
MATHEMATICA

2/2024



STUDIA 
UNIVERSITATIS BABEŞ-BOLYAI 

MATHEMATICA 

2/2024



Editors-in-Chief: 

Teodora Cătinaş, Babeş-Bolyai University, Cluj-Napoca, Romania 
Adrian Petruşel, Babeş-Bolyai University, Cluj-Napoca, Romania 
Radu Precup, Babeş-Bolyai University, Cluj-Napoca, Romania 

Editors: 

Octavian Agratini, Babeş-Bolyai University, Cluj-Napoca, Romania 
Simion Breaz, Babeş-Bolyai University, Cluj-Napoca, Romania 

Honorary members of the Editorial Committee: 

Petru Blaga, Babeş-Bolyai University, Cluj-Napoca, Romania  
Wolfgang Breckner, Babeş-Bolyai University, Cluj-Napoca, Romania  
Gheorghe Coman, Babeş-Bolyai University, Cluj-Napoca, Romania  
Ioan Gavrea, Technical University of Cluj-Napoca, Romania 
Iosif Kolumbán, Babeş-Bolyai University, Cluj-Napoca, Romania  
Mihail Megan, West University of Timişoara, Romania 
Ioan A. Rus, Babeş-Bolyai University, Cluj-Napoca, Romania  
Grigore Sălăgean, Babeş-Bolyai University, Cluj-Napoca, Romania 

Editorial Board: 

Ulrich Albrecht, Auburn University, USA  
Francesco Altomare, University of Bari, Italy 
Dorin Andrica, Babeş-Bolyai University, Cluj-Napoca, Romania  
Silvana Bazzoni, University of Padova, Italy 
Teodor Bulboacă, Babeş-Bolyai University, Cluj-Napoca, Romania  
Renata Bunoiu, University of Lorraine, Metz, France 
Ernö Robert Csetnek, University of Vienna, Austria 
Paula Curt, Babeş-Bolyai University, Cluj-Napoca, Romania  
Louis Funar, University of Grenoble, France 
Vijay Gupta, Netaji Subhas University of Technology, New Delhi, India  
Christian Gűnther, Martin Luther University Halle-Wittenberg, Germany  
Petru Jebelean, West University of Timişoara, Romania 
Mirela Kohr, Babeş-Bolyai University, Cluj-Napoca, Romania  
Alexandru Kristály, Babeş-Bolyai University, Cluj-Napoca, Romania 
Hannelore Lisei, Babeş-Bolyai University, Cluj-Napoca, Romania, Romania  
Waclaw Marzantowicz, Adam Mickiewicz University, Poznan, Poland  
Giuseppe Mastroianni, University of Basilicata, Potenza, Italy 
Andrei Mărcuş, Babeş-Bolyai University, Cluj-Napoca, Romania 
Gradimir Milovanović, Serbian Academy of Sciences and Arts, Belgrade, Serbia  
Boris Mordukhovich, Wayne State University, Detroit, USA 
Andras Nemethi, Alfréd Rényi Institute of Mathematics, Hungary  
Rafael Ortega, University of Granada, Spain 
Cornel Pintea, Babeş-Bolyai University, Cluj-Napoca, Romania  
Patrizia Pucci, University of Perugia, Italy 
Themistocles Rassias, National Technical University of Athens, Greece  
Jorge Rodriguez-López, University of Santiago de Compostela, Spain  
Paola Rubbioni, University of Perugia, Italy 
Mircea Sofonea, University of Perpignan, France 
Anna Soós, Babeş-Bolyai University, Cluj-Napoca, Romania  
Andras Stipsicz, Alfréd Rényi Institute of Mathematics, Hungary  
Ferenc Szenkovits, Babeş-Bolyai University, Cluj-Napoca, Romania 

Book reviewers: 

Ștefan Cobzaş, Babeş-Bolyai University, Cluj-Napoca, Romania 

Scientific Secretary of the Board: 

Mihai Nechita, Babeș-Bolyai University, Cluj-Napoca, Romania 

Technical Editor: 
Georgeta Bonda 

ISSN (print): 0252-1938 
ISSN (online): 2065-961X 
©Studia Universitatis Babeş-Bolyai Mathematica 



YEAR (LXIX) 2024
MONTH JUNE
ISSUE 2

S T U D I A
UNIVERSITATIS BABEŞ-BOLYAI
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Redacţia: 400084 Cluj-Napoca, str. M. Kogălniceanu nr. 1
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Ostrowski type inequalities via
ψ − (α, β, γ, δ)−convex function

Ali Hassan and Asif R. Khan

Abstract. In this paper, we are introducing very first time the class of ψ −
(α, β, γ, δ)−convex function in mixed kind, which is the generalization of many
classes of convex functions. We would like to state well-known Ostrowski inequal-
ity via Montgomery identity for ψ−(α, β, γ, δ)−convex function in mixed kind. In
addition, we establish some Ostrowski type inequalities for the class of functions
whose derivatives in absolute values at certain powers are ψ − (α, β, γ, δ)-convex
functions in mixed kind by using different techniques including Hölder’s inequality
and power mean inequality. Also, various established results would be captured
as special cases. Moreover, some applications in terms of special means would
also be given.

Mathematics Subject Classification (2010): 26A33, 26A51, 26D15, 26D99, 47A30,
33B10.

Keywords: Ostrowski inequality, Montgomery identity, convex functions, special
means.

1. Introduction

In almost every field of science, inequalities play a significant role. Although it
is a very vast disciplineour focus is mainly on Ostrowski-type inequalities. In 1938,
Ostrowski established the following interesting integral inequality for differentiable
mappings with bounded derivatives [15]. This inequality is well known in the literature
as Ostrowski inequality.
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Theorem 1.1. Let f : [a, b] → R be differentiable function on (a, b) with the property
that |f ′(t)| ≤M ∀t ∈ (a, b). Then∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤M(b− a)

1

4
+

(
x− a+b

2

b− a

)2
 , (1.1)

∀x ∈ (a, b). The constant 1
4 is the best possible in the kind that it cannot be replaced

by a smaller quantity.

Ostrowski inequality has applications in numerical integration, probability and
optimization theory, statistics, information, and integral operator theory. Until now,
a large number of research papers and books have been written on generalizations of
Ostrowski inequalities and their numerous applications in [7]-[11]. Now we would like
to present the Montgomery identity:

Theorem 1.2. [7] Let a < b, f ∈ AC[a, b] and f ′ ∈ L1[a, b], then the Montgomery
identity holds:

f(x) =
1

b− a

∫ b

a

f(t)dt+
1

b− a

∫ b

a

P1(x, t)f ′(t)dt,

where P1(x, t) is the Peano Kernel defined by:

P1(x, t) =

{
t− a, if t ∈ [a, x],
t− b, if t ∈ (x, b],

∀x ∈ [a, b] .

From literature, we recall and introduce some definitions for various convex
functions.

Definition 1.3. [3] The τ : I ⊂ R→ R is said to be convex function, if

τ (tx+ (1− t)y) ≤ tτ(x) + (1− t)τ(y),

∀x, y ∈ I, t ∈ [0, 1].

We recall here definition of P−convex function from [3]:

Definition 1.4. Let τ : I ⊂ R→ R is a P−convex, if τ(x) ≥ 0 and

τ (tx+ (1− t)y) ≤ τ(x) + τ(y),

∀x, y ∈ I and t ∈ [0, 1].

Here we also have definition of quasi−convex (for detailed discussion see [3].

Definition 1.5. The τ : I ⊂ R→ R is known as quasi−convex, if

τ(tx+ (1− t)y) ≤ max{τ(x), τ(y)}
∀x, y ∈ I, t ∈ [0, 1].

Now we present definition of s−convex functions in the first kind as follows which
are extracted from [14]:
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Definition 1.6. [4] Let s ∈ (0, 1]. The τ : I ⊂ [0,∞) → [0,∞) is said to be s−convex
in the 1st kind, if

τ (tx+ (1− t)y) ≤ tsτ(x) + (1− ts)τ(y),

∀x, y ∈ I, t ∈ [0, 1].

Remark 1.7. If s→ 0, we get refinement of quasi-convexity (see Definition 1.5).

For second kind convexity we recall definition from [14].

Definition 1.8. Let s ∈ (0, 1]. The τ : I ⊂ [0,∞) → [0,∞) is said to be s−convex in
the 2nd kind, if

τ (tx+ (1− t)y) ≤ tsτ(x) + (1− t)sτ(y),

∀x, y ∈ I, t ∈ [0, 1].

Remark 1.9. Further if s→ 0, we easily get P−convexity (see Definition 1.4).

Definition 1.10. [14] Let (α, β) ∈ (0, 1]2. The τ : I ⊂ [0,∞) → [0,∞) is said to be
(α, β)−convex in the 1st kind, if

τ (tx+ (1− t)y) ≤ tατ(x) + (1− tβ)τ(y),

∀x, y ∈ I, t ∈ [0, 1].

Definition 1.11. [14] Let (α, β) ∈ (0, 1]2. The τ : I ⊂ [0,∞) → [0,∞) is said to be
(α, β)−convex in the 2nd kind, if

τ (tx+ (1− t)y) ≤ tατ(x) + (1− t)βτ(y),

∀x, y ∈ I, t ∈ [0, 1].

Definition 1.12. [14] The τ : I ⊂ R→ R is a Godunova-Levin convex, if τ(x) ≥ 0 and

τ (tx+ (1− t)y) ≤ 1

t
τ(x) +

1

1− t
τ(y),

∀x, y ∈ I and t ∈ (0, 1).

Definition 1.13. [14] The τ : I ⊂ R → [0,∞) is of Godunova-Levin s−convex, with
s ∈ (0, 1], if

τ (tx+ (1− t)y) ≤ 1

ts
τ(x) +

1

(1− t)s
τ(y),

∀t ∈ (0, 1) and x, y ∈ I.

Definition 1.14. [14] Let h : J ⊆ R → [0,∞) with h 6= 0. The τ : I ⊆ R → [0,∞) is
an h−convex, if ∀x, y ∈ I, we have

τ (tx+ (1− t)y) ≤ h(t)τ(x) + h(1− t)τ(y),

∀t ∈ (0, 1).
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Definition 1.15. [3] The τ : I ⊂ R→ R is said to be MT−convex, if τ(x) ≥ 0, and

τ (tx+ (1− t)y) ≤
√
t

2
√

1− t
τ(x) +

√
1− t
2
√
t
τ(y),

∀x, y ∈ I, t ∈ (0, 1).

Let [a, b] ⊆ (0,+∞), we may define special means as follows:

(a) The arithmetic mean

A = A(a, b) :=
a+ b

2
;

(b) The geometric mean

G = G(a, b) :=
√
ab;

(c) The harmonic mean

H = H(a, b) :=
2

1

a
+

1

b

;

(d) The logarithmic mean

L = L(a, b) :=

 a if a = b
b− a

ln b− ln a
, if a 6= b

;

(e) The identric mean

I = I(a, b) :=


a if a = b

1

e

(
bb

aa

) 1
b−a

, if a 6= b.
;

(f) The p−logarithmic mean

Lp = Lp(a, b) :=


a if a = b[
bp+1 − ap+1

(p+ 1)(b− a)

] 1
p

, if a 6= b.
;

where p ∈ R \ {0,−1}.
We make use of the beta function of Euler type, which is for x, y > 0 defined as

B(x, y) =

∫ 1

0

tx−1(1− t)y−1dt =
Γ(x)Γ(y)

Γ(x+ y)
,

where Γ(x) =
∫∞
0
e−uux−1du.

The main aim of our study is to generalize the Ostrowski inequality (1.1) for
ψ − (α, β, γ, δ)−convex in mixed kind, which is given in Section 2. Moreover, we
establish some Ostrowski type inequalities for the class of functions whose derivatives
in absolute values at certain powers are ψ − (α, β, γ, δ)-convex functions in mixed
kind by using different techniques including Hölder’s inequality and power means
inequality. Also, we give special cases of our results. The application of midpoint
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inequalities in the special means, some particular cases of these inequalities are given
in Section 3. The last section gives us a conclusion with some remarks and future
ideas.

2. Generalization of Ostrowski type inequalities

Convexity is a very simple and ordinary concept, due to its massive applications
in industry and business, convexity has a great influence on our daily life. In the
solution of many real-world problems, the concept of convexity is very decisive. The
problems faced in constrained control and estimation are convex. Geometrically, a real-
valued function is said to be convex if the line segment joining any two of its points
lies on or above the graph of the function in Euclidean space. We are introducing
the very first time the class of (s, r)−convex and ψ − (α, β, γ, δ)−convex function in
mixed kind.

Definition 2.1. [12] Let (s, r) ∈ (0, 1]2. The τ : I ⊂ [0,∞) → [0,∞) is said to be
(s, r)−convex in mixed kind, if

τ (tx+ (1− t)y) ≤ trsτ(x) + (1− tr)sτ(y),

∀x, y ∈ I, t ∈ [0, 1].

Definition 2.2. [12] Let (α, β, γ, δ) ∈ (0, 1]4. The τ : I ⊂ [0,∞)→ [0,∞) is said to be
(α, β, γ, δ)−convex in mixed kind, if

τ (tx+ (1− t)y) ≤ tαγτ(x) + (1− tβ)δτ(y),

∀x, y ∈ I, t ∈ [0, 1].

Definition 2.3. [12] Let ψ : (0, 1)→ (0,∞), the τ : I ⊂ R→ [0,∞) is a ψ−convex, if
∀x, y ∈ I we have

τ (tx+ (1− t)y) ≤ tψ(t)τ(x) + (1− t)ψ(1− t)τ(y),

∀t ∈ (0, 1).

Introducing a new class of convex functions that generalizes numerous well-
known and highly regarded classes of convex functions, providing a broader framework
for analysis and application in mathematical and optimization contexts.

Definition 2.4. Let (α, β, γ, δ) ∈ (0, 1]4, and ψ : (0, 1)→ (0,∞). The τ : I ⊂ [0,∞)→
[0,∞) is said to be ψ − (α, β, γ, δ)−convex in mixed kind, if

τ (tx+ (1− t)y) ≤ tαγψ(t)τ(x) + (1− tβ)δψ(1− t)τ(y), (2.1)

∀x, y ∈ I, t ∈ [0, 1].

Remark 2.5. In Definition 2.4, we have the following cases.

1. If ψ(t) = 1 in (2.1), we get (α, β, γ, δ)−convex in mixed kind.
2. If ψ(t) = γ = δ = 1 in (2.1), we get (α, β)−convex in 1st kind.
3. If ψ(t) = β = γ = 1 in (2.1), we get (α, β)−convex in 2nd kind.
4. If ψ(t) = 1, α = δ = s, β = γ = r, where s, r ∈ (0, 1] in (2.1), we get (s, r)−convex

in mixed kind.
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5. If α = β = s and ψ(t) = γ = δ = 1 where s ∈ (0, 1] in (2.1), we get s−convex in
1st kind.

6. If α = β → 0, and ψ(t) = γ = δ = 1, in (2.1), we get refinement of quasi-convex.
7. If α = δ = s, ψ(t) = β = γ = 1 where s ∈ (0, 1] or (α = β = γ = δ = 1, ψ(t) =
ts−1 with s ∈ (0, 1]) in (2.1), we get s−convex in 2nd kind.

8. If α = δ → 0, and ψ(t) = β = γ = 1, or (α = β = γ = δ = 1, and ψ(t) = 1
t ) in

(2.1), we get P−convex.
9. If ψ(t) = α = β = γ = δ = 1 in (2.1), gives us ordinary convex.

10. If α = β = γ = δ = 1 in (2.1), gives us ψ−convex.
11. If α = β = γ = δ = 1, l(t) = t, h = lψ in (2.1), we get h−convex.
12. If α = β = γ = δ = 1, ψ(t) = 1

ts+1 with s ∈ [0, 1) in (2.1), then we get the class
of Godunova-Levin s−convex.

13. If α = β = γ = δ = 1, ψ(t) = 1
t2 in (2.1), then we get the concept of Godunova-

Levin convex.
14. If α = β = γ = δ = 1, ψ(t) = 1

2
√
t(1−t)

in (2.1), then we get the concept of

MT−convex.

Theorem 2.6. Suppose all the assumptions of Theorem 1.2 hold. If τ : [a, b] ⊆ R→ R
is ψ − (α, β, γ, δ)−convex in mixed kind, then

τ

(
f(x)− 1

b− a

∫ b

a

f(t)dt

)

≤
(
x− a
b− a

)αγ
ψ

(
x− a
b− a

)[
1

x− a

∫ x

a

τ [(t− a)f ′(t)] dt

]

+

(
1−

(
x− a
b− a

)β)δ
ψ

(
b− x
b− a

)[
1

b− x

∫ b

x

τ [(t− b)f ′(t)] dt

]
, (2.2)

∀x ∈ [a, b] .

Proof. Utilizing the Theorem 1.2, we get

f(x)− 1

b− a

∫ b

a

f(t)dt =

(
x− a
b− a

)[
1

x− a

∫ x

a

(t− a)f ′(t)dt

]
+

(
1−

(
x− a
b− a

))[
1

b− x

∫ b

x

(t− b)f ′(t)dt

]
,

using the ψ − (α, β, γ, δ)−convexity in mixed kind of τ : [a, b] ⊆ R→ R, we have

τ

(
f(x)− 1

b− a

∫ b

a

f(t)dt

)

≤
(
x− a
b− a

)αγ
ψ

(
x− a
b− a

)
τ

[
1

x− a

∫ x

a

(t− a)f ′(t)dt

]

+

(
1−

(
x− a
b− a

)β)δ
ψ

(
b− x
b− a

)
τ

[
1

b− x

∫ b

x

(t− b)f ′(t)dt

]
,
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∀x ∈ [a, b] , which is an inequality of interest in itself as well. If we use Jensen’s integral
inequality we get (2.2). �

Corollary 2.7. In Theorem 2.6, one can see the following.

1. If ψ(t) = 1, in (2.2), then functional generalization of Ostrowski inequality for
(α, β, γ, δ)−convex functions in mixed kind:

τ

(
f(x)− 1

b− a

∫ b

a

f(t)dt

)

≤
(
x− a
b− a

)αγ [
1

x− a

∫ x

a

τ [(t− a)f ′(t)] dt

]

+

(
1−

(
x− a
b− a

)β)δ [
1

b− x

∫ b

x

τ [(t− b)f ′(t)] dt

]
2. If ψ(t) = γ = δ = 1, and α, β ∈ (0, 1] in (2.2), then functional generalization of

Ostrowski inequality for (α, β)−convex functions in 1st kind:

τ

(
f(x)− 1

b− a

∫ b

a

f(t)dt

)

≤
(
x− a
b− a

)α [
1

x− a

∫ x

a

τ [(t− a)f ′(t)]dt

]
+

(
1−

(
x− a
b− a

)β)[
1

b− x

∫ b

x

τ [(t− b)f ′(t)]dt

]
.

3. If ψ(t) = β = γ = 1, and α, δ ∈ (0, 1] in (2.2), then functional generalization of
Ostrowski inequality for (α, δ)−convex functions in 2nd kind:

τ

(
f(x)− 1

b− a

∫ b

a

f(t)dt

)

≤
(
x− a
b− a

)α [
1

x− a

∫ x

a

τ [(t− a)f ′(t)]dt

]
+

(
1−

(
x− a
b− a

))δ [
1

b− x

∫ b

x

τ [(t− b)f ′(t)]dt

]
.

4. If ψ(t) = 1, α = δ = s, and β = γ = r, where s, r ∈ (0, 1] in (2.2), then functional
generalization of Ostrowski inequality for (s, r)−convex functions in mixed kind:

τ

(
f(x)− 1

b− a

∫ b

a

f(t)dt

)

≤
(
x− a
b− a

)rs [
1

x− a

∫ x

a

τ [(t− a)f ′(t)]dt

]
+

(
1−

(
x− a
b− a

)r)s [
1

b− x

∫ b

x

τ [(t− b)f ′(t)]dt

]
.
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5. If α = β = s and ψ(t) = γ = δ = 1, where s ∈ (0, 1] in (2.2), then functional
generalization of Ostrowski inequality for s−convex functions in 1st kind:

τ

(
f(x)− 1

b− a

∫ b

a

f(t)dt

)

≤
(
x− a
b− a

)s [
1

x− a

∫ x

a

τ [(t− a)f ′(t)]dt

]
+

(
1−

(
x− a
b− a

)s)[
1

b− x

∫ b

x

τ [(t− b)f ′(t)]dt

]
.

6. If α = β → 0 and ψ(t) = γ = δ = 1 in (2.2), then functional generalization of
Ostrowski inequality for quasi−convex functions:

τ

(
f(x)− 1

b− a

∫ b

a

f(t)dt

)
≤ 1

x− a

∫ x

a

τ [(t− a)f ′(t)]dt.

7. If α = δ = s, and ψ(t) = β = γ = 1, where s ∈ [0, 1] in (2.2), then functional
generalization of Ostrowski inequality for s−convex functions in 2nd kind:

τ

(
f(x)− 1

b− a

∫ b

a

f(t)dt

)

≤
(
x− a
b− a

)s [
1

x− a

∫ x

a

τ [(t− a)f ′(t)]dt

]
+

(
b− x
b− a

)s [
1

b− x

∫ b

x

τ [(t− b)f ′(t)]dt

]
.

8. If α = δ → 0 and ψ(t) = β = γ = 1 in (2.2), then functional generalization of
Ostrowski inequality for P−convex functions:

τ

(
f(x)− 1

b− a

∫ b

a

f(t)dt

)

≤ 1

x− a

∫ x

a

τ [(t− a)f ′(t)]dt+
1

b− x

∫ b

x

τ [(t− b)f ′(t)]dt.

9. If ψ(t) = α = β = γ = δ = 1 in (2.2), then functional generalization of Ostrowski
inequality for convex functions which is inequality (2.1) of Theorem 7 in [8].
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10. If α = β = γ = δ = 1, in (2.2), then functional generalization of Ostrowski
inequality for ψ−convex functions:

τ

(
f(x)− 1

b− a

∫ b

a

f(t)dt

)

≤ 1

b− a

[
ψ

(
x− a
b− a

)∫ x

a

τ [(t− a) f ′(t)] dt

+ψ

(
b− x
b− a

)∫ b

x

τ [(t− b) f ′(t)] dt

]
.

11. If α = β = γ = δ = 1, l(t) = t, and h = lψ in (2.2), then functional generalization
of Ostrowski inequality for h−convex functions:

τ

(
f(x)− 1

b− a

∫ b

a

f(t)dt

)

≤ h
(
x− a
b− a

)[
1

x− a

∫ x

a

τ [(t− a)f ′(t)]dt

]
+h

(
b− x
b− a

)[
1

b− x

∫ b

x

τ [(t− b)f ′(t)]dt

]
.

12. If α = β = γ = δ = 1, ψ(t) = 1
ts+1 with s ∈ [0, 1] in (2.2), then functional

generalization of Ostrowski inequality for GL s−convex:

τ

(
f(x)− 1

b− a

∫ b

a

f(t)dt

)

≤ (b− a)s
[

1

(x− a)s+1

∫ x

a

τ [(t− a)f ′(t)]dt

+
1

(b− x)s+1

∫ b

x

τ [(t− b)f ′(t)]dt

]
.

13. If α = β = γ = δ = 1, ψ(t) = 1
t2 in (2.2), then functional generalization of

Ostrowski inequality for GL convex:

τ

(
f(x)− 1

b− a

∫ b

a

f(t)dt

)

≤ (b− a)

[
1

(x− a)2

∫ x

a

τ [(t− a)f ′(t)]dt+
1

(b− x)2

∫ b

x

τ [(t− b)f ′(t)]dt

]
.
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14. If α = β = γ = δ = 1, ψ(t) = 1

2
√
t(1−t)

in (2.2), then functional generalization

of Ostrowski inequality for MT−convex:

τ

(
f(x)− 1

b− a

∫ b

a

f(t)dt

)

≤ 1

2
√

(x− a)(b− x)

[∫ x

a

τ [(t− a)f ′(t)]dt+

∫ b

x

τ [(t− b)f ′(t)]dt

]
.

In order to prove our main results, we need the following lemma that has been
obtained in [16].

Lemma 2.8. Let f : [a, b] → R be an absolutely continuous mapping on (a, b) with
a < b. If f ′ ∈ L1[a, b], then ∀x ∈ (a, b)

f(x)− 1

b− a

∫ b

a

f(t)dt =
(x− a)2

b− a

∫ 1

0

tf ′(tx+ (1− t)a)dt

− (b− x)2

b− a

∫ 1

0

tf ′(tx+ (1− t)b)dt.

Theorem 2.9. Let a < b, f ∈ AC[a, b], f ′ ∈ L1[a, b], and |f ′| is ψ− (α, β, γ, δ)−convex
function with |f ′(x)| ≤M, then ∀x ∈ (a, b)∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣
≤M

(∫ 1

0

(
tαγ+1ψ(t) + t(1− tβ)δψ(1− t)

)
dt

)
κba(x), (2.3)

where κba(x) = (x−a)2+(b−x)2
b−a .

Proof. From the Lemma 2.8 we have∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ (x− a)2

b− a

∫ 1

0

t |f ′(tx+ (1− t)a)| dt

+
(b− x)2

b− a

∫ 1

0

t |f ′(tx+ (1− t)b)| dt. (2.4)

Since |f ′| is ψ − (α, β, γ, δ)−convex and |f ′(x)| ≤M, we get∫ 1

0

t |f ′(tx+ (1− t)a)| dt ≤M
∫ 1

0

t
(
tαγψ(t) + (1− tβ)δψ(1− t)

)
dt, (2.5)

and similarly∫ 1

0

t |f ′(tx+ (1− t)b)| dt ≤M
∫ 1

0

t
(
tαγψ(t) + (1− tβ)δψ(1− t)

)
dt. (2.6)

By using inequalities (2.5) and (2.6) in (2.4), we get (2.3). �

Corollary 2.10. In Theorem 2.9, one can see the following.
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1. If ψ(t) = 1, in (2.3), then Ostrowski inequality for (α, β, γ, δ)−convex functions
in mixed kind:∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤M
 1

αγ + 2
+
B
(

2
β , δ + 1

)
β

 κba(x).

2. If ψ(t) = γ = δ = 1, α ∈ [0, 1] and β ∈ (0, 1], in (2.3), then Ostrowski inequality
for (α, β)−convex functions in 1st kind:∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤M
 1

α+ 2
+
B
(

2
β , 2
)

β

 κba(x).

3. If ψ(t) = β = γ = 1, α ∈ [0, 1] and δ ∈ [0, 1], in (2.3), then Ostrowski inequality
for (α, δ)−convex functions in 2nd kind:∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤M
(

1

α+ 2
+

1

(δ + 1)(δ + 2)

)
κba(x).

4. If ψ(t) = 1, α = δ = s, β = γ = r, where s ∈ [0, 1] and r ∈ (0, 1] in (2.3), then
Ostrowski inequality for (s, r)−convex functions in mixed kind:∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤M
(

1

rs+ 2
+
B
(
2
r , s+ 1

)
r

)
κba(x).

5. If α = β = s and ψ(t) = γ = δ = 1, where s ∈ (0, 1] in (2.3), then Ostrowski
inequality for s−convex functions in 1st kind:∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤M
(

1

s+ 2
+
B
(
2
s , 2
)

s

)
κba(x).

6. If α = δ → 0 and ψ(t) = β = γ = 1 in (2.3), then Ostrowski inequality for
P−convex functions: ∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤M κba(x).

7. If ψ(t) = β = γ = 1, α = δ = s where s ∈ [0, 1], then (2.3) reduces to the
inequality (2.1) of Theorem 2 in [1].

8. If ψ(t) = α = β = γ = δ = 1, then (2.3) reduces to the inequality (1.1).
9. If α = β = γ = δ = 1 in (2.3), then Ostrowski inequality for ψ−convex:∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤M
(∫ 1

0

(
t2ψ(t) + t(1− t)ψ(1− t)

)
dt

)
κba(x).

10. If α = β = γ = δ = 1, l(t) = t, then if h = lψ, in (2.3), then Ostrowski inequality
for h−convex:∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤M
(∫ 1

0

(th(t) + th(1− t)) dt
)
κba(x).
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11. If α = β = γ = δ = 1, ψ(t) = t−(s+1) in (2.3), then Ostrowski inequality for GL
s−convex: ∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤M
(

1

1− s

)
κba(x).

12. If α = β = γ = δ = 1, ψ(t) = 1

2
√
t(1−t)

in (2.3), then Ostrowski inequality for

MT−convex: ∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ Mπ

4
κba(x).

Theorem 2.11. Let a < b, f ∈ AC[a, b], f ′ ∈ L1[a, b], and |f ′|q is ψ−(α, β, γ, δ)−convex
function for q ≥ 1 with |f ′(x)| ≤M, then ∀x ∈ (a, b)∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣
≤ M

(2)1−
1
q

(∫ 1

0

(
tαγ+1ψ(t) + t(1− tβ)δψ(1− t)

)
dt

) 1
q

κba(x). (2.7)

Proof. From the Lemma 2.8 and power mean inequality, we have∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ (x− a)2

b− a

(∫ 1

0

tdt

)1− 1
q
(∫ 1

0

t |f ′ (tx+ (1− t)a)|q dt
) 1

q

+
(b− x)2

b− a

(∫ 1

0

tdt

)1− 1
q
(∫ 1

0

t |f ′ (tx+ (1− t)b)|q dt
) 1

q

. (2.8)

Since |f ′|q is ψ − (α, β, γ, δ)−convex and |f ′(x)| ≤M, we get∫ 1

0

t |f ′ (tx+ (1− t)a)|q dt ≤Mq

∫ 1

0

t
(
tαγψ(t) + (1− tβ)δψ(1− t)

)
dt, (2.9)

and ∫ 1

0

t |f ′ (tx+ (1− t)b)|q dt ≤Mq

∫ 1

0

t
(
tαγψ(t) + (1− tβ)δψ(1− t)

)
dt. (2.10)

Using the inequalities (2.8)− (2.10), we get (2.7). �

Corollary 2.12. In Theorem 2.11, one can see the following.

1. If q = 1, then we get Theorem 2.9.
2. If ψ(t) = 1, in (2.7), then Ostrowski inequality for (α, β, γ, δ)−convex functions

in mixed kind:∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ M

(2)1−
1
q

 1

αγ + 2
+
B
(

2
β , δ + 1

)
β


1
q

κba(x).
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3. If ψ(t) = γ = δ = 1, α ∈ [0, 1] and β ∈ (0, 1], in (2.7), then Ostrowski inequality
for (α, β)−convex functions in 1st kind:∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ M

(2)1−
1
q

 1

α+ 2
+
B
(

2
β , 2
)

β


1
q

κba(x).

4. If ψ(t) = β = γ = 1, α ∈ [0, 1] and δ ∈ [0, 1], in (2.7), then Ostrowski inequality
for (α, δ)−convex functions in 2nd kind:∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ M

(2)1−
1
q

(
1

(α+ 2)
+

1

(δ + 1)(δ + 2)

) 1
q

κba(x).

5. If ψ(t) = 1, α = δ = s, β = γ = r, where s ∈ [0, 1] and r ∈ (0, 1] in (2.7), then
Ostrowski inequality for (s, r)−convex functions in mixed kind:∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ M

(2)1−
1
q

(
1

rs+ 2
+
B
(
2
r , s+ 1

)
r

) 1
q

κba(x).

6. If α = β = s and ψ(t) = γ = δ = 1, where s ∈ (0, 1] in (2.7), then Ostrowski
inequality for s−convex functions in 1st kind:∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ M

(2)1−
1
q

(
1

s+ 2
+
B
(
2
s , 2
)

s

) 1
q

κba(x).

7. If α = δ → 0 and ψ(t) = β = γ = 1 in (2.7), then Ostrowski inequality for
P−convex functions:∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ M

(2)1−
1
q

κba(x).

8. If ψ(t) = β = γ = 1, α = δ = s where s ∈ [0, 1], then (2.7) reduces to the
inequality (2.3) of Theorem 4 in [1].

9. If ψ(t) = α = β = γ = δ = 1, then (2.7) reduces to the inequality (1.1).
10. If α = β = γ = δ = 1, in (2.7), then Ostrowski inequality for ψ−convex:∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣
≤ M

21−
1
q

(∫ 1

0

(
t2ψ(t) + t(1− t)ψ(1− t)

)
dt

) 1
q

κba(x).

11. If α = β = γ = δ = 1, l(t) = t, then if h = lψ, in (2.7), then Ostrowski inequality
for h−convex:∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ M

21−
1
q

(∫ 1

0

(th(t) + th(1− t)) dt
) 1

q

κba(x).
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12. If α = β = γ = δ = 1, ψ(t) = t−(s+1) in (2.7), then Ostrowski inequality for GL
s−convex: ∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ M

21−
1
q

(
1

1− s

) 1
q

κba(x).

13. If α = β = γ = δ = 1, ψ(t) = 1

2
√
t(1−t)

in (2.7), then Ostrowski inequality for

MT−convex: ∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ Mτ
1
q

21+
1
q

κba(x).

Theorem 2.13. Let a < b, f ∈ AC[a, b], f ′ ∈ L1[a, b], and |f ′|q is ψ−(α, β, γ, δ)−convex
function for q > 1 with |f ′(x)| ≤M, then ∀x ∈ (a, b)∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣
≤ M

(p+ 1)
1
p

(∫ 1

0

(
tαγψ(t) + (1− tβ)δψ(1− t)

)
dt

) 1
q

κba(x), (2.11)

where p−1 + q−1 = 1.

Proof. From the Lemma 2.8 and Hölder’s inequality, we have∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ (x− a)2

b− a

(∫ 1

0

tpdt

) 1
p
(∫ 1

0

|f ′ (tx+ (1− t)a)|q dt
) 1

q

+
(b− x)2

b− a

(∫ 1

0

tpdt

) 1
p
(∫ 1

0

|f ′ (tx+ (1− t)b)|q dt
) 1

q

. (2.12)

Since |f ′|q is ψ − (α, β, γ, δ)−convex and |f ′(x)| ≤M, we get∫ 1

0

|f ′ (tx+ (1− t)a)|q dt ≤Mq

∫ 1

0

(
tαγψ(t) + (1− tβ)δψ(1− t)

)
dt, (2.13)

and ∫ 1

0

|f ′ (tx+ (1− t)b)|q dt ≤Mq

∫ 1

0

(
tαγψ(t) + (1− tβ)δψ(1− t)

)
dt. (2.14)

Using inequalities (2.12)− (2.14), we get (2.11). �

Corollary 2.14. In Theorem 2.13, one can see the following.

1. If ψ(t) = 1, in (2.11), then Ostrowski inequality for (α, β, γ, δ)−convex in mixed
kind:∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ M

(p+ 1)
1
p

 1

αγ + 1
+
B
(

1
β , δ + 1

)
β


1
q

κba(x).
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2. If ψ(t) = γ = δ = 1, α ∈ [0, 1] and β ∈ (0, 1], in (2.11), then Ostrowski inequality
for (α, β)−convex in 1st kind:

∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ M

(p+ 1)
1
p

 1

α+ 1
+
B
(

1
β , 2
)

β


1
q

κba(x).

3. If ψ(t) = β = γ = 1, α ∈ [0, 1] and δ ∈ [0, 1], in (2.11), then Ostrowski inequality
for (α, δ)−convex in 2nd kind:∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ M

(p+ 1)
1
p

(
1

α+ 1
+

1

δ + 1

) 1
q

κba(x).

4. If ψ(t) = 1, α = δ = s, β = γ = r, where s ∈ [0, 1] and r ∈ (0, 1] in (2.11), then
Ostrowski inequality for (s, r)−convex in mixed kind:∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ M

(p+ 1)
1
p

(
1

rs+ 1
+
B
(
1
r , s+ 1

)
r

) 1
q

κba(x).

5. If α = β = s and ψ(t) = γ = δ = 1, where s ∈ (0, 1] in (2.11), then Ostrowski
inequality for s−convex in 1st kind:∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ M

(p+ 1)
1
p

(
1

s+ 1
+
B
(
1
s , 2
)

s

) 1
q

κba(x).

6. If ψ(t) = β = γ = 1, α = δ = s where s ∈ [0, 1], then (2.11) reduces to the
inequality (2.2) of Theorem 3 in [1].

7. If α = δ → 0 and ψ(t) = β = γ = 1 in (2.11), then Ostrowski inequality for
P−convex: ∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ (2)
1
qM

(p+ 1)
1
p

κba(x).

8. If ψ(t) = α = β = γ = δ = 1 in (2.11), then Ostrowski inequality for convex:∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ M

(p+ 1)
1
p

κba(x).

9. If α = β = γ = δ = 1, in (2.11), then Ostrowski inequality for ψ−convex:∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣
≤ M

(p+ 1)
1
p

(∫ 1

0

(tψ(t) + (1− t)ψ(1− t)) dt
) 1

q

κba(x).
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10. If α = β = γ = δ = 1, l(t) = t, then if h = lψ, in (2.11), then Ostrowski
inequality for h−convex:∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ M

(p+ 1)
1
p

(∫ 1

0

(h(t) + h(1− t)) dt
) 1

q

κba(x).

11. If α = β = γ = δ = 1, ψ(t) = t−(s+1) where s ∈ [0, 1) in (2.11), then Ostrowski
inequality for GL s−convex:∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ M

(p+ 1)
1
p

(
2

1− s

) 1
q

κba(x).

12. If α = β = γ = δ = 1, ψ(t) = 1

2
√
t(1−t)

in (2.11), then Ostrowski inequality for

MT−convex: ∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ M
(
π
2

) 1
q

(1 + p)
1
p

κba(x).

3. Applications of midpoint Ostrowski type inequalities via
ψ − (α, β, γ, δ)−convex

If we replace f by −f and x = a+b
2 in Theorem 2.6, then the functional gener-

alization of Ostrowski midpoint inequality for ψ − (α, β, γ, δ)− convex functions:

τ

(
1

b− a

∫ b

a

f(t)dt− f
(
a+ b

2

))

≤
ψ
(
1
2

)
b− a

[
1

2αγ−1

∫ a+b
2

a

τ [(a− t)f ′(t)]dt+

(
2β − 1

)δ
2βδ−1

∫ b

a+b
2

τ [(b− t)f ′(t)]dt

]
.

(3.1)

Remark 3.1. Assume that τ : [a, b] ⊆ R → R be an ψ − (α, β, γ, δ)−convex function
in mixed kind:

1. If f(t) = 1
t in inequality (3.1) where t ∈ [a, b] ⊂ (0,∞), then

τ

[
A(a, b)− L(a, b)

A(a, b)L(a, b)

]
≤
ψ
(
1
2

)
b− a

[
1

2αγ−1

∫ a+b
2

a

τ

[
t− a
t2

]
dt +

(
2β − 1

)δ
2βδ−1

∫ b

a+b
2

τ

[
t− b
t2

]
dt

]
.

2. If f(t) = − ln t in inequality (3.1), where t ∈ [a, b] ⊂ (0,∞), then

τ

[
ln

(
A(a, b)

I(a, b)

)]
≤
ψ
(
1
2

)
b− a

[
1

2αγ−1

∫ a+b
2

a

τ

[
t− a
t

]
dt +

(
2β − 1

)δ
2βδ−1

∫ b

a+b
2

τ

[
t− b
t

]
dt

]
.
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3. If f(t) = tp, p ∈ R \ {0,−1} in inequality (3.1), where t ∈ [a, b] ⊂ (0,∞), then

τ
[
Lpp(a, b)−Ap(a, b)

]
≤

ψ
(
1
2

)
b− a

[
1

2αγ−1

∫ a+b
2

a

τ

[
p (a− t)
t1−p

]
dt

+

(
2β − 1

)δ
2βδ−1

∫ b

a+b
2

τ

[
p (b− t)
t1−p

]
dt

]
.

Remark 3.2. In Theorem 2.11, one can see the following.

1. Let x = a+b
2 , 0 < a < b, q ≥ 1 and f : R→ R+, f(t) = tn in (2.7). Then

|An (a, b)− Lnn (a, b)|

≤ M (b− a)

(2)2−
1
q

(∫ 1

0

(
tαγ+1ψ(t) + t(1− tβ)δψ(1− t)

)
dt

) 1
q

.

2. Let x = a+b
2 , 0 < a < b, q ≥ 1 and f : (0, 1]→ R, f(t) = − ln t in (2.7). Then∣∣∣∣ln(A (a, b)

I (a, b)

)∣∣∣∣ ≤ M (b− a)

(2)2−
1
q

(∫ 1

0

(
tαγ+1ψ(t) + t(1− tβ)δψ(1− t)

)
dt

) 1
q

.

Remark 3.3. In Theorem 2.13, one can see the following.

1. Let x = a+b
2 , 0 < a < b, p−1 + q−1 = 1 and f : R → R+, f(t) = tn in (2.11).

Then

|An (a, b)− Lnn (a, b)|

≤ M (b− a)

2 (p+ 1)
1
p

(∫ 1

0

(
tαγψ(t) + (1− tβ)δψ(1− t)

)
dt

) 1
q

.

2. Let x = a+b
2 , 0 < a < b, p−1 +q−1 = 1 and f : (0, 1]→ R, f(t) = − ln t in (2.11).

Then∣∣∣∣ln(A (a, b)

I (a, b)

)∣∣∣∣ ≤ M (b− a)

2 (p+ 1)
1
p

(∫ 1

0

(
tαγψ(t) + (1− tβ)δψ(1− t)

)
dt

) 1
q

.

4. Conclusion and remarks

4.1. Conclusion

Ostrowski inequality is one of the most celebrated inequalities, we can find its
various generalizations and variants in literature. In this paper, we presented the
generalized notion of ψ − (α, β, γ, δ)−convex functions in mixed kind. This class
of functions contains many important classes. We have started our first main re-
sult in section 2, the generalization of Ostrowski inequality via Montgomery iden-
tity with ψ − (α, β, γ, δ)−convex functions in mixed kind. Further, we used different
techniques including Hölder’s inequality and power mean inequality for generaliza-
tion of Ostrowski inequality[15]. Finally, we have given some applications in terms of
special means including arithmetic, geometric, harmonic, logarithmic, identric, and
p−logarithmic means by using the midpoint inequalities.
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4.2. Remarks and future ideas

1. One may also do similar work by using various different classes of convex func-
tions.

2. One may do similar work to generalize all results stated in this research work by
applying weights.

3. One may also state all results stated in this research work by higher-order deriva-
tives.

4. One may also state all results stated in this research work by multivariable
functions.

5. One may try to state all results stated in this research work for generalized
fractional integral operators.

6. One may try to state all results stated in this research work for Jensen-Steffensen
inequality and their different types of variants.

7. One may also do the similar work by using various different generalized forms
for the Korkine’s and Montgomery identities, improved power means inequality,
Hölder’s Iscan inequality, Jensen’s integral inequality with weights, generalized
fuzzy metric spaces on the set of all fuzzy numbers.

References

[1] Alomari, M., Darus, M., Dragomir, S.S., Cerone, P., Ostrowski type inequalities for func-
tions whose derivatives are s-convex in the second sense, Appl. Math. Lett., 23(2010),
no. 9, 1071–1076.

[2] Arshad, A., Khan, A.R., Hermite-Hadamard-Fejer type integral inequality for s −
p−convex of several kinds, Transylvanian J. Math. Mech., 11(2019), no. 2, 25–40.

[3] Beckenbach, E.F., Bing, R.H., On generalized convex functions, Trans. Am. Math. Soc.,
58(1945), no. 2, 220–230.

[4] Breckner, W.W., Stetigkeitsaussagen fur eine klasse verallgemeinerter konvexer funktio-
nen in topologischen linearen raumen, Publ. Inst. Math. Univ. German., 23(1978), no.
37, 13–20.

[5] Dragomir, S.S., On the Ostrowski’s integral inequality for mappings with bounded vari-
ation and applications, Math. Inequal. Appl., 4(2001), no. 1, 59–66.

[6] Dragomir, S.S., Refinements of the generalised trapozoid and Ostrowski inequalities for
functions of bounded variation, Arch. Math., 91(2008), no. 5, 450–460.

[7] Dragomir, S.S., A companion of Ostrowski’s inequality for functions of bounded variation
and applications, Int. J. Nonlinear Anal. Appl., 5(2014), no. 1, 89–97.

[8] Dragomir, S.S., The functional generalization of Ostrowski inequality via montgomery
identity, Acta. Math. Univ. Comenianae, 84(2015), no. 1, 63–78.

[9] Dragomir, S.S., Barnett, N.S., An Ostrowski type inequality for mappings whose second
derivatives are bounded and applications, J. Indian Math. Soc., 1(1999), no. 2, 237–245.

[10] Dragomir, S.S., Cerone, P., Barnett, N.S., Roumeliotis, J., An inequality of the Ostrowski
type for double integrals and applications for cubature formulae, Tamsui. Oxf. J. Inf.
Math. Sci., 2(2000), no. 6, 1–16.



Ostrowski type inequalities 265

[11] Dragomir, S.S., Cerone, P., Roumeliotis, J., A new generalization of Ostrowski integral
inequality for mappings whose derivatives are bounded and applications in numerical
integration and for special means, Appl. Math. Lett., 13(2000), no. 1, 19–25.

[12] Hassan, A., Khan, A.R., Generalized fractional Ostrowski type inequalities via
(α, β, γ, δ)-convex functions, Fractional Differential Calculus, 12(2022), no. 1, 13-26.

[13] Mubeen, S., Habibullah, G.M., K-Fractional integrals and application, Int. J. Contemp.
Math. Sci., 7(2012), no. 1, 89–94.

[14] Noor, M.A., Awan, M.U., Some integral inequalities for two kinds of convexities via
fractional integrals, Trans. J. Math. Mech., 5(2013), no. 2, 129–136.
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Better approximations for quasi-convex functions

Huriye Kadakal

Abstract. In this paper, by using Hölder-İşcan, Hölder integral inequality and
an general identity for differentiable functions we can get new estimates on gen-
eralization of Hadamard, Ostrowski and Simpson type integral inequalities for
functions whose derivatives in absolute value at certain power are quasi-convex
functions. It is proved that the result obtained Hölder-İşcan integral inequality
is better than the result obtained Hölder inequality.
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1. Introduction

A function f : I ⊆ R→ R is said to be convex if the inequality

f (tx+ (1− t)y) ≤ tf (x) + (1− t)f (y)

valid for all x, y ∈ I and t ∈ [0, 1]. If this inequality reverses, then f is said to be
concave on interval I 6= ∅.

Integral inequalities have played an important role in the development of
all branches of Mathematics and the other sciences. The inequalities discovered
by Hermite and Hadamard for convex functions are very important in the lit-
erature. The classical Hermite-Hadamard integral inequality provides estimates of
the mean value of a continuous convex function f : [a, b] → R. Firstly, let’s re-
call the Hermite-Hadamard integral inequality. In addition, readers can refer to the
[8, 9, 10, 11, 14, 16, 12, 13, 17, 18, 19] articles and the references therein for more
detailed information on both convexity and the different classes of convexity.
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Let f : I ⊆ R→ R be a convex function defined on the interval I of real numbers
and a, b ∈ I with a < b. The following inequality

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
. (1.1)

holds. This double inequality is known in the literature as Hermite-Hadamard integral
inequality for convex functions [1, 4]. Note that some of the classical inequalities for
means can be derived from (1.1) for appropriate particular selections of the mapping
f . Both inequalities hold in the reversed direction if the function f is concave.

Let f : I ⊆ R→ R be a mapping differentiable in I◦, the interior of I, and let
a, b ∈ I◦ with a < b. If |f ′(x)| ≤M, x ∈ [a, b] , then we the following inequality holds∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤ M

b− a

[
(x− a)

2
+ (b− x)

2

2

]
for all x ∈ [a, b] . This result is known in the literature as the Ostrowski inequality [3].

The following inequality is well known in the literature as Simpson’s inequality
.

Let f : [a, b]→ R be a four times continuously differentiable mapping on (a, b)
and

∥∥f (4)∥∥∞ = sup
x∈(a,b)

∣∣f (4)(x)
∣∣ <∞. Then the following inequality holds:

∣∣∣∣∣13
[
f(a) + f(b)

2
+ 2f

(
a+ b

2

)]
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ 1

2880

∥∥∥f (4)∥∥∥
∞

(b− a)
4
.

In recent years many authors have studied error estimations for Simpson’s in-
equality; for refinements, counterparts, generalizations and new Simpson’s type in-
equalities, see [20, 21] and therein.

Definition 1.1 ([2]). A function f : [a, b]→ R is said quasi-convex on [a, b] if

f (tx+ (1− t)y) ≤ max {f(x), f(y)}

for any x, y ∈ [a, b] and t ∈ [0, 1] .

Lemma 1.2 ([5]). Let the function f : I ⊆ R→ R be a differentiable mapping on I◦

such that f ′ ∈ L[a, b], where a, b ∈ I with a < b and θ, λ ∈ [0, 1]. Then the following
equality holds:

(1− θ) (λf(a) + (1− λ) f(b)) + θf((1− λ) a+ λb)− 1

b− a

∫ b

a

f(x)dx

= (b− a)

[
−λ2

∫ 1

0

(t− θ) f ′ (ta+ (1− t) [(1− λ) a+ λb]) dt

+ (1− λ)
2
∫ 1

0

(t− θ) f ′ (tb+ (1− t) [(1− λ) a+ λb]) dt

]
.

In [6], İşcan gave the following theorems for quasi-convex functions.
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Theorem 1.3. Let f : I ⊂ R → R be a differentiable mapping on I such that f ′ ∈
L [a, b], where a, b ∈ I◦ with a < b and α, λ ∈ [0, 1]. If |f ′|q is quasi-convex on [a, b],
q > 1, then the following inequality holds:∣∣∣∣∣(1− θ) (λf(a) + (1− λ)f(b)) + θf ((1− λ)a+ λb)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ (b− a)

(
θp+1 + (1− θ)p+1

p+ 1

) 1
p [
λ2
(
sup

{
|f ′(a)|q , |f ′(C)|q

}) 1
q

+(1− λ)2
(
sup

{
|f ′(b)|q , |f ′(C)|q

}) 1
q

]
(1.2)

where C = (1− λ)a+ λb and 1
p + 1

q = 1.

Theorem 1.4. Let f : I ⊂ R → R be a differentiable mapping on I such that f ′ ∈
L [a, b], where a, b ∈ I◦ with a < b and α, λ ∈ [0, 1]. If |f ′|q is quasi-convex on [a, b],
q ≥ 1, then the following inequality holds:∣∣∣∣∣(1− θ) (λf(a) + (1− λ)f(b)) + θf ((1− λ)a+ λb)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ (b− a)

(
θ2 − θ +

1

2

)[
λ2
(
sup

{
|f ′(a)|q , |f ′(C)|q

}) 1
q

+(1− λ)2
(
sup

{
|f ′(b)|q , |f ′(C)|q

}) 1
q

]
(1.3)

where C = (1− λ)a+ λb.

A refinement of Hölder integral inequality better approach than Hölder integral
inequality can be given as follows:

Theorem 1.5 (Hölder-İşcan Integral Inequality [7]). Let p > 1 and 1
p + 1

q = 1. If f and

g are real functions defined on interval [a, b] and if |f |p, |g|q are integrable functions
on [a, b] then

∫ b

a

|f(x)g(x)| dx ≤ 1

b− a


(∫ b

a

(b− x) |f(x)|p dx

) 1
p
(∫ b

a

(b− x) |g(x)|q dx

) 1
q

+

(∫ b

a

(x− a) |f(x)|p dx

) 1
p
(∫ b

a

(x− a) |g(x)|q dx

) 1
q


An refinement of power-mean integral inequality as a result of the Hölder-İşcan

integral inequality can be given as follows:

Theorem 1.6 (Improved power-mean integral inequality [15]). Let q ≥ 1. If f and g
are real functions defined on interval [a, b] and if |f |, |g|q are integrable functions on



270 Huriye Kadakal

[a, b] then ∫ b

a

|f(x)g(x)| dx

≤ 1

b− a


(∫ b

a

(b− x) |f(x)| dx

)1− 1
q
(∫ b

a

(b− x) |f(x)| |g(x)|q dx

) 1
q

+

(∫ b

a

(x− a) |f(x)| dx

)1− 1
q
(∫ b

a

(x− a) |f(x)| |g(x)|q dx

) 1
q


Our aim is to obtain the general integral inequalities giving the Hermite-

Hadamard, Ostrowsky and Simpson type inequalities for the quasi-convex function in
the special case using the Hölder, Hölder-İşcan integral inequalities and above lemma.

Throught this paper, we will use the following notation for shortness

M1 =
(
max

{
|f ′(Aλ)|q , |f ′(a)|q

})1/q
= max {|f ′(Aλ)| , |f ′(a)|} (1.4)

M2 =
(
max

{
|f ′(Aλ)|q , |f ′(b)|q

})1/q
= max {|f ′(Aλ)| , |f ′(b)|} , (1.5)

where Aλ = (1− λ) a+ λb.

2. Main results

Using Lemma 1.2 we shall give another result for quasi-convex functions as
follows.

Theorem 2.1. Let f : I ⊆ [1,∞)→ R be a differentiable mapping on I◦ such that
f ′ ∈ L[a, b], where a, b ∈ I◦ with a < b and θ, λ ∈ [0, 1]. If |f ′|q is quasi-convex
function on the interval [a, b], q > 1, then the following inequality holds:∣∣∣∣∣(1− θ) (λf(a) + (1− λ) f(b)) + θf((1− λ) a+ λb)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ b− a

2
2

1
p

[
λ2M1 + (1− λ)

2
M2

] [
N

1
p

1 (θ, p) +N
1
p

2 (θ, p)

]
, (2.1)

where 1
p + 1

q = 1.

Proof. Suppose that Aλ = (1− λ) a + λb. From Lemma 1.2, Hölder-İşcan integral
inequality and the quasi-convexity of the function |f ′|q, we have∣∣∣∣∣(1− θ) (λf(a) + (1− λ) f(b)) + θf(Aλ)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ (b− a)

[
λ2
∫ 1

0

|t− θ| |f ′ (ta+ (1− t)Aλ)| dt

+ (1− λ)
2
∫ 1

0

|t− θ| |f ′ (tb+ (1− t)Aλ)| dt
]
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≤ (b− a)λ2

{(∫ 1

0

(1− t) |t− θ|p dt
) 1

p
(∫ 1

0

(1− t) |f ′ (ta+ (1− t)Aλ)|q dt
) 1

q

+

(∫ 1

0

t |t− θ|p dt
) 1

p
(∫ 1

0

t |f ′ (ta+ (1− t)Aλ)|q dt
) 1

q

}

+ (b− a) (1− λ)
2

{(∫ 1

0

(1− t) |t− θ|p dt
) 1

p

×
(∫ 1

0

(1− t) |f ′ (tb+ (1− t)Aλ)|q dt
) 1

q

+

(∫ 1

0

t |t− θ|p dt
) 1

p
(∫ 1

0

t |f ′ (tb+ (1− t)Aλ)|q dt
) 1

q

}

≤ (b− a)λ2

{[
M1

(
1

2

) 1
q

N
1
p

1 (θ) +M1

(
1

2

) 1
q

N
1
p

2 (θ)

]

+ (1− λ)
2

[
M2

(
1

2

) 1
q

N
1
p

1 (θ) +M2

(
1

2

) 1
q

N
1
p

2 (θ)

]}

=
b− a

2
21−

1
q

[
λ2M1 + (1− λ)

2
M2

] [
N

1
p

1 (θ) +N
1
p

2 (θ)

]
=

b− a
2

2
1
p

[
λ2M1 + (1− λ)

2
M2

] [
N

1
p

1 (θ) +N
1
p

2 (θ)

]
.

By simple computation

N1 (θ, p) : =

∫ 1

0

(1− t) |t− θ|p dt (2.2)

= (1− θ) θ
p+1 + (1− θ)p+1

p+ 1
+
θp+2 − (1− θ)p+2

p+ 2

N2 (θ, p) : =

∫ 1

0

t |t− θ|p dt (2.3)

= θ
θp+1 + (1− θ)p+1

p+ 1
+

(1− θ)p+2 − θp+2

p+ 2
.

Thus, we obtain the inequality (2.1). This completes the proof. �

Remark 2.2. The inequality (2.1) gives better results than the inequality (1.2). Let
us show that

b− a
2

2
1
p

[
λ2M1 + (1− λ)

2
M2

] [
N

1
p

1 (θ, p) +N
1
p

2 (θ, p)

]

≤ (b− a)

(
θp+1 + (1− θ)p+1

p+ 1

) 1
p
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×
[
λ2
(
sup

{
|f ′(a)|q , |f ′(C)|q

}) 1
q + (1− λ)2

(
sup

{
|f ′(b)|q , |f ′(C)|q

})] 1
q

.

Using the equalities (2.2), (2.3) and the concavity of the function h : [0,∞) → R,
h(x) = xλ, 0 < λ ≤ 1, by sample calculation we obtain

b− a
2

2
1
p

[
λ2M1 + (1− λ)

2
M2

] [
N

1
p

1 (θ, p) +N
1
p

2 (θ, p)

]
≤ (b− a)2

1
p

[
λ2M1 + (1− λ)

2
M2

] [N1(θ, p) +N2(θ, p)

2

] 1
p

= (b− a)
[
λ2M1 + (1− λ)

2
M2

](θp+1 + (1− θ)p+1

p+ 1

) 1
p

,

which is the required.

