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Şahsene Altınkaya and Sibel Yalçın, Faber polynomial coefficient
bounds for a subclass of bi-univalent functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Abiodun Tinuoye Oladipo, Coefficient inequality for subclass of analytic
univalent functions related to simple logistic activation functions . . . . . . . . . . . 45

Richa Brar and Sukhwinder Singh Billing, Certain sufficient
conditions for parabolic starlike and uniformly close-to-convex functions . . . .53

Kanika Sharma and V. Ravichandran, Sufficient conditions for Janowski
starlike functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Ahmed Bendjeddou and Rachid Boukoucha, Explicit limit cycles
of a cubic polynomial differential systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Cristina Urs, Fixed point theorems for a system of operator equations
with applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

Junfeng Chen and Shichang Shu, Compact hypersurfaces in a locally
symmetric manifold . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95
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New fractional estimates of Hermite-Hadamard
inequalities and applications to means

Muhammad Aslam Noor, Khalida Inayat Noor and Muhammad Uzair
Awan

Abstract. The main objective of this paper is to obtain some new fractional
estimates of Hermite-Hadamard type inequalities via h-convex functions. A new
fractional integral identity for three times differentiable function is established.
This result plays an important role in the development of new results. Several
new special cases are also discussed. Some applications to means of real numbers
are also discussed.

Mathematics Subject Classification (2010): 26A33, 26D15, 26A51.

Keywords: Convex functions, h-convex, fractional integrals, Hermite-Hadamard
inequality.

1. Introduction and preliminaries

Throughout the sequel of the paper, let set of real numbers be denoted by R,
I = [a, b] ⊂ R be the real interval and I◦ be the interior of I unless otherwise specified.

Definition 1.1. A function f : I → R is said to be classical convex function, if

f ((1− t)x+ ty) ≤ (1− t)f(x) + tf(y), ∀x, y ∈ I, t ∈ [0, 1]. (1.1)

In recent years numerous generalizations of classical convex functions have been pro-
posed, see [1, 2, 3, 4, 5, 6, 11, 19]. Varosanec [19] investigated a new class of convex
functions which she named as h-convex functions. This class is unifying one and it
includes some other classes of convex functions, such as, s-Breckner convex functions
[1], s-Godunova-Levin-Dragomir convex functions [3], Godunova-Levin functions [6]
and P -functions [5].
The h-convexity is defined as:

Definition 1.2. [19] Let h : [0, 1] → R be a non-negative function. A non-negative
function f : I → R is said to be h-convex function, if

f ((1− t)x+ ty) ≤ h(1− t)f(x) + h(t)f(y), ∀x, y ∈ I, t ∈ [0, 1]. (1.2)
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For different suitable choices of function h(.) one can have other classes of convex
functions.
Every one is familiar with the fact that theory of convex functions has a close re-
lation with theory of inequalities. In fact many classical inequalities are derived
using convexity property. Thus these facts inspired a number of researchers to in-
vestigate both theories. Consequently several new generalizations of classical in-
equalities have been obtained via different generalizations of convex functions, see
[3, 4, 5, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 22, 23, 24].
Nowadays fractional calculus is a vibrant area of research in mathematics. The history
of fractional calculus started with the letter of L’Hospital to Leibniz on 30th Septem-
ber 1695 in which he enquired Leibniz about the notation he used in his publications
for n-th order derivative of the linear function f(x) = x, D

nx
Dxn . L’Hospital asked a ques-

tion to Leibniz that what would happen if n = 1
2 . Leibniz’s replied: ”An apparent

paradox, from which one day useful consequences will be drawn.” With this the study
of fractional calculus had begun. Several applications of fractional calculus have been
found till now. For some useful information on fractional calculus and its applications,
see [7, 8, 9]. A recent approach of obtaining fractional version of classical integral in-
equalities has also attracted researchers. For example, see [11, 12, 15, 19, 22]. The
motivation of this article is to establish some new fractional estimates of Hermite-
Hadamard type inequalities via h-convex functions. Some special cases which can be
derived from our main results are also discussed. In the end some application to spe-
cial means of real numbers are also discussed.
We now recall some preliminary concepts which are widely used throughout the paper.

