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Fixed point theorems for maps on cones in
Fréchet spaces via the projective limit approach

Marlène Frigon

Dedicated to Professor Ioan A. Rus on the occasion of his 80th anniversary

Abstract. We present fixed point results for admissibly compact maps on cones
in Fréchet spaces. We first extend the Krasnosel’skĭı fixed point theorem with
order type cone-compression and cone-expansion conditions. Then, we extend
the monotone iterative method to this context. Finally, we present fixed point
results under a combination of the assumptions of the previous results. More
precisely, we combine a cone-compressing or cone-extending condition only on
one side of the boundary of an annulus with an assumption on the existence of
an upper fixed point. In addition, we show that the usual monotonicity condition
can be weaken.

Mathematics Subject Classification (2010): 47H10, 47H04.

Keywords: Fixed point, Fréchet space, cone, fixed point index, cone-compressing
and cone-extending conditions, multivalued map, monotone iterative method.

1. Introduction

The classical Krasnosel’skĭı fixed point theorem is very well known and use-
ful, see [13, 14]. Assuming cone-compression and cone-expansion conditions on the
boundary of two nested bounded, neighborhoods of the origin relative to a cone, it
establishes the existence of nontrivial fixed points of maps on cones in Banach spaces.
Two types of cone-compression and cone-expansion conditions were considered: one
involving the norm and the other involving the order on the space induced by the cone.
This result was extended to Fréchet spaces in [1, 2, 12] using the fact that a Fréchet
space is the projective limit of a sequence of Banach spaces. All those generalizations
rely on at least one cone-compression condition involving the norm of the values of
maps on the relative boundary of suitable bounded, open sets in those Banach spaces.

On the other hand, the monotone iterative method is often applied to deduce
the existence of fixed points of nondecreasing maps f defined on closed intervals [α, β]
in ordered Banach spaces, where α is a lower fixed point of f (i.e. α ≤ f(α)) and β is
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an upper fixed point of f (i.e. f(β) ≤ β). The fixed points are obtained as the limits
of iterative sequences. This method was introduced by Amann [3] for single-valued
maps and extended to multivalued maps in [7].

In a series of papers, Cabada, Cid, Infante and their collaborators (see [4, 5, 6, 8,
10]) obtained many fixed point theorems on cones in Banach spaces by imposing cone-
compression or cone-extension conditions on the boundary relative to a cone of only
one bounded, neighborhood of the origin instead of two. The usual second condition
was replaced by assuming that the map f is nondecreasing (or nonincreasing) on a
suitable shell and by assuming the existence of an upper fixed point (or a lower fixed
point) instead of assuming the existence of both as in the monotone iterative method.

In this paper, we present fixed point results for maps on cones in Fréchet spaces.
In section 3, we extend the Krasnosel’skĭı fixed point theorem with order type cone-
compression and cone-expansion conditions instead of norm-type conditions. Our re-
sults will rely on the fixed point index theory for multivalued mapping in cones ob-
tained by Fitzpatrick and Petryshyn [9].

In section 4, we extend the monotone iterative method to Fréchet spaces. In
addition, we show that the monotonicity condition can be dropped. In that case, the
existence of a fixed point is still insured but some precision on its localization is lost.

Finally, in the last section, existence results are presented relying on one cone-
compression or cone-expansion condition combined with one condition of the type
upper fixed point or lower fixed point. It is not assumed that the cone is normal
or solid. Also, a condition weaker than monotonicity is imposed. Therefore, even in
the particular case where the Fréchet space is a Banach space, our results generalize
theorems due to Cabada, Cid and Infante [6].

Using the fact that a Fréchet space is the projective limit of a sequence of
Banach spaces, our results are presented for admissibly compact maps. This notion
was introduced in [11]. It is worthwhile to mention that our results could have been
presented for admissibly condensing maps or admissible maps satisfying a Leggett-
William type condition as in [1]. We first present some preliminaries on the fixed point
index for multivalued maps on closed, convex sets, then on Fréchet spaces, and finally
on admissibly compact maps.

2. Preliminaries

2.1. Fixed point index

In all this text, E denotes a Fréchet space endowed with a family of semi-norms
{‖ · ‖n}n∈N. Let X,Y be subsets of E and F : X → Y a multivalued map with non-
empty closed values. The map F is compact if F (X) is relatively compact in Y ; it is
completely continuous if F (B) is relatively compact in Y for every B ⊂ X bounded.
It is upper semi-continuous (u.s.c.) if {x ∈ X : F (x)∩A 6= ∅} is closed in Y for every
A closed in X.

Let C be a closed, convex set in E. For U a nonempty, open set in E, we denote
UC = U ∩ C, UC = U ∩ C and ∂CU = UC\UC the boundary of U in C.
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In [9], Fitzpatrick and Petryshyn defined a fixed point index for upper semi-
continuous, condensing, multivalued maps F : UC → C with nonempty, convex,
compact values such that F has no fixed point on ∂CU . This fixed point index is
denoted iC(F,U). Here is their Theorem 2.1 in the particular case of compact maps.

Theorem 2.1 ([9]). Let F : UC → C be a compact, u.s.c., multivalued map with
nonempty, convex, compact values and such that x 6∈ F (x) for all x ∈ ∂CU . Then,
the following statements hold:

(1) If iC(F,U) 6= 0, then F has a fixed point.
(2) If x0 ∈ UC , then iC({x0}, U) = 1, where {x0} denotes the constant map.
(3) If U = U1 ∪ U2, where U1 and U2 are disjoint open sets and are such that

x 6∈ F (x) if x ∈ ∂CU1 ∪ ∂CU2, then

iC(F,U) = iC(F,U1) + iC(F,U2).

(4) If H : [0, 1] × UC → C is a compact, u.s.c., multivalued map with nonempty,
convex, compact values and such that x 6∈ H(t, x) for all t ∈ [0, 1] and x ∈ ∂CU ,
then

iC(H(1, ·), U) = iC(H(0, ·), U).

By K, we denote a cone in E; that is a closed set such that, for every x, y ∈ K
and every λ, δ ≥ 0, λx+ δy ∈ K and K ∩ (−K) = {0}. A cone K is called normal if,
for every n ∈ N, there exists cn ≥ 1 such that

‖x‖n ≤ cn‖y‖n for every x, y ∈ K such that y − x ∈ K.

Fitzpatrick and Petryshyn [9] obtained the following Krasnosel’skĭı type fixed
point result which relied on the previous theorem in the particular case where the
closed, convex set is a cone. Using the fact that a Fréchet space is metrizable, they
considered d a metric on E generating the same topology. For r > 0, let

Bd(x0, r) = {x ∈ E : d(x, x0) < r} and Bd(x0, r) = {x ∈ E : d(x, x0) ≤ r}.

Again, their theorem is stated for compact maps instead of condensing maps.

Theorem 2.2 ([9]). Let r1, r2 ∈ (0,∞), r = min{r1, r2} and R = max{r1, r2}. Let K

be a cone in E and F : Bd(0, R) ∩K → K a compact, u.s.c., multivalued map with
nonempty, convex, compact values satisfying the following conditions:

(i)
(
F (x)− x

)
⊂ K if x ∈ ∂KBd(0, r1);

(ii)
(
x− F (x)

)
⊂ K if x ∈ ∂KBd(0, r2);

(iii) there exists a continuous semi-norm p, non-vanishing on K, such that

(I − F )(Bd(0, r1) ∩K) is p-bounded.

Then, F has a fixed point x0 ∈ Bd(0, R)\Bd(0, r).

It could be difficult to apply this result to deduce the existence of solutions
to differential or integral equations on unbounded intervals. Indeed, in general, the
operator associated to the problem will not be compact on open sets. The problem is
that open sets in Fréchet spaces are big.
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Let us give an example. Let C(R) be the space of continuous functions on the
real line and, for n ∈ N, the semi-norm

‖x‖n = max
t∈[−n,n]

|x(t)|.

Endowed with the family of semi-norms {‖ · ‖n}n∈N, C(R) is a Fréchet space. Let
U ⊂ C(R) be a neighborhood of 0. Then, there exist n0 ∈ N and r > 0 such that

{x ∈ C(R) : ‖x‖n0
< r} ⊂ U.

Also, in this context, it could be more difficult to get non trivial fixed points. For
example, let

B(0, r) = {x ∈ C(R) : |x(t)| < r ∀t ∈ R}.
From the previous remark, B(0, r) has empty interior. Therefore, there exists a se-
quence {xn} in C(R) such that xn → 0 and ‖xn‖n ≥ r for every n ∈ N.

2.2. Fréchet spaces and projective limits

For sake of completeness, we recall some notations and properties of Fréchet
spaces presented in [11].

Let E be a Fréchet space with the topology generated by a family of semi-norms
{‖ · ‖n}n∈N. In what follows, we will always assume that the following condition is
satisfied:

‖x‖1 ≤ ‖x‖2 ≤ · · · for every x ∈ E. (2.1)

For x̂ ∈ E, r > 0, R = (r1, r2, . . . ) ∈ (0,∞)N and n ∈ N, we denote

Bn(x̂, r) = {x ∈ E : ‖x− x̂‖n < r},

Bn(x̂, r) = {x ∈ E : ‖x− x̂‖n ≤ r},
B(x̂, R) = {x ∈ E : ‖x− x̂‖n < rn ∀n ∈ N},

B(x̂, R) = {x ∈ E : ‖x− x̂‖n ≤ rn ∀n ∈ N}.

For X ⊂ E and n ∈ N, we denote by diamn, the n-diameter of X induced by ‖ · ‖n;
that is,

diamn(X) = sup{‖x− y‖n : x, y ∈ X} ∈ [0,∞) ∪ {∞}.
We say that X is bounded if there exists R ∈ (0,∞)N such that X ⊂ B(0, R); so,
diamn(X) <∞ for every n ∈ N.

Remark 2.3. Observe that if E is not a Banach space, then

(1) an open set in E is never bounded;
(2) a bounded set in E has empty interior.

The space E is the projective limit of a sequence of Banach spaces {En}. Indeed,
for each n ∈ N, we write

x ∼n y if and only if ‖x− y‖n = 0. (2.2)

This defines an equivalence relation on E. We denote by En the completion of the
quotient space E/∼n with respect to ‖ · ‖n (the norm on E/∼n induced by ‖ · ‖n and
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its extension to En are still denoted by ‖ · ‖n). This construction defines a continuous
map µn : E → En such that

µn(x) = [x]n, (i.e. µn(x) = µn(y) ⇐⇒ x ∼n y).

Similarly, for every m ≥ n, we can define an equivalence relation on Em, still noted
∼n, which defines a continuous map µn,m : Em → En since Em/∼n can be regarded
as a subset of En. So, E is the projective limit of {En}.

For each subset X ⊂ E and each n ∈ N, we set Xn = µn(X), and we denote Xn,
and ∂nXn, respectively the closure and the boundary of Xn with respect to ‖ · ‖n in
En.

The following lemma gives an important property of closed subsets of E.

Lemma 2.4 ([11]). Let E be a Fréchet space endowed with a family of semi-norms
satisfying (2.1), and let X be a closed subset of E. Then, for every sequence {zn}
with zn ∈ Xn, such that for every n ∈ N, {µn,m(zm)}m≥n is a Cauchy sequence in

Xn, there exists x ∈ X such that {µn,m(zm)}m≥n converges to µn(x) ∈ Xn for every
n ∈ N.

For every n ∈ N, let A(n) ⊂ En. We define

Lim
n→∞

A(n) = {x ∈ E : ∃N0 ⊂ N infinite and zn ∈ A(n) for n ∈ N0

such that ∀ n ∈ N, µn,m(zm)→ µn(x)

as m→∞ with m ∈ N0 and m ≥ n}.
(2.3)

Notice that if X is closed, then

X = Lim
n→∞

Xn.

Taking into account the fact that many applications in Fréchet spaces lead to
look for solutions in a closed set with empty interior, the notion of pseudo-interior
was introduced in [11].

Definition 2.5. Let X be a subset of E. The pseudo-interior of X is defined by

pseudo-int(X) = {x ∈ X : µn(x) ∈ Xn\∂Xn for every n ∈ N}.

The set X is pseudo-open if X = pseudo-int(X).

For n ∈ N, let Cn be a closed, convex set in En. In what follows, the topology
in Cn induced by ‖ · ‖n will play a key role. So, we introduce the following notation.
Let U be a nonempty pseudo-open set in E, we denote

UCn
= Un ∩ Cn, UCn

= Un ∩ Cn and ∂Cn
Un = UCn

\UCn
=
(
Un\Un

)
∩ Cn.

2.3. Admissibly compact maps

Here is the notion of admissibly compact maps introduced in [11].

Definition 2.6. Let X ⊂ E and C closed and convex in E. A map f : X → C is called
admissibly compact if it satisfies the following properties for every n ∈ N:
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(i) The multivalued map F̂n : Xn → Cn defined by

F̂n(µn(x)) = co
(
µn

(
f({x}n,X)

))
,

admits an upper semi-continuous compact extension Fn : Xn → Cn with convex,
compact values, where

{x}n,X = {y ∈ X : µn(y) = µn(x)} = µ−1n

(
[x]n

)
∩X.

(ii) For every ε > 0, there exists m ≥ n such that, for every x ∈ X,

diamn

(
f
(
{x}m,X

))
< ε.

A map f : X → C is called admissibly completely continuous if it is admissibly
compact on every bounded sets in X.

The following proposition will play a key role in the proof of the forthcoming
fixed point theorems.

Proposition 2.7. Let X ⊂ E be closed, C ⊂ E closed, convex, and f : X → C an
admissibly compact map. Assume that there exists N0 ⊂ N infinite such that, for every
n ∈ N0, there exists zn ∈ Xn such that zn ∈ Fn(zn). Then, f has a fixed point.

Proof. For m ∈ N0, Fm has a fixed point zm ∈ Xm. From the definition of Fn, one
sees that

µn,m(zm) ∈ Fn(µn,m(zm)) for every n ≤ m.
Thus, without lost of generality, we can assume that N0 = N.

The compactness of F1 implies that the sequence {µ1,k(zk)}k≥1 has a sub-

sequence {µ1,k(zk)}k∈N1
converging to some x1 ∈ X1. It follows from the upper

semi-continuity of F1 that x1 ∈ F1(x1).
Similarly, the sequence {µ2,k(zk)}k∈N1

has a subsequence {µ2,k(zk)}k∈N2
con-

verging to x2 ∈ X2, with x2 ∈ F2(x2). The uniqueness of the limit implies that
µ1,2(x2) = x1.

Repeating this argument gives, for every n ∈ N, the existence of xn ∈ Xn such
that xn ∈ Fn(xn) and µn,m(xm) = xn for every m ≥ n. It follows from Lemma 2.4
that there exists x ∈ X such that µn(x) ∈ Fn(µn(x)) for every n ∈ N.

We have to show that x = f(x). If this is false, there exist n ∈ N and r > 0 such
that ‖x−f(x)‖n = r. Let ε < r/2. By Definition 2.6(ii), there exists m ≥ n such that

diamn

(
f
(
{x}m,X

))
< ε. Observe that

diamn

(
f
(
{x}m,X

))
= diamn

(
co
(
f
(
{x}m,X

)))
.

On the other hand, since µm(x) ∈ Fm(µm(x)), there is w ∈ co
(
f
(
{x}m,X

))
such that

‖x− w‖m < ε. Thus,

r = ‖x− f(x)‖n ≤ ‖x− w‖n + ‖w − f(x)‖n

< ‖x− w‖m + diamn

(
co
(
f
(
{x}m,X

)))
< 2ε < r.

Thus, x = f(x). �
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3. Krasnosel’skĭı type fixed point results

In this section, we present Krasnosel’skĭı type fixed point results with order-type
cone-compressing and cone-extending conditions on the pseudo-boundary of bounded
sets in E.

Let us first recall the following two fixed point results obtained in [12] for ad-
missibly completely continuous maps in Fréchet spaces satisfying norm-type cone-
compressing and cone-extending type conditions. Notice that, for K a cone in E, one
has that Kn is a cone in En for every n ∈ N.

Theorem 3.1 ([12]). Let f : K → K be an admissibly completely continuous map.
Assume that there exist U, V two bounded, pseudo-open subsets of E satisfying the
following conditions for every n ∈ N:

(i) ‖y‖n ≥ ‖x‖n ∀y ∈ Fn(x),∀x ∈ ∂Kn
Un

(resp. ‖y‖n ≤ ‖x‖n ∀y ∈ Fn(x),∀x ∈ ∂Kn
Un);

(ii) ‖y‖n ≤ ‖x‖n ∀y ∈ Fn(x),∀x ∈ ∂Kn
Vn

(resp. ‖y‖n ≥ ‖x‖n ∀y ∈ Fn(x),∀x ∈ ∂Kn
Vn);

(iii) 0 ∈ Un\∂nUn ⊂ Un ⊂ V n\∂nVn for every n ∈ N.

Then, there exists x a fixed point of f such that

x ∈ Lim
n→∞

A(n),

where A(n) = Kn ∩ Vn\Un and Limn→∞A(n) is defined in (2.3).

In the particular case where U and V are pseudo-balls, the previous result can
be stated as follows.

Corollary 3.2 ([12]). Let f : K → K be an admissibly completely continuous map.
Assume that there exist {r1,n} and {r2,n} nondecreasing sequences in (0,∞) such
that, for every n ∈ N,

(i) ‖y‖n ≥ ‖x‖n ∀y ∈ Fn(x),∀x ∈ ∂Kn
Bn(0, r1,n);

(ii) ‖y‖n ≤ ‖x‖n ∀y ∈ Fn(x),∀x ∈ ∂Kn
Bn(0, r2,n);

(iii) r1,n 6= r2,n.

Then, there exists x a fixed point of f such that

x ∈ Lim
n→∞

Kn ∩Bn(0, Rn)\Bn(0, rn),

where Rn = max{r1,n, r2,n} and rn = min{r1,n, r2,n}.

Analogous results can be obtained if the norm-type cone-compressing and cone-
extending conditions are replaced by order-type conditions.

Theorem 3.3. Let f : K → K be an admissibly completely continuous map. Assume
that there exist U, V two bounded, pseudo-open subsets of E satisfying the following
conditions for every n ∈ N:

(i)
(
Fn(x)− x

)
∩Kn\{0} = ∅ for all x ∈ ∂Kn

Un

(resp.
(
x− Fn(x)

)
∩Kn\{0} = ∅ for all x ∈ ∂Kn

Un);
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(ii)
(
x− Fn(x)

)
∩Kn\{0} = ∅ for all x ∈ ∂Kn

Vn
(resp.

(
Fn(x)− x

)
∩Kn\{0} = ∅ for all x ∈ ∂Kn

Vn);

(iii) 0 ∈ Un\∂nUn ⊂ Un ⊂ V n\∂nVn for every n ∈ N.

Then, there exists x a fixed point of f such that

x ∈ Lim
n→∞

A(n),

where A(n) = Kn ∩ Vn\Un.

Proof. For every n ∈ N, we claim that

∃zn ∈ Fn(zn) such that zn ∈ A(n). (3.1)

If this is false, we define

Hn : [0, 1]× UKn
→ Kn by Hn(t, x) = tFn(x).

For x ∈ ∂Kn
Un and t ∈ (0, 1], x 6∈ Hn(t, x). Otherwise,(

1

t
− 1

)
x ∈

(
Fn(x)− x

)
∩Kn,

which contradicts (i). It follows from (iii) and Theorem 2.1(2), (4) that

iKn
(Fn, Un) = iKn

(0, Un) = 1. (3.2)

On the other hand, choose û ∈ Kn such that

‖û‖n > max{‖x− y‖n : x ∈ V Kn
, y ∈ Fn(x)}. (3.3)

Such û exists since Vn and Fn(V Kn
) are bounded. Let us define

Ĥn : [0, 1]× V Kn
→ Kn by Ĥn(t, x) = tû+ Fn(x).

By (ii), x /∈ Ĥn(t, x) for all t ∈ [0, 1] and x ∈ ∂Kn
Vn. It follows from (3.3) that

x 6∈ Ĥn(1, x) for every x ∈ V Kn
. Theorem 2.1(1), (4) implies that

iKn
(Fn, Vn) = iKn

(Ĥn(1, ·), Vn) = 0. (3.4)

Combining (3.2) and (3.4) and applying Theorem 2.1(3) permit us to deduce that

iKn
(Fn, Vn\Un) = iKn

(Fn, Vn)− iKn
(Fn, Un) = −1.

Therefore, (3.1) holds.
The conclusion follows from Proposition 2.7. �

Here is a corollary of the previous theorem in the particular case where U and
V are pseudo-balls.

Corollary 3.4. Let f : K → K be an admissibly completely continuous map. Assume
that there exist {r1,n} and {r2,n} nondecreasing sequences in (0,∞) such that, for
every n ∈ N,

(i) x− Fn(x) ⊂ Kn ∀y ∈ Fn(x),∀x ∈ ∂Kn
Bn(0, r1,n);

(ii) Fn(x)− x ⊂ Kn ∀y ∈ Fn(x),∀x ∈ ∂Kn
Bn(0, r2,n).
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Then, there exists x a fixed point of f such that

x ∈ Lim
n→∞

Kn ∩Bn(0, Rn)\Bn(0, rn),

where Rn = max{r1,n, r2,n} and rn = min{r1,n, r2,n}.

4. Monotone iterative method in cones

Let K be a cone in E and Kn the associated cone in En for every n ∈ N. The
cone K defines the partial orderings in E and in En given by

for x, y ∈ E, x � y if and only if y − x ∈ K,
for n ∈ N and x, y ∈ En, x �n y if and only if y − x ∈ Kn.

(4.1)

For x, y ∈ E such that x � y (resp. x, y ∈ En such that x �n y for some n ∈ N)
we denote

[x, y] = {z ∈ E : x � z � y} (resp. [x, y]n = {z ∈ En : x �n z �n y}),
[x,∞) = {z ∈ E : x � z} (resp. [x,∞)n = {z ∈ En : x �n z}).

Arguing as in [3], the well-known monotone iterative method permits to get the
following fixed point result in Fréchet space.

Theorem 4.1. Let α � β be in E and f : [α, β] → E a compact map. Assume the
following conditions are satisfied:

(i) α � f(α) and f(β) � β;
(ii) f is nondecreasing; that is, for every x, y ∈ [α, β] such that x � y, one has

f(x) � f(y).

Then, f has a fixed point and the iterative sequences {fk(α)} and {fk(β)} converge
respectively to the smallest and the greatest fixed point of f in [α, β].

For some α ∈ E (resp. β ∈ E) such that α 6� f(α) (resp. f(β) 6� β), there
could exist some n ∈ N such that µn(α) �n µn(f(α)) (resp. µn(f(β) �n µn(β)). This
remark leads us to consider admissibly compact maps. Since they involve multivalued
maps, different notions of monotonicity can be defined.

Definition 4.2. Let Y be a space endowed with a partial order ≤, X ⊂ Y and
T : X → Y a multivalued map. Let x−, x+ ∈ X and y−, y+ ∈ Y be such that
x− ≤ x+ and y− ≤ y+.

(i) The map T is right-nondecreasing on [x−, x+] and in [y−, y+] if y− ∈ T (x−)
and, for every x1, x2 ∈ X and every y1 ∈ T (x1) such that

x− ≤ x1 ≤ x2 ≤ x+ and y− ≤ y1 ≤ y+,
there exists y2 ∈ T (x2) such that y1 ≤ y2 ≤ y+.

(ii) The map T is left-nondecreasing on [x−, x+] and in [y−, y+] if y+ ∈ T (x+) and,
for every x1, x2 ∈ X and every y2 ∈ T (x2) such that

x− ≤ x1 ≤ x2 ≤ x+ and y− ≤ y2 ≤ y+,
there exists y1 ∈ T (x1) such that y− ≤ y1 ≤ y2.
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Similarly, one can define that T is right-nonincreasing (resp. left-nonincreasing) on
[x−, x+] and in [y−, y+].

The following fixed point result concerns admissibly compact maps which are
nondecreasing in the sense of the previous definition.

Theorem 4.3. Let X ⊂ E be closed and f : X → E an admissibly compact map.
Assume the following conditions are satisfied:

(i) there exists N0 ⊂ N infinite such that, for every n ∈ N0, there exist αn, βn ∈ Xn

such that αn �n βn in En and [αn, βn]n ⊂ Xn;
(ii) for every n ∈ N0, there exists ξn ∈ Fn(αn) ∩ [αn, βn]n (resp. ζn ∈ Fn(βn) ∩

[αn, βn]n);
(iii) for every n ∈ N0, Fn is right-nondecreasing on [αn, βn]n and in [ξn, βn]n (resp.

Fn is left-nondecreasing on [αn, βn]n and in [αn, ζn]n).

Then, f has a fixed point

x ∈ Lim
n→∞
n∈N0

A(n),

where

A(n) =
{
z ∈ [αn, βn]n : z = lim

k→∞
uk with uk+1 ∈ Fn(uk)

and αn �n ξn = u1 �n u2 �n · · · �n βn

}
,(

resp. A(n) =
{
z ∈ [αn, βn]n : z = lim

k→∞
vk with vk+1 ∈ Fn(vk)

and αn �n · · · �n v2 �n v1 = ζn �n βn

})
.

Proof. For n ∈ N0, Fn : [αn, βn]n → En is compact, u.s.c. with compact, convex
values. From (i)-(iii), one can construct a sequence {unk} in [αn, βn]n such that un1 =
ξn, unk+1 ∈ Fn(unk ) and unk �n unk+1 for every k ∈ N. Arguing as in the proof of
Theorem 3.4 in [7], one deduces that there exists zn = limk→∞ unk ∈ A(n) such that
zn ∈ Fn(zn). The conclusion follows from Proposition 2.7. �

Observe that assumption (iii) of the previous theorem implies that

Fn(x) ∩ [αn, βn]n 6= ∅ ∀x ∈ [αn, βn]n, ∀n ∈ N0.

In fact, this is sufficient to insure that f has a fixed point. However, we loose some
precision on its localization.

Theorem 4.4. Let X ⊂ E be closed and f : X → E an admissibly compact map.
Assume the following conditions are satisfied:

(i) there exists N0 ⊂ N infinite such that, for every n ∈ N0, there exist αn, βn ∈ Xn

such that αn �n βn in En and [αn, βn]n ⊂ Xn;
(ii) for every n ∈ N0, x ∈ [αn, βn]n, there exists u ∈ Fn(x) ∩ [αn, βn]n.

Then, f has a fixed point

x ∈ Lim
n→∞
n∈N0

[αn, βn]n.
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Proof. For n ∈ N0, let us define F̃n : [αn, βn]n → [αn, βn]n by

F̃n(x) = Fn(x) ∩ [αn, βn]n.

The assumptions imply that F̃n is a compact, u.s.c., multivalued map with nonempty,
compact, convex values and defined on a closed, convex subset of the Banach space

En. The Kakutani fixed point theorem insures the existence of zn ∈ F̃n(zn). The
conclusion follows from Proposition 2.7. �

Remark 4.5. In the results of this section, one can replace the compactness assumption
by the complete continuity if, in addition, we assume that K is normal. Indeed, in a
normal cone, an interval [α, β] (resp. [αn, βn]n) is bounded.

5. Fixed point results in cones with mixed type conditions

In this section, we present fixed point results relying on a combination of con-
ditions imposed in the theorems obtained in the two previous sections. In particular,
the existence of suitable pairs (αn, βn) is not assumed. More precisely, the assumption
on the existence of a suitable {αn} in Theorem 4.4 is removed and replaced by some
conditions on the pseudo-boundary of a suitable pseudo-open set. As before, Kn is
the cone in En associated to a cone K in E.

Theorem 5.1. Let β ∈ K and f : [0, β]→ K an admissibly compact map. Assume the
following conditions are satisfied:

(i) there exists U a bounded, pseudo-open set in E such that, for every n ∈ N,
0 ∈ UKn

\∂Kn
Un ⊂ UKn

⊂ [0, µn(β)]n;

(ii) the set

N0 = {n ∈ N : ∀x ∈ ∂Kn
Un, (Fn(x)− x) ∩Kn = ∅

or Fn(x) ∩ [x, µn(β)]n 6= ∅}

is infinite;
(iii) for every n ∈ N0 and every x̂ ∈ ∂Kn

Un such that Fn(x̂) ∩ [x̂,∞)n 6= ∅, one has

that Fn(x) ∩ [x̂, µn(β)]n 6= ∅ for every x ∈ [x̂, µn(β)]n.

Then, f has a fixed point x∗ such that

x∗ ∈ Lim
n→∞
n∈N0

A(n),

where

A(n) =
(
UKn

)
∪
( ⋃

x∈∂Kn
Un

[x, µn(β)]n

)
.

Proof. It follows from (i) that, for every n ∈ N0 and every x ∈ ∂Kn
Un, one has

x �n µn(β).
Let

N1 =
{
n ∈ N0 : ∃αn ∈ ∂Kn

Un such that Fn(αn) ∩ [αn,∞)n 6= ∅}.
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If N1 is infinite, then the assumptions of Theorem 4.4 are satisfied with αn and
βn = µn(β). Therefore, f has a fixed point

x ∈ Lim
n→∞
n∈N1

[αn, µn(β)]n ⊂ Lim
n→∞
n∈N0

A(n).

On the other hand, if N1 is empty or finite, then N2 = N0\N1 is infinite and,
for every n ∈ N2, (Fn(z)− z)∩Kn = ∅ for every z ∈ ∂Kn

Un. Arguing as in the proof
of Theorem 3.3, one deduces that the fixed point index

iKn
(Fn, Un) = 1 ∀n ∈ N2.

Hence, there exists zn ∈ UKn
such that zn ∈ Fn(zn). Proposition 2.7 permits to

conclude that f has a fixed point

x ∈ Lim
n→∞
n∈N2

UKn
⊂ Lim

n→∞
n∈N0

A(n).

�

We obtain the following corollary by adding a monotonicity condition.

Corollary 5.2. Let β ∈ K and f : [0, β] → K an admissibly compact map satisfying
conditions (i) and (ii) of Theorem 5.1. In addition, assume that

(iii’) for every n ∈ N0 and every x̂ ∈ ∂Kn
Un such that Fn(x̂)∩[x̂,∞)n 6= ∅, there exists

ŷ ∈ Fn(x̂) such that Fn is right-nondecreasing on [x̂, µn(β)]n and in [ŷ, µn(β)]n.

Then, f has a fixed point.

In [6], Cabada, Cid and Infante consided completely continuous maps de-
fined on a solid, normal cone in a Banach space and which are nondecreasing on
[0, β]\B(0, r/c). Here is a corollary of Theorem 5.1 for admissibly completely contin-
uous maps satisfying a monotonicity condition analogous to the condition imposed
in [6].

Corollary 5.3. Let K be a normal cone and f : K → K an admissibly completely
continuous map. Assume there exist β ∈ K and {rn} a nondecreasing sequence in
(0,∞) satisfying the following conditions:

(i) Bn(0, rn) ∩Kn ⊂ [0, µn(β)[n;
(ii) the set

N0 = {n ∈ N : ∀x ∈ ∂Kn
Bn(0, rn), (Fn(x)− x) ∩Kn = ∅

or Fn(x) ∩ [x, µn(β)]n 6= ∅}

is infinite;
(iii) for every n ∈ N0 and every x̂ ∈ Kn\Bn(0, rn/cn) such that Fn(x̂)∩ [0, µn(β)]n 6=

∅, one has that Fn is right-nondecreasing on [x̂, µn(β)]n and in [ŷ, µn(β)]n for
every ŷ ∈ Fn(x̂) ∩ [0, µn(β)]n.

Then, f has a fixed point.
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Proof. Since K is normal, [0, β] is bounded and hence, f : [0, β] → K is admissibly
compact. Moreover,

[x̂, µn(β)]n ⊂ Kn\Bn(0, rn/cn) ∀x̂ ∈ ∂Kn
Bn(0, rn).

So, (iii) insures that condition (iii’) of Corollary 5.2 is satisfied. �

Adding extra assumptions to Theorem 5.1 permits to obtain more precision on
the localization of the fixed point.

Theorem 5.4. Let β ∈ K, X ⊂ K closed such that [0, β] ⊂ X and let f : X → K be
an admissibly compact map satisfying conditions (i)-(iii) of Theorem 5.1. In addition,
assume that the following conditions are satisfied:

(iv) there exists V a pseudo-open set in E such that, for every n ∈ N0,

0 ∈ V Kn
\∂Kn

Vn ⊂ V Kn
⊂ UKn

\∂Kn
Un,(

resp. 0 ∈ UKn
\∂Kn

Un ⊂ UKn
⊂ V Kn

\∂Kn
Vn ⊂ V Kn

⊂ Xn

)
;

(v) for every n ∈ N0, the fixed point index

iKn
(Fn, Vn) = 0.

Then, f has a fixed point x∗ such that

x∗ ∈ Lim
n→∞
n∈N0

Â(n),

where

Â(n) =
(
UKn

\VKn

)
∪
( ⋃

x∈∂Kn
Un

[x, µn(β)]n

)
,

(
resp. Â(n) =

(
V Kn

\UKn

)
∪
( ⋃

x∈∂Kn
Un

[x, µn(β)]n

))
.

Proof. It follows from the proof of Theorem 5.1 that f has a fixed point

x ∈ Lim
n→∞
n∈N0

( ⋃
x∈∂Kn

Un

[x, µn(β)]n

)
,

or, there exists N2 ⊂ N0 infinite such that iKn
(Fn, Un) = 1 for every n ∈ N2.

Theorem 2.1(1), (3), and assumptions (iv) and (v) imply that, for every n ∈ N2,

iKn
(Fn, Un\V n) = −1 (resp. iKn

(Fn, Vn\Un) = −1).

So, there exists

zn ∈ Fn(zn) ∩ UKn
\V Kn

(resp. zn ∈ Fn(zn) ∩ VKn
\UKn

).

The conclusion follows from Proposition 2.7. �

Remark 5.5. The fixed point obtained in the previous theorem is non trivial if

0 6∈ Lim
n→∞
n∈N0

Â(n).
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Remark 5.6. Even in the particular case where E is a Banach space, Theorem 5.4
generalizes Theorem 2.3 in [6]. In particular, the cone is not assumed to be normal
and solid, and no monotonicity condition is imposed on f .

Corollary 5.7. Let β ∈ K, X ⊂ K closed such that [0, β] ⊂ X and let f : X → K be
an admissibly compact map satisfying conditions (i)-(iv) of Theorem 5.4. In addition,
assume that

(v’) for every n ∈ N0,
(
x− Fn(x)

)
∩Kn\{0} = ∅ for every x ∈ ∂Kn

Vn.

Then, f has a fixed point x∗ such that

x∗ ∈ Lim
n→∞
n∈N0

Â(n),

where Â(n) is defined in Theorem 5.4.

Proof. Arguing as in the proof of Theorem 3.3, one can show that, for every n ∈ N0,
Fn has a fixed point in ∂Kn

Vn or

iKn
(Fn, Vn) = 0.

The conclusion follows from Theorem 5.4. �

Condition (iii) in Theorem 5.1 insured that, for suitable x, there exists y ∈ Fn(x)
such that y ≤ µn(β). In the next result, we assume the opposite inequality.

Theorem 5.8. Let α ∈ K, X ⊂ K closed such that [0, α] ⊂ X and f : X → K an
admissibly compact map. Assume the following conditions are satisfied:

(i) there exists U a bounded pseudo-open set in E such that, for every n ∈ N,
0 ∈ UKn

\∂Kn
Un ⊂ UKn

⊂ [0, µn(α)]n;

(ii) the set

N0 = {n ∈ N : ∀x ∈ ∂Kn
Un, (x− Fn(x)) ∩Kn = ∅ or Fn(x) ⊂ [x,∞)n

is infinite;
(iii) there exists V a pseudo-open set in E such that, for every n ∈ N0,

0 ∈ V n\∂Kn
Vn ⊂ V Kn

⊂ UKn
\∂Kn

Un,(
resp. 0 ∈ UKn

\∂Kn
Un ⊂ UKn

⊂ V Kn
\∂Kn

Vn ⊂ V Kn
⊂ Xn

)
;

(iv) for every n ∈ N0, the fixed point index

iKn
(Fn, Vn) = 1.

Then, f has a fixed point x∗ such that

x∗ ∈ Lim
n→∞
n∈N0

Ã(n),
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where

Ã(n) =
(
UKn

\VKn

)
∪
( ⋃

x∈∂Kn
Un

[x, µn(α)]n

)
,

(
resp. Ã(n) =

(
V Kn

\UKn

)
∪
( ⋃

x∈∂Kn
Un

[x, µn(α)]n

))
.

Proof. It follows from (i) that, for every n ∈ N0 and every x ∈ ∂Kn
Un, one has

x �n µn(α).
Let

N1 =
{
n ∈ N0 : ∃x ∈ ∂Kn

Un such that
(
x− Fn(x)

)
∩Kn 6= ∅}.

If N1 is infinite, then, for zn ∈ ∂Kn
Un such that there exists u ∈ Fn(zn) with

zn − u ∈ Kn, one has Fn(zn) ⊂ [zn,∞)n. So, u �n zn �n u. Thus, zn ∈ Fn(zn) and
f has a fixed point

x ∈ Lim
n→∞
n∈N1

( ⋃
x∈∂Kn

Un

[x, µn(α)]n

)
⊂ Lim

n→∞
n∈N0

Ã(n).

On the other hand, if N1 is empty or finite, then N2 = N0\N1 is infinite and,
for every n ∈ N2, (z−Fn(z))∩Kn = ∅ for every z ∈ ∂Kn

Un. Arguing as in the proof
of Theorem 3.3, one deduces that the fixed point index

iKn
(Fn, Un) = 0 ∀n ∈ N2.

Theorem 2.1(3), and assumptions (iii) and (iv) imply that, for every n ∈ N2,

iKn
(Fn, Un\V n) = −1 (resp. iKn

(Fn, Vn\Un) = −1).

So, there exists

zn ∈ Fn(zn) ∩ UKn
\V Kn

(resp. zn ∈ Fn(zn) ∩ VKn
\UKn

).

The conclusion follows from Proposition 2.7. �

Remark 5.9. Even in the particular case where E is a Banach space, Theorem 5.8
generalizes Theorem 2.5 in [6]. Again, the cone is not assumed to be normal and solid,
and no monotonicity condition is imposed on f .
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1. Introduction

The fractional calculus represents a powerful tool in applied mathematics to
study a myriad of problems from different fields of science and engineering, with many
break-through results found in mathematical physics, finance, hydrology, biophysics,
thermodynamics, control theory, statistical mechanics, astrophysics, cosmology and
bioengineering [16, 27, 38]. There has been a significant development in ordinary and
partial fractional differential equations in recent years; see the monographs of Abbas
et al. [1, 3, 4], Kilbas et al. [22], Miller and Ross [24], the papers of Abbas et al.
[2, 5, 6, 7], Vityuk and Golushkov [40], and the references therein. In [10], Butzer
et al. investigate properties of the Hadamard fractional integral and the derivative.
In [11], they obtained the Mellin transforms of the Hadamard fractional integral and
differential operators and in [28], Pooseh et al. obtained expansion formulas of the
Hadamard operators in terms of integer order derivatives. Many other interesting
properties of those operators and others are summarized in [29] and the references
therein.