Corollary 2.3. Under the assumptions of Theorem 2.1 with θ = 1, then we have the
following generalized midpoint type inequality∣∣∣∣∣f((1− λ) a+ λb)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ b− a

2
2

1
p

[
λ2M1 + (1− λ)

2
M2

]( 1

p+ 2

) 1
p

[
1 +

(
1

p+ 1

) 1
p

]
. (2.4)

where 1
p + 1

q = 1.

Corollary 2.4. Under the assumptions of Theorem 2.1 with θ = 0, then we have the
following generalized trapezoid type inequality∣∣∣∣∣λf(a) + (1− λ) f(b)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ b− a

2
2

1
p

[
λ2M1 + (1− λ)

2
M2

]( 1

p+ 2

) 1
p

[
1 +

(
1

p+ 1

) 1
p

]
,

where 1
p + 1

q = 1.

Corollary 2.5. Under the assumptions of Theorem 2.1 with θ = 1, if |f ′(x)| ≤ M,
x ∈ [a, b] , then we have the following Ostrowski type inequality∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(u)du

∣∣∣∣∣
≤M

(
1

2

)1− 1
p

[
(x− a)

2
+ (b− x)

2

b− a

](
1

p+ 2

) 1
p

[
1 +

(
1

p+ 1

) 1
p

]
(2.5)

for each x ∈ [a, b] .
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Proof. For each x ∈ [a, b], there exist λx ∈ [0, 1] such that x = (1− λx) a + λxb.
Hence we have λx = x−a

b−a and 1 − λx = b−x
b−a . Therefore, for each x ∈ [a, b] , from the

inequality (2.1) we obtain the inequality (2.5). �

Corollary 2.6. Under the assumptions of Theorem 2.1 with λ = 1
2 and θ = 2

3 , then we
have the following Simpson type inequality∣∣∣∣∣16

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ b− a

4
2

1
pA (M1,M2)

[
N

1
p

1

(
2

3
, p

)
+N

1
p

2

(
2

3
, p

)]
,

where A is the arithmetic mean.

Corollary 2.7. Under the assumptions of Theorem 2.1 with λ = 1
2 and θ = 1, then we

have the following midpoint type inequality∣∣∣∣∣f
(
a+ b

2

)
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ b− a
4

2
1
pA (M1,M2)

(
1

p+ 2

) 1
p

[
1 +

(
1

p+ 1

) 1
p

]
,

where A is the arithmetic mean.

Corollary 2.8. Under the assumptions of Theorem 2.1 with λ = 1
2 and θ = 0, then we

have the following trapezoid type inequality∣∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ ≤ b− a
4

2
1
pA (M1,M2)

(
1

p+ 2

) 1
p

[
1 +

(
1

p+ 1

) 1
p

]
,

where A is the arithmetic mean.

Theorem 2.9. Let f : I ⊂ R → R be a differentiable mapping on I such that f ′ ∈
L [a, b], where a, b ∈ I◦ with a < b and α, λ ∈ [0, 1]. If |f ′|q is quasi-convex on [a, b],
q ≥ 1, then the following inequality holds:∣∣∣∣∣(1− θ) (λf(a) + (1− λ)f(b)) + θf ((1− λ)a+ λb)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ (b− a)

[
λ2M1 + (1− λ)

2
M2

]
[N1 (θ) +N2 (θ)] (2.6)

where C = (1− λ)a+ λb.
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Proof. Suppose that Aλ = (1− λ) a + λb. From Lemma 1.2, improved power-mean
integral inequality and the quasi-convexity of the function |f ′|q, we have∣∣∣∣∣(1− θ) (λf(a) + (1− λ) f(b)) + θf(Aλ)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ (b− a)

[
λ2
∫ 1

0

|t− θ| |f ′ (ta+ (1− t)Aλ)| dt

+ (1− λ)
2
∫ 1

0

|t− θ| |f ′ (tb+ (1− t)Aλ)| dt
]

≤ (b− a)λ2

{(∫ 1

0

(1− t) |t− θ| dt
)1− 1

q

×
(∫ 1

0

(1− t) |t− θ| |f ′ (ta+ (1− t)Aλ)|q dt
) 1

q

+

(∫ 1

0

t |t− θ| dt
)1− 1

q
(∫ 1

0

t |t− θ| |f ′ (ta+ (1− t)Aλ)|q dt
) 1

q

}

+(b− a) (1− λ)
2

{(∫ 1

0

(1− t) |t− θ| dt
)1− 1

q

×
(∫ 1

0

(1− t) |t− θ| |f ′ (tb+ (1− t)Aλ)|q dt
) 1

q

+

(∫ 1

0

t |t− θ| dt
)1− 1

q
(∫ 1

0

t |t− θ| |f ′ (tb+ (1− t)Aλ)|q dt
) 1

q

}
≤ (b− a)λ2M1 [N1 (θ) +N2 (θ)] + (b− a) (1− λ)

2
M2 [N1 (θ) +N2 (θ)]

= (b− a)
[
λ2M1 + (1− λ)

2
M2

]
[N1 (θ) +N2 (θ)]

where

N1 (θ) : =

∫ 1

0

(1− t) |t− θ| dt = (1− θ) θ
2 + (1− θ)2

2
+
θ3 − (1− θ)3

3

N2 (θ) : =

∫ 1

0

t |t− θ| dt = θ
θ2 + (1− θ)2

2
+

(1− θ)3 − θ3

3
.

�

Remark 2.10. The inequality (2.6) coincides with the the inequality (1.3).

Using Lemma 1.2 we shall give another result for quasi convex functions as
follows using the Hölder and Hölder-İşcan integral inequality. After, we will compare
the results obtained with Hölder and Hölder-İşcan inequalities.

Theorem 2.11. Let f : I ⊆ [1,∞)→ R be a differentiable mapping on I◦ such that
f ′ ∈ L[a, b], where a, b ∈ I◦ with a < b and θ, λ ∈ [0, 1]. If |f ′|q is quasi convex
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function on [a, b], q > 1, then the following inequality holds:∣∣∣∣∣(1− θ) (λf(a) + (1− λ) f(b)) + θf((1− λ) a+ λb)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ (b− a)

[
λ2M1 + (1− λ)

2
M2

](θq+1 + (1− θ)q+1

q + 1

) 1
q

(2.7)

where 1
p + 1

q = 1.

Proof. Using Lemma 1.2, Hölder integral inequality and quasi convexity of the function
|f ′|q, we have ∣∣∣∣∣(1− θ) (λf(a) + (1− λ) f(b)) + θf(Aλ)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ (b− a)λ2

[∫ 1

0

|t− θ| |f ′ (ta+ (1− t)Aλ)| dt

+ (1− λ)
2
∫ 1

0

|t− θ| |f ′ (tb+ (1− t)Aλ)| dt
]

≤ (b− a)λ2
(∫ 1

0

|t− θ|q |f ′ (ta+ (1− t)Aλ)|q dt
) 1

q

+ (b− a) (1− λ)
2

(∫ 1

0

|t− θ|q |f ′ (tb+ (1− t)Aλ)|q dt
) 1

q

≤ (b− a)
[
λ2M1 + (1− λ)

2
M2

](∫ 1

0

|t− θ|q dt
) 1

q

= (b− a)
[
λ2M1 + (1− λ)

2
M2

](θq+1 + (1− θ)q+1

q + 1

) 1
q

,

where ∫ 1

0

|t− θ|q dt =
θq+1 + (1− θ)q+1

q + 1
. �

Theorem 2.12. Let f : I ⊆ [1,∞)→ R be a differentiable mapping on I◦ such that
f ′ ∈ L[a, b], where a, b ∈ I◦ with a < b and θ, λ ∈ [0, 1]. If |f ′|q is quasi convex
function on [a, b], q > 1, then the following inequality holds:∣∣∣∣∣(1− θ) (λf(a) + (1− λ) f(b)) + θf((1− λ) a+ λb)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ (b− a)

(
1

2

) 1
p (

λ2M1 + (1− λ)
2
M2

) [
C

1
q (θ, q) +D

1
q (θ, q)

]
(2.8)

where 1
p + 1

q = 1.
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Proof. From Lemma 1.2 and by Hölder-İşcan integral inequality, we have∣∣∣∣∣(1− θ) (λf(a) + (1− λ) f(b)) + θf(Aλ)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ (2.9)

≤ (b− a)λ2
[∫ 1

0

|t− θ| |f ′ (ta+ (1− t)Aλ)| dt

+ (1− λ)
2
∫ 1

0

|t− θ| |f ′ (tb+ (1− t)Aλ)| dt
]

≤ (b− a)λ2

{(∫ 1

0

(1− t)dt
) 1

p
(∫ 1

0

(1− t) |t− θ|q |f ′ (ta+ (1− t)Aλ)|q dt
) 1

q

+

(∫ 1

0

tdt

) 1
p
(∫ 1

0

t |t− θ|q |f ′ (ta+ (1− t)Aλ)|q dt
) 1

q

}

+(b− a) (1− λ)
2

{(∫ 1

0

(1− t)dt
) 1

p

×
(∫ 1

0

(1− t) |t− θ|q |f ′ (tb+ (1− t)Aλ)|q dt
) 1

q

+

(∫ 1

0

tdt

) 1
p
(∫ 1

0

t |t− θ|q |f ′ (tb+ (1− t)Aλ)|q dt
) 1

q

}

≤ (b− a)

(
1

2

) 1
p (

λ2M1 + (1− λ)
2
M2

) [
C

1
q (θ, q) +D

1
q (θ, q)

]
.

Since |f ′|q is quasi convex function on interval [a, b], the following inequalities holds.∫ 1

0

|f ′ (ta+ (1− t)Aλ)|q dt ≤ max
{
|f ′ (a)|q , |f ′ (Aλ)|q

}
= M1 (2.10)∫ 1

0

|f ′ (tb+ (1− t)Aλ)|q dt ≤ max
{
|f ′ (b)|q , |f ′ (Aλ)|q

}
= M2 (2.11)

Here, by simple computation we obtain∫ 1

0

(1− t)dt =

∫ 1

0

tdt =
1

2
,

C (θ, q) =

∫ 1

0

(1− t) |t− θ|q dt

= (1− θ)

[
θq+1 + (1− θ)q+1

q + 1

]
+

[
θq+2 − (1− θ)q+2

q + 2

]
(2.12)
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D (θ, q) =

∫ 1

0

t |t− θ|q dt

= θ

[
θq+1 + (1− θ)q+1

q + 1

]
−

[
θq+2 − (1− θ)q+2

q + 2

]
. (2.13)

Thus, using (2.10)-(2.13) in (2.9), we obtain the inequality (2.8). This completes the
proof. �

Remark 2.13. The inequality (2.8) is better than the inequality (2.7). For this, we
need to show that

(b− a)

(
1

2

) 1
p (

λ2M1 + (1− λ)
2
M2

) [
C

1
q (θ, q) +D

1
q (θ, q)

]
≤ (b− a)

[
λ2M1 + (1− λ)

2
M2

](θq+1 + (1− θ)q+1

q + 1

) 1
q

.

Using the inequalities (2.12), (2.13) and concavity of ψ : [0,∞) → R, ψ(x) = xs, 0 <
s ≤ 1, we have

(b− a)

(
1

2

) 1
p (

λ2M1 + (1− λ)
2
M2

) [
C

1
q (θ, q) +D

1
q (θ, q)

]
≤ (b− a)2

1
q

(
λ2M1 + (1− λ)

2
M2

)(C (θ, q) +D (θ, q)

2

) 1
q

= (b− a)2
1
q

(
λ2M1 + (1− λ)

2
M2

)(1

2

θq+1 + (1− θ)q+1

q + 1

) 1
q

= (b− a)
(
λ2M1 + (1− λ)

2
M2

)(θq+1 + (1− θ)q+1

q + 1

) 1
q

which is the required.

Corollary 2.14. Under the assumptions of Theorem 2.12 with θ = 1, then we have the
following generalized midpoint type inequality∣∣∣∣∣f((1− λ) a+ λb)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣ (2.14)

≤ (b− a)

(
1

2

) 1
p (

λ2M1 + (1− λ)
2
M2

)( 1

q + 2

) 1
q

[
1 +

(
1

q + 1

) 1
q

]
.

where Aλ = (1− λ) a+ λb and 1
p + 1

q = 1.



278 Huriye Kadakal

Corollary 2.15. Under the assumptions of Theorem 2.12 with θ = 0, then we have the
following generalized trapezoid type inequality∣∣∣∣∣λf(a) + (1− λ) f(b)− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ (b− a)

(
1

2

) 1
p (

λ2M1 + (1− λ)
2
M2

)( 1

q + 2

) 1
q

[
1 +

(
1

q + 1

) 1
q

]
,

where 1
p + 1

q = 1.

Corollary 2.16. Under the assumptions of Theorem 2.12 with θ = 1, if |f ′(x)| ≤ M,
x ∈ [a, b] , then we have the following Ostrowski type inequality∣∣∣∣∣f(x)− 1

b− a

∫ b

a

f(u)du

∣∣∣∣∣ ≤ (b− a)M

(
1

2

) 1
p
(

1

q + 2

) 1
q

[
1 +

(
1

q + 1

) 1
q

]

for each x ∈ [a, b] .

Proof. For each x ∈ [a, b], there exist λx ∈ [0, 1] such that x = (1− λx) a + λxb.
Hence we have λx = x−a

b−a and 1 − λx = b−x
b−a . Therefore, for each x ∈ [a, b] , from the

inequality (2.8) we obtain the desired inequality. �

Corollary 2.17. Under the assumptions of Theorem 2.12 with λ = 1
2 and θ = 2

3 , then
we have the following Simpson type inequality∣∣∣∣∣16

[
f(a) + 4f

(
a+ b

2

)
+ f(b)

]
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ b− a

2

(
1

2

) 1
p

A (M1,M2)

[
C

1
q

(
2

3
, q

)
+D

1
q

(
2

3
, q

)]
where A is the arithmetic mean.

Corollary 2.18. Under the assumptions of Theorem 2.12 with λ = 1
2 and θ = 1, then

we have the following midpoint type inequality∣∣∣∣∣∣f
(
a+ b

2

)
− 1

b− a

b∫
a

f(x)dx

∣∣∣∣∣∣
≤ b− a

2

(
1

2

) 1
p

A (M1,M2)

(
1

q + 2

) 1
q

[
1 +

(
1

q + 1

) 1
q

]
,

where A is the arithmetic mean.
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Corollary 2.19. Under the assumptions of Theorem 2.12 with λ = 1
2 and θ = 0, then

we have the following trapezoid type inequality∣∣∣∣∣f (a) + f (b)

2
− 1

b− a

∫ b

a

f(x)dx

∣∣∣∣∣
≤ b− a

2

(
1

2

) 1
p

A (M1,M2)

(
1

q + 2

) 1
q

[
1 +

(
1

q + 1

) 1
q

]
,

where A is the arithmetic mean.

3. Some applications for special means

Let us recall the following special means of arbitrary real numbers a, b with a 6= b
and α ∈ [0, 1] :

1. The weighted arithmetic mean

Aα(a, b) := αa+ (1− α)b, a, b ∈ R

2. The unweighted arithmetic mean

A(a, b) :=
a+ b

2
, a, b ∈ R

3. The weighted harmonic mean

Hα(a, b) :=

(
α

a
+

1− α
b

)−1
, a, b ∈ R\ {0}

4. The unweighted harmonic mean

H(a, b) :=
2ab

a+ b
, a, b ∈ R\ {0}

5. The Logarithmic mean

L(a, b) :=
b− a

ln b− ln a
, a, b > 0, a 6= b

6. The n-logarithmic mean

Ln(a, b) :=

(
bn − an

(n+ 1)(b− a)

) 1
n

, n ∈ N, a, b ∈ R, a 6= b

Proposition 3.1. Let a, b ∈ R with a < b, and n ∈ N, n ≥ 2. Then, for θ, λ ∈ [0, 1] and
q > 1, we have the following inequality:

|(1− θ)Aλ (an, bn) + θAnλ (a, b)− Lnn(a, b)|

≤ b− a
2

2
1
p

[
λ2M1 + (1− λ)

2
M2

] [
N

1
p

1 (θ, p) +N
1
p

2 (θ, p)

]
,

where M1 = max
{
|a|n−1 , |Aλ(a, b)|n−1

}
, M2 = max

{
|Aλ(a, b)|n−1 , |b|n−1

}
.

Proof. The assertion follows from the Theorem 2.1, for f(x) = xn, x ∈ R. �
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Proposition 3.2. Let a, b ∈ R with 0 < a < b, and θ, λ ∈ [0, 1] . Then, for q > 1, we
have the following inequality:∣∣(1− θ)H−1λ (a, b) + θA−1λ (a, b)− L−1(a, b)

∣∣
≤ b− a

2
2

1
p

[
λ2M1 + (1− λ)

2
M2

] [
N

1
p

1 (θ, p) +N
1
p

2 (θ, p)

]
,

where M1 = max
{
a−2, A−2λ (a, b)

}
, M2 = max

{
A−2λ (a, b), b−2

}
.

Proof. The assertion follows from the Theorem 2.1, for f(x) = 1
x , x ∈ (0,∞) . �
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Generalized fractional integral operator
in a complex domain

Dalia S. Ali, Rabha W. Ibrahim,
Dumitru Baleanu and Nadia M.G. Al-Saidi

Abstract. A new fractional integral operator is used to present a generalized
class of analytic functions in a complex domain. The method of definition is
based on a Hadamard product of analytic function, which is called convolution
product. Then we formulate a convolution integral operator acting on the sub-
class of normalized analytic functions. Consequently, we investigate the suggested
convolution operator geometrically. Differential subordination inequalities, tak-
ing the starlike formula are given. Some consequences of well known results are
illustrated.
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1. Introduction

Many scholars, academic and researchers have applied fractional order integral
operators (FOIOs) in real-world situations in a variety of scientific and technological
sectors in recent years. It is well known, there are a number of definitions of FOIOs that
can be utilized to solve fractional integral equations employing special functions (SFs).
Fractional differentiation and integration using the extended Mittag-Leffler kernel
were proposed in 2016 [1] and drew interest from a wide range of research sectors.
Many features of these differential and integral operators have been noticed in real-
world applications, such as crossover behavior (see [28]). These classes of specialized
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functions [8, 15] have newly become crucial in the fields of almost all applied sciences
[20], natural science, engineering and computer science (see [2], [9], [24],[25]).

Integrals and the outputs of many different forms of differential equations are examples
of special functions. As a consequence, record integrals involve explanations of SFs,
which take account of the furthermost fundamental integrals; at the actual slightest,
the integral representation of SFs. Because differential operators are important in
mathematical sciences and applied mathematics, the theory of SFs is tightly linked
to various physics topics [7].

In this note, we investigated the features of the k-Raina function under FOIOs and
created several novel images. Via their extended character and utility in the theory of
integral operators and a crucial part of computational mathematics, the conclusions
produced here involve special classes of analytic functions such as the k-Mittag-Leffler
function, S-function and K-function. Our methodology is based on the theory of dif-
ferential subordination to present a set of differential inequalities type starlikeness in
a complex domain.

2. Techniques

Here, we’ll proceed over the methods we utilized.

2.1. Geometric approaches

The following concepts can be found in [16]

Definition 2.1. The set O := {χ ∈ C : |χ| < 1}, is the open unit disk in z−plane. The
analytic functions Σ1,Σ2 in O are under the subordinated inequality Σ1 ≺ Σ2 or

Σ1(χ) ≺ Σ2(χ), χ ∈ O

if for an analytic function ς, |ς| ≤ |χ| < 1 holds such that Σ1(χ) = Σ2(ς(χ)), χ ∈ O.

Definition 2.2. The class of all regular functions given by

σ(χ) = χ+

∞∑
n=2

an χ
n, χ ∈ O, σ(0) = σ′(0)− 1 = 0,

is denoted by ℵ. Moreover, the analytic functions σ1, σ2 ∈ ℵ are convoluted ( σ1 ∗ σ2)
if they have the Hadamard product [22]

(σ1 ∗ σ2)(χ) =

(
χ+

∞∑
n=2

an χ
n

)
∗

(
χ+

∞∑
n=2

bn χ
n

)
= χ+

∞∑
n=2

an bn χ
n.

Definition 2.3. Define the following class of regular functions

P := {p : p(χ) = 1 + `1χ+ `2χ
2 + ..., χ ∈ O,<(p(χ)) > 0, p(0) = 1}.

Special sub-classes of P are the starlike subclass of functions σ ∈ ℵ satisfying the
functional

Sσ(χ) =
χσ′(χ)

σ(χ)
;



Generalized fractional integral operator 285

and the convex subclass of functions σ ∈ ℵ having the functional

Kσ(χ) = 1 +
χσ′′(χ)

σ′(χ)
.

2.2. Raina’s function

Let’s start with the Raina’s function (RAF), which is a familiar special feature.

Definition 2.4. In [21], the definition of RAF

ρµα,β(χ) =

∞∑
n=0

µ(n)

Γ(αn+ β)
χn, χ ∈ O.

(
α, β ∈ C,<(α) > 0,<(β) > 0, µ := {µ(0), µ(1), ..., µ(n)}, µ(j) ∈ C∀j = 0, ..., n

)
Remark 2.5.

• n ≥ 0, µ(n) = 1⇒ ρα,β(χ) =

∞∑
n=0

χn

Γ(αn+ β)
, the Mittag-Leffler function.

• α = β = 1, µ(n) =
(v)n(w)n

(u)n
⇒ 2G1(v, w;u;χ) =

∞∑
n=0

(v)n(w)n
(u)n

χn

Γ(n+ 1)
,

the hypergeometric function.

• µ(n) =
1

n!

(w1)n...(wk1)n
(u1)n...(uk2)n

⇒Mk1,k2
α,β (χ) =

∞∑
n=0

1

Γ(αn+ β)

(w1)n...(wk1)n
(u1)n...(uk2)n

χn

n!

the M−series [27].

• µ(n) =
(v)n
n!

(w1)n...(wk1)n
(u1)n...(uk2)n

⇒ Kk1,k2,vα,β (χ) =

∞∑
n=0

(v)n
Γ(αn+ β)

(w1)n...(wk1)n
(u1)n...(uk2)n

χn

n!

the K−function [26].

2.3. Complex Raina’s FOIOs

The Raina’s FOIO is defined for analytic function f(z), z ∈ C in a complex
domain containing the origin (O) by the formula

Iµ,τα,βf(χ) =

∫ χ

0

(χ− z)β−1ρµα,β [τ(χ− z)α]f(z)dz (2.1)

(
<(α) > 0, <(β) > 0, χ, z ∈ C, τ ∈ R

)
.

Note that the integral Iµ,τα,βf(χ) involves the well known Riemann-Liouville integral

operator, when τ = 0 and µ(0) = 1

Iβf(χ) =
1

Γ(β)

∫ χ

0

(χ− z)β−1f(z)dz <(β) > 0

whenever the function f(χ) is analytic in simply-connected region of the complex
z-plane.
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In general, we have the integrals∫ χ

0

(χ− z)β−1ρµα,β [τ(χ− z)α]dz = χβρµα,β+1[τ(χ− z)α]∫ χ

0

(χ− z)βρµα,β+1[τ(χ− z)α]dz = χβ+1ρµα,β+2[τ(χ− z)α]

...∫ χ

0

(χ− z)β+mρµα,β+1+m[τ(χ− z)α]dz = χβ+m+1ρµα,β+m+2[τ(χ− z)α]

= χβ+m+1
∞∑
n=0

µ(n)

Γ(αn+ β +m+ 2)
[τ(χ− z)α]n.

Moreover, we have the integral

Iµ,τα,β,m(χ) :=

∫ 1

0

(χ)β+m+α−1ρµα,β+1+m[τ(χ)αχ1−α]dχ

= χα+β+m
∞∑
n=0

τnµ(n)

Γ(αn+ β +m+ 2)
χn.

To normalize the above integral, we define the functional integral formula, as follows:

Iµ,τα,β,m(χ) :=

(
Γ(α+ β +m+ 2)

τµ(1)

)(
Iµ,τα,β,m(χ)

χα+β+m
− µ(0)

Γ(β +m+ 2)

)
(2.2)

=

∞∑
n=0

(
Γ(α+ β +m+ 2)

τµ(1)

)(
τnµ(n)

Γ(αn+ β +m+ 2)

)
χn

= χ+

∞∑
n=2

(
Γ(α+ β +m+ 2)

τµ(1)

)(
τnµ(n)

Γ(αn+ β +m+ 2)

)
χn,

where τ 6= 0, µ(1) 6= 0, m ∈ Z. It is clear that Iµ,τα,β,m(χ) ∈ ℵ.

2.4. Convoluted fractional operator

We continue to define the convolution operator using the Hadamard product
combining the suggested integral Iµ,τα,β,m(χ) with the function σ ∈ ℵ. The main integral
convoluted operator in this effort is given, as follows:(

Iµ,τα,β,m ∗ σ
)

(χ) (2.3)

=

(
χ+

∞∑
n=2

(
Γ(α+ β +m+ 2)

τµ(1)

)(
τnµ(n)

Γ(αn+ β +m+ 2)

)
χn

)
∗

(
χ+

∞∑
n=2

anχ
n

)

= χ+

∞∑
n=2

(
Γ(α+ β +m+ 2)τn−1µ(n)

µ(1)Γ(αn+ β +m+ 2)

)
anχ

n.

Obviously, the convolution integral operator
(
Iµ,τα,β,m ∗ σ

)
∈ ℵ.
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Remark 2.6. By assuming the factor µ(n) for any coefficient formulas, we obtain all
the convoluted operators, differential operators (like the Sàlàgean differential oper-
ator [23] and its generalizations [3]), fractional differential operators (Caputo and
its generalizations, ABC-differential operator), integral operators (like the Sàlàgean
integral operator [23]), fractional differential and integral operators [11], symmetric
differential and integral operators [10], mixed fractional operators in the open unit
disk [13], convoluted operator (such as the Carlson and Shaffer convoluted operator
[5], Ruscheweyh convoluted operator [22], Noor operator [17] and Attiya operator [4]),
special series (like M−series, S−series [29] and the Borel distribution [30]), mixed dif-
ferential operators and all special functions in the litterateurs including the quantum
calculus [12, 18].

Example 2.7.

• τ = 1,m = −2, µ(n) =
1

n!

Γ(γ + nκ)

Γ(γ + κ)
, ∀n ≥ 1, and γ ∈ C and <(κ) > 0 then we

obtain the convoluted operator in [4](
Iµ,1α,β,−2 ∗ σ

)
(χ) = χ+

∞∑
n=2

(
Γ(α+ β)

Γ(αn+ β)

Γ(γ + nκ)

Γ(γ + κ)

1

n!

)
anχ

n.

As special cases from the above series, when α = 0, γ = κ = 1, we have(
Iµ,10,β,−2 ∗ σ

)
(χ) = σ(χ). And for α = 0, γ = 2, κ = 1, we obtain the oper-

ator (
Iµ,10,β,−2 ∗ σ

)
(χ) =

1

2
[σ(χ) + χσ′(χ)].

Moreover, when α = γ = κ = 1, β = 0, σ(χ) =
χ

1− χ
, we have(

Iµ,11,0,−2 ∗ σ
)

(χ) = χ eχ.

Finally, when α = γ = κ = 1, β = 1, σ(χ) =
χ

1− χ
, we get(

Iµ,11,1,−2 ∗ σ
)

(χ) = eχ − 1.

• The Operator (2.3) satisfies the recurrent relation

αχ[
(
Iµ,τα,β+1,m ∗ σ

)
(χ)]′ = (α+ β)

(
Iµ,τα,β,m ∗ σ

)
(χ)− β

(
Iµ,τα,β+1,m ∗ σ

)
(χ).

Note that, when τ = 1,m = −2, µ(n) =
1

n!

Γ(γ + nκ)

Γ(γ + κ)
, ∀n ≥ 1, and γ ∈ C and

<(κ) > 0 then we have [4]-Lemma 2.1. And under the same set of parameters,

with σ(χ) =
χ

1− χ
, we obtain the result in [28]-Theorem 2.1. Finally, if α = 1,

we have the equation (1.8) in [6].

In the following section, we illustrate our results concerning the generalized
Raina FOIO of a complex variable.
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3. Results

In this place, we discuss the sufficient conditions of the Ma-Minda starlike in-
equality [14]

S[Iµ,τα,β,m∗σ](χ) =
χ
(
Iµ,τα,β,m ∗ σ

)′
(χ)(

Iµ,τα,β,m ∗ σ
)

(χ)
≺ Λ(χ).

For this purpose, we request the next result [16] (Corollary 3.4h.1 p.135).

Lemma 3.1. Suppose that λ is analytic and Λ is univalent in O with λ(0) = Λ(0), and
an analytic function ` defined in a domain involving Λ(O) and Λ(O). If χΛ′(χ)`(Λ(χ))
is starlike, then the relation

χλ′(χ)`(λ(ξ)) ≺ χΛ′(χ)`(Λ(χ))

yields λ(χ) ≺ Λ(χ) and Λ is the best dominant.

Theorem 3.2. Take into consideration the following hypotheses:

(i) σ ∈ ℵ, Λ is univalent in O;

(ii)
χΛ′(χ)

Λ(χ)(Λ(χ)− 1)
is starlike in O;

(iii)
K[Iµ,τα,β,m∗σ](χ)− 1

S[Iµ,τα,β,m∗σ](χ)− 1
≺ 1 +

χΛ′(χ)

Λ(χ)(Λ(χ)− 1)
occurs.

Then
S[Iµ,τα,β,m∗σ](χ) ≺ Λ(χ), χ ∈ O

and Λ is the best dominant.

Proof. Denotes Ω, as follows:

Ω(χ) := S[Iµ,τα,β,m∗σ](χ), χ ∈ O.

Thus, a computation implies

SΩ(χ) = K[Iµ,τα,β,m∗σ](χ)− Ω(χ).

Substituting implies that

K[Iµ,τα,β,m∗σ](χ)− 1

T[Iµ,τα,β,m∗σ](χ)− 1
=
SΩ(χ) + Ω(χ)− 1

Ω(χ)− 1

= 1 +
χΩ′(χ)

Ω(χ)(Ω(χ)− 1)
.

Consequently, we obtain

χΩ′(χ)

Ω(χ)(Ω(χ)− 1)
≺ χΛ′(ξ)

Λ(χ)(Λ(χ)− 1)
, χ ∈ O.

In view of Lemma 3.1, we attain the result. �

Theorem 3.3. Assume the following hypotheses

(i) σ ∈ ℵ,Λ is univalent in O;
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(ii)
χΛ′(χ)

Λ(χ)− 1
is starlike in O;

(iii) S[Iµ,τα,β,m∗σ](χ)

(
K[Iµ,τα,β,m∗σ](ξ)− p
S[Iµ,τα,β,m∗σ](χ)− 1

− 1

)
≺ χΛ′(χ)

Λ(χ)− 1
holds.

Then
S[Iµ,τα,β,m∗σ](χ) ≺ Λ(χ), χ ∈ O

and Λ is the best dominant.

Proof. Consider the function Ω, as follows:

Ω(χ) := S[Iµ,τα,β,m∗σ](χ), χ ∈ O.

Accordingly, we have
SΩ(χ) + Ω(χ) = K[Iµ,τα,β,m∗σ](χ).

A calculation yields

S[Iµ,τα,β,m∗σ](χ)

(
K[Iµ,τα,β,m∗σ](χ)− 1

S[Iµ,τα,β,m∗σ](χ)− 1
− 1

)
=

χΩ′(χ)

Ω(χ)− 1
.

Which leads to
χΩ′(χ)

Ω(χ)− 1
≺ χΛ′(χ)

Λ(χ)− 1
, χ ∈ O.

In virtue of Lemma 3.1, we get the desired outcome. �

Theorem 3.4. Consider the following assumptions

(i) σ ∈ ℵ,Λ is univalent in O;
(ii) SΛ IS starlike in O;
(iii) K[Iµ,τα,β,m∗σ](χ)− S[Iµ,τα,β,m∗σ](χ) ≺ SΛ(χ) satisfies.

Then
S[Iµ,τα,β,m∗σ](χ) ≺ Λ(χ), χ ∈ O

and Λ is the best dominant.

Proof. Let Ω as follows:

Ω(χ) := S[Iµ,τα,β,m∗σ](ξ), χ ∈ O.

Thus, we get
SΩ(χ) + Ω(χ) = K[Iµ,τα,β,m∗σ](χ).

Consequently, we have

K[Iµ,τα,β,m∗σ](χ)− S[Iµ,τα,β,m∗σ](χ) = SΩ(χ).

Hence,
SΩ(χ) ≺ SΛ(χ), χ ∈ O.

Finally, Lemma 3.1 yields the outcome Ω(χ) ≺ Λ(χ). �

Theorem 3.5. Use these assumptions:

(i) σ ∈ ℵ, Λ is univalent in O;
(ii) χΛ′(χ) is starlike in O;
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(iii) S[Iµ,τα,β,m∗σ](χ)
(
K[Iµ,τα,β,m∗σ](χ)− S[Iµ,τα,β,m∗σ](χ)

)
≺ χΛ′(χ) occurs.

Then
S[Iµ,τα,β,m∗σ](χ) ≺ Λ(χ), χ ∈ O

and Λ is the best dominant.

Proof. Formulate the function Ω by:

Ω(χ) := S[Iµ,τα,β,m∗σ](χ), χ ∈ O.

Thus, we have
SΩ(χ) + Ω(χ) = K[Iµ,τα,β,m∗σ](χ).

Substituting attains

S[Iµ,τα,β,m∗σ](χ)
(
K[Iµ,τα,β,m∗σ](χ)− S[Iµ,τα,β,m∗σ](χ)

)
= χΩ′(χ).

Hence,
χΩ′(χ) ≺ χΛ′(χ), χ ∈ O.

By Lemma 3.1, we obtain Ω(χ) ≺ Λ(χ). �

Theorem 3.6. Suppose that Λ is convex univalent in O satisfying the inequality

S[Iµ,τα,β,m∗σ](χ) ≺ Λ(χ), χ ∈ O,

where Λ(0) = 1. Then

[Iµ,τα,β,m ∗ σ] ≺ χ exp

(∫ χ

0

Λ(w(ξ))

ξ
dξ

)
,

where w has the properties w(0) = 0 and |w(χ)| < 1. In addition, the inequality
|χ| := ρ < 1 yields

exp

(∫ 1

0

Λ(−ρ)

ρ
dρ

)
≤
∣∣∣ [Iµ,τα,β,m ∗ σ](χ)

χ

∣∣∣ ≤ exp

(∫ 1

0

Λ(ρ)

ρ
dρ

)
.

Proof. A computation implies(
[Iµ,τα,β,m ∗ σ](χ)

)′
[Iµ,τα,β,m ∗ σ](χ)

− 1

χ
=

Λ(w(χ))− 1

χ
.

Integration yields

[Iµ,τα,β,m ∗ σ](χ) ≺ χ exp

(∫ χ

0

Λ(w(ξ))

ξ
dξ

)
,

which leads to
[Iµ,τα,β,m ∗ σ](χ)

χ
≺ exp

(∫ χ

0

Λ(w(ξ))

ξ
dξ

)
.

But,
Λ(−ρ|χ|) ≤ < (Λ(w(χρ))) ≤ Λ(ρ|χ|)

then, we obtain∫ 1

0

Λ(−ρ|χ|)
ρ

dρ ≤
∫ 1

0

< (Λ(w(χρ)))

ρ
dρ ≤

∫ 1

0

Λ(ρ|χ|)
ρ

dρ.
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A combination of the last two relations, we attain∫ 1

0

Λ(−ρ|χ|)
ρ

dρ ≤ log
∣∣∣ [Iµ,τα,β,m ∗ σ](χ)

χ

∣∣∣ ≤ ∫ 1

0

Λ(ρ|χ|)
ρ

dρ.

Which imposes

exp

(∫ 1

0

Λ(−ρ)

ρ
dρ

)
≤
∣∣∣ [Iµ,τα,β,m ∗ σ](χ)

χ

∣∣∣ ≤ exp

(∫ 1

0

Λ(ρ)

ρ
dρ

)
. �

Corollary 3.7. In Theorem 3.6, let

µ(n) =
1

n!

Γ(γ + nκ)

Γ(γ + κ)
,

with α = 0, γ = κ = 1,m = −2⇒
(
Iµ,10,β,−2 ∗ σ

)
(χ) = σ(χ).

Consider that Λ is convex univalent in O with

Sσ(χ) ≺ Λ(χ), ξ ∈ O,

where Λ(0) = 1 then

σ(χ) ≺ χ exp

(∫ χ

0

Λ(w(ξ))

ξ
dξ

)
,

where w as in Theorem 3.6. In addition, the relation |χ| := ρ < 1 gives

exp

(∫ 1

0

Λ(−ρ)

ρ
dρ

)
≤
∣∣∣σ(χ)

χ

∣∣∣ ≤ exp

(∫ 1

0

Λ(ρ)

ρ
dρ

)
.

Lastly, we present a special result when Λ(χ) :=
1 + φχ

1 + ψχ
, where −1 ≤ ψ < φ ≤ 1.

Theorem 3.8. Consider the generalized FOIO (2.3).

(i) If the following subordination holds:(
SS[Iµ,τ

α,β,m
∗σ](χ)(χ)− 1

)
[S[Iµ,τα,β,m∗σ](χ)]

−1 + 1 ≺ (φ− ψ)χ(2 + φχ)

(1 + φχ)2
,

then

S[Iµ,τα,β,m∗σ](χ) ≺
1 + φχ

1 + ψχ
.(

− 1 ≤ ψ < φ ≤ 0, χ ∈ O
)

Moreover,
[Iµ,τα,β,m ∗ σ](χ)

χ
≺ (1 + ψχ)

φ−ψ
ψ , ψ 6= 0.

(ii) If the next inequality occurs

SS[Iµ,τ
α,β,m

∗σ](χ)(χ) + 1 ≺ 1 + φχ

1 + ψχ

then

S[Iµ,τα,β,m∗σ](χ) ≺ (1 + ψχ)
φ−ψ
ψ .
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(
|φ− ψ

ψ
± 1| ≤ 1, χ ∈ O

)
(iii) If the following relation exists

SS[Iµ,τ
α,β,m

∗σ](χ)(χ) + 1 ≺ 1 + φχ

then

S[Iµ,τα,β,m∗σ](χ) ≺ eφχ.(
ψ = 0, |φ| < π, χ ∈ O

)
In addition,

[Iµ,τα,β,m ∗ σ](χ)

χ
≺ eφχ.

All the above results are the best dominant.

Proof. Clearly, based on the definition of the functional S, we have

SS[Iµ,τ
α,β,m

∗σ](χ)(χ) =
χ
(
S[Iµ,τα,β,m∗σ](χ)

)′
S[Iµ,τα,β,m∗σ](χ)

,

where S[Iµ,τα,β,m∗σ](0) = 1. Now let

Ω(χ) := S[Iµ,τα,β,m∗σ](χ).

Then a calculation implies

1− 1

Ω(χ)
+
χΩ′(χ)

Ω2(χ)
= 1− 1

S[Iµ,τα,β,m∗σ](χ)
+
χ[S[Iµ,τα,β,m∗σ](χ)]′

[S[Iµ,τα,β,m∗σ](χ)]2

=

(
SS[Iµ,τ

α,β,m
∗σ](χ)(χ)− 1

)
[S[Iµ,τα,β,m∗σ](χ)]

−1 + 1

≺ (φ− ψ)χ(2 + φχ)

(1 + φχ)2
.

Then in view of [19]-Lemma 3, we have the outcome in (i). Since we have

S[Iµ,τα,β,m∗σ](χ) ≺
1 + φχ

1 + ψχ
.

(
− 1 ≤ ψ < φ ≤ 0, χ ∈ O

)
Then the second inequality comes from [19]-Theorem 2

[Iµ,τα,β,m ∗ σ](χ)

χ
≺ (1 + ψχ)

φ−ψ
ψ , ψ 6= 0.
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We aim to prove (ii). Since

1 +
χΩ′(χ)

Ω(χ)
= 1 +

χ[S[Iµ,τα,β,m∗σ](χ)]′

S[Iµ,τα,β,m∗σ](χ)

= SS[Iµ,τ
α,β,m

∗σ](χ)(χ) + 1

≺ 1 + φχ

1 + ψχ
.

Then in view of [19]-Lemma 4(i), we obtain the result in (ii).
A computation yields

1 +
χΩ′(χ)

Ω(χ)
= 1 +

χ[S[Iµ,τα,β,m∗σ](χ)]′

S[Iµ,τα,β,m∗σ](χ)

= SS[Iµ,τ
α,β,m

∗σ](χ)(χ) + 1

≺ 1 + φχ.

Then in view of [19]-Lemma 4(ii), we get the result in (iii). Since

S[Iµ,τα,β,m∗σ](χ) ≺ eφχ,(
ψ = 0, |φ| < π, χ ∈ O

)
we attain the second part by using [19]-Theorem 2

[Iµ,τα,β,m ∗ σ](χ)

χ
≺ eφχ. �

Corollary 3.9. [19] In Theorem 3.8, let

µ(n) =
1

n!

Γ(γ + nκ)

Γ(γ + κ)
,

with α = 0, γ = κ = 1,m = −2⇒
(
Iµ,10,β,−2 ∗ σ

)
(χ) = σ(χ).

(i) If the following subordination holds:(
SSσ(χ)(χ)− 1

)
[Sσ(χ)]

−1 + 1 ≺ (φ− ψ)χ(2 + φχ)

(1 + φχ)2
,

then

Sσ(χ) ≺
1 + φχ

1 + ψχ
.(

− 1 ≤ ψ < φ ≤ 0, χ ∈ O
)

Moreover,

σ(χ)

χ
≺ (1 + ψχ)

φ−ψ
ψ , ψ 6= 0.
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(ii) If the next inequality occurs

SSσ(χ)
(χ) + 1 ≺ 1 + φχ

1 + ψχ

then

Sσ(χ) ≺ (1 + ψχ)
φ−ψ
ψ .(

|φ− ψ
ψ
± 1| ≤ 1, χ ∈ O

)
(iii) If the following relation exists

SSσ(χ)
(χ) + 1 ≺ 1 + φχ

then
Sσ(χ) ≺ eφχ.(

ψ = 0, |φ| < π, χ ∈ O
)

In addition,
σ(χ)

χ
≺ eφχ.

All the above results are the best dominant.

Example 3.10. Under the assumptions of Corollary 3.9, we have the following examples
(see Fig. 1):

• For φ = 1− 2a, a ∈ [0, 1), ψ = −1, we get

σ(χ)

χ
≺ 1

(1− χ)2(1−a)
.

• For a = 0, we obtain
σ(χ)

χ
≺ 1

(1− χ)2
.

4. Conclusion

The Generalized fractional integral operator is formulated using the Raina’s
function. The suggested FOIO is a generalization of many operators and series. We
formulated the FOIO in classes of starlike functions and explored the sufficient condi-
tions for these classes. Many recent results are conformed as special cases. We suggest
to include it in different other classes of analytic functions, for the next step of re-
search.
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(a) Plotting of
1

(1− χ)2
, a = 0

(b) Plotting of
1

(1− χ)2(1−a)
, a 6= 0

Figure 1. Functions in Example 3.10
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1. Introduction

Let A be the class of analytic functions f in the open unit disc D := {z ∈ C : |z| < 1}
normalized by the conditions f(0) = 0 and f ′(0) = 1. If f ∈ A, then

f(z) = z +

∞∑
n=2

anz
n, z ∈ D, (1.1)

and denotes by S the subclass of A consisting of univalent functions in D (see [6] for
details).

For two functions f and g analytic in D, we say that the function f is subordinate
to g in D, and write f(z) ≺ g(z), if there exists an analytic function in D denoted by
w, with w(0) = 0 and |w(z)| < 1, z ∈ D, such that f(z) = g(w(z)) for all z ∈ D. In
particular, if the function g is univalent in D, the above subordination is equivalent
to f(0) = g(0) and f(D) ⊂ g(D).

We recall that B denote the class of analytic self-mappings of the unit disc, that
maps the origin onto the origin [13], that is

B :=

{
w(z) =

∞∑
n=1

wnz
n : |w(z)| < 1, z ∈ D

}
, (1.2)

and the class B is known as the class of Schwarz functions.
In 2018, Yunus et. al. [21] studied the subclass of starlike functions associated

with a limaçon domain. The limaçon of Pascal also known as limaçon is a curve that
in polar coordinates has the form r = b+ a cos θ, where a and b are real positive real
and θ ∈ (0, 2π). If b ≥ 2a the limaçon is a convex curve and if 2a > b > a it has an
indentation bounded by two inflection points. For b = a the limaçon degenerates to a
cardioid.

Recently, Kanas et. al. [13] introduced subclasses STL(s) and CVL(s) of starlike
and convex function respectively. Geometrically, they consist of functions f ∈ A such

that
zf ′(z)

f(z)
and

(
zf ′(z)

)′
f ′(z)

lie in the region bounded by the limaçon curve defined as

∂Ds :=

{
u+ iv ∈ C :

[
(u− 1)2 + v2 − s4

]2
= 4s2

[(
u− 1 + s2

)2
+ v2

]}
,

where s ∈ [−1, 1] \ {0}. If we define the limaçon function

Ls(z) := (1 + sz)2, s ∈ [−1, 1] \ {0}, (1.3)

then the analytic characterization of the limaçon domain Ls(D) is given by the inclu-
sion relation (see [13] inclusions (9) and (10)){

w ∈ C : |w − 1| < 1− (1− |s|)2
}
⊂ Ls(D)

⊂
{
w ∈ C : |w − 1| < (1 + |s|)2 − 1

}
.

In 1991 Chakrabarti and Jagannathan [5] introduced the concept of (p, q)–
calculus in order to generalize or unify several forms of q–oscillator algebras. In the
last three decades, applications of the q–calculus have been studied and investigated
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extensively. Inspired and motivated by these applications many researchers (for exam-
ple [1], [4]) have developed the theory of quantum calculus based on two-parameter
(p, q)–integer which is used efficiently in many fields such as difference equations, Lie
group, hypergeometric series, physical sciences, etc.

The (p, q)–bracket or twin basic number [n]p,q is defined by

[n]p,q :=


pn − qn

p− q
, if q 6= p,

npn−1, if q = p,

where 0 < q ≤ p < 1.
For 0 < q < 1, the q-bracket [n]q for n = 0, 1, 2, . . . is given by [n]q := [n]1,q. The

(p, q)–derivative of a function f is defined by

Dp,qf(z) :=


f(pz)− f(qz)

(p− q)z
, if q 6= p, z 6= 0,

1, if p 6= q, z = 0,
f ′(z), if p = q.

In particular, Dp,qz
n = [n]p,qz

n−1, therefore, for a function f ∈ A of the form (1.1)
the (p, q)–derivative operator is given by

Dp,qf(z) = 1 +

∞∑
n=2

[n]p,qanz
n−1, z ∈ D.

In the univalent function theory many extensive studies were given to estimate
the upper bounds of the Hankel determinants, and for further reading one may refer
to [15], [16], [18]. The closer connection with the Hankel determinants are the Toeplitz
determinants. A Toeplitz determinant can be thought of as an “upside-down” Hankel
determinant, in that Hankel determinant have constant entries along the reverse di-
agonal, whereas Toeplitz matrices have constant entries along the diagonal. In recent
past, many researchers have focussed on finding sharp estimates for second and third
order Toeplitz determinants [10], [7], etc.

Thomas and Halim [19] defined the symmetric Toeplitz determinant Tm(n) by

Tm(n) :=

∣∣∣∣∣∣∣∣∣
an an+1 . . . an+m−1
an+1 an · · · an+m−2

...
...

...
...

an+m−1 an+m−2 · · · an

∣∣∣∣∣∣∣∣∣ ,
and in particular

T2(2) =

∣∣∣∣ a2 a3
a3 a2

∣∣∣∣ , T3(1) =

∣∣∣∣∣∣
1 a2 a3
a2 1 a2
a3 a2 1

∣∣∣∣∣∣ .
For a good summary of the applications of Toeplitz matrices to the wide range of
areas of pure and applied mathematics, one can refer to [20].

The logarithmic coefficients γn := γn(f), n ≥ 1, for a function f ∈ S of the form
(1.1) play an important role in Milin’s conjecture [14] and Brennan’s conjecture [12],
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and can also be used to find estimations for the coefficients of an inverse function. It
is given by the power series representation (see [14, p. 53])

log
f(z)

z
= 2

∞∑
n=1

γnz
n, z ∈ D, (1.4)

where the function “log” is considered to the main branch, i.e. log 1 = 0. Differ-
entiating the definition relation (1.4) and then equating the coefficients of zn, the
logarithmic coefficients γ1 and γ2 will be given by

γ1 =
a2
2
, (1.5)

γ2 =
1

2

(
a3 −

a22
2

)
. (1.6)

In the theory of univalent functions the problem of finding the sharp estimates
for the logarithmic coefficients for various significant classes have gained a high im-
portance (see, for details, [2], [3]). Recently, S. Giri and S. Kumar [8] initiated the
study of Toeplitz determinants whose elements are logarithmic coefficients of f ∈ S
which is given by

Tm,n (γf ) :=

∣∣∣∣∣∣∣∣∣
γn γn+1 . . . γn+m−1
γn+1 γn · · · γn+m−2
...

...
...

...
γn+m−1 γn+m−2 · · · γn

∣∣∣∣∣∣∣∣∣ ,
thus

T2,1 (γf ) =

∣∣∣∣ γ1 γ2
γ2 γ1

∣∣∣∣ .
In this paper we obtained the estimates of Toeplitz determinants and Toeplitz

determinanats of logarithmic coefficients for the subclasses LsSqp , LsCqp , and LsSqp ∩S,
LsCqp ∩ S, 0 < q ≤ p ≤ 1, respectively, defined by post quantum operators which map
the open unit disc D in a domain included in the limaçon domain.

2. The subclasses LsSq
p , LsCqp and preliminary results

The new subclasses of A we will define and investigate extend and are connected
with the below subclass functions:

Definition 2.1. [17] Denote by S∗S the subclass of A consisting of functions given by
(1.1) and satisfying

Re
zf ′(z)

f(z)− f(−z)
> 0, z ∈ D.

These functions introduced by Sakaguchi are called functions starlike with respect
to symmetric points, and for a function f ∈ A the above inequality is a necessary and
sufficient condition for f to b e univalent and starlike with respect to symmetrical
points in D (see [17, Theorem 1]).
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Like we can see in [13, Lemma 2], the function Ls defined by (1.3) is starlike with
respect to the point z0 = 1 for all s ∈ [−1, 1] \ {0}, hence is univalent in D. Moreover,

if 0 < s ≤ 1/
√

2 then Ls has real positive part in D, i.e. Ls is a Carathéodory function
(see [13, p. 10]).

Now we define the classes LsSqp and LsCqp which maps the open unit disc onto
the region included in the limaçon domain Ls(D) as follows:

Definition 2.2. Let LsSqp be the subclass of function f ∈ A of the form (1.1) and
satisfying the condition

2zDp,qf(z)

f(z)− f(−z)
≺ Ls(z), 0 < s ≤ 1√

2
.

Definition 2.3. Let LsCqp be the subclass of A consisting of the function f of the form
(1.1) such that (

2zDp,qf(z)
)′(

f(z)− f(−z)
)′ ≺ Ls(z), 0 < s ≤ 1√

2
.

Remark 2.4. The above mentioned classes are not empty, as we will show in the below
examples.

(i) Taking f∗(z) = z + az2, a ∈ C, then

Φ∗(z) :=
2zDp,qf∗(z)

f∗(z)− f∗(−z)
= 1 + (p+ q)az, z ∈ D.

For the values q = 0.3, p = 0.5, a = 0.9, and s = 1/
√

3, like we see in the below
Figure 1(A) made with MAPLE� computer software we have Φ∗(D) ⊂ L1/

√
3(D),

and because Φ∗(0) = L1/
√
3(0) from the univalence of L1/

√
3 it follows that Φ∗(z) ≺

L1/
√
3(z), i.e. f∗ ∈ LsSqp for the previous parameters. Also, the Figure 1(B) shows

that the function f∗ is not univalent in D because f∗(D) twice overlaps a subset of C.

(A) The images of Φ∗(∂D) (B) The domain f∗(D)

(red color) and L1/
√
3(∂D)

(blue color)

Figure 1. Figures for the Remark 2.4(i)
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(ii) For f̂(z) = z + az2 + bz3, a, b ∈ C, we get

Φ̂(z) :=
2zDp,q f̂(z)

f̂(z)− f̂(−z)
=

1 + (p+ q)az +
(
p2 + pq + q2

)
bz2

1 + bz2
, z ∈ D.

If q = 0.85, p = 0.95, a = 0.1, b = 0.2, and s = 1/
√

3, we see in the Figure

2(A) made with MAPLE� that Φ̂(D) ⊂ L1/
√
3(D), and from Φ̂(0) = L1/

√
3(0) and

the univalence of L1/
√
3 we have Φ̂(z) ≺ L1/

√
3(z), that is Φ̂ ∈ LsSqp for this choice of

the parameters. Moreover, from this figure we wee that Φ̂ is not univalent in D, while

the Figure 2(B) shows that f̂ is univalent in D.

(A) The images of (B) The domain f̂(D)

Φ̂(∂D) (blue color) and

L1/
√
3(∂D) (red color)

Figure 2. Figures for the Remark 2.4(ii)

(iii) Using the above notations, and

Ψ∗(z) :=

(
2zDp,qf(z)

)′(
f(z)− f(−z)

)′ = 1 + 2(p+ q)az, z ∈ D.

for q = 0.15, p = 0.25, a = 0.9, and s = 1/
√

3, the Figure 3(A) made with MAPLE�
computer software shows that Ψ∗(D) ⊂ L1/

√
3(D), and because Ψ∗(0) = L1/

√
3(0)

from the univalence of L1/
√
3 it follows Ψ∗(z) ≺ L1/

√
3(z), i.e. f∗ ∈ LsCqp for these

values of the parameters. The Figure 3(B) shows that the function f∗ is not univalent
in D since there exists a subset of C that’s twice overlapped by f∗(D).

(iv) Considering the function f̂(z) = z + az2 + bz3, a, b ∈ C, we get

Ψ̂(z) :=

(
2zDp,qf(z)

)′(
f(z)− f(−z)

)′ =
1 + 2(p+ q)az + 3

(
p2 + pq + q2

)
bz2

1 + 3bz2
, z ∈ D.

For q = 0.4, p = 0.5, a = 0.25, b = 0.2, and s = 1/
√

3, we see in the Figure 4(A)

made with MAPLE� that Ψ̂(D) ⊂ L1/
√
3(D). Using that Ψ̂(0) = L1/

√
3(0) together

with the univalence of L1/
√
3 we have Ψ̂(z) ≺ L1/

√
3(z), that is Ψ̂ ∈ LsSqp for these
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(A) The images of Φ∗(∂D) (B) The domain f∗(D)

(red color) and L1/
√
3(∂D)

(blue color)

Figure 3. Figures for the Remark 2.4(iii)

choice of the parameters. Moreover, from this figure we wee that Ψ̂ is not univalent

in D, and from the Figure 4(B) we see that f̂ is univalent in D.

(A) The images of (B) The domain f̂(D)

Ψ̂(∂D) (blue color) and

L1/
√
3(∂D) (red color)

Figure 4. Figures for the Remark 2.4(iv)

(v) Concluding, the examples given in the Remark 2.4(i)–(iv) show that LsSqp 6= ∅
and LsCqp 6= ∅. From the examples of the Remark 2.4(i) and (iii) it follows that
LsSqp 6⊂ S and LsCqp 6⊂ S. In addition, the examples of the Remark 2.4(ii) and (iv)

show that the corresponding functions of the form f∗ and f̂ belong to LsSqp ∩ S and
LsCqp ∩S, respectively, i.e. LsSqp ∩S 6= ∅ and LsSqp ∩C 6= ∅. These above comments are
very important for the motivations of the results presented in the Sections 3 and 4.

In our investigations we will use the next lemmas:
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Lemma 2.5. [11, Lemma 2.1] If the function w ∈ B is of the form (1.2), then for some
complex numbers ξ and ζ such that |ξ| ≤ 1 and |ζ| ≤ 1, we have

w2 = ξ
(
1− w2

1

)
, and

w3 =
(
1− w2

1

) (
1− |ξ|2

)
ζ − w1

(
1− w2

1

)
ξ2.

Lemma 2.6. [9, p. 3, Lemma 1], [6] If the function w ∈ B is of the form (1.2), then
the sharp estimate |wn| ≤ 1 holds for n ≥ 1.

3. Symmetric Toeplitz determinants of the coefficients for the classes
LsSq

p and LsCqp
Now we will give upper bounds for some symmetric Toeplitz determinants for

the functions belonging to the above defined classes LsSqp and LsCqp , emphasizing that
for |T2(2)| the results are sharp.

Theorem 3.1. If the function f ∈ LsSqp has the form (1.1), then

|T2(2)| ≤ s2(s+ 4)2(
[3]p,q − 1

)2 +
4s2(

[2]p,q
)2 ,

and this inequality is sharp (i.e. the best possible).

