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Global smoothness preservation and
simultaneous approximation by
multivariate discrete operators

George A. Anastassiou and Merve Kester

Dedicated to Professor Gheorghe Coman on the occasion of his 80th anniversary

Abstract. In this article we study the multivariate generalized discrete singular
operators defined on RN , N ≥ 1, regarding their simultaneus global smooth-
ness preservation property with respect to Lp norm for 1 ≤ p ≤ ∞, by using
higher order moduli of smoothness. Furthermore, we study their simultaneous
approximation properties.

Mathematics Subject Classification (2010): 26A15, 26D15, 41A17, 41A25, 41A28,
41A35, 41A80.

Keywords: Simultaneous global smoothness, simultaneous approximation with
rates, multivariate generalized discrete singular operators, modulus of smooth-
ness.

1. Background

In [1], Chapter 3, the author defined

α
[m]
j,r :=


(−1)

r−j
(
r
j

)
j−m, if j = 1, 2, ..., r,

1−
r∑
j=1

(−1)
r−j

(
r
j

)
j−m, if j = 0,

(1.1)

for r ∈ N, m ∈ Z+ and

δ
[m]
k,r :=

r∑
j=1

α
[m]
j,r j

k, k = 1, 2, ...,m ∈ N. (1.2)

See that
r∑
j=0

α
[m]
j,r = 1. (1.3)
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Additionally,in [1], the author used

Definition 1.1. Let f ∈ C
(
RN
)
, N ≥ 1, m ∈ N, the mth modulus of smoothness for

1 ≤ p ≤ ∞, is given by

ωm (f ;h)p := sup
‖t‖2≤h

‖∆m
t (f)‖p,x , (1.4)

h > 0, where

∆m
t f (x) :=

m∑
j=0

(−1)
m−j

(
m
j

)
f (x+ jt) . (1.5)

Denote

ωm (f ;h)∞ = ωm (f, h) . (1.6)

Above, x, t ∈ RN .

Additionally, in [4], the authors defined the following operators:

Let µξn be a Borel measure on RN , N ≥ 1, 0 < ξn ≤ 1, n ∈ N. Assume that
ν := (ν1, ..., νN ) , x := (x1,...,xN ) ∈ RN and f : RN → R is a Borel measurable
function.

i) When

µξn (ν) =
e−

N∑
i=1
|νi|
ξn

∞∑
ν1=−∞

...
∞∑

νN=−∞
e−

N∑
i=1
|νi|
ξn

, (1.7)

they defined generalized multiple discrete Picard operators as:

P ∗ [m]
r,n (f ;x1, ..., xN ) (1.8)

=

∞∑
ν1=−∞

...
∞∑

νN=−∞

(
r∑
j=0

α
[m]
j,r f (x1 + jν1, ..., xN + jνN )

)
e−

N∑
i=1
|νi|
ξn

∞∑
ν1=−∞

...
∞∑

νN=−∞
e−

N∑
i=1
|νi|
ξn

.

ii) When

µξn (ν) =
e−

N∑
i=1

ν2i

ξn

∞∑
ν1=−∞

...
∞∑

νN=−∞
e−

N∑
i=1

ν2
i

ξn

, (1.9)
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they defined generalized multiple discrete Gauss-Weierstrass operators as:

W ∗ [m]
r,n (f ;x1, ..., xN ) (1.10)

=

∞∑
ν1=−∞

...
∞∑

νN=−∞

(
r∑
j=0

α
[m]
j,r f (x1 + jν1, ..., xN + jνN )

)
e−

N∑
i=1

ν2i

ξn

∞∑
ν1=−∞

...
∞∑

νN=−∞
e−

N∑
i=1

ν2
i

ξn

.

iii) Let α̂ ∈ N and β > 1
α̂ . When

µξn (ν) =

N∏
i=1

(
ν2α̂
i + ξ2α̂

n

)−β
∞∑

ν1=−∞
...

∞∑
νN=−∞

N∏
i=1

(
ν2α̂
i + ξ2α̂

n

)−β , (1.11)

they defined the generalized multiple discrete Poisson-Cauchy operators as:

Q∗ [m]
r,n (f ;x1, ..., xN ) (1.12)

=

∞∑
ν1=−∞

...
∞∑

νN=−∞

(
r∑
j=0

α
[m]
j,r f (x1 + jν1, ..., xN + jνN )

)
N∏
i=1

(
ν2α̂
i + ξ2α̂

n

)−β
∞∑

ν1=−∞
...

∞∑
νN=−∞

(
N∏
i=1

(
ν2α̂
i + ξ2α̂

n

)−β) .

iv) When

µξn (ν) =
e−

N∑
i=1
|νi|
ξn(

1 + 2ξne
− 1
ξn

)N , (1.13)

they defined the generalized multiple discrete non-unitary Picard operators as:

P [m]
r,n (f ;x1, ..., xN ) (1.14)

=

∞∑
ν1=−∞

...
∞∑

νN=−∞

(
r∑
j=0

α
[m]
j,r f (x1 + jν1, ..., xN + jνN )

)
e−

N∑
i=1
|νi|
ξn

(
1 + 2ξne

− 1
ξn

)N .

v) When

µξn (ν) =
e−

N∑
i=1

ν2i

ξn(√
πξn

(
1− erf

(
1√
ξn

))
+ 1
)N , (1.15)
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they defined the generalized multiple discrete non-unitary Gauss-Weierstrass opera-
tors as:

W [m]
r,n (f ;x1, ..., xN ) (1.16)

=

∞∑
ν1=−∞

...
∞∑

νN=−∞

(
r∑
j=0

α
[m]
j,r f (x1 + jν1, ..., xN + jνN )

)
e−

N∑
i=1

ν2i

ξn

(√
πξn

(
1− erf

(
1√
ξn

))
+ 1
)N ,

where erf(x) = 2√
π

x∫
0

e−t
2

dt with erf(∞) = 1.

Additionally, in [4], article they assumed that 00 = 1.

In [4], for αi ∈ N, the authors defined the sums

cα,n,j̃ :=

∞∑
ν1=−∞

...
∞∑

νN=−∞

(
N∏
i=1

ναii

)
e−

N∑
i=1
|νi|
ξn

∞∑
ν1=−∞

...
∞∑

νN=−∞
e−

N∑
i=1
|νi|
ξn

, (1.17)

pα,n,j̃ :=

∞∑
ν1=−∞

...
∞∑

νN=−∞

(
N∏
i=1

ναii

)
e−

N∑
i=1

ν2i

ξn

∞∑
ν1=−∞

...
∞∑

νN=−∞
e−

N∑
i=1

ν2
i

ξn

, (1.18)

and for α̂ ∈ N and β > αi+r+1
2α̂ , they introduced

qα,n,j̃ :=

∞∑
ν1=−∞

...
∞∑

νN=−∞

(
N∏
i=1

ναii
(
ν2α̂
i + ξ2α̂

n

)−β)
∞∑

ν1=−∞
...

∞∑
νN=−∞

N∏
i=1

(
ν2α̂
i + ξ2α̂

n

)−β . (1.19)

Furthermore, they proved that

cα,n,j̃ , pα,n,j̃ , qα,n,j̃ <∞, ∀ξn ∈ (0, 1] , (1.20)

and for αi ∈ N, as ξn → 0 when n→∞, the authors showed that

cα,n,j̃ , pα,n,j̃ , and qα,n,̃j → 0. (1.21)

In [4], they also proved

mξn,P =

N∏
i=1


∞∑

νi=−∞
e−
|νi|
ξn

1 + 2ξne
− 1
ξn

→ 1 as ξn → 0+, (1.22)
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and

mξn,W =

N∏
i=1


∞∑

νi=−∞
e−

ν2i
ξ

1 +
√
πξn

(
1− erf

(
1√
ξn

))
→ 1 as ξn → 0+. (1.23)

Moreover, in [4], the authors defined the following error quantities:

E
[0]
n,P (f ;x) := P [0]

r,n (f ;x)− f(x), (1.24)

E
[0]
n,W (f ;x) := W [0]

r,n (f ;x)− f(x).

Furthermore, they introduced the errors (n ∈ N):

E
[m]
n,P (f ;x) (1.25)

: = P [m]
r,n (f ;x)− f (x)−

m∑
j̃=1

δ
[m]

j̃,r

 ∑
α1,...,αN≥0:

|α|=j̃

c̃α,n,̃jfα (x)

N∏
i=1

αi!

 ,

and

E
[m]
n,W (f ;x) (1.26)

: = W [m]
r,n (f ;x)− f (x)−

m∑
j̃=1

δ
[m]

j̃,r

 ∑
α1,...,αN≥0:

|α|=j̃

p̃α,n,̃jfα (x)

N∏
i=1

αi!

 ,

where

c̃α,n,̃j :=

∞∑
ν1=−∞

...
∞∑

νN=−∞

(
N∏
i=1

ναii

)
e−

N∑
i=1
|νi|
ξn(

1 + 2ξne
− 1
ξn

)N (1.27)

and

p̃α,n,̃j :=

∞∑
ν1=−∞

...
∞∑

νN=−∞

(
N∏
i=1

ναii

)
e−

N∑
i=1

ν2i

ξn(√
πξn

(
1− erf

(
1√
ξn

))
+ 1
)N . (1.28)

In [4], the authors proved
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Proposition 1.2. Let α := (α1, ..., αN ) , αi ∈ Z+, i = 1, ..., N ∈ N, |α| :=
N∑
i=1

αi = m ∈

N. Then, there exist K1, K2, K3 > 0 such that

u∗P,ξn (1.29)

=

∞∑
ν1=−∞

...
∞∑

νN=−∞

(
N∏
i=1

|νi|αi
)(

1 +
‖ν‖2
ξn

)r
e−

N∑
i=1
|νi|
ξn

∞∑
ν1=−∞

...
∞∑

νN=−∞
e−

N∑
i=1
|νi|
ξn

≤ K1 <∞,

u∗W,ξn (1.30)

=

∞∑
ν1=−∞

...
∞∑

νN=−∞

(
N∏
i=1

|νi|αi
)(

1 +
‖ν‖2
ξn

)r
e−

N∑
i=1

ν2i

ξn

∞∑
ν1=−∞

...
∞∑

νN=−∞
e−

N∑
i=1

ν2
i

ξn

≤ K2 <∞,
and

u∗Q,ξn (1.31)

=

∞∑
ν1=−∞

...
∞∑

νN=−∞

(
N∏
i=1

|νi|αi
)(

1 +
‖ν‖2
ξn

)r ( N∏
i=1

(
ν2α̂
i + ξ2α̂

n

)−β)
∞∑

ν1=−∞
...

∞∑
νN=−∞

(
N∏
i=1

(
ν2α̂
i + ξ2α̂

n

)−β)
≤ K3 <∞,

for all ξn ∈ (0, 1] where α̂, n ∈ N , β > max
{

1+r+αi
2α̂ , r+2

2α̂

}
for all i = 1, ..., N, and

ν = (ν1, ..., νN ) .

Additionally, in [4], the authors defined

Φ∗P,ξn :=

∞∑
ν1=−∞

...
∞∑

νN=−∞

(
1 +

‖ν‖2
ξn

)r
e−

N∑
i=1
|νi|
ξn

∞∑
ν1=−∞

...
∞∑

νN=−∞
e−

N∑
i=1
|νi|
ξn

, (1.32)

Φ∗W,ξn :=

∞∑
ν1=−∞

...
∞∑

νN=−∞

(
1 +

‖ν‖2
ξn

)r
e−

N∑
i=1

ν2i

ξn

∞∑
ν1=−∞

...
∞∑

νN=−∞
e−

N∑
i=1

ν2
i

ξn

, (1.33)
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and

Φ∗Q,ξn :=

∞∑
ν1=−∞

...
∞∑

νN=−∞

(
1 +

‖ν‖2
ξn

)r N∏
i=1

(
ν2α̂
i + ξ2α̂

n

)−β
∞∑

ν1=−∞
...

∞∑
νN=−∞

N∏
i=1

(
ν2α̂
i + ξ2α̂

n

)−β . (1.34)

They also showed Φ∗P,ξn , Φ∗W,ξn , and Φ∗Q,ξn are uniformly bounded for all ξn ∈ (0, 1],

where α̂ ∈ N, β > r+2
2α̂ .

On the other hand, in [5], the authors proved

Proposition 1.3. Let ν := (ν1, ..., νN ), α := (α1,...,αN ) ∈ RN , αi ∈ Z+, i = 1, ..., N ∈

N, |α| :=
N∑
i=1

αi = m ∈ Z+, and p ≥ 1. Then,

Sp,mP∗,ξn
(1.35)

=

∞∑
ν1=−∞

...
∞∑

νN=−∞

(
N∏
i=1

|νi|αi
)p (

1 +
‖ν‖2
ξn

)rp
e−

N∑
i=1
|νi|
ξn

∞∑
ν1=−∞

...
∞∑

νN=−∞
e−

N∑
i=1
|νi|
ξn

,

Sp,mW∗,ξn
(1.36)

=

∞∑
ν1=−∞

...
∞∑

νN=−∞

(
N∏
i=1

|νi|αi
)p (

1 +
‖ν‖2
ξn

)rp
e−

N∑
i=1

ν2i

ξn

∞∑
ν1=−∞

...
∞∑

νN=−∞
e−

N∑
i=1

ν2
i

ξn

,

and

Sp,mQ∗,ξn
(1.37)

=

∞∑
ν1=−∞

...
∞∑

νN=−∞

∞∑
νN=−∞

(
N∏
i=1

|νi|αi
)p (

1 +
‖ν‖2
ξn

)rp( N∏
i=1

(
ν2α̂
i + ξ2α̂

n

)−β)
∞∑

ν1=−∞
...

∞∑
νN=−∞

(
N∏
i=1

(
ν2α̂
i + ξ2α̂

n

)−β) ,

are uniformly bounded for all ξn ∈ (0, 1] where α̂, n ∈ N,

β > max

{
1 + dαipe+ drpe

2α̂
,

2 + drpe
2α̂

}
for all i = 1, ..., N , and ν = (ν1, ..., νN ).

Finally, in [5], when p ≥ 1, they obtained the following inequalities for the error

quantities E
[0]
n,P (f ;x), E

[0]
n,P (f ;x), and the errors E

[m]
n,P (f ;x), E

[m]
n,P (f ;x):∥∥∥E[0]

n,P (f)
∥∥∥
p
≤ mξn,P

∥∥∥P ∗[0]
r,n (f)− f

∥∥∥
p

+ ‖f‖p |mξn,P − 1| . (1.38)
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n,W (f)

∥∥∥
p
≤ mξn,W

∥∥∥W ∗[0]
r,n (f)− f

∥∥∥
p

+ ‖f‖p |mξn,W − 1| , (1.39)

∥∥∥E[m]
n,P (f ;x)

∥∥∥
p
≤ m

ξn,P

∥∥∥∥∥∥P ∗ [m]
r,n (f)− f −

m∑
j̃=1

δ
[m]

j̃,r
(1.40)

×

 ∑
α1,...,αN≥0:

|α|=j̃

cα,n,̃jfα
N∏
i=1

αi!


∥∥∥∥∥∥∥∥
p

+ ‖f‖p |mξn,P − 1| ,

and ∥∥∥E[m]
n,W (f)

∥∥∥
p
≤ mξn,W

∥∥∥∥∥∥W ∗[m]
r,n (f)− f −

m∑
j̃=1

δ
[m]

j̃,r
(1.41)

×

 ∑
α1,...,αN≥0:

|α|=j̃

pα,n,̃jfα
N∏
i=1

αi!


∥∥∥∥∥∥∥∥
p

+ ‖f‖p |mξn,W − 1| .

2. Main Results

We start with the general global smoothness preservation results for the opera-

tors P
∗ [m]
r,n , W

∗ [m]
r,n , and Q

∗ [m]
r,n , defined as in (1.8) , (1.10) , and (1.12).

Theorem 2.1. Let h > 0, f ∈ C
(
RN
)
, N ≥ 1.

i) Assume ωm̄ (f, h) <∞. Then

ωm̄

(
P ∗ [m]
r,n f, h

)
≤

 r∑
j=0

∣∣∣α[m̄]
j,r

∣∣∣
ωm̄ (f, h) , (2.1)

ωm̄

(
W ∗ [m]
r,n f, h

)
≤

 r∑
j=0

∣∣∣α[m̄]
j,r

∣∣∣
ωm̄ (f, h) , (2.2)

ωm̄

(
Q∗ [m]
r,n f, h

)
≤

 r∑
j=0

∣∣∣α[m̄]
j,r

∣∣∣
ωm̄ (f, h) . (2.3)

ii) Assume f ∈
(
C
(
RN
)
∩ Lp

(
RN
))
, p ≥ 1. Then

ωm̄

(
P ∗ [m]
r,n f, h

)
p
≤

 r∑
j=0

∣∣∣α[m̄]
j,r

∣∣∣
ωm̄ (f, h)p , (2.4)
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ωm̄

(
W ∗ [m]
r,n f, h

)
p
≤

 r∑
j=0

∣∣∣α[m̄]
j,r

∣∣∣
ωm̄ (f, h)p , (2.5)

ωm̄

(
Q∗ [m]
r,n f, h

)
p
≤

 r∑
j=0

∣∣∣α[m̄]
j,r

∣∣∣
ωm̄ (f, h)p . (2.6)

Proof. By [1], Chapter 3. �

Next, we give

Remark 2.2. Let r = 1, then we calculate that α
[m]
0,1 = 0, α

[m]
1,1 = 1. Now, denote

P
∗ [m]
1,n (f ;x) := P ∗ [m]

n (f ;x) , (2.7)

W
∗ [m]
1,n (f ;x) := W ∗ [m]

n (f ;x) , (2.8)

Q
∗ [m]
1,n (f ;x) := Q∗ [m]

n (f ;x) . (2.9)

By Theorem 2.1 and Remark 2.2, we obtain

Theorem 2.3. Let h > 0, f ∈ C
(
RN
)
, N ≥ 1.

i) Assume ωm̄ (f, h) <∞. Then

ωm̄

(
P ∗ [m]
n f, h

)
≤ ωm̄ (f, h) , (2.10)

ωm̄

(
W ∗ [m]
n f, h

)
≤ ωm̄ (f, h) , (2.11)

ωm̄

(
Q∗ [m]
n f, h

)
≤ ωm̄ (f, h) . (2.12)

ii) Assume f ∈
(
C
(
RN
)
∩ Lp

(
RN
))
, p ≥ 1. Then

ωm̄

(
P ∗ [m]
n f, h

)
p
≤ ωm̄ (f, h)p , (2.13)

ωm̄

(
W ∗ [m]
n f, h

)
p
≤ ωm̄ (f, h)p , (2.14)

ωm̄

(
Q∗ [m]
n f, h

)
p
≤ ωm̄ (f, h)p . (2.15)

We present the our general global smoothness preservation results for the non-

unitary operators P
[m]
r,n and W

[m]
r,n as follows

Theorem 2.4. Let h > 0, f ∈ C
(
RN
)
, N ≥ 1.

i) Assume ωm̄ (f, h) <∞. Then

ωm̄

(
P [m]
r,n f, h

)
(2.16)

≤
(

1 + 2e−1/ξn (ξn + 1)

1 + 2ξne−1/ξn

)N  r∑
j=0

∣∣∣α[m̄]
j,r

∣∣∣
ωm̄ (f, h) ,
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ωm̄

(
W [m]
r,n f, h

)
(2.17)

≤

1 +
2e−1/ξn

√
πξn

[
1− erf

(
1
ξn

)]
+ 1


N  r∑

j=0

∣∣∣α[m̄]
j,r

∣∣∣
ωm̄ (f, h) .

ii) Assume f ∈
(
C
(
RN
)
∩ Lp

(
RN
))
, p ≥ 1. Then

ωm̄

(
P [m]
r,n f, h

)
p

(2.18)

≤
(

1 + 2e−1/ξn (ξn + 1)

1 + 2ξne−1/ξn

)N  r∑
j=0

∣∣∣α[m̄]
j,r

∣∣∣
ωm̄ (f, h)p ,

ωm̄

(
W [m]
r,n f, h

)
p

(2.19)

≤

1 +
2e−1/ξn

√
πξn

[
1− erf

(
1
ξn

)]
+ 1


N  r∑

j=0

∣∣∣α[m̄]
j,r

∣∣∣
ωm̄ (f, h)p .

Proof. We see that

P [m]
r,n (f ;x) = λ1 (ξn)P ∗[m]

r,n (f ;x) , (2.20)

and

W [m]
r,n (f ;x) = λ2 (ξn)W ∗[m]

r,n (f ;x) , (2.21)

where

λ1 (ξn) : =

∞∑
ν1=−∞

...
∞∑

νN=−∞
e−

N∑
i=1
|νi|
ξn(

1 + 2ξne−1/ξn
)N (2.22)

=

N∏
i=1


∞∑

νi=−∞
e−
|νi|
ξn

1 + 2ξne−1/ξn

 ,

and

λ2 (ξn) : =

∞∑
ν1=−∞

...
∞∑

νN=−∞
e−

N∑
i=1

ν2i

ξn[√
πξn

(
1− erf

(
1
ξn

))
+ 1
]N (2.23)

=

N∏
i=1


∞∑

νi=−∞
e−

ν2i
ξn

√
πξn

[
1− erf

(
1
ξn

)]
+ 1

 .
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Additionally, in [2], the author showed that

∞∑
νi=−∞

e−
|νi|
ξn

1 + 2ξne−1/ξn
≤ 1 + 2e

−1
ξ (ξ + 1)

1 + 2ξe
−1
ξ

, (2.24)

and
∞∑

νi=−∞
e−

ν2i
ξn

√
πξn

[
1− erf

(
1
ξn

)]
+ 1
≤ 1 +

2e
−1
ξ

√
πξ
(

1− erf
(

1√
ξ

))
+ 1

. (2.25)

Thus, by (2.22) , (2.23) , (2.24) , (2.25) , and Theorem 2.1 the proof is complete. �

Now, we demonstrate the following optimality result

Proposition 2.5. Above inequalities (2.10)-(2.12) are sharp. The equalities are attained
by any

gj (x) = xm̄j , j = 1, ..., N, x = (x1, ..., xj , ..., xN ) ∈ RN .

Proof. By [1], Chapter 3. �

In [6], the authors observed

Theorem 2.6. Let f ∈ Cl
(
RN
)
, l, N ∈ N. Here µξn is a Borel probability mea-

sure on RN , ξn > 0, (ξn)n∈N a bounded sequence. Let β̃ :=
(
β̃1, ..., β̃N

)
, β̃i ∈ Z+,

i = 1, ..., N ;
∣∣∣β̃∣∣∣ :=

N∑
i=1

β̃i = l. Here f (x+ νj), x ∈ RN , ν ∈ ZN , is µξn-integrable

with respect to ν, for j = 1, ..., r. There exist µξn-integrable functions hi1,j , hβ̃1,i2,j
,

hβ̃1,β̃2,i3,j
, ..., hβ̃1,β̃2,...,β̃N−1,iN ,j

≥ 0 (j = 1, ..., r) on RN such that∣∣∣∣∂i1f (x+ νj)

∂xi11

∣∣∣∣ ≤ hi1,j (ν) , i1 = 1, ..., β̃1, (2.26)

∣∣∣∣∣∂β̃1+i2f (x+ νj)

∂xi22 ∂x
β̃1

1

∣∣∣∣∣ ≤ hβ̃1,i2,j
(ν) , i2 = 1, ..., β̃2,

...∣∣∣∣∣∣∂
β̃1+β̃2+...+β̃N−1+iN f (x+ νj)

∂xiNN ∂x
β̃N−1

N−1 ...∂x
β̃2

2 ∂xβ̃1

1

∣∣∣∣∣∣ ≤ hβ̃1,β̃2,...,β̃N−1,iN ,j
(ν) , iN = 1, ..., β̃N ,

∀ x ∈ RN , ν ∈ ZN .
i) When

µξn (ν) =
e−

N∑
i=1
|νi|
ξn

∞∑
ν1=−∞

...
∞∑

νN=−∞
e−

N∑
i=1
|νi|
ξn

, (2.27)
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then both of the next exist and(
P ∗ [m]
r,n (f ;x)

)
β̃

= P ∗ [m]
r,n

(
fβ̃ ;x

)
. (2.28)

ii) When

µξn (ν) =
e−

N∑
i=1

ν2i

ξn

∞∑
ν1=−∞

...
∞∑

νN=−∞
e−

N∑
i=1

ν2
i

ξn

, (2.29)

then both of the next exist and(
W ∗ [m]
r,n (f ;x)

)
β̃

= W ∗ [m]
r,n

(
fβ̃ ;x

)
. (2.30)

iii) Let α̂ ∈ N and β > 1
α̂ . When

µξn (ν) =

N∏
i=1

(
ν2α̂
i + ξ2α̂

n

)−β
∞∑

ν1=−∞
...

∞∑
νN=−∞

N∏
i=1

(
ν2α̂
i + ξ2α̂

n

)−β , (2.31)

then both of the next exist and(
Q∗ [m]
r,n (f ;x)

)
β̃

= Q∗ [m]
r,n

(
fβ̃ ;x

)
. (2.32)

Corollary 2.7. When r = 1, by the Theorem 2.6, we observe that(
P ∗ [m]
n (f ;x)

)
β̃

= P ∗ [m]
n

(
fβ̃ ;x

)
, (2.33)(

W ∗ [m]
n (f ;x)

)
β̃

= W ∗ [m]
n

(
fβ̃ ;x

)
, (2.34)

and (
Q∗ [m]
n (f ;x)

)
β̃

= Q∗ [m]
n

(
fβ̃ ;x

)
. (2.35)

For the non-unitary operators P
[m]
r,n and W

[m]
r,n we have

Theorem 2.8. Let the assumption of Theorem 2.6 be true. Then we have(
P [m]
r,n (f ;x)

)
β̃

= P [m]
r,n

(
fβ̃ ;x

)
, (2.36)

and (
W [m]
r,n (f ;x)

)
β̃

= W [m]
r,n

(
fβ̃ ;x

)
. (2.37)

Proof. By (2.20), (2.21) , and Theorem 2.6, we obtain(
P [m]
r,n (f ;x)

)
β̃

= λ1 (ξn)
(
P ∗[m]
r,n (f ;x)

)
β̃

(2.38)

= λ1 (ξn)P ∗[m]
r,n

(
fβ̃ ;x

)
= P [m]

r,n

(
fβ̃ ;x

)
,
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and (
W [m]
r,n (f ;x)

)
β̃

= λ2 (ξn)
(
W ∗[m]
r,n (f ;x)

)
β̃

(2.39)

= λ2 (ξn)W ∗[m]
r,n

(
fβ̃ ;x

)
= W [m]

r,n

(
fβ̃ ;x

)
.

�

Next, we get

Theorem 2.9. Let h > 0, γ = 0, β̃, and the assumptions of the Theorem 2.6 be true.
i) Assume ωm̄ (fγ , h) <∞. Then

ωm̄

((
P ∗ [m]
r,n f

)
γ
, h

)
≤

 r∑
j=0

∣∣∣α[m̄]
j,r

∣∣∣
ωm̄ (fγ , h) , (2.40)

ωm̄

((
W ∗ [m]
r,n f

)
γ
, h

)
≤

 r∑
j=0

∣∣∣α[m̄]
j,r

∣∣∣
ωm̄ (fγ , h) , (2.41)

ωm̄

((
Q∗ [m]
r,n f

)
γ
, h

)
≤

 r∑
j=0

∣∣∣α[m̄]
j,r

∣∣∣
ωm̄ (fγ , h) . (2.42)

ii) Assume fγ ∈
(
C
(
RN
)
∩ Lp

(
RN
))
, p ≥ 1. Then

ωm̄

((
P ∗ [m]
r,n f

)
γ
, h

)
p

≤

 r∑
j=0

∣∣∣α[m̄]
j,r

∣∣∣
ωm̄ (fγ , h)p , (2.43)

ωm̄

((
W ∗ [m]
r,n f

)
γ
, h

)
p

≤

 r∑
j=0

∣∣∣α[m̄]
j,r

∣∣∣
ωm̄ (fγ , h)p , (2.44)

ωm̄

((
Q∗ [m]
r,n f

)
γ
, h

)
p

≤

 r∑
j=0

∣∣∣α[m̄]
j,r

∣∣∣
ωm̄ (fγ , h)p . (2.45)

Proof. By Theorem 2.1 and Theorem 2.6. �

Additionally, as a quick result of Theorem 2.3 and Theorem 2.6, we have

Corollary 2.10. Let h > 0, γ = 0, β̃, and the assumptions of the Theorem 2.6 be true.
i) Assume ωm̄ (f, h) <∞. Then

ωm̄

((
P ∗ [m]
n f

)
γ
, h

)
≤ ωm̄ (fγ , h) , (2.46)

ωm̄

((
W ∗ [m]
n f

)
γ
, h

)
≤ ωm̄ (fγ , h) , (2.47)

ωm̄

((
Q∗ [m]
n f

)
γ
, h

)
≤ ωm̄ (fγ , h) . (2.48)
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ii) Assume f ∈
(
C
(
RN
)
∩ Lp

(
RN
))
, p ≥ 1. Then

ωm̄

((
P ∗ [m]
n f

)
γ
, h

)
p

≤ ωm̄ (fγ , h)p , (2.49)

ωm̄

((
W ∗ [m]
n f

)
γ
, h

)
p

≤ ωm̄ (fγ , h)p , (2.50)

ωm̄

((
Q∗ [m]
n f

)
γ
, h

)
p

≤ ωm̄ (fγ , h)p . (2.51)

Additionally for the non-unitary operators, P
[m]
r,n and W

[m]
r,n , we obtain

Theorem 2.11. Let h > 0, γ = 0, β̃, and the assumptions of the Theorem 2.6 be true.
i) Assume ωm̄ (fγ , h) <∞. Then

ωm̄

((
P [m]
r,n f

)
γ
, h

)
(2.52)

≤
(

1 + 2e−1/ξn (ξn + 1)

1 + 2ξne−1/ξn

)N  r∑
j=0

∣∣∣α[m̄]
j,r

∣∣∣
ωm̄ (fγ , h) ,

ωm̄

((
W [m]
r,n f

)
γ
, h

)
(2.53)

≤

1 +
2e−1/ξn

√
πξn

[
1− erf

(
1
ξn

)]
+ 1


N  r∑

j=0

∣∣∣α[m̄]
j,r

∣∣∣
ωm̄ (fγ , h) .

ii) Assume fγ ∈
(
C
(
RN
)
∩ Lp

(
RN
))
, p ≥ 1. Then

ωm̄

((
P [m]
r,n f

)
γ
, h

)
p

(2.54)

≤
(

1 + 2e−1/ξn (ξn + 1)

1 + 2ξne−1/ξn

)N  r∑
j=0

∣∣∣α[m̄]
j,r

∣∣∣
ωm̄ (fγ , h)p ,

ωm̄

((
W [m]
r,n f

)
γ
, h

)
p

(2.55)

≤

1 +
2e−1/ξn

√
πξn

[
1− erf

(
1
ξn

)]
+ 1


N  r∑

j=0

∣∣∣α[m̄]
j,r

∣∣∣
ωm̄ (fγ , h)p .

Proof. By Theorem 2.4 and Theorem 2.8. �

Now we show our simultaneous approximation results.
We start with
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Theorem 2.12. Let f ∈ Cm+l
(
RN
)
, m, l ∈ N, N ≥ 1, x ∈ RN . Let the assumptions

of Theorem 2.6 is true and γ = 0, β̃. Assume ‖fγ+α‖∞ < ∞. Then for all x ∈ RN ,
we have

i) ∥∥∥∥∥∥∥∥
(
P ∗ [m]
r,n f

)
γ
− fγ −

m∑
j̃=1

δ
[m]

j̃,r

 ∑
α1,...,αN≥0:

|α|=j̃

cα,n,̃jfγ+α

N∏
i=1

αi!


∥∥∥∥∥∥∥∥
∞

(2.56)

≤
∑

α1,...,αN≥0
|α|=m



(ωr (fγ+α, ξn))(
N∏
i=1

αi!

) u∗P,ξn ,

for ξn ∈ (0, 1].
ii) ∥∥∥∥∥∥∥∥

(
W ∗ [m]
r,n f

)
γ
− fγ −

m∑
j̃=1

δ
[m]

j̃,r

 ∑
α1,...,αN≥0:

|α|=j̃

pα,n,̃jfγ+α

N∏
i=1

αi!


∥∥∥∥∥∥∥∥
∞

(2.57)

≤
∑

α1,...,αN≥0
|α|=m



(ωr (fγ+α, ξn))(
N∏
i=1

αi!

) u∗W,ξn ,

for ξn ∈ (0, 1].
iii) ∥∥∥∥∥∥∥∥

(
Q∗ [m]
r,n f

)
γ
− fγ −

m∑
j̃=1

δ
[m]

j̃,r

 ∑
α1,...,αN≥0:

|α|=j̃

qα,n,̃jfγ+α

N∏
i=1

αi!


∥∥∥∥∥∥∥∥
∞

(2.58)

≤
∑

α1,...,αN≥0
|α|=m



(ωr (fγ+α, ξn))(
N∏
i=1

αi!