Definition 1.3. [9] Let f ∈ L1[a, b]. Then Riemann-Liouville integrals Jαa+f and Jαb−f
of order α > 0 with a ≥ 0 are defined by

Jαa+f(x) =
1

Γ(α)

x∫
a

(x− t)α−1f(t)dt, x > a,

and

Jαb−f(x) =
1

Γ(α)

b∫
x

(t− x)α−1f(t)dt, x < b,

where

Γ(α) =

∫ ∞
0

e−txα−1dx,

is the Gamma function.

B(x, y) =

∫ 1

0

tx−1(1− t)y−1 dt =
Γ(x)Γ(y)

Γ(x+ y)
.

The integral form of the hypergeometric function is

2F1(x, y; c; z) =
1

B(y, c− y)

∫ 1

0

ty−1(1− t)c−y−1(1− zt)−xdt

for |z| < 1, c > y > 0.
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Recall that

1. For arbitrary a, b ∈ R \ {0} and a 6= b, L(b, a) =
b− a

log b− log a
, is the logarithmic

mean.

2. For arbitrary a, b ∈ R and a 6= b, A(a, b) =
a+ b

2
, is the arithmetic mean.

3. The extended logarithmic mean Lp of two positive numbers a, b is given for a = b
by Lp(a, a) = a and for a 6= b by

Lp(a, b) =



[
bp+1−ap+1

(p+1)(b−a)

] 1
p

, p 6= −1, 0,

b−a
log b−log a , p = −1,

1
e

(
bb

aa

) 1
b−a

, p = 0.

2. Main results

To prove our main results, we need following auxiliary result.

Lemma 2.1. Let f : I → R be three times differentiable function on the interior I◦ of
I. If f ′′′ ∈ L[a, b], then

Lf (a, b;n;α) =
(b− a)3

(n+ 1)4(α+ 1)(α+ 2)

×
1∫

0

(1− t)α+2

[
−f ′′′

(
n+ t

n+ 1
a+

1− t
n+ 1

b

)
+ f ′′′

(
1− t
n+ 1

a+
n+ t

n+ 1
b

)]
dt,

where

Lf (a, b;n;α) =
(n+ 1)α−1Γ(α+ 1)

(b− a)α

[
Jα
( n

n+1a+
1

n+1 b)
−f(a) + Jα

( 1
n+1a+

n
n+1 b)

+f(b)

]
− (b− a)2

(n+ 1)3(α+ 1)(α+ 2)

[
f ′′
(

n

n+ 1
a+

1

n+ 1
b

)
+f ′′

(
1

n+ 1
a+

n

n+ 1
b

)]
+

b− a
(n+ 1)2(α+ 1)

[
f ′
(

n

n+ 1
a+

1

n+ 1
b

)
+f ′

(
1

n+ 1
a+

n

n+ 1
b

)]
− 1

n+ 1

[
f

(
n

n+ 1
a+

1

n+ 1
b

)
+f

(
1

n+ 1
a+

n

n+ 1
b

)]
.
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Proof. Let

I ,

1∫
0

(1− t)α+2

[
−f ′′′

(
n+ t

n+ 1
a+

1− t
n+ 1

b

)
+ f ′′′

(
1− t
n+ 1

a+
n+ t

n+ 1
b

)]
dt

= −
1∫

0

(1− t)α+2f ′′′
(
n+ t

n+ 1
a+

1− t
n+ 1

b

)
dt+

1∫
0

(1− t)αf ′′′
(

1− t
n+ 1

a+
n+ t

n+ 1
b

)
dt

= −I1 + I2. (2.1)

Integrating I1 on [0, 1] yields

I1 ,

1∫
0

(1− t)α+2f ′′′
(
n+ t

n+ 1
a+

1− t
n+ 1

b

)
dt

=
n+ 1

b− a
f ′′
(

n

n+ 1
a+

1

n+ 1
b

)
− (n+ 1)2(α+ 2)

(b− a)2
f ′
(

n

n+ 1
a+

1

n+ 1
b

)
+

(n+ 1)3(α+ 1)(α+ 2)

(b− a)3
f

(
n

n+ 1
a+

1

n+ 1
b

)
− (n+ 1)α+3Γ(α+ 3)