Proof. Assuming that f ∈ LsSqp , according to the definition of the subordination there
exists a function w ∈ B of the form (1.2) such that

2zDp,qf(z)

f(z)− f(−z)
=
(
1 + sw(z)

)2
, z ∈ D. (3.1)

Since (3.1) is equivalent to

2zDp,qf(z) =
(
f(z)− f(−z)

)(
1 + sw(z)

)2
, z ∈ D,

expanding in Taylor series the both sides of the above relation and equating the
corresponding terms we have

z + z2[2]p,qa2 + z3a3[3]p,q + z4a4[4]p,q + · · · =
z + 2sw1z

2 + z3
(
a3 + 2sw2 + s2w2

1

)
+ 2z4 (sw1a3 + sw3 + w1w2) + . . . ,

thus

a2 =
2sw1

[2]p,q
=

2sw1

t2
, (3.2)

a3 =
2sw2 + s2w2

1

[3]p,q − 1
=

2sw2 + s2w2
1

t3 − 1
, (3.3)

where, for simplicity, we use the notation tn:=[n]p,q.
It follows that

|T2(2)| =
∣∣a23 − a22∣∣ =

∣∣∣∣∣
(

2sw2 + s2w2
1

t3 − 1

)2

−
(

2sw1

t2

)2
∣∣∣∣∣ , (3.4)
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and rewriting w2 in terms of w1 from Lemma 2.5, we get

|T2(2)| =

∣∣∣∣∣∣
(

2s
(
1− w2

1

)
ξ + s2w2

1

t3 − 1

)2

−
(

2sw1

t2

)2
∣∣∣∣∣∣ . (3.5)

From the relation (3.5), using the triangle’s inequality and the fact that s > 0 we get
first that

|T2(2)| =

∣∣∣∣∣4s2
(
1− w2

1

)2
ξ2 + s4w4

1 + 4s3
(
1− w2

1

)
ξ w2

1

(t3 − 1)
2 − 4s2w2

1

t22

∣∣∣∣∣
≤

4s2
∣∣1− w2

1

∣∣2 |ξ|2 + s4|w1|4 + 4s3
∣∣1− w2

1

∣∣ |ξ| |w1|2

(t3 − 1)
2 +

4s2|w1|2

t22
. (3.6)

Denoting x := |w1| and y := |ξ|, then x, y ∈ [0, 1], and∣∣1− w2
1

∣∣ ≤ 1 + x2,
∣∣1− w2

1

∣∣2 ≤ (1 + x2
)2
, (3.7)

if we combine the inequalities (3.7) with (3.6) it follows

|T2(2)| ≤
4s2

(
1 + x2

)2
y2 + s4 x4 + 4s3

(
1 + x2

)
y x2

(t3 − 1)
2 +

4s2 x2

t22
=: h(x, y). (3.8)

Since

∂

∂y
h(x, y) =

8s2
(
x2 + 1

)2
y + 4s3

(
x2 + 1

)
x2

(t3 − 1)
2 ≥ 0, (x, y) ∈ [0, 1]× [0, 1],

we obtain that for any x ∈ [0, 1] we have

max
{
h(x, y) : y ∈ [0, 1]

}
= h(x, 1) =: g(x)

and consequently, from (3.8) we get

|T2(2)| ≤
4s2

(
1 + x2

)2
+ s4 x4 + 4s3

(
1 + x2

)
x2

(t3 − 1)
2 +

4s2 x2

t22
= g(x). (3.9)

Using the fact that

g′(x) =

8x

[
(s+ 2)

(
s x2 + 2x2 + 2

)
t22

2
+ (t3 − 1)

2

]
s2

(t3 − 1)
2
t22

≥ 0, x ∈ [0, 1],

we have that g is an increasing function on [0, 1]. Therefore, the inequality (3.9) leads
us to

|T2(2)| ≤ g(1) =
s2(s+ 4)2

(t3 − 1)
2 +

4s2

t22
, x ∈ [0, 1],

that proves the required inequality.
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To prove the sharpness of our result, let consider the function f ∈ A given by
(3.1) with w(z) = iz − 2z2. Since w1 = i, w2 = −2, using the relation (3.4) we have

|T2(2)| =

∣∣∣∣∣
(
−4s− s2

t3 − 1

)2

+

(
2s

t2

)2
∣∣∣∣∣ =

s2(s+ 4)2

(t3 − 1)
2 +

4s2

t22
,

which shows the sharpness of our inequality. �

Theorem 3.2. If the function f ∈ LsSqp has the form (1.1), then

|T3(1)| ≤ 1 +
8s2(

[2]p,q
)2 +

8s3(s+ 4)(
[2]p,q

)2∣∣∣[3]p,q − 1
∣∣∣ +

s2(s+ 4)2(
[3]p,q − 1

)2 .
Proof. Using the same techniques and notations like in the proof of Theorem 3.1 we
have

|T3(1)| =
∣∣1− 2a22 + 2a22a3 − a23

∣∣
=

∣∣∣∣∣1− 2

(
2sw1

t2

)2

+ 2

(
2sw1

t2

)2

· 2sw2 + s2w2
1

t3 − 1
−
(

2sw2 + s2w2
1

t3 − 1

)2
∣∣∣∣∣ .

From Lemma 2.5, rewriting the expression w2 in terms of w1 the above relation leads
to

|T3(1)| =

∣∣∣∣∣1− 2

(
2sw1

t2

)2

+ 2

(
2sw1

t2

)2

·
2s
(
1− w2

1

)
ξ + s2w2

1

t3 − 1

−
4s2

(
1− w2

1

)2
ξ2 + s4w4

1 + 4s3w2
1

(
1− w2

1

)
ξ

(t3 − 1)
2

∣∣∣∣∣ . (3.10)

Letting x := |w1| and y := |ξ|, then x, y ∈ [0, 1], and applying the triangle’s inequality
in the right hand side of (3.10), since s > 0 we obtain

|T3(1)| ≤ 1 +
8s2x2

t22
+

8s2x2
[
2s
(
1 + x2

)
y + s2x2

]
t22 |t3 − 1|

+
4s2

(
1 + x2

)2
y2 + s4x4 + 4s3x2

(
1 + x2

)
y

(t3 − 1)
2 =: q(x, y). (3.11)

A simple computation shows that for all (x, y) ∈ [0, 1]× [0, 1] we have

∂

∂y
q(x, y) =

16s3x2
(
x2 + 1

)
t22|t3 − 1|

+
8s2

(
x2 + 1

)2
y + 4s3x2

(
x2 + 1

)
(t3 − 1)

3 ≥ 0,

therefore, for any x ∈ [0, 1] we have

max
{
q(x, y) : y ∈ [0, 1]

}
= q(x, 1) = 1 +

8s2x2

t22
+

8s2x2
[
2s
(
1 + x2

)
+ s2x2

]
t22 |t3 − 1|

+
4s2

(
1 + x2

)2
+ s4x4 + 4s3x2

(
1 + x2

)
(t3 − 1)

2 =: t(x),
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hence, from (3.11) it follows

|T3(1)| ≤ t(x), x ∈ [0, 1]. (3.12)

Moreover, since

t′(x) =
16s2x

t22
+

16s2x
[
2s
(
x2 + 1

)
+ s2x2

]
t22|t3 − 1|

+
8s2x2

(
2s2x+ 4sx

)
t22 |t3 − 1|

+
16s2

(
x2 + 1

)
x+ 4s4x3 + 8s3x

(
x2 + 1

)
+ 8s3x3

(t3 − 1)
3 ≥ 0, x ∈ [0, 1],

the function t is increasing on [0, 1], and from (3.12) we deduce that

|T3(1)| ≤ t(1) = 1 +
8s2

t22
+

8s3(s+ 4)

t22 |t3 − 1|
+
s2(s+ 4)2

(t3 − 1)
2 ,

which represents the required inequality. �

Theorem 3.3. If the function f ∈ LsCqp has the form (1.1), then

|T2(2)| ≤ s2(s+ 4)2

9
(
[3]p,q − 1

)2 +
s2(

[2]p,q
)2 ,

and this inequality is sharp (i.e. the best possible).

Proof. For the function f ∈ LsCqp , using the definition of the subordination there

exists a function w(z) = w1z + w2z
2 + · · · ∈ B, z ∈ D, such that(

2zDp,qf(z)
)′(

f(z)− f(−z)
)′ =

(
1 + sw(z)

)2
, z ∈ D. (3.13)

The relation (3.13) could be written in the form(
2zDp,qf(z)

)′
=
(
f(z)− f(−z)

)′(
1 + sw(z)

)2
, z ∈ D,

and expanding in Taylor series both sides of this equality we get

1 + 2z[2]p,qa2 + 3z2a3[3]p,q + 4z3a4[4]p,q + · · · =
1 + 2sw1z + z2

(
s2w2

1 + 2sw2 + 3a3
)

+ z3
(
2s2w1w2 + 2sw3 + 6sw1a3

)
+ . . . .

Equating the corresponding coefficients it follows that

a2 =
sw1

[2]p,q
, (3.14)

a3 =
2sw2 + s2w2

1

3
(
[3]p,q − 1

) . (3.15)

Using Lemma 2.5 it’s easy to check that

|T2(2)| =
∣∣a23 − a22∣∣ =

∣∣∣∣∣4s2w2
2 + s4w4

1 + 4s3w2
1w2

9 (t3 − 1)
2 − s2w2

1

t22

∣∣∣∣∣
=

∣∣∣∣∣4s2
(
1− w2

1

)2
ξ2 + s4w4

1 + 4s3w2
1

(
1− w2

1

)
ξ

9 (t3 − 1)
2 − s2w2

1

t22

∣∣∣∣∣ , (3.16)
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where we use the previous notation tn:=[n]p,q.
Denoting x := |w1| and y := |ξ|, then x, y ∈ [0, 1], and using the triangle’s

inequality in the right hand side of the above relation, since s > 0 we have

|T2(2)| ≤
4s2

(
1 + x2

)2
y2 + s4x4 + 4s3

(
1 + x2

)
x2y

9 (t3 − 1)
2 +

s2x2

t22
=: h(x, y). (3.17)

It is easy to see that

∂

∂y
h(x, y) =

4s2
(
x2 + 1

) [
(s+ 2y)x2 + 2y

]
9 (t3 − 1)

2 ≥ 0, (x, y) ∈ [0, 1]× [0, 1],

consequently, for each x ∈ [0, 1] we have

max
{
h(x, y) : y ∈ [0, 1]

}
= h(x, 1)

=
4s2

(
1 + x2

)2
+ s4x4 + 4s3

(
1 + x2

)
x2

9 (t3 − 1)
2 +

s2x2

t22
=: g(x).

Combining this last relation with the inequality (3.17) we obtain

|T2(2)| ≤ g(x). (3.18)

Since for all x ∈ [0, 1] we have

g′(x) =
16s2

(
x2 + 1

)
x+ 4s4x3 + 8s3x3 + 8s3

(
x2 + 1

)
x

9 (t3 − 1)
2 +

2s2x

t22
≥ 0,

the function g is increasing on [0, 1], therefore the inequality (3.18) leads to

|T2(2)| ≤ g(1) =
s2(s+ 4)2

9 (t3 − 1)
2 +

s2

t22
,

and our conclusion is proved.
The inequality is sharp for the function f ∈ A given by (3.1) with w(z) = iz−2z2.

In this case w1 = i, w2 = −2, and from the relation (3.16) we get

|T2(2)| = s2(s+ 4)2

(t3 − 1)
2 +

4s2

t22
,

which proves the sharpness of our inequality �

Using the same techniques as in the previous theorem, we obtain the next upper
bound for |T3(1)| if f ∈ LsCqp .

Theorem 3.4. If the function f ∈ LsCqp has the form (1.1), then

|T3(1)| ≤ 1 +
2s2(

[2]p,q
)2 +

2s3(s+ 4)

3
(
[2]p,q

)2∣∣∣[3]p,q − 1
∣∣∣ +

s2(s+ 4)2

9
(
[3]p,q − 1

)2 .
Proof. With the same techniques and notations as in the proof of the previous theorem
we have

|T3(1)| =

∣∣∣∣∣1− 2
s2w2

1

t22
+ 2

s2w2
1

t22
· s

2w2
1 + 2sw2

3 (t3 − 1)
− s4w4

1 + 4s2w2
2 + 4s3w2

1w2

9 (t3 − 1)
2

∣∣∣∣∣ .
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Rewriting the expression w2 in terms of w1 like in Lemma 2.5, applying the triangle’s
inequality, denoting x = |w1| ≤ 1, y = |ξ| ≤ 1, and using that s > 0 we get

|T3(1)| ≤ 1 +
2s2x2

t22
+

2s2x2
[
s2x2 + 2s

(
1 + x2

)
y
]

3t22 |t3 − 1|

+
s4x4 + 4s2

(
1 + x2

)2
y2 + 4s3x2

(
1 + x2

)
y

9 (t3 − 1)
2 =: p(x, y). (3.19)

It follows that

∂

∂y
p(x, y) =

4s3x2
(
x2 + 1

)
3t22|t3 − 1|

+
4s
[
2sy

(
x2 + 1

)
+ s2x2

] (
x2 + 1

)
9 (t3 − 1)

2 ≥ 0,

(x, y) ∈ [0, 1]× [0, 1],

hence, for each x ∈ [0, 1] we have

max
{
p(x, y) : y ∈ [0, 1]

}
= p(x, 1) = 1 +

2s2x2

t22
+

2s2x2
[
s2x2 + 2s

(
1 + x2

)]
3t22 |t3 − 1|

+
s4x4 + 4s2

(
1 + x2

)2
+ 4s3x2

(
1 + x2

)
9 (t3 − 1)

2 =: q(x). (3.20)

Using that

q′(x) =
8s3x

(
x2 + 1

)
3t22|t3 − 1|

+
8s3x3

3t22|t3 − 1|
+

(
2s2x+ 4syx

)
s
(
x2 + 1

)
9 (t3 − 1)

2

+
8
[
2sy

(
x2 + 1

)
+ s2x2

]
sx

9 (t3 − 1)
2 ≥ 0, x ∈ [0, 1],

the function q is increasing on [0, 1], and from the inequalities (3.19) and (3.20) we
conclude that

|T3(1)| ≤ q(1) = 1 +
2s2

t22
+

2s3(s+ 4)

3t22 |t3 − 1|
+
s2(s+ 4)2

9 (t3 − 1)
2 .

�

4. Symmetric Toeplitz determinants of the logarithmic coefficients for
the classes LsSq

p ∩ S and LsCqp ∩ S
In this section we find the estimates of initial two logarithmic coefficients and

then the estimate of symmetric Toeplitz determinants T2,1 (γf ) of logarithmic coeffi-
cients for the subclasses LsSqp ∩ S and LsCqp ∩ S.

Theorem 4.1. If the function f ∈ LsSqp ∩ S has the form (1.1) and the logarithmic
coefficients are given by (1.4), then

|γ1| ≤
s

[2]p,q
and |γ2| ≤

s(s+ 4)

2
∣∣[3]p,q − 1

∣∣ +
s2(

[2]p,q
)2 .
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Proof. Replacing the values of a2 and a3 given by (3.2) and (3.3) in (1.5) and (1.6),
using the notation tn:=[n]p,q, from Lemma 2.6 we obtain

|γ1| =
∣∣∣∣sw1

t2

∣∣∣∣ ≤ s

t2
=

s

[2]p,q
.

In addition, using Lemma 2.5 we get

|γ2| =
1

2

∣∣∣∣2sw2 + s2w2
1

t3 − 1
− 2s2w2

1

t22

∣∣∣∣ =
1

2

∣∣∣∣∣2s
(
1− w2

1

)
ξ + s2w2

1

t3 − 1
− 2s2w2

1

t22

∣∣∣∣∣ ,
where |ξ| ≤ 1. Letting x := |w1| and y := |ξ|, then x, ξ ∈ [0, 1] and using the triangle’s
inequality in the above relation together with s > 0 we obtain

|γ2| ≤
2s
(
1 + x2

)
y + s2x2

2 |t3 − 1|
+
s2x2

t22
=: F (x, y). (4.1)

It follows that

∂

∂y
F (x, y) =

s
(
1 + x2

)
|t3 − 1|

> 0, (x, y) ∈ [0, 1]× [0, 1],

hence, for each x ∈ [0, 1] we have

max
{
F (x, y) : y ∈ [0, 1]

}
= F (x, 1) =

2s
(
1 + x2

)
+ s2x2

2 |t3 − 1|
+
s2x2

t22
=: r(x). (4.2)

From the fact

r′(x) =
sx(s+ 2)

|t3 − 1|
+

2s2x

t22
≥ 0, x ∈ [0, 1],

the function r is increasing on [0, 1], and from (4.1) and (4.2) we conclude that

|γ2| ≤ r(1) =
4s+ s2

2 |t3 − 1|
+
s2

t22
,

which proves our second inequality. �

Theorem 4.2. If the function f ∈ LsCqp ∩ S has the form (1.1) and the logarithmic
coefficients are given by (1.4), then

|γ1| ≤
s

2 [2]p,q
and |γ2| ≤

s(s+ 4)

6
∣∣[3]p,q − 1

∣∣ +
s2

4
(
[2]p,q

)2 .
Proof. Using the values of a2 and a3 given by (3.14) and (3.15), from (1.5) and (1.6),
using Lemma 2.6 we obtain

|γ1| =
∣∣∣∣sw1

2t2

∣∣∣∣ ≤ s

2|t2|
and |γ2| =

1

2

∣∣∣∣2sw2 + s2w2
1

3 (t3 − 1)
− s2w2

1

2t22

∣∣∣∣ .
Rewriting the expression of w2 in terms of w1 according to Lemma 2.5, using the
triangle’s inequality in the above last relation, and the notations x := |w1|, y := |ξ|,
with x, ξ ∈ [0, 1], since s > 0 we obtain

|γ2| ≤
2s
(
1 + x2

)
y + s2x2

6 |t3 − 1|
+
s2x2

4t22
=: G(x, y). (4.3)
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Therefore

∂

∂y
G(x, y) =

s
(
1 + x2

)
3 |t3 − 1|

> 0, (x, y) ∈ [0, 1]× [0, 1],

hence, for each x ∈ [0, 1] we have

max
{
G(x, y) : y ∈ [0, 1]

}
= G(x, 1) =

2s
(
1 + x2

)
+ s2x2

6 |t3 − 1|
+
s2x2

4t22
=: k(x). (4.4)

Since

k′(x) =
sx(sx+ 2)

3 |t3 − 1|
+
s2x

2t22
≥ 0, x ∈ [0, 1],

the function k is increasing on [0, 1], and combining (4.3) with (4.4) it follows

|γ2| ≤ k(1) =
s(s+ 4)

6 |t3 − 1|
+

s2

4t22
,

and the proof is complete. �

The following two results, where we determined the upper bounds for the
Toeplitz determinant |T2,1 (γf )| for the classes LsSqp ∩S and LsCqp ∩S are immediately
consequences of the previous two theorems.

Corollary 4.3. For the class LsSqp ∩ S the next inequality holds:

|T2,1 (γf )| ≤
(

s

[2]p,q

)2

+

(
s(s+ 4)

2
∣∣[3]p,q − 1

∣∣ +
s2(

[2]p,q
)2
)2

.

Proof. Since

|T2,1 (γf )| = |γ21 − γ22 | ≤ |γ21 |+ |γ22 |

from the inequalities of Theorem 4.1 we get

|T2,1 (γf )| ≤
(
s

t2

)2

+

(
s(s+ 4)

2 |t3 − 1|
+
s2

t22

)2

.

�

Similarly, using the inequalities obtained in Theorem 4.2 it’s easy to prove the
next result:

Corollary 4.4. For the class LsCqp ∩ S the next inequality holds:

|T2,1 (γf )| ≤
(

s

2 [2]p,q

)2

+

(
s(s+ 4)

6
∣∣[3]p,q − 1

∣∣ +
s2

4
(
[2]p,q

)2
)2

.
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5. Concluding remarks

The quantum calculus is one of the important tools in many area of mathematics,
physics and in the areas of ordinary fractional calculus, optimal control problems,
quantum physics, operator theory, and q–transform analysis, and in this paper we
made a connection with some subclasses of analytic functions.

In addition, the logarithmic coefficients play an important role for different es-
timates in the theory of univalent functions. Many researchers have found the upper
bounds for the second and third order Toeplitz determinants and logarithmic coeffi-
cients for various subclasses of analytic function. The present investigation deals with
the subclasses of symmetric function using the (p, q)–calculus for some functions de-
fined by subordinations to the limaçon domain, and we determined upper bounds for
some special symmetric Toeplitz determinants containing the coefficients and the log-
arithmic coefficients of the functions belonging to these classes. We obtained bounds
for the second and third order Toeplitz determinants and Toeplitz determinants for
logarithmic coefficients for the classes LsSqp , LsCqp , and LsSqp∩S, LsCqp∩S, respectively,
defined by the post-quantum operators and subordinated to Ls function.

We hope that these results could be important in several fields related to mathe-
matics, engineering, science and technology, and we encourage the researchers to find
the sharp estimates for third order Toeplitz determinants and Toeplitz determinants
for logarithmic coefficients.
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[16] Parida, L., Bulboacă, T., Sahoo, A.K., Hankel determinants for a new subclasses of
analytic functions involving a linear operator, Kragujevac J. Math., 46(2022), no. 4,
605–616, DOI:10.46793/KgJMat2204.605P.

[17] Sakaguchi, K., On a certain univalent mapping, J. Math. Soc. Japan, 11(1959), 72–75.

[18] Sudharsan, T.V., Vijayalakshmi, S.P., Stephen, B.A., Third Hankel determinant for
a subclass of analytic univalent functions, Malaya J. Mat., 2(2014), no. 4, 438–444,
https://doi.org/10.26637/mjm204/011.

[19] Thomas, D.K., Abdul Halim, S., Toeplitz matrices whose elements are the coefficients
of starlike and close-to-convex functions, Bull. Malays. Math. Sci. Soc., 40(2017), no. 4,
1781–1790, https://doi.org/10.1007/s40840-016-0385-4.

[20] Ye, K., Lim, L.-H., Every matrix is a product of Toeplitz matrices, Found. Comput.
Math., 16(2016), 577–598, DOI 10.1007/s10208-015-9254-z.

[21] Yunus, Y., Abdul Halim, S., Akbarally, A.B., Subclass of starlike functions
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Generalization of Jack’s lemma for functions with
fixed initial coefficient and its applications

Rogayeh Alavi, Saied Shams and Rasoul Aghalary

Abstract. In this paper, by using the theory of differential subordination, we will
generalize Jack’s lemma for functions with fixed initial coefficient. Then exten-
sions of the well-known open-door lemma for analytic and meromorphic functions
with fixed initial coefficient are given. Also we consider some applications of the
extension of Jack’s lemma.
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Keywords: Analytic functions, differential subordination, fixed initial coefficient,
meromorphic functions, Nunokawa’s lemma, open-door lemma.

1. Introduction and preliminaries

Let H denote the set of analytic functions in the open unit disk U = {z ∈ C :
|z| < 1}. We define

H[a, n] = {f ∈ H : f(z) = a+ anz
n + an+1z

n+1 + . . . },
where n is a positive integer number and a ∈ C. Suppose n ∈ N, we introduce the
subclass An of H as follows:

An = {f ∈ H : f(z) = z + an+1z
n+1 + an+2z

n+2 + . . . }.
In addition to, in particular, we set A1 = A. Also we define the subclass S of A
consisting of univalent functions in the open unit disk U. A function f ∈ A is said to
be starlike of order 0 ≤ γ < 1, written f ∈ S∗(γ), if it satisfies

Re
zf ′(z)

f(z)
> γ (z ∈ U).
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Especially we set S∗(0) ≡ S∗. Now for analytic functions in U with fixed initial
coefficient, we define the class Hβ [a, n] as follows:

Hβ [a, n] = {f ∈ H : f(z) = a+ βzn + an+1z
n+1 + . . . },

where n is a positive integer number, a ∈ C and β ∈ C is a fixed number. Moreover
we assume

An,b = {f ∈ H : f(z) = z + bzn+1 + an+2z
n+2 + . . . },

where n is a positive integer number and b ∈ C is a fixed number. Also we set
Ab = A1,b. Let f and g be in H. We say that the function f is subordinate to g,
denoted by f ≺ g, if there exists an analytic function in U as ω, with ω(0) = 0 and
|ω(z)| ≤ |z| < 1, such that f(z) = g(ω(z)). Moreover if g is an univalent function in
U , then f ≺ g if and only if f(0) = 0 and f(U) ⊂ g(U).

It is important to note that coefficients of analytic functions play important role
in geometric functions theory. For example, the bound on the second coefficient of an
univalent function leads to well-known results such as growth, distortion and covering
theorems (see [8]). Recently the subject of second order differential subordination for
analytic functions with fixed initial coefficient was considered by Ali et al.[2]. Then
in the papers [7, 6, 9] the authors by applying first order differential subordination
for functions with fixed initial coefficient related to univalent functions, obtained
some good results.

Furthermore in [1], the problem of radius of starlikeness for analytic functions
with fixed second coefficient is discussed. Also, Amani et al., [3, 4] have obtained some
results for functions with fixed initial coefficient.

Motivated by [3] and [4], in this paper we extend the famous Jake’s Lemma for
analytic functions with fixed second coefficient.

We organize the contents as follows. In Section 2, we will bring extension of
Jack’s Lemma and open-door lemma for analytic and meromophic functions with
fixed initial coefficient and then we include some corollaries from them. In Section
3, we apply the results in the sections 2, for obtaining some sufficient conditions for
starlikeness and carathedory functions.

In the continuation of work, for proving main results, we require to express a
definition and a basic lemma.

Definition 1.1. (see [8]) Let Q denote the set of functions q that are analytic and
injective on U\E(q), where

E(q) :=

{
ζ ∈ ∂U : lim

z→ζ
q(z) =∞

}
,

and are such that q′(ζ) 6= 0 for ζ ∈ ∂U\E(q).
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Lemma 1.2. (see [2]) Let q ∈ Q with q(0) = a and p ∈ Hc[a, n] with p(z) 6≡ a. If there
exist a point z0 ∈ U such that p(z0) ∈ q(∂U) and p({z : |z| < |z0|}) ⊂ q(U) then

z0p
′(z0) = mζ0q

′(ζ0) (1.1)

and

Re

{
1 +

z0p
′′(z0)

p′(z0)

}
≥ mRe

{
1 +

ζ0q
′′(ζ0)

q′(ζ0)

}
(1.2)

where q−1(p(z0)) = ζ0 = eiθ0 and

m ≥ n+
|q′(0)| − |c||z0|n

|q′(0)|+ |c||z0|n
(1.3)

2. Main results

In the beginning, we prove extension of Jake’s Lemma [5] as follows:

Theorem 2.1. Let c = reit with − πα
α+λ < t < πλ

α+λ , where 0 < α ≤ 1 and 0 < λ ≤ 1.

Also let 0 ≤ β ≤ (α + λ)|c|α+λ
2 cos(t − π λ−α

2(λ+α) ) and p ∈ Hβ [c
α+λ

2 , n] with p(z) 6= 0

in U. If there exist elements z1 ∈ U and z2 ∈ U such that |z1| = |z2| = r and for all
z ∈ Ur = {z ∈ C, |z| < r}

− πα

2
= arg p(z1) < arg p(z) < arg p(z2) =

πλ

2
, (2.1)

then we have

z1p
′(z1) = −iλ+ α

2
m1p(z1), (2.2)

and

z2p
′(z2) = i

λ+ α

2
m2p(z2), (2.3)

where

m1 >

n+
|c|α+λ

2 cos(t− π λ−α
2(λ+α) )− β

λ+α

|c|α+λ
2 cos(t− π λ−α

2(λ+α) ) + β
λ+α

 1 + sin(t− π λ−α
2(λ+α) )

cos(t− π λ−α
2(λ+α) )

, (2.4)

and

m2 >

n+
|c|α+λ

2 cos(t− π λ−α
2(λ+α) )− β

λ+α

|c|α+λ
2 cos(t− π λ−α

2(λ+α) ) + β
λ+α

 1− sin(t− π λ−α
2(λ+α) )

cos(t− π λ−α
2(λ+α) )

. (2.5)

Proof. Let us define

q(z) = exp

{
πi(λ− α)

4

}(
c1 + c̄1z

1− z

)λ+α
2

with c1 = c exp
{
−πi(λ−α)

2(λ+α)

}
. It is easy to find that q is analytic in U, q(0) = c

λ+α
2 and

−πα
2
< arg q(U) <

πλ

2
,
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moreover q ∈ Q and E(q) = 1. Upon assumption and the properties of the function
q, we have p(z1) ∈ q(∂U) and p(z2) ∈ q(∂U), also p({z : |z| < r}) ⊂ q(U). Define

p1(z) = exp

{
−πi(λ− α)

2(λ+ α)

}
{p(z)}

2
λ+α (z ∈ U),

and

q1(z) =
c1 + c̄1z

1− z
(z ∈ U),

with c1 = c exp
{
−πi(λ−α)

2(λ+α)

}
. Then it can be readily considered that q1 ∈ Q, q1(0) =

p1(0), q1(U) = {w ∈ C : Rew > 0}( note that Rec1 > 0) and p1({z : |z| < r}) ⊂ q1(U).
Also p1(z1) = −ix1 and p1(z2) = ix2, with x1, x2 > 0. By means of calculating the
inverse of q1 and obtaining the derivative of q1, we reach to

q−1
1 (z) =

z − c1
z + c̄1

and q′1(z) =
2Rec1

(1− z)2
.

On the other hand, since p ∈ Hβ [c
α+λ

2 , n], we have p1 ∈ Hc2 [a, n], with

a = c exp

{
πi(α− λ)

2(λ+ α)

}
= c1 and c2 =

2c
2−α−λ

2 β

α+ λ
exp

{
πi(α− λ)

2(λ+ α)

}
.

Hence by applying Lemma 1.1 we deduce that there exist complex numbers ζ1 and
ζ2 in ∂U such that p1(z1) = q1(ζ1) and p1(z2) = q1(ζ2) and also

z1p
′
1(z1) = k1ζ1q

′
1(ζ1) and z2p

′
1(z2) = k2ζ2q

′
1(ζ2),

where

k1 ≥ n+
|q′1(0)| − |c2||z1|n

|q′1(0)|+ |c2||z1|n
and k2 ≥ n+

|q′1(0)| − |c2||z2|n

|q′1(0)|+ |c2||z2|n
.

Since p1(z1) = −ix1 with x1 > 0 and ζ1 = q−1
1 (p1(z1)) = ix1+c1

ix1−c̄1 , we have

z1p
′(z1)

p(z1)
=
λ+ α

2

z1p
′
1(z1)

p1(z1)

=
λ+ α

2

k1ζ1q
′
1ζ1)

p1(z1)

= k1
λ+ α

2

ix1 + c1
ix1 − c̄1

× 1

−ix1
× 2Rec1

(1− ix1+c1
ix1−c̄1 )2

= k1
λ+ α

2

1

ix1
× x2

1 + 2x1Imc1 + |c1|2

2Rec1

= −ik1

(
λ+ α

2

)
x2

1 + 2|c|x1 sin(t− π λ−α
2(λ+α) ) + |c|2

2|c|x1 cos(t− π λ−α
2(λ+α) )

.

Set

f(x) =
x2 + 2|c|x sin(t− π λ−α

2(λ+α) ) + |c|2

2|c|x cos(t− π λ−α
2(λ+α) )

(x > 0).



Generalization of Jack’s lemma 321

By computing, it can be easily observed that

min
x>0

f(x) = f(|c|) =
1 + sin(t− π λ−α

2(λ+α) )

cos(t− π λ−α
2(λ+α) )

.

Now using q′1(0) = 2|c| cos(t− π λ−α
2(λ+α) ) and |c2| = 2β|c|

2−α−λ
2

λ+α , we obtain

m1 = k1f(x1) >

n+
|c|α+λ

2 cos(t− π λ−α
2(λ+α) )− β

λ+α

|c|α+λ
2 cos(t− π λ−α

2(λ+α) ) + β
λ+α

 1 + sin(t− π λ−α
2(λ+α) )

cos(t− π λ−α
2(λ+α) )

Thus assertions (2.2) and (2.4) hold. Now similar to the procedure of the former case,
since p1(z2) = ix2, with x2 > 0 and ζ2 = q−1

1 (ix2) = ix2−c1
ix2+c̄1

we can obtain

z2p
′(z2)

p(z2)
=
λ+ α

2

z2p
′
1(z2)

p1(z2)

=
λ+ α

2

k2ζ2q
′
1ζ2)

p1(z2)

= k2
λ+ α

2

ix2 − c1
ix2 + c̄1

× 1

ix2
× 2Rec1

(1− ix2−c1
ix2+c̄1

)2

= k2
λ+ α

2

1

ix2
× −x

2
2 + 2x2Imc1 − |c1|2

2Rec1

= ik2

(
λ+ α

2

)
x2

2 − 2|c|x2 sin(t− π λ−α
2(λ+α) ) + |c|2

2|c|x2 cos(t− π λ−α
2(λ+α) )

.

Set

g(x) =
x2 − 2|c|x sin(t− π λ−α

2(λ+α) ) + |c|2

2|c|x cos(t− π λ−α
2(λ+α) )

(x > 0).

By computing, we have

min
x>0

g(x) = g(|c|) =
1− sin(t− π λ−α

2(λ+α) )

cos(t− π λ−α
2(λ+α) )

.

Thus in view of q′1(0) = 2|c| cos(t − π λ−α
2(λ+α) ) and |c2| = 2β|c|

2−α−λ
2

λ+α , as the former

case, we can conclude assertions (2.3) and (2.5). �

Remark 2.2. Note that the above theorem extends Theorem 2.1 obtained in [3].

By applying the same trend of Theorem 2.1 and putting α = λ in this theorem,
we obtain

Corollary 2.3. Let c = reit be a complex number with Rec > 0. Let 0 ≤ β ≤ 2λ|c|λ cos t
and p ∈ Hβ [cλ, n] with p(z) 6= 0 in U. If there exists a point z0 ∈ U such that

| arg p(z)| < λπ

2
for |z| < |z0|,
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and p(z0)
1
λ = ±ia, where a > 0 and 0 < λ ≤ 1, Then we have

z0p
′(z0) = imλp(z0),

where

m >
a2 − 2a|c|sint+ |c|2

2a|c| cos t

(
n+
|c|λ cos t− β

2λ

|c|λ cos t+ β
2λ

)
when arg p(z0) =

λπ

2
,

and

m < −a
2 + 2a|c|sint+ |c|2

2a|c| cos t

(
n+
|c|λ cos t− β

2λ

|c|λ cos t+ β
2λ

)
when arg p(z0) =

−λπ
2

.

By putting λ = 1 in Corollary 2.1, we have

Corollary 2.4. Let c = reit be a complex number with Rec > 0. Let 0 ≤ β ≤ 2Rec and
p ∈ Hβ [c, n]. If there exists a point z0 ∈ U such that

| arg p(z)| < π

2
for |z| < |z0|,

and p(z0) = ±ia where a > 0, Then we have

z0p
′(z0) = imp(z0),

where

m >
a2 − 2aImp(0) + |p(0)|2

2aRep(0)

(
n+

2Rcp(0)− β
2Rcp(0) + β

)
when arg p(z0) =

π

2
,

and

m < −a
2 + 2aImp(0) + |p(0)|2

2aRep(0)

(
n+

2Rcp(0)− β
2Rcp(0) + β

)
when arg p(z0) = −π

2
.

Remark 2.5. Letting p ∈ H[c, 1] in corollary 2.2 and using the corrections needed in
this Corollary, one can gain Theorem 2.1 in [11].

By setting c = 1 in Corollary 2.2, we attain

Corollary 2.6. Let p ∈ Hβ [1, n] and 0 ≤ β ≤ 2. If there exists a point z0 ∈ U such
that

| arg p(z)| < π

2
for |z| < |z0|,

and p(z0) = ±ia where a > 0, Then we have

z0p
′(z0) = imp(z0),

where

m >
1

2
(a+ a−1)

(
n+

2− β
2 + β

)
when arg p(z0) =

π

2
,

and

m < −1

2
(a+ a−1)

(
n+

2− β
2 + β

)
when arg p(z0) = −π

2
.

Remark 2.7. Letting p ∈ H[1, 1] in Corollary 2.3 and implying the alternations re-
quired in this corollary, we can obtain Theorem 1 in [10].
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Theorem 2.8. (extension of open door Lemma) Let c = reit with − πα
α+λ < t < πλ

α+λ ,

where 0 < α ≤ 1 and 0 < λ ≤ 1. Also let 0 ≤ β ≤ (α + λ)|c|α+λ
2 cosB and p ∈

Hβ [c
α+λ

2 , n] with p(z) 6= 0 in U. If

γp(z)
2

α+λ +
2

α+ λ

zp′(z)

p(z)
6= iy (z ∈ U),

for all y ∈ R where

y >

√
M

cosB
(
√
M + 2|c| cosB −

√
M sinB),

or

y < −
√
M

cosB
(
√
M + 2|c| cosB +

√
M sinB),

then

− απ

2
< arg p(z) <

λπ

2
(z ∈ U), (2.6)

where γ = exp{−iπ λ−α
2(λ+α)}, B = t−π λ−α

2(λ+α) and M = n+
|c|

α+λ
2 cos(t−π λ−α

2(λ+α)
)− β

λ+α

|c|
α+λ

2 cos(t−π λ−α
2(λ+α)

)+ β
λ+α

.

Proof. Let us set

p1(z) = exp

{
−πi(λ− α)

2(λ+ α)

}
{p(z)}

2
λ+α (z ∈ U),

and

q1(z) =
c1 + c̄1z

1− z
(z ∈ U),

where c1 = c exp
{
−πi(λ−α)

2(λ+α)

}
. We know that p1 ∈ Hc2 [a, n], with

a = c exp

{
πi(α− λ)

2(λ+ α)

}
= c1 and c2 =

2c
2−α−λ

2 β

α+ λ
exp

{
πi(α− λ)

2(λ+ α)

}
.

and p1(0) = q1(0). If p(U) is not contained in the sector {w : −πα2 < argw < πλ
2 },

then p1U) is not contained in the right half plane Rew > 0. On the other hand
q1(U) = {w : Rew > 0}, thus we follow that p1 6≺ q1, then there exists a point
z1 ∈ U such that p1({z : |z| < |z1|}) ⊂ q1(U) and p1(z1) = −ix1 or p1(z1) = ix2 with
x1, x2 > 0. Let p1(z1) = −ix1, with x1 > 0. Similar to the argument of Theorem 2.1
we have

z1p
′(z1)

p(z1)
= −ik1

(
λ+ α

2

)
x2

1 + 2|c|x1 sin(t− π λ−α
2(λ+α ) + |c|2

2|c|x1 cos(t− π λ−α
2(λ+α) )

,
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where k1 > M . Then it yields

Im

{
γp(z1)

2
α+λ +

2

α+ λ

zp′(z1)

p(z1)

}
= Im

{
−ix1 − ik1

x2
1 + 2|c|x1 sin(t− π λ−α

2(λ+α) ) + |c|2

2|c|x1 cos(t− π λ−α
2(λ+α) )

}

= −(x1 + k1

x2
1 + 2|c|x1 sin(t− π λ−α

2(λ+α) ) + |c|2

2|c|x1 cos(t− π λ−α
2(λ+α) )

)

< −(x1 +M
x2

1 + 2|c|x1 sin(t− π λ−α
2(λ+α) ) + |c|2

2|c|x1 cos(t− π λ−α
2(λ+α) )

)

Suppose

f(x) = x+M
x2 + 2|c|x sin(t− π λ−α

2(λ+α) ) + |c|2

2|c|x cos(t− π λ−α
2(λ+α) )

(x > 0).

By computing, we can readily find that

min
x>0

f(x) = f

(
|c|
√
M√

M + 2|c| cosB

)
=

√
M

cosB

(√
M + 2|c| cosB +

√
M sinB

)
,

this implies that

Im

{
γp(z1)

2
α+λ +

2

α+ λ

z1p
′(z1)

p(z1)

}
< −

√
M

cosB
(
√
M + 2|c| cosB +

√
M sinB),

where γ = exp{−iπ λ−α
2(λ+α)}, B = t−π λ−α

2(λ+α) and M = n+
|c|

α+λ
2 cos(t−π λ−α

2(λ+α)
)− β

λ+α

|c|
α+λ

2 cos(t−π λ−α
2(λ+α)

)+ β
λ+α

.

On the other hand we have

Re

{
γp(z1)

2
α+λ +

2

α+ λ

z1p
′(z1)

p(z1)

}
= 0,

that this contradicts with the hypothesis. For the case p1(z1) = ix2, Similar to the
argument of Theorem 2.1 we have

z1p
′(z1)

p(z1)
= ik2

(
λ+ α

2

)
x2

2 − 2|c|x2 sin(t− π λ−α
2(λ+α ) + |c|2

2|c|x2 cos(t− π λ−α
2(λ+α) )

,
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where k2 > M . Then it yields

Im

{
γp(z1)

2
α+λ +

2

α+ λ

zp′(z1)

p(z1)

}
= Im

{
ix2 + ik2

x2
2 − 2|c|x2 sin(t− π λ−α

2(λ+α) ) + |c|2

2|c|x2 cos(t− π λ−α
2(λ+α) )

}

= x2 + k2

x2
2 − 2|c|x2 sin(t− π λ−α

2(λ+α) ) + |c|2

2|c|x2 cos(t− π λ−α
2(λ+α) )

> x2 +M
x2

2 − 2|c|x2 sin(t− π λ−α
2(λ+α) ) + |c|2

2|c|x2 cos(t− π λ−α
2(λ+α) )

Suppose

g(x) = x+M
x2 − 2|c|x sin(t− π λ−α

2(λ+α) ) + |c|2

2|c|x cos(t− π λ−α
2(λ+α) )

(x > 0).

By computing we can easily conclude that

min
x>0

g(x) = g

(
|c|
√
M√

M + 2|c| cosB

)
=

√
M

cosB

(√
M + 2|c| cosB −

√
M sinB

)
,

thus we have

Im

{
γp(z1)

2
α+λ +

2

α+ λ

zp′(z1)

p(z1)

}
>

√
M

cosB
(
√
M + 2|c| cosB −

√
M sinB),

where γ = exp{−iπ λ−α
2(λ+α)}, B = t−π λ−α

2(λ+α) and M = n+
|c|

α+λ
2 cos(t−π λ−α

2(λ+α)
)− β

λ+α

|c|
α+λ

2 cos(t−π λ−α
2(λ+α)

)+ β
λ+α

.

On the other hand we have

Re

{
γp(z1)

2
α+λ +

2

α+ λ

z1p
′(z1)

p(z1)

}
= 0,

that this contradicts with the hypothesis. Hence the assertion (2.6) holds. �

Remark 2.9. we note that Theorem 2.2 extends Theorem 2.1 in [4]

Also we can write the other version of extension of open door Lemma as follows:

Corollary 2.10. Let c = reit be a complex number with Rec > 0. Also Let 0 < λ ≤ 1,
0 ≤ β ≤ 2λ|c|λ cos t and p ∈ Hβ [cλ, n] with p(z) 6= 0 in U. If

p(z)
1
λ +

1

λ

zp′(z)

p(z)
6= iy (z ∈ U),

for all y ∈ R, where

y >

√
M

cos t

(√
M + 2|c| cos t−

√
M sin t

)
,

or

y < −
√
M

cos t

(√
M + 2|c| cos t+

√
M sin t

)
,
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then

−λπ
2
< arg p(z) <

λπ

2
(z ∈ U),

where M = n+
|c|λ cos t− β

2λ

|c|λ cos t+ β
2λ

.

Proof. The proof of this corollary is similar to that of Theorem 2.2 (put α = λ), so
we omit its details. �

Corollary 2.11. Let f ∈ An,b with f(z)f ′(z) 6= 0 in U− {0}. Also let α+ λ = 2
t1

with

t1 ≥ 1 and 0 ≤ b ≤ 2
n cos{−πt1(λ−α)

4 }. If

(γ − 1)
zf ′(z)

f(z)
+ (1 +

zf ′′(z)

f ′(z)
) 6= iy (z ∈ U),

for all y ∈ R where

y >

√
M

cos
{
−πt1(λ−α)

4

} (√M + cos

{
−πt1(λ− α)

4

}
−
√
M sin

{
−πt1(λ− α)

4

})
,

or

y < −
√
M

cos
{
−πt1(λ−α)

4

} (√M + cos

{
−πt1(λ− α)

4

}
+
√
M sin

{
−πt1(λ− α)

4

})
,

then

−π
2
αt1 < arg

zf ′(z)

f(z)
<
π

2
λt1 (z ∈ U),

where γ = exp(−iπ t1(λ−α)
4 ) and M = n+

cos
{
−πt1(λ−α)

4

}
−nb2

cos
{
−πt1(λ−α)

4

}
+nb

2

.

Proof. Let p(z) = ( zf
′(z)

f(z) )
1
t1 , then we have p ∈ Hnb

t1

[1, n] with p(z) 6= 0 in U. Then

with applying Theorem 2.2 and with letting c = 1, t = 0, α + λ = 2
t1

and β = nb
t1

in
this theorem, the proof is complete. �

Theorem 2.12. Let c = reit with − πα
α+λ < t < πλ

α+λ , where 0 < α ≤ 1 and 0 < λ ≤ 1.

Also let M > 2|c|
cosB , 0 ≤ β ≤ (α + λ)|c|α+λ

2 cosB and p ∈ Hβ [c
α+λ

2 , n] with p(z) 6= 0
in U. If

γp(z)
2

α+λ − 2

α+ λ

zp′(z)

p(z)
6= iy (z ∈ U),

for all y ∈ R where

y >

√
M

cosB
(
√
M − 2|c| cosB +

√
M sinB),

or

y < −
√
M

cosB
(
√
M − 2|c| cosB −

√
M sinB),

then

−απ
2
< arg p(z) <

λπ

2
(z ∈ U),
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where γ = exp{−iπ λ−α
2(λ+α)}, B = t−π λ−α

2(λ+α) and M = n+
|c|

α+λ
2 cos(t−π λ−α

2(λ+α)
)− β

λ+α

|c|
α+λ

2 cos(t−π λ−α
2(λ+α)

)+ β
λ+α

.

Proof. The proof of this theorem is similar to Theorem 2.2, and we omit its details. �

Corollary 2.13. Let f(z) = 1
z + βzn + . . . be a meromorphic function with f ′f 6= 0 in

U− {0}. Also let − 2
(n+1) ≤ β ≤ 0 and M > 2. If

−1− zf ′′(z)

f ′(z)
6= iy (z ∈ U),

for all y ∈ R where

y >
√
M(
√
M − 2),

or

y < −
√
M(
√
M − 2),

then we have

−π
2
< arg

{
−zf

′(z)

f(z)

}
<
π

2
(z ∈ U),

where M = (n+ 1) + 2+(n+1)β
2−(n+1)β .

Proof. Let p(z) = − zf
′(z)

f(z) , then p ∈ Hβ1
[1, n + 1] with β1 = −(n + 1)β > 0. With a

simple computation we obtain

p(z)− zp′(z)

p(z)
= −1− zf ′′(z)

f ′(z)
(z ∈ U).

Then with using Theorem 2.3 and with letting c = 1, t = 0, α = λ = 1 and also
with substituting β by β1 in this theorem, we obtain this result and the proof is
complete. �

3. Further applications related to extension of Jake’s Lemma

Corollary 3.1. Let 0 < λ ≤ 1, c ∈ C and β1 be a real number such that (cλ−β1)
1
λ = reit

with Re(cλ − β1)
1
λ > 0. Suppose 0 ≤ β ≤ 2λ|cλ − β1| cos t and p ∈ Hβ [cλ, n] with

p(z) 6= β1 in U. If there exists a point z0 ∈ U such that

| arg(p(z)− β1)| < λπ

2
for |z| < |z0|,

and (p(z0)− β1)
1
λ = ±ia, where a > 0, Then we have

z0p
′(z0)

p(z0)− β1
= imλ,

where for arg{p(z0)− β1} = λπ
2

m >
a2 − 2aIm(cλ − β1)

1
λ + |cλ − β1|

2
λ

2aRe(cλ − β1)
1
λ

(
n+
|cλ − β1| cos t− β

2λ

|cλ − β1| cos t+ β
2λ

)
,
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and for arg{p(z0)− β1} = −λπ2

m < −a
2 + 2aIm(cλ − β1)

1
λ + |cλ − β1|

2
λ

2aRe(cλ − β1)
1
λ

(
n+
|cλ − β1| cos t− β

2λ

|cλ − β1| cos t+ β
2λ

)
.

Proof. It is sufficient that we consider q(z) = p(z) − β1. Then q(z) ∈ Hβ [cλ1 , n] with

c1 = (cλ − β1)
1
λ . Also from the hypothesis we have Rec1 > 0 and there exists a point

z0 ∈ U such that | arg q(z)| < λπ
2 for |z| < |z0| and q(z0)

1
λ = ±ia. Now using Corollary

2.1 for q, we get the result and the proof is complete. �

By using Corollary 3.1, we obtain

Corollary 3.2. Let f ∈ An,b with f(z)
z 6= β in U. Suppose 0 ≤ β < 1 and 0 ≤ b ≤

2(1− β). If

zf ′(z)− f(z)

f(z)− βz
6= is (z ∈ U),

for all s ∈ R where |s| > n+ 2(1−β)−b
2(1−β)+b , then we have Re f(z)

z > β.

Proof. Let us define p(z) = f(z)
z , then p ∈ Hb[1, n]. Let there exists a point z0 ∈ U

such that Rep(z) > β for |z| < |z0| and Rep(z0) = β, so | arg (p(z)− β)| < π
2 for

|z| < |z0| and p(z0) = β ± ia, where a > 0. Now applying Corollary 3.1, we have

z0f
′(z0)− f(z0)

f(z0)− βz0
=

z0p
′(z0)

p(z0)− β
= im (z ∈ U),

where for p(z0)− β = ia

m >
a2 − (1− β)2

2a(1− β)

(
n+

2(1− β)− b
2(1− β) + b

)
≥
(
n+

2(1− β)− b
2(1− β) + b

)
,

and for p(z0)− β = −ia

m < −a
2 − (1− β)2

2a(1− β)

(
n+

2(1− β)− b
2(1− β) + b

)
≤ −

(
n+

2(1− β)− b
2(1− β) + b

)
,

which contradicts with the hypothesis. Hence the proof is complete. �

Also similar to Corollary 3.1, we can conclude

Corollary 3.3. Let 0 < λ ≤ 1, c ∈ C and β1 be a real number such that (β1−c)
1
λ = reit

with Re(β1 − c)
1
λ > 0. Suppose −2λ|β1 − c| cos t ≤ β ≤ 0 and p ∈ Hβ [c, n] with

p(z) 6= β1 in U. If there exists a point z0 ∈ U such that

| arg(β1 − p(z))| <
λπ

2
for |z| < |z0|,

and (β1 − p(z0))
1
λ = ±ia, where a > 0, Then we have

z0p
′(z0)

p(z0)− β1
= imλ,
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where for arg{β1 − p(z0)} = λπ
2

m >
a2 − 2aIm(β1 − c)

1
λ + |β1 − c|

2
λ

2aRe(β1 − c)
1
λ

(
n+
|β1 − c| cos t+ β

2λ

|β1 − c| cos t− β
2λ

)

and for arg{β1 − p(z0)} = −λπ2

m < −a
2 + 2aIm(β1 − c)

1
λ + |β1 − c|

2
λ

2aRe(β1 − c)
1
λ

(
n+
|β1 − c| cos t+ β

2λ

|β1 − c| cos t− β
2λ

)
.

Proof. It is sufficient to consider q(z) = β1 − p(z). The rest of the proof is similar to
the proof of Corollary 3.1. �

The same as Corollary 3.2 and by applying Corollary 3.3, we can obtain the
following Corollary.

Corollary 3.4. Let β > 1 and −2(β − 1) ≤ b ≤ 0. Suppose f ∈ An,b with f(z)
z 6= β. in

U. If

zf ′(z)− f(z)

f(z)− βz
6= is (z ∈ U),

for all s ∈ R where |s| > n+ 2(β−1)+b
2(β−1)−b , then we have

Re
f(z)

z
< β.

Theorem 3.5. Let c, β1 and γ be real numbers with cα − β1 > 0. Suppose γ > 0,
0 < α ≤ 1, 0 ≤ β1 < 1 and 0 ≤ β ≤ 2α(cα − β1). If p ∈ Hβ [cα, n] with p(z) 6= β1 in
U and

| arg(p(z)− β1 + γzp′(z))| ≤ π

2
(α+

2

π
tan−1(αγs)) (z ∈ U),

then

| arg(p(z)− β1)| < π

2
α ∈ U,

where s = n+
(

(cα−β1)− β
2α

(cα−β1)+ β
2α

)
.

Proof. If there exists a point z0 ∈ U such that | arg(p(z) − β1)| < π
2α for |z| < |z0|

and | arg(p(z0)− β1)| = π
2α, then from Corollary 3.1 we have

z0p
′(z0)

p(z0)− β1
= iαm,

where

|m| >

(
n+

(cα − β1)− β
2α

(cα − β1) + β
2α

)
= s.
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Thus for the case arg(p(z0)− β1) = π
2α we have

arg{p(z0)− β1 + γz0p
′(z0)} = arg

{
(p(z0)− β1)(1 + γ

z0p
′(z0)

p(z0)− β1
)

}
=
π

2
α+ arg{1 + iγαm}

>
π

2
α+ tan−1(γαs)

which contradicts with the hypothesis. Also for the case arg(p(z0) − β1) = −π2α we
have

arg{p(z0)− β1 + γz0p
′(z0)} = arg

{
(p(z0)− β1)(1 + γ

z0p
′(z0)

p(z0)− β1
)

}
= −π

2
α+ arg{1 + iγαm}

< −(
π

2
α+ tan−1(γαs))

which contradicts with the hypothesis. Hence the proof is complete. �

By putting c = γ = α = n = 1 in Theorem 3.1 we have

Corollary 3.6. Let 0 ≤ β1 < 1 be a real number and 0 ≤ β ≤ 2(1 − β1). If p(z) =
1 + βz + . . . with p(z) 6= β1 in U and

| arg(p(z)− β1 + zp′(z))| ≤ π

2
+ tan−1

{
4− 4β1

(2− 2β1) + β

}
(z ∈ U),

then

Rep(z) > β1 z ∈ U.

Remark 3.7. Letting p ∈ H[1, 1] in the Corollary 3.5 and applying the reforms required
in this corollary, we can obtain Theorem 3 in [13].

Theorem 3.8. Let −λ < b < λ, λ > 0 and k > 0. Also let p ∈ Hβ [1, n] with p(z) 6= 2λ
b+λ

in U and 0 ≤ β ≤ 1− b
λ . If for all z ∈ U

Re

{
p(z) + k

zp′(z)

p(z)

}
≤


Mk λ+b

2(λ−b) if − λ < b ≤ 0,M ≥ 2(λ−b)
k(λ+b)

Mk
2

λ−b
λ+b + 2λ

λ+b if λ
1+kM ≤ b < λ

Mk
2

λ−b
λ+b if 0 < b < λ

1+kM ,M ≥ 2(λ+b)
k(λ−b) ,

then we have ∣∣∣∣p(z)− λ

b+ λ

∣∣∣∣ < λ

b+ λ
z ∈ U,

where M = n+
λ−b
λ −β
λ−b
λ +β

.

Proof. Let us define

q(z) =
λ(1− z)
λ− bz

.
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One can easily observe that q ∈ Q with q(0) = p(0) = 1 and q maps the open unit
disc U onto the disk with the center λ

λ+b and the radius λ
λ+b . Moreover

q−1(z) =
λ(z − 1)

bz − λ
and q′(z) =

λ(b− λ)

(λ− bz)2
.

We claim that p ≺ q, otherwise if p 6≺ q, then there exist points z0 ∈ U and ζ0 ∈ ∂U
such that p(z0) = q(ζ0) and p({z : |z| < |z0|}) ⊂ q(U). Therefore from lemma 1.1 we
have

z0p
′(z0) = mζ0q

′(ζ0).

where

m ≥ n+
|q′(0)| − |β||z0|n

|q′(0)|+ |β||z0|n
> n+

λ− b− βλ
λ− b+ βλ

= M.

Since

ζ0 = q−1(p(z0)) =
λ(p(z0)− 1)

bp(z0)− λ
,

we have

z0p
′(z0) = −m (1− p(z0))(λ− bp(z0))

(λ− b)
.

Set

p(z0) =
λ

λ+ b
+

λ

λ+ b
eit,

for a fix real t. Using the relations obtained at the above and with a simple compu-
tation we deduce that

Re

{
p(z0) + k

z0p
′(z0)

p(z0)

}
=

(
λ(λ− b(1 + km))

(λ+ b)(λ− b)

)
(1 + cos t) +mk

λ+ b

2(λ− b)
. (3.1)

For completing our proof we consider three cases. If −λ < b ≤ 0 then (3.1) implies
that

Re

{
p(z0) + k

z0p
′(z0)

p(z0)

}
> Mk

λ+ b

2(λ− b)
,

which contradicts with the assumption. Also for 0 < b < λ ≤ b(1 + kM), we put

f(x) = mk
λ+ b

2(λ− b)
+ (1 + x)

λ

λ+ b

λ− b(1 + km)

λ− b
(−1 ≤ x ≤ 1),

where x = cos t. It is clear that

f ′(x) =
λ

λ+ b

λ− b(1 + km)

λ− b
< 0 (−1 ≤ x ≤ 1),

so

f(x) ≥ f(1) =
mk(λ− b)
2(λ+ b)

+
2λ

(λ+ b)
>
Mk(λ− b)

2(λ+ b)
+

2λ

(λ+ b)
(−1 ≤ x ≤ 1),

which contradicts with the assumption. Ultimately, for the case 0 < b < λ
1+kM we set

g(x) =
λ+ b

2
− λb

λ+ b
− λb

λ+ b
x (−1 ≤ x ≤ 1),
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where x = cos t. Now g′(x) = − λ
λ+b < 0, and so for all −1 ≤ x ≤ 1 we have

g(x) ≥ g(1) =
(λ− b)2

2(λ+ b)
> 0.

