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Hermite-Hadamard-Fejér type inequalities
for convex functions via fractional integrals

İmdat İşcan

Abstract. In this paper, firstly we have established Hermite–Hadamard-Fejér in-
equality for fractional integrals. Secondly, an integral identity and some Hermite-
Hadamard-Fejér type integral inequalities for the fractional integrals have been
obtained. The some results presented here would provide extensions of those given
in earlier works.

Mathematics Subject Classification (2010): 26A51, 26A33, 26D10.

Keywords: Hermite-Hadamard inequality, Hermite-Hadamard-Fejér inequality,
Riemann-Liouville fractional integral, convex function.

1. Introduction

Let f : I ⊆ R→ R be a convex function defined on the interval I of real numbers
and a, b ∈ I with a < b. The inequality

f

(
a+ b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)

2
(1.1)

is well known in the literature as Hermite-Hadamard’s inequality [4].

The most well-known inequalities related to the integral mean of a convex func-
tion f are the Hermite Hadamard inequalities or its weighted versions, the so-called
Hermite-Hadamard-Fejér inequalities.

In [3], Fejér established the following Fejér inequality which is the weighted
generalization of Hermite-Hadamard inequality (1.1):

Theorem 1.1. Let f : [a, b]→ R be convex function. Then the inequality

f

(
a+ b

2

)∫ b

a

g(x)dx ≤
∫ b

a

f(x)g(x)dx ≤ f(a) + f(b)

2

∫ b

a

g(x)dx (1.2)

holds, where g : [a, b]→ R is nonnegative,integrable and symmetric to (a+ b)/2.
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For some results which generalize, improve, and extend the inequalities (1.1) and
(1.2) see [1, 5, 6, 7, 12, 16].

We give some necessary definitions and mathematical preliminaries of fractional
calculus theory which are used throughout this paper.

Definition 1.2. Let f ∈ L [a, b]. The Riemann-Liouville integrals Jαa+f and Jαb−f of
order α > 0 with a ≥ 0 are defined by

Jαa+f(x) =
1

Γ(α)

∫ x

a

(x− t)α−1 f(t)dt, x > a

and

Jαb−f(x) =
1

Γ(α)

∫ b

x

(t− x)
α−1

f(t)dt, x < b

respectively, where Γ(α) is the Gamma function defined by

Γ(α) =

∞∫
0

e−ttα−1dt and J0
a+f(x) = J0

b−f(x) = f(x).

Because of the wide application of Hermite-Hadamard type inequalities and
fractional integrals, many researchers extend their studies to Hermite-Hadamard type
inequalities involving fractional integrals not limited to integer integrals. Recently,
more and more Hermite-Hadamard inequalities involving fractional integrals have
been obtained for different classes of functions; see [2, 8, 9, 10, 14, 15, 17, 18].

In [14], Sarıkaya et. al. represented Hermite–Hadamard’s inequalities in frac-
tional integral forms as follows.

Theorem 1.3. Let f : [a, b]→ R be a positive function with 0 ≤ a < b and f ∈ L [a, b].
If f is a convex function on [a, b], then the following inequalities for fractional integrals
hold

f

(
a+ b

2

)
≤ Γ(α+ 1)

2 (b− a)
α

[
Jαa+f(b) + Jαb−f(a)

]
≤ f(a) + f(b)

2
(1.3)

with α > 0.

In [14] some Hermite-Hadamard type integral inequalities for fractional integral
were proved using the following lemma.

Lemma 1.4. Let f : [a, b]→ R be a differentiable mapping on (a, b) with a < b.
If f ′ ∈ L [a, b] then the following equality for fractional integrals holds:

f(a) + f(b)

2
− Γ(α+ 1)

2 (b− a)
α

[
Jαa+f(b) + Jαb−f(a)

]
(1.4)

=
b− a

2

∫ 1

0

[(1− t)α − tα] f ′ (ta+ (1− t)b) dt.
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Theorem 1.5. Let f : [a, b]→ R be a differentiable mapping on (a, b) with a < b.
If |f ′| is convex on [a, b] then the following inequality for fractional integrals holds:∣∣∣∣f(a) + f(b)

2
− Γ(α+ 1)

2 (b− a)
α

[
Jαa+f(b) + Jαb−f(a)

]∣∣∣∣ (1.5)

≤ b− a
2 (α+ 1)

(
1− 1

2α

)
[|f ′ (a)|+ |f ′ (b)|] .

Lemma 1.6 ([11, 18]). For 0 < α ≤ 1 and 0 ≤ a < b, we have

|aα − bα| ≤ (b− a)
α
.

In this paper, we firstly represented Hermite-Hadamard-Fejér inequality in frac-
tional integral forms which is the weighted generalization of Hermite-Hadamard in-
equality (1.3). Secondly, we obtained some new inequalities connected with the right-
hand side of Hermite-Hadamard-Fejér type integral inequality for the fractional inte-
grals.

2. Main results

Throughout this section, let ‖g‖∞ = supt∈[a,b] |g(x)|, for the continuous function

g : [a, b]→ R.

Lemma 2.1. If g : [a, b]→ R is integrable and symmetric to (a+ b)/2 with a < b, then

Jαa+g(b) = Jαb−g(a) =
1

2

[
Jαa+g(b) + Jαb−g(a)

]
with α > 0.

Proof. Since g is symmetric to (a+b)/2, we have g (a+ b− x) = g(x), for all x ∈ [a, b] .
Hence, in the following integral setting x = a+ b− t and dx = −dt gives

Jαa+g(b) =
1

Γ(α)

b∫
a

(b− x)
α−1

g(x)dx

=
1

Γ(α)

b∫
a

(t− a)
α−1

g(a+ b− t)dt

=
1

Γ(α)

b∫
a

(t− a)
α−1

g(t)dt = Jαb−g(a).

This completes the proof. �

Theorem 2.2. Let f : [a, b]→ R be convex function with a < b and f ∈ L [a, b]. If
g : [a, b]→ R is nonnegative,integrable and symmetric to (a+ b)/2, then the following
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inequalities for fractional integrals hold

f

(
a+ b

2

)[
Jαa+g(b) + Jαb−g(a)

]
≤

[
Jαa+ (fg) (b) + Jαb− (fg) (a)

]
(2.1)

≤ f(a) + f(b)

2

[
Jαa+g(b) + Jαb−g(a)

]
with α > 0.

Proof. Since f is a convex function on [a, b], we have for all t ∈ [0, 1]

f

(
a+ b

2

)
= f

(
ta+ (1− t)b+ tb+ (1− t)a

2

)
≤ f (ta+ (1− t)b) + f (tb+ (1− t)a)

2
. (2.2)

Multiplying both sides of (2.2) by 2tα−1g (tb+ (1− t)a) then integrating the resulting
inequality with respect to t over [0, 1], we obtain

2f

(
a+ b

2

)∫ 1

0

tα−1g (tb+ (1− t)a) dt

≤
∫ 1

0

tα−1 [f (ta+ (1− t)b) + f (tb+ (1− t)a)] g (tb+ (1− t)a) dt

=

∫ 1

0

tα−1f (ta+ (1− t)b) g (tb+ (1− t)a) dt

+

∫ 1

0

tα−1f (tb+ (1− t)a) g (tb+ (1− t)a) dt.

Setting x = tb+ (1− t)a, and dx = (b− a) dt gives

2

(b− a)
α f

(
a+ b

2

)∫ b

a

(x− a)
α−1

g (x) dx

≤ 1

(b− a)
α

{∫ b

a

(x− a)
α−1

f (a+ b− x) g (x) dx+

∫ b

a

(x− a)
α−1

f (x) g (x) dx

}

=
1

(b− a)
α

{∫ b

a

(b− x)
α−1

f (x) g (a+ b− x) dx+

∫ b

a

(x− a)
α−1

f (x) g (x) dx

}

=
1

(b− a)
α

{∫ b

a

(b− x)
α−1

f (x) g (x) dx+

∫ b

a

(x− a)
α−1

f (x) g (x) dx

}
.

Therefore, by Lemma 2.1 we have

Γ(α)

(b− a)
α f

(
a+ b

2

)[
Jαa+g(b) + Jαb−g(a)

]
≤ Γ(α)

(b− a)
α

[
Jαa+ (fg) (b) + Jαb− (fg) (a)

]
and the first inequality is proved.

For the proof of the second inequality in (2.1) we first note that if f is a convex
function, then, for all t ∈ [0, 1], it yields

f (ta+ (1− t)b) + f (tb+ (1− t)a) ≤ f(a) + f(b). (2.3)
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Then multiplying both sides of (2.3) by 2tα−1g (tb+ (1− t)a) and integrating the
resulting inequality with respect to t over [0, 1], we obtain

∫ 1

0

tα−1f (ta+ (1− t)b) g (tb+ (1− t)a) dt

+

∫ 1

0

tα−1f (tb+ (1− t)a) g (tb+ (1− t)a) dt

≤ [f(a) + f(b)]

∫ 1

0

tα−1g (tb+ (1− t)a) dt

i.e.

Γ(α)

(b− a)
α

[
Jαa+ (fg) (b) + Jαb− (fg) (a)

]
≤ Γ(α)

(b− a)
α

(
f(a) + f(b)

2

)[
Jαa+g(b) + Jαb−g(a)

]
The proof is completed. �

Remark 2.3. In Theorem 2.2,

(i) if we take α = 1, then inequality (2.1) becomes inequality (1.2) of Theorem 1.1.

(ii) if we take g(x) = 1, then inequality (2.1) becomes inequality (1.3) of Theorem
1.3.

Lemma 2.4. Let f : [a, b]→ R be a differentiable mapping on (a, b) with a < b and
f ′ ∈ L [a, b]. If g : [a, b]→ R is integrable and symmetric to (a+b)/2 then the following
equality for fractional integrals holds(

f(a) + f(b)

2

)[
Jαa+g(b) + Jαb−g(a)

]
−
[
Jαa+ (fg) (b) + Jαb− (fg) (a)

]
=

1

Γ(α)

∫ b

a

[∫ t

a

(b− s)α−1 g(s)ds−
∫ b

t

(s− a)
α−1

g(s)ds

]
f ′(t)dt (2.4)

with α > 0.

Proof. It suffices to note that

I =

∫ b

a

[∫ t

a

(b− s)α−1 g(s)ds−
∫ b

t

(s− a)
α−1

g(s)ds

]
f ′(t)dt

=

∫ b

a

(∫ t

a

(b− s)α−1 g(s)ds

)
f ′(t)dt+

∫ b

a

(
−
∫ b

t

(s− a)
α−1

g(s)ds

)
f ′(t)dt

= I1 + I2.
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By integration by parts and Lemma 2.1 we get

I1 =

(∫ t

a

(b− s)α−1 g(s)ds

)
f(t)

∣∣∣∣b
a

−
∫ b

a

(b− t)α−1 g(t)f(t)dt

=

(∫ b

a

(b− s)α−1 g(s)ds

)
f(b)−

∫ b

a

(b− t)α−1 (fg)(t)dt

= Γ(α)
[
f(b)Jαa+g(b)− Jαa+(fg)(b)

]
= Γ(α)

[
f(b)

2

[
Jαa+g(b) + Jαb−g(a)

]
− Jαa+(fg)(b)

]
and similarly

I2 =

(
−
∫ b

t

(s− a)
α−1

g(s)ds

)
f(t)

∣∣∣∣∣
b

a

−
∫ b

a

(t− a)
α−1

g(t)f(t)dt

=

(∫ b

a

(s− a)
α−1

g(s)ds

)
f(a)−

∫ b

a

(t− a)
α−1

(fg)(t)dt

= Γ(α)

[
f(a)

2

[
Jαa+g(b) + Jαb−g(a)

]
− Jαb− (fg) (a)

]
.

Thus, we can write

I = I1 + I2

= Γ(α)

{(
f(a) + f(b)

2

)[
Jαa+g(b) + Jαb−g(a)

]
−
[
Jαa+ (fg) (b) + Jαb− (fg) (a)

]}
.

Multiplying the both sides by (Γ(α))
−1

we obtain (2.4) which completes the proof. �

Remark 2.5. In Lemma 2.4, if we take g(x) = 1, then equality (2.4) becomes equality
(1.4) of Lemma 1.4.

Theorem 2.6. Let f : I ⊆ R→ R be a differentiable mapping on I◦ and f ′ ∈ L [a, b]
with a < b. If |f ′| is convex on [a, b] and g : [a, b]→ R is continuous and symmetric
to (a+ b)/2, then the following inequality for fractional integrals holds∣∣∣∣(f(a) + f(b)

2

)[
Jαa+g(b) + Jαb−g(a)

]
−
[
Jαa+ (fg) (b) + Jαb− (fg) (a)

]∣∣∣∣
≤

(b− a)
α+1 ‖g‖∞

(α+ 1) Γ(α+ 1)

(
1− 1

2α

)
[|f ′ (a)|+ |f ′ (b)|] (2.5)

with α > 0.

Proof. From Lemma 2.4 we have∣∣∣∣(f(a) + f(b)

2

)[
Jαa+g(b) + Jαb−g(a)

]
−
[
Jαa+ (fg) (b) + Jαb− (fg) (a)

]∣∣∣∣
≤ 1

Γ(α)

∫ b

a

∣∣∣∣∣
∫ t

a

(b− s)α−1 g(s)ds−
∫ b

t

(s− a)
α−1

g(s)ds

∣∣∣∣∣ |f ′(t)| dt. (2.6)
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Since |f ′| is convex on [a, b], we know that for t ∈ [a, b]

|f ′(t)| =
∣∣∣∣f ′( b− tb− a

a+
t− a
b− a

b

)∣∣∣∣ ≤ b− t
b− a

|f ′ (a)|+ t− a
b− a

|f ′ (b)| , (2.7)

and since g : [a, b]→ R is symmetric to (a+ b)/2 we write∫ b

t

(s− a)
α−1

g(s)ds =

∫ a+b−t

a

(b− s)α−1 g(a+ b−s)ds =

∫ a+b−t

a

(b− s)α−1 g(s)ds,

then we have ∣∣∣∣∣
∫ t

a

(b− s)α−1 g(s)ds−
∫ b

t

(s− a)
α−1

g(s)ds

∣∣∣∣∣
=

∣∣∣∣∣
∫ a+b−t

t

(b− s)α−1 g(s)ds

∣∣∣∣∣
≤


∫ a+b−t
t

∣∣∣(b− s)α−1 g(s)
∣∣∣ ds, t ∈

[
a, a+b2

]∫ t
a+b−t

∣∣∣(b− s)α−1 g(s)
∣∣∣ ds, t ∈

[
a+b
2 , b

] . (2.8)

A combination of (2.6), (2.7) and (2.8), we get∣∣∣∣(f(a) + f(b)

2

)[
Jαa+g(b) + Jαb−g(a)

]
−
[
Jαa+ (fg) (b) + Jαb− (fg) (a)

]∣∣∣∣
≤ 1

Γ(α)

∫ a+b
2

a

(∫ a+b−t

t

∣∣∣(b− s)α−1 g(s)
∣∣∣ ds)( b− t

b− a
|f ′ (a)|+ t− a

b− a
|f ′ (b)|

)
dt

+
1

Γ(α)

∫ b

a+b
2

(∫ t

a+b−t

∣∣∣(b− s)α−1 g(s)
∣∣∣ ds)( b− t

b− a
|f ′ (a)|+ t− a

b− a
|f ′ (b)|

)
dt

≤
‖g‖∞

(b− a) Γ(α+ 1)

{∫ a+b
2

a

[(b− t)α − (t− a)
α

] ((b− t) |f ′ (a)|+ (t− a) |f ′ (b)|) dt

+

∫ b

a+b
2

[(t− a)
α − (b− t)α] ((b− t) |f ′ (a)|+ (t− a) |f ′ (b)|) dt

}
(2.9)

Since ∫ a+b
2

a

[(b− t)α − (t− a)
α

] (b− t) dt

=

∫ b

a+b
2

[(t− a)
α − (b− t)α] (t− a) dt

=
(b− a)

α+2

(α+ 1)

(
α+ 1

α+ 2
− 1

2α+1

)
(2.10)
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and ∫ a+b
2

a

[(b− t)α − (t− a)
α

] (t− a) dt

=

∫ b

a+b
2

[(t− a)
α − (b− t)α] (b− t) dt

=
(b− a)

α+2

(α+ 1)

(
1

α+ 2
− 1

2α+1

)
(2.11)

Hence, if we use (2.10) and (2.11) in (2.9), we obtain the desired result. This completes
the proof. �

Remark 2.7. In Theorem 2.6, if we take g(x) = 1, then equality (2.5) becomes equality
(1.5) of Theorem 1.5.

Theorem 2.8. Let f : I ⊆ R→ R be a differentiable mapping on I◦ and f ′ ∈ L [a, b]
with a < b. If |f ′|q , q > 1, is convex on [a, b] and g : [a, b]→ R is continuous and
symmetric to (a+ b)/2, then the following inequality for fractional integrals holds∣∣∣∣(f(a) + f(b)

2

)[
Jαa+g(b) + Jαb−g(a)

]
−
[
Jαa+ (fg) (b) + Jαb− (fg) (a)

]∣∣∣∣ (2.12)

≤
2 (b− a)

α+1 ‖g‖∞
(b− a)

1/q
(α+ 1)Γ(α+ 1)

(
1− 1

2α

)(
|f ′ (a)|q + |f ′ (b)|q

2

)1/q

where α > 0 and 1/p+ 1/q = 1.

Proof. Using Lemma 2.4, Hölder’s inequality, (2.8) and the convexity of |f ′|q, it follows
that ∣∣∣∣(f(a) + f(b)

2

)[
Jαa+g(b) + Jαb−g(a)

]
−
[
Jαa+ (fg) (b) + Jαb− (fg) (a)

]∣∣∣∣
≤ 1

Γ(α)

(∫ b

a

∣∣∣∣∣
∫ a+b−t

t

(b− s)α−1 g(s)ds

∣∣∣∣∣ dt
)1−1/q

×

(∫ b

a

∣∣∣∣∣
∫ a+b−t

t

(b− s)α−1 g(s)ds

∣∣∣∣∣ |f ′ (t)|q dt
)1/q

≤ 1

Γ(α)

[∫ a+b
2

a

(∫ a+b−t

t

∣∣∣(b− s)α−1 g(s)
∣∣∣ ds) dt

+

∫ b

a+b
2

(∫ t

a+b−t

∣∣∣(b− s)α−1 g(s)
∣∣∣ ds) dt]1−1/q

×

[∫ a+b
2

a

(∫ a+b−t

t

∣∣∣(b− s)α−1 g(s)
∣∣∣ ds) |f ′ (t)|q dt
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+

∫ b

a+b
2

(∫ t

a+b−t

∣∣∣(b− s)α−1 g(s)
∣∣∣ ds) |f ′ (t)|q dt]1/q

≤
21−1/q ‖g‖∞

(b− a)
1/q

Γ(α+ 1)

(
(b− a)

α+1

α+ 1

[
1− 1

2α

])1−1/q

×

{∫ a+b
2

a

[(b− t)α − (t− a)
α

]
(
(b− t) |f ′ (a)|q + (t− a) |f ′ (b)|q

)
dt

+

∫ b

a+b
2

[(t− a)
α − (b− t)α]

(
(b− t) |f ′ (a)|q + (t− a) |f ′ (b)|q

)
dt

}1/q

(2.13)

where it is easily seen that∫ a+b
2

a

(∫ a+b−t

t

(b− s)α−1 ds

)
dt+

∫ b

a+b
2

(∫ t

a+b−t
(b− s)α−1 ds

)
dt

=
2 (b− a)

α+1

α (α+ 1)

[
1− 1

2α

]
.

Hence, if we use (2.10) and (2.11) in (2.13), we obtain the desired result. This com-
pletes the proof. �

We can state another inequality for q > 1 as follows:

Theorem 2.9. Let f : I ⊆ R→ R be a differentiable mapping on I◦ and f ′ ∈ L [a, b]
with a < b. If |f ′|q , q > 1, is convex on [a, b] and g : [a, b]→ R is continuous and
symmetric to (a+ b)/2, then the following inequalities for fractional integrals hold:

(i)

∣∣∣∣(f(a) + f(b)

2

)[
Jαa+g(b) + Jαb−g(a)

]
−
[
Jαa+ (fg) (b) + Jαb− (fg) (a)

]∣∣∣∣
≤

21/p ‖g‖∞ (b− a)
α+1

(αp+ 1)1/pΓ(α+ 1)

(
1− 1

2αp

)1/p( |f ′ (a)|q + |f ′ (b)|q

2

)1/q

(2.14)

with α > 0.

(ii)

∣∣∣∣(f(a) + f(b)

2

)[
Jαa+g(b) + Jαb−g(a)

]
−
[
Jαa+ (fg) (b) + Jαb− (fg) (a)

]∣∣∣∣
≤
‖g‖∞ (b− a)

α+1

(αp+ 1)1/pΓ(α+ 1)

(
|f ′ (a)|q + |f ′ (b)|q

2

)1/q

(2.15)

for 0 < α ≤ 1, where 1/p+ 1/q = 1.
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Proof. (i) Using Lemma 2.4, Hölder’s inequality, (2.8) and the convexity of |f ′|q, it
follows that∣∣∣∣(f(a) + f(b)

2

)[
Jαa+g(b) + Jαb−g(a)

]
−
[
Jαa+ (fg) (b) + Jαb− (fg) (a)

]∣∣∣∣
≤ 1

Γ(α)

(∫ b

a

∣∣∣∣∣
∫ a+b−t

t

(b− s)α−1 g(s)ds

∣∣∣∣∣
p

dt

)1/p(∫ b

a

|f ′(t)|q dt

)1/q

.

≤
‖g‖∞

Γ(α+ 1)

(∫ a+b
2

a

[(b− t)α − (t− a)
α

]
p
dt+

∫ b

a+b
2

[(t− a)
α − (b− t)α]

p
dt

)1/p

×

(∫ b

a

(
b− t
b− a

|f ′ (a)|q +
t− a
b− a

|f ′ (b)|q
)
dt

)1/q

=
‖g‖∞ (b− a)

α+1

Γ(α+ 1)

(∫ 1
2

0

[(1− t)α − tα]
p
dt+

∫ 1

1
2

[tα − (1− t)α]
p
dt

)1/p

×
(
|f ′ (a)|q + |f ′ (b)|q

2

)1/q

(2.16)

≤
‖g‖∞ (b− a)

α+1

Γ(α+ 1)

(∫ 1
2

0

[(1− t)αp − tαp] dt+

∫ 1

1
2

[tαp − (1− t)αp] dt

)1/p

×
(
|f ′ (a)|q + |f ′ (b)|q

2

)1/q

≤
‖g‖∞ (b− a)

α+1

Γ(α+ 1)

(
2

αp+ 1

[
1− 1

2αp

])1/p( |f ′ (a)|q + |f ′ (b)|q

2

)1/q

.

Here we use

[(1− t)α − tα]
p ≤ (1− t)αp − tαp

for t ∈ [0, 1/2] and

[tα − (1− t)α]
p ≤ tαp − (1− t)αp

for t ∈ [1/2, 1], which follows from

(A−B)
q ≤ Aq −Bq,

for any A ≥ B ≥ 0 and q ≥ 1. Hence the inequality (2.14) is proved.

(ii) The inequality (2.15) is easily proved using (2.16) and Lemma 1.6. �

Remark 2.10. In Theorem 2.9, if we take α = 1, then equality (2.15) becomes equality
in [18, Corollary 13].
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[7] İşcan, İ., Some new general integral inequalities for h-convex and h-concave functions,
Adv. Pure Appl. Math., 5(1)(2014), 21-29, doi: 10.1515/apam-2013-0029.
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1. Introduction

The inequalities discovered by C. Hermite and J. Hadamard for convex functions
are very important in the literature (see, e.g.,[4], [8, p.137]). These inequalities state
that if f : I → R is a convex function on the interval I of real numbers and a, b ∈ I
with a < b, then

f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f (a) + f (b)

2
. (1.1)

The inequality (1.1) has evoked the interest of many mathematicians. Especially in the
last three decades numerous generalizations, variants and extensions of this inequality
have been obtained, to mention a few, see ([3]-[15]) and the references cited therein.

Let us consider a function ϕ : [a, b] → [a, b] where [a, b] ⊂ R. Youness have
defined the ϕ-convex functions in [16], but we work here with the improved definition,
according to [1]:

Definition 1.1. A function f : [a, b] → R is said to be ϕ- convex on [a, b] if for every
two points x, y ∈ [a, b] and t ∈ [0, 1] the following inequality holds:

f(tϕ(x) + (1− t)ϕ(y)) ≤ tf(ϕ(x)) + (1− t)f(ϕ(y)).

Obviously, if function ϕ is the identity, then the classical convexity is obtained
from the previous definition. Many properties of the ϕ-convex functions can be found,
for instance, in [1], [2], [16], [17], [18].
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Moreover in [2], Cristescu have presented a version Hermite-Hadamard type
inequality for the ϕ-convex functions as follows:

Theorem 1.2. If a function f : [a, b] → R is ϕ- convex for the continuous function
ϕ : [a, b]→ [a, b], then

f

(
ϕ(a) + ϕ(b)

2

)
≤ 1

ϕ(b)− ϕ(a)

ϕ(b)∫
ϕ(a)

f(x)dx ≤ f(ϕ(a)) + f(ϕ(b))

2
. (1.2)

In this article, we will consider two parts which within the first section we give
some new general inequalities for ϕ-convex function. In the second part, using func-
tions whose derivatives absolute values are ϕ-convex function, we obtained new in-
equalities related to the left and the right sides of Hermite-Hadamard inequality are
given with (2.1).

2. Hermite-Hadamard type inequality for ϕ-convex function

Theorem 2.1. Let J be an interval a, b ∈ J with a < b and ϕ : J → R a continuous
increasing function. Let f : I ⊆ R→ R be a ϕ-convex function on I = [a, b] , then we
have

f

(
ϕ (a) + ϕ (b)

2

)
≤ 1

ϕ (b)− ϕ (a)

∫ ϕ(b)

ϕ(a)

f (ϕ (x)) dϕ (x)

≤ f(ϕ (a)) + f(ϕ (b))

2
. (2.1)

Proof. By definition of the ϕ-convex function

f

(
ϕ (a) + ϕ (b)

2

)
=

∫ 1

0

f

(
ϕ (a) + ϕ (b)

2

)
dt

=

∫ 1

0

f

(
(1− t)ϕ (a) + tϕ (b) + tϕ (a) + (1− t)ϕ (b)

2

)
dt

≤ 1

2

∫ 1

0

[f ((1− t)ϕ (a) + tϕ (b)) + f (tϕ (a) + (1− t)ϕ (b))] dt.

Using the change of the variable in last integrals, we get

f

(
ϕ (a) + ϕ (b)

2

)
≤ 1

ϕ (b)− ϕ (a)

∫ ϕ(b)

ϕ(a)

f (ϕ (x)) dϕ (x) . (2.2)
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By similar way, we have

1

ϕ (b)− ϕ (a)

∫ ϕ(b)

ϕa)

f (ϕ (x)) dϕ (x) =

∫ 1

0

f ((1− t)ϕ (a) + tϕ (b)) dt

≤
∫ 1

0

[(1− t) f (ϕ (a)) + tf (ϕ (b))] dt

=
f(ϕ (a)) + f(ϕ (b))

2
. (2.3)

From (2.2) and (2.3), it is obtained desired result. �

Remark 2.2. If we choose ϕ (x) = x for all x ∈ [a, b] in Theorem 2.1, the (2.1)
inequality reduce to the inequality (1.1).

Theorem 2.3. Let J be an interval a, b ∈ J with a < b and ϕ : J → R a con-
tinuous increasing function. Let f be a ϕ-convex function on I = [a, b] and let

w : [ϕ(a), ϕ(b)]→ R be nonnegative, integrable and symmetric about ϕ(a)+ϕ(b)
2 . Then

f

(
ϕ (a) + ϕ (b)

2

)∫ ϕ(b)

ϕ(a)

w (ϕ (x)) dϕ (x) ≤
∫ ϕ(b)

ϕ(a)

f (ϕ (x))w (ϕ (x)) dϕ (x)

≤ f(ϕ(a)) + f(ϕ(b))

2

∫ ϕ(b)

ϕ(a)

w (ϕ (x)) dϕ (x) . (2.4)

Proof. Since f be a ϕ-convex function and w : [ϕ(a), ϕ(b)] → R be nonnegative,

integrable and symmetric about ϕ(a)+ϕ(b)
2 , then we obtain

f

(
ϕ (a) + ϕ (b)

2

)∫ ϕ(b)

ϕ(a)

w (ϕ (x)) dϕ (x) =

∫ ϕ(b)

ϕ(a)

f

(
ϕ (a) + ϕ (b)

2

)
w (ϕ (x)) dϕ (x)

≤ 1

2

∫ ϕ(b)

ϕ(a)

[f (ϕ (a) + ϕ (b)− ϕ(x)) + f (ϕ(x))]w (ϕ (x)) dϕ (x)

=

∫ ϕ(b)

ϕ(a)

f (ϕ(x))w (ϕ (x)) dϕ (x)

=
1

2

∫ ϕ(b)

ϕ(a)

[f (ϕ (a) + ϕ (b)− ϕ(x))]w (ϕ (x)) dϕ (x)+
1

2

∫ ϕ(b)

ϕ(a)

f (ϕ(x))w (ϕ (x)) dϕ (x)

≤ 1

2

∫ ϕ(b)

ϕ(a)

[f (ϕ (a)) + f(ϕ (b))]w (ϕ (x)) dϕ (x)

=
f (ϕ (a)) + f(ϕ (b))

2

∫ ϕ(b)

ϕ(a)

w (ϕ (x)) dϕ (x)

which completes the proof of Theorem 2.3. �



370 Mehmet Zeki Sarıkaya, Meltem Büyükeken and Mehmet Eyüp Kiris

Corollary 2.4. Under the same assumptions of Theorem 2.3 with ϕ(x) = x for all
x ∈ [a, b] , we have

f

(
a + b

2

)∫ b

a

w(x)dx ≤
∫ b

a

f (x)w (x) dx ≤ f(a) + f(b)

2

∫ b

a

w(x)dx.

Theorem 2.5. Let J be an interval a, b ∈ J with a < b and ϕ : J → R a continuous
increasing function. Let f, w : I ⊆ R→ R be a ϕ-convex and nonnegative function on
I = [a, b] . Then, for all t ∈ [0, 1] , we have

2f

(
ϕ(a) + ϕ(b)

2

)
w

(
ϕ(a) + ϕ(b)

2

)
≤ 1

ϕ(b)− ϕ(a)

∫ ϕ(b)

ϕ(a)

f (ϕ(x))w (ϕ(x)) dϕ(x)

≤ 1

6
M(ϕ(a), ϕ(b)) +

1

3
N(ϕ(a), ϕ(b)) (2.5)

where
M (ϕ(a), ϕ(b)) = f (ϕ(a))w (ϕ(a)) + f (ϕ(b))w (ϕ(b)) ,

N (ϕ(a), ϕ(b)) = f (ϕ(a))w (ϕ(b)) + f (ϕ(b))w (ϕ(a)) .
(2.6)

Proof. Since f and w be ϕ-convex functions, then we have

f

(
ϕ (a) + ϕ (b)

2

)
w

(
ϕ (a) + ϕ (b)

2

)
=f

(
tϕ (a) + (1− t)ϕ (b) + (1− t)ϕ (a) + tϕ (b)

2

)

×w
(
tϕ (a) + (1− t)ϕ (b) + (1− t)ϕ (a) + tϕ (b)

2

)
≤ 1

2
[f (tϕ (a) + (1− t)ϕ (b)) + f ((1− t)ϕ (a) + tϕ (b))]

×1

2
[w (tϕ (a) + (1− t) v (b)) + w ((1− t)ϕ (a) + tϕ (b))]

≤ 1

4
{2t (1− t) f(ϕ(a))w(ϕ(a)) + 2t (1− t) f(ϕ(b))w(ϕ(b))

+
(
t2 + (1− t)

2
)

[f(ϕ(a))w(ϕ(b)) + f(ϕ(b))w(ϕ(a)]
}
.

Integrating with respect to on [0, 1] , we get

f

(
ϕ (a) + ϕ (b)

2

)
w

(
ϕ (a) + ϕ (b)

2

)

≤ 1

4

[
1

ϕ (b)− ϕ (a)

∫ ϕ(b)

ϕ(a)

f (ϕ (x))w (ϕ(x)) dϕ (x)

]

+
1

2

[
1

6
M (ϕ(a), ϕ(b)) +

1

3
N (ϕ(a), ϕ(b))

]
which completes the proof of Theorem 2.5. �
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Remark 2.6. If we choose ϕ (x) = x for all x ∈ [a, b] in Theorem 2.5, the inequality
(2.5) reduce to the inequality

2f

(
a + b

2

)
w

(
a + b

2

)
≤ 1

b− a

∫ b

a

f (x)w (x) dx ≤ 1

6
M (a, b) +

1

3
N (a, b)

which is proved by Cristescu in [2].