) u∗Q,ξn ,

for ξn ∈ (0, 1], and α̂ ∈ N , β > max
{

1+r+αi
2α̂ , r+2

2α̂

}
.

Proof. By [4] and Theorem 2.6. �

Next, when m = 0, we obtain

Theorem 2.13. Let f ∈ ClB
(
RN
)
, l ∈ N, N ≥ 1. Let the assumptions of Theorem 2.6

is true and γ = 0, β̃. Then for all x ∈ RN , we have
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i) ∥∥∥∥(P ∗ [0]
r,n f

)
γ
− fγ

∥∥∥∥
∞
≤ Φ∗P,ξnωr(fγ , ξn), (2.59)

for ξn ∈ (0, 1].
ii) ∥∥∥∥(W ∗ [0]

r,n f
)
γ
− fγ

∥∥∥∥
∞
≤ Φ∗W,ξnωr(fγ , ξn), (2.60)

for ξn ∈ (0, 1].
iii) ∥∥∥∥(Q∗ [0]

r,n f
)
γ
− fγ

∥∥∥∥
∞
≤ Φ∗Q,ξnωr(fγ , ξn), (2.61)

for ξn ∈ (0, 1], and α̂ ∈ N , β > r+2
2α̂ .

Proof. By [4] and Theorem 2.6. �

For the non-unitary cases we have

Theorem 2.14. Let f ∈ Cm+l
(
RN
)
, m, l ∈ N, N ≥ 1. Let the assumptions of Theorem

2.6 is true and γ = 0, β̃. Assume ‖fγ+α‖∞ <∞. Then for all x ∈ RN , we have
i) ∥∥∥∥(E[m]

n,P (f)
)
γ

∥∥∥∥
∞

(2.62)

≤ mξn,P

∑
α1,...,αN≥0
|α|=m



ωr (fα+γ , ξn)(
N∏
i=1

αi!

) u∗P,ξn

+ ‖fγ‖∞ |mξn,P − 1| ,

and ∥∥∥∥(E[m]
n,W (f)

)
γ

∥∥∥∥
∞

(2.63)

≤ mξn,W

∑
α1,...,αN≥0
|α|=m



ωr (fα+γ , ξn)(
N∏
i=1

αi!

) u∗W,ξn

+ ‖fγ‖∞ |mξn,W − 1| .

ii) Let f ∈ ClB
(
RN
)
, l ∈ N, N ≥ 1. Let the assumptions of Theorem 2.6 is true

and γ = 0, β̃. Then for all x ∈ RN , we have∥∥∥∥(E[0]
n,P (f)

)
γ

∥∥∥∥
∞

(2.64)

≤ mξn,PΦ∗P,ξnωr(fγ , ξn) + ‖fγ‖∞ |mξn,P − 1| ,
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and ∥∥∥∥(E[0]
n,W (f ;x)

)
γ

∥∥∥∥
∞

(2.65)

≤ mξn,WΦ∗W,ξnωr(fγ , ξn) + ‖fγ‖∞ |mξn,W − 1| .

Proof. By [4], (1.38)− (1.41), and by the equalities
(
E

[m]
n,P (f, x)

)
γ

= E
[m]
n,P (fγ , x) and(

E
[m]
n,W (f, x)

)
γ

= E
[m]
n,W (fγ , x) for m ∈ Z+. �

Now, we give our Lp results. We begin with

Theorem 2.15. Let f ∈ Cm+l
(
RN
)
, m, l ∈ N, N ≥ 1, γ = 0, β̃, fγ+α ∈ Lp

(
RN
)
,

|α| = m, p, q > 1 : 1
p + 1

q = 1, and 0 < ξn ≤ 1, n ∈ N. Let the assumptions of Theorem

2.6 be true. Then
i) ∥∥∥∥∥∥∥∥

(
P ∗ [m]
r,n f

)
γ
− fγ −

m∑
j̃=1

δ
[m]

j̃,r

 ∑
α1,...,αN≥0:

|α|=j̃

cα,n,̃jfγ+α

N∏
i=1

αi!


∥∥∥∥∥∥∥∥
p

(2.66)

≤

(
m

(q (m− 1) + 1)
1
q

) ∑
|α|=m

1
N∏
i=1

αi!

(Sp,mP∗,ξn

) 1
p

ωr (fγ+α, ξn)p .

ii) ∥∥∥∥∥∥∥∥
(
W ∗ [m]
r,n f

)
γ
− fγ −

m∑
j̃=1

δ
[m]

j̃,r

 ∑
α1,...,αN≥0:

|α|=j̃

pα,n,̃jfγ+α

N∏
i=1

αi!


∥∥∥∥∥∥∥∥
p

(2.67)

≤

(
m

(q (m− 1) + 1)
1
q

) ∑
|α|=m

1
N∏
i=1

αi!

(Sp,mW∗,ξn

) 1
p

ωr (fγ+α, ξn)p .

iii) ∥∥∥∥∥∥∥∥
(
Q∗ [m]
r,n f

)
γ
− fγ −

m∑
j̃=1

δ
[m]

j̃,r

 ∑
α1,...,αN≥0:

|α|=j̃

qα,n,̃jfγ+α

N∏
i=1

αi!


∥∥∥∥∥∥∥∥
p

(2.68)

≤

(
m

(q (m− 1) + 1)
1
q

) ∑
|α|=m

1
N∏
i=1

αi!

(Sp,mQ∗,ξn

) 1
p

ωr (fγ+α, ξn)p ,
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where α̂ ∈ N , β > max
{

1+dαipe+drpe
2α̂ , 2+drpe

2α̂

}
for all i = 1, ..., N.

Proof. By [5] and Theorem 2.6. �

Next, we present our results for the case of m = 0 and p > 1.

Theorem 2.16. Let f ∈ Cl
(
RN
)
, l ∈ N, N ≥ 1, γ = 0, β̃, fγ ∈ Lp

(
RN
)
, x ∈ RN ,

p, q > 1 : 1
p + 1

q = 1, and 0 < ξn ≤ 1, n ∈ N. Let the assumptions of Theorem 2.6 be

true. Then
i) ∥∥∥∥(P ∗ [0]

r,n f
)
γ
− fγ

∥∥∥∥
p

≤
(
Sp,0P∗,ξn

) 1
p

ωr (fγ , ξn)p . (2.69)

ii) ∥∥∥∥(W ∗ [0]
r,n f

)
γ
− fγ

∥∥∥∥
p

≤
(
Sp,0W∗,ξn

) 1
p

ωr (fγ , ξn)p . (2.70)

iii) ∥∥∥∥(Q∗ [0]
r,n f

)
γ
− fγ

∥∥∥∥
p

≤
(
Sp,0Q∗,ξn

) 1
p

ωr (fγ , ξn)p , (2.71)

where α̂ ∈ N , β > 2+drpe
2α̂ .

Proof. By [5] and Theorem 2.6. �

For the case of m = 0 and p = 1, we have

Theorem 2.17. Let f ∈ Cl
(
RN
)
, l ∈ N, N ≥ 1, γ = 0, β̃, fγ ∈ L1

(
RN
)
, x ∈ RN , and

0 < ξn ≤ 1, n ∈ N. Let the assumptions of Theorem 2.6 be true.
i) ∥∥∥∥(P ∗ [0]

r,n f
)
γ
− fγ

∥∥∥∥
1

≤ S1,0
P∗,ξn

ωr (fγ , ξn)1 . (2.72)

ii) ∥∥∥∥(W ∗ [0]
r,n f

)
γ
− fγ

∥∥∥∥
1

≤ S1,0
W∗,ξn

ωr (fγ , ξn)1 . (2.73)

iii) ∥∥∥∥(Q∗ [0]
r,n f

)
γ
− fγ

∥∥∥∥
1

≤ S1,0
Q∗,ξn

ωr (fγ , ξn)1 , (2.74)

where α̂ ∈ N , β > 2+r
2α̂ .

Proof. By [5] and Theorem 2.6. �

Next, we give the case of m ∈ N and p = 1 as

Theorem 2.18. Let f ∈ Cm+l
(
RN
)
, m, l ∈ N, N ≥ 1, γ = 0, β̃, fγ+α ∈ L1

(
RN
)
,

|α| = m, x ∈ R, and 0 < ξn ≤ 1, n ∈ N. Let the assumptions of Theorem 2.6 be true.
Then
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i) ∥∥∥∥∥∥∥∥
(
P ∗ [m]
r,n f

)
γ
− fγ −

m∑
j̃=1

δ
[m]

j̃,r

 ∑
α1,...,αN≥0:

|α|=j̃

cα,n,̃jfγ+α

N∏
i=1

αi!


∥∥∥∥∥∥∥∥

1

(2.75)

≤

 ∑
|α|=m

1
N∏
i=1

αi!

S1,m
P∗,ξn

ωr (fγ+α, ξn)1 .

ii) ∥∥∥∥∥∥∥∥
(
W ∗ [m]
r,n f

)
γ
− fγ −

m∑
j̃=1

δ
[m]

j̃,r

 ∑
α1,...,αN≥0:

|α|=j̃

pα,n,̃jfγ+α

N∏
i=1

αi!


∥∥∥∥∥∥∥∥

1

(2.76)

≤

 ∑
|α|=m

1
N∏
i=1

αi!

S1,m
W∗,ξn

ωr (fγ+α, ξn)1 .

iii) ∥∥∥∥∥∥∥∥
(
Q∗ [m]
r,n f

)
γ
− fγ −

m∑
j̃=1

δ
[m]

j̃,r

 ∑
α1,...,αN≥0:

|α|=j̃

qα,n,̃jfγ+α

N∏
i=1

αi!


∥∥∥∥∥∥∥∥

1

(2.77)

≤

 ∑
|α|=m

1
N∏
i=1

αi!

S1,m
Q∗,ξn

ωr (fγ+α, ξn)1 ,

where α̂ ∈ N , β > max
{

1+αi+r
2α̂ , 2+r

2α̂

}
for all i.

Proof. By [5] and Theorem 2.6. �

Finally, we give our Lp results for the error quantities E
[0]
n,P (f ;x), E

[0]
n,P (f ;x),

and the errors E
[m]
n,P (f ;x), E

[m]
n,P (f ;x). We begin with

Theorem 2.19. Let f ∈ Cm+l
(
RN
)
, m, l ∈ N, N ≥ 1, γ = 0, β̃, fγ+α ∈ Lp

(
RN
)
,

|α| = m, p, q > 1 : 1
p + 1

q = 1, and 0 < ξn ≤ 1, n ∈ N. Let the assumptions of Theorem
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2.6 be true. Then ∥∥∥∥(E[m]
n,P (f)

)
γ

∥∥∥∥
p

(2.78)

≤ m
ξn,P

m
(
Sp,mP∗,ξn

) 1
p

ωr (fα+γ , ξn)p

(q (m− 1) + 1)
1
q

 ∑
|α|=m

1
N∏
i=1

αi!

+ ‖fγ‖p |mξn,P − 1| ,

and ∥∥∥∥(E[m]
n,W (f)

)
γ

∥∥∥∥
p

(2.79)

≤ m
ξn,W

m
(
Sp,mW∗,ξn

) 1
p

ωr (fα+γ , ξn)p

(q (m− 1) + 1)
1
q

 ∑
|α|=m

1
N∏
i=1

αi!

+ ‖fγ‖p |mξn,W − 1| .

Proof. By [5], (1.40) , (1.41), and by the equalities
(
E

[m]
n,P (f, x)

)
γ

= E
[m]
n,P (fγ , x) and(

E
[m]
n,W (f, x)

)
γ

= E
[m]
n,W (fγ , x) for m ∈ Z+. �

Next, we present the following results for the case of m = 0 and p > 1 as

Theorem 2.20. Let f ∈ Cl
(
RN
)
, l ∈ N, N ≥ 1, γ = 0, β̃, fγ ∈ Lp

(
RN
)
, p, q > 1 :

1
p + 1

q = 1, and 0 < ξn ≤ 1, n ∈ N. Let the assumptions of Theorem 2.6 be true. Then∥∥∥∥(E[0]
n,P (f)

)
γ

∥∥∥∥
p

≤ m
ξn,P

(
Sp,0P∗,ξn

) 1
p

ωr (fγ , ξn)p + ‖fγ‖p |mξn,P − 1| , (2.80)

and ∥∥∥∥(E[0]
n,W (f)

)
γ

∥∥∥∥
p

≤ m
ξn,W

(
Sp,0W∗,ξn

) 1
p

ωr (fγ , ξn)p + ‖fγ‖p |mξn,W − 1| . (2.81)

Proof. By [5], (1.38) , (1.39), and by the equalities
(
E

[m]
n,P (f, x)

)
γ

= E
[m]
n,P (fγ , x) and(

E
[m]
n,W (f, x)

)
γ

= E
[m]
n,W (fγ , x) for m ∈ Z+. �

For the case of m = 0 and p = 1, we obtain

Theorem 2.21. Let f ∈ Cl
(
RN
)
, l ∈ N, N ≥ 1, γ = 0, β̃, fγ ∈ L1

(
RN
)
, and

0 < ξn ≤ 1, n ∈ N. Let the assumptions of Theorem 2.6 be true. Then∥∥∥∥(E[0]
n,P (f)

)
γ

∥∥∥∥
1

≤ m
ξn,P

S1,0
P∗,ξn

ωr (fγ , ξn)1 + ‖fγ‖1 |mξn,P − 1| , (2.82)
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and ∥∥∥∥(E[0]
n,W (f)

)
γ

∥∥∥∥
1

≤ m
ξn,W

S1,0
W∗,ξn

ωr (fγ , ξn)1 + ‖fγ‖1 |mξn,W − 1| . (2.83)

Proof. By [5], (1.38) , (1.39), and by the equalities
(
E

[m]
n,P (f, x)

)
γ

= E
[m]
n,P (fγ , x) and(

E
[m]
n,W (f, x)

)
γ

= E
[m]
n,W (fγ , x) for m ∈ Z+. �

Our final result is for the case of m ∈ N and p = 1

Theorem 2.22. Let f ∈ Cm+l
(
RN
)
, m, l ∈ N, N ≥ 1, γ = 0, β̃, fγ+α ∈ L1

(
RN
)
,

|α| = m, and 0 < ξn ≤ 1, n ∈ N. Let the assumptions of Theorem 2.6 be true. Then

∥∥∥∥(E[m]
n,P (f)

)
γ

∥∥∥∥
1

≤ m
ξn,P

 ∑
|α|=m

1
N∏
i=1

αi!

S1,m
P∗,ξn

ωr (fα+γ , ξn)1 (2.84)

+ ‖fγ‖1 |mξn,P − 1| ,

and

∥∥∥∥(E[m]
n,W (f)

)
γ

∥∥∥∥
1

≤ m
ξn,W

 ∑
|α|=m

1
N∏
i=1

αi!

S1,m
W∗,ξn

ωr (fα+γ , ξn)1 (2.85)

+ ‖fγ‖1 |mξn,W − 1| .

Proof. By [5], (1.40) , (1.41), and by the equalities
(
E

[m]
n,P (f, x)

)
γ

= E
[m]
n,P (fγ , x) and(

E
[m]
n,W (f, x)

)
γ

= E
[m]
n,W (fγ , x) for m ∈ Z+. �
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in Lp(Ω, B)
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Abstract. We give a characterization of relatively compact sets F in Lp(Ω, B)
for p ∈ [1,∞), B a Banach-space, and Ω ⊂ Rn. This is a generalization of the
results obtained in [12] for the space Lp((0, T ), B) with T > 0, first to rectangles
Ω = (a, b) ⊂ Rn and, under additional conditions, to arbitrary open and bounded
subsets of Rn. An application of the main compactness result to a problem arising
in homogenization of processes on periodic surfaces is given.

Mathematics Subject Classification (2010): 35K57, 46E40, 46B50.

Keywords: Kolmogorov-Riesz-type compactness result, Banach-space valued
functions, homogenization of processes on periodic surfaces.

1. Introduction

In this paper, we prove a Kolmogorov-Riesz-type compactness result for the
space Lp(Ω, B) with p ∈ [1,∞), Ω ⊂ Rn open and bounded, and B a Banach space.
Such a result was proved in [12] for Ω = (0, T ) with T > 0. We generalize this result to
rectangles Ω in Rn, see Theorem 2.2, and under additional assumptions to arbitrary
open and bounded domains Ω ⊂ Rn, see Corollary 2.5.

Similar results in the framework of vector-valued Sobolev and Besov spaces can
also be found in [2], see Theorem 5.2 and the proof of Theorem 1.1. There, the
compactness result is obtained under the assumption that there exists θ > 0, such
that

sup
h∈Rn\{0}

‖f(·+ h)− f‖Lp(Ωh,B)

|h|θ
<∞.

However, our results are proven under the weaker assumption (ii) in Theorem 2.2.
In the homogenization theory, we are often concerned with sequences of functions

in the space Lp((0, T )× Ω, B), for which we have to show strong convergence. Here,
due to lack of regularity, classical results like e. g., the Aubin-Lions Lemma cannot be
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applied, and the compactness result derived in this paper is an appropriate alternative.
In Section 3, we give an application of our main compactness result for a problem
arising in homogenization of processes on periodic surfaces.

2. Main result

In this section, we prove our main compactness theorem and related results.
The proof is based on the Arzelà-Ascoli theorem, which for the sake of completness
is repeated below, and uses similar arguments as in [12].

Lemma 2.1 (Arzelà-Ascoli). Let T be a compact Hausdorff space and B be a Banach-
space. A subset F ⊂ C(T,B) is relatively compact in C(T,B) iff the following condi-
tions hold:

(i) For every x ∈ T , the set F (x) := {f(x) : f ∈ F} is relatively compact in B.
(ii) F is uniformly equicontinuous, i. e., for all ε > 0 there exists η > 0 such that

‖f(x2)− f(x1)‖B < ε for all f ∈ F, x1, x2 ∈ T with ‖x2 − x1‖ < η.

Proof. See e. g., [4, Theorem 0.4.11]. �

For an arbitrary set Ω ⊂ Rn and a vector ξ ∈ Rn, we define

Ωξ := Ω ∩ (Ω− ξ).

Further, for a, b ∈ Rn we define

(a, b) := (a1, b1)× . . .× (an, bn),

with (ai, bi) := (bi, ai) if bi < ai. For f : Ω→ B and h ∈ Rn we define

τhf : (Ω− h)→ B, τhf(x) = f(x+ h).

We now state our main theorem:

Theorem 2.2. Let p ∈ [1,∞), B be a Banach-space, Ω = (a, b) with a, b ∈ Rn (ai < bi),
and F ⊂ Lp(Ω, B). Then F is relatively compact in Lp(Ω, B) iff

(i) for every rectangle C ⊂ Ω the set
{∫
C
fdx : f ∈ F

}
is relatively compact in B,

(ii) for z ∈ Rn with 0 ≤ zi < bi − ai, i = 1, . . . , n it holds

sup
f∈F
‖τzf − f‖Lp(Ωz,B) → 0 for z → 0.

Proposition 2.3. The condition (ii) in Theorem 2.2 is equivalent to the following one:

(ii)′ For i = 1, . . . , n and s > 0 it holds

sup
f∈F
‖τseif − f‖Lp(Ωsei ,B) → 0 for s→ 0,

where ei is the i-th unit normal vector.
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Proof of the Proposition 2.3. It is straightforward that (ii) implies (ii)′. For the other
implication, we choose z ∈ Rn with zi ≥ 0 small. Then we have z =

∑n
i=1 ziei and we

define z0 := 0 ∈ Rn and zj :=
∑j
i=1 ziei for j ∈ {1, . . . , n}. Of course zn = z. Now,

we use the triangle inequalitys to obtain

‖τzf − f‖Lp(Ωz,B) ≤
n−1∑
j=0

‖τzj+1f − τzjf‖Lp(Ωz,B)

≤
n∑
i=1

‖τzieif − f‖Lp(Ωziei ,B),

where for the last inequality we used for j = 0, . . . , n− 1

‖τzj+1f − τzjf‖pLp(Ωz,B) =

∫
Ωz

∥∥∥∥∥f
(
x+

j+1∑
i=1

ziei

)
− f

(
x+

j∑
i=1

ziei

)∥∥∥∥∥
p

B

dx

=

∫
Ωz+

∑j
i=1 ziei

∥∥f(x+ zj+1ej+1)− f(x)
∥∥p
B
dx

≤
∫

Ωzj+1ej+1

∥∥f(x+ zj+1ej+1)− f(x)
∥∥p
B
dx.

In the last inequality, we used the inclusion Ωz +
∑j
i=1 ziei ⊂ Ωzj+1ej+1

. In fact,

Ωzj+1ej+1
= {y ∈ Rn : yj+1 ∈ (aj+1, bj+1 − zj+1), yi ∈ (ai, bi) for i 6= j + 1}

and for y ∈ Ωz +
∑j
i=1 ziei = [a, b− z] +

∑j
i=1 ziei, we have

yi ∈ (ai + zi, bi), for i = 1, . . . , j

yi ∈ (ai, bi − zi), for i = j + 1, . . . , n.

The claim follows. �

Proof of Theorem 2.2. Assume first that F is relatively compact in Lp(Ω, B). Then,
we can use exactly the same arguments as in the proof of [12, Theorem 1]. In fact, (i)
follows from the continuity of the mapping f 7→

∫
C
fdx from Lp(Ω, B) into B, and

(ii) follows, since in metric spaces, relatively compact sets are totally bounded, and
the density of C0

(
Ω, B) in Lp(Ω, B).

Conversely, assume that (i) and (ii) hold. Let f ∈ F , and h ∈ Rn with hi > 0
for i = 1, . . . , n (for example choose h = s b−a2 with s > 0). Set

Vh := |(0, h)| > 0,

the measure of (0, h). For x ∈ Ωh, we have (x, x+ h) ⊂ Ω, and we define the function

(Mhf)(x) :=
1

Vh

∫
(x,x+h)

f(z)dz.

We first show that Mhf ∈ C
(
Ωh, B

)
, and the set

MhF := {Mhf : f ∈ F}
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is relatively compact in C(Ωh, B). Let ε > 0, and choose δ > 0 so small, that for
i = 1, . . . , n it holds

‖τδ̃eif − f‖L1(Ωδ̃ei
,B) <

Vhε

n
, for all δ̃ ≤ δ.

This is possible due to (ii) and the continuity of the embedding Lp(Ωδ̃ei , B) into

L1(Ωδ̃ei , B). Let x0 ∈ Ωh and x ∈ Bδ(x0)∩Ωh, where the ball is taken with respect to

the ‖ · ‖∞-norm on Rn. Then x = x0 +
∑n
i=1 δiei with δi ∈ (−δ, δ). For j = 1, . . . , n,

we define the vector

xj = x0 +

j∑
i=1

δiei.

Thus, we have xn = x. Now, as in the proof of Proposition 2, we obtain

‖Mhf(x)−Mhf(x0)‖B ≤
n−1∑
j=0

‖Mhf(xj+1)−Mhf(xj)‖B , (2.1)

and we have xj+1− xj = δj+1ej+1 for j = 0, . . . , n− 1. Without loss of generality, we
assume that δi > 0 for i = 1, . . . , n. Otherwise, i. e., for δi < 0, we change the role of
xj+1 and xj in the following argumentation and for δi = 0 it is trivial. It holds that

‖Mhf(xj+1)−Mhf(xj)‖B =
1

Vh

∥∥∥∥∥
∫

(xj ,xj+h)

(τxj+1−xjf − f) (z)dz

∥∥∥∥∥
B

≤ 1

Vh

∫
(xj ,xj+h)

‖τδj+1ej+1
f − f‖Bdz

(∗)
≤ 1

Vh
‖τδj+1ej+1f − f‖L1(Ωδj+1ej+1

,B) <
ε

n
,

(2.2)

where in (∗) we used (xj , xj + h) ⊂ Ωδj+1ej+1
. In fact, from x, x0 ∈ Ωh, it follows by

contradiction, that xi ∈ Ωh for i = 1, . . . , n. This implies that

aj+1 ≤ xjj+1 and xjj+1 + hj+1 = xj+1
j+1 − δj+1 + hj+1 ≤ bj+1 − δj+1,

for j = 1, . . . , n − 1 , and hence, the inclusion (xj , xj + h) ⊂ Ωδj+1ej+1
. From (2.1)

and (2.2), we obtain that Mhf ∈ C(Ωh, B), and especially the set MhF is uniformly
equicontinuous in C(Ωh, B).

For x ∈ Ωh we obtain from the assumption (i) that the set

(MhF )(x) :=

{
1

Vh

∫
(x,x+h)

fdy : f ∈ F

}
is relatively compact in B. From Lemma 2.1 it follows that MhF is relatively compact
in C(Ωh, B).

The next step in the proof is to show that F is the uniform limit of MhF in
Lp(Ωξ, B) for h → 0, see also [12, (2.2)]. We start from the following relation which
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holds for x ∈ Ωh:

(Mhf − f) (x) =
1

Vh

∫
(x,x+h)

f(z)− f(x)dz =
1

Vh

∫
(0,h)

(τzf − f)(x)dz.

With the Jensen-inequality and the Fubini-Theorem we get

‖Mhf − f‖pLp(Ωh,B) =

∫
Ωh

∥∥∥∥∥ 1

Vh

∫
(0,h)

τzf(x)− f(x)dz

∥∥∥∥∥
p

B

dx

≤ 1

Vh

∫
Ωh

∫
(0,h)

‖τzf(x)− f(x)‖pB dzdx

≤ sup
z∈(0,h)

‖τzf − f‖pLp(Ωh,B),

and therefore

‖Mhf − f‖Lp(Ωh,B) ≤ sup
z∈(0,h)

‖τzf − f‖Lp(Ωh,B).

Due to assumption (ii), for every ε > 0 we can choose h so small that for every
z ∈ (0, h) and every f ∈ F we have

‖τzf − f‖Lp(Ωh,B) ≤ ‖τzf − f‖Lp(Ωz,B) < ε,

and we obtain

‖Mhf − f‖Lp(Ωh,B) < ε.

Hence, F is the uniform limit ofMhF in Lp(Ωξ, B) with ξ = b−a
2 for h→ 0. SinceMhF

is relatively compact in C(Ωξ, B), it is also relatively compact in Lp(Ωξ, B), because

the embedding C(Ωξ, B) ↪→ Lp(Ωξ, B) is continuous. From [12, (2.2)] it follows that
F is relatively compact in Lp(Ωξ, B).

Until now we have only established that F is relatively compact in Lp(Ωξ, B), but
we have to show the result for the whole domain Ω. Let Σ := {−1, 1}n and for z ∈ Rn
we define zσ := (σ1z1, . . . , σnzn). Of course, we have #Σ = 2n and Ω =

⋃
σ∈Σ Ωξσ . If

additionally zi ≥ 0 for i = 1, . . . , n, then we write z+
σ := zσ+z

2 (positive components

of zσ) and z−σ := zσ−z
2 (the negative components of zσ), such that zσ = z+

σ + z−σ . For
h ∈ Rn we write (x, x+ hσ) := (x+ h−σ , x+ h+

σ ).
We define the function Mhσf in the same way as Mhf , i. e.,

Mhσf(x) :=
1

Vh

∫
(x,x+hσ)

f(z)dz for x ∈ Ωhσ ,

and for all x ∈ Ωhσ we obtain with the transformation formula

(Mhσf − f)(x) =
1

Vh

∫
(x,x+hσ)

f(z)− f(x)dz =
1

Vh

∫
(0,hσ)

(τzf − f)(x)dz.
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With Fubini’s Theorem, the Jensen-inequality and again by integration by substitu-
tion, we get

‖Mhσf − f‖
p
Lp(Ωhσ ,B) ≤

1

Vh

∫
Ωhσ

∫
(0,hσ)

‖(τzf − f)(x)‖pBdzdx

=
1

Vh

∫
Ωhσ

∫
(0,h)

‖f(x+ zσ)− f(x)‖pBdzdx

=
1

Vh

∫
(0,h)

∫
Ωhσ

‖f(x+ z+
σ + z−σ )− f(x)‖pBdxdz

=
1

Vh

∫
(0,h)

∫
Ωhσ+z−σ

‖f(x+ z+
σ )− f(x− z−σ )‖pBdxdz

≤ 1

Vh

∫
(0,h)

∫
Ωz

‖f(x+ z+
σ )− f(x− z−σ )‖pBdxdz,

where in the last inequality we used Ωhσ + z−σ ⊂ Ωz for z ∈ (0, h). To show this, we
consider for y ∈ Ωhσ + z−σ , and for i = 1, . . . , n the following two cases:

1) σi = 1: Then (hσ)i = hi and (z−σ )i = 0 and therefore
yi ∈ (ai, bi − hi) ⊂ (ai, bi − zi).

2) σi = −1: Then (hσ)i = −hi and (z−σ )i = −zi and therefore
yi ∈ (ai + hi − zi, bi − zi) ⊂ (ai, bi − zi).

Thus, yi ∈ (ai, bi − zi) for i = 1, . . . , n, i. e., y ∈ Ωz. Hence,

‖Mhσf − f‖Lp(Ωhσ ,B) ≤ sup
z∈(0,h)

‖τz+σ f − τ−z−σ f‖Lp(Ωz,B)

≤ sup
z∈(0,h)

‖τz+σ f − f‖Lp(Ωz,B) + sup
z∈(0,h)

‖τ−z−σ f − f‖Lp(Ωz,B)

≤ sup
z∈(0,h)

‖τz+σ f − f‖Lp(Ω
z
+
σ
,B) + sup

z∈(0,h)

‖τ−z−σ f − f‖Lp(Ω
−z−σ

,B).

With the same arguments as above we obtain that F is relatively compact in
Lp(Ωξσ , B) for all σ ∈ Σ. Hence, F is sequentially compact in Lp(Ω, B) and therefore
F is relatively compact in Lp(Ω, B). �

The next proposition gives us a further characterization of the condition (ii) in
Theorem 2.2, where we use a special decomposition of the domain Ω, and consider
the shifts on fixed domains. We use the same notation as in the proof of Theorem 2.2,
especially we have ξ = b−a

2 .

Proposition 2.4. The condition (ii) in Theorem 2.2 is equivalent to the following one:

(ii)′′ For z ∈ Rn and zi ≥ 0 it holds

sup
f∈F
‖τzσf − f‖Lp(Ωξσ ,B) → 0 for z → 0

for all σ ∈ Σ.
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Proof. Let (ii) from Theorem 2.2 be true. We use similar arguments as in the last
part of the proof of Theorem 2.2. Let ε > 0 and δ > 0 so small that for all h ∈ [0, δ]n

the following holds

‖τhf − f‖Lp(Ωh,B) <
ε

2
.

Now, for z ∈ [0, δ]n it follows by substitution and from

Ωξσ + z−σ ⊂ Ωz (2.3)

(which is proved below) that

‖τzσf − f‖
p
Lp(Ωξσ ,B) =

∫
Ωξσ

‖f(x+ zσ)− f(x)‖pBdx

=

∫
Ωξσ+z−σ

‖f(x+ z+
σ )− f(x− z−σ )‖pBdx

≤
∫

Ωz

‖f(x+ z+
σ )− f(x− z−σ )‖pBdx

= ‖τz+σ f − τ−z−σ f‖
p
Lp(Ωz,B).

Since z+
σ ,−z−σ ∈ [0, δ]n, it follows that

‖τzσf − f‖Lp(Ωξσ ,B) ≤ ‖τz+σ f − f‖Lp(Ωz,B) + ‖τ−z−σ f − f‖Lp(Ωz,B)

≤ ‖τz+σ f − f‖Lp(Ω
z
+
σ
,B) + ‖τ−z−σ f − f‖Lp(Ω

−z−σ
,B)

<
ε

2
+
ε

2
= ε.

Let us now give the proof of (2.3): For x ∈ Ωξσ + z−σ exists x̄ ∈ Ωξσ with
x = x̄+ z−σ , i. e.,

x̄i ∈

{(
ai,

bi−ai
2

)
for σi = 1(

bi−ai
2 , bi

)
for σi = −1

, and (z−σ )i =

{
0 for σi = 1

−zi for σi = −1
,

for i = 1, . . . , n. Hence, we obtain

xi ∈

{(
ai,

bi−ai
2

)
for σi = 1(

bi−ai
2 − zi, bi − zi

)
for σi = −1.

Since Ωz =
∏n
i=1(ai, bi − zi), we obtain x ∈ Ωz.

Conversely, let (ii)′′ hold. For ε > 0 choose δ > 0 so small that for all σ ∈ Σ and
all h ∈ [0, δ]n, we have

‖τhσf − f‖Lp(Ωξσ ,B) <
ε

2 p
√

2n
.
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Let z ∈ [0, δ]n, then we obtain for σ ∈ Σ

‖τzf − f‖pLp(Ωξσ∩Ωz,B) =

∫
Ωξσ∩Ωz

‖f(x+ z)− f(x)‖pBdx

=

∫
Ωξσ∩Ωz

‖f(x+ z+
σ − z−σ )− f(x)‖pBdx

=

∫
(Ωξσ∩Ωz)−z−σ

‖f(x+ z+
σ )− f(x+ z−σ )‖pBdx

≤ ‖τz+σ f − τz−σ f‖
p
Lp(Ωξσ ,B).