(b− a)α+3
Jα
( n

n+1a+
1

n+1 b)
−f(a). (2.2)

Similarly, integrating I2 on [0, 1], we have

I2 ,

1∫
0

(1− t)α+2f ′′′
(

1− t
n+ 1

a+
n+ t

n+ 1
b

)
dt

= −n+ 1

b− a
f ′′
(

1

n+ 1
a+

n

n+ 1
b

)
− (n+ 1)2(α+ 2)

(b− a)2
f ′
(

1

n+ 1
a+

n

n+ 1
b

)
− (n+ 1)3(α+ 1)(α+ 2)

(b− a)3
f

(
1

n+ 1
a+

n

n+ 1
b

)
+

(n+ 1)α+3Γ(α+ 3)

(b− a)α+3
Jα
( 1

n+1a+
n

n+1 b)
+f(b). (2.3)

Summation of (2.2), (2.3) and (2.1) and then multiplying both sides by

(b− a)3

(n+ 1)4(α+ 1)(α+ 2)

completes the proof. �

Note that for n = 1 and α = 1 in Lemma 2.1, we have previously Lemma [24].
If n = 1 in Lemma 2.1, then, we have Lemma 3.1 [14].

Theorem 2.2. Let f : I → R be three times differentiable function on the interior I◦

of I. If f ′′′ ∈ L[a, b] and |f ′′′| is h-convex function, then

|Lf (a, b;n;α)| ≤ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)
Ψ(n;h; t) [|f ′′′(a)|+ |f ′′′(b)|] ,
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where

Ψ(h;n; t) =

1∫
0

(1− t)α+2

[
h

(
n+ t

n+ 1

)
+ h

(
1− t
n+ 1

)]
dt.

Proof. Using Lemma 2.1 and the given hypothesis, we have

|Lf (a, b;n;α)|

=

∣∣∣∣∣ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

×
1∫

0

(1− t)α+2

[
−f ′′′

(
n+ t

n+ 1
a+

1− t
n+ 1

b

)
+ f ′′′

(
1− t
n+ 1

a+
n+ t

n+ 1
b

)]
dt

∣∣∣∣∣
≤ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

×

{∣∣∣∣∣
1∫

0

(1− t)α+2f ′′′
(
n+ t

n+ 1
a+

1− t
n+ 1

b

)
dt

∣∣∣∣∣
+

∣∣∣∣∣
1∫

0

(1− t)α+2f ′′′
(

1− t
n+ 1

a+
n+ t

n+ 1
b

)
dt

∣∣∣∣∣
}

≤ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

1∫
0

(1− t)α+2

∣∣∣∣f ′′′( n+ t

n+ 1
a+

1− t
n+ 1

b

)∣∣∣∣dt
+

(b− a)3

(n+ 1)4(α+ 1)(α+ 2)

1∫
0

(1− t)α+2

∣∣∣∣f ′′′( 1− t
n+ 1

a+
n+ t

n+ 1
b

)∣∣∣∣dt
≤ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

1∫
0

(1− t)α+2

[
h

(
n+ t

n+ 1

)
|f ′′′(a)|+ h

(
1− t
n+ 1

)
|f ′′′(b)|

]
dt

+
(b− a)3

(n+ 1)4(α+ 1)(α+ 2)

1∫
0

(1− t)α+2

[
h

(
1− t
n+ 1

)
|f ′′′(a)|+ h

(
n+ t

n+ 1

)
|f ′′′(b)|

]
dt

=
(b− a)3

(n+ 1)4(α+ 1)(α+ 2)

×

 1∫
0

(1− t)α+2

[
h

(
n+ t

n+ 1

)
+ h

(
1− t
n+ 1

)]
dt

 [|f ′′′(a)|+ |f ′′′(b)|] .