The stability of functional equations was originally raised by Ulam [39] in 1940
and Hyers [17] in 1941. Thereafter, this type of stability is called the Ulam-Hyers
stability. In 1978, Rassias [30] provided a remarkable generalization of the Ulam-Hyers
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stability of mappings by considering variables. The stability question of functional
equations is how do the solutions of the inequality differ from those of the given
functional equation? Considerable attention has been given to the study of the Ulam-
Hyers and Ulam-Hyers-Rassias stability of all kinds of functional equations; one can
see the monographs of [18, 19]. Bota-Boriceanu and Petruşel [9], Petru et al. [25,
26], and Rus [31, 32] discussed the Ulam-Hyers stability for operatorial equations
and inclusions. Castro and Ramos [12], and Jung [21] considered the Hyers-Ulam-
Rassias stability for a class of Volterra integral equations. Ulam stability for fractional
differential equations with Caputo derivative are proposed by Wang et al. [41, 42].
Some stability results for fractional integral equation are obtained by Wei et al. [43].
More details from historical point of view, and recent developments of such stabilities
are reported in [20, 31, 43].

The theory of Picard operators was introduced by Ioan A. Rus (see [33, 34, 35]
and their references) to study problems related to fixed point theory. This abstract
approach was used later on by many mathematicians as a very powerful method in the
study of integral equations and inequalities, ordinary and partial differential equations
(existence, uniqueness, differentiability of the solutions, ...), see [35] and the references
therein. The theory of Picard operators is also a very powerful tool in the study of
Ulam-Hyers stability of functional equations. We only have to define a fixed point
equation from the functional equation we want to study, then if the defined operator
is c-weakly Picard we also have immediately the Ulam-Hyers stability of the desired
equation. Of course it is not always possible to transform a functional equation or
a differential equation into a fixed point problem and actually this point shows a
weakness of this theory. The uniform approach with Picard operators to the discuss
of the stability problems of Ulam-Hyers type is due to Rus [32].

In [2, 5, 6], Abbas et al. studied some Ulam stabilities for functional fractional
partial differential and integral inclusions via Picard operators. In this paper, we
discuss the Ulam-Hyers and the Ulam-Hyers-Rassias stability for the following new
class of fractional partial integral inclusions of the form

u(x, y)− µ(x, y) ∈ (HIrσF )(x, y, u(x, y)); (x, y) ∈ J := [1, a]× [1, b], (1.1)

where a, b > 1, σ = (1, 1), F : J ×E → P(E) is a set-valued function with nonempty
values in a (real or complex) separable Banach space E, P(E) is the family of all
nonempty subsets of E, HIrσF is the definite Hadamard integral for the set-valued
function F of order r = (r1, r2) ∈ (0,∞)×(0,∞), and µ : J → E is a given continuous
function.

This paper initiates the existence of the solution and the Ulam stability via
Picard operators for such new class of fractional integral inclusions.

2. Basic concepts and auxiliary results

Let L1(J) be the space of Bochner-integrable functions u : J → E with the norm

‖u‖L1 =

∫ a

1

∫ b

1

‖u(x, y)‖Edydx,
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where ‖ · ‖E denotes a complete norm on E. By L∞(J) we denote the Banach space
of measurable functions u : J → E which are essentially bounded, equipped with the
norm

‖u‖L∞ = inf{c > 0 : ‖u(x, y)‖E ≤ c, a.e. (x, y) ∈ J}.
As usual, by C := C(J) we denote the Banach space of all continuous functions from
J into E with the norm ‖.‖∞ defined by

‖u‖∞ = sup
(x,y)∈J

‖u(x, y)‖E .

Let (X, d) be a metric space induced from the normed space (X, ‖.‖). Denote
Pcl(X) = {Y ∈ P(X) : Y closed},
Pbd(X) = {Y ∈ P(X) : Y bounded},
Pcp(E) = {Y ∈ P(E) : Y compact} and
Pcp,cv(E) = {Y ∈ P(E) : Y compact and convex}.

Definition 2.1. A multivalued map T : X → P(X) is convex (closed) valued if T (x) is
convex (closed) for all x ∈ X, T is called upper semi-continuous (u.s.c.) on X if for
each x0 ∈ X, the set T (x0) is a nonempty closed subset of X, and if for each open
set N of X containing T (x0), there exists an open neighborhood N0 of x0 such that
T (N0) ⊆ N. T is lower semi-continuous (l.s.c.) if the set {t ∈ X : T (t) ∩ B 6= ∅}
is open for any open set B in X. T is said to be completely continuous if T (B) is
relatively compact for every B ∈ Pbd(X). T has a fixed point if there is x ∈ X such that
x ∈ T (x). The fixed point set of the multivalued operator T will be denoted by Fix(T ).
The graph of T will be denoted by Graph(T ) := {(u, v) ∈ X × P(X) : v ∈ T (u)}.

Consider Hd : P(X)× P(X)→ [0,∞) ∪ {∞} given by

Hd(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(A, b)

}
,

where d(A, b) = inf
a∈A

d(a, b), d(a,B) = inf
b∈B

d(a, b). Then (Pbd,cl(X), Hd) is a Hausdorff

metric space.
Notice that A : X → X is a selection for T : X → P(X) if A(u) ∈ T (u); for each

u ∈ X. For each u ∈ C, define the set of selections of the multivalued F : J×C → P(C)
by

SF,u = {v :∈ L1(J) : v(x, y) ∈ F (x, y, u(x, y)); (x, y) ∈ J}.

Definition 2.2. A multivalued map G : J → Pcl(E), is said to be measurable if for every
v ∈ E the function (x, y)→ d(v,G(x, y)) = inf{d(v, z) : z ∈ G(x, y)} is measurable.

In what follows we will give some basic definitions and results on Picard operator
theory [35]. Let (X, d) be a metric space and A : X → X be an operator. We denote by
FA the set of the fixed points of A. We also denote A0 := 1X , A

1 := A, . . . , An+1 :=
An ◦A; n ∈ N the iterate operators of the operator A.

Definition 2.3. The operator A : X → X is a Picard operator (PO) if there exists
x∗ ∈ X such that:

(i) FA = {x∗};
(ii) The sequence (An(x0))n∈N converges to x∗ for all x0 ∈ X.
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Definition 2.4. The operator A : X → X is a weakly Picard operator (WPO) if the
sequence (An(x))n∈N converges for all x ∈ X, and its limit (which may depend on x)
is a fixed point of A.

Definition 2.5. If A is weakly Picard operator then we consider the operator A∞ defined
by

A∞ : X → X; A∞(x) = lim
n→∞

An(x).

Remark 2.6. It is clear that A∞(X) = FA.

Definition 2.7. Let A be a weakly Picard operator and c > 0. The operator A is
c-weakly Picard operator if

d(x,A∞(x)) ≤ c d(x,A(x)); x ∈ X.
In the multivalued case we have the following concepts (see [36]).

Definition 2.8. Let (X, d) be a metric space, and F : X → Pcl(X) be a multivalued
operator. By definition, F is a multivalued weakly Picard operator (MWPO), if for
each u ∈ X and each v ∈ F (x), there exists a sequence (un)n∈IN such that

(i) u0 = u, u1 = v;
(ii) un+1 ∈ F (un), for each n ∈ N;
(iii) the sequence (un)n∈IN is convergent and its limit is a fixed point of F.

Remark 2.9. A sequence (un)n∈N satisfying condition (i) and (ii) in the above Def-
inition is called a sequence of successive approximations of F starting from (x, y) ∈
Graph(F ).

If F : X → Pcl(X) is a (MWPO) then we define F1 : Graph(F ) → P(Fix(F ))
by the formula F1(x, y) := {u ∈ Fix(F ) : there exists a sequence of successive ap-
proximations of F starting from (x, y) that converges to u}.
Definition 2.10. Let (X, d) be a metric space and let Ψ : [0,∞) → [0,∞) be an
increasing function which is continuous at 0 and Ψ(0) = 0. Then F : X → Pcl(X) is
said to be a multivalued Ψ−weakly Picard operator (Ψ−MWPO) if it is a multivalued
weakly Picard operator and there exists a selection A∞ : Graph(F )→ Fix(F ) of F∞

such that
d(u,A∞(u, v)) ≤ Ψ(d(u, v)); for all (u, v) ∈ Graph(F ).

If there exists c > 0 such that Ψ(t) = ct, for each t ∈ [0.∞), then F is called a
multivalued c-weakly Picard operator (c−MWPO).

Let us recall the notion of comparison function.

Definition 2.11. A function ϕ : [0,∞) → [0,∞) is said to be a comparison function
(see [35]) if it is increasing and ϕn(t)→ 0 as n→∞, for all t > 0.

As a consequence, we have ϕ(t) < t, for each t > 0, ϕ(0) = 0 and ϕ is continuous
at 0.

Definition 2.12. A function ϕ : [0,∞) → [0,∞) is said to be a strict comparison

function (see [35]) if it is strictly increasing and

∞∑
n=1

ϕn(t) <∞, for each t > 0.
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Example 2.13. The mappings ϕ1, ϕ2 : [0,∞)→ [0,∞) given by ϕ1(t) = ct; c ∈ [0, 1),
and ϕ2(t) = t

1+t ; t ∈ [0,∞), are strict comparison functions.

Definition 2.14. A multivalued operator N : X → Pcl(X) is called

a) γ-Lipschitz if and only if there exists γ ≥ 0 such that

Hd(N(u), N(v)) ≤ γd(u, v); for each u, v ∈ X,

b) a multivalued γ−contraction if and only if it is γ-Lipschitz with γ ∈ [0, 1),
c) a multivalued ϕ−contraction if and only if there exists a strict comparison func-

tion ϕ : [0,∞)→ [0,∞) such that

Hd(N(u), N(v)) ≤ ϕ(d(u, v)); for each u, v ∈ X.

Now, we introduce notations and definitions concerning to partial Hadamard
integral of fractional order.

Definition 2.15. [15, 22] The Hadamard fractional integral of order q > 0 for a function
g ∈ L1([1, a],R), is defined as

(HIr1g)(x) =
1

Γ(q)

∫ x

1

(
log

x

s

)q−1 g(s)

s
ds,

where Γ(·) is the Euler gamma function.

Definition 2.16. Let r1, r2 ≥ 0, σ = (1, 1) and r = (r1, r2). For w ∈ L1(J,R), define
the Hadamard partial fractional integral of order r by the expression

(HIrσw)(x, y) =
1

Γ(r1)Γ(r2)

∫ x

1

∫ y

1

(
log

x

s

)r1−1 (
log

y

t

)r2−1 w(s, t)

st
dtds.

Definition 2.17. Let F : J × E → P(E) be a set-valued function with nonempty
values in E. (HIrσF )(x, y, u(x, y)) is the definite Hadamard integral for the set-valued
functions F of order r = (r1, r2) ∈ (0,∞)× (0,∞) which is defined as

HIrσF (x, y, u(x, y))=

{∫ x

1

∫ y

1

(
log

x

s

)r1−1(
log

y

t

)r2−1 f(s, t)

stΓ(r1)Γ(r2)
dtds : f ∈ SF,u

}
.

Remark 2.18. Solutions of the inclusion (1.1) are solutions of the fixed point inclusion
u ∈ N(u) where N : C → P(C) is the multivalued operator defined by

(Nu)(x, y) =
{
µ(x, y) + (HIrσf)(x, y) : f ∈ SF,u

}
; (x, y) ∈ J.

Let us give the definition of Ulam-Hyers stability of the fixed point inclusion
u ∈ N(u), see for instance [2]. Let ε be a positive real number and Φ : J → [0,∞) be
a continuous function.

Definition 2.19. The fixed point inclusion u ∈ N(u) is said to be Ulam-Hyers stable
if there exists a real number cN > 0 such that for each ε > 0 and for each solution
u ∈ C of the inequality Hd(u(x, y), (Nu)(x, y)) ≤ ε; (x, y) ∈ J, there exists a solution
v ∈ C of the inclusion u ∈ N(u) with

‖u(x, y)− v(x, y)‖E ≤ εcN ; (x, y) ∈ J.
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Definition 2.20. The fixed point inclusion u ∈ N(u) is said to be generalized Ulam-
Hyers stable if there exists an increasing function θN ∈ C([0,∞), [0,∞)), θN (0) =
0 such that for each ε > 0 and for each solution u ∈ C of the inequality
Hd(u(x, y), (Nu)(x, y)) ≤ ε; (x, y) ∈ J, there exists a solution v ∈ C of the inclu-
sion u ∈ N(u) with

‖u(x, y)− v(x, y)‖E ≤ θN (ε); (x, y) ∈ J.

Definition 2.21. The fixed point inclusion u ∈ N(u) is said to be Ulam-Hyers-Rassias
stable with respect to Φ if there exists a real number cN,Φ > 0 such that for each
ε > 0 and for each solution u ∈ C of the inequality Hd(u(x, y), (Nu)(x, y)) ≤
εΦ(x, y); (x, y) ∈ J, there exists a solution v ∈ C of the inclusion u ∈ N(u) with

‖u(x, y)− v(x, y)‖E ≤ εcN,ΦΦ(x, y); (x, y) ∈ J.

Definition 2.22. The fixed point inclusion u ∈ N(u) is said to be generalized Ulam-
Hyers-Rassias stable with respect to Φ if there exists a real number cN,Φ > 0 such that
for each solution u ∈ C of the inequality Hd(u(x, y), (Nu)(x, y)) ≤ Φ(x, y); (x, y) ∈ J,
there exists a solution v ∈ C of the inclusion u ∈ N(u) with

‖u(x, y)− v(x, y)‖E ≤ cN,ΦΦ(x, y); (x, y) ∈ J.

Remark 2.23. It is clear that

(i) Definition 2.19 ⇒ Definition 2.20,
(ii) Definition 2.21 ⇒ Definition 2.22,
(iii) Definition 2.21 for Φ(x, y) = 1 ⇒ Definition 2.19.

The following result, a generalization of Covitz-Nadler fixed point principle (see
[14]), is known in the literature as Wȩgrzyk’s fixed point theorem.

Lemma 2.24. [44] Let (X, d) be a complete metric space. If A : X → Pcl(X) is a
ϕ−contraction, then Fix(A) is nonempty and for any u0 ∈ X, there exists a sequence
of successive approximations of A starting from u0 which converges to a fixed point
of A.

Also, the following result is known in the literature as Wȩgrzyk’s theorem.

Lemma 2.25. [44] Let (X, d) be a Banach space. If an operator A : X → Pcl(X) is a
ϕ−contraction, then A is a (MWPO).

Now we present an important characterization Lemma from the point of view of
Ulam-Hyers stability.

Lemma 2.26. [26] Let (X, d) be a metric space. If A : X → Pcp(X) is a (Ψ−MWPO),
then the fixed point inclusion u ∈ A(u) is generalized Ulam-Hyers stable. In particular,
if A is (c−MWPO), then the fixed point inclusion u ∈ A(u) is Ulam-Hyers stable.

Another Ulam-Hyers stability result, more efficient for applications, was proved
in [23].

Theorem 2.27. [23] Let (X, d) be a complete metric space and A : X → Pcp(X) be a
multivalued ϕ−contraction. Then:
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(i) Existence of the fixed point: A is a (MWPO);
(ii) Ulam-Hyers stability for the fixed point inclusion: If additionally ϕ(ct) ≤ cϕ(t)

for every t ∈ [0,∞) (where c > 1), then A is a (Ψ−MWPO), with Ψ(t) :=

t+

∞∑
n=1

ϕn(t), for each t ∈ [0,∞);

(iii) Data dependence of the fixed point set: Let S : X → Pcl(X) be a multivalued
ϕ−contraction and η > 0 be such that Hd(S(x), A(x)) ≤ η, for each x ∈ X.
Suppose that ϕ(ct) ≤ cϕ(t) for every t ∈ [0,∞) (where c > 1). Then,

Hd(Fix(S), F ix(F )) ≤ Ψ(η).

3. Existence and Ulam-Hyers stability results

In this section, we present conditions for the existence and the Ulam stability of
the Hadamard integral inclusion (1.1).

Theorem 3.1. Assume that the multifunction F : J × E → Pcp(E) satisfies the fol-
lowing hypotheses:

(H1) (x, y) 7−→ F (x, y, u) is jointly measurable for each u ∈ E;
(H2) u 7−→ F (x, y, u) is lower semicontinuous for almost all (x, y) ∈ J ;
(H3) There exists p ∈ L∞(J, [0,∞)) and a strict comparison function ϕ : [0,∞) →

[0,∞) such that for each (x, y) ∈ J and each u, v ∈ E, we have

Hd(F (x, y, u(x, y), F (x, y, u)‖ ≤ p(x, y)ϕ(‖u− u‖E), (3.1)

and
(log a)r1(log b)r2‖p‖L∞

Γ(1 + r1)Γ(1 + r2)
≤ 1; (3.2)

(H4) There exists an integrable function q : [1, b]→ [0,∞) such that for each x ∈ [1, a]
and u ∈ E, we have F (x, y, u) ⊂ q(y)B(0, 1), a.e. y ∈ [1, b], where B(0, 1) =
{u ∈ E : ‖u‖E < 1}.

Then the following conclusions hold:

(a) The integral inclusion (1.1) has least one solution and N is a (MWPO).
(b) If additionally ϕ(ct) ≤ cϕ(t) for every t ∈ [0,∞) (where c > 1), then the integral

inclusion (1.1) is generalized Ulam-Hyers stable, and N is a (Ψ−MWPO), with

the function Ψ defined by Ψ(t) := t +

∞∑
n=1

ϕn(t), for each t ∈ [0,∞). Moreover,

in this case the continuous data dependence of the solution set of the integral
inclusion (3.1) holds.

Remark 3.2. For each u ∈ C, the set SF,u is nonempty since by (H1), F has a
measurable selection (see [13], Theorem III.6).

Proof. We shall show that N defined in Remark 2.18 satisfies the assumptions of
Theorem 2.27. The proof will be given in two steps.
Step 1. N(u) ∈ Pcp(C) for each u ∈ C.
From the continuity of µ and Theorem 2 in Rybiński [37] we have that for each u ∈ C
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there exists f ∈ SF,u, for all (x, y) ∈ J, such that f(x, y) is integrable with respect to
y and continuous with respect to x. Then the function v(x, y) = µ(x, y) +H Irσf(x, y)
has the property v ∈ N(u). Moreover, from (H1) and (H4), via Theorem 8.6.3. in
Aubin and Frankowska [8], we get that N(u) is a compact set, for each u ∈ C.
Step 2. Hd(N(u), N(u)) ≤ ϕ(‖u− u‖∞) for each u, u ∈ C.
Let u, u ∈ C and h ∈ N(u). Then, there exists f(x, y) ∈ F (x, y, u(x, y)) such that for
each (x, y) ∈ J, we have

h(x, y) = µ(x, y) +H Irσf(x, y).

From (H3) it follows that

Hd(F (x, y, u(x, y)), F (x, y, u(x, y))) ≤ p(x, y)ϕ(‖u(x, y)− u(x, y)‖E).

Hence, there exists w(x, y) ∈ F (x, y, u(x, y) such that

‖f(x, y)− w(x, y)‖E ≤ p(x, y)ϕ(‖u(x, y)− u(x, y)‖E); (x, y) ∈ J.
Consider U : J → P(E) given by

U(x, y) = {w ∈ E : ‖f(x, y)− w(x, y)‖E ≤ p(x, y)ϕ(‖u(x, y)− u(x, y)‖E)}.
Since the multivalued operator u(x, y) = U(x, y) ∩ F (x, y, u(x, y)) is measurable (see
Proposition III.4 in [13]), there exists a function f(x, y) which is a measurable selection
for u. So, f(x, y) ∈ F (x, y, u(x, y)), and for each (x, y) ∈ J,

‖f(x, y)− f(x, y)‖E ≤ p(x, y)ϕ(‖u(x, y)− u(x, y)‖E).

Let us define for each (x, y) ∈ J,

h(x, y) = µ(x, y) +H Irσf(x, y).

Then for each (x, y) ∈ J, we have

‖h(x, y)− h(x, y)‖E ≤ HIrσ‖f(x, y)− f(x, y)‖E
≤ HIrσ(p(x, y)ϕ(‖u(x, y)− u(x, y)‖E))

≤ ‖p‖L∞ϕ(‖u− u‖∞)

(∫ x

1

∫ y

1

∣∣log x
s

∣∣r1−1 ∣∣log y
t

∣∣r2−1

stΓ(r1)Γ(r2)
dtds

)

≤ (log a)r1(log b)r2‖p‖L∞
Γ(1 + r1)Γ(1 + r2)

ϕ(‖u− u‖∞).

Thus, by (3.2), we get

‖h− h‖∞ ≤ ϕ(‖u− u‖∞).

By an analogous relation, obtained by interchanging the roles of u and u, it follows
that

Hd(N(u), N(u)) ≤ ϕ(‖u− u‖∞).

Hence, N is a ϕ−contraction.

(a) By Lemma 2.24, N has a fixed point witch is a solution of the inclusion
(1.1) on J, and by [Theorem 2.27,(i)], N is a (MWPO).
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(b) We will prove that the fixed point inclusion problem (1.1) is generalized
Ulam-Hyers stable. Indeed, let ε > 0 and v ∈ C for which there exists u ∈ C such that

u(x, y) ∈ µ(x, y) + (HIrσF )(x, y, v(x, y)); if (x, y) ∈ J,

and

‖u− v‖∞ ≤ ε.
Then Hd(v,N(v)) ≤ ε. Moreover, by the above proof we have that N is a multivalued
ϕ−contraction and using [Theorem 2.27,(i)-(ii)], we obtain that N is a is a (Ψ −
MWPO). Then, by Lemma 2.26 we obtain that the fixed point problem u ∈ N(u) is
generalized Ulam-Hyers stable. Thus, the integral inclusion (1.1) is generalized Ulam-
Hyers stable.
Concerning the conclusion of the theorem, we apply [Theorem 2.27,(iii)].

4. An example

Let E = l1 =

{
w = (w1, w2, . . . , wn, . . .) :

∞∑
n=1

|wn| <∞

}
, be the Banach space

with norm

‖w‖E =

∞∑
n=1

|wn|,

and consider the following partial functional fractional order integral inclusion of the
form

u(x, y) ∈ µ(x, y) + (HIrσF )(x, y, u(x, y)); a.e. (x, y) ∈ [1, e]× [1, e], (4.1)

where r = (r1, r2), r1, r2 ∈ (0,∞),

u = (u1, u2, . . . , un, . . .), µ(x, y) = (x+ e−y, 0, . . . , 0, . . .),

and

F (x, y, u(x, y))

= {v ∈ C([1, e]× [1, e],R) : ‖f1(x, y, u(x, y))‖E ≤ ‖v‖E ≤ ‖f2(x, y, u(x, y))‖E};
(x, y) ∈ [1, e]× [1, e], where f1, f2 : [1, e]× [1, e]× E → E,

fk = (fk,1, fk,2, . . . , fk,n, . . .); k ∈ {1, 2}, n ∈ IN,

f1,n(x, y, un(x, y)) =
xy2un

(1 + ‖un‖E)e10+x+y
; n ∈ IN,

and

f2,n(x, y, un(x, y)) =
xy2un
e10+x+y

; n ∈ IN.

We assume that F is closed and convex valued. We can see that the solutions of the
inclusion(4.1) are solutions of the fixed point inclusion u ∈ A(u) where A : C([1, e]×
[1, e],R)→ P(C([1, e]× [1, e],R)) is the multifunction operator defined by

(Au)(x, y) =
{
µ(x, y) + (HIrσf)(x, y); f ∈ SF,u

}
; (x, y) ∈ [1, e]× [1, e].
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For each (x, y) ∈ [1, e]× [1, e] and all z1, z2 ∈ E, we have

‖f2(x, y, z2)− f1(x, y, z1)‖E ≤ xy2e−10−x−y‖z2 − z1‖E .
Thus, the hypotheses (H1)− (H3) are satisfied with p(x, y) = xy2e−10−x−y. We shall
show that condition (3.2) holds with a = b = e. Indeed, ‖p‖L∞ = e−9, Γ(1 + ri) >
1
2 ; i = 1, 2. A simple computation shows that

ζ :=
(log a)r1(log b)r2‖p‖L∞

Γ(1 + r1)Γ(1 + r2)
< 4e−9 < 1.

The condition (H4) is satisfied with q(y) = y2e−10−y

‖F‖P ; y ∈ [1, e], where

‖F‖P = sup{‖f‖C : f ∈ SF,u}; for allu ∈ C.
Consequently, by Theorem 3.1 we concluded that:

(a) The integral inclusion (4.1) has least one solution and A is a (MWPO).
(b) The function ϕ : [0,∞) → [0,∞) defined by ϕ(t) = ζt satisfies ϕ(ζt) ≤ ζϕ(t)

for every t ∈ [0,∞). Then the integral inclusion (4.1) is generalized Ulam-Hyers
stable, and A is a (Ψ−MWPO), with the function Ψ defined by Ψ(t) := t+ (1−
ζt)−1, for each t ∈ [0, ζ−1). Moreover, the continuous data dependence of the
solution set of the integral inclusion (3.1) holds.
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400084 Cluj-Napoca, Romania
e-mail: petrusel@math.ubbcluj.ro
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Abstract. The aim of this paper is to discuss some basic problems (existence and
uniqueness, data dependence) of the Cauchy problem for a hybrid differential
equation with maxima using weakly Picard operators technique.
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1. Introduction

Recently, the interest in differential equations with “maxima” has increased ex-
ponentially. Such equations model real world problems whose present state depends
significantly on its maximum value on a past time interval. For example, many prob-
lems in the control theory correspond to the maximal deviation of the regulated
quantity. Some qualitative properties of the solutions of ordinary differential equa-
tions with “maxima” can be found in [1, 2, 5], [16, 17] and the references therein.

The main goal of the presented paper is to study a hybrid differential equation
with maxima, using the theory of weakly Picard operators. The theory of Picard
operators was introduced by I. A. Rus (see [12], [14] and their references) to study
problems related to fixed point theory. This abstract approach is used by many math-
ematicians and it seemed to be a very useful and powerful method in the study of
integral equations and inequalities, ordinary and partial differential equations (exis-
tence, uniqueness, differentiability of the solutions), etc.

In this paper we consider the following hybrid differential equation with maxima

x′(t) = f(t, x(t)) + g(t, max
a≤ξ≤t

x(ξ)), (1.1)

with initial condition

x(a) = x0, (1.2)
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where t ∈ [a, b], a, b ∈ R, x0 ∈ Rm, f, g : [a, b]× Rm→ Rm.
We use the terminologies and notations from [12] and [14]. For the convenience

of the reader we recall some of them.
Let (X, d) be a metric space and A : X → X an operator. We denote by

A0 := 1X , A
1 := A, An+1 := An ◦ A, n ∈ N, the iterate operators of the operator

A. We also have:

P (X) := {Y ⊆ X | Y 6= φ},
FA := {x ∈ X | A(x) = x},

I(A) := {Y ⊂ X | A(Y ) ⊂ Y, Y 6= ∅}.

Definition 1.1. Let (X, d) be a metric space. An operator A : X → X is a Picard oper-
ator (PO) if there exists x∗ ∈ X such that FA = {x∗} and the sequence (An(x0))n∈N
converges to x∗, for all x0 ∈ X.

Definition 1.2. Let (X, d) be a metric space. An operator A : X → X is a weakly
Picard operator (WPO) if the sequence (An(x))n∈N converges for all x ∈ X, and its
limit (which may depend on x) is a fixed point of A.

Definition 1.3. If A is weakly Picard operator then we consider the operator A∞ defined
by A∞ : X → X, A∞(x) := lim

n→∞
An(x).

Obviously, A∞(X) = FA. Moreover, if A is a PO and we denote by x∗ its unique
fixed point, then A∞(x) = x∗, for each x ∈ X.

2. Existence and uniqueness

We prove the existence and uniqueness for the solution of the problem (1.1)-
(1.2) using the Perov’s Theorem as in [7]. For standard techniques, when it is used
the Banach contraction principle, see [13], [9] and [10].

Theorem 2.1. (Perov’s fixed point theorem) Let (X, d) with d(x, y) ∈ Rm, be a complete
generalized metric space and A : X → X an operator. We suppose that there exists a
matrix Q ∈Mm×m(R+), such that

(i) d(A(x), A(y)) ≤ Qd(x, y), for all x, y ∈ X;
(ii) Qn → 0, as n→∞.

Then

(a) FA = {x∗},
(b) An(x)→ x∗, as n→∞ and

d(An(x), x∗) ≤ (I −Q)−1Qnd(x0, A(x0)), ∀x0, x ∈ X,∀n ∈ N∗;
(c) d(x, x∗) ≤ (I −Q)−1d(x,A(x)), ∀x ∈ X.

We consider on Rm the following vectorial norm

|x| :=

 |x1|
...
|xm|

 .
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We have the following result:

Theorem 2.2. We assume that:

(i) f, g ∈ C([a, b]× Rm,Rm);

(ii) there exist Lf and Lg nonnegative matrices such that

∣∣f(t, u1)− f(t, u2)
∣∣ ≤ Lf ∣∣u1 − u2∣∣ ,∣∣g(t, v1)− g(t, v2)
∣∣ ≤ Lg ∣∣v1 − v2∣∣ ,

∀ t ∈ [a, b] and u1 = (u11, . . . , u
1
m), u2 = (u21, . . . , u

2
m),

v1 = (v11 , . . . , v
1
m), v2 = (v21 , . . . , v

2
m) ∈ Rm;

(iii) the matrix

Q := (b− a)(Lf + Lg) (2.1)

is convergent to 0, i.e. Qn → 0, as n→∞.
Then, the problem (1.1)-(1.2) has a unique solution x∗ ∈ C([a, b],Rm).

Proof. We consider the generalized Banach space X = (C([a, b],Rm), ‖·‖) where ‖·‖
is the norm,

‖x‖ :=


max
a≤t≤b

|x1(t)|
...

max
a≤t≤b

|xm(t)|

 . (2.2)

The problem (1.1)-(1.2), x ∈ C1([a, b],Rm) is equivalent with the following fixed point
equation

x(t) = x0 +

∫ t

a

f(s, x(s))ds+

∫ t

a

g(s, max
a≤ξ≤s

x(ξ))ds, t ∈ [a, b]. (2.3)

We consider the operator A : X → X, where

A(x)(t) = x0 +

∫ t

a

f(s, x(s))ds+

∫ t

a

g(s, max
a≤ξ≤s

x(ξ))ds. (2.4)

It is easy to see that if x∗ ∈ FA then x∗ is a solution of (1.1)-(1.2).
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Condition (ii) implies that

|A(x)(t)−A(y)(t)|

≤
∫ t

a

|f(s, x(s))− f(s, y(s))| ds+

∫ t

a

∣∣∣∣g(s, max
a≤ξ≤s

x(ξ))− g(s, max
a≤ξ≤s

y(ξ))

∣∣∣∣ ds
≤ (b− a)Lf


max
a≤s≤b

|x1(s)− y1(s)|
...

max
a≤s≤b

|xm(s)− ym(s)|



+ (b− a)Lg


max
a≤s≤b

∣∣∣∣ max
a≤ξ≤s

x1(s)− max
a≤ξ≤s

y1(s)

∣∣∣∣
...

max
a≤s≤b

∣∣∣∣ max
a≤ξ≤s

xm(s)− max
a≤ξ≤s

ym(s)

∣∣∣∣

 .

But

max
a≤s≤b

∣∣∣∣ max
a≤ξ≤s

xi(s)− max
a≤ξ≤s

yi(s)

∣∣∣∣ ≤ max
a≤s≤b

|xi(s)− yi(s)| .

So,

‖A(x)−A(y)‖ ≤ Q ‖x− y‖ .

Using (iii), we get that the operator A : X → X is a Q-contraction, so

FA = (x∗1, . . . , x
∗
m) = x∗

is the unique solution of (1.1)-(1.2). �

The equation (1.1) is equivalent with

x(t) = x(a) +

∫ t

a

f(s, x(s))ds+

∫ t

a

g(s, max
a≤ξ≤s

x(ξ))ds, t ∈ [a, b], (2.5)

x ∈ C([a, b],Rm).

In what follows we consider the operator B : X → X defined by B(x)(t) :=the
right hand side of (2.5). For x0 ∈ Rm, we consider

Xx0
:= {x ∈ C([a, b],Rm)| x(a) = x0}.

It is clear that

X = ∪
x0∈Rm

Xx0

is a partition of X. We have

Lemma 2.3. We suppose that the condition (C1) is satisfied. Then

(a) A(X) ⊂ Xx0
and A(Xx0

) ⊂ Xx0
;

(b) A|Xx0
= B|Xx0

.
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Remark 2.4. From Theorem 2.2 we have that the operator A is PO. Because A|Xx0
=

B|Xx0
, X := C([a, b],Rm) = ∪

x0∈Rm
Xx0

, Xx0
∈ I(B) it follows that the operator B is

WPO and

FB ∩Xx0
= {x∗}, ∀x0 ∈ Rm,

where x∗ is the unique solution of the problem (1.1)-(1.2).

3. Data dependence: comparison results

Now we consider the operators A and B on the ordered Banach space
(C([a, b],Rm), ‖·‖ ,≤) where the order relation on Rm is given by: x ≤ y ⇔ xi ≤ yi,
i = 1,m.

In order to establish the Čaplygin type inequalities we need the following abstract
result.

Lemma 3.1. (see [14]) Let (X, d,≤) be an ordered metric space and A : X → X an
operator. Suppose that A is increasing and WPO. Then the operator A∞ is increasing.

We have the following result

Theorem 3.2. Suppose that:
(a) the conditions of Theorem 2.2 are satisfied;
(b) f(t, ·) : Rm → Rm, g(t, ·) : Rm → Rm are increasing, ∀t ∈ [a, b].
Let x∗ be a solution of equation (1.1) and y∗ a solution of the inequality

y′(t) ≤ f(t, y(t)) + g(t, max
a≤ξ≤t

y(ξ)), t ∈ [a, b].

Then y∗(a) ≤ x∗(a) implies that y ≤ x.

Proof. From Remark 2.4 we have that B is WPO. On the other hand, from the
condition (b) and Lemma 3.1 we get that the operator B∞ is increasing. If x0 ∈ Rm,
then we denote by x̃0 the following function

x̃0 : [a, b]→ Rm, x̃0(t) = x0, ∀t ∈ [a, b].

Hence y∗ ≤ B(y∗) ≤ B2(y∗) ≤ . . . ≤ B∞(y∗) = B∞(ỹ∗(a)) ≤ B∞(x̃∗(a)) = x∗. �

In order to study the monotony of the solution of the problem (1.1)-(1.2) with
respect to x0, f, g we need the following result from WPOs theory.

Lemma 3.3. (Abstract comparison lemma, [15]) Let (X, d,≤) be an ordered metric
space and A,B,C : X → X be such that:

(i) the operator A,B,C are WPOs;
(ii) A ≤ B ≤ C;
(iii) the operator B is increasing.
Then x ≤ y ≤ z imply that A∞(x) ≤ B∞(y) ≤ C∞(z).

From this abstract result we obtain the following result:
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Theorem 3.4. Let f j , gj ∈ C([a, b]×Rm,Rm), j = 1, 3, and suppose that the conditions
from Theorem 2.2 hold. Furthermore suppose that:

(i) f1 ≤ f2 ≤ f3, g1 ≤ g2 ≤ g3;

(ii) f2(t, ·) : Rm → Rm, g2(t, ·) : Rm → Rm are increasing.

Let x∗j be a solution of the equation

xj′(t) = f j(t, x(t)) + gj(t, max
a≤ξ≤t

x(ξ)), t ∈ [a, b] and j = 1, 3.

Then x∗1(a) ≤ x∗2(a) ≤ x∗3(a), implies x∗1 ≤ x∗2 ≤ x∗3, i.e. the unique solution of
the problem (1.1)-(1.2) is increasing with respect to x0, f and g.

Proof. From Remark 2.4, the operators Bj , j = 1, 3, are WPOs. From the condition
(ii) the operator B2 is monotone increasing. From the condition (i) it follows that
B1 ≤ B2 ≤ B3. Let x̃j(a) ∈ (C[a, b],Rm) be defined by x̃j(a) = xj(a), ∀t ∈ [a, b]. We
notice that

x̃1(a)(t) ≤ x̃2(a)(t) ≤ x̃3(a)(t), ∀t ∈ [a, b].

From Lemma 3.3 we have that B∞1 (x̃∗1(a)) ≤ B∞2 (x̃∗2(a)) ≤ B∞3 (x̃∗3(a)).
But x∗j = B∞j (x̃∗j(a)), so x∗1 ≤ x∗2 ≤ x∗3. �

4. Data dependence: continuity

In this section we prove the continuous dependence of the solution for equation
(1.1) and suppose the conditions of Theorem 2.2 are satisfied.

Theorem 4.1. Let xj0, f
j , gj , j = 1, 2 satisfy the conditions from Theorem 2.2. Fur-

thermore we suppose there exist η1, η2, η3 ∈ Rm+ , such that

(i)
∣∣∣xj0 − xj0∣∣∣ ≤ η1;

(ii)
∣∣f1(t, u)− f2(t, u)

∣∣ ≤ η2, ∣∣g1(t, v)− g2(t, v)
∣∣ ≤ η3, ∀t ∈ C[a, b], u, v ∈ Rm.

Then∥∥x∗(t;x10, f1, g1)− x∗(t;x20, f2, g2)
∥∥ ≤ (I −Q)−1(η1 + (b− a)(η2 + η3)),

where x∗(t;xj0, f
j , gj) are the solutions of the problem (1.1)-(1.2) with respect to

xj0, f
j , gj , j = 1, 2.

Proof. Consider the operator Axj
0,f

j ,gj , j = 1, 2. From Theorem 2.2 it follows that∥∥∥Ax1
0,f

1,g1(x)−Ax1
0,f

1,g1(y)
∥∥∥ ≤ Q ‖x− y‖ ,∀x, y ∈ X.