Further, we have z+
σ ,−z−σ ∈ [0, δ]n and z+

σ = (z+
σ )σ and z−σ = (−z−σ )σ, what implies

‖τzf−f‖Lp(Ωξσ∩Ωh,B)

≤ ‖τz+σ f − f‖Lp(Ωξσ ,B) + ‖τz−σ f − f‖Lp(Ωξσ ,B) <
ε

p
√

2n
,

i. e.,

‖τzf − f‖pLp(Ωz,B) =
∑
σ∈Σ

‖τzf − f‖pLp(Ωξσ∩Ωz,B) < εp. �

Until now we have only considered rectangular domains in Rn. Now we extend
our result to more general domains. However, we need an additional assumption to
control the functions near the boundary. We use the same notation as above and
define for δ > 0 the set Ωδ := {x ∈ Ω : dist(x, ∂Ω) > δ} and for z ∈ Rn the set

Ωzδ := {x ∈ Ωδ : x+ z ∈ Ωδ} = {x, x+ z ∈ Ωδ}.

Corollary 2.5. Let Ω ⊂ Rn be an open and bounded set. Let F ⊂ Lp(Ω, B) for a
Banach space B and p ∈ [1,∞). Then F is relatively compact in Lp(Ω, B) iff

(i) for every measurable set C ⊂ Ω the sequence
{∫
C
fdx : f ∈ F

}
is relatively com-

pact in B,
(ii) for all δ > 0 it holds that supf∈F ‖τzf − f‖Lp(Ωzδ ,B) → 0 for z → 0,

(iii) for δ > 0 it holds that supf∈F
∫

Ω\Ωδ |f(x)|pdx→ 0 for δ → 0.

Proof. For F relatively compact in Lp(Ω, B) the statements (i) - (iii) can be estab-
lished in a similar way as in Theorem 2.2.

Now assume, that (i) - (iii) hold. Since Ω is bounded, there exists a rectan-
gle W ⊂ Rn with Ω ⊂⊂ W . Extend every function f ∈ F by zero to a function
f̃ ∈ Lp(W,B) and obtain a set F̃ ⊂ Lp(W,B). Using the same arguments as in [1,
U2.21], we can show that the assumptions of Theorem 2.2 are fulfilled and the claim
follows. �

3. Application

We consider an application of the compactness criterion derived din Section 2 to
the homogenization of a nonlinear reaction-diffusion-problem on a rapidly oscillating
periodic surface. Such problems arise in the mathematical modelling of processes in
porous catalysts, see e.g. [7, 9], in biological structures, like e.g. biochemical processes
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in cells and tissue, see e.g. [6, 8, 11]. The periodically oscillating surface and the so
called microscopic or ε-problem are given in the following.

Let Y = (0, 1)n with n ∈ N, n ≥ 3, and Ω = (a, b) ⊂ Rn with a, b ∈ Zn and
ai < bi for i = 1, . . . , n. We assume that the sequence ε fulfills ε−1 ∈ N. Further, let
Γ ⊂ Y be a C1,1-submanifold, such that

Γε :=
{
x ∈ Ω : x = ε(k + y) for some k ∈ Zn, y ∈ Γ

}
is connected and of class C1,1. Especially, we have ∂Γε ⊂ ∂Ω. On Γε we consider the
following problem:

∂tuε −∆Γεuε = f(uε) in (0, T )× Γε,

−∇Γεuε · νΓε = 0 on (0, T )× ∂Γε,

uε(0) = u0 in Γ.

(3.1)

Here, ∆Γε denotes the Laplace-Beltrami-operator, f ∈ C0,1(R), i. e., f is globally
Lipschitz-continuous, and u0 ∈ C1

(
Ω
)
. For the sake of simplicity the diffusion-

coefficient is equal to 1, the nonlinearity f does not depend on a macroscopic or
oscillating variable, and on the boundary ∂Γε, we consider a Neumann-zero condition.
However, the following method can easily be generalized to more general problems,
e. g., systems of equations and general diffusion-tensors. We are looking for a weak
solution of Problem (3.1), i. e., uε ∈ L2((0, T ), H1(Γε))∩H1((0, T ), L2(Γε)), such that
for all φ ∈ H1(Γε) we have∫

Γε

∂tuεφdσ +

∫
Γε

∇Γεuε · ∇Γεφdσ =

∫
Γε

f(uε)φdσ (3.2)

almost everywhere in (0, T ). With the Galerkin-method we obtain:

Proposition 3.1. There exists a unique weak solution uε of Problem (3.1), such that

‖uε‖L∞((0,T ),L2(Γε)) +
∥∥∇Γεuε

∥∥
L2((0,T ),L2(Γε))

+ ‖∂tuε‖L2((0,T )×Γε) ≤ Cε
− 1

2 .

This (microscopic) model describes the processes and the medium in a very
detailed way. However, due to its high complexity it is not appropriate for practical
applications, especially it is not amenable to numerical computations. Therefore, an
effective (macroscopic, homogenized) model is needed, which is an approximation of
the microscopic one, and consists of equations formulated on a macroscopic scale. The
effective model is derived by using methods of periodic homogenization. This consists
in showing that for ε→ 0, the sequence of solutions (uε) converges to a limit function
u0, and in the derivation of the limit problem satisfied by u0.

The appropriate techniques to be used for the derivation of the effective model
in our application are the method of two-scale convergence for functions on periodic
surfaces introduced in [9], and its equivalent characterisation with the help of the
unfolding operator, see e.g. [3, 6]. Based on the estimates (3.1), passing to the limit
in the linear terms in the equation (3.2) can be performed like in [5], where a linear
problem was considered. Taking the limit in the nonlinear term is however more
challenging. To achieve this, we make use of the unfolding operator

T bε : L2((0, T )× Γε)→ L2((0, T )× Ω× Γ),
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see [3, 6], defined via

T bε φ(t, x, y) := φ
(
t, ε
[x
ε

]
+ εy

)
.

Here [·] denotes the Gauß-bracket. Thus, from the theory developed in [5], we obtain
the existence of a limit function u0 ∈ L2((0, T ), H1(Ω)) ∩ H1((0, T ), L2(Ω)) with
u0(0) = u0, such that for all φ ∈ C∞0

(
(0, T )× Ω

)
it holds that

|Γ|
∫ T

0

∫
Ω

∂tu0φdxdt+

∫ T

0

∫
Ω

D∗∇u0 · ∇φdxdt =

lim
ε→0

∫ T

0

∫
Ω

∫
Γ

f
(
T bε uε

)
T bε φdσydxdt.

(3.3)

The homogenized diffusion-coefficient D∗ ∈ Rn×n is given by

D∗ij =

∫
Γ

(
∇Γwi +∇Γyi

)
· ∇Γyjdσ,

where wi for i ∈ {1, . . . , n} are the solutions of the following so called cell problems:

−∇Γ ·
(
∇Γwi +∇Γyi

)
= 0 in Γ,

−(∇Γwi +∇Γyi
)
· ν = 0 on ∂Γ,

wi is Y -periodic and

∫
Γ

widσ = 0.

To show the convergence of the nonlinear term we use the fact that

T bε φ→ φ strongly in L2((0, T )× Ω× Γ),

due to the regularity of φ. Hence, to go to the limit on the right-hand side in (3.3),
it remains to show the weak convergence of f

(
T bε uε

)
to f(u0) in L2((0, T )× Ω× Γ).

Therefore, we show the strong convergence of T bε uε to u0 in L2((0, T )×Ω×Γ). Then,
due to the Lipschitz-regularity of f , we actually obtain the strong convergence of
f
(
T bε uε

)
to f(u0) in L2((0, T )× Ω× Γ). In [11] such a result was proved by showing

that T bε uε is a Cauchy-sequence. However, this result strongly relied on the fact, that
the diffusion coefficient in the microscopic problem was of order ε2, which led to an
equation for T bε uε where all coefficients were of order one. In our paper this is not
the case, and the argument with the Cauchy-sequence cannot be applied. Instead, we
use the compactness criterion from Section 2. A similar approach was used in [10],
where the classical compactness criterion by Kolmogorov, see e. g., [13], for the space
L2((0, T )×Ω×Z), with Z = (0, 1)n−1×(−1, 1), was employed. This is not appropriate
for the situation in our application since shifts with respect to the surface-variable y
make no sense.

In the following, we use the same notations as in Section 2, especially ξ = b−a
2 .

Lemma 3.2. Let l ∈ Nn0 . Then, for all ε > 0, such that |liε| <
∣∣ bi−ai

2

∣∣ the following
estimate holds for all σ ∈ Σ

‖τεlσuε − uε‖L2((0,T )×(Γε)ξσ ) ≤ C|l|
√
ε.
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Proof. We test the variational equation for τεlσuε − uε with η2(τεlσuε − uε), where
η ∈ C∞0 (Rn) is a cut-off function with 0 ≤ η ≤ 1, η = 1 in Ωξσ , and zero outside a
small neighbourhood of Ωξσ . Then, Gronwall’s inequality and the Lipschitz-continuity
of u0 give the desired result. �

Theorem 3.3. For ε→ 0, we have

T bε uε → u0 strongly in L2((0, T )× Ω× Γ).

Especially, we obtain

f
(
T bε uε

)
→ f(u0) strongly in L2((0, T )× Ω× Γ).

Proof. We consider T bε uε as a function from L2(Ω, L2((0, T ) × Γ)) and prove the
condition (i) in Theorem 2.2 and (ii)′′ in Proposition 2.4. Let A ⊂ Ω measurable,
and define vεA :=

∫
A
T bε uε(·t, x, ·y)dx. The a priori estimate in Proposition 3.1 imply

that vεA is bounded in L2((0, T ), H1(Γ)) ∩H1((0, T ), L2(Γ)), and due to the Aubin-
Lions Lemma the sequence is relatively compact in L2((0, T ), L2(Γ)). It remains to
check condition (ii)′′. For z ∈ Rn with zi ≥ 0 small, we obtain as in the proof of [10,
Theorem 2.3, page 700] for l(ε, z,m) := m+

[
z
ε

]
∥∥τzσT bε uε − T bε uε∥∥2

L2(Ωξσ ,L
2((0,T )×Γ))

≤ ε
∑

m∈{0,1}n

∥∥τεl(ε,z,m)σuε − uε
∥∥2

L2((0,T )×(Γε)ξσ )
≤ Cε2|l(ε, z,m)|2.

Since |l(ε, z,m)|ε→ 0 for ε→ 0 and z → 0, condition (ii)′′ is valid. Hence, Theorem
2.2 and Proposition 2.4 imply the desired result. �

Altogether, we immediately obtain that u0 fulfills the following variational equation:

|Γ|
∫

Ω

∂tu0φdx+

∫
Ω

D∗∇u0 · ∇φdx = |Γ|
∫

Ω

f(u0)φdx,

for all φ ∈ H1(Ω) and almost everywhere in (0, T ). The corresponding inital and
boundary value problem is

|Γ|∂tu0 −∇ · (D∗∇u0) = |Γ|f(u0) in (0, T )× Ω

−D∗∇u0 · ν = 0 on (0, T )× ∂Ω

u0(0) = u0 in Ω.
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Abstract. Of concern are some classes of initial-boundary value differential prob-
lems associated with one-dimensional Fleming-Viot differential operators. Among
other things, these operators occur in some models from population genetics to
study the fluctuation of gene frequency under the influence of mutation and se-
lection. The main aim of this survey paper is to discuss old and more recent
results about the existence, uniqueness and continuous dependence from initial
data of the solutions to these problems through the theory of the C0-semigroups
of operators. Other additional aspects which will be highlighted, concern the ap-
proximation of the relevant semigroups in terms of positive linear operators. The
given approximation formulae allow to infer several preservation properties of
the semigroups together with their asymptotic behavior. The analysis is carried
out in the context of the space C([0, 1]) as well as, in some particular cases, in
Lp([0, 1]) spaces, 1 ≤ p < +∞. Finally, some open problems are also discussed.
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1. Introduction

In the present paper we shall discuss initial-boundary value differential problems
associated with differential operators of the form

A(u)(x) :=
α(x)

2
u′′(x) + (p(1− x)− qx)u′(x) (0 < x < 1) (1.1)

acting on suitable subspaces of C2
∗([0, 1]), the linear space of all real-valued continuous

functions on [0, 1] which are twice continuously differentiable on ]0, 1[.
Here, α ∈ C([0, 1]), 0 ≤ α(x) for every x ∈ [0, 1], p ≥ 0 and q ≥ 0.



292 Francesco Altomare

The differential operators (1.1) are referred to as the one-dimensional Fleming-
Viot operators and they occur in some models from population genetics to study the
fluctuation of gene frequency under the influence of mutation and selection ([15]).

Setting

a := p+ q and b :=

{
1 if p = q = 0,

p/(p+ q) if p+ q > 0,

the operator (1.1) turns into the operator

A(u)(x) :=
α(x)

2
u′′(x) + a(b− x)u′(x) (0 < x < 1) (1.2)

with a ≥ 0 and 0 ≤ b ≤ 1, which, to our purposes, is more convenient to handle.

We begin to state the first main problem we shall deal with.

Problem 1.1. Determine a linear subspace D(A) of C2
∗([0, 1]) such that

(i) For every u ∈ D(A), A(u) continuously extends to [0, 1].
(ii) The operator A : D(A) → C([0, 1]) generates a strongly continuous Markov

semigroup (T (t))t≥0 on C([0, 1]).

For some details concerning the theory of strongly continuous (Markov) semi-
group and for unexplained terminology the reader is referred, e.g., to [6, Chapter 2].

If (A,D(A)) generates a strongly continuous semigroup, then, given u0 ∈ C([0, 1]),
the following Cauchy problem is well-posed

∂u(x,t)
∂t = α(x)∂

2u(x,t)
∂x2 + a(b− x)∂u(x,t)∂x 0 < x < 1, t ≥ 0,

u(·, t) ∈ D(A) t ≥ 0,

lim
t→0+

u(x, t) = u0(x) uniformly w.r. to 0 ≤ x ≤ 1,

(1.3)

if and only if u0 ∈ D(A).

Moreover, the unique solution to (1.3) is given by

u(x, t) = T (t)u0(x) (0 ≤ x ≤ 1, t ≥ 0). (1.4)

and it continuously depends on the initial datum u0.
The subspace D(A) (if any) is referred to as a well-posed domain for A.

Note also that (1.3) is, indeed, an initial-boundary value problem since the
boundary conditions are usually included in the definition of D(A).

The partial differential equation which appears in (1.3) is the so-called backward
equation of a normal Markov process

(Ω,U , (P x)x∈[0,1], (Zt)t≥0)

having [0, 1] as state space, with mean instantaneous velocity a(b − x) and variance
instantaneous velocity α(x) at the position x ∈ [0, 1] (see, e.g., [6, Section 2.3.2]

Having determined D(A), we shall discuss the next subsequent problem:
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Problem 1.2. Introduce (if any) a sequence of positive linear operators (Ln)n≥1 on
C([0, 1]) such that for every t ≥ 0, for some sequence (k(n))n≥1 of positive integers
and for every f ∈ C([0, 1]),

T (t)f = lim
n→∞

Lk(n)n f uniformly on [0, 1]. (1.5)

In such a case, we say that the sequence (Ln)n≥1 is an admissible sequence for
the semigroup (T (t))t≥0.

In principle, from formula (1.5) it is possible to infer some preservation properties
of the semigroup which have their counterparts in terms of regularity properties (with
respect to the spatial variable x ∈ [0, 1]) of the solutions

u(x, t) = T (t)u0(x)

to the initial-boundary value problems (1.3).

Moreover, estimates of the quantities ‖T (t)f − L
k(n)
n f‖ could give numerical

approximations of the solutions themselves.
According to a theorem of H. F. Trotter ([6, Corollary 2.2.3]), a natural way to

get the approximation formula (1.5), is to show that

(i) ‖Lkn‖ ≤M exp(ωnk) for some M ≥ 1 and ω ∈ R, and for every n, k ≥ 1,
and, in addition, to determine (if any) a linear subspace D0 of D(A) such that

(ii) D0 is a core for D(A), i.e., D0 is dense in D(A) for the graph norm

‖u‖A := ‖u‖+ ‖A(u)‖ (u ∈ D(A)),

and
(iii) For every u ∈ D0,

lim
n→∞

n(Ln(u)− u) = A(u) uniformly on [0, 1].

In such a case, formula (1.5) holds true for every t ≥ 0, for every sequence (k(n))n≥1
of positive integers such that k(n)/n→ t and for every f ∈ C([0, 1]).
Moreover, ‖T (t)‖ ≤M exp(ωt) for every t ≥ 0.

When conditions (i)–(iii) are satisfied, we say that the sequence (Ln)n≥1 is a
strong admissible sequence for the semigroup (T (t))t≥0.

In the subsequent section we shall survey some old and more recent results
about these two problems. However, we point out that for the case α(x) = x(1 − x)
(x ∈ [0, 1]), rather satisfactory results have been obtained (see, e.g., [11], [12], [13], [16]
and the references therein). For the general case, parts of the results we are discussing
in the present paper are taken from [8].

We also point out that in the paper [8] as well as in the monograph [6], similar

problems have been treated for general convex compact subsets K of Rd, d ≥ 1,
having non-empty interior.

In these contexts the differential operators are of the form

A(u)(x) :=
1

2

d∑
i,j=1

αij(x)
∂2u

∂xi∂xj
(x) +

d∑
i=1

a(bi − xi)
∂u

∂xi
(x). (1.6)

(u ∈ C2(K), x ∈ K).
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However, in the framework of the unit interval more complete results can be
shown. For additional results concerning Fleming-Viot type differential operators we
refer, e.g., to [1], [14] and the references therein.

2. Generation results and approximation

On account of the Feller theory developed in the 1950s (see, e.g., [6, Section
2.3.3]), we shall describe four groups of boundary conditions which allow to determine
well-posed domains for A.

From now on we shall assume that

(i) 0 < α(x) for each 0 < x < 1 and α(0) = α(1) = 0.
(ii) α is differentiable at 0 and at 1 and α′(0) 6= 0 6= α′(1);

From conditions (i) and (ii) it follows that

0 < α(x) ≤Mx(1− x) for each 0 < x < 1 and for some M > 0.

There is no loss of generality in assuming that M = 1 because, if (T (t))t≥0
and (S(t))t≥0 denote the Markov semigroups generated by the differential operators
associated with α, a and b, and α

M , a
M and b respectively, then

T (t) = S(Mt) for every t ≥ 0.

Thus, from now on we shall assume that

(iii) 0 < α(x) ≤ x(1− x) for each 0 < x < 1 .

The special case α(x) = x(1 − x) for every x ∈ [0, 1], will be referred to as the
maximal case.

Finally, we also assume that

(iv) the function

r(x) :=



ab

2α′(0)
if x = 0,

a(b− x)x(1− x)

2α(x)
if 0 < x < 1,

a(1− b)
2α′(1)

if x = 1,

(2.1)

is Hölder continuous at 0 and at 1.

Condition (iv) is satisfied, for instance, if α is differentiable in [0, 1]. Moreover,
note also that α′(0) ≤ 1 and −1 ≤ α′(1).

It is also useful to consider the function

λ(x) :=
a(b− x)

r(x)
=


2α′(0) if x = 0,

x(1− x)

2α(x)
if 0 < x < 1,

−2α′(1) if x = 1.

(2.2)
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Then, A = λB, where B denotes the differential operator

B(u)(x) :=
x(1− x)

2
u′′(x) + r(x)u′(x) (0 < x < 1) (2.3)

(u ∈ C2
∗([0, 1])).

Thus, on account of a well-known multiplicative perturbation generation result
(see, e.g., [6, Theorem 2.3.11]) the generation problems for A can be solved by studying
similar ones for B.

2.1. The case a = 0 and the case 0 < ab < α′(0)/2 and 0 < a(1− b) < −α′(1)/2

In these cases a well-posed domain for A is the so-called Ventcel’ domain of A.
For a proof of the next result it is enough to combine [6, Theorem 5.7.2] and [13, pp.
120-121, item (2)], taking the formula A = λB into account.

Theorem 2.1. If a = 0 or if 0 < ab < α′(0)/2 and 0 < a(1− b) < −α′(1)/2, then a
well-posed domain for A is

DV (A) :=

{
u ∈ C2

∗([0, 1]) | lim
x→0+

A(u)(x) = 0 = lim
x→1−

A(u)(x) = 0

}
, (2.4)

The capital letter V refers to the mathematician Ventcel’ who extended the
Feller work to multidimensional settings. Moreover, the Ventcel’ conditions, i.e., the
boundary conditions incorporated in DV (A), imply that, once the Markov process
reaches 0 or 1, then it stops there for ever ([6, Subsection 2.3.3].

As regards the construction of a strong admissible sequence for the semigroup,
we are able to provide a solution for the case a = 0 only and we leave as an open
problem the second subcase 0 < ab < α′(0)/2 and 0 < a(1− b) < −α′(1)/2. However,
at least in the maximal case α(x) = x(1 − x) (x ∈ [0, 1]), it is possible to describe
the asymptotic behaviour of the semigroup also for the second subcase (for the case
a = 0 see the subsequent results).

We have indeed (see [11, Theorem 4.2]) that for every f ∈ C([0, 1])

lim
t→+∞

T (t)f = f(0)(1− ϕ) + f(1)ϕ uniformly on [0, 1],

where, for every x ∈ [0, 1],

ϕ(x) :=

∫ x
0
t−2ab(1− t)−2a(1−b)dt∫ 1

0
t−2ab(1− t)−2a(1−b)dt

.

In particular,

lim
t→∞

T (t)(f) = 0 uniformly on [0, 1]

if and only if f(0) = f(1) = 0.
We proceed now to study the case a = 0. According to [6, Remark 4.5.5], consider

a Markov operator T on C([0, 1]) such that T (e1) = e1 and

α = T (e2)− e2,

where e1(x) = x and e2(x) = x2 (x ∈ [0, 1]).
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By appealing to the Riesz representation theorem, consider the family (µx)0≤x≤1
of probability Borel measures on [0, 1] such that

T (f)(x) :=

∫ 1

0

fdµx, (0 ≤ x ≤ 1 and f ∈ C([0, 1])). (2.5)

Definition 2.2. For every n ≥ 1, the n-th Bernstein-Schnabl operator associated with T
is the positive linear operator Bn : C([0, 1]) −→ C([0, 1]) defined for every f ∈ C([0, 1])
and x ∈ [0, 1] as

Bn(f)(x) : =

∫ 1

0

· · ·
∫ 1

0

f

(
x1 + · · ·+ xn

n

)
dµx(x1) · · · dµx(xn). (2.6)

For a detailed analysis on these operators and for a proof of the results below we
refer to the monographs [3, Chapter 6] and [6, Chapter 3] and the references therein.

Theorem 2.3. The sequence (Bn)n≥1 of Bernstein-Schnabl operators associated with T
is a strong admissible sequence for the semigroup generated by the operator (A,DV (A))
for the case a = 0, i.e.,

A(u)(x) :=
α(x)

2
u′′(x) (0 < x < 1)

and

DV (A) :=

{
u ∈ C2

∗([0, 1]) | lim
x→0+

A(u)(x) = 0 = lim
x→1−

A(u)(x) = 0

}
.

Moreover, C2([0, 1]) is a core for DV (A).

From the theorem above it is possible to infer some preservation properties of
the semigroup which have their counterparts in terms of regularity properties (with
respect to the spatial variable x ∈ [0, 1]) of the solutions

u(x, t) = T (t)u0(x)

to the relevant initial-boundary value problems.
For given M > 0 and 0 < σ ≤ 1 we set

Lip(M,σ) :=

{f ∈ C([0, 1]) || f(x)− f(y) |≤M | x− y |σ for every x, y ∈ [0, 1]} .
(2.7)

Corollary 2.4. The following statements hold true:

(1) T (t)f = f on 0 and 1 for every f ∈ C([0, 1]).
(2) If the operator T maps continuous increasing functions into (continuous) in-

creasing functions, then each T (t) maps continuous increasing functions into
increasing functions.

(3) If T (Lip(1, 1)) ⊂ Lip(1, 1), then for every M > 0, 0 < σ ≤ 1 and t ≥ 0,

T (t)(Lip(M,σ)) ⊂ Lip(M,σ).

(4) If f ∈ C([0, 1]), the following statements are equivalent:
(i) f is convex;

(ii) Bn+1(f) ≤ Bn(f) for every n ≥ 1;
(iii) f ≤ Bn(f) for every n ≥ 1;
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(iv) f ≤ T (t)f ˙ for every t ≥ 0.
(5) For every f ∈ C([0, 1])

lim
t→∞

T (t)(f) = (1− e1)f(0) + e1f(1)

uniformly on [0, 1] and hence

lim
t→∞

T (t)(f) = 0 uniformly on [0, 1]

if and only if f(0) = f(1) = 0.

In order to show the behaviour of the semigroup (T (t))t≥0 on convex functions,
for every f ∈ C([0, 1]) and x, y ∈ [0, 1], consider

∆(f ;x, y) := B2(f)(x) +B2(f)(y)− 2

∫∫
[0,1]2

f

(
s+ t

2

)
dµx(s)dµy(t),

where the operators B2 is the Bernstein-Schnabl operator of order 2.

Theorem 2.5. Suppose that

(i) T maps continuous convex functions into (continuous) convex functions;
(ii) ∆(f ;x, y) ≥ 0 for every convex function f ∈ C([0, 1]) and for every x, y ∈ [0, 1].

If f ∈ C([0, 1]) is convex, then T (t)f is convex for every t ≥ 0 and (T (t)f)t≥0 is
increasing.

For additional results concerning Bernstein-Schnabl operators we also refer to [2].

2.2. The case ab ≥ α′(0)/2 and a(1− b) ≥ −α′(1)/2

For all the results shown in this subsection the reader is referred to [8, Sections
3 and 4]

Theorem 2.6. If ab ≥ α′0)/2 and a(1− b) ≥ −α′(1)/2, then a well-posed domain for
A is

DM (A) :=

{
u ∈ C2

∗([0, 1]) | lim
x→0+

A(u)(x) ∈ R and lim
x→1−

A(u)(x) ∈ R

}
.

The domain DM (A) is also referred to as the maximal domain for A. Moreover,
the maximal boundary conditions incorporated in the domain DM (A), imply that
the probability that the Markov process reaches 0 or 1 in a finite time is zero ([6,
Subsection 2.3.3].

As regards the construction of a strong admissible sequence for the semigroup,
consider again a Markov operator T on C([0, 1]) such that T (e1) = e1 and α =
T (e2) − e2, along with the family (µx)0≤x≤1 of probability Borel measures on [0, 1]
representing T (see (2.5)). Finally let µ be a probability Borel measure on [0, 1].

Then, for every n ≥ 1, consider the positive linear operator Cn defined by setting

Cn(f)(x) =∫ 1

0

· · ·
∫ 1

0

f

(
x1 + . . .+ xn + axn+1

n+ a

)
dµx(x1) · · · dµx(xn)dµ(xn+1)

(2.8)

for every x ∈ [0, 1] and for every f ∈ C([0, 1]).
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The germ of the idea of the above definition goes back to [9] (see also [10]).
Subsequently, in [4] (see also [5]) the authors considered a natural generalization to
multidimensional settings such as hypercubes and simplices, obtaining, as a particular
case, the multidimensional Kantorovich operators on these frameworks.

The general definition (introduced in the context of general convex compact
subsets) has been set in the recent paper [7], obtaining a new class of positive linear
operators which encompasses not only several well-known approximation processes
both in univariate and multivariate settings, but also new ones in finite and infinite
dimensional frameworks as well.

Clearly, in the special case a = 0, the operators Cn correspond to the Bn ones.
Moreover, introducing the auxiliary continuous function

In(f)(x) :=

∫ 1

0

f

(
n

n+ a
x+

a

n+ a
t

)
dµ(t)

(f ∈ C([0, 1]), x ∈ [0, 1], n ≥ 1), then

Cn(f) = Bn(In(f)).

Therefore Cn(f) ∈ C([0, 1]) and the operator Cn : C([0, 1]) → C([0, 1]), being linear
and positive, is continuous with norm equal to 1, because Cn(1) = 1.

We proceed to show some specific examples.

Example 2.7. Consider the maximal case α(x) = x(1 − x) which corresponds to the
Markov operator T1 : C([0, 1]) −→ C([0, 1]) defined, for every f ∈ C([0, 1]) and
0 ≤ x ≤ 1, by

T1(f)(x) := (1− x)f(0) + xf(1).

Then, the Bernstein-Schnabl operators associated with T1 are the classical Bernstein
operators

Bn(f)(x) :=

n∑
k=0

(
n

k

)
xk(1− x)n−kf

(
k

n

)
(n ≥ 1, f ∈ C([0, 1]), x ∈ [0, 1]).

Considering, as above, a ≥ 0 along with a probability Borel measure µ on [0, 1],
we get

Cn(f)(x) =

n∑
k=0

(
n

k

)
xk(1− x)n−k

∫ 1

0

f

(
k + at

n+ a

)
dµ(t)

(n ≥ 1, f ∈ C([0, 1]), x ∈ [0, 1]).

In particular, if µ is the Borel-Lebesgue measure λ1 on [0, 1], then we get

Cn(f)(x) =

n∑
k=0

(
n

k

)
xk(1− x)n−k

∫ 1

0

f

(
k + at

n+ a

)
dt

For a = 1, this formula gives the classical Kantorovich operators. Moreover,
as already remarked, for a = 0 we obtain the Bernstein operators; thus, by means
of the previous formula, we obtain a link between these fundamental sequences of
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approximating operators in terms of a continuous parameter a ∈ [0, 1]. For other
examples we refer to [7].

Theorem 2.8. Assume that b is the baricenter of the measure µ. If ab ≥ α′(0)/2 and
a(1 − b) ≥ −α′(1)/2, then the sequence (Cn)n≥1 is a strong admissible sequence for
the semigroup generated by the operator (A,DM (A)).
Moreover, C2([0, 1]) is a core for DM (A).

Now we proceed to show some properties of the semigroup (T (t))t≥0 generated
by (A,DM (A)) which have their counterparts in terms of regularity properties (with
respect to the spatial variable x ∈ [0, 1]) of the solutions

u(x, t) = T (t)u0(x)

to the initial-boundary value problems (1.1).
However, the next property concerns the sequence (Cn)n≥1 and it seems to be

not devoid of interest. It is related to some saturation aspects for these operators (see
[6, Remark 2.2.12])

Theorem 2.9. If u, v ∈ C([0, 1]) and if lim
n→∞

n(Cn(u)−u) = v uniformly on [0, 1], then

u ∈ DM (A) and A(u) = v.
In particular, if lim

n→∞
n(Cn(u) − u) = 0 uniformly on [0, 1], then u ∈ DM (A) and

A(u) = 0, i.e.,
α(x)

2
u′′(x) + a(b− x)u′(x) = 0 (x ∈]0, 1[).

From now on we refer again to a Markov operator T on C([0, 1]) generating
the coefficient α, i.e., T (e1) = e1 and α = T (e2) − e2. For every m ≥ 1, denote by
Pm([0, 1]) the subset of all polynomials on [0, 1] of degree no greater than m.

Theorem 2.10. If T (Pm([0, 1])) ⊂ Pm([0, 1]) for every m ≥ 1, then

T (t)(Pm([0, 1])) ⊂ Pm([0, 1]) for every m ≥ 1 and t ≥ 0.

Theorem 2.11. If T (Lip(1, 1)) ⊂ Lip(1, 1), then

T (t)(Lip(M, 1)) ⊂ Lip(M, 1) for every t ≥ 0 and M ≥ 0.

(see (2.7)).

Theorem 2.12. Suppose that conditions (i) and (ii) of Theorem 2.5 are satisfied. If
f ∈ C([0, 1]) is convex, then T (t)f is convex for every t ≥ 0.

Additional results can be shown for the maximal case α(x) = x(1−x) (x ∈ [0, 1]).
Thus, α′(0) = 1 and α′(1) = −1 so that

ab ≥ 1/2 and a(1− b) ≥ 1/2.

Combining results of [11] and [12], it is possible to show that the semigroup
(T (t))t≥0 can be also expressed as a limit of iterates of Bernstein-Durrmeyer operators
with Jacobi weights which are defined as

Mn(f)(x) :=

n∑
k=0

(
n

k

)
xk(1− x)n−kan,k(f) (2.9)
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(n ≥ 1, f ∈ C([0, 1]), x ∈ [0, 1]), where

an,k(f) :=
1

B(k + γ + 1, n− k + δ + 1)

∫ 1

0

tk+γ(1− t)n−k+δf(t)dt,

γ = 2ab− 1 and δ = 2a(1− b)− 1,

and B denotes the usual Euler’s Beta function.
By means of such operators it is possible to show that (see [12, Section 3.2]

Theorem 2.13. For every p ≥ 1, (T (t))t≥0 extends to a positive contraction C0-

semigroup (T̃ (t))t≥0 on Lp([0, 1], µ), where µ is the absolutely continuous measure
having the normalized Jacobi weight

wγ,δ :=
xγ(1− x)δ∫ 1

0
tγ(1− t)δf(t)dt

as density with respect to the Borel-Lebesgue measure on [0, 1].

