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Idempotent and nilpotent elements in octonion
rings over Zp

Michael Aristidou, Philip R. Brown and George Chailos

Abstract. In this paper, we show that the set O/Zp, where p is a prime number,
does not form a skew field and discuss idempotent and nilpotent elements in the
(finite) ring O/Zp. We provide examples and establish conditions for idempotency
and nilpotency.
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1. Introduction

Quaternions, denoted by H, were first discovered by William. R. Hamilton in
1843 as an extension of complex numbers into four dimensions [10]. Namely, a quater-
nion is of the form

x = a0 + a1i + a2j + a3k,

where ai are reals and i, j, k are such that i2 = j2 = k2 = ijk = −1. Algebraically
speaking, H forms a division algebra (skew field) over R of dimension 4 ([10], p.195-
196).About the same time, John T. Graves discovered the octonions, denoted by O,
which are 8-dimensional numbers of the form

x = a0 + a1e1 + a2e2 + a3e3 + a4e4 + a5e5 + a6e6 + a7e7

where ai are reals and ei’s are mutually anti-commuting roots of unity. (i.e. e2i = −1
and eiej = ek, ejei = −ek, i 6= j) [6]. Algebraically speaking, O forms a normed
division algebra (skew field) over R of dimension 8 [6]. It is the largest of the (only)
four normed division algebras and it is nonassociative.
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A study of the structure and some of its properties of the finite ring2 H/Zp, where
p is a prime number, was done in [2]. A more detailed description of the structure
H/Zp was given by Miguel and Serodio in [20]. Among others, they found the number
of zero-divisors, the number of idempotent elements, and provided an interesting
description of the zero-divisor graph. In particularly, they showed that the number of
idempotent elements in H/Zp is p2+p+2, for p odd prime. As discussed in [3], the only
scalar idempotents in H/Zp are a0 = 0, 1. Furthermore, there are no purely imaginary
idempotents in H/Zp. On the other hand, in [4], it was shown that nilpotents x in
H/Zp are purely imaginary with norm N(x) = 0 and x2 = 0.

In the sections that follow, we look at the structure of the finite ring O/Zp.
The multiplication of octonions followed the Fano Plane and it was programmed in
Maple3. We give examples of idempotent and nilpotent elements in O/Zp and provide
conditions for idempotency and nilpotency in O/Zp.

2. Is O/Zp a finite skew field? A counterexample

In [2] we saw that since Zp is a field, then H/Zp is a quaternion algebra. The
theory of quaternion algebras over a field K (charK 6= 2) tells us that a quaternion
algebra Q is either a division ring or Q = M2×2(K) ([16], p.16, 19). Since H/Zp is not
a division ring (see [2]), then H/Zp

∼= M2×2(Zp) if p 6= 2.

The real matrix representation of H/Zp, where x = a0 +a1i+a2j+a3k ∈ H/Zp,
is achieved by the 4× 4 left or right Hamilton Operators as follows:

HL
x =


a0 −a1 −a2 −a3
a1 a0 −a3 a2
a2 a3 a0 −a1
a3 −a2 −a1 −a0

 HR
x =


a0 −a1 −a2 −a3
a1 a0 a3 −a2
a2 −a3 a0 a1
a3 a2 −a1 a0


But is the finite ring O/Zp a skew field? Consider the elements

x1 = 2e2 − e3, x2 = e4 + 3e5

in O/Z5. Multiplying the two, we get:

x1 · x2 = (2e2 − e3)(e4 + 3e5) = 0(mod 5).

This shows that O/Z5 has zero-divisors, and hence O/Z5 is not a skew field. This
was also anticipated by some well-known theorem in algebra, by Wedderburn in 1905
([11], p.361), which says that: “Every finite skew field is a field”. Since O/Zp is not
commutative, then it is not a field, and so it is not a skew-field.

So, what is the structure of O/Zp? Since Zp is a field, then O/Zp is a non-
associative octonion algebra. As a matter of fact, is it an alternative, flexible and
power associative algebra4. It is well known that O is a skew field, yet it has no
”proper” matrix representation due to the non-associativity. Nevertheless, as O is an
extension of H, by the Cayley-Dickson process, some non-proper 8 × 8 real matrix
representations were introduced, by Tian in [26], through the left and right Hamilton
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Operators of quaternions analogous to the one above. Namely:

HL
x =



a0 −a1 −a2 −a3 −a4 −a5 −a6 −a7
a1 a0 −a3 a2 −a5 a4 a7 −a6
a2 a3 a0 −a1 −a6 −a7 a4 a5
a3 −a2 a1 a0 −a7 a6 −a5 a4
a4 a5 a6 a7 a0 −a1 −a2 −a3
a5 −a4 a7 −a6 a1 a0 a3 a2
a6 −a7 −a4 a5 a2 −a3 a0 a1
a7 a6 −a5 −a4 a3 a2 −a1 a0



HR
x =



a0 −a1 −a2 −a3 −a4 −a5 −a6 −a7
a1 a0 a3 −a2 a5 −a4 −a7 a6
a2 −a3 a0 a1 a6 a7 −a4 −a5
a3 a2 −a1 a0 a7 −a6 a5 −a4
a4 −a5 −a6 −a7 a0 a1 a2 a3
a5 a4 −a7 a6 −a1 a0 −a3 a2
a6 a7 a4 −a5 −a2 a3 a0 −a1
a7 −a6 a5 a4 −a3 −a2 a1 a0


Modifying the above over Zp, one could easily get the left and right 8× 8 real repre-
sentations of O/Zp as follows5:

HL
x =



a0 p− a1 p− a2 p− a3 p− a4 p− a5 p− a6 p− a7
a1 a0 p− a3 a2 p− a5 a4 a7 p− a6
a2 a3 a0 p− a1 p− a6 p− a7 a4 a5
a3 p− a2 a1 a0 p− a7 a6 p− a5 a4
a4 a5 a6 a7 a0 p− a1 p− a2 p− a3
a5 p− a4 a7 −a6 a1 a0 a3 a2
a6 p− a7 p− a4 a5 a2 p− a3 a0 a1
a7 a6 p− a5 −a4 a3 a2 p− a1 a0



HR
x =



a0 p− a1 p− a2 p− a3 p− a4 p− a5 p− a6 p− a7
a1 a0 a3 p− a2 a5 p− a4 p− a7 a6
a2 p− a3 a0 a1 a6 a7 p− a4 p− a5
a3 a2 p− a1 a0 a7 p− a6 a5 p− a4
a4 p− a5 p− a6 p− a7 a0 a1 a2 a3
a5 a4 p− a7 a6 p− a1 a0 p− a3 a2
a6 a7 a4 p− a5 p− a2 a3 a0 p− a1
a7 p− a6 a5 a4 p− a3 p− a2 a1 a0


Notice that for the octonionic cases O and O/Zp, we have that HL

xy 6= HL
x H

L
y because

of the non-associativity.
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3. Idempotent and nilpotents elements in O/Zp

Recall that an element x in a ring R is called idempotent if x2 = x. In the
ring H/Zp, p prime, in the special case where x = a0, a0 6= 0 (i.e., x is a non-
zero scalar in H/Zp) one quickly observes that if x is idempotent then x = 1, for
x in 1, 2, ..., p-1, since (x, p) = 1. Therefore, the only scalar idempotent in H/Zp

is 1 (we omit the case x = 0 as trivial). Another simple case is the case where
x = ai, aj or ak, a 6= 0 (i.e., a non-zero scalar multiple of the imaginary units). Then,
x2 = (ai)2 = −a2i2 = −a2 6= ai = x, which shows that there are no idempotents
of the form ai, aj or ak. (Again, we omitted the case x = 0 as trivial). Examples of
proper idempotents6 and conditions for idempotency in H/Zp were given in [3]. Due
to the isomorphism H/Zp

∼= O[ei, ej , eiej ] (where ei 6= ej) idempotents in H/Zp will
transfer in some subalgebras7 of O/Zp. For example, x = 4+ i+3j+4k is idempotent
in H/Z7 and therefore x = 4 + e1 + 3e2 + 4e3 is idempotent in O/Z7 . Nevertheless,
x = 4 + e1 + 3e3 + 4e5 is a non-“quaternionic” idempotent in O/Z7. Notice that
x = 7i + 4j is nilpotent in H/Z13 and so x = 7e1 + 4e2 is also nilpotent in O/Z13 .
Nevertheless, x = 4e1 + e2 + 3e3 + 4e5 is a non-“quaternionic” nilpotent in O/Z7. As
we will show below, purely imaginary octonions in O/Zp cannot be idempotents, just
as in H/Zp [3]. And nilpotents in O/Zp are purely imaginary, just as in H/Zp [4].

Theorem 3.1. Let x ∈ O/Zp be an octonion of the form x = a0 +

7∑
i=1

aiei. Then x is

idempotent if and only if a0 =
1 + p

2
and

7∑
i=1

a2i =
p2 − 1

4
.

Proof. We follow the steps given in the proof for the quaternion case in [3]. Since x
is idempotent, we have:

x2 = x⇒

(
a0 +

7∑
i=1

aiei

)(
a0 +

7∑
i=1

aiei

)
= a0 +

7∑
i=1

aiei

⇒ a20 + 2a0

7∑
i=1

aiei +

(
7∑

i=1

aiei

)(
7∑

i=1

aiei

)
= a0 +

7∑
i=1

aiei

distr.
===⇒
Fano

a20 −
7∑

i=1

a2i = a0 and 2a0ai = ai

From the 2nd equation, we have that either ai = 0 or 2a0 = 1. That is a0 =
1 + p

2
, as

p = 0(mod p). Substituting the latter in the 1st equation, we get

7∑
i=1

a2i =
p2 − 1

4
. �

Corollary 3.2. Let x ∈ O/Zp be a purely imaginary octonion of the form

x =

7∑
i=1

aiei.
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Then x is not idempotent.

Proof. If x is purely imaginary then a0 = 0. Then from Theorem 3.1, 0 =
1 + p

2
which

is a contradiction. �

Example 3.3. Consider x = 4 + e1 + 3e3 + 4e5 in O/Z7. Then x is idempotent. Notice

that 4 =
1 + 7

2
and 12 + 32 + 42 = 26 =

49− 1

4
mod(7).

Remark 3.4. To find the number of idempotents in O/Zp, one could naturally find

how many ways P 2−1
4 can be written as a sum of seven or fewer squares. The equation

7∑
i=1

a2i =
p2 − 1

4
in Theorem 3.1 brings to mind the ”sum of seven squares problem”,

which is to find the different values r7(n) for which n =

7∑
i=1

x2
i , n ∈ N. A formula

for square-free values of n were stated without proof by Eisenstein in 1847, and those
were extended to all positive integers n by Smith in 1864, also without a proof. Hardy
in 1920 developed a method in deriving the proof for rk(n), where k is odd, but he
explicitly showed only the r5(n) case in [13, 12]. More general results for r7(n) were
given by Cooper in 2001 [8] and Cooper and Hirschhorn in 2007 [9].

Recall that an element x in a ring R is called nilpotent if xk = 0 for some k ∈ N.
In [4], it was shown that if x in H/Zp is nilpotent then the norm N(x) = 0 (where

N(x) = xx∗ =

3∑
i=0

a2i ) and, furthermore, that x is purely imaginary and x2 = 0. If x

∈ O/Zp, we have similar results. First, consider the following Lemmas:

Lemma 3.5. For any x ∈ O/Zp, we have that x2 − 2a0x + N(x) = 0.

Proof. Let x = a0 +

7∑
i=1

aiei. Then the left-hand side of the equation becomes:

x2−2a0x + N(x) = (a0 +

7∑
i=1

aiei)(a0 +

7∑
i=1

aiei)− 2a0x + N(x)

= a20 + 2a0

7∑
i=1

aiei + (

7∑
i=1

aiei)(

7∑
i=1

aiei)− 2a0(a0 +

7∑
i=1

aiei) +

7∑
i=0

a2i

= a20 +

7∑
i=1

2a0aiei −
7∑

i=1

a2i − 2a0(a0 +

7∑
i=1

aiei) +

7∑
i=0

a2i

= a20 + 2a0

7∑
i=1

aiei −
7∑

i=1

a2i − 2a20 − 2a0

7∑
i=1

aiei + a20 +

7∑
i=1

a2i

= 0

�
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Lemma 3.6. Let x ∈ O/Zp. If x is nilpotent, then N(x) = 0.

Proof. We follow the steps given in the proof for the quaternion case in [4]. If x is
nilpotent, then xk = 0 for some k. From Lemma 3.5 above, we have:

x2 − 2a0x + N(x) = 0⇒ x(x− 2a0) = −N(x)

⇒ (x(x− 2a0))k = (−N(x))k

⇒ xk(x− 2a0)k = (−N(x))k (see Remark 3.7 below)

⇒ 0 = (N(x))k

⇒ N(x) = 0, because Zp is a field.

�

Remark 3.7. We discuss the statement (x(x− 2a0))k = xk(x− 2a0)k in the proof in
the Lemma 3.6 above: The statement is taken as obvious, without a proof, in [4] (in
Lemma 2.1) for the quaternionic case H/Zp, but it deserves a bit more explanation
in our case here considering the non-commutativity and non-associativity of O/Zp.
As we mentioned in Sec.2, O/Zp is an alternative algebra (and flexible). Therefore, it
also satisfies the Moufang Identities, in particularly the identity (xy)(zx) = (x(yz))x.
Given this, it is not hard to show the following:

Proposition 3.8. If A is an alternative algebra such that xy = yx, x, y ∈ A, then
(xy)k = xkyk.

Proof. We show this for k = 2 (the general case follows by iteration). Indeed:

(xy)2 = (xy)(xy)
comm.

= (yx)(xy)
Mouf.

= (y(xx))y

altern.
= ((yx)x)y

comm.
= ((xy)x)y

flex.
= (x(yx))y

comm.
= (x(xy))y

altern.
= ((xx)y)y

Mouf.
= (xx)(yy)

�

Hence, the statement (x(x− 2a0))k = xk(x− 2a0)k is also true in our particular case
here, because O/Zp is alternative (and flexible) and x(x − 2a0) = (x − 2a0)x. It is
also clear now why the statement is easy to prove in H/Zp, considering that H/Zp is
actually associative. Finally, given the above result, one could also obtain the binomial

formula (x + y)k =

k∑
j=0

(
k
j

)
xjyk−j , which could also be used to prove the statement
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in question. That is:

(x(x− 2a0))k = (x2 − 2a0x)k =

k∑
j=0

(
k
j

)
(x2)j(−2a0x)k−j

= xk
k∑

j=0

(
k
j

)
xj(−2a0)k−j

= xk(x− 2a0)k

Theorem 3.9. Let x ∈ O/Zp. Then x is nilpotent if and only if x is purely imaginary
and N(x) = 0. Furthermore, if x is nilpotent, then x2 = 0.

Proof. If x is nilpotent, then xk = 0 for some k > 1 (where k is the least such natural
number). From Lemma 3.6 above, we have that N(x) = 0. Combining Lemmas 3.5
and 3.6, we get x2 = 2a0x. Following the steps given in the proof for the quaternion
case in [4], we have:

If k is even : x2 = 2a0x⇒ (x2)k/2 = (2a0)k/2xk/2

⇒ xk = (2a0)k/2xk/2

⇒ 0 = (2a0)k/2xk/2

⇒ a0 = 0

If k is odd : x2 = 2a0x⇒ (x2)(k+1)/2 = (2a0)(k+1)/2x(k+1)/2

⇒ (x)(k+1)/2 = (2a0)(k+1)/2x(k+1)/2

⇒ 0 = (2a0)(k+1)/2xk/2

⇒ a0 = 0

Hence, a0 = 0 and therefore x is imaginary. Furthermore, since a0 = 0, from x2 = 2a0x
we have that x2 = 0. For the converse, since N(x) = 0, Lemma 3.5 gives x2 = 2a0x.
Since also x is imaginary (a0 = 0) the equation x2 = 2a0x gives x2 = 0. Then for any
k > 1 we have: xk = xk−2x2 = xk−2 · 0 = 0, so x is nilpotent. �

Example 3.10. Consider x = 4e1 +e2 +3e3 +4e5 in O/Z7. Then x is nilpotent. Notice
that N(x) = 02 + 42 + 12 + 32 + 02 + 42 + 02 + 02 = 0(mod 7).

4. Connection to general rings and applications

There is a lot in the literature on idempotents, nilpotents and k-potents in
general, in more general rings R. It would be interesting to see if and how some of
these results relate to the ‘special’, in a sense, ring O/Zp.

In [16], Hirano and Tominaga proved that in a ring R the following are equivalent:
(i) Every element of R is a sum of two commuting idempotents; (ii) R is commutative
and every element of R is a sum of two idempotents; (iii) x3 = x, for all x in R.8
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As O/Zp is not commutative, the above fails. For example, consider the idempotents
a = 3 + e1 and b = 3 + e2 in O/Z5. Then,

x = a + b = (3 + e1) + (3 + e2) = 6 + e1 + e2 = 1 + e1 + e2,

but x is not tripotent (indeed, (1 + e1 + e2)3 = e1 + e2 6= 1 + e1 + e2). The above fails
even when the idempotents commute. Take, for example, a = b = 3 + e1 in O/Z5.

Also, Mosic in [21] gives the relation between idempotent and tripotent elements
in any associative ring R, generalizing the result on matrices by Trenkler and Bak-
salary [27]. Namely, for any x ∈ R, where 2, 3 are invertible, x is idempotent if and
only if x is tripotent and 1 − x is tripotent or 1 + x is invertible. Notice that even
though O/Zp is not associative, the result does hold in some cases. Take for example
the tripotent x = 4 + 3e1 + e2 + 4e3 in O/Z7, which is also an idempotent. It is not
hard to check that directly or using the conditions for idempotency in Theorem 3.1
above. Notice also that 1− x is tripotent and 1 + x is invertible as N(x) = 2 6= 0. So,
we conjecture that Mosic’s result may extend to (some) non-associative rings.

Finally, it is interesting to note any possible applications of rings related to the
ring O/Zp. Malekian and Zakerolhosseini in [19] use octonionic algebras to construct
a high speed public key cryptosystem. More specifically, they consider the convolution
polynomial rings R = Z[x]/(xN − 1), Rp = Zp[x]/(xN − 1) and Rq = Zq[x]/(xN − 1),
where p, q are primes such as q � p. From these they construct the octonionic
algebras:

A = { a0(x) +

7∑
i=1

ai(x)ei | ai(x) ∈ R } ,

Ap = { a0(x) +

7∑
i=1

ai(x)ei | ai(x) ∈ Rp } ,

Aq = { a0(x) +

7∑
i=1

ai(x)ei | ai(x) ∈ Rq } ,

respectively. Then, the public (and private) key is generated as follows: initially two
small octonions F ∈ Lf and G ∈ Lg, where Lf ,Lg are some specifically constructed
subspaces of A, are randomly generated. Namely,

F = f0 +

7∑
i=1

fiei | fi ∈ Lf ,

G = g0 +

7∑
i=1

giei | gi ∈ Lg .

The octonion F must be invertible in Ap and Aq , otherwise a new octionion F is gen-
erated. The inverses of F in Ap and Aq are denoted by in F−1

p and F−1
q , respectively.

The public key, which is an octonion, is then given by H = F−1
p oG ∈ Aq , where o is

a multiplication defined on Aq, in terms of the convolution product. Encryption and
decryption are done with similar calculations.
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Notes

1. R, C, H and O are the only normed division algebras. This was proved by Hurwitz
in 1898 [17].

2. “+” and “.” on H are defined in [14, p. 124]. As p = 0(mod p) on H/Zp

they are defined as follows:

x + y = (a0 + a1i + a2j + a3k) + (b0 + b1i + b2j + b3k)
= (a0 + b0) + (a1 + b1)i + (a2 + b2)j + (a3 + b3)k

x · y = (a0 + a1i + a2j + a3k) · (b0 + b1i + b2j + b3k)
= a0b0 + (p− 1)a1b1 + (p− 1)a2b2 + (p− 1)a3b3 +

(a0b0 + a1b0 + a2b3 + (p− 1)a3b2)j +
(a0b2 + (p− 1)a1b3 + a2b0 + a3b1)j +
(a0b3 + a1b2 + (p− 1)a2b1 + a3b0)k

3. Fano Plane (Figure 1); Multiplication table (Figure 2); Program in Maple
(Figure 3):

Figure 1. Fano Plane

Figure 2. Multiplication table
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Figure 3. Maple program

4. Accordingly, the following hold: (xx)y = x(xy) (alternative), x(yx) = (xy)x
(flexible), 〈x〉 is power associative for all x.

5. These representations are given in [11] without a proof. The proof for O/Zp

is actually straightforward, following the exact steps in the proofs of Theorems 2.1
and 2.3 in [26] for the case of O.

6. In Herstein [14, p. 130], we have as an exercise that: In a ring R, if x2 = x, for all
x in R, then R is commutative. It is not hard to show that the converse is not true.
(e.g. F = Z3, 2 is not idempotent). Actually, a field F has only trivial idempotents.
Hence, in H/Zp some elements are non-trivial idempotents and they were described
in [3].

7. Namely, the seven quaternionic subalgebras of O each generated by the
seven ”line” (including the circle) in the Fano Plane.

8. A ring R is called a tripotent ring if x3 = x, for all x in R. The fact that
a tripotent ring is commutative is found as an exercise in Hernstein [14, p. 136].
Several proofs of this fact have been given since the 60’s [5]. In Bourbaki, we find
it also as an exercise with guided steps/hints for the proof [7, p. 176]. See also [23].
Interestingly, a more general result by Jacobson was already known in the 40’s [18].
Namely, if in a ring R there exists an integer n > 1 such that xn=x, for every x in
R, then R is commutative. For a proof of Jacobson’s Theorem see [5], [15].
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Abstract. In this article, we derive the Popoviciu-type inequalities by using the
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equalities involving sums

γ∑
i=1

%iζ(χi) and integrals

∫ β1

α1

%(χ)ζ(g(χ)) dχ. Some re-

sults for n-convex functions at a point are also obtained. Besides that, some
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1. Introduction

Pečarić [15] established the following result (see also [18, p.262]):

Proposition 1.1. The inequality
γ∑
i=1

%iζ(χi) ≥ 0 (1.1)

holds for all convex functions ζ if and only if the γ−tuples

χ = (χ1, . . . , χγ), % = (%1, . . . , %γ) ∈ Rγ
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satisfy
γ∑
i=1

%i = 0 and

γ∑
i=1

%i|χi − χκ| ≥ 0 ∀ κ ∈ {1, . . . , γ}. (1.2)

Since
γ∑
i=1

%i|χi − χκ| = 2

γ∑
i=1

%i(χi − χκ)+ −
γ∑
i=1

%i(χi − χκ),

where y+ = max(y, 0), it is easy to see that condition (1.2) is equivalent to

γ∑
i=1

%i = 0,

γ∑
i=1

%iχi = 0 and

γ∑
i=1

%i(χi−χκ)+ ≥ 0 for κ ∈ {1, . . . , γ−1}. (1.3)

Let χ(1) ≤ χ(2) ≤ . . . ≤ χ(γ) be the sequence χ in ascending order, w(χ, τ) = (χ− τ)+
and Λ0 denote the linear operator

Λ0(ζ) =

γ∑
i=1

%iζ(χi).

Notice that

Λ(w(·, χκ)) =

γ∑
i=1

%i(χi − χκ)+.

For τ ∈ [χ(κ), χ(κ+1)] we have

Λ(w(·, τ)) = Λ(w(·, χ(κ))) + (χ(κ) − τ)
∑

{i:χi>χ(κ)}

%i,

so the mapping τ 7→ Λ(w(·, τ)) is linear on [χ(κ), χ(κ+1)].
Additionally, Λ(w(·, χ(γ)) = 0, so condition (1.3) is equivalent to

γ∑
i=1

%i = 0,

γ∑
i=1

%iχi = 0 and

γ∑
i=1

%i(χi − τ)+ ≥ 0 ∀ τ ∈ [χ(1), χ(γ−1)]. (1.4)

It comes out that condition (1.4) is suitable for extension of Proposition 1.1 to
the integral version and the more general class of n-convex functions (see e.g. [18]).

Definition 1.2. The nth order divided difference of a function ζ : I → R at distinct
points χi, χi+1, . . . , χi+n ∈ I = [a1, b1] ⊂ R for some i ∈ N is defined recursively by:

[χj ; ζ] = ζ (χj) , j ∈ {i, . . . , i+ n}

[χi, . . . , χi+n; ζ] =
[χi+1, . . . , χi+n; ζ]− [χi, . . . , χi+n−1; ζ]

χi+n − χi
.

It may easily be verified that

[χi, . . . , χi+n; ζ] =

n∑
κ=0

ζ(xi+κ)∏i+n
j=i,j 6=i+κ(χi+κ − χj)

.



Popoviciu type inequalities for n-convex functions 17

Remark 1.3. Let us denote [χi, . . . , χi+n; ζ] by ∆(n)ζ(χi). The value [χi, . . . , χi+n; ζ]
is independent of the order of the points χi, χi+1, . . . , χi+n. This definition can be
extended by involving the cases in which two or more points coincide by taking re-
spective limits. �

Definition 1.4. If for all choices of (n + 1) distinct points χi, . . . , χi+n we have
∆(n)ζ(χi) ≥ 0 then the function ζ : I → R is called convex of order n or n−convex.

If the function is nth order differentiable such that ζ(n) ≥ 0 then ζ is n-convex. A
function ζ is n-convex for 1 ≤ κ ≤ n−2, if and only if ζ(κ) exists and is (n−κ)-convex.

Popoviciu [19], [20] obtained the following result (see also [17, 18, 22]).

Proposition 1.5. Let n ≥ 2. Inequality (1.1) is valid for all n-convex functions
ζ : [a1, b1]→ R if and only if the γ−tuples χ ∈ [a1, b1]γ , % ∈ Rγ satisfy

γ∑
i=1

%iχ
κ
i = 0, ∀κ = 0, 1, . . . , n− 1 (1.5)

γ∑
i=1

%i(χi − τ)n−1+ ≥ 0, ∀τ ∈ [a1, b1]. (1.6)

Definitely Popoviciu established a significant result - it is adequate to postulate
that (1.6) holds ∀ τ ∈ [χ(1), χ(γ−n+1)] and then, because of (1.5), it is automatically
stated ∀ τ ∈ [a1, b1]. The integral version is given in the following proposition (see
[17, 18, 21]).

Proposition 1.6. Let n ≥ 2, % : [α1, β1] → R and g : [α1, β1] → [a1, b1]. Then, the
inequality ∫ β1

α1

%(χ)ζ(g(χ)) dχ ≥ 0 (1.7)

holds for all n-convex functions ζ : [a1, b1]→ R if and only if∫ β1

α1

%(χ)g(χ)κ dχ = 0, ∀ κ = 0, 1, . . . , n− 1∫ β1

α1

%(χ) (g(χ)− τ)
n−1
+ dχ ≥ 0, ∀ τ ∈ [a1, b1].

(1.8)

In this article, we would like to establish some inequalities of type (1.1) and
(1.7) by using the following extension of Montgomery’s identity via Taylor’s formula
for n-convex functions obtained in [1].

Proposition 1.7. Let ζ : I → R be such that ζ(n−1) is absolutely continuous, n ∈ N,
a1, b1 ∈ I, a1 < b1, I ⊂ R an open interval, w : [a1, b1] → [0,∞) is some probability
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density function. Then the following identity holds

ζ(χ) =

∫ b1

a1

w(τ)ζ(τ)dτ

+

n−2∑
κ=0

ζ(κ+1)(a1)

(κ+ 1)!

∫ χ

a1

w(ς)
(
(χ− a1)κ+1 − (ς − a1)κ+1

)
dς

+

n−2∑
κ=0

ζ(κ+1)(b1)

(κ+ 1)!

∫ b1

χ

w(ς)
(
(χ− b1)κ+1 − (ς − b1)κ+1

)
dς

+
1

(n− 1)!

∫ b1

a1

Tw,n(χ, ς)ζ(n)(ς)dς, (1.9)

where

Tw,n(χ, ς) =



∫ ς

χ

w(u)(u− ς)n−1du+W (χ)(χ− ς)n−1,

a1 ≤ ς ≤ χ∫ ς

χ

w(u)(u− ς)n−1du+ (W (χ)− 1) (χ− ς)n−1,

χ < ς ≤ b1

(1.10)

If we put w(τ) = 1
b1−a1 , τ ∈ [a1, b1], the above identity reduces

ζ (χ) =
1

b1 − a1

∫ b1

a1

ζ (τ) dτ +

n−2∑
κ=0

ζ(κ+1) (a1)

κ! (κ+ 2)

(χ− a1)
κ+2

b1 − a1

−
n−2∑
κ=0

ζ(n−1) (b1)

κ! (κ+ 2)

(χ− b1)
κ+2

b1 − a1
+

1

(n− 1)!

∫ b1

a1

Tn (χ, ς) ζ(n) (ς) dς,

(1.11)

where

Tn (χ, ς) =


− (χ− ς)n

n (b1 − a1)
+
χ− a1
b1 − a1

(χ− ς)n−1 , a1 ≤ ς ≤ χ,

− (χ− ς)n

n (b1 − a1)
+
χ− b1
b1 − a1

(χ− ς)n−1 , χ < ς ≤ b1.
(1.12)

In case n = 1 the sum

n−2∑
κ=0

· · · is empty, so identity (1.11) encounters to the

renowned Montgomery identity (see for instance [13])

ζ (χ) =
1

b1 − a1

∫ b1

a1

ζ (τ) dτ +

∫ b1

a1

P (χ, ς) ζ ′ (ς) dς
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where P (χ, ς) is the Peano kernel, given by

P (χ, ς) =


s− a1
b1 − a1

, a1 ≤ ς ≤ χ,

ς − b1
b1 − a1

, χ < ς ≤ b1.

The weighted version of Montgomery identity can be found in [14]:

Proposition 1.8. Let ζ ∈ AC[a1, b1]. Suppose that w : [a1, b1]→ [0,∞) is satisfying∫ b1

a1

w(τ)dτ = 1,

some probability density function, i.e., it is a positive integrable function and

W (τ) =


0, τ < a1,∫ τ

a1

w(χ)dχ, τ ∈ [a1, b1],

1, τ > b1.

Then

ζ(χ) =

∫ b1

a1

w(τ)ζ(τ) dτ +

∫ b1

a1

Pw(χ, τ)ζ(τ) dτ,

where the weighted Peano kernel is given by

Pw(χ, τ) =

{
W (τ), a1 ≤ τ ≤ χ,

W (τ)− 1, χ < τ ≤ b1.

Let us denote the Green’s function by Gl : [a1, b1] × [a1, b1] → R with the
boundary value problem

z′′(λ) = 0, z(al) = z(bl) = 0.

The function G0 is defined as

G0(τ, ς) =


(τ − b1)(ς − a1)

b1 − a1
for a1 ≤ ς ≤ τ,

(ς − b1)(τ − a1)

b1 − a1
for τ ≤ ς ≤ b1

(1.13)

and for any function ζ ∈ C2[a1, b1],the following identity induces using integration by
parts

ζ(χ) =
b1 − χ
b1 − a1

ζ(a1) +
χ− a1
b1 − a1

ζ(b1) +

∫ a1

b1

G0(χ, ς)ζ ′′(ς)dς. (1.14)

The function G0 is continuous, symmetric and convex with respect to both variables
τ and ς.
As a special choice Abel-Gontscharoff polynomial for ‘two-point right focal’ interpo-
lating polynomial for n = 2 can be given as (see [16]):

ζ(χ) = ζ(a1) + (χ− a1)ζ ′(b1) +

∫ b1

a1

G1(χ, τ)ζ ′′(τ)dτ. (1.15)
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where G1(ς, τ) is Green’s function for two-point right focal problem defined as

G1(ς, τ) =

{
a1 − τ for a1 ≤ τ ≤ ς,
a1 − ς for ς ≤ τ ≤ b1

(1.16)

Motivated by Abel-Gontscharoff identity (1.15) and related Green’s function (1.16),
we would recall here some new types of Green functions Gl : [a1, b1] × [a1, b1] −→ R
for l ∈ 2, 3, 4 defined as in [3]:

G2(ς, τ) =

{
ς − b1 for a1 ≤ τ ≤ ς,
τ − b1 for ς ≤ τ ≤ b1

(1.17)

G3(ς, τ) =

{
ς − a1 for a1 ≤ τ ≤ ς,
τ − a1 for ς ≤ τ ≤ b1

(1.18)

G4(ς, τ) =

{
b1 − τ for a1 ≤ τ ≤ ς,
b1 − ς for ς ≤ τ ≤ b1

(1.19)

In [3] (see also [4], [12]), it is also shown that all four Green functions are symmetric
and continuous. These new Green functions enable us to present some new identities,
stated as follow

ζ(χ) = ζ(b1) + (b1 − χ)ζ ′(a1) +

∫ b1

a1

G2(χ, τ)ζ ′′(τ)dτ. (1.20)

ζ(χ) = ζ(b1)− (b1 − a1)ζ ′(b1) + (χ− a1)ζ ′(a1) +

∫ b1

a1

G3(χ, τ)ζ ′′(τ)dτ. (1.21)

ζ(χ) = ζ(a1) + (b1 − a1)ζ ′(a1)− (b1 − χ)ζ ′(b1) +

∫ b1

a1

G4(χ, ς)ζ ′′(τ)dτ. (1.22)

To recall definitions of a generalized convex function and related concepts and results
we refer to interested readers following references [11], [6] and [18]. This article is
arranged in the following manner. In Section 2 we will obtain inequalities of type
(1.1), (1.7) for n-convex functions by using the extension of Montgomery’s identity
(1.11). In Section 3 we will give some discrete and integral nature identities and
corresponding linear inequalities using Green functions and applying extension of
weighted Montgomery identity. In both sections, we will discuss a generalization of the
class of n-convex functions introduced in [17]. On the basis of this discussion, we will
give related inequalities for n-convex functions at a point. we will also provide some
Ostrowski-type inequalities by obtaining bounds for the remainders of the identities
from obtained results.

We will first prove some results that will have a crucial role in each Section of
the paper. Then we will propose some Related Popoviciu type inequalities.
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2. Popoviciu type identities and inequalities via extension of weighted
Montgomery identity

Theorem 2.1. Under the assumptions of Proposition 1.7 and let Tw,n be defined by
(1.10). Additionally, let χi ∈ [a1, b1], %i ∈ R for i ∈ {1, 2, . . . , γ} and γ ∈ N be s.t.

γ∑
i=1

%i = 0.

Then

γ∑
i=1

%iζ (χi) =

n−2∑
κ=0

ζ(κ+1)(a1)

(κ+ 1)!

γ∑
i=1

%i

∫ χi

a1

w(ς)
(
(χi − a1)κ+1 − (ς − a1)κ+1

)
dς

+

n−2∑
κ=0

ζ(κ+1)(b1)

(κ+ 1)!

γ∑
i=1

%i

∫ b1

χi

w(ς)
(
(χi − b1)κ+1 − (ς − b1)κ+1

)
dς

+
1

(n− 1)!

∫ b1

a1

(
γ∑
i=1

%iTw,n(χi, ς)

)
ζ(n)(ς)dς. (2.1)

Proof. Putting in the extension of Montgomery identity (1.9) χi, i = 1, . . . ,m, multi-
plying with %i and summing all the identities we obtain

γ∑
i=1

%iζ (χi) =

∫ b1

a1

w(ς)ζ(τ)dτ

γ∑
i=1

%i

+

γ∑
i=1

%i

n−2∑
κ=0

ζ(κ+1)(a1)

(κ+ 1)!

∫ χ

a1

w(ς)
(
(χ− a1)κ+1 − (ς − a1)κ+1

)
dς

+

γ∑
i=1

%i

n−2∑
κ=0

ζ(κ+1)(b1)

(κ+ 1)!

∫ b1

χ

w(ς)
(
(χ− b1)κ+1 − (ς − b1)κ+1

)
dς

+
1

(n− 1)!

γ∑
i=1

%i

∫ b1

a1

Tw,n(χ, ς)ζ(n)(ς)dς,

By simplifying this expressions we obtain (2.1). �

Remark 2.2. If we put w(ς) = 1
b1−a1 , ς ∈ [a1, b1] above identity reduces to Theorem

1 of [8].

Its integral version is as follows.

Theorem 2.3. Let % : [α1, β1] → R and g : [α1, β1] → [a1, b1] be integrable functions
s.t. ∫ β1

α1

%(χ)dχ = 0.
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Let ζ : I → R be such that ζ(n−1) is absolutely continuous, a1 < b1, a1, b1 ∈ I, I ⊂ R
be an open interval, n ∈ N, Tw,n be given by (1.10). Then∫ β1

α1

% (χ) ζ(g(χ)) dχ

=

n−2∑
κ=0

ζ(κ+1)(a1)

(κ+ 1)!

∫ β1

α1

%(χ)

∫ g(χ)

a1

w(ς)
(
(g(χ)− a1)κ+1 − (ς − a1)κ+1

)
dςdχ

+

n−2∑
κ=0

ζ(κ+1)(b1)

(κ+ 1)!

∫ β1

α1

%(χ)

∫ b1

g(χ)

w(ς)
(
(g(χ)− b1)κ+1 − (ς − b1)κ+1

)
dςdχ

+
1

(n− 1)!

∫ b1

a1

(∫ β1

α1

%(χ)Tw,n(g(χ), ς)dχ

)
ζ(n)(ς)dς, (2.2)

Proof. We obtain the required result by putting χ = g(χ), multiplying with %(χ),
integrating over [α1, β1], and using some transformations and then using Fubini’s
theorem in the extension of Montgomery identity (1.9), �

Remark 2.4. If we put w(ς) = 1
b1−a1 , ς ∈ [a1, b1] above identity reduces to Theorem

2 of [8].

Now we present some inequalities which can be derived from the previous identities.

Theorem 2.5. Under the assumptions of Theorem 2.1 with the additional condition

γ∑
i=1

%iTw,n(χi, ς) ≥ 0, ∀ ς ∈ [a1, b1]. (2.3)

Then, for every n−convex function ζ : I → R the following inequality holds

γ∑
i=1

%iζ (χi) ≥
n−2∑
κ=0

ζ(κ+1)(a1)

(κ+ 1)!

γ∑
i=1

%i

∫ χi

a1

w(ς)
(
(χi − a1)κ+1 − (ς − a1)κ+1

)
dς

+

n−2∑
κ=0

ζ(κ+1)(b1)

(κ+ 1)!

γ∑
i=1

%i

∫ b1

χi

w(ς)
(
(χi−b1)κ+1−(ς−b1)κ+1

)
dς. (2.4)

If the inequality in (2.3) is reversed, then (2.4) holds with the reversed sign of inequa-
lity.

Proof. By using the fact that function ζ is n-convex, so ζ(n) ≥ 0 and (2.3) in (2.1),
we can easily derive our required result. �

Remark 2.6. If reverse inequality holds in (2.3) then reverse inequality holds in (2.4).

Remark 2.7. If we put w(ς) = 1
b1−a1 , ς ∈ [a1, b1] above identity reduces to Theorem

3 of [8].

Now we discuss a major consequence.
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Theorem 2.8. Under the assumptions of Theorem 2.1 and let w(χ) ∈ Cn[a1, b1],
χ = (x1, . . . , xm) ∈ [a1, b1]γ , % = (%1, . . . , %m) ∈ Rγ satisfy (1.5) and (1.6) with n
replaced by j where j ∈ N, 2 ≤ j ≤ n. If ζ is n-convex and n− j is even, then

γ∑
i=1

%iζ (χi) ≥
n−2∑
κ=j−2

ζ(κ+1)(a1)

(κ+ 1)!

γ∑
i=1

%i

∫ χi

a1

w(ς)
(
(χi − a1)κ+1 − (ς − a1)κ+1

)
dς

+
n−2∑
κ=j−2

ζ(κ+1)(b1)

(κ+ 1)!

γ∑
i=1

%i

∫ b1

χi

w(ς)
(
(χi−b1)κ+1−(ς−b1)κ+1

)
dς. (2.5)

Proof. Let ς ∈ [a1, b1] be fixed. Notice that

Tw,n(x, ς) = Lw,n(χ) + (χ− ς)n−1+ , (2.6)

where

Lw,n(χ) =

∫ ς

χ

w(u)(u− ς)n−1du+ (W (χ)− 1) (χ− ς)n−1

Using the Leibnitz theorem we have

L(j)
w,n(χ) = (n− 1)

j−1∑
i=0

(
j − 1

i

)[
dj−1−i

dχj−1−i
(χ− ς)n−2

] [
di

dχi

∫ χ

b1

w(u)du

]
. (2.7)

Therefore, (2.6) and (2.7) for ς < x ≤ b1 yield

dj

dχj
Tw,n(χ, ς) = L(j)

wn(χ) + (n− 1)j(χ− ς)n−j−1

= (n− 1)

j−1∑
i=0

(
j − 1

i

)[
dj−1−i

dχj−1−i
(χ− ς)n−2

] [
di

dχi

∫ χ

b1

w(u)du

]
+ (n− 1)j(χ− ς)n−j−1 ≥ 0, (2.8)

while for a1 ≤ χ < ς we have

dj

dχj
Tw,n(χ, ς)

= (−1)n−2(n− 1)

j−1∑
i=0

(
j − 1

i

)[
dj−1−i

dχj−1−i
(ς − χ)n−2

] [
di

dχi

∫ χ

b1

w(u)du

]
≥ 0. (2.9)

From (2.6) it is clear that for j ≤ n − 2, χ 7→ dj

dχj Tw,n(χ, ς) is continuous. Hence, if

n − j is even and j ≤ n − 2, from (2.8) and (2.9) we can conclude that the function
χ 7→ Tw,n(χ, ς) is j-convex. Furthermore, the conclusion extends towards the case j =

n, i. e. the mapping χ 7→ Tw,n(χ, ς) is n-convex, since the mapping x 7→ dn−2

dχn−2Tn(χ, ς)
is 2-convex.

Now, by Proposition 1.5, we see that assumption (2.3) is satisfied, so inequality
(2.4) holds. Moreover, due to the assumption (1.5),

∑γ
i=1 %i(χi) = 0 for every poly-

nomial P of degree ≤ j − 1, so the first j − 2 terms in the inner sum in (2.4) vanish,
i. e., the right hand side of (2.4) under the assumptions of this theorem is equal to
the right hand side of (2.5). �
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Remark 2.9. If we put w(ς) = 1
b1−a1 , ς ∈ [a1, b1] above identity reduces to Theorem

4 of [8].

Corollary 2.10. Under the assumptions of Theorem 2.5 we denote

H(χ) =

n−2∑
κ=j−2

ζ(κ+1)(a1)

(κ+ 1)!

∫ χi

a1

w(ς)
(
(χi − a1)κ+1 − (ς − a1)κ+1

)
dς

+

n−2∑
κ=j−2

ζ(κ+1)(b1)

(κ+ 1)!

∫ b1

χi

w(ς)
(
(χi − b1)κ+1 − (ς − b1)κ+1

)
dς. (2.10)

If H is j-convex on [a1, b1] and n− j is even, then

γ∑
i=1

%iζ(χi) ≥ 0.

Proof. Applying Proposition 1.5 we conclude that the right hand side of (2.5) is
nonnegative for the j-convex function H. �

Remark 2.11. If we put w(ς) = 1
b1−a1 , ς ∈ [a1, b1] above identity reduces to Corollary

1 of [8].

The rest of this section will present integral versions of the previous results. We
will skip the details because the proofs are identical to the discrete case.

Theorem 2.12. Under the assumptions of Theorem 2.3 with the additional condition∫ β1

α1

% (χ)Tw,n (g(χ), ς) dχ ≥ 0, ∀ς ∈ [a1, b1].

Then, for every n−convex function ζ : I → R the following inequality holds∫ β1

α1

% (χ) ζ(g(χ)) dχ ≥
n−2∑
κ=0

ζ(κ+1)(a1)

(κ+ 1)!

∫ β1

α1

%(χ)×

∫ g(χ)

a1

w(ς)
(
(g(χ)− a1)κ+1 − (ς − a1)κ+1

)
dςdχ

+

n−2∑
κ=0

ζ(κ+1)(b1)

(κ+ 1)!

∫ β1

α1

%(χ)×

∫ b1

g(χ)

w(ς)
(
(g(χ)− b1)κ+1 − (ς − b1)κ+1

)
dςdχ. (2.11)

Remark 2.13. If we put w(ς) = 1
b1−a1 , ς ∈ [a1, b1] above identity reduces to Theorem

5 of [8].

Theorem 2.14. Let all the assumptions from Theorem 2.3 be valid. Moreover, let
w(χ) ∈ Cn[a1, b1], let % : [α1, β1] → R and g : [α1, β1] → [a1, b1] satisfy (1.8) with n
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replaced by j where j ∈ N, 2 ≤ j ≤ n. If ζ is n-convex and n− j is even, then

∫ β1

α1

% (χ) ζ(g(χ)) dχ ≥
n−2∑
κ=j−2

ζ(κ+1)(a1)

(κ+ 1)!

∫ β1

α1

%(χ)×

∫ g(χ)

a1

w(ς)
(
(g(χ)− a1)κ+1 − (ς − a1)κ+1

)
dςdχ

+

n−2∑
κ=j−2

ζ(κ+1)(b1)

(κ+ 1)!

∫ β1

α1

%(χ)×

∫ b1

g(χ)

w(ς)
(
(g(χ)− b1)κ+1 − (ς − b1)κ+1

)
dςdχ. (2.12)

Remark 2.15. If we put w(ς) = 1
b1−a1 , ς ∈ [a1, b1] above identity reduces to Theorem

6 of [8].

Corollary 2.16. Let n, %, ζ, j and g be as in Theorem 2.14 and let H be given by (2.10).
If n− j is even and H is j-convex, then∫ β1

α1

%(χ)ζ(g(χ)) dχ ≥ 0.

2.1. Inequalities related to n-convex functions at a point

Throughout this section, we will discuss related results obtained in [17] for the
class of n-convex functions at a point.

Definition 2.17. Let n ∈ N, c1 a point in the interior of I and I be an interval in R.
If there exists a constant K such that

F1(χ) = ζ(χ)− K

(n− 1)!
χn−1 (2.13)

where the function ζ : I → R is said to be n-convex at point c1 and (n− 1)-concave
on I ∩ (−∞, c1] and (n− 1)-convex on I ∩ [c1,∞). If the function −ζ is n-convex at
point c1] then ζ is called n-concave at point c1. For more details, we refer the readers
to see [2, 17].

In [17], authors discussed sufficient conditions on two linear functionals
Λ : C([a1, c1]) → R and Ξ : C([c1, b1]) → R so that the inequality Λ(ζ) ≤ Ξ(ζ)
holds for every function ζ that is n-convex at c1.

This section will provide inequalities of this type for specific linear functionals
that connect to the inequalities derived in the preceding section. Let ei denote the

monomials ei(χ) = χi, i ∈ N0. More specifically, let T
[a1,c1]
w,n and T

[c1,b1]
w,n represent the
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same as (1.10) on these intervals, i. e.,

T [a1,c1]
w,n (χ, ς) =



∫ ς

χ

w(u)(u− ς)n−1du+W (χ)(χ− ς)n−1,

a1 ≤ ς ≤ χ∫ ς

χ

w(u)(u− ς)n−1du+ (W (χ)− 1) (χ− ς)n−1,

χ < ς ≤ c1,

(2.14)

T [c1,b1]
w,n (χ, ς) =



∫ ς

χ

w(u)(u− ς)n−1du+W (χ)(χ− ς)n−1,

c1 ≤ ς ≤ χ∫ ς

χ

w(u)(u− ς)n−1du+ (W (χ)− 1) (χ− ς)n−1

χ < ς ≤ b1,

(2.15)

Let χ ∈ [a1, c1]γ , % ∈ Rγ , y ∈ [c1, b1]` and q ∈ R` and denote

Λ(ζ) =

γ∑
i=1

%iζ (χi)

−
n−2∑
κ=0

ζκ+1(a1)

(κ+ 1)!

γ∑
i=1

%i

∫ χi

a1

w(ς)
(
(χi − a1)κ+1 − (ς − a1)κ+1

)
dς

−
n−2∑
κ=0

ζκ+1(c1)

(κ+ 1)!

γ∑
i=1

%i

∫ c1

χi

w(ς)
(
(χi − c1)κ+1 − (ς − c1)κ+1

)
dς, (2.16)

Ξ(ζ) =
∑̀
i=1

qiζ (yi)

−
n−2∑
κ=0

ζκ+1(c1)

(κ+ 1)!

∑̀
i=1

qi

∫ yi

c1

w(ς)
(
(yi − c1)κ+1 − (ς − c1)κ+1

)
dς

−
n−2∑
κ=0

ζκ+1(b1)

(κ+ 1)!

∑̀
i=1

qi

∫ b1

yi

w(ς)
(
(yi − b1)κ+1 − (ς − b1)κ+1

)
dς. (2.17)

Identity (2.1) applied to the intervals [a1, c1] and [c1, b1] and by using the functionals
Λ and Ξ can be written as

Λ(ζ) =
1

(n− 1)!

∫ c1

a1

(
γ∑
i=1

%iT
[a1,c1]
w,n (χi, ς)

)
ζ(n) (ς) dς, (2.18)

Ξ(ζ) =
1

(n− 1)!

∫ b

c1

(∑̀
i=1

qiT
[c1,b1]
w,n (yi, ς)

)
ζ(n) (ς) dς. (2.19)
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Theorem 2.18. Let χ ∈ [a1, c1]γ , % ∈ Rγ , y ∈ [c1, b1]` and q ∈ R` be such that

γ∑
i=1

%iT
[a1,c1]
w,n (χi, ς) ≥ 0, for every ς ∈ [a1, c1], (2.20)

∑̀
i=1

qiT
[c1,b1]
w,n (yi, ς) ≥ 0, for every ς ∈ [c1, b1], (2.21)

∫ c1

a1

(
γ∑
i=1

%iT
[a1,c1]
w,n (χi, ς)

)
dς =

∫ b1

c1

(∑̀
i=1

qiT
[c1,b1]
w,n (yi, ς)

)
dς, (2.22)

where T
[a1,c1]
w,n , T

[c1,b1]
w,n , Λ and Ξ are given by (2.14), (2.15), (2.16) and (2.17) respec-

tively. If ζ : [a1, b1]→ R is (n+ 1)-convex at point c1, then

Λ(ζ) ≤ Ξ(ζ). (2.23)

If the inequalities in (2.20) and (2.21) are reversed, then (2.23) holds with the reversed
sign of inequality.

Proof. Let the function F1 = ζ − K
n!en is n-concave on [a1, c1] and n-convex on

[c1, b1](see Definition 2.17). Applying Theorem 2.5 to F1 on the intervals [a1, c1] and
[c1, b1] respectively we have

0 ≥ Λ(F1) = Λ(ζ)− K

n!
Λ(en) (2.24)

0 ≤ Ξ(F1) = Ξ(ζ)− K

n!
Ξ(en). (2.25)

Identities (2.18) and (2.19) applied to the function en yield

Λ(en) = n

∫ c1

a1

(
γ∑
i=1

%iT
[a1,c1]
w,n (χi, ς)

)
dς,

Ξ(en) = n

∫ b

c1

(∑̀
i=1

qiT
[c1,b1]
w,n (yi, ς)

)
dς.

Therefore, assumption (2.22) is equivalent to Λ(en) = Ξ(en). Now, from (2.24) and
(2.25) we obtain the stated inequality. �

Remark 2.19. If we put w(u) = 1
b1−a1 , u ∈ [a1, b1] above identity reduces to Theorem

7 of [8].

Remark 2.20. In the Theorem 2.18 we have proved that

Λ(ζ) ≤ K

n!
Λ(en) =

K

n!
Ξ(en) ≤ Ξ(ζ).

Inequality (2.23) still holds if we substitute assumption (2.22) with the weaker as-
sumption that K (Ξ(en)− Λ(en)) ≥ 0.
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Corollary 2.21. Let n, j1, j2 ∈ N, ≤ j1, j2 ≤ n, let ζ : [a1, b1]→ R be (n+ 1)-convex at
point c1, let % ∈ Rγ and γ-tuples χ ∈ [a1, c1]γ satisfy (1.5) and (1.6) with n replaced
by j1, let q ∈ R` and `-tuples y ∈ [c1, b1]` satisfy∑̀

i=1

qiy
κ
i = 0, ∀ κ = 0, 1, . . . , j2 − 1

∑̀
i=1

qi(yi − τ)j2−1+ ≥ 0, ∀ τ ∈ [y(1), y(`−n+1)]

and let (2.22) holds. If n− j1 and n− j2 are even, then

Λ(ζ) ≤ Ξ(ζ).

Proof. Same as the proof of Theorem 2.8. �

Remark 2.22. Similar results can also be stated for integral versions as well by defining
new functionals using identity (2.2).

2.2. Bounds for identities related to the Popoviciu-type inequalities

Let ζ1, ζ2 : [a1, b1] → R be two Lebesgue integrable functions. We consider the
Čebyšev functional

T (ζ1, ζ2) =
1

b1 − a1

∫ b1

a1

ζ1(χ)ζ2(χ)dχ

−

(
1

b1 − a1

∫ b1

a1

ζ1(χ)dχ

)(
1

b1 − a1

∫ b1

a1

ζ2(χ)dχ

)
. (2.26)

The symbol Lp [a1, b1] (1 ≤ p <∞) denotes the space of p-power integrable functions
on the interval [a1, b1] equipped with the norm

‖ζ1‖p =

(∫ b1

a1

|ζ1 (τ)|p dτ

) 1
p

and L∞ [a1, b1] denotes the space of essentially bounded functions on [a1, b1] with the
norm

‖ζ1‖∞ = ess sup
τ∈[a1,b1]

|ζ1 (τ)| .

The following results can be found in [5].

Proposition 2.23. Let ζ1 : [a1, b1] → R be a Lebesgue integrable function and ζ2 :
[a1, b1]→ R be an absolutely continuous function with (· − a1)(b1 − ·)[ζ ′2]2 ∈ L[a1, b1].
Then we have the inequality

|T (ζ1, ζ2)| ≤ 1√
2

(
1

b1 − a1
|T (ζ1, ζ1)|

∫ b1

a1

(χ− a1)(b1 − χ)[ζ ′2(χ)]2dχ

)1/2

. (2.27)

The constant 1√
2

in (2.27) is the best possible.
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Proposition 2.24. Let ζ2 : [a1, b1]→ R be a monotonic nondecreasing function and let
ζ1 : [a1, b1]→ R be an absolutely continuous function such that ζ ′1 ∈ L∞[a1, b1]. Then
we have the inequality

|T (ζ1, ζ2)| ≤ 1

2(b1 − a1)
‖ζ ′1‖∞

∫ b1

a1

(χ− a1)(b1 − χ)dζ2(χ). (2.28)

The constant 1
2 in (2.28) is the best possible.

Under the assumptions of Theorems 2.1 and 2.3 we denote the following func-
tions. For γ−tuples % = (%1, . . . , %γ), χ = (χ1, . . . , χγ) with χi ∈ [a1, b1], %i ∈ R
(i = 1, . . . , γ) such that

∑γ
i=0 %i = 0 and the function Tw,n defined as in (1.10),

denote

Ψ1(ς) =

γ∑
i=1

%iTw,n(χi, ς), for ς ∈ [a1, b1]. (2.29)

Similarly for functions g : [α1, β1] → [a1, b1] and % : [α1, β1] → R such that∫ β1

α1
%(χ)dχ = 0, denote

Ψ2(ς) =

∫ β1

α1

% (χ)Tw,n (g(χ), ς) dχ, for ς ∈ [a1, b1]. (2.30)

Now, we are ready to state bounds for the integral remainders of identities
obtained in Section 2.

Theorem 2.25. Let n ∈ N, ζ : [a1, b1]→ R be such that ζ(n) is an absolutely continuous
function with (· − a1)(b1 − ·)[ζ(n+1)]2 ∈ L[a1, b1], χi ∈ [a1, b1] and %i ∈ R (i ∈
{1, . . . , γ}) such that

∑γ
i=0 %i = 0 and let the functions Tw,n, T and Ψ1 be defined in

(1.10), (2.26) and (2.29) respectively. Then

γ∑
i=1

%iζ (χi) =

n−2∑
κ=0

ζ(κ+1)(a1)

(κ+ 1)!

γ∑
i=1

%i

∫ χi

a1

w(ς)
(
(χi − a1)κ+1 − (ς − a1)κ+1

)
dς

+

n−2∑
κ=0

ζ(κ+1)(b1)

(κ+ 1)!

γ∑
i=1

%i

∫ b1

χi

w(ς)
(
(χi − b1)κ+1 − (ς − b1)κ+1

)
dς

+

[
ζ(n−1)(b1)− ζ(n−1)(a1)

]
(n− 1)!(b1 − a1)

∫ b1

a1

Ψ1(ς)dς +R1
n(ζ; a1, b1), (2.31)

where the remainder R1
n(ζ; a1, b1) satisfies the estimation

|R1
n(ζ; a1, b1)|

≤ 1

(n− 1)!

(
b1 − a1

2

∣∣∣∣∣T (Ψ1,Ψ1)

∫ b1

a1

(ς − a1)(b1 − ς)[ζ(n+1)(ς)]2dς

∣∣∣∣∣
)1/2

.(2.32)
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Proof. If we apply Proposition 2.23 for ζ1 → Ψ1 and ζ2 → ζ(n), then we obtain∣∣∣∣∣ 1

b1 − a1

∫ b1

a1

Ψ1(ς)ζ(n)(ς)dς

−

(
1

b1 − a1

∫ b1

a1

Ψ1(ς)dς

)(
1

b1 − a1

∫ b1

a1

ζ(n)(ς)dς

)∣∣∣∣∣
≤ 1√

2

(
1

b1 − a1
|T (Ψ1,Ψ1)|

∫ b1

a1

(ς − a1)(b1 − ς)[ζ(n+1)(ς)]2dς

)1/2

.

Furthermore, we have

1

(n− 1)!

∫ b1

a1

Ψ1(ς)ζ(n)(ς)dς =

[
ζ(n−1)(b1)− ζ(n−1)(a1)

]
(n− 1)!(b1 − a1)

∫ b1

a1

Ψ1(ς)dς

+ R1
n(ζ; a1, b1).

whereR1
n(ζ; a1, b1) satisfies inequality (2.32). Now from identity (2.1) we obtain (2.31).

�

Remark 2.26. If we put w(u) = 1
b1−a1 , u ∈ [a1, b1] above identity reduces to Theorem

8 of [8].

Here we state the integral version of the previous theorem.

Theorem 2.27. Let n ∈ N, ζ : [a1, b1]→ R be such that ζ(n) is an absolutely continuous
function with (· − a1)(b1 − ·)[ζ(n+1)]2 ∈ L[a1, b1], let g : [α1, β1] → [a1, b1] and % :

[α1, β1]→ R be functions such that
∫ β1

α1
%(χ)dχ = 0 and let the functions Tw,n, T and

Ψ2 be defined in (1.10), (2.26) and (2.30) respectively. Then∫ β1

α1

% (χ) ζ(g(χ)) dχ

=

n−2∑
κ=0

ζ(κ+1)(a1)

(κ+ 1)!

∫ β1

α1

%(χ)

∫ g(χ)

a1

w(ς)
(
(g(χ)− a1)κ+1 − (ς − a1)κ+1

)
dςdχ

+

n−2∑
κ=0

ζ(κ+1)(b1)

(κ+ 1)!

∫ β1

α1

%(χ)

∫ b1

g(χ)

w(ς)
(
(g(χ)− b1)κ+1 − (ς − b1)κ+1

)
dςdχ

+

[
ζ(n−1)(b1)− ζ(n−1)(a1)

]
(n− 1)!(b1 − a1)

∫ b1

a1

Ψ2(ς)dς +R2
n(ζ; a1, b1), (2.33)

where the remainder R2
n(ζ; a1, b2) satisfies the estimation∣∣R2

n(ζ; a1, b1)
∣∣

≤ 1

(n− 1)!

(
b1 − a1

2
|T (Ψ2,Ψ2)|

∫ b2

a1

(ς − a1)(b1 − ς)[ζ(n+1)(ς)]2dς

)1/2

. (2.34)

Proof. This result easily follows by proceeding as in the proof of the previous theorem
and replacing (2.1) with (2.2). �
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Remark 2.28. If we put w(u) = 1
b1−a1 , u ∈ [a1, b1] above identity reduces to Theorem

9 of [8].

By using Proposition 2.24, we obtain the following Grüss type inequality.

Theorem 2.29. Let n ∈ N, ζ : [a1, b1]→ R be such that ζ(n) is an absolutely continuous
function with ζ(n+1) ≥ 0 on [a1, b1], χi ∈ [a1, b1] and %i ∈ R (i ∈ {1, . . . , γ}) such that

γ∑
i=0

%i = 0.

Also, let the functions T and Ψ1 be defined in (2.26) and (2.29) respectively. Then
we have representation (2.31) and the remainder R1

n(ζ; a1, b1) satisfies the following
estimation

|R1
n(ζ; a1, b1)| ≤ 1

(n− 1)!
‖Ψ′1‖∞

[
b1 − a1

2

[
ζ(n−1)(b1) + ζ(n−1)(a1)

]
−
[
ζ(n−2)(b1)− ζ(n−2)(a1)

]]
. (2.35)

Proof. If we apply Proposition 2.24 for ζ1 → Ψ1 and ζ2 → ζ(n), then we obtain∣∣∣∣∣ 1

b1 − a1

∫ b1

a1

Ψ1(ς)ζ(n)(ς)dς

−

(
1

b1 − a1

∫ b1

a1

Ψ1(ς)dς

)(
1

b1 − a1

∫ b1

a1

ζ(n)(ς)dς

)∣∣∣∣∣
≤ 1

2(b1 − a1)
‖Ψ′1‖∞

∫ b1

a1

(ς − a1)(b1 − ς)ζ(n+1)(ς)dς.

Since ∫ b1

a1

(ς − a1)(b1 − ς)ζ(n+1)(ς)dς

=

∫ b1

a1

(2ς − a1 − b1)ζ(n)(ς)dς

= (b1 − a1)
[
ζ(n−1)(b1) + ζ(n−1)(a1)

]
− 2

[
ζ(n−2)(b1)− ζ(n−2)(a1)

]
, (2.36)

by using the identities (2.1) and (2.36) we deduce (2.35). �

Remark 2.30. If we put w(u) = 1
b1−a1 , u ∈ [a1, b1] above identity reduces to Theorem

10 of [8].

Here we give the integral version of the above theorem.

Theorem 2.31. Let n ∈ N, ζ : [a1, b1]→ R be such that ζ(n) is an absolutely continuous
function with ζ(n+1) ≥ 0 on [a1, b1], let g : [α1, β1] → [a1, b1] and % : [α1, β1] → R be

functions such that
∫ β1

α1
%(χ)dχ = 0. Also, let the functions T and Ψ2 be defined in
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(2.26) and (2.30) respectively. Then we have representation (2.33) and the remainder
R2
n(ζ; a1, b1) satisfies the following estimation

|R2
n(ζ; a1, b1)| ≤ 1

(n− 1)!
‖Ψ′2‖∞

[
b1 − a1

2

[
ζ(n−1)(b1) + ζ(n−1)(a1)

]
−
[
ζ(n−2)(b1)− ζ(n−2)(a1)

]]
. (2.37)

Remark 2.32. If we put w(u) = 1
b1−a1 , u ∈ [a1, b1] above identity reduces to Theorem

11 of [8].