Theorem 2.7. Let J be an interval a, b ∈ J with a < b and ϕ : J → R a continuous
increasing function. Let f, w : I ⊆ R→ R be a ϕ-convex on and nonnegative function

on I = [a, b]. If w is symmetric about
ϕ(a) + ϕ(b)

2
, then, for all t ∈ [0, 1] ,we have

1

ϕ (b)− ϕ (a)

∫ ϕ(b)

ϕ(a)

f (ϕ (x))w (ϕ (x)) dϕ (x) ≤ 1

6
M (ϕ(a), ϕ(b)) +

1

3
N (ϕ(a), ϕ(b))

where M (ϕ(a), ϕ(b)) and N (ϕ(a), ϕ(b)) are given by (2.6).

Proof. Since w is symmetric about
ϕ(a) + ϕ(b)

2
, and f , w be ϕ-convex functions, then

we have

1

ϕ (b)− ϕ (a)

∫ ϕ(b)

ϕ(a)

f (ϕ (x))w (ϕ (x)) dϕ (x)

=
1

ϕ (b)− ϕ (a)

∫ ϕ(b)

ϕ(a)

f (ϕ (x))w (ϕ (a) + ϕ (b)− ϕ (x)) dϕ (x)

=

1∫
0

f(tϕ (a) + (1− t)ϕ (b))w((1− t)ϕ (a) + tϕ (b))dt

≤
1∫

0

[tf(ϕ (a)) + (1− t) f(ϕ (b))] [(1− t)w(ϕ (a)) + tw(ϕ (b))] dt

=

1∫
0

{t (1− t) [f(ϕ(a))w(ϕ(a)) + f(ϕ(b))w(ϕ(b))]

+ t2f(ϕ(a))w(ϕ(b)) + (1− t)2f(ϕ(b))w(ϕ(a)
}
dt

=
1

6
M (ϕ(a), ϕ(b)) +

1

3
N (ϕ(a), ϕ(b)) .

This completes the proof. �

Remark 2.8. If we choose ϕ (x) = x for all x ∈ [a, b] in Theorem 2.7, the inequality
(2.5) reduce to the inequality

1

b− a

∫ b

a

f (x)w (x) dx ≤ 1

6
M (a, b) +

1

3
N (a, b)
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which is proved by Cristescu in [2].

3. The left and right sides of Hermite-Hadamard type inequality

In order to prove our results, we need the following lemma (see, [11]):

Lemma 3.1. Let J be an interval a, b ∈ J with a < b and ϕ : J → R a continuous
increasing function. Let f : I ⊂ R→ R be a differantiable function on I◦(the interior
I). If f ′ ∈ L1 [ϕ(a), ϕ(b)] for ϕ(a), ϕ(b) ∈ I, then the following equality holds:

1

ϕ (b)− ϕ (a)

∫ ϕ(b)

ϕ(a)

f (ϕ (x)) dϕ (x)− f

(
ϕ (a) + ϕ (b)

2

)
(3.1)

=
ϕ (b)− ϕ (a)

2

1∫
0

p(t)f ′ (tϕ (a) + (1− t)ϕ (b)) dt

where

p(t) =

{
t, t ∈

[
0, 1

2

)
t− 1, t ∈

[
1
2 , 1
]
.

Proof. A simple proof of the equality can be done by performing integration by
parts. �

Let us begin with the following Theorem.

Theorem 3.2. Let J be an interval a, b ∈ J with a < b and ϕ : J → R a continuous
increasing function. Let f : I ⊂ R→ R be a differentiable function on I◦ (the interior
I) and f ′ ∈ L1 [ϕ(a), ϕ(b)] for ϕ(a), ϕ(b) ∈ I. If |f ′| is the ϕ- convex on [a, b], then
the following inequality holds:∣∣∣∣∣ 1

ϕ (b)− ϕ (a)

∫ ϕ(b)

ϕ(a)

f (ϕ (x)) dϕ (x)− f

(
ϕ (a) + ϕ (b)

2

)∣∣∣∣∣
(3.2)

≤ (ϕ (b)− ϕ (a))

8
[|f ′(ϕ(a))|+ |f ′(ϕ(b))|] .

Proof. The proof of this Theorem is done with a similar method of proof Noor et al.
in [11]. �

Remark 3.3. If we take ϕ(x) = x for all x ∈ [a, b] , then inequality (3.2) coincide with
the left sides of Hermite-Hadamard inequality proved by Kirmanci in [10].

Theorem 3.4. Let J be an interval a, b ∈ J with a < b and ϕ : J → R a continuous
increasing function. Let f : I ⊂ R→ R be a differentiable function on I◦ (the interior
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I) and f ′ ∈ L1 [ϕ(a), ϕ(b)] for ϕ(a), ϕ(b) ∈ I. If |f ′|q is the ϕ- convex on [a, b], q > 1,
then the following inequalities hold:∣∣∣∣∣ 1

ϕ (b)− ϕ (a)

∫ ϕ(b)

ϕ(a)

f (ϕ (x)) dϕ (x)− f

(
ϕ (a) + ϕ (b)

2

)∣∣∣∣∣
≤ (g (b)− g (a))

4(p + 1)
1
p

[(
|f ′ (ϕ (a))|q + 3 |f ′(ϕ (b))|q

8

) 1
q

+

(
3 |f ′ (ϕ (a))|q + |f ′(ϕ (b))|q

8

) 1
q

]
(3.3)

≤ ϕ (b)− ϕ (a)

(p + 1)
1
p

(
1

8

) 1
q

(|f ′ (ϕ (a))|+ |f ′(ϕ (b))|) ,

where 1
p + 1

q = 1

Proof. From Lemma 3.1 , using Hölder’s inequality and the ϕ-convexity of |f ′|q, we
find ∣∣∣∣∣ 1

ϕ (b)− ϕ (a)

∫ ϕ(b)

ϕ(a)

f (ϕ (x)) dϕ (x)− f

(
ϕ (a) + ϕ (b)

2

)∣∣∣∣∣
≤ ϕ (b)− ϕ (a)

2




1
2∫

0

tpdt


1
p


1
2∫

0

|f ′ (tϕ (a) + (1− t)ϕ (b))|q dt


1
q

+

 1∫
1
2

(1− t)
p
dt


 1∫

1
2

|f ′ (tϕ (a) + (1− t)ϕ (b))|q dt


1
q


≤ (ϕ (b)− ϕ (a))

4(p + 1)
1
p




1
2∫

0

[
t |f ′ (ϕ (a))|q + (1− t) |f ′(ϕ (b))|q

]
dt


1
q

+

 1∫
1
2

[
t |f ′ (ϕ (a))|q + (1− t) |f ′(b)|q

]
dt


1
q


≤ ϕ (b)− ϕ (a)

4(p + 1)
1
p

×

{(
|f ′ (ϕ (a))|q + 3 |f ′(ϕ (b))|q

8

) 1
q

+

(
3 |f ′ (ϕ (a))|q + |f ′(ϕ (b))|q

8

) 1
q

}
.
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Let a1 = |f ′ (a)|q , b1 = 3 |f ′(b)|q , a2 = 3 |f ′ (a)|q , b2 = |f ′(b)|q. Here , 0 < 1
q < 1 for

q > 1. Using the fact that,

n∑
k=1

(ak + bk)
s ≤

n∑
k=1

ask +

n∑
k=1

bsk.

For (0 ≤ s < 1) , a1, a2, ..., an ≥ 0, b1, b2, ..., bn ≥ 0, we obtain∣∣∣∣∣ 1

ϕ (b)− ϕ (a)

∫ ϕ(b)

ϕ(a)

f (ϕ (x)) dϕ (x)− f

(
ϕ (a) + ϕ (b)

2

)∣∣∣∣∣
≤ ϕ (b)− ϕ (a)

4(p + 1)
1
p

(
1

8

) 1
q [(
|f ′ (ϕ (a))|+ 3

1
q |f ′(ϕ (b))|

)
+
(

3
1
q |f ′ (ϕ (a))|+ |f ′(ϕ (b))|

)]
=

ϕ (b)− ϕ (a)

4(p + 1)
1
p

(
1

8

) 1
q [(

1 + 3
1
q

)
(|f ′ (ϕ (a))|+ |f ′(ϕ (b))|)

]
≤ ϕ (b)− ϕ (a)

(p + 1)
1
p

(
1

8

) 1
q

(|f ′ (ϕ (a))|+ |f ′(ϕ (b))|) .

This completes the proof. �

Remark 3.5. If we thake ϕ(x) = x for all x ∈ [a, b] , then inequality (3.3) coincide
with the left sides of Hermite-Hadamard inequality proved by Kirmanci in [10].

Lemma 3.6. Let J be an interval a, b ∈ J with a < b and ϕ : J → R a continuous
increasing function. Let f : I ⊂ R→ R be a differantiable function on I◦(the interior
I). If f ′ ∈ L1 [ϕ(a), ϕ(b)] for ϕ(a), ϕ(b) ∈ I, then the following equality holds:

f (ϕ(a)) + f (ϕ(b))

2
− 1

ϕ(b)− ϕ(a)

ϕ(b)∫
ϕ(a)

f (ϕ(x)) dϕ(x) (3.4)

=
ϕ(b)− ϕ(a)

2

1∫
0

(2t− 1) [f ′ (tϕ(b) + (1− t)ϕ(a))] dt.

Proof. A simple proof of the equality can be done by performing integration by parts.
�

Let us begin with the following Theorem.

Theorem 3.7. Let J be an interval a, b ∈ J with a < b and ϕ : J → R a continuous
increasing function. Let f : I ⊂ R→ R be a differantiable function on I◦(the interior
I) and f ′ ∈ L1 [ϕ(a), ϕ(b)] for ϕ(a), ϕ(b) ∈ I. If |f ′| is the ϕ- convex on [a, b] , then
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the following inequaliy holds:∣∣∣∣∣∣∣
f (ϕ(a)) + f (ϕ(b))

2
− 1

ϕ(b)− ϕ(a)

ϕ(b)∫
ϕ(a)

f (ϕ(x)) dϕ(x)

∣∣∣∣∣∣∣ (3.5)

≤ ϕ(b)− ϕ(a)

4

(
|f ′(ϕ(b))|+ |f ′(ϕ(a))|

2

)
.

Proof. From Lemma 3.6 and by using ϕ−convexity function of |f ′| , we have∣∣∣∣∣∣∣
f (ϕ(a)) + f (ϕ(b))

2
− 1

ϕ(b)− ϕ(a)

ϕ(b)∫
ϕ(a)

f (ϕ(x)) dϕ(x)

∣∣∣∣∣∣∣
≤ ϕ(b)− ϕ(a)

2

1∫
0

|2t− 1| |f ′ (tϕ(b) + (1− t)ϕ(a))| dt

≤ ϕ(b)− ϕ(a)

2

1∫
0

|2t− 1| [t |f ′(ϕ(b))|+ (1− t) |f ′(ϕ(a))|] dt

=
ϕ(b)− ϕ(a)

2

[
|f ′(ϕ(b))|+ |f ′(ϕ(a))|

4

]
which completes the proof. �

Remark 3.8. If we thake ϕ(x) = x for all x ∈ [a, b] , then inequality (3.5) coincide with
the right sides of Hermite-Hadamard inequality proved by Dragomir and Agarwal in
[5].

Theorem 3.9. Let J be an interval a, b ∈ J with a < b and ϕ : J → R a continuous
increasing function. Let f : I ⊂ R→ R be a differantiable function on I◦(the interior
I) and f ′ ∈ L1 [ϕ(a), ϕ(b)] for ϕ(a), ϕ(b) ∈ I. If |f ′|q is the ϕ- convex on [a, b] ,
q > 1, then the following inequaliy holds:∣∣∣∣∣∣∣

f (ϕ(a)) + f (ϕ(b))

2
− 1

ϕ(b)− ϕ(a)

ϕ(b)∫
ϕ(a)

f (ϕ(x)) dϕ(x)

∣∣∣∣∣∣∣ (3.6)

≤ ϕ(b)− ϕ(a)

2

(
1

p + 1

) 1
p
(
|f ′(ϕ(b))|q + |f ′(ϕ(a))|q

2

) 1
q

where 1
p + 1

q = 1.
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Proof. From Lemma 3.6 and by using Hölder’s integral inequality, we have∣∣∣∣∣∣∣
f (ϕ(a)) + f (ϕ(b))

2
− 1

ϕ(b)− ϕ(a)

ϕ(b)∫
ϕ(a)

f (ϕ(x)) dϕ(x)

∣∣∣∣∣∣∣
≤ ϕ(b)− ϕ(a)

2

 1∫
0

|2t− 1|p dt


1
p

×

 1∫
0

|f ′ (tϕ(b) + (1− t)ϕ(a))|q dt


1
q

.

Since |f ′|q is ϕ−convex on [a, b] , we get∣∣∣∣∣∣∣
f (ϕ(a)) + f (ϕ(b))

2
− 1

ϕ(b)− ϕ(a)

ϕ(b)∫
ϕ(a)

f (ϕ(x)) dϕ(x)

∣∣∣∣∣∣∣
≤ ϕ(b)− ϕ(a)

2

(
1

p + 1

) 1
p

 1∫
0

[
t |f ′(ϕ(b))|q + (1− t) |f ′(ϕ(a))|q

]
dt


1
q

which completes the proof. �

Remark 3.10. If we thake ϕ(x) = x for all x ∈ [a, b] , then inequality (3.6) coincide
with the right sides of Hermite-Hadamard inequality proved by Dragomir and Agarwal
in [5].
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Düzce University, Department of Mathematics
Faculty of Science and Arts
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Afyon Kocatepe University, Department of Mathematics
Faculty of Science and Arts
Afyon, Turkey
e-mail: mkiris@gmail.com, kiris@aku.edu.tr
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Extension of Karamata inequality for
generalized inverse trigonometric functions

Árpád Baricz and Tibor K. Pogány

Abstract. Discussing Ramanujan’s Question 294, Karamata established the in-
equality

log x

x− 1
≤ 1 + 3

√
x

x + 3
√
x
, (x > 0, x 6= 1) , (*)

which is the cornerstone of this paper. We generalize the above inequality trans-
forming into terms of arctan and artanh. Moreover, we expand the established
result to the class of generalized inverse p–trigonometric arctanp and to hyper-
bolic artanhp functions.

Mathematics Subject Classification (2010): 26D99, 39B62, 39B72.

Keywords: Karamata’s inequality, Ramanujan’s question 294, zero-balanced hy-
pergeometric functions, generalized inverse trigonometric functions, rational up-
per bounds.

1. Introduction

The monumental Analytical Inequalities monograph by Mitrinović [6] contains
several results by the famous Serbian mathematician Jovan Karamata. The first
(Serbo–Croatian) edition’s page 267 presents two Karamata’s inequalities [6, 3.6.15.,
3.6.16.]

log x

x− 1
≤


1√
x

1 + 3
√
x

x+ 3
√
x

, (1.1)

which hold for all x ∈ R+ \ {1}. Both estimates Karamata [4] applied in showing the
monotone decreasing behavior of a sequence occurring in the famous Ramanujan’s

Question 294 [7, p. 128] Show that [if x is a positive integer ]

1

2
ex =

x−1∑
k=0

xk

k!
+
xx

x!
θ ,
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where θ lies between 1
3 and 1

2 .
For further information about Question 294 consult [2, p. 46 et seq.], while sub-

sequent results concerning (1.1) belong also to Simić [8], see also the related references
therein.

Being
√
x ≤ (x+ 3

√
x)(1 + 3

√
x)−1, the second Karamata’s upper bound is more

accurate on the whole range of their validity, therefore we concentrate to (∗). In
Mitrinović’s monograph the proofs of inequalities (1.1) belong to B. Mesihović; we
present the sketch of the proof’s idea for the cubic–root–bound. By putting

(1 + x)3(1− x)−3 7→ x,

the radicals disappear in (∗), and it transforms into

3

2x
log

1 + x

1− x
− x2 + 3

1− x4
< 0, (0 < |x| < 1) . (1.2)

Expanding this expression into a power series, we get

K
(2)
3,1(4;x) := 3

∑
k≥0

(
1− 1

4k + 1

)
x4k +

∑
k≥0

(
1− 3

4k + 3

)
x4k+2 > 0 ,

which finishes in an elegant way the proof.

However, summing up K
(2)
3,1(4;x), we can write

K
(2)
3,1(4;x) =

x2 + 3

1− x4
− 3 · 2F1

[
1, 1

4
5
4

;x4
]
− x2 2F1

[
1, 3

4
7
4

;x4
]
,

such that gives the new form of (1.2):

3 · 2F1

[
1, 1

4
5
4

;x4
]

+ x2 2F1

[
1, 3

4
7
4

;x4
]
<

3 + x2

1− x4
,

which simplifies into

3

x
arctanhx <

3 + x2

1− x4
, (0 < |x| < 1) , (1.3)

since

2F1

[
1, 1

4
5
4

; z

]
=

1
4
√
z

(
arctanh 4

√
z + arctan 4

√
z
)

2F1

[
1, 3

4
7
4

; z

]
=

3

2
4
√
z3

(
arctanh 4

√
z − arctan 4

√
z
)
.

Here by using the shifted factorial

(a)n = a(a+ 1) . . . (a+ n− 1) =
Γ(a+ n)

Γ(a)

for a > 0, the power series

2F1

[
a, b
a+ b

;x

]
=
∑
n≥0

(a)n(b)n
(a+ b)n

xn

n!
,

stands for the zero-balanced Gaussian hypergeometric series, which converges for
|x| < 1.
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It is worth to mention that as x→ 0, we have the strong asymptotic relation

K
(2)
3,1(4;x) =

12

5
x4 +O(x6) , (1.4)

compare [6, p. 267].

In the sequel our aim is to extend Mesihović’s method to general weighted sum
of zero–balanced Gaussian hypergeometric functions getting appropriate extensions
of Karamata’s inequality (∗).

2. Extending K
(2)
3,1(4;x)

In this section we are going to investigate the sum

K(γ)
p,q (µ;x) := p

∑
k≥0

(
1− q

µk + q

)
xµk + q

∑
k≥0

(
1− p

µk + p

)
xµk+γ ,

for the widest possible range of the variable x and its representation in a form of a
weighted sum of two zero-balanced hypergeometric terms.

Theorem 2.1. For all p, q, µ > 0, γ ∈ R and 0 < x < 1 we have

K(γ)
p,q (µ;x) =

p+ qxγ

1− xµ
− p 2F1

[
1, qµ
q
µ + 1

;xµ
]
− q xγ 2F1

[
1, pµ
p
µ + 1

;xµ
]
. (2.1)

Also, there holds

p 2F1

[
1, qµ
q
µ + 1

;xµ
]

+ q xγ 2F1

[
1, pµ
p
µ + 1

;xµ
]
<
p+ q xγ

1− xµ
. (2.2)

Proof. The following conclusion–chain lead us to the asserted expression (2.1) for

K
(γ)
p,q (µ;x), assuming that a, b > 0 and 0 < x < 1 (which enables the convergence of

the following power series):

Lb(µ;x) :=
∑
k≥0

(
1− b

µ k + b

)
xµk =

1

1− xµ
−A

∑
k≥0

xµk

k +A

=
1

1− xµ
−A

∑
k≥0

(1)k Γ(k +A)

Γ(k +A+ 1)

xµk

k!
=

1

1− xµ
−
∑
k≥0

(1)k (A)k
(A+ 1)k

xµk

k!

=
1

1− xµ
− 2F1

[
1, A
A+ 1

;xµ
]

=
1

1− xµ
− 2F1

[
1, bµ
b
µ + 1

;xµ

]
,

where A := b µ−1. Thus, for p, q > 0, because

K(γ)
p,q (µ;x) = pLq(µ;x) + q xγ Lp(µ;x),

relation (2.1) is proved. Finally, since we have K
(γ)
p,q (µ;x) > 0, we deduce the inequality

(2.2) and this completes the proof. �
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Remark 2.2. For even positive integer values of µ and γ, the results achieved in
Theorem 2.1 one extends to all x ∈ (−1, 1). Moreover, it is worth to mention that if
p, q, µ < 0, x ∈ (0, 1) and γ ∈ R, then we get that

K(γ)
p,q (µ;x) = p

∑
k≥0

k

k + q/µ
xµk + q

∑
k≥0

k

k + p/µ
xµk+γ < 0,

that is, the inequality (2.2) is reversed.

The generalized trigonometric and generalized inverse trigonometric functions
were introduced by Lindqvist [5]. For p > 0 the inverse p–trigonometric and p–
hyperbolic functions are defined as special zero-balanced hypergeometric series, that
is,

arctanp(x) =

∫ x

0

(1 + tp)−1 dt = x 2F1

[
1, 1

p
1
p + 1

;−xp
]
,

artanhp(x) =

∫ x

0

(1− tp)−1 dt = x 2F1

[
1, 1

p
1
p + 1

;xp
]
.

Note that these functions were investigated by many authors in the recent years,
see for example [1, 3] and the references therein. The following result is a variant of
Theorem 2.1 in terms of generalized inverse trigonometric functions.

Theorem 2.3. For all p, q, µ > 0, γ ∈ R and x ∈ (0, 1) we have

px−q artanhµ
q

(xq) + qxγ−p artanhµ
p

(xp) <
p+ qxγ

1− xµ
. (2.3)

Also for all p > 0 and x ∈ (0, 1) it follows

artanhp(x) <
x

1− xp
. (2.4)

Moreover, we have the asymptotic relation as x→ 0

p+ qxγ

1− xµ
− p

xq
artanhµ

q
(xq)− q

xp−γ
artanhµ

p
(xp)

=
p µ

q + µ
xµ +O

(
xµ+min(γ,µ)

)
. (2.5)

Proof. Transforming

2F1

[
1, pµ
p
µ + 1

;xp
]

= 2F1

[
1, 1

µ/p
1
µ/p + 1

; (xp)
µ
p

]
,

by means of (2.2) we deduce (2.3). Now, taking p = q in (2.3) and then substituting
x 7→ x1/p, µ = p2, we get (2.4). Finally, expanding (2.1), we have for x→ 0:

K(γ)
p,q (µ;x) =

p µ

q + µ
xµ +O

(
xµ+min(γ,µ)

)
.

Since K
(γ)
p,q (µ;x) coincides with the left hand side expression in (2.5), the assertion is

proved. �
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Now, in establishing the companion inequality associated with (1.3), we study
the expression

K
(2)

3,1(4;x) := 3
∑
k≥0

(
1− 1

4k + 1

)
x4k −

∑
k≥0

(
1− 3

4k + 3

)
x4k+2 > 0 .

To establish the positivity of K
(2)

3,1(4;x) for all 0 < |x| < 1, it is enough to observe
that

K
(2)

3,1(4;x) = 12
∑
k≥0

k

4k + 1
x4k − 4x2

∑
k≥0

k

4k + 3
x4k

> 4
∑
k≥0

(
3k

4k + 1
− k

4k + 3

)
x4k .

Thus, rewriting K
(2)

3,1(4;x) in terms of hypergeometric series, and then in inverse
trigonometric and hyperbolic terms, we conclude that

K
(2)

3,1(4;x) =
3− x2

1− x4
− 3

x
arctanx .

Having in mind that K
(2)

3,1(4;x) > 0, we get

3

x
arctanx <

3− x2

1− x4
,

(
0 < |x| < 1

)
.

Also, the following asymptotic behavior holds true

K
(2)

3,1(4;x) =
12

5
x4 +O(x6), (x→ 0)

which coincides with the one in (1.4).
Now, the counterpart result of Theorem 2.1 reads as follows.

Theorem 2.4. For all p, q, µ, γ > 0 such that p ≥ q and for all 0 < x < 1 we have

px−q artanhµ
q

(xq)− qxγ−p artanhµ
p

(xp) <
p− qxγ

1− xµ
. (2.6)

Proof. Consider the linear combination of power series

K
(γ)

p,q (µ;x) := p
∑
k≥0

(
1− q

µk + q

)
xµk − q

∑
k≥0

(
1− p

µk + p

)
xµk+γ .

For all x ∈ (0, 1) and γ > 0 it follows

K
(γ)

p,q (µ;x) > µ
∑
k≥0

(
pk

µk + q
− qk

µk + p

)
xµk

= µ(p− q)
∑
k≥0

k(µk + p+ q)

(µk + q)(µk + p)
xµk ;

the last estimate is non–negative for p ≥ q. Transforming the constituting sums of

K
(γ)

p,q (µ;x) into hypergeometric expressions, and following the lines of the proof of
Theorem 2.3, we arrive at the desired inequality (2.6). �
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We mention that the expression Lb(µ;x) can be expressed also in another way as

Lb(µ;x) =
∑
k≥0

µk

µk + b
xµk = x

∑
k≥0

µk

µk + b
xµk−1 =

x

µ

d

dx

∑
k≥0

xµk

k + b
µ

=
x

µ

d

dx

∑
k≥0

Γ(k + b
µ ) Γ(k + 1)

(k + b
µ )Γ(k + b

µ )

xµk

k!

=
xΓ( bµ )

µΓ(1 + b
µ )

d

dx

∑
k≥0

( bµ )k (1)k

(1 + b
µ )k

xµk

k!

=
x

b

d

dx
2F1

[
b
µ , 1
b
µ + 1

;xµ

]
=

µ

b+ µ
xµ 2F1

[
b
µ + 1, 2
b
µ + 2

;xµ

]
.

However, by this expression we cannot reach any rational upper bound for K
(γ)
p,q (µ;x).
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Abstract. In this paper we consider the class M(f, g;α, β, λ, c) of meromorphic
univalent functions defined by convolution with positive coefficients and fixed sec-
ond coefficients. We obtained coefficient inequalities, distortion theorems, closure
theorems, the radii of meromorphic starlikeness, and convexity for functions of
this class.
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1. Introduction

Let Σ denote the class of meromorphic functions of the form:

f(z) =
1

z
+

∞∑
k=1

akz
k, (1.1)

which are analytic in the punctured unit disc U∗ = {z ∈ C : 0 < |z| < 1} = U\{0}.
Let g ∈ Σ, be given by

g(z) =
1

z
+

∞∑
k=1

bkz
k, (1.2)

then the Hadamard product (or convolution) of f and g is given by

(f ∗ g)(z) =
1

z
+

∞∑
k=1

akbkz
k = (g ∗ f)(z). (1.3)

A function f ∈ Σ is meromorphically starlike of order β (0 ≤ β < 1) if

−<
{
zf ′(z)

f(z)

}
> β (z ∈ U), (1.4)
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the class of all such functions is denoted by Σ∗(β). A function f ∈ Σ is meromorphi-
cally convex of order β (0 ≤ β < 1) if

−<
{

1 +
zf ′′(z)

f ′(z)

}
> β (z ∈ U), (1.5)

the class of such functions is denoted by Σk(β). The classes Σ∗(β) and Σk(β) were
introduced and studied by Pommerenke [18], Miller [15], Mogra et al. [16], Cho [9],
Cho et al. [10] and Aouf ([1] and [2]).
It is easy to observe from (1.4) and (1.5) that

f ∈ Σk(β)⇐⇒ −zf
′
∈ Σ∗(β).

For α ≥ 0, 0 ≤ β < 1, 0 ≤ λ < 1
2 and g given by (1.2) with bk > 0 (k ≥ 1), Aouf et

al. [3] defined the class M(f, g;α, β, λ) consisting of functions of the form (1.1) and
satisfying the analytic criterion:

−<
{

z(f ∗ g)′(z) + λz2(f ∗ g)′′(z)

(1− λ)(f ∗ g)(z) + λz(f ∗ g)′(z)
+ β

}
≥ α

∣∣∣∣ z(f ∗ g)′(z) + λz2(f ∗ g)′′(z)

(1− λ)(f ∗ g)(z) + λz(f ∗ g)′(z)
+ 1

∣∣∣∣ (z ∈ U). (1.6)

We note that for suitable choices of g, α and λ, we obtain the following subclasses of
the class M(f, g;α, β, λ):

(1) M

(
f,

1

z(1− z)
; 0, β; 0

)
= Σ∗(β) (0 ≤ β < 1) (see Pommerenke [18]);

(2) M

(
f,

1

z
+
∞∑
k=1

Dk(γ)zk;α, β, λ

)
= Σγ(α, β, λ) (see Atshan and Kulkarni [7] and

Atshan [6]) (α ≥ 0, 0 ≤ β < 1, γ > −1, 0 ≤ λ < 1

2
), where

Dk(γ) =
(γ + 1)(γ + 2)...(γ + k + 1)

(k + 1)!
; (1.7)

(3) M

(
f,

1

z
+
∞∑
k=1

Γk(α1)zk;α, β, λ

)
= Σ(β, α, λ) (see Magesh et al. [14]) (α ≥ 0,

0 ≤ β < 1, 0 ≤ λ < 1

2
), where

Γk(α1) =
(α1)k+1...(αq)k+1

(β1)k+1...(βs)k+1

1

(k + 1)!
; (1.8)

(4) M

(
f,

1

z
+
∞∑
k=1

Γk(α1)zk; 0, β, λ

)
= Mq

s (λ, β) (see Murugusundaramoorthy et al.

[17]) (0 ≤ β < 1, 0 ≤ λ <
1

2
, q ≤ s + 1, q, s ∈ N0 = N ∪ {0}, N = {1, 2, ...}), where

Γk(α1) is defined by (1.8).
Also, we note that

(1) M(f, g;α, β, 0) = N(f, g;α, β)

=

{
f ∈ Σ : −<

(
z(f ∗ g)′(z)

(f ∗ g)(z)
+ β

)
≥ α

∣∣∣∣z(f ∗ g)′(z)

(f ∗ g)(z)
+ 1

∣∣∣∣ } (z ∈ U) ; (1.9)
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(2) Putting g(z) =
1

z
+
∞∑
k=1

(
`+ δk

`

)m
zk in (1.6), then the class

M

(
f,

1

z
+

∞∑
k=1

(
`+ δk

`

)m
zk;α, β, λ

)
reduces to the class

Mδ,`(m;α, β, λ) =

{
f ∈ Σ : −<

{
z(Im(δ, `)f(z))′ + λz2(Im(δ, `)f(z))′′

(1− λ)(Im(δ, `)f(z)) + λz(Im(δ, `)f(z))′
+ β

}
≥α

∣∣∣∣ z(Im(δ, `)f(z))′ + λz2(Im(δ, `)f(z))′′

(1− λ)(Im(δ, `)f(z)) + λz(Im(δ, `)f(z))′
+ 1

∣∣∣∣ (δ ≥ 0, ` > 0, m ∈ N0, z ∈ U)},

where the operator

Im(δ, `)(z) =
1

z
+

∞∑
k=1

(
`+ δk

`

)m
zk, (1.10)

was introduced and studied by Bulboacă et al. [8], El-Ashwah [11 with p = 1] and
El-Ashwah et al. [12 with p = 1].

Unless otherwise mentioned, we shall assume in the reminder of this paper that 0 ≤
β < 1, 0 ≤ λ < 1

2 , α ≥ 0, g is given by (1.2) with bk > 0 and bk ≥ b1 (k ≥ 1) .

We begin by recalling the following lemma due to Aouf et al. [4] .

Lemma 1.1. Let the function f be defined by (1.1). Then f is in the class
M(f, g;α, β, λ) if and only if

∞∑
k=1

[1 + λ (k − 1)][k (1 + α) + (α+ β)] bkak ≤ (1− β) (1− 2λ) . (1.11)

Proof. In view of (1.11) , we can see that the functions f defined by (1.1) in the class
M(f, g;α, β, λ) and satisfy the coefficient inequality

a1 ≤
(1− β) (1− 2λ)

(2α+ β + 1) b1
. (1.12)

Hence we may take

a1 =
(1− β) (1− 2λ) c

(2α+ β + 1) b1
, 0 < c < 1. (1.13)

Making use of (1.13) , we now introduce the following class of functions:

Let M(f, g;α, β, λ, c) denote the subclass of M(f, g;α, β, λ) consisting of functions of
the form:

f(z) =
1

z
+

(1− β) (1− 2λ) c

(2α+ β + 1) b1
z +

∞∑
k=2

akz
k (ak ≥ 0; 0 < c < 1) . (1.14)

Motivated by the works of Aouf and Darwish [3] , Aouf and Joshi [5] , Ghanim and
Darus [13] and Uralegaddi [19] , we now introduce the following class of meromorphic
functions with fixed second coefficients.
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2. Coefficient estimates

Theorem 2.1. Let the function f be defined by (1.14). Then f is in the class
M(f, g;α, β, λ, c), if and only if,

∞∑
k=2

[1 + λ (k − 1)][k (1 + α) + (α+ β)] bkak ≤ (1− β) (1− 2λ) (1− c) . (2.1)

Proof. Putting

a1 =
(1− β) (1− 2λ) c

(2α+ β + 1) b1
, 0 < c < 1, (2.2)

in (1.11) and simplifying we get the required result. The result is sharp for the function

f(z) =
1

z
+

(1− β) (1− 2λ) c

(2α+ β + 1) b1
z +

(1− β) (1− 2λ) (1− c)
[1 + λ (k − 1)][k (1 + α) + (α+ β)] bk

zk, k ≥ 2.

