The values of α∗ and β∗ will be made precise
in what follows. Since

lim
x→∞

fi(x, x)

x
= 0, lim

x→0

fi(x, x)

x
=∞,

lim
x→∞

I1,1(x)

x
= 0 and lim

x→0

I2,1(x)

x
=∞,

we may find β∗ small enough and α∗ large enough that the conditions

fi(α
∗, α∗)

α∗
≤ 1

2B
,

fi(σβ
∗, σβ∗)

σβ∗
≥ 1

2σA(b− a)
,

Ii,1(α∗)

α∗
≤ 1

2Bm
,

Ii,1(σβ∗)

σβ∗
≥ 1

2σAm
,

i ∈ {1, 2}, are satisfied. Thus, condition (3.6) holds. Hence, system (4.1) has at least
one positive solution (u1, u2) with β∗ ≤ ‖ui‖PC ≤ α∗ for i ∈ {1, 2}.

Example 4.2. Consider the second-order impulsive system

u′′1(t) +
u

1
4
1

u2 + 1
= 0, t 6= 1

2 , 0 ≤ t ≤ 1,

u′′1(t) +
u1

u2 + 1
= 0, t 6= 1

2 , 0 ≤ t ≤ 1,

−∆u′1 |t= 1
2
= u

1
3
1 ( 1

2 ),

−∆u′2 |t= 1
2
= e−u2(

1
2 ),

u1(0)− u′1(0) = 0, u1(1)− u′1(1) = 0,
u2(0) + u′2(0) = 0, u2(1) + u′2(1) = 0.

(4.2)

Here we have

f1(u1, u2) =
u

1
4
1

u2 + 1
, f2(u1, u2) =

u1
u2 + 1

,

I1,1

(
u1

(
1

2

))
= u

1
3
1 (

1

2
) and I2,1

(
u2

(
1

2

))
= e−u2(

1
2 ).
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System (4.2) is equivalent to the integral system
u1(t) =

∫ 1

0
G(t, s)

u1(s)
1
4

u2(s) + 1
ds+G

(
t,

1

2

)
u

1
3
1

(
1

2

)
,

u2(t) =
∫ 1

0
G(t, s)

u1(s)

u2(s) + 1
ds+G

(
t,

1

2

)
e−u2(

1
2 ).

The Green function G(t, s) is the same as in Example 4.1. In this case f1(u1, u2) and
f2(u1, u2) are nondecreasing in u1 and nonincreasing in u2. Also, I1,1 is nondecreasing
in u1 and I2,1 is nonincreasing in u2 for u1, u2 ∈ R+, so we are in Case 4. We choose
α1 = α2 =: α∗, β1 = β2 =: β∗, with β∗ < α∗. Then r1 = r2 = β∗, R1 = R2 = α∗

and Γ1 = f1(α∗, σβ∗), Γ2 = f2(α∗, σα∗), γ1 = f1(σβ∗, α∗), γ2 = f2(σβ∗, β∗), Λ1 =
I1,1(α∗), λ1 = I1,1(σβ∗), Λ2 = I2,1(σα∗), λ2 = I2,1(β∗), where α∗ and β∗ will be
made precise below. Since

lim
x→∞

f1(x, 0)

x
= 0, lim

y→∞

f2(x, σy)

y
= 0,

lim
x→∞

I1,1(x)

x
= 0, and lim

y→∞

I2,1(σy)

y
= 0,

we may find α∗ > 0 large enough so that

f1(α∗, 0)

α∗
≤ 1

2B
,

f2(α∗, σα∗)

α∗
≤ 1

2B
,

I1,1(α∗)

α∗
≤ 1

2Bm
,

I1,2(σα∗)

α∗
≤ 1

2Bm
.

Since
f1(α∗, σβ∗)

α∗
≤ f1(α∗, 0)

α∗
,

we have
f1(α∗, σβ∗)

α∗
≤ 1

2B
.

And since

lim
x→0

f1(σx, y)

x
=∞, lim

y→0

f2(x, y)

y
=∞,

lim
x→0

I1,1(σx)

x
=∞, lim

y→0

I2,1(y)

y
=∞,

with α fixed as above, we can choose β small enough that

f1(σβ∗, α∗)

β∗
≥ 1

2A(b− a)
,

f2(σβ∗, β∗)

β∗
≥ 1

2A(b− a)
,

I1,1(σβ∗)

β∗
≥ 1

2Am
,

I1,2(β∗)

β∗
≥ 1

2Am
.

Conditions (3.6) are satisfied, hence system (4.2) has at least one positive solution
u = (u1, u2).
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An optimal quadrature formula exact to the
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Abstract. The numerical integration of definite integrals is essential in funda-
mental and applied sciences. The accuracy of approximate integral calculations
is contingent upon the initial data and specific requirements, leading to the im-
position of diverse conditions on the resultant computations. Classical methods
for the numerical analysis of definite integrals are known, such as the quadrature
formulas of Gregory, Newton-Cotes, Euler, Gauss, Markov, etc. Since the middle
of the last century, the theory of constructing optimal formulas for numerical
integration based on variational methods began to develop. It should be noted
that there are optimal quadrature formulas in the sense of Nikolsky and Sard.
In this paper, we study the problem of constructing an optimal quadrature for-
mula in the sense of Sard. When constructing a quadrature formula, the method
of ϕ-functions is used. The error of the formula is estimated from above using the
integral of the square of the function ϕ from a specific Hilbert space. Next, such
a ϕ function is selected, and the integral of the square in this interval takes the
smallest value. The coefficients of the optimal quadrature formula are calculated
using the resulting ϕ function. The optimal quadrature formula in this work is
exact on the functions eσx and e−σx, where σ is a nonzero real parameter.
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1. Introduction

Many problems of science and technology lead to integral and differential equa-
tions or their systems. Solutions to such equations are often expressed in terms of def-
inite integrals. In most cases, these integrals cannot be calculated accurately. There-
fore, it is necessary to calculate the approximate value of such integrals with the
highest possible accuracy and at a low cost.

Given the known geometric value, the problem of finding the numerical value
of integrals is often called quadrature and cubature, respectively. Various quadrature
and cubature methods allow the calculation of the integral using a finite number of
values of the integrated function. These methods are universal and can be used where
other calculation methods fail.

Many researchers have constructed various quadrature formulas based on certain
ideas and taking into account the properties of the integrand. Thus, the well-known
quadrature formulas of Gregory, Newton-Cotes, Simpson, Euler, Gauss, Chebyshev,
Markov and others appeared, still used in practice.

Currently, in the theory of constructing quadrature and cubature formulas, there
are the following main approaches: algebraic, probabilistic, numerical theoretic and
functional.

1. In the algebraic approach, it is necessary to choose the nodes and coefficients
of quadrature and cubature formulas so that these formulas are accurate for
all functions of a particular set F . Taking into account the properties of the
integrand. Usually, the set F is taken to be algebraic and trigonometric polyno-
mials whose degrees do not exceed a certain number of m or bounded rational
functions.

2. The probabilistic approach to constructing cubature formulas is based on the
Monte Carlo method.

3. Number-theoretic approach to constructing cubature formulas is based on meth-
ods of number theory.

4. For functional approach to constructing quadrature and cubature formulas, in
the functional system, it is considered that the integrands belong to some Banach
space, and the difference between the integral and the combination of values of
the integrand that approximates it is considered some linear continuous func-
tional. This functional is called the error functional of the cubature formula, and
the error of the formula is estimated through the norms of the error functional.
By minimizing the norms of the error functional according to the parameters of
quadrature and cubature formulas, optimal formulas for numerical integration
of various meanings are obtained.

Since the research in this work relates to the latter approach, we will provide an
overview of the results in this area.

The construction of quadrature formulas and the study of their error estimates,
based on the methods of functional analysis, were first given in the scientific works
of A. Sard [20, 21] (minimizing the norm of the error functional can be achieved by
adjusting the coefficients at fixed nodes) and S. M. Nikolsky [18] (minimization of
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the error functional by coefficients and nodes), and the emergence of the theory of
cubature formulas is associated with the scientific research of S.L. Sobolev [29].

The works of S.M. Nikolsky, N.P. Korneichuk, N.E. Lushpay, T.N. Busarova,
B. Boyanov, V.P. Motorny, A.A. Ligun, A.A. Zhensykbaev, K.I. Oskolkov, M.A.
Chakhkiev, T.A. Grankina are devoted to the problems of minimizing the norm of
the error functional over coefficients and over nodes in various spaces in the one-
dimensional case. For example, detailed results and a complete bibliography are given
in the creation of S.M. Nikolsky [19].

Note that there is a spline method, a method of ϕ-functions and a Sobolev
method for constructing optimal formulas obtained by minimizing the norm of the
error functional over coefficients at fixed nodes. A.Sard [20, 21], L.F.Meyers [17],
G.Coman [6, 7], I.J.Schoenberg [22, 23, 24, 25], S.D.Silliman [25], P.Köhler [15], based
on the spline method, and A.Ghizzetti and A.Ossicini [9], F.Lanzara [16], T.Catinaş
and G.Coman [5] , using the method of ϕ-functions, constructed optimal quadra-

ture formulas in the space L
(m)
2 . In constructing optimal cubature formulas using the

Sobolev method, the results of S.L. Sobolev [30] on finding the coefficients of opti-
mal quadrature formulas generalized the studies mentioned earlier in which the spline

method was applied. The algorithm proposed by S.L. Sobolev in the L
(m)
2 space was

implemented in scientific research by Z.Z.Zhamalov, F.Ya.Zagirova, Kh.M. Shadime-
tov, A.R. Hayotov and others. Recent results on optimal formulas obtained using the
Sobolev method can be found, for example, in the works [1, 27].

Note that the results of this work are closely related to the results of the works
[26, 2, 3, 8, 14, 10, 28, 4, 11, 12], which are devoted to the construction of optimal
quadrature formulas using the Sobolev method. In particular, our results generalize
the results of recent work [13].

2. Statement of the problem

In this work, we study the construction of an optimal quadrature formula using
the method of ϕ-functions. In this regard, consider quadrature formulas of the form∫ b

a

f(x)dx =

n∑
k=0

Akf(xk) +Rn(f), (2.1)

where Ak and xk are the coefficients and the nodes of the quadrature formula. Let
the nodes of the formula be located on the segment [a, b] as follows

a = x0 < x2 < . . . < xn = b, (2.2)

and Rn(f) is the error of formula (2.1).

Suppose that the integrand function f(x) is from the space W
(1,0)
2,σ (a, b), where

W
(1,0)
2,σ (a, b) is the Hilbert space of absolutely continuous functions that are quadrati-

cally integrable with the first-order derivative on the interval [a, b]. The scalar product
of any two functions f(x) and g(x) from this space is defined by the following formula

〈f(x), g(x)〉 =

∫ b

a

(f ′(x) + σf(x))(g′(x) + σg(x))dx, (2.3)
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where σ ∈ R and σ 6= 0. This space is provided with the corresponding norm

‖f(x)‖
W

(1,0)
2,σ

=

(∫ b

a

(f ′(x) + σf(x))2dx

)1/2

. (2.4)

One of the important problems in the theory of quadrature formulas is the
problem of the optimality of quadrature formulas relative to the error of this formula.
In this paper, we will consider the problem of optimality of a formula in the sense
of Sard. We use the one-to-one correspondence between quadrature formulas and ϕ -
functions in this.

For convenience, we introduce the multi-index notations

A = (A0, A1, . . . , An) and X = (x0, x1, . . . , xn). (2.5)

Definition 2.1. The quadrature formula (2.1) is called optimal in the sense of Nikolsky

in space W
(1,0)
2,σ , if the value

Fn(W
(1,0)
2,σ , A,X) = sup

f∈W (1,0)
2,σ

|Rn(f)| (2.6)

reaches its smallest value relative to A and X, where A and X are defined in (2.5).

Definition 2.2. The quadrature formula (2.1) is called optimal in the sense of Sard in

the space W
(1,0)
2,σ if the quantity

Fn(W
(1,0)
2,σ , A) = sup

f∈W (1,0)
2,σ

|Rn(f)| (2.7)

reaches its smallest value relative to A for fixed X, where A and X are defined in
(2.5).

In this work, we solve the problem of constructing an optimal quadrature formula

of the form (2.1) in the sense of Sard in the space W
(1,0)
2,σ (a, b), i.e., let us find such

coefficients of the formula (2.1) that give the smallest value to the quantity (2.7) for
fixed X. In this case, we use the method of ϕ-functions.

Next, the rest of this work is organized as follows. Section 3 describes the method
of ϕ-functions for constructing quadrature formulas of the form (2.1) in the space

W
(1,0)
2,σ and provides the relationship between the coefficients and ϕ-functions. Section

4 is devoted to obtaining ϕ-functions that give the smallest error value of a quadrature
formula of the form (2.1). Using the obtained ϕ-functions, the coefficients of the
optimal quadrature formula of the form (2.1) are calculated.

3. Method of ϕ - functions for constructing quadrature formulas in

the space W
(1,0)
2,σ

In this section, we explain the method of ϕ - functions for constructing optimal

quadrature formulas of the form (2.1) in the sense of Sard in the space W
(1,0)
2,σ . For

more details on the ϕ - function method see, for instance, [5, 16, 9].
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Let functions f(x) be from the space W
(1,0)
2,σ (a, b) and for a given positive integer

n the nodes of the quadrature formula under consideration are located as in (2.5).
Then for each subinterval [xk−1, xk], k = 1, 2, . . . , n, consider the functions ϕk, k =
1, 2, . . . , n having the following property

ϕ′k(x)− σϕk(x) = 1, k = 1, 2, . . . , n. (3.1)

Then the function ϕ is defined as follows

ϕ|[xk−1,xk] = ϕk(x), k = 1, 2, . . . , n. (3.2)

That is, the restriction of the function ϕ to the interval [xk−1, xk] is equal to ϕk.

Let us introduce the following notation

I(f) :=

∫ b

a

f(x)dx, (3.3)

Qn(f) :=

n∑
k=0

Akf(xk). (3.4)

Now, using the property of additivity of a definite integral, taking into account the
equalities (3.1), from (3.3), we have (see, e.g., [5, 16, 9])

I(f) : =

∫ b

a

f(x)dx =

n∑
k=1

∫ xk

xk−1

(ϕ′k(x)− σϕk(x))f(x)dx

=

n∑
k=1

(∫ xk

xk−1

ϕ′k(x)f(x)dx− σ
∫ xk

xk−1

ϕk(x)f(x)dx

)

=

n∑
k=1

(
ϕk(x)f(x)

∣∣∣∣xk
xk−1

−
∫ xk

xk−1

ϕk(x)f ′(x)dx− σ
∫ xk

xk−1

ϕk(x)f(x)dx

)

=

n∑
k=1

(
ϕk(x)f(x)

∣∣∣∣xk
xk−1

−
∫ xk

xk−1

ϕk(x)(f ′(x) + σf(x))

)
dx

=

n∑
k=1

(
ϕk(xk)f(xk)− ϕk(xk−1)f(xk−1)

)

−
n∑
k=1

∫ xk

xk−1

ϕk(x)

(
f ′(x) + σf(x)

)
dx

=

n∑
k=1

ϕk(xk)f(xk)−
n∑
k=1

ϕk(xk−1)f(xk−1)

−
n∑
k=1

∫ xk

xk−1

ϕk(x)

(
f ′(x) + σf(x)

)
dx
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=

n∑
k=1

ϕk(xk)f(xk)−
n−1∑
k=0

ϕk+1(xk)f(xk)

−
n∑
k=1

∫ xk

xk−1

ϕk(x)

(
f ′(x) + σf(x)

)
dx

= ϕn(xn)f(xn) +

n−1∑
k=1

ϕk(xk)f(xk)−
n−1∑
k=1

ϕk+1(xk)f(xk)

− ϕ1(x0)f(x0)−
n∑
k=1

∫ xk

xk−1

ϕk(x)

(
f ′(x) + σf(x)

)
dx.

