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On certain class of meromorphic univalent
functions with positive coefficients defined by
Dziok-Srivastava operator

Mohamed K. Aouf, Adela O. Mostafa, Abd-Elmoem Y.
Lashen and Basheer M. Munassar

Abstract. In this paper, we introduce a new class of meromorphic univalent func-
tions defined by using Dziok-Srivastava operator and obtain some results includ-
ing coefficient inequality, growth and distortion theorems and modified Hadamard
products.

Mathematics Subject Classification (2010): 30C45.

Keywords: Meromorphic functions, univalent functions, growth and distortion
theorem, Hadamard product, Dziok-Srivastava operator.

1. Introduction

Let Σm denote the class of functions f of the form:

f(z) =
1

z
+

∞∑
k=m

akz
k ( m ∈ N = {1, 2, ...}) , (1.1)

which are analytic and univalent in the punctured unit disc U∗ = {z : z ∈ C and
0 < |z| < 1} = U\{0}. For g ∈ Σm, given by

g (z) =
1

z
+

∞∑
k=m

bkz
k, (1.2)

the Hadamard product (or convolution) of f and g is given by

(f ∗ g) (z) =
1

z
+

∞∑
k=m

akbkz
k = (g ∗ f) (z) . (1.3)

A function f ∈ Σm is said to be meromorphically starlike of order λ if

−Re

{
zf ′(z)

f(z)

}
> λ (z ∈ U ; 0 ≤ λ < 1). (1.4)
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Denote by ΣS∗m (λ) the class of all meromorphically starlike functions of order λ.
A function f ∈ Σm is said to be meromorphically convex of order λ if

−Re

{
1 +

zf ′′(z)

f ′(z)

}
> λ (z ∈ U ; 0 ≤ λ < 1). (1.5)

Denote by ΣKm (λ) the class of all meromorphically convex functions of order λ. We
note that

f(z) ∈ ΣKm (λ)⇐⇒ −zf ′(z) ∈ ΣS∗m (λ) .

The classes ΣS∗m (λ) and ΣKm (λ) were introduced by Owa et al. [8]. Various sub-
classes of the class Σm when m = 1 were considered earlier by Pommerenke [9], Miller
[6] and others.

For complex parameters

α1, ..., αq and β1, ..., βs
(
βj /∈ Z−0 = {0,−1,−2, ...} ; j = 1, 2, ..., s

)
,

the generlized hypergeometric function qFs (α1, ..., αq;β1, ..., βs; z) is defined by

qFs (α1, ..., αq;β1, ..., βs; z) =

∞∑
k=0

(α1)k , ..., (αq)k
(β1)k , ..., (βs)k

.
zk

k!

(q ≤ s+ 1; q, s ∈ N0 = N ∪ {0} ; z ∈ U) , (1.6)

where (θ)v is the Pochhammer symbol defined, in terms of the Gamma function Γ,
by

(θ)v =
Γ (θ + v)

Γ (θ)
=

{
1 if (v = 0; θ ∈ C∗ = C \ {0}) ,
θ(θ + 1)(θ + 2)...(θ + v − 1) if (v ∈ N; θ ∈ C) .

(1.7)
Corresponding to the function h (α1, ..., αq;β1, ..., βs; z) , defined by

h (α1, ..., αq;β1, ..., βs; z) = z−1
qFs (α1, ..., αq;β1, ..., βs; z) , (1.8)

we consider the linear operator

H (α1, ..., αq;β1, ..., βs) : Σm → Σm,

which is defined by means of the following Hadamard product (or convolution):

H (α1, ..., αq;β1, ..., βs) f (z) = hp (α1, ..., αq;β1, ..., βs; z) ∗ f (z) . (1.9)

We observe that, for a function f of the form (1.1), we have

H (α1, ..., αq;β1, ..., βs) f (z) = z−1 +

∞∑
k=m

(α1)k+1 , ..., (αq)k+1

(β1)k+1 , ..., (βs)k+1

.
ak

(k + 1)!
zk. (1.10)

For convenience, we write

Hq,s (α1) = H (α1, ..., αq;β1, ..., βs) . (1.11)

The linear operator Hq,s (α1) was investigated recently by Liu and Srivastava [5, with
p = 1] and Aouf [2, with p = 1].
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For fixed parameters A,B, β and λ (0 < β ≤ 1, −1 ≤ A < B ≤ 1, 0 ≤ λ < 1) , we
say that a function f ∈ Σm is in the class Σmq,s (α1;A,B, λ, β) of meromorphically
univalent functions in if it satisfies the inequality:∣∣∣∣∣∣

z(Hq,s(α1)f(z))
′

Hq,s(α1)f(z) + 1

B
z(Hq,s(α1)f(z))

′

Hq,s(α1)f(z) + [B + (A−B) (1− λ)]

∣∣∣∣∣∣ < β (z ∈ U∗) . (1.12)

A function f in Σm is said to belong to the class Cmq,s (α1;A,B, λ, β) if and only

if −zf ′
(z) ∈ Σmq,s (α1;A,B, λ, β) that is

f ∈ Cmq,s (α1;A,B, λ, β)⇐⇒ −zf
′
∈ Σmq,s (α1;A,B, λ, β) . (1.13)

We note that:
(i) Σm2,1 (1;−1, 1, λ, 1) = ΣS∗m (λ) and

Cm2,1 (1;−1, 1, λ, 1) = ΣKm (λ) (0 ≤ λ < 1,m ∈ N) .

(ii) Σ1
2,1 (1;A,B, λ, β) = Σ∗ (A,B, λ, β) was studied by Aouf [1];

(iii) Σ1
2,1 (1;−1, 1, λ, β) = Σ∗ (λ, β) and C1

2,1 (1;−1, 1, λ, β) = C (λ, β)
(Mogra et al.[7]);

(iv) Σm2,1 (1;A,B, λ, β) = Σm (A,B, λ, β) (Aouf et al. [6]).
We note also that:

Σ1
q,s (α1;β,−β, λ, 1) = Σ+

q,s (α1;λ, β)

=

f (z) ∈ Σm :

∣∣∣∣∣∣
z(Hq,s(α1)f(z))

′

Hq,s(α1)f(z) + 1

z(Hq,s(α1)f(z))
′

Hq,s(α1)f(z) − 1 + 2λ

∣∣∣∣∣∣ < β (z ∈ U, 0 < β ≤ 1, 0 ≤ λ < 1)

 .

2. Coefficient inequality

Unless otherwise mentioned, we shall assume in the reminder of this paper that,
the parameters α1, ..., αq and β1, ..., βs are positive real numbers, 0 < β ≤ 1, −1 ≤
A < B ≤ 1, 0 ≤ λ < 1,m ∈ N, Γk+1(α1) is defined by (2.2) and z ∈ U∗.

In order to prove our results we need the following lemma for the class
Σmq,s (α1;A,B, λ, 1) given by Aouf [3, with p = 1].
Lemma 2.1. Let a function f defined by (1.1) be in the class Σm. If
∞∑
k=m

{(k + 1) + β [(Bk +A) + (B −A)λ]}Γk+1(α1) |ak| ≤ (B −A)β (1− λ) (2.1)

then f ∈ Σmq,s (α1;A,B, λ, β) , where

Γk+1 (α1) =
(α1)k+1 , ..., (αq)k+1

(β1)k+1 , ..., (βs)k+1

.
1

(k + 1)!
. (2.2)

From Lemma 2.1 and (1.13) , we have the following lemma.
Lemma 2.2. Let a function f defined by (1.1) be in the class Σm. If
∞∑
k=m

k {(k + 1) + β [(Bk +A) + (B −A)λ]}Γk+1(α1) |ak| ≤ (B −A)β (1− λ) (2.3)
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then f ∈ Cmq,s (α1;A,B, λ, β) .

3. Growth and distortion theorems

Theorem 3.1. If the function f defined by (1.1) is in the class Σmq,s (α1;A,B, λ, β) ,
then

1

|z|
− (B −A)β (1− λ)

{(m+ 1) + β [(Bm+A) + (B −A)λ]}Γm+1(α1)
|z|m ≤ |f (z)|

≤ 1

|z|
+

(B −A)β (1− λ)

{(m+ 1) + β [(Bm+A) + (B −A)λ]}Γm+1(α1)
|z|m , (3.1)

and

1

|z|2
− m (B −A)β (1− λ)

{(m+ 1) + β [(Bm+A) + (B −A)λ]}Γm+1(α1)
|z|m−1 ≤

∣∣∣f ′
(z)
∣∣∣

≤ 1

|z|2
+

m (B −A)β (1− λ)

{(m+ 1) + β [(Bm+A) + (B −A)λ]}Γm+1(α1)
|z|m−1

. (3.2)

The bounds in (3.1) and (3.2) are attained for the function f given by

f (z) =
1

z
+

(B −A)β (1− λ)

{(m+ 1) + β [(Bm+A) + (B −A)λ]}Γm+1(α1)
zm. (3.3)

Proof. First of all, for Σmq,s (α1;A,B, λ, β), it follows from (2.1) that

∞∑
k=m

ak ≤
(B −A)β (1− λ)

{(m+ 1) + β [(Bm+A) + (B −A)λ]}Γm+1(α1)
, (3.4)

which, in view of (1.1) , yields

|f (z)| ≥ 1

|z|
− |z|m

∞∑
k=m

|ak| (3.5)

≥ 1

|z|
− (B −A)β (1− λ)

{(m+ 1) + β [(Bm+A) + (B −A)λ]}Γm+1(α1)
|z|m ,

and

|f (z)| ≤ 1

|z|
+ |z|m

∞∑
k=m

|ak| (3.6)

≤ 1

|z|
+

(B −A)β (1− λ)

{(m+ 1) + β [(Bm+A) + (B −A)λ]}Γm+1(α1)
|z|m .
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Next, we see from (2.1) that

{(m+ 1) + β [(Bm+A) + (B −A)λ]}Γm+1(α1)

m

∞∑
k=m

k |ak| (3.7)

≤
∞∑
k=m

{(k + 1) + β [(Bk +A) + (B −A)λ]}Γk+1(α1) |ak|

≤ (B −A)β (1− λ)

then
∞∑
k=m

k |ak| ≤
m (B −A)β (1− λ)

{(m+ 1) + β [(Bm+A) + (B −A)λ]}Γm+1(α1)
.

which, again in view of (1.1) , yields∣∣∣f ′
(z)
∣∣∣ ≥ 1

|z|2
− |z|m−1

∞∑
k=m

k |ak| (3.8)

≥ 1

|z|2
− m (B −A)β (1− λ)

{(m+ 1) + β [(Bm+A) + (B −A)λ]}Γm+1(α1)
|z|m−1

,

and ∣∣∣f ′
(z)
∣∣∣ ≤ 1

|z|2
+ |z|m−1

∞∑
k=m

k |ak| (3.9)

≤ 1

|z|2
+

m (B −A)β (1− λ)

{(m+ 1) + β [(Bm+A) + (B −A)λ]}Γm+1(α1)
|z|m−1

.

Finally, it is easy to see that the bounds in (3.1) and (3.2) are attained for the function
f given by (3.3) .
Corollary 3.1. If the function f defined by (1.1) is in the class Cmq,s (α1;A,B, λ, β) ,
then

1

|z|
− (B −A)β (1− λ)

m {(m+ 1) + β [(Bm+A) + (B −A)λ]}Γm+1(α1)
|z|m ≤ |f (z)|

≤ 1

|z|
+

(B −A)β (1− λ)

m {(m+ 1) + β [(Bm+A) + (B −A)λ]}Γm+1(α1)
|z|m , (3.10)

and

1

|z|2
− (B −A)β (1− λ)

{(m+ 1) + β [(Bm+A) + (B −A)λ]}Γm+1(α1)
|z|m−1 ≤

∣∣∣f ′
(z)
∣∣∣

≤ 1

|z|2
+

(B −A)β (1− λ)

{(m+ 1) + β [(Bm+A) + (B −A)λ]}Γm+1(α1)
|z|m−1

. (3.11)

The bounds in (3.1) and (3.2) are attained for the function f given by

f (z) =
1

z
+

(B −A)β (1− λ)

m {(m+ 1) + β [(Bm+A) + (B −A)λ]}Γm+1(α1)
zm. (3.12)
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4. Modified Hadamard product

Let each of the functions f1 and f1 defined by

fj (z) =
1

z
+

∞∑
k=m

ak,jz
k (j = 1, 2) (4.1)

belong to the class Σm. We denote by (f1 ∗ f2) the modified Hadamard product (or
convolution) of the functions f1 and f2, that is,

(f1 ∗ f2) (z) =
1

z
+

∞∑
k=m

ak,1ak,2z
k. (4.2)

Theorem 4.1. Let the functions fj (j = 1, 2) defined by (4.1) be in the class
Σmq,s (α1;A,B, λ, β) . Then (f1 ∗ f2) (z) ∈ Σmq,s (α1;A,B, γ, β) ,where

γ = 1− (B −A)β (1− λ)
2

(1 + βB) (m+ 1)

{(m+ 1) + β [(Bm+A) + (B −A)λ]}2 Γm+1(α1) + (B −A)
2
β2 (1− λ)

2 .

(4.3)
The result is sharp for the functions fj (j = 1, 2) given by

fj (z) =
1

z
+

(B −A)β (1− λ)

{(m+ 1) + β [(Bm+A) + (B −A)λ]}Γm+1(α1)
zm (j = 1, 2) . (4.4)

Proof. Employing the technique used ealier by Schild and Silverman [10], we need to
find the largest γ such that

∞∑
k=m

{(k + 1) + β [(Bk +A) + (B −A) γ]}Γk+1(α1)

(B −A)β (1− γ)
|ak,1| |ak,2| ≤ 1 (4.5)

for (f1 ∗ f2) (z) ∈ Σmq,s (α1;A,B, γ, β). Indeed, since each of the functions fj (j = 1, 2)
belongs to the class Σmq,s (α1;A,B, λ, β) , then

∞∑
k=m

{(k + 1) + β [(Bk +A) + (B −A)λ]}Γk+1(α1)

(B −A)β (1− λ)
|ak,j | ≤ 1 (j = 1, 2) . (4.6)

Now, by the Cauchy-Schwarz inequality, we find from (4.6) that

∞∑
k=m

{(k + 1) + β [(Bk +A) + (B −A)λ]}Γk+1(α1)

(B −A)β (1− λ)

√
|ak,1| |ak,2| ≤ 1. (4.7)

Equation (4.7) implies that we need only to show that

{(k + 1) + β [(Bk +A) + (B −A) γ]}
(1− γ)

|ak,1| |ak,2| (4.8)

≤ {(k + 1) + β [(Bk +A) + (B −A)λ]}
(1− λ)

√
|ak,1| |ak,2| (k ≥ m) ,

that is, that√
|ak,1| |ak,2| ≤

{(k + 1) + β [(Bk +A) + (B −A)λ]} (1− γ)

{(k + 1) + β [(Bk +A) + (B −A) γ]} (1− λ)
(k ≥ m) . (4.9)
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Hence, by the inequality (4.7) it is sufficient to prove that

(B −A)β (1− λ)

{(k + 1) + β [(Bk +A) + (B −A)λ]}Γk+1(α1)
(4.10)

≤ {(k + 1) + β [(Bk +A) + (B −A)λ]} (1− γ)

{(k + 1) + β [(Bk +A) + (B −A) γ]} (1− λ)
(k ≥ m) .

It follows from (4.10) that

γ ≤ 1− (B−A)β(1+βB)(k+1)(1−λ)2

{(k+1)+β[(Bk+A)+(B−A)λ]}2Γk+1(α1)+(B−A)2β2(1−λ)2
(k ≥ m) . (4.11)

Defining the function Φ (k) by

Φ (k) = 1− (B−A)β(1+βB)(k+1)(1−λ)2

{(k+1)+β[(Bk+A)+(B−A)λ]}2Γk+1(α1)+(B−A)2β2(1−λ)2
(k ≥ m) , (4.12)

we see that Φ (k) is an increasing function of k (k ≥ m). Therefore, we conclude from
(4.11) that

γ ≤ Φ (m) = 1− (B−A)β(1+βB)(m+1)(1−λ)2

{(m+1)+β[(Bm+A)+(B−A)λ]}2Γm+1(α1)+(B−A)2β2(1−λ)2
, (4.13)

which completes the proof of the main assertion of Theorem 4.1.
Corollary 4.1. Let the functions fj (j = 1, 2) defined by (4.1) be in the class
Cmq,s (α1;A,B, λ, β) . Then (f1 ∗ f2) (z) ∈ Cmq,s (α1;A,B, µ, β) , where

µ = 1− (B−A)β(1−λ)2(1+βB)(m+1)

m{(m+1)+β[(Bm+A)+(B−A)λ]}2Γm+1(α1)+(B−A)2β2(1−λ)2
. (4.14)

The result is sharp for the functions fj (j = 1, 2) given by

fj (z) =
1

z
+

(B −A)β (1− λ)

m {(m+ 1) + β [(Bm+A) + (B −A)λ]}Γm+1(α1)
zm (j = 1, 2) .

(4.15)
Theorem 4.2. Let the functions fj (j = 1, 2) defined by (4.1) be in the class
Σmq,s (α1;A,B, λ, β) . Then the function h(z) defined by

h (z) =
1

z
+

∞∑
k=m

(
a2
k,1 + a2

k,2

)
zk (4.16)

belongs to the class Σmq,s (α1;A,B, ξ, β) , where

ξ = 1− 2 (B −A)β (1− λ)
2

(1 + βB) (m+ 1)

{(m+ 1) + β [(Bm+A) + (B −A)λ]}2 Γm+1(α1) + 2 (B −A)
2
β2 (1− λ)

2 .

(4.17)
The result is sharp for the functions fj (j = 1, 2) given by (4.4) .
Proof. Noting that

∞∑
k=m

[
{(k + 1) + β [(Bk +A) + (B −A)λ]} (Γk+1(α1))

(B −A)β (1− λ)

]2

|ak,j |2 (4.18)

≤

[ ∞∑
k=m

{(k + 1) + β [(Bk +A) + (B −A)λ]} (Γk+1(α1))

(B −A)β (1− λ)
|ak,j |

]2

≤ 1,
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for fj ∈ Σmq,s (α1;A,B, λ, β) (j = 1, 2) , we have

∞∑
k=m

{(k + 1) + β [(Bk +A) + (B −A)λ]}2 (Γk+1(α1))
2

2 (B −A)
2
β2 (1− λ)

2

(
|ak,1|2 + |ak,2|2

)
≤ 1.

(4.19)
Thus we need to find the largest ξ such that

{(k + 1) + β [(Bk +A) + (B −A) ξ]}
(1− ξ)

(4.20)

≤ {(k + 1) + β [(Bk +A) + (B −A)λ]}2 (Γk+1(α1))

2 (B −A)β (1− λ)
2 (k ≥ m) ,

that is, that

ξ ≤ 1− 2(B−A)β(1−λ)2(1+βB)(k+1)

{(k+1)+β[(Bk+A)+(B−A)λ]}2Γk+1(α1)+2(B−A)2β2(1−λ)2
(k ≥ m) . (4.21)

Defining the function Θ (k) by

Θ (k) = 1− 2(B−A)β(1−λ)2(1+βB)(k+1)

{(k+1)+β[(Bk+A)+(B−A)λ]}2Γk+1(α1)+2(B−A)2β2(1−λ)2
(k ≥ m) , (4.22)

we observe that Θ (k) is an increasing function of k (k ≥ m) . Therefore, we conclude
from (4.21) that

ξ ≤ Θ (m) = 1− 2(B−A)β(1−λ)2(1+βB)(m+1)

{(m+1)+β[(Bm+A)+(B−A)λ]}2Γm+1(α1)+2(B−A)2β2(1−λ)2
, (4.23)

which completes the proof of Theorem 4.2.
Corollary 4.2. Let the functions fj (j = 1, 2) defined by (4.1) be in the class
Cmq,s (α1;A,B, λ, β) . Then the function h (z) defined by (4.18) belongs to the class
Cmq,s (α1;A,B, ρ, β) , where

ρ = 1− 2 (B −A)β (1− λ)
2

(1 + βB) (m+ 1)

m {(m+1) + β [(Bm+A) + (B −A)λ]}2 Γm+1(α1) + 2 (B −A)
2
β2 (1− λ)

2 .

(4.24)
The result is sharp for the functions f1 and f2 given by (4.15) .
Remarks. (i) Putting q = 2 and s = α1 = α2 = β1 = 1 in the above results, we get
the results obtained by Aouf et al. [4, Lemmas 1 and 2 and Corollaries 1, 2, 3, 4, 7
and 8, respectively];
(ii) Putting q = 2, s = α1 = α2 = β1 = B = 1 and A = −1, in Theorems 4.1, 4.2
and Corollaries 4.1, 4.2, we get the results obtained by Aouf et al. [4, Corollaries 5,
9, 6 and 10, respectively].
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On a subclass of convex functions
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Abstract. In this paper we study a subclass of convex functions. Among others
we prove an interesting property regarding the composition of functions from this
class. The basic tool of the proof is the theory of differential subordination.
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1. Introduction

Let U = {z ∈ C : |z| < 1} be the unit disk in the complex plane C. We denote
by A the class of the functions f of the form

f(z) = z +

∞∑
n=2

anz
n,

defined in U. We say that f is starlike in U if f : U → C is univalent and f(U) is a
starlike domain in C with respect to 0.

It is well-known that f ∈ A is starlike in U if and only if

Re

(
zf ′(z)

f(z)

)
> 0, for all z ∈ U.

The function f ∈ A is convex in U if and only if f : U → C is univalent and
f(U) is a convex domain in C. The function f ∈ A is convex if and only if

Re
zf ′′(z)

f ′(z)
+ 1 > 0, z ∈ U.

The subclass of A which contain convex functions will be denoted by K.
We define the class S∗∗∗ by the equality

S∗∗∗ =

{
f ∈ A :

∣∣∣∣1− zf ′′(z)

f ′(z)

∣∣∣∣ <
√

5

4
, z ∈ U

}
. (1.1)
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We will prove in the followings that S∗∗∗ ⊂ K, we will determine the order of star-
likeness of the class S∗∗∗ and we will show that if

f, g ∈ S∗∗∗, then f ◦ g is starlike in the disk U(r0),

where r0 = sup{r > 0|g(U(r)) ⊂ U}.

2. Preliminaries

In order to prove the Main Result, we need the following results. These lemmas
can be found in [1], p.24-25, and [2], p. 201-203.
Let Q be the class of analytic functions q in U which has the property that are analytic
and injective on U \ E(q), where

E(q) =

{
ζ ∈ ∂U : lim

z−→ζ
q(z) =∞

}
,

and are such that q′(ζ) 6= 0 for ζ ∈ ∂U \ E(q).

Lemma 2.1. [Miller-Mocanu] Let q ∈ Q, with q(0) = a, and let p(z) = a+ anz
n + . . .

be analytic in U with p(z) 6≡ a and n ≥ 1. If f 6≺ q, then there are two points
z0 = r0e

iθ0 ∈ U, and ζ0 ∈ ∂U \ E(q) and a real number m ∈ [n,∞) for which
p(Ur0) ⊂ q(U),
(i) p(z0) = q(ζ0)
(ii) z0p

′(z0) = mζ0q
′(ζ0)

(iii) Re z0p
′′(z0)

p′(z0)
+ 1 ≥ mRe

(
ζ0q

′′(ζ0)
q′(ζ0)

+ 1
)
.

The following result is a particular case of Lemma 2.1.

Lemma 2.2. [Miller-Mocanu] Let p(z) = 1 +anz
n + . . . be analytic in U with p(z) 6≡ 1

and n ≥ 1.
If Re p(z) 6> 0, z ∈ U, then there is a point z0 ∈ U, and there are two real numbers
x, y ∈ R such that
(i) p(z0) = ix

(ii) z0p
′(z0) = y ≤ −n(x

2+1)
2 ,

(iii) Re z20p
′′(z0) + z0p

′(z0) ≤ 0.

We also need the following result, which is a particular case of the Theorem 3.2d.
from [1]. The next result is Theorem 3.2i. from [1].

Lemma 2.3. Let h be convex in U, with h(0) = 1 and let n be a positive integer. If q
is the analytic solution of

q(z) +
zq′(z)

q(z)
= h(z), q(0) = 1,

and if Re q(z) > 0, z ∈ U, then q is univalent. If p(z) = 1 + anz
n + an+1z

n+1 + . . .
is an analytic function in U, and

p(z) +
zp′(z)

p(z)
≺ h(z),
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then p ≺ q, and q is the best dominant.

We also need the following result, which is a particular case of the Theorem 3.2d.
from [1].

Lemma 2.4. Let β, γ ∈ C and let n be a positive integer. Let Rβa+γ,n be given by

Rc,n(z) = 2Cn
(z + b)(1 + bz)

(1 + bz)2 − (z + b)2
, Cn =

n

Re c
[|c|
√

1 + 2 Re(c/n) + Im c].

Let h be analytic in U, with h(0) = a, and let Re[βa+ γ] > 0. If

βh(z) + γ ≺ Rβa+γ,n(z),

then the solution q of the equation

q(z) +
nzq′(z)

βq(z) + γ
= h(z),

with q(0) = a is analytic in U and satisfies Re[βq(z) + γ] > 0, z ∈ U.
If a 6= 0, then the solution is given by

q(z) = zγ/n[H(z)]βa/n
(
β/n)

∫ z

0

[H(t)]βa/nt(γ/n)−1dt

)−1
− γ/β,

where

H(z) = z exp

∫ z

0

[(h(t)− a)/at]dt.

Lemma 2.5. If x > 0, and y ∈ R, then

Re(x+ iy)
1
4 ≥ x 1

4 .

Proof. We have

Re(x+ iy)
1
4 = (x2 + y2)

1
8 cos

(
1

4
arctan

y

x

)
and in order to prove the lemma we have to show that

(x2 + y2)
1
2 cos4(

1

4
arctan

y

x
) ≥ x. (2.1)

Since

cos4
(

1

4
arctan

y

x

)
=

1

4

1 +

√
1 + x√

x2+y2

2


2

the inequality (2.1) is equivalent to

1

4

1 +

√
1 + x√

x2+y2

2


2

≥ x√
x2 + y2

.
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Since x√
x2+y2

∈ [0, 1] it follows that there is a real number α ∈ [0, π2 ] such that

x√
x2+y2

= cosα, and the previous inequality can be rewritten as follows

cos4
α

4
≥ cosα, α ∈

[
0,
π

2

]
.

This inequality is equivalent to(
1− cos2

α

4

)(
7 cos2

α

4
− 1
)
≥ 0, α ∈

[
0,
π

2

]
,

and the proof is done taking into account that 7 cos2 α4 ≥ 7 cos2 π8 > 1. �

We need also the following lemma which can be found in [2], p.271.

Lemma 2.6. Let g : [−π, π][0, 1] → C a function such that g(eiθ, .) is integrable on
[0, 1], for each θ ∈ [−π, π]. If α : [0, 1]→ (0,∞) ia also integrable and

Re
1

g(eθ, t)
≥ 1

α(t)
, θ ∈ [−π, π], t ∈ [0, 1],

then

Re
1∫ 1

0

g(eiθ, t)dt

≥ 1∫ 1

0

α(t)dt

, θ ∈ [−π, π].

3. Main results

Theorem 3.1. If f ∈ A and ∣∣∣∣1− zf ′′(z)

f ′(z)

∣∣∣∣ < √7, z ∈ U,

then it follows that f ∈ S∗.

Proof. We will prove that p(z) = zf ′(z)
f(z) > 0, z ∈ U.

It is easily seen that

1− zf ′′(z)

f ′(z)
= 2− p(z)− zp′(z)

p(z)
,

and consequently the following equivalence holds∣∣∣∣1− zf ′′(z)

f ′(z)

∣∣∣∣ < √7, z ∈ U ⇔
∣∣∣∣2− p(z)− zp′(z)

p(z)

∣∣∣∣ < √7, z ∈ U. (3.1)

If the condition p(z) =
zf ′(z)

f(z)
> 0, z ∈ U, does not hold, then according to the

Miller-Mocanu lemma (Lemma 2.2) there is a point z0 ∈ U, and there are two real
numbers x, y ∈ R such that

p(z0) = ix,

and

z0p
′(z0) = y ≤ −1 + x2

2
.
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These equalities imply∣∣∣∣2− p(z0)− z0p
′(z0)

p(z0)

∣∣∣∣ =
∣∣∣2− i(x− y

x

)∣∣∣ =

√
4 +

(x2 − y)2

x2

≥

√
4 +

(
3x

2
+

1

2x

)2

≥
√

7.

This inequality contradicts (3.1), and consequently p(z) =
zf ′(z)

f(z)
> 0, z ∈ U holds.

�

Remark 3.2. The result of Theorem 3.1 shows that the following inclusion holds
S∗∗∗ ⊂ S∗.

We will determine the exact order of starlikeness of the class S∗∗∗ in the followings.

Theorem 3.3. If f ∈ S∗∗∗, then

Re
zf ′(z)

f(z)
>

1∫ 1

0


√

5
4 − t√
5
4 − 1


1
4

dt

=
5

4

(√
5
4 − 1

) 1
4

(√
5
4

) 5
4

−
(√

5
4 − 1

) 5
4

, z ∈ U.

The result is sharp.

Proof. The inequality
∣∣∣1− zf ′′(z)

f ′(z)

∣∣∣ <√ 5
4 , z ∈ U is equivalent to the subordination

1− zf ′′(z)

f ′(z)
≺MMz + 1

M + z
,

where M =
√

5
4 . Denoting p(z) = zf ′(z)

f(z) the subordination can be rewritten in the

following form

2− p(z)− zp′(z)

p(z)
≺MMz + 1

M + z
,

and this is equivalent to

p(z) +
zp′(z)

p(z)
≺ h(z) = 2−MMz + 1

M + z
. (3.2)

If we denote by q the solution of the equation

q(z) +
zq′(z)

q(z)
= 2−MMz + 1

M + z
= h(z)

then Re q(z) > 0, z ∈ U. Indeed if the inequality Re q(z) > 0, z ∈ U does not holds,
then there is a point z0 ∈ U, and there are two real numbers x, y ∈ R such that

q(z0) = ix,

and

z0q
′(z0) = y ≤ −1 + x2

2
.
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These equalities imply

2 <
∣∣∣2− ix− y

ix

∣∣∣ =

∣∣∣∣2− q(z0)− z0q
′(z0)

q(z0)

∣∣∣∣ =

∣∣∣∣MMz0 + 1

M + z0

∣∣∣∣ <
√

5

4
,

which is a contradiction. Thus Re q(z) > 0, z ∈ U, and h is a convex function,
consequently Lemma 2.3 is applicable and we get p(z) ≺ q(z).
According to Lemma 2.4 we have

q(z) =
H(z)∫ z

0

H(t)t−1dt

,

where H(z) =

∫ z

0

h(t)− 1

t
dt = z

(
1 +

z

M

)M2−1
.

The subordination p ≺ q implies that

Re p(z) > inf
|z|<1

q(z) = inf
|z|<1

H(z)∫ z

0

H(t)t−1dt

= inf
θ∈[−π,π]

H(eiθ)∫ eiθ

0

H(s)s−1ds

. (3.3)

On the other hand we have

inf
θ∈[−π,π]

H(eiθ)∫ eiθ

0

H(s)s−1ds

= inf
θ∈[−π,π]

1∫ 1

0

(
M + teiθ

M + eiθ

)M2−1

dt

. (3.4)

A simple calculation leads to

Re
1

M + teiθ

M + eiθ

= Re
M + eiθ

M + teiθ
≥ M − 1

M − t
, t ∈ [0, 1], θ ∈ [−π, π].

This inequality impliesRe
1

M + teiθ

M + eiθ


1
4

≥
(
M − 1

M − t

) 1
4

, t ∈ [0, 1], θ ∈ [−π, π].

Putting x+ iy = 1

M + teiθ

M + eiθ

in Lemma 2.5, we infer

Re
1(

M + teiθ

M + eiθ

) 1
4

≥

Re
1

M + teiθ

M + eiθ


1
4

≥
(
M − 1

M − t

) 1
4

, t ∈ [0, 1], θ ∈ [−π, π].
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Since M2 − 1 = 1
4 , we get

Re
1(

M + teiθ

M + eiθ

)M2−1 ≥
(
M − 1

M − t

)M2−1

, t ∈ [0, 1], θ ∈ [−π, π].

Now we can apply Lemma 2.6 and it follows that

Re
1∫ 1

0

(
M + teiθ

M + eiθ

)M2−1

dt

≥ 1∫ 1

0

(
M − t
M − 1

)M2−1

dt

, θ ∈ [−π, π]. (3.5)

Finally (3.3), (3.4) and (3.5) imply

Re p(z) ≥ 1∫ 1

0

(
M − t
M − 1

)M2−1

dt

=
5

4

(√
5

4
− 1

) 1
4

(√
5

4

) 5
4

−

(√
5

4
− 1

) 5
4

. �

Theorem 3.4. We have S∗∗∗ ⊂ K.

Proof. Let f be a function from the class S∗∗∗.

We will prove that p(z) = 1 + zf ′′(z)
f ′(z) > 0, z ∈ U.

It is easily seen that

1− zf ′′(z)

f ′(z)
= 2− p(z),

and consequently the following equivalence holds∣∣∣∣1− zf ′′(z)

f ′(z)

∣∣∣∣ <
√

5

4
, z ∈ U ⇔ |2− p(z)| <

√
5

4
, z ∈ U. (3.6)

If the condition p(z) = 1 + zf ′′(z)
f ′(z) > 0, z ∈ U, does not hold, then according to the

Miller-Mocanu lemma (Lemma 2.2) there is a point z0 ∈ U, and there are two real
numbers x, y ∈ R such that

p(z0) = ix,

and

z0p
′(z0) = y ≤ −1 + x2

2
.

These equalities imply

|2− p(z0)| = |2− ix| =
√

4 + x2 >

√
5

4
.

This inequality contradicts (3.6), and consequently

Re p(z) = Re

(
1 +

zf ′′(z)

f ′(z)

)
> 0, z ∈ U

holds. �
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Theorem 3.5. If f ∈ S∗∗∗, then
∣∣∣arg zf ′(z)

f(z)

∣∣∣ < π
4 , z ∈ U.

Proof. The inequality
∣∣∣arg zf ′(z)

f(z)

∣∣∣ < π
4 , z ∈ U is equivalent to

p(z) =
zf ′(z)

f(z)
≺
√

1 + z

1− z
= q(z), z ∈ U. (3.7)

We will prove the subordination (3.7) using again the Miller-Mocanu lemma.
If the subordination (3.7) does not hold, then according to Lemma 2.1 there are two
points z0 ∈ U and ζ0 = eiθ ∈ ∂U, and a real number m ∈ [1,∞), such that

p(z0) = q(ζ0) = q(eiθ) =

√
1 + eiθ

1− eiθ
=
(

cos
π

4
± i sin

π

4

)
x,

where x =
√
| cot θ2 |, and

z0p
′(z0)

p(z0)
= m

ζ0q
′(ζ0)

q(ζ0)
= m

eiθ

1− e2iθ
.

According to (3.6) the function f belongs to the class S∗∗∗ if and only if∣∣∣∣2− p(z)− zp′(z)

p(z)

∣∣∣∣ <
√

5

4
, z ∈ U. (3.8)

On the other hand we have∣∣∣∣2− p(z0)− z0p
′(z0)

p(z0)

∣∣∣∣ =

∣∣∣∣2− q(ζ0)−mζ0q
′(ζ0)

q(ζ0)

∣∣∣∣ =

∣∣∣∣∣∣2−
√

1 + eiθ

1− eiθ
−m eiθ

1− e2iθ

∣∣∣∣∣∣
=

∣∣∣∣∣∣2−
√

1 + eiθ

1− eiθ
−m i

2 sin θ

∣∣∣∣∣∣ =

∣∣∣∣∣2−
√
i cot

θ

2
−m i

2 sin θ

∣∣∣∣∣ , θ ∈ [−π, π].