Additionally ∥∥∥Ax1
0,f

1,g1(x)−Ax2
0,f

2,g2(x)
∥∥∥ ≤ η1 + (b− a)(η2 + η3).
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Then ∥∥x∗(t;x10, f1, g1)− x∗(t;x20, f2, g2)
∥∥

=
∥∥∥Ax1

0,f
1,g1(x∗(t;x10, f

1, g1))−Ax2
0,f

2,g2(x∗(t;x20, f
2, g2))

∥∥∥
≤
∥∥∥Ax1

0,f
1,g1(x∗(t;x10, f

1, g1))−Ax1
0,f

1,g1(x∗(t;x20, f
2, g2))

∥∥∥
+
∥∥∥Ax1

0,f
1,g1(x∗(t;x20, f

2, g2))−Ax2
0,f

2,g2(x∗(t;x20, f
2, g2))

∥∥∥
≤ Q

∥∥x∗(t;x10, f1, g1)− x∗(t;x20, f2, g2)
∥∥+ η1 + (b− a)(η2 + η3).

Since Qn → 0 as n→∞, implies that (I −Q)−1 ∈Mmm(R+) and we finally obtain∥∥x∗(t;x10, f1, g1)− x∗(t;x20, f2, g2)
∥∥ ≤ (I −Q)−1(η1 + (b− a)(η2 + η3)). �

5. Remarks

In this section we emphasize some special cases of (1.1).

Let τ > 0 be a given number and we define the operator G : C([−τ,∞),Rm)→
Rm such that for any function x ∈ C([−τ,∞),Rm) and any point t ∈ R+ there exists
a point ξ ∈ [t− τ, t] such that G(x)(t) = a(t)x(ξ) where a ∈ C(R+,R).

Consider the nonlinear delay functional differential equation

x′(t) = f(t, x(t)) + g(t, G(x)(t)) (5.1)

for t ≥ t0 with initial condition

x(t+ t0) = ϕ(t), t ∈ [−τ, 0],

where x ∈ Rm, f : R+ × Rm → Rm, t0 ∈ R+, ϕ : [−τ, 0]→ Rm.
Particular cases of (1.1):

(i) For G(x)(t) = x(t−τ), t ∈ R+, then (5.1) reduces to a delay differential equation
(see [6], [12], [14], [15]);

(ii) For G(x)(t) = max
s∈[t−τ,t]

x(s), t ∈ R+, then (5.1) reduces to a differential equation

with maxima (see [16], [17], [9], [10], [1]);

(iii) For G(x)(t) =
∫ t
t−τ x(s)ds, t ∈ R+, τ > 0, then (5.1) reduces to a differential

equation with distributed delay (see [11], [4]);
(iv) For g(t, G(x)(t)) = h(x)(t), where h : C([a, b],R) → C([a, b],R) is an abstract

Volterra operator, then (5.1) reduces to a differential equation with abstract
Volterra operator (see [8]);

(v) If x′(t) − f(t, x(t)) := d
dt

[
x(t)

f(t,x(t))

]
, G(x)(t) = x(t), t ≥ t0, then (5.1) reduces

to a quadratic differential equation (see [3]).

Acknowledgements. The author is grateful to professor I. A. Rus for his helpful com-
ments and suggestions.
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Working for many years on the fixed point theory I came across several original
questions asked by the newcomers to the field and young researchers. Answering very
often required constructions of various examples. Here, samples are recalled, answered
and discussed. Presented examples concern geometrical and topological properties of
the fixed point sets of mappings satisfying certain regularity conditions. If known, are
formulated and shown with some modifications and novelties.

For the whole text, let X denotes a Banach space with norm ‖·‖ and C be a
convex, closed and bounded subset of X. H stands for Hilbert space. We shall deal
with the classical situation of a mapping T : C → C satisfying the Lipschitz condition
(lipschitzian mappings),

‖Tx− Ty‖ ≤ k ‖x− y‖ . (1)

The fixed point set for T is defined as,

FixT = [x ∈ C : x = Tx] .

If T is a contraction, k < 1, F ixT consists of exactly one point, say z, and for
any x0 ∈ C, the sequence of iterates xn = Tnx0 converges, limn→∞ xn = z.

If T is nonexpansive, k = 1, the set FixT may be empty unless the set C catisfies
some additional regularity condition. However, always the minimal displacement by
T satisfies,

d (T ) = inf [‖x− Tx‖ : x ∈ C] = 0.

Even if FixT 6= ∅ the iterates Tnx0, in general, do not converge. If the space X, or the
set C, show some special conditions, it may have influence on the regularity of FixT.
For example, if X is strictly convex, then FixT is convex. If C is weakly compact and
T has a fixed point in every T−invarint closed convex subset of C, then FixT is a
nonexpansive retract of C. The last means that there exists a nonexpansive mapping
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R : C → FixT such that FixR = FixT = R (C) . Without regularity conditions the
fixed point sets can be very bizzare (see below and [1]).

If k > 1, F ixT is in many cases empty unless C is compact. If C is not compact,
it may be that d (T ) > 0.

The above standard facts in fixed point theory can be found, among other places,
in books [2], [5], [6] see also [3].

The first to discuss is:

Question 1. Given a Banach space X and a nonempty, closed set F ⊂ X. Is there a
way, procedure, algorithm to find out whether F is a fixed point set for a nonexpansive
mapping T : X → X or T : C → C for a convex C containing F?

The situation is clear if X = H is a Hilbert space. The fixed point sets of
nonexpansive mappings are convex. Since for any nonempty closed convex suset C ⊂
H the nearest point retraction PC : X → C assigning to each x ∈ H the unique point

PC (x) ∈ C such that

‖x− PCx‖ = min [‖x− y‖ : y ∈ C]

is nonexpansive, convexity is the necessary and sufficient condition for a closed set to
be of the form C = FixT for nonexpansive T.

The nearest point projection P is not the only one nonexpansive mapping hav-
ing C as the fixed point set. The reflection with respect to P, S = 2P − I is also
nonexpansive with FixS = C. There are more examples in [4].

In other, even very regular, spaces convexity is not enough.

Example 1. Let for p ∈ (1,∞), lp3 be the three dimensional space R3 furnished with
the norm

‖x‖p = ‖(x1, x2, x3)‖p = (|x1|p + |x2|p + |x3|p)
1
p .

Let K be the triangle with vertices at unit vectors, e1 = (0, 0, 1) , e2 = (0, 1, 0) , e3 =
(0, 0, 1) . There is the unique closed ball containing K having minimal radius. Simple
calculus shows that this is B (zp, rp) centered at zp = (tp, tp, tp) with

tp =
(

2
1

p−1 + 1
)−1

rp = 2
1
p

(
2

1
p−1 + 1

) 1−p
p

.

For two extremal cases, p = 1 and p =∞, we have z1 = limp→1 zp = (0, 0, 0) , r1 = 1
and z∞ = limp→∞ zp =

(
1
2 ,

1
2 ,

1
2

)
, r∞ = 1

2 . Observe that zp ∈ K if and only if p = 2.
Let C ⊂ lp3 be a closed convex set containing K and such that zp ∈ C. Assume that
T : C → C is nonexpansive and such that FixT = K. For any x ∈ K we have

‖Tzp − Tx‖ ≤ ‖zp − x‖ ≤ rp.

Thus K ⊂ B (Tzp, rp) . In view that the ball of radius rp containing K is unique, it
must be zp = Tzp. For p 6= 2, zp /∈ K and thus, we have the contradiction K 6= FixT.
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In general, no topological propertis can characterize whether a closed set F is,
or not is, of the form F = FixT for nonexpansive T . There may be the case that the
set C ⊂ X is not the fixed point set of of any nanexpansive mapping T : X → X, but
for certain larger space Y,X ⊂ Y there is even an isometry G : Y → Y having having
FixG isometric to F.

Example 2. Let X be an arbitrary space and let F ⊂ X be nonempty and closed.
Consider the space Z = C × c0 normed for (x, y) ∈ Z, x ∈ X, y = (y1, y2, ...) ∈ c0, by

‖(x, y)‖ = max
[
‖x‖ , ‖y‖c0

]
.

Since for any x1, x2 in X

|dist (x1, F )− dist (x2, F )| ≤ ‖x1 − x2‖ ,

the mapping T : Z → Z, defined as

T (x, y) = T (x, (y1, y2, ...)) = (x, (dist (x, F ) , y1, y2, ...))

is not only nonexpansive but isometric. If (x, y) = T (x, y) , then

(y1, y2, ...) = (dist (x, F ) , y1, y2, ...)

which implies

dist (x, F ) = y1 = y2 = ... = 0.

Thus, Fix (T ) ⊂ Z is

Fix (T ) = F × {0}
which is an isometric the copy of F ⊂ X.

Summing up, any closed subset of any Banach space can be considered as a fixed
point set of an isometry.

Next two questions concern mappings which are lipschitzian with k > 1.

Question 2. Do there exist some characteristics of fixed point sets for Lipschitz map-
ping with constant k > 1? Do they depennd on the size of k or the regularity of the
space?

Question 3. The same as above with the additional assumption that T has convergent
iterates, for any x there exists T∞x = limn→∞ Tnx.

The first answer is that there is no dependence on the size of k. If C is a closed
and convex set and T : C → C is k−lipschitzian, then for any α ∈ (0, 1) the mapping
Tα = (1− α) I+αT satisfies the Lipschitz condition wit a constant kα ≤ (1−α+αk)
and has FixTα = FixT. Since limα→0 kα = 1 possible characteristics may not depend
on the size of k.

The rest is answered by the following fact.

Claim 1. Let C ⊂ X be a nonempty closed convex and bounded. Suppose F ⊂ C is
nonempty and closed. For any ε > 0 there exists a mapping T : C → C such that T
is k−lipschtzian with k ≤ 1 + ε, F ixT = F .
Moreover, for any x ∈ C, T∞x = limn→∞ Tnx does exist.
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Proof. Let F and C be as assumed. Fix a point z ∈ F and 0 < ε < 1. Define the
mapping T : C → C as

Tx = x+ ε
dist (x, F ) (z − x)

2diamC
.

Observe that FixT = F. Now it is easy to see that

‖dist (x, F ) (z − x)− dist (x, F ) (z − y)‖ ≤ 2diamC ‖x− y‖
and consequently,

‖Tx− Ty‖ ≤ (1 + ε) ‖x− y‖ .
Finally, for any x /∈ F the iterates {x, Tx, T 2x, ...} form on the segment [x, z] the
sequence monotone in the way that for any n = 0, 1, 2, ..., Tn+1x ∈ [Tnx, z] . It
implies convergence. �

Additional information can be obtained that T∞x = limn→∞ Tnx is the point
in F ∩ [x, z] closest to x, ‖x− T∞x‖ = dist (x, F ∩ [x, z]) . Obviously, the above con-
struction does not imply the continuity of T∞. The simpliest example of it is, if we
consider F consisting of only two distinct points.

The next question concerns retracts. Let us remain in our standartd assumptions
for F ⊂ C. The set F is said to be the retract (lipschitzian, nonexpansive) if there
is a continuous (lipschitzian, nonexpansive) mapping R : C → F such that R (C) =
FixR = F. Any such R is said to be a retraction of C onto F . For a given retract F of
C, there may be many retractions of various regularity. Retractions are characterized
by the condition R2 = R which implies that R (C) is the retract of C. For any x ∈ C
the iterates of each retraction R stabilize after one step, Rnx = Rx, n = 1, 2, 3, ... .

Question 4. What about mappings having iterates stabilized after k steps, meaning
T k+1x = T kx?

Under this condition for all n ≥ k, we have Tn = T k. In other notation, for any
x ∈ C,

T kx = T k+1x = T k+2x = ... .

Thus T 2k = T k and R = T k is a retraction. Hence the fixed point sets of such
mappings are the retracts of C. There are simple example of such mappings.

Example 3. Let B ⊂ X be the unit ball. It is the retract of X. The standart retraction
Q : X → B is the radial projection mapping

Qx =

{
x if ‖x‖ ≤ 1
x
‖x‖ if ‖x‖ > 1.

.

Let S = 2Q− I. Since Q satisfies Lipschitz condition with constant k ∈ [1, 2] , so S is
also lipschitzian. More precisely,

Sx =

{
x if ‖x‖ ≤ 1

2−‖x‖
‖x‖ x if ‖x‖ > 1

,

and

‖Sx‖ =

{
‖x‖ if ‖x‖ ≤ 1

|‖x‖ − 2| if ‖x‖ > 1
.
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For any x we have Sn+1x = Snx begining from n = Ent‖x‖2 . Consequently for any
r > 1, S : rB → rB for n = Ent r2 , S

n is a lipschitzian retraction of rB onto B.

It is easy to observe that there are more Lipschitz retractions of the whole space
X on B other than Q . Such are for example mappings of the form,

Rn = Q ◦ Sn, n = 1, 2, ... .

In the most interesting case of the Hilbert space H, both mappings Q and S are
nonexpansive. So, nonexpansive are all Rn, n = 1, 2, ... .

There is an advice for interested reader to prove:

Claim 2. Suppose F,C, F ⊂ C ⊂ H are closed, convex and bounded. Assume that
F (so, also C) has nonempty interior. Let P = PF : C → F be the closest point
projection and S = 2P − I. Then there exists n ≥ 1 such that Sn is a nonexpansive
retraction of C onto F.

The last is the following:

Question 5. What can be said about mappings similar to presented above if we only
assume that for each individual point x the sequence Tnx stabilizes but not necessarily
on on the same level?

The situation is unclear. This condition does not bring much of regularity. There
are sets F,C, F ⊂ C such that F is not the retract of C or even are disconnected
which satisfy the following.

For any ε > 0 there is a (1 + ε)−lipschitzian mapping T : C → F having
F = FixT and such that for each x ∈ C, T k+1x = T kx for certain k depending on
x, k = k (x) . It looks like it is unknown how to characterize such sets. Here we present
only a few simple examples.

Example 4. Consider the plain R2 with standard Eucledean norm, or any Hilbert
space. Let B,S denote the unit ball and the unit sphere and let P be the radial
retraction on B. Then the mapping T : B → B,

Tx = P ((1 + ε)x) , (2)

is (1 + ε)−lipschitzian, FixT = S ∪{0} and for any x ∈ B the iterates of T stabilize.
The level of stabilization k = k (x) for x /∈ FixT depends only on the norm of x and
grows to infinity as x→ 0.

It is only a technicality to construct similar examples with F = FixT = S ∪
1
2S ∪ {0} or F = rB ∪ S, 0 < r < 1 and other modifications as,

Example 5. Again for the Euclidean plane R2 plain consider the square

K = [(x1, x2) : |x1| ≤ 1, |x2| ≤ 1] .

Let P = PK be the closest point projection of R2 on K,

P (x1, x2) = (α(x1), α (x2)),

where

α (t) =

 −1 if t < −1
t if −1 ≤ t ≤ 1
1 if t > 1

.
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Let again the mapping T : K → K be defined by (2). Then T fulfils required
conditions and has the fixed point set consisting of nine points: the origin, positive
and negative unit vectors and vertices of the square.
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Stud. Univ. Babeş-Bolyai Math. 61(2016), No. 4, 435–442

Fixed point theorems for operators with
a contractive iterate in b-metric spaces

Monica-Felicia Bota

Dedicated to Professor Ioan A. Rus on the occasion of his 80th anniversary

Abstract. We consider, in this paper, mappings with a contractive iterate at
a point, which are not contractions, and prove some uniqueness and existence
results in the case of b−metric spaces. A data dependence result and an Ulam-
Hyers stability result are also proved.

Mathematics Subject Classification (2010): 47H10, 54H25.

Keywords: Fixed point, b-metric space, contractive iterate, data dependence,
Ulam-Hyers stability.

1. Introduction

The well known Banach contraction’s principle states that in a complete met-
ric space each contraction has a unique fixed point and the sequence of successive
approximations converges to the fixed point. We consider, in this paper, mappings
with a contractive iterate at a point, which are not contractions, and prove some
uniqueness and existence results in the case of b−metric spaces. Some related results
for the case of metric spaces can be found in [12, 4, 17, 19] The starting point of this
theory is the article of V.M. Sehgal [22], where the author proves the following result:

Theorem 1.1. Let (X, d) be a complete metric space and f : X → X a continuous
mapping satisfying the condition: there exists a k < 1 such that for each x ∈ X, there
is a positive integer n(x) such that for all y ∈ X

d(fn(x)(y), fn(x)(x)) ≤ kd(y, x).

Then f has a unique fixed point u and fn(x0)→ u, for each x0) ∈ X.

We investigate mappings that are not necessary continuous and extend the pre-
vious result to the case of b−metric spaces. The data dependence of the fixed points
is also considered. In the second part of the paper we prove an Ulam-Hyers stability
result. For more results regarding this concepts see [8, 13, 20, 21].
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2. Preliminaries

The b-metric space is a generalization of a usual metric space, which was in-
troduced by Czerwik [15, 14]. In fact, such general setting of metric spaces were
considered earlier, for example, by Bourbaki [11], Bakhtin [3], Heinonen [18]. Follow-
ing these initial papers, b-metric spaces and related fixed point theorems have been
investigated by a number of authors, see e.g. Boriceanu et al.[9], Bota [10], Aydi et
al. [1, 2].

Throughout this paper, the standard notations and terminologies in nonlinear
analysis are used. We recollect some essential definitions and fundamental results. We
begin with the definition of a b-metric space.

Definition 2.1. (Bakhtin [3], Czerwik [15]) Let X be a set and let s ≥ 1 be a given
real number. A functional d : X ×X → [0,∞) is said to be a b-metric if the following
conditions are satisfied:

1. d(x, y) = 0 if and only if x = y,
2. d(x, y) = d(y, x),
3. d(x, z) ≤ s[d(x, y) + d(y, z)],

for all x, y, z ∈ X. A pair (X, d) is called a b-metric space.

It is clear that a b-metric is a usual metric if we take s = 1. Hence, we conclude
that the class of b-metric spaces is larger than the class of usual metric spaces. For
more details and examples on b-metric spaces, see e.g. [3, 5, 11, 14, 15, 18].

For the sake of completeness we state the following examples, see [5, 6].

Example 2.2. Let X be a set with the cardinal card(X) ≥ 3. Suppose that X =
X1 ∪ X2 is a partition of X such that card(X1) ≥ 2. Let s > 1 be arbitrary. Then,
the functional d : X ×X → [0,∞) defined by:

d(x, y) :=

 0, x = y
2s, x, y ∈ X1

1, otherwise.

is a b-metric on X with coefficient s > 1.

Example 2.3. The set lp(R) (with 0 < p < 1), where

lp(R) :=

{
(xn) ⊂ R|

∞∑
n=1

|xn|p <∞

}
,

together with the functional d : lp(R)× lp(R)→ R,

d(x, y) :=

( ∞∑
n=1

|xn − yn|p
)1/p

,

(where x = (xn), y = (yn) ∈ lp(R)) is a b-metric space with coefficient s = 21/p > 1.
Notice that the above result holds for the general case lp(X) with 0 < p < 1, where
X is a Banach space.
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Example 2.4. The space Lp[0, 1] (where 0 < p < 1) of all real functions x(t), t ∈ [0, 1]

such that
∫ 1

0
|x(t)|pdt <∞, together with the functional

d(x, y) :=

(∫ 1

0

|x(t)− y(t)|pdt
)1/p

, for each x, y ∈ Lp[0, 1],

is a b-metric space. Notice that s = 21/p.

We will present now the notions of convergence, compactness, closedness and
completeness in a b-metric space.

Definition 2.5. Let (X, d) be a b-metric space. Then a sequence (xn)n∈N in X is called:

(a) convergent if and only if there exists x ∈ X such that d(xn, x)→ 0 as n→ +∞.
In this case, we write lim

n→∞
xn = x.

(b) Cauchy if and only if d(xn, xm)→ 0 as m,n→ +∞.

Remark 2.6. Notice that in a b-metric space (X, d) the following assertions hold:
(i) a convergent sequence has a unique limit;
(ii) each convergent sequence is Cauchy;

(iii) (X,
d→) is an L-space (see Fréchet [16], Blumenthal [7]);

(iv) in general, a b-metric is not continuous;

Taking into account of (iii), we have the following concepts.

Definition 2.7. Let (X, d) be a b-metric space. Then a subset Y ⊂ X is called:
(i) closed if and only if for each sequence (xn)n∈N in Y which converges to an

element x, we have x ∈ Y ;
(ii) compact if and only if for every sequence of elements of Y there exists a

subsequence that converges to an element of Y .

Definition 2.8. The b-metric space (X, d) is complete if every Cauchy sequence in X
converges.

Lemma 2.9. (Czerwik [15]) Let (X, d) be a b-metric space. Then and let {xk}nk=0 ⊂ X.
Then d(xn, x0) ≤ sd(x0, x1) + . . .+ sn−1d(xn−2, xn−1) + snd(xn−1, xn).

3. Main results

In order to prove the first main result we need the following Lemma:

Lemma 3.1. Let (X, d) be a complete b-metric space with s ≥ 1 and f : X → X a
mapping which satisfies the condition: there exists an a ∈ (0, 1s ) such that for each
x ∈ X there is a positive integer n(x) such that for all y ∈ X

d(fn(x)(x), fn(x)(y)) ≤ ad(x, y).

Then for each x ∈ X, r(x) = supnd(fn(x), x) is finite.
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Proof. Let x ∈ X and let l(x) = max{d(fk(x), x), k = 1, 2, . . . , n(x)}.
If n ∈ N there exists k ≥ 0 such that

k · n(x) < n ≤ (k + 1) · n(x).

We have:

d(fn(x), x) ≤ s[d(fn(x)(fn−n(x)(x)), fn(x)(x)) + d(fn(x)(x), x)]

≤ s · a · d(fn−n(x)(x), x) + s · l(x)

≤ s · l(x) + a · s2 · l(x) + a2 · s3 · l(x) + . . .+ ak · sk+1 · l(x)

= s · l(x)[1 + s · a+ s2 · a2 + . . .+ sk · ak]

= s · l(x) · 1− (s · a)k+1

1− s · a
≤ s · l(x) · 1

1− sa
.

Hence r(x) = supnd(fn(x), x) is finite. �

The next result presents a fixed point theorem for a mapping with a contractive
iterate. A data dependence result is also proved.

Theorem 3.2. Let (X, d) be a complete b-metric space with s ≥ 1 and f : X → X
a mapping which satisfies the condition: there exists an a ∈ (0, 1s ) such that for each
x ∈ X there is a positive integer n(x) such that for all y ∈ X

d(fn(x)(x), fn(x)(y)) ≤ ad(x, y).

Then:

(i) f has a unique fixed point x∗ ∈ X and fn(x0)→ x∗, for each x0 ∈ X, as n→∞.
If, in addition, the b−metric is continuous we have:

(ii) d(x0, x
∗) ≤ sd(x0, f

n(x0)(x0)) + s2

1−sar(x0), for each x0 ∈ X.
(iii) Let g : X → X such that there exists η > 0 with

d(fn(x)(x), g(x)) ≤ η, ∀x ∈ X.

Then

d(x∗, y∗) ≤ s · η +
s

1− sa
· r(y∗),

for all y∗ ∈ Fix(g).

Proof. (i) Let x0 ∈ X be arbitrary. Let m0 = n(x0), x1 = fm0(x0) and inductively
mi = n(xi), xi+1 = fmi(xi). We show that the sequence {xn} is convergent. By
routine calculation we have

d(xn+1, xn) = d(fmn−1(fmn(xn−1)), fmn−1(xn−1))

≤ a · d(fmn(xn−1), xn−1) ≤ . . . ≤ an · d(fmn(x0), x0).



Operators with a contractive iterate in b-metric spaces 439

Estimating d(xn, xn+p) we obtain

d(xn, xn+p) ≤ s · d(xn, xn+1) + s2 · d(xn+1, xn+2) + . . .+ sp−1 · d(xn+p−1, xn+p)

≤ s · an · d(fmn(x0), x0) + s2 · an+1 · d(fmn(x0), x0) + . . .

+ sp · an+p−1 · d(fmn(x0), x0)

≤ s · an · r(x0) + s2 · an+1 · r(x0) + . . .+ sp · an+p−1r(x0)

= s · an · r(x0)[1 + s · a+ . . .+ (s · a)p−1]

= s · an · r(x0) · 1− (sa)p

1− sa
→ 0, n→∞.

Hence {xn} is Cauchy. Let xn → x∗ ∈ X. We want to show that f(x∗) = x∗.
First we show that

fn(x
∗)(xm) = ym → fn(x

∗)(x∗), as m→∞.
We have

d(fn(x
∗)(xm), fn(x

∗)(x∗)) ≤ ad(xm, x
∗)→ 0, as m→∞.

On the other side we can write

d(fn(x
∗)(x∗), x∗) ≤ s · [d(fn(x

∗)(x∗), fn(x
∗)(xi)) + d(fn(x

∗)(xi), x
∗)]

where for i sufficiently large we have

d(fn(x
∗)(x∗), fn(x

∗)(xi)) <
ε

3s
.

We also have that

d(fn(x
∗)(xi), xi) = d(fn(x

∗)(fmi−1(xi−1)), fmi−1(xi−1))

= d(fmi−1(fn(x
∗)(xi−1)), fmi−1(xi−1))

≤ a · d(fn(x
∗)(xi−1), xi−1) ≤ ai · d(fn(x

∗)(x∗), x∗) <
ε

3s2

for i sufficiently large.
We also have

d(fn(x
∗)(xi), x

∗) ≤ s · [d(fn(x
∗)(xi), xi) + d(xi, x

∗)] < s
ε

3s2
+ s

ε

3s2
=

2ε

3s

Hence

d(fn(x
∗)(xi), x

∗) ≤ s
[
s
ε

3s2
+ s

ε

3s2

]
+

ε

3s
= ε.

Thus fn(x
∗)(x∗) = x∗ which gives us the existence of a fixed point for g = fn(x

∗).
In order to prove the uniqueness of the fixed point let us consider x∗ and y∗ two

fixed points with x∗ 6= y∗. We have

d(x∗, y∗) = d(g(x∗), g(y∗)) = d(fn(x
∗)(x∗), fn(x

∗)(y∗)) ≤ a · d(x∗, y∗),

which is a contradiction with a ∈ (0, 1).

From the uniqueness of the fixed point and from fn(x
∗) = x∗ we can conclude

that x∗ is a fixed point for f too. Indeed we have

f(x∗) = f(fn(x
∗)(x∗)) = fn(x

∗)(f(x∗)),
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so f(x∗) is a fixed point for fn(x
∗). But fn(x

∗) has a unique fixed point x∗. Hence
f(x∗) = x∗.

To show that fn(x0)→ x∗ let us consider the set

ρ∗ = max{d(fm(x0), x∗) : m = 0, 1, 2, . . . , (n(x∗)− 1)}.

For n ∈ N sufficiently large we have: n = r · n(x∗) + q, 0 ≤ q < n(u), r > 0 and

d(fn(x0), x∗) = d(frn(x
∗)+q(x0), fn(x

∗)(x∗))

≤ ad(f (r−1)n(x
∗)+q(x0), x∗) ≤ . . .

≤ ard(fq(x0), x∗) ≤ arρ∗

Since n → ∞ implies r → ∞, we have d(fn(x0), x∗) → 0, as n → ∞. This establish
the theorem.

(ii) In order to prove the second assertion we consider the following inequality
obtained above:

d(xn, xn+p) ≤ s · an · r(x0) · 1− (sa)p

1− sa
.

Since the b−metric is continuous and letting p→∞ we obtain:

d(xn, x
∗) ≤ san

1− sa
· r(x0).

For n = 1 we have

d(x1, x
∗) = d(fn(x0)(x0), x∗) ≤ s

1− sa
r(x0).

Taking into account the previous inequalities we have:

d(x0, x
∗) ≤ s(d(x0, x1) + d(x1, x

∗))

≤ sd(x0, x1) +
s2

1− sa
r(x0)

= s · d(x0, f
n(x0)(x0)) +

s2

1− sa
r(x0)

(iii) For the data dependence of the fixed points, using the result from (ii) for
x0 = y∗, we obtain:

d(x∗, y∗) ≤ sd(y∗, fn(y
∗)(y∗)) +

s2

1− sa
r(y∗)

= s · d(g(y∗), fn(y
∗)(y∗)) +

s2

1− sa
r(y∗)

≤ s · η +
s2

1− sa
r(y∗)

�

In the second part of the paper is presented an Ulam-Hyers stability result. We
begin with the definition of the Ulam-Hyers stability for a fixed point equation.
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Definition 3.3. Let (X, d) be a b-metric space with s ≥ 1 and f : X → X a mapping.
The fixed point equation

x = f(x), x ∈ X (3.1)

is called Ulam-Hyers stable if ∀ε > 0 and ∀x ∈ X there exists n(x) ∈ N∗ such that
∀y∗ a solution of the inequality

d(y, fn(y)(y)) ≤ ε (3.2)

there exist c > 0 and x∗ ∈ X a solution of (3.1) such that

d(y∗, x∗) ≤ ε. (3.3)

Theorem 3.4. Let (X, d) be a complete b-metric space with s ≥ 1. Suppose that all the
hypothesis of Theorem 3.2 hold.

Then the fixed point problem (3.1) is Ulam-Hyers stable.

Proof. Let us estimate the following:

d(y∗, x∗) ≤ s(d(y∗, fn(y
∗)(y∗)) + d(fn(y

∗)(y∗), x∗)

= s(ε+ d(fn(y
∗)(y∗), fn(y

∗)(x∗)))

≤ sε+ s · a · d(y∗, x∗)

Hence:

d(y∗, x∗) ≤ sε

1− sa
�
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Babeş-Bolyai Math., 16(1996), no. 4, 23-27.

[7] Blumenthal, L.M., Theory and Applications of Distance Geometry, Oxford, 1953.
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Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.), 57(2011), 65-74.



442 Monica-Felicia Bota
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Abstract. The method of upper and lower solutions is presented for the fixed
point problem associated to operators which are compositions of a linear oper-
ator and a nonlinear mapping. Spectral properties of the linear part together
with growth and monotonicity properties of the nonlinear part are involved. An
application to singular boundary value problems is included.
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1. Introduction

One of the most useful methods for solving nonlinear equations arising from
mathematical modeling of real processes is the method of upper and lower solutions
(see [1], [2], [5], [6], [8], [10], [12], [13], [14]). It consists in localizing solutions of an
operator equation

u = Tu

in an order interval [u0, v0] , where u0 is a lower solution, i.e.

u0 ≤ Tu0,

v0 is an upper solution, i.e.

v0 ≥ Tv0,
and u0, v0 are comparable in the sense of order, that is u0 ≤ v0. Thus a basic
problem is to find comparable lower and upper solutions. In this paper we present
such type of results for the abstract Hammerstein equation

u = ANu (1.1)
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in an ordered Banach space X. Here A is a linear operator and N is a nonlinear
mapping from X to X. Although the main motivation is in applications to real pro-
cesses from science and engineering, a general abstract method is essential in order
to understand unitarily particular results and to make clear the applicability of the
method to a specific problem.

2. Main results

The first result guarantees that the solutions of an equation u = AΦu simpler
than (1.1), are upper (lower) solutions for (1.1) provided that Φ (respectively, N)
dominates N (respectively, Φ).Throughout this paper we shall use the same symbol≤
to denote the order relation in different ordered sets.

Theorem 2.1. Let X and Y be two ordered sets, N : X → Y be any mapping and A :
Y → X be an increasing operator. Assume that there are D ⊂ X and Φ : D → Y
such that

Nu ≤ Φu (respectively, Nu ≥ Φu) (2.1)

for all u ∈ D. Then any solution u ∈ D of the equation

u = AΦu, (2.2)

if there is one, is an upper (respectively, lower) solution of the equation u = ANu.

Proof. Assume v0 ∈ D solves (2.2). Then, from (2.1) we have

Nv0 ≤ Φv0

and since A is increasing,

ANv0 ≤ AΦv0 = v0.

Hence v0 is an upper solution. Similarly, if Nu ≥ Φu on D, then any solution of
(2.2) is a lower solution of the equation u = ANu. �

If in Theorem 2.1 we add linearity, then we obtain the following result.

Corollary 2.2. Let X, Y be ordered linear spaces, N : X → Y any mapping and
A : Y → X a linear increasing operator. Let KX be the cone of all elements u of X
with u ≥ 0. Assume there are c ∈ R+ and w0 ∈ Y such that

Nu ≤ cu+ w0 (2.3)

for all u ∈ KX ∩ Y. Then any solution v0 ∈ KX of the equation

u− cAu = Aw0 (2.4)

is an upper solution of (1.1). If in addition,

−N (−u) ≤ cu+ w0 (2.5)

for all u ∈ KX ∩ Y, then u0 := −v0 is a lower solution of (1.1).
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Proof. In Theorem 2.1 take D = KX ∩ Y and Φu = cu+w0. For the second part of
the corollary, take D = (−KX) ∩ Y, Φu = cu− w0. �

Equation (2.4) suggests that more applicable results can be established if we
take into account the spectral properties of A.

Theorem 2.3. Let X be a Banach space ordered by a normal cone K. Assume that
A : X → X is a completely continuous linear operator whose non-zero eigenvalues
are positive and that A satisfies the weak maximum principle

u− αAu = Aw, w ∈ K implies u ∈ K (2.6)

for every α ∈ (−∞, |A|−1). In addition assume that N : X → X is a continuous
mapping such that

Nu ≤ cu+ w0, N (−u) ≥ −cu− w0 (2.7)

for all u ∈ K and some 0 < c < |A|−1 , w0 ∈ K, and there exists a ∈ R+ such that
the operator

Nu+ au is increasing on [−v0, v0] ,

where v0 is the (unique) solution of the equation u− cAu = Aw0.
Then equation (1.1) has at least one solution. Moreover, if the set S+ (S−)

of all solutions u ≥ 0 (respectively, u ≤ 0) is nonempty, then it has a maximal
(respectively, minimal) element.

Proof. First note that for any constant α < |A|−1 , the operator I − αA is injective
(equivalently, bijective, according to the Fredholm’s alternative [4, p. 92]). Indeed,
otherwise for some u ∈ X \ {0} one has u − αAu = 0. For α < 0 this is impossible
since all non-zero eigenvalues are assumed to be positive (here 1/α is a non-zero
eigenvalue). If α = 0, this equality is obviously impossible. It remains to discuss the

case α > 0. Then |u| = α |Au| ≤ α |A| |u| , whence α ≥ |A|−1 , a contradiction. Thus
our claim is proved.

Let v0 be the unique solution of the equation u− cAu = Aw0.From (2.6) one
has v0 ≥ 0. Now, (2.7) guarantees both (2.3), (2.5). Thus, by Corollary 2.2, v0 is
an upper solution and u0 := −v0 is a lower solution. Let

Nau = Nu+ au.

The equation u = ANu is equivalent to

u = (I + aA)
−1
ANau.

Let

Ta = (I + aA)
−1
ANa.

Clearly Ta is completely continuous on [u0, v0] . Also Ta is increasing on [u0, v0] since

Na is increasing by our hypothesis and (I + aA)
−1
A is increasing as well. Indeed,

if w ∈ K and u := (I + aA)
−1
Aw, then u+ aAu = Aw and by the weak maximum

principle u ∈ K. Hence the linear operator (I + aA)
−1
A is increasing. In addition

Tav0 ≤ v0. (2.8)
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To prove this denote u := Tav0. Then

u+ aAu = ANv0 + aAv0 = A (cv0 + w0 − h) + aAv0

= cAv0 +Aw0 −Ah+ aAv0 = v0 −Ah+ aAv0

where h := cv0 + w0 −Nv0 ∈ K. Consequently

v0 − u+ aA (v0 − u) = Ah

and by the weak maximum principle v0 − u ≥ 0 which proves (2.8). Similarly,

u0 ≤ Tau0.

Let u∗, v∗ be the minimal, respectively maximal solution in [u0, v0] as guaranteed by
the Monotone Iterative Principle (see [9] and [13]). One has

−v0 ≤ u∗ ≤ v∗ ≤ v0.

We now show that if w ∈ K solves w = ANw, then w ≤ v0. Indeed, from

w = ANw = A (cw + w0 − h) = cAw +Aw0 −Ah,

where h := cw + w0 −Nw ∈ K, and

v0 = cAv0 +Aw0, (2.9)

by subtraction, we obtain

v0 − w − cA (v0 − w) = Ah.

Then by the weak maximum principle, v0 − w ≥ 0 and so w ∈ [0, v0] . Consequently
w ≤ v∗. Hence v∗ is maximal in S+. Similarly, if w ∈ −K and w = ANw, then
−v0 ≤ w. Hence u∗ is minimal in S−. �

For our next theorem, an existence and localization result of a nonnegative non-
zero solution, we assume that X is a Hilbert space with inner product and norm
(., .) , |.| ordered by a normal cone K, which is also a vector lattice with respect to
the order relation introduced by K. Then any element x ∈ X can be written as a
difference of two elements x+, x−of K, that is x = x+ − x−, where x+ = x ∨ 0 and
x− = (−x)∨ 0. Thus for an element x one has x ≥ 0, if and only if x− = 0. We also
assume that

(x, y) ≥ 0 for all x, y ∈ K and
(
x+, x−

)
= 0 for every x ∈ X. (2.10)

We also note that if A : X → X is a completely continuous positive (with
(Au, u) ≥ 0 for all u ∈ X) self-adjoint linear operator, then there exists u1 ∈ X,
|u1| = 1, such that

|A| = (Au1, u1) . (2.11)

This follows from the characterization of the norm of self-adjoint linear operators:

|A| = sup
u6=0

|(Au, u)|
|u|2

.
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Since (x+, x−) = 0 for every x ∈ X, we have
∣∣u+1 + u−1

∣∣ =
∣∣u+1 − u−1 ∣∣ = 1. Also if

A (K) ⊂ K, then

|A| =
(
A
(
u+1 − u

−
1

)
, u+1 − u

−
1

)
=

(
Au+1 , u

+
1

)
+
(
Au−1 , u

−
1

)
− 2

(
Au+1 , u

−
1

)
≤

(
Au+1 , u

+
1

)
+
(
Au−1 , u

−
1

)
+ 2

(
Au+1 , u

−
1

)
=

(
A
(
u+1 + u−1

)
, u+1 + u−1

)
≤ |A|

∣∣u+1 + u−1
∣∣2

= |A| .

Hence in (2.11) we may assume that u1 ≥ 0 (otherwise, replace u1 by u+1 + u−1 ).

Theorem 2.4. Let A : X → X be a completely continuous positive self-adjoint linear
operator such that weak maximum principle (2.6) holds, and let N : X → X be any
continuous mapping such that N (0) = 0,

Nu ≤ cu+ w0 (2.12)

for all u ∈ K and some 0 ≤ c < |A|−1 , w0 ≥ u1, and

N (εu1) ≥ ε |A|−1 u1 (2.13)

for all ε ∈ [0, ε0] and some ε0 > 0. Here u1 ∈ K, |u1| = 1 and (Au1, u1) = |A| .
In addition assume that there exists a ∈ R+ with

Nu+ au increasing on [0, v0] ,

where v0 is the (unique) solution of the equation u − cAu = Aw0. Then equation
(1.1) has a maximal solution in K \ {0} .