From here we have

I(f) : = −ϕ1(x0)f(x0) +

n−1∑
k=1

(
ϕk(xk)− ϕk+1(xk)

)
f(xk)

+ϕn(xn)f(xn)−
n∑
k=1

∫ xk

xk−1

ϕk(x)

(
f ′(x) + σf(x)

)
dx

= A0f(x0) +

n−1∑
k=1

Akf(xk) +Anf(xn) +Rn[f ]. (3.5)

From (3.5) we get

A0 = −ϕ1(x0),

Ak = ϕk(xk)− ϕk+1(xk), k = 1, 2, . . . , n− 1, (3.6)

An = ϕn(xn)

and the error of the formula has the form

Rn[f ] = −
n∑
k=1

∫ xk

xk−1

ϕk(x)

(
f ′(x) + σf(x)

)
dx

= −
∫ b

a

ϕ(x)

(
f ′(x) + σf(x)

)
. (3.7)

Remark 3.1. Knowing the function ϕ from (3.6) we can find the coefficients Ak,
k = 0, 1, . . . , n. This method of constructing a quadrature formula is called the method
of ϕ - functions (see, [5, 16, 9]).

Remark 3.2. From the expression (3.7) it is clear that the quadrature formula (2.1)
is exact on functions that are a solution to the equation

f ′(x) + σf(x) = 0. (3.8)

Further, in the next section, we are engaged in calculating the coefficients of the

optimal quadrature formula of the form (2.1) in the space W
(1,0)
2,σ (a, b).
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4. The optimality problem for a quadrature formula

In this section, we will discuss the problem of optimality of a quadrature formula

of the form (2.1) in the space W
(1,0)
2,σ (a, b).

Using the Cauchy-Schwartz inequality for the absolute value of the error (3.7)
of the quadrature formula (2.1) we have the following

|Rn(f)| ≤ ‖f ′(x) + σf(x)‖L2(a,b)

 b∫
a

ϕ2(x)dx

1/2

= ‖f(x)‖
W

(1,0)
2,σ
‖ϕ(x)‖L2(a,b). (4.1)

It should be noted that here the task of constructing an optimal quadrature

formula of the form (2.1) in the sense of Sard in the space W
(1,0)
2,σ (a, b) is the task

of finding the coefficients A = (A0, A1, . . . , An) (for fixed nodes X = (x0, x1, . . . , xn)
satisfying the condition (2.2)) giving the smallest value to the quantity

Fn(A) =

b∫
a

ϕ2(x)dx. (4.2)

In turn, this problem is equivalent to finding functions ϕk(x), k = 1, 2, . . . , n, satisfying
the equation (3.1) and giving the smallest value to the quantity (4.2) on each interval
[xk−1, xk], k = 1, 2, . . . , n.

Next, for the beginning we will find the functions ϕk(x), k = 1, 2, . . . , n that
give the smallest value to the quantity (4.2) and then using the formulas (3.6) we will
calculate coefficients Ak, k = 0, 1, . . . , n of the optimal quadrature formula (2.1).

4.1. Finding functions ϕk

Now we are engaged in finding the functions ϕk on each interval [xk−1, xk] for
k = 1, 2, . . . , n, which are the solution to the equation

y′ − σy = 1. (4.3)

We will seek a solution to this equation in the form of the product y = uy1 of the
functions u(x) and y1(x), where y1 is the solution to the corresponding homogeneous
equation

y′ − σy = 0. (4.4)

It is easy to check that one of the solutions to the equation (4.4) has the form

y1(x) = eσx. (4.5)

Now we can solve equation (4.3). By assumption, the solution to equation (4.3) has
the form

y(x) = uy1, (4.6)

where y1(x) is defined by equality (4.5). Then we just need to find the function u(x).
To find it, we first calculate the first-order derivative of the unknown function y(x)
in (4.6). Then we have

y′ = u′y1 + uy′1. (4.7)
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Substituting (4.6) into (4.3), taking into account (4.5), we get

u′eσx + uσeσx − uσeσx = 1.

From here

u′ = e−σx.

Integrating both sides of the last equality we have

u(x) = − 1

σ
e−σx + C.

This means, taking into account the last equality and (4.5), for the solution of equation
(4.3) we obtain

y = − 1

σ
+ Ceσx. (4.8)

Next, on each interval [xk−1, xk], k = 1, 2, . . . , n we take functions ϕk(x) in the
form (4.8), i.e.

ϕk(x) = − 1

σ
+ C

(k)
1 eσx, x ∈ [xk−1, xk], k = 1, 2, . . . , n. (4.9)

From here we conclude that to find the functions ϕk(x) we need to find such coefficients

C
(k)
1 , k = 1, 2, . . . , n, which give the smallest values to the quantity (4.2) on each of

the intervals [xk−1, xk] for k = 1, 2, . . . , n. Next, we find C
(k)
1 such that the integral

of the square of the function ϕk(x) defined by equality (4.9) on the interval [xk−1, xk]
takes the smallest value. In this regard, consider the following functions

Fk(C
(k)
1 ) =

xk∫
xk−1

ϕ2
k(x)dx, k = 1, 2, . . . , n.

Then from here, taking into account (4.9), we have

Fk(C
(k)
1 ) =

xk∫
xk−1

(
− 1

σ
+ C

(k)
1 eσx

)2

dx

=

xk∫
xk−1

1

σ2
dx− 2C

(k)
1

1

σ

xk∫
xk−1

eσxdx

+(C
(k)
1 )2

xk∫
xk−1

e2σxdx, k = 1, 2, . . . , n.

Then calculating the first order derivatives of the functions Fk(C
(k)
1 ) with respect to

C
(k)
1 and equating them to zero, we have

2C
(k)
1

xk∫
xk−1

e2σxdx− 2

σ

xk∫
xk−1

eσxdx = 0, k = 1, 2, . . . , n.
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From the last equalities we get the following

C
(k)
1 =

1
σ

xk∫
xk−1

eσxdx

xk∫
xk−1

e2σxdx

=
2

σ (eσxk + eσxk−1)
, k = 1, 2, . . . , n. (4.10)

It is easy to check that this value of C
(k)
1 gives the smallest value to the function

Fk(C
(k)
1 ) on the interval [xk−1, xk]. Then, taking into account (4.10), from (4.9) we

have

ϕk(x) = − 1

σ
+

2eσx

σ (eσxk + eσxk−1)
, x ∈ [xk−1, xk], k = 1, 2, . . . , n. (4.11)

4.2. Calculation of coefficients of the optimal quadrature formula

Now, using (4.11), from the formulas (3.6) we calculate the coefficients Ak,
k = 0, 1, . . . , n of the optimal quadrature formula of the form (2.1).

First, let’s calculate A0. From (3.6), taking into account ϕ1(x), we have

A0 = −ϕ1(x0) = −
(
− 1

σ
+

2eσx0

σ (eσx1 + eσx0)

)
=

eσx1 − eσx0

σ(eσx1 + eσx0)
. (4.12)

Now let’s calculate the coefficients Ak, k = 1, 2, . . . , n−1. From (3.6), using ϕk(x) for
k = 1, 2, . . . , n− 1, we have

Ak = ϕk(xk)− ϕk+1(xk)

=

(
− 1

σ
+

2eσxk

σ (eσxk + eσxk−1)

)
−
(
− 1

σ
+

2eσxk

σ (eσxk+1 + eσxk)

)
=

2eσxk(eσxk+1 − eσxk−1)

σ(eσxk+1 + eσxk)(eσxk + eσxk−1)
. (4.13)

Finally, let’s calculate the last coefficient An. Then, from (3.6), taking into ac-
count (4.11), we obtain

An = −ϕn(xn) = −
(
− 1

σ
+

2eσxn

σ (eσxn + eσxn−1)

)
=

eσxn − eσxn−1

σ(eσxn + eσxn−1)
. (4.14)

Thus, summing up the results of (4.12), (4.13) and (4.14), we obtain the following
main theorem of this work.

Theorem 4.1. In the space W
(1,0)
2,σ (a, b) for each fixed positive integer n, there is a

unique quadrature formula that is optimal in the sense of Sard of the form

b∫
a

f(x)dx =

n∑
k=0

Akf(xk) +Rn(f)
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with coefficients

A0 =
eσx1 − eσx0

σ(eσx1 + eσx0)
,

Ak =
2eσxk(eσxk+1 − eσxk−1)

σ(eσxk+1 + eσxk)(eσxk + eσxk−1)
, k = 1, 2, . . . , n− 1,

An =
eσxn − eσxn−1

σ(eσxn + eσxn−1)
,

for fixed nodes xk, k = 0, 1, . . . , n satisfying the inequality a = x0 < x1 < . . . < xk = b.

Remark 4.2. It should be noted that for [a, b] = [0, 1] and xk = kh, where
k = 0, 1, . . . , N , h = 1/N from Theorem 1 we obtain the result of the work [13].

5. The norm of ϕ–function

According to inequality (4.1), we need to calculate the norm of the function ϕ
to get an upper bound of the absolute value of the error (3.7)

‖ϕ‖2L2(a,b)
=

1∫
0

ϕ2(x)dx =

N∑
k=1

∫ xk

xk−1

ϕ2
k(x)dx. (5.1)

From the expression of the function ϕk in equation (4.11), we can calculate the fol-
lowing

ϕ2
k(x) =

(
−1

σ
+

2eσx

σ(eσxk + eσxk−1)

)2

=
1

σ2
− 4eσx

σ2(eσxk + eσxk−1)
+

4e2σx

σ2(eσxk + eσxk−1)2
.

Substituting the last expression into equation (5.1), we get the following∫ xk

xk−1

ϕ2
k(x)dx =

∫ xk

xk−1

(
1

σ2
− 4eσx

σ2(eσxk + eσxk−1)
+

4e2σx

σ2(eσxk + eσxk−1)2

)
dx

=

∫ xk

xk−1

1

σ2
dx−

∫ xk

xk−1

4eσx

σ2(eσxk + eσxk−1)
dx

+

∫ xk

xk−1

4e2σx

σ2 (eσxk + eσxk−1)
2 dx

=
xk − xk−1

σ2
− 4 (eσxk − eσxk−1)

σ3 (eσxk + eσxk−1)
+

2
(
e2σxk − e2σxk−1

)
σ3 (eσxk + eσxk−1)

2

=
xk − xk−1

σ2
− 2 (eσxk − eσxk−1)

σ3 (eσxk + eσxk−1)
.
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Thus, putting the obtained expression into equation (5.1), we get the following result

‖ϕ‖2L2(a,b)
=

N∑
k=1

∫ xk

xk−1

ϕ2
k(x)dx =

N∑
k=1

(
xk − xk−1

σ2
− 2 (eσxk − eσxk−1)

σ3 (eσxk + eσxk−1)

)

=
xn − x0
σ2

− 2

σ3

N∑
k=1

eσxk − eσxk−1

eσxk + eσxk−1
.

We have the next result in the case of equally spaced nodes xk = hk, h = 1
N

‖ϕ‖2L2(a,b)
=

N∑
k=1

∫ xk

xk−1

ϕ2
k(x)dx =

1

σ2
− 2

σ3h
· e

σh − 1

eσh + 1
.

6. Conclusion

In this work, we constructed an optimal quadrature formula in the space

W
(1,0)
2,σ (a, b), where W

(1,0)
2,σ (a, b) is the Hilbert space of absolutely continuous func-

tions whose first-order derivatives are square-integrable on the interval [a, b]. Here the
quadrature sum consists of a linear combination of the values f(xk) of the function
f(x) at the nodes xk ∈ [a, b], where a = x0 < x1 < . . . < xn = b. The error of the
quadrature formula under consideration is estimated from above using the product of
the norm of the integrand and the L2 norm of the particular ϕ function from the space

W
(1,0)
2,σ (a, b). Moreover, this ϕ function is determined by an unknown factor on each

subinterval. The optimal quadrature formula is obtained by choosing these factors,
which provide the smallest value of the L2-norm of the ϕ function. In this work, we
found such a ϕ - function. Explicit coefficients for optimal quadrature are found using
ϕ-function. The resulting quadrature formula is exact for the functions eσx and e−σx.
In particular, well-known results are obtained from the results of this work.
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[5] Cătinaş, T., Coman, Gh., Optimal quadrature formulas based on the ϕ-function method,
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tors, and knowledge of the Lipschitz constant is not required to implement our
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1. Introduction

Let H be a real Hilbert space with induced norm ‖ · ‖ and inner product 〈·, ·〉. Let C
be a nonempty closed convex subset of a real Hilbert space and let F : C × C → R
be A bifunction. The equilibrium problem (shortly, (EP)) in the sense of Blum and
Oettli [8] is to find x̂ ∈ C such that

F (x̂, y) ≥ 0, ∀ y ∈ C. (1.1)

The set of all solutions of EP (1.1) is denoted by EP (F ). The EP attracts consider-
able research efforts and serves as a unifying framework for studying many well-known
problems, such as the Nonlinear Complementarity Problems (NCPs), Optimization
Problems (OPs), Variational Inequality Problems (VIPs), Saddle Point Problems
(SPPs), the Fixed Point Problem (FPP), the Nash equilibria and many others, and
has many applications in physics and economics, (see, for example [1, 11, 12, 34, 33, 48]
and the references therein).
On the other hand, the generalized equilibrium problem (GEP) is defined as finding a
point x ∈ C such that

F (x, y) + φ(x, y) ≥ 0,∀y ∈ C, (1.2)

where F, φ : C × C → R are bifunctions. We denote the solution set of GEP (1.2) by
GEP (F, φ). If φ = 0, then the GEP (1.2) reduces to the equilibrium problem (1.1).
Let C ⊆ H1 and Q ⊆ H2 where H1 and H2 are real Hilbert spaces. Let F1, φ1 :
C ×C → R and F2, φ2 : Q×Q→ R be nonlinear bifunctions, and A : H1 → H2 be a
bounded linear operator. The split generalized equilibrium problem (SGEP) introduced
by Kazmi and Rizvi [23] is defined as follows: Find x̄ ∈ C such that

F1(x̄, x) + φ1(x̄, x) ≥ 0,∀x ∈ C, (1.3)

and such that

ȳ = Ax̄ ∈ Q solves F2(ȳ, y) + φ2(ȳ, y) ≥ 0, ∀y ∈ Q. (1.4)

The solution set of the split generalized equilibrium problem is denoted by

SGEP (F1, φ1, F2, φ2) = {x̄ ∈ C : x̄ ∈ GEP (F1, φ1) and Ax̄ ∈ GEP (F2, φ2)}. (1.5)

If φ1 = 0 and φ2 = 0, we obtain a special case of the split generalized equilibrium
problem (1.3)-(1.4) called the split equilibrium problem (SEP) which is defined as
follows:

F1(x̄, x) ≥ 0,∀x ∈ C, (1.6)

and such that

ȳ = Ax̄ ∈ Q solves F2(ȳ, y) ≥ 0, ∀y ∈ Q. (1.7)

We denote the solution set of the SEP (1.6)-(1.7) by Ω := {x̄ ∈ EP (F1) : Ax̄ ∈
EP (F2)}. The split generalized equilibrium problem has been studied by numerous
authors and several iterative algorithms have been proposed by many authors for
solving the problem (see, [39, 42]).
Another important problem that we consider is the monotone inclusion problem
(MIP), which is defined as finding a point z ∈ H such that

0 ∈ (B +D)z, (1.8)
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where B : H → H is a nonlinear operator and D : H → 2H is a set-valued operator.
We denote the set of solutions of (1.8) by (B +D)−1(0). The MIP (1.8) and related
optimization problems have been studied by several authors with various iterative
algorithms proposed for approximating their solutions in Hilbert spaces and Banach
spaces (see, for instance [3, 31, 32, 47, 50, 49]). One of the most efficient methods for
solving the MIP is the forward-backward splitting method (see [6, 9, 14, 17, 18, 26]).