2.3. Ostrowski type inequalities via extension of Montgomery identity

Here we present some Ostrowski-type inequalities related to the generalized lin-
ear inequalities. Throughout the section, we use the following functions Ψ1 and Ψ2

defined as in (2.29) and (2.30).

Theorem 2.33. Let all the assumptions of Theorem 2.1 hold. Additionally, let ζ(n) ∈
Lq[a1, b1], 1 ≤ q, r ≤ ∞, 1

q + 1
r = 1, n ≥ 2, n ∈ N and let χ ∈ [a1, b1]γ and % ∈ Rγ

satisfy
γ∑
i=1

%i = 0 and

γ∑
i=1

%iχi = 0.

Then∣∣∣∣∣
γ∑
i=1

%iζ (χi)

−
n−2∑
κ=0

ζ(κ+1)(a1)

(κ+ 1)!

γ∑
i=1

%i

∫ χi

a1

w(ς)
(
(χi − a1)κ+1 − (ς − a1)κ+1

)
dς

−
n−2∑
κ=0

ζ(κ+1)(b1)

(κ+ 1)!

γ∑
i=1

%i

∫ b1

χi

w(ς)
(
(χi − b1)κ+1 − (ς − b1)κ+1

)
dς

∣∣∣∣∣
≤ 1

(n− 1)!
‖ζ(n)‖q ‖Ψ1‖r . (2.38)

The constant on the right hand sides of (2.38) is the best possible for q = 1 and sharp
for 1 < q ≤ ∞.

Proof. Let us denote

µ(ς) =
1

(n− 1)!
Ψ1(ς).

By using Hölder’s inequality on identity (2.1) we obtain inequality (2.38), i. e.

L.H.S. ≤ ‖ζ(n)‖q ‖µ‖r . (2.39)

Let us find a function ζ for the proof of the sharpness of the constant(∫ b1

a1

|µ(ς)|r dt

)1/r

,
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for which the equality in (2.39) is obtained.
For 1 < q <∞ take ζ to be s.t.

ζ(n)(ς) = sgnµ(ς) · |µ(ς)|1/(q−1).

For q =∞, take ζ s.t.

ζ(n)(ς) = sgnµ(ς).

Finally, for q = 1, we prove that∣∣∣∣∣
∫ b1

a1

µ(ς)ζ(n)(ς)dς

∣∣∣∣∣ ≤ max
ς∈[a1,b1]

|µ(ς)|
∫ b1

a1

ζ(n)(ς)dς (2.40)

is the best possible inequality.
Suppose that |µ(ς)| attains its maximum at ς0 ∈ [a1, b1]. First we consider the

case µ(ς0) > 0. For δ small enough we define ζ1δ(ς) by

ζ1δ(ς) =


0 , a1 ≤ ς ≤ ς0,

1

δn!
(ς − ς0)n , ς0 ≤ ς ≤ ς0 + δ,

1

(n− 1)!
(ς − ς0)n−1 , ς0 + δ1 ≤ ς ≤ b1.

So, we have ∣∣∣∣∣
∫ b1

a1

µ(ς)ζ
(n)
1δ (ς)dς

∣∣∣∣∣ =

∣∣∣∣∣
∫ ς0+δ

ς0

µ(ς)
1

δ
dς

∣∣∣∣∣ =
1

δ

∫ ς0+δ

ς0

µ(ς)dς

Now from inequality (2.40) we have

1

δ

∫ ς0+δ

ς0

µ(ς)dς ≤ µ(ς0)
1

δ

∫ ς0+δ

ς0

dς = µ(ς0)

Since

lim
δ→0

1

δ

∫ ς0+δ

ς0

µ(ς)dς = µ(ς0)

the statement follows.
In the case µ(ς0) < 0, we define ζ1δ(ς) by

ζ1δ(ς) =


1

(n− 1)!
(ς − ς0 − δ)n−1 , a ≤ ς ≤ ς0,

− 1

δn!
(ς − ς0 − δ)n , ς0 ≤ ς ≤ ς0 + δ,

0 , ς0 + δ ≤ ς ≤ b1.

and the rest of the proof is the same as above. �

Remark 2.34. If we put w(ς) = 1
b1−a1 in Theorem 2.33, we capture Theorem 12 of [8].

At the end of this section, we will present the integral version of the above
Theorem. We will skip the details because the proof is identical.
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Theorem 2.35. Let all the assumptions of Theorem 2.3 hold. Additionally, ζ(n) ∈
Lq[a1, b1], 1 ≤ q, r ≤ ∞, 1

q + 1
r = 1, n ≥ 2, n ∈ N and let g : [α1, β1] → [a1, b1] and

% : [α1, β1]→ R satisfy

∫ β1

α1

%(χ)dχ = 0 and

∫ β1

α1

%(χ)g(χ)dχ = 0.

Then

∣∣∣∣∣
∫ β1

α1

%(χ)ζ (g(χ))

−
n−2∑
κ=0

ζ(κ+1)(a1)

(κ+ 1)!

∫ β1

α1

%(χ)

∫ g(χ)

a1

w(ς)
(
(g(χ)− a1)κ+1 − (ς − a1)κ+1

)
dςdχ

−
n−2∑
κ=0

ζ(κ+1)(b1)

(κ+ 1)!

∫ β1

α1

%(χ)

∫ b1

g(χ)

w(ς)
(
(g(χ)− b1)κ+1 − (ς − b1)κ+1

)
dςdχ

∣∣∣∣∣
≤ 1

(n− 1)!
‖ζ(n)‖q ‖Ψ2‖r . (2.41)

The constant on the right hand side of (2.41) is the best possible for q = 1 and sharp
for 1 < q ≤ ∞.

Remark 2.36. If we put w(ς) = 1
b1−a1 in Theorem 2.35, we capture Theorem 13 of [8].

3. Popoviciu type identities and inequalities via extension of weighted
Montgomery identity using Green Functions

In the present section, we obtain some discrete and integral identities and corre-
sponding linear inequalities using Green functions and apply the extension of weighted
Montgomery identity. We’ll start by proving a few identities that will play a crucial
role in the rest of the article.

Theorem 3.1. Let ζ : I → R be such that ζ(n−1) is absolutely continuous, n ≥ 3,
n ∈ N, a1 < b1, a1, b1 ∈ I, I ⊂ R an open interval, w : [a1, b1] → [0,∞) is some
probability density function. Let % ∈ Rγ satisfy

γ∑
i=1

%i = 0 and

γ∑
i=1

%iχi = 0
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and χ ∈ [a1, b1]γ , Gl are as given by (1.13), (1.16)− (1.19). Then

γ∑
i=1

%iζ(χi) =

n−2∑
κ=0

ζ(κ+1)(a1)

κ!

∫ b1

a1

γ∑
i=1

%iGl(χi, ς)

×
[
w(ς)(ς − a1)κ + κ

∫ ς

a1

w(u)(ς − a1)κ−1du

]
dς

+

n−2∑
κ=0

ζ(κ+1)(b1)

κ!

∫ b1

a1

γ∑
i=1

%iGl(χi, ς)

×

[
−w(ς)(ς − b1)κ + κ

∫ b1

ς

w(u)(ς − b1)κ−1du

]
dς

+
1

(n− 3)!

∫ b1

a1

(∫ b1

a1

γ∑
i=1

%iGl(χi, ς)T̃w,n−2(ς, u)dς

)
ζ(n)(u)du, (3.1)

where

T̃w,n−2(ς, u) =


w(ς)(ς − u)n−2

(n− 2)
+W (ς)(ς − u)n−3, a1 ≤ u ≤ ς

w(ς)(ς − u)n−2

(n− 2)
+ (W (ς)− 1) (ς − u)n−3, ς < u ≤ b1.

(3.2)

Moreover, the following identity holds

γ∑
i=1

%iζ(χi) =

∫ b1

a1

γ∑
i=1

%iGl(χi, ς)

(∫ b1

a1

w(τ)ζ ′′(τ)dτ

)
dς

+

n−1∑
κ=3

1

(κ− 2)!

∫ b1

a1

γ∑
i=1

%iGl(χi, ς)

×
[
ζ(κ)(a1)

∫ ς

a1

w(u)
(
(ς − a1)κ−2 − (u− a1)κ−2

)
du

+ζ(κ)(b1)

∫ b1

ς

w(u)
(
(ς − b1)κ−2 − (u− b1)κ−2

)
du

]
dς

+
1

(n− 3)!

∫ b1

a1

ζ(n)(u)

(∫ b1

a1

γ∑
i=1

%iGl(χi, ς)Tw,n−2(ς, u)dς

)
du, (3.3)

where Tw,n is as defined in (1.10).

Proof. Using (1.14) in

γ∑
i=1

%iζ(χi) and the fact that

γ∑
i=1

%i = 0 and

γ∑
i=1

%iχi = 0 we

get
γ∑
i=1

%iζ(χi) =

∫ b1

a1

γ∑
i=1

%iGl(χi, ς)ζ
′′(ς)dς. (3.4)
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Differentiating the function f in (1.9) twice gives

ζ ′′(ς) =

n−2∑
κ=0

f (κ+1)(a1)

κ!

[
w(ς)(ς − a1)κ + κ

∫ ς

a1

w(u)(ς − a1)κ−1du

]

+

n−2∑
κ=0

f (κ+1)(b1)

κ!

[
−w(ς)(ς − b1)κ + κ

∫ b1

ς

w(u)(ς − b1)κ−1du

]

+
1

(n− 3)!

∫ b1

a1

T̃w,n−2(ς, u)ζ(n)(u)du. (3.5)

Inserting (3.5) in (3.4) yields

γ∑
i=1

%iζ(χi) =

n−2∑
κ=0

ζ(κ+1)(a1)

κ!

∫ b1

a1

γ∑
i=1

%iGl(χi, ς)

×
[
w(ς)(ς − a1)κ + κ

∫ ς

a1

w(u)(ς − a1)κ−1du

]
dς

+

n−2∑
κ=0

ζ(κ+1)(b1)

κ!

∫ b1

a1

γ∑
i=1

%iGl(χi, ς)

×

[
−w(ς)(ς − b1)κ + κ

∫ b1

ς

w(u)(ς − b1)κ−1du

]
dς

+
1

(n− 3)!

∫ b1

a1

γ∑
i=1

%iGl(χi, ς)

(∫ b1

a1

T̃w,n−2(ς, u)ζ(n)(u)du

)
dς.

and in the last term, by applying the Fubini’s theorem we get (3.1).
Furthermore, in (1.9) by replacing ζ −→ ζ ′′ and n −→ n − 2 respectively, and

after some rearrangements we get

ζ ′′(ς) =

∫ b1

a1

w(τ)ζ ′′(τ)dτ

+

n−1∑
κ=3

1

(κ− 2)!

[
ζ(κ)(a1)

∫ ς

a1

w(u)
(
(ς − a1)κ−2 − (u− a1)κ−2

)
du

+ζ(κ)(b1)

∫ b1

ς

w(u)
(
(ς − b1)κ−2 − (u− b1)κ−2

)
du

]

+
1

(n− 3)!

∫ b1

a1

Tw,n−2(ς, u)ζ(n)(u)du. (3.6)

Similarly, using (3.6) in (3.4) and applying Fubini’s Theorem we get (3.3). �

Remark 3.2. If we put w(τ) = 1
b1−a1 in Theorem 3.1, we capture Theorem 2.1 of [9].

Now we will discuss some inequalities that can be obtained from the previous
identities.
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Theorem 3.3. Under the assumptions of Theorem 3.1 with the additional condition∫ b1

a1

γ∑
i=1

%iGl(χi, ς)T̃w,n−2(ς, u)dς ≥ 0, ∀ u ∈ [a1, b1], (3.7)

where Gl and T̃w,n−2 are given in (1.13), (1.16)− (1.19) and (3.2). If ζ is n−convex,
then the following inequality holds

γ∑
i=1

%iζ(χi)−
n−2∑
κ=0

ζ(κ+1)(a1)

κ!

∫ b1

a1

γ∑
i=1

%iGl(χi, ς)

×
[
w(ς)(ς − a1)κ + κ

∫ ς

a1

w(u)(ς − a1)κ−1du

]
dς

−
n−2∑
κ=0

ζ(κ+1)(b1)

κ!

∫ b1

a1

γ∑
i=1

%iGl(χi, ς)

×

[
−w(ς)(ς − b1)κ + κ

∫ b1

ς

w(u)(ς − b1)κ−1du

]
dς ≥ 0. (3.8)

Proof. Using the fact that function ζ is n−convex, we have ζ(n) ≥ 0 and (3.7) in (3.1)
we obtain our required result. �

Remark 3.4. If we put w(τ) = 1
b1−a1 in Theorem 3.3, we capture Theorem 2.2 of [9].

Theorem 3.5. Under the assumptions of Theorem 3.1 with the additional condition∫ b1

a1

γ∑
i=1

%iGl(χi, ς)Tw,n−2(ς, u)dς ≥ 0, ∀ u ∈ [a1, b1], (3.9)

where Gl and Tw,n are defined in (1.13), (1.16)− (1.19) and (1.10). If ζ is n−convex,
then the following inequality holds

γ∑
i=1

%iζ(χi)−
∫ b1

a1

γ∑
i=1

%iGl(χi, ς)

(∫ b1

a1

w(τ)ζ ′′(τ)dτ

)
dς

−
n−1∑
κ=3

1

(κ− 2)!

∫ b1

a1

γ∑
i=1

%iGl(χi, ς)

×
[
ζ(κ)(a1)

∫ ς

a1

w(u)
(
(ς − a1)κ−2 − (u− a1)κ−2

)
du

+ζ(κ)(b1)

∫ b1

ς

w(u)
(
(ς − b1)κ−2 − (u− b1)κ−2

)
du

]
dς ≥ 0. (3.10)

Proof. Using the fact that the function ζ is n−convex, we have ζ(n) ≥ 0 and (3.9) in
(3.3), we easily arrive at our required result. �

Remark 3.6. If we put w(τ) = 1
b1−a1 in Theorem 3.5, we capture Theorem 2.3 of [9].

Here we discuss a major consequence.
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Theorem 3.7. Under the assumptions of Theorem 3.1 and additionally,

γ∑
i=1

%i = 0 and

γ∑
i=1

%i|χi − χk| ≥ 0

for κ ∈ {1, . . . , γ}. If n is even and ζ is n−convex, then inequalities (3.8) and (3.10)
hold.

Proof. The Green’s function Gl(ς, τ) is convex w.r.t τ ∀ ς ∈ [a1, b1]. Therefore, from
Proposition 1.5, with conditions (1.5) and (1.6) replaced by (1.4) as in [15], we have

γ∑
i=1

%iG(χi, ς) ≥ 0 ∀ ς ∈ [a1, b1]. (3.11)

Here T̃w,n−2(ς, τ) ≥ 0 and Tw,n−2(ς, τ) ≥ 0 because n is even. By combining this fact
with (3.11) we get inequalities (3.7) and (3.9). As ζ is n−convex, the results follow
from Theorems 3.3 and 3.5. �

Remark 3.8. If we put w(τ) = 1
b1−a1 in Theorem 3.7, we capture Theorem 2.4 of [9]

Following that, we will present the integral versions of our main findings. We
will skip the details because the proofs are identical to discrete version.

Theorem 3.9. Let ζ : I → R be a function such that ζ(n−1) is absolutely continuous,
n ≥ 3, n ∈ N, a1 < b1, a1, b1 ∈ I, I ⊂ R an open interval, w : [a1, b1]→ [0,∞) is some

probability density function. Additionally, let % : [α1, β1] → R satisfy
∫ β1

α1
%(χ)dχ = 0

and g : [α1, β1]→ [a1, b1],
∫ β1

α1
%(χ)g(χ)dχ = 0, and let Gl, T̃w,n and Tw,n be given by

(1.13), (1.16)− (1.19), (3.2) and (1.10). Then the following two identities hold:

∫ β1

α1

%(χ)ζ(g(χ))dχ =

n−2∑
κ=0

ζ(κ+1)(a1)

κ!

∫ b1

a1

∫ β1

α1

%(χ)Gl(g(χ), ς)

×
[
w(ς)(ς − a1)κ + κ

∫ ς

a1

w(u)(ς − a1)κ−1du

]
dχdς

+

n−2∑
κ=0

ζ(κ+1)(b1)

κ!

∫ b1

a1

∫ β1

α1

%(χ)Gl(g(χ), ς)

×

[
−w(ς)(ς − b1)κ + κ

∫ b1

ς

w(u)(ς − b1)κ−1du

]
dχdς

+
1

(n− 3)!

∫ b1

a1

((∫ β1

α1

%(χ)Gl(g(χ), ς)dχ

)
T̃w,n−2(ς, u)dς

)
ζ(n)(u)du. (3.12)
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and

∫ β1

α1

%(χ)ζ(g(χ))dχ =

∫ b1

a1

∫ β1

α1

%(χ)Gl(g(χ), ς)dχ

(∫ b1

a1

w(τ)ζ ′′(τ)dτ

)
dς

+

n−1∑
κ=3

1

(κ− 2)!

∫ b1

a1

(∫ β1

α1

%(χ)Gl(g(χ), ς)dχ

)
×[

ζ(κ)(a1)

∫ ς

a1

w(u)
(
(ς − a1)κ−2 − (u− a1)κ−2

)
du

+ζ(κ)(b1)

∫ b1

ς

w(u)
(
(ς − b1)κ−2 − (u− b1)κ−2

)
du

]
dς

+
1

(n− 3)!

∫ b1

a1

ζ(n)(u)

(∫ b1

a1

(∫ β1

α1

%(χ)Gl(g(χ), ς)dχ

)
Tw,n−2(ς, u)dς

)
du. (3.13)

Remark 3.10. If we put w(τ) = 1
b1−a1 in Theorem 3.9, we capture Theorem 2.5 of [9].

Theorem 3.11. Under the assumptions of Theorem 2.3 with the additional condition∫ b1

a1

∫ β1

α1

% (χ)Gl(g(χ), ς) T̃w,n−2(ς, u) dχ dς ≥ 0, ∀ u ∈ [a1, b1] (3.14)

where Gl is defined in (1.13), (1.16) − (1.19) and T̃w,n is given in (3.2). If ζ is
n−convex, then the following inequality holds∫ β1

α1

% (χ) ζ(g(χ)) dχ−
n−2∑
κ=0

ζ(κ+1)(a1)

κ!

∫ b1

a1

∫ β1

α1

%(χ)Gl(g(χ), ς)

×
[
w(ς)(ς − a1)κ + κ

∫ ς

a1

w(u)(ς − a1)κ−1du

]
dχdς

−
n−2∑
κ=0

ζ(κ+1)(b1)

κ!

∫ b1

a1

∫ β1

α1

%(χ)Gl(g(χ), ς)

×

[
−w(ς)(ς − b1)κ + κ

∫ b1

ς

w(u)(ς − b1)κ−1du

]
dχdς ≥ 0. (3.15)

Remark 3.12. If we put w(τ) = 1
b1−a1 in Theorem 3.11, we capture Theorem 2.6 of

[9].

Theorem 3.13. Under the assumptions of Theorem 2.3 with the additional condition∫ b1

a1

∫ β1

α1

% (χ)Gl(g(χ), ς)Tw,n−2(ς, u)dχ dς ≥ 0, ∀ u ∈ [a1, b1], (3.16)
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where Gl is defined in (1.13), (1.16) − (1.19) and Tw,n is given in (1.10). If ζ is
n−convex, then the following inequality holds

∫ β1

α1

%(χ)ζ(g(χ))dχ−
∫ b1

a1

∫ β1

α1

%(χ)Gl(g(χ), ς)dχ

(∫ b1

a1

w(τ)ζ ′′(τ)dτ

)
dς

−
n−1∑
κ=3

1

(κ− 2)!

∫ b1

a1

(∫ β1

α1

%(χ)Gl(g(χ), ς)dχ

)

×
[
ζ(κ)(a1)

∫ ς

a1

w(u)
(
(ς − a1)κ−2 − (u− a1)κ−2

)
du

−ζ(κ)(b1)

∫ b1

ς

w(u)
(
(ς − b1)κ−2 − (u− b1)κ−2

)
du

]
dς ≥ 0. (3.17)

Remark 3.14. If we put w(τ) = 1
b1−a1 in Theorem 3.13, we capture Theorem 2.7 of

[9].

Theorem 3.15. Under the assumptions of Theorem 3.9 and additionally let g :
[α1, β1] → [a1, b1] and % : [α1, β1] → R satisfy (1.8). If n is even and ζ is n−convex,
then inequalities (3.15) and (3.17) hold.

Remark 3.16. If we put w(τ) = 1
b1−a1 in above, we capture Theorem 2.8 of [9]

3.1. Inequalities related to n-convex functions at a point

In the present subsection, we would like to discuss some results related to the
Green function following the definition of convexity at a point (Definition 2.17 of
subsection 2.1). Here we improve results from previous subsection. More specifically,

let T
[a1,c1]
w,n and T

[c1,b1]
w,n represent the same as (1.10) on these intervals, i.e.,

T [a1,c1]
w,n (χ, ς) =



∫ ς

χ

w(u)(u− ς)n−1du+W (χ)(χ− ς)n−1,

a1 ≤ ς ≤ χ;∫ ς

χ

w(u)(u− ς)n−1du+ (W (χ)− 1) (χ− ς)n−1,

χ < ς ≤ c1;

(3.18)

T [c1,b1]
w,n (χ, ς) =



∫ ς

χ

w(u)(u− ς)n−1du+W (χ)(χ− ς)n−1,

c1 ≤ ς ≤ χ;∫ ς

χ

w(u)(u− ς)n−1du+ (W (χ)− 1) (χ− ς)n−1,

χ < ς ≤ b1.

(3.19)
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Similarly, T̃
[a1,c1]
w,n−2 and T̃

[c1,b1]
w,n−2 denote equivalent of (3.2) on these intervals, i.e.,

T̃
[a1,c1]
w,n−2(ς, u) =


w(ς)(ς − u)n−2

(n− 2)
+W (ς)(ς − u)n−3, a1 ≤ u ≤ ς;

w(ς)(ς − u)n−2

(n− 2)
+ (W (ς)− 1) (ς − u)n−3, ς < u ≤ b1;

(3.20)

T̃
[c1,b1]
w,n−2(ς, u) =


w(ς)(ς − u)n−2

(n− 2)
+W (ς)(ς − u)n−3, c1 ≤ u ≤ ς;

w(ς)(ς − u)n−2

(n− 2)
+ (W (ς)− 1) (ς − u)n−3, ς < u ≤ b1.

(3.21)

Let χ ∈ [a1, c1]γ , % ∈ Rγ , y ∈ [c1, b1]` and q ∈ R` and denote

Λ1(ζ) =

γ∑
i=1

%iζ(χi)−
n−2∑
κ=0

ζ(κ+1)(a1)

κ!

∫ c1

a1

γ∑
i=1

%iG(χi, ς)

×
[
w(ς)(ς − a1)κ + κ

∫ ς

a1

w(u)(ς − a1)κ−1du

]
dς

−
n−2∑
κ=0

ζ(κ+1)(c1)

κ!

∫ c1

a1

γ∑
i=1

%iG(χi, ς)

×
[
−w(ς)(ς − c1)κ + κ

∫ c1

ς

w(u)(ς − c1)κ−1du

]
dς, (3.22)

Ξ1(ζ) =
∑̀
i=1

qiζ(y)−
n−2∑
κ=0

ζ(κ+1)(c1)

κ!

∫ b1

c1

∑̀
i=1

qiG(yi, ς)

×
[
w(ς)(ς − c1)κ + κ

∫ ς

c1

w(u)(ς − c1)κ−1du

]
dς

−
n−2∑
κ=0

ζ(κ+1)(b1)

κ!

∫ b1

c1

∑̀
i=1

qiG(yi, ς)

×

[
−w(ς)(ς − b1)κ + κ

∫ b1

ς

w(u)(ς − b1)κ−1du

]
dς. (3.23)

Identity (3.1) applied to the intervals [a1, c1] and [c1, b1] and by using the functionals
Λ1 and Ξ1 can be written as

Λ1(ζ) =
1

(n− 3)!

∫ c1

a1

(∫ c1

a1

γ∑
i=1

%iGl(χi, ς)T̃
[a1,c1]
w,n−2(ς, u)dς

)
ζ(n)(u)du, (3.24)

Ξ1(ζ) =
1

(n− 3)!

∫ b1

c1

(∫ b1

c1

∑̀
i=1

qiGl(yi, ς)T̃
[c1,b1]
w,n−2(ς, u)dς

)
ζ(n)(u)du. (3.25)
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In the same manner, we can introduce further functionals namely

Λ2(ζ) =
1

(n− 3)!

∫ c1

a1

(∫ c1

a1

γ∑
i=1

%iGl(χi, ς)T
[a1,c1]
w,n−2(ς, u)dς

)
ζ(n)(u)du, (3.26)

Ξ2(ζ) =
1

(n− 3)!

∫ b1

c1

(∫ b1

c1

∑̀
i=1

qiGl(yi, ς)T
[c1,b1]
w,n−2(ς, u)dς

)
ζ(n)(u)du, (3.27)

Λ3(ζ) =
1

(n− 3)!

∫ c1

a1

(∫ c1

a1

(∫ β1

α1

%(χ)Gl(g(χ), ς)dχ

)
×T̃ [a1,c1]

w,n−2(ς, u)dς
)
ζ(n)(u)du, (3.28)

Ξ3(ζ) =
1

(n− 3)!

∫ b1

c1

(∫ b1

c1

(∫ β1

α1

q(y)Gl(g(y), ς)dy

)
×T̃ [c1,b1]

w,n−2(ς, u)dς
)
ζ(n)(u)du, (3.29)

Λ4(ζ) =
1

(n− 3)!

∫ c1

a1

(∫ c1

a1

(∫ β1

α1

%(χ)Gl(g(χ), ς)dχ

)
× T

[a1,c1]
w,n−2(ς, u)dς

)
ζ(n)(u)du, (3.30)

Ξ4(ζ) =
1

(n− 3)!

∫ b1

c1

(∫ b1

c1

(∫ β1

α1

q(y)Gl(g(y), ς)dy

)
×T [c1,b1]

w,n−2(ς, u)dς
)
ζ(n)(u)du. (3.31)

Theorem 3.17. Let χ ∈ [a1, c1]γ , % ∈ Rγ , y ∈ [c1, b1]l and q ∈ Rl be such that∫ c1

a1

γ∑
i=1

%iGl(χi, ς)T̃
[a1,c1]
n−2 (ς, u) dς ≥ 0, ∀ u ∈ [a1, c1], (3.32)

∫ b1

c1

γ∑
i=1

qiGl(yi, ς)T̃
[c1,b1]
n−2 (ς, u) dς ≥ 0, ∀ u ∈ [c1, b1], (3.33)

∫ c1

a1

(∫ c1

a1

γ∑
i=1

%iGl(χi, ς)T̃
[a1,c1]
w,n−2(ς, u)dς

)
du

=

∫ b1

c1

(∫ b1

c1

∑̀
i=1

qiGl(yi, ς)T̃
[c1,b1]
w,n−2(ς, u)dς

)
du, (3.34)

where T̃
[a1,c1]
w,n−2 , T̃

[c1,b1]
w,n−2, Λ1 and Ξ1 are given by (3.20), (3.21), (3.22) and (3.23) res-

pectively. If ζ : [a1, b1]→ R is (n+ 1)−convex at point c1, then

Λ1(ζ) ≤ Ξ1(ζ). (3.35)
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If inequalities in (3.32) and (3.33) are reversed, then (3.35) is valid with reversed sign
of inequality.

Remark 3.18. From proof of Theorem 3.17 we have

Λ1(ζ) ≤ K

n!
Λ1(en) =

K

n!
Ξ1(en) ≤ Ξ1(ζ).

In fact, inequality (3.35) still is valid if we replace assumption (3.34) with weaker
assumption that

K (Ξ1(en)− Λ1(en)) ≥ 0.

Remark 3.19. If we put w(u) = 1
b1−a1 in above identity, we capture Theorem 2.11 of

[7].

Here we have another similar result.

Theorem 3.20. Let χ ∈ [a1, c1]γ , % ∈ Rγ , y ∈ [c1, b1]l and q ∈ Rl be such that∫ c1

a1

γ∑
i=1

%iGl(χi, ς)T
[a1,c1]
n−2 (ς, u) dς ≥ 0, ∀ u ∈ [a1, c1], (3.36)

∫ b1

c1

γ∑
i=1

qiGl(yi, ς)T
[c1,b1]
n−2 (ς, u) dς ≥ 0, ∀ u ∈ [c1, b1], (3.37)

∫ c1

a1

(∫ c1

a1

γ∑
i=1

%iGl(χi, ς)T
[a1,c1]
w,n−2(ς, u)dς

)
du

=

∫ b1

c1

(∫ b1

c1

∑̀
i=1

qiGl(yi, ς)T
[c1,b1]
w,n−2(ς, u)dς

)
du, (3.38)

where T
[a1,c1]
w,n−2 , T

[c1,b1]
w,n−2, Λ2 and Ξ2 are given by (3.18), (3.19), (3.26) and (3.27) res-

pectively. If ζ : [a1, b1]→ R is (n+ 1)−convex at point c1, then

Λ2(ζ) ≤ Ξ2(ζ). (3.39)

If inequalities in (3.36) and (3.37) are reversed, then (3.39) is valid with reversed sign
of inequality.

Remark 3.21. If we put w(u) = 1
b1−a1 in above identity, we capture Theorem 2.13 of

[7].

Remark 3.22. Similar results can also be stated for integral versions as well by using
functionals Λ3(ζ), Ξ3(ζ), Λ4(ζ) and Ξ4(ζ) as defined in (3.28), (3.29) (3.30) and (3.31)
respectively.
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3.2. Bounds for identities related to the Popoviciu-type inequalities

Under the assumptions of Theorems 3.1 and 3.9, we denote the following func-
tions Ωj , j ∈ {1, 2, 3, 4}, define as

Ω1(τ) =

∫ b1

a1

γ∑
i=1

%iG(χi, ς)T̃w,n−2(ς, u)dς, u ∈ [a1, b1];

Ω2(τ) =

∫ b1

a1

γ∑
i=1

%iG(χi, ς)Tw,n−2(ς, u)dς ≥ 0, u ∈ [a1, b1];

Ω3(τ) =

∫ b1

a1

∫ β1

α1

% (χ)G(g(χ), ς) T̃w,n−2(ς, u) dχ dς, u ∈ [a1, b1];

Ω4(τ) =

∫ b1

a1

∫ β1

α1

% (χ)G(g(χ), ς)Tw,n−2(ς, u)dχ dς, u ∈ [a1, b1].

Theorem 3.23. Let n ∈ N, n ≥ 3, ζ : [a1, b1] → R be such that ζ(n) is an absolutely
continuous function with (· − a1)(b1 − ·)[ζ(n+1)]2 ∈ L[a1, b1] and let χ ∈ [a1, b1]γ and
% ∈ Rγ satisfy

γ∑
i=1

%i = 0 and

γ∑
i=1

%iχi = 0.

Then

γ∑
i=1

%iζ(χi) =

n−2∑
κ=0

ζ(κ+1)(a1)

κ!

∫ b1

a1

γ∑
i=1

%iGl(χi, ς)

×
[
w(ς)(ς − a1)κ + κ

∫ ς

a1

w(u)(ς − a1)κ−1du

]
dς

+

n−2∑
κ=0

ζ(κ+1)(b1)

κ!

∫ b1

a1

γ∑
i=1

%iGl(χi, ς)

×

[
−w(ς)(ς − b1)κ + κ

∫ b1

ς

w(u)(ς − b1)κ−1du

]
dς

+
ζ(n−1)(b1)− ζ(n−1)(a1)

(n− 3)!(b1 − a1)

∫ b1

a1

Ω1(ς)dς +R1
n(ζ; a1, b1), (3.40)

and

γ∑
i=1

%iζ(χi) =

∫ b1

a1

γ∑
i=1

%iGl(χi, ς)

(∫ b1

a1

w(τ)ζ ′′(τ)dτ

)
dς

+

n−1∑
κ=3

1

(κ− 2)!

∫ b1

a1

γ∑
i=1

%iGl(χi, ς)
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×
[
ζ(κ)(a1)

∫ ς

a1

w(u)
(
(ς − a1)κ−2 − (u− a1)κ−2

)
du

+ζ(κ)(b1)

∫ b1

ς

w(u)
(
(ς − b1)κ−2 − (u− b1)κ−2

)
du

]
dς

+
ζ(n−1)(b1)− ζ(n−1)(a1)

(n− 3)!(b1 − a1)

∫ b1

a1

Ω2(ς)dς +R2
n(ζ; a1, b1), (3.41)

where the remainders Rjn(ζ; a1, b1), j = 1, 2, satisfy the bounds

|Rjn(ζ; a1, b1)| ≤ 1

(n− 3)!

×

(
(b1 − a1)

2

∣∣∣∣∣T (Ωj ,Ωj)

∫ b1

a1

(ς − a1)(b1 − ς)[ζ(n+1)(ς)]2dς

∣∣∣∣∣
)1/2

. (3.42)

Remark 3.24. If we put w(u) = 1
b1−a1 , u ∈ [a1, b1] above identity reduces to Theorem

3.3 of [9].

By using Proposition 2.24, we obtain the following Grüss type inequality.

Theorem 3.25. Let n ∈ N, n ≥ 3, ζ : [a1, b1] → R be such that ζ(n) is an absolutely
continuous function with ζ(n+1) ≥ 0 and let χ ∈ [a1, b1]γ and % ∈ Rγ satisfy

γ∑
i=1

%i = 0 and

γ∑
i=1

%iχi = 0.

Then representations (3.40) and (3.41) hold and the remainders Rjn(ζ; a1, b1), j = 1, 2,
satisfy the bounds

|Rjn(ζ; a1, b1)| ≤ 1

(n− 3)!
‖Ω′j‖∞

{
b1 − a1

2

[
ζ(n−1)(b1) + ζ(n−1)(a1)

]
−
[
ζ(n−2)(b1)− ζ(n−2)(a1)

]}
. (3.43)

Remark 3.26. If we put w(u) = 1
b1−a1 , u ∈ [a1, b1] above identity reduces to Theorem

3.4 of [9].

Remark 3.27. Similar results can also be stated for the integral version as well by
using functional Ψj , where j ∈ {3, 4}.

3.3. Ostrowski type inequalities via extension of Montgomery identity and Green
functions

Here we present some Ostrowski-type inequalities related to the generalized
linear inequalities. Throughout the section, we use the following functions Ωj , j ∈
{1, 2, 3, 4} defined as in the previous subsection.
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Theorem 3.28. Let ζ(n) ∈ Lq[a1, b1], 1 ≤ q, r ≤ ∞, 1
q + 1

r = 1, n ≥ 3, n ∈ N,

j ∈ {1, 2, 3, 4}. Then∣∣∣∣∣
γ∑
i=1

%iζ(χi)−
n−2∑
κ=0

ζ(κ+1)(a1)

κ!

∫ b1

a1

γ∑
i=1

%iG(χi, ς)

×
[
w(ς)(ς − a1)κ + κ

∫ ς

a1

w(u)(ς − a1)κ−1du

]
dς

−
n−2∑
κ=0

ζ(κ+1)(b1)

κ!

∫ b1

a1

γ∑
i=1

%iG(χi, ς)

×

[
−w(ς)(ς − b1)κ + κ

∫ b1

ς

w(u)(ς − b1)κ−1du

]
dς

∣∣∣∣∣
≤ 1

(n− 3)!
‖ζ(n)‖q ‖Ωj‖r , (3.44)

and∣∣∣∣∣
γ∑
i=1

%iζ(χi)−
∫ b1

a1

γ∑
i=1

%iG(χi, ς)

(∫ b1

a1

w(τ)ζ ′′(τ)dτ

)
dς

−
n−1∑
κ=3

1

(κ− 2)!

∫ b1

a1

γ∑
i=1

%iG(χi, ς)

×
[
ζ(κ)(a1)

∫ ς

a1

w(τ)
(
(ς − a1)κ−2 − (τ − a1)κ−2

)
dt

+ζ(κ)(b1)

∫ b1

ς

w(τ)
(
(ς − b1)κ−2 − (τ − b1)κ−2

)
dt

]
dς

∣∣∣∣∣
≤ 1

(n− 3)!
‖ζ(n)‖q ‖Ω2‖r . (3.45)

The constant on the right hand sides of (3.44) and (3.45) is the best possible for q = 1
and sharp for 1 < q ≤ ∞.

Remark 3.29. If we put w(τ) = 1
b1−a1 in Theorem 3.28, we capture Theorem 3.5 for

j ∈ {1, 2} and Theorem 3.8 for j ∈ {3, 4} of [9].

4. Conclusion and remarks

In this article, we have given a generalization of the results stated in [8] and
[9](see also [10]) by introducing weights which are probability density functions. If
we put our weights equal to 1

b1−a1 in our proposed results, we will capture almost

all the results of [8], [9] and [10] as our special cases. Due to the general nature of
the article, in some places we have used the Leibnitz rule of integration due to the
involvement of the variable of integration in the limit of the integral as well. In our
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subsections we stated results, related to n−convexity at a point for Popoviciu-type
inequalities involving the weighted version of the extension of Montgomery’s identity
and similar results for Popoviciu-type inequalities involving the weighted version of
the extended Montgomery’s identity with Green functions. We have also discussed the
bounds of remainders for our proposed results using C̆ebys̆ev functional and Grüss
type inequalities. In the end of sections we obtained bounds of Ostrowski type. Such
results are also valid in the context of Green functions.
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Certain class of analytic functions defined by
q−analogue of Ruscheweyh differential operator

Mohamed K. Aouf, Adela O. Moustafa and Fawziah Y. Al-Quhali

Abstract. In this paper, we obtain coefficient estimates, distortion theorems, radii
of close-to-convexity, starlikeness and convexity for functions belonging to the
class TBλq (α, β) of analytic starlike and convex functions defined by q−analogue
of Ruscheweyh differential operator. Also we find closure theorems, Nk,q,δ(e, g)
neighborhood and partial sums for functions in this class.
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1. Introduction

Let S be the class of analytic and univalent functions of the form:

f(z) = z +

∞∑
k=2

akz
k , z ∈ U = {z : z ∈ C : |z| < 1} . (1.1)

Also let S∗(α) and C(α) denote the subclasses of S which are, respectively,
starlike and convex functions of order α(0 ≤ α < 1), satisfying (see Robertson [30])

S∗(α) =

{
f : f ∈ S and Re

(
zf
′
(z)

f(z)

)
> α

}
, (1.2)

and

C(α) =

{
f : f ∈ S and Re

(
1 +

zf
′′

(z)

f ′(z)

)
> α

}
. (1.3)
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This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives

4.0 International License.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


50 Mohamed K. Aouf, Adela O. Moustafa and Fawziah Y. Al-Quhali

It readily follows from (1.2) and (1.3) that

f(z) ∈ C(α)⇔ zf
′
(z) ∈ S∗(α).

For 0 < q < 1 the Jackson’s q−derivative of a function f(z) ∈ S is given by [22]
(see also [2, 3, 8, 13, 17, 20, 24, 34, 35, 39])

Dqf(z) =

{
f(z)−f(qz)

(1−q)z for z 6= 0,

f
′
(0) for z = 0,

(1.4)

For f(z) of the form (1.1), we have

Dqf(z) = 1 +

∞∑
k=2

[k]q akz
k−1, (1.5)

where

[n]q =
1− qn

1− q
(0 < q < 1; n ∈ N = {1, 2, ...}). (1.6)

Kanas and Raducanu [23] (see also Aldweby and Darus [1]) defined the q−analogue
of Ruscheweyh operator by

Rλq f(z) = z +

∞∑
k=2

[k+λ−1]q !

[λ]q ![k−1]q !
akz

k (0 < q < 1;λ ≥ 0), (1.7)

where

[n]q! =

{
[n]q [n− 1]q ... [1]q , n ∈ N,

1, n = 0,
(1.8)

From (1.7) we obtain that

R0
qf(z) = f(z) and R1

qf(z) = zDqf(z),

and

lim
q−→1−

Rλq f(z) = z +

∞∑
k=2

(k + λ− 1)!

λ! (k − 1)!
akz

k = Rλf(z), (1.9)

where Rλ is the Ruscheweyh differential operator (see [32] and [4, 7, 10, 14, 18]).

Definition 1.1. For 0 < q < 1, 0 ≤ α < 1, β ≥ 0 and λ ≥ 0, let Bλq (α, β) be the class
of functions f ∈ S satisfying

Re

{
zDq(R

λ
q f(z))

Rλq f(z)
− α

}
> β

∣∣∣∣∣zDq(R
λ
q f(z))

Rλq f(z)
− 1

∣∣∣∣∣ . (1.10)

Let T ⊂ S such that:

T =

{
f ∈ S : f(z) = z −

∞∑
k=2

akz
k , ak ≥ 0

}
, (1.11)

and

TBλq (α, β) = Bλq (α, β) ∩ T . (1.12)

Note that
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(i) TB0
q(α, β) =Sqp(α, β) =

{
f ∈ T : Re

{
zDqf(z)
f(z) − α

}
>β

∣∣∣ zDqf(z)
f(z) − 1

∣∣∣ , z ∈ U
}

;

(ii) TB0
q(α, 0) =TBq(α) =

{
f ∈ T : Re

{
zDqf(z)
f(z)

}
> α

}
;

(iii) lim
q→1−

TB0
q(α, β) = Sp(α, β) = {f ∈ T : Re

{
zf
′
(z)

f(z) − α
}

> β

{
zf
′
(z)

f(z) − 1

}
, z ∈ U} (see [29] and [36]);

(iv) TB1
q(α, β) = UCSqp(α, β) = {f ∈ T : Re

{
Dq(zDqf(z))
Dqf(z) − α

}
> β

∣∣∣Dq(zDqf(z))
Dqf(z) − 1

∣∣∣ , z ∈ U};

(v) TB1
q(α, 0) = Cq(α) = {f ∈ T : Re

{
Dq(zDqf(z))
Dqf(z)

}
> α, z ∈ U};

(vi) lim
q→1−

TB1
q(α, β) = UCSp(α, β) = {f ∈ T : Re

{
1 + zf

′′
(z)

f ′ (z)
− α

}
> β

∣∣∣∣ zf ′′ (z)f ′ (z)

∣∣∣∣ , z ∈ U} (see [29]);

(vii) lim
q→1−

TBλq (α, β) = Sλp (α, β) (see Rosy et al. [31]).

2. Coefficient estimates

Unless indicated, we assume that 0 ≤ α < 1, β ≥ 0, λ ≥ 0, 0 < q < 1 and
f(z) ∈ T .

Theorem 2.1. A function f(z) ∈TBλq (α, β) if and only if

∞∑
k=2

[
[k]q (1 + β)− (α+ β)

]
[k+λ−1]q !

[λ]q ![k−1]q !
ak ≤ 1− α. (2.1)

Proof. Assume that (2.1) holds. Then it is suffices to show that

β

∣∣∣∣∣zDq(R
λ
q f(z))

Rλq f(z)
− 1

∣∣∣∣∣− Re

{
zDq(R

λ
q f(z))

Rλq f(z)
− 1

}
≤ 1− α.

We have

β

∣∣∣∣∣zDq(R
λ
q f(z))

Rλq f(z)
− 1

∣∣∣∣∣− Re

{
zDq(R

λ
q f(z))

Rλq f(z)
− 1

}

≤ (1 + β)

∣∣∣∣∣zDq(R
λ
q f(z))

Rλq f(z)
− 1

∣∣∣∣∣
≤

(1+β)
∞∑
k=2

[k+λ−1]q !

[λ]q ![k−1]q !
([k]q−1)ak

1−
∞∑
k=2

[k+λ−1]q !

[λ]q ![k−1]q !
ak

.

This last expression is bounded above by (1− α) since (2.1) holds.
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Conversely if f(z) ∈TBλq (α, β) and z is real, then

Re

 1−
∞∑
k=2

[k+λ−1]q !

[λ]q ![k−1]q !
[k]qakz

k−1

1−
∞∑
k=2

[k+λ−1]q !

[λ]q ![k−1]q !
akzk−1

− α

 ≥ β
∣∣∣∣∣∣
∞∑
k=2

[k+λ−1]q !

[λ]q ![k−1]q !
([k]q−1)akz

k−1

1−
∞∑
k=2

[k+λ−1]q !

[λ]q ![k−1]q !
akzk−1

∣∣∣∣∣∣ .
Letting z → 1− along the real axis, we obtain (2.1). Hence the proof is completed. �

Corollary 2.2. For f(z) ∈ TBλq (α, β),

ak ≤
1− α[

[k]q (1 + β)− (α+ β)
]

[k+λ−1]q !

[λ]q ![k−1]q !

(k ≥ 2) (2.2)

and

f(z) = z − 1− α[
[k]q (1 + β)− (α+ β)

]
[k+λ−1]q !

[λ]q ![k−1]q !

zk (k ≥ 2), (2.3)

gives the sharpness.

Remark 2.1. Letting q → 1− in the results of Section 2, we get the results of Section
2 for the class Sλp (α, β) studied by Rosy et al. [31].

3. Growth and distortion theorems

Theorem 3.1. For f(z) ∈ TBλq (α, β) and |z| = r < 1, we have

|f(z)| ≥ r − 1− α[
[2]q (1 + β)− (α+ β)

]
[1 + λ]q

r2, (3.1)

and

|f(z)| ≤ r +
1− α[

[2]q (1 + β)− (α+ β)
]

[1 + λ]q

r2. (3.2)

Equalities hold for

f(z) = z − 1− α[
[2]q (1 + β)− (α+ β)

]
[1 + λ]q

z2, (3.3)

at z = r and z = rei(2k+1)π (k ≥ 2).

Proof. Since for k ≥ 2,

[[2]q(1 + β)− (α+ β)][1 + λ]q

∞∑
k=2

ak ≤
∞∑
k=2

[[k]q(1 + β)− (α+ β)]
[k+λ−1]q !

[λ]q ![k−1]q !
ak ≤ 1−α,

(3.4)
then

∞∑
k=2

ak ≤
1− α[

[2]q (1 + β)− (α+ β)
]

[1 + λ]q

. (3.5)
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From (1.12) and (3.5), we have

|f(z)| ≥ r − r2
∞∑
k=2

ak ≥ r −
1− α[

[2]q (1 + β)− (α+ β)
]

[1 + λ]q

r2 (3.6)

and

|f(z)| ≤ r + r2
∞∑
k=2

ak ≤ r +
1− α[

[2]q (1 + β)− (α+ β)
]

[1 + λ]q

r2. (3.7)

This completes the proof. �

Letting q → 1− in Theorem 3.1, we have

Corollary 3.2. For f(z) ∈ Sλp (α, β), then

|f(z)| ≥ r − 1− α
(2 + β − α) (1 + λ)

r2, (3.8)

and

|f(z)| ≤ r +
1− α

(2 + β − α) (1 + λ)
r2. (3.9)

Equalities hold for

f(z) = z − 1− α
(2 + β − α) (1 + λ)

z2, (3.10)

at z = r and z = rei(2k+1)π (k ≥ 2).

Proof. Letting q → 1− in Theorem 3.1, we can show (3.8) and (3.9). �

Theorem 3.3. Let f(z) ∈ TBλq (α, β). Then for |z| = r < 1,∣∣∣f ′(z)∣∣∣ ≥ 1− 2(1−α)

[[2]q(1+β)−(α+β)][1+λ]q
r, (3.11)

and ∣∣∣f ′(z)∣∣∣ ≤ 1 + 2(1−α)

[[2]q(1+β)−(α+β)][1+λ]q
r. (3.12)

The sharpness are attained for f(z) given by (3.3).

Proof. For k ≥ 2, we have ∣∣∣f ′(z)∣∣∣ ≤ 1− r
∞∑
k=2

kak.

We find from (2.1) and (3.5) that

[2]q (1 + β) [λ+ 1]q

∞∑
k=2

kak ≤ 2 (1− α) + 2(α+ β) [λ+ 1]q

∞∑
k=2

ak

≤ 2 (1− α) +
2(α+ β)(1− α)[

[2]q (1 + β)− (α+ β)
]

≤
2 [2]q (1 + β)(1− α)[

[2]q (1 + β)− (α+ β)
] ,
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that is, that
∞∑
k=2

kak ≤
2(1− α)[

[2]q (1 + β)− (α+ β)
]

[λ+ 1]q

. (3.13)

From (3.11) and (3.12) that∣∣∣f ′(z)∣∣∣ ≥ 1− r
∞∑
k=2

kak ≥ 1− 2(1−α)

[[2]q(1+β)−(α+β)][1+λ]q
r (3.14)

and ∣∣∣f ′(z)∣∣∣ ≤ 1 + r

∞∑
k=2

kak ≤ 1 + 2(1−α)

[[2]q(1+β)−(α+β)][1+λ]q
r. (3.15)

This completes the proof. �

Theorem 3.4. For f(z) ∈ TBλq (α, β) and |z| = r < 1,

|Dqf(z)| ≥ 1− [2]q(1−α)

[[2]q(1+β)−(α+β)][1+λ]q
r, (3.16)

and

|Dqf(z)| ≤ 1 +
[2]q(1−α)

[[2]q(1+β)−(α+β)][1+λ]q
r. (3.17)

The sharpness are attained for f(z) given by (3.3).

Proof. For k ≥ 2, we have

|Dqf(z)| ≤ 1− r
∞∑
k=2

[k]q ak.

We find from (2.1) and (3.5) that

(1 + β) [λ+ 1]q

∞∑
k=2

[k]q ak ≤ (1− α) + (α+ β) [λ+ 1]q

∞∑
k=2

ak

≤ (1− α) +
[2]q (α+ β)(1− α)[

[2]q (1 + β)− (α+ β)
]

≤
[2]q (1 + β)(1− α)[

[2]q (1 + β)− (α+ β)
] ,

that is, that
∞∑
k=2

[k]q ak ≤
[2]q (1− α)[

[2]q (1 + β)− (α+ β)
]

[λ+ 1]q

, (3.18)

From (3.16) and (3.17) that

|Dqf(z)| ≥ 1− r
∞∑
k=2

[k]q ak ≥ 1− [2]q(1−α)

[[2]q(1+β)−(α+β)][1+λ]q
r (3.19)



Certain class of analytic functions 55

and

|Dqf(z)| ≤ 1 + r

∞∑
k=2

[k]q ak ≤ 1 +
[2]q(1−α)

[[2]q(1+β)−(α+β)][1+λ]q
r. (3.20)

This completes the proof. �

Letting q → 1− in Theorem 3.4, we have

Corollary 3.5. For f(z) ∈ Sλp (α, β), then∣∣∣f ′(z)∣∣∣ ≥ 1− 2(1−α)
(2+β−α)(1+λ)r, (3.21)

and ∣∣∣f ′(z)∣∣∣ ≤ 1 + 2(1−α)
(2+β−α)(1+λ)r. (3.22)

The sharpness are attained for f(z) given by (3.10).

Proof. Letting q → 1− in Theorem 3.4, we can show (3.21) and (3.22). Then Corollary
3.5 corresponds to Theorem 3.3 when q → 1−. �

4. Closure theorems

Let fj(z) be defined, for j = 1, 2, ...,m, by

fj(z) = z −
∞∑
k=2

ak,jz
k (ak,j ≥ 0, z ∈ U). (4.1)

Theorem 4.1. Let fj(z) ∈ TBλq (α, β) for j = 1, 2, ...,m. Then

g(z) =

m∑
j=1

cjfj(z), (4.2)

is also in the same class, where cj ≥ 0,
m∑
j=1

cj = 1.

Proof. According to (4.2), we can write

g(z) = z −
∞∑
k=2

 m∑
j=1

cjak,j

 zk. (4.3)

Further, since fj(z) ∈ TBλq (α, β), we get

∞∑
k=2

[
[k]q (1 + β)− (α+ β)

]
[k+λ−1]q !

[λ]q ![k−1]q !
ak,j ≤ 1− α. (4.4)
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Hence
∞∑
k=2

[[k]q (1 + β)− (α+ β)]
[k+λ−1]q !

[λ]q ![k−1]q !
(

m∑
j=1

cjak,j)

=

m∑
j=1

cj [

∞∑
k=2

[[k]q(1 + β)− (α+ β)]
[k+λ−1]q !

[λ]q ![k−1]q !
ak,j ]

≤

 m∑
j=1

cj

 (1− α) = 1− α, (4.5)

which implies that g(z) ∈ TBλq (α, β). Thus we have the theorem. �

Corollary 4.2. The class TBλq (α, β) is closed under convex linear combination.

Proof. Let fj(z) ∈ TBλq (α, β) (j = 1, 2) and

g(z) = µf1(z) + (1− µ)f2(z) (0 ≤ µ ≤ 1), (4.6)

Then by, taking m = 2, c1 = µ and c2 = 1 − µ in Theorem 5, we have g(z) ∈
TBλq (α, β). �

Theorem 4.3. Let f1(z) = z and

fk(z) = z − 1−α

[[k]q(1+β)−(α+β)]
[k+λ−1]q !

[λ]q ![k−1]q !

zk (k ≥ 2). (4.7)

Then f(z) ∈ TBλq (α, β) if and only if

f(z) =

∞∑
k=1

µkfk(z), (4.8)

where µk ≥ 0 (k ≥ 1) and
∞∑
k=1

µk = 1.

Proof. Suppose that

f(z) =

∞∑
k=1

µkfk(z) = z −
∞∑
k=2

1−α

[[k]q(1+β)−(α+β)]
[k+λ−1]q !

[λ]q ![k−1]q !

µkz
k. (4.9)

Then it follows that

∞∑
k=2

[[k]q(1+β)−(α+β)]
[k+λ−1]q !

[λ]q ![k−1]q !

1−α · 1−α

[[k]q(1+β)−(α+β)]
[k+λ−1]q !

[λ]q ![k−1]q !

µk =

∞∑
k=2

µk = 1− µ1 ≤ 1.

(4.10)
So by Theorem 2.1, f(z) ∈ TBλq (α, β). Conversely, assume that f(z) ∈ TBλq (α, β).
Then

ak ≤ 1−α

[[k]q(1+β)−(α+β)]
[k+λ−1]q !

[λ]q ![k−1]q !

(k ≥ 2). (4.11)
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Setting

µk =
[[k]q(1+β)−(α+β)]

[k+λ−1]q !

[λ]q ![k−1]q !

1−α ak (k ≥ 2), (4.12)

and

µ1 = 1−
∞∑
k=2

µk, (4.13)

we see that f(z) can be expressed in the form (4.8). This completes the proof. �

Corollary 4.4. The extreme points of TBλq (α, β) are fk(z) (k ≥ 1) given by Theorem
4.3.

5. Some radii of the class TBλ
q (α, β)

Theorem 5.1. Let f(z) ∈ TBλq (α, β). Then for 0 ≤ ρ < 1, k ≥ 2, f(z) is

(i) close -to- convex of order ρ in |z| < r1, where

r1 = r1(q, α, β, λ, ρ) := inf
k

 (1−ρ)[[k]q(1+β)−(α+β)]
[k+λ−1]q !

[λ]q ![k−1]q !

k(1−α)


1

(k−1)

. (5.1)

(ii) starlike of order ρ in |z| < r2, where

r2 = r2(q, α, β, λ, ρ) := inf
k

 (1−ρ)[[k]q(1+β)−(α+β)]
[k+λ−1]q !

[λ]q ![k−1]q !

(k−ρ)(1−α)


1

(k−1)

. (5.2)

(iii) convex of order ρ in |z| < r3, where

r3 = r3(q, α, β, λ, ρ) := inf
k

 (1−ρ)[[k]q(1+β)−(α+β)]
[k+λ−1]q !

[λ]q ![k−1]q !

k(k−ρ)(1−α)


1

(k−1)

. (5.3)

The result is sharp for f(z) is given by (2.3).

Proof. To prove (i) we must show that∣∣∣f ′(z)− 1
∣∣∣ ≤ 1− ρ for |z| < r1(q, α, β, ρ).

From (1.12), we have ∣∣∣f ′(z)− 1
∣∣∣ ≤ ∞∑

k=2

kak |z|k−1
.

Thus ∣∣∣f ′(z)− 1
∣∣∣ ≤ 1− ρ,

if
∞∑
k=2

(
k

1− ρ

)
ak |z|k−1 ≤ 1. (5.4)
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But, by Theorem 2.1, (5.4) will be true if(
k

1− ρ

)
|z|k−1 ≤

[[k]q(1+β)−(α+β)]
[k+λ−1]q !

[λ]q ![k−1]q !

1−α ,

that is, if

|z| ≤

 (1−ρ)[[k]q(1+β)−(α+β)]
[k+λ−1]q !

[λ]q ![k−1]q !

k(1−α)


1

(k−1)

(k ≥ 2), (5.5)

which gives (5.1).
To prove (ii) and (iii) it is suffices to show∣∣∣∣∣zf

′
(z)

f(z)
− 1

∣∣∣∣∣ ≤ 1− ρ for |z| < r2, (5.6)

∣∣∣∣∣zf
′′

(z)

f ′(z)

∣∣∣∣∣ ≤ 1− ρ for |z| < r3, (5.7)

respectively, by using arguments as in proving (i), we have the results. �

6. Inclusion relations involving Nk,q,δ(e)

In this section following the works of Goodman [21] and Ruscheweyh [33] (see
also [5], [6], [9], [16], [26] and [28]) defined the k, δ neighborhood of function f(z) ∈ T
by

Nk,δ(f ; g) =

{
g ∈ T : g(z) = z −

∞∑
k=2

bkz
k and

∞∑
k=2

k |ak − bk| ≤ δ

}
. (6.1)

In particular, for the identity function e(z) = z, we have

Nk,δ(e; g) =

{
g ∈ T : g(z) = z −

∞∑
k=2

bkz
k and

∞∑
k=2

k |bk| ≤ δ

}
. (6.2)

Aouf et al. [12] defined the k, q, δ neighborhood of function f(z) ∈ T by

Nk,q,δ(f ; g) =

{
g ∈ T : g(z) = z −

∞∑
k=2

bkz
k and

∞∑
k=2

[k]q |ak − bk| ≤ δq

}
. (6.3)

In particular, for the identity function e(z) = z, we have

Nk,q,δ(e; g) =

{
g ∈ T : g(z) = z −

∞∑
k=2

bkz
k and

∞∑
k=2

[k]q |bk| ≤ δq

}
. (6.4)

Theorem 6.1. Let

δq = (1−α)

[[2]q(1+β)−(α+β)][λ+1]q
. (6.5)

Then TBλq (α, β) ⊂ Nk,q,δ(e).
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Proof. For f ∈ TBλq (α, β), Theorem 2.1, (3.5) and (3.18), and in view of the (6.4),
Theorem 6.1 follows. �

A function f ∈ T is in the class TBλq (α, β, ξ) if there exists a function

g ∈TBλq (α, β) such that∣∣∣∣f(z)

g(z)
− 1

∣∣∣∣ < 1− ξq (z ∈ U, 0 ≤ ξq < 1). (6.6)

Now we determine the neighborhood for the class TBλq (α, β, ξ).

Theorem 6.2. If g ∈TBλq (α, β) and

ξq = 1− δq[[2]q(1+β)−(α+β)][λ+1]q

2{[[2]q(1+β)−(α+β)][λ+1]q−(1−α)} , (6.7)

where

δq ≤
2
{[

[2]q (1 + β)− (α+ β)
]

[λ+ 1]q − (1− α)
}

[
[2]q (1 + β)− (α+ β)

]
[λ+ 1]q

.

Then Nk,q,δ(g) ⊂ TBλq (α, β, ξ).

Proof. Suppose that f ∈ Nk,q,δ(g) then

∞∑
k=2

[k]q |ak − bk| ≤ δq,

where δq is given by (6.5), which implies that the coefficient inequality

∞∑
k=2

|ak − bk| ≤
δq

[2]q
.

Next, since g ∈ TBλq (α, β), we have

∞∑
k=2

bk ≤ 1−α
[[2]q(1+β)−(α+β)][λ+1]q

,

so that

∣∣∣ f(z)
g(z) − 1

∣∣∣ < ∞∑
k=2

|ak−bk|

1−
∞∑
k=2

bk

≤ δq
[2]q
× [[2]q(1+β)−(α+β)][λ+1]q

[[2]q(1+β)−(α+β)][λ+1]q−(1−α)
≤ 1− ξq.

Provided that ξq is given precisely by (6.7). Thus, by definition, f ∈ TBλq (α, β, ξ),
which completes the proof. �
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7. Partial sums

For f(z) of the form (1.1), the sequence of partial sums is given by

fm(z) = z +

m∑
k=2

akz
k (m ∈ N\ {1}).

Now following the work of [38] and also the works cited in [11, 15, 19, 25, 27,
31, 37] on partial sums of analytic functions, to obtain our results. Let

Φλq,k = Φλq (k, α, β) =
[
[k]q (1 + β)− (α+ β)

]
[k+λ−1]q !

[λ]q ![k−1]q !
. (7.1)

Theorem 7.1. If f ∈ S, satisfies the condition (2.1), then

Re

(
f(z)

fm(z)

)
≥

Φλq,m+1 − 1 + α

Φλq,m+1

, (7.2)

where

Φλq,k ≥

{
1− α, if k = 2, 3, ...,m

Φλq,m+1, if k = m+ 1,m+ 2, ...
(7.3)

The result (7.2) is sharp for

f(z) = z +
1− α

Φλq,m+1

zm+1. (7.4)

Proof. Define g(z) by

1+g(z)
1−g(z) =

Φλq,m+1

1−α

[
f(z)
fm(z) −

Φλq,m+1−1+α

Φλq,m+1

]
=

1+
m∑
k=2

akz
k−1+

(
Φλq,m+1

1−α

)
∞∑

k=m+1

akz
k−1

1+
m∑
k=2

akzk−1
. (7.5)

It suffices to show that |g(z)| ≤ 1. Now from (7.5) we have

g(z) =

(
Φλq,m+1

1−α

) ∞∑
k=m+1

akz
k−1

2+
m

2
∑

k=2

akzk−1+

(
Φλ
q,m+1
1−α

) ∞∑
k=m+1

akzk−1

.

Hence we obtain

|g(z)| ≤

(
Φλq,m+1

1−α

) ∞∑
k=m+1

|ak|

2−
m

2
∑

k=2

|ak|−
(

Φλ
q,m+1
1−α

) ∞∑
k=m+1

|ak|
.

