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a generalized Sălăgean operator and Ruscheweyh operator . . . . . . . . . . . . . . . . . 75

Ioan A. Rus, Iterates of increasing linear operators, via Maia’s fixed
point theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Anca Maria Oprea, Coincidence point and fixed point theorems
for rational contractions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

I.K. Argyros and S.K. Khattri, Improved error analysis of Newton’s
method for a certain class of operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

Iulia Coroian, On some generalizations of Nadler’s contraction
principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .123

Erratum: Semilinear operator equations and systems with potential-type
nonlinearities, Angela Budescu, Stud. Univ. Babeş-Bolyai Math.,
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Application of the multi-step homotopy analysis
method to solve nonlinear differential algebraic
equations

Mohammad Zurigat

Abstract. In this paper, a differential algebraic equations (DAE’s) is studied
and its approximate solution is presented using a multi-step homotopy analy-
sis method (MHAM). The method is only a simple modification of the homotopy
analysis method (HAM), in which it is treated as an algorithm in a sequence
of small intervals (i.e. time step) for finding accurate approximate solutions to
the corresponding systems. The solutions obtained are also presented graphically.
Figurative comparisons between the MHAM and the exact solution reveal that
this modified method is very effective and convenient.

Mathematics Subject Classification (2010): 11Y35, 65L05.

Keywords: Differential algebraic equations, multi-step homotopy analysis method,
numerical solutions.

1. Introduction

Differential algebraic equations can be found in a wide variety of scientific and
engineering applications, including circuit analysis, computer-aided design and real-
time simulation of mechanical systems, power systems, chemical process simulation,
and optimal control. Many important mathematical models can be expressed in terms
of DAEs. In resent years, much research has been focused on the numerical solution of
systems of DAEs. For the solutions of nonlinear differential equation, some numerical
methods have been developed such as Pade approximation method [6, 7], homotopy
perturbation method [11, 10], Adomain decomposition method [15, 5, 4] and variation
iteration method [12]. Homotopy analysis method was first introduced by Liao [8],
who solved linear and nonlinear problems. The new algorithm, MHAM presented in
this paper,accelerates the convergence of the series solution over a large region and
improve the accuracy of the HAM. The validity of the modified technique is verified
through illustrative examples. The paper is organized as follows. In section 2, the
proposed method is described. In section 3, the method is applied to our problem and
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numerical simulations are presented graphicallly. Finally, the conclusions are given in
Section 4.

2. Multi-step homotopy analysis method algorithm

Although the MHAM is used to provide approximate solutions for nonlinear
problem in terms of convergent series with easily computable components, it has
been shown that the approximated solution obtained are not valid for large t for
some systems [13, 9, 14, 1, 2]. Therefore we use the MHAM, which is offers accurate
solution over a longer time frame compared to the HAM [16, 3, 17]. For this purpose,
we consider the following initial value problem for systems of algebraic differential
equations

u
′

i(t) = fi(t, u1, ..., un, u
′

1, ..., u
′

n), t ≥ 0, i = 1, 2, ..., n− 1,

0 = g(t, u1, ..., un), (2.1)

subject to the initial conditions

ui(0) = ci, i = 1, 2, ......, n, (2.2)

where (fi(t), i = 1, 2, ..., n − 1) and g are known analytical functions. Let [0, T ] be
the interval over which we want to find the solution of the initial value problem (2.1)
and (2.2). Assume that the interval [0, T ] is divided into M subintervals [tj−1, tj ],

j = 1, 2, ...,M of equal step size h = T
M by using the nodes tj = j h. The main

ideas of the MHAM are as follows: Apply the HAM to the initial value problem
(2.1) and (2.2) over the interval [t0, t1], we will obtain the approximate solution ui,1,
t ∈ [t0, t1], using the intial condition (ui(t0) = ci, i = 1, 2, ..., n). For j ≥ 2 and at
each subinterval [tj−1, tj ] we will use the initial condition ui,j(tj−1) = ui,j−1(tj−1)
and apply the HAM to the initial value problem (2.1) and (2.2) over the interval
[tj−1, tj ]. The process is repeated and generates a sequence of approximate solutions
ui,j(t), i = 1, 2, ..., n, j = 1, 2, ...,M. Now, we can construct the so-called zeroth-order
deformation equations of the system (2.1) by

(1− q)L[φi,j(t; q)− ui,j(t∗)] = qh[
d

dt
φi,j(t; q)− fi(t, φ1,j(t; q), . . . ,

φn,j(t; q),
∂

∂t
φ1,j(t; q), . . . ,

∂

∂t
φn,j(t; q))], i = 1, 2, . . . , n− 1, (2.3)

(1− q)[φn,j(t; q)− un,j(t∗)] = −qh g(t, φ1,j(t; q), . . . , φn,j(t; q)), j = 1, 2, ...,M,

where t ∗ be the initial value for each subintervals [tj−1, tj ], q ∈ [0, 1] is an embedding
parameter, L is an auxiliary linear operator, h 6= 0 is an auxiliary parameter and
φi,j(t; q) are unknown functions. Obviously, when q = 0 and q = 1, we have

φi,j(t; 0) = ui,j(t
∗), φi,j(t; 1) = ui,j(t), i = 1, 2, . . . , n, j = 1, 2, ...,M,

respectively. Expanding φi,j(t; q), i = 1, 2, ..., n, j = 1, 2, ...,M, in Taylor series with
respect to q, we get

φi,j(t; q) = ui,j(t
∗) +

∞∑
m=1

ui,j,m(t)qm, i = 1, 2, . . . , n, j = 1, 2, ...,M, (2.4)
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where

ui,j,m(t) =
1

m!

∂mφi,j(t; q)

∂qm
|q=0.

If the initial guesses ui,j(t
∗), the auxiliary linear operator L and the nonzero auxiliary

parameter h are properly chosen so that the power series (2.4) converges at q = 1,
one has

ui,j(t) = φi,j(t; 1) = ui,j(t
∗) +

∞∑
m=1

ui,j,m(t),

For brevity, define the vector

−→u i,j,m(t) = {ui,j,0(t), ui,j,1(t), . . . , ui,j,m(t)},

Differentiating the zero-order deformation equation (2.3) m times with respective to
q and then dividing by m! and finally setting q = 0, we have the so-called high-order
deformation equations

L[ui,j,m(t)− χmui,j,m−1(t)] = h <i,j,m(−→u i,j,m−1(t)),

un,j,m(t) = χmun,j,m−1(t) + h <n,j,m(−→u n,j,m−1(t)) (2.5)

where

<i,j,m(−→u i,j,m−1(t)) = ui,j,m−1(t)− 1

(m− 1)!

∂m−1

∂qm−1
[fi(t, φ1,j(t; q), . . . , φn,j(t; q),

∂

∂t
φ1,j(t; q), . . . ,

∂

∂t
φn,j(t; q))])]|q=0,

<n,j,m(−→u n,j,m−1(t)) =
−1

(m− 1)!

∂m−1

∂qm−1
[g(t, φ1,j(t; q), . . . , φn,j(t; q))]|q=0, (2.6)

i = 1, 2, ..., n− 1, j = 1, 2, . . . ,M,

and

χm =

{
0, m ≤ 1
1, m > 1

.

Select the auxiliary linear operator L = d
dt , then the mth-order deformation equations

(2.5) can be written in the form

ui,j,m(t) = χmui,j,m−1(t) + h

t∫
tj−1

<i,j,m(−→u i,j,m−1(τ))dτ,

un,j,m(t) = χmun,j,m−1(t) + h <n,j,m(−→u n,j,m−1(t)), (2.7)

i = 1, 2, ..., n− 1, j = 1, 2, ...,M,

and a power series solution has the form

ui,j(t) =

∞∑
m=0

ui,j,m(t), i = 1, 2, . . . , n, j = 1, 2, ...,M. (2.8)
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Finally, the solutions of system (2.1) has the form

ui(t) =


ui,1(t), t ∈ [t0, t1]
ui,2(t), t ∈ [t1, t2]

...
ui,M (t), t ∈ [tM−1, tM ]

, i = 1, 2, ...., n.

3. Numerical results

In order to assess both the accuracy and the convergence order of the MHAM
presented in this paper for system of differential algebraic equations, we have applied
it to the following three problems.

Example 3.1. Consider the following system of differential algebraic equations

u
′

1(t) = tu
′

2(t)− u1(t) + (1 + t)u2(t),

u2(t) = sin t, (3.1)

subject to the initial condition

u1(0) = 1, u2(0) = 0. (3.2)

The exact solutions of this system are (u1(t) = e−t + t sin t, u2(t) = sin t). In this
example, we apply the proposed algorithm on the interval [0, 50]. We choose to divide
the interval [0, 50] to subintervals with time step 4t = 0.1. In general, we do not have
these information at our clearance except at the initial point t∗ = t0 = 0, but we
can obtain these values by assuming that the new initial condition is the solution in
the previous interval. (i.e. If we need the solution in interval [tj−1, tj ], then the initial
conditions of this interval will be as

u1,1(t∗) = 1, u1,j(t
∗) = u1,j−1(tj−1) = aj ,

u2,1(t∗) = 0, u2,j(t
∗) = u2,j−1(tj−1) = bj , j = 2, 3, ...,M. (3.3)

Where t∗ is the initial value for each subinterval [tj−1, tj ] and aj , bj are the initial
conditions in the subinterval [tj−1, tj ], j = 1, 2, ...,M). In view of the algorithm pre-
sented in the previous section, we have the mth-order deformation equation (2.7),
where

<1,j,m(−→u 1,j,m−1(t)) = u
′

1,j,m−1(t)− tu′2,j,m−1 + u1,j,m−1(t)− (1 + t)u2,j,m−1(t),

<2,j,m(−→u 2,j,m−1(t)) = u2,j,m−1(t)− sin(t)(1− χm), (3.4)

j = 1, 2, ...,M, m = 1, 2, 3, . . . ,
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and the series solution for system (3.1) is given by

u1,j,1(t) = h ((aj − bj)(t− t∗)−
bj
2

(t− t∗)2),

u1,j,2(t) = h ((aj − bj)(t− t∗)−
bj
2

(t− t∗)2) + h2((aj − 2bj)(t− t∗)

+
1

2
(aj − bj)(t− t∗)2 −

bj
6

(t− t∗)3

− sin(t− t∗)− (t− t∗)(cos(t− t∗) + sin(t− t∗)), (3.5)

...

Then the 10-term of the approximate solutions of system (3.1) are

u1,j(t) = aj +

9∑
m=1

u1,j,m(t− t∗).

Fig. 1 shows the displacement of the MHAM when h = −1 and the exact solution of
the system (3.1). It can be seen that the results from the MHAM match the results
of the exact solution very well, therefore, the proposed method is very efficient and
accurate method that can be used to provide analytical solutions for linear systems
of differential algebraic equations.

Figure 1. Plots of solution of system (3.1).
Solid line: Exact solution, dashed line: MHAM solution.

Example 3.2. Consider the following nonlinear system of differential algebraic equa-
tions

u
′

1(t) = u1(t)u2(t) + u
′

2(t)(1− u
′

2(t))− t2 + 2,

u21(t) + u22(t) + 2u1(t)u2(t) = 4t2, (3.6)

subject to the initial condition

u1(0) = 0, u2(0) = 0. (3.7)

The exact solutions of this system are (u1(t) = t + sin t, u2(t) = t − sin t). Apply
the proposed algorithm on the interval [0, 50]. We choose to divide the interval [0, 50]
to subintervals with time step 4t = 0.1. So we start with initial approximation

u1,1(t∗) = 0, u1,j(t
∗) = u1,j−1(tj−1) = aj ,

u2,1(t∗) = 0, u2,j(t
∗) = u2,j−1(tj−1) = bj , j = 2, 3, ...,M. (3.8)
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In view of the algorithm presented in the previous section, we have the mth-order
deformation equation (2.7), where

<1,j,m(−→u 1,j,m−1(t)) = u
′

1,j,m−1(t)− u
′

2,j,m−1(t)−
m−1∑
i=0

u1,j,i(t)u2,j,m−i−1(t)

+

m−1∑
i=0

u
′

2,j,i(t)u
′

2,j,m−i−1(t) + (t2 − 2)(1− χm),

<2,j,m(−→u 2,j,m−1(t)) =

m−1∑
i=0

u1,j,i(t)u1,j,m−i−1(t) +

m−1∑
i=0

u2,j,i(t)u2,j,m−i−1(t)

−2

m−1∑
i=0

u1,j,i(t)u2,j,m−i−1(t)− 4t2(1− χm), (3.9)

and the series solution for system (3.6) is given by

u1,j,1(t) = −h ((ajbj + 2)(t− t∗)− 1

3
(t− t∗)3),

u2,j,1(t) = h
(
(aj + bj)

2 − 4(t− t∗
)2

),

u1,j,2(t) = −h
(
(1 + h)(ajbj + 2) + h(a3j + 2a2jbj + ajb

2
j ))(t− t∗

)
−h

2
(ajb

2
j − 2bj − 8)(t− t∗)2

−1

3
(h(4aj + 1) + 1)(t− t∗)3 +

h

12
bj(t− t∗)4), (3.10)

u2,j,2(t) = h
(
(1 + 2h(aj + bj))(aj + bj)

2 − 2h(ajbj + 2)(aj + bj)(t− t∗
)

−4(1 + 2h(aj + bj))(t− t∗)2 +
2h

3
(aj + bj)(t− t∗)3),

...

So, the solution of system (3.6) will be as follows:

u1,j(t) = aj +

9∑
m=1

u1,j,m(t− t∗),

u2,j(t) = bj +

9∑
m=1

u2,j,m(t− t∗).

Fig. 2 shows the displacement of the MHAM when h = −1 and the exact solution of
the system (3.6). The results of our computations are in excellent agreement with the
results obtained by the exact solution.
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Figure 2. Plots of solution of system (3.6).
Solid line: Exact solution, dashed line: MHAM solution.

Example 3.3. Consider the following nonlinear system of differential algebraic equa-
tions

u
′

1(t) = u2(t)u
′

3(t)− u
′

2(t)u3(t) + u
′

3(t)− u1(t)) + 1 + sin t,

u
′

2(t) = u3(t)u
′

1(t) + u3(t)u1(t) + cos t, (3.11)

u1(t)u2(t)u3(t)− e−t sin t cos t,

subject to the initial condition

u1(0) = 1, u2(0) = 0, u3(0) = 1 (3.12)

The exact solutions of this system are (u1(t) = e−t, u2(t) = sin t, u3(t) = cos t).
Apply the proposed algorithm on the interval [0, 50]. We choose to divide the interval
[0, 50] to subintervals with time step 4t = 0.1. To solve system (3.11) by means of
MHAM, we start with initial approximations

u1,1(t∗) = 1, u1,j(t
∗) = u1,j−1(tj−1) = aj ,

u2,1(t∗) = 0, u2,j(t
∗) = u2,j−1(tj−1) = bj , (3.13)

u3,1(t∗) = 1, u3,j(t
∗) = u3,j−1(tj−1) = cj , j = 2, 3, ...,M.

In view of the formula (2.7), we can construct the homotopy as follows

<1,j,m(−→u 1,j,m−1(t)) = u
′

1,j,m−1(t)−
m−1∑
i=0

u2,j,i(t)u
′

3,j,m−i−1(t)

+

m−1∑
i=0

u
′

2,j,i(t)u3,j,m−i−1(t)

+u1,j,m−1(t)− u
′

3,j,m−1(t)− (1 + sin t)(1− χm),
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<2,j,m(−→u 2,j,m−1(t)) = u
′

2,j,m−1(t)

−
m−1∑
i=0

u1,j,i(t)u3,j,m−i−1(t)−
m−1∑
i=0

u
′

1,j,i(t)u3,j,m−i−1(t)

− cos t (1− χm),

<3,j,m(−→u 3,j,m−1(t)) =

m−1∑
i=0

u1,j,m−i−1(t)

i∑
n=0

u2,j,n(t)u3,j,i−n(t)

−e−t sin t cos t(1− χm).

When h = −1, the MHAM solution for the system (3.11) in each subinterval [tj−1, tj ]
has the form

u1,j,1(t) = 1− (aj − 1)(t− t∗)− cos(t− t∗),
u2,j,1(t) = ajcj(t− t∗) + sin(t− t∗),
u3,j,1(t) = −ajbjcj + sin(t− t∗) cos(t− t∗) e−(t−t

∗),

u1,j,2(t) = −(1 + ajc
2
j )(t− t∗)− 1

2
(1− aj)(t− t∗)2 + (1− cj) sin(t− t∗)

+
1

2
(1 + bj) sin(2(t− t∗)) e−(t−t

∗),

u2,j,2(t) = cj +
aj
5

+ cj(2− aj − a2jbj)(t− t∗) +
cj
2

(1− aj)(t− t∗)2 (3.14)

−cj(sin(t− t∗) + cos(t− t∗))− aj
10

(sin(2(t− t∗))

+2 cos(2(t− t∗))) e−(t−t
∗),

u3,j,2(t) = bjcj(a
2
jbj − aj − 1)− cj(a2jcj + ajbj − bj)(t− t∗)

+cj(bj cos(t− t∗)− aj sin(t− t∗))
+(1− ajbj) sin(t− t∗) cos(t− t∗) e−(t−t

∗).

...

So, the solution of system (3.11) will be as follows:

u1,j(t) = aj +

9∑
m=1

u1,j,m(t− t∗),

u2,j(t) = bj +

9∑
m=1

u2,j,m(t− t∗),

u3,j(t) = cj +

9∑
m=1

u3,j,m(t− t∗).

Fig. 3 shows the displacement of the MHAM and the exact solution of the system
(3.11). From the numerical results in all Figures it is clear that the numerical results
obtained using MHAM is in excellent agreement with the exact solutions.
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Figure 3. Plots of solution of system (3.11).
Solid line: Exact solution, dashed line: MHAM solution.

4. Conclusions

The purpose of this paper is to construct the multi-step homotopy analysis
method to nonlinear systems of differential algebraic equations. The MHAM is that
the solution expressed as an infinite series converges very fast to exact solutions. Re-
sults have been found very accurate when they are compared with analytical solutions.
The approximate solutions obtained by MHAM are highly accurate and valid for a
long time. In practice, the utilization of the method is straightforward if some sym-
bolic software as Mathematica is used to implement the calculations. The proposed
approach can be further implemented to solve other nonlinear problems.
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On products of self-small abelian groups

Josef Dvořák

Abstract. An abelian group A is called self-small if direct sums of copies of A com-
mute with the covariant Hom (A,−) functor. The paper presents an elementary
example of a non-self-small countable product of self-small abelian groups with-
out non-zero homomorphisms between different ones. A criterion of self-smallness
of a finite product of modules is given.

Mathematics Subject Classification (2010): 16D10, 16S50, 16D70.
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1. Introduction

The notion of self-small module as a generalization of the finitely generated
module appears as a useful tool in the study of splitting properties [1], groups of
homomorphisms of graded modules [10] or representable equivalences between sub-
categories of module categories [8].

The paper [4] in which the topic of self-small modules is introduced contains a
mistake in the proof of [4, Corollary 1.3], which states when the product of (infinite)
system (Ai | i ∈ I) of self-small modules is self-small. A counterexample and correct
version of the hypothesis were presented in [12] for a system of modules over a non-
steady abelian regular ring. In the present paper an elementary counterexample in
the category of Z-modules, i.e. abelian groups, is constructed and as a consequence,
an elementary example of two self-small abelian groups such that their product is not
self-small is presented.

Throughout the paper a module means a right module over an associative ring
with unit. If A and B are two modules over a ring R, HomR(A,B) denotes the abelian
group of all R-homomorphisms A → B. The set of all prime numbers is denoted by
P, for given p ∈ P, Zp means the cyclic group of order p and Q is the group of rational
numbers. E(A) denotes the injective envelope of the module A. Recall that injective
Z-modules, i.e. abelian groups, are precisely the divisible ones. For non-explained
terminology we refer to [9].

This work is part of the project SVV-2014-260107.
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Definition 1.1. An R-module A is self-small, if for arbitrary index set I and each
f ∈ HomR(A,

⊕
i∈I Ai), where Ai

∼= A, there exists a finite I
′ ⊆ I such that f(A) ⊆⊕

i∈I′ Ai.

Properties of self-small modules and mainly of self-small groups are thoroughly
investigated in [2], [3], [4], [5] and [6] revealing several characterizations of self-small
groups and discussing the properties of the category of self-small groups and modules.

For our purpose the following notation will be of use:

Definition 1.2. For an R-module A and B ⊆ A we define the annihilator of B

B∗ := {f | f ∈ EndR (A) , f (a) = 0 for each a ∈ B} .

The first (negative) characterization of self-small modules is given in [4] and it
describes non-self-small modules via annihilators and chains of submodules:

Theorem 1.3. [4, Proposition 1.1] For an R-module A the following conditions are
equivalent:

1. A is not self-small
2. there exists a chain A1 ⊆ A2 ⊆ ... ⊆ An ⊆ ... ( A of proper submodules in A

such that
⋃∞

n=1An = A and for each n ∈ N we have A∗n 6= {0}.

2. Examples

The key tool for constructions of this paper is the following well-known lemma:

Lemma 2.1.
∏

p∈P Zp/
⊕

p∈P Zp
∼= Q(2ω).

Proof. Since
⊕

p∈P Zp is the torsion part of
∏

p∈P Zp, the group
∏

p∈P Zp/
⊕

p∈P Zp is

torsion-free. Now the assertion follows from [7, Exercises S 2.5 and S 2.7]. �

Let B =
∏

p∈P Zp/
⊕

p∈P Zp. By the previous lemma it is easy to see that there

exists an infinite countable chain of subgroups Bi ⊆ Bi+1 of B such that B =
⋃

nBn

and HomZ(B/Bn,Q) 6= 0 for each n.
Recall that Q is torsion-free of rank 1 and each nontrivial factor of Q is a

torsion group, hence there is no nonzero non-injective endomorphism Q, which by
Theorem 1.3 implies well-known fact that Q is self-small.

Using the previous observations, the counterexample to [4, Corollary 1.3] can be
constructed:

Example 2.2. Since Zp is finite for every p ∈ P, it is a self-small group. Now, all
homomorphisms between Zp’s for different p ∈ P, or Q are trivial:

HomZ (Zp,Q) = {0}, since Zp is a torsion group, whereas Q is torsion-free.
HomZ (Q,Zp) = {0}, since every factor of Q is divisible and 0 is the only divisible
subgroup of Zp. Obviously, HomZ (Zq,Zp) = {0}.

Let A = Q×
∏

p∈P Zp and B = A/
(
Q×

⊕
p∈P Zp

)
∼=
∏

p∈P Zp/
⊕

p∈P Zp. Then

by Lemma 2.1 there exists a countable chain of subgroups Bi ⊆ Bi+1 of B, i < ω,
such that B =

⋃
i<ω Bi and HomZ(B/Bn,Q) 6= 0 for each n, where Q may be viewed

as a subgroup of A. Now put An to be the preimage of Bn in A under factorization
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by Q ×
⊕

p∈P Zp. Then the subgroups An,n ∈ N form a chain of subgroups and

A =
⋃

n∈NAn. At the same time the composition of the factorization by Q×
⊕

p∈P Zp

and ν̄n is an endomorphism ϕn of the group A such, that An ⊆ Ker ϕn. Therefore
the condition of Theorem 1.3 is satisfied, hence the group A is not self-small.

The previous example shows that for two different primes p, q

HomZ (Zq,Zp) = HomZ (Q,Zp) = HomZ (Zp,Q) = {0} ,
all the groups Zp, p ∈ P and Q are self-small, but the group Q ×

∏
p∈P Zp is not

self-small.

Finally, as a consequence of Example 2.2 an elementary example of two self-
small abelian groups such that their product is not self-small may be constructed. It
illustrates that the assumption HomZ(Mj ,Mi) = 0 for each i 6= j cannot be omitted
even in the category of Z-modules.

Example 2.3. By [12, Example 2.7] the group
∏

p∈P Zp is self-small as well as the

group Q. Moreover, HomZ(Q,
∏

p∈P Zp) =
∏

p∈P HomZ(Q,Zp) = 0. Nevertheless, the

product Q×
∏

p∈P Zp is not self-small by Example 2.2. Note that it is not surprising in

view of Corollary 2.6 that the structure of HomZ(
∏

p∈P Zp,Q) is quite rich as shown
in Lemma 2.1.

Recall that classes of small modules, i.e. modules over which the covariant Hom-
functor commutes with all direct sums, are closed under homomorphic images and
extensions [11, Proposition 1.3]. Obviously, self-small modules do not satisfy this
closure property and, moreover, although any class of self-small modules is closed
under direct summands, the last example illustrates that it is not closed under finite
direct sums.

Proposition 2.4. The following conditions are equivalent for a finite system of self-
small R-modules (Mi| i ≤ k):

1.
∏

i≤kMi is not self-small
2. there exist i, j ≤ k and a chain N1 ⊆ N2 ⊆ ... ⊆ Nn ⊆ ... of proper submodules

of Mi such that
⋃∞

n=1Nn = Mi and HomR(Mi/Nn,Mj) 6= 0 for each n ∈ N.

Proof. Put M =
∏

i≤kMi.

(1)→(2) If M is not self-small, there exists a chain A1 ⊆ A2 ⊆ . . . ⊆ An ⊆ . . . of
proper submodules of M for which

⋃∞
n=1An = M and HomR(M/An,M) 6= 0 for each

n ∈ N. Put Ai
n = Mi∩An for each i ≤ k and n ∈ N. Then Mi =

⋃
nA

i
n for each i ≤ k

and there exists at least one index i such that the chain Ai
1 ⊆ Ai

2 ⊆ . . . ⊆ Ai
n ⊆ . . .

consists of proper submodules of Mi (or else the condition on the original chain is
broken) and further on we consider only such i′s.

Since for each n ∈ N there exist 0 6= bn ∈M \An and fn : M/An →M such that
fn (bn +An) 6= 0, for each n we can find an index i (n) ≤ k with fnπAn

νi(n)πi(n) (bn) 6=
0 (where πi(n), resp. νi(n) are the natural projection, resp. injection and πAn

is is the
natural projection M → M/An). Now, by pigeonhole principle, there must exist at
least one index i0 such that S := {n ∈ N | i (n) = i0} is infinite. By the same principle,
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there must exist at least one index j0 such that T := {n ∈ S |πj0fnπAn
νi0πi0 (bn) 6= 0}

is infinite. The couple i0, j0 proves the implication.
(2)→(1) Put An = π−1i (Nn) where πi : M → Mi is the natural projection, so⋃

nAn = M . If 0 6= fn ∈ HomR(Mi,Mj) such that Nn ⊆ ker fn and fn (mn) 6= 0
for some suitable mn ∈ Mi, then νjfnπi ∈ HomR(M,M), where νj : Mj → M is the
natural injection, An ⊆ ker νjfnπi and the nonzero element having mn on the i-th
position show that the condition of the Theorem 1.3 holds. �

Corollary 2.5. Let (Mi| i ≤ k) be a finite system of R-modules. Then
∏

i≤nMi is
self-small if and only if for every i, j and every chain N1 ⊆ N2 ⊆ ... ⊆ Nn ⊆
... of proper submodules of Mi such that

⋃∞
n=1Nn = Mi there exist n for which

HomR(Mi/Nn,Mj) = 0.

In consequence we see that the ”finite version” of [4, Corollary 1.3] remains true:

Corollary 2.6. Let (Mi| i ≤ n) be a finite system of self-small modules satisfying the
condition HomR(Mj ,Mi) = 0 for each i 6= j. Then

∏
i≤nMi is a self-small module.

The previous results motivates the formulation of the following open problem.

Question. Let 0 → S0 → S1 → S2 → 0 be a short exact sequence in the category
of abelian groups (or more generally right modules over a ring). If i 6= j 6= k 6= i
and Si, Sj are self-small, can the condition that Sk is self-small be characterized by
properties of the groups Si, Sj and the corresponding homomorphisms?
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[7] Călugăreanu, G., Breaz, S., Modoi, C., Pelea, C., Vălcan, D., Exercises in abelian group
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186 75 Praha 8
Czech Republic
e-mail: pepa.dvorak@post.cz
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A-Whitehead groups

Ulrich Albrecht

Abstract. This paper investigates various extensions of the notion of Whitehead
modules. An Abelian group G is an A-Whitehead group if there exists an exact
sequence 0 → U → ⊕IA → G → 0 such that SA(U) = U with respect to which
A is injective. We investigate the structure of A-Whitehead groups.
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1. Introduction

A right R-module M is a Whitehead module if Ext1R(M,R) = 0. It is the goal of
this paper to investigate Whitehead modules in the context of A-projective and A-
solvable Abelian groups. The class of A-projective groups, which consists of all groups
P which are isomorphic to a direct summand of ⊕IA for some index-set I, was in-
troduced by Arnold, Lady and Murley ([6] and [7]). An A-projective group P has
finite A-rank if I can be chosen to be finite. A-projective groups are usually investi-
gated using the adjoint pair (HA, TA) of functors between the category Ab of Abelian
groups and the category ME of right E-modules defined by HA(G) = Hom(A,G) and
TA(M) = M ⊗E A for all G ∈ Ab and all M ∈ME . Here, E = E(A) denotes the en-
domorphism ring of A. These functors induce natural maps θG : TAHA(G)→ G and
φM : M → HATA(M) defined by θG(α⊗a) = α(a) and [φM (x)](a) = x⊗a. An Abelian
group G is A-solvable if θG is an isomorphism. If A is self-small, then all A-projective
groups are A-solvable. Here, A is self-small if the natural map HA(⊕IA) → ΠIE
actually maps into ⊕IE for all index-sets I [7].

An Abelian group G is (finitely, κ-) A-generated if it is an epimorphic image of
⊕IA for some index-set I (with |I| <∞, |I| < κ respectively). It is easy to see that G
is A-generated iff SA(G) = G where SA(G) = im(θG). The group G is A-presented if
there exists an exact sequence 0→ U → F → G→ 0 in which F is A-projective and
U is A-generated. A sequence 0 → G → H → L → 0 is A-cobalanced (A-balanced) if
A is injective (projective) with respect to it. For a self-small group A, the A-solvable
groups can be described as those groups G for which we can find an A-balanced exact
sequence 0→ U → F → G→ 0 in which F is A-projective and U is A-generated [4].
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The functor Ext1R can be defined either in terms of equivalence classes of exact
sequences or via projective resolutions. We thus call an A-generated group W an A-
Whitehead splitter if every exact sequence 0 → A → G → W → 0 with SA(G) = G
splits. On the other hand, a group W is an A-Whitehead group if it admits an A-
cobalanced resolution 0 → U → F → W → 0 in which F is A-projective and U
is A-generated. Section 2 investigates how A-Whitehead groups and A-Whitehead
splitters are related. While all A-presented A-Whitehead splitters are A-Whitehead
groups, the converse surprisingly fails in general. Several examples demonstrate the
differences between the classic concepts and our more general situation. We show
that all A-Whitehead groups are A-Whitehead-splitters if E has injective dimension
at most 1 as a right and left E-module. In particular, all countably A-generated A-
Whitehead groups are A-projective if A has a right and left Noetherian, hereditary
endomorphism ring. By [10], strongly κ-projective and Whitehead modules are closely
related. The last results of this paper show that this relation extends to A-Whitehead
groups.

2. A-Whitehead Groups

An Abelian group A is (faithfully) flat if it is flat (and faithful) as a left E-
module. Since every exact sequence 0 → U → G → A → 0 with SA(G) = G splits if
A is faithfully flat [2], A is an A-Whitehead splitter in this case. However, this may
not be true without the faithfulness condition as the next result shows.

Example 2.1. There exists a flat torsion-free Abelian group A of finite rank such that
A is not an A-Whitehead splitter.

Proof. Let p, q, and r be distinct primes, and select subgroups A1, A2, and A3 of Q
such that A1 is divisible by all primes except p and q, A2 is divisible by all primes
except p and r, and A3 is divisible by all primes except q and r. By [8, Section 2],
there exists a strongly indecomposable subgroup G of Q ⊕ Q which is generated by
A1(1, 0), A2(0, 1), and A3(1, 1). Moreover, A4 = G/A1(1, 0) is a subgroup of Q which
is divisible by all primes except q. The group A = Z ⊕ A1 ⊕ A2 ⊕ A3 ⊕ A4 is flat
as a left E-module by Ulmer’s Theorem [16]. Since A1 + A3 = A4, A is not faithful.
However, the exact sequence 0→ A→ G⊕A⊕A2⊕A3⊕Z⊕Z→ A→ 0 cannot split
since otherwise G would be completely decomposable. Because G is A-generated, A
is not an A-Whitehead splitter. �

Proposition 2.2. Let A be a self-small Abelian group. If W is an A-presented A-
Whitehead splitter, then W is an A-Whitehead group.

Proof. Consider an exact sequence 0 → U
α→ F

β→ W → 0, where F is A-projective
and U = SA(U). For ψ ∈ Hom(U,A), we obtain the push-out diagram

0 −−−−→ U
α−−−−→ F

β−−−−→ W −−−−→ 0yψ yψ1

y1W

0 −−−−→ A
α1−−−−→ X −−−−→ W −−−−→ 0.
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As a push-out, X is A-generated being an epimorphic image of A⊕F . Since W is an
A-Whitehead splitter, the bottom sequence splits, say δα1 = 1A. Now it is easy to
see that δψ1α = ψ. �

However the converse of the last result fails in general:

Example 2.3. There exists a self-small faithfully flat Abelian group A for which we
can find an A-Whitehead group G which is not an A-Whitehead splitter.

Proof. Let P be the set of primes, and consider the groups A = ΠPZp and U = ⊕PZp.
Then, A is a self-small [18, Proposition 1.6], faithfully flat Abelian group, and U is

an A-generated subgroup of A such that A/U ∼= Q(2ℵ0 ). The sequence 0→ U → A→
A/U → 0 is A-cobalanced since each Zp is fully invariant in A and U . Therefore, A/U
is an A-Whitehead group and SA(Xp) = Xp.

Fix a a prime p, and choose a group Xp with E(Xp) = Zp and Xp/Zp ∼= Q.

This is possible by Corner’s Theorem [12]. Then, the induced sequence 0→ Z(2ℵ0 )
p →

X
(2ℵ0 )
p → Q(2ℵ0 ) → 0 does not split although A/U ∼= Q(2ℵ0 ) is an A-Whitehead

group. �

Moreover, A-Whitehead splitters need not be A-presented. To see this, let p
be a prime. If A is any torsion-free Abelian group with pA = A, then Z(p∞) is an
epimorphic image of A. Moreover, Ext(Z(p∞), A) = 0 because pA = A [12]. Therefore,
Z(p∞) is an A-Whitehead splitter. However, no p-group can be A-presented since all
A-generated groups are p-divisible.

If A is faithfully flat, then every exact sequence 0 → U → G → H → 0 with G
and H A-solvable is A-balanced and SA(U) = U [2]. If U is a submodule of HA(G),
let UA = 〈φ(A)|φ ∈ U〉.

Lemma 2.4. If A is a faithfully flat Abelian group, then the following hold for an
A-solvable group G:

a) If U is a submodule of HA(G), then the evaluation map θ : TA(U)→ UA defined
by θ(u⊗ a) = u(a) is an isomorphism.

b) If U and V are submodules of HA(G) with UA = V A, then U = V .

Proof. a) Clearly, θ is onto. To see that it is one-to-one, consider the commutative
diagram

0 −−−−→ TA(U) −−−−→ TAHA(G)yθ o
yθG

0 −−−−→ UA −−−−→ G
whose top-row is exact since A is flat.

b) Since UA = V A = (U + V )A, it suffices to consider the case U ⊆ V . By a),
the evaluation maps TA(U)→ UA and TA(V )→ V A in the commutative diagram

0 −−−−→ TA(U) −−−−→ TA(V ) −−−−→ TA(V/U) −−−−→ 0

o
y o

y
0 −−−−→ UA

=−−−−→ V A −−−−→ 0
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are isomorphisms. Thus, TA(V/U) = 0 which yields V/U = 0 since A is faithfully
flat. �

Theorem 2.5. Let A be a self-small faithfully flat Abelian group. The following are
equivalent for an A-generated Abelian group W :

a) W is an A-Whitehead group.
b) There exists a Whitehead-module M with W ∼= TA(M).