Martinez [29] first introduced the Proximal Point Algorithm (PPA) for finding the
zero point of a maximal monotone operator B. The sequence generated by PPA is
defined as follows:

xn+1 = JDrnxn,

where 0 < rn < ∞, JDrn = (I + rnD)−1 is the resolvent operator of D and I is the
identity mapping. This algorithm was eventually modified by Rockafellar [40] to the
following PPA with errors:

xn+1 = JDrnxn + en,

where {en} is an error sequence. It was proved that if en → 0 such that

∞∑
n=1

‖en‖ < +∞,

and the solution set D−1(0) 6= ∅ and lim inf
n→∞

rn > 0, then the sequence {xn} converges

weakly to a zero point of D.

Also, Moudafi and Théra [31] introduced the following iterative algorithm for solving
MIP (1.8): {

xn = JDr vn,

vn+1 = tvn + (1− t)xn − µ(1− t)Bxn,
(1.9)

where t ∈ (0, 1), r > 0, B is Lipschitz continuous and strongly monotone and D is
maximal monotone. They proved that the sequence {xn} generated by the iterative
algorithm converges weakly to an element in (B +D)−1(0).

Alvarez and Attouch [5] proposed the following modified PPA of inertial form:{
yn = xn + µn(xn − xn−1),

xn+1 = JDλnyn, n ≥ 1,
(1.10)

where {µn} ⊂ [0, 1), {λn} is non-decreasing and

∞∑
n=1

µn‖xn − xn−1‖2 <∞, ∀µn <
1

3
. (1.11)

It was proved that Algorithm (1.10) converges weakly to a zero of D.

Recently, Moudafi and Oliny [30] introduced the following inertial PPA for approxi-
mating the zero point problem of the sum of two monotone operators:{

yn = xn + µn(xn − xn−1),

xn+1 = JDλn(yn − λnBxn), n ≥ 1,
(1.12)
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where D : H → 2H is maximal monotone and B is Lipschitz continuous. They proved
that the sequence generated by Algorithm (1.12) converges weakly if λn <

2
L , where

L is the Lipschitz constant of B.
Moreover, the following inertial forward-backward algorithm was introduced by
Lorenz and Pock [26]: {

yn = xn + µn(xn − xn−1),

xn+1 = JDλn(yn − λnByn), n ≥ 1,
(1.13)

where {λn} is a positive real sequence. Algorithm (1.13) differs from Algorithm (1.12)
since the operator B is evaluated as the inertial extrapolate yn. The proposed algo-
rithm was also proved to converge weakly to a solution of the MIP (1.8).
In 2016, Deepho [16] introduced the general Cesáro mean iterative method for approxi-
mating a common solution of split generalized equilibrium, fixed point of nonexpansive
mappings Tj and variational inequality problems:

zn = T
(F1,φ1)
rn (xn + γA∗(T

(F2,φ2)
rn − I)Axn),

un = PC(zn − λnGzn),

xn+1 = αnηf(xn) + βxn + ((1− βn)I − αnK) 1
n+1

∑n
j=0 Tjun, ∀n ≥ 0,

(1.14)

where {αn}, {βn} ⊂ (0, 1), {λn} ∈ [a, b] ⊂ (0, 2β) and {rn} ⊂ (0, α) and γ ∈
(
0, 1

L

)
,

L is the spectral radius of the operator A∗A and A∗ is the adjoint of A. Under the
following conditions:

(C1) lim
n→∞

αn = 0,
∑∞
n=0 αn =∞;

(C2) 0 ≤ lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1;

(C3) lim
n→∞

|λn+1 − λn| = 0;

(C4) lim inf
n→∞

rn > 0, lim
n→∞

|rn+1 − rn| = 0.

the authors proved that the sequence {xn} converges strongly to an element q in the
solution set Ω, where q = PΩ(I −K + γf)(q) is the unique solution of the variational
inequality problem

〈(K − γf)q, x− q〉 ≥ 0, ∀x ∈ Ω.

Also, in 2017, Sitthithakerngkiet [42] proposed and studied the following iterative
method for approximating a common solution of split generalized equilibrium, varia-
tional inequality for an inverse-strongly monotone mapping and fixed point problems
of nonexpansive mappings in Hilbert spaces:{

zn = T
(F1,φ1)
rn (xn + γA∗(T

(F2,φ2)
rn − I)Axn),

xn+1 = αnf(xn) + βnxn + ξnT [σnv + (1− σn)PC(zn − λnGzn)],
(1.15)

where v ∈ C is a fixed point, rn ∈ (0,∞), µ ∈
(
0, 1

L

)
, L is the spectral radius of the

operator A∗A, A∗ is the adjoint of A, sequences {αn}, {βn}, {ξn} and {σn} are in
(0, 1) and satisfy αn + βn + ξn = 1, λn ∈ [a, b] for some a, b with 0 < a < b < 2βn and
{γn} ⊂ [c, 1] for some c ∈ (0, 1). Assume that the following conditions are satisfied:
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(C1) lim
n→∞

αn = 0,
∑∞
n=0 αn =∞;

(C2) lim
n→∞

σn = 0;

(C3) 0 ≤ lim inf
n→∞

βn ≤ lim sup
n→∞

βn < 1;

(C4) lim
n→∞

|λn+1 − λn| = 0;

(C5) lim inf
n→∞

rn > 0, lim
n→∞

|rn+1 − rn| = 0,

the authors proved that the sequence {xn} converges strongly to z ∈ Ω, where

z = PΩf(z).

Recently, Phuengrattana and Lerkchaiyaphum [39] introduced the following shrinking
projection method for solving SGEP and FPP for a countable family of nonexpansive
multivalued mappings: For x1 ∈ C and C1 = C, then

zn = T
(F1,φ1)
rn (I − γA∗(I − T (F2,φ2)

rn )A)xn,

yn = δn,0xn +
∑n
j=1 δn,jun,j , un,j ∈ Pjzn,

Cn+1 = {p ∈ Cn : ‖yn − p‖2 ≤ ‖xn − p‖2},
xn+1 = PCn+1

x1, n ∈ N.

(1.16)

They proved that if

(i) lim inf
n→∞

rn > 0,

(ii) The limits lim
n→∞

δn,j ∈ (0, 1) exist for all j ≥ 0,

then the sequence {xn} generated by (1.16) converges strongly to PΓx1, where

Γ =

∞⋂
j=1

F (Pj) ∩ SGEP (F1, φ1, F2, φ2) 6= ∅,

F (Pj) is the set of fixed points of Pj and Pj is a countable family of nonexpansive
multivalued mappings.
In 2021, Olona et al. [37] proposed an inertial shrinking projection defined as follows
for split generalized equilibrium and fixed point problems for a countable family of
nonexpansive multivalued mappings : for x0, x1 ∈ C with C1 = C, then

wn = xn + θn(xn − xn−1),

un = T
(F1,φ1)
rn (I − γnA∗(I − T (F2,φ2)

rn )A)wn,

zn = δn,0un +
∑n
i=1 δn,jyn,j , yn,j ∈ Pjun,

Cn+1 = {p ∈ Cn : ‖zn − p‖2 ≤ ‖xn − p‖2

−2θn〈xn − p, xn−1 − xn〉+ θ2
n‖xn−1 − xn‖2},

xn+1 = PCn+1x1, n ∈ N,

(1.17)

γn =


τn‖(I−T (F2,φ2)

rn
)Awn‖2

‖A∗(I−T (F2,φ2)
rn )Awn‖2

if Awn 6= T
(F2,φ2)
rn Awn,

γ otherwise (γ being any nonnegative real number),
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where A : H1 → H2 is a bounded linear operator, 0 < a ≤ τn ≤ b < 1, {θn} ⊂ R,
{δn,j} ⊂ (0, 1), such that

∑n
j=0 δn,j = 1, and {rn} ⊂ (0,∞). {Pj} is a countable family

of nonexpansive multivalued mappings, F1, φ1 : C × C → R, F2, φ2 : Q × Q → R
are bifunctions. Under some appropriate conditions, it was proved that the sequence
{xn} converges strongly to PΩx1, where Ω =

⋂∞
j=1 F (Pj)∩SGEP (F1, φ1, F2, φ2) 6= ∅.

Motivated by the above results and the current research interest in this direction, in
this paper, we propose a new iterative algorithm of inertial type with self-adaptive step
size for approximating the common solution of SGEP (1.3)-(1.4), MIP (1.8) and FPP
of strictly pseudo-contractive multivalued mappings. We prove that the sequence gen-
erated by our algorithm converges strongly to a solution of the investigated problem.
Finally, we present some applications and numerical examples to illustrate the useful-
ness and efficiency of the proposed method in comparison with some related methods.
Our proposed method uses self-adaptive step size and employs inertial technique to
accelerate the rate of convergence of the proposed method. The implementation of our
proposed algorithm does not require a prior knowledge of the norm of the bounded
linear operator.
Subsequent sections of this paper are organised as follows: In Section 2, we recall
some basic definitions and lemmas that are relevant in establishing our main results.
In Section 3, we present our proposed algorithm and highlight some of its features. In
Section 4, we prove some lemmas that are useful in establishing the strong convergence
of our proposed algorithm and also prove the strong convergence theorem for the
algorithm. In Section 5, we apply our result to study some optimization problems while
in Section 6, we present some numerical experiments to illustrate the performance of
our method and compare it with some related methods in the literature. Finally, in
Section 7 we give a concluding remark.

2. Preliminaries

Let C be a nonempty, closed and convex subset of a real Hilbert space H with inner
product 〈·, ·〉 and norm ‖·‖. We denote xn → x to mean that sequence {xn} converges
strongly to x and xn ⇀ x to indicate that the sequence {xn} converges weakly to x.
We write wω(xn) to denote set of weak limits of {xn}, that is,

ωw(xn) := {x ∈ H : xnj ⇀ x for some subsequence {xnj} of {xn}}.
The nearest point projection of H onto C denoted by PC is defined for each x ∈ H,
as the unique element PCx ∈ C such that

‖x− PCx‖ ≤ ‖x− y‖, ∀ y ∈ C. (2.1)

It is well known that PC is nonexpansive and has the following characteristics (see
[4, 21]:

‖PCx− PCy‖2 ≤ 〈x− y, PCx− PCy〉, ∀ x, y ∈ H1, (2.2)

〈x− PCx, y − PCx〉 ≤ 0, (2.3)

‖x− y‖2 ≤ ‖x− PCx‖2 + ‖y − PCx‖2, ∀x ∈ H, y ∈ C, (2.4)

‖(x− y)− (PCx− PCy)‖2 ≥ ‖x− y‖2 − ‖PCx− PCy‖2, x, y ∈ H. (2.5)
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A mapping B : C → H is said to be monotone if

〈Bu−Bv, u− v〉 ≥ 0, ∀u, v ∈ C. (2.6)

Moreover, if B satisfies

〈Bu−Bv, u− v〉 ≥ α‖Bu−Bv‖2, ∀u, v ∈ C, (2.7)

for some positive real number α. Then, B is called an α-inverse-strongly monotone
mapping. It is clear that every inverse-strongly monotone mapping is monotone.

Lemma 2.1. [37, 28] Let H be a real Hilbert space, λ ∈ R, then ∀x, y ∈ H, we have

(i) ‖x+ y‖2 = ‖x‖2 + 2〈x, y〉+ ‖y‖2;
(ii) ‖x− y‖2 = ‖x‖2 − 2〈x, y〉+ ‖y‖2;
(iii) ‖x+ y‖2 ≤ ‖x‖2 + 2〈y, x+ y〉;
(iv) ‖λx+ (1− λ)y‖2 = λ‖x‖2 + (1− λ)‖y‖2 − λ(1− λ)‖x− y‖2.

Lemma 2.2. [32] Let C be a nonempty closed convex subset of a real Hilbert space H,
and let PC : H → C be the metric projection. Then

‖y − PCx‖2 + ‖x− PCx‖2 ≤ ‖x− y‖2, ∀x ∈ H, y ∈ C.

Lemma 2.3. [?] Let xi ∈ H, (1 ≤ i ≤ m),
∑m
i=1 αi = 1, where {αi} ⊆ (0, 1). Then∥∥∥∥ m∑

i=1

αixi

∥∥∥∥2

=

m∑
i=1

αi‖xi‖2 −
∑

1≤i<j≤m

αiαj‖xi − xj‖2.

Lemma 2.4. [24] Let C be a nonempty, closed and convex subset of a real Hilbert space
H. Given x, y, z ∈ H and a ∈ (R), the set D = {v ∈ C : ‖y−v‖2 ≤ ‖x−v‖2+〈z, v〉+a}
is convex and closed.

Assumption 2.5. Let C be a nonempty closed convex subset of a Hilbert space H. Let
F1 : C × C → R and φ1 : C × C → R be two bifunctions that satisfy the following
conditions:

(A1) F1(x, x) = 0 for all x ∈ C,
(A2) F is monotone, that is, F1(x, y) + F1(y, x) ≤ 0 for all x, y ∈ C,
(A3) F is upper hemicontinuous, that is, for all x, y, z ∈ C,

lim
t↓0

F
(
tz + (1− t)x, y

)
≤ F (x, y),

(A4) for each x ∈ C, y 7→ F1(x, y) is convex and lower semicontinuous,
(A5) φ1(x, x) ≥ 0, for all x ∈ C,
(A6) for each y ∈ C, x 7→ φ1(x, y) is upper semicontinuous,
(A7) for each x ∈ C, y 7→ φ1(x, y) is convex and lower semicontinuous,

and assume that for fixed r > 0 and z ∈ C, there exists a nonempty compact convex
subset K of H1 and x ∈ C ∩K such that

F1(y, x) + φ1(y, x) +
1

r
〈y − x, x− z〉 < 0, ∀y ∈ C \K.
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Lemma 2.6. [27] Let C be a nonempty closed convex subset of a Hilbert space H. Let
F : C × C → R and φ1 : C × C → R be two bifunctions that satisfy Assumption 2.5.

Assume that φ is monotone. For r > 0 and and x ∈ H. Define mapping T
(F,φ)
r : H →

C as follows:

T (F,φ)
r (x) =

{
z ∈ C : F (z, y) + φ(z, y) +

1

r
〈y − z, z − x〉 ≥ 0, ∀y ∈ C

}
for all x ∈ H1. Then

(1) for each x ∈ H1, T
(F,φ)
r 6= ∅,

(2) T
(F,φ)
r is single-valued,

(3) T
(F,φ)
r is firmly nonexpansive, that is, for any x, y ∈ H1,

‖T (F,φ)
r x− T (F,φ)

r y‖2 ≤ 〈T (F,φ)
r x− T (F,φ)

r y, x− y〉,

(4) F (T
(F,φ)
r ) = GEP (F, φ),

(5) GEP(F, φ) is closed and convex.

Lemma 2.7. [44] Let X be a Banach space space satisfying Opial’s condition and let
{xn} be a sequence in X. Let u, v ∈ X be such that

lim
n→∞

‖xn − u‖ and lim
n→∞

‖xn − v‖ exist.

If {xnk} and {xmk} are subsequences of {xn} which converge weakly to u and v,
respectively, then u = v.

Lemma 2.8. [10] Let B : H → 2H be a maximal monotone mapping and A : H → H
be a Lipschitz continuous and monotone mapping. Then, the mapping A + B is a
maximal monotone mapping.

Lemma 2.9. [20] Let B : H → 2H be a maximal monotone operator and A : H → H
be a mapping on H. Define Tλ := (I + λB)−1(I − λA), λ > 0. Then, we have the
following

Fix(Tλ) = (A+B)−1(0), ∀λ > 0. (2.8)

Let D be a nonempty subset of H. D is said to be proximal if there exists y ∈ D such
that

‖x− y‖ = d(x,D), x ∈ H.
Let CC(C), CB(C) and P (C) be the family of nonempty closed convex subset of H,
nonempty closed bounded subsets of H and nonempty proximal bounded subsets of
H respectively. The Hausdorff metric on CB(C) is defined as follows:

H(A,B) := max

{
sup
x∈A

d(x,B), sup
y∈B

d(y,A), ∀A,B ∈ CB(C)

}
.