(2.3)
Corollary 2.1. Let the function f defined by (1.13) be in the class M(f, g;α, β, λ, c),
then

ak ≤
(1− β) (1− 2λ) (1− c)

[1 + λ (k − 1)][k (1 + α) + (α+ β)] bk
, k ≥ 2. (2.4)

The result is sharp for the function f given by (2.3) .

3. Growth and Distortion theorems

Theorem 3.1. If the function f defined by (1.14) is in the class M(f, g;α, β, λ, c) for
0 < |z| = r < 1, then we have

1

r
− (1− β) (1− 2λ) c

(2α+ β + 1) b1
r − (1− β) (1− 2λ) (1− c)

(1 + λ) (3α+ β + 2) b2
r2 ≤ |f (z)|

≤ 1

r
+

(1− β) (1− 2λ) c

(2α+ β + 1) b1
r +

(1− β) (1− 2λ) (1− c)
(1 + λ) (3α+ β + 2) b2

r2. (3.1)

The result is sharp for the function f given by

f(z) =
1

z
+

(1− β) (1− 2λ) c

(2α+ β + 1) b1
z +

(1− β) (1− 2λ) (1− c)
(1 + λ) (3α+ β + 2) b2

z2. (3.2)

Proof. Since f ∈M(f, g;α, β, λ, c), then Theorem 2.1 yields

ak ≤
(1− β) (1− 2λ) (1− c)

[1 + λ (k − 1)][k (1 + α) + (α+ β)] bk
, k ≥ 2. (3.3)

Thus, for 0 < |z| = r < 1,

|f (z)| ≤ 1

|z|
+

(1− β) (1− 2λ) c

(2α+ β + 1) b1
|z|+

∞∑
k=2

ak |z|k

≤ 1

r
+

(1− β) (1− 2λ) c

(2α+ β + 1) b1
r + r2

∞∑
k=2

ak
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≤ 1

r
+

(1− β) (1− 2λ) c

(2α+ β + 1) b1
r +

(1− β) (1− 2λ) (1− c)
(1 + λ) (3α+ β + 2) b2

r2, by (3.3) .

Also we have

|f (z)| ≥ 1

|z|
− (1− β) (1− 2λ) c

(2α+ β + 1) b1
|z| −

∞∑
k=2

ak |z|k

≥ 1

r
− (1− β) (1− 2λ) c

(2α+ β + 1) b1
r − r2

∞∑
k=2

ak

≥ 1

r
− (1− β) (1− 2λ) c

(2α+ β + 1) b1
r − (1− β) (1− 2λ) (1− c)

(1 + λ) (3α+ β + 2) b2
r2.

Thus the proof of Theorem 3.1 is completed.
Theorem 3.2. If the function f defined by (1.14) is in the class
M(f, g;α, β, λ, c) for 0 < |z| = r < 1, then we have

1

r2
− (1− β) (1− 2λ) c

(2α+ β + 1) b1
− 2 (1− β) (1− 2λ) (1− c)

(1 + λ) (3α+ β + 2) b2
r

≤
∣∣∣f ′

(z)
∣∣∣ ≤ 1

r2
+

(1− β) (1− 2λ) c

(2α+ β + 1) b1
+

2 (1− β) (1− 2λ) (1− c)
(1 + λ) (3α+ β + 2) b2

r. (3.4)

The result is sharp for the function f given by (3.2) .
Proof. In view of Theorem 2.1, it follows that

kak ≤
k (1− β) (1− 2λ) (1− c)

[1 + λ (k − 1)][k (1 + α) + (α+ β)] bk
, k ≥ 2. (3.5)

Thus, for 0 < |z| = r < 1, and making use of (3.5) , we obtain∣∣∣f ′
(z)
∣∣∣ ≤ 1

|z2|
+

(1− β) (1− 2λ) c

(2α+ β + 1) b1
+

∞∑
k=2

kak |z|k−1

≤ 1

r2
+

(1− β) (1− 2λ) c

(2α+ β + 1) b1
+ r

∞∑
k=2

kak

≤ 1

r2
+

(1− β) (1− 2λ) c

(2α+ β + 1) b1
+

2 (1− β) (1− 2λ) (1− c)
(1 + λ) (3α+ β + 2) b2

r, by (3.5) .

Also we have ∣∣∣f ′
(z)
∣∣∣ ≥ 1

|z2|
− (1− β) (1− 2λ) c

(2α+ β + 1) b1
−
∞∑
k=2

kak |z|k−1

≥ 1

r2
− (1− β) (1− 2λ) c

(2α+ β + 1) b1
− r

∞∑
k=2

kak

≥ 1

r2
− (1− β) (1− 2λ) c

(2α+ β + 1) b1
− 2 (1− β) (1− 2λ) (1− c)

(1 + λ) (3α+ β + 2) b2
r.

Hence the result follows.
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4. Closure theorems

In this section we shall show that the class M(f, g;α, β, λ, c) is closed under convex
linear combination.
Theorem 4.1. Let

f1 (z) =
1

z
+

(1− β) (1− 2λ) c

(2α+ β + 1) b1
z, (4.1)

and

fk (z) =
1

z
+

(1− β) (1− 2λ) c

(2α+ β + 1) b1
z+ (4.2)

∞∑
k=2

(1− β) (1− 2λ) (1− c)
[1 + λ (k − 1)][k (1 + α) + (α+ β)] bk

zk (k ≥ 2) .

Then f ∈M(f, g;α, β, λ, c), if and only if it can expressed in the form

f (z) =

∞∑
k=1

µkfk (z) , (4.3)

where µk ≥ 0 and
∞∑
k=1

µk ≤ 1.

Proof. Let

f (z) =

∞∑
k=1

µkfk (z) ,

then from (4.2) and (4.3) , we have

f (z) =
1

z
+

(1− β) (1− 2λ) c

(2α+ β + 1) b1
z +

∞∑
k=2

(1− β) (1− 2λ) (1− c)µk
[1 + λ (k − 1)][k (1 + α) + (α+ β)] bk

zk. (4.4)

Since
∞∑
k=2

(1− β) (1− 2λ) (1− c)µk
[1 + λ (k − 1)][k (1 + α) + (α+ β)] bk

[1 + λ (k − 1)][k (1 + α) + (α+ β)] bk
(1− β) (1− 2λ) (1− c)

=

∞∑
k=2

µk = 1− µ1 ≤ 1,

hence by using Lemma 1.1, we have f ∈M(f, g;α, β, λ, c).
Conversely, suppose that f defined by (1.14) is in the class M(f, g;α, β, λ, c). Then
by using (2.4) ,we get

ak ≤
(1− β) (1− 2λ) (1− c)

[1 + λ (k − 1)][k (1 + α) + (α+ β)] bk
, k ≥ 2. (4.5)

Setting

µk =
[1 + λ (k − 1)][k (1 + α) + (α+ β)] bk

(1− β) (1− 2λ) (1− c)
, k ≥ 2 (4.6)

and

µ1 = 1−
∞∑
k=2

µk, (4.7)
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we can see that f can be expressed in the form (4.3) .This completes the proof of
Theorem 4.1.
Theorem 4.2. The class M(f, g;α, β, λ, c) is closed under linear combination.
Proof. Suppose that the function f given by (1.14) , and the function g given by

g (z) =
1

z
+

(1− β) (1− 2λ) c

(2α+ β + 1) b1
z +

∞∑
k=2

dkz
k, dk ≥ 0. (4.8)

Assuming that f and g are in the class M(f, g;α, β, λ, c), it is enough to prove that
the function h defined by

h (z) = µf (z) + (1− µ) g (z) , 0 ≤ µ ≤ 1, (4.9)

is also in the class M(f, g;α, β, λ, c). Since

h (z) =
1

z
+

(1− β) (1− 2λ) c

(2α+ β + 1) b1
z +

∞∑
k=2

[akµ+ (1− µ) dk] zk, (4.10)

we observe that
∞∑
k=2

[1 + λ (k − 1)][k (1 + α) + (α+ β)] bk [akµ+ (1− µ) dk]

≤ (1− β) (1− 2λ) (1− c) , (4.11)

with the aid of Theorem 2.1. Thus, h ∈ M(f, g;α, β, λ, c).

5. Radii of Meromorphically Starlikeness and Convexity

Theorem 5.1. Let the function f defined by (1.14) be in the class M(f, g;α, β, λ, c).
Then f is meromorphically starlike of order δ (0 ≤ δ < 1) in 0 < |z| < r1(α, β, λ, c, δ),
where r1(α, β, λ, c, δ) is the largest value for which

(3− δ) (1− β) (1− 2λ) c

(2α+ β + 1) b1
r2 +

(k + 2− δ) (1− β) (1− 2λ) (1− c)
[1 + λ (k − 1)][k (1 + α) + (α+ β)] bk

rk+1 ≤ (1− δ) ,

(5.1)
for k ≥ 2. The result is sharp for the function

fk(z) =
1

z
+

(1− β) (1− 2λ) c

(2α+ β + 1) b1
z +

(1− β) (1− 2λ) (1− c)
[1 + λ (k − 1)][k (1 + α) + (α+ β)] bk

zk (5.2)

for some k.
Proof. It is sufficient to show that∣∣∣∣∣zf

′
(z)

f(z)
+ 1

∣∣∣∣∣ ≤ 1− δ (0 ≤ δ < 1) for 0 < |z| < r1. (5.3)

Note that ∣∣∣∣∣zf
′
(z)

f(z)
+ 1

∣∣∣∣∣ ≤
2(1−β)(1−2λ)c
(2α+β+1)b1

r2 +
∞∑
k=2

(k + 1) akr
k+1

1− (1−β)(1−2λ)c
(2α+β+1)b1

r2 −
∞∑
k=2

akrk+1

≤ 1− δ (5.4)
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for (0 ≤ δ < 1) if and only if

(3− δ) (1− β) (1− 2λ) c

(2α+ β + 1) b1
r2 +

∞∑
k=2

(k + 2− δ) akrk+1 ≤ (1− δ) . (5.5)

Since f is in the class M(f, g;α, β, λ, c), from (2.4) , we may take

ak =
(1− β) (1− 2λ) (1− c)

[1 + λ (k − 1)][k (1 + α) + (α+ β)] bk
µk (k ≥ 2) , (5.6)

where µk ≥ 0 (k ≥ 2) and
∞∑
k=2

µk ≤ 1.

For each fixed r, we choose the positive integer k0 = k0 (r) for which

(k + 2− δ)
[1 + λ (k − 1)][k (1 + α) + (α+ β)]

rk+1

is maximal. Then it follows that

∞∑
k=2

(k + 2− δ) akrk+1 ≤ (k0 + 2− δ) (1− β) (1− 2λ) (1− c)
[1 + λ (k0 − 1)][k0 (1 + α) + (α+ β)] bk0

rk0+1. (5.7)

Then f is starlike of order δ in 0 < |z| < r1(α, β, λ, c, δ) provided that

(3− δ) (1− β) (1− 2λ) c

(2α+ β + 1) b1
r2+

(k0 + 2− δ) (1− β) (1− 2λ) (1− c)
[1 + λ (k0 − 1)][k0 (1 + α) + (α+ β)] bk0

rk0+1≤(1− δ) .

(5.8)
We find the value r0 = r0 (α, β, λ, c, δ) and the corresponding integer k0 (r0) so that

(3− δ) (1− β) (1− 2λ) c

(2α+ β + 1) b1
r20+

(k0 + 2− δ) (1− β) (1− 2λ) (1− c)
[1 + λ (k0 − 1)][k0 (1 + α) + (α+ β)] bk0

rk0+1
0 =(1− δ) .

(5.9)
Then this value r0 is the radius of meromorphically starlike of order δ for functions
belonging to the class M(f, g;α, β, λ, c).

Corollary 5.1. Let the function f defined by (1.14) be in the class M(f, g;α, β, λ, c).
Then f is meromorphically convex of order δ (0 ≤ δ < 1) in 0 < |z| < r2(α, β, λ, c, δ),
where r2(α, β, λ, c, δ) is the largest value for which

(3− δ) (1− β) (1− 2λ) c

(2α+ β + 1) b1
r2 +

k (k + 2− δ) (1− β) (1− 2λ) (1− c)
[1 + λ (k − 1)][k (1 + α) + (α+ β)] bk

rk+1 ≤ (1− δ) ,

(5.10)

(k ≥ 2) .The result is sharp for function f given by (5.2) for some k.

Remark. Specializing the function g, in(1.6) , we have results for the subclasses main-
tain in the introduction in the case of fixed second coefficients.
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On sandwich theorems for p-valent functions
involving a new generalized differential operator

T. Al-Hawary, B.A. Frasin and M. Darus

Abstract. A new differential operator Fmα,β,λf(z) is introduced for functions of

the form f(z) = zp +

∞∑
n=2

anz
n which are p-valent in the unit disk U = {z ∈

C : |z| < 1}. The main object of this paper is to derive some subordination and
superordination results involving differential operator Fmα,β,λf(z).

Mathematics Subject Classification (2010): 30C45.

Keywords: Analytic functions, differential subordination, differential superordi-
nation, sandwich theorems.

1. Introduction

Let H(U) denote the class of analytic functions in the open unit disk

U = {z ∈ C : |z| < 1}

and let H[a, b] denote the subclass of the functions f ∈ H(U) of the form:

f(z) = a+ apz
p + ap+1z

p+1 + ... (a ∈ C; p ∈ N = {1, 2, ...}). (1.1)

For simplicity H[a] = H[a, 1]. Also, let A(p) be the subclass of H(U) consisting
of functions of the form:

f(z) = zp +

∞∑
n=2

anz
n, (an ≥ 0; p ∈ N := {1, 2, 3, ...}), (1.2)

which are p-valent in U . If f , g ∈ H(U), we say that f is subordinate to g or g is
subordinate to f, written f(z) ≺ g(z), if there exists an analytic function w on U such
that w(0) = 0, |w(z)| < 1, such that g(z) = h(w(z)) for z ∈ U. Furthermore, if the
function g is univalent in U, then we have the following equivalence (see [5] and [13]):

f(z) ≺ g(z)⇔ f(0) = g(0) and f(U) ⊂ g(U).
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Let φ : C3 × U→C and h(z) be univalent in U. If p(z) is analytic in U and
satisfies the second-order differential subordination:

φ
(
p(z), zp′(z), z2p′′(z); z

)
≺ h(z), (1.3)

then p(z) is a solution of the differential subordination (1.3). The univalent function
q(z) is called a dominant of the solutions of the differential subordination (1.3) if
p(z) ≺ q(z) for all p(z) satisfying (1.3). A univalent dominant q̃ that satisfies q̃ ≺ q
for all dominants of (1.3) is called the best dominant. If p(z) and φ (p(z), zp′(z); z)
are univalent in U and if p(z) satisfies second-order differential superordination:

h(z) ≺ φ
(
p(z), zp′(z), z2p′′(z); z

)
, (1.4)

then p(z) is a solution of the differential supordination (1.4). An univalent function
q(z) is called a subordinant of the solutions of the differential superordination (1.4) if
q(z) ≺ p(z) for all p(z) satisfying (1.4). A univalent subordinant q̃ that satisfies q ≺ q̃
for all subordinants of (1.4) is called the best subordinant. Using the results of Miller
and Mocanu [14], Bulboaca [4] considered certain classes of first-order differential
superordinations as well as superordination-preserving integral operators [5]. Ali et al.
[1], have used the results of Bulboaca [4] to obtain sufficient conditions for normalized
analytic functions f ∈ A(1) to satisfy:

q1(z) ≺ zf ′(z)

f(z)
≺ q2(z),

where q1 and q2 are given univalent normalized functions in U with q1(0) = q2(0) = 1.

Also, Tuneski [23] obtained a sufficient condition for starlikeness of f ∈ A(1) in

terms of the quantity f ′′(z)f(z)

(f ′(z))2
.

Recently, Shanmugam et al. [18], [19] and [21] obtained sufficient conditions for
the normalized analytic function f ∈ A(1) to satisfy

q1(z) ≺ f(z)

zf ′(z)
≺ q2(z)

and

q1(z) ≺ z2f ′(z)

f2(z)
≺ q2(z).

Recently, Shanmugam et al. [19] obtained the such called sandwich results for
certain classes of analytic functions.

For the function f ∈ A(p), we define the following new differential operator:

F 0f(z) = f(z);

F 1
α,β,λf(z) = (1− pβ(λ− α))f(z) + β(λ− α)zf ′(z);

F 2
α,β,λf(z) = (1− pβ(λ− α))(F 1

α,β,λf(z)) + β(λ− α)z(F 1
α,β,λf(z))′
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and for m = 1, 2, 3, ...

Fmα,β,λf(z) = (1− pβ(λ− α))(Fm−1α,β,λf(z)) + β(λ− α)z(Fm−1α,β,λf(z))′

= F 1
α,β,λ(Fm−1α,β,λf(z))

= zp +

∞∑
n=2

[1 + β(λ− α)(n− p)]m anzn, (1.5)

for α ≥ 0, β ≥ 0, λ ≥ 0, and m ∈ N0 = N ∪ {0}.
It easily verified from (1.5) that

β(λ− α)z(Fmα,β,λf(z))′ = Fm+1
α,β,λf(z)− (1− pβ(λ− α))Fmα,β,λf(z). (1.6)

Remark 1.1. (i) When δ = 0 and p = 1, we have the operator introduced and studied
by Rabha (see [7]).

(ii) When α = 0 and β = p = 1, we have the operator introduced and studied
by Al-Oboudi (see [3]).

(iii) And when α = 0 and λ = β = p = 1, we have the operator introduced and
studied by Sălăgean (see [17]).

In this paper, we will derive several subordination results, superordination results
and sandwich results involving the operator Fmλ,pf(z).

2. Definitions and preliminaries

In order to prove our subordinations and superordinations, we need the following
definition and lemmas.

Definition 2.1. [14] Denote by Q, the set of all functions f that are analytic and
injective on U\E(f), where

E(f) =

{
ζ ∈ ∂U: lim

z→ζ
f(z) =∞

}
,

and are such that f ′(ζ) 6= 0 for ζ ∈ ∂U\E(f).

Lemma 2.2. [14] Let q(z) be univalent in U and let θ and ϕ be analytic in a domain
D containing q(U), with ϕ(w) 6= 0 when w ∈ q(U). Set ψ(z) = zq′(z)ϕ(q(z)) and
h(z) = θ(q(z)) + ψ(z). Suppose that

(i) ψ is a starlike function in U,

(ii) Re
{
zh′(z)
ψ(z)

}
> 0, z ∈ U.

If p(z) is a analytic in U with p(0) = q(0), p(U) ⊂ D and

θ(p(z)) + zp′(z)ϕ(p(z)) ≺ θ(q(z)) + zq′(z)ϕ(q(z)), (2.1)

then p(z) ≺ q(z) and q(z) is the best dominant of (2.1).

Lemma 2.3. [4] Let q(z) be convex univalent in U and let ϑ and φ be analytic in a
domain D containing q(U). Suppose that
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(i) Re
{
ϑ′(q(z))
φ(q(z))

}
> 0, z ∈ U,

(ii) Ψ(z) = zq′(z)φ(q(z)) is starlike univalent in U.
If p(z) ∈ H[q(0), 1]∩Q, with p(U) ⊆ D, and ϑ(p(z)) + zp′(z)φ(p(z)) is univalent

in U and
ϑ(q(z)) + zq′(z)φ(q(z)) ≺ ϑ(p(z)) + zp′(z)φ(p(z)), (2.2)

then q(z) ≺ p(z) and q(z) is the best subordinant of (2.2).

3. Subordination and superordination for p-valent functions

We begin with the following result involving differential subordination between
analytic functions.

Theorem 3.1. Let q(z) be univalent in U with q(0) = 1, Further, assume that

Re

{
2(δ + α)q(z)

δ
+ 1 +

zq′′(z)

q′(z)

}
> 0. (3.1)

If f ∈ A(p) satisfy the following subordination condition:

Υ(m,λ, p, δ; z) ≺ δzq′(z) + (δ + α) (q(z))
2
, (3.2)

where

Υ(m,λ, p, δ; z) =
δFm+2

λ,p f(z)

β(λ− α)Fmλ,pf(z)
+

(
δ + α− δ

β(λ− α)

) (Fm+1
λ,p f(z)

)2
(
Fmλ,pf(z)

)2 , (3.3)

then
Fm+1
λ,p f(z)

Fmλ,pf(z)
≺ q(z)

and q(z) is the best dominant.

Proof. Define a function p(z) by

p(z) =
Fm+1
λ,p f(z)

Fmλ,pf(z)
(z ∈ U). (3.4)

Then the function p(z) is analytic in U and p(0) = 1. Therefore, differentiating (3.4)
logarithmically with respect to z and using the identity (1.6) in the resulting equation,
we have

δFm+2
λ,p f(z)

β(λ− α)Fmλ,pf(z)
+

(
δ + α− δ

β(λ− α)

) (Fm+1
λ,p f(z)

)2
(
Fmλ,pf(z)

)2 = (δ + α) (p(z))
2

+ δzp′(z),

(3.5)
that is,

(δ + α) (p(z))
2

+ δzp′(z) ≺ (δ + α) (q(z))
2

+ δzq′(z).

Therefore, Theorem 3.1 now follows by applying Lemma 2.2 by setting

θ(w) = (δ + α)w2 and ϕ(w) = δ. �
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Corollary 3.2. Let q(z) = 1+Az
1+Bz (−1 ≤ B < A ≤ 1) in Theorem 3.1, further assuming

that (3.1) holds.
If f ∈ A(p) satisfy the following subordination condition:

Υ(m,λ, p, δ; z) ≺ δ(A−B)z

(1 +Bz)2
+ (δ + α)

(
1 +Az

1 +Bz

)2

,

then
Fm+1
λ,p f(z)

Fmλ,pf(z)
≺ 1 +Az

1 +Bz

and the function 1+Az
1+Bz is the best dominant.

In particular, if q(z) = 1+z
1−z , then for f ∈ A(p) we have,

Υ(m,λ, p, δ; z) ≺ 2δz

(1− z)2
+ (δ + α)

(
1 + z

1− z

)2

,

then
Fm+1
λ,p f(z)

Fmλ,pf(z)
≺ 1 + z

1− z
and the function 1+z

1−z is the best dominant.

Furthermore, if we take q(z) =
(

1+z
1−z

)µ
, (0 < µ ≤ 1), then for f ∈ A(p) we

have,

Υ(m,λ, p, δ; z) ≺ 2δµz

(1− z)2

(
1 + z

1− z

)µ−1
+ (δ + α)

(
1 + z

1− z

)2µ

,

then
Fm+1
λ,p f(z)

Fmλ,pf(z)
≺
(

1 + z

1− z

)µ
and the function

(
1+z
1−z

)µ
is the best dominant.

Next, by applying Lemma 2.3 we prove the following.

Theorem 3.3. Let q(z) be convex univalent in U with q(0) = 1. Assume that

Re

{
2(δ + α)q(z)q′(z)

δ

}
> 0. (3.6)

Let f ∈ A(p) such that
Fm+1
λ,p f(z)

Fmλ,pf(z)
∈ H[q(0), 1] ∩ Q, Υ(m,λ, p, δ; z) is univalent in U

and the following superordination condition

(δ + α) (q(z))
2

+ δzq′(z) ≺ Υ(m,λ, p, δ; z) (3.7)

holds, then

q(z) ≺
Fm+1
λ,p f(z)

Fmλ,pf(z)
(3.8)

and q(z) is the best subordinant.
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Proof. Let the function p(z) be defined by

p(z) =
Fm+1
λ,p f(z)

Fmλ,pf(z)
.

Then from the assumption of Theorem 3.3, the function p(z) is analytic in U and
(3.5) holds. Hence, the subordination (3.7) is equivalent to

(δ + α) (q(z))
2

+ δzq′(z) ≺ (δ + α) (p(z))
2

+ δzp′(z)

The assertion (3.8) of Theorem 3.3 now follows by an application of Lemma 2.3. �

Corollary 3.4. Let q(z) = 1+Az
1+Bz (−1 ≤ B < A ≤ 1) in Theorem 3.3, further assuming

that (3.6) holds.

If f ∈ A(p) such that
Fm+1
λ,p f(z)

Fmλ,pf(z)
∈ H[q(0), 1] ∩ Q, Υ(m,λ, p, δ; z) is univalent in

U and the following superordination condition

δ(A−B)z

(1 +Bz)2
+ (δ + α)

(
1 +Az

1 +Bz

)2

≺ Υ(m,λ, p, δ; z)

holds, then

1 +Az

1 +Bz
≺
Fm+1
λ,p f(z)

Fmλ,pf(z)

and q(z) is the best subordinant.

Also, let q(z) = 1+z
1−z , then for f ∈ A(p) we have,

2δz

(1− z)2
+ (δ + α)

(
1 + z

1− z

)2

≺ Υ(m,λ, p, δ; z),

then

1 + z

1− z
≺
Fm+1
λ,p f(z)

Fmλ,pf(z)

and the function 1+z
1−z is the best subordinant.

Finally, by taking q(z) =
(

1+z
1−z

)µ
, (0 < µ ≤ 1), then for f ∈ A(p) we have,

2δµz

(1− z)2

(
1 + z

1− z

)µ−1
+ (δ + α)

(
1 + z

1− z

)2µ

≺ Υ(m,λ, p, δ; z),

then (
1 + z

1− z

)µ
≺
Fm+1
λ,p f(z)

Fmλ,pf(z)

and the function
(

1+z
1−z

)µ
is the best subordinant.

Combining Theorem 3.1 and Theorem 3.3, we get the following sandwich theorem.
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Theorem 3.5. Let q1 and q2 be convex univalent in U with q1(0) = q2(0) = 1 and

satisfies (3.1) and (3.6) respectively. If f ∈ A(p) such that
Fm+1
λ,p f(z)

Fmλ,pf(z)
∈ H[q(0), 1]∩Q,

Υ(m,λ, p, δ; z) is univalent in U and

(δ + α) (q1(z))
2

+ δzq′1(z) ≺ Υ(m,λ, p, δ; z) ≺ (δ + α) (q2(z))
2

+ δzq′2(z),

holds, then q1(z) ≺ Fm+1
λ,p f(z)

Fmλ,pf(z)
≺ q2(z) and q1(z) and q2(z) are, respectively, the best

subordinant and the best dominant.

Corollary 3.6. Let qi(z) = 1+Aiz
1+Biz

(i = 1, 2;−1 ≤ B2 < B1 < A1 ≤ A2 ≤ 1) in

Theorem 3.5. If f ∈ A(p) such that
Fm+1
λ,p f(z)

Fmλ,pf(z)
∈ H[q(0), 1] ∩ Q, Υ(m,λ, p, δ; z) is

univalent in U and

δ(A1−B1)z

(1 +B1z)2
+(δ+α)

(
1 +A1z

1 +B1z

)2

≺Υ(m,λ, p, δ; z)≺ δ(A2−B2)z

(1 +B2z)2
+(δ+α)

(
1 +A2z

1 +B2z

)2

holds, then 1+A1z
1+B1z

≺ Fm+1
λ,p f(z)

Fmλ,pf(z)
≺ 1+A2z

1+B2z
and 1+A1z

1+B1z
and 1+A2z

1+B2z
are, respectively, the

best subordinant and the best dominant.

Remarks. Other works related to differential subordination or superordination can be
found in [2], [6], [8]-[12], [15], [16], [20], [22].
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[17] Sălăgean, G.S., Subclasses of univalent functions, Lecture Notes in Mathematics,
1013(1983), 362-372.

[18] Shanmugan, T.N., Ramachandran, C., Darus, M., Sivasubbramanian, S., Differential
sandwich theorems for some subclasses of analytic functions involving a linear operator,
Acta Math. Univ. Comenian., 74(2007), no. 2, 287-294.

[19] Shanmugam, T.N., Ravichandran, V., Sivasubramanian, S., Differential sandwhich the-
orems for some subclasses of analytic functions, Aust. J. Math. Anal. Appl., 3(2006),
no. 1, 1-11.

[20] Shanmugam, T.N., Srikandan, S., Frasin, B.A., Kavitha, S., On sandwich theorems for
certain subclasses of analytic functions involving carlson-shaffer operator, J. Korean
Math. Soc., 45(2008), no. 3, 611-620.

[21] Shanmugam, T.N., Sivasubramanian, S., Silverman, H., On sandwhich theorems for
some classes of analytic functions, Int. J. Math. Math. Sci., Article ID 29684, (2006),
1-13.

[22] Sivasubramanian, S., Mohammed, A., Darus, M., Certain subordination properties for
subclasses of analytic functions involving complex order, Abstract and Applied Analysis,
2011 (2011), Article ID 375897, 8 pages.

[23] Tuneski, N., On certain sufficient conditions for starlikeness, Int. J. Math. Math. Sci.,
23(2000), no. 8, 521-527.

T. Al-Hawary
Department of Applied Science, Ajloun College
Al-Balqa Applied University, Ajloun 26816, Jordan
e-mail: tariq amh@yahoo.com

B.A. Frasin
Faculty of Science, Department of Mathematics
Al al-Bayt University, P.O. Box: 130095 Mafraq, Jordan
e-mail: bafrasin@yahoo.com

M. Darus
School of Mathematical Sciences, Faculty of Science and Technology
University Kebangsaan Malaysia, Bangi 43600 Selangor D. Ehsan, Malaysia
e-mail: maslina@ukm.edu.my (Corresponding author)
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Pascu-type p-valent functions associated with
the convolution structure

Birgül Öner and Sevtap Sümer Eker

Abstract. Making use of convolution structure, we introduce a new class of p-
valent functions. Among the results presented in this paper include the coefficient
bounds, distortion inequalities, extreme points and integral means inequalities for
this generalized class of functions are discussed.

Mathematics Subject Classification (2010): 30C45, 30C50.

Keywords: p-valent functions, coefficient bounds, Hadamard product (or convo-
lution), extreme points, distortion bounds, integral means, Sălăgean operator.

1. Introduction

Let Ap denote the class of functions of the form

f (z) = zp +

∞∑
k=2p+1

akz
k. (p ∈ N = {1, 2, 3, ...}) (1.1)

which are analytic and p-valent in the open unit disk U = {z : z ∈ C and |z| < 1}.
A function f ∈ Ap is β-Pascu convex of order α if

1

p
Re

{
(1− β)zf ′(z) + β

p z (zf ′(z))
′

(1− β)f(z) + β
p zf

′(z)

}
> α (0 ≤ β ≤ 1, 0 ≤ α < 1) .

In the other words (1 − β)f(z) + β
p zf

′(z) is in f ∈ S∗p the class of p-valent starlike

functions (for details [5], see also [1], [3]).

Given two functions f, g ∈ Ap, where f is given by (1.1) and g is given by

g (z) = zp +

∞∑
k=2p+1

bkz
k (p ∈ N) ,
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the Hadamard product (or convolution) f ∗ g is defined (as usual) by

(f ∗ g) (z) = zp +

∞∑
k=2p+1

akbkz
k = (g ∗ f)(z) , z ∈ U. (1.2)

For two functions f and g, analytic in U, we say that the function f(z) is sub-
ordinate to g(z) in U, and write

f(z) ≺ g(z) (z ∈ U),

if there exists a Schwarz function w(z), analytic in U with w(0) = 0 and |w(z)| < 1
such that

f(z) = g(w(z)) (z ∈ U).

In particular, if the function g is univalent in U, the above subordination is
equivalent to

f(0) = g(0) and f(U) ⊂ g(U).

See also Duren [2].
On the other hand, Sălăgean [6] introduced the following operator which is pop-

ularly known as the Sălăgean derivative operator :

D0f(z) = f(z)

D1f(z) = Df(z) = zf ′(z)

and, in general,

Dnf(z) = D(Dn−1f(z)) (n ∈ N0 = N ∪ {0}) .

We easily find from (1.1) that

Dnf (z) = pnzp +

∞∑
k=2p+1

knakz
k (f ∈ Ap ; n ∈ N0).

We denote by Tp the subclass of Ap consisting of functions of the form

f (z) = zp −
∞∑

k=2p+1

akz
k, (ak ≥ 0, p ∈ N) (1.3)

which are p-valent in U.
For a given function g ∈ Ap defined by

g (z) = zp +

∞∑
k=2p+1

bkz
k (bk > 0, p ∈ N) , (1.4)

we introduce here a new class AS∗g(n, p, α, β) of functions belonging to the subclass of
Tp which consists of functions f(z) of the form (1.3) satisfying the following inequality:

1

p
Re

{
(1− β)Dn+1(f ∗ g)(z) + β

pD
n+2(f ∗ g)(z)

(1− β)Dn(f ∗ g)(z) + β
pD

n+1(f ∗ g)(z)

}
> α (1.5)

(0 ≤ α < 1, 0 ≤ β ≤ 1, n, p ∈ N)
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In this paper, we obtain the coefficient inequalities, distortion theorems as well
as integral means inequalities for functions in the class AS∗g(n, p, α, β).