Denoting x =
√∣∣cot θ2

∣∣, it follows that x ∈ (0,∞), and in case θ ∈ [−π, 0], we have∣∣∣∣2− p(z0)− z0p
′(z0)

p(z0)

∣∣∣∣ =

∣∣∣∣2− (cos
π

4
− i sin

π

4

)
x+ im

x4 + 1

4x2

∣∣∣∣
=

√(
2− x√

2

)2

+

(
x√
2

+m
x4 + 1

4x2

)2

. (3.9)

If θ ∈ [0, π], then∣∣∣∣2− p(z0)− z0p
′(z0)

p(z0)

∣∣∣∣ =

∣∣∣∣2− (cos
π

4
+ i sin

π

4

)
x− imx4 + 1

4x2

∣∣∣∣
=

√(
2− x√

2

)2

+

(
x√
2

+m
x4 + 1

4x2

)2

. (3.10)
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Thus we get∣∣∣∣2− p(z0)− z0p
′(z0)

p(z0)

∣∣∣∣ =

√(
2− x√

2

)2
+
(
x√
2

+mx4+1
4x2

)2
≥
√(

2− x√
2

)2
+
(
x√
2

+ x4+1
4x2

)2
. (3.11)

The inequality between the arithmetic and geometric means implies

x√
2

+
x4 + 1

4x2
=

x

2
√

2
+

x

2
√

2
+
x2

4
+

1

8x2
+

1

8x2
≥ 5

2
6
5

> 2. (3.12)

Finally (3.11) and (3.12) imply that∣∣∣∣2− p(z0)− z0p
′(z0)

p(z0)

∣∣∣∣ >
√

5

4
.

This inequality contradicts (3.8) and consequently∣∣∣∣arg
zf ′(z)

f(z)

∣∣∣∣ < π

4
, z ∈ U. �

Theorem 3.6. If f ∈ S∗∗∗, then |arg f ′(z)| < π
4 , z ∈ U.

Proof. The inequality |arg f ′(z)| < π
4 , z ∈ U is equivalent to

f ′(z) ≺
√

1 + z

1− z
= q(z), z ∈ U. (3.13)

If the subordination (3.13) does not hold, then according to Lemma 2.1 there are two
points z0 ∈ U and ζ0 = eiθ ∈ ∂U, and a real number m ∈ [1,∞), such that

f ′(z0) = q(ζ0) = q(eiθ) =

√
1 + eiθ

1− eiθ
,

z0f
′′(z0)

f ′(z0)
= m

ζ0q
′(ζ0)

q(ζ0)
= m

eiθ

1− e2iθ
=

im

2 sin θ
.

Thus we get∣∣∣∣1− z0f
′′(z0)

f ′(z0)

∣∣∣∣ =

∣∣∣∣1− im

2 sin θ

∣∣∣∣ =

√
1 +

( m

2 sin θ

)2
≥

√
1 +

(
1

2

)2

=

√
5

4
.

This inequality contradicts f ∈ S∗∗∗. The contradiction implies that the subordination
(3.13) holds, and the proof is done. �

Now we are able to prove the result proposed in the Introduction regarding the
composition of functions.

Theorem 3.7. If f, g ∈ S∗∗∗, and r0 = sup{r ∈ (0, 1]
∣∣f(U(r)) ⊂ U}, then f ◦ g will be

starlike in U(r0).
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Proof. We have
z(f ◦ g)′(z)

(f ◦ g)(z)
=
zf ′(g(z))

f(g(z))
f ′(z). (3.14)

If f, g ∈ S∗∗∗, then Theorem 3.5 and Theorem 3.6 imply the inequalities∣∣∣∣arg
zf ′(z)

f(z)

∣∣∣∣ < π

4
, z ∈ U,

and
|arg f ′(z)| < π

4
, z ∈ U.

The equality (3.14) implies that

arg
z(f ◦ g)′(z)

(f ◦ g)(z)
= arg

zf ′(g(z))

f(g(z))
+ arg f ′(z).

Thus we get∣∣∣∣arg
z(f ◦ g)′(z)

(f ◦ g)(z)

∣∣∣∣ ≤ ∣∣∣∣arg
zf ′(g(z))

f(g(z))

∣∣∣∣+ |arg f ′(z)| ≤ π

2
, z ∈ U(r0).

This inequality means that

Re
z(f ◦ g)′(z)

(f ◦ g)(z)
> 0, z ∈ U(r0),

and consequently f ◦ g is starlike in U(r0). �
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Abstract. In this paper we introduce and study a subclass of analytic functions
for operators on a Hilbert space in the open unit disk U = {z ∈ C : |z| < 1}.
We have established coefficient estimates, distortion theorem for this subclass,
and also an application to operators based on fractional calculus for this class is
investigated.
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1. Introduction

Let A denote the class of analytic functions of the form

f(z) = z +

∞∑
n=2

an z
n (1.1)

in the open unit disc U = {z ∈ C : |z| < 1}. Let S denote the subclass of A, consisting
of functions of the form (1.1) which are normalised and univalent in U.

A function f ∈ A is said to be starlike of order δ (0 ≤ δ < 1) if and only if

Re
zf
′
(z)

f(z)
> δ, z ∈ U. (1.2)

Also, a function f ∈ A is said to be convex of order δ (0 ≤ δ < 1) if and only if

Re

[
1 +

zf
′′
(z)

f ′(z)

]
> δ, z ∈ U. (1.3)

We denote by S∗(δ) and K(δ) respectively the classes of functions in S, which are
starlike and convex of order δ in U. The subclass S∗(δ) was introduced by Robertson
[7] and studied further by Schild [8], MacGregor [4], and others.
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Let T denote the subclass of S consisting of functions of the form

f(z) = z −
∞∑
n=2

an z
n, an ≥ 0. (1.4)

We begin by setting

Fλ(z) = (1− λ)f(z) + λzf ′(z), 0 ≤ λ ≤ 1, f ∈ T, (1.5)

so that

Fλ(z) = z −
∞∑
n=2

[1 + λ(n− 1)]an z
n. (1.6)

A function f ∈ S is said to be in the class Sλ(α, β, µ) if it satisfies∣∣∣∣∣∣∣∣
zF ′λ(z)

Fλ(z)
− 1

µ
zF ′λ(z)

Fλ(z)
+ 1− (1 + µ)α

∣∣∣∣∣∣∣∣ < β , z ∈ U, (1.7)

where 0 ≤ α < 1, 0 < β ≤ 1 and 0 ≤ µ ≤ 1 .

Let us define

S∗λ(α, β, µ) = Sλ(α, β, µ) ∩ T. (1.8)

The study of various subclasses of S and other related work has been done by Silver-
man [9], Gupta and Jain [3], Owa and Aouf [6].

Let H be a complex Hilbert space and A be an operator on H. For an analytic
function f defined on U, we denote by f(A) the operator on H defined by the well
known Riesz-Dunford integral

f(A) =
1

2πi

∫
C
f(z)(zI −A)−1dz , (1.9)

where I is the identity operator on H, C is a positively oriented simple closed contour
lying in U and containing the spectrum of A on the interior of the domain. The
conjugate operator of A is denoted by A∗.

A function given by (1.4) is in the class S∗λ(α, β, µ;A) if it satisfies the condition

||AF ′λ(A)− Fλ(A)|| < β ||µ A F ′λ(A) + Fλ(A)− (1 + µ)αFλ(A)|| (1.10)

with the same constraints as α, β and µ, given in (1.7) and for all A with ||A|| <
1, A 6= θ, where θ is the zero operator on H. Such type of work was earlier done by
Fan [2], Xiaopei [10], etc.

In the present paper we have established coefficient estimates, distortion theorem
for S∗λ(α, β, µ;A) and further we consider application to a class of operators defined
through fractional calculus.
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2. Main Results

Theorem 2.1. A function f be given by (1.4) is in the class S∗λ(α, β, µ;A) for all
proper contraction A with A 6= θ if and only if

∞∑
n=2

{(n− 1) + β[1 + µn− (1 + µ)α]}an ≤ β(1 + µ)(1− α), (2.1)

for 0 ≤ α < 1, 0 < β ≤ 1, 0 ≤ µ ≤ 1.
The result is best possible for

f(z) = z − β(1 + µ)(1− α)

(n− 1) + β[1 + µ n− (1 + µ)α]
zn, n ∈ N \ {1} (2.2)

Proof. Assuming that (2.1) holds, we deduce that

||AF ′λ(A)− Fλ(A)|| − β ||µ A F ′λ(A) + Fλ(A)− (1 + µ)α Fλ(A)||

= ‖
∞∑
n=2

(n− 1)anA
n‖ − β‖(1 + µ)(1− α)An −

∞∑
n=2

{1 + µ n− (1 + µ)α}an An‖

≤
∞∑
n=2

{(n− 1) + β [1 + µ n− (1 + µ)α]}an − β(1 + µ)(1− α) ≤ 0 ,

hence, f is in the class S∗λ(α, β, µ;A).
Conversely, if we suppose that f belongs to S∗λ(α, β, µ;A), then

||AF ′λ(A)− Fλ(A)|| < β ||µ A F ′λ(A) + Fλ(A)− (1 + µ)α Fλ(A)|| ,

therefore

||
∞∑
n=2

(n− 1)anA
n|| ≤ β ||(1 + µ)(1− α)−

∞∑
n=2

{µ n+ 1− (1 + µ)α}an An|| .

Selecting A = eI (0 < e < 1) in the above inequality, we get

∞∑
n=2

(n− 1)ane
n

(1 + µ)(1− α)−
∞∑
n=2

{µ n+ 1− (1 + µ)α}
< β. (2.3)

Upon clearing denominator in (2.3) and letting e→ 1 (0 < e < 1), we get

∞∑
n=2

(n− 1)an ≤ β(1 + µ)(1− α)− β
∞∑
n=2

{µ n+ 1− (1 + µ)α}an,

which implies that

∞∑
n=2

{(n− 1) + β[1 + µn− (1 + µ)α]}an ≤ β(1 + µ)(1− α),

and this completes the proof of our theorem. �
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Corollary 1.1. If a function f given by (1.4) is in the class
S∗λ(α, β, µ; A), then

an ≤
β(1 + µ)(1− α)

(n− 1) + β[1 + µ n− (1 + µ)α]
, n = 2, 3, 4, . . . (2.4)

Theorem 2.2. If the function f given by (1.4) is in the class S∗λ(α, β, µ;A) for 0 ≤
α < 1, 0 < β ≤ 1, 0 ≤ µ ≤ 1, ||A|| < 1 and A 6= θ, then

||A|| − β(1 + 2µ)(1− α)

1 + β[(1 + 2µ) − (1 + 2µ)α]
||A||2 ≤ ||f(A)||

≤ ||A||+ β(1 + 2µ)(1− α)

1 + β[(1 + 2µ) − (1 + 2µ)α]
||A||2. (2.5)

The result is sharp for the function

f(z) = z − β(1 + 2µ)(1− α)

1 + β[(1 + 2µ) − (1 + 2µ)α]
zn. (2.6)

Proof. In view of Theorem 2.1, we have

1 + β[(1 + 2µ)− (1 + 2µ)α]

∞∑
n=2

an

≤
∞∑
n=2

{(n− 1) + β[1 + µn− (1 + 2µ)α]}an ≤ β(1 + 2µ)(1− α),

which gives us
∞∑
n=2

an ≤
β(1 + 2µ)(1− α)

1 + β[(1 + 2µ) − (1 + 2µ)α]
. (2.7)

Hence, we have

||f(A)|| ≥ ||A|| − ||A||2
∞∑
n=2

an

≥ ||A|| − β(1 + 2µ)(1− α)

1 + β[(1 + 2µ) − (1 + 2µ)α]
||A||2,

and

||f(A)|| ≤ ||A||+ ||A||2
∞∑
n=2

an

≤ ||A||+ β(1 + 2µ)(1− α)

1 + β[(1 + 2µ) − (1 + 2µ)α]
||A||2,

which completes our proof. �

Theorem 2.3. Let f1(z) = z, and

fn(z) = z − β(1 + µ)(1− α)

(n− 1) + β[(1 + µ n) − (1 + µ)α]
zn, n ≥ 2. (2.8)



On a subclass of analytic functions 151

Then, any function f of the form (1.4) is in the class S∗λ(α, β, µ;A) if and only if it
can be expressed as,

f(z) =

∞∑
n=1

λn fn(z) , with λn ≥ 0 ,

∞∑
n=1

λn = 1. (2.9)

Proof. First, let us assume that

f(z) =

∞∑
n=1

λn fn(z) = z −
∞∑
n=2

β(1 + µ)(1− α)

(n− 1) + β[(1 + µ n) − (1 + µ)α]
λn z

n.

Then, we have
∞∑
n=2

(n− 1) + β[(1 + µ n) − (1 + µ)α]

β(1 + µ)(1− α)
λn

β(1 + µ)(1− α)

(n− 1) + β[(1 + µ n) − (1 + µ)α]

=

∞∑
n=2

λn = 1− λ1 ≤ 1 ,

hence f ∈ S∗λ(α, β, µ;A).
Conversely, let us assume that the function f given by (1.4) is in the class

S∗λ(α, β, µ;A). Then, from Corollary 1.1 we get

an ≤
β(1 + µ)(1− α)

(n− 1) + β[1 + µ n− (1 + µ)α]
.

We may set

λn =
(n− 1) + β[1 + µ n− (1 + µ)α]

β(1 + µ)(1− α)
an ,

and

λ1 = 1−
∞∑
n=2

λn ,

hence it is easy to check that f can be expressed by (2.9), and this completes the
proof of Theorem 2.3. �

3. Distortion Theorem involving Fractional Calculus

In this section we shall prove distortion theorem for function belonging to the
class S∗λ(α, β, µ;A), and each of these results would involve operators of fractional
calculus which are defined as follows (for details, see [5]).

Definition 3.1. The fractional integral operator of order k associated with a function
f is defined by

D−kA f(A) =
1

Γ(k)

∫ 1

0

Ak f(tA) (1− t)k−1dt ,

where k > 0 and f is an analytic function in a simply connected region of the complex
plane containing the origin.
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Definition 3.2. The fractional derivative operator of order k associated with a function
f is defined by

Dk
Af(A) =

1

Γ(1− k)
g′(A),

where

g(A) =

∫ 1

0

A(1−k) f(tA) (1− t)−kdt , 0 < k < 1 ,

and f is an analytic function in a simply connected region of the complex plane con-
taining the origin.

Theorem 3.3. If the function f given by (1.4) is in the class S∗λ(α, β, µ;A) for 0 ≤
α < 1, 0 < β ≤ 1, 0 ≤ µ ≤ 1, then

||D−kA f(A)|| ≥ ||A||k

Γ(k + 2)
− β(1 + 2µ)(1− α)

1 + β[(1 + 2µ) − (1 + 2µ)α]

||A||k+2

Γ(k + 2)
,

and

||D−kA f(A)|| ≤ ||A||k

Γ(k + 2)
+

β(1 + 2µ)(1− α)

1 + β[(1 + 2µ) − (1 + 2µ)α]

||A||k+2

Γ(k + 2)
.

Proof. If we consider

F (A) = Γ(k + 2)A−kD−kA f(A)

= A−
∞∑
n=1

Γ(n+ 2) Γ(k + 2)

Γ(n+ k + 2)
an+1A

n+1 = A−
∞∑
n=2

BnA
n ,

where Bn =
Γ(n+ 1) Γ(k + 2)

Γ(n+ k + 1)
an, then we obtain that

∞∑
n=2

{(n− 1) + β[1 + µ n− (1 + µ)α]}Bn

≤
∞∑
n=2

{(n− 1) + β[1 + µ n− (1 + µ)α]}an ≤ β(1 + µ)(1− α),

as 0 <
Γ(n+ 1) Γ(k + 2)

Γ(n+ k + 1)
< 1, hence F belongs to S∗λ(α, β, µ;A) .

Therefore, by Theorem 2.2 we deduce that

||D−kA f(A)|| ≤ ||A
k+1||

Γ(k + 2)
+

β(1 + 2µ)(1− α)

1 + β[(1 + 2µ) − (1 + 2µ)α]

||Ak+2||
Γ(k + 2)

.

and

||D−kA f(A)|| ≥ ||A
k+1||

Γ(k + 2)
− β(1 + 2µ)(1− α)

1 + β[(1 + 2µ) − (1 + 2µ)α]

||Ak+2||
Γ(k + 2)

.

Note that (A
1
q ) ∗ A

1
q = A

1
q (A

1
q∗ ); q ∈ N and by Corollary 3.8 [11] we have

||Am|| = ||A||m, where m is rational number and ‘ * ’ is the Hadamard product or
convolution product of two analytic functions. When s is any irrational number, we
choose a single-valued branch of zs and a single valued branch of zkn(kn is a sequence
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of rational numbers) such that kn → s, as ||Akn || = ||A||kn , and Lemma 13 [1] allows
us to have ||Akn || → ||As|| , ||Akn || = ||A||kn → ||As||, kn → s .

That is ||As|| = ||A||s, hence ||Ak|| = ||A||k, k > 0. �
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The norm of pre-Schwarzian derivatives
of certain analytic functions with bounded
positive real part

Hormoz Rahmatan, Shahram Najafzadeh and Ali Ebadian

Abstract. For real numbers 0 ≤ α < 1 and β > 1 we define the univalent function
in the unit disk ∆ which maps ∆ on to the strip domain ω with α < Reω < β.
In this paper we give the best estimates for the norm of the pre-Schwarzian

derivative Tf (z) =
f

′′
(z)

f ′(z)
where ‖Tf‖ = sup

|z|<1

(
1− |z|2

) ∣∣∣∣∣f
′′

(z)

f ′(z)

∣∣∣∣∣ .
Mathematics Subject Classification (2010): 30C45.

Keywords: Univalent functions, starlike functions, subordination, pre-Schwarzian
derivatives.

1. Introduction

Let A denote the class of functions f(z) of the form

f(z) = z +

∞∑
n=2

anz
n, (1.1)

which are analytic in the open unit disk ∆ = {z ∈ C : |z| < 1}. The subclass of
A, consisting of all univalent functions f in ∆ is denoted by S. In [5] the authors
introduced a new class for certain analytic functions, and they denote by S(α, β) the
class of functions f ∈ A which satisfy the inequality

α < Re
zf

′
(z)

f(z)
< β, (z ∈ ∆). (1.2)

for some real number 0 ≤ α < 1 and some real number β > 1. Also, the authors
introduced the class ν(α, β) of functions f ∈ A which satisfy the inequality

α < Re

{(
z

f(z)

)2

f
′
(z)

}
< β, (z ∈ ∆). (1.3)



156 Hormoz Rahmatan, Shahram Najafzadeh and Ali Ebadian

where 0 ≤ α < 1 and β > 1.
Let f and g be analytic in ∆. The function f is called to be subordinate to g, written
f ≺ g or f(z) ≺ g(z), if there exists an analytic function ω such that ω(0) = 0,
|ω(z)| < 1, and f(z) = g(ω(z)) on ∆. The pre-Schwarzian derivative of f is denoted
by

Tf (z) =
f

′′
(z)

f ′(z)
,

and we define the norm of Tf by

‖Tf‖ = sup
|z|<1

(
1− |z|2

) ∣∣∣∣∣f
′′
(z)

f ′(z)

∣∣∣∣∣ .
This norm have a significant meaning in the theory of Teichmuller spaces. For a
univalent function f , it is well known that ‖Tf‖ < 6, and this estimate is the best
possible [3,6]. On the other hand the following result is important to be noted:

Theorem 1.1. Let f be analytic and locally univalent in ∆. Then,
(i) if ‖Tf‖ ≤ 1 then f is univalent, and
(ii) if f ∈ S∗(α), then ‖Tf‖ ≤ 6− 4α.

The part (i) is due to Becker [1], and the sharpness of the constants is due to
Becker and Pommerenke [2]. The part (ii) is due to Yamashita [8]. The norm estimates
for typical subclasses of univalent functions are investigated by many authors like
[4,7,8].
In this paper we shall give the best estimate for the norm of pre-Schwarzian derivatives
of the class S(α, β) and ν(α, β).

2. Main Results

To prove our main results we shall need the Schwartz, lemma.
Now, we define an analytic function P : ∆→ C by

P (z) = 1 +
β − α
π

i log

1− e
2πi

1− α
β − α z

1− z

 ,

due to Kuroki and Owa [5]. They proved that p maps conformally ∆ onto a convex
domain ω with α < Reω < β . Using this fact and the definition of subordination,
we can directly obtain the following lemmas:

Lemma 2.1. Let f ∈ A and 0 ≤ α < α < 1 < β. Then, f ∈ S(α, β) if and only if

zf
′
(z)

f(z)
≺ 1 +

β − α
π

i log

1− e
2πi

1− α
β − α z

1− z

 ,
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Lemma 2.2. Let f ∈ A and 0 ≤ α < 1 < β. Then, f ∈ ν(α, β) if and only if

(
z

f(z)

)2

f
′
(z) ≺ 1 +

β − α
π

i log

1− e
2πi

1− α
β − α z

1− z

 .

In this work, first we find norm estimate of the pre-Schwarzian derivative for
f ∈ S(α, β), and then we find the norm estimate of the pre-Schwarzian derivative for
f ∈ ν(α, β).

Theorem 2.3. For 0 ≤ α < 1 < β, if f ∈ S(α, β), then

‖Tf‖ ≤
2(β − α)

π

1− e
2πi

1− α
β − α

 .

Proof. For an arbitrary function f ∈ S(α, β), set g(z) =
zf

′
(z)

f(z)
. Then, g is a holo-

morphic function on ∆ satisfying g(0) = 1 and

g(∆) ⊂ {ω ∈ C : α < Reω < β} := H(α, β).

The univalent map P (z) = 1+
β − α
π

i log

1− e
2πi

1− α
β − α z

1− z

 on ∆ satisfies P (0) = 1

and P (z) = H(α, β), therefore g is subordinate to P . Thus, there exists a holomorphic
function ω = ωf : ∆→ ∆ with ω(0) = 0 such that,

g(z) = (P ◦ ω) (z) = 1 +
β − α
π

i log

1− e
2πi

1− α
β − αω(z)

1− ω(z)

 . (2.1)

By the logarithmic differentation of (2.1), we have

log
zf

′
(z)

f(z)
= log

1 +
β − α
π

i log

1− e
2πi

1− α
β − αω(z)

1− ω(z)


 ,

and consequently

log z + log f
′
(z)− log f(z) = log

1 +
β − α
π

i log

1− e
2πi

1− α
β − αω(z)

1− ω(z)


 .
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Hence,

1

z
+
f ′′(z)

f ′(z)
− f

′
(z)

f(z)
=

=
β − α
π

i

−e
2πi

1− α
β − αω′

(z) (1− ω(z)) + ω
′
(z)

1− e
2πi

1− α
β − αω(z)


(1− ω(z))

1− e
2πi

1− α
β − αω(z)


,

Then,

f ′′(z)

f ′(z)
=
β − α
π

i

1

z
log

1− e
2πi

1− α
β − αω(z)

1− ω(z)
+
−e

2πi
1− α
β − αω′

(z)

1− e
2πi

1− α
β − αω(z)

+
ω

′
(z)

1− ω(z)

 ,

and therefore,

Tf (z) =
f ′′(z)

f ′(z)
=

=
β − α
π

i


1

z
log

1− e
2πi

1− α
β − αω(z)

1− ω(z)
+

ω
′
(z)

1− e
2πi

1− α
β − α


(1− ω(z))

1− e
2πi

1− α
β − αω(z)




.

Setting ω = id∆, we also have

Tfα,β (z) =
β − α
π

i


1

z
log

1− e
2πi

1− α
β − α z

1− z

+
1− e

2πi
1− α
β − α

(1− z)

1− e
2πi

1− α
β − α z




,

and we conclude by using of Schwartz, lemma that,(
1− |z|2

)
|Tf (z)| ≤

(
1− |z|2

) ∣∣Tfα,β (z)
∣∣ . (2.2)
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Thus, we can estimate as follows

(
1− |z|2

)
|Tf (z)| ≤ β − α

π

1− |z|2

|z|

∣∣∣∣∣∣∣∣∣log

1− e
2πi

1− α
β − α z

1− z


∣∣∣∣∣∣∣∣∣

+
(
1− |z|2

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− e
2πi

1− α
β − α

(1− z)

1− e
2πi

1− α
β − α z



∣∣∣∣∣∣∣∣∣∣∣∣∣∣


.

By using of maximum principle we can obtain upper bound of ‖Tf‖, therefore

lim
z→0

(
1− |z|2

)
∣∣∣∣∣∣∣∣∣∣∣∣∣
log

1− e
2πi

1− α
β − α z

1− z
z

∣∣∣∣∣∣∣∣∣∣∣∣∣
= lim
z→0

(
1− |z|2

)
· lim
z→0

1− e
2πi

1− α
β − α

(1− z)

1− e
2πi

1− α
β − α z


= 1− e

2πi
1− α
β − α (2.3)

Also, we have

lim
z→0

(
1− |z|2

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1− e
2πi

1− α
β − α

(1− z)

1− e
2πi

1− α
β − α z



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 1− e

2πi
1− α
β − α , (2.4)

hence, by (2.2) and (2.3) combined with (2.4), we conclude

sup
(
1− |z|2

)
|Tf (z)| ≤ 2(β − α)

π

1− e
2πi

1− α
β − α

 ,
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and this completes our proof. �

Theorem 2.4. For 0 ≤ α < 1 < β, if f ∈ ν(α, β), then

‖Tf‖ ≤
3(β − α)

π

1− e
2πi

1− α
β − α

 .

Proof. Let f ∈ ν(α, β), and set g(z) =

(
z

f(z)

)2

f
′
(z). Then, the functiong is a

holomorphic function on ∆ satisfying g(0) = 1 and

g(∆) ⊂ {ω ∈ C : α < Reω < β} := H(α, β).

The univalent map P (z) = 1+
β − α
π

i log

1− e
2πi

1− α
β − α z

1− z

 on ∆ satisfies P (0) = 1

and P (z) = H(α, β), hence g is subordinate to P . So, there exists a holomorphic
function ω = ωf : ∆→ ∆ with ω(0) = 0 such that

g(z) = (P ◦ ω)(z) = 1 +
β − α
π

i log
1− e

2πi
1− α
β − αω(z)

1− ω(z)
. (2.5)

By the logarithmic differentiation of (2.5) and using the same method as proof of
Theorem 2.3, we have

2

(
1

z
− f

′
(z)

f(z)

)
+
f ′′(z)

f ′(z)
=

=
β − α
π

i

−e
2πi

1− α
β − αω′

(z) (1− ω(z)) + ω
′
(z)

1− e
2πi

1− α
β − αω(z)


(1− ω(z))

1− e
2πi

1− α
β − αω(z)


. (2.6)

With (2.1) we have,

zf
′
(z)

f(z)
= 1 +

β − α
π

i log
1− e

2πi
1− α
β − αω(z)

1− ω(z)
,
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therefore

Tf (z) =
f ′′(z)

f ′(z)
=

=
β − α
π

i


2

z
log

1− e
2πi

1− α
β − αω(z)

1− ω(z)
+

ω
′
(z)

1− e
2πi

1− α
β − α


(1− ω(z))

1− e
2πi

1− α
β − αω(z)




Setting ω = id∆, we also have

Tfα,β (z) =
β − α
π

i


2

z
log

1− e
2πi

1− α
β − α z

1− z
+

1− e
2πi

1− α
β − α

(1− z)

1− e
2πi

1− α
β − α z




.

Therefore, (
1− |z|2

)
|Tf (z)| ≤

(
1− |z|2

) ∣∣Tfα,β (z)
∣∣ ,

hence we have

sup
(
1− |z|2

)
|Tf (z)| ≤ 3(β − α)

π
(1− e

2πi
1− α
β − α ).

This completes the proof of our theorem. �
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On the starlikeness of iterative integral operators
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Abstract. The main object of the present paper is to investigate starlikeness of
certain integral operators, which are defined here by means of iterative in the
open disk DR = {z ∈ C : |z| < R} with R ≥ 1. Also we prove that these result
are best possible.

Mathematics Subject Classification (2010): 30C45, 30C80.

Keywords: Integral operator, iterative, univalent and starlike functions.

1. Introduction

Let A denote the class of normalized analytic functions f(z) in the unit disk
D = {z ∈ C : |z| < 1} which are in the form

f(z) = z + a2z
2 + · · ·+ anz

n + · · · .
Also, let S and S∗ denote the subclasses of A consisting of the univalent and starlike
functions respectively. Studying the geometric properties of certain integral operators
were considered by many authors during the last years. For example, some results
of integral operator Fα(z) =

∫ z
0

(f(t)/t)αdt were obtained by Merkes and Wright [3].

Other type of integral operator such as Gα(z) =
∫ z
0

(f ′(t))αdt was studied by the

authors in [3] and [6]. Recently, the authors in [5] defined integral operators Lkf(z)
and Lkf(z) which are iterative and take normalized analytic functions into the class
S when restricted to D. In this note, we define two new iterative integral operators
Fn(γ)(f(z)), Fn(γ)(f(z)) and investigate the starlikeness of them in D.

2. Integral Operators F n(γ)(f(z)) and Fn(γ)(f(z))

Suppose that AR denote the class of normalized analytic functions f(z) in DR
with radius of convergence R and R ≥ 1. We recall the generalized Bernardi integral
operator F (γ) : A → A, with γ > −1 as following (see [4])

F (γ)(f(z)) =
1 + γ

zγ

∫ z

0

tγ−1f(t)dt; (z ∈ D, f ∈ A). (2.1)
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Note that all powers in (2.1) are principal ones.
We now introduce the following two operators defined on AR with R ≥ 1.

Definition 2.1. For f(z) = z +
∑∞
k=2 akz

k ∈ AR, let

F 1(γ)(f(z)) = F (γ)(f(z)) = z +

∞∑
k=2

1 + γ

γ + k
akz

k

F 2(γ)(f(z)) = F (γ)(F (γ)(f(z))) = z +

∞∑
k=2

(
1 + γ

γ + k

)2

akz
k.

In general, for n ∈ N we define

Fn(γ)(f(z)) = F (γ)(Fn−1(γ)(f(z))) = z +

∞∑
k=2

(
1 + γ

γ + k

)n
akz

k. (2.2)

Definition 2.2. For f(z) = z +
∑∞
k=2 akz

k ∈ AR we define

F1(γ)(f(z)) = F (γ)(f(z)) = z +

∞∑
k=2

1 + γ

γ + k
akz

k,

F2(γ)(f(z)) =
(1 + γ)(2 + γ)

zγ+1

∫ z

0

∫ t2

0

tγ−11 f(t1)dt1dt2

= z +

∞∑
k=2

(1 + γ)(2 + γ)

(γ + k)(γ + k + 1)
akz

k (2.3)

and in general we have

Fn(γ)(f(z)) =
(1 + γ)(2 + γ)...(n+ γ)

zγ+n−1

∫ z

0

∫ tn

0

∫ tn−1

0

...

∫ t2

0

tγ−11 f(t1)dt1dt2...dtn

= z +

∞∑
k=2

(1 + γ)(2 + γ)...(n+ γ)

(γ + k)(γ + k + 1)...(γ + k + n− 1)
akz

k. (2.4)

The aim of this note is to show that for f ∈ AR with R > 1 there exists a
positive integer N such that for n ≥ N , Fn(γ)(f(z)) and Fn(γ)(f(z)) are starlike.
Also, we show that these results are sharp.

To prove our main results, we need each of the following lemmas.

Lemma 2.3. ([2]) If f ∈ A satisfies

<(f ′(z) + αzf ′′(z)) >
−1
α

∫ 1

0
t

1
α−1 1−t

1+t dt

1− 1
α

∫ 1

0
t

1
α−1 1−t

1+t dt
; (z ∈ D)

for α ≥ 1
3 , then f ∈ S∗. The result is sharp.

Theorem 2.4. ( Bieberbach’s Theorem [1] ) If f ∈ S, then |an| ≤ n. The equality
holds if and only if f is a rotation of the Koebe function.
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3. Main Results

Theorem 3.1. Suppose that f ∈ AR, where R > 1. There exists a positive integer N
such that for every n ≥ N , Fn(γ)(f(z)) when restricted to D is starlike.

Proof. Let n ∈ N, α ≥ 1
3 and f ∈ AR. From (2.2) we obtain

(Fn(γ)(f(z)))′ = 1 +

∞∑
k=2

k

(
1 + γ

γ + k

)n
akz

k−1

and

αz(Fn(γ)(f(z)))′′ =

∞∑
k=2

αk(k − 1)(1 + γ)n

(γ + k)n
akz

k−1.

So we obtain

Re{(Fn(γ)(f(z)))′ + αz(Fn(γ)(f(z)))′′} := 1 +G(z)

where

G(z) =

∞∑
k=2

k(1 + α(k − 1))(1 + γ)n

(γ + k)n
Re(akz

k−1).

From last equality we observe that

|G(z)| ≤
∞∑
k=2

k(1 + α(k − 1))(1 + γ)n

(γ + k)n
|ak|; (|z| < 1).

Since the radius of convergence of f (i.e. R) is greater than one, so there exists an
ε > 0 such that C := 1

R + ε < 1. In view of R = 1

lim sup |ak|
1
k

and the property of limit

superior, there exists N1 ∈ N, N1 ≥ 3 such that for every k ≥ N1 we have |ak| < Ck.
Let C1 = max{|a2|, |a3|, ..., |aN1−1|}, then we obtain

|G(z)| ≤ (1 + γ)n

(
N1−1∑
k=2

k(1 + α(k − 1))

(γ + k)n
C1 +

∞∑
k=N1

k(1 + α(k − 1))

(γ + k)n
Ck

)

≤ C1M1

(
1 + γ

2 + γ

)n
+M2

(
1 + γ

γ +N1

)n
where

M1 :=

N1−1∑
k=2

k(1 + α(k − 1)),M2 :=

∞∑
k=N1

k(1 + α(k − 1))Ck <∞.

Now from the last inequality we observe that there exists N ∈ N such that for n ≥ N
we have |G(z)| < 1

1−β , where

0 < β =
1

α

∫ 1

0

t
1
α−1

1− t
1 + t

dt < 1.

With this N we see that, 1 + G(z) > −β
1−β , and by lemma 2.3 we conclude that

Fn(γ)(f(z)) is starlike in D whenever n ≥ N . �
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Theorem 3.2. Let f ∈ AR with R > 1. There exists N ∈ N such that for every
n ≥ N,Fn(γ)(f(z)) is starlike in D.

Proof. Let n ∈ N and f ∈ AR. From (2.4) we have

(Fn(γ)(f(z)))′ = 1 +

∞∑
k=2

(1 + γ)(2 + γ)...(n+ γ)kak
(γ + k)(γ + k + 1)...(γ + k + n− 1)

zk−1

and

αz(Fn(γ)(f(z)))′′ =

∞∑
k=2

α(1 + γ)(2 + γ)...(n+ γ)k(k − 1)ak
(γ + k)(γ + k + 1)...(γ + k + n− 1)

zk−1.

So we obtain

<{(Fn(γ)(f(z)))′ + αz(Fn(γ)(f(z)))′′} = 1 +H(z),

where

H(z) =

∞∑
k=2

(1 + γ)(2 + γ)...(n+ γ)k(1 + α(k − 1))

(γ + k)(γ + k + 1)...(γ + k + n− 1)
Re(akz

k−1).

Now the last equality implies that

|H(z)| ≤
∞∑
k=2

(1 + γ)(2 + γ)...(n+ γ)k(1 + α(k − 1))

(γ + k)(γ + k + 1)...(γ + k + n− 1)
|ak|; (z ∈ D).

Since the radius of convergence of f is greater than one, hence there exists an ε > 0
such that B = 1

R + ε < 1. Now using lim sup |ak|
1
k = 1

R and the property of limit

superior, there exists N1 ∈ N, N1 ≥ 3 such that for k ≥ N1 we have |ak| < Bk. Let
C ′1 = max{|a2|, |a3|, ..., |aN1−1|}, then we obtain

|H(z)| ≤ C ′1

N1−1∑
k=2

(1 + γ)k(1 + α(k − 1))

γ + n+ 1
+

∞∑
k=N1

Ank(1 + α(k − 1))Bk

= C ′1M
′
1

(
1 + γ

n+ γ + 1

)
+AnM

′
2, (3.1)

where

M ′1 :=

N1−1∑
k=2

k(1 + α(k − 1)),M ′2 :=

∞∑
k=N1

k(1 + α(k − 1))Bk <∞

and

An =
(1 + γ)(2 + γ)...(n+ γ)

(γ +N1)(γ +N1 + 1)...(γ +N1 + n− 1)
.

It is easy to see that limn→∞An = 0. Using this fact, the relation (3.1) shows that
there exists N ∈ N such that for n ≥ N we have |H(z)| < 1

1−β , where

0 < β =
1

α

∫ 1

0

t
1
α−1

1− t
1 + t

dt < 1.

With this N we see that, 1 + H(z) > −β
1−β and Fn(γ)(f(z)) is starlike in D for

n ≥ N . �
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Now we shall see that the radius of convergence of f (i.e. R > 1) is best possible.
To this end, let

L(z) = z +

∞∑
k=2

akz
k, where ak =

{
(l + γ)l, if k = (3 + bγc)l, l ∈ N,
0, otherwise.