Now |g(z)| ≤ 1 if and only if

2

(
Φλq,m+1

1− α

) ∞∑
k=m+1

|ak| ≤ 2−
m

2
∑
k=2

|ak| ,

or, equivalently,
m∑
k=2

|ak|+
∞∑

k=m+1

Φλq,m+1

1− α
|ak| ≤ 1.
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From (2.1), it is sufficient to show that

m∑
k=2

|ak|+
∞∑

k=m+1

Φλq,m+1

1− α
|ak| ≤

∞∑
k=2

Φλq,k
1− α

|ak| ,

which is equivalent to
m∑
k=2

(
Φλq,k−1+α

1−α

)
|ak|+

∞∑
k=m+1

(
Φλq,k−Φλq,m+1

1−α

)
|ak| ≥ 0. (7.6)

For z = reiπ�m we have

f(z)
fm(z) = 1 + 1−α

Φλq,m+1

zk → 1− 1−α
Φλq,m+1

=
Φλq,m+1−1+α

Φλq,m+1

where r → 1−,

which shows that f(z) is given by (7.4) gives the sharpness. �

Remark 7.1. (i) Putting λ = 0 and (ii) λ = 1 in Theorem 7.1, we obtain the following
results, respectively.

Corollary 7.2. If f ∈ S, satisfies the condition (2.1) and f(z)
z 6= 0(0 < |z| < 1), then

Re

(
f(z)

fm(z)

)
≥ [[m+1]q(1+β)−(α+β)]−1+α

[[m+1]q(1+β)−(α+β)]
. (7.7)

The result is sharp for

f(z) = z + 1−α
[[m+1]q(1+β)−(α+β)]

zm+1. (7.8)

Corollary 7.3. If f ∈ S, satisfies the condition (2.1) and f(z)
z 6= 0(0 < |z| < 1), then

Re

(
f(z)

fm(z)

)
≥ 1− 1−α

[m+1]q[[m+1]q(1+β)−(α+β)]
. (7.9)

The result is sharp for

f(z) = z + 1−α
[m+1]q[[m+1]q(1+β)−(α+β)]

zm+1. (7.10)

Theorem 7.4. If f ∈ S, satisfies the condition (2.1), then

Re

(
fm(z)

f(z)

)
≥ Φλq,m+1

Φλq,m+1+1−α , (7.11)

where Φλq,m+1 is defined by (7.1) and satisfies (7.3) and f(z) given by (7.4) gives the
sharpness.

Proof. The proof follows by defining

1 + g(z)

1− g(z)
=

Φλq,m+1+1−α
1−α

[
fm(z)

f(z)
− Φλq,m+1

Φλq,m+1+1−α

]
and much akin are to similar arguments in Theorem 7.1. So, we omit it. �

Remark 7.2. (i) Putting λ = 0 and (ii) λ = 1 in Theorem 7.4, we obtain the following
sharp results, respectively.
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Corollary 7.5. If f ∈ S, satisfies the condition (2.1) and f(z)
z 6= 0(0 < |z| < 1), then

Re

(
fm(z)

f(z)

)
≥ [m+1]q(1+β)−(α+β)

[m+1]q(1+β)−(α+β)+1−α . (7.12)

Corollary 7.6. If f ∈ S, satisfies the condition (2.1) and f(z)
z 6= 0(0 < |z| < 1), then

Re

(
fm(z)

f(z)

)
≥ [m+1]q[[m+1]q(1+β)−(α+β)]

[m+1]q[[m+1]q(1+β)−(α+β)]+1−α
. (7.13)

Theorem 7.7. If f ∈ S, satisfies the condition (2.1), then

Re

(
f
′
(z)

f ′m(z)

)
≥ Φλq,m+1−(m+1)(1−α)

Φλq,m+1

, (7.14)

and

Re

(
f
′

m(z)

f ′(z)

)
≥ Φλq,m+1

Φλq,m+1+(m+1)(1−α)
, (7.15)

where Φλq,m+1 ≥ (m+ 1) (1− α) and

Φλq,k ≥


k (1− α) , if k = 2, 3, ...,m

k

(
Φλq,m+1

(m+1)

)
, if k = m+ 1,m+ 2, ...

(7.16)

f(z) is given by (7.4) gives the sharpness.

Proof. We write

1 + g(z)

1− g(z)
=

Φλq,m+1

(m+1)(1−α)

[
f
′
(z)

f ′m(z)
−
(

Φλq,m+1−(m+1)(1−α)

Φλq,m+1

)]
,

where

g(z) =

(
Φλq,m+1

(m+1)(1−α)

) ∞∑
k=m+1

kakz
k−1

2+
m

2
∑

k=2

kakzk−1+

(
Φλ
q,m+1

(m+1)(1−α)

) ∞∑
k=m+1

kakzk−1

.

Now |g(z)| ≤ 1 if and only if

m∑
k=2

k |ak|+
(

Φλq,m+1

(m+1)(1−α)

) ∞∑
k=m+1

k |ak| ≤ 1.

From (2.1), it is sufficient to show that

m∑
k=2

k |ak|+
(

Φλq,m+1

(m+1)(1−α)

) ∞∑
k=m+1

k |ak| ≤
∞∑
k=2

Φλq,k
1− α

|ak| ,

which is equivalent to
m∑
k=2

(
Φλq,k−k(1−α)

1−α

)
|ak|+

∞∑
k=m+1

(
(m+1)Φλq,k−kΦλq,m+1

(m+1)(1−α)

)
|ak| ≥ 0.
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To prove the result (7.15), define the function g(z) by

1 + g(z)

1− g(z)
=

(m+1)(1−α)+Φλq,m+1

(m+1)(1−α)

[
f
′

m(z)

f ′(z)
− Φλq,m+1

(m+1)(1−α)+Φλq,m+1

]
,

and by similar arguments in first part we get desired result. �

Remark 7.3. (i) Putting λ = 0 and (ii) λ = 1 in Theorem 7.7, we obtain the following
sharp results, respectively.

Corollary 7.8. If f ∈ S, satisfies the condition (2.1) and f(z)
z 6= 0(0 < |z| < 1), then

Re

(
f
′
(z)

f ′m(z)

)
≥ 1− (m+1)(1−α)

[m+1]q(1+β)−(α+β) , (7.17)

and

Re

(
f
′

m(z)

f ′(z)

)
≥ [m+1]q(1+β)−(α+β)

[m+1]q(1+β)−(α+β)+(m+1)(1−α) . (7.18)

Corollary 7.9. If f ∈ S, satisfies the condition (2.1) and f(z)
z 6= 0(0 < |z| < 1), then

Re

(
f
′
(z)

f ′m(z)

)
≥ 1− (m+1)(1−α)

[m+1]q [(m+1)(1+β)−(α+β)] , (7.19)

and

Re

(
f
′

m(z)

f ′(z)

)
≥ [m+1]q [(m+1)(1+β)−(α+β)]

[m+1]q [(m+1)(1+β)−(α+β)]+(m+1)(1−α) . (7.20)

Remark 7.4. Letting q → 1− in Theorems 7.1, 7.4 and 7.7, respectively, we get
Theorems 4.1 and 4.2, respectively, for the class Sλq (α, β) studied by Rosy et al. [31].

Acknowledgements. The authors express their sincere thanks to the referees for their
valuable comments and suggestions.
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Starlikeness and close-to-convexity involving
certain differential inequalities

Kuldeep Kaur Shergill and Sukhwinder Singh Billing

Abstract. In the present paper, we study certain differential inequalities involv-
ing meromorphic functions in the open unit disk and obtain certain sufficient
conditions for starlikeness and close-to-convexity of meromorphic functions. In
particular, we obtain:

1. If f(z) ∈ Σp satisfies the differential inequality

∣∣∣∣1 +
zf ′′(z)

f ′(z)
+ p

∣∣∣∣ < 1

2
, z ∈ E,

then f(z) is meromorphic close-to-convex function.
2. If f(z) ∈ Σ satisfies the differential inequality∣∣∣∣zf ′(z)f(z)

+ 1

∣∣∣∣1−γ ∣∣∣∣1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

∣∣∣∣γ < 1− α
(1 + |1− 2α|)γ , γ ≥ 0, z ∈ E,

then f(z) is meromorphic starlike function of order α.

Mathematics Subject Classification (2010): 30C45, 30C80.

Keywords: Meromorphic functions, meromorphic starlike function, meromorphic
close-to-convex function, multivalent functions.

1. Introduction

Let Σp denote the class of functions of the form

f(z) =
1

zp
+

∞∑
k=1

akz
k−p (p ∈ N = {1, 2, 3, . . .}),

which are analytic and p-valent in the punctured unit disc E0 = E \ {0}, where
E = {z ∈ C : |z| < 1}. A function f ∈ Σp is said to be meromorphic p-valent starlike
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of order α if f(z) 6= 0 for z ∈ E and

−<1

p

(
zf ′(z)

f(z)

)
> α, (α < 1; z ∈ E). (1.1)

The class of all such meromorphic p-valent starlike functions is denoted by MS∗p(α).
A function f ∈ Σp is called meromorphic p-valent close-to-convex of order α if there
exists a function g ∈MS∗p such that and

−<
(
zf ′(z)

g(z)

)
> α, (α < 1; z ∈ E).

The class of all such meromorphic p-valent close-to-convex functions defined above is
denoted by MCp(α) .
Since g(z) = z−p ∈MS∗p, it follows that a function f ∈ Σp satisfying

−<(zp+1f ′(z)) > 0, z ∈ E,
or ∣∣zp+1f ′(z) + p

∣∣ < p, z ∈ E, (1.2)

is a member of the class MCp.
Let Σ = Σ1, MS∗(α) = MS∗1(α), MS∗ = MS∗1(0), MC(α) = MC1(α) and
MC =MC1(0).
In the literature of meromorphic functions, many authors obtained the conditions for
meromorphic close-to-convex functions and meromorphic starlike functions. Some of
the results from literature are given below:

Goyal and Prajapat [1] proved the following results:

Theorem 1.1. If f ∈ Σ satisfies the following inequality∣∣∣∣zf ′′(z)f ′(z)
− z2f ′(z) + 1

∣∣∣∣ < (1− α)(3− α)

2− α
(0 ≤ α < 1),

then f ∈MC(α).

Theorem 1.2. If f ∈ Σ satisfies the following inequality∣∣∣∣zf ′′(z)f ′(z)
− z2f ′(z) + 1

∣∣∣∣ < 3

2
,

then f ∈MC.

Theorem 1.3. If f ∈ Σ satisfies the following inequality∣∣∣∣zf ′′(z)f ′(z)
+ 2

∣∣∣∣ < 1

2
,

then f ∈MC.

Theorem 1.4. If f ∈ Σ satisfies the following inequality∣∣∣∣zf ′′(z)f ′(z)
− 2zf ′(z)

f(z)

∣∣∣∣ < (1− α)(3− α)

2− α
, (0 ≤ α < 1),

then f ∈MS∗(α).
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Theorem 1.5. If f ∈ Σ satisfies the following inequality∣∣∣∣zf ′′(z)f ′(z)
− zf ′(z)

f(z)
+ 1

∣∣∣∣ < 1

2
,

then f ∈MS∗.

Xu and Yang [4] proved the following results:

Theorem 1.6. If f ∈ Σn satisfies f ′(z) 6= 0 in E0 and∣∣∣∣1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

∣∣∣∣ < a,

for some a (0 < a ≤ n), then f ∈MS∗n(e−a/n) and the order e−a/n is sharp.

Z-G Wang et al. [3] proved the following results:

Theorem 1.7. If f(z) ∈ Σp satisfies the following inequality∣∣∣∣ f(z)

zf ′(z)

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)∣∣∣∣ < µ

(
0 < µ <

1

p

)
,

then f ∈MS∗p
(

p

1 + pµ

)
.

Theorem 1.8. If f(z) ∈ Σp satisfies the inequality∣∣∣∣zf ′(z)f(z)
− zf ′′(z)

f ′(z)
− 1

∣∣∣∣ < δ (0 < δ < 1),

then f ∈MS∗p(p(1− δ)).

2. Preliminaries

We shall use the following lemma of Jack [2] to prove our result.

Lemma 2.1. Suppose w is a nonconstant analytic function in E with w(0) = 0. If
|w(z)| attains its maximum value at a point z0 ∈ E on the circle |z| = r < 1, then
z0w

′(z0) = mw(z0), where m ≥ 1, is some real number.

Theorem 2.2. Let f(z) ∈ Σp and suppose that it satisfies, for γ ≥ 0, the inequality∣∣zp+1f ′(z) + p
∣∣1−γ ∣∣zp+2f ′′(z) + (p+ 1)zp+1f ′(z)

∣∣γ < p, z ∈ E. (2.1)

Then |zp+1f ′(z) + p| < p, i.e. f(z) ∈MCp and is a bounded function in E.

Proof. For a function f ∈ Σp satisfying the assumption (2.1), we define a function w
by

w(z) =
1

p

(
zp+1f ′(z) + p

)
= bkz

k + . . . , z ∈ E. (2.2)

Then w is analytic in E with w(0) = 0. To prove our conclusion we will show that
|w(z)| < 1, z ∈ E. Differentiating (2.2), we have

zp+2f ′′(z) + (p+ 1)zp+1f ′(z) = pzw′(z) (2.3)
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From (2.2) and (2.3) we obtain that∣∣zp+1f ′(z) + p
∣∣1−γ ∣∣zp+2f ′′(z) + (p+ 1)zp+1f ′(z)

∣∣γ
= |pw(z)|1−γ |pzw′(z)|γ

= p|w(z)|
∣∣∣∣zw′(z)w(z)

∣∣∣∣γ , z ∈ E. (2.4)

Supposing that there exists a point z0 ∈ E such that max
|z|≤|z0|

|w(z)| = |w(z0)| = 1.

Then by Lemma 2.1, we have z0w
′(z0) = kw(z0), k ≥ 1.

Hence, from (2.4) we obtain∣∣∣zp+1
0 f ′(z0) + p

∣∣∣1−γ ∣∣∣zp+2
0 f ′′(z0) + (p+ 1)zp+1

0 f ′(z0)
∣∣∣γ = |pw(z0)|1−γ |pzw′(z0)|γ

= p|k|γ ≥ p,

which contradicts (2.1).Therefore, |w(z)| < 1 for all z ∈ E, and the conclusion has
been proved.
Finally, from (1.2) it follows that |f ′(z)| ≤ 2p|z|−(p+1) < 2p, z ∈ E, hence

|f(z)| =
∣∣∣∣∫ z

0

f ′(t)dt

∣∣∣∣ ≤ ∫ r

0

|f ′(ρeιθ)|dρ ≤ 2pr < 2p,

z = reιθ ∈ E, θ ∈ [0, 2π).

Consequently, f is bounded in E. �

Setting γ = 1 in Theorem 2.2 reduces to the next result.

Corollary 2.3. If f ∈ Σp satisfies

|zp+2f ′′(z) + (p+ 1)zp+1f ′(z)| < p, z ∈ E,

then the inequality (1.2) holds, i.e., f ∈MCp and it is bounded function in E.

Theorem 2.4. Let f(z) ∈ Σp and suppose that it satisfies, for γ ≥ 0, the inequality∣∣∣∣zp+1f ′(z)

p
+ 1

∣∣∣∣1−γ ∣∣∣∣1 +
zf ′′(z)

f ′(z)
+ p

∣∣∣∣γ < (1

2

)γ
, z ∈ E. (2.5)

Then |zp+1f ′(z) + p| < p, i.e. f(z) ∈MCp and is a bounded function in E.

Proof. For a function f ∈ Σp satisfying the assumption (2.5), we define a function w
by (2.2). Then w is analytic in E with w(0) = 0 and differentiating (2.2), we have

1 +
zf ′′(z)

f ′(z)
+ p =

zw′(z)

w(z)− 1
. (2.6)

From the assumption (2.5), it follows that the left-hand side of (2.6) is an analytic
function in E, hence w(z) 6= 1 for all z ∈ E. From (2.2) and (2.6) we have∣∣∣∣zp+1f ′(z)

p
+ 1

∣∣∣∣1−γ ∣∣∣∣1 +
zf ′′(z)

f ′(z)
+ p

∣∣∣∣γ = |w(z)|1−γ
∣∣∣∣ zw′(z)w(z)− 1

∣∣∣∣γ , z ∈ E. (2.7)
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If we suppose that there exists a point z0 ∈ E such that max
|z|≤|z0|

|w(z)| = |w(z0)| = 1.

Then by Lemma 2.1, we have z0w
′(z0) = kw(z0), k ≥ 1.

Hence, from (2.7) we have∣∣∣∣∣zp+1
0 f ′(z0)

p
+ 1

∣∣∣∣∣
1−γ ∣∣∣∣1 +

z0f
′′(z0)

f ′(z0)
+ p

∣∣∣∣γ = |w(z0)|1−γ
∣∣∣∣ z0w′(z0)

w(z0)− 1

∣∣∣∣γ

= |w(z0)|
∣∣∣∣ k

w(z0)− 1

∣∣∣∣γ
≥
(

1

2

)γ
,

which contradicts (2.5). Therefore, |w(z)| < 1 for all z ∈ E and our conclusion (1.2)
has been proved.
Since under the assumption (2.5) the inequality holds, as in the proof of the previous
theorem it follows that f is bounded in E. �

Selecting γ = 1 in Theorem 2.4, we obtain the following corollary.

Corollary 2.5. If f ∈ Σp satisfies∣∣∣∣1 +
zf ′′(z)

f ′(z)
+ p

∣∣∣∣ < 1

2
, z ∈ E,

then |zp+1f ′(z) + p| < p, i.e. f(z) ∈MCp and is a bounded function in E.

Putting p=1 in the above corollary, we have the following result.

Corollary 2.6. If f ∈ Σ satisfies∣∣∣∣2 +
zf ′′(z)

f ′(z)

∣∣∣∣ < 1

2
, z ∈ E,

then |z2f ′(z) + 1| < 1, i.e. f(z) ∈MC and is a bounded function in E.

Remark 2.7. From above corollary, we obtained the result of Goyal and Prajapat
[1, Corollary 3].

Theorem 2.8. Let f(z) ∈ Σp and suppose that it satisfies, for γ ≥ 0, the inequality∣∣∣∣zf ′(z)f(z)
+ p

∣∣∣∣1−γ ∣∣∣∣1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

∣∣∣∣γ < p− α
(p+ |p− 2α|)γ

, z ∈ E, (2.8)

then assume that for f(z) 6= 0, f(z) ∈MS∗p(α).

Proof. For a function f ∈ Σp satisfying the assumption (2.8), we define a function w
by

−zf ′(z)
f(z)

=
p+ (p− 2α)w(z)

1− w(z)
, z ∈ E, (0 ≤ α < p). (2.9)

Since w(z) = bkz
k + . . . is analytic in E with w(0) = 0 and from assumption (2.8) it

follows that the left hand side of (2.9) is an analytic function in E, hence w(z) 6= 1



72 Kuldeep Kaur Shergill and Sukhwinder Singh Billing

for all z ∈ E.
Differentiating (2.9), we have

1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)
=

2(p− α)zw′(z)

(p+ (p− 2α)w(z))(1− w(z))
, z ∈ E. (2.10)

From (2.9) and (2.10), we get∣∣∣∣zf ′(z)f(z)
+ p

∣∣∣∣1−γ ∣∣∣∣1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

∣∣∣∣γ

= 2(p− α)

∣∣∣∣ w(z)

1− w(z)

∣∣∣∣
∣∣∣∣∣∣∣∣

zw′(z)

w(z)

p+ (p− 2α)w(z)

∣∣∣∣∣∣∣∣
γ

, z ∈ E. (2.11)

If we suppose that there exists a point z0 ∈ E such that max
|z|≤|z0|

|w(z)| = |w(z0)| = 1.

Then by Lemma 2.1, we have z0w
′(z0) = kw(z0), k ≥ 1.∣∣∣∣z0f ′(z0)

f(z0)
+ p

∣∣∣∣1−γ ∣∣∣∣1 +
z0f
′′(z0)

f ′(z0)
− z0f

′(z0)

f(z0)

∣∣∣∣γ

= 2(p− α)

∣∣∣∣ w(z0)

1− w(z0)

∣∣∣∣
∣∣∣∣∣∣∣∣

z0w
′(z0)

w(z0)

p+ (p− 2α)w(z0)

∣∣∣∣∣∣∣∣
γ

, z ∈ E, (2.12)

≥ (p− α)

∣∣∣∣ k

p+ (p− 2α)w(z0)

∣∣∣∣γ ,∣∣∣∣z0f ′(z0)

f(z0)
+ p

∣∣∣∣1−γ ∣∣∣∣1 +
z0f
′′(z0)

f ′(z0)
− z0f

′(z0)

f(z0)

∣∣∣∣γ ≥ p− α
(p+ |p− 2α|)γ

,

which contradicts (2.8).
This proves that |w(z) < 1 for all z ∈ E and hence f(z) ∈MS∗p(α). �

Putting p = 1 in Theorem 2.8, we have the following corollary.

Corollary 2.9. Let f ∈ Σ and suppose that f satisfies, for γ ≥ 0, the inequality∣∣∣∣zf ′(z)f(z)
+ 1

∣∣∣∣1−γ ∣∣∣∣1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

∣∣∣∣γ < 1− α
(1 + |1− 2α|)γ

, z ∈ E,

then f ∈MS∗(α).

If we take α = 0 in Theorem 2.8, then we obtain the next corollary.

Corollary 2.10. Let f ∈ Σp and suppose that f satisfies, for γ ≥ 0, the inequality∣∣∣∣zf ′(z)f(z)
+ p

∣∣∣∣1−γ ∣∣∣∣1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

∣∣∣∣γ < p

(2p)γ
, z ∈ E,

then f ∈MS∗p.

For p = 1 and γ = 1, above corollary reduces to
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Corollary 2.11. Let f ∈ Σ satisfies the inequality∣∣∣∣1 +
zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

∣∣∣∣ < 1

2
, z ∈ E,

and f(z) 6= 0 for all z ∈ E0 then f ∈MS∗.

Remark 2.12. From above corollary, we obtained another result of Goyal and Prajapat
[1, Corollary 7].
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Generalized q-Srivastava-Attiya operator
on multivalent functions

Rizwan Salim Badar and Khalida Inayat Noor

Abstract. In this article, we define a generalized q-integral operator on multiva-
lent functions. It generalizes many known linear operators in Geometric Function
Theory (GFT). Inclusions results, convolution properties and q-Bernardi integral
preservation of the subclasses of analytic functions are discussed.
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Keywords: Multivalent functions, q-difference operator, q-Srivastava-Attiya
operator, starlike and convex functions q-generalized Bernardi operator.

1. Introduction

The study of q-extension of classical calculus has been point of focus for various
researchers due to its applications. In Physics, q-calculus is amicably used in theories
of quantum fields, Newton quantum gravity, special relativity and many other notable
fields. In Mathematics, various branches has been established due to its applications in
basic hypergeometric functions, combinatorics, calculus of variations, optimal control
problems, q-transform analysis. It dates back to great mathematicians of 17th century
L. Euler and C. Jacobi. F.H. Jackson formally defined q-difference operator and q-
integral operator in [8, 9]. For comprehensive details of concepts of q-calculus, see [5].
The concepts of GFT has been studied in context of q-calculus and q-analogues of
various subclasses of analytic functions are defined by the researchers, see [20, 7, 1, 14,
15, 12, 11, 4, 21, 10]. Using the convolution of normalized analytic functions, several
q-operators are defined by the researchers, see details in [19]. In this paper we define
a generalized q-Srivastava Attiya operator and study its application on multivalent
functions.
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Let A(p) (p ∈ N = {0, 1, 2, ..}) denote the set of multivalent functions say f
given as

f(z) = zp +

∞∑
k=2

ak+p−1z
k+p−1, (1.1)

analytic in the open unit disc E = {z : |z| < 1}.
Let f(z) be given by (1.1) and g(z) defined as

f(z) = zp +

∞∑
k=2

bk+p−1z
k+p−1.

Then Hadamard product (or convolution) of f and g is defined by

(f ∗ g)(z) = zp +

∞∑
k=2

ak+p−1bk+p−1z
k+p−1.

Let f, g ∈ A. Then f is subordinate to g, written as f ≺ g or f(z) ≺ g(z), z ∈ E,
if there exists a Schwartz function ω(z) analytic in E with ω(0) = 0 and |ω(z)| < 1
for z ∈ E such that f(z) = g(ω(z)).

A subset D ⊂ C is called q-geometric if zq ∈ D whenever z ∈ D and it contains
all the geometric sequences

{
zqk
}∞
0
. In GFT, the q-derivative of f(z) is defined as;

dqf(z) =
f(z)− f(qz)

(1− q)z
, q ∈ (0, 1), (z ∈ D \ {0}), (1.2)

and dqf(0) = f ′(0). For a function g(z) = zk, the q-derivative is

dqg(z) = [k]zk−1,

where [k] = 1−qk
1−q = 1 + q + q2 + ....+ qk−1.

From (1.1) and (1.2) we easily get that

dqf(z) = [p] zp−1 +

∞∑
k=2

[k + p− 1] ak+p−1z
k+p−2.

Let f(z) and g(z) be defined on a q-geometric set D ⊂ C such that q-derivatives
of f(z) and g(z) exist ∀ z ∈ C. Then for complex numbers b, c we have:

dq(bf(z)± cg(z)) = bdqf(z)± cdqg(z).

dq(f(z)g(z)) = f(qz)dqg(z) + g(z)dqf(z).

dq

(
f(z)

g(z)

)
=
g(z) dqf(z)− f(z) dqg(z)

g(z)g(qz)
, g(z)g(qz) 6= 0.

dq (log f(z)) =
ln q−1

1− q
dqf(z)

f(z)
.

Jackson [8] introduced the q-integral of a function f is given by∫ z

0

f(t)dqt = z(1− q)
∞∑
k=0

qkf(qkz),
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provided that series converges.

Consider a q-analogue of Lerch-Hurwitz function

Φq(s, b; z) =

∞∑
k=0

zk

[k + b]s
, z ∈ E,

(b ∈ C \ Z−0 ; s ∈ C when |z| < 1; Re(s) > 1 when |z| = 1), which is a convergent
series of radius 1. Now we define the generalized q-Srivastava Attiya operator Js,pq,b :

A(p)→ A(p) as

Js,pq,b f(z) = Ψq(s, b; z) ∗ f(z), (1.3)

where,

Ψq(s, b; z) = [1 + b]
s {

Φq(s, b; z)− [b]−s
}
. (1.4)

From (1.1), (1.3) and (1.4), we have

Js,pq,b f(z) = zp +

∞∑
k=2

(
[1 + b]

[k + b]

)s
ak+p−1z

k+p−1. (1.5)

We observe that J0,p
q,b f(z) = f(z). The operator Js,pq,b reduces to known linear operators

for different values of parameters p, b and s as:

(i) For p = 1, s = 1, b = 0 and q → 1− , Js,pq,b reduces to Alexander operator [2].

(ii) If p = 1, it is q-Srivastava Attiya operator discussed in [3].

(iii) For p = 1, s = 1, b > 0 it reduces to q-Choi-Saigo-Srivastava operator
discussed in [22].

(iv) For s = α (α > 0), b = p and q → 1−, it is operator discussed in [16].

For any complex number s, the operator Ib,pq,s : A(p)→ A(p) is defined as;

Is,pq,b f(z) = zp +

∞∑
k=2

(
[k + b]

[1 + b]

)s
ak+p−1z

k+p−1. (1.6)

The operator Is,pq,b also reduces to known linear operators as:

(i) For p = 1, s ∈ N0, b = 0, it is q-Sãlãgean differential operator [6].

(ii) For p = 1, s = −1 and q → 1−, it reduces to Owa-Srivastava Integral
Operator [13].

The following identities holds for the two operators Js,pq,b (z)and Is,pq,b (z),

zdq(J
s+1,p
q,b f(z)) = qp−1

(
1 +

[b]

qb

)
Js,pq,b f(z) +

(
[p− 1]− [b]

qb

)
Js+1,p
q,b f(z). (1.7)

zdq(I
b,p
q,sf(z)) = qp−1

(
1 +

[b]

qb

)
Ib,pq,s+1f(z) +

(
[p− 1]− [b]

qb

)
Ib,pq,sf(z). (1.8)

Here we prove the identity (1.7) as;

zdq(J
s+1,p
q,b f(z)) = [p] zp +

∞∑
k=2

(
[1 + b]

[k + b]

)s+1

ak+p−1 [k + p− 1] zk+p−1,
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or equivalently,

zdq(J
s+1,p
q,b f(z)) = [p] zp +

∞∑
k=2

(
[1+b]
[k+b]

)s+1

· ak+p−1 [(k + b) + (p− b− 1)] zk+p−1.

Using the property [a+ b] = qb[a] + [b] we have:

zdq(J
s+1,p
q,b f(z))=[p]zp+

∞∑
k=2

(
[1 + b]

[k + b]

)s+1

ak+p−1
{
qp−b−1[k + b] + [p−b−1]

}
zk+p−1.

By adding and subtracting the terms qp−b−1[1 + b]zp and [p − b − 1]zp, using the
property [a+ b] = qb[a] + [b] and rearranging the terms: we get

zdq(J
s+1,p
q,b f(z)) = qp−1

(
1 +

[b]

qb

)
Js,pq,b f(z) +

(
[p− 1]− [b]

qb

)
Js+1,p
q,b f(z).

On same lines, we can prove the identity (1.8) as well.

Definition 1.1. A function f ∈ A(p) is said to be in the class ST pq (ϕ) if and only if

zdqf(z)

[p] f(z)
≺ ϕ(z); (1.9)

where ϕ ∈ Ω, the class of analytic and convex multivalent functions in E.

Definition 1.2. A function f ∈ A(p) is said to be in the class CV pq (ϕ) if and only if

dq(zdqf(z))

[p] dqf(z)
≺ ϕ(z);

where ϕ ∈ Ω, the class of analytic and convex multivalent functions in E.

By using operators given by (1.5) and (1.6), we define the classes

ST s,pq,b (ϕ) =
{
f ∈ A(p) : Js,pq,b f(z) ∈ ST pq (ϕ)

}
and

S̃T
b,p

q,s (ϕ) =
{
f ∈ A(p) : Ib,pq,sf(z) ∈ ST pq (ϕ)

}
.

Similarly

CV s,pq,b (ϕ) =
{
f ∈ A(p) : Js,pq,b f(z) ∈ CV pq (ϕ)

}
and

C̃V
b,p

q,s (ϕ) =
{
f ∈ A(p) : Ib,pq,sf(z) ∈ CV pq (ϕ)

}
.

It is noted

f ∈ CV s,pq,b (ϕ)⇔ zdqf(z)

[p]
∈ ST s,pq,b (ϕ)

and

f ∈ C̃V
b,p

q,s (ϕ)⇔ zdqf(z)

[p]
∈ S̃T

b,p

q,s (ϕ) .

We need the following Lemma to obtain our results.
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Lemma 1.3. [17] Let β and γ be complex numbers with β 6= 0, and let h(z) be a regular
in E with h(0) = 1 and Re[βh(z) + γ] > 0. If p(z) = 1 + p1z + p2z

2 + ...is analytic in

E, then p(z) +
zdqp(z)
βp(z)+γ ≺ h(z)⇒ p(z) ≺ h(z).

2. Main results

2.1. Inclusions results

In this section, we proved the inclusions results of the classes with respect to
parameter s.

Theorem 2.1. Let ϕ(z) be analytic and convex multivalent function with ϕ(0) = 1 and

Re(ϕ(z)) > 0 for z ∈ E. Then ST s,pq,b (ϕ) ⊂ ST s+1,p
q,b (ϕ) if Re(qb−p+1) > 1.

Proof. Let f ∈ ST s,pq,b (ϕ) and we set

zdq(J
s+1,p
q,b f(z))

[p]Js+1,p
q,b f(z)

= Q(z), z ∈ E, (2.1)

where Q(z) is analytic in E with Q(0) = 1.
Using identity (1.7), we get

zdq(J
s+1,p
q,b f(z))

Js+1,p
q,b f(z)

= Mq

Js,pq,b f(z)

Js+1,p
q,b f(z)

− γq, (2.2)

where Mq = qp−1
(

1 + [b]
qb

)
and γq = [p−1]−[b]

qb
.

From (2.1) and (2.2), we have

[p]Q(z) + γq = Mq

Js,pq,b f(z)

Js+1,p
q,b f(z)

.

Applying logarithmic q-differentiation,

zdq(J
s,p
q,b f(z))

Js,pq,b f(z)
= [p]Q(z) +

[p]zdqQ(z)

Q(z) + γq
. (2.3)

As f ∈ ST s,pq,b (ϕ) so,

zdq(J
s,p
q,b f(z))

Js,pq,b f(z)
≺ ϕ(z). (2.4)

From (2.3) and (2.4), we have

[p]Q(z) +
[p]zdqQ(z)

Q(z) + γq
≺ ϕ(z).

As Re(qb−p+1) > 1 and Re(ϕ) > 0 then by Lemma 1.3, we have Q(z) ≺ ϕ(z) which

implies f ∈ ST s+1,p
q,b (ϕ) . So ST s,pq,b (ϕ) ⊂ ST s+1,p

q,b (ϕ) . �

Theorem 2.2. Let ϕ(z) be same as in Theorem 2.1. Then CV s,pq,b (ϕ) ⊂ CV s+1,p
q,b (ϕ) if

Re(qb−p+1) > 1.
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Proof. It is evident from the fact f ∈ CV s,pq,b (ϕ)⇔ zdqf(z)
[p] ∈ ST s,pq,b (ϕ) . �

We can easily prove the following result by using Lemma 1.3 and identity relation
(1.8).

Theorem 2.3. Let ϕ(z) be analytic and convex multivalent function with ϕ(0) = 1 and
Re(ϕ(z)) > 0 for z ∈ E.Then

S̃T
b,p

q,s (ϕ) ⊂ S̃T
b,p

q,s+1 (ϕ)

and

C̃V
b,p

q,s+1 (ϕ) ⊂ C̃V
b,p

q,s (ϕ) .

2.2. Integral preservation under generalized q-Bernardi integral operator

In [18], the q-Bernardi integral operator Lc,pf(z) for multivalent functions is
defined as:

Lc,pf(z) =
[p+ c]

zc

∫ z

0

tc−1f(t)dqt, (2.5)

where f ∈ A(p) given by (1.1) with c > −p.
Theorem 2.4. If f ∈ ST s,pq,b (ϕ) then Lc,pf(z) ∈ ST s,pq,b (ϕ) .

Proof. Let f(z) ∈ ST s,pq,b (ϕ) . Consider

zdq(J
s,p
q,b (Lc,pf(z)))

[p] Js,pq,b (Lc,pf(z))
= Q(z), (2.6)

where Q(z) is analytic in E with Q(0) = 1. From (2.5), after some calculations, we
can write

zdq(Lb,pf(z)) = [p+ c] f(z)− [c]Lc,pf(z).

Now applying the operator Js,pq,b on both sides, we have

zdq(J
s,p
q,b (Lc,pf(z)))

Js,pq,b (Lc,pf(z))
= [p+ c]

Js,pq,b f(z)

Js,pq,b (Lc,pf(z))
− [c] . (2.7)

Now applying logarithmic q-differentiation on both sides of (2.7), after some calcula-
tions and using (2.6), we get

zdq(J
s,p
q,b f(z))

[p] Js,pq,b f(z)
= Q(z) +

z[dqQ(z)]

[p]Q(z) + [c]
. (2.8)

As f ∈ ST s,pq,b (ϕ) , so from (2.7) and (2.8), we have

Q(z) +
z[dqQ(z)]

[p]Q(z) + [b]
≺ ϕ(z).

As Re([p]ϕ(z) + [c]) > 0 so by Lemma 1.3, we have Q(z) ≺ ϕ(z) which implies
Lc,pf(z) ∈ ST s,pq,b (ϕ) . �

Theorem 2.5. If f(z) ∈ CV s,pq,b (ϕ) then Lc,pf(z) ∈ CV s,pq,b (ϕ).

Proof. It is immediate consequence of the fact f ∈ CV s,pq,b (ϕ)⇔ zdqf(z)
[p] ∈ ST s,pq,b (ϕ) .

�
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2.3. Convolution property of ST s,pq,b (ϕ)

We now obtain convolution property for the class ST s,pq,b (ϕ) .

Theorem 2.6. Let f ∈ ST s,pq,b (ϕ) . Then

f(z) = z[p]. exp

(
ln q−1

1− q
[p]

∫ z

0

ϕ(ω(ς))− 1

ς
dqς

)
∗

(
zp +

∞∑
k=2

(
[k + b]

[1 + b]

)s
ak+p−1z

k+p−1

)
, (2.9)

where ω is Schwartz function.

Proof. Suppose that f ∈ ST s,pq,b (ϕ) . The subordination condition (1.9) can be written
as:

zdq(J
s,p
q,b f(z))

Js,pq,b f(z)
= [p]ϕ(ω(z)), (2.10)

where ω is Schwartz function.
From (2.10), after q-integrating we get

log

(
Js,pq,b f(z)

z[p]

)
=

ln q−1

1− q
[p]

∫ z

0

ϕ(ω(ς))− 1

ς
dqς. (2.11)

It follows from (2.11) that

Js,pq,b f(z) = z[p]. exp

(
ln q−1

1− q
[p]

∫ z

0

ϕ(ω(ς))− 1

ς
dqς

)
. (2.12)

The assertion can be obtained easily from (1.5) and (2.12). �
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A dual mapping associated to a closed convex set
and some subdifferential properties

Gabriela Apreutesei and Teodor Precupanu

Abstract. In this paper we establish some properties of the multivalued mapping
(x, d) ⇒ DC (x; d) that associates to every element x of a linear normed space X
the set of linear continuous functionals of norm d ≥ 0 and which separates the
closed ball B (x; d) from a closed convex set C ⊂ X. Using this mapping we give
links with other important concepts in convex analysis (ε-approximation element,
ε-subdifferential of distance function, duality mapping, polar cone). Thus, we
establish a dual characterization of ε-approximation elements with respect to a
nonvoid closed convex set as a generalization of a known result of Garkavi. Also,
we give some properties of univocity and monotonicity of mapping DC .
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Keywords: Distance function associated to a set, ε-subdifferential, best approxi-
mation element, ε-monotonicity, separating hyperplane.

1. Introduction and preliminaries

Let C be a nonvoid closed convex set in a real linear normed space X and a
closed ball B (x; d), d > 0 such that C ∩ intB(x, d) = ∅. It is well known that those
two sets can be separated by closed hyperplanes (see, for instance, [1],[2]).

We denote by
dC (x) = inf

u∈C
‖x− u‖ , x ∈ X, (1.1)

the distance function to a set C ⊂ X. Also, let us denote by X∗ the dual space of X.
In the special case d = dC (x), x /∈ C, using separating hyperplane, Garkavi [4]

has obtained a well known dual characterization of best approximation elements of
x ∈ X in C.
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We recall that an element z ∈ C is a ε-approximation of x in C if

‖x− z‖ ≤ ‖x− u‖+ ε, for all u ∈ C. (1.2)

Therefore using, the distance of x to the set C the property (1.2) is equivalent to

‖x− z‖ ≤ dC(x) + ε.

Obviously, here it is necessary that ε ≥ 0.
If ε = 0, then z is a best approximation of x in C, that is ‖x− z‖ = dC (x) and

z ∈ C.
If ε > 0 then the set of ε-approximations of x ∈ C is always nonvoid, but the

set of the best approximations may be void.
Using separating hyperplanes, Garkavi [4] established a well known dual charac-

terization of best approximation elements as follows.

Theorem 1.1. ([4]) An element z ∈ C is a best approximation element of x ∈ X ∈ C
if and only if there exists an element x∗0 ∈ X∗ such that

i) ‖x∗0‖ = ‖x− z‖;
ii) x∗0 (x− u) ≥ ‖x− z‖2 for all u ∈ C.

Here, the property ii) is equivalent with the following two properties:

i’) x∗0 (x− z) = ‖x− z‖2;
ii’) x∗0 (z) = sup {x∗0 (u) ;u ∈ C}.
Obviously, if x ∈ C, and z is a best approximation element, then x = z, and

so we take x∗0 = 0. Now, if x /∈ C, then dC (x) > 0 and we consider a closed sepa-
rating hyperplane (x∗0, α) for the sets C and B(x, dC(x)) such that ‖x∗0‖ = ‖x− z‖.
Conversely, if z ∈ C has the property i) and ii) it follows that

‖x− u‖‖x∗0‖ ≥ x∗0(x− u) ≥ ‖x− z‖2,
for all u ∈ C which prove that z is a best approximation element in C for x ∈ X.

Let us denote by PC (x) the set of all best approximations of x in C. The (mul-
tivalued) mapping x⇒ PC (x) x ∈ X is called the metric projection associated to the
set C. Clearly, PC (x) = x for any x ∈ C. Also, we can have PC (x) = ∅ for certain
elements in X. If PC (x) 6= ∅ for any x ∈ X then the set C is called proximinal and if
PC (x) = ∅ for any x ∈ X\C, the set C is called antiproximinal. It is well known that
in a reflexive space any closed convex set is proximinal.

Given a convex real extended function f : X → R, its ε-subdifferential is de-
fined by

∂εf (x) = {x∗ ∈ X∗;x∗ (x− u) ≥ f (x)− f (u)− ε, for all u ∈ X}, x ∈ X (1.3)

where R = [−∞,+∞].
Here, we suppose that f is a proper function, that is f (u) > −∞ for all u ∈ X and
there exist elements x ∈ X such that f (x) <∞. If ε = 0 we obtain the subdifferential
of function f in x, denoted by ∂f (x).

The multivalued operator x⇒ ∂εf (x), x ∈ X, has the following ε-monotonicity
property

(x∗1 − x∗2) (x1 − x2) ≥ −2ε for all x∗1 ∈ ∂εf (x1) , x∗2 ∈ ∂εf (x2) . (1.4)
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Generally, a multivalued operator A : X ⇒ X∗ which has the property of ε-
monotonicity of type (1.4) is called ε-monotone. Some properties of those mappings
were given in [13]. This type of monotonicity is different of ε-monotonicity defined in
[9].

Also, we recall the definition of duality mapping J : X ⇒ X∗,

J (x) =
{
x∗ ∈ X∗;x∗ (x) = ‖x∗‖2 = ‖x‖2

}
, x ∈ X. (1.5)

It is well known that J is the subdifferential of the function x 7→ 1
2 ‖x‖

2
, x ∈ X

(see, for instance, [1], [2]).
If A is a subset of X, we denote by Ao the polar set of A ⊂ X, that is

Ao = {x∗ ∈ X∗;x∗ (a) ≤ 1 for all a ∈ A} . (1.6)

In this paper we intend to analyze some properties of the (multivalued) mapping
(x, d) ⇒ DC (x; d), x ∈ X, C ⊂ X, d ≥ 0, where

DC (x; d) = {x∗ ∈ X∗;x∗ (v) ≥ x∗ (u) , ‖x∗‖ = d, ∀v ∈ B (x; d) ,∀u ∈ C} . (1.7)

Remark 1.2. Obviously, DC (x; 0) = {0}, for all x ∈ X and DC (x; d) = ∅ whenever
d > dC (x).

Geometrically, for each x ∈ X and d > 0, DC (x; d) coincides with the set of all
linear continuous functionals x∗ ∈ X∗ such that ‖x∗‖ = d and for which x∗ (y) = k,
y ∈ X, is a separating hyperplane for the sets C and B (x; d) for a certain k ∈ R.

Equivalently,

DC (x; d) =
{
x∗ ∈ X∗; ‖x∗‖ = d, x∗ (x− u) ≥ d2,∀u ∈ C

}
. (1.7’)

In the special case d = dC (x) we denote

DC (x) = DC (x; dC (x)) , x ∈ X. (1.7”)

We establish a dual characterization of real number d such that 0 ≤ d ≤ dC (x)
(Theorem 2.1). Consequently, if x /∈ C, we obtain the basic properties of elements in
DC (x; d). Using this multivalued mapping naturally generated by the geometric prob-
lem of separation of a nonvoid closed convex set and a closed ball we give connections
with some important concepts and properties of convex analysis (ε-subdifferentials
of distance function, ε-approximation elements, duality mapping, polar cone). For
example,

x∗ ∈ DC (x; d) if and only if 1
‖x∗‖x

∗ ∈ ∂εdC (x)∩Bd B∗ (0; 1) for ε = dC (x)− d,

where 0 < d ≤ dC (x). Generally, by BdA we denote the boundary of a set A ⊂ X.
Also, we denote by B∗(x∗0; d), x∗0 ∈ X∗, d ≥ 0, the closed balls in X∗.

Consequently, we give an explicit formula for ∂εdC (x) in the case x /∈ C, but ε >
dC (x) (Theorem 2.5, ii). The special case d = dC (x) was considered by Ioffe in [8]. A
detailed study of subdifferential of distance function was given by Penot, Ratsimahalo
in [10] (see also [3] and [6] if P (x) 6= ∅ ). In [5] Hiriart-Urruty (see, also, [6]) has
obtained formula for the ε-subdifferential of a marginal function. Particularly, one
can be obtained formulas for ε-subdifferential of distance function which is considered
either as a marginal function, or as the convolution of the norm and the indicator
function of the set C. But, by Theorem 2.5, we establish some explicit properties of
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∂εdC (x). We remark that we have a special situation if ε = dC (x). The assertion
iii) in Theorem 2.5 is similar to the one shown in [10] for the subdifferential distance
function. We also establish a property of univocity of DC .

Following Jofre, Luc and Thera ([9]), we define a new type of ε-monotonicity by
(3.1), in according with DC (Theorem 3.1). Some monotonicity properties of DC are
given in Section 3.

2. A dual mapping associated to a closed convex set and an arbitrary
positive number

Now, we give a dual characterization of the numbers d such that dC (x) ≥ d ≥ 0.

Theorem 2.1. Let C be a nonvoid closed convex set in a linear normed space X. If
x ∈ X is a fixed element then dC (x) ≥ d ≥ 0 if and only if there exists x∗ ∈ X∗ such
that

i) ‖x∗‖ = d;
ii) x∗ (x− u) ≥ d2, for all u ∈ C.

Proof. If d = 0 then i) and ii) are obviously fulfilled taking x∗ = 0 and conversely.
Hence we can suppose that d > 0.

Now, if 0 < d ≤ dC (x) it follows that B (x; d) has nonvoid interior set and
C∩ intB (x; d) = ∅. Thus, using a separation theorem for sets C and B (x; d) (see, for
instance, [1] or [2]), there exists a non null element y∗ ∈ X∗ such that y∗ (v) ≥ y∗ (u)

for all u ∈ C and v ∈ B (x; d). Taking x∗0 = d ‖y∗‖−1 y∗ it follows that

x∗0 (x− dz) ≥ x∗0 (u)

for any z ∈ B (0; 1) and u ∈ C, and so x∗0 (x− u) ≥ d ‖x∗0‖ for all u ∈ C. Obviously,
‖x∗0‖ = d. Therefore, the properties i) and ii) are fulfilled.

Conversely, if i) and ii) hold, then

d2 ≤ x∗0 (x− u) ≤ ‖x∗0‖ ‖x− u‖ ≤ d ‖x− u‖ ,
for all u ∈ C, and so d ≤ dC (x). �

From the proof of Theorem 2.1 in the case 0 < d ≤ dC (x) (and, so, x /∈ C), we
see that every x∗ which verifies i) and ii) is in DC (x; d).

Remark 2.2. Given an element x ∈ X, taking d = ‖x− z‖, where z ∈ C, by Theorem
2.1 it results that ‖x− z‖ ≤ dC (x) if and only if the properties i) and ii) in Theorem
2.1 are fulfilled. But it is clear that ‖x− z‖ ≤ dC (x) and z ∈ C if and only if z is
the best approximation of x in C. Therefore, Theorem 2.1 is a slight extension of a
famous characterization established by Garkavi [4] concerning the best approximation
elements.

Corollary 2.3. Let X be a linear normed space, C a nonvoid closed convex set of X
and ε ≥ 0. Then zε ∈ C is an ε-approximation element for x /∈ C, ε < dC (x), if and
only if there exists x∗ ∈ X∗ such that the properties i) and ii) in Theorem 2.1 are
fulfilled for d = ‖x− zε‖ − ε.
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Proof. According to (1.1) and (1.2) zε ∈ C is an ε-approximation element for x ∈ X
if and only if ‖x− zε‖ − ε ≤ dC (x) .Therefore it is sufficient to apply Theorem 2.1
taking d = ‖x− zε‖ − ε. �

Now, we intent to characterize x∗ ∈ DC (x; d) using the set ∂εdC (x), where
ε = dC (x)− d ≥ 0, whenever x /∈ C.

Proposition 2.4. If x∗ ∈ ∂εdC (x) and ε > 0 then:

‖x∗‖ ≤ 1; (2.1)

‖x∗‖ ≥ 1− ε

dC (x)
, for all x /∈ C. (2.2)

whenever C is a nonvoid closed convex set in X.

Proof. If x∗ ∈ ∂εdC (x) then x∗ (x− y) ≥ dC (x) − dC (y) − ε for any y ∈ X. Taking
y = x+ tz, t > 0 and z ∈ X it follows that

tx∗(z) + dC(x)− ε ≤ dC(x+ tz) ≤ ‖x+ tz − u‖ ≤ t‖z‖+ ‖x− u‖,

for a given u ∈ C. Therefore, x∗(z) − ‖z‖ ≤ 1
t (‖x − u‖ − dC(x)), for any t > 0 and

z ∈ X, and so, for t→∞ we obtain that x∗(z) ≤ ‖z‖, z ∈ X.
If x ∈ C and x∗ ∈ ∂εdC (x) we take y = x+ tz, z ∈ X, t < 0 in inequality

x∗ (x− y) ≥ dC (x)− dC (y)− ε

and we obtain x∗ (x− y) ≥ dC (x)− ε, so ‖x∗‖ ‖x− y‖ ≥ dC (x)− ε, equivalently

‖x∗‖dC(x) ≥ dC(x)− ε.

Therefore, if x /∈ C then dc(x) > 0. Thus, we obtain the inequality (2.2). �

We recall that if X is a linear normed space, the conic polar A+ of a set A ⊂ X
is defined by

A+ = {x∗ ∈ X∗;x∗ (a) ≥ 0 for all a ∈ A} .

If A is a cone, then A+ = −A0.
In the next result we establish some special properties of ε-subdifferential dis-

tance function.

Theorem 2.5. Suppose that X is a real normed space, x ∈ X and C ⊂ X is a nonvoid
closed convex set.

i) If x /∈ C, 0 < d ≤ dC (x) and ε = dC (x)− d, then

∂εdC (x) ∩Bd B∗ (0; 1) =
1

d
DC (x; d) ;

ii) If x /∈ C and ε > dC (x) then

∂εdC (x) = (ε− dC (x)) (C − x)o ∩B∗ (0; 1);

iii) If x /∈ C, and ε = dC (x) then ∂εdC (x) = (x− C)
+ ∩B∗ (0; 1).

iv) If x ∈ C then ∂εdC (x) = ε (C − x)
o ∩B∗ (0; 1) for every ε > 0.
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Proof. i) Using (1.3) it follows that z∗ ∈ ∂εdC (x) if and only if

z∗ (x− y) ≥ d− dC (y) for all y ∈ X.

If y ∈ C then z∗ (x− y) ≥ d, which implies z∗ ∈ 1
dDC (x; d) whenever ‖z∗‖ = 1.

Conversely, suppose z∗ ∈ 1
dDC (x; d). Then ‖z∗‖ = 1 and z∗ (x− y) ≥ d for any

y ∈ C, so z∗ (x− y) ≥ d− dC (y) for all y ∈ C.

Now, consider y ∈ X\C and some u ∈ C.

Then z∗ (x− y) = z∗ (x− u)− z∗ (y − u) ≥ d− z∗ (y − u).

But z∗ (y − u) ≤ ‖z∗‖ ‖y − u‖ = ‖y − u‖ . So, z∗ (x− y) ≥ d − ‖y − u‖, for any
u ∈ C. Passing to the sup

u∈C
in this inequality we obtain z∗ ∈ ∂εdC (x) ∩B∗ (0; 1).

ii) If ε > dC (x) denote η = ε − dC (x) > 0. Let x∗ be an element of ∂εdC (x).
Then x∗ (x− y) ≥ −η − dC (y), for all y ∈ X. Taking y ∈ C it results x∗ (y − x) ≤ η

for any y ∈ C, that is x∗ ∈
(
C−x
η

)o
∩ B∗ (0; 1) = η (C − x)

o ∩ B∗ (0; 1) according to

(2.1).

Now, if x∗ ∈ η (C − x)
o ∩B∗ (0; 1) then x∗ (u− x) ≤ ε− dC (x) for all u ∈ C. If

y /∈ C then

x∗ (x− y) = x∗ (x− u) + x∗ (u− y) ≥ dC (x)− ε+ x∗ (u− y)

≥ dC (x)− ε− ‖x∗‖ ‖u− y‖ ≥ dC (x)− ε− ‖u− y‖

for all u ∈ C.
Using (1.1) it follows that x∗ ∈ ∂εdC (x).

iii) Let x∗ be an element in ∂εdC (x) . Taking ε = dC (x) in the definition of
ε-subdifferential of dC and arbitrary y ∈ C one obtains x∗ (y − x) ≤ 0, so x∗ ∈
(x− C)

+
. Now, using (2.1), the conclusion follows.

iv) Let y ∈ X be arbitrary and x ∈ C. If ε > 0 and x∗ ∈ ∂εdC (x) then
x∗ (x− y) ≥ −dC (y)− ε, so x∗ (y − x) ≤ ε, whenever y ∈ C. Hence x∗ ∈ ε (C − x)

o
.

Also, from (2.1) we have ‖x∗‖ ≤ 1.

Conversely, for x∗ ∈ ε (C − x)
o∩B (0; 1) and y ∈ X we have x∗ (y − u) ≤ ‖y − u‖

for all u ∈ C. We deduce

x∗ (x− y) = x∗ (x− u) + x∗ (u− y) ≥ −ε− ‖y − u‖ .

Passing to the infimum for u ∈ C it results x∗ (x− y) ≥ −ε − dC (y) for all
y ∈ X as claimed. �

Corollary 2.6. Let X be a linear normed space. Then:

i) 1
dD{0} (x; d) = ∂ε ‖·‖ (x) ∩Bd B (0; 1) where ε = ‖x‖ − d > 0, d > 0;

ii) D{0} (x; ‖x‖) = J (x).

Proof. i) Observe that dC (x) = ‖x‖ if C = {0}. Now, we apply Theorem 2.5, i).

ii) Consider x∗ ∈ D{0} (x; ‖x‖), that is ‖x∗‖ = ‖x‖ and x∗ (x) ≥ ‖x‖2. But

x∗ (x) ≤ ‖x‖2 and so x∗ (x) = ‖x‖2. According to (1.5) we obtain that x∗ ∈ J (x). �
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Remark 2.7. The assertion iii) of Theorem 2.5 has obtained by Hiriart-Urruty in [5]
(see also, [6], [7]). The special case ε = 0 was studied by Penot and Ratsimahalo [10].

Remark 2.8. Theorem 2.5, i), can be reformulated as

1

d
DC (x; d) = ∂λ (d · dC (x)) ∩Bd B (0; 1),

where λ = d (dC (x)− d), 0 < d ≤ dC (x) .

We recall that X is a smooth space (see [1], [3]) if there is exactly one supporting
hyperplane through each boundary point of closed unit ball.

Generally, closed convex set A ⊂ X is called smooth at a point x0 if there exists
only one closed hyperplane which separates x0 at A. Obviously, it is necessary that

x0 ∈ Bd A.

Theorem 2.9. Let C be a nonvoid closed convex set in X and a fixed element x ∈ X.
Then, for any d ∈ [0, dC (x)] we have:

i) DC (x; d) = {0} if and only if d = 0;
ii) Dom DC = (X × {0}) ∪ {(x, d) ;x /∈ C, d ∈ (0; dC (x)]};
iii) If DC (x; d) is a singleton then d = 0 or d = dC (x).
iv) DC (x; dC (x)) is a singleton if and only if the set C−B (x; dC (x)) is smooth

at origin.

Proof. The properties i), ii) are obvious.
Also, in the sequel we can suppose that x /∈ C, and so dC (x) > 0.
Now, we prove properties (iii) and (iv): if d = 0 then DC (x; 0) = {0} is a

singleton. Let us consider an arbitrary element x /∈ C and d ∈ (0, dc (x)]. But, if d <
dC (x) then C and B (x; d) are strongly separated, that is there exists many parallel
separating hyperplanes (see, for example, [1], Remark 1.46). Therefore, DC (x; d) is
not a singleton. If d = dC (x) there exists a unique hyperplane which separates C and
B (x; dC (x)) if and only if there exists a unique hyperplane which separates the origin
and C −B (x; dC (x)), that is C −B (x; dC (x)) is smooth at the origin. �

Remark 2.10. In the spacial case when PC (x) 6= ∅, the property iii) was established
by Garkavi ([4]).

Now, if PC (x) 6= ∅, we have

DC (x) =
{
x∗ ∈ X∗; ‖x∗‖ = ‖x− z‖ , x∗ (x− u) ≥ ‖x− z‖2 ∀u ∈ C

}
,

z ∈ PC (x) (2.3)

since dC (x) = ‖x− z‖ for any z ∈ PC (x).
In the sequel we prove that the mapping DC can be equivalently defined using a

min-max property. Since B∗ (x; d) is a convex w∗-compact set in X∗ and the function
Fx (x∗, u) = x∗ (x− u), (u, x∗) ∈ X ×X∗ is convex-concave, using a min-max result
(see, for instance, [1], [11] and [12]), it implies the following equality:

max
x∗∈B∗(0;d)

inf
u∈C

x∗ (x− u) = inf
u∈C

max
x∗∈B∗(0;d)

x∗ (x− u) for all x ∈ X, d > 0. (2.4)
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Here, by ”max”, we mean that ”sup” is attained. The elements x∗0 ∈ B∗ (0; d),
where ”max” is attained in the left hand of (2.4) and make valid the equality (2.4)
are called the solutions of the max-inf problem (2.4).

Proposition 2.11. Given an element x ∈ X and a nonvoid convex, closed set C ⊂ X,
then x∗ ∈ DC (x) if and only if x∗ is a solution of max-inf problem (2.4), where
d = dC (x), that is

DC (x) =

{
x∗ ∈ B∗ (0; dC (x)); inf

u∈C
x∗ (x− u) = d2C (x)

}
. (2.5)

Proof. We remark that the saddle value of (2.4) is equal to dC (x) d. Consequently,
for d = dC (x), the properties i), ii) in Theorem 2.1 are equivalent to the assertion
that x∗ is a solution of max-inf problem (2.4). �

Remark 2.12. If in the equality (2.4) ”inf” is also attained, these elements of C
are even the best approximation elements of x in C. Therefore, if PC (x) 6= ∅ and
d = dC (x), then the set of all saddle elements of max-min problem associated to (2.4)
is DC (x)× PC (x).

Now, if we return to the dual characterization of the best approximation ele-
ments, we observe that in the special case PC (x) 6= ∅, we have a conection with the
duality map J . Firstly, we remark that if we put in equality (1.7) d = ‖x − z‖ it
results that DC(X) is exactly the set of all x∗ ∈ X∗ with the properties of Garkavi
Theorem 1.1. But, the properties i) and i′) in Theorem 1.1 prove that x∗0 ∈ J (z − x).
Also, ii′) say that x∗ ∈ (x− C)∗. Consequently we have the following equality

DC (x) = J (x− z) ∩ (C − x)
+

whenever z ∈ PC (x) and x ∈ X.

3. Properties of monotonicity

It is well known the relationship between the subdifferentials of convex functions
and their property of monotonicity ([9]). Also, the ε-subdifferentials are ε-monotone
in the sense of definition (1.4) and they have some good properties (see, for e.g., [13]).

Because the multivalued mapping x ⇒ DC (x; d) is expressed using the ε-
subdifferential of dC (·) (Theorem 2.5, i)), it is expected to have an ε-monotonicity
property.

Now, we establish two special monotonicity properties of DC .

Theorem 3.1. The mapping (x, d) ⇒ DC (x; d) is monotone in the following sense:

∀xi ∈ X\C, 0 < di ≤ dC (xi), εi = dC (xi) − di and ∀x∗i ∈ DC (xi; di), i = 1, 2,
then

(x∗1 − x∗2) (x1 − x2) ≥ −ε2d1 − ε1d2. (3.1)
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Proof. Let us consider x∗i ∈ DC (xi, di) , i = 1, 2. By property ii) in Theorem 2.1 and
the definition of DC we have (x∗i , xi − ui) ≥ d2i for any ui ∈ C, i = 1, 2. Therefore it
follows that

(x∗1 − x∗2) (x1 − x2) = x∗1 (x1 − u1) + x∗2 (x2 − u2)− x∗1(x2 − u1)− x∗2 (x1 − u2)

≥ d21 + d22 − x∗1(x2 − u1)− x∗2 (x1 − u2)

≥ d21 + d22 − d1 ‖x2 − u1‖ − d2 ‖x1 − u2‖ .

Since u1, u2 are arbitrary elements in C we get

(x∗1 − x∗2) (x1 − x2) ≥ d21 + d22 − d1dC (x2)− d2dC (x1) = −d1ε2 − d2ε1,
as claimed. �

Also, the mapping DC has a property of monotonicity with respect to corre-
sponding best approximation elements.

Proposition 3.2. If x∗i ∈ DC (xi; di) and zi ∈ PC (xi), i = 1, 2, then

(x∗1 − x∗2) (z1 − z2) ≥ 0.

Proof. Taking u1 = z2 and u2 = z1 in Theorem 2.1, we have

(x∗1 − x∗2) (z1 − z2) = x∗1 (x1 − z2) + x∗2 (x2 − z1)− x∗1 (x1 − z1)− x∗2 (x2 − z2)

≥ d21 + d22 − x∗1 (x1 − z1)− x∗2 (x2 − z2) .

By properties i) and ii) in Theorem 1.1 it follows that
(x∗1 − x∗2) (z1 − z2) ≥ d21 + d22 − d1 ‖x1 − z1‖ − d2 ‖x2 − z2‖ = 0. �
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Abstract. This paper investigates the existence of multiple positive solutions for
a class of φ−Laplacian boundary value problem with a nonlinear fractional differ-
ential equation and fractional boundary conditions. Multiple solutions are proved
under slight conditions on a possibly degenerating source term. Approximation
techniques together with the fixed point index theory a on cone of a Banach space
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1. Introduction

This paper deals with the existence of multiple positive solutions to the following
nonlinear fractional differential equation with a φ-Laplacian operator and Riemann-
Liouville derivatives:{

−Dα
0+(φ(−Dβ

0+x(t)) = q(t)f(t, x(t), Dγ
0+x(t)), 0 < t < 1,

x(0) = x′(0) = Dβ−1
0+ x(1) = Dβ

0+x(0) = [Dα−1
0+ (φ(−Dβ

0+x(t))]t=1 = 0,
(1.1)

where γ > 0, α ∈ (1, 2], β ∈ (2, 3], β − γ − 2 ≥ 0, and Dα
0+ , D

β
0+ , D

γ
0+ are

the standard Riemann-Liouville derivatives. The nonlinear term f = f(t, x, y) :
[0, 1]× [0,+∞)× [0,+∞) −→ R+ is continuous but may be singular at x = 0 and/or
at y = 0 in a sense to be made precise. The function φ : R −→ R is an increasing
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homeomorphism such that φ(0) = 0. The sets R+ and I = (0,+∞) will stand for the
nonnegative real numbers and the positive real numbers, respectively.