Moreover, the generator (Ã,D(Ã)) of the semigroup (T̃ (t))t≥0 is an extension of

(A,DM (A)) and C2([0, 1]) is a core for (Ã,D(Ã)).

Therefore, (Ã,D(Ã)) is the closure of (A,DM (A)) in Lp([0, 1], µ) as well.
Furthermore, if t ≥ 0 and if (k(n)n≥1 is a sequence of positive integers such that
lim
n→∞

k(n)/n = t, then for every f ∈ Lp([0, 1], µ),

T̃ (t)(f) = lim
n→∞

Mk(n)
n (f) in Lp([0, 1], µ).

Finally, for every f ∈ C([0, 1]),

lim
t→+∞

T (t)(f) =

∫ 1

0

f(x) dµ(x)

uniformly on [0, 1], and for every f ∈ Lp([0, 1], µ), 1 ≤ p < +∞)

lim
t→+∞

T̃ (t)(f) =

∫ 1

0

f(x) dµ(x) in Lp([0, 1], µ).

We also point out that, in the particular case b = 1/2 (and hence a ≥ 1), then
the previous results continue to hold true in the space Lp([0, 1]), (1 ≤ p < +∞),
and with the generalized Kantorovich operators as strong admissible sequence (see [8,
Section 4]).

2.3. The case ab < α′(0)/2 and a(1 − b) ≥ −α′(1)/2 and the case ab ≥ α′(0)/2 and
a(1− b) < −α′(1)/2

In these cases the well-posed domain for A are the so-called mixed domain of A.
For a proof of the next generation results we refer to [6, Theorem 5.7.7] and [13, pp.
120-121, item (2)], taking the formula A = λB into account.

Theorem 2.14.

(i) If ab < α′(0)/2 and a(1− b) ≥ −α′(1)/2, then a well-posed domain for A is

DVM (A) :=

{
u ∈ C2

∗([0, 1]) | lim
x→0+

A(u)(x) = 0 and lim
x→1−

A(u)(x) ∈ R

}
.
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(ii) If ab ≥ α′(0)/2 and a(1− b) < −α′(1)/2, then a well-posed domain for A is

DMV (A) :=

{
u ∈ C2

∗([0, 1]) | lim
x→0+

A(u)(x) ∈ R and lim
x→1−

A(u)(x) = 0

}
.

The domains DVM (A) and DMV (A) are referred to as the mixed domains for A.
The relevant boundary conditions imply that the probability that the Markov process
reaches 1, resp. 0, in a finite time is zero whereas the probability that the Markov
process reaches 0, resp. 1, in a finite time is strictly positive and, when it reaches that
point, then it remains there for ever.

As regards the construction of a strong admissible sequence for the semigroup
generated by the mixed domains DVM (A) and DMV (A), we are able to provide a
solution only for the case

b = 0 and a ≥ −α′(1)/2,

as well as for the case
b = 1 and a ≥ α

′
(0)/2,

and we leave the remaining cases as an open problem.
In both the previous special cases, a strong admissible sequence is given by

particular generalized Kantorovich operators (2.8) obtained with µ being the unit
mass concentrated at 0, resp. at 1, namely,

Cn(f)(x) =

∫ 1

0

· · ·
∫ 1

0

f

(
x1 + . . .+ xn

n+ a

)
dµx(x1) · · · dµx(xn)

and, respectively,

Cn(f)(x) =

∫ 1

0

· · ·
∫ 1

0

f

(
x1 + . . .+ xn + a

n+ a

)
dµx(x1) · · · dµx(xn)

for every n ≥ 1, x ∈ [0, 1] and f ∈ C([0, 1]).
Moreover, C2([0, 1])

⋂
DVM (A), resp. C2([0, 1])

⋂
DMV (A), is a core for DVM (A),

resp. DMV (A).
All the shape preserving properties described for the maximal domains continue

to hold true in these case, except that the asymptotic behaviour of the semigroup (see
[8, Theorem 3.9]).

To this respect we have indeed (see [11, Theorem 4.2]) that, in the maximal case
α(x) = x(1− x) (x ∈ [0, 1]), for every f ∈ C([0, 1])

lim
t→+∞

T (t)f :=

{
f(0) if ab < 1

2 and a(1− b) ≥ 1
2 ,

f(1) if ab ≥ 1
2 and a(1− b) < 1

2 .

Remarks 2.15. 1. It is worth pointing out that, because of Theorem 2.13, an initial-
boundary value problem like (1.3) also holds true in the setting of Lp([0, 1], µ) spaces
other than in the space C([0, 1]). Accordingly, it would be desirable to investigate
whether a result similar to Theorem 2.13 holds true also when α is not maximal.

Perhaps, the analysis of such a problem might lead to the need to introduce a
new sequence of positive linear operators generalizing Bernstein-Durrmeyer operators
(2.9).
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2. Apart from the Ventcel’ domain (with a = 0) (see Corollary 2.4, statement
(v)), all the results concerning the asymptotic behaviour of the semigroups have been
established when α is maximal. It should be interesting to get similar results in the
non-maximal case.
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[12] Altomare, F., Raşa, I., Lipschitz contractions, unique ergodicity and asymptotics of
Markov semigroups, Boll. Unione Mat. Ital., 9(2012), no. 1, 1-17.

[13] Attalienti, A., Campiti, M., Degenerate evolution problems and beta-type operators, Stu-
dia Math. 140(2000), no. 2, 117-139.

[14] Cerrai, S., Clément, Ph., On a class of degenerate elliptic operators arising from the
Fleming-Viot processes, J. Evol. Eq., 1(2001), 243-276.



On some classes of Fleming-Viot type differential operators 303

[15] Fleming, W.H., Viot, M., Some measure-valued Markov processes in population genetics
theory, Indiana Univ. Math. J., 28(1979), no. 5, 817-843.

[16] Mugnolo, D., Rhandi, A., On the domain of a Fleming-Viot type operator on a Lp-space
with invariant measure, Note Mat., 31(2011), no. 1, 139-148.

Francesco Altomare
Dipartimento di Matematica
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1. Introduction

In some recent papers, we have introduced and studied some interpolation oper-
ators for the functions defined on triangles with curved sides (see, e.g., [8]-[11], [13],
[14], [16], [17]). They permit essential boundary conditions to be satisfied exactly and
they come as an extension of the interpolation operators on triangles with all straight
edges, introduced and studied for example in [1], [3]-[7], [12], [22]-[28].

We consider here a standard triangle, T̃ , having the vertices V1 = (1, 0), V2 =
(0, 1) and V3 = (0, 0), two straight sides Γ1, Γ2, along the coordinate axes, and the
third side Γ3 (opposite to the vertex V3), which is defined by the one-to-one functions
f and g, where g is the inverse of the function f, i.e., y = f(x) and x = g(y), with

f(0) = g(0) = 1. There is no restriction to consider this standard triangle T̃ , since any
triangle with one curved side can be obtained from this standard triangle by an affine
transformation which preserves the form and order of accuracy of the interpolant [4].
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Figure 1: Triangle T̃ .

The bending interpolants interpolate on an infinite set of points (segments,
curves, etc.), so having such element as a boundary of an object, we may gener-
ate surfaces that contain the given boundary (see, e.g., [2], [18]-[21]). The aim of
this paper is to construct some surfaces which satisfy some given conditions on the
boundary of a domain that can be decomposed in triangles with one curved side. We
construct some new surfaces using some Hermite, Nielson and Marshall type interpo-
lation operators introduced in [13] and [14]. These operators come as extensions to

triangle T̃ , of some interpolation operators for triangles, given, for example, in [4], [5],
[25].

2. Surfaces generation by Hermite, Nielson and Marshall type
operators

Suppose that F is a real-valued function defined on T̃ , and that it has all partial
derivatives needed. We consider three types of interpolation operators defined on T̃ :

- the Hermite interpolation operators H1 and H2 defined by [13]:

(H1F )(x, y) = [2x+g(y)][x−g(y)]2

g3(y) F (0, y) + x[x−g(y)]2

g2(y) F (1,0)(0, y) (2.1)

+ x2[−2x+3g(y)]
g3(y) F (g(y), y) + x2[x−g(y)]

g2(y) F (1,0)(g(y), y),

(H2F )(x, y) = [2y+f(x)][y−f(x)]2

f3(x) F (x, 0) + y[y−f(x)]2

f2(x) F (0,1)(x, 0)

+ y2[−2y+3f(x)]
f3(x) F (x, f(x)) + y2[y−f(x)]

f2(x) F (0,1)(x, f(x)),

- the Nielson type interpolation operators given by [14]:

(N1F )(x, y) = yF (x, f(x)) + (1− f(x))F (g(y), y), (2.2)

(N2F )(x, y) = F (0, y) + F (x, 0)− F (0, 0),
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- the Marshall type operators defined by [14]:

(Q1F )(x, y) =yF (0, 1) + g(y)F ( x
g(y) , 0), (2.3)

(Q2F )(x, y) =xF (1, 0) + f(x)F (0, y
f(x) ),

(Q3F )(x, y) =(f(x)− y)F (0, 0) + (1− f(x) + y)F
(

x
1−f(x)+y ,

y
1−f(x)+y

)
.

For obtaining the first class of surfaces, we consider the boolean sum of the Nielson
type operators N1 and N2, given in (2.2), namely,

((N1 ⊕N2)F )(x, y) =y[F (x, f(x))− F (0, f(x))− F (x, 0) + F (0, 0)] (2.4)

+ (1− f(x))[F (g(y), y)− F (0, y)− F (g(y), 0)]

+ F (0, y) + F (x, 0)− f(x)F (0, 0),

and we apply the condition that the roof stays on its support, i.e., F |Γ3
= 0. We get

SN :=− yF (0, f(x)) + (1− y)F (x, 0) + [y − f(x)]F (0, 0) (2.5)

+ f(x)F (0, y) + [f(x)− 1]F (g(y), 0).

Theorem 2.1. If F |Γ3
= 0, then we have the following properties of the operator SN :

(SNF )(x, 0) = F (x, 0).

(SNF )(0, y) = F (0, y).

(SNF )(x, f(x)) = 0.

Proof. The proof follows directly by the expression of SN from (2.5). �

In the second level of approximation we use the Hermite interpolation operators,
given in (2.1), taking into account the condition F |Γ3

= 0, i.e.,

(H1
1F )(x, y) := [2x+g(y)][x−g(y)]2

g3(y) F (0, y) + x[x−g(y)]2

g2(y) F (1,0)(0, y) (2.6)

+ x2[x−g(y)]
g2(y) F (1,0)(g(y), y),

(H1
2F )(x, y) := [2y+f(x)][y−f(x)]2

f3(x) F (x, 0) + y[y−f(x)]2

f2(x) F (0,1)(x, 0)

+ y2[y−f(x)]
f2(x) F (0,1)(x, f(x)).

We apply the following approximations:

F (x, 0) ≈ (H1
1F )(x, 0) =(2x + 1)(x− 1)2F (0, 0) + x(x− 1)2F (1,0)(0, 0) (2.7)

+ x2(x− 1)F (1,0)(1, 0),

F (0, y) ≈ (H1
2F )(0, y) =(2y + 1)(y − 1)2F (0, 0) + y(y − 1)2F (0,1)(1, 0) (2.8)

+ y2(y − 1)F (0,1)(0, 1),

and by (2.5), we obtain the following class of surfaces:

(S1F )(x, y) =− y(H1
2F )(0, f(x)) + (1− y)(H1

1F )(x, 0) + [y − f(x)]F (0, 0)

+ f(x)(H1
2F )(0, y) + [f(x)− 1](H1

1F )(g(y), 0),
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i.e.,

(S1F )(x, y) =− y{[2f(x) + 1][f(x)− 1]2F (0, 0) + f(x)[f(x)− 1]2F (0,1)(1, 0) (2.9)

+ f(x)2[f(x)− 1]F (0,1)(0, 1)}+ (1− y)[(2x + 1)(x− 1)2F (0, 0)

+ x(x− 1)2F (1,0)(0, 0) + x2(x− 1)F (1,0)(1, 0)] + [y − f(x)]F (0, 0)

+ f(x)[(2y + 1)(y − 1)2F (0, 0) + y(y − 1)2F (0,1)(1, 0)

+ y2(y − 1)F (0,1)(0, 1)] + [f(x)− 1]{[2g(y) + 1][g(y)− 1]2F (0, 0)

+ g(y)[g(y)− 1]2F (1,0)(0, 0) + g(y)2[g(y)− 1]F (1,0)(1, 0)}.

For obtaining the second class of surfaces, we consider the boolean sum of the
Marshall type operators Q1, Q2 and Q3, given in (2.3):

((Q1 ⊕Q2 ⊕Q3)F )(x, y) = g(y)F ( x
g(y) , 0) + f(x)F (0, y

f(x) ) + (1− f(x) + y)· (2.10)

· F ( x
1−f(x)+y ,

y
1−f(x)+y )− yF (0, 1)− g(y)f( x

g(y) )F (0, 0)

− g(y)
[
1− f( x

g(y) )
]
F
(

x
g(y)

/
(1− f( x

g(y) )), 0
)
,

and supposing that the roof stays on its support we set the condition F |Γ3
= 0, hence

we obtain

SQ :=g(y)F ( x
g(y) , 0) + f(x)F (0, y

f(x) ) (2.11)

− yF (0, 1)− g(y)f( x
g(y) )F (0, 0)

− g(y)
[
1− f( x

g(y) )
]
F
(

x
g(y)

/
(1− f( x

g(y) )), 0
)
.

Theorem 2.2. If F |Γ3
= 0, then we have

(SQF )(x, f(x)) = 0.

Proof. The proof follows directly replacing in (2.11). �

In the second level we use the Hermite interpolation operators, given in (2.6),
and the approximations (2.7) and (2.8), and we obtain the following class of surfaces:

(S2F )(x, y) =g(y)(H1
1F )( x

g(y) , 0) + f(x)(H1
2F )(0, y

f(x) )

− yF (0, 1)− g(y)f( x
g(y) )F (0, 0)

− g(y)
[
1− f( x

g(y) )
]

(H1
1F )

(
x

g(y)

/
(1− f( x

g(y) )), 0
)
,
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given below by

(S2F )(x, y) = [2x+g(y)][x−g(y)]2

g2(y) F (0, 0) + x[x−g(y)]
g2(y)

2
F (1,0)(0, 0) (2.12)

+ x2[x−g(y)]
g2(y) F (1,0)(1, 0)

+ [2y+f(x)][y−f(x)]2

f2(x) F (0, 0) + y[y−f(x)]2

f2(x) F (0,1)(1, 0)

+ y2[y−f(x)]
f2(x) F (0,1)(0, 1)

− yF (0, 1)− g(y)f( x
g(y) )F (0, 0)

− g(y)
[
1− f( x

g(y) )
]
·

· {[2m(x, y) + 1][m(x, y)− 1]2F (0, 0) (2.13)

+ m(x, y)[m(x, y)− 1]2F (1,0)(0, 0)

+ m2(x, y)[m(x, y)− 1]F (1,0)(1, 0)},

where m(x, y) denotes x
g(y)

/
(1− f( x

g(y) )).

Other classes of surfaces may be obtained using the conditions

F |Γ3
= F (0,1)

∣∣∣
Γ3

= F (1,0)
∣∣∣
Γ3

= 0. (2.14)

We consider the boolean sum of the Nielson type operators N1 and N2, given in (2.4),
taking into account the conditions (2.14), and we get the operator SN given in (2.5).

In the second level we use the Hermite interpolation operators, given in (2.1),
taking into account the conditions (2.14), so we have

(H2
1F )(x, y) := [2x+g(y)][x−g(y)]2

g3(y) F (0, y) + x[x−g(y)]2

g2(y) F (1,0)(0, y), (2.15)

(H2
2F )(x, y) := [2y+f(x)][y−f(x)]2

f3(x) F (x, 0) + y[y−f(x)]2

f2(x) F (0,1)(x, 0).

Using the following approximations:

F (x, 0) ≈ (H2
1F )(x, 0) = (2x + 1)(x− 1)2F (0, 0) + x(x− 1)2F (1,0)(0, 0),

F (0, y) ≈ (H2
2F )(0, y) = (2y + 1)(y − 1)2F (0, 0) + y(y − 1)2F (0,1)(1, 0),

by (2.5), we obtain the following class of surfaces:

(S3F )(x, y) =− y(H2
2F )(0, f(x)) + (1− y)(H2

1F )(x, 0) + [y − f(x)]F (0, 0)

+ f(x)(H2
2F )(0, y) + [f(x)− 1](H2

1F )(g(y), 0),
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further given as

(S3F )(x, y) =− y{[2f(x) + 1][f(x)− 1]2F (0, 0) + f(x)[f(x)− 1]2F (0,1)(1, 0)}
(2.16)

+ (1− y)[(2x + 1)(x− 1)2F (0, 0) + x(x− 1)2F (1,0)(0, 0)]

+ [y − f(x)]F (0, 0) + f(x)[(2y + 1)(y − 1)2F (0, 0)

+ y(y − 1)2F (0,1)(1, 0)] + [f(x)− 1]{[2g(y) + 1][g(y)− 1]2F (0, 0)

+ g(y)[g(y)− 1]2F (1,0)(0, 0)}.

Next we consider the boolean sum of the Marshall type operators, given in (2.10),
taking into account the conditions (2.14), and we get SQ given in (2.11).

Further, we apply the Hermite interpolation operators H2
1 and H2

2 , given in
(2.15), and we get the following class of surfaces:

(S4F )(x, y) =g(y)(H2
1F )( x

g(y) , 0) + f(x)(H2
2F )(0, y

f(x) )

− yF (0, 1)− g(y)f( x
g(y) )F (0, 0)

− g(y)
[
1− f( x

g(y) )
]

(H2
1F )

(
x

g(y)

/
(1− f( x

g(y) )), 0
)
,

i.e.,

(S4F )(x, y) = [2x+g(y)][x−g(y)]2

g2(y) F (0, 0) + x[x−g(y)]
g2(y)

2
F (1,0)(0, 0) (2.17)

+ [2y+f(x)][y−f(x)]2

f2(x) F (0, 0) + y[y−f(x)]2

f2(x) F (0,1)(1, 0)

− yF (0, 1)− g(y)f( x
g(y) )F (0, 0)

− g(y)
[
1− f( x

g(y) )
]
·

· {[2m(x, y) + 1][m(x, y)− 1]2F (0, 0)

+ m(x, y)[m(x, y)− 1]2F (1,0)(0, 0)},

where m(x, y) denotes x
g(y)

/(
1− f

(
x

g(y)

))
.

3. Numerical examples

Example 3.1. Consider F : T̃ → R,

F (x, y) =
(x2 + y2 − h2)2

x2 + y2 + 1
and f(x) =

√
1− x2.

In Figure 2 we plot the graphs of the surface S1F, given in (2.9).
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Figure 2: The surface S1.

Example 3.2. Consider the function f(x) =
√

1− x2 and F : T̃ → R.
In Figure 3 we plot the graphs of surface S2F, given in (2.12), assigning to
the data (F (0, 0), F (0, 1), F (1,0)(0, 0), F (1,0)(1, 0), F (0,1)(1, 0), F (0,1)(0, 1)) the values
(−1/4,−1, 1,−1, 1).

Figure 3: The surface S2.

Example 3.3. Consider the data from Example 3.1. In Figure 4 we plot the graphs of
the surface S3F, given in (2.16).
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Figure 4: The surface S3.

Example 3.4. Consider same data as in Example 3.2. In Figure 5 we plot the graphs
of the surface S4F, given in (2.17).

Figure 5: The surface S4.
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[16] Coman, Gh., Cătinaş, T., Interpolation operators on a tetrahedron with three curved
sides, Calcolo, 47(2010), no. 2, 113-128.

[17] Coman, Gh., Cătinaş, T., Interpolation operators on a triangle with one curved side,
BIT Numerical Mathematics, 50(2010), no. 2, 243-267.
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Abstract. The aim of this paper is to highlight the superdense unbounded diver-
gence of a class of product quadrature formulas of interpolatory type on Jacobi
nodes, associated to the Banach space of all real continuous functions defined on
[−1, 1], and to a Banach space of measurable and essentially bounded functions
g : [−1, 1] → R. Some aspects regarding the convergence of these formulas are
pointed out, too.
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1. Introduction

This paper deals with a class of interpolatory product quadrature formulas,
regarding their divergence and the convergence rate, as follows. Let C be the Banach
space of all continuous functions f : [−1, 1]→ R, endowed with the supremum norm
‖ · ‖. Denoting by µ the Lebesgue measure on the interval [−1, 1], let (Lp, ‖ · ‖p),
1 ≤ p ≤ ∞, be the Banach space of all measurable functions (equivalence classes of
functions, with respect to the equality µ-a.e.) g : [−1, 1]→ R, normed by

‖g‖p =

(∫ 1

−1
|g(x)|pdx

)1/p

, if 1 ≤ p <∞, and ‖g‖∞ = esssup|g|.

According to [7], [8], if p ∈ [1,∞] and ρ ∈ Lq (with p−1+q−1 = 1) are given such

that ρ(x) > 0 µ-a.e. on [−1, 1], the notation (L
(1/ρ)
p , ‖ · ‖(1/ρ)p ) stands for the Banach

space of all measurable functions g for which g/ρ ∈ Lp and ‖g‖(1/ρ)p = ‖g/ρ‖p.
Further, let consider an arbitrary triangular node matrix

M = {xkn : n ≥ 1, 1 ≤ k ≤ n}
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so that the n-th row of M, n ≥ 1, contains n distinct nodes of [−1, 1], then let us
denote, as usual, by Lnf ∈ Pn−1 (the space of all polynomials of degree at most n−1)
and λn the Lagrange interpolation polynomial and the Lebesgue function associated
to the n-th row of M, respectively, i.e.,

(Lnf)(x) =

n∑
k=1

f(xkn)lkn(x), f ∈ C, λn(x) =

n∑
k=1

|lkn(x)|,

where lkn are the fundamental Lagrange interpolation polynomials, [2], [10].
The equalities

∫ 1

−1
g(x)f(x)dx =

∫ 1

−1
g(x)(Lnf)(x)dx+Rn(f ; g), f ∈ C, g ∈ L(1/ρ)

p , n ≥ 1 (1.1)

involving

Rn(P, g) = 0, ∀ f ∈ Pn−1 and g ∈ L(1/ρ)
p , n ≥ 1 (1.2)

describe product quadrature formulas of interpolatory type, associated to the spaces

C and L
(1/ρ)
p .

If p = 1, these product quadrature formulas were intensively studied, in their conver-
gence aspects, for various functions g ∈ L1, ρ ∈ L∞ (including ρ(x) = (1−x)a(1+x)b,
a, b ≥ 0) and node matrices M, [1], [3], [4], [7], [8]. We notice, also, the divergence
result obtained by I.H. Sloan and W.E. Smith, for arbitrary node matrices M and
ρ(x) = 1, −1 ≤ x ≤ 1, [8, Th. 6]. A recent result, [5], refers to more general product
quadrature formulas of interpolatory type, involving polynomial projection opera-
tors Ln : C → Pn−1 (namely Lnf ∈ Pn−1, ∀ f ∈ C, and Lnf = f if and only if
f ∈ Pn−1) instead of Lagrange projections in (1.1) and highlights the phenomenon of
double condensation of singularities for the corresponding product quadrature formu-
las (1.1), meaning unbounded divergence on superdense sets belonging to the spaces

C and L
(1/ρ)
1 , for arbitrary node matrices M and ρ ∈ L∞, with ρ(x) > 0 µ-a.e. on

[−1, 1].

The aim of this paper is to point out the superdense unbounded divergence
of the product quadrature formulas described by (1.1) and (1.2) for p = ∞,
ρ(x) = (1 − x)a(1 + x)b, with a, b > −1, and M = M(α,β), α > −1, β > −1, where

M(α,β) is the Jacobi node matrix (namely, its n-th row contains the roots x
(α,β)
n ,

1 ≤ k ≤ n, of the Jacobi polynomial P
(α,β)
n , n ≥ 1). Moreover, some aspects regard-

ing the convergence of these formulas (for functions f ∈ C satisfying a Dini-Lipschitz

condition and arbitrary g ∈ L(1/ρ)
∞ ) will be presented in the last section.

In this paper, the notation Mk, k ≥ 1, stands for some positive constants which
do not depend on n. Also, we denote by ω(f, ·) the modulus of continuity associated
to a function f ∈ C.
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2. Unbounded divergence on superdense sets

Suppose that ρ(x) = (1 − x)a(1 + x)b, a, b > −1 and M = M(α,β), α > −1,
β > −1. Let Un, n ≥ 1, be the continuous linear operators defined as

Un : C → (L
(1/ρ)
∞ )∗; f 7→ Unf

(Unf)(g) =

∫ 1

−1
g(x)(Lnf)(x)dx; f ∈ C, g ∈ L(1/ρ)

∞ ,
(2.1)

where Y ∗ is the Banach space of all continuous linear functionals defined on the
normed space Y .

Using standard arguments and classic results of Functional Analysis, we obtain
(see also [8]):

‖Un‖ = sup{‖Unf‖ : f ∈ C, ‖f‖ ≤ 1}

and

‖Unf‖ = sup

{∣∣∣∣∫ 1

−1
g(x)(Lnf)(x)dx

∣∣∣∣ : g/ρ ∈ L∞, ‖g/ρ‖∞ ≤ 1

}
= sup

{∣∣∣∣∫ 1

−1
ρ(x)g(x)(Lnf)(x)dx

∣∣∣∣ : g ∈ L∞, ‖g‖∞ ≤ 1

}
,

so we get

‖Un‖ = sup{‖ρLnf‖1 : f ∈ C, ‖f‖ ≤ 1}, n ≥ 1. (2.2)

Now, we can state:

Theorem 2.1. Suppose that α ≥ 2a+ 3/2 or β ≥ 2b+ 3/2. Then, a superdense set X0

in the Banach space L
(1/ρ)
∞ exists such that for every g in X0, the set of C consisting

of all functions for which the product quadrature formulas described by (1.1) and (1.2)
are unbounded divergent, namely

Y0(g) =

{
f ∈ C : lim sup

n→∞

∣∣∣∣∫ 1

−1
g(x)(Lnf)(x)dx

∣∣∣∣ =∞
}
,

is superdense in the Banach space C.

Proof. First, we show that the set {‖Un‖ : n ≥ 1} is unbounded. Similarly to [9], let
consider the function fn ∈ C, n ≥ 1, defined by

fn(x) =

{
(−1)k, if x = x

(α,β)
kn , 0 ≤ k ≤ n+ 1

linear, if x ∈ [x
(α,β)
kn , x

(α,β)
k,n−1], 1 ≤ k ≤ n+ 1,

where x
(α,β)
0n = 1 and x

(α,β)
n+1,n = −1.

It follows from (2.2):

‖Un‖ ≥ ‖ρLnfn‖1 =

∫ 1

−1
(1− x)a(1 + x)b|(Lnfn)(x)|dx. (2.3)
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Next, let us suppose that α ≥ 2a + 3/2 > −1/2 and set q0 = 1 − 4(a+ 1)

2α+ 1
(so,

0 ≤ q0 < 1). Using the estimation of [9, formula (3.3), with p = 1 and q = q0], we get:{
‖Un‖ ≥M1 log n, if q0 = 0

‖Un‖ ≥M2n
q0(α+1/2), if q0 > 0.

(2.4)

The relations (2.3) and (2.4) prove the unboundedness of the set {‖Un‖ : n ≥ 1},
if α ≥ 2a+ 3/2; similarly, the same assertion is true for β ≥ 2b+ 3/2 > −1

2
.

Now, we apply the principle of condensation of singularities [3, Theorem 5.2],

with X = L
(1/ρ)
∞ , T = C, Y = R, J = N∗ and An(g; f) = (Unf)(g). It is easily

seen that the hypotheses 1◦ and 2◦ of this principle are fulfilled. In order to show
the validity of the hypothesis 3◦, denote by U = {Un : n ≥ 1} the family of the
operators defined by (2.1). Using the principle of condensation of singularities, [3, Th.
5.4], with respect to the family U and taking into account the unboundedness of the
set {‖Un‖ : n ≥ 1}, we infer that the set of the singularities of U , namely

S(U) = {f ∈ C : sup{‖Unf‖ : n ≥ 1} =∞}, (2.5)

is superdense in C. Now, take T0 = S(U) from (2.5) and remark that

sup{‖Anf‖ : n ≥ 1} = sup{‖Unf‖ : n ≥ 1} =∞,
for every f ∈ T0, therefore the hypothesis 3◦ of [3, Theorem 5.2] holds, too. Finally,
denote by Y0(g) the set of singularities of the family A(g) = {An(g, ·) : n ≥ 1}, which
completes the proof. �

3. Dini-Lipschitz convergence

Let us estimate the quadrature errors Rn(f ; g) of (1.1), see also [7], [8]. Denoting

by I : C → (L
(1/ρ)
∞ )∗, the operator given by (If)(g) =

∫ 1

−1
g(x)f(x)dx and taking

into account the interpolatory condition (1.2), we get:

|Rn(f ; g)| = |(Un − I)(f − p)(g)| ≤ ‖U1 − I‖ · ‖f − p‖ · ‖g‖(1/ρ)∞ . (3.1)

Further, we obtain, for every f ∈ C:

‖ρLnf‖1 =

∫ 1

−1
ρ(x)|(Lnf)(x)|dx ≤

(∫ 1

−1
ρ(x)λn(x)dx

)
‖f‖,

so, (2.2) leads to:
‖Un‖ ≤ ‖ρλn‖1. (3.2)

Similarly, we get
‖I‖ ≤ ‖ρ‖1. (3.3)

Now, combining the relations (3.1), (3.2) and (3.3), the estimation

‖Rn(f ; g)‖ ≤M3(‖ρ‖1 + ‖ρλn‖1) · ‖g/ρ‖∞ · ω
(
f ;

1

n

)
(3.4)

holds for sufficient large n ≥ 1.
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The following step is to estimate ‖ρλn‖1. We have:

‖ρλn‖1 =

∫ 1

−1
(1− x)a(1 + x)bλn(x)dx = I(1)n + I(2)n , with

I
(1)
n =

∫ 0

−1
(1− x)a(1 + x)bλn(x)dx and

I
(2)
n =

∫ 1

0

(1− x)a(1 + x)bλn(x)dx.

(3.5)

Using the estimation

λn(x)− 1 ∼ |P (α,β)
n |

√
n[1 + (1− x)(2α+1)/4 log n], 0 ≤ x ≤ 1, [6],

we obtain

I(2)n ∼
∫ 1

0

(1− x)adx+
√
n

∫ 1

0

(1− x)a|P (α,β)
n (x)|dx

+
√
n(log n)

∫ 1

0

(1− x)a+α/2+1/4|P (α,β)
n (x)|dx. (3.6)

Next, the estimation [10, formula (7.34.1)]

∫ 1

0

(1− x)µ|P (α,β)
n (x)|dx ∼


nα−2µ−2, α > 2µ+ 3/2

n−1/2 log n, α = 2µ+ 3/2

n−1/2, α < 2µ+
3

2

; α, β, µ > −1,

gives for µ = a and µ = a+ α/2 + 1/4, respectively:

∫ 1

0

(1− x)a|P (α,β)
n (x)|dx ∼


nα−2a−2, α > 2a+ 3/2

n−1/2 log n, α = 2a+ 3/2

n−1/2, α < 2a+ 3/2

(3.7)

∫ 1

0

(1− x)a+α/2+1/4|P (α,β)
n |dx ∼ n−1/2. (3.8)

Finally, a combination of (3.6), (3.7) and (3.8) yields:

I(2)n ∼ 1 + log n+


nα−2a−3/2, α > 2a+ 3/2

log n, α = 2a+ 3/2

1, α < 2a+ 3/2.

(3.9)

A similar estimation holds for I
(1)
n of (3.5), namely:

I(1)n ∼ 1 + log n+


nβ−2b−3/2, β > 2b+ 3/2

log n, β = 2b+ 3/2

1, β < 2b+ 3/2.

(3.10)

Now, we prove the following statement.
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Theorem 3.1. If ρ(x) = (1− x)a(1 + x)b, −1 < α ≤ 2a+ 3/2 and −1 < β ≤ 2b+ 3/2,
then the product quadrature formulas given by (1.1) and (1.2) are convergent for each

g ∈ L(1/ρ)
∞ and for each f ∈ C satisfying a Dini-Lipschitz condition

lim
δ↘0

ω(f ; δ) log δ = 0.