Proof. a) ⇒ b): Consider an A-cobalanced exact sequence 0 → U
α→ F

β→ W →
0 in which U is A-generated and F is A-projective. It induces the sequence 0 →
HA(U)

HA(α)−→ HA(F )
HA(β)−→ M → 0 whereM = Im(HA(β)) is a submodule ofHA(W ).

We obtain the commutative diagram

0 −−−−→ TAHA(U)
TAHA(α)−−−−−−→ TAHA(F )

TAHA(β)−−−−−−→ TA(M) −−−−→ 0

o
yθU o

yθF yθ
0 −−−−→ U

α−−−−→ F
β−−−−→ W −−−−→ 0.

By the 3-Lemma, the induced map θ is an isomorphism, and it remains to show that
M is a Whitehead-module.

For ψ ∈ HomE(HA(U), E), consider TA(ψ) : TAHA(U) → TA(E). Let σ :
TA(E) → A be an isomorphism. By a), there is λ : F → A with λα = σTA(ψ)θ−1U .
An application of HA gives

HA(σ−1λθF )HATAHA(α)) = HA(σ−1λθFTAHA(α))

= HA(σ−1λα)θU = HATA(ψ).

Since HATA(ψ)φHA(U) = φEψ, we have

φ−1E HA(σ−1λθF )φHA(F )HA(α) = φ−1E HA(σ−1λθF )HATAHA(α)φHA(U)

= φ−1E HATA(ψ)φHA(U) = ψ,

and M is a Whitehead-module.

b) ⇒ a): Consider an exact sequence 0 → U
α→ F

β→ M → 0 in which F is a
free right E-module. Since A is faithfully flat, φU is an isomorphism by [4]. It remains

to show that the induced sequence 0 → TA(U)
TA(α)−→ F

TA(β)−→ TA(M) → 0 is A-
cobalanced. For this, consider a map ψ ∈ Hom(TA(U), A). Because Ext1E(M,E) = 0,
there exists λ : F → E with HA(ψ)φU = λα. Then,

θATA(λ)TA(α) = θATAHA(ψ)TA(φU )

= ψθTA(U)TA(φU ) = ψ

since θTA(U)TA(φU )(u⊗ a) = θTA(U)(φU (u)⊗ a) = u⊗ a for all u ∈ U and a ∈ A. �

Example 2.6. There exists a self-small faithfully flat Abelian group A and a A-
Whitehead group W such that W ∼= TA(M) for some right E-module M with
Ext1R(M,E) 6= 0.
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Proof. Let A and U be as in Example 2.3, and consider the A-Whitehead-group
W = A/U . In view of the proof of Theorem 2.5, it suffices to construct an exact
sequence 0 → V → P → W → 0 such that P is A-projective and V is A-generated
which is not A-cobalanced.

Since A/U is a Zp-module, there are index-sets I and J and an exact sequence
0→ ⊕IZp → ⊕JZp → A/U → 0. Because of ExtZp

(Q,Zp) 6= 0, this sequence cannot
be A-cobalanced. It is easy to see that it cannot be A-balanced either. �

If G and H are A-solvable, and A is a self-small faithfully flat Abelian group, then
the equivalence classes of exact sequences 0 → H → X → G → 0 with SA(X) = X
form a subgroup of Ext(G,H) denoted by A−Bext(G,H) [3].

Theorem 2.7. Let A be a self-small faithfully flat Abelian group. The following are
equivalent for an A-generated group W :

a) W is an A-solvable A-Whitehead splitter.
b) W is an A-solvable A-Whitehead group.
c) W is A-solvable and HA(W ) is a Whitehead module.
d) There exists an exact sequence 0→ U → ⊕IF →W → 0 with SA(U) = U which

is A-balanced and A-cobalanced.
e) W is an A-solvable group with A−Bext(W,A) = 0.

Proof. Since a)⇒ b) holds by Proposition 2.2, we consider anA-solvableA-Whitehead
group W . As in the proof of Theorem 2.5, there exists a submodule M of HA(W ) with
Ext1E(M,E) = 0 such that the evaluation map θ : TA(M) → W is an isomorphism.
Consider the commutative diagram

0 −−−−→ TA(M) −−−−→ TAHA(A) −−−−→ TA(HA(W )/M) −−−−→ 0

o
yθ o

yθW
W

1W−−−−→ W

which yields TA(HA(W )/M) = 0. Since A is faithfully flat, HA(W ) = M is a
Whitehead-module.

c) ⇒ d): Since W is A-solvable where exists an A-balanced sequence 0 → U →
F →W → 0 with SA(U) = U and F A-projective. By the Adjoint-Functor-Theorem,
there exists an isomorphism λG : Hom(G,A) → HomE(HA(G), E) for all A-solvable
groups G. We therefore obtain the commutative diagram

HomE(HA(F ), E) −−−−→ HomE(HA(U), E) −−−−→ Ext1E(HA(W ), E) = 0

o
xλF o

xλU

Hom(F,A) −−−−→ Hom(U,A)

whose top-row is exact since the original sequence is A-balanced.

d)⇒ a): Since there exists an A-balanced sequence 0→ U → F →W → 0 with
SA(U) = U and F A-projective, we know that W is A-solvable. Using the maps λG
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as before, we obtain the commutative diagram

HomE(HA(F ), E) −−−−→ HomE(HA(U), E) −−−−→ Ext1E(HA(W ), E) −−−−→ 0

o
xλF o

xλU

Hom(F,A) −−−−→ Hom(U,A) −−−−→ 0

from which it follows that HA(W ) is a Whitehead module. Since A is faithfully flat,
an exact sequence 0 → A → G → W → 0 with SA(G) = G is A-balanced. There-
fore, it induces the exact sequence 0 → HA(A) → HA(G) → HA(W ) → 0 which
splits because HA(W ) is a Whitehead module. We therefore obtain the commutative
diagram

0 −−−−→ TAHA(A) −−−−→ TAHA(G) −−−−→ TAHA(W ) −−−−→ 0

o
yθA yθG o

yθW
0 −−−−→ A −−−−→ G −−−−→ W −−−−→ 0

whose top-row splits. Since θG is an isomorphism by the 3-Lemma, the bottom row
splits too.

Since A−Bext(G,H) ∼= Ext1E(HA(G), HA(H) whenever G and H are A-solvable
[3], c) and e) are equivalent. �

3. Groups with Endomorphism Rings of Injective Dimension 1

We now discuss the Abelian groups A for which all A-Whitehead groups are
A-Whitehead splitters. The nilradical of a ring R is denoted by N = N(R). If A is a
torsion-free Abelian group whose endomorphism ring has finite rank, then N(E) = 0
if and only if its quasi-endomorphism ring QE is semi-simple Artinian. Moreover,
E(A) is right and left Noetherian in this case [8, Section 9]. An Abelian group G is
locally A-projective if every finite subset of G is contained in an A-projective direct
summand of G which has finite A-rank [7]. If E(A) has finite rank, then HA and
TA give a category equivalence between the categories of locally A-projective groups
and locally projective right E-modules [7]. We want to remind the reader that the
A-radical of a group G is RA(G) = ∩{Ker φ | φ ∈ Hom(G,A)}. Clearly, RA(G) = 0 if
and only if G can be embedded into AI for some index-set I.

Theorem 3.1. The following are equivalent for a faithfully flat Abelian group A such
that QE is a finite-dimensional semi-simple Q-algebra:

a) id(EE) = 1.
b) A-generated subgroups of torsion-free A-Whitehead groups are A-Whitehead

groups.

For such an A, every A-Whitehead groups W satisfies RA(W ) = 0 and is A-solvable.
In particular, W is an A-Whitehead splitter.

Proof. a) ⇒ b): If V is a submodule of a Whitehead module X, then we obtain
an exact sequence 0 = Ext1E(X,E) → Ext1E(V,E) → Ext2E(X/V,E) = 0 because
id(EE) ≤ 1. Thus, V is a Whitehead module.
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Let W be a torsion-free A-Whitehead group. To see RA(W ) = 0, observe that
there is a Whitehead module M with W ∼= TA(M) by Theorem 2.5. Since A is flat,
the sequence 0 → TA(tM) → TA(M) ∼= W is exact. Hence, TA(tM) = 0, which
yields tM = 0 because A is a faithful E-module. The submodule U = ∩{Ker φ | φ ∈
HomE(M,E)} of M is a Whitehead module by the first paragraph.

We consider the exact sequence

0→ HomE(M/U,E)
π∗−→ HomE(M,E)→ HomE(U,E)

→ Ext1E(M/U,E)→ Ext1E(M,E) = 0.

Since π∗ is onto, HomE(U,E) ∼= Ext1E(M/U,E). Because U is pure in M as an
Abelian group, multiplication by a non-zero integer n induces an exact sequence

Ext1E(M/U,E)
n×−→ Ext1E(M/U,E) → Ext2E(., E) = 0, from which we obtain

that Ext1E(M/U,E) ∼= HomE(U,E) is divisible. However, this is only possible if
HomE(U,E) = 0 since HomE(U,E) is reduced.

LetD be the injective hull of U . Since QE is semi-simple Artinian,D ∼= Q⊗ZU by
[15]. Hence, D/U is torsion as an Abelian group, and we can find an index-set I, non-
zero integers {ni | i ∈ I}, and an exact sequence 0 → X → ⊕IE/niE → D/U → 0.
It induces

0 = HomE(X,E) → Ext1E(D/U,E)

→ Ext1E(⊕IE/niE,E) ∼= ΠIExt1E(E/niE,E).

Therefore, Ext1E(D/U,E) is reduced since the exact sequence HomE(E,E)
ni×−→

HomE(E,E) → Ext1E(E/niE,E) → 0 yields Ext1E(E/niE,E) ∼= E/niE. On the
other hand, we have the induced sequence 0 = HomE(U,E) → Ext1E(D/U,E) →
Ext1E(D,E)→ Ext1E(U,E) = 0 where the last Ext-group vanishes since U is a White-
head module. Since D is torsion-free and divisible, the same holds for Ext1E(D/U,E).
However, this is only possible if Ext1E(D/U,E) ∼= Ext1E(D,E) = 0.

If D 6= 0, then it has a direct summand S which is simple as a QE-module since
QE is semi-simple Artinian. In particular, Ext1E(S,E) = 0. Using Corner’s Theorem
[12], we can find a reduced Abelian group B with End(B) ∼= Eop which fits into an
exact sequence 0 → Eop → B → QEop → 0 as a left Eop-module. Then, B can be
viewed as a right E-module fitting into an exact sequence 0 → E → B → QE → 0.
We can find an E-submodule E ⊆ V of B with V/E ∼= S. Since Ext1E(S,E) = 0, we
have V ∼= E ⊕ S. However, S is divisible as an Abelian group, while V is reduced,
a contradiction. Therefore, D = 0; and M ⊆ EJ for some index-set J . Since E is
Noetherian as mentioned before, EJ is locally projective [1]. In particular, φEJ is an
isomorphism by [7]. Because A is faithfully flat, φM has to be an isomorphism too by
[4]. Therefore, W ∼= TA(M) is A-solvable as a subgroup of the locally A-projective
group TA(EJ) and RA(W ) = 0. By Theorem 2.7, W is an A-Whitehead splitter, and
HA(W ) is a Whitehead module.

An A-generated subgroup C of W is A-solvable since A is flat. By Theorem 2.7,
C is an A-Whitehead group if the can show that HA(C) is a Whitehead module.
However, this holds because the class of Whitehead modules is closed with respect to
submodule if id(EE) = 1 by the first paragraph.
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b) ⇒ a): Clearly, id(EE) = 1 if and only if Ext1E(E/I,QE/E) = 0 for all
right ideals I of E. Standard homological arguments show Ext1E(E/I,QE/E) ∼=
Ext1E(I, E). To see that I is a Whitehead module, observe that IA ∼= TA(I) is an
A-solvable A-Whitehead module by b) because A is an A-Whitehead splitter since A
is faithfully flat. By Theorem 2.7, IA is an A-Whitehead splitter, and HA(IA) is a
Whitehead module. But, I ∼= HATA(I) ∼= HA(IA) since A is faithfully flat. �

Corollary 3.2. Let A be an Abelian group such that QE is a finite dimensional semi-
simple Q-algebra and id(EE) = id(EE) = 1. Every A-Whitehead group is torsion-free,
A-solvable and an A-Whitehead splitter.

Proof. If p is a prime with pA = A, then (E/J)p = 0 for every essential right ideal
J of E since E/J is bounded and p-divisible. By Theorem 3.1, it remains to show
that every A-Whitehead group W is torsion-free. Suppose that W is not torsion-
free, and select a Whitehead module M with W ∼= TA(M). Since A is faithfully
flat, tW ∼= TA(tM). Select a cyclic submodule U of M with U+ torsion. Because
id(EE) = 1, U is a Whitehead module. There is a right ideal I of E with E/I ∼=
U which is a reflexive E-module by [14]. The exact sequence 0 = HomE(U,E) →
HomE(E,E) → HomE(I, E) → Ext1E(U,E) = 0 yields HomE(I, E) ∼= E. Hence,
I ∼= HomE(HomE(I, E), E) ∼= E. Thus, U fits into an exact sequence 0→ E → E →
U → 0, from which we get E ∼= E ⊕ U , which is a contradiction unless U = 0. �

Moreover, if E is right and left Noetherian and hereditary, then A is self-small
and faithfully flat, and E is semi-prime [4].

Corollary 3.3. Let A be a self-small faithfully flat Abelian group such that E is a
right and left Noetherian, hereditary ring with r0(E) < ∞. If W is an A-Whitehead
group, then W is locally A-projective. In particular, every countably A-generated A-
Whitehead group is A-projective.

Proof. Select a finite subset X of HA(W ) and a finitely generated submodule
U of HA(W ) containing X. The Z-purification V of U in HA(W ) is countable.
Since E is hereditary, ExtE(HA(W )/V,E) is divisible as an Abelian group. On
the other hand, we have an exact sequence HomE(HA(W ), E) → HomE(V,E) →
ExtE(HA(W )/V,E)→ ExtE(HA(W ), E) = 0, because HA(W ) is a Whitehead mod-
ule. Since HomE(V,E) is a finitely generated right E-module, the same holds for
ExtE(HA(W )/V,E). Thus, ExtE(HA(W )/V,E) ∼= P ′ ⊕ T where P ′ is projective and
T+ is bounded. Because A is reduced, ExtE(HA(W )/V,E) is reduced, which is not
possible unless ExtE(HA(W )/V,E) = 0.

Since RA(W ) = 0 by Theorem 3.1, HA(W ) ⊆ EI for some index-set I. Because
E is left Noetherian, EI is a locally projective module. Thus, its countable submodule
V has to be projective. Since V contains a finitely generated essential submodule, it
is finitely generated by Sandomierski’s Lemma [9]. But then, there is n < ω such that
ExtE(HA(W )/V, V ) = 0 since ExtE(HA(W )/V,E) = 0. Consequently, V is a finitely
generated projective direct summand of HA(W ), and HA(W ) is locally projective. By
[7], W ∼= TAHA(W ) is locally A-projective.

IfG is an epimorphic image of⊕ωA, thenHA(G) is an image of⊕ωE sinceG is A-
solvable. However, a countably generated locally projective module is projective. �
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4. κ-A-Projective Groups

Let κ be an uncountable cardinal, and assume that A is a torsion-free Abelian
with |A| < κ whose endomorphism ring is right and left Noetherian and hereditary.
An A-generated group G is κ-A-projective if every κ-A-generated subgroup of G is
A-projective. Since every finitely A-generated subgroup of G is A-projective in this
case, κ-A-projective groups are A-solvable. An A-projective subgroup U of an ℵ0-A-
projective group G is κ-A-closed if (U + V )/U is A-projective for all κ-A-generated
subgroups V of G. If |U | < κ, then this is equivalent to the condition that W/U
is A-projective for all κ-A-generated subgroups W of G with U ⊆ W . Finally, G is
strongly κ-A-projective if it is κ-A-projective and every κ-A-generated subgroup of G
is contained in a κ-A-generated, κ-A-closed subgroup of G. Our first result reduces
the investigation of strongly κ-A-projective groups to that of strongly κ-projective
modules.

Proposition 4.1. Let κ be a regular uncountable cardinal. If A is a torsion-free Abelian
group with |A| < κ whose endomorphism ring is right and left Noetherian and hered-
itary, then the following are equivalent for a κ-A-projective group G with |G| ≥ κ:

a) G is strongly κ-A-projective.
b) HA(G) is a strongly κ-projective right E-module.

Proof. Consider an exact sequence 0 → U → ⊕IA
β→ G → 0 with |I| ≥ κ. Since

A is faithfully flat, the sequence is A-balanced and SA(U) = U . Thus, HA(G) is an
epimorphic image of ⊕IE. Moreover, G ∼= TAHA(G) yields |HA(G)| = |G| ≥ κ.

a) ⇒ b): Suppose that U is a submodule of HA(G) with |U | < κ. By Lemma
2.4, the evaluation map θ : TA(U)→ UA is an isomorphism since G is A-solvable and
A is faithfully flat. Then, |UA| < κ, and there is a κ-A-generated κ-closed subgroup
V of G with UA ⊆ V . Observe that V is A-projective. Therefore, HA(UA) ⊆ HA(V )
is projective since E is right hereditary. However, U ∼= HATA(U) ∼= HA(UA) since
U ⊆ HA(G) and φHA(G) is an isomorphism by [4]. Thus, HA(G) is κ-projective.

We now show that HA(V ) is κ-closed in HA(G). Let W be a submodule of
HA(G) with |W | < κ which contains HA(V ). Since |WA| < κ and V ⊆ WA, we
obtain that WA/V is A-projective. Hence, V is a direct summand of WA by [2] since
E is right and left Noetherian and hereditary. Applying the functor HA yields that
HA(V ) is a direct summand of HA(WA). By Lemma 2.4, HA(WA) = W , and we are
done.

b) ⇒ a): For a κ-A-generated subgroup U of G, choose an exact sequence

⊕IA
π→ U → 0. Since G is A-solvable, the same holds for U , and the last se-

quence is A-balanced. Therefore, HA(U) is a κ-generated submodule of HA(G). We
can find a κ-closed submodule W of HA(G) containing HA(U) with |W | < κ. Then,
U = HA(U)A ⊆ WA has cardinality less than κ, and it remains to show that WA
is κ-A-closed. For this, let V be a κ-A-generated subgroup of G containing WA.
Since W = HA(WA) by Lemma 2.4, HA(V )/HA(WA) is projective. Consider the
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commutative diagram

TAHA(WA) −−−−→ TAHA(V ) −−−−→ TA(HA(V )/HA(WA)) −−−−→ 0

o
xθWA o

xθV x
WA −−−−→ V −−−−→ V/WA −−−−→ 0.

Since WA and V are A-solvable, V/WA is A-projective . �

We now can prove the main result of this section.

Theorem 4.2. Let κ be a regular, uncountable cardinal which is not weakly compact,
and suppose that A is a torsion-free Abelian group with |A| < κ such that E is right
and left Noetherian and hereditary.

a) If we assume V = L, then there exists a strongly κ-A-projective group G with
Hom(G,A) = 0.

b) Let κ = ℵ1, and assume MA + ℵ1 < 2ℵ0 . Every strongly ℵ1-A-projective group
G with |G| < 2ℵ0 is an A-Whitehead splitter.

Proof. a) By [13], there exists strongly κ-free left Eop-module M of cardinality κ
with EndZ(M) = Eop. Therefore, EndEop(M) = C(E), the center of E. Viewing M
as an E-module yields a strongly κ-free right E-module M with EndE(M) = C(E).
We consider G = TA(M). If φ1, . . . , φn ∈ HATA(M), then there is a κ-generated
submodule U of M such that φ1(A) + . . . + φn(A) ⊆ TA(U) since |A| < κ. However,
since U is contained in a free submodule P of M , we obtain that φ1(A) + . . .+φn(A)
is A-projective. Thus, G is A-solvable, and φHATA(M) is an isomorphism. By [4], φM
is an isomorphism since A is faithfully flat. Consequently, M ∼= HA(G) is strongly
κ-projective. By Proposition 4.1, G is strongly κ-A-projective. Moreover, every subset
of G of cardinality less than κ is contained in an A-free subgroup of G.

Since E is Noetherian, it does not have any infinite family of orthogonal idem-
potent, and the same holds for C(E). By the Adjoint-Functor-Theorem, we have
EndZ(TA(M)) ∼= EndE(M) = C(E) since TA(M) is A-solvable. Therefore, EndZ(G)
is commutative, and G = G1 ⊕ . . . ⊕ Gm where each Gj is indecomposable and
Hom(Gi, Gj) = 0 for i 6= j. Since Gi is A-generated and indecomposable, Gi is either
A-projective of finite A-rank, or Hom(Gi, A) = 0 since E(A) is right and left Noe-
therian and hereditary. Consequently, G = B ⊕ C where C is A-projective of finite
A-rank, and Hom(B,A) = Hom(B,C) = Hom(C,B) = 0.

Since |A| < κ, G contains a subgroup U isomorphic to ⊕ωA. We can find a
subgroup V of G which is A-free and contains C and U , say V ∼= ⊕IA for some infinite
index-set I. Since A is discrete in the finite topology, it is self-small. Therefore, we can
find a finite subset J of I such that α(A) ⊆ ⊕JA. Since C is a direct summand of G,
we have V = C⊕(B∩V ) and B∩V ∼= (⊕JA)/C⊕(⊕I\JA). But then, Hom(C,B) 6= 0,
which results in a contradiction unless C = 0. This shows, Hom(G,A) = 0.

b) If G is a strongly ℵ1-projective group with ℵ1 ≤ |G| < 2ℵ0 , then G is A-
solvable. By Proposition 4.1, HA(G) is a strongly ℵ1-projective right E-module. Ar-
guing as in the case A = Z (e.g. see [10, Chapter 12] or [11]), we obtain that HA(G)
is a Whitehead-module. By Theorem 2.7, G is an A-Whitehead splitter. �
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of groups SO(n) and SE(n)
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Abstract. In Theorem 3.1 we present, in the case when the eigenvalues of the
matrix are pairwise distinct, a direct way to determine the Rodrigues coefficients
of the Cayley transform for the special orthogonal SO(n) by reducing the Ro-
drigues problem in this case to the system (3.2). The similar method is discussed
for the Euclidean group SE(n).
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1. Introduction

The Cayley transform of the group of rotations SO(n) of the Euclidean space
Rn is defined by Cay : so(n) → SO(n),Cay(A) = (In + A)(In − A)−1, where so(n)
is the Lie algebra of SO(n). Because the inverse of the matrix In −A can be written
as (In − A)−1 = In + A+ A2 + . . . on a sufficiently small neighborhood of On, from
the well-known Hamilton-Cayley Theorem, it follows that Cay(A) has the polynomial
form

Cay(A) = b0(A)In + b1(A)A+ · · ·+ bn−1(A)An−1,

where the coefficients b0, b1, . . . , bn−1 depend on the matrix A and are uniquely de-
fined. By analogy with the case of the exponential map (see [1] and [2]), they are
called Rodrigues coefficients of A with respect to the Cayley transform.

Using the main idea in the articles [3] (see also [4]), in this paper we present
a method to derive the Rodrigues coefficients for the Cayley transform of the group
SO(n). The case of the Euclidean group SE(n) is also discussed.

This paper was presented at the 10th Joint Conference on Mathematics and Computer Science

(MaCS 2014), May 21-25, 2014, Cluj-Napoca, Romania.
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2. Cayley transform of the group SO(n)

The matrices of the SO(n) group describe the rotations as movements in the
space Rn. If the matrix A belongs to the Lie Algebra so(n) of the Lie group SO(n),
then the matrix In −A is invertible.

Indeed, the eigenvalues λ1, ..., λn of the matrix A are 0 or purely imaginary, so
eigenvalues of the matrix In−A are 1−λ1, ..., 1−λn. They are clearly different from
0, therefore we have det(In −A) = (1− λ1)...(1− λn) 6= 0, so In −A is invertible.

The map Cay : so(n)→ SO(n), defined by

Cay(A) = (In + A)(In −A)−1

is called the Cayley transform of the group SO(n). Let show that this map is well
defined. Let be Cay(A) = R. We have

RtR = (In +A)(In −A)−1t[(In +A)(In −A)−1]

= (In +A)(In −A)−1t[(In −A)−1]t(In +A)

= (In +A)(In −A)−1(In −t A)−1(In +t A)

= (In +A)(In −A)−1(In +A)−1(In −A) = In,

because matrices and their inverses commute. Therefore R ∈ SO(n). The map Cay is
obviously continuous and we have Cay(On) = In ∈ SO(n), hence necessarily we have
R ∈ SO(n).

Denote by
∑

the set of the group SO(n) containing the matrices with eigenvalue
−1. Clearly, we have R ∈

∑
if and only if the matrix In +R is singular.

Theorem 2.1. The map Cay : so(n) → SO(n) \
∑

is bijective and its inverse is
Cay−1 : SO(n) \

∑
→ so(n), where Cay−1(R) = (R+ In)−1(R− In).

Proof. If R ∈ SO(n) \
∑

then, the relation Cay(A) = R is equivalent to

R = (In +A)(In −A)−1 = (2In − (In −A))(In −A)−1 = 2(In −A)−1 − In.

Because R ∈ SO(n)\
∑

, it follows that the matrix R+In is invertible and from above
relation we obtain that its inverse is (R + A)−1 = 1

2 (In − A). Using this relation we
have

(R+ In)−1(R− In) =
1

2
(In −A)(2(In −A)−1 − 2In) = In − In +A = A,

so Cay−1(R) = (R+ In)−1(R− In).

In addition, a simple computation shows that if the matrix R is orthogonal, then
the matrix A = (R+ In)−1(R− In) is antisymmetric. Indeed, we have

tA = (tR− In)(tR+ In)−1 = (R−1 − In)(R−1 + In)−1

= (In −R)R−1R(In +R)−1 = −(R+ In)−1(R− In) = −A,

because the matrices R− In and (R+ In)−1 commute. �
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3. Rodrigues type formulas for Cayley transform

Because the inverse of the matrix In −A can be written in the form

(In −A)−1 = In +A+A2 + ...

for a sufficiently small neighborhood of On, from Hamilton-Cayley theorem, it follows
that the Cayley transform of A can be written in the polynomial form

Cay(A) = b0(A)In + b1(A)A+ ...+ bn−1(A)An−1 (3.1)

where the coefficients b0, ..., bn−1 are uniquely determined and depend on the matrix
A. We will call these numbers, by analogy with the situation of the exponential map,
Rodrigues coefficients of A with respect to the application Cay.

As in the case of the exponential map, an important property of the Rodrigues
coefficients is the invariance with respect to equivalent matrices, i.e. for any invertible
matrix U , the following relations hold

bk(UAU−1) = bk(A), k = 0, ..., n− 1.

This property is obtained from the uniqueness of the Rodrigues coefficients and
from the following property of the Cayley transform

UCay(A)U−1 = Cay(UAU−1).

To justify the last relation just observe that we have successively

UCay(A)U−1 = U(In +A)(In −A)−1U−1 = U(In +A)U−1U(+In −A)−1U−1

= (In + UAU−1)(U−1)−1(In −A)−1U−1(In + UAU−1)(U(In −A)U−1)−1

= (In + UAU−1)(In + UAU−1)−1 = Cay(UAU−1).

Theorem 3.1. Let λ1, ..., λn be the eigenvalues of the matrix A ∈ so(n).
1) Rodrigues coefficients of A relative to the application Cay are solutions of the

system
n−1∑
k=0

Sk+jbk =

n∑
s=1

λjs
1 + λs
1− λs

, j = 0, ..., n− 1, (3.2)

where Sj = λj1 + ...+ λjn.
2) If the eigenvalues λ1, ..., λn of the matrix A are pairwise distinct, then the Ro-

drigues coefficients b0, ..., bn−1 are perfectly determined by this system and are rational
functions of λ1, ..., λn.

Proof. 1) By multiplying the relation (3.1) by the power Aj , j = 0, ..., n−1, we obtain
the matrix relations

AjCay(A) =

n−1∑
k=0

bkA
k+j , j = 0, ..., n− 1.

Now, considering the trace in both sides of the above relations, it follows

n−1∑
k=0

tr(Ak+j)bk = tr(AjCay(A)), j = 0, ..., n− 1. (3.3)
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The matrix Ak+j has the eigenvalues λk+j1 , ..., λk+jn , and the matrix AjCay(A)

has the eigenvalues λj1
1+λ1

1−λ1
, ..., λjn

1+λn

1−λn
and the system (3.3) is equivalent to the system

(3.2).
2) For the second statement, observe that the determinant of the system (3.2)

can be written as

Dn = det


S0 S1 . . . Sn−1

S1 S2 . . . Sn
. . . . . . . . . . . .
Sn−1 Sn . . . S2n−1,


where Sl = Sl(λ1, . . . , λn) = λl1 + . . .+ λln, l = 0, . . . , 2n− 1.

It is clear that

Dn = det


1 . . . 1
λ1 . . . λn
. . . . . . . . .
λn−1
1 . . . λn−1

n

 · det


1 λ1 . . . λn−1

1

1 λ2 . . . λn−1
2

. . . . . . . . . . . .
1 λn . . . λn−1

n


= V 2

n (λ1, ..., λn) =
∏

1≤i<j≤n

(λi − λj)2,

where Vn = Vn (λ1, . . . , λn) is the Vandermonde determinant of order n. According
to the well-known formulas giving the solution b0, . . . , bn−1 to the system (3.2), the
conclusion follows. �

We will continue to illustrate the particular cases n = 2 and n = 3. If A = On,
then Cay(A) = In and so b0(On) = 1, b1(On) = ... = bn−1(On) = 0.

In the case n = 2, consider the antisymmetric matrix A 6= O2, where

A =

(
0 a
−a 0

)
, a ∈ R∗,

with eigenvalues λ1 = ai, λ2 = −ai. System (3.2) becomes in this case{
2b0 = 1+ai

1−ai + 1−ai
1+ai

−2a2b1 = ai 1+ai1−ai − ai
1−ai
1+ai

and we obtain

b0 =
1− a2

1 + a2
, b1 =

1

1 + a2
.

Thus, the Rodrigues type formula for the Cayley transform is

Cay(A) =
1− a2

1 + a2
I2 +

2

1 + a2
A. (3.4)

For n = 3 any real antisymmetric matrix is of the form

A =

 0 −c b
c 0 −a
−b a 0

 ,
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with the characteristic polynomial pA(t) = t3 + θ2t, where θ =
√
a2 + b2 + c2. The

eigenvalues of the matrix A are λ1 = θi, λ2 = −θi, λ3 = 0. We have A = O3 if and
only if θ = 0, so it is enough to consider only the situation in which θ 6= 0. The system
3.2 becomes 

3b0 − 2θ2b2 = 1+θi
1−θi + 1−θi

1+θi + 1

−2θ2b1 = θi 1+θi1−θi − θi
1−θi
1+θi

−2θ2b0 + θ4b2 = −θ2
(

1+θi
1−θi + 1−θi

1+θi

)
with the solution

b0 = 1, b1 =
2

1 + θ2
, b2 =

2

1 + θ2
.

It follows the Rodrigues type formula for the Cayley transform of group SO(3)

Cay(A) = I3 +
2

1 + θ2
A+

2

1 + θ2
A2. (3.5)

Formula (3.5) offers the possibility to obtain another formula for the inverse of
Cayley transform. Let be R ∈ SO(3) such that

R = I3 +
2

1 + θ2
A+

2

1 + θ2
A2,

where A is an antisymmetric matrix. Considering the matrix transpose in both sides
of the above relation and taking into account that tA = −A, we obtain

R−t R =
4

1 + θ2
A. (3.6)

On the other hand, we have

tr(R) = 3− 4θ2

1 + θ2
= −1 +

4

1 + θ2
,

and by replacing in the relation (3.6), we get the formula

Cay−1(R) =
1

1 + tr(R)
(R−t R). (3.7)

Formula (3.7) makes sense for rotations R ∈ SO(3) for which 1+ tr(R) 6= 0. If R
is a rotation of angle α, then we have tr(R) = 1 + 2 cosα, so application Cay−1 is not
defined for the rotations of angle α = ±π. Because in the domain where is defined,
the application Cay is bijective, it follows that the antisymmetric matrices from so(3)
can be used as coordinates for rotations. Considering the Lie algebra isomorphism ”̂ ”
between (R3,×) and (so(3), [·, ·]), where ”× ” denote the vector product, defined by
v ∈ R3 → v̂ ∈ so(3), where

v =

x1x2
x3


and

v̂ =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 ,
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by composing the applications

R3→̂so(3)
Cay−−→ SO(3)

we get a vectorial parameterization of rotations from SO(3).

4. The Cayley transform for Euclidean group SE(n)

In this subparagraph we will define a Cayley type transformation for the special
Euclidean group SE(n). By analogy with the special orthogonal group SO(n), we
define the application Cayn+1 : se(n)→ SE(n), where

Cayn+1(S) = (In+1 + S)(In+1 − S)−1. (4.1)

We will call this application Cayley transform of the group SE(n). First we show that
it is well defined. Let be S ∈ se(n), a matrix defined in blocks

S =

(
A u
0 0

)
,

where A ∈ so(n) and u ∈ Rn. A simple computation shows that we have the formula

(In+1 + S)(In+1 − S)−1 =

(
R (R+ In)u
0 1

)
,

where R = (In +A)(In −A)−1 = Cay(A) ∈ SO(n), that is the desired formula.
The connection between the transform Cay : so(n) → SO(n) and Cayn+1 :

se(n)→ SE(n) is given by the formula

Cayn+1(S) =

(
Cay(A) (R+ In)u

0 1

)
.

As for the classical transform Cay : so(n) → SO(n) we can get effective Rodrigues
type formulas for transform Cayn+1 : se(n) → SE(n), for small values of n. Using
the observation from section 5.1 in the paper of R.-A. Rohan [5], we obtain that
for a matrix S ∈ se(n) defined in blocks as above, its characteristic polynomial pS
satisfy the relation pS(t) = tpA(t). The Rodrigues formula for the transform Cayn+1 :
se(n)→ SE(n) is of the form

Cayn+1(S) = c0In+1 + c1S + ...+ cnS
n,

where the coefficients c0, c1, ..., cn depend on the matrix S.
For n = 2, consider the antisymmetric matrix A 6= O2, where

A =

(
0 a
−a 0

)
, a ∈ R∗.

Using the above observation, it follows that the matrix S ∈ se(2) has eigenvalues
λ1 = ai, λ2 = −ai, λ3 = 0, and the corresponding Rodrigues formula has the form

Cay3(S) = c0I3 + c1S + c2S
2.
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We have a result analogous to that of Theorem 3.1, which is reduced to the system
S0c0 + S1c1 + S2c2 = 1 + 1+λ1

1−λ1
+ 1+λ2

1−λ2

S1c0 + S2c1 + S3c2 = λ1
1+λ1

1−λ1
+ λ2

1+λ2

1−λ2

S2c0 + S3c1 + S4c2 = λ21
1+λ1

1−λ1
+ λ22

1+λ2

1−λ2

where in our case we have S0 = 3, S1 = 0, S2 = −2a2, S3 = 0, S4 = 2a2. This system
is equivalent to 

3c0 − 2a2c2 = 1 + 2(1−a2)
1+a2

−2a2c1 = − 4a2

1+a2

−2a2c0 + 2a4c2 = −2a2 1−a2
1+a2

with solution

c0 = 1, c1 =
1

1 + a2
, c2 =

1

1 + a2
.