This completes the proof. �
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Theorem 2.3. Let f : I → R be three times differentiable function on the interior I◦

of I. If f ′′′ ∈ L[a, b] and |f ′′′|q is h-convex function where 1
p + 1

q = 1, p, q > 1, then

|Lf (a, b;n;α)| ≤ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

(
1

p(α+ 2) + 1

) 1
p

×




1∫
0

h

(
n+ t

n+ 1

)
dt

 |f ′′′(a)|q +


1∫

0

h

(
1− t
n+ 1

)
dt

 |f ′′′(b)|q


1
q

+


1∫

0

h

(
1− t
n+ 1

)
dt

 |f ′′′(a)|q +


1∫

0

h

(
n+ t

n+ 1

)
dt

 |f ′′′(b)|q


1
q

 .
Proof. Using given hypothesis, Lemma 2.1 and the Hölder’s inequality, we have

|Lf (a, b;n;α)|

=

∣∣∣∣∣ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

×
1∫

0

(1− t)α+2

[
−f ′′′

(
n+ t

n+ 1
a+

1− t
n+ 1

b

)
+ f ′′′

(
1− t
n+ 1

a+
n+ t

n+ 1
b

)]
dt

∣∣∣∣∣
≤

∣∣∣∣∣∣ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

1∫
0

(1− t)α+2f ′′′
(
n+ t

n+ 1
a+

1− t
n+ 1

b

)
dt

∣∣∣∣∣∣
+

∣∣∣∣∣∣ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

1∫
0

(1− t)α+2f ′′′
(

1− t
n+ 1

a+
n+ t

n+ 1
b

)
dt

∣∣∣∣∣∣
≤ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

1∫
0

(1− t)α+2

∣∣∣∣f ′′′( n+ t

n+ 1
a+

1− t
n+ 1

b

)∣∣∣∣dt
+

(b− a)3

(n+ 1)4(α+ 1)(α+ 2)

1∫
0

(1− t)α+2

∣∣∣∣f ′′′( 1− t
n+ 1

a+
n+ t

n+ 1
b

)∣∣∣∣dt
≤ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

 1∫
0

(1− t)p(α+2)dt


1
p
 1∫

0

∣∣∣∣f ′′′( n+ t

n+ 1
a+

1− t
n+ 1

b

)∣∣∣∣q dt


1
q

+
(b− a)3

(n+ 1)4(α+ 1)(α+ 2)

 1∫
0

(1− t)p(α+2)dt


1
p
 1∫

0

∣∣∣∣f ′′′( 1− t
n+ 1

a+
n+ t

n+ 1
b

)∣∣∣∣q dt


1
q
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≤ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

(
1

p(α+ 2) + 1

) 1
p

×




1∫
0

h

(
n+ t

n+ 1

)
dt

 |f ′′′(a)|q +


1∫

0

h

(
1− t
n+ 1

)
dt

 |f ′′′(b)|q


1
q

+


1∫

0

h

(
1− t
n+ 1

)
dt

 |f ′′′(a)|q +


1∫

0

h

(
n+ t

n+ 1

)
dt

 |f ′′′(b)|q


1
q

 .
This completes the proof. �

Theorem 2.4. Let f : I → R be three times differentiable function on the interior I◦

of I. If f ′′′ ∈ L[a, b] and |f ′′′|q is h-convex function where q > 1, then

|Lf (a, b;n;α)|

≤ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

(
1

α+ 3

)1− 1
q

×


 1∫

0

(1− t)α+2

{
h

(
n+ t

n+ 1

)
|f ′′′(a)|q + h

(
1− t
n+ 1

)
|f ′′′(b)|q

}
dt


1
q

+

 1∫
0

(1− t)α+2

{
h

(
1− t
n+ 1

)
|f ′′′(a)|q + h

(
n+ t

n+ 1

)
|f ′′′(b)|q

}
dt


1
q

 .
Proof. Using given hypothesis, Lemma 2.1 and power mean inequality, we have

|Lf (a, b;n;α)|

=

∣∣∣∣∣ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

×
1∫

0

(1− t)α+2

[
−f ′′′

(
n+ t

n+ 1
a+

1− t
n+ 1

b

)
+ f ′′′

(
1− t
n+ 1

a+
n+ t

n+ 1
b

)]
dt

∣∣∣∣∣
≤

∣∣∣∣∣∣ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

1∫
0

(1− t)α+2f ′′′
(
n+ t

n+ 1
a+

1− t
n+ 1

b

)
dt

∣∣∣∣∣∣
+

∣∣∣∣∣∣ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

1∫
0

(1− t)α+2f ′′′
(

1− t
n+ 1

a+
n+ t

n+ 1
b

)
dt

∣∣∣∣∣∣
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≤ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