Proof. First note that the non-zero eigenvalues of A are positive since A is positive.
As above, the unique solution v0 of the equation u−cAu = Aw0 is an upper solution
of the equation u = ANu. Since N (0) = 0, the null element is a solution, and
so a lower solution. Now we apply the Monotone Iterative Principle to deduce the
existence of a maximal fixed point v∗ in [0, v0] of the operator

Ta = (I + aA)
−1
ANa.

As in the proof of Theorem 2.3 we can show that v∗ is maximal in the set of all
nonnegative solutions. To show that v∗ 6= 0, we prove that v∗ is the maximal fixed
point of Ta in an order subinterval [u0, v0] ⊂ [0, v0] with u0 6= 0.

For any fixed v ∈ X we consider the function

g (t) =
(A (u1 + tv) , u1 + tv)

|u1 + tv|2
,

which can be defined on a neighborhood of t = 0. This function attains its maximum
|A| at t = 0, so g′ (0) = 0. Notice

g′ (0) = 2 [(Au1, v)− |A| (u1, v)] .

Hence

u1 = |A|−1Au1
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(i.e., |A| is the largest eigenvalue of A and u1 is an eigenvector). Let u0 = εu1,
where 0 < ε ≤ ε0. Clearly

u0 ≥ 0, u0 6= 0, u0 = |A|−1Au0.

Using (2.13), we deduce

u0 = |A|−1Au0 = A
(
|A|−1 u0

)
≤ ANu0.

Thus u0 is a lower solution of u = ANu. Also, from

v0 = cAv0 +Aw0, u0 = |A|−1Au0,

we have

v0 − u0 = cA (v0 − u0) +
(
c− |A|−1

)
Au0 +Aw0.

= cA (v0 − u0) +A
[(
c− |A|−1

)
u0 + w0

]
.

Since w0 ≥ u1, we may write w0 = u1 + h, where h = w0 − u1 ∈ K. Then

v0 − u0 = cA (v0 − u0) +A
[((

c− |A|−1
)
ε+ 1

)
u1 + h

]
.

Now we choose ε > 0 small enough so that
(
c− |A|−1

)
ε+ 1 ≥ 0. Then((

c− |A|−1
)
ε+ 1

)
u1 ∈ K

and ((
c− |A|−1

)
ε+ 1

)
u1 + h ∈ K

too, and by the maximum principle, v0 − u0 ≥ 0. Next we apply the Monotone
Iterative Principle to deduce the existence of a maximal fixed point in [u0, v0] of Ta.
Clearly it is equal to v∗. �

Remark 2.5. Under the assumptions on X from Theorem 2.4, the weak maximum

principle holds for A on
(
−∞, |A|−1

)
if it holds on (−∞, 0].

Indeed, if (2.6) holds on (−∞, 0], then, in particular (take α = 0 in (2.6))

A (K) ⊂ K. Furthermore, assume α ∈
(

0, |A|−1
)

and u := v − αAv ∈ K. We have

to show that v ≥ 0, equivalently v− = 0. Assume the contrary, i.e. v− 6= 0. Then if
we multiply by v− and we use (2.10), we obtain

0 ≤
(
v−, u

)
=
(
v−, v

)
− α

(
v−, Av

)
=

(
v−, v+

)
−
∣∣ v−∣∣2 − α ( v−, Av+)+ α

(
v−, A v−

)
≤ −

∣∣ v−∣∣2 + α
(
v−, A v−

)
.

It follows that

α ≥ |v−|2

(v−, A v−)
.
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But (v−, A v−) ≤ |A| |v−|2 . Then α ≥ 1

|A|
, a contradiction. Thus v− = 0.

3. Application to singular boundary value problems

We shall apply the above results to the boundary value problem for a singular
second order differential equation

− 1
p (pu′)

′
= q (t) f (u) , 0 < t < 1

(pu′) (0) = 0
u (1) = 0

(3.1)

where p ∈ C [0, 1] ∩ C1 (0, 1) with p > 0 on (0, 1) ,

∫ 1

0

1

p (t)
dt < ∞ and q ∈

L∞ ([0, 1] ,R+) . The equation is singular if p is zero at t = 0 or/and t = 1. Such
kind of problems are in connection with radial solutions to stationary diffusion and
waves equations and arise from mathematical modelling of many processes in physics
and biology [3], [7], [11].

By a solution of (3.1) we mean a function u ∈ C [0, 1] ∩ C1 (0, 1) , with pu′ ∈
AC [0, 1] which satisfies the differential equation for almost every t ∈ (0, 1) .

Let X = L2
p [0, 1] with inner product and norm

(u, v) =

∫ 1

0

p uv dt, |u| =
(∫ 1

0

p u2dt

)1/2

.

Clearly, X is vector lattice ordered by the regular (hence, normal) cone K of all
nonnegative functions, with the additional property (2.10).

Denote Lu = − 1
p (pu′)

′
, where

D (L) = {u ∈ C [0, 1] ∩ C1 (0, 1) : pu′ ∈ AC [0, 1] ,

Lu ∈ L2
p [0, 1] , (pu′) (0) = u (1) = 0}.

It is easy to see that for every h ∈ L2
p [0, 1] there is a unique u ∈ D (L) with Lu = h,

and

u (t) =

∫ 1

t

1

p (s)

∫ s

0

p (τ)h (τ) dτds.

Let A be the inverse of L, more exactly

A : L2
p [0, 1]→ L2

p [0, 1] , (Ah) (t) =

∫ 1

t

1

p (s)

∫ s

0

p (τ)h (τ) dτds.

We note that A has all the required properties, i.e., it is completely continuous,
positive, self-adjoint (see e.g. [11]) and satisfies the weak maximum principle. To
prove the last property, according to Remark 2.5, it is sufficient to show that (2.6)
holds for α ≤ 0. For α = 0 this trivially holds as follows looking at the expression of
A. Let α < 0 and let u− αAu = Aw for some w ∈ K. Then{

− 1
p (pu′)

′ − αu = w, 0 < t < 1

u (1) = (pu′) (0) = 0.
(3.2)
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Suppose that u /∈ K. Then there would be an interval [a, b] , 0 ≤ a < b ≤ 1 such that

u < 0 in (a, b) , u (b) = 0 and

either a = 0, or 0 < a and u (a) = 0.

Then on [a, b] , one has − 1
p (pu′)

′ ≥ 0, i.e. (pu′)
′ ≤ 0. Hence pu′ is decreasing on [a, b]

and since (pu′) (b) ≥ 0, we must have pu′ ≥ 0 on [a, b] . Then u is increasing and since
u (b) = 0, we have u (a) < 0. Hence a = 0 and u < 0 in (0, b) . Now integration from
0 to b in (3.2) gives

− (pu′) (b)− α
∫ b

0

pudt =

∫ b

0

pwdt.

Since
∫ b

0
pwdt ≥ 0 and α

∫ b

0
pudt > 0, we deduce (pu′) (b) < 0, a contradiction.

Therefore u ≥ 0 in [0, 1] .

Theorem 3.1. Assume f ∈ C1 (R) and

lim sup
|x|→∞

∣∣∣∣f (x)

x

∣∣∣∣ < |A|−1 |q|−1L∞[0,1] . (3.3)

Then problem (3.1) has at least one solution. Moreover, if the set S+ (S−) of all so-
lutions u ≥ 0 (respectively, u ≤ 0) is nonempty, then it has a maximal (respectively,
minimal) element.

Proof. From (3.3) we can find a c0 ∈
(

0, |A|−1 |q|−1L∞[0,1]

)
and a µ > 0 such that

|f (x)| ≤ c0 |x| for |x| > µ.

Next the continuity of f on [−µ, µ] guarantees the existence of a c1 > 0 with

|f (x)| ≤ c1 on [−µ, µ] .

Thus

|f (x)| ≤ c0 |x|+ c1 for all x ∈ R. (3.4)

This implies that the mapping

N (u) (t) = q (t) f (u (t))

is well-defined and continuous from L2
p [0, 1] to itself and

|Nu|L2
p[0,1]

≤ |q|L∞[0,1]

(
c0 |u|L2

p[0,1]
+ c1 |1|L2

p[0,1]

)
.

On the other hand, if u ∈ K = L2
p ([0, 1] ,R+) , then (3.4) guarantees

N (u) ≤ cu+ w0 and −N (−u) ≤ cu+ w0,

where c = c0 |q|L∞[0,1] < |A|
−1

and w0 = c1 |q|L∞[0,1] .

If v0 is the (unique) solution of the equation u − cAu = Aw0, then v0 ∈
C([0, 1] ,R+) and so 0 ≤ v0 (t) ≤ M for all t ∈ [0, 1] and some M > 0. Function f
being C1, there is a number a ∈ R+ such that

|q|L∞[0,1] f
′ (x) + a ≥ 0 for all x ∈ [−M,M ] .
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Consequently, N (u) + au is an increasing operator on [−v0, v0] and we may apply
Theorem 2.3. �

Finally Theorem 2.4 yields the following result.

Theorem 3.2. Assume q ≡ 1, f ∈ C1 (R+,R) , f (0) = 0 and

lim sup
x→∞

f (x)

x
< |A|−1 < f ′ (0) .

Then problem (3.1) has a maximal positive solution.
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Abstract. In this paper we give some coupled fixed point theorems for Zamfirescu
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+ is a premetric. An application concerning the existence and uniqueness
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1. Introduction and preliminaries

Many coupled fixed point results were given in the context of complete gener-
alized metric spaces, for generalized contraction mappings. If we carefully examine
their proofs by the iteration method, we can see that in some cases, not all of the
metric properties are essentials. We give here some coupled fixed point theorems and
applications in a more general setting, the so called generalized Kasahara space.

We recall first the notion of L-space, given by M. Fréchet in [4].

Definition 1.1. Let X be a nonempty set. Let

s(X) :=
{

(xn)n∈N | xn ∈ X, n ∈ N
}
.

Let c(X) be a subset of s(x) and Lim : c(X) → X be an operator. By definition
the triple (X, c(X), Lim) is called an L-space (denoted by (X,→)) if the following
conditions are satisfied:

(i) if xn = x, for all n ∈ N, then (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x.
(ii) if (xn)n∈N ∈ c(X) and Lim(xn)n∈N = x, then for all subsequences (xni

)i∈N of
(xn)n∈N we have that (xni

)i∈N ∈ c(X) and

Lim(xni
)i∈N = x.
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Remark 1.2. For examples and more considerations on L-spaces, see I.A. Rus, A.
Petruşel and G. Petruşel [10, pp.77-80].

The notion of generalized Kasahara space was introduced by I.A. Rus in [9] as follows:

Definition 1.3. Let (X,→) be an L-space, (G,+,≤, G→) be an L-space ordered semi-
group with unity, 0 be the least element in (G,≤) and dG : X×X → G be an operator.
The triple (X,→, dG) is called a generalized Kasahara space if and only if the following
compatibility condition between → and dG holds:

for all (xn)n∈N ⊂ X with
∑
n∈N

dG(xn, xn+1) < +∞

⇒ (xn)n∈N is convergent in (X,→). (1.1)

Remark 1.4. Notice that by the inequality with the symbol +∞ in the compatibility

condition (1.1), we understand that the series
∑
n∈N

dG(xn, xn+1) is bounded in (G,≤).

Remark 1.5. In the context of generalized Kasahara spaces, fixed point results for self
generalized contractions were already given by S. Kasahara in [5], for the case when
G = R+ ∪ {+∞} and by I.A. Rus in [9], for the case when G = Rm+ .

An example of generalized Kasahara space is the following one:

Example 1.6 (I.A. Rus, [9]). Let ρ : X ×X → Rm+ be a generalized complete metric
on a set X. Let x0 ∈ X and λ ∈ Rm+ with λ 6= 0. Let dλ : X ×X → Rm+ be defined by

dλ(x, y) =

{
ρ(x, y) , if x 6= x0 and y 6= x0,

λ , if x = x0 or y = x0.

Then (X,
ρ→, dλ) is a generalized Kasahara space.

We recall also a very useful tool which helps us to prove the uniqueness of the fixed
point for operators defined on generalized Kasahara spaces.

Lemma 1.7 (Kasahara’s lemma [5]). Let (X,→, dG) be a generalized Kasahara space.
Then dG(x, y) = dG(y, x) = 0 implies x = y, for all x, y ∈ X.

Remark 1.8. For more considerations on Kasahara spaces, see [3] and [9].

We introduce now the notion of ordered generalized Kasahara space.

Definition 1.9. Let (X,→, dG) be a generalized Kasahara space. Then (X,→, dG,≤)
is an ordered generalized Kasahara space if and only if (X,≤) is a partially ordered
set.

Example 1.10. Let X := C([a, b],Rm) = {x : [a, b] → Rm | x is continuous on [a, b]}
be endowed with the partial order relation

x ≤C y ⇔ x(t) ≤ y(t)⇔ xi(t) ≤ yi(t), for all t ∈ [a, b], i = 1,m.

We consider
ρ→, the convergence structure induced by the Ceb̂ışev norm

ρ : C([a, b],Rm)× C([a, b],Rm)→ Rm+ ,
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defined by

ρ(x, y) = ‖x− y‖C = max
t∈[a,b]

|x(t)− y(t)| =


max
t∈[a,b]

|x1(t)− y1(t)|
...

max
t∈[a,b]

|xm(t)− ym(t)|

 .

Let d : C([a, b],Rm)× C([a, b],Rm)→ Rm+ , defined by

d(x, y) = ‖x− y‖C + ‖(x− y)p‖C = max
t∈[a,b]

|x(t)− y(t)|+ max
t∈[a,b]

|x(t)− y(t)|p

=


max
t∈[a,b]

|x1(t)− y1(t)|+ max
t∈[a,b]

|x1(t)− y1(t)|p

...
max
t∈[a,b]

|xm(t)− ym(t)|+ max
t∈[a,b]

|xm(t)− ym(t)|p

 ,

where p ∈ N, p ≥ 2.

Since ρ(x, y) ≤ d(x, y), for all x, y ∈ C([a, b],Rm) we get that (C([a, b],Rm),
ρ→, d,≤C)

is an ordered generalized Kasahara space. (See also I.A. Rus, [9]).

Let (X,→, dG,≤) be an ordered generalized Kasahara space. Then we define

X≤ := {(x1, x2) ∈ X ×X | x1 ≤ x2 or x2 ≤ x1}.

In the above setting, if f : X → X is an operator, then the Cartesian product of f
with itself is

f × f : X ×X → X ×X, given by (f × f)(x1, x2) := (f(x1), f(x2)).

In this paper, we consider the ordered generalized Kasahara space (X,→, d,≤), where
d : X × X → Rm+ is a premetric, i.e., d(x, x) = 0, for all x ∈ X and d(x, y) ≤
d(x, z) + d(z, y), for all x, y, z ∈ X.

We mention that if α, β ∈ Rm, α = (α1, α2, . . . , αm), β = (β1, β2, . . . , βm) and
c ∈ R , then by α ≤ β (respectively α < β), we mean that αi ≤ βi (respectively
αi < βi), for all i = 1,m and by α ≤ c we mean that αi ≤ c, for all i = 1,m.

We denote byMm,m(R+) the set of all m×m matrices with positive elements, by
Om the zero m×m matrix and by Im the identity m×m matrix. If A = (aij)i,j=1,m,

B = (bij)i,j=1,m ∈ Mm,m(R+), then by A ≤ B we understand aij ≤ bij , for all

i, j = 1,m. The symbol Aτ stands for the transpose of the matrix A. Notice also that,
for the sake of simplicity, we will make an identification between row and column
vectors in Rm.

A matrix A ∈Mm,m(R+) is said to be convergent to zero if and only if An → Om
as n → ∞ (see [10]). Regarding this class of matrices we have the following classical
result in matrix analysis (see [1, Lemma 3.3.1, page 55], [11], [8, page 37], [13, page
12].

Theorem 1.11. Let A ∈Mm,m(R+). The following statements are equivalent:

(i) A is convergent to zero;
(ii) An → Om as n→∞;
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(iii) the eigenvalues of A lies in the open unit disc, i.e., |λ| < 1, for all λ ∈ C with
det(A− λIm) = 0;

(iv) the matrix Im −A is non-singular and

(Im −A)−1 = Im +A+A2 + . . .+An + . . . ;

(v) the matrix (Im −A) is non-singular and (Im −A)−1 has nonnegative elements;
(vi) Anq → 0 ∈ Rm and qτAn → 0 ∈ Rm as n→∞, for all q ∈ Rm.

Remark 1.12. Some examples of matrices which converge to zero are:

a) any matrix A :=

(
a a
b b

)
, where a, b ∈ R+ and a+ b < 1;

b) any matrix A :=

(
a b
a b

)
, where a, b ∈ R+ and a+ b < 1;

c) any matrix A :=

(
a b
0 c

)
, where a, b, c ∈ R+ and max{a, c} < 1.

We consider now the following particular matrix set:

M∆
m,m(R+) :=

{

a11 a12 a13 . . . a1m

0 a22 a23 . . . a2m

0 0 a33 . . . a3m

...
...

...
...

0 0 0 . . . amm

 ∈Mm,m(R+)

∣∣∣∣ max
i=1,m

aii <
1

2

}
.

Lemma 1.13. Let A ∈ M∆
m,m(R+). Then the matrices A and (Im − A)−1A are con-

vergent to zero.

Proof. Since the eigenvalues of A and (Im − A)−1A are in the open unit disk, the
conclusion follows from Theorem 1.11. �

Remark 1.14. For more considerations on matrices which converge to zero, see [6], [8]
and [12].

Let (X,→) be an L-space and f : X → X be an operator. The following nota-
tions and notions will be needed in the sequel of this paper:

• Fix(f) := {x ∈ X | x = f(x)} the set of all fixed points for f .
• I(f) := {Y ⊂ X | f(Y ) ⊂ Y } - the set of all invariant subsets of X with respect

to f .
• Graph(f) := {(x, y) ∈ X × X | y = f(x)} the graph of f . We say that f has

closed graph with respect to → or Graph(f) is closed in X ×X with respect to
→ if and only if for any sequences (xn)n∈N ⊂ X, (yn)n∈N ⊂ X with yn = f(xn)
for all n ∈ N and xn → x ∈ X, yn → y ∈ X, as n→∞, we have that y = f(x).

• A sequence (xn)n∈N ⊂ X is called sequence of successive approximations for f
starting from a given point x0 ∈ X if xn+1 = f(xn), for all n ∈ N. Notice that
xn = fn(x0), for all n ∈ N.
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2. Main results

Our first main result is the following one:

Theorem 2.1. Let (X,→, d,≤) be an ordered generalized Kasahara space, where d :
X ×X → Rm+ is a premetric, i.e., d(x, x) = 0 and d(x, y) ≤ d(x, z) + d(z, y) for all
x, y, z ∈ X. Let f : X → X be an operator. We assume that:

(i) for each (x, y) ∈ X≤, there exists z(x,y) := z ∈ X such that (x, z),(y, z) ∈ X≤;
(ii) for each (x, y) ∈ X≤, we have (x, f(x)), (y, f(y)) ∈ X≤;

(iii) X≤ ∈ I(f × f);
(iv) f : (X,→)→ (X,→) has closed graph;
(v) f is a Zamfirescu type operator, i.e., at least one of the following conditions

holds:
(v1) there exists A ∈Mm,m(R+) which converges to zero such that

d(f(x), f(y)) ≤ Ad(x, y), for all (x, y) ∈ X≤
(v2) there exists B ∈M∆

m,m(R+) such that

d(f(x), f(y)) ≤ B[d(x, f(x)) + d(y, f(y))], for all (x, y) ∈ X≤
(v3) there exists C ∈M∆

m,m(R+) such that

d(f(x), f(y)) ≤ C[d(x, f(y)) + d(y, f(x))], for all (x, y) ∈ X≤
(vi) there exists x0 ∈ X such that (x0, f(x0)) ∈ X≤.

Then f : (X,→)→ (X,→) is a Picard operator.

Proof. Let x ∈ X be arbitrary.
Since (x0, f(x0)) ∈ X≤, by (iii) we have (f(x0), f2(x0)) ∈ X≤.
If f satisfies (v1) then

d(f(x0), f2(x0)) ≤ Ad(x0, f(x0)).

If f satisfies (v2) then

d(f(x0), f2(x0)) ≤ B[d(x0, f(x0)) + d(f(x0), f2(x0))],

i.e., d(f(x0), f2(x0)) ≤ (Im −B)−1Bd(x0, f(x0)).

If f satisfies (v3) then

d(f(x0), f2(x0)) ≤ C[d(x0, f
2(x0)) + d(f(x0), f(x0))]

≤ C[d(x0, f(x0)) + d(f(x0), f2(x0))],

i.e., d(f(x0), f2(x0)) ≤ (Im − C)−1Cd(x0, f(x0)).

Let Ω := {A, (Im − B)−1B, (Im − C)−1C}. For any matrix M ∈ Ω, we have
M ∈ Mm,m(R+) and by Lemma 1.13, it follows that M is a matrix that converges
to zero. In addition, we have

d(f(x0), f2(x0)) ≤Md(x0, f(x0)), for all (x0, f(x0)) ∈ X≤ and all M ∈ Ω.

Now, since (f(x0), f2(x0)) ∈ X≤, by (iii) it follows that (f2(x0), f3(x0)) ∈ X≤.
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If f satisfies (v1) then

d(f2(x0), f3(x0)) ≤ Ad(f(x0), f2(x0)) ≤ A2d(x0, f(x0)).

If f satisfies (v2) then

d(f2(x0), f3(x0)) ≤ B[d(f(x0), f2(x0)) + d(f2(x0), f3(x0))],

i.e., d(f2(x0), f3(x0)) ≤ (Im −B)−1Bd(f(x0), f2(x0))

≤ [(Im −B)−1B]2d(x0, f(x0)).

If f satisfies (v3) then

d(f2(x0), f3(x0)) ≤ C[d(f(x0), f3(x0)) + d(f2(x0), f2(x0))]

≤ C[d(f(x0), f2(x0)) + d(f2(x0), f3(x0))],

i.e., d(f2(x0), f3(x0)) ≤ (Im − C)−1Cd(f(x0), f2(x0))

≤ [(Im − C)−1C]2d(x0, f(x0)).

In all three cases presented above, we conclude that

d(f2(x0), f3(x0)) ≤M2d(x0, f(x0))

for all (x0, f(x0)) ∈ X≤ and all M ∈ Ω.

By induction, for n ∈ N, we get

d(fn(x0), fn+1(x0)) ≤Mnd(x0, f(x0))

for all (x0, f(x0)) ∈ X≤ and all M ∈ Ω.

Next, we obtain∑
n∈N

d(fn(x0), fn+1(x0)) ≤
∑
n∈N

Mnd(x0, f(x0))

= (Im −M)−1d(x0, f(x0)) < +∞

for all (x0, f(x0)) ∈ X≤ and all M ∈ Ω.

Since (X,→, d) is a generalized Kasahara space, we get that the sequence of
successive approximations for f , starting from x0, is convergent in (X,→). So, there
exists x∗ ∈ X such that fn(x0)→ x∗ as n→∞. By (iv) we get that x∗ ∈ Fix(f).

Notice also that:

• If (x, x0) ∈ X≤ then by (iii) we have (fn(x), fn(x0)) ∈ X≤ and by (ii) that
(x, f(x)), (y, f(y)) ∈ X≤.

If f satisfies (v1) then

0 ≤ d(fn(x), fn(x0)) + d(fn(x0), fn(x))

≤ Ad(fn−1(x), fn−1(x0)) +Ad(fn−1(x0), fn−1(x))

≤ . . . ≤ And(x, x0) +And(x0, x)
Rm

+→ 0 as n→∞.
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If f satisfies (v2) then

0 ≤ d(fn(x), fn(x0)) + d(fn(x0), fn(x))

≤ 2B[d(fn−1(x), fn(x)) + d(fn−1(x0), fn(x0))]

≤ 2B[(Im −B)−1B]n−1[d(x, f(x)) + d(x0, f(x0))]

≤ 2(Im +B +B2 + . . .)B[(Im −B)−1B]n−1[d(x, f(x)) + d(x0, f(x0))]

= 2[(Im −B)−1B]n[d(x, f(x)) + d(x0, f(x0))]
Rm

+→ 0 as n→∞.

If f satisfies (v3) then

0 ≤ d(fn(x), fn(x0)) + d(fn(x0), fn(x))

≤ 2C[d(fn−1(x), fn(x0)) + d(fn−1(x0), fn(x))]

≤ 2C[d(fn−1(x), fn(x)) + d(fn(x), fn(x0))

+ d(fn−1(x0), fn(x0)) + d(fn(x0), fn(x))],

i.e., 0 ≤ d(fn(x), fn(x0)) + d(fn(x0), fn(x))

≤ (Im − 2C)−12C[d(fn−1(x), fn(x)) + d(fn−1(x0), fn(x0))]

≤ (Im − 2C)−12C[(Im − C)−1C]n−1[d(x, f(x)) + d(x0, f(x0))]

≤ (Im − 2C)−12[(Im − C)−1C]n[d(x, f(x)) + d(x0, f(x0))]
Rm

+→ 0

as n→∞.

In all three cases we get that d(fn(x), fn(x0)) = d(fn(x0), fn(x)) = 0. By
Kasahara’s lemma 1.7, it follows that fn(x) = fn(x0), for all n ∈ N.

• If (x, x0) 6∈ X≤, then by (i), there exists z(x,x0) := z ∈ X such that (x, z),
(x0, z) ∈ X≤. Since (x, z) ∈ X≤, by (iii) we have (fn(x), fn(z)) ∈ X≤ and by
(ii) that (x, f(x)), (z, f(z)) ∈ X≤. In a similar way as presented above, we obtain
fn(x) = fn(z), for all n ∈ N. On the other hand, since (x0, z) ∈ X≤ we get that
fn(x0) = fn(z), for all n ∈ N. Hence fn(x) = fn(x0)→ x∗ as n→∞.

We show next the uniqueness of the fixed point x∗.

Let y∗ ∈ Fix(f) such that y∗ 6= x∗.

If (x∗, y∗) ∈ X≤, then by (iii) we have (fn(x∗), fn(y∗)) ∈ X≤ and by (ii) that
(x∗, f(x∗)), (y∗, f(y∗)) ∈ X≤.

If f satisfies (v1) then we have:

0 ≤ d(f(x∗), f(y∗)) + d(f(y∗), f(x∗)) ≤ Ad(x∗, y∗) +Ad(y∗, x∗),

i.e., 0 ≤ d(x∗, y∗) + d(y∗, x∗) ≤ (Im −A)−10 = 0.

If f satisfies (v2) then we have:

0 ≤ d(f(x∗), f(y∗)) + d(f(y∗), f(x∗)) ≤ 2B[d(x∗, f(x∗)) + d(y∗, f(y∗))],

i.e., 0 ≤ d(x∗, y∗) + d(y∗, x∗) ≤ 2B[d(x∗, x∗) + d(y∗, y∗)] = 0.
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If f satisfies (v3) then we have:

0 ≤ d(f(x∗), f(y∗)) + d(f(y∗), f(x∗))

≤ 2C[d(x∗, f(y∗)) + d(y∗, f(x∗))] = 2C[d(x∗, y∗) + d(y∗, x∗)],

i.e., 0 ≤ d(x∗, y∗) + d(y∗, x∗) ≤ (Im − 2C)−10 = 0.

So, in all three cases, we conclude that d(x∗, y∗) = d(y∗, x∗) = 0. By Kasahara’s
lemma 1.7, it follows that x∗ = y∗.

If (x∗, y∗) 6∈ X≤, then by (i), there exists z(x∗,y∗) := z ∈ X such that (x∗, z),
(y∗, z) ∈ X≤. Since (x∗, z) ∈ X≤, by following the same way of proof as presented
above, replacing y∗ with z, we get that x∗ = z. On the other hand, since (y∗, z) ∈ X≤,
we get in a similar way that y∗ = z. Hence x∗ = y∗. �

In the sequel, we will apply the above result to the coupled fixed point problem
generated by an operator.

Let X be a nonempty set, endowed with a partial order relation denoted by ≤.
If we consider two arbitrary elements z := (x, y), w = (u, v) of X ×X, then, we can
introduce a partial ordering relation on X ×X, denoted by � and defined as follows:

z � w if and only if (x ≥ u and y ≤ v).

Theorem 2.2. Let (X,→, d,≤) be an ordered Kasahara space, where d : X ×X → R+

is a functional, satisfying the following conditions: d(x, x) = 0, for all x ∈ X and
d(x, y) ≤ d(x, z) + d(z, y), for all x, y, z ∈ X.

Let S : X ×X → X be an operator. We suppose that:

(i) for each z = (x, y), w = (u, v) ∈ X ×X, which are not comparable with respect
to the partial ordering � in X×X, there exists t := (t1, t2) ∈ X×X, which may
depend on (x, y) and (u, v), such that t is comparable with respect to the partial
ordering �, with both z and w;

(ii) for each x = (x1, x2), y = (y1, y2) ∈ X × X, with (x1 ≥ y1 and x2 ≤ y2) or
(y1 ≥ x1 and y2 ≤ x2) we have({

x1 ≥ S(x1, x2)

x2 ≤ S(x2, x1)
or

{
S(x1, x2) ≥ x1

S(x2, x1) ≤ x2

)
and ({

y1 ≥ S(y1, y2)

y2 ≤ S(y2, y1)
or

{
S(y1, y2) ≥ y1

S(y2, y1) ≤ y2

)
(iii) for all (x ≥ u and y ≤ v) or (u ≥ x and v ≤ y), we have{

S(x, y) ≥ S(u, v)

S(y, x) ≤ S(v, u)
or

{
S(u, v) ≥ S(x, y)

S(v, u) ≤ S(y, x)

i.e., S has the generalized mixed monotone property;
(iv) S : X ×X → X has closed graph with respect to →;
(v) at least one of the following conditions holds:
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(v1) there exists k1, k2 ∈ R+, k1 + k2 < 1 such that

d(S(x, y), S(u, v)) ≤ k1d(x, u) + k2d(y, v)

(v2) there exists k ∈ [0, 1
2 [ such that

d(S(x, y), S(u, v)) ≤ k[d(x, S(x, y)) + d(u, S(u, v))]

(v3) there exists k ∈ [0, 1
2 [ such that

d(S(x, y), S(u, v)) ≤ k[d(x, S(u, v)) + d(u, S(x, y))]

(vi) there exists z0 := (z1
0 , z

2
0) ∈ X ×X such that{

z1
0 ≥ S(z1

0 , z
2
0)

z2
0 ≤ S(z2

0 , z
1
0)

or

{
S(z1

0 , z
2
0) ≥ z1

0

S(z2
0 , z

1
0) ≤ z2

0

.

Then there exists a unique element (x∗, y∗) ∈ X×X such that x∗ = S(x∗, y∗) and y∗ =
S(y∗, x∗) and the sequence of successive approximations (Sn(w1

0, w
2
0), Sn(w2

0, w
1
0))

converges to (x∗, y∗) as n→∞, for all w0 = (w1
0, w

2
0) ∈ X ×X.

Proof. Let Z := X × X and consider �, the partial order relation on Z, defined as
follows: for all z := (x, y), w := (u, v) ∈ Z, z � w if and only if (x ≥ u and y ≤ v).

Let Z� := {(z, w) := ((x, y), (u, v)) ∈ Z × Z | z � w or w � z}.
Let F : Z → Z be an operator defined by

F (x, y) :=

(
S(x, y)
S(y, x)

)
= (S(x, y), S(y, x)).

We show that all of the assumptions of Theorem 2.1 are satisfied.
By (i) and (iv) it follows that the assumptions (i) and (iv) of Theorem 2.1 are

satisfied.
By (ii), since x = (x1, x2) ∈ X ×X with{

x1 ≥ S(x1, x2)

x2 ≤ S(x2, x1)
or

{
S(x1, x2) ≥ x1

S(x2, x1) ≤ x2

we have (x1, x2) � (S(x1, x2), S(x2, x1)) and so, x � F (x). By a similar approach
we get F (x) � x. So, (x, F (x)) ∈ Z�. By following the same way of proof, we get
(y, F (y)) ∈ Z�. Hence, the assumption (ii) of Theorem 2.1 holds.

By (iii), we have Z� ∈ I(F × F ).
Indeed, let z = (x, y), w = (u, v) ∈ Z� be two arbitrary elements, where (x ≥

u and y ≤ v) or (u ≥ x and v ≤ y) such that

(1)

{
S(x, y) ≥ S(u, v)

S(y, x) ≤ S(v, u)
or (2)

{
S(u, v) ≥ S(x, y)

S(v, u) ≤ S(y, x)

From (1) and (2) we have that (S(x, y), S(y, x)) � (S(u, v), S(v, u)), i.e.,
F (x, y) � F (u, v) or F (z) � F (w). Similarly, we get F (w) � F (z). Hence,
(F (z), F (w)) ∈ Z�, for all (z, w) ∈ Z�. So, (F × F )(Z�) ⊂ Z�, i.e., Z� ∈ I(F × F ).
Thus, the assumption (iii) holds.
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By (vi), since (z1
0 , z

2
0) ∈ X ×X such that{
z1

0 ≥ S(z1
0 , z

2
0)

z2
0 ≤ S(z2

0 , z
1
0)

or

{
S(z1

0 , z
2
0) ≥ z1

0

S(z2
0 , z

1
0) ≤ z2

0

we get that (z1
0 , z

2
0) � (S(z1

0 , z
2
0), S(z2

0 , z
1
0)) and thus, z0 � F (z0). By a similar ap-

proach we get F (z0) � z0. Hence, there exists z0 ∈ Z such that (z0, F (z0)) ∈ Z�, so,
the assumption (vi) of Theorem 2.1 holds.

Finally, we prove the assumption (v) of Theorem 2.1.

Let d̃ : Z × Z → R2
+, defined by d̃((x, y), (u, v)) :=

(
d(x, u)
d(y, v)

)
.

Since (X,→, d,≤) is an ordered Kasahara space, it follows that (X,→, d̃,≤) is
an ordered generalized Kasahara space.
• If (v1) holds, then we have

d̃(F (x, y), F (u, v)) = d̃((S(x, y), S(y, x)), (S(u, v), S(v, u)))

=

(
d(S(x, y), S(u, v))
d(S(y, x), S(v, u))

)
≤
(
k1d(x, u) + k2d(y, v)
k1d(y, v) + k2d(x, u)

)
=

(
k1 k2

k2 k1

)(
d(x, u)
d(y, v)

)
= Ad̃((x, y), (u, v)).

Since k1 + k2 < 1, we get that the matrix A :=

(
k1 k2

k2 k1

)
is convergent to zero.

• If (v2) holds, then we have

d̃(F (x, y),F (u, v)) = d̃((S(x, y), S(y, x)), (S(u, v), S(v, u)))

=

(
d(S(x, y), S(u, v))
d(S(y, x), S(v, u))

)
≤
(
k[d(x, S(x, y)) + d(u, S(u, v))]
k[d(y, S(y, x)) + d(v, S(v, u))]

)
=

(
k 0
0 k

)(
d(x, S(x, y)) + d(u, S(u, v))
d(y, S(y, x)) + d(v, S(v, u))

)
= B[d̃((x, y), (S(x, y), S(y, x))) + d̃((u, v), (S(u, v), S(v, u)))]

= B[d̃((x, y), F (x, y)) + d̃((u, v), F (u, v))].

Since 0 ≤ k < 1
2 , we get that the matrix B :=

(
k 0
0 k

)
∈M∆

2,2(R+).

• If (v3) holds, then we have

d̃(F (x, y),F (u, v)) = d̃((S(x, y), S(y, x)), (S(u, v), S(v, u)))

=

(
d(S(x, y), S(u, v))
d(S(y, x), S(v, u))

)
≤
(
k[d(x, S(u, v)) + d(u, S(x, y))]
k[d(y, S(v, u)) + d(v, S(y, x))]

)
=

(
k 0
0 k

)(
d(x, S(u, v)) + d(u, S(x, y))
d(y, S(v, u)) + d(v, S(y, x))

)
= C[d̃((x, y), (S(u, v), S(v, u))) + d̃((u, v), (S(x, y), S(y, x)))]

= C[d̃((x, y), F (u, v)) + d̃((u, v), F (x, y))].
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Since 0 ≤ k < 1
2 , we get that the matrix C :=

(
k 0
0 k

)
∈M∆

2,2(R+).

We apply next Theorem 2.1 and the conclusion follows. �

3. Application

Let us consider the following system of functional-integral equations

(S)

{
x(t) = f(t, x(t),

∫ b
a

Φ(t, s, x(s), y(s))ds)

y(t) = f(t, y(t),
∫ b
a

Φ(t, s, y(s), x(s))ds)
, for all t ∈ [a, b] ⊂ R+.

By a solution of the system (S) we understand a couple (x, y) ∈ C[a, b]×C[a, b],
which satisfies the system for all t ∈ [a, b] ⊂ R+.

Let X = C[a, b] be endowed with the partial order relation

x ≤C y ⇔ x(t) ≤ y(t), for all t ∈ [a, b].

We consider
ρ→, the convergence structure induced by the Ceb̂ışev norm

ρ : C[a, b]× C[a, b]→ R+, ρ(x, y) = ‖x− y‖C = max
t∈[a,b]

|x(t)− y(t)|.

Let d : C[a, b]× C[a, b]→ R+, defined by

d(x, y) = ‖(x− y)‖C + ‖(x− y)2‖C = max
t∈[a,b]

|x(t)− y(t)|+ max
t∈[a,b]

(x(t)− y(t))2.

Since ρ(x, y) ≤ d(x, y), for all x, y ∈ C[a, b] we get that (C[a, b],
ρ→, d,≤C) is an

ordered Kasahara space.