(3.2)

Since lim sup |ak|
1
k = 1, so the radius of convergence of L(z) is one. In fact, this shows

that L(z) ∈ A. We then show that Fn(γ)(L(z)) and Fn(γ)(L(z)) are not starlike in
D for every positive integer n.

Theorem 3.3. Fn(γ)(L(z)) is not starlike in D for every n ∈ N.

Proof. For fixed n ∈ N, we have

Fn(γ)(L(z)) = z +

∞∑
k=2

bkz
k, with bk =

{
(1+γ)n(l+γ)l

(k+γ)n , if k = (3 + bγc)l, l ∈ N,
0, otherwise.

Let γ > −1 and k = (3 + bγc)l, then we obtain

bk =
(1 + γ)n(l + γ)l

((3 + bγc)l + γ)n
>

(
1 + γ

2

)n(
l + γ

(3 + bγc)n

)l
.

Since

lim
l→∞

(
1 + γ

2

)n
l l + γ

(3 + bγc)n
=∞,

there is N ∈ N such that for l ≥ N we have(
1 + γ

2

)n
l l + γ

(3 + bγc)n
> 3 + bγc,

or equivalently (
1 + γ

2

)n(
l + γ

(3 + bγc)n

)l
> (3 + bγc)l = k.

Therefore we conclude that bk > k, and by theorem 2.4 Fn(γ)(L(z)) is not starlike
in D. Since n ∈ N is arbitrary, the proof is complete. �

Theorem 3.4. Fn(γ)(L(z)) is not starlike in D for every n ∈ N.

Proof. For a fixed n ∈ N we obtain Fn(γ)(L(z)) = z +
∑∞
k=2 ckz

k, where

ck =

{
(1+γ)(2+γ)...(n+γ)(l+γ)l

(γ+k)(γ+k+1)...(γ+k+n−1) , if k = (3 + bγc)l, l ∈ N,
0, otherwise.

There is N1 ∈ N such that for l ≥ N1 we have

0 < γ + (3 + bγc)l + n− 1 < 2 (3 + bγc)l.
Now for γ > −1, k = (3 + bγc)l and l ≥ N1 we obtain

ck ≥ (1 + γ)(2 + γ)...(n+ γ)(l + γ)l

(γ + (3 + bγc)l + n− 1)n

>
(1 + γ)(2 + γ)...(n+ γ)

2n

(
l + γ

(3 + bγc)n

)l
. (3.3)
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As in the proof of theorem 3.3, it is easy to see that there is N ∈ N, N ≥ N1 such
that for l ≥ N we have

(1 + γ)(2 + γ)...(n+ γ)

2n

(
l + γ

(3 + bγc)n

)l
> (3 + bγc)l = k.

Hence for l ≥ N we have ck > k, and Fn(γ)(L(z)) is not starlike in D. This completes
the proof. �
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Complex operators generated by q-Bernstein
polynomials, q ≥ 1
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Abstract. By using a univalent and analytic function τ in a suitable open disk
centered in origin, we attach to analytic functions f , the complex Bernstein-
type operators of the form Bτn,q(f) = Bn,q

(
f ◦ τ−1

)
◦ τ , where Bn,q denote the

classical complex q-Bernstein polynomials, q ≥ 1. The new complex operators
satisfy the same quantitative estimates as Bn,q. As applications, for two concrete
choices of τ , we construct complex rational functions and complex trigonometric
polynomials which approximate f with a geometric rate.

Mathematics Subject Classification (2010): 30E10, 41A35, 41A25.

Keywords: q-Bernstein-type operator, Voronovskaja’s theorem, quantitative esti-
mates, complex rational operators, complex trigonometric polynomials.

1. Introduction

Starting from the classical Bernstein polynomials defined for f ∈ C [0, 1] by

Bn(f)(x) =

n∑
k=0

(
n

k

)
xk (1− x)

n−k
f

(
k

n

)
,

a new sequence of Bernstein-type operators of real variable is introduced in [1] by the
formula

Bτnf := Bn
(
f ◦ τ−1

)
◦ τ,

where τ is a real-valued function on [0, 1] which satisfies the following conditions:

(τ1) τ is differentiable of any order on [0, 1],
(τ2) τ (0) = 0, τ (1) = 1 and τ ′ (x) > 0 on [0, 1].

Specifically, Bτn (f) in [1] is given by

Bτn (f) (x) =
n∑
k=0

(
n

k

)
τk (x) (1− τ (x))

n−k
(f ◦ τ−1)( kn ), x ∈ [0, 1].

According to [1], the sequence Bτn (f), n ∈ N, converges uniformly to f ∈ C [0, 1].
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In [6]-[7] and [2], the complex form of the q-Bernstein polynomials, q ≥ 1, given by

Bn,q (f) (z) =

n∑
k=0

(
n

k

)
q

zk ·Πn−k−1
s=0 (1− qsz)f

(
[k]q
[n]q

)
, n ∈ N,

were intensively studied. Here f is a complex-valued analytic function in an open disk
of radius ≥ 1 and centered in origin. Also, above we have

[n]q = (qn − 1)/(q − 1),(
n

k

)
q

=
[n]q!

[k]q! · [n− k]q!
,

[n]q! = [1]q · [2]q · ... · [n]q, [0]q! = 1.

Note that for q = 1, Bn,q(f) reduce to the classical Bernstein polynomials.
Inspired by the real case in [1], in this paper we consider the idea in the complex

setting and introduce the complex operators defined by

Bτn,q(f)(z) = Bn,q(f ◦ τ−1)(τ(z)), n ∈ N, z ∈ C, q ≥ 1,

where denoting DR = {z ∈ C; |z| < R}, now τ satisfies the following properties:

τ : DR → C, R > 1, is analytic, univalent, τ(0) = 0, τ(1) = 1,

and there exists R′ > 1 such that DR′ ⊂ τ(DR). (1.1)

By using the approach in [2], for the complex operators Bτn,q we prove upper and
lower estimates and a quantitative Voronovskaja-type result in some compact subsets
generated by τ .

Also, two important examples for τ are considered, which generate sequences
of complex rational operators and of trigonometric polynomials of complex variable,
approximating for q > 1 the function f with the geometric rate 1

qn in some compact

disks centered in origin.

2. Approximation results

In this section, we present the main approximation properties of the operators
Bτn,q. Firstly, we consider the case when q = 1. We have:

Theorem 2.1. Let τ be satisfying the conditions in (1.1) and f : DR → C be analytic
in DR, R > 1. Since g : DR′ → C defined by g(w) = (f ◦ τ−1)(w) is analytic on the
disk DR′ , R′ > 1, let us write g(w) =

∑∞
k=0 ckw

k, for all w ∈ DR′ .
Let 1 ≤ r′ < R′ be arbitrary fixed. Then, for all z ∈ DR with |τ(z)| ≤ r′ and for

all n ∈ N, we have:
(i) (Upper estimate) ∣∣Bτn,1 (f) (z)− f (z)

∣∣ ≤ Cτr′

n
, (2.1)

where Cτr′ = 3r′(r′+1)
2

∞∑
k=2

|ck| k (k − 1) (r′)k−2 <∞.
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(ii) (Voronovskaja-type result)∣∣∣∣Bτn,1 (f) (z)− f (z)− τ (z) (1− τ (z))

2n
D2
τ (f) (z)

∣∣∣∣ ≤ 5(1 + r′)2Mτ
r′

2n2
(2.2)

where D2
τf(z) :=

(
f ◦ τ−1

)′′
(τ(z)) = g′′(τ(z)) is detailed by

D2
τ (f) (z) =

f ′′ (z)

(τ ′ (z))
2 −

τ ′′ (z) f ′ (z)

(τ ′ (z))
3 =

1

τ ′ (z)

(
f ′ (z)

τ ′ (z)

)′
and

Mτ
r′ =

∞∑
k=3

|ck| k (k − 1) (k − 2)
2 · (r′)k−2 <∞.

(iii) If f is not a polynomial in τ of degree ≤ 1, then∥∥Bτn,1 (f)− f
∥∥
r′,τ
∼ 1

n
,

where ‖F‖r′,τ = sup{|F (z)|; |z| < R, |τ(z)| ≤ r′} and the constants in the equivalence
depend only on f , τ and r′.

Proof. Let g(w) =
∑∞
k=0 ckw

k be an analytic function in a disk DR′ with R′ > 1. Also,
for simplicity, denote the classical Bernstein polynomials Bn,1(g)(w) by Bn(g)(w).

(i) According to Theorem 1.1.2, (i), page 6 in [2], for all 1 ≤ r′ < R′, n ∈ N and
|w| ≤ r′, we have

|Bn(g)(w)− g(w)| ≤ Cr′

n
,

where Cr′ = 3r′(1+r′)
2

∑∞
k=2 k(k − 1)|ck|(r′)k−2.

Now, if above we replace g by f ◦ τ−1 and w by τ(z), then we easily arrive at
the required estimate (2.1).

(ii) According to Theorem 1.1.3, (ii), page 9 in [2], for all 1 ≤ r′ < R′, n ∈ N
and |w| ≤ r′, we have∣∣∣∣Bn (g) (w)− g (w)− w(1− w)

2n
g′′(w)

∣∣∣∣ ≤ 5(1 + r′)2Mr′

2n2
,

whereMr′ =
∞∑
k=3

|ck| k (k − 1) (k − 2)
2·(r′)k−2. Take g(w) = (f◦τ−1)(w) = f [τ−1(w)].

Since

g′(w) = f ′[τ−1(w)] · (τ−1(w))′ = f ′[τ−1(w)] · 1

τ ′(τ−1(w))
,

differentiating once again, we easily get

g′′(w) =
f ′′(τ−1(w))

[τ ′(τ−1(w))]2
− f ′(τ−1(w)) · τ ′′(τ−1(w))

[τ ′(τ−1(w))]3
.

Now, replacing in the above estimate g by f ◦ τ−1 and w by τ(z), we immediately get
(2.2).

(iii) According to Corollary 1.1.5, page 14 in [2], it follows that for all 1 ≤ r′ < R′

we have

‖Bn(g)− g‖r′ = sup{|Bn(g)(w)− g(w)|; |w| ≤ r′} ∼ 1

n
.
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But

‖Bn(g)− g‖r′ ≥ sup{|Bn(g)(τ(z))− g(τ(z))|; |z| < R, |τ(z)| ≤ r′}
= ‖Bτn,1(f)− f‖r′,τ ,

which does not imply the required equivalence in the statement.
For this reason, we have to use here the standard method in [2] and the estimates

(2.1) and (2.2). Thus, for all z ∈ DR with |τ(z)| ≤ r′ and n ∈ N we can write

Bτn,1(f)(z)− f(z) =
1

n

{
τ(z)(1− τ(z))

2
D2
τ (f)(z)

+
1

n

[
n2
(
Bτn,1(f)(z)− f(z)− τ(z)(1− τ(z))

2n
D2
τ (f)(z)

)]}
.

Then, the obvious inequality ‖F +G‖r′,τ ≥ ‖F‖r′,τ − ‖G‖r′,τ implies

‖Bτn,1(f)− f‖r′,τ ≥
1

n

{∥∥∥∥τ(1− τ)

2
D2
τ (f)

∥∥∥∥
r′,τ

− 1

n

[
n2

(∥∥∥∥Bτn,1(f)− f − τ(1− τ)

2n
D2
τ (f)

∥∥∥∥
r′,τ

)]}
.

By the hypothesis on f we immediately get that g(τ(z)) is not a polynomial in τ(z)
of degree ≤ 1. Then, by the formula D2

τ (f)(z) = g′′(τ(z)) we easily get∥∥∥∥τ(1− τ)

2
D2
τ (f)

∥∥∥∥
r′,τ

> 0.

Indeed, supposing the contrary, it follows the obvious contradiction g′′(τ(z)) = 0, for
all z ∈ DR.

Since by (2.2) there exists a constant C > 0 with

n2

(∥∥∥∥Bτn,1(f)− f − τ(1− τ)

2n
D2
τ (f)

∥∥∥∥
r′,τ

)
≤ C,

it is clear that there exists n0 ∈ N such that

‖Bτn,1(f)− f‖r′,τ ≥ 1

2n

∥∥∥∥τ(1− τ)

2
D2
τ (f)

∥∥∥∥
r′,τ

, for all n ≥ n0.

Then, for 1 ≤ n ≤ n0 − 1 we obviously have

‖Bτn,1(f)− f‖r′,τ ≥
Mr′,n,τ (f)

n
,

with Mr′,n,τ (f) = n · ‖Bτn,1(f)− f‖r′,τ > 0, which finally leads to

‖Bτn,1(f)− f‖r′,τ ≥
Cr′,τ (f)

n
, for all n ∈ N,

where

Cr′,τ (f) = min

{
Mr′,1,τ ,Mr′,2,τ (f), ...,Mr′,n0−1,τ (f),

∥∥∥∥τ(1− τ)

4
D2
τ (f)

∥∥∥∥
r′,τ

}
.
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Combining now with the estimate (2.1) from the point (i), we get the required
equivalence. �

In the case q > 1 we have the following upper estimate of the geometric order 1
qn .

Theorem 2.2. Let f : DR → C be analytic in DR, R > q and τ satisfying the conditions
in (1.1). Denote

g(w) = (f ◦ τ−1)(w) =

∞∑
k=0

ckw
k, w ∈ DR′ .

For all q ∈ (1, R′), 1 ≤ r′ < R′

q , n ∈ N and z ∈ DR with |τ(z)| ≤ r′, we have∣∣Bτn,q (f) (z)− f (z)
∣∣ ≤ Mτ

r′,q

[n]q
≤
q ·Mτ

r′,q

qn
,

where Mτ
r′,q = 2

∞∑
k=2

|ck| (k − 1) [k − 1]q(r
′)k <∞.

Proof. According to Theorem 1.5.1, page 51 in [2] we have

|Bn,q(g)(w)− g(w)| ≤ Mr′,q

[n]q
≤
q ·Mτ

r′,q

qn
, for all 1 ≤ r′ < R′, n ∈ N, |w| ≤ r′,

where Mr′,n = 3r′(1+r′)
2

∑∞
k=2 k(k − 1)|ck|(r′)k−2.

Now, if above we replace g by f ◦ τ−1 and w by τ(z), then we easily arrive at
the required estimate. �

Remark 2.3. In a similar manner with Theorem 2.1, (ii), applying the results in, e.g.,
[10], for Bτn,q(f) we may deduce a quantitative Voronovskaja-type result of order 1

q2n .

3. Applications

In this section we apply the previous results to the cases of two concrete examples
for τ . As consequences, we construct sequences of complex rational functions and
complex trigonometric polynomials, convergent to f with a geometric rate. The first
result is the following.

Theorem 3.1. Let f : DR → C be analytic in DR with R > 1 +
√

2 and denote

τ(z) =
Rz

R+ 1− z
, |z| < R.

Then, with the notations in Theorems 2.1 and 2.2 we have:
(i) Bτn,1(f)(z) and Bτn,q(f)(z), q > 1, are complex rational functions on DR;

(ii) τ satisfies the conditions in (1.1) with R′ = R2

2R+1 > 1;

(iii) if 1 ≤ r′ < R′ then 1 ≤ r′(R+1)
R+r′ < R and for all |z| ≤ r = r′(R+1)

R+r′ , the upper

estimates (2.1), (2.2) in Theorem 2.1, (i)-(ii) and the equivalence ‖Bτn,1(f)−f‖r ∼ 1
n

hold.
(iv) If 1 < q < R′ and 1 ≤ r′ < R′

q , then the estimate in Theorem 2.2 holds for

all |z| ≤ r = r′(R+1)
R+r′ .
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Proof. (i) It is clear that both kinds of operators Bτn,1(f)(z) and Bτn,q(f), q > 1, are
complex rational functions on DR.

(ii) We are interested on the image of DR through the analytic and univalent

mapping τ . Writing w = Rz
R+1−z , we get z = (R+1)w

w+R , so that |z| < R is equivalent to∣∣∣∣ (R+ 1)w

w +R

∣∣∣∣ < R.

Denoting now w = u+ iv, the previous inequality is equivalent to

(R+ 1)
√
u2 + v2√

(u+R)2 + v2
< R,

which is equivalent to the inequality (R + 1)2(u2 + v2) < R2[(u + R)2 + v2]. Simple
calculations lead this last inequality to the following list of equivalent inequalities:

u2[(R+ 1)2 −R2] + v2[(R+ 1)2 −R2] < 2R3u+R4,

u2 − 2u
R3

2R+ 1
+ v2 <

R4

2R+ 1
,(

u− R3

2R+ 1

)2

+ v2 <

[
R2(R+ 1)

2R+ 1

]2
.

This last inequality represents a disk of center (R3/(2R+ 1), 0) and of radius

R2(R+ 1)/(2R+ 1).

Now, simple geometric reasonings lead to the fact that the above disk includes
the disk of center in origin and of radius∣∣∣∣ R3

2R+ 1
− R2(R+ 1)

2R+ 1

∣∣∣∣ =
R2

2R+ 1
,

where by the hypothesis R > 1+
√

2 we immediately get R2/(2R+1) > 1. Concluding,
since also we have τ(0) = 0 and τ(1) = 1, it follows that τ satisfies (1.1) with
R′ = R2/(2R+ 1).

(iii) Let 1 ≤ r′ < R′. Evidently that r′(R+1)
R+r′ ≥ 1 and since the function

F (x) =
(R+ 1)x

R+ x

is strictly increasing as function of x ≥ 0, it follows

r′(R+ 1)

R+ r′
<
R′(R+ 1)

R+R′
=
R3 +R2

3R2 +R
< R.

Then, since R|z|
R+1−|z| ≤ r′ is equivalent with the inequality |z| ≤ r = r′(R+1)

R+r′ , by the

obvious inequality |τ(z)| = R|z|
|R+1−z| ≤

R|z|
R+1−|z| , |z| < R, it follows that the inequality

|z| ≤ r′(R+1)
R+r′ implies |τ(z)| ≤ r′ and therefore Theorem 2.1, (i), (ii) holds for these z.

In order to prove the equivalence, we use exactly the same reasonings as in
the proof of Theorem 2.1, (iii), taking into account that (2.1) and (2.2) hold for all

|z| ≤ r = r′(R+1)
R+r′ .
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(iv) If 1 < q < R′ and 1 ≤ r′ < R′

q , then reasoning as in the previous case q = 1,

we immediately get the desired conclusion. �

Theorem 3.2. Let f : Dπ/2 → C be analytic in Dπ/2 and τ(z) = sin(z)
sin(1) , |z| < π

2 . Then,

with the notations in Theorems 2.1 and 2.2 we have:
(i) Bτn,1(f)(z) and Bτn,q(f)(z), q > 1, are trigonometric polynomials of complex

variable on Dπ/2;

(ii) τ satisfies the conditions in (1.1) with R = π
2 and R′ = 1

sin(1) > 1;

(iii) for any 1 ≤ r′ < 1
sin(1) and for all |z| ≤ r := πr′ sin(1)

2 cosh(π/2) <
π
2 , the upper

estimates (2.1), (2.2) in Theorem 2.1, (i)-(ii) and the equivalence ‖Bτn,1(f)−f‖r ∼ 1
n

hold.
(iv) If 1 < q < R′ and 1 ≤ r′ < R′

q , then the estimate in Theorem 2.2 holds for

all |z| ≤ r = πr′ sin(1)
2 cosh(π/2) .

Proof. (i) It is clear that both kinds of operators Bτn,1(f)(z) and Bτn,q(f), q > 1, are
trigonometric polynomials of complex variable on Dπ/2.

(ii) From the well-known facts that sin(z) is univalent in Dπ/2 and that its inverse
arcsin(z) exists in C \ ((−∞, 1)∪ (1,+∞)) (see, e.g., [3], p. 164 and [8], pp. 90-91), it
is immediate that τ(z) satisfies (1.1) with R = π/2 and R′ = 1

sin(1) > 1.

(iii) For any r′ ∈ [1, R′), we are interested to find a disk centered in origin and
contained in the set {z ∈ Dπ/2; |τ(z)| ≤ r′}.

Firstly, we observe that for all |z| < π/2 we have

|τ(z)| = |sin z|
sin(1)

=

∣∣∣∣eiz − e−iz2i sin(1)

∣∣∣∣ ≤ 1

sin(1)

e−y + ey

2
=

1

sin(1)
cosh y <

cosh π
2

sin(1)
.

Now, we will use the following version of the Schwarz’s lemma (see, e.g., [9], p. 218):
if f is analytic in DR, f(0) = 0 and |f(z)| < M for all |z| < R, then |f(z)| ≤ M

R |z|,
for all |z| < R.

Taking above R = π
2 and M =

cosh π
2

sin(1) , we immediately get that for all |z| < π
2

we have |τ (z)| ≤ 2
π

cosh π
2

sin(1) |z| .
Now, if we put the condition 2

π

cosh π
2

sin(1) |z| ≤ r′, then we easily obtain that for all

|z| ≤ r = πr′ sin(1)
2 cosh(π/2) it follows |τ(z)| ≤ r′ and therefore Theorem 2.1, (i) and (ii) hold

for these values of z.
Note here that for any 1 ≤ r′ < 1

sin(1) , we still have πr′ sin(1)
2 cosh(π/2) <

π
2 .

The equivalence is immediate from Theorem 2.1, (iii).

(iv) If 1 < q < R′ and 1 ≤ r′ < R′

q , then reasoning as in the previous case q = 1,

we easily get the desired conclusion. �

Remark 3.3. The hypothesis τ(0) = 0 and τ(1) = 1 in (1.1) imply that the new
defined τ -operators coincide with the function f at the points 0 and 1.

Remark 3.4. Evidently that the considerations in this paper can be applied to other
choices of the mapping τ and to other complex q-Benstein-type operators like, for
example, those studied in [4]-[5].
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On a system of nonlinear partial functional
differential equations of different types

László Simon

Abstract. We consider a system of a semilinear hyperbolic functional differential
equation (where the lower order terms contain functional dependence on the
unknown function) and a quasilinear parabolic functional differential equation
with initial and boundary conditions. Existence of weak solutions for t ∈ (0, T )
and for t ∈ (0,∞) will be shown and some qualitative properties of the solutions
in (0,∞) will be formulated.

Mathematics Subject Classification (2010): 35M33.

Keywords: Semilinear hyperbolic equation, quasilinear parabolic equation, partial
functional differential equation.

1. Introduction

In the present paper we consider weak solutions of the following system of equa-
tions:

u′′(t) +Q(u(t)) + ϕ(x)h′(u(t)) +H(t, x;u, z) + ψ(x)u′(t) = F1(t, x; z), (1.1)

z′(t)−
n∑
j=1

Dj [aj(t, x,Dz(t), z(t);u, z)] + a0(t, x,Dz(t), z(t);u, z) = F2(t, x;u) (1.2)

(t, x) ∈ QT = (0, T )× Ω

where Ω ⊂ Rn is a bounded domain and we use the notations u(t) = u(t, x), z(t) =
z(t, x) u′ = Dtu, z′ = Dtz u′′ = D2

t u, Dz = (D1z, . . . ,Dnz), Q may be e.g. a
linear second order symmetric elliptic differential operator in the variable x; h is a
C2 function having certain polynomial growth, H contains nonlinear functional (non-
local) dependence on u and z, with some polynomial growth and F1 contains some
functional dependence on z. Further, the functions aj define a quasilinear elliptic
differential operator in x (for fixed t) with functional dependence on u and z. Finally,

This paper was presented at the International Conference on Nonlinear Operators, Differential Equa-

tions and Applications (ICNODEA), July 14-17, 2015, Cluj-Napoca, Romania.
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F2 may non-locally depending on u. (The system (1.1), (1.2) consists of a semilinear
hyperbolic functional equation and a parabolic functional equation.)

This paper was motivated by some problems which were modelled by systems
consisting of (functional) differential equations of different types. In [4] S. Cinca in-
vestigated a model, consiting of an elliptic, a parabolic and an ordinary nonlinear
differential equation, which arise when modelling diffusion and transport in porous
media with variable porosity. In [6] J.D. Logan, M.R. Petersen and T.S. Shores consid-
ered and numerically studied a similar system which describes reaction-mineralogy-
porosity changes in porous media with one-dimensional space variable. J. H. Merkin,
D.J. Needham and B.D. Sleeman considered in [7] a system, consisting of a non-
linear parabolic and an ordinary differential equation, as a mathematical model for
the spread of morphogens with density dependent chemosensitivity. In [3], [8], [9] the
existence of solutions of such systems were studied.

In Section 2 the existence of weak solutions will be proved for t ∈ (0, T ), in
Section 3 some examples will be shown and in Section 4 we shall prove existence and
certain properties of solutions for t ∈ (0,∞).

2. Solutions in (0, T )

Denote by Ω ⊂ Rn a bounded domain having the uniform C1 regularity property
(see [1]), QT = (0, T ) × Ω. Denote by W 1,p(Ω) the Sobolev space of real valued
functions with the norm

‖u‖ =

∫
Ω

 n∑
j=1

|Dju|p + |u|p
 dx

1/p

(2 ≤ p <∞).

The number q is defined by 1/p + 1/q = 1. Further, let V1 ⊂ W 1,2(Ω) and V2 ⊂
W 1,p(Ω) be closed linear subspaces containing C∞0 (Ω)), V ?j the dual spaces of Vj , the

duality between V ?j and Vj will be denoted by 〈·, ·〉, the scalar product in L2(Ω) will
be denoted by (·, ·). Finally, denote by Lp(0, T ;Vj) the Banach space of the set of
measurable functions u : (0, T )→ Vj with the norm

‖u‖Lp(0,T ;Vj) =

[∫ T

0

‖u(t)‖pVj
dt

]1/p

and L∞(0, T ;Vj), L
∞(0, T ;L2(Ω)) the set of measurable functions u : (0, T )→ Vj , u :

(0, T )→ L2(Ω), respectively, with the L∞(0, T ) norm of the functions t 7→ ‖u(t)‖Vj ,
t 7→ ‖u(t)‖L2(Ω), respectively.

Now we formulate the assumptions on the functions in (1.1), (1.2).
(A1). Q : V1 → V ?1 is a linear continuous operator such that

〈Qu, v〉 = 〈Qv, u〉, 〈Qu, u〉 ≥ c0‖u‖2V1

for all u, v ∈ V1 with some constant c0 > 0.
(A2). ϕ,ψ : Ω→ R are measurable functions satisfying

c1 ≤ ϕ(x) ≤ c2, c1 ≤ ψ(x) ≤ c2 for a.a. x ∈ Ω
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with some positive constants c1, c2.
(A3). h : R→ R is a twice continuously differentiable function satisfying

h(η) ≥ 0, |h′′(η)| ≤ const|η|λ−1 for |η| > 1 where

1 < λ ≤ λ0 =
n

n− 2
if n ≥ 3, 1 < λ <∞ if n = 2.

(A4).H : QT×L2(QT )×Lp(QT )→ R is a function for which (t, x) 7→ H(t, x;u, z)
is measurable for all fixed u ∈ L2(Ω), z ∈ Lp(QT ), H has the Volterra property, i.e.
for all t ∈ [0, T ], H(t, x;u, z) depends only on the restriction of u and z to (0, t).
Further, the following inequality holds for all t ∈ [0, T ] and u ∈ L2(Ω), z ∈ Lp(QT ):∫

Ω

|H(t, x;u, z)|2dx ≤ const
[
‖z‖2Lp(QT ) + 1

] [∫ t

0

∫
Ω

h(u(τ))dxdτ +

∫
Ω

h(u)dx

]
;∫ t

0

[∫
Ω

|H(τ, x;u1, z)−H(τ, x;u2, z)|2dx
]
dτ ≤M(K, z)

∫ t

0

[∫
Ω

|u1 − u2|2dx
]
dτ

if ‖uj‖L∞(0,T ;V1) ≤ K
where for all fixed number K > 0, z 7→ M(K, z) ∈ R+ is a bounded (nonlinear)
operator.

Finally, (zk)→ z in Lp(QT ) implies

H(t, x;uk, zk)−H(t, x;uk, z)→ 0 in L2(QT ) uniformly if ‖uk‖L2(QT ) ≤ const.

(A5). F1 : QT ×Lp(QT )→ R is a function satisfying (t, x) 7→ F1(t, x; z) ∈ L2(QT ) for
all fixed z ∈ Lp(QT ) and (zk)→ z in Lp(QT implies that F1(t, x; zk)→ F1(t, x; z) in
L2(QT ).

Further, ∫ T

0

‖F1(τ, x; z)‖2L2(Ω)dτ ≤ const
[
1 + ‖z‖β1

Lp(QT )

]
with some constant β1 > 0.

(B1) The functions

aj : QT × Rn+1 × L2(QT )× Lp(QT )→ R (j = 0, 1, . . . n),

are measurable in (t, x) ∈ QT for all fixed ξ = (ξ0, ξ1, . . . , ξn) ∈ Rn+1, u ∈ L2(QT ),
z ∈ Lp(QT ) and continuous in ξ ∈ Rn+1 for all fixed u ∈ L2(QT ), z ∈ Lp(QT ) and
a.a. fixed (t, x) ∈ QT .

Further, if (uk) → u in L2(QT ) and (zk) → z in Lp(QT ) then for all ξ ∈ Rn+1,
a.a. (t, x) ∈ QT , for a subsequence

aj(t, x, ξ;uk, zk)→ aj(t, x, ξ;u, z) (j = 0, 1, . . . , n).,

(B2) For j = 0, 1, . . . , n

|aj(t, x, ξ;u, z)| ≤ g1(u, z)|ξ|p−1 + [k1(u, z)](t, x),

where g1 : L2(QT )× Lp(QT )→ R+ is a bounded, continuous (nonlinear) operator,

k1 : L2(QT )× Lp(QT )→ Lq(QT ) is continuous and

‖k1(u, z)‖Lq(QT ) ≤ const(1 + ‖u‖γL2(QT ) + ‖z‖p1Lp(QT ))

with some constants γ > 0, 0 < p1 < p− 1.
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(B3) The following inequality holds for all t ∈ [0, T ] with some constants c2 > 0,
c3 ≥ 0, β ≥ 0, γ1 ≥ 0 (not depending on t, u, z):

n∑
j=0

[aj(t, x, ξ;u, z)− aj(t, x, ξ?;u, z)](ξj − ξ?j ) ≥

c2

1 + ‖u‖βL2(QT ) + ‖z‖γ1Lp(QT )

|ξ − ξ?|p − c3|ξ0 − ξ?0 |2.

(B4) For all fixed u ∈ L2(QT ) the function

F2 : QT × L2(QT )→ R satisfies (t, x) 7→ F2(t, x;u) ∈ Lq(QT ),

‖F2(t, x;u)‖Lq(QT ) ≤ const
[
1 + ‖u‖γL2(QT )

]
(see (B2)) and

(uk)→ u in L2(QT ) implies F2(t, x;uk)→ F2(t, x;u) in Lq(QT ).

Finally,
max{(β1β)/2, γ1}+ max{(β1γ)/2, p1} < p− 1.

Theorem 2.1. Assume (A1) – (A5) and (B1) – (B4). Then for all u0 ∈ V1, u1 ∈ L2(Ω),
z0 ∈ L2(Ω) there exists u ∈ L∞(0, T ;V1) such that

u′ ∈ L∞(0, T ;L2(Ω)), u′′ ∈ L2(0, T ;V ?1 ) and z ∈ Lp(0, T ;V2), z′ ∈ Lq(0, T ;V ?2 )

such that u satisfies (1.1) in the sense: for a.a. t ∈ [0, T ], all v ∈ V1

〈u′′(t), v〉+ 〈Q(u(t)), v〉+

∫
Ω

ϕ(x)h′(u(t))vdx+

∫
Ω

H(t, x;u, z)vdx+ (2.1)∫
Ω

ψ(x)u′(t)vdx =

∫
Ω

F1(t, x; z)v)dx

and the initial conditions
u(0) = u0, u′(0) = u1. (2.2)

Further, u, z satisfy (1.2) in the sense: for a.a. t ∈ (0, T ), all w ∈ V2

〈z′(t), w〉+

∫
Ω

 n∑
j=1

aj(t, x,Dz(t), z(t);u, z)

Djwdx+ (2.3)

∫
Ω

a0(t, x,Dz(t), z(t);u, z)wdx =

∫
Ω

F2(t, x;u)wdx and

z(0) = z0. (2.4)

Proof. The proof is based on the results of [11], the theory of monotone operators
(see, e.g. [13]) and Schauder’s fixed point theorem as follows.

Consider the problem (2.1), (2.2) for u with an arbitrary fixed z = z̃ ∈ Lp(QT ).
According to [11] assumptions (A1) – (A5) imply that there exists a unique solution
u = ũ ∈ L∞(0, T ;V1) with the properties ũ′ ∈ L∞(0, T ;L2(Ω)), ũ′′ ∈ L2(0, T ;V ?1 )
satisfying (2.1) and the initial condition (2.2). Then consider problem (2.3) (2.4) for
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z with the above u = ũ and with z = z̃ functional terms (see (2.6)). According to
the theory of monotone operators (see, e.g., [13]) there exists a unique solution z ∈
Lp(0, T ;V2) of (2.3), (2.4) such that z′ ∈ Lq(0, T ;V ?2 ). By using the notation S(z̃) = z,
we shall show that the operator S : Lp(QT ) → Lp(QT ) satisfies the assumptions of
Schauder’s fixed point theorem: it is continuous, compact and there exists a closed
ball B0(R) ⊂ Lp(QT ) such that

S(B0(R)) ⊂ B0(R). (2.5)

Then Schauder’s fixed point theorem will imply that S has a fixed point z? ∈
Lp(0, T ;V2). Defining u? by the solution of (2.1), (2.2) with z = z?, functions u?,
z? satisfy (2.1) – (2.4).

Lemma 2.2. Consider problem (2.1), (2.2) for u with an arbitrary fixed z = z̃ ∈
Lp(QT ). Assumptions (A1) – (A5) imply that there exists a unique u = ũ ∈
L∞(0, T ;V1) such that ũ′ ∈ L∞(0, T ;L2(Ω)), ũ′′ ∈ L2(0, T ;V ?1 ) and (2.1), (2.2) are
satisfied.

Lemma 2.2 directly follows from Theorem 4.1 of [11].

Lemma 2.3. Consider the following modification of problem (2.3), (2.4) with arbitrary
fixed ũ ∈ L2(QT ), z̃ ∈ Lp(QT ): find z ∈ Lp(0, T ;V2) such that z′ ∈ Lq(0, T ;V ?2 ) and
for a.a. t ∈ [0, T ], all w ∈ V2

〈z′(t), w〉+

∫
Ω

 n∑
j=1

aj(t, x,Dz(t), z(t); ũ, z̃)

Djwdx+ (2.6)

∫
Ω

a0(t, x,Dz(t), z(t); ũ, z̃)wdx =

∫
Ω

F2(t, x; ũ)wdx,

z(0) = z0. (2.7)

Assumptions (B1) – (B4) imply that there exists a unique solution of (2.6), (2.7).

Proof. Let a > 0 be a fixed constant. A function z is a solution of (1.2), (2.4) if and
only if ẑ(t) = e−atz(t) satisfies

ẑ′(t)− e−at
n∑
j=1

Dj [aj(t, x, e
atDẑ(t), eatẑ(t); ũ, z̃)]+ (2.8)

e−ata0(t, x, eatDẑ(t), eatẑ(t); ũ, z̃) + aẑ(t) = e−atF2(t, x; ũ),

ẑ(0) = z0. (2.9)

We shall apply the theory of monotone operators to (2.8), (2.9) with sufficiently large
a > 0.

Define (with fixed ũ ∈ L2(QT ), z̃ ∈ Lp(QT ), t ∈ [0, T ]) operator Âũ,z̃ by

〈Âũ,z̃(ẑ), w〉 =

∫
Ω

e−at
n∑
j=1

aj(t, x, e
atDẑ(t), eatẑ(t); ũ, z̃)Djwdx+

∫
Ω

e−ata0(t, x, eatDẑ(t), eatẑ(t); ũ, z̃)wdx+ a

∫
Ω

ẑwdx,
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ẑ ∈ Lp(0, T ;V2), w ∈ V2.

By (B1), (B2) operator Âũ,z̃ : Lp(0, T ;V2) → Lq(0, T ;V ?2 ) is bounded and demi-
continuous (see, e.g. [13]). Further, it is uniformly monotone if a > 0 is sufficiently
large.