 1∫
0

(1− t)α+2dt

1− 1
q

×

 1∫
0

(1− t)α+2

∣∣∣∣f ′′′( n+ t

n+ 1
a+

1− t
n+ 1

b

)∣∣∣∣q dt


1
q

+
(b− a)3

(n+ 1)4(α+ 1)(α+ 2)

 1∫
0

(1− t)α+2dt

1− 1
q

×

 1∫
0

(1− t)α+2

∣∣∣∣f ′′′( 1− t
n+ 1

a+
n+ t

n+ 1
b

)∣∣∣∣q dt


1
q

≤ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

 1∫
0

(1− t)α+2dt

1− 1
q

×

 1∫
0

(1− t)α+2

{
h

(
n+ t

n+ 1

)
|f ′′′(a)|q + h

(
1− t
n+ 1

)
|f ′′′(b)|q

}
dt


1
q

+
(b− a)3

(n+ 1)4(α+ 1)(α+ 2)

 1∫
0

(1− t)α+2dt

1− 1
q

×

 1∫
0

(1− t)α+2

{
h

(
1− t
n+ 1

)
|f ′′′(a)|q + h

(
n+ t

n+ 1

)
|f ′′′(b)|q

}
dt


1
q

≤ (b− a)3

(n+ 1)4(α+ 1)(α+ 2)

(
1

α+ 3

)1− 1
q

×


 1∫

0

(1− t)α+2

{
h

(
n+ t

n+ 1

)
|f ′′′(a)|q + h

(
1− t
n+ 1

)
|f ′′′(b)|q

}
dt


1
q

+

 1∫
0

(1− t)α+2

{
h

(
1− t
n+ 1

)
|f ′′′(a)|q + h

(
n+ t

n+ 1

)
|f ′′′(b)|q

}
dt


1
q

 .
This completes the proof. �

We now discuss some special cases of the results proved in previous section.

I. If h(t) = ts in Theorem 2.2, then, we have result for s-Breckner convex function.
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Corollary 2.5. Under the assumptions of Theorem 2.2, if |f ′′′| is s-Breckner convex
function, then

|Lf (a, b;n;α)| ≤ (b− a)3

(n+ 1)s+4(α+ 1)(α+ 2)
Ψ(n; s; t) [|f ′′′(a)|+ |f ′′′(b)|] ,

where

Ψ(n; s; t) =

1∫
0

(1− t)α+2 [(n+ t)
s

+ (1− t)s] dt

=
ns

α+ 3
2F1

[
1,−s;α+ 4;− 1

n

]
+

1

α+ s+ 3
.

II. If h(t) = t−s in Theorem 2.2, then, we have result for s-Godunova-Levin-Dragomir
function.

Corollary 2.6. Under the assumptions of Theorem 2.2, if |f ′′′| is s-Godunova-Levin-
Dragomir function, then

|Lf (a, b;n;α)| ≤ (b− a)3

(n+ 1)4−s(α+ 1)(α+ 2)
Ψ(n;−s; t) [|f ′′′(a)|+ |f ′′′(b)|] ,

where

Ψ(n;−s; t) =

1∫
0

(1− t)α+2
[
(n+ t)

−s
+ (1− t)−s

]
dt

=
1

ns(α+ 3)
2F1

[
1, s;α+ 4;− 1

n

]
+

1

α− s+ 3
.

III. If h(t) = 1 in Theorem 2.2, then, we have result for P -function.

Corollary 2.7. Under the assumptions of Theorem 2.2, if |f ′′′| is P -function, then

|Lf (a, b;n;α)| ≤ 2(b− a)3

(n+ 1)4(α+ 1)(α+ 2)(α+ 3)
[|f ′′′(a)|+ |f ′′′(b)|] .

IV. If h(t) = ts in Theorem 2.3, then, we have result for s-Breckner convex function.

Corollary 2.8. Under the assumptions of Theorem 2.3, if |f ′′′|q is s-Breckner convex
function, then

|Lf (a, b;n;α)|

≤ (b− a)3

(n+ 1)4+
s
q (α+ 1)(α+ 2)

(
1

p(α+ 2) + 1

) 1
p

×

[({
(1 + n)1+s − n1+s

1 + s

}
|f ′′′(a)|q +

{
1

1 + s

}
|f ′′′(b)|q

) 1
q

+

({
1

1 + s

}
|f ′′′(a)|q +

{
(1 + n)1+s − n1+s

1 + s

}
|f ′′′(b)|q

) 1
q

]
.
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V. If h(t) = t−s in Theorem 2.3, then, we have result for s-Godunova-Levin-Dragomir
convex function.