Theorem 3.1. Let Φ : [a, b]× [a, b]×R2 → R and f : [a, b]×R2 → R be two continuous
mappings and consider the system (S). We suppose that:

(i) there exists z0 := (z1
0 , z

2
0) ∈ C[a, b]× C[a, b] such that{

z1
0(t) ≥ f(t, z1

0(t),
∫ b
a

Φ(t, s, z1
0(t), z2

0(t))ds)

z2
0(t) ≤ f(t, z2

0(t),
∫ b
a

Φ(t, s, z2
0(t), z1

0(t))ds)

or {
z1

0(t) ≤ f(t, z1
0(t),

∫ b
a

Φ(t, s, z1
0(t), z2

0(t))ds)

z2
0(t) ≥ f(t, z2

0(t),
∫ b
a

Φ(t, s, z2
0(t), z1

0(t))ds)
;

(ii) f(t, ·, z) is increasing for all t ∈ [a, b], z ∈ R and Φ(t, s, ·, z) is increasing,
Φ(t, s, w, ·) is decreasing and f(t, w, ·) is increasing for all t, s ∈ [a, b], w, z ∈ R,
or, f(t, ·, z) is decreasing for all t ∈ [a, b], z ∈ R and Φ(t, s, ·, z) is decreasing,
Φ(t, s, w, ·) is increasing and f(t, w, ·) is decreasing for all t, s ∈ [a, b], w, z ∈ R

(iii) there exists k1, k2 ∈ [0,
√

5−1
4 [ such that

|f(t, w1, z1)− f(t, w2, z2)| ≤ k1|w1 − f(t, w1, z1)|+ k2|w2 − f(t, w2, z2)|

for all t ∈ [a, b] and w1, w2, z1, z2 ∈ R.
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(iv) for all x = (x1, x2), y = (y1, y2) ∈ C[a, b] × C[a, b], with (x1(t) ≥ y1(t) and
x2(t) ≤ y2(t)) or (y1(t) ≥ x1(t) and y2(t) ≤ x2(t)) we have({

x1(t) ≥ f(t, x1(t),
∫ b
a

Φ(t, s, x1(t), x2(t))ds)

x2(t) ≤ f(t, x2(t),
∫ b
a

Φ(t, s, x2(t), x1(t))ds)
or

{
f(t, x1(t),

∫ b
a

Φ(t, s, x1(t), x2(t))ds) ≥ x1(t)

f(t, x2(t),
∫ b
a

Φ(t, s, x2(t), x1(t))ds) ≤ x2(t)

)

and ({
y1(t) ≥ f(t, y1(t),

∫ b
a

Φ(t, s, y1(t), y2(t))ds)

y2(t) ≤ f(t, y2(t),
∫ b
a

Φ(t, s, y2(t), y1(t))ds)
or

{
f(t, y1(t),

∫ b
a

Φ(t, s, y1(t), y2(t))ds) ≥ y1(t)

f(t, y2(t),
∫ b
a

Φ(t, s, y2(t), y1(t))ds) ≤ y2(t)

)

for all t ∈ [a, b].

Then there exists a unique solution (x∗, y∗) for the system (S).

Proof. Let us consider the operator S : C[a, b]× C[a, b]→ C[a, b], defined by

S(x, y)(t) := f(t, x(t),

∫ b

a

Φ(t, s, x(s), y(s))ds).

Then the system (S) is equivalent with

{
x = S(x, y)

y = S(y, x)
.

Since S(x, y) is a continuous operator on (C[a, b] × C[a, b],
ρ→), it follows that

Graph(S) is closed with respect to
ρ→.

For all (x ≥ u and y ≤ v) or (u ≥ x and v ≤ y) we have

|S(x, y)(t)− S(u, v)(t)|

= |f(t, x(t),

∫ b

a

Φ(t, s, x(s), y(s))ds)− f(t, u(t),

∫ b

a

Φ(t, s, u(s), v(s))ds)|

(iii)

≤ k1|x(t)− f(t, x(t),

∫ b

a

Φ(t, s, x(s), y(s))ds)|

+ k2|u(t)− f(t, u(t),

∫ b

a

Φ(t, s, u(s), v(s))ds)|

≤ k1

(
|x(t)− S(x, y)(t)|+ |x(t)− S(x, y)(t)|2

)
+ k2

(
|u(t)− S(u, v)(t)|+ |u(t)− S(u, v)(t)|2

)
.
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On the other hand, we have

|S(x, y)(t)− S(u, v)(t)|2

≤
(
k1|x(t)− f(t, x(t),

∫ b

a

Φ(t, s, x(s), y(s))ds)|

+ k2|u(t)− f(t, u(t),

∫ b

a

Φ(t, s, u(s), v(s))ds)|
)2

=
(
k1|x(t)− S(x, y)(t)|+ k2|u(t)− S(u, v)(t)|

)2
≤ 2
(
k2

1|x(t)− S(x, y)(t)|2 + k2
2|u(t)− S(u, v)(t)|2

)
≤ 2k2

1

(
|x(t)− S(x, y)(t)|+ |x(t)− S(x, y)(t)|2

)
+ 2k2

2

(
|u(t)− S(u, v)(t)|+ |u(t)− S(u, v)(t)|2

)
.

We get further that:

|S(x, y)(t)− S(u, v)(t)|+ |S(x, y)(t)− S(u, v)(t)|2

≤ (k1 + 2k2
1)
(
|x(t)− S(x, y)(t)|+ |x(t)− S(x, y)(t)|2

)
+ (k2 + 2k2

2)
(
|u(t)− S(u, v)(t)|+ |u(t)− S(u, v)(t)|2

)
.

Hence, by taking the maximum over t ∈ [a, b] we get

d(S(x, y), S(u, v)) ≤ K
[
d(x, S(x, y)) + d(u, S(u, v))

]
,

for all (x ≥ u and y ≤ v) or (u ≥ x and v ≤ y), where

K := max{k1 + 2k2
1, k2 + 2k2

2}.

Since k1, k2 ∈ [0,
√

5−1
4 [, we get that 0 ≤ K < 1

2 .
We see that all the assumptions of Theorem 2.2 are satisfied and the conclusion

follows. �

Remark 3.2. Similar applications were given in [2] and [7].
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1. Introduction

The Black-Scholes equation was introduced as a model for the financial mathe-
matics ([1]). We will consider the following equation ([10], [11]):

∂V (s, t)

∂t
+
σ2s2

2

∂2V (s, t)

∂s2
+ rs

∂V (s, t)

∂s
− rV (s, t) = F (s, t) (1.1)

Ω = {(s, t) | s ∈ (s1, s2), t ∈ (T1, T )}, V ∈ C2(Ω),

where V (s, t) represents the price of the derivative financial product. The independent
variables (s, t) are the share price of the underlying assets and time, respectively. The
constants σ and r are the volatility of the underlying asset and the risk-free interest
rate, respectively. This equation is of the parabolic type and it can be considered as a
diffusion equation. In what follows, we refer to this equation as BS equation. In this
case we consider the conditions ([11]):

(i) Cauchy problem:
V (s, T ) = ϕ(s), (1.2)

ϕ(s) is the pay-off function of a given derivative problem at t = T .
(ii) The boundary conditions (Darboux):

V (s1, t) = b1(t), V (s2, t) = b2(t). (1.3)

By an appropriate substitution ([11]), we obtain the equation:

∂v(s, t)

∂t
+
σ2s2

2

∂2v(s, t)

∂s2
+ rs

∂v(s, t)

∂s
− rv(s, t) = h(s, t), (1.4)
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with

v(s, T ) = f(s) (1.5)

and homogeneous conditions:

v(s1, t) = v(s2, t) = 0, (1.6)

Ω = {(s, t) | s ∈ (s1, s2), t ∈ (T1, T )}, h ∈ C(Ω,R).

In what follows we consider the Cauchy-Darboux problem (1.4)+(1.5)+(1.6).

Here ([11])

h(s, t) = F (s, t) +
s− s1
s2 − s1

[r(b2(t)− b1(t)) + b′1(t)− b′2(t)]

− b′1(t) + rb1(t) + rs
b1(t)− b2(t)

s2 − s1
(1.7)

and

v(s, t) =

∫ s2

s1

G(s, t; η)f(η)dη +

∫ T

t

∫ s2

s1

G(s, t− τ ; η)h(η, τ)dηdτ. (1.8)

Further we study the problem of Ulam-Hyers stability of this equation, where
the unknown function appears here as the price of financial derivatives.

We recall that this equation can be called Black-Merton-Scholes equation and it
was a subject of the Nobel Prize in Economics in 1997.

2. Notions and definitions

In this section we will present some types of Ulam stability for the Black-Scholes
equation.

In 1940, on a talk given at Wisconsin University, S.M. Ulam formulated the
following problem: ”Under what conditions does there exist near every approximately
homomorphism of a given metric group an homomorphism of the group? ” ([4], [8], [9],
[12], [13], [20]). Generally, we say that a differential equation is stable in Ulam sense
if for every approximate solution of the differential equation, there exists an exact
solution near it. The goal of this paper is to give a stability result for Black-Scholes
equation ([1], [11]).

It seems that the first paper on the Ulam-Hyers stability of partial differential
equations was written by Prástaro and Rassias ([15]). For other results on the stability
of differential equations and partial differential equations we refer to ([2], [3], [5], [6],
[7], [14], [17], [19]).

Let ε > 0, ϕ ∈ C(R+,R+) and ϕ(0) = 0. We consider the following inequations:∣∣∣∣∂u(s, t)

∂t
+
σ2s2

2

∂2u(s, t)

∂s2
+ rs

∂u(s, t)

∂s
− ru(s, t)− h(s, t)

∣∣∣∣ ≤ ε, ∀ (s, t) ∈ Ω (2.1)

∣∣∣∣∂u(s, t)

∂t
+
σ2s2

2

∂2u(s, t)

∂s2
+ rs

∂u(s, t)

∂s
− ru(s, t)− h(s, t, u)

∣∣∣∣≤ε, ∀ (s, t)∈Ω. (2.2)
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Definition 2.1. ([17], [18]) The equation (1.4) is Ulam-Hyers stable if there exists a
real number c1 such that for each solution u of (2.1) there exists a solution v of (1.4)
with

|u(s, t)− v(s, t)| ≤ c1 · ε, ∀ (s, t) ∈ Ω. (2.3)

Definition 2.2. The equation (1.4) is generalized Ulam-Hyers stable if there exists
ϕ ∈ C(R+,R+), ϕ(0) = 0, continuous, such that for each solution u of (2.2) there
exists a solution v of (1.4) with

|u(s, t)− v(s, t)| ≤ ϕ(ε), ∀ (s, t) ∈ Ω. (2.4)

Remark 2.3. A function u is a solution of (2.1) if and only if there exists a function
g ∈ C(Ω) such that

(i) |g(s, t)| ≤ ε, ∀ (s, t) ∈ Ω;

(ii)
∂u(s, t)

∂t
+
σ2s2

2

∂2u(s, t)

∂s2
+ rs

∂u(s, t)

∂s
− ru(s, t) = h(s, t) + g(s, t).

Remark 2.4. A function u is a solution of (2.2) if and only if there exists a function
g ∈ C(Ω) such that

(i) |g(s, t)| ≤ ε, ∀ (s, t) ∈ Ω;

(ii)
∂u(s, t)

∂t
+
σ2s2

2

∂2u

∂s2
+ rs

∂u(s, t)

∂s
− ru(s, t) = h(s, t) + g(s, t).

3. Ulam-Hyers stability of equation BS

Here we will present some results of Ulam-Hyers stability for the equation BS.

Theorem 3.1. We suppose that:
(i) Ω is a bounded domain and G is the Green function for the BS equation;
(ii) h ∈ C(Ω), f ∈ C(s1, s2);

(iii)

∫ T

t

∫ s2

s1

|G(s, t− τ ; η)|dηdτ ≤ q < 1, ∀ (s, t) ∈ Ω.

Then:
(a) the problem (1.5) + (1.6) has a unique solution;
(b) the equation BS, (1.5), is Ulam-Hyers stable.

Proof. (a) This is a well known result, consequence of Banach principle ([16]).
(b) Let u be a solution of the inequation (2.1). Let v be the unique solution of

the problem (1.5)+(1.6). From Remark 2.3 and the condition (iii) we have that

|u(s, t)− v(s, t)| ≤

∣∣∣∣∣
∫ s2

s1

G(s, t; η)f(η)dη +

∫ T

t

∫ s2

s1

G(s, t− τ ; η)h(η, τ)dηdτ

+

∫ T

t

∫ s2

s1

G(s, t− τ ; η)g(η, τ)dηdτ −
∫ s2

s1

G(s, t; η)f(η)dτ

−
∫ T

t

∫ s2

s1

G(s, t− τ ; η)h(η, τ)dηdτ

∣∣∣∣∣
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≤
∫ T

t

∫ s2

s1

|G(s, t− τ ; η)| · |g(η, τ)|dηdτ ≤ q · ε.

So, the equation (1.5) is Ulam-Hyers stable.

4. Generalized Ulam-Hyers stability of nonlinear BS equation

In this paragraph we will consider the nonlinear BS equation. Let Ω be the
domain considered above.

In what follows, we consider the mixed problem (Cauchy-Darboux) ([11]):

∂v(s, t)

∂t
+
σ2s2

2

∂2v(s, t)

∂s2
+ rs

∂v(s, t)

∂s
− rv(s, t) = h(s, t, v), (4.1)

v(s, T ) = f(s),

v(s1, t) = v(s2, t) = 0.
(4.2)

Theorem 4.1. Let us consider the equation (4.1) and the inequation (2.2). Let G be
the Green function corresponding to BS equation.

We suppose that:
(i) h ∈ C(Ω) and there exists lh > 0 with

lh

∫ T

t

∫ s2

s1

|G(s, t− τ ; η)|dηdτ ≤ q < 1

and a comparison function ϕ : R+ → R+ such that

|h(s, t, u)− h(s, t, v)| ≤ lhϕ(|u− v|).

Then
(a) the Cauchy-Darboux problem (4.1) + (4.2) has a unique solution v;
(b) if the function ψ : R+ → R+, ψ(z) = z−ϕ(z), is strictly increasing and onto

or bijective, the problem (4.1) + (4.2) is generalized Ulam-Hyers stable.

Proof. (a) This result is a consequence of Banach theorem.
(b) Let u be a solution of the inequality (2.2) and v the unique solution of the

problem (4.1)+(4.2). From the above conditions we have

|u(s, t)− v(s, t)| =

∣∣∣∣∣
∫ s2

s1

G(s, t; η)f(η)dη +

∫ T

t

∫ s2

s1

G(s, t− τ ; η)h(s, t, u)dηdτ

+

∫ T

t

∫ s2

s1

G(s, t− τ ; η)g(η, τ)dηdτ −
∫ s2

s1

G(s, t; η)f(η)dη

−
∫ T

t

∫ s2

s1

G(s, t− τ ; η)h(η, τ, v)dηdτ

∣∣∣∣∣
=

∣∣∣∣∣
∫ T

t

∫ s2

s1

G(s, t− τ ; η)h(s, t, u)dηdτ +

∫ T

t

∫ s2

s1

G(s, t− τ ; η)g(η, τ)dηdτ
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−
∫ T

t

∫ s2

s1

G(s, t− τ ; η)h(s, t, v)dηdτ

∣∣∣∣∣
≤
∫ T

t

∫ s2

s1

|G(s, t− τ ; η)| · |h(s, t, u)− h(s, t, v)|dηdτ

+

∫ T

t

∫ s2

s1

|G(s, t− τ ; η)| · |g(η, τ)|dηdτ

≤
∫ T

t

∫ s2

s1

|G(s, t− τ ; η)|lhϕ(|u− v|)dηdτ +

∫ T

t

∫ s2

s1

|G(s, t− τ ; η)| · |g(η, τ)|dηdτ,

then we have

|u(s, t)− v(s, t)| ≤ ϕ(|u(s, t)− v(s, t)|) +
ε

lh
and

ψ(|u(s, t)− v(s, t)|) ≤ ε

lh
,

therefore we have

|u(s, t)− v(s, t)| ≤ ψ−1
(
ε

lh

)
.

So the equation (4.1) is generalized Ulam-Hyers stable.

References

[1] Black, F., and Scholes, M.S., The pricing of options and corporate liabilities, Journal of
Political Economics, 81, 1973, 637-654.

[2] Brzdek, J., Popa, D., Xu, B., The Hyers-Ulam stability of nonlinear recurrences, J.
Math. Anal. Appl., 335(2007), 443-449.
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Abstract. In this paper, we will consider the coupled fixed problem in b-metric
space for single-valued operators satisfying a generalized contraction condition of
rational type. First part of the paper concerns with some fixed point theorems,
while the second part presents a study of the solution set of the coupled fixed
point problem. More precisely, we will present some existence and uniqueness
theorems for the coupled fixed point problem, as well as a qualitative study of
it (data dependence of the coupled fixed point set, well-posedness, Ulam-Hyers
stability and the limit shadowing property of the coupled fixed point problem)
under some rational type contraction assumptions on the mapping.
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1. Introduction and preliminaries

The notion of b-metric spaces and discussion on the topological structure of it
appeared in several papers, such as L.M. Blumenthal [2], S. Czerwik [6], N. Bourbaki
[5], Heinonen [10].

On the other hand, the concept of coupled fixed point problem, was considered,
for the first time, by Opoitsev in [14]-[15], but a very fruitful approach in this field
was proposed by D. Guo, V. Lashmikantham [9] and T. Gnana Bhaskar and V. Lash-
mikantham [7]. Later on, many results related to this kind of problem appeared (see,
for example [8], [13],. . . ).

Moreover, starting with the paper of Dass and Gupta [9], several extensions of
the contraction principle considered the case of self mappings satisfying some rational
type contraction assumptions, see, for example, [7].
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Our aim is to consider both of the above research directions. More precisely,
we will prove, using some adequate fixed point theorems for monotone rational con-
tractions in ordered b-metric spaces, some coupled fixed point theorems for operators
T : X ×X → X satisfying some rational type assumptions on comparable elements.

We shall recall some well known notions and definition of the b-metric spaces.

Definition 1.1. Let X be a set and let s ≥ 1 be a given real number. A functional
d : X ×X → R+ is said to be a b-metric if the following axioms are satisfied:

1. if x, y ∈ X, then d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x) for all x, y ∈ X;

3. d(x, z) ≤ s[d(x, y) + d(y, z)], for all x, y, z ∈ X.

A pair (X, d) with the above properties is called a b-metric space.

Let (X,≤) be a partially ordered set and d a metric on X. Notice that we can
endow the product space X ×X with the partial order ≤p given by

(x, y) ≤p (u, v)⇔ x ≤ u, y ≥ v.

Definition 1.3. Let (X,≤) be a partially ordered set and let T : X × X → X. We
say that T has the mixed monotone property if T (·, y) is monotone increasing for any
y ∈ X and T (x, ·) is monotone decreasing for any x ∈ X.

Lemma 1.4. Let (X, d) be a b-metric space. Then the sequence (xn)n∈N ⊂ X is called:

i) convergent if and only if there exists x ∈ X such that d(xn, x)→ 0 as n→∞.
In this case we write lim

n→∞
xn = x;

ii) Cauchy if and only if d(xn, xm)→ 0 as n,m→∞.

If (X, d) is a metric space and T : X×X → X is an operator, then by definition,
a coupled fixed point for T is a pair (x∗, y∗) ∈ X ×X satisfying{

x∗ = T (x∗, y∗)
y∗ = T (y∗, x∗)

(P1)

We will denote by CFix(T ) the coupled fixed point set for T .

The aim of this paper is to present, in the framework of complete ordered b-metric
spaces, some existence and uniqueness theorems for the coupled fixed point problem,
as well as, a qualitative study of this problem (data dependence of the coupled fixed
point set, well-posedness, Ulam-Hyers stability and the limit shadowing property of
the coupled fixed point problem) under some rational type contraction assumptions
on the mapping. Our results extend and complement some theorems given in the
recent literature, see e.g. [21], [22].

2. Fixed point theorems

In this part of the paper, we will present a fixed point theorems in ordered
b-metric spaces for a single-valued operstor satisfying a rational type contraction
condition.

Theorem 2.1. Let (X,≤) be a partially ordered set and d : X×X → R+ be a complete
b-metric with constant s ≥ 1. Let f : X → X be an operator which has closed graph



Coupled fixed point theorems 475

with respect to d and it is increasing with respect to ” ≤ ”. Suppose that there exists
α, β ≥ 0 with α+ βs < 1 satisfying

d(f(x), f(y)) ≤ α · d(y, f(y))[1 + d(x, f(x))]

1 + d(x, y)
+ β · d(x, y), (2.1)

for x, y ∈ X with x ≤ y .
If there exists x0 ∈ X such that x0 ≤ f(x0), then there exists x∗ ∈ X such that

x∗ = f(x∗) and (fn(x0))n∈N → x∗, as n→∞.
Proof. We have two cases:
Case 1. If f(x0) = x0, then Fix(f) 6= ∅.
Case 2. Suppose that x0 < f(x0).

Using that f is an increasing operator and by mathematical induction, we have

x0 < f(x0) ≤ f2(x0) ≤ . . . ≤ fn(x0) ≤ fn+1(x0) ≤ . . .

By this method we get a sequence (xn)n⊂N ∈ X defined by

xn+1 = f(xn) = f(f(xn−1)) = f2(xn−1) = . . . = fn(x1) = fn+1(x0).

If there exists n ≥ 1 such that xn+1 = xn, then f(xn) = xn. So we get that xn
is a fixed point of f , which implies Fix(f) 6= ∅.

Suppose that xn+1 6= xn for n ≥ 0.
Since xn ≤ xn+1 for any n ∈ N, we have

d(xn, xn+1) = d(f(xn−1), f(xn))

≤ α · d(xn, f(xn))[1 + d(xn−1, f(xn−1))]

1 + d(xn−1, xn)
+ β · d(xn−1, xn)

=
α · d(xn, xn+1)[1 + d(xn−1, xn)]

1 + d(xn−1, xn)
+ β · d(xn−1, xn)

= α · d(xn, xn+1) + β · d(xn−1, xn).

So we obtain

d(xn, xn+1) ≤ β

1− α
· d(xn−1, xn) for any n ∈ N.

Using mathematical induction we get that

d(xn, xn+1) ≤ β

1− α
· d(xn−1, xn) ≤ . . . ≤

(
β

1− α

)n
· d(x0, x1)

or

d(fn(x0), fn+1(x0)) ≤
(

β

1− α

)n
· d(x0, f(x0)) for any n ∈ N.

Let n ∈ N and p ∈ N∗. We will prove that (xn)n∈N defined by xn = fn(x0) is a
Cauchy sequence in X.

d(fn(x0), fn+p(x0)) ≤ s · d(fn(x0), fn+1(x0)) + s2 · d(fn+1(x0), fn+2(x0)) + . . .

+sp−1 · d(fn+p−2(x0), fn+p−1(x0)) + sp−1 · d(fn+p−1(x0), fn+p(x0)).

We denote

A =
β

1− α
.
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So we obtain

d(fn(x0), fn+p(x0)) ≤ s ·An · d(x0, f(x0)) + s2 ·An+1 · d(x0, f(x0)) + . . .

+sp−1 ·An+p−2 · d(x0, f(x0)) + sp ·An+p−1 · d(x0, f(x0))

= s ·An[1 + s ·A+ . . .+ (s ·A)p−1] · d(x0, f(x0)) = s ·An · 1− (s ·A)p

1− s ·A
· d(x0, f(x0)).

But A =
β

1− α
<

1

s
, then we get that

d(fn(x0), fn+p(x0)) ≤ s ·An · 1− (s ·A)p

1− s ·A
· d(x0, f(x0))→ 0 as n→∞.

Hence (fn(x0))n∈N is a Cauchy sequence on X. We also know that (X, d) is
a complete b-metric space. So there exists x∗ ∈ X such that (fn(x0))n∈N → x∗ as
n→∞. Because f has closed graph, then x∗ ∈ Fix(f), which implies Fix(f) 6= ∅.

Or f is continuous, we have

f(x∗) = f( lim
n→∞

xn) = lim
n→∞

f(xn) = lim
n→∞

xn+1 = x∗. �

A uniqueness result concerning the fixed point equation is the following.
Theorem 2.2. Suppose that all the hypotheses of Theorem 2.1. take place. Addition-
ally, suppose that the following condition holds: for all x, y ∈ X there exists z ∈ X
such that z ≤ x and z ≤ y.

Then Fix(f) = {x∗}.
Proof. Suppose that x∗, y∗ ∈ X are two fixed points of f . We have two cases:
Case 1. x∗ and y∗ are comparable. Suppose x∗ ≤ y∗(or y∗ ≤ x∗ is the same)

d(x∗, y∗) = d(f(x∗), f(y∗)) ≤ α · d(y∗, f(y∗))[1 + d(x∗, f(x∗))]

1 + d(x∗, y∗)
+ β · d(x∗, y∗)

= β · d(x∗, y∗).

Since β < 1, this is only possible when d(x∗, y∗) = 0. This implies x∗ = y∗, so
Fix(f) = {x∗}.
Case 2. x∗ and y∗ are not comparable.

By our additional assumption, we have that there exists z ∈ X with z ≤ x∗ and
z ≤ y∗.

Since z ≤ x∗, then fn(z) ≤ fn(x∗) = x∗ for any n ∈ N.
We obtain

d(fn(z), x∗) = d(fn(z), fn(x∗)) ≤ α · d(fn−1(x∗), fn(x∗))[1 + d(fn−1(z), fn(z)]

1 + d(fn−1(z), fn−1(x∗))

+ β · d(fn−1(z), fn−1(x∗)) = β · d(fn−1(z), fn−1(x∗)) = β · d(fn−1(z), x∗)

So we have

d(fn(z), x∗) ≤ β · d(fn−1(z), x∗) ≤ β2 · d(fn−2(z), x∗) ≤ . . . ≤ βn · d(z, x∗)

and since β < 1, βn → 0 then we get that

lim
n→∞

d(fn(z), x∗) = 0
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This implies lim
n→∞

fn(z) = x∗. Using a similar argument, we get that lim
n→∞

fn(z) = y∗.

Then x∗ = y∗.
A global version of the previous result is the following:

Theorem 2.3. Let (X, d) be a complete b- metric space with constant s ≥ 1, f :
X → X be an operator of X with the following condition: there exists α, β ≥ 0 with
max{α, β

1−α} <
1
s such that

d(f(x), f(y)) ≤ α · d(y, f(y))[1 + d(x, f(x))]

1 + d(x, y)
+ β · d(x, y), (2.2)

for x, y ∈ X. Then f has a unique fixed point.
Proof. Let x0 ∈ X be arbitrary chosen. Using the same method as in previous proof,
we can construct a sequence (xn)n∈N given by xn+1 = f(xn) for all n ∈ N, which is a
Cauchy sequence.

Since (X, d) is a complete b-metric space, we get that there exists x∗ ∈ X such
that lim

n→∞
xn = x∗. Then, we have

d(x∗, f(x∗)) ≤ s · d(x∗, f(xn)) + s · d(f(xn), f(x∗))

≤ s · d(x∗, f(xn)) + s · α · d(x∗, f(x∗))[1 + d(xn, f(xn))]

1 + d(xn, x∗)
+ s · β · d(xn, x

∗)

= s · d(x∗, xn+1) + s · α · d(x∗, f(x∗))[1 + d(xn, xn+1)]

1 + d(xn, x∗)
+ s · β · d(xn, x

∗).

Thus, we obtain

d(x∗, f(x∗))

[
1 + d(xn, x

∗)− s · α− s · α · d(xn, xn+1)

1 + d(xn, x∗)

]
≤ s · d(x∗, xn+1) + s · β · d(xn, x

∗).

Letting n → ∞ we have d(x∗, f(x∗))(1 − s · α) ≤ 0. Thus d(x∗, f(x∗)) = 0, i.e.,
x∗ ∈ Fix(f).

We prove that x∗ is the unique fixed point of f . Suppose that y∗ is a fixed point
of f , i.e. f(y∗) = y∗. Then

d(y∗, x∗) = d(f(y∗), f(x∗)) ≤ α · d(x∗, f(x∗))[1 + d(y∗, f(y∗))]

1 + d(x∗, y∗)
+ β · d(y∗, x∗)

Hence d(y∗, x∗) ≤ β · d(y∗, x∗) and thus y∗ = x∗.

Therefore x∗ is the unique fixed point of f .

3. Coupled fixed point theorems

In this section, using the fixed point theorems proved in Section 2, we will obtain
some existence and uniqueness theorems for the coupled fixed point problem.
Theorem 3.1. Let (X,≤) be a partially ordered set and d : X×X → R+ be a complete
b-metric on X with constant s ≥ 1. Let T : X ×X → X be an operator with closed
graph (or in particular, it is continuous) which has the mixed monotone property on
X ×X. Assume that the following conditions are satisfied:
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i) Suppose that there exists α, β ≥ 0 with β
1−α <

1
s such that

d(T (x, y), T (u, v)) + d(T (y, x), T (v, u))

≤ α · [d(u, T (u, v)) + d(v, T (v, u))][1 + d(x, T (x, y)) + d(y, T (y, x))]

1 + d(x, u) + d(y, v)

+β · [d(x, u) + d(y, v)], (3.1)

for all (x, y), (u, v) ∈ X ×X with x ≤ u, y ≥ v ;
ii) there exists x0, y0 ∈ X such that x0 ≤ T (x0, y0), y0 ≥ T (y0, x0), i.e.

(x0, y0) ≤p (T (x0, y0), T (y0, x0)).
Then, the following conclusions hold:
a) there exists (x∗, y∗) ∈ X ×X a solution of the coupled fixed point problem

(P1), such that the sequences (xn)n∈N, (yn)n∈N in X defined by{
xn+1 = T (xn, yn),

yn+1 = T (yn, xn), for all n ∈ N.

have the property that (xn)n∈N → x∗, (yn)n∈N → y∗ as n→∞.
b) in particular, if d is a continuous b-metric on X, then

d(xn, x
∗) + d(yn, y

∗) ≤ s ·An

1− s ·A
[d(x0, x1) + d(y0, y1)]

where A = 2β
1−2α and

{
x1 = T (x0, y0)

y1 = T (y0, x0).

Proof. By ii) we have that z0 = (x0, y0) ≤p (T (x0, y0), T (y0, x0)) = (x1, y1) = z1. So
we have z0 ≤p z1.

If we consider x2 = T (x1, y1) and y2 = T (y1, x1), then we get x2 = T (x1, y1) =
T 2(x0, y0) and y2 = T (y1, x1) = T 2(y0, x0). Using the mixed monotone property of
T , we get

x2 = T (x1, y1) ≥ T (x0, y0) = x1 implies x1 ≤ x2
y2 = T (y1, x1) ≤ T (y0, x0) = y1 implies y1 ≥ y2

Hence z1 = (x1, y1) ≤p (x2, y2) = z2.
By this approach we obtain the sequences (xn)n∈N, (yn)n∈N in X with{

xn+1 = T (xn, yn)

yn+1 = T (yn, xn)

and by mathematical induction we obtain zn = (xn, yn) ≤p (xn+1, yn+1) = zn+1,
which implies (zn)n∈N is a monotone increasing sequence in (Z,≤p), where Z = X×X.

Consider the metric d̃ : Z × Z → R+ , defined by

d̃((x, y), (u, v)) = d(x, u) + d(y, v).

Then, d̃ is a b-metric on Z with the same constant s ≥ 1 and if (X, d) is complete,

we have (Z, d̃) is complete, too.
Let F : Z → Z be an operator defined by F (x, y) = (T (x, y), T (y, x)), ∀(x, y) ∈ Z.
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We have zn+1 = F (zn), for n ≥ 0 where z0 = (x0, y0). Using the mixed monotone
property of T , then the operator F is monotone increasing with respect to ” ≤p ” i.e.
(x, y), (u, v) ∈ Z, with (x, y) ≤p (u, v)⇒ F (x, y) ≤p F (u, v).

Because T has a closed graph (or, in particulat it is continuous on X×X), then
F has a closed graph (or respectively is continuous on Z).

F is a contraction in (Z, d̃) on all comparable elements of Z. Let z = (x, y) ≤p
(u, v) = w ∈ Z, so we have

d̃(F (z), F (w)) = d̃((T (x, y), T (y, x)), (T (u, v), T (v, u))

= d(T (x, y), T (u, v)) + d(T (y, x), T (v, u))

≤ α · [d(u, T (u, v)) + d(v, T (v, u))][1 + d(x, T (x, y)) + d(y, T (y, x))]

1 + d(x, u) + d(y, v)

+β · [d(x, u) + d(y, v)]

=
α · d̃(w,F (w))[1 + d̃(z, F (z))]

1 + d̃(z, w)
+ β · d̃(z, w).

The operator F : Z → Z has the following properties:
1) F : Z → Z has a closed graph;
2) F : Z → Z is increasing on Z;
3) there exist z0 = (x0, y0) ∈ Z such that z0 ≤p F (z0);

4) there exists α, β ≥ 0 with β
1−α <

1
s such that

d̃(F (z), F (w)) ≤ α · d̃(w,F (w))[1 + d̃(z, F (z))]

1 + d̃(z, w)
+ β · d̃(z, w).

We can apply the conclusion of the Theorem 2.1. and we get that F has at least
one fixed point. Hence, there exists z∗ ∈ Z with F (z∗) = z∗. Let z∗ = (x∗, y∗) ∈ Z,
so we have F (x∗, y∗) = (x∗, y∗).

This implies

(T (x∗, y∗), T (y∗, x∗)) = (x∗, y∗)⇒

{
x∗ = T (x∗, y∗)

y∗ = T (y∗, x∗)

and the sequences (xn)n∈N, (yn)n∈N in X defined by{
xn+1 = T (xn, yn)

yn+1 = T (yn, xn)
for n ∈ N

have the property that xn → x∗ and yn → y∗ as n→∞.
We know that zn+1 = F (zn) = F (xn, yn) for n ≥ 0. This yields to

d̃(zn, zn+1) = d̃(F (zn−1), F (zn))

= d̃((T (xn−1, yn−1), T (yn−1, xn−1)), (T (xn, yn), T (yn, xn)))

= d(T (xn−1, yn−1), T (xn, yn)) + d(T (yn−1, xn−1), T (yn, xn))

≤ α[d(xn, T (xn, yn))+d(yn, T (yn, xn))][1+d(xn−1, T (xn−1, yn−1))+d(yn−1, T (yn−1, xn−1))]

1+d(xn−1, xn)+d(yn−1, yn)

+β[d(xn−1, xn) + d(yn−1, yn)]
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=
α · d̃(zn, F (zn))[1 + d̃(zn−1, F (zn−1))]

1 + d̃(zn−1, zn)
+ β · d̃(zn−1, zn)

=
α · d̃(zn, F (zn))[1 + d̃(zn−1, zn)]

1 + d̃(zn−1, zn)
+ β · d̃(zn−1, zn) = α · d̃(zn, zn+1) + β · d̃(zn−1, zn).

This yields to

d̃(zn, zn+1) ≤ β

1− α
· d̃(zn−1, zn) ≤

(
β

1− α

)2

· d̃(zn−2, zn−1)

≤ . . . ≤
(

β

1− α

)n
· d̃(z0, z1)

where β
1−α <

1
s < 1.

We denote A = β
1−α < 1. Moreover, for n ∈ N and p ∈ N∗, we have

d̃(zn, zn+p) ≤ s · d̃(zn, zn+1) + s2 · d̃(zn+1, zn+2) + . . .+ +sp−1 · d̃(zn+p−1, zn+p)

≤ s ·An · d̃(z0, z1) + s2 ·An+1 · d̃(z0, z1) + . . .+ sp−1 ·An+p−1 · d̃(z0, z1)

≤ s ·An · [1 + s ·A+ . . .+ (s ·A)p−1] · d̃(z0, z1)

= s ·An · 1− (s ·A)p−1

1− s ·A
· d̃(z0, z1) ≤ s ·An · 1

1− s ·A
· d̃(z0, z1).

If the b-metric is continuous, letting p→∞ we obtain

d̃(zn, z
∗) ≤ s ·An

1− s ·A
· d̃(z0, z1).

But zn = (xn, yn), so we get

d̃((xn, yn), z∗) ≤ s ·An

1− s ·A
· d̃((x0, y0), (x1, y1))

and, by definition of d̃, we finally get

d(xn, z
∗) + d(yn, z

∗) ≤ s ·An

1− s ·A
· [d(x0, x1) + d(y0, y1)]. �

The following theorem gives the uniqueness of the coupled fixed point.
Theorem 3.2. Consider that we have the hypotheses of Theorem 3.1. and the following
condition holds:

for all (x, y), (u, v) ∈ X ×X there exists (z, w) ∈ X ×X such that

(z, w) ≤p (x, y) and (z, w) ≤p (u, v).

Then CFix(T ) = {(x∗, y∗)}.
Proof. The operator T verifies the hypotheses of Theorem 3.1. Hence there exists
(x∗, y∗) ∈ Z := X ×X such that{

x∗ = T (x∗, y∗)

y∗ = T (y∗, x∗)

Let (x, y) ∈ CFix(T ) and d̃ : Z × Z → R+, defined by

d̃((x, y), (u, v)) = d(x, u) + d(y, v),
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where Z = X ×X.
We have two cases:

Case 1. (x∗, y∗) ≤p (x, y), which implies

d̃((x∗, y∗), (x, y)) = d̃((T (x∗, y∗), T (y∗, x∗)), (T (x, y), T (y, x)))

= d(T (x∗, y∗), T (x, y)) + d(T (y∗, x∗), T (y, x))

≤ α · [d(x, T (x, y)) + d(y, T (y, x))][1 + d(x∗, T (x∗, y∗)) + d(y∗, T (y∗, x∗))]

1 + d(x∗, x) + d(y∗, y)

+β · [d(x∗, x) + d(y∗, y)] = β · [d(x∗, x) + d(y∗, y)] = β · d̃((x∗, y∗), (x, y))

This yields to

d̃((x∗, y∗), (x, y)) ≤ β · d̃((x∗, y∗), (x, y))

or
(1− β) · d̃((x∗, y∗), (x, y)) ≤ 0 (but 1− β > 0)

Hence, we have
(x∗, y∗) = (x, y).

Case 2. (x∗, y∗), (x, y) are not comparable.
Let F : Z → Z be defined by F (x, y) = (T (x, y), T (y, x)) ∀(x, y) ∈ Z. There

exists (z, w) ∈ Z, such that (z, w) ≤p (x∗, y∗), implies Fn(z, w) ≤p Fn(x∗, y∗) because
F is an increasing operator and (z, w) ≤p (x, y), implies Fn(z, w) ≤p F (x, y), F is an
increasing operator.

We have

d̃(Fn(z, w), (x∗, y∗)) = d̃(Fn(z, w), Fn(x∗, y∗)) = d̃(F (Fn−1(z, w)), F (Fn−1(x∗, y∗)))

≤ α · d̃(Fn−1(x∗, y∗), Fn(x∗, y∗))[1 + d̃(Fn−1(z, w), Fn(z, w))]

1 + d̃(Fn−1(z, w), Fn−1(x∗, y∗))

+β · d̃(Fn−1(z, w), Fn−1(x∗, y∗))

= β · d̃(Fn−1(z, w), Fn−1(x∗, y∗)).