Consequently,

Re

{
p(z0) + k

z0p
′(z0)

p(z0)

}
=

λ

λ+ b
(1 + x) +

(
mk

λ− b

)
g(x)

>
Mk

(λ− b)
(λ− b)2

2(λ+ b)
= Mk

λ− b
2(λ+ b)

,

that contradicts with the assumption. Hence the proof is complete. �

Corollary 3.9. Let −λ < b < λ, λ > 0 and k > 0. Also let f ∈ An,b1 with zf ′(z)
f(z) 6=

2λ
b+λ

in U and 0 ≤ b1 ≤ λ−b
nλ . If for all z ∈ U

Re

{
(1− k)

zf ′(z)

f(z)
+ k

(
1 +

zf ′′(z)

f ′(z)

)}

≤


Mk λ+b

2(λ−b) if − λ < b ≤ 0,M ≥ 2(λ−b)
k(λ+b)

Mk
2

λ−b
λ+b + 2λ

λ+b if λ
1+kM ≤ b < λ

Mk
2

λ−b
λ+b if 0 < b < λ

1+kM ,M ≥ 2(λ+b)
k(λ−b) ,

then we have ∣∣∣∣zf ′(z)f(z)
− λ

b+ λ

∣∣∣∣ < λ

b+ λ
z ∈ U,

where M = n+
λ−b
λ −nb1
λ−b
λ +nb1

.

Proof. Let p(z) = zf ′(z)
f(z) then we have p ∈ Hnb1 [1, n]. Therefore by applying Theorem

3.2, and replacing β by nb1 in this theorem, we obtain the result. �

Remark 3.10. By putting b1 = 0 in the Corollary 3.6, one can observe that this
corollary improves and extends the result obtained in [12](see Theorem 3.1 in [12]).

By setting k = 1, b = 1, b1 = 1
3 , λ = 3 and n = 2 in Corollary 3.6 we obtain

Corollary 3.11. Let f ∈ A2, 13
with zf ′(z)

f(z) 6=
3
2 in U. If for all z in the open unit disc

Re{1 +
zf ′′(z)

f ′(z)
} ≤ 2,

then we have ∣∣∣∣zf ′(z)f(z)
− 3

4

∣∣∣∣ < 3

4
z ∈ U.

By setting k = 1, b = 1, b1 = 1
9 , λ = 3 and n = 3 in Corollary 3.6 we obtain
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Corollary 3.12. Let f ∈ A3, 19
with zf ′(z)

f(z) 6=
3
2 in U. If for all z in the open unit disc

Re{1 +
zf ′′(z)

f ′(z)
} ≤ 11

3
,

then we have ∣∣∣∣zf ′(z)f(z)
− 3

4

∣∣∣∣ < 3

4
z ∈ U.

By putting k = 1, b = 3, b1 = 2
5 , λ = 5 and n = 1 in Corollary 3.6 we obtain

Corollary 3.13. Let f ∈ A1, 25
with zf ′(z)

f(z) 6=
5
4 in U. If for all z in the open unit disc

Re{1 +
zf ′′(z)

f ′(z)
} ≤ 11

8
,

then we have ∣∣∣∣zf ′(z)f(z)
− 5

8

∣∣∣∣ < 5

8
z ∈ U.

By putting k = 1 and b = 0 in Corollary 3.6 we obtain

Corollary 3.14. Let n ≥ 2 and 0 ≤ b1 ≤ 1
n . Also let f ∈ An,b1 with zf ′(z)

f(z) 6= 2 in U. If

for all z in the open unit disc

Re{1 +
zf ′′(z)

f ′(z)
} ≤ M

2
,

then we have ∣∣∣∣zf ′(z)f(z)
− 1

∣∣∣∣ < 1 z ∈ U,

where M is defined in the Corollary 3.6.
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Application of Hayman’s theorem to directional
differential equations with analytic solutions in
the unit ball

Andriy Bandura

Abstract. In this paper, we investigate analytic solutions of higher order linear
non-homogeneous directional differential equations whose coefficients are analytic
functions in the unit ball. We use methods of theory of analytic functions in the
unit ball having bounded L-index in direction, where L : Bn → R+ is a continuous

function such that L(z) > β|b|
1−|z| for all z ∈ Bn, b ∈ Cn \ {0} be a fixed direction,

β > 1 is some constant. Our proofs are based on application of inequalities from
analog of Hayman’s theorem for analytic functions in the unit ball. There are pre-
sented growth estimates of their solutions which contains parameters depending
on the coefficients of the equations. Also we obtained sufficient conditions that
every analytic solution of the equation has bounded L-index in the direction. The
deduced results are also new in one-dimensional case, i.e. for functions analytic
in the unit disc.

Mathematics Subject Classification (2010): 32W50, 32A10, 32A17.

Keywords: Analytic function, analytic solution, slice function, unit ball, direc-
tional differential equation, growth estimate, bounded L-index in direction.

1. Introduction

B. Lepson [16] introduced a concept of entire function of bounded index as an-
other approach in analytic theory of differential equations. The first paper was closely
connected to linear differential equation of infinite order with constant coefficients.
But the functions of bounded index have interesting properties [21, 20, 19]: some reg-
ular behavior, uniform distribution of zeros, growth estimates, etc. There are many
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This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives

4.0 International License.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


336 Andriy Bandura

approaches to generalize the concept for wider classes of entire functions of single vari-
able because every entire function of bounded index is a function of exponential type.
Perhaps, the most successful approach is a concept of function of bounded l-index,
proposed by A. Kuzyk and M. Sheremeta [14], where l : C → R+ is a continuous
function. For these functions there are known existence theorems [10, 12]: for an en-
tire function f there exists a function l : C→ R+ such that f has bounded l-index if
and only if the function f has bounded multiplicities of zeros.

In the last years, analytic functions of several variables having bounded index
are intensively investigated. Main objects of investigations are such function classes:
entire functions of several variables [4, 5, 17, 18], functions analytic in a polydisc [2],
in a ball [6, 7].

For entire functions and analytic function in a ball there were proposed two
approaches to introduce a concept of index boundedness in a multidimensional com-
plex space. They generate so-called functions of bounded L-index in a direction and
functions of bounded L-index in joint variables.

In this research, we will consider the first approach, i.e. analytic functions in the
unit ball of bounded L-index in direction. A connection between these two approaches
is investigated in [8]. We will consider an application of these functions to study
properties of analytic solutions of a linear higher order non-homogeneous differential
equation with directional derivatives of the following form:

g0(z)∂pbF (z) + g1(z)
∂p−1F (z)

∂bp−1
+ · · ·+ gp(z)F (z) = h(z). (1.1)

Also, we estimated asymptotic behavior of modulus of analytic functions in the unit
ball by the function L and the L-index in the direction b.

The linear PDE’s (1.1) can easily be turned into ODEs by a suitable change of
directional derivative in the direction b into a canonical direction along a coordinate
axis. The cross-terms will vanish and hence an ODE. But the coefficients of the ODE
depend on z if we consider a slice z+ tb, z ∈ Bn, t ∈ C, |t| < 1−|z|

|b| . Therefore, all one-

dimensional results need uniform estimates in z. Let us consider an entire function
F (z1, z2) = cos

√
z1z2 =

∑∞
n=0

(−1)n(z1z2)2n

n! . It is known [4] that for fixed z0 = (z0
1 , z

0
2)

and for every b = (b1, b2) ∈ C2 \ {0} the function F (z0
1 + tb1, z

0 + tb2) has bounded
index as a function of variable t ∈ C. But the function F (z1, z2) has unbounded
index in any direction b because the indexes of the function F (z0

1 + tb1, z
0 + tb2)

are not uniformly bounded in (z0
1 , z

0
2). This fact was proved with the application of

differential equations in [4]. It shows that uniform estimates play an important role
and the bounded index in direction can not be simply reduced to the one-dimensional
bounded index.

Our results are generalizations of earlier obtained results for entire functions
of bounded L-index in a direction [3]. But now we consider the function L of more
general form than in [3]. There was considered only L(z) = l(|z|), where l : R+ → R+,
and z ∈ Cn. In addition to Hayman’s theorem, L-index boundedness in direction of
analytic solutions of partial differential equations can be established by the so-called
logarithmic criterion (see [9])). This approach requires that all coefficients of the
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equations have bounded L-index in the direction. For entire functions of one variable
having bounded l-index the similar results were deduced in [15, 11].

Let us introduce some notations and definitions.
Note that the positivity and continuity of the function L are weak restrictions to

deduce constructive results. Thus, we assume additional restrictions by the function L.
Let 0 = (0, . . . , 0), b = (b1, . . . , bn) ∈ Cn \ {0} be a given direction, R+ =

(0,+∞), Bn = {z ∈ Cn : |z| < 1}, L : Bn → R+ be a continuous function such that
for all z ∈ Bn

L(z) >
β|b|

1− |z|
, β = const > 1. (1.2)

Analytic function F : Bn → C is called [7] a function of bounded L-index in a
direction b if there exists m0 ∈ Z+ such that for every m ∈ Z+ and every z ∈ Bn the
following inequality is valid

|∂mb F (z)|
m!Lm(z)

≤ max

{
|∂kbF (z)|
k!Lk(z)

: 0 ≤ k ≤ m0

}
, (1.3)

where ∂0
bF (z) = F (z), ∂bF (z) =

n∑
j=1

∂F (z)
∂zj

bj , ∂
k
bF (z) = ∂b

(
∂k−1
b F (z)

)
, k ≥ 2.

The least such integer m0 = m0(b) is called the L-index in the direction b of
the analytic function F and is denoted by Nb(F,L) = m0. If n = 1, b = 1, L = l,
F = f, then N(f, l) ≡ N1(f, l) is called the l-index of the function f. In the case
n = 1 and b = 1 we obtain the definition of an analytic function in the unit disc of
bounded l-index. The definition is a generalization of concept of bounded L-index in
direction introduced and considered for entire functions of several variables in [5]. The
primary definition of bounded index for entire function of one variable was defined
by B. Lepson [16].

Let D = {t ∈ C : |t| < 1}, L : Bn → R+ be a continuous function. For z ∈ Bn we

denote Dz = {t ∈ C : |t| ≤ 1−|z|
|b| },

λb(η) = sup
z∈Bn

sup
t1,t2∈Dz

{
L(z + t1b)

L(z + t2b)
: |t1 − t2| ≤

η

min{L(z + t1b), L(z + t2b)}

}
.

The notation Qb(Bn) stands for a class of positive continuous functions L : Bn → R+,
satisfying (1.2) and

(∀η ∈ [0, β]) : λb(η) < +∞. (1.4)

If n = 1 then Q(D) ≡ Q1(B1) and λ(η) ≡ λ1(η).
Let D be an arbitrary bounded domain in Bn such that dist(D,Bn) > 0. If

inequality (1.3) holds for all z ∈ D instead Bn, then the analytic function F : Bn → C
is called a function of bounded L-index in the direction b in the domain D. The least
such integer m0 is called the L-index in the direction b ∈ Cn \{0} in domain D and is
denoted by Nb(F,L,D) = m0. The notation D stands for a closure of the domain D.

Lemma 1.1 ([1]). Let D be an arbitrary bounded domain in Bn such that

d = dist(D,Bn) = inf
z∈D

(1− |z|) > 0, β > 1, b ∈ Cn \ {0}
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be an arbitrary direction. If L : Bn → R+ is continuous function such that L(z) ≥ β|b|
d ,

and F : Bn → C is analytic function such that (∀z0 ∈ D) : F (z0 + tb) 6≡ 0, then
Nb(F,L,D) <∞.

Below we present an analog of Hayman’s Theorem [13]. The theorem helps to
investigate boundedness L-index in direction of analytic solutions of differential equa-
tions. At the end of the paper, we will present a scheme of this application.

Theorem 1.2 ([7]). Let L ∈ Qb(Bn). An analytic function F : Bn → C is of bounded
L-index in the direction b if and only if there exist p ∈ Z+ and C > 0 such that for
every z ∈ Bn ∣∣∣∣∣∂p+1

b F (z)

Lp+1(z)

∣∣∣∣∣ ≤ C max

{∣∣∣∣∂kbF (z)

Lk(z)

∣∣∣∣ : 0 ≤ k ≤ p
}
. (1.5)

Using Lemma 1.1, we yield the following corollary with this criterion.

Corollary 1.3. Let L ∈ Qb(Bn), G be a domain compactly embedded in Bn such that

d = dist(D,Bn) = infz∈D(1 − |z|) > 0 and for all z ∈ G L(z) ≥ β|b|
d . An analytic

function F : Bn → C has bounded L-index in the direction b if and only if there exist
p ∈ Z+ and C > 0 such that for all z ∈ Bn \G the following relation holds

|∂p+1
b F (z)|
Lp+1(z)

≤ C max

{
|∂kbF (z)|
Lk(z)

: 0 ≤ k ≤ p
}
. (1.6)

2. Auxiliary lemmas

We denote a+ = max{a, 0}. Set u(r) = u(z0, θ, r) = L(z0 + reiθb). Let Wb(Bn)
be a class of positive continuous function L : Bn → R+ satisfying all following condi-
tions:

1) for all z ∈ Bn L(z) > β|b|
1−|z| , where β = const > 1;

2) for every z0 ∈ Bn and every θ ∈ [0, 2π] the function u(r, z0, θ) be a continuously
differentiable function of real variable r ∈ [0, r0), where

r0 = min{s ∈ R+ : |z0 + seiθb| = 1};
3) for every z0 ∈ Bn, θ ∈ [0, 2π] one has(

d

ds

1

L(z0 + sreiθb)

∣∣
s=1

)+

→ 0 as |z0 + reiθb| → 1, i.e. r → r0.

The conditions 2) and 3) together can be replaced by some strict condition
∂b(1/L(ReiΘ)) → 0 as |R| → 1, where ReiΘ = (r1e

iθ1 , . . . , rne
iθn), |R| < 1,

θj ∈ [0, 2π], and L(ReiΘ) is positive continuously differentiable function in each vari-

able rj , j ∈ {1, . . . , n}. Moreover, condition 3) is equivalent to
(−u′

r(z0,θ,r))+

L2(z0+reiθb)
→ 0 as

r → r0. Beside, condition 1) yields that
r∫
0

L(z0 +xeiθb)dx→ +∞ as |z0 +reiθb| → 1.

First, we prove the following two lemmas. For entire functions of bounded L-
index in direction they were obtained in [3].
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Lemma 2.1. Let L ∈ Wb(Bn), F : Bn → C be an analytic function such that ∃R ∈
[0, 1) ∀z ∈ Bn |z| < R one has F (z + tb) 6≡ 0. If there exist numbers p ∈ Z+, C > 0
such that for all z ∈ Bn, |z| ≥ R, the inequality

|∂p+1
b F (z)|
Lp+1(z)

≤ C max

{
|∂kbF (z)|
Lk(z)

: 0 ≤ k ≤ p
}
, (2.1)

holds then for every z0 ∈ Bn and for every θ ∈ [0, 2π]

lim
|z0+reiθb|→1

ln |F (z0 + reiθb)|
r∫
0

L(z0 + xeiθb)dx

≤ max{1, C}.

Proof. Let θ ∈ [0, 2π], z0 ∈ Bn be fixed and x ∈ [0, r0) be such that |z0 + xeiθb| ≥ R.
We define

Ωz0(x) = max

{
|∂kbF (z0 + xeiθb)|
Lk(z0 + xeiθb)

: 0 ≤ k ≤ p
}
.

The function
|∂kbF (z0+xeiθb)|
Lk(z0+xeiθb)

is continuously differentiable by real x ∈ [0, r∗],

outside the zero set of function |∂kbF (z0 + xeiθb)| because L ∈ Wb(Bn). Thus, the
function Ωz0(x) is a continuously differentiable function on [0, r∗], apart from, possibly,
a countable set. For absolutely continuous functions h1, h2, . . . , hk and h(x) :=
max{hj(z) : 1 ≤ j ≤ k}, h′(x) ≤ max{h′j(x) : 1 ≤ j ≤ k}, x ∈ [a, b] (see [21,
Lemma 4.1, p. 81]). The function Ωz0(x) is absolutely continuous. Therefore,

Ω′z0(x) ≤ max

{
d

dx

(
1

Lk(z0 + xeiθb)
·
∣∣∂kbF (z0 + xeiθb)

∣∣) : 0 ≤ k ≤ p
}

except on a countable set of points.

Using the inequality d
dx |ϕ(x)| ≤

∣∣ d
dxϕ(x)

∣∣ , which holds for complex-valued func-
tion of real argument except at the points x = t such that ϕ(t) = 0, in view of (2.1)
we obtain

Ω′z0(x) ≤ max
0≤k≤p

{
|eiθ| 1

Lk(z0 + xeiθb)

∣∣∂k+1
b F (z0 + xeiθb)

∣∣− ∣∣∂kbF (z0 + xeiθb)
∣∣×

× k · u′x(z0, θ, x)

Lk+1(z0 + xeiθb)

}
≤

≤ max
0≤k≤p

{ 1

Lk+1(z0 + xeiθb)

∣∣∂k+1
b F (z0 + xeiθb)

∣∣L(z0 + xeiθb)−

− 1

Lk(z0 + xeiθb)

∣∣∂kbF (z0 + xeiθb)
∣∣ ku′x(z0, θ, x)

L(z0 + xeiθb)

}
≤

≤ Ωz0(x)

(
CL(z0 + xeiθb) + p

(−u′x(z0, θ, x))+

L(z0 + xeiθb)

)
.

From condition 3) in the definition of the class Wb(Bn) we have

u′x(z0, θ, x) = o(L2(z0 + xeiθb)) as x→ r0,
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then

Ω′z0(x) ≤ Ωz0(x)(max{1, C}L(z0 + xeiθb) + pεL(z0 + xeiθb)) ≤ Ωz0(x)×

×L(z0 + xeiθb)(max{1, C}+ pε) ≤ Ωz0(x)L(z0 + xeiθb) max{1, C}(1 + pε)

for all ε > 0 and for all x ∈ [x0(z0, θ, ε), r0) outside a countable set of points for given
z0 ∈ Bn and θ ∈ [0, 2π] Hence, there exists r1 ≥ x0(z0, θ, ε) such that

Ωz0(r) ≤ Ωz0(r1) · exp

{
(1 + pε) max{1, C}

∫ r

r1

L(z0 + xeiθb)dx

}
for every r ∈ [r1, r0). From the definition of Ωz0(x) for k = 0 we obtain that

|F (z0 + reiθb)| ≤ Ωz0(r1) · exp

{
(1 + pε) max{1, C}

∫ r

0

L(z0 + xeiθb)dx

}
,

ln |F (z0 + reiθb)| ≤ ln Ωz0(r1) + (1 + pε) max{1, C}
∫ r

0

L(z0 + xeiθb)dx,

ln |F (z0 + reiθb)|∫ r
0
L(z0 + xeiθb)dx

≤ ln Ωz0(r1)∫ r
0
L(z0 + xeiθb)dx

+ (1 + pε) max{1, C}.

From this inequality for all z0 ∈ Bn and θ ∈ [0, 2π] we obtain that

lim
|z0+reiθb|→1

ln |F (z0 + reiθb)|
r∫
0

L(z0 + xeiθb)dx

≤ max{1, C}. �

Lemma 2.2. Let L ∈ Wb(Bn), F : Bn → C be an analytic function such that ∃R ∈
[0, 1) ∀z ∈ Bn |z| < R one has F (z + tb) 6≡ 0. If there exist numbers p ∈ Z+, C > 0
such that for all z ∈ Bn, |z| ≥ R, the inequality

|∂p+1
b F (z)|

(p+ 1)!Lp+1(z)
≤ C max

{
|∂kbF (z)|
k!Lk(z)

: 0 ≤ k ≤ p
}
, (2.2)

holds then for all z0 ∈ Bn lim
|z0+reiθb|→1

ln |F (z0+reiθb)|
r∫
0

L(z0+xeiθb)dx
≤ (p+ 1) max{1, C}.

Proof. Let θ ∈ [0, 2π], z0 ∈ Bn be fixed and x ∈ R+ be such that |z0 + xeiθb| ≥ R.
We denote

Ωz0(x) = max

{
1

k!Lk(z0 + xeiθb)
·
∣∣∂kbF (z0 + xeiθb)

∣∣ : 0 ≤ k ≤ p
}
.

As in Lemma 2.1 the function Ωz0(x) is continuously differentiable because L ∈
Wb(Bn) and

Ω′z0(x) ≤ max

{
d

dx

(
1

k!Lk(z0 + xeiθb)

∣∣∂kbF (z0 + xeiθb)
∣∣) : 0 ≤ k ≤ p

}
except a countable set of points. Applying the inequality d

dx |ϕ(x)| ≤
∣∣ d
dxϕ(x)

∣∣ , which
holds for complex-valued function of real argument outside a countable set of points,
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in view of (2.2) we obtain

Ω′z0(x) ≤ max
{
|eiθ| 1

k!Lk(z0 + xeiθb)

∣∣∂k+1
b F (z0 + xeiθb)

∣∣−
−
∣∣∂kbF (z0 + xeiθb)

∣∣ ku′x(z0, θ, x)

k!Lk+1(z0 + xeiθb)
: 0 ≤ k ≤ p

}
≤

≤ max

{
1

(k + 1)!Lk+1(z0 + xeiθb)

∣∣∂k+1
b F (z0 + xeiθb)

∣∣ (k + 1)L(z0 + xeiθb)−

− 1

Lk(z0 + xeiθb)k!

∣∣∂kbF (z0 + xeiθb)
∣∣ ku′x(z0, θ, x)

L(z0 + xeiθb)
: 0 ≤ k ≤ p

}
≤

≤ Ωz0(x)

(
max{1, C}L(z0 + xeiθb)(p+ 1) + p

(−u′x(z0, θ, x))+

L(z0 + xeiθb)

)
.

But we have that L ∈ Wb(Bn), i.e.
(−u′

x(z0,θ,x))+

L2(z0+xeiθb)
→ 0 as |z0 + xeiθb| → 1.

Therefore,

Ω′z0(x) ≤ Ωz0(x)(max{1, C}L(z0 + xeiθb)(p+ 1) + pεL(z0 + xeiθb)) ≤

≤ Ωz0(x)L(z0 + xeiθb)(max{1, C}(p+ 1) + pε) ≤ Ωz0(x)L(z0 + xeiθb)×

×max{1, C}(p+ 1)

(
1 +

p

p+ 1
ε

)
for all ε > 0 and for all x ≥ x0(z0, θ, ε), except a countable set of points at given z0

and θ. Thus, there exists r1 ≥ x0(z0, θ, ε) that for r > r1 we have

Ωz0(r) ≤ Ωz0(r1) · exp

{
(1 + ε) max{1, C}(p+ 1)

∫ r

r1

L(z0 + xeiθb)dx

}
.

Be definition of Ωz0(x) at k = 0 we obtain

|F (z0 + reiθb)| ≤ Ωz0(r0) exp

{
(1 + ε) max{1, C}(p+ 1)

∫ r

0

L(z0 + xeiθb)dx

}
.

Therefore,

ln |F (z0 + reiθb)| ≤ ln Ωz0(r0) + (1 + ε) max{1, C}
∫ r

0

L(z0 + xeiθb)dx.

Dividing of the inequality by
r∫
0

L(z0 + xeiθb)dx, we obtain

ln |F (z0 + eiθrb)|
r∫
0

L(z0 + xeiθb)dx

≤ ln Ωz0(r0)
r∫
0

L(z0 + xeiθb)dx

+ (1 + ε) max{1, C}(p+ 1).

Thus, for all z ∈ Bn and θ ∈ [0, 2π] we obtain an estimate

lim
|z0+reiθb|→1

ln |F (z0 + eiθrb)|
r∫
0

L(z0 + xeiθb)dx

≤ max{1, C}(p+ 1). �
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Remark 2.3. Note that condition (2.2) means that

|∂p+1
b F (z)|
Lp+1(z)

=

= (p+ 1)! ·
|∂p+1

b F (z)|
(p+ 1)!Lp+1(z)

≤ (p+ 1)!C max

{
|∂kbF (z)|
k!Lk(z)

: 0 ≤ k ≤ p
}
≤

≤ (p+ 1)!C ·max

{
1

k!
: 0 ≤ k ≤ p

}
·max

{
|∂kbF (z)|
Lk(z)

: 0 ≤ k ≤ p
}
≤

≤ (p+ 1)!C max

{
|∂kbF (z)|
Lk(z)

: 0 ≤ k ≤ p
}
.

Hence, by Lemma 2.1 we have

lim
|z0+reiθb|→1

ln |F (z0 + eiθrb)|
r∫
0

L(z0 + xeiθb)dx

≤ max{1, C(p+ 1)!}.

Since c(p+1)! > c(p+1) for p > 1, we see that Lemma 2.2 does not imply growth esti-
mate of Lemma 2.1. Clearly, Lemma 2.1 does not imply Lemma 2.2 as well. Therefore,
we need both Lemma 2.1 and Lemma 2.2.

3. Growth and bounded L-index in direction of analytic solutions of
partial differential equations

Using proved lemmas we formulate and prove propositions that provide growth
estimates of analytic solutions of the partial differential equation

g0(z)∂pbF (z) + g1(z)
∂p−1F (z)

∂bp−1
+ · · ·+ gp(z)F (z) = h(z). (3.1)

Let us denote QWb(Bn) = Qb(Bn) ∩Wb(Bn).

Theorem 3.1. Let L ∈ QWb(Bn), functions g0, g1, .., gp, and h be analytic in the
unit ball and there exists R ∈ [0, 1) such that for all z ∈ Bn, |z| ≥ R, the following
conditions hold

1) |gj(z)| ≤ mjL
j(z)|g0(z)| for 1 ≤ j ≤ p;

2) |∂bgj(z)| < Mj · Lj+1(z)|g0(z)| for 0 ≤ j ≤ p;
3) |∂bh(z)| ≤M · L(z) · |h(z)|,

where mj and M are nonnegative constants and Mj are positive constants. If an
analytic function F : Bn → C satisfies equation (3.1) and ∀z ∈ Bn, |z| < R,

F (z + tb) 6≡ 0

then F has bounded L-index in the direction b and for all z0 ∈ Bn, θ ∈ [0, 2π]

lim
|z0+reiθb|→1

ln |F (z0 + eiθrb)|
r∫
0

L(z0 + teiθb)dt

≤ max{1, C}, (3.2)
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where

C =

p∑
j=1

Mj + (M + 1)

p∑
j=1

mj +M.

Proof. First, we note that the second condition of the theorem with j = 0 implies
that

g0(z) 6= 0 for z ∈ Bn, |z| ≥ R.

Taking into account that the function F (z) satisfies equation (3.1), we calculate the
derivative in the direction b for this equation

g0(z)∂p+1
b F (z) +

p∑
j=0

∂bgj(z) · ∂p−jb F (z) +

p∑
j=1

gj(z)∂
p−j+1
b F (z)+

+

p∑
j=1

gj(z)∂
p−j+1
b F (z) = ∂bh(z). (3.3)

Using the third condition of the theorem, we obtain

|∂bh(z)| ≤ML(z)h(z) ≤ML(z)

p∑
j=0

|gj(z)|
∣∣∣∂p−jb F (z)

∣∣∣ . (3.4)

By (3.3)

∂p+1
b F (z) =

1

g0(z)

∂bh(z)−
p∑
j=0

∂bgj(z) · ∂p−jb F (z)−
p∑
j=1

gj(z)∂
p−j+1
b F (z)

 .

(3.5)

Putting in the first condition of the theorem m0 = 1, from (3.5) in view of the second
condition we obtain

∣∣∣∂p+1
b F (z)

∣∣∣ ≤ 1

g0(z)

ML(z)

p∑
j=0

|gj(z)|
∣∣∣∂p−jb F (z)

∣∣∣+

p∑
j=0

|∂bgj(z)| ×

×
∣∣∣∂p−jb F (z)

∣∣∣+

p∑
j=1

|gj(z)|
∣∣∣∂p−j+1

b F (z)
∣∣∣
 ≤

≤ML(z)

p∑
j=0

mjL
j(z)

∣∣∣∂p−jb F (z)
∣∣∣+

+

p∑
j=0

MjL
j+1(z)

∣∣∣∂p−jb F (z)
∣∣∣+

p∑
j=1

mjL
j(z)

∣∣∣∂p−j+1
b F (z)

∣∣∣ .
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Dividing this inequality by Lp+1(z), we obtain

1

Lp+1(z)

∣∣∣∂p+1
b F (z)

∣∣∣ ≤M p∑
j=0

mj
1

Lp−j(z)

∣∣∣∂p−jb F (z)
∣∣∣+

p∑
j=0

Mj
1

Lp−j(z)
×

×
∣∣∣∂p−j+1

b F (z)
∣∣∣+

p∑
j=1

mj
1

Lp−j+1(z)

∣∣∣∂p−j+1
b F (z)

∣∣∣ ≤
M p∑

j=0

mj+

+

p∑
j=0

Mj +

p∑
j=1

mj

max

{
1

Lk(z)

∣∣∂kbF (z)
∣∣ : 0 ≤ k ≤ p

}
=

=

(M + 1)

p∑
j=1

mj +

p∑
j=0

Mj +M

max

{
1

Lk(z)

∣∣∂kbF (z)
∣∣ : 0 ≤ k ≤ p

}
for all z ∈ Bn, |z| ≥ R.

Thus, by Lemma 2.1 estimate (3.2) holds, and by Corollary 1.3 the analytic
function F (z) is of bounded L-index in the direction b. �

In the case when equation (3.1) is homogeneous (h(z) ≡ 0), the previous theorem
can be simplified.

Theorem 3.2. Let L ∈ QWb(Bn), functions g0, g1, .., gp be analytic in the unit ball
and there exists R ∈ [0, 1) such that for all z ∈ Bn, |z| ≥ R, one has |gj(z)| ≤
mjL

j(z)|g0(z)| for 1 ≤ j ≤ p, where mj are some nonnegative constants. If an analytic
function F : Bn → C satisfies equation (3.1) with h(z) ≡ 0 and ∀z ∈ Bn, |z| < R,
F (z+ tb) 6≡ 0 then F (z) is of bounded L-index in the direction b and for all z0 ∈ Bn,
θ ∈ [0, 2π]

lim
|z0+reiθb|→1

ln |F (z0 + eiθrb)|
r∫
0

L(z0 + teiθb)dt

≤ max

1,

p∑
j=1

mj

 . (3.6)

Proof. Equation (3.1) implies g0(z)∂pbF (z) = −
p∑
j=1

gj(z)∂
p−j
b F (z). Then

|g0(z)| |∂pbF (z)| ≤
p∑
j=1

|gj(z)|
∣∣∣∂p−jb F (z)

∣∣∣ .
Dividing the obtained inequality by g0(z)Lp(z) and using assumptions of the theorem
by the functions gj(z), we obtain

1

Lp(z)
|∂pbF (z)| ≤

p∑
j=1

∣∣∣∣gj(z)g0(z)

∣∣∣∣ 1

Lp(z)

∣∣∣∂p−jb F (z)
∣∣∣ ≤ p∑

j=1

mj

Lp−j(z)
×

×
∣∣∣∂p−jb F (z)

∣∣∣ ≤ p∑
j=1

mj max

{
1

Lk(z)

∣∣∂kbF (z)
∣∣ : 0 ≤ k ≤ p− 1

}
.
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Thus, all conditions of Corollary 1.3 are obeyed. Hence, the function F is of bounded
L-index in the direction b and by Lemma 2.1 estimate (3.6) is true. �

Moreover, using Corollary 1.3 and Lemma 2.2 we can complement two previous
Theorems 3.1 and 3.2 by propositions, that contain growth estimates, which can
sometimes be better than (3.6) and (3.2). Two following theorems have similar proofs
as in Theorems 3.1 and 3.2.

Theorem 3.3. Let L ∈ QWb(Bn), functions g0, g1, .., gp, and h be analytic in the
unit ball and there exists R ∈ [0, 1) such that for all z ∈ Bn, |z| ≥ R, the following
conditions hold

1. |gj(z)| ≤ mjL
j(z)|g0(z)| for 1 ≤ j ≤ p;

2. |∂bgj(z)| < Mj · Lj+1(z)|g0(z)| for 0 ≤ j ≤ p;

3. |∂bh(z)| ≤M · L(z) · |h(z)|,

where mj and M are nonnegative constants and Mj are positive constants. If an
analytic function F : Bn → C is a solution of equation (3.1) and ∀z ∈ Bn, |z| < R,
F (z+ tb) 6≡ 0 then F (z) is of bounded L-index in the direction b and for all z0 ∈ Bn,
θ ∈ [0, 2π]

lim
|z0+reiθb|→1

ln |F (z0 + eiθrb)|
r∫
0

L(z0 + teiθb)dt

≤ max{p+ 1, 2(M + 2)M∗}, (3.7)

where M∗ = max{1,mj ,Mj}.

Proof. First, we note that the second condition of this theorem when j = 0 implies
that g0(z) 6= 0 for z ∈ Bn, |z| ≥ R, because in this case we have∣∣∣∣∂g0(z)

∂b

∣∣∣∣ < M0L(z)g0(z).

Since the function F (z) satisfies the equation (3.1), then we calculate a derivative of
this equation in the direction b:

g0(z)∂p+1
b F (z) +

p∑
j=0

∂bgj(z)

·
∂p−jb F (z) +

p∑
j=1

gj(z)∂
p−j+1
b F (z)+

+

p∑
j=1

gj(z)∂
p−j+1
b F (z) =

∂h(z)

∂b
. (3.8)

Using the third condition of this theorem, we obtain

|∂bh(z)| ≤ML(z)|h(z)| ≤ML(z)

p∑
j=0

|gj(z)|
∣∣∣∂p−jb F (z)

∣∣∣ .
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From (3.8) it follows

∂p+1
b F (z) =

1

g0(z)

∂bh(z)−
p∑
j=0

∂bgj(z) · ∂p−jb F (z)−
p∑
j=1

gj(z)∂
p−j+1
b F (z)

 .

(3.9)

Putting in the first condition of this theorem m0 = 1, with (3.9) in view of the second
condition we obtain

∣∣∣∂p+1
b F (z)

∣∣∣ ≤ 1

|g0(z)|

ML(z)

p∑
j=0

|gj(z)|
∣∣∣∂p−jb F (z)

∣∣∣+

p∑
j=0

|∂bgj(z)| ×

×
∣∣∣∂p−jb F (z)

∣∣∣+

p∑
j=1

|gj(z)|
∣∣∣∂p−j+1

b F (z)
∣∣∣
 ≤M p∑

j=0

|gj(z)|
Lj(z)|g0(z)|

×

×Lj+1(z)
∣∣∣∂p−jb F (z)

∣∣∣+

p∑
j=0

|∂bgj(z)|
1

|g0(z)|Lj+1(z)|
Lj+1(z)

∣∣∣∂p−jb F (z)
∣∣∣+

+

p∑
j=1

|gj(z)|
|g0(z)|

1

Lj(z)
Lj(z)

∣∣∣∂p−j+1
b F (z)

∣∣∣ ≤M p∑
j=0

mjL
j+1(z)

∣∣∣∂p−jb F (z)
∣∣∣+

+

p∑
j=0

MjL
j+1(z)

∣∣∣∂p−jb F (z)
∣∣∣+

p∑
j=1

mjL
j(z)

∣∣∣∂p−j+1
b F (z)

∣∣∣ ≤
≤M∗

(M + 1)

p∑
j=0

Lj+1(z)
∣∣∣∂p−jb F (z)

∣∣∣+

p∑
j=1

Lj(z)
∣∣∣∂p−j+1

b F (z)
∣∣∣
 =

= M∗

(M + 1)

p∑
j=0

Lj+1(z)
∣∣∣∂p−jb F (z)

∣∣∣+

p−1∑
j=0

Lj+1(z)
∣∣∣∂p−jb F (z)

∣∣∣+
+Lp+1(z)|F (z)|

)
≤M∗

(M + 2)

p∑
j=0

Lj+1(z)
∣∣∣∂p−jb F (z)

∣∣∣
 .

We divide the obtained inequality by (p+ 1)!Lp+1(z)

1

(p+ 1)!Lp+1(z)

∣∣∣∂p+1
b F (z)

∣∣∣ ≤M∗(M + 2)

p∑
j=0

1

(p− j)!Lp−j(z)

∣∣∣∂p−jb F (z)
∣∣∣×

× (p− j)!
(p+ 1)!

≤ 2M∗(M∗ + 2)

(p+ 1)
max

{
1

k!Lk(z)

∣∣∂kbF (z)
∣∣ : 0 ≤ k ≤ p

}
,
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because

p∑
j=0

(p− j)!
(p+ 1)!

≤ 0! + 1! + 2! + 3! + · · ·+ p!

(p+ 1)!
=

2 · 1! + 2! + 3! + 4! + · · ·+ p!

(p+ 1)!
=

=
2 · 2! + 2! + 3! + 4! + · · ·+ p!

(p+ 1)!
≤ 2 · 3! + 4! + 5! + · · ·+ p!

(p+ 1)!
≤

≤ 2 · 4! + 5! + · · ·+ p!

(p+ 1)!
≤ 2 · 5! + · · · p!

(p+ 1)!
≤ 2p!

(p+ 1)!
=

2

p+ 1
. (3.10)

Hence, by Corollary 1.3 the function F has bounded L-index in the direction b,
because

1

Lp+1(z)

∣∣∣∂p+1
b F (z)

∣∣∣ ≤M∗(M + 2)

p∑
j=0

1

Lp−j(z)

∣∣∣∂p−jb F (z)
∣∣∣ ≤

≤ 2M∗(M + 2) max

{
1

Lk(z)

∣∣∂kbF (z)
∣∣ : 0 ≤ k ≤ p

}
.

And by Lemma 2.2 corresponding estimate (3.7) holds. �

Theorem 3.4. Let L ∈ QWb(Bn), functions g0, g1, .., gp be analytic in the unit ball
and there exists R ∈ [0, 1) such that for all z ∈ Bn, |z| ≥ R, one has

|gj(z)| ≤ mjL
j(z)|g0(z)| for 1 ≤ j ≤ p,

where mj are some nonnegative constants. If an analytic function F : Bn → C satisfies
equation (3.1) with h(z) ≡ 0 and ∀z ∈ Bn, |z| < R, F (z + tb) 6≡ 0 then F (z) is of
bounded L-index in the direction b and for all z0 ∈ Bn, θ ∈ [0, 2π]

lim
|z0+reiθb|→1

ln |F (z0 + eiθrb)|
r∫
0

L(z0 + teiθb)dt

≤ max {p, 2M∗} , (3.11)

where M∗ = max{1,mj}.

Proof. The proof of this theorem is similar to the proofs of Theorems 3.2 and 3.3. In
particular, from equation (3.1) with h(z) ≡ 0 it follows that

g0(z)∂pbF (z) = −

 p∑
j=1

gj(z)∂
p−j
b F (z)

 ,

then

|g0(z)| |∂pbF (z)| ≤
p∑
j=1

|gj(z)|
∣∣∣∂p−jb F (z)

∣∣∣ . (3.12)
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Dividing the obtained inequality by |g0(z)|Lp(z) and using the conditions of this
theorem for functions gj(z), we obtain

1

Lp(z)
|∂pbF (z)| ≤

p∑
j=1

∣∣∣∣gj(z)g0(z)

∣∣∣∣ 1

Lp(z)

∣∣∣∂p−jb F (z)
∣∣∣ ≤ p∑

j=1

mj

Lp−j(z)
×

×
∣∣∣∂p−jb F (z)

∣∣∣ ≤ p∑
j=1

mj max

{
|∂kbF (z)|
Lk(z)

: 0 ≤ k ≤ p− 1

}
.

Thus, by Corollary 1.3 the function F is of bounded L-index in the direction b. We
show that conditions of Lemma 2.2 are satisfied. Dividing inequality (3.12) by p!Lp(z),
we obtain

|∂pbF (z)|
p!Lp(z)

≤
p∑
j=1

∣∣∣∣gj(z)g0(z)

∣∣∣∣ 1

p!Lp(z)

∣∣∣∂p−jb F (z)
∣∣∣ ≤ p∑

j=1

mj

Lp−j(z)

(p− j)!
p!

1

(p− j)!
×

×
∣∣∣∂p−jb F (z)

∣∣∣ ≤ max

{
|∂kbF (z)|
k!Lk(z)

: 0 ≤ k ≤ p− 1

} p∑
j=1

mj
(p− j)!
p!

≤

≤M∗
p∑
j=1

(p− j)!
p!

max

{
|∂kbF (z)|
k!Lk(z)

: 0 ≤ k ≤ p− 1

}
≤

≤ 2M∗

p
max

{
|∂kbF (z)|
K!Lk(z)

: 0 ≤ k ≤ p− 1

}
.

In the proof of this estimate we used an inequality (3.10), which was obtained in
the proof of Theorem 3.3. Thus, by Lemma 2.2 the corresponding estimate (3.11)
holds. �

Remark 3.5. The conditions in Theorems 3.1-3.4 imposed by the coefficients of equa-
tions are easy satisfied because there is some freedom to choose a function L. In the
worst case we can choose the function L as an iterated exponential function in this
form A expk( 1

1−|z| ), where expk(t) = exp(expk−1(t)), A > 0 is sufficiently big number

and k is integer number depending on the growth of coefficients gj(z) and h(z). For

example, in Theorem 3.1 this number k can be chosen such that (|gj(z)|/|g0(z)|)1/j =

O(expk( 1
1−|z| ) for 1 ≤ j ≤ p, (|∂bgj(z)|/|g0(z)|)1/(j+1) = O(expk( 1

1−|z| ) for 0 ≤ j ≤ p
and |∂bh(z)|/|h(z)| = O(expk( 1

1−|z| ) as |z| → 1− 0.

Example 3.6. Let us consider the following third order partial differential equation
from [7]:

∂3
bF = 2(πb1z2 + πb2z1)∂2

bF+

+2

(
(πb1z2 + πb2z1)2

cos2 πz1z2
+ 2πb1b2 tanπz1z2

)
∂bF−

4πb1b2(πb1z2 + πb2z1)

cos2 πz1z2
F (3.13)
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where b = (b1, b2) ∈ C2 \ {0}. It is easy to check that conditions of Theorem 3.2 are
satisfied for this equation and for the functions

L(z1, z2) =
|b1z2 + b2z1|+ 1

(1− |z|)| 12 − z1z2|

in the unit ball. Therefore, by Theorem 3.2 every analytic solution of equation (3.13)
has bounded L-index in the direction b and its growth is described by estimate (3.6).
Namely, the function F (z1, z2) = tan(πz1z2) has the bounded L-index in this direction
because the function F is analytic solution in B2 of equation (3.13).
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A p(x)-Kirchhoff type problem involving
the p(x)-Laplacian-like operators with Dirichlet
boundary condition
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Abstract. This paper deals with a class of p(x)-Kirchhoff type problems involv-
ing the p(x)-Laplacian-like operators, arising from the capillarity phenomena,
depending on two real parameters with Dirichlet boundary conditions. Using a
topological degree for a class of demicontinuous operators of generalized (S+),
we prove the existence of weak solutions of this problem. Our results extend and
generalize several corresponding results from the existing literature.
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1. Introduction

The study of differential equations and variational problems with nonlinearities
and nonstandard p(x)-growth conditions or nonstandard (p(x), q(x))− growth condi-
tions have received a lot of attention. Perhaps the impulse for this comes from the new
search field that reflects a new type of physical phenomenon is a class of nonlinear
problems with variable exponents (see [26]). The motivation for this research comes
from the application of similar models in physics to represent the behavior of elasticity
[34] and electrorheological fluids (see [30, 32]), which have the ability to modify their
mechanical properties when exposed to an electric field (see [3, 4, 7, 11, 15, 27, 28, 29]),
specifically the phenomenon of capillarity, which depends on solid-liquid interfacial
characteristics as surface tension, contact angle, and solid surface geometry.

Received 23 February 2022; Accepted 18 March 2022.
© Studia UBB MATHEMATICA. Published by Babeş-Bolyai University
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Let Ω be a bounded domain in RN (N > 1) with smooth boundary denoted by
∂Ω, a ∈ L∞(Ω), p(x), k(x) ∈ C+(Ω), and let µ and λ be two real parameters.

In this article, we consider a class of p(x)-Kirchhoff type problems involving the
p(x)-Laplacian-like operators, originated from a capillarity phenomena, depending on
two real parameters with Dirichlet boundary conditions of the following form:

−M
(
C(u)

)(
∆Lp(x)u− |u|

p(x)−2u
)

+ a(x)|u|k(x)−2u

= µ g(x, u) + λ f(x, u,∇u) in Ω,

u = 0 on ∂Ω,

(1.1)

where

C(u) :=

∫
Ω

|∇u|p(x) +
√

1 + |∇u|2p(x) + |u|p(x)

p(x)
dx,

and

∆Lp(x)u := div
(
|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1 + |∇u|2p(x)

)
is the p(x)-Laplacian-like operators, g : Ω × R → R and f : Ω × R × RN → R are
Carathéodory functions that satisfy the assumption of growth, and
M : R+ → R+ is a continuous function.

Problems related to (1.1) have been studied by many scholars, for example, Ni
and Serrin [20, 21] considered the following equation

− div
( ∇u√

1 + |∇u|2
)

= f(u) in RN . (1.2)

The operator −div
( ∇u√

1 + |∇u|2
)

is most often denoted by the specified mean cur-

vature operator and ∇u√
1+|∇u|2

is the Kirchhoff stress term.

”Elliptic boundary value problems” involving the mean curvature operator play
apivotal role in the mathematical analysis of several physical or geometrical issues,
such as capillarity phenomena for incompressible or compressible fluids, mathematical
models in physiology or in electrostatics, flux-limited diffusion phenomena, prescribed
mean curvature problems for Cartesian surfaces in the Euclidean space: relevant ref-
erences on these topics include [8, 9, 13, 14].

In the case when M
(
C(u)

)
≡ 1, µ = a = 0, λ > 0, f independent of ∇u and

without the term |u|p(x)−2u, we know that the problem (1.1) has a nontrivial solutions
from [31].

For M
(
C(u)

)
≡ 1, k(x) = p(x), µ ≥ 0, λ > 0, a ∈ L∞(Ω) with ess infΩ a > 0

and f independent of ∇u, Afrouzi et al. [5] established some new sufficient conditions
underwhich the problem (1.1), under Neumann boundary condition, possesses infin-
itely many weak solutions. Their discussion is based on a fully variational method
and the main tool is a general critical point theorem.
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Note that, in the case when

C(u) =

∫
Ω

|∇u|p(x)

p(x)
dx, ∆Lp(x)u = ∆p(x)u = div

(
|∇u|p(x)−2∇u

)
,

µ = a = 0, λ = 1, f independent of ∇u and without the term |u|p(x)−2u, then we
obtain the following problem

−M
(∫

Ω

|∇u|p(x)

p(x)
dx
)

∆p(x)u = f(x, u) in Ω,

u = 0 on ∂Ω,

(1.3)

which is called the p(x)-Kirchhoff type problem. In this case, Dai et al. [10], by a direct
variational approach, established conditions ensuring the existence and multiplicity of
solutions to (1.3). Furthermore, the problem (1.3) is a generalization of the stationary
problem of a model introduced by Kirchhoff [17] of the following form:

ρ
∂2u

∂t2
−
(ρ0

h
+

E

2L

∫ L

0

∣∣∣∂u
∂x

∣∣∣2dx)∂2u

∂x2
= 0, (1.4)

where ρ, ρ0, h, E, L are all constants, which extends the classical D’Alembert’s wave
equation, by considering the effect of the changing in the length of the string during
the vibration.

Lapa et al. [19] showed, by using a Fredholm-type result for a couple of nonlinear
operators, and the theory of variable exponent Sobolev spaces, the existence of weak
solutions for the problem (1.1), under no-flux boundary conditions, in the case when
µ = a = 0, λ = 1 and f independent of ∇u.

In the present paper, we will generalize these works, by proving the existence
of a weak solutions for the problem (1.1). Note that the problem (1.1) has not a
variational structure, so the most usual variational methods can not used to study
it. To attack it we will employ a topological degree for a class of demicontinuous
operators of generalized (S+) type of [6].

2. Preliminaries

In the analysis of problem (1.1), we will use the theory of the generalized

Lebesgue-Sobolev spaces Lp(x)(Ω) and W
1,p(x)
0 (Ω). For convenience, we only recall

some basic facts with will be used later, we refer to [12, 18, 22, 25, 23, 24] for more
details.

Let Ω be a smooth bounded domain in RN (N > 1), with a Lipschitz boundary
denoted by ∂Ω. Set

C+(Ω) =
{
p : p ∈ C(Ω) such that p(x) > 1 for any x ∈ Ω

}
.

For each p ∈ C+(Ω), we define

p+ := max
{
p(x), x ∈ Ω

}
and p− := min

{
p(x), x ∈ Ω

}
.
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For every p ∈ C+(Ω), we define

Lp(x)(Ω) =
{
u : Ω→ R is measurable such that

∫
Ω

|u(x)|p(x)dx < +∞
}
,

equipped with the Luxemburg norm

|u|p(x) = inf
{
λ > 0 : ρp(x)

(u
λ

)
≤ 1
}
,

where

ρp(x)(u) =

∫
Ω

|u(x)|p(x)dx, ∀ u ∈ Lp(x)(Ω).

Proposition 2.1. [12] Let (un) and u ∈ Lp(x)(Ω), then

|u|p(x) < 1
(
resp. = 1;> 1

)
⇔ ρp(x)(u) < 1

(
resp. = 1;> 1

)
, (2.1)

|u|p(x) > 1 ⇒ |u|p
−

p(x) ≤ ρp(x)(u) ≤ |u|p
+

p(x), (2.2)

|u|p(x) < 1 ⇒ |u|p
+

p(x) ≤ ρp(x)(u) ≤ |u|p
−

p(x), (2.3)

lim
n→∞

|un − u|p(x) = 0 ⇔ lim
n→∞

ρp(x)

(
un − u

)
= 0. (2.4)

Remark 2.2. According to (2.2) and (2.3), we have

|u|p(x) ≤ ρp(x)(u) + 1, (2.5)

ρp(x)(u) ≤ |u|p
−

p(x) + |u|p
+

p(x). (2.6)

Proposition 2.3. [18] The space
(
Lp(x)(Ω), | · |p(x)

)
is a separable and reflexive Banach

spaces.

Proposition 2.4. [18] The conjugate space of Lp(x)(Ω) is Lp
′(x)(Ω) where

1

p(x)
+

1

p′(x)
= 1

for all x ∈ Ω. For any u ∈ Lp(x)(Ω) and v ∈ Lp′(x)(Ω), we have the following Hölder-
type inequality∣∣∣ ∫

Ω

uv dx
∣∣∣ ≤ ( 1

p−
+

1

p′−

)
|u|p(x)|v|p′(x) ≤ 2|u|p(x)|v|p′(x). (2.7)

Remark 2.5. If p1, p2 ∈ C+(Ω) with p1(x) ≤ p2(x) for any x ∈ Ω, then there exists
the continuous embedding Lp2(x)(Ω) ↪→ Lp1(x)(Ω).

Now, let p ∈ C+(Ω) and we define W 1,p(x)(Ω) as

W 1,p(x)(Ω) =
{
u ∈ Lp(x)(Ω) such that |∇u| ∈ Lp(x)(Ω)

}
,

equipped with the norm
||u|| = |u|p(x) + |∇u|p(x).

We also define W
1,p(x)
0 (Ω) as the subspace of W 1,p(x)(Ω), which is the closure of

C∞0 (Ω) with respect to the norm || · ||.
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Proposition 2.6. [12] If the exponent p(x) satisfies the log-Hölder continuity condition,

i.e. there is a constant a > 0 such that for every x, y ∈ Ω, x 6= y with |x − y| ≤ 1

2
one has

|p(x)− p(y)| ≤ a

− log |x− y|
, (2.8)

then we have the Poincaré inequality, i.e. there exists a constant C > 0 depending
only on Ω and the function p such that

|u|p(x) ≤ C|∇u|p(x), ∀ u ∈W
1,p(x)
0 (Ω). (2.9)

In this paper we will use the following equivalent norm on W
1,p(x)
0 (Ω)

|u|1,p(x) = |∇u|p(x),

which is equivalent to || · ||.
Furthermore, we have the compact embedding W

1,p(x)
0 (Ω) ↪→ Lp(x)(Ω)(see [18]).

Proposition 2.7. [12, 18] The spaces
(
W

1,p(x)
0 (Ω), |·|1,p(x)

)
and

(
W

1,p(x)
0 (Ω), |·|1,p(x)

)
are separable and reflexive Banach spaces.

Remark 2.8. The dual space of W
1,p(x)
0 (Ω) denoted W−1,p′(x)(Ω), is equipped with

the norm

|u|−1,p′(x) = inf
{
|u0|p′(x) +

N∑
i=1

|ui|p′(x)

}
,

where the infinimum is taken on all possible decompositions u = u0 − divF with
u0 ∈ Lp

′(x)(Ω) and F = (u1, . . . , uN ) ∈ (Lp
′(x)(Ω))N .

3. A review on the topological degree theory

Now, we give some results and properties from the theory of topological degree.
The readers can find more information about the history of this theory in [1, 2, 6, 16].

In what follows, let X be a real separable reflexive Banach space and X∗ be
its dual space with dual pairing 〈 · , · 〉 and given a nonempty subset Ω of X. Strong
(weak) convergence is represented by the symbol → (⇀).

Definition 3.1. Let Y be real Banach space. A operator F : Ω ⊂ X → Y is said to be:

1. bounded, if it takes any bounded set into a bounded set.
2. demicontinuous, if for any sequence (un) ⊂ Ω, un → u implies that F (un) ⇀
F (u).

3. compact, if it is continuous and the image of any bounded set is relatively com-
pact.

Definition 3.2. A mapping F : Ω ⊂ X → X∗ is said to be:

1. of type (S+), if for any sequence (un) ⊂ Ω with un ⇀ u and
lim sup
n→∞

〈Fun, un − u〉 ≤ 0, we have un → u.
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2. quasimonotone, if for any sequence (un) ⊂ Ω with un ⇀ u, we have
lim sup
n→∞

〈Fun, un − u〉 ≥ 0.

Definition 3.3. Let T : Ω1 ⊂ X → X∗ be a bounded operator such that Ω ⊂ Ω1. For
any operator F : Ω ⊂ X → X, we say that

1. F of type (S+)T , if for any sequence (un) ⊂ Ω with un ⇀ u,
yn := Tun ⇀ y and lim sup

n→∞
〈Fun, yn − y〉 ≤ 0, we have un → u.

2. F has the property (QM)T , if for any sequence (un) ⊂ Ω with un ⇀ u,
yn := Tun ⇀ y, we have lim sup

n→∞
〈Fun, y − yn〉 ≥ 0.

In the sequel, we consider the following classes of operators:

F1(Ω) :=
{
F : Ω→ X∗ : F is bounded, demicontinuous and of type (S+)

}
,

FT,B(Ω) :=
{
F : Ω→ X : F is bounded, demicontinuous and of type (S+)T

}
,

FT (Ω) :=
{
F : Ω→ X : F is demicontinuous and of type (S+)T

}
,

for any Ω ⊂ D(F ), where D(F ) denotes the domain of F , and any T ∈ F1(Ω).
Now, let O be the collection of all bounded open sets in X and we define

F(X) :=
{
F ∈ FT (E) : E ∈ O, T ∈ F1(E)

}
,

where, T ∈ F1(E) is called an essential inner map to F .

Lemma 3.4. [16, Lemma 2.3] Let T ∈ F1(E) be continuous and S : D(S) ⊂ X∗ → X
be demicontinuous such that T (E) ⊂ D(S), where E is a bounded open set in a real
reflexive Banach space X. Then the following statements are true:

1. If S is quasimonotone, then I + S ◦ T ∈ FT (E), where I denotes the identity
operator.

2. If S is of type (S+), then S ◦ T ∈ FT (E).

Definition 3.5. Suppose that E is bounded open subset of a real reflexive Banach space
X, T ∈ F1(E) is continuous and F, S ∈ FT (E). The affine homotopy H : [0, 1]×E →
X defined by

H(t, u) := (1− t)Fu+ tSu, for all (t, u) ∈ [0, 1]× E
is called an admissible affine homotopy with the common continuous essential inner
map T .

Remark 3.6. [16, Lemma 2.5] The above affine homotopy is of type (S+)T .

Next, as in [16] we give the topological degree for the type F(X).