Proof. The relations (3.5), (3.9) and (3.10) lead to the estimation ‖ρλn‖1 ∼ log n.
which combined with (3.4) gives:

|Rn(f ; g)| ≤M4 · ‖g/ρ‖∞ · ω
(
f ;

1

n

)
log n,

for sufficient large n ≥ 1, which completes the proof. �
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usual modulus of continuity. As applications we obtain quantitative results for
q-Baskakov operators.
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1. Introduction

The well-known Korovkin’s theorem ensures the convergence of sequences of
positive linear operators to the identity operator in the strong operator topology.
For C[0, 1] the Banach space of all continuous functions f on [0, 1] equipped with
the norm ‖f‖ = sup{|f(x)| : x ∈ [0, 1]}, and for the test-functions ei(x) = xi,
x ∈ [0, 1], i ∈ {0, 1, 2}, Korovkin’s theorem is the following (see [5, p. 8]): let (Ln)n≥1
be a sequence of positive linear operators such that Ln : C[0, 1] → C[0, 1]. Then
‖Lnf − f‖ → 0 as n → ∞ for all f ∈ C[0, 1] if and only if ‖Lnei − ei‖ → 0 as
n → ∞ for i ∈ {0, 1, 2}. Specifically we recover Weierstrass’ approximation theorem
if we choose for Ln the Bernstein operators Bn : C[0, 1]→ C[0, 1] defined by

(Bnf)(x) =

n∑
k=0

(
n

k

)
xk(1− x)n−k f

(
k

n

)
. (1.1)

The so-called q-Bernstein operators were introduced by Phillips [12], and they are
generalization of (1.1) based on q-integers. To present these operators we recall some
notions of the q-calculus (see e.g. [11]). Let q > 0. For each non-negative integer n,
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the q-integers [n]q and the q-factorials [n]q! are defined by

[n]q =

 1 + q + . . .+ qn−1, if n ≥ 1

0, if n = 0

and

[n]q! =

 [1]q[2]q . . . [n]q, if n ≥ 1

1, if n = 0.

For integers 0 ≤ k ≤ n, the q-binomial coefficients are defined by[
n
k

]
q

=
[n]q!

[k]q![n− k]q!
.

Then the q-Bernstein operators Bn,q : C[0, 1]→ C[0, 1] are introduced as

(Bn,qf)(x) =

n∑
k=0

[
n
k

]
q

xk(1− x)(1− qx) . . . (1− qn−k−1x)f

(
[k]q
[n]q

)
. (1.2)

For q = 1, we recover the operators (1.1). If 0 < q < 1, then Bn,q are positive linear
operators. However, they do not satisfy the conditions of Korovkin’s theorem, because
(Bn,qe0)(x) = 1, (Bn,qe1)(x) = x and

(Bn,qe2)(x) = x2 +
1

[n]q
x(1− x)→ x2 + (1− q)x(1− x) 6= x2,

as n→∞ (see [12, pp. 513-514]). The investigation of convergence of operators (1.2)
for 0 < q < 1 fixed has resulted in the discovery of a Korovkin type theorem in C[0, 1]
due to Wang [14]. Applying Wang’s result to (1.2), there exists a limit operator B∞,q
on C[0, 1] such that (Bn,qf)n≥1 converges to B∞,qf uniformly on [0, 1] as n→∞. The
operator B∞,q was introduced by Il’inskii and Ostrovska [10], and it is called the limit
q-Bernstein operator. Furthermore, in [6] and [7], we established new Korovkin type
theorems for parameter depending sequences of operators defined on C[0, 1]; these
results are different from Wang’s result.

On the other hand, in [8] and [9], Korovkin type theorems are studied in
weighted spaces, showing that the direct analogue of Korovkin’s theorem is not
valid in spaces of functions defined on the semi-axis [0,∞) or on the whole real
line, but under additional conditions can be obtained analogous theorem to Ko-
rovkin’s theorem. Let ϕ be a strictly increasing continuous function on [0,∞) such
that limx→∞ ϕ(x) = +∞ and ρ(x) = (1 + ϕ2(x))−1, x ≥ 0. Further, let Bρ[0,∞)
be the set of all functions f satisfying the condition ρ(x)|f(x)| ≤ Mf for x ≥ 0,
where Mf is a positive constant depending only on f. We denote by Cρ[0,∞) the
space C[0,∞) ∩ Bρ[0,∞) with the norm ‖f‖ρ = sup{ρ(x)|f(x)| : x ≥ 0}, and
C∗ρ [0,∞) = {f ∈ Cρ[0,∞) : limx→∞ ρ(x)|f(x)| < ∞}. Gadjiev was the first in notic-
ing the relevance of the spaces C∗ρ [0,∞) in proving Korovkin type theorems. We have
the following result [8]: let (An)n≥1 be a sequence of positive linear operators acting
from Cρ[0,∞) to Bρ[0,∞) satisfying the conditions limn→∞ ‖Anϕi − ϕi‖ρ = 0 for
i ∈ {0, 1, 2}. Then limn→∞ ‖Anf − f‖ρ = 0 for any f ∈ C∗ρ [0,∞).
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In what follows, let Cb[0,∞) be the space of all continuous and bounded functions
f on [0,∞), equipped with the norm ‖f‖ = sup{|f(x)| : x ≥ 0}. Further, we set

C̃b[0,∞) = {f ∈ Cb[0,∞) : f is uniformly continuous on [0,∞)}. We consider the
function ρ ∈ Cb[0,∞) such that ρ(x) > 0 for all x ≥ 0, and the space Cρ[0,∞) = {f ∈
C[0,∞) : ρf is bounded on [0,∞)} equipped with the norm ‖f‖ρ = sup{ρ(x)|f(x)| :
x ≥ 0}. Obviously Cρ[0,∞) is a Banach space, and for ρ(x) = 1, x ≥ 0, we have
Cρ[0,∞) = Cb[0,∞). The goal of the paper is to establish a Korovkin type theorem

for a sequence of positive linear operators (Ln)n≥1, where Ln : C̃b[0,∞) → Cρ[0,∞)

and (Ln)n≥1 converges to its limit operator L∞ : C̃b[0,∞) → Cρ[0,∞), which is not
necessarily the identity operator. The approximation error ‖Lnf − L∞f‖ρ will be

estimated with the aid of the usual modulus of continuity of f ∈ C̃b[0,∞) defined by

ω(f ; δ) = sup{|f(x)− f(y)| : x, y ∈ [0,∞), |x− y| ≤ δ}, δ > 0. (1.3)

As applications we obtain quantitative estimates for some q-Baskakov operators.

2. Main result

For W = {g ∈ Cb[0,∞) : g′ ∈ Cb[0,∞)}, f ∈ Cb[0,∞) and δ > 0, the K-
functional defined by K(f ; δ) = inf{‖f − g‖ + δ‖g′‖ : g ∈ W} and the modulus of
continuity (1.3) are equivalent (see [5, p. 177, Theorem 2.4]), i.e. there exists C > 0
such that

C−1ω(f ; δ) ≤ K(f ; δ) ≤ Cω(f ; δ). (2.1)

Throughout this paper C denotes positive constant independent of n and x, but not
necessarily the same in different cases.

The next theorem is our Korovkin type theorem.

Theorem 2.1. Let (Ln)n≥1, Ln : C̃b[0,∞)→ Cρ[0,∞) be a sequence of positive linear
operators, and let (αn)n≥1 be a positive sequence with αn → 0 as n → ∞. If the
sequence (βn)n≥1 satisfies the conditions

(i) βn + βn+1 + . . .+ βn+p−1 ≤ Cαn for all n, p ≥ 1,
(ii) ‖Lng − Ln+1g‖ρ ≤ Cβn‖g′‖ for all g ∈W and n ≥ 1,

then there exists a positive linear operator L∞ : C̃b[0,∞)→ Cρ[0,∞) such that ‖Lnf−
L∞f‖ρ → 0 as n→∞, where f ∈ C̃b[0,∞) is arbitrary. Moreover

‖Lnf − L∞f‖ρ ≤ c ω(f ;αn) (2.2)

for all f ∈ C̃b[0,∞) and n ≥ 1; c is a constant depending only on ‖L1e0‖ρ.

Proof. By (i) and (ii), we have

‖Lng − Ln+pg‖ρ ≤ ‖Lng − Ln+1g‖ρ + ‖Ln+1g − Ln+2g‖ρ + . . .

+ ‖Ln+p−1g − Ln+pg‖ρ
≤ C(βn + βn+1 + . . .+ βn+p−1)‖g′‖
≤ Cαn‖g′‖ (2.3)
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for all g ∈ W and n, p ≥ 1. Because e0 ∈ W, we find, in view of (2.3), that Lne0 =
Ln+pe0 for n, p ≥ 1. Hence

Lne0 = L1e0 (2.4)

for all n ≥ 1. Further, e0 ∈ C̃b[0,∞) implies that L1e0 ∈ Cρ[0,∞), i.e.

‖L1e0‖ρ <∞. (2.5)

Taking into account that Ln are positive linear operators and (2.4) is satisfied,
we obtain

ρ(x)|(Lnf)(x)| ≡ ρ(x)|Ln(f, x)| ≤ ρ(x)Ln(|f |, x) ≤ ρ(x)Ln(‖f‖e0, x)

= ρ(x)‖f‖Ln(e0, x) = ρ(x)‖f‖(Lne0)(x)

= ρ(x)‖f‖(L1e0)(x),

where f ∈ C̃b[0,∞) and x ∈ [0,∞). Hence, by (2.5),

‖Lnf‖ρ ≤ ‖L1e0‖ρ‖f‖ (2.6)

for every f ∈ C̃b[0,∞). Using (2.3) and (2.6), we find for arbitrary g ∈W that

‖Lnf − Ln+pf‖ρ ≤ ‖Lnf − Lng‖ρ + ‖Lng − Ln+pg‖ρ
+ ‖Ln+pg − Ln+pf‖ρ

≤ 2‖L1e0‖ρ‖f − g‖+ Cαn‖g′‖
≤ max{2‖L1e0‖ρ, C}{‖f − g‖+ αn‖g′‖}.

Taking the infimum on the right hand side over all g ∈W, we get

‖Lnf − Ln+pf‖ρ ≤ max{2‖L1e0‖ρ, C}K(f ;αn).

Hence, by (2.1),
‖Lnf − Ln+pf‖ρ ≤ c ω(f ;αn), (2.7)

where c depends on ‖L1e0‖ρ. Further, for f ∈ C̃b[0,∞) and αn → 0 as n → ∞, we
have ω(f ;αn) → 0 as n → ∞. Thus, by (2.7), we obtain that (Lnf)n≥1 is a Cauchy
sequence in the Banach space Cρ[0,∞). Therefore there exists an operator L∞ on

C̃b[0,∞) such that ‖Lnf − L∞f‖ρ → 0 for every f ∈ C̃b[0,∞). This also implies

that L∞ is a positive linear operator on C̃b[0,∞), because Ln : C̃b[0,∞)→ Cρ[0,∞)
are positive linear operators, n ≥ 1. Now let p → ∞ in (2.7), then we obtain the
estimation (2.2), which completes the proof of the theorem. �

3. Applications

In what follows we shall use the following notation:

(z; q)n = (1− z)(1− qz) . . . (1− qn−1z),
where z is a real number, 0 < q < 1 and n = 1, 2, . . . Then(

q2x

1 + x
; q

)
n

=

(
1− q2x

1 + x

)(
1− q3x

1 + x

)
. . .

(
1− qn+1x

1 + x

)
and

(−qx; q)n+k = (1 + qx)(1 + q2x) . . . (1 + qn+kx)
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for x ≥ 0 and k = 0, 1, 2, . . .

In [2], Aral and Gupta introduced the operators B∗n,q : Cb[0,∞) → C[0,∞),
where n = 1, 2, . . . and 0 < q < 1, given by

(B∗n,qf)(x) =

(
q2x

1 + x
; q

)
n

∞∑
k=0

f

(
[k]q

qk+1[n]q

)[
n+ k − 1

k

]
q

(
q2x

1 + x

)k
. (3.1)

In [13], C. Radu defined the operators V ∗n,q : Cb[0,∞)→ C[0,∞),

(V ∗n,qf)(x) =

∞∑
k=0

[
n+ k − 1

k

]
q

qk(k−1)/2
(qx)k

(−qx; q)n+k
f

(
[k]q

[n]qqk−1

)
, (3.2)

where n = 1, 2, . . . and 0 < q < 1 (see also [3, (2.1)]). When q = 1, the operators B∗n,q
and V ∗n,q become the classical Baskakov operator [4].

For (3.1) we compute the difference (B∗n,qg)(x) − (B∗n+1,qg)(x), where g ∈ W
and x ≥ 0. We have

(B∗n,qg)(x)− (B∗n+1,qg)(x)

=

(
q2x

1 + x
; q

)
n

∞∑
k=0

g

(
[k]q

qk+1[n]q

)[
n+ k − 1

k

]
q

(
q2x

1 + x

)k

−
(
q2x

1 + x
; q

)
n+1

∞∑
k=0

g

(
[k]q

qk+1[n+ 1]q

)[
n+ k
k

]
q

(
q2x

1 + x

)k

=

(
q2x

1 + x
; q

)
n

∞∑
k=0

{
g

(
[k]q

qk+1[n]q

)[
n+ k − 1

k

]
q

− 1 + x(1− qn+2)

1 + x
g

(
[k]q

qk+1[n+ 1]q

)[
n+ k
k

]
q

}(
q2x

1 + x

)k
=

(
q2x

1 + x
; q

)
n

∞∑
k=1

{
g

(
[k]q

qk+1[n]q

)[
n+ k − 1

k

]
q

− g
(

[k]q
qk+1[n+ 1]q

)[
n+ k
k

]
q

}(
q2x

1 + x

)k
+

(
q2x

1 + x
; q

)
n

×
∞∑
k=0

(
1− 1 + x(1− qn+2)

1 + x

)
g

(
[k]q

qk+1[n+ 1]q

)[
n+ k
k

]
q

(
q2x

1 + x

)k

=

(
q2x

1 + x
; q

)
n

∞∑
k=0

{
g

(
[k + 1]q
qk+2[n]q

)[
n+ k
k + 1

]
q

− g
(

[k + 1]q
qk+2[n+ 1]q

)

×
[
n+ k + 1
k + 1

]
q

+ g

(
[k]q

qk+1[n+ 1]q

)[
n+ k
k

]
q

qn

}(
q2x

1 + x

)k+1
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=

(
q2x

1 + x
; q

)
n

∞∑
k=0

{[
n+ k
k + 1

]
q

(
g

(
[k + 1]q
qk+2[n]q

)
− g

(
[k + 1]q

qk+2[n+ 1]q

))

+ qn
[
n+ k
k

]
q

(
g

(
[k]q

qk+1[n+ 1]q

)
− g

(
[k + 1]q

qk+2[n+ 1]q

))}(
q2x

1 + x

)k+1

=

(
q2x

1 + x
; q

)
n

∞∑
k=0

{[
n+ k
k + 1

]
q

∫ [k+1]q/q
k+2[n]q

[k+1]q/qk+2[n+1]q

g′(u) du

+ qn
[
n+ k
k

]
q

∫ [k]q/q
k+1[n+1]q

[k+1]q/qk+2[n+1]q

g′(u) du

}(
q2x

1 + x

)k+1

,

where we have used[
n+ k
k + 1

]
q

+ qn
[
n+ k
k

]
q

=

[
n+ k + 1
k + 1

]
q

.

Hence

|(B∗n,qg)(x)− (B∗n+1,qg)(x)|

≤
(
q2x

1 + x
; q

)
n

∞∑
k=0

{[
n+ k
k + 1

]
q

∣∣∣∣∣ [k + 1]q
qk+2[n]q

− [k + 1]q
qk+2[n+ 1]q

∣∣∣∣∣
+ qn

[
n+ k
k

]
q

∣∣∣∣∣ [k]q
qk+1[n+ 1]q

− [k + 1]q
qk+2[n+ 1]q

∣∣∣∣∣
}(

q2x

1 + x

)k+1

‖g′‖

= 2‖g′‖
(
q2x

1 + x
; q

)
n

∞∑
k=0

[
n+ k
k

]
q

qn

[n+ 1]q

1

qk+2

(
q2x

1 + x

)k+1

=
2qn−1

[n+ 1]q
‖g′‖

(
q2x

1 + x
; q

)
n

∞∑
k=0

[
n+ k
k

]
q

(
qx

1 + x

)k+1

. (3.3)

Because (see [1, p. 420])
∞∑
k=0

[
n+ k − 1

k

]
q

zk = (1− z)−1(1− qz)−1 . . . (1− qn−1z)−1, |z| < 1,

we have, by (3.3),

|(B∗n,qg)(x)− (B∗n+1,qg)(x)|

≤ 2qn−1

[n+ 1]q
‖g′‖

(
1− q2x

1 + x

)(
1− q3x

1 + x

)
. . .

(
1− qn+1x

1 + x

)
× qx

1 + x

(
1− qx

1 + x

)−1(
1− q2x

1 + x

)−1
. . .

(
1− qn+1x

1 + x

)−1
=

2qn−1

[n+ 1]q
‖g′‖ qx

1 + x

1 + x

1 + x(1− q)

≤ 2qn−1

[n+ 1]q
‖g′‖ q

1− q
=

2qn

1− qn+1
‖g′‖. (3.4)
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We set βn = qn/(1− qn+1), n = 1, 2, . . . Then

βn + βn+1 + . . .+ βn+p−1 =
qn

1− qn+1
+

qn+1

1− qn+2
+ . . .+

qn+p−1

1− qn+p

≤ qn

1− qn+1
(1 + q + . . .+ qp−1)

≤ qn

(1− q)(1− qn+1)
(3.5)

for all n, p = 1, 2, . . . Due to (3.4) and (3.5), we can apply Theorem 2.1 (case ρ(x) = 1,
x ≥ 0) with αn = qn/(1− q)(1− qn+1), n = 1, 2, . . . Thus we obtain the following

Theorem 3.1. For the operators B∗n,q defined by (3.1) and q ∈ (0, 1) given, there exists

a positive linear operator B∗∞,q : C̃b[0,∞)→ Cb[0,∞) such that

‖B∗n,qf −B∗∞,qf‖ ≤ C ω(f ; qn/(1− q)(1− qn+1))

for all f ∈ C̃b[0,∞) and n = 1, 2, . . .

Here C is independent of ‖B∗1,qe0‖, because B∗n,qe0 = e0 (see [2, Lemma 2])

implies that ‖B∗n,qf‖ ≤ ‖f‖, f ∈ C̃b[0,∞). This justifies that B∗n,qf ∈ Cb[0,∞) for

f ∈ C̃b[0,∞).

Now we shall study the sequence (V ∗n,q)n≥1 defined by (3.2). In the same way
as above, we obtain the following representation for (V ∗n,qg)(x)− (V ∗n+1,qg)(x), where
g ∈W and x ≥ 0 :

(V ∗n,qg)(x)− (V ∗n+1,qg)(x)

=

∞∑
k=0

qk(k+1)/2 (qx)k+1

(−qx; q)n+k+1

[
n+ k
k

]
q

{
qng

(
[k]q

[n+ 1]qqk−1

)
− [n+ k + 1]q

[k + 1]q
g

(
[k + 1]q

[n+ 1]qqk

)
+

[n]q
[k + 1]q

g

(
[k + 1]q
[n]qqk

)}
(see also [3, Theorem 6]). Hence, by [n+ k + 1]q = [n]q + qn[k + 1]q, we get

(V ∗n,qg)(x)− (V ∗n+1,qg)(x)

=

∞∑
k=0

qk(k+1)/2 (qx)k+1

(−qx; q)n+k+1

[
n+ k
k

]
q

{
qn
(
g

(
[k]q

[n+ 1]qqk−1

)
− g

(
[k + 1]q

[n+ 1]qqk

))
+

[n]q
[k + 1]q

(
g

(
[k + 1]q
[n]qqk

)
− g

(
[k + 1]q

[n+ 1]qqk

))}
=

∞∑
k=0

qk(k+1)/2 (qx)k+1

(−qx; q)n+k+1

[
n+ k
k

]
q

{
qn
∫ [k]q/[n+1]qq

k−1

[k+1]q/[n+1]qqk
g′(u) du

+
[n]q

[k + 1]q

∫ [k+1]q/[n]qq
k

[k+1]q/[n+1]qqk
g′(u) du

}
.
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Then

|(V ∗n,qg)(x)− (V ∗n+1,qg)(x)|

≤
∞∑
k=0

qk(k+1)/2 (qx)k+1

(−qx; q)n+k+1

[
n+ k
k

]
q

{
qn

∣∣∣∣∣ [k]q
[n+ 1]qqk−1

− [k + 1]q
[n+ 1]qqk

∣∣∣∣∣
+

[n]q
[k + 1]q

∣∣∣∣∣ [k + 1]q
[n]qqk

− [k + 1]q
[n+ 1]qqk

∣∣∣∣∣
}
‖g′‖

=
2qn

[n+ 1]q
‖g′‖

∞∑
k=0

qk(k−1)/2
(qx)k+1

(−qx; q)n+k+1

[
n+ k
k

]
q

. (3.6)

Because of [13, Remark 4], we have

(V ∗n+1,qe0)(x) =

∞∑
k=0

[
n+ k
k

]
q

qk(k−1)/2
(qx)k

(−qx; q)n+k+1
= 1.

Therefore, by (3.6), we obtain

|(V ∗n,qg)(x)− (V ∗n+1,qg)(x)| ≤ 2qn+1x

[n+ 1]q
‖g′‖

or
1

1 + qx
|(V ∗n,qg)(x)− (V ∗n+1,qg)(x)| ≤ 2qn

[n+ 1]q
‖g′‖.

With the notation ρ(x) = 1/(1 + qx), x ≥ 0, we have

‖V ∗n,qg − V ∗n+1,qg‖ρ ≤
2qn

[n+ 1]q
‖g′‖. (3.7)

Now we set βn = qn/[n+ 1]q, n = 1, 2, . . . Then

βn + βn+1 + . . .+ βn+p−1 ≤ qn

[n+ 1]q
(1 + q + . . .+ qp−1)

≤ qn

1− qn+1
(3.8)

for all n, p = 1, 2, . . . Due to (3.7) and (3.8), we can apply Theorem 2.1 with
αn = qn/(1− qn+1), n = 1, 2, . . . In conclusion we obtain the following

Theorem 3.2. For the operators V ∗n,q defined by (3.2), q ∈ (0, 1) given and ρ(x) =

1/(1 + qx), x ≥ 0, there exists a positive linear operator V ∗∞,q : C̃b[0,∞) → Cρ[0,∞)
such that

‖V ∗n,qf − V ∗∞,qf‖ρ ≤ C ω(f ; qn/(1− qn+1))

for all f ∈ C̃b[0,∞) and n = 1, 2, . . .

The constant C is independent of ‖V ∗1,qe0‖ρ, because

‖V ∗n,qf‖ρ = sup{ρ(x)|(V ∗n,qf)(x)| : x ≥ 0} ≤ sup{|(V ∗n,qf)(x)| : x ≥ 0}
≤ ‖f‖ sup{(V ∗n,qe0)(x) : x ≥ 0} = ‖f‖ sup{e0(x) : x ≥ 0} = ‖f‖,

where f ∈ C̃b[0,∞) (see [13, Remark 4]).
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Abstract. In this paper we develop iterative methods for nonlinear Fredholm inte-
gral equations of the second kind with deviating arguments, by applying Mann’s
iterative algorithm. This proves the existence and the uniqueness of the solution
and gives a better error estimate than the classical Banach Fixed Point Theo-
rem. The iterates are then approximated using a suitable quadrature formula.
The paper concludes with numerical examples.
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1. Preliminaries

Integral equations arise in many fields of mathematics, engineering, physics, etc.,
as they provide a strong tool for modeling various applications, phenomena and pro-
cesses occurring in actuarial sciences, statistical study of dynamic living population,
elasticity theory, diffraction problems, quantum mechanics, etc. In addition, a large
class of initial and boundary value problems can be reformulated as integral equa-
tions. Thus, many researchers aim to find efficient and rapidly convergent algorithms
for the numerical solution of Fredholm integral equations (see e.g. [2], [10], [11], [9]).

In this paper, we consider a Fredholm integral equation of the type

x(t) =

b∫
a

K
(
t, s, x(s), x(g(s))

)
ds+ f(t), t ∈ [a, b], (1.1)

where K ∈ C
(
[a, b]× [a, b]× R2

)
, f ∈ C[a, b] and g ∈ C ([a, b], [a, b]).

Other assumptions will be made on K, g and f later on.
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As is well known, the solvability of (1.1) is based on fixed point theory. We define the
operator F : C[a, b]→ C[a, b] by

Fx(t) =

b∫
a

K
(
t, s, x(s), x(g(s))

)
ds+ f(t). (1.2)

Then finding a solution of the integral equation (1.1) is equivalent to finding a fixed
point for the operator F :

x = Fx. (1.3)

We recall the main results of fixed point theory on a Banach space.

Definition 1.1. Let (X, || · ||) be a Banach space. A mapping F : X → X is called a
q− contraction if there exists a constant 0 ≤ q < 1 such that

||Fx− Fy|| ≤ q||x− y||, (1.4)

for all x, y ∈ X.

We have the classical result, the contraction principle on a Banach space.

Theorem 1.2. Let (X, || · ||) be a Banach space and F : X → X be a q−contraction.
Then

(a) F has exactly one fixed point x∗ ∈ X;
(b) the sequence of successive approximations xn+1 = Fxn, n ∈ N, converges to the

solution x∗, for any arbitrary choice of initial point x0 ∈ X;
(c) the error estimates

||xn − x∗|| ≤
qn

1− q
||x1 − x0||,

||xn − x∗|| ≤
q

1− q
||xn − xn−1||

(1.5)

hold for every n ∈ N.

This result can be improved, using Mann iteration (Altman’s algorithm) instead of
Picard iteration. We recall the main results (see [1], [4]).

Theorem 1.3. Let (X, || · ||) be a Banach space and F : X → X be a q−contraction.
Let 0 < εn ≤ 1 be a sequence of numbers satisfying

∞∑
n=0

εn =∞. (1.6)

Then

(a) equation x = Fx has exactly one solution x∗ ∈ X;
(b) the sequence of successive approximations

xn+1 = (1− εn)xn + εnFxn, n = 0, 1, . . . (1.7)

converges to the solution x∗, for any arbitrary choice of initial point x0 ∈ X;
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(c) for every n ∈ N, there holds the error estimate

||xn − x∗|| ≤
e1−q

1− q
||x0 − Fx0|| e−(1−q)yn , (1.8)

where y0 = 0, yn =

n−1∑
i=0

εi, for n ≥ 1.

Remark 1.4. Theorem 1.3 still holds true if X is replaced by any closed convex subset
Y ⊆ X.

Most of the times (for suitable choices of εn and q), the error estimate in (1.8)
is better than the one in (1.5) and the iterative method (1.7) converges faster than
the classical one.

For more considerations on iterative algorithms, see e.g. [4], [7], [8]. The aim of
this paper is to apply Altman’s Theorem 1.3 to Fredholm integral equations of the
second kind with deviating arguments.

2. Existence and uniqueness of the solution

We want to apply Altman’s iterative algorithm to the operator equation (1.3).
To this end, we consider the space X = C[a, b] equipped with the Chebyshev norm

||x|| := max
t∈[a,b]

|x(t)|, x ∈ X (2.1)

and the ball BR := {x ∈ C[a, b]
∣∣ ||x− f || ≤ R}, for some R > 0. Then (X, || · ||) is a

Banach space and BR ⊆ X is a closed convex subset.

Theorem 2.1. Let F : (X, || · ||)→ (X, || · ||) be defined by (1.2). Assume that

(i) there exist constants l1, l2 > 0 such that

|K(t, s, u1, v1)−K(t, s, u2, v2)| ≤ l1|u1 − u2|+ l2|v1 − v2|, (2.2)

for all t, s ∈ [a, b] and all u1, u2, v1, v2 ∈ [R1 −R,R2 +R], where

R1 := min
t∈[a,b]

f(t), R2 := max
t∈[a,b]

f(t);

(ii)

q := (b− a)(l1 + l2) < 1; (2.3)

(iii)

MK(b− a) ≤ R, (2.4)

where MK := max |K(t, s, u, v)| over all t, s ∈ [a, b] and all u, v ∈ [R1 −R,R2 +R].
Then

(a) equation (1.3) has exactly one solution x∗ ∈ X;
(b) the sequence of successive approximations

xn+1 =

(
1− 1

n+ 1

)
xn +

1

n+ 1
Fxn, n = 0, 1, . . . (2.5)

converges to the solution x∗, for any arbitrary initial point x0 ∈ X;



334 Sanda Micula

(c) for every n ∈ N, the error estimate

||xn − x∗|| ≤
e1−q

1− q
||x0 − Fx0|| e−(1−q)yn (2.6)

holds, where y0 = 0, yn =

n−1∑
i=0

1

i+ 1
, for n ≥ 1.

Proof. We want to use Theorem 1.3 for εn =
1

n+ 1
, which obviously satisfies the

conditions of Theorem 1.3.
Let t ∈ [a, b] be fixed. By (2.2), we have

|(Fx− Fy)(t)| ≤
b∫
a

∣∣K(t, s, x(s), x(g(s))
)
−K

(
t, s, y(s), y(g(s))

)∣∣ ds
≤ l1

b∫
a

|x(s)− y(s)| ds+ l2

b∫
a

|x(g(s))− y(g(s))| ds

≤ l1(b− a)||x− y||+ l2(b− a) max
g(s)∈[a,b]

∣∣x(g(s))− y(g(s))
∣∣

≤ (b− a)(l1 + l2)||x− y||,

since max
g(s)∈[a,b]

∣∣x(g(s))− y(g(s))
∣∣ ≤ max

s∈[a,b]
|x(s)− y(s)|. Hence,

||Fx− Fy|| = max
t∈[a,b]

|(Fx− Fy)(t)| ≤ q||x− y||

and by (2.3), it follows that F is a q−contraction.

Next, for every fixed t ∈ [a, b], we have

|Fx(t)− f(t)| ≤
b∫
a

∣∣∣K(t, s, x(s), x(g(s))
)∣∣∣ ds

≤ MK(b− a).

Thus, by (2.4), we have F (BR) ⊆ BR. Now our result follows from Theorem 1.3 and
Remark 1.4. �

For more considerations on Mann iteration, see e.g. [4].

3. Numerical iterative methods

Altman’s fixed point theorem provides iterative methods for solving equation
(1.3). But, obviously, the iterates in (2.5) cannot be computed analytically, they have
to be approximated numerically.



On iterative methods for Fredholm integral equations 335

Consider a quadrature formula

b∫
a

ϕ(s)ds =

m∑
i=0

aiϕ(si) +Rϕ, (3.1)

with nodes a = s0 < s1 < · · · < sm = b, coefficients ai ∈ R, i = 0, 1, . . . ,m and for
which the remainder satisfies

|Rϕ| ≤M, (3.2)

for some M > 0, with M → 0 as m→∞.
Let a = t0 < t1 < · · · < tm = b be the nodes and let x0 = x̃0 ≡ f be the initial

approximation. Then we use the iteration (2.5) and the numerical integration scheme
(3.1) to approximate xn(tk) and xn (g(tk)) with x̃n(tk) and x̃n (g(tk)), respectively,
for k = 0,m and n = 0, 1, . . . . For simplicity, we make the following notations:

Kk,i,n := K
(
tk, ti, xn(ti), xn(g(ti))

)
,

Kg,k,i,n := K
(
g(tk), ti, xn(ti), xn(g(ti))

)
,

K̃k,i,n := K
(
tk, ti, x̃n(ti), x̃n(g(ti))

)
,

K̃g,k,i,n := K
(
g(tk), ti, x̃n(ti), x̃n(g(ti))

)
,

x̃n+1(tk) :=

[(
1− 1

n+ 1

)
x̃n(tk) +

1

n+ 1

(
m∑
i=0

aiK̃k,i,n + f(tk)

)]
,

x̃n+1(g(tk)) :=

[(
1− 1

n+ 1

)
x̃n(g(tk))

+
1

n+ 1

(
m∑
i=0

aiK̃g,k,i,n + f(g(tk))

)]
,

R̃n,k := xn(tk)− x̃n(tk),

R̃g,n,k := xn(g(tk))− x̃n(g(tk)).

We have:

xn+1(tk) =

(
1− 1

n+ 1

)
xn(tk) +

1

n+ 1

 b∫
a

K (tk, s, xn(s), xn(g(s))) ds+ f(tk)


=

(
1− 1

n+ 1

)(
x̃n(tk) + R̃n,k

)
+

1

n+ 1

(
m∑
i=0

aiKk,i,n +RK + f(tk)

)
(3.3)

=

(
1− 1

n+ 1

)(
x̃n(tk) + R̃n,k

)
+

1

n+ 1

(
m∑
i=0

aiK̃k,i,n +

m∑
i=0

ai(Kk,i,n − K̃k,i,n) +RK + f(tk)

)

=

[(
1− 1

n+ 1

)
x̃n(tk)+

1

n+ 1

(
m∑
i=0

aiK̃k,i,n + f(tk)

)]
+R̃n+1,k= x̃n+1(tk)+R̃n+1,k.
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Similarly, we derive

x̃n+1(g(tk)) =

(
1− 1

n+ 1

)
x̃n(g(tk))

+
1

n+ 1

(
m∑
i=0

aiK̃g,k,i,n + f(g(tk))

)
+ R̃g,n+1,k (3.4)

= x̃n+1(g(tk)) + R̃g,n+1,k.