By mathematical induction we get

d̃(Fn(z, w), Fn(x∗, y∗)) ≤ β · d̃(Fn−1(z, w), Fn−1(x∗, y∗))

≤ . . . ≤ βn · d̃((z, w), (x∗, y∗))→ 0, as n→∞.
Hence

lim
n→∞

Fn(z, w) = (x∗, y∗). (3.2)

But, we also know,
(z, w) ≤p (x, y)

implies
Fn(z, w) ≤p Fn(x, y) = (x, y).

Similarly, we obtain that

d̃(Fn(z, w), (x, y)) ≤ βn · d̃((z, w), (x, y))→ 0 as n→∞
Hence,

lim
n→∞

Fn(z, w) = (x, y). (3.3)
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By (3.1)+(3.2) we obtain that

(x∗, y∗) = (x, y). �

A global version of the previous results is the following.
Theorem 3.3. Let (X, d) be a complete b-metric space with constant s ≥ 1 and

T : X ×X → X be an operator such that there exist α, β ≥ 0 with max{α, β
1−α} <

1
s

such that

d(T (x, y), T (u, v)) + d(T (y, x), T (v, u))

≤ α · [d(u, T (u, v)) + d(v, T (v, u))][1 + d(x, T (x, y)) + d(y, T (y, x))]

1 + d(x, u) + d(y, v)

+β · [d(x, u) + d(y, v)] for (x, y), (u, v) ∈ X ×X.
Then, there exists an unique solution (x∗, y∗) ∈ X × X of the coupled fixed

point problem (P1), and for any initial element (x0, y0) ∈ X×X the sequence zn+1 =
(xn+1, yn+1) = (T (xn, yn), T (yn, xn)) ∈ X ×X converges to (x∗, y∗).

Proof. Let Z = X ×X and the functional d̃ : Z × Z → R+, such that

d̃((x, y), (u, v)) = d(x, u) + d(y, v).

We know that d̃ is a b-metric on Z with the same constant s ≥ 1. Moreover, if
(X, d) is a complete b-metric space, then (Z, d̃) is a complete b-metric space too.

Consider the operator F : Z → Z defined by F (x, y) = (T (x, y), T (y, x)) for
(x, y) ∈ Z.

Let z = (x, y) ∈ Z and w = (u, v) ∈ Z.
We have

d̃(F (z), F (w)) = d̃((T (x, y), T (y, x)), (T (u, v), T (v, u)))

= d(T (x, y), T (u, v)) + d(T (y, x), T (v, u))

≤ α · [d(u, T (u, v)) + d(v, T (v, u))][1 + d(x, T (x, y)) + d(y, T (y, x))]

1 + d(x, u) + d(y, v)

+β · [d(x, u) + d(y, v)]

=
α · d̃((u, v), (T (u, v), T (v, u)))[1 + d̃((x, y), (T (x, y), T (y, x)))]

1 + d̃((x, y), (u, v))
+ β · d̃((x, y), (u, v))

=
α · d̃(w,F (w))[1 + d̃(z, F (z))]

1 + d̃(z, w)
+ β · d̃(z, w).

Therefore

d̃(F (z), F (w)) ≤ α · d̃(w,F (w))[1 + d̃(z, F (z))]

1 + d̃(z, w)
+ β · d̃(z, w).

From Theorem 2.3. we have that Fix(F ) = {(x∗, y∗)}, so the coupled fixed point
problem (P1) has a unique solution (x∗, y∗) ∈ Z.

An existence and uniqueness result for the fixed point of T is given now.
Theorem 3.4. If we suppose that we have the hypotheses of Theorem 3.2., then for
the unique coupled fixed point (x∗, y∗) of T we have that x∗ = y∗ i.e. T (x∗, x∗) = x∗.
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Proof. From Theorem 3.2., there exists an unique coupled fixed point of T , (x∗, y∗) ∈
X ×X.

We have two cases:
Case 1. If x∗ and y∗ are comparable, x∗ ≤ y∗.

Then we have

d(T (x, y), T (u, v)) + d(T (y, x), T (v, u))

≤ α · [d(u, T (u, v)) + d(v, T (v, u))][1 + d(x, T (x, u)) + d(y, T (y, x))]

1 + d(x, u) + d(y, v)

+β · [d(x, u) + d(y, v)].

Let
x = v = x∗ and y = u = y∗.

Thus we obtain
2 · d(T (x∗, y∗), T (y∗, x∗))

≤ α · [d(y∗, T (y∗, x∗)) + d(x∗, T (x∗, y∗))][1 + d(x∗, T (x∗, y∗)) + d(y∗, T (y∗, x∗))]

1 + 2d(x∗, y∗)

+β · 2 · d(x∗, y∗).

This yields to
d(x∗, y∗) ≤ β · d(x∗, y∗).

So
(1− β) · d(x∗, y∗) ≤ 0,

follows that x∗ = y∗.
Case 2. Suppose that x∗ and y∗ are not comparable.

Hence, there exists z ∈ X such that z ≤ x∗ and z ≤ y∗. Thus, the following
relations are satisfied:

(z, y∗) ≤p (y∗, z), (z, y∗) ≤p (x∗, y∗), (y∗, x∗) ≤p (y∗, z).

Let F : Z → Z be defined by F (x, y) = (T (x, y), T (y, x)) ∀(x, y) ∈ Z. Then,

d(x∗, y∗) =
1

2
· d̃((y∗, x∗), (x∗, y∗)) =

1

2
· d̃(Fn(y∗, x∗), Fn(x∗, y∗))

≤ s

2
· d̃(Fn(y∗, x∗), Fn(y∗, z)) +

s

2
· d̃(Fn(y∗, z), Fn(x∗, y∗))

≤ s

2
·d̃(Fn(y∗, x∗), Fn(y∗, z))+

s2

2
·d̃(Fn(y∗, z), Fn(z, y∗))+

s2

2
·d̃(Fn(z, y∗), Fn(x∗, y∗)).

But we know that

d̃(Fn(y∗, x∗), Fn(y∗, z)) ≤ βn · d̃((y∗, x∗), (y∗, z)) = βn · d(x∗, z)

d̃(Fn(y∗, z), Fn(z, y∗)) ≤ βn · d̃((y∗, z), (z, y∗)) = 2βn · d(y∗, z)

d̃(Fn(z, y∗), Fn(x∗, y∗)) ≤ βn · d̃((z, y∗), (x∗, y∗)) = βn · d(z, x∗).

Using this assumptions, we get that

d(x∗, y∗) ≤ s

2
· βn · d(x∗, z) +

s2

2
· βn · 2 · d(y∗, z) +

s2

2
· βn · d(z, x∗)

=
s

2
· βn · [(1 + s)d(x∗, z) + 2 · s · d(y∗, z)]→ 0 as n→∞.
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Hence, we have that x∗ = T (x∗, x∗).

4. Properties of the coupled fixed point problem

This section presents data dependence, well-posedness, Ulam-Hyers stability and
limit shadowing property for the coupled fixed point problem.

The following theorem is a data dependence result of a coupled fixed point
problem.
Theorem 4.1. Let (X, d) be a complete b-metric space with constant s ≥ 1 and
Ti : X×X → X (i ∈ {1, 2}) be two operators which satisfy the following conditions:

i) there exist α, β ≥ 0 with max{α, β
1−α} <

1
s such that

d(T1(x, y), T1(u, v)) + d(T1(y, x), T1(v, u))

≤ α · [d(u, T1(u, v)) + d(v, T1(v, u))][1 + d(x, T1(x, y)) + d(y, T1(y, x))]

1 + d(x, u) + d(y, v)

+β · [d(x, u) + d(y, v)] all for (x, y), (u, v) ∈ X ×X;

ii) CFix(T2) 6= ∅;
iii) there exists η > 0 such that d(T1(x, y), T2(x, y)) ≤ η for all (x, y) ∈ X ×X.
In the above conditions, if (x∗, y∗) ∈ X × X is the unique coupled fixed point

for T1, then d(x∗, x) + d(y∗, y) ≤ 2s(1+α)
1−sβ · η, where (x, y) ∈ CFix(T2).

Proof. By Theorem 3.3, there exists (x∗, y∗) ∈ X ×X such that{
x∗ = T1(x∗, y∗)

y∗ = T1(y∗, x∗).

Let (x, y) ∈ CFix(T2), i.e.

{
x = T2(x, y)

y = T2(y, x).

Consider the b-metric d̃ : Z × Z → R+, defined by

d̃((x, y), (u, v)) = d(x, u) + d(y, v)

for (x, y), (u, v) ∈ Z, where Z = X ×X.
Consider two operators Fi : Z → Z defined by Fi(x, y) = (Ti(x, y), Ti(y, x)), for

(x, y) ∈ Z, i ∈ {1, 2}.
We denote by z = (x∗, y∗) ∈ Z, which means F1(z) = z and w = (x, y) ∈ Z,

which means F2(w) = w. Then,

d̃(F1(z), F1(w)) =
α · d̃(w,F1(w))[1 + d̃(z, F1(z))]

1 + d̃(z, w)
+ β · d̃(z, w)

=
α · d̃(w,F1(w))

1 + d̃(z, w)
+ β · d̃(z, w) ≤ α · d̃(w,F1(w)) + β · d̃(z, w) ≤ 2α · η + β · d̃(z, w).

Since

d̃(z, w) = d̃(F1(z), F2(w)) ≤ s · [d̃(F1(z), F1(w)) + d̃(F1(w), F2(w))]

≤ s · [2α · η + β · d̃(z, w)] + 2s · η,
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we will obtain that (1− sβ) · d̃(z, w) ≤ 2s · (1 + α) · η.
Since max{α, β

1−α} <
1
s , we get that 1− sβ > 0. Therefore d̃(z, w) ≤ 2s(1+α)

1−sβ · η
and by definition of the metric d̃, we have

d(x∗, x) + d(y∗, y) ≤ 2s(1 + α)

1− sβ
· η. �

Definition 4.2. Let (X, d) be a b-metric space with constant s ≥ 1 and T : X×X → X
be an operator. By definition, the coupled fixed point problem (P1) is said to be well-
posed if:

i) CFix(T ) = {(x∗, y∗)};
ii) for any sequence (xn, yn)n∈N ∈ X × X for which d(xn, T (xn, yn)) → 0 and

d(yn, T (yn, xn)) → 0 as n → ∞, we have that (xn)n∈N → x∗ and (yn)n∈N → y∗ as
n→∞.
Theorem 4.3. Assume that all the hypotheses of Theorem 3.3. take place. Then the
coupled fixed problem (P1) is well-possed.
Proof. We denote by Z = X ×X. By Theorem 3.3. we have CFix(T ) = {(x∗, y∗)}.

Let (xn, yn)n∈N be a sequence on Z. We know that d(xn, T (xn, yn)) → 0 and
d(yn, T (yn, xn))→ 0 as n→∞.

Consider the b-metric d̃ : Z × Z → R+, such that d̃((x, y), (u, v)) = d(x, u) +
d(y, v) for all (x, y), (u, v) ∈ Z.

Let F : Z → Z be an operator defined by F (x, y) = (T (x, y), T (y, x)) for all
(x, y) ∈ Z. We know that F (x∗, y∗) = (x∗, y∗), so we have

d̃((xn, yn), (x∗, y∗)) = d(xn, x
∗) + d(yn, y

∗)

≤ s · d(xn, T (xn, yn)) + s · d(T (xn, yn), T (x∗, y∗))

+s · d(yn, T (yn, xn)) + s · d(T (yn, xn), T (y∗, x∗))

= s · [d(xn, T (xn, yn)) + d(yn, T (yn, xn))]

+s · [d(T (xn, yn), T (x∗, y∗)) + d(T (yn, xn), T (y∗, x∗))]

≤ s · [d(xn, T (xn, yn)) + d(yn, T (yn, xn))]

+s · α · [d(x∗, T (x∗, y∗)) + d(y∗, T (y∗, x∗))][1 + d(xn, T (xn, yn)) + d(yn, T (yn, xn))]

1 + d(xn, x∗) + d(yn, y∗)

+s · β · [1 + d(xn, x
∗) + d(yn, y

∗)]

≤ s · [d(xn, T (xn, yn)) + d(yn, T (yn, xn))] + s · β · d̃((xn, yn), (x∗, y∗)).

We obtain that

(1− sβ) · d̃((xn, yn), (x∗, y∗)) ≤ s · [d(xn, T (xn, yn)) + d(yn, T (yn, xn))]

d̃((xn, yn), (x∗, y∗)) ≤ s

1− sβ
· [d(xn, T (xn, yn))+d(yn, T (yn, xn))]→ 0 as n→∞.

Therefore, (xn, yn)→ (x∗, y∗) as n→∞.
Definition 4.4. Let (X, d) be a b-metric space with constant s ≥ 1 and T : X×X → X

be an operator. Let d̃ any b-metric on X×X generated by d By definition, the coupled
fixed point problem (P1) is said to be Ulam-Hyers stable if there exists a function
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ψ : R+ → R+ increasing, continuous in 0 with ψ(0) = 0, such that for each ε > 0 and
for each solution (x, y) ∈ X ×X of the inequality

d̃((x, y), (T (x, y), T (y, x))) ≤ ε,
there exists a solution (x∗, y∗) ∈ X ×X of the coupled fixed point problem (P1) such
that

d̃((x, y), (x∗, y∗)) ≤ ψ(ε).

Theorem 4.5. Assume that all the hypotheses of Theorem 3.3. take place. Then the
coupled fixed point problem (P1) is Ulam-Hyers stable.
Proof. Let Z = X × X. By Theorem 3.3., we have CFix(T ) = {(x∗, y∗)}. Let any
ε > 0 and let (x, y) ∈ Z such that d(x, T (x, y)) + d(y, T (y, x)) ≤ ε.

Consider the b-metric d̃ : Z × Z → R+ given by

d̃((x, y), (u, v)) = d(x, u) + d(y, v), ∀(x, y), (u, v) ∈ Z
and F : Z → Z an operator defined by F (x, y) = (T (x, y), T (y, x)) for all (x, y) ∈ Z.

We have

d̃((x, y), (x∗, y∗)) = d(x, x∗) + d(y, y∗) = d(x, T (x∗, y∗)) + d(y, T (y∗, x∗))

≤ s · [d(x, T (x, y)) + d(T (x, y), T (x∗, y∗))] + s · [d(y, T (y, x)) + d(T (y, x), T (y∗, x∗))]

≤ s · [d(x, T (x, y)) + d(y, T (y, x))]

+s · α · [d(x∗, T (x∗, y∗)) + d(y∗, T (y∗, x∗))][1 + d(x, T (x, y)) + d(y, T (y, x))]

1 + d(x, x∗) + d(y, y∗)

+s · β · [d(x, x∗) + d(y, y∗)].

Thus

d̃((x, y), (x∗, y∗)) ≤ s

1− sβ
· [d(x, T (x, y)) + d(y, T (y, x))] ≤ s

1− sβ
· ε.

Therefore the coupled fixed point problem (P1) is Ulam-Hyers stable, with a mapping
ψ : R+ → R+, ψ(t) := ct, where c = s

1−sβ > 0.

Definition 4.6. Let (X, d) be a b-metric space with constant s ≥ 1 and T :
X × X → X be an operator. By definition, the coupled fixed point problem (P1)
has the limit shadowing property, if for any sequence (xn, yn)n∈N ∈ X × X for
which d(xn+1, T (xn, yn)) → 0 and respectively d(yn+1, T (yn, xn)) → 0 as n → ∞,
there exists a sequence (Tn(x, y), Tn(y, x))n∈N such that d(xn, T

n(x, y)) → 0 and
d(yn, T

n(y, x))→ 0 as n→∞.
Theorem 4.7. Assume that the hypotheses from Theorem 3.3. take place. Then the
coupled fixed point problem (P1) for T has the limit shadowing property.
Proof. By Theorem 3.3, we have CFix(T ) = {(x∗, y∗)} and for any initial point
(x, y) ∈ X×X the sequence zn+1 = (Tn(x, y), Tn(y, x)) ∈ X×X converge to (x∗, y∗)
as n→∞.

Let (xn, yn)n∈N be a sequence on Z = X ×X such that d(xn+1, T (xn, yn))→ 0
and d(yn+1, T (yn, xn))→ 0 as n→∞.

We consider the b-metric d̃ : Z × Z → R+, defined by

d̃((x, y), (u, v)) = d(x, u) + d(y, v) for all (x, y), (u, v) ∈ Z.
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Let F : Z → Z be an operator defined by F (u, v) = (T (u, v), T (v, u)) for all
(u, v) ∈ Z. We know that F (x∗, y∗) = (x∗, y∗). Then for every (x, y) ∈ Z we have:

d̃((xn+1, yn+1), (Tn+1(x, y), Tn+1(y, x)))

≤ s · [d̃((xn+1, yn+1), (x∗, y∗)) + d̃((x∗, y∗), (Tn+1(x, y), Tn+1(y, x)))])

But

d̃((xn+1, yn+1), (x∗, y∗)) ≤ s · [d̃((xn+1, yn+1), F (xn, yn)) + d̃(F (xn, yn), F (x∗, y∗))]

≤ s·d̃((xn+1, yn+1), F (xn, yn))+s·α · d̃((x∗, y∗), F (x∗, y∗))[1 + d̃((xn, yn), F (xn, yn))]

1 + d̃((xn, yn), (x∗, y∗))

+s · β · d̃((xn, yn), (x∗, y∗))

= s · [d(xn+1, T (xn, yn)) + d(yn+1, T (yn, xn))] + s · β · d̃((xn, yn), (x∗, y∗)).

This yields to

d̃((xn+1, yn+1), (x∗, y∗)) ≤ s · [d(xn+1, T (xn, yn)) + d(yn+1, T (yn, xn))]

+s·β ·{s·[d(xn, T (xn−1, yn−1))+d(yn, T (yn−1, xn−1))]+s·β ·d̃((xn−1, yn−1), (x∗, y∗))}.
Therefore,

d̃((xn+1, yn+1), (x∗, y∗)) ≤ s · [d(xn+1, T (xn, yn)) + d(yn+1, T (yn, xn))]

+s·(s·β)·[d(xn, T (xn−1, yn−1))+d(yn, T (yn−1, xn−1))]+(s·β)2·d̃((xn−1, yn−1), (x∗, y∗))

≤ . . . ≤ (s ·β)n+1 · d̃((x0, y0), (x∗, y∗))+s ·

[
n∑
p=0

(s · β)n−p · d̃((xp+1, yp+1), F (xp, yp))

]
.

From Cauchy’s Lemma we have d̃((xn+1, yn+1), (x∗, y∗))→ 0 as n→∞.

Thus d̃((xn+1, yn+1), (Tn+1(x, y), Tn+1(y, x))) → 0 as n →∞, so there exists a
sequence (Tn(x, y), Tn(y, x)) ∈ Z with

d̃((xn, yn), (Tn(x, y), Tn(y, x))) = d(xn, T
n(x, y))+d(yn, T

n(y, x))→ 0 as n→∞.
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Abstract. Some inequalities of Hermite-Hadamard type for AH-convex functions
defined on convex subsets in real or complex linear spaces are given. The case for
functions of one real variable is explored in depth. Applications for special means
are provided as well.
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1. Introduction

The following inequality holds for any convex function f defined on R

(b− a)f

(
a+ b

2

)
≤
∫ b

a

f(x)dx ≤ (b− a)
f(a) + f(b)

2
, a, b ∈ R, a < b. (1.1)

It was firstly discovered by Ch. Hermite in 1881 in the journal Mathesis (see [41]).
But this result was nowhere mentioned in the mathematical literature and was not
widely known as Hermite’s result.

E. F. Beckenbach, a leading expert on the history and the theory of convex
functions, wrote that this inequality was proven by J. Hadamard in 1893 [5]. In
1974, D. S. Mitrinović found Hermite’s note in Mathesis [41]. Since (1.1) was known
as Hadamard’s inequality, the inequality is now commonly referred as the Hermite-
Hadamard inequality.

For related results, see [1]-[19], [22]-[24], [25]-[34] and [35]-[44].
Let X be a vector space over the real or complex number field K and x, y ∈

X, x 6= y. Define the segment

[x, y] := {(1− t)x+ ty, t ∈ [0, 1]}.
We consider the function f : [x, y]→ R and the associated function

g(x, y) : [0, 1]→ R, g(x, y)(t) := f [(1− t)x+ ty], t ∈ [0, 1].
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Note that f is convex on [x, y] if and only if g(x, y) is convex on [0, 1].

For any convex function defined on a segment [x, y] ⊂ X, we have the Hermite-
Hadamard integral inequality (see [20, p. 2], [21, p. 2])

f

(
x+ y

2

)
≤
∫ 1

0

f [(1− t)x+ ty]dt ≤ f(x) + f(y)

2
, (1.2)

which can be derived from the classical Hermite-Hadamard inequality (1.1) for the
convex function g(x, y) : [0, 1]→ R.

Let X be a linear space and C a convex subset in X. A function f : C → R\ {0}
is called AH -convex (concave) on the convex set C if the following inequality holds

f ((1− λ)x+ λy) ≤ (≥)
1

(1− λ) 1
f(x) + λ 1

f(y)

=
f (x) f (y)

(1− λ) f (y) + λf (x)
(AH)

for any x, y ∈ C and λ ∈ [0, 1] .

An important case which provides many examples is that one in which the
function is assumed to be positive for any x ∈ C. In that situation the inequality
(AH) is equivalent to

(1− λ)
1

f (x)
+ λ

1

f (y)
≤ (≥)

1

f ((1− λ)x+ λy)

for any x, y ∈ C and λ ∈ [0, 1] .

Therefore we can state the following fact:

Criterion 1.1. Let X be a linear space and C a convex subset in X. The function
f : C → (0,∞) is AH-convex (concave) on C if and only if 1

f is concave (convex) on

C in the usual sense.

If we apply the Hermite-Hadamard inequality (1.2) for the function 1
f then we

state the following result:

Proposition 1.2. Let X be a linear space and C a convex subset in X. If the function
f : C → (0,∞) is AH-convex (concave) on C, then

f (x) + f (y)

2f (x) f (y)
≤ (≥)

∫ 1

0

dλ

f ((1− λ)x+ λy)
≤ (≥)

1

f
(
x+y
2

) (1.3)

for any x, y ∈ C.

Motivated by the above results, in this paper we establish some new Hermite-
Hadamard type inequalities for AH -convex (concave) functions, first in the general
setting of linear spaces and then in the particular case of functions of a real variable.
Some examples for special means are provided as well.

2. Some Hermite-Hadamard type inequalities

The following result holds:
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Theorem 2.1. Let X be a linear space and C a convex subset in X. If the function
f : C → (0,∞) is AH-convex (concave) on C, then for any x, y ∈ C we have∫ 1

0

f ((1− λ)x+ λy) dλ ≤ (≥)
G2 (f (x) , f (y))

L (f (x) , f (y))
, (2.1)

where the Logarithmic mean of positive numbers a, b is defined as

L (a, b) :=


b−a

ln b−ln a if a 6= b

a if a = b,

and the geometric mean is G =
√
ab.

Proof. Let x, y ∈ C with x 6= y. If f : C → (0,∞) is AH -convex (concave) on C, then
1
f is concave (convex) on C. This implies that the function

ϕx,y : [0, 1]→ (0,∞), ϕx,y (t) =
1

f ((1− λ)x+ λy)

is concave (convex) on [0, 1] and therefore continuous on (0, 1) with ϕx,y (0) = 1
f(x)

and ϕx,y (1) = 1
f(y) . The function [0, 1] 3 t 7→ f ((1− t)x+ ty) is continuous on (0, 1)

and since f (x) , f (y) > 0 are finite, then the Lebesgue integral
∫ 1

0
f ((1− t)x+ ty) dt

exists and by (AH) we have∫ 1

0

f ((1− λ)x+ λy) dλ ≤ (≥) f (x) f (y)

∫ 1

0

dλ

(1− λ) f (y) + λf (x)
. (2.2)

If f (y) = f (x) , then ∫ 1

0

dλ

(1− λ) f (y) + λf (x)
=

1

f (y)
.

If f (y) 6= f (x) , then by changing the variable u = λ (f (x)− f (y)) + f (y) we have∫ 1

0

dλ

(1− λ) f (y) + λf (x)
=

ln f (x)− ln f (y)

f (x)− f (y)
=

1

L (f (x) , f (y))
.

By the use of (2.2) we get the desired result (2.1). �

Remark 2.2. Using the following well known inequalities

H (a, b) ≤ G (a, b) ≤ L (a, b)

we have ∫ 1

0

f ((1− λ)x+ λy) dλ ≤ G2 (f (x) , f (y))

L (f (x) , f (y))
≤ G (f (x) , f (y)) (2.3)

for any x, y ∈ C, provided that f : C → (0,∞) is AH -convex.
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If f : C → (0,∞) is AH -concave, then∫ 1

0

f ((1− λ)x+ λy) dλ ≥ G2 (f (x) , f (y))

L (f (x) , f (y))
(2.4)

≥ G (f (x) , f (y))

L (f (x) , f (y))
H (f (x) , f (y))

for any x, y ∈ C.

Theorem 2.3. Let X be a linear space and C a convex subset in X. If the function
f : C → (0,∞) is AH-convex (concave) on C, then for any x, y ∈ C we have

f

(
x+ y

2

)
≤ (≥)

∫ 1

0
f ((1− λ)x+ λy) f (λx+ (1− λ) y) dλ∫ 1

0
f ((1− λ)x+ λy) dλ

. (2.5)

Proof. By the definition of AH -convexity (concavity) we have

f

(
u+ v

2

)
≤ (≥)

2f (u) f (v)

f (u) + f (v)
(2.6)

for any u, v ∈ C.
Let x, y ∈ C and λ ∈ [0, 1]. If we take in (2.6) u = (1− λ)x + λy and v =

λx+ (1− λ) y, then we get

f

(
x+ y

2

)
≤ (≥)

2f ((1− λ)x+ λy) f (λx+ (1− λ) y)

f ((1− λ)x+ λy) + f (λx+ (1− λ) y)
,

which is equivalent to

1

2
f

(
x+ y

2

)
[f ((1− λ)x+ λy) + f (λx+ (1− λ) y)] (2.7)

≤ (≥) f ((1− λ)x+ λy) f (λx+ (1− λ) y) .

Integrating the inequality on [0, 1] over λ ∈ [0, 1] and taking into account that∫ 1

0

f ((1− λ)x+ λy) dλ =

∫ 1

0

f (λx+ (1− λ) y) dλ

we deduce from (2.7) the desired result (2.5). �

Remark 2.4. By the Cauchy-Bunyakovsky-Schwarz integral inequality we have∫ 1

0

f ((1− λ)x+ λy) f (λx+ (1− λ) y) dλ (2.8)

≤
[∫ 1

0

f2 ((1− λ)x+ λy) dλ

∫ 1

0

f2 (λx+ (1− λ) y) dλ

]1/2
=

∫ 1

0

f2 ((1− λ)x+ λy) dλ

for any x, y ∈ C.
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If the function f : C → (0,∞) is AH -convex on C, then we have

f

(
x+ y

2

)
≤
∫ 1

0
f ((1− λ)x+ λy) f (λx+ (1− λ) y) dλ∫ 1

0
f ((1− λ)x+ λy) dλ

(2.9)

≤
∫ 1

0
f2 ((1− λ)x+ λy) dλ∫ 1

0
f ((1− λ)x+ λy) dλ

.

If the function ψx,y (t) = f ((1− t)x+ ty) , for some given x, y ∈ C with x 6= y,
is monotonic nondecreasing on [0, 1] , then χx,y (t) = f (tx+ (1− t) y) is monotonic

nonincreasing on [0, 1] and by Čebyšev’s inequality for monotonic opposite functions
we have ∫ 1

0

f ((1− λ)x+ λy) f (λx+ (1− λ) y) dλ

≤
∫ 1

0

f ((1− λ)x+ λy) dλ

∫ 1

0

f (λx+ (1− λ) y) dλ

=

(∫ 1

0

f ((1− λ)x+ λy) dλ

)2

.

So, for some given x, y ∈ C with x 6= y, ψx,y (t) = f ((1− t)x+ ty) is monotonic
nondecreasing (nonincreasing) on [0, 1] and if the function f : C → (0,∞) is AH -
convex on C, then we have

f

(
x+ y

2

)
≤
∫ 1

0
f ((1− λ)x+ λy) f (λx+ (1− λ) y) dλ∫ 1

0
f ((1− λ)x+ λy) dλ

(2.10)

≤
∫ 1

0

f ((1− λ)x+ λy) dλ.

If (X, ‖·‖) is a normed space, then the function g : X → [0,∞), g (x) = ‖x‖p ,
p ≥ 1 is convex and then the function f : C ⊂ X → (0,∞) , f (x) = 1

‖x‖p is AH -

concave on any convex subset of X which does not contain {0} .
Utilising (2.1) we have∫ 1

0

dλ

‖(1− λ)x+ λy‖p
≥ 1

L (‖x‖p , ‖y‖p)
, (2.11)

for any linearly independent x, y ∈ X and p ≥ 1.

Making use of (2.5) we also have∫ 1

0

dλ

‖(1− λ)x+ λy‖p
(2.12)

≥
∥∥∥∥x+ y

2

∥∥∥∥p ∫ 1

0

dλ

‖(1− λ)x+ λy‖p ‖λx+ (1− λ) y‖p

for any linearly independent x, y ∈ X and p ≥ 1.
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3. More results for scalar case

If the function f is defined on an interval I and a, b ∈ I with a < b, then∫ 1

0

f ((1− λ)x+ λy) dλ =
1

b− a

∫ b

a

f (t) dt

and the inequalities (1.3), (2.1) and (2.5) can be written as

f (a) + f (b)

2f (a) f (b)
≤ (≥)

1

b− a

∫ b

a

1

f (t)
dt ≤ (≥)

1

f
(
a+b
2

) , (3.1)

1

b− a

∫ b

a

f (t) dt ≤ (≥)
G2 (f (a) , f (b))

L (f (a) , f (b))
, (3.2)

and

f

(
a+ b

2

)
≤ (≥)

∫ b

a
f (t) f (a+ b− t) dt∫ b

a
f (t) dt

, (3.3)

respectively, where f : I → (0,∞) is assumed to be AH -convex (concave) on I.
The following proposition holds:

Proposition 3.1. Let f : I → (0,∞) be AH-convex (concave) on I. Let x, y ∈ I̊, the
interior of I, then there exists ϕ (y) ∈

[
f ′− (y) , f ′+ (y)

]
such that

f (y)

f (x)
− 1 ≤ (≥)

ϕ (y)

f (y)
(y − x) (3.4)

holds.

Proof. Let x, y ∈ I̊ . Since the function 1
f is concave (convex) then the lateral deriva-

tives f ′− (y) , f ′+ (y) exists for y ∈ I̊ and
(

1
f

)′
−(+)

(y) = − f ′−(+)(y)

f2(y) .

Since 1
f is concave (convex) then we have the gradient inequality

1

f (y)
− 1

f (x)
≥ (≤)λ (y) (y − x) = −λ (y) (x− y)

with λ (y) ∈
[
− f ′+(y)

f2(y) ,−
f ′−(y)

f2(y)

]
, which is equivalent to

1

f (y)
− 1

f (x)
≥ (≤)

ϕ (y)

f2 (y)
(x− y) (3.5)

with ϕ (y) ∈
[
f ′− (y) , f ′+ (y)

]
.

The inequality (3.5) can be also written as

1− f (y)

f (x)
≥ (≤)

ϕ (y)

f (y)
(x− y)

or as
f (y)

f (x)
− 1 ≤ (≥)

ϕ (y)

f (y)
(y − x)

and the inequality (3.4) is proved. �
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Corollary 3.2. Let f : I → (0,∞) be AH-convex (concave) on I. If f is differentiable

on I̊ then for any x, y ∈ I̊, we have

f (y)

f (x)
− 1 ≤ (≥)

f ′ (y)

f (y)
(y − x) . (3.6)

The following result also holds:

Theorem 3.3. Let f : I → (0,∞) be AH-convex (concave) on I. If a, b ∈ I with a < b,
then we have the inequality

1

b− a

∫ b

a

f2 (t) dt ≤ (≥)

[
b− s
b− a

f (b) +
s− a
b− a

f (a)

]
f (s) (3.7)

for any s ∈ [a, b] .
In particular, we have

1

b− a

∫ b

a

f2 (t) dt ≤ (≥) f

(
a+ b

2

)
f (a) + f (b)

2
(3.8)

and
1

b− a

∫ b

a

f2 (t) dt ≤ (≥) f (a) f (b) . (3.9)

Proof. If the function f : I → (0,∞) is AH -convex (concave) on I, then the function
f is differentiable almost everywhere on I and we have the inequality

f (t)

f (s)
− 1 ≤ (≥)

f ′ (t)

f (t)
(t− s) (3.10)

for every s ∈ [a, b] and almost every t ∈ [a, b] .
Multiplying (3.10) by f (t) > 0 and integrating over t ∈ [a, b] we have

1

f (s)

∫ b

a

f2 (t) dt−
∫ b

a

f (t) dt ≤ (≥)

∫ b

a

f ′ (t) (t− s) dt. (3.11)

Integrating by parts we have∫ b

a

f ′ (t) (t− s) dt = f (b) (b− s) + f (a) (s− a)−
∫ b

a

f (t) dt

and by (3.11) we get the desired result (3.7).
We observe that (3.8) follows by (3.7) for s = a+b

2 while (3.9) follows by (3.7)
for either s = a or s = b. �

Remark 3.4. By the Cauchy-Bunyakovsky-Schwarz integral inequality we have(
1

b− a

∫ b

a

f (t) dt

)2

≤ 1

b− a

∫ b

a

f2 (t) dt

and if we assume that f : I → (0,∞) is AH -convex on I, then we have

1

b− a

∫ b

a

f (t) dt ≤

(
1

b− a

∫ b

a

f2 (t) dt

)1/2

≤

√
f

(
a+ b

2

)
f (a) + f (b)

2
(3.12)
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and

1

b− a

∫ b

a

f (t) dt ≤

(
1

b− a

∫ b

a

f2 (t) dt

)1/2

≤
√
f (a) f (b). (3.13)

The following result also holds:

Theorem 3.5. Let f : I → (0,∞) be AH-convex (concave) on I. If a, b ∈ I with a < b,
then we have the inequality∫ b

a

ln f (t) dt+
1

f (s)

∫ b

a

f (t) dt (3.14)

≤ (≥) b− a+ (b− s) ln f (b) + (s− a) ln f (a)

for any s ∈ [a, b] .

In particular, we have

1

b− a

∫ b

a

ln f (t) dt+
1

f
(
a+b
2

) 1

b− a

∫ b

a

f (t) dt (3.15)

≤ (≥) 1 + ln
√
f (b) f (a)

and

1

b− a

∫ b

a

ln f (t) dt+

[
f (b) + f (a)

2f (a) f (b)

]
1

b− a

∫ b

a

f (t) dt (3.16)

≤ (≥) 1 + ln
√
f (b) f (a).

Proof. Integrating the inequality (3.10) over t ∈ [a, b] we have

1

f (s)

∫ b

a

f (t) dt− (b− a) ≤ (≥)

∫ b

a

f ′ (t)

f (t)
(t− s) dt. (3.17)

Observe that∫ b

a

f ′ (t)

f (t)
(t− s) dt =

∫ b

a

(ln f (t))
′
(t− s) dt

= (t− s) ln f (t)|ba −
∫ b

a

ln f (t) dt

= (b− s) ln f (b) + (s− a) ln f (a)−
∫ b

a

ln f (t) dt

and by (3.17) we get

1

f (s)

∫ b

a

f (t) dt− (b− a)

≤ (≥) (b− s) ln f (b) + (s− a) ln f (a)−
∫ b

a

ln f (t) dt,
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which is equivalent to∫ b

a

ln f (t) dt+
1

f (s)

∫ b

a

f (t) dt

≤ (≥) b− a+ (b− s) ln f (b) + (s− a) ln f (a)

for any s ∈ [a, b] .

If we take in (3.14) s = a+b
2 then we get the desired result (3.15).

If we take in (3.14) s = a and s = b we get∫ b

a

ln f (t) dt+
1

f (a)

∫ b

a

f (t) dt ≤ (≥) b− a+ (b− a) ln f (b)

and ∫ b

a

ln f (t) dt+
1

f (b)

∫ b

a

f (t) dt ≤ (≥) b− a+ (b− a) ln f (a) ,

which by addition produces

2

∫ b

a

ln f (t) dt+
1

f (a)

∫ b

a

f (t) dt+
1

f (b)

∫ b

a

f (t) dt

≤ (≥) 2 (b− a) + (b− a) ln f (b) + (b− a) ln f (a)

and then ∫ b

a

ln f (t) dt+

[
f (b) + f (a)

2f (a) f (b)

] ∫ b

a

f (t) dt

≤ (≥) b− a+ (b− a) ln
√
f (b) f (a),

which is equivalent to (3.16). �

Remark 3.6. We observe that

(b− s) ln f (b) + (s− a) ln f (a) = 0

iff

s =
b ln f (b)− a ln f (a)

ln f (b)− ln f (a)
=

L (f (a) , f (b))

L
(

[f (a)]
a
, [f (b)]

b
) .

If

s =
L (f (a) , f (b))

L
(

[f (a)]
a
, [f (b)]

b
) ∈ I

then from (3.14) we have

1

b− a

∫ b

a

ln f (t) dt+
1

f

(
L(f(a),f(b))

L([f(a)]a,[f(b)]b)

) 1

b− a

∫ b

a

f (t) dt ≤ (≥) 1. (3.18)
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Let (X, ‖·‖) be a normed space and x, y ∈ X two linearly independent vectors
on X. Since the function g : [0, 1]→ (0,∞), g (t) = ‖(1− t)x+ ty‖p , p ≥ 1 is convex
on [0, 1] , then the function f : [0, 1]→ (0,∞), g (t) = 1

‖(1−t)x+ty‖p is AH -concave on

[0, 1] .
Making use of the inequalities (3.8) and (3.9) we get∥∥∥∥x+ y

2

∥∥∥∥p ∫ 1

0

1

‖(1− t)x+ ty‖2p
dt ≥ ‖x‖

p
+ ‖y‖p

2 ‖x‖p ‖y‖p
(3.19)

and ∫ 1

0

1

‖(1− t)x+ ty‖2p
dt ≥ 1

‖x‖p ‖y‖p
. (3.20)

4. Applications for special means

Let us recall the following means:

a) The arithmetic mean

A (a, b) :=
a+ b

2
, a, b > 0,

b) The geometric mean

G (a, b) :=
√
ab; a, b ≥ 0,

c) The harmonic mean

H (a, b) :=
2

1
a + 1

b

; a, b > 0,

d) The identric mean

I (a, b) :=


1

e

(
bb

aa

) 1
b−a

if b 6= a

a if b = a

; a, b > 0

e) The logarithmic mean

L (a, b) :=


b− a

ln b− ln a
if b 6= a

a if b = a

; a, b > 0

f) The p−logarithmic mean

Lp (a, b) :=


(

bp+1 − ap+1

(p+ 1) (b− a)

) 1
p

if b 6= a, p ∈ R\ {−1, 0}

a if b = a

; a, b > 0.
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It is well known that, if L−1 := L and L0 := I, then the function R 3p 7→ Lp is
monotonically strictly increasing. In particular, we have

H (a, b) ≤ G (a, b) ≤ L (a, b) ≤ I (a, b) ≤ A (a, b) .