Theorem 3.7. Let

M =
{

(F,E, h) : E ∈ O, T ∈ F1(E), F ∈ FT,B(E), h 6∈ F (∂E)
}
,

then, there exists a unique degree function d : M −→ Z that satisfies the following
properties:
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1. ( Normalization) For any h ∈ E, we have d(I, E, h) = 1.
2. ( Homotopy invariance) If H : [0, 1] × E → X is a bounded admissible affine

homotopy with a common continuous essential inner map and h : [0, 1] → X is
a continuous path in X such that h(t) 6∈ H(t, ∂E) for all t ∈ [0, 1], then

d(H(t, ·), E, h(t)) = const for all t ∈ [0, 1].

3. ( Existence) If d(F,E, h) 6= 0, then the equation Fu = h has a solution in E.

Definition 3.8. [16, Definition 3.3] The above degree is defined as follows:

d(F,E, h) := dB(F |E0
, E0, h),

where dB is the Berkovits degree [6] and E0 is any open subset of E with F−1(h) ⊂ E0

and F is bounded on E0.

4. Existence of weak solution

In this section, we will discuss the existence of weak solutions of (1.1).
We assume that Ω ⊂ RN (N > 1) is a bounded domain with a Lipschitz boundary

∂Ω, p ∈ C+(Ω) satisfy the log-Hölder continuity condition (2.8), a ∈ L∞(Ω), k ∈
C+(Ω) with 1 < k− ≤ k(x) ≤ k+ < p−, M : R+ → R+, g : Ω × R → R and
f : Ω× R× RN → R are functions such that:

(A1). f is a Carathéodory function.

(A2). There exists % > 0 and γ ∈ Lp′(x)(Ω) such that

|f(x, ζ, ξ)| ≤ %(γ(x) + |ζ|q(x)−1 + |ξ|q(x)−1).

(A3). g is a Carathéodory function.

(A4). There are σ > 0 and ν ∈ Lp′(x)(Ω) such that

|g(x, ζ)| ≤ σ(ν(x) + |ζ|s(x)−1),

for a.e. x ∈ Ω and all (ζ, ξ) ∈ R× RN , where q, s ∈ C+(Ω) with
1 < q− ≤ q(x) ≤ q+ < p− and 1 < s− ≤ s(x) ≤ s+ < p−.

(M0). M : [0,+∞) → (m0,+∞) is a continuous and increasing function with
m0 > 0.

Remark 4.1. • Note that, for all u, v ∈W 1,p(x)
0 (Ω)

M
(
C(u)

)∫
Ω

((
|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1 + |∇u|2p(x)

)
∇v + |u|p(x)−2u v

)
dx

is well defined (see [19]).

• a(x)|u|k(x)−2u, µ g(x, u) and λ f(x, u,∇u) are belongs to Lp
′(x)(Ω) under u ∈

W
1,p(x)
0 (Ω), the assumptions (A2) and (A4) and the given hypotheses about the

exponents p, k, q and s because:

γ ∈ Lp
′(x)(Ω), ν ∈ Lp

′(x)(Ω), r(x) = (q(x)− 1)p′(x) ∈ C+(Ω)
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with r(x) < p(x), β(x) = (k(x)− 1)p′(x) ∈ C+(Ω) with β(x) < p(x) and

κ(x) = (s(x)− 1)p′(x) ∈ C+(Ω) with κ(x) < p(x).

Then, by Remark 2.5 we can conclude that

Lp(x) ↪→ Lr(x), Lp(x) ↪→ Lβ(x) and Lp(x) ↪→ Lκ(x).

Hence, since v ∈ Lp(x)(Ω), we have(
− a(x)|u|k(x)−2u+ µ g(x, u) + λ f(x, u,∇u)

)
v ∈ L1(Ω).

This implies that, the integral∫
Ω

(
− a(x)|u|k(x)−2u+ µ g(x, u) + λ f(x, u,∇u)

)
vdx

exists.

Then, we shall use the definition of weak solution for problem (1.1) in the following
sense:

Definition 4.2. We say that a function u ∈ W 1,p(x)
0 (Ω) is a weak solution of (1.1), if

for any v ∈W 1,p(x)
0 (Ω), it satisfies the following:

M
(
C(u)

)∫
Ω

((
|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1 + |∇u|2p(x)

)
∇v + |u|p(x)−2u v

)
dx

=

∫
Ω

(
− a(x)|u|k(x)−2u+ µ g(x, u) + λ f(x, u,∇u)

)
vdx.

Before giving our main result we first give two results that will be used later.

Lemma 4.3. If (M0) holds, then the operator T : W
1,p(x)
0 (Ω)→ W−1,p′(x)(Ω) defined

by

〈T u, v〉 =M
(
C(u)

)∫
Ω

((
|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1 + |∇u|2p(x)

)
∇v + |u|p(x)−2u v

)
dx,

is continuous, bounded, strictly monotone and is of type (S+).

Proof. Let us consider the following functional:

J (u) := M̂
(
C(u)

)
, where M̂(s) =

∫ s

0

M(τ)dτ,

such that M(τ) satisfies the assumption (M0).
From [19], it is obvious that J is a continuously Gâteaux differentiable function whose

Gâteaux derivative at the point u ∈ W
1,p(x)
0 (Ω) is the functional T (u) := J ′(u) ∈

W−1,p′(x)(Ω) given by

〈T u, v〉 =M
(
C(u)

)∫
Ω

((
|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1 + |∇u|2p(x)

)
∇v + |u|p(x)−2u v

)
dx,

for all u, v ∈W 1,p(x)
0 (Ω) where 〈·, ·〉 means the duality pairing between W−1,p′(x)(Ω)

and W
1,p(x)
0 (Ω).
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Hence, by using the similar argument as in the Theorem 3.1. of [19] and in the
Proposition 3.1. of [31], we conclude that T is continuous, bounded, strictly monotone
and is of type (S+). �

Proposition 4.4. Assume that the assumptions (A1)− (A4) hold, then the operator

S : W
1,p(x)
0 (Ω)→W−1,p′(x)(Ω)

〈Su, v〉 = −
∫

Ω

(
− a(x)|u|k(x)−2u+ µ g(x, u) + λ f(x, u,∇u)

)
vdx,

for all u, v ∈W 1,p(x)
0 (Ω), is compact.

Proof. In order to prove this proposition, we proceed in four steps.

Step 1: Let Ψ1 : W
1,p(x)
0 (Ω)→ Lp

′(x)(Ω) be an operator defined by

Ψ1u(x) := −µ g(x, u).

In this step, we prove that the operator Ψ1 is bounded and continuous.

First, let u ∈W 1,p(x)
0 (Ω), bearing (A4) in mind and using (2.5) and (2.6), we infer

|Ψ1u|p′(x) ≤ ρp′(x)(Ψ1u) + 1

=

∫
Ω

|µ g(x, u(x))|p
′(x)dx+ 1

=

∫
Ω

|µ|p
′(x)|g(x, u(x)|p

′(x)dx+ 1

≤
(
|µ|p

′−
+ |µ|p

′+
)∫

Ω

|σ
(
ν(x) + |u|s(x)−1

)
|p
′(x)dx+ 1

≤ const
(
|µ|p

′−
+ |µ|p

′+
)∫

Ω

(
|ν(x)|p

′(x) + |u|κ(x)
)
dx+ 1

≤ const
(
|µ|p

′−
+ |µ|p

′+
)(
ρp′(x)(ν) + ρκ(x)(u)

)
+ 1

≤ const
(
|ν|p

′+

p(x) + |u|κ
+

κ(x) + |u|κ
−

κ(x)

)
+ 1.

Then, we deduce from (2.9) and Lp(x) ↪→ Lκ(x), that

|Ψ1u|p′(x) ≤ const
(
|ν|p

′+

p(x) + |u|κ
+

1,p(x) + |u|κ
−

1,p(x)

)
+ 1,

that means Ψ1 is bounded on W
1,p(x)
0 (Ω).

Second, we show that the operator Ψ1 is continuous. To this purpose let un → u

in W
1,p(x)
0 (Ω). We need to show that Ψ1un → Ψ1u in Lp

′(x)(Ω). We will apply the
Lebesgue’s theorem.

Note that if un → u in W
1,p(x)
0 (Ω), then un → u in Lp(x)(Ω). Hence there exist a

subsequence (uk) of (un) and φ in Lp(x)(Ω) such that

uk(x)→ u(x) and |uk(x)| ≤ φ(x), (4.1)

for a.e. x ∈ Ω and all k ∈ N.
Hence, from (A2) and (4.1), we have

|g(x, uk(x))| ≤ σ(ν(x) + |φ(x)|s(x)−1),
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for a.e. x ∈ Ω and for all k ∈ N.
On the other hand, thanks to (A3) and (4.1), we get, as k −→∞

g(x, uk(x))→ g(x, u(x)) a.e. x ∈ Ω.

Seeing that

ν+|φ|s(x)−1 ∈ Lp
′(x)(Ω) and ρp′(x)(Ψ1uk−Ψ1u) =

∫
Ω

|g(x, uk(x))−g(x, u(x))|p
′(x)dx,

then, from the Lebesgue’s theorem and the equivalence (2.4), we have

Ψ1uk → Ψ1u in Lp
′(x)(Ω),

and consequently

Ψ1un → Ψ1u in Lp
′(x)(Ω),

that is, Ψ1 is continuous.

Step 2: We define the operator Ψ2 : W
1,p(x)
0 (Ω)→ Lp

′(x)(Ω) by

Ψ2u(x) := a(x)|u(x)|k(x)−2u(x).

We will prove that Ψ2 is bounded and continuous.
It is clear that Ψ2 is continuous. Next we show that Ψ2 is bounded.

Let u ∈W 1,p(x)
0 (Ω) and using (2.5) and (2.6), we obtain

|Ψ2u|p′(x) ≤ ρp′(x)(Ψ2u) + 1

=

∫
Ω

|a(x)|u|k(x)−2u|p
′(x)dx+ 1

=

∫
Ω

|a(x)|p
′(x)|u|(k(x)−1)p′(x)dx+ 1

≤ ||a||p
′

L∞(Ω)

∫
Ω

|u|β(x)dx+ 1

= ||a||p
′

L∞(Ω)ρβ(x)(u) + 1

≤ ||a||p
′

L∞(Ω)

(
|u|β

−

β(x) + |u|β
+

β(x)

)
+ 1.

Hence, we deduce from Lp(x) ↪→ Lβ(x) and (2.9) that

|Ψ2u|p′(x) ≤ const
(
|u|β

−

1,p(x) + |u|β
+

1,p(x)

)
+ 1,

and consequently, Ψ2 is bounded on W
1,p(x)
0 (Ω).

Step 3: Let us define the operator Ψ3 : W
1,p(x)
0 (Ω)→ Lp

′(x)(Ω) by

Ψ3u(x) := −λ f(x, u(x),∇u(x)).
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We will show that Ψ3 is bounded and continuous.

Let u ∈W 1,p(x)
0 (Ω). According to (A2) and the inequalities (2.5) and (2.6), we obtain

|Ψ3u|p′(x) ≤ ρp′(x)(Ψ3u) + 1

=

∫
Ω

|λ f(x, u(x),∇u(x))|p
′(x)dx+ 1

=

∫
Ω

|λ|p
′(x)|f(x, u(x),∇u(x))|p

′(x)dx+ 1

≤
(
|λ|p

′−
+ |λ|p

′+
)∫

Ω

|%
(
γ(x) + |u|q(x)−1 + |∇u|q(x)−1

)
|p
′(x)dx+ 1

≤ const
(
|λ|p

′−
+ |λ|p

′+
)∫

Ω

(
|γ(x)|p

′(x) + |u|r(x) + |∇u|r(x)
)
dx+ 1

≤ const
(
|λ|p

′−
+ |λ|p

′+
)(
ρp′(x)(γ) + ρr(x)(u) + ρr(x)(∇u)

)
+ 1

≤ const
(
|γ|p

′+

p(x) + |u|r
+

r(x) + |u|r
−

r(x) + |∇u|r
+

r(x) + |∇u|r
−

r(x)

)
+ 1.

Taking into account that Lp(x) ↪→ Lr(x) and (2.9), we have then

|Ψ3u|p′(x) ≤ const
(
|γ|p

′+

p(x) + |u|r
+

1,p(x) + |u|r
−

1,p(x)

)
+ 1,

and consequently Ψ3 is bounded on W
1,p(x)
0 (Ω).

It remains to show that Ψ3 is continuous. Let un → u in W
1,p(x)
0 (Ω), we need to show

that Ψ3un → Ψ3u in Lp
′(x)(Ω). We will apply the Lebesgue’s theorem.

Note that if un → u in W
1,p(x)
0 (Ω), then un → u in Lp(x)(Ω) and ∇un → ∇u

in (Lp(x)(Ω))N . Hence, there exist a subsequence (uk) and φ in Lp(x)(Ω) and ψ in
(Lp(x)(Ω))N such that

uk(x)→ u(x) and ∇uk(x)→ ∇u(x), (4.2)

|uk(x)| ≤ φ(x) and |∇uk(x)| ≤ |ψ(x)|, (4.3)

for a.e. x ∈ Ω and all k ∈ N.
Hence, thanks to (A1) and (4.2), we get, as k −→∞

f(x, uk(x),∇uk(x))→ f(x, u(x),∇u(x)) a.e. x ∈ Ω.

On the other hand, from (A2) and (4.3), we can deduce the estimate

|f(x, uk(x),∇uk(x))| ≤ %(γ(x) + |φ(x)|q(x)−1 + |ψ(x)|q(x)−1),

for a.e. x ∈ Ω and for all k ∈ N.
Seeing that

γ + |φ|q(x)−1 + |ψ(x)|q(x)−1 ∈ Lp
′(x)(Ω),

and taking into account the equality

ρp′(x)(Ψ3uk −Ψ3u) =

∫
Ω

|f(x, uk(x),∇uk(x))− f(x, u(x),∇u(x))|p
′(x)dx,

then, we conclude from the Lebesgue’s theorem and (2.4) that

Ψ3uk → Ψ3u in Lp
′(x)(Ω),
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and consequently

Ψ3un → Ψ3u in Lp
′(x)(Ω),

and then Ψ3 is continuous.
Step 4: Let I∗ : Lp

′(x)(Ω) → W−1,p′(x)(Ω) be the adjoint operator of the operator

I : W
1,p(x)
0 (Ω)→ Lp(x)(Ω).

We then define

I∗ ◦Ψ1 : W
1,p(x)
0 (Ω)→W−1,p′(x)(Ω),

I∗ ◦Ψ2 : W
1,p(x)
0 (Ω)→W−1,p′(x)(Ω),

and

I∗ ◦Ψ3 : W
1,p(x)
0 (Ω)→W−1,p′(x)(Ω).

On another side, taking into account that I is compact, then I∗ is compact. Thus,
the compositions I∗ ◦Ψ1, I∗ ◦Ψ2 and I∗ ◦Ψ3 are compact, that means

S = I∗ ◦Ψ1 + I∗ ◦Ψ2 + I∗ ◦Ψ3

is compact. With this last step the proof of Proposition 4.4 is completed. �

We are now in the position to give the existence result of weak solution for (1.1).

Theorem 4.5. Assume that (A1)− (A4) and (M0) hold, then the problem (1.1) admits

at least one weak solution u in W
1,p(x)
0 (Ω).

Proof. We will reduce the problem (1.1) to a new one governed by a Hammerstein
equation, and we will apply the theory of topological degree introduced in Section 3.

For all u, v ∈ W 1,p(x)
0 (Ω), we define the operators T and S, as defined in Lemma 4.3

and Proposition 4.4 respectively,

T : W
1,p(x)
0 (Ω) −→W−1,p′(x)(Ω)

〈T u, v〉 =M
(
C(u)

)∫
Ω

((
|∇u|p(x)−2∇u+

|∇u|2p(x)−2∇u√
1 + |∇u|2p(x)

)
∇v + |u|p(x)−2u v

)
dx,

and

S : W
1,p(x)
0 (Ω) −→W−1,p′(x)(Ω)

〈Su, v〉 = −
∫

Ω

(
− a(x)|u|k(x)−2u+ µ g(x, u) + λ f(x, u,∇u)

)
vdx.

Consequently, the problem (1.1) is equivalent to the equation

T u+ Su = 0, u ∈W 1,p(x)
0 (Ω). (4.4)

Taking into account that, by Lemma 4.3, the operator T is a continuous, bounded,
strictly monotone and of type (S+), then, by [33, Theorem 26 A], the inverse operator

L := T −1 : W−1,p′(x)(Ω)→W
1,p(x)
0 (Ω),

is also bounded, continuous, strictly monotone and of type (S+).
On another side, according to Proposition 4.4, we have that the operator S is bounded,
continuous and quasimonotone.
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Consequently, following Zeidler’s terminology [33], the equation (4.4) is equivalent to
the following abstract Hammerstein equation

u = Lv and v + S ◦ Lv = 0, u ∈W 1,p(x)
0 (Ω) and v ∈W−1,p′(x)(Ω). (4.5)

Seeing that (4.4) is equivalent to (4.5), then to solve (4.4) it is thus enough to solve
(4.5). In order to solve (4.5), we will apply the Berkovits topological degree introduced
in Section 3.
First, let us set

B :=
{
v ∈W−1,p′(x)(Ω) : ∃ t ∈ [0, 1] such that v + tS ◦ Lv = 0

}
.

Next, we show that B is bounded in ∈W−1,p′(x)(Ω).
Let us put u := Lv for all v ∈ B.
Taking into account that |Lv|1,p(x) = |∇u|p(x), then we have the following two cases:

First case: If |∇u|p(x) ≤ 1, then |Lv|1,p(x) ≤ 1, that means
{
Lv : v ∈ B

}
is bounded.

Second case: If |∇u|p(x) > 1, then, we deduce from (2.2), (A2) and (A4), the inequal-
ities (2.7) and (2.6) and the Young’s inequality that

|Lv|p
−

1,p(x)

≤ ρp(x)(∇u)

≤ 〈T u, u〉
= 〈v, Lv〉
= −t〈S ◦ Lv, Lv〉

= t

∫
Ω

(
− a(x)|u|k(x)−2u+ µ g(x, u) + λ f(x, u,∇u)

)
udx

≤ tmax(||a||L∞(Ω), σ|µ|, %|λ|)
(
ρk(x)(u) +

∫
Ω

|ν(x)u(x)|dx+

∫
Ω

|γ(x)u(x)|dx

+ ρs(x)(u) + ρq(x)(u) +

∫
Ω

|∇u|q(x)−1|u|dx
)

≤ const
(
|u|k

−

k(x) + |u|k
+

k(x) + |ν|p′(x)|u|p(x) + |γ|p′(x)|u|p(x) + |u|s
+

s(x) + |u|s
−

s(x)

+ |u|q
+

q(x) + |u|q
−

q(x) +
1

q′−
ρq(x)(∇u) +

1

q−
ρq(x)(u)

)
≤ const

(
|u|k

−

k(x) + |u|k
+

k(x) + |u|p(x) + |u|s
+

s(x) + |u|s
−

s(x) + |u|q
+

q(x) + |u|q
−

q(x) + |∇u|q
+

q(x)

)
,

then, according to Lp(x) ↪→ Lk(x), Lp(x) ↪→ Ls(x) and Lp(x) ↪→ Lq(x), we get

|Lv|p
−

1,p(x) ≤ const
(
|Lv|k

+

1,p(x) + |Lv|1,p(x) + |Lv|s
+

1,p(x) + |Lv|q
+

1,p(x)

)
,

what implies that
{
Lv : v ∈ B

}
is bounded.

On the other hand, we have that the operator is S is bounded, then S◦Lv is bounded.
Thus, thanks to (4.5), we have that B is bounded in W−1,p′(x)(Ω).
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However, ∃ a > 0 such that

|v|−1,p′(x) < a for all v ∈ B,

which leads to

v + tS ◦ Lv 6= 0, v ∈ ∂Ba(0) and t ∈ [0, 1],

where Ba(0) is the ball of center 0 and radius a in W−1,p′(x)(Ω).
Moreover, by Lemma 3.4, we conclude that

I + S ◦ L ∈ FL(Ba(0)) and I = T ◦ L ∈ FL(Ba(0)).

On another side, taking into account that I, S and L are bounded, then I + S ◦ L is
bounded. Hence, we infer that

I + S ◦ L ∈ FL,B(Ba(0)) and I = T ◦ L ∈ FL,B(Ba(0)).

Now, we define the homotopy H : [0, 1]× Ba(0)→W−1,p′(x)(Ω) by

H(t, ϑ) := ϑ+ tS ◦ Lϑ.

Applying the homotopy invariance and normalization property of the degree d seen
in Theorem 3.7, we have

d(I + S ◦ L,Ba(0), 0) = d(I,Ba(0), 0) = 1 6= 0.

Since d
(
I +S ◦L,Ba(0), 0

)
6= 0, then by the existence property of the degree d stated

in Theorem 3.7, we conclude that there exists ϑ ∈ Ba(0) which verifies(
I + S ◦ L

)
(ϑ) = 0⇔ ϑ+ S ◦ Lϑ = 0⇔ T ◦ Lϑ+ S ◦ Lϑ = 0.

Hence, we conclude that u = Lv is a weak solutions of (1.1). The proof is completed.
�

References

[1] Abbassi, A., Allalou, C., Kassidi, A., Existence of weak solutions for nonlinear p-elliptic
problem by topological degree, Nonlinear Dyn. Syst. Theory, 20(2020), no. 3, 229-241.

[2] Abbassi, A., Allalou, C., Kassidi, A., Existence results for some nonlinear elliptic equa-
tions via topological degree methods, J. Elliptic Parabol Equ., 7(2021), no. 1, 121-136.

[3] Acerbi, E., Mingione, G., Regularity results for stationary electro-rheological fluids,
Archive for Rational Mechanics and Analysis, 164(2002), no. 3, 213-259.

[4] Acerbi, E., Mingione, G., Gradient estimates for the p(x)-Laplacean system, Journal für
die Reine und Angewandte Mathematik, 584(2005), 117-148.

[5] Afrouzi, G.A., Kirane, M., Shokooh, S., Infinitely many weak solutions for p(x)-
Laplacian-like problems with Neumann condition, Complex Var. Elliptic Equ., 63(2018),
no. 1, 23-36.

[6] Berkovits, J., Extension of the Leray-Schauder degree for abstract Hammerstein type
mappings, J. Differ. Equ., 234(2007), 289-310.

[7] Chu, C.M., Xiao, Y.X., The multiplicity of nontrivial solutions for a new
p(x)−Kirchhoff-Type elliptic problem, J. Funct. Spaces, 2021(2021), 1569376.



A p(x)-Kirchhoff type problem 365

[8] Corsato, C., De Coster, C., Obersnel, F., Omari, P., Qualitative analysis of a curva-
ture equation modeling MEMS with vertical load, Nonlinear Anal. Real World. Appl.,
55(2020), 103-123.

[9] Corsato, C., De Coster, C., Omari, P., The Dirichlet problem for a prescribed anisotropic
mean curvature equation: Existence, uniqueness and regularity of solutions, J. Differen-
tial Equations, 260(2016), no. 5, 4572-4618.

[10] Dai, G., Hao, R., Existence of solutions for a p(x)-Kirchhoff-type equation, J. Math.
Anal. Appl., 359(2009), 275-284.

[11] Etemad, S., Matar, M.M., Ragusa, M.A., Rezapour, S., Tripled fixed points and existence
study to a tripled impulsive fractional differential system via measures of noncompact-
ness, Mathematics, 10(2022), no. 1, 25.

[12] Fan, X.L., Zhao, D., On the spaces Lp(x)(Ω) and Wm,p(x)(Ω), J. Math. Anal. Appl.,
263(2001), 424-446.

[13] Finn, R., Equilibrium Capillary Surfaces, Grundlehren der Mathematischen Wis-
senschaften, Springer-Verlag, New York, 284(1986).

[14] Giusti, E., Minimal Surfaces and Functions of Bounded Variation, Monographs in Math-
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[18] Kováčik, O., Rákosńık, J., On spaces Lp(x) and W 1,p(x), Czechoslovak Math. J.,
41(1991), no. 4, 592-618.

[19] Lapa, E.C., Rivera, V.P., Broncano, J.Q., No-flux boundary problems involving p(x)-
Laplacian-like operators, Electron. J. Diff. Equ, 219(2015), 1-10.

[20] Ni, W.M., Serrin, J., Non-existence theorems for quasilinear partial differential equations,
Rend. Circ. Mat. Palermo (2) Suppl., 8(1985), 171-185.

[21] Ni, W.M., Serrin, J., Existence and non-existence theorems for ground states for quasi-
linear partial differential equations, Att. Conveg. Lincei, 77(1986), 231-257.

[22] Ouaarabi, M.E., Abbassi, A., Allalou, C., Existence result for a Dirichlet problem gov-
erned by nonlinear degenerate elliptic equation in weighted Sobolev spaces, J. Elliptic
Parabol Equ., 7(2021), no. 1, 221-242.

[23] Ouaarabi, M.E., Abbassi, A., Allalou, C., Existence result for a general nonlinear de-
generate elliptic problems with measure datum in weighted Sobolev spaces, International
Journal on Optimization and Applications, 1(2021), no. 2, 1-9.

[24] Ouaarabi, M.E., Abbassi, A., Allalou, C., Existence and uniqueness of weak solution
in weighted Sobolev spaces for a class of nonlinear degenerate elliptic problems with
measure data, International Journal of Nonlinear Analysis and Applications, 13(2021),
no. 1, 2635-2653.

[25] Ouaarabi, M.E., Allalou, C., Abbassi, A., On the Dirichlet problem for some nonlinear

degenerated elliptic equations with weight, 7th International Conference on Optimization
and Applications (ICOA), 2021, 1-6.



366 M. El Ouaarabi, H. El Hammar, C. Allalou and S. Melliani
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Invariant regions and global existence of
uniqueness weak solutions for tridiagonal
reaction-diffusion systems

Nabila Barrouk, Karima Abdelmalek and Mounir Redjouh

Abstract. In this paper we study the existence of uniqueness global weak solu-
tions for m × m reaction-diffusion systems for which two main properties hold:
the positivity of the weak solutions and the total mass of the components are
preserved with time. Moreover we suppose that the non-linearities have criti-
cal growth with respect to the gradient. The technique we use here in order to
prove global existence is in the same spirit of the method developed by Boccardo,
Murat, and Puel for a single equation.
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1. Introduction

In [26, 27], the authors obtained a global existence of solutions for the coupled semi-
linear reaction-diffusion system with diagonal by order 2, and m, triangular, and full
matrix of diffusion coefficients. By combining the compact semigroup methods and
some L1 estimates, we show that global solutions exist for a large class of the term
of reaction. In the works [8, 14], we find new developed methods based on truncation
functions, fixed point theorems and compactness, etc to prove establish the existence
of global solutions.
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In the present work we consider the problem

∂U
∂t −Am∆U = F (t, x, U,∇U) on ]0,+∞[× Ω,

U = 0 or ∂U
∂η = 0 on ]0,+∞[× ∂Ω,

U (0, x) = U0 (x) on Ω,

(1.1)

by using a technique based on L1-estimate we establish a global existence result of
the solution.
We consider the m-equations of reaction-diffusion system (1.1), with m ≥ 2, where Ω
is an open bounded domain of class C1 in Rn, the vectors U , F , U0 and the matrix
Am are defined as: 

U = (u1, . . . , um)T = ((us)
m
s=1)T ,

∇U = (∇u1, . . . ,∇um)
T

= ((∇us)ms=1)T ,
F = (F1, . . . , Fm)T = ((Fs)

m
s=1)T ,

U0 = (u0
1, . . . , u

0
m)T = ((u0

s)
m
s=1)T .

Am =



a1 b1 0 · · · 0

c1 a2 b2
. . .

...

0 c2 a3
. . . 0

...
. . .

. . .
. . . bm−1

0 · · · 0 cm−1 am


. (1.2)

The nonlinearities Fs, 1 ≤ s ≤ m, have critical growth with respect to |∇U |, and the
constants (ai)

m
i=1, (bi)

m−1
i=1 et (ci)

m−1
i=1 are supposed to be strictly positive and satisfy

the condition
cos2(

π

m+ 1
) <

aiai+1

(bi + ci)
2 (1.3)

which reflects the parabolicity of the system and implies at the same time that the
diffusion matrix is positive defnite. That means the eigenvalues (λi)

m
i=1 , (λ1 > λ2 >

. . . > λm), of Am are positive.
Note that ∂

∂η denotes the outward normal derivative on boundary ∂Ω.

The initial data are assumed to be in the regions:∑
S,Z

=

{
U0 ∈ Rm :

{
w0
z = 〈Vz, U0〉 ≤ 0 if z ∈ Z

w0
s = 〈Vs, U0〉 ≥ 0 if s ∈ S

}
, (1.4)

where
S ∩ Z = φ, S ∪ Z = {1, 2, . . . ,m} .

The notation 〈., .〉 denotes the inner product in Rm and Vs = (vs1, . . . , vsm)T the
eigenvector of the diffusion matrix Am associated with the eigenvalue (λs)

m
s=1. Hence,

we can see that there are 2m regions.
This work represents a generalization to the parabolic case study did in the elliptic
case (see [7]) for these systems of arbitrary order. This passage in parabolic case,
needs new approaches and also technical difficulties to be overcome. We will explain
in detail here.
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We found a good idea to present our work as follows: we start initially with an
introduction that presents the state of the art of the area studied and some recall the
main results obtained previously. This will highlight the contribution of our work and
its originality. In the second section we give the definition of the notion of solution
used here. We then present the main results of this work. In the last section, we give
the proof of global existence and uniqueness of our reaction-diffusion system. This is
done in three steps: in the first we truncate the system, the latter we give suitable
estimates on the approximate solutions and in the last step we show the convergence
of the approximating system by using the technics introduced by Boccardo et al. [13]
and Dall’Aglio and Orsina [15].

2. Eigenvalues and eigenvectors of the diffusion matrix

The usual norms in the spaces L1 (Ω) , L∞ (Ω) and C
(
Ω
)

are denoted respectively
by:

‖u‖1 =

∫
Ω

|u (x)| dx,

‖u‖∞ = ess sup
x∈Ω

|u (x)| and ‖u‖C(Ω) = max
x∈Ω
|u (x)| .

For any initial data in C
(
Ω
)

or L∞ (Ω) local existence and uniqueness of solutions
to the initial values problem (1.1) follow from the basic existence theory for abstract
semilinear differential equations (see Friedman [16], Henry [17], Pazzy [28]).

Our aim in this section is to get a three term reccurence relation of characteristic
polynomial of matrix A of dimension m × m in terms of matrices of dimensions
(m−1)×(m−1) and (m−2)×(m−2) so the eigenvectors of this matrix. The solutions of
characteristic polynomial det(Am−λIm) = 0 are λ which represent eigenvalues of the
matrix Am. We denote the characteristic polynomial of Am, Am−1, Am−2 by φm(λ),
φm−1(λ), φm−2 (λ) respectively.

Lemma 2.1 (See [22]). Let Am be the tridiagonal matrix defined in (1.2), the eigen-
values of Am are distinct and interlace strictly with eigenvalues of Am−1 for m ≥ 2.
Where

φ0 (λ) = 1, φ1 (λ) = a1 − λ, φm (λ) = (λ− am)φm−1 (λ)− bm−1cm−1φm−2 (λ) .
(2.1)

Lemma 2.2 (See Andelic and Fonseca [9]). Let Am be the real symmetric tridiagonal
matrix definied in (1.2), with diagonal entries positive.
If

cos2

(
π

m+ 1

)
<

aiai+1

(bi + ci)
2 , for i = 1, . . . ,m− 1,

then Am is positive definite.

We remark that general characterization in terms of the eigenvalues, i.e. Am is
positive definite if and only if all its eigenvalues are positive.
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Lemma 2.3. Let λs for s = 1, . . . ,m be the eigenvalues of the tridiagonal matrix Am.
Then the eigenvectors Vs = (vs1, . . . , vsm)T associated to λs for s = 1, . . . ,m are given
by the following expressions

vsm = 1,

vs(m−1) = λs−am
cm−1

,

vs(`−1) = − b`vs(`+1)+(a`−λs)vs`
c`−1

, ` = 2, . . . ,m− 1.

(2.2)

Proof. Recall that the diffusion matrix is positive definite, hence its eigenvalues are
necessarily positive. The eigenvectors of the diffusion matrix associated with the eigen-
values λs are defind as Vs = (vs1, vs2, . . . , vsm)T . For an eigenpair (λs, Vs), the com-
ponents in AmV = λV are a1v1 + b1v2 = λv1

c`−1v`−1 + a`v` + b`v`+1 = λv`, (2 ≤ ` ≤ m− 1)
cm−1vm−1 + amvm = λvm

if vm = 0, the assumption bi 6= 0, ci 6= 0 for all i = 1, . . . ,m − 1 we said that all vsi
are zero. We can therefore take vm = 1 and (v1, v2, . . . , vm−1) is a solution of upper
triangular system c`−1v`−1 + (a` − λ)v` + b`v`+1 = 0 (2 ≤ ` ≤ m− 2)

cm−2vm−2 + (am−1 − λ)vm−1 = −bm−1

cm−1vm−1 = λ− am

the solution of this system is given by{
vm−1 = λ−am

cm−1
,

v`−1 = − b`v`+1+(a`−λ)v`
c`−1

, (` = 2, . . . ,m− 1).
�

3. Diagonalizing system (1.1)

Usually to construct an invariant regions for systems such (1.1) we make a linear
change of variables ui to obtain a new equivalent system with diagonal diffusion
matrix for which standard techniques can be applied to deduce global existence (see
[1, 2, 3, 4, 5, 21]).

Let Vs = (vs1, . . . , vsm)T be an eigenvector of the matrix Am associated with its
eigenvalue (λs)

m
s=1 where λ1 > λ2 > . . . > λm. Multiplying the kth equation of (1.1)

by (−1)
is Vsk, is = 1, 2 and k = 1, . . . ,m, and adding the resulting equations, we get



∂W
∂t − diag (λ1, λ2, . . . , λm) ∆W = Ψ (t, x,W,∇W ) on ]0,+∞[× Ω,

W = 0 or ∂W
∂η = 0 on ]0,+∞[× ∂Ω,

W (0, x) = W0 (x) on Ω,

(3.1)
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where 
W = ((ws)

m
s=1)T , ∇W = ((∇ws)ms=1)T , ws =

〈
(−1)

is Vs, U
〉
,

Ψ = ((Ψs)
m
s=1)T , Ψs =

〈
(−1)

is Vs, F
〉
,

W0 = ((w0
s)
m
s=1)T , w0

s =
〈

(−1)
is Vs, U0

〉
, m ≥ 2.

for all is = {1, 2} .

Proposition 3.1. The system (3.1) admits a unique classical solution W on [0, Tmax)×
Ω, where Tmax

(∥∥w0
1

∥∥
∞ ,
∥∥w0

2

∥∥
∞ , . . . ,

∥∥w0
m

∥∥
∞

)
denotes the eventual blow-up time.

Furthermore, if Tmax < +∞, then

lim
t→Tmax

m∑
s=1

‖ws (t, .)‖∞ = +∞.

Therefore, if there exists a positive constant C such that
m∑
s=1

‖ws (t, .)‖∞ ≤ C for all t ∈ [0, Tmax) ,

then, Tmax = +∞.

4. Statement of the main result

4.1. Assumptions

Let us, now introduce for w0
s the hypotheses, for all 1 ≤ s ≤ m

(A1) The initial conditions are in
∑

S,Z, w0
s , are nonnegative functions in L1 (Ω) .

The following assumptions are also made on the function Ψ defined by:

Ψ = ((Ψs)
m
s=1)T , Ψs =

〈
(−1)

is Vs, F
〉
, is = 1, 2.

(A2) Ψs are continuously differentiable on Rm+ and Ψs, s = 1,m, are quasi-positives

functions which means that, for s = 1,m

[w1 ≥ 0, . . . , ws−1 ≥ 0, ws+1 ≥ 0, . . . , wm ≥ 0] ,

implies{
Ψs (t, x, w1, . . . , ws−1, 0, ws+1, . . . , wm, p1, . . . , ps−1, 0, ps+1, . . . , pm) ≥ 0.

for all 1 ≤ s ≤ m, (W,p) ∈ (R+)
m × RNm and for a.e. (t, x) ∈ QT

These conditions on Ψ guarantee local existence of unique, nonnegative classical
solutions on a maximal time interval [0, Tmax), see Hollis and Morgan [20].

(A3) The inequality

〈S,Ψ (t, x,W,∇W )〉 ≤ C1 (1 + 〈W, 1〉) ,

such that

W = (w1, . . . , wm) , S = (d1, d2, . . . , dm−1, 1) ,
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for all ws ≥ 0, s = 1, . . . ,m and all constants ds satisfy ds ≥ ds, s = 1, . . . ,m−1,
where C1 ≥ 0 and ds are positive constants sufficiently large.

Under the assumptions (A1)-(A3), the next proposition says that the classical solution
of the system (3.1) remains in

∑
S,Z for all t in [0, Tmax).

Proposition 4.1. Suppose that the assumptions (A1)-(A3) are satisfied. Then for any
W0 in

∑
S,Z the classical solution W of the system (3.1) on [0, Tmax)×Ω remains in∑

S,Z for all t in [0, Tmax).

(A4) The total mass of the components w1, . . . , wm is controlled with time, which is
ensured by{ ∑

1≤s≤r
Ψs(t, x,W, p) ≤ 0, for all 1 ≤ r ≤ m

for all (W,p) ∈ (R+)
m × RNm and a.e. (t, x) ∈ QT

Ψs : ]0, T [× Ω× Rm × RmN → R are measurable (4.1)

Ψs : Rm × RmN → R are locally Lipschitz continuous (4.2)

namely ∑
1≤s≤m

∣∣∣Ψs (t, x,W, p)−Ψs

(
t, x, Ŵ , p̂

)∣∣∣
≤ K(r)

 ∑
1≤s≤m

|ws − ŵs|+
∑

1≤s≤m

‖ps − p̂s‖


for a.e. (t, x) and for all 0 ≤ |ws| , |ŵs| , ‖ps‖ , ‖p̂s‖ ≤ r.

|Ψ1 (t, x,W,∇W )| ≤ C1 (|w1|)

F1 (t, x) + ‖∇w1‖2 +
∑

2≤j≤m

‖∇wj‖αj
 (4.3)

where C1 : [0,+∞)→ [0,+∞) is nondecreasing, F1 ∈ L1 (QT ) and 1 ≤ αj < 2

|Ψs (t, x,W,∇W )| ≤ Cs

 s∑
j=1

|wj |

Fs (t, x) +
∑

1≤j≤m

‖∇wj‖2
 , 2 ≤ s ≤ m

(4.4)
where Cs : [0,+∞)→ [0,+∞) is nondecreasing, Fs ∈ L1 (QT ) for all 2 ≤ s ≤ m.

Let us know that if the nonlinearities Ψ do not dependent on the gradient (system
(3.1) is semilinear), the existence of global positive solutions have been obtained by
Hollis et all [18], Hollis and Morgan [19] and Martin and Pierre [25]. One can see
that in all of these works, the triangular structure, namely hypotheses (A4) plays an
important role in the study of semilinear systems. Indeed, if (A4) does not hold, Pierre
and Schmitt [29] proved blow up in finite time of the solutions to some semilinear
reaction-diffusion systems.
Where Ψ = (Ψ1,Ψ2) depends on the gradient, Alaa and Mounir [8] solved the problem
where the triangular structure is satisfied and the growth of Ψ1 and Ψ2 with respect
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to |∇w1| , |∇w2| is sub-quadratic. There exists 1 ≤ p < 2, C : [0,∞)
2 → [0,∞)

nondecreasing such that

|Ψ1|+ |Ψ2| ≤ C (|w1| , |w2|) (1 + |∇w1|p + |∇w2|p)

About the critical growth with respect to the gradient (p = 2), we recall that for the
case of a single equation (d1 = d2 and Ψ1 = Ψ2), existence results have been proved
for the elliptic case in [11, 12]. The corresponding parabolic equations have also been
studied by many authors; see for instance [6, 13, 15, 24].

5. Statement of the result

First, we have to clarify in which sense we want to solved problem (3.1).

The existence of global unique solutions for the system (3.1) is to equivalence to
existence a ws, s = 1,m, true for the following theorem:

Theorem 5.1. Suppose that the hypotheses (A1)-(A4) and (4.1)-(4.4) are satisfied, so
it exists unique ws, s = 1,m solution of:

ws ∈ C
(
[0, T ] ;L1 (Ω)

)
∩ L1

(
0, T ;W 1,1

0 (Ω)
)
,

Ψs ∈ L1 (QT ) where QT = (0, T )× Ω for all T > 0,

ws (t) = Ss (t)w0
s +

∫ t
0
Ss (t− τ) Ψs (s, .,W (τ) ,∇W (τ)) dτ,

s = 1,m, ∀t ∈ [0, T [ ,

(5.1)

where W = (w1, . . . , wm) , ∇W = (∇w1, . . . ,∇wm) and Ss (t) are the semigroups of
contractions in L1 (Ω) generated by λs∆, s = 1,m.

Example 5.2. For 1 ≤ i ≤ m, A typical example where the result of this paper can be
applied is

∂wi
∂t
− di∆wi =

∑
1≤j≤i

aij
wj∑

1≤k≤m
wk
|∇wj |2 + fi (t, x) in QT

wi = 0 on ΣT
wi (0, x) = wi,0 in Ω

Theorem 5.3. Assume that (A2), (A4) and (4.1)-(4.4) hold. If w0
s ∈ L2 (Ω), for all

1 ≤ s ≤ m, then there exists a positive global solution W = (w1, . . . , wm) of system
(3.1). Moreover, w1, . . . , wm ∈ L2

(
0, T ;H1

0 (Ω)
)
.

Before giving the proof of this theorem, let us define the following functions.

Given a real positive number k, we set

Tk(s) = max{−k,min(k, s)} and Gk(s) = s− Tk(s)

We remark that {
Tk(s) = s for 0 ≤ s ≤ k,
Tk(s) = k for s > k.
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Proof of Theorem 5.3.
Approximating scheme. For every function h defined from R+ ×Ω×Rm ×RmN into
R, we associate ϕ̂ = ϕ̂(t, x,W, p) such that

ϕ̂ =


ϕ (t, x, w1, . . . , wm, p1, . . . , pm) if ws ≥ 0, 1 ≤ s ≤ m
ϕ (t, x, w1, . . . , ws−1, 0, ws+1, . . . , wm,
p1, . . . , ps−1, 0, ps+1, . . . , pm)

if ws ≤ 0 and wj ≥ 0, j 6= s

ϕ (t, x, 0, . . . , 0, p1, . . . , pm) if ws ≤ 0, 1 ≤ s ≤ m
and consider the system, for 1 ≤ s ≤ m

∂ws
∂t − ds∆ws = Ψ̂s (t, x,W,∇W ) in ]0,+∞[× Ω,

ws = 0 or ∂ws
∂η = 0 on ]0,+∞[× ∂Ω,

ws (0, x) = w0
s (x) in Ω.

(5.2)

It is obviously seen, by the structure of Ψ̂s, 1 ≤ s ≤ m, that systems (3.1) and (5.2)
are equivalent on the set where ws ≥ 0, 1 ≤ s ≤ m. Consequently, to prove Theorem
5.3, we have to show that problem (5.2) has a weak solution which is positive.
To this end, we define ψn a truncation function by ψn ∈ C∞c (R), 0 ≤ ψn ≤ 1, and

ψn(z) =

{
1 if |z| ≤ n
0 if |z| ≥ n+ 1

and the mollification with respect to (t, x) is defined as follows.
Let ρ ∈ C∞c

(
R× RN

)
such that

suppρ ⊂ B(0, 1),

∫
ρ = 1, ρ ≥ 0 on R× RN

and ρn(y) = nNρ(ny). One can see that

ρn ∈ C∞c
(
R× RN

)
, suppρn ⊂ B

(
0,

1

n

)
,

∫
ρn = 1, ρn ≥ 0 on R× RN

We also consider nondecreasing sequences wns,0 ∈ C∞c (Ω) such that

wns,0 → w0
s in L2 (Ω) , 1 ≤ s ≤ m

and define for all (t, x,W, p) in R+ × Ω× Rm × RmN and 1 ≤ s ≤ m,

Ψs,n(t, x,W, p) =

ψn
 ∑

1≤j≤m

(|wj |+ ‖pj‖)

Ψs(t, x,W, p)

 ∗ ρn (t, x) .

Note that these functions enjoy the same properties as Ψs, 1 ≤ s ≤ m, moreover they
are Hölder continuous with respect to (t, x) and |Ψs,n| ≤ Mn, 1 ≤ s ≤ m, where Mn

is a constant depending only on n (these estimates can be derived from (5.1), the
properties of the convolution product, and the fact that

∫
ρn = 1).

Let us now consider the truncated system, for 1 ≤ s ≤ m
∂ws,n
∂t

− ds∆ws,n = Ψs,n (t, x,Wn,∇Wn) in QT

ws,n = 0 or
∂ws,n
∂η = 0 on ΣT

ws,n (0, x) = wns,0 (x) in Ω

(5.3)



Invariant regions and global existence 375

It is well known that problem (5.3) has a global classical solution (see [23], theorem
7.1, p. 591 ) for the existence and ([24], Corollary of Theorem 4.9, p. 341 ) for the
regularity of solutions. It remains to show the positivity of the solutions.

Lemma 5.4. Let wn = (w1,n, . . . , wm,n) be a classical solution of (5.3) and suppose
that wn1,0, . . . , w

n
m,0 ≥ 0. Then w1,n, . . . , wm,n ≥ 0.

Proof. See [8], Lemma 1, p 537. �

5.1. A priori estimates

The hypotheses (A2) and (A4) allowed the following lemma.

Lemma 5.5. (i) There exists a constant M depending on
∑

1≤j≤m
‖wj,0‖L1(Ω) such that

∫
Ω

 ∑
1≤j≤m

wj,n(t)

 ≤M, for all t ∈ [0, T ]

(ii) There exists a constant R1 depending on
∑

1≤j≤m
‖wj,0‖L1(Ω), such that

∑
1≤j≤m

∫
Ω

|Ψj,n (t, x,Wn,∇Wn)| ≤ R1.

(iii) There exists a constant R2 depending on k and
∑

1≤s≤m

∥∥w0
s

∥∥
L1(Ω)

, such that for

all 1 ≤ j ≤ m ∫
QT

|∇Tk (wj,n)|2 ≤ R2.

(iv) There exists a constant R3 depending on
∑

1≤j≤r
‖wj,0‖L2(Ω) such that for all 2 ≤

r ≤ m, ∫
QT

∣∣∣∣∣∣∇Tk
 ∑

1≤j≤r

wj,n

∣∣∣∣∣∣
2

≤ R3

(v) There exists a constant R4 depending on
∑

1≤j≤m
‖wj,0‖L2(Ω) and d1, . . . , dm such

that∫
QT

|Ψj,n (t, x,Wn,∇Wn)|

 ∑
1≤r≤m

(m− r + 1)wk,n

 ≤ R4, for all 1 ≤ j ≤ m.

Proof. See Bouarifi et al. [14]. �
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5.2. Convergence

Our objective is to show that Wn = (w1,n, . . . , wm,n) converges to some W =
(w1, . . . , wm) solution of the problem (5.1). The sequences wn1,0, . . . , w

n
m,0 are uni-

formly bounded in L1 (Ω) (since they converge in L2 (Ω)
)
, and by Lemma 5.5, the

nonlinearities Ψ1,n, . . . ,Ψm,n are uniformly bounded in L1 (QT ) . Then according to
a result in [10] the applications(

wns,0,Ψs,n

)
→ ws,n, 1 ≤ s ≤ m

are compact from L1 (Ω)× L1 (QT ) into L1
(

0, T ;W 1,1
0 (Ω)

)
.

Therefore, we can extract a subsequence, still denoted by (w1,n, . . . , wm,n), such that

(w1,n, . . . , wm,n)→ (w1, . . . , wm) in L1
(

0, T ;W 1,1
0 (Ω)

)
(w1,n, . . . , wm,n)→ (w1, . . . , wm) a.e. in QT
(∇w1,n, . . . ,∇wm,n)→ (∇w1, . . . ,∇wm) a.e. in QT

Since Ψ1,n, . . . ,Ψm,n are continuous, we have

Ψs,n (t, x,Wn,∇Wn)→ Ψs (t, x,W,∇W ) a.e. in QT , 1 ≤ s ≤ m.
This is not sufficient to ensure that (w1, . . . , wm) is a solution of (5.1). In fact, we have
to prove that the previous convergence are in L1 (QT ). In view of the Vitali theorem, to
show that Ψs,n (t, x,Wn,∇Wn) , 1 ≤ s ≤ m, converges to Ψs (t, x,W,∇W ) in L1 (QT ),
is equivalent to proving that Ψs,n (t, x,Wn,∇Wn) , 1 ≤ s ≤ m are equi-integrable in
L1 (QT )

Lemma 5.6. Ψs,n (t, x,Wn,∇Wn), for all 1 ≤ s ≤ m, are equi-integrable in L1 (QT ).

The proof of this lemma requires the following result based on some properties of two
time-regularization denoted by wγ and wσ(γ, σ > 0) which we define for a function
w ∈ L2

(
0, T ;H1

0 (Ω)
)

such that w (0) = w0 ∈ L2 (Ω) (for more details see [8]). In the
following we will denote by ω(ε) a quantity that tends to zero as ε tends to zero, and
ωσ(ε) a quantity that tends to zero for every fixed σ as ε tends to zero.

Lemma 5.7. Let (wn) be a sequence in L2
(
0, T ;H1

0 (Ω)
)
∩C([0, T ]) such that wn (0) =

wn0 ∈ L2 (Ω) and (wn)t = ρ1,n + ρ2,n with ρ1,n ∈ L2
(
0, T ;H−1 (Ω)

)
and ρ2,n ∈

L1 (QT ) . Moreover assume that wn converges to w in L2 (QT ), and wn0 converges to
w (0) in L2 (Ω) .
Let Υ be a function in C1([0, T ]) such that Υ ≥ 0, Υ′ ≤ 0,Υ(T ) = 0. Let ϕ be a
Lipschitz increasing function in C0(R) such that ϕ (0) = 0. Then for all k, γ > 0〈

ρ1n,Υϕ
(
Tk (wn)− Tk (wm)γ

)〉
+

∫
QT

ρ2nΥϕ
(
Tk (wn)− Tk (wm)γ

)
≥ ωγ,n

(
1

m

)
+ ωγ

(
1

n

)
+

∫
Ω

Υ (0) Φ (Tk(w)− Tk(w)γ) (0) dx

−
∫

Ω

Gk(w) (0) Υ (0)ϕ (Tk(w)− Tk(w)γ) (0) dx

where Φ(t) =
∫ t

0
ϕ(s)ds and Gk(s) = s− Tk(s)
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Proof. See [8], Lemma 7, p 544. �

Lemma 5.8. Suppose that wj,n, wj , 1 ≤ j ≤ m, are as above.

(i) If

|Ψ1,n| ≤ C1 (|w1,n|)

F1 (t, x) + |∇w1,n|2 +
∑

2≤j≤m

|∇wj |αj


where C1 : [0,+∞)→ [0,+∞) is nondecreasing, F1 ∈ L1 (QT ) and 1 ≤ αj < 2. Then
for each fixed k

lim
n→∞

∫
QT

|∇Tk (w1,n)−∇Tk (w1)|2 χ[ ∑
1≤j≤m

wj,n≤k

] = 0.

(ii) If

|Ψs,n (t, x,W,∇W )| ≤ Cs

 s∑
j=1

|wj |

Fs (t, x) +
∑

1≤j≤m

|∇wj |2
 , 2 ≤ s ≤ m

where Cs : [0,+∞) → [0,+∞) is nondecreasing, Fs ∈ L1 (QT ) for all 2 ≤ s ≤ m.
Then for each fixed k and for all 2 ≤ s ≤ m

lim
n→∞

∫
QT

∣∣∣∣∣∣∇Tk
 ∑

1≤j≤s

wj,n

−∇Tk
 ∑

1≤j≤s

wj

∣∣∣∣∣∣
2

χ ∑
1≤j≤m

wj,n ≤ k


= 0.

Proof. (i) This is a direct consequence of the resulting output established in [8, 14] �

Proof of Lemma 5.6. Let A be a measurable subset of Ω, we have∫
A

|Ψ1,n (t, x,Wn,∇Wn)| =

∫
A∩[En>k]

|Ψ1,n|+
∫
A∩[En≤k]

|Ψ1,n|

≤
∫
A∩[θn>k]

|Ψ1,n|+
∫
A∩[En≤k]

|Ψ1,n|

with En =
∑

1≤j≤m
wj,n and θn =

∑
1≤k≤m

(m− k + 1)wk,n.

Thanks to (iii) (Lemma 5.5), we obtain ∀ε > 0, ∃k0 such that if k ≥ k0 then for all n∫
A∩[En>k]

|Ψ1,n (t, x,Wn,∇Wn)|

≤ 1

k

∫
[En>k]

k |Ψ1,n| ≤
1

k

∫
QT

En |Ψ1,n| ≤
1

k

∫
QT

θn |Ψ1,n| ≤
ε

m+ 2
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Hypothesis (4.3) implies that for all k > k0∫
A

|Ψ1,n (t, x,Wn,∇Wn)|

≤ ε

m+ 2
+ C1(k)

(∫
A

F1 (t, x) +

∫
A∩[En≤k]

|∇w1,n|2
)

+C1(k)
∑

2≤j≤m

(∫
A∩[En≤k]

|∇wj,n|αj
)

≤ ε

m+ 2
+ C1(k)

(∫
A

F1 (t, x) +

∫
A∩[En≤k]

|∇Tk (w1,n)|2
)

+C1(k)
∑

2≤j≤m

(∫
A∩[En≤k]

|∇Tk (wj,n)|αj
)

Using Hölder’s inequality for 1 ≤ αj < 2 and (iii) (Lemma 5.5), we obtain

C1(k)

∫
A∩[En≤k]

|∇Tk (wj,n)|αj ≤ C1(k)

(∫
A

|∇Tk (wj,n)|2
)αj

2

|A|
2−αj

2

≤ C1(k)R
αj
2

2 |A|
2−αj

2 ≤ ε

m+ 2

Whenever |A| ≤ %j , with %j =

(
ε

m+2C
−1
1 (k)R

−
αj
2

2

) 2
2−αj

, 2 ≤ j ≤ m To deal with

the second integral we write∫
A∩[En≤k]

|∇Tk (w1,n)|2 ≤ 2

∫
A∩[En≤k]

|∇Tk (w1,n)−∇Tk (w1)|2 + 2

∫
A

|∇Tk (w1)|2

According to (iii) (Lemma 5.5), |∇Tk (w1,n)−∇Tk (w1)|2 χ[En≤k] is equi-integrable

in L1 (Ω) since it converges strongly to 0 in L1 (Ω) . So, there exists %m+1 such that
if |A| ≤ %m+1, then

2C1(k)

∫
A∩[En≤k]

|∇Tk (w1,n)−∇Tk (w1)|2 ≤ ε

m+ 2

On the other hand F1, |∇Tk (w1)|2 ∈ L1 (Ω), therefore there exists %m+2 such that

C1(k)

(
2

∫
A

|∇Tk (w1)|2 +

∫
A

F1 (t, x)

)
≤ ε

m+ 2

whenever |A| ≤ %m+2. Choose %0 = inf {%j , 2 ≤ j ≤ m+ 2}, If |A| ≤ %0 we obtain∫
A

|Ψ1,n (x,Wn,∇Wn)| ≤ ε.

Similarly, we get for all 2 ≤ s ≤ m∫
A

|Ψs,n| ≤
ε

m+ 2
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+Cs(k)

(∫
A

Fs (t, x) +

∫
A∩[En≤k]

(
6 |∇w1|2 + 6 |∇Tk (w1,n)−∇Tk (w1)|2

))

+8Cs(k)
∑

2≤r≤m

 ∑
A∩[En≤k]

∣∣∣∣∣∣∇Tk
 ∑

1≤j≤r

wj

∣∣∣∣∣∣
2


+8Cs(k)
∑

2≤r≤m

 ∑
A∩[En≤k]

∣∣∣∣∣∣∇Tk
 ∑

1≤j≤r

wj,n

−∇Tk
 ∑

1≤j≤r

wj

∣∣∣∣∣∣
2


Arguing in the same way as before, we obtain the required result. �

Then (w1, . . . , wm) verify (3.1) consequently (w1, . . . , wm) is the solution of (1.1).
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Diffusion avec Contrôle de Masse, Thèse de Doctorat, Université Henri Poincaré, Nancy
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General decay rates of the solution energy
in a viscoelastic wave equation with boundary
feedback and a nonlinear source

Islem Baaziz, Benyattou Benabderrahmane and Salah Drabla

Abstract. In a bounded domain, we consider a viscoelastic equation

utt −∆u+

∫ t

0

g(t− τ)∆u(τ)dτ = |u|γu

with a nonlinear feedback localized on a part of the boundary, where γ > 0 and
the relaxation function g satisfied g′(t) ≤ ξ(t)gp(t), 1 ≤ p < 3

2
, and certain

initial data. We establish an explicit and general decay rate result, using some
properties of the convex functions. Our new results substantially improve several
earlier related results in the literature.

Mathematics Subject Classification (2010): 35L05, 35L70, 35L15, 93D20, 74D05.

Keywords: General decay, nonlinear source, viscoelastic, wave equation, relaxa-
tion function.