In the last couple of years, fractional boundary value problems (BVPs for short)
have been the subject of intensive research works, see, e.g., [2, 12, 11, 15] and reference
therein. They can thought of as extension of BVPs with ordinary differential equations
(see [5, 6]). For the p−Laplacian ϕp(s) = |s|p−2s p > 1, the authors of [13] discussed
the BVP {

Dβ
0+(ϕp(D

α
0+y(x))) = f(x, y(x)), 0 < x < 1,

y(0) = y′(0) = y(1) = Dα
0+y(0) = 0, Dα

0+y(1) = λDα
0+y(ε),

where α, β ∈ R, α ∈ (2.3], β ∈ (1, 2], ε ∈ (0, 1), λ ∈ [0,+∞), Dα
0+ , D

β
0+ are the

standard Riemann-Liouville derivatives, and f ∈ C([0, 1] × [0,+∞), [0,+∞)). They
proved the existence of positive solutions by means of the Guo-Krasnosel’skii fixed
point theorem. In [8], Lu et al. considered the BVP{

Dα
0+(ϕp(D

β
0+u(t))) = f(t, u(t)), 0 < t < 1,

u(0) = u′(0) = u′(1) = 0, Dβ
0+u(0) = Dβ

0+u(1) = 0,

where α ∈ (1, 2], β ∈ (2, 3], Dα
0+ , D

β
0+ are the standard Riemann-Liouville derivatives,

and f ∈ C([0, 1]× [0,+∞), [0,+∞)). Existence results are proved by combination of
the Guo-Krasnosel’skii fixed point theorem, the Leggett-Williams fixed point theorem,
and the method of upper and lower solutions. In [14], the authors considered the BVP{

−Dα1

0+(ϕp(D
β1

0+u(t)) = f(t, u(t)), 0 < t < 1,

u(0) = u(1) = u′(0) = u′(1) = 0, Dβ1

0+u(0) = 0, Dβ1

0+u(1) = bDβ1

0+u(η),
(1.2)

where α ∈ (1, 2], β ∈ (3, 4], η ∈ (0, 1), b ∈ (0, η
1−α
p−1 ), and f ∈ C([0, 1] × R+,R+).

They established the existence of positive solutions by the upper and lower solutions
method combined with the Schauder fixed point theorem. More recently, the existence
of positive solutions is proved in [15] by fixed point theory. In [3], A. Boucenna and T.
Moussaoui have used the Krasnoselskii fixed point theorem to establish the existence
of positive solution on the half-line for the BVP:{

−Dα
0+u(t) = a(t)g(u(t), Dβ

0+u(t)), t > 0,
u(0) = Dα−1

0+ u(∞) = 0,
(1.3)

where α ∈ (1, 2], β > 0, and α − β ≥ 1 and the nonlinear function g satisfies some
growth assumptions.

This work discusses the existence and the multiplicity of positive solutions to
Problem (1.1) where the function f depends on x and on the standard Rieman-
Liouville derivative Dγ

0+x. The nonlinear term f may be singular point at x = 0
and/or Dγ

0+x = 0. φ is a homeomorphism. We will make use of the fixed point index
theory on a suitable cone in some Banach space. Each existence result is illustrated
by an example. In this section, we also recall some preliminary results we need in this
paper. The first reminders concern the Riemann-Liouville fractional integral and the
Riemann-Liouville fractional derivation. For more details, we refer to [7, 10, 9].
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Definition 1.1. The Riemann-Liouville fractional integral of order α > 0 of a function
u : (0, 1)→ R is defined by

Iα0+u(t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(s)ds

provided that the right-hand side is pointwise defined on (0, 1). Γ(α) is the Euler

gamma function Γ(α) =
∫ +∞

0
tα−1e−tdt.

Definition 1.2. The Riemann-Liouville fractional derivative of order α > 0 of a func-
tion u : (0, 1)→ R is defined by

Dα
0+u(t) =

dn

dtn
In−α0+ u(t) =

1

Γ(n− α)

dn

dtn

∫ t

0

(t− s)n−α−1u(s)ds,

where n is the smallest integer greater than or equal to α, provided the right-hand
side is pointwise defined on (0, 1).

Lemma 1.3. Let α > 0. Then for u ∈ L(0, 1) and Dα
0+u(t) ∈ L(0, 1), we have

Iα0+Dα
0+u(t) = u(t) + c1t

α−1 + c2t
α−2 + . . .+ cnt

α−n,

where c1, c2, . . . , cn ∈ (−∞,+∞), n− 1 < α ≤ n.

For the theory and the computation of the fixed point index on cones in Banach
spaces, we refer to [1, 2, 4]. An operator A : E → E is completely continuous if it is
continuous and maps bounded sets into relatively compact sets. A nonempty subset
P of a Banach space E is called a cone if it is convex, closed and satisfies αx ∈ P for
all x ∈ P and α ≥ 0 and x,−x ∈ P implies that x = 0.

Lemma 1.4. Let Ω be a bounded open set in a real Banach space E, P a cone of E
and A : Ω ∩ P → P a completely continuous map. Suppose that λAx 6= x, ∀x ∈
∂Ω ∩ P, λ ∈ (0, 1]. Then i(A,Ω ∩ P,P) = 1.

Lemma 1.5. Let Ω be a bounded open set in a real Banach space E, P a cone of E
and A : Ω∩P → P a completely continuous map. Suppose that Ax 6≤ x, ∀x ∈ ∂Ω∩P.
Then i(A,Ω ∩ P,P) = 0.

The basic space to study Problem (1.1) is

E = {x ∈ C([0, 1],R) : Dγ
0+x ∈ C([0, 1],R)}.

E is a Banach space with the norm ‖x‖ = ‖x‖1 +‖x‖2, where ‖x‖1 = sup
t∈[0,1]

|x(t)| and

‖x‖2 = sup
t∈[0,1]

|Dγ
0+x(t)|. The following lemma is the fractional version of Ascoli-Arzéla

Theorem.

Lemma 1.6. Let M ⊆ E, then M is relatively compact in E if the following conditions
hold:

(a) M is bounded in E,
(b) the functions belonging to {x, x ∈ M} and {z : z(t) = Dγ

0+x(t), x ∈ M} are
equicotinuous, i.e., ∀ ε > 0,∃ δ > 0,∀ t1, t2 ∈ [0, 1], and for all x ∈M ,

|t1 − t2| < δ ⇒ |x(t1)− x(t2)| < ε and |Dγ
0+x(t1)−Dγ

0+x(t2)| < ε.
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The cases where f is either regular or singular are discussed separately in Section
3 and Section 4, respectively. Some technical lemmas are collected in the following
section.

2. Fixed point setting

Consider the boundary value problem{
−Dα

0+u(t) = v(t), 0 < t < 1,
u(0) = Dα−1

0+ u(1) = 0.
(2.1)

It is easy to verify

Lemma 2.1. If v ∈ C([0, 1]), then Problem (2.1) has the unique solution

u(t) =

∫ 1

0

H(t, s)v(s)ds,

where

H(t, s) =
1

Γ(α)

{
tα−1 − (t− s)α−1, 0 ≤ s ≤ t ≤ 1,
tα−1, 0 ≤ t ≤ s ≤ 1.

If we set φ(−Dβ
0+x(t)) = u(t), then −Dβ

0+x(t) = φ−1(u)(t). Thus the BVP{
−Dα

0+(φ(−Dβ
0+x(t)) = v(t), 0 < t < 1

x(0) = x′(0) = Dβ−1
0+ x(1) = Dβ

0+x(0) = [Dα−1(φ(−Dβ
0+x(t)]t=1 = 0

(2.2)

is equivalent to  −D
β
0+x(t) = φ−1(

∫ 1

0
H(t, s)v(s))ds), t ∈ (0, 1)

x(0) = x′(0) = Dβ−1
0+ x(1) = 0.

Lemma 2.2. Given v ∈ C[0, 1], Problem (2.2) has the unique solution

x(t) =

∫ 1

0

G(t, s)φ−1

(∫ 1

0

H(s, τ)v(τ)dτ

)
ds,

where

G(t, s) =
1

Γ(β)

{
tβ−1 − (t− s)β−1, 0 ≤ s ≤ t ≤ 1,
tβ−1, 0 ≤ t ≤ s ≤ 1.

A direct computation yields

Dγ
0+G(t, s) =

1

Γ(β − γ)

{
tβ−γ−1 − (t− s)β−γ−1, 0 ≤ s ≤ t ≤ 1,
tβ−γ−1, 0 ≤ t ≤ s ≤ 1.

Proof. By Lemma 1.3,

Iα0+Dα
0+u(t) = −Iα0+v(t).

Then

u(t) = −Iα0+v(t) + c1t
α−1 + c2t

α−2, c1, c2 ∈ R.
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The boundary conditions u(0) = Dα−1
0+ u(1) = 0 imply c1 = 1

Γ(α)

∫ 1

0
v(s)ds and c2 = 0.

Hence the solution u of Problem (2.1) is

u(t) = − 1
Γ(α)

∫ t
0
(t− s)α−1v(s)ds+ tα−1

Γ(α)

∫ 1

0
v(s)ds

= 1
Γ(α)

∫ t
0
[tα−1 − (t− s)α−1]v(s)ds+ 1

Γ(α)

∫ 1

t
tα−1v(s)ds

=
∫ 1

0
H(t, s)v(s)ds.

Also,

Iβ0+D
β
0+x(t) = Iβ0+φ

−1

(∫ 1

0

H(t, s)v(s))ds

)
.

Then

x(t) = −Iβ0+φ
−1

(∫ 1

0

H(t, s)v(s))ds

)
+ c1t

β−1 + c2t
β−2 + c3t

β−3,

for some c1, c2, c3 ∈ R. By the boundary conditions x(0) = x′(0) = Dβ−1
0+ x(1) = 0, we

have

c1 =
1

Γ(β)

∫ 1

0

φ−1

(∫ 1

0

H(s, τ)v(τ)dτ

)
ds, c2 = c3 = 0.

Finally, the explicit solution x of Problem (2.2) is

x(t) = − 1
Γ(β)

∫ t
0
(t− s)β−1φ−1(

∫ 1

0
H(s, τ)v(τ)dτ)ds

+ tβ−1

Γ(β)

∫ 1

0
φ−1(

∫ 1

0
H(s, τ)v(τ)dτ)ds

= 1
Γ(β)

∫ t
0
[tβ−1 − (t− s)β−1]φ−1(

∫ 1

0
(H(s, τ)v(τ)dτ)ds

+ 1
Γ(β)

∫ 1

t
tβ−1φ−1(

∫ 1

0
H(s, τ)v(τ)dτ)ds

=
∫ 1

0
G(t, s)φ−1

(∫ 1

0
H(s, τ)v(τ)dτ

)
ds.

�

Lemma 2.3. The function H(t, s), G(t, s), Dγ
0+G(t, s) enjoys the properties

(a1) H,G,Dγ
0+G are continuous on [0, 1]× [0, 1],

(a2) H(t, s) ≤ tα−1

Γ(α) ≤
1

Γ(α) , ∀ (t, s) ∈ [0, 1]× [0, 1],

(a3) G(t, s) ≤ tβ−1

Γ(β) ≤
1

Γ(β) , ∀ (t, s) ∈ [0, 1]× [0, 1],

(a4) Dγ
0+G(t, s) ≤ tβ−1

Γ(β−γ) ≤
1

Γ(β−γ) , ∀ (t, s) ∈ (0, 1)× (0, 1),

(a5) (β−1)ρ(t)s
Γ(β) ≤ G(t, s) ≤ (β−1)s

Γ(β) , ∀ (t, s) ∈ [0, 1]× [0, 1],

(a6) G(t, s) ≥ ρ(t) sup
t∈[0,1]

G(t, s), ∀ (t, s) ∈ [0, 1]× [0, 1],

(a7) (β−1)ρ(t)s
Γ(β−γ) ≤ D

γ
0+G(t, s) ≤ (β−1)s

Γ(β−γ) , ∀ (t, s) ∈ (0, 1)× (0, 1)

(a8) Dγ
0+G(t, s) ≥ ρ(t) sup

t∈[0,1]

Dγ
0+G(t, s), ∀ (t, s) ∈ (0, 1)× (0, 1),

(a9) G(t, s) ≥ Γ(β−γ)
Γ(β) ρ(t) sup

t∈[0,1]

Dγ
0+G(t, s), ∀ (t, s) ∈ (0, 1)× (0, 1),

(a10) Dγ
0+G(t, s) ≥ Γ(β)

Γ(β−γ)ρ(t) sup
t∈[0,1]

G(t, s), ∀ (t, s) ∈ (0, 1)× (0, 1),

where ρ(t) = 1
β−1 t

β−1(1− t)β−1.
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Proof. Let (t, s) ∈ (0, 1)× (0, 1).

(a5) If s ≤ t, then

tβ−1 − (t− s)β−1 = (β − 1)
∫ t
t−s z

β−2dz

≤ (β − 1)(t− t+ s) = (β − 1)s

and

tβ−1 − (t− s)β−1 ≥ tβ−1(1− s)β−1 − (t− s)β−1

= tβ−2(1− s)β−2(t− ts)− (t− s)β−2(t− s)
≥ tβ−2(1− s)β−2(t− ts)− (t− ts)β−2(t− s)
≥ tβ−2(1− s)β−2[(t− ts)− (t− s)]
≥ tβ−2(1− s)β−2s(1− t)
≥ tβ−1(1− t)β−1s.

If t ≤ s, then

tβ−1 = (β − 1)

∫ t

0

zβ−2dz ≤ (β − 1)s

and

tβ−1 ≥ tβ−1(1− t)β−1s.

Hence
tβ−1(1− t)β−1s

Γ(β)
≤ G(t, s) ≤ (β − 1)s

Γ(β)
, ∀ (t, s) ∈ [0, 1]× [0, 1].

(a7) For s ≤ t

tβ−γ−1 − (t− s)β−γ−1 = (β − γ − 1)
∫ t
t−s z

β−γ−2dz

≤ (β − γ − 1)(t− t+ s)
= (β − γ − 1)s ≤ (β − 1)s

and

tβ−γ−1 − (t− s)β−γ−1 ≥ tβ−γ−1(1− s)β−γ−1 − (t− s)β−γ−1

= tβ−γ−2(1− s)β−γ−2(t− ts)− (t− s)β−γ−2(t− s)
≥ tβ−γ−2(1− s)β−γ−2(t− ts)− (t− ts)β−γ−2(t− s)
≥ tβ−γ−2(1− s)β−γ−2[(t− ts)− (t− s)]
≥ tβ−γ−2(1− s)β−γ−2s(1− t)
≥ tβ−1(1− t)β−1s.

If t ≤ s, then

tβ−γ−1 = (β − γ − 1)

∫ t

0

zβ−2dz ≤ (β − 1)s

and

tβ−γ−1 ≥ tβ−1(1− t)β−1s.

Hence
tβ−1(1− t)β−1s

Γ(β − γ)
≤ Dγ

0+G(t, s) ≤ (β − 1)s

Γ(β − γ)
.
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(a9) By (a5) and (a7),

G(t, s) ≥ tβ−1(1−t)β−1s
Γ(β)

= Γ(β−γ)tβ−1(1−t)β−1

(β−1)Γ(β)
(β−1)s
Γ(β−γ)

≥ Γ(β−γ)tβ−1(1−t)β−1

(β−1)Γ(β) sup
t∈[0,1]

Dγ
0+G(t, s).

(a10) By (a5) and (a7)

Dγ
0+G(t, s) ≥ tβ−1(1−t)β−1s

Γ(β−γ)

= Γ(β)tβ−1(1−t)β−1

(β−1)Γ(β)
(β−1)s

Γ(β)

≥ Γ(β)tβ−1(1−t)β−1

(β−1)Γ(β−γ) sup
t∈[0,1]

G(t, s).

�

Define the cone P
P = {x ∈ E : x(t) ≥ λ1ρ(t)‖x‖, Dγ

0+x(t) ≥ λ2ρ(t)‖x‖, ∀ t ∈ [0, 1]},
where

λ1 =
1

2(β − 1)
max

{
Γ(β − γ)

Γ(β)
, 1

}
and

λ2 =
1

2(β − 1)
max

{
Γ(β)

Γ(β − γ)
, 1

}
.

Let α1, α2 ∈ R with 0 < α1 < α2 be such that

tα2φ(x) ≤ φ(tx) ≤ tα1φ(x); ∀ t ∈ [0, 1], ∀x ≥ 0. (2.3)

Then
t

1
α1 φ−1(x) ≤ φ−1(tx) ≤ t

1
α2 φ−1(x); ∀ t ∈ [0, 1], ∀x ≥ 0. (2.4)

Let

ρ1(x) =

{
x

1
α1 , x ≤ 1

x
1
α2 , x ≥ 1

(2.5)

ρ2(x) =

{
x

1
α2 , x ≤ 1

x
1
α1 , x ≥ 1.

(2.6)

From Equation (2.4), we get

ρ1(t)φ−1(x) ≤ φ−1(tx) ≤ ρ2(t)φ−1(x); ∀ t ≥ 0,∀x ≥ 0. (2.7)

By Lemma 2.1 and Lemma 2.2, Problem 1.1 is equivalent to the nonlinear integral
equation

x(t) =

∫ 1

0

G(t, s)φ−1

(∫ 1

0

H(s, τ)q(τ)f(τ, x(τ), Dγ
0+x(τ))dτ

)
ds. (2.8)

Thus the fixed point operator is the operator A : E −→ C([0, 1]) given by

A(x)(t) =

∫ 1

0

G(t, s)φ−1

(∫ 1

0

H(s, τ)q(τ)f(τ, x(τ), Dγ
0+x(τ))dτ

)
ds,
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where x ∈ P. The fractional derivative is

Dγ
0+A(x)(t) =

∫ 1

0

Dγ
0+G(t, s)φ−1

(∫ 1

0

H(s, τ)q(τ)f(τ, x(τ), Dγ
0+x(τ))dτ

)
ds.

Lemma 2.3 will help in investigating the properties of the fixed point operator. Exis-
tence of fixed points will be investigated in the next two sections.

3. Regular nonlinear term

Suppose that f : [0, 1] × R+ × R+ → R+ is continuous such that f(t0, 0, 0) 6= 0
for some t0 ∈ (0, 1]. Let the hypotheses
(H1) There exist m ∈ C([0, 1],R+) and a nondecreasing function in each argument
g ∈ C(R+ × R+,R+) such that

f(t, x, y) ≤ m(t)g(x, y), ∀ t ∈ [0, 1],∀x, y ∈ R+.

(H2)

sup
c>0

c

[ 1
Γ(β) + 1

Γ(β−γ) ]φ−1
(
g(c,c)
Γ(α)

∫ 1

0
q(τ)m(τ)dτ

) > 1.

(H3) There exist a, b (0 < a < b < 1) such that

lim
x→+∞

f(t, x, y)

φ(x)
= +∞, uniformly in t ∈ [a, b] and y ∈ R+.

Proposition 3.1. Suppose (H1). Then the operator A maps P into P and it is com-
pletely continuous.

Proof.
(1) A(P) ⊂ P. A(x)(t) ≥ 0, Dγ

0+Ax(t) ≥ 0 ∀ t ∈ [0, 1] and by Lemma 2.3(a6)

A(x)(t) =
∫ 1

0
G(t, s)φ−1

(∫ 1

0
H(s, τ)q(τ)f(τ, x(τ), Dγ

0+x(τ))dτ
)
ds

≥ ρ(t)

sup
t∈[0,1]

∫ 1

0
G(t, s)φ−1

(∫ 1

0
H(s, τ)q(τ)f(τ, x(τ), Dγ

0+x(τ))dτ
)
ds

≥ ρ(t) sup
t∈[0,1]

Ax(t)

≥ ρ(t)‖Ax‖1.
By Lemma 2.3(a9),

A(x)(t) =
∫ 1

0
G(t, s)φ−1

(∫ 1

0
H(s, τ)q(τ)f(τ, x(τ), Dγ

0+x(τ))dτ
)
ds

≥ Γ(β−γ)
Γ(β) ρ(t)

sup
t∈[0,1])

∫ 1

0
Dγ

0+G(t, s)φ−1
(∫ 1

0
H(s, τ)q(τ)f(τ, x(τ), Dγ

0+x(τ))dτ
)
ds

≥ Γ(β−γ)
Γ(β) ρ(t) sup

t∈[0,1]

Dγ
0+Ax(t)

≥ Γ(β−γ)
Γ(β) ρ(t)‖Ax‖2.
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Hence
A(x) = 1

2 (A(x) +A(x))

≥ 1
2 (ρ(t)‖Ax‖1 + Γ(β−γ)

Γ(β) ρ(t)‖Ax‖2)

≥ λ1ρ(t)‖Ax‖.
Also by Lemma 2.3(a10),

Dγ
0+A(x)(t) =

∫ 1

0
Dγ

0+G(t, s)φ−1
(∫ 1

0
H(s, τ)q(τ)f(τ, x(τ), Dγ

0+x(τ))dτ
)
ds

≥ Γ(β)
Γ(β−γ)ρ(t)

∫ 1

0
sup
t∈[0,1]

G(t, s)

φ−1
(∫ 1

0
H(s, τ)q(τ)f(τ, x(τ), Dγ

0+x(τ))dτ
)
ds

≥ Γ(β)
Γ(β−γ)ρ(t) sup

t∈[0,1]

∫ 1

0
G(t, s)

φ−1
(∫ 1

0
H(s, τ)q(τ)f(τ, x(τ), Dγ

0+x(τ))dτ
)
ds

≥ Γ(β)
Γ(β−γ)ρ(t) sup

t∈[0,1]

Ax(t)

≥ Γ(β)
Γ(β−γ)ρ(t)‖Ax‖1

and Lemma 2.3(a8) implies

Dγ
0+A(x)(t) =

∫ 1

0
Dγ

0+G(t, s)φ−1
(∫ 1

0
H(s, τ)q(τ)f(τ, x(τ), Dγ

0+x(τ))dτ
)
ds

≥ ρ(t) sup
t∈[0,1]

∫ 1

0
Dγ

0+G(t, s)

φ−1
(∫ 1

0
H(s, τ)q(τ)f(τ, x(τ), Dγ

0+x(τ))dτ
)
ds

≥ ρ(t) sup
t∈[0,1]

Dγ
0+Ax(t)

≥ ρ(t)‖Ax‖2.
Hence

Dγ
0+A(x) ≥ 1

2 ( Γ(β)
Γ(β−γ)ρ(t)‖Ax‖1 + ρ(t)‖Ax‖2)

≥ λ2ρ(t)‖Ax‖,
proving the claim.

(2) Let D ⊂ E be a bounded set. Then there exists r > 0 such that ∀x ∈ D, ‖x‖ ≤ r.
By (H1) and the properties (a2), (a3), (a4) of Lemma 2.3, we have the estimates

‖A(x)‖1 = ‖
∫ 1

0
G(t, s)φ−1

(∫ 1

0
H(s, τ)q(τ)f(τ, x(τ), Dγ

0+(τ))dτ
)
ds‖1

≤ 1
Γ(β)

∫ 1

0
φ−1

(
1

Γ(α)

∫ 1

0
q(τ)f(τ, x(τ), Dγ

0+x(τ))dτ
)
ds

≤ 1
Γ(β)φ

−1
(

1
Γ(α)

∫ 1

0
q(τ)m(τ)g(x(τ), Dγ

0+x(τ))dτ
)

≤ 1
Γ(β)φ

−1
(
g(r,r)
Γ(α)

∫ 1

0
q(τ)(m(τ)dτ

)
< +∞

and

‖A(x)‖2 = ‖
∫ 1

0
G(t, s)φ−1

(∫ 1

0
H(s, τ)q(τ)f(τ, x(τ), Dγ

0+x(τ))dτ
)
ds‖2

≤ 1
Γ(β−γ)φ

−1
(

1
Γ(α)

∫ 1

0
q(τ)m(τ)g(x(τ), Dγ

0+x(τ))dτ
)

≤ 1
Γ(β−γ)φ

−1
(
g(r,r)
Γ(α)

∫ 1

0
q(τ)m(τ)dτ

)
< +∞.
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Hence ‖A(x)‖ < [ 1
Γ(β) + 1

Γ(β−γ) ]φ−1
(
g(r,r)
Γ(α)

∫ 1

0
q(τ)(m(τ)dτ

)
, that is A(D) is uniformly

bounded.

(3) A(D) is equicontinuous. For t, t′ ∈ [0, 1] (t < t′), we have

|A(x)(t)−A(x)(t′)|
≤

∫ 1

0
|G(t, s)−G(t′, s)|φ−1

(∫ 1

0
H(s, τ)q(τ)f(τ, x(τ), Dγ

0+x(τ))dτ
)
ds

≤
∫ 1

0
|G(t, s)−G(t′, s)|φ−1

(
g(r,r)
Γ(α)

∫ 1

0
q(τ)m(τ)dτ

)
ds

and
|Dγ

0+A(x)(t)−Dγ
0+A(x)(t′)|

≤
∫ 1

0
|Dγ

0+G(t, s)−Dγ
0+G(t′, s)|φ−1

(
g(r,r)
Γ(α)

∫ 1

0
q(τ)m(τ)dτ

)
ds.

Then for any ε > 0, there exists δ > 0 such that

|Ax(t)−A(x′)| < ε and |Dγ
0+A(x)(t)−Dγ

0+A(x)(t′)| < ε,

for all t, t′ ∈ [0, 1] and |t− t′| < δ, proving that A(D) is relatively compact.

(4) A is continuous: Let some sequence {xn}n≥0 ⊂ P be such that lim
n→+∞

xn = x0.

Then there exists r > 0 such that ‖xn‖ ≤ r, ∀n ≥ 0. By (H1), for all t ∈ [0, 1], we
have

|Axn(t)−Ax0(t)|
= |

∫ 1

0
G(t, s)[φ−1(

∫ 1

0
H(s, τ)q(τ)f(τ, xn(τ), Dγ

0+xn(τ))dτ)ds

−φ−1(
∫ 1

0
H(s, τ)q(τ)f(τ, x0(τ), Dγ

0+x0(τ))dτ)]ds|
≤ 2

Γ(β)φ
−1( g(r,r)Γ(α)

∫ 1

0
q(τ)m(τ)dτ)

and

|Dγ
0+Axn(t)−Dγ

0+Ax0(t)| ≤ 2

Γ(β − γ)
φ−1(

g(r, r)

Γ(α)

∫ 1

0

q(τ)m(τ)dτ).

With the Lebegue Dominated convergence theorem, we conclude that

lim
n→+∞

‖Axn −Ax0‖ = 0,

i.e., A is continuous. �

We state and prove our first existence result

Theorem 3.2. Under Assumptions (H1) − (H2) hold, BVP (1.1) has at least one
positive solution.

Proof. From Condition (H2), there exists R > 0 such that

R

[ 1
Γ(β) + 1

Γ(β−γ) ]φ−1
(
g(R,R)
Γ(α)

∫ 1

0
q(τ)m(τ)dτ

) > 1. (3.1)

Let Ω1 = {x ∈ E; ‖x‖ ≤ R}. To prove that x 6= λAx for all x ∈ ∂Ω1 ∩ P and
λ ∈ (0, 1], suppose by contradiction that there exist x0 ∈ ∂Ω1∩P and λ0 ∈ (0, 1] such
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that x0 = λ0Ax0. By (H1) and the properties (a2), (a3) and (a4) of Lemma 2.3, we
have

R = ‖x0‖
= ‖λ0Ax0‖
≤ ‖Ax0‖1 + ‖Ax0‖2
≤ sup

t∈[0,1]

∫ 1

0
G(t, s)φ−1(

∫ 1

0
H(s, τ)q(τ)f(τ, x0(τ), Dγ

0+x0(τ))dτ)ds

+ sup
t∈[0,1]

∫ 1

0
Dγ

0G(t, s)φ−1(
∫ 1

0
H(s, τ)q(τ)f(τ, x0(τ), Dγ

0+x0(τ))dτ)ds

≤ 1
Γ(β)φ

−1( g(R,R)
Γ(α)

∫ 1

0
q(τ)m(τ)dτ) + 1

Γ(β−γ)φ
−1( g(R,R)

Γ(α)

∫ 1

0
q(τ)m(τ)dτ)

≤ [ 1
Γ(β) + 1

Γ(β−γ) ]φ−1( g(R,R)
Γ(α)

∫ 1

0
q(τ)m(τ)dτ),

which contradicts (3.1). Lemma 1.4 implies that

i(A,Ω1 ∩ P,P) = 1.

Then there exists x0 ∈ Ω1 ∩ P such that Ax0 = x0. Since

f(t0, 0, 0) 6= 0 and x0(t) ≥ λ1ρ(t)‖x0‖,

x0 is a positive solution of Problem (1.1). �

Example 3.3. Consider the BVP −D
3
2

0+

(
−D

5
2

0+x(t)
) 5

3

= 3
25 t

1
4 (1 + cos(π4 t

5
4 ))(x+D

1
6

0+x+ 1)
5
3 , t ∈ (0, 1)

x(0) = x′(0) = D
3
2

0+x(1) = D
5
2

0+x(0) = [D
1
2

0+(φ(−D
5
2

0+x(t))]t=1 = 0,
(3.2)

where

f(t, x, y) = (1 + cos(
π

4
t

5
4 ))(x+ y + 1)

5
3 , q(t) =

3

25
t

1
4 and φ(t) = t

5
3 .

Then φ is an increasing homeomorphism such that φ(0) = 0. For

g(x, y) =
3

25
(x+ y + 1)

5
3 and m(t) = 1 + cos(

π

4
t

5
4 ),

Assumption (H2)

sup
c>0

c

[ 1
Γ(β) + 1

Γ(β−γ) ]φ−1
(
g(c,c)
Γ(α) ,

∫ 1

0
q(τ)m(τ)dτ

) ≥ 1.013 > 1

is satisfied and then all conditions of Theorem 3.2 hold. Therefore Problem (3.2) has
at least one positive solution.

The existence of positive solutions is given by

Theorem 3.4. Assume that (H1) − (H3) hold and suppose that there exist α1, α2,
0 < α1 < α2, such that

tα2φ(x) ≤ φ(tx) ≤ tα1φ(x), ∀ t ∈ [0, 1], ∀x ≥ 0.

Then Problem (1.1) has at least two positive solutions.
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Proof. Choose R as in the proof of Theorem 3.2. Then

i(A,Ω1 ∩ P,P) = 1 (3.3)

and there exist x0 ∈ Ω1 solution of Problem (1.1). Let 0 < a < b < 1 be as in (H3)
and

a0 = min
(t,s)∈[a,b]2

G(t, s) > 0, b0 = min
(t,s)∈[a,b]2

H(t, s) > 0,

c = λ1 min
t∈[a,b]

ρ(t) > 0, N > 1 +
1

cα2(b− a)α2aα2
0 b0

∫ b
a
q(τ)dτ

.

By (H3), there exists R′ > λ1R such that

f(t, x, y) > Nφ(x), ∀ t ∈ [a, b], ∀x > R′, ∀ y ∈ R+.

Define the open ball Ω2 =
{
x ∈ E : ‖x‖ ≤ R′

c

}
.

To show that Ax 
 x for all x ∈ ∂Ω2 ∩ P, suppose on the contrary that there exists
x0 ∈ ∂Ω2 ∩ P such that Ax0 ≤ x0. Since x0 ∈ P, then

x0(t) ≥ Ax0(t)

=
∫ 1

0
G(t, s)φ−1

(∫ 1

0
H(s, τ)q(τ)f(τ, x0(τ), Dγ

0+x0(τ))dτ
)
ds

≥
∫ b
a
G(t, s)φ−1

(∫ b
a
H(s, τ)q(τ)f(τ, x0(τ), Dγ

0+x0(τ))dτ
)
ds

= (b− a)a0φ
−1
(
b0
∫ b
a
q(τ)Nφ(x0(τ))dτ

)
= (b− a)a0φ

−1
(
b0Nφ(R′)

∫ b
a
q(τ)dτ

)
= (b− a)a0φ

−1
(

[b0N
∫ b
a
q(τ)dτ ]φ(R′)

)
≥ (b− a)a0ρ1

(
b0N

∫ b
a
q(τ)dτ

)
R′

≥ (b− a)a0b
1
α2
0 N

1
α2

(∫ b
a
q(τ)dτ

) 1
α2
R′

> R′

c ,

contradicting ‖x0‖ = R′

c . By Lemma 1.5, we conclude that

i(A,Ω2 ∩ P,P) = 0. (3.4)

(3.3) and (3.4) imply

i(A, (Ω2 \ Ω1) ∩ P,P) = −1. (3.5)

Then A has a second fixed point y0 ∈ (Ω2 \ Ω1) ∩ P. Moreover y0 ≥ λ1ρ(t)R and

R ≤ ‖y0‖ < R′

c . Then x0 and y0 are two positive solutions of Problem (1.1). �

Example 3.5. Consider the BVP −D
3
2

0+

(
−D

11
4

0+x(t)
)p

= (2δt)(x+ (D
1
4

0+x) + 1), t ∈ (0, 1),

x(0) = x′(0) = D
9
4

0+x(1) = D
11
4

0+x(0) = [D
1
2

0+(φ(−D
11
4

0+x(t))]t=1 = 0,
(3.6)
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where f(t, x, y) = (2δ
√
t)(x+ y + 1), q(t) =

√
t, δ > 0, and φ(t) = tp, (p = a

b are such
that 0 < a < b and (b − a) is an even number. φ is an increasing homeomorphism
such that φ(0) = 0 and there exist α1 = p2, α2 = p

tpφ(x) ≤ φ(tx) ≤ tp
2

φ(x), ∀ t ∈ [0, 1],∀x ≥ 0.

For g(x, y) = x+ y + 1 and m(t) = 2δ
√
t, Assumption (H2)

sup
c>0

c

[ 1
Γ(β) + 1

Γ(β−γ) ]φ−1
(
g(c,c)
Γ(α)

∫ 1

0
q(τ)m(τ)dτ

) ≥ sup
c>0

0.72(
√
π

2 )
1
p c

(δ(2c+ 1))
1
p

and (H3)

lim
x→+∞

f(t, x, y)

φ(x)
= lim

x→+∞

(2δ
√
t)(x+ y + 1)

xp

≥ lim
x→+∞

2δ
√
ax1−p = +∞, ∀ t ∈ [a, b], ∀ y ≥ 0

are satisfied for δ <

(
sup
c>0

0.72(
√
π

2 )
1
p c

(δ(2c+1))
1
p

)p
. Finally all hypotheses of Theorem 3.2 are

fulfilled. Hence Problem (3.6) has at least two positive solutions.

4. Degenerating nonlinear term

First suppose that f may have a singular point at x = 0 only. More precisely
f : [0, 1]× I × R+ → R+ is continuous. Assume that
(H′1) There exist m ∈ C([0, 1],R+), ψ ∈ C(R+,R+) and g, h,∈ C(I, I) such that h is
a decreasing function and ψ, gh are increasing functions with

f(t, x, y) ≤ m(t)g(x)ψ(y), ∀ t ∈ [0, 1],∀x ∈ I, ∀ y ∈ R+

and for each c > 0, ∫ 1

0

q(τ)m(τ)h(cρ(τ))dτ < +∞,

(H′2)

sup
c>0

c

[ 1
Γ(β) + 1

Γ(β−γ) ]φ−1
(
g(c)ψ(c)
Γ(α)h(c)

∫ 1

0
q(τ)m(τ)h(λ1ρ(τ)c)dτ

) > 1.

(H′3) There exist a, b (0 < a < b < 1) such that

lim
x→+∞

f(t, x, y)

φ(x)
= +∞, uniformly in t ∈ [a, b] and y ∈ R+.

(H′4) For any c > 0, there exist ψc ∈ C([0, 1],R+) and an interval J ⊂ [0, 1] such that
ψc(t) > 0 in J and

f(t, x, y) ≥ ψc(t), ∀ t ∈ [0, 1], ∀x ∈ (0, c],∀ y ∈ [0, c].

Given f ∈ C([0, 1]× I × R+,R+), define the sequence of functions {fn}n≥1

fn(t, x, y) = f(t,max{ 1
n , x}, y), n ∈ {1, 2, . . .},
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and for x ∈ P, define the sequences of operators

An(x)(t) =

∫ 1

0

G(t, s)φ−1

(∫ 1

0

H(s, τ)q(τ)fn(τ, x(τ), Dγ
0+x(τ)

)
dτ)ds.

Then

Dγ
0+An(x)(t) =

∫ 1

0

Dγ
0+G(t, s)φ−1

(∫ 1

0

H(s, τ)q(τ)fn(τ, x(τ,Dγ
0+x(τ))dτ

)
ds.

The proof of the following result is the same as that of the operator A in Proposition
3.1. We omit it.

Proposition 4.1. Suppose (H′1) holds.Then for each n ≥ 1, the operator An maps P
into P and it is completely continuous.

As in the regular case, we prove two theorems: one of the existence of a single
solution and one of a pair of solutions.

Theorem 4.2. Suppose (H′1), (H′2), (H′4) hold. Then Problem (1.1) has at least one
positive solution.

Proof. (1) Construction of a sequence (xn)n of approximating fixed points.

By condition (H′2), there exists R > 0 such that

R

[ 1
Γ(β) + 1

Γ(β−γ) ]φ−1
(
g(R)ψ(R)
Γ(α)h(R)

∫ 1

0
q(τ)m(τ)h(λ1ρ(τ)R)dτ

) > 1. (4.1)

Let Ω1 = {x ∈ E : ‖x‖ < R}. Then x 6= λAn(x) for any x ∈ ∂Ω1 ∩ P, λ ∈ (0, 1] and
n ≥ n0 ≥ 1

R . Otherwise there exist n1 ≥ n0, x1 ∈ ∂Ω1 ∩ P and λ0 ∈ (0, 1] such that
x1 = λ0An1

x1. Since x1 ∈ ∂Ω1 ∩ P, we have x1(t) ≥ λ1ρ(t)‖x1‖ = λ1ρ(t)R, then

R = ‖x1‖
= ‖λ0An1

x1‖
≤ ‖An1

x1‖1 + ‖Ax1‖2
≤ sup
t∈[0,1]

∫ 1

0
G(t, s)φ−1

(∫ 1

0
H(s, τ)q(τ)fn1

(τ, x1(τ), Dγ
0+x1(τ))dτ

)
ds

+ sup
t∈[0,1]

∫ 1

0
Dγ

0+G(t, s)φ−1
(∫ 1

0
H(s, τ)q(τ)fn1

(τ, x1(τ), Dγ
0+x1(τ))dτ

)
ds

≤ [ 1
Γ(β) + 1

Γ(β−γ) ]φ−1
(

1
Γ(α)

∫ 1

0
q(τ)m(τ)g(max{ 1

n1
, x1(τ)})ψ(Dγ

0+x1(τ))dτ
)

≤ [ 1
Γ(β) + 1

Γ(β−γ) ]φ−1( 1
Γ(α)

∫ 1

0
q(τ)m(τ)h(max{ 1

n1
, x1(τ)})

g(max{ 1
n1
,x1(τ)})

h(max{ 1
n1
,x1(τ)})

ψ(Dγ
0+x1(τ))dτ)

≤ [ 1
Γ(β) + 1

Γ(β−γ) ]φ−1
(
g(R)ψ(R)
h(R)Γ(α)

∫ 1

0
q(τ)m(τ)h(λ1ρ(τ)R)dτ

)
which is a contradiction to (4.1). By Lemma 1.4, we deduce that

i(An,Ω1 ∩ P,P) = 1, for all n ∈ {n0, n0 + 1, . . .}. (4.2)

Hence there exists an xn ∈ Ω1 ∩ P such that Anxn = xn, ∀ n ≥ n0.
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(2) The sequence (xn)n is relatively compact.
(a) Since ‖xn‖ < R, by (H′4) there exists ψR ∈ C([0, 1],R+) such that

fn(t, xn(t), Dγ
0+xn(t)) ≥ ψR(t), ∀ t ∈ [0, 1].

Then, by Lemma 2.3(a5),

xn(t) = Anxn(t)

=
∫ 1

0
G(t, s)φ−1(

∫ 1

0
H(s, τ)q(τ)fn(τ, xn(τ), Dγ

0+xn(τ))dτ)ds

≥
∫ 1

0
G(t, s)φ−1(

∫ 1

0
H(s, τ)q(τ)ψR(τ)dτ)ds

≥ ρ(t)(β−1)
Γ(β)

∫ 1

0
sφ−1

(∫ 1

0
H(s, τ)q(τ)ψR(τ)dτ

)
ds.

Let

c∗ =
(β − 1)

Γ(β)

∫ 1

0

sφ−1

(∫ 1

0

H(s, τ)q(τ)ψR(τ)dτ

)
ds > 0.

Then

xn(t) ≥ c∗ρ(t), ∀ t ∈ [0, 1],∀ n ≥ n0.

(b) For any t, t′ ∈ [0, 1] (t > t′),

|xn(t)− xn(t′)|
≤
∫ 1

0

∣∣∣G(t, s)−G(t
′
, s)
∣∣∣

φ−1
(∫ 1

0
H(s, τ)q(τ)fn(τ, xn(τ), Dγ

0+xn(τ))dτ
)
ds

≤
∫ 1

0

∣∣∣G(t, s)−G(t
′
, s)
∣∣∣φ−1

(
g(R)ψ(R)
Γ(α)h(R)

∫ 1

0
q(τ)m(τ)h(c∗ρ(τ))dτ

)
.

Also ∣∣Dγ
0+xn(t)−Dγ

0+xn(t′)
∣∣

≤
∫ 1

0

∣∣∣Dγ
0+G(t, s)−Dγ

0+G(t
′
, s)
∣∣∣

φ−1
(∫ 1

0
H(s, τ)q(τ)fn(τ, xn(τ), Dγ

0+xn(τ))dτ
)
ds

≤
∫ 1

0

∣∣∣Dγ
0+G(t, s)−Dγ

0+G(t
′
, s)
∣∣∣φ−1

(
g(R)ψ(R)
Γ(α)h(R)

∫ 1

0
q(τ)m(τ)h(c∗ρ(τ))dτ

)
ds.

Since G and Dγ
0+G are continuous, by Lemma 1.6 (xn)n is relatively compact in E.

Then there exists a subsequence (xnk)k≥1 such that lim
k→+∞

xnk = x0. Since xnk(t) ≥
c∗ρ(t) ∀ k ≥ 1,∀ t ∈ [0, 1], we have x0(t) ≥ c∗ρ(t), ∀ t ∈ [0, 1]. Since f is continuous,
by the Lebesgue dominated convergence theorem,

x0(t)
= lim

k→+∞
xnk(t)

= lim
k→+∞

∫ 1

0
G(t, s)φ−1

(∫ 1

0
H(s, τ)q(τ)fnk(τ, xnk(τ), Dγ

0+xnk(τ))dτ
)
ds

= lim
k→+∞

∫ 1

0
G(t, s)

φ−1
(∫ 1

0
H(s, τ)q(τ)f(τ,max{ 1

nk
, xnk(τ)}, Dγ

0+xnk(τ))dτ
)
ds

=
∫ 1

0
G(t, s)φ−1

(∫ 1

0
H(s, τ)q(τ)f(τ,max{0, x0(τ)}, Dγ

0+x0(τ))dτ
)
ds

=
∫ 1

0
G(t, s)φ−1(

∫ 1

0
H(s, τ)q(τ)f(τ, x0(τ), Dγ

0+x0(τ))dτ)ds.
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Therefore x0 is a positive solution of Problem (1.1). �

Example 4.3. Consider the BVP −D
7
4

0+

(
−D

9
4

0+x(t)
) 1

3

= δt
5
4
e2x

x Ch(D
1
6

0+x), t ∈ (0, 1)

x(0) = x′(0) = D
5
4

0+x(1) = D
9
4

0+x(0) = [D
3
4

0+(φ(−D
9
4

0+x(t))]t=1 = 0,
(4.3)

where

f(t, x, y) = δ
e2x+t

x
Ch(y), (δ > 0), q(t) = t

5
4 e−t and φ(t) = t

1
3 .

Hence φ is an increasing homeomorphism and φ(0) = 0 We check the conditions of
Theorem 4.2.

(H′1) Let m(t) = δet, g(x) = ex

x , ψ(y) = Ch(y), h(y) = 1
y . Then g(x)

h(x) = ex and

ψ are increasing,

f(t, x, y) ≤ m(t)g(x)ψ(y), ∀ t ∈ [0, 1], ∀x ∈ I, ∀ y ∈ R+,

and for any c > 0 ∫ 1

0

m(τ)q(τ)h(cρ(τ))dτ =
16

45c
< +∞.

(H′2)

sup
c>0

c

[ 1
Γ(β) + 1

Γ(β−γ) ]φ−1
(
g(c)ψ(c)
Γ(α)h(c)

∫ 1

0
q(τ)m(τ)h(λ1ρ(τ)c)dτ

) ≥ sup
c>0

81c4

(δecCh(c))3
·

(H′4) For every c > 0, there exists ψc = δet

c such that

f(t, x, y) ≥ ψc(t), ∀ t ∈ [0, 1],∀ ∀x ∈ (0, c], y ∈ [0, c].

Let 0 < δ ≤
(

sup
c>0

81c4

(ecCh(c))3

) 1
3

. Then Problem (4.3) has at least one positive solution.

The existence of two positive solutions is given by

Theorem 4.4. Let (H′1)− (H′4) and suppose that there exist α1, α2 with 0 < α1 < α2

such that
tα2φ(x) ≤ φ(tx) ≤ tα1φ(x), ∀ t ∈ [0, 1], ∀x ≥ 0.

Then Problem (1.1) has at least two positive solutions.

Proof. With R the same as in the proof of Theorem 4.2, we get

i(An,Ω1 ∩ P,P) = 1, for all n ∈ {n0, n1, . . .}. (4.4)

Then for every n ∈ {n0, n1, . . .}, there exists a solution xn of Problem (1.1) in Ω1.
Let 0 < a < b < 1 be as in (H′3) and a0, b0, c as in the proof of Theorem 3.4. Choose

N > 1 +
1

cα2(b− a)α2aα2
0 b0

∫ b
a
q(τ)dτ

.

By (H′3), there exists a positive constant R′ > max{1, λ1R} such that

f(t, x, y) > Nφ(x), ∀ t ∈ [a, b], ∀x ≥ R′, ∀ y ∈ R+.
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Consider the open ball Ω2 =
{
x ∈ E : ‖x‖ ≤ R′

c

}
. Then Anx 
 x for all x ∈ ∂Ω2 ∩P

and n ∈ {1, 2 . . .}. Otherwise there exist n ∈ {1, 2, . . .} and x0 ∈ ∂Ω2 ∩ P such that
Anx0 ≤ x0. Since x0 ∈ ∂Ω2 ∩ P,

x0(t) ≥ Anx0(t)

=
∫ 1

0
G(t, s)φ−1

(∫ 1

0
H(s, τ)q(τ)fn(τ, x0(τ), Dγ

0+x0(τ))dτ
)
ds

≥
∫ b
a
G(t, s)φ−1

(∫ b
a
H(s, τ)q(τ)f(τ,max{ 1

n , x0(τ)}, Dγ
0+x0(τ))dτ

)
ds

= (b− a)a0φ
−1
(
b0
∫ b
a
q(τ)Nφ(x0(τ))dτ

)
= (b− a)a0φ

−1
(
b0Nφ(R′)

∫ b
a
q(τ)dτ

)
= (b− a)a0φ

−1
(

[b0N
∫ b
a
q(τ)dτ ]φ(R′)

)
≥ (b− a)a0ρ1

(
b0N

∫ b
a
q(τ)dτ

)
R′

≥ (b− a)a0b
1
α2
0 N

1
α2

(∫ b
a
q(τ)dτ

) 1
α2
R′

> R′

c ,

contradicting ‖x0‖ = R′

c . Finally, Lemma 1.5 entails

i(An,Ω2 ∩ P,P) = 0, ∀n ∈ N∗ (4.5)

whereas (4.4) and (4.5) imply

i(An, (Ω2 \ Ω1) ∩ P,P) = −1, ∀n ≥ n0. (4.6)

Then An has a second fixed point yn ∈ (Ω2 \ Ω1) ∩ P, ∀n ≥ n0.

In addition yn(t) ≥ λ1ρ(t)R, ∀ t ∈ [0, 1] and ‖yn‖ < R′

c . As above, we can show that
(yn)n≥n0

has a subsequence (ynj )j≥1 such that lim
j→+∞

ynj = y0 and y0 is a solution

of Problem (1.1). Finally R ≤ ‖y0‖ < R′

c , i.e., x0 and y0 are two positives solutions
of Problem (1.1). �

Example 4.5. Consider the BVP −D
7
4

0+

(
−D

9
4

0+x(t)
) 1

3

= δt
5
4
e2xCh(D

1
6
0+x)

x , 0 < t < 1

x(0) = x′(0) = D
5
4

0+x(1) = D
9
4

0+x(0) = [D
3
4

0+(φ(−D
9
4

0+x(t))]t=1 = 0,

(4.7)

where f(t, x, y) = δ e
2x+tCh(y)

x , (δ > 0), q(t) = t
5
4 e−t. φ(t) = t

1
3 . Hence φ is an

increasing homeomorphism, φ(0) = 0, and there exist α1 = 1
4 , α2 = 2 such that

t2φ(x) ≤ φ(tx) ≤ t 1
4φ(x),∀ t ∈ [0, 1], ∀x ≥ 0.

(H′3)

lim
x→+∞

f(t, x, y)

φ(x)
≥ lim
x→+∞

δe2x

x
4
3

= +∞, ∀ t ≥ 0, ∀ y ≥ 0.

Choosing δ ≤ sup
c>0

(
81c4

(ecCh(c))3

) 1
3

, all conditions of Theorem 4.4 are fulfilled and Prob-

lem (4.7) has at least two positive solutions.
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In the last part of this work, the nonlinear function f may be degenerating at
both x = 0 and y = 0. More precisely f : [0, 1] × I × I −→ R+ satisfies Assumption
(H′′1 ), i.e., there exist m ∈ C([0, 1],R+) and g, h, ψ, l ∈ C(I, I) such that h, l are

decreasing functions and ψ
l ,

g
h are increasing functions and satisfies

f(t, x, y) ≤ m(t)g(x)ψ(y), ∀ t ∈ [0, 1],∀x, y ∈ I,

and for any c, c′ > 0, ∫ 1

0
q(τ)m(τ)h(cρ(τ))l(c′ρ(t)dτ < +∞.

Assumption (H′′2 ) is

sup
c>0

c

[ 1
Γ(β) + 1

Γ(β−γ) ]φ−1
(

g(c)ψ(c)
Γ(α)h(c)l(c)

∫ 1

0
q(τ)m(τ)h(λ1ρ(τ)c)l(λ2ρ(τ)c)dτ

) > 1.

Regarding Assumption (H′′3 ), there exist a, b (0 < a < b < 1) such that

lim
x→+∞

f(t, x, y)

φ(x)
= +∞, uniformly in t ∈ [a, b] and y > 0.

As for Assumption (H′′4 ), we have that for any c > 0, there exist ψc ∈ C([0, 1],R+)
and an interval J ⊂ (0, 1] such that ψc(t) > 0, in J and

f(t, x, y) ≥ ψc(t), ∀ t ∈ [0, 1], ∀x, y ∈ (0, c].

For f ∈ C([0, 1]× I × I,R+), define the sequence (fn)n≥1 by

fn(t, x, y) = f(t,max{ 1
n , x},max{ 1

n , y}), n ∈ {1, 2, . . .}

and for x ∈ P, define the sequence of operators

An(x)(t) =

∫ 1

0

G(t, s)φ−1

(∫ 1

0

H(s, τ)q(τ)fn(τ, x(τ), Dγ
0+x(τ))dτ

)
ds.

Then

Dγ
0+An(x)(t) =

∫ 1

0

Dγ
0+G(t, s)φ−1

(∫ 1

0

H2(s, τ)q(τ)fn(τ, x(τ), Dγ
0+x(τ))dτ

)
ds.

As for Proposition 3.1, we can prove

Proposition 4.6. Suppose (H′′1 ) holds then, for each n ≥ 1, the operator An sends P
into P and is completely continuous.

As in the previous cases, we prove the existence of one solution and then two
solutions. The first result is

Theorem 4.7. Assume that (H′′1 ), (H′′2 ), (H′′4 ) hold. Then Problem (1.1) has at least
one positive solution.

Proof. From the condition (H′′2 ), there exists R > 0 such that

R

[ 1
Γ(β) + 1

Γ(β−γ) ]φ−1
(

g(R)ψ(R)
Γ(α)h(R)l(R)

∫ 1

0
q(τ)m(τ)h(λ1ρ(τ)R)l(λ2ρ(τ)R)dτ

) > 1. (4.8)
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Let Ω1 = {x ∈ E : ‖x‖ < R}. We claim that x 6= λAn(x), for any x ∈ ∂Ω1 ∩ P,
λ ∈ (0, 1] and n ≥ n0 ≥ 1

R . On the contrary, there exist n1 ≥ n0, x1 ∈ ∂Ω1 ∩ P and
λ0 ∈ (0, 1] such that x1 = λ0An1

x1. Since x1 ∈ ∂Ω1 ∩ P, then

x1(t) ≥ λ1ρ(t)‖x1‖ = λ1ρ(t)R, ∀ t ∈ [0, 1]

and

Dγ
0+x1(t) ≥ λ2ρ(t)‖x1‖ = λ2ρ(t)R, ∀ t ∈ [0, 1].

Hence

R = ‖x1‖
= ‖λ0An1

x1‖
≤ ‖An1

x1‖1 + ‖Ax1‖2
≤ [ 1

Γ(β) + 1
Γ(β−γ) ]

φ−1
(∫ 1

0
H(s, τ)q(τ)f(τ,max{ 1

n , x1(τ)},max{ 1
n , D

γ
0+x1(τ)}dτ

)
≤ [ 1

Γ(β) + 1
Γ(β−γ) ]

φ−1
(

1
Γ(α)

∫ 1

0
q(τ)m(τ)g(max{ 1

n1
, x1(τ)})ψ(max{ 1

n , D
γ
0+x1(τ)})dτ

)
≤ [ 1

Γ(β) + 1
Γ(β−γ) ]φ−1( 1

Γ(α)

∫ 1

0
q(τ)m(τ)h(max{ 1

n1
, x1(τ)})

g(max{ 1
n1
,x1(τ)})

h(max{ 1
n1
,x1(τ)})

ψ(max{ 1
n ,D

γ

0+x1(τ)})
l(max{ 1

n ,D
γ

0+x1(τ)}) l(max{ 1
n , D

γ
0+x1(τ)})dτ)

≤ [ 1
Γ(β) + 1

Γ(β−γ) ]φ−1
(

g(R)ψ(R)
h(R)l(R)Γ(α)

∫ 1

0
q(τ)m(τ)h(λ1ρ(τ)R)l(λ2ρ(τ)R)dτ

)
which is a contraction to (4.8). By Lemma 1.4, we deduce that

i(An,Ω1 ∩ P,P) = 1, for all n ∈ {n0, n0 + 1, . . .}. (4.9)

Then there exists xn ∈ Ω1 ∩ P such that Anxn = xn; ∀ n ≥ n0. As in the proof of
Theorem 4.2(2), (xn) is proven to be relatively compact in E and thus there exists
a subsequence (xnk)k≥1 such that lim

k→+∞
xnk = x0, where x0 is a positive solution of

Problem (1.1). �

Example 4.8. Consider the BVP −D
11
6

0+φ
(
−D

11
5

0+x(t)
)

= δt
12
5 (1− t) 12

5 e−t e
x+D

1
2
0+

x

xD
1
2
0+x

, t ∈ (0, 1)

x(0) = x′(0) = D
5
4

0+x(1) = D
11
5

0+x(0) = [D
5
6

0+(φ(−D
11
5

0+x(t))]t=1 = 0,

(4.10)

where

f(t, x, y) = δt
5
4 e−t

ex+y

xy
, (δ > 0), q(t) = t

12
5 (1− t) 12

5 and φ(t) = t3 + t.

Hence φ is an increasing homeomorphism such that φ(0) = 0.

(H′′1 ) Let m(t) = 1, g(x) = ex

x , ψ(y) = ey

y , h(y) = 1
y , l(y) = 1

y . Then

f(t, x, y) ≤ m(t)g(x)ψ(y), ∀ t ∈ [0, 1],∀x, y ∈ I,
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and for any c, c′ > 0∫ 1

0

m(τ)q(τ)h(cρ(τ))l(c′ρ(τ))dτ =
35

36cc′
< +∞.

(H′′2 )

sup
c>0

c

[ 1
Γ(β)

+ 1
Γ(β−γ)

]φ−1( g(c)ψ(c)
Γ(α)h(c)l(c)

∫ 1
0
q(τ)m(τ)h(λ1ρ(τ)c)l(λ2ρ(τ)c)dτ)

≥ sup
c>0

0.94c

φ−1(δ e
2c

c2
)

≥ 1

δ
1
4

sup
c>0

0.94c

φ−1( e
2c

c2
)
.

(H′′4 ) For any c > 0 there exists ψc =
t

12
5 (1−t) 12

5

c2 such that

f(t, x, y) ≥ ψc(t), ∀ t ∈ [0, 1], ∀x ∈ (0, c], y ∈ (0, c].

For δ ≤
(

sup
c>0

0.94c

φ−1( e
2c

c2
)

)4

, all conditions of Theorem 4.7 hold. Then Problem (4.10)

has at least one positive solution.

The last result of this work concerns the existence of two positive solutions. The
proof is similar to the proof of Theorem 4.4 and is omitted.

Theorem 4.9. Assume that (H′′1 )− (H′′4 ) hold and there exist α1, α2 with 0 < α1 < α2

such that

tα2φ(x) ≤ φ(tx) ≤ tα1φ(x), ∀ t ∈ [0, 1], ∀x ≥ 0.

Then Problem (1.1) has at least two positive solutions.

Example 4.10. Let the BVP −D
11
6

0+φ
(
−D

11
5

0+x(t)
)

= δt
12
5 (1− t) 12

5 e−t e
x+D

1
2
0+

x

xD
1
2
0+x

, t ∈ (0, 1)

x(0) = x′(0) = D
5
4

0+x(1) = D
11
5

0+x(0) = [D
5
6

0+(φ(−D
11
5

0+x(t))]t=1 = 0,

(4.11)

where

f(t, x, y) = δt
5
4 e−t

ex+y

xy
, (δ > 0), q(t) = t

12
5 (1− t) 12

5 and φ(t) = t3 + t.

Hence φ is an increasing homeomorphism such that φ(0) = 0. Moreover there exist
α1 = 1, α2 = 4 such that

t4φ(x) ≤ φ(tx) ≤ tφ(x),∀ t ∈ [0, 1], ∀x ≥ 0.

Assumption (H′′′3 ) reads

lim
x→+∞

f(t, x, y)

φ(x)
≥ lim
x→+∞

δa
5
4 e−bex

(x+ x3)x
= +∞, ∀t ∈ [a, b],∀y > 0.

If we choose δ such that δ ≤
(

sup
c>0

0.94c

φ( e
2c

c2
)−1

)4

, all conditions of Theorem 4.9 hold.

Consequently Problem (4.11) has at least two positive solutions.
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Remark 4.11. The same results can be obtained in case the nonlinear function f has
a singular point at y = 0 but not at x = 0. The corresponding assumptions are
(H′′′1 ) There exist m ∈ C([0, 1],R+), ψ ∈ C(R+,R+) and g, l,∈ C(I, I) such that l is

a decreasing function and g, ψl are increasing functions with

f(t, x, y) ≤ m(t)g(x)ψ(y), ∀ t ∈ [0, 1],∀x ∈ R+, ∀ y ∈ I

and for each c > 0, ∫ 1

0

q(τ)m(τ)l(cρ(τ))dτ < +∞,

(H′′′2 )

sup
c>0

c

[ 1
Γ(β) + 1

Γ(β−γ) ]φ−1
(
g(c)ψ(c)
Γ(α)l(c)

∫ 1

0
q(τ)m(τ)h(λ2ρ(τ)c)dτ

) > 1.

(H′′′3 ) There exist a, b (0 < a < b < 1) such that

lim
x→+∞

f(t, x, y)

φ(x)
= +∞, uniformly in t ∈ [a, b] and y > 0.

(H′′′4 ) For any c > 0 there exists ψc ∈ C([0, 1],R+) and there exists an interval
J ⊂ (0, 1] such that ψc(t) > 0, in J and

f(t, x, y) ≥ ψc(t), ∀ t ∈ [0, 1],∀ ∀x ∈ [0, c], y ∈ (0, c]
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1987 Russian original, Revised by the authors, Gordon and Breach Science Publishers,
Yverdon, 1993.

[11] Su, X., Zhang, S., Unbounded solutions to a boundary value problem of fractional order
on the half-line, Comput. Math. Appl., 61(2011), no. 4, 1079-1087.

[12] Temar, B., Saifi, O., Djebali, S., A system of nonlinear fractional BVPs with φ-Laplacian
operators and nonlocal conditions, Proyecciones Journal of Mathematics, 40(2021), no.
2, 447-479.

[13] Tian, Y., Wei, Y., Sun, S., Multiplicity for fractional differential equations with
p−Laplacian, Bound. Value Probl. 2018, Paper No. 127, 14 pp.

[14] Xu, J.F., Dong, W., Existence and uniqueness of positive solutions for a fractional bound-
ary value problem with p-Laplacian operator, (Chinese), Acta Math. Sinica (Chin. Ser.),
59(2016), no. 3, 385-396.

[15] Yan, F., Zuo, M., Hao, X., Positive solution for a fractional singular boundary value
problem with p-Laplacian operator, Boundary Value Problems, vol 2018, Art. ID, 51,
2018, 10 pp.

Bahia Temar
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Oscillation criteria for third-order semi-canonical
differential equations with unbounded neutral
coefficients

Karunamurthy Saranya, Veeraraghavan Piramanantham,
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Abstract. In this paper, we investigate the oscillatory behavior of solutions to a
class of third-order differential equations of the form

Lz(t) + f(t)yβ(σ(t)) = 0,

where Lz(t) = (p(t)(q(t)z′(t))′)′ is a semi-canonical operator and z(t) = y(t) +
g(t)y(τ(t)). The main idea is to convert the semi-canonical operator into canonical
form and then obtain some new sufficient conditions for the oscillation of all
solutions. The obtained results essentially improve and complement to the known
results. Examples are provided to illustrate the main results.
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cients.