Let

R̃(n,m) = max
tk∈[a,b]

{
∣∣xn(tk)− x̃n(tk)

∣∣, ∣∣xn(g(tk))− x̃n(g(tk))
∣∣}. (3.5)

Suppose that for the quadrature formula (3.1), condition (3.2) ensures the fact that

R̃(n,m) defined above depends only on m and that R̃(n,m) = R̃(m) → 0, as m → ∞.
Then the exact solution x∗ can be approximated by the iterates x̃n at the nodes tk and
g(tk) and we can give an error estimate for our numerical iterative method. To better
illustrate the approximations, we consider below one of the most popular numerical
integration schemes, the trapezoidal rule.

3.1. Approximation using the trapezoidal rule

As in [5], [6], consider the composite trapezoidal rule

b∫
a

ϕ(s) ds =
b− a
2m

ϕ(a) + 2

m−1∑
j=1

ϕ(sj) + ϕ(b)

+Rϕ,

where the m+ 1 nodes are sj = a+
b− a
m

j, j = 0,m and the remainder is given by

Rϕ = − (b− a)3

12m2
ϕ′′(η), η ∈ (a, b).

We use it to approximate the integrals in (2.5), as in (3.3) and (3.4), with ini-
tial approximation x0 = x̃0 ≡ f . For the error, we need the second derivative
[K(tk, s, xn(s), xn(g(s)))]

′′

s . We have

[K(tk, s, u, v)]
′

s =
∂K

∂s
+
∂K

∂u
u′ +

∂K

∂v
v′

[K(tk, s, u, v)]
′′

s =
∂2K

∂s2
+ 2

∂2K

∂s∂u
u′ + 2

∂2K

∂s∂v
v′ + 2

∂2K

∂u∂v
u′v′

+
∂2K

∂u2
(u′)2 +

∂2K

∂v2
(v′)2 +

∂K

∂u
u′′ +

∂K

∂v
v′′
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i.e.

[K(tk, s, xn(s), xn(g(s)))]
′′

s =
∂2K

∂s2
+ 2

∂2K

∂s∂u
x′n(s) + 2

∂2K

∂s∂v
x′n(g(s))g′(s)

+ 2
∂2K

∂u∂v
x′n(s)x′n(g(s))g′(s) +

∂2K

∂u2
(x′n(s))2

+
∂2K

∂v2
[
x′n(g(s))g′(s)

]2
+
∂K

∂u
x′′n(s) (3.6)

+
∂K

∂v

(
x′′n(g(s))(g′(s))2 + x′n(g(s))g′′(s)

)
For any t ∈ [a, b],

xn(t) =

(
1− 1

n

)
xn−1(t)

+
1

n

 b∫
a

K (t, s, xn−1(s), xn−1(g(s)) ds+ f(t))

 ,

x′n(t) =

(
1− 1

n

)
x′n−1(t)

+
1

n

 b∫
a

∂K

∂t
(t, s, xn−1(s), xn−1(g(s)) ds+ f ′(t))

 ,

x′′n(t) =

(
1− 1

n

)
x′′n−1(t)

+
1

n

 b∫
a

∂2K

∂t2
(t, s, xn−1(s), xn−1(g(s)) ds+ f ′′(t))

 .

It is clear from our work so far, that if the functions K, g and f are C2 functions with
bounded second order derivatives, then for R̃(n,m) defined in (3.5), we have

R̃(n,m) ≤ (b− a)3

12m2
M0, (3.7)

where M0 depends on a, b, l1, l2 and the functions K, g and f , but not on n or m.
We can now give an error estimate for our approximation.

Theorem 3.1. Assume the conditions of Theorem 2.1 hold. Further, assume that K, g
and f are C2 functions with bounded second order derivatives. Then for the true solu-
tion x∗ of (1.3) and the approximations x̃n given by (3.3)− (3.4), the error estimate

||x∗ − x̃n|| ≤
e1−q

1− q
||x0 − Fx0|| e−(1−q)yn +

(b− a)3

12m2
M0 (3.8)

holds for every n ∈ N, where y0 = 0, yn =

n−1∑
i=0

1

i+ 1
, for n ≥ 1, ||x∗ − x̃n|| denotes

max
tk∈[a,b]

{
∣∣x∗(tk)− x̃n(tk)

∣∣, ∣∣x∗(g(tk))− x̃n(g(tk))
∣∣} and M0 is described in (3.7).
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Proof. Since∣∣x∗(tk)− x̃n(tk)
∣∣ ≤ ∣∣x∗(tk)− xn(tk)

∣∣+
∣∣xn(tk)− x̃n(tk)

∣∣,∣∣x∗(g(tk))− x̃n(g(tk))
∣∣ ≤ ∣∣x∗(g(tk))− xn(g(tk))

∣∣+
∣∣xn(g(tk))− x̃n(g(tk))

∣∣,
the assertion follows from (3.7) and Theorem 2.1. �

4. Numerical examples

Example 4.1. Consider the nonlinear Fredholm integral equation

x(t) =
3

64

π∫
0

x(s)

(
1

2
cos t cos

s

2
+ x

(s
2

)
sin t

)
ds

+
1

64
(31 sin t− cos t), (4.1)

for t ∈ [0, π].

The exact solution of (4.1) is x∗(t) =
1

2
sin t.

Here,

K(t, s, u, v) =
3

64
u

(
1

2
cos t cos

s

2
+ v sin t

)
,

g(t) =
t

2
,

f(t) =
1

64
(31 sin t− cos t).

Let R = 1. We have R1 = − 1

64
and R2 =

√
962

64
.

Then, on [a, b]× [a, b]× [R1 −R,R2 +R]2 = [0, π]× [0, π]× [−65/64, 1 +
√

962/64]2,
we have

MK ≤
3

64
(R2 +R)

(
1

2
+R2 +R

)
and, so,

MK(b− a) ≤ 0.434 < 1 = R.

Also, on [0, π]× [0, π]× [−65/64, 1 +
√

962/64]2,

∂K

∂u
=

3

64

(
1

2
cos t cos

s

2
+ v sin t

)
,

so l1 ≤
3

64

(
1

2
+R2 +R

)
and

∂K

∂v
=

3

64
u sin t,

so l2 ≤
3

64
(R2 +R). Hence,

q = (b− a)(l1 + l2) ≈ 0.551 < 1.
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Thus, conditions (2.2), (2.3) and (2.4) hold, which means the hypotheses of Theorem
3.1 are satisfied. Also, for R = 1, we have that x∗ ∈ BR.

We consider the trapezoidal rule with m = 12, m = 16 and m = 24, with the

corresponding nodes tk =
π

m
k, k = 0,m. Table 1 contains the errors

||x∗ − x̃n|| = max
tk∈[a,b]

{
∣∣x∗(tk)− x̃n(tk)

∣∣, ∣∣x∗(g(tk))− x̃n(g(tk))
∣∣},

with initial approximation x0(t) = f(t) =
1

64
(31 sin t− cos t).

Table 1. Error estimates ||x∗ − x̃n|| for Example 4.1

@
@@n
m

12 16 24

1 1.942720e− 00 1.354476e− 00 4.983236e− 01
2 8.223781e− 01 4.405026e− 01 6.338715e− 02
3 3.015578e− 01 9.174332e− 02 7.990126e− 03
4 7.997435e− 02 1.989751e− 02 8.986247e− 04
5 1.963239e− 02 7.428768e− 03 1.422981e− 04
10 9.795423e− 04 8.012446e− 05 3.116458e− 06

Example 4.2. Next, consider the nonlinear two-point boundary-value problem

x′′(t)− ex(t) = 0, t ∈ [0, 1]; x(0) = x(1) = 0, (4.2)

which is used in magnetohydrodynamics (see [3]). The unique solution of (4.2) is given
by

x∗(t) = − ln (2) + 2 ln

(
c

cos (c (t− 1/2) /2)

)
,

where c is the only solution of c/ cos (c/4) =
√

2.

Problem (4.2) can be reformulated as the Fredholm integral equation

x(t) =

1∫
0

k(t, s)ex(s) ds, t ∈ [0, 1], (4.3)

where the kernel

k(t, s) = −min {t, s}(1−max {t, s}) =

{
−s(1− t), s ≤ t,
−t(1− s), s > t

(4.4)

is Green’s function for the homogeneous problem

x′′(t) = 0, t ∈ [0, 1]; x(0) = x(1) = 0.

We have

K(t, s, u, v) = k(t, s)eu,

g(t) = f(t) ≡ 0.
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Again, we take R = 1. In this case, R1 = R2 = 0 and max |K| = max

∣∣∣∣∂K∂u
∣∣∣∣ =

1

4
· e,

for (t, s, u, v) ∈ [0, 1]2 × [−1, 1]2. Thus,

q = (b− a)(l1 + l2) = l1 =
1

4
· e < 1,

MK(b− a) = MK =
1

4
· e < 1 = R,

so the hypotheses of Theorem 3.1 are satisfied.
As before, we use the trapezoidal rule with m = 12, m = 16 and m = 24 and

nodes tk =
1

m
k, k = 0,m. The errors ||x∗− x̃n|| = max

k=0,m
|x̃n(tk)− x∗(tk)| are given in

Table 2, with initial approximation x0 ≡ 0.

Table 2. Error estimates ||x∗ − x̃n|| for Example 4.2

@
@@n
m

12 16 24

1 1.080564e− 02 1.080564e− 02 1.080564e− 02
2 1.094821e− 03 1.066866e− 03 1.023419e− 03
3 4.890231e− 04 4.178235e− 04 6.098823e− 05
4 5.712236e− 05 5.014429e− 05 2.082737e− 05
5 2.034852e− 05 9.640748e− 06 6.161384e− 06
10 2.026459e− 07 1.678721e− 07 8.890239e− 08

5. Conclusions and future work

We have developed a numerical iterative method for approximating solutions of
Fredholm integral equations of the second kind, with deviating arguments, using a
combination of successive approximations (Mann iteration) for fixed points of integral
operators and quadrature formulas (the trapezoidal rule). Compared to other recent
numerical methods for solving these integral equations – such as collocation, Galerkin,
Nyström or other projection methods, wavelets-based approximations methods, Ado-
mian decomposition, etc – the present method has two major advantages, the relative
simplicity in proving the convergence of the approximate solutions to the exact so-
lution (using fixed point theory) and the low cost of implementation (as it uses a
well known quadrature formula, which is already implemented in most mathematical
software). Yet, as the examples show, it gives a good approximation even with a rel-
atively small number of iterations and of quadrature nodes. In the examples chosen,
the numerical results are quite good and the errors decrease rapidly as n (the number
of iterations) and/or m (the number of quadrature nodes) increase.

As for future work, similar ideas to the ones described in this paper can be
applied to other types of integral equations, integral equations with more complicated
kernels, or kernels satisfying other conditions than the ones considered in this work.
Also, other fixed point successive approximations can be considered, which, under
certain conditions, may converge faster. Last, but not least, more accurate numerical
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integration schemes can be employed in order to increase the speed of convergence of
the method.
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Some variants of contraction principle,
generalizations and applications

Ioan A. Rus

Dedicated to Professor Gheorghe Coman on the occasion of his 80th anniversary

Abstract. In this paper we present the following variant of contraction principle:
Saturated principle of contraction. Let (X, d) be a complete metric space and
f : X → X be an l-contraction. Then we have:

(i) Ffn = {x∗}, ∀ n ∈ N∗.
(ii) fn(x)→ x∗ as n→∞, ∀ x ∈ X.

(iii) d(x, x∗) ≤ ψ(d(x, f(x))), ∀ x ∈ X where ψ(t) = t
1−l

, t ≥ 0.

(iv) yn ∈ X, d(yn, f(yn))→ 0 as n→∞ ⇒ yn → x∗ as n→∞.
(v) yn ∈ X, d(yn+1, f(yn))→ 0 as n→∞ ⇒ yn → x∗ as n→∞.

(vi) If Y ⊂ X is a nonempty bounded and closed subset with f(Y ) ⊂ Y , then

x∗ ∈ Y and
⋂
n∈N

fn(Y ) = {x∗}.

The basic problem is: which other metric conditions imply the conclusions of this
variant ? We give some answers for this problem. Some applications and open
problems are also presented.

Mathematics Subject Classification (2010): 47H10, 54H25, 65J15, 34Kxx, 45Gxx,
45N05.

Keywords: Metric space, generalized metric space, contraction, quasicontraction,
generalized contraction, Bessaga operator, Janos operator, Picard operator, ψ-
Picard operator, well-posedness of fixed point problem, Ostrowski property, data
dependence, Ulam stability, iterative algorithm, iterative algorithm stability, sta-
bility under operator perturbation, functional differential equation, functional
integral equation.

1. Introduction and preliminaries

The number of papers on fixed point theory in which appear metric conditions
is a large one (see: [20], [49], [32], [48], [4], [9], [16], [17], [24], [25], [26], [34], [36], [52],
[64], [68],. . . ). In these papers two fixed point theorems appear under the same name,
contraction principle:
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(1) Let (X, d) be a complete metric space and f : X → X be a contraction. Then f
has a unique fixed point (i.e., Ff = {x∗}).

(2) Let (X, d) be a complete metric space and f : X → X be an l-contraction. Then
we have:

(i) Ff = {x∗}.
(ii) fn(x)→ x∗ as n→∞, ∀ x ∈ X.

By Contraction Principle (CP) we understand this (2) variant.
On the other hand, in many papers appear some properties of fixed point equa-

tions, where the corresponding operator is a contraction (see [56], [65], [40], [4], [6],
[32], [25], [47], [49], [50], [51], [52], [53], [54], [56], [57], [64], [65], [72], [73],. . . ). So, in
this paper we present a new variant of contraction principle, a variant with generous
conclusions. This variant is the following:

Theorem 1.1 (Saturated principle of contraction (SPC)). Let (X, d) be a complete
metric space and f : X → X be an l-contraction. Then we have:

(i) There exists x∗ ∈ X such that,

Ffn = {x∗}, ∀ n ∈ N.

(ii) For all x ∈ X, fn(x)→ x∗ as n→∞.
(iii) d(x, x∗) ≤ ψ(d(x, f(x))), ∀ x ∈ X, where ψ(t) = t

1−l , t ≥ 0.

(iv) If {yn}n∈N is a sequence in X such that

d(yn, f(yn))→ 0 as n→∞,

then, yn → x∗ as n→∞.
(v) If {yn}n∈N is a sequence in X such that

d(yn+1, f(yn))→ 0 as n→∞,

then, yn → x∗ as n→∞.
(vi) If Y ⊂ X is a closed subset such that f(Y ) ⊂ Y , then x∗ ∈ Y . Moreover, if in

addition Y is bounded, then ⋂
n∈N

fn(Y ) = {x∗}.

It is clear that, all conclusions in this theorem are well known. For a better
understanding of this variant of contraction principle, some remarks and commentaries
are necessary.

Conclusion (i) is a set-theoretical one. If X is a nonempty set and f : X → X
is an operator such that, Ffn = {x∗}, for all n ∈ N∗, then by definition we call f a
Bessaga operator.

Conclusion (ii) is a topological one. All Picard iterations converge to the unique
fixed point of the operator. If (X,→) is an L-space and f : X → X is an operator
such that we have (i) and (ii), then by definition f is a Picard operator.

Conclusion (iii) is a metrical one and is very important in the theory of fixed
point equations. We obtain from this estimate, for example, a data dependence of the
fixed point under operator perturbation.
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If in a metric space an operator f satisfies (i), (ii) and (iii), then by definition
the operator f is a ψ-Picard operator and the estimation in (iii) is called retraction-
displacement estimation. In this definition, ψ is a function, ψ : R+ → R+, increasing
and continuous in 0 with ψ(0) = 0.

If in a metric space (X, d) an operator f : X → X satisfies (i) and (iv) then by
definition the fixed point problem for f is well posed. We remark that we can present
this notion in a linear L-space. Let (X,+,R,→) be a linear L-space and f : X → X
be an operator. By definition the fixed point problem for f is well posed if:

(i) Ff = {x∗}.
(ii) If {yn}n∈N is a sequence in X such that yn−f(yn)→ 0 as n→∞, then yn → x∗

as n→∞.

If in a metric space (X, d) an operator satisfies (i) and (v), then by definition the
operator f has the Ostrowski property. We remark that we can present this notion in
a linear L-space.

Let (X,+,R,→) be a linear L-space and f : X → X be an operator. By defini-
tion the operator f has the Ostrowski property if:

(i) Ff = {x∗}.
(ii) If {yn}n∈N is a sequence in X such that yn+1 − f(yn) → 0 as n → ∞, then

yn → x∗ as n→∞.

First part of conclusion (vi) is useful for the localization of the fixed point.
Second part is a set-theoretical one, under metrical conditions. If X is a nonempty
set and f : X → X is an operator such that⋂

n∈N
fn(X) = {x∗},

then by definition f is a Janos operator. On the other hand, from (vi) we have the
following property of a contraction:

If (X, d) is a complete metric space and f : X → X is a contraction with
Ff = {x∗} and {yn}n∈N is a bounded sequence in X, then fn(yn)→ x∗ as n→∞.

It is well known that there is an extensive bibliography of the generalized con-
tractions (see Ortega and Rheinboldt [32], Istrăţescu [20], Rhoades [48], Krasnoselskii
and Zabrejko [26], Kirk and Sims [25], Granas and Dugundji [17], Goebel [16], Berinde
[4], Rus [49], Rus [52], Rus, Petruşel and Petruşel [64], Rus and Şerban [65], Petruşel,
Rus and Şerban [41], Rus and Şerban [65], Kirk and Shahzad [24],. . . ). The prob-
lem is which metrical conditions which appear in the metrical fixed point theorems
imply conclusions in the SPC ? We shall consider the problem in this paper. Some
applications are given and open problems are presented.

Throughout this paper the notations and terminologies in [56], [65] and [40] are
used. Moreover we consider these references as starting papers for our study.

The structure of the paper is the following:
2. Some variants of SPC
3. Examples of relevant metrical conditions
4. The case of generalized metric spaces
5. Applications
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6. Other research directions

2. Some variants of SPC

We start our considerations with the following useful variant.

Theorem 2.1 (SPC with respect to a strongly equivalent metric). Let X be a nonempty
set, d and ρ be two metrics on X and f : X → X be an operator. We suppose that:

(a) (X, ρ) is a complete metric space.
(b) There exist c1, c2 > 0 such that

c1d(x, y) ≤ ρ(x, y) ≤ c2d(x, y), ∀ x, y ∈ X.
(c) f is an l-contraction with respect to the metric ρ.

Then we have:

(i) Ffn = {x∗}, ∀ n ∈ N∗.
(ii) fn(x)

d→ x∗ as n→∞.
(iii) d(x, x∗) ≤ ψ(d(x, f(x))), ∀ x ∈ X, where

ψ(t) =
c2t

c1(1− l)
, t ≥ 0.

(iv) The fixed point problem for f is well posed with respect to the metric d.
(v) The operator f has the Ostrowski property with respect to the metric d.

(vi) If Y ⊂ X is a bounded and close subset in (X, d) with f(Y ) ⊂ Y , then x∗ ∈ Y
and ⋂

n∈N
fn(Y ) = {x∗}.

Proof. The proof follows from SPC in (X, ρ) and the condition (b) of strongly equiv-
alence of the metrics d and ρ (see [40]). �

An other variant is the following.

Theorem 2.2 (Saturated Principle of Quasicontraction (SPQC)). Let (X, d) be a met-
ric space and f : X → X be an operator. We suppose that there exists a fixed point
x∗ of f and 0 < l < 1 such that:

d(f(x), x∗) ≤ ld(x, x∗), ∀ x ∈ X.
Then, we have (i)-(vi) in Theorem 1.1.

Proof. For (i)-(v) the proofs are similar with the proofs in Theorem 1.1.
(vi) Let x ∈ Y . Then fn(x) ∈ Y , ∀ n ∈ N. But, fn(x) → x∗ as n → ∞. Since

Y is closed, it follows that x∗ ∈ Y . In fact, we have (i)-(vi) in Theorem 1.1, with
respect to Y . Indeed, for the second part of (vi), we have δ(f(Y ), {x∗}) ≤ δ(Y, {x∗}),
where δ is the diameter functional with respect to d. Moreover, δ(fn(Y ), {x∗}) ≤
lnδ(Y, {x∗})→ 0 as n→∞. So,

⋂
n∈N

fn(Y ) = {x∗}. �

We also have the following result.
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Theorem 2.3 (SPQC with respect to a strongly equivalent metric). Let X be a
nonempty set, d and ρ be two metrics on X and f : X → X be an operator. We
suppose that:

(a) There exist c1, c2 > 0 such that

c1d(x, y) ≤ ρ(x, y) ≤ c2d(x, y), ∀ x, y ∈ X.
(b) There exists a fixed point x∗ of f and 0 < l < 1 such that

ρ(f(x), x∗) ≤ lρ(x, x∗), ∀ x ∈ X.
Then we have (i)-(vi) in Theorem 2.1

Proof. The proof follows from Theorem 2.2 in (X, ρ) and condition (a). �

Now, we finish this section with the following definition.

Definition 2.4. Let (X, d) be a complete metric space and f : X → X be an operator.
We call relevant a metric condition on f which implies the uniqueness of fixed point
if it implies also, conclusions such as in SPC.

3. Examples of relevant metrical conditions

We start with the following remark.

Lemma 3.1. Let (X, d) be a complete metric space and f : X → X be an operator.
If a metrical condition on f implies the conclusions in CP and if in addition f is an
l-quasicontraction, then we have for f the conclusions in SPC with

(iii) d(x, x∗) ≤ 1
1−ld(x, f(x)), ∀ x ∈ X.

Proof. The proof follows from SPQC. �

From this Lemma the following question rises.

Problem 3.2. Which metric conditions on f imply that f is a quasicontraction ?

From Lemma 3.1, we have, as examples, the following results.

Theorem 3.3. Let (X, d) be a complete metric space and f : X → X be such that there
exists 0 < l < 1

2 , with

d(f(x), f(y)) ≤ l[d(x, f(x)) + d(y, f(y))], ∀ x, y ∈ X.
Then we have the conclusions in SPC, with

(iii) d(x, x∗) ≤ 1
1−2ld(x, f(x)), ∀ x ∈ X.

Proof. (i)-(ii). This is Kannan’s theorem. Kannan’s theorem is not a generalization
of CP, but implies conclusions in CP.

(iii)-(vi). From Kannan’s metrical condition it follows that f is a 2l-quasicon-
traction. From SPQC we have (iii)-(vi). �

Theorem 3.4. (see [4], [52]) Let (X, d) be a complete metric space and f : X → X be
an operator. We suppose that there exist a, b, c ∈ R+, a < 1, b and c < 1

2 , such that
for each x, y ∈ X at least one of the following conditions is true:



348 Ioan A. Rus

(1) d(f(x), f(y)) ≤ ad(x, y),
(2) d(f(x), f(y)) ≤ b[d(x, f(x)) + d(y, f(y))],
(3) d(f(x), f(y)) ≤ c[d(x, f(y)) + d(y, f(x))].

Then we have the conclusions in SPC with

(iii) d(x, x∗) ≤ 1
1−ld(x, f(x)), ∀ x ∈ X,

where l = max{a, 2b, 2c}.

Proof. (i)-(ii). This is Zamfirescu’s theorem. It is a generalization of CP.
(iii)-(vi). From Zamfirescu’s metrical conditions it follows that f is an l-

quasicontraction with l = max{a, 2b, 2c}. The proof follows from SPQC. �

Theorem 3.5. (see [35]) Let (X, d) be a complete metric space, m be a positive integer,

A1,. . . , Am ∈ Pcl(X), Y :=

m⋃
i=1

Ai, and f : Y → Y be an operator. We suppose that:

(a)

m⋃
i=1

Ai is a cyclic representation of Y with respect to f .

(b) f is a cyclic l-contraction.

Then we have the conclusions in SPC with

(iii) d(x, x∗) ≤ 1
1−ld(x, f(x)), ∀ x ∈ Y .

Proof. (i)-(ii). This is Kirk-Srinivasan-Veeramany’s theorem. It is a generalization of
CP.

(iii)-(vi). From the definition of cyclic representation it follows that x∗ ∈
m⋂
i=1

Ai.

From the definition of cyclic l-contraction it follows that f : Y → Y is an l-
quasicontraction. The proof follows from SPQC. �

Theorem 3.6. (see [71]) Let (X, d) be a complete metric space and f : X → X be an
operator. Let θ : [0, 1[→] 12 , 1] be defined by

θ(t) :=


1 if 0 ≤ t ≤ (

√
5− 1)/2,

(1− t)t−2 if (
√

5− 1)/2 ≤ t ≤ 2−
1
2 ,

(1 + t)−1 if 2−
1
2 ≤ t < 1.

We suppose that there exists l ∈ [0, 1[ such that

x, y ∈ X, θ(l)d(x, f(x)) ≤ d(x, y)⇒ d(f(x), f(y)) ≤ ld(x, y).

Then, we have the conclusions in SPC with

(iii) d(x, x∗) ≤ 1
1−ld(x, f(x)), ∀ x ∈ X.

Proof. (i)-(ii). This is Suzuki’s theorem. It is a generalization of CP.
(iii)-(vi). From the Suzuki’s metrical condition we have that f is an l-

quasicontraction. The proof follows from SPQC. �

Now, we give an example in a set with two metrics.
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Theorem 3.7. (see [64], p. 40; see also [15], [43], [51]) Let X be a nonempty set, d and
ρ be two metrics on X and f : X → X be an operator. We suppose that:

(a) d(x, y) ≤ ρ(x, y), ∀ x, y ∈ X.
(b) (X, d) is a complete metric space.
(c) f is an l-contraction with respect to ρ.
(d) f is continuous with respect to d.

Then we have:

(i) Ffn = {x∗}, ∀ n ∈ N∗.
(ii) fn(x)

d→ x∗ as n→∞, and fn(x)
ρ→ x∗ as n→∞.

(iii) ρ(x, x∗) ≤ 1
1−lρ(x, f(x)), ∀ x ∈ X.

(iv) The fixed point problem for f is well posed with respect to ρ.
(v) The operator f has the Ostrowski property with respect to the metric ρ.

(vi) If Y ⊂ X is a bounded and closed subset in (X, ρ) with f(Y ) ⊂ Y , then x∗ ∈ Y
and ⋂

n∈N
fn(Y ) = {x∗}.

Proof. (i)-(ii). This is Maia’s fixed point theorem. It is a generalization of CP.

(iii)-(vi). We remark that f is an l-quasicontraction. The proof follows from
SPQC. �

In what follows we shall present an example from asymptotical fixed point the-
orems.

There are many asymptotic metrical fixed point results. We mention the con-
tributions made by R. Caccioppoli (1930), J. Weisinger (1952), A.N. Kolmogorov
and S.V. Fomin (1957), I.I. Kolodner (1964), S.C. Chy and J.B. Diaz (1965), V.W.
Bryant (1968), V.M. Sehgal (1969), L.F. Guseman (1970), V.I. Istrăţescu (1973), W.
Walter (1970, 1981), F. Browder (1979), I.A. Rus (1980), J.D. Stein (1998 (2000)),
J. Jachymski and J.D. Stein (1999), K. Goebel (2002), W.A. Kirk (2003), S. Andras
(2003), A.D. Arvanitakis (2003), A.S. Mureşan (2014) (see [13], [20], [72], [50], [73],
[66], [70](this paper of Stein has no references on asymptotic conditions!), [23], [1],
[2], [16],. . . ).

Our example in this direction is the following.

Theorem 3.8. (see [72]) Let (X, d) be a complete metric space and f : X → X be such
that there exists k ∈ N∗ for which fk is an l-contraction. Then we have:

(i) Ffn = {x∗}, ∀ n ∈ N.
(ii) fn(x)→ x∗ as n→∞, ∀ x ∈ X.

If in addition, fs is ls-Lipschitz, s ∈ N∗, then:

(iii) d(x, x∗) ≤ c2

1−l
1
k
d(x, f(x)), ∀ x ∈ X,

where c2 = 1 + l1l
− 1

k + . . .+ lk−1l
1−k
k .

(iv) The fixed point problem for f is well posed.
(v) The operator f has the Ostrowski property.
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(vi) If Y ⊂ X is a bounded and closed subset with f(Y ) ⊂ Y , then x∗ ∈ Y and⋂
n∈N

fn(Y ) = {x∗}.

Proof. (i)-(ii). It follows from the following remark:

If (X, τ) is a Hausdorff topological space and f : X → X is an operator, then
the following statements are equivalent:

(1) f is a Picard operator
(2) There exists k ∈ N∗ such that fk is a Picard operator.

(iii)-(vi). The functional, ρ : X ×X → R+, defined by

ρ(x, y) := d(x, y) + l−
1
k d(f(x), f(y)) + . . .+ l

1−k
k d(fk−1(x), fk−1(y))

is a metric on X which is strongly equivalent with the metric d (see, for example

[72]), with c1 = 1 and c2 = 1 + l1l
− 1

k + . . .+ lk−1l
1−k
k . Moreover the operator f is an

l
1
k -contraction with respect to ρ. The proof follows from Theorem 2.1. �

In order to present the next example we need some preliminaries.

Let (X,+,R, ‖·‖,K) be an ordered Banach space. By definition the cone K is
normal if there exists cN > 0 such that,

x, y ∈ X, 0 ≤ x ≤ y ⇒ ‖x‖ ≤ cN‖y‖.

The cone K is reproducing if, X = K − K. So, each element x ∈ X admits a
presentation, x = u − v, where u, v ∈ K. Moreover each element x ∈ X admits a
presentation, x = u− v such that, ‖u‖, ‖v‖ ≤ cr‖x‖, where cr does not depend of x.

In an ordered Banach space with reproducing cone, the functional, ‖·‖r : X →
R+, defined by, ‖x‖r := inf{‖y‖ | − y ≤ x ≤ y}, is a norm on X. For this norm we
have (see [26], p. 320),

(2cN + 1)−1‖x‖ ≤ ‖x‖r ≤ 2cg‖x‖, ∀ x ∈ X.

Our example in an ordered Banach space is the following.

Theorem 3.9. (see [26]) Let X be an ordered Banach space with a reproducing and
normal cone K and g : X → X be a positive linear operator with, ‖g‖ < 1. If an
operator f : X → X satisfies the condition

−g(x− y) ≤ f(x)− f(y) ≤ g(x− y), ∀ x, y ∈ X, x ≥ y

then f satisfies the conclusions in SPC, with

(iii) ‖x− x∗‖ ≤ 2cg(2cN+1)
1−‖g‖ ‖x− f(x)‖, ∀ x ∈ X.

Proof. (i)-(ii). It is the Krasnoselskii’s theorem. From the Krasnoselskii’s proof it
follows that the operator f is a ‖g‖-contraction with respect to the strongly equivalent
norm, ‖·‖r. So, the conclusions (iii)-(vi), follows from Theorem 2.1. �
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4. The case of generalized metric spaces

The universe of generalized metric spaces is a very large one (see, for example,
[5], [15], [22], [24], [43], [44], [46], [55], [64],. . . ). In what follows we shall present only
some examples for our problem in some generalized metric spaces.

Theorem 4.1 (Saturated principle of contraction in a partial metric space (see [55]).
Let (X, p) be a complete partial metric space and f : X → X be an l-contraction.
Then we have:

(i) Ffn = {x∗}, ∀ n ∈ N∗.
(ii) p(fn(x), x∗)→ 0 as n→∞, ∀ x ∈ X.

(iii) p(x, x∗) ≤ 1
1−lp(x, f(x)), ∀ x ∈ X.

(iv) {yn}n∈N ⊂ X, p(yn, f(yn))→ 0 as n→∞ ⇒ p(yn, x
∗)→ 0 as n→∞.

(v) {yn}n∈N ⊂ X, p(yn+1, f(yn))→ 0 as n→∞ ⇒ p(yn, x
∗)→ 0 as n→∞.

(vi) Let Y ⊂ X be a nonempty subset such that f(Y ) ⊂ Y , x∗ ∈ Y and
sup{p(x, y) | x, y ∈ Y } < +∞. Then,⋂

n∈N
fn(Y ) = {x∗}.

Proof. (i)-(ii). This is Matthews’ theorem.
(iii)-(v). See [55]. See also [64], pp. 53-58.

(vi) It is clear that x∗ ∈
⋂
n∈N

fn(Y ). Let u ∈
⋂
n∈N

fn(Y ). Then there exists xn ∈ Y

such that u = fn(xn).
We have, p(u, x∗) = p(fn(xn), x∗) = p(fn(xn), fn(x∗)) ≤ lnp(xn, x

∗) ≤ lnδp(Y ) → 0
as n→∞. So, u = x∗. �

In a similar way we have

Theorem 4.2 (Saturated principle of quasicontraction in a partial metric space). Let
(X, p) be a partial metric space and f : X → X be an operator. We suppose that:

(a) There exists an x∗ ∈ X, fixed point of f .
(b) f is an l-quasicontraction.

Then we have the conclusions in Theorem 4.1.

There are examples of saturate principle of generalized contractions in Rm+ -metric
spaces. For the example corresponding to Perov’s fixed point principle, see [64], pp.
82-85.