Let S : C → 2C be a multivalued mapping. An element x ∈ H is said to be a fixed
point of S if x ∈ Sx. We say that S satisfies the endpoint condition if Sp = {p} for all
p ∈ F (S). For multivalued mappings Si : H → 2H (i ∈ N) with ∩∞i=1F (Si) 6= ∅, we say
Si satisfies the common endpoint condition if Si(p) = {p} for all i ∈ N, p ∈ ∩∞i=1F (Si).

Definition 2.10. Let A : H → H be a nonlinear operator. Then A is called
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(i) Lipschitz continuous if for all L > 0

‖Ax−Ay‖ ≤ L‖x− y‖, ∀x, y ∈ H;

if 0 ≤ L < 1, then A is a contraction mapping,
(ii) β−strongly monotone if for all β > 0

〈Ax−Ay, x− y〉 ≥ β‖x− y‖2, ∀x, y ∈ H.

Definition 2.11. Let S : C → CB(C) be a multivalued mapping. S is said to be

(i) nonexpansive if
H(Sx, Sy) ≤ ‖x− y‖, ∀x, y ∈ C,

(ii) quasi-nonexpansive if F (S) 6= ∅ such that

H(Sx, Sp) ≤ ‖x− p‖, ∀x ∈ C, p ∈ F (S),

(iii) k- strictly pseudo-contractive if there exists a constant k ∈ [0, 1) such that

(H(Sx, Sy))2 ≤ ‖x− y‖2 + k‖(x− u)− (y − v)‖2, ∀u ∈ Sx, v ∈ Sy (2.9)

If k = 1 in (2.9), then the mapping S is said to be pseudo-contractive.

Clearly, the class of k-strict pseudo-contractive mappings properly contains the class of
nonexpansive mappings. That is, S is nonexpansive if and only if S is 0-strict pseudo-
contractive. It is known that if S is a k-strict pseudo-contraction and F (S) 6= ∅,
then F (S) is a closed convex subset of H (see [51]). Strict pseudo-contractions have
many applications, due to their ties with inverse strongly monotone operators. It is
known that, if B is a strongly monotone operator, then S = I −B is a strict pseudo-
contraction, and so we can recast a problem of zeros for B as a fixed point problem
for S, and vice versa (see e.g. [13, 41]).
Let S : H → CB(H) be a multivalued mapping. The multivalued mapping I − S is
said to be demiclosed at zero if for any sequence {xn} ⊂ H which converges weakly
to p and the sequence {‖xn − un‖} converges strongly to 0, where un ∈ Sxn, then
p ∈ F (S).

3. Proposed method

In this section, we present our proposed algorithm.
Let C and Q be nonempty closed convex subsets of real Hilbert spaces H1 and H2,
respectively. Let A : H1 → H2 be a bounded linear operator, and let {Si}mi=1 be
a countable family of ki-strictly pseudo-contractive multivalued mappings of C into
CB(C) such that I − Si is demiclosed at zero for each i = 1, 2, . . . ,m, Sip = {p}
for each p ∈ ∩mi=1F (Si) and k = max{ki}. Let F1, φ1 : C × C → R, F2, φ2 : Q ×
Q→ be bifunctions satisfying Assumptions 2.5. Let φ1, φ2 be monotone, φ1 be upper
hemicontinuous, and F2 and φ2 be upper semicontinuous in the first argument. Let
B : H1 → H1 be L-Lipschitz continuous and monotone and D : H1 → 2H1 be a
maximal monotone operator such that Γ = SGEP (F1, φ1, F2, φ2)∩∩mi=1F (Si)∩ (B+
D)−1(0) 6= ∅. We establish the convergence of our algorithm under the following
conditions on the control parameters:

(C1) 0 < a ≤ τn ≤ b < 2, {rn} ⊂ (0,∞), lim inf
n→∞

rn > 0,
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(C2) lim inf
n

αn,i(αn,0 − k) > 0 and lim
n→∞

αn,i ∈ (0, 1) exists for all i ≥ 0.

Now, we present our proposed algorithm as follows:

Algorithm 3.1.
Initialization: Select x0, x1 ∈ H1, s1 > 0, µ ∈ (0, 1), θn ∈ [−θ, θ] for some θ > 0 and
C1 = C.
Iterative Step: Given the current iterate xn, calculate the next iterate as follows:
Step 1 : Compute

wn = xn + θn(xn − xn−1).

Step 2 : Compute

zn = T (F1,φ1)
rn (I − γnA∗(I − T (F2,φ2)

rn )A)wn.

Step 3 : Compute

yn = αn,0zn +

m∑
i=1

αn,iun,i, un,i ∈ Sizn.

Step 4 : Compute

vn = (I + snD)−1(I − snB)yn = JDsn(I − snB)yn

tn = vn − sn(Bvn −Byn)

Cn+1 = {p ∈ Cn : ‖tn − p‖2 ≤ ‖wn − p‖2 −
(

1− µ2 s2n
s2n+1

)
‖yn − vn‖2}

xn+1 = PCn+1
x0,

Step 5 : Compute

sn+1 =

min

{
µ‖yn−vn‖
‖Byn−Bvn‖ , sn

}
if Byn −Bvn 6= 0.

sn otherwise,
(3.1)

Set n := n+ 1 and return to Step 1,

where

γn =

τn
||(I−T (F2,φ2)

rn
)Awn||2

||A∗(I−T (F2,φ2)
rn )Awn||2

If Awn 6= T
(F2,φ2)
rn Awn

γ otherwise (γ being any non-negative real number).

Remark 3.2. We observe that

(i) The implementation of our proposed algorithm does not require prior knowledge
of the operator norm. Hence, this makes our method easily implementable.

(ii) We employ the inertial technique to accelerate the rate of convergence.
(iii) The underlying single-valued operator B : H1 → H1 for most of the results

on monotone inclusion problem in the literature are either strongly monotone
or inverse strongly monotone while the single-valued operator in our proposed
algorithm is only required to be monotone and Lipschitz continuous. Moreover,
knowledge of the Lipschitz constant of the operator is not required to implement
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our proposed algorithm. Thus, our method is more applicable than several of the
existing methods in the literature.

(iv) Our result extends and improves on the results of Deepho et al. [16], Sitthithak-
erngkiet et al. [42], Phuengrattana and Lerkchaiyaphum [39], Olona et al. [37]
and several other results in the current literature in this direction.

4. Convergence analysis

In this section, we analyze the convergence of our proposed algorithm.

Lemma 4.1. Let {sn} be a sequence generated by (3.1). Then, {sn} is a nonincreasing
sequence and

lim
n→∞

sn = s ≥ min

{
s1,

µ

L

}
. (4.1)

Proof.
From (3.1), it is clear that {sn} is a nonincreasing sequence. Moreover, observe that
if Byn −Bvn 6= 0, then

µ‖yn − vn‖
‖Byn −Bvn‖

≥ µ

L
. (4.2)

Hence, the sequence {sn} has the lower bound min

{
s1,

µ
L

}
. �

Lemma 4.2. [20] Let {xn} be a sequence generated by Algorithm 3.1. Then the follow-
ing inequality holds for all p ∈ Γ :

‖tn − p‖2 ≤ ‖yn − p‖2 −
(

1− µ2 s2
n

s2
n+1

)
‖yn − vn‖2, p ∈ Γ, (4.3)

and

‖tn − vn‖ ≤ µ
sn
sn+1

‖yn − vn‖. (4.4)

Proof. By the definition of sn, we have

‖Byn −Bvn‖ ≤
µ

sn+1
‖yn − vn‖ ∀ n ∈ N. (4.5)

Clearly, if Byn = Bvn, then (4.5) holds. Otherwise , we have

sn+1 = min

{
µ‖yn − vn‖
‖Byn −Bvn‖

, sn

}
≤ µ‖yn − vn‖
‖Byn −Bvn‖

.

This implies that

‖Byn −Bvn‖ ≤
µ

sn+1
‖yn − vn‖.
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Thus, (4.5) holds when Byn = Bvn and Byn 6= Bvn. Let p ∈ Γ, then by Lemma 2.1,
we have

‖tn − p‖2 = ‖vn − sn(Bvn −Byn)− p‖2

= ‖vn − p‖2 + s2
n‖Bvn −Byn‖2 − 2sn〈vn − p,Bvn −Byn〉

= ‖yn − p‖2 + ‖yn − vn‖2 + 2〈vn − yn, yn − p〉
+ s2

n‖Bvn −Byn‖2 − 2sn〈vn − p,Bvn −Byn〉
= ‖yn − p‖2 + ‖yn − vn‖2 − 2〈vn − yn, vn − yn〉+ 2〈vn − yn, vn − p〉
+ s2

n‖Bvn −Byn‖2 − 2sn〈vn − p,Bvn −Byn〉
= ‖yn − p‖2 − ‖yn − vn‖2 + 2〈vn − yn, yn − p〉
+ s2

n‖Bvn −Byn‖2 − 2sn〈vn − p,Bvn −Byn〉
= ‖yn − p‖2 − ‖yn − vn‖2 − 2〈yn − vn − sn(Byn −Bvn), vn − p〉
+ s2

n‖Bvn −Byn‖2. (4.6)

By applying (4.5) in (4.6), we obtain

‖tn−p‖2 ≤ ‖yn−p‖2−
(

1−µ2 s2
n

s2
n+1

)
‖yn−vn‖2−2〈yn−vn−sn(Byn−Bvn), vn−p〉.

(4.7)
We now prove that 〈yn − vn − sn(Byn −Bvn), vn − p〉 ≥ 0. Since

vn = (I + snD)−1(I − snB)yn,

then we have (I − snB)yn ∈ (I + snD)vn. Recall that D is maximal monotone. Then
there exists un ∈ Dyn such that

(I − snB)yn = vn + snun,

from which we obtain

un =
1

sn
(yn − vn − snByn). (4.8)

Moreover, we have 0 ∈ (B+D)p and Bvn+un ∈ (B+D)vn. Since B+D is maximal
monotone, we get

〈Bvn + un, vn − p〉 ≥ 0. (4.9)

By substituting (4.8) into (4.9), we obtain

1

sn
〈yn − vn − snByn + snBvn, vn − p〉 ≥ 0.

This implies that

〈yn − vn − sn(Byn −Bvn), vn − p〉 ≥ 0. (4.10)

By applying (4.10) in (4.7), we have

‖tn − p‖2 ≤ ‖yn − p‖2 −
(

1− µ2 s2
n

s2
n+1

)
‖yn − vn‖2. (4.11)

On the other hand, one can see that (4.4) follows from (4.5). �
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Remark 4.3. By Lemma 4.1 and µ ∈ (0, 1), there exists n0 ∈ N such that

1− µ2 s2
n

s2
n+1

> ε > 0

for all n ≥ n0. Consequently, it follows from (4.3) that for all p ∈ Γ and n ≥ n0

‖tn − p‖2 ≤ ‖yn − p‖2 − ε‖yn − vn‖2.

Theorem 4.4. Let C and Q be nonempty closed convex subsets of real Hilbert spaces
H1 and H2, respectively. Let A : H1 → H2 be a bounded linear operator, and let {Si}
be a countable family of ki-strictly pseudo-contractive multivalued mappings of C into
CB(C). Let F1, φ1 : C×C → R, F2, φ2 : Q×Q→ R be bifunctions satisfying Assump-
tions 2.5. Suppose φ1, φ2 are monotone, φ1 is upper hemicontinuous, and F2 and φ2

are upper semicontinuous in the first argument. Let B : H1 → H1 be an L−Lipschitz
continuous monotone mapping and D : H1 → 2H1 be a maximal monotone operator
such that Γ = SGEP (F1, φ1, F2, φ2) ∩

⋂m
i=1 F (Si) ∩ Ω 6= ∅, where Ω = (B +D)−1(0)

and Sip = {p} for each p ∈ ∩mi=1F (Si). Let {xn} be a sequence generated by Algo-
rithm 3.1 such that conditions (C1) and (C2) hold. Then, the sequence {xn} converges
strongly to q = PΓx0.

Proof. We divide the proof of the strong convergence Theorem 4.4 into various steps
as follows:

Step 1: We show that sequence {xn} generated by Algorithm 3.1 is bounded and well
defined.

Let p ∈ Γ, then we have p = T
(F1,φ1)
rn p and Ap = T

(F1,φ1)
rn Ap, Sip = p, for all

i = 1, 2, ...,m.

Since T
(F1,φ1)
rn is nonexpansive, then by Lemma 2.1 we have

‖zn − p‖2 = ‖T (F1,φ1)
rn (wn − γnA∗(I − T (F2,φ2)

rn )Awn)− p‖2

≤ ‖wn − γnA∗(I − T (F2,φ2)
rn )Awn − p‖2

= ‖wn − p‖2 + γ2
n‖A∗(I − T (F2,φ2)

rn )Awn‖2

− 2γn〈wn − p,A∗(I − T (F2,φ2)
rn )Awn〉. (4.12)

By the firmly nonexpansivity of I − T (F2,φ2)
rn , we get

〈wn − p,A∗(I − T (F2,φ2)
rn )Awn〉 = 〈Awn −Ap, (I − T (F2,φ2)

rn )Awn〉

= 〈Awn −Ap, (I − T (F2,φ2)
rn )Awn

− (I − T (F2,φ2)
rn )Ap〉

≥ ‖(I − T (F2,φ2)
rn )Awn‖2. (4.13)
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By substituting (4.13) in (4.12) and applying the condition on τn, we have

‖zn − p‖2 ≤ ‖wn − p‖2 + γ2
n‖A∗(I − T (F2,φ2)

rn )Awn‖2

− 2γn‖(I − T (F2,φ2)
rn )Awn‖2

= ‖wn − p‖2 − γn
[
2‖(I − T (F2,φ2)

rn )Awn‖2

− γn‖A∗(I − T (F2,φ2)
rn )Awn‖2

]
= ‖wn − p‖2 − γn(2− τn)‖(I − T (F2,φ2)

rn )Awn‖2 (4.14)

≤ ‖wn − p‖2. (4.15)

By Lemma 2.3 and applying the fact that Si, i = 1, 2, . . . ,m is strictly pseudo-
contractive together with condition (C2), we get

‖yn − p‖2 = ‖αn,0zn +

m∑
i=1

αn,iun,i − p‖2

= αn,0‖zn − p‖2 +

m∑
i=1

αn,i‖un,i − p‖2

−
m∑
i=1

αn,0αn,i‖un,i − zn‖2 −
∑

1≤i<j≤m

αn,iαn,j‖un,i − un,j‖2

≤ αn,0‖zn − p‖2 +

m∑
i=1

αn,i
(
H(Sizn, Sip)

)2
−

m∑
i=1

αn,0αn,i‖un,i − zn‖2 −
∑

1≤i<j≤m

αn,iαn,j‖un,i − un,j‖2

≤ αn,0‖zn − p‖2 +

m∑
i=1

αn,i
(
‖zn − p‖2 + ki‖un,i − zn‖2

)
−

m∑
i=1

αn,0αn,i‖un,i − zn‖2

−
∑

1≤i<j≤m

αn,iαn,j‖un,i − un,j‖2

≤ ‖zn − p‖2 −
m∑
i=1

αn,i(αn,0 − ki)‖un,i − zn‖2 (4.16)

≤ ‖zn − p‖2, (4.17)

which implies that

‖yn − p‖ ≤ ‖zn − p‖. (4.18)

By applying (4.17) and (4.15) into (4.11), we get

‖tn − p‖2 ≤ ‖wn − p‖2 −
(

1− µ2 s2
n

s2
n+1

)
‖yn − vn‖2,∀p ∈ Γ. (4.19)
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By Lemma 2.4, we have that Cn+1 is closed and convex. Furthermore, from (4.19) it
follows that p ∈ Cn+1. Hence, we have Γ ⊂ Cn+1 ⊂ Cn for all n and thus xn+1 =
PCn+1

x0 is well defined. Therefore, {xn} is well defined.
We now show that {xn} is bounded. It is known that Γ is a nonempty closed convex
subset of H1, then there exists a unique q ∈ Γ such that q = PΓx0. From xn = PCnx0

and xn+1 ∈ Cn+1 for all n ∈ N, we obtain

‖xn − x0‖ ≤ ‖xn+1 − x0‖, ∀ n ∈ N.