We first prove a necessary and sufficient condition for functions to be in
AS∗g(n, p, α, β) in the following:

2. Coefficient inequalities

Theorem 2.1. A function f(z) given by (1.3) is in AS∗g(n, p, α, β) if and only if for
0 ≤ α < 1, 0 ≤ β ≤ 1, n, p ∈ N,

∞∑
k=2p+1

[(k − αp)(p− βp+ βk)] knakbk ≤ pn+2(1− α). (2.1)

Proof. Assume that f ∈ AS∗g(n, p, α, β) . Then, in view of (1.3) to (1.5), we have

1

p
Re

{
(1− β)Dn+1(f ∗ g)(z) + β

pD
n+2(f ∗ g)(z)

(1− β)Dn(f ∗ g)(z) + β
pD

n+1(f ∗ g)(z)

}

=
1

p
Re


pn+1 −

∞∑
k=2p+1

[
(1− β +

β

p
k)

]
kn+1akbkz

k−p

pn −
∞∑

k=2p+1

[
(1− β +

β

p
k)

]
knakbkz

k−p

 > α (z ∈ U).

If we choose z to be real and let r → 1−, the last inequality leads us to desired
assertion (2.1) of Theorem 2.1.

Conversely, assume that (2.1) holds. For f(z) ∈ Ap, let us define the function
F (z) by

F (z) =
1

p

(1− β)Dn+1(f ∗ g)(z) + β
pD

n+2(f ∗ g)(z)

(1− β)Dn(f ∗ g)(z) + β
pD

n+1(f ∗ g)(z)
− α

It suffices to show that ∣∣∣∣F (z)− 1

F (z) + 1

∣∣∣∣ < 1 (z ∈ U).

We note that ∣∣∣∣F (z)− 1

F (z) + 1

∣∣∣∣
=

∣∣∣∣∣∣
(1− β)Dn+1(f ∗ g)(z) + β

pD
n+2(f ∗ g)(z)− p(α+ 1)

[
(1− β)Dn(f ∗ g)(z) + β

pD
n+1(f ∗ g)(z)

]
(1− β)Dn+1(f ∗ g)(z) + β

pD
n+2(f ∗ g)(z)− p(α− 1)

[
(1− β)Dn(f ∗ g)(z) + β

pD
n+1(f ∗ g)(z)

]
∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣
−αpn+1 −

∞∑
k=2p+1

[
(k − αp− p)(1− β +

β

p
k)

]
knakbkz

k−p

(2− α)pn+1 −
∞∑

k=2p+1

[
(k − αp+ p)(1− β +

β

p
k)

]
knakbkz

k−p

∣∣∣∣∣∣∣∣∣∣
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≤

αpn+2 +

∞∑
k=2p+1

[(k − αp− p)(p− βp+ βk)] knakbk

(2− α)pn+2 −
∞∑

k=2p+1

[(k − αp+ p)(p− βp+ βk)] knakbk

The last expression is bounded above by 1, if

αpn+2 +

∞∑
k=2p+1

[(k − αp− p)(p− βp+ βk)] knakbk

≤ (2− α)pn+2 −
∞∑

k=2p+1

[(k − αp+ p)(p− βp+ βk)] knakbk

which is equivalent to our condition (2.1). This completes the proof of our theorem. �

Corollary 2.2. Let f(z) given by (1.3). If f ∈ AS∗g(n, p, α, β), then

ak ≤
pn+2(1− α)

[(k − αp)(p− βp+ βk)] knbk
(2.2)

with equality for functions of the form

fk(z) = zp − pn+2(1− α)

[(k − αp)(p− βp+ βk)] knbk
zk

Proof. If f ∈ AS∗g(n, p, α, β), then by making use of (2.1), we obtain

[(k − αp)(p− βp+ βk)] knakbk ≤
∞∑

k=2p+1

[(k − αp)(p− βp+ βk)] knakbk

≤ pn+2(1− α)

or

ak ≤
pn+2(1− α)

[(k − αp)(p− βp+ βk)] knbk
.

Clearly for

fk(z) = zp − pn+2(1− α)

[(k − αp)(p− βp+ βk)] knbk
zk,

we have

ak =
pn+2(1− α)

[(k − αp)(p− βp+ βk)] knbk
. �
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3. Distortion inequalities

In this section, we shall prove distortion theorems for functions belonging to the
class AS∗g(n, p, α, β).

Theorem 3.1. Let the function f(z) of the form (1.3) be in the class AS∗g(n, p, α, β).
Then for |z| = r < 1, we have

|f(z)| ≥ rp − pn+2(1− α)

(2p+ 1− αp)(p+ βp+ β)(2p+ 1)nb2p+1
r2p+1 (3.1)

and

|f(z)| ≤ rp +
pn+2(1− α)

(2p+ 1− αp)(p+ βp+ β)(2p+ 1)nb2p+1
r2p+1, (3.2)

provided bk ≥ b2p+1 (k ≥ 2p+ 1). The result is sharp with equality for

f(z) = zp − pn+2(1− α)

(2p+ 1− αp)(p+ βp+ β)(2p+ 1)nb2p+1
z2p+1.

at z = r and z = re
i(2m+1)π
p+1 , m ∈ Z.

Proof. Since f(z) ∈ AS∗g(n, p, α, β), we apply Theorem 2.1, we obtain

(2p+ 1− αp)(p+ βp+ β)(2p+ 1)nb2p+1

∞∑
k=2p+1

ak

≤
∞∑

k=2p+1

[(k − αp)(p− βp+ βk)] knakbk ≤ pn+2(1− α).

Thus, we obtain

∞∑
k=2p+1

ak ≤
pn+2(1− α)

(2p+ 1− αp)(p+ βp+ β)(2p+ 1)nb2p+1
. (3.3)

From (1.3) and (3.3), we have

|f(z)| ≤ |z|p+ |z|2p+1
∞∑

k=2p+1

ak ≤ rp+
pn+2(1− α)

(2p+ 1− αp)(p+ βp+ β)(2p+ 1)nb2p+1
r2p+1

and

|f(z)| ≥ |z|p−|z|2p+1
∞∑

k=2p+1

ak ≥ rp−
pn+2(1− α)

(2p+ 1− αp)(p+ βp+ β)(2p+ 1)nb2p+1
r2p+1.

This completes the proof of Theorem 3.1. �

Theorem 3.2. Let the function f(z) of the form (1.3) be in the class AS∗g(n, p, α, β).
Then for |z| = r < 1, we have

|f ′(z)| ≥ prp−1 − pn+2(1− α)

(2p+ 1− αp)(p+ βp+ β)(2p+ 1)n−1b2p+1
r2p (3.4)
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and

|f ′(z)| ≤ prp +
pn+2(1− α)

(2p+ 1− αp)(p+ βp+ β)(2p+ 1)n−1b2p+1
r2p, (3.5)

provided bk ≥ b2p+1 (k ≥ 2p+ 1). The result is sharp with equality for

f(z) = zp − pn+2(1− α)

(2p+ 1− αp)(p+ βp+ β)(2p+ 1)n−1b2p+1
z2p

at z = r and z = re
i(2m+1)π

p , m ∈ Z.

Proof. From Theorem 2.1 and (3.3), we have
∞∑

k=2p+1

kak ≤
pn+2(1− α)

(2p+ 1− αp)(p+ βp+ β)(2p+ 1)n−1b2p+1
.

and the remaining part of the proof is similar to the proof of Theorem 3.1. �

4. Extreme points

Theorem 4.1. Let fp(z) = zp and

fk(z) = zp − pn+2(1− α)

[(k − αp)(p− βp+ βk)] knbk
zk

(bk > 0, 0 ≤ α < 1, 0 ≤ β ≤ 1, n, p ∈ N, k = 2p+ 1, 2p+ 2, ...) .

Then f(z) ∈ AS∗g(n, p, α, β) if and only if it can be expressed in the following form:

f(z) = λpz
p +

∞∑
k=2p+1

λkfk(z),

where λp ≥ 0, λk ≥ 0 and λp +

∞∑
k=2p+1

λk = 1.

Proof. Suppose that

f(z) = λpz
p +

∞∑
k=2p+1

λkfk(z) = zp −
∞∑

k=2p+1

λk
pn+2(1− α)

[(k − αp)(p− βp+ βk)] knbk
zk.

Then from Theorem 2.1, we have
∞∑

k=2p+1

[(k − αp)(p− βp+ βk)] knλk
pn+2(1− α)

[(k − αp)(p− βp+ βk)] knbk
bk

=

∞∑
k=2p+1

λkp
n+2(1− α) = pn+2(1− α)(1− λp) ≤ pn+2(1− α)

Thus, in view of Theorem 2.1, we find that f(z) ∈ AS∗g(n, p, α, β).
Conversely, suppose that f(z) ∈ AS∗g(n, p, α, β). Then, since

ak ≤
pn+2(1− α)

[(k − αp)(p− βp+ βk)] knbk
(p ∈ N),
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we may set

λk =
[(k − αp)(p− βp+ βk)] knbk

pn+2(1− α)
ak (p ∈ N)

and

λp = 1−
∞∑

k=2p+1

λk.

Thus, clearly, we have

f(z) = λpz
p +

∞∑
k=2p+1

λkfk(z).

This completes the proof of theorem. �

Corollary 4.2. The extreme points of the class AS∗g(n, p, α, β) are given by

fp(z) = zp

and

fk(z) = zp − pn+2(1− α)

[(k − αp)(p− βp+ βk)] knbk
zk, (k ≥ 2p+ 1, p ∈ N) . (4.1)

Theorem 4.3. The class AS∗g(n, p, α, β) is a convex set.

Proof. Suppose that each of the functions fi(z), (i = 1, 2) given by

fi(z) = zp −
∞∑

k=2p+1

ak,iz
k, (ak,i ≥ 0)

is in the class AS∗g(n, p, α, β). It is sufficient to show that the function g(z) defined
by

g(z) = ηf1(z) + (1− η)f2(z), (0 ≤ η < 1)

is also in the class AS∗g(n, p, α, β). Since

g(z) = η

zp − ∞∑
k=2p+1

ak,1z
k

+ (1− η)

zp − ∞∑
k=2p+1

ak,2z
k


= zp −

∞∑
k=2p+1

[ηak,1 + (1− η)ak,2] zk

with the aid of Theorem 2.1, we have
∞∑

k=2p+1

[(k − αp)(p− βp+ βk)] kn [ηak,1 + (1− η)ak,2] bk

= η

∞∑
k=2p+1

[(k − αp)(p− βp+ βk)] knak,1bk

+(1− η)

∞∑
k=2p+1

[(k − αp)(p− βp+ βk)] knak,2bk
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≤ ηpn+2(1− α) + (1− η)pn+2(1− α) = pn+2(1− α). �

5. Integral means inequalities

In 1925, Littlewood proved the following subordination theorem.

Theorem 5.1. (Littlewood [4]) If f and g are analytic in U with f ≺ g, then for µ > 0
and z = reiθ(0 < r < 1) ∫ 2π

0

|f(z)|µ dθ 5
∫ 2π

0

|g (z)|µ dθ.

We will make use of Theorem 5.1 to prove

Theorem 5.2. Let f(z) ∈ AS∗g(n, p, α, β) and fk(z) is defined by (4.1). If there exists
an analytic function w(z) given by

w(z)k−p =
[(k − αp)(p− βp+ βk)] knbk

pn+2(1− α)

∞∑
k=2p+1

akz
k−p,

then for z = reiθ and 0 < r < 1,∫ 2π

0

∣∣f(reiθ)
∣∣µ dθ ≤ ∫ 2π

0

∣∣fk(reiθ)
∣∣µ dθ (µ > 0).

Proof. We must show that∫ 2π

0

∣∣∣∣∣∣1−
∞∑

k=2p+1

akz
k−p

∣∣∣∣∣∣
µ

dθ ≤
∫ 2π

0

∣∣∣∣1− pn+2(1− α)

[(k − αp)(p− βp+ βk)] knbk
zk−p

∣∣∣∣µ dθ.
By applying Littlewood’s subordination theorem, it would suffice to show that

1−
∞∑

k=2p+1

akz
k−p ≺ 1− pn+2(1− α)

[(k − αp)(p− βp+ βk)] knbk
zk−p.

By setting

1−
∞∑

k=2p+1

akz
k−p = 1− pn+2(1− α)

[(k − αp)(p− βp+ βk)] knbk
[w(z)]

k−p
,

we find that

[w(z)]
k−p

=
[(k − αp)(p− βp+ βk)] knbk

pn+2(1− α)

∞∑
k=2p+1

akz
k−p

which readily yields w(0) = 0.
Furthermore, using (2.1), we obtain

|w(z)|k−p ≤

∣∣∣∣∣∣ [(k − αp)(p− βp+ βk)] knbk
pn+2(1− α)

∞∑
k=2p+1

akz
k−p

∣∣∣∣∣∣
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≤ [(k − αp)(p− βp+ βk)] knbk
pn+2(1− α)

∞∑
k=2p+1

ak |z|k−p ≤ |z|k−p < 1.

This completes the proof of the theorem. �
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Dicle University, Department of Mathematics
Science Faculty
TR-21280 Diyarbakır, Turkey
e-mail: sevtaps@dicle.edu.tr
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Second Hankel determinant for the class of
Bazilevic functions

D. Vamshee Krishna and T. RamReddy

Abstract. The objective of this paper is to obtain a sharp upper bound to the
second Hankel determinant H2(2) for the function f when it belongs to the class
of Bazilevic functions, using Toeplitz determinants. The result presented here
include two known results as their special cases.
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1. Introduction

Let A denote the class of functions f of the form

f(z) = z +

∞∑
n=2

anz
n (1.1)

in the open unit disc E = {z : |z| < 1}. Let S be the subclass of A consisting of
univalent functions.

The Hankel determinant of f for q ≥ 1 and n ≥ 1 was defined by Pommerenke
([15]) as

Hq(n) =

an an+1 · · · an+q−1
an+1 an+2 · · · an+q

...
...

...
...

an+q−1 an+q · · · an+2q−2

, (a1 = 1). (1.2)

This determinant has been considered by many authors in the literature. Noonan and
Thomas ([13]) studied about the second Hankel determinant of areally mean p-valent
functions. Ehrenborg ([5]) studied the Hankel determinant of exponential polynomials.
One can easily observe that the Fekete-Szegö functional is H2(1). Fekete-Szegö then
further generalized the estimate |a3 − µa22| with µ real and f ∈ S. Ali ([2]) found
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sharp bounds for the first four coefficients and sharp estimate for the Fekete-Szegö
functional |γ3 − tγ22 |, where t is real, for the inverse function of f defined as

f−1(w) = w +

∞∑
n=2

γnw
n

when it belongs to the class of strongly starlike functions of order α (0 < α ≤ 1)

denoted by S̃T (α). In this paper, we consider the Hankel determinant in the case of
q = 2 and n = 2, known as the second Hankel determinant, given by

H2(2) =
a2 a3
a3 a4

= a2a4 − a23. (1.3)

Janteng, Halim and Darus ([8]) have considered the functional |a2a4 − a23| and found
sharp upper bound for the function f in the subclass RT of S, consisting of functions
whose derivative has a positive real part studied by Mac Gregor ([11]). In their work,
they have shown that if f ∈ RT then |a2a4 − a23| ≤ 4

9 . Janteng, Halim and Darus
([7]) also obtained the second Hankel determinant and sharp bounds for the familiar
subclasses of S, namely, starlike and convex functions denoted by ST and CV and
have shown that |a2a4− a23| ≤ 1 and |a2a4− a23| ≤ 1

8 respectively. Similarly, the same
coefficient inequality was calculated for certain subclasses of analytic functions by
many authors ([1], [3], [9], [12], [18]).

Motivated by the results obtained by different authors in this direction men-
tioned above, in this paper, we seek an upper bound to the functional |a2a4 − a23|
for the function f when it belongs to the class of Bazilevic functions denoted by Bγ
(0 ≤ γ ≤ 1), defined as follows.

Definition 1.1. A function f(z) ∈ A is said to be Bazilevic function, if it satisfies the
condition

Re

{
z1−γ

f ′(z)

f1−γ(z)

}
> 0, ∀z ∈ E (1.4)

where the powers are meant for principal values. This class of functions was denoted by
Bγ , studied by Ram Singh ([16]). It is observed that for γ = 0 and γ = 1 respectively,
we get B0 = ST and B1 = RT .

Some preliminary Lemmas required for proving our result are as follows:

2. Preliminary results

Let P denote the class of functions consisting of p, such that

p(z) = 1 + c1z + c2z
2 + c3z

3 + ... = 1 +

∞∑
n=1

cnz
n, (2.1)

which are regular in the open unit disc E and satisfy Rep(z) > 0 for any z ∈ E. Here
p(z) is called Carathéodory function [4].

Lemma 2.1. ([14], [17]) If p ∈ P, then |ck| ≤ 2, for each k ≥ 1 and the inequality is
sharp for the function 1+z

1−z .
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Lemma 2.2. ([6]) The power series for p given in (2.1) converges in the open unit disc
E to a function in P if and only if the Toeplitz determinants

Dn =

2 c1 c2 · · · cn
c−1 2 c1 · · · cn−1

...
...

...
...

...
c−n c−n+1 c−n+2 · · · 2

, n = 1, 2, 3....

and c−k = ck, are all non-negative. These are strictly positive except for

p(z) =

m∑
k=1

ρkp0(exp(itk)z),

ρk > 0, tk real and tk 6= tj, for k 6= j, where p0(z) = 1+z
1−z ; in this case Dn > 0 for

n < (m− 1) and Dn
.
= 0 for n ≥ m.

This necessary and sufficient condition found in ([6]) is due to Carathéodory and
Toeplitz. We may assume without restriction that c1 > 0. On using Lemma 2.2, for
n = 2 and n = 3 respectively, we obtain

D2 =
2 c1 c2
c1 2 c1
c2 c1 2

= [8 + 2Re{c21c2} − 2|c2|2 − 4|c1|2] ≥ 0,

it is equivalent to

2c2 = {c21 + x(4− c21)}, for some x, |x| ≤ 1. (2.2)

and D3 =

2 c1 c2 c3
c1 2 c1 c2
c2 c1 2 c1
c3 c2 c1 2

.

Then D3 ≥ 0 is equivalent to

|(4c3 − 4c1c2 + c31)(4− c21) + c1(2c2 − c21)2| ≤ 2(4− c21)2 − 2|(2c2 − c21)|2. (2.3)

Simplifying the relations (2.2) and (2.3), we get

4c3 = {c31 + 2c1(4− c21)x− c1(4− c21)x2 + 2(4− c21)(1− |x|2)z}, with |z| ≤ 1. (2.4)

To obtain our result, we refer to the classical method devised by Libera and
Zlotkiewicz ([10]).

3. Main result

Theorem 3.1. If f(z) = z +

∞∑
n=2

anz
n ∈ Bγ (0 ≤ γ ≤ 1) then

|a2a4 − a23| ≤
[

2

2 + γ

]2
and the inequality is sharp.
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Proof. Let f(z) = z +

∞∑
n=2

anz
n ∈ Bγ , by virtue of Definition 1.1, there exists an

analytic function p ∈ P in the open unit disc E with p(0) = 1 and Re{p(z)} > 0 such
that

z1−γ
f ′(z)

f1−γ(z)
= p(z)⇔ z1−γf ′(z) = f1−γ(z)p(z). (3.1)

Replacing the values of f(z), f ′(z) and p(z) with their equivalent series expressions
in (3.1), we have

z1−γ

{
1 +

∞∑
n=2

nanz
n−1

}
=

{
z +

∞∑
n=2

anz
n

}1−γ {
1 +

∞∑
n=1

cnz
n

}
. (3.2)

Using the binomial expansion on the right-hand side of (3.2) subject to the condition

|
∞∑
n=2

anz
n| < 1− γ,

upon simplification, we obtain

1 + 2a2z + 3a3z
2 + 4a4z

3 + ... = 1 + {c1 + (1− γ)a2} z (3.3)

+

[
c2 + (1− γ)

{
c1a2 + a3 +

(−γ)

2
a22

}]
z2

+

[
c3 + (1− γ)

{
c2a2 + c1a3 + a4 + (−γ)

{
1

2
c1a

2
2 + a2a3 +

(−1− γ)

6
a32

}}]
z3+ . . .

Equating the coefficients of like powers of z, z2 and z3 respectively on both sides of
(3.3), after simplifying, we get

a2 =
c1

(1 + γ)
; a3 =

1

2(1 + γ)2(2 + γ)

{
2(1 + γ)2c2 + (1− γ)(2 + γ)c21

}
;

a4 =
1

6(1 + γ)3(2 + γ)(3 + γ)
× {6(1 + γ)2(2 + γ)c3

+ 6(1− γ)(1 + γ)2(3 + γ)c1c2 + (γ − 1)(2 + γ)(2γ2 + 5γ − 3)c31}. (3.4)

Substituting the values of a2, a3 and a4 from (3.4) in the second Hankel functional
|a2a4 − a23| for the function f ∈ Bγ , which simplifies to

|a2a4 − a23| =
1

12(1 + γ)3(2 + γ)2(3 + γ)
|12(1 + γ)2(2 + γ)2c1c3

− 12(1 + γ)3(3 + γ)c22 + (2 + γ)2(3 + γ)(γ − 1)c41|.

The above expression is equivalent to

|a2a4 − a23| =
1

12(1 + γ)3(2 + γ)2(3 + γ)

∣∣d1c1c3 + d2c
2
2 + d3c

4
1

∣∣ , (3.5)

where

d1 = 12(1 + γ)2(2 + γ)2; d2 = −12(1 + γ)3(3 + γ);

d3 = (2 + γ)2(3 + γ)(γ − 1). (3.6)
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Substituting the values of c2 and c3 from (2.2) and (2.4) respectively from Lemma
2.2 on the right-hand side of (3.5), we have∣∣d1c1c3 + d2c

2
2 + d3c

4
1

∣∣ = |d1c1 ×
1

4
{c31 + 2c1(4− c21)x− c1(4− c21)x2

+ 2(4− c21)(1− |x|2)z}+ d2 ×
1

4
{c21 + x(4− c21)}2 + d3c

4
1|.

Using the facts that |z| < 1 and |xa+ yb| ≤ |x||a|+ |y||b|, where x, y, a and b are real
numbers, after simplifying, we get

4
∣∣d1c1c3 + d2c

2
2 + d3c

4
1

∣∣ ≤ |(d1 + d2 + 4d3)c41 + 2d1c1(4− c21)

+2(d1 + d2)c21(4− c21)|x| −
{

(d1 + d2)c21 + 2d1c1 − 4d2
}

(4− c21)|x|2|. (3.7)

With the values of d1, d2 and d3 from (3.6), we can write

d1 + d2 + 4d3 = 4(γ4 + 6γ3 + 12γ2 + 2γ − 9);

d1 = 12(1 + γ)2(2 + γ)2; d1 + d2 = 12(1 + γ)2 (3.8)

and

(d1 + d2)c21 + 2d1c1 − 4d2 = 12(1 + γ)2
{
c21 + 2(2 + γ)2c1 + 4(1 + γ)(3 + γ)

}
. (3.9)

Consider {
c21 + 2(2 + γ)2c1 + 4(1 + γ)(3 + γ)

}
=
[{
c1 + (2 + γ)2

}2 − (2 + γ)4 + 4(1 + γ)(3 + γ)
]

=

[{
c1 + (2 + γ)2

}2 − {√γ4 + 8γ3 + 20γ2 + 16γ + 4
}2
]

=
[
c1 +

{
(2 + γ)2 +

√
γ4 + 8γ3 + 20γ2 + 16γ + 4

}]
×
[
c1 +

{
(2 + γ)2 −

√
γ4 + 8γ3 + 20γ2 + 16γ + 4

}]
(3.10)

Since c1 ∈ [0, 2], using the result (c1 + a)(c1 + b) ≥ (c1 − a)(c1 − b), where a, b ≥ 0 on
the right-hand side of (3.10), after simplifying, we get{

c21 + 2(2 + γ)2c1 + 4(1 + γ)(3 + γ)
}

≥
{
c21 − 2(2 + γ)2c1 + 4(1 + γ)(3 + γ)

}
. (3.11)

From the relations (3.9) and (3.11), we can write

−
{

(d1 + d2)c21 + 2d1c1 − 4d2
}

≤− 12(1 + γ)2
{
c21 − 2(2 + γ)2c1 + 4(1 + γ)(3 + γ)

}
. (3.12)

Substituting the calculated values from (3.8) and (3.12) on the right-hand side of
(3.7), we have∣∣d1c1c3 + d2c

2
2 + d3c

4
1

∣∣ ≤ |(γ4 + 6γ3 + 12γ2 + 2γ − 9)c41

+ 6(1 + γ)2(2 + γ)2c1(4− c21) + 6(1 + γ)2c21(4− c21)|x|
− 3(1 + γ)2

{
c21 − 2(2 + γ)2c1 + 4(1 + γ)(3 + γ)

}
(4− c21)|x|2|.
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Choosing c1 = c ∈ [0, 2], applying triangle inequality and replacing |x| by µ on the
right-hand side of the above inequality, we obtain∣∣d1c1c3 + d2c

2
2 + d3c

4
1

∣∣ ≤ [(−γ4 − 6γ3 + 12γ2 − 2γ + 9)c4

+ 6(1 + γ)2(2 + γ)2c(4− c2) + 6(1 + γ)2c2(4− c2)µ

+ 3(1 + γ)2
{
c2 − 2(2 + γ)2c+ 4(1 + γ)(3 + γ)

}
(4− c2)µ2]

= F (c, µ), for 0 ≤ µ = |x| ≤ 1, (3.13)

where

F (c, µ) = [(−γ4 − 6γ3 + 12γ2 − 2γ + 9)c4

+ 6(1 + γ)2(2 + γ)2c(4− c2) + 6(1 + γ)2c2(4− c2)µ

+ 3(1 + γ)2
{
c2 − 2(2 + γ)2c+ 4(1 + γ)(3 + γ)

}
(4− c2)µ2]. (3.14)

We next maximize the function F (c, µ) on the closed region [0, 2]× [0, 1].
Differentiating F (c, µ) in (3.14) partially with respect to µ, we get

∂F

∂µ
= 6(1 + γ)2[c2 +

{
c2 − 2(2 + γ)2c+ 4(1 + γ)(3 + γ)

}
µ]× (4− c2). (3.15)

For 0 < µ < 1, for any fixed c with 0 < c < 2 and o ≤ γ ≤ 1, from (3.15), we
observe that ∂F

∂µ > 0. Therefore, F (c, µ) is an increasing function of µ and hence it

cannot have maximum value any point in the interior of the closed region [0, 2]× [0, 1].
Moreover, for fixed c ∈ [0, 2], we have

max
0≤µ≤1

F (c, µ) = F (c, 1) = G(c). (3.16)

In view of (3.16), replacing µ by 1 in (3.14), upon simplification, we obtain

G(c) = F (c, 1) = −γ(γ3 + 6γ2 − 3γ + 20)c4 − 12γ(1 + γ)2(4 + γ)c2

+ 48(1 + γ)3(3 + γ), (3.17)

G′(c) = −4γc
{

(γ3 + 6γ2 − 3γ + 20)c2 + 6(1 + γ)2(4 + γ)
}
. (3.18)

From the expression (3.18), we observe that G′(c) ≤ 0, for every c ∈ [0, 2] and for
fixed γ with 0 ≤ γ ≤ 1. Therefore, G(c) is a decreasing function of c in the interval
[0,2], whose maximum value occurs at c = 0 only. For c = 0 in (3.17), the maximum
value of G(c) is given by

Gmax = G(0) = 48(1 + γ)3(3 + γ). (3.19)

From the expressions (3.13) and (3.19), we have∣∣d1c1c3 + d2c
2
2 + d3c

4
1

∣∣ ≤ 48(1 + γ)3(3 + γ). (3.20)

Simplifying the relations (3.5) and (3.20), we obtain

|a2a4 − a23| ≤
[

2

2 + γ

]2
. (3.21)
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Choosing c1 = c = 0 and selecting x = 1 in (2.2) and (2.4), we find that c2 = 2 and
c3 = 0. Substituting these values in (3.20), we observe that equality is attained which
shows that our result is sharp. For these values, we derive that

p(z) = 1 + c1z + c2z
2 + c3z

3 + ... = 1 + 2z2 + 2z4 + ... =
1 + z2

1− z2
. (3.22)

Therefore, the extremal function in this case is

z1−γ
f ′(z)

f1−γ(z)
= 1 + 2z2 + 2z4 + ... =

1 + z2

1− z2
. (3.23)

This completes the proof of our Theorem. �

Remark 3.2. Choosing γ = 0, from (3.21), we get |a2a4 − a23| ≤ 1, this inequality is
sharp and coincides with that of Janteng, Halim, Darus ([7]).

Remark 3.3. For the choice of γ = 1 in (3.21), we obtain |a2a4−a23| ≤ 4
9 and is sharp,

coincides with the result of Janteng, Halim, Darus ([8]) .
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Some extensions of the Open Door Lemma

Ming Li and Toshiyuki Sugawa

Abstract. Miller and Mocanu proved in their 1997 paper a greatly useful result
which is now known as the Open Door Lemma. It provides a sufficient condition
for an analytic function on the unit disk to have positive real part. Kuroki and
Owa modified the lemma when the initial point is non-real. In the present note,
by extending their methods, we give a sufficient condition for an analytic function
on the unit disk to take its values in a given sector.

Mathematics Subject Classification (2010): 30C45, 30C80.

Keywords: Open door function, subordination.

1. Introduction

We denote by H the class of holomorphic functions on the unit disk

D = {z : |z| < 1}
of the complex plane C. For a ∈ C and n ∈ N, let H[a, n] denote the subclass of
H consisting of functions h of the form h(z) = a + cnz

n + cn+1z
n+1 + · · · . Here,

N = {1, 2, 3, . . . }. Let also An be the set of functions f of the form f(z) = zh(z) for
h ∈ H[1, n].

A function f ∈ A1 is called starlike (resp. convex) if f is univalent on D and if
the image f(D) is starlike with respect to the origin (resp. convex). It is well known
(cf. [1]) that f ∈ A1 is starlike precisely if qf (z) = zf ′(z)/f(z) has positive real part
on |z| < 1, and that f ∈ A1 is convex precisely if ϕf (z) = 1+zf ′′(z)/f ′(z) has positive
real part on |z| < 1. Note that the following relation holds for those quantities:

ϕf (z) = qf (z) +
zq′f (z)

qf (z)
.

It is geometrically obvious that a convex function is starlike. This, in turn, means the
implication

Re

[
q(z) +

zq′(z)

q(z)

]
> 0 on |z| < 1 ⇒ Re q(z) > 0 on |z| < 1

The authors were supported in part by JSPS Grant-in-Aid for Scientific Research (B) 22340025.
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for a function q ∈ H[1, 1]. Interestingly, it looks highly nontrivial. Miller and Mocanu
developed a theory (now called differential subordination) which enables us to deduce
such a result systematically. See a monograph [4] written by them for details.

The set of functions q ∈ H[1, 1] with Re q > 0 is called the Carathéodory class
and will be denoted by P. It is well recognized that the function

q0(z) = (1 + z)/(1− z)

(or its rotation) maps the unit disk univalently onto the right half-plane and is ex-
tremal in many problems. One can observe that the function

ϕ0(z) = q0(z) +
zq′0(z)

q0(z)
=

1 + z

1− z
+

2z

1− z2
=

1 + 4z + z2

1− z2

maps the unit disk onto the slit domain V (−
√

3,
√

3), where

V (A,B) = C \ {iy : y ≤ A or y ≥ B}

for A,B ∈ R with A < B. Note that V (A,B) contains the right half-plane and has the
“window” (Ai,Bi) in the imaginary axis to the left half-plane. The Open Door Lemma
of Miller and Mocanu asserts for a function q ∈ H[1, 1] that, if q(z) + zq′(z)/q(z) ∈
V (−
√

3,
√

3) for z ∈ D, then q ∈ P. Indeed, Miller and Mocanu [3] (see also [4])
proved it in a more general form. For a complex number c with Re c > 0 and n ∈ N,
we consider the positive number

Cn(c) =
n

Re c

[
|c|
√

2Re c

n
+ 1 + Im c

]
.

In particular, Cn(c) =
√
n(n+ 2c) when c is real. The following is a version of the

Open Door Lemma modified by Kuroki and Owa [2].

Theorem A (Open Door Lemma). Let c be a complex number with positive real part
and n be an integer with n ≥ 1. Suppose that a function q ∈ H[c, n] satisfies the
condition

q(z) +
zq′(z)

q(z)
∈ V (−Cn(c), Cn(c̄)), z ∈ D.

Then Re q > 0 on D.