1. Introduction

In this paper, we are concerned with the oscillation of solutions of the semi-
canonical third-order neutral differential equation

Lz(t) + f(t)yβ(σ(t)) = 0, t ≥ t0 > 0, (1.1)

where L is the differential operator defined by

Lz(t) = (p(t)(q(t)z′(t))′)′, z(t) = y(t) + g(t)y(τ(t)),
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and β is the ratio of odd positive integers. Throughout the paper, and without further
mention, we will always assume that:

(H1) f, g ∈ C([t0,∞),R), g(t) ≥ 1, g(t) 6≡ 1 for large t, and f(t) ≥ 0 is not identically
zero for large t,

(H2) τ, σ ∈ C1([t0,∞),R), τ(t) ≤ t, τ is strictly increasing, σ is nondecreasing, and
limt→∞ τ(t) = limt→∞ σ(t) =∞;

(H3) the operator L is in semi-canonical form, that is,∫ ∞
t0

1

p(t)
dt <∞ and

∫ ∞
t0

1

q(t)
dt =∞,

where p, q ∈ C([t0,∞), (0,∞)).

By a solution of (1.1), we mean a function y ∈ C([ty,∞),R) for some ty ≥ t0 such
that z ∈ C1([ty,∞),R), qz′ ∈ C1([ty,∞),R), p(qz′)′ ∈ C1([ty,∞),R) and y satisfies
(1.1) on [ty,∞). We only consider those solutions of (1.1) that exist on some half-line
[ty,∞) and satisfy the condition

sup{|y(t)| : T1 ≤ t <∞} > 0 for any T1 ≥ ty;

we tacitly assume that (1.1) possesses such solutions. Such a solution y(t) of (1.1)
is said to be oscillatory if it has arbitrarily large zeros on [ty,∞), and it is called
nonoscillatory otherwise. Equation (1.1) is called oscillatory if all its solutions are
oscillatory.

In the recent years many papers appeared in the literature dealing with the os-
cillatory and asymptotic behavior of solutions of various classes of third-order neutral
type differential equations; see for example [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 13, 16, 17,
19, 20] and the references cited therein. However, except for the papers [5, 6, 12, 19,
20], all the papers mentioned above were dealing with the case when g(t) is bounded,
that is, the cases when 0 ≤ g(t) ≤ g0 < 1, −1 < g0 ≤ g(t) ≤ 0 and 0 < g(t) ≤ g0 <∞
were studied and so the criteria obtained in these papers cannot be applied to the
case g(t)→∞ as t→∞.

Moreover, very recently in [5, 6, 20] the authors studied equation (1.1) and
obtained oscillation criteria where q(t) ≡ 1 and p(t) ≡ 1 or

∫∞
t0

1
p(t)dt =∞. Based on

these observations, the aim of this paper is to obtain some oscillation criteria that can
be applied not only to the case where g(t)→∞ as t→∞ but also to the cases when
g(t) is bounded,

∫∞
t0

1
p(t)dt <∞ and

∫∞
t0

1
q(t)dt =∞. The main idea is to connect the

semi-canonical equation (1.1) with that of canonical equations and then we obtain
oscillation criteria for (1.1).

In the sequel, we deal only with positive solutions of (1.1), since if y(t) is a
solution of (1.1), then −y(t) is also a solution.

2. Main results

Throughout the paper we employ the following notations:

A(t) :=

∫ ∞
t

1

p(s)
ds, a(t) := p(t)A2(t), b(t) :=

q(t)

A(t)
,
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F (t) := A(t)f(t), Π(t) :=

∫ t

t0

1

a(s)
ds, B(t) :=

∫ t

t0

Π(s)

b(s)
ds,

c(t) := exp

(∫ t

t1

Π(s)

b(s)B(s)
ds

)
for t ≥ t1 for some t1 ≥ t0,

h(t) := τ−1(σ(t)), λ(t) := τ−1(η(t)), η ∈ C1([t0,∞),R),

ψ1(t) :=
1

g(τ−1(t))

[
1− c(τ−1(τ−1(t)))

g(τ−1(τ−1(t)))c(τ−1(t))

]
,

ψ2(t) :=
1

g(τ−1(t))

[
1− 1

g(τ−1(τ−1(t)))

]
,

and

R(t) :=

∫ λ(t)

h(t)

(
1

b(u)

∫ λ(t)

u

1

a(v)
dv

)
du.

In order to ensure the nonnegativity of ψ1(t), we assume the following condition
also holds:

(H4) There exists a t1 ∈ [t0,∞) such that

c(τ−1(τ−1(t)))

g(τ−1(τ−1(t)))c(τ−1(t))
≤ 1 for all t ≥ t1. (2.1)

Theorem 2.1. Assume that ∫ ∞
t0

1

b(t)
dt =∞. (2.2)

Then the semi-canonical operator L has the following unique canonical representation

Lz(t) =
1

A(t)

(
p(t)A2(t)

(
q(t)

A(t)
z′(t)

)′)′
. (2.3)

Proof. Direct calculation shows that(
p(t)A2(t)

(
q(t)

A(t)
z′(t)

)′)′
= (A(t)p(t)(q(t)z′(t))′ + q(t)z′(t))′

= A(t)(p(t)(q(t)z′(t))′)′.

Therefore

1

A(t)

(
p(t)A2(t)

(
q(t)

A(t)
z′(t)

)′)′
= (p(t)(q(t)z′(t))′)′.

Taking (2.2) into account, we see that∫ ∞
t0

A(t)

q(t)
dt =∞,

and since ∫ ∞
t0

1

p(t)A2(t)
dt = lim

t→∞

(
1

A(t)
− 1

A(t0)

)
=∞,
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we say that (2.3) is in the canonical form. However, Trench proved in [18] that there
exists only one canonical representation of L (up to multiplicative constants with
product 1) and so our canonical form is unique. This completes the proof. �

From Theorem 2.1, it follows that (1.1) can be written in the canonical form as

(a(t)(b(t)z′(t))′)′ + F (t)yβ(σ(t)) = 0 (2.4)

and the next result is immediate.

Theorem 2.2. Assume that (2.2) holds. Then semi-canonical equation (1.1) possesses
solution y(t) if and only if canonical equation (2.4) has the solution y(t).

Corollary 2.3. Assume that (2.2) holds. Then semi-canonical differential equation
(1.1) has an eventually positive solution if and only if canonical equation (2.4) has an
eventually positive solution.

Corollary 2.3 clearly simplifies investigation of (1.1) since for (2.4) if y(t) is an
eventually positive solution, then the corresponding function z(t) satisfies either

(I) z(t) > 0, b(t)z′(t) > 0, a(t)(b(t)z′(t))′ > 0, (a(t)(b(t)z′(t))′)′ < 0, or
(II) z(t) > 0, b(t)z′(t) < 0, a(t)(b(t)z′(t))′ > 0, (a(t)(b(t)z′(t))′)′ < 0

for sufficiently large t.

Lemma 2.4. Assume that z(t) satisfies case (I) for all t ≥ t1 for some t1 ≥ t0. Then

z′(t) ≥ Π(t)

b(t)
a(t)(b(t)z′(t))′, (2.5)

z(t) ≥ B(t)a(t)(b(t)z′(t))′, (2.6)

z(t) ≥ B(t)

Π(t)
b(t)z′(t), (2.7)

and
z(t)

c(t)
is nonincreasing (2.8)

for all t ≥ t1.

Proof. Since a(t)(b(t)z′(t))′ is positive and decreasing, we see that

b(t)z′(t) = b(t1)z′(t1) +

∫ t

t1

a(s)
(b(s)z′(s))′

a(s)
ds

or

z′(t) ≥ a(t)

b(t)
(b(t)z′(t))′Π(t),

i.e., (2.5) holds. Integrating the last inequality from t1 to t yields

z(t) ≥ a(t)(b(t)z′(t))′
∫ t

t1

Π(s)

b(s)
ds = B(t)a(t)(b(t)z′(t))′,

i.e., (2.6) holds. From (2.5), we see that b(t)z′(t)/Π(t) is decreasing for t ≥ t2 for some
t2 ≥ t1, and therefore

z(t) = z(t2) +

∫ t

t2

b(s)z′(s)

Π(s)

Π(s)

b(s)
ds ≥ B(t)

Π(t)
b(t)z′(t).
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From the last inequality, we see that(
z(t)

c(t)

)′
=

(
z′(t)− Π(t)

b(t)B(t)z(t)
)

c(t)
≤ 0

for t ≥ t3 for some t3 ≥ t2. Hence, z(t)/c(t) is non-increasing. This completes the
proof. �

Theorem 2.5. Let (2.2) holds. Assume that there exists a nondecreasing function η ∈
C1([t0,∞),R) such that σ(t) ≤ η(t) < τ(t) for all t ≥ t0. If both first-order delay
differential equations

X ′(t) + F (t)Ψβ
1 (σ(t))Bβ(h(t))Xβ(h(t)) = 0 (2.9)

and

W ′(t) + F (t)Ψβ
2 (σ(t))Rβ(t)W β(λ(t)) = 0 (2.10)

oscillate, then (1.1) oscillates.

Proof. Let y(t) be a nonoscillatory solution of equation (1.1), say y(t) > 0, y(τ(t)) > 0,
and y(σ(t)) > 0 for t ≥ t1 for some t1 ≥ t0. From Corollary 2.3, y(t) is also a positive
solution of (2.4) for t ≥ t1. Then the corresponding function z(t) satisfies either case
(I) or case (II) for t ≥ t2 for some t2 ≥ t1.

First, we consider case (I). From the definition of z, we get

y(t) =
1

g(τ−1(t))

[
z(τ−1(t))− y(τ−1(t))

]
≥ z(τ−1(t))

g(τ−1(t))
− z(τ−1(τ−1(t)))

g(τ−1(t))g(τ−1(τ−1(t)))
. (2.11)

Now τ(t) ≤ t and τ is strictly increasing, so τ−1 is increasing and t ≤ τ−1(t). Thus,

τ−1(t) ≤ τ−1(τ−1(t)).

From this and the fact that z(t)/c(t) is nonincreasing, we see that

z
(
τ−1(τ−1(t))

)
≤ c(τ−1(τ−1(t)))z(τ−1(t))

c(τ−1(t))
. (2.12)

Using (2.12) in (2.11) yields

y(t) ≥ ψ1(t)z(τ−1(t)). (2.13)

Since limt→∞ σ(t) = ∞, we can choose t3 ≥ t2 such that σ(t) ≥ t2 for all t ≥ t3.
Thus, it follows from (2.13) that

y(σ(t)) ≥ ψ1(σ(t))z(h(t)) for t ≥ t3. (2.14)

Combining (2.14) with (2.4) yields

(a(t)(b(t)z′(t))′)′ + F (t)ψβ1 (σ(t))zβ(h(t)) ≤ 0 for t ≥ t3. (2.15)

From (2.6), we have

z(h(t)) ≥ B(h(t))a(h(t))(b(h(t))z′(h(t)))′. (2.16)
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Using (2.16) in (2.15) and letting X(t) = a(t)(b(t)z′(t))′, we see that X(t) is a positive
solution of the first-order delay differential inequality

X ′(t) + F (t)ψβ1 (σ(t))Bβ(h(t))Xβ(h(t)) ≤ 0. (2.17)

Therefore, by Corollary 1 of [14], we conclude that (2.9) also has a positive solution,
which is a contradiction.

Next, we consider case (II). Since z is strictly decreasing and τ(t) ≤ t, we have

z(τ−1(t)) ≥ z(τ−1(τ−1(t)))

and using this in (2.11), we obtain

y(t) ≥ ψ2(t)z(τ−1(t)).

Hence,

y(σ(t)) ≥ ψ2(σ(t))z(h(t)) (2.18)

for t ≥ t3 for some t3 ≥ t2. Using (2.18) in (2.4) yields

(a(t)(b(t)z′(t))′)′ + F (t)ψβ2 (σ(t))zβ(h(t)) ≤ 0 for t ≥ t3. (2.19)

For t ≥ s ≥ t3, we have

b(t)z′(t)− b(s)z′(s) =

∫ t

s

a(u)(b(u)z′(u))′

a(u)
du,

or

−z′(s) ≥
(

1

b(s)

∫ t

s

1

a(u)
du

)
a(t)(b(t)z′(t))′.

Again integrating, we have

−z(t) + z(s) ≥
(∫ t

s

1

b(u)

(∫ t

u

1

a(v)
dv

)
du

)
a(t)(b(t)z′(t))′,

or

z(s) ≥
[∫ t

s

1

b(u)

(∫ t

u

1

a(v)
dv

)
du

]
a(t)(b(t)z′(t))′. (2.20)

Since σ(t) ≤ η(t) and the fact that τ is strictly increasing, we have

τ−1(σ(t)) ≤ τ−1(η(t)).

Setting s = τ−1(σ(t)) and t = τ−1(η(t)) into (2.20), we obtain

z(h(t)) ≥

(∫ λ(t)

h(t)

1

b(u)

(∫ λ(t)

u

1

a(v)
dv

)
du

)
a(λ(t))(b(λ(t))z′(λ(t)))′. (2.21)

Using (2.21) in (2.19) and letting W (t) = a(t)(b(t)z′(t))′, we see that W is a positive
solution of the first-order delay differential inequality

W ′(t) + F (t)ψβ2 (σ(t))Rβ(t)W β(λ(t)) ≤ 0. (2.22)

The remaining part of the proof is similar to the case (I) and hence the details are
not repeated. This completes the proof. �
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Corollary 2.6. Let (2.2) holds and β = 1. Assume that there exists a nondecreasing
function η ∈ C1([t0,∞),R) such that σ(t) ≤ η(t) < τ(t) for all t ≥ t0. If

lim inf
t→∞

∫ t

h(t)

F (s)ψ1(σ(s))B(h(s))ds >
1

e
(2.23)

and

lim inf
t→∞

∫ t

λ(t)

F (s)ψ2(σ(s))R(s)ds >
1

e
, (2.24)

then (1.1) is oscillatory.

Proof. The proof follows from a well-known result in [11] and Theorem 2.5, and hence
the details are omitted. �

Corollary 2.7. Let (2.2) holds and 0 < β < 1. Assume that there exists a nondecreasing
function η ∈ C1([t0,∞),R) such that σ(t) ≤ η(t) < τ(t) for all t ≥ t0. If∫ ∞

T

F (t)ψβ1 (σ(t))Bβ(h(t))dt =∞ (2.25)

and ∫ ∞
T

F (t)ψβ2 (σ(t))Rβ(t)dt =∞ (2.26)

for all sufficiently large T ∈ [t0,∞) with σ(t) ≥ t0 for all t ≥ T , then (1.1) oscillates.

Proof. Proceeding exactly as in the proof of Theorem 2.5, we again arrive at (2.17)
and (2.22) for t ≥ t3. Since h(t) < t and X(t) is positive and decreasing, inequality
(2.17) takes the form

X ′(t) + F (t)ψβ1 (σ(t))Bβ(h(t))Xβ(t) ≤ 0,

or
X ′(t)

Xβ(t)
+ F (t)ψβ1 (σ(t))Bβ(h(t)) ≤ 0. (2.27)

Integrating (2.27) from t3 to t yields∫ t

t3

F (s)ψβ1 (σ(s))Bβ(h(s))ds ≤ X1−β(t3)

1− β
<∞ as t→∞,

which contradicts (2.25). The remainder of the proof follows from λ(t) < t and in-
equality (2.22). The proof is complete. �

In our final result, assume that σ(t) = t − δ1, τ(t) = t − δ3 and η(t) = t − δ2,
where δ1, δ2 and δ3 are positive real numbers.

Corollary 2.8. Let (2.2) holds and β > 1. If δ1 ≥ δ2 > δ3,

lim inf
t→∞

β−t/(δ1−δ3) log
(
F (t)ψβ1 (t− δ1)Bβ(t+ δ3 − δ1)

)
> 0 (2.28)

and

lim inf
t→∞

β−t/(δ2−δ3) log
(
F (t)ψβ2 (t− δ1)Rβ(t)

)
> 0, (2.29)

then (1.1) oscillates.
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Proof. Application of (2.28) and (2.29) and Corollary 1.2 of [15] imply that (2.9) and
(2.10) oscillate. Hence, by Theorem 2.5, equation (1.1) oscillates. �

3. Examples

In this section, we present some examples to show the importance of the main
results.

Example 3.1. Consider the third-order linear neutral differential equation(
t2

(
1

t

(
y(t) + 16y

(
t

2

))′)′)′
+
f0

t2
y

(
t

4

)
= 0, t ≥ 1. (3.1)

Here p(t) = t2, q(t) = 1/t, g(t) = 16, f(t) = f0/t
2 with f0 > 0, τ(t) = t/2, σ(t) = t/4

and β = 1. Then A(t) = 1/t, a(t) = 1, b(t) = 1, F (t) = f0/t
3 and the transformed

equation is (
y(t) + 16y

(
t

2

))′′′
+
f0

t3
y

(
t

4

)
= 0, t ≥ 1, (3.2)

which is in canonical form. Simple calculation show that

Π(t) = t− 1, B(t) = (t− 1)2/2, c(t) = (t− 1)2, and ψ2(t) = 15/256.

Since (2.1) holds, we have ψ1(t) ≥ 0 and

ψ1(t) =
1

16

[
1− (4t− 1)2

16(2t− 1)2

]
≥ 7

256
.

By choosing η(t) = t/3, we see that h(t) = t/2, λ(t) = 2t/3 and R(t) = t2/72. It is
clear that condition (2.2) holds. Condition (2.23) becomes

lim inf
t→∞

∫ t

t/2

f0

29

(
3

s
− 14

s2
+

15

s3

)
ds =

3f0 ln 2

29
,

and so condition (2.22) is satisfied if f0 >
29

3e ln 2
.

Condition (2.24) becomes

lim inf
t→∞

∫ t

2t/3

5f0

3× 211

1

s
ds =

5f0 ln 3/2

3× 211
,

that is, (2.24) is satisfied if f0 >
3× 211

5e ln 3/2
. Thus, by Corollary 2.6, equation (3.1) is

oscillatory if f0 >
3× 211

5e ln 3/2
.

Note that canonical equation (3.2) is considered in [20] and proved that (3.2) is

oscillatory if f0 >
3×211

5 ln 3/2 . Hence, Corollary 2.6 improves Theorem 2.7 of [20].
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Example 3.2. Consider the third-order sublinear neutral differential equation(
t2

(
1

t

(
y(t) + ty

(
t

2

))′)′)′
+
f0

tα
y3/5

(
t

10

)
= 0, t ≥ 16. (3.3)

Here p(t) = t2, q(t) = 1/t, g(t) = t, f(t) = f0/t
α with f0 > 0 and α ≤ 3/5, τ(t) = t/2,

σ(t) = t/10 and β = 3/5. Then A(t) = 1/t, a(t) = 1, b(t) = 1, F (t) = f0/t
α+1 and

the transformed equation is(
y(t) + ty

(
t

2

))′′′
+

f0

tα+1
y3/5

(
t

10

)
= 0, t ≥ 16, (3.4)

which is in canonical form. Simple calculation shows that

Π(t) = t− 16, B(t) = (t− 16)2/2, c(t) = (t− 16)2, and ψ2(t) =
4t− 1

8t2
> 0.

Since (2.1) holds, we have ψ1(t) ≥ 0 and ψ1(t) ≥ 4t− 9

8t2
. By choosing η(t) = t/8, we

see that h(t) = t/5, λ(t) = t/4 and R(t) = t2/800. It is clear that condition (2.2)
holds. For any T ≥ t0 with σ(t) ≥ t0, condition (2.25) becomes∫ ∞

T

f0

tα+1

(
10t− 225

2t2

)3/5(
t− 80√

50

)6/5

dt ≥ d1

∫ ∞
T1

1

tα+2/5
dt =∞,

where d1 > 0 is a constant and T1 ≥ T .
Condition (2.26) becomes∫ ∞

T

f0

tα+1

(
10t− 25

2t2

)3/5(
t2

800

)3/5

dt ≥ d2

∫ ∞
T1

1

tα+2/5
=∞,

where d2 > 0 is a constant and T1 ≥ T . Thus, by Corollary 2.7, equation (3.3) is
oscillatory if α ≤ 3/5.

Note that canonical equation (3.4) is considered in [20] and proved that (3.4) is
oscillatory if α = 1

5 . Hence, Corollary 2.7 improves Theorem 2.8 of [20].

Example 3.3. Consider the third-order superlinear neutral differential equation(
t2
(

1

t
(y(t) + ty (t− 2))

′
)′)′

+ t exp(4t)y3(t− 4) = 0, t ≥ 2. (3.5)

Here p(t) = t2, q(t) = 1/t, g(t) = t, f(t) = t exp(4t), τ(t) = t − 2, σ(t) = t − 4 and
β = 3. Then A(t) = 1/t, a(t) = 1, b(t) = 1, F (t) = exp(4t) and the transformed
equation is

(y(t) + ty(t− 2))′′′ + exp(4t)y3(t− 4) = 0, (3.6)

which is in canonical form. A simple calculation show that

Π(t) = t− 2, B(t) = (t− 2)2/2, c(t) = (t− 2)2,

ψ1(t) =
1

t+ 2

[
1− (t+ 2)2

(t+ 4)t2

]
≥ t

(t+ 2)(t+ 4)
≥ 0 and ψ2(t) =

t+ 3

(t+ 2)(t+ 4)
≥ 0.
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By choosing η(t) = t − 3, we see that h(t) = t − 2, λ(t) = t − 1, R(t) = 1/2, δ1 = 4,
δ2 = 3, δ3 = 2. As in Examples 3.1 and 3.2, it is easy to see that conditions (2.2),
(2.28) and (2.29) are satisfied. Thus, by Corollary 2.8, equation (3.5) is oscillatory.

4. Conclusion

In this paper, we have established some new oscillation criteria for (1.1). The
results are obtained by converting (1.1) into canonical type equation. Hence, the
results are new and complement to those in [5, 6, 12, 20]. Also we have shown that
the results obtained here improve those in [20].

References

[1] Agarwal, R.P., Grace, S.R., O’Regan, D., Oscillation Theory for Difference and Func-
tional Differential Equations, Kluwer Academic, Derdrecht, 2000.
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[7] Došlá, Z., Lǐska, P., Comparison theorems for third-order neutral differential equations,
Electron. J. Differential Equations, 2016(2016), no. 38, 1-13.
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Exponential dichotomy and invariant manifolds
of semi-linear differential equations on the line

Trinh Viet Duoc and Nguyen Ngoc Huy

Abstract. In this paper we investigate the homogeneous linear differential equa-
tion v′(t) = A(t)v(t) and the semi-linear differential equation

v′(t) = A(t)v(t) + g(t, v(t))

in Banach space X, in which A : R → L(X) is a strongly continuous function,
g : R × X → X is continuous and satisfies ϕ-Lipschitz condition. The first we
characterize the exponential dichotomy of the associated evolution family with
the homogeneous linear differential equation by space pair (E , E∞), this is a Per-
ron type result. Applying the achieved results, we establish the robustness of
exponential dichotomy. The next we show the existence of stable and unstable
manifolds for the semi-linear differential equation and prove that each a fiber of
these manifolds is differentiable submanifold of class C1.

Mathematics Subject Classification (2010): 34C45, 34D09, 34D10.

Keywords: Exponential dichotomy, invariant manifolds, semi-linear differential
equations.

1. Introduction

The exponential dichotomy for the homogeneous linear differential equation
v′(t) = A(t)v(t) was extensively studied by mathematicians, for instance, Perron
[15], Massera and Schäffer [13], Daleckii and Krein [5], Coppel [4], Chicone and La-
tushkin [3]. To characterize the exponential dichotomy for the homogeneous linear
differential equation, Perron’s method has played an underlying role up to now. Some
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efforts improved Perron’s result by following two directions: one is to extend the no-
tion of exponential dichotomy [7, 1], and the other is to change admissible space pair
(input-output spaces) [16, 12, 19, 9, 17, 18].

Huy [9] had characterized the exponential dichotomy of evolution equations on
a half-line by using the notion of admissible Banach function space. Through this
notion, his group got some extended results for the existence of stable and unstable
manifolds of evolution equations [10, 11].

In [1], the authors investigated the exponential dichotomy for the homogeneous
linear differential equation v′(t) = A(t)v(t), in which A : R → L(X) is a strongly
continuous function. The notion of exponential dichotomy in [1] was with respect
to the family of norms ‖ · ‖t on X for t ∈ R. It was characterized by space pair
(Y, Y ), where Y = Cb(R, X) is equipped with the norm ‖v‖∞ = supt∈R ‖v(t)‖t, for
v ∈ Y . So, the paper [1] has inspired us to investigate the exponential dichotomy for
the homogeneous linear differential equation v′(t) = A(t)v(t) in the present paper.
Different from [1], in this paper we consider Banach space X with a fixed norm but
our space pair is wider.

It is the aim of this paper to investigate the homogeneous linear differential
equation v′(t) = A(t)v(t) and the semi-linear differential equation v′(t) = A(t)v(t) +
g(t, v(t)) in Banach space X, in which A : R→ L(X) is a strongly continuous function,
g : R×X → X is continuous and satisfies ϕ-Lipschitz condition. In Section 2 we use
Perron’s method to characterize the exponential dichotomy of the associated evolution
family with the homogeneous linear differential equation by space pair (E , E∞), the
achieved result is a significant improvement compared to previous results for the
homogeneous linear differential equation. As an application of this characterization,
we get the robustness of exponential dichotomy.

The stable manifold theorem is one of the most important results in the local
qualitative theory of autonomous nonlinear differential equations, see [2, 8, 14]. It
was extended for the semi-linear differential equation v′(t) = A(t)v(t) + g(t, v(t)) in
Banach space X, where g satisfies constant Lipschitz condition, i.e, there exists q > 0
such that ‖g(t, x)− g(t, y)‖ ≤ q‖x− y‖ for all t ∈ R and x, y ∈ X, see [5]. In Section 3
we show the existence of stable and unstable manifolds for the semi-linear differential
equation v′(t) = A(t)v(t) + g(t, v(t)), in which g satisfies ϕ-Lipschitz condition, i.e,
‖g(t, x)−g(t, y)‖ ≤ ϕ(t)‖x−y‖ for all t ∈ R and x, y ∈ X. Different from the constant
Lipschitz case, the semi-linear differential equation surely exists solution on positive
semi-axis if initial value lies in a fiber of stable manifold and on negative semi-axis if
initial value lies in a fiber of unstable manifold. The same as autonomous nonlinear
differential equations, each a fiber of these manifolds is differentiable submanifold of
class C1 if the map g(t, ·) is continuously differentiable (in the sense Fréchet derivative)
on X for each fixed t ∈ R.

The remainder in this section, we recall some notions on Banach function spaces
on the line in the paper [6]. Denote by B the Borel algebra and by λ the Lebesgue
measure on R. The space L1,loc(R) of real-valued locally integrable functions on R
becomes a Fréchet space for the seminorms pn(f) :=

∫
Jn
|f(t)|dt, where Jn = [n, n+1]

for each n ∈ Z (see [13, Chapt. 2, §20]).



Exponential dichotomy and invariant manifolds 129

Definition 1.1. A vector space E of real-valued Borel-measurable functions on R is
called a Banach function space (over (R,B, λ)) if

1) E is Banach lattice with respect to a norm ‖ · ‖E , i.e., (E, ‖ · ‖E) is a Banach
space, and if ϕ ∈ E and ψ is a real-valued Borel-measurable function such that
|ψ(·)| ≤ |ϕ(·)|, λ-a.e., then ψ ∈ E and ‖ψ‖E ≤ ‖ϕ‖E ,

2) the characteristic functions χA belong to E for all A ∈ B of finite measure, and
supt∈R ‖χ[t,t+1]‖E <∞ and inft∈R ‖χ[t,t+1]‖E > 0,

3) E ↪→ L1,loc(R), i.e., for each seminorm pn of L1,loc(R) there exists a number
βpn > 0 such that pn(f) ≤ βpn‖f‖E for all f ∈ E.

The following lemma is very useful in the later sections.

Lemma 1.2. Let E be a Banach function space. Let ϕ and ψ be real-valued, measurable
functions on R such that they coincide with each other outside a compact interval and
they are essentially bounded on this compact interval. Then ϕ ∈ E if only if ψ ∈ E.

Definition 1.3. Let now E be a Banach function space and X a Banach space. The
set

E := E(R, X) := {f : R→ X : f is strongly measurable and ‖f(·)‖ ∈ E}

is endowed the norm

‖f‖E := ‖‖f(·)‖‖E .
Then, E is a Banach space and is called Banach space corresponding to the Banach
function space E.

Definition 1.4. The Banach function space E is called admissible if

1. there is a constant M ≥ 1 such that for every compact interval [a, b] ⊂ R we
have ∫ b

a

|ϕ(t)|dt ≤ M(b− a)

‖χ[a,b]‖E
‖ϕ‖E for all ϕ ∈ E, (1.1)

2. for ϕ ∈ E the function Λ1ϕ defined by Λ1ϕ(t) :=
∫ t+1

t
ϕ(τ)dτ belongs to E.

3. E is T+
τ -invariant and T−τ -invariant, where T+

τ and T−τ are defined by

T+
τ ϕ(t) := ϕ(t− τ) for t ∈ R,
T−τ ϕ(t) := ϕ(t+ τ) for t ∈ R,

and there exists constants N1, N2 such that ‖T+
τ ‖ ≤ N1, ‖T−τ ‖ ≤ N2 for all

τ ∈ R+.

Remark 1.5. It can be easily seen that if E is an admissible Banach function space
then E ↪→M(R), where

M(R) =

{
f ∈ L1,loc(R) : sup

t∈R

∫ t+1

t

|f(τ)|dτ <∞
}
.

We now collect some properties of admissible Banach function space in the fol-
lowing proposition, see [6, Proposition 2.3] for complete proof.
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Proposition 1.6. Let E be an admissible Banach function space. The following asser-
tions hold.

(a) Let ϕ ∈ L1, loc(R) such that ϕ ≥ 0 and Λ1ϕ ∈ E, where Λ1ϕ is defined as in
Definition 1.4(ii). For σ > 0 we define functions Λσϕ and Λ̄σϕ by

Λσϕ(t) =

∫ t

−∞
e−σ(t−s)ϕ(s)ds,

Λ̄σϕ(t) =

∫ ∞
t

e−σ(s−t)ϕ(s)ds.

Then, Λσϕ and Λ̄σϕ belong to E, and

‖Λσϕ‖E ≤
N1

1− e−σ
‖Λ1ϕ‖E , ‖Λ̄σϕ‖E ≤

N2

1− e−σ
‖Λ1ϕ‖E .

In particular, if supt∈R
∫ t+1

t
|ϕ(τ)|dτ < ∞ (this will be satisfied if ϕ ∈ E (see

Remark 1.5)) then Λσϕ and Λ̄σϕ are bounded. Moreover, denoted by ‖ · ‖∞ for
sup-norm, we have

‖Λσϕ‖∞ ≤
N1

1− e−σ
‖Λ1ϕ‖∞ and ‖Λ̄σϕ‖∞ ≤

N2

1− e−σ
‖Λ1ϕ‖∞.

(b) E contains exponentially decaying functions ψ(t) = e−α|t| for t ∈ R and α > 0.
(c) E does not contain exponentially growing functions f(t) = ebt for t ∈ R and

b 6= 0.

The associate space of Banach function space is defined as follows.

Definition 1.7. Let E be an admissible Banach function space and denote by S(E)
the unit sphere in E. Recall that L1(R) = {g : R → R | g is Borel measurable and∫∞
−∞ |g(t)|dt <∞}. The set E′ of all real-valued Borel-measureable functions ψ on R

such that

ϕψ ∈ L1(R),

∫ ∞
−∞
|ϕ(t)ψ(t)|dt ≤ k for all ϕ ∈ S(E),

where k depends only on ψ. Then, E′ is a normed space with the norm given by

‖ψ‖E′ := sup

{∫ ∞
−∞
|ϕ(t)ψ(t)|dt : ϕ ∈ S(E)

}
for ψ ∈ E′.

We call E′ being the associate space of E.

Let E be an admissible Banach function space and E′ be its associate space.
Then, the following “Hölder-type inequality” holds:∫ ∞

−∞
|ϕ(t)ψ(t)|dt ≤ ‖ϕ‖E‖ψ‖E′ for all ϕ ∈ E, ψ ∈ E′. (1.2)

Definition 1.8. Let E be an admissible Banach function space and E′ be its associate
space. A positive function ϕ ∈ E′ is called exponentially E-invariant if for any fixed
ν > 0, the function hν defined by

hν(t) := ‖e−ν|t−·|ϕ(·)‖E′ for t ∈ R
belongs to E.
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2. Exponential dichotomy

Let X = (X, ‖ · ‖) be a Banach space and L(X) be the set of all bounded linear
operators on X. Assume that A : R → L(X) is strongly continuous function (that
means the mapping t 7→ A(t)x is continuous on R for each x ∈ X). Then, the linear
differential equation

v′ = A(t)v, t ∈ R (2.1)

generates an evolution family (T (t, τ))t,τ∈R on the Banach space X. This evolution
family is strongly continuous, exponentially unbounded, differentiable and invertible
(see [5] to more detailed informations), also called the associated evolution family with
Eq. (2.1). In this section we characterize the exponential dichotomy of the associated
evolution family with Eq. (2.1) and show that the exponential dichotomy is invariant
under small perturbations. Firstly, we recall the concept of the exponential dichotomy
of the evolution family (T (t, τ))t,τ∈R on the line.

Definition 2.1. The associated evolution family (T (t, τ))t,τ∈R is said to have an expo-
nential dichotomy on the line if there exist bounded linear projections P (t), t ∈ R on
X and positive constants N, η, ν such that

(a)

T (t, τ)P (τ) = P (t)T (t, τ), t, τ ∈ R; (2.2)

(b) for all x ∈ X and t ≥ τ ,

‖T (t, τ)P (τ)x‖ ≤ Ne−η(t−τ)‖x‖,

‖T (τ, t)Q(t)x‖ ≤ Ne−η(t−τ)‖x‖; (2.3)

(c) for all x ∈ X and t ≤ τ ,

‖T (t, τ)P (τ)x‖ ≤ Ne−ν(t−τ)‖x‖,

‖T (τ, t)Q(t)x‖ ≤ Ne−ν(t−τ)‖x‖; (2.4)

in which Q(t) = I − P (t), t ∈ R.

Note that Definition 2.1 is derived from the concept of the exponential dichotomy
in [1] when the family of norms is a fixed norm for all t ∈ R. This definition is also
equivalent to the concept of the exponential dichotomy of a strongly continuous,
exponentially bounded, and invertible evolution family.

To characterize the exponential dichotomy of the associated evolution family
(T (t, τ))t,τ∈R, we define Banach space E∞ as follows

E∞ = E ∩ Cb(R, X) with the norm ‖f‖E∞ = max{‖f‖E , ‖f‖∞}.

The next part we will characterize the exponential dichotomy of the associated evolu-
tion family with Eq. (2.1) by space pair (E , E∞). From the properties of the admissible
Banach function space, we see that the output solution has better information than
the input function. So the output space is smaller than the input space in our re-
sults. We now give necessary condition for the exponential dichotomy in the following
theorem.
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Theorem 2.2. Assume that the associated evolution family (T (t, τ))t,τ∈R has exponen-
tial dichotomy on the line. Then,

1) for each y ∈ E there exists a unique v ∈ E∞ that is absolutely continuous on each
[a, b] ⊂ R and satisfies

v′(t)−A(t)v(t) = y(t) for a.e. t ∈ R; (2.5)

2) there exist K,α > 0 such that

‖T (t, τ)‖ ≤ Keα|t−τ | for t, τ ∈ R. (2.6)

Remark 2.3. The absolute continuity of v on each [a, b] ⊂ R guarantees that v is
differentiable almost everywhere and furthermore the Newton-Leibniz formula for
Bochner integral holds for v.

Proof. Take y ∈ E , for t ∈ R we define

v(t) =

∫ t

−∞
T (t, τ)P (τ)y(τ)dτ −

∫ ∞
t

T (t, τ)Q(τ)y(τ)dτ. (2.7)

It follows from (2.3) and Proposition 1.6 that

‖v(t)‖ ≤
∫ t

−∞
‖T (t, τ)P (τ)y(τ)‖dτ +

∫ ∞
t

‖T (t, τ)Q(τ)y(τ)‖dτ

≤ N
∫ t

−∞
e−η(t−τ)‖y(τ)‖dτ +N

∫ ∞
t

e−η(τ−t)‖y(τ)‖dτ

= NΛηϕ(t) +N Λ̄ηϕ(t),

where ϕ(t) = ‖y(t)‖. So v(t) is well defined, continuous and bounded. On the other
hand, by Banach lattice property of E we also obtain

‖v‖E ≤
NN1

1− e−η
‖Λ1ϕ‖E +

NN2

1− e−η
‖Λ1ϕ‖E .

Therefore, v ∈ E∞ and ‖v‖E∞ ≤ N(N1 +N2)(1− e−η)−1‖Λ1ϕ‖E∞ .
Moreover, given t0 ∈ R, by directly computing we have

v(t) = T (t, t0)v(t0) +

∫ t

t0

T (t, τ)y(τ)dτ

= T (t, t0)
[
v(t0) +

∫ t

t0

T (t0, τ)y(τ)dτ
]
, (2.8)

for t ∈ R. Since T (t, τ) is the evolution family of Eq. (2.1) and property of Bochner
integral, it follows from (2.8) that the function v : R → X is differentiable almost
everywhere and that identity (2.5) holds for a.e. t ∈ R. Because T (t0, τ)y(τ) is locally
Bochner-integrable function so

v(t0) +

∫ t

t0

T (t0, τ)y(τ)dτ, t ∈ R

is absolutely continuous function on each [a, b] ⊂ R. On the other hand, T (t, t0)
and T (t0, t) are continuously differentiable on R follow uniform topology in L(X).
Therefore, T (t, t0)f(t) and T (t0, t)f(t) are absolutely continuous functions on each
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[a, b] ⊂ R if so is f . This means that v is absolutely continuous on each [a, b] ⊂ R. We
now show that v is the unique function in E∞ satisfying (2.5) for a.e. t ∈ R.

Indeed, let v1 ∈ E∞ be absolutely continuous function on each [a, b] ⊂ R and
satisfy (2.5) for a.e. t ∈ R. So that

v′1(t)−A(t)v1(t) = y(t) for a.e. t ∈ R.

Put z(t) = T (t0, t)v1(t). Then, z is absolutely continuous on each [a, b] ⊂ R, differen-
tiable almost everywhere and

z′(t) = T (t0, t)y(t) for a.e. t ∈ R.

Thus,

z(t)− z(t0) =

∫ t

t0

z′(τ)dτ =

∫ t

t0

T (t0, τ)y(τ)dτ.

This implies that

v1(t) = T (t, t0)z(t) = T (t, t0)v1(t0) +

∫ t

t0

T (t, τ)y(τ)dτ.

Put w(t) = v(t) − v1(t), we have w ∈ E∞ and w(t) = T (t, t0)w(t0) for t, t0 ∈ R. For
τ ≥ 0, using (2.2) and (2.3) we obtain

‖P (t)w(t)‖ = ‖T (t, t− τ)P (t− τ)w(t− τ)‖ ≤ Ne−ητ‖w‖E∞ ,
‖Q(t)w(t)‖ = ‖T (t, t+ τ)Q(t+ τ)w(t+ τ)‖ ≤ Ne−ητ‖w‖E∞ .

Sending τ → ∞ yields that P (t)w(t) = Q(t)w(t) = 0 for t ∈ R. Therefore, w(t) = 0
for t ∈ R. So, v is unique.

In order to prove (2.6), we use (2.3) and (2.4). For t ≥ τ ,

‖T (t, τ)x‖ ≤ ‖T (t, τ)P (τ)x‖+ ‖T (t, τ)Q(τ)x‖

≤ Ne−η(t−τ)‖x‖+Neν(t−τ)‖x‖ ≤ 2Neν(t−τ)‖x‖;

and for t ≤ τ ,

‖T (t, τ)x‖ ≤ ‖T (t, τ)P (τ)x‖+ ‖T (t, τ)Q(τ)x‖

≤ Neν(τ−t)‖x‖+Ne−η(τ−t)‖x‖ ≤ 2Neν(τ−t)‖x‖.

Thus, (2.6) holds with K = 2N and α = ν. �

The next we show that (2.5) and (2.6) are also sufficient condition for the expo-
nential dichotomy of associated evolution family (T (t, τ))t,τ∈R.

Theorem 2.4. Assume that the assertions 1) and 2) in Theorem 2.2 are true. Then,
associated evolution family (T (t, τ))t,τ∈R has exponential dichotomy on the line.

Proof. The proof scheme is the same as [1, Theorem 2.3]. For the sake of completeness,
we still present the complete proof.



134 Trinh Viet Duoc and Nguyen Ngoc Huy

Linear operator H : D(H) ⊂ E∞ → E is defined as follows:

(Hv)(t) = v′(t)−A(t)v(t), t ∈ R,
D(H) = {v ∈ E∞ is absolutely continuous function

on each [a, b] ⊂ R such that Hv ∈ E}. (2.9)

Then, (H,D(H)) is closed operator. Indeed, let {vk}k∈N be a sequence in D(H) such
that vk → v in E∞ and yk := Hvk → y in E . For each fixed τ ∈ R and t ≥ τ , we have

v(t)− v(τ) = lim
k→∞

(vk(t)− vk(τ)) = lim
k→∞

∫ t

τ

v′k(s)ds

= lim
k→∞

∫ t

τ

(yk(s) +A(s)vk(s))ds.

On the other hand, by (1.1)∥∥∥∥∫ t

τ

yk(s)ds−
∫ t

τ

y(s)ds

∥∥∥∥ ≤ ∫ t

τ

‖yk(s)− y(s)‖ds ≤ M(t− τ)

‖χ[τ,t]‖E
‖yk − y‖E .

Therefore,

lim
k→∞

∫ t

τ

yk(s)ds =

∫ t

τ

y(s)ds.

Similarly, ∥∥∥∥∫ t

τ

A(s)vk(s)ds−
∫ t

τ

A(s)v(s)ds

∥∥∥∥ ≤M1

∫ t

τ

‖vk(s)− v(s)‖ds

≤M1(t− τ)‖vk − v‖E∞
with M1 = sup{‖A(s)‖ : s ∈ [τ, t]}. Thus,

lim
k→∞

∫ t

τ

A(s)vk(s)ds =

∫ t

τ

A(s)v(s)ds.

So,

v(t)− v(τ) =

∫ t

τ

(A(s)v(s) + y(s))ds.

This implies that v(t) is absolutely continuous on each [a, b] ⊂ R, differentiable almost
everywhere and v′(t) = A(t)v(t) + y(t) for a.e. t ∈ R. So, Hv = y and v ∈ D(H).
Therefore, (H,D(H)) is closed operator.

By the assumption, H : D(H)→ E is bijective. So the operator H has an inverse
operator G : E → D(H). Because G is closed operator and D(G) = E is Banach space
so G is bounded.

We now construct stable and unstable subspaces, for τ ∈ R

F sτ = {x ∈ X : χ[τ,∞)(·)T (·, τ)x ∈ E and sup
t≥τ
‖T (t, τ)x‖ <∞}, (2.10)

Fuτ = {x ∈ X : χ(−∞,τ ](·)T (·, τ)x ∈ E and sup
t≤τ
‖T (t, τ)x‖ <∞}. (2.11)
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Then, F sτ and Fuτ are subspaces. The next we show that the associated evolution family
(T (t, τ))t,τ∈R has exponential dichotomy corresponding to F sτ and Fuτ subspaces. To
track easily we will split the proof process into lemmas below.

Lemma 2.5. X = F sτ ⊕ Fuτ for each τ ∈ R.

Proof. Let φ : R→ R be a smooth function supported on [τ,∞) such that 0 ≤ φ ≤ 1,
φ = 1 on [τ + 1,∞) and supt∈R |φ′(t)| < ∞. Given x ∈ X, put g(t) = φ′(t)T (t, τ)x.
By (2.6) we get

‖g(t)‖ = ‖χ[τ,τ+1](t)φ
′(t)T (t, τ)x‖

≤ χ[τ,τ+1](t) sup
t∈R
|φ′(t)|Keα‖x‖ for all t ∈ R.

By Banach lattice property then ‖g(·)‖ ∈ E. Thus, g ∈ E∞. Because H is bijective
so there exists unique v ∈ D(H) ⊂ E∞ such that Hv = g for all t ∈ R. Denoted
w(t) = (1− φ(t))T (t, τ)x+ v(t) for t ∈ R, we check easily Hw = 0. Therefore, w is a
solution of Eq. (2.1). For t ≥ τ , we get

‖w(t)‖ ≤ χ[τ,τ+1](t)Ke
α‖x‖+ ‖v(t)‖.

This implies χ[τ,∞)(·)‖w(·)‖ ∈ E. Thus, w(τ) ∈ F sτ .

On the other hand, w(t)− T (t, τ)x is also a solution of Eq. (2.1). For t ≤ τ , we have
w(t)− T (t, τ)x = v(t) so thus χ(−∞,τ ](·)(w(·)− T (·, τ)x) ∈ E and

sup
t≤τ
‖w(t)− T (t, τ)x‖ <∞.

Therefore, w(τ)− x ∈ Fuτ . Hence, x ∈ F sτ + Fuτ for all x ∈ X.
If x ∈ F sτ ∩ Fuτ then u(·) := T (·, τ)x ∈ E∞. Furthermore, u is absolutely con-

tinuous function on each compact interval in R. Therefore, u ∈ D(H). Since H is
invertible and Hu = 0 so u = 0 for a.e. t ∈ R. Because u is continuous function so
u = 0 for all t ∈ R. Thus, x = 0. So, F sτ ∩ Fuτ = {0}. �

The decomposition in Lemma 2.5 determines a complementary projection pair
P (τ) : X → F sτ and Q(τ) : X → Fuτ for each τ ∈ R. These projections are uniformly
bounded.

Lemma 2.6. There exists M > 0 such that

‖P (τ)x‖ ≤M‖x‖ (2.12)

for x ∈ X and τ ∈ R.

Proof. Using the same notation as in the proof of Lemma 2.5, we get

‖P (τ)x‖ = ‖w(τ)‖ ≤ ‖x‖+ ‖v(τ)‖ ≤ ‖x‖+ ‖v‖E∞
= ‖x‖+ ‖Gg‖E∞ ≤ ‖x‖+ ‖G‖‖g‖E .

Moreover, we have

‖g‖E ≤ ‖χ[τ,τ+1]‖ELKeα‖x‖ ≤ sup
τ∈R
‖χ[τ,τ+1]‖ELKeα‖x‖,
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where L = supt∈R |φ′(t)| <∞. Therefore,

‖P (τ)x‖ ≤ (1 + ‖G‖LKeα sup
τ∈R
‖χ[τ,τ+1]‖E)‖x‖. �

We prove that property (2.2) holds in the following lemma.

Lemma 2.7.

T (t, τ)P (τ) = P (t)T (t, τ) for t, τ ∈ R.

Proof. Using the same notation as in the proof of Lemma 2.5. We prove this lemma
in several steps.
Step 1. We show that T (t, τ)w(τ) ∈ F st . Indeed,

χ[t,∞)(ξ)T (ξ, t)T (t, τ)w(τ) = χ[t,∞)(ξ)T (ξ, τ)w(τ)

=

{
0 if ξ < t,
w(t) if ξ ≥ t.

Thus, χ[t,∞)(·)T (·, t)T (t, τ)w(τ) ∈ E∞. This implies T (t, τ)w(τ) ∈ F st .
Step 2. We prove that T (t, τ)v(τ) ∈ Fut . Indeed, by Hv = g we have

v(t) = T (t, τ)v(τ) +

∫ t

τ

T (t, ξ)g(ξ)dξ for t, τ ∈ R.

Therefore,

T (t, τ)v(τ) = v(t)−
∫ t

τ

T (t, ξ)g(ξ)dξ

= v(t)−
∫ t

τ

T (t, ξ)φ′(ξ)T (ξ, τ)xdξ

= v(t)−
∫ t

τ

φ′(ξ)T (t, τ)xdξ

=

{
v(t) if t ≤ τ,
v(t)− φ(t)T (t, τ)x if t ≥ τ.

Hence,

χ(−∞,t](ξ)T (ξ, t)T (t, τ)v(τ) =

{
0 if ξ > t,
T (ξ, τ)v(τ) if ξ ≤ t,

=

 0 if ξ > t,
v(ξ)− φ(ξ)T (ξ, τ)x if τ ≤ ξ ≤ t,
v(ξ) if ξ < τ.

Putting

f(ξ) =

{
0 if ξ ≥ τ,
v(ξ) if ξ < τ.

Then, f ∈ E∞. By Lemma 1.2, we have χ(−∞,t](·)T (·, t)T (t, τ)v(τ) ∈ E∞. Therefore,
T (t, τ)v(τ) ∈ Fut .
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Step 3. We also have

T (t, τ)P (τ)x = T (t, τ)w(τ)

= T (t, τ)x+ T (t, τ)v(τ).

Let projection P (t) act on both sides of the above equality, we obtain

T (t, τ)P (τ)x = P (t)T (t, τ)x for all x ∈ X. �

Lemma 2.8. There exists constants N, η > 0 such that

‖T (t, τ)x‖ ≤ Ne−η(t−τ)‖x‖ (2.13)

for x ∈ P (τ)X and t ≥ τ .

Proof. Let ψ : R→ R be a smooth function which has support on [τ,+∞) such that
0 ≤ ψ ≤ 1, ψ = 1 on [τ + 1,+∞) and supt∈R |ψ′(t)| ≤ 2. Given x ∈ F sτ , let u be a
solution of Eq. (2.1) with u(τ) = x, i.e, u(t) = T (t, τ)x for t ∈ R. We have

‖ψ(t)u(t)‖ = ‖ψ(t)T (t, τ)x‖ = ‖χ[τ,+∞)(t)ψ(t)T (t, τ)x‖
≤ ‖χ[τ,+∞)(t)T (t, τ)x‖.

From x ∈ F sτ and using (2.10) we get χ[τ,+∞)(·)T (·, τ)x ∈ E∞. Therefore, by Banach
lattice property then we have ψ(·)u(·) ∈ E∞. Moreover, we have H(ψu) = ψ′u and

‖(ψ′u)(ξ)‖ ≤ 2χ[τ,τ+1](ξ)‖u(ξ)‖ ≤ 2χ[τ,τ+1](ξ)Ke
α‖x‖, ξ ∈ R.

Thus,

‖‖ψ′u‖‖E = ‖ψ′u‖E ≤ 2Keα‖χ[τ,τ+1]‖E‖x‖.
• For t ≥ τ + 1,

‖u(t)‖ = ‖ψ(t)u(t)‖ = ‖G(ψ′u)(t)‖ ≤ ‖G(ψ′u)‖E∞
≤ ‖G‖‖ψ′u‖E ≤ 2‖G‖Keα‖χ[τ,τ+1]‖E‖x‖.

• For τ ≤ t ≤ τ + 1,

‖u(t)‖ = ‖T (t, τ)x‖ ≤ Keα‖x‖.

Therefore,

‖u(t)‖ ≤ C‖x‖ for t ≥ τ, (2.14)

where C = Keα max{2‖G‖ supτ∈R ‖χ[τ,τ+1]‖E , 1}.
The next, we show that there exists m ∈ N such that

‖u(t)‖ ≤ 1

2
‖x‖ for t− τ ≥ m, τ ∈ R. (2.15)

In order to prove (2.15), let

y(ξ) = χ[τ,t](ξ)u(ξ) and v(ξ) = u(ξ)

∫ ξ

−∞
χ[τ,t](s)ds.

It can be seen that y ∈ E , v ∈ D(H) ⊂ E∞ and Hv = y. Therefore,

‖v‖E∞ = ‖Gy‖E∞ ≤ ‖G‖‖y‖E .
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On the other hand,

‖y(ξ)‖ ≤
{
χ[τ,τ+1](ξ)Ke

α‖x‖, ξ ∈ [τ, τ + 1],
G(ψ′u)(ξ), ξ ∈ [τ + 1,+∞).

Thus,

‖y‖E ≤ max{Keα sup
τ∈R
‖χ[τ,τ+1]‖E , 2Keα‖G‖ sup

τ∈R
‖χ[τ,τ+1]‖E}‖x‖ =: K1‖x‖.

So,

‖v‖E∞ ≤ ‖G‖K1‖x‖.
We have

(t− τ)‖u(t)‖ = ‖v(t)‖ ≤ ‖v‖E∞ ≤ ‖G‖K1‖x‖.
Therefore,

‖u(t)‖ ≤ ‖G‖K1

t− τ
‖x‖.

Hence, if t−τ ≥ 2K1‖G‖ then ‖u(t)‖ ≤ 1
2‖x‖. Taking m > 2K1‖G‖, we obtain (2.15).

Finally, take t ≥ τ and write t − τ = km + r with k ∈ N and 0 ≤ r < m. By (2.12),
(2.14), (2.15), and Lemma 2.7 we get

‖T (t, τ)P (τ)x‖ = ‖T (τ + km+ r, τ)P (τ)x‖ ≤ C‖T (τ + km, τ)P (τ)x‖

≤ C

2k
‖P (τ)x‖ ≤ 2CMe−(t−τ) ln 2

m ‖x‖ for x ∈ X.

�

Lemma 2.9. There exists constants N, η > 0 such that

‖T (t, τ)x‖ ≤ Ne−η(τ−t)‖x‖ (2.16)

for x ∈ KerP (τ) = Q(τ)X and t ≤ τ .

Proof. Let ψ : R→ R be a smooth function supported on (−∞, τ ] such that 0 ≤ ψ ≤
1, ψ = 1 on (−∞, τ − 1] and supt∈R |ψ′(t)| ≤ 2. Given x ∈ Fuτ , let u be a solution of
Eq. (2.1) with u(τ) = x. We have

‖ψ(t)u(t)‖ = ‖χ(−∞,τ ](t)ψ(t)T (t, τ)x‖ ≤ ‖χ(−∞,τ ](t)T (t, τ)x‖.
From x ∈ Fuτ and using (2.11) we get χ(−∞,τ ](·)T (·, τ)x ∈ E∞. Therefore, ψ(·)u(·) ∈
E∞. Furthermore, we can also easily verify that H(ψu) = ψ′u. We have

|(ψ′u)(ξ)‖ ≤ 2χ[τ−1,τ ](ξ)‖u(ξ)‖ ≤ 2χ[τ−1,τ ](ξ)Ke
α‖x‖, ξ ∈ R.

Thus,

‖‖ψ′u‖‖E = ‖ψ′u‖E ≤ 2Keα‖χ[τ−1,τ ]‖E‖x‖.
• For t ≤ τ − 1,

‖u(t)‖ = ‖ψ(t)u(t)‖ = ‖G(ψ′u)(t)‖ ≤ ‖G(ψ′u)‖E∞
≤ ‖G‖‖ψ′u‖E ≤ 2‖G‖Keα‖χ[τ−1,τ ]‖E‖x‖.

• For τ − 1 ≤ t ≤ τ ,

‖u(t)‖ = ‖T (t, τ)x‖ ≤ Keα‖x‖.
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Therefore,
‖u(t)‖ ≤ C‖x‖ for t ≤ τ, (2.17)

where C = Keα max{2‖G‖ supτ∈R ‖χ[τ−1,τ ]‖E , 1}.
The next, we show that there exists m ∈ N such that

‖u(t)‖ ≤ 1

2
‖x‖ for τ − t ≥ m, τ ∈ R. (2.18)

In order to prove (2.18), let

y(ξ) = −χ[t,τ ](ξ)u(ξ) and v(ξ) = u(ξ)

∫ ∞
ξ

χ[t,τ ](s)ds.

It can be seen that y ∈ E , v ∈ D(H) ⊂ E∞ and Hv = y. Therefore,

‖v‖E∞ = ‖Gy‖E∞ ≤ ‖G‖‖y‖E .
On the other hand,

‖y(ξ)‖ ≤

{
χ[τ−1,τ ](ξ)Ke

α‖x‖, ξ ∈ [τ − 1, τ ],

G(ψ′u)(ξ), ξ ∈ (−∞, τ − 1].

Thus,

‖y‖E ≤ max{Keα sup
τ∈R
‖χ[τ−1,τ ]‖E , 2Keα‖G‖ sup

τ∈R
‖χ[τ−1,τ ]‖E}‖x‖ =: K2‖x‖.

So,
‖v‖E∞ ≤ ‖G‖K2‖x‖.

We have
(τ − t)‖u(t)‖ = ‖v(t)‖ ≤ ‖v‖E∞ ≤ ‖G‖K2‖x‖.

Therefore,

‖u(t)‖ ≤ ‖G‖K2

τ − t
‖x‖.

Hence, if τ−t ≥ 2K2‖G‖ then ‖u(t)‖ ≤ 1
2‖x‖. Taking m > 2K2‖G‖, we obtain (2.18).

In order to complete the proof, take t ≤ τ and write τ − t = km+ r with k ∈ N and
0 ≤ r < m. By (2.12), (2.17), (2.18), and Lemma 2.7 we get

‖T (t, τ)Q(τ)x‖ = ‖T (τ − km− r, τ)Q(τ)x‖ ≤ C‖T (τ − km, τ)Q(τ)x‖

≤ C

2k
‖Q(τ)x‖ ≤ 2C(1 +M)e−(τ−t) ln 2

m ‖x‖ for x ∈ X.

�

So, we get (2.3) from (2.13) and (2.16). For t ≤ τ , using (2.6) and (2.12) we
obtain (2.4) as follows.

‖T (t, τ)P (τ)x‖ ≤ Keα|t−τ |‖P (τ)x‖ ≤ Keα|t−τ |M‖x‖ = KMe−α(t−τ)‖x‖,

‖T (τ, t)Q(t)x‖ ≤ Keα|t−τ |‖Q(t)x‖ ≤ Keα|t−τ |(1 +M)‖x‖

= K(1 +M)e−α(t−τ)‖x‖.

Thus, the associated evolution family (T (t, τ))t,τ∈R has exponential dichotomy on the
line. �
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In the remainder of this section we establish the robustness of the notion of
exponential dichotomy. It is an application of Theorem 2.2 and Theorem 2.4.

Theorem 2.10. Let A,B : R→ L(X) be strongly continuous functions such that

1. the evolution family (T (t, τ))t,τ∈R of Eq. (2.1) has exponential dichotomy on the
line;

2. there exists ϕ ∈ E such that

‖B(t)−A(t)‖ ≤ ϕ(t) for a.e. t ∈ R. (2.19)

Then, the evolution family (U(t, τ))t,τ∈R of the equation v′ = B(t)v has exponential
dichotomy on the line if ‖ϕ‖E is sufficiently small.

Proof. Let H be the linear operator defined by (2.9) on the domain D(H). We define
a linear operator L : D(L) ⊂ E∞ → E by

(Lv)(t) = v′(t)−B(t)v(t), t ∈ R,

where D(L) = {v ∈ E∞ is absolutely continuous function on each [a, b] ⊂ R such that
Lv ∈ E}.

For v ∈ E∞, denoted (Pv)(t) := (B(t)−A(t))v(t). By (2.19) we get

‖(Pv)(t)‖ ≤ ϕ(t)‖v(t)‖ ≤ ϕ(t)‖v‖E∞ for a.e t ∈ R.

Therefore, Pv ∈ E and ‖Pv‖E ≤ ‖ϕ‖E‖v‖E∞ . So, the mapping P : E∞ → E is bounded
linear operator and ‖P‖ ≤ ‖ϕ‖E . Thus, D(H) = D(L) and L = H + P . By Theorem
2.2 and Theorem 2.4, the operator H is invertible. Hence, if ‖ϕ‖E is sufficiently small
then L is also invertible.

Two evolution families (U(t, τ))t,τ∈R and (T (t, τ))t,τ∈R have the relation as fol-
lows:

U(t, τ)x = T (t, τ)x+

∫ t

τ

T (t, s)(B(s)−A(s))U(s, τ)x ds

for t, τ ∈ R and x ∈ X. Using Gronwall inequality and the relation above, we easily
get

‖U(t, τ)x‖ ≤ Ke
α|t−τ |+K

∣∣∣ ∫ t

τ

ϕ(s)ds
∣∣∣
‖x‖ for x ∈ X and t, τ ∈ R.

On the other hand,∣∣∣ ∫ t

τ

ϕ(s)ds
∣∣∣ ≤ ‖Λ1ϕ‖∞(|t− τ |+ 1) for t, τ ∈ R.

Thus,

‖U(t, τ)x‖ ≤ KeK‖Λ1ϕ‖∞e(α+K‖Λ1ϕ‖∞)|t−τ |‖x‖ for x ∈ X and t, τ ∈ R.

By Theorem 2.4, we deduce that the evolution family (U(t, τ))t,τ∈R of the equation
v′ = B(t)v has exponential dichotomy on the line. �
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3. Stable and unstable manifolds

Let be semi-linear differential equation

v′(t) = A(t)v(t) + g(t, v(t)), t ∈ R (3.1)

in Banach space X, in which A and g satisfy the following assumptions.
Assumption 1: A : R → L(X) is strongly continuous function and generates an evo-
lution family (T (t, τ))t,τ∈R having exponential dichotomy (that means the assertions
1) and 2) in Theorem 2.2 are satisfied).
Assumption 2: g : R×X → X is continuous and satisfies ϕ-Lipschitz condition, i.e,

(i) ‖g(t, 0)‖ ≤ ϕ(t) for t ∈ R,
(ii) ‖g(t, x)− g(t, y)‖ ≤ ϕ(t)‖x− y‖ for t ∈ R and x, y ∈ X.

Assumption 3: E is admissible Banach function space such that its associate space
E′ is also admissible Banach function space and ϕ ∈ E′ is exponentially E-invariant
(see Definition 1.8).

The these underlying assumptions, we show the existence of stable and unstable
manifolds for the Eq. (3.1). Actually, these manifolds include trajectories of continuous
solutions lying in the Banach space E (see Definition 1.3). We easily get the following
result.

Lemma 3.1. A function v : R → X is solution of Eq. (3.1) if only if it is continuous
on R and satisfies the integral equation

v(t) = T (t, t0)v(t0) +

∫ t

t0

T (t, τ)g(τ, v(τ))dτ, t0, t ∈ R.

From now on we shall suppose that Assumption 1, Assumption 2 and Assumption 3
hold. For convenience, we define Green function as follows

G(t, τ) =

{
T (t, τ)P (τ) for t > τ,

−T (t, τ)Q(τ) for t < τ.
(3.2)

By (2.3), we have ‖G(t, τ)‖ ≤ Ne−η|t−τ | for all t, τ ∈ R. Moreover, if a function v has
the domain D(v) then it can be extended on R by the characteristic function χD(v) as
follows (χD(v)v)(t) = v(t) if t ∈ D(v) and (χD(v)v)(t) = 0 if otherwise. To construct
stable and unstable manifolds we now give characteristic formula denoted solutions
of Eq. (3.1) which belong to the Banach space E .