Indeed, by (B3), for arbitrary ẑ1, ẑ2 ∈ Lp(0, T ;V2)∫ T

0

〈Âũ,z̃(ẑ1)− Âũ,z̃(ẑ2), ẑ1 − ẑ2〉dt = (2.10)∫
QT

e−2at
n∑
j=1

[aj(t, x, e
atDẑ1(t), eatẑ1(t); ũ, z̃)−

aj(t, x, e
atDẑ2(t), eatẑ2(t); ũ, z̃)]eatDj(ẑ1 − z2)dtdx+∫

QT

e−2at[a0(t, x, eatDẑ1(t), eatẑ1(t); ũ, z̃)−

a0(t, x, eatDẑ2(t), eatẑ2(t); ũ, z̃)]eat(ẑ1 − ẑ2)dtdx ≥
c2

1 + ‖ũ‖βL2(QT ) + ‖z̃‖γ1Lp(QT )

∫
QT

e−2at[eat|Dẑ1 −Dẑ2|p + eat|ẑ1 − ẑ2|p]dtdx−

c3

∫
QT

|ẑ1 − ẑ2|2dtdx+ a

∫
QT

|ẑ1 − ẑ2|2dtdx ≥

c′2

1 + ‖ũ‖βL2(QT ) + ‖z̃‖γ1Lp(QT )

∫
QT

[|Dẑ1 −Dẑ2|p + |ẑ1 − ẑ2|p]dtdx

with some constant c′2 > 0 (depending on T ) if a > 0 is sufficiently large.
Consequently, according to the theory of monotone operators (see, e.g. [13])

problem (2.8), (2.9) for ẑ has a unique weak solution, thus (2.6), (2.7) has a unique
solution.

By using Lemmas 2.2, 2.3 we may define operator S : Lp(QT ) → Lp(QT ) as
follows. Let z̃ ∈ Lp(QT ) be an arbitrary element. By Lemma 2.2 there exists a unique
solution ũ of (2.1), (2.2). According to Lemma 2.3 there exists a unique solution z of
(2.6), (2.7). Operator S is defined by S(z̃) = z.

Lemma 2.4. The operator S : Lp(QT )→ Lp(QT ) is compact.

Proof. Let (z̃k) be a bounded sequence in Lp(QT ) and consider the (unique) solution
ũk of (2.1), (2.2) with fixed z = z̃k. We show that (ũk) is bounded in L∞(0, T ;V1)
and (ũ′k) is bounded in L∞(0, T ;L2(Ω)). Indeed, applying the arguments in the proof
of Theorem 2.1 in [11], one gets the solutions ũk of (2.1), (2.2) as the (weak) limit of
Galerkin approximations

ũmk(t) =
m∑
l=1

gklm(t)wl where gklm ∈W 2,2(0, T )

and w1, w2, . . . is a linearly independent system in V1 such that the linear combina-
tions are dense in V1, further, the functions ũmk satisfy (for j = 1, . . . ,m)

〈ũ′′mk(t), wj〉+ 〈Q(ũmk(t)), wj〉+

∫
Ω

ϕ(x)h′(ũmk(t))wjdx+ (2.11)
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Ω

H(t, x; ũmk, z̃k)wjdx+

∫
Ω

ψ(x)ũ′mk(t)wjdx =

∫
Ω

F1(t, x; z̃k)wjdx,

ũmk(0) = um0, ũ′mk(0) = um1 (2.12)

where um0, um1 (m = 1, 2, . . . ) are linear combinations of w1, w2, . . . wm, satisfying
(um0)→ u0 in V1 and (um1)→ u1 in L2(Ω) as m→∞.

Multiplying (2.11) by (gklm)′(t), summing with respect to j and integrating over
(0, t), by Young’s inequality we find

1

2
‖ũ′mk(t)‖2L2(Ω) +

1

2
〈Q(ũmk(t)), ũmk(t)〉+

∫
Ω

ϕ(x)h(ũmk(t))dx+ (2.13)∫ t

0

[∫
Ω

H(τ, x; ũmk, z̃k)ũ′mk(τ)dx

]
dτ +

∫ t

0

[∫
Ω

ψ(x)|ũ′mk(τ)|2dx
]
dτ =∫ t

0

[∫
Ω

F1(τ, x; z̃k)ũ′mk(τ)dx

]
dτ +

1

2
‖ũ′mk(0)‖2H +

1

2
〈Q(ũmk(0)), ũmk(0)〉+∫

Ω

ϕ(x)h(ũmk(0))dx ≤ 1

2

∫ T

0

‖F1(τ, x; z̃k)‖2L2(Ω)dτ +
1

2

∫ T

0

‖ũ′mk(τ)‖2L2(Ω) + const

where the constant is not depending on m, k, t. (See [11].)
By using (A2), (A4), (A5) and the Cauchy-Schwarz inequality, we obtain from

(2.13)
1

2
‖ũ′mk(t)‖2L2(Ω) +

c0
2
‖ũmk(t))‖2V1

+ c1

∫
Ω

h(ũmk(t))dx ≤ (2.14)∫ T

0

‖F1(τ, x; z̃k)‖2L2(Ω)dτ+

const

{
1 +

∫ t

0

‖ũ′mk(τ)‖2L2(Ω)dτ +

∫ t

0

[∫
Ω

h(ũmk(τ))dx

]
dτ

}
.

Consequently,

‖ũ′mk(t)‖2L2(Ω) +

∫
Ω

h(ũmk(t))dx ≤

const

{
1 +

∫ t

0

[‖ũ′mk(τ)‖2L2(Ω) +

∫
Ω

h(ũmk(τ))dx]

}
where the constant is not depending on k,m, t. Thus by Gronwall’s lemma

‖ũ′mk(t)‖2L2(Ω) +

∫
Ω

h(ũmk(t))dx ≤ const (2.15)

and so by (A1) and (2.14)

‖ũmk(t)‖V1
≤ const (2.16)

where the constants are not depending on k,m, t. The inequalities (2.15), (2.16) im-
ply that the weak limits ũk, ũ′k of (ũmk) and (ũ′mk), respectively, are bounded in
L∞(0, T ;V1), L∞(0, T ;L2(Ω)), respectively.

Consequently, by the well known compact imbedding theorem (see [5]) there is
a subsequence of (ũk), again denoted by (ũk), for simplicity, which is convergent in
L2(QT ) to some ũ and (ũk)→ ũ a.e. in QT .
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Consider the sequence of solutions zk of (2.6) (2.7) with ũ = ũk, z̃ = z̃k. We show
that the sequence zk is bounded in Lp(0, T ;V2). Indeed, for the functions ẑk = e−atzk
we have

〈ẑ′k, w〉+ 〈Âũk,z̃k(ẑk), w〉 = 〈e−atF2(t, x; ũk), w〉, (2.17)

thus, integrating (2.17) over (0, T ) with w = ẑk one obtains

1

2
‖ẑk(T )‖2L2(Ω) −

1

2
‖ẑk(0)‖2L2(Ω) +

∫ T

0

〈Âũk,z̃k(ẑk), ẑk〉dt = (2.18)∫ T

0

〈e−atF2(t, x; ũk), w〉dt.

Applying the inequality (2.10) to ẑ1 = ẑk and ẑ2 = 0, we obtain

const

1 + ‖ũk‖βL2(QT ) + ‖z̃k‖γ1Lp(QT )

∫
QT

[|Dẑk|p + |ẑk|p]dt ≤ (2.19)

∫ T

0

〈Âũk,z̃k(ẑk)− Âũk,z̃k(0), ẑk − 0〉dt =∫ T

0

〈Âũk,z̃k(ẑk), ẑk〉dt−
∫ T

0

Âũk,z̃k(0), ẑk〉dt.

By (2.18)∣∣∣∣∣
∫ T

0

〈Âũk,z̃k(ẑk), ẑk〉dt

∣∣∣∣∣ ≤
∣∣∣∣∣
∫ T

0

〈e−atF2(t, x; ũk), w〉dt

∣∣∣∣∣+ const ≤ (2.20)

const‖F2(t, x; ũk)‖Lq(QT )‖ẑk‖Lp(QT )

and by (B2) ∣∣∣∣∣
∫ T

0

Âũk,z̃k(0), ẑk〉dt

∣∣∣∣∣ ≤ const‖ẑk‖Lp(QT ) (2.21)

Hence by (2.19), (2.20), (B4), (ẑk) is bounded in Lp(0, T ;V2) (as p > 1 and ‖ũk‖L2(QT ),
‖z̃k‖Lp(QT ) are bounded).

Further, the equality (2.17) implies that (ẑ′k) is bounded in Lq(0, T ;V ?2 ). So by
the well known compact imbedding theorem (see [5]) there is a subsequence of (ẑk)
which is convergent in Lp(QT ). Therefore, the corresponding subsequence of (zk) is
convergent, too in Lp(QT ).

Lemma 2.5. The operator S : Lp(QT )→ Lp(QT ) is continuous.

Proof. Assume that

(z̃k)→ z̃ in Lp(QT ). (2.22)

Now we show that for the solutions ũk of (2.1), (2.2) with z = z̃k

(ũk)→ ũ in L2(QT ) (2.23)

and a.e. in QT for a subsequence where ũ is the solution of (2.1), (2.2) with z = z̃.
In the proof of (2.23) we use the (uniqueness) Theorem 4.1 of [11]. Since (z̃k)

is bounded in Lp(0, T ;V2), (ũk) is bounded in L2(QT ) (see the proof of Lemma 2.4).
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Further, ũ and ũk are weak solutions of (1.1) (i.e. of (2.1) with z = z̃ and z = z̃k,
respectively and satisfy the initial conditions (2.2), thus

ũ′′(t) +Q(ũ(t)) + ϕ(x)h′(ũ(t)) +H(t, x; ũ, z̃)+ (2.24)

ψ(x)ũ′(t) = F1(t, x; z̃),

ũ′′k(t) +Q(ũk(t)) + ϕ(x)h′(ũk(t)) +H(t, x; ũk, z̃)+ (2.25)

ψ(x)ũ′k(t) = F1(t, x; z̃k) +H(t, x; ũk, z̃)−H(t, x; ũk, z̃k).

Theorem 4.1 of [11] implies that for the solutions ũ of (2.24) and ũk of (2.25) we have
for any s ∈ [0, T ] an estimation of the form

‖ũk(s)− ũ(s)‖2L2(Ω) ≤ const

∫
QT

∣∣∣∣∫ t

0

[F1(τ, x; z̃k)− F1(τ, x; z̃)]dτ

∣∣∣∣2 dtdx+

const

∫
QT

∣∣∣∣∫ t

0

[H(τ, x; ũk, z̃k)−H(τ, x; ũk, z̃)]dτ

∣∣∣∣2 dtdx
where the right hand side is converging to 0 as k →∞ by (A4), (A5).

So we have proved (2.23).
Now we show that (2.22), (2.23) imply:

(zk)→ z in Lp(QT ), i.e. (ẑk)→ ẑ in Lp(QT ) (2.26)

for the solutions of (2.6), (2.7) and (2.8), (2.9), respectively (in the case of zk, ẑk,
instead of ũ, z̃ we have ũk, z̃k). Since

〈(ẑk − ẑ)′, ẑk − ẑ〉+ 〈Âũk,z̃k(ẑk)− Âũ,z̃(ẑ), ẑk − ẑ〉 =

〈e−atF2(t, x; ũk)− e−atF2(t, x; ũ), ẑk − ẑ〉,
integrating over (0, T ) with respect to t, we find

1

2
‖ẑk(T )− ẑ(T )‖2L2(Ω) −

1

2
‖ẑk(0)− ẑ(0)‖2L2(Ω)+ (2.27)∫ T

0

〈Âũk,z̃k(ẑk)− Âũ,z̃(ẑ), ẑk − ẑ〉dt =∫ T

0

〈e−atF2(t, x; ũk)− e−atF2(t, x; ũ), ẑk − ẑ〉dt

where by (2.10) ∫ T

0

〈Âũk,z̃k(ẑk)− Âũ,z̃(ẑ), ẑk − ẑ〉dt = (2.28)∫ T

0

〈Âũk,z̃k(ẑk)− Âũk,z̃k(ẑ), ẑk − ẑ〉dt+

∫ T

0

〈Âũk,z̃k(ẑ)− Âũ,z̃(ẑ), ẑk − ẑ〉dt ≥

c′2

1 + ‖ũk‖βL2(QT ) + ‖z̃k‖γ1Lp(QT )

∫
QT

[|Dẑk −Dẑ|p + |ẑk − ẑ|p]dtdx+

∫ T

0

〈Âũk,z̃k(ẑ)− Âũ,z̃(ẑ), ẑk − ẑ〉dt.
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By (2.22), (B1), (B2), Vitali’s theorem and Hölder’s inequality

lim
k→∞

∫ T

0

〈Âũk,z̃k(ẑ)− Âũ,z̃(ẑ), ẑk − ẑ〉dt = 0 (2.29)

as ‖ẑk − ẑ‖Lp(QT ) is bounded. Similarly, the right hand side of (2.27) is coverging to
0 by (B4). Therefore, (2.27) – (2.29) imply (2.26).

Lemma 2.6. There is a closed ball

BR(0) = {z ∈ Lp(QT ) : ‖z‖Lp(QT ) ≤ R}

such that S(BR(0)) ⊂ BR(0).

Proof. According to (2.14) we have for the sequence (ũm) of Galerkin approximation
of the solution of (2.1), (2.2) (with z = z̃)

1

2
‖ũ′m(t)‖2L2(Ω) +

c0
2
‖ũm(t)‖2V1

+ c1

∫
Ω

h(ũm(t))dx ≤ (2.30)

1

2

∫ T

0

‖F1(τ, x; z̃)‖2L2(Ω)dτ + const

∫ t

0

‖ũ′m(τ)‖2L2(Ω)dτ+∫ t

0

[∫
Ω

h(ũm(τ))dx

]
dτ + const

where the constants are not depending on m, t, z̃. Hence, by Gronwall’s lemma one
obtains

‖ũ′m(t)‖2H +

∫
Ω

h(ũm(t))dx ≤ const

[
1 +

∫ T

0

‖F1(τ, x; z̃)‖2L2(Ω)dτ

]
+ (2.31)

const

∫ t

0

[
1 +

∫ T

0

‖F1(τ, x; z̃)‖2L2(Ω)dτ · e
t−s

]
ds =

const

[
1 +

∫ T

0

‖F1(τ, x; z̃)‖2L2(Ω)dτ

]
where the constants are independent of m, t, z̃. Thus by (2.30) and (A5) we find

‖ũm(t)‖2V1
≤ const

[
1 +

∫ T

0

‖F1(τ, x; z̃)‖2L2(Ω)dτ

]
≤ const

[
1 + ‖z̃‖β1

Lp(0,T ;V2)

]
which implies (for the solution ũ of (2.1), (2.2), the limit of (ũm))

‖ũ‖2L2(QT ) ≤ const
[
1 + ‖z̃‖β1

Lp(QT )

]
. (2.32)

On the other hand, similarly to (2.19) – (2.21), by (B2), (B4) we have for ẑ(t) =
e−atz(t) (where z is the solution of (2.3), (2.4))

const

1 + ‖ũ‖βL2(QT ) + ‖z̃‖γ1Lp(QT )

∫
QT

[|Dẑ|p + |ẑ|p]dt ≤

∫ T

0

〈Âũ,z̃(ẑ), ẑ〉dt−
∫ T

0

〈Âũ,z̃(0), ẑ〉dt ≤
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const + const‖F2(t, x; ũ)‖Lq(QT )‖ẑ‖Lp(QT ) + const‖k1(ũ, z̃)‖Lq(QT )‖ẑ‖Lp(QT ) ≤

const + const
(

1 + ‖ũ‖γL2(QT ) + ‖z̃‖p1Lp(QT )

)
‖ẑ‖Lp(QT ) ≤

const + const
(

1 + ‖z̃‖β1γ/2
Lp(QT ) + ‖z̃‖p1Lp(QT )

)
‖ẑ‖Lp(QT ) ≤

c̃1 + c̃2

(
1 + ‖z̃‖max{(β1γ)/2,p1}

Lp(QT )

)
‖ẑ‖Lp(QT ).

Thus for ‖ẑ‖Lp(QT ) ≥ c̃1/c̃2

‖ẑ‖p−1
Lp(QT ) ≤ const

[
1 + ‖ũ‖βL2(QT ) + ‖z̃‖γ1Lp(QT )

] [
1 + ‖z̃‖max{(β1γ)/2,p1}

Lp(QT )

]
≤ (2.33)

const

[(
1 + ‖z̃‖β1

Lp(QT )

)β/2
+ ‖z̃‖γ1Lp(QT )

]
·
[
1 + ‖z̃‖max{(β1γ)/2,p1}

Lp(QT )

]
≤

const[1 + ‖z̃‖δLp(QT )]

where

δ = max{(β1β)/2, γ1}+ max{(β1γ)/2, p1}. (2.34)

By (B4) δ < p− 1, thus for sufficiently large R

z̃ ∈ BR(0) =
{
z̃ ∈ Lp(QT ), ‖z̃‖Lp(QT ) ≤ R

}
implies

‖z‖Lp(QT ) ≤ R, i.e. z ∈ BR(0).

(The norm of ‖z‖Lp(QT ) can be estimated by ‖ẑ‖Lp(QT ), multiplied by a constant.)
So the proof of Lemma 2.6 is completed.

Finally, Lemmas 2.4 - 2.6 and Schauder’s fixed point theorem imply that S has
a fixed point and, consequently, there exists a solution of (2.1) – (2.4).

3. Examples

Let the operator Q be defined by

〈Qu, v〉 =

∫
Ω

 n∑
j,l=1

ajl(x)(Dlu)(Djv) + d(x)uv

 dx+

where ajl, d ∈ L∞(Ω), ajl = alj ,
∑n
j,l=1 ajl(x)ξjξl ≥ c0|ξ|2, d ≥ c0 with some positive

constant c0. Then, clearly, assumption (A1) is satisfied.
If h is a C2 function such that h(η) = |η|λ+1 if |η| > 1 then (A3)is satisfied.
The condition (A4) is satisfied e.g. if

H(t, x;u, z) = χ(t, x)g1(L1z)g2(L2u) where χ ∈ L∞(QT ),

L1 : Lp(0, T ;V2)→ L2(QT ), L2 : L2(QT )→ L2(QT )

are continuous linear operators (with the Volterra property); g1 is a globally Lipschitz
bounded function, g2 is a globally Lipschitz function. In the particular case when

L2 is an L2(QT )→ L∞(QT ) bounded linear operator (3.1)
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then g2 may be a locally Lipschitz function satisfying

|g2(η)| ≤ const|η|(λ+1)/2 for |η| > 1.

The operator L2 has the property (3.1) e.g. if

(L2u)(t, x) =

∫
Qt

K̃(t, x; τ, ξ)u(τ, ξ)dτdξ where∫
QT

|K̃(t, x; τ, ξ)|2dτdξ ≤ const for all (t, x) ∈ QT .

The operator F1 : QT × Lp(0, T ;V2)→ R may have the form

F1(t, x; z) = f1(t, x, L3z)

where f1(t, x, µ) is measurable in (t, x), continuous in µ and

|f1(t, x, µ)| ≤ const|µ|β1/2 + f̃1(t, x) where

0 ≤ β1 ≤ 2, f̃1 ∈ L2(QT ), L3 : Lp(0, T ;V2)→ L2(QT )

is a linear continuous operator. Then (A5) is fulfilled. In the particular case when

L3 is Lp(0, T ;V2)→ L∞(QT )

linear and continuous then β1 ≤ 2 is not assumed.
Now we formulate examples for aj satisfying (B1) – (B3):

aj(t, x, ξ;u, z) = α(t, x, L4u, L5z)ξj |ζ|p−2, j = 1, . . . , n where ζ = (ξ1, . . . ξn),

α(t, x, ν1, ν2) is measurable in (t, x), continuous in ν1, ν2 and satisfies

const

1 + |ν1|β + |ν2|γ1
≤ α(t, x, ν1, ν2) ≤ const(1 + |ν1|γ + |ν2|p1)

with some positive constants, L4, L5 : L2(QT ) → L∞(QT ) are continuous linear
operators,

a0(t, x, ξ;u, z) = α0(t, x, L6u, L7z)ξ0|ξ0|p−2 + α1(z),

where α0(t, x, ν1, ν2) is measurable in (t, x), continuous in ν1, ν2,

const

1 + |ν1|β + |ν2|γ1
≤ α0(t, x, ν1, ν2) ≤ const(1 + |ν1|γ + |ν2|p1)

with some positive constants, L6, L7 : L2(QT ) → L∞(QT ) are continuous linear
operators and α1 is a globally Lipschitz function. If the values of α, α0 are between
two positive constants then L4 − L7 may be L2(QT ) → L2(QT ) continuous linear
operators.

Finally, the function F2 : QT × L2(QT )→ R may have the form

F2(t, x;u) = f2(t, x, L8u)

where f2(t, x, µ) is measurable in (t, x), continuous in µ and

|f2(t, x, µ)| ≤ const|µ|γ + f̃2(t, x),

0 ≤ γ ≤ 1, f̃2 ∈ L2(QT ) and L8 : L2(QT )→ L2(QT )
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is a continuous linear operator. Then (B4) is satisfied. In the particular case when

L8 is an L2(QT )→ L∞(QT ) bounded linear operator

then γ ≤ 1 is not assumed.

4. Solutions in (0,∞)

Now we formulate an existence theorem with respect to solutions for t ∈ (0,∞).
Denote by Lploc(0,∞;V1) the set of functions u : (0,∞) → V1 such that for each
fixed finite T > 0, their restrictions to (0, T ) satisfy u|(0,T ) ∈ Lp(0, T ;V1) and let
Q∞ = (0,∞)×Ω, Lαloc(Q∞) the set of functions u : Q∞ → R such that u|QT

∈ Lα(QT )
for any finite T .

Now we formulate assumptions on H, F1, aj , F2.

(Ã4) The function H : Q∞×L2
loc(Q∞)×Lploc(Q∞)→ R is such that for all fixed

u ∈ L2
loc(Q∞), z ∈ Lploc(Q∞) the function (t, x) 7→ H(t, x;u, z) is measurable, H has

the Volterra property (see (A4)) and for each fixed finite T > 0, the restriction HT of
H to QT × L2(QT )× Lp(QT ) satisfies (A4).
Remark. Since H has the Volterra property, this restriction HT is well defined by the
formula

HT (t, x; ũ, z̃) = H(t, x;u, z), (t, x) ∈ QT ũ ∈ L2(QT ), z̃ ∈ Lp(QT )

where u ∈ L2
loc(Q∞), z ∈ Lploc(Q∞) may be any function satisfying u(t, x) = ũ(t, x),

z(t, x) = z̃(t, x) for (t, x) ∈ QT .

(Ã5) F1 : Q∞ × Lploc(Q∞) → R has the Volterra property and for each fixed
finite T > 0, the restriction of F1 to (0, T ) satisfies (A5).

(B̃) aj : Q∞ × Rn+1 × L2
loc(Q∞) × Lploc(Q∞) → R (j = 0, 1, . . . , n) have the

Volterra property and for each finite T > 0, their restrictions to (0, T ) satisfy (B1) –
(B3).

(B̃4) F2 : Q∞ × L2
loc(Q∞) → R has the Volterra property and for each fixed

finite T > 0, the restriction of F2 to (0, T ) satisfies (B4).

Theorem 4.1. Assume (A1) – (A3), (Ã4), (Ã5), (B̃), (B̃4) . Then for all u0 ∈ V1,
u1 ∈ L2(Ω) there exist

u ∈ L∞loc(0,∞;V1), z ∈ Lploc(0,∞;V2) such that

u′ ∈ L∞loc(0,∞;L2(Ω)), u′′ ∈ L2
loc(0,∞;V ?1 ), z′ ∈ Lqloc(0,∞;V ?2 ),

(2.1) – (2.4) hold for a.a. t ∈ (0,∞) and the initial condition (2.2) is fulfilled.
Assume that the following additional conditions are satisfied: there exist H∞,

F∞1 ∈ L2(Ω), u∞ ∈ V1, a bounded function β̃, belonging to L2(0,∞;L2(Ω)) such that

Q(u∞) = F∞1 −H∞, (4.1)

|H(t, x;u, z)−H∞| ≤ β̃(t, x), |F1(t, x; z)− F∞1 (x)| ≤ β̃(t, x) (4.2)

for all fixed u ∈ L2
loc(Q∞), z ∈ Lploc(Q∞)). Further, there exist functions

a∞j : Ω× Rn+1 × L2(Ω)→ R, j = 1, . . . , n F∞2 : Ω× L2(Ω)→ R
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such that for each fixed z0 ∈ V2, z ∈ Lploc(Q∞) and u ∈ L2
loc(Q∞), w0 ∈ V1 with the

property

lim
t→∞

‖u(t)− w0‖L2(Ω) = 0

for the functions

ϕj(t) = ‖aj(t, x,Dz0, z0;u, z)− a∞j (x,Dz0, z0;w0)‖Lq(Ω), j = 0, 1, . . . , n, (4.3)

ψ(t) = ‖F2(t, x;u)− F∞2 (x;w0)‖Lq(Ω) (4.4)

we have

lim
t→∞

ϕj(t) = 0, lim
t→∞

ψ(t) = 0. (4.5)

Finally, (B3) is satisfied such that the following inequalities hold for all t > 0 with
constants c2 > 0, β > 0, not depending on t:

n∑
j=0

[aj(t, x, ξ;u, z)− aj(t, x, ξ?;u, z)][ξj − ξ?j ] (4.6)

c2

1 + ‖u‖βL2(Qt\Qt−a)

|ξ − ξ?|p

with some fixed a > 0 (finite delay).
Then for the above solutions u, z we have

u ∈ L∞(0,∞;V1), (4.7)

‖u′(t)‖L2(Ω) ≤ conste−c1t (4.8)

where c1 is given in (A2) and there exists w0 ∈ V1 such that

u(T )→ w0 in L2(Ω) as T →∞, ‖u(T )− w0‖L2(Ω) ≤ conste−c1T (4.9)

and w0 satisfies

Q(w0) + ϕh′(w0) = F∞1 −H∞. (4.10)

Finally, there exists a unique solution z0 ∈ V2 of

n∑
j=1

∫
Ω

a∞j (x,Dz0, z0;w0)Djvdx+

∫
Ω

a∞0 (x,Dz0, z0;w0)vdx = (4.11)

∫
Ω

F∞2 (x;w0)vdx for all v ∈ V2

(where w0 is the solution of (4.10)) and

lim
t→∞

‖z(t)− z0‖L2(Ω) = 0, lim
T→∞

∫ T+b

T−b
‖z(t)− z0‖pV2

dt = 0 (4.12)

for arbitrary fixed b > 0. If

ϕj , ψ ∈ Lq(0,∞) then z ∈ Lp(0,∞;V2). (4.13)
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Proof. Let (Tk)k∈N be a monotone increasing sequence, converging to +∞. According
to Theorem 2.1, there exist solutions uk, zk of (2.1) – (2.4) for t ∈ (0, Tk). The Volterra
property of H, F1, aj , F2 implies that the restrictions of uk, zk to t ∈ (0, Tl) with
Tl < Tk satisfy (2.1) – (2.4) for t ∈ (0, Tl).

Now consider the restrictions uk|(0,T1), zk|(0,T1), k = 2, 3, . . . . Applying (2.33),
(2.34) and δ < p− 1 to T = T1 and z̃ = zk|(0,T1) we obtain that the sequence(

zk|(0,T1)

)
k∈N is bounded in Lp(QT1

) (4.14)

thus by Lemma 2.4 there is a subsequence (z1k)k∈N of (zk)k∈N such that the sequence
of restrictions (z1k|(0,T1))k∈N is convergent in Lp(QT1).

Now consider the restrictions z1k|(0,T2) By using the above arguments, we find
that there exists a subsequence (z2k)k∈N of (z21)k∈N such that (z2k|(0,T2))k∈N is con-
vergent in Lp(QT2

).
Thus for all l ∈ N we obtain a subsequence (zlk)k∈N of (zk)k∈N such that

(zlk|(0,Tl))k∈N is convergent in Lp(QTl
). Then the diagonal sequence (zkk)k∈N is a

subsequence of (zk)k∈N such that for all fixed l ∈ N, (zkk|(0,Tl))k∈N is convergent in
Lp(QTl

) to some z? ∈ Lploc(Q∞). Since zll is a fixed point of S = Sl : Lp(QTl
) →

Lp(QTl
) and Sl is continuous thus the limit z?|(0,Tl) in Lp(QTl

) of (zkk|(0,Tl))k∈N is a
fixed point of S = Sl.

Consequently, the solutions u?l of (2.1), (2.2) when z is the restriction of z? to
(0, Tl) and the restriction of z? to (0, Tl) satisfy (2.1) – (2.4) for t ∈ (0, Tl). Since
for m < l, u?l |(0,Tm) = u?m (by the Volterra property of H, F1, aj , F2), we obtain

u? ∈ L2
loc(Q∞) such that for all fixed l, u?|(0,Tl), z

?|(0,Tl) satisfy (2.1) – (2.4) for
t ∈ (0, Tl), so the first part of Theorem 4.1 is proved.

Now assume that the additional conditions (4.1) - (4.6) are satisfied. Then we
obtain (4.7) – (4.10) for u = u?, z = z? by using the arguments of the proof of
Theorem 3.2 in [11]. For convenience we formulate the main steps of the proof.

The sequence (zkk)|k∈N is bounded in Lp(0, Tl;V2) for each fixed l by (2.19) –
(2.21), (B4), (4.14)), consequently, from (2.13) (with z̃k = zkk) we obtain for the
solutions ukk of (2.1), (2.2) with z̃ = zkk (since ukk is the limit of the Galerkin
approximations ũmk)

1

2
‖u′kk(t)‖2H +

1

2
〈Q(ukk(t)), ukk(t)〉+

∫
Ω

ϕ(x)h(ukk(t))dx+ (4.15)∫ t

0

[∫
Ω

ψ(x)|u′kk(τ)|2dx
]
dτ +

∫ t

0

[∫
Ω

H(τ, x;ukk, zkk)u′kk(τ)dx

]
dτ =∫ t

0

[∫
Ω

F1(τ, x; zkk)u′kk(τ)dx

]
dτ +

1

2
‖u′kk(0)‖2H +

1

2
〈Q(ukk(0)), ukk(t)〉+∫

Ω

ϕ(x)h(ukk(0))dx

for all t > 0. Hence we find by (4.1), (4.2) and Young’s inequality for wkk = ukk−u∞
1

2
‖w′kk(t)‖2L2(Ω) +

c0
2
‖ukk(t))‖2V1

+ c1

∫
Ω

h(ukk(t))dx+ const

∫ t

0

[∫
Ω

|w′kk|2dx
]
dτ ≤

(4.16)
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const

{∫ t

0

‖F1(τ, x; zkk)− F∞1 ‖2Hdτ +

∫ t

0

‖H(τ, x;ukkzkk)−H∞‖2Hdτ
}

+

ε

∫ t

0

[∫
Ω

|w′kk|2dx
]
dτ +

1

2
‖u′kk(0)‖2H +

1

2
〈Q(ukk(0)), ukk(0)〉+ c2

∫
Ω

h(ukk(0))dx ≤

ε

∫ t

0

[∫
Ω

|w′kk|2dx
]
dτ + const + C(ε)‖β̃‖2L2(0,∞;H).

Choosing sufficiently small ε > 0, we obtain∫ t

0

[∫
Ω

|w′kk|2dx
]
dτ ≤ const (4.17)

and thus by (4.16)

‖u′kk(t)‖2L2(Ω) + c̃

∫ t

0

‖u′kk(τ)‖2L2(Ω)dτ ≤ c
?

with some positive constants c̃ and c? not depending on k and t ∈ (0,∞). Hence by
Gronwall’s lemma we obtain (4.8) and by (4.16) we find (4.7).

It is not difficult to show that

‖u(T2)− u(T1)‖H ≤
∫ T2

T1

‖u′(t)‖Hdt (4.18)

(see [11]), thus (4.8) implies (4.9) and by u ∈ L∞(0,∞;V1), the limit w0 of u(t) as
t→∞ must belong to V1.

In order to prove (4.10) we apply equation (1.1) to vχTk
(t) with arbitrary fixed

v ∈ V1 where limk→∞(Tk) = +∞ and

χTk
(t) = χ(t− Tk), χ ∈ C∞0 , suppχ ⊂ [0, 1],

∫ 1

0

χ(t)dt = 1.

Then by (4.8) one obtains (4.10) as k →∞.
Now we show that there exists a unique solution z0 ∈ V2 of (4.11). This statement

follows from the fact that the operator (applied to z0 ∈ V2) on the left hand side of
(4.11) is bounded, demicontinuous and uniformly monotone (see, e.g. [13]) by (B1),
(B2), (4.9), (4.5), (4.6).

Finally, we show (4.12). By (4.6) we have

1

2

d

dt
‖z(t)− z0‖2H +

c2
1 + ‖u‖L2(Qt\Qt−a)

‖z(t)− z0‖pV2
≤ (4.19)

∫
Ω

n∑
j=1

[aj(t, x,Dz, z;u, z)− aj(t, x,Dz0, z0;u, z)](Djz −Djz0)dx+∫
Ω

[a0(t, x,Dz, z;u, z)− a0(t, x,Dz0, z0;u, z)](z − z0)dx =∫
Ω

[F2(t, x;u)− F∞2 (x,w0)](z − z0)dx−∫
Ω

n∑
j=1

[aj(t, x,Dz0, z0;u, z)− a∞j (x,Dz0, z0;w0)](Djz −Djz0)dx−
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Ω

[a0(t, x,Dz0, z0;u, z)− a∞0 (t, x,Dz0, z0;w0)](z − z0)dx ≤

C(ε)‖F2(t, x;u)− F∞2 (x,w0)‖Lq(Ω) + ε‖z(t)− z0‖Lp(Ω)+

C(ε)

n∑
j=1

‖aj(t, x,Dz0, z0;u, z)− a∞j (x,Dz0, z0;w0)‖qLq(Ω) + ε‖Djz(t)−Djz0‖pLp(Ω)+

C(ε)‖a0(t, x,Dz0, z0;u, z)− a∞0 (x,Dz0, z0;w0)‖qLq(Ω) + ε‖z(t)− z0‖pLp(Ω).

Since ‖u‖βL2(Qt\Qt−a) is bounded for t ∈ (0,∞) by (4.9) and

‖z(t)− z0‖V2 ≥ const‖z(t)− z0‖L2(Ω)

with some positive constant, thus by (4.3) – (4.5), (4.19) with sufficiently small ε > 0
we obtain for

y(t) = ‖z(t)− z0‖2H
the inequality

y′(t) + c?[y(t)]p/2 ≤ g(t) (4.20)

where c? is a positive constant and lim∞ g = 0.
The inequality (4.20) implies the first part of (4.12):

lim
∞
y = 0 (4.21)

(see [10]). Integrating (4.19) with respect to t over (T − b, T + b) we obtain the second
part of (4.12) by (4.21). Integrating (4.19) with respect to t over (0, T ), by (4.21) we
obtain (4.13) as T →∞.
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Inner amenable hypergroups, invariant
projections and Hahn-Banach extension
theorem related to hypergroups

Nazanin Tahmasebi

Abstract. Let K be a hypergroup with a Haar measure. In the present paper
we initiate the study of inner amenable hypergroups extending amenable hy-
pergroups and inner amenable locally compact groups. We also provide charac-
terizations of amenable hypergroups by hypergroups having the Hahn-Banach
extension or monotone projection property. Finally we focus on weak*-invariant
complemented subspaces of L∞(K).

Mathematics Subject Classification (2010): 43A07.

Keywords: Hypergroup, inner amenability, quasi central, approximate identity,
asymptotically central, semidirect product hypergroup, strong ergodicity, Hahn-
Banach extension property, monotone extension property, partially ordered real
Banach space; amenability, real version of amenability, multiplicative left invari-
ant mean.

1. Introduction

The classified theory of topological hypergroups have been well established in
the 1970’s by the works of Dunkl [6], Jewett [12] and Spector [29] independently. The
history then observed a good interest in the study of this object in diverse areas of
mathematics such as compact quantum hypergroups [2] weighted hypergroups [8, 9],
amenable [13, 15, 31, 32] and commutative hypergroups [14, 24, 25]. A complete
history of hypergroups can be found in [26].