1. Introduction

In this paper, we are concerned with the energy decay rate of the following
viscoelastic problem with nonlinear boundary dissipation and a nonlinear source

utt −∆u+
∫ t

0
g(t− τ)∆u(τ)dτ = |u|γu, in Ω× (0,∞)

u = 0, on Γ0 × (0,∞)
∂u
∂ν −

∫ t
0
g(t− τ)∂u∂ν (τ)dτ + h(ut) = 0, on Γ1 × (0,∞)

u(x, 0) = u0(x); ut(x, 0) = u1(x), x ∈ Ω

(1.1)
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where Ω is a bounded domain of Rn with a smooth boundary ∂Ω = Γ0 ∪ Γ1. Here,
Γ0 and Γ1 are closed and disjoint, with meas(Γ0) > 0, ν is the unit outward normal
to ∂Ω, γ > 0, and g, h are specific functions.

Let us mention some known results related to the viscoelastic problem with
nonlinear boundary dissipation. In [7], Cavalcanti and al. considered the following
problem 

utt −4u+
∫ t

0
g (t− s)4 u (s) ds = 0, in Ω× (0,∞)

∂u
∂ν −

∫ t
0
g (t− s) ∂u∂ν (s) ds+ h (ut) = 0, on Γ1 × (0,∞)

u (x, t) = 0, on Γ0 × (0,∞)
u (x, 0) = u0, ut (x, 0) = u1, x ∈ Ω.

(1.2)

The existence and uniform decay rate results were established under quite restrictive
assumptions on damping term h and the kernel function g. Later, Cavalcanti and
al. [6] generalized this result without imposing a growth condition on h and under a
weaker assumption on g. Recently, Messaoudi and Mustafa [18] exploited some prop-
erties of convex functions [2] and the multiplier method to extend these results. They
established an explicit and general decay rate result without imposing any restrictive
growth assumption on the damping term h and greatly weakened the assumption
on g. Also, Li et al [11] have analyzed the global existence and decay estimates for
nonlinear viscoelastic wave equation with boundary dissipation. They established uni-
form decay rate of the energy under suitable conditions on the initial data and the
relaxation function g. Let us also mention other papers in connection with viscoelastic
effects such as Dafermos [8] [9], Mustafa MI [22], Lagnese [10], Aassila et al. [1]. On
considering the boundary dissipation,we refer the reader to related works Mohammad
M. Al-Gharabli [3], [20], [21], [23] and the references therein.

In a situation in which a source term is competing with the viscoelastic dissi-
pation, many authors have established stability results. For example, Messaoudi [16]
looked at

 utt −∆u+
∫ t

0
g(t− τ)∆u(τ)dτ = |u|γu, in Ω× (0,∞)

u = 0, on ∂Ω× (0,∞)
u(x, 0) = u0(x); ut(x, 0) = u1(x), x ∈ Ω,

where Ω is a bounded domain in Rn (n ≥ 1) with a smooth boundary, γ > 0, and the
relaxation function g is a positive and uniformly decaying function satisfies a relation
of the form

g′(t) ≤ −ξ(t)g(t), (1.3)

where ξ is a nonincreasing differentiable function such that∣∣∣∣ξ′(t)ξ(t)

∣∣∣∣ ≤ k, ξ(t) > 0, ξ′(t) ≤ 0, ∀t > 0,

∫ ∞
0

ξ(t)dt = +∞.

He established a more general decay result, from which the usual exponential and
polynomial decay rates are only special cases.
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In a situation in which a source term is competing with the viscoelastic dissipa-
tion and on considering the boundary dissipation, Shun and Hsueh [24] considered

utt − k0 4 u (t) +

∫ t

0

g (t− s) div (a (x)∇u (s)) ds+ b (x)ut = f (u) , in Ω× (0,∞) ,

k0
∂u

∂ν
−
∫ t

0

g (t− s) (a (x)∇u (s)) .νds+ h (ut) = 0, on Γ1 × (0,∞) ,

u (x, t) = 0, on Γ0 × (0,∞) ,

u (x, 0) = u0, ut (x, 0) = u1, x ∈ Ω,

where Ω is a bounded domain in Rn (n ≥ 1) with a smooth boundary, the relaxation
function g is a positive and uniformly decaying function satisfying (1.3), and where ξ
is a nonincreasing differentiable positive function such that∫ ∞

0

ξ(t)dt = +∞.

The authors established the general decay rate of the solution energy which is not
necessarily of exponential or polynomial type. Another problems, in which in which
a source term is competing with the viscoelastic dissipation and on considering the
boundary dissipation, were discussed in [5], [14], [12] and [13], and the existence,
uniform decay rate results were established.

In this article, we devote ourselves to the study of the problem (1.1). Motivated
by previous work and by the idea of Messaoudi and Mustafa [17], which considers a
wider class of relaxation functions g, we obtain a more general and explicit energy
decay formula, to from which the exponential and the polynomial decay rates are
only special cases of our result. In fact, our decay formulas extend and improve some
results of the literature.

2. Preliminaries

In this section we prepare some material needed in the proof of our result. We
have the imbedding: H1

Γ0
↪→ L2(γ+1) (Ω) . Let Ce > 0 be the optimal constant of

Sobolev imbedding which satisfies the following inequality:

‖u‖2(γ+1) ≤ Ce ‖∇u‖2 , ∀u ∈ H
1
Γ0
, (2.1)

and we use the trace-Sobolev imbedding: H1
Γ0

↪→ Lk (Γ1) , 1 ≤ k < 2(n−1)
n−2 . In this

case, the imbedding constant is denoted by B1, that is

‖u‖k,Γ1
≤ B1‖∇u‖2. (2.2)

Next, we state the assumptions for problem (1.1) as follows.
For the relaxation function g we assume the following:

(G1) g : R+ −→ R+ is a nonincreasing C1 function satisfying

g(0) > 0, 1−
∫ ∞

0

g(s)ds = l > 0.



386 Islem Baaziz, Benyattou Benabderrahmane and Salah Drabla

(G2) There exists a nonincreasing differentiable function ξ : R+ → R+, with ξ (0) > 0,
and satisfying

g′(t) ≤ ξ(t)gp(t), 1 ≤ p < 3

2
, t ≥ 0.

(G3) For the nonlinear term, we assume

0 < γ ≤ 2

(n− 2)
, n ≥ 3

γ > 0, n = 1, 2.

(G4) h : R −→ R is a nondecreasing C0 function such that there exist a strictly
increasing function h0 ∈ C1([0,+∞)), with h0(0) = 0, and positive constants c1, c2,
ε such that

h0(| s |) ≤| h(s) |≤ h−1
0 (| s |) for all | s |≤ ε

c1 | s | ≤| h(s) |≤ c2 | s | for all | s |≥ ε.

In addition, we assume that the function H, defined by H(s) =
√
sh0(
√
s), is a strictly

convex C2 function on (0, r2], for some r > 0, when h0 is nonlinear.
By using the Galerkin method and procedure similar to that of [11], and [23],

we have the following local existence result for problem (1.1).

Theorem 2.1. Let hypotheses (G1)-(G4) hold and assume that u0 ∈ H1
Γ0
∩ H2(Ω),

u1 ∈ H1
Γ0
. Then there exists a strong solution u of (1.1) satisfying

u ∈ L∞
(
[0, T ) ;H1

Γ0
∩H2 (Ω)

)
ut ∈ L∞

(
[0, T ) ;H1

Γ0

)
utt ∈ L∞

(
[0, T ) ;L2 (Ω)

)
,

for some T > 0.

Proposition 2.2. Suppose that (G1), (G3) and (G4) hold. Let (u0, u1) ∈ V ×L2(Ω) be
given, satisfying (2.7). Then the solution u of (1.1) is global and bounded.

We introduce the following functionals

J (t) =
1

2

(
k1 −

∫ t

0

g (s) ds

)
‖∇u‖22 +

1

2
(g ◦ ∇u) (t)− 1

γ + 2
‖u‖γ+2

γ+2

E (t) = J (u (t)) +
1

2
‖ut‖22 , for t ∈ [0, T ) (2.3)

I (t) = I (u (t)) =

(
k1 −

∫ t

0

g (s) ds

)
‖∇u‖22 + (g ◦ ∇u) (t)− ‖u‖γ+2

γ+2 , (2.4)

where

(g ◦ v) (t) =

∫ t

0

g (t− s) ‖v (t)− v (s)‖22 ds, (2.5)

and E (t) is the energy functional.
A direct differentiation, using (1.1), leads to

E′(t) =
1

2
(g′ ◦ ∇u)(t)− 1

2
g(t) ‖ ∇u(t) ‖22 −

∫
Γ1

ut(t)h(ut(t))dΓ ≤ 0, (2.6)
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For completeness, using similar procedure in [15], we state the global existence result.

Lemma 2.3. Suppose that (G1) and (G3) hold, and (u0, u1) ∈ V × L2(Ω), such that

β =
Cγ+2
e

l

(
2(γ + 2)

γl
E(u0, u1)

)γ/2
< 1 (2.7)

I(u0) > 0,

then I(u(t)) > 0, ∀t > 0.

Proposition 2.4. Suppose that (G1), (G3) and (G4) hold. Let (u0, u1) ∈ V ×L2(Ω) be
given, satisfying (2.7). Then the solution u of (1.1) is global and bounded.

Adopting the proof of [17], we have the following results which are crucial for
the proof of our main result.

Lemma 2.5. Assume that g satisfies (G1) and (G2) then∫ +∞

0

ξ (t) g1−σ (t) dt < +∞, ∀σ < 2− p.

Lemma 2.6. Assume that g satisfies (G1) and (G2), and u is the solution of (1.1)
then, for 0 < δ < 1, we have

(g ◦ ∇u) (t) ≤ C
[(∫ +∞

0

g1−σ (t) dt

)
E (0)

] p−1
p−1+δ

(gp ◦ ∇u)
δ

p−1+δ (t) .

By taking δ = 1
2 , we get

(g ◦ ∇u) (t) ≤ C
[∫ t

0

g
1
2 (s) ds

] 2p−2
2p−1

(gp ◦ ∇u)
1

2p−1 (t) . (2.8)

Corollary 2.7. Assume that g satisfies (G1) and (G2), and u is the solution of (1.1)
then

ξ (t) (g ◦ ∇u) (t) ≤ C [−E′ (t)]
1

2p−1 . (2.9)

If G is a convex function on [a, b] , (−G is convex), f : Ω → [a, b] and h are
integrable functions on Ω, with h (x) ≥ 0 and

∫
Ω
h (x) dx = k > 0, then Jensen’s

inequality states that

1

k

∫
Ω

G [f (x)]h (x) dx ≤ G
[

1

k

∫
Ω

f (x)h (x) dx

]
. (2.10)

For the special case G (y) = y
1
q , y ≥ 0, p > 1, we have

1

k

∫
Ω

[f (x)]
1
q h (x) dx ≤

[
1

k

∫
Ω

f (x)h (x) dx

] 1
q

.
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3. Decay of solutions

In this section we state and prove the main result of our work. For this purpose,
we adopt the following result from [24] without proof.

Lemma 3.1. There exist positive constants ε1, ε2, m, t0 such that the fun

F (t) := E(t) + ε1ψ1(t) + ε2ψ2(t), (3.1)

is equivalent to E and satisfies

F ′(t) ≤ −mE(t) + c

∫
Γ1

h2(ut)dτ + c(g ◦ ∇u)(t). (3.2)

where

ψ1(t) :=

∫
Ω

uutdx, (3.3)

ψ2(t) := −
∫

Ω

ut

∫ t

0

g(t− τ)(u(t)− u(τ))dτdx.

Lemma 3.2. [19] Under the assumptions (G1), (G2) and (G4), the solution satisfies
the estimates ∫

Γ1

h2(ut)dΓ ≤
∫

Γ1

uth(ut)dΓ, if h0 is linear (3.4)

∫
Γ1

h2(ut)dΓ ≤ cH−1(J(t))− cE′(t), if h0 is nonlinear (3.5)

where

J(t) =
1

| Γ12 |

∫
Γ12

uth(ut)dΓ ≤ E′(t),

and

Γ12 = {x ∈ Γ1 : |ut| ≤ ε1}.

Proof. Case 1: h0 is linear, using (G4) we have

c′1 |ut| ≤| h(ut) |≤ c′2 |ut| ,

and hence

h2(ut) ≤ c′2uth(ut).

So, (3.4) is established.
Case 2: h0 is nonlinear on [0, ε]:

First, we assume that max {r, h0(r)} < ε; otherwise we take r smaller. Let
ε0 = min {r, h0(r)}; them for ε0 ≤| s |≤ ε, using (G4), we have

| h(s) |≤ h−1
0 (| s |)
| s |

| s |≤ h−1
0 (ε)

ε0
| s | and | h(s) |≥ h0(| s |)

| s |
| s |≥ h0(ε0)

ε
| s |,

so, we conclude that{
h0(| s |) ≤| h(s) |≤ h−1

0 (| s |) for all | s |< ε0

c′1 | s |≤| h(s) |≤ c′2 | s | for all | s |≥ ε0.
(3.6)
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Since H(s2) =| s | h0(| s |), then using (3.6), we obtain

H(h2(s)) ≤ sh(s) for all | s |≤ ε0,

which gives

h2(s) ≤ H−1(sh(s)) for all | s |≤ ε0.

To estimate the last integral in (3.2), we consider the following partition of Γ1:

Γ11 = {x ∈ Γ1 : |ut| > ε0}, Γ12 = {x ∈ Γ1 : |ut| ≤ ε0}.

Recalling the definition of ε0 and using (3.6), we obtain on Γ12,

uth(ut) ≤ ε0h
−1
0 (ε0) ≤ h0(r)r = H(r2) (3.7)

and

uth(ut) ≤ ε0h
−1
0 (ε0) ≤ rh−1

0 h0(r) = r2.

Jensen’s inequality gives

H−1(J(t)) ≥ c
∫

Γ12

H−1(uth(ut))dΓ. (3.8)

Thus, using (3.6)− (3.8), we get∫
Γ1

h2(ut)dΓ =

∫
Γ12

h2(ut)dΓ +

∫
Γ11

h2(ut)dΓ

≤
∫

Γ12

H−1(uth(ut))dΓ + c

∫
Γ11

uth(ut)dΓ

≤ cH−1(J(t))− cE′(t). (3.9)

�

Theorem 3.3. Let (u0, u1) ∈
(
H1

Γ0
× L2 (Ω)

)
be given . Assume that (G1)-(G4) are

satisfied and h0is linear. Then, for any t0 > 0, there exist two positive constants K,
and λ such that the solution of (1.1) satisfies, for all t ≥ t0,

E (t) ≤ Ke−λ
∫ t
t0
ξ(s)ds

, if p = 1. (3.10)

E (t) ≤ K

[
1

1 +
∫ t
t0
ξ2p−1 (s) ds

] 1
2p−2

, 1 < p <
3

2
. (3.11)

Moreover, if ∫ +∞

0

[
1

tξ2p−1 (t) + 1

] 1
2p−2

dt < +∞, 1 < p <
3

2
, (3.12)

then

E (t) ≤ K

[
1

1 +
∫ t
t0
ξp (s) ds

] 1
p−1

, 1 < p <
3

2
. (3.13)
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Proof. Multiplying (3.2) by ξ(t) and using Eqs. 3.4, we get

ξ(t)F ′(t) ≤ −mξ(t)E(t) + cξ(t)(g ◦ ∇u)(t) + cξ(t)

∫
Γ1

h2(ut)dτ

≤ −mξ(t)E(t) + cξ(t)(g ◦ ∇u)(t)− cξ(t)E′ (t)
which gives, as ξ(t) is non-increasing,

(ξF+CE)
′
(t) ≤ −mξ(t)E (t) + cξ(t)(g ◦ ∇u)(t), ∀t ≥ t0. (3.14)

Let L (t) := ξ (t)F (t) +CE (t) , then clearly L ∼ E and we have, for some m1 > 0,

L′ (t) ≤ −m1ξ(t)L (t) + cξ(t)(g ◦ ∇u)(t), ∀t ≥ t0.
Now, using the procedure similar to that of [17], we obtain the results of the theorem.

�

Theorem 3.4. Let (u0, u1) ∈ V ×L2(Ω) be given, satisfying (2.7). Assume that (G1)−
(G4) hold and h0 is nonlinear. Then there exist positive constants k1, k2 and k3such
that the solution of (1.1) satisfies , for all t ≥ t0,

E(t) ≤ k3H
−1
1

(
k1

∫ t

t0

ξ(s)ds+ k2

)
, p = 1. (3.15)

E(t) ≤ k3H
−1
1

(
k1

∫ t

t0

ξ2p−1(s)ds+ k2

)
, 1 < p <

3

2
. (3.16)

Moreover, if ∫ +∞

0

H−1
1

(
k1tξ

2p−1(t) + k2

)
dt < +∞, 1 < p <

3

2
, (3.17)

then

E(t) ≤ k3H
−1
2

(
k1

∫ t

t0

ξp(s)ds+ k2

)
, 1 < p <

3

2
, (3.18)

where H1(t) =
∫ 1

t

1

t2p−1H ′(ε0t))
ds. and where H2(t) =

∫ 1

t

1

t2p−1H ′(ε0t))
ds.

Here, H1 and H2 are strictly decreasing and convex on (0, 1], with lim
t−→0

Hi(t) = +∞,

i = 1, 2.
Simple calculations show that (3.16) and (3.17) yield∫ +∞

t0

E (t) dt < +∞.

Proof. Case of p = 1. Recalling G(2) and (2.6), Multiplying (3.2) by ξ(t), we obtain,
for all t ≥ t0

ξ(t)F ′ (t) ≤ −mξ(t)E (t) + C (ξ(t)g ◦ ∇u) (t) + cξ(t)

∫
Γ1

h2(ut)dτ (3.19)

≤ −mξ(t)E (t)− C (g′ ◦ ∇u) (t) + cξ(t)

∫
Γ1

h2(ut)dτ

≤ −mξ(t)E (t)− CE′ (t) + cξ(t)

∫
Γ1

h2(ut)dτ,
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which leads to

(ξF+CE)
′
(t) ≤ −mξ(t)E (t) + cξ(t)

∫
Γ1

h2(ut)dτ, ∀t ≥ t0. (3.20)

Let L (t) := ξ (t)F (t) +CE (t) , then clearly L ∼ E and we have, for some m1 > 0,

L′ (t) ≤ −m1ξ(t)L (t) + cξ(t)

∫
Γ1

h2(ut)dτ, ∀t ≥ t0.

Now, using the procedure similar to that of [19], we obtain the results of the theorem.

Case of 1 < p <
3

2
.

Multiplying (3.2) by ξ(t) and we using 2.7, we obtain

ξ(t)F ′(t) ≤ −mξ(t)E(t) + cξ(t)

∫
Γ1

h2(ut)dτ + k(−E′
1

2p−1 (t)),

multiplying by ξ2p−2(t)E2p−2(t) and using Young’s inequality

ξ2p−1(t)E2p−2(t)F ′(t) ≤ −mξ2p−1(t)E2p−1(t) + cξ2p−1(t)E2p−2(t)

∫
Γ1

h2(ut)dτ

+ k (−E′(t))
1

2p−1 (t)ξ2p−2(t)E2p−2(t)

≤ −mξ2p−1(t)E2p−1(t) + cξ2p−1(t)E2p−2(t)

∫
Γ1

h2(ut)dτ

+ k(−E′2p−1(t)E2p−1(t)

F ′2(t) ≤ k1ξ
2p−1(t)E2p−1(t) + cξ2p−1(t)E2p−2(t)

∫
Γ1

h2(ut)dτ.

(3.21)

With F2(t) = F (t)ξ2p−1(t)E2p−2(t) + kE(t); F0 ∼ E.
Therefore, using (3.5), (2.5) becomes

F ′2(t) ≤ k1ξ
2p−1(t)E2p−1(t) + cξ2p−1(t)E2p−2(t)

(
H−1(λ(t))− E′(t)

)
F ′2(t) ≤ k1ξ

2p−1(t)E2p−1(t) + cξ2p−1(t)E2p−2(t)H−1(λ(t))− cξ2p−1(0)E2p−2(0)E′(t)

F ′3(t) ≤ k1ξ
2p−1(t)E2p−1(t) + cξ2p−1(t)E2p−2(t)H−1(λ(t))

with F3 = F2 + CE then, F3 ∼ E.
Now, for ε0 < r2 and c0 > 0, using (3.9) and the fact that E′ ≤ 0, H ′ ≥ 0, H ′′ ≥ 0
on (0, r2], we find that the functional F2 defined by

F4(t) := H ′
(
ε0
E(t)

E(0)

)
F2(t) + c0E(t)

satisfies, for some α1, α2 > 0,

α1F4(t) ≤ E(t) ≤ α2F4(t) (3.22)
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and

F ′4(t) = ε0
E′(t)

E(0)
H ′′

(
ε0
E(t)

E(0)

)
F2(t) +H ′

(
ε0
E(t)

E(0)

)
F ′2(t) + c0E

′(t)

≤ −kξpEp(t)H ′
(
ε0
E(t)

E(0)

)
+ cξp(t)Ep−1(t)H−1(λ(t))H ′

(
ε0
E(t)

E(0)

)
+ c0E

′(t).

(3.23)

Let H∗ be the convex conjugate of H in the sense of young (see [4] p. 61− 64); then

H∗(s) = s (H ′)
−1

(s)−H
[
(H ′)

−1
(s)
]
, if s ∈

[
0, H ′2)

]
and H∗ satisfies the following Young’s inequality:

AB ≤ H∗(A) +H(B), if A ∈
(
0, H ′2)

]
, B ∈

(
0, r2

]
. (3.24)

With A = H ′
(
ε0
E(t)

E(0)

)
and B = H−1(λ(t)), using (2.6), (3.7) and (3.23) − (3.24),

we arrive at

F ′4(t) ≤ −kξ2p−1E2p−1(t)H ′
(
ε0
E(t)

E(0)

)
+ cξ(t)λ(t)

+cξ2p−1(t)E2p−2(t)H∗
(
H ′
(
ε0
E(t)

E(0)

))
+ c0E

′(t),

that gives

F ′4(t) ≤ −kξ2p−1E2p−1(t)H ′
(
ε0
E(t)

E(0)

)
+ cε0ξ

2p−1(t)
E2p−1(t)

E(0)
H ′
(
ε0
E(t)

E(0)

)
−cE′(t) + c0E

′(t).

Consequently, with a suitable choice of ε0 and k, we obtain, for all t ≥ t0,

F ′4(t) ≤ −k1ξ
2p−1(t)

(
E(t)

E(0)

)2p−1

H ′
(
ε0
E(t)

E(0)

)
= −k1ξ

2p−1(t)H2

(
E(t)

E(0)

)
,

(3.25)
where H2(t) = t2p−1H ′(ε0t).
Since h0 ∈ C1 ([0,+∞]), then it is evident that H ∈ C1 ([0,+∞]) and H ′(0) = h′0(0).
So, H2(0) = 0 and since

H ′2(t) = (2p− 1)t2p−2H ′(ε0t) + ε0t
2p−1H ′′(ε0t)

then, using the strict convexity of H on (0, r2], we find that H ′2(t), H2(t) > 0 on [0, 1].

Thus, with R(t) =
α1F4(t)

E(0)
, and using (3.22) and (3.25), we have R ∼ E and, for

some k1 > 0,

R′(t) ≤ −k1ξ
2p−1(t)H2(R(t)), ∀ t ≥ t0.

Then, a simple integration gives, for some k2 > 0,

R(t) ≤ H−1
1

(
k1

∫ t

t0

ξ2p−1(s)ds+ k2

)
, ∀t > t0,
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where H1(t) =
∫ 1

t

1

H2(s)
ds.

To establish (3.18) Multiplying(3.2) by ξ(t) and recall Remark 3. So, we have

ξ(t)F ′ (t) ≤ −mξ(t)E (t) + Cξ(t) (g ◦ ∇u) (t) + cξ(t)

∫
Γ1

h2(ut)dτ

= −mξ(t)E (t) + C
η (t)

η (t)

∫ t

0

[ξp (s) gp (s)]
1
p ‖∇u (t)−∇u (t− s)‖22

+ cξ(t)

∫
Γ1

h2(ut)dτ, (3.26)

where

η (t) =

∫ t

0

‖∇u (t)−∇u (t− s)‖22 ds ≤ C
∫ t

0

‖∇u (t)‖22 + ‖∇u (t− s)‖22 ds

≤ C

∫ t

0

[E (t) + E (t− s)] ds ≤ 2C

∫ t

0

E (t− s) ds

= 2C

∫ t

0

E (s) ds < 2C

∫ +∞

0

E (s) ds < +∞.

Applying Jensens’s inequality (2.10) for the second term on the right hand side of
(3.26), with

G(y) = y
1
p , y > 0, f (s) = ξp (s) gp (s)

and

h (s) = ‖∇u (t)−∇u (t− s)‖22 ,
to get

ξ(t)F ′ (t) ≤ −mξ(t)E (t) + cξ(t)

∫
Γ1

h2(ut)dτ,

+Cη (t)

[
1

η (t)

∫ t

0

ξp (s) gp (s) ‖∇u (t)−∇u (t− s)‖22 ds
] 1
p

where we assume that η(t) > 0.

Therefore, we obtain

ξ(t)F ′ (t) ≤ −mξ(t)E (t) + cξ(t)

∫
Γ1

h2(ut)dτ

+Cη
p−1
p (t)

[
ξp−1 (0)

∫ t

0

ξ (s) gp (s) ‖∇u (t)−∇u (t− s)‖22 ds
] 1
p

≤ −mξ(t)E (t) + C (−g′ ◦ ∇u)
1
p (t) + cξ(t)

∫
Γ1

h2(ut)dτ

≤ −mξ(t)E (t) + C (−E′ (t))
1
p + cξ(t)

∫
Γ1

h2(ut)dτ.
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Multiplying by ξp (t)Ep(t), and repeating the same computations as in above, we
arrive at

E(t) ≤ k3H
−1
2

(
k1

∫ t

t0

ξp(s)ds+ k2

)
, 1 < p <

3

2
,

where H2(t) =
∫ 1

t

1

tpH ′(ε0t))
ds.

Remark 3.5. In the case where ‖ ∇u(t) − ∇u(t − s) ‖= 0 and hence from (3.2) we
have

F ′ (t) ≤ −mE (t) + c

∫
Γ1

h2(ut)dτ,

using the procedure similar to that of [19], we obtain

Case h0 linear

E (t) ≤ Ce−mt.
Case h0 nonlinear

E (t) ≤ H−1
1 (k1t+ k2) , ∀t > t0

This completes the proof of our main result. �

Example 3.6. As in [17], we give an example to illustrate the existence of relaxation
function g and ξ satisfying (G2):

If p = 1:

Let g (t) = ae−b(1+t), where b > 0 < ν ≤ 1 and a > 0 is chosen so that∫ +∞
0

g (t) dt < 1. Then g′ (t) = −ξ (t) g (t) where ξ (t) = b.

If 1 < p <
3

2
:

Let g (t) = a
(1+t)ν , ν > 2, where a > 0 is a constant so that

∫ +∞
0

g (t) dt < 1. We have

g′ (t) = − aν

(1 + t)
ν+1 = −b

(
a

(1 + t)
ν

) ν+1
ν

= −bgp (t) , p =
ν + 1

ν
<

3

2
, b > 0.

with ξ (t) = b.

Example 3.7. As in [2, 6], we give an example to illustrate the energy decay rates
given by Theorem (3.3) and Theorem (3.4).
If h satisfies

c1 min {| s |, | s |q} ≤| h(s) |≤ c2 max
{
| s |, | s |1/q

}
,

for some c1, c2 > 0 and q ≥ 1. Then h0(s) = csq and H̄(s) =
√
sh0(
√
s) = cs

q+1
2

is a strictly convex C2 function on (0,∞), then H−1
1 (t) = (ct + c1)

−2
4p+q−5 , and the

relaxation function g and ξ given in Example 3.6.
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Then, we obtain for some constants c, c′, c′′ > 0:
If p = 1 and q = 1 (h0 is linear), by Theorem (3.3) we arrive at

E(t) ≤ ce−c
′ ∫ t

0
ξ(s)ds = ce−c

′bt.

If 1 < p < 3
2 and q = 1 (h0 is linear), by Theorem (3.3) we arrive at

E(t) ≤ c
(
c′
∫ t

0

ξ2p−1(s)ds+ c′′
)− 1

2p−2

= c (c′bt+ c′′)
− 1

2p−2 .

If p = 1 and q > 1 (h0 is nonlinear), by Theorem (3.4) we arrive at

E(t) ≤ c
(
c′
∫ t

0

ξ(s)ds+ c′′
)− 2

q−1

= c (c′bt+ c′′)
− 2
q−1 .

If 1 < p < 3
2 and q > 1 (h0 is nonlinear), by Theorem (3.4) we arrive at

E(t) ≤ c
(
c′
∫ t

0

ξ2p−1(s)ds+ c′′
)− 2

4p+q−5

= c (c′bt+ c′′)
− 2

4p+q−5 .
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Asymptotic behavior of generalized
CR−iteration algorithm and application
to common zeros of accretive operators

Aadil Mushtaq, Khaja Moinuddin, Nisha Sharma and Anita Tomar

Abstract. The purpose of this study is to provide a generalized CR−iteration al-
gorithm for finding common fixed points (CFPs) for nonself quasi-nonexpansive
mappings (QNEMs) in a uniformly convex Banach space. The suggested algo-
rithm’s convergence analysis is analyzed in uniformly convex Banach spaces.
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1. Introduction

Let B be a Banach space, ∅ 6= Bs ⊆ B be closed and convex, and Υ : Bs → Bs

be an operator which has at least one fixed point. Then, for the initial value a0 ∈ Bs :

(i) Picard’s iteration algorithm [16] is defined as :
aη+1 = Υaη, ∀ η ∈ N0.

(ii) Mann’s iteration algorithm [13] is defined as:
aη+1 = (1− κη)aη + κηΥaη, ∀ η ∈ N0,
where {κη} ∈ (0, 1).

(iii) Ishikawa’s iteration algorithm [8] is defined as:
aη+1 = (1− κ1

η)aη + κ1
ηΥ[(1− κ2

η)aη + κ2
ηΥaη], ∀ η ∈ N0,

where {κ1
η} and {κ2

η} ∈ (0, 1).
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For nonexpansive operators, it is very well established that the Picard iteration al-
gorithm often does not work effectively. As a result, for the estimation of FPs for
nonexpansive type mappings in ambient spaces, the Mann and Ishikawa iterative al-
gorithms have been extensively studied (see [1, 3, 6]).
On the other side, Chug et al. [5] introduced the CR−iteration algorithm in a Banach
space in 2012. The structure of the CR−iterative algorithm differs significantly from
that of the Mann and Ishikawa iterative algorithms, making it absolutely independent
of both. Several mathematicians have been intrigued by the CR−iterative algorithm
as an alternative iterative algorithm for fixed point analysis in recent years (see [9, 2]),
and it has opened up a substantial field of research in various aspects (see [11, 12]).

Let Υ be a self map on B. Then the sequence {aη}∞n=0 defined as follows:
a0 ∈ B

aη+1 = (1− κ1
η)bη + κ1

ηΥbη,

bη = (1− κ2
η)Υaη + κ2

ηΥcη,

cη = (1− κ3
η)aη + κ3

ηΥaη,

(CR)

where {κ1
η}, {κ2

η} and {κ3
η} ∈ (0, 1) is called CR−iteration. The CR−iteration method

is a three-step iteration method. For contraction mappings, CR−iterative algorithms
perform better than Picard and Ishikawa iterative algorithms, and behave well for
nonexpansive mappings.
We are concerned with two quasi-nonexpansive nonself mappingsM1, M2 : Bs → B,
where Bs is a nonempty subset of the Banach space B, the iterative location and weak
limits of the proposed iterative algorithm for these types of functions in the context
of current research [19]. Our findings are applied to the zeros of accretive operators
in some different ways.

2. Tools and notations

In this section, we discuss the notations which we are going to use in the entire
manuscript. The framework in which we shall prove our results from now on is a Ba-
nach space B. Υ is a mapping. N0 represents the set of natural numbers including 0,
whereas the terminology R is used to represent the set of real numbers. The notation
‘for all’is represented by ‘∀’and ‘such that’is represented by ‘3’. The symbol ∈ rep-
resents ‘belongs to’. The terminology Hs is used to represent the ‘Hilbert space’with
the inner product 〈·, ·〉 and whereas QBs

is a retraction of B onto Bs. PBs
is used

to represent the projection from B to Bs. H
′

s ⊆ Hs. Dom(A) represents the domain
of A, Ran(A) is used to represent the range set of A, and Gr(A) is the graph of
A whereas A−1 is the inverse of A. ∆ is a non-negative real number. The terminol-
ogy ‘fixed points’, we denote by ‘FPs’.The Proximal point algorithm is denoted by
‘PPA’. It is important to note that the ‘set of all fixed points’is denoted by ‘z(Υ)’.
Furthermore, ∇ is used to represent the ‘vector differential operator’.
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3. Preliminaries

In this section, we discuss key definitions and lemmas that are necessary in order
to make this article self-contained.
Throughout the paper, we denote the closed ball with the center at a and radius r by
CBr[a] and is defined as

CBr[a] = {b ∈ B : ||a− b|| ≤ r}.
Also, B is said to be uniformly convex if for 0 < ε ≤ 2, ||a|| ≤ 1, ||b|| ≤ 1 and
||a− b|| ≥ ε imply ∃ µ = µ(ε) > 0 3

1

2
||a + b|| ≤ 1− µ.

Lemma 3.1. [21] Let m > 1 and r1 > 0 be two fixed numbers. Then, Bs is uniformly
convex iff ∃ a convex and strictly increasing function Υ : [0,∞)→ [0,∞) with Υ(0) =
0 3

||ca + (1− c)b||m ≤ c||a||m + (1− c)||b||m − c(1− c)Υ(||a− b||),
∀ a, b ∈ Bm > [0] and c ∈ [0, 1].

For Hs, we have

||ca + (1− c)b||2 ≤ c||x||2 + (1− c)||y||2 − c(1− c)||a− b||,
∀ a, b ∈ Hs and c ∈ [0, 1].

Definition 3.2. A mapping Υ : Bs → B has the demiclosed property at b ∈ B if

{a ∈ Bs, aη → a and Υaη → b =⇒ a ∈ Bs and Υa = b}.

Lemma 3.3. [4]Let Bs be a nonempty,closed and convex subset of a uniformly con-
vex Banach space B.If Υ : Bs → B is nonexpansive mappings then I − Υ has the
demiclosed property with respect to 0.

The collection of points of Bs, unaltered by Υ is defined as follows:

z(Υ) = {a ∈ Bs : Υa = a}.

For a constant L ∈ [0,∞), the mapping Υ is called L−Lipschitz if

||Υa−Υb|| ≤ L||a−B||,
∀ a, b ∈ Bs. Every 1−Lipschitz is called QNEM .

A retract of B is a subset Bs of a Banach space B that has a continuous mapping
QBs

from B to Bs such that QBs
(a) = a for any a ∈ Bs. A QBs

like this is known
as B onto Bs retraction.
If QBs

(QBs
(a + c(a−QBs

(a)))) = QBs
(a), ∀ a ∈ B and c ≥ 0, a retraction QBs

is
said to be sunny. Bs is a sunny nonexpansive retract of B if a sunny retraction QBs

is also nonexpansive. Let B be reflexive and strictly convex Banach space. Let PBs
:

B→ Bs be a projection. Also, PBs
(a) is in Bs with the property

||a− PBs
(a)|| = {inf ||a− u|| : u ∈ Bs}.

for a ∈ B.
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It is also well comprehended that PH′s(a) ∈ Hs and

〈a− PH′s(a), PH′s(a)− b〉 ≥ 0,

∀ a ∈ Hs, b ∈ H′s.
Sunny nonexpansive retractions work in the same way in B as projections do in Hs.
If a subset H′s 6= ∅ of H is closed and convex, then ∃ a unique sunny nonexpansive
retraction from Bs to H′s.

Definition 3.4. [1]Let B be a Banach space. For any sequence {aη} → a ∈ B, and ∀
b 6= a, we say that B satisfies the Opial condition, if the following inequality holds:

lim supη→∞||aη − a|| < lim supη→∞||aη − b||.

It is to be noted that lim sup can be substituted by lim inf in this definition
and that every Hilbert space satisfies the Opial condition [1]. Let ∅ 6= Bs ⊆ B,
Υ : Bs → B a mapping, and {aη} a sequence in Bs. If limη→∞ ||aη −Υaη|| = 0, then
{aη} is referred to as a sequence in Υ.
The following proposition is the generalization of Proposition 2.5 [20].

Proposition 3.5. Let Υ : Bs → B be uniformly continuous mapping and {aη} ⊂ Bs be
a sequence of Υ. Then, {bη} ⊂ Bs is an approximating FP sequence of Υ whenever
{bη} ∈ Bs 3 limη→∞ ||aη − bη|| = 0.

For dual space B∗ of B, the symbol || · || denotes the norms of B and B∗.
For a∗ ∈ B∗ and a ∈ B, we use 〈a, a∗〉 instead of a∗(a). The set-valued mapping
J : B→ 2B

∗
is defined as

J(a) = {a∗ ∈ B : 〈a, a∗〉 = ||a||||a|| and ||a∗|| = ||a||}, a ∈ B,

and is known as a normalized duality mapping of B. For a multi- valued operator
A : B→ 2B, the following are defined as:

Dom(A) = {a ∈ B : Aa 6= ∅},
Ran(A) = ∪{Au : u ∈ Dom(A)},

and
Gr(A) = {(a, b) ∈ B×B : a ∈ Dom(A), b ∈ Aa}

respectively. A ⊆ B × B represents A : B → 2B and the inverse A−1 of A is as
follows:

a ∈ A−1b ⇐⇒ b ∈ Aa.
If ∀ ai ∈ Dom(A) and b ∈ Aai for i = 1, 2, ∃  ∈ J(a1 − a2) 3 〈b1 − b2, 〉 ≥ 0,

then the operator is known as accretive.
An accretive operator is the negation of a dissipative operator. If there is

no proper accretive extension of A, it is known as “maximal accretive”, and if
Ran(I + A) = B, where I symbolizes the identity operator on B. If A is
“m−accretive”, then it is maximally accretive. For accretive A, the single-valued
nonexpansive mapping ∀ ∆ > 0 is

JA∆ : Ran(I + ∆A)→ Dom(A), JA∆ = (I + ∆A)−1,
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and is said to be the resolvent of A. The resolvent for an m−accretive operator on B

JA∆ = (I + ∆A)−1

is a multi-valued nonexpansive mapping whereby the domain is the entire space B,
∀ ∆ > 0.

Lemma 3.6. [7] Let A : B→ 2B be an m−accretive operator. Then A is the maximal
accretive, where B is a real Banach space.

Lemma 3.7. [1] If A : Hs → 2Hs is a monotone operator, then A is the maximal
monotone iff Ran(I + ∆A) = H ∀ ∆ > 0.

As a result, if A : Hs → 2Hs is a maximum monotone operator and ∆ > 0, we
may define the resolvent of A, JA∆ : Hs →: Hs, using Lemma 3.7. Also, JA∆ satisfies
the following inequality

||JA∆ − aJA∆b||2 ≤ ||a− b||2 − ||(I − JA∆ )a− (I − JA∆ )b||,

∀ a, b ∈ Hs.

For a function ℘ : Hs → (∞,∞],the domain is defined by:

dom(℘) = {a ∈ Hs : ℘(a) <∞}.

Lemma 3.8. [3] Let ℘ ∈ Γ0(H). Then, ℘ is maximal monotone.

4. Main results

The CR−iteration approach allows us to compute the common FPs of two oper-
ators. Our objective is to analyze the asymptotic behaviour of our designed algorithm
in Banach spaces. Let Υ1, Υ2 : B → Bs be mappings with at least one common
FP between Υ1 and Υ2. The collection of common FPs of mappings Υ2 and Υ1 is
denoted by z(Υ2,Υ1).
We now present the G− CR−iteration algorithm, which is as follows:

a0 ∈ Bs,

aη+1 = QBs
[(1− κ1

η)bη + κ1
ηΥ1bη],

bη = QBs
[(1− κ2

η)Υ2aη + κ2
ηΥ1cη],

cη = QBs
[(1− κ3

η)aη + κ3
ηΥ2aη],

(G− CR)

where the sequences {κ1
η}, {κ2

η}, {κ3
η} ∈ (0, 1). The sequence {aη} defined by G−CR is

called the generalized CR−iteration algorithm for mappings Υ1 and Υ2. If Υ1 = Υ2,
then G− CR iterative algorithm is defined as follows:

a0 ∈ Bs,

aη+1 = QBs
[(1− κ1

η)bη + κ1
ηΥ1bη],

bη = QBs
[(1− κ2

η)Υ1aη + κ2
ηΥ1cη],

cη = QBs
[(1− κ3

η)aη + κ3
ηΥ1aη],
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where {κ1
η}. {κ2

η} and {κ3
η} are sequences in (0, 1). To prove the main results, we start

with the following lemma.

Lemma 4.1. Let QBs be the sunny nonexpansive retraction and Υ1, Υ2 : Bs → B be
QNEM 3 z(Υ2, Υ1) 6= ∅. Let {κ1

η}, {κ2
η}, and {κ3

η} be sequences of real numbers 3
0 < κ1

η, κ
2
η, κ

3
η < 1, ∀ η ∈ N∪ {0}. Let the sequence {aη} be generated from a0 ∈ Bs

and be defined by G−CR. Then, for each σ ∈ z(Υ2,Υ1), limη→∞ ||aη − σ|| exists and

||bη − σ|| ≤ ||aη − σ||, and

||cη − σ|| ≤ ||aη − σ||, ∀η ∈ N ∪ {0}. (4.1)

Proof. Let σ be a common FP of Υ1 and Υ2. Then, for η ∈ N ∪ {0}, the following
inequalities hold:

||aη+1 − σ|| = ||QBs [(1− κ1
η)bη + κ1

ηΥ1bη]−QBs [σ]||
≤ ||(1− κ1

η)(bη − σ) + κ1
η(Υ1bη − σ)||

≤ (1− κ1
η)||bη − σ||+ κ1

η||Υ1bη − σ||
≤ (1− κ1

η)||bη − σ||+ κ1
η||bη − σ||

= ||bη − σ||. (4.2)

Also,

||bη − σ|| = ||QBs [(1− κ2
η)Υ2aη + κ2

ηΥ1cη]−QBs [σ]||
≤ ||(1− κ2

η)(Υ2aη − σ) + κ2
η(Υ1cη − σ)||

≤ ||(1− κ2
η)(aη − σ) + κ2

η(cη − σ)||
≤ (1− κ2

η)||aη − σ||+ κ2
η||cη − σ||. (4.3)

Similarly,

||cη − σ|| = ||QBs
[(1− κ3

η)aη + κ3
ηΥ2aη]−QBs

[σ]||
≤ ||(1− κ3

η)(aη − σ) + κ3
η(Υ2aη − σ)||

≤ (1− κ3
η)||aη − σ||+ κ3

η||Υ2aη − σ||
≤ (1− κ3

η)||aη − σ||+ κ3
η||aη − σ||

= ||aη − σ||. (4.4)

Using inequality (4.4) in (4.3), we have

||bη − σ|| ≤ ||aη − σ||. (4.5)

Hence, the inequality (4.2) results

||aη+1 − σ|| ≤ ||aη − σ||. (4.6)

Considering (4.6) and (4.2), we calculate the following result

||aη+1 − σ|| ≤ ||aη − σ|| ≤ ||aη−1 − σ|| ≤ . . . ≤ ||a0 − σ||, (4.7)

∀ η ∈ N∪ {0}. Since {||aη − σ||} is monotonically decreasing, it confirms the conver-
gence of {||aη − σ||}. �
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The convergence behaviour forQNEMs is now studied by the following theorem.

Theorem 4.2. Let ∅ 6= Bs ⊆ B, with QBs
as the sunny nonexpansive retraction. Let

Υ1, Υ2 : Bs → B be QNEMs 3 z(Υ1,Υ2) 6= ∅. Let the real sequences {κ1
η}, {κ2

η}
and {κ3

η} 3 0 < a ≤ κ1
η ≤ a < 1, 0 < b ≤ κ2

η ≤ b < 1 and 0 < c ≤ κ3
η ≤ c < 1 ∀

η ∈ N ∪ {0}. Let a0 ∈ Bs and Pz(Υ1,Υ2)
(a0) = a∗. Let {aη} be the sequence defined

by (G− CR). Then, we have

1. {aη} is in a closed convex bounded set CBr[a∗] ∩ Bs, where r ∈ (0,∞) 3
||a0 − a∗|| ≤ r.

2. If Υ be uniformly continuous, then

lim
η→∞

||aη −Υ1aη|| = 0 and lim
η→∞

||aη −Υ2aη|| = 0,

then ℘c : [0,∞)→ [0,∞), ℘(0) = 0, where error bounds are as follows-

a(1− a)

η∑
i=0

℘c(||bi −Υ1bi||) ≤ ||a0 − a∗||2 − ||aη+1 − a∗||2, (4.8)

b(1− b)
η∑
i=0

℘c(||Υ2ai −Υ1ci||) ≤ ||a0 − a∗||2 − ||aη+1 − a∗||2

−
η∑
i=0

κ1
i (1− κ1

i )℘c(||bi −Υ1bi||), (4.9)

bc(1− c)
η∑
i=0

℘c(||ai −Υ2ai||) ≤ ||a0 − a∗||2 − ||aη+1 − a∗||2

−
η∑
i=0

κ2
i (1− κ2

i )℘c(||Υ2ai −Υ1ci||)

−
η∑
i=0

κ1
i (1− κ1

i )℘c(||bi −Υ1bi||), (4.10)

∀ η ∈ N ∪ {0}.

3. If I − Υ2 and I − Υ1 are demiclosed at 0 and B satisfies the Opial condition,
then {aη} → ` where ` ∈ z(Υ2,Υ1) ∩ CBr[a∗], where the convergence is weak.

Proof. (1) Let a∗ ∈ z(Υ2,Υ1). From inequality (4.7) the following holds for all η ∈
N ∪ {0}.

||aη+1 − a∗|| ≤ ||aη − a∗|| ≤ ||aη−1 − a∗|| ≤ . . . ≤ ||a0 − a∗||.
Hence, {aη} ∈ CBr[a∗] ∩Bs.

(2) Let Υ2 be uniformly continuous. By Lemma 4.1, we have that {aη}, {bη} and
{cη} ∈ CBr[a∗] ∩Bs, and hence, from inequality (4.1), we have

||Υ2aη − a∗|| ≤ r, ||Υ1aη − a∗|| ≤ r, ||Υ1bη − a∗|| ≤ r and ||Υ1cη − a∗|| ≤ r,
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∀ η ∈ N ∪ {0}.
Let ℘c be the function as defined in Lemma 1 for m = 2 and r1 = r. Benefiting

from inequality (4.1) as well, we have

||aη+1 − a∗||2 = ||QBs [(1− κ1
η)bη + κ1

ηΥ1bη]−QBs [a
∗]||2

≤ ||(1− κ1
η)(bη − a∗) + κ1

η(Υ1bη − a∗)||2

≤ (1− κ1
η)||bη − a∗||2 + κ1

η||Υ1bη − a∗||2 − κ1
η(1− κ1

η)℘c(||bη −Υ1bη||)
≤ (1− κ1

η)||bη − a∗||2 + κ1
η||bη − a∗||2 − κ1

η(1− κ1
η)℘c(||bη −Υ1bη||)

= ||bη − a∗||2 − κ1
η(1− κ1

η)℘c(||bη −Υ1bη|| (4.11)

≤ ||aη − a∗||2 − κ1
η(1− κ1

η)℘c(||bη −Υ1bη||,

∀ η ∈ N ∪ {0}. By the bounds of sequence {κ1
η}, we have

κ1
η(1− κ1

η)℘c(||bη −Υ1bη||) ≤ ||aη − a∗||2 − ||aη+1 − a∗||2.q
Observe that

a(1− a)

∞∑
η=0

℘c(||bη −Υ1bη||) ≤ ||a0 − a∗|| <∞.

We obtain that lim
η→∞

||bη −Υ1bη|| = 0. Using (G− CR), we have

||bη − a∗||2 = ||QBs [(1− κ2
η)Υ2aη + κ2

ηΥ1cη]−QBs [a
∗]||2

≤ ||(1− κ2
η)(Υ2aη − a∗) + κ2

η(Υ1cη − a∗)||2

≤ (1− κ2
η)||Υ2aη−a∗||2+κ2

η||Υ1cη−a∗||2−κ2
η(1− κ2

η)℘c(||Υ2aη −Υ1cη||).
≤ (1− κ2

η)||aη − a∗||2 + κ2
η||cη − a∗||2 − κ2

η(1− κ2
η)℘c(||Υ2aη −Υ1cη||)

≤ ||aη − a∗||2 − κ2
η(1− κ2

η)℘c(||Υ2aη −Υ1cη||). (4.12)

Using inequality(4.11), we have

||aη+1 − a∗||2

≤
[
||aη − a∗||2 − κ2

η(1− κ2
η)℘c(||Υ2aη −Υ1cη||)

]
− κ1

η(1− κ1
η)℘c(||bη −Υ1bη||)

≤
[
||aη − a∗||2 − κ1

ηκ
2
η(1− κ2

η)℘c(||Υ2aη −Υ1cη||)
]
− κ1

η(1− κ1
η)℘c(||bη −Υ1bη||).

Noticeably a b(1− b) ≤ κ1
ηκ

2
η(1− κ2

η) ∀ η ∈ N ∪ {0}. We obtain that

a b

η∑
i=0

℘c(||Υ2ai −Υ1ci||) ≤ ||a0 − a∗||2 − ||aη+1 − a∗||2

−
η∑
i=0

κ1
η(1− κ1

η)℘c(||bi −Υ1bi||).
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Now, we have

a b

∞∑
η=0

℘c(||Υ2aη −Υ1cη||) ≤ ||a0 − a∗||2 <∞.

It results in that
lim
η→∞

||Υ2aη −Υ1cη|| = 0.

Using the inequality (4.12), we have

||bη − a∗|| ≤ (1− κ2
η)||aη − a∗||2 + κ2

η

[
||(1− κ3

η)(aη − a∗)− κ3
η(Υ2aη − a∗)||2

]
− κ2

η(1− κ2
η)℘c(||Υ2aη −Υ1cη||)

≤ (1− κ2
η)||aη − a∗||2 + κ2

η

[
(1− κ3

η)||aη − a∗||2 + κ3
η||Υ2aη − a∗)||2

− κ3
η(1− κ3

η)℘c(||aη −Υ2aη||)
]
− κ2

η(1− κ2
η)℘c(||Υ2aη −Υ1cη||).

≤ ||aη−a∗|| − κ2
ηκ

3
η(1−κ2

η)℘c(||aη−Υ2aη||)− κ2
η(1− κ2

η)(||Υ2aη −Υ1cη||),
∀ η ∈ N ∪ {0}. On the other hand, from inequality (4.11), we have

||aη+1−a∗||
= ||bη − a∗||2 − κ1

η(1− κ1
η)℘c(||bη −Υ1bη||

=

[
||aη−a∗|| − κ2

ηκ
3
η(1−κ2

η)℘c(||aη −Υ2cη||)− κ2
η(1− κ2

η)(||Υ2aη −Υ1cη||)
]

− κ1
η(1− κ1

η)℘c(||bη −Υ1bη||.
Therefore, b c(1− c) ≤ bηcη(1− cη), ∀ η ∈ N ∪ {0}. Noticeably

b c(1− c)
η∑
i=0

℘c(ai −Υ2ci) ≤ ||a0 − a∗||2 − ||aη+1 − a∗||2

−
η∑
i=0

κ2
i (1− κ2

i )℘c(||Υ2aη −Υ1cη||)

−
η∑
i=0

κ1
i (1− κ1

i )℘c(||bi −Υ1bi||),

which follows that limη→∞ ||aη −Υ2aη|| → 0. Note that

||cη − aη|| = ||QBs [(1− κ3
η)aη + κ3

ηΥ2aη]−QBs
[a∗]||

= ||Υ2aη − aη|| → 0 as η →∞.
It is given that Υ2 is uniformly continuous, so using Proposition (3.5)

lim
η→∞

||cη −Υ2cη|| = 0.

Therefore, from
lim
η→∞

||Υ2aη −Υ1cη|| = 0,
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we have

||aη −Υ2aη|| = 0.

(3) Let B satisfies the Opial condition and Υ1 and Υ2 with CFP ω, where
ω ∈ CBr[a∗] ∩Bs. Lemma 4.1 results that limη→∞ ||aη − ω|| exists. Let ∃ {aηp} and
{aθq} convergent to two distinct points ω1 and ω2 in CBr ∩ Bs, respectively. Since
both I −Υ1 and I −Υ2 are demiclosed at 0, we have

Υ1ω1 = Υ2ω1 = ω

and

Υ1ω2 = Υ2ω2 = ω.

Furthermore, the Opial condition results

lim
η→∞

||aη − ω1|| = lim
p→∞

||aηp − ω1|| < lim
q→∞

||aθq − ω2|| = lim
η→∞

||aη − ω2||.

In similar manner, we have

lim
η→∞

||aη − ω2|| < lim
η→∞

||aη − ω1||,

which is a contradiction. Hence, ω1 = ω2, which confirms the existence of the conver-
gent sequence {aη} which converges weakly to ω ∈ z(Υ1,Υ2) ∩ CBr[a∗]. �

Also, if any nonexpansive mapping is uniformly continuous, we may deduce a
convergence theorem for estimating the common FPs of two nonexpansive mappings
from Theorem 4.2 and Lemma 3.3.

Theorem 4.3. Let ∅ 6= Bs ⊆ B with QBs
as the sunny nonexpansive retraction. Let

Υ1,Υ2 : Bs → B be nonexpansive mappings such that z(Υ1,Υ2) 6= ∅. Let the real

sequences {κ1
η}, {κ2

η} and {κ3
η} 3 0 < a ≤ κ1

η ≤ a < 1, 0 < b ≤ κ2
η ≤ b < 1 and

0 < c ≤ κ3
η ≤ c < 1 ∀ η ∈ N ∪ {0}. Let a0 ∈ Bs and Pz(Υ1,Υ2)

(a0) = a∗. Let {aη} be

the sequence defined by (G− CR). Then, we have

1. {aη} is in a closed convex bounded set CBr[a∗] ∩Bs, where

r ∈ (0,∞) 3 ||a0 − a∗|| ≤ r.

2. limη→∞ ||aη − Υ1aη|| = 0 and limη→∞ ||aη − Υ2aη|| = 0 with the same error
bounds (2) defined in Theorem 4.2.

3. If I−Υ2 and I−Υ1 are demiclosed at 0 and B satisfies the Opial condition, then
{aη} is convergent to an element of z(Υ2,Υ1) ∩ CBr[a∗], where the convergence
is weak convergence.

We may restate condition (3) of Theorem 4.3 as if B meets the Opial condition,
{aη} weakly converges to an element of z(Υ1,Υ2), if Pz(Υ1,Υ2)

cannot be determined.
Therefore we can define the following:

Corollary 4.4. Let Υ1, Υ2 : Hs∗ → Hs∗ be nonexpansive mappings such that
z(Υ1,Υ2) 6= ∅. Let the real sequences {κ1

η}, {κ2
η} and {κ3

η} 3 0 < a ≤ κ1
η ≤ a < 1,
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0 < b ≤ κ2
η ≤ b < 1 and 0 < c ≤ κ3

η ≤ c < 1 ∀ η ∈ N ∪ {0}. Let the sequence {aη} is
defined as follows

a0 ∈ Bs,

aη+1 = (1− κ1
η)bη + κ1

ηΥ1bη,

bη = (1− κ2
η)Υ2aη + κ2

ηΥ1cη,

cη = (1− κη3)aη + κη3Υ2aη, η ∈ N ∪ 0.

(CR− PPA)

Then the sequence {aη} is convergent weakly to an element of z(Υ1,Υ2).

5. Application

It is important to note that various problems based on signal processing and
machine learning can be expressed in accordance with the following manner.

Problem 1. For an m−accretive operator A : B→ 2B, find an element that satisfies

a ∈ B such that 0 ∈ Aa. (5.1)

PPA, introduced by Martinet (see [15], [14]) and generalized by Rockafellar ([17], [18])
is one of the popular methods to solve this problem. Also, Rockafellar [17] studied
the weak convergence of the PPA, namely:

aη+1 = JA∆η
aη, for all η ∈ N ∪ 0, (5.2)

for the solution to Problem 5.1 and a0 ∈ B. The weak and strong convergences
of the sequence {xη} defined by equation ( 5.2) have been extensively studied in
various ambient spaces e.g. Hilbert and Banach spaces (see [23], [22], [24], [25] and
the references therein). The general form of Problem 1 is as follows:

Problem 2. Let the mappings A, A1 : B → 2B be m−accretive operators.
Find an element

a ∈ B 3 0 ∈ Aa ∩ A1a, (5.3)

when A and A1 are two maximal monotonic operators in a Hs.
We are now eligible to utilize our observations, which are primarily focused on

accretive operators’ common zeros. We name (G−CR) an iteration - based proximal

point algorithm when Υ1 = JA∆ and Υ2 = JA1

∆ . In a more generalized context, we
now analyze its convergence to solve Problem 2.