Proposition 3.2. The following assertions hold.

i. The function v ∈ E is a solution of Eq. (3.1) on R if only if it has the form

v(t) =

∫ ∞
−∞
G(t, τ)g(τ, v(τ))dτ, t ∈ R.

ii. For each fixed s, the function χ[s,∞)v ∈ E is a solution of Eq. (3.1) on [s,∞) if
only if there is ν0 ∈ ImP (s) such that

v(t) = T (t, s)ν0 +

∫ ∞
s

G(t, τ)g(τ, v(τ))dτ, t ≥ s. (3.3)
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iii. For each fixed s, the function χ(−∞,s]v ∈ E is a solution of Eq. (3.1) on (−∞, s]
if only if there is µ0 ∈ ImQ(s) such that

v(t) = T (t, s)µ0 +

∫ s

−∞
G(t, τ)g(τ, v(τ))dτ, t ≤ s. (3.4)

Proof. The sufficient condition in the three assertions above is checked easily by simple
computations. So we only prove the necessary condition in the these.

i. Put y(t) =

∫ ∞
−∞
G(t, τ)g(τ, v(τ))dτ, t ∈ R. Using Hölder-type inequality (1.2) and

Assumption 3, we have

‖y(t)‖ ≤ N
∫ ∞
−∞

e−η|t−τ |ϕ(τ)(1 + ‖v(τ)‖)dτ

≤ Nh η
2
(t)‖e−

η
2 |t−·|‖E +Nhη(t)‖v‖E .

By iii) in the Definition 1.4, we get ‖e−
η
2 |t−·|‖E ≤ max{N1, N2}‖e η

2
‖E , in which

e η
2
(τ) = e−

η
2 |τ |. Therefore,

‖y(t)‖ ≤ N max{N1, N2}‖e η
2
‖Eh η

2
(t) +N‖v‖Ehη(t).

Because E is the Banach lattice and h η
2
, hη ∈ E so ‖y(·)‖ ∈ E. Thus, y ∈ E . On the

other hand, y also satisfies the integral equation

y(t) = T (t, t0)y(t0) +

∫ t

t0

T (t, τ)g(τ, v(τ))dτ, t0, t ∈ R.

Thus,

v(t)− y(t) = T (t, t0)(v(t0)− y(t0)).

Because of v − y ∈ E so we obtain v(t0) = y(t0). This deduces v = y on R.

ii. Put y2(t) =

∫ ∞
s

G(t, τ)g(τ, v(τ))dτ, t ≥ s. The similar argumentation as above,

we have

‖y2(t)‖ ≤ N
∫ ∞
s

e−η|t−τ |ϕ(τ)(1 + ‖v(τ)‖)dτ

≤ N
∫ ∞
−∞

e−η|t−τ |ϕ(τ)(1 + ‖(χ[s,∞)v)(τ)‖)dτ

≤ N max{N1, N2}‖e η
2
‖Eh η

2
(t) +Nhη(t)‖χ[s,∞)v‖E .

Thus, χ[s,∞)y2 ∈ E . On the other hand, y2 also satisfies the integral equation

y2(t) = T (t, s)y2(s) +

∫ t

s

T (t, τ)g(τ, v(τ))dτ, t ≥ s.

Therefore, v(t) − y2(t) = T (t, s)(v(s) − y2(s)). Because of χ[s,∞)v − χ[s,∞)y2 ∈ E
so we obtain v(s) − y2(s) ∈ ImP (s). So, there exists ν0 ∈ ImP (s) such that v(t) =
T (t, s)ν0 + y2(t) with t ≥ s. The last assertion is proved similarly. �

Using Proposition 3.2 and Banach fixed-point theorem we get the existence of
solutions of Eq. (3.1) in the Banach space E . The proof is basic, so we omit here.
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Theorem 3.3. Assume that N‖hη‖E < 1. Then:

a) The Eq. (3.1) has a unique solution in the Banach space E and this solution
takes the form

v∗(t) =

∫ ∞
−∞
G(t, τ)g(τ, v∗(τ))dτ, t ∈ R.

b) For each fixed s and ν0 ∈ ImP (s), the Eq. (3.1) has a unique solution v on [s,∞)
such that χ[s,∞)v ∈ E and this solution is represented by the formula (3.3).

c) For each fixed s and µ0 ∈ ImQ(s), the Eq. (3.1) has a unique solution v on
(−∞, s] such that χ(−∞,s]v ∈ E and this solution is represented by the formula
(3.4).

The next, we show the existence of stable and unstable manifolds for the Eq.
(3.1). These manifolds like bundles in R×X space, each a fiber of these manifolds is
a submanifold in X space. In precisely, it is graph of a Lipschitz map.

Theorem 3.4. Assume that N2 max{N1, N2}‖eη‖E‖ϕ‖E′ + N‖hη‖E < 1, in which

eη(τ) = e−η|τ |. Then, there exist an invariant stable manifold S =
⊔
s∈R Ss and an

invariant unstable manifold U =
⊔
s∈R Us of Eq. (3.1). Moreover, the stable manifold

has the following properties

(i) Ss = {ν0 + gsts (ν0) : ν0 ∈ ImP (s)}, where gsts : ImP (s)→ ImQ(s) is a Lipschitz
map having Lipschitz coefficient

Lip(gsts ) ≤ N2 max{N1, N2}‖eη‖E‖ϕ‖E′

1−N‖hη‖E
< 1

for all s ∈ R;
(ii) Ss is homeomorphic to ImP (s) for all s ∈ R;

(iii) to each x0 ∈ Ss, the Eq. (3.1) has a unique solution v on [s,∞) such that
χ[s,∞)v ∈ E, and v(t) ∈ St for all t ≥ s;

(iv) if N(N1 +N2)‖Λ1ϕ‖∞ < 1 then the solution v∗ attracts other solutions on S in
the sense there exist µ,Cµ > 0 such that

‖v(t)− v∗(t)‖ ≤ Cµe−µ(t−s)‖P (s)v(s)− P (s)v∗(s)‖ for all t ≥ s, v(s) ∈ Ss;
and the unstable manifold has the following properties

(i) Us = {µ0+guns (µ0) : µ0 ∈ ImQ(s)}, where guns : ImQ(s)→ ImP (s) is a Lipschitz
map having Lipschitz coefficient

Lip(guns ) ≤ N2 max{N1, N2}‖eη‖E‖ϕ‖E′

1−N‖hη‖E
< 1

for all s ∈ R;
(ii) Us is homeomorphic to ImQ(s) for all s ∈ R;

(iii) to each x0 ∈ Us, the Eq. (3.1) has a unique solution v on (−∞, s] such that
χ(−∞,s]v ∈ E, and v(t) ∈ Ut for all t ≤ s;

(iv) if N(N1 +N2)‖Λ1ϕ‖∞ < 1 then the solution v∗ attracts other solutions on U in
the sense there exist µ,Cµ > 0 such that

‖v(t)− v∗(t)‖ ≤ Cµeµ(t−s)‖Q(s)v(s)−Q(s)v∗(s)‖ for all t ≤ s, v(s) ∈ Us.
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Proof. We shall prove the existence of stable manifold and its properties, the unstable
manifold is done similarly.

By Theorem 3.3, for each ν0 ∈ ImP (s) then the Eq. (3.1) has a unique solution
v on [s,∞) such that χ[s,∞)v ∈ E . So we define the map gsts : ImP (s) → ImQ(s) as
follows

gsts (ν0) =

∫ ∞
s

G(s, τ)g(τ, v(τ))dτ, (3.5)

where G(s, τ) is the Green function defined by (3.2). For ν1, ν2 ∈ ImP (s) we have

‖gsts (ν1)− gsts (ν2)‖ ≤ N
∫ ∞
s

e−η|s−τ |ϕ(τ)‖v1(τ)− v2(τ)‖dτ

≤ N
∫ ∞
−∞

e−η|s−τ |ϕ(τ)‖(χ[s,∞)v1)(τ)− (χ[s,∞)v2)(τ)‖dτ

≤ N
∫ ∞
−∞

ϕ(τ)‖(χ[s,∞)v1)(τ)− (χ[s,∞)v2)(τ)‖dτ

≤ N‖ϕ‖E′‖χ[s,∞)v1 − χ[s,∞)v2‖E ( by (1.2)).

On the other hand,

‖v1(t)− v2(t)‖ ≤ Ne−η(t−s)‖ν1 − ν2‖

+N

∫ ∞
s

e−η|t−τ |ϕ(τ)‖v1(τ)− v2(τ)‖dτ

≤ Ne−η|t−s|‖ν1 − ν2‖+Nhη(t)‖χ[s,∞)v1 − χ[s,∞)v2‖E

for t ≥ s, and ‖e−η|·−s|‖E ≤ max{N1, N2}‖eη‖E . Therefore, by the Banach lattice
property of E we get

‖χ[s,∞)v1 − χ[s,∞)v2‖E ≤ N max{N1, N2}‖eη‖E‖ν1 − ν2‖
+N‖hη‖E‖χ[s,∞)v1 − χ[s,∞)v2‖E .

This implies

‖χ[s,∞)v1 − χ[s,∞)v2‖E ≤
N max{N1, N2}‖eη‖E

1−N‖hη‖E
‖ν1 − ν2‖.

So that

‖gsts (ν1)− gsts (ν2)‖ ≤ N2 max{N1, N2}‖eη‖E‖ϕ‖E′

1−N‖hη‖E
‖ν1 − ν2‖.

Thus, gsts is a Lipschitz map with Lipschitz coefficient

Lip(gsts ) ≤ N2 max{N1, N2}‖eη‖E‖ϕ‖E′

1−N‖hη‖E
< 1

for all s ∈ R. This also leads to that Ss is homeomorphic to ImP (s) for all s ∈ R.
From the definition of Ss and Theorem 3.3, the solution v∗ lies in the stable

manifold S and the Eq. (3.1) has a unique solution v on [s,∞) such that χ[s,∞)v ∈ E
for each x0 ∈ Ss. By the composition property of solution flows, we get v(t) ∈ St for
all t ≥ s.
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For v(s) ∈ Ss, the Eq. (3.1) has a unique solution v on [s,∞) such that χ[s,∞)v ∈ E
and this solution takes the form

v(t) = T (t, s)P (s)v(s) +

∫ ∞
s

G(t, τ)g(τ, v(τ))dτ, t ≥ s.

Therefore,

‖v(t)− v∗(t)‖ ≤ Ne−η(t−s)‖P (s)v(s)− P (s)v∗(s)‖

+N

∫ ∞
s

e−η|t−τ |ϕ(τ)‖v(τ)− v∗(τ)‖dτ, t ≥ s.

Put w(t) = eµ(t−s)‖v(t)−v∗(t)‖ for t ≥ s and µ ∈ (0, η). Then, w satisfies the integral
equation

w(t) ≤ Ne−(η−µ)(t−s)‖P (s)v(s)− P (s)v∗(s)‖

+N

∫ ∞
s

e−η|t−τ |+µ(t−τ)ϕ(τ)w(τ)dτ, t ≥ s.

We shall find w in Cb([s,∞)), consider the linear operator A on Cb([s,∞)) as follows

(Aφ)(t) = N

∫ ∞
s

e−η|t−τ |+µ(t−τ)ϕ(τ)φ(τ)dτ, t ≥ s.

Then, Aφ ∈ Cb([s,∞)) and ‖Aφ‖∞ ≤ N(N1 + N2)(1 − e−(η−µ))−1‖Λ1ϕ‖∞‖φ‖∞ by
the property (a) in Proposition 1.6. So, we have

w(t) ≤ z(t) + (Aw)(t), t ≥ s and z(t) = Ne−(η−µ)(t−s)‖P (s)v(s)− P (s)v∗(s)‖.

Take µ < η + ln(1−N(N1 +N2)‖Λ1ϕ‖∞), we get

‖A‖ ≤ N(N1 +N2)(1− e−(η−µ))−1‖Λ1ϕ‖∞ < 1.

Therefore, by cone inequality theorem in Banach space (see [5, Chap. I, Theorem
9.3]) there exists φ ∈ Cb([s,∞)) such that w(t) ≤ φ(t) for all t ≥ s and φ is a unique
solution of the equation φ = z +Aφ in Cb([s,∞)). Thus,

‖φ‖∞ = ‖(I −A)−1z‖∞ ≤
1

1− ‖A‖
‖z‖∞

≤ N‖P (s)v(s)− P (s)v∗(s)‖
1−N(N1 +N2)(1− e−(η−µ))−1‖Λ1ϕ‖∞

.

So, there exist µ,Cµ > 0 such that

‖v(t)− v∗(t)‖ ≤ Cµe−µ(t−s)‖P (s)v(s)− P (s)v∗(s)‖ for all t ≥ s, v(s) ∈ Ss. �

Remark 3.5. By the properties of stable and unstable manifolds, we get Ss ∩ Us =
{v∗(s)} for all s ∈ R. Moreover, in Theorem 3.4 if we assume g(t, 0) = 0 for all t ∈ R
then v∗ ≡ 0. Therefore, lim

t→∞
v(t) = 0 for all v(s) ∈ Ss and lim

t→−∞
v(t) = 0 for all

v(s) ∈ Us.
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When the map g(t, ·) is smooth on X for each fixed t then each a fiber of stable
and unstable manifolds is also smooth in the sense the map determining this fiber is
smooth.

Theorem 3.6. Assume that

max{N2 max{N1, N2}‖eη‖E‖ϕ‖E′ +N‖hη‖E , N(N1 +N2)‖Λ1ϕ‖∞} < 1

and the map g(t, ·) is continuously differentiable on X for each fixed t ∈ R such that
Dxg(t, v∗(t)) = 0 for all t ∈ R. Then, Ss and Us are differentiable submanifolds of
class C1 and tangent to v∗(s) + ImP (s) and v∗(s) + ImQ(s) respectively at v∗(s) for
all s ∈ R.

Proof. We need prove that the map gsts (see (3.5)) is continuously differentiable on
closed subspace ImP(s). Because g satisfies ϕ-Lipschitz condition and g(t, ·) is contin-
uously differentiable on X so

‖Dxg(t, a)‖ ≤ ϕ(t) for all t ∈ R and a ∈ X. (3.6)

For ν0, h ∈ ImP(s), we have

gsts (ν0 + h)− gsts (ν0)

‖h‖
− 1

‖h‖

∫ ∞
s

G(s, τ)Dxg(τ, v(τ))hdτ

=

∫ ∞
s

G(s, τ)
(g(τ, v1(τ))− g(τ, v(τ))−Dxg(τ, v(τ))h

‖h‖

)
dτ,

in which v1 and v are solutions of Eq. (3.1) on [s,∞) corresponding to ν0 + h and

ν0, and by (3.6) then

∫ ∞
s

G(s, τ)Dxg(τ, v(τ))dτ is absolutely convergent in L(X). By

the attractive property of stable manifold S, we have

‖v1(τ)− v(τ)‖ ≤ 2Cµ‖h‖

for all τ ≥ s. Therefore,

lim
h→0
G(s, τ)

(g(τ, v1(τ))− g(τ, v(τ))−Dxg(τ, v(τ))h

‖h‖

)
= 0

for all τ ≥ s. On the other hand,∥∥∥G(s, τ)
(g(τ, v1(τ))− g(τ, v(τ))−Dxg(τ, v(τ))h

‖h‖

)∥∥∥
≤ N(2Cµ + 1)e−η|s−τ |ϕ(τ), τ ≥ s.

According to Lebesgue’s dominated convergence theorem, gsts is differentiable at ν0

and

Dgsts (ν0) =

∫ ∞
s

G(s, τ)Dxg(τ, v(τ))dτ.

From here deduces Dgsts (P (s)v∗(s)) = 0. By (3.6) and Lebesgue’s dominated con-
vergence theorem, Dgsts is continuous on ImP (s). So, Ss is differentiable submanifold
of class C1 and tangent to v∗(s) + ImP (s) at v∗(s). Similarly, Us is differentiable
submanifold of class C1 and tangent to v∗(s) + ImQ(s) at v∗(s). �
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Dynamical behavior of q-deformed logistic map
in superior orbit

Renu Badsiwal, Sudesh Kumari and Renu Chugh

Abstract. In this paper, we study the q-deformed logistic map in Mann orbit
(superior orbit) which is a two-step fixed point iterative algorithm. The main
aim of this paper is to investigate the whole dynamical behavior of the proposed
map through various techniques such as fixed point and stability approach, time-
series analysis, bifurcation plot, Lyapunov exponent and cobweb diagram. We
notice that the chaotic behavior of q-deformed logistic map can be controlled
by choosing control parameters carefully. The convergence and stability range of
the map can be increased substantially. Moreover, with the help of bifurcation
diagrams, we prove that the stability performance of this map is larger than
that of existing other one dimensional chaotic maps. This map may have better
applications than that of classical logistic map in various situations as its stability
performance is larger.
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Keywords: Logistic map, q-deformation, Mann orbit, time series analysis, bifur-
cation plot, Lyapunov exponent (LE), cobweb plot.

1. Introduction

Dynamical systems, an interesting branch of mathematics is primarily devoted
to the study of procedures in motion. Such procedures take place in various fields
such as the motion of the stars and the galaxies in the heaven [11]. In general, the
dynamical systems are expressed by differential or difference equations based on the
time-varying parameters.

Starting from the work of Lorenz [22] and May [24], more or less, every scientific
field has been filled by the concept of nonlinear differential and discrete difference
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This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives

4.0 International License.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


150 Renu Badsiwal, Sudesh Kumari and Renu Chugh

equations. One of the popular discrete difference equation is the standard logistic
map given by the relation

xn+1 = µxn(1− xn), n = 0, 1, 2, .., (1.1)

where xn ∈ [0, 1] denotes the population at time n and µ > 0 represents the population
growth rate.

This population growth model was originally given by P. F. Verhulst in 1845
and 1847 [15]. Nowadays, the logistic map has become a major breakthrough and has
found wider applications in many fields such as image encryption in cryptography
[9, 16], traffic control [2, 21] and secure communication system [29] etc. For more
information about the behavior of dynamical systems one may refer Devaney [11, 10],
Holmgren [15], Alligood et al. [1], Ausloos and Dirickx [3], Elagdi [13], Elhadj and
Sprott [14], Chugh et al. [8], Diamond [12], Robinson [28], Wiggins [30], Kumari et
al. [18, 19, 7, 17, 20] and various other references therein.

Thus the standard logistic map has become most popular nonlinear model which
is used to describe various physical and natural systems. Banerjee and Parthasarathy
[4] proposed a deformation of this standard logistic map. The resulting map is known
as q-deformed logistic map which is given by the following discrete difference equation

[xn+1] = µ[xn](1− [xn]), (1.2)

where

[x] =
1− qx

1− q
. (1.3)

Here, q is real and xn ∈ [0, 1]. This q- deformed logistic map is distinct from the
standard logistic map.

In the recent past, the q-deformed physical systems have been the subject of
enormous research [6]. Along with, the logistic map various other maps such as Henon
map [25] and Gaussian Map [26] have also been analyzed using q-deformations. In
2011, Banerjee and Parthasarathy [4] propsed this q-deformation of logistic map,
studied about its concavity, non-trivial fixed points and discussed its stability through
Lyapunov exponent by changing the parameter q. The stability of this map was also
studied in 2015 by Prasad and Katiyar [27]. In 2019, Canovas and Munoz-Guillermo
[5] analyzed this map in which topological entropy was also computed to examine the
chaos.

In q-deformation, there is some modification in the map in such a way that in
the limiting case q → 1, the modified map (q-deformed logistic map) changes to the
original map (classical logistic map). The inspiration for this work comes from the
recognition that the original logistic map considers only a saturation effect, that is,
an interaction between the population as a whole and a global external constraint.
The q-deformation introduces a real-valued parameter q, which models the interaction
between individuals in the species - supraunitary q means interindividual competition,
while subunitary q leads to cooperation.

Moreover, the Mann orbit models the “inertia” of the system, or the influence
of the immediate past on the discrete dynamics. It introduces another parameter,
α ∈ [0, 1], the smaller the value, the larger the inertia. Therefore, in the present paper
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we discuss various dynamical properties of the q-deformed logistic map using Mann or-
bit. The complete paper is divided into four sections. In Section 1, a brief introduction
is given. Section 2 includes some basic definitions, results and notations which have
been taken into consideration during our analysis. In Section 3, the whole dynamical
behavior of the map is investigated. This section is further divided into six subsections
which are mainly devoted to the study of this map through fixed point and stability
analysis, time-series representation, bifurcation diagrams, Lyapunov exponent, com-
bined bifurcation and Lyapunov exponent analysis and cobweb plots, respectively. In
Section 4, we prove the superiority of q-deformed logistic map in superior orbit. At
last, the conclusion of the paper is given in Section 5.

2. Preliminaries

In this section, we recollect some basic definitions, results and concepts which
have been used in our study.

Definition 2.1. (Mann iterative algorithm)[23]: Let X be a non-empty set and f : X →
X be an operator. Then for an arbitrary point x0 ∈ X, the sequence {xn} of all
iterates, defined by

xn+1 = (1− αn)xn + αnf(xn), (2.1)

where αn ∈ [0, 1], n ∈ N , is known as Mann iterative algorithm. The sequence {xn}
of iterates is also called Mann orbit. Further, for αn = 1, the Mann orbit reduces to
the Picard orbit.

Definition 2.2. (Fixed point) [10] Let X be a non-empty set and f : X → X be an
operator. Then, an arbitrary point x0 ∈ X is said to be a fixed point for the mapping
f if it satisfies f(x0) = x0.

Definition 2.3. (Periodic point) [10] A point x0 is said to be periodic for a mapping
g if it satisfies gp(x0) = x0, where p is the least positive integer and denotes the pth

iteration. The sequence of pth iterates with initial choice x0 is called periodic orbit of
period-p.

Definition 2.4. (Lyapunov exponent)[1]: Let f be the mapping of reals R. Then, the
Lyapunov exponent (LE) of the mapping f for an orbit {xn} is given by

σ(x1) = lim
n→∞

1

n

n∑
i=1

ln(|f ′(xi)|), (2.2)

provided that the limit on R.H.S. exists. Moreover, for σ < 0, the orbit of the map
represents stable behavior and for σ > 0, the orbit represents unstable behavior.

3. Experimental analysis of q-deformed logistic map via Mann orbit

This entire section deals with an experimental study of the dynamical behavior
of q-deformed logistic map using Mann orbit, which has nowadays become a significant
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method for the study of various nonlinear maps.
Let us consider, the q-deformed logistic map given by

[xn+1] = f(xn) = µ

(
1− qxn

1− q

)(
1−

(
1− qxn

1− q

))
, (3.1)

where xn ∈ [0, 1] and q is real.
By definition of Mann orbit (2.1), we have

xn+1 = (1− αn)xn + αn(f(xn)), (3.2)

where xn ∈ [0, 1] and αn ∈ [0, 1].
Using (3.1) in (3.2), we get

xn+1 = (1− αn)xn + αn

[
µ

(
1− qxn

1− q

)(
1−

(
1− qxn

1− q

))]
, (3.3)

where xn ∈ [0, 1], αn ∈ [0, 1] and q is real.
Further, it is noticed that in case of αn = 1, the system (3.3) reduces to (3.1) and for
αn = 0, the system remains unchanged. For the sake of convenience, we take αn = α
and xn = x throughout this paper. In this way, Eq. (3.3) takes the following form:

Qµ,α(x) = f(x) = (1− α)x+ α

[
µ

(
1− qx

1− q

)(
1−

(
1− qx

1− q

))]
, (3.4)

Here, α, µ and q are the control parameters. Now, we apply various experimental
techniques one by one to describe the complete dynamical behavior of this map by
using the matlab software.

3.1. Fixed point and stability analysis of q-deformed logistic map

The fixed points of this map (3.4) can be computed by using the definition (2.2).
So, in order to get its fixed points, we have

Qµ,α(x) = x,

i.e., (1− α)x+ α

[
µ

(
1− qx

1− q

)(
1−

(
1− qx

1− q

))]
= x, (3.5)

Let qx = X. Then x log q = logX and hence x =
logX

log q
. Using these in above Eq.

(3.5) and after solving it, we obtain

(1− α) logX +
αµ log q(1−X)(X − q)

(1− q)2
= logX, (3.6)

Being a quadratic equation in X, the Eq. (3.6) has two roots. Out of which X = 1 is
obvious or trivial root. This implies that one trivial fixed point of q-deformed logistic
map in Mann orbit i.e., Qµ,α(x) is x = 0. But it is difficult to calculate the second
fixed point because of the nonlinearity of this system. That fixed point depends on
the parameters µ and q. To show this, a graphical representation is given in Fig. 1.

Here, the map Qµ,α(x) is iterated 100 times i.e., we observe 100 numbers of
iterations of this map to compute its fixed points (see Table 1) for all x ∈ [0, 1]. One
parameter q is taken to be fixed as q = 0.5 (some other value can also be taken)
throughout our study. In the table, along with fixed points, the maximum value of
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parameter µ is also given for which the system remains convergent and stable . Here,
the fixed points are computed up to four decimal places by taking the values of µ up
to two decimal places.

From Table 1, we observe that the complete dynmical behavior of this map
depends on the parameter α. As we decrease the value of α, the system remains
stable even for a larger value of µ. Thus, by decreasing the value of parameter α,
the range of convergence and stability of Qµ,α(x) can be increased significantly up to
µ = 20.81.

α
Maximum value of µ

for convergence for stability

0.9 3.05 3.92

0.8 3.40 4.39

0.7 3.85 4.96

0.6 4.45 5.48

0.5 5.35 6.18

0.4 6.68 6.78

0.3 8.91 8.92

0.2 12.36 12.36

0.1 20.81 20.81

Table 1. Range of convergence and stability of the map Qµ,α(x)

Also, the fixed points exist when the diagonal line y = x intersects the map
Qµ,α(x) as shown in Fig. 1 at points a and b. Here, we have shown the fixed points a
and b at µ = 3.05.

Fig.1.Graphical representationoffixedpointsofQµ,α(x).
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3.2. Time series analysis of q-deformed logistic map for α = 0.9, 0.5 and 0.1

In this section, using time series representation of q-deformed logistic map, we
try to support the convergence and stability results given in Table 1 graphically. Here,
for different values of α against some initial choices of x ∈ [0, 1], the optimum value
of µ is attained by using 100 numbers of iterations.

Example 3.1. Describe the complete dynamical behavior of q-deformed logistic map
for α = 0.9 and for all x ∈ [0, 1] by using time series representation of dynamical
systems.
Solution. We examine the complete dynamical behavior of q-deformed logistic map for
α = 0.9 by drawing Figs. 2, 3, 4, 5 and 6. We observe from Fig. 2 that the trajectory
of Qµ,α(x) converges to a fixed point for 0 < µ ≤ 3.05 for all values of x. This system
oscillates between two fixed points for 3.21 < µ ≤ 3.74 as shown in Fig. 3 at µ = 3.5
for x0 = 0.5. 4-stable oscillations exist for 3.80 < µ ≤ 3.88 as shown at µ = 3.85
in Fig. 4. The trajectory oscillates between 8-stable fixed points at µ = 3.92 for all
x ∈ [0, 1] as depicted in Fig. 5 for x0 = 0.5. Further, the system starts to show more
and more irregular vibrations i.e. sensitive dependence on initials when parameter
µ ≥ 3.93. This chaoticity of the system is shown at µ = 4 for x0 = 0.5 by Fig. 6.

Fig.2.StableconvergentsolutionofQµ,α(x) forα = 0.9, µ = 3.05

Fig.3.2-StablefixedpointoscillationofQµ,α(x) forα = 0.9, µ = 3.5
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Fig.4.4-StablefixedpointoscillationofQµ,α(x) forα = 0.9, µ = 3.85

Fig.5.8-StablefixedpointoscillationofQµ,α(x) forα = 0.9, µ = 3.92

Fig.6.DivergentbehaviorofQµ,α(x) forα = 0.9, µ = 4

Example 3.2. By using time series analysis, describe the whole dynamical behavior
of q-deformed logistic map Qµ,α(x) for α = 0.5 and for all x ∈ [0, 1] by taking 100
numbers of iterations.

Solution. For this particular value of parameter α, the system has stable fixed point
for 0 < µ ≤ 5.35 for all x ∈ [0, 1], as shown in Fig. 7 at x0 = 0.5. Also, the trajectory
of the system oscillates between two fixed points for 5.63 < µ ≤ 6.18 and for all
x ∈ [0, 1] as represented in Fig. 8 for µ = 6.12 at x0 = 0.5. Also, for µ ≥ 6.19, the
system is undefined (see, Fig. 9 for µ = 6.19).
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Fig.7.StableconvergentsolutionofQµ,α(x) forα = 0.5, µ = 5.35

Fig.8.2-StablefixedpointoscillationofQµ,α(x) forα = 0.5, µ = 6.12

Fig.9.UndefinedQµ,α(x) forα = 0.5, µ = 6.19

Example 3.3. Demonstrate that the stability of the map Qµ,α(x) can be extended
by decreasing the value of parameter α. Explain this fact for all x ∈ [0, 1] by taking
α = 0.1.

Solution. In this case, the q-deformed map Qµ,α(x) converges to a stable fixed point
for 0 < µ ≤ 20.81 and for all x ∈ [0, 1]. This convergent behavior is shown in Fig. 10
for µ = 20. In addition, the map Qµ,α(x) cannot be defined for all µ > 20.81, since
in this range xn+1 > 1 as shown in Fig. 11 for µ = 21 which represents the undefined
behavior of the system.
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Fig.10.StableconvergentsolutionofQµ,α(x) forα = 0.1, µ = 20

Fig.11.UndefinedQµ,α(x) forα = 0.1, µ = 21

3.3. Bifurcation analysis of q-deformed logistic map for different choices of µ

In general, bifurcation diagrams are the tools mainly used to classify the dynam-
ical systems in nonlinear regions. Bifurcation diagrams demonstrate an immediate
change that occurs in the asymptotic solutions of a dynamical system.

Under this section, the complete dynamical behavior of Qµ,α(x) is presented by
drawing bifurcation diagrams for α = 0.9, 0.5 and 0.1. A route from periodic region
to chaotic region has been shown in Figs. 12, 13, 14 by letting step size for parameter
µ = 0.001, initial choice x0 = 0.5 and the number of iterations (N) = 800.

In Fig. 12, the entire dynamical system Qµ,α(x) has been divided into different
regions which explain the complexity of the system. For 0 < µ ≤ 3.15, the system
Qµ,α(x) has a stable fixed point and period-doubling bifurcation occurs for 3.15 <
µ ≤ 3.78 as shown by regions of period-1 and period-2. Also, the system shows the
route from 2-periods to more than 2-periods for 3.78 < µ ≤ 3.95. The system becomes
chaotic as parameter µ exceeds from 3.95, i.e., for µ > 3.95, the system shows sensitive
dependence on initials.
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Fig.12.BifurcationplotofQµ,α(x) for3 ≤ µ ≤ 4, α = 0.9, x0 = 0.5

Moreover, period doubling bifurcation for the q-deformed logistic map is repre-
sented at α = 0.5 in Fig. 13. For this, the system has stable solutions for 0 < µ ≤ 6.18.
Also, the system cannot be defined when the parameter µ exceeds from 6.18 as shown
by undefined region.

Fig.13.BifurcationplotofQµ,α(x) for5 ≤ µ ≤ 7.5, α = 0.5, x0 = 0.5

Further, from Fig. 14, we observe that the system Qµ,α(x) remains stable for
an extended range of parameter µ, i.e., for 0 < µ ≤ 28.52, the orbit is convergent
to a fixed point. Also, this system cannot be defined for µ > 28.52 as in this range
xn > 1. In other words, xn 6∈ [0, 1], which represents that the behavior of the system
is undefined here.
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Fig.14.BifurcationplotofQµ,α(x) for20 ≤ µ ≤ 38, α = 0.1, x0 = 0.5

Remark 1. The system Qµ,α(x) gains more and more dynamical properties when the
value of parameter α ∈ [0, 1] increases as shown by the bifurcation diagrams, i.e., for
α = 0.1, 0.5, the system demonstrates fixed point and periodic properties; for α= 0.9,
system exhibits fixed points, periodicity and chaos.

3.4. Mathematical and experimental analysis of q-deformed logistic map by Lyapunov
exponent

An another major characteristic of nonlinear dynamical systems is Lyapunov
exponent, which determines the sensitive dependence of two distinct orbits beginning
from very close initial positions. In case of stable periodic behavior, the rate of on-
vergence to stable point is determined by LE, whereas, in case of chaotic behavior,
LE determines the rate of divergence between the orbits. For the q-deformed logistic
map with Mann iteration (Qµ,α(x)), Lyapunov exponent is defined as follows:

Let us begin the method by taking Mann orbits for two distinct initial choices
x and x + h, where 0 < h < 1. Here, ∆ represents the divergence between these
orbits, which is taken as the exponential growth henσ, where σ denotes the Lyapunov
exponent of the map and n stands for the number of iterations. So, it can be written
as

Qnµ,α(x+ h)−Qnµ,α(x) = ∆

Qnµ,α(x+ h)−Qnµ,α(x) = henσ

∴
Qnµ,α(x+ h)−Qnµ,α(x)

h
= enσ. (3.7)

Taking limit h→ 0, on both sides, we get

lim
h→0

Qnµ,α(x+ h)−Qnµ,α(x)

h
= enσ

i.e., (Qnµ,α)′(x) = enσ. (3.8)
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Applying logarithm on both sides, we obtain

σ =
1

n
log |(Qnµ,α)′(x)|, (3.9)

where (Qnµ,α)′(x) represents the first order derivative for the map Qµ,α(x). For nth
degree polynomial, the derivative can be evaluated by applying the chain rule of
differentiation.
So, for the succession x1, x2 = Qµ,α(x1), x3 = Qµ,α(x2), · · · , xn+1 = Qµ,α(xn), · · · ,
we have

(Qnµ,α)′(x1) = Q′µ,α(xn) ·Q′µ,α(xn−1) · · ·Q′µ,α(x2) ·Q′µ,α(x1). (3.10)

Now, using (3.10) in (3.9), we get

σ =
1

n
log |Q′µ,α(xn) ·Q′µ,α(xn−1) · · ·Q′µ,α(x2) ·Q′µ,α(x1)|,

=
1

n
[log |Q′µ,α(xn)|+ log |Q′µ,α(xn−1)|+ · · ·+ log |Q′µ,α(x2)|+ log |Q′µ,α(x1)|],

σ =
1

n

n∑
j=1

log |Q′µ,α(xj)|,

(3.11)

which is the required Lyapunov exponent of Qµ,α(x).
In addition, if the map has fixed orbit, then (3.11) reduces to

σ = ln(|Q′µ,α(x1)|). (3.12)

Also, for perodic orbit of period- p, we get from (3.11)

σ =
1

p

p∑
j=1

ln(|Q′µ,α(xj)|). (3.13)

Remark 2. In order to evaluate the Lyapunov exponent for aperiodic orbits, it is
almost impossible to utilize the entire length of an orbit. So, only finite length of an
orbit is used frequently to estimate the Lyapunov exponent.
Remark 3. Moreover, the fixed and periodic orbits of the map represent stable behavior
for σ < 0 and unstable behavior for σ > 0. In this way, the Lyapunov exponent
demonstrates the stable and unstable nature of various fixed and periodic orbits.

Example 3.4. Calculate the Lyapunov exponent of the map Qµ,α(x) for the following
values of parameters α and µ :
(a) α = 0.9, µ = 3
(b) α = 0.9, µ = 3.5.
Also, examine the dynamical behavior of this map by plotting the Lyapunov exponent
for α = 0.9, 1 ≤ µ ≤ 4.4.
Solution. (a) As discussed in Section 3.2, for 0 < µ ≤ 3.05, the map Qµ,α(x) has a
fixed orbit for all x ∈ [0, 1]. Also, the fixed point of the orbit for µ = 3 is given as
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0.6255. So, to compute the Lyapunov exponent of this orbit, it is enough to solve Eq.
(3.12). For that, we have

Qµ,α(x) = (1− α)x+ α

[
µ

(
1− qx

1− q

)(
1−

(
1− qx

1− q

))]
,

Q′µ,α(x) = (1− α) +
αµ

1− q
· qx · ln q

[
2

(
1− qx

1− q

)
− 1

]
. (3.14)

Putting α = 0.9, µ = 3, x = 0.6255 in Eq. (3.14), we get

Q′3,0.9(0.6255) = −0.3292. (3.15)

Now, using (3.15) in (3.12), we obtain

σ = ln(| − 0.3292|) = −0.4825.

So, the Lyapunov exponent at µ = 3 is -0.4825, which is a negative value and thus
from the definition of Lyapunov exponent, this fixed point is a stable attractor.

(b) For 3.21 < µ ≤ 3.74, the map Qµ,α(x) represents periodic orbit of period-2
for all x ∈ [0, 1]. So, for µ = 3.5, the periodic points are x1 = 0.4281 nad x2 = 0.8297.
Thus, we get

Q′µ,α(x1) = 0.0617 (3.16)

Q′µ,α(x2) = −0.6997. (3.17)

Now, using Eqs. (3.16) and (3.17) in (3.13), we get

σ =
1

2

[
ln |Q′µ,α(x1)|+ ln |Q′µ,α(x2)|

]
=

1

2
[ln |0.0617|+ ln | − 0.6997|]

=
1

2
[(−1.2097) + (−0.1551)] .

This gives

σ = −0.6824

So, the Lyapunov exponent is less than zero in this case also. Thus, these periodic
points are stable attractors.
In Fig. 15, we plot Lyapunov exponent (σ) to discover the behavior of dynamical
system Qµ.α(x) for 1 ≤ µ ≤ 4.4 at α = 0.9. To plot this, we consider 10,000 iterations,
i.e., N = 10, 000 and initiator x0 = 0.5. It is clear from the figure that the system
remains stable for 0 < µ ≤ 3.95 since in this range σ <0, i.e., the system preserves
stable orbits, Also, in the zoomed rectangular area, the chaotic behavior of the system
is represented since here, σ > 0, i.e., the orbit shows sensitive dependence on initiators.
Hence, chaos occurs in the system as we increase the parameter µ from µ = 3.95.
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Fig.15.LyapunovexponentplotofQµ,α(x) for1 ≤ µ ≤ 4.4, α = 0.9, x0 = 0.5

Example 3.5. Explain the dynamical behavior of this q-deformed logistic map Qµ,α(x)
by plotting the Lyapunov exponent for the following values of parameters µ and α:
(a) 1 ≤ µ ≤ 7.9, α = 0.5,
(b) 1 ≤ µ ≤ 28.52, α = 0.1.

Solution. (a) We investigate the dynamical behavior of Qµ,α(x) by drawing the Lya-
punov exponent diagram as shown in Fig. 16, for the given values of parameters and
initiator x0 = 0.5. We observe that the Lyapunov exponent is negative, i.e. σ < 0
for 0 < µ ≤ 7.07 , which represents the stable behavior of the system. Also for
7.07 < µ ≤ 7.9 , the spectrum of Lyapunov exponent begins to approach to a positive
value of σ, which indicates that there is chaos in the dynamical system.

Fig.16.LyapunovexponentplotofQµ,α(x) for1 ≤ µ ≤ 7.9, α = 0.5, x0 = 0.5

(b) The stabilty of dynamical system can be increased by controlling the parameters.
This fact is analyzed here by estimating the value of LE (σ) at a decreased value of
parameter α, i.e., at α = 0.1. For this particular value of α, the system shows stable
behavior for an increased value of parameter µ, i.e., for 0 < µ ≤ 28.52. We have
explained this fact experimentally in Fig. 17. We observe that for 0 < µ ≤ 28.52,
the value of Lyapunov exponent (σ) is negative. Thus the system shows fixed stable
behavior for this extended range of µ.
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Fig.17.LyapunovexponentplotofQµ,α(x) for1 ≤ µ ≤ 28.52, α = 0.1, x0 = 0.5

3.5. A new experimental analysis of q-deformed logistic map via combined study of
bifurcation and Lyapunov exponent

Under this section, we try to investigate the complex dynamical behavior of this
system Qµ,α(x) with the help of combined bifurcation and Lyapunov exponent plots.
This experimental technique enables us to investigate the exact value of parameter µ
obtained in previous subsections at which the system changes its behavior. In these
figures, the entire region of the dynamical system Qµ,α(x) is divided into distinct
regions separated by a magenta dotted line.

Fig. 18 exhibits the combined representation of bifurcation and Lyapunov expo-
nent for 1 ≤ µ ≤ 4.4 at α = 0.9. Here, the system has two regions, stable periodic
region and chaotic region, separated by a magenta dotted line at µ = 3.95, which is
the highest value of µ for which the system remains stable, afterwards chaos occurs.

Fig.18.Bifurcationplotv/sLyapunovexponentplotofQµ,α(x) for1 ≤ µ ≤ 4.4atα = 0.9

The entire region of Qµ,α(x) is divided into three regions (stable, undefined and
chaotic region) at particular values of parameter µ as shown in Figs. 19 and 20 for
α = 0.5 and α = 0.1 respectively. Also, it can be noticed from the figures that the
system preserves its stability for a larger value of parameter µ as we decrease the
value of parameter α. Moreover, when σ > 0, the system represents chaotic behavior.
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Fig.19.Bifurcationplotv/sLyapunovexponentplotofQµ,α(x) for1 ≤ µ ≤ 7.9atα = 0.5

Fig.20.Bifurcationplotv/sLyapunovexponentplotofQµ,α(x) for20 ≤ µ ≤ 38atα = 0.1

3.6. Experimental analysis of q-deformed logistic map through cobweb plot

A cobweb diagram is generally a visual method which is used to examine the
qualitative nature of the map in the field of dynamical systems. With the help of
cobweb plot, we can predict the long term behavior of an initial condition under
repeated application of a map.
Fig. 21 depicts the attracting behavior of the fixed point 0.6304 of the map Qµ,α(x)
for the parameters α = 0.9, µ = 3.05 and for initiator x0 = 0.5. Also, the periodic
behavior of Qµ,α(x) for α = 0.9, µ = 3.5 and x0 = 0.5 is shown in Fig. 22. In addition,
Fig. 23 represents the unstable behavior of this map for α = 0.9, µ = 4, x0 = 0.5.

Fig.21.AttractingbehavioroffixedpointofQµ,α(x) forα = 0.9, µ = 3.05
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Fig.22.PeriodicbehaviorofQµ,α(x) forα = 0.9, µ = 3.5

Fig.23.UnstablebehaviorofQµ,α(x) forα = 0.9, µ = 4

Further, the attracting nature of fixed point 0.7686 for α = 0.5, µ = 5.35 and
periodic nature for α = 0.5, µ = 5.65 of the q-deformed map Qµ,α(x) with initiator
x0 = 0.5 are represented in Figs. 24 and 25 respectively.

Fig.24.AttractingbehavioroffixedpointofQµ,α(x) forα = 0.5, µ = 5.35

Moreover, Fig. 26 depicts the attracting behavior of the fixed point 0.9310 of this
map Qµ,α(x) for the parameters α = 0.1, µ = 20 and x0 = 0.5. Also, it is clear from
the Fig. 27 that this q-deformed logistic map Qµ,α(x) is not defined for α = 0.1, µ = 21
and x0 = 0.5, since xn+1 > 1 here.
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Fig.25.PeriodicbehaviorofQµ,α(x) forα = 0.5, µ = 5.65

Fig.26.AttractingbehavioroffixedpointofQµ,α(x) forα = 0.1, µ = 20

Fig.27.UndefinedbehaviorofQµ,α(x) forα = 0.1, µ = 21

4. Superiority of q-deformed map in superior orbit

To prove the superiority of q-deformed map in superior orbit (3.3), we compare
its stability performance with existing one dimensional maps using bifurcation plots.

4.1. Stability performance of q-deformed logistic map in superior orbit

In order to facilitate comparison, we compare the stability performance of the
map (3.3) with existing one dimensional maps including classical logistic map, logistic
map in superior orbit, sine map and q-deformed logistic map (3.1).

From Fig. 28, we observe that q-deformed logistic map considered in superior or-
bit (3.3) remains stable for 0 < µ ≤ 28.51 which we have already shown in Subsection
3.3. In Subfigures 28a - 28d, we draw the bifurcation diagrams to study the stability
performance of existing one dimensional chaotic maps. We notice that the classical
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logistic map is stable for 0 < λ ≤ 3.57 while logistic map in superior orbit remains
stable for 0 < µ ≤ 21.2. Also, the sine map shows its stable behavior for 0 < µ ≤ 0.86
and the one dimensional q-deformed logistic map attains its stability performance for
0 < µ ≤ 3.58. This proves that q-deformed logistic map in superior orbit has largest
range of stability which is very higher than the existing other one dimensional chaotic
maps.

(a) (b)

(c) (d)

(e)

Fig. 28. Bifurcation plots (a) logistic map (b) logistic map in superior orbit (c)
sine map (d) q-deformed logistic map and (e) q-deformed logistic map in superior
orbit.

5. Conclusion

Here, a novel study of dynamical behavior of the q-deformed logistic map using
Mann iterative algorithm is given. In this system, there are three control parameters
denoted by α, µ and q. And it is quite interesting to notice that the entire dynamical
behavior of this map depends on these three parameters. The q-deformed logistic map
is studied via fixed point and stability analysis, time series representation, bifurcation
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analysis, Lyapunov exponent method, combined bifurcation and Lyapunov exponent
analysis and cobweb plot. The following concluding remarks are drawn from our study:

1. The fixed point analysis approach has been used to compute the fixed points
of the system (3.4). Also, the stability performance of the unrestricted system
has been checked. The convergence and stability range of the q-deformed logistic
map can be increased by choosing the parameters (µ, α) carefully (see, Table 1).

2. The complex dynamical behavior of this q-deformed logistic map has been further
examined graphically by using time series representation for α = 0.9, 0.5 and 0.1
to confirm the stability results obtained by fixed point analysis.

3. The bifurcation analysis is also used to investigate the various dynamical prop-
erties of the map such as fixed point, periodicity and chaos for different choices
of µ.

4. The irregular behavior of dynamical system has also been analyzed numerically
and experimentally by adopting Lyapunov exponent approach. Furthermore,
combined bifurcation and Lyapunov exponent plots are shown to demonstrate
various regions of this system. Also, cobweb plots have been used for further
investigation.

5. It is strongly highlighted that the q-deformed logistic map has more stability
performance than that of existing other one dimensional dynamical systems (see,
Fig. 28).

6. For future research, an exhaustive search of the (µ, α) plane, followed by a graph-
ical depiction of the Qµ,α(x), demarcating the areas of convergence, stability and
sensitive dependence might be very interesting.
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Comput. Sci., 13(62)(2021), no. 2, 479-508.

[8] Chugh, R., Rani, M., Ashish, Logistic map in Noor orbit, Chaos Complex Lett., 6(2012),
no. 3, 167-175.

[9] Chunyan, H., An image encryption algorithm based on modified logistic chaotic map,
Optik, 181(2019), 779-785.



Dynamical behavior of q-deformed logistic map 169

[10] Devaney, R.L., An Introduction to Chaotic Dynamical Systems, 2nd ed. Addison-Wesley,
Boston, 1948.

[11] Devaney, R.L., A First Course in Chaotic Dynamical Systems: Theory and Experiment,
Addison-Wesley, Boston, 1992.

[12] Diamond, P., Chaotic behaviour of systems of difference equations, Int. J. Syst. Sci.,
7(1976), no. 8, 953-956.

[13] Elagdi, S.N., Chaos: An Introduction to Difference Equations, Springer, New York, 1999.

[14] Elhadj, Z., Sprott, J.C., The effect of modulating a parameter in the logistic map, Chaos,
18(2008), no. 2, 1-7.

[15] Holmgren, R.A., A First Course in Discrete Dynamical Systems, Springer, New York,
1994.

[16] Kumar, S., Kumar, M., Budhiraja, R., Das, M.K., Singh, S., A secured cryptographic
model using intertwining logistic map, Procedia Computer Science, 143(2018), 804-811.

[17] Kumari, S., Chugh, R., A new experiment with the convergence and stability of logistic
map via sp orbit, Int. J. Appl. Eng. Res., 14(2019), 797-801.

[18] Kumari, S., Chugh, R., A novel four-step feedback procedure for rapid control of chaotic
behavior of the logistic map and unstable traffic on the road, Chaos, 30(2020), 123115.

[19] Kumari, S., Chugh, R., Miculescu, R., On the Complex and Chaotic Dynamics of
Standard Logistic Sine Square Map, An. Stiint. Univ. ”Ovidius” Constanta Ser. Mat.,
29(2021), no. 3 (accepted).

[20] Kumari, S., Chugh, R., Nandal, A bifurcation analysis of logistic map using four step
feedback procedure, Int. J. Eng. Adv. Tech., 9(2019), no. 1, 704-707.

[21] Lo, S.C., Cho, H.J., Chaos and control of discrete dynamic traffic model, J. Franklin
Inst., 342(2005), 839-851.

[22] Lorenz, E.N., Deterministic nonperiodic lows, J. Atmos. Sci., 20(1963), 130-141.

[23] Mann, W.R., Mean value methods in iteration, Proc. Am. Math. Soc., 4(1953), 506-510.

[24] May, R., Simple mathematical models with very complicated dynamics, Nature,
261(1976), 459-475.

[25] Patidar, V., Purohit, G., Sud, K.K., Dynamical behavior of q deformed Henon map, Int.
J. Bifurc. Chaos, 21(2011), 1349-1356.

[26] Patidar, V., Sud, K.K., A comparative study on the co-existing attractors in the Gaussian
map and its q-deformed version, Commun. Nonlinear Sci. Numer. Simul., 14(2009), 827-
838.

[27] Prasad, B., Katiyar, K., Stability and Lyapunov Exponent of a q-deformed map, Int. J.
Pure Appl. Math., 104(2015), no. 4, 509-516.

[28] Robinson, C., Dynamical Systems: Stability, Symbolic Dynamics and Chaos, CRC Press,
Boca Raton, 1995.

[29] Singh, N., Sinha, A., Chaos-based secure communication system using logistic map, Op-
tics and Las. Eng., 48(2010), 398-404.

[30] Wiggins, S., Introduction to Applied Nonlinear Dynamics and Chaos, Springer, New
York, 1990.



170 Renu Badsiwal, Sudesh Kumari and Renu Chugh

Renu Badsiwal
Department of Mathematics,
Maharshi Dayanand University,
Rohtak-124001, Haryana, India
e-mail: renubadsiwal9@gmail.com

Sudesh Kumari
Government College for Girls Sector 14,
Gurugram-122001, Haryana, India
e-mail: tanwarsudesh10@gmail.com

Renu Chugh
Department of Mathematics
Gurugram University, Gurugram-122001, India
e-mail: chugh.r1@gmail.com
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On a coupled system of viscoelastic wave
equation of infinite memory with acoustic
boundary conditions
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Abstract. This work deals with a coupled system of viscoelastic wave equation of
infinite memory with mixed Dirichlet-Neumann boundary conditions. The cou-
pling is via by the acoustic boundary conditions on a portion of the boundary.
The semigroup theory is used to show the well posedness and regularity of the ini-
tial and boundary value problem. Moreover, we investigate exponential stability
of the system taking into account Gearhart-Prüss’ theorem.
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1. Introduction

In this paper, we consider the following viscoelastic wave equation coupled with
mixed boundary conditions

utt − div(A∇u) +
∫ +∞

0
g(s)div(A∇u(t− s))ds = 0 in Ω× R+

u = 0 on Γ0 × R+
∂u
∂νA
−
∫ +∞

0
g(t− s) ∂u

∂νA
(s)ds = zt on Γ1 × R+

hztt + fzt +mz + ut = 0 on Γ1 × R+

u(x, 0) = u0(x), ut(x, 0) = u1(x) for x ∈ Ω
z(x, 0) = z0(x), zt(x, 0) = z1(x) for x ∈ Γ1,

(1.1)
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where Ω is a bounded domain of RN (N ≥ 1) with a smooth boundary Γ = Γ0 ∪ Γ1,
such that Γ0 and Γ1 are closed and disjoint and ν = (ν1, · · · , νN ) represents the unit

outward normal to Γ. The term
∫ +∞

0
g(s)div(A∇u(t − s))ds is the infinite memory

(past history) responsible for the viscoelastic damping, where g is called the relaxation
function. The functions h, f,m : Γ1 → IR+ are essentially bounded. There exist three
positive constants f0, m0, and h0 such that f(x) ≥ f0, m(x) ≥ m0 and h(x) ≥ h0 for
a.e. x ∈ Γ1. The initial conditions u0, u1 : Ω→ C, z0, z1 : Γ1 → C are given functions.

The operator A = (aij(x))i,j ; i, j = 1, . . . , N ; and ∂u
∂νA

=
N∑

i,j=1

aij(x) ∂u∂xj
νi.

The above model would be to describe the motion of fluid particles from rest
in the domain Ω into part of the surface at a given point x ∈ Γ1, which can be ex-
pressed by the pressure at that point. The relationship between the velocity potential
ut = ut(x, t) at a point on the surface and the normal displacement z = z(x, t) is pro-
portional to the pressure. It is called the acoustic impedance. This impedance may be
complex in the case of the velocity potential was not in phase with the pressure. The
coupling of our model (1.1) is via by the impenetrability boundary condition (1.1)3

and the acoustic boundary condition (1.1)4.
The partial differential equation (PDE) system of viscoelastic wave equation

with acoustic boundary conditions was first introduced by Morse and Ingard [15] and
developed by Beale [5]. In [5], the problem was formulated as an initial value problem
in a Hilbert space and semigroup methods were used to solve it. The loss of decay has
obtained by [5] provided that the term ztt was included. Recently, the result concern-
ing existence and asymptotic behavior of smooth, as well as weak solution of wave
equation with acoustic boundary conditions have been established by many authors,
see [10, 13]. Boukhatem and Benabderrahmane [8] studied the global existence and
exponential decay of solution of finite memory of the system (1.1) in the absence of
the second derivative ztt. This absence brings us some difficulties in the study be-
cause of the abnormality of the system. It can not apply directly the semigroups or
Faedo-Galerkin’s theories. They added in the arguments the term εztt when ε→ 0 to
overcome the difficulty. Mentionned the work of Peralta [16] who bringing an analysis
of wave equation involving mixed Dirichlet-Neumann boundary conditions, delay and
acoustic conditions where both are localized on a portion of the boundary

utt −∆u = 0 in Ω× R+

u = 0 on Γ0 × R+
∂u
∂ν − zt = −aut(., .− τ)− kut on Γ1 × R+

hztt + fzt +mz + ut = 0 on Γ1 × R+

u(x, 0) = u0(x), ut(x, 0) = u1(x) for x ∈ Ω
u(x, t) = ϕ(x, t) for (x, t) ∈ Ω× (−τ, 0)
z(x, 0) = z0(x), zt(x, 0) = z1(x) for x ∈ Γ1,

(1.2)

Here, τ > 0 is a constant delay parameter and a, k ≥ 0. He proved the existence and
uniqueness of solutions of (1.2) using semigroup theory for bounded linear operators.
Moreover, if the delay factor is less than the damping factor (a < k), the exponential
stability result is shown using the energy multiplier method. In the case of equality
(a = k), he showed that the energy decays to zero asymptotically using variational
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methods. In addition, the stability results have been considered in [16], where the
term −f0zt was included in the right hand of side of the oscillator equation (1.2)4.
If f > f0 then we show that the energy of the solution decays to zero exponentially.
In the case f = f0, the solutions have an asymptotically decaying energy. Moreover,
Gao et al. [11] presented a new method to obtain uniform decay rates for (1.2) with
nonlinear acoustic boundary conditions in the absene of delay. The system contains
an internal localized damping term w(x)ut in (1.2)1 and damping and potential in
the boundary displacement equation are nonlinear, where the terms f(zt) and m(z)
are replaced by fzt and mz in (1.2)4, respectively.

The primary discussion touched upon by several authors is to use the integral
term of relaxation function g instead the frictional damping term ut. The question that
have been focused their attention as an important works is the viscoelastic damping
of memory effect should be strong enough to procreate the decay of the system.

One of important motivations to studying exponential stability of the associated
semigroup comes from the spectral analysis. This purpose recalls the related results
given by Gearhart-Prüss’ theorem (see [14, 17]). It is shown all eigenvalues approach
a line that parallel to the imaginary axis. Moreover, the resolvent operator is bounded
for all eigenvalues of the generator associated. The proof is the combination of the
contradiction argument with a PDE technique. Let us mention some papers on weakly
dissipative coupled systems. In [12], the exponential decay is established for each of the
wave equations that have been damped on the boundary. Prüss [18] gave the optimal
results to characterize polynomial as well as exponential decay rates for viscoelastic
materials. Apalara et al. [4] studied the exponential stability of laminated beams when
the frictional damping acts on the effective rotation angle. For weak damping acting
only one equation, the following coupled wave equation

utt −∆u+
∫∞

0
g(s)∆u(s)ds+ αv = 0 in Ω× R+

vtt −∆v + αu = 0 in Ω× R+

u = v = 0 on Γ× R+

u(x, 0) = u0(x), ut(x, 0) = u1(x) for x ∈ Ω
v(x, 0) = v0(x), vt(x, 0) = v1(x) for x ∈ Ω

(1.3)

has been considered by Almeida and Santos [3] (see also [9]). In [3, 9], they proved the
lack of exponential decay to system (1.3). The authors obtained the optimal polyno-
mial decay by using the recent results due to Borichev and Tomilov [7]. The method
used in this contexts introduced by Alabau [1] and developed by Alabau-Cannarsa-
Komornik [2]. For memory damping acting on the acoustic boundary, Benomar and
Benaissa [6] established polynomial energy decay rates for system (1.2) without delay
in one dimensional space.

Our main result is devoted to study the well posedness and exponential decay of
the system (1.1), in which we analyze the spectral distribution in the complex plane.
The semigroup theory is used to show, in Sect. 3, the global existence of energy-
associated solution which its real part decreases with time. Motivated by the men-
tioned works above concerning Gearhart-Prüss’ theorem, the exponential stability of
the corresponding semigroup is concluded in Sect. 4.
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2. Preliminary

In this section, we give some notations and we present some assumptions needed
for our work. Let H(div,Ω) = {u ∈ H1(Ω); div(A∇u) ∈ L2(Ω)} be the Hilbert space
equipped with the norm

‖u‖H(div,Ω) =
(
‖u‖2H1(Ω) + ‖div(A∇u)‖22

)1/2

,

where H1(Ω) is the Sobolev space of first order, ‖.‖2 is an L2−norm and (., .), 〈., .〉Γ1

are the scalar product in L2(Ω), L2(Γ1), respectively.
Denoting γ0 : H1(Ω)→ L2(Γ) and γ1 : H(div,Ω)→ L2(Γ) defined by γ0(u) = u|Γ

and γ1(u) =
(
∂u
∂νA

)
Γ

for all u in H(div,Ω). Some times to simplify the notations we

write u and ∂u
∂νA

instead γ0(u) and γ1(u), respectively.

We denote by

H1
Γ0

(Ω) = {u ∈ H1(Ω) | γ0(u) = 0 on Γ0}

the closure subspace of H1(Ω) equipped with the norm equivalent to the usual norm
in H1

0(Ω). The Poincaré inequality holds in H1
Γ0

(Ω).
In this study, we will need the following assumptions:

(A1) The operator A = (aij(x))i,j , i, j = 1, . . . , N ; where the coefficient aij in C1(Ω)
is symmetric and there exists a constant a0 > 0 such that

N∑
i,j=1

aij(x)ζiζj ≥ a0|ζ|2, ∀x ∈ Ω, ∀ζ ∈ CN . (2.1)

(A2) The kernel function g : R+ → R+ is a bounded C1 function satisfying

lim
t→∞

g(t) = 0, g(0) > 0, 1−
∫ ∞

0

g(s)ds = ` > 0, (2.2)

and there exists a constant α > 0 such that

g′(t) ≤ −αg(t), ∀t ≥ 0. (2.3)

Furthermore, we define

a(u(t), v(t)) = (Au(t), v(t)) =

N∑
i,j=1

∫
Ω

aij(x)
∂u(t)

∂xi

∂v(t)

∂xj
dx.

By using the hypothesis (A1), we verify that the sesquilinear form a(., .) : H1
Γ0

(Ω)×
H1

Γ0
(Ω)→ C is continuous, and by (2.1), we deduce that a is coercive.

3. The well posedness

In this section, we will show the well posedness of the system (1.1).
Let us introduce a new variable η as follows

η(x, s, t) = u(x, t)− u(x, t− s), x ∈ Ω, t, s ∈ R+.
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Then, the system (1.1) becomes

utt − `div(A∇u)−
∫ +∞

0
g(s)div(A∇η(s))ds = 0 in Ω× R+

ηt + ηs − ut = 0 in Ω× R+ × R+

hztt + fzt +mz + ut = 0 on Γ1 × R+

u = 0 on Γ0 × R+

` ∂u∂νA
+
∫ +∞

0
g(s) ∂η

∂νA
(s)ds = zt on Γ1 × R+

u(0) = u0, ut(0) = u1 in Ω
η(s, 0) = u0 − u(−s) = η0(s) for s ∈ R+

z(0) = z0, zt(0) = z1 in Γ1

(3.1)

In order to give a reformulation as first-order evolution system, we denote by

U = (u, v, η, z, δ)T with v = ut and δ = zt.

We consider the product Hilbert spaces

H = H1
Γ0

(Ω)× L2(Ω)× L2
g(R+; H1

Γ0
(Ω))× L2(Γ1)× L2(Γ1),

endowed with the following inner product〈
U, Ũ

〉
H

= `a(u(t), ũ(t)) +

∫
Ω

v(t)ṽ(t)dx+ 〈η(t), η̃(t)〉L2
g

+ 〈mz(t), z̃(t)〉Γ1
+
〈
hδ(t), δ̃(t)

〉
Γ1

, (3.2)

where L2
g(R+; H1

Γ0
(Ω)) denotes the Hilbert space of H1

Γ0
(Ω)−valued functions on R+,

endowed with the inner product

〈η(t), η̃(t)〉L2
g(R+;H1

Γ0
(Ω)) =

∫ +∞

0

g(s)a(η(s, t), η̃(s, t))ds, (3.3)

for every U = (u, v, η, z, δ)T and Ũ = (ũ, ṽ, η̃, z̃, δ̃)T in H.