Inner amenable locally compact groups G are ones possessing a mean m on
L∞(G) such that m(RgLg−1f) = m(f), for all f ∈ L∞(G) and g ∈ G. This concept
was introduced by Effros in 1975 for discrete groups and was studied by several authors
[3, 4, 7, 17, 19, 21, 22]. It has been shown by Losert and Rindler that the existence of
an inner invariant mean on L∞(G) is equivalent to the existence of an asymptotically
central net in L1(G) which is in the case of groups equivalent to the existence of a
quasi central net in L1(G).
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In section 3 we define the notion of inner amenable hypergroups extending
amenable hypergroups and inner amenable locally compact groups. We say that a
hypergroup K is inner amenable and m is an inner invariant mean if m is a mean on
L∞(K) and m(Lgf) = m(Rgf) for all f ∈ L∞(K) and all g ∈ K. An inner invariant
mean m on a discrete hypergroup K is nontrivial if m(f) 6= f(e) for f ∈ l∞(K). In the
process of constructing a discrete hypergroup with no nontrivial inner invariant mean
we also define the concept of strong ergodicity of an action of a locally compact group
on a hypergroup. Then we prove a relation between nontrivial inner invariant means
on bounded functions of the semidirect product K oτ G of a discrete hypergroup K
and a discrete group G and strong ergodicity of the action τ . If K is commutative
and τ is not strongly ergodic, then l∞(Koτ |S S) possesses a nontrivial inner invariant
mean for each subgroup S of G, however, if τ is strongly ergodic and l∞(G) has no
nontrivial inner invariant mean, then l∞(K oτ G) has no nontrivial inner invariant
mean (Theorem 3.5).

Then we prove that inner amenability is an asymptotic property; there is a
positive norm one net {φα} in L1(K) such that ||Lgφα − ∆(g)Rgφα||1 → 0, for all
g ∈ K if and only if K is inner amenable (Lemma 3.2), while the existence of a positive

norm one net {φα} in L2(K) such that ||Lgφα − ∆
1
2 (g)Rgφα||2 → 0, for all g ∈ K

only implies the inner amenability of K (Lemma 3.6) and implies the existence of a

state m on B(L2(K)) such that m(Lg) = m(∆
1
2 (g)Rg), for all g ∈ K (Theorem 3.8).

Furthermore, in Corollary 3.14 we characterize inner amenability of a hypergroup K
in terms of compact operators; K is inner amenable if and only if there is a non-zero
positive compact operator T in B(L∞(K)) such that TLg = TRg, for all g ∈ K.

Classical Hahn-Banach extension theorem and monotone extension property are
well known and are widely used in several areas of mathematics. As one deals with
(positive normalized) anti-actions of a semigroup on a real (partially ordered) topo-
logical vector space (with a topological vector unit), it is also interesting to know the
condition under which the extension of an invariant (monotonic) linear functional is
also invariant (and monotonic). In 1974 Lau characterized left amenable semigroups
with these properties ([16], Theorems 1 and 2).

In section 4 we shall be concerned about hypergroup version of Hahn-Banach
extension and monotone extension properties and we prove in Theorem 4.1 that
RUC(K) has a right invariant mean if and only if whenever {Tg ∈ B(E) | g ∈ K} is a
separately continuous representation of K on a Banach space E and F is a closed TK-
invariant subspace of E. If p is a continuous seminorm on E such that p(Tgx) ≤ p(x)
for all x ∈ E and g ∈ K and Φ is a continuous TK-invariant linear functional on F
such that |Φ(x)| ≤ p(x), then there is a continuous TK-invariant linear functional Φ̃

on E extending Φ such that |Φ̃(x)| ≤ p(x), for all x ∈ E, if and only if for any positive
normalized separately continuous linear representation T of K on a partially ordered
real Banach space E with a topological order unit 1, if F is a closed T -invariant
subspace of E containing 1, and Φ is a T -invariant monotonic linear functional on
F , then there exists a T -invariant monotonic linear functional Φ̃ on E extending Φ.

The three statements above are also equivalent to an algebraic property: for any
positive normalized separately continuous linear representation T of K on a partially
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ordered real Banach space E with a topological order unit 1, E contains a maximal
proper T -invariant ideal. As an application of these important geometric properties
we provide a new proof of the known result; if K is a commutative hypergroup, then
UC(K) has an invariant mean (Corollary 4.4).

Let X be a weak*-closed left translation invariant subspace of L∞(K). The con-
centration of section 5 is mainly on weak*-weak*-continuous projection from L∞(K)
onto X commuting with left translations. It turns out that similar to the locally com-
pact groups ([18], Lemma 5.2), if X is an invariant complemented subspace of L∞(K),
then there is a weak*-weak*-continuous projection from L∞(K) onto X commuting
with left translations if and only if X ∩ C0(K) is weak∗-dense in X (Theorem 5.1).
This theorem has two major consequences; if K is compact, then X is invariantly
complemented in L∞(K) if and only if there is a weak*-weak*-continuous projection
from L∞(K) onto X commuting with left translations (Corollary 5.2) and if K is com-
mutative with connected dual, then there is no non-trivial weak*-weak*-continuous
projections on L∞(K) commuting with left translations (Corollary 5.6). Furthermore,
we also characterize compact hypergroups; K is compact if and only if K is amenable
and for every weak*-closed left translation invariant, invariant complemented sub-
space X of L∞(K), there exists a weak*-weak*-continuous projection from L∞(K)
onto X commuting with left translations (Corollary 5.4).

Finally, in section 6 we provide some remarks and related open problems.

2. Preliminaries and some notations

Throughout this manuscript, K denotes a hypergroup with a left Haar measure
λ. For basic notations we refer to [12, 1]. The involution on K is denoted by x 7→ x̌.
Let Lx and Ry denote the left and right translation operators for x, y ∈ K given
by Ryf(x) = Lxf(y) =

∫
f(u)dδx ∗ δy(u), for any Borel function f on K, if this

integral exists. Let φ ∗µ(g) =
∫
Rǩφ(g)dµ(k) and φ~µ(g) =

∫
∆(ǩ)Rǩφ(g)dµ(k), for

µ ∈M(K) and φ ∈ L1(K). Then (φ~µ)λ = φλ∗µ. We note that φ~µ is denoted by
φ ∗ µ in the group setting. A closed subhypergroup N of K is a Weil subhypergroup
if the mapping f 7→ TNf , where (TNf)(g ∗ N) =

∫
Rnf(g)dλN (n) and λN is a left

Haar measure on N is a well defined map from Cc(K) onto Cc(K/N) [11]. It is well
known that any subgroup and any compact subhypergroup is a Weil subhypergroup
([11], p 250). If N is a closed normal subhypergroup, then K/N is a hypergroup if the
convolution δg∗N ∗ δk∗N (f) =

∫
f(u ∗ N)dδg ∗ δk(u) (f ∈ Cc(K/N)) is independent

of the choice of the representatives g ∗N and k ∗N [33]. The locally compact space
K/N is a hypergroup if and only if N is a closed normal Weil subhypergroup of K
([33], Theorems 2.3 and 2.6). Let (K, ∗) and (J, .) be hypergroups. Then a continuous
mapping p : K → J is said to be a hypergroup homomorphism if δp(g).δp(k)ˇ =
p(δg ∗ δǩ), for all g, k ∈ K. The modular function ∆ is defined by λ ∗ δǧ = ∆(g)λ,
where λ is a left Haar measure on K and g ∈ K.

Let CB(K) denote the space of all bounded continuous complex-valued functions
on K and Cc(K) the space of all continuous bounded functions on K with compact
support. Let LUC(K) (RUC(K)) be the space of all bounded left (right) uniformly
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continuous functions on K, i.e. all f ∈ CB(K) such that the map g 7→ Lgf (g 7→
Rgf) from K into CB(K) is continuous when CB(K) has the norm topology. Then
LUC(K) (RUC(K)) is a norm closed, conjugate closed, translation invariant subspace
of CB(K) containing constant functions.

Let X be a closed translation invariant subspace of L∞(K) containing constants.
Then a left invariant mean on X is a positive norm one linear functional, which is
invariant under left translations and a hypergroup K is said to be amenable if there
is a left invariant mean on L∞(K). It is known that all compact and commuta-
tive hypergroups are amenable [28]. Furthermore, a closed left translation invariant
complemented subspace Y of L∞(K) is called invariant subspace, if there is a con-
tinuous projection P from L∞(K) onto Y commuting with left translations. If Y is
weak*-closed and P is weak*-weak*-continuous, then we say that Y is weak*-invariant
complemented subspace of L∞(K).

The representation T = {Tg | g ∈ K} is said to be a separately continuous
representation of K on a Banach space X if Tg : X → X, Te = I, ||Tg|| ≤ 1, for
each g ∈ K, the mapping (g, x) 7→ Tgx from K × X to X is separately continuous,
and Tg1Tg2x =

∫
Tuxdδg1 ∗ δg2(u), for x ∈ X and g1, g2 ∈ K. If T is a continuous

representation of K on X, then for g ∈ K, µ ∈ M(K), f ∈ X∗ and φ ∈ X define
f . g = Mgf by < f . g, φ >=< f, Tgφ > and f . µ = Mµf by < f . µ, φ >=

∫
<

f, Tgφ > dµ(g). Then f . µ ∈ X∗, f . δg = f . g and (f . µ) . ν = f . (µ ∗ ν), for
µ, ν ∈ M(K). Moreover, let < Ngm, f >=< m,Mgf >, < Nµm, f >=< m, f . µ >
and Nφ = Nφλ, for µ ∈ M(K), φ ∈ L1(K), m ∈ X∗∗, f ∈ X∗ and g ∈ K. Then
NµNν = Nµ∗ν and NφNµ = Nφ~µ, for each µ, ν ∈ M(K). In addition, ||Mg|| ≤ 1,
||Ng|| ≤ 1, ||Mµ|| ≤ ||µ|| and ||Nµ|| ≤ ||µ||, for all µ ∈M(K) and g ∈ K.

3. Inner amenable hypergroups

Let G be a locally compact group. A mean m on L∞(G) is called inner invariant
and G is called inner amenable if m(LgRg−1f) = m(f), for all g ∈ G and f ∈ L∞(G)
(see [7] for discrete case) which is equivalent to saying that L∗gm = R∗gm, for all g ∈ G.
However, this equivalence relation breaks down when one deals with hypergroups.

We say that a hypergroup K is inner amenable if there exists a mean m on
L∞(K) such that m(Rgf) = m(Lgf) for all g ∈ K and f ∈ L∞(K). Of course
amenable hypergroups are inner amenable since each invariant mean is also an inner
invariant mean. An inner invariant mean m on a non-trivial discrete hypergroup is
called non-trivial if m 6= δe, the point evaluation function on l∞(K). If this is the

case, then m1 = m−m({e})δe
1−m({e}) is an inner invariant mean on l∞(K) and m1({e}) = 0.

Any invariant mean on l∞(K) is a non-trivial inner invariant mean and hence any
non-trivial discrete amenable hypergroup possesses a non-trivial inner invariant mean.

Example 3.1. Let H be a nontrivial discrete amenable hypergroup and J be a discrete
non-amenable hypergroup. Then K = H×J is a non-amenable hypergroup and l∞(K)
has a non-trivial inner invariant mean.

Proof. Let H be a discrete nontrivial amenable hypergroup and J be a discrete non-
amenable hypergroup. Let K = H × J with the identity (e1, e2). If m is an invariant
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mean on l∞(H) and f ∈ l∞(K), then for each k ∈ J define a function fk ∈ l∞(H)
via fk(g) = f(g, k). Furthermore, define a mean m1 on l∞(K) by m1(f) = m(fe2).
Then m1(f) = m(fe2) 6= fe2(e1) = f(e1, e2). In addition, for (g1, g2) ∈ K and k ∈ H
we have

(L(g1,g2)f)e2(k) = L(g1,g2)f(k, e2)
=
∑

(u,v)∈K f(u, v)δ(g1,g2) ∗ δ(k,e2)(u, v)

=
∑
u∈H

∑
v∈J f(u, v)δg1

∗ δk(u)δg2
∗ δe2(v)

=
∑
u∈H fg2

(u)δg1
∗ δk(u)

= Lg1
fg2

(k).

Hence, (L(g1,g2)f)e2 = Lg1
fg2

. Similarly, (R(g1,g2)f)e2 = Rg1
fg2

. Thus,

m1(L(g1,g2)f) = m((L(g1,g2)f)e2)
= m(Lg1

fg2
)

= m(Rg1
fg2

)
= m((R(g1,g2)f)e2)
= m1(R(g1,g2)f).

�

The following result shows that similar to the locally compact groups ([22],
Proposition 1), inner amenability of a hypergroup is also an asymptotic property.

Lemma 3.2. The following are equivalent:

1. K is inner amenable.
2. There is a net {φα} in L1(K) with φα ≥ 0 and ||φα||1 = 1 such that

||Lgφα −∆(g)Rgφα||1 → 0,

for all g ∈ K.
3. There is a net {ψβ} in L1(K) with ψβ ≥ 0 such that

1

||ψβ ||
||Lgψβ −∆(g)Rgψβ ||1 → 0,

for all g ∈ K.

Proof. For 3 ⇒ 2 put φα = ψα
||ψα|| . We will prove the equivalence of 1 and 2. Let m

be a mean on L∞(K) such that m(Lgf) = m(Rgf), for f ∈ L∞(K) and g ∈ K.
Then there is a net of positive norm one elements {qγ} in L1(K) such that < Lgqγ −
∆(g)Rgqγ , f >→ 0, for each f ∈ L∞(K). Let T be a map from L1(K) into L1(K)K

defined by Tφ(g) = ∆(g)Rgφ − Lgφ, for f ∈ L∞(K), φ ∈ L1(K) and g ∈ K. Thus,

0 ∈ T (P1(K)), where P1(K) = {φ ∈ L1(K) | φ ≥ 0, ||φ|| = 1}. Therefore, there is a
net of positive norm one elements {φα} in L1(K) such that ||Lgφα−∆(g)Rgφα|| → 0.
Conversely, let m be any weak*-cluster point of {φα} in L∞(K)∗. Then m is a mean
on L∞(K) such that m(Rgf) = m(Lgf) for all g ∈ K and f ∈ L∞(K). �

Corollary 3.3. Let K be a discrete hypergroup. Then the following are equivalent:

1. There is an inner invariant mean m on l∞(K) such that m({e}) = 0.
2. There is a net {φα} in l1(K) with φα ≥ 0 and ||φα||1 = 1 such that φα(e) = 0

and that ||Lgφα −∆(g)Rgφα||1 → 0, for all g ∈ K.
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LetG be a locally compact group and let τ be a continuous group homomorphism
from G into the topological group Aut(K) of all hypergroup homomorphisms on K.
The semidirect product K oτ G of K and G is the locally compact space K × G
equipped with the product topology, the convolution δ(k1,g1) ∗δ(k2,g2) = δk1 ∗δτg1 (k2)⊗
δg1g2

and a natural embedding of the tensor product M(K)⊗M(G) into M(K ×G)
[34]. In this case, there is a natural action τ of G on Lp(K) (1 ≤ p ≤ ∞) defined by
τgf(k) = f(τgk) for f ∈ Lp(K), g ∈ G and k ∈ K. If G and K are discrete, then we
say that τ is strongly ergodic if the condition ||τgφα − φα||2 → 0, for some positive
norm one net {φα} in l2(K) and all g ∈ G implies that φα(e1) → 1, where e1 is
the identity of K. In addition, a mean m on l∞(K) is τ -invariant if m(τgf) = m(f),
for all g ∈ G and f ∈ l∞(K). The trivial τ -invariant mean on l∞(K) is given by
δe1(f) = f(e1), for f ∈ l∞(K) ( for the corresponding definitions in the countable
group setting see [4]).

The following three results are inspired by [4].

Lemma 3.4. Let G be a discrete group and let τ be a continuous group homomorphism
from G into the topological group Aut(K) of all hypergroup homomorphisms on a
discrete hypergroup K. Then there is a non-trivial τ -invariant mean m on l∞(K) if
and only if τ is not strongly ergodic.

Proof. Let m be a non-trivial τ -invariant mean on l∞(K). Without loss of generality
assume m(δe) = 0, where e is the identity of K. By a standard argument (see the
proof of Lemma 3.2 for example) find a positive norm one net {ψα} in l1(K) such

that ||τgψα−ψα|| → 0 for all g ∈ G and limα ψα(e) = 0. Then {φα = ψ
1
2
α} is a positive

norm one net in l2(K), limα φα(e) = 0 and for g ∈ G

||τgφα − φα||22 = ||τg(ψ
1
2
α )− ψ

1
2
α ||22 = ||(τgψα)

1
2 − ψ

1
2
α ||22 ≤ ||τgψα − ψα||1 → 0.

Therefore, τ is not strongly ergodic. Conversely, let {φα}α∈I be a positive norm
one net in l2(K) such that ||τgφα − φα||22 → 0 and that limα φα(e) 6= 1. Choose
α0 ∈ I such that φα(e) 6= 1 for all α ≥ α0 and put I1 = {α ∈ I | α ≥ α0}. Then

{ψα = φα−φα(e)δe
1−φα(e) }α∈I1 is a positive norm one net in l2(K) such that ||τgψα−ψα||22 → 0

and ψα(e) = 0 for all α ∈ I1. Let m be a weak*-cluster point of {ψ2
α}α∈I1 in l∞(K)∗

and by passing possibly to a subnet assume m(f) = lim < ψ2
α, f >. Then m is a

nontrivial τ -invariant mean on l∞(K). �

Theorem 3.5. Let KoτG be the semidirect product hypergroup of a discrete hypergroup
K and a discrete group G.

1. If K is commutative and τ is not strongly ergodic, then for each subgroup S of
G, l∞(K oτ |S S) possesses a non-trivial inner invariant mean.

2. If τ is strongly ergodic and l∞(G) has no non-trivial inner invariant mean, then
l∞(K oτ G) has no non-trivial inner invariant mean.

Proof. 1. Assume that there exists a subgroup S of G such that l∞(K oτ |S S)
has no non-trivial inner invariant mean. Let m be a mean on l∞(K) such that
m(τgf) = m(f), for all g ∈ S and f ∈ l∞(K). We will show that m is trivial. For
f ∈ l∞(K oτ |S S) and g ∈ S define a function fg ∈ l∞(K) by fg(k) = f(k, g),
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(k ∈ K). Let M(f) = m(fe2), for f ∈ l∞(K oτ |S S). Then M is a mean on
l∞(K oτ |S S). For f ∈ l∞(K oτ |S S), (k1, g1) ∈ K oτ |S S and k ∈ K

(L(k1,g1)f)e2(k) = L(k1,g1)f(k, e2)
=
∑

(u,v) f(u, v)δ(k1,g1) ∗ δ(k,e2)(u, v)

=
∑
u

∑
v f(u, v)δk1

∗ δτg1k(u)δg1e2(v)
=
∑
u f(u, g1)δk1 ∗ δτg1k(u)

=
∑
u fg1

(u)δk1
∗ δτg1k(u)

= Lk1
fg1

(τg1
k)

= τg1
(Lk1

fg1
)(k).

Moreover,

(R(k1,g1)f)e2(k) = R(k1,g1)f(k, e2)
=
∑

(u,v) f(u, v)δ(k,e2) ∗ δ(k1,g1)(u, v)

=
∑
u

∑
v f(u, v)δk ∗ δτe2k1

(u)δe2g1
(v)

=
∑
fg1(u)δk ∗ δk1(u)

= Lk1
fg1

(k),

since K is commutative. Hence,

M(L(k1,g1)f) = m((L(k1,g1)f)e2)
= m(τg1

(Lk1
fg1

))
= m(Lk1

fg1
)

= m((R(k1,g1)f)e2)
= M(R(k1,g1)f).

Therefore, M is inner invariant. Then M is trivial, i.e, M(f) = f(e1, e2). For f ∈
l∞(K) let f1(k, g) = f(k) if g = e2 and zero otherwise, ((k, g) ∈ Koτ |S S). Then
(f1)e2(k) = f1(k, e2) = f(k). Thus, f(e1) = f1(e1, e2) = M(f1) = m((f1)e2) =
m(f) which means that m is trivial. Consequently, τ is strongly ergodic by
Lemma 3.4.

2. Suppose m is a non-trivial inner invariant mean on l∞(K oτ G) and assume
without loss of generality that m(δ(e1,e2)) = 0, where (e1, e2) is the identity
of K oτ G. Then m(R(e1,g−1)L(e1,g)h) = m(h), for all h ∈ l∞(K oτ G) and
(e1, g) ∈ Koτ G. For f ∈ l∞(K) let f1(k, g) = f(k) if g = e2 and zero otherwise,
((k, g) ∈ K oτ G). Then f1 ∈ l∞(K oτ G). We will show that m(χKoτe2) = 0.
If not, then m1 with

m1(f) =
m(f1)

m(χKoτe2)
, (f ∈ l∞(K))

is a mean on l∞(K) and m1(δe1) = 0. For (k1, g1), (e1, g) ∈ K oτ G and f ∈
l∞(K)

R(e1,g)(τgf)1(k1, g1) =
∑

(u,v)(τgf)1(u, v)δ(k1,g1) ∗ δ(e1,g)(u, v)

=
∑
u

∑
v(τgf)1(u, v)δk1

∗ δe1(u)δg1g(v)
= (τgf)1(k1, g1g)
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Hence,

R(e1,g)(τgf)1(k1, g1) =

{
τgf(k1) = f(τg(k1)) if g1g = e2,
0 if g1g 6= e2.

(1)

In addition,

L(e1,g)f1(k1, g1) =
∑

(u,v) f1(u, v)δ(e1,g) ∗ δ(k1,g1)(u, v)

=
∑
u

∑
v f1(u, v)δe1 ∗ δτg(k1)(u)dδgg1

(v)
= f1(τg(k1), gg1)

Thus,

L(e1,g)(f)1(k1, g1) =

{
f(τg(k1)) if gg1 = e2,
0 if gg1 6= e2.

(2)

Therefore, R(e1,g)(τgf)1 = L(e1,g)f1. In other words

(τgf)1 = R(e1,g−1)L(e1,g)f1.

Now observe that

m1(τgf) =
m((τgf)1)
m(χKoτ e2 )

=
m(R(e1,g

−1)L(e1,g)f1)

m(χKoτ e2 )

= m(f1)
m(χKoτ e2 )

= m(f).

A contradiction with the strong ergodicity of τ (Lemma 3.4). Consequently,
m(χKoτe2) = 0. For a subset C of G let m2(χC) = m(χKoτC) and let m3 be
an extension of m2 to a mean on l∞(G). Then m3 is a mean on l∞(G) and
m3(δe2) = m(χKoτe2) = 0. Furthermore, m3 is also inner invariant since m3 is
an extension of m2 and

(K × gCg−1) = (e1, g)(K × C)(e1, g
−1)

for each g ∈ G and each subset C of G.
�

Lemma 3.6. The following conditions hold:

1. If there is a net {φα} in L2(K) with φα ≥ 0 and ||φα||2 = 1 such that ||Lgφα −
∆

1
2 (g)Rgφα||2 → 0, for all g ∈ K, then K is inner amenable.

2. If K is unimodular and there is a net {Vα} of Borel subsets of K with 0 <

λ(Vα) <∞ such that ||LgχVαλ(Vα) −
RgχVα
λ(Vα) ||1 → 0 for all g ∈ K, then there is a net

{ψα} in L2(K) with ψα ≥ 0 and ||ψα||2 = 1 such that ||Lgψα − Rgψα||2 → 0,
for all g ∈ K.

Proof. (1): For each α put ψα = φ2
α. Then for g, k ∈ K∫ ∫

(φα(u)−∆
1
2 (g)φα(v))2dδg ∗ δk(u)dδk ∗ δg(v)

= Lgφ
2
α(k) + ∆(g)Rgφ

2
α(k)− 2∆

1
2 (g)Lgφα(k)Rgφα(k)

= (Lgφα(k)−∆
1
2 (g)Rgφα(k))2 + Lgφ

2
α(k)

+∆(g)Rgφ
2
α(k)− (Lgφα)2(k)−∆(g)(Rgφα)2(k)
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Hence,

−[
∫ ∫ ∫

(φα(u)−∆
1
2 (g)φα(v))2dδg ∗ δk(u)dδk ∗ δg(v)dλ(k)]

= −[
∫

(Lgφα(k)−∆
1
2 (g)Rgφα(k))2dλ(k)

+
∫
Lgφ

2
α(k)dλ(k) +

∫
∆(g)Rgφ

2
α(k)dλ(k)

−
∫

(Lgφα)2(k)dλ(k)−
∫

∆(g)(Rgφα)2(k)dλ(k)]

≤ −||Lgφα(k)−∆
1
2 (g)Rgφα(k)||22 − ||φα||22

−||φα||22 + ||φα||22 + ||φα||22 → 0,

because ∫
∆(g)(Rgφα)2(k)dλ(k) =< ∆(g)Rgφα, Rgφα >

=< φα, RǧRgφα >
≤ ||φα||22

and each φα is positive. In addition,

∆
1
2 (g)Lgφα(k)Rgφα(k)−∆(g)Rgφ

2
α(k)

≤ ∆
1
2 (g)Lgφα(k)Rgφα(k)−∆(g)(Rgφα)2(k)

= [Lgφα(k)−∆
1
2 (g)Rgφα(k)] ∆

1
2 (g)Rgφα(k),

by Holder’s inequality. Thus,∫
|∆ 1

2 (g)Lgφα(k)Rgφα(k)−∆(g)Rgφ
2
α(k)|dλ(k)

≤ ∆
1
2 (g)||Rgφα||2 ||Lgφα(k)−∆

1
2 (g)Rgφα(k)||2 → 0.

Therefore,

||Lgψα −∆(g)Rgψα||1
=
∫
|Lgφ2

α(k)−∆(g)Rgφ
2
α(k)|dλ(k)

≤
∫
|
∫ ∫

(φα(u)−∆
1
2 (g)φα(v))2dδg ∗ δk(u)dδk ∗ δg(v)|dλ(k)

+
∫
|2∆

1
2 (g)Lgφα(k)Rgφα(k)− 2∆(g)Rgφ

2
α(k)|dλ(k)→ 0,

since, ∫ ∫
(φα(u)−∆

1
2 (g)φα(v))2dδg ∗ δk(u)dδk ∗ δg(v)

=
∫ ∫

[φ2
α(u) + ∆(g)φ2

α(v)− 2∆
1
2 (g)φα(u)φα(v)]dδg ∗ δk(u)dδk ∗ δg(v)

= Lgφ
2
α(k)−∆(g)Rgφ

2
α(k) + 2∆(g)Rgφ

2
α(k)− 2∆

1
2 (g)Rgφ

2
α(k)Lgφ

2
α(k).

By Lemma 3.2 then K is inner amenable. The rest follows by a similar argument as
in ([28], Theorem 4.3) if K is unimodular. �

Remark 3.7. Let K be a discrete hypergroup. If there is a positive norm one net {φα}
in l2(K) with φα(e)→ 0 such that ||Lgφα−∆

1
2 (g)Rgφα||2 → 0, for all g ∈ K, l∞(K)

has a non-trivial inner invariant mean.

Theorem 3.8. The following are equivalent:

1. There is a net {φα} in L2(K) with φα ≥ 0 and ||φα||2 = 1 such that

||Lgφα −∆
1
2 (g)Rgφα||2 → 0, for all g ∈ K.
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2. There is a net {φα} in L2(K) with φα ≥ 0 and ||φα||2 = 1 such that for each
g ∈ K

| ||Lgφα||22 −∆
1
2 (g)Lgφα ∗ Lǧφ̌α(e)| → 0

and

| ||∆ 1
2 (g)Rgφα||22 −∆

1
2 (g)Lgφα ∗ Lǧφ̌α(e)| → 0.

In this case K is inner amenable and there is a state m on B(L2(K)) such that

m(Lg) = m(∆
1
2 (g)Rg), for all g ∈ K, where Lg (Rg) is the left (right) translation

operator on L2(K).

Proof. If (1) holds, then for g ∈ K

| ||Lgφα||22 −∆
1
2 (g)Lgφα ∗ Lǧφ̌α(e) |

= | < Lgφα, Lgφα > − < Lgφα,∆
1
2 (g)Rgφα > |

= | < Lgφα, Lgφα −∆
1
2 (g)Rgφα > |

≤ ||Lgφα −∆
1
2 (g)Rgφα|| → 0.

Similarly, | ||∆ 1
2 (g)Rgφα||22 −∆

1
2 (g)Lgφα ∗ Lǧφ̌α(e) | → 0, for g ∈ K. Conversely, for

each g ∈ K we have

||Lgφα −∆
1
2 (g)Rgφα||22

=< Lgφα −∆
1
2 (g)Rgφα, Lgφα −∆

1
2 (g)Rgφα >

= ||Lgφα||22 + ||∆ 1
2 (g)Rgφα||22 − 2 < Lgφα,∆

1
2 (g)Rgφα >

= ||Lgφα||22 + ||∆ 1
2 (g)Rgφα||22 − 2∆

1
2 (g)Lgφα ∗ Lǧφ̌α(e)

≤ | ||Lgφα||22 −∆
1
2 (g)Lgφα ∗ Lǧφ̌α(e) |

+| ||∆ 1
2 (g)Rgφα||22 −∆

1
2 (g)Lgφα ∗ Lǧφ̌α(e) | → 0.

For each T ∈ B(L2(K)) let mαT =< Tφα, φα > and let m be a weak*-cluster
point of the net {mα} in B(L2(K))∗. Without loss of generality assume that mT =
limαmα(T ). Then m is a state on B(L2(K)) and for g ∈ K

|m(Lg)−m(∆
1
2 (g)Rg)|

= | limα < Lgφα, φα > − limα < ∆
1
2 (g)Rgφα, φα > |

= | limα < Lgφα −∆
1
2 (g)Rgφα, φα > |

≤ limα ||Lgφα −∆
1
2 (g)Rgφα|| = 0.

In addition, K is inner amenable by Lemma 3.6. �

It is known that the amenability of a locally compact group G can be charac-
terized by the existence of a state m on B(L2(K)) with m(Lg) = 1, for all g ∈ G
([3], Theorem 2). By a similar method as in the proof of Theorem 3.8 we have the
following:

Remark 3.9. If K satisfies Reiter’s condition P2, then there is a state m on B(L2(K))
such that m(Lg) = 1, for all g ∈ K.
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Let G be a locally compact group. Then G is an [IN ]-group if and only if G
possesses a compact neighborhood V of e with LgχV = RgχV , for all g ∈ G. However,
one may not expect this equivalence relation to hold in the hypergroup setting. A
hypergroup K is called [IN ]-hypergroup if there is a compact neighborhood V of
e such that g ∗ V = V ∗ g, for all g ∈ K. It is easy to see that each of compact or
commutative hypergroups are [IN ]-hypergroups and possess a compact neighborhood
V of e with LgχV = RgχV , for all g ∈ K. For a discrete hypergroup K the situation
is quite different: although K is an [IN ]-hypergroup, we have that Lgδe = Rgδe, for
all g ∈ K if and only if δg ∗ δǧ(e) = δǧ ∗ δg(e), for all g ∈ K.

Corollary 3.10. Let K be a hypergroup possessing a compact neighborhood V of e
with LgχV = RgχV , for all g ∈ K. Let QV be the operator on L2(K) given by
QV f =< f, χV > .χV for f ∈ L2(K). Then the following are equivalent:

1. There is a net {φα} in L2(K) with φα ≥ 0, < φα, χV >= 0 and ||φα||2 = 1 such
that

||Lgφα −∆
1
2 (g)Rgφα||2 → 0,

for all g ∈ K.
2. There is a net {φα} in L2(K) with φα ≥ 0, < φα, χV >= 0 and ||φα||2 = 1 such

that for g ∈ K

| ||Lgφα||22 −∆
1
2 (g)Lgφα ∗ Lǧφ̌α(e)| → 0,

and

||∆ 1
2 (g)Rgφα||22 −∆

1
2 (g)Lgφα ∗ Lǧφ̌α(e)| → 0.

In this case

a. There is an inner invariant mean m on L∞(K) with

m(χV ) = 0.

b. There is a state m on B(L2(K)) such that m(QV ) = 0 and

m(Lg) = m(∆
1
2 (g)Rg),

for all g ∈ K.
c. The operators id − QV and id + QV are not in the C∗-algebra generated by
{Lg −∆

1
2 (g)Rg | g ∈ K}.

Proof. We will show b ⇒ c, for all other parts we refer to the proof of Theorem 3.8.
Let

T =

n∑
i=1

λi(Lgi −∆
1
2 (gi)Rgi).

Then m(T ) = 0 and hence

||T − (id−QV )|| ≥ |m(T )−m(id−QV )| = 1.

Similarly, ||T − (id+QV )|| ≥ 1. Thus, id−QV and id+QV are not in the C∗-algebra

generated by {Lg −∆
1
2 (g)Rg | g ∈ K}. �
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Remark 3.11. Let K be a unimodular hypergroup possessing a compact neighborhood
V of e with LgχV = RgχV , for all g ∈ K and let 1 ≤ p <∞. Then there is a compact
operator T in B(Lp(K)) such that LgT = RgT , LǩTLg = RǩTRg and TLg = TRg,
for all g, k ∈ K.

Proof. Let Tf :=< χV , f > χV . Then for f ∈ Lp(K) and g, k ∈ K,

LǩTLgf =< χV , Lgf > LǩχV
=< LǧχV , f > LǩχV
=< RǧχV , f > RǩχV
=< χV , Rgf > RǩχV
= RǩTRgf.

Hence, LǩTLg = RǩTRg, for all g, k ∈ K. Similarly we can prove other parts. �

Example 3.12. 1. Let K = H ∨J be the hypergroup join of a compact group H and
a discrete commutative hypergroup J . Then there is a compact neighborhood V
of e with LgχV = RgχV , for all g ∈ K.

2. Let K = H ∨ J be the hypergroup join of a finite commutative hypergroup H
and a discrete group J . Then δg ∗ δǧ(e) = δǧ ∗ δg(e), for all g ∈ K and hence
Lgδe = Rgδe, for all g ∈ K. since

δǰ ∗ δj(e) =
∑
g∈H

1

δǧ ∗ δg(e)
δg = δj ∗ δǰ(e),

for j ∈ J .

Lau and Paterson in ([19], Theorem 2) proved that a locally compact group G is

inner amenable if and only if there exists a non-zero compact operator in A
′

∞, where

A
′

∞ = {T ∈ B(L∞(G)) | Lg−1RgT = TLg−1Rg, ∀g ∈ G}.
We note that

A
′

∞ = {T ∈ B(L∞(G)) | RgTRg−1 = LgTLg−1 , ∀g ∈ G}
which is not the case as we step beyond the groundwork of locally compact groups.
The following is an extension of ([19], Theorem 2):

Remark 3.13. The following conditions hold:

1. If K is inner amenable, then there is a compact operator T in B(L∞(K)) such
that T (h) = 1, for some h ∈ L∞(K),

LňTLg = Rm̌TRg, TLg = TRg,

for all g, n,m ∈ K and T (f) ≥ 0, for f ≥ 0.
2. If there is a non-zero operator T in B(L∞(K)) such that

TLg = TRg,

for all g ∈ K and T (f) ≥ 0, for f ≥ 0, then K is inner amenable and T (f) ≥ 0,
for f ≥ 0.

Proof. 1. If m is an inner invariant mean on L∞(K), then the operator T in
B(L∞(K)) defined by T (f) = m(f)1, for f ∈ L∞(K) is the desired operator.
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2. Let m be a mean on L∞(K). Then m ◦ T is an inner invariant positive linear
functional on L∞(K). Let f0 ∈ L∞(K) such that T (f0) > 0. Then f0 can be
decomposed into positive elements and if f ≥ 0, then T (f) ≤ ||f ||T (1). Hence,
m ◦ T (1) 6= 0 and m◦T

m◦T (1) is an inner invariant mean on L∞(K).

�

Corollary 3.14. K is inner amenable if and only if there is a non-zero compact operator
T in B(L∞(K)) such that TLg = TRg, for all g ∈ K and T (f) ≥ 0, for f ≥ 0.

Corollary 3.15. Let G be a locally compact group. Then G is inner amenable if and
only if there is a non-zero operator T in A

′

∞ such that TLg = TRg, for all g ∈ G and
T (f) ≥ 0, for f ≥ 0.

We say that K satisfies central Reiter’s condition P1, if there is a net {φα} in
L1(K) with φα ≥ 0 and ||φα||1 = 1 such that

||Lgφα −∆(g)Rgφα||1 → 0

uniformly on compact subsets of K. By Lemma 3.2 if K satisfies central Reiter’s
condition P1, then K is inner amenable. Sinclair ([27], page 47) in particular called a
net {φα} in L1(G) quasi central if ||µ ∗ φα − φα ∗ µ|| → 0, for all µ ∈M(G), where G
is a locally compact group. We say that the net {φα} in L1(K) is quasi central if

||µ ∗ φα − φα ~ µ|| → 0,

for all µ ∈M(K).
One note the distinction between the condition ||Lgφα −∆(g)Rgφα||1 → 0 uni-

formly on compacta and the (equivalent for groups, but not for hypergroups) condition
||φα−∆(g)LǧRgφα||1 → 0 uniformly on compacta. For the group case please see ([30],
Theorem 4.2).