On the other hand, since Γ ⊂ Cn, we get

‖xn − x0‖ ≤ ‖q − x0‖, ∀ n ∈ N.

This implies that {‖xn − x0‖} is bounded. Hence, {xn} is bounded. Consequently
{wn}, {tn}, {zn} and {yn} are bounded. Thus, lim

n→∞
‖xn − x0‖ exists.

Step 2: We claim that lim
n→∞

xn = q, for some q ∈ C.
It is clear from the definition of Cn that xm = PCmx0 ∈ Cm ⊂ Cn, m > n ≥ 1. By
Lemma 2.2, we obtain

‖xm − xn‖2 ≤ ‖xm − x0‖2 − ‖xn − x0‖2. (4.20)

Since lim
n→∞

‖xn−x0‖ exists, then it follows from (4.20) that ‖xm−xn‖ → 0 as n→∞.
Thus, {xn} is a Cauchy sequence. Since H1 is complete and C is closed, there exists
q ∈ C such that xn → q as n→∞.
Step 3: We now show that q ∈ Γ.

From (4.20), we obtain

lim
n→∞

‖xn+1 − xn‖ = 0. (4.21)

From the definition of wn and by applying (4.21), we get

‖wn − xn‖ = |θn|‖xn − xn−1‖ ≤ |θ|‖xn − xn−1‖ → 0, n→∞. (4.22)

From (4.21) and (4.22), we obtain

‖wn − xn+1‖ → 0, n→∞. (4.23)

We known that xn+1 ∈ Cn+1. Then, from the definition of Cn+1 we obtain

‖tn − xn+1‖2 ≤ ‖wn − xn+1‖2.
Combining this with (4.23) gives

lim
n→∞

‖tn − xn+1‖ = 0. (4.24)

From (4.21) and (4.24), we obtain

lim
n→∞

‖tn − xn‖ = 0. (4.25)

From (4.22) and (4.25), we obtain

lim
n→∞

‖tn − wn‖ = 0. (4.26)

By applying (4.17) and (4.15) into Remark 4.3, we have

‖tn − p‖2 ≤ ‖wn − p‖2 − ε‖yn − vn‖2.
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From which we get

ε‖yn − vn‖2 ≤ ‖wn − p‖2 − ‖tn − p‖2

≤ ‖wn − tn‖(‖wn − p‖+ ‖tn − p‖),

which together with (4.26) implies that

‖yn − vn‖ → 0, n→∞. (4.27)

Applying Lemma 4.1 together with (4.27) to (4.4), we have

‖tn − vn‖ → 0, n→∞. (4.28)

From (4.26)-(4.28), we obtain

‖yn − wn‖ → 0, n→∞. (4.29)

From (4.15) and (4.16), we obtain

‖yn − p‖2 ≤ ‖wn − p‖2 −
m∑
i=1

αn,i(αn,0 − ki)‖un,i − zn‖2.

From this we have

αn,i(αn,0 − ki)‖un,i − zn‖2 ≤
m∑
i=1

αn,i(αn,0 − ki)‖un,i − zn‖2

≤ ‖wn − p‖2 − ‖yn − p‖2

≤ (‖wn − yn‖)(‖wn − p‖+ ‖yn − p‖).

By applying Condition (C2) and (4.29), we get

‖un,i − zn‖ → 0, n→∞. (4.30)

From the definition of yn and by applying (4.30), we get

‖yn − zn‖ ≤ αn,0‖zn − zn‖+

m∑
i=1

αn,i‖un,i − zn‖ → 0, n→∞. (4.31)

Also, by applying (4.22), (4.29) and (4.31), we obtain

lim
n→∞

‖wn − zn‖ = 0; lim
n→∞

‖zn − xn‖ = 0. (4.32)

From (4.14), we have

‖zn − p‖2 ≤ ‖wn − p‖2 − γn(2− γn)‖(I − T (F2,φ2)
rn )Awn‖2,

which implies that

γn(2− γn)‖(I − T (F2,φ2)
rn )Awn‖2 ≤ ‖wn − p‖2 − ‖zn − p‖2

≤ ‖wn − zn‖(‖wn − p‖+ ‖zn − p‖).

Using the definition of γn, the condition on τn and applying (4.32), it follows that

τn(2− τn)‖(I − T (F2,φ2)
rn )Awn‖4

‖A∗(I − T (F2,φ2)Awn
rn )Awn‖2

→ 0 as n→∞.
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From which we get

‖(I − T (F2,φ2)
rn )Awn‖2

‖A∗(I − T (F2,φ2)
rn )Awn‖

→ 0 as n→∞.

Since ‖A∗(I − T (F2,φ2)
rn )Awn‖ is bounded, then it follows that

‖(I − T (F2,φ2)
rn )Awn‖ → 0, n→∞. (4.33)

Consequently, we have

‖A∗(I − T (F2,φ2)
rn )Awn)‖ ≤ ‖A∗‖‖(I − T (F2,φ2)

rn )Awn)‖

= ‖A‖‖(I − T (F2,φ2)
rn )Awn)‖ → 0 as n→∞. (4.34)

Since tn = vn−sn(Bvn−Byn) and B is Lipschitz continuous, then by applying (4.27)
we have

‖tn − vn‖ = ‖vn − sn(Bvn −Byn)− vn‖ = sn‖Byn −Bvn‖ → 0, n→∞.

Since {xn} is bounded, then wω(xn) is nonempty. Let q ∈ wω(xn) be an arbitrary
element. Then there exists a subsequence {xnk} of {xn} such that xnk ⇀ q as k →∞.
Let z ∈ wω(xn) and {xnj} ⊂ {xn} be such that xnj ⇀ z as j →∞. From (4.32), we
get znk ⇀ q and znj ⇀ z. Since I − Si is demiclosed at zero for each i = 1, 2, . . . ,m,
then it follows from (4.30) that q, z ∈ F (Si) for all i = 1, 2, . . . ,m, which implies that
q, z ∈ ∩mi=1F (Si).
Next, let (g, h) ∈ Graph(B +D), that is h−Bg ∈ Dg. Since

vnk = (I + snkD)−1(I − snkB)ynk ,

we have

(I − snkB)ynk ∈ (I + snkD)vnk ,

which implies that
1

snk
(ynk − vnk − snkBynk) ∈ Dvnk .

Since D is maximal monotone, we get〈
g − vnk , h−Bg −

1

snk
(ynk − vnk − snkBynk)

〉
≥ 0.

From this we obtain

〈g − vnk , h〉 ≥
〈
g − vnk , Bg +

1

snk
(ynk − vnk − snkBynk)

〉
= 〈g − vnk , Bg −Bynk〉+

〈
g − vnk ,

1

snk
(ynk − vnk)

〉
= 〈g − vnk , Bg −Bvnk〉+ 〈g − vnk , Bvnk −Bynk〉

+

〈
g − vnk ,

1

snk
(ynk − vnk)

〉
≥ 〈g − vnk , Bvnk −Bynk〉+

〈
g − vnk ,

1

snk
(ynk − vnk)

〉
.
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Since B is Lipschitz continuous and lim
n→∞

‖vn − yn‖ = 0, we have

lim
n→∞

‖Bvnk −Bynk‖ = 0.

Applying this together with lim
n→∞

sn = s ≥ min

{
s1,

µ
L

}
, we get

〈g − q, h〉 = lim
k→∞

〈g − vnk , h〉 ≥ 0. (4.35)

Following similar argument, we obtain

〈g − z, h〉 = lim
j→∞
〈g − vnj , h〉 ≥ 0. (4.36)

By the maximal monotonicity of (B + D), it follows from (4.35) and (4.36) that
q, z ∈ (B +D)−1(0).

Next, since znk = T
(F1,φ1)
rnk

(I−γnkA∗(I−TF2,φ2
rnk

)A)wnk , then by applying Lemma 2.6,
we get

F1(znk , y) + φ1(znk , y)

+
1

rnk
〈y − znk , znk − wnk − γnkA∗(I − T (F2,φ2)

rnk
)Awnk〉

≥ 0, ∀y ∈ C,

which implies that

F1(znk , y) + φ1(znk , y)

+
1

rnk
〈y − znk , znk − wnk〉

− 1

rnk
〈y − znk , γnkA∗(I − T (F2,φ2)

rnk
)Awnk〉

≥ 0, ∀y ∈ C.

From the monotonicity of F1 and φ1, it follows that

1

rnk
〈y − znk , znk − wnk〉

− 1

rnk
〈y − znk , γnkA∗(I − T (F2,φ2)

rnk
)Awnk〉

≥ F1(y, znk) + φ1(y, znk), ∀y ∈ C.

By (4.32) and xnk ⇀ q, we obtain znk ⇀ q. Applying condition (C1), (4.32), (4.34)
and Assumption 2.5 (A1)-(A7), we obtain

0 ≥ F1(y, q) + φ1(y, q), ∀y ∈ C.

Suppose yt = ty + (1− t)q,∀t ∈ (0, 1] and y ∈ C.
Then, yt ∈ C and F1(yt, q) + φ1(yt, q) ≤ 0. Therefore, by Assumption 2.5 (A1)-(A7),
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we get

0 ≤ F1(yt, yt) + φ1(yt, yt)

≤ t
(
F1(yt, y) + φ1(yt, y)

)
+ (1− t)

(
F1(yt, q) + φ1(yt, q)

)
≤ t
(
F1(yt, y) + φ1(yt, y)

)
.

Thus, we have
F1(yt, y) + φ1(yt, y) ≥ 0, ∀y ∈ C.

Letting t → 0, and applying condition (A3) together with the upper hemicontinuity
of φ1, we have

F1(q, y) + φ1(q, y) ≥ 0, ∀y ∈ C. (4.37)

By similar argument, we have

F1(z, y) + φ1(z, y) ≥ 0, ∀y ∈ C. (4.38)

It follows from (4.37) and (4.38) that q, z ∈ GEP (F1, φ1).
Next, we show that Aq,Az ∈ GEP (F2, φ2). Since A is a bounded linear operator,
then by (4.22) we have Awnk ⇀ Aq. Hence, from (4.33), we obtain

T (F2,φ2)
rnk

Awnk ⇀ Aq, k →∞. (4.39)

By the definition of T
(F2,φ2)
rnk

Awnk , we have

F2(T (F2,φ2)
rnk

Awnk , y)

+ φ2(T (F2,φ2)
rnk

Awnk , y)

+
1

rnk
〈y − T (F2,φ2)

rnk
Awnk , T

(F2,φ2)
rnk

Awnk −Awnk〉

≥ 0, ∀y ∈ Q.
Since F2 and φ2 are upper semicontinuous in the first argument, then by (4.33), (4.39)
and lim inf

k→∞
rnk > 0, we have

F2(Aq, y) + φ2(Aq, y) ≥ 0, ∀y ∈ Q. (4.40)

Following similar argument, we have

F2(Az, y) + φ2(Az, y) ≥ 0, ∀y ∈ Q. (4.41)

From (4.40) and (4.41), it follows that Aq,Az ∈ GEP (F2, φ2).
Therefore q, z ∈ SGEP (F1, φ1, F2, φ2). By Invoking Lemma 2.7, we get q = z. Hence,
we have that q ∈ Γ.
Step 4. Lastly, we show that q = PΓx0.
Since xn = PCnx0 and Γ ⊂ Cn, we have 〈x0−xn, xn− p〉 ≥ 0 for all p ∈ Γ. By taking
limit as n→∞, we have 〈x0 − q, q − p〉 ≥ 0 for all p ∈ Γ. This shows that q = PΓx0.
Therefore, we can conclude by the steps above that {xn} converges strongly to q =
PΓx0. This completes the proof. �

If φ1 = φ2 = 0 in (1.3)-(1.4), then the split generalized equilibrium problem reduces
to split equilibrium problem. Hence from Theorem 3.1 , we obtain the following con-
sequent result.
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Corollary 4.5. Let C and Q be nonempty closed convex subsets of real Hilbert spaces H1

and H2, respectively. Let A : H1 → H2 be a bounded linear operator, and let {Si}mi=1

be a countable family of ki-strictly pseudo-contractive multivalued mappings of C into
CB(C) such that I − Si is demiclosed at zero for each i = 1, 2, . . . ,m, Sip = {p}
for each p ∈ ∩mi=1F (Si) and k = max{ki}. Let F1 : C × C → R, F2 : Q × Q → R
be bifunctions satisfying Assumptions 2.5 such that F2 is upper semicontinuous in
the first argument. Let B : H1 → H1 be L-Lipschitz continuous and monotone and
D : H1 → 2H1 be a maximal monotone operator such that Γ = SGEP (F1, F2) ∩mi=1

F (Si)
⋂

(B +D)−1(0) 6= ∅. Let {xn} be a sequence generated as follows:

Algorithm 4.6.
Initialization: Select x0, x1 ∈ H1, µ ∈ (0, 1), θn ∈ [−θ, θ] for some θ > 0 and C1 = C.

Iterative Step: Given the current iterate xn, calculate the next iterate as follows:

Step 1 : Compute

wn = xn + θn(xn − xn−1).

Step 2 : Compute

zn = TF1
rn (I − γnA∗(I − TF2

rn )A)wn.

Step 3 : Compute

yn = αn,0zn +

m∑
i=1

αn,iun,i, un,i ∈ Sizn.

Step 4 : Compute

vn = (I + snD)−1(I − snB)yn

tn = vn − sn(Bvn −Byn)

Cn+1 = {p ∈ Cn : ‖tn − p‖2 ≤ ‖xn − p‖2 − 2θn〈xn − p, xn−1 − xn〉
+θ2

n‖xn−1 − xn‖2}
xn+1 = PCn+1

x0,

Step 5 : Compute

sn+1 =

min

{
µ‖yn−vn‖
‖Byn−Bvn‖ , sn

}
if Byn −Bvn 6= 0.

sn otherwise,
(4.42)

Set n := n+ 1 and return to Step 1. where

γn =

τn
||(I−T (F2

rn
)Awn||2

||A∗(I−T (F2
rn )Awn||2

If Awn 6= T
(F2
rn Awn

γ otherwise (γ being any non-negative real number.)

Suppose other conditions of Theorem 3.1 hold. Then, the sequence {xn} converges
strongly to q = PΓx0.



A modified inertial shrinking projection algorithm 685

5. Applications

5.1. Split minimization problem

Let H1, H2 be two real Hilbert spaces, and let C ⊂ H1 and Q ⊂ H2 be nonempty,
closed, and convex subsets. Let f : C → R, g : Q → R be two operators and
A : H1 → H2 be a bounded linear operator. The split minimization problem (SMP)
is formulated as finding

x∗ ∈ C such that f(x∗) ≤ f(x), ∀x ∈ C, (5.1)

and

y∗ = Ax∗ such that g(y∗) ≤ g(y), y ∈ Q. (5.2)

Let Ω denote the set of solution of SMP (5.1)-(5.2), and we assume Ω 6= ∅. Let
φ1 = φ2 = 0, and

F1(x, y) := f(y)− f(x) for all x, y ∈ C;

and

F2(u, v) := g(v)− g(u) for all u, v ∈ Q.

Suppose f and g are convex and lower semi-continuous on C andQ, respectively. Then,
F1, F2, φ1 and φ2 satisfy all the conditions of Assumption 2.5. Consequently, from
Theorem 3.1 we obtain a strong convergence theorem for approximating a common
solution of split minimization problem, monotone variational inclusion problem and
fixed point problem for a countable family of strict pseudo-contractive multivalued
mappings in Hilbert spaces.

5.2. Split variational inequality problem

Let C be a nonempty closed convex subset of a real Hilbert space H, and f : H → H
be a single-valued mapping. The variational inequality problem (VIP) introduced
independently by Fichera [19] and Stampacchia [43] is formulated as follows:

find x∗ ∈ C such that 〈y − x∗, fx∗〉 ≥ 0, ∀ y ∈ C. (5.3)

The VIP can be modelled to solve several optimization problems and has vast ap-
plications in different fields, such as in physics, engineering, economics, etc, (see
[3, 8, 12, 16, 34, 36, 42]).