So Rodrigues formula for transformation Cay3 is

Cay3(S) = I3 +
1

1 + a2
S +

1

1 + a2
S2. (4.2)

For n = 3 we consider an antisymmetric matrix of the form

A =

 0 −c b
c 0 −a
−b a 0

 ,

with the characteristic polynomial pA(t) = t3 + θ2t, where θ =
√
a2 + b2 + c2. The

matrix S ∈ se(3) has the characteristic polynomial pS(t) = tpA(t) = t4 + θ2t2, and
the eigenvalues of its are λ1 = θi, λ2 = −θi, λ3 = 0, λ4 = 0. Rodrigues formula has
the form

Cay4(S) = c0I4 + c1S + c2S
2 + c3S

3.

After a similar computation, we obtain the formula

Cay3(S) = I3 + 2S +
2

1 + θ2
S2 +

2

1 + θ2
S3. (4.3)

As for Cayley transform of the group SO(n), denote by
∑
n+1 the set of matrices

from SE(n) that has −1 as eigenvalue. Clearly we have M ∈ SE(n) if and only if the
matrix In+1 +M is singular. With a similar proof as in Theorem 3.1, we get

Theorem 4.1. The map Cayn+1 : se(n) → SE(n) \
∑
n+1 is bijective and its inverse

is given by

Cay−1
n+1(M) =

(
Cay−1(M) (R+ In)−1t

0 0

)
,

where the matrix M is defined in blocks by

S =

(
R t
0 1

)
.
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Quantitative uniform approximation by
generalized discrete singular operators

George A. Anastassiou and Merve Kester

Abstract. Here we study the approximation properties with rates of generalized
discrete versions of Picard, Gauss-Weierstrass, and Poisson-Cauchy singular op-
erators. We treat both the unitary and non-unitary cases of the operators above.
We establish quantitatively the pointwise and uniform convergences of these oper-
ators to the unit operator by involving the uniform higher modulus of smoothness
of a uniformly continuous function.

Mathematics Subject Classification (2010): 26A15, 26D15, 41A17, 41A25.

Keywords: Discrete singular operator, modulus of smoothness, uniform conver-
gence.

1. Introduction

This article is motivated mainly by [4], where J. Favard in 1944 introduced the
discrete version of Gauss-Weierstrass operator

(Fnf) (x) =
1√
πn

∞∑
ν=−∞

f
(ν
n

)
exp

(
−n
(ν
n
− x
)2)

, (1.1)

n ∈ N, which has the property that (Fnf) (x) converges to f(x) pointwise for each
x ∈ R, and uniformly on any compact subinterval of R, for each continuous function

f (f ∈ C(R)) that fulfills |f(t)| ≤ AeBt2 , t ∈ R, where A, B are positive constants.
The well-known Gauss-Weierstrass singular convolution integral operators is

(Wnf) (x) =

√
n

π

∞∫
−∞

f(u) exp
(
−n (u− x)

2
)
du. (1.2)

We are also motivated by [1], [2], and [3] where the authors studied extensively the
approximation properties of particular generalized singular integral operators such as
Picard, Gauss-Weierstrass, and Poisson-Cauchy as well as the general cases of singular
integral operators.These operators are not necessarily positive linear operators.
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In this article, we define the discrete versions of the operators mentioned above
and we study quantitatively their uniform approximation properties regarding con-
vergence to the unit. We examine thoroughly the unitary and non-unitary cases and
their interconnections.

2. Background

In [3] p.271-279, the authors studied smooth general singular integral operators
Θr,ξ(f, x) defined as follows. Let ξ > 0 and let µξ be Borel probability measures on
R. For r ∈ N and n ∈ Z+ they defined

αj =


(−1)r−j

(
r
j

)
j−n, j = 1, ..., r,

1−
r∑
i=1

(−1)r−i
(
r
i

)
i−n, j = 0

(2.1)

that is
r∑
j=0

αj = 1. Let f : R→ R be Borel measurable, they defined

Θr,ξ(f, x) :=

∫ ∞
−∞

 r∑
j=0

αjf(x+ jt)

 dµξ(t) (2.2)

for x ∈ R.
The operators Θr,ξ are not necessarily positive linear operators. Indeed we have:

Let r = 2, n = 3. Then α0 = 23
8 , α1 = −2, α2 = 1

8 . Consider f(t) = t2 ≥ 0 and
x = 0. Then

Θ2,ξ

(
t2; 0

)
=

∞∫
−∞

 2∑
j=0

αjj
2t2

 dµξ(t)

= −3

2

 ∞∫
−∞

t2dµξ(t)

 ≤ 0,

given that

∞∫
−∞

t2dµξ(t)<∞.

Authors assumed that Θr,ξ(f, x) ∈ R for all x ∈ R.
In [3] p.272, the rth modulus of smoothness finite given as

ωr(f
(n), h) := sup

|t|≤h
‖∆r

tf
(n)(x)‖∞,x <∞, h > 0, (2.3)

where‖.‖∞,x is the supremum norm with respect to x, f ∈ Cn(R), n ∈ Z+, and

∆r
tf

(n)(x) :=

r∑
j=0

(−1)r−j
(
r

j

)
f (n)(x+ jt). (2.4)
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They introduced also

δk :=

r∑
j=1

αjj
k, k = 1, . . . , n ∈ N, (2.5)

and the even function

Gn(t) :=

∫ |t|
0

(|t| − w)n−1

(n− 1)!
ωr(f

(n), w)dw, n ∈ N (2.6)

with

G0(t) := ωr(f, |t|), t ∈ R. (2.7)

In [3] p.273, they proved

Theorem 2.1. The integrals ck,ξ :=
∫∞
−∞ tkdµξ(t), k = 1, . . . , n, are assumed to be

finite. Then ∣∣∣∣∣Θr,ξ(f ;x)− f(x)−
n∑
k=1

f (k)(x)

k!
δkck,ξ

∣∣∣∣∣ ≤
∫ ∞
−∞

Gn(t)dµξ(t). (2.8)

Moreover, they showed ([3], p.274)

Corollary 2.2. Suppose ωr (f , ξ) <∞, ξ > 0 . Then it holds for n = 0 that

|Θr,ξ(f ;x)− f(x)| ≤
∫ ∞
−∞

ωr (f, |t|) dµξ (t) . (2.9)

Furthermore, by using the inequalities

Gn(t) ≤ |t|
n

n!
ωr(f

(n), |t|) (2.10)

and

ωr(f, λt) ≤ (λ+ 1)
r
ωr(f, t), λ, t > 0, (2.11)

they obtained

K1 :=

∥∥∥∥∥Θr,ξ(f ;x)− f(x)−
n∑
k=1

f (k)(x)

k!
δkck,ξ

∥∥∥∥∥
∞,x

(2.12)

≤ ωr(f
(n), ξ)

n!

∫ ∞
−∞
|t|n

(
1 +
|t|
ξ

)r
dµξ(t)

and

K2 := ‖Θr,ξ(f ;x)− f(x)‖∞ (2.13)

≤ ωr(f, ξ)
∫ ∞
−∞

(
1 +
|t|
ξ

)r
dµξ(t).

Additionally, they demonstrated ([3], p.279)
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Theorem 2.3. Let f ∈ Cn(R), n ∈ Z+. Set ck,ξ :=
∫∞
−∞ tkdµξ(t), k = 1, . . . , n. Suppose

also ωr(f
(n), h) <∞,∀h > 0. It is also assumed that∫ ∞

−∞
|t|n

(
1 +
|t|
ξ

)r
dµξ(t) <∞. (2.14)

Then ∥∥∥∥∥Θr,ξ(f ;x)− f(x)−
n∑
k=1

f (k)(x)

k!
δkck,ξ

∥∥∥∥∥
∞,x

(2.15)

≤ ωr(f
(n), ξ)

n!

∫ ∞
−∞
|t|n

(
1 +
|t|
ξ

)r
dµξ(t).

When n = 0, the sum in L.H.S (2.15) collapses.

3. Main Results

Here we study important special cases of Θr,ξ operators for discrete probability
measures µξ.

Let f ∈ Cn(R), n ∈ Z+, 0 < ξ ≤ 1, x ∈ R.

i) When

µξ(ν) =
e
−|ν|
ξ

∞∑
ν=−∞

e
−|ν|
ξ

, (3.1)

we define the generalized discrete Picard operators as

P ∗r,ξ (f ;x) :=

∞∑
ν=−∞

(
r∑
j=0

αjf(x+ jν)

)
e
−|ν|
ξ

∞∑
ν=−∞

e
−|ν|
ξ

. (3.2)

ii) When

µξ(ν) =
e
−ν2

ξ

∞∑
ν=−∞

e
−ν2
ξ

, (3.3)

we define the generalized discrete Gauss-Weierstrass operators as

W ∗r,ξ (f ;x) :=

∞∑
ν=−∞

(
r∑
j=0

αjf(x+ jν)

)
e
−ν2

ξ

∞∑
ν=−∞

e
−ν2

ξ

. (3.4)
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iii) Let α ∈ N, and β > 1
α . When

µξ(ν) =

(
ν2α + ξ2α

)−β
∞∑

ν=−∞
(ν2α + ξ2α)

−β
, (3.5)

we define the generalized discrete Poisson-Cauchy operators as

Θ∗r,ξ (f ;x) :=

∞∑
ν=−∞

(
r∑
j=0

αjf(x+ jν)

)(
ν2α + ξ2α

)−β
∞∑

ν=−∞
(ν2α + ξ2α)

−β
. (3.6)

Observe that for c constant we have

P ∗r,ξ (c;x) = W ∗r,ξ (c;x) = Θ∗r,ξ (c;x) = c. (3.7)

We assume that the operators P ∗r,ξ (f ;x), W ∗r,ξ (f ;x), and Θ∗r,ξ (f ;x) ∈ R, for x ∈ R.
This is the case when ‖f‖∞,R <∞.

iv) Let f ∈ Cu(R) (uniformly continuous functions) or f ∈ Cb(R) (continuous
and bounded functions). When

µξ(ν) := µξ,P (ν) :=
e
−|ν|
ξ

1 + 2ξe−
1
ξ

, (3.8)

we define the generalized discrete non-unitary Picard operators as

Pr,ξ (f ;x) :=

∞∑
ν=−∞

(
r∑
j=0

αjf(x+ jν)

)
e
−|ν|
ξ

1 + 2ξe−
1
ξ

. (3.9)

Here µξ,P (ν) has mass

mξ,P :=

∞∑
ν=−∞

e
−|ν|
ξ

1 + 2ξe−
1
ξ

. (3.10)

We observe that

µξ,P (ν)

mξ,P
=

e
−|ν|
ξ

∞∑
ν=−∞

e
−|ν|
ξ

, (3.11)

which is the probability measure (3.1) defining the operators P ∗r,ξ.

v) Let f ∈ Cu(R) or f ∈ Cb(R).When

µξ(ν) := µξ,W (ν) :=
e
−ν2

ξ

√
πξ
(

1− erf
(

1√
ξ

))
+ 1

, (3.12)
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with erf(x) = 2√
π

x∫
0

e−t
2

dt, erf(∞) = 1, we define the generalized discrete non-unitary

Gauss-Weierstrass operators as

Wr,ξ (f ;x) :=

∞∑
ν=−∞

(
r∑
j=0

αjf(x+ jν)

)
e
−ν2

ξ

√
πξ
(

1− erf
(

1√
ξ

))
+ 1

. (3.13)

Here µξ,W (ν) has mass

mξ,W :=

∞∑
ν=−∞

e
−ν2

ξ

√
πξ
(

1− erf
(

1√
ξ

))
+ 1

. (3.14)

We observe that

µξ,W (ν)

mξ,W
=

e
−ν2

ξ

∞∑
ν=−∞

e
−ν2

ξ

, (3.15)

which is the probability measure (3.3) defining the operators W ∗r,ξ.

Clearly, here Pr,ξ (f ;x), Wr,ξ (f ;x) ∈ R, for x ∈ R.

We present our first result.

Proposition 3.1. Let n ∈ N. Then, there exists K1 > 0 such that

∞∑
ν=−∞

|ν|n
(

1 + |ν|
ξ

)r
e
−|ν|
ξ

∞∑
ν=−∞

e
−|ν|
ξ

≤ K1 <∞ (3.16)

for all ξ ∈ (0, 1] .

Proof. We observe that

∞∑
ν=−∞

e
−|ν|
ξ > 1,

then

1
∞∑

ν=−∞
e
−|ν|
ξ

< 1.
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Therefore, we obtain

∞∑
ν=−∞

|ν|n
(

1 + |ν|
ξ

)r
e
−|ν|
ξ

∞∑
ν=−∞

e
−|ν|
ξ

(3.17)

<

∞∑
ν=−∞

|ν|n
(

1 +
|ν|
ξ

)r
e
−|ν|
ξ

:=R1.

We notice that

R1 = 2

∞∑
ν=1

νn
(

1 +
ν

ξ

)r
e
−ν
ξ (3.18)

= 2

∞∑
ν=1

(
νne

−ν
2ξ

)((
1 +

ν

ξ

)r
e
−ν
2ξ

)
.

Since we have ν
ξ ≥ 1 for ν ≥ 1, we get(

1 +
ν

ξ

)r
e
−ν
2ξ ≤ 2rνr

ξre
ν
2ξ

=
2rzr

e
z
2

(3.19)

where z := ν
ξ . Additionally, since

e
z
2 =

∞∑
k=0

(
z
2

)k
k!
≥ zr

2rr!
, (3.20)

we obtain

zr

e
z
2
≤ 2rr!. (3.21)

Hence, by (3.18) , (3.19) , and (3.21) , we have

R1 ≤ 22r+1r!

∞∑
ν=1

νne
−ν
2ξ (3.22)

≤ 22r+1r!

∞∑
ν=1

νne
−ν
2 .

Now, we define the function f(ν) = νne
−ν
2 for ν ≥ 1. Then, we have

f
′
(ν) = νn−1e

−ν
2

(
n− ν

2

)
.
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Thus, f(ν) is positive, continuous, and decreasing for ν > 2n. Hence, by shifted triple
inequality similar to [5], we get

∞∑
ν=1

νne
−ν
2 (3.23)

=

2n∑
ν=1

νne
−ν
2 +

∞∑
ν=2n+1

νne
−ν
2

≤
2n∑
ν=1

νne
−ν
2 +

∞∫
2n+1

νne
−ν
2 dν + f(2n+ 1)

≤
2n∑
ν=1

νne
−ν
2 +

∞∫
0

νne
−ν
2 dν + (2n+ 1)ne−

(2n+1)
2

= λn + (2n+ 1)ne−
(2n+1)

2 +

∞∫
0

νne
−ν
2 dν,

where

λn :=

2n∑
ν=1

νne
−ν
2 <∞ (3.24)

for all ξ ∈ (0, 1] . Furthermore, by the integral calculation in [3], p.86, we obtain
∞∫
0

νne
−ν
2 dν = n!2n+1. (3.25)

Thus, by (3.22) , (3.23) , and (3.25) , we get

R1 ≤ 22r+1r!
(
λn + (2n+ 1)ne−

(2n+1)
2 + n!2n+1

)
(3.26)

< ∞

for all ξ ∈ (0, 1] . Let K1 := 22r+1r!
(
λn + (2n+ 1)ne−

(2n+1)
2 + n!2n+1

)
. Then, by

(3.17) and (3.26) , the proof is done. �

Theorem 3.2. The sums

c∗k,ξ :=

∞∑
ν=−∞

νke
−|ν|
ξ

∞∑
ν=−∞

e
−|ν|
ξ

, k = 1, ..., n, (3.27)

are finite for all ξ ∈ (0, 1]. Moreover,

∣∣∣∣∣P ∗r,ξ (f ;x)− f(x)−
n∑
k=1

f (k)(x)

k!
δkc
∗
k,ξ

∣∣∣∣∣ ≤
∞∑

ν=−∞
Gn(ν)e

−|ν|
ξ

∞∑
ν=−∞

e
−|ν|
ξ

. (3.28)
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Clearly the operators P ∗r,ξ are not necessarily positive operators.

Proof. We observe that

∞∑
ν=−∞

νke
−|ν|
ξ =

 0, k is odd

2
∞∑
ν=1

νke
−ν
ξ , k is even

. (3.29)

Assume that k is even. Then, since

|ν|k ≤ |ν|n

and

1 +
|ν|
ξ
> 1,

we obtain
∞∑

ν=−∞
νke

−|ν|
ξ (3.30)

=

∞∑
ν=−∞

|ν|k e
−|ν|
ξ

≤
∞∑

ν=−∞
|ν|n

(
1 +
|ν|
ξ

)r
e
−|ν|
ξ .

Thus, by (3.30) and Proposition 3.1, we have

c∗k,ξ ≤

∞∑
ν=−∞

|ν|n
(

1 + |ν|
ξ

)r
e
−|ν|
ξ

∞∑
ν=−∞

e
−|ν|
ξ

<∞

for all ξ ∈ (0, 1] . Therefore, by Theorem 2.1, we derive (3.28). �

For n = 0, we have the following result

Corollary 3.3. Let f ∈ Cu(R).Then

∣∣P ∗r,ξ (f ;x)− f(x)
∣∣ ≤

∞∑
ν=−∞

ωr(f, |ν|)e
−|ν|
ξ

∞∑
ν=−∞

e
−|ν|
ξ

. (3.31)

Proof. By Corollary 2.2. �

Remark 3.4. Inequalities (3.28) and (3.31) give us the uniform estimates

∥∥∥∥∥P ∗r,ξ (f ;x)− f(x)−
n∑
k=1

f (k)(x)

k!
δkc
∗
k,ξ

∥∥∥∥∥
∞,x

≤

∞∑
ν=−∞

Gn(ν)e
−|ν|
ξ

∞∑
ν=−∞

e
−|ν|
ξ

(3.32)
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and

∥∥P ∗r,ξ (f ;x)− f(x)
∥∥
∞,x ≤

∞∑
ν=−∞

ωr(f, |ν|)e
−|ν|
ξ

∞∑
ν=−∞

e
−|ν|
ξ

(3.33)

for n = 0.

Remark 3.5. By (2.12) and (2.13), we obtain

K∗1 :=

∥∥∥∥∥P ∗r,ξ (f ;x)− f(x)−
n∑
k=1

f (k)(x)

k!
δkc
∗
k,ξ

∥∥∥∥∥
∞,x

(3.34)

≤ ωr(f
(n), ξ)

n!


∞∑

ν=−∞
|ν|n

(
1 + |ν|

ξ

)r
e
−|ν|
ξ

∞∑
ν=−∞

e
−|ν|
ξ

 ,

and

K∗2 :=
∥∥P ∗r,ξ (f ;x)− f(x)

∥∥
∞,x (3.35)

≤ ωr(f, ξ)


∞∑

ν=−∞

(
1 + |ν|

ξ

)r
e
−|ν|
ξ

∞∑
ν=−∞

e
−|ν|
ξ

 .

Hence, by Proposition 3.1, for f (n) ∈ Cu(R), we have K∗1 → 0 as ξ → 0+ and since

∞∑
ν=−∞

(
1 + |ν|

ξ

)r
e
−|ν|
ξ

∞∑
ν=−∞

e
−|ν|
ξ

≤

∞∑
ν=−∞

|ν|n
(

1 + |ν|
ξ

)r
e
−|ν|
ξ

∞∑
ν=−∞

e
−|ν|
ξ

,

by Proposition 3.1, for f ∈ Cu(R), we get K∗2 → 0 as ξ → 0+.

Based on Remark 3.5, we have

Theorem 3.6. Let f ∈ Cn(R) with f (n) ∈ Cu(R), n ∈ N. Then∥∥∥∥∥P ∗r,ξ (f ;x)− f(x)−
n∑
k=1

f (k)(x)

k!
δkc
∗
k,ξ

∥∥∥∥∥
∞,x

(3.36)

≤ ωr(f
(n), ξ)

n!


∞∑

ν=−∞
|ν|n

(
1 + |ν|

ξ

)r
e
−|ν|
ξ

∞∑
ν=−∞

e
−|ν|
ξ

 .

Proof. By Proposition 3.1 and Remark 3.5. �

Next, we present our results for generalized discrete Gauss-Weierstrass operators.
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Proposition 3.7. Let n ∈ N. Then, there exists K2 > 0 such that

∞∑
ν=−∞

|ν|n
(

1 + |ν|
ξ

)r
e
−ν2

ξ

∞∑
ν=−∞

e
−ν2

ξ

≤ K2 <∞ (3.37)

for all ξ ∈ (0, 1] .

Proof. We observe that
∞∑

ν=−∞
e
−ν2

ξ > 1.

Thus
1

∞∑
ν=−∞

e
−ν2

ξ

< 1.

Therefore, we have

∞∑
ν=−∞

|ν|n
(

1 + |ν|
ξ

)r
e
−ν2

ξ

∞∑
ν=−∞

e
−ν2

ξ

<

∞∑
ν=−∞

|ν|n
(

1 +
|ν|
ξ

)r
e
−ν2

ξ . (3.38)

On the other hand, since
ν2

ξ
≥ |ν|

ξ
,

we have

e
−ν2

ξ ≤ e
−|ν|
ξ . (3.39)

Therefore, by (3.26) , (3.38) , and (3.39) , we have

∞∑
ν=−∞

|ν|n
(

1 + |ν|
ξ

)r
e
−ν2

ξ

∞∑
ν=−∞

e
−ν2

ξ

(3.40)

<

∞∑
ν=−∞

|ν|n
(

1 +
|ν|
ξ

)r
e
−|ν|
ξ

= R1 <∞

for all ξ ∈ (0, 1] . �

Theorem 3.8. The sums

p∗k,ξ :=

∞∑
ν=−∞

νke
−ν2

ξ

∞∑
ν=−∞

e
−ν2

ξ

, k = 1, ..., n, (3.41)
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are finite. Furthermore,

∣∣∣∣∣W ∗r,ξ (f ;x)− f(x)−
n∑
k=1

f (k)(x)

k!
δkp
∗
k,ξ

∣∣∣∣∣ ≤
∞∑

ν=−∞
Gn(ν)e

−ν2

ξ

∞∑
ν=−∞

e
−ν2

ξ

. (3.42)

Clearly the operators W ∗r,ξ are not necessarily positive operators.

Proof. We observe that

∞∑
ν=−∞

νke
−ν2

ξ =


0, k is odd

2
∞∑
ν=1

νke
−ν2

ξ , k is even
. (3.43)

Assume that k is even. Then, since

|ν|k ≤ |ν|n

and

1 +
|ν|
ξ
> 1,

we obtain
∞∑

ν=−∞
νke

−ν2

ξ (3.44)

=

∞∑
ν=−∞

|ν|k e
−ν2

ξ

≤
∞∑

ν=−∞
|ν|n

(
1 +
|ν|
ξ

)r
e
−ν2

ξ .

Thus, by (3.44) and Proposition 3.7, we have

p∗k,ξ ≤

∞∑
ν=−∞

|ν|n
(

1 + |ν|
ξ

)r
e
−ν2

ξ

∞∑
ν=−∞

e
−ν2

ξ

<∞

for all ξ ∈ (0, 1] . Therefore, by Theorem 2.1, we derive (3.42). �

For n = 0, we have the following result.

Corollary 3.9. Suppose f ∈ Cu(R). Then

∣∣W ∗r,ξ (f ;x)− f(x)
∣∣ ≤

∞∑
ν=−∞

ωr(f, |ν|)e
−ν2

ξ

∞∑
ν=−∞

e
−ν2

ξ

. (3.45)

Proof. By Corollary 2.2. �
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Remark 3.10. Inequalities (3.42) and (3.45) give us the uniform estimates

∥∥∥∥∥W ∗r,ξ (f ;x)− f(x)−
n∑
k=1

f (k)(x)

k!
δkp
∗
k,ξ

∥∥∥∥∥
∞,x

≤

∞∑
ν=−∞

Gn(ν)e
−ν2

ξ

∞∑
ν=−∞

e
−ν2

ξ

(3.46)

and

∥∥W ∗r,ξ (f ;x)− f(x)
∥∥
∞,x ≤

∞∑
ν=−∞

ωr(f, |ν|)e
−ν2

ξ

∞∑
ν=−∞

e
−ν2

ξ

. (3.47)

Remark 3.11. By (2.12) and (2.13), we obtain

M∗1 :=

∥∥∥∥∥W ∗r,ξ (f ;x)− f(x)−
n∑
k=1

f (k)(x)

k!
δkp
∗
k,ξ

∥∥∥∥∥
∞,x

(3.48)

≤ ωr(f
(n), ξ)

n!


∞∑

ν=−∞
|ν|n

(
1 + |ν|

ξ

)r
e
−ν2

ξ

∞∑
ν=−∞

e
−ν2

ξ

 ,

and

M∗2 :=
∥∥W ∗r,ξ (f ;x)− f(x)

∥∥
∞,x (3.49)

≤ ωr(f, ξ)


∞∑

ν=−∞

(
1 + |ν|

ξ

)r
e
−ν2

ξ

∞∑
ν=−∞

e
−ν2

ξ

 .

Hence, by Proposition 3.7, for f (n) ∈ Cu(R), we have M∗1 → 0 as ξ → 0+ and since

∞∑
ν=−∞

(
1 + |ν|

ξ

)r
e
−ν2

ξ

∞∑
ν=−∞

e
−ν2

ξ

≤

∞∑
ν=−∞

|ν|n
(

1 + |ν|
ξ

)r
e
−ν2

ξ

∞∑
ν=−∞

e
−ν2

ξ

,

by Proposition 3.7, for f ∈ Cu(R), we get M∗2 → 0 as ξ → 0+.

By previous Remark 3.11, we have
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Theorem 3.12. Let f ∈ Cn(R) with f (n) ∈ Cu(R), n ∈ N. Then∥∥∥∥∥W ∗r,ξ (f ;x)− f(x)−
n∑
k=1

f (k)(x)

k!
δkp
∗
k,ξ

∥∥∥∥∥
∞,x

(3.50)

≤ ωr(f
(n), ξ)

n!


∞∑

ν=−∞
|ν|n

(
1 + |ν|

ξ

)r
e
−ν2

ξ

∞∑
ν=−∞

e
−ν2

ξ

 .

Proof. By Proposition 3.7 and Remark 3.11. �

Now, we present our results for generalized discrete Poisson-Cauchy operators.

Proposition 3.13. Let n ∈ N , β > n+r+1
2α , and α ∈ N. Then, there exists K3 > 0 such

that
∞∑

ν=−∞
|ν|n

(
1 + |ν|

ξ

)r (
ν2α + ξ2α

)−β
∞∑

ν=−∞
(ν2α + ξ2α)

−β
≤ K3 <∞ (3.51)

for all ξ ∈ (0, 1] .

Proof. We have

∞∑
ν=−∞

(
ν2α + ξ2α

)−β
(3.52)

= ξ−2αβ + 2

∞∑
ν=1

(
ν2α + ξ2α

)−β
≥ ξ−2αβ .

Therefore
1

∞∑
ν=−∞

(ν2α + ξ2α)
−β
≤ ξ2αβ . (3.53)

Hence, we get

∞∑
ν=−∞

|ν|n
(

1 + |ν|
ξ

)r (
ν2α + ξ2α

)−β
∞∑

ν=−∞
(ν2α + ξ2α)

−β
(3.54)

≤ ξ2αβ

[ ∞∑
ν=−∞

|ν|n
(

1 +
|ν|
ξ

)r (
ν2α + ξ2α

)−β]

= 2

∞∑
ν=1

νn
(
ξ

2αβ
r + νξ

2αβ
r −1

)r (
ν2α + ξ2α

)−β
.
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We notice that (
ν2α + ξ2α

)−β ≤ ν−2αβ . (3.55)

Thus, by (3.54) and (3.55) , we obtain

∞∑
ν=−∞

|ν|n
(

1 + |ν|
ξ

)r (
ν2α + ξ2α

)−β
∞∑

ν=−∞
(ν2α + ξ2α)

−β
(3.56)

≤ 2

∞∑
ν=1

νn−2αβ
(
ξ

2αβ
r + νξ

2αβ
r −1

)r
≤ 2

∞∑
ν=1

νn−2αβ (1 + ν)
r

≤ 2

∞∑
ν=1

2rνr

ν2αβ−n
≤ 2r+1

∞∑
ν=1

(
1

ν

)2αβ−n−r

<∞

for all ξ ∈ (0, 1] . �

Theorem 3.14. The sums

q∗k,ξ :=

∞∑
ν=−∞

νk
(
ν2α + ξ2α

)−β
∞∑

ν=−∞
(ν2α + ξ2α)

−β
, k = 1, ..., n, (3.57)

are finite where β > n+r+1
2α and α ∈ N. Moreover,

∣∣∣∣∣Θ∗r,ξ (f ;x)− f(x)−
n∑
k=1

f (k)(x)

k!
δkq
∗
k,ξ

∣∣∣∣∣ ≤
∞∑

ν=−∞
Gn(ν)

(
ν2α + ξ2α

)−β
∞∑

ν=−∞
(ν2α + ξ2α)

−β
. (3.58)

Clearly the operators Θ∗r,ξ are not necessarily positive operators.

Proof. We observe that

∞∑
ν=−∞

νk
(
ν2α + ξ2α

)−β
=

 0, k is odd

2
∞∑
ν=1

νk
(
ν2α + ξ2α

)−β
, k is even

. (3.59)

Assume that k is even. Then, since

|ν|k ≤ |ν|n and 1 +
|ν|
ξ
> 1,

we obtain
∞∑

ν=−∞
νk
(
ν2α + ξ2α

)−β
=

∞∑
ν=−∞

|ν|k
(
ν2α + ξ2α

)−β
(3.60)

≤
∞∑

ν=−∞
|ν|n

(
1 +
|ν|
ξ

)r (
ν2α + ξ2α

)−β
.
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Thus, by (3.60) and Proposition 3.13, we have

q∗k,ξ ≤

∞∑
ν=−∞

|ν|n
(

1 + |ν|
ξ

)r (
ν2α + ξ2α

)−β
∞∑

ν=−∞
(ν2α + ξ2α)

−β
<∞

for all ξ ∈ (0, 1] . Therefore, by Theorem 2.1, we derive (3.58). �

For n = 0, we have following result.

Corollary 3.15. Suppose f ∈ Cu(R). Then

∣∣Θ∗r,ξ (f ;x)− f(x)
∣∣ ≤

∞∑
ν=−∞

ωr(f, |ν|)
(
ν2α + ξ2α

)−β
∞∑

ν=−∞
(ν2α + ξ2α)

−β
. (3.61)

Proof. By Corollary 2.2. �

Remark 3.16. Inequalities (3.58) and (3.61) give us the uniform estimates

∥∥∥∥∥Θ∗r,ξ (f ;x)− f(x)−
n∑
k=1

f (k)(x)

k!
δkq
∗
k,ξ

∥∥∥∥∥
∞,x

≤

∞∑
ν=−∞

Gn(ν)
(
ν2α + ξ2α

)−β
∞∑

ν=−∞
(ν2α + ξ2α)

−β
(3.62)

and

∥∥Θ∗r,ξ (f ;x)− f(x)
∥∥
∞,x ≤

∞∑
ν=−∞

ωr(f, |ν|)
(
ν2α + ξ2α

)−β
∞∑

ν=−∞
(ν2α + ξ2α)

−β
. (3.63)

Remark 3.17. By (2.12) and (2.13), we obtain

F ∗1 :=

∥∥∥∥∥Θ∗r,ξ (f ;x)− f(x)−
n∑
k=1

f (k)(x)

k!
δkq
∗
k,ξ

∥∥∥∥∥
∞,x

(3.64)

≤ ωr(f
(n), ξ)

n!


∞∑

ν=−∞
|ν|n

(
1 + |ν|

ξ

)r (
ν2α + ξ2α

)−β
∞∑

ν=−∞
(ν2α + ξ2α)

−β

 ,

and

F ∗2 :=
∥∥Θ∗r,ξ (f ;x)− f(x)

∥∥
∞,x (3.65)

≤ ωr(f, ξ)


∞∑

ν=−∞

(
1 + |ν|

ξ

)r (
ν2α + ξ2α

)−β
∞∑

ν=−∞
(ν2α + ξ2α)

−β

 .
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Hence, by Proposition 3.13, for f (n) ∈ Cu(R), we have F ∗1 → 0 as ξ → 0+ and since

∞∑
ν=−∞

(
1 + |ν|

ξ

)r (
ν2α + ξ2α

)−β
∞∑

ν=−∞
(ν2α + ξ2α)

−β
≤

∞∑
ν=−∞

|ν|n
(

1 + |ν|
ξ

)r (
ν2α + ξ2α

)−β
∞∑

ν=−∞
(ν2α + ξ2α)

−β
,

by Proposition 3.13, for f ∈ Cu(R), we get F ∗2 → 0 as ξ → 0+.

As a conclusion, we state

Theorem 3.18. Let f ∈ Cn(R) with f (n) ∈ Cu(R), n ∈ N, and β > n+r+1
2α . Then, we

have ∥∥∥∥∥Θ∗r,ξ (f ;x)− f(x)−
n∑
k=1

f (k)(x)

k!
δkq
∗
k,ξ

∥∥∥∥∥
∞,x

(3.66)

≤ ωr(f
(n), ξ)

n!


∞∑

ν=−∞
|ν|n

(
1 + |ν|

ξ

)r (
ν2α + ξ2α

)−β
∞∑

ν=−∞
(ν2α + ξ2α)

−β

 .

Proof. By Proposition 3.13 and Remark 3.17. �

Remark 3.19. Let µ be a positive finite Borel measure on R with mass m, i.e. µ (R) =
m. And let f, g1, g2 : R→ R be Borel measurable functions, x ∈ R. We observe that∫

R

g1dµ+

∫
R

g2dµ− f(x) (3.67)

=

∫
R

g1dµ+

∫
R

g2dµ− f(x)−mf(x) +mf(x)

=

∫
R

g1dµ+

∫
R

g2dµ−mf(x) + f(x) (m− 1) .

Hence, it holds ∣∣∣∣∣∣
∫
R

g1dµ+

∫
R

g2dµ− f(x)

∣∣∣∣∣∣ (3.68)

≤

∣∣∣∣∣∣
∫
R

g1dµ+

∫
R

g2dµ−mf(x)

∣∣∣∣∣∣+ |f(x)| |m− 1|

≤ m

∣∣∣∣∣∣
∫
R

g1
dµ

m
+

∫
R

g2
dµ

m
− f(x)

∣∣∣∣∣∣+ |f(x)| |m− 1| .
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That is ∣∣∣∣∣∣
∫
R

g1dµ+

∫
R

g2dµ− f(x)

∣∣∣∣∣∣ (3.69)

≤ m

∣∣∣∣∣∣
∫
R

g1
dµ

m
+

∫
R

g2
dµ

m
− f(x)

∣∣∣∣∣∣+ |f(x)| |m− 1| ,

where now µ
m is a probability measure on R.

We prove that mξ,P → 1 and mξ,W → 1 as ξ → 0+. We observe that the function

g(ν) = e−
v
ξ is positive, continuous,and decreasing for ν ≥ 1. Thus, by [5], we have

∞∫
1

e−
ν
ξ dν ≤

∞∑
ν=1

e−
ν
ξ ≤ e−

1
ξ +

∞∫
1

e−
ν
ξ dν. (3.70)

Thus,

1 + 2

∞∫
1

e−
ν
ξ dν ≤

∞∑
ν=−∞

e−
|ν|
ξ ≤ 1 + 2e−

1
ξ + 2

∞∫
1

e−
ν
ξ dν. (3.71)

Since

∞∫
1

e−
ν
ξ dν = ξe−

1
ξ , we obtain

1 + 2ξe−
1
ξ ≤

∞∑
ν=−∞

e−
|ν|
ξ ≤ 1 + 2e−

1
ξ + 2ξe−

1
ξ . (3.72)

We have 1 + 2ξe−
1
ξ → 1 and 1 + 2e−

1
ξ + 2ξe−

1
ξ → 1 as ξ → 0+. Therefore,

∞∑
ν=−∞

e−
|ν|
ξ → 1 as ξ → 0+. (3.73)

Thus,

mξ,P =

∞∑
ν=−∞

e−
|ν|
ξ

1 + 2ξe−
1
ξ

→ 1 as ξ → 0+. (3.74)

Now, define the function h(ν) = e−
ν2

ξ for ν ≥ 1. Observe that h(ν) is positive,
continuous, and decreasing for ν ≥ 1. Then, by [5], we have

∞∫
1

e−
ν2

ξ dν ≤
∞∑
ν=1

e−
ν2

ξ ≤ e−
1
ξ +

∞∫
1

e−
ν2

ξ dν. (3.75)

Thus,

1 + 2

∞∫
1

e−
ν2

ξ dν ≤
∞∑

ν=−∞
e−

ν2

ξ ≤ 1 + 2e−
1
ξ + 2

∞∫
1

e−
ν2

ξ dν. (3.76)
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As in [2], we have

2

∞∫
1

e−
ν2

ξ dν =
√
πξ

(
1− erf

(
1√
ξ

))
. (3.77)

Therefore,

1 +
√
πξ

(
1− erf

(
1√
ξ

))
≤

∞∑
ν=−∞

e−
ν2

ξ (3.78)

≤ 1 + 2e−
1
ξ +

√
πξ

(
1− erf

(
1√
ξ

))
.