Remark 3.16. If the net {φα} in L1(K) satisfies central Reiter’s condition P1, then

1. For given {ψi}ni=1 ⊆ L1(K) and ε > 0, there is an element φ ∈ L1(K) such that
||ψi ∗ φ− φ ∗ ψi|| < ε, for i = 1, 2, ..., n.

2. The net {φα} is a quasi central net in L1(K).

Proof. (1): Let ε > 0 be given and let Ci be compact subsets of K such that∫
K\Ci |ψi|(g)dλ(g) < ε. Let C =

⋃n
i=1 Ci and let α ∈ I be such that ||Lǧφα(k) −

∆(ǧ)Rǧφα(k)|| < ε, for all g ∈ C. Then

||ψi ∗ φα − φα ∗ ψi||1
=
∫
|
∫
ψi(g)Lǧφα(k)dλ(g)−

∫
ψi(g)∆(ǧ)Rǧφα(k)dλ(g)|dλ(k)

≤
∫
|ψi(g)|

∫
|Lǧφα(k)−∆(ǧ)Rǧφα(k)|dλ(k) dλ(g)

=
∫
K\C |ψi(g)|

∫
|Lǧφα(k)−∆(ǧ)Rǧφα(k)|dλ(k) dλ(g)

+
∫
C
|ψi(g)|

∫
|Lǧφα(k)−∆(ǧ)Rǧφα(k)|dλ(k) dλ(g)

< ε2 + ε Maxi=1,...,n||ψi||1

(2): Without loss of generality assume that µ ∈ M(K) has a compact support
C. Let ε > 0 be given and let α ∈ I be such that ||Lǧφα − ∆(ǧ)Rǧφα|| < ε, for all
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g ∈ C. Then
||µ ∗ φα − φα ~ µ||
=
∫
|
∫

(Lǧφα(k)−∆(ǧ)Rǧφα)dµ(g)|dλ(k)
≤
∫ ∫

C
|Lǧφα(k)−∆(ǧ)Rǧφα|dµ(g)dλ(k)

+
∫ ∫

K\C |Lǧφα(k)−∆(ǧ)Rǧφα|dµ(g)dλ(k)

≤ ε||µ||.
�

Losert and Rindler called a net {φα} in L1(G), G is a locally compact group,
asymptotically central if 1

||φα|| (∆(g)RgLg−1φα − φα)→ 0 weakly for all g ∈ G [21].

We say that the net {φα} in L1(K) is asymptotically central if

1

||φα||
(∆(g)RgLǧφα − φα)→ 0

weakly for all g ∈ K. In addition, we say that the net {φα} in L1(K) is hypergroup
asymptotically central if

1

||φα||
(∆(g)Rgφα − Lgφα)→ 0

weakly for all g ∈ K. The reason for our definition is that

Z(L1(K)) = {φ ∈ L1(K) | ∆(g)Rgφ = Lgφ, ∀g ∈ K},
where Z(L1(K)) is the algebraic center of the hypergroup algebra L1(K). Then it is
easy to see that ifK is discrete and unimodular or commutative, then any approximate
identity in L1(K) is hypergroup asymptotically central and hence L1(K) is Arens
semi-regular (see [10], page 45 for the definition).

Remark 3.17. If L1(K) has an asymptotically central bounded approximate identity,
then K is an inner amenable locally compact group.

Proof. Let {φα} be an asymptotically central bounded approximate identity for
L1(K) and m be a weak*-cluster point of {φα} in L∞(K)∗. Without loss of gen-
erality assume that φα’s are real-valued and limα < φα, f >=< m, f > for each
f ∈ L∞(K). Then m(LgRǧf) = m(f), for each f ∈ L∞(K) and g ∈ K. In addition,

m(φ ∗ f) = lim < φα, φ ∗ f >= lim < ∆̌φ̌ ∗ φα, f >=< ∆̌φ̌, f >= φ ∗ f(e),

for φ ∈ L1(K) and f ∈ L∞(K). Thus, m(f) = f(e), for each f ∈ C0(K) ([28], Lemma
2.2). Therefore,

δg ∗ δǧ(f) = Rǧf(g) = LgRǧf(e) = m(LgRǧf) = m(f) = δe(f),

for f ∈ C0(K). i.e. δg ∗ δǧ = δe, for all g ∈ K and hence G(K) = K. It follows then
by the proof of ([21], Theorem 2) that the locally compact group K is also inner
amenable. �

In 1991, Lau and Paterson characterized inner amenable locally compact groups
G in terms of a fixed point property of an action of G on a Banach space ([17],
Theorem 5.1). This characterization can be extended naturally to hypergroups and
we have:
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Remark 3.18. The following are equivalent:

1. K is inner amenable.
2. Whenever {Tg ∈ B(E) | g ∈ K} is a separately continuous representation of K

on a Banach space E as contractions, there is some

T ∈ {Nφ | φ ∈ L1(K), ||φ|| = 1, φ ≥ 0}
w∗.o.t

such that
NgT = TNg,

for all g ∈ K.

Remark 3.19. Let N be a closed normal Weil subhypergroup of K. If K is inner
amenable, then K/N is also inner amenable.

Proof. Define a linear isometry φ from L∞(K/N) to the subspace

{f ∈ L∞(K) | Rgf = Rkf, g ∈ k ∗N, k ∈ K}
of L∞(K) by φ(f) = f ◦ π, where π is the quotient map from K onto K/N . Then∫

|Lg(φf)(k)− φ(Lg∗Nf)(k)|dλ(k)
=
∫
|
∫
f(u ∗N)dδg ∗ δk(u)− (Lg∗Nf) ◦ π(k)|dλ(k)

=
∫
|
∫
f(u ∗N)dδg∗N ∗ δk∗N (u ∗N)− Lg∗Nf(k ∗N)|dλ(k)

= 0,

since N is a Weil subhypergroup. Thus, φ(Lg∗Nf) = Lg(φf) for f ∈ L∞(K/N) and
g ∈ K. Similarly, φ(Rg∗Nf) = Rg(φf) for f ∈ L∞(K/N) and g ∈ K. Let m be an
inner invariant mean on L∞(K) and define m1(f) = m(φf), f ∈ L∞(K/N). Then
m1 is a mean on L∞(K/N). In addition, for f ∈ L∞(K/N) and g ∈ K

m1(Lg∗Nf) = m(φ(Lg∗Nf))
= m(Lgφf)
= m(Rgφf)
= m(φ(Rg∗Nf))
= m1(Rg∗Nf).

�

4. Hahn-Banach extension and monotone extension properties

It is the purpose of this section to provide a hypergroup version of Hahn-Banach
extension property and monotone extension property by which amenable hypergroups
can be characterized.

Let E be a partially ordered Banach space over R. An element 1 ∈ E is called
a topological order unit if for each f ∈ E there exists λ > 0 such that −λ1 ≤ f ≤ λ1
and the set {f ∈ E | 1 ≤ f ≤ 1} is a neighbourhood of E and a proper subspace I
of E is said to be a proper ideal if [0, f ] ⊆ I, for each f ∈ E. Moreover, a separately
continuous linear representation T = {Tg | g ∈ K} of K on E is positive if Tgf ≥ 0
for all g ∈ K and f ≥ 0. T is normalized if Tg1 = 1 for all g ∈ K.

Theorem 4.1. The following are equivalent:
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1. RUC(K) has a right invariant mean.
2. Let {Tg ∈ B(E) | g ∈ K} be a separately continuous representation of K on

a Banach space E and let F be a closed TK-invariant subspace of E. Let p
be a continuous seminorm on E such that p(Tgx) ≤ p(x) for all x ∈ E and
g ∈ K and Φ be a continuous linear functional on F such that |Φ(x)| ≤ p(x)
and Φ(Tgx) = Φ(x) for g ∈ K and x ∈ F . Then there is a continuous linear

functional Φ̃ on E such that
(a) Φ̃|F ≡ Φ.

(b) |Φ̃(x)| ≤ p(x) for each x ∈ E.

(c) Φ̃(Tgx) = Φ̃(x) for g ∈ K and x ∈ E.
3. For any positive normalized separately continuous linear representation T of K

on a partially ordered real Banach space E with a topological order unit 1, if
F is a closed T -invariant subspace of E containing 1, and Φ is a T -invariant
monotonic linear functional on F , then there exists a T -invariant monotonic
linear functional Φ̃ on E extending Φ.

4. For any positive normalized separately continuous linear representation T of K
on a partially ordered real Banach space E with a topological order unit 1, E
contains a maximal proper T -invariant ideal.

Proof. 1 ⇒ 2: By Hahn-Banach extension theorem there is a continuous linear func-
tional Φ1 on E such that |Φ1(x)| ≤ p(x) for each x ∈ E and Φ1|F ≡ Φ. For each
f ∈ E define a continuous bounded function hΦ1,f on K via hΦ1,f (g) = Φ1(Tgf). Let
{gα} be a net in K converging to e. Then

||RgαhΦ1,f − hΦ1,f || = supg∈K |RgαhΦ1,f (g)− hΦ1,f (g)|
= supg∈K |

∫
Φ1(Tuf)dδg ∗ δgα(u)− Φ1(Tgf)|

= supg∈K |Φ1(TgTgαf) + Φ1(−Tgf)|
≤ supg∈K p(TgTgαf − Tgf)
≤ p(Tgαf − f)→ 0,

since Φ1 ∈ E∗. Hence, hΦ1,f ∈ RUC(K) ([28], Remark 2.3). Let m be a right invari-

ant mean on RUC(K) and let Φ̃(f) = m(hΦ1,f ), for f ∈ E. Then Φ̃|F ≡ Φ since

hΦ1,f (g) = Φ1(Tgf) = Φ(f), for f ∈ F . Furthermore, |Φ̃(f)| ≤ supg∈K |Φ1(Tgf)| ≤
p(f), for f ∈ E and

hΦ1,Tgf (k) = Φ1(TkTgf)
=
∫

Φ1(Tuf)dδk ∗ δg(u)
=
∫
hΦ1,f (u)dδk ∗ δg(u)

= RghΦ1,f (k).

Thus,

Φ̃(Tgf) = m(hΦ1,Tgf ) = m(RghΦ1,f ) = m(hΦ1,f ) = Φ̃(f).

2 ⇒ 1: Let E = RUC(K), F = C.1 and consider the continuous representation
{Rg | g ∈ K} of K on RUC(K). Define a seminorm p on E by p(f) = ||f ||. Then
p(Rgf) ≤ p(f), for f ∈ E and g ∈ K. In addition, δa is a left invariant mean on F
for a given a ∈ K with |δa(f)| ≤ p(f). Therefore, there is some m ∈ RUC(K)∗ such
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that m|F ≡ δa, m(f) ≤ ||f || and m(Rgf) = m(f), for f ∈ E and g ∈ K. Then m is a
right invariant mean on RUC(K) because m(1) = δa(1) = 1 = ||m||.

For all other parts we refer to ([16], Theorem 2) and a similar argument as
above. �

Let CBR(K) denote all bounded continuous real-valued functions on K and
UCR(K) (RUCR(K)) denote all functions in CBR(K) which are (right) uniformly
continuous. It is easy to see that UCR(K) and RUCR(K) are norm-closed translation
invariant subspace of CBR(K) containing constants. However, in contrast to the group
case, RUCR(K) need not be a Banach lattice in general. The following result is a
consequence of Theorem 4.1 and the proof of ([16], Theorem 1).

Remark 4.2. Let K be a hypergroup such that RUCR(K) is a Banach lattice. Then
the following are equivalent:

1. RUC(K) has a right invariant mean.
2. For any linear action T of K on a Banach space E, if U is a T -invariant open

convex subset of E containing a T -invariant element, and M is a T -invariant
subspace of E which does not meet U , then there exists a closed T -invariant
hyperplane H of E such that H contains M and H does not meet U .

3. For any contractive action T = {Tg ∈ B(E) | g ∈ K} of K on a Hausdorff
Banach space E, any two points in {f ∈ E | Tgf = f, ∀g ∈ K} can be separated
by a continuous T -invariant linear functional on E.

Example 4.3. 1. Let K be a hypergroup such that the maximal subgroup G(K) is
open. Then RUCR(K) is a Banach lattice.

2. Let K = H ∨J be the hypergroup join of a compact hypergroup H and a discrete
hypergroup J . Then RUCR(K) = CBR(K) is a Banach lattice.

Proof. To see 1, let f, h ∈ RUCR(K) and {gα} be a net in K converging to e. Then
gα ∈ G(K), for some α0 and all α ≥ α0 since G(K) is open. Thus, Rgα(f ∨ h) =
Rgαf ∨Rgαh for α ≥ α0. Therefore, the mapping

g 7→ (Rgf,Rgh) 7→ Rgf ∨Rgh
from K to CBR(K) is continuous at e and hence f ∨ h ∈ RUCR(K). �

Next we use Theorem 4.1 to prove that UC(K) has an invariant mean, for any
commutative hypergroup K.

Corollary 4.4. Let K be a commutative hypergroup. Then UC(K) has an invariant
mean.

Proof. Let T = {Tg ∈ B(E) | g ∈ K} be a separately continuous representation of
K on a real Banach space E and let F be a closed T -invariant subspace of E. Let p
be a continuous sublinear map on E such that p(Tgx) ≤ p(x) for all x ∈ E and g ∈ K
and φ be a continuous T -invariant linear functional on F such that φ(x) ≤ p(x) for
x ∈ F . Define a representation {Tµ ∈ B(E) | µ ∈M c

1 (K)} of M c
1 (K), the probability

measures with compact support on K, on E via

Tµx =

∫
Tgxdµ(g).
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Then Tµ∗ν = TµTν , for µ, ν ∈M c
1 (K). In addition,

p(Tµx) = p(

∫
Tgxdµ(g)) ≤

∫
p(Tgx)dµ(g) ≤ p(x).

Define a real valued function q on E via

q(x) = inf{ 1

m
p(Tµ1

x+ ...+ Tµmx)},

where the inf is taken over all finite collection of probability measures with compact
support {µ1, ..., µm} on K. Then q(x) ≤ p(x) for x ∈ E since for each m ∈ N,

1
mp(Tµ1x+ ...+ Tµmx) ≤ 1

m

[
p(Tµ1x) + ...+ p(Tµmx)

]
≤ p(x).

Moreover, q is sublinear. In fact for m ∈ N, α ∈ R+ and x ∈ E,

1
mp(Tµ1(αx) + ...+ Tµm(αx)) = 1

mαp(Tµ1x+ ...+ Tµmx).

Thus, q(αx) = αq(x) for α ∈ R+ and x ∈ E. To see that q(x + y) ≤ q(x) + q(y), let
x, y ∈ E and ε > 0 be given. Choose probability measures µ1, ..., µm, ν1, ..., νn on K
with compact support such that

1

m
p(Tµ1x+ ...+ Tµmx) ≤ q(x) + ε,

and
1

n
p(Tν1

x+ ...+ Tνnx) ≤ q(y) + ε.

Consider the set K = {νj ∗ µi | j = 1, ..., n, i = 1, ...,m}. Then

1
nmp

[∑n
j=1

∑m
i=1 Tνj∗µix

]
= 1

nmp
[∑n

j=1 Tνj (
∑m
i=1 Tµix)

]
≤ 1

nm

∑n
j=1 p

[
Tνj (

∑m
i=1 Tµix)

]
≤ 1

nm

∑n
j=1 p

[∑m
i=1 Tµix

]
= 1

mp
[∑m

i=1 Tµix
]

≤ q(x) + ε,

and similarly, 1
nmp

[∑n
j=1

∑m
i=1 Tνj∗µiy

]
≤ q(y) + ε. Hence,

1
nmp

[∑n
j=1

∑m
i=1 Tνj∗µi(x+ y)

]
= 1

nmp
[∑n

j=1

∑m
i=1 Tνj∗µix+

∑n
j=1

∑m
i=1 Tνj∗µiy

]
≤ 1

nmp
[∑n

j=1

∑m
i=1 Tνj∗µix

]
+ 1

nmp
[∑n

j=1

∑m
i=1 Tνj∗µiy

]
≤ q(x) + q(y) + 2ε.

Therefore,

q(x+ y) ≤ q(x) + q(y).

For µ ∈M c
1 (K), x ∈ E and m ∈ N,

1
mp(Tµ1Tµx+ ...+ TµmTµx)
= 1

mp(TµTµ1
x+ ...+ TµTµmx)

≤ 1
mp(Tµ1x+ ...+ Tµmx).
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Hence, q(Tµx) ≤ q(x). Furthermore, for each m ∈ N
1
mp(Tµ1

x+ ...+ Tµmx) ≤ 1
m [p(Tµ1

x) + ...+ p(Tµmx)] ≤ p(x).

Thus, q(x) ≤ p(x). By Hahn-Banach extension theorem there is a continuous linear

functional φ̃ on E such that φ̃(x) ≤ q(x) for each x ∈ E and φ̃|F ≡ φ. For x ∈ E,
n ∈ N and µ ∈M c

1 (K)

q(x− Tµx)

≤ 1
n+1p

[(
Te(x− Tµx) + Tµ(x− Tµx)

+TµTµ(x− Tµx) + ...+ TµTµ...Tµ︸ ︷︷ ︸
n times

(x− Tµx)
)]

= 1
n+1p(x+ TµTµ...Tµ︸ ︷︷ ︸

n+1 times

(−x))

≤ 1
n+1 [p(x) + p(−x)]→ 0.

Therefore, φ̃(x− Tµx) ≤ q(x− Tµx) ≤ 0. Since φ̃ is linear By replacing x by −x, one

has φ̃(Tµx) = φ̃(x). In particular, φ̃(Tgx) = φ̃(x) for g ∈ K and x ∈ E. Therefore,
UC(K) has an invariant mean (Theorem 4.1). �

5. Weak*-invariant complemented subspaces of L∞(K)

Let X be a weak*-closed left translation invariant, invariant complemented sub-
space of L∞(K). Then this section provides a connection between X being invariantly
complemented in L∞(K) by a weak*-weak*-continuous projection and the behavior
of X ∩ C0(K).

Theorem 5.1. Let X be a weak∗-closed, left translation invariant, invariant comple-
mented subspace of L∞(K). Then the following are equivalent:

1. There exists a weak*-weak*-continuous projection Q from L∞(K) onto X com-
muting with left translations.

2. X ∩ C0(K) is weak* dense in X.

Proof. Let P be a continuous projection from L∞(K) onto X commuting with left
translations. We first observe that P (LUC(K)) ⊆ LUC(K). In fact if f ∈ LUC(K)
and {gα} is a net in K such that gα → g ∈ K, then

||LgαPf − LgPf || = ||P (Lgαf − Lgf)|| ≤ ||P || ||Lgαf − Lgf || → 0.

Thus, P |C0(K) is a bounded operator from C0(K) into CB(K). Define a bounded

linear functional on C0(K) by ψ1(f) := (P f̌)(e). Let µ ∈ M(K) be such that
(Pf)(e) =

∫
f̌(x)dµ(x), for each f ∈ C0(K). Then for x ∈ K and f ∈ C0(K),

(Pf)(x) = LxPf(e) = PLxf(e) =
∫
Lxf(y̌)dµ(y) = f ∗ µ(x).

Hence, P (f) = f ∗ µ, for f ∈ C0(K). Define an operator T : L1(K) → L1(K) via
T (h) := h ∗ µ̌.
Then Q = T ∗ is weak*-weak*-continuous and < Qf, h >=< f, h ∗ µ̌ >=< f ∗ µ, h >,
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for h ∈ L1(K) and f ∈ C0(K). Thus, Q(f) = f ∗ µ for f ∈ C0(K). In addition, Q
commutes with left translations on L∞(K), since for h ∈ L1(K) and f ∈ L∞(K)

< QLxf, h > =< Lxf, h ∗ µ̌ >
=< f, (Lx̌h) ∗ µ̌ >
=< Q(f), Lx̌h >
=< LxQ(f), h > .

We will show that Q is a projection. For f ∈ C0(K) ∩X, and h ∈ L1(K),

< f ∗ µ, h > = [(f ∗ µ) ∗ ȟ](e)
= [f ∗ (h ∗ µ̌)ˇ](e)

= [(h ∗ µ̌) ∗ f̌ ](e)

=
∫

(h ∗ µ̌)(x)f̌(x̌)dx
=< f, h ∗ µ̌ > .

Hence,

< Q(f), h > =< f, h ∗ µ̌ >=< f ∗ µ, h >=< P (f), h >=< f, h > .

If X ∩C0(K) is weak* dense in X, let {fα} be a net in X ∩C0(K) such that fα → f
in the weak*-topology of L∞(K). Then, Q(f) = f since Q is weak*-continuous.

Moreover, for f ∈ C0(K) and h ∈ X⊥,

< Q(f), h > =< f, h ∗ µ̌ >=< f ∗ µ, h >=< P (f), h >= 0.

Thus, < Q(f), h >= 0, for each f ∈ L∞(K) and h ∈ X⊥, since C0(K) is weak*-dense
in L∞(K). i.e. Q(f) ∈ X.

Conversely, if Q is a weak*-weak*-continuous projection from L∞(K) onto
X commuting with left translations, then there exists some µ ∈ M(K) such that
Q∗|L1(K)(h) = h ∗ µ, for h ∈ L1(K) ([1], Theorem 1.6.24). Hence, for f ∈ C0(K) we
have Q(f) = f ∗ µ̌ which is in C0(K)∩X ([1], Theorem 1.2.16, iv). Then C0(K)∩X
is weak*-dense in X = {Q(f) | f ∈ L∞(K)} since C0(K) is weak*-dense in L∞(K)
and Q is weak*-weak*-continuous. �

As a direct consequence of Theorem 5.1 we have the following result:

Corollary 5.2. Let K be a compact hypergroup and let X be a weak*-closed left trans-
lation invariant subspace of L∞(K). Then X is invariantly complemented if and only
if there is a weak*-weak*-continuous projection from L∞(K) onto X commuting with
left translations.

Corollary 5.3. Let K be a compact hypergroup and let X be a left translation invariant
w∗-subalgebra of L∞(K) such that X ∩CB(K) has the local translation property TB.
Then X is the range of a weak*-weak*-continuous projection commuting with left
translations.

Proof. This follows from ([31], Corollary 3.13, Lemma 3.9) and Theorem 5.1. �

Corollary 5.4. The following are equivalent:

1. K is compact.
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2. K is amenable and for every weak*-closed left translation invariant, invariant
complemented subspace X of L∞(K), there exists a weak*-weak*-continuous pro-
jection from L∞(K) onto X commuting with left translations.

Proof. If K is compact, then item 2 follows from ([31], Lemma 3.9) and ([28], Example
3.3). Conversely, consider the one-dimensional subspace X = C.1. Then X is a weak*-
closed left translation invariant, invariant complemented subspace of L∞(K), since
K is amenable. If P is a weak*-weak*-continuous projection from L∞(K) onto C.1
commuting with left translations, then there is some φ ∈ L1(K) such that P (f) =
δφ(f) for f ∈ L∞(K). Hence, δφ(1) = 1 and < δφ, Lgf >=< δφ, f >. i.e., Lgφ = φ,
for g ∈ K. In particular, Lgφ(e) = φ(g) = φ(e), for all g ∈ K. Therefore, 1 = δφ(1) =∫
K
φ(g)dλ(g) = φ(e)λ(K) which means that K is compact. �

Commutative hypergroups with connected dual can be found in the study of
hypergroups constructed on R+. In fact any Sturm-Liouville hypergroup on R+ asso-
ciated with a function A : R+ → R+ satisfying certain conditions falls in this range

([36], Theorem 4.4). If K is a commutative hypergroup, then K̂ carries a dual hy-

pergroup structure if K̂ can be equipped with a hypergroup structure such that the

functions δg with δg(ξ) = ξ(g), for ξ ∈ K̂ are characters of K̂ for all g ∈ K. In

addition, K is said to be a Pontryagin hypergroup if K̂ carries a dual hypergroup

structure and
̂̂
K can be identified with K. One knows that all Bessel-Kingman hy-

pergroups are Pontryagin hypergroup. ([35], p 483). Let M0(K) denote the class of
all closed subsets of K which contain a support of a non-zero measure in M(K) with

the Fourier-Stieltjes transform vanishing at infinity and let ∆(X) = K̂ ∩X.

Lemma 5.5. Let K be a commutative hypergroup such that the dual space K̂ is con-
nected and let X be a weak∗-closed translation invariant, invariant complemented
subspace of L∞(K). Then X = L∞(K) or C0(K) ∩X = {0}.

Proof. Let P be a continuous projection from L∞(K) onto X commuting with left
translations. Then it follows from the proof of Theorem 5.1 that P |C0(K)(f) = f ∗µ ∈
C0(K), for some µ ∈ M(K). Hence, µ̂ = (µ ∗ µ)ˆ = µ̂.µ̂ ([12], 7.3.E). Therefore,

µ̂(ξ) = 0 or 1, for ξ ∈ K̂. Then µ̂ ≡ 0 or µ̂ ≡ 1, since ξ 7→ µ̂(ξ) is continuous on K̂

([12], 7.3.E) and K̂ is connected. Consequently, X∩C0(K) = {0} or X = L∞(K). �

Corollary 5.6. Let K be a commutative hypergroup such that K̂ is connected. Then
there is no non-trivial weak*-weak*-continuous projection from L∞(K) into L∞(K)
commuting with translations.

Proof. This follows from Theorem 5.1 and Lemma 5.5. �

Corollary 5.7. Let K be a commutative Pontryagin hypergroup such that K̂ is con-
nected. Then there is no proper weak*-closed translation invariant, invariant comple-

mented subspace X of L∞(K) with ∆(X) ∈M0(K̂).

Proof. This follows from Lemma 5.5. �

Corollary 5.7 has the following immediate consequence:
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Corollary 5.8. Let K be a commutative Pontryagin hypergroup such that K̂ is con-
nected. Then there is no non-trivial, invariant complemented ideal I of L1(K) with

∆(I⊥) ∈M0(K̂).

6. Miscellaneous Remarks and Open Problems

Let A be a closed translation invariant subalgebra of L∞(K) containing constant
functions. In what follows we provide an equivalent condition for A to possess a
multiplicative left invariant mean. This equivalence is given in terms of a fixed point
property which is a generalization of Mitchell fixed point theorem ([23], Theorem 1).

Definition 6.1. Let A be a closed translation-invariant subalgebra of L∞(K) containing
constant functions. Let E be a separated locally convex topological vector space and
Y be a compact subset of E. Let X be the space of all probability measures on Y .
Let {Tg | g ∈ K} be a continuous representation of K on X. Suppose that B :=
{y ∈ Y | Tgy ∈ Y, ∀g ∈ K} 6= ∅ and for each y ∈ B, define hy,φ(g) = φ(Tgy), for
g ∈ K and φ ∈ CB(Y ). It is easy to see that hy,φ is continuous and ||hy,φ|| ≤ ||φ||.
Therefore, hy : φ 7→ hy,φ is a bounded linear operator from CB(Y ) into CB(K). Let
Y1 := {y ∈ B | hy(CB(Y )) ⊆ A}.

The family T is an E −E-representation of (K,A) on X if B 6= ∅ and Y1 6= ∅,

Definition 6.2. The pair (K,A) has the common fixed point property on compacta with
respect to E − E-representations if, for each compact subset Y of a separated locally
convex topological vector space E and for each E − E-representation of K, A on X,
there is in Y a common fixed point of the family T .

Remark 6.3. Let A be a closed translation-invariant subalgebra of L∞(K) containing
constant functions. Then the following are equivalent:

1. A has a multiplicative left invariant mean.
2. The pair (K,A) has the common fixed point property on compacta with respect

to E − E-representations.

Proof. Let T be an E−E-representation of (K,A) on X. Then there exists an element
y ∈ Y such that hy(CB(Y )) ⊆ A and Tgy ∈ Y for all g ∈ K. Let h∗y be the adjoint of
hy and let m be a multiplicative left invariant mean on A. Then < h∗ym, 1 >= 1, where
1 is the constant 1 function on Y . Also hy(f1f2) = (hy,f1

)(hy,f2
), for f1, f2 ∈ CB(Y )

and g ∈ K. In addition, since m is multiplicative, h∗ym is a nonzero multiplicative

linear functional on CB(Y ) and < h∗y(m), h̄ >= < h∗y(m), h >, Thus, there exists an
element xy ∈ Y such that f(xy) =< h∗ym, f >=< m,hy,f >, for all f ∈ CB(Y ).

For each g ∈ K, define a map Ψg : E∗ → CB(Y ) via (Ψgf)(z) =< f, Tgz >, for
f ∈ E∗, z ∈ Y . Then hy,Ψgf = Lg[hy,f ] since f ∈ E∗. Hence, Tgxy = xy, for each
g ∈ K since m is left translation invariant and E∗ separates point of E.

Conversely, let E = A∗ and Y be the set of all multiplicative means on A. Then
X = Mean(A). Define (g,m) 7→ L∗gm from K × Mean(A) into Mean(A), where
Mean(A) has the weak*-topology of A∗. Then T = {L∗g | g ∈ K} is a separately
continuous representation of K on X. We note that each φ ∈ CB(Y ) corresponds
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to an element fφ ∈ A such that φ(m) = m(fφ), for m ∈ Y . Let P (K) = {g ∈
K | δk ∗ δg is a point mass measuse, δkg, ∀k ∈ K}, g ∈ P (K) and k ∈ K. Then

δgLKφ(k) = φ(L∗kδg) = φ(δkg) = δkg(fφ) = Rgfφ(k).

Hence, δgLKφ ∈ A, since A is right translation invariant. i.e, δgLK (CB(Y )) ⊆ A, for

g ∈ P (K). Thus, T is an E − E-representation of K, A on X. Therefore, there is
some m0 ∈ Y such that L∗gm0 = m0, for all g ∈ K. �

Let T be a bounded linear operator from L∞(K) into L∞(K). Then T commutes
with convolution from the left if T (φ∗f) = φ∗T (f), for all φ ∈ L1(K) and f ∈ L∞(K).
The following can be proved by a similar argument as in ([20], Theorem 2).

Remark 6.4. The following are equivalent:

1. K is compact.
2. Any bounded linear operator from L∞(K) into L∞(K) which commutes with

convolution from the left is weak∗-weak∗ continuous.

Using bounded approximate identity of L1(K), one can show that any bounded
linear operator from L∞(K) into L∞(K) which commutes with convolution from the
left also commutes with left translations. However, the converse is not true in general.
For instance, if K is a direct product G×J of any locally compact non-discrete group
G which is amenable as a discrete group and a finite hypergroup J , then for any
left invariant mean m on L∞(K) which is not topological left invariant, the operator
T (f) := m(f).1 commutes with left translations but not with convolutions from the
left.

It is important to note that in contrast to the group case, there is a class of com-
pact commutative hypergroups for which any bounded linear operator from L∞(K)
into L∞(K) commuting with convolution is weak∗-weak∗ continuous:

Example 6.5. Fix 0 < a ≤ 1
2 and let Ha be the hypergroup on Z+ ∪ {∞} given

by δm ∗ δn = δmin(n,m), for m 6= n ∈ Z+, δ∞ ∗ δm = δm ∗ δ∞ = δm and δn ∗
δn = 1−2a

1−a δn+
∑∞
k=n+1 a

kδk [5]. Then any bounded linear operator from L∞(Ha) into

L∞(Ha) commuting with translations is weak∗-weak∗ continuous.

Proof. Let T be a bounded linear operator from L∞(Ha) into L∞(Ha) commuting
with translations. For each φ ∈ L1(K) and n ∈ Z+ define a function φn on K which
coincide with φ on {0, 1, ..., n} and zero otherwise. Then ||φn − φ||1 → 0. In addition,
for each f ∈ L∞(K) we have ||T (φn ∗ f)−T (φ ∗ f)|| → 0 and ||φn ∗Tf −φ ∗Tf || → 0
([12], 6.2 C). For each f ∈ L∞(K)

T (φn ∗ f) = T (
∑n
k=0 φ(k)(1− a)akLǩf)

=
∑n
k=0 φ(k)(1− a)akT (Lǩf)

=
∑n
k=0 φ(k)(1− a)akLǩTf

= φn ∗ Tf

we have that T (φ ∗ f) = φ ∗ Tf . Now the result follows from Remark 6.4. �

The following problems are still open:
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Question 6.6. Let K be a compact hypergroup such that L∞(K) has a unique left
invariant mean. Let T be a bounded linear operator from L∞(K) into L∞(K) which
commutes with left translations. Can we conclude that T commutes with convolution
from the left?

Question 6.7. Let G be a locally compact group. Then L1(G) is Arens semi-regular if
and only if G is abelian or discrete ([21], Theorem 1). Can we characterize hypergroups
for which L1(K) is Arens semi-regular?

Question 6.8. Is there any non-inner amenable hypergroup K such that Z(L1(K)) is
non-trivial?

Question 6.9. Let K be a hypergroup such that L1(K) has a positive non-trivial center.
Is there a compact neighbourhood V of the identity with ∆(g)RgχV = LgχV ?

Question 6.10. Let K be a connected, inner amenable hypergroup. Is K amenable?

We say that a hypergroup K is topologically inner amenable if there exists a
mean m on L∞(K) such that m((∆φ)ˇ ∗ f) = m(f ∗ φ̌) for any positive norm one
element φ in L1(K) and any f ∈ L∞(K). It is easy to see that any inner invariant
mean on UC(K) is topologically inner invariant since

m(f ∗ φ̌) =
∫
< m,Rgfφ(g) > dλ(g)

=
∫
< m,Lgfφ(g) > dλ(g)

=< m,
∫
Lgfφ(g)dλ(g) >

=< m,
∫
Lgfφ(g)∆(g)dλ̌(g) >

= m((∆φ)ˇ ∗ f).

. However, on the space L∞(K) the relation between topological inner invariant means
and inner invariant means is not clear.

Question 6.11. Let m be a topological inner invariant mean on L∞(K). Is m also an
inner invariant mean?

Question 6.12. Let K be an inner amenable hypergroup. Is there any topological inner
invariant mean on L∞(K)?

Question 6.13. Let K be an inner amenable hypergroup. Does K satisfy central Reiter’s
condition P1? (see ([22], Remark) for the group case).

Question 6.14. Let K be a compact hypergroup. Can we have an exact description of
weak*-closed left translation invariant complemented subspaces of L∞(K)?
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Local C-semigroups and complete second order
abstract Cauchy problems

Chung-Cheng Kuo

Abstract. Let C : X → X be an injective bounded linear operator on a Ba-
nach space X over the field F(=R or C) and 0 < T0 ≤ ∞. Under some suit-
able assumptions, we deduce some relationship between the generation of a lo-

cal (or an exponentially bounded)

(
C 0
0 C

)
-semigroup on X × X with sub-

generator (resp., the generator)

(
0 I
B A

)
and one of the following cases:

(i) the well-posedness of a complete second-order abstract Cauchy problem
ACP(A,B, f, x, y): w′′(t) = Aw′(t)+Bw(t)+f(t) for a.e. t ∈ (0, T0) with w(0) = x
and w′(0) = y; (ii) a Miyadera-Feller-Phillips-Hille-Yosida type condition; (iii) B
is a subgenerator (resp., the generator) of a locally Lipschitz continuous local
C-cosine function on X for which A may not be bounded; (iv) A is a subgener-
ator (resp., the generator) of a local C-semigroup on X for which B may not be
bounded.

Mathematics Subject Classification (2010): 47D60, 47D62.

Keywords: Integrated C-semigroups, generator, subgenerator, abstract Cauchy
problem.