Theorem 5.1. Let ∅ 6= Bs be Opial condition. Let A : Dom(A) ⊆ Bs → 2B

and A1 : Dom(A1) ⊆ Bs → 2B be accretive operators 3 Dom(A) ⊆ Bs ⊆
∩λ>0Ran(I + λA), Dom(A1) ⊆ Bs ⊆ ∩λ>0Ran(I + λA1) and A−1(0) ∩ A−1

1 (0) 6= ∅.
Let {κ1

η}, {κ2
η}, and {κ3

η} be sequences of real numbers 3 0 < a ≤ κ1
η < a < 1,

b ≤ κ2
η < b, where b, b ∈ (0, 1) and c ≤ κ3

η < c, c, c ∈ (0, 1) ∀ η ∈ N ∪ 0. Let ∆ > 0,
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a0 ∈ Bs and PA−1(0)∩A10−1(a0) = a∗. Let the sequence {aη} be defined as follows:
a0 ∈ Bs,

aη+1 = (1− κ1
η)bη + κ1

ηJ
A
∆bη,

bη = (1− κ2
η)JA1

∆ aη + κ2
ηJ
A
∆ cη,

cη = (1− κ3
η)aη + κ3

ηJ
A1

∆ aη,

Then, we have

1. {aη} is in a closed convex bounded set CBr[a∗] ∩Bs, where

r ∈ (0,∞) 3 ||a0 − a∗|| ≤ r.

2. limη→∞ ||aη − JA∆aη|| = 0 and limη→∞ ||aη − JA1

∆ aη|| = 0 with the same error

bounds (2) defined in Theorem 4.2 where Υ1 = JA∆ and Υ2 = JA1

∆ .

3. {aη} is convergent to an element of A−1(0)∩A−1
1 (0)∩CB[a∗] and the convergence

is weak convergence.

Proof. As Dom(A) ⊆ Bs ⊆ ∩λ>0Ran(I + λA), it is to note that JA∆ : Bs → Bs is
nonexpansive. Also, JA∆ : Bs → Bs is nonexpansive. Also, Dom(A)∩Dom(B) ⊆ Bs,
hence we have

a ∈ A−1(0)A−1
1 (0) =⇒ a ∈ Dom(A) ∩Dom(A1) with 0 ∈ Aa and 0 ∈ A1a

=⇒ a ∈ Bs with JA∆a = a and JA1

∆ a = a

=⇒ a ∈ z
(JA∆ ,J

A1
∆ )

. (5.4)

Substitute Υ1 = JA∆ and Υ2 = JA1

∆ . As a result, Theorem 5.1 refers to the proof from
Theorem 4.3.

Example 5.2. For the problem given below, find the element which satisfies

α ∈
◦
J := ∂A−1(0) ∩ ∂A−1

1 (0),

where A,A1 : R× R× R→ R are defined as follows:

A(a) =
1

2
〈∇f (a),a)〉+ 〈a,β〉.

Also

A1(a) =
1

2
〈∇g(a),a)〉+ 〈a,γ〉

∀ a ∈ R× R× R and

∇f =

 1 2 −3
1 2 −3
−1 −1 3


and

∇g =

1 2 0
1 2 0
0 0 0

 ,
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β = (2, 6, 8) and γ = (2, 6, 0). Here, it easy to conclude that the functions ∇f and
∇g are convex and continuous as well on R× R× R → R with del∇f (·) = A(·) + β,
del∇g(·) = A1(·) + γ and

◦
J = {a, b, c : a + b = 8, c = 0}.

Let us define a sequence {aη, bη, cη} with initial value {a0, b0, c0} as follows:
a0 ∈ Bs,

(a1
η+1, b

1
η+1, c

1
η+1) = (1− κ1

η)(b1
η, b

2
η, b

3
η) + κ1

ηΥ1(b1
η, b

2
η, b

3
η),

(b1
η, b

2
η, b

3
η) = (1− κ2

η)Υ2(a1
η, b

1
η, c

1
η) + κ2

ηΥ1(c1η, c
2
η, c

2
η),

(c1η, c
2
η, c

2
η) = (1− κ3

η)(a1
η, b

1
η, c

1
η) + κ3

ηΥ2(a1
η, b

1
η, c

1
η),

(E)

where Υ1 = (I + del∇f )−1 and Υ2 = (I + del∇g)−1, 0 < κ1
η, κ

2
η, κ

3
η < 1. Using initial

value as (a0, b0, c0), ∀ a0, b0, c0 ∈ R in Theorem 4.2, we can find the solution for
distinct values of (a0, b0, c0).

Conclusion. Inspired by two well-known concepts, CR−iterative algorithm by Chug
et al. [5] and common zero of two accretive operators by Kim & Tuyen [10], in this
analysis we have introduced the Generalized G−CR iteration algorithm and analyzed
its convergence behaviour to find CFPs for nonself QNEMs in convex Banach spaces.
In order to understand the work, application of the the same is also analyzed.
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Generalized Szász-Mirakian type operators
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Abstract. In this paper we propose certain modifications of Szász-Mirakian type
operators and study their approximation properties. We also give a Voronovskaya
type theorem for these operators.
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1. Introduction

Classical Szász-Mirakian operator is defined as

Sn(f ;x) = e−nx
∞∑
k=0

(nx)k

(k)!
f

(
k

n

)
(1.1)

with x ∈ R0 = [0,∞), n ∈ N = {1, 2, 3, . . . }, k ∈ N0 = N ∪ 0 and f ∈ C(R0). The
approximation behaviour of this operator for bounded functions is well known (see,
e.g. [2, 8]). Hermann considered this operator on a much wider class, growing faster
than exponentially. In 2005, Schurer[6, 7] type generalization was given by Moreno
[4] for this operator 1.1.

Sn,p(f ;x) = e−(n+p)x
∞∑
k=0

((n+ p)x)k

(k)!
f

(
k

n

)
, x ∈ R0, n ∈ N, p ∈ N0.

Later Firlej and Rempulska [3] introduced a modified Szász-Mirakian operator:

S̄n(f ;x) =
1

cosh(nx)

∞∑
k=0

(nx)2k

(2k)!
f

(
2k

n

)
, x ∈ R0, n ∈ N.
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Motivated by the above two modifications now we consider Szász-Mirakian type opera-
tors for f ∈ CB

Ŝn,p(f ;x) =
1

cosh((n+ p)x)

∞∑
k=0

((n+ p)x)2k

(2k)!
f

(
2k

n

)
, x ∈ R0, n ∈ N, p ∈ N0. (1.2)

and coshx, tanhx are elementary hyperbolic functions. Let

C2
B = {f ∈ CB ∩ C2(R0) : f ′; f ′′ ∈ CB}

be the space of real-valued functions uniformly continuous and bounded on
R0 = [0;∞) and let the norm in CB be given by the formula

‖f‖ = sup
x∈R0

|f(x)|.

In the year 2008, Deo et al. [1] studied Voronovskaya type results for modified Bern-
stein operators. Now the purpose of this study is to give Voronovskaya type theo-
rems for Schurer ([6, 7]) as well Firlej and Rempulska [3] type modification of Szász-
Mirakian operators.

2. Auxiliary results

In this section we prove some results on Ŝn,p that will help in establishing the
main result.

Lemma 2.1. For each n ∈ N and x ∈ R0 we have

Ŝn,p(1;x) = 1, (2.1)

Ŝn,p(t;x) =
(n+ p)x

n
tanh((n+ p)x), (2.2)

Ŝn,p(t2;x) =
((n+ p)x)2

n2
+

(n+ p)x

n2
tanh((n+ p)x), (2.3)

Ŝn,p(t3;x) =
1

n3
[
{((n+ p)x)3 + (n+ p)x} tanh((n+ p)x) + 3((n+ p)x)2

]
, (2.4)

and

Ŝn,p(t4;x) =
1

n4
[
((n+p)x)4 +{6((n+p)x)3 +(n+p)x} tanh((n+p)x)+7((n+p)x)2

]
.

(2.5)

Proof. From (1.2) we can easily obtain (2.1) and

Ŝn,p(t;x) =
1

cosh((n+ p)x)

∞∑
k=0

((n+ p)x)2k

(2k)!

(
2k

n

)
=

(n+ p)x

n
tanh((n+ p)x).
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Ŝn,p(t2;x) =
1

cosh((n+ p)x)

∞∑
k=0

((n+ p)x)2k

(2k)!

(
2k

n

)2

=
1

cosh((n+ p)x)

∞∑
k=0

((n+ p)x)2k

(2k)!

{(2k)(2k − 1) + 2k}
n2

=
((n+ p)x)2

n2
+

(n+ p)x

n2
tanh((n+ p)x)

Ŝn,p(t3;x) =
1

cosh((n+ p)x)

∞∑
k=0

((n+ p)x)2k

(2k)!

(
2k

n

)3

=
1

cosh((n+ p)x)

∞∑
k=0

((n+p)x)2k

(2k)!

{(2k)(2k−1)(2k−2) + 6k(2k−1) + 2k}
n3

=
1

cosh((n+ p)x)

[ ((n+ p)x)3 + (n+ p)x

n3
sinh((n+ p)x)

+
3((n+ p)x)2

n3
cosh((n+ p)x)

]
=

1

n3
[
((n+p)x)3 tanh((n+p)x) + 3((n+p)x)2 + (n+p)x tanh((n+p)x)

]
.

Ŝn,p(t4;x) =
1

cosh((n+ p)x)

∞∑
k=0

((n+ p)x)2k

(2k)!

(
2k

n

)4

=
1

cosh((n+ p)x)

∞∑
k=0

((n+ p)x)2k

(2k)!n4

[
(2k)(2k − 1)(2k − 2)(2k − 3)

+ 6(2k)(2k − 1)(2k − 2) + 7(2k)(2k − 1) + 2k
]

=
1

n4
[
((n+p)x)4 + (6((n+p)x)3 + (n+p)x) tanh((n+p)x) + 7((n+p)x)2

]
.

�

Using above Lemma 2.1, we shall prove the following Lemma.

Lemma 2.2. The following equalities hold for all x ∈ R0 and n ∈ N :

Ŝn,p(t− x;x) =
(n+ p)x

n
[tanh((n+ p)x)− 1] +

px

n

Ŝn,p((t− x)2;x) =
(n+ p)

n

(
2x2 − x

n

)
(1− tanh(n+ p)x) +

(n+ p)x+ p2x2

n2

Ŝn,p((t− x)3;x) =
(n+ p)

n
tanh((n+ p)x)

[
(n+ p)2

n2
x3 +

x

n2
− 3x2

n
+ 3x3

]
+

3(n+ p)2x2

n3
− 3x(n+ p)2x2

n2
− x3
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Ŝn,p((t− x)4;x)

=
(n+ p)

n
tanh((n+ p)x)

[6(n+ p)2x3

n3
− 4(n+ p)2x3

n2
+

x

n3
− 4x2

n2
+

6x3

n
− 4x4

]
+

((n+ p)x)4 + 7((n+ p)x)2 − 12xn((n+ p)x)2 + 6x2n2((n+ p)x)2 + x4n4

n4

Proof. Using Lemma 2.1 we have,

Ŝn,p(t− x;x) =
(n+ p)x

n
tanh((n+ p)x)− x

=
(n+ p)x

n
[tanh((n+ p)x)− 1] +

px

n
(2.6)

Ŝn,p((t− x)2;x) =
((n+ p)x)2

n2
+

(n+ p)x

n2
tanh((n+ p)x)

− 2x
(n+ p)x

n
tanh((n+ p)x) + x2

= tanh((n+ p)x)

[
(n+ p)x

n2
− 2x

(n+ p)x

n

]
+ x2 +

((n+ p)x)2

n2

(2.7)

=
(n+ p)

n

(
2x2 − x

n

)
(1− tanh(n+ p)x) +

(n+ p)x+ p2x2

n2

Ŝn,p((t− x)3;x)

=
1

n3
[
((n+ p)x)3 tanh((n+ p)x) + 3((n+ p)x)2 + (n+ p)x tanh((n+ p)x)

]
− 3x

[
((n+ p)x)2

n2
+

(n+ p)x

n2
tanh((n+ p)x)

]
+ 3

(n+ p)x3

n
tanh((n+ p)x)− x3 (2.8)

=
(n+ p)

n
tanh((n+ p)x)

[
(n+ p)2

n2
x3 +

x

n2
− 3x2

n
+ 3x3

]
+

3(n+ p)2x2

n3
− 3x(n+ p)2x2

n2
− x3

Ŝn,p((t−x)4;x)= Ŝn,p(t4;x)−4xŜn,p(t3;x)+6x2Ŝn,p(t2;x)−4x3Ŝn,p(t;x)+x4Ŝn,p(1;x)

= tanh((n+ p)x)
[ (n+ p)x+ 6((n+ p)x)3

n4
− 4x{((n+ p)x)3 + (n+ p)x}

n3

+
6x3(n+ p)− 4x4n(n+ p)

n2

]
+

((n+ p)x)4 + 7((n+ p)x)2 − 12xn((n+ p)x)2 + 6x2n2((n+ p)x)2 + x4n4

n4

=
(n+ p)

n
tanh((n+ p)x)

[6(n+ p)2x3

n3
− 4(n+ p)2x3

n2
+

x

n3
− 4x2

n2
+

6x3

n
− 4x4

]



Generalized Szász-Mirakian type operators 419

+
((n+ p)x)4 + 7((n+ p)x)2 − 12xn((n+ p)x)2 + 6x2n2((n+ p)x)2 + x4n4

n4
(2.9)

�

In order to prove a Voronovskaya type theorem we need the following lemmas.

Lemma 2.3. For n, r ∈ N, p ∈ N0 and x ≥ 0, the following results hold

(a) 0 ≤ xr(1− tanh(n+ p)x) ≤ 21−rr!(n+ p)−r

(b) lim
n→∞

[n {tanh((n+ p)x)− 1}] = 0

(c) lim
n→∞

{tanh((n+ p)x)} = 1,

and

(d) lim
n→∞

{tanh((n+ p)x)− 1}
n

= 0

Proof. We shall use an inequality considered in (eq.(22), [5]) which says that, for
m, r ∈ N and x ≥ 0,

0 ≤ xr(1− tanhmx) ≤ 21−rr!m−r

Now on replacing m by n+ p, n ∈ N, p ∈ N0 we get the desired result.
Following the technique used in Lemma 2 of [5],we easily obtain (b),(c) and (d). �

Lemma 2.4. For every fixed x ∈ R0, we have

(i) lim
n→∞

nŜn,p(t− x;x) = px,

(ii) lim
n→∞

nŜn,p((t− x)2;x) = x,

Proof. Using Lemma 2.2 we obtain,

(i)Ŝn,p(t− x;x) =
(n+ p)x

n
tanh((n+ p)x)− x

=
(n+ p)x

n
[tanh((n+ p)x)− 1] +

px

n

= x [tanh((n+ p)x)− 1] +
px

n
tanh((n+ p)x).

therefore

nŜn,p(t− x;x) = xn [tanh((n+ p)x)− 1] + px tanh((n+ p)x).

Using Lemma 2.3 we get

lim
n→∞

nŜn,p(t− x;x) = lim
n→∞

[xn {tanh((n+ p)x)− 1}+ px tanh((n+ p)x)]

= px.

(ii)Ŝn,p((t− x)2;x) =
(n+ p)

n

(
2x2 − x

n

)
(1− tanh(n+ p)x) +

(n+ p)x+ p2x2

n2
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nŜn,p((t− x)2;x) = 2x2[n {1− tanh((n+ p)x)}]
+ 2px2 [1− {tanh((n+ p)x)}]− x [{1− tanh((n+ p)x)}]

− px

n
[1− {tanh((n+ p)x)}] + x+

px

n
+
p2x2

n
Again using Lemma 2.3 we obtain

lim
n→∞

nŜn,p((t− x)2;x) = x �

Lemma 2.5. The following inequalities are satisfied for all n ∈ N, p ∈ N0 and x ∈ R0 :

|Ŝn,p(t− x;x)| ≤ px+ 1

n

|Ŝn,p((t− x)2;x)| ≤ 3 + (p+ 1)x+ p2x2

n

|Ŝn,p((t− x)4;x)| ≤ 47 + (1 + p)x+ (3 + 10p+ 7p2)x2 + 6p2x3 + p4x4

n2
(2.10)

Proof. For n, r ∈ N, p ∈ N0 and x ≥ 0 we have

0 ≤ xr(1− tanh(n+ p)x) ≤ 21−rr!(n+ p)−r.

So from Lemma 2.2,

|Ŝn,p(t− x;x)| =
∣∣∣∣ (n+ p)x

n
[tanh((n+ p)x)− 1]

∣∣∣∣+
px

n

≤ px+ 1

n

Ŝn,p((t− x)2;x) =
((n+ p)x)2

n2
+

(n+ p)x

n2
tanh((n+ p)x)

− 2x
(n+ p)x

n
tanh((n+ p)x) + x2

= tanh((n+ p)x)

[
(n+ p)x

n2
− 2x

(n+ p)x

n

]
+ x2 +

((n+ p)x)2

n2

= (tanh(n+ p)x− 1)

[
(n+ p)x)

n2
− 2x

(n+ p)x

n

]
+

(n+ p)x+ p2x2

n2

|Ŝn,p((t− x)2;x)| =
∣∣∣∣(tanh(n+p)x−1)

[
(n+p)x)

n2
− 2x

(n+p)x

n

]
+

(n+ p)x+ p2x2

n2

∣∣∣∣
≤ 1 + (n+ p)x+ p2x2

n2
+

2

n(n+ p)

≤ 3 + px+ p2x2

n2
+
x

n

≤ 3 + px+ x+ p2x2

n

≤ 3 + (p+ 1)x+ p2x2

n
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Ŝn,p((t− x)4;x)

=
(n+ p)

n
tanh((n+ p)x)

[6(n+ p)2x3

n3
− 4(n+ p)2x3

n2
+

x

n3
− 4x2

n2
+

6x3

n
− 4x4

]
+

((n+ p)x)4 + 7((n+ p)x)2 − 12xn((n+ p)x)2 + 6x2n2((n+ p)x)2 + x4n4

n4

= tanh((n+p)x)
[6(n+p)3x3

n4
− 4(n+p)3x4

n3
+

(n+p)x

n4
− 4(n+ p)x2

n3
+

6(n+ p)x3

n2

− 4
(n+ p)

n
x4
]

+
(n+ p)4x4

n4
+

7(n+ p)2x2

n4
− 12(n+ p)2x3

n3
+

6(n+ p)2x4

n2
+ x4

=
(

tanh((n+ p)x)− 1
)[6(n+ p)3x3

n4
− 4(n+ p)3x4

n3
+

(n+ p)x

n4
− 4(n+ p)x2

n3

+
6(n+p)x3

n2
− 4

(n+p)

n
x4
]

+

(
(n+p)4

n4
− 4(n+p)3

n3
+

6(n+ p)2

n2
− 4

(n+ p)

n
+ 1

)
x4

+
(6(n+ p)3

n4
+

6(n+ p)

n2
− 12(n+ p)2

n3

)
x3 +

(7(n+ p)2

n4
− 4(n+ p)

n3

)
x2 +

(n+ p)

n4
x

|Ŝn,p((t− x)4;x)| ≤ 10

n4
+

16

n3(n+ p)
+

9

n2(n+ p)2
+

12

n(n+ p)3
+

p4x4

n4
+

6p2x3

n3
+

(3 + 10p+ 7p2)x2

n2
+

(1 + p)x

n2

≤ 47

n4
+
p4x4 + 6p2x3 + (3 + 10p+ 7p2)x2 + (1 + p)x

n2

≤ 47 + (1 + p)x+ (3 + 10p+ 7p2)x2 + 6p2x3 + p4x4

n2

�

3. Voronovskaya type theorems

In this section we give a Voronovskaya-type theorem for the operators Ŝn,p with

the help of properties of Ŝn,p, which are already mentioned in the above lemmas.

Lemma 3.1. Suppose that x0 is a fixed point in R0 and ϕ(t;x0)is a given function
belonging to CB and such that

lim
t→x0

ϕ(t;x0) = 0

(
lim
t→p

ϕ(t; 0) = 0

)
Then for a fixed p ∈ N

lim
n→∞

Ŝn,p(ϕ(t;x0);x0) = 0. (3.1)

Proof. By (1.2) we have for n ∈ N and a fixed point x0 ≥ 0

Ŝn,p(ϕ(t;x0);x0) =
1

cosh((n+ p)x)

∞∑
k=0

((n+ p)x)2k

(2k)!
ϕ

(
2k

n
;x0

)
(3.2)
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Choose ε > 0. Since ϕ(·;x0) ∈ CB , there exists a positive constant δ ≡ δ(ε) such that

|ϕ(t;x0)| < ε

2
, if |t− x0| < δ, t ≥ 0

Moreover there exists a positive constant M such that |ϕ(t;x0)| ≤ M for all t > 0.
Hence, from (3.2) we get for every n ∈ N

|Ŝn,p(ϕ(t;x0);x0)| ≤ 1

cosh((n+ p)x)

∑
k∈Q1,n

((n+ p)x)2k

(2k)!

∣∣∣∣ϕ(2k

n
;x0

)∣∣∣∣
+

1

cosh((n+ p)x)

∑
k∈Q2,n

((n+ p)x)2k

(2k)!

∣∣∣∣ϕ(2k

n
;x0

)∣∣∣∣
= E1 + E2 (3.3)

where

Q1,n = k ∈ N0 :

∣∣∣∣2kn − x0
∣∣∣∣ < δ

and

Q2,n = k ∈ N0 :

∣∣∣∣2kn − x0
∣∣∣∣ ≥ δ.

From (2.1) we get,

E1 <
ε

2

1

cosh((n+ p)x)

∞∑
k=0

((n+ p)x)2k

(2k)!
=
ε

2
(3.4)

E2 ≤M
1

cosh((n+ p)x)

∑
k∈Q2,n

((n+ p)x)2k

(2k)!
(3.5)

Since | 2kn − x0| ≥ δ implies 1 ≤ δ−2
(
2k
n − x0

)2
, we can write

E2 ≤ Mδ−2
1

cosh((n+ p)x))

∑
k∈Q2,n

((n+ p)x)2k

(2k)!

(
2k

n
− x0

)2

≤Mδ−2Ŝn,p((t− x0)2;x0)

which by Lemma 2.5 gives,

E2 ≤
M(3 + px0 + x0 + p2x20)

nδ2

It is obvious that for given ε > 0, δ > 0,M > 0 and x0 ≥ 0 we can choose n0 ≡
n0(ε; δ;M ;x0) ∈ N such that for all natural numbers n > n0 one gets

M(3 + px0 + x0 + p2x20)

nδ2
<
ε

2
Hence,

E2 <
ε

2
for n > n0. (3.6)

Using equations (3.4) and(3.6) to (3.3) we get

lim
n→∞

Ŝn,p(ϕ(t;x0);x0) = 0
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and this completes the proof. �

Theorem 3.2. If f ∈ C2
B, then for every fixed x ∈ R0 one gets

lim
n→∞

n{Ŝn,p(f ;x)− f(x)} = pxf ′(x) +
x

2
f ′′(x). (3.7)

Proof. Let x0 ∈ R0 be a fixed point.Then by Taylor formula we can write for every
t ∈ R0,

f(t) = f(x0) + f ′(x0)(t− x0) +
1

2
f ′′(x0)(t− x0)2 + ψ(t;x0)(t− x0)2, (3.8)

where ψ(t;x0) ∈ CB and lim
t→x0

ψ(t;x0) =

(
lim

t→0+
ψ(t; 0) = 0

)
On applying the operator Ŝn,p on both sides of (3.8), we have for every n ∈ N ,

Ŝn,p(f ;x0)− f(x0) = f ′(x0)Ŝn,p(t− x0;x0) +
1

2
f ′′(x0)Ŝn,p((t− x0)2;x0)

+ Ŝn,p(ψ(t;x0)(t− x0)2;x0) (3.9)

In view of (3.9) and by Holder’s inequality we get for n ∈ N

|Ŝn,p(ψ(t;x0)(t− x0)2;x0)| ≤
{
Ŝn,p(ψ2(t;x0);x0)

}1/2 {
Ŝn,p((t− x0)4;x0)

}1/2

(3.10)
Since the function ϕ(t;x0) = ψ2(t;x0), t ≥ 0 satisfies the assumption of Lemma 3.1
we have,

lim
n→∞

Ŝn,p(ψ2(t;x0);x0) = 0

From (2.10) it follows that there exists a constant M1 = M1(p, x0) depending on
p and x0 such that

n2Ŝn,p((t− x0)4;x0) ≤M1 for n ∈ N
Consequently we obtain

lim
n→∞

nŜn,p(ψ(t;x0)(t− x0)2;x0) = 0 (3.11)

from (3.10). Using Lemma 2.4 and (3.11), we derive immediately (3.7) from (3.9).
Thus the proof is complete. �
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Global existence and uniqueness for viscoelastic
equations with nonstandard growth conditions
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Abstract. This paper is devoted to the study of generalized viscoelastic nonlinear
equations with Dirichlet-Neumann boundary conditions. We establish the local
and uniqueness of weak solutions results in Sobolev spaces with variable expo-
nents. Solutions are constructed as a limit of approximate solutions by a method
independent of a compactness argument. We also discuss the global existence of
solutions in the energy space.
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1. Introduction

In this paper, we study the global existence and uniqueness of weak solutions
for the nonlinear viscoelastic equation with the m (x)-Laplacian operator

utt −∆m(x)u+ w1∆2u (t)− w2∆ut (t) + α (t)

∫ t

0

β (t− s) ∆u (s) ds

+ |u|p(x)−2
u (t) + λg (ut (t)) = bf (u (t)) in Ω× R+,

u = ∂ηu = 0 on Γ× [0,+∞[ ,

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,

(1.1)

where ∆m(x)u = div
(
|∇u|m(x)−2∇u

)
is called the m (x)-Laplacian operator,

m(x) and p (x) are two continuous functions on Ω, Ω is a bounded open subset of
Rn with a smooth boundary ∂Ω = Γ, β is a memory kernel that decays exponentially,
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g(ut) is a nonlinear damping term, f(u) is a nonlinear generalized source term, u0 and
u1 are given functions, and ∂η denotes the normal derivative directed outside of Ω and

Q = Ω×[0, T ] . Problem (1.1), with its general memory term α (t)
∫ t

0
β (t− s) ∆u (s)ds,

can be regarded as a fourth order viscoelastic plate equation with a lower–order per-
turbation of the usual m-Laplacian type (m (x) = const ≥ 2). It can also be regarded
as an elastoplastic flow equation with some kind of memory effect. We note that for
viscoelastic plate equations, it is usual to consider a memory of the general form

α (t)
∫ t

0
β (t− s) ∆2u (s)ds. However, because the main dissipation of the system (1.1)

is given by strong damping −∆ut (t), here we consider a weaker memory, acting only
on ∆u (t). There is a large body of literature about the stability and global existence
of viscoelasticity. We refer the reader to, [9, 10, 8, 18, 19, 4, 2, 3, 1]. Our objective in
the present work is to extend the results established in the study of the differential
equation about global existence with standard m-growth in the study of generalized
problem (1.1) with nonstandard m(x)-growth. Equations with nonstandard growth
occur in the mathematical modeling of various physical phenomena, for example,
the flows of electrorheological fluids or fluids with temperature-dependent viscosity,
nonlinear viscoelasticity, processes of filtration through porous media and image pro-
cessing.

2. Literature overview and new contributions

The semilinear case with the classical Laplace operator (when m (x) = m =
const) and when (p (x) = p = const), was studied by many authors. Other related
works include:

1. The asymptotic behavior of solutions of the equations of linear viscoelasticity
at large times was considered first by Dafermos [9] in 1970, where the general
decay was discussed.

utt −∆2u (t)−∆ut (t) +

∫ t

0

β (t− s) ∆u (s) ds = 0.

From a physical point of view, this type of problem usually arises in viscoelas-
ticity.

2. With the usual m–Laplacian operator m (x) = p(p =const≥ 2), a more general
problem concerning the energy decay for a class of plate equations with memory
and lower order perturbation of the p–Laplacian type

utt − div
(
|∇u|p−2∇u

)
+ ∆2u (t)−∆ut (t) +

∫ t

0

β (t− s) ∆u (s) ds+ f (u (t)) = 0

has been extensively studied in [5].
3. Problem (1.1) without the viscoelastic term, with the usual m-Laplacian opera-

tor (m (x) = m− 1), (p = const ≥ 2) has been extensively studied by Yang et
al [6, 7] concerning existence, nonexistence and long-term dynamics,

utt − div
(
|∇u|m−1∇u

)
+ ∆2u (t)−∆ut (t) + g (ut (t)) + h (u (t)) = f (x, t)
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4. The following problem:

utt −∆u (t) +

∫ t

0

β (t− s) ∆(u (s, x))ds+ |u|p−2
u+ σ (x)ut = 0

for σ : Ω→ R+, a function, which may be null on a part of the domain Ω, has
been considered and studied by many authors [8].

By assuming σ (x) > σ0 on the subdomain $ ⊂ Ω, the authors obtained
an exponential rate of decay, provided that the kernel β satisfies:{

−ζ1β (t) ≤ β′ (t) ≤ −ζ2β (t) , t ≥ 0,

‖β‖L∞(0,+∞) is small enough.

Motivated by previous works, the goal of this paper is to establish the local and
uniqueness of weak solution results in Sobolev spaces with variable exponents.
We also discuss the global existence of solutions in the energy space. We pay
specific properties caused by the variable exponents m(.) and p(.).

3. Problem statement

In this section we list and recall some well-known results and facts from the
theory of Sobolev spaces with variable exponents. (For the details see [11, 12, 13, 14,
15]). Throughout the rest of the paper we assume that Ω is a bounded domain of Rn,
n ≥ 2 with smooth boundary Γ and assume that p(x) and m (x) satisfy:{

2 < p− ≤ p (x) ≤ p+ < p∗ (x) <∞,
2 < m− ≤ m (x) ≤ m+ < m∗ (x) <∞

(3.1)

where

ϕ+ = ess sup
x∈Ω

ϕ (x) , ϕ− = ess inf
x∈Ω

ϕ (x)

and

ϕ∗ (x) ≤


nϕ (x)

(n− ϕ (x))+

, if ϕ+ < n

+∞, if ϕ+ ≥ n.
(3.2)

We also assume that

|m (x)−m (y)| ≤ M

|log |x− y||
, for all x, y in Ω with |x− y| < 1

2
, (3.3)

with M > 0 and

m∗ > ess sup
{x∈Ω}

m (x) (3.4)

Let p : Ω → [1,∞] be a measurable function. We denote by Lp(.)(Ω) the set of
measurable functions u on Ω such that

Ap(.) (u) =

∫
{x∈Ω|p(x)<∞}

|u (x)|p(x)
dx+ ess sup

{x∈Ω|p(x)=∞}
|u (x)| <∞
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The set Lp(.) (Ω) equipped with the Luxemburg norm

‖u‖p(.) = ‖u‖Lp(.)(Ω) = inf

{
µ > 0, Ap(.)

(
u

µ

)
≤ 1

}
,

is a Banach space with

min
(
‖u‖p−p(.) , ‖u‖

p+
p(.)

)
≤ Ap(.) (u) ≤ max

(
‖u‖p−p(.) , ‖u‖

p+
p(.)

)
and the generalized Hölder’s inequality holds.

Let p satisfy the following Zhikov–Fan uniform local continuity condition :

|p (x)− p (y)| ≤ M

|log |x− y||
, for all x, y in Ω with |x− y| < 1

2
, M > 0, (3.5)

with ess inf
{x∈Ω}

(p∗ (x)− p (x)) > 0.

• If condition (3.5) is fulfilled, Ω has a finite measure and p, q are variable ex-
ponents so that p(x) ≤ q(x) almost everywhere in Ω, then the embedding
Lq(.)(Ω) ↪→ Lp(.)(Ω) is continuous.

• If p : Ω → [1,+∞) is a measurable function and p∗ > ess sup
{x∈Ω}

p (x) with p∗ ≤

2n
n−2 (n > 2) ,

(
p∗ ≤ 2n

n−4 (n > 4)
)

, then the embeddings H1
0 (Ω) ↪→ Lp(.)(Ω), and(

H2
0 (Ω) ↪→ Lp(.)(Ω)

)
are continuous and compact respectively.

Let us state the precise hypotheses on g, f, α and β :

α is a measurable nonincreasing differentiable bounded function on R+ and

α+ ≥ α (0) ≥ α (t) > 0, t ≥ 0. (3.6)

Let g be increasing C1–function such that:
xg (x) ≥ d0 |x|σ(x)

, x ∈ R,

|g (x)| ≤ d1 |x|+ d2 |x|σ(x)−1
, x ∈ R, di ≥ 0,

2 < σ− ≤ σ (x) ≤ σ+ ≤ p (x) ≤ p+ ≤
2n

n− 2
<∞, n ≥ 3.

(3.7)

Let f (x, s) ∈ C1 (Ω× R) satisfy:

sf (x, s) + k1 (x) |s| ≥ p (x) f̂ (x, s) , (3.8)

and the growth conditions
|f (x, s)| ≤ l1

(
|s|θ + k2 (x)

)
;

|fs (x, s)| ≤ l1
(
|s|θ−1

+ k3 (x)
)

in Ω× R, and 1 < θ ≤ p−
2
,

(3.9)

where f̂ (x, s) = f̂ (s) =
∫ s

0
f (x, ζ) dζ, with some l0, l1 > 0 and the nonnegative

functions k1 (x) , k2 (x) , k3 (x) ∈ L∞ (Ω), a.e. x ∈ Ω. .
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The memory kernel β : [0,+∞[ → [0,+∞[ is a differentiable bounded function
such that 

β(0) = β0 > 0, ∞ >

∫ ∞
0

β(t)dt = β1;

w1λ1 − α (0)β1 > 0;

α (t)β (t) + α′ (t)

∫ t

0

β (s) ds ≥ 0 t ∈ R+.

(3.10)

there exists K > 0 such that

β′(t) ≤ −Kβ(t) ∀t ≥ 0. (3.11)

where λ1 > 0 is determined by the imbedding inequality

λ1 |∇u (t)|2 ≤ |∆u|2 . (3.12)

Remark 3.1. Typical examples of functions satisfying (3.10) and (3.11), are

β (t) = β0e
−at, a ≥ max

(
β0α (0)

w1λ1
,K

)
;

α (t) = α (0) e−
α(0)
w1λ1

∫ t
0
β(s)ds.

Remark 3.2. We remark from the first identity in (3.10) and assumption (3.6) that

w1λ1 − α (t)

∫ t

0

β(s)ds ≥ w1λ1 − α (0)β1 > 0, for all t ∈ R+.

4. Main result

In this section we establish an existence result for problem (1.1).

4.1. Local existence

Theorem 4.1. Assume that (3.6)-(3.11) hold, given any (u0, u1) ∈ H2
0 (Ω)∩Lp(.)(Ω)×

L2(Ω). Then problem (1.1) admits a solution u (t) satisfying:

u ∈ L∞(0, T ;V ∩ Lp(.)(Ω)), (4.1)

where

V =
{
ϕ ∈ H2 (Ω) : ϕ = 0 on Γ

}
.

Proof. Let wj (j = 1, 2, ...) satisfy the spectral problem

(wj , v)H2
0

= λj (wj , v) , ∀v ∈ H2
0 ,

where (., .)
H2

0

represents the inner product in H2
0 . The family of functions

{w1, w2, ..., wm} yield a Galerkin basis for both H2
0 and L2 (Ω).

For any m ∈ N, let us put Vm = Span {w1, w2, ..., wm} . We define

um(t) =

m∑
i=1

Kjm(t)wj , (4.2)
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where Kjm satisfies:

(uttm(t), wj) + w1 (∆um,∆wj) + w2 (∇umt,∇wj)

+a(um (t) , wj) +
(
|um|p(x)−2

um, wj

)
−
(
α (t)

∫ t

0

β (t− s)∇um (s) ds,∇wj
)

+ λ (g (umt) , wj) = b (f (um) , wj) , (Pm)

um(0) = u0m =

m∑
i=1

αimwj , umt(0) = u1m =

m∑
i=1

βimwj ,

u0m → u0 in Vm, u1m → u1 in L2(Ω).

(4.3)

for 1 ≤ j ≤ m, and

a(ψ,Ψ) =

∫
Ω

|∇ψ|m(x)−2∇ψ∇Ψdx.

As the family {w1, w2, ..., wm} is linearly independent, the problem (Pm) admits at
least one local solution um in the interval [0, tm] verifying um (t) ∈ L2 (0, tm;Vm) and
umt (t) ∈ L2 (0, tm;Vm). The estimate below will allow tm to be independent of m.

A priori Estimate 1

Let us define

(βo∇u) (t) =

∫ t

0

β (t− s)
∫

Ω

|∇u (s)−∇u (t)|2 dxds,

it is easy, by differentiating the term α (t) (βo∇u) (t) with respect to t, to show that

α (t)

∫
Ω

∫ t

0

β (t− s)∇u (s)∇ut (t) dxds

= −1

2

d

dt

{
α (t) (βo∇u) (t)− α (t) |∇u (t)|2

∫ t

0

β (s) ds

}
(4.4)

+
1

2
α (t) (β′o∇u) (t)− 1

2
α (t)β (t) |∇u (t)|2

+
1

2
α′ (t) (βo∇u) (t)− 1

2
α′ (t) |∇u (t)|2

∫ t

0

β (s) ds.

Next, replacing wj in (Pm) by umt (t), yields

(uttm(t), umt(t)) + a(um (t) , umt (t)) + w1 (∆um (t) ,∆umt (t))

+w2 (∇um (t) ,∇umt (t))

+
(
|um|p(x)−2

um(t), umt(t)
)
− α (t)

∫ t

0

β (t− s) (∇um (s) ,∇umt (t)) ds (4.5)

+λ (g (umt) , umt (t)) = b(f (um (t)) , umt(t)).
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Using Young’s inequality and (4.4), it results

d

dt



1

2
|umt(t)|2 +

∫
Ω

1

m (x)
|∇um(t)|m(x)

dx+
1

2
w1 |∆um|2

−1

2

(
α (t)

∫ t

0

β (s) ds

)
|∇um (t)|2

+
1

2
α (t) (βo∇um) (t) +

∫
Ω

1

p (x)
|um(t)|p(x)

dx− b
∫

Ω

f̂ (um(t)) dx


(4.6)

+λ (g (umt) , umt (t)) + w2 |∇umt (t)|2

=
1

2
α (t) (β′o∇um) (t) +

1

2
α′ (t) (βo∇um) (t)

−1

2

(
α (t)β (t) + α′ (t)

∫ t

0

β (s) ds

)
|∇um(t)|2 .

We denote by Em the energy functional associated with problem (1.1):

Em (t) =
1

2
|umt(t)|2 +

1

2
w1 |∆um|2 −

1

2

(
α (t)

∫ t

0

β (s) ds

)
|∇um (t)|2

+
1

2
α (t) (βo∇um) (t) +

∫
Ω

1

m (x)
|∇um(t)|m(x)

dx

+

∫
Ω

1

p (x)
|um(t)|p(x)

dx− b
∫

Ω

f̂ (um(t)) dx. (4.7)

Using the conditions (3.6), (3.10) and (3.11), we see that

E′m (t) ≤ 1

2
α (t) (β′o∇um) (t)− 1

2

(
α (t)β (t) + α′ (t)

∫ t

0

β (s) ds

)
|∇um(t))|2

+
1

2
α′ (t) (βo∇um) (t) ≤ 0 ∀t ≥ 0. (4.8)

The Young’s inequality and (3.8), gives

−b
∫

Ω

f̂ (um(t)) dx ≥ −
∫

Ω

b

p (x)
k1 (x) |um|dx−

∫
Ω

b

p (x)
umf (x, um) dx (4.9)

≥ −ε+
1

p2
−

∫
Ω

|um(t)|p(x)
dx− Cε+

∫
Ω

|k1 (x)|p
′(x)

dx

−
∫

Ω

b

p (x)
umf (x, um) dx.
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Next, using hypothesis (3.9) and Young’s inequality, we obtain∫
Ω

b

p (x)
umf (x, um) dx ≤

∫
Ω

b

p (x)
|f (x, um)| |um|dx

≤ l21
p−
ε+

∫
Ω

(
|um|2θ + |k2 (x)|2

)
dx+

c (ε+, p−)

p2
−

∫
Ω

|um|2 dx

≤ l21
p−
ε+

(∫
Ω

p (x)− 2θ

p (x)
dx+ 2θ

∫
Ω

1

p (x)
|um(t)|p(x)

dx

)
+

l21
p−
ε+ ‖k2 (x)‖2∞

+C ′ (ε+, p−) +
ε+

p2
−

∫
Ω

|um(t)|p(x)
dx (4.10)

≤ l21
p−
ε+

(
|Ω| p+ − 2θ

p−
+

2θ

p−

∫
Ω

|um(t)|p(x)
dx

)
+
l21
p−
ε+ ‖k2 (x)‖2∞ + C ′ (ε+, p−) +

ε+

p2
−

∫
Ω

|um(t)|p(x)
dx.

Now replace (4.10) in (4.9) and let 0 < ε+ ≤
p2−

p+(2+2θl21)
; by using (3.10), (3.12) and

Remark 3.2 from (4.7), we obtain:

Em (t) ≥ 1

2
|umt(t)|2 +

1

2λ1
(w1λ1 − α (0)β1) |∆um (t)|2 (4.11)

+C1

∫
Ω

|∇um(t)|m(x)
dx+ C2

∫
Ω

|um(t)|p(x)
dx− C3 (1 +K1 +K2) ,

or

|umt(t)|2 + |∆um (t)|2 +

∫
Ω

|um(t)|p(x)
dx+

∫
Ω

|∇um(t)|m(x)
dx

≤ C4 (Em (t) +K1 +K2 + 1) , (4.12)

where

C1 ≥
1

m+
, 0 < C2 =

p2
− − p+

(
2 + 2θl21

)
ε+

p2
−p+

,

C3 = max

(
Cε+ ;

l21
p
ε+;C ′ (ε+, p−) +

l21
p−
ε+
p− − 2θ

p−

)
,

C4 = max

 1

min
(

1
2λ1

(w1λ1 − α (0)β1) , C1, C2

) , C3

 .

Thus, it follows from (4.6), (4.8) and (4.12) that

|umt(t)|2 +

∫
Ω

|∇um(t)|m(x)
dx+ |∆um|2 +

∫
Ω

|um(t)|p(x)
dx

+w2

∫ t

0

|∇umt (s)|2 ds+ λ

∫ t

0

(g (umt (s)) , umt (s)) ds (4.13)

≤ C4 (Em (0) +K1 +K2 + 1) for every t ≥ 0
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where K1 = ‖k1‖2∞ , K2 = ‖k2‖2∞ .
According to Hölder’s inequality, using (3.8) and (3.9), we have∣∣∣∣b∫

Ω

f̂ (um(0)) dx

∣∣∣∣ ≤ b

p−

∫
Ω

|k1 (x)| |u0m|dx+
b

p−

∫
Ω

|u0m| |f (x, u0m)|dx

≤ C
(
|u0m|2 + ‖k1‖2∞ +

∫
Ω

|u0m|p(x)
dx+ ‖k2‖2∞ + |u0m|2

)
.

Therefore from (4.7) one has

Em (0) =
1

2
|u1m|2 +

∫
Ω

1

m (x)
|∇u0m|m(x)

dx+
1

2
|∆u0m|2

+

∫
Ω

1

p (x)
|u0m|p(x)

dx− b
∫

Ω

f̂ (u0m) dx

≤ C
(
|u1m|2 +

∫
Ω

|∇u0m|m(x)
dx+ |∆u0m|2 +

∫
Ω

|u0m|p(x)
dx+ |u0m|2 +K1 +K2

)
.

Then from (4.3) and (4.13), we obtain

|umt(t)|2 +

∫
Ω

|∇um(t)|m(x)
dx+ |∆um|2 +

∫
Ω

|um(t)|p(x)
dx

+w2

∫ t

0

|∇umt (s)|2 ds+ λ

∫ t

0

(g (umt (s)) , umt (s)) ds ≤ C,

for some positive constant C > 0.
Gronwall’s inequality and assumption (3.7) gives

um is bounded in L∞
(

0, T ;H2
0 (Ω) ∩ Lp(.)(Ω)

)
,

umt is bounded in L∞
(
0, T ;L2(Ω)

)
,

g (umt) .umt is bounded in L1 (Ω× (0, T )) ,

umt is bounded in L2
(

0, T ;Lσ(.)(Ω)
)
,

∇umt is bounded in L2
(
0, T ;L2 (Ω)

)
,

∇um is bounded in L∞
(

0, T ;Lm(.) (Ω)
)
,

∆m(.) (um) is bounded in L∞
(

0, T ;W−1,m′(.) (Ω)
)
.

(4.14)

Since H1
0 ↪→ W

1,p+
0 (Ω), we can use the standard projection arguments as in Lions

[16]. Then from (Pm) and the estimates (4.14), we obtain

uttm is bounded in L2
(
0, T ;H−1

0 (Ω)
)
. (4.15)

To estimate the term g (umt (t)) we need the following lemma.

Lemma 4.2. For all m ∈ N there exists M > 0 such that

||g (umt (t))||
L

σ(x)
σ(x)−1 (Q)

≤M.
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Proof. Thanks to Holder’s, and Young’s inequalities, from (3.7), we get∫
Ω

|g (umt)|
σ(x)
σ(x)−1 dx =

∫
Ω

|g (umt)| |g (umt)|
1

σ(x)−1 dx

≤
∫

Ω

|g (umt (t))|
(
d1 |umt (t)|+ d2 |umt (t)|σ(x)−1

) 1
σ(x)−1

dx

≤ C
∫

Ω

|g (umt (t))|
(
|umt (t)|

1
σ(x)−1 + |umt (t)|

)
dx

= C

∫
Ω

|g (umt (t))| |umt (t)|
1

σ(x)−1 dx+ C

∫
Ω

|g (umt (t))| |umt (t)|dx

≤ σ+ − 1

σ+

∫
Ω

|g (umt)|
σ(x)
σ(x)−1 dx+ C (σ+, σ−)

∫
Ω

|umt (t)|
σ(x)
σ(x)−1 dx

+C

∫
Ω

|g (umt (t))| |umt (t)|dx,

therefore

1

σ+

∫
Ω

|g (umt (t))|
σ(x)
σ(x)−1 dx ≤ C (σ+, σ−)

∫
Ω

|umt (t)|
σ(x)
σ(x)−1 dx

+C

∫
Ω

|g (umt (t))| |umt (t)|dx ≤ C ||umt (t)||
σ(x)
σ(x)−1

2 + C

∫
Ω

|g (umt (t))| |umt (t)|dx,

hence, estimates (4.14) gives∫ T

0

∫
Ω

|g (umt (t))|
σ(x)
σ(x)−1 dxdt ≤M. (4.16)

�

By estimate (4.16)

g (umt (t))→ g (ut (t)) a.e. in Ω× (0, T )

Therefore from Lions [16, Lemma 1.3] we infer that

g (umt)→ g (ut) in L
σ(.)
σ(.)−1 (Ω× (0, T )) weak star. (4.17)

Passage to the limit
On the other hand, we have from (4.14)

um −→ u weak star in L∞
(

0, T ;H2
0 (Ω) ∩ Lp(.)(Ω)

)
,

∆2um −→ ∆2u weak star in L∞
(

0, T ;H2
0 (Ω) ∩ Lp(.)(Ω)

)
,

umt −→ ut weak star in L2
(
0, T ;L2(Ω)

)
∩ L2

(
0, T ;H1

0 (Ω)
)

,

g (umt) −→ g (ut) weak star in L
σ(.)
σ(.)−1 (Ω× (0, T )) ,

∆umt (t)→ ∆ut (t) weak star in L2
(
0, T ;H−1(Ω)

)
,

∆m(.) (um)→ ψ weak star in L∞
(

0, T ;W−1,m′(.) (Ω)
)

(4.18)
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By applying the Lions-Aubin compactness lemma, we obtain, for any T > 0,

um −→ u strongly in L2
(
0, T ;H1

0 (Ω)
)
. (4.19)

Using the compactness of H1
0 (Ω) in L2(Ω), it is easy to verify∫ T

0

∫
Ω

|um|p(.)−2
umvdxdt→

∫ T

0

∫
Ω

|u|p(.)−2
uvdxdt for all v ∈ Lσ(.)

(
0, T ;H1

0 (Ω)
)
,

as m→∞.
Using growth conditions (3.9) and (4.18), we see that

∫ T
0

∫
Ω
|f (um)|

θ+1
θ dxdt is

bounded and

f (um) −→ f (u) a.e.in Ω× (0, T ) ,

then

f (um) −→ f (u) weak star in L
θ+1
θ

(
0, T ;L

θ+1
θ

)
,

as m→∞, which implies that∫ T

0

∫
Ω

f (um) vdxdt→
∫ T

0

∫
Ω

f (u) vdxdt for all v ∈ Lθ+1
(
0, T ;H1

0 (Ω)
)
.

Passing to the limit in (Pm), we have

(utt(t), v)− (ψ, v) + w1

(
∆2u, v

)
− w2 (∆ut, v) +

(
|u|p(.)−2

u, v
)

(4.20)

−
(
α (t)

∫ t

0

β (t− s)∇u(s)ds,∇v
)

+ λ (g (ut) , v) = b (f (u) , v) ∀v ∈W 1,p(.)(Ω).

Finally, by strong convergence, we can use a standard monotonicity argument as done
in Lions [16] or Ma & Soriano [17] to show that ψ = ∆m(.) (u). Then we infer that
limit u satisfies (4.1) and

utt −∆m(.) (u) + w1∆2u− w2∆ut + α (t)

∫ t

0

β (t− s) ∆u (s))ds+ |u|p(.)−2
u

+ λg (ut) = bf (u) .

From where the proof of theorem (4.1). �

4.2. Uniqueness

In this subsection, the uniqueness of the solution will be proven.

Theorem 4.3. Let the assumptions of theorem 4.1 hold. Assume further that

p+ ≤
2n− 2

n− 2
, n 6= 2 (p+ <∞ if n ≤ 2) (4.21)

m+ ≤
2n− 2

n− 2
, n 6= 2 (m+ <∞ if n ≤ 2) , (4.22)

1 < θ ≤ p−
2
, (4.23)

Then, there exists a unique solution u to problem 1.1 and it satisfies (4.1).
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Proof. Let u, v be two weak solutions of problem 1.1, and set Ψ = u − v. Then, Ψ
satisfies the equation

Ψtt (t)−
(
∆m(.)u (t)−∆m(.)v (t)

)
+ w1∆2Ψ (t)− w2∆Ψ′ (t)

+λ (g (ut (t))− g (vt (t))) + (|u (t)|p(.)−2
u (t)− |v (t)|p(.)−2

v (t)) (4.24)

+α (t)

∫ t

0

β (t− s) ∆Ψ(s)ds = b (f (u (t))− f (v (t)))

in L2
(
0, T ;L2 (Ω)

)
, T > 0, with boundary conditions and null initial data.

As Ψ′ ∈ L2
(
0, T ;H1

0 (Ω)
)
, multiplying above equation by Ψ′ (t), to get

1

2

d

dt
|Ψt(t)|2 + w1

1

2

d

dt
|∆Ψ(t)|2 + w2 |∇Ψt|2 + (g (ut)− g (vt) , ut − vt) (4.25)

+
(
|∇u|m(.)−2∇u− |∇v|m(.)−2∇v,∇Ψt

)
=

∫
Ω

(
|v|p(.)−2

v − |u|p(.)−2
u
)

Ψtdx

+ (f (u)− f (v) ,Ψt) + α (t)

∫
Ω

∫ t

0

β (t− s)∇Ψ (s)∇Ψt (t) dsdx.

From (3.7) we have:

(g (ut)− g (vt) , ut − vt) ≥ 0.

Thanks to Hölder’s inequality, we estimated the first term on the right hand side of
(4.25) as follows:∣∣∣∣∫

Ω

(|v|p(x)−2
v − |u|p(x)−2

u)Ψtdx

∣∣∣∣ ≤ (p+ − 1)

∫
Ω

sup
(
|u|p(x)−2

, |v|p(x)−2
)
|Ψ| |Ψt|dx

≤ (p+ − 1)

∫
Ω

(
|u|p+−2

+ |v|p+−2
+ |u|p−−2

+ |v|p−−2
)
|Ψ| |Ψt|dx

≤ C

 ‖u‖p+−2

Ln(p+−2)(Ω)
+ ‖v‖p+−2

Ln(p+−2)(Ω)

+ ‖u‖p−−2

Ln(p−−2)(Ω)
+ ‖v‖p−−2

Ln(p−−2)(Ω)

 ||Ψ (t)||Lq(Ω) |Ψt (t)| ,

where 1
n + 1

q + 1
2 = 1, and from (4.21), n (p− − 2) ≤ n (p+ − 2) ≤ 2n

n−2 = q which gives

by estimate (4.1), Young’s inequality and as H1
0 (Ω) ⊂ Lq(Ω), that:∣∣∣∣∫

Ω

(|v|p(x)−2
v − |u|p(x)−2

u)Ψtdx

∣∣∣∣
≤ C

 ‖∇u‖p+−2
L2(Ω) + ‖∇v‖p+−2

L2(Ω)

+ ‖∇u‖p−−2
L2(Ω) + ‖∇v‖p−−2

L2(Ω)

 ||∇Ψ (t)||L2(Ω) |Ψt (t)|

≤ C
(
|∇Ψ(t)|2 + |Ψt (t)|2

)
.
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By the same manner and by condition (4.21), we have∣∣∣∣∫
Ω

(|∇u|m(x)−2∇u− |∇v|m(x)−2∇v∇Ψtdx

∣∣∣∣
≤ (m+ − 1)

∫
Ω

sup
(
|∇u|m(x)−2

, |∇v|m(x)−2
)
|∇Ψ| |∇Ψt|dx

≤ C

 ‖u‖m+−2

Ln(m+−2)(Ω)
+ ‖v‖m+−2

Ln(m+−2)(Ω)

+ ‖u‖m−−2

Ln(m−−2)(Ω)
+ ‖v‖m−−2

Ln(m−−2)(Ω)

 ||Ψ (t)||Lq(Ω) |Ψ
′ (t)| ,

≤ C

 ‖∇u‖m+−2
L2(Ω) + ‖∇v‖m+−2

L2(Ω)

+ ‖∇u‖p−−2
L2(Ω) + ‖∇v‖p−−2

L2(Ω)

 ||∇Ψ (t)||L2(Ω) |Ψt (t)|

≤ C
(
|∇Ψ(t)|2 + |Ψt (t)|2

)
.

Now setting Uζ = ζu+ (1− ζ) v, 0 ≤ ζ ≤ 1, from the growth condition it follows that∣∣∣∣∫ t

0

∫
Ω

|f (u)− f (v)| |Ψt|dxdt

∣∣∣∣ =

∣∣∣∣∫ t

0

∫
Ω

∫ 1

0

d

dζ
f (Uζ) dζΨtdxdt

∣∣∣∣
≤
∫ t

0

∫
Ω

∣∣∣∣∫ 1

0

d

dζ
f (Uζ) dε

∣∣∣∣ |Ψt|dxds

≤
∫ t

0

∫
Ω

∫ 1

0

∣∣∣∣ d

dζ
f (Uζ) dζ

∣∣∣∣ |Ψt|dxds

≤ l1
∫ t

0

∫
Ω

∫ 1

0

(
|Uζ |θ−1

+ |k3 (x)|
)
|u− v| |Ψt|dζdxds

≤ C
∫ t

0

∫
Ω

(
|u|θ−1

+ |v|θ−1
+ |k3 (x)|

)
|Ψ (s)| |Ψt (s)|dxds = I.