We have 1 +
√
πξ
(

1− erf
(

1√
ξ

))
→ 1 and 1 + 2e−

1
ξ +
√
πξ
(

1− erf
(

1√
ξ

))
→ 1 as

ξ → 0+. Hence,
∞∑

ν=−∞
e−

ν2

ξ → 1 as ξ → 0+. (3.79)

Thus,

mξ,W =

∞∑
ν=−∞

e−
ν2

ξ

1 +
√
πξ
(

1− erf
(

1√
ξ

)) → 1 as ξ → 0+. (3.80)

We define the following error quantities:

E0,P (f, x) := Pr,ξ(f ;x)− f(x) (3.81)

=

∞∑
ν=−∞

(
r∑
j=0

αjf(x+ jν)

)
e
−|ν|
ξ

1 + 2ξe−
1
ξ

− f(x),

E0,W (f, x) := Wr,ξ(f ;x)− f(x) (3.82)

=

∞∑
ν=−∞

(
r∑
j=0

αjf(x+ jν)

)
e
−ν2

ξ

√
πξ
(

1− erf
(

1√
ξ

))
+ 1

− f(x).

Furthermore, we define the errors (n ∈ N):

En,P (f, x) := Pr,ξ(f ;x)− f(x)−
n∑
k=1

f (k)(x)

k!
δk

∞∑
ν=−∞

νke−
|ν|
ξ

1 + 2ξe−
1
ξ

(3.83)

and

En,W (f, x) := Wr,ξ(f ;x)− f(x)−
n∑
k=1

f (k)(x)

k!
δk

∞∑
ν=−∞

νke−
ν2

ξ

√
πξ
(

1− erf
(

1√
ξ

))
+ 1

. (3.84)
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Next, working as in inequality (3.69) to the errors E0,P , E0,W , En,P , and En,W , we
obtain

|E0,P (f, x)| ≤ mξ,P

∣∣P ∗r,ξ(f ;x)− f(x)
∣∣+ |f(x)| |mξ,P − 1| (3.85)

and
|E0,W (f, x)| ≤ mξ,W

∣∣W ∗r,ξ(f ;x)− f(x)
∣∣+ |f(x)| |mξ,W − 1| . (3.86)

Furthermore, we obtain (n ∈ N) :

|En,P (f, x)| (3.87)

≤ mξ,P

∣∣∣∣∣P ∗r,ξ(f ;x)− f(x)−
n∑
k=1

f (k)(x)

k!
δkc
∗
k,ξ

∣∣∣∣∣+ |f(x)| |mξ,P − 1|

and

|En,W (f, x)| (3.88)

≤ mξ,W

∣∣∣∣∣W ∗r,ξ(f ;x)− f(x)−
n∑
k=1

f (k)(x)

k!
δkp
∗
k,ξ

∣∣∣∣∣+ |f(x)| |mξ,W − 1| .

Based on Remark 3.19, we derive

Theorem 3.20. It holds

|En,P (f, x)| ≤


∞∑

ν=−∞
Gn(ν)e−

|ν|
ξ

1 + 2ξe−
1
ξ

+ |f(x)| |mξ,P − 1| . (3.89)

Clearly, the operators Pr,ξ(f ;x) are not necessarily positive operators.

Proof. By (3.28) and (3.87) . �

For n = 0,we have the following result

Corollary 3.21. Let f ∈ Cu(R). Then

|E0,P (f, x)| ≤


∞∑

ν=−∞
ωr(f, |ν|)e

−|ν|
ξ

1 + 2ξe−
1
ξ

+ |f(x)| |mξ,P − 1| . (3.90)

Proof. By (3.31) and (3.85) . �

We have also the following result

Theorem 3.22. Let f ∈ Cn(R) with f (n) ∈ Cu(R), n ∈ N,and ‖f‖∞,R <∞. Then

‖En,P (f, x)‖∞,x (3.91)

≤ ωr(f
(n), ξ)

n!


∞∑

ν=−∞
|ν|n

(
1 + |ν|

ξ

)r
e
−|ν|
ξ

1 + 2ξe−
1
ξ

+ ‖f‖∞,R |mξ,P − 1| .
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Proof. By (3.36) and (3.87) . �

Next, we present our results for E0,W (f, x) and En,W (f, x).

Theorem 3.23. It holds

|En,W (f, x)| ≤


∞∑

ν=−∞
Gn(ν)e−

ν2

ξ

√
πξ
(

1− erf
(

1√
ξ

))
+ 1

+ |f(x)| |mξ,W − 1| . (3.92)

Clearly, the operators Wr,ξ(f ;x) are not necessarily positive operators.

Proof. By (3.42) and (3.88) . �

For n = 0, we have following result

Corollary 3.24. Let f ∈ Cu(R). Then

|E0,W (f, x)| ≤


∞∑

ν=−∞
ωr(f, |ν|)e

−ν2

ξ

√
πξ
(

1− erf
(

1√
ξ

))
+ 1

+ |f(x)| |mξ,W − 1| . (3.93)

Proof. By (3.45) and (3.86) . �

We have also the following result

Theorem 3.25. Let f ∈ Cn(R) with f (n) ∈ Cu(R), n ∈ N,and ‖f‖∞,R <∞. Then

‖En,W (f, x)‖∞,x (3.94)

≤ ωr(f
(n), ξ)

n!


∞∑

ν=−∞
|ν|n

(
1 + |ν|

ξ

)r
e
−ν2

ξ

√
πξ
(

1− erf
(

1√
ξ

))
+ 1

+ ‖f‖∞,R |mξ,W − 1| .

Proof. By (3.50) and (3.88) . �

Conclusion. All of our results presented above imply the higher order of approximation
with rates of discrete singular linear operators P ∗r,ξ, W

∗
r,ξ, Θ∗r,ξ, Pr,ξ, and Wr,ξ to the

unit operator I, as ξ → 0+. Our convergences are pointwise and uniform.
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Abstract. In this paper we investigate the existence of solutions for the initial
value problems (IVP for short), for a class of functional hyperbolic impulsive
implicit differential equations with variable time impulses involving the mixed
regularized fractional derivative. Our works will be considered by using Schaefer’s
fixed point.
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1. Introduction

The subject of fractional calculus is as old as the differential calculus since, start-
ing from some speculations of G.W. Leibniz (1697) and L. Euler (1730), it has been
developed up to nowadays. Fractional calculus techniques are widely used in rheol-
ogy, control, porous media, viscoelasticity, electrochemistry, electromagnetism, etc.
[18, 23]. There has been a significant development in ordinary and partial fractional
differential equations in recent years; see the monographs of Abbas et al. [6, 7], Kilbas
et al. [19], Miller and Ross [22], Samko et al. [24], the papers of Abbas and Benchohra
[1, 2, 3, 4], Abbas et al. [5, 8, 9], Benchohra et al. [13], Vityuk and Golushkov [26],
and the references therein.

The theory of impulsive differential equations have become important in some
mathematical models of real processes and phenomena studied in physics, chemical
technology, population dynamics, biotechnology and economics. There has been a
significant development in impulse theory in recent years, especially in the area of
impulsive differential equations and inclusions with fixed moments; see the mono-
graphs of Benchohra et al. [12], Lakshmikantham et al. [20], the papers of Abbas et
al. [2, 3, 5] and the references therein. The theory of impulsive differential equations
with variable time is relatively less developed due to the difficulties created by the
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state-dependent impulses. Some interesting extensions to impulsive differential equa-
tions with variable times have been done by Bajo and Liz [10], Abbas and Benchohra
[1, 2], Benchohra et al. [12], Frigon and O’Regan [14, 15, 16], Lakshmikantham et al.
[21], Vityuk [25], Vityuk and Golushkov [26], Vityuk and Mykhailenko [27, 28] and
the references cited therein.

In the present article we are concerning by the existence of solutions to fractional
order IVP for the system

D
r

θk
u(x, y) = f(x, y, u(x, y), D

r

θk
u(x, y)); if (x, y) ∈ Jk,

x 6= xk(u(x, y)), k = 0, . . . ,m, (1.1)

u(x+, y) = Ik(u(x, y)); if (x, y) ∈ J, x = xk(u(x, y)), k = 1, . . . ,m, (1.2)
u(x, 0) = ϕ(x); x ∈ [0, a],

u(0, y) = ψ(y); y ∈ [0, b],

ϕ(0) = ψ(0),

(1.3)

where a, b > 0, J := [0, a] × [0, b], J0 = [0, x1] × (0, b], Jk := (xk, xk+1] × (0, b]; k =

1, ...,m, θk = (xk, 0), D
r

θk
is the mixed regularized derivative of order r = (r1, r2) ∈

(0, 1] × (0, 1], 0 = x0 < x1 < · · · < xm < xm+1 = a, f : J × Rn × Rn → Rn, Ik :
Rn → Rn, k = 1, . . . ,m, ϕ ∈ AC([0, a]) and ψ ∈ AC([0, b]).
In the present article, we present an existence result based on Schaefer’s fixed point.

2. Preliminaries

In this section, we introduce notations, definitions, and preliminary facts which
are used throughout this paper. By C(J) we denote the Banach space of all continuous
functions from J into Rn with the norm

‖w‖∞ = sup
(x,y)∈J

‖w(x, y)‖,

where ‖.‖ denotes a suitable complete norm on Rn.
As usual, by AC(J) we denote the space of absolutely continuous functions from J
into Rn and L1(J) is the space of Lebegue-integrable functions w : J → Rn with the
norm

‖w‖1 =

∫ a

0

∫ b

0

‖w(x, y)‖dydx.

Definition 2.1. [19, 24] Let α ∈ (0,∞) and u ∈ L1(J). The partial Riemann-Liouville
integral of order α of u(x, y) with respect to x is defined by the expression

Iα0,xu(x, y) =
1

Γ(α)

∫ x

0

(x− s)α−1u(s, y)ds, for a.a. x ∈ [0, a] and all y ∈ [0, b],

where Γ(.) is the (Euler’s) Gamma function defined by

Γ(ς) =

∫ ∞
0

tς−1e−tdt; ς > 0.
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Analogously, we define the integral

Iα0,yu(x, y) =
1

Γ(α)

∫ y

0

(y − s)α−1u(x, s)ds, for a.a. x ∈ [0, a] and a.a. y ∈ [0, b].

Definition 2.2. [19, 24] Let α ∈ (0, 1] and u ∈ L1(J). The Riemann-Liouville fractional
derivative of order α of u(x, y) with respect to x is defined by

(Dα
0,xu)(x, y) =

∂

∂x
I1−α
0,x u(x, y), for a.a. x ∈ [0, a] and a.a. y ∈ [0, b].

Analogously, we define the derivative

(Dα
0,yu)(x, y) =

∂

∂y
I1−α
0,y u(x, y), for a.a. x ∈ [0, a] and a.a. y ∈ [0, b].

Definition 2.3. [19, 24] Let α ∈ (0, 1] and u ∈ L1(J). The Caputo fractional derivative
of order α of u(x, y) with respect to x is defined by the expression

cDα
0,xu(x, y) = I1−α

0,x

∂

∂x
u(x, y), for a.a. x ∈ [0, a] and a.a. y ∈ [0, b].

Analogously, we define the derivative

cDα
0,yu(x, y) = I1−α

0,y

∂

∂y
u(x, y), for a.a. x ∈ [0, a] and a.a. y ∈ [0, b].

Definition 2.4. [26] Let r = (r1, r2) ∈ (0,∞)× (0,∞), θ = (0, 0) and u ∈ L1(J). The
left-sided mixed Riemann-Liouville integral of order r of u is defined by

(Irθu)(x, y) =
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1u(s, t)dtds.

In particular,

(Iθθu)(x, y) = u(x, y), (Iσθ u)(x, y) =

∫ x

0

∫ y

0

u(s, t)dtds; for a.a. (x, y) ∈ J,

where σ = (1, 1).
For instance, Irθu exists for all r1, r2 ∈ (0,∞), when u ∈ L1(J). Note also that when
u ∈ C(J), then (Irθu) ∈ C(J), moreover

(Irθu)(x, 0) = (Irθu)(0, y) = 0; x ∈ [0, a], y ∈ [0, b].

Example 2.5. Let λ, ω ∈ (0,∞) and r = (r1, r2) ∈ (0,∞)× (0,∞), then

Irθx
λyω =

Γ(1 + λ)Γ(1 + ω)

Γ(1 + λ+ r1)Γ(1 + ω + r2)
xλ+r1yω+r2 , for a.a. (x, y) ∈ J.

By 1 − r we mean (1 − r1, 1 − r2) ∈ [0, 1) × [0, 1). Denote by D2
xy := ∂2

∂x∂y , the

mixed second order partial derivative.

Definition 2.6. [26] Let r ∈ (0, 1] × (0, 1] and u ∈ L1(J). The mixed fractional
Riemann-Liouville derivative of order r of u is defined by the expression Dr

θu(x, y) =

(D2
xyI

1−r
θ u)(x, y) and the Caputo fractional-order derivative of order r of u is defined

by the expression cDr
θu(x, y) = (I1−r

θ D2
xyu)(x, y).
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The case σ = (1, 1) is included and we have

(Dσ
θ u)(x, y) = (cDσ

θ u)(x, y) = (D2
xyu)(x, y), for a.a. (x, y) ∈ J.

Example 2.7. Let λ, ω ∈ (0,∞) and r = (r1, r2) ∈ (0, 1]× (0, 1], then

Dr
θx
λyω =

Γ(1 + λ)Γ(1 + ω)

Γ(1 + λ− r1)Γ(1 + ω − r2)
xλ−r1yω−r2 , for a.a. (x, y) ∈ J.

Definition 2.8. [28] For a function u : J → Rn, we set

q(x, y) = u(x, y)− u(x, 0)− u(0, y) + u(0, 0).

By the mixed regularized derivative of order r = (r1, r2) ∈ (0, 1]× (0, 1] of a function
u(x, y), we name the function

D
r

θu(x, y) = Dr
θq(x, y).

The function

D
r1
0,xu(x, y) = Dr1

0,x[u(x, y)− u(0, y)],

is called the partial r1−order regularized derivative of the function u : J → Rn with
respect to the variable x. Analogously, we define the derivative

D
r2
0,yu(x, y) = Dr2

0,y[u(x, y)− u(x, 0)].

Let a1 ∈ [0, a], z+ = (a1, 0) ∈ J, Jz = [a1, a]× [0, b], r1, r2 > 0 and r = (r1, r2).
For u ∈ L1(Jz,Rn), the expression

(Irz+u)(x, y) =
1

Γ(r1)Γ(r2)

∫ x

a+1

∫ y

0

(x− s)r1−1(y − t)r2−1u(s, t)dtds,

is called the left-sided mixed Riemann-Liouville integral of order r of u.

Definition 2.9. [26]. For u ∈ L1(Jz,Rn) where D2
xyu is Lebesque integrable on

Jk; k = 0, . . . ,m, the Caputo fractional-order derivative of order r of u is defined by
the expression (cDr

z+f)(x, y) = (I1−r
z+ D2

xyf)(x, y). The Riemann-Liouville fractional-

order derivative of order r of u is defined by (Dr
z+f)(x, y) = (D2

xyI
1−r
z+ f)(x, y).

Analogously, we define the derivatives

D
r

z+u(x, y) = Dr
z+q(x, y),

D
r1
a1,xu(x, y) = Dr1

a1,x[u(x, y)− u(0, y)],

and

D
r2
a1,yu(x, y) = Dr2

a1,y[u(x, y)− u(x, 0)].
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3. Existence of solutions

To define the solutions of problems (1.1)-(1.3), we shall consider the space

Ω =
{
u : J → Rn : there exist 0 = x0 < x1 < x2 < ... < xm < xm+1 = a

such that xk = xk(u(xk, .)), and u(x−k , .), u(x+
k , .) exist with

u(x−k , .) = u(xk, .); k = 0, . . . ,m, and u ∈ C(Jk); k = 0, . . . ,m
}
.

This set is a Banach space with the norm

‖u‖Ω = max{‖uk‖; k = 0, ...,m},
where uk is the restriction of u to Jk; k = 0, ...,m.

Definition 3.1. A function u ∈ Ω ∩ (∪mk=0AC(Jk)) such that u(x, y), D
r1
xk,x

u(x, y),

D
r2
xk,y

u(x, y), D
r

z+k
u(x, y); k = 0, . . . ,m, are continuous for (x, y) ∈ Jk and

I1−r
z+ u(x, y) ∈ AC(Jk) is said to be a solution of (1.1)-(1.3) if u satisfies equation

(1.1) on Jk, and conditions (1.2), (1.3) are satisfied.

For the existence of solutions for the problem (1.1)-(1.3) we need the following
lemmas

Lemma 3.2. [28] Let a function f : J × Rn × Rn → Rn be continuous. Then problem

D
r

θu(x, y) = f(x, y, u(x, y), D
r

θu(x, y)); if (x, y) ∈ J := [0, a]× [0, b], (3.1)
u(x, 0) = ϕ(x); x ∈ [0, a],

u(0, y) = ψ(y); y ∈ [0, b],

ϕ(0) = ψ(0),

(3.2)

is equivalent to the equation

g(x, y) = f(x, y, µ(x, y) + Irθg(x, y), g(x, y)), (3.3)

and if g ∈ C(J) is the solution of (3.3), then u(x, y) = µ(x, y) + Irθg(x, y), where

µ(x, y) = ϕ(x) + ψ(y)− ϕ(0).

Lemma 3.3. [2] Let 0 < r1, r2 ≤ 1 and let h : J → Rn be continuous. A function u is
a solution of the fractional integral equation

u(x, y) =



µ(x, y) + 1
Γ(r1)Γ(r2)

∫ x
0

∫ y
0

(x− s)r1−1(y − t)r2−1h(s, t)dtds;

if (x, y) ∈ J0,

ϕ(x) + Ik(u(xk, y))− Ik(u(xk, 0))

+ 1
Γ(r1)Γ(r2)

∫ x
xk

∫ y
0

(x− s)r1−1(y − t)r2−1h(s, t)dtds;

if (x, y) ∈ Jk; k = 1, . . . ,m,

(3.4)

if and only if u is a solution of the fractional IVP
cDr

θk
u(x, y) = h(x, y); (x, y) ∈ Jk; k = 0, . . . ,m, (3.5)

u(x+
k , y) = Ik(u(xk, y)); y ∈ [0, b]; k = 1, . . . ,m. (3.6)

By Lemmas 3.2 and 3.3, we conclude the following Lemma
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Lemma 3.4. Let a function f : J × Rn × Rn → Rn be continuous. Then problem
(1.1)-(1.3) is equivalent to the equation

g(x, y) = f(x, y, ξ(x, y), g(x, y)), (3.7)

where

ξ(x, y) =



µ(x, y) + 1
Γ(r1)Γ(r2)

∫ x
0

∫ y
0

(x− s)r1−1(y − t)r2−1h(s, t)dtds;

if (x, y) ∈ J0,

ϕ(x) + Ik(u(xk, y))− Ik(u(xk, 0))

+ 1
Γ(r1)Γ(r2)

∫ x
xk

∫ y
0

(x− s)r1−1(y − t)r2−1h(s, t)dtds;

if (x, y) ∈ Jk; k = 1, . . . ,m,

µ(x, y) = ϕ(x) + ψ(y)− ϕ(0).

And if g ∈ C(J) is the solution of (3.7), then u(x, y) = ξ(x, y).

Theorem 3.5. (Schaefer) [17] Let X be a Banach space and N : X → X completely
continuous operator. If the set

E(N) = {u ∈ X : u = λN(u) for some λ ∈ [0, 1]}

is bounded, then N has fixed points.

Further, we present conditions for the existence of solutions of problem (1.1)-
(1.3).

Theorem 3.6. Assume

(H1) The function f : J × Rn × Rn → Rn is continuous,
(H2) For any u, v, w, z ∈ Rn and (x, y) ∈ J, there exist constants M > 0 such that

‖f(x, y, u, z)‖ ≤M(1 + ‖u‖+ ‖z‖),

(H3) The function xk ∈ C1(Rn,R) for k = 1, . . . ,m. Moreover,

0 = x0(u) < x1(u) < . . . < xm(u) < xm+1(u) = a; for all u ∈ Rn,

(H4) There exists a constant M∗ > 0 such that ‖Ik(u)‖ ≤M∗; for each u ∈ Rn
and k = 1, . . . ,m,

(H5) For all u ∈ Rn, xk(Ik(u)) ≤ xk(u) < xk+1(Ik(u)); for k = 1, . . . ,m,
(H6) For all (s, t, u) ∈ J × Rn and k = 1, . . . ,m, we have

x′k(u)
[
ϕ′(s) +

r1 − 1

Γ(r1)Γ(r2)

∫ s

xk

∫ t

0

(s− θ)r1−2(t− η)r2−1g(θ, η)dηdθ
]
6= 1,

where

g(x, y) = f(x, y, u(x, y), g(x, y)); (x, y) ∈ J.
If

M +
Mar1br2

Γ(1 + r1)Γ(1 + r2)
< 1, (3.8)

then (1.1)-(1.3) has at least one solution on J.
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Proof. The proof will be given in several steps.
Step 1. Consider the following problem

D
r

θu(x, y) = f(x, y, u(x, y), D
r

θu(x, y)); if (x, y) ∈ J, (3.9)

u(x, 0) = ϕ(x), u(0, y) = ψ(y); x ∈ [0, a], y ∈ [0, b], ϕ(0) = ψ(0). (3.10)

Transform problem (3.9)-(3.10) into a fixed point problem. Consider the operator
N : C(J)→ C(J) defined by

(Nu)(x, y) = µ(x, y) + Irθg(x, y),

where g ∈ C(J) such that

g(x, y) = f(x, y, u(x, y), g(x, y)).

Lemma 3.2 implies that the fixed points of operator N are solutions of problem (3.9)-
(3.10). We shall show that the operator N is continuous and completely continuous.
Claim 1. N is continuous.
Let {un}n∈N be a sequence such that un → u in C(J). Let η > 0 be such that
‖un‖ ≤ η. Then

‖(Nun)(x, y)− (Nu)(x, y)‖ ≤
∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1

Γ(r1)Γ(r2)

×‖gn(s, t)− g(s, t)‖dtds, (3.11)

where gn, g ∈ C(J) such that

gn(x, y) = f(x, y, un(x, y), gn(x, y))

and

g(x, y) = f(x, y, u(x, y), g(x, y)).

Since un → u as n→∞ and f is a continuous function, we get

gn(x, y)→ g(x, y) as n→∞, for each (x, y) ∈ J.

Hence, (3.11) gives

‖(Nun)− (Nu)‖∞ ≤ ar1br2

Γ(1 + r1)Γ(1 + r2)
‖gn − g‖∞ → 0 as n→∞.

Claim 2. N maps bounded sets into bounded sets in C(J).
Indeed, it is enough show that for any η∗ > 0, there exists a positive constant `∗ > 0
such that, for each

u ∈ Bη∗ = {u ∈ C(J) : ‖u‖∞ ≤ η∗},
we have ‖N(u)‖∞ ≤ `∗. For (x, y) ∈ J, we have

‖(Nu)(x, y)‖ ≤ ‖µ(x, y)‖

+
1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1‖g(s, t)‖dtds, (3.12)

where g ∈ C(J) such that

g(x, y) = f(x, y, u(x, y), g(x, y)).
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By (H2) we have for each (x, y) ∈ J,

‖g(x, y)‖ ≤ M(1 + ‖µ(x, y) + Irθg(x, y)‖+ ‖g(x, y)‖)

≤ M
(

1 + ‖µ‖∞ +
ar1br2‖g(x, y)‖

Γ(1 + r1)Γ(1 + r2)

)
+M‖g(x, y)‖.

Then, by (3.8) we get

‖g(x, y)‖ ≤ M(1 + ‖µ‖∞)

1−M − Mar1br2
Γ(1+r1)Γ(1+r2)

:= `.

Thus, (3.12) implies that

‖N(u)‖∞ ≤ ‖µ‖∞ +
`ar1br2

Γ(1 + r1)Γ(1 + r2)
:= `∗.

Claim 3. N maps bounded sets into equicontinuous sets in C(J).
Let (x1, y1), (x2, y2) ∈ J, x1 < x2, y1 < y2, Bη∗ be a bounded set of C(J) as in Claim
2, and let u ∈ Bη∗ . Then

‖(Nu)(x2, y2)− (Nu)(x1, y1)‖
≤ ‖µ(x2, y2)− µ(x1, y1)‖

+
1

Γ(r1)Γ(r2)

∫ x1

0

∫ y1

0

[(x2 − s)r1−1(y2 − t)r2−1

−(x1 − s)r1−1(y1 − t)r2−1]‖g(s, t)‖dtds

+
1

Γ(r1)Γ(r2)

∫ x2

x1

∫ y2

y1

(x2 − s)r1−1(y2 − t)r2−1‖g(s, t)‖dtds

+
1

Γ(r1)Γ(r2)

∫ x1

0

∫ y2

y1

(x2 − s)r1−1(y2 − t)r2−1‖g(s, t)‖dtds

+
1

Γ(r1)Γ(r2)

∫ x2

x1

∫ y1

0

(x2 − s)r1−1(y2 − t)r2−1‖g(s, t)‖dtds,

where g ∈ C(J) such that

g(x, y) = f(x, y, u(x, y), g(x, y)).

But ‖g‖∞ ≤ `. Thus

‖(Nu)(x2, y2)− (Nu)(x1, y1)‖
≤ ‖µ(x2, y2)− µ(x1, y1)‖

+
`

Γ(1 + r1)Γ(1 + r2)
[2yr22 (x2 − x1)r1 + 2xr12 (y2 − y1)r2

+ xr11 y
r2
1 − x

r1
2 y

r2
2 − 2(x2 − x1)r1(y2 − y1)r2 ].

As x1 → x2, y1 → y2 the right-hand side of the above inequality tends to zero. As a
consequence of Steps 1 to 3, together with the Arzela-Ascoli theorem, we can conclude
that N is continuous and completely continuous.
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Claim 4. A priori bounds.
Now it remains to show that the set

E = {u ∈ C(J) : u = λN(u) for some 0 < λ < 1}

is bounded. Let u ∈ E , then u = λN(u) for some 0 < λ < 1. Thus, for each (x, y) ∈ J,
we have

We now show there exists an open set U ⊆ C(J) with u 6= λN(u), for λ ∈ (0, 1)
and u ∈ ∂U. Let u ∈ C(J) and u = λN(u) for some 0 < λ < 1. Thus for each
(x, y) ∈ J, we have

u(x, y) = λµ(x, y) +
λ

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−1(y − t)r2−1g(s, t)dtds.

This implies by (H2) and as in Claim 2 that, for each (x, y) ∈ J, we get ‖u‖∞ ≤ `∗.
This shows that the set E is bounded. As a consequence of Theorem 3.5, we deduce
that N has a fixed point which is a solution of the problem (3.9)-(3.10). Denote this
solution by u1. Define the function

rk,1(x, y) = xk(u1(x, y))− x, for x ≥ 0, y ≥ 0.

Hypothesis (H3) implies that rk,1(0, 0) 6= 0 for k = 1, . . . ,m.
If rk,1(x, y) 6= 0 on J for k = 1, . . . ,m; i.e.,

x 6= xk(u1(x, y)), on J for k = 1, . . . ,m,

then u1 is a solution of the problem (1.1)-(1.3).
It remains to consider the case when r1,1(x, y) = 0 for some (x, y) ∈ J. Now since
r1,1(0, 0) 6= 0 and r1,1 is continuous, there exists x1 > 0, y1 > 0 such that r1,1(x1, y1) =
0, and r1,1(x, y) 6= 0, for all (x, y) ∈ [0, x1)× [0, y1).
Thus by (H6) we have

r1,1(x1, y1) = 0 and r1,1(x, y) 6= 0, for all (x, y) ∈ [0, x1)× [0, y1] ∪ (y1, b].

Suppose that there exist (x̄, ȳ) ∈ [0, x1)× [0, y1]∪ (y1, b] such that r1,1(x̄, ȳ) = 0. The
function r1,1 attains a maximum at some point (s, t) ∈ [0, x1)× [0, b].
Since

D
r

θu1(x, y) = f(x, y, u1(x, y), D
r

θu1(x, y)), for (x, y) ∈ J,
then

∂u1(x, y)

∂x
exists, and

∂r1,1(s, t)

∂x
= x′1(u1(s, t))

∂u1(s, t)

∂x
− 1 = 0.

Since

∂u1(x, y)

∂x
= ϕ′(x) +

r1 − 1

Γ(r1)Γ(r2)

∫ x

0

∫ y

0

(x− s)r1−2(y − t)r2−1g1(s, t)dtds,

where

g1(x, y) = f(x, y, u1(x, y), g1(x, y)); (x, y) ∈ J.
Then

x′1(u1(s, t))[ϕ′(s) +
r1 − 1

Γ(r1)Γ(r2)

∫ s

0

∫ t

0

(s− θ)r1−2(t− η)r2−1g1(θ, η)dθdη] = 1,
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witch contradicts (H6). From (H3) we have

rk,1(x, y) 6= 0 for all (x, y) ∈ [0, x1)× [0, b] and k = 1, ...m.

Step 2. In what follows set

Xk := [xk, a]× [0, b]; k = 1, ...,m.

Consider now the problem

D
r

θ1u(x, y) = f(x, y, u(x, y), D
r

θ1u(x, y)); if (x, y) ∈ X1, (3.13)

u(x+
1 , y) = I1(u1(x1, y)); y ∈ [0, b]. (3.14)

Consider the operator N1 : C(X1)→ C(X1) defined as

(N1u) = ϕ(x) + I1(u1(x1, y))− I1(u1(x1, 0))

+
1

Γ(r1)Γ(r2)

∫ x

x1

∫ y

0

(x− s)r1−1(y − t)r2−1g(s, t)dtds,

where

g(x, y) = f(x, y, u(x, y), g(x, y)); for (x, y) ∈ X1.

As in Step 1 we can show that N1 is completely continuous. Now it remains to show
that the set E∗ = {u ∈ C(X1) : u = λN1(u) for some 0 < λ < 1} is bounded.
Let u ∈ E∗, then u = λN1(u) for some 0 < λ < 1. Thus, from (H2), (H4) and the
fact that ‖g‖∞ ≤ ` we get for each (x, y) ∈ X1,

‖u(x, y)‖ ≤ ‖ϕ(x)‖+ ‖I1(u1(x1, y))‖+ ‖I1(u1(x1, 0))‖

+
1

Γ(r1)Γ(r2)

∫ x

x1

∫ y

0

(x− s)r1−1(y − t)r2−1‖g(s, t)‖dtds

≤ ‖ϕ‖∞ + 2M∗ +
`ar1br2

Γ(r1 + 1)Γ(r2 + 1)
:= `∗∗.

This shows that the set E∗ is bounded. As a consequence of of Theorem 3.5, we deduce
that N1 has a fixed point u which is a solution to problem (3.13)-(3.14). Denote this
solution by u2. Define

rk,2(x, y) = xk(u2(x, y))− x, for (x, y) ∈ X1.

If rk,2(x, y) 6= 0 on (x1, a]× [0, b] and for all k = 1, . . . ,m, then

u(x, y) =

{
u1(x, y), if (x, y) ∈ J0,

u2(x, y), if (x, y) ∈ [x1, a]× [0, b],

is a solution of the problem (1.1)-(1.3). It remains to consider the case when
r2,2(x, y) = 0, for some (x, y) ∈ (x1, a]× [0, b]. By (H5), we have

r2,2(x+
1 , y1) = x2(u2(x+

1 , y1)− x1

= x2(I1(u1(x1, y1)))− x1

> x1(u1(x1, y1))− x1

= r1,1(x1, y1) = 0.
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Since r2,2 is continuous, there exists x2 > x1, y2 > y1 such that r2,2(x2, y2) = 0, and
r2,2(x, y) 6= 0 for all (x, y) ∈ (x1, x2)× [0, b].
It is clear by (H3) that

rk,2(x, y) 6= 0 for all (x, y) ∈ (x1, x2)]× [0, b]; k = 2, . . . ,m.

Now suppose that there are (s, t) ∈ (x1, x2)× [0, b] such that r1,2(s, t) = 0. From (H5)
it follows that

r1,2(x+
1 , y1) = x1(u2(x+

1 , y1)− x1

= x1(I1(u1(x1, y1)))− x1

≤ x1(u1(x1, y1))− x1

= r1,1(x1, y1) = 0.

Thus r1,2 attains a nonnegative maximum at some point (s1, t1) ∈ (x1, a)× [0, x2) ∪
(x2, b].
Since

D
r

θ1u2(x, y) = f(x, y, u2(x, y), D
r

θ1u2(x, y)); for (x, y) ∈ X1,

then we get

u2(x, y) = ϕ(x) + I1(u1(x1, y))− I1(u1(x1, 0))

+
1

Γ(r1)Γ(r2)

∫ x

x1

∫ y

0

(x− s)r1−1(y − t)r2−1g2(s, t)dtds,

where

g2(x, y) = f(x, y, u2(x, y), g2(x, y)); for (x, y) ∈ X1.

Hence

∂u2

∂x
(x, y) = ϕ′(x) +

r1 − 1

Γ(r1)Γ(r2)

∫ x

x1

∫ y

0

(x− s)r1−2(y − t)r2−1g2(s, t)dtds,

then
∂r1,2(s1, t1)

∂x
= x′1(u2(s1, t1))

∂u2

∂x
(s1, t1)− 1 = 0.

Therefore

x′1(u2(s1, t1))[ϕ′(s1) +
r1 − 1

Γ(r1)Γ(r2)

∫ s1

x1

∫ t1

0

(s1 − θ)r1−2(t1 − η)r2−1g2(θ, η)dηdθ] = 1,

which contradicts (H6).

Step 3. We continue this process and take into account that um+1 := u
∣∣∣
Xm

is a

solution to the problem

D
r

θmu(x, y) = f(x, y, u(x, y), D
r

θmu(x, y)); a.e. (x, y) ∈ (xm, a]× [0, b],

u(x+
m, y) = Im(um−1(xm, y)); y ∈ [0, b].
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The solution u of the problem (1.1)-(1.3) is then defined by

u(x, y) =


u1(x, y), if (x, y) ∈ J0,

u2(x, y), if (x, y) ∈ J1

. . .

um+1(x, y), if (x, y) ∈ Jm.
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Some differential superordination results using
a generalized Sălăgean operator and Ruscheweyh
operator

Loriana Andrei

Abstract. In the present paper we establish several differential superordinations
regarding the operator DRmλ defined by using Ruscheweyh derivative Rmf (z)
and the generalized Sălăgean operator Dm

λ f (z), DRmλ : An → An, DRmλ f(z) =
(Dm

λ ∗Rm) f (z) , z ∈ U, where m,n ∈ N, λ ≥ 0 and f ∈ An, An = {f ∈ H(U) :
f(z) = z+

∑∞
j=n+1 ajz

j , z ∈ U}. A number of interesting consequences of some
of these superordination results are discussed. Relevant connections of some of the
new results obtained in this paper with those in earlier works are also provided.