Corollary 2.9. Under the assumptions of Theorem 2.3, if |f ′′′|q is s-Godunova-Levin-
Dragomir convex function, then

|Lf (a, b;n;α)|

≤ (b− a)3

(n+ 1)4−
s
q (α+ 1)(α+ 2)

(
1

p(α+ 2) + 1

) 1
p

×

[({
(n(1 + n))−s(−ns(1 + n) + n(1 + n)s)

s− 1

}
|f ′′′(a)|q +

{
1

1− s

}
|f ′′′(b)|q

) 1
q

+

({
1

1− s

}
|f ′′′(a)|q +

{
(n(1 + n))−s(−ns(1 + n) + n(1 + n)s)

s− 1

}
|f ′′′(b)|q

) 1
q

]
.

VI. If h(t) = 1 in Theorem 2.3, then, we have result for P -function.

Corollary 2.10. Under the assumptions of Theorem 2.3, if |f ′′′|q is P -function, then

|Lf (a, b;n;α)| ≤ 2(b− a)3

(n+ 1)4(α+ 1)(α+ 2)

(
1

p(α+ 2) + 1

) 1
p

[|f ′′′(a)|q + |f ′′′(b)|q]
1
q .

VII. If h(t) = ts in Theorem 2.4, then, we have result for s-Breckner convex function.

Corollary 2.11. Under the assumptions of Theorem 2.4, if h(t) = ts, then, we have
result for s-Breckner convex function.

|Lf (a, b;n;α)|

≤ (b− a)3

(n+ 1)4+
s
q (α+ 1)(α+ 2)

(
1

α+ 3

)1− 1
q

×

({(ns 2F1

[
1,−s;α+ 4;− 1

n

]
α+ 3

)
|f ′′′(a)|q +

(
1

α+ s+ 3

)
|f ′′′(b)|q

}
dt

) 1
q

+

({(
1

α+ s+ 3

)
|f ′′′(a)|q +

(
ns 2F1

[
1,−s;α+ 4;− 1

n

]
α+ 3

)
|f ′′′(b)|q

}
dt

) 1
q

 .
VIII. If h(t) = t−s in Theorem 2.4, then, we have result for s-Godunova-Levin-
Dragomir convex function.
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Corollary 2.12. Under the assumptions of Theorem 2.4, if h(t) = ts, then, we have
result for s-Godunova-Levin-Dragomir convex function.

|Lf (a, b;n;α)|

≤ (b− a)3

(n+ 1)4−
s
q (α+ 1)(α+ 2)

(
1

α+ 3

)1− 1
q

×

({( 2F1

[
1, 2;α+ 4; 1

n

]
ns(α+ 3)

)
|f ′′′(a)|q +

(
1

α− s+ 3

)
|f ′′′(b)|q

}
dt

) 1
q

+

({(
1

α− s+ 3

)
|f ′′′(a)|q +

(
2F1

[
1, 2;α+ 4; 1

n

]
ns(α+ 3)

)
|f ′′′(b)|q

}
dt

) 1
q

 .
IX. If h(t) = 1 in Theorem 2.4, then, we have result for P -function.

Corollary 2.13. Under the assumptions of Theorem 2.4, if h(t) = ts, then, we have
result for p-function.

|Lf (a, b;n;α)|

≤ 2(b− a)3

(n+ 1)4(α+ 1)(α+ 2)(α+ 3)
[|f ′′′(a)|q + |f ′′′(b)|q] .

3. Applications

In this section, we present some applications to means of real numbers.

Proposition 3.1. For some s ∈ (0, 1), 0 ≤ a < b, then∣∣∣∣L(a, b)− s(s− 1)(b− a)3

24
As−2(a, b)−As(a, b)

∣∣∣∣
≤ s(s− 1)(s− 2)(b− a)3

192

[
|a|s−3 + |b|s−3

]
.