Using generalized Hölder’s, Young’s inequalities, estimates (4.1), and let λ satisfy:

1 < λ+ 1 ≤ min

(
n

(n− 2) (θ − 1)
,

n

n− 2

)
, n 6= 2 (λ <∞ if n ≤ 2) (4.26)

from (4.23), the following estimates hold,

I ≤ C
∫ t

0

∥∥∥l1 (|u|θ−1
+ |v|θ−1

+ |k3 (x)|
)∥∥∥λ

2(λ+1)
||Ψ||2(λ+1) ‖Ψt‖2

≤ C
∫ t

0

(∥∥∥|u|θ−1
∥∥∥λ

2(λ+1)
+
∥∥∥|v|θ−1

∥∥∥λ
2(λ+1)

+ ‖k3 (x)‖λ2(λ+1)

)
||Ψ||2(λ+1) ‖Ψt‖2 ds

≤ C
∫ t

0

(
‖∇u‖λ(θ−1)

2 + ‖∇v‖λ(θ−1)
2 + ‖k3 (x)‖λ∞

)
||∇Ψ||2 ‖Ψt‖2 ds

≤ C
∫ t

0

(
|Ψt(s)|2 + |∇Ψ(s)|2

)
ds.

because by (4.26) we have ||Ψ||2(λ+1) ≤ ||∇Ψ||2.
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Combining the above inequalities with identity (4.4), from (4.25), we derive

1

2
|Ψt(t)|2 +

1

2
C

(
w1λ1 − α (t)

∫ t

0

β (s) ds

)
|∇Ψ(t)|2

+C2

∫ t

0

|∇Ψt (s)|2 ds+
1

2
α (t) (βo∇Ψ) (t)

≤ C
∫ t

0

(
|Ψt (s)|2 + |∇Ψ(s)|2

)
ds+

1

2

∫ t

0

α′ (s) (βo∇Ψ) (s) ds

+
1

2

∫ t

0

α (s) (β′o∇Ψ) (s) ds− 1

2

∫ t

0

α (s)β (s) + α′ (s)

s∫
0

β (ζ) dζ

 |∇Ψ (s)|2 ds

Then, from remark (3.2), assumptions (3.10) gives

|Ψt(t)|2 + (w1λ1 − α (0)β1) |∇Ψ(t)|2 ≤ C
∫ t

0

(
|Ψt (s)|2 + |∇Ψ(s)|2

)
ds.

and then by Gronwall’s inequality we deduce that: Ψ (t) = Ψ (0) = 0 in H2
0 (Ω). �

To study the global existence of the energy function, we define some functionals
and establish several lemmas. Let the functions:

I (t) = I (u (t)) =
p (x)

4

(
w1λ1 − α (t)

∫ t

0

β (s) ds

)
|∇u (t)|2 (4.27)

−b
∫

Ω

f (u (t))u (t) dx− b
∫

Ω

k1 (x) |u (t)|dx;

J (t) = J (u (t)) =
1

2

(
λ1w1 − α (t)

∫ t

0

β (s) ds

)
|∇u (t)|2 − b

∫
Ω

f̂ (x, u) dx; (4.28)

E(t) = E(u(t), ut(t)) ≥ J (u (t)) +
1

2
|ut(t)|2 +

∫
Ω

1

p (x)
|u(t)|p(x)

dx (4.29)

+

∫
Ω

1

m (x)
|∇u(t)|m(x)

dx+
1

2
α (t) (βo∇u) (t) .

And the set as

W =
{
u : u ∈ H2

0 (Ω) , I (t) > 0
}
∪ {0} . (4.30)

where

E(t) =
1

2
|ut(t)|2 +

1

2
w1 |∆u|2 −

1

2

(
α (t)

∫ t

0

β (s) ds

)
|∇u (t)|2 +

1

2
α (t) (βo∇u) (t)

+

∫
Ω

1

m (x)
|∇u(t)|m(x)

dx+

∫
Ω

1

p (x)
|u(t)|p(x)

dx− b
∫

Ω

f̂ (u(t)) dx. (4.31)



Viscoelastic equations with nonstandard growth conditions 439

5. Global existence

In this section we show that the solution of problem 1.1 global in in infinite time
under the assumption

E (0) < 4 (w1λ1 − α (0)β1)

(
p− (λ1w1 − α (0)β1)

4 (l1 + l1 ||k2 (x)||∞ + ||k1 (x)||∞) bCθ+1
∗

) 2
θ−1

.

and

p+ ≤
2n

n− 2
, n 6= 2 (p+ <∞ if n ≤ 2) .

The next lemma shows that our energy functional (4.29) is a nonincreasing
function along the solution of (1.1).

Lemma 5.1. E(t) is a nonincreasing for t ≥ 0 and

E′ (t) = −w2 |∇ut|2 − λ
∫

Ω

ut (t) g (ut (t)) dx+
1

2
α′ (t)

∫
Ω

(βo∇u) (t) dx

+
1

2
α (t)

∫
Ω

(β′o∇u) (t) dx− 1

2

(
α (t)β (t) + α′ (t)

∫ t

0

β (s) ds

)
|∇u(t)|2 ≤ 0. (5.1)

Proof. Multiplying the equation of (1.1) by ut and integrating by parts over Ω, using
(3.6), (3.7), (3.10) and remark 3.2, summing up the product results, obtains

E (t)− E (0) = −w2

∫ t

0

|∇ut (s)|2 ds− λ
∫ t

0

∫
Ω

ut (s) g (ut (s)) dxds

+
1

2

∫ t

0

α′ (t)

∫
Ω

(βo∇u) (s) dxds+
1

2

∫ t

0

α (s)

∫
Ω

(β′o∇u) (t) dxds

−1

2

∫ t

0

(
α (s)β (s) + α′ (s)

∫ s

0

β (ζ) dζ

)
|∇u(s)|2 ds ≤ 0 for t ≥ 0. �

Lemma 5.2. Let (3.6) and (3.8) hold, suppose u0 ∈W and u1 ∈ H1
0 (Ω) such that

γ = bCθ+1
∗

(
4

E (0)

w1λ1 − α (0)β1

) θ−1
2

(l1 + l1 ||k2 (x)||∞ + ||k1 (x)||∞) (5.2)

<
p−
4

(λ1w1 − α (0)β1) .

then u ∈ W for each t ≥ 0, where C∗ is the best Poincar’s, Sovolev constant de-
pending only on p (x) and on Ω, which satisfy 2 < p (x) ≤ p+ ≤ 2n

n−2 (n ≥ 3)

(2 ≤ p+ <∞ if n = 1, 2) .

‖u (t)‖p(x) ≤ C∗ ‖∇u (t)‖2 ∀u ∈ H1
0 (Ω).

Proof. Since I (0) > 0, by the continuity, there exists 0 < Tm < T such

I (t) ≥ 0 in [0, Tm] ,
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this gives from (4.28) and (3.8):

E (t) ≥ J (t) =
1

p (x)
I (t) +

1

4

(
λ1w1 − α (t)

∫ t

0

β (s) ds

)
|∇u|2

+
b

p (x)

(∫
Ω

f (u)udx+

∫
Ω

k1 (x) |u|dx− p (x)

∫
Ω

f̂ (x) dx

)
(5.3)

≥ 1

4

(
λ1w1 − α (t)

∫ t

0

β (s) ds

)
|∇u|2 .

since by (3.8) we have∫
Ω

f (u)udx+

∫
Ω

k1 (x) |u|dx− p (x)

∫
Ω

f̂ (x) dx ≥ 0

Then by using (5.3), (4.29), (5.1) and remark 3.2, we obtain

|∇u|2 ≤ 4

(
λ1w1 − α (t)

∫ t

0

β (s) ds

)−1

E (t)

≤ 4

(
λ1w1 − α (t)

∫ t

0

β (s) ds

)−1

E (0) . (5.4)

By recalling (3.9), Sobolev-Poincaré’s embedding (θ + 1 ≤ p), condition (5.2), esti-
mate (5.4) and Cauchy-Schwartz’s inequality, we have the following estimates:

b

∫
Ω

f (u)udx+ b

∫
Ω

k1 (x) |u|dx ≤ b
∫

Ω

|f (u)| |u|dx+ b

∫
Ω

|k1 (x)| |u|dx

≤ bl1
∫

Ω

|u|θ+1
dx+ bl1

∫
Ω

|k2 (x)| |u|dx+ b

∫
Ω

|k1 (x)| |u|dx

≤ bl1 ‖u (t)‖θ+1
θ+1 + b (l1 ||k2 (x)||∞ + ||k1 (x)||∞) ‖u (t)‖θ+1

θ+1

≤ bl1Cθ+1
∗ |∇u(t)|θ+1

+bCθ+1
∗ (l1 ||k2 (x)||∞ + ||k1 (x)||∞) |∇u(t)|θ+1

= bl1C
θ+1
∗ |∇u(t)|θ−1 |∇u(t)|2

+bCθ+1
∗ (l1 ||k2 (x)||∞ + ||k1 (x)||∞) |∇u(t)|θ−1 |∇u(t)|2

≤ bCθ+1
∗

(
4

(
λ1w1 − α (t)

∫ t

0

β (s) ds

)−1

E (0)

) θ−1
2

(5.5)

× (l1 + l1 ||k2 (x)||∞ + ||k1 (x)||∞) |∇u|2

≤ bCθ+1
∗

(
4

E (0)

w1λ1 − α (0)β1

) θ−1
2

× (l1 + l1 ||k2 (x)||∞ + ||k1 (x)||∞) |∇u|2

<
p−
4

(λ1w1 − α (0)β1) |∇u|2

≤ p (x)

4

(
λ1w1 − α (t)

∫ t

0

β (s) ds

)
|∇u|2 on [0, Tm] .
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Therefore, from (4.27), we conclude that I (t) > 0 for all t ∈ [0, Tm] . By repeating
this procedure, and using the fact that

lim
t→Tm

bCθ+1
∗

(
4

E (t)

w1λ1 − α (0)β1

) θ−1
2

(l1 + l1 ||k2 (x)||∞ + ||k1 (x)||∞) ≤ D

<
p−
4

(λ1w1 − α (0)β1) .

Tm is extended to T. �

Theorem 5.3. Let the assumptions of theorem 4.1 hold. Let u0 ∈ W satisfying (5.2).
Then, the solution gotten in of theorem 4.1 is global.

Proof. It sufficient independently to t to show that

|ut|2 + |∇u|2 +

∫
Ω

|∇u(t)|m(x)
dx+

∫
Ω

|u(t)|p(x)
dx

is bounded.
For this aim, we use (4.27), (4.29), (3.8), (3.10) and Lemma 5.2 to obtain:

E(0) ≥ E(t) ≥ 1

2

(
λ1w1 − α (t)

∫ t

0

β (s) ds

)
|∇u (t))|2 − b

∫
Ω

f̂ (x, u) dx

+
1

2
|ut(t)|2 +

∫
Ω

1

m (x)
|∇u(t)|m(x)

dx+

∫
Ω

1

p (x)
|u(t)|p(x)

dx+
1

2
α (t) (βo∇u) (t)

≥ 1

4

(
λ1w1 − α (t)

∫ t

0

β (s) ds

)
|∇u (t))|2 +

1

p (x)
I (t)

+
b

p (x)

(∫
Ω

f (u)udx+

∫
Ω

k1 (x) |u|dx− p (x)

∫
Ω

f̂ (x, u) dx

)
+

1

2
|ut(t)|2 +

∫
Ω

1

m (x)
|∇u(t)|m(x)

dx+

∫
Ω

1

p (x)
|u(t)|p(x)

dx

≥ 1

4

(
λ1w1 − α (t)

∫ t

0

β (s) ds

)
|∇u (t)|2

+
1

2
|ut(t)|2 +

∫
Ω

1

m (x)
|∇u(t)|m(x)

dx+

∫
Ω

1

p (x)
|u(t)|p(x)

dx

≥ 1

4
(λ1w1 − α (0)β1) |∇u (t))|2 +

1

2
|ut(t)|2

+

∫
Ω

1

m (x)
|∇u(t)|m(x)

dx+

∫
Ω

1

p (x)
|u(t)|p(x)

dx.

Therefore

|ut(t)|2 + |∇u (t)|2 +

∫
Ω

|∇u(t)|m(x)
dx+

∫
Ω

|u(t)|p(x)
dx

≤ max
(
p+,m+, 4 (λ1w1 − α (0)β1)

−1
)
E(0),

These estimates ensure that the solution u(t) exist globally in [0,+∞[. �
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Example 5.4. Consider the following functions:

f (x, u) = a (x) |u|$−2
u− b (x) |u|γ−2

u

with appropriate functions a (x) and b (x) , where $ > γ ≥ 1.

g (ut (t)) = |ut (t)|σ(x)−2
ut (t) ; σ (x) satisfies conditions in (3.7);

∆m(x)u = div
(
|∇u|m−2∇u

)
; m (x) = m > 2.

Then, problem (1.1), is reduced to the following problem

utt − div
(
|∇u|m−2∇u

)
+ w1∆2u (t)− w2∆ut (t) + α (t)

∫ t

0

β (t− s) ∆u (s) ds

+λ |ut (t)|σ(x)−2
ut (t) + |u|p(x)−2

u (t) = bf (u (t)) in Ω× R+,

u = ∂ηu = 0 on Γ× [0,+∞[ ,

u(x, 0) = u0(x), ut(x, 0) = u1(x) in Ω,

(P)
Since f, g satisfies hypotheses (3.7)-(3.9). Then, Theorems (4.1), (4.3) and (5.3) are
verified for problem (P), which gives importance to this general problem.

Acknowledgments. The author would like to thank the referees for their important
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problem (LCP). Under a suitable condition, the solution of LCP is equivalent
to find the solution of an absolute value equations AVE. For its numerical solu-
tion, we propose an efficient two-steps fixed point iterative method for solving
the AVE. Moreover, we show that this method converges globally linear to the
unique solution of the AVE and which is in turn an optimal solution of SCQO.
Some numerical results are reported to demonstrate the efficiency of the proposed
algorithm.
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1. Introduction

Consider the simplicial cone constrained convex quadratic optimization SCQO:

min
x

[
f(x) =

1

2
xTQx+ xT b+ c

]
s.t. x ∈ S (1.1)

where Q ∈ Rn×n is a symmetric positive definite matrix, b ∈ Rn, c ∈ Rn, and

S =
{
Ax | x ∈ Rn

+

}
is the simplicial cone associated with the nonsingular matrix A ∈ Rn×n. The impor-
tance of quadratic programming lies in its theoretical properties, its applications in
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different scientific fields and several disciplines such as economics, finance, telecom-
munications, medicine and the engineering sciences. Another great advantage of the
quadratic case is that we can transform several real and academic problems (polyno-
mial minimization problems, least squares problems in numerical analysis, etc.) into
an equivalent quadratic problem without loss of generality. Simplicial cone constrained
convex quadratic programming is equivalent to the problem of projecting the point
onto a simplicial cone (see [5, 6, 9]), with its KKT optimality conditions consisting
a linear complementarity problem (see [8, 19]). From this optimality conditions, un-
der suitable conditions, the convex quadratic programming under a simplicial cone
constraints is equivalent to finding the unique solution of the following absolute value
equation:

(ATQA+ I)x+ (ATQA− I)|x| = −AT b. (1.2)

This equation is a special case of the general absolute value equations AVE of the
type:

Āx− B̄|x| = b̄

where Ā, B̄ are given (n × n) real square matrices and b̄ ∈ Rn. The AVE was first
introduced by Rohn [18] and investigated in more general context in Mangasarian
(see [16]). Other studies for the AVE can be found in [1, 3, 2, 7, 10, 12, 13, 15, 17].
Besides some numerical methods are used to solve it. In particular, Mangasarian
in [14] proposed a semi-smooth Newton’s method for solving the AVE, and under
suitable conditions he showed the finite and linear convergence to a solution of the
AVE. However, other numerical approaches focus on reformulating the AVE as an
horizontal linear complementarity problems (HLCP) (see [4]), where they introduce
an infeasible path-following interior-point method for solving the AVE by using is
equivalent reformulations as an HLCP. In this paper, we propose a new two-steps
fixed point iterative method for solving the AVE (1.2) which is introduced in [11],
and under a new mild assumption we show that this method is always well-defined
and the generated sequence converges globally and linearly to the unique solution of
the AVE from any starting initial point. Finally, numerical results are provided to
illustrate the efficiency of this algorithm to solving the SCQO.

Our paper is organized as follows. In section 2, some notations and basic results
used in the paper are presented. In section 3, the reformulation of problem (1.1)
as an absolute value equation AVE and the unique solvability of AVE is studied.
Any solution of the AVE generates a solution of our convex quadratic programming
problem SCQO. In section 4, a description and a convergence property of the two-steps
fixed point iterative method for solving the AVE are stated. In section 5, numerical
results are presented. We end this paper with a conclusion and some remarks in
section 6.

2. Preliminaries

Let Rn be the Euclidean space provided with the usual scalar product 〈x, y〉 =
xT y where x and y are two vectors of Rn and xT is the transpose of x. The nonegative
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orthant of Rn is denoted by Rn
+. For x ∈ Rn

+, we write x ≥ 0, and means that xi ≥ 0,

∀i. For x = (x1, x2, . . . , xn)T ∈ Rn, we denote by:

x+
i := max(0, xi), x

−
i := max(0,−xi), |x| := (|x1| , . . . , |xn|)T .

It is easy from the definitions of x+ and x−, to conclude that:

x = x+ − x−, x+ ∈ Rn
+, x

− ∈ Rn
+,
〈
x+, x−

〉
= 0, |x| = x+ + x−,∀x ∈ Rn.

For x ∈ Rn, sign(x) denotes a vector with components equal to 1, 0, -1 depending on
whether the corresponding component of x is positive, zero or negative. We denote
by Rn×n the vector space of real square matrices of order n, the identity matrix is
denoted by In. If x ∈ Rn then X = Diag(x) denotes the n × n diagonal matrix
with Xii = xi, ∀i = 1, . . . , n. Let A ∈ Rn×n, its spectral matrix norm is denoted by
‖A‖ := max {‖Ax‖ : x ∈ Rn, ‖x‖ = 1} , where ‖x‖ denotes the Euclidean norm, this
definition implies:

‖Ax‖ ≤ ‖A‖ ‖x‖ , ‖AB‖ ≤ ‖A‖ ‖B‖ , ∀A,B ∈ Rn×n.

For a matrix M , ρ(M) denote its spectral radius. In addition, if M is a real symmetric
matrix, ρ(M) = ‖M‖. Finally,

Lemma 2.1. For all x ∈ Rn and y ∈ Rn, we have:

‖|x| − |y|‖ ≤ ‖x− y‖ .

Proof. For detailed proof see Lemma 5 [15]. �

3. The SCQO as an absolute value equation

Recall that the SCQO problem is given by:

min
x

[
f(x) =

1

2
xTQx+ xT b+ c

]
s.t. x ∈ S.

Starting from the definition of simplicial cones S associated with the nonsingular
matrix A, the problem (1.1) can be formulated as a quadratic programming problem
under positive constraints:

min
y

[
f(y) =

1

2
yTATQAy + yTAT b+ c

]
s.t. y ∈ Rn

+. (3.1)

As the problem (3.1) is convex and the constraints are positive then the optimality
conditions of K.K.T are necessary and sufficient and we have, y ∈ Rn

+ is an optimal
solution of problem (3.1) if and only if there exists z ∈ Rn

+ such that:

z −ATQAy = AT b, zT y = 0, y ≥ 0, z ≥ 0, (3.2)

which is a standard linear complementarity problem (see [8] ).
Next, letting z = |s| − s and y = |s| + s, then the LCP (3.2) is reformulated as the
following absolute value equations (AVE) of type

Ās+ B̄ |s| = b̄, (3.3)
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where
Ā = ATQA+ I, B̄ = ATQA− I, b̄ = −AT b.

Hence, solving the problem (1.1) is equivalent to solving the AVE (3.3). The following
result is needed to guarantee the unique solvability of the AVE.

Theorem 3.1 ( Theorem 8 [2]). Assume that Ā is invertible and the matrices Ā, B̄
satisfy the following condition,

∥∥Ā−1B̄
∥∥ < 1, then the AVE (3.3) has a unique solution

for any b̄ ∈ Rn.

For our case since Ā = ATQA + I and B̄ = ATQA − I where Q is symmetric
positive definite and A is invertible, the condition

∥∥Ā−1B̄
∥∥ < 1 of Theorem 3.1, is

satisfied. We check this result through the following lemma.

Lemma 3.2. Let Ā = ATQA + I and B̄ = ATQA − I such that A is invertible
matrix and Q is symmetric positive definite. Then the matrix Ā is invertible and∥∥Ā−1B̄

∥∥ < 1.

Proof. Because Q is symmetric positive definite and A is invertible, then the matrix
ATQA is symmetric positive definite, hence Ā is symmetric positive definite too, which
implies that Ā is invertible. Next, since ATQA is symmetric positive definite, then
ATQA has positive real eigenvalues denoted by λi(A

TQA) := λi > 0,∀i = 1, ..., n. In
addition, it is known that the eigenvalues of Ā and B̄, are given by λi + 1 > 0 and
λi − 1, respectively. Because, Ā and B̄ are real symmetric matrices, we then have,∥∥Ā−1B̄

∥∥ ≤
∥∥Ā−1

∥∥∥∥B̄∥∥ = ρ(Ā−1)ρ(B̄)

= max
i

(∣∣∣∣λi − 1

λi + 1

∣∣∣∣) .
As λi > 0, then ∣∣∣∣λi − 1

λi + 1

∣∣∣∣ < 1.

So
∥∥Ā−1B̄

∥∥ < 1. This gives the required result. �

Proposition 3.3. If s∗ is the solution of the AVE (3.3) then (y∗, z∗) = (|s∗|+s∗, |s∗|−
s∗) is the solution of the LCP (3.2). Consequently, Ay∗ is the optimal solution of
problem (1.1).

Proof. Let s∗ be the unique solution of the AVE, then

Ās∗ + B̄ |s∗| = b̄.

So (
ATQA+ I

)
s∗ + (ATQA− I) |s∗| = −AT b

⇔ ATQA(|s∗|+ s∗) + |s∗| − s∗ = −AT b

⇔ z∗ −ATQAy∗ = AT b.

Now, since y∗ = |s∗| + s∗ = 2(s∗)+, z∗ = |s∗| − s∗ = 2(s∗)−, then we have y∗ ≥ 0,
z∗ ≥ 0 and z∗T y∗ = 0, hence, the pair (y∗, z∗) is a solution of LCP (3.2). Finally,
we deduce that Ay∗ is an optimal solution of the SCQO problem. This completes the
proof. �
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4. Two-steps Picard’s fixed point iterative method for SCQO

In this section, we derive a new fixed-point iterative approach for solving the
equation (3.3). Let t = |s| then, the AVE (3.3) is equivalent to the following system:{

Ās+ B̄t = b̄
− |s|+ t = 0.

(4.1)

The latter can be expressed as follows:(
Ā B̄
−D (s) I

)(
s
t

)
=

(
b̄
0

)
, (4.2)

where D(s) :=Diag (sign (s)), s ∈ Rn. Note that the system (4.2) is nonlinear, it is
generally impossible to obtain an exact solution. We will therefore be satisfied with
an approximated solution. Since the matrix Ā is invertible hence from (4.1) we can
obtain the following fixed point equation:{

s∗ = Ā−1
(
−B̄t∗ + b̄

)
t∗ = (1− r) t∗ + r |s∗| (4.3)

where r > 0, is a suitable parameter that we shall specified it later. According to the
fixed-point equation, we generate a sequence (s(k), t(k)) converging to the solution of
AVE. So the new fixed-point iteration is given by:{

s(k+1) = Ā−1
(
−B̄t(k) + b̄

)
t(k+1) = (1− r) t(k) + r

∣∣s(k+1)
∣∣ , k = 0, 1, . . .

(4.4)

The details of our algorithm for solving the AVE (3.3) is described in Figure 1.

4.1. Algorithm

Input
An accuracy parameter ε > 0;
a parameter r such that 0 < r < 2

‖Ā−1B̄‖+1
;

an initial starting point t0 ∈ Rn;
compute t1 = (1− r)t0 + r|s1|, s1 = Ā−1

(
−B̄t(0) + b̄

)
; k := 0;

While
‖tk+1−tk‖
‖b̄‖ ≥ ε do

begin

compute :

{
t(k+1) = (1− r) t(k) + r

∣∣s(k+1)
∣∣ ,

s(k+1) = Ā−1
(
−B̄t(k) + b̄

)
k := k + 1;

end
end

Fig. 1. Algorithm. 4.1

In this section, we give detailed proof for the convergence of Algorithm 4.1.

Theorem 4.1. Let Q ∈ Rn×n be a symmetric positive definite matrix, b ∈ Rn and A ∈
Rn×n is an invertible matrix then the sequence (s(k), t(k)) generated by the iterative
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algorithm (4.4) to solve the problem (4.1) is well-defined for any starting point t0 ∈
Rn. In addition, if

0 < r <
2∥∥Ā−1B̄
∥∥+ 1

,

then the sequence (s(k), t(k)) converges linearly to the solution (s∗, t∗) of the nonlinear
equation (4.1). Consequently, A(|s∗|+ s∗) is the solution of the problem (1.1).

Proof. First, we check that the sequence (s(k), t(k)) is well-defined, it suffices to show
that the matrix Ā = ATQA + I is invertible. This claim was proven by Lemma 3.2.
Next, using formula (4.4) and Lemma 2.1, we have, on one hand that∥∥tk+1 − t∗

∥∥ =
∥∥∥(1− r) tk + r

∣∣∣s(k+1)
∣∣∣− (1− r) t∗ + r |s∗|

∥∥∥
=

∥∥∥(1− r) (tk − t∗) + r(
∣∣∣s(k+1)

∣∣∣− |s∗|)∥∥∥
≤ |1− r|

∥∥(tk − t∗)
∥∥+ r

∥∥sk+1 − s∗
∥∥ .

So ∥∥sk+1 − s∗
∥∥ =

∥∥Ā−1
(
−B̄tk + b

)
− Ā−1

(
−B̄t∗ + b

)∥∥
=

∥∥−Ā−1B̄(tk − t∗)
∥∥ ≤ ∥∥Ā−1B̄

∥∥∥∥(tk − t∗)
∥∥ .

Therefore ∥∥tk+1 − t∗
∥∥ ≤ (|1− r|+ r

∥∥Ā−1B̄
∥∥)
∥∥(tk − t∗)

∥∥ .
On the other hand,∥∥sk+1 − s∗

∥∥ ≤
∥∥−Ā−1B̄(tk − t∗)

∥∥
≤

∥∥−Ā−1B̄(tk − (1− r)tk−1 + (1− r)tk−1 − t∗)
∥∥

≤
∥∥−Ā−1B̄(r

∣∣sk∣∣+ (1− r)tk−1 − t∗)
∥∥ .

As |s∗| = t∗, we find∥∥sk+1 − s∗
∥∥ ≤

∥∥−Ā−1B̄(r
∣∣sk∣∣− r |s∗|)− (1− r)Ā−1B̄(tk−1 − t∗)

∥∥
≤ r

∥∥Ā−1B̄
∥∥∥∥sk − s∗∥∥+ |1− r|

∥∥sk − s∗∥∥
≤ (|1− r|+ r

∥∥Ā−1B̄
∥∥)
∥∥sk − s∗∥∥ .

The sequence (s(k), t(k)) is convergent if the following condition

|1− r|+ r
∥∥Ā−1B̄

∥∥ < 1

holds. For that we distinguish two cases.
Case 1. If 0 < r ≤ 1, then

|1− r|+ r
∥∥Ā−1B̄

∥∥ < 1 ⇔ 1− r + r
∥∥Ā−1B̄

∥∥ < 1

⇔ r(
∥∥Ā−1B̄

∥∥− 1) < 0.

Since
∥∥Ā−1B̄

∥∥ < 1 then,

r(
∥∥Ā−1B̄

∥∥− 1) < 0, ∀ 0 < r ≤ 1.
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Case 2. If r ≥ 1, then

|1− r|+ r
∥∥Ā−1B̄

∥∥ < 1 ⇔ −1 + r + r
∥∥Ā−1B̄

∥∥ < 1

⇔ r <
2∥∥Ā−1B̄
∥∥+ 1

.

Finally, regrouping the two cases, this gives the required result. �

5. Numerical results

In this section, we present numerical results for Algorithm 4.1 by using ε = 10−6

and r = 0.9. The algorithm has been applied on three examples of SCQO problem.
The iterations have been carry out by MATLAB R2016a and run on a personal pc
with 1.40 GHZ AMD E1-2500 APU Radeon(TM) HD Graphic, 8 GB memory and
Windows 10 operating system. The starting point and the unique solution by t0 and
s∗, respectively. The stopping criterion used in our algorithm is the relative residue,
i.e.,

RES :=

∥∥tk+1 − tk
∥∥∥∥b̄∥∥ ≤ 10−6

In view of the influence of the initial point on the convergence of our algorithm,
different values are used. For each problem, the hypotheses of Theorem 4.1 are
checked. In the tables below, the symbols ”It” and ”CPU” denote the number of
iterations produced by the algorithm and the elapsed times, respectively.
Problem 1. Consider the SCQO problem where Q, A and b are given by :

Q =


2 1 0 0 0
1 2 1 0 0
0 1 2 1 0
0 0 1 2 1
0 0 0 1 2

 , A =


3 0 0 0 0

0.5 3 0 0 0
−1 0.5 3 0 0
−1 −1 0.5 3 0
−1 −1 −1 0.5 3


and b = [−3, 1, −10, −12, −2]T .
The starting point in this example is taken as:

t0 = [0, −1, −1, 2, 1]T .

After 21 iterations, the unique solution s∗ of AVE is:

s∗ = [0.2071, −7.6143, 0.5262, 0.7886, −2.2308]T ,

and

y∗ = |s∗|+ s∗ = [0.4142, 0, 1.0525, 1.5771, 0]T .

Therefore, the unique solution of Problem (1.1), is given by:

x∗ = Ay∗ = [1.2426, 0.2071, 2.7433, 4.8435, −0.6781]T .
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Problem 2. Let the matrices Q, A and the vector b of this example are given by:

Q = (qij) =


4, for i = j,
1
2 , for |i− j| = 1, i = 1, 2, . . . n− 2,

1, for

{
j = i− 2, i = 1, 2, . . . n,
i = j − 2, j = 1, 2, . . . n,

0, otherwise

A = (aij) =


−2, for i = j,
4, for j = i− 1, i = 2, . . . n,
−1, for i = j − 1, j = 2, . . . n,
1
2 , for j > i+ 2, i = 1, 2, . . . n,
1
5 , for i > j + 1, j = 1, 2, . . . n,

and

b = −2Ā−1(Ā+ B̄)e.

The computational results with different size of n are shown in Table 1. For the
initialization of Problem 2, we take different values of t0.

n t0 = [0, . . . , 0]T t0 = [5, . . . , 5]T t0 = [−10, . . . ,−10]T

10
CPU

It
RES

0.04966s
17

9.923e− 07

0.04552s
11

8.542e− 07

0.10820s
65

9.606e− 07

50
CPU

It
RES

0.03704s
4

9.136e− 07

0.03391s
3

9.025e− 07

0.36887s
42

9.576e− 07

100
CPU

It
RES

0.07339s
3

6.032e− 07

0.05023s
3

1.508e− 07

0.26949s
22

9.365e− 07

1000
CPU

It
RES

5.34351s
2

5.992e− 07

4.42180s
1

3.371e− 07

5.36816s
2

7.501e− 07

2000
CPU

It
RES

34.17236s
1

3.370e− 07

33.23488s
1

8.427e− 07

39.15840s
2

1.873e− 07

Table 1. Computational results of Problem 2.

An exact solution with different size of n is given by:

s∗ = [2, 2, . . . , 2]
T
,

and

y∗ = [4, 4, . . . , 4]
T
.

An exact solution of problem (1.1) is given by: x∗ = Ay∗.
Problem 3. The bloc matrices Q,A and the vector b of this example are given by:

Q =

[
Q11 In
In Q22

]
, A =

[
A11 In
B A11

]
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where

Q11 = (q11)ij =

 6, for i = j,
−1, for |i− j| = 1, i = 1, 2, . . . n,
0, otherwise.

Q22 = (q22)ij =


5, for i = j,
−2, for |i− j| = 1, i = 1, 2, . . . n,

1
4 , for

{
j = i+ 1, i = 1, 2, . . . n− 1,
j = i− 1, j = 1, 2, . . . n− 1,

0, otherwise.

A11 = (a11)ij =


−2, for i = j,
−1, for j = i− 1, i = 3, . . . n,
3, for j > i, i = 3, . . . n,

0.5, otherwise.

B = (bij) =



−1, for i = j,

0, for

{
j = i+ 1, i = 1, 2, . . . n− 1,
j = i− 1, j = 1, 2, . . . n,

1
n , for

{
j = i+ 2, i = 1, 2, . . . n− 2,
j = i− 2, j = 4, . . . n,

0, otherwise,

and

b = [−8, . . . ,−8]T .

For the initialization, we take:

t0 = [0, . . . , 0,−1, . . . ,−1]T .

The numerical results with different size of n are summarized in Table 2.

n 10 50 100 1000 2000
CPU

It
RES

0.14101s
122

9.81e− 07

1.0919s
137

9.98e− 07

1.11202s
92

9.95e− 07

8.37809s
6

7.436e− 07

35.76440s
3

7.35e− 07

Table 2. Computational results of Problem 3.

For example, if n = 10 then,

s∗ = [0.0984, 0.0042, 0.409, −1.782, 1.6329, 0.3763, 0.4448, 0.881, 0.7929, 2.7841]T ,

and

y∗ = |s∗|+s∗ = [0.1967, 0.0082, 0.8179, 0, 3.2658, 0.7525, 0.8896, 1.7619, 1.586, 5.568]T .

An exact solution of problem (1.1) is given by:

x∗ = Ay∗ = [2.3928, 2.475, 2.3819, 2.206, 2.1049, 2.0303, 3.038, 3.3649, 3.2356, 2.3168]T .
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6. Conclusion and remarks

In this paper, a convex quadratic programming problem under simplicial cone
constraints were studied, and via its optimality conditions is reduced to finding the
unique solution of an absolute value equation AVE. For solving this AVE we applied
a new two-steps Picard’s iterative fixed point iteration. In particular, the sufficient
conditions for the convergence of our algorithm are studied. The obtained numerical
results deduced from the testing examples illustrate that the suggested algorithm is
efficient and valid to solve the SCQO problems.
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New hybrid conjugate gradient method
as a convex combination of PRP and RMIL+
methods

Ghania Hadji, Yamina Laskri, Tahar Bechouat and Rachid Benzine

Abstract. The Conjugate Gradient (CG) method is a powerful iterative ap-
proach for solving large-scale minimization problems, characterized by its sim-
plicity, low computation cost and good convergence. In this paper, a new hy-
brid conjugate gradient HLB method (HLB: Hadji-Laskri-Bechouat) is pro-
posed and analysed for unconstrained optimization. We compute the param-
eter βHLB

k as a convex combination of the Polak-Ribière-Polyak
(
βPRP
k

)
and

the Mohd Rivaie-Mustafa Mamat and Abdelrhaman Abashar
(
βRMIL+
k

)
i.e.

βHLB
k = (1 − θk)βPRP

k + θkβ
RMIL+
k . By comparing numerically CGHLB with

PRP and RMIL+ and by using the Dolan and More CPU performance, we deduce
that CGHLB is more efficient.
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search, descent property, global convergence.

1. Introduction

Consider the nonlinear unconstrained optimization problem

min
x∈Rn

f (x) (1.1)

where f : Rn → R is a continuously differentiable function, bounded from below.
The gradient of f is denoted by g (x) . To solve this problem, we start from an initial
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point x0 ∈ Rn. Nonlinear conjugate gradient methods generate sequences {xk} of the
following form:

xk+1 = xk + αkdk, k = 0, 1, 2, ...., (1.2)

where xk is the current iterate point and αk > 0 is the step size which is obtained by
line search [7].

The iterative formula of the conjugate gradient method is given by (1.2), where
dk is the search direction defined by

dk+1 =

{
−gk si k = 1
−gk+1 + βkdk si k ≥ 2

(1.3)

where βk is a scalar and g (x) denotes ∇f (x) [10]. If f is a strictly convex quadratic
function, namely,

f(x) =
1

2
xTHx+ bTx, (1.3bis)

where H is a positive definite matrix and if αk is the exact one-dimensional minimizer
along the direction dk, i.e.

αk = arg min
α>0
{f(x+ αdk)} (1.3tris)

then (1.2), (1.3), (1.3bis), (1.3tris) is called the linear conjugate gradient method.
Otherwise, (1.2), (1.3) is called the nonlinear conjugate gradient method. Conjugate
gradient methods can broadly be classified based on the used strategies of the way in
which the search direction is updated and the algorithms dealing with the step size
minimization along a direction [6]. In [12], a convex combination of LS and FR ([1])
is proposed with a newton descent direction.

The line search in the non linear conjugate gradient methods is often based on
the standard Wolfe conditions [23]:

f (xk + αkdk)− f (xk) ≤ ραkgtkdk (1.4)

gtk+1dk ≥ δgtkdk (1.5)

where 0 < ρ ≤ δ < 1.
Conjugate gradient methods differ in their way of defining the scalar parameter

βk. In the literature, there have been proposed several choices for βk which give rise
to distinct conjugate gradient methods [16], [27]. The most well known conjugate gra-
dient methods are the Hestenes–Stiefel (HS) method [17], the Fletcher-Reeves (FR)
method [1], [13], the Polak-Ribière-Polyak (PRP) method [20], [19], the Conjugate De-
scent method(CD) [13], the Liu-Storey (LS) method [18], the Dai-Yuan (DY) method
[08], [09], Hager and Zhang (HZ) method [15] and the RMIL+ method [21], [22]. The
update parameters of these methods are respectively specified as follows:

βHSk =
gTk+1yk

dTk yk
, βFRk =

‖gk+1‖2

‖gk‖2
, βPRPk =

gTk+1yk

‖gk‖2
, βCDk = −‖gk+1‖2

dTk gk

βLSk = −
gTk+1yk

dTk gk
, βDYk =

‖gk+1‖2

dTk yk
, βHZk =

(
yk − 2dk

‖yk‖2

dTk yk

)T
gk+1

dTk yk
,
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βRMIL+
k =

gTk+1(gk+1 − gk − dk)

‖dk‖2
.

Some of these methods, such as Fletcher and Reeves (FR) [13], Dai and Yuan
(DY) [8] and Conjugate Descent (CD) [13] have strong convergence properties, but
they may have modest practical performance due to jamming. On the other hand,
the methods of Polak and Ribière and Polyak (PRP) [20], Hestenes and Stiefel (HS)
[17] or Liu and Story (LS) [18] may not generally be convergent, but they often have
better computational performance.

In the process of obtaining more robust and efficient conjugate gradient methods,
some researchers suggested the hybrid conjugate gradient algorithm which combined
the good features of the methods involve in the hybridization. Even though conjugate
gradient improvement using hybridization is a classic deeply investigated problem; it
still an attractive topic for the research community due to its contemporary use in
numerous prominent disciplines [25].

The first hybrid conjugate gradient method was given by Touati-Ahmed and
Storey (1990) [24] to avoid jamming phenomenon.

The researchers were motivated by the works of Andrei [5], [4]; Dai and Yuan
[9]; Zhang and Zhou [26]. Their parameter βNk is computed as a convex combination
of βFRk and β∗k other algorithms, i.e.

βNk = (1− θk)βFRk + θkβ
∗
k

The Wolfe line search was employed to determine the step length αk > 0 and the
new method proved to be more robust numerical wise as compared to FR and other
methods. The global convergence was established under some suitable conditions.

In [4] Andrei has proposed a new hybrid conjugate gradient algorithm where the
parameter βAk is computed as a convex combination of the Polak-Ribière-Polyak and
the Dai-Yuan conjugate gradient algorithms i.e.

βAk = (1− θk)βPRPk + θkβ
DY
k

and θk is presented to satisfy the conjugacy condition

θk = θCCOMB
k =

(ytkgk+1) (ytksk)− (ytkgk+1) (gtkgk)

(ytkgk+1) (ytksk)− ‖gk+1‖2 ‖gk‖2

where sk = xk+1 − xk. To satisfy Newton direction he takes

θk = θNDOMB
k =

(ytkgk+1 − stkgk+1) ‖gk‖2 − (ytkgk+1) (ytksk)

‖gk+1‖2 ‖gk‖2 − (ytkgk+1) (ytksk)

but in the combination of HS and DY from Newton direction, he puts

θk =
−stkgk+1

gtkgk+1
.

On the other hand, from Newton direction with modified secant condition (Hybrid
M-Andrei), Andrei has proposed another method

βHYBRIDMk = (1− θk)βHSk + θkβ
DY
k
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where

θk =

(
δηk
stksk
− 1
)
stkgk+1 − ytkgk+1

ytksk
δηk

gtkgk+1 +
gtkgk+1

ytksk
δηk

δ is parameter. In [14] Salah Gazi Shareef and Hussein Ageel Khatab have introduced
a new hybrid CG method

βNewk = (1− θk)βPRPk + θkβ
BA
k

where βBAk is selected in [2].
Recently Delladji et al. [11] proposed a hybridazation of PRP and HZ schemes

using the congugacy condition.

In this paper, we present another hybrid CG algorithm noted CGHLB (HLB
is an abbreviation to Hadji; Laskri and Bechouat), witch is a convex combination of
the PRP ([20]) and RMIL+ ([21]) conjugate gradient algorithms.We are interested
to combine these two methods in a hybrid CG algorithm because PRP has good
computational properties and RMIL+ has strong convergence properties. In section
2, we introduce our hybrid CG method and prove that it generates descent directions.
In Section 3 we present and prove global convergence results. Numerical results and a
conclusion are presented in section 4. By comparing numerically CGHLB with PRP
and RMIL+ and by using the Dolan and More CPU performance, we deduce that
CGHLB is more efficient.

2. HLB conjugate gradient method

The iterates x0, x1, ........ of the proposed HLB algorithm are computed by means
of the recurrence (1.2) where the step size αk > 0 is determined according to the wolfe
line search conditions (1.4), (1.5). The directions dk are generated by the rule:

dk =

{
−g0 if k = 0
−gk + βHLBK−1 dk−1 if k ≥ 1

(2.1)

where

βHLBk = (1− θk)βPRPk + θkβ
RMIL+
k

i.e.

βHLBk = (1− θk)
gtk+1yk

‖gk‖2
+ θk

gtk+1 (gk+1 − gk − dk)

‖dk‖2
(2.2)

HLB is an abbreviation to Hadji; Laskri and Bechouat; θk is a scalar parameter which
will be determined in a specific way to be described in the following section. Observe
that if θk = 0 then βHLBk = βPRPk and if θk = 1, then βHLBk = βRMIL+

k . On the other

hand if 0 < θk < 1, then βHLBk is a convex combination of βPRPk and βRMIL+
k . The

parameter θk is selected in such away that at every iteration the conjugacy condition
is satisfied. It can be noted that,

dk+1 = −gk+1 + (1− θk)
gtk+1yk

‖gk‖2
dk + θk

gtk+1 (gk+1 − gk − dk)

‖dk‖2
dk (2.3)
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so multiply both sides of above equation by yk and by using the conjugacy condition(
dtk+1yk = 0

)
we have:

0 = −gtk+1yk + (1− θk)
gtk+1yk

‖gk‖2
dtkyk + θk

gtk+1 (gk+1 − gk − dk)

‖dk‖2
dtkyk (2,4)

After a simple calculation we get

θk =
gtk+1yk ‖gk‖

2 ‖dk‖2 −
(
gtk+1yk

)
(dtkyk) ‖dk‖2((

gtk+1 (yk − dk)
)
‖gk‖2 −

(
gtk+1yk

)
‖dk‖2

)
(dtkyk)

(2.5)

So, to ensure the convergence of this method when the parameter θk goes out of
interval ]0, 1[, i.e. when θk ≤ 0 or θk ≥ 1, we prefer to take βHLBk as following:

βHLBk =

 (1− θk)βPRPk + θkβ
RMIL+
k if 0 < θk < 1

βPRPk if θk ≤ 0

βRMIL+
k if θk ≥ 1

(2.5(bis))

We are now able to present our new algorithm, the Conjugate Gradient CGHLB
Algorithm:

CGHLB Algorithm
Step 1: Initialization:

Set k = 0, select the initial point xo ∈ Rn.select the parameters 0 < ρ ≤ δ < 1,
and ε > 0.

Compute f (x0), and g0 = ∇ f (x0). Consider d0 = −g0.
Step 2: Test for continuation of iterations:

If ‖gk‖ ≤ ε then stop else set. dk = −gk
Step 3: Line search:

Compute αk > 0 satisfying the Wolfe line search condition (1,4) and (1,5) and
update the variables, xk+1 = xk +αkdk; compute f (xk+1), gk+1 and sk = xk+1−xk;
yk = gk+1 − gk.
Step 4: θk Parameter computation:

If
((
gtk+1 (yk − dk)

)
‖gk‖2 −

(
gtk+1yk

)
‖dk‖2

)
(dtkyk) = 0;

then set θk = 0, otherwise, compute θk as in (2.5).
Step 5: βHLBk Conjugate gradient parameter computation:

If 0 < θk < 1, then compute βHLBk as in (2.2).

If θk ≥ 1, then set βHLBk = βRMIL+
k .

If θk ≤ 0, then set βHLBk = βPRPk .
Step 6: Direction computation:

Compute dk+1 = −gk+1 + βHLBk dk.
Set k=k+1 and go to step 3.
The following theorem shows that our method assures the descent condition,

when 0 < θk < 1.

Theorem 2.1. In the algorithm (1.2), (1.3) and (2.5) assume that dk is a descent
direction (gtkdk < 0), and αk is determined by the Wolfe line search (1.4); (1.5). If
0 < θk < 1 then the direction dk+1given by (2.3) is a descent direction.
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Proof. Multiply both sides of (2,3) by gk+1 we have:

gTk+1dk+1 = −‖gk+1‖2 + (1− θk)
gtk+1yk

‖gk‖2
dtkgk+1

+θk
gtk+1 (gk+1 − gk − dk)

‖dk‖2
dtkgk+1

gTk+1dk+1 = − (1− θk + θk) ‖gk+1‖2 + (1− θk)
gtk+1yk

‖gk‖2
dtkgk+1

+θk
gtk+1 (gk+1 − gk − dk)

‖dk‖2
dtkgk+1

gTk+1dk+1 =

[
− (1− θk) ‖gk+1‖2 + (1− θk)

gtk+1yk

‖gk‖2
dtkgk+1

]

+

[
− (θk) ‖gk+1‖2 + θk

gtk+1 (gk+1 − gk − dk)

‖dk‖2
dtkgk+1

]

gTk+1dk+1 = (1− θk)

[
−‖gk+1‖2 +

gtk+1yk

‖gk‖2
dtkgk+1

]

+ (θk)

[
−‖gk+1‖2 +

gtk+1 (gk+1 − gk − dk)

‖dk‖2
dtkgk+1

]
since 0 < θk < 1 then

gTk+1dk+1 ≤

[
−‖gk+1‖2 +

gtk+1yk

‖gk‖2
dtkgk+1

]

+

[
−‖gk+1‖2 +

gtk+1 (gk+1 − gk − dk)

‖dk‖2
dtkgk+1

]
(2.6)

If the step length αk is chosen by an exact line search. Then gTk+1dk = 0.

If the step length αk is chosen by an inexact line search
(
gTk+1dk 6= 0

)
then we have:

gTk+1dk+1 < 0

because the algorithms of (PRP ) and (RMIL+) satisfied the descent property.
The proof is completed. �

3. Global convergence properties

The following assumptions are often needed to prove the convergence of the
nonlinear CG:
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Assumption 1
The level set Ω = {x ∈ Rn/f (x) ≤ f (x0)} is bounded, where x0 is the starting

point.
Assumption 2

In some neighborhood N of Ω, the objective function is continuously differen-
tiable and its gradient is Lipschitz continuous, namely, there exists a constant l > 0
such that:

‖g (x)− g (y)‖ ≤ l ‖x− y‖ for any x, y ∈ N
Under these assumptions on f there exists a constant µ such that ‖g (x)‖ ≤ µ, for all
x ∈ Ω.

Lemma 3.1. [28] Suppose Assumption 1 and 2 hold, and consider any conjugate gra-
dient method (1.2) and (1.3), where dk is a descent direction and αk is obtained by
the strong Wolfe line search. If

∞∑
k=1

1

‖dk‖2
= +∞ (3.1)

then

lim inf
k→∞

‖gk‖ = 0 (3.2)

Assume that the function f is uniformly convex function, i.e. there exists a
constant Γ ≥ 0 such that,

for all x, y ∈ Ω : (∇f (x)−∇f (y))
t
(x− y) ≥ Γ ‖x− y‖2 (3.3)

and the steplength αk is given by the strong Wolfe line search.

f (xk + αkdk)− f (xk) ≤ σ1αkgtkdk (3.4)∣∣gtk+1dk
∣∣ ≤ −σ2gtkdk (3.5)

For uniformly convex function which satisfies the above assumptions, we can prove
that the norm of dk+1 given by (2.3) is bounded above.

Using the above lemma, we obtain the following theorem.

Theorem 3.2. Suppose that Assumption 1 and 2 hold. Consider the algorithm (1.2),
(2.3) and (2.5), where 0 ≤ θk ≤ 1 and αk is obtained by the strong Wolfe line search
(3.4) and (3.5).

If dk tends to zero and there exists non negative constants η1 and η2 such that:

‖gk‖2 ≥ η1 ‖sk‖2 and ‖gk+1‖2 ≤ η2 ‖sk‖ (3.6)

and f is uniformly convex function, then

lim
k→∞

gk = 0 (3.7)

Proof. From (3,3) it follows that

ytksk ≥ Γ ‖sk‖2
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since 0 ≤ θk ≤ 1, from uniform convexity and (3.6) we have

∣∣βHLBk

∣∣ ≤ ∣∣∣∣∣gtk+1yk

‖gk‖2

∣∣∣∣∣+

∣∣∣∣∣gtk+1 (gk+1 − gk − dk)

‖dk‖2

∣∣∣∣∣
≤
∣∣gtk+1yk

∣∣
‖gk‖2

+

∣∣gtk+1yk
∣∣

‖dk‖2
+

∣∣gtk+1dk
∣∣

‖dk‖2

≤ ‖gk+1‖ ‖yk‖
‖gk‖2

+
‖gk+1‖ ‖yk‖
‖dk‖2

+
‖gk+1‖ ‖dk‖
‖dk‖2

from Lipschitz condition

‖yk‖ ≤ l ‖sk‖∣∣βHLBk

∣∣ ≤ ‖gk+1‖ ‖yk‖
η1 ‖sk‖2

+
‖gk+1‖ ‖yk‖
‖dk‖2

+
‖gk+1‖
‖dk‖

≤ µl ‖sk‖
η1 ‖sk‖2

+
µl ‖sk‖α2

k

‖sk‖2
+
µαk
‖sk‖

=
µl

η1 ‖sk‖
+
µlα2

k

‖sk‖
+
µαk
‖sk‖

Hence

‖dk+1‖ ≤ ‖gk+1‖+
∣∣βHLBk

∣∣ ‖dk‖
≤ µ+

µl ‖sk‖
η1αk ‖sk‖

+
µl ‖sk‖α2

k

αk ‖sk‖
+
µαk ‖sk‖
αk ‖sk‖

= 2µ+ µlαk +
µl

η1αk

which implies that (3.1) is true. Therefore, by Lemma 1 we have (3.2), which for
uniformly convex functions is equivalent to (3.7). �

4. Numerical results and discussion

In the present numerical experiments, we analyze the efficiency of βHLB , as
compared to the classic methods: βPRP and βRMIL+. These comparisons are based
on the number of iterations and CPU time per second to reach the optimum. All the
comparisons are done with two or three different initial points and different number
of variables ranging from 2 to 20000. All variables have been experimented to each
function test [3]. For the numerical tests, the strong Wolfe line searches parameters
have been experimentally fixed to ρ = 10−3 and δ = 10−4. All tests were terminated
when the stopping criteria ‖gk‖ ≤ ε is fulfilled, where ε = 10−6. When the iteration
number exceeds 2000 or the CPU execution time exceeded 500 seconds, the test is
considered as failed.
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Figure 1. Performance Profile based on the CPU time

Figures 1 and 2 show that the method of βHLB is superior when compared to
βPRP and βRMIL+ with the least duration of CPU time. The highest percentage
of successful comparison is with βHLB at 98.34%, followed by βRMIL+ with 93.72%.
However, the successful rate comparison for βPRP is low at 90.05%. Hence, our method
(βHLB) successfully solves the test problems, and it is competitive with the well-
known conjugate gradient methods for unconstrained optimization.

Figure 2. Performance Profile based on the iteration number



466 Ghania Hadji, Yamina Laskri, Tahar Bechouat and Rachid Benzine

Table 1. A list of test problems

No. Function Dimension Initial points
01 Alpine 1 4, 5, 7, 10, 12, 30, 100 (1, ..., 1)
02 Beale 2 (−1,−1) ; (0, 0) ; (1, 1)
03 Booth 2 (−1,−1) ; (1, 1) ; (3, 3)
04 Branin 2 (−1,−1) ; (0, 0) ; (1, 1)
05 Diagonal 1 2, 4, 6, 8, 10, 20, 100, 200 (1, ..., 1) ; (2, ..., 2) ; (3, ..., 3)
06 Diagonal 2 2, 4, 10, 100, 200, 400, 500, 600, 1000 (−1, ...,−1) ; (0, ..., 0) ; (1, ..., 1)
07 Diagonal 4 1000, 5000, 8000, 10000, 14000, 16000, 20000 (2, ..., 2) ; (5, ..., 5) ; (10, ..., 10)
08 Exponential 2, 4, 6, 8, 10, 12, 14, 15, 16, 20 (1, ..., 1)
09 Griewank 10, 100, 500, 1000, 2000, 5000, 10000 (−2, ...,−2) ; (2, ..., 2)
10 Hager 2, 4, 10, 100, 200, 500, 800, 1000 (−1, ...,−1) ; (0, ..., 0)
11 Himmelblau 2, 4, 10, 100, 1000, 5000, 10000, 20000 (−5, ...,−5) ; (5, ..., 5)
12 Leon 2 (−0.5,−0.5) ; (0, 0) ; (0.5, 0.5)
13 Matyas 2 (1, 1) ; (2, 2) ; (5, 5)
14 Penalty 2, 10, 100, 500, 1000, 2500, 4000, 5000, 10000 (−1, ...,−1) ; (0, ..., 0) ; (1, ..., 1)
15 Perquadratic 2, 4, 8, 10, 20, 50, 200 (−5, ...,−5) ; (3, ..., 3) ; (5, ..., 5)
16 Power 2, 4, 8, 10, 20, 50, 100, 500 (−2, ...,−2) ; (2, ..., 2)
17 Qing 2, 10, 100, 200, 300, 400, 500, 1000, 2000 (−2, ...,−2) ; (2, ..., 2)
18 Quadratic 2, 10, 100, 200, 500, 750, 1000 (2, ..., 2) ; (4, ..., 4)
19 Quartic 2, 4, 10, 100, 200, 500 (1, ..., 1) ; (2, ..., 2)
20 Rastrigin 2, 10, 100, 200, 500 (−5, ...,−5) ; (5, ..., 5)
21 Raydan 1 2, 4, 10, 20, 50, 80, 90, 100 (−2, ...,−2) ; (2, ..., 2)
22 Raydan 2 2, 10, 100, 500, 1000, 2000, 3000 (−2, ...,−2) ; (2, ..., 2)
23 Rosenbrock 2, 10, 10, 50, 100, 200, 1000, 2000, 5000, 10000 (0, ..., 0)
24 Schwefel 2. 20 2, 4, 10, 20 (−1, ...,−1) ; (2, ..., 2)
25 Schwefel 2. 21 5, 10, 15, 20 (1, ..., 1) ; (2, ..., 2)
26 Schwefel 2. 23 2, 5, 10, 20 (−1, ...,−1) ; (1, ..., 1)
27 Sphere 2, 10, 20, 100, 1000, 5000, 20000 (−4, ...,−4) ; (4, ..., 4)
28 Styblinski 2, 10, 100, 500, 1000, 2000, 5000 (0, ..., 0) ; (2, ..., 2)
29 Sumsquares 2, 10, 20, 100, 300, 500, 1000 (5, ..., 5) ; (10, ..., 10)

5. Conclusion

Numerous studies have been devoted to develop and improve hybrid conjugate
gradient methods. In this paper we have presented a new convex hybridation of the
PRP and the RMIL+ conjugate gradient algorithms; HLB. The global convergence
of our method is demonstrated for 0 < θ < 1. Numerical experiments reveal that our
method is reaching the optimum in less iteration number and CPU time comparing
to RMIL+ and PRP.

References

[1] Al-Baali, M., Descent property and global convergence of Fletcher-Reeves method with
inexact line search, IMA J. Numer. Anal., 5(1985), no. 1, 121-124.

[2] Al-Bayati, A.Y., Al-Assady, N.H., Conjugate Gradient Method, Technical Research re-
port, Technical Research, School of Computer Studies, Leeds University, 1986.

[3] Andrei, N., An unconstrained optimization test functions collection, Adv. Model. Optim.,
10(2008), no. 1, 147-161.

[4] Andrei, N., Another hybrid conjugate gradient algorithm for unconstrained optimization,
Numer. Algorithms, 47(2008), no. 2, 143-156.

[5] Andrei, N., Hybrid Conjugate Gradient Algorithm for Unconstrained Optimization, J.
Optim. Theory Appl., 141(2009), no. 2, 249-264.



CGHLB, hybrid convex combination of PRP and RMIL+ 467

[6] Andrei, N., Nonlinear Conjugate Gradient Methods for Unconstrained Optimization,
Springer International Publishing, 2020.

[7] Bongartz, I., Conn, A.R., Gould, N.I.M., Toint, P.L., CUTE: Constrained and uncon-
strained testing environments, ACM Trans. Math. Softw., 21(1995), no. 1, 123-160.

[8] Dai, Y.H., Yuan, Y., A nonlinear conjugate gradient method with a strong global con-
vergence property, SIAM J. Optim., 10(1999), no. 1, 177-182.

[9] Dai, Y.H., Yuan, Y., An efficient hybrid conjugate gradient method for unconstrained
optimization, Ann. Oper. Res., 103(2001), no. 1, 33-47.

[10] Daniel, J.W., The conjugate gradient method for linear and nonlinear operator equations,
SIAM J. Optim., 10(1967), no. 1, 10-26.

[11] Delladji, S., Belloufi, M., Sellami, B., Behavior of the combination of PRP and HZ
methods for unconstrained optimization, Numer. Algebra Control Optim., 11(2021), no.
3, 377-389.
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