The split variational inequality problem (SVIP), which was first introduced by Censor
et al. [12] is defined as finding a point:

x∗ ∈ C such that 〈x− x∗, f(x∗)〉 ≥ 0 ∀ x ∈ C, (5.4)

and

y∗ = Ax∗ ∈ Q solves 〈y − y∗, g(y∗)〉 ≥ 0 ∀ y ∈ Q, (5.5)

where C and Q are nonempty, closed, convex subsets of real Hilbert spaces H1 and
H2, respectively, f : H1 → H1 and g : H2 → H2 are monotone mappings, and
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A : H1 → H2 is a bounded linear operator, see [25]. Let Ω 6= ∅ denote the set of
solution of SVIP (5.4)-(5.5). By setting φ1 = φ2 = 0, and

F1(x, y) := 〈y − x, f(x)〉 for all x, y ∈ C;

and

F2(u, v) := 〈v − u, g(u)〉 for all u, v ∈ Q.

Then, F1, F2, φ1 and φ2 satisfy all the conditions of Assumption 2.5. Hence, from
Theorem 3.1, we obtain a strong convergence theorem for approximating a com-
mon solution of split variational inequality problem, monotone variational inclusion
problem and fixed point problem for a countable family of strict pseudo-contractive
multivalued mappings in Hilbert spaces.

6. Numerical examples

In this section, we present a numerical experiments to illustrate the performance of
our Algorithm 3.1 as well as comparing it with Algorithm (1.14), Algorithm (1.15),
Algorithm (1.16) and Algorithm (1.17) in the literature.

In our computation, we choose αn,0 = n
2n+1 , αn,i = n+1

5(2n+1) , i = 1, 2, . . . , 5, τn =

1.5, θn = 1.9, rn = 2.0, s0 = 0.1 and µ = 0.7 in our Algorithm 3.1. Gx = 1
3x, fx =

2
3x,Kx = 2

5x, λn = 2n
5n+1 , αn = 2

2n+3 , βn = n+1
2n+3 , η = 2

5 , γ = 0.2, Tjx = 2
(3+j)x

in Algorithm (1.14),βn = ξn = 1
2 (1 − αn), σn = 2

2n+1 in Algorithm (1.15) while in

Algorithm (1.16) and Algorithm (1.17). Let the sequences {δn,j} be defined as follows
for each j ∈ N ∪ {0} and n ∈ N :

δn,j =


1

bj+1 ( n
n+1 ), n > j,

1− n
n+1 (

∑n
k=1

1
bk

), n = j,

0, n < j,

(6.1)

where b > 1.

Example 6.1. Let H1 = H2 = R and C = Q = [0, 10]. Let A : H1 → H2 be
defined by Ax = x

5 for all x ∈ H1. Then, we have that A∗y = y
5 for all y ∈ H2. For

x ∈ C, j ∈ N and i = 1, 2, . . . , 5, let Pj , Si : C → CB(C) be multivalued mappings
defined as follows:

Pj(x) =

[
0,

x

10j

]
, Si(x) =

[
0,

x

10i

]
. (6.2)

One can easily verify that Pj and Si are nonexpansive and strictly pseudo-contractive,
respectively. Define mappings B : H1 → H1 by Bx = 2x, D : H1 → H1 by Dx = 3x,
and let the bifunctions F1, φ1 : C×C → R be defined by F1(x, y) = y2 +3xy−4x2 and
φ1(x, y) = y2−x2 for x, y ∈ C, and F2, φ2 : Q×Q→ R by F2(w, v) = 2v2 +wv−3w2

and φ2(w, v) = w − v for w, v ∈ Q. It is easy to verify that all the conditions of

Theorem 4.4 are satisfied. Next, we compute T
(F1,φ1)
r (x). We find u ∈ C such that for
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all z ∈ C

0 ≤ F1(u, z) + φ1(u, z) +
1

r
〈z − u, u− x〉

= 2z2 + 3uz − 5u2 +
1

r
〈z − u, u− x〉

⇔
0 ≤ 2rz2 + 3ruz − 5ru2 + (z − u)(u− x)

= 2rz2 + 3ruz − 5ru2 + uz − xz − u2 + ux

= 2rz2 + (3ru+ u− x)z + (−5ru2 − u2 + ux).

Suppose h(z) = 2rz2 + (3ru+u−x)z+ (−5ru2−u2 +ux). Then, h(z) is a quadratic
function of z with coefficients a = 2r, b = 3ru+ u− x, and c = −5ru2 − u2 + ux. We
determine the discriminant 4 of h(z) as follows:

4 = (3ru+ u− x)2 − 4(2r)(−5ru2 − u2 + ux)

= 49r2u2 + 14ru2 − 14rux+ u2 − 2ux+ x2

= ((7r + 1)u− x)2. (6.3)

By Lemma 2.6, T
(F1,φ1)
r is single-valued. Thus, it follows that h(z) has at most

one solution in R. Hence, from (6.3), we have that u = y
7r+1 . This implies that

T
(F1,φ1)
r (y) = y

7r+1 . Similarly, we compute T
(F2,φ2)
r (y). Find w ∈ Q such that for all

d ∈ Q

T (F2,φ2)
r (y) =

{
w ∈ Q : F2(w, d) + φ2(w, d) +

1

r
〈d− w,w − y〉 ≥ 0, ∀ d ∈ Q

}
.

By following similar procedure as above, we obtain w = y+r
5r+1 . This implies that

T
(F2,φ2)
r (y) = y+r

5r+1 .

In this example, we set the parameter b on {δn,i} in (6.1) to be b = 40, v = 3.5 and
we choose different initial values as follows:
Case I: x0 = 7, x1 = 3;
Case II: x0 = 6, x1 = 2;
Case III: x0 = 8, x1 = 4;
Case IV: x0 = 9, x1 = 5.

We compare the performance of our Algorithm 3.1 with Algorithms (1.14),
(1.15), (1.16) and (1.17). The stopping criterion used for our computation is
|xn+1 − xn| < 10−4. We plot the graphs of errors against the number of iterations in
each case. The numerical results are reported in Figure 1 and Table 1.

Example 6.2. Let H1 = H2 = L2([0, 1]) with the inner product defined as

〈x, y〉 =

∫ 1

0

x(t)y(t)dt, ∀x, y ∈ L2([0, 1]).

Let
C := {x ∈ H1 : 〈a, x〉 ≥ d},
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Table 1. Numerical results for Example 6.1

Alg.
(1.14)

Alg.
(1.15)

Alg.
(1.16)

Alg.
(1.17)

Alg. 3.1

Case I No. of Iter. 9 20 4 9 2
CPU time (sec) 0.0057 0.0078 1.6693 0.3383 0.0032

Case II No. of Iter. 8 20 4 8 2
CPU time (sec) 0.0051 0.0059 1.6884 0.3124 0.0039

Case III No. of Iter. 9 20 4 9 2
CPU time (sec) 0.0053 0.0057 1.6625 0.3566 0.0041

Case IV No. of Iter. 9 20 4 9 2
CPU time (sec) 0.0054 0.0067 1.6623 0.3449 0.0039
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Figure 1. Top left: Case I ; Top right: Case II; Bottom left: Case
III ; Bottom right: Case IV.

where a = 2t2 and d = 0. Here, we have

PC(x) = x+
d− 〈a, x〉
||a||2

a.

Also, let

Q := {x ∈ H2 : 〈c, x〉 ≤ e},
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where c = t
3 , e = 1 and we have

PQ(x) = x+ max

{
0,
e− 〈c, x〉
||c||2

c

}
.

Let F1 : C × C → R and F2 : Q × Q → R be defined as F1(x, y) = 〈L1x, y − x〉
and F2(x, y) = 〈L2x, y − x〉, where L1x(t) = x(t)

3 and L2x(t) = x(t)
4 . It can easily

be verified that F1 and F2 satisfy conditions (A1)-(A4). Also, let φ1 = φ2 = 0.
Furthermore, define B : H1 → H1 by Bx = 3x, D : H1 → H1 by Dx = 7x, and let

A : L2([0, 1]) → L2([0, 1]) be defined by Ax(t) = x(t)
3 and A∗y(t) = y(t)

3 . Then, A is
a bounded linear operator. We consider the case for which the multivalued mappings
{Sj} and {Si} are single-valued. Let Sj , Si : L2([0, 1])→ L2([0, 1]) be defined by

(Sjx)(t) =

∫ 1

0

tjx(s)ds and (Six)(t) =

∫ 1

0

tix(s)ds for all t ∈ [0, 1].

Note that Si and Sj are nonexpansive for each i, j. Select rn = 2n
2n+1 , θn = 0.8, τn =

0.7. It can easily be checked that all the conditions of Theorem 4.4 are satisfied. Now,

we compute T
(F1,φ1)
r (x). We find z ∈ C such that for all y ∈ C

F1(z, y) + φ1(z, y) +
1

r
〈y − z, z − x〉 ≥ 0

⇔〈z
2
, y − z〉+

1

r
〈y − z, z − x〉 ≥ 0

⇔z

3
(y − z) +

1

r
(y − z)(z − x) ≥ 0

⇔(y − z)[rz + 3(z − x)] ≥ 0

⇔(y − z)[(r + 3)z − 3x] ≥ 0. (6.4)

By Lemma 2.6, we obtain

T (F1,φ1)
r (x) =

{
z ∈ C : F1(z, y) + φ1(z, y) +

1

r
〈y − z, z − x〉 ≥ 0, ∀ y ∈ C

}
,

(∀ x ∈ H1), is single-valued. Thus, from (6.4) we obtain z = 3x
r+3 . This implies that

T
(F1,φ1)
r (x) = 3x

r+3 . Similarly, we compute T
(F2,φ2)
r (v). We find w ∈ Q such that for

all d ∈ Q

T (F2,φ2)
s (v) =

{
w ∈ Q : F2(w, d) + φ2(w, d) +

1

s
〈d− w,w − v〉 ≥ 0, ∀ d ∈ Q

}
.

By using similar approach as above, we obtain w = 4v
s+4 . This implies that

T
(F2,φ2)
s (v) = 4v

s+4 .

Here, we set the parameter b on {δn,i} in (6.1) to be b = 3, v = t2 and we choose
different initial values as follows:
Case I: x0 = t4, x1 = t2 + t4 + t6 + 3;
Case II: x0 = t5, x1 = t2 + t5 + 2;
Case III: x0 = t4, x1 = t3 + t5 + t7 + 2;
Case IV: x0 = t5, x1 = t+ t2 + 1.
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Figure 2. Top left: Case I; Top right: Case II; Bottom left: Case
III; Bottom right: Case IV.

We compare the performance of our Algorithm 3.1 with Algorithms (1.14),
(1.15), (1.16) and (1.17). The stopping criterion used for our computation is
||xn+1 − xn|| < 10−4. We plot the graphs of errors against the number of iterations
in each case. The numerical results are reported in Figure 2 and Table 2.

Table 2. Numerical results for Example 6.2

Alg.
(1.14)

Alg.
(1.15)

Alg.
(1.16)

App.
(1.17)

Alg. 3.1

Case I No. of Iter. 10 14 10 6 6
CPU time (sec) 0.7297 0.7237 1.2541 0.2548 0.3256

Case II No. of Iter. 9 14 9 6 6
CPU time (sec) 0.6743 0.7004 1.1791 0.2628 0.3091

Case III No. of Iter. 9 14 9 6 6
CPU time (sec) 0.6507 0.6825 1.1474 0.2599 0.3087

Case IV No. of Iter. 9 13 8 6 6
CPU time (sec) 0.6353 0.6458 1.1130 0.2631 0.3166
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7. Conclusion

In this article, we proposed a new modified inertial shrinking projection algo-
rithm for finding common solution of split generalized equilibrium problem, monotone
inclusion problem and fixed point problems for a countable family of strictly pseudo-
contractive multivalued mappings. We established strong convergence result for the
proposed method. We applied our results to study related optimization problems and
presented some numerical examples to demonstrate the efficiency of our proposed
method in comparison with other existing methods. Our results extend and improve
several existing results in this direction in the current literature.
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Bernstein polynomials iterative method for
weakly singular and fractional Fredholm integral
equations

Alexandru Mihai Bica and Zoltan Satmari

Abstract. A novel iterative method based on Picard iterations and Berstein poly-
nomials is proposed for solving weakly singular and fractional Fredholm integral
equations. On a uniform mesh, at each iterative step a Bernstein type spline is
constructed by using the values computed at the previous step. The error esti-
mates are obtained in terms of the Lipschitz constants and the convergence of the
method is proved. Some numerical examples are presented in order to illustrate
the accuracy of this iterative method.
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Introduction

The interest for fractional order differential and integral equations is motivated
by the multiple applications of fractional calculus in fluid dynamics, viscoelasticity
(see [7] and [38] for the Bagley-Torvik fractional differential model), heat transfer, dif-
fusive transport, signal processing and various areas of engineering, economy, plasma
physics, hematopoiesis, epidemiology, and in modeling of memory and hereditary
properties of materials (see [12], [14], [15], [20], [30], [37]). According to the Scot Blair
model the fractional order of a derivative is an index of memory (see [14]). A signif-
icant development in the field of fractional calculus, including fractional differential
and integral equations, was realized in recent years and the results are presented in
the monographs of Baleanu et al. (see [8]), Diethelm (see [12]), Kilbas et al. (see [20]),
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Lakshmikantham et al. (see [21]), Miller and Ross (see [29]), Muskhelishvili and Radok
(see [31]), and Podlubny (see [33]). The numerical integration of fractional type inte-
grals is usually realized by product integration and adapted quadrature rules (see [6]).
Fractional integral equations are suitable models for several phenomena from physics
and electro-chemistry such as crystal growth and heat transfer (see [17] and [39]). The
corresponding fractional integral equations equivalent with various types of boundary
value problems associated to nonlinear fractional differential equations with Caputo
fractional derivative and existence results can be found in [1]. Usually, the existence
and uniqueness of the solution for fractional integral equations is investigated by using
the Banach fixed point theorem (see [1], [12], and [27]). Regularity properties of the
solution of weakly singular and fractional Fredholm integral equations were obtained
in [19] and [35].

In order to solve Volterra fractional integral equations, various numerical meth-
ods were proposed based on the following techniques: product integration and quadra-
ture rules (see [6], [5], [27], [28]), collocation (see [9], [10], [13], and [44]), Runge-Kutta
techniques (see [23]), Adams-Bashforth procedures (see [12]), Bernstein’s approxima-
tion (see [39]), Haar, Legendre and Riesz wavelets (see [30] and [43]), variational
iteration (see [40]). In the case of weakly singular and fractional Fredholm integral
equations, the numerical solution is obtained by applying sinc, spectral and Haar
wavelet collocation (see [3], [24], [32] and [41]), B-spline wavelets Galerkin technique
(see [25]), product integration (see [2] and [36]), Taylor-series expansion (see [34]),
hybrid collocation (see [11]), Galerkin and iterated Galerkin methods (see [18] and
[26]).

In this paper, we approximate the solution of the following type Fredholm inte-
gral equation with singularities

x(t) = g(t) + λ

T∫
0

b (t) |t− s|α−1
f (s, x(s)) ds, t ∈ [0, T ] (0.1)

where λ > 0, α ∈ (0, 1) and g, b : [0, T ] → R, f : [0, T ] × R → R are continuous
with b (t) ≥ 0, ∀t ∈ [0, T ]. The choice λ = 1

Γ(α) corresponds to the case of fractional

integral equations, while λ = 1 usually describes weakly singular integral equations.

In the case λ = 1
Γ(α) of fractional integral equations, we use the left-sided and

right-sided Riemann-Liouville fractional integrals which are defined as follows.

Definition 0.1. (see [39]) Let f : [0, T ] → R.The left-sided fractional integral of f of
order α ∈ (0, 1) is defined as

Iα+f(t) =
1

Γ(α)

t∫
0

(t− s)α−1f(s)ds, for t > 0
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where Γ(α) =

∞∫
0

e−xxα−1dx, for x > 0. The right-sided fractional integral of f of

order α ∈ (0, 1) is

Iα−f(t) =
1

Γ(α)

T∫
t

(s− t)α−1f(s)ds, for t < T.