1. Introduction

Let X be a Banach space over the field F(=R or C) with norm ‖ · ‖, and let
L(X) denote the family of all bounded linear operators from X into itself. For each
0 < T0 ≤ ∞, we consider the following two abstract Cauchy problems:

ACP(A, f, x)

{
u′(t) = Au(t) + f(t) for a.e. t ∈ (0, T0)

u(0) = x

and

ACP(A,B, f, x, y)

{
w′′(t) = Aw′(t) +Bw(t) + f(t) for a.e. t ∈ (0, T0)

w(0) = x,w′(0) = y,



222 Chung-Cheng Kuo

where x, y ∈ X, A : D(A) ⊂ X → X and B : D(B) ⊂ X → X are closed linear
operators, and f ∈ L1

loc([0, T0), X) (the family of all locally Bochner integrable func-
tions from [0, T0) into X). A function u is called a (strong) solution of ACP(A, f, x) if
u ∈ C([0, T0), X) satisfies ACP(A, f, x) (that is u(0) = x and for a.e. t ∈ (0, T0), u(t)
is differentiable and u(t) ∈ D(A), and u′(t)=Au(t)+f(t) for a.e. t ∈ (0, T0)). For each
α > 0 and each injection C ∈ L(X), a subfamily S(·)(= {S(t)|0 ≤ t < T0}) of L(X)
is called a local α-times integrated C-semigroup on X if it is strongly continuous,
S(·)C = CS(·) and satisfies

(1.1) S(t)S(s)x = 1
Γ(α)

[∫ t+s
0
−
∫ t

0
−
∫ s

0

]
(t+ s− r)α−1S(r)Cxdr

for all x ∈ X and 0 ≤ t, s ≤ t + s < T0 (see [1-2,12-14,18-21,28,30,32,35]) or called
a local (0-times integrated) C-semigroup on X if it is strongly continuous, S(·)C =
CS(·) and satisfies

(1.2) S(t)S(s)x = S(t+ s)Cx

for all x ∈ X and 0 ≤ t, s ≤ t + s < T0 (see [4,6,13,23,29]), where Γ(·) denotes the
Gamma function. Moreover, we say that S(·) is

(1.3) locally Lipschitz continuous, if for each 0 < t0 < T0 there exists a Kt0 > 0 such
that ‖S(t+ h)− S(t)‖ ≤ Kt0h for all 0 ≤ t, h, t+ h ≤ t0;

(1.4) exponentially bounded, if T0 = ∞ and there exist K,ω ≥ 0 such that ‖S(t)‖ ≤
Keωt for all t ≥ 0;

(1.5) nondegenerate, if x = 0 whenever S(t)x = 0 for all 0 ≤ t < T0.

A nondegenerate local α-times integrated C-semigroup S(·) on X implies that
S(0) = C if α = 0, and S(0) = 0 (zero operator on X) otherwise, and the (in-
tegral) generator A : D(A) ⊂ X → X of S(·) is a closed linear operator in X

defined by D(A) ={x ∈ X |S(·)x − jα(·)Cx=S̃(·)yx on [0, T0) for some yx ∈ X}
and Ax = yx for all x ∈ D(A) (see [6,13-14,23]), which is also equal to the lin-
ear operator A in X defined by D(A) = {x ∈ X | lim

h→0+
(S(h)x − Cx)/h ∈ R(C)}

and Ax = C−1 lim
h→0+

(S(h)x − Cx)/h for x ∈ D(A) when α = 0 (see [4,23,27]). Here

jβ(t) = tβ

Γ(β+1) and S̃(t)z =
∫ t

0
S(s)zds. In general, a local C-semigroup is called

a C-semigroup if T0 = ∞(see [2,4,14,26,32]) or a C0-semigroup if C = I (iden-
tity operator on X) (see [1,5]). It is known that the theory of local C-semigroup
is related to another family in L(X) which is called a local C-cosine function (see
[2,4,8-9,24,28-29,32]). Perturbation of local (integrated) C-semigroups has been ex-
tensively studied by many authors appearing in [1,6-7,10-12,15-16,22,30-32]. Some
interesting applications of this topic are also illustrated there. The well-posedness
of ACP(A,B, f, x, y) had been studied by many authors when f = 0 (see [3,6,9,17-
18,20,25,32-34]). Some relationship between the well-posedness of ACP(A,B, 0, x, y),
a Miyadera-Feller-Phillips-Hille-Yosida type condition (see (1.6) below), and the gen-

eration of a C0-semigroup on X × X with generator

(
0 I
B A

)
have been estab-

lished in [25] when A and B are commutable on D(B) ∩ D(A), in [20] and [32]
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for A ∈ L(X), in [32] for B ∈ L(X), and in [17] for the general case. In partic-

ular, Xiao and Liang [32, Theorems 2.6.1, 2.5.2 and 2.5.1] show that

(
0 I
B A

)
generates a C0-semigroup on X × X (if and) only if B ∈ L(X) (and A generates
a C0-semigroup on X), but the conclusion may not be true when C0-semigroups
are replaced by local C-semigroups; and the well-posedness of ACP(A,B, 0, x, y) is
equivalent to A generates a C0-semigroup on X if B ∈ L(X), and equivalent to B
generates a cosine function on X if A ∈ L(X). Unfortunately, a local C-semigroup
may not be exponentially bounded and is not necessarily extendable to the half line

[0,∞), and

(
0 0
B A

)
may not be the generator of a local

(
C 0
0 C

)
-semigroup

on X × X whenever

(
0 I
B A

)
is. Moreover, λ ∈ ρC(A,B) may not imply that

(λ2 − λA−B)−1C(λ−AD(B)∩D(A)) and (λ2 − λA−B)−1CBD(B)∩D(A) are bounded
even though D(B) ∩D(A) is dense in X and C = I, and λ ∈ ρC(T ) implies that λ ∈
ρC(A,B), (λ2 − λA−B)−1C(λ−AD(B)∩D(A)) and (λ2 − λA−B)−1CBD(B)∩D(A)

are bounded, but may not be bounded on X even though C = I. In particular, they
are bounded on X when the assumption of D(B) ∩D(A) is dense in X is added (see
[17] for the case C = I). In this paper, we will extend the aforementioned results to
the case of local C-semigroup by different methods (see Theorems 2.2 and 2.3 below).
We show that for each (x, y) ∈ D ACP(A,B, 0, Cx,Cy) has a unique solution z which
depends continuously differentiable on (x, y) and satisfies Bz + Az′ ∈ C([0, T0), X)
if and only if T is a subgenerator of a local C-semigroup on X × X if and only if
for each (x, y) ∈ D ACP(A,B,CBx, 0, Cy) has a unique solution w which depends
continuously differentiable on (x, y) and satisfies Bw+Aw′ ∈ C([0, T0), X) (see The-

orem 2.5 below). Here T =

(
0 I
B A

)
, C =

(
C 0
0 C

)
, and D is a fixed subspace

of D(B) × D(A) that is dense in X ×X. We then prove two important lemmas (see
Lemmas 2.7 and 2.8 below) which can be used to show that there exist M,ω > 0 so
that for each pair x, y ∈ D(B) ∩ D(A) ACP(A,B,CBx, 0, Cy) has a unique solution
w with ‖w(t)‖, ‖w′(t)‖ ≤Meωt(‖x‖+‖y‖) for all t ≥ 0 and Bw+Aw′ ∈ C([0,∞), X)
if and only if T is a subgenerator of an exponentially bounded C-semigroup on X×X
if and only if there exist M,ω > 0 so that λ ∈ ρC(A,B) and

(1.6) ‖[λ(λ2 − λA−B)
−1
C]

(k)
‖, ‖[(λ2 − λA−B)−1CBD(B)∩D(A)]

(k)
‖ ≤ Mk!

(λ−ω)k+1

for all λ > ω and k ∈ N ∪ {0} if and only if there exist M,ω > 0 so that for
each pair x, y ∈ D(B) ∩ D(A) ACP(A,B, 0, Cx,Cy) has a unique solution z with
‖z(t)‖, ‖z′(t)‖ ≤Meωt(‖x‖+ ‖y‖) for all t ≥ 0 and satisfies Bz +Az′ ∈ C([0,∞), X)
(see Corollary 2.6 and Theorem 2.9 below). Here ρC(A,B)={λ ∈ F |λ2 − λA − B
is injective, R(C) ⊂ R(λ2 − λA − B), and (λ2 − λA − B)−1C ∈ L(X)}. When ρ(T )
(resolvent set of T ) is nonempty, we can combine Lemma 2.4 with [23, Corollary 3.6]
to show that for each (x, y) ∈ D(B) × D(A) ACP(A,B,CBx, 0, Cy) has a unique
solution w such that Bw + Aw′ ∈ C([0, T0), X) if and only if T is the generator of
a local C-semigroup S(·) on X × X if and only if for each (x, y) ∈ D(B) × D(A)
ACP(A,B, 0, Cx,Cy) has a unique solution z such that Bz+Az′ ∈ C([0, T0), X) (see
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Theorem 2.11 below). We then apply the modifications of [12, Theorem 2.12 and The-
orem 3.2] concerning the bounded and unbounded perturbations of a locally Lipschitz
continuous local once integrated C-semigroup on X (see Theorem 2.12 below) and a
basic property of local C-cosine function (see [6, Theorem 2.1.11]) to obtain two new
equivalence relations concerning the generations of a local C-semigroup on X × X

with subgenerator (resp., the generator)

(
0 I
B A

)
and either a locally Lipschitz

continuous local C-cosine function on X with subgenerator (resp., the generator) B
for which A may not be bounded (see Theorem 2.13 below) or a local C-semigroup
on X with subgenerator (resp., the generator) A for which B may not be bounded
(see Theorem 2.16 below). Under some suitable assumptions, which can be used to
show those preceding equivalence conditions which are equivalent to B is the gener-
ator of a locally Lipschitz continuous local C-cosine function on X for which A may
not be bounded (see Corollaries 2.14 and 2.15 below), and are also equivalent to A
is the generator of a local C-semigroup on X for which B may not be bounded (see
Corollaries 2.17 and 2.18 below).

2. Abstract Cauchy problems

In this section, we consider the existence of solutions of the abstract
Cauchy problem ACP(A,B, f, x, y). A function u is called a (strong) solution of
ACP(A,B, f, x, y) if u ∈ C1([0, T0), X) satisfies ACP(A,B, f, x, y) (that is u(0) = x,
u′(0) = y, and for a.e. t ∈ (0, T0), u′(t) is differentiable and u′(t) ∈ D(A), and
u′′(t)=Au′(t)+Bu(t)+f(t) for a.e. t ∈ (0, T0)). A linear operator A in X is called a
subgenerator of a local α-times integrated C-semigroup S(·) if S(t)x − jα(t)Cx =∫ t

0
S(r)Axdr for all x ∈ D(A) and 0 ≤ t < T0, and

∫ t
0
S(r)xdr ∈ D(A) and

A
∫ t

0
S(r)xdr=S(t)x − jα(t)Cx for all x ∈ X and 0 ≤ t < T0. Moreover, a sub-

generator A of S(·) is called the maximal subgenerator of S(·) if it is an extension
of each subgenerator of S(·) to D(A). We next note some basic properties of a local
C-semigroup, and then deduce some results about connections between the unique

existence of solutions of ACP(A,B,CBx, 0, Cy), ACP

(
T ,
(

0
0

)
,

(
Cx
Cy

))
, and

ACP(A,B, 0, Cx,Cy).
Proposition 2.1. (see [4,13,23]) Let A be the generator of a local C-semigroup S(·) on
X. Then

(2.1) S(t)S(s) = S(s)S(t) for 0 ≤ t, s, t+ s < T0;
(2.2) A is closed and C−1AC = A;
(2.3) S(t)x ∈ D(A) and S(t)Ax = AS(t)x for x ∈ D(A) and 0 ≤ t < T0;

(2.4)
∫ t

0
S(r)xdr ∈ D(A) and A

∫ t
0
S(r)xdr = S(t)x− Cx for x ∈ X and 0 ≤ t < T0;

(2.5) R(S(t)) ⊂ D(A) for 0 ≤ t < T0;
(2.6) A is the maximal subgenerator of S(·);
(2.7) C−1A0C is the generator of S(·) for each subgenerator A0 of S(·).
Theorem 2.2. (see [13,23]) Let A be a closed linear operator in X such that CA ⊂ AC.
Then A is a subgenerator of a local C-semigroup S(·) on X if and only if for each
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x ∈ X ACP(A,Cx, 0) has a unique (strong) solution u(·, x) in C1([0, T0), X). In this

case, we have u(t, x) = j0 ∗S(t)x(=
∫ t

0
S(s)xds) for all x ∈ X. By slightly modifying

the proof of [23, Corollary 3.5], the next theorem concerning the well-posedness of
ACP(A, f, x)is attained, and so its proof is omitted.
Theorem 2.3. Let A be a closed linear operator in X such that CA ⊂ AC and D dense
in X for some subspace D of D(A). Then the following are equivalent:

(i) A is a subgenerator of a nondegenerate local C-semigroup S(·) on X;
(ii) For each x ∈ D ACP(A, 0, Cx) has a unique solution u(·;Cx) in

C([0, T0), [D(A)]) which depends continuously on x. That is, if {xn}∞n=1 is a
Cauchy sequence in (D, ‖ · ‖), then {u(·;Cxn)}∞n=1 converges uniformly on com-
pact subsets of [0, T0).

In this case, u(·, Cx) = S(·)x.
In the following, we always assume that A and B are biclosed linear operators

in X such that CA ⊂ AC and CB ⊂ BC.
Lemma 2.4. Assume that D is a subspace of D(B) × D(A). Then the following are
equivalent:

(i) For each (x, y) ∈ D ACP(A,B,CBx, 0, Cy) has a unique solution w such that
Bw +Aw′ ∈ C([0, T0), X);

(ii) For each (x, y) ∈ D ACP

(
T ,
(

0
0

)
,

(
Cx
Cy

))
has a unique solution

(
u
v

)
in C([0, T0), [T ]);

(iii) For each (x, y) ∈ D ACP(A,B, 0, Cx,Cy) has a unique solution z such that
Bz +Az′ ∈ C([0, T0), X).

In this case, w = j0 ∗ v and z = u.
In particular, z, w ∈ C1([0, T0), [D(A)])∩C([0, T0), [D(B)]) if either A or B is bounded.

Here T =

(
0 I
B A

)
and C =

(
C 0
0 C

)
.

Proof. Since the biclosedness of A and B with CA ⊂ AC and CB ⊂ BC implies
that T is a closed linear operator in X × X so that CT ⊂ T C. Suppose that

(x, y) ∈ D and

(
u
v

)
denotes the unique solution of ACP

(
T ,
(

0
0

)
,

(
Cx
Cy

))
in C([0, T0), [(T ]). Then v and Bu + Av are continuous on [0, T0), and u′ = v and
v′ = Bu + Av+ a.e. on [0, T0), so that u = j0 ∗ v + Cx on [0, T0), j0 ∗ v(t) ∈ D(B)
for all t ∈ [0, T0), and v′ = Bj0 ∗ v + CBx a.e. on [0, T0). Hence, w = j0 ∗ v is a
solution of ACP(A,B,CBx, 0, Cy) such that Bw +Aw′ ∈ C([0, T0), X). The unique-

ness of solutions of ACP(A,B,CBx, 0, Cy) follows from the fact that

(
0
0

)
is the

unique solution of ACP

(
T ,
(

0
0

)
,

(
0
0

))
in C([0, T0), [T ]). Conversely, suppose

that (x, y) ∈ D and w denotes the unique solution of ACP(A,B,CBx, 0, Cy) such
that Bw +Aw′ ∈ C([0, T0), X). We set u = w + Cx and v = w′ on [0, T0). Then(

u(0)
v(0)

)
=

(
Cx
Cy

)
,

(
u(t)
v(t)

)
∈ D(B)×D(A) = D(T )
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for all t ∈ [0, T0) and T
(
u
v

)
is continuous on [0, T0), and for a.e. t ∈ (0, T0)

(
u(t)
v(t)

)
is differentiable and(

u′(t)
v′(t)

)
=

(
w′(t)
w′′(t)

)
=

(
w′(t)

Aw′(t) +Bw(t) + CBx

)

=

(
v(t)

Av(t) +Bu(t)

)
= T

(
u(t)
v(t)

)
,

and so

(
u
v

)
is a solution of ACP

(
T ,
(

0
0

)
,

(
Cx
Cy

))
in C([0, T0), [T ]). The

uniqueness of solutions follows from the fact that 0 is the unique solution of
ACP(A,B, 0, 0, 0). Similarly, we can show that (ii) and (iii) are equivalent. �

Just as an application of Theorem 2.3, the next theorem concerning the well-
posedness of ACP(A,B, f, x, y) is also attained.

Theorem 2.5. Assume that D is dense in X×X for some subspace D of D(B)×D(A).
Then the following are equivalent:

(i) For each (x, y) ∈ D ACP(A,B,CBx, 0, Cy) has a unique solution w which de-
pends continuously differentiable on (x, y) (that is, if {xn}∞n=1 is a Cauchy se-
quence in (D(B), ‖ · ‖) and {yn}∞n=1 a Cauchy sequence in (D(A), ‖ · ‖), and wn
denotes the unique solution of ACP(A,B,CBxn, 0, Cyn), then {wn(·)}∞n=1 and
{w′n(·)}∞n=1 both converge uniformly on compact subsets of [0, T0)) and satisfies
Bw +Aw′ ∈ C([0, T0), X);

(ii) T is a subgenerator of a local C-semigroup S(·) on X ×X;
(iii) For each (x, y) ∈ D ACP(A,B, 0, Cx,Cy) has a unique solution z which depends

continuously differentiable on (x, y) and satisfies Bz +Az′ ∈ C([0, T0), X).

Here T =

(
0 I
B A

)
and C =

(
C 0
0 C

)
.

Proof. Since for each (x, y) ∈ D
(
u
v

)
is the unique solution of

ACP

(
T ,
(

0
0

)
,

(
Cx
Cy

))
in C([0, T0), [T ]) if and only if for each (x, y) ∈ D u = w + Cx and v = w′ on
[0, T0), and w is the unique solution of ACP(A,B,CBx, 0, Cy) such that Bw+Aw′ ∈

C([0, T0), X). By Theorem 2.3, we also have

(
u
v

)
= S(·)

(
x
y

)
. Consequently, T

is a subgenerator of a local C-semigroup on X ×X if and only if for each (x, y) ∈ D
ACP(A,B,CBx, 0, Cy) has a unique solution w which depends continuously differ-
entiable on (x, y). Similarly, we can show that (ii) and (iii) are equivalent. �

Corollary 2.6. Assume that D is dense in X×X for some subspace D of D(B)×D(A).
Then the following are equivalent:
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(i) There exist M,ω > 0 such that for each (x, y) ∈ D ACP(A,B,CBx, 0, Cy) has
a unique solution w with ‖w(t)‖, ‖w′(t)‖ ≤ Meωt(‖x‖ + ‖y‖) for all t ≥ 0 and
Bw +Aw′ ∈ C([0,∞), X);

(ii) T is a subgenerator of an exponentially bounded C-semigroup on X ×X;
(iii) There exist M,ω > 0 such that for each (x, y) ∈ D ACP(A,B, 0, Cx,Cy) has

a unique solution z with ‖z(t)‖, ‖z′(t)‖ ≤ Meωt(‖x‖ + ‖y‖) for all t ≥ 0 and
satisfies Bz +Az′ ∈ C([0, T0), X).

Lemma 2.7. Assume that λ ∈ ρC(T ) (C-resolvent set of T ). Then

(i) λ ∈ ρC(A,B);
(ii) (λ2 − λA − B)−1C(λ − AD(B)∩D(A)) and (λ2 − λA − B)−1CBD(B)∩D(A) are

closable, and their closures are bounded and have the same domain;

(iii) (λ− T )−1C =

(
(λ2 − λA−B)−1C(λ−AD(B)∩D(A)) (λ2 − λA−B)−1C

(λ2 − λA−B)−1CBD(B)∩D(A) λ(λ2 − λA−B)−1C

)
on D((λ2 − λA−B)−1C(λ−AD(B)∩D(A)))×X, and on X ×X if D(B)∩D(A)
is dense in X.

Proof. To show that λ2 − λA − B is closed. Suppose that {xn}∞n=1 is a sequence in
D(B) ∩ D(A) which converges to x in X and {(λ2 − λA − B)xn}∞n=1 converges to y

in X. Then

(
xn
λxn

)
∈ D(T ),

(
xn
λxn

)
→
(

x
λx

)
, and

(λ− T )

(
xn
λxn

)
=

(
0

(λ2 − λA−B)xn

)
→
(

0
y

)
.

By the closedness of λ− T , we have

(
x
λx

)
∈ D(T ) and(

0
(λ2 − λA−B)x

)
= (λ− T )

(
x
λx

)
=

(
0
y

)
,

and so (λ2− λA−B)x = y. Hence, λ2− λA−B is closed. To show that λ2− λA−B
is injective. Suppose that (λ2 − λA−B)x = 0. Then

(λ− T )

(
x
λx

)
=

(
0

(λ2 − λA−B)x

)
=

(
0
0

)
,

and so

(
x
λx

)
=

(
0
0

)
. Hence, x = 0, which implies that λ2 − λA−B is injective.

To show that R(C) ⊂ R(λ2 − λA−B). Suppose that z ∈ X is given. Then

(λ− T )

(
x
y

)
=

(
0
Cz

)
for some (x, y) ∈ D(T ) = D(B)×D(A), so that λx−y = 0 and −Bx+(λ−A)y = Cz.
Hence, x ∈ D(B)∩D(A)(= D(λ2−λA−B)) and (λ2−λA−B)x = Cz, which implies
that R(C) ⊂ R(λ2 − λA−B). Consequently, λ ∈ ρC(A,B).
To show that (λ2− λA−B)−1C(λ−AD(B)∩D(A)) and (λ2− λA−B)−1CBD(B)∩D(A)

are closable, we need only to show that (λ2 − λA − B)−1C(λ − AD(B)∩D(A)) or

(λ2 − λA−B)−1CBD(B)∩D(A) is closable. We will show that
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(2.8) (λ− T )−1C =

(
(λ2 − λA−B)−1C(λ−A) (λ2 − λA−B)−1C

(λ2 − λA−B)−1CB λ(λ2 − λA−B)−1C

)
on D(B) ∩D(A) first or equivalently,

(λ− T )

(
(λ2 − λA−B)−1C(λ−A) (λ2 − λA−B)−1C

(λ2 − λA−B)−1CB λ(λ2 − λA−B)−1C

)(
x
y

)
=

(
Cx
Cy

)

= C
(
x
y

)
for all x, y ∈ D(B) ∩D(A). Suppose that x, y ∈ D(B) ∩D(A) are given. Then by the
fact B(λ2 − λA−B)−1C(λ−A)x=(λ−A)(λ2 − λA−B)−1CBx that we have

(λ− T )

(
(λ2 − λA−B)−1C(λ−A) (λ2 − λA−B)−1C

(λ2 − λA−B)−1CB λ(λ2 − λA−B)−1C

)(
x
y

)
=

(
λ −I
−B λ−A

)(
(λ2 − λA−B)−1C(λ−A) (λ2 − λA−B)−1C

(λ2 − λA−B)−1CB λ(λ2 − λA−B)−1C

)(
x
y

)
=

(
λ −I
−B λ−A

)(
(λ2 − λA−B)−1C(λ−A)x+ (λ2 − λA−B)−1Cy

(λ2 − λA−B)−1CBx+ λ(λ2 − λA−B)−1Cy

)
=

(
Cx
Cy

)
.

Suppose that xn ∈ D(B)∩D(A), xn → 0 in X, and (λ2−λA−B)−1C(λ−A)xn → y
in X. Then

(λ2 − λA−B)−1CB)xn = (λ2 − λA−B)−1C(B + λA− λ2))xn

+ (λ2 − λA−B)−1C(λ2 − λA)xn

= Cxn + (λ2 − λA−B)−1C(λ2 − λA)xn

→ λy,

and so

(λ− T )−1C

(
xn
0

)
=

(
(λ2 − λA−B)−1C(λ−A) (λ2 − λA−B)−1C

(λ2 − λA−B)−1CB λ(λ2 − λA−B)−1C

)(
xn
0

)
=

(
(λ2 − λA−B)−1C(λ−A)xn

(λ2 − λA−B)−1CBxn

)
→
(

y
λy

)
= (λ− T )−1C

(
0
0

)
.

Hence, y = 0, which implies that (λ2 − λA−B)−1C(λ−AD(B)∩D(A)) is closable.

To show that (λ2 − λA−B)−1CBD(B)∩D(A) is bounded.

Let x ∈ D((λ2 − λA−B)−1CBD(B)∩D(A)) be given.

Then (xn, (λ
2 − λA − B)−1CBxn) → (x, (λ2 − λA−B)−1CBD(B)∩D(A)x) for some

xn ∈ D(B) ∩D(A), and so

(λ− T )−1C
(
xn
0

)
=

(
(λ2 − λA−B)−1C(λ−A)xn

(λ2 − λA−B)−1CBxn

)
→ (λ− T )−1C

(
x
0

)
.
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Hence, {(λ2 − λA − B)−1(λ − A)xn}∞n=1 and {(λ2 − λA − B)−1Bxn}∞n=1

both converge. By the closedness of (λ2 − λA−B)−1C(λ−AD(B)∩D(A)) and

(λ2 − λA−B)−1CBD(B)∩D(A), we have x ∈ D((λ2 − λA−B)−1C(λ−AD(B)∩D(A)))
and

(λ− T )−1C
(
x
0

)
=

(
(λ2 − λA−B)−1C(λ−AD(B)∩D(A))x

(λ2 − λA−B)−1CBD(B)∩D(A)x

)
,

which implies that (λ2 − λA−B)−1CBD(B)∩D(A) is bounded and

D((λ2 − λA−B)−1CBD(B)∩D(A)) ⊂ D((λ2 − λA−B)−1C(λ−AD(B)∩D(A))).

Similarly, we can show that (λ2 − λA−B)−1C(λ−AD(B)∩D(A)) is bounded and

D((λ2 − λA−B)−1C(λ−AD(B)∩D(A))) ⊂ D((λ2 − λA−B)−1CBD(B)∩D(A)),

which implies that

(λ− T )−1C
(
x
y

)
= (λ− T )−1C

(
x
0

)
+ (λ− T )−1C

(
0
y

)
=

(
(λ2 − λA−B)−1C(λ−AD(B)∩D(A)) (λ2 − λA−B)−1C

(λ2 − λA−B)−1CBD(B)∩D(A) λ(λ2 − λA−B)−1C

)(
x
y

)
for all (x, y) ∈ D((λ2 − λA−B)−1C(λ−AD(B)∩D(A)))×X. Combining this with the

closedness of (λ2 − λA−B)−1CBD(B)∩D(A) and the denseness of D(B)∩D(A) in X,
we have

(λ2 − λA−B)−1CBD(B)∩D(A) ∈ L(X). �

Lemma 2.8. Assume that λ ∈ ρC(A,B). Then

(i) λ− T is injective;
(ii) (λ2−λA−B)−1C(λ−AD(B)∩D(A)) and (λ2−λA−B)−1CBD(B)∩D(A) are closable

and their closures have the same domain, and

(λ− T )

(
(λ2 − λA−B)−1C(λ−AD(B)∩D(A)) (λ2 − λA−B)−1C

(λ2 − λA−B)−1CBD(B)∩D(A) λ(λ2 − λA−B)−1C

)
= C

on D((λ2 − λA−B)−1C(λ−AD(B)∩D(A)))×X;
(iii) λ ∈ ρC(T ) and

(λ− T )−1C =

(
(λ2 − λA−B)−1C(λ−AD(B)∩D(A)) (λ2 − λA−B)−1C

(λ2 − λA−B)−1CBD(B)∩D(A) λ(λ2 − λA−B)−1C

)
,

if (λ2 − λA−B)−1C(λ−AD(B)∩D(A)) ∈ L(X).

In particular, the conclusion of (iii) holds when A or B in L(X), or D(B) ∩D(A) is
dense in X with AB = BA on D(B) ∩D(A).

Proof. To show that λ− T is injective. Suppose that (λ− T )

(
x
y

)
=

(
0
0

)
. Then

λx − y = 0 and −Bx + (λ − A)y = 0, so that λx = y and −Bx + (λ2 − λA)x = 0.
Hence, x = 0 = y, which implies that λ − T is injective. Just as in the proof of
Lemma 2.7, we will apply (2.8) to show that (λ2−λA−B)−1C(λ−AD(B)∩D(A)) and
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(λ2 − λA − B)−1CBD(B)∩D(A) are closable. Suppose that {xn}∞n=1 is a sequence in

D(B)∩D(A) which converges to 0 in X and {(λ2−λA−B)(λ−A)xn}∞n=1 converges
to y in X. Then

(λ2 − λA−B)−1CBxn = −Cxn + (λ2 − λA−B)−1C(λ−A)xn → λy,

and so

(
(λ2 − λA−B)−1C(λ−A)xn

(λ2 − λA−B)−1CBxn

)
→
(

y
λy

)
. Hence,

(λ− T )

(
(λ2 − λA−B)−1C(λ−A)xn

(λ2 − λA−B)−1CBxn

)
=

(
Cxn

0

)
→
(

0
0

)
.

By the closedness of T , we have

(
y
λy

)
∈ D(T ) and (λ − T )

(
y
λy

)
=

(
0
0

)
,

which together with the injectivity of λ− T implies that y = 0.
Consequently, (λ2−λA−B)−1C(λ−AD(B)∩D(A)) is closable. Similarly, we can show

that (λ2−λA−B)−1CBD(B)∩D(A) is closable. Just as in the proof of Lemma 2.7, we
will show that

D((λ2 − λA−B)−1C(λ−AD(B)∩D(A))) = D((λ2 − λA−B)−1CBD(B)∩D(A)),

and for each x ∈ D((λ2 − λA−B)−1C(λ−AD(B)∩D(A)))(
(λ2 − λA−B)−1C(λ−AD(B)∩D(A))x

(λ2 − λA−B)−1CBD(B)∩D(A)x

)
∈ D(T ).

Suppose that x ∈ D((λ2 − λA−B)−1C(λ−AD(B)∩D(A))) is given. Then xn → x

and (λ2 − λA − B)−1C(λ − A)xn → (λ2 − λA−B)−1C(λ−AD(B)∩D(A))x for some
sequence {xn}∞n=1 in D(B) ∩D(A), and so

(λ2 − λA−B)−1CBxn → −Cx+ λ(λ2 − λA−B)−1C(λ−AD(B)∩D(A))x.

Hence, x ∈ D((λ2 − λA−B)−1CBD(B)∩D(A))), which implies that

D((λ2 − λA−B)−1C(λ−AD(B)∩D(A))) ⊂ D((λ2 − λA−B)−1CBD(B)∩D(A)).

Similarly, we can show that

D((λ2 − λA−B)−1CBD(B)∩D(A)) ⊂ D((λ2 − λA−B)−1C(λ−AD(B)∩D(A))).

Since(
(λ2 − λA−B)−1C(λ−A)xn

(λ2 − λA−B)−1CBxn

)
→
(

(λ2 − λA−B)−1C(λ−AD(B)∩D(A))x

(λ2 − λA−B)−1CBD(B)∩D(A)x

)
and

(λ− T )

(
(λ2 − λA−B)−1C(λ−A)xn

(λ2 − λA−B)−1CBxn

)
=

(
Cxn

0

)
→
(
Cx
0

)
.

By the closedness of λ− T , we have

(λ−T )

(
(λ2 − λA−B)−1C(λ−AD(B)∩D(A)) (λ2 − λA−B)−1C

(λ2 − λA−B)−1CBD(B)∩D(A) λ(λ2 − λA−B)−1C

)(
x
0

)
=C
(
x
0

)
.
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Consequently,

(λ− T )

(
(λ2 − λA−B)−1C(λ−AD(B)∩D(A)) (λ2 − λA−B)−1C

(λ2 − λA−B)−1CBD(B)∩D(A) λ(λ2 − λA−B)−1C

)
= C

on D((λ2 − λA−B)−1C(λ−AD(B)∩D(A)))×X. �

Since (λ2 − λA−B)−1C(λ−AD(B)∩D(A)) = [(λ2 − λA−B)−1CBD(B)∩D(A)]
1
λ+ 1

λC

and (λ2 − λA − B)−1C=[λ(λ2 − λA − B)−1C] 1
λ , we can combine Lemma 2.7 with

Lemma 2.8 and [1, Theorem 2.4.1] or [32, Theorem 1.2.1] to obtain the next new
Miyadera-Feller-Phillips-Hille-Yosida type theorem concerning the generation of an
exponentially bounded C-semigroup on X ×X.

Theorem 2.9. Assume that D(B) ∩D(A) is dense in X. Then T is a subgenerator of
an exponentially bounded C-semigroup on X ×X if and only if there exist M,ω > 0
such that λ ∈ ρC(A,B) and (1.6) holds for all λ > ω and k ∈ N ∪ {0}.

Just as a result in [17, Theorem 2] for the case of C0-semigroup, we can combine
Corollary 2.6 with Theorem 2.9 to obtain the next corollary.

Corollary 2.10. Assume that D(B)∩D(A) is dense in X. Then the following statements
are equivalent:

(i) There exist M,ω > 0 such that for each pair x, y ∈ D(B) ∩ D(A),
ACP(A,B,CBx, 0, Cy) has a unique solution w with ‖w(t)‖, ‖w′(t)‖ ≤
Meωt(‖x‖+ ‖y‖) for all t ≥ 0 and Bw +Aw′ ∈ C([0,∞), X);

(ii) T is a subgenerator of an exponentially bounded C-semigroup on X ×X;
(iii) There exist M,ω > 0 such that λ ∈ ρC(A,B) and (1.6) holds for all λ > ω and

k ∈ N ∪ {0};
(iv) There exist M,ω > 0 such that for each pair x, y ∈ D(B) ∩ D(A),

ACP(A,B, 0, Cx,Cy) has a unique solution z with ‖z(t)‖, ‖z′(t)‖ ≤Meωt(‖x‖+
‖y‖) for all t ≥ 0 and satisfies Bz +Az′ ∈ C([0, T0), X).

Combining Lemma 2.4 with [23, Corollary 3.6], the next theorem is also attained.

Theorem 2.11. Assume that ρ(T ) (resolvent set of T ) is nonempty. Then the following
are equivalent:

(i) For each (x, y) ∈ D(B)×D(A) ACP(A,B,CBx, 0, Cy) has a unique solution w
such that Bw +Aw′ ∈ C([0, T0), X);

(ii) T is the generator of a local C-semigroup S(·) on X ×X;
(iii) For each (x, y) ∈ D(B) × D(A) ACP(A,B, 0, Cx,Cy) has a unique solution z

such that Bz +Az′ ∈ C([0, T0), X).

By modifying slightly the proofs of [12, Theorem 2.12 and Theorem 3.2], the
next theorem is also attained, and so its proof is omitted.

Theorem 2.12. Let B be a subgenerator (resp., the generator) of a locally Lipschitz
continuous local once integrated C-semigroup on X. Assume that A is a bounded linear
operator from D(B) into R(C) or a bounded linear operator from [D(B)] into R(C) so
that R(C−1A) ⊂ D(B) and A+B is closed. Then A+B is a subgenerator (resp., the
generator) of a locally Lipschitz continuous local once integrated C-semigroup on X.
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Since B is a subgenerator (resp., the generator) of a locally Lipschitz continuous

local C-cosine function on X if and only if

(
0 I
B 0

)
is a subgenerator (resp., the

generator) of a locally Lipschitz continuous local once integrated C-semigroup on
X × X (see [6, Theorem 2.1.11]); and A is a bounded linear operator from [D(B)]
into R(C) so that R(C−1A) ⊂ D(B) implies that

R

(
C−1

(
0 0
0 A

))
= R

((
0 0
0 C−1A

))
⊂ D

((
0 I
B A

))
= D(B)×D(A),

we can apply Theorem 2.12 to obtain the next new result concerning the generations of
a locally Lipschitz continuous local C-cosine function on X with subgenerator (resp.,
the generator) B and a local C-semigroup on X × X with subgenerator (resp., the

generator)

(
0 I
B A

)
for which A may not be bounded.

Theorem 2.13.Assume that A is a bounded linear operator from D(B) into R(C) or
a bounded linear operator from [D(B)] into R(C) so that R(C−1A) ⊂ D(B). Then T
is a subgenerator (resp., the generator) of a local C-semigroup on X ×X only if B is
a subgenerator (resp., the generator) of a locally Lipschitz continuous local C-cosine
function on X. The ”if part” is also true when the assumption of D(B) is dense in
X is added.

Proof. Suppose that

(
0 I
B A

)
is a subgenerator (resp., the generator) of a local C-

semigroup on X×X. Then it is also a subgenerator (resp., the generator) of a locally

Lipschitz continuous local once integrated C-semigroup on X ×X, and so

(
0 I
B 0

)
is a subgenerator (resp., the generator) of a locally Lipschitz continuous local once
integrated C-semigroup on X×X. Hence, B is a subgenerator (resp., the generator) of
a locally Lipschitz continuous local C-cosine function on X. Conversely, suppose that
D(B) is dense in X and B is a subgenerator (resp., the generator) of a locally Lipschitz

continuous local C-cosine function on X. Then

(
0 I
B 0

)
is a subgenerator (resp.,

the generator) of a locally Lipschitz continuous local once integrated C-semigroup

on X × X, and so

(
0 I
B A

)
is a subgenerator (resp., the generator) of a locally

Lipschitz continuous local once integrated C-semigroup on X ×X. Hence, it is also a
subgenerator (resp., the generator) of a local C-semigroup on X ×X. �

Combining Theorem 2.11 with Theorem 2.13, we can obtain the next two corollaries.
Corollary 2.14. Assume that ρ(A,B) is nonempty and A ∈ L(X). Then the following
are equivalent:

(i) For each (x, y) ∈ D(B)×D(A) ACP(A,B,CBx, 0, Cy) has a unique solution w
in C([0, T0), [D(B)]);

(ii) T is the generator of a local C-semigroup on X ×X;
(iii) For each (x, y) ∈ D(B)×D(A) ACP(A,B, 0, Cx,Cy) has a unique solution z in

C([0, T0), [D(B)]).
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Moreover, (i)-(iii) imply

(iv) B is the generator of a locally Lipschitz continuous local C-cosine function on X

if R(A) ⊂ R(C), and (i)-(iv) are equivalent if the assumption of D(B) is dense in X
is also added. Here [D(B)] denotes the Banach space D(B) with norm | · | defined by
|x| = ‖x‖+ ‖Bx‖ for x ∈ D(B).