Remark 1.1. In the original statement of the Open Door Lemma in [3], the slit domain
was erroneously described as V (−Cn(c), Cn(c)). Since Cn(c̄) < Cn(c) when Im c > 0,
we see that V (−Cn(c̄), Cn(c̄)) ⊂ V (−Cn(c), Cn(c̄)) ⊂ V (−Cn(c), Cn(c)) for Im c ≥ 0
and the inclusions are strict if Im c > 0. As the proof will suggest us, seemingly the
domain V (−Cn(c), Cn(c̄)) is maximal for the assertion, which means that the original
statement in [3] and the form of the associated open door function are incorrect for a
non-real c. This, however, does not decrease so much the value of the original article [3]
by Miller and Mocanu because the Open Door Lemma is mostly applied when c is real.
We also note that the Open Door Lemma deals with the function p = 1/q ∈ H[1/c, n]
instead of q. The present form is adopted for convenience of our aim.
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The Open Door Lemma gives a sufficient condition for q ∈ H[c, n] to have
positive real part. We extend it so that | arg q| < πα/2 for a given 0 < α ≤ 1. First
we note that the Möbius transformation

gc(z) =
c+ c̄z

1− z
maps D onto the right half-plane in such a way that gc(0) = c, where c is a complex
number with Re c > 0. In particular, one can take an analytic branch of log gc so that
| Im log gc| < π/2. Therefore, the function q0 = gαc = exp(α log gc) maps D univalently
onto the sector | argw| < πα/2 in such a way that q0(0) = cα. The present note is
based mainly on the following result, which will be deduced from a more general result
of Miller and Mocanu (see Section 2).

Theorem 1.2. Let c be a complex number with Re c > 0 and α be a real number with
0 < α ≤ 1. Then the function

Rα,c,n(z) = gc(z)
α +

nαzg′c(z)

gc(z)
=

(
c+ c̄z

1− z

)α
+

2nα(Re c)z

(1− z)(c+ c̄z)

is univalent on |z| < 1. If a function q ∈ H[cα, n] satisfies the condition

q(z) +
zq′(z)

q(z)
∈ Rα,c,n(D), z ∈ D,

then | arg q| < πα/2 on D.

We remark that the special case when α = 1 reduces to Theorem A (see the
paragraph right after Lemma 3.3 below. Also, the case when c = 1 is already proved
by Mocanu [5] even under the weaker assumption that 0 < α ≤ 2 (see Remark 3.6).
Since the shape of Rα,c,n(D) is not very clear, we will deduce more concrete results as
corollaries of Theorem 1.2 in Section 3. This is our principal aim in the present note.

2. Preliminaries

We first recall the notion of subordination. A function f ∈ H is said to be
subordinate to F ∈ H if there exists a function ω ∈ H[0, 1] such that |ω| < 1 on D
and that f = F ◦ ω. We write f ≺ F or f(z) ≺ F (z) for subordination. When F is
univalent, f ≺ F precisely when f(0) = F (0) and f(D) ⊂ F (D).

Miller and Mocanu [3, Theorem 5] (see also [4, Theorem 3.2h]) proved the fol-
lowing general result, from which we will deduce Theorem 1.2 in the next section.

Lemma 2.1 (Miller and Mocanu). Let µ, ν ∈ C with µ 6= 0 and n be a positive
integer. Let q0 ∈ H[c, 1] be univalent and assume that µq0(z) + ν 6= 0 for z ∈ D and
Re (µc+ ν) > 0. Set Q(z) = zq′0(z)/(µq0(z) + ν), and

h(z) = q0(z) + nQ(z) = q0(z) +
nzq′0(z)

µq0(z) + ν
. (2.1)

Suppose further that

(a) Re [zh′(z)/Q(z)] = Re [h′(z)(µq0(z) + ν)/q′0(z)] > 0, and
(b) either h is convex or Q is starlike.
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If q ∈ H[c, n] satisfies the subordination relation

q(z) +
zq′(z)

µq(z) + ν
≺ h(z), (2.2)

then q ≺ q0, and q0 is the best dominant. An extremal function is given by

q(z) = q0(zn).

In the investigation of the generalized open door function Rα,c,n, we will need
to study the positive solution to the equation

x2 +Ax1+α − 1 = 0, (2.3)

where A > 0 and 0 < α ≤ 1 are constants. Let F (x) = x2 +Ax1+α − 1. Then F (x) is
increasing in x > 0 and F (0) = −1 < 0, F (+∞) = +∞. Therefore, there is a unique
positive solution x = ξ(A,α) to the equation. We have the following estimates for the
solution.

Lemma 2.2. Let 0 < α ≤ 1 and A > 0. The positive solution x = ξ(A,α) to equation
(2.3) satisfies the inequalities

(1 +A)−1/(1+α) ≤ ξ(A,α) ≤ (1 +A)−1/2 (< 1).

Here, both inequalities are strict when 0 < α < 1.

Proof. Set ξ = ξ(A,α). Since the above F (x) is increasing in x > 0, the inequalities
F (x1) ≤ 0 = F (ξ) ≤ F (x2) imply x1 ≤ ξ ≤ x2 for positive numbers x1, x2 and the
inequalities are strict when x1 < ξ < x2. Keeping this in mind, we now show the
assertion. First we put x2 = (1 +A)−1/2 and observe

F (x2) =
1

1 +A
+

A

(1 +A)(1+α)/2
− 1 ≥ 1

1 +A
+

A

1 +A
− 1 = 0,

which implies the right-hand inequality in the assertion.
Next put x1 = (1 +A)−1/(1+α). Then

F (x1) =
1

(1 +A)2/(1+α)
+

A

1 +A
− 1 ≤ 1

1 +A
+

A

1 +A
− 1 = 0,

which implies the left-hand inequality. We note also that F (x1) < 0 < F (x2) when
α < 1. The proof is now complete. �

3. Proof and corollaries

Theorem 1.2 can be rephrased in the following.

Theorem 3.1. Let c be a complex number with Re c > 0 and α be a real number with
0 < α ≤ 1. Then the function

Rα,c,n(z) = gc(z)
α +

nαzg′c(z)

gc(z)
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is univalent on |z| < 1. If a function q ∈ H[cα, n] satisfies the subordination condition

q(z) +
zq′(z)

q(z)
≺ Rα,c,n(z)

on D, then q(z) ≺ gc(z)α on D. The function gαc is the best dominant.

Proof. We first show that the function Q(z) = αzg′c(z)/gc(z) is starlike. Indeed, we
compute

zQ′(z)

Q(z)
= 1− c̄z

c+ c̄z
+

z

1− z
=

1

2

[
c− c̄z
c+ c̄z

+
1 + z

1− z

]
.

Thus we can see that Re [zQ′(z)/Q(z)] > 0 on |z| < 1. Next we check condition (a)
in Lemma 2.1 for the functions q0 = gαc , h = Rα,c,n with the choice µ = 1, ν = 0. We
have the expression

zh′(z)

Q(z)
= qc(z)

α + n
zQ′(z)

Q(z)
.

Since both terms in the right-hand side have positive real part, we obtain (a). We now
apply Lemma 2.1 to obtain the required assertion up to univalence of h = Rα,c,n. In
order to show the univalence, we have only to note that the condition (a) implies that
h is close-to-convex, since Q is starlike. As is well known, a close-to-convex function
is univalent (see [1]), the proof has been finished. �

We now investigate the shape of the image domain Rα,c,n(D) of the generalized
open door function Rα,c,n given in Theorem 1.2. Let z = eiθ and c = reit for θ ∈
R, r > 0 and −π/2 < t < π/2. Then we have

Rα,c,n(eiθ) =

(
reit + re−iteiθ

1− eiθ

)α
+

2nαeiθ cos t

(1− eiθ)(eit + e−iteiθ)

=

(
r cos (t− θ/2)

sin (θ/2)
i

)α
+
i

2
· nα cos t

sin (θ/2) cos (t− θ/2)

= rαeπαi/2 (cos t cot (θ/2) + sin t)
α

+
i

2
· nα(1 + cot2 (θ/2)) cos t

cos t cot (θ/2) + sin t
.

Let x = cot (θ/2) cos t+sin t. When x > 0, we write Rα,c,n(eiθ) = u+(x)+ iv+(x) and
get the expressions

u+(x) = a(rx)α,

v+(x) = b(rx)α +
nα

2 cos t

(
x− 2 sin t+

1

x

)
,

where

a = cos
απ

2
and b = sin

απ

2
.

Taking the derivative, we get

v′+(x) =
nα

2x2 cos t

[
x2 +

2brα cos t

n
xα+1 − 1

]
.
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Hence, the minimum of v+(x) is attained at x = ξ(A,α), where A = 2brαn−1 cos t.
By using the relation (2.3), we obtain

min
0<x

v+(x) = v+(ξ) =
n

2 cos t

(
Aξα + αξ +

α

ξ

)
− nα tan t

=
n

2 cos t

(
(α− 1)ξ +

α+ 1

ξ

)
− nα tan t = U(ξ),

where

U(x) =
n

2 cos t

(
(α− 1)x+

α+ 1

x

)
− nα tan t.

Since the function U(x) is decreasing in 0 < x < 1, Lemma 2.2 yields the inequality

v+(ξ) = U(ξ) ≥ U((1 +A)−1/2)

=
n

2 cos t

(
α− 1√
1 +A

+ (α+ 1)
√

1 +A

)
− nα tan t.

We remark here that

U((1 +A)−1/2) > U(1) =
nα(1− sin t)

cos t
> 0;

namely, v+(x) > 0 for x > 0. When x < 0, letting y = −x = − cot (θ/2) cos t − sin t,
we write Rα,c,n(eiθ) = u−(y) + iv−(y). Then, with the same a and b as above,

u−(y) = a(ry)α,

v−(y) = −b(ry)α − nα

2 cos t

(
y + 2 sin t+

1

y

)
,

We observe here that u+ = u− > 0 and, in particular, we obtain the following.

Lemma 3.2. The left half-plane Ω1 = {w : Rew < 0} is contained in Rα,c,n(D).

We now look at v−(y). Since

v′−(y) = − nα

2y2 cos t

[
y2 +

2brα cos t

n
yα+1 − 1

]
,

in the same way as above, we obtain

max
0<y

v−(y) = v−(ξ) = − n

2 cos t

(
(α− 1)ξ +

α+ 1

ξ

)
− nα tan t

≤ − n

2 cos t

(
α− 1√
1 +A

+ (α+ 1)
√

1 +A

)
− nα tan t,

where ξ = ξ(A,α) and A = 2brαn−1 cos t. Note also that v−(y) < 0 for y > 0.
Since the horizontal parallel strip v−(ξ) < Imw < v+(ξ) is contained in the im-

age domain Rα,c,n(D) of the generalized open door function, we obtain the following.

Lemma 3.3. The parallel strip Ω2 described by

| Imw + nα tan t| < n

2 cos t

(
α− 1√
1 +A

+ (α+ 1)
√

1 +A

)
is contained in Rα,c,n(D). Here, t = arg c ∈ (−π2 ,

π
2 ) and A = 2

n |c|
α sin πα

2 cos t.
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When α = 1, we have u± = 0, that is, the boundary is contained in the imaginary
axis. Since ξ(A, 1) = (1 +A)−1/2 by Lemma 2.2, the above computations tell us

min v+ = (n/ cos t)(
√

1 +A− sin t) = Cn(c̄).

Similarly, we have

max v− = −(n/ cos t)(
√

1 +A+ sin t) = −Cn(c).

Therefore, we have

R1,c,n(D) = V (−Cn(c), Cn(c̄)).

Note that the open door function then takes the following form

R1,c,n(z) =
c+ c̄z

1− z
+

2n(Re c)z

(1− z)(c+ c̄z)

=
2Re c+ n

1 + cz/c̄
− n

1− z
− c̄,

which is the same as given by Kuroki and Owa [2, (2.2)]. In this way, we see that
Theorem 1.2 contains Theorem A as a special case.

Remark 3.4. In [2], they proposed another open door function of the form

R(z) =
2n|c|
Re c

√
2Re c

n
+ 1

(ζ − z)(1− ζ̄z)
(1− ζ̄z)2 − (ζ − z)2

− Im c

Re c
i,

where

ζ = 1− 2

ω
, ω =

c

|c|

√
2Re c

n
+ 1 + 1.

It can be checked that R(z) = R1,c,n(−ωz/ω̄). Hence, R is just a rotation of R1,c,n.

We next study the argument of the boundary curve of Rα,c,n(D). We will assume
that 0 < α < 1 since we have nothing to do when α = 1.

As we noted above, the boundary is contained in the right half-plane Rew > 0.
When x > 0, we have

v+(x)

u+(x)
=
b

a
+

nα

2arαxα cos t

[
x+

1

x
− 2 sin t

]
.

We observe now that v+(x)/u+(x)→ +∞ as x→ 0+ or x→ +∞. We also have(
v+
u+

)′
(x) =

nα

2arαxα+2 cos t

[
(1− α)x2 + 2αx sin t− (1 + α)

]
.

Therefore, v+(x)/u+(x) takes its minimum at x = ξ, where

ξ =
−α sin t+

√
1− α2 cos2 t

1− α
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is the positive root of the equation (1 − α)x2 + 2αx sin t − (1 + α) = 0. It is easy to
see that 1 < ξ and that

T+ := min
0<x

v+(x)

u+(x)
=
v+(ξ)

u+(ξ)
=
b

a
+

nα

2arαξα cos t

[
ξ +

1

ξ
− 2 sin t

]
= tan

πα

2
+

n(ξ − ξ−1)

2arαξα cos t
.

When x = −y < 0, we have

v−(y)

u−(y)
= − b

a
− nα

2arαyα cos t

[
y +

1

y
+ 2 sin t

]
and (

v−
u−

)′
(y) =

−nα
2arαyα+2 cos t

[
(1− α)y2 − 2αy sin t− (1 + α)

]
.

Hence, v−(y)/u−(y) takes its maximum at y = η, where

η =
α sin t+

√
1− α2 cos2 t

1− α
.

Note that

T− := max
0<y

v−(y)

u−(y)
=
v−(η)

u−(η)
= − tan

πα

2
− n(η − η−1)

2arαηα cos t
.

Therefore, the sector {w : T− < argw < T+} is contained in the image Rα,c,n(D).
It is easy to check that T− < − tan(πα/2) < tan(πα/2) < T+. In particular T− <
arg cα = αt < T+. We summarize the above observations, together with Theorem 1.2,
in the following form.

Corollary 3.5. Let 0 < α < 1 and c = reit with r > 0,−π/2 < t < π/2, and n be a
positive integer. If a function q ∈ H[cα, n] satisfies the condition

−Θ− < arg

(
q(z) +

zq′(z)

q(z)

)
< Θ+

on |z| < 1, then | arg q| < πα/2 on D. Here,

Θ± = arctan

[
tan

πα

2
+

n(ξ± − ξ−1± )

2rαξα± cos(πα/2) cos t

]
,

and

ξ± =
∓α sin t+

√
1− α2 cos2 t

1− α
.

It is a simple task to check that x1−α − x−1−α is increasing in 0 < x. When
Im c > 0, we see that ξ− > ξ+ and thus Θ− > Θ+. It might be useful to note the

estimates ξ− <
√

(1 + α)/(1− α) < ξ+ and ξ− < 1/ sin t for Im c > 0.

Remark 3.6. When c = 1 and n = 1, we have

ξ := ξ± =
√

(1 + α)/(1− α), ξ − ξ−1 = 2α/
√

1− α2,
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and thus

Θ± = arctan

[
tan

πα

2
+

ξ − ξ−1

2ξα cos πα2

]
= arctan

[
tan

πα

2
+

α

cos πα2 (1− α)
1−α
2 (1 + α)

1+α
2

]

=
πα

2
+ arctan

 α cos πα2

(1− α)
1−α
2 (1 + α)

1+α
2 + α sin πα

2

 .
Therefore, the corollary gives a theorem proved by Mocanu [6].

Since the values Θ+ and Θ− are not given in an explicitly way, it might be
convenient to have a simpler sufficient condition for | arg q| < πα/2.

Corollary 3.7. Let 0 < α ≤ 1 and c with Re c > 0 and n be a positive integer. If a
function q ∈ H[cα, n] satisfies the condition

q(z) +
zq′(z)

q(z)
∈ Ω,

then | arg q| < πα/2 on D. Here, Ω = Ω1 ∪ Ω2 ∪ Ω3, and Ω1 and Ω2 are given in
Lemmas 3.2 and 3.3, respectively, and Ω3 = {w ∈ C : | argw| < πα/2}.

Proof. Lemmas 3.2 and 3.3 yield that Ω1 ∪ Ω2 ⊂ Rα,c,n(D). Since Θ± > πα/2, we
also have Ω3 ⊂ Rα,c,n(D). Thus Ω ⊂ Rα,c,n(D). Now the result follows from Theorem
1.2. �

See Figure 1 for the shape of the domain Ω together with Rα,c,n(D). We remark
that Ω = Rα,c,n(D) when α = 1.

Figure 1. The image Rα,c,n(D) and Ω for α = 1/2, c = 4 + 3i, n = 2.
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On a functional differential inclusion

Aurelian Cernea

Abstract. We consider a Cauchy problem associated to a nonconvex functional
differential inclusion and we prove a Filippov type existence result. This result
allows to obtain a relaxation theorem for the problem considered.

Mathematics Subject Classification (2010): 34A60, 34K05, 34K15, 47H10.

Keywords: set-valued map, functional differential inclusion, relaxation.

1. Introduction

In this note we study functional differential inclusions of the form

x′(t) ∈ F (t, x(t), x(λt)), x(0) = x0, (1.1)

where F (., ., .) : [0, T ] ×R ×R → P(R) is a set-valued map with non-empty values,
λ ∈ (0, 1) and x0 ∈ R. The present note is motivated by a recent paper [5], where
it was studied problem (1.1) with F single valued and several results were obtained
using fixed point techniques: existence, uniqueness and differentiability with respect
with the delay of the solutions. The study in [5] contains, as a particular case, the
problem

x′(t) = −ax(t) + aλx(λt), x(0) = x0,

which appears in the radioactive propagation theory ([2]).
The aim of this note is to consider the multivalued framework and to show

that Filippov’s ideas ([3]) can be suitably adapted in order to obtain the existence
of solutions of problem (1.1). We recall that for a differential inclusion defined by a
lipschitzian set-valued map with nonconvex values Filippov’s theorem ([3]) consists in
proving the existence of a solution starting from a given ”quasi” solution. Moreover,
the result provides an estimate between the starting ”quasi” solution and the solution
of the differential inclusion.

As an application of our main result we obtain a relaxation theorem for the
problem considered. Namely, we prove that the solution set of the problem (1.1) is
dense in the set of the relaxed solutions; i.e. the set of solutions of the differential
inclusion whose right hand side is the convex hull of the original set-valued map.
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The paper is organized as follows: in Section 2 we briefly recall some preliminary
results that we will use in the sequel and in Section 3 we prove the main results of
the paper.

2. Preliminaries

In this section we sum up some basic facts that we are going to use later.
Let (X, d) be a metric space. The Pompeiu-Hausdorff distance of the closed

subsets A,B ⊂ X is defined by

dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A},
where d(x,B) = inf{d(x, y); y ∈ B}. Let T > 0, I := [0, T ] and denote by L(I) the
σ-algebra of all Lebesgue measurable subsets of I. Denote by P(R) the family of all
nonempty subsets of R and by B(R) the family of all Borel subsets of R. For any
subset A ⊂ R we denote by clA the closure of A and by co(A) the closed convex hull
of A.

As usual, we denote by C(I,R) the Banach space of all continuous functions
x(.) : I → R endowed with the norm

|x|C = sup
t∈I
|x(t)|

and by L1(I,R) the Banach space of all integrable functions x(.) : I → R endowed
with the norm

|x|1 =

∫ T

0

|x(t)|dt.

The Banach space of all absolutely continuous functions x(.) : I → R will be denoted
by AC(I,R). We recall that for a set-valued map U : I → P(R) the Aumann integral

of U, denoted by

∫
I

U(t)dt, is the set∫
I

U(t)dt =

{∫
I

u(t)dt; u(.) ∈ L1(I,R), u(t) ∈ U(t) a.e. (I)

}
.

We recall two results that we are going to use in the next section. The first one
is a selection result (e.g., [1]) which is a version of the celebrated Kuratowski and
Ryll-Nardzewski selection theorem. The proof of the second one may be found in [4].

Lemma 2.1. Consider X a separable Banach space, B is the closed unit ball in X,
H : I → P(X) is a set-valued map with nonempty closed values and g : I → X,L :
I → R+ are measurable functions. If

H(t) ∩ (g(t) + L(t)B) 6= ∅ a.e.(I),

then the set-valued map t→ H(t) ∩ (g(t) + L(t)B) has a measurable selection.

Lemma 2.2. Let U : I → P(R) be a measurable set-valued map with closed nonempty
images and having at least one integrable selection. Then

cl

(∫ T

0

coU(t)dt

)
= cl

(∫ T

0

U(t)dt

)
.
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3. The main results

In what follows we assume the following hypotheses.

Hypothesis. i) F (., ., .) : I × R × R → P(R) has nonempty closed values and is
L(I)⊗ B(R×R) measurable.

ii) There exist l1(.), l2(.) ∈ L1(I,R+) such that, for almost all t ∈ I,

dH(F (t, x1, y1), F (t, x2, y2)) ≤ l1(t)|x1 − x2|+ l2(t)|y1 − y2| ∀x1, x2, y1, y2 ∈ R.

Theorem 3.1. Assume that Hypothesis is satisfied and |l1|1 + |l2|1 < 1.
Let y(.) ∈ AC(I,R) be such that there exists p(.) ∈ L1(I,R+) verifying

d(y(t), F (t, y(t), y(λt))) ≤ p(t) a.e. (I).

Then there exists x(.) a solution of problem (1.1) satisfying for all t ∈ I

|x− y|C ≤
1

1− (|l1|1 + |l2|1)
(|x0 − y(0)|+ |p|1). (3.1)

Proof. We set x0(.) = y(.), f0(.) = y′(.). It follows from Lemma 2.1 and Hypothesis
that there exists a measurable function f1(.) such that f1(t) ∈ F (t, x0(t), x0(λt)) a.e.
(I) and, for almost all t ∈ I, |f1(t)− y′(t)| ≤ p(t). Define

x1(t) = x0 +

∫ t

0

f1(s)ds

and one has

|x1(t)− y(t)| ≤ |x0 − y(0)|+
∫ t

0

p(s)ds ≤ |x0 − y(0)|+ |p|1.

Thus |x1 − y|C ≤ |x0 − y(0)|+ |p|1.
From Lemma 2.1 and Hypothesis we deduce the existence of a measurable func-

tion f2(.) such that f2(t) ∈ F (t, x1(t), x1(λt)) a.e. (I) and for almost all t ∈ I

|f1(t)− f2(t)| ≤ d(f1(t), F (t, x1(t), x1(λt))) ≤ dH(F (t, x0(t), x0(λt)),

F (t, x1(t), x1(λt))) ≤ l1(t)|x1(t)− x2(t)|+ l2(t)|x1(λt)− x2(λt)|.
Define

x2(t) = x0 +

∫ t

0

f2(s)ds

and one has

|x1(t)− x2(t)| ≤
∫ t

0

|f1(s)− f2(s)|ds

≤
∫ t

0

[l1(s)|x1(s)− x2(s)|+ l2(s)|x1(λs)− x2(λs)|]ds

≤ (|l1|1 + |l2|1)|x1 − x2|C ≤ (|l1|1 + |l2|1)(|x0 − y(0)|+ |p|1).

Assume that for some p ≥ 1 we have constructed (xi)
p
i=1 with xp satisfying

|xp − xp−1|C ≤ (|l1|1 + |l2|1)p(|x0 − y(0)|+ |p|1).
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Using Lemma 2.1 and Hypothesis we deduce the existence of a measurable function
fp+1(.) such that fp+1(t) ∈ F (t, xp(t), xp(λt)) a.e. (I) and for almost all t ∈ I

|fp+1(t)− fp(t)| ≤ d(fp+1(t), F (t, xp−1(t), xp−1(λt)))

≤ dH(F (t, xp(t), xp(λt)), F (t, xp−1(t), xp−1(λt)))

≤ l1(t)|xp(t)− xp−1(t)|+ l2(t)|xp(λt)− xp−1(λt)|.
Define

xp+1(t) = x0 +

∫ t

0

fp+1(s)ds. (3.2)

We have

|xp+1(t)− xp(t)| ≤
∫ t

0

|fp+1(s)− fp(s)|ds

≤
∫ t

0

[l1(s)|xp(s)− xp−1(s)|+ l2(s)|xp(λs)− xp−1(λs)|]ds

≤ (|l1|1 + |l2|1)|xp − xp−1|C ≤ (|l1|1 + |l2|1)p(|x0 − y(0)|+ |p|1).

Therefore (xp(.))p≥0 is a Cauchy sequence in the Banach space C(I,R), so it converges
to x(.) ∈ C(I,R). Since, for almost all t ∈ I, we have

|fp+1(t)− fp(t)| ≤ l1(t)|xp(t)− xp−1(t)|+ l2(t)|xp(λt)− xp−1(λt)|

≤ [l1(t) + l2(t)]|xp − xp−1|C ,
{fp(.)} is a Cauchy sequence in the Banach space L1(I,R) and thus it converges
to f(.) ∈ L1(I,R). Passing to the limit in (3.2) and using Lebesgue’s dominated

convergence theorem we get x(t) = x0 +
∫ t

0
f(s)ds, which shows, in particular, that

x(.) is absolutely continuous.
Moreover, since the values of F (., ., .) are closed and fp+1(t) ∈ F (t, xp(t), xp(λt))

passing to the limit we obtain f(t) ∈ F (t, x(t), x(λt)) a.e. (I).
It remains to prove the estimate (3.2). One has

|xp − x0|C ≤ |xp − xp−1|C + ...+ |x2 − x1|C + |x1 − x0|C

≤ (|l1|1+|l2|1)p(|x0−y(0)|+|p|1)+...+(|l1|1+|l2|1)(|x0−y(0)|+|p|1)+(|x0−y(0)|+|p|1)

≤ 1

1− (|l1|1 + |l2|1)
(|x0 − y(0)|+ |p|1).

Passage to the limit in the last inequality completes the proof. �

Remark 3.2. a) If we consider the space C(I,R) endowed with a Bielecki type norm of
the form |x|B = supt∈I e

−at|x(t)| with an appropriate choice of a ∈ R, the condition
|l1|1 + |l2|1 < 1 can be removed from the assumptions of Theorem 3.1.

b) The statement in Theorem 3.1 remains valid for the more general problem

x′(t) ∈ F (t, x(t), x(g(t))), x(0) = x0,

with g(.) : I → I a continuous function.
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As we already pointed out, Theorem 3.1 allows to obtain a relaxation theorem for
problem (1.1). In what follows, we are concerned also with the convexified (relaxed)
problem

x′(t) ∈ coF (t, x(t), x(λt)), x(0) = x0. (3.3)

Note that if F (., ., .) satisfies Hypothesis, then so does the set-valued map

(t, x, y)→ coF (t, x, y).

Theorem 3.3. We assume that Hypothesis is satisfied and |l1|1 + |l2|1 < 1. Let x(.) :
I → R be a solution to the relaxed inclusion (3.3) such that the set-valued map
t→ F (t, x(t), x(λt)) has at least one integrable selection.

Then for every ε > 0 there exists x(.) a solution of problem (1.1) such that

|x− x|C < ε.

Proof. Since x(.) is a solution of the relaxed inclusion (3.3), there exists f(.) ∈
L1(I,R), f(t) ∈ coF (t, x(t), x(λt)) a.e. (I) such that

x(t) = x0 +

∫ t

0

f(s)ds.

From Lemma 2.2, for δ > 0, there exists f̃(t) ∈ F (t, x(t), x(λt)) a.e. (I) such that

sup
t∈I

∣∣∣∣∫ t

0

(f̃(s)− f(s))ds

∣∣∣∣ ≤ δ.
Define

x̃(t) = x0 +

∫ t

0

f̃(s)ds.

Therefore, |x̃− x|C ≤ δ.
We apply, now, Theorem 3.1 for the ”quasi” solution x̃(.) of (1.1). One has

p(t) = d(f̃(t), F (t, x̃(t), x̃(λt))) ≤ dH(F (t, x(t), x(λt)),

F (t, x̃(t), x̃(λt))) ≤ l1(t)|x(t)− x̃(t)|+ l2(t)|x(λt)− x̃(λt)|

≤ l1(t)|x̃− x|C + l2(t)|x̃− x|C ≤ (l1(t) + l2(t))δ,

which shows that p(.) ∈ L1(I,R).

From Theorem 3.1 there exists x(.) a solution of (1.1) such that

|x− x̃|C ≤
1

1− (|l1|1 + |l2|1)
|p|1 ≤

|l1|1 + |l2|1
1− (|l1|1 + |l2|1)

δ.

It remains to take δ = [1− (|l1|1 + |l2|1)]ε and to deduce that

|x− x|C ≤ |x− x̃|C + |x̃− x|C ≤ ε. �
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Abstract. In this paper we study the helicoidal surfaces in the 3-dimensional
Euclidean space under the condition ∆Jr = Ar; J = I, II, III, where A = (aij)
is a constant 3× 3 matrix and ∆J denotes the Laplace operator with respect to
the fundamental forms I, II and III.
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1. Introduction

Let r = r(u, v) be an isometric immersion of a surface M2 in the Euclidean space E3.
The inner product on E3 is

g(X,Y ) = x1y1 + x2y2 + x3y3,

where X = (x1, x2, x3), Y = (y1, y2, y3) ∈ R3. The Euclidean vector product X ∧Y of
X and Y is defined as follows:

X ∧ Y =
(
x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1

)
.

The notion of finite type immersion of submanifolds of a Euclidean space has
been widely used in classifying and characterizing well known Riemannian submani-
folds [6]. B.-Y. Chen posed the problem of classifying the finite type surfaces in the
3-dimensional Euclidean space E3. An Euclidean submanifold is said to be of Chen
finite type if its coordinate functions are a finite sum of eigenfunctions of its Laplacian
∆ [6]. Further, the notion of finite type can be extended to any smooth functions on a
submanifold of a Euclidean space or a pseudo-Euclidean space. Since then the theory
of submanifolds of finite type has been studied by many geometers.

A well known result due to Takahashi [18] states that minimal surfaces and
spheres are the only surfaces in E3 satisfying the condition

∆r = λr, λ ∈ R.
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In [10] Ferrandez, Garay and Lucas proved that the surfaces of E3 satisfying

∆H = AH, A ∈Mat(3, 3)

are either minimal, or an open piece of sphere or of a right circulaire cylindre.
In [7] M. Choi and Y. H. Kim characterized the minimal helicoid in terms of

pointwise 1-type Gauss map of the first kind. In [2] M. Bekkar and H. Zoubir classified
the surfaces of revolution with non zero Gaussian curvature KG in the 3-dimensional
Lorentz-Minkowski space E3

1, whose component functions are eigenfunctions of their
Laplace operator, i.e.

∆IIri = λiri, λi ∈ R.
In [9] F. Dillen, J. Pas and L. Verstraelen proved that the only surfaces in E3

satisfying

∆r = Ar +B, A ∈Mat(3, 3), B ∈Mat(3, 1),

are the minimal surfaces, the spheres and the circular cylinders.
In [1] Ch. Baba-Hamed and M. Bekkar studied the helicoidal surfaces without

parabolic points in E3
1, which satisfy the condition

∆IIri = λiri,

where ∆II is the Laplace operator with respect to the second fundamental form.
In [13] G. Kaimakamis and B.J. Papantoniou classified the first three types of sur-

faces of revolution without parabolic points in the 3-dimensional Lorentz–Minkowski
space, which satisfy the condition

∆IIr = Ar, A ∈Mat(3, 3).

We study helicoidal surfaces M2 in E3 which are of finite type in the sense of
B.-Y. Chen with respect to the fundamental forms I, II and III, i.e., their position
vector field r(u, v) satisfies the condition

∆Jr = Ar; J = I, II, III, (1.1)

where A = (aij) is a constant 3×3 matrix and ∆J denotes the Laplace operator with
respect to the fundamental forms I, II and III. Then we shall reduce the geometric
problem to a simpler ordinary differential equation system.

In [14] G. Kaimakamis, B.J. Papantoniou and K. Petoumenos classified and
proved that such surfaces of revolution in the 3-dimensional Lorentz-Minkowski space
E3
1 satisfying

∆III−→r = A−→r
are either minimal or Lorentz hyperbolic cylinders or pseudospheres of real or imagi-
nary radius, where ∆III is the Laplace operator with respect to the third fundamental
form. S. Stamatakis and H. Al-Zoubi in [17] classified the surfaces of revolution with
non zero Gaussian curvature in E3 under the condition

∆IIIr = Ar, A ∈Mat(3,R).