Our method comes from the product integration technique and an iterative pro-
cedure is obtained based on piecewise Bernstein polynomials involved at each iterative
step. More precisely, at each iterative step we construct a Bernstein spline based on
the values computed in the previous step and the integral is approximated by us-
ing the Bernstein type quadrature formula. This method differs by the technique
developed in [39] where the solution was directly approximated by Bernstein polyno-
mials inserted in the two sides of the integral equation and the convergence analysis
was based on Voronovskaia’s type theorem. The product integration method firstly
appears in 1954, in the work of Young (see [42]), and as it is specified in [16] the
most used procedures are rectangular and trapezoidal schemes with the order of con-
vergence O

(
hmin(1+α,2)

)
. For integral equations such as (0.1), our Bernstein splines

method has the order of convergence O (hα) as it is specified in Theorem 2.1.
The paper is organized as follows: in Section 1 we present some uniform bounded-

ness and uniform Hölder type Lipschitz properties of the Picard iterations, including
the description of the iterative algorithm for solving the integral equation (0.1). Sec-
tion 2 is devoted to the convergence analysis of this iterative method. In order to
confirm the obtained theoretical result and to illustrate the accuracy of the method,
in Section 3 we present some numerical experimets. Finally, we point out some con-
cluding remarks.

1. The properties of Picard’s iterations and the iterative method

We see that in (0.1) the singularity appears inside the open interval (0, T ) which
can be moved at extremeness by writing (0.1) as

x(t) = g(t) + λ

t∫
0

b (t) (t− s)α−1f (s, x(s)) ds+ λ

T∫
t

b (t) (s− t)α−1f (s, x(s)) ds

and we consider the corresponding integral operator A : C[0, T ] → C[0, T ] that is
well-defined according to [4],

A (x) (t) := g(t) + λ

t∫
0

b (t) (t− s)α−1f (s, x(s)) ds+

+ λ

T∫
t

b (t) (s− t)α−1f (s, x(s)) ds. (1.1)
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Concerning the existence and uniqueness of the solution and the properties of Picard’s
iterations we obtain the following result.

Theorem 1.1. If g, b : [0, T ] → R, f : [0, T ] × R → R are continuous, b (t) ≥ 0,
∀t ∈ [0, T ], L ≥ 0 is such that

|f (s, u)− f (s, v)| ≤ L |u− v| , ∀s ∈ [0, T ], u, v ∈ R (1.2)

and if θ = λLMbT
α

α < 1, then the integral equation (0.1) has unique solution x∗ ∈
C[0, T ] where Mb ≥ 0, with |b (t)| ≤ Mb, ∀t ∈ [0, T ], and the sequence of Picard
iterations given by x0 = g, xm = A (xm−1) , m ∈ N∗, is uniformly bounded having
lim
m→∞

xm = x∗ in (C[0, T ], ‖·‖∞) and

|x∗ (t)− xm (t)| ≤ θmλMbM0T
α

α (1− θ)
, ∀t ∈ [0, T ], m ∈ N∗, (1.3)

|x∗ (t)− xm (t)| ≤ θ

1− θ
|xm (t)− xm−1 (t)| , ∀t ∈ [0, T ], m ∈ N∗, (1.4)

where ‖x‖∞ = max
t∈[0,T ]

|x (t)| . If in addition, there exist β, γ, η ≥ 0 such that

|g (t)− g (t′)| ≤ η |t− t′| , |b (t)− b (t′)| ≤ β |t− t′| , ∀t, t′ ∈ [0, T ] (1.5)

|f (s, u)− f (s′, u)| ≤ γ |s− s′| , ∀s, s′ ∈ [0, T ], u ∈ R (1.6)

then the sequence (xm)m∈N∗ of Picard iterations is uniform Hölder type Lipschitz.

Proof. Elementary calculus lead to

|A (x) (t)−A (y) (t)| ≤ λLMbT
α

α
‖x− y‖∞

for all x, y ∈ C[0, T ], t ∈ [0, T ] and according to Banach’s fixed point principle the
integral operator A has unique fixed point that is the unique solution x∗ ∈ C[0, T ] of
(0.1) with lim

m→∞
xm (t) = x∗ (t) uniformly for t ∈ [0, T ] and the apriori and a posteriori

error estimates (1.3) and (1.4) follows. For the Picard iterations

xm+1 (t) = g(t) + λ

t∫
0

b (t) (t− s)α−1f (s, xm(s)) ds

+ λ

T∫
t

b (t) (s− t)α−1f (s, xm(s)) ds (1.7)

in inductive manner we get

|xm (t)− xm−1 (t)| ≤ θ ‖xm−1 − xm−2‖∞ ≤ ... ≤ θ
m−1 ‖x1 − x0‖∞

and thus,

|xm (t)| ≤ |xm (t)− x0 (t)|+ |x0 (t)| ≤
(
1 + θ + ...+ θm−1

) λMbM0T
α

α
+Mg
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for all t ∈ [0, T ], m ∈ N∗, where M0,Mg ≥ 0 are such that |f (t, g (t))| ≤ M0,
|g (t)| ≤Mg, ∀t ∈ [0, T ]. By denoting

R = Mg +
λMbM0T

α

α (1− θ)
we have |xm (t)| ≤ R for all t ∈ [0, T ], m ∈ N∗, that is the uniform boundedness of
the sequence (xm)m∈N∗ of Picard iterations. If we denote Fm (t) = f (t, xm (t)) for
t ∈ [0, T ] and m ∈ N, and use the Lipschitz property it obtains,

|Fm (t)| ≤ |f (t, xm (t))− f (t, x0 (t))|+ |f (t, x0 (t))|

≤ λLMbM0T
α

α (1− θ)
+M0 = M (1.8)

for all t ∈ [0, T ] and m ∈ N∗, and thus the sequence (Fm)m∈N is uniformly bounded,
too.
Now, by considering arbitrary t, t′ ∈ [0, T ], if t ≤ t′ (the case t′ ≤ t being approached

similarly) we have (t′ − s)α−1 ≤ (t− s)α−1
and consequently,

t′∫
t

∣∣∣b (t′) (t′ − s)α−1 − b (t) (s− t)α−1
∣∣∣ ds

≤
t′∫
t

|b (t′)− b (t)| (t′ − s)α−1
ds+ |b (t)|

t′∫
t

(∣∣∣(t′ − s)α−1
∣∣∣+
∣∣∣(s− t)α−1

∣∣∣) ds
≤ β |t− t′| · |t− t

′|α

α
+

2Mb |t− t′|α

α

obtaining,

|xm (t′)− xm (t)| ≤ η |t− t′|

+λ

t∫
0

∣∣∣b (t′) (t′ − s)α−1 − b (t) (t− s)α−1
∣∣∣ · |f (s, xm−1(s))| ds

+λ

t′∫
t

(
∣∣∣b (t′) |t′ − s|α−1 − b (t) (s− t)α−1

∣∣∣ · |f (s, xm−1(s))| ds

+λ

T∫
t′

∣∣∣b (t′) (s− t′)α−1 − b (t) (s− t)α−1
∣∣∣ · |f (s, xm−1(s))| ds

≤ (η +
2λMβTα

α
) |t− t′|+ λMβ

α
|t− t′|α+1

+
4λMMb

α
|t− t′|α , ∀m ∈ N∗,

that is the uniform Hölder type Lipschitz property of the sequence (xm)m∈N∗ of Picard
iterations. Under the Lipschitz conditions (1.5) and (1.6) we have

|Fm (t)− Fm (t′)| ≤ γ |t− t′|+ L |xm (t′)− xm (t)| ≤ λLMβ

α
|t− t′|α+1
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+ [γ + L

(
η +

2λβMTα

α

)
] |t− t′|+ 4λLMMb

α
|t− t′|α , ∀m ∈ N∗ (1.9)

for all t, t′ ∈ [0, T ], that is the uniform Hölder type Lipschitz property of the sequence
(Fm)m∈N. In that follows, we will denote

L0 = γ + L

(
η +

2λβMTα

α

)
, L′′ =

λLMβ

α
, and L′ =

4λLMMb

α
. �

For the case of fractional integral equations with λ = 1
Γ(α) the contraction con-

dition becomes

θ =
LMbT

α

Γ(α+ 1)
< 1.

Our iterative method is based on approximating the Picard iterations (1.7) and
for this purpose we consider a uniform mesh of [0, T ] with the knots ti = i ·h, i = 0, n,
where h = T

n is the stepsize. On these knots the Picard iterations become

xm+1 (ti) = g(ti) + λ

ti∫
0

b (ti) (ti − s)α−1f (s, xm(s)) ds

+ λ

T∫
ti

b (ti) (s− ti)α−1f (s, xm(s)) ds, i = 0, n, m ∈ N∗ (1.10)

and on each subinterval [ti−1, ti], i = 1, n, we approximate the continuous function
Fm by the Bernstein polynomial of a given degree q ≥ 1 :

Bm,i (t) =
1

hq

q∑
k=0

Ckq (t− ti−1)k(ti − t)q−k · Fm
(
ti−1 +

kh

q

)
, t ∈ [ti−1, ti] (1.11)

where Ckq = q!
k!·(q−k)! , and in this way Fm will be approximated on [0, T ] by a Bernstein

spline Bm for all m ∈ N∗. For estimating the remainder in the Bernstein approxima-
tion formula Fm (t) = Bm,i (t) + Rm,i (t) , we use the inequality of Lorentz (see [22])
described in terms of the modulus of continuity,

|Rm,i (t)| ≤ 5

4
· ω
(
Fm,

h
√
q

)
, ∀t ∈ [ti−1, ti], ∀i = 1, n, m ∈ N.

According to the uniform Hölder type Lipschitz property of the sequence (Fm)m∈N∗ ,
this inequality becomes

|Rm,i (t)| ≤ 5

4

(
L0h√
q

+
L′hα(√
q
)α +

L′′hα+1(√
q
)α+1

)
, ∀t ∈ [ti−1, ti], ∀i = 1, n (1.12)

for all m ∈ N.
Based on (1.10) and (1.11) we obtain the following iterative algorithm:

Step 1: x0 (t) = g (t) , ∀t ∈ [0, T ] and for k = 0, n− 1, l = 0, q − 1 let

x1

(
tk +

lh

q

)
= g

(
tk +

lh

q

)
+ λb

(
tk +

lh

q

) T∫
0

∣∣∣∣tk +
lh

q
− s
∣∣∣∣α−1

f (s, g(s)) ds
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= g

(
tk +

lh

q

)
+ λb

(
tk +

lh

q

) n∑
i=1

ti∫
ti−1

∣∣∣∣tk +
lh

q
− s
∣∣∣∣α−1

(B0,i (s) +R0,i (s)) ds

= g

(
tk +

lh

q

)
+

λ

hq
b

(
tk +

lh

q

) n∑
i=1

q∑
j=0

Cjqϕk,l,j ·

· f
(
ti−1 +

jh

q
, g

(
ti−1 +

jh

q

))
+R1,(k,l) = x1

(
tk +

lh

q

)
+R1,(k,l) (1.13)

and

x1 (tn) = g (tn) + λb (tn)

T∫
0

(tn − s)α−1
f (s, g(s)) ds = g (tn) + λb (tn) ·

·
n∑
i=1

ti∫
ti−1

(tn − s)α−1
(B0,i (s) +R0,i (s)) ds = g (tn) +

λ

hq
b (tn)

n∑
i=1

q∑
j=0

Cjqϕn,j ·

· f
(
ti−1 +

jh

q
, g

(
ti−1 +

jh

q

))
+R1,n = x1 (tn) +R1,n (1.14)

where

ϕk,l,j =

ti∫
ti−1

∣∣∣∣tk +
lh

q
− s
∣∣∣∣α−1

(s− ti−1)
j

(ti − s)q−j ds,

k = 0, n− 1, l = 0, q − 1 (1.15)

ϕn,j =

ti∫
ti−1

(tn − s)α−1
(s− ti−1)

j
(ti − s)q−j ds, j = 0, q. (1.16)

In the computation of the integrals (1.15)-(1.16) we use the change of variable

s = ti−1 + uh

obtaining ϕk,l,j = hq+αϕk,l,j (i) and ϕn,j = hq+αϕn,j (i) with

ϕk,l,j (i) =

1∫
0

uj (1− u)
q−j

∣∣∣∣k +
l

q
− (i− 1)− u

∣∣∣∣α−1

du

and ϕn,j (i) =

1∫
0

uj (1− u)
q−j

(n− i− u+ 1)
α−1

du.

Step 2: Construct the Bernstein splines B1 and B1 given for i = 1, n by

B1,i (t) =
1

hq

q∑
k=0

Ckq (t− ti−1)k(ti − t)q−k · F1

(
ti−1 +

kh

q

)
, t ∈ [ti−1, ti] (1.17)
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and

B1,i (t) =
1

hq

q∑
j=0

Cjq (t− ti−1)j(ti − t)q−j · f
(
ti−1 +

jh

q
, x1

(
ti−1 +

jh

q

))
, (1.18)

t ∈ [ti−1, ti].
Step 3: In inductive way, for m ≥ 2, with k = 0, n− 1, l = 0, q − 1 let

xm

(
tk +

lh

q

)
= g

(
tk +

lh

q

)

+ λb

(
tk +

lh

q

) T∫
0

∣∣∣∣tk +
lh

q
− s
∣∣∣∣α−1

f (s, xm−1 (s)) ds = g

(
tk +

lh

q

)

+ λb

(
tk +

lh

q

) n∑
i=1

ti∫
ti−1

∣∣∣∣tk +
lh

q
− s
∣∣∣∣α−1

(Bm−1,i (s) +Rm−1,i (s)) ds

= g

(
tk +

lh

q

)
+

λ

hq
b

(
tk +

lh

q

) n∑
i=1

q∑
j=0

Cjqϕk,l,j

· f
(
ti−1 +

jh

q
, xm−1

(
ti−1 +

jh

q

))
+Rm,(k,l)

= xm

(
tk +

lh

q

)
+Rm,(k,l) (1.19)

and

xm (tn) = g (tn) + λb (tn)

T∫
0

(tn − s)α−1
f (s, xm−1 (s)) ds = g (tn)

+λb (tn)

n∑
i=1

ti∫
ti−1

(tn − s)α−1
(Bm−1,i (s) +Rm−1,i (s)) ds = g (tn) +

λ

hq
b (tn)

·
n∑
i=1

q∑
j=0

Cjqϕn,j · f
(
ti−1 +

jh

q
, xm−1

(
ti−1 +

jh

q

))
+Rm,n = xm (tn) +Rm,n (1.20)

where

Bm,i (t) =
1

hq

q∑
k=0

Ckq (t− ti−1)k(ti − t)q−k · Fm
(
ti−1 +

kh

q

)
, t ∈ [ti−1, ti] (1.21)

and

Bm,i (t) =
1

hq

q∑
k=0

Ckq (t− ti−1)k(ti − t)q−k · f
(
ti−1 +

kh

q
, xm

(
ti−1 +

kh

q

))
(1.22)

for t ∈ [ti−1, ti] and i = 1, n are the Bernstein splines Bm−1 and Bm−1. The algorithm
is stopped to a previously chosen iteration m and at this iterative step we construct
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the Bernstein spline B̃m given on the subintervals [ti−1, ti], i = 1, n, by

B̃m,i (t) =
1

hq

q∑
k=0

Ckq (t− ti−1)k(ti − t)q−k · xm
(
ti−1 +

kh

q

)
, t ∈ [ti−1, ti]. (1.23)

This spline B̃m will be the continuous approximation of the solution.

2. Convergence analysis

Concerning the convergence of the above presented iterative method we obtain
the following main result.