Now we give an example in a gauge space. Let (X, d) be a generalized metric
space with d(x, y) ∈ s(R+). So, d(x, y) = {dk(x, y)}k∈N∗ where dk is a pseudometric,
for all k ∈ N∗ and for each (x, y) ∈ X ×X there exists k ∈ N∗ such that dk(x, y) 6= 0.
Let l = (l1, . . . , ln, . . .) be such that 0 ≤ lk < 1, ∀ k ∈ N∗. By definition, an operator
f : X → X is an l-contraction if

dk(f(x), f(y)) ≤ lkdk(x, y), ∀ x, y ∈ X, ∀ k ∈ N∗.
For the basic notions in a generalized metric space with d(x, y) ∈ s(R+), see [64], [21],
[56],. . .

We have
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Theorem 4.3 (Saturated principle of contraction in a s(R+)-metric space). Let (X, d),
d(x, y) ∈ s(R+), be a complete metric space and f : X → X be an l-contraction. Then
we have:

(i) Ffn = {x∗}, ∀ n ∈ N∗.
(ii) fn(x)→ x∗ as n→∞, ∀ x ∈ X.

(iii) dk(x, x∗) ≤ 1
1−lk d(x, f(x)), ∀ x ∈ X.

(iv) {yn}n∈N ⊂ X, d(yn, f(yn))→ 0 as n→∞ ⇒ yn → x∗ as n→∞.
(v) {yn}n∈N ⊂ X, d(yn+1, f(yn))→ 0 as n→∞ ⇒ yn → x∗ as n→∞.

(vi) Let Y ⊂ X be a bounded and closed subset with f(Y ) ⊂ Y . Then x∗ ∈ Y and⋂
n∈N

fn(Y ) = {x∗}.

Proof. (i)-(ii). This is the Cain and Nashed’s fixed point theorem. The Cain-Nashed’s
theorem is a generalization of CP.

(iii). From the definition of l-contraction we have that f is an lk-contraction
with respect to the pseudometric dk. Now the proof is standard.

(iv). d(yn, f(yn)) → 0 as n → ∞ implies that dk(yn, f(yn)) → 0 as n → ∞.
From (iii) we have (iv).

(v). d(yn+1, f(yn))→ 0 as n→∞ ⇒ dk(yn+1, f(yn))→ 0 as n→∞. But,

dk(yn+1, x
∗) ≤ dk(yn+1, f(yn)) + dk(f(yn), x∗) ≤
≤ dk(yn+1, f(yn)) + ld(yn, f(yn−1)) + . . .+ ln+1dk(y0, x

∗).

Now the proof follows from a Cauchy lemma.

(vi). Let y ∈ Y . Then fn(y) ∈ Y , ∀ n ∈ N, and fn(y)→ x∗ as n→∞. Since Y

is closed it follows that x∗ ∈ Y . It is clear that x∗ ∈
⋂
n∈N

fn(Y ). Let u ∈
⋂
n∈N

fn(Y ).

Then there exists xn ∈ Y such that u = fn(xn). We have that

dk(u, x∗) = dk(fn(xn), x∗) ≤ lnk δdk(Y )→ 0 as n→∞, ∀ k ∈ N∗.

This implies, u = x∗. �

We also have

Theorem 4.4 (Saturated principle of quasicontraction in a s(R+)-metric space). Let
(X, d), d(x, y) ∈ s(R+), be a generalized metric space and f : X → X be an operator.
We suppose that:

(a) There exists an x∗ ∈ X, a fixed point of f .
(b) f is an l-quasicontraction.

Then we have the conclusions in Theorem 4.3.

From the above considerations the following questions rise:

Problem 4.5. Which metric conditions in a s(R+)-metric space (Colojoară, Gheor-
ghiu,. . . ) imply the conclusions in Theorem 4.3 ?
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Problem 4.6. Let (X, d) be a generalized metric space with d(x, y) ∈ s(R+). Let
f : X → X be an operator. Let M(R+) be the set of infinite matrices with elements
in R+ and let I be the identity matrix in M(R+). Our definition of l-contraction reads
as follows

d(f(x), f(y)) ≤ lId(x, y), ∀ x, y ∈ X.
For a good definition for contractions in a such generalized metric space it is neces-
sarily to put a more general matrix instead of lI (see [56]).

In the above setting, which are the contractions with the properties (i)-(vi) ?

5. Applications

5.1. More applications of SPC appear as applications of Picard operators. Let us
mention abstract applications to: data dependence of fixed point under the operator
perturbation ([49], [52], [64], [3], [4], [15], [12], [34], [56], [68]), Ulam stability of fixed
point equations ([60], [65],. . . ), abstract Gronwall lemmas ([57], [9], [15], [27], [53],. . . ).
For concrete applications to functional differential equations and to functional integral
equations, see: [1], [3], [9], [14], [15], [19], [27], [30], [31], [33], [34], [39], [53], [58], [68],
[74], [75],. . .

5.2. An other application is concerning iterated Picard operator systems. Let
(X, d) be a complete metric space and f1, . . . , fm : X → X be some Picard operators.
These operators generate the following operator on P (X),

Tf : P (X)→ P (X), Tf (A) := f1(A) ∪ . . . ∪ fm(A), ∀ A ∈ P (X).

The problem is to study the properties of Tf in terms of properties of f1, . . . , fm.
This problem is a particular case of the following Nadler problem:

Let (X, d) be a complete metric space and f : X → P (X) be a multivalued

operator. Let Tf : P (X) → P (X) be the operator defined by, Tf (A) =
⋃
a∈A

f(a). The

problem is to study the properties of Tf in terms of properties of f .
For example it is well known the following result:

Theorem 5.1 (Nadler (1969), Hutchinson (1981)). Let (X, d) be a complete metric
space and fi : X → X be an l-contraction, i = 1,m. Then the set-to-set operator,
Tf : Pcp(X) → Pcp(X) is well defined and it is an l-contraction in (Pcp(X), Hd).
Here, Hd is the Pompeiu-Hausdorff metric corresponding to d.

From the SPC we have:

Theorem 5.2. Let Tf be as in Theorem 5.1. Then we have:

(i) FTf
= {A∗}.

(ii) Tnf (A)
Hd→ A∗ as n→∞, ∀ A ∈ Pcp(X).

(iii) Hd(A,A
∗) ≤ 1

1−lHd(A, Tf (A)), ∀ A ∈ Pcp(X).

(iv) If An ∈ Pcp(X), n ∈ N are such that

Hd(An, Tf (An))→ 0 as n→∞,

then, An
Hd→ A∗ as n→∞.
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(v) If An ∈ Pcp(X), n ∈ N are such that

Hd(An+1, Tf (An))→ 0 as n→∞,

then, An
Hd→ A∗ as n→∞.

(vi) Let U ⊂ Pcp(X) be a bounded and closed subset such that f(U) ⊂ U . Then,
A∗ ∈ U and ⋂

n∈N
Tnf (U) = {A∗}.

5.3. The SPC has applications in the variational theory of differential equations.
Let us consider the following example.

In [45] (see also [8]), Radu Precup presents the following interesting result:

Theorem 5.3. Let X be a Hilbert space, N : X → X be a contraction with the unique
fixed point u∗. If there exists a C1-functional, E : X → R, bounded from below such
that

E′(u) = u−N(u), for all u ∈ X,
then u∗ minimizes the functional, i.e.,

E(u∗) = inf
X
E.

The Precup proof for this theorem can be read as follows.
As a consequence of Bishop-Phelps’ theorem, there is a sequence (un) with

E(un)→ inf
X
E and E′(un)→ 0.

Since, E′(un) = un −N(un)→ 0 and N is a contraction, from conclusion (v) in SPC
we have that, un → u∗.

From this proof the following remark follows:

Remark 5.4. In Theorem 5.3 we can put instead of the operator N , an operator for
which the fixed point problem is well posed.

6. Other research directions

6.1. What does it mean Saturated principle of fiber contraction ?
References: [69], [68], [67], [1].
6.2. To extend the results in sec. 2 to the case of nonself operators.
References: [6], [12], [4], [64], [17],. . .
6.3. To extend the results in sec. 2 to the case of multivalued operators.
References: [37], [41], [64],. . .
6.4. To extend the results in sec. 2 to the case of nonself multivalued operators.
References: [42], [64],. . .
6.5. Let (X, d) be a complete metric space, f : X → X be an operator with

Ff = {x∗} and fn : X → X be a sequence which converges in some sense to f .
Consider the iterative algorithm

xn+1 = fn(xn).
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In which conditions on f and fn this algorithm is convergent to x∗ ? What estimate
we have for d(x, x∗) ?

References: [32], [4], [7], [11], [34], [59].
6.6. To extend the results in this paper to the weakly Picard operators.
References: [62], [53], [63], [64], [65], [4],. . .
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[11] Chidume, C.E., Măruşter, Şt., Iterative methods for the computation of fixed point of
demicontractive mappings, J. Comput. Appl. Math., 234(2010), 861-882.
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Mat.-Infor., 46(2008), 149-160.

[56] Rus, I.A., The theory of a metrical fixed point theorem: theoretical and applicative rele-
vance, Fixed Point Theory, 9(2008), no. 2, 541-559.

[57] Rus, I.A., Gronwall lemmas: ten open problems, Sci. Math. Jpn., 70(2009), 221-228.

[58] Rus, I.A., Some nonlinear functional differential and integral equations, via weakly Pi-
card operator theory: a survey, Carpathian J. Math., 26(2010), no. 2, 230-258.

[59] Rus, I.A., An abstract point of view on iterative approximation of fixed points: impact
on the theory of fixed point equations, Fixed Point Theory, 13(2012), no. 1, 179-192.

[60] Rus, I.A., Results and problems in Ulam stability of operatorial equations and inclusions,
In: T.M. Rassias (ed.), Handbook of Functional Equations: Stability Theory, Springer,
2014, 323-352.

[61] Rus, I.A., Remarks on a LaSalle conjecture on global asymptotic stability, Fixed Point
Theory, 17(2016), no. 1, 159-172.

[62] Rus, I.A., Relevant classes of weakly Picard operators (to appear).
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Universitară Clujeană, Cluj-Napoca, 2002.
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Abstract. A survey on summation/integration methods for computation of slowly
convergent series is presented. Methods are based on some transformations of se-
ries to integrals, with respect to certain nonclassical weight functions over R+,
and an application of suitable quadratures of Gaussian type for numerical cal-
culating of such integrals with a high accuracy. In particular, applications to
some series with irrational terms are considered. Several numerical examples are
included in order to illustrate the efficiency of these methods.
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term recurrence relation, convergence, Laplace transform, contour integration.

1. Introduction

In this paper we give an account on the so-called summation/integration methods
for fast summation of slowly convergent series and present their application, including
series with irrational terms. We consider convergent series of the form

+∞∑
k=1

(±1)kf(k), (1.1)

with a given function z 7→ f(z), with certain properties with respect to the variable
z. Here, the function f can depend on several other parameters, e.g., f(z;x, y, . . .),
so that these summation processes can be applied also to some classes of functional
series, not only to numerical series. Regarding the properties of the function f is often
appropriate to extract a finite number of first terms in (1.1), e.g.,

+∞∑
k=1

(±1)kf(k) =

m−1∑
k=1

(±1)kf(k) +

+∞∑
k=m

(±1)kf(k), (1.2)

and then apply the procedure to the series starting with the index k = m.
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The basic idea of these methods is to transform the second series in (1.2) (or
directly the series (1.1) if m = 1) to an integral with respect to certain weight function
w on R+, and then to approximate this weighted integral by a quadrature sum,

+∞∑
k=m

(±1)kf(k) =

∫ +∞

0

g(t)w(t) dt ≈
N∑
ν=1

Aνg(τν), (1.3)

where the function g is connected with the original function f in some way.
Thus, such summation/integration methods need two steps: (1) transformation

“sum to integral”; (2) construction of the quadrature rules∫ +∞

0

g(t)w(t) dt =

N∑
ν=1

Aνg(τν) +RN (g;w), (1.4)

with respect to the weight function w.
In our approach in (1.4) we take the Gaussian quadrature formulas, where

the nodes τν ≡ τ
(n)
ν and the weight coefficients (Christoffel numbers) Aν ≡ A

(n)
ν ,

ν = 1, . . . , N , can be determined by the well-known Golub-Welsch algorithm [6] if we
know the coefficients in the three-term recurrence relation of the corresponding poly-
nomials orthogonal with respect to the weight function w. Usually the weight function
w is strong non-classical and those recursive coefficients must be constructed numer-
ically. Basic procedures for generating these coefficients are the method of (modified)
moments, the discretized Stieltjes–Gautschi procedure, and the Lanczos algorithm and
they play a central role in the so-called constructive theory of orthogonal polynomials,
which was developed by Walter Gautschi in the eighties on the last century (cf. [2]).
The problem is very sensitive with respect to small perturbations in the data. The
basic references are [2], [4], [8], and [10].

For the construction of Gaussian quadrature rules (1.4) with respect to the strong
non-classical weight functions w on R+ today we use a recent progress in symbolic
computation and variable-precision arithmetic, as well as our Mathematica pack-
age OrthogonalPolynomials (see [1], [12]). The package is downloadable from Web
Site: http://www.mi.sanu.ac.rs/ gvm/. The approach enables us to overcome the
numerical instability in generating coefficients of the three-term recurrence relation
for the corresponding orthogonal polynomials with respect to the weight function w
(cf. [2], [4], [8], [10]). In this construction we need only a procedure for the symbolic
calculation of moments or their calculation in variable-precision arithmetic.

In the sequel, we mention only two methods for such kind of transformations:
Laplace transform method and Contour integration over a rectangle, including a sim-
ilar procedure for series with irrational terms. Several numerical examples are given
in order to illustrate the efficiency of these methods.

2. Laplace transform method

In this section we present the basic idea of the Laplace transform method and
give some considerations about applicability of this method. For details and several
examples see [5], [8, pp. 398–401] and [11].
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Suppose that the general term of series is expressible in terms of the Laplace
transform, or its derivative, of a known function.

Consider only the case when

f(s) = L[g(t)] =

∫ +∞

0

e−stg(t) dt, Re s ≥ 1.

Then
+∞∑
k=1

(±1)kf(k) =

+∞∑
k=1

(±1)k
∫ +∞

0

e−ktg(t) dt

=

∫ +∞

0

(
+∞∑
k=1

(
±e−t

)k)
g(t) dt,

i.e.,
+∞∑
k=1

(±1)kf(k) =

∫ +∞

0

±e−t

1∓ e−t
g(t) dt = ±

∫ +∞

0

1

et ∓ 1
g(t) dt.

In this way, the summation of series (1.1) is transformed to integration problems

T =

+∞∑
k=1

f(k) =

∫ +∞

0

e−t
g(t)

1− e−t
dt =

∫ +∞

0

t

et − 1

g(t)

t
dt (2.1)

and

S =

+∞∑
k=1

(−1)kf(k) =

∫ +∞

0

1

et + 1
(−g(t)) dt. (2.2)

The first integral representation (2.1) for the series T suggests an application of the
Gauss-Laguerre quadrature rule (with respect to the exponential weight w(t) = e−t)
to the function

g(t)

1− e−t
=

t

1− e−t
g(t)

t
,

supposing that g(t)/t is a smooth function. However, the convergence of these Gauss-
Laguerre rules can be very slow, according to the presence of poles on the imaginary
axis at the points 2kπi (k = ±1,±2, . . .).
Therefore, a better choice is the second integral representation in (2.1), with the Bose-
Einstein weight function ε(t) = t/(et − 1) on R+. Supposing again that t 7→ g(t)/t is
a smooth function, the corresponding Gauss-Bose-Einstein quadrature formula con-
verges rapidly.

In the case of “alternating” series, the obtained integral representation (2.2)
needs a construction of Gaussian quadrature rule with respect to the Fermi-Dirac
weight function ϕ(t) = 1/(et + 1) on R+.

Thus, for computing series T and S we need the Gauss-Bose-Einstein quadrature
rule ∫ +∞

0

ε(t)u(t) dt =

N∑
k=1

Aku(ξk) +RN (u; ε) (2.3)
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and the Gauss-Fermi-Dirac quadrature rule∫ +∞

0

ϕ(t)u(t) dt =

N∑
k=1

Bku(ηk) +RN (u;ϕ), (2.4)

respectively, whose parameters, nodes (ξk and ηk) and weight coefficients (Ak
and Bk), for each N ≤ n, can be calculated by the Mathematica package
OrthogonalPolynomials, starting from the corresponding moments of the weight

functions, µk(ε) =
∫ +∞

0
xkε(t) dt and µk(ϕ) =

∫ +∞
0

xkϕ(t) dt, k = 0, 1, . . . , 2n − 1.
The convergence of the quadrature formulas (2.3) and (2.4) is fast for smooth func-
tions t 7→ u(t) (u(t) = g(t)/t and g(t)), so that low-order Gaussian rules provide one
possible summation procedure.

However, if g is no longer smooth function, for example, if its behaviour as t→ 0
is such that g(t) = tγh(t), where 0 < γ < 1 and h(0) is a constant, then the previous
formulas for series T and S should be reduced to the following forms

T =

∫ +∞

0

tγ

et − 1
h(t) dt (2.5)

and

S =

∫ +∞

0

tγ

et + 1
(−h(t)) dt, (2.6)

respectively.
Introducing the weight functions from (2.5) and (2.6) as εγ(t) and ϕγ(t), respec-

tively, then their moments are

µk(εγ) = ζ(k + γ + 1)Γ(k + γ + 1), k ≥ 0, (2.7)

and

µk(ϕγ) =
(
1− 2−k−γ

)
ζ(k + γ + 1)Γ(k + γ + 1)

=
(
1− 2−k−γ

)
µk(εγ), k ≥ 0, (2.8)

where Γ(z) is gamma function and ζ(z) is the Riemann zeta function.
Evidently, the moments for the Bose-Einstein weight are

µk(ε) = µk(ε1) = (k + 1)!ζ(k + 2), k ≥ 0,

while for the Fermi-Dirac weight these moments are µk(ϕ) = µk(ϕ0), except k = 0,
i.e.,

µk(ϕ) =

{
log 2, k = 0,

(1− 2−k)k!ζ(k + 1), k > 0.

Example 2.1. For the series
+∞∑
k=1

(±1)k

k
√
k + 1

we put

f(s) =
1

s
√
s+ 1

=

∫ +∞

0

e−sterf(
√
t) dt, Re s > 0,
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i.e., g(t) = erf(
√
t), where erf(z) is the error function (the integral of the Gaussian

distribution), given by

erf(z) =
2√
π

∫ z

0

e−t
2

dt.

According to the first integral representation in (2.1), we can apply the Gauss-
Laguerre quadrature rule

T =

+∞∑
k=1

1

k
√
k + 1

=

∫ +∞

0

e−tΨ(t) dt =

N∑
ν=1

ALνΨ(τLν ) +RLN (Ψ), (2.9)

where

Ψ(t) =
erf(
√
t)

1− e−t
=

1√
πt

(
2 +

1

3
t+

1

30
t2 − 1

315
t3
)

+O
(
t7/2

)
. (2.10)

Otherwise, the exact value of T is

T = 2.184009470267851952894734157852949070443908406263229420200 . . .

(see Example 3.1).

Here we have an example in which the function g is no longer smooth, having a
square root singularity at t = 0. Relative errors in the Gauss-Laguerre approximations

QLag
N =

N∑
ν=1

ALνΨ(τLν )

are given in Table 1. Numbers in parentheses indicate decimal exponents, e.g. 5.01(−3)
means 5.03× 10−3.

Table 1. Relative errors in different quadrature sums in Example 2.1

N QLag
N QBE

N QgenBE
N

10 1.40(−1) 1.57(−1) 6.58(−11)
20 9.98(−2) 1.09(−1) 1.65(−20)
30 8.17(−2) 8.76(−2) 4.46(−30)
40 7.09(−2) 7.53(−2) 1.23(−39)
50 6.34(−2) 6.70(−2) 3.45(−49)

Another way for calculating the value of T is to apply the Gauss-Bose-Einstein
quadrature rule (2.3) to the last integral in (2.1), where u(t) = erf(

√
t)/t. The cor-

responding relative errors in the Bose-Einstein approximations QBE
N are presented in

the same table.

As we can see, these two quadrature sums are quite inefficient. In order to get a
quadrature sequence with a fast convergence, we note first that

erf(
√
t) =

√
t

π

(
2− 2

3
t+

1

5
t2 − 1

21
t3
)

+O
(
t9/2

)
.
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This means that we should take the integral (2.1) in the form

T =

+∞∑
k=1

1

k
√
k + 1

=

∫ +∞

0

√
t

et − 1

erf(
√
t)√
t

dt,

and then apply the Gaussian rule with respect to the generalized Bose-Einstein weight
t−1/2ε(t) =

√
t/(et − 1) (see [5] and [3]). In the last column of Table 1 we give the

corresponding quadrature approximations QgenBE
N . The fast convergence of QgenBE

N is
evident!

3. Method of contour integration over a rectangle

As we have seen in the previous section, the function g in (1.3) is connected
with the original function f over its Laplace transform, while the weight functions
are ε(t) = t/(et − 1) and ϕ(t) = 1/(et + 1) (or their generalized forms).

In 1994 we developed a method based on a contour integration over a rectangle
Γ in the complex plane [9], in which the weight w in (1.3) is one of the hyperbolic
functions

w1(t) =
1

cosh2 t
and w2(t) =

sinh t

cosh2 t
, (3.1)

and the function g can be expressed in terms of the indefinite integral F of f chosen
so as to satisfy the following decay properties: (see [7], [9], [8]):

(C1) F is a holomorphic function in the region{
z ∈ C

∣∣ Re z ≥ α, m− 1 < α < m
}
, (3.2)

where m,n ∈ Z (m < n ≤ +∞);

(C2) lim
|t|→+∞

e−c|t|F (x+ it/π) = 0, uniformly for x ≥ α;

(C3) lim
x→+∞

∫
R

e−c|t|
∣∣F (x+ it/π)

∣∣ dt = 0,

where c = 2 (or c = 1 for “alternating” series).
Taking Γ = ∂G and G =

{
z ∈ C : α ≤ Re z ≤ β, |Im z| ≤ δ/π

}
with m − 1 <

α < m, n < β < n+ 1, and δ > 0, we proved in [9] (see also [8]) that

Tm,n =

n∑
k=m

f(k) =
1

2πi

∮
Γ

( π

sinπz

)2

F (z) dz (3.3)

and

Sm,n =

n∑
k=m

(−1)kf(k) =
1

2πi

∮
Γ

( π

sinπz

)2

cosπz F (z) dz, (3.4)

where F is an integral of f .
Setting α = m− 1/2, β = n+ 1/2, and letting δ → +∞, under conditions (C1),

(C2), and (C3), the previous integrals over Γ reduce to the weighted integrals over
(0,+∞),

+∞∑
k=m

f(k) =

∫ +∞

0

w1(t)Φ

(
m− 1

2
,
t

π

)
dt (3.5)
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and
+∞∑
k=m

(−1)kf(k) = (−1)m
∫ +∞

0

w2(t)Ψ

(
m− 1

2
,
t

π

)
dt, (3.6)

where the weight functions w1 and w2 are given by (3.1), and Φ and Ψ by

Φ(x, y) = −1

2
[F (x+ iy) + F (x− iy)] = −ReF (x+ iy)

and

Ψ(x, y) =
1

2i
[F (x+ iy)− F (x− iy)] = ImF (x+ iy).

The integrals (3.5) and (3.6) can be calculated by using the N -point Gaussian quadra-
tures with respect to the hyperbolic weights w1 and w2,∫ +∞

0

g(t)ws(t) dt =

N∑
ν=1

ANν,sg(τNν,s) +RN,s(g) (s = 1, 2), (3.7)

with weights ANν,s and nodes τNν,s, ν = 1, . . . , N (s = 1, 2). Such quadratures are exact
for all polynomials of degree at most 2N − 1 (g ∈ P2N−1) and their numerical con-
struction is given in [9] and [11]. For example, for constructing Gaussian quadratures
for s = 1 and N ≤ 50, we use the first 2N = 100 moments (in symbolic form) and
then we construct the recursion coefficients in the three-term recurrence relation for
orthogonal polynomials with respect to the hyperbolic weight function w1 on (0,+∞).
The following procedure in the Mathematica package OrthogonalPolynomials

provides Gaussian quadratures (with Precision->60) for each N = 5(5)50 (i.e.,
{n,5,50,5}):
<<orthogonalPolynomials‘

f[s_]:=1/(s(s+1)^(1/2));

F[z_]:=Log[(Sqrt[1+z]-1)/(1+Sqrt[1+z])];

Phi[x_,y_]:=-Re[F[x+I y]]; w1[x_]:=1/Cosh[x]^2;

mom=Join[{1,Log[2]},Table[(2^(k-1)-1)k!/4^(k-1)Zeta[k],

{k,2,99}]];

{al,be}=aChebyshevAlgorithm[mom,WorkingPrecision->100];

(* {al1,be1}=aChebyshevAlgorithm[mom,WorkingPrecision->130];

N[Max[Abs[al/al1-1],Abs[be/be1-1]],3] *)

pq[n_]:=aGaussianNodesWeights[n,al,be,WorkingPrecision->65,

Precision->60];

nw=Table[pq[n],{n,5,50,5}];

The part between the comment signs ((* and *)) is used only to determine the
maximal relative error in the recursive coefficients, which is, in our case, 4.16×10−63.
Therefore, the precision of Gaussian parameters (nodes and weights) is at least 60
decimal digits!

Example 3.1. We again consider the series from Example 2.1.

Here, f(z) = 1/(z
√

1 + z), and F (z) = log
(√

z+1−1√
z+1+1

)
, the integration constant

being zero on account of the condition (C3).
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Thus, using the Gaussian quadrature (3.7) (for s = 1), we approximate the series
T by

T =

+∞∑
k=1

1

k
√
k + 1

≈ QN,m =

m−1∑
k=1

1

k
√
k + 1

+

N∑
ν=1

ANν,1Φ

(
m− 1

2
,
τNν,1
π

)
.

For m = 1 the first sum on the right side is empty. The corresponding code in
Mathematica is:

Q[m_]:=If[m==1,0,Sum[f[j],{j,1,m-1}]] +

Table[nw[[k]][[2]].Phi[m-1/2,nw[[k]][[1]]/Pi],{k,1,10}];

The quadrature sums QN,1 and QN,3 are presented in Table 2, and QN,15 in
Table 3. Digits in error are underlined.

Table 2. Quadrature sums QN,m for m = 1 and m = 3

N QN,1 QN,3
5 2.18399979 2.184009469

10 2.184009183 2.1840094702678658
15 2.18400947764 2.1840094702678519550
20 2.18400946996 2.18400947026785195289639
25 2.184009470281 2.184009470267851952894739799
30 2.18400947026793 2.18400947026785195289473417553
35 2.18400947026770 2.184009470267851952894734157762
40 2.1840094702678697 2.184009470267851952894734157852089

Table 3. Quadrature sums QN,15

N QN,15

5 2.18400947026785198767
10 2.1840094702678519528947341581999
15 2.1840094702678519528947341578529490706127
20 2.1840094702678519528947341578529490704439084170
25 2.184009470267851952894734157852949070443908406263233
30 2.184009470267851952894734157852949070443908406263229420199

As we can see, the sequence of quadrature sums {QN,m}N converges faster for
larger m. This rapidly increasing of convergence of the summation process as m
increases in due to the logarithmic singularities ±iπ

(
m− 1

2

)
of the function

z 7→ Φ

(
m− 1

2
,
z

π

)
, z = t+ is,

moving away from the real line. In Figure 1 we present the function

(t, s) 7→
∣∣∣∣Φ(m− 1

2
,

1

π
(t+ is)

)∣∣∣∣,
when m = 1 and m = 5.
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Figure 1. The function (t, s) 7→ |Φ
(
m− 1

2 ,
1
π (t+ is)

)
| for m = 1 (top) and m = 5

(bottom)
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For example, for m = 15 we obtained the same values of QN,15 for N = 40(5)50
and it can be taken as an exact value of the sum,

T = 2.184009470267851952894734157852949070443908406263229420200251.

for calculating the relative errors,

errN,m =

∣∣∣∣QN,m − TT

∣∣∣∣,
in other quadrature sums QN,m for smaller m < 15. These relative errors for some
selected m are presented in Table 4.

Table 4. Relative errors errN,m in the quadrature sums QN,m

N m = 1 m = 2 m = 3 m = 5 m = 10
5 4.43(−6) 3.59(−9) 4.65(−10) 8.05(−13) 8.28(−16)

10 1.31(−7) 5.02(−12) 6.34(−15) 6.25(−19) 8.30(−25)
15 3.38(−9) 6.19(−15) 9.81(−19) 6.88(−24) 2.77(−32)
20 1.39(−10) 1.31(−17) 7.59(−22) 1.14(−28) 2.84(−38)
25 6.15(−12) 2.57(−19) 2.58(−24) 1.15(−31) 6.01(−44)
30 3.73(−14) 4.17(−21) 8.10(−27) 6.13(−35) 1.09(−48)

4. Series with irrational terms

In this section we consider some important series of the form

U±(a, ν) =

+∞∑
k=1

(±1)k−1

(k2 + a2)ν+1/2
.

In 1916 Kapteyn (see [14, p. 386]) proved the formula

U+(a, ν) =

+∞∑
k=1

1

(k2 + a2)ν+1/2
=

√
π

(2a)νΓ(ν + 1/2)

∫ +∞

0

tν

et − 1
Jν(at) dt

which is valid when Re ν > 0 and | Im a| < 1. Here, Jν is the Bessel function of the
order ν, defined by

Jν(t) =

+∞∑
k=0

(−1)k

k!Γ(k + ν + 1)

(
t

2

)2k+ν

. (4.1)

Since for F (p) = 1/(p2 + a2)ν+1/2
(
Re ν > −1/2, Re p > | Im a|

)
, using the

method of Laplace transform, we find the original function

f(t) =

√
π

(2a)νΓ(ν + 1/2)
tνJν(at),
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as well as

U−(a, ν) =

+∞∑
k=1

(−1)k−1

(k2 + a2)ν+1/2
=

√
π

(2a)νΓ(ν + 1/2)

∫ +∞

0

tν

et + 1
Jν(at) dt.

Thus, this method leads to an integration of the Bessel function t 7→ Jν(at) with
Einstein’s weight ε(t) or Fermi’s weight ϕ(t). For some special values of ν, we can use
also quadratures with respect to the weights t±1/2ε(t) and t±1/2ϕ(t) (see [5] and [3]).

In the following example we show how to compute U±(a, ν), 0 < ν < 1, with a
high accuracy.

Example 4.1. According to the expansion of the Bessel function (4.1), we can consider
U±(a, ν) in the form (as the corresponding series in Example 2.1)

U±(a, ν) =

+∞∑
k=1

(±1)k−1

(k2 + a2)ν+1/2
=

√
π

2νΓ(ν + 1/2)

∫ +∞

0

t2ν

et ∓ 1

Jν(at)

(at)ν
dt,

and then construct Gaussian quadratures with respect to the (generalized) Einstein
and Fermi weights ε2ν(t) and ϕ2ν(t) on (0,+∞), respectively. Their moments are
given by (2.7) and (2.8), respectively, where γ = 2ν.

These series are slowly convergent for small ν. For example, for the remainder
Rn(a, ν) of the series U+(a, ν), we have

Rn(a, ν) =

+∞∑
k=n+1

1

(k2 + a2)ν+1/2
<

∫ +∞

n

dx

(x2 + a2)ν+1/2
.

For n� a the right hand side in the previous inequality can be simplified as∫ +∞

n

dx

x2ν+1
=

1

2νn2ν
,

so that we can roughly conclude that for a small ε, the remainder Rn(a, ν) < ε if
n > nε =

[
(2νε)−1/(2ν)

]
. The values of nε for ε = 10−3 and some given values of ν

are presented in Table 5.

Table 5. The values of nε for ε = 10−3 and some values of ν

ν 5× 10−1 10−1 10−2 10−3 10−4

nε 103 3× 1018 9× 10234 3× 102849 7× 1033494

Using the Mathematica package OrthogonalPolynomials and e.g. the first 100
moments µk(ε2ν), k = 0, 1, . . . , 99, in the symbolic form (2.7), we can construct for a
given ν = 10−4 the first 50 recursive coefficients in the three-term recurrence relation
with the maximal relative errors of about 6.09×10−53 if we use the WorkingPrecision
-> 95 in the Chebyshev method of moments, implemented in this package by the
command
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<<orthogonalPolynomials‘

moments=Table[Gamma[1+k+2v]Zeta[1+k+2v], {k,0,99}];

mv=moments/.{v -> 1/10000};

{alfaE,betaE}=aChebyshevAlgorithm[mv,WorkingPrecision->95];

These coefficients enables us to construct the corresponding Gaussian rules for
any N ≤ 50, ∫ +∞

0

t2ν

et ∓ 1
u(t) dt ≈ QN (u; ε2ν) =

N∑
k=1

Aku(ξk), (4.2)

where ξk and Ak, k = 1, . . . , N , are nodes and weight coefficients. Corresponding
Gaussian approximations QN (u; ε2ν), for

u(t) = u(t; a, ν) =

√
π

2νΓ(ν + 1/2)
· Jν(at)

(at)ν
, (4.3)

a = 1/4 and ν = 10−4, are presented in Table 6. Digits in error are underlined. In the
same table we give also the relative errors errN (a, ν) in these approximations, taking
Q50(u; ε2ν) as the exact value of the sum.