On the other hand, a helicoidal surface is well known as a kind of generalization of
some ruled surfaces and surfaces of revolution in a Euclidean space E3 or a Minkowski
space E3

1 ([5], [8], [12]).
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2. Preliminaries

Let γ : I ⊂ R→ P be a plane curve in E3 and let l be a straight line in P which
does not intersect the curve γ (axis). A helicoidal surface in E3 is a surface invariant
by a uniparametric group GL,c = {gv/ gv : E3 → E3; v ∈ R} of helicoidal motions.
The motion gv is called a helicoidal motion with axis l and pitch c. If we take c = 0,
then we obtain a rotations group about the axis l.

A helicoidal surface in E3 which is spanned by the vector (0, 0, 1) and with pitch
c ∈ R∗ as follows:

r(u, v) =

 cos v − sin v 0
sin v cos v 0

0 0 1

 u
0

ϕ(u)

+

 0
0
cv

 , c ∈ R∗.

Next, we will use the parametrization of the profile curve γ as follows:

γ(u) = (u, 0, ϕ(u)).

Therefore, the surface M2 may be parameterized by

r(u, v) =
(
u cos v, u sin v, ϕ(u) + cv

)
(2.1)

in E3, where (u, v) ∈ I × [0, 2π], c ∈ R∗.
A surface M2 is said to be of finite type if each component of its position vector

field r can be written as a finite sum of eigenfunctions of the Laplacian ∆ of M2, that
is, if

r = r0 +

k∑
i=1

ri,

where ri are E3 -valued eigenfunctions of the Laplacian of (M2, r): ∆ri = λiri, λi ∈ R,
i = 1, 2, .., k [6]. If λi are different, then M2 is said to be of k-type.

The coefficients of the first fundamental form and the second fundamental form are

E = g11 = g(ru, ru), F = g12 = g(ru, rv), G = g22 = g(rv, rv);

L = h11 = g(ruu,N), M = h12 = g(ruv,N), N = h22 = g(rvv,N),

where N is the unit normal vector to M2.

The Laplace-Beltrami operator of a smooth function

ϕ : M2 → R, (u, v) 7→ ϕ(u, v)

with respect to the first fundamental form of the surface M2 is the operator ∆I ,
defined in [15] as follows:

∆Iϕ =
−1√

|EG− F 2|

[
∂

∂u

(
Gϕu − Fϕv√
|EG− F 2|

)
− ∂

∂v

(
Fϕu − Eϕv√
|EG− F 2|

)]
. (2.2)

The second differential parameter of Beltrami of a function

ϕ : M2 → R, (u, v) 7−→ ϕ(u, v)
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with respect to the second fundamental form of M2 is the operator ∆II which is
defined by [15]

∆IIϕ =
−1√

|LN −M2|

[
∂

∂u

(
Nϕu −Mϕv√
|LN −M2|

)
+

∂

∂v

(
Lϕv −Mϕu√
|LN −M2|

)]
, (2.3)

where LN −M2 6= 0 since the surface has no parabolic points.
In the classical literature, one write the third fundamental form as

III = e11du
2 + 2e12dudv + e22dv

2.

The second Beltrami differential operator with respect to the third fundamental
form III is defined by

∆III =
−1√
|e|
( ∂

∂xi
(
√
|e|eij ∂

∂xj
)
)
, (2.4)

where e = det(eij) and eij denote the components of the inverse tensor of eij .
If r = r(u, v) = (r1 = r1(u, v), r2 = r2(u, v), r3 = r3(u, v)) is a function of class

C2 then we set

∆Jr = (∆Jr1,∆
Jr2,∆

Jr3); J = I, II, III.

The mean curvature H and the Gauss curvature KG are, respectively, defined by

H =
1

2(EG− F 2)

(
EN +GL− 2FM

)
and

KG =
LN −M2

EG− F 2
.

Suppose that M2 is given by (2.1).

3. Helicoidal surfaces with ∆Ir = Ar in E3

The main result of this section states that the only helicoidal surfaces M2 of E3

satisfying the condition

∆Ir = Ar (3.1)

on the Laplacian are open pieces of helicoidal minimal surfaces.
The coefficients of the first and the second fundamental forms are:

E = 1 + ϕ′2, F = cϕ′, G = c2 + u2; (3.2)

L =
uϕ′′

W
, M = − c

W
, N =

u2ϕ′

W
, (3.3)

where W =
√
EG− F 2 =

√
u2(1 + ϕ′2) + c2 and the prime denotes derivative with

respect to u.
The unit normal vector of M2 is given by

N =
1

W
(uϕ′ cos v − c sin v, c cos v + uϕ′ sin v,−u).



Helicoidal surfaces with ∆Jr = Ar in 3-dimensional Euclidean space 441

From these we find that the mean curvature H and the curvature KG of (3.2) are
given by

H =
1

2W 3

(
u2ϕ′(1 + ϕ′2) + 2c2ϕ′ + uϕ′′(c2 + u2)

)
=

1

2u

(
u2ϕ′

W

)′
and

KG =
1

W 4

(
u3ϕ′ϕ′′ − c2

)
. (3.4)

If a surface M2 in E3 has no parabolic points, then we have

u3ϕ′ϕ′′ − c2 6= 0.

The Laplacian ∆I of M2 can be expressed as follows:

∆I = − 1

W 2
((c2 + u2)

∂2

∂u2
− 2cϕ′

∂2

∂u∂v
+ (1 + ϕ′2)

∂2

∂v2
)

− 1

W 4
(u3(1 + ϕ′2) + c2u(1− ϕ′2)− u2ϕ′ϕ′′(c2 + u2))

∂

∂u

− 1

W 4
(−cϕ′′(c2 + u2) + cuϕ′(1 + ϕ′2))

∂

∂v
.

Accordingly, we get

∆Ir = −2HN. (3.5)

The equation (3.1) by means of (3.2) and (3.5) gives rise to the following system of
ordinary differential equations

(uϕ′A(u)− a11u) cos v − (cA(u) + a12u) sin v = a13(ϕ+ cv) (3.6)

(uϕ′A(u)− a22u) sin v + (cA(u)− a21u) cos v = a23(ϕ+ cv) (3.7)

−uA(u) = a31u cos v + a32u sin v + a33(ϕ+ cv), (3.8)

where

A(u) =
2H

W
. (3.9)

On differentiating (3.6), (3.7) and (3.8) twice with respect to v we have

a13 = a23 = a33 = 0, A(u) = 0. (3.10)

From (3.10) we obtain

−a11u cos v − a12u sin v = 0

−a22u sin v − a21u cos v = 0

a31u cos v + a32u sin v = 0. (3.11)

But cos and sin are linearly independent functions of v, so we finally obtain aij = 0.
From (3.9) we obtain H = 0. Consequently M2, being a minimal surface.

Theorem 3.1. Let r : M2 → E3 be an isometric immersion given by (2.1). Then
∆Ir = Ar if and only if M2 has zero mean curvature.
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4. Helicoidal surfaces with ∆IIr = Ar in E3

In this section we are concerned with non-degenerate helicoidal surfaces M2

without parabolic points satisfying the condition

∆IIr = Ar. (4.1)

By a straightforward computation, the Laplacian ∆II of the second fundamental
form II on M2 with the help of (3.3) and (2.3) turns out to be

∆II = −W
R

(
u2ϕ′

∂2

∂u2
+ uϕ′′

∂2

∂v2
+ 2c

∂2

∂u∂v

)
− W

2R2
u
(
− ϕ′(ϕ′ϕ′′′ − ϕ′′2)u4 + ϕ′2ϕ′′u3 − 2c2ϕ′′u− 4c2ϕ′

) ∂
∂u

+
W

2R2
cu2
(
(ϕ′ϕ′′′ + ϕ′′2)u+ 3ϕ′ϕ′′

) ∂
∂v
,

where R = u3ϕ′ϕ′′ − c2.
Accordingly, we get

∆IIr(u, v) =

 (uϕ′ cos v − c sin v)P (u)
(uϕ′ sin v + c cos v)P (u)
uϕ′2P (u)− u2Q(u)

 , (4.2)

where

P (u) =
W

2R2

(
(ϕ′′2 + ϕ′ϕ′′′)u4 − ϕ′ϕ′′u3 + 4c2

)
(4.3)

Q(u) =
W

2R2

(
4ϕ′2ϕ′′2u3 − c2(ϕ′′2 + ϕ′ϕ′′′)u− 7c2ϕ′ϕ′′

)
. (4.4)

Therefore, the problem of classifying the helicoidal surfaces M2 given by (2.1)
and satisfying (4.1) is reduced to the integration of this system of ordinary differential
equations

(uϕ′P (u)− a11u) cos v − (cP (u) + a12u) sin v = a13(ϕ+ cv)

(uϕ′P (u)− a22u) sin v + (cP (u)− a21u) cos v = a23(ϕ+ cv)

uϕ′2P (u)− u2Q(u) = a31u cos v + a32u sin v + a33(ϕ+ cv).

Remark 4.1. We observe that

c2P (u) + u3Q(u) = 2W. (4.5)

But cos v and sin v are linearly independent functions of v, so we finally obtain

a32 = a31 = a33 = a13 = a23 = 0.

We put a11 = a22 = α and a21 = −a12 = β, α, β ∈ R. Therefore, this system of
equations is equivalently reduced to ϕ′P (u) = α

cP (u) = βu
ϕ′2P (u)− uQ(u) = 0.

(4.6)
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Now, let us examine the system of equations (4.6) according to the values of the
constants α and β.
Case 1. Let α = 0 and β 6= 0.

In this case the system (4.6) is reduced equivalently to ϕ′ = 0
cP (u) = −βu
Q(u) = 0.

(4.7)

From (4.7) we have P ′′(u) = 0. From (4.5) and the fact that c 6= 0 we have a
contradiction. Hence there are no helicoidal surfaces of E3 in this case which satisfy
(4.1).
Case 2. Let α 6= 0 and β = 0.

In this case the system (4.6) is reduced equivalently to{
ϕ′P (u) = α
P (u) = 0.

But this is not possible. So, in this case there are no helicoidal surfaces of E3.
Case 3. Let α = β = 0.

In this case the system (4.6) is reduced equivalently to{
P (u) = 0
Q(u) = 0.

From (4.5) we have W = 0, which is a contradiction. Consequently, there are no
helicoidal surfaces of E3 in this case.
Case 4. Let α 6= 0 and β 6= 0.

In this case the system (4.6) is reduced equivalently to

ϕ(u) =
αc

β
ln(u) + k, k ∈ R. (4.8)

By using (4.6) and (4.8), we obtain{
P (u) = β

c u

Q(u) = α2c
βu2 .

(4.9)

Substituting (4.9) into (4.5), we get

c2(α2 + β2)2

β2
u2 = 4(u2 +

c2α2

β2
+ c2).

Then {
c2(α2 + β2) = 0
c2(α2 + β2)2 = 4β2.

From the first equation we have α = β = 0, which is a contradiction. Hence,
there are no helicoidal surfaces of E3 in this case.

Consequently, we have:

Theorem 4.2. Let r :M2 → E3 be an isometric immersion given by (2.1). There are no
helicoidal surfaces in E3 without parabolic points, satisfying the condition ∆IIr = Ar.
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Theorem 4.3. If KG = a ∈ R\{0}, then
∆IIr(u, v) = −2N. (4.10)

Proof. If KG = a ∈ R\{0}, then ∂KG

∂u = 0.
From (3.4) we obtain

−ϕ′ϕ′′u4 + ϕ′′2u5 + 7c2ϕ′ϕ′′u2 + c2ϕ′′2u3 − 3ϕ′2ϕ′′2u5 + 4c2u− ϕ′3ϕ′′u4 + 4c2ϕ′2u

= −(ϕ′ϕ′′′ + ϕ′3ϕ′′′)u5 − c2ϕ′ϕ′′′u3 (4.11)

By using (4.3), (4.4) and (4.11) we get

uP (u)− u2Q(u) =
W

2R2

(
ϕ′3ϕ′′u4 − 4c2ϕ′2u− ϕ′3ϕ′′′u5 − ϕ′2ϕ′′2u5

)
= −ϕ′2uP (u). (4.12)

From (4.2) and (4.12) we deduce that

∆IIr(u, v) = WP (u)N. (4.13)

From (4.5) and (4.12) we have that

P (u) =
2

W
. (4.14)

By using (4.13) and (4.14) we get (4.10). �

5. Helicoidal surfaces with ∆IIIr = Ar in E3

In this section we are concerned with non-degenerate helicoidal surfaces M2

without parabolic points satisfying the condition

∆IIIr = Ar. (5.1)

The components of the third fundamental form of the surface M2 is given by

e11 =
1

W 4
(c2(ϕ′ + uϕ′′)2 + c2 + u4ϕ′′2), (5.2)

e12 = − c

W 2
(ϕ′ + uϕ′′),

e22 =
1

W 2
(c2 + u2ϕ′2),

hence

e =
1

W 6
(u3ϕ′ϕ′′ − c2)2.

The Laplacian of M2 can be expressed as follows:

∆III = − 1√
|e|
(
W (

c2 + u2ϕ′2

c2 − u3ϕ′ϕ′′
)
∂2

∂u2
+ 2cW (

ϕ′ + uϕ′′

c2 − u3ϕ′ϕ′′
)
∂2

∂u∂v
+ (5.3)

1

W
(
c2(ϕ′ + uϕ′′)2 + c2 + u4ϕ′′

c2 − u3ϕ′ϕ′′
)
∂2

∂v2
+

d

du
W (

c2 + u2ϕ′2

c2 − u3ϕ′ϕ′′
)
∂

∂u

+c
d

du
W (

ϕ′ + uϕ′′

c2 − u3ϕ′ϕ′′
)
∂

∂v

)
.
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By using (5.1) and (5.3) we get ∆III(u cos v) = −uϕ′Q(u) cos v − cQ(u) sin v
∆III(u sin v) = cQ(u) cos v − uϕ′Q(u) sin v
∆III(ϕ(u) + cv) = P (u).

Hence

∆IIIr(u, v) =

 −uϕ′Q(u) cos v − cQ(u) sin v
cQ(u) cos v − uϕ′Q(u) sin v

P (u)

 , (5.4)

where

Q(u) =
W 2

(c2 − u3ϕ′ϕ′′)3
(
W 2u2(c2 + u2ϕ′2)ϕ′′′ + 3c2u2ϕ′ + 3c2u2ϕ′3 (5.5)

+7c2u3ϕ′2ϕ′′ + 5c2u3ϕ′′ + c2u4ϕ′ϕ′′2 + 4c4uϕ′′ − u6ϕ′ϕ′′2

+u7ϕ′′3 + c2u5ϕ′′3 + 2c4ϕ′ − 2u6ϕ′3ϕ′′2
)
,

P (u) =
−W 2

(c2 − u3ϕ′ϕ′′)3
(
W 2u(c2 + u2ϕ′2)2ϕ′′′ + 4c4u2ϕ′′ + (5.6)

7c2u4ϕ′2ϕ′′ − 2u7ϕ′3ϕ′′2 + 3c6ϕ′′ + 15c4u2ϕ′2ϕ′′

−3c2u5ϕ′3ϕ′′2 + 9c2u4ϕ′4ϕ′′ − 3u7ϕ′5ϕ′′2 + 2c4uϕ′

+4c4uϕ′3 + 3c2u3ϕ′3 + 3c2u3ϕ′5

+3c4u3ϕ′ϕ′′2 + c2u5ϕ′ϕ′′2 + c2u6ϕ′′3 + c4u4ϕ′′3
)
.

From (5.5) and (5.6) we have

P (u) =
−u
W

L(u)−
(
c2 + u2ϕ′2

u3ϕ′ϕ′′ − c2

)
WL′(u) (5.7)

Q(u) =
−1

W
L(u) +

(
u

u3ϕ′ϕ′′ − c2

)
WL′(u),

where L(u) = h11e
11 + 2h12e

12 + h22e
22 = 2H

KG
.

Remark 5.1. We observe that

uP (u) + (c2 + u2ϕ′2)Q(u) = −W
(

2H

KG

)
. (5.8)

The equation (5.1) by means of (2.1) and (5.4) gives rise to the following system
of ordinary differential equations −uϕ

′Q(u) cos v − cQ(u) sin v = a11u cos v + a12u sin v + a13(ϕ+ cv)
cQ(u) cos v − uϕ′Q(u) sin v = a21u cos v + a22u sin v + a23(ϕ+ cv)
P (u) = a31u cos v + a32u sin v + a33(ϕ+ cv).

But cos v and sin v are linearly independent functions of v, so we finally obtain

a32 = a31 = a33 = a13 = a23 = 0.
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We put −a11 = −a22 = λ1 and a21 = −a12 = λ2, λ1, λ2 ∈ R. Therefore, this system
of equations is equivalently reduced to ϕ′Q(u) = λ1

cQ(u) = λ2u
P (u) = 0.

(5.9)

Therefore, the problem of classifying the surfaces M2 given by (2.1) and satisfy-
ing (5.1) is reduced to the integration of this system of ordinary differential equations.

Case 1. Let λ1 = 0 and λ2 6= 0.

In this case the system (5.9) is reduced equivalently to ϕ′Q(u) = 0
cQ(u) = λ2u
P (u) = 0.

(5.10)

Differentiating (5.10), we obtain P ′′(u) = 0, which is a contradiction. Hence
there are no helicoidal surfaces of E3 in this case which satisfy (5.1).

Case 2. Let λ1 6= 0 and λ2 = 0.

In this case the system (5.9) is reduced equivalently to ϕ′Q(u) = λ1
cQ(u) = 0
P (u) = 0.

But this is not possible. So, in this case there are no helicoidal surfaces of E3.

Case 3. Let λ1 = λ2 = 0.

In this case the system (5.9) is reduced equivalently to{
ϕ′Q(u) = 0
Q(u) = 0.

From (5.8) we have H = 0. Consequently M2, being a minimal surface.

Case 4. Let λ1 6= 0 and λ2 6= 0.

In this case the system (5.9) is reduced equivalently to

ϕ(u) =
λ1c

λ2
ln(u) + a, a ∈ R. (5.11)

If we substitute (5.11) in (5.5) we get Q(u) = 0. So we have a contradiction and
therefore, in this case there are no helicoidal surfaces of E3.

Consequently, we have:

Theorem 5.2. Let r : M2 → E3 be an isometric immersion given by (2.1). Then
∆IIIr = Ar if and only if M2 has zero mean curvature.

Theorem 5.3. If 2H
KG

= α ∈ R\{0}, then

∆IIIr(x, y) = − 2H

KG
N.
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Proof. From (5.7) we have
P (u) = uQ(u). (5.12)

Finally, (5.12) and (5.4) give

∆IIIr(u, v) = Q(u)(−uϕ′ cos v + c sin v,−c cos v − uϕ′ sin v, u)

=
−1

W
(

2H

KG
)(−uϕ′ cos v + c sin v,−c cos v − uϕ′ sin v, u)

= − 2H

KG
N.

�
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Stud. Univ. Babeş-Bolyai Math. 60(2015), No. 3, 449–462

Curves with constant geodesic curvature
in the Bolyai-Lobachevskian plane

Zoltán Gábos and Ágnes Mester

Abstract. The aim of this note is to present the curves with constant geodesic cur-
vature of the Bolyai-Lobachevskian hyperbolic plane. By using the Lobachevskian
metric the equations of the circle, paracycloid and hipercycloid are given. Further-
more, we determine a new family of curves with constant curvature which was not
emphasized before. During the analysis we use Cartesian and polar coordinates.

Mathematics Subject Classification (2010): 53A35.

Keywords: hyperbolic geometry, geodesics, orthogonal trajectory, polar coordi-
nates.

1. General formulas in Cartesian coordinates

We consider the Lobachevskian metric

ds2 = cosh2 y

k
dx2 + dy2 , (1.1)

where k is the parameter of the two-dimensional hyperbolic plane.
Among the geodesics we can find so-called Euclidean lines too, which can be

used as coordinate axes. Therefore we can define a Cartesian coordinate system in
the hyperbolic plane. If dx = 0, then ds2 = dy2, thus we can use the euclidean method
when determining the value of y. The x-value of a point can only be determined by
the x-axis, because when dy = 0, then the formula ds2 = dx2 can only be used in
the case of y = 0. Now let us consider a point P (x, y) in the hyperbolic plane. The
foot of the perpendicular from P to the x-axis is denoted by P1(x, 0). Then distance
OP1 corresponds with the x-coordinate of P , while the length of PP1 equals the
y-coordinate of P .

As the reflection over the coordinate axes is a symmetry operation, during the
analysis we will consider only the first quadrant of the plane. Note that the lines we
obtain in the first quadrant have segments in the other quadrants, too. From metric
(1.1) it follows that the translation of the origin along the direction of the x-axis is
also a symmetry operation.
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If we use s as variable, the functions characterizing the geodesics are of form
x = x(s), y = y(s). The geodesic lines are determined by the following differential
equations:

d2x

ds2
+

2

k
tanh

y

k

dx

ds

dy

ds
= 0, (1.2)

d2y

ds2
− 1

k
sinh

y

k
cosh

y

k

(
dx

ds

)2

= 0. (1.3)

If we replace variable s with x, equation (1.2) can be written in the following
equivalent form:

cosh2 y

k

dx

ds
= C1, (1.4)

where C1 is constant. Using (1.3) and (1.4) we obtain the

d2 tanh y
k

dx2
− 1

k2
tanh

y

k
= 0 (1.5)

differential equation. If we use variable x, we only need to determine the constants a1
and a2 which appear in the equation

tanh
y

k
= a1 cosh

x

k
+ a2 sinh

x

k
. (1.6)

By using (1.1), (1.4) and (1.6), for the value of C1 we get

1

C2
1

= 1− tanh2 y

k
+ k2

(
d tanh y

k

dx

)2

= 1− a21 + a22. (1.7)

In order to determine the geodesic curvature, we use the formula given by
Schlesinger:

1

rg
=

= cosh
y

k

{(
d2x

ds2
+

2

k
tanh

y

k

dx

ds

dy

ds

)
dy

ds
−

[
d2y

ds2
− 1

k
sinh

y

k
cosh

y

k

(
dx

ds

)2
]
dx

ds

}
.

(1.8)

From (1.2), (1.3) and (1.8) it follows that

1

rg
= 0. (1.9)

Metric (1.1) can also be obtained by using the metric

ds2 = dx21 + dx22 − dx20 (1.10)

defined in the three-dimensional pseudo-Euclidean space, with the help of the follow-
ing formulas:

x1 = k sinh
x

k
cosh

y

k
, x2 = k sinh

y

k
, x0 = k cosh

x

k
cosh

y

k
. (1.11)
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2. General formulas in polar coordinates

Using (1.10) and equalities

x1 = k cosϕ sinh
ρ

k
, x2 = k sinϕ sinh

ρ

k
, x0 = k cosh

ρ

k
, (2.1)

we obtain the metric

ds2 = dρ2 + k2 sinh2 ρ

k
dϕ2, (2.2)

where ρ and ϕ represent polar coordinates.
If we use s as variable, we obtain the following differential equations which

determine the lines of the hyperbolic plane.

d2ϕ

ds2
+

2

k
coth

ρ

k

dϕ

ds

dρ

ds
= 0, (2.3)

d2ρ

ds2
− k sinh

ρ

k
cosh

ρ

k

(
dρ

ds

)2

= 0. (2.4)

If we replace variable s with ϕ, equation (2.3) can be written in the following
equivalent form:

sinh2 ρ

k

dϕ

ds
= C2. (2.5)

Also, from (2.4) we get

d2 coth ρ
k

dϕ2
+ coth

ρ

k
= 0. (2.6)

The geodesics satisfy

coth
ρ

k
= b1 sinϕ+ b2 cosϕ, (2.7)

where b1 and b2 are constant values. From (1.6) and (2.7) it follows that the values
x1, x2 and x0 admit a linear connection.

Using (2.2), (2.5) and (2.7), we get for the value of C2

1

C2
2

= k2

[
coth2 ρ

k
− 1 +

(
d coth ρ

k

dϕ

)2
]

= k2
(
b21 + b22 − 1

)
. (2.8)

The geodesic curvature verifies the formula given by Schlesinger:

1

rg
=k sinh

ρ

k

{(
d2ϕ

ds2
+

2

k
coth

ρ

k

dϕ

ds

dρ

ds

)
dρ

ds
−

[
d2ρ

ds2
− k sinh

ρ

k
cosh

ρ

k

(
dϕ

ds

)2
]
dϕ

ds

}
.

(2.9)
Using (1.11) and (2.1) it follows that the connection between the Cartesian and

polar coordinates is determined by the following equations:

sinh
x

k
cosh

y

k
= cosϕ sinh

ρ

k
, (2.10)

sinh
y

k
= sinϕ sinh

ρ

k
, (2.11)

cosh
x

k
cosh

y

k
= cosh

ρ

k
. (2.12)
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Furthermore, from (2.10) and (2.12) we obtain

tanh
x

k
= cosϕ tanh

ρ

k
. (2.13)

3. The Bolyai-Lobachevskian lines

As the geometry in discussion is based on metric (1.1), we differentiate four types
of lines. The first family contains lines crossing the origin. The second set consists of
lines which cross the x-axis, while the lines of the third family do not cross the x-axis.
Then there are the lines which are parallel to the x-axis.

a) Based on (1.6), the lines crossing the origin satisfy

tanh
y

k
= a2 sinh

x

k
.

Let us consider a point P (x, y) on a line in question, then the tangent vector to the
line in P admits

tanα =
1

cosh y
k

dy

dx
.

In this case

tanα = a2 cosh
x

k
cosh

y

k
,

thus the value of a2 determines the tangent vector in the origin. The angle of inter-
section between the line and the x-axis is denoted by ϕ, which verifies

tanh
y

k
= tanϕ sinh

x

k
. (3.1)

Figure 1
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Obviously, ϕ is the polar angle of point P . If ϕ is set as constant, we get ds2 =
dρ2, thus the value of ρ determines the distance between the origin and point P
measured along the geodesic.

The values of x1 and x2 represented in figure 1 are determined by equation (3.1),
when y −→ −∞ and y −→∞.

Using equation (1.7), we obtain

C1 = cosϕ.

b) From (1.6) it follows that the lines crossing the x-axis and passing through
points P0(a, 0) and P1(0, b) verify

tanh
y

k
= tanh

b

k

(
cosh

x

k
− coth

a

k
sinh

x

k

)
. (3.2)

The values x1 and x2 are determined by equation (3.1) as y −→ −∞ and y −→ ∞
(figure 2).

Figure 2

In the case of polar coordinates we use

coth
ρ

k
= coth

b

k
sinϕ+ coth

a

k
cosϕ (3.3)

obtained from formula (2.7). The value of ϕ is given by equation (3.3) as ρ −→∞.
Using (2.6) and (2.8), we get for the constants C1 and C2 the following formulas:

1

C1
=

√
1 +

tanh2 b
k

sinh2 a
k

,
1

C2
= k

√
coth2 b

k
+ coth2 a

k
− 1. (3.4)
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c) Figure 3 illustrates that the line passing through the y-axis in point P1(0, b)
while not crossing the x-axis has a minimum point.

Figure 3

The line admits

tanh
y

k
= tanh

b

k

(
cosh

x

k
− tanh

xm
k

sinh
x

k

)
, (3.5)

where xm denotes the value of x determined by the minimum point.
The domain of the line is determined by equation (3.5) as y −→∞.
In the case of polar coordinates, by using equations (2.9), (2.10), (2.11) and

(2.12), we get

coth
ρ

k
= coth

b

k
sinϕ+ tanh

xm
k

cosϕ. (3.6)

For the values of C1 and C2, we obtain formulas

1

C1
=

√
1−

tanh2 b
k

cosh2 xm

k

and
1

C2
= k

√
coth2 b

k
+ tanh2 xm

k
− 1. (3.7)

If xm = 0, the line admits

tanh
y

k
= tanh

b

k
cosh

x

k
, coth

ρ

k
= coth

b

k
sinϕ, (3.8)

while the values C1 and C2 verify

C1 = cosh
b

k
, C2 =

1

k
sinh

b

k
. (3.9)

d) If a −→ ∞ and xm −→ ∞, we obtain the line parallel to the x-axis, passing
through P1(0, b). The lines of this family satisfy

tanh
y

k
= tanh

b

k
e−

x
k , coth

ρ

k
= coth

b

k
sinϕ+ cosϕ, (3.10)

while C1 = 1, C2 = 1
k tanh b

k .
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4. The orthogonal curves

If in the formulas obtained in the previous section we set a variable as a varying
parameter, we obtain families of lines. Each family of lines admits orthogonal lines.
Let us denote the original lines by the index 1. The line passing through point P (x, y)
admits the following orthogonality condition:

cosh2 y

k
dxdx1 + dydy1 = 0. (4.1)

The lines verify

y1 = y1(x1, p), p = p(x1, y1), (4.2)

where the parameter is denoted by p. By deriving this equation with respect to variable
x1, we obtain

dy1
dx1

= f(x1, p). (4.3)

Using (4.2) and (4.3), we eliminate the parameter, thus we get

dy1
dx1

= f [x1, p(x1, y1)] = F (x1, y1). (4.4)

From (4.1) and (4.4) it follows that the orthogonal lines verify

cosh2 y

k
dx+ F (x, y)dy = 0. (4.5)

In the case of polar coordinates we use the formula

ρ1 = ρ1(ϕ1, p).

Hence we get
dρ1
dϕ1

= g(ϕ1, p) = G(ρ1, ϕ1). (4.6)

By applying the orthogonality condition

dρdρ1 + k2 sinh2 ρ

k
dϕdϕ1 = 0, (4.7)

we get for the orthogonal lines

G(ρ, ϕ)dρ+ k2 sinh2 ρ

k
dϕ = 0. (4.8)

Now let us consider the distance along the line between points P1(0, b) and
P (x, y) represented in figure 4.

We denote the length of PP1 by d. The distance from the origin to P equals
ρ. In figure 4 a right-angled triangle is formed, where the hypotenuse is equal to ρ
and the other two sides are x and y. Equality (2.12) gives a formula considering these
values.

Let P3 be the foot of the perpendicular from P1 to the line OP . Then two
right-angled triangles, namely OP3P1 and P1P3P are formed.

In OP3P1 the length of the hypotenuse OP1 is denoted by b, while the legs OP3

and P1P3 are denoted by ρ0 and c. Therefore we can write

cosh b
k = cosh ρ0

k cosh c
k .
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Figure 4

In triangle P1P3P the hypotenuse is d, while the value of the legs are ρ− ρ0 and
c, thus we get

cosh
d

k
= cosh

ρ− ρ0
k

cosh
c

k
.

If we eliminate c, we obtain

cosh
d

k
= cosh

b

k

(
cosh

ρ

k
− tanh

ρ0
k

sinh
ρ

k

)
. (4.9)

In triangle OP3P1 the angle between OP1 and OP3 is equal to π
2 − ϕ. Hence,

from (2.13) we can write

tanh
ρ0
k

= sinϕ tanh
b

k
. (4.10)

Applying (4.9) and (4.10), we get

cosh
d

k
= cosh

b

k
cosh

ρ

k
− sinϕ sinh

b

k
sinh

ρ

k
. (4.11)

If we use Cartesian coordinates, from (4.11), (2.12) and (2.11) it follows that

cosh
d

k
= cosh

b

k
cosh

x

k
cosh

y

k
− sinh

b

k
sinh

y

k
. (4.12)

In the following sections we determine the orthogonal lines. During the analysis
our choice of coordinates may vary depending on the form of calculations.

We will prove that the curvature of the orthogonal lines is constant. Moreover,
any two orthogonal lines from the same family are parallel. We define parallelism
in the following way: let us consider a geodesic and its two orthogonal lines passing
through the line in two different points. If the distance between the two points of
intersection is constant in the case of any geodesic, we say that the two orthogonal
lines are parallel.
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5. The orthogonal curves of the radial lines

Radial lines are lines which pass through a common point. We will consider four
family of lines.

a) The first family consists of lines crossing the origin, which are determined by
equation (3.1). Here we use

p = tanϕ

as parameter. In this case we can write

F (x, y) = coth
x

k
sinh

y

k
cosh

y

k
.

Therefore, by using (4.5) we get

cosh y
k

sinh x
k

d
(

cosh
x

k
cosh

y

k

)
= 0.

The expression in bracket is constant. From equation (2.12) it follows that the
points of an orthogonal curve are always at the same distance from the origin. Hence
we obtain a circle with center O.

cosh
x

k
cosh

y

k
= cosh

R

k
, ρ = R, (5.1)

where R denotes the radius of the circle.
If we use polar coordinates, from (5.1) and (2.2) it follows that

dϕ

ds
=

1

k sinh R
k

.