Theorem 2.1. Under the conditions of Theorem 1.1, including (1.5) and (1.6), the

sequence
(
xm

(
tk + lh

q

))
m∈N∗

with k = 0, n− 1, l = 0, q, approximates the solution

of the integral equation (0.1) on the knots of a uniform mesh and the sequence of

Bernstein splines
(
B̃m

)
m∈N∗

approximates the same solution on [0, T ]. The error

estimates in the discrete and continuous approximation is∣∣∣∣x∗(tk +
lh

q

)
− xm

(
tk +

lh

q

)∣∣∣∣ ≤ θmλMbM0T
α

α (1− θ)

+
5λMbT

α

4α
(
1− λLMbTα

α

) (L0h√
q

+
L′hα(√
q
)α +

L′′hα+1(√
q
)α+1

)
, ∀m ∈ N∗ (2.1)

for k = 0, n− 1, l = 0, q, and ∣∣∣x∗ (t)− B̃m (t)
∣∣∣

≤ θmλMbM0T
α

α (1− θ)
+

5λMbT
α

4α
(
1− λLMbTα

α

) (L0h√
q

+
L′hα(√
q
)α +

L′′hα+1(√
q
)α+1

)

+
5

4

((
η +

2λβMTα

α

)
h
√
q

+
L′hα(√
q
)α +

L′′hα+1(√
q
)α+1

)
, ∀t ∈ [0, T ] (2.2)

where θ = λLMbT
α

α .

Proof. Since∣∣∣∣x∗(tk +
lh

q

)
− xm

(
tk +

lh

q

)∣∣∣∣ ≤ ∣∣∣∣x∗(tk +
lh

q

)
− xm

(
tk +

lh

q

)∣∣∣∣
+

∣∣∣∣xm(tk +
lh

q

)
− xm

(
tk +

lh

q

)∣∣∣∣
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by (1.3) we have to estimate
∣∣Rm,(k,l)∣∣ =

∣∣∣xm (tk + lh
q

)
− xm

(
tk + lh

q

)∣∣∣ for m ∈ N∗,
k = 0, n− 1, l = 0, q. Based on (1.12) and (1.13) we have∣∣R1,(k,l)

∣∣ =

∣∣∣∣x1

(
tk +

lh

q

)
− x1

(
tk +

lh

q

)∣∣∣∣
≤ λMb

n∑
i=1

ti∫
ti−1

|R0,i (s)|
∣∣∣∣tk +

lh

q
− s
∣∣∣∣α−1

ds

≤ 5λMb

4

(
L0h√
q

+
L′hα(√
q
)α +

L′′hα+1(√
q
)α+1

)
n∑
i=1

ti∫
ti−1

∣∣∣∣tk +
lh

q
− s
∣∣∣∣α−1

ds

≤ 5λMbT
α

4α

(
L0h√
q

+
L′hα(√
q
)α +

L′′hα+1(√
q
)α+1

)
, k = 0, n− 1, l = 0, q − 1

and by (1.14) we get

∣∣R1,n

∣∣ ≤ 5λMbT
α

4α

(
L0h√
q

+
L′hα(√
q
)α +

L′′hα+1(√
q
)α+1

)
.

Now, let us consider
∣∣Rm−1

∣∣ = max{
∣∣Rm−1,n

∣∣ , max
k=0,n−1,l=0,q−1

∣∣Rm−1,(k,l)

∣∣}, and since

n∑
i=1

ti∫
ti−1

 q∑
j=0

Cjq (s− ti−1)
j

(ti − s)q−j
∣∣∣∣tk +

lh

q
− s
∣∣∣∣α−1

ds ≤ hqTα

α

n∑
i=1

ti∫
ti−1

 q∑
j=0

Cjq (s− ti−1)
j

(ti − s)q−j
 (tn − s)α−1

ds ≤ hqTα

α

by induction for m ≥ 2, and by (1.2) and (1.17)-(1.22) it obtains

∣∣Rm,(k,l)∣∣ ≤ λMb

n∑
i=1

ti∫
ti−1

|Rm−1,i (s)|
∣∣∣∣tk +

lh

q
− s
∣∣∣∣α−1

ds

+
λ

hq
Mb

n∑
i=1

ti∫
ti−1

[ q∑
j=0

Cjq (s− ti−1)
j

(ti − s)q−j

·L
∣∣∣∣xm−1

(
ti−1 +

jh

q

)
− xm−1

(
ti−1 +

jh

q

)∣∣∣∣ ](tk +
lh

q
− s)α−1ds

≤ 5λMbT
α

4α

(
L0h√
q

+
L′hα(√
q
)α +

L′′hα+1(√
q
)α+1

)
+
λLMbT

α

α

∣∣Rm−1

∣∣
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with k = 0, n− 1, l = 0, q − 1. Similarly, we get∣∣Rm,n∣∣ ≤ 5λMbT
α

4α

(
L0h√
q

+
L′hα(√
q
)α +

L′′hα+1(√
q
)α+1

)
+
λLMbT

α

α

∣∣Rm−1

∣∣ .
For estimating

∣∣Rm−1

∣∣ we have

∣∣R2,(k,l)

∣∣ ≤ [1 +
λLMbT

α

α

]
5λMbT

α

4α

(
L0h√
q

+
L′hα(√
q
)α +

L′′hα+1(√
q
)α+1

)
,

k = 0, n− 1, l = 0, q − 1

and ∣∣R2,n

∣∣ ≤ 5λMbT
α

4α

(
L0h√
q

+
L′hα(√
q
)α +

L′′hα+1(√
q
)α+1

)(
1 +

λLMbT
α

α

)
,

obtaining in inductive manner for m ≥ 3, the estimate∣∣Rm,(k,l)∣∣ ≤
[

1 +
λLMbT

α

α
+ ...+

(
λLMbT

α

α

)m−1
]

5λMbT
α

4α

·

(
L0h√
q

+
L′hα(√
q
)α +

L′′hα+1(√
q
)α+1

)

≤ 5λMbT
α

4α
(
1− λLMbTα

α

) (L0h√
q

+
L′hα(√
q
)α +

L′′hα+1(√
q
)α+1

)
with k = 0, n− 1, l = 0, q. Now, the inequality (2.1) follows.
The estimate (2.2) will be obtained by using the scheme

x∗ → xm → B̂m → B̃m

where B̂m,i (t) = 1
hq

q∑
k=0

Ckq (t − ti−1)k(ti − t)q−k · xm
(
ti−1 + kh

q

)
for t ∈ [ti−1, ti],

i = 1, n. According to the proof of Theorem 1.1 we have

|xm (t′)− xm (t)| ≤
(
η +

2λβMTα

α

)
|t− t′|+ L′ |t− t′|α + L′′ |t− t′|α+1

for t ∈ [0, T ], m ∈ N∗, and with the inequality of Lorentz we get∣∣∣xm (t)− B̂m (t)
∣∣∣ ≤ 5

4

((
η +

2λβMTα

α

)
h
√
q

+
L′hα(√
q
)α +

L′′hα+1(√
q
)α+1

)
for all t ∈ [0, T ]. By (1.23) and (2.1) it follows,∣∣∣B̂m (t)− B̃m (t)

∣∣∣
≤ 1

hq

q∑
k=0

Ckq (t− ti−1)k(ti − t)q−k ·
∣∣∣∣xm(ti−1 +

kh

q

)
− xm

(
ti−1 +

kh

q

)∣∣∣∣
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≤ 5λMbT
α

4α
(
1− λLMbTα

α

) (L0h√
q

+
L′hα(√
q
)α +

L′′hα+1(√
q
)α+1

)
for t ∈ [ti−1, ti], i = 1, n, and with (1.3) we obtain the error estimate (2.2). �

By the error estimate (2.2) we observe that the order of convergence of this

iterative method is
∥∥∥xm − B̃m∥∥∥

∞
= O (hα) .

3. Numerical experiments

In order to test the obtained theoretical result and to illustrate the accuracy
of the Bernstein spline iterative method, in that follows we present some numerical
examples.

Example 3.1. The weakly singular linear integral equation (Example 6.1. in [32])

x (t) = g (t) +
1

4

1∫
0

√
ts |t− s|−

1
2 x (s) ds, t ∈ [0, 1] (3.1)

with λ = 1
4 , b (t) =

√
t, α = 1

2 , and

g (t) =
1

5

√
t (1− t)

[
15−

√
1− t (1 + 4t)

]
+

1

5
t2 (4t− 5)

has the exact solution x∗ (t) = 3
√
t (1− t) . By considering separately the degree of

Bernstein polynomials q = 1 and q = 4, we apply the algorithm (1.13)-(1.22) with
m = 30 iterations, and take n = 10, n = 50, and n = 100 for the test of convergence.
The results are presented in Tables 1 and 2, where ei = |xm(ti)− x∗(ti)|, i = 0, n, are
the pointwise errors. Investigating Tables 1 and 2, the convergence is confirmed and
improved results can be observed when the degree of Bernstein polynomials increases
by q = 1 to q = 4. It is interesting to see that the case q = 1 corresponds to the
trapezoidal product integration and as was expected, the Bernstein splines iterative
method provides better results.

Table 1. Numerical results for (3.1) with q = 1
m = 30 q = 1

ti/ei n = 10 n = 50 n = 100
0, 0 0, 00 0, 00 0, 00
0, 2 1, 86E − 03 7, 88E − 05 2, 00E − 05
0, 4 2, 98E − 03 1, 26E − 04 3, 20E − 05
0, 6 3, 96E − 03 1, 68E − 04 4, 25E − 05
0, 8 4, 63E − 03 1, 97E − 04 5, 00E − 05
1, 0 3, 88E − 03 1, 64E − 04 4, 15E − 05
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Table 2. Numerical results for (3.1) with q = 4
m = 30 q = 4

ti/ei n = 10 n = 50 n = 100
0, 0 0, 00 0, 00 0, 00
0, 2 4, 75E − 04 1, 99E − 05 5, 02E − 06
0, 4 7, 66E − 04 3, 20E − 05 8, 06E − 06
0, 6 1, 02E − 03 4, 25E − 05 1, 07E − 05
0, 8 1, 20E − 03 5, 00E − 05 1, 26E − 05
1, 0 1, 01E − 03 4, 16E − 05 1, 05E − 05

Example 3.2. We test the Bernstein spline iterative method (1.17)-(1.23) on fractional
integral equations too, and for the nonlinear integral equation

x (t) = g (t) +
1

4Γ
(

1
2

) 1∫
0

|t− s|−
1
2 [x (s)]2ds, t ∈ [0, 1] (3.2)

with

λ = 1, b (t) =
1

4
, α =

1

2
,

and

g (t) =
√
t (1− t) +

1

15
√
π

[
t
3
2 (4t− 5)− (1− t)

3
2 (4t+ 1)

]
the exact solution is x∗ (t) =

√
t (1− t). The contraction condition

LMbT
α

Γ(α+ 1)
=

1√
π
< 1

is fulfilled and the iterative method (1.17)-(1.23) applied with m = 30, n = 10, n = 50,
n = 100, q = 1 and q = 4, respectively, provides the results presented in Tables 3 and
4. The convergence is confirmed and we observed better results when we pass by q = 1
to q = 4. So, the Bernstein splines iterative method is better than the trapezoidal
product integration method for fractional integral equations, too.

Table 3. Numerical results for (3.2) with q = 1
m = 30 q = 1

ti/ei n = 10 n = 50 n = 100
0, 0 5, 87E − 04 2, 48E − 05 6, 27E − 06
0, 2 8, 15E − 04 3, 48E − 05 8, 81E − 06
0, 4 8, 93E − 04 3, 80E − 05 9, 62E − 06
0, 6 8, 93E − 04 3, 80E − 05 9, 62E − 06
0, 8 8, 15E − 04 3, 48E − 05 8, 81E − 06
0, 7 8, 64E − 04 3, 68E − 05 9, 32E − 06
1, 0 5, 87E − 04 2, 48E − 05 6, 27E − 06
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Table 4. Numerical results for (3.2) with q = 4
m = 30 q = 4

ti/ei n = 10 n = 50 n = 100
0, 0 1, 51E − 04 6, 26E − 06 1, 58E − 06
0, 2 2, 10E − 04 8, 78E − 06 2, 22E − 06
0, 4 2, 30E − 04 9, 60E − 06 2, 42E − 06
0, 6 2, 30E − 04 9, 60E − 06 2, 42E − 06
0, 8 2, 10E − 04 8, 78E − 06 2, 22E − 06
1, 0 1, 51E − 04 6, 26E − 06 1, 58E − 06

Example 3.3. In order to make a comparison with other methods from the existing
literature we present the results obtained on the following example. The linear weakly
singular integral equation (Example 1. in [25], Example 6.2. in [32], Example 4. in
[34])

x (t) = g (t) +
1

10

1∫
0

|t− s|−
1
3 x (s) ds, t ∈ [0, 1] (3.3)

with λ = 1
10 , b (t) = 1, α = 2

3 , and

g (t) = t2 (1− t)2 − 27

30800

[
t
8
3

(
54t2 − 126t+ 77

)
+ (1− t)

8
3
(
54t2 + 18t+ 5

)]
has the exact solution x∗ (t) = t2 (1− t)2

. By applying the iterative method (1.17)-
(1.23) with m = 30, n = 10, n = 50, n = 100, and taking q = 1 and q = 4, we
obtain the results presented in Tables 5 and 6. Comparing the results between Table
6 (n = 100) and Table 1 in [25] (where the accuracy is O

(
10−6

)
), we see better

accuracy for our method. In Tables 5 and 6 we see that the accuracy is improved by
passing from n = 10 to n = 100, that confirm the convergence of Bernstein splines
method stated in Theorem 2.1. Moreover, for q = 4 the accuracy is better than those
for q = 1, which means that again the Bernstein splines method provides better
accuracy than the trapezoidal product integration method.

Table 5. Numerical results for (3.3) with q = 1
m = 30 q = 1

ti/ei n = 10 n = 50 n = 100
0, 0 1, 70E − 05 8, 94E − 07 2, 32E − 07
0, 1 1, 74E − 05 8, 48E − 07 2, 19E − 07
0, 2 1, 59E − 06 4, 51E − 08 1, 06E − 08
0, 3 1, 99E − 05 8, 73E − 07 2, 22E − 07
0, 4 3, 23E − 05 1, 43E − 06 3, 63E − 07
0, 5 3, 67E − 05 1, 62E − 06 4, 13E − 07
0, 6 3, 23E − 05 1, 43E − 06 3, 63E − 07
0, 7 1, 99E − 05 8, 73E − 07 2, 22E − 07
0, 8 1, 59E − 06 4, 51E − 08 1, 06E − 08
0, 9 1, 74E − 05 8, 48E − 07 2, 19E − 07
1, 0 1, 70E − 05 8, 94E − 07 2, 32E − 07
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Table 6. Numerical results for (3.3) with q = 4
m = 30 q = 4

ti/ei n = 10 n = 50 n = 100
0, 0 4, 48E − 06 2, 25E − 07 5, 81E − 08
0, 1 4, 40E − 06 2, 13E − 07 5, 48E − 08
0, 2 4, 13E − 07 1, 13E − 08 2, 66E − 09
0, 3 5, 03E − 06 2, 19E − 07 5, 56E − 08
0, 4 8, 16E − 06 3, 58E − 07 9, 10E − 08
0, 5 9, 26E − 06 4, 06E − 07 1, 03E − 07
0, 6 8, 16E − 06 3, 58E − 07 9, 10E − 08
0, 7 5, 03E − 06 2, 19E − 07 5, 56E − 08
0, 8 4, 13E − 07 1, 13E − 08 2, 66E − 09
0, 9 4, 40E − 06 2, 13E − 07 5, 48E − 08
1, 0 4, 48E − 06 2, 25E − 07 5, 81E − 08

4. Conclusions

The iterated Bernstein splines method was applied to second kind weakly singu-
lar and fractional Fredholm integral equations and in Theorem 2.1 the convergence of
this method was proved providing the order of convergence O (hα). The condition that
ensures the convergence is the same as the contraction condition and therefore, the
applicability of this method is limited by the contraction condition. On the other hand
the accuracy of this method is better than those provided by the trapezoidal product
integration, as was observed in the previously presented numerical examples and, on
some cases, provides better accuracy than the existing methods from literature.
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