Consider the function

f (t) = tp =
1

t−p

if −p > 1 or −p < 0, i.e. p ∈ (−∞,−1) ∪ (0,∞) then the function f (t) = tp, t > 0 is
AH -concave. If p ∈ (−1, 0) then the function f (t) = tp, t > 0 is AH -convex.

Now, if we write the inequality (3.2) for the function f (t) = tp and 0 < a < b
we get

1

b− a

∫ b

a

tpdt ≤ (≥)
G2 (ap, bp)

L (ap, bp)
, (4.1)

where p ∈ (−1, 0) (p ∈ (−∞,−1) ∪ (0,∞)) .
Now, observe that

1

b− a

∫ b

a

tpdt =
bp+1 − ap+1

(p+ 1) (b− a)
= Lp

p (a, b) ,

L (ap, bp) =
bp − ap

ln bp − ln ap
=

bp − ap

p (b− a)

b− a
ln b− ln a

= Lp−1
p−1 (a, b)L (a, b) , p ∈ R\ {0, 1}

and
G2 (ap, bp) = G2p (a, b) .

Then by (4.1) we get

Lp
p (a, b)Lp−1

p−1 (a, b)L (a, b) ≤ (≥)G2p (a, b) , (4.2)

where p ∈ (−1, 0) (p ∈ (−∞,−1) ∪ (0,∞) \ {1}) .
If we write the inequality (3.8) for the function f (t) = tp and 0 < a < b we get

1

b− a

∫ b

a

t2pdt ≤ (≥)

(
a+ b

2

)p
ap + bp

2
(4.3)

where p ∈ (−1, 0) (p ∈ (−∞,−1) ∪ (0,∞)) .
Since

1

b− a

∫ b

a

t2pdt = L2p
2p (a, b) , p ∈ R\

{
−1

2
, 0

}
,(

a+ b

2

)p

= Ap (a, b) ,
ap + bp

2
= A (ap, bp) ,

then by (4.3) we have

L2p
2p (a, b) ≤ (≥)Ap (a, b)A (ap, bp) (4.4)

where p ∈ (−1, 0) \
{
− 1

2

}
(p ∈ (−∞,−1) ∪ (0,∞)) .

Now consider the function f (t) = ln t, t > 1. The function

g (t) :=
1

ln t
, t > 1
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is convex on (1,∞) . If we apply the inequality (3.2) for the AH -concave function
f (t) = ln t, t > 1 on [a, b] ⊂ (1,∞) , then we get

ln I (a, b) ≥ G2 (ln a, ln b)

L (ln a, ln b)
. (4.5)
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[41] Mitrinović, D.S., Lacković, I.B., Hermite and convexity, Aequationes Math., 28(1985),
229-232.
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Abstract. In this paper we study the uniqueness problems of meromorphic func-
tions when certain non-linear differential polynomial sharing a nonzero polyno-
mial with certain degree. We obtain some results which will rectify, improve and
generalize some recent results of C. Wu and J. Li [15] in a large extent. Our results
will also improve and generalize some recent results due to Fang [5], Zhang-Zhang
[24], Zhang [22], Xu et al. [16], Qi-Yang [14], Dou-Qi-Yang [4], Zhang-Xu [26] and
Liu-Yang [13].
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1. Introduction, definitions and results

In this paper by meromorphic functions we shall always mean meromorphic
functions in the complex plane.

Let f and g be two non-constant meromorphic functions and let a be a finite
complex number. We say that f and g share a CM, provided that f − a and g − a
have the same zeros with the same multiplicities. Similarly, we say that f and g share
a IM, provided that f − a and g − a have the same zeros ignoring multiplicities. In
addition we say that f and g share ∞ CM, if 1/f and 1/g share 0 CM, and we say
that f and g share ∞ IM, if 1/f and 1/g share 0 IM.

We adopt the standard notations of value distribution theory (see [7]). For a non-
constant meromorphic function f , we denote by T (r, f) the Nevanlinna characteristic
of f and by S(r, f) any quantity satisfying S(r, f) = o{T (r, f)} as r → ∞ possibly
outside a set of finite linear measure.

A meromorphic function a(z) is called a small function with respect to f , pro-
vided that T (r, a) = S(r, f).
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We denote by T (r) the maximum of T (r, f) and T (r, g). The notation S(r)
denotes any quantity satisfying S(r) = o(T (r)) as r −→ ∞, outside of a possible
exceptional set of finite linear measure.

A finite value z0 is said to be a fixed point of f(z) if f(z0) = z0.
For the sake of simplicity we also use the notations m∗ := χµm, where χµ = 0

if µ = 0, χµ = 1 if µ 6= 0.
In 1959, W.K. Hayman (see [7], Corollary of Theorem 9) proved the following

theorem.

Theorem A. Let f be a transcendental meromorphic function and n(≥ 3) is an integer.
Then fnf ′ = 1 has infinitely many solutions.

Theorem A was extended by Chen [3] in the following manner:

Theorem B. Let f be a transcendental entire function, n, k two positive integers with
n ≥ k + 1. Then (fn)(k) − 1 has infinitely many zeros.

Latter Fang [5] obtained the following two uniqueness theorem corresponding to
Theorem B.

Theorem C. Letf and g be two non-constant entire functions, and let n, k be two
positive integers with n > 2k + 4. If (fn)(k) and (gn)(k) share 1 CM, then ei-
ther f(z) = c1e

cz, g(z) = c2e
−cz, where c1, c2 and c are three constants satisfying

(−1)k(c1c2)n(nc)2k = 1 or f ≡ tg for a constant t such that tn = 1.

Theorem D. Let f and g be two non-constant entire functions, and let n, k be two
positive integers with n > 2k+8. If (fn(z)(f(z)−1))(k) and (gn(z)(g(z)−1))(k) share
1 CM, then f(z) ≡ g(z).

In 2008, improving the above results J. F. Zhang and X. Y. Zhang [24] obtained
the following theorem:

Theorem E. Let f and g be two non-constant entire functions and let n, k be two posi-
tive integers with n > 5k+7. If [fn](k) and [gn](k) share 1 IM, then either f(z) = c1e

cz,
g(z) = c2e

−cz, where c1, c2 and c are three constants satisfying (−1)k(c1c2)n[nc]2k = 1
or f ≡ tg for a constant t such that tn = 1.

Theorem F. Let f and g be two non-constant entire functions, and let n, k be two
positive integers with n > 5k + 13. If (fn(z)(f(z) − 1))(k) and (gn(z)(g(z) − 1))(k)

share 1 IM, then f(z) ≡ g(z).

In 2008 Zhang [22] obtained similar type of result as mentioned in Theorem E
in the the following way:

Theorem G. Let f and g be two non-constant entire functions, and let n, k be two
positive integers with n > 2k + 4. If (fn)(k) and (gn)(k) share z CM, then either

(1) k = 1, f(z) = c1e
cz2 , g(z) = c2e

−cz2 , where c1, c2 and c are three constants
satisfying 4(c1c2)n(nc)2 = −1 or

(2) f ≡ tg for a constant t such that tn = 1.
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Recently Xiao-Bin Zhang and Jun-Feng Xu [26] proved the following result for
meromorphic function.

Theorem H. [26] Let f and g be two non-constant meromorphic functions, and a(z)
(6≡ 0,∞) be a small function with respect to f . Let n, k and m be three positive
integers with n > 3k + m + 8 and let P (w) = amw

m + am−1w
m−1 + . . . + a1w + a0

or P (w) ≡ c0 where a0(6= 0), a1, . . . , am−1, am(6= 0), c0( 6= 0) are complex constants. If
[fnP (f)](k) and [gnP (g)](k) share a CM, then

(I) when P (w) = amw
m+am−1w

m−1 + . . .+a1w+a0, one of the following three cases
holds:

(I1) f(z) ≡ tg(z) for a constant t such that td = 1, where

d = GCD(n+m, . . . , n+m− i, . . . , n), am−i 6= 0

for some i = 1, 2, . . . ,m,
(I2) f and g satisfy the algebraic equation R(f, g) ≡ 0, where

R(ω1, ω2) = ωn1 (amω
m
1 + am−1ω

m−1
1 + . . .+ a0)− ωn2 (amω

m
2 + am−1ω

m−1
2 + . . .+ a0),

(I3) [fnP (f)](k)[gnP (g)](k) ≡ a2;

(II) when P (w) ≡ c0, one of the following two cases holds:

(II1) f ≡ tg for some constant t such that tn = 1,

(II2) c20[fn](k)[gn](k) ≡ a2.

Generalized results in the above directions for entire function were obtained by
Qi-Yang [14] and Dou-Qi-Yang [4] in the following manner:

Theorem I. Let f and g be two transcendental entire functions, and let n, k and
m be three positive integers with n > 2k + m∗ + 4, λ, µ be two constants such that

|λ|+ |µ| 6= 0. If [fn (λfm + µ)]
(k)

and [gn (λgm + µ)]
(k)

share z CM, then one of the
following conclusions hold:

(1) If λµ 6= 0, then fd ≡ gd, where d = gcd(n,m); in particular f ≡ g, when d = 1;
(2) If λµ = 0, then f ≡ cg, where c is a constant satisfying cn+m

∗
= 1, or k = 1

and f(z) = b1e
bz2 , g(z) = b2e

−bz2 , for some constants b1, b2 and b that satisfy
4(λ+ µ)2(b1b2)n+m

∗
[(n+m∗)b]2 = −1.

Theorem J. Let P (z) = amz
m + am−1z

m−1 + . . . + a1z + a0 or P (z) = C, where
a0, a1, . . . , am−1, am(6= 0), C(6= 0) are complex constants. Suppose that f and g be
two transcendental entire functions, and let n, k and m be three positive integers with
n > 2k + m∗∗ + 4, where m∗∗ = 0, if P (z) ≡ C, otherwise m∗∗ = m. If [fnP (f)](k)

and [gnP (g)](k) share z CM then the following conclusions hold:

(i) If P (w) = amw
m + am−1w

m−1 + . . .+ a1w+ a0 is not a monomial, then f(z) ≡
tg(z) for a constant t such that td = 1, where d = gcd(n+m, . . . , n+m−i, . . . , n),
am−i 6= 0 for some i = 0, 1, 2, . . . ,m, or f and g satisfy the algebraic equation
R(f, g) ≡ 0, where

R(ω1, ω2) = ωn1 (amω
m
1 + am−1ω

m−1
1 + . . .+ a0)− ωn2 (amω

m
2 + am−1ω

m−1
2 + . . .+ a0);
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(ii) If P (z) ≡ C or P (z) = amz
m then f ≡ tg for some constant t such that

tn+m
∗∗

= 1, or then f = b1e
bz2 , g = b2e

−bz2 , for three constants b1, b2 and b
that satisfy 4a2m(b1b2)n+m[(n+m)b]2 = −1 or 4C2(b1b2)n[nb]2 = −1.

In 2013, Liu and Yang [13] replaced the CM value sharing concept by IM fixed
point sharing one in the above two theorems. They proved the following results:

Theorem K. Let f and g be two transcendental entire functions, and let n, k and
m be three positive integers with n > 5k + 4m∗ + 7, λ, µ be two constants such

that |λ| + |µ| 6= 0. If [fn (λfm + µ)]
(k)

and [gn (λgm + µ)]
(k)

share z IM, then the
conclusion of Theorem I holds

Theorem L. Let P (ω) = amω
m + am−1ω

m−1 + . . . + a1ω + a0 or P (ω) = C, where
a0, a1, . . . , am−1, am(6= 0), C(6= 0) are complex constants. Suppose that f and g be
two transcendental entire functions, and let n, k and m be three positive integers with
n > 5k + 4m∗∗ + 7. If [fnP (f)](k) and [gnP (g)](k) share z IM then the conclusion of
Theorem J holds

In this paper, we always use P (ω) denoting an arbitrary polynomial of degree n
as follows:

P (ω) = anω
n + an−1ω

n−1 + . . .+ a0 = an(ω − cl1)l1(ω − cl2)l2 . . . (ω − cls)ls , (1.1)

where ai(i = 0, 1, . . . , n−1), an 6= 0 and clj (j = 1, 2, . . . , s) are distinct finite complex
numbers and l1, l2, . . . , ls, s, n and k are all positives integers satisfying

s∑
i=1

li = n.

Also we let

l = max{l1, l2, . . . , ls}
and from (1.1) we have

P (w) = (w − cl)lP∗(w),

where P∗(w) is a polynomial in degree n− l = r(say).
We also use P1(ω1) as an arbitrary non-zero polynomial defined by

P1(ω1) = an

s∏
i=1
li 6=l

(ω1 + cl − cli) = bmω
m
1 + bm−1ω

m−1
1 + . . .+ b0, (1.2)

where ω1 = ω − cl and m = n− l.
Obviously

P (ω) = ωl1P1(ω1).

If we observe the above theorems carefully we see that all the investigations were
done on the basis of sharing of the expression of the particular form hnP (h) (h = f
or g). So it will be quiet natural to investigate all the results for the most standard
form P (h) instead of hnP (h) (h = f or g).

Recently, C. Wu and J. Li [15] obtained the following results in this direction:
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Theorem M. Let f and g be two non-constant meromorphic functions, and let n,
k and l be three positive integers satisfying 4lk + 12l > 4kn + 11n + 9k + 14. If
[P (f)](k) and [P (g)](k) share 1 IM, then either f = b1e

bz + c, g = b2e
−bz + c, or f

and g satisfy the algebraic equation R(f, g) ≡ 0, where b1, b2, b are three constants
satisfying (−1)k(b1b2)n(nb)2k = 1 and R(ω1, ω2) = P (ω1)− P (ω2).

Theorem N. Let f and g be two non-constant meromorphic functions, and let n, k
and l be three positive integers satisfying kl+ 6l > nk + 5n+ 3k + 8. If [P (f)](k) and
[P (g)](k) share 1 CM, then conclusion of Theorem M holds.

Theorem O. Let f and g be two non-constant entire functions, and let n, k and l be
three positive integers satisfying 5l > 4n + 5k + 7. If [P (f)](k) and [P (g)](k) share 1
IM, then conclusion of Theorem M holds.

Theorem P. Let f and g be two non-constant entire functions, and let n, k and l be
three positive integers satisfying 2l > n + 2k + 4. If [P (f)](k) and [P (g)](k) share 1
CM, then conclusion of Theorem M holds.

Remark 1.1. The results [15] are new and seem fine. However in the proof of Theorem
11 [15], one can easily point out a number of gaps.

We first consider p. 299 under the case 1.1.2 fifth line from top.
The calculations are true only when pj

0
> k, : A question arises: When pj

0
≤ k ?

Actually the author did not consider this case.
In the same page the author used the inequality

N(r,∞; f) ≤
s∑
j=1

N(r, cj ; g) +N(r, 0; g
′
),

which is not true for any arbitrary k and the situation when

[L(f)](k)[L(g)](k) ≡ 1.

Remark 1.2. The authors declare that Lemma 11 in [15] can be obtained from [17].
But in [17] there is no such lemma. One can easily verify that the lemma 11 in [15] is
actually Lemma 2.12 of [25]. Also one can easily observe that to prove Lemma 2.12 in
[25], Lemma 2.8 plays a vital role [see p.8 last line in [25]]. But the following example
shows that Lemma 2.8 of [25] is invalid.

Example 1.1. Let F = zez, G = 1
zez , then F and G share 1 and −1 and satisfy

N(r, 0;F ) +N(r,∞;F ) = S(r, F )

and

N(r, 0;G) +N(r,∞;G) = S(r,G).

It is clear that F and G share neither 0 nor ∞.

So the very existence of Lemma 11 in [15] and proof of Theorem 11, where
Lemma 11 plays a vital role is questionable. In this paper we tackle the problem by
obtaining the correct proof of Lemma 11 as well as Theorem 11. We also observe that
in Theorems M and N as n = l+r, the relation 4lk+12l > 4kn+11n+9k+14 (kl+6l >
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nk+ 5n+ 3k+ 8) ultimately produce l > (4k+ 11)r+ 9k+ 14 (l > (k+ 5)r+ 3k+ 8)
which are very much stronger result in-comparison to the lower bound of l obtained
by the previous authors. In that sense in this paper we shall decrease the lower bound
of l to a large extent. Not only that our results will largely improve and generalize
all the previous results mentioned earlier. To proceed further we require the following
definition. In 2001 an idea of gradation of sharing of values was introduced in {[8],
[9]} which measures how close a shared value is to being share CM or to being shared
IM. This notion is known as weighted sharing and is defined as follows.

Definition 1.1. [8, 9] Let k be a nonnegative integer or infinity. For a ∈ C ∪ {∞} we
denote by Ek(a; f) the set of all a-points of f , where an a-point of multiplicity m is
counted m times if m ≤ k and k + 1 times if m > k. If Ek(a; f) = Ek(a; g), we say
that f , g share the value a with weight k.

The definition implies that if f , g share a value a with weight k then z0 is an a-
point of f with multiplicity m (≤ k) if and only if it is an a-point of g with multiplicity
m (≤ k) and z0 is an a-point of f with multiplicity m (> k) if and only if it is an
a-point of g with multiplicity n (> k), where m is not necessarily equal to n.

We write f , g share (a, k) to mean that f , g share the value a with weight k.
Clearly if f , g share (a, k), then f , g share (a, p) for any integer p, 0 ≤ p < k. Also
we note that f , g share a value a IM or CM if and only if f , g share (a, 0) or (a,∞)
respectively.

The main results of the paper are as follows.

Theorem 1.1. Let f and g be two transcendental meromorphic functions and p(z) be
a nonzero polynomial with deg(p) ≤ l−1, where n, k, r and l be four positive integers
with n = l + r such that l > 3k + r + 8. Suppose [P (f)](k) and [P (g)](k) share (p, 2),
where P (ω) be defined as in (1.1). Now

(I) when s ≥ 2 then one of the following three cases holds:
(I1) f ≡ tg for a constant t such that td = 1,where d = GCD(n, . . . , n−i, . . . , 1),

an−i 6= 0 for some i ∈ {1, 2, . . . , n− 1};
(I2) f and g satisfy the algebraic equation R(f, g) ≡ 0, where

R(ω1, ω2) = (anω
n
1 + an−1ω

n−1
1 + . . .+ a1ω1)− (anω

n
2 + an−1ω

n−1
2 + . . .+ a1ω2);

(I3) [P (f)](k)[P (g)](k) ≡ p2;
(II) when s = 1 then one of the following two cases holds:

(II1) f ≡ tg for some constant t such that tn = 1,
(II2) if p(z) is not a constant, then f = c1e

cQ(z) + cl, g = c2e
−cQ(z) + cl, where

Q(z) =

∫ z

0

p(z)dz,

c1, c2 and c are constants such that b2i (c1c2)l+i[(l+ i)c]2 = −1, if p(z) is a
nonzero constant b, then f = c3e

cz + cl, g = c4e
−cz + cl, where c3, c4 and

c are constants such that (−1)kb2i (c3c4)l+i[(l + i)c]2k = b2.
In particular when li > k(i = 1, 2, . . . , s) and

Θ(0; f) + Θ(∞; f) >
n(3− s)− 2ks+ 4k

n+ 2k
,
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then (I3) does not hold.

Theorem 1.2. Let f and g be two transcendental meromorphic functions and p(z) be
a nonzero polynomial with deg(p) ≤ l−1, where n, k, r and l be four positive integers
with n = l + r such that l > 9k + 4r + 14. Suppose [P (f)](k) and [P (g)](k) share p(z)
IM, where P (ω) be defined as in (1.1). Then the conclusion of Theorem 1.1 holds.

Remark 1.3. Theorems 1.1 and 1.2 both hold for two non-constant meromorphic
functions f and g when p(z) is a non-zero constant.

Remark 1.4. When l = n, cl = 0 from Theorem 1.1 we can easily get an improved
version of Theorem H.

Corollary 1.1. Let f and g be two transcendental entire functions and p(z) be a nonzero
polynomial with deg(p) ≤ l − 1, where n, k, r and l be four positive integers with
n = l+ r such that l > 2k+ r+ 4. Suppose [P (f)](k) and [P (g)](k) share (p, 2), where
P (ω) be defined as in (1.1). Then one of the following three cases holds:

(1) f ≡ tg for a constant t such that td = 1,where d = GCD(n, . . . , n − i, . . . , 1),
an−i 6= 0 for some i ∈ {1, 2, . . . , n− 1};

(2) f and g satisfy the algebraic equation R(f, g) ≡ 0, where

R(ω1, ω2) = (anω
n
1 + an−1ω

n−1
1 + . . .+ a1ω1)− (anω

n
2 + an−1ω

n−1
2 + . . .+ a1ω2);

(3) if p(z) is not a constant, then f = c1e
cQ(z) + cl, g = c2e

−cQ(z) + cl, where
Q(z) =

∫ z
0
p(z)dz, c1, c2 and c are constants such that b2i (c1c2)l+i[(l+i)c]2 = −1,

if p(z) is a nonzero constant b, then f = c3e
cz + cl, g = c4e

−cz + cl, where c3,
c4 and c are constants such that (−1)kb2i (c3c4)l+i[(l + i)c]2k = b2.

Corollary 1.2. Let f and g be two transcendental entire functions and p(z) be a nonzero
polynomial with deg(p) ≤ l − 1, where n, k, r and l be four positive integers with
n = l + r such that l > 5k + 4r + 7. Let P (ω) be defined as in (1.1). If [P (f)](k) and
[P (g)](k) share p(z) IM then the conclusion of Corollary 1.1 holds.

Remark 1.5. Corollaries 1.1 and 1.2 both hold for two non-constant entire functions
f and g when p(z) is a non-zero constant.

Remark 1.6. When l = n, cl = 0, from Corollary 1.1 and Corollary 1.2 we can easily
get the improved version of Theorems C, G and Theorem E respectively.

Remark 1.7. When l = n1, n = n1+1 and cl = 0, from Corollary 1.1 and Corollary 1.2
we can easily obtain the improved version of Theorem D and Theorem F respectively.

Remark 1.8. When l = n1, n = n1 + m∗ and cl = 0, from Corollary 1.1, Lemmas
2.16 and 2.17 we can easily obtained the improvement of Theorem I where as from
Corollary 1.2 we get the improved version of Theorem K.

Remark 1.9. When l = n1, n = n1+m∗∗ and cl = 0, from Corollary 1.1 and Corollary
1.2 we can easily get an improved version of Theorem J and Theorem L respectively.

We now explain some definitions and notations which are used in the paper.

Definition 1.2. [11] Let p be a positive integer and a ∈ C ∪ {∞}.
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(i) N(r, a; f |≥ p) (N(r, a; f |≥ p))denotes the counting function (reduced counting
function) of those a-points of f whose multiplicities are not less than p.

(ii) N(r, a; f |≤ p) (N(r, a; f |≤ p))denotes the counting function (reduced counting
function) of those a-points of f whose multiplicities are not greater than p.

Definition 1.3. {11, cf.[19]} For a ∈ C ∪ {∞} and a positive integer p we denote
by Np(r, a; f) the sum N(r, a; f) + N(r, a; f |≥ 2) + . . . + N(r, a; f |≥ p). Clearly

N1(r, a; f) = N(r, a; f).

Definition 1.4. Let a, b ∈ C ∪{∞}. Let p be a positive integer. We denote by N(r, a; f |
≥ p | g = b) (N(r, a; f | ≥ p | g 6= b)) the reduced counting function of those a-points
of f with multiplicities ≥ p, which are the b-points (not the b-points) of g.

Definition 1.5. {cf.[1], 2} Let f and g be two non-constant meromorphic functions
such that f and g share the value 1 IM. Let z0 be a 1-point of f with multiplicity p,
a 1-point of g with multiplicity q. We denote by NL(r, 1; f) the counting function of

those 1-points of f and g where p > q, by N
1)
E (r, 1; f) the counting function of those

1-points of f and g where p = q = 1 and by N
(2

E (r, 1; f) the counting function of those
1-points of f and g where p = q ≥ 2, each point in these counting functions is counted

only once. In the same way we can define NL(r, 1; g), N
1)
E (r, 1; g), N

(2

E (r, 1; g).

Definition 1.6. {cf.[1], 2} Let k be a positive integer. Let f and g be two non-constant
meromorphic functions such that f and g share the value 1 IM. Let z0 be a 1-point of
f with multiplicity p, a 1-point of g with multiplicity q. We denote by Nf>k (r, 1; g)
the reduced counting function of those 1-points of f and g such that p > q = k.
Ng>k (r, 1; f) is defined analogously.

Definition 1.7. [8, 9] Let f , g share a value a IM. We denote by N∗(r, a; f, g) the
reduced counting function of those a-points of f whose multiplicities differ from the
multiplicities of the corresponding a-points of g.
Clearly N∗(r, a; f, g) ≡ N∗(r, a; g, f) and N∗(r, a; f, g) = NL(r, a; f) +NL(r, a; g).

2. Lemmas

Let F and G be two non-constant meromorphic functions defined in C. We
denote by H the function as follows:

H =

(
F ′′

F ′
− 2F ′

F − 1

)
−
(
G′′

G′
− 2G′

G− 1

)
. (2.1)

Lemma 2.1. [17] Let f be a non-constant meromorphic function and let an(z)( 6≡ 0),
an−1(z),. . . , a0(z) be meromorphic functions such that T (r, ai(z)) = S(r, f) for i =
0, 1, 2, . . . , n. Then

T (r, anf
n + an−1f

n−1 + . . .+ a1f + a0) = nT (r, f) + S(r, f).

Lemma 2.2. [23] Let f be a non-constant meromorphic function, and p, k be positive
integers. Then

Np

(
r, 0; f (k)

)
≤ T

(
r, f (k)

)
− T (r, f) +Np+k(r, 0; f) + S(r, f),
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Np

(
r, 0; f (k)

)
≤ kN(r,∞; f) +Np+k(r, 0; f) + S(r, f).

Lemma 2.3. [10] If N(r, 0; f (k)f 6= 0) denotes the counting function of those zeros
of f (k) which are not the zeros of f , where a zero of f (k) is counted according to its
multiplicity then

N(r, 0; f (k)f 6= 0) ≤ kN(r,∞; f) +N(r, 0; f < k) + kN(r, 0; f ≥ k) + S(r, f).

Lemma 2.4. Let f be a non-constant meromorphic function. Let n, k and l be three
positive integers such that l > k + 2 and P (ω) be defined as in (1.1), a(z)(6≡ 0,∞) be
a small function with respect to f . Then [P (f)](k) − a(z) has infinitely many zeros.

Proof. Let us take F = P (f).
In view of Lemmas 2.1, 2.2 and by the second theorem for small functions (see [18])
we get

nT (r, f)

= T (r, F ) +O(1)

≤ T (r, F (k))−N(r, 0;F (k)) +Nk+1(r, 0;F ) + S(r, f)

≤ N(r, 0;F (k)) +N(r,∞;F (k)) +N(r, a(z);F (k))−N(r, 0;F (k)) +Nk+1(r, 0;F )

+(ε+ o(1)) T (r, f)

≤ N(r,∞; f) + (k + 1) N(r, cl; f) +N(r, 0;P (f)|f 6= cl) +N(r, a(z);F (k))

+(ε+ o(1)) T (r, f)

≤ (n− l + k + 2) T (r, f) +N(r, a(z);F (k)) + (ε+ o(1)) T (r, f),

for all ε > 0. Take ε < 1. Since l > k+2 from above one can easily say that F (k)−a(z)
has infinitely many zeros. �

Lemma 2.5. ([20], Lemma 6) If H ≡ 0, then F , G share 1 CM. If further F , G share
∞ IM then F , G share ∞ CM.

Lemma 2.6. [12] Let f1 and f2 be two non-constant meromorphic functions satisfying
N(r, 0; fi) + N(r,∞; fi) = S(r; f1, f2) for i = 1, 2. If fs1f

t
2 − 1 is not identically zero

for arbitrary integers s and t(|s|+ |t| > 0), then for any positive ε, we have

N0(r, 1; f1, f2) ≤ εT (r) + S(r; f1, f2),

where N0(r, 1; f1, f2) denotes the reduced counting function related to the common 1-
points of f1 and f2 and T (r) = T (r, f1) + T (r, f2), S(r; f1, f2) = o(T (r)) as r −→∞
possibly outside a set of finite linear measure.

Lemma 2.7. Let f and g be two non-constant meromorphic functions. Let n, k and
l be three positive integers such that 2l > n + 3k. If [P (f)](k) ≡ [P (g)](k), then
P (f) ≡ P (g), where P (ω) be defined as in (1.1).

Proof. We have [P (f)](k) ≡ [P (g)](k).
Integrating we get

[P (f)](k−1) ≡ [P (g)](k−1) + ck−1.
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If possible suppose ck−1 6= 0.
Now in view of Lemma 2.2 for p = 1 and using the second fundamental theorem we
get

n T (r, f)

= T (r, P (f)) +O(1)

≤ T (r, [P (f)](k−1))−N(r, 0; [P (f)](k−1)) +Nk(r, 0;P (f)) + S(r, f)

≤ N(r, 0; [P (f)](k−1)) +N(r,∞; f) +N(r, ck−1; [P (f)](k−1))−N(r, 0; [P (f)](k−1))

+Nk(r, 0;P (f)) + S(r, f)

≤ N(r,∞; f) +N(r, 0; [P (g)](k−1)) +Nk(r, 0;P (f)) + S(r, f)

≤ N(r,∞; f) + (k − 1)N(r,∞; g) +Nk(r, 0;P (g)) +Nk(r, 0;P (f)) + S(r, f)

≤ N(r,∞; f) + (k − 1)N(r,∞; g) + kN(r, cl; g) +N(r, 0;P (g)|g 6= cl) + kN(r, cl; f)

+N(r, 0;P (f)|f 6= cl) + S(r, f)

≤ (n− l + k + 1) T (r, f) + (n− l + 2k − 1) T (r, g) + S(r, f) + S(r, g)

≤ (2n− 2l + 3k) T (r) + S(r).

Similarly we get

n T (r, g) ≤ (2n− 2l + 3k) T (r) + S(r).

Combining these we get

(2l − n− 3k) T (r) ≤ S(r),

which is a contradiction since 2l > n+ 3k.
Therefore ck−1 = 0 and so [P (f)](k−1) ≡ [P (g)](k−1).
Proceeding in this way we obtain

[P (f)]
′
≡ [P (g)]

′
.

Integrating we get

P (f) ≡ P (g) + c0.

If possible suppose c0 6= 0. Now using the second fundamental theorem we get

nT (r, f)

= T (r, P (f)) +O(1)

≤ N(r, 0;P (f)) +N(r,∞;P (f)) +N(r, c0;P (f))

≤ N(r, 0;P (f)) +N(r,∞; f) +N(r, 0;P (g))

≤ (n− l + 2) T (r, f) + (n− l + 1) T (r, g) + S(r, f)

≤ (2n− 2l + 3) T (r) + S(r).

Similarly we get

n T (r, g) ≤ (2n− 2l + 3) T (r) + S(r).
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Combining these we get

(2l − n− 3) T (r) ≤ S(r),

which is a contradiction since 2l > n+ 3.
Therefore c0 = 0 and so

P (f) ≡ P (g).

This proves the Lemma. �

Lemma 2.8. Let f , g be two non-constant meromorphic functions. Let n, k and l be
three positive integers such that l > k+ 2 and P (ω) be defined as in (1.1). If [P (f)](k)

and [P (g)](k) share α IM, where α(6≡ 0,∞) is a small function of f and g, then
T (r, f) = O(T (r, g)) and T (r, g) = O(T (r, f)).

Proof. Let F = P (f). By the second fundamental theorem for small functions {see
[18]}, we have

T (r, F (k)) ≤ N(r,∞;F (k)) +N(r, 0;F (k)) +N(r, α;F (k)) + (ε+ o(1))T (r, F ),

for all ε > 0.
Now in the view of Lemmas 2.1 and 2.2 for p = 1 and using above we get

n T (r, f)

≤ T (r, F (k))−N(r, 0;F (k)) +Nk+1(r, 0;P (f)) + (ε+ o(1))T (r, f)

≤ N(r, 0;F (k)) +N(r,∞; f) +N(r, α;F (k))−N(r, 0;F (k)) +Nk+1(r, 0;P (f))

+ (ε+ o(1))T (r, f)

≤ N(r,∞; f) +N(r, α; [P (f)](k)) + (k + 1)N(r, cl; f) +N(r, 0;P (f)|f 6= cl)

+ (ε+ o(1))T (r, f)

≤ (n− l + k + 2) T (r, f) +N(r, α; [P (g)](k)) + (ε+ o(1))T (r, f)

≤ (n− l + k + 2) T (r, f) + (k + 1)n T (r, g) + (ε+ o(1))T (r, f),

i.e.,

(l − k − 2) T (r, f) ≤ (k + 1)n T (r, g) + (ε+ o(1))T (r, f).

Since l > k + 2, take ε < 1 and we have T (r, f) = O(T (r, g)). Similarly we have
T (r, g) = O(T (r, f)). This completes the proof of Lemma. �

Lemma 2.9. Let f , g be two non-constant meromorphic functions and let

F = [P (f)](k)/α(z), G = [P (g)](k)/α(z),

where P (ω) be defined as in (1.1), α(z) be a small function with respect to f , g and
n, k and l be positive integers such that 2l > n + 3k + 3. Suppose H ≡ 0. Then one
of the following holds:

(i) [P (f)](k)[P (g)](k) ≡ α2;
(ii) f ≡ tg for a constant t such that td = 1, where d = GCD(n, . . . , n − i, . . . , 1),

an−i 6= 0 for some i ∈ {1, 2, . . . , n− 1};
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(iii) f and g satisfy the algebraic equation R(f, g) ≡ 0, where

R(ω1, ω2) = (anω
n
1 + an−1ω

n−1
1 + . . .+ a1ω1)− (anω

n
2 + an−1ω

n−1
2 + . . .+ a1ω2).

Proof. Since H ≡ 0, by Lemma 2.5 we get F and G share 1 CM.
On integration we get

1

F − 1
≡ bG+ a− b

G− 1
, (2.2)

where a, b are constants and a 6= 0. We now consider the following cases.
Case 1. Let b 6= 0 and a 6= b.
If b = −1, then from (2.2) we have

F ≡ −a
G− a− 1

.

Therefore

N(r, a+ 1;G) = N(r,∞;F ) = N(r,∞; f).

So in view of Lemma 2.2 and the second fundamental theorem we get

n T (r, g)

= T (r, P (f)) +O(1)

≤ T (r,G) +Nk+1(r, 0;P (g))−N(r, 0;G)

≤ N(r,∞;G) +N(r, 0;G) +N(r, a+ 1;G) +Nk+1(r, 0;P (g))−N(r, 0;G) + S(r, g)

≤ N(r,∞; g) + (k + 1)N(r, cl; g) +N(r, 0;P (g)|g 6= cl) +N(r,∞; f) + S(r, g)

≤ T (r, f) + (n− l + k + 2) T (r, g) + S(r, f) + S(r, g).

Without loss of generality, we suppose that there exists a set I with infinite measure
such that T (r, f) ≤ T (r, g) for r ∈ I.
So for r ∈ I we have

(l − k − 3) T (r, g) ≤ S(r, g),

which is a contradiction since l > k + 3.
If b 6= −1, from (2.2) we obtain that

F − (1 +
1

b
) ≡ −a

b2[G+ a−b
b ]

.

So

N(r,
(b− a)

b
;G) = N(r,∞;F ) = N(r,∞; f).

Using Lemma 2.2 and the same argument as used in the case when b = −1 we can
get a contradiction.
Case 2. Let b 6= 0 and a = b.
If b = −1, then from (2.2) we have

FG ≡ α2,

i.e.,

[P (f)](k)[P (g)](k) ≡ α2,
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where [P (f)]k and [P (g)]k share α CM.
If b 6= −1, from (2.2) we have

1

F
≡ bG

(1 + b)G− 1
.

Therefore

N(r,
1

1 + b
;G) = N(r, 0;F ).

So in view of Lemma 2.2 and the second fundamental theorem we get

n T (r, g)

≤ T (r,G) +Nk+1(r, 0;P (g))−N(r, 0;G) + S(r, g)

≤ N(r,∞;G) +N(r, 0;G) +N(r,
1

1 + b
;G) +Nk+1(r, 0;P (g))−N(r, 0;G) + S(r, g)

≤ N(r,∞; g) +Nk+1(r, 0;P (g)) +N(r, 0;F ) + S(r, g)

≤ N(r,∞; g) +Nk+1(r, 0;P (g)) +Nk+1(r, 0;P (f)) + kN(r,∞; f) + S(r, f) + S(r, g)

≤ (n− l + k + 2) T (r, g) + (n− l + 2k + 1) T (r, f) + S(r, f) + S(r, g).

So for r ∈ I we have

(2l − n− 3k − 3) T (r, g) ≤ S(r, g),

which is a contradiction since 2l > n+ 3k + 3.
Case 3. Let b = 0. From (2.2) we obtain

F ≡ G+ a− 1

a
. (2.3)

If a 6= 1 then from (2.3) we obtain

N(r, 1− a;G) = N(r, 0;F ).

We can similarly deduce a contradiction as in Case 2. Therefore a = 1 and from (2.3)
we obtain

F ≡ G,
i.e.,

[P (f)](k) ≡ [P (g)](k).

Then by Lemma 2.7 we have

P (f) ≡ P (g). (2.4)

Let h = f
g . If h is a constant, by putting f = hg in (2.4) we get

ang
n−1(hn − 1) + an−1g

n−2(hn−1 − 1) + . . .+ a1(h− 1) ≡ 0,

which implies that hd = 1, where d = GCD(n, . . . , n − i, . . . , 1), an−i 6= 0 for some
i ∈ {1, 2, . . . , n − 1}. Thus f ≡ tg for a constant t such that td = 1, where d =
GCD(n, . . . , n− i, . . . , 1), an−i 6= 0 for some i ∈ {1, 2, . . . , n− 1}.
If h is not constant then f and g satisfy the algebraic equation R(f, g) ≡ 0, where
R(ω1, ω2) = (anω

n
1 + an−1ω

n−1
1 + . . .+ a1ω1)− (anω

n
2 + an−1ω

n−1
2 + . . .+ a1ω2). �
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Lemma 2.10. [6] Let f(z) be a non-constant entire function and let k ≥ 2 be a positive
integer. If f(z)f (k)(z) 6= 0, then f(z) = eaz+b, where a 6= 0, b are constant.