Mathematics Subject Classification (2010): 30C45, 30A20, 34A40.

Keywords: Differential superordination, convex function, best subordinant, dif-
ferential operator, convolution product.

1. Introduction

Denote by U the unit disc of the complex plane, U = {z ∈ C : |z| < 1} and
H(U) the space of holomorphic functions in U .

Let An = {f ∈ H(U) : f(z) = z + an+1z
n+1 + . . . , z ∈ U} and H[a, n] = {f ∈

H(U) : f(z) = a+ anz
n + an+1z

n+1 + . . . , z ∈ U} for a ∈ C and n ∈ N.

Denote by K =
{
f ∈ An : Re zf ′′(z)

f ′(z) + 1 > 0, z ∈ U
}
, the class of normalized

convex functions in U .
If f and g are analytic functions in U , we say that f is superordinate to g,

written g ≺ f , if there is a function w analytic in U , with w(0) = 0, |w(z)| < 1, for
all z ∈ U such that g(z) = f(w(z)) for all z ∈ U . If f is univalent, then g ≺ f if and
only if f(0) = g(0) and g(U) ⊆ f(U).

Let ψ : C2×U → C and h analytic in U . If p and ψ (p (z) , zp′ (z) ; z) are univalent
in U and satisfies the (first-order) differential superordination

h(z) ≺ ψ(p(z), zp′(z); z), z ∈ U, (1.1)
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then p is called a solution of the differential superordination. The analytic function
q is called a subordinant of the solutions of the differential superordination, or more
simply a subordinant, if q ≺ p for all p satisfying (1.1).

An univalent subordinant q̃ that satisfies q ≺ q̃ for all subordinants q of (1.1)
is said to be the best subordinant of (1.1). The best subordinant is unique up to a
rotation of U .

Definition 1.1. (Al Oboudi [5]) For f ∈ An, λ ≥ 0 and n,m ∈ N, the operator Dm
λ is

defined by Dm
λ : An → An,

D0
λf (z) = f (z)

D1
λf (z) = (1− λ) f (z) + λzf ′(z) = Dλf (z) , ...,

Dm+1
λ f(z) = (1− λ)Dm

λ f (z) + λz (Dm
λ f (z))

′
= Dλ (Dm

λ f (z)) , z ∈ U.

Remark 1.2. If f ∈ An and f(z) = z +
∑∞
j=n+1 ajz

j , then

Dm
λ f (z) = z +

∞∑
j=n+1

[1 + (j − 1)λ]
m
ajz

j , z ∈ U.

For λ = 1 in the above definition we obtain the Sălăgean differential operator [8].

Definition 1.3. (Ruscheweyh [7]) For f ∈ An, n,m ∈ N, the operator Rm is defined
by Rm : An → An,

R0f (z) = f (z)

R1f (z) = zf ′ (z) , ...,

(m+ 1)Rm+1f (z) = z (Rmf (z))
′
+mRmf (z) , z ∈ U.

Remark 1.4. If f ∈ An, f(z) = z +
∑∞
j=n+1 ajz

j , then

Rmf (z) = z +

∞∑
j=n+1

Cmm+j−1ajz
j , ∈ U.

Definition 1.5. ([1]) Let λ ≥ 0 and m,n ∈ N. Denote by DRmλ : An → An the operator
given by the Hadamard product (the convolution product) of the generalized Sălăgean
operator Dm

λ and the Ruscheweyh operator Rm:

DRmλ f (z) = (Dm
λ f ∗Rmf) (z) ,

for any z ∈ U and each nonnegative integer m.

Remark 1.6. If f ∈ A and f(z) = z +
∑∞
j=n+1 ajz

j , then

DRmλ f (z) = z +

∞∑
j=n+1

(m+ j − 1)!

m! (j − 1)!
[1 + (j − 1)λ]

m
a2jz

j , for z ∈ U.

Remark 1.7. The operator DRmλ was studied in [2], [3], [4].

Definition 1.8. We denote by Q the set of functions that are analytic and injective on
U\E (f), where E (f) = {ζ ∈ ∂U : lim

z→ζ
f (z) = ∞}, and are such that f ′ (ζ) 6= 0 for

ζ ∈ ∂U\E (f). The subclass of Q for which f (0) = a is denoted by Q (a).
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We will use the following lemmas.

Lemma 1.9. (Miller and Mocanu [6, Th. 3.1.6, p. 71]) Let h be a convex function with
h(0) = a and let γ ∈ C\{0} be a complex number with Re γ ≥ 0. If p ∈ H[a, n] ∩Q,
p(z) + 1

γ zp
′(z) is univalent in U and h(z) ≺ p(z) + 1

γ zp
′(z), z ∈ U, then q(z) ≺ p(z),

z ∈ U, where

q(z) =
γ

nzγ/n

∫ z

0

h(t)tγ/n−1dt, z ∈ U.

The function q is convex and is the best subordinant.

Lemma 1.10. (Miller and Mocanu [6]) Let q be a convex function in U and let

h(z) = q(z) +
1

γ
zq′(z), z ∈ U,

where Re γ ≥ 0. If p ∈ H [a, n] ∩Q, p(z) + 1
γ zp

′(z) is univalent in U and

q(z) +
1

γ
zq′(z) ≺ p(z) +

1

γ
zp′ (z) , z ∈ U,

then q(z) ≺ p(z), z ∈ U, where

q(z) =
γ

nzγ/n

∫ z

0

h(t)tγ/n−1dt, z ∈ U.

The function q is the best subordinant.

2. Main results

Theorem 2.1. Let h be a convex function, h(0) = 1. Let n,m ∈ N, λ, δ ≥ 0, f ∈ An and

suppose that
(
DRmλ f(z)

z

)δ−1
(DRmλ f(z))

′
is univalent and

(
DRmλ f(z)

z

)δ
∈ H [1, n]∩Q.

If

h(z) ≺
(
DRmλ f(z)

z

)δ−1
(DRmλ f(z))

′
, z ∈ U, (2.1)

then

q(z) ≺
(
DRmλ f(z)

z

)δ
, z ∈ U,

where

q(z) =
δ

nz
δ
n

∫ z

0

h(t)t
δ
n−1dt.

The function q is convex and it is the best subordinant.

Proof. Consider

p(z) =

(
DRmλ f(z)

z

)δ
=

z +
∑∞
j=n+1 [1 + (j − 1)λ]

m (m+j−1)!
m!(j−1)! a

2
jz
j

z

δ

= 1 + pnz
n + pn+1z

n+1 + . . . , z ∈ U.
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Differentiating both sides of p(z), we obtain(
DRmλ f(z)

z

)δ−1
(DRmλ f(z))

′
= p(z) +

1

δ
zp′(z), z ∈ U.

Then (2.1) becomes h(z) ≺ p(z)+ 1
δ zp
′(z), z ∈ U. By using Lemma 1.9 for γ = δ,

we have q(z) ≺ p(z), z ∈ U, i.e.,

q(z) ≺
(
DRmλ f(z)

z

)δ
, z ∈ U,

where

q(z) =
δ

nz
δ
n

∫ z

0

h(t)t
δ
n−1dt.

The function q is convex and it is the best subordinant. �

Corollary 2.2. Let h(z) = 1+(2β−1)z
1+z be a convex function in U , where 0 ≤ β < 1. Let

n,m ∈ N, λ, δ ≥ 0, f ∈ An and suppose that
(
DRmλ f(z)

z

)δ−1
(DRmλ f(z))

′
is univalent

and
(
DRmλ f(z)

z

)δ
∈ H [1, n] ∩Q. If

h(z) ≺
(
DRmλ f(z)

z

)δ−1
(DRmλ f(z))

′
, z ∈ U, (2.2)

then q(z) ≺
(
DRmλ f(z)

z

)δ
, z ∈ U, where q is given by

q(z) = 2β − 1 +
2 (1− β) δ

nz
δ
n

∫ z

0

t
δ
n−1

1 + t
dt, z ∈ U.

The function q is convex and it is the best subordinant.

Proof. Following the same steps as in the proof of Theorem 2.1 and considering

p(z) =

(
DRmλ f(z)

z

)δ
,

the differential superordination (2.2) becomes

h(z) =
1 + (2β − 1)z

1 + z
≺ p(z) +

z

δ
p′(z), z ∈ U.

By using Lemma 1.9 for γ = δ , we have q(z) ≺ p(z), i.e.,

q(z) =
δ

nz
δ
n

∫ z

0

h(t)t
δ
n−1dt =

δ

nz
δ
n

∫ z

0

t
δ
n−1 1 + (2β − 1)t

1 + t
dt

=
δ

nz
δ
n

∫ z

0

(2β − 1) t
δ
n−1 + 2 (1− β)

t
δ
n−1

1 + t

 dt
= (2β − 1) +

2 (1− β) δ

nz
δ
n

∫ z

0

t
δ
n−1

1 + t
dt ≺

(
DRmλ f(z)

z

)δ
, z ∈ U.

The function q is convex and it is the best subordinant. �
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Theorem 2.3. Let q be convex in U and let h be defined by

h (z) = q(z) +
z

δ
q′(z).

If n,m ∈ N, λ, δ ≥ 0, f ∈ An, suppose that
(
DRmλ f(z)

z

)δ−1
(DRmλ f(z))

′
is univalent

and
(
DRmλ f(z)

z

)δ
∈ H [1, n] ∩Q and satisfies the differential superordination

h(z) = q (z) +
z

δ
q′ (z) ≺

(
DRmλ f(z)

z

)δ−1
(DRmλ f(z))

′
, z ∈ U, (2.3)

then

q(z) ≺
(
DRmλ f(z)

z

)δ
, z ∈ U,

where

q(z) =
δ

nz
δ
n

∫ z

0

h(t)t
δ
n−1dt.

The function q is the best subordinant.

Proof. Following the same steps as in the proof of Theorem 2.1 and considering

p(z) =

(
DRmλ f(z)

z

)δ
,

the differential superordination (2.3) becomes

q(z) +
z

δ
q′(z) ≺ p(z) +

z

δ
p′ (z) , z ∈ U.

Using Lemma 1.10 for γ = δ, we have q(z) ≺ p(z), z ∈ U, i.e.,

q(z) =
δ

nz
δ
n

∫ z

0

h(t)t
δ
n−1dt ≺

(
RDm

λ,αf(z)

z

)δ
, z ∈ U,

and q is the best subordinant. �

Theorem 2.4. Let h be a convex function, h(0) = 1. Let λ, δ ≥ 0, n,m ∈ N, f ∈ An
and suppose that

z
δ + 1

δ

DRmλ f (z)(
DRm+1

λ f (z)
)2 +

z2

δ

DRmλ f(z)(
DRm+1

λ f(z)
)2
[

(DRmλ f(z))
′

DRmλ f(z)
− 2

(
DRm+1

λ f(z)
)′

DRm+1
λ f(z)

]

is univalent and z
DRmλ f(z)

(DRm+1
λ f(z))

2 ∈ H [1, n] ∩Q. If

h(z) ≺ z δ + 1

δ

DRmλ f (z)(
DRm+1

λ f (z)
)2

+
z2

δ

DRmλ f(z)(
DRm+1

λ f(z)
)2
[

(DRmλ f(z))
′

DRmλ f(z)
− 2

(
DRm+1

λ f(z)
)′

DRm+1
λ f(z)

]
, z ∈ U, (2.4)
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then

q(z) ≺ z DRmλ f (z)(
DRm+1

λ f (z)
)2 , z ∈ U,

where

q(z) =
δ

nz
δ
n

∫ z

0

h(t)t
δ
n−1tdt.

The function q is convex and it is the best subordinant.

Proof. Consider

p(z) = z
DRmλ f (z)(

DRm+1
λ f (z)

)2
and we obtain

p (z) +
z

δ
p′ (z) = z

δ + 1

δ

DRmλ f (z)(
DRm+1

λ f (z)
)2

+
z2

δ

DRmλ f(z)(
DRm+1

λ f(z)
)2
[

(DRmλ f(z))
′

DRmλ f(z)
− 2

(
DRm+1

λ f(z)
)′

DRm+1
λ f(z)

]
.

Relation (2.4) becomes

h(z) ≺ p (z) +
z

δ
p′ (z) , z ∈ U.

By using Lemma 1.10 for γ = δ, we have q(z) ≺ p(z), z ∈ U, i.e.,

q(z) =
δ

nz
δ
n

∫ z

0

h(t)t
δ
n−1tdt ≺ z DRmλ f (z)(

DRm+1
λ f (z)

)2 , z ∈ U.
The function q is convex and it is the best subordinant. �

Theorem 2.5. Let q be convex in U and let h be defined by

h (z) = q (z) +
z

δ
q′ (z) .

If n,m ∈ N, λ, δ ≥ 0, f ∈ An, suppose that

z
δ + 1

δ

DRmλ f (z)(
DRm+1

λ f (z)
)2 +

z2

δ

DRmλαf(z)(
DRm+1

λ f(z)
)2
[

(DRmλ f(z))
′

DRmλ f(z)
− 2

(
DRm+1

λ f(z)
)′

DRm+1
λ f(z)

]
is univalent and z

DRmλ f(z)

(DRm+1
λ f(z))

2 ∈ H [1, n] ∩Q and satisfies the differential superordi-

nation

h(z) ≺ z δ + 1

δ

DRmλ f (z)(
DRm+1

λ f (z)
)2

+
z2

δ

DRmλ f(z)(
DRm+1

λ f(z)
)2
[

(DRmλ f(z))
′

DRmλ f(z)
− 2

(
DRm+1

λ f(z)
)′

DRm+1
λ f(z)

]
, z ∈ U, (2.5)

then

q(z) ≺ z DRmλ f (z)(
DRm+1

λ f (z)
)2 , z ∈ U,
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where

q(z) =
δ

nz
δ
n

∫ z

0

h(t)t
δ
n−1tdt.

The function q is the best subordinant.

Proof. Let

p(z) = z
DRmλ f (z)(

DRm+1
λ f (z)

)2 , z ∈ U.
Differentiating, we obtain

p (z) +
z

δ
p′ (z) = z

δ + 1

δ

DRmλ f (z)(
DRm+1

λ f (z)
)2

+
z2

δ

DRmλ f(z)(
DRm+1

λ f(z)
)2
[

(DRmλ f(z))
′′

DRmλ f(z)
− 2

(
DRm+1

λ f(z)
)′

DRm+1
λ f(z)

]
, z ∈ U,

and (2.5) becomes

h(z) = q (z) +
z

δ
q′ (z) ≺ p (z) +

z

δ
p′ (z) , z ∈ U.

By using Lemma 1.10 for γ = δ, we have q(z) ≺ p(z), z ∈ U, i.e.,

q(z) =
δ

nz
δ
n

∫ z

0

h(t)t
δ
n−1tdt ≺ z DRmλ f (z)(

DRm+1
λ f (z)

)2 , z ∈ U,
and q is the best subordinant. �

Theorem 2.6. Let h be a convex function in U with h(0) = 1 and let λ, δ ≥ 0, n,m ∈ N,
f ∈ An,

z2
δ + 2

δ

(DRmλ f (z))
′

DRmλ f (z)
+
z3

δ

[
(DRmλ f (z))

′′

DRmλ f (z)
−
(

(DRmλ f (z))
′

DRmλ f (z)

)2
]

is univalent and z2
(DRmλ f(z))

′

DRmλ f(z)
∈ H [0, n] ∩Q. If

h(z) ≺ z2 δ + 2

δ

(DRmλ f (z))
′

DRmλ f (z)
+
z3

δ

[
(DRmλ f (z))

′′

DRmλ f (z)
−
(

(DRmλ f (z))
′

DRmλ f (z)

)2
]
, z ∈ U,

(2.6)
then

q(z) ≺ z2 (DRmλ f (z))
′

DRmλ f (z)
, z ∈ U,

where

q(z) =
δ

nz
δ
n

∫ z

0

h(t)t
δ
n−1dt.

The function q is convex and it is the best subordinant.
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Proof. Let

p(z) = z2
(DRmλ f (z))

′

DRmλ f (z)
, z ∈ U.

Differentiating, we obtain

z2
δ + 2

δ

(DRmλ f (z))
′

DRmλ f (z)
+
z3

δ

[
(DRmλ f (z))

′′

DRmλ f (z)
−
(

(DRmλ f (z))
′

DRmλ f (z)

)2
]

=p (z)+
z

δ
p′ (z) , z∈ U.

Using the notation in (2.6), the differential superordination becomes

h(z) ≺ p(z) +
z

δ
p′(z), z ∈ U.

By using Lemma 1.9 for γ = δ, we have q(z) ≺ p(z), z ∈ U, i.e.,

q(z) =
δ

nz
δ
n

∫ z

0

h(t)t
δ
n−1dt ≺ z2 (DRmλ f (z))

′

DRmλ f (z)
, z ∈ U.

The function q is convex and it is the best subordinant. �

Theorem 2.7. Let q be a convex function in U and

h (z) = q (z) +
z

δ
q′ (z) .

Let λ, δ ≥ 0, n,m ∈ N, f ∈ An, suppose that

z2
δ + 2

δ

(DRmλ f (z))
′

DRmλ f (z)
+
z3

δ

[
(DRmλ f (z))

′′

DRmλ f (z)
−
(

(DRmλ f (z))
′

DRmλ f (z)

)2
]

is univalent in U and z2
(DRmλ f(z))

′

DRmλ f(z)
∈ H [0, n] ∩Q and satisfies the differential super-

ordination

h(z) ≺ z2 δ + 2

δ

(DRmλ f (z))
′

DRmλ f (z)
+
z3

δ

[
(DRmλ f (z))

′′

DRmλ f (z)
−
(

(DRmλ f (z))
′

DRmλ f (z)

)2
]
, z ∈ U,

(2.7)
then

q(z) ≺ z2 (DRmλ f (z))
′

DRmλ f (z)
, z ∈ U,

where

q(z) =
δ

nz
δ
n

∫ z

0

h(t)t
δ
n−1dt.

The function q is the best subordinant.

Proof. Let

p(z) = z2
(DRmλ f (z))

′

DRmλ f (z)
.

Differentiating, we obtain

p (z)+
z

δ
p′ (z)=z2

δ + 2

δ

(DRmλ f (z))
′

DRmλ f (z)
+
z3

δ

[
(DRmλ f (z))

′′

DRmλ f (z)
−
(

(DRmλ f (z))
′

DRmλ f (z)

)2
]
, z∈ U.
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Using the notation in (2.7), the differential superordination becomes

h(z) = q(z) +
z

δ
q′(z) ≺ p(z) +

z

δ
p′(z).

By using Lemma 1.10 for γ = δ we have q(z) ≺ p(z), i.e.,

q(z) =
δ

nz
δ
n

∫ z

0

h(t)t
δ
n−1dt ≺ z2 (DRmλ f (z))

′

DRmλ f (z)
, z ∈ U.

The function q is the best subordinant. �

Theorem 2.8. Let h be a convex function, h(0) = 1. Let n,m ∈ N, λ, δ ≥ 0, f ∈ An
and suppose that 1− DRmλ,f(z)·(DR

m
λ f(z))

′′

[(DRmλ f(z))
′
]
2 is univalent and

DRmλ f(z)

z(DRmλ f(z))
′ ∈ H [1, n]∩Q.

If

h(z) ≺ 1− DRmλ f (z) · (DRmλ f (z))
′′[

(DRmλ f (z))
′]2 , z ∈ U, (2.8)

then

q(z) ≺ DRmλ f (z)

z (DRmλ f (z))
′ , z ∈ U,

where q is given by

q(z) =
1

nz
1
n

∫ z

0

h(t)t
1
n−1dt, z ∈ U.

The function q is convex and it is the best subordinant.

Proof. Let

p(z) =
DRmλ f (z)

z (DRmλ f (z))
′ , z ∈ U.

Differentiating, we obtain

1−
DRmλ,f (z) · (DRmλ f (z))

′′[
(DRmλ f (z))

′]2 = p (z) + zp′ (z) , z ∈ U,

and (2.8) becomes h(z) ≺ p(z) + zp′(z), z ∈ U.
Using Lemma 1.9 for γ = 1 we have q(z) ≺ p(z), z ∈ U, i.e.,

q(z) =
1

nz
1
n

∫ z

0

h(t)t
1
n−1dt ≺ DRmλ f (z)

z (DRmλ f (z))
′ , z ∈ U.

The function q is convex and it is the best subordinant. �

Corollary 2.9. Let

h(z) =
1 + (2β − 1)z

1 + z
be a convex function in U , where 0 ≤ β < 1. Let n,m ∈ N, λ, δ ≥ 0, f ∈ An and

suppose that 1− DRmλ f(z)·(DR
m
λ f(z))

′′

[(DRmλ f(z))
′
]
2 is univalent and

DRmλ f(z)

z(DRmλ f(z))
′ ∈ H [1, n] ∩Q. If

h(z) ≺ 1− DRmλ f (z) · (DRmλ f (z))
′′[

(DRmλ f (z))
′]2 , z ∈ U, (2.9)
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then

q(z) ≺ DRmλ f (z)

z (DRmλ f (z))
′ , z ∈ U,

where q is given by

q(z) = (2β − 1) +
2(1− β)

nz
1
n

∫ z

0

t
1
n−1

1 + t
, z ∈ U.

The function q is convex and it is the best subordinant .

Proof. Following the same steps as in the proof of Theorem 2.8 and considering

p(z) =
DRmλ f (z)

z (DRmλ f (z))
′ ,

the differential subordination (2.9) becomes

h(z) =
1 + (2β − 1)z

1 + z
≺ p(z) + zp′(z), z ∈ U.

By using Lemma 1.9 for γ = 1, we have q(z) ≺ p(z), i.e.,

q(z) =
1

nz
1
n

∫ z

0

h(t)t
1
n−1dt =

1

nz
1
n

∫ z

0

1 + (2β − 1)t

1 + t
t

1
n−1dt

=
1

nz
1
n

∫ z

0

t
1
n−1

[
(2β − 1) +

2 (1− β)

1 + t

]
dt

= (2β − 1) +
2(1− β)

nz
1
n

∫ z

0

t
1
n−1

1 + t
≺ DRmλ f (z)

z (DRmλ f (z))
′ , z ∈ U. �

Theorem 2.10. Let q be convex in U and let h be defined by h (z) = q(z) + zq′(z). If

n,m ∈ N, λ, δ ≥ 0, f ∈ An, suppose that 1 − DRmλ f(z)·(DR
m
λ f(z))

′′

[(DRmλ f(z))
′
]
2 is univalent and

DRmλ f(z)

z(DRmλ f(z))
′ ∈ H [1, n] ∩Q and satisfies the differential superordination

h(z) ≺ 1− DRmλ f (z) · (DRmλ f (z))
′′[

(DRmλ f (z))
′]2 , z ∈ U, (2.10)

then

q(z) ≺ DRmλ f (z)

z (DRmλ f (z))
′ , z ∈ U,

where q is given by

q(z) =
1

nz
1
n

∫ z

0

h(t)t
1
n−1dt, z ∈ U.

The function q is the best subordinant.

Proof. Let

p(z) =
DRmλ f (z)

z (DRmλ f (z))
′ .
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Differentiating, we obtain

1− DRmλ f (z) · (DRmλ f (z))
′′[

(DRmλ f (z))
′]2 = p (z) + zp′ (z) , z ∈ U,

and (2.10) becomes h(z) = q(z) + zq′(z) ≺ p(z) + zp′(z), z ∈ U.
Using Lemma 1.9 for γ = 1, we have q(z) ≺ p(z), z ∈ U, i.e.,

q(z) =
1

nz
1
n

∫ z

0

h(t)t
1
n−1dt ≺ DRmλ f (z)

z (DRmλ f (z))
′ , z ∈ U.

The function q is the best subordinant. �

Theorem 2.11. Let h be a convex function, h(0) = 1 and let λ ≥ 0, n,m ∈ N,

f ∈ An, suppose that
[
(DRmλ f (z))

′]2
+ DRmλ f (z) · (DRmλ f (z))

′′
is univalent and

DRmλ f(z)·(DR
m
λ f(z))

′

z ∈ H [1, n] ∩Q. If

h(z) ≺
[
(DRmλ f (z))

′]2
+DRmλ f (z) · (DRmλ f (z))

′′
, z ∈ U, (2.11)

then

q(z) ≺ DRmλ f (z) · (DRmλ f (z))
′

z
, z ∈ U,

where

q(z) =
1

nz
1
n

∫ z

0

h(t)t
1
n−1dt.

The function q is convex and it is the best subordinant.

Proof. Let

p(z) =
DRmλ f (z) · (DRmλ f (z))

′

z
, z ∈ U.

Differentiating, we obtain[
(DRmλ f (z))

′]2
+DRmλ f (z) · (DRmλ f (z))

′′
= p (z) + zp′ (z) , z ∈ U,

and (2.11) becomes h(z) ≺ p(z) + zp′(z), z ∈ U.
Using Lemma 1.9 for γ = 1, we have q(z) ≺ p(z), z ∈ U, i.e.,

q(z) =
1

nz
1
n

∫ z

0

h(t)t
1
n−1dt ≺ DRmλ f (z) · (DRmλ f (z))

′

z
, z ∈ U.

The function q is convex and it is the best subordinant. �

Corollary 2.12. Let

h(z) =
1 + (2β − 1)z

1 + z
be a convex function in U , where 0 ≤ β < 1. Let λ ≥ 0, n,m ∈ N, f ∈ An, suppose

that
[
(DRmλ f (z))

′]2
+DRmλ f (z) · (DRmλ f (z))

′′
is univalent and

DRmλ f (z) · (DRmλ f (z))
′

z
∈ H [1, n] ∩Q.

If

h(z) ≺
[
(DRmλ f (z))

′]2
+DRmλ f (z) · (DRmλ f (z))

′′
, z ∈ U, (2.12)
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then

q(z) ≺ DRmλ f (z) · (DRmλ f (z))
′

z
, z ∈ U,

where q is given by

q(z) = (2β − 1) +
2(1− β)

nz
1
n

∫ z

0

t
1
n−1

1 + t
, z ∈ U.

The function q is convex and it is the best subordinant.

Proof. Following the same steps as in the proof of Theorem 2.11 and considering

p(z) =
DRmλ f (z) · (DRmλ f (z))

′

z
,

the differential superordination (2.12) becomes

h(z) =
1 + (2β − 1)z

1 + z
≺ p(z) + zp′(z), z ∈ U.

By using Lemma 1.9 for γ = 1, we have q(z) ≺ p(z), i.e.,

q(z) =
1

nz
1
n

∫ z

0

h(t)t
1
n−1dt =

1

nz
1
n

∫ z

0

1 + (2β − 1)t

1 + t
t

1
n−1dt

=
1

nz
1
n

∫ z

0

t
1
n−1

[
(2β − 1) +

2 (1− β)

1 + t

]
dt

= (2β − 1) +
2(1− β)

nz
1
n

∫ z

0

t
1
n−1

1 + t
≺ DRmλ f (z) · (DRmλ f (z))

′

z
, z ∈ U.

The function q is convex and it is the best subordinant. �

Theorem 2.13. Let q be a convex function in U and h be defined by

h (z) = q (z) + zq′ (z) .

Let λ ≥ 0, n,m ∈ N, f ∈ An, suppose that[
(DRmλ f (z))

′]2
+DRmλ f (z) · (DRmλ f (z))

′′

is univalent and
DRmλ f(z)·(DR

m
λ f(z))

′

z ∈ H [1, n]∩Q and satisfies the differential super-
ordination

h(z) = q (z) + zq′ (z) ≺
[
(DRmλ f (z))

′]2
+DRmλ f (z) · (DRmλ f (z))

′′
, z ∈ U, (2.13)

then

q(z) ≺ DRmλ f (z) · (DRmλ f (z))
′

z
, z ∈ U,

where

q(z) =
1

nz
1
n

∫ z

0

h(t)t
1
n−1dt.

The function q is the best subordinant.
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Proof. Following the same steps as in the proof of Theorem 2.11 and considering

p(z) =
DRmλ f (z) · (DRmλ f (z))

′

z
,

the differential superordination (2.13) becomes

h(z) = q (z) + zq′ (z) ≺ p(z) + zp′(z), z ∈ U.

By using Lemma 1.10 for γ = 1, we have q(z) ≺ p(z), i.e.,

q(z) =
1

nz
1
n

∫ z

0

h(t)t
1
n−1dt ≺ DRmλ f (z) · (DRmλ f (z))

′

z
, z ∈ U.

The function q is the best subordinant. �

Theorem 2.14. Let h be a convex function, h(0) = 1. Let λ ≥ 0, δ ∈ (0, 1) , n,m ∈ N,
f ∈ An, and suppose that(

z

DRmλ f (z)

)δ
DRm+1

λ f (z)

1− δ

((
DRm+1

λ f (z)
)′

DRm+1
λ f (z)

− δ (DRmλ f (z))
′

DRmλ f (z)

)

is univalent and
DRm+1

λ f(z)

z ·
(

z
DRmλ f(z)

)δ
∈ H [1, n] ∩Q. If

h(z) ≺
(

z

DRmλ f (z)

)δ
DRm+1

λ f (z)

1− δ

((
DRm+1

λ f (z)
)′

DRm+1
λ f (z)

− δ (DRmλ f (z))
′

DRmλ f (z)

)
, z ∈ U,

(2.14)
then

q(z) ≺
DRm+1

λ f (z)

z
·
(

z

DRmλ f (z)

)δ
, z ∈ U,

where

q(z) =
1− δ

nz
1−δ
n

∫ z

0

h(t)t
1−δ
n −1dt.

The function q is convex and it is the best subordinant.

Proof. Let

p(z) =
DRm+1

λ f (z)

z
·
(

z

DRmλ f (z)

)δ
, z ∈ U.

Differentiating, we obtain(
z

DRmλ f (z)

)δ
DRm+1

λ f (z)

1− δ

((
DRm+1

λ f (z)
)′

DRm+1
λ f (z)

− δ (DRmλ f (z))
′

DRmλ f (z)

)

= p (z) +
1

1− δ
zp′ (z) , z ∈ U,

and (2.14) becomes

h(z) ≺ p(z) +
1

1− δ
zp′(z), z ∈ U.
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Using Lemma 1.9, we have q(z) ≺ p(z), z ∈ U, i.e.,

q(z) =
1− δ

nz
1−δ
n

∫ z

0

h(t)t
1−δ
n −1dt ≺

DRm+1
λ f (z)

z
·
(

z

DRmλ f (z)

)δ
, z ∈ U.

The function q is convex and it is the best subordinant. �

Theorem 2.15. Let q be a convex function in U and

h (z) = q (z) +
z

1− δ
q′ (z) .

If λ ≥ 0, δ ∈ (0, 1) , n,m ∈ N, f ∈ An, suppose that(
z

DRmλ f (z)

)δ
DRm+1

λ f (z)

1− δ

((
DRm+1

λ f (z)
)′

DRm+1
λ f (z)

− δ (DRmλ f (z))
′

DRmλ f (z)

)

is univalent and
DRm+1

λ f(z)

z ·
(

z
DRmλ f(z)

)δ
∈ H [1, n] ∩ Q satisfies the differential su-

perordination

h(z) ≺
(

z

DRmλ f (z)

)δ
DRm+1

λ f (z)

1− δ

((
DRm+1

λ f (z)
)′

DRm+1
λ f (z)

− δ (DRmλ f (z))
′

DRmλ f (z)

)
, z ∈ U,

(2.15)
then

q(z) ≺
DRm+1

λ f (z)

z
·
(

z

DRmλ f (z)

)δ
, z ∈ U,

where

q(z) =
1− δ

nz
1−δ
n

∫ z

0

h(t)t
1−δ
n −1dt.

The function q is the best subordinant.

Proof. Let

p(z) =
DRm+1

λ f (z)

z
·
(

z

DRmλ f (z)

)δ
.

Differentiating, we obtain(
z

DRmλ f (z)

)δ
DRm+1

λ f (z)

1− δ

((
DRm+1

λ f (z)
)′

DRm+1
λ f (z)

− δ (DRmλ f (z))
′

DRmλ f (z)

)

= p (z) +
1

1− δ
zp′ (z) , z ∈ U.

Using the notation in (2.15), the differential superordination becomes

h(z) = q (z) +
z

1− δ
q′ (z) ≺ p(z) +

1

1− δ
zp′(z).

By using Lemma 1.10, we have q (z) ≺ p(z), z ∈ U, i.e.,

q(z) =
1− δ

nz
1−δ
n

∫ z

0

h(t)t
1−δ
n −1dt ≺

DRm+1
λ f (z)

z
·
(

z

DRmλ f (z)

)δ
, z ∈ U,

and q is the best subordinant. �
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Remark 2.16. For λ = 1 we obtain the same results for the operator SRn.
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[2] Alb Lupaş, A., Certain differential superordinations using a generalized Sălăgean and
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Iterates of increasing linear operators, via Maia’s
fixed point theorem

Ioan A. Rus

Abstract. Let X be a Banach lattice. In this paper we give conditions in which
an increasing linear operator, A : X → X is weakly Picard operator (see I.A.
Rus, Picard operators and applications, Sc. Math. Japonicae, 58(2003), No. 1,
191-219). To do this we introduce the notion of “invariant linear partition of
X with respect to A” and we use contraction principle and Maia’s fixed point
theorem. Some applications are also given.

Mathematics Subject Classification (2010): 47H10, 46B42, 47B65, 47A35, 34K06.

Keywords: Banach lattice, order unit, increasing linear operator, invariant linear
partition of the space, fixed point, weakly Picard operator, Maia’s fixed point
theorem, functional differential equation.

1. Introduction

There are many techniques to study the iterates of a linear and of increasing
linear operators:

(1) for linear operators on a Banach space see: [16], [22], [23], [25], . . .
(2) for linear increasing operators on an ordered Banach space see: [4], [8], [11], [12],

[21], [23], [38], . . .
(3) for some classes of positive linear operators see: [1]-[6], [9], [13]-[15], [17]-[20],

[27], [30], [33], [35], . . .

In the paper [36] we studied the problem in terms of the following notions:

Definition 1.1. Let X be a nonempty set and A : X → X be an operator with FA 6= ∅,
where FA := {x ∈ X | A(x) = x}. By definition, a partition of X, X =

⋃
x∗∈FA

Xx∗ , is

a fixed point partition of X with respect to A iff:

(i) A(Xx∗) ⊂ Xx∗ , ∀ x∗ ∈ FA;
(ii) FA ∩Xx∗ = {x∗}, ∀ x∗ ∈ FA.
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Definition 1.2. Let (X,+,R) be a linear space and A : X → X be a linear opera-

tor with FA \ {θ} 6= ∅. By definition, a fixed point partition, X =
⋃

x∗∈FA

Xx∗ is a

linear fixed point partition of X with respect to A iff:

Xx∗ = {x∗}+Xθ, ∀ x∗ ∈ FA.

If there exists a norm on Xθ, ‖·‖ : Xθ → R+, and ‖A(x)‖ ≤ l‖x‖, for all x ∈ Xθ

with some l > 0, then d‖·‖ : Xx∗ × Xx∗ → R+, d‖·‖(x, y) := ‖x − y‖ is a metric on

Xx∗ and the restriction of A to Xx∗ , A
∣∣
Xx∗

, is a Lipschitz operator with constant l.

If l < 1, in this case we can use the following variant of contraction principle:

Weak contraction principle. Let (X, d) be a metric space and A : X → X be an
operator. We suppose that:

(i) FA 6= ∅;
(ii) A is a l-contraction.

Then:

(a) FA = {x∗};
(b) An(x)→ x∗ as n→∞, ∀ x ∈ X, i.e., A is a Picard operator;
(c) d(x, x∗) ≤ 1

1−ld(x,A(x)), ∀ x ∈ X.