From (2.9) we obtain the formula characterizing the curvature:

1

rg
=

1

k
coth

R

k
. (5.2)

b) Now we determine the orthogonal curves of lines crossing point P0(a, 0) ∈ Ox.
As the translation of the origin along the direction of the x-axis into point P0 is a
symmetry operation, we obtain circles with center P0, which verify

cosh
x− a
k

cosh
y

k
= cosh

R

k
. (5.3)

The curvature of the orthogonal lines is determined by formula (5.2).
If we use polar coordinates, from (5.3), (2.10) and (2.12) it follows that the

circles verify

cosh
a

k
cosh

ρ

k
− cosϕ sinh

a

k
sinh

ρ

k
= cosh

R

k
.

c) The lines parallel to the x-axis admit the

p = tanh
b

k

parameter and satisfy equation (3.10).
As

F = − sinh
y

k
cosh

y

k
,
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from (4.5) it follows that

d
(

ln cosh
y

k
− x

k

)
= 0.

The orthogonal curve crossing point P (x0, 0) is called paracycloid, which verifies

cosh
y

k
= e

x−x0
k . (5.4)

We can also determine the equation of the paracycloid by the following way.
If a > x0, the circle with center P0(a, 0) passing through P (x0, 0) has the radius
R = a−x0. If a −→∞, from (5.3) we obtain formula (5.4). Thus the paracycloid can
be considered a semicircle with infinite radius.

d) The orthogonal curves of lines passing through point P1(0, b) are lines which
cross or do not cross the x-axis. By the use of polar coordinates we obtain

coth
ρ

k
= coth

b

k
sinϕ+ p cosϕ. (5.5)

Here the parameters are given by

coth
a

b
and tanh

xm
k
.

The orthogonal lines admit the following formula:

G(ρ, ϕ) = − k

cosϕ
sinh2 ρ

k

(
coth

b

k
− sinϕ coth

ρ

k

)
.

Using (4.8), we get

− 1

cosϕ

(
coth

b

k
− sinϕ coth

ρ

k

)
dρ+ kdϕ =

= − k

cosϕ sinh b
k sinh ρ

k

d

(
cosh

b

k
cosh

ρ

k
− sinϕ sinh

b

k
sinh

ρ

k

)
= 0.

Hence, by using (4.11) it follows that the orthogonal lines are circles with center
P1(0, b), which verify the following equations:

cosh
b

k
cosh

ρ

k
− sinϕ sinh

b

k
sinh

ρ

k
= cosh

R

k
, (5.6)

cosh
b

k
cosh

x

k
cosh

y

k
− sinh

b

k
sinh

y

k
= cosh

R

k
. (5.7)

We obtain the curvature by considering (2.2) and using the formulas below:

sinϕ = f(ρ), f(ρ) = coth
b

k
coth

ρ

k
−

cosh R
k

sinh b
k sinh ρ

k

. (5.8)

Hence we obtain
dρ

ds
=

sinh b
k

sinh R
k

√
1− f2. (5.9)

From (5.8) we get

cosϕdϕ =
√

1− f2dϕ =
df

dρ
dρ.



Curves with constant geodesic curvature 459

Thus by using (5.9) we obtain

dϕ

ds
=

sinh b
k

sinh R
k

df

dρ
. (5.10)

The derivatives of the second kind are as follows:

d2ρ

ds2
= −

sinh2 b
k

sinh2 R
k

f
df

dρ
,

d2ϕ

ds2
=

sinh2 b
k

sinh2 R
k

√
1− f2 d

2f

dρ2
.

Hence, from (2.9) and (5.5) it follows that the curvature is given by formula
(5.2).

If we consider two circles, the distance between the intersections with a geodesic
is equal to the difference of the two radiuses, which is a constant value. This proves
that the orthogonal lines determined above are parallel.

6. The orthogonal curves of lines not having common point

We will consider two different cases.
a) The first family consists of lines being parallel to the y-axis. The orthogonal

lines are called hipercycloids having

y = b, (6.1)

where b is a constant value. In the upper half-plane b > 0, while below the x-axis
b < 0. The hipercycloids satisfy the orthogonality condition (4.1), because in the case
of the geodesic satisfying dx1 = 0 its orthogonal curve verifies dy = 0.

From (2.2) and (6.1) we obtain

dx

ds
=

1

cosh b
k

. (6.2)

Using (6.1), (6.2) and (1.8), we get for the curvature

1

rg
=

1

k
tanh

b

k
.

b) The lines of the second family do not cross the x-axis and have minimum
point on the y-axis. By using (3.8), these lines verify

tanh
y

k
= p cosh

x

k
, p = tanh

b

k
, (6.3)

where b can be either positive or negative value.
In this case

F (x, y) = tanh
x

k
sinh

y

k
cosh

y

k
.

From the (4.5) orthogonality condition we get

tanh
x

k
sinh

y

k
dy + cosh

y

k
dx =

k

cosh x
k

d
(

sinh
x

k
cosh

y

k

)
= 0.
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Thus the orthogonal curve passing through point P (x0, 0) verifies

sinh
x

k
cosh

y

k
= sinh

x0
k
. (6.4)

Figure 5 illustrates the geodesics determined by b and −b, and their orthogonal
curves passing through points P (x0, 0) and P ′(−x0, 0).

Figure 5

The tangent field of the orthogonal line admits

tanα =
1

cosh y
k

dy

dx
= −

√
coth2 x0

k
coth2 y

k
− 1.

Thus as y −→∞, we obtain

tanα = − 1

sinh x0

k

.

We use polar coordinates in order to determine the curvature of the lines. From
(6.4) and (2.10) we obtain

cosϕ sinh
ρ

k
= sinh

x0
k
. (6.5)

Also, from (2.2) and (6.5) it follows that

dρ

ds
=

√
1− tanh2 x0

k
coth2 ρ

k
= g(ρ).

Hence, by using equation (6.5) we obtain

dϕ

ds
=
g(ρ)

k
cotϕ coth

ρ

k
=

1

k
tanh

x0
k

cosh ρ
k

sinh2 ρ
k

.

The derivatives of the second kind are as follows:

d2ρ

ds2
=

1

2

dg2

dρ
,
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d2ϕ

ds2
=

tanh x0

k

k2 sinh ρ
k

(
1− 2 coth2 ρ

k

)
g.

From (2.9) we obtain for the curvature the following formula:

1

rg
=

1

k
tanh

x0
k
. (6.6)

The orthogonal curves are parallel to the y-axis. We will prove this by determining
the distance between the points P0(0, b) and P1(x1, y1), illustrated on figure 5. Point
P1 is the intersection point of the geodesic and its orthogonal curve. The coordinates
are given by the formulas

tanh
y1
k

= tanh
b

k
cosh

x1
k
, sinh

x1
k

cosh
y1
k

= sinh
x0
k
.

Hence we obtain

sinh
y1
k

= sinh
b

k
cosh

x0
k
, cosh

x1
k

=
tanh y1

k

tanh b
k

.

From (4.12) we get

cosh
d

k
= cosh

b

k
cosh

x1
k

cosh
y1
k
− sinh

b

k
sinh

y1
k

= cosh
x0
k
,

thus

d = x0.

The distance of two orthogonal lines is given by the difference of the values x0, which
proves the parallelism of the orthogonal curves.

These orthogonal lines are the duals of the hipercycloids, fact which is illustrated
also by the curvatures determined above. This family of lines was not considered in
the past.

Note that any orthogonal line can be described by formula (1.11). In the case
of hipercycloids the value of x2, while in the case of (6.4) the value of x1 is constant.
Along the circles (5.1), (5.3) and (5.7) the following values are constant:

cosh
a

k
x0 − sinh

a

k
x1, cosh

b

k
x0 − sinh

b

k
x2.
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Babeş-Bolyai University
Faculty of Physics
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A unified local convergence for
Chebyshev-Halley-type methods in Banach
space under weak conditions
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Abstract. We present a unified local convergence analysis for Chebyshev-Halley-
type methods in order to approximate a solution of a nonlinear equation in a
Banach space setting. Our methods include the Chebyshev; Halley; super-Halley
and other high order methods. The convergence ball and error estimates are
given for these methods under the same conditions. Numerical examples are also
provided in this study.
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Keywords: Chebyshev-Halley-type methods, Banach space, convergence ball, lo-
cal convergence.

1. Introduction

In this study we are concerned with the problem of approximating a solution x∗

of the equation

F (x) = 0, (1.1)

where F is a Fréchet-differentiable operator defined on a convex subset D of a Banach
space X with values in a Banach space Y.

Many problems in computational sciences and other disciplines can be brought
in a form like (1.1) using mathematical modeling [2, 3, 4, 5, 11, 14, 15]. The solutions
of these equations can rarely be found in closed form. That is why most solution
methods for these equations are iterative. The study about convergence matter of
iterative procedures is usually based on two types: semi-local and local convergence
analysis. The semi-local convergence matter is, based on the information around an
initial point, to give conditions ensuring the convergence of the iterative procedure;
while the local one is, based on the information around a solution, to find estimates
of the radii of convergence balls. In particular, the practice of Numerical Functional
Analysis for finding solution x∗ of equation (1.1) is essentially connected to variants
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of Newton’s method. This method converges quadratically to x∗ if the initial guess
is close enough to the solution. Iterative methods of convergence order higher than
two such as Chebyshev-Halley-type methods [1, 3, 5, 7]–[16] require the evaluation of
the second Fréchet-derivative, which is very expensive in general. However, there are
integral equations, where the second Fréchet-derivative is diagonal by blocks and inex-
pensive [10]–[13] or for quadratic equations the second Fréchet-derivative is constant
[4, 12]. Moreover, in some applications involving stiff systems [2], [5], [9], high order
methods are usefull. That is why in a unified way we study the local convergence of
Chebyshev-Halley-type methods(CHTM) defined for each n = 0, 1, 2, · · · by

xn+1 = xn −
[
I +

1

2
Ln(I − θTn)−1

]
ΓnF (xn), (1.2)

where x0 is an initial point, I is the identity operator, Γn = F ′(xn)−1, Tn =
ΓnB(xn)ΓnF (xn), B a bilinear operator and θ a real parameter. If B(xn) = F ′′(xn),
then: for θ = 0 we obtain the Chebyshev method; for θ = 1

2 we obtain the Hal-
ley method, for θ = 1 we obtain the super-Halley method [3], [5], [7]–[16] and for
θ ∈ [0, 1] we obtain the method studied by Gutierrez and Hernandez [10], [11]. Other
choices of operator B and parameter θ are possible [3]–[5]. The usual conditions for
the semi-local convergence of these methods are (C):

(C1) There exists Γ0 = F ′(x0)−1 and ‖Γ0‖ ≤ β;

(C2) ‖Γ0F (x0)‖ ≤ η;

(C3) ‖F ′′(x)‖ ≤ β1 for each x ∈ D;

(C4) ‖F ′′′(x)‖ ≤ β2 for each x ∈ D;

(C5) ‖F ′′′(x)− F ′′′(y)‖ ≤ β3‖x− y‖ for each x, y ∈ D.
The local convergence conditions are similar but x0 is x∗ in (C1) and (C2). There

is a plethora of local and semi-local convergence results under the (C) conditions [1]–
[16]. The conditions (C4) and (C5) restrict the applicability of these methods. That is
why, in our study we assume conditions (A):

(A1) F : D → Y is Fréchet-differentiable and there exists x∗ ∈ D such that

F (x∗) = 0 and F ′(x∗)−1 ∈ L(Y,X);

(A2) ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖ ≤ L0‖x− x∗‖ for each x ∈ D;

(A3) ‖F ′(x∗)−1(F ′(x)− F ′(y))‖ ≤ L‖x− y‖ for each x, y ∈ D;

(A4) ‖F ′(x∗)−1F ′(x)‖ ≤ N for each x ∈ D
(A5) ‖F ′(x∗)−1B(x)‖ ≤M for each x ∈ D.
Notice that the (A) conditions are weaker than the (C) conditions.

In the rest of this study, U(w, q) and U(w, q) stand, respectively, for the open
and closed ball in X with center w ∈ X and of radius q > 0.

As a motivational example, let us define function f on D = [− 1
2 ,

5
2 ] by

f(x) =

{
x3 lnx2 + x5 − x4, x 6= 0
0, x = 0
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Choose x∗ = 1. We have that

f ′(x) = 3x2 lnx2 + 5x4 − 4x3 + 2x2,

f ′′(x) = 6x lnx2 + 20x3 − 12x2 + 10x

f ′′′(x) = 6 lnx2 + 60x2 − 24x+ 22.

Notice that f ′′′(x) is unbounded on D. That is condition (C4) is not satisfied. Hence,
the results depending on (C4) cannot apply in this case. However, we have f ′(x∗) = 3
and f(x∗) = 0. That is, conditions (A1), (A2), (A3), (A4) are satisfied for L0 = L =
146.6629073, N = 101.5578008 and if e.g, we choose B = 0, then we can set M = 0.
Then condition (A5) is also satisfied. Hence, the results of our Theorem 2.1 that
follows can apply to solve equation f(x) = 0 using CHTM. Hence, the applicability
of CHTM is expanded under the conditions (A).

The paper is organized as follows: In Section 2 we present the local convergence
of these methods. The numerical examples are given in the concluding Section 3.

2. Local convergence

We present the local convergence of method CHTM in this section. It is conve-
nient for the local convergence of CHTM to introduce some functions and parameters.
Define parameter rs by

rs =
2

2L0 + |θ|MN +
√

(2L0 + |θ|MN)2 − 4L2
0

. (2.1)

Let

ϕ(t) = L2
0t

2 − (2L0 + |θ|MN)t+ 1. (2.2)

Notice that rs is the smallest positive root of polynomial ϕ. Note also that

rs ≤
1

L0
(2.3)

and ϕ(t) is decreasing for all t ∈ [0, 2L0+|θ|MN
2L2

0
].

Let us define function f on [0, rs) by

f(t) =
1

2

[
L+

MN2

(1− L0t)2 − |θ|MNt

]
t

1− L0t
. (2.4)

Then f(t) is increasing for all t ∈ [0, rs). This can be seen as follows:

f(t) = f1(t)f2(t)

where f1(t) = 1
2

[
L+ MN2

ϕ(t)

]
and f2(t) = t

1−L0t
are increasing for all t ∈ [0, rs).

Define polynomial g by

g(t) = L2
0(L+ 2L0)t3 − [(2L0 + |θ|MN)L+ 2L0(2L0 + |θ|MN) + 2L2

0]t2

+[L+MN2 + 2(2L0 + |θ|MN) + 2L0]t− 2. (2.5)



466 Ioannis K. Argyros and Santhosh George

It follows from the definition of rs and f that function f is well defined on [0, rs).
We have that g(0) = −2 and g(t) → ∞ as t → ∞. Hence, polynomial g has roots in
(0,∞). Denote by rm the smallest such root. Set

r∗ = min{rs, rm}. (2.6)

Then for

r ∈ [0, r∗), (2.7)

we have that

g(r) < 0 (2.8)

and

f(r) < 1. (2.9)

Then, we can show the following local convergence result for method (1.2) under
(A) conditions

Theorem 2.1. Suppose that the (A) conditions and U(x∗, r) ⊆ D, hold, where r is
given by (2.1). Then, sequence {xn} generated by CHTM method (1.2) for some x0 ∈
U(x∗, r) is well defined, remains in U(x∗, r) for each n = 0, 1, 2, · · · and converges to
x∗. Moreover, the following estimates hold for each n = 0, 1, 2, · · · .

‖xn+1 − x∗‖ ≤ f(‖xn − x∗‖)‖xn − x∗‖ < ‖xn − x∗‖. (2.10)

Proof. We shall use induction to show that estimates (2.10) hold and xn+1 ∈ U(x∗, r)
for each n = 0, 1, 2, · · · . Using (A2) and the hypothesis x0 ∈ U(x∗, r) we have that

‖F ′(x∗)−1(F ′(x0)− F ′(x∗))‖ ≤ L0‖x0 − x∗‖ < L0r < 1. (2.11)

It follows from (2.11) and the Banach Lemma on invertible operators [2, 5, 14] that
F ′(x0)−1 ∈ L(Y,X) and

‖F ′(x0)−1F ′(x∗)‖ ≤ 1

1− L0‖x0 − x∗‖
<

1

1− L0r
. (2.12)

We also have by (A4), (A5) and (2.12) that, since

T0 = [F ′(x0)−1F ′(x∗)][F ′(x∗)−1F ′′(x0)][F ′(x0)−1F ′(x∗)]

×[F ′(x∗)−1
∫ 1

0

F ′(x∗ + τ(x0 − x∗))(x0 − x∗)dτ

‖θT0‖ ≤ |θ|‖F ′(x0)−1F ′(x∗)‖2‖F ′(x∗)−1F ′′(x0)‖

×‖F ′(x∗)−1
∫ 1

0

F ′(x∗ + τ(x0 − x∗))dτ‖‖x0 − x∗‖

≤ |θ|MN‖x0 − x∗‖
(1− L0‖x0 − x∗‖)2

≤ |θ|MNr

(1− L0r)2
< 1 (2.13)

by the choice of r and rs.
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It follows from (2.13) and the Banach lemma that (I − θT0)−1 exists and

‖(I − θT0)−1‖ ≤ 1

1− |θ|MN‖x0−x∗‖
(1−L0‖x0−x∗‖)2

≤ 1

1− |θ|MNr
(1−L0r)2

. (2.14)

It follows from CHTM for n = 0 that x1 is well defined. We shall show (2.10) holds
for n = 0 and x1 ∈ U(x∗, r). Using CHTM for n = 0, we get the identity

x1 − x∗ = x0 − x∗ − F ′(x0)−1F ′(x0)− 1

2
T0(1− θT0)−1Γ0F (x0)

= −[F ′(x0)−1F ′(x∗)][F ′(x∗)−1
∫ 1

0

(F ′(x∗ + τ(x0 − x∗))

−F ′(x0))dτ(x0 − x∗)]−
1

2
[Tn(1− θTn)−1][F ′(x0)−1F ′(x∗)]

×[F ′(x∗)−1
∫ 1

0

F ′(x∗ + τ(x0 − x∗))dτ(x0 − x∗)]. (2.15)

Using (A3), (2.4), (2.9), (2.12)- (2.15) we get in turn

‖x1 − x∗‖ ≤
L‖x0 − x∗‖2

2(1− L0‖x0 − x∗‖)

+
1

2

MN‖x0−x∗‖
(1−L0‖x0−x∗‖)2

1− |θ|MN‖x0−x∗‖
(1−L0‖x0−x∗‖)2

N‖x0 − x∗‖
1− L0‖x0 − x∗‖

≤ f(‖x0 − x∗‖)‖x0 − x∗‖
≤ f(r)‖x0 − x∗‖ < ‖x0 − x∗‖, (2.16)

which shows (2.10) for n = 0 and x1 ∈ U(x∗, r). The induction is completed, if we
simply replace x0 by xk in the preceding estimates to obtain that

‖xk+1 − x∗‖ ≤ f(‖xk − x∗‖)‖xk − x∗‖
≤ f(r)‖xk − x∗‖ < ‖xk − x∗‖, (2.17)

which implies that (2.10) holds for each k = 0, 1, 2, · · · , xk+1 ∈ U(x∗, r) for each
k = 0, 1, 2, · · · , and from ‖xk+1−x∗‖ < ‖xk−x∗‖ we deduce that limk→∞ xk = x∗. �

Remark 2.2. (a) Condition (A2) can be dropped, since this condition follows from
(A3). Notice, however that

L0 ≤ L (2.18)

holds in general and L
L0

can be arbitrarily large [2]–[6].

(b) In view of condition (A2) and the estimate

‖F ′(x∗)−1F ′(x)‖ = ‖F ′(x∗)−1[F ′(x)− F ′(x∗)] + I‖
≤ 1 + ‖F ′(x∗)−1(F ′(x)− F ′(x∗))‖
≤ 1 + L0‖x− x∗‖p,
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condition (A4) can be dropped and N can be replaced by

N(r) = 1 + L0r
p. (2.19)

(c) It is worth noticing that it follows from the first term in (2.16) that r is such
that

r < rA =
2

2L0 + L
. (2.20)

The convergence ball of radius rA was given by us in [2, 3, 5] for Newton’s method un-
der conditions (A1)- (A3). Estimate (2.20) shows that the convergence ball of higher
than two CHTM methods are smaller than the convergence ball of the quadratically
convergent Newton’s method. The convergence ball given by Rheinboldt [15] for New-
ton’s method is

rR =
2

3L
< rA (2.21)

if L0 < L and rR
rA
→ 1

3 as L0

L → 0. Hence, we do not expect r to be larger than rA no
matter how we choose θ, L0, L,M and N.

(d) The local results can be used for projection methods such as Arnoldi’s
method, the generalized minimum residual method (GMREM), the generalized con-
jugate method(GCM) for combined Newton/finite projection methods and in connec-
tion to the mesh independence principle in order to develop the cheapest and most
efficient mesh refinement strategy [2]– [5], [14, 15].

(e) The results can also be used to solve equations where the operator F ′ satisfies
the autonomous differential equation [2]– [5], [14, 15]:

F ′(x) = T (F (x)),

where T is a known continuous operator. Since

F ′(x∗) = T (F (x∗)) = T (0), F ′′(x∗) = F ′(x∗)T ′(F (x∗)) = T (0)T ′(0),

we can apply the results without actually knowing the solution x∗. Let as an example
F (x) = ex − 1. Then, we can choose T (x) = x+ 1 and x∗ = 0.

3. Numerical Examples

We present numerical examples where we compute the radii of the convergence
balls.

Example 3.1. Let X = Y = R3, D = U(0, 1) and B(x) = F ′′(x) for each x ∈ D.
Define F on D for v = (x, y, z)T by

F (v) = (ex − 1,
e− 1

2
y2 + y, z)T . (3.1)

Then, the Fréchet-derivative is given by

F ′(v) =

 ex 0 0
0 (e− 1)y + 1 0
0 0 1

 .
Notice that x∗ = (0, 0, 0)T , F ′(x∗) = F ′(x∗)−1 = diag{1, 1, 1}, L0 = e − 1 < L =
M = N = e. The values of rs, rm, r

∗, rA and rR are given in Table 1.
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Table 1
θ rs rm r∗ rR rA
0 0.5820 0.0636 0.0636 0.2453 0.3249

0.5 0.1495 0.0527 0.0527 0.2453 0.3249
1 0.0948 0.0448 0.0448 0.2453 0.3248

Example 3.2. Let X = Y = C[0, 1], the space of continuous functions defined on [0, 1]
and be equipped with the max norm. Let D = U(0, 1) and B(x) = F ′′(x) for each
x ∈ D. Define function F on D by

F (ϕ)(x) = ϕ(x)− 5

∫ 1

0

xθϕ(θ)3dθ. (3.2)

We have that

F ′(ϕ(ξ))(x) = ξ(x)− 15

∫ 1

0

xθϕ(θ)2ξ(θ)dθ, for each ξ ∈ D.

Then, we get that x∗ = 0, L0 = 7.5, L = M = 15 and N = N(t) = 1 + 7.5t. The
values of rs, rm, r

∗, rA and rR are given in Table 2.

Table 2
θ rs rm r∗ rR rA
0 0.1333 0.0018 0.0018 0.0444 0.0667

0.5 0.0128 0.0016 0.0016 0.0444 0.0667
1 0.0070 0.0014 0.0014 0.0444 0.0667

Example 3.3. Returning back to the motivational example at the introduction of this
study, we have

Table 3
θ rs rm r∗ rR rA
0 0.0068 0.0045 0.0045 0.0045 0.0045

Note that, since M = 0 the value of rs, rm, r
∗, rA and rR will not change for

different values of θ.
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Abstract. Contrary to the standard literature (where the Stackelberg response
function is single-valued), we provide a whole class of functions to show that the
Stackelberg variational response set may contain at least three elements.
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1. Introduction

The Stackelberg duopoly is a game in which the leader moves first and the
follower moves sequentially. In the usual Nash competition, however, the two players
are competing with each other at the same level. The Stackelberg model can be
handled by the backward induction method, i.e., we find the best response for the
follower (by considering the strategy action of the leader as a parameter) and then
choose the best strategy of the leader.

We assume in the sequel that the strategies of both players are some sets
K1,K2 ⊂ Rm. Let f : Rm×Rm → R be the payoff function of the follower player. The
first step is to determine for every fixed x1 ∈ K1 the Stackelberg equilibrium response
set, defined by

RSE(x1) = {x2 ∈ K2 : f(x1, y)− f(x1, x2) ≥ 0, ∀y ∈ K2} .

Now, assuming that RSE(x1) 6= ∅ for every x1 ∈ K1, the concluding step (for the
leader) is to minimize the map x 7→ l(x, r(x)) on K1 where r is a suitable selection of
the set-valued map RSE .

The main objective is to locate the elements of the Stackelberg equilibrium
response set. In order to do that, we introduce a larger set by means of variational
inequalities. For simplicity, we assume that the follower’s payoff function f : Rm ×
Rm → R has the property that f(x1, ·) is a locally Lipschitz function for every x1 ∈
K1. Now, we introduce the so-called Stackelberg variational response set defined by

RSV (x1) =
{
x2 ∈ K2 : f0

x2
((x1, x2); y − x2) ≥ 0, ∀y ∈ K2

}
,
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where f0
x2

((x1, x2); v) is the generalized directional derivative of f(x1, ·) at the point
x2 ∈ K2 in the direction v ∈ Rm. It is clear that

RSE(x1) ⊆ RSV (x1).

Usually, the standard literature provides examples where the set RSV (x1) is a single-
ton, see A. Kristály and Sz. Nagy [4], Sz. Nagy [7] and the monograph by A. Kristály,
V. Rădulescu and Cs. Varga [5] for functions of class C1. However, as expected, one
can happen to have examples where this set contains several elements. In fact, this
is precisely the aim of the paper to provide a whole class of functions with the latter
property.

We focus our attention to a specific payoff function for the follower player;
namely, we assume that f : Rm × Rm → R is given by

fλ(x1, x2) := f(x1, x2) =
1

2
‖x2‖2 − λf̃(x1, x2) + δK2

(x2), (1.1)

where K2 ⊂ Rm is a non-empty, closed, non-compact set, λ > 0 is a parameter and
f̃(x1, ·) is locally Lipschitz for every x1 ∈ Rm. As usual, δK2

denotes the indicator
function of the set K2.

Let x1 ∈ Rm be arbitrarily fixed. On the locally Lipschitz function f̃(x1, ·) we
assume:

(H1
x1

) max{‖z‖ : z ∈ ∂x2
f̃(x1, x2)} = o(‖x2‖) whenever ‖x2‖ → 0;

(H2
x1

) max{‖z‖ : z ∈ ∂x2
f̃(x1, x2)} = o(‖x2‖) whenever ‖x2‖ → +∞;

(H3
x1

) f̃(x1, 0) = 0 and there exists x̃2 ∈ K2 such that f̃(x1, x̃2) > 0.
Here, o(·) is the usual Landau symbol.

Remark 1.1. (a) Hypotheses (H1
x1

) and (H2
x1

) mean that ∂x2
f̃(x1, ·) is superlinear at

the origin and sublinear at infinity, respectively. Hypothesis (H3
x1

) implies that f̃(x1, ·)
is not identically zero.

(b) According to hypotheses (H1
x1

) and (H2
x1

), the number

c̃ = max
x2∈Rm\{0}

max{‖z‖ : z ∈ ∂x2
f̃(x1, x2)}

‖x2‖
(1.2)

is well-defined, finite, and from the upper semicontinuity of ∂x2 f̃(x1, ·) and hypothesis
(H3

x1
), we have 0 < c̃ <∞.
(c) We also introduce the number

λ̃ =
1

2
inf

f̃(x1,x2)>0
x2∈K2

‖x2‖2

f̃(x1, x2)
, (1.3)

which is well-defined, finite and 0 < λ̃ < ∞. The discussion on this number is post-
poned to Proposition 4.2.

Note that the Stackelberg variational response set for the function fλ in (1.1) is
given by

RλSV (x1) =
{
x2 ∈ K2 : 〈x2, y − x2〉+ λf̃0

x2
((x1, x2);−y + x2) ≥ 0, ∀y ∈ K2

}
.

The main theorem of our paper is the following.
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Theorem 1.2. Let Ki ⊂ Rm be two convex sets (i = 1, 2), and let fλ : Rm × Rm → R
be the follower payoff function of the form (1.1) such that f̃(x1, ·) is locally Lipschitz
for every x1 ∈ K1. Assume that K2 is closed and non-compact such that 0 ∈ K2.
Fix x1 ∈ K1 and assume that the hypotheses (Hi

x1
) hold true, i ∈ {1, 2, 3}. Then the

following statements hold:

(a) 0 ∈ RλSV (x1) for every λ > 0;
(b) RλSV (x1) = {0} for every λ ∈ (0, c̃−1), where c̃ is from (1.2);

(c) card(RλSV (x1)) ≥ 3 for every λ > λ̃ > 0, where λ̃ is from (1.3).

Remark 1.3. By the conclusions of Theorem 1.2 (b) and (c) it is clear that

c̃−1 < λ̃.

At this moment, we have no precise information what can be said about Stackelberg
responses in the gap-interval [c̃−1, λ̃]; in fact, this will be the subject of Section 5.

In the sequel we provide an application.

Example 1.4. Let K2 = [0,∞) and f̃ : R× R→ R be defined by

f̃(x1, x2) = (1 + |x1|)
(

min
(

8x3
2, (x2 + 3)

3
2

))
+
,

where s+ = max(s, 0). A simple calculation shows that

∂x2 f̃(x1, x2) =


{0}, if x2 < 0;{

24(1 + |x1|)x2
2

}
, if x2 ∈ [0, 1);

[3(1 + |x1|), 24(1 + |x1|)], if x2 = 1;{
3
2 (1 + |x1|)(x2 + 3)

1
2

}
, if x2 > 1.

Now, hypotheses (H1
x1

) and (H2
x1

) hold since

lim
x2↘0

24(1 + |x1|)x2
2

x2
= lim
x2→∞

3
2 (1 + |x1|)(x2 + 3)

1
2

x2
= 0.

Hypothesis (H3
x1

) holds since

f̃(x1, 0) = 0 < f̃(x1, 1) = 8(1 + |x1|).

Let x1 ∈ R be fixed. We notice that c̃ = 24(1+|x1|) and λ̃ = 1
16(1+|x1|) . According

to Theorem 1.2, only the zero solution is given for λ ∈ (0, 1
24(1+|x1|) ), while for λ >

1
16(1+|x1|) there are three solutions for the inclusion

x2 ∈ λ∂x2
f̃(x1, x2), x2 ≥ 0, (1.4)

which is equivalent to x2 ∈ RλSV (x1).

For λ large enough we solve the inclusion (1.4), obtaining that RλSV (x1) contains
exactly three elements; namely, RλSV (x1) = {0, xλ2 , yλ2 } where

xλ2 =
9λ2(1 + |x1|)2 + 3λ(1 + |x1|)

√
9λ2(1 + |x1|)2 + 48

8
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and

yλ2 =
1

24λ(1 + |x1|)
.

After a simple computation we conclude that the Stackelberg equilibrium response
set is RλSE(x1) = {xλ2} whenever λ is large. �

The paper has the following structure. In the next section we recall some notions
and results from non-smooth analysis for Lipschitz functions and critical point theory
for Motreanu-Panagiotopoulos functionals. In Section 3 the proof of Theorem 1.2 (a)
and (b) is provided while Section 4 is devoted the proof of Theorem 1.2 (c). Finally,
the last section is devoted to the study of the gap-interval.

2. Preliminaries

Let X be a real Banach space and U ⊂ X an open subset.

Definition 2.1. (F.H. Clarke [3]) A function f : U → R is called locally Lipschitz if
every point x ∈ U possesses a neighborhood Nx ⊂ U such that

|f(x1)− f(x2)| ≤ K‖x1 − x2‖, ∀x1, x2 ∈ Nx,
for a constant K > 0 depending on Nx.

Definition 2.2. (F.H. Clarke [3]) The generalized directional derivative of the locally
Lipschitz function f : U → R at the point x ∈ U in the direction v ∈ X is defined by

f0(x; v) = lim sup
w→x
t↘0

1

t
(f(w + tv)− f(w)).

The following result presents some important properties of the generalized di-
rectional derivative.

Proposition 2.3. (D. Motreanu and P.D. Panagiotopoulos [6]) Let f : U → R be a
locally Lipschitz function. Then we have:

(a) For every x ∈ U the function f0(x; ·) : X → R is positively homogeneous and
subadditive (therefore convex) and satisfies

|f0(x; v)| ≤ K‖v‖, ∀v ∈ X. (2.1)

Moreover, it is Lipschitz continuous on X with the Lipschitz constant K, where
K > 0 is a Lipschitz constant of f near x.

(b) f0(·; ·) : U ×X → R is upper semicontinuous.
(c) f0(x;−v) = (−f)0(x; v), ∀x ∈ U, ∀v ∈ X.

Definition 2.4. The generalized gradient of f at the point x ∈ X is defined by

∂f(x) = {x∗ ∈ X∗ : 〈x∗, v〉 ≤ f0(x; v) for each v ∈ X}.

By using the Hahn-Banach theorem it follows that the set ∂f(x) 6= ∅ for every
x ∈ U . Some important properties of the generalized gradient are collected below.