Thus, the system (3.1) can be rewritten in the following{
Ut(t) = AU(t), ∀t ≥ 0
U(0) = U0 = (u0, u1, η0, z0, z1)T

(3.4)

where the operator A is defined by

AU(t) =


v(t)

`div(A∇u(t)) +
∫ +∞

0
g(s)div(A∇η(t, s))ds

v(t)− ηs(t, s)
δ(t)

1
h(x) (−v(t)−m(x)z(t)− f(x)δ(t))

 (3.5)

The domain of A is given by

D(A) =


U `u+

∫ +∞
0

g(s)η(s)ds ∈ H(div,Ω); v ∈ H1
Γ0

(Ω);
η ∈ L2

g(R+; H1
Γ0

(Ω)); z, δ ∈ L2(Γ1);

` ∂u∂νA
+
∫ +∞

0
g(s) ∂η

∂νA
(s)ds = δ on Γ1

 (3.6)
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Set the energy functional E of the system (3.1)

E(t) =
1

2
〈U,U〉H . (3.7)

Lemma 3.1. The energy functional (3.7), along the solution of (3.1), is a nonincreas-
ing function satisfying, for all t ≥ 0

E′(t) =
1

2

∫ +∞

0

g′(s)a(η(s), η(s))ds− ‖f1/2δ(t)‖22,Γ1
. (3.8)

Proof. Taking the scalar product of (3.1)1 with ut and (3.1)3 with zt in L2(Ω) and
L2(Γ1), respectively, then adding it to the inner product (3.3) of (3.1)2 with η. Using
Green’s formula and the properties of η. Taking its real part, we arrive at

1

2

d

dt

(
‖ut(t)‖22 + `a(u(t), u(t)) + ‖η(t)‖L2

g
+ ‖m1/2z(t)‖22,Γ1

+ ‖h1/2δ(t)‖22,Γ1

)
= −

∫ +∞

0

g(s)a(ηs(t, s), η(t, s)ds− ‖f1/2δ(t)‖22,Γ1
. (3.9)

Using (2.2) and the properties of η, we have∫ +∞

0

g(s)a(η(s), ηs(s))ds = −1

2

∫ +∞

0

g′(s)a(η(s), η(s))ds. (3.10)

Combining (3.10) and (3.9), we get (3.8). �

Our aim is ensured by the following theorem:

Theorem 3.2. The operator A is the infinitesimal generator of C0−semigroup of con-
tractions over the Hilbert space H. Thus, for any initial data U0 ∈ H, the problem (3.4)
has a unique weak solution U ∈ C(R+;H). Moreover, if U0 ∈ D(A), then the solution
U ∈ C(R+;D(A)) ∩ C1(R+;H).

Proof. We will use the Hille-Yosida theorem. For this purpose,A is dissipative. Indeed,
using (3.4) and (3.7), we have, for U ∈ D(A)

E′(t) = R 〈Ut(t), U(t)〉H = R 〈AU(t), U(t)〉H .

Therefore, we deduce from Lemma 3.1 that

R 〈AU,U〉H =
1

2

∫ +∞

0

g′(s)a(η(t, s), η(t, s))ds− ‖f1/2δ(t)‖Γ1 ≤ 0. (3.11)

Next, I−A is surjective. Indeed, for each F = (f1, f2, f3, f4, f5)T ∈ H, we show that
there exists U ∈ D(A) such that

(I−A)U = F.
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Then, the previous equation reads

u− v = f1 (3.12)

v − `div(A∇u)−
∫ +∞

0

g(s)div(A∇η(s))ds = f2 (3.13)

η + ηs − v = f3 (3.14)

z − δ = f4 (3.15)

h(x)δ + v + f(x)δ +m(x)z = h(x)f5. (3.16)

Suppose (u, z) are found in H1
Γ0

(Ω)× L2(Γ1). Thus, (3.12) and (3.15) yield{
v = u− f1,
δ = z − f4,

(3.17)

Then,

v ∈ H1
Γ0

(Ω), and δ ∈ L2(Γ1).

From (3.14), we can determine

η(s) = −ve−s + v +

∫ s

0

f3(τ)eτ−sdτ, ∀s ∈ R+, (3.18)

that is η(0) = 0. According (3.18) with (3.17)1, we have

η(s) = −ue−s + u+ η1(s), ∀s ∈ R+, (3.19)

with η1 ∈ L2
g(R+; H1

Γ0
(Ω)) defined by

η1(s) = f1e
−s − f1 +

∫ s

0

f3(τ)eτ−sdτ.

Then, (3.1)5 becomes

`g
∂u

∂νA
+

∫ +∞

0

g(s)
∂η1

∂νA
(s)ds = z − f4 on Γ1 × R+,

where

`g =

(
`+

∫ +∞

0

g(s)(1− e−s)ds
)
> 0.

Inserting (3.17) and (3.19) into (3.13)-(3.16) and adding the results, we get

u− `gdiv(A∇u) = f1 + f2 +

∫ +∞

0

g(s)div(A∇η1(s))ds, (3.20)

(h(x) +m(x) + f(x))z + u = h(x)f5 + f1 + (h(x) + f(x))f4 (3.21)

Taking the inner product of (3.20) with ũ in L2(Ω), then adding it to the complex
conjugate of the inner product of (3.21) with z̃ in L2(Γ1) and using Green’s formula,
we obtain the sesquilinear from B : (H1

Γ0
(Ω) × L2(Γ1)) × (H1

Γ0
(Ω) × L2(Γ1)) → C

defined by

B((u, z)), (ũ, z̃)) = (u, ũ) + `ga(u, ũ)− 〈z, ũ〉Γ1

+ 〈u, z̃〉Γ1
+ 〈(h(x) +m(x) + f(x))z, z̃〉Γ1
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for every (u, z), (ũ, z̃) ∈ H1
Γ0

(Ω) × L2(Γ1), and the antilinear from G : H1
Γ0

(Ω) ×
L2(Γ1)→ C defined by

G(ũ, z̃) = (f1 + f2, ũ)−
∫ +∞

0

g(s)a(η1(s), ũ)ds

+ 〈h(x)f5 + f1 + (h(x) + f(x))f4, z̃〉Γ1
,

for every (ũ, z̃) ∈ H1
Γ0

(Ω)× L2(Γ1).

It’s easy to see that B is a continuous sesquilinear form and coercive on (H1
Γ0

(Ω)×
L2(Γ1))×(H1

Γ0
(Ω)×L2(Γ1)) and G is a continuous antilinear form on H1

Γ0
(Ω)×L2(Γ1).

Using complex Lax-Milgram’s theorem, then there exists a unique solution (u, z) ∈
H1

Γ0
(Ω)× L2(Γ1), satisfying, for all (ũ, z̃) ∈ H1

Γ0
(Ω)× L2(Γ1)

B((u, z), (ũ, z̃)) = G(ũ, z̃). (3.22)

Additionally, we proceed to get more regularity.
Taking z̃ = 0 in (3.22). Since D(Ω) is dense in H1

Γ0
(Ω), we deduce that

`g (div(A∇u), ũ) =

(∫ +∞

0

g(s)div(A∇η1(s))ds, ũ

)
+ 〈z, ũ〉Γ1

− (u, ũ) ,

for every ũ ∈ H1
Γ0

(Ω). Hence, u ∈ (H(div,Ω) ∩H1
Γ0

(Ω)).

Then U ∈ D(A). Consequently, Lumper-Phillips’ theorem guarantees the gen-
erator A of a C0−semigroup on H. �

4. Exponential stability

Here we will show the exponential stability of (3.4). The method that we will
use in the following theorem is based on Gearhart-Prüss’ theorem [14, 17] to complex
value dissipative systems.

Theorem 4.1. Let T (t) := eAt be a C0−semigroup of contractions on Hilbert space H.
Then T (t) is exponentially stable if and only if

(i) The resolvent set ρ(A) of A contains the imaginary axis (iR ⊂ ρ(A)),
(ii) lim sup

|λ|→∞
‖(iλI−A)−1‖L(H) <∞.

Our starting point is to show that the semigroup associated to (3.4), generated
by A, is exponentially stable. The following Theorem gives our main result, that is to
verify the conditions (i) and (ii) of Theorem 4.1.

Theorem 4.2. Assume that (A2) holds. Then, eAt generated by A is exponentially
stable, that is to say, there exist two constants M ≥ 1 and ε > 0 such that

‖eAt‖ ≤Me−εt.
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Proof. We first show that the resolvent of the system (3.4) is located on the imaginary
axes. Note that the resolvent equation (iλI−A)U = F ∈ H is given by

iλu− v = f1 (4.1)

iλv − `div(A∇u)−
∫ +∞

0

g(s)div(A∇η(s))ds = f2 (4.2)

iλη + ηs − v = f3 (4.3)

iλz − δ = f4 (4.4)

iλh(x)δ + f(x)δ +m(x)z + v = h(x)f5. (4.5)

It’s means to show that iR ∩ σ(A) = ∅, where σ(A) is the spectrum of A.
Using contradiction arguments. Let us suppose that A has an imaginary eigenvalue.
Then, we have

AU = iλU, λ ∈ R. (4.6)

Thus, F ≡ 0 in (4.1)-(4.5). From (3.11) and (4.6), we can get

0 = R 〈AU,U〉H ≤
1

2

∫ +∞

0

g′(s)a(η(t, s), η(t, s))ds− ‖f1/2δ(t)‖Γ1
≤ 0.

It follows that δ = 0, and from the hypothesis of g that ∇η = 0. Using the fact u = 0
in Γ×R+ that η = 0. This implies by (4.1) and (3.18) that u = v = 0. From equation
(4.5), we conclude that z = 0. Hence, U ≡ 0. We obtain a contradiction.

We now prove (ii) by a contradiction argument again. Suppose that (ii) is not
true. Then there exist a sequence λn with |λn| → +∞ and a sequence of functions

Un = (un, vn, ηn, zn, δn)T ∈ D(A) with ‖Un‖H = 1, (4.7)

such that, as n→ +∞;

(iλnI−A)Un → 0 in H (4.8)

i.e,

iλnun − vn → 0 in H1
Γ0

(Ω) (4.9)

iλnvn − `div(A∇un)−
∫ +∞

0

g(s)div(A∇ηn(s))ds→ 0 in L2(Ω) (4.10)

iλnηn + ∂sηn − vn → 0 in L2
g (4.11)

iλnzn − δn → 0 in L2(Γ1) (4.12)

iλnh(x)δn + f(x)δn +m(x)zn + vn → 0 in L2(Γ1) (4.13)

Taking the inner product (3.2) of (4.8) with Un and then taking its real part yields

−R 〈(iλnI−A)Un, Un〉H = −1

2

∫ +∞

0

g′(s)a(ηn(s), ηn(s))ds+ ‖f1/2δn‖22,Γ1
→ 0.

(4.14)
Using (2.3), we find that

ηn → 0 in L2
g(R+; H1

Γ0
(Ω)), (4.15)

δn → 0 in L2(Γ1). (4.16)
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On the other hand, taking the complex conjugate of the inner product of (4.9) with
`un in H1

0(Ω), then adding it to the inner product of (4.10) with vn in L2(Ω) and
using Green’s formula, we get

i
(
−`a(un, un) + ‖vn‖22

)
− 1

λn
〈δn, vn〉Γ1

+
1

λn

∫ +∞

0

g(s)a(ηn(s), vn)ds→ 0. (4.17)

We can deduce from (4.9) that
1

λn
‖∇vn‖22 is uniformly bounded. By using (4.15) and

(4.16), the last two terms in (4.17) converge to zero. Hence,

`a(un, un)− ‖vn‖22 → 0. (4.18)

Adding the complex conjugate of the inner product of (4.12) with m(x)δn to the inner
product of (4.13) with zn in L2(Γ1), we have

i(‖m1/2zn‖22,Γ1
+ ‖h1/2δn‖22,Γ1

) +
1

λn
‖f1/2δn‖22,Γ1

+
1

λn
〈vn, δn〉Γ1

→ 0.

By using (4.16) and the fact that
1

λn
‖∇vn‖22 and ‖f1/2δn‖22,Γ1

are uniformly bounded,

we obtain

‖m1/2zn‖22,Γ1
→ 0. (4.19)

Combining (4.7) with (4.15), (4.16) and (4.19). Then, using (4.18), we find that

a(un, un)→ 1

2
, (4.20)

and

‖vn‖22 →
1

2
. (4.21)

It’s easy to see that
1

λn
vn ∈ L2

g(R+; H1
Γ0

(Ω)). Then, taking the inner product (3.3) of

(4.11) with
1

λn
vn, we have

1

λn
〈ηn(s), vn〉L2

g
+

1

λ2
n

〈∂sηn(s), vn〉L2
g
− 1

λ2
n

〈vn, vn〉L2
g
→ 0. (4.22)

Using again the fact that
vn
λn

is bounded in H1
Γ0

(Ω) and by using (4.15), we get that

the first term of (4.22) converges to zero. This yields

(1− `)
λ2
n

a(vn, vn)− 1

λ2
n

∫ +∞

0

g(s)a(∂sηn(s), vn)ds︸ ︷︷ ︸
I1

→ 0. (4.23)
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The second term (I1) in (4.23) converges to zero. Indeed, from (2.3) and by using

again that
vn
λn

is bounded in H1
Γ0

(Ω), we have

|I1| =
1

|λn|

∣∣∣∣∫ +∞

0

g′(s)a(ηn(s),
vn
λn

)ds

∣∣∣∣
≤ αa1

|λn|

∣∣∣∣∣∣∣∣∇vnλn

∣∣∣∣∣∣∣∣
2

(
(1− `)
a0

∫ +∞

0

g(s)a(ηn(s), ηn(s))ds

)1/2

→ 0,

where a1 = max
j=1,n

(
n∑
i=1

‖aij‖2∞
)

. This with (4.23), leads to

vn
λn
→ 0 in H1

Γ0
(Ω). (4.24)

Taking the inner product of (4.9) with `un in H1
0(Ω). Since un is bounded in H1

Γ0
(Ω).

By using (4.24), we obtain
a(un, un)→ 0.

This contradicts (4.20). Therefore, the proof is completed. �
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boundary memory damping, Stud. Univ. Babeş-Bolyai Math., 65(2020), no. 3, 471-482.

[7] Borichev, A., Tomilov, Y., Optimal polynomial decay of functions and operator semi-
groups, Math. Ann., 347(2009), no. 2, 455-478.

[8] Boukhatem, Y., Benabderrahmane, B., Existence and decay of solutions for a viscoelastic
wave equation with acoustic boundary conditions, Nonlinear Anal. TMA, 97(2014), 191-
209.

[9] Cordeiro, S.M.S., Lobato, R.F.C., Raposo, C.A., Optimal polynomial decay for a coupled
system of wave with past history, Open J. Math. Anal., 4(2020), no. 1, 49-59.

[10] Frota, C.L., Larkin, N.A., Uniform stabilization for a hyperbolic equation with acoustic
boundary conditions in simple connected domains, in Contributions to nonlinear analysis,
(T. Cazenave et al., Ed.), Progr. Nonlinear Differential Equations Appl. 66, Birkhäuser,
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Abstract. In this paper, we propose an iterative algorithm for approximating a
common solution of a variational inequality and fixed point problem. The algo-
rithm combines the subgradient extragradient technique, inertial method and a
modified viscosity approach. Using this algorithm, we state and prove a strong
convergence algorithm for obtaining a common solution of a pseudomonotone
variational inequality problem and fixed point of an η-demimetric mapping in a
real Hilbert space. We give an application of this result to some theoretical opti-
mization problems. Furthermore, we report some numerical examples to show the
efficiency of our method by comparing with previous methods in the literature.
Our result extend, improve and unify many other results in this direction in the
literature.
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1. Introduction

In this paper, we consider the Variational Inequality Problem (VIP) which con-
sists of finding a point x∗ ∈ K such that

〈Fx∗, x− x∗〉 ≥ 0, ∀ x ∈ K, (1.1)
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This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives

4.0 International License.

https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/


184 O.K. Oyewole, A.A. Mebawondu and O.T. Mewomo

whereK is a nonempty, closed and convex subset of a real Hilbert spaceH, F : H → H
is a nonlinear single-valued mapping, 〈·, ·〉 respectively ‖ · ‖ are inner products and
norm defined on H. We denote by V IP (K,F ), the set of solutions of the VIP (1.1). A
wide range of problems in science and engineering, optimization theory, equilibrium
theory and differentiation equation leads to the study of the variational inequality
problems. For this reason, there have been several researches into the study of iterative
algorithms for approximating the solutions of VIP and related optimization problems,
(see [1, 2, 4, 6, 30, 45, 48, 51, 50, 52]).
One of the simplest and earliest known method for solving VIP is the gradient pro-
jection method as a result of a fixed point formulation which involves the metric
projection. The method is given as

xk+1 = PK(xk − λFxk), x1 ∈ K, k ≥ 1,

where PK is the metric projection of H onto K and λ ∈ (0, 1/L) with L the Lipschitz
constant of the cost operator F. For the convergence of this method, it is required
that the operator F is strongly monotone (see [22, 23, 21, 31]).
Another method for solving the VIP is the so-called Extragradient Method (EGM)
initially proposed by Korpelevich for solving the saddle points problem (see also,
Antipin [7]). For solving the VIP, the EGM is given as follows: x1 ∈ K{

yk = PK(xk − λFxk),

xk+1 = PK(xk − λFyk). k ≥ 1
(1.2)

The EGM (1.2) requires executing projection onto feasible set K twice per iteration.
Considerable efforts have been made to modify and improve this method, one of which
is to reduce the projection from two to one onto feasible sets. In particular, one of
such modifications is the Subgradient Extragradient Method (SEGM) by Censor et.
al (see [14, 15]). In this method, the second projection of the extragradient method
was replaced by a projection onto a half-space whose formula can be easily executed.
The SEGM is given as follows: x1 ∈ K :

yk = PK(xk − λFxk),

Tk = {x ∈ H : 〈xk − λFxk − yk, x− yk〉 ≤ 0},
xk+1 = PTk

(xk − λFyk), k ≥ 1

(1.3)

Another drawback of the EGM is the dependence of the constant λ on the Lipschitz
constant of the associated cost operator. For this reason, many authors have proposed
several methods which avoid the prior knowledge or use of the Lipschitz constant. One
of such is the use of well defined linesearch rule (see [11]) and the references therein.
One other popular method for avoiding the use of Lipschitz constant is to construct
an adaptable step size (see, [51, 52]) for more.
On the other hand, the Fixed Point Problem (FPP) consists of finding a point x∗ ∈ K
such that

x∗ = Sx∗, (1.4)

where K is a nonempty, closed and convex subset of a real Hilbert space H and
S : K → K is a nonlinear mapping. We denote by Fix(S), the fixed point set
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of a mapping S. The FPP finds application in proving the existence of solution of
many nonlinear problems arising in many real life problems. From the existence of
solution of differential equation to integral equations and evolutionary equations. The
approximation of fixed points of several nonlinear operators in Hilbert, Banach and
Hadamard spaces have been considered in the literature (see [18, 20, 26, 36, 53]).
In this paper, we consider the problem of finding a common solution of the VIP (1.1)
and FPP (1.4). That is, finding a point x∗ ∈ K such that

x∗ ∈ V IP (K,F ) ∩ Fix(S). (1.5)

The problem (1.5) has many real life applications which include signal recovery prob-
lems, beam-forming problems, power-control problems, bandwith allocation problems
and optimal control problems (see [25, 43] and the references therein).
For obtaining a solution of (1.5) in the case where F : H → H is inverse strongly
monotone and S : K → K is nonexpansive, Takahashi and Toyoda [49] introduced an
algorithm whose sequence {xk} is generated by the following recursive formula:{

yk = PK(xk − λFxk),

xk+1 = (1− αk)xk + αkSyk,
(1.6)

where PK is the metric projection of H onto K and {αk} is a sequence in (0, 1)
satisfying some conditions.
Kraikaew and Saejung [34], for solving problem (1.5) combined the SEGM and
Halpern method to propose an algorithm they called the Halpern Subgradient Extra-
gradient Method (HSEGM). The HSEGM is given as

x1 ∈ H,
yk = PK(xk − λFxk),

Tk = {x ∈ H : 〈xk − λFxk − yk, x− yk〉 ≤ 0},
zk = αkx1 + (1− αk)PTk

(xk − λFyk),

xk+1 = βkxk + (1− βk)Szk,

(1.7)

where λ ∈ (0, 1/L), αk ⊂ (0, 1) satisfying lim
k→∞

αk = 0,
∞∑
k=1

αk = ∞, {βk} ⊂ [a, b] ⊂

(0, 1) and S : H → H is a quasi-nonexpansive mapping.
Recently, Thong and Hieu [50] introduced two viscosity-extragradient algorithms for
approximating (1.5), where S : H → H is a η-demicontractive mapping and F : H →
H is a L-Lipschitz monotone operator. The strong convergence of both algorithms
were established under some mild conditions. One of these algorithms is presented as
follows:

Algorithm 1.1. [50, Algorithm 3.1], Viscosity-type Subgradient Extragradient Method
(VSEM)
Initialization: Choose λ0 > 0, µ ∈ (0, 1), and let x0 ∈ K be an arbitrary starting point.
Iterative steps: Calculate xk+1 as follows:

Step 1: Compute

yk = PK(xk − λkFxk).
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Step 2: Compute

zk = PTk
(xk − λkFyk),

where

Tk = {w ∈ H : 〈xk − λkFxk − yk, w − yk〉 ≤ 0}.

Step 3: Compute {
vk = (1− βk)zk + βkSzk,

xn+1 = αkf(xk) + (1− αk)vk

and

λk+1 =

{
min{ µ‖wk−yk‖

‖Fwk−Fyk‖ , λk} if Fwk − Fyk 6= 0,

λk, otherwise.

Stopping criterion Set k := k + 1 and return to Step 1.

To speed up the convergence of iterative algorithm, the inertial technique has been
widely employed (see [3, 8, 16, 38, 39, 47]). Inertial algorithms for variational inequal-
ity and other optimization problems have received due consideration by authors, see,
e,g [51]. Very recently, Thong et al. [51] proposed the following inertial subgradient
method:

Algorithm 1.2. Inertial subgradient algorithm for VIP
Initialization: Choose λ1 > 0, µ ∈ (0, 1), θ > 0 and let x0, x1 ∈ K be an arbitrary
starting point.
Iterative steps: Calculate xk+1 as follows:

Step 1: Given xk, xk−1, k ≥ 1. Set

wk = xk + θk(xk − xk−1),

where

θk =

min

{
1

k2‖xk − xk−1‖2
, θ

}
if xk 6= xk−1,

θ otherwise.

Step 2: Calculate

yk = PK(wk − λkFwk).

If yk = wk or Fyk = 0 then stop (yk is the solution of the VIP (1.1) ). Otherwise
go to Step 3.

Step 3: Compute

zk = PTk
(wk − λkFyk),

where

Tk = {w ∈ H : 〈wk − λkFwk − yk, w − yk〉 ≤ 0}.
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Step 4 Compute

xk+1 = αkf(zk) + (1− αk)zk.

Update

λk+1 =

{
min

{
µ‖wk−yk‖
‖Fwk−Fyk‖ , λk

}
if Fwk − Fyk 6= 0,

λk, otherwise.

Set k := k + 1 and return to Step1.

In this paper, motivated by the works of Attouch and Alvarez [8], Censor et al. [14]
and [51], we proposed an inertial self adaptive subgradient extragradient algorithm
for approximating a solution of VIP and FPP in real Hilbert space. Combining this
method with a modified viscosity approach, we proved a strong convergence theorem
for approximating the solution of a pseudomonotone VIP and FPP for η-demimetric
mapping. The following highlight some of the advantages of our method and work
over previous ones in the literature.

(i) Unlike the work of Gang et al. [11] where the linesearch rule (a linesearch means
that at each outer iteration, an inner loop is executed until some finite stopping
criterion is reached which can be time consuming) was employed, we used a
carefully chosen self adaptive step size.

(ii) Also, by using self adaptive step size, our work does not depend on the prior
knowledge of the Lipschitz constant in practice which makes the execution of
the algorithm easy for computation.

(iii) Our algorithm is used for approximating a common solution of a VIP for pseu-
domonotone operator and a fixed point of an η-demimetric mapping thus includ-
ing the work of [51] as a special consideration.

(iv) We employed an inertial technique to speed up the convergence rate of the
sequence generated by our method. Our numerical experiments confirm that our
method perform better than some existing methods in literature.

The paper is organized as follows: In Section 2, we present some preliminary results
and definitions that are useful in establishing our main result. We present the main
result in Section 3, by first introducing our algorithm and then establishing the strong
convergence of the sequence generated by this algorithm. In Section 4, we give two
theoretical applications of our main result. We reported some numerical experiments
in Section 5 to demonstrate the performance of our method as well as comparing it
with some related methods in the literature. Finally, in Section 6, we gave a conclusion
of the paper.

2. Preliminaries

Throughout this paper, we denote the set of positive integers and the set of
real numbers by N and R respectively. Let H be a real Hilbert space with the inner
product 〈·, ·〉 and the norm given by ‖ · ‖ respectively. For a sequence {xk} ⊂ H, we
denote the weak and strong convergence of {xk} to a point x ∈ H by xk ⇀ x and
xk → x respectively.
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Let K be a nonempty, closed and convex subset of a real Hilbert space H. A mapping
S : K → K is said to be:

(i) L-Lipschitz with a constant L > 0, if

‖Sx− Sy‖ ≤ L‖x− y‖, ∀ x, y ∈ H;

(ii) a contraction respectively nonexpansive if L ∈ (0, 1) respectively L = 1;
(iii) firmly nonexpansive, if

〈Sx− Sy, x− y〉 ≥ ‖Sx− Sy‖2, ∀ x, y ∈ H;

(iv) quasi-nonexpansive, if Fix(S) 6= ∅ and

‖Sx− Sx∗‖ ≤ ‖x− x∗‖,
for any x ∈ H and x∗ ∈ Fix(S);

(v) k-strictly pseudocontractive in the sense of Browder and Petryshyn [9], if there
exists k ∈ [0, 1), such that

‖Sx− Sy‖2 ≤ ‖x− y‖2 + k‖x− y − (Sx− Sy)‖2, ∀ x, y ∈ H;

(vi) [41]. η-demimetric with η ∈ (−∞, 1) , if Fix(S) 6= ∅ and

〈x− x∗, x− Sx〉 ≥ 1

2
(1− η)‖x− Sx‖2, for any x ∈ K and x∗ ∈ Fix(S).

Equivalently, S is η-demimetric, if there exists η ∈ (−∞, 1) such that

||Sx− x∗||2 ≤ ||x− x∗||2 + η||x− Tx||2, ∀x ∈ H and x∗ ∈ Fix(S).

Remark 2.1. [41]. The class η-demimetric mappings covers the class of strictly pseudo-
contractive mappings with nonempty fixed points and many other important nonlinear
mappings.

For each x, y ∈ H and t ∈ (0, 1), it is known that

||x+ y||2 ≤ ||x||2 + 2〈y, x+ y〉
and

||tx+ (1− t)y||2 = t||x||2 + (1− t)||y||2 − t(1− t)||x− y||2, (see, [28, 37]).

Let K be a nonempty, closed and convex subset of a real Hilbert space H. For every
point x ∈ H, there exists a unique nearest point PKx ∈ K, such that

||x− PKx|| ≤ ||x− y||, ∀ y ∈ K.
PK is called the metric projection (also nearest point mapping) of H onto K, see
[17, 29].

Lemma 2.2. [40]. Let K be a nonempty, closed and convex subset of a real Hilbert
space H. Given x ∈ H and z ∈ K. Then

z = PKx ⇐⇒ 〈x− z, z − y〉 ≥ 0, ∀ y ∈ K.

Lemma 2.3. [32, 40]. Let K be be a nonempty, closed and convex subset of a real
Hilbert space H. Given x ∈ H, then

(a) ‖PKx− PKy‖ ≤ 〈PKx− PKy, x− y〉, ∀ y ∈ K;
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(b) ‖x− y‖ − ‖x− PKx‖ ≥ ‖PKx− y‖;
(c) ‖(I − PK)x− (I − PK)y‖2 ≤ 〈(I − PK)x− (I − PK)y, x− y〉, ∀ y ∈ K.

Lemma 2.4. [32, Lemma 2.1]. Consider V IP (K,F ) (1.1) with K being a nonempty,
closed and convex subset of a real Hilbert space H and F : K → H being a pseu-
domonotone and continuous operator. Then x∗ ∈ V IP (K,F ) if and only if

〈Fx, x− x∗〉 ≥ 0, ∀ x ∈ K.

Lemma 2.5. [9]. Let H be a real Hilbert space and S : H → H be a η-demimetric
mapping with (−∞, 1) such that F (S) 6= ∅. Sηx := (1 − η)x + ηSx. Then, Sη is a
quasi-nonexpansive mapping and F (Sη) = F (S).

Lemma 2.6. [49]. Let {αk} be a sequence of nonnegative real numbers satisfying

αk+1 ≤ (1− γk)αk + δk,

where {γk} is a sequence in (0,1) and δk is a sequence such that

(i)
∞∑
k=1

γk =∞ and lim
k→∞

γk = 0;

(ii)
∞∑
k=1

|δk| <∞ and lim
k→∞

δk
γk
≤ 0.

Then αk → 0 as k →∞.

Lemma 2.7. [42, 46] Let {Υk} be a sequence of real numbers that does not decrease
at infinity, in the sense that there exists a subsequence {Υkj} of {Υk} such that
Υkj < Υkj+1 for all j ≥ 0. Also consider the sequence of integers {τ(k)}k≥k0 defined
by

τ(k) = max{n ≤ k : Υk < Υk+1}.
Then, {τ(k)}k≥k0 is a nondecreasing sequence verifying lim

k→∞
τ(k) = ∞ and, for all

k ≥ k0,

max{Υτ(k),Υk} ≤ Υτ(k)+1.

3. Main result

In this section, we present our main result of this paper.
For the convergence of our method, we assume the following conditions:

Assumption 3.1.

(C1) The feasible set K is nonempty, closed and convex on H.
(C2) The mapping F : H → H is pseudomonotone, L-Lipschitz continuous on H and

sequentially weakly continuous on K.
(C3) The solution set Γ = V IP (K,F )∩Fix(S) is nonempty, where S : H → H is an

η-demimetric mapping.

In addition to this, we assume that {τk} as used in Algorithm 3.2 is a positive sequence

such that lim
k→∞

τk
αk

= 0 (that is τk = ◦(αk)), where {αk} ⊂ (0, 1) such that
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(C4) lim
k→∞

αk = 0 and
∞∑
k=1

αk =∞,

(C5) αk + βk + γk = 1.

Algorithm 3.2. Iterative Algorithm
Initialization: Let f : K → K be a κ-contractive mapping. Choose λ1 > 0, ηk ⊂ (0, 1),
µ ∈ (0, 1), θ > 0 and let x0, x1 ∈ K be an arbitrary starting point.
Iterative steps: Given xk, xk−1, choose θk such that 0 ≤ θk ≤ θ̄k, where

θ̄k =

min

{
θ,

τk
‖xk − xk−1‖

}
if xk 6= xk−1,

θ, otherwise.
(3.1)

Calculate xk+1 and λk for each k ≥ 1 as follows:

Step 1: Compute

wk = xk + θk(xk − xk−1). (3.2)

Step : Calculate

yk = PK(wk − λkFwk). (3.3)

Step 2: Compute

zk = PTk
(wk − λkFyk), (3.4)

where

Tk = {w ∈ H : 〈wk − λkFwk − yk, w − yk〉 ≤ 0}.
Step 3: We obtain xk+1 by

xk+1 = αkf(xk) + βkxk + γkSηkzk (3.5)

and

λk+1 =

{
min

{
µ‖wk−yk‖
‖Fwk−Fyk‖ , λk

}
if Fwk − Fyk 6= 0,

λk, otherwise.

Stopping criterion If xk+1 = wk = yk = Szk for some k ≥ 1 then stop. Otherwise set
k := k + 1 and return to Iterative step.

The following result was stated and proved in [52]. It is easy to adapt for our situation.
We state the lemma without proof.

Lemma 3.3. [52]. The sequence {λk} defined in Algorithm 3.2 is a nonincreasing
sequence and

lim
k→∞

λk = λ ≥ min
{
λ1,

µ

L

}
.

The following is required for establishing the solution of the VIP (1.1).

Lemma 3.4. Assume that Assumption 3.1 hold and {wk} is a sequence generated by
Algorithm 3.2. If there exists a subsequence {wkj} of {wk} convergent weakly to a
point x̄ ∈ H and lim

j→∞
‖wkj − ykj‖ = 0, then x̄ ∈ V IP (K,F ).



A strong convergence algorithm 191

Proof. First we show that lim inf
j→∞

〈Fykj , z−ykj 〉 ≥ 0. Indeed, we have by the definition

of {yk} and Lemma 2.2, that

〈wkj − λkjFwkj − ykj , z − ykj 〉 ≤ 0, ∀ z ∈ K,

which implies

1

λkj
〈wkj − ykj , z − ykj 〉 ≤ 〈Fwkj , z − ykj 〉 ∀ z ∈ K.

Consequence of this, we get that

1

λkj
〈wkj − ykj 〉+ 〈Fwkj , ykj − wkj 〉 ≤ 〈Fwkj , z − wkj 〉, ∀ z ∈ K. (3.6)

Since {wkj} is convergent, it is bounded. Then, since F is Lipschitz continuous,
{Fwkj} is bounded. We obtain also that {ykj} is bounded since ‖wkj − ykj‖ → 0

as j →∞ and λkj ≥ min
{
λ1,

µ

L

}
. Passing limit over (3.6) as j →∞, we obtain

lim inf
j→∞

〈Fwkj , z − wkj 〉 ≥ 0.

Observe that

〈Fwkj , z − ykj 〉 = 〈Fykj − Fwkj , z − ykj 〉+ 〈Fykj , z − wkj 〉+ 〈Fykj , wkj − ykj 〉.
(3.7)

We obtain from lim
j→∞

‖wkj − ykj‖ = 0 and the Lipschitz continuity of F , that

lim
j→∞

‖Fwkj − Fykj‖ = 0. Thus, we get from (3.7), that

lim inf
j→∞

〈Fykj , z − ykj 〉 ≥ 0.

Next we show that x̄ ∈ V IP (K,F ). We choose a subsequence {εj} of positive numbers
decreasing such that εj → 0 as j →∞. For each j, let Nj be the smallest nonnegative
integer such that

〈Fyki , z − yki〉+ εj ≥ 0, ∀ i ≥ Nj . (3.8)

Since {εj} is decreasing, it is obvious that Nj is increasing. Further, for each j ∈ N,
{yNj} ⊂ K. Suppose FyNj 6= 0 so that yNj is not a solution of the V IP (K,F ), set

νNj
=

FyNj

‖FyNj
‖2
,

so that 〈FyNj
, νNj
〉 = 1 for each j. We see from this and (3.8), that

〈FyNj
, z + εjνNj

− yNj
〉 ≥ 0.

Since F is pseudomonotone on H, we have

F (z + εjνNj
), z + εjνNj

− yNj
〉 ≥ 0

and thus

〈Fz, z − yNj
〉 ≥ 〈Fz − F (z + εjνNj

), z + εjνNj
− yNj

〉 − εj〈Fz, νNj
〉. (3.9)
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Now, we show that εjνNj
→ 0 as j →∞. To see this, from the hypothesis we get that

yNj
⇀ x̄ as j →∞. By {yk} ⊂ K, we have that x̄ ∈ K. Since F is sequentially weakly

continuous on K, we have FyNj
⇀ Fx̄. Suppose that Fx̄ 6= 0 so that x̄ ∈ V IP (K,F ).

Since ‖ · ‖ is sequentially weakly continuous, we have

0 < ‖Fx̄‖ ≤ lim inf
j→∞

‖FyNj
‖.

From {yNj
} ⊂ {ykj} and εj → 0 as j →∞, we have

0 ≤ lim
j→∞

‖εjνNj‖ = lim
j→∞

(
εj

‖Fykj‖

)
≤ 0

‖Fx̄‖
= 0,

which shows that εjνNj
→ 0. Now letting j → ∞, we obtain by the continuity of

F that the right hand side of (3.9) tends to zero, {wNj
}, {νNj

} are bounded and
lim
j→∞

εjνNj
= 0. Therefore,

lim inf
j→∞

〈Fz, z − yNj
〉 ≥ 0.

Hence for all z ∈ K, we have

〈Fz, z − x̄〉 = lim
j→∞
〈Fz, z − yNj 〉 = lim inf

j→∞
〈Fz, z − yNj 〉 ≥ 0.

By Lemma 2.4 we have x̄ ∈ V IP (K,F ). The proof is thus complete.

Lemma 3.5. Let {zk} be given as in Algorithm 3.2 and x∗ ∈ Γ, then there holds the
inequality

‖zk − x∗‖2 ≤ ‖wk − x∗‖2 −
(

1− λk
λk+1

)
[‖wk − yk‖2 + ‖yk − zk‖2]. (3.10)

Proof. Using Lemma 2.3 and (3.4), we have

‖zk − x∗‖2 = ‖PTk
(wk − λkFyk)− x∗‖2

≤ ‖wk − λkFyk − x∗‖2 − ‖wk − λkFyk − zk‖2

= ‖wk − x∗‖2 − 2λk〈wk − x∗, Fyk〉 − ‖wk − zk‖2 + 2λk〈wk − zk, Fyk〉
= ‖wk − x∗‖2 − ‖wk − zk‖2 − 2λk〈zk − x∗, Fyk〉
= ‖wk − x∗‖2 − ‖wk − zk‖2 − 2λk〈zk − yk, Fyk〉 − 2λk〈yk − x∗, Fyk〉
= ‖wk − x∗‖2 − ‖wk − yk + yk − zk‖2

− 2λk〈zk − yk, Fyk〉 − 2λk〈yk − x∗, Fyk〉
= ‖wk − x∗‖2 − ‖wk − yk‖2 − ‖yk − zk‖2 + 〈zk − yk, wk − yk〉
− 2λk〈zk − yk, Fyk〉 − 2λk〈yk − x∗, Fyk〉
= ‖wk − x∗‖2 − ‖wk − yk‖2 − ‖yk − zk‖2

− 2λk〈yk − zk, wk − λkFyk − y − k〉 − 2λk〈yk − x∗, Fyk〉
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= ‖wk − x∗‖2 − ‖wk − yk‖2 − ‖yk − zk‖2

− 2〈yk − zk, wk − λkFwk − yk〉+ 2λk〈zk − yk, Fwk − Fyk〉
− 2λk〈yk − x∗, Fyk〉
= ‖wk − x∗‖2 − ‖wk − yk‖2 − ‖yk − zk‖2

− 2〈yk − zk, wk − λkFwk − yk〉+ 2λk‖zk − yk‖‖Fwk − Fyk‖
− 2λk〈yk − x∗, Fyk〉
= ‖wk − x∗‖2 − ‖wk − yk‖2 − ‖yk − zk‖2

− 2〈yk − zk, wk − λkFwk − yk〉+ 2
λk
λk+1

‖zk − yk‖‖Fwk − Fyk‖

− 2λk〈yk − x∗, Fyk〉
≤ ‖wk − x∗‖2 − ‖wk − yk‖2 − ‖yk − zk‖2

− 2〈yk − zk, wk − λkFwk − yk〉 − 2λk〈yk − x∗, Fyk〉

+
λk
λk+1

(‖zk − yk‖2 + ‖Fwk − Fyk‖2)

= ‖wk − x∗‖2 −
(

1− λk
λk+1

)
[‖wk − yk‖2 + ‖yk − zk‖2]

− 2〈yk − zk, wk − λkFwk − yk〉 − 2λk〈yk − x∗, Fyk〉. (3.11)

Since x∗ ∈ Γ, yk ∈ K and the fact that F is pseudomonotone we have that

〈yk − x∗, Fx∗〉 ≥ 0

which implies

〈yk − x∗, Fyk〉 ≥ 0.

Also from zk ∈ Tk, we get that

〈yk − zk, wk − λkFwk − yk〉 ≥ 0.

Therefore, we obtain from (3.11) that

‖zk − x∗‖2 ≤ ‖wk − x∗‖2 −
(

1− λk
λk+1

)
[‖wk − yk‖2 + ‖yk − zk‖2], (3.12)

as required.

Lemma 3.6. The sequence {xk} generated by Algorithm 3.2 is bounded.

Proof. From x∗ ∈ Γ and (3.2), we have

‖wk − x∗‖‖xk + θk(xk − xk−1)− x∗‖
≤ ‖xk − x∗‖+ θk‖xk − xk−1‖

= ‖xk − x∗‖+ αk ·
θk
αk
‖xk − xk−1‖.
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Since
θk
αk
‖xk − xk−1‖ → 0, there exists M1 > 0 such that

θk
αk
‖xk − xk−1‖ ≤M1, k ≥ 1,

hence

‖wk − x∗‖ ≤ ‖xk − x∗‖+ αkM1.

It is easy to see from Lemma 3.5, that

‖zk − x∗‖ ≤ ‖wk − x∗‖ ≤ ‖xk − x∗‖+ αkM1.

Furthermore, from (3.5), we have

‖xk+1 − x∗‖ = ‖αkf(xk) + βkxk + γkSηkzk − x∗‖
≤ αk‖f(xk)− x∗‖+ βk‖xk − x∗‖+ γk‖Sηkzk − x∗‖
≤ αk‖f(xk)− f(x∗)‖+ αk‖f(x∗)− x∗‖+ βk‖xk − x∗‖+ γk‖zk − x∗‖
≤ αkκ‖xk − x∗‖+ βk‖xk − x∗‖
+ αk‖f(x∗)− x∗‖+ γk(‖xk − x∗‖+ αkM1)

= αkκ‖xk − x∗‖+ βk‖xk − x∗‖
+ αk‖f(x∗)− x∗‖+ γk‖xk − x∗‖+ γkαkM1

= αkκ‖xk − x∗‖+ (1− αk)‖xk − x∗‖+ αk‖f(x∗)− x∗‖+ γkαkM1

= [1− αk(1− κ)]‖xk − x∗‖+ αk‖f(x∗)− x∗‖+ γkαkM1

≤ max

{
‖xk − x∗‖,

‖f(x∗)− x∗‖+ θkαkM1

1− κ

}
≤

...

≤ max

{
‖x0 − x∗‖,

‖f(x∗)− x∗‖+ θkαkM1

1− κ

}
, ∀ k ≥ 1. (3.13)

Therefore the sequence {xk} is bounded. Consequently, the sequences {zk}, {yk} and
{Szk} are bounded.

Lemma 3.7. Let {xk} be the sequence generated by Algorithm 3.2. Then, for x∗ ∈ Γ,
it holds that

‖xk+1 − x∗‖2 ≤
(

1− 2αk(1− κ)

(1− αkκ)

)
‖xk − x∗‖2

+
2αk(1− κ)

(1− αkκ)

(
αk

1− κ
‖xk − x∗‖2 +

1

1− κ
〈f(x∗)− x∗, xk+1 − x∗〉

+
θkγk

αk(1− κ)
‖xk − x∗‖‖xk − xk−1‖+

θ2
k

2αk(1− κ)
‖xk − xk−1‖2

)
.

(3.14)
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Proof. From (3.5) and x∗ ∈ Γ, we have

‖xk+1 − x∗‖2 ≤ ‖αkf(xk) + βkxk + γkSηkzk − x∗‖
≤ ‖βk(xk − x∗) + γk(Sηkzk − x∗)‖2 + 2αk〈f(xk)− x∗, xk+1 − x∗〉
≤ ‖βk(xk − x∗) + γk(zk − x∗)‖2 + 2αk〈f(xk)− x∗, xk+1 − x∗〉
≤ ‖βk(xk − x∗) + γk(wk − x∗)‖2 + 2αk〈f(xk)− x∗, xk+1 − x∗〉
≤ [βk‖xk − x∗‖+ γk(‖xk − x∗‖+ θk‖xk − xk−1‖)]2

+ 2αk〈f(xk)− f(x∗), xk+1 − x∗〉
+ 2αk〈f(x∗)− x∗, xk+1 − x∗〉
≤ [βk‖xk − x∗‖+ γk‖xk − x∗‖+ γkθk‖xk − xk−1‖]2

+ 2αkκ‖xk − x∗‖+ ‖xk+1 − x∗‖
+ 2αk〈f(x∗)− x∗, xk+1 − x∗〉
≤ [(1− αk)‖xk − x∗‖+ θkγk‖xk − xk−1‖]2

+ αkκ(‖xk − x∗‖2 + ‖xk+1 − x∗‖)
+ 2αk〈f(x∗)− x∗, xk+1 − x∗〉
≤ (1− αk)2‖xk − x∗‖2 + 2θkγk(1− αk)‖xk − x∗‖‖xk − xk−1‖
+ γkθk‖xk − xk−1‖2

+ αkκ(‖xk − x∗‖2 + ‖xk+1 − x∗‖) + 2αk〈f(x∗)− x∗, xk+1 − x∗〉,

this implies that

‖xk+1 − x∗‖2 ≤
(1− αk)2 + αkκ

1− αkκ
‖xk − x∗‖2

+
2αk

1− αkκ
〈f(x∗)− x∗, xk+1 − x∗〉+

θk
1− αkκ

‖xk − xk−1‖2

+
2γkθk

1− αkκ
‖xk − x∗‖‖xk − xk−1‖

=
1− 2αk + αkκ

1− αkκ
‖xk − x∗‖2

+
α2
k

1− αkκ
‖xk − x∗‖2 +

2αk
1− αkκ

〈f(x∗)− x∗, xk+1 − x∗〉

+
θk

1− αkκ
‖xk − xk−1‖2 +

2γkθk
1− αkκ

‖xk − x∗‖‖xk − xk−1‖

=

(
1− 2αk(1− κ)

1− αkκ

)
‖xk − x∗‖2

+
2α2

k(1− κ)

2(1− αkκ)(1− κ)
‖xk − x∗‖2 +

2θ2
k(1− κ)

2(1− αkκ)(1− κ)
‖xk − xk−1‖2

+
2αk(1− κ)

(1− αkκ)(1− κ)
〈f(x∗)− x∗, xk+1 − x∗〉
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+
2θkγk(1− κ)

(1− αk)(1− κ)
‖xk − x∗‖‖xk − xk−1‖

=

(
1− 2αk(1− κ)

1− αkκ

)
‖xk − x∗‖2

+
2αk(1− κ)

(1− αkκ)

(
αk

2(1− κ)
‖xk − x∗‖2 +

θ2
k

αk(1− κ)
‖xk − xk−1‖2

+
θkγk

αk(1− κ)
‖xk − x∗‖‖xk − xk−1‖+

1

(1− κ)
〈f(x∗)− x∗, xk+1 − x∗〉

)
. (3.15)

Theorem 3.8. Assume that condition C1−C5 hold. Then the sequence {xk} generated
by Algorithm 3.2 converges to a common solution x∗ ∈ Γ, which is also a unique
solution of the variational inequality

〈f(x∗)− x∗, x∗ − x̄〉 ≥ 0, ∀ x̄ ∈ Γ.

Proof. Let x∗ ∈ Γ, the proof of this theorem is divided into two cases.
Case I: Suppose there exists k0 ∈ N such that ‖{xk − x∗‖} is monotonically non-
increasing. Then, by Lemma 3.6, it follows that ‖{xk−x∗‖} is a convergent sequence
and thus

‖xk−1 − x∗‖2 − ‖xk − x∗‖2 → 0 as k →∞.
Consider

‖wk − x∗‖2 = ‖xk − x∗ + θk(xk − xk−1)‖2

= ‖xk − x∗‖2 + 2θk〈xk − x∗, xk − xk−1〉+ θ2
k‖xk − xk−1‖2

≤ ‖xk − x∗‖+ θk‖xk − xk−1‖(2‖xk − x∗‖+ θk‖xk − xk−1‖). (3.16)

From (3.5) and Lemma 3.10, we have

‖xk+1 − x∗‖2 ≤ αk‖f(xk)− x∗‖2 + βk‖xk − x∗‖2 + γk‖Sηkzk − x∗‖2

≤ αk‖f(xk)− x∗‖2 + βk‖xk − x∗‖2 + γk‖zk − x∗‖2

≤ αk‖f(xk)− x∗‖2 + βk‖xk − x∗‖2

+ γk(‖wk − x∗‖2 −
(

1− λk
λk+1

)
[‖wk − yk‖2 + ‖yk − zk‖2])

≤ αk‖f(xk)− x∗‖2 + βk‖xk − x∗‖2 + γk‖xk − x∗‖2

+
γkθkαk
αk

‖xk − xk−1‖(2‖xk − x∗‖+ θk‖xk − xk−1‖)

− γk
(

1− λk
λk+1

)
[‖wk − yk‖2 + ‖yk − zk‖2]

= αk‖f(xk)− x∗‖2 + ‖xk − x∗‖2

+
γkθkαk
αk

‖xk − xk−1‖(2‖xk − x∗‖+ θk‖xk − xk−1‖)

− γk
(

1− λk
λk+1

)
[‖wk − yk‖2 + ‖yk − zk‖2]), (3.17)
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which implies

γk

(
1− λk

λk+1

)
[‖wk − yk‖2 + ‖yk − zk‖2] ≤ αk‖f(xk)− x∗‖2 + ‖xk − x∗‖2

− ‖xk+1 − xk‖2

+
γkθkαk
αk

‖xk − xk−1‖(2‖xk − x∗‖

+ θk‖xk − xk−1‖)→ 0 as k →∞. (3.18)

Therefore, we obtain from the definition of λk, that

lim
k→∞

‖wk − yk‖ = 0 = lim
k→∞

‖yk − zk‖. (3.19)

Note also that

‖wk − xk‖ = θk‖xk − xk−1‖ = αk ·
θk
αk
‖xk − xk−1‖ → 0 as k →∞. (3.20)

It is easy to see from above that

lim
k→∞

‖yk − xk‖ = 0 = lim
k→∞

‖zk − xk‖. (3.21)

Next we show that ‖Szk− zk‖ → 0 as k →∞. From the definition of Sηk and x∗ ∈ Γ,
we have

‖Sηkzk − x∗‖2‖(1− ηk)(zk − x∗) + ηk(Szk − x∗)‖2

(1− ηk)‖zk − x∗‖2 + ηk‖Szk − x∗‖2 − ηk(1− ηk)‖Szk − zk‖2

≤ (1− ηk)‖zk − x∗‖2 + ηk‖zk − x∗‖2 − ηk(1− ηk)‖Szk − zk‖2

= ‖zk − x∗‖2 − ηk(1− ηk)‖Szk − zk‖2,
which implies from Lemma 3.10, that

‖Sηkzk − x∗‖2 ≤ ‖wk − x∗‖2 − ηk(1− ηk)‖Szk − zk‖2.
Using this in (3.5), we get

‖xk+1 − x∗‖2 ≤ αk‖f(xk)− x∗‖2 + βk‖xk − x∗‖2 + γk‖Sηkzk − x∗‖2

≤ αk‖f(xk)− x∗‖2 + βk‖xk − x∗‖2

+ γk(‖wk − x∗‖2 − ηk(1− ηk)‖Szk − zk‖2)

≤ αk‖f(xk)− x∗‖2 + βk‖xk − x∗‖2

+ γk‖wk − x∗‖2 − ηk(1− ηk)γk‖Szk − zk‖2

≤ αk‖f(xk)− x∗‖2 + βk‖xk − x∗‖2 + γk‖xk − x∗‖2

+ γkθk‖xk − xk−1‖(2‖xk − x∗‖‖xk − xk−1‖)
− ηk(1− ηk)γk‖Szk − zk‖2

≤ αk‖f(xk)− x∗‖2 + ‖xk − x∗‖2

+ γkθk‖xk − xk−1‖(2‖xk − x∗‖‖xk − xk−1‖)
− ηk(1− ηk)γk‖Szk − zk‖2. (3.22)
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We obtain from this that

ηk(1− ηk)γk‖Szk − zk‖2 ≤ αk‖f(xk)− x∗‖2 + ‖xk − x∗‖2 − ‖xk+1 − x∗‖2

+
γkθk
αk
‖xk−xk−1‖(2‖xk−x∗‖‖xk−xk−1‖)→ 0 as k →∞,

hence

lim
k→∞

‖Szk − zk‖ = 0. (3.23)

It is not difficult to obtain from this, that

lim
k→∞

‖Sηkzk − zk‖ = 0. (3.24)

Observe that

‖xk+1 − x∗‖2 ≤ αk‖f(xk)− zk‖2 + βk‖xk − zk‖2 + γk‖Sηkzk − zk‖2, (3.25)

thus, we have from (3.21), (3.24) and condition (i), that

‖xk+1 − zk‖ → 0 as k →∞.

Using this and (3.21), we obtain

lim
k→∞

‖xk+1 − xk‖ = lim
k→∞

(‖xk+1 − zk‖+ ‖zk − xk‖) = 0. (3.26)

By the conclusion of Lemma 3.6, there exists a subsequence {xkj} of {xk} such that
{xkj} converge weakly to x̄ ∈ H satisfying

lim sup
k→∞

〈f(x∗)− x∗, xk − x∗〉 = lim
j→∞
〈f(x∗)− x∗, xkj − x∗〉. (3.27)

By (3.19) and Lemma 3.5, we obtain x̄ ∈ V IP (F,K). Also from (3.23), (3.24) and
Lemma 2.5, we have x̄ ∈ F (Sηk) = F (S). Hence x∗ ∈ Γ. It is clear that PΓf is a
contraction. Using Banach’s principle of contraction, PΓf has a unique fixed point,
say x∗ ∈ H. That is x∗ = PΓf(x∗). It follows from Lemma 2.2, that

〈f(x∗)− x∗, x̄− x∗〉 ≤ 0. (3.28)

Thus, we have that

lim sup
k→∞

〈f(x∗)− x∗, xk − x∗〉 = lim
j→∞
〈f(x∗)− x∗, xkj − x∗〉

〈f(x∗)− x∗, x̄− x∗〉 ≤ 0. (3.29)

Hence by (3.26) and (3.29), we have

lim sup
k→∞

〈f(x∗)− x∗, xk+1 − x∗〉 ≤ lim sup
k→∞

〈f(x∗)− x∗, xk+1 − xk〉

+ lim sup
k→∞

〈f(x∗)− x∗, xk − x∗〉 ≤ 0. (3.30)

By applying Lemma 2.6, Lemma 3.7, and (3.30), we have xk → 0 as k →∞.
Case II: There exists a subsequence {‖xkj − x∗‖} of {‖xk − x∗‖} such that

‖xkj − x∗‖2 ≤ ‖xkj+1 − x∗‖2
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for all j ∈ N. By Lemma 2.7, there exists a nondecreasing sequence {mn} of N such
that lim

n→∞
mn =∞ and there hold

‖xmn
−x∗‖2 ≤ ‖xmn+1−x∗‖2 and ‖xk−x∗‖2 ≤ ‖xmn+1−x∗‖2, ∀ n ∈ N. (3.31)

By (3.17) and Lemma 3.7, we have

‖xmn
− x∗‖2 ≤ ‖xmn+1 − x∗‖2 ≤ αmn

‖f(xmn
)− x∗‖2

+ βmn
‖xmn

− x∗‖2 + γmn

(
‖wmn

− x∗‖2

−
(

1− λmn

λmn
+ 1

)
[‖wmn

− ymn
‖2 + ‖ymn

− zmn
‖2]

)
≤ αmn

‖f(xmn
)− x∗‖2 + βmn

‖xmn
− x∗‖2 + γmn

‖xmn
− x∗‖2

+ γmnθmn‖xmn − xmn−1‖(2‖xmn − x∗‖+ θmn‖xmn − xmn−1‖)

− γmn

(
1− λmn

λmn
+ 1

)
[‖wmn

− ymn
‖2 + ‖ymn

− zmn
‖2]

= αmn‖f(xmn)− x∗‖2 + (1− αmn)‖xmn − x∗‖

− γmn

(
1− λmn

λmn
+ 1

)
[‖wmn − ymn‖2 + ‖ymn − zmn‖2]

+ γmn
θmn
‖xmn

− xmn−1‖(2‖xmn
− x∗‖+ θmn

‖xmn
− xmn−1‖).

Since αmn
→ 0 as n→∞, it follows from above that

lim
n→∞

γmn

(
1− λmn

λmn
+ 1

)
[‖wmn

− ymn
‖2 + ‖ymn

− zmn
‖2] = 0,

hence

lim
n→∞

‖wmn
− ymn

‖ = ‖ymn
− zmn

‖ = 0. (3.32)

By using similar arguments as in Case I, the following are easy to establish:

lim
n→∞

‖Sηmn
zmn
− zmn

‖ = ‖Szmn
− zmn

‖ = 0, (3.33)

lim
n→∞

‖wmn
− xmn

‖ = ‖xmn+1 − xmn
‖ = 0. (3.34)

and

lim sup
n→∞

〈f(x∗)− x∗, xmn+1 − x∗〉 ≤ 0.
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It follows from (3.14), that

‖xmn+1 − x∗‖2 ≤
(

1− 2αmn
(1− κ)

1− αmnκ

)
‖xmn

− x∗‖2

+
2αmn(1− κ)

1− αmn
κ

(
αmn

1− κ
‖xmn − x∗‖2

+
1

1− κ
〈f(x∗)− x∗, xmn+1 − x∗〉+

θ2
mn

2αmn
(1− κ)

‖xmn
− xmn−1‖2

+
θmn

γmn

αmn(1− κ)
‖xmn

− x∗‖‖xmn
− xmn−1‖

)
,

which implies that

‖xmn+1 − x∗‖2 ≤
αmn

1− κ
‖xmn

− x∗‖2 +
1

1− κ
〈f(x∗)− x∗, xmn+1 − x∗〉

+
θ2
mn

2αmn
(1− κ)

‖xmn
− xmn−1‖2

+
θmn

γmn

αmn
(1− κ)

‖xmn
− x∗‖‖xmn

− xmn−1‖.

By (3.31), we obtain

‖xk − x∗‖2 ≤ ‖xmn+1 − x∗‖2

≤ αmn

1− κ
‖xmn − x∗‖2 +

1

1− κ
〈f(x∗)− x∗, xmn+1 − x∗〉

+
θ2
mn

2αmn
(1− κ)

‖xmn
− xmn−1‖2

+
θmn

γmn

αmn(1− κ)
‖xmn

− x∗‖‖xmn
− xmn−1‖.

Thus, we get that lim sup
k→∞

‖xn − x∗‖2 = 0, which means that lim
n→∞

‖xn‖ = x∗. The

proof is therefore complete.

4. Application

In this section, we give some applications of our main result.

4.1. Constrained optimization problem

Let K be a nonempty, closed and convex subset of a real Hilbert space H. Let
h : H → R be a differentiable function on K with its gradient ∇h. The Constrained
Optimization Problem (COP) is given as: Find x∗ ∈ K such that

h(x∗) ≤ h(x), ∀ x ∈ K. (4.1)

We denote by Sol(h) the solution set of (4.1). It is well known (see [44]), that a point
x∗ is a minimizer of (4.1) if and only if x∗ is a solution of the VIP (1.1) with F = ∇h.
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Thus by applying this formulations and substituting F = ∇h in Algorithm 3.2, we
have the following result for finding a common solution of a COP and a FPP.

Theorem 4.1. Let K be a nonempty, closed and convex subset of a real Hilbert space
H. Let h : H → R be a differentiable function on K with its gradient ∇h. Let S : H →
H be an η-demimetric mapping. Assume Sol(h) ∩ Fix(S) 6= ∅. Then, the sequence
{xk} generated by Algorithm 3.2 with F replaced by ∇h converges strongly to a point
x∗ = PSol(h)∩Fix(S)f(x∗).

4.2. Split feasibility problem

Let K and Q be nonempty, closed and convex subsets of real Hilbert spaces
H1 and H2 respectively and A : H1 → H2 be a bounded linear operator. The Split
Feasibility Problem (SFP) in the sense of Censor and Elfving [13] is to find

x ∈ K such that Ax ∈ Q. (4.2)

We denote by Ω the solution set of (4.2). Many authors have considered the solution of
the SFP (4.2). We note that whenever the SFP (4.2) is consistent (i.e, has a solution),
then x∗ ∈ Ω solves the fixed point equation

x∗ = PK(x− λA∗(I − PQ)Ax), ∀ x ∈ K,

where PK and PQ are orthogonal projection of H1 and H2 onto K and Q respectively
λ > 0 and A∗ is the adjoint of A. One of the most popular method for solving the
SFP was the algorithm proposed by Bryne [10]. He gave a recursive formula {xk}
generated by x1 and

xk+1 = PK(xk − λA∗(I − PQ)Axk), k ∈ N, (4.3)

where λ ∈ [0, 2/γ] with γ the spectral radius of the operator A∗A.
For the adaptation of our main result to the solution of the SFP, we need the following
proposition (see Ceng et al. [12]).

Proposition 4.2. [12] Given x∗ ∈ H1, the following are equivalent

(i) x∗ ∈ Ω;
(ii) x∗ solves (4.3);
(iii) x∗ solves the system of variational inequality problem: find x∗ ∈ K such that

〈A∗(I − PQ)Ax∗, x− x∗〉 ≥ 0, ∀ x ∈ K,

where A∗ is the adjoint of A.

By these adaptations, we have the following theorem for approximating a solution of
an SFP and a FPP.

Theorem 4.3. Let K and Q be nonempty, closed and convex subsets of real Hilbert
spaces H1 and H2 respectively and A : H1 → H2 be a bounded linear operator. Let
S : H → H be an η-demimetric mapping. Assume Ω∩Fix(S) 6= ∅. Then, the sequence
{xk} generated by Algorithm 3.2 with F := A∗(I − PQ)A converges strongly to

x∗ = PΩ∩Fix(S)f(x∗).
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5. Numerical examples

We next provide some numerical experiments to illustrate the performance of
our method as well as comparing it with some related methods in the literature.

Example 5.1. Let H = Rm with the standard topology. Consider a mapping F :
Rm → Rm given in the form F (x) = Mx+ q (see [19], also [35]) where

M = BBT + P +Q

q is a vector in Rm, B is an m ×m matrix, P is an m ×m skew-symmetric matrix,
Q is a positive definite diagonal matrix, hence the variational inequality is consistent
with a unique solution. We define the feasible set K by K := {x ∈ H : ‖x‖ ≤ 1}. Let
S : H → H be defined by S(x) = −3x

2 for all x ∈ H and f(x) = x. In this example,

we choose αk = 1
k+3 , βk = γk = 0.5(1 − αk), ηk = 0.8 − αk, θ = 1

3 , λ0 = µ = 0.95

and τk = 1
k1.9 . For VSEGM and HSEGM, we choose βk = 0.8− αk and λk = 0.75/L

where L = ||F ||. We terminate the iterations at Tol = ||xk − PC(xk − Fxk)||2 ≤ ε
with ε = 10−4.
We compare Algorithm 3.2, VSEGM [50] and HSEGM [34] for different values of m.
The results are presented in Figure 1.

Example 5.2. The following example was taken from [24],

min g(x) =
xTPx+ aTx+ a0

bTx+ b0

subject to x ∈ X = {x ∈ R5 : bTx+ b0 > 0},
where

P =


5 −1 2 0
−1 5 −1 3
2 −1 3 0
0 3 0 5

 , a =


1
−2
−2
1

 b =


2
1
1
0

 , a0 = −2, b0 = 4.

Since P is symmetric and positive definite, g is pseudoconvex on X. We minimize g
on K = {x ∈ R4 : 1 ≤ xi ≤ 10} ⊂ X.
Following our consideration in Theorem 4.1, we have

F (x) = ∇g(x) =
(bTx+ b0)(2Px+ a)− b(xTPx+ aTx+ a0)

(bTx+ b0)2
. (5.1)

We define the mapping S : H → H by S(x) = −3x
2 and the function f by f(x) = x

2 .
Since the Lipschitz constant of F given by (5.1) is unknown, we compare Algorithm
3.2 with the VSEGM [50]. The following choices of parameters are made: αk = 1

k+3 ,

βk = γk = 0.5(1− αk), ηk = 0.5, θ = 1
3 , λ0 = µ = 0.5 and τk = 1

k1.5 .