In this paper we do not suppose that FA\{θ} 6= ∅. So, we introduce the following
notion:

Definition 1.3. Let (X,+,R,→) be a linear L-space (see [36]) and A : X → X

be a linear operator. By definition, a partition of X, X =
⋃
λ∈Λ

Xλ, is an invariant

linear partition (ILP) of X with respect to A iff:

(i) there exists λ0 ∈ Λ such that Xλ0
is a linear subspace of X and

X
/
Xλ0

= {Xλ | λ ∈ Λ};

(ii) A(Xλ) ⊂ Xλ, ∀ λ ∈ Λ;
(iii) Xλ = Xλ, ∀ λ ∈ Λ.

We also need the following fixed point result (see [28], [37], [24], . . .):

Maia’s fixed point theorem. Let X be a nonempty set, d and ρ be two metrics on X
and A : X → X be an operator. We suppose that:

(i) there exists c > 0 such that d(x, y) ≤ cρ(x, y), ∀ x, y ∈ X;
(ii) (X, d) is a complete metric space;

(iii) A : (X, d)→ (X, d) is continuous;
(iv) A : (X, ρ)→ (X, ρ) is an l-contraction.

Then:

(a) FA = {x∗};
(b) A : (X, d)→ (X, d) is Picard operator;
(c) A : (X, ρ)→ (X, ρ) is Picard operator;
(d) ρ(x, x∗) ≤ 1

1−lρ(x,A(x)), ∀ x ∈ X.
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The aim of this paper is to study the iterates of a linear operator and of an
increasing linear operator on a Banach lattice in terms of an invariant partition of the
space and using contraction principle and Maia’s fixed point theorem.

2. Invariant linear partitions

In what follows we shall give some generic examples of ILP of the space.
Let (X,+,R, ‖·‖) be a normed space, A : X → X be a linear operator and

(Λ,+,R, τ) be a linear topological space and Φ : X → Λ be a continuous linear and
surjective operator. We suppose that Φ is an invariant operator of A (see [10], [4],
[36], [26], . . .), i.e., Φ(A(x)) = Φ(x), ∀ x ∈ X. For λ ∈ Λ, let

Xλ := {x ∈ X | Φ(x) = λ}.

We remark that, X =
⋃
λ∈Λ

Xλ, is an ILP of X with respect to A. In this case,

λ0 = θΛ.
Here are some examples:

Example 2.1. Let B be a Banach space, K ∈ C([0, 1]2,R) and A : C([0, 1],B) →
C([0, 1],B) be defined by

A(x)(t) := x(0) +

∫ t

0

K(t, s)x(s)ds, ∀ t ∈ [0, 1].

Let Λ := B and Φ : C([0, 1],B)→ B, be defined by, Φ(x) = x(0). It is clear that Φ is

invariant for A and, X =
⋃
λ∈Λ

Xλ, is an ILP of (C[0, 1],B) with respect to A. In this

case λ0 = θB.

Example 2.2. Let A : C[0, 1] → C[0, 1] be a continuous linear operator such that
A(x)(0) = x(0) and A(x)(1) = x(1) (i.e., 0 and 1 are interpolation points of A (see [34]
and the references therein)). Let Λ := R2 and Φ : C[0, 1] → R2, Φ(x) = (x(0), x(1)).

Then Φ is invariant for A, λ0 = (0, 0) and C[0, 1] =
⋃
λ∈R2

Xλ is an ILP of C[0, 1] with

respect to A.

Another generic example is the following:
Let (X,+,R,→) be a linear L-space and A : X → X be a linear operator. Let

us consider the quotient space X
/

(1−A)(X)
= {Xλ | λ ∈ Λ}, with Xλ0

:= (1−A)(X).

From a remark by Jachymski (see Lemma 1 in [22]), A(Xλ) ⊂ Xλ. From the definition

of quotient space it follows that, X =
⋃
λ∈Λ

Xλ is an ILP of X with respect to A.

Remark 2.3. Let (X,+,R,→) be a linear L-space and A : X → X be a linear operator.

Let X =
⋃
λ∈Λ

Xλ be an ILP of X. Then Y =
⋃
λ∈Λ

A(Xλ) is an ILP of Y with respect

to the operator A
∣∣
Y

: Y → Y . We remark that, FA = F
A
∣∣
Y

.
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3. Main results

Our abstract results are the following:

Theorem 3.1. Let (X,+,R, ‖·‖) be a Banach space and A : X → X be a linear

operator. Let X =
⋃
λ∈Λ

Xλ be an ILP of X with respect to A, with Xλ0 a linear

subspace of X. We suppose that there exists l ∈]0, 1[ such that

‖A(x)‖ ≤ l‖x‖, ∀ x ∈ Xλ0
.

Then:

(a) FA ∩Xλ = {x∗λ}, ∀ λ ∈ Λ;
(b) An(x) → x∗λ as n → ∞, ∀ x ∈ Xλ, λ ∈ Λ, i.e., A is weakly Picard operator

(WPO) on X and A∞(x) = x∗λ, ∀ x ∈ Xλ;
(c) ‖x−A∞(x)‖ ≤ 1

1−l‖x−A(x)‖, ∀ x ∈ X.

Proof. Let x, y ∈ Xλ. Then, x− y ∈ Xλ0 and

‖A(x)−A(y)‖ = ‖A(x− y)‖ ≤ l‖x− y‖.

From the contraction principle we have that FA ∩ Xλ = {x∗λ} and A : Xλ → Xλ is
Picard operator. We also have that:

‖x− x∗λ‖ ≤
1

1− l
‖x−A(x)‖, ∀ x ∈ Xλ.

From the definition of A∞ it follows (c). �

Theorem 3.2. Let (X,+,R, ‖·‖,≤) be a Banach lattice and A : X → X be an increas-
ing linear operator. We suppose that:

(i) X =
⋃
λ∈Λ

Xλ is an ILP of X with respect to A, with Xλ0
a linear subspace of X;

(ii) there exists an order unit element u ∈ X for Xλ0
, such that

A(u) ≤ lu, with some 0 < l < 1.

Then:

(a) A is WPO with respect to
‖·‖→;

(b) Xλ ∩ FA = {x∗λ}, ∀ λ ∈ Λ;
(c) A∞(x) = x∗λ, ∀ x ∈ Xλ, λ ∈ Λ;

(d) A is WPO with respect to
d‖·‖u→ , where ‖·‖u is the Minkowski norm on Xλ0 with

respect to u, i.e., ‖An(x)−A∞(x)‖u → 0 as n→ +∞;
(e) ‖x−A∞(x)‖u ≤ 1

1−l‖x−A(x)‖u, ∀ x ∈ X.

Proof. Let x ∈ Xλ0
. Since u is order unit for Xλ0

, there exists M(x) > 0 such that

|x| ≤M(x)u.

From the definition of Minkowski’s norm, ‖·‖u : Xλ0
→ R+, we have that

|x| ≤ ‖x‖uu, ∀ x ∈ Xλ0
. (3.1)
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Since X is a Banach lattice we also have that

‖x‖ ≤ ‖u‖ ‖x‖u, ∀ x ∈ Xλ0 . (3.2)

But A is increasing linear operator. From (3.1) we have

|A(x)| ≤ A(|x|) ≤ ‖x‖uA(u) ≤ l‖x‖uu.
From this relations it follows

‖A(x)‖u ≤ l‖x‖u, ∀ x ∈ Xλ0
. (3.3)

Now let x, y ∈ Xλ. Then, x− y ∈ Xλ0
and from (3.3) we have

‖A(x)−A(y)‖u ≤ l‖x− y‖u.
On Xλ we have two metrics, d‖·‖(x, y) := ‖x− y‖ and d‖·‖u(x, y) := ‖x− y‖u. So, by

the above considerations, (Xλ, d‖·‖, d‖·‖u) and A
∣∣
Xλ

: Xλ → Xλ satisfy the conditions

of Maia’s fixed point theorem. From this theorem we have, (a)-(e). �

4. Applications

In what follows we present some applications of the above abstract results.

Example 4.1. Let h > 0, b > 0 and p, q ∈ C[0, b]. We consider the following functional
differential equation (see [32])

x′(t) = p(t)x(t) + q(t)x(t− h), ∀ t ∈ [0, b]. (4.1)

By a solution of (4.1) we understand a function x ∈ C[−h, b]∩C1[0, b] which satisfies
(4.1). The equation (4.1) is equivalent with the following fixed point equation

x(t) =

{
x(t), if t ∈ [−h, 0]

x(0) +
∫ t

0
p(s)x(s)ds+

∫ t
0
q(s)x(s− h)ds, t ∈ [0, b]

(4.2)

with x ∈ C[−h, b].
Let A : C[−h, b] → C[−h, b] be defined by, A(x)(t) = the second part of (4.2).

Let Λ := C[−h, 0] and Φ : C[−h, b]→ C[−h, 0] be defined by, Φ(x) = x
∣∣
[−h,0]

.

We observe that, Φ(A(x)) = Φ(x), ∀ x ∈ C[−h, b]. So, C[−h, b] =
⋃

λ∈C[−h,b]

Xλ

is an ILP of C[−h, b] and λ0 is the constant function 0 ∈ C[−h, 0], i.e.,

X0 = {x ∈ C[−h, b] | x
∣∣
[−h,0]

= 0}.

It is clear that there exists τ > 0 such that A
∣∣
X0

: X0 → X0 is a contraction

with respect to Bielecki norm ‖·‖τ , where

‖x‖τ := max
t∈[−h,b]

|x(t)|e−τt.

Let us denote by, ‖·‖, the max norm on C[−h, b]. From Theorem 3.1 we have

Theorem 4.2. In the above considerations we have that:

(a) the operator A is WPO with respect to
‖·‖→, i.e., the solution set of (4.1) is

A∞(C[−h, b]);
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(b) FA ∩ Xλ = {x∗λ}, λ ∈ C[−h, 0], i.e., x∗λ is a unique solution of (4.1) which
satisfies the condition x

∣∣
[−h,0]

= λ;

(c) the operator A
∣∣
Xλ

: Xλ → Xλ is PO, ∀ λ ∈ C[−h, 0].

Remark 4.3. If in addition we suppose that p ≥ 0, q ≥ 0, then the operator A is
increasing. From the abstract Gronwall lemma (see [31]) we have that if x ∈ C[−h, b]∩
C1[0, b] satisfies the inequality

x′(t) ≤ p(t)x(t) + q(t)x(t− h), ∀ t ∈ [0, b],

then, x(t) ≤ A∞(x)(t), ∀ t ∈ [−h, b].

Example 4.4. Let (X,+,R, ‖·‖) be a Banach space and A : X → X be a linear and
continuous operator. We suppose that A is l-graphic contraction, i.e.,

‖A(x)−A2(x)‖ ≤ l‖x−A(x)‖, ∀ x ∈ X.
This implies that

‖Au‖ ≤ l‖u‖, ∀ u ∈ (1X −A)(X).

Let us denote, Xλ0
:= (1X −A)(X). We consider the quotient space,

X
/
Xλ0

= {Xλ | λ ∈ Λ}.

We remark that, X =
⋃
λ∈Λ

Xλ is ILP of X with respect to A. From Theorem 3.1 we

have

Theorem 4.5. In the above considerations we have:

(a) A
∣∣
Xλ

: Xλ → Xλ is a l-contraction, ∀ λ ∈ Λ;

(b) FA ∩Xλ = {x∗λ}, λ ∈ Λ;
(c) the attraction domain of x∗λ, (AD)A(x∗λ) = Xλ, ∀ λ ∈ Λ.

Example 4.6. Let ϕ0, ϕ, ψk ∈ C([0, 1],R+), k = 1,m and 0 = a0 < a1 < . . . < am = 1.
We suppose that the set {ϕ0, ϕ · ψ1, . . . , ϕ · ψm} is linearly independent. In addition
we suppose that ϕ0(a0) = 1 and ϕ(a0) = 0. Then the following operator

A : C[0, 1]→ C[0, 1], A(f) = f(a0)ϕ0 + ϕ

m∑
k=1

f(ak)ψk

is increasing and linear, with A(f)(a0) = f(a0), for all f ∈ C[0, 1]. Let

Xλ := {f ∈ C[0, 1] | f(a0) = λ}, λ ∈ R.

It is clear that, C[0, 1] =
⋃
λ∈R

Xλ is an ILP of C[0, 1] with respect to A. From the

Theorem 3.2 we have

Theorem 4.7. In addition to the above conditions we suppose that, A(ϕ) ≤ lϕ, with
0 < l < 1. Then:

(a) the operator A is WPO;
(b) Xλ ∩ FA = {f∗λ}, ∀ λ ∈ R;
(c) A∞(f) = f∗λ , ∀ λ ∈ R.
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Proof. We remark that ϕ is an order unit for A(X0). �
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[24] Kirk, W.A., Sims, B. (eds.), Handbook of Metric Fixed Point Theory, Kluwer, 2001.

[25] Koliha, J.J., Convergent and stable operators and their generalization, J. Math. Anal.
Appl., 43(1973), 778-794.
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Studia Univ. Babeş-Bolyai Math., 55(2010), no. 4, 243-248.

[35] Rus, I.A., Five open problems in fixed point theory in terms of fixed point structures (I):
singlevalued operators, Proc. 10th ICFPTA, 39-40, 2012, Cluj-Napoca, 2013.

[36] Rus, I.A., Heuristic introduction to weakly Picard operator theory, Creat. Math. Inform.,
23(2014), no. 2, 243-252.

[37] Rus, I.A., Petruşel, A., Petruşel, G., Fixed Point Theory, Cluj Univ. Press, Cluj-Napoca,
2008.

[38] Schaefer, H.H., Banach Lattices and Positive Operators, Springer, 1974.

Ioan A. Rus
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Abstract. The purpose of this work is to present some coincidence point theorems
for singlevalued and multivalued rational contractions. A comparative study of
different rational contraction conditions is also presented. Our results extend
some recent theorems in the literature.
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1. Introduction

In this first section, for the convenience of the reader, we will recall the standard
terminologies and notations in non-linear analysis. See, for example [4], [11], [6], [9].

Let (X, d) be a metric space, x0 ∈ X and r > 0.

Denote B̃(x0, r) := {x ∈ X|d(x0, x) ≤ r} the closed ball centered at x0 with
radius r.

If S : X → X is an operator, then we denote by F (S) := {x ∈ X|x = S(x)} the
fixed point set of S.

An operator f : Y ⊆ X → Y is said to be an α-contraction if α ∈ [0, 1] and
d(f(x), f(y)) ≤ αd(x, y), for all x, y ∈ Y .

Definition 1.1. Let (X,≤) be an partially ordered set and A, B be two nonempty
subsets of X. Then we will wrote A ≤s B if and only for all a ∈ A exists b ∈ B
satisfying a ≤ b.

We denote by P (X) the family of all nonempty subsets of X. Also Pp(X) will
denote the family of all nonempty subsets of X having the property ”p”, where ”p”

This paper was presented at the 10th Joint Conference on Mathematics and Computer Science

(MaCS 2014), May 21-25, 2014, Cluj-Napoca, Romania.
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could be: b = bounded, cl = closed, cp = compact etc. We consider the following
functionals:

D : P (X)× P (X)→ R+, D(A,B) = inf{d(a, b)|a ∈ A, b ∈ B}
ρ : Pb(X)× Pb(X)→ R+, ρ(A,B) = {sup{D(a,B)|a ∈ A}

H : Pb(X)× Pb(X)→ R+, H(A,B) = max{sup
a∈A

D(a,B), sup
b∈B

D(b, A)}.

Definition 1.2. Let (X,�) be a partially ordered set and T : X → P (X) be a multi-
valued mapping, satisfying the following implication

x � y ⇒ Tx �s Ty.
Then T is said to be increasing.

Definition 1.3. ([6]) A function ψ : R+ → R+ := [0,+∞) is called an altering distance
function if the following properties are satisfied:

(Ψ1) ψ(t) = 0⇔ t = 0.
(Ψ2) ψ is monotonically non-decreasing.
(Ψ3) ψ is continuous.

By Ψ we denote the set of all altering distance functions.

The following theorem is an result proved by B.K. Das and S Gupta, in 1975.

Theorem 1.4. Let (X, d) be a metric space and let S : X → X be a given mapping
such that,

i) there exist a, b ∈ R∗+ with a+ b < 1 for which d(Sx, Sy) ≤ ad(x, y) + bm(x, y)
for all x, y ∈ X where

m(x, y) = d(y, Sy)
1 + d(x, Sx)

1 + d(x, y)
.

ii) there exists x0 ∈ X, such that the sequence of iterates (Snx0) has a subse-
quence (Snkx0) with lim

k→∞
(Snkx0) = z0. Then z0 is the unique fixed point of S.

Definition 1.5. Let S be a self mapping of a metric space (M,d) with a nonempty fixed
point set F (S). Then S is said to satisfy the property (P ) if F (S) = F (Sn) for each
n ∈ N.

Definition 1.6. Let (X,�) be a partially ordered set endowed with a metric d on X.
We say that X is regular if and only if the following hypothesis holds:
If {zn} is an non-decreasing sequence in X with respect to � such that lim

n→∞
zn = z ∈

X then zn � z for all n ∈ N.

Definition 1.7. Let (X, d) a complete metric space, with T : X → Pcl(X) and R :
X → X. Then C(R, T ) = {x ∈ X|Rx ∈ Tx} is called the coincidence point set of S
and T . We say that a point x ∈ X is a coincidence point of R and T if Rx = Tx.

We will denote by F (T ) the fixed point set for T and by SF (T ) the strict fixed
point set of T .

If Y is a nonempty subset of X and T : Y → P (X) is a multivalued operator,
then by definition, an element x ∈ Y is said to be:
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(i) a fixed point of T if and only if x ∈ T (x);
(ii) a strict fixed point of T if and only if x = T (x).
The following result appeared in [9].

Theorem 1.8. ([9]) Let (X,�) be a partially ordered set equipped with a metric d on
X such that (X, d) is a complete metric space. Let T,R : X → X be two mappings
satisfying( for pair (x, y) ∈ X ×X where in Rx and Ry are comparable),

d(Tx, Ty) ≤ αd(Rx, Tx) · d(Ry, Ty)

1 + d(Rx,Ry)
+ βd(Rx,Ry) (1.1)

where α, β are non-negative real numbers with α+ β < 1. Suppose that
a) X is regular and T is weakly increasing with R.
b) the pair (R, T ) is commuting and weakly reciprocally continuous.

Then R and T have a coincidence point.

On the other hand, in [2] the following local fix point theorem for multivalued
contraction is given.

Theorem 1.9. Let (X, d) be a complete metric space, x0 ∈ X and r > 0. Let T :

B̃(x0; r)→ Pcl(X) be a multivalued α- contraction such that D(x0, T (x0)) < (1−α)r.
Then F (T ) 6= ∅.

We also mention that the following fixed point theorem, for the so called multi-
valued rational contractions was presented in [10], as follows.

Theorem 1.10. Let (X, d) a complete metric space and T : X → Pcl(X) be a multi-
valued operator such that exists α, β ≥ 0 with α+ β < 1 satisfying

H(Tx, Ty) ≤ αD(y, Ty)[1 +D(x, Tx)]

1 + d(x, y)
+ βd(x, y), for all x, y ∈ X. (1.2)

Then T has a fixed point.

The purpose of this paper is twofold. First we will extend Theorem 1.8 for the
case of multivalued operators. Secondly, we will present a local fixed point theorem
for multivalued rational conractions.

2. Main results

Our first main result is the following coincidence point theorem.

Theorem 2.1. Let (X, d) be a complete metric space. Let T : X → Pcl(X) and R :
X → X be two operators satisfying

ρ(Tx, Ty) ≤ αD(Ry, Ty)[1 +D(Rx, Tx)]

1 + d(Rx,Ry)
+ βd(Rx,Ry),∀x, y ∈ X (2.1)

where α, β are some non-negative real numbers with α + β < 1. Suppose that R is
continuous and T (X) ⊂ R(X). Then R and T have a coincidence point.
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Proof. Let x0 ∈ X be arbitrary. Since T (x0) ⊂ T (X) ⊂ R(X), there exists x1 ∈ X
such that R(x1) ∈ T (x0). For R(x1) ∈ T (x0) and T (x1), by well-known property of
the functional ρ, for any q > 1, there exists u1 ∈ T (x1) such that

d(Rx1, u1) ≤ qρ(Tx0, Tx1).

Since u1 ∈ T (x1) ⊂ T (X) ⊂ R(X) there exists x2 ∈ X such that u1 = R(x2) ∈ T (x1).
Thus

d(Rx1, Rx2) ≤ qρ(Tx0, Tx1) ≤ q
[
αD(Rx1, Tx1)[1 +D(Rx0, Tx0)]

1 + d(Rx0, Rx1)
+ βd(Rx0, Rx1)

]
≤ q

[
αd(Rx1, Rx2)[1 + d(Rx0, Rx1)]

1 + d(Rx0, Rx1)
+ βd(Rx0, Rx1)

]
.

Hence

(1− qα)d(Rx1, Rx2) ≤ qβd(Rx0, Rx1)

and so

d(Rx1, Rx2) ≤ qβ

1− qα
d(Rx0, Rx1).

Now, for R(x2) ∈ T (x1) and T (x2), for the same arbitrary q > 1, there exists u2 ∈
T (x2) such that

d(Rx2, u2) ≤ qρ(Tx1, Tx2).

Again, since u2 ∈ T (x2) ⊂ T (X) ⊂ R(X) there exists x3 ∈ X such that u2 = R(x3) ∈
T (x2). In this case, by a similar procedure, we obtain

d(Rx2, Rx3) ≤ qβ

1− qα
d(Rx1, Rx2) ≤

(
qβ

1− qα

)2

d(Rx0, Rx1).

By this procedure, we obtain a sequence un := R(xn+1) ∈ T (xn), n ∈ N∗ such that

d(Rxn, Rxn+1) ≤ qρ(Txn−1, Rxn)

and

d(Rxn, Rxn+1) ≤
(

qβ

1− qα

)n
d(Rx0, Rx1). (2.2)

By choosing 1 < q < 1
α+β , we obtain thus r := qβ

1−qα < 1.

By (2.2) we get that the sequence (Rxn)n∈N∗ is Cauchy in the complete metric
space (X, d). Thus, there exists x∗ such that Rxn → x∗, n → ∞. We will show that
x∗ is a coincidence point for R and T (i.e. Rx∗ ∈ Tx∗).

We estimate

D(Rx∗, Tx∗) = inf
y∈Tx∗

d(Rx∗, y) ≤ d(Rx∗, R(Rxn)) + inf
y∈Tx∗

d(R(Rxn), y)

≤ d(Rx∗, R(Rxn)) +D(Rxn+1, Tx
∗) ≤ d(Rx∗, R(Rxn)) + ρ(Txn, Tx

∗)

≤ d(Rx∗, R(Rxn)) +
αD(Rx∗, Tx∗)[1 +D(Rxn, Txn)]

1 +D(Rxn, Rx∗)
+ βd(Rxn, Rx

∗)

≤ d(Rx∗, R(Rxn)) +
αD(Rx∗, Tx∗)[1 + d(Rxn, Rxn+1)]

1 + d(Rxn, Rx∗)
+ βd(Rxn, Rx

∗)
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Letting n→∞ and R continuous, we obtain

D(Rx∗, Tx∗) ≤ αD(Rx∗, Tx∗)

(1− α)D(Rx∗, Tx∗) ≤ 0.

Since α, β > 0, then T and R has a coincidence point. �

In the next paragraph we will prove Theorem 1.6 using Theorem 1.7 condition.

Theorem 2.2. Let (X, d) be a complete metric space, x0 ∈ X and r > 0. Let T :

B̃(x0; r) → Pcl(X) be a multivalued operator for which there exist α, β ∈ R∗+ with
α+ β < 1 such that

H(Tx, Ty) ≤ αD(y, Ty)[1 +D(x, Tx)]

1 + d(x, y)
+ βd(x, y), for all x, y ∈ X. (2.3)

We also suppose that D(x0, Tx0) <

(
1− α− β

1− α

)
r. Then F (T ) 6= ∅.

Proof. We will inductively construct a sequence xn ⊂ B̃(x0; r) such that
i) xn ∈ Txn+1, ∀n ∈ N∗
ii) d(xn, xn−1) < kn−1r. We denote by k = β

1−α ∈ [0, 1).

From the condition D(x0, Tx0) < ( 1−α−β
1−α )r we have that exists x1 ∈ T (x0) such

that d(x0, x1) < (1 − k)r. Suppose that we construct x1, x2, ..., xn ∈ B̃(x0, r) with
properties i) and ii), now we have to prove the existence of xn+1. We have

H(Txn−1, Txn) ≤ αD(xn, Txn)[1 +D(xn−1, Txn−1)]

1 + d(xn−1, xn)
+ βd(xn−1, xn)

≤ αD(xn, Txn)[1 + d(xn−1, xn)]

1 + d(xn−1, xn)
+ βd(xn−1, xn)

= αD(xn, Txn) + βd(xn−1, xn) < αH(Txn−1, Txn) + βd(xn−1, xn)

H(Txn−1, Txn) ≤ β

1− α
d(xn−1, xn) ≤

(
β

1− α

)n
d(x0, x1)

<

(
β

1− α

)n(
1− β

1− α

)
r.

This proves that xn+1 ∈ Txn such that

d(xn+1, xn) <

(
β

1− α

)n(
1− β

1− α

)
r,

so using k we will have d(xn+1, xn) < kn(1− k)r.
Moreover, we have

d(xn+p, xn) ≤ (1 + k + ...+ kp−1)kn(1− k)r

≤ kp

1− k
kn(1− k)r → 0 as n, p→∞. (2.4)

Therefore (xn)n∈N is a Cauchy sequence, with lim
n→∞

xn = x∗0 ∈ B̃(x0, r). Because T is

closed we obtain
D(x∗0, Tx

∗
0) ≤ d(x∗0, xn+1) +H(Txn, Tx

∗
0)
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≤ d(x∗0, xn+1) +
αD(x∗0, Tx

∗
0)[1 +D(xn, Txn)]

1 + d(xn, x∗0)
+ βd(xn, x

∗
0)

≤ d(x∗0, xn+1) +
αD(x∗0, Tx

∗
0)[1 + d(xn, xn+1)]

1 + d(xn, x∗0)
+ βd(xn, x

∗
0).

Letting n→∞, we have

D(x∗0, Tx
∗
0) ≤ αD(x∗0, Tx

∗
0).

This proves that x∗0 is a fixed point of Tx∗0. �

The next part of this section, is devoted to generalize Theorem 1.4 to the case
of multivalued operators.

Theorem 2.3. Let (X, d) be a complete metric space, let ψ ∈ Ψ and T : X → Pcl(X)
be a multivalued operator for which there exist α, β ∈ R∗+ with α+ β < 1 such that

ψ[H(Tx, Ty)] ≤ αψ[m(x, y)] + βψ[d(x, y)], for all x, y ∈ X (2.5)

where

m(x, y) = D(y, Ty)
1 +D(x, Tx)

1 + d(x, y)
. (2.6)

Then T has a fixed point x∗ ∈ X, and there exists a sequence (xn)n∈N ⊂ X with
x0 ∈ X and xn+1 ∈ T (xn), n ∈ N such that lim

n→∞
xn = x∗.

Proof. Let x0 ∈ X be arbitrary chosen and let (xn) be a sequence defined as follows:
xn+1 ∈ Txn ⊂ Tn+1x0,for each n ≥ 1. Now,

ψ[d(xn, xn+1)] ≤ ψ[qH(Txn−1, Txn)] ≤ qαψ[m(xn−1, xn)] + qβψ[d(xn−1, xn] (2.7)

using (2.6),

m(xn−1, xn) = D(xn, Txn)
1 +D(xn−1, Txn−1)

1 + d(xn−1, xn)

≤ d(xn, xn+1)
1 + d(xn−1, xn)

1 + d(xn−1, xn)
= d(xn, xn+1).

Substituting it into (2.7), it follows that,

ψ[d(xn, xn+1) ≤ qαψ[d(xn, xn+1)] + qβψ[d(xn−1, xn)]

so we have,

ψ[d(xn, xn+1)] ≤ qβ

1− qα
ψ[d(xn−1, xn)]

≤
(

qβ

1− qα

)2

ψ[d(xn−2, xn−1)] ≤ ... (2.8)

≤
(

qβ

1− qα

)n
ψ[d(x0, x1)] (2.9)

Since r = qβ
1−qα ∈ (0, 1), from (2.8) we obtain

lim
n→∞

ψ[d(xn, xn+1)] = 0.
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From the fact that ψ ∈ Ψ, we have

lim
n→∞

d(xn, xn+1) = 0.

Now we will show that (xn) is a Cauchy sequence. Using (2.9), moreover, for n < m,
we have

ψ[d(xn, xm)] ≤ ψ[d(xn−1, xn)] + ...+ ψ[d(xm−1, xm)] ≤ (rn + ...+ rm−1)ψ[d(x0, x1)]

≤ rn

1− r
ψ[d(x0, x1)]→ 0 as n,m→∞. (2.10)

Therefore (xn) is a Cauchy sequence. Since (X, d) is a complete metric space, we get
that x ∈ X lim

n→∞
xn = x∗.

ψ[D(x∗, Tx∗)] = ψ[ inf
y∈Tx∗

d(x∗, y)] ≤ ψ[d(x∗, xn+1)] + ψ[ inf
y∈Tx∗

d(xn+1, y)]

≤ ψ[d(x∗, xn+1)] + ψ[H(Txn, Tx
∗)]

≤ ψ[d(x∗, xn+1)] + αψ[m(xn, x
∗)] + βψ[d(xn, x

∗)]

≤ ψ[d(x∗, xn+1)] + αψ[D(x∗, Tx∗)
1 +D(xn, Txn)

1 + d(xn, x∗
)] + βψ[d(xn, x

∗)

≤ ψ[d(x∗, xn+1)] + αψ[D(x∗, Tx∗)
1 + d(xn, xn+1)

1 + d(xn, x∗)
] + βψ[d(xn, x

∗).

Letting n→∞ we obtain

ψ[D(x∗, Tx∗)](1− α) ≤ 0.

Since ψ ∈ Ψ, we have D(x∗, Tx∗) = 0. This proves that x∗ ∈ FT . �

As a consequence, we obtain the following fixed point theorem.

Corollary 2.4. Let (X, d) be a complete metric space and let T : X → Pcl(X) be a
multivalued operator. We assume that for each x, y ∈ X,

H(Tx,Ty)∫
0

ϕ(t)dt ≤ α

D(y,Ty)
1+D(x,Tx)
1+d(x,y)∫

0

ϕ(t)dt+ β

d(x,y)∫
0

ϕ(t)dt (2.11)

where 0 < α + β < 1 and ϕ : R+ → R+, is a Lebesque integrable operator which is

summable on each compact subset of [0,+∞), non negative and such that
ε∫
0

ϕ(t)dt > 0

for all ε > 0. Then T admits a fixed point x∗ ∈ X such that for each x ∈ X

lim
n→∞

xn = x∗, xn ∈ Tnx.

Proof. Let ϕ : R+ → R+, be as in the corollary, we define

ψ0(t) =

t∫
0

ϕ(t)dt, t ∈ R+.
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ψ0 is monotonically non decreasing and by hypothesis ψ0 is continuous. Therefore,
ψ0 ∈ Ψ. So the condition (2.11) becomes

ψ0[H(Tx, Ty)] ≤ αψ0

[
D(y, Ty)

1 +D(x, Tx)

1 + d(x, y)

]
+ βψ0[d(x, y)]∀x, y ∈ X.

So, from Theorem 2.3 we have that exists x∗ ∈ X such that for each x∗ ∈ F (T )
and there exist a sequence(xn)n∈N ⊂ X with x0 ∈ X and xn+1 ∈ T (xn), n ∈ N such
that lim

n→∞
xn = x∗ . �

Example 2.5. Let X = {(0, 0, 0), (0, 0, 1), (1, 0, 0)} be endowed with the metric d.
Consider the multivalued operator T : X → Pcl(X) and a singlevalued operator
R : X → X defined by

T (x) =

 {(1, 0, 0)}, if x = (0, 0, 1)
{(0, 0, 0)}, if x = (0, 0, 0)
{(0, 0, 0), (1, 0, 0)}, if x = (1, 0, 0)

R(x) =

 {(1, 0, 0)}, if x = (0, 0, 1)
{(0, 0, 0)}, if x = (0, 0, 0)
{(0, 0, 1)}, if x = (1, 0, 0)

Then FT = {(0, 0, 0), (1, 0, 0)}, FR = {(0, 0, 0)}, C(R, T ) = {(0, 0, 1), (0, 0, 0)} and
Theorem 2.1 is verified for α = 1

9 , β = 7
8 , α+ β < 1.
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Improved error analysis of Newton’s method
for a certain class of operators

I.K. Argyros and S.K. Khattri

Abstract. We present an improved error analysis for Newton’s method in order
to approximate a locally unique solution of a nonlinear operator equation using
Newton’s method. The advantages of our approach under the same computational
cost – as in earlier studies such as [15, 16, 17, 18, 19, 20] – are: weaker sufficient
convergence condition; more precise error estimates on the distances involved
and an at least as precise information on the location of the solution. These
advantages are obtained by introducing the notion of the center γ0−condition.
A numerical example is also provided to compare the proposed error analysis to
the older convergence analysis which shows that our analysis gives more precise
error bounds than the earlier analysis.

Mathematics Subject Classification (2010): 47H17, 49M15.

Keywords: Nonlinear operator equation, Newton’s method, Banach space, semi-
local convergence, Smale’s α-theory, Fréchet-derivative.

1. Introduction

Let X, Y be Banach spaces. Let U(x, r) and U(x, r) stand, respectively, for the
open and closed ball in X with center x and radius r > 0. L(X,Y) denotes the space
of bounded linear operators from X into Y. In the present paper we are concerned
with the problem of approximating a locally unique solution x? of nonlinear operator
equation

F (x) = 0, (1.1)

where F is a Fréchet continuously differentiable operator defined on U(x0, R) for some
R > 0 with values in Y.

Several problems from various disciplines such as Computational Sciences can
be brought in the form of equation (1.1) using Mathematical Modelling [13, 14, 21, 5,
7, 17, 18]. The solution of these equations can rarely be found in closed form. That is
why the solution methods for these equations are iterative. In particular, the practice
of numerical functional analysis and operator theory for finding such solutions is
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essentially connected to variants of Newton’s method [1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12,
13, 14, 15, 16, 17, 18, 19, 20, 21, 22].

The study about convergence matter of Newton methods is usually centered
on two types: semi-local and local convergence analysis. The semi-local convergence
matter is, based on the information around an initial point, to give criteria ensuring
the convergence of Newton methods; while the local one is, based on the information
around a solution, to find estimates of the radii of convergence balls. We find in the
literature several studies on the weakness and/or extension of the hypothesis made
on the underlying operators.

There is a plethora on local as well as semi-local convergence results, we refer
the reader to [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20,
21, 22]. The most famous among the semi-local convergence of iterative methods is
the celebrated Kantorovich theorem for solving nonlinear equations. This theorem
provides a simple and transparent convergence criterion for operators with bounded
second derivatives F ′′ or the Lipschitz continuous first derivatives [2, 7, 8, 11, 13, 14,
22]. Another important theorem inaugurated by Smale at the International Conference
of Mathematics [17, 18], where the concept of an approximate zero was proposed and
the convergence criteria were provided to determine an approximate zero for analytic
function, depending on the information at the initial point. Wang [20] generalized
Smale’s result by introducing the γ-condition (see (1.3)). For more details on Smale’s
theory, the reader can refer to the excellent Dedieu’s book [10, Chapter 3.3]. Newton’s
method defined by{

x0 is an initial point
xn+1 = xn − F ′(xn)−1 F (xn) for each n = 0, 1, 2, · · · (1.2)

is undoubtedly the most popular iterative process for generating a sequence {xn}
approximating x? [8]. Here, F ′(x) ∈ L(X,Y) denotes the Fréchet-derivative of F at
x ∈ U(x0, R).