Proposition 2.5. (F.H. Clarke [3], D. Motreanu and P.D. Panagiotopoulos [6]) Let
f : U → R be a locally Lipschitz function. We have:
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(a) For every x ∈ U , ∂f(x) is a nonempty, weak∗-compacts and convex subset of X?

which is bounded by the Lipschitz constant K > 0 of f near x.
(b) For every λ ∈ R and x ∈ U one has ∂(λf)(x) = λ∂f(x).
(c) If g : U → R is another locally Lipschitz function then for every x ∈ U , one has

∂(f + g)(x) ⊂ ∂f(x) + ∂g(x).
(d) For every x ∈ U, f0(x; ·) is the support function of ∂f(x), i.e., f0(x; v) =

max{〈z, v〉 : z ∈ ∂f(x)}, ∀ v ∈ X.
(e) (Upper semicontinuity) The set-valued map ∂f : U → 2X

?

is weakly?-closed,
that is, if {xn} ⊂ U and {zn} ⊂ X∗ are sequences such that xn → x strongly in
X and zn ∈ ∂f(xn) with zn ⇀ z weakly? in X∗, then z ∈ ∂f(x). In particular,
if X is finite dimensional, then ∂f is upper semicontinuous.

(f) (Lebourg’s mean value theorem) If x, y ∈ U are two points such that [x, y] ⊂ U
then there exists a point z ∈ [x, y] \ {x, y} such that for some z∗ ∈ ∂f(z) the
following relation is satisfied:

f(y)− f(x) = 〈z∗, y − x〉.
Let E : X → R be a locally Lipschitz function and let ζ : X → R ∪ {+∞} be a

proper, convex, lower semicontinuous function. Then, I = E + ζ is called Motreanu-
Panagiotopoulos-type functional, see [6]. In particular, if E is of class C1, the functional
I is a Szulkin-type functional, see A. Szulkin [8].

Definition 2.6. (D. Motreanu and P.D. Panagiotopoulos [6, p.64]) An element x ∈ X
is called a critical point of I = E + ζ if

E0(x; v − x) + ζ(v)− ζ(x) ≥ 0 for all v ∈ X. (2.2)

The number I(x) is a critical value of I.

Remark 2.7. We notice that an equivalent formulation for (2.2) is

0 ∈ ∂E(x) + ∂Cζ(x) in X?, (2.3)

where ∂C denotes the subdifferential in the sense of convex analysis.

Proposition 2.8. Every local minimum point of I = E + ζ is a critical point of I in
the sense of (2.2).

Definition 2.9. (D. Motreanu and P.D. Panagiotopoulos [6, p.64]) The functional
I = E+ζ satisfies the Palais-Smale condition at level c ∈ R, (shortly, (PS)c-condition)
if every sequence {xn} ⊂ X such that limn→∞ I(xn) = c and

E0(xn; v − xn) + ζ(v)− ζ(xn) ≥ −εn‖v − xn‖ for all v ∈ X,
where εn → 0, possesses a convergent subsequence.

Remark 2.10. When ζ = 0, (PS)c-condition is equivalent to the (PS)c-condition
introduced by K.-C. Chang [2]. In particular, if E is of class C1 and ζ = 0, the
(PS)c-condition from Definition 2.9 reduces to the standard Palais-Smale condition.

Theorem 2.11. Let X be a Banach space, I = E + ζ : X → R ∪ {+∞} a Motreanu-
Panagiotopoulos-type functional which is bounded from below. If I = E + ζ satisfies
the Palais-Smale condition at level c = infx∈X I(x), then c ∈ R is a critical value of
I.
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We conclude this section by recalling a non-smooth version of the Mountain
Pass theorem (initially established by A. Ambrosetti and P. Rabinowitz [1] for C1

functionals):

Theorem 2.12. (D. Motreanu and P.D. Panagiotopoulos [6, p. 77]) Let X be a Banach
space, I = E + ζ : X → R ∪ {+∞} a Motreanu-Panagiotopoulos-type functional and
we assume that

(a) I(u) ≥ α for all ‖u‖ = ρ with α, ρ > 0, and I(0) = 0;
(b) there is e ∈ X with ‖e‖ > ρ and I(e) ≤ 0.

If I satisfies the (PS)c-condition (in the sense of Definition 2.9) for

c = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)),

Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = e},
then c is a critical value of I and c ≥ α.

3. Null Stackelberg response: proof of Theorem 1.2 (a) and (b)

Proof of Theorem 1.2 (a). The claim is equivalent to prove that

f̃0
x2

((x1, 0);−y) ≥ 0, ∀y ∈ K2. (3.1)

By contradiction, we assume that there exists y0 ∈ K2 such that f̃0
x2

((x1, 0);−y0) < 0.
By Proposition 2.5 (d), we have that

0 > f̃0
x2

((x1, 0);−y0) = max{〈z,−y0〉 : z ∈ ∂x2 f̃(x1, 0)},
thus, with our assumption, it follows that

0 /∈ ∂x2
f̃(x1, 0).

Since the set ∂x2
f̃(x1, 0) is compact (see Proposition 2.5), we have that

ε0 = dist
(

0, ∂x2 f̃(x1, 0)
)
> 0.

The upper semicontinuity of ∂x2
f̃(x1, ·) (see Proposition 2.5 (e)) implies that there

exists η0 > 0 such that for every y ∈ BRm(0, η0), we have

∂x2
f̃(x1, y) ⊆ ∂x2

f̃(x1, 0) +BRm

(
0,
ε0

2

)
.

If {xn} ⊂ Rm is a sequence such that limn→∞ xn = 0, for large enough n ∈ N, we
have that

zn ∈ ∂x2
f̃(x1, 0) +BRm

(
0,
ε0

2

)
, ∀zn ∈ ∂x2

f̃(x1, xn).

In particular, for every large n ∈ N, there exists zn0 ∈ ∂x2
f̃(x1, 0) such that

‖zn − zn0 ‖ ≤
ε0

2
.

Consequently,

‖zn‖ ≥ ‖zn0 ‖ − ‖zn − zn0 ‖ ≥ dist
(

0, ∂x2
f̃(x1, 0)

)
− ε0

2
=
ε0

2
.
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Therefore,

max
{
‖zn‖ : zn ∈ ∂x2 f̃(x1, xn)

}
≥ ε0

2
.

Since limn→∞ xn = 0, by hypothesis (H1
x1

) and the above estimate we have that

0 = lim
x2→0

max{‖z‖ : z ∈ ∂x2
f̃(x1, x2)}

‖x2‖

≥ lim
n→∞

max{‖zn‖ : zn ∈ ∂x2
f̃(x1, xn)}

‖xn‖
≥ +∞,

a contradiction. This fact shows that the claim (3.1) holds true, which implies that

0 ∈ RλSV (x1) for every λ > 0.

Proof of Theorem 1.2 (b). Let us fix λ ∈ (0, c̃−1) where c̃ comes from relation (1.2)
and let x2 ∈ RλSV (x1), i.e.,

〈x2, y − x2〉+ λf̃0
x2

((x1, x2);−y + x2) ≥ 0, ∀y ∈ K2.

Since 0 ∈ K2, we may choose y = 0 in the above inequality, obtaining that

‖x2‖2 ≤ λf̃0
x2

((x1, x2);x2). (3.2)

By Proposition 2.5 (d) and (1.2), it follows that

|f̃0
x2

((x1, x2);x2)| = |max{〈z, x2〉 : z ∈ ∂x2
f̃(x1, x2)}|

≤ max{‖z‖ : z ∈ ∂x2
f̃(x1, x2)} · ‖x2‖

≤ c̃‖x2‖2.

The latter estimate and (3.2) gives that

‖x2‖2 ≤ λc̃‖x2‖2.

Since λ ∈ (0, c̃−1), we necessarily have that x2 = 0. Therefore, we have

RλSV (x1) = {0}, ∀λ ∈ (0, c̃−1).

4. Geometry of Stackelberg responses: proof of Theorem 1.2 (c)

Let x1 ∈ K1 be fixed.

Lemma 4.1. Let λ > 0 be fixed. The functional fλ(x1, ·) defined in (1.1) is bounded
from below and coercive, i.e., fλ(x1, x2) → +∞ whenever ‖x2‖ → +∞. Moreover,
fλ(x1, ·) satisfies the Palais-Smale condition in the sense of Definition 2.9.

Proof. According to hypotheses (H1
x1

) and (H2
x1

) and to the upper semicontinuity of

∂x2
f̃(x1, ·) (see Proposition 2.5 (e)), for every ε > 0 there exists Mε > 0 such that

max
{
‖z‖ : z ∈ ∂x2

f̃(x1, x2)
}
≤ ε

2
‖x2‖+Mε.



478 Szilárd Nagy

By Lebourg mean value theorem and from the fact that f̃(x1, 0) = 0, it follows that
for every x2 ∈ Rm,

|f̃(x1, x2)| = |f̃(x1, x2)− f̃(x1, 0)| ≤ ε

2
‖x2‖2 +Mε‖x2‖.

Consequently, if ε < λ−1 we have that

fλ(x1, x2) =
1

2
‖x2‖2 − λf̃(x1, x2) + δK2

(x2)

≥ 1

2
(1− ελ) ‖x2‖2 − λMε‖x2‖.

This estimate shows that fλ(x1, ·) is bounded from below and coercive.
Now, let {xn} ⊂ Rm be a Palais-Smale sequence for fλ(x1, ·), i.e.,

lim
n→∞

fλ(x1, xn) = c (4.1)

and for every v ∈ Rm,

〈xn, v − xn〉+ λf̃0(xn;−v + xn) + δK2
(v)− δK2

(xn) ≥ −εn‖v − xn‖,

where εn → 0 as n → ∞. Since fλ(x1, ·) is coercive, relation (4.1) immediately
implies that the sequence {xn} ⊂ Rm should be bounded. Consequently, we can
extract a convergent subsequence of it, which proves the validity of the Palais-Smale
condition. �

Proposition 4.2. The number λ̃ in (1.3) is well-defined and

0 < λ̃ <∞.

Proof. Let x1 ∈ K1 be fixed. By Lebourg mean value theorem (see Proposition 2.5
(f)), we have that

f̃(x1, x2) = f̃(x1, x2)− f̃(x1, 0) = 〈zθ, x2〉

for some zθ ∈ ∂x2
f̃(x1, θx2) with θ ∈ (0, 1). Now, by hypothesis (H1

x1
) it follows that

for arbitrary ε > 0 there exists η > 0 such that if x2 ∈ K2 with ‖x2‖ < η then

|f̃(x1, x2)| ≤ ε‖x2‖2.

Consequently,

lim
x2→0
x2∈K2

‖x2‖2

|f̃(x1, x2)|
= +∞.

A similar reasoning as above shows that

lim
‖x2‖→∞
x2∈K2

‖x2‖2

|f̃(x1, x2)|
= +∞. (4.2)

Indeed, by (H2
x1

) we have that for arbitrary ε > 0 there exists η > 0 such that if
‖x2‖ > η then

max{‖z‖ : z ∈ ∂x2
f̃(x1, x2)} ≤ ε‖x2‖.
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Let xη ∈ K2 be such that ‖xη‖ = η. By Lebourg mean value theorem, for every
x2 ∈ K2 with ‖x2‖ > η, we have that

f̃(x1, x2)− f̃(x1, xη) = 〈zη, x2 − xη〉

for some zη ∈ ∂x2 f̃(x1, x
′
2) with x′2 ∈ K2 and ‖x′2‖ > η. Consequently, we obtain for

every x2 ∈ K2 with ‖x2‖ > η that

|f̃(x1, x2)| ≤ |f̃(x1, xη)|+ ε‖x2‖‖x2 − xη‖,

which shows the validity of (4.2). This ends the proof of the fact that 0 < λ̃ <∞.
We also notice that the above arguments show that instead of ”inf” we can

write ”min” in (1.3). �

Proof of Theorem 1.2 (c). Let us fix λ > λ̃.
Step 1. (First response) According to property (a), one has 0 ∈ RλSV (x1), which is the
first (trivial) response.
Step 2. (Second response) Combining Lemma 4.1 with Theorem 2.11, it follows that
the Motreanu-Panagiotopoulos-type functional fλ(x1, ·) achieves its infimum at a
point xλ2 ∈ Rm which is a critical point in the sense of Definition 2.6. Therefore,

fλ(x1, x
λ
2 ) = inf

x∈Rm
fλ(x1, x)

and

0 ∈ xλ2 − λ∂x2
f̃(x1, x

λ
2 ) + ∂CδK2

(xλ2 ) in Rm.
In fact, the latter relation is nothing but xλ2 ∈ RλSV (x1), which is the second response.
Note that in fact xλ2 ∈ K2; otherwise, fλ(x1, x

λ
2 ) would be +∞, a contradiction.

It remains to prove that xλ2 6= 0. Since λ > λ̃, by the definition of λ̃ it follows
the existence of an element y0 ∈ K2 such that

λ >
1

2

‖y0‖2

f̃(x1, y0)
> λ̃.

Therefore,

fλ(x1, x
λ
2 ) = inf

x∈Rm
fλ(x1, x)

≤ fλ(x1, y0)

=
1

2
‖y0‖2 − λf̃(x1, y0) + δK2(y0)

=
1

2
‖y0‖2 − λf̃(x1, y0)

< 0.

Since fλ(x1, 0) = 0, we have that xλ2 6= 0.
Step 3. (Third response) By hypotheses (H1

x1
) and (H2

x1
) again, for every ε ∈ (0, 1

λ )
there exists Mε > 0 such that

max{‖z‖ : z ∈ ∂x2
f̃(x1, x2)} ≤ ε

2
‖x2‖+Mε‖x2‖2, ∀x2 ∈ Rm.



480 Szilárd Nagy

By Lebourg mean value theorem, one has that

f̃(x1, x2) ≤ ε

2
‖x2‖2 +Mε‖x2‖3, ∀x2 ∈ Rm.

Let

0 < ρ < min

{
‖xλ2‖,

1

2Mε

(
1

λ
− ε
)}

.

Then, for every x2 ∈ Rm with the property ‖x2‖ = ρ, we have

fλ(x1, x2) =
1

2
‖x2‖2 − λf̃(x1, x2) + δK2(x2)

≥ 1

2
(1− ελ) ‖x2‖2 − λMε‖x2‖3

= ρ2

(
1

2
(1− ελ)− λMερ

)
> 0.

Therefore, by the non-smooth Mountain Pass theorem (see Theorem 2.12), it follows
that the number

cλ = inf
γ∈Γ

max
t∈[0,1]

fλ(x1, γ(t))

is a critical value for fλ(x1, ·), where Γ = {γ ∈ C([0, 1],Rm) : γ(0) = 0, γ(1) = xλ2},
and

cλ ≥ ρ2

(
1

2
(1− ελ)− λMερ

)
> 0.

Thus, if yλ2 ∈ K2 is the mountain pass-type critical point of fλ(x1, ·) with cλ =
fλ(x1, y

λ
2 ) > 0, we clearly have that yλ2 6= 0 and yλ2 6= xλ2 , which is the third response.

Summing up the above three steps, we conclude that

{0, xλ2 , yλ2 } ⊂ RλSV (x1), ∀λ > λ̃.

This ends the proof of Theorem 1.2. �

Remark 4.3. As we pointed out before, the Stackelberg variational response set re-
duces to the null strategy whenever the parameter is small enough. However, when
the parameter is beyond a threshold value (see Theorem 1.2 (c)), there are three pos-
sible Stackelberg variational responses; in this case, the follower enters actively into
the game in order to minimize his loss. More precisely, besides the null strategy (see
Step 1), he can choose the global minimum-type solution/response (see Step 2); in
this case, his loss function takes a negative value, i.e., he is in a winning position. In
the case when the player chooses the mountain pass-type minimax response (see Step
3), his payoff function takes a positive value.

5. Remarks on the gap-interval

The subject of this section is twofold:
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(a) to give a direct proof for the inequality c̃−1 ≤ λ̃ whenever K2 = Rm (the strict

inequality c̃−1 < λ̃ can be proven e.g. when m = 1 and the payoff function f̃ is
of class C1);

(b) to provide an example in order to show that the gap-interval [c̃−1, λ̃] can be
arbitrary small.

Proposition 5.1. When K2 = Rm, we have c̃−1 ≤ λ̃.

Proof. As we already pointed out in the proof of Theorem 1.2, in the definition of λ̃
we can write minimum instead of infimum. Accordingly, let x̃2 ∈ K2 = Rm be the

minimum point of the function x2 7→ ‖x2‖2

2f̃(x1,x2)
in the set

S = {x2 ∈ Rm : f̃(x1, x2) > 0},

i.e.,

λ̃ =
‖x̃2‖2

2f̃(x1, x̃2)
.

Since S is open and 0 /∈ S, the element x̃2 6= 0 is a local minimum point, thus a critical
point of the above locally Lipschitz function. Applying the rules of subdifferentiation,
we obtain

0 ∈ 2x̃2f̃(x1, x̃2)− ‖x̃2‖2∂x2 f̃(x1, x̃2)

f̃(x1, x̃2)2
,

i.e.,

2f̃(x1, x̃2)

‖x̃2‖2
x̃2 ∈ ∂x2

f̃(x1, x̃2). (5.1)

Therefore,

c̃ = max
x2∈Rm\{0}

max{‖z‖ : z ∈ ∂x2 f̃(x1, x2)}
‖x2‖

≥ 1

‖x̃2‖
·

∥∥∥∥∥2f̃(x1, x̃2)

‖x̃2‖2
x̃2

∥∥∥∥∥ =
2f̃(x1, x̃2)

‖x̃2‖2

= λ̃−1,

which concludes the proof. �

Remark 5.2. In general, we have that c̃−1 < λ̃. Such a situation occurs e.g. when
m = 1, K2 = [0,∞) and the payoff function f̃ : R × R → R is of class C1 in the
second variable.

Indeed, by contradiction, we assume that c̃−1 = λ̃. Let

x̃0
2 = inf

{
x̃2 > 0 : λ̃ =

x̃2
2

2f̃(x1, x̃2)

}
,

and fix y0 ∈ (0, x̃0
2). By the latter construction, one clearly has that

λ̃ <
y2

0

2f̃(x1, y0)
.
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Since f̃(x1, ·) is of class C1, it follows that ∂x2
f̃(x1, x2) = {̃f ′x2

(x1, x2)}; thus by the
definition of the number c̃ we obtain in particular that

f̃ ′x2
(x1, t) ≤ c̃t, ∀t > 0.

Thus, the above relations imply that

0 = 2f̃(x1, x̃2)− λ̃−1x̃2
2

= 2f̃(x1, y0)− λ̃−1y2
0

+2f̃(x1, x̃2)− λ̃−1x̃2
2 − (2f̃(x1, y0)− λ̃−1y2

0)

= 2f̃(x1, y0)− λ̃−1y2
0 + 2

∫ x̃2

y0

(f̃ ′x2
(x1, t)− c̃t)dt

< 0,

a contradiction, which proves the claim.

Proposition 5.3. The gap-interval [c̃−1, λ̃] can be arbitrarily small.

Proof. For η > 1, let f̃ : R× R→ R be defined by

f̃(x1, x2) = (1 + |x1|)
∫ x2

0

min{(s− 1)+, η − 1}ds,

and K2 = R. Note that f̃(x1, ·) is of class C1 and

∂x2
f̃(x1, x2) = {f̃ ′x2

(x1, x2)} = {(1 + |x1|) min{(x2 − 1)+, η − 1}}.

Consequently, on one hand, we have

c̃ = max
x2∈R\{0}

max{|z| : z ∈ ∂x2
f̃(x1, x2)}

|x2|
= (1 + |x1|)

η − 1

η
.

On the other hand,

λ̃ =
1

2
inf

f̃(x1,x2)>0
x2∈R

|x2|2

f̃(x1, x2)
=

1

1 + |x1|
· η2

(η − 1)2
.

We can see that c̃−1 < λ̃ and these numbers can be arbitrary close to each other
whenever η is large enough. �
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Book reviews

Michael Harris, Mathematics without apologies: portrait of a problematic vocation,
Princeton University Press, Princeton, NJ, 2015, xxii+438,
ISBN: 978-0-691-15423-7/hbk; 978-1-400-85202-4/ebook.

This is an unusual book written by an eminent professional mathematicians,
a well known expert in number theory and algebraic geometry. It reflects author’s
opinions on mathematics, both pure and applied, and on mathematicians, as seen
from the inside of the caste and from outside as well. The author combines his own
experience as a mathematician with that obtained from various domains of the human
knowledge - philosophy (Plato, Archimedes, Omar Khayam, hindustan philosophy,
Witgenstein, Pascal, Russel Kant, Nietsche, etc), literature (a lot of quotations for
Goethe’s Faust and from Shakespeare), history, religion (the case of Pavel Florensky),
cinematography and even pop music.

A large part of the book is devoted to the discussion whether mathematics is
useful only by the prism of his applications (as considered Fourier) or as a creation of
the human spirit, without any reference to practical applications. The conclusion is
that pure mathematics, considered by the author a scientific discipline very close to
art (an abstract one), deserves to be studied, developed and supported per se, with-
out any reference to applications. And besides, some branches of pure mathematics
turned to find unexpected applications, in spite of the fact that at the origins they
were developed as pure theoretical achievements. As an example, the number theory,
a highly theoretical discipline, found applications in cryptography which is basic in
bank and e-commerce security. This contradicts Hardy’s opinions, who at several oc-
casions toasted ”for pure mathematics, and to never find applications”, with emphasis
on number theory. In fact the title evokes G. H. Hardy’s classic A Mathematician’s
Apology, Cambridge Univ. Press, Cambridge, 1940. The author discusses also the al-
legations blaming mathematicians involved in mathematical economy (another field
where results in pure mathematics found deep applications) for the 2008 financial
crisis.

The gallery of mathematicians presented in the book is dominated by two giants
of the XX century - Alexander Grothendieck and Robert Langlands. Besides the
visionary results of Grothendieck in algebraic geometry (”schemas” and ”motifs”),
the author discusses in several places ideas from Récoltes te Sémailles, a collection
of reminiscences and reflections about mathematics, philosophy, politics and others,
written by Grothendieck. Robert Langlands is best known by his long term ”Langlands



486 Book reviews

program”, still in progress, the author himself being involved in it. The realization of
some intermediary steps led Maxim Kontsevich to a Fields medal in 1998.

The book contains also five sessions entitled “How to Explain Number Theory
at a Dinner Party”, written as a dialogue between two imagined interlocutors at a
dinner party, Performing Artist and Number Theorist, whose challenges and responses
elaborate key ideas and themes.

Some practical advices on the career-shaping of a mathematician - the role of
”charisma”, the quality of publications, and, the last but not the least, the chance -
are included as well.

It is difficult to present in a few lines the wealthy of information contained in
this marvelous book, our strong advice being to read it (far from being an easy task)
and benefit from author’s erudition and his charming style of presentation.

P. T. Mocanu

Miroslav Bačák, Convex analysis and optimization in Hadamard spaces, De Gruyter
Series in Nonlinear Analysis and Applications, Vol. 22, viii + 185 pp, Walter de
Gruyter, Berlin, 2014, ISBN 978-3-11-036103-2/hbk; 978-3-11-036162-9/ebook.

In recent years, concepts and traditional results from convex analysis have been
extended to nonlinear settings. Due to their rich geometry, CAT(0) spaces (also known
as spaces of non-positive curvature in the sense of Alexandrov) proved to be relevant
in this context. The aim of this book is to present a systematic discussion of various
topics in convex analysis in the setting of Hadamard spaces (that is, complete CAT(0)
spaces). The book contains eight chapters which combine techniques from analysis,
geometry, probability and optimization to study different problems in convex analysis.

The first chapter defines Hadamard spaces giving equivalent conditions, exam-
ples and construction methods. The second chapter introduces many convexity con-
cepts, properties and results used throughout the book. Special attention is given,
among others aspects, to barycenters and resolvents of convex lower semi-continuous
functions defined on a Hadamard space. The next chapter deals with a notion of
weak convergence defined in terms of asymptotic centers of bounded sequences which
recovers the usual weak convergence in Hilbert spaces. Properties of nonexpansive
mappings and gradient flows of convex lower semi-continuous functions are the cen-
tral focus of the following two chapters. Chapter 6 is devoted to convex optimization
algorithms used to study convex feasibility problems, to approximate fixed points of
a nonexpansive mapping or to find a minimizer of a convex lower semi-continuous
function as well as a finite sum thereof when the Hadamard space is in addition lo-
cally compact. The next chapter is concerned with random variables with values in
Hadamard spaces. In the last chapter, the author gives an example of a Hadamard
space, the so-called tree space constructed by L. Billera, S. Holmes and K. Vogtmann,
which finds interesting applications in phylogenetics.

This book is written in a very lucid way and can be used both by students
and researchers interested in analysis in Hadamard spaces. Each chapter contains
a set of exercises and ends with detailed bibliographical remarks, where the author
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carefully refers to the sources of the presented results. Some comments and challenging
questions are also included.

Adriana Nicolae

Francesco Altomare, Mirella Cappelletti Montano, Vita Leonessa, Ioan Raşa; Markov
operators, positive semigroups and approximation processes, De Gruyter Studies in
Mathematics, vol. 61, Walter de Gruyter, Berlin, 2014, xi+ 313 pp.
ISBN 978-3-11-037274-8/hbk; 978-3-11-036697-6/ebook.

Let C(X), C(Y ) be the Banach spaces (with respect to the uniform norm ‖ ·‖∞)
of real- or complex-valued continuous functions on compact Hausdorff spaces X,Y ,
respectively. A positive linear operator T : C(X)→ C(Y ) is called a Markov operator
if T1X = 1Y , where 1Z denotes the function identically equal to 1 on Z. It follows
‖T‖ = ‖T1X‖∞ = 1. As a special class of positive linear operators, the Markov op-
erators inherit their properties. For reader’s convenience, the authors present in the
first chapter, Positive linear operators and approximation problems, the main notions,
tools and results from the theory of linear operators – positive Radon measures, Cho-
quet boundaries, Bauer simplices, Korovkin-type approximation, etc. Good sources
for results of this kind are the book by F. Altomare and M. Campiti, Korovkin-type
approximation theory and its applications, de Gruyter Studies in Mathematics, vol.
17, W. de Gruyter, Berlin, 1994, and the survey paper by F. Altomare, Korovkin-type
theorems and approximation by positive linear operators, Surv. Approx. Theory vol.
5 (2010), 92-164.

The main theme of the book is the theory of Markov semigroups and the ap-
proximation processes which can be generated by a Markov operator acting on C(K),
where K is a compact convex subset of a (possibly infinite dimensional) Hausdorff
locally convex space.

After a first contact with semigroups of Markov operators in Section 1.4 of the
first chapter, their real study starts in Chapter 2, C0-semigroups of operators and lin-
ear evolution equations, including a presentation of general properties of semigroups
of operators on Banach spaces and their relations with Markov processes and multi-
dimensional second-order differential operators.

Of particular interest in the theory of semigroups of Markov operators are the
Bernstein-Schnabl operators associated with Markov operators, whose study begins
in the third chapter. After giving several interpretations of these operators – proba-
bilistic, via tensor products – several key examples are discussed: Bernstein-Schnabl
operators on [0,1] (which turn to classical Bernstein polynomials), on Bauer simplices,
associated with strictly elliptic differential operators, with tensor and convolution
products, or with convex combinations of Markov operators. Then one discusses the
approximation properties of this class of operators and the rate of convergence. A
special attention is paid to their preservation properties – of Hölder and Lipschitz
continuity, of convexity and of monotonicity.
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Chapters 4, Differential operators and Markov semigroups associated with
Markov operators, and 5, Perturbed differential operators and modified Bernstein-
Schnabl operators, treat other main theme of the book. It is shown that “under suit-
able assumptions on T , the associated (abstract) differential operator is closable and
its closure generates a Markov semigroup (T (t))t≥0 on C(K) which, in turn, is the
transition semigroup of a suitable right-continuous Markov process with state space
K” (from Introduction, page 2).

Two appendices, A1, A classification of Markov operators on two dimensional
compact convex subsets, and A2, Rate of convergence for the limit semigroup of Bern-
stein operators, complete the main text.

The bibliography contains 210 items, including many papers by the authors of
the book.

Based mainly on the original results of the authors, the book is very well writ-
ten and contains a lot of interesting material. It can be viewed as an extension of the
book by Altomare and Campity mentioned above, and can serve as a reference for
researchers in various domain of approximation theory, functional analysis and prob-
ability theory. Taking into account the detailed presentation of the results, it can be
also used by novices as an accessible introduction to this fertile area of investigation.

S. Cobzaş

Lawrence Craig Evans and Ronald F. Gariepy, Measure theory and fine properties
of functions, 2nd revised ed., Textbooks in Mathematics, CRC Press, Boca Raton,
FL, 2015, xi+309 pp., ISBN: 978-1-4822-4238-6/hbk.

This is a new revised edition of a very successful book (published by CRC Press
in 1992) dealing with measure theory in Rn and some special properties of functions,
usually omitted from books dealing with abstract measure theory, but which a working
mathematician analyst must to know. Among these special topics we mention: Vitali’s
and Besicovitch’s covering theorems, Hausdorff measures and capacities (for classify-
ing classes of negligible sets for various fine properties of functions), Rademacher’s
Theorem on the a.e. differentiability of Lipschitz functions (a topic of great actual
interest in connection with its extension to infinite dimensions), the area and coarea
formulas (yielding change-of-variable rules for Lipschitz functions between Rn and
Rm), the Lebesgue-Besicovitch differentiation theorem, the precise structure of BV
and Sobolev functions, Alexandrov’s theorem on a.e. twice differentiability of con-
vex functions, Whithney’s extension theorem with applications to approximation of
Sobolev and BV functions, etc. The book is clearly written with complete proofs,
including all technicalities. One assumes that the reader is familiar with Lebesgue
measure and abstract measure theory.

The new edition benefits from LaTeX retyping, yielding better cross-references,
as well as of numerous improvements in notation, format and clarity of exposition. The
bibliography has been updated and several new sections were added: on π-λ-Theorem
(on the relations between σ-algebras and Dynkin systems), weak compactness criteria
in L1, the method of Young measures in the study weak convergence, etc.
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Undoubtedly that this welcome updated and revised edition of a very popu-
lar book will continue to be of great interest for the community of mathematicians
interested in mathematical analysis in Rn.

Valeriu Anisiu

Bernardo Lafuerza Guillén, Panackal Harikrishnan; Probabilistic normed spaces,
Imperial College Press, London 2014, World Scientific, London-Singapore-Hong Kong
2014, xi+220 pp, ISBN 978-1-78326-468-1/hbk; 978-1-78326-470-4/ebook.

Probabilistic metric (PM) spaces are spaces on which there is a ”distance func-
tion” taking as values distribution functions - the ”distance” between two points p, q
is a distribution function (in the sense of probability theory) F (p, q) , whose value
F (p, q)(t) at t ∈ R can be interpreted as the probability that the distance between p
and q be less than t. Probabilistic metric spaces were first considered by K. Menger in
1942, who made important contributions to the subject, followed almost immediately
by A. Wald in 1943. A good presentation of results up to 1983 is given in the book
by B. Schweizer and A. Sklar, Probabilistic metric spaces, North Holland, Amsterdam
1983 (reprinted and updated by Dover Publications, New York 2012).

Probabilistic normed (PN) spaces entered the stage only in 1962, introduced by
Šerstnev and developed in a series of papers by him and other Russian mathematicians
from the Probability School of the University of Kazan. After that the theory laid into
lethargy until 1983 when Alsina, Schweizer and Sklar proposed a new approach to
probabilistic normed spaces, which is more general and more adequate for developing
a consistent theory. Menger PN spaces are particular cases of those defined by Alsina,
Schweizer and Sklar, and Šerstnev PN spaces are particular cases of Menger PN
spaces.

The first chapter, 1. Preliminaries, includes some background material from
probability theory (distribution functions) and on copulas, triangular norms, proba-
bilistic metric spaces.

The rest of the book is devoted to a systematic presentation of various aspects
of the theory of PN spaces, which are well reflected by the headings of the chapters:
2. Probabilistic normed spaces ; 3. The topology of PN spaces ; 4. Probabilistic norms
and convergence ; 5. Products and quotients of PN spaces ; 6. D-Boundedness and D-
compactness ; 7. Normability ; 8. Invariant and semi-invariant PN spaces ; 9. Linear
operators .

Applications to functional equations are given in Chapter 10. Stability of some
functional equations in PN spaces, while Chapter 11. Menger’s 2-probabilistic normed
spaces, presents a probabilistic version of 2-metric spaces introduced by S. Gähler,
Mathematische Nachrichten (1964).

The book is clearly written and can be used as an introductory text to this area
of research. Based on recent results, including authors’ contributions, it is a good
reference in the domain. Most of the chapters ends with a list of open problems,
inviting the reader to further investigation and new developments in this active area
of research.

S. Cobzaş
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