We terminate the iterations at Tol = ||xk − PC(xk − Fxk)||2 ≤ ε with ε = 10−4. The
results are presented in Figure 2 for varying initial values x0 and x1.

Case1: x0 = (10, 10, 10, 10)′ and x1 = (5, 5, 5, 5)′;
Case2: x0 = (5, 5, 5, 5)′ and x1 = (20, 20, 20, 20)′;
Case3: x0 = (1, 1, 1, 1)′ and x1 = (−4,−4,−4,−4)′.
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Figure 1. Performance of Algorithm 3.2 compared with VSEGM
[50] and HSEGM [34].

Example 5.3. Let H = L2([0, 1]) with the inner product

〈x, y〉 =

∫ 1

0

x(t)y(t)dt, ∀ x, y ∈ H

and the induced norm

‖x‖ =

√∫ 1

0

|x(t)|2dt.

Let the mapping F : H → H be defined by F (x) = max{0, x(t)}, ∀x ∈ L2([0, 1]), t ∈
[0, 1] for all x ∈ H and the feasible K := {x ∈ H : ‖x‖ ≤ 1}. Define the mapping T
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Figure 2. Performance of Algorithm 3.2 compared with VSEGM [50].

by

Tx(t) =

∫ 1

0

tx(t)dt, ∀x ∈ L2([0, 1]), t ∈ [0, 1],

then T is 0-demimetric. Also, let f : H → H be given by f(x) = x
2 . For this example,

we choose parameters for Algorithm 3.2, HSEGM [34] and VSEGM [50] as follows:
αk = 1

k+3 , βk = γk = 0.5(1−αk), ηk = 1
2k+1 , θ = 1

3 , λ0 = 0.25, µ = 0.5 and τk = 1
k1.9 .

For the VSEGM and HSEGM, we choose βk = 1
2k+1 . We make our comparisons with

different initial values and present the result in Figure 3.

Case i: x0 = −5t and x1 = 2t;
Case ii: x0 = 9t3 + 11t and x1 = t2;

Case iii: x0 = cos(2t) + 5 and x1 = e−3t.
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6. Conclusion

In this paper, we considered the problem of finding a common element of the
set of solution of VIP and FPP for η-demimetric mapping in real Hilbert space. We
proposed a new iterative algorithm of inertial form and proved a strong convergence
theorem under some mild conditions. Our proposed method uses a combination of sub-
gradient extragradient method and a modified viscosity approach with self adaptable
step size which avoids the knowledge of the Lipschitz constant of the cost operator
in practice. Some applications to constrained optimization and split feasibility prob-
lems were considered. We finally gave some numerical experiments to illustrate the
behaviour of our method and compare it with some related methods in the literature.
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Weakly Picard mappings:
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Abstract. Let (X, d) be a metric space, f : X → X be a mapping and G(·, f(·))
be an admissible perturbation of f . In this paper we study the following problems:
In which conditions imposed on f and G we have the following:

(DDE) data dependence estimate for the mapping f perturbation;
(UH) Ulam-Hyers stability for the equation, x = f(x);
(WP ) well-posedness of the fixed point problem for f ;
(OP ) Ostrowski property of the mapping f .
Some research directions are suggested.
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1. Introduction

Let X be a nonempty set and f : X → X be a mapping. To define a perturbation
of f we consider a mapping G : X ×X → X with the following properties:

(A1) G(x, x) = x, ∀ x ∈ X;
(A2) x, y ∈ X, G(x, y) = x implies y = x.
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Now, we consider the operator, fG : X → X defined by,

fG(x) := G(x, f(x)).

It is clear that, Ff = FfG , i.e., the fixed point equations,

x = f(x) and x = fG(x)

are equivalent.
By definition, the mapping fG is an admissible perturbation of the mapping f

corresponding to the mapping G.
Let us consider an example. For other examples see [53].

Example 1.1. Let B be a Banach space, f : B→ B be a mapping and G : B× B→ B
be defined by,

G(x, y) := (1− λ)x+ λy

for some λ ∈ R∗. Then fG is an admissible perturbation of f . We denote it by, fλ.

Remark 1.2. If X ⊂ B is a nonempty convex subset of B, f : X → X is a mapping and
G(x, y) := (1− λ)x+ λy for some λ ∈]0, 1[, then fλ is an admissible perturbation of
f , i.e., Krasnoselskii perturbation of f . For more considerations of this perturbation
see [52], [3], [12], [20], [21].

Let (X, d) be a metric space, f : X → X be a mapping and G(·, f(·)) be an
admissible perturbation of f . In this paper we shall study the following problems:

In which conditions imposed on f and G we have the following (all or one!) :
(DDE) data dependence estimate for the general perturbation of f ;
(UH) Ulam-Hyers stability for the equation, x = f(x);
(WP ) well-posedness of the fixed point problem for f ;
(OP ) Ostrowski property of the mapping f .
Some research direction are suggested.
Throughout this paper the notations and terminology given in [8], [38], [56] and

[57] are used.
Instead of long preliminaries we give the following references:
• Picard and weakly Picard mappings: [48], [56], [57], [61], [64];
• Ulam-Hyers stability: [55], [56], [57], [64];
• Well-posedness of fixed point problem: [56], [57], [9], [10], [35], [50], [33];
• Ostrowski property of a mapping (limit shadowing property): [35], [17], [22],

[46], [56], [57], [61], [64], [13], [34], [32].

2. Retractions on the fixed point set and retraction-displacement
conditions

Let (X, d) be a metric space and f : X → X be a mapping with Ff 6= ∅. Let
r : X → Ff be a set retraction, i.e., r|Ff

= 1Ff
. Then,

X =
⋃
x∈Ff

r−1(x)
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is a partition of X. If x∗ ∈ Ff then we denote, Xx∗ := r−1(x∗). By definition, the

partition X =
⋃

x∗∈Ff

Xx∗ is a fixed point partition of X corresponding to the retraction

r (see [59]).

Remark 2.1. In general, Xx∗ is not an invariant subset for f .

Let ψ : R+ → R+ be an increasing function with ψ(0) = 0 and continuous at 0.
By definition, the condition,

d(x, r(x)) ≤ ψ(d(x, f(x))), ∀ x ∈ X,

is a retraction-displacement condition on f corresponding to the retraction r.

Example 2.2. (see [57]; see also [42], [37], [36]). Let (X, d) be a complete metric space
and f : X → X be a graphic l-contraction. In addition we suppose that,

d(f(fn(x)), f(f∞(x)))→ 0 as n→∞,

for all x ∈ X. Then f is weakly Picard mapping.
The mapping f∞ : X → Ff is a set-retraction and

d(x, f∞(x)) ≤ 1

1− l
d(x, f(x)), ∀ x ∈ X.

In this case, f(Xx∗) ⊂ Xx∗ , ∀ x∗ ∈ Ff , i.e., X =
⋃

x∗∈Ff

Xx∗ is an invariant fixed point

partition of X corresponding to the retraction f∞.

Example 2.3. (Browder [11] and Bruck [14], pp. 6, 33). Let H be a Hilbert space, X ⊂
H be a convex, closed and bounded subset of H and f : X → X be a nonexpansive
mapping. Let r1(x) = lim

n→∞
xn(x), where xn is the unique solution of,

xn(x) =
1

n
x+

(
1− 1

n

)
f(xn(x)), n ∈ N∗, x ∈ X,

and

r2(x) = w − lim 1

n
(1X + f + . . .+ fn−1)(x), n ∈ N∗, x ∈ X.

Then the mappings, r1, r2 : X → Ff are nonexpansive retractions. In general, r1 6= r2.
In this case we have two distinct fixed point partitions of X corresponding to r1

and to r2.

Remark 2.4. The notion fixed point partition of the space with respect to a retraction
is a relevant one. For example, in terms of this notion we can give the following
definitions.

Let (X, d) be a metric space, f : X → X be a mapping with Ff 6= ∅, r : X → Ff

be a set retraction and X =
⋃

x∗∈Ff

Xx∗ be the fixed point partition of X, corresponding

to the retraction r.
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Definition 2.5. The fixed point problem for the mapping f is well-posed with respect

to the partition X =
⋃

x∗∈Ff

Xx∗ if the following implication holds:

x∗ ∈ Ff , xn ∈ Xx∗ , n ∈ N, d(xn, f(xn))→ 0 as n→∞
⇒ xn → x∗ as n→∞.

Definition 2.6. The mapping f has the Ostrowski property with respect to the parti-

tion, X =
⋃

x∗∈Ff

Xx∗ , if the following implication holds:

x∗ ∈ Ff , xn ∈ Xx∗ , n ∈ N, d(xn+1, f(xn))→ 0 as n→∞
⇒ xn → x∗ as n→∞.

3. Results for (DDE), (UH) and (WP ) problems

3.1. (DDE) problem

Let (X, d) be a metric space, f : X → X be a mapping and fG be an admissible
perturbation. Let g : X → X be a mapping such that,

d(f(x), g(x)) ≤ η, ∀ x ∈ X, for some η ∈ R∗+.
We suppose that, Ff = {x∗} and Fg 6= ∅.

The problem is to find in which conditions imposed on f and G, there exists an
increasing, θ : R+ → R+, with θ(0) = 0 and continuous in 0 such that,

d(y∗, x∗) ≤ θ(η), ∀ y∗ ∈ Fg.
We have the following result.

Theorem 3.1. We suppose that:

(1) fG is a ψ-Picard mapping (FfG = {x∗});
(2) d(x, fG(x)) ≤ cd(x, f(x)), ∀ x ∈ X with some c ∈ R∗+;
(3) d(g(x), f(x)) ≤ η, ∀ x ∈ X with some η ∈ R∗+.

Then we have that:

(i) d(x, x∗) ≤ ψ(cd(x, f(x))), ∀ x ∈ X;
(ii) d(y∗, x∗) ≤ ψ(cη), ∀ y∗ ∈ Fg.

Proof. Since fG is a Picard mapping and an admissible perturbation of f we have
that, Ff = {x∗} and from (1),

d(x, x∗) ≤ ψ(d(x, fG(x))), ∀ x ∈ X.
From (2) we have (i).

If we take x = y∗ ∈ Fg, then from (i) and (3),

d(y∗, x∗) ≤ ψ(cd(y∗, f(y∗))) = ψ(cd(g(y∗), f(y∗))) ≤ ψ(cη). �

Example 3.2. Let X := B be a Banach space and G(x, y) := (1 − λ)x + λy, with
λ ∈ R∗+. We suppose that fλ is an l-contraction for some λ ∈ R∗+. Then fλ is 1

1−l -

Picard mapping and d(x, fλ(x)) = ‖x− fλ(x)‖ ≤ |λ|‖x− f(x)‖.
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Let, ‖f(x)− g(x)‖ ≤ η, ∀ x ∈ B. Then by Theorem 3.1 we have that:

‖y∗ − x∗‖ ≤ |λ|
1− l

η, ∀ y∗ ∈ Fg.

Remark 3.3. For the mappings fλ which are contractions or which satisfy other metric
conditions, see Berinde [4] and Berinde-Păcurar [7].

Remark 3.4. With similar proof as the one given for Theorem 3.1, we have the fol-
lowing result.

Theorem 3.5. We suppose that:

(1) fG is a ψ-weakly Picard mapping;
(2) d(x, fG(x)) ≤ cd(x, f(x)), ∀ x ∈ X with some c ∈ R∗+;
(3) d(g(x), f(x)) ≤ η, ∀ x ∈ X with some η ∈ R∗+.

Then we have that:

(i) d(x, f∞G (x)) ≤ ψ(cd(x, f(x))), ∀ x ∈ X;

(ii) if x∗ ∈ Ff , then d(y∗, x∗) ≤ ψ(cη), ∀ y∗ ∈ Fg ∩Xx∗ , where X =
⋃

x∗∈Ff

Xx∗ is a

fixed point partition of X corresponding to the retraction f∞G .

3.2. (UH) problem

Let (X, d) be a metric space, f : X → X be a mapping and fG : X → X be an
admissible perturbation of f . For ε ∈ R∗+ we consider the inequation

d(y, f(y)) ≤ ε.

Let y∗ be a solution of this inequation. We suppose that fG is a ψ-weakly Picard
mapping and

d(x, fG(x)) ≤ cd(x, f(x)), ∀ x ∈ X, with some c ∈ R∗+.

There exists x∗ ∈ Ff such that y∗ ∈ Xx∗ . For a such x∗ we have that

d(y∗, x∗) ≤ ψ(cε).

So, we have the following result.

Theorem 3.6. In the above conditions the fixed point equation, x = f(x) is Ulam-Hyers
stable.

3.3. (WP ) problem

By standard proof (see [56], [57]) and the above considerations, we have the
following result for this problem.

Theorem 3.7. Let (X, d) be a metric space, f : X → X be a mapping and fG be an
admissible perturbation. We suppose that:

(1) fG is ψ-weakly Picard mapping;
(2) d(x, fG(x)) ≤ cd(x, f(x)), ∀ x ∈ X, for some c ∈ R∗+.

Then the fixed point problem for f is well-posed.
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4. Notion of quasicontraction and (OP ) problem

4.1. Quasicontractions

In [8] the following definition is given:
Let (X, d) be a metric space and f : X → X be a mapping with Ff 6= ∅. By

definition f is a quasicontraction if there exists l ∈]0, 1[ such that

d(f(x), x∗) ≤ ld(x, x∗), ∀ x ∈ X, ∀ x∗ ∈ Ff .
It is clear that if f is a quasicontraction then Ff = {x∗}.
If Ff 6= ∅ and r : X → Ff is a set-retraction then we have the following

definition.

Definition 4.1. Let (X, d) be a metric space, f : X → X be a mapping with Ff 6= ∅
and r : X → Ff be a set retraction. Then f is a quasicontraction with respect to the
retraction r if there exists l ∈]0, 1[ such that,

d(f(x), r(x)) ≤ ld(x, r(x)), ∀ x ∈ X.

For example, if f is a weakly Picard mapping then f is a quasicontraction if,

d(f(x), f∞(x)) ≤ ld(x, f∞(x)), ∀ x ∈ X.
For more considerations on quasicontractions, see: [3], [17], [46], [56], [57], [67],

[14], [13].

4.2. (OP ) problem

Let (X, d) be a metric space, f : X → X be a mapping with Ff 6= ∅ and

r : X → Ff be a set retraction. LetX =
⋃

x∗∈Ff

Xx∗ be the partition ofX corresponding

to the retraction r. Let x∗ ∈ Ff and xn ∈ Xx∗ , n ∈ N such that,

d(xn+1, f(xn))→ 0 as n→∞.
Let us suppose that the mapping f is a quasi l-contraction with respect to the retrac-
tion r, i.e.,

d(f(x), x∗) ≤ ld(x, x∗), ∀ x ∈ Xx∗ , ∀ x∗ ∈ Ff .
From this condition we have that,

d(xn+1, x
∗) ≤ d(xn+1, f(xn)) + d(f(xn), x∗)

≤ d(xn+1, f(xn)) + ld(xn, x
∗)

≤ d(xn+1, f(xn)) + ld(xn, f(xn−1)) + l2d(xn−1, x
∗)

...

≤ d(xn+1, f(xn)) + ld(xn, f(xn−1)) + . . .+ lnd(x1, f(x0))→ 0,

as n→∞, from a Cauchy-Toeplitz lemma [63].
So we have,

Theorem 4.2. Let (X, d) be a metric space, f : X → X be a mapping with Ff 6= ∅
and r : X → Ff be a set retraction. We suppose that f is a quasicontraction with
respect to the retraction r. Then the mapping f has the Ostrowski property.
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For example let fG be an admissible perturbation of f . If fG is a weakly Pi-
card mapping and the mapping f is a quasicontraction with respect to f∞G , then the
mapping f has the Ostrowski property with respect to f∞G .

5. Research directions

5.1. To give relevant examples of iterative fixed point algorithms which generate
retractions on a fixed point set.

References: [3], [10], [12], [17], [28], [31], [35], [45], [53], [58], [66], [65], [11].

5.2. To give relevant examples of quasicontractions with respect to retractions defined
by iterative algorithms.

For theoretical and applicative point of view, from the considerations of this
article, the following problems arise:

To give similar results for:

5.3. Zero point equations
References: [16], [43], [19], [3], [35], [55].

5.4. Coincidence point equations
References: [15], [55], [60].

5.5. Equations with nonself mappings
References: [6], [9], [18], [35], [54], [55], [61].

5.6. Equations in Rm+ -metric spaces
References: [35], [47], [61], [48], [56], [63], [27], [34].

5.7. Equations in s(R+)-metric spaces
References: [68], [56], [57], [61], [63], [27].

5.8. Equations in dislocated metric spaces
References: [31], [51], [24], [25], [29], [2], [1], [5].

5.9. Equations in a set with two metrics
References: [48], [61], [49], [24], [47].

5.10. Equations in a set with an order relation and a metric
References: [41] and the references therein.

5.11. Equations with multivalued mappings
References: [40], [44], [61], [55], [62], [14], [30].
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The Pólya f -curvature of plane curves

Mircea Crasmareanu and Gabriel-Teodor Pripoae

Abstract. We introduce and study a new curvature function for plane curves
inspired by the weighted mean curvature of M. Gromov. We call it Pólya, being
the difference between the usual curvature and the inner product of the normal
vector field with the Pólya vector field of a given planar function f . We computed
it for several examples, since the general problem of vanishing or constant values
of this new curvature involves the general expression of f .

Mathematics Subject Classification (2010): 53A04, 53A45, 53A55.

Keywords: Plane curve, Pólya vector field, f -curvature, reverse potential.

1. Introduction

The last forty years known an intensive research in the area of geometric flows.
The most simple of them is the curve shortening flow and already the excellent survey
[4] is almost twenty years old. Recall that the main geometric tool in this last flow
is the well-known curvature of plane curves. Hence, to give a re-start to this problem
seams to search for variants of the curvature or in terms of [11], deformations of the
usual curvature. The goal of this short note is to propose such a deformation using
a type of planar vector fields introduced by George Pólya (1887-1985). The life and
research of this brilliant mathematician is exposed in the book [1].

The contents of this paper is as follows. In the following section we introduce our
new curvature, using an idea of Mikhael Gromov. This curvature function, denoted
kf , is defined with respect to a given planar function f : Ω ⊆ R2 → R2 through
its associated Pólya vector field. Starting from the given curve C we compute kf in
some examples in order to determine the complexity of computation. At this level,
due to the generality of function f , it is impossible to determine cases when kf is zero
or another real constant. For the examples of this section we choose in particular a
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holomorphic function, namely the square function f(z) = z2 and hence we denote the
corresponding curvature as ksquare. At the end of the section we use the Fermi-Walker
derivative to express kf .

In the third section we start from the given f and define a notion of reverse
potential F which involves the paracomplex structure of R2; hence we change the
notation of our introduced curvature in kF . Now, we can point out cases when kF
is zero or another constant and an interesting example is provided by the harmonic
radial function F (x, y) = 1

2 ln(x2 + y2).

2. The Pólya f -curvature for a plane curve

Fix I ⊆ R an open interval and C ⊂ R2 a regular parametrized curve of equation:

C : r(t) = (x(t), y(t)), ‖r′(t)‖ > 0, t ∈ I. (2.1)

The ambient setting, namely R2, is an Euclidean vector space with respect to
the canonical inner product:

〈u, v〉 = u1v1 + u2v2, u = (u1, u2), v = (v1, v2) ∈ R2, 0 ≤ ‖u‖2 = 〈u, u〉. (2.2)

The infinitesimal generator of the rotations in R2 is the linear vector field, called
angular:

ξ(u) := −u2 ∂

∂u1
+ u1

∂

∂u2
, ξ(u) = i · u = i · (u1 + iu2). (2.3)

It is a complete vector field with integral curves the circles C(O,R):
γξu0

(t) =

(
cos t − sin t
sin t cos t

)
·
(
u10
u20

)
= SO(2) · u0,

R = ‖u0‖ = ‖(u10, u20)‖, t ∈ R, R(t) :=

(
cos t − sin t
sin t cos t

)
∈ SO(2) = S1

(2.4)

and since the rotations are isometries of the Riemannian metric gcan = dx2 + dy2 it
follows that ξ is a Killing vector field of the Riemannian manifold (R2, gcan). The first
integrals of ξ are the Gaussian functions i.e. multiples of the square norm:

fC(x, y) = C(x2 + y2), C ∈ R.

For an arbitrary vector field X = A(x, y) ∂
∂x +B(x, y) ∂∂y its Lie bracket with ξ is:

[X, ξ] = (yAx − xAy −B)
∂

∂x
+ (A+ yBx − xBy)

∂

∂y

where the subscript denotes the variable corresponding to the partial derivative. For
example, ξ commutes with the radial (or Euler) vector field:

E(x, y) = x
∂

∂x
+ y

∂

∂y
,

which is also a complete vector field having as integral curves the homotheties γEu0
(t) =

etu0 for all t ∈ R. The vector field E is the basis of the 1-dimensional annihilator of
the Liouville (or tautological) 1-form λ = 1

2 (−ydx+ xdy) whose exterior derivative is
the area 2-form dx ∧ dy. We point out also that the opposite vector field W = −E is
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exactly the wind in the Zermelo navigation problem corresponding to the Funk metric
in the unit disk of R2, [5]. For an arbitrary Euclidean space Rn with n ≥ 2 the radial
vector field E = xi ∂

∂xi defines the notion of horizontal 1-form ρ as satisfying iEρ = 0
with iE the interior product.

The Frenet apparatus of the curve C is provided by:

T (t) =
r′(t)

‖r′(t)‖
∈ S1,

N(t) = i · T (t) =
1

‖r′(t)‖
(−y′(t), x′(t)) ∈ S1

k(t) =
1

‖r′(t)‖
〈T ′(t), N(t)〉 =

1

‖r′(t)‖3
[x′(t)y′′(t)− y′(t)x′′(t)].

(2.5)

Hence, if C is naturally parametrized (or parametrized by arc-length) i.e. ‖r′(s)‖ = 1
for all s ∈ I then r′′(s) = k(s)ir′(s). In a complex approach based on

z(t) = x(t) + iy(t) ∈ C = R2

we have 2λ = Im(z̄dz) and
k(t) =

1

|z′(t)|3
Im(z̄′(t) · z′′(t)) =

1

|z′(t)|
Im
(
z′′(t)
z′(t)

)
,

Re(z̄′(t) · z′′(t)) =
1

2

d

dt
‖r′(t)‖2, fC(z) = C|z|2.

(2.6)

This note defines a new curvature function for C inspired by a notion introduced
by M. Gromov in [8, p. 213] and concerning with hypersurfaces Mn in a weighted Rie-

mannian manifold (M̃, g, f ∈ C∞+ (M̃)). More precisely, the weighted mean curvature
of M is the difference:

Hf := H − 〈Ñ , ∇̃f〉g (2.7)

where H is the usual mean curvature of M and Ñ is the unit normal to M . This
curvature was studied in several papers; for example if Hf is the constant λ ∈ R
then M is called λ-hypersurface and the influence of a shrinking Ricci soliton on the
geometry of such a hypersurface is studied in [2].

Suppose that the geometric image of the given curve is contained in a domain
Ω ⊆ R2 and we have also a given function f : Ω → R2 = C, f = (u, v) = u + iv for
u, v ∈ C∞(Ω). This function has an associated vector field, called Pólya:

Vf := u
∂

∂x
− v ∂

∂y
(2.8)

whose Lie bracket with ξ and E is:
[Vf , ξ] = (yux − xuy + v)

∂

∂x
+ (u− yvx + xvy)

∂

∂y
,

[Vf , E] = (u− xux − yuy)
∂

∂x
+ (xvx + yvy − v)

∂

∂y
.

(2.9)

For details concerning this type of vector fields see [3] and [9]. Hence we follow this
path and we consider:
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Definition 2.1. The Pólya f -curvature of C is the smooth function kf : I → R given
by:

kf (t) := k(t)− 〈N(t), Vf (r(t))〉. (2.10)

Before starting its study we point out that this work is dedicated to the memory
of Academician Radu Miron (1927-2022). He was always interested in the geometry of
curves and, besides its theory of Myller configuration ([13]), he generalizes also a type
of curvature for space curves in [12]. It is worth to remark that for its meaningfully
contribution to the geometry, the Romanian edition (1966) of the book ([13]) has
received the ”Gheorghe Ţiţeica” Prize of the Romanian Academy in 1968. Obviously,
we can present on several pages the enormous contributions of Academician Radu
Miron to the theory of space curves (e.g. by extensions of the celebrated Gauss-
Bonnet theorem) but due to the planar character of our study we stop here our
commemorative discourse.

Returning to our subject we note:

Theorem 2.2. (i) The expression of the Pólya f -curvature is:

kf (t) = k(t) +
x′(t)v(x(t), y(t)) + y′(t)u(x(t), y(t))

‖r′(t)‖
. (2.11)

(ii) Moreover:

kf (t) ≤ k(t) +
√

[u(x(t), y(t))]2 + [v(x(t), y(t))]2 = k(t) + ‖Vf (r(t))‖ (2.12)

with equality if and only if the vector field Vf ◦ r is parallel to N but in the opposite
direction.
(iii) In particular, if C is an integral curve of Vf then kf is exactly k.
(iv) If the normal projection of Vf ◦ r is invariant with respect to the orientation
preserving parameter changes on C then kf is invariant too, and conversely.
(v) If the angle made by Vf ◦ r with the normal is invariant w.r.t. positively oriented
isometries then kf is invariant too, and conversely.

Proof. We have directly:

〈N(t), Vf (r(t))〉 = 〈iT (t), Vf (r(t))〉 (2.13)

and the conclusion (2.11) follows. The inequality (2.12) is the direct application of
the CBS inequality. The claimed consequence follows from the ODE system:

x′ = u,

y′ = −v. �

Theorem 2.3. With the previous notations, let I ⊆ R be an open subset and let h :
I → R be a smooth function. Fix t0 ∈ I, (x0, y0) ∈ R2 and an orthonormal pair
{T0 ∈ S1, N0 ∈ S1} of R2. Then there exists a maximal open interval J ⊆ I around
t0 and a unique parameterized curve C : J → R2, such that kf = h, C(t0) = (x0, y0)
and T (t0) = T0, N(t0) = N0.
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Proof. This result is an analogue of the fundamental theorem of plane curves ([10],
1.3.6) and the proof is similar. Consider the ODEs system:

X ′(t) = (h(t) + 〈Y (t), Vf (x(t), y(t))〉) · Y (t)

Y ′(t) = − (h(t) + 〈Y (t), Vf (x(t), y(t))〉) ·X(t)

X(t) =
1

(x′(t))2 + (y′(t))2
· (x′(t), y′(t)) ,

Y (t) =
1

(x′(t))2 + (y′(t))2
· (−y′(t), x′(t))

with the initial conditions (x(t0), y(t0)) = (x0, y0) and (x′(t0), y′(t0)) = (T0, N0).
The existence and uniqueness theorem for ODEs ensures there exists a solution
C(t) = (x(t), y(t)) on a maximal open interval J ⊆ I around t0. A short com-

putation proves that
{
X,Y

}
is the Frenet frame along C and the that the first

two formulas of the previous system are the Frenet equations. As the function
(h(t) + 〈Y (t), Vf (x(t), y(t))〉) must be the curvature function k = k(t) of C, we obtain
the relation (2.10), hence the equality kf = h. �

Example 2.4. i) If C is the line r0+tU, t ∈ R with the vector U = (U1, U2) 6= 0̄ = (0, 0)
then kf is the constant:

kf (t) =
U1v(x0 + tU1, y0 + tU2) + U2u(x0 + tU1, y0 + tU2)

‖U‖
. (2.14)

In particular, if O ∈ C then

kf (t) =
U1v(tU1, tU2) + U2u(tU1, tU2)√

(U1)2 + (U2)2

and for f(z) = z2 we have:

ksquare(t) =
U2[3(U1)2 − (U2)2]√

(U1)2 + (U2)2
t2. (2.15)

ii) If C is the circle C(O,R) : r(t) = Reit then:

kf (t) =
1

R
− v(R cos t, R sin t) sin t+ u(R cos t, R sin t) cos t. (2.16)

For f(z) = z2 we have:

ksquare(t) =
1

R
+R2 cos 3t ∈

[
1

R
−R2,

1

R
+R2

]
. (2.17)

iii) For the case of logarithmic spiral expressed in polar coordinates as ρR,α(t) = Reαt,
R,α > 0 and t ∈ R we have the f -curvature:√

α2 + 1kf (t) = R−1e−αt + (α cos t− sin t)v(Reαt cos t, Reαt sin t)

+(α sin t+ cos t)u(Reαt cos t, Reαt sin t) (2.18)

and for α→ 0 we re-obtain the f -curvature of the circle C(O,R). Again for f(z) = z2

we have: √
α2 + 1ksquare(t) = R−1e−αt +R2e2αt[cos 3t+ α sin 3t]. (2.19)
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In the following since the problem of vanishing or of constant values for kf
can not be treated due to the generality of f we continue to present some concrete
examples in order to remark the computational aspects of our approach.

Example 2.5. We study completely a curve with non-constant rotational curve.
Namely, the involute of the unit circle S1 is:

C : r(t) = (cos t+ t sin t, sin t− t cos t) = (1− it)eit, t ∈ (0,+∞). (2.20)

A direct computation gives:

r′(t) = (t cos t, t sin t) = teit, k(t) =
1

t
> 0, ‖r′(t)‖ = t (2.21)

and then the f -curvature is:

kf (t) =
1

t
+v(cos t+t sin t, sin t−t cos t) cos t+u(cos t+t sin t, sin t−t cos t) sin t (2.22)

which for f(z) = z2 becomes:

ksquare(t) =
1

t
+ 3(1− t2) sin t cos2 t− 2t cos3 t− sin3 t+ 6t sin2 t cos t. (2.23)

Example 2.6. For the square function f(z) = z2 the integral curves of its Pólya vector
field are the solutions of the ODE system:

ẋ = x2 − y2, ẏ = −2xy (2.24)

having the first integral:

Fsquare(z = x+ iy) = 3x2y − y3 = Im(z3). (2.25)

Fix then a arbitrary real number a 6= 0; the implicit plane curve:

C(a) : F (z) = a (2.26)

has the usual curvature:

k(C(a)) = − a

27(x2 + y2)2
. (2.27)

We end this section with an approach in terms of Fermi-Walker derivative. Let
Xγ be the set of vector fields along the curve γ. Then the Fermi-Walker derivative is
the map ([7]) ∇FWγ : Xγ → Xγ :

∇FWγ (X) :=
d

dt
X + k‖r′(·)‖[〈X,N〉T − 〈X,T 〉N ] =

d

dt
X + k[X[(N)T −X[(T )N ]

(2.28)
with X[ the differential 1-form dual to X with respect to the Euclidean metric. For
X = Vf ◦ r we have:

∇FWγ (Vf ◦r)(t) =
d

dt
Vf (r(t))+‖r′(t)‖k(t)[〈Vf ◦r(t), N(t)〉T (t)−〈Vf ◦r(t), T (t)〉N(t)]

(2.29)
and then we restrict to the tangential component of this equation:

〈(∇FWγ Vf ◦ r)(t)−
d

dt
Vf (r(t)), T (t)〉 = ‖r′(t)‖k(t)〈Vf ◦ r(t), N(t)〉. (2.30)
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Hence, if C is not a line we have:

kf (t) = k(t)−
〈(∇FWγ Vf ◦ r)(t)− d

dtVf (r(t)), T (t)〉
‖r′(t)‖k(t)

. (2.31)

3. A reverse potential for f and the corresponding Pólya curvature

Usually, the smooth function F ∈ C∞(Ω) is called a potential of f if the gradient
relation holds f = ∇F which means u = Fx and v = Fy. But for our formulae (2.11)
another object seems more naturally:

Definition 3.1. F is a reverse-potential of f if u = Fy and v = Fx.

In a matrix form we express this condition as:(
u
v

)
= Γ · ∇F, Γ :=

(
0 1
1 0

)
∈ Sym(2). (3.1)

We point out that since Γ2 = I2 and dimKer(I2 + Γ) = dimKer(I2 − Γ) = 1 the
endomorphism Γ is exactly the paracomplex structure of the plane R2, [6]. The kernel
of I2 + Γ is the second bisectrix B2 : x+ y = 0 while the kernel of I2 − Γ is the first
bisectrix B1 : x − y = 0. The paracomplex structure Γ and the complex structure
J := R

(
π
2

)
of the plane commute:

Γ · J = J · Γ =

(
1 0
0 −1

)
= diag(1,−1). (3.2)

In fact, in [9, p. 5] there is another vector field associated to f , namely

V ⊥f := −Vif = v
∂

∂x
+ u

∂

∂y

and hence if F is a reverse potential of f then its gradient is exactly V ⊥f .

It results immediately that our considered curvature, denoted now kF , is:

kF (t) = k(t) +
1

‖r′(t)‖
d

dt
F (r(t)), kF (t) ≤ k(t) + ‖∇F (r(t))‖ (3.3)

since ‖Vf‖ = ‖∇F‖.

Remark 3.2. An useful formalism is that of [14, p. 2]; if r : S1 ' [0, 2π) → R2 is
naturally parametrized then there exists the smooth function θ : S1 → R, called
normal angle, such that:

N(s) = eiθ(s) = (cos θ(s), sin θ(s)), T (s) = −iN(s) = −ieiθ(s) = ei(θ(s)−
π
2 ) (3.4)

and then the Frenet equations yield:

dθ

ds
(s) = k(s). (3.5)

Then kF is a derivative:

kF (s) =
d

ds
(θ(s) + F (r(s))) (3.6)
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and hence kF is vanishing if and only if the function θ + F ◦ r is a constant.

Example 3.3. Suppose that f is a holomorphic function i.e. its real and imaginary
components satisfy the Cauchy-Riemann equations: ux = vy, uy = −vx. If f is pro-
vided by the reverse potential F then the first equation holds directly while the second
equation implies the harmonicity of F i.e. the vanishing of the Euclidean Laplacian:
∆F = 0. If we restrict the class of F to radial (i.e. S1-invariant) ones F = F̃ (x2 + y2)
we have the solution F (x, y) = 1

2 ln(x2 + y2) = 1
2 ln f1(x, y) for 0 /∈ Ω and then:

f(z) =
i

z
= y

x2+y2 + i
x

x2 + y2
=

(
y

x2 + y2
,

x

x2 + y2

)
,

Vf =
y

x2 + y2
∂

∂x
− x

x2 + y2
∂

∂y

kF (t) = k(t) +
〈r(t), r′(t)〉
‖r(t)‖2‖r′(t)‖

≤ k(t) +
1

‖r(t)‖
.

(3.7)

The circles C(O,R) : r(t) = Reit are exactly the integral curves of Vf and applying
the last part of proposition 2.2 we get: kF (t) = k(C(O,R)) = 1

R=constant. For the

more general example of logarithmic spiral r(t) = Reiαt, α > 0 we obtain:

kF (t) =
α+ 1

Reαt
√
α2 + 1

, lim
α→0

kF = k(C(O,R)). (3.8)

We have

V ⊥f (x, y) =
1

‖(x, y)‖2
E(x, y)

and then

‖Vf‖ = ‖V ⊥f ‖ =
1√

x2 + y2
.

For a harmonic function f the Lie brackets (2.9) can be expressed only with the
partial derivatives of u:

[Vf , ξ] = (yux − xuy + v)
∂

∂x
+ (u+ xux + yuy)

∂

∂y
,

[Vf , E] = (u− xux − yuy)
∂

∂x
+ (uux − xuy − v)

∂

∂y

(3.9)

and then Vf commutes with ξ while [Vf , E] = 2VF , equality which follows also from
the (−1)-homogeneity of coefficients of f .

4. Pólya related curves

Let f(x, y) = u(x, y) + iv(x, y) be an arbitrary function on the complex plane
and C : I → R2 be a regular parameterized curve, as in Section 2. Denote by k and kf
the curvature function and the Pólya curvature function of C, respectively. From the
fundamental theorem of the theory of plane curves, we know there exists a regular
parameterized curve C̃ : I → R2, whose curvature k̃ is exactly kf ; moreover, this
curve is unique, up to a positively oriented isometry and an orientation preserving
parameter change.
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Definition 4.1. We say C̃ is the Pólya mate of C w.r.t. the function f .

Example 4.2. Let again C = C(O,R) : r(t) = Reit and consider f(z) = z̄. Then, from

the formula (2.16) it results kf = 1
R +R and then C̃ = C(O, R̃) is the Pólya mate of

C for:

R̃ =
R

R2 + 1
≤ min{1

2
, R}. (4.1)

Continuing this process with the fixed f we obtain the Pólya mate of C̃ as being the
circle Ĉ = C(O, R̂) with:

R̂ =
R(R2 + 1)

R2 + (R2 + 1)2
(4.2)

which proves that the ”Pólya mate” relation for a fixed f is not a symmetric one in
general.
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Stud. Univ. Babeş-Bolyai Math. 69(2024), No. 1, 233–244
DOI: 10.24193/subbmath.2024.1.15
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of NP-complete problems
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Abstract. In this paper, given a fixed reference point and a fixed intersection of
finitely many equal radii balls, we consider the problem of finding a point in the
said set which is the most distant, under Euclidean distance, to the said reference
point. This proble is NP-complete in the general setting. We give sufficient condi-
tions for the existence of an algorithm of polynomial complexity which can solve
the problem, in a particular setting. Our algorithm requires that any point in the
said intersection to be no closer to the given reference point than the radius of the
intersecting balls. Checking this requirement is a convex optimization problem
hence one can decide if running the proposed algorithm enjoys the presented the-
oretical guarantees. We also consider the problem where a fixed initial reference
point and a fixed polytope are given and we want to find the farthest point in the
polytope to the given reference point. For this problem we give sufficient condi-
tions in which the solution can be found by solving a linear program. Both these
problems are known to be NP-complete in the general setup, i.e the existence of
an algorithm which solves any of the above problem without restrictions on the
given reference point and search set is undecided so far.
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1. Introduction

In this paper we begin by presenting a novel framework for asserting the feasi-
bility of the intersection of convex sets. Our approach is to synthesize the information
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in the given convex sets in a non-smooth convex function whose unconstrained mini-
mizer can be used to assert the feasibility of the intersection. This problem is known in
the literature as the so called ”convex feasibility problem”. Classic algorithms for this
problem exist and can be found in [16], [18], [17], [19], while more novel approaches
are found here [5], [13]. Our approach to this problem is the presentation of a simple
and elegant criterion for asserting the feasibility of the intersection of two convex sets.
Unlike (some of) the references above, we do not focus on the convex minimization
problem itself, but on the formation of the convex function to be minimized and on
the interpretation of the resulting minimizer.

Next we extend the presented method to a particular case of mathematical
programming: the assertion of the inclusion of an intersection of equal radii balls in
another, bigger, ball. We are able to give meaningful results under some requirements
regarding the distance between the center of the bigger ball and the the intersection
of the balls.

We will use throughout the paper the symbol d(·,×) where · can be a point
and × can be a point or a convex set of points, to designate the Euclidean distance

between · and ×. For a vector u ∈ Rn, u = (u1, ..., un)
T

and r > 0, we denote by
B(u, r) the open ball centered at u and of radius r and we denote by

B̄(u, r) = {x ∈ Rn|‖x− u‖ ≤ r}

the closed ball centered in u and of radius r. We also denote by ‖u‖, ‖u‖2 = uTu, the
Euclidean norm of the vector u.

Finally, for a function f : Rn → R we denote by

f+(x) = max{f(x), 0} f−(x) = min{f(x), 0} (1.1)

Note that f(x) = f+(x) + f−(x).

1.1. Convex domains of interest

Let x ∈ Rn, n,m ∈ N+ and let gk : Rn → R be convex functions for k ∈ {1, . . . ,m}.
We define the convex sets:

Sk =

{
x ∈ Rn

∣∣∣∣gk(x) ≤ 0

}
and we are interested if the set

S =

m⋂
k=1

Sk (1.2)

is empty or not.

For this we define the following function G̃(x) : Rn → R:

G̃(x) =

m∑
k=1

g+k (x)
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2. Main results

In this section we present a novel feasibility criteria for the finite intersection of
certain convex sets. One classic method from the literature for solving this problem
is the method of alternating projections, [4], [13], for finding a feasible solution in
the intersection of convex sets. Below, we give a projection-free method for solving
set intersection problems. Our approach reformulates the feasibility problem as a
non-smooth convex minimization problem.

2.1. Convex feasibility

The following result is a characterization of the set S in terms of a global mini-

mum of G̃(x).

Lemma 2.1. Let

x? ∈ argmin
x∈Rn

G̃(x). (2.1)

Then the following are equivalent:

1. The set S is not empty, i.e ∃ x0 ∈ Rn such that

gk(x0) ≤ 0 ∀k ∈ {1, . . . ,m}

2. The point x? defined by (2.1) satisfies

gk(x?) ≤ 0 ∀k ∈ {1, . . . ,m}

Proof. The part 2 ⇒ 1 follows immediately from gk(x?) ≤ 0 for all k ∈ {1, . . . ,m}
which implies x? ∈ S and therefore S 6= ∅. To prove 1⇒ 2, let x0 such that gk(x0) ≤ 0
for all k ∈ {1, . . . ,m} and assume that ∃k such that gk(x?) > 0. This implies

0 = G̃(x0) < G̃(x?)

which contradicts the fact that x? is a global minimum of G̃. �

Remark 2.2. The simple result above shows that the feasibility of the intersection of
m convex sets (sub-level sets of convex functions) can be asserted by examining the
global minimum of a non-smooth convex function.

Encouraged by the simplicity of the above result we propose a somewhat similar
approach to study the following problem: assert if a fixed intersection of finitely many
equal radii balls is included in another given ball.

2.2. Test for the inclusion of an intersection of balls into another ball

We want to solve the following non-convex optimization problem:

max ‖x− c‖2

s.t ‖x− ck‖2 ≤ R2, ∀k ∈ {1, . . . ,m}, (2.2)

where ck, c ∈ Rn and R ∈ R, R > 0. Problem (2.2) is equivalent to finding a point in
the intersection of the balls centered at ck and of radius R which is the farthest away
from the point c. Please note that for any polytope one can choose ck and R in such
a way that the intersection of the balls provide an approximation of the polytope.
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Although we will not expand this approximation here, this is the main reason for
considering problem (2.2).

It is obviously a quadratically constrained quadratic maximization problem. Al-
gorithms for such, or similar problem, have been proposed in the literature, see [7],
[12], [15], [1]. These treat a similar problem, i.e optimizing a quadratic function with
box constraints. The S-procedure, [10], is a well known algorithm for solving programs
with quadratic objective and quadratic constraints. However, the presented problem
is fundamentally different to the problems which the S-procedure can solve in poly-
nomial time. That is, we are interested if an intersection of more balls is included
in another ball, whereas the S-procedure can be used for testing ellipsoid contain-
ment, i.e to assert if an ellipsoid is included in another. The S-procedure cannot be
used to assert if an intersection of ellipsoids is included in another ellipsoid. Also, the
presented problem is fundamentally different to the sphere/ellipsoid packing prob-
lem, as we are not interested in finding the maximum number of non-overlapping
spheres/ellipsoids which can be included in a given sphere/ellipsoid. In our case all
the geometrical objects (the balls) are fixed and given. We are just supposed to an-
swer with YES or NO to the question: ”is the intersection of the these given balls
included in this other ball?”. Here is is worth noting the work done in [6] which finds
the smallest ball enclosing an intersection of balls. This problem is somewhat similar
to ours as one would, in absence of other choices, propose an ”approximate” solution
to our problem by simply computing the smallest ball enclosing the intersection of
balls, then asserting if that is or not included in the bigger ball. Unfortunately, in [6]
the number of intersecting balls is required to be strictly smaller than the dimension
of the search space. Finally the work presented here [3] treats a slightly more general
problem to what we will be discussing in the next section, i.e maximizing a quadratic
function over an intersection of half spaces. However, we limit ourselves to analyzing
the simpler to understand problem of maximizing the distance to an external point
over an intersection of half spaces. The authors of [3] approach is to cover the search
space with ellipsoids then to maximize over each to finally obtain an approximation to
the initial problem. Unfortunately, covering the search space (or at least its frontier)
with small enough ellipsoids (as required by the precision requirements) requires an
exponential number of ellipsoids [2], so this approach does not seem to be able to
provide a polynomial complexity algorithm for arbitrary small tolerances.

Our approach is different to those presented above and focuses on solving a
non-smooth minimization problem.

Given R, r > 0, we consider the following sets:

B0 = B(c, r) =

{
x ∈ Rn

∣∣∣∣‖x− c‖2 ≤ r2} ,
Bk = B(ck, R) =

{
x ∈ Rn

∣∣∣∣‖x− ck‖ ≤ R2

}
,

C1 =

m⋂
k=1

Bk, C0 = B0 (2.3)
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. In order to solve the problem (2.2), we keep R fixed and design a test which can
assert if C1 ⊆ C0 for various values of r.

We start by defining the functions f, fk : Rn → R:

fk(x) = ‖x− ck‖2 −R2

f(x) = ‖x− c‖2 − r2 (2.4)

and the function Gk : Rn → R, given by

Gk(x) = fk(x)− f−(x) +

m∑
i=1,i6=k

f+i (x)

for k ∈ {1, ...,m}.

Remark 2.3. It can be seen that Gk is a convex function. First the “sum”–term∑m
i=1,i6=k f

+
i (x) is convex, since each term in the sum is convex. On the other hand,

the remaining term of Gk(x), namely fk(x)− f−(x), can be written as

fk(x)− f−(x) = fk(x)− f(x) + f(x)− f−(x) = fk(x)− f(x) + f+(x)

which is convex since it is the sum of the convex function f+(x) and the affine function
fk(x)− f(x) = ‖x− ck‖2 − ‖x− c‖2 −R2 + r2 = (c− ck)T · (2 · x− c− ck)−R2 + r2.

We take G(x) to be the maximum of Gk(x), when k ranges from 1 to m. That is,

G(x) = max

{
Gk(x)

∣∣∣∣k ∈ {1, . . . ,m}} = max
k=1,m

Gk(x)

Remark 2.4. We note that, since G : Rn → R is defined as the pointwise maximum
of the convex functions Gk : Rn → R, it follows that G is convex.

Finally we use x?, a global minimizer of G(x), i.e.,

x? ∈ argmin
x∈Rn

G(x) (2.5)

Before giving our main result, we present a few simple, but usefull lemmas.

Lemma 2.5. Let a, b ∈ Rn and r > 0 such that b 6∈ B(a, r). Then ∀x ∈ B(a, r) the
inequality

(x− b)T (a− b) > 0

holds.

Proof. Using the Euclidean norm properties over Rn, we write

‖x− a‖2 = ‖(x− b) + (b− a)‖2

= ‖x− b‖2 + ‖b− a‖2 − 2(x− b)T (a− b). (2.6)

For x ∈ B(a, r), b /∈ B(a, r), we have ‖x − a‖2 < r2 and ‖b − a‖2 ≥ r2. Combining
these together with ‖x− b‖2 ≥ 0 in (2.6), leads to (x− b)T (a− b) > 0 and concludes
the proof. �

Lemma 2.6. Let x ∈ C1, with C1 defined by (2.3). Then for y ∈ Rn such that d(y, C1) >
R one has

(x− y)T (ck − y) > 0, ∀k ∈ {1, . . . ,m}
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Proof. For x ∈ C1, one has d(x, ck) ≤ R and therefore ck ∈ B(x,R). From d(y, C1) >
R, it follows that d(x, y) > R, hence y 6∈ B(x,R). Applying 2.5, with a := x, b := y,
r := R, and x := ck, one obtains the desired conclusion. �

Lemma 2.7. Let z, y, c1, c2 ∈ Rn with ‖y − c1‖ = ‖y − c2‖. Assume, without loss of
generality, that ‖z − c1‖2 ≥ ‖z − c2‖2 then

‖y + t(z − y)− c1‖2 ≥ ‖y + t(z − y)− c2‖2, ∀t ≥ 0.

Proof. Let

h(t) = ‖y + t(z − y)− c1‖2 − ‖y + t(z − y)− c2‖2.
From the identity above, it can be seen that h(t) is a polynomial of degree at most
1 in t. Since ‖y − c1‖ = ‖y − c2‖ gives h(0) = 0 and ‖z − c1‖ ≥ ‖z − c2‖ gives
h(1) ≥ h(0) = 0, it follows that h(t) is a non-decreasing first order polynomial in t
and therefore

h(t) ≥ 0 = h(0), ∀t ≥ 0,

which completes the proof. �

Lemma 2.8. Let y, c1, . . . , cm ∈ Rn and v ∈ Rn such that ‖v‖ = 1. Let p ∈ {1, ...,m−1}
be such that

‖y − ci‖ = ‖y − cj‖ > ‖y − cl‖ (2.7)

for all i, j ∈ {1, . . . , p} and l ∈ {p+ 1, . . . ,m}. Then ∃kv ∈ {1, ..., p} and δv > 0 such
that for all i ∈ {1, . . . ,m} one has

‖y + tv − ckv‖ ≥ ‖y + tv − ci‖ ∀t ∈ (0, δv), (2.8)

which is stating that there is a small segment starting at y in the direction of v, such
that for all the points on this segment, ckv remains the furthest away. For the case
p = m, (2.8) holds without any additional requirements.

Proof. First, we consider the case p ∈ {1, ...,m− 1}. We define

ρ := ‖y − c1‖ = . . . = ‖y − cp‖.

Let δ > 0 and z ∈ B(y, δ). The triangle inequality gives

‖z − ck‖ ≥ ‖ck − y‖ − ‖z − y‖,
‖z − ci‖ ≤ ‖ci − y‖+ ‖z − y‖.

Using the above inequalities with arbitrary k ∈ {1, ..., p} and i ∈ {p+ 1, ...,m}, gives{
d(z, ck) ≥ ρ− δ,
d(z, ci) ≤ η + δ.

(2.9)

where η = ‖y − ci‖ < ‖y − ck‖ = ρ Following (2.9), we will pick δ > 0 such that
ρ−δ > η+δ. Since (2.7) implies ρ−η > 0, it follows that any δ ∈

(
0, ρ−η2

)
will satisfy

this requirement. Thus, for any δ ∈
(
0, ρ−η2

)
and any z ∈ B(y, δ), we have

d(z, ck) > d(z, ci) ∀k ∈ {1, . . . , p}, ∀i ∈ {p+ 1, . . . ,m}. (2.10)
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Let δv = δ
2 , z = y + δvv and kv ∈ argmax

k∈{1,...,p}
‖z − ck‖. For the points ck, k ∈ {1, ..., p},

we apply Lemma 2.7 to obtain

‖y + (tδv)v − ckv‖2 ≥ ‖y + (tδv)v − ck‖2, ∀t ≥ 0, ∀k ∈ {1, ..., p}. (2.11)

On the other hand, for the points ci, i ∈ {p + 1, ...,m} we let z := y + tv in (2.10)
which gives

‖y + tv − ckv‖2 > ‖y + tv − ci‖2 ∀i ∈ {p+ 1, ...,m}, ∀t ∈ (0, δv). (2.12)

Combining (2.11) and (2.12) leads to the desired conclusion (2.8). For the case p = m,
(2.8) follows immediately. �

The following theorem represents our main result. This is a localization result
for x? using the balls intersection denoted by C1 and the “outside” ball denoted C0.

Theorem 2.9. For R, C, C1 defined by (2.3), if d(C, C1) > R then

C1 \ int(C0) 6= ∅ ⇐⇒ x? ∈ C1 \ int(C0) (2.13)

where x? is defined by (2.5)

Proof. Clearly the implication x? ∈ C1 \ int(C0)⇒ C1 \ int(C0) 6= ∅ is trivial. We now
assume that C1 \ int(C0) 6= ∅ and first show that in such a case x? ∈ C1.

Indeed, for x 6∈ C1 (=
⋂m
k=1 Bk) i.e. it is not in the intersection of congruent

balls, follows that ‖x − ck‖ > R2 for some k ∈ {1, ...,m} or equivalently fk(x) > 0
for some k ∈ {1, ...,m}. From the definitions of f− and f+i , we have −f−(x) ≥ 0
and f+i (x) ≥ 0. Combining this with fk(x) > 0, leads to the fact that for x /∈ C1 we
have Gk(x) > 0, hence G(x) = maxk∈{1,...,m}Gk(x) > 0 as well. On the other hand if

x ∈ C1 \ int(C0), we have −f−(x) = 0, fk(x) ≤ 0, ∀k ∈ {1, ...,m}, implying G(x) ≤ 0
therefore x?, a minimizer of G, is not outside of C1 since there are ”better” points in
C1.

From the observations above, it follows that x? ∈ C1. Next, we will show that
x? /∈ int(C1 ∩ C0), leading to the desired conclusion. Let y ∈ int(C1 ∩ C0). It follows
that there exists δy > 0 such that B(y, δy) ⊆ int(C1 ∩ C0). We can assume without
loss of generality that ∃p ∈ {1, ...,m− 1} such that

‖y − c1‖ = ... = ‖y − cp‖ > ‖y − cl‖, ∀l ∈ {p+ 1, ...,m}.

This implies

G(y) = G1(y) = ... = Gp(y).

From Lemma 2.8 follows that ∀ v ∈ Rn with ‖v‖ = 1, ∃kv ∈ {1, ..., p} and δv > 0 such
that

G(y + tv) = Gkv (y + tv) ∀t ∈ [0, δv). (2.14)

Let δ := min{δy, δv}, v = y−c
‖y−c‖ and z = y + δ

2 . Clearly z ∈ int(C1 ∩ C0). Let

h(t) := G(y + tv), ∀t ∈ [0, δv). From (2.14), it follows that h(t) = Gkv (y + tv), or
equivalently

h(t) = r2 − ‖y − c+ tv‖2 + ‖y − ckv + tv‖2 −R2, ∀t ∈ [0, δv). (2.15)
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Differentiating (2.15) with respect to t gives

h′(t) = −(y − c+ tv)T v + (y − ckv + tv)T v

= −(ckv − c)T
y − c
‖y − c‖

. (2.16)

Since d(c, C1) > R, it follows from Lemma 2.6 and (2.16) that h′(t) < 0, ∀t ∈ [0, δv)
implying that h(t) is strictly decreasing. Therefore h(0) > h( δ2 ), which is equivalent

to G(z) < G(y), for z = y + δ
2v ∈ int(C0 ∩ C1). It follows that x? ∈ argmin G(x)

x∈Rn
/∈

int(C1 ∩ C0). Since C1 can be partitioned as

C1 = C1 \ C0 ∪ int(C1 ∩ C0) ∪ ∂(C1 ∩ C0)

and we showed that x? ∈ C1, x? /∈ int(C1 ∩ C0), we have

x? ∈ C1 \ C0 ∪ ∂(C1 ∩ C0)

⊆ C1 \ C0 ∪ ∂C0,

implying that x? ∈ C1 \ int(C0). This concludes our proof. �

2.3. Complexity Analysis

Theorem 2.9 allows one to solve (2.2) if d(c, C1) > R. Indeed, let x0 ∈ C1 (this
can be found initially by the use of Section 2.1 assuming that C1 6= ∅). Then one
can show that C1 ⊆ B(x0, 2R). Let r = R and r̄ = 2R + ‖x0 − c‖. It is obvious that
C1 \B(c, r) 6= ∅ and C1 \B(c, r̄) = ∅.

We can now search for r? ∈ [r, r̄] such that C1 \B(c, r?−ε) 6= ∅ and C1 \B(c, r?+
ε) = ∅ for some arbitrarily fixed precision ε > 0, using Theorem 2.9 and the bisection
algorithm.

From the computational complexity point of view, each bisection step involves
the application of Theorem 2.9 for some r ∈ [r, r̄]. For this, one has to solve (2.5) to find
x?. Once x? is found, asserting its membership to C1\B(c, r) involves computing m+1
distances in Rn, that is (m+1)n flops (for the square of the distances) and comparing
them to some real numbers, hence another m + 1 flops. Finally the computational
complexity analysis for each step is completed by analyzing the cost of finding x?. This
basically involves an unconstrained minimization of a continuous, non-differentiable
convex function. The starting point can be considered x0 and the search radius can
be taken 2R. There are various algorithms (of sub-gradient, [9] or ellipsoid type, [18])
which are known to have polynomial deterministic worst case complexity for such a
problem. Let Λ (a polynomial in n,m, log(R),− log(ε)) denote the number of floating
point operations required to solve (2.5). Then solving (2.2) requires

O
(

(Λ + (m+ 1) · n) · log2

(
R+ ‖X0 − C‖

ε

))
,

where ε > 0 is the precision used to find r?.
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3. Results regarding polytopes

In this section we tackle a similar problem as in the previous section but instead
of considering a finite intersection of balls, we will consider a polytope P (i.e a finite
intersection of half-spaces) and find a vertex that is the farthest away from a point of
the form c+αd with c, d ∈ Rn, for all sufficiently large values of the scalar α. Without
any restrictions on α this is also known to be an NP-hard problem, i.e maximizing
the distance to a point over a polytope, but under certain restrictions, we prove that
this problem can be reduced to a linear program over the polytope P.

Let A ∈ Rm×n, b ∈ Rm and P = {x ∈ Rn| Ax+ b ≤ 0} a given polytope (closed,

bounded polyhedral set). Let b = [b1, ..., bm]
T

and A(i,:), i = 1,m denote the rows of

the matrix A, viewed as column vectors, i.e., AT =
[
A(1,:), ..., A(m,:)

]
. In what follows,

we give several results related to polytopes.

Theorem 3.1. Let c, d ∈ Rn. Then there exists α0 ∈ R∗+ such that if v∗ is a vertex of
P, with v∗ ∈ argmaxx∈P ‖c+ α0d− x‖2, then

v∗ ∈ argmax
x∈P

‖c+ αd− x‖2 (3.1)

for all α ≥ α0.

Proof. Since we are maximizing a continuous function over the compact subset P of
Rn, the maximum is attained for any value of α. For an arbitrarly selected α, writing
(3.1) as a minimization problem, leads to a concave quadratic program (QP), which
is known to attain its minimum in a vertex of the polytope P (see for example [14]).
If v1, ..., vp are the vertices of the polytope P, it then follows that ∀α, ∃iα ∈ {1, ..., p}
such that

viα ∈ argmax
x∈P

‖c+ αd− x‖2.

Let α > 0 and α > α be such that

viα ∈ argmax
x∈P

‖c+ αd− x‖2 and viα /∈ argmax
x∈P

‖c+ αd− x‖2. (3.2)

If (3.2) does not hold, then the conclusion automatically follows, i.e 6 ∃ α > α such
that viα /∈ argmaxx∈P ‖c+ αd− x‖2, hence simply take α0 = α and v? = viα .

Otherwise, if (3.2) holds, then we show that

viα /∈ argmax
x∈P

‖c+ αd− x‖2, ∀α, α ≥ α, (3.3)

i.e., ∀α, α ≥ α, viα is not the vertex furthest away from c + αd. To see this, let
iα ∈ {1, ..., p} \ iα be such that

viα ∈ argmax
x∈P

‖c+ αd− x‖2.

Clearly, we have

‖c+ αd− viα‖ < ‖c+ αd− viα‖. (3.4)

We define

f(α) = ‖c+ αd− viα‖2 − ‖c+ αd− viα‖2.
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From (3.2) and (3.4), it follows that

f(α) ≥ 0 and f(α) < 0,

which together with α < α and the fact that f is affine, implies that f is a strictly
decreasing function of α. This leads to f(α) < f(α), ∀α > α, which implies (3.3).

To finish the proof, assume that the conclusion of the theorem does not hold.
This is to say that for any α0 > 0, there exists α1 > α0 such that

viα0
∈ argmax

x∈P
‖c+ α0d− x‖2 and viα0

/∈ argmax
x∈P

‖c+ α1d− x‖2.

According to what we have shown above, viα0
will never be the furthest point away

from c + αd for any α ≥ α1. We can repeat this reasoning now with α0 replaced
by α1 and iα0

replaced by iα1
∈ {1, .., p} \ iα0

. After p − 1 such repetitions, we are
exhausting all the vertices from the solution set, which is a contradiction to the fact
that the problem attains its maximum in a vertex for any value of α. �

The next result shows that the point v? of Theorem 3.1 can be found as the
solution of a linear program (LP), whenever the solution set of this LP is a singleton.

Theorem 3.2. Let P be a polytope, c ∈ Rn and d ∈ Rn with ‖d‖ = 1 such that

x? = argmin
x∈P

dTx

is unique. Let α0 and v? be given by Theorem 3.1, i.e.,

v? = argmax
x∈P

‖c+ αd− x‖2 = argmax
x∈P

‖c+ α0d− x‖2 ∀α ≥ α0

Then v? = x?.

Proof. To show that v? = x?, it is enough to prove that

(v?)
T
d ≤ xT d,∀x ∈ P. (3.5)

Now assume, that (3.5) does not hold. It follows that there exists x̃ ∈ P, such that

x̃T d < (v?)
T
d. Define f(α) = ‖c + αd − v?‖2 − ‖c + αd − x̃‖2. A simple calculation

leads to

f ′(α) = (x̃− v?)T d < 0,

implying that the linear function f(α) is decreasing and therefore lim
α→∞

f(α) = −∞.

The latter implies that there exists α1 > 0, such that f(α) < 0, ∀α ≥ α1 or equiva-
lently ‖c+ αd− v?‖2 < ‖c+ αd− x̃‖ , ∀α > α1, which is a contradiction to the way
v? is defined. Therefore v? must satisfy (3.5) or equivalently v? ∈ argmaxx∈P . Since
by assumption, the argmin–set is a singleton, we are led to v? = x?, which concludes
our proof. �
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4. Conclusion and future work

In this paper we have considered two known NP hard problems namely maxi-
mizing the distance to a reference point over (i) an intersection of balls and (ii) an
intersection of half-spaces. We have provided some particular cases of the above men-
tioned problems where algorithms of polynomial complexity exist. In both cases, our
restrictions are in the form of some relation between the given fixed reference point
and the set over which the maximum is searched for.

Consider the first problem (i): for a given finite intersection of equal radii balls,
one can choose the reference point anywhere in the Rn×1 to form a problem. Our
algorithm provides a P time solution to all these choices except for a finite measure
set ”near” the search space, that is, this paper does not offer guarantees for the
reference points whom distance to the search space is less than the radius of the
intersecting balls. It is not known if ”conquering” this last region is even possible, but
obviously reducing it might be the subject of future work. As a first improvement one
can try to provide an P time algorithm which allows the given reference point to be
anywhere outside of the convex hull of the centers of the intersecting balls.

The approach to the first problem is based on a novel feasibility criteria for the
intersection of convex sets which we apply to a non-convex optimization problem. The
restrictions we obtain, are sufficient to actually transform the non-convex problem in
a convex one.

The approach to the second problem, maximizing the distance to a point over a
polytope, is somehow inspired from the first problem, by observing that if the exterior
point is far enough, then in some situations the optimal point is actually obtained by
solving a linear program.
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