Corollary 2.15. Assume that D(B) ∩ D(A) is dense in X, ρ(A,B) nonempty, and
AB = BA on D(B) ∩D(A). Then the following are equivalent:

(i) For each (x, y) ∈ D(B)×D(A) ACP(A,B,CBx, 0, Cy) has a unique solution w
such that Bw +Aw′ ∈ C([0, T0), X);

(ii) T is the generator of a local C-semigroup on X ×X;
(iii) For each (x, y) ∈ D(B) × D(A) ACP(A,B, 0, Cx,Cy) has a unique solution z

such that Bz +Az′ ∈ C([0, T0), X).

Moreover, (i)-(iii) are equivalent to

(iv) B is the generator of a locally Lipschitz continuous local C-cosine function on X

if A is a bounded linear operator from [D(B)] into R(C) so that R(C−1A) ⊂ D(B).

Since B is a bounded linear operator from [D(A)] into R(C) so that R(C−1B) ⊂
D(A) implies that

R

(
C−1

(
0 0
B 0

))
= R

((
0 0

C−1B 0

))
⊂ D

((
0 I
B A

))
= D(B)×D(A),

we can combine Theorem 2.11 with Theorem 2.13 to obtain the next new result
concerning the generations of a local C-semigroup on X with subgenerator (resp.,
the generator) A and a local C-semigroup on X × X with subgenerator (resp., the

generator)

(
0 I
B A

)
for which B may not be bounded.

Theorem 2.16. Assume that B is a bounded linear operator from D(A) into R(C) or
a bounded linear operator from [D(A)] into R(C) so that R(C−1B) ⊂ D(A). Then T
is a subgenerator (resp., the generator) of a local C-semigroup on X ×X if and only
if A is a subgenerator (resp., the generator) of a local C-semigroup on X.

Proof. Clearly, C
(

0 I
0 A

)
=

(
0 I
0 A

)
C on X ×D(A)

(resp., C−1

(
0 I
0 A

)
C=
(

0 I
0 A

)
) is equivalent to CA = AC on D(A) (resp.,

C−1AC = A). Suppose that

(
0 I
B A

)
is a subgenerator (resp., the generator) of a

local C-semigroup on X×X. Then

(
0 I
0 A

)
is a subgenerator (resp., the generator)

of a local C-semigroup S(·) on X ×X. For each pair x, y ∈ X, we set(
u(t)
v(t)

)
= j0 ∗ S(t)

(
x
y

)
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for all 0 ≤ t < T0. Then(
u
v

)
∈ C1([0, T0), X ×X) ∩ C([0, T0), [T ]),

(
u(0)
v(0)

)
=

(
0
0

)
and (

u′(t)
v′(t)

)
=

(
0 I
0 A

)(
u(t)
v(t)

)
+

(
Cx
Cy

)
=

(
v(t)
Av(t)

)
+

(
Cx
Cy

)
for all 0 ≤ t < T0, so that u(0) = 0 = v(0), u′(t) = v(t) + Cx and v′(t) = Av(t) +
Cy for all 0 ≤ t < T0. Hence, v is a solution of ACP(A,Cy, 0) in C1([0, T0), X) ∩
C([0, T0), [D(A)]), u(0) = 0, and u′ = v on [0, T0). To show that A is a subgenerator
(resp., the generator) of a local C-semigroup on X, we remain only to show that 0 is
the unique solution of ACP(A, 0, 0) in C1([0, T0), X)∩C([0, T0), [D(A)]) (see Theorem
2.2). To this end. Suppose that v is a solution of ACP(A, 0, 0) in C1([0, T0), X) ∩
C([0, T0), [D(A)]). We set u = j0 ∗ v, then u(0) = 0 = v(0) and(

u′(t)
v′(t)

)
=

(
v(t)
Av(t)

)
=

(
0 I
0 A

)(
u(t)
v(t)

)
for all 0 ≤ t < T0. The uniqueness of solutions of ACP(A, 0, 0) follows from the unique-

ness of solutions of ACP

((
0 I
0 A

)
,

(
0
0

)
,

(
0
0

))
. Conversely, suppose that A is

a subgenerator (resp., the generator) of a local C-semigroup S(·) on X. To show that(
0 I
0 A

)
is a subgenerator (resp., the generator) of a local C-semigroup on X×X, we

need only to show that for each pair x, y ∈ X, ACP

((
0 I
0 A

)
,

(
Cx
Cy

)
,

(
0
0

))
has a unique solution in C1([0, T0), X ×X) ∩ C

(
[0, T0),

[(
0 I
0 A

)])
. To do this.

For each pair x, y ∈ X, we set v(t) = j0 ∗ S(t)y and u(t) = j0 ∗ v(t) + tCx for all
0 ≤ t < T0. Then u(0) = 0 = v(0), and v′(t)=S(t)y=Av(t)+Cy and u′(t) = v(t)+Cx
for all 0 ≤ t < T0, so that(

u′(t)
v′(t)

)
=

(
v(t) + Cx
Av(t) + Cy

)
=

(
0 I
0 A

)(
u(t)
v(t)

)
+

(
Cx
Cy

)
for all 0 ≤ t < T0. Hence,

(
u
v

)
is a solution of ACP

((
0 I
0 A

)
,

(
Cx
Cy

)
,

(
0
0

))
in C1([0, T0), X × X) ∩ C

(
[0, T0),

[(
0 I
0 A

)])
. The uniqueness of solutions of

ACP

((
0 I
0 A

)
,

(
0
0

)
,

(
0
0

))
in C1([0, T0), X ×X)∩C

(
[0, T0),

[(
0 I
0 A

)])
follows from the uniqueness of solutions of ACP(A, 0, 0). Consequently,

(
0 I
0 A

)
is

a subgenerator (resp., the generator) of a local C-semigroup on X ×X, which implies
that T is a subgenerator (resp., the generator) of a local C-semigroup on X ×X. �



Local C-semigroups 235

Corollary 2.17. Assume that ρ(A,B) is nonempty and B ∈ L(X). Then the following
are equivalent:

(i) For each (x, y) ∈ D(B)×D(A) ACP(A,B,CBx, 0, Cy) has a unique solution w
in C1([0, T0), [D(A)]);

(ii) T is the generator of a local C-semigroup on X ×X;
(iii) For each (x, y) ∈ D(B)×D(A) ACP(A,B, 0, Cx,Cy) has a unique solution z in

C1([0, T0), [D(A)]).

Moreover, (i)-(iii) are equivalent to

(vi) A is the generator of a local C-semigroup on X,

if R(B) ⊂ R(C).
Corollary 2.18. Assume that D(B) ∩ D(A) is dense in X, ρ(A,B) nonempty, and
AB = BA on D(B) ∩D(A). Then the following are equivalent:

(i) For each (x, y) ∈ D(B)×D(A) ACP(A,B,CBx, 0, Cy) has a unique solution w
such that Bw +Aw′ ∈ C([0, T0), X);

(ii) T is the generator of a local C-semigroup on X ×X;
(iii) For each (x, y) ∈ D(B) × D(A) ACP(A,B, 0, Cx,Cy) has a unique solution z

such that Bz +Az′ ∈ C([0, T0), X).

Moreover, (i)-(iii) are equivalent to

(iv) A is the generator of a local C-semigroup on X,

if B is a bounded linear operator from [D(A)] into R(C) so that R(C−1B) ⊂ D(A).
We end this paper with a simple illustrative example. Let S(·)(= {S(t)|0 ≤ t < 1})
be a family of bounded linear operators on c0(, family of all convergent sequences in
F with limit 0,) defined by S(t)x = {e−nentxn}∞n=1, then S(·) is a local C-semigroup
on c0 with generator A defined by Ax = {nxn}∞n=1 for all x = {xn}∞n=1 ∈ c0 with
{nxn}∞n=1 ∈ c0. Here C = S(0). Let {pn}∞n=1 ∈ l∞ with {enpn}∞n=1 ∈ l∞, and B be a
bounded linear operator from [D(A)] into R(C) defined by Bx = {nxnpn}∞n=1 for all
x = {xn}∞n=1 ∈ D(A), then R(C−1B) ⊆ D(A), CB = BC on D(A), and B : D(A) ⊂
c0 → c0 can be extended to a bounded linear operator on D(A) = c0. Applying

Corollary 2.17, we get that

(
0 I
B A

)
is the generator of a local C-semigroup on

c0 × c0.
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Weingarten tube-like surfaces in Euclidean
3-space

Adel H. Sorour

Abstract. In this paper, we study a special kind of tube surfaces, so-called tube-
like surface in 3-dimensional Euclidean space E3. It is generated by sweeping a
space curve along another central space curve. This study investigates a tube-
like surface satisfying some equations in terms of the Gaussian curvature, the
mean curvature, the second Gaussian curvature and the second mean curvature.
Furthermore, some important theorems are obtained. Finally, an example of tube-
like surface is used to demonstrate our theoretical results and graphed.
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ian curvature, second mean curvature, Weingarten surfaces, linear Weingarten
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1. Introduction

Weingarten surfaces are surfaces whose Gaussian and mean curvatures satisfy a
functional relationship (of class C0 at least). The class of Weingarten surfaces contains
already mentioned surfaces of constant curvatures K or H. Furthermore, a Cr-surface,
r > 3, is Weingarten if and only if KsHt −KtHs = 0. On the other hand, let A and
B be smooth functions on a surface M(s, t) in Euclidean 3-space E3. The Jacobi
function Φ(A,B) formed with A and B is defined by:

Φ(A,B) = det

(
As At
Bs Bt

)
,

where As =
∂A

∂s
and At =

∂A

∂t
.

For the pair (A,B) of curvatures K, H and KII of M in E3, if M satisfies
Φ(A,B) = 0 and aA + bB = c, then we call (A,B)-Weingarten surface (W-surface)
and (A,B)-linear Weingarten surface (LW-surface), respectively, where a, b, c ∈ R,
(a, b, c) 6= (0, 0, 0).
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The classification of the Weingarten surfaces in Euclidean space is almost com-
pletely open today. These surfaces were introduced by J. Weingarten [21, 22] in the
context of the problem of finding all surfaces isometric to a given surface of revolution.
Applications of Weingarten surfaces on computer aided design and shape investigation
can seen in [19].

The authors in [9, 25] have investigated ruled Weingarten surfaces and ruled lin-
ear Weingarten surfaces in E3. Besides, a classification of ruled Weingarten surfaces
and ruled linear Weingarten surfaces in a Minkowski 3-space E3

1 is given in [4, 7, 16].
Munteanu and Nistor [13] studied polynomial translation linear Weingarten surfaces
in Euclidean 3-space. Also, Lopez [10, 11] studied cyclic linear Weingarten surface
in Euclidean 3-space. In [12] Lopez classified all parabolic linear Weingarten surfaces
in hyperbolic 3-space. Ro and Yoon [15] studied a tube of Weingarten types in Eu-
clidean 3-space satisfying some equation in terms of the Gaussian curvature, mean
curvature and second Gaussian curvature. Kim and Yoon [8] classified quadric surfaces
in Euclidean 3-space in terms of the Gaussian curvature and the mean curvature. In
addition to, Yoon and Jun [26] classified non-degenerate quadric surfaces in Euclidean
3-space in terms of the isometric immersion and the Gauss map. Furthermore in [1, 2],
Weingarten timelike tube surfaces around spacelike and timelike curves were studied
in Minkowski 3-space E3

1.

Several geometers [15, 1, 18] have studied tubes in Euclidean 3-space and
Minkowski 3-space satisfying some equations in terms of the Gaussian curvature K,
the mean curvature H and the second Gaussian curvature KII . Following the Jacobi
function and the linear equation with respect to the Gaussian curvature K, the mean
curvature H and the second Gaussian curvature KII an interesting geometric question
is raised: Classify all surfaces in Euclidean 3-space satisfying the conditions

Φ(A,B) = 0, (1.1)

aA+ bB = c, (1.2)

where A,B ∈ {K,H,KII}, A 6= B and (a, b, c) 6= (0, 0, 0).

In this paper, we investigate the tube-like surfaces in 3-dimensional Euclidean
space satisfying the Jacobi condition and the linear equation with respect to their
curvatures have been studied. Furthermore, we obtained some theorems.

2. Preliminaries

Let E3 be a Euclidean 3-space with the scalar product given by [5]

〈, 〉 = dx21 + dx22 + dx23,

where (x1, x2, x3) is a rectangular coordinate system of E3. In particular, the norm of

a vector X ∈ E3 is given by ‖X‖ =
√
〈X,X〉. If X = (x1, x2, x3) and Y = (y1, y2, y3)

are arbitrary vectors in E3, the vector product of X and Y is given by

X ∧ Y = (x2y3 − x3y2, x3y1 − x1y3, x1y2 − x2y1) . (2.1)
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Let M : Φ = Φ(s, t) be a surface in Euclidean 3-space. The unit normal vector field
of M can be defined by

N =
Φs ∧ Φt
‖Φs ∧ Φt‖

, Φs =
∂Φ

∂s
, Φt =

∂Φ

∂t
, (2.2)

where ∧ stands the vector product of E3. The first fundamental form I of the surface
M is

I = Eds2 + 2Fdsdt+Gdt2, (2.3)

with coefficients

E = 〈Φs,Φs〉, F = 〈Φs,Φt〉, G = 〈Φt,Φt〉. (2.4)

The second fundamental form of the surface M is given by

II = eds2 + 2fdsdt+ gdt2. (2.5)

From which the components of the second fundamental form e, f and g are expressed
as

e = 〈Φss, N〉, f = 〈Φst, N〉, g = 〈Φtt, N〉. (2.6)

Under this parametrization of the surface M , the Gaussian curvature K and the mean
curvature H have the classical expressions, respectively [14]

K =
eg − f2

EG− F 2
, (2.7)

H =
Eg +Ge− 2Ff

2 (EG− F 2)
. (2.8)

From Brioschi’s formula in a Euclidean 3-space, we are able to compute KII of a
surface by replacing the components of the first fundamental form E, F and G by the
components of the second fundamental form e, f and g respectively. Consequently,
the second Gaussian curvature KII of a surface is defined by [3]

KII =
1

(eg − f2)
2


∣∣∣∣∣∣
− 1

2ett + fst − 1
2gss

1
2es fs − 1

2et
ft − 1

2gs e f
1
2gt f g

∣∣∣∣∣∣−
∣∣∣∣∣∣

0 1
2et

1
2gs

1
2et e f
1
2gs f g

∣∣∣∣∣∣
 .

(2.9)
Having in mind the usual technique for computing the second mean curvature HII by
using the normal variation of the area functional for the surfaces in E3 one gets [20]

HII = H +
1

4
∆II ln(K),

where H and K denote the mean, respectively Gaussian curvatures of surface and
∆II is the Laplacian for functions computed with respect to the second fundamental
form II as metric. The second mean curvature HII can be equivalently expressed as

HII = H +
1

2
√

det(II)

∑
i,j

∂

∂ui

[√
det(II)hij

∂

∂uj
(ln
√
K)
]
, (2.10)

where (hij) denotes the associated matrix with its inverse (hij), the indices i, j belong
to {1, 2} and the parameters u1, u2 are s, t respectively.

Now, we can write the following important definition [23]:
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Definition 2.1. (1): A regular surface is flat (developable) if and only if its Gaussian
curvature vanishes identically.

(2): A regular surface for which the mean curvature vanishes identically is called
a minimal surface.

(3): A non-developable surface is called II-flat if the second Gaussian curvature
vanishes identically.

(4): A non-developable surface is called II-minimal if the second mean curvature
vanishes identically.

Remark 2.2. [24] It is well known that: a minimal surface has a vanishing second
Gaussian curvature but that a surface with the vanishing second Gaussian curvature
need not to be minimal.

3. Tube-like surface in E3

The aim of this section, we will obtain the tube-like surface from the tube surface.
Since the tube surfaces are special kinds of the canal surfaces in Euclidean 3-space. If
we find the canal surface with taking variable radius r(s) as constant, then the tube
surface can be found, since the canal surface is a general case of the tube surface.

A canal surface is the envelope of a moving sphere with varying radius, defined
by the trajectory C(s) (center curve) of its center and a radius function r(s). If the
center curve C(s) is a helix and the radius function r(s) is a constant, then the
surface is called helical canal surface. If the radius function r(s) is a constant, this
time the canal surface is called a tube [6]. Canal surface around the center curve C(s)
is parametrized as

K(s, t) = C(s)−r(s)r′(s)e1(s)∓r(s)
√

1− r′2(s)
(

cos[t]e2(s)+sin[t]e3(s)
)
, 0 6 t 6 2π,

where s is arclength parameter and e1(s), e2(s), e3(s) Frenet vectors of C(s). If the
radius function r(s) = r is a constant, then, the canal surface is called a tube (pipe)
surface and it parametrized as

Tube(s, t) = C(s) + r
(

cos[t]e2(s) + sin[t]e3(s)
)
.

The aim of this work is to introduce a simple method for parametrization of tube-

like surface in Euclidean 3-space. Given a space curve α(t) =
(
x(t), y(t), z(t)

)
, at

each point, there are three directions associated with it, the tangent, normal and

binormal directions. The unit tangent vector is denoted by e1, i.e., e1(t) = α′(t)
‖α′(t)‖ ,

the unit normal vector is denoted by e2, i.e., e2(t) =
e′1(t)

‖e′1(t)‖
, the unit binormal vector

is denoted by e3, i.e., e3(t) = e1(t) ∧ e2(t) (cross product). With α(t), e1(t), e2(t) and
e3(t), a tube-like surface can be expressed as follows

M : Φ(s, t) = α(t) + r
(

cos[s]e2(t)− sin[s]e3(t)
)
, (3.1)

where r is a parameter corresponding to the radius of the rotation (In general r can
be a function of t). For fixed t, when s runs from 0 to 2π, we have a circle around
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the point α(t) in the e1, e2 plane. As we change t, this circle moves along the space
curve α, and we will generate a tube-like surface along α (a special kind of tube
surfaces defined by (3.1)). The Frenet-Serret equations, express the reat of change of
the moving orthonormal tried {e1(t), e2(t), e3(t)} along the curve α are given by [17] e′1(t)

e′2(t)
e′3(t)

 =

 0 κ(t) 0
−κ(t) 0 τ(t)

0 −τ(t) 0

 e1(t)
e2(t)
e3(t)

 , (3.2)

where the prime denotes the differentiation with respect to t and we denote by κ, τ
the curvature and the torsion of the curve α. We can know that e1, e2, e3 are mutually
orthogonal vector fields satisfying equations

〈e1, e1〉 = 〈e2, e2〉 = 〈e3, e3〉 = 1,
〈e1, e2〉 = 〈e2, e3〉 = 〈e3, e1〉 = 0,
det(e1, e2, e3) = 1.

Calculating the partial derivative of (3.1) with respect to s and t respectively, we get

Φs = −r
[

sin[s]e2 + cos[s]e3

]
,

Φt = Qe1 + rτ
[

sin[s]e2 + cos[s]e3

]
,

(3.3)

where Q = 1 − rκ cos[s]. From which, the components of the first fundamental form
are

E = r2, F = −r2τ, G = Q2 + r2τ2. (3.4)

Using equations (2.1) and (2.2) the unit normal vector on Φ takes the form

N = − cos[s]e2 + sin[s]e3. (3.5)

The second order partial differentials of M are found

Φss = −r
[

cos[s]e2 − sin[s]e3

]
,

Φst = r
[
κ sin[s]e1 + τ(cos[s]e2 − sin[s]e3)

]
,

Φtt = −r(κτ sin[s] + κ′ cos[s])e1 + (κ− r(κ2 + τ2) cos[s]
+rτ ′ sin[s])e2 + r(τ2 sin[s] + τ ′ cos[s])e3.

From the equation (3.5) and the last equations, we find the second fundamental form
coefficients as follows

e = r, f = −rτ, g = −Qκ cos[s] + rτ2, (3.6)

Theorem 3.1. M is a regular tube-like surface if and only if 1− rκ cos[s] 6= 0.

Proof. For a regular surface, EG− F 2 6= 0. From (3.6), we get

EG− F 2 = r2
(

1− rκ cos[s]
)2
,

where EG− F 2 6= 0 and r > 0, M is a regular tube-like surface if and only if

1− rκ cos[s] 6= 0.
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Based on the above calculations, the Gaussian curvature K and the mean cur-
vature H of (3.1) are given by

K = −κ cos[s]

rQ
, (3.7)

H =
1− 2rκ cos[s]

2rQ
. (3.8)

If the second fundamental form of Φ is non-degenerate, i.e., eg− f2 6= 0. In this case,
we can define formally the second Gaussian KII and second mean HII curvatures on
Φ(s, t) as follows

KII =
1

4rQ4 cos2[s]

[
1 + cos2[s]− 6rκ cos3[s] + 4r2κ2 cos4[s]

]
, (3.9)

HII =
−1

64rQ3κ3 cos2[s]

[
A0 +

6∑
i=1

Ai cos[is] +

3∑
j=1

Bj sin[js]
]
,

where the coefficients Ai and Bj are

A0 = −r
[
κ2[33κ2 + 20κ2(r2κ2 − τ2)]− 4(3κ′2 − 2κκ′′)

]
,

A1 = 2κ
[
κ2[5− 4r2(3τ2 − 11κ2)]− 6r2(3κ′2 − κκ′′)

]
,

A2 = −2r
[
κ2[3κ2(8 + 5r2κ2) + 2τ2]− 2(3κ′2 − 2κκ′′)

]
,

A3 = 2κ
[
κ2[3 + r2(23κ2 + 4τ2)]− 2r2(3κ′2 − κκ′′)

]
,

A4 = −3rκ4
[
5 + 4r2κ2

]
, A5 = 10r2κ5, A6 = −2r3κ6

and

B1 = 4r2κ2
[
4κ′τ − κτ ′

]
, B2 = −8rκ

[
κ′τ − κτ ′

]
, B3 = 4r2κ2

[
4κ′τ − κτ ′

]
.

Under the previous calculations, one can formulate the following theorems:

Theorem 3.2. If the Gaussian curvature K is zero, then M is generated by a moving
sphere with the radius r = 1.

Proof. At κ = 0, from the equation (3.7) cos[s] = 0, i.e., s = π
2 (2n + 1), n =

0,±1,±2,±3, ..., and the unit normal vector on M takes the form

N(s, t) = − cos[s]e2(t) + sin[s]e3(t)
= ±e3(t).

Again, when cos[s] = 0, i.e., s = π
2 (2n+ 1), n = 0,±1,±2,±3, ..., implies that

Φ(s, t)− α(t) = r
(

cos[s]e2(t)− sin[s]e3(t)
)

N(s, t) = −
(

cos[s]e2(t)− sin[s]e3(t)
)

±e3(t) = ∓re3(t).

From the last equation, we get r = 1.

Theorem 3.3. The surface (3.1) is a developable surface if and only if it is an open
part of a circular-like cylinder.
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Theorem 3.4. There are no minimal tube-like surfaces in Euclidean 3-space E3.

Theorem 3.5. Let M be a tube-like surface with non-degenerate second fundamental
form in the Euclidean 3-space E3, then M is not II-flat as well as not II-minimal.

3.1. Weingarten tube-like surfaces

In the following, we study the tube-like surface Φ in E3 satisfying the Jacobi
equation Φ(X,Y ) = 0, X 6= Y , of the curvatures K, H and KII of Φ and we formulate
the main results in the next theorems.

Theorem 3.6. Let M be a tube-like surface in E3 defined by (3.1). Then M is a
(K,H)-Weingarten surface.

Proof. Let M be a tube-like surface in E3. Differentiating K and H with respect to s
and t respectively, then we obtain

Ks =
κ sin[s]

rQ2
, Kt = −κ

′ cos[s]

rQ2
, (3.10)

Hs =
κ sin[s]

rQ2
, Ht = −κ

′ cos[s]

rQ2
. (3.11)

By using (3.10) and (3.11), M satisfies identically the Jacobi equation

Φ(K,H) = KsHt −KtHs = 0.

Therefore M is a Weingarten surface.

Theorem 3.7. Let M be a tube-like surface in the Euclidean 3-space E3 parametrized by
(3.1) with non-degenerate second fundamental form. If M is a (K,KII)-Weingarten
surface, then κ′ = 0. Then, the curvature of α(t) is a non-zero constant.

Proof. Let M be a tube-like surface in E3 parametrized by (3.1). If we take derivative
of KII given by (3.9) with respect to s and t respectively, then we have

(KII)s = 1
2rQ3 cos3[s]

[
1− rκ(2 sin2[s] + rκ cos3[s]) cos[s]

]
sin[s],

(KII)t = κ′

2Q3 cos[s]

[
1− 2 cos2[s] + rκ cos3[s]

]
.

(3.12)

We consider a tube-like surface (3.1) in E3 satisfying the Jacobi equation

Φ(K,KII) = Ks(KII)t −Kt(KII)s = 0, (3.13)

with respect to the Gaussian curvature K and the second Gaussian curvature KII .
Then, substituting from (3.10) and (3.12) into (3.13), we get

κ′ sin[s] = 0.

Since this polynomial is equal to zero for every s, its coefficient must be zero. There-
fore, we conclude that κ′ = 0.

Theorem 3.8. Let M be a tube-like surface in the Euclidean 3-space E3 parametrized by
(3.1) with non-degenerate second fundamental form. If M is a (H,KII)-Weingarten
surface, then κ′ = 0. Then, the curvature of α(t) is a non-zero constant.
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Proof. We assume that a tube-like surface parametrized by (3.1) with non-degenerate
second fundamental form in E3 is (H,KII)-Weingarten surface. Then, it satisfies the
Jacobi equation

Φ(H,KII) = Hs(KII)t −Ht(KII)s = 0, (3.14)

which implies

κ′ sin[s] = 0. (3.15)

From (3.15),one can get κ′ = 0. Thus, the curvature of α(t) is a non-zero constant.

4. Linear Weingarten tube-like surfaces

Now, to examine the linear Weingarten property of the tube-like surface Φ de-
fined along the space curve α(t). Let us analyze the following theorems.

Theorem 4.1. Suppose that a tube-like surface defined by (3.1) in E3 is a linear Wein-
garten surface satisfying aK+bH = c. Then κ = 0. M is an open part of a circular-like
cylinder.

Proof. Consider the parametrization (3.1) with K and H given by (3.7) and (3.8)
respectively, we have

aK + bH = c,

implies

2κ
[
a+ br − cr2

]
cos[s]− b+ 2cr = 0. (4.1)

Since cos[s] and 1 are linearly independent, we have

2κ
[
a+ br − cr2

]
= 0, b = 2cr,

which imply

κ(a+ cr2) = 0.

If a+ cr2 6= 0, then κ = 0. Thus, M is an open part of a circular-like cylinder.

Theorem 4.2. Let (A,B) ∈ {(K,KII), (H,KII)}. Then, there are no (A,B)-linear
Weingarten tube-like surfaces in Euclidean 3-space E3.

Proof. Firstly, we suppose that a tube-like surface (3.1) with non-degenerate second
fundamental form in E3 satisfies the equation

aK + bKII = c. (4.2)

By using (3.7) and (3.9), the equation (4.2) takes the form

1
4rQ2

[
4rκ2(a+ br − cr2) cos4[s]− 2κ(2a+ 3br − 4cr2) cos3[s]

+(b− 4cr) cos2[s] + b
]

= 0.

(4.3)
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Since the identity holds for every s, all the coefficients must be zero. Therefore, we
obtain 

4rκ2(a+ br − cr2) = 0,
2κ(2a+ 3br − 4cr2) = 0,
b− 4cr = 0,
b = 0.

Thus, we get b = 0, c = 0 and κ = 0. In this case, the second fundamental form of
M is degenerate. Thus, this completes proof.

Secondly, let a tube-like surface (3.1) with non-degenerate second fundamental
form in E3 satisfy the relation

aH + bKII = c. (4.4)

From equations. (3.8), (3.9) and (4.4), we get

1
4rQ2

[
4r2κ2(a+ b− cr) cos4[s]− 2rκ(3a+ 3br − 4cr) cos3[s]

+(2a+ b− 4cr) cos2[s] + b
]

= 0.

From which, one can obtain b = 0, c = 0 and κ = 0. Also, the second fundamental
form of tube-like is degenerate. Then, there are no (H,KII)-linear Weingarten tube-
like surfaces in E3.

5. Applications

Here, we consider an example to illustrate the main results that we have pre-
sented in our paper.
Example 5.1. Let us consider a surface

Φ(s, t) = α(t) + r
(

cos[s]e2(t)− sin[s]e3(t)
)
, (5.1)

where α(t) is

α(t) = (cos[t], sin[t], 0),

and the Frenet’s frame is

e1(t) = (− sin[t], cos[t], 0), e2(t) = −(cos[t], sin[t], 0), e3(t) = (0, 0, 1).

Thus, we obtained tube-like surface as follows

Φ(s, t) =
(

(1− r cos[s]) cos[t], (1− r cos[s]) sin[t],−r sin[s]
)
. (5.2)

The components of the first and second fundamental forms of the surface (5.2) are
given by, respectively

E = r2, F = 0, G = (1− r cos[s])2,
e = r, f = 0, g = −(1− r cos[s]) cos[s].

The unit normal vector of the surface (5.2) takes the form

N = − cos[s]e2(t) + sin[s]e3(t). (5.3)
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For this surface, the Gaussian curvature K and the mean curvature H are defined by,
respectively

K = − cos[s]

r(1− r cos[s])
, (5.4)

H =
1− 2r cos[s]

2r(1− r cos[s])
. (5.5)

As cos[s] = 0, Eqs. (5.4) and (5.5) lead to

K = 0, H =
1

2r
,

i.e., the surface (5.2) is a developable and not minimal.

Since eg − f2 6= 0, then we can get the second Gaussian curvature KII and the
second mean curvature HII on Φ(s, t) as follows

KII =
1 + cos2[s]− 6r cos3[s] + 4r2 cos4[s]

4r(1− r cos[s])2 cos2[s]
, (5.6)

HII =
−1 + 2r cos[s] + 3 cos2[s]− 12r cos3[s] + 8r2 cos4[s]

8r(1− r cos[s])2 cos2[s]
. (5.7)

From aforementioned data, one can deduce that the Weingarten and linear Weingarten
on Φ corresponding to the induced metric form satisfies the above theorems.

One can see the graph of Φ(s, t) in Figure 1.

Under the previous, we consider the following remark:

Remark 5.1. (1): It easily seen that, the vector e3(t) = (0, 0, 1) is a constant vector,
then the surface (5.1) is a circular-like cylinder surface.

(2): The tube-like surface defined by (5.2) is a torus.
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Figure 1. Some tube-like surfaces generated by circle with r = 1
2 ,

Left (half circular-like cylinder): s, t ∈ [0, 65π],

Middle (circular-like cylinder): s, t ∈ [0, 32π] and
Right (torus): s, t ∈ [0, 2π].
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Book reviews

Ronald S. Calinger, Leonhard Euler. Mathematical genius in the Enlightenment,
Princeton, NJ: Princeton University Press, 2016, xvii+669 p,
(ISBN 978-0-691-11927-4/hbk; 978-0-691-11927-4/ebook).

As writes the author in the Preface, Leonhard Euler (1707-1783) ranks among
the four greatest mathematicians of all time, the other three being Archimedes, Isaac
Newton and Karl Friederic Gauss. Although there exist some previous books contain-
ing short biographies of Euler, this is the first detailed and comprehensive account
on Euler’s life, research, computations and professional interactions. The presenta-
tion was possible due to the almost completion of more than eighty large volumes of
Euler’s Opera Omnia.

The presentation focusses on the life of Euler and his achievements in calculus
and analytical mechanics. As it is well known, Euler was an encyclopedic mind, his
publications are written in five languages - most in Latin and French, and some in
German, Russian, English. His interests covered a large area of human knowledge
(including music, the theory of light and colors, letters to a German princess, con-
struction of ships), so that an analysis of Euler’s contributions would require experts
from different areas with skills in several languages, working together under the di-
rection of an editor to strengthen a coherent perspective. The author mentions in
this direction Clifford Truesdell (the founder of the journal Archive of History for
Exact Sciences), a master of six languages, including Greek and Latin, who edited
five volumes of Opera Omnia and wrote a critical consideration of Euler’s writings,
especially on his contributions to theoretical physics.

The book present a synoptic study of the full scope of his research, the character
of his colleagues and rivals, and the sources of problems, presented in a chronological
order, starting with his Swiss years and formation (1707-1727), then his work in Sankt
Petersburg Academy (1727-1641), Berlin Academy (1741-1760), and again in Russia,
Sankt Petersburg (1760-1783), where he died. In spite of the fact that in the last years
he lost his sight he continued to work, thanks to his prodigious memory. A special
attention is paid to some rivalries and disputes - Euler, d’Alambert and Clairaut,
Maupertuis and König. The polemics around Maupertuis’ principle of minimal action
and on other of his writings, in which were involved great personalities of the eighteen
century, including Voltaire and King Frederick II of Prusia, is discussed at large in
Sections 10 and 11 of the book.
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Undoubtedly that the present monograph is an important contribution on Euler’s
life and on his achievements in various areas of human knowledge, being of interest
to all people interested in the development of science in historical perspective.

S. Cobzaş

Aref Jeribi and Bilel Krichen; Nonlinear functional analysis in Banach spaces and
Banach algebras. Fixed point theory under weak topology for nonlinear operators
and block operator matrices with applications, Monographs and Research Notes in
Mathematics, CRC Press, Boca Raton, FL, 2016, xvi+355 p, ISBN: 978-1-4822-9909-
0/hbk; 978-1-4822-9910-6/ebook.

The book is dedicated to fixed point theory in the weak topology setting and its
applications to block operator matrices.

The book discusses various aspects of fixed point theory in Banach spaces and
Banach algebras with nice applications to Mathematical Physics and Mathematical
Biology. The structure of the book is the following: two main parts: I. Fixed Point
Theory, II.Applications to Mathematical Physics and Biology, preceded by a Preface
and followed by a consistent References list with 154 titles.

The main topics of the first part are:

I.1. Fundamentals (normed spaces, weak topology, measures of weak noncom-
pactness (MNWC), basic tools in Banach algebras, elementary fixed point theorems,
positivity and cones);

I.2. Fixed Point Theory under Weak Topology (fixed point theorems in DP
(Dunford-Pettis) spaces and weak compactness, Banach spaces and weak compact-
ness, fixed point theorems and MNWC, fixed point theorems for multi-valued map-
pings, some Leray-Schauder’s alternatives);

I.3. Fixed Point Theory in Banach Algebras (fixed point theorems involving
three operators, WC-Banach algebras, Leray-Schauder’s alternatives in Banach alge-
bras involving three operators, convex-power condensing operators, ws-compact and
ω-convex-power condensing maps);

I.4. Fixed Point Theory for BOM (Block Operator Matrix) on Banach Spaces
and Banach Algebras (some variants of Schauder’s and Krasnoselskii’s fixed point
theorem for BOM, fixed point theory under weak topology features, fixed point the-
orems for BOM in Banach algebras, fixed point results in regular cones, BOM with
multi-valued inputs);

The focus of the second part is on the applications of the above mentioned theory
to:

II.5. Existence of Solutions for Transport Equations
II.6. Existence of Solutions for Nonlinear Integral Equations
II.7.Two-Dimensional Boundary Value Problems.

The book is interesting, clearly written and contains many important results
(most of them obtained by the authors of this book) in the field of applied nonlinear
analysis. Of course, the focus is on fixed point theory in Banach spaces and Banach



Book reviews 253

algebras under the weak topology structure. The sources of the presented results
are carefully mentioned and interesting open questions are pointed out for further
investigations. The book will be an important reference tool for researchers working
in fixed point theory and related topics, as well as, for those interested in applications
of this theory in other areas, such as physics and biology.

Adrian Petruşel
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