Table 6. Gaussian approximations QN (u; ε2ν) and relative errors
errN (a, ν) for u(t) given by (4.3)

N QN (u; ε2ν) errN (a, ν)

5 5000.541106014918 8.29(−14)
10 5000.54110601450371233515 1.53(−22)
15 5000.541106014503712334387545429320 1.29(−31)
20 5000.541106014503712334387545429967462497083 3.71(−41)
25 5000.5411060145037123343875454299674624972689174559 1.11(−49)

The relative errors errN (a, ν) for 0 < a < 1 and ν = 10−4 in log-scale are
displayed in Figure 2 for N = 5(5)15 nodes in the quadrature formula (4.2).

Remark 4.2. When a → 0 the function u(t), defined by (4.3), tends to the constant
2−v/Γ(v + 1). Then the quadrature sums in (4.2) give the same value for each N ,

U+(0, 10−4) = 5000.5772302278768195938031666553522327421800847082,

which is, in fact, an approximative value of the well-known ζ function at the point
2ν + 1 = 1.0002.
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0.0 0.2 0.4 0.6 0.8 1.0
a

1.×10 -45

1.×10 -35

1.×10 -25

1.×10 -15

errN(a, )

N=5

N=10

N=15

Figure 2. Relative errors in quadrature sums QN (u; ε2ν) for N = 5 (red line),
N = 10 (blue line), and N = 15 nodes (black line), when ν = 10−4

Finally, we consider an alternative method for the series of the form

+∞∑
k=−∞

f(k,
√
k2 + a2) and

+∞∑
k=−∞

(−1)kf(k,
√
k2 + a2) (a > 0),

where f is a rational function. Such series can be reduced to some appropriate inte-
grals, by integrating the corresponding function z 7→ F (z) = f(z,

√
z2 + a2)g(z), with

g(z) = π/ tanπz and g(z) = π/ sinπz, respectively, over certain circle Cn with the
cuts.

In the sequel we illustrate this alternative method in the simplest case when
f(z, w) = 1/w, i.e., to summation of the series

U−(a, 0) =

+∞∑
k=1

(−1)k−1

√
k2 + a2

, a > 0. (4.4)

Thus, we integrate the function z 7→ F (z) = g(z)/
√
z2 + a2, with g(z) = π/ sinπz,

over the circle

Cn =
{
z ∈ C

∣∣∣ |z| = n+
1

2

}
, n > a,

with cuts along the imaginary axis, so that the critical singularities ia and −ia are
eliminated (cf. [13, p. 217]). Precisely, the contour of integration Γ is given by Γ =
C1
n ∪ l1 ∪ γ1 ∪ l2 ∪ C2

n ∪ l3 ∪ γ2 ∪ l4, where C1
n and C2

n are parts of the circle Cn, γ1

and γ2 are small circular parts of radius ε and centres at ±ia, and lk (k = 1, 2, 3, 4)
are the corresponding line segments (see Figure 3).
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Figure 3. The contour of integration Γ

Let F ∗(z) be the branch of F (z) which corresponds to the value of the square
root which is positive for z = 1. Since∮

Γ

F ∗(z) dz = 2πi

n∑
k=−n

(−1)k√
k2 + a2

,

and
∫
γ1
→ 0,

∫
γ2
→ 0, when ε→ +0, and

∫
C1

n∪C2
n
→ 0, when n→ +∞, we obtain

+∞∑
k=1

(−1)k√
k2 + a2

= − 1

2a
+

∫ +∞

a

du

sinhπu
√
u2 − a2

,

i.e.,
+∞∑
k=1

(−1)k−1

√
k2 + a2

=
1

2a
− 1

2

∫ +1

−1

(
t sinh

πa

t

)−1 dt√
1− t2

.

Thus, we have reduced U−(a, 0) to a problem of Gauss-Chebyshev quadrature.

Since t 7→
(
t sinh(πa/t)

)−1
is an even function we can apply the (2n)-point Gauss-

Chebyshev approximations with only n functional evaluations, so that we have

U−(a, 0) ≈ GC(N ; a) =
1

2a
− π

2N

N∑
k=1

(
τk sinh

πa

τk

)−1

, (4.5)

where τk = cos
(
(2k − 1)π/(4N)

)
, k = 1, . . . , N .
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Example 4.3. We consider now the series

U−(a, 0) =

+∞∑
k=1

(−1)k−1

√
k2 + a2

for two different values of a, a = 1/4 and a = 10, whose exact values are

U−

(1

4
, 0
)

= 0.66632618906466580605283262942098890800417625596202 . . .

and

U−(10, 0) = 0.04999999999998988303868784011212623150952067574918 . . . ,

respectively.

For calculating the sum U−(a, 0) we apply the Gauss-Chebyshev quadrature
approximation (4.5), the Gauss-Fermi-Dirac rule (2.4), as well as the quadrature rule
(3.7) for s = 2.

The relative errors in the Gauss-Chebyshev quadrature sums GC(N ; a) for small
value a = 1/4 are given in Table 7, and for a = 10 in Table 8. In these tables we also
present the corresponding relative errors for the Gauss-Fermi-Dirac quadrature sums

GFD(N ; a) =

N∑
k=1

Bku(ηk),

obtained by (2.4), where u(t) = J0(at).

Table 7. Relative errors in the quadrature sums GC(N ; a), GFD(N ; a)
and QN,m(a) for a = 1/4

N GC(N ; a) GFD(N ; a) QN,1(a) QN,5(a) QN,10(a)
10 7.15(−4) 8.78(−19) 2.68(−5) 5.77(−14) 4.72(−20)
20 2.28(−5) 2.64(−37) 2.59(−7) 3.15(−23) 1.69(−28)
30 8.99(−8) 1.85(−55) 1.82(−8) 4.46(−25) 2.22(−35)
40 3.54(−7) 7.46(−10) 4.00(−29) 2.65(−41)
50 4.40(−8) 4.93(−11) 5.11(−33) 6.60(−47)

Finally, we apply the quadrature rule (3.7) for s = 2 to compute the weighted
integral (3.6). The construction of this quadrature we need the moments (cf. [11])

µ
(2)
k =

+∞∫
0

tkw2(t) dt=


1, k = 0,

k
(π

2

)k
|Ek−1|, k (odd) ≥ 1,

2k

4k
[
ψ(k−1)( 1

4 )− ψ(k−1)( 3
4 )
]
, k (even) ≥ 2,

where ζ(k) is the Riemann zeta function, Ek are Euler’s numbers, and ψ(z) is the
logarithmic derivative of the gamma function, i.e., ψ(z) = Γ′(z)/Γ(z).
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Table 8. Relative errors in the quadrature sums GC(N ; a), GFD(N ; a)
and QN,m(a) for a = 10

N GC(N ; a) GFD(N ; a) QN,1(a) QN,5(a) QN,10(a)
10 1.86(−22) 2.26 4.86(−14) 8.68(−17) 6.60(−20)
20 3.38(−31) 1.98 2.70(−14) 7.06(−21) 7.69(−28)
30 4.83(−38) 1.05 3.38(−15) 1.00(−23) 3.77(−33)
40 5.38(−45) 4.94(−2) 4.65(−15) 7.95(−26) 1.50(−37)
50 3.70(−49) 4.42(−1) 1.05(−15) 1.02(−27) 2.15(−41)

As in Example 3.1 we consider quadrature sums in the form

QN,m(a) =

m−1∑
k=1

(−1)k−1

√
k2 + a2

+ (−1)m−1
N∑
ν=1

ANν,2Ψ

(
m− 1

2
,
τNν,2
π

)
,

where Ψ(x, y) = ImF (x+iy) and F (z) = log(z+
√
z2 + a2). Although condition (C3),

in this case, is not satisfied the sequence of quadrature sums QN,m(a) converges. This
means that this requirement can be weakened, but it will be studied elsewhere.

As we can see, the convergence of Gauss-Chebyshev approximations GC(N ; a)
is faster if the parameter a is larger. However, the Laplace transform method
(GFD(N ; a)) is very efficient for a small parameter a, but, when a increases, the
integrand J0(at) becomes a highly oscillatory function and the convergence of the
quadrature process slows down considerably.

Also, we can see a rapidly increasing of convergence of the summation process
QN,m(a) as m increases.
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1. Introduction

The notion of multivalued functions appeared in the first half of the twentieth
century. A multivalued function also known as multi-function, multimap, set-valued
function. This is a ”function” that assume two or more values for each point from
the domain. These functions are not functions in the classical way because for each
point assign a set of points, so there is not a one-to-one correspondence. The term of
”multivalued function” is not correct, but became very popular. Multivalued functions
often arise as inverse of functions which are non-injective. For example the inverse of
the trigonometric, exponential, power or hyperbolic functions are multivalued func-
tions. Also the indefinite integral can be considered as a multivalued function. These
functions appears in many areas, for example in physics in the theory of defects of
crystals, for vortices in superfluids and superconductors but also in optimal control
theory or game theory in mathematics.

2. Interpolation problem

Let [a, b] ⊆ R and f : [a, b]→ P(R) be a multivalued function, where P(R) is the
power set of R, and f(x) is nonempty for every x ∈ [a, b]. We say that a multivalued
function is single-valued if, f(x) contain only one element for every x ∈ [a, b]. Thus
a common function can be considered as single-valued multifunction. Furthermore,
we suppose that for each x ∈ [a, b], card(f(x)) < ∞. We suppose that the points
xi ∈ [a, b], i = 1, 2, . . . , l are given and also the set of function values on this points
are known yij ∈ R, i = 1, 2, . . . , l, j = 1, 2, . . . , k. We will interpolate the sets of
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points Mj = {(xi, yij), i = 1, 2, . . . , l}, j = 1, 2, . . . , k using an interpolation operator
Pj : C[a, b] −→ R, j = 1, 2, . . . , k and the remainder operator Rj .

Definition 2.1. If x ∈ [a, b], x 6= xi, i = 1, 2, . . . , k, the value of the multivalued function
in x is approximated by the following set {P1(x), . . . , Pk(x)}. The approximation error
on the point x is given by R1(x) + . . .+Rk(x).

Definition 2.2. We have the following interpolation formula:

f(x) = (P1 ∪ P2 . . . ∪ Pk)(x) + (R1 +R2 + . . .+Rk)(x) (2.1)

where P1 ∪ . . . ∪ Pk is the interpolation operator and R1 + . . .+Rk is the remainder
operator.

Remark 2.3. The P1 ∪ . . . ∪ Pk is an interpolation operator because the following
interpolation condition are satisfied: Pi(xj) = yji.

Theorem 2.4. The interpolation operator P1 ∪ . . . ∪ Pk exists and is unique.

Proof. It is obvious, because at each set Mj , j = 1, 2, . . . , k the interpolation operators
Pj , j = 1, 2, . . . , k exists and are unique. �

Furthermore let’s consider the case when we have the following type of data
{(xi, ynjj), i = 1, 2, . . . , l, j = 1, 2, . . . , k, ni ∈ N, ni <∞}.
Let be m = min{nj , j = 1, 2, . . . , k}, then we will consider the following set of data
{(xm, ymi, i = 1, 2, . . . , k)}, in this way we reduce the problem to the previous case.

3. Lagrange-type multivalued interpolation

If we considering the case when at each set Mj , the points (xi, yij) are in-
terpolated using Lagrange type interpolation, then the interpolation operator is
Ll1 ∪ . . . ∪ Llk , where Lli , i = 1, 2, . . . , k are l − 1 degree Lagrange polynomials,
and the remainder is equal to Rl1 +Rl2 + . . .+Rlk where Rli are the corresponding
remainder operators.

Theorem 3.1. The value of the multivalued Lagrange type interpolation function on
the point x ∈ [a, b], x 6= xi, i = 1, 2, . . . , l is given by

Ll1 ∪ . . . ∪ Llk(x) =

k⋃
i=1

l−1∑
j=1

lij(x)yij (3.1)

where lij are the basic Lagrange polynomials with degree l − 1.

Proof. From Theorem 2.4 we have that the value of the multivalued function on the
point x is approximated by the following values {P1(x), . . . , Pk(x)}, where Pi are the
corresponding interpolation operators for the data (xi, yij), j = 1, 2, . . . , l. Because
now we use Lagrange-type interpolation to approximate these data, we have

Pi(x) = Ll−1(x) =

l∑
i=1

lij(x)yij ,

where lij are the corresponding basic Lagrange polynomials. �
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We suppose that yij = fj(xi) where fj ∈ C[a, b], j = 1, 2, . . . , k.

Theorem 3.2. If fj ∈ Cl−1[a, b], j = 1, 2, . . . , k, and ∃f (l)j j = 1, 2, . . . , k on [a, b] then
the remainder of the multivalued interpolation formula is

(R1 +R2 + . . .+Rk)(x) =

k∑
j=1

u(x)

l!
f
(l)
j (ξj) (3.2)

were ξj ∈ (a, b) and u(x) = (x− x1)(x− x2) . . . (x− xl).

Proof. If we consider the Lagrange interpolation formula for each set Mj

fj(x) = Lj(x) +Rj(x), j = 1, 2, . . . , k

where if fj ∈ Cl−1[a, b] and ∃f (l)j on [a, b] then there ∃ξj ∈ (a, b), j = 1, 2, . . . , k such
that

Rj(x) =
u(x)

(l!)
f
(l)
j (ξj), j = 1, 2, . . . , k

�

Example 3.3. If consider the multivalued function, obtained as the inverse of the func-
tion g(x) = sin(x), on the interval [a, b] = [−1, 1], using the method described below
with Lagrange type interpolation operators on each set of points Mj , we obtain the
graph from figure 1, where the dotted line is the graph of the multivalued function and
the continuous line is the graph of the multivalued function obtained by interpolation.

Figure 1. Interpolation of multivalued function with Lagrange operators

4. Shepard-type multivalued interpolation

We suppose that the points xi ∈ [a, b], i = 1, 2, . . . , l are given and also the set
of function values on this points are known yij ∈ R, i = 1, . . . , l, j = 1, . . . , k. We will
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interpolate the sets of points Mj = {(xi, yij), i = 1, . . . , l}, j = 1, . . . , k using Shepard
interpolation studied also in [2], [1], [4] and [6].

Theorem 4.1. The Shepard-type multivalued interpolation operator is

k⋃
i=1

Si(x) =

k⋃
i=1

l∑
j=1

Aj(x)yij , (4.1)

where Si are the univariate Shepard operators and

Aj(x) =

∏
i=1,i6=j

l|x− xi|µ

l∑
t=1

∏
i=1,i6=t

l|x− xi|µ

and µ ∈ R+.

Remark 4.2. The basis functions Aj can be also written in the following barycentric
form

Aj(x) =
|x− xj |−µ
l∑
i=1

|x− xk|−µ
, j = 1, 2, . . . , l,

and they satisfy

l∑
j=1

Aj(x) = 1, Aj(xp) = δjp, j, p = 1, 2, . . . , l.

Figure 2. Interpolation of multivalued function with Shepard operators
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From the remark it follows that the Shepard operators has the following prop-
erties: first of all they have the interpolation conditions Si(xj) = yij , j = 1, 2, . . . , l,
i = 1, 2, . . . , k, and they have the degree of exactness dex(Si) = 0, i = 1, 2, . . . , k.
The graph of the function from the previous example in the case when we use Shepard
operators with different parameters, is given in Figure 2.

The major disadvantage of the Shepard operator is the low degree of exactness,
but this can be overcome combining the Shepard operator with another interpolation
operators, for example Lagrange, Hermite, Birkhoff or other interpolation operators.

5. Spline-type multivalued interpolation

We will consider again the points xi ∈ [a, b], i = 1, 2, . . . , l and also the set of
function values on this points yij ∈ R, i = 1, 2, . . . , l, j = 1, 2, . . . , k which are known,
let Mj = {(xi, yij), i = 1, 2, . . . , l}, j = 1, 2, . . . , k be the set of interpolation points.
In this section we will interpolate the multivalued function given by the set of points
from Mj with spline interpolation function.
We suppose that the values yij = fj(xi), where fj ∈ Hm,2[a, b] is the set of functions

with fj ∈ Cm−1[a, b], f (m−1) absolute continuous on [a, b] and f (m) ∈ L2[a, b].

Theorem 5.1. The multivalued interpolation operator in the case of spline interpolation
is

l⋃
i=1

Si(x) =

l⋃
i=1

k∑
j=1

sij(x)yij (5.1)

where sij are the fundamental spline interpolation functions.

Remark 5.2. The fundamental spline functions satisfies the following minimum prop-

erties ‖S(m)
i ‖2 −→ min, in the set of all functions which satisfies the interpolation

conditions.

To determine the fundamental spline functions we can use the structural cha-
racterization theorem of spline functions given also in [3] and we have

sij(x) =

m−1∑
t=0

aijt x
t +

l∑
p=1

bijp (x− xp)2m−1+ , i = 1, 2, . . . , l, j = 1, 2, . . . , k

with aijt , and bijp obtained as the solution of the following systems:

s
(r)
ij (α) = 0, r = m, . . . , 2m− 1, and α > xl

sij(xν) = δjν , ν = 1, 2, , . . . , l

for j = 1, 2, . . . , k, i = 1, 2, . . . , l.

Theorem 5.3. If fj ∈ Hm,2[a, b], j = 1, 2, . . . , k then the remainder term of the spline-
type multivalued interpolation formula is

k∑
j=1

Rj(x) =

k∑
j=1

∫ b

a

ϕj(x, t)f
(m)
j (t)dt (5.2)
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where

ϕj(x, t) =
(x− t)m−1+

(m− 1)!
−

l∑
i=1

sij(x)(xi − t)m−1+ , j = 1, 2, . . . , k.

This follows from the representation of the error using the Peano theorem.
The graph of the function from the previous example using third degree natural

spline interpolation operators is given in Figure 3.

Figure 3. Interpolation of multivalued function with spline operators
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1. Introduction and historical notes

The present note deals with the eigenstructure of certain Beta-type operators
introduced independently by Mühlbach and Lupaş in the early seventies of the last
century (see [10],[11],[9]).

Mühlbach’s definition is the more general one. For λ > 0 he defined mappings
Tλ, given for f ∈ C[0, 1], x ∈ [0, 1] by

Tλ(f ;x) =


f(0), x = 0,∫ 1

0

f(t)Kλ(t, x)dt, x ∈ (0, 1),

f(1), x = 1.

The kernel is given by

Kλ(t, x) =
1

B(xλ ,
1−x
λ )

t
x
λ−1(1− t)

1−x
λ −1,

where B(·, ∗) is the Beta function, a.k.a. Euler’s integral of the first kind. For more
on this function see, e.g., MathWorld [16] and the references given there. Mühlbach’s
work was motivated by three earlier papers of Stancu, see [12] , [13], [14].
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If 1/λ = n is a natural number, then we arrive at Lupaş’ version of the operator,
given for strictly positive integers n by

B̄n(f ;x) =


f(0), x = 0,

1

B(nx, n(1− x))

∫ 1

0

tnx−1(1− t)n(1−x)−1f(t)dt, x ∈ (0, 1),

f(1), x = 1.

The B̄n are positive linear endomorphisms of C[0, 1]; they reproduce linear func-
tions and have second moments smaller than the classical Bernstein operators Bn.
More precisely, see [9, Satz 2.28],

B̄n((e1 − x)2;x) =
x(1− x)

n+ 1
≤ x(1− x)

n
= Bn((e1 − x)2;x).

The restrictions B̄n : Πn → Πn and B̄n : Π→ Π are bijective, and B̄n : C[0, 1]→
C[0, 1] is injective. Moreover, it is known from [2] and [3] that B̄n preserves mono-
tonicity and (ordinary) convexity.

Our reason to call them genuine Beta operators is due to the facts that they are
the limiting cases of Beta operators with Jacobi weights and unique in the sense that
they are the only ones among them which reproduce linear functions. Calling them
genuine is also justified by the decomposition Bn ◦ B̄n = Un; here Un is the so-called
genuine Bernstein-Durrmeyer operator which has been attracting much attention.
Much more on Beta-Jacobi operators can be found in [6], [15], [7].

The genuine operators B̄n were also used in attempts to decompose the classical
Bernstein operators into non-trivial building blocks. Reports on these were given by
Gonska et al. [5] and by Heilmann and Rasa [8]. Aspects concerning their power series
are described in [1].

2. The eigenstructure of B̄n

The purpose of this article is to give a concise description of the eigenstructure
of the Beta operators considered here. By direct computation it is easy to find the
first eigenvalues and eigenpolynomials of B̄n:

η
(n)
0 = 1, q

(n)
0 (x) = 1,

η
(n)
1 = 1, q

(n)
1 (x) = x− 1

2
,

η
(n)
2 =

n

n+ 1
, q

(n)
2 (x) = x(x− 1),

η
(n)
3 =

n2

(n+ 1)(n+ 2)
, q

(n)
3 (x) = x(x− 1)

(
x− 1

2

)
,

η
(n)
4 =

n3

(n+ 1)(n+ 2)(n+ 3)
, q

(n)
4 (x) = x(x− 1)

(
x(x− 1) +

n+ 1

5n+ 6

)
.
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As

B̄ne0 = e0, (2.1)

B̄nek(x) =
nx(nx+ 1) . . . (nx+ k − 1)

n(n+ 1) . . . (n+ k − 1)
, k ≥ 1,

following directly from the definition of B̄n, we conclude that the eigenvalues of B̄n :
Π −→ Π are the numbers

η
(n)
k =

(n− 1)!

(n+ k − 1)!
nk, k ≥ 0. (2.2)

Let us denote by p
(n)
k the eigenpolynomials of Bn (see [4]). Here are some examples

(see [4, (9.1)]).

p
(n)
0 (x) = 1,

p
(n)
1 (x) = x− 1

2
,

p
(n)
2 (x) = x(x− 1),

p
(n)
3 (x) = x(x− 1)

(
x− 1

2

)
,

p
(n)
4 (x) = x(x− 1)

(
x(x− 1) +

n− 1

5n− 6

)
.

Thus we have

q
(n)
k = p

(n)
k , 0 ≤ k ≤ 3

and

lim
n→∞

q
(n)
k (x) = lim

n→∞
p
(n)
k (x), k = 4, (2.3)

uniformly in [0, 1]. We shall show that the eigenstructure of B̄n is similar to that of
Bn; in particular, that (2.3) holds for all k ≥ 0. Since the polynomials

lim
n→∞

p
(n)
k (x) := p∗k(x), k ≥ 0,

are completely described in [4], we get the same information about limn→∞ q
(n)
k (x).

Let k ≥ 2 and n ≥ 1. We want to determine q
(n)
k ∈ Πk such that

B̄nq(n)k = η
(n)
k q

(n)
k . (2.4)

We put

q
(n)
k (x) =

k∑
j=0

a(n, k, j)xj , with a(n, k, k) = 1. (2.5)

Hence

B̄n(q
(n)
k ;x) =

k∑
j=0

a(n, k, j)B̄n(ej ;x).
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With (2.1) we derive

B̄n(q
(n)
k ;x) =

k∑
j=0

a(n, k, j)
nx(nx+ 1) . . . (nx+ j − 1)

n(n+ 1) . . . (n+ j − 1)
(2.6)

=
nk

n(n+ 1) . . . (n+ k − 1)

k∑
j=0

a(n, k, j)xj .

From the definition of the Stirling numbers of first kind s(j, i), we obtain immediately

nx(nx+ 1) . . . (nx+ j − 1) =

j∑
i=0

s(j, i)(−1)j−inixi,

so that (2.6) becomes, after some manipulation,

k∑
i=0


k∑
j=i

s(j, i)(−1)j−ini

n(n+ 1) . . . (n+ j − 1)
a(n, k, j)

xi =

k∑
i=0

a(n, k, i)nk

n(n+ 1) . . . (n+ k − 1)
xi.

This leads to
k∑
j=i

s(j, i)(−1)j−i

n(n+ 1) . . . (n+ j − 1)
a(n, k, j) =

nk−i

n(n+ 1) . . . (n+ k − 1)
a(n, k, i), (2.7)

for all i = 0, 1, . . . , k. Since s(i, i) = 1, we can solve (2.7) for a(n, k, i) getting

a(n, k, i) (2.8)

=

∑k
j=i+1(−1)j−i−1s(j, i)(n+ j)(n+ j + 1) . . . (n+ k − 1)a(n, k, j)

(n+ i)(n+ i+ 1) . . . (n+ k − 1)− nk−i
,

for all i ∈ {k − 1, k − 2, . . . , 0}. Recalling that n and k are given, and a(n, k, k) = 1,
(2.8) represents a recurrence relation for computing a(n, k, i), i = k − 1, k − 2, . . . , 0.

In particular, using s(k, k − 1) = −k(k−1)2 , s(k, k − 2) = k(k−1)(k−2)(3k−1)
24 , we get

a(n, k, k − 1) = −k
2
, (2.9)

a(n, k, k − 2) =
k(k − 1)(k − 2)

24
· 6n+ 3k − 5

(2k − 3)n+ (k − 1)(k − 2)
. (2.10)

Let us prove by induction that

a∗(k, j) := lim
n→∞

a(n, k, j) =

k−j∏
l=1

(k + 1− l)(k − l)
l(l − 2k + 1)

. (2.11)

For j = k (2.11) is verified because a(n, k, k) = 1. Due to (2.9), (2.11) is verified also
for j = k − 1. Suppose now that (2.11) is true for j = i + 1, and let’s prove it for
j = i. From (2.8) we infer

a(n, k, i) =
{

(i+ (i+ 1) + · · ·+ (k − 1))nk−i−1 + terms of lower degree
}−1

×s(i+ 1, i)
(
nk−i−1 + terms of lower degree

)
a(n, k, i+ 1),
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so that, by the induction hypothesis,

a∗(k, i) =
s(i+ 1, i)

i+ (i+ 1) + · · ·+ (k − 1)
a∗(k, i+ 1)

= − i(i+ 1)

(k − i)(k + i− 1)

k−i−1∏
l=1

(k + 1− l)(k − l)
l(l − 2k + 1)

=

k−i∏
l=1

(k + 1− l)(k − l)
l(l − 2k + 1)

,

and this completes the proof of (2.11).
It follows that

lim
n→∞

q
(n)
k (x) =

k∑
j=0

a∗(k, j)xj ,

and the coefficients a∗(k, j) are equal to the coefficients c∗(j, k) from [4, Theorem 4.1].
This leads to

lim
n→∞

q
(n)
k (x) = lim

n→∞
p
(n)
k (x) =: p∗k(x), k ≥ 0, (2.12)

where (see [4, Theorem 4.5]) p∗0(x) = 1, p∗1(x) = x− 1
2 , and

p∗k(x) =
k!(k − 2)!

(2k − 2)!
x(x− 1)P

(1,1)
k−2 (2x− 1), k ≥ 2. (2.13)

(P
(1,1)
m are the Jacobi polynomials, orthogonal with respect to the weight (1−t)(1+t)

on the interval [−1, 1].)
Summarizing, we have proved the following

Theorem 2.1. (i) The eigenvalues of B̄n : Π→ Π are the numbers given by (2.2).
(ii) The corresponding monic eigenpolynomials are described by (2.5), where the co-

efficients a(n, k, j) satisfy the recurrence relation (2.8).
(iii) The eigenpolynomials satisfy the asymptotic relation (2.12).

So the eigenstructure of the genuine Beta operators is similar to that of the
classical Bernstein operators.
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[4] Cooper, Sh., Waldron, Sh., The eigenstructure of the Bernstein operator, J. Approx.
Theory, 105(2000), 133-165.



388 Heiner Gonska, Margareta Heilmann and Ioan Raşa
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Book reviews

Ravi P. Agarwal, Erdal Karapinar, Donal O’Regan and Antonio Francisco Roldán-
López-de-Hierro; Fixed Point Theory in Metric Type Spaces, Cham: Springer, 2015,
xvii+385 p. ISBN 978-3-319-24080-0/hbk; 978-3-319-24082-4/ebook).

The book is devoted to fixed points in generalized metric (G-metric) spaces. A
G-metric on a set X is a function G : X3 → [0,∞) satisfying the following conditions:

(G1) G(x, y, z) = 0 ⇐⇒ x = y = z;

(G2) G(x, x, y) > 0) for all x, y ∈ X with x 6= y;

(G3) G(x, x, y) ≤ G(x, y, z) for all x, y, z ∈ X with x 6= y;

(G4) G(x, y, z) = G(π(x, y, z)) for every pemutation π of x, y, z;

(G5) G(x, y, z) ≤ G(x,w,w) +G(w, y, z) for all x, y, z, w ∈ X .

A typical example of a G-metric is the perimeter of a triangle in Rn.
Generalized metric spaces were introduced by Dhage in the nineteens of the

last century, but his papers contained some flaws (mainly concerning the topological
properties of these spaces), which were fixed by Z. Mustafa and B. Sims in J. Nonlinear
Convex Anal. (2006).

As the authors consider fixed point results for mappings T on G-metric spaces
satisfying a condition of the type

G(Tx, Ty, Tz) ≤ G(x, y, y)− φ(G(, x, y, y)),

where φ : [0,∞) → [0,∞) is called a control function, the second chapter, Prelimi-
naries, contains a detailed study of these control functions.

One considers 18 properties that could be satisfied by a control function (like
being monotone, subadditive, semi-continuous, or satisfying for all t > 0, φ(t) < t,
limn φ

n(t) = 0, or the convergence of the series
∑

n φ
n(t), etc). Combining some of

these properties (usually three of them) one obtains various control functions consid-
ered in the fixed point theory of mapping on metric spaces as Matkowski comparison
function, Geraghty, Boyd-Wong, Ćirić, Krasnoselski functions, etc. This chapter con-
tains a detailed study of the relations between these properties and between the classes
of functions they define.

The basic properties of G-metric spaces are studied in Ch. 3, G-Metric Spaces,
while the rest of the book is devoted to various fixed point results in this class of spaces:
Ch. 4, Basic Fixed Point Results in the Setting of G-Metric Spaces, Ch. 5 Fixed Point
Theorems in Partially Ordered G-Metric Spaces, Ch. 6, Further Fixed Point Results on
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G-Metric Spaces, Ch. 7, Fixed Point Theorems via Admissible Mappings, Ch. 8, New
Approaches to Fixed Point Results on G-Metric Spaces, Ch. 9, Expansive Mappings,
Ch. 10, Reconstruction of G-Metrics: G∗-Metrics, Ch. 11, Multidimensional Fixed
Point Theorems on G-Metric Spaces, Ch. 12, Recent Motivating Fixed Point Theory.

Some supplementary material is collected in an Appendix, Some Basic Defini-
tions and Results in Metric Spaces.

The book, including many contributions of its authors, provides an accessible and
up-to-date source of information for researchers in fixed point theory in metric spaces
and in various of their generalizations, for mappings satisfying some very general
conditions.

S. Cobzaş

Afif Ben Amar and Donal O’Regan; Topological Fixed Point Theory for Singlevalued
and Multivalued Mappings and Applications, Cham: Springer, 2016, , x+194 p.
ISBN: 978-3-319-31947-6/hbk; 978-3-319-31948-3/ebook.

The present book on fixed points focusses on applications to integral equations
and to nonlinear eigenvalue problems. Since the main context is functional analytic,
the authors devoted the first chapter of the book, Basic concepts, to the presentation
of some basic notions and results in functional analysis – normed spaces, ordered vec-
tor spaces and ordered normed spaces, locally convex spaces, weak topologies (weak
compactness, Dunford-Pettis property), compact and weakly compact operators. The
chapter ends with some fixed point theorems – Krasnoselskii’s, Leray-Scahuder the-
ory, and fixed points for multivalued maps. Although some proofs are included, the
majority of the results are presented without proofs.

The second chapter is dedicated to nonlinear eigenvalue problems in Banach
spaces satisfying the Dunford-Pettis property. The third chapter is concerned with
Leray-Schauder type theorems for mappings which are condensing with respect to De
Blasi measure of weak noncompactness. This study is continued in the fourth chapter
for mappings with sequentially closed graph. Applications are given to Volterra-type
integral equations under Henstock-Kurzweil-Pettis integrability and to integral equa-
tions in Lebesgue spaces.

The fifth chapter is devoted to fixed points for applications of the form AxBx+
Cx, x ∈ X, defined on a Banach algebras X, under appropriate conditions on the
operators A,B,C and on the Banach algebra X. Applications are given to some
nonlinear functional integral equations.

The sixth chapter is concerned with a class of operators F : D → X, X a
Banach space and D ⊂ X, introduced by Gowda and Isac in 1993, called by them
(ws)-compact and meaning that F is ‖ · ‖-continuous and (F (xn)) contains a ‖ · ‖-
convergent sequence for every weakly convergent sequence (xn) in D.

The last chapter of the book (Ch. 7) presents some results on approximate fixed
point sequences (i.e. sequences satisfying xn − Fxn → 0) for multivalued mappings
with applications to Nash equilibrium in noncooperative games.
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The book, including original contributions of the authors, is addressed to re-
searchers interested in applications of fixed point results (in functional analytic con-
text) to integral equations, ordinary and partial differential equations, game theory,
etc. The detailed exposition of the subject and the prerequisites make it appropriate
for graduate courses in linear and in nonlinear functional analysis.

S. Cobzaş
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