Lemma 2.11. [[7], Theorem 3.10] Suppose that f is a non-constant meromorphic func-
tion, k ≥ 2 is an integer. If

N(r,∞, f) +N(r, 0; f) +N(r, 0; f (k)) = S(r,
f
′

f
),

then f = eaz+b, where a 6= 0, b are constants.

Lemma 2.12. [[21], Theorem 1.24] Let f be a non-constant meromorphic function and
let k be a positive integer. Suppose that f (k) 6≡ 0, then

N(r, 0; f (k)) ≤ N(r, 0; f) + kN(r,∞; f) + S(r, f).

Lemma 2.13. Let f , g be two transcendental meromorphic functions and p(z) be a
non-zero polynomial with deg(p) ≤ n − 1, where n and k be two positive integers
such that n > max{2k, k + 2}. Suppose [fn](k)[gn](k) ≡ p2, where [fn](k) − p(z) and
[gn](k) − p(z) share 0 CM. Now

(i) if p(z) is not a constant, then f = c1e
cQ(z), g = c2e

−cQ(z), where

Q(z) =

∫ z

0

p(z)dz,

c1, c2 and c are constants such that (nc)2(c1c2)n = −1,
(ii) if p(z) is a nonzero constant b, then f = c3e

dz, g = c4e
−dz, where c3, c4 and

d are constants such that (−1)k(c3c4)n(nd)2k = b2.

Proof. Suppose

[fn](k)[gn](k) ≡ p2. (2.5)

We consider the following cases:
Case 1. Let deg(p(z)) = l(≥ 1).
Let z0(p(z0) 6= 0) be a zero of f with multiplicity q. Note that z0 is a zero of [fn](k)

with multiplicity nq − k. Obviously z0 will be a pole of g with multiplicity q1, say.
Note that z0 is a pole of [gn](k) with multiplicity nq1 + k and so nq − k = nq1 + k.
Now

nq − k = nq1 + k

implies that

n(q − q1) = 2k. (2.6)

Since n > 2k, we get a contradiction from (2.6).
This shows that z0 is a zero of p(z) and so we have N(r, 0; f) = O(logr). Similarly we
can prove that N(r, 0; g) = O(logr).
Thus in general we can take N(r, 0; f) +N(r, 0; g) = O(logr).
We know that

N(r,∞; [fn](k)) = nN(r,∞; f) + kN(r,∞; f).
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Also by Lemma 2.12 we have

N(r, 0; [gn](k)) ≤ nN(r, 0; g) + kN(r,∞; g) + S(r, g)

≤ kN(r,∞; g) +O(logr) + S(r, g).

From (2.5) we get

N(r,∞; [fn](k)) = N(r, 0; [gn](k)),

i.e.,
nN(r,∞; f) + kN(r,∞; f) ≤ kN(r,∞; g) +O(logr) + S(r, g). (2.7)

Similarly we get

nN(r,∞; g) + kN(r,∞; g) ≤ kN(r,∞; f) +O(logr) + S(r, f). (2.8)

Since f and g are transcendental, it follows that

S(r, f) +O(logr) = S(r, f), S(r, g) +O(logr) = S(r, g).

Now combining (2.7) and (2.8) we get

N(r,∞; f) +N(r,∞; g) = S(r, f) + S(r, g).

By Lemma 2.8 we have S(r, f) = S(r, g) and so we obtain

N(r,∞; f) = S(r, f), N(r,∞; g) = S(r, g). (2.9)

Let

F1 =
[fn](k)

p
and G1 =

[gn](k)

p
. (2.10)

Note that T (r, F1) ≤ n(k + 1)T (r, f) + S(r, f) and so T (r, F1) = O(T (r, f)). Also by
Lemma 2.2, one can obtain T (r, f) = O(T (r, F1)). Hence S(r, F1) = S(r, f). Similarly
we get S(r,G1) = S(r, g). Hence we get S(r, F1) = S(r,G1). From (2.5) we get

F1G1 ≡ 1. (2.11)

If F1 ≡ cG1, where c is a nonzero constant, then F1 is a constant and so f is a
polynomial, which contradicts our assumption. Hence F1 6≡ cG1 and so in the view of
(2.11) we see that F1 and G1 share −1 IM.
Now by Lemma 2.12 we have

N(r, 0;F1) ≤ nN(r, 0; f) + kN(r,∞; f) + S(r, f) ≤ S(r, F1).

Similarly we have

N(r, 0;G1) ≤ nN(r, 0; g) + kN(r,∞; g) + S(r, g) ≤ S(r,G1).

Also we see that

N(r,∞;F1) = S(r, F1), N(r,∞;G1) = S(r,G1).

It is clearly that T (r, F1) = T (r,G1) +O(1). Let

f1 =
F1

G1
.

and

f2 =
F1 − 1

G1 − 1
.
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Clearly f1 is non-constant. If f2 is a nonzero constant then F1 and G1 share ∞ CM
and so from (2.11) we conclude that F1 and G1 have no poles.

Next we suppose that f2 is non-constant. We see that

F1 =
f1(1− f2)

f1 − f2
, G1 =

1− f2
f1 − f2

.

Clearly

T (r, F1) ≤ 2[T (r, f1) + T (r, f2)] +O(1)

and

T (r, f1) + T (r, f2) ≤ 4T (r, F1) +O(1).

These give S(r, F1) = S(r; f1, f2). Also we note that

N(r, 0; fi) +N(r,∞; fi) = S(r; f1, f2)

for i = 1, 2.
Next we suppose N(r,−1;F1) 6= S(r, F1), otherwise by the second fundamental

theorem F1 will be a constant.
Also we see that

N(r,−1;F1) ≤ N0(r, 1; f1, f2).

Thus we have

T (r, f1) + T (r, f2) ≤ 4 N0(r, 1; f1, f2) + S(r, F1).

Then by Lemma 2.6 there exist two mutually prime integers s and t(|s|+ |t| > 0) such
that

fs1f
t
2 ≡ 1,

i.e., [F1

G1

]s[F1 − 1

G1 − 1

]t
≡ 1. (2.12)

If either s or t is zero then we arrive at a contradiction and so st 6= 0.
We now consider following cases:
Case (i). Suppose s > 0 and t = −t1, where t1 > 0. Then we have[F1

G1

]s
≡
[F1 − 1

G1 − 1

]t1
. (2.13)

Let z1 be a pole of F1 of multiplicity p. Then from (2.11) we see that z1 must be a
zero of G1 of multiplicity p. Now from (2.13) we get 2s = t1, which is impossible.
Hence F1 has no pole. Similarly we can prove that G1 also has no poles.
Case (ii). Suppose either s > 0 and t > 0 or s < 0 and t < 0. Then from (2.13) one
can easily prove that F1 and G1 have no poles.

Consequently from (2.11) we see that F1 and G1 have no zeros. So we deduce
from (2.10) that both f and g have no pole.

Since F1 and G1 have no zeros and poles, we have

F1 ≡ eγ1G1,
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i.e.,

[fn](k) ≡ eγ1 [gn](k),

where γ1 is a non-constant entire function. Then from (2.5) we get

[fn](k) ≡ ce 1
2γ1p(z), [gn](k) ≡ ce− 1

2γ1p(z),

where c is a nonzero constant. This shows that [fn](k) and [gn](k) share 0 CM.
Also we deduce from (2.10) that both f and g are transcendental entire functions.
Since N(r, 0; f) = O(logr) and N(r, 0; g) = O(logr), so we can take

f(z) = h1(z)eα(z), g(z) = h2(z)eβ(z), (2.14)

where h1 and h2 are nonzero polynomials and α, β are two non-constant entire func-
tions.
We deduce from (2.5) and (2.14) that either both α and β are transcendental entire
functions or both α and β are polynomials.
We consider the following cases:
Subcase 1.1: Let k ≥ 2.
First we suppose both α and β are transcendental entire functions.

Let α1 = α
′
+

h
′
1

h1
and β1 = β

′
+

h
′
2

h2
. Clearly both α1 and β1 are transcendental entire

functions.
Note that

S(r, nα1) = S(r,
[fn]

′

fn
), S(r, nβ1) = S(r,

[gn]
′

gn
).

Moreover we see that

N(r, 0; [fn](k)) ≤ N(r, 0; p2) = O(logr).

N(r, 0; [gn](k)) ≤ N(r, 0; p2) = O(logr).

From these and using (2.14) we have

N(r,∞; fn) +N(r, 0; fn) +N(r, 0; [fn](k)) = S(r, nα1) = S(r,
[fn]

′

fn
) (2.15)

and

N(r,∞; gn) +N(r, 0; gn) +N(r, 0; [gn](k)) = S(r, nβ1) = S(r,
[gn]

′

gn
). (2.16)

Then from (2.15), (2.16) and Lemma 2.9 we must have

f = eaz+b, g = ecz+d, (2.17)

where a 6= 0, b, c 6= 0 and d are constants. But these types of f and g do not agree
with the relation (2.5).
Next we suppose α and β are both polynomials.
From (2.5) we get α+ β ≡ C i.e., α

′ ≡ −β′ . Therefore deg(α) = deg(β).
We deduce from (2.14) that

[fn](k) ≡ Ahn−k1 [hk1(α
′
)k + Pk−1(α

′
, h
′

1)]enα ≡ p(z)enα, (2.18)
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and

[gn](k) = Bhn−k2 [hk2(β
′
)k +Qk−1(β

′
, h
′

2)]enβ ≡ p(z)enβ , (2.19)

where A, B are nonzero constants, Pk−1(α
′
, h
′

1) and Qk−1(β
′
, h
′

2) are differential poly-

nomials in α
′
, h
′

1 and β
′
, h
′

2 respectively.
Since deg(p) ≤ n − 1, from (2.17) and (2.19) we conclude that both h1 and h2 are
nonzero constant.
So we can rewrite f and g as follows:

f = eγ2 , g = eδ2 , (2.20)

where γ2 + δ2 ≡ C and deg(γ2) = deg(δ2).
If deg(γ2) = deg(δ2) = 1, then we again get a contradiction from (2.5).
Next we suppose deg(γ2) = deg(δ2) ≥ 2.
We deduce from (2.20) that

[fn](k) = A1[(γ
′

2)k + Pk−1(γ
′

2)]enγ2 , [gn](k) = B1[(δ
′

2)k +Qk−1(δ
′

2)]enδ2 ,

where A1, B1 are nonzero constants, Pk−1(γ
′

2) and Qk−1(δ
′

2) are differential polyno-

mials in γ
′

2 and δ
′

2 of degree atmost k − 1 respectively.
Since [fn](k) and [gn](k) share 0 CM, it follows that

[(γ
′

2)k + Pk−1(γ
′

2)] ≡ D[(δ
′

2)k +Qk−1(δ
′

2)],

where D is a nonzero constant, which is impossible as k ≥ 2.

Actually [(γ
′

2)k + Pk−1(γ
′

2)] and [(δ
′

2)k + Qk−1(δ
′

2)] contain the terms (γ
′

2)k +

K(γ
′

2)k−2γ
′′

2 and (δ
′

2)k + K(δ
′

2)k−2δ
′′

2 respectively, where K is a suitably positive in-
teger. But these two terms are not identical.
Subcase 1.2: Let k = 1.
Now from (2.5) we get

fn−1f
′
gn−1g

′
≡ p21, (2.21)

where p21 = 1
n2 p

2.
First we suppose both α and β are transcendental entire functions.
Let h = fg. Clearly h is a transcendental entire function. Then from (2.21) we get(

g
′

g
− 1

2

h
′

h

)2

≡ 1

4

(
h
′

h

)2

− h−np21. (2.22)

Let

α2 =
g
′

g
− 1

2

h
′

h
.

From (2.22) we get

α2
2 ≡

1

4

(
h
′

h

)2

− h−np21. (2.23)
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First we suppose α2 ≡ 0. Then we get h−np21 ≡ 1
4

(
h
′

h

)2
and so T (r, h) = S(r, h),

which is impossible. Next we suppose that α2 6≡ 0. Differentiating (2.23) we get

2α2α
′

2 ≡
1

2

h
′

h

(
h
′

h

)′
+ n h

′
h−n−1p21 − 2h−np1p

′

1.

Applying (2.23) we obtain

h−n

(
−nh

′

h
p21 + 2p1p

′

1 − 2
α
′

2

α2
p21

)
≡ 1

2

h
′

h

(h′
h

)′
− h

′

h

α
′

2

α2

 . (2.24)

First we suppose

−nh
′

h
p21 + 2p1p

′

1 − 2
α
′

2

α2
p21 ≡ 0.

Then there exist a non-zero constant c such that α2
2 ≡ ch−np21 and so from (2.23) we

get

(c+ 1)h−np21 ≡
1

4

(
h
′

h

)2

.

If c = −1, then h will be a constant. If c 6= −1, then we have T (r, h) = S(r, h),
which is impossible. Next we suppose that

−nh
′

h
p21 + 2p1p

′

1 − 2
α
′

2

α2
p21 6≡ 0.

Then by (2.24) we have

n T (r, h) (2.25)

= n m(r, h)

≤ m

r, hn 1

2

h
′

h

(h′
h

)′
− h

′

h

α
′

2

α2

+m

r, 1

1
2
h′

h

((
h′

h

)′
− h′

h
α
′
2

α2

)
+O(1)

≤ T

r, 1

2

h
′

h

(h′
h

)′
− h

′

h

α
′

2

α2

+m

(
r, n

h
′

h
p21 − 2p1p

′

1 + 2
α
′

2

α2
p21

)
≤ N(r, 0;α2) +N(r,∞;α2) + S(r, h) + S(r, α2)

≤ T (r, α2) + S(r, h). (2.26)

From (2.23) we get

T (r, α2) ≤ 1

2
n T (r, h) + S(r, h).

Now from (2.25) we get

1

2
n T (r, h) ≤ S(r, h),
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which is impossible .
Thus α and β are both polynomials. Also from (2.5) we can conclude that α(z)+β(z) ≡
C for a constant C and so α

′
(z) + β

′
(z) ≡ 0. We deduce from (2.5) that

[fn]
′
≡ n[hn1α

′
+ hn−11 h

′

1]enα ≡ p(z)enα, (2.27)

and

[gn]
′

= n[hn2β
′
+ hn−12 h

′

2]enβ ≡ p(z)enβ . (2.28)

Since deg(p) ≤ n − 1, from (2.27) and (2.28) we conclude that both h1 and h2 are
nonzero constant.
So we can rewrite f and g as follows:

f = eγ3 , g = eδ3 . (2.29)

Now from (2.5) we get

n2γ
′

3δ
′

3e
n(γ3+δ3) ≡ p2. (2.30)

Also from (2.30) we can conclude that γ3(z) + δ3(z) ≡ C for a constant C and so

γ
′

3(z) + δ
′

3(z) ≡ 0. Thus from (2.30) we get n2enCγ
′

3δ
′

3 ≡ p2(z). By computation we
get

γ
′

3 = cp(z), δ
′

3 = −cp(z). (2.31)

Hence

γ3 = cQ(z) + b1, δ3 = −cQ(z) + b2, (2.32)

where Q(z) =
∫ z
0
p(z)dz and b1, b2 are constants. Finally we take f and g as

f(z) = c1e
cQ(z), g(z) = c2e

−cQ(z),

where c1, c2 and c are constants such that (nc)2(c1c2)n = −1.
Case 2. Let p(z) be a nonzero constant b. Since n > 2k, one can easily prove that f
and g have no zeros. Now proceeding in the same way as done in the proof of the Case
1 we get f = eα and g = eβ , where α and β are two non-constant entire functions.
We now consider the following two subcases:
Subcase 2.1: Let k ≥ 2.
We see that

N(r, 0; [fn](k)) = 0

and

fn(z)[fn(z)](k) 6= 0. (2.33)

Similarly we have

gn(z)[gn(z)](k) 6= 0. (2.34)

Then from (2.33), (2.34) and Lemma 2.10 we must have

f = eaz+b, g = ecz+d, (2.35)

where a 6= 0, b, c 6= 0 and d are constants.
Subcase 2.1: Let k = 1.
Considering Subcase 1.2 one can easily get

f = eaz+b, g = ecz+d, (2.36)
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where a 6= 0, b, c 6= 0 and d are constants.
Finally we can take f and g as

f = c3e
dz, g = c4e

−dz,

where c3, c4 and d are nonzero constants such that (−1)k(c3c4)n(nd)2k = b2.
This completes the proof of Lemma. �

Lemma 2.14. Let f , g be two transcendental meromorphic functions, p(z) be a non-
zero polynomial with deg(p) ≤ n− 1, where n and k be two positive integers such that
n > max{2k, k + 2}.
Let [(f − a)n](k), [(g − a)n](k) share p CM and [(f − a)n](k)[(g − a)n](k) ≡ p2. Now

(i) if p(z) is not a constant, then f = c1e
cQ(z) + a, g = c2e

−cQ(z) + a, where

Q(z) =

∫ z

0

p(z)dz,

c1, c2 and c are constants such that (nc)2(c1c2)n = −1,
(ii) if p(z) is a nonzero constant b, then f = c3e

dz + a, g = c4e
−dz + a, where

c3, c4 and d are constants such that (−1)k(c3c4)n(nd)2k = b2.

Proof. The Lemma follows from Lemma 2.13. �

Lemma 2.15. Let f , g be two transcendental entire functions and P (ω) be defined as
in (1.1), p(z) be a nonzero polynomial such that deg(p) ≤ l − 1, where n, k and l
be three positive integers such that 2l > n + 3k + 3. Suppose [P (f)](k)[P (g)](k) ≡ p2.
Then

(i) if p(z) is not a constant, then f = c1e
cQ(z) + cl, g = c2e

−cQ(z) + cl, where

Q(z) =

∫ z

0

p(z)dz,

c1, c2 and c are constants such that (nc)2(c1c2)n = −1,
(ii) if p(z) is a nonzero constant b, then f = c3e

dz + cl, g = c4e
−dz + cl, where

c3, c4 and d are constants such that (−1)k(c3c4)n(nd)2k = b2.

Proof. Suppose

[P (f)](k)[P (g)](k) ≡ p2. (2.37)

Since l > k, we can take

f(z)− cl = h(z)eα(z), (2.38)

where h is a nonzero polynomial and α is a non-constant entire function.
Let f1 = f − cl, g1 = g − cl.
Clearly P (f) = f l1P1(f1) and P (g) = gl1P1(g1),
i.e.,

P (f) = f l1[bmf
m
1 + bm−1f

m−1
1 + . . .+ b0]

and

P (g) = gl1[bmg
m
1 + bm−1g

m−1
1 + . . .+ b0].

We now consider the following two cases:
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Case 1. Let s ≥ 2, where s denotes the number of distinct zeros of P (ω) = 0.
In this case m ≥ 1 and so atleast two of bi, where i ∈ {0, 1, . . . ,m} are nonzero.
Since f1 = heα, then by induction we get

(bif
l+i
1 )(k) = ti(α

′
, α
′′
, . . . , α(k), h, h

′
, . . . , h(k))e(l+i)α, (2.39)

where ti(α
′
, α
′′
, . . . , α(k), h, h

′
, . . . , h(k)) (i = 0, 1, 2, . . . ,m) are differential polynomi-

als in
α
′
, α
′′
, . . . , α(k), h, h

′
, . . . , h(k).

Obviously

ti(α
′
, α
′′
, . . . , α(k), h, h

′
, . . . , h(k)) 6≡ 0

and [P (f)](k) 6≡ 0.
From (2.37) and (2.39) we obtain

N(r, 0; tme
mα(z) + tm−1e

(m−1)α(z) + . . .+ t0) ≤ N(r, 0; p2) = S(r, f). (2.40)

Since α is an entire function, we obtain T (r, α(j)) = S(r, f) for j = 1, 2, . . . , k. Hence
T (r, ti) = S(r, f) for i = 0, 1, 2, . . . ,m. So from (2.40) and using second fundamental
theorem for small functions{see [18]}, we obtain

m T (r, f)

= T (r, tme
mα + . . .+ t1e

α) + S(r, f)

≤ N(r, 0; tme
mα + . . .+ t1e

α) +N(r, 0; tme
mα + . . .+ t1e

α + t0)

+N(r,∞; tme
mα + . . .+ t1e

α) + (ε+ o(1)) T (r, f)

≤ N(r, 0; tme
(m−1)α + . . .+ t1) + (ε+ o(1)) T (, f)

≤ (m− 1)T (r, f) + (ε+ o(1)) T (r, f),

for all ε > 0. Take ε < 1 and we obtain a contradiction.
Subcase 2.2: Let s = 1.
In this case l = n. From (2.37) we get

[(f1)n](k)[(g1)n](k) ≡ p2. (2.41)

Finally Lemma follows from Lemma 2.14.
This completes the proof of the Lemma. �

Lemma 2.16. [14] Let f and g be two non-constant entire functions and λ, µ be two
constants such that λµ 6= 0. Let n, m and k be three positive integers such that n >

2k+m. If [fn (λfm + µ)]
(k) ≡ [gn (λgm + µ)]

(k)
, then fd(z) ≡ gd(z), d = GCD(n,m).

Lemma 2.17. [16] Let f and g be two non-constant meromorphic functions, k, n >
2k + 1 be two positive integers. If [fn](k) ≡ [gn](k), then f ≡ tg for a constant t such
that tn = 1.

Lemma 2.18. Let f and g be two non-constant meromorphic functions and a(z)(6≡
0,∞) be a small functions of f and g. Let n, k and s ≥ 2 be three positive integers
such that n > 2ks + k and P (ω) be defined as in (1.1). If li > k(i = 1, 2, . . . , s) and

Θ(0; f) + Θ(∞; f) > n(3−s)−2ks+4k
n+2k then

[P (f)](k)[P (g)](k) 6≡ a2,
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Proof. First suppose that

[P (f)](k)[P (g)](k) ≡ a2,

i.e.,

[(f − c1)l1(f − c2)l2 . . . (f − cs)ls ](k)[(g − c1)l1(g − c2)l2 . . . (g − cs)ls ](k) ≡ a2. (2.42)

Now by Lemma 2.8, we have

S(r, f) = S(r, g).

Now by the second fundamental theorem for f and g we get respectively

s T (r, f) ≤ N(r, 0; f) +N(r,∞; f) +

s∑
i=1

N(r, ci; f)−N0(r, 0; f
′
) + S(r, f) (2.43)

and

s T (r, g) ≤ N(r, 0; g) +N(r,∞; g) +

s∑
i=1

N(r, ci; g)−N0(r, 0; g
′
) + S(r, g), (2.44)

where N0(r, 0; f
′
) denotes the reduced counting function of those zeros of f

′
which

are not the zeros of f and f − ci, i = 1, 2, . . . , s and N0(r, 0; g
′
) can be similarly

defined.
Let z1(a(z1) 6= 0,∞) be a zero of f − ci with multiplicity qi, i = 1, 2, . . . , s.

Obviously z1 must be a pole of g with multiplicity r. Then from (2.42) we get liqi−k =
nr + k. This gives qi ≥ n+2k

li
for i = 1, 2, . . . , s and so we get

N(r, ci; f) ≤ li
n+ 2k

N(r, ci; f) ≤ li
n+ 2k

T (r, f).

Clearly
s∑
i=1

N(r, ci; f) ≤ n

n+ 2k
T (r, f). (2.45)

Similarly we have
s∑
i=1

N(r, ci; g) ≤ n

n+ 2k
T (r, g). (2.46)

Then by (2.43) and (2.45) we get

s T (r, f) (2.47)

≤
(

2 +
n

n+ 2k
−Θ(0; f)−Θ(∞; f) + ε

)
T (r, f) + S(r, f).

Then from (2.47) we get(
s− 2− n

n+ 2k
+ Θ(0; f) + Θ(∞; f)− ε

)
T (r, f) ≤ S(r, f).

Since Θ(0; f) + Θ(∞; f) > n(3−s)−2ks+4k
n+2k , we arrive at a contradiction.

This completes the proof. �
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Lemma 2.19. [2] Let f and g be two non-constant meromorphic functions sharing 1
IM. Then

NL(r, 1; f) + 2NL(r, 1; g) +N
(2

E (r, 1; f)−Nf>1(r, 1; g)−Ng>1(r, 1; f)

≤ N(r, 1; g)−N(r, 1; g).

Lemma 2.20. [2] Let f , g share 1 IM. Then

NL(r, 1; f) ≤ N(r, 0; f) +N(r,∞; f) + S(r, f)

Lemma 2.21. [2] Let f , g share 1 IM. Then

(i) Nf>1(r, 1; g) ≤ N(r, 0; f) +N(r,∞; f)−N0(r, 0; f
′
) + S(r, f)

(ii) Ng>1(r, 1; f) ≤ N(r, 0; g) +N(r,∞; g)−N0(r, 0; g
′
) + S(r, g).

3. Proofs of the Theorems

Proof of Theorem 1.1. Let F = [P (f)](k)

p(z) and G = [P (g)](k)

p(z) . Note that since f and g

are transcendental meromorphic functions, p(z) is a small function with respect to
both [P (f)](k) and [P (g)](k). Also F and G share (1, 2) except the zeros of p(z).
Case 1. Let H 6≡ 0.

From (2.1) it can be easily calculated that the possible poles of H occur at (i)
multiple zeros of F and G, (ii) those 1 points of F and G whose multiplicities are

different,(iii) those poles of F and G, (iv) zeros of F
′
(G
′
) which are not the zeros of

F (F − 1)(G(G− 1)).
Since H has only simple poles we get

N(r,∞;H) (3.1)

≤ N(r,∞;F ) +N(r,∞;G) +N∗(r, 1;F,G) +N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2)

+N0(r, 0;F
′
) +N0(r, 0;G

′
) + S(r, f) + S(r, g),

where N0(r, 0;F
′
) is the reduced counting function of those zeros of F

′
which are not

the zeros of F (F − 1) and N0(r, 0;G
′
) is similarly defined.

Let z0 be a simple zero of F − 1 but p(z0) 6= 0. Then z0 is a simple zero of G− 1
and a zero of H. So

N(r, 1;F | = 1) ≤ N(r, 0;H) ≤ N(r,∞;H) + S(r, f) + S(r, g). (3.2)

Now using (3.1) and (3.2) we get

N(r, 1;F ) (3.3)

≤ N(r, 1;F | = 1) +N(r, 1;F | ≥ 2)

≤ N(r,∞;F ) +N(r,∞;G) +N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2) +N∗(r, 1;F,G)

+N(r, 1;F | ≥ 2) +N0(r, 0;F
′
) +N0(r, 0;G

′
) + S(r, f) + S(r, g).

Now in view of Lemma 2.3 we get

N0(r, 0;G
′
) +N(r, 1;F |≥ 2) +N∗(r, 1;F,G) (3.4)

≤ N(r, 0;G
′
| G 6= 0) ≤ N(r, 0;G) +N(r,∞;G) + S(r, g),
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Hence using (3.3), (3.4), Lemmas 2.1 and 2.2 we get from the second fundamental
theorem that

nT (r, f)

≤ T (r, F ) +Nk+2(r, 0;P (f))−N2(r, 0;F ) + S(r, f)

≤ N(r, 0;F ) +N(r,∞;F ) +N(r, 1;F ) +Nk+2(r, 0;P (f))−N2(r, 0;F )−N0(r, 0;F
′
)

≤ 2N(r,∞, F ) +N(r,∞;G) +N(r, 0;F ) +Nk+2(r, 0;P (f)) +N(r, 0;F | ≥ 2)

+N(r, 0;G| ≥ 2) +N∗(r, 1;F,G) +N(r, 1;F | ≥ 2) +N0(r, 0;G
′
)−N2(r, 0;F )

+ S(r, f) + S(r, g)

≤ 2 N(r,∞;P (f)) + 2 N(r,∞;P (g)) +Nk+2(r, 0;P (f)) +N2(r, 0;G)

+ S(r, f) + S(r, g)

≤ 2 N(r,∞;P (f)) + (2 + k) N(r,∞;P (g)) +Nk+2(r, 0;P (f)) +Nk+2(r, 0;P (g))

+ S(r, f) + S(r, g)

≤ 2 N(r,∞; f) + (2 + k) N(r,∞; g) +Nk+2(r, 0; (f − cl)lP∗(f)) (3.5)

+Nk+2(r, 0; (g − cl)lP∗(g)) + S(r, f) + S(r, g)

≤ 2N(r,∞; f) + (k + 2)N(r,∞; g) + (k + 2){T (r, f) + T (r, g)}+r{T (r, f) + T (r, g)}
≤ (3k + 2r + 8)T (r) + S(r) (3.6)

In a similar way we can obtain

nT (r, g) ≤ (3k + 2r + 8)T (r) + S(r). (3.7)

From (3.5) and (3.7) we get

(l − 3k − r − 8) T (r) ≤ S(r),

which is a contradiction since l > 3k + r + 8.

Case 2. Let H ≡ 0. Then the Theorem follows from Lemmas 2.9, 2.14 and 2.18. �

Proof of Theorem 1.2. In this case F and G share 1 IM.

Case 1. Let H 6≡ 0. Here we see that

N
1)
E (r, 1;F |= 1) ≤ N(r, 0;H) ≤ N(r,∞;H) + S(r, F ) + S(r,G). (3.8)

Now using Lemmas 2.3, 2.19, 2.20, 2.21, (3.1) and (3.8) we get

N(r, 1;F ) ≤ N1)
E (r, 1;F ) +NL(r, 1;F ) +NL(r, 1;G) +N

(2

E (r, 1;F ) (3.9)
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≤ N(r,∞; f) +N(r,∞; g) +N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2) +N∗(r, 1;F,G)

+NL(r, 1;F ) +NL(r, 1;G) +N
(2

E (r, 1;F )

+N0(r, 0;F
′
) +N0(r, 0;G

′
) + S(r, f) + S(r, g)

≤ N(r,∞; f) +N(r,∞; g) +N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2) + 2NL(r, 1;F )

+ 2NL(r, 1;G) +N
(2

E (r, 1;F ) +N0(r, 0;F
′
) +N0(r, 0;G

′
) + S(r, f) + S(r, g)

≤ N(r,∞; f) +N(r,∞; g) +N(r, 0;F | ≥ 2) +N(r, 0;G| ≥ 2) +NF>1(r, 1;G)

+NG>1(r, 1;F ) +NL(r, 1;F ) +N(r, 1;G)−N(r, 1;G) +N0(r, 0;F
′
) +N0(r, 0;G

′
)

+ S(r, f) + S(r, g)

≤ 3 N(r,∞; f) + 2N(r,∞; g) +N2(r, 0;F ) +N(r, 0;F ) +N2(r, 0;G) +N(r, 1;G)

−N(r, 1;G) +N0(r, 0;G
′
) +N0(r, 0;F

′
) + S(r, f) + S(r, g)

≤ 3 N(r,∞; f) + 2N(r,∞; g) +N2(r, 0;F ) +N(r, 0;F ) +N2(r, 0;G)

+N(r, 0;G
′
|G 6= 0) +N0(r, 0;F

′
) + S(r)

≤ 3N(r,∞; f) + 3N(r,∞; g) +N2(r, 0;F ) +N(r, 0;F ) +N2(r, 0;G) +N(r, 0;G)

+N0(r, 0;F
′
) + S(r).

Hence using (3.9), Lemmas 2.1 and 2.2 we get from second fundamental theorem that

nT (r, f)

≤ N(r, 0;F ) +N(r,∞;F ) +N(r, 1;F ) +Nk+2(r, 0;P (f))−N2(r, 0;F )−N0(r, 0;F
′
)

≤ 4N(r,∞, P (f)) + 3N(r,∞;P (g)) +N2(r, 0;F ) + 2 N(r, 0;F ) +Nk+2(r, 0;P (f))

+N2(r, 0;G) +N(r, 0;G)−N2(r, 0;F ) + S(r, f) + S(r, g)

≤ 4N(r,∞;P (f)) + 3N(r,∞;P (g)) +Nk+2(r, 0;P (f)) + 2 N(r, 0;F ) +N2(r, 0;G)

+N(r, 0;G) + S(r, f) + S(r, g)

≤ 4N(r,∞;P (f)) + 3N(r,∞;P (g)) +Nk+2(r, 0;P (f)) + 2 kN(r,∞;P (f))

+ 2 Nk+1(r, 0;P (f)) + k N(r,∞; g) +Nk+2(r, 0;P (g)) + kN(r,∞; g)

+Nk+1(r, 0;P (g)) + S(r, f) + S(r, g)

≤ (2k + 4)N(r,∞; f) + (2k + 3)N(r,∞; g) + (3k + 3r + 4)T (r, f)

+ (2k + 2r + 3)T (r, g) + S(r, f) + S(r, g)

≤ (9k + 5r + 14T (r) + S(r). (3.10)

In a similar way we can obtain

n T (r, g) ≤ (9k + 5r + 14)T (r) + S(r). (3.11)

Combining (3.10) and (3.11) we see that

(l − 9k − 4r − 14) T (r) ≤ S(r). (3.12)

When l > 9k + 4r + 14, (3.12) leads to a contradiction.
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Case 2. Let H ≡ 0. Then the Theorem follows from Lemmas 2.9, 2.14 and 2.18.
This completes the proof of the Theorem. �

Proof of Corollary 1.1 and 1.2. From Theorem 1.1 and 1.2 one can easily prove the
corollaries. So we omit the details. �
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Stud. Univ. Babeş-Bolyai Math. 61(2016), No. 4, 531–532

Book reviews

Antonio J. Guirao, Vicente Montesinos and Václav Zizler, Open problems in the
geometry and analysis of Banach spaces. Cham: Springer 2016, xii + 169 p., ISBN
978-3-319-33571-1/hbk; 978-3-319-33572-8/ebook.

This is a collection of 304 open research problems from Banach space theory and
related areas (measure theory, vector measures, nonlinear analysis, best approxima-
tion and optimization).

The problems are grouped into seven chapters: 1. Basic linear structure
(Schauder bases, approximation properties, weak Hilbert spaces, Daugavet property);
2. Basic linear geometry (Chebyshev sets, isometries, Banach-Mazur distance, rotund
renormings); 3. Biorthogonal systems (Markushevich bases, Auerbach bases, weakly
compactly generated Banach spaces); 4. Differentiability and structure, renormings
(Asplund spaces, weak Asplund spaces, Gâteaux and Fréchet differentiability, Krein-
Milman and Radon-Nikodým properties, norm-attaining functionals and operators);
5. Nonlinear geometry (Lipschitz-free spaces, Lipschitz homeomorphisms and Lips-
chitz quotients); 6. Some more nonseparable problems (Schauder basis in nonsepara-
ble setting, equilateral sets); 7. Some applications (fixed points, Riemann integrability
of vector-valued functions).

As the authors point out in the Preface:

Some of the problems are longstanding open problems, some are re-
cent, some are more important, and some are only “local” problems.
Some would require new ideas, and some may go only with a subtle
combination of known facts.

The book is very well organized - every problem is preceded by an introductory
part containing the notions and previous results necessary for its understanding, as
well as references to significant papers or books containing partial solutions or related
results. At the end there are a detailed index and a comprehensive table referring to
the listed problems by subject (and a reference list, of course).
The second and the third named authors are coauthors of two impressive volumes:
M. Fabian, P. Habala, P. Hájek, V. Montesinos Santaluca, J. Pelant and V. Zizler,
Functional analysis and infinite-dimensional geometry. CMS Books in Mathematics,
451 p., Springer, 2001, and
M. Fabian, P. Habala, P. Hájek, V. Montesinos Santaluca and V. Zizler, Banach space
theory. The basis for linear and nonlinear analysis, CMS Books in Mathematics, 820
p, Springer, 2011.

The present collection of problems is tightly connected with the two books men-
tioned above, being often used by the authors to upgrade and update information
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provided in these two references (as they confess in the Preface). All in all, the au-
thors produced a marvelous piece of mathematical writing of great use for researchers
in various fields of functional and mathematical analysis as well as for young graduate
or PhD students.

S. Cobzaş

Advanced Courses of Mathematical Analysis V Proceedings of the Fifth Interna-
tional School; (edited by Juan Carlos Navarro Pascual and El Amn Kaidi); V In-
ternational Course of Mathematical Analysis in Andalusia Universidad de Almeŕıa,
Almeŕıa, Spain, 12 - 16 September 2011. ISBN: 978-981-4699-68-6 (hardcover), 978-
981-4699-70-9 (ebook).

The courses of Mathematical Analysis in Andalusia started in 2002 at the Uni-
versity of Cádiz at the initiative of the late Professor Antonio Aizpuru. Their aim
was to provide opportunities for different research groups in Andalusia working in
various areas of Mathematical Analysis to share information about their research and
to cooperate, and, at the same time, to introduce the young researchers to the most
advanced research lines.

The project turned to be a great success, both concerning the conferences and
the published volumes. The present volume is dedicated to the V International Course
on Mathematical Analysis, carried out at the University of Almeŕıa, September 12–16,
2011, following the first one from 2002, the second (Granada 2004), the third (Huelva,
2007), and the fourth (Cádiz, 2009).

It contains the elaborated versions of four mincourses of three ours each and five
plenary one-our presentations. Besides these plenary lectures the interested partici-
pants had the occasion to present their recent contributions, short communications
or posters.

The minicourses are the following: B. Cascales, Measurability and semi-
continuity of multifunctions (26 p), F. Cobos, Introduction to interpolation theory
(22 p), L. Pick, Optimality of function spaces in Sobolev embeddings (69 p), and B.
Russo, Derivations and projections on Jordan triples: An introduction to nonassocia-
tive algebra, continuous cohomology, and quantum functional analysis (10 p).

The one-our plenary lectures are dealing with topics as: weighted inequalities and
extrapolation (J. Duoandikoetxea), Muckenhoupt-Wheeden Conjecture for Calderón-
Zygmund operators (D. Cruz-Uribe, J. M Martell and C. Pérez), nonlinear partial
differential equations and game theory (J D Rossi), the Radon-Nikodým theorem for
vector measures and integral representation of operators on Banach function spaces
(E. A. Sánchez Pérez), the Orlicz-Pettis theorem for multiplier convergent series (C.
Swartz).

The volume contains papers of great interest, both for researchers in Functional
Analysis, Operator Theory, Measure Theory as well as for young researchers and
graduate students desiring to get a first-hand acquaintance with the last developments
and open problems in various areas of Mathematical Analysis.

V. Anisiu
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