In the present paper motivated by the works in [9, 15, 16, 17, 18, 19, 20, 21] and
optimization considerations, we expand the applicability of Newton’s method under
the γ-condition by introducing the notion of the center γ0-condition (to be precised
in Definition 3.1) for some γ0 ≤ γ. This way we obtain more precise upper bounds
on the norms of ‖ F ′(x)−1 F ′(x0) ‖ for each x ∈ U(x0, R) (see (1.3), (2.2) and (2.3))
leading to weaker sufficient convergence conditions and a tighter convergence analysis
than in earlier studies such as [15, 16, 17, 18, 19, 20, 21]. Our approach of introducing
center-Lipschitz condition has already been fruitful for expanding the applicability
of Newton’s method under the Kantorovich-type theory [2, 3, 4, 5, 6, 7, 13, 14, 22].
Wang [20] used the γ−Lipschitz condition which is given by∥∥∥F ′(x0)−1 F ′′(x)

∥∥∥ ≤ 2 γ(
1− γ ‖x− x0‖

)3 for each x ∈ U(x0, r), 0 < r ≤ R (1.3)

where γ > 0 and x0 are such that γ ‖ x− x0 ‖< 1 and F ′(x0)−1 ∈ L(Y,X) to show
the following semi-local convergence result for Newton’s method.
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Theorem 1.1. [20] Let F : U(x0, R) ⊆ X −→ Y be twice-Fréchet differentiable.
Suppose there exists x0 ∈ U(x0, R) such that F ′(x0)−1 ∈ L(Y,X) and∥∥∥F ′(x0)−1 F (x0)

∥∥∥ ≤ β; (1.4)

condition (1.3) holds and for α = γ β

α ≤ 3− 2
√

2; (1.5)

t? ≤ R, (1.6)

where

t? =
1 + α−

√
(1 + α)2 − 8α

4 γ
≤
(

1− 1√
2

)
1

γ
. (1.7)

Then, sequence {xn} generated by Newton’s method is well defined, remains in
U(x0, t

?) for each n = 0, 1, · · · and converges to a unique solution x? ∈ U(x0, t
?)

of equation F (x) = 0.

Moreover, the following error estimates hold

‖xn+1 − xn‖ ≤ tn+1 − tn (1.8)

and

‖xn+1 − x?‖ ≤ t? − tn, (1.9)

where scalar sequence {tn} is defined by
t0 = 0, t1 = β,

tn+1 = tn +
γ (tn − tn−1)2(

2− 1

(1− γ tn)2

)
(1− γtn)(1− γtn−1)2

= tn −
ϕ(tn)

ϕ′(tn)
(1.10)

for each n = 1, 2, · · · , where

ϕ(t) = β − t+
γ t2

1− γ t . (1.11)

Notice that t? is the small zero of equation ϕ(t) = 0, which exists under the hypothesis
(1.5).

The rest of the paper is organized as follows. Section 2 contains the semi-local
and local convergence analysis of Newton’s method. A numerical example is given in
the concluding Section 3.

2. Semi-local convergence of Newton’s method

We need some auxiliary results. We shall use the Banach lemma on invertible
operators [2, 7, 12].
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Lemma 2.1. Let A, B be bounded linear operators, where A is invertible and ‖ A−1 ‖
‖ B ‖< 1.

Then, A+B is invertible and

‖ (A+B)−1 ‖≤ ‖ A−1 ‖
1− ‖ A−1 ‖ ‖ B ‖ . (2.1)

We shall also use the following definition of Lipschitz and local Lipschitz conditions.

Definition 2.2. (see [9, p. 634], [22, p. 673]) Let F : U(x0, R) −→ Y be Fréchet-
differentiable on U(x0, R). We say that F ′ satisfies the Lipschitz condition at x0 if
there exists an increasing function ` : [0, R] −→ [0,+∞) such that

‖ F ′(x0)−1 (F ′(x)− F ′(y)) ‖≤ `(r) ‖ x− y ‖
for each x, y ∈ U(x0, r), 0 < r ≤ R. (2.2)

In view of (2.2), there exists an increasing function `0 : [0, R] −→ [0,+∞) such that
the center-Lipschitz condition

‖ F ′(x0)−1 (F ′(x)− F ′(x0)) ‖≤ `0(r) ‖ x− x0 ‖
for each x ∈ U(x0, r), 0 < r ≤ R (2.3)

holds. Clearly,

`0(r) ≤ `(r) for each r ∈ (0, R] (2.4)

holds in general and `(r)/`0(r) can be arbitrarily large [2, 3, 4, 5, 6, 7].

Lemma 2.3. (see [9, p. 638]) Let F : U(x0, R) −→ Y be Fréchet-differentiable on
U(x0, R). Suppose F ′(x0)−1 ∈ L(Y,X) and there exist 0 < γ0 ≤ γ such that γ0R < 1,
γ R < 1. Then, F ′ satisfies conditions (2.2) and (2.3), respectively, with

`(r) :=
2 γ

(1− γ r)3 (2.5)

and

`0(r) :=
γ0 (2− γ0 r)
(1− γ0 r)2

. (2.6)

Notice that with preceding choices of functions ` and `0, we have that

`0(r) < `(r) for each r ∈ (0, R]. (2.7)

We also need a result by Zabrejko and Nguen.

Lemma 2.4. (see [22, p. 673]) Let F : U(x0, R) −→ Y be Fréchet-differentiable on
U(x0, R). Suppose F ′(x0)−1 ∈ L(Y,X) and

‖ F ′(x0)−1 (F ′(x)− F ′(y)) ‖≤ λ(r) ‖ x− y ‖
for each x, y ∈ U(x0, r), 0 < r ≤ R

for some increasing function λ : [0, R] −→ [0,+∞). Then, the following assertion
holds

‖ F ′(x0)−1 (F ′(x+ p)− F ′(x)) ‖≤ Λ(r+ ‖ p ‖)− Λ(r)
for each x ∈ U(x0, r), 0 < r ≤ R and ‖ p ‖≤ R− r,



Improved error analysis of Newton’s method 113

where

Λ(r) =

∫ R

0

λ(t) dt.

In particular, if

‖ F ′(x0)−1 (F ′(x)− F ′(x0)) ‖≤ λ0(r) ‖ x− x0 ‖
for each x ∈ U(x0, r), 0 < r ≤ R

for some increasing function λ0 : [0, R] −→ [0,+∞). Then, the following assertion
holds

‖ F ′(x0)−1 (F ′(x0 + p)− F ′(x0)) ‖≤ Λ0(‖ p ‖)
for each 0 < r ≤ R and ‖ p ‖≤ R− r,

where

Λ0(r) =

∫ R

0

λ0(t) dt.

Using the center-Lipschitz condition and Lemma 2.3, we can show the following
result on invertible operators.

Lemma 2.5. Let F : U(x0, R) −→ Y be Fréchet-differentiable on U(x0, R). Suppose
F ′(x0)−1 ∈ L(Y,X) and γ0R < 1 for some γ0 > 0 and x0 ∈ X; center-Lipschitz

(2.3) holds on U0 = U(x0, r0), where `0(r) is given by (2.6) and r0 = (1 − 1√
2

)
1

γ0
.

Then F ′(x)−1 ∈ L(Y,X) on U0 and satisfies

‖ F ′(x)−1 F ′(x0) ‖≤
(

2− 1

(1− γ0 r)2
)−1

. (2.8)

Proof. We have by (2.3), (2.6) and x ∈ U0 that

‖ F ′(x0)−1 (F ′(x)− F ′(x0)) ‖≤ `0(r) r ≤ 1

(1− γ0 r)2
− 1 < 1.

The result now follows from Lemma 2.1. The proof of Lemma 2.5 is complete. �

Using (1.3) a similar to Lemma 2.1, Banach lemma was given in [20] (see also [9]).

Lemma 2.6. Let F : U(x0, R) −→ Y be twice Fréchet-differentiable on U(x0, R).
Suppose F ′(x0)−1 ∈ L(Y,X) and γ R < 1 for some γ > 0 and x0 ∈ X; condition

(1.3) holds on V0 = U(x0, r0), where r0 = (1 − 1√
2

)
1

γ
. Then F ′(x)−1 ∈ L(Y,X) on

V0 and satisfies

‖ F ′(x)−1 F ′(x0) ‖≤
(

2− 1

(1− γ r)2
)−1

. (2.9)

Remark 2.7. It follows from (2.8), (2.9) and γ0 ≤ γ that (2.8) is more precise upper
bound on the norm of F ′(x)−1 F ′(x0). This observation leads to a tighter majorizing
sequence for {xn} (see Proposition 2.11).

We need an auxiliary result on majorizing sequences for Newton’s method (1.2).
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Lemma 2.8. Let β > 0, γ0 > 0, γ > 0 with γ0 > γ be given parameters. Define
parameters si for i = 0, 1, 2 by

s0 = 0, s1 = β, s2 = β +
γ0 β

2[
2− 1

(1− γ0 β)2

]
(1− γ0 β)

(2.10)

and function Ψ on [β, 1/γ0] by

Ψ(t) = (t− β)γ β (1− γ0 t)2 −
(
t− β − (s2 − s1)

)[
2(1− γ0 t)2 − 1

]
(1− γ t)3. (2.11)

Suppose that

β < b := min

{
1

γ
,

0.25331131

γ0

}
(2.12)

then, the following hold

0 < s2 − s1 <
1− γ0β
γ0

, (2.13)

γ0β < 1− 1√
2

(2.14)

and function ψ has zeros in (β, 1/γ0). Denote by ρ the smallest zero of the function
Ψ in (β, 1/γ0). Moreover suppose that

s2 ≤ ρ < b (2.15)

where s2 and b are given in (2.10) and (2.12), respectively. Then, for

δ = 1− s2 − s1
ρ− β (2.16)

the following hold

0 <
γβ(1− γ0ρ)2(

2(1− γ0ρ)2 − 1
)

(1− γρ)3
= δ < 1, (2.17)

s2 − s1
1− δ + β = ρ (2.18)

and the iteration {sn} defined by

sn+2 = sn+1 +
γ(sn+1 − sn)2[

2− 1

(1− γ0 sn+1)2

]
(1− γ sn+1)(1− γ sn)2

(2.19)

for each n = 1, 2, . . . is strictly increasing, bounded from above by ρ and converges to
its unique least upper bound s? which satisfies

s2 ≤ s? ≤ ρ. (2.20)

Furthermore, the following estimates hold

sn+2 − sn+1 ≤ δn(s2 − s1) for each n = 1, 2, . . . . (2.21)
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Proof. The left hand side inequality in (2.13) is true by the definition of s1, s2 and
since 2(1 − γ0β)2 − 1 > 0 and 1 − γ0β > 0 by (2.12). The right hand side of (2.13)
shall be true, if

γ0(s1 − s0)2[
2(1− γ0 s1)2 − 1

]
(1− γ0β)

<
1− γ0β
γ0

or (γ0β)2 < (1− γ0β)2
(

2(1− γ0 β)2− 1
)

or for z = 1− γ0β if 2z4− 2z2 + 2z− 1 > 0,

or if z > 0.74668869 which is true by (2.12). Estimate (2.14) follows from (2.12) since

1− 1/
√

2 = 0.292853219 > 0.25331131 . . . . Using (2.11) we have that

Ψ(β) = (s2 − s1)
[
2(1− γ2β)2 − 1

]
(1− γβ)3 > 0,

since s2 − s1 > 0, 2(1− γ0β)2 − 1 > 0 and 1− γβ > 0. We also have that

Ψ(
1

γ0
) =

[ 1

γ0
− β − (s2 − s1)

](
1− γ

γ0

)(
1− γ

γ0

)2
< 0

by (2.13) and γ0 < γ. It follows from the Intermediate mean value theorem applied to
function Ψ on the interval (β, 1/γ0) that function Ψ has zeros on (β, 1/γ0). Denote by
ρ the smallest such zero. Then, it follows from the definition of δ, ρ that the equality
(2.17) holds. The left hand inequality holds by (2.12) and (2.15). The right hand side
inequality in (2.17) holds by (2.13) and (2.15) since β < s2 ≤ ρ. Moreover, we have
by (2.16), (2.17) and (2.19) that

0 < s3 and 0 < s3 − s2 ≤ δ(s2 − s1). (2.22)

Then, we also have by (2.22) that

s3 ≤ s2 + δ(s2 − s1)− s1 + s1 = s1 + (1 + δ)(s2 − s1)

= β +
1− δ2
1− δ (s2 − s1) ≤ β +

s2 − s1
1− δ = ρ.

Hence, we deduce that

s3 ≤ ρ. (2.23)

Suppose that

0 < sn+1, 0 < sn+ − sn ≤ δn(s2 − s1) and sn+1 ≤ ρ. (2.24)

Then, we have by (2.31), (2.27) and (2.36) that

sn+2 ≥ 0,

sn+2 − sn+1 =
γ(sn+1 − sn)(sn+1 − sn)[

2− 1

(1− γ0 sn+1)2

]
(1− γ sn+1)(1− γ sn)2

≤ γβ[
2− 1

(1− γ0 ρ)2

]
(1− γρ)3

(sn+1 − sn) = δ(sn+1 − sn)

≤ δn+1(s2 − s1)
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and

sn+2 ≤ sn+1 + δn+1(s2 − s1) ≤ sn + δn(s2 − s1) + δn+1(s2 − s1)

≤ s1 + (1 + δ)(s2 − s1) + · · ·+ δn(s2 − s1) + δn+1(s2 − s1)

= s1 + (1 + δ + · · ·+ δn + δn+1)(s2 − s1)

= s1 +
1− δn+2

1− δ (s2 − s1) ≤ ρ.

Hence, by mathematical induction the proof for (2.24) is finished. Hence, sequence
{sn} is monotonically increasing, bounded from above by ρ and as such it converges
to s?. �

We can show the main following semi-local convergence theorem for Newton’s
method.

Theorem 2.9. Suppose that
(a) There exist x0 ∈ X and β > 0 such that

F ′(x0)−1 ∈ L(Y,X) and
∥∥∥F ′(x0)−1 F (x0)

∥∥∥ ≤ β;

(b) Operator F ′ satisfies Lipschitz and center-Lipschitz conditions (2.2) and (2.3)
on U(x0, r0) with `(r) and `(r) are given by (2.5) and (2.6), respectively;

(c) U0 ⊆ U(x0, R);
(d) Hypotheses of Lemma 2.8 hold for sequence {sn} defined by (2.19).
Then, the following assertions hold: sequence {xn} generated by Newton’s method

is well defined, remains in xoverlineU(x0, s
?) for each n = 0, 1, · · · and converges

to a unique solution x? ∈ U(x0, s
?) of equation F (x) = 0. Moreover, the following

estimates hold
‖xn+1 − xn‖ ≤ sn+1 − sn (2.25)

and
‖xn − x?‖ ≤ s? − sn for each n = 0, 1, 2, · · · . (2.26)

Proof. We use Mathematical Induction to prove that

‖ xk+1 − xk ‖≤ sk+1 − sk (2.27)

and
U(xk+1, s

? − sk+1) ⊆ U(xk, s
? − sk) for each k = 1, 2, · · · . (2.28)

Let z ∈ U(x1, s
? − s1). Then, we obtain that

‖ z − x0 ‖≤‖ z − x1 ‖ + ‖ x1 − x0 ‖≤ s? − s1 + s1 − s0 = s? − s0,
which implies z ∈ U(x0, s

? − s0). Note also that

‖ x1 − x0 ‖=‖ F ′(x0)−1 F (x0) ‖≤ η = s1 − s0.
Hence, estimates (2.27) and (2.28) hold for k = 0. Suppose these estimates hold for
natural integers n ≤ k. Then, we have that

‖ xk+1 − x0 ‖≤
k+1∑
i=1

‖ xi − xi−1 ‖≤
k+1∑
i=1

(si − si−1) = sk+1 − s0 = sk+1
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and

‖ xk + θ (xk+1 − xk)− x0 ‖≤ sk + θ (sk+1 − sk) ≤ s? for all θ ∈ (0, 1).

Using (2.2), Lemma 2.1 for x = xk+1 and the induction hypotheses we get that

‖ F ′(x0)−1 (F ′(xk+1)− F ′(x0)) ‖ ≤ 1

(1− γ0 ‖ xk+1 − x0 ‖)2
− 1

≤ 1

(1− γ0 sk+1)2
− 1 < 1.

(2.29)

It follows from (2.29) and the Banach lemma 2.1 on invertible operators that
F ′(xk+1)−1 exists and

‖ F ′(xk+1)−1 F ′(x0) ‖≤
(

2− 1

(1− γ0 sk+1)2

)−1
. (2.30)

Using (1.2), we obtain the approximation

F (xk+1) = F (xk+1)− F (xk)− F ′(xk) (xk+1 − xk)

=

∫ 1

0

(F ′(xτk)− F ′(xk)) dτ (xk+1 − xk),
(2.31)

where xτk = xk + τ (xk+1 − xk) and xτ sk = xk + τ s (xk+1 − xk) for each 0 ≤ τ, s ≤ 1.
Using (2.9) for k = 0 we obtain∥∥∥F ′(x0)−1F (x1)

∥∥∥ ≤ ∫ 1

0

∥∥∥∥F ′(x0)
[
F ′(x0 + τ(x1 − x0))− F ′(x0)

]∥∥∥∥dτ‖x1 − x0‖

≤
∫ 1

0

[ 1

(1− γ0τ‖x1 − x0‖)2
− 1
]
dθ‖x1 − x0‖

≤ γ0‖x1 − x0‖2
1− γ0‖x1 − x0‖

≤ γ0(s1 − s0)

1− γ0 s1
.

Then, using (2.9) for k = 1, 2, . . . , we get

‖ F ′(x0)−1 F (xk+1) ‖
≤
∫ 1

0

‖ F ′(x0)−1 (F ′(xτk)− F ′(xk)) ‖ dτ ‖ xk+1 − xk ‖

≤
∫ 1

0

∫ 1

0

2 γ τ ds dτ ‖ xk+1 − xk ‖2
(1− γ ‖ xτ sk − x0 ‖)3

≤
∫ 1

0

∫ 1

0

2 γ τ ds dτ ‖ xk+1 − xk ‖2
(1− γ ‖ xk − x0 ‖ −γ τ s ‖ xk+1 − xk ‖)3

=
γ ‖ xk+1 − xk ‖2

(1− γ ‖ xk − x0 ‖ −γ ‖ xk+1 − xk ‖) (1− γ ‖ xk − x0 ‖)2

≤ γ (sk+1 − sk)2

(1− γ sk+1) (1− γ sk)2

(‖ xk+1 − xk ‖
sk+1 − sk

)2

≤ γ (sk+1 − sk)2

(1− γ sk+1) (1− γ sk)2
.

(2.32)
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(see also [16, p. 33, estimate (3.19)]) Then, in view of (1.2), (2.19), (2.30) and (2.32)
we obtain that

‖x2 − x1‖ ≤
∥∥∥F ′(x1)−1F ′(x0)

∥∥∥∥∥∥F ′(x0)−1F (x1)
∥∥∥

≤ 1

2− 1

(1− γ0s1)2

γ0(s1 − s0)2

1− γ0s1
= s2 − s1

and furthermore for k = 1, 2, . . . we obtain

‖ xk+2 − xk+1 ‖=‖ (F ′(xk+1)−1 F ′(x0)) (F ′(x0)−1 F (xk+1)) ‖
≤‖ F ′(xk+1)−1 F ′(x0) ‖ ‖ F ′(x0)−1 F (xk+1) ‖
≤ 1

2− 1

(1− γ0 sk+1)2

γ (sk+1 − sk)2

(1− γ sk+1) (1− γ sk)2
= sk+2 − sk+1.

(2.33)

Hence, we showed (2.27) holds for all k ≥ 0. Furthermore, let w ∈ U(xk+2, s
?−sk+2).

Then, we have that

‖ w − xk+1 ‖ ≤ ‖ w − xk+2 ‖ + ‖ xk+2 − xk+1 ‖
≤ s? − sk+2 + sk+2 − sk+1 = s? − sk+1.

(2.34)

That is w ∈ U(xk+1, s
?−sk+1). The induction for (2.27) and (2.28) is now completed.

Lemma 2.5 implies that {sn} is a complete sequence. It follows from (2.27) and
(2.28) that {xn} is also a complete sequence in a Banach space X and as such it
converges to some x? ∈ U(x0, s

?) (since U(x0, s
?) is a closed set).

By letting k −→∞ in (2.32) we get F (x?) = 0. Estimate (2.26) is obtained from
(2.25) by using standard majorization techniques [2, 7, 12, 13].

Finally, to show the uniqueness part, let y? ∈ U(x0, s
?) be a solution of equation

(1.1). Using (2.3) for x replaced by z? = x? + τ (y? − x?) and G =

∫ 1

0

F ′(z?) dτ we

get as in (2.9) that ‖ F ′(x0)−1 (G − F ′(x0)) ‖< 1. That is G−1 ∈ L(Y,X).

Using the identity 0 = F (x?)− F (y?) = G (x? − y?), we deduce x? = y?. �

Remark 2.10. (a) The convergence criteria in Theorem 2.9 are weaker than in Theorem
1.1. In particular, Theorem 1.1 requires that operator F is twice Fréchet-differentiable
but our Theorem 2.9 requires only that F is Fréchet-differentiable.

Notice also that if F is twice Fréchet-differentiable, then (2.2) implies (1.3).
Therefore, Theorem 2.9 can apply in cases when Theorem 1.1 cannot.

Notice also in practice the computation of constant γ requires the computation
of constant γ0 as a special case.

(b) Concerning the choice of constants γ and γ0 let us suppose that the following
Lipschitz conditions hold. Operator F satisfies L−Lipschitz condition at x0∥∥∥∥F ′(x0)−1

[
F ′(x)− F ′(y)

]∥∥∥∥ ≤ L‖x− y‖ for each x, y ∈ U(x0, R0). (2.35)
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Operator F satisfies the center L0−Lipschitz condition at x0∥∥∥∥F ′(x0)−1
[
F ′(x)− F ′(x0)

]∥∥∥∥ ≤ L0‖x− x0‖ for each x ∈ U(x0, R0). (2.36)

Then, (2.35) implies (2.3) for γ0 = L0/2 and l0(r) = γ0(2−γ0 r)/(1−γ0 r)2. Moreover,
if F is continuously twice-Fréchet differentiable, the (2.34) implies (2.2)for l(r) =
2γ/(1 − γ r)3 and we can set γ = L/2. Examples where γ0 < γ or L0 < L can be
found in [2, 3, 4, 5, 6, 7].

Proposition 2.11. Let F : U(x0, R) −→ Y be twice Fréchet-differentiable on U(x0, R).
Suppose that hypotheses of Theorem 1.1 and the center-Lipschitz condition (2.3) hold
on U(x0, r0). Then, the following assertions hold

(a) Scalar sequences {tn} and {sn} are increasingly convergent to t?, s?, respec-
tively.

(b) Sequence {xn} generated by Newton’s method is well defined, remains in
U(x0, r0) for each n = 0, 1, · · · and converges to a unique solution x? ∈ U(x0, r0) of
equation F (x) = 0. Moreover, the following estimates hold for each n = 0, 1, · · ·

sn ≤ tn, (2.37)

sn+1 − sn ≤ tn+1 − tn, (2.38)

s? ≤ t?, (2.39)

‖ xn+1 − xn ‖≤ sn+1 − sn
and

‖ xn − x? ‖≤ s? − sn.
Proof. According to Theorems 1.1 and 2.9 we only need to show (2.37)–(2.39). Using
the definition of sequences {tn}, {sn} and γ0 ≤ γ, a simple inductive argument shows
(2.37) and (2.38). Finally, (2.39) is obtained by letting n −→∞. �

Remark 2.12. (a) In view of (2.37)–(2.39), our error analysis is tighter and new in-
formation on the location of the solution x? at least as precise as the old one. Notice
also that estimates (2.37) and (2.38) hold as strict inequalities for n > 1 if γ0 < γ
(see also the numerical example) and these advantages hold under the same or less
computational cost as before (see Remark 2.10).

(b) If F is an analytic operator, then a possible choice for γ0(or γ) is given by

γ0 = sup
n>1

∥∥∥∥∥F ′(x0)−1F (x0)n

n!

∥∥∥∥∥
1

n− 1

This choice is due to Smale [17] (see also [15, 16, 17, 18, 19, 20]).

We complete this section with an useful and obvious extension.

Theorem 2.13. Suppose there exists an integer N ≥ 1 such that

s0 < s1 < · · · < sN < R0 = min

{
1

γ
,
(

1− 1√
2

) 1

γ0

}
.
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Let δN = γ βN and βN = tN − tN−1. Conditions of Lemma 2.8 are satisfied for δN
replacing δ. Then, the conclusions of Theorem 2.9 hold. Notice that if N = 1 Theorem
2.13 reduces to Theorem 2.9.

3. Numerical example

We illustrate the theoretical results with a numerical example.

Example 3.1. Let X = Y = R2, x0 = (1, 0), D = U(x0, 1 − κ) for κ ∈ (0, 1). Let us
define function F on D as follows

F (x) = (ζ31 − ζ2 − κ, ζ1 + 3 ζ2 − 3
√
κ) with x = (ζ1, ζ2). (3.1)

Using (3.1) we see that the γ-Lipschitz condition is satisfied for γ = 2 − κ and γ0-
Lipschitz condition is satisfied for γ0 = (3− κ)/2. We also have that β = (1− κ)/3.
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0
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20

30

40
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60
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κ ≈ 0.6255180805

κ

α = γ β

3− 2
√
2

Figure 1. The condition (1.5) of the Theorem 1.1 [20].

The Figure 3.1 plots the condition (1.5) of the Theorem 1.1 [20]. In the Figure

3.1, we notice that for κ ≤ 3/2 −
(√

37− 24
√

2
)
/2, the condition (1.5) fails. As a

consequence the Theorem 1.1 [20] is not applicable. Thus according to the Theorem
1.1 [20] there is no guarantee that the Newton’s method starting from x0 will converge
to the solution x? = ( 3

√
κ, 0).

To compare the error bounds for the Theorem 1.1 and the Lemma 2.8, we con-
sider κ = 0.7. From the Figure 3.1, it is clear that the condition (1.5) holds as a result
the Theorem 1.1 is applicable. For the hypotheses (2.12) and (2.15) of Lemma 2.8 we
obtain

0.1000000000 < 0.2202707044,

0.1179672 < 0.1280403078 < 0.2202707044

respectively. Thus our Lemma 2.8 is applicable and the Newton’s method starting at
x0 = (1, 0) will converge to the solution x? = ( 3

√
κ, 0) for κ = 0.7. Now we compare
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the error bounds generated by the sequence {tn} given in (1.10) and the sequence
{sn} defined in (2.19).

Table 1. Comparison between the sequences {sn} (2.19) and {tn} (1.10) [20].

n sn tn sn+1 − sn tn+1 − tn
0 0.000000× 10+00 0.000000× 10+00 1.000000× 10−01 1.000000× 10−01

1 1.000000× 10−01 1.000000× 10−01 1.796716× 10−02 2.201246× 10−02

2 1.179672× 10−01 1.220125× 10−01 9.900646× 10−04 1.683820× 10−03

3 1.189572× 10−01 1.236963× 10−01 3.196367× 10−06 1.069600× 10−05

4 1.189604× 10−01 1.237070× 10−01 3.341751× 10−11 4.338887× 10−10

5 1.189604× 10−01 1.237070× 10−01 3.652693× 10−21 7.140132× 10−19

6 1.189604× 10−01 1.237070× 10−01 4.364065× 10−41 1.933579× 10−36

7 1.189604× 10−01 1.237070× 10−01 6.229418× 10−81 1.417992× 10−71

8 1.189604× 10−01 1.237070× 10−01 1.269287× 10−160 7.626002× 10−142

9 1.189604× 10−01 1.237070× 10−01 5.269686× 10−320 2.205685× 10−282

In the Table 1, we notice that the error bounds given by the proposed sequence
{sn} are tighter than those given by the older sequence {tn} [20].

Conclusions. Using the notion of the center γ0-Lipschitz condition, we presented a new
convergence analysis for Newton’s method for approximating a locally unique solution
of nonlinear equation in a Banach space setting. Under the same computational cost
– as in earlier studies such as [15, 16, 17, 18, 19, 20] – new analysis provide larger
convergence domain, weaker sufficient convergence conditions and better error bounds.
A numerical example validating the theoretical results is also reported in this study.
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On some generalizations of Nadler’s contraction
principle

Iulia Coroian

Abstract. The purpose of this work is to present some generalizations of the
well known Nadler’s contraction principle. More precisely, using an axiomatic
approach of the Pompeiu-Hausdorff metric we will study the properties of the
fractal operator generated by a multivalued contraction.
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1. Introduction

Let (X,d) be a metric space and P(X) be the set of all subsets of X. Consider
the following families of subsets of X:

P(X):={Y∈ P(X)| Y 6= ∅}, Pb,cl(X):={Y∈ P(X)|Y is bounded and closed}
The following (generalized) functionals are used in the main sections of the paper.

1. The gap functional generated by d:

Dd : P(X )× P(X )→ R+ ∪ {∞}, Dd(A,B) = inf{d(a, b) | a ∈ A, b ∈ B}

2. The diameter generalized functional:

δ : P(X )× P(X )→ R+ ∪ {∞}, δ(A,B) = sup{d(a, b)|a ∈ A, b ∈ B}

3. The excess generalized functional:

ρd : P(X )× P(X )→ R+ ∪ {∞}, ρd(A,B) = sup{D(a,B)|a ∈ A}

4. The Pompeiu-Hausdorff generalized functional:

Hd : P(X )× P(X )→ R+ ∪ {∞}, Hd(A,B) = max{sup
a∈A

Dd(a,B), sup
b∈B

Dd(b, A)}

This paper was presented at the 10th Joint Conference on Mathematics and Computer Science

(MaCS 2014), May 21-25, 2014, Cluj-Napoca, Romania.
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5. The H+-generalized functional:

H+ : P(X )× P(X )→ R+ ∪ {∞}, H+(A,B) :=
1

2
{ρ(A,B) + ρ(B,A)}

Let (X,d) be a metric space. If T : X → P (X) is a multivalued operator, then
x ∈ X is called fixed point for T if and only if x ∈ T (x). The following concepts are
well-known in the literature.

Definition 1.1. [7] Let (X, d) be a metric space. A mapping T : X → Pb,cl(X) is called
a multivalued contraction if there exist a constant k ∈ (0, 1) such that:

Hd(T (x), T (y)) ≤ kd(x, y), for all x, y ∈ X.

Definition 1.2. [5] Let X be a nonempty set and d, ρ two metrics on X. Then, by
definition, d, ρ are called strongly(or Lipschitz) equivalent if there exists c1, c2 > 0
such that:

c1ρ(x, y) ≤ d(x, y) ≤ c2ρ(x, y), for all x, y ∈ X.

Definition 1.3. [7] Let (X, d) be a metric space. Then, by definition, the pair (d,Hd)
has the property (p∗) if for q > 1, for all A,B ∈ P (X) and any a ∈ A, there exists
b ∈ B such that:

d(a, b) ≤ qHd(A,B).

Definition 1.4. [6] Let (X, d) be a metric space. T : X → Pb,cl(x) is called Hd−
upper semi-continuous in x0 ∈ X (Hd-u.s.c) respectively Hd− lower semi-continuous
(Hd−l.s.c) if and only if for each sequence (xn)n∈N ⊂ X such that

lim
n→∞

xn = x0

we have

lim
n→∞

ρd(T (xn), T (x0)) = 0 respectively lim
n→∞

ρd(T (x0), T (xn)) = 0.

2. Main results

Concerning the functional H+ defined below, we have the following properties.

Lemma 2.1. [2] H+ is a metric on Pb,cl(X).

Lemma 2.2. [1] We have the following relations:

1

2
Hd(A,B) ≤ H+(A,B) ≤ Hd(A,B), for all A,B ∈ Pb,cl(X) (2.1)

(i.e., Hd and H+ are strongly equivalent metrics).

Proposition 2.3. [2] Let (X, ||·||) be a normed linear space. For any λ (real or complex),
A,B ∈ Pb,cl(X)

1. H+(λA, λB) = |λ|H+(A,B).
2. H+(A+ a,B + a) = H+(A,B).

Theorem 2.4. [2] If a, b ∈ X and A,B ∈ Pb,cl(X), then the relations hold:
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1. d(a, b) = H+({a}, {b}).
2. A ⊂ S(B, r1), B ⊂ S(A, r2)⇒ H+(A,B) ≤ r where r = r1+r2

2 .

Theorem 2.5. [2] If the metric space (X, d) is complete, then (Pb,cl(X), H+) and
(Pb,cl(X), Hd) are complete too.

Definition 2.6. [2] Let (X,d) be a metric space. A multivalued mapping T : X →
Pb,cl(x) is called (H+, k)-contraction if

1. there exists a fixed real number k, 0 < k < 1 such that for every x, y ∈ X
H+(T (x), T (y)) ≤ kd(x, y).

2. for every x in X, y in T (x) and ε > 0, there exists z in T (y) such that

d(y, z) ≤ H+(T (y), T (x)) + ε.

Theorem 2.7. [2] Let (X, d) be a complete metric space, T : X → Pb,cl(X) be a
multivalued (H+, k) contraction. Then FixT 6= ∅.
Remark 2.8. [1] If T is a multivalued k-contraction in the sense of Nadler then T is
a multivalued (H+, k)-contraction but not viceversa.

Example 2.9. Let X = {0,
1

2
, 2} and d : X × X → R be a standard metric. Let

T : X → Pb,cl(X) be such that

T (x) =


{0,

1

2
}, for x = 0

{0}, for x =
1

2
{0, 2}, for x = 1

Then T is a (H+, k) contraction (with k ∈
[

2
3 ,1)) but is not an k- contraction

in the sense of Nadler, since

Hd(T (0), T (2)) = Hd({0,
1

2
}, {0, 2}) = 2 ≤ kd(0, 2) = 2k ⇒ k ≥ 1,

which is a contradiction with our assumption that k < 1.

Theorem 2.10. [3] (Nadler) Let (X, d) be a metric space and T : X → Pcp(X) be a
multivalued contraction. Then

Hd(T (A), T (B)) ≤ kHd(A,B) for all A,B ∈ Pcp(X). (2.2)

Lemma 2.11. [4] Let (X,d) be a metric space and A,B ∈ Pcp(X).
Then for all a ∈ A there exists b ∈ B such that

d(a, b) ≤ Hd(A,B).

Theorem 2.12. Let (X, d) be a metric space and T : X → Pcp(X) for which there
exists k > 0 such that:

Hd(T (x), T (y)) ≤ kd(x, y), for all x, y ∈ X
Then

H+(T (A), T (B)) ≤ 2kH+(A,B) for all A,B ∈ Pcp(X).
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Proof. Let A,B ∈ Pcp(X).
From (2.2) we have ρ(T (A), T (B)) ≤ kHd(T (A), T (B))
Combining the previous result and Lemma(2.2) we obtain

ρd(T (A), T (B)) ≤ kHd(A,B) ≤ 2kH+(A,B) (2.3)

Interchanging the roles of A and B, we get

ρd(T (B), T (A)) ≤ kHd(B,A) ≤ 2kH+(B,A) (2.4)

Adding (2.3) and (2.4), and then dividing by 2, we get

H+(T (A), T (B)) ≤ 2kH+(A,B). �

Let us recall the relations between u.s.c and Hd−u.s.c of a multivalued operator.
If (X, d) is a metric space, then T : X → Pcp(X) is u.s.c on X if and only if T is
Hd − u.s.c.

Theorem 2.13. Let (X, d) be a metric space and T : X → Pcp(X) be a multivalued
(H+, k)-contraction. Then

(a) T is Hd-l.s.c and u.s.c on X.
(b) for all A ∈ Pcp(X)⇒ T (A) ∈ Pcp(X)
(c) there exists k > 0 such that

H+(T (A), T (B)) ≤ 2kH+(A,B) for all A,B ∈ Pcp(X).

Proof. (a) Let x ∈ X such that xn → x. We have:

ρd(T (x), T (xn)) ≤ Hd(T (x), T (xn)) ≤ 2 ·H+(T (x), T (xn) ≤ 2k · d(x, xn)→ 0

In conclusion, T is Hd-l.s.c on X.
Using the relation:

ρd(T (xn), T (x)) ≤ Hd(T (xn), T (x)) ≤ 2 ·H+(T (xn), T (x) ≤ 2k · d(x, xn)→ 0

we obtain that T is Hd-u.s.c on X.
(b) Let A ∈ Pcp(X). From (a) we obtain the conclusion.
(c) If u ∈ T (A), then there exists a ∈ A such that u ∈ T (a).

From Lemma 2.11 we have that there exists b ∈ T (B) such that

d(a, b) ≤ Hd(A,B) ≤ 2H+(A,B).

Since

D(u, T (B)) ≤ D(u, T (b)) ≤ ρd(T (a), T (b)) (2.5)

taking supu∈T (A) in (2.5), we have

ρd(T (A), T (B)) ≤ ρd(T (a), T (b)) (2.6)

Interchanging the roles of A and B, we get

ρd(T (B), T (A)) ≤ ρd(T (a), T (b)) (2.7)

Adding (2.6) and (2.7), and then dividing by 2, we get for all A,B ∈ Pcp(X) the
following result:

H+(T (A), T (B)) ≤ H+(T (a), T (b)) ≤ kd(a, b) ≤ 2kH+(A,B). �
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As a consequence of the previous result we obtain the following fixed set theorem
for a multivalued contraction with respect to H+.

Theorem 2.14. Let (X, d) be a complete metric space and T : X → Pcp(X) be a
multivalued operator for which there exists k ∈ [0, 1

2 ) such that

H+(T (x), T (y)) ≤ kd(x, y), for all x, y ∈ X
Then, there exists a unique A∗ ∈ Pcp(X) such that T (A∗) = A∗.

Proof. From Theorem 2.13 we obtain that:

H+(T (A), T (B)) ≤ 2kH+(A,B), for all A,B ∈ Pcp(X)

Since k <
1

2
we obtain that T is a 2k-contraction on the complete metric space

(Pcp(X), H+). By Banach contraction principle we get the conclusion. �

In the second part of this section, we will study when the property (p∗) given in
Definition 1.3 can be translated between equivalent metrics on a nonempty set X.

Lemma 2.15. Let X be a nonempty set, d1, d2 two Lipschitz equivalent metrics such
that there exists c1, c2 > 0 with c1 ≤ c2 i.e

c1d1(x, y) ≤ d2(x, y) ≤ c2d1(x, y), for all x, y ∈ X (2.8)

If the pair (d1, Hd1) has the property (p∗), then the pair (d2, Hd2) has the property
(p∗).

Proof. Let c1, c2 such that

c1d1(a, b) ≤ d2(a, b) ≤ c2d1(a, b) for all a ∈ A, b ∈ B (2.9)

and for all q > 1, for all A,B ∈ P (X) and for all a ∈ A, there exists b∗ ∈ B such that

d1(a, b∗) ≤ qHd1(A,B) (2.10)

From (2.9) and (2.10) we obtain:

d2(a, b∗) ≤ c2d1(a, b∗) ≤ c2qHd1(A,B).

If, in c1d1(a,B) ≤ d2(a,B) we take infb∈B , then

c1Dd1(a,B) ≤ Dd2(a,B) | sup
a∈A
⇔ c1ρd1(A,B) ≤ ρd2(A,B).

In a similar way,
c1ρd1(B,A) ≤ ρd2(B,A).

Taking maximum, we get

c1Hd1(A,B) ≤ Hd2(A,B).

Therefore,

d2(a, b∗) ≤
c2

c1
qHd2(A,B),

which means that there exists b′ = b∗ ∈ B such that

d2(a, b∗) ≤ q1Hd2(A,B),
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where q1 :=
c2

c1
q > 1. �

Lemma 2.16. Let X be a nonempty set, d1, d2 two metrics on X such that:

there exists c > 0: d2(x, y) ≤ cd1(x, y) for all x, y ∈ X (2.11)

and G1, G2 two metrics on Pb,cl(X) such that:

there exists e > 0: eGd1(A,B) ≤ Gd2(A,B), for all A,B ∈ Pb,cl(X) (2.12)

with e ≤ c. If the pair (d1, G1) has the property (p∗) then, the property (p∗) is also
true for the pair (d2, G2).

Proof. Let A,B ∈ Pb,cl(X). The pair (d1, Gd1) has the property (p∗) i.e for all q > 1
and for all a ∈ A there exists b∗ ∈ B such that

d1(a, b∗) ≤ qHd1(A,B) (2.13)

From (2.11), (2.12) and (2.13) we obtain:

d2(a, b′) ≤ cd1(a, b′) ≤ cqGd1(A,B) ≤
c

e
qGd2(A,B).

Therefore,

d2(a, b′) ≤
c

e
qGd2(A,B)

which means that there exists b = b′ ∈ B such that

d2(a, b) ≤ q1Gd2(A,B)

where q1 :=
c

e
q > 1 i.e the pair (d2, Gd2) has the property (p∗). �

Lemma 2.17. Let X be a nonempty set, d1, d2 two metrics on X such that:

there exists c > 0: d2(x, y) ≤ cd1(x, y) for all x, y ∈ X (2.14)

and G1, G2 two metrics on Pb,cl(X) such that:

there exists e > 0: Gd2(A,B) ≤ eGd2(A,B), for all A,B ∈ Pb,cl(X) (2.15)

with c · e < 1. If the pair (d1, Gd2) has the property (p∗) then, the property (p∗) is also
true for the pair (d2, Gd1).

Proof. Let A,B ∈ Pb,cl(X). The pair (d1, Gd2) has the property (p∗) i.e for all q > 1
and for all a ∈ A there exits b∗ ∈ B such that

d1(a, b∗) ≤ qGd2(A,B) (2.16)

From (2.14), (2.15) and (2.16) we obtain:

d2(a, b′) ≤ cd1(a, b′) ≤ cqGd2(A,B) ≤ c · e · qGd1(A,B).

Therefore,
d2(a, b′) ≤ c · e · qGd2(A,B)

which means that, there exists b = b′ ∈ B such that

d2(a, b) ≤ q1Gd2(A,B)
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where q1 := c · e · q > 1 i.e the pair (d2, Gd1) has the property (p∗). �

In the next part of this paper we will give some general abstract results for the
metric space Pb,cl(X).

Let (X, d) be a metric space, U ⊂ P (X) and Ψ : U → R+. We define some
functionals on U × U as follows:

1. Let x∗ ∈ X, U ⊂ Pb(X)

GΨ1(A,B) =

{
0, A = B

Ψ1(A) + Ψ1(B), A 6= B

where Ψ1(A) := δ(A, x∗).
2. Let U := Pb(X) and A∗ ∈ Pb(X)

GΨ2(A,B) =

{
0, A = B

Ψ2(A) + Ψ2(B), A 6= B

Where Ψ2(A) = Hd(A,A
∗).

Lemma 2.18. Let (X, d) be a metric space and T : X → Pcp(X) and A,B ∈ Pcp(X).
Let

GΨ1
(A,B) =

{
0, A = B

Ψ1(A) + Ψ1(B), A 6= B

Where Ψ1(A) = δ(A,A∗), A∗ ∈ Pcp(X). Then GΨ1
is a metric on Pcp(X).

Proof. We shall prove that the three axioms of the metric hold:
a) GΨ1

(A,B) ≥ 0 for all A,B ∈ Pcp(X)
GΨ1(A,B) = δ(A,A∗) + δ(B,A∗) ≥ 0
GΨ1(A,B) = 0⇔ A = B.

This is equivalent to Ψ1(A) = 0 and Ψ1(B) = 0 i.e

δ(A,A∗) = 0 and δ(B,A∗) = 0⇔ A = A∗ and B = A∗ ⇒ A = B.

b) GΨ2
(A,B) = GΨ2

(B,A) is quite obviously.
c) For the third axiom of the metric, let consider A,B,C ∈ Pcp(X). We need to show
that:

GΨ1
(A,C) ≤ GΨ1

(A,B) +GΨ(B,C)⇔
⇔ Ψ1(A) + Ψ1(C) ≤ Ψ1(A) + Ψ1(B) + Ψ1(B) + Ψ1(C)⇔

⇔ 0 ≤ 2Ψ1(B) = δ(B,A∗) which is true. �

Lemma 2.19. If (X, d) is a complete metric space, then (Pcp(X), GΨ1
) is complete

metric space.

Proof. We will prove that each Cauchy sequence in (Pcp(X), GΨ1
) is convergent. Let

(An)n∈N, (Am)m∈N ∈ Pcp(X), we have:

GΨ1
(An, Am)→ 0, m, n→ 0⇔ δ(An, A

∗) + δ(Am, A
∗)→ 0⇒

⇒ δ(An, A
∗)→ 0.

Therefore,
GΨ1

(An, A
∗) = δ(An, A

∗) + δ(A∗, A∗)→ 0, n→ 0. �



130 Iulia Coroian

Lemma 2.20. Let (X, d) be a metric space and T : X → Pcp(X) and A,B ∈ Pcp(X).
Let

GΨ1
(A,B) =

{
0, A = B

Ψ1(A) + Ψ1(B), A 6= B

where Ψ1 : Pcp(X) → R+,Ψ1(A) = δ(A,A∗) with A∗ ∈ Pcp(X). Then, the pair
(d,GΨ1

) has the property (p∗).

Proof. We have to show

d(a, b) ≤ qGΨ1
(A,B) ⇐⇒ d(a, b) ≤ q(Ψ1(A) + Ψ1(B))⇔

⇔ d(a, b) ≤ q(δ(A,A∗) + δ(A,A∗))

Suppose, by absurdum, that there exists a ∈ A and there exists q > 1 such that for
all b ∈ B we have:

d(a, b) > q(δ(A,A∗) + δ(B,A∗)).

Then, δ(A, b) ≥ d(a, b) > q(δ(A,A∗) + δ(B,A∗)).
Then, taking supb∈B , we obtain:

δ(A,A∗) + δ(A∗, B) ≤ δ(A,B) ≥ q(δ(A,A∗) + δ(B,A∗))

which is a contradiction with q > 1. �

Theorem 2.21. Let (X, d) be a metric space and T : X → Pcp(X) be a multivalued
operator for which there exists k ∈ (0, 1) such that

δ(T (x), T (y) ≤ kd(x, y).

For all A,B ∈ Pcp(X) we consider

GΨ1
(A,B) =

{
0, A = B

Ψ1(A) + Ψ1(B), A 6= B,

where Ψ1 : Pcp(X) → R+, Ψ1(A) = δ(A,A∗) (with A∗ ∈ Pcp(X) is a given set
satisfying A∗ = T (A∗)). Then,

GΨ1(T (A), T (B)) ≤ kGΨ1(A,B) for all A,B ∈ Pcp(X).

Proof. We shall prove that for each A,B ∈ Pcp(X) we have

δ(T (A), A∗) + δ(T (B), A∗) ≤ k(δ(A,A∗)) + δ(B,A∗)) (2.17)

Since A∗ = T (A∗), we have:

δ(A∗, T (A)) + δ(A∗, T (B)) = δ(T (A∗), T (A)) + δ(T (B∗), T (B))

Since
δ(T (a), T (b)) ≤ kd(a, b) for all a ∈ A and b ∈ B

We have (taking supa∈A,b∈B) that

δ(T (A), T (B)) ≤ kδ(A,B)

We obtain:

δ(A∗, T (A)) + δ(A∗, T (B)) = δ(T (A∗), T (A)) + δ(T (A∗), T (B))

≤ kδ(A∗, A) + kδ(A∗, B) = kGψ1
(A,B)
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which means:

GΨ1
(T (A), T (B)) ≤ kGΨ1

(A,B) for all A,B ∈ Pcp(X). �

Lemma 2.22. Let (X, d) be a metric space and T : X → Pcp(X) and A,B ∈ Pcp(X).
Let

GΨ2
(A,B) =

{
0, A = B

Ψ2(A) + Ψ2(B), A 6= B

where Ψ2 : Pcp(X) → R+, Ψ2(A) = Hd(A,A
∗) with A∗ ∈ Pcp(X). Then GΨ2 is a

metric on Pcp(X).

Proof. We shall prove that the three axioms of the metric hold:
a) GΨ2

(A,B) ≥ 0 for all A,B ∈ Pcp(X)
GΨ2

(A,B) = Hd(A,A
∗) +Hd(B,A

∗) ≥ 0
GΨ2(A,B) = 0⇔ A = B.
This is equivalent to Ψ2(A) = 0 and Ψ2(B) = 0 i.e

Hd(A,A
∗) = 0 and Hd(B,A

∗) = 0⇔ A = A∗ and B = A∗ ⇒ A = B.

b) GΨ2(A,B) = GΨ2(B,A) is quite obviously. c) For the third axiom of the metric,
let consider A,B,C ∈ Pcp(X). We need to show that:

GΨ2
(A,C) ≤ GΨ2

(A,B) +GΨ2
(B,C)⇔

⇔ Ψ2(A) + Ψ2(C) ≤ Ψ2(A) + Ψ2(B) + Ψ2(B) + Ψ2(C)⇔

⇔ 0 ≤ 2Ψ2(B) = 2Hd(B,A
∗) which is true. �

Lemma 2.23. If (X, d) is a complete metric space, then (Pcp(X), GΨ2
) is complete

metric space.

Proof. We will prove that each Cauchy sequence in (Pcp(X), GΨ2) is convergent. Let
(An)n∈N, (Am)m∈N ∈ Pcp(X), we have:

GΨ2
(An, Am)→ 0, m, n→ 0⇔ Hd(An, A

∗) +Hd(Am, A
∗)→ 0⇔

⇔ Hd(An, A
∗)→ 0

Therefore,

GΨ2(An, A
∗) = Hd(An, A

∗) +Hd(A
∗, A∗)→ 0, n→ 0. �

Theorem 2.24. Let (X, d) be a metric space and T : X → Pcp(x) be a multivalued
contraction with respect to Hd and A,B ∈ Pcp(X). Let

GΨ2
(A,B) =

{
0, A = B

Ψ2(A) + Ψ2(B), A 6= B

Where Ψ2 : Pcp(X) → R+, Ψ2(A) = Hd(A,A
∗) (with A∗ ∈ Pcp(X) is a given set

satisfying A∗ = T (A∗)). Then, there exists k ∈ (0, 1) such that

GΨ2
(T (A), T (B)) ≤ kGΨ2

(A,B) for all A,B ∈ Pcp(X).
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Proof. We shall prove that for each A,B ∈ Pcp(X) we have

Hd(T (A), A∗) +Hd(T (B), A∗) ≤ k(Hd(A,A
∗)) +Hd(B,A

∗)).

From (2.2) we have ρd(T (A), T (B)) ≤ Hd(T (A), T (B)).

Then

ρd(T (A), A∗) = ρd(T (A), T (A∗)) ≤ Hd(T (A), T (A∗)) ≤ kHd(A,A
∗).

Interchanging the roles of A and B, we get

ρd(A
∗, T (A)) = ρd(T (A∗), T (A)) ≤ Hd(T (A∗), T (A)) ≤ kHd(A

∗, A).

Making maximum, we get

Hd(T (A), A∗) ≤ kHd(A,A
∗). (2.18)

Similarly for B ∈ Pcp(X), we have

Hd(T (B), A∗) ≤ kHd(B,A
∗). (2.19)

Adding (2.18) and (2.19) we get:

Hd(T (A), A∗) +Hd(T (B), A∗) ≤ k(Hd(A,A
∗)) +Hd(B,A

∗))

which means:

GΨ2
(T (A), T (B)) ≤ kGΨ2

(A,B) for all A,B ∈ Pcp(X). �

Lemma 2.25. Let (X, d) be a metric space and T : X → Pcp(X) and A,B ∈ Pcp(X).
Let

GΨ2(A,B) =

{
0, A = B

Ψ2(A) + Ψ2(B), A 6= B,

where Ψ2 : Pcp(X) → R+, Ψ2(A) = Hd(A,A
∗) with A∗ ∈ Pcp(X). Then, the pair

(d,Gψ2) has the property (p∗).

Proof. We have to show

d(a, b) ≤ qGΨ2(A,B) ⇐⇒ d(a, b) ≤ q(Ψ2(A) + Ψ2(B))⇔

⇔ d(a, b) ≤ q(Hd(A,A
∗) +Hd(A,A

∗))

Supposing again contrary: there exists q > 1 and there exists a ∈ A such that for all
b ∈ B we have:

d(a, b) > q(Hd(A,A
∗) +Hd(B,A

∗)).

Then, taking inf
b∈B

Hd(A,B) ≥ ρd(A,B) ≥ D(a,B) ≥ q(Hd(A,A
∗) +Hd(B,A

∗)).

But

Hd(A,A
∗) +Hd(A

∗, B) ≥ Hd(A,B) ≥ q(Hd(A,A
∗) +Hd(B,A

∗)).

Hence q ≤ 1, a contradiction. �
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[4] Moţ, G., Petruşel, A., Petruşel, G., Topics in Nonlinear Analysis and Applications to
Mathematical Economics, Casa Cărţii de Ştiinţă, Cluj-Napoca, 2007.
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Book reviews

Lance Fortnow, The Golden Ticket: P, NP, and the Search for the Impossible,
Princeton University Press, 2013, ISBN 978-0-691-15649-1.

The class P is the class of problems which can be solved in polynomial time
on deterministic machines. In Complexity Theory tractable is synonym to having
solution algorithm with polynomial runtime. The class NP is the class of problems
which can be solved in polynomial time on nondeterministic machines, or equivalently
having solutions which can be checked in polynomial time.

The P=NP problem is the most important open problem in computer science, if
not all of mathematics. In colloquial language, it asks whether every problem whose
solution can be quickly checked by computer can also be quickly solved by computer.
The Clay Mathematics Institute offers a million-dollar prize for the solution of this
problem.

The title The Golden Ticket is inspired from Roald Dahl’s book, Charlie and
the Chocolate Factory.

The first chapter introduces in a nontechnical way the concepts of P and NP
and gives some examples: the traveling salesman problem and the partition problem
as NP-hard problems; shortest path as an exemplar for P.

In Chapter 2, entitled “The Beautiful World”, Fortnow does a fanciful spiritual
exercise, analyzing the hypothetical consequences of positive answer to P=NP. The
unreal “Urbana algorithm” would leads to world changing: progresses in cancer cure,
weather prediction, and so on. As a negative consequence the author mentioned the
fall of present-day cryptography methods.

Chapter 3 is dedicated to the introduction of standard problems such as cliques,
Hamiltonian path, map coloring, and max-cut. The author starts from “freenemy
graph”, a graph of friendships (and enemies) in a world where every pair of people
is either a friend or an enemy. The author clearly emphasizes the idea that solutions
to these problems are easy to check, but difficult to find. He also talks of polynomial
algorithms: shortest paths, matching, Eulerian paths, and minimum cut.

The history of “P=NP” problem is presented in Chapters 4 and 5. S. Cook
showed in 1971 that the satisfiability problem (SAT) is, in a well-defined sense, as
difficult as any problem in NP and if somebody could solve satisfiability in polyno-
mial time, then every other problem in NP could also be solved in polynomial time.
Richard Karp then showed that not only satisfiability, but another twenty problems
taken from real world had the property that if you solved one of them quickly, all the
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other could be solved quickly. Earlier (in 1960), Jack Edmonds discussed the poly-
nomial/exponential divide in algorithms and pointed out the need for a formalism of
this issue. Besides the western contributions, Fortnow discusses the results of Soviet
mathematicians Levin, Yablonsky and Kolmogorov.

Some approaches concerning how to deal with NP-complete problems are covered
in Chapter 6. Heuristics and approximations, with examples from problems in Chapter
3 are treated with some attention.

Chapter 7 treats topics related to the proof of “P=NP”. Fortnow discusses the
“undecidability” and the relationship between circuit complexity and the P versus NP
problem; he outlines the difficulties in this direction. The chapter ends in a pessimistic
note; Fortnow notes the lack of a path toward resolving the problem and that it is
not clear what directions to choose.

The Chapters 8 and 9 are about cryptography and quantum computing, respec-
tively. The quantum chapter in particular is interesting for the effect of quantum
computing on complexity classes. Having a workable quantum computer would not,
as known so far, allow the solution of NP-complete problems in polynomial time:
the best known speedup only changes the complexity of an algorithm by taking the
square root of its running time. It would, however, affect problems like factoring,
which closely relates the final two chapters.

In the conclusions (Chapter 10), “The Future”, Fortnow makes predictions, high-
lighting parallel computing and big data.

Last, but not least, the book has a nice bibliography of sources which deserve
to be consulted.

Intended audience: undergraduates, the general popular science audience (non-
specialists which wish an introduction to subject), lecturers who want to liven their
courses.

Radu Tr̂ımbiţaş

Leiba Rodman, Topics in Quaternion Linear Algebra, Princeton Series in Applied
Mathematics, Princeton University Press, Princeton, 2014, xii+363 pp, ISBN
978-0-691-16185-3 (hardback).

The algebra H of quaternions, meaning the space R4 endowed with a nocommu-
tative multiplication rule, was discovered by William Rowan Hamilton in 1844 (the
notation H comes from his name). As it is known there only four possibilities to en-
dow Rk with a multiplicative structure: k = 1 the real numbers, k = 2 the complex
numbers, k = 4 the quaternions and k = 8 Cayley’s algebra (or the octonions). The
multiplication in H is noncommutative and in Cayley’s algebra is noncommutative
and nonassociative.

In spite of their numerous applications in quantum physics, engineering (control
systems), computer graphics, chemistry (molecular symmetry), the quaternions were
considered only in chapters of some algebra books or in survey articles. The aim of the
present book is to fill in this gap, being the first one dedicated entirely to a thorough
and detailed presentations of linear algebra over quaternions. Besides classical results
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it contains new, previously unpublished, results with full proofs as well as results
appearing for the first time in book form.

The book can be divided into two parts. The first one (Chapters 2-7), written at
upper undergraduate or graduate level, contains the basic properties of quaternions,
vector spaces and matrices, matrix decompositions, invariant subspaces and Jordan
form, Kroneccker form, Smith form, determinants, numerical ranges. The second one,
Chapters 8-14, is concerned with pencils (meaning matrices of the form A + tB, for
A,B m × n matrices over H, i.e. first degree matrix polynomials) of Hermitian and
skewhermitian matrices and their canonical forms, indefinite inner products and con-
jugation, involutions for matrix pencils and for inner products. Applications are given
to systems of linear differential equations with symmetries and to matrix equations.
This part is written at the level of a research monograph.

The book contains also over than 200 exercises and problems of various levels of
difficulties, ranging from routine to open research problems. They give opportunity
to do original research – concrete, specific problems for undergraduate research and
theses, and the research problems for professional mathematicians and PhD theses.
The prerequisites are modest - familiarity with linear algebra, complex analysis and
some calculus will suffice.

Written in a clear style, with full proofs to almost all included results, the first
part of the book can be used for courses in advanced linear algebra, complemented
with chapters from the second part. For working mathematicians, interested vector
calculus, linear and partial differential equations, as well as practitioners (scientists
and engineers) using quaternions in their research, the book is a fairly complete and
accessible reference tool.

Cosmin Pelea

Boris Makarov and Anatolii Podkorytov, Real Analysis : Measures, Integrals and
Applications, Universitext, Springer, London - Heidelberg - New York - Dordrecht,
2013, ISBN 978-1-4471-5121-0; ISBN 978-1-4471-5121-7 (eBook); DOI 10.1007/978-
1-4471-5122-7, xix + 772 pp.

The specific feature of the present book consists in the presentation of abstract
measure and integration theory alongside with the Lebesgue and Lebesgue-Stieltjes
measure and integral and a lot of applications in analysis and geometry. This approach
facilitates reader’s access to these applications on a complete rigorous basis, usually
lacking in the books treating applications, while most of the books devoted to an
abstract development of the theory neglect consistent applications.

The basics of measure theory are developed in the first chapter, starting with
measures defined on semi-rings of subsets of a given set and using Carathéodori ex-
tension and definition of measure to extend them to σ-algebras. One proves the fun-
damental properties of the Lebesgue measure – regularity, invariance with respect
to rigid motions, behavior under linear maps (used later in the proof of the change
of variables). Hausdorff measures and Vitali coverings are considered as well and, as
application, a proof of the Brun-Minkowski inequalities and a study of some isoperi-
metric problems are included.
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The definition and basic properties of measurable functions are treated in the
third chapter, including various kinds of convergence for sequences of measurable
functions and the fundamental theorems relating them, as well as Luzin’s theorem on
the approximation of Lebesgue measurable functions by continuous functions.

The integration is treated in the fourth chapter, first for positive simple functions
and then for positive measurable functions f as the supremum of the integrals of pos-
itive simple functions majorized by f . Various theorems on the passage to limit under
the integral sign are proved and a detailed study of Lebesgue integral, of functions
with bounded variation and of Lebesgue-Stieltjes integral is included. As special top-
ics, we mention the maximal function of Littlewood-Hardy and Lebesgue’s theorem
on the differentiation of integrals with respect to sets.

Chapter 5, Product measures, is concerned mainly with finite products of mea-
sure, infinite products being discussed briefly at the end of the chapter. As applica-
tions one proves the Cavalieri principle and Gagliardo-Nirenberg-Sobolev inequality
relating the integrals of a smooth function and of its gradient.

The delicate problem of the change of variables in multiple Lebesgue integrals
is treated in the fifth chapter. This chapter contains also a proof of Poincaré’s re-
currence theorem for measure preserving transformations and a study of distribution
functions and zero-one laws in probability theory. Milnor’s proof of Brouwer’s fixed
point theorem based on the change of variables is also included.

Chapter 7 contains a detailed study of integrals (both proper and improper)
depending on parameters with application to the study of Gamma function.

In the seventh chapter, The surface area, after a quick introduction to smooth
manifolds, one proves the key properties of the k-dimensional surface area in Rm and
Gausss-Ostrogradski formula. The area on Lipschitz manifolds is considered in the
last section of the chapter. The theoretical results are applied to harmonic functions.

The last theoretical chapter is Chapter 11. Charges. The Radon-Nikodym the-
orem, devoted to this important result in measure theory. Applications are given
to the differentiation of measures and to the differentiability of Lipschitz functions
(Rademacher’s theorem).

The last of the chapters, 9. Approximation and convolution in the spaces Lp,
10. Fourier series and the Fourier transform, and 12. Integral representation of linear
functionals, are devoted to applications.

A consistent chapter (64 pages), Appendices, surveys some notions and results
(most with proofs) used in the main body of the book – regular measures, extensions
of continuous functions, integration of vector functions, smooth mappings and Sard’s
theorem, convexity.

The book is based on the courses taught by the authors at the Department
of Mathematics and Mechanics of St. Petersburg State University, at various levels.
Since the volume of the included material exceeds the limits of a course in measure
theory, they suggest in the Preface how different chapters (or sections) can be used for
introductory courses on measure theory, or for more advanced ones, at Master level:
maximal functions and the differentiation of measures, Fourier series and Fourier
transform, approximate identities and their applications. Some sections, containing
more specialized topics, marked with ?, can be skipped at the first reading. A diagram
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on the dependence of the chapters is also included. Each section ends with a set of
exercises of various difficulties.

Written in a didactic style, with clear proofs and intuitive motivations for the
abstract notions, the book is a valuable addition to the literature on measure theory
and integration and their applications to various areas of analysis and geometry.
The numerous nontrivial examples and applications are of great importance for those
interested in various domains of modern analysis and geometry, or in teaching.

S. Cobzaş

William Kirk and Naseer Shahzad, Fixed Point Theory in Distance Spaces, Springer,
Heidelberg New-York Dordrecht London, 2014, xi + 173 pp, ISBN 978-3-319-10926-8;
ISBN 978-3-319-10927-5 (eBook); DOI 10.1007/978-3-319-10927-5.

The book is devoted to various aspects of fixed point theory in metric spaces and
their generalizations. Fixed points for contractions, a topic treated in many places, is
omitted from this presentation. The book is divided into three parts: I. Metric spaces,
II. Length spaces and geodesic spaces, and III. Beyond metric spaces.

The main topic in the first part is Caristi’s fixed point theorem and its generaliza-
tions. A special attention is paid to the question whether a proof depends on the axiom
of choice or on some its weaker forms (Dependent Choice (DC), Countable Choice
(CC)), a theme which appears recurrently throughout the book. The fixed point for
nonexpansive mappings is proved within the context of metric spaces endowed with a
compact and normal convexity structure. The proof is based on Zermelo’s fixed point
theorem in ordered sets, requiring only ZF+DC (Zermelo-Fraenkel set theory plus the
axiom of Dependent Choice). The first part closes with a presentation of fixed points
for nonexpansive mappings on hyperconvex metric spaces, with emphasis on hyper-
convex ultrametric spaces (metric spaces (X, d) with d(x, y) ≤ max{d(x, z), d(z, y)}
for all x, y, z ∈ X).

The second part is concerned with spaces which, in addition to their metric
structure, have also a geometric structure – length spaces, geodesic spaces, Busemann
spaces, CAT(k) spaces, Ptolemaic spaces and R-trees (or metric trees).

A semimetric is a function d : X × X → R+ (X being a nonempty set) such
that (i) d(x, y) = 0 ⇐⇒ x = y and (ii) d(x, y) = d(y, x), for all x, y ∈ X. A
b-space is a semimetric space (X, d) such that d(x, y) ≤ s[d(x, y) + d(z, y)] for all
x, y ∈ X. Obviously, X is a metric space for s = 1. One considers also semimetric
spaces satisfying a quadrilateral inequality (instead of the triangle inequality) and
partial metric spaces. Various aspects of fixed point theory in these generalized metric
spaces is examined in the third part of the book.

The book is clearly written and contains a very good selection of results in this
rapidly growing area of research – fixed points in metric spaces and their generaliza-
tions. The sources of the presented results are carefully mentioned as well as references
to related results and further investigation (the bibliography at the end of the book
contains 223 items). The book will be an essential reference tool for researchers work-
ing in fixed point theory as well as for those interested in applications of metric spaces
and their generalizations to other areas – computer science, biology, etc.

S. Cobzaş
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Petr Hájek, Michal Johanis, Smooth Analysis in Banach Spaces, De Gruyter Series
in Nonlinear Analysis and Applications, Vol. 19, xvi + 465 pp, Walter de Gruyter,
Berlin - New York, 2014, ISBN: 978-3-11-025898-1, e-ISBN: 978-3-11-025899-8, ISSN:
0941-813X.

Smoothness is one of the most important and most studied topic in both finite
and infinite dimensional analysis. It turns out that in the infinite dimensional case the
existence and the properties of smooth mappings between Banach spaces are tightly
interconnected withy the structural properties of the underlying spaces. In some cases
the existence of a smooth norm forces the Banach space to be isomorphic to a Hilbert
one. A decisive role in this study is played by the classical Banach spaces c0 and
`p (mainly `1), as well as by other properties as Radon-Nikodym, super-reflexivity,
or being Asplund. In fact many new tools in geometric Banach space theory, as e.g.
ultraproducts, were devised to solve, among others, problems related to smoothness.

The present book is devoted to a thorough and detailed presentation of var-
ious aspects of smoothness in Banach space setting. In this case, like in the finite
dimensional one, a prominent role is played by polynomials, via Taylors formula –
the most important result concerning smooth mappings. As the authors point out
in the Introduction: “In the infinite dimensional setting the role of polynomials is
brought even further, as polynomials also provide the vital link with the structure
of underlying Banach space.” For these reasons three chapters, 2. Basic properties of
polynomials on Rn, 3. Weak continuity of polynomials and estimates of coefficients,
and 4. Asymptotic properties of polynomials, are entirely devoted to the presentation
of various properties of polynomials, both in finite and infinite dimension.

The first chapter, 1. Fundamental properties of smoothness, contains a thorough,
fairly detailed introduction to smoothness in Banach spaces, including high order
smoothness, polynomials, Taylor’s formula and converses, power series and analytic
mappings. Here both real and complex cases are considered, some real results being
transferred to the complex case via complexification techniques.

The rest of the book is devoted to deeper properties of smooth mapping. In
Chapter 5, Smoothness and structure, the structural properties of Banach spaces
admitting smooth functions are studied, via the variational principles of Ekeland,
Stegall, , Borwein-Preiss, Fabian-Preiss, Deville-Zizler. Chapter 6, Structural behav-
ior of smooth mappings, is concerned with the relations between various classes of
smooth mappings involving various notions of weak and strong uniform continuity of
the derivatives. An important class of Banach spaces, denoted by W, is introduced
here, allowing the extension of some smoothness results from the Banach space C(K)
to spaces in the class W.

The last chapter of the book, 7. Smooth approximation, is concerned with the
uniform approximation of continuous functions by smooth ones, or of Ck-functions
by polynomials or by real analytic functions (here only the real case is considered).
This line of investigation, having its roots in the pioneering work of Jaroslav Kurzweil
from 1954 and 1957, is still in the focus of intense current research, many important
problems waiting for solution.
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As one of the authors (PH) mentions, a source of inspiration for him (and for
many people working in this domain) was a list of 50 problems compiled by V. Zizler
in the early 90’s, later expanded to 90 in the book by R. Deville, G. Godefroy and V.
Zizler, Smoothness and renormings in Banach spaces, Pitman, New York 1993. In the
meantime some of these problems were solved, their solutions being reflected in the
present book, others, still unsolved, are also mentioned in the book along with new
ones posed by the authors.

For reader’s convenience, the authors have included (without proofs) auxiliary
results (on tensor products, vector holomorphic functions, etc) as paragraphs and
sections in the places were they are first used, preventing the reader to jump to
appendices or to specialized monographs and leading so to a “smooth” reading of the
text.

Written by two eminent specialists in Banach space theory, with important con-
tributions to the field, the book will become an indispensable tool for researchers in
Banach space geometry, smoothness and applications. By the detailed presentation of
the subject it can be used also by graduate students or by instructors for introduction
to the domain. At the same time, the nice and rewarding problems spread trough the
text form a valuable source of inspiration for further investigation.

S. Cobzaş

Saleh A. R. Al-Mezel, Falleh R. M. Al-Solamy and Qamrul H. Ansari, Fixed Point
Theory, Variational Analysis, and Optimization, CRC Press, Taylor & Francis Group,
Boca Raton 2014, xx + 347 pp, ISBN: 13: 978-1-4822-2207-4.

The present volume grew out of an International Workshop on Nonlinear Anal-
ysis and Optimization, held at the University of Tabuk, Saudi Arabia, March 16-19,
2013, most of the contributors being participants to this event. It is divided into three
parts: I. Fixed point theory; II. Convex analysis and variational analysis, and III.
Vector optimization.

The first part contains three papers: Common fixed point in convex metric spaces
(by Abdul Rahim Khan and Hafiz Fukhar-ud-din), Fixed points of nonlinear semi-
groups in modular function spaces (by B. A. Bin Dehaish and M. A. Khamsi), Ap-
proximation and selection methods for set-valued maps and fixed point theory (by
Hichem Ben-El-Mechaiekh).

The second part consists also of three papers: Convexity, generalized convexity,
and applications (by N. Hadjisavvas), New developments in quasiconvex optimization
(by D. Aussel), and An introduction to variational-like inequalities (by Qamrul Hasan
Ansari).

Two papers – Vector optimization : Basic concepts and solution methods (by
Dinh The Luc and Augusta Raţiu) and Multi-objective combinatorial optimization
(by Matthias Ehrgott and Xavier Gandibleux) - form the third and the last part of
the book.

The papers included in the volume have both an introductory and an advanced
character – they contain the basic concepts and results presented with full proofs, and
at the same time new results situated at the frontier of current research.
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Reporting on basic and new results in these tightly interrelated areas of nonlin-
ear analysis – fixed point theory, variational analysis, and optimization – the survey
papers included in this volume, written by renown experts in the domain, are of great
interest to researchers in nonlinear analysis, as well as for the novices as a source of a
quick and accessible introduction to some problems of great interest in contemporary
research.

J. Kolumbán
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