Proof. The assertion directly follows from Theorem 2.2 applying for h(t) = ts,
f : [0, 1]→ [0, 1], f(x) = xs and α = 1, n = 1. �

Proposition 3.2. For some s ∈ (0, 1), 0 ≤ a < b and 1
p + 1

q = 1, 1 < q <∞, then∣∣∣∣L(a, b)− s(s− 1)(b− a)3

24
As−2(a, b)−As(a, b)

∣∣∣∣
≤ s(s− 1)(s− 2)(b− a)3

96

(
1

3p+ 1

) 1
p

×

[(
3

4
|a|q(s−3) +

1

2
|b|q(s−3)

) 1
q

+

(
1

2
|a|q(s−3) +

3

4
|b|q(s−3)

) 1
q

]
.

Proof. The assertion directly follows from Theorem 2.3 applying for h(t) = ts,
f : [0, 1]→ [0, 1], f(x) = xs and α = 1, n = 1. �
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Proposition 3.3. For some s ∈ (0, 1), 0 ≤ a < b and q > 1, then∣∣∣∣L(a, b)− s(s− 1)(b− a)3

24
As−2(a, b)−As(a, b)

∣∣∣∣
≤ s(s− 1)(s− 2)(b− a)3

384

(
4

5

) 1
q

×

[(
3

2
|a|q(s−3) + |b|q(s−3)

) 1
q

+

(
|a|q(s−3) +

3

2
|b|q(s−3)

) 1
q

]
.

Proof. The assertion directly follows from Theorem 2.4 applying for h(t) = ts,
f : [0, 1]→ [0, 1], f(x) = xs and α = 1, n = 1. �
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Generalized g-fractional calculus and iterative
methods

George A. Anastassiou and Ioannis K. Argyros

Abstract. We approximated solutions of some iterative methods on a generalized
Banach space setting in [5]. Earlier studies such as [7-12] the operator involved
is Fréchet-differentiable. In [5] we assumed that the operator is only continu-
ous. This way we extended the applicability of these methods to include gener-
alized fractional calculus and problems from other areas. In the present study
applications include generalized g-fractional calculus. Fractional calculus is very
important for its applications in many applied sciences.

Mathematics Subject Classification (2010): 26A33, 65G99, 47J25.

Keywords: Generalized Banach space, semilocal convergence, g-fractional calcu-
lus.

1. Introduction

Many problems in Computational sciences can be formulated as an operator
equation using Mathematical Modelling [8, 10, 13, 14, 15]. The fixed points of these
operators can rarely be found in closed form. That is why most solution methods are
usually iterative.

The semilocal convergence is, based on the information around an initial point,
to give conditions ensuring the convergence of the method.

We presented a semilocal convergence analysis for some iterative methods on a
generalized Banach space setting in [5] to approximate fixed point or a zero of an
operator. A generalized norm is defined to be an operator from a linear space into a
partially order Banach space (to be precised in section 2). Earlier studies such as [7-12]
for Newton’s method have shown that a more precise convergence analysis is obtained
when compared to the real norm theory. However, the main assumption is that the
operator involved is Fréchet-differentiable. This hypothesis limits the applicability of
Newton’s method. In [5] study we only assumed the continuity of the operator. This
may be expanded the applicability of these methods.
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The rest of the paper is organized as follows: section 2 contains the basic concepts
on generalized Banach spaces and the semilocal convergence analysis of these methods.
Finally, in the concluding section 3, we present special cases and applications in
generalized g-fractional calculus.

2. Generalized Banach spaces

We present some standard concepts that are needed in what follows to make the
paper as self contained as possible. More details on generalized Banach spaces can be
found in [5-12], and the references there in.

Definition 2.1. A generalized Banach space is a triplet (X,E, /·/) such that

(i) X is a linear space over R (C) .

(ii) E = (E,K, ‖·‖) is a partially ordered Banach space, i.e.

(ii1) (E, ‖·‖) is a real Banach space,

(ii2) E is partially ordered by a closed convex cone K,

(iii3) The norm ‖·‖ is monotone on K.

(iii) The operator /·/ : X → K satisfies

/x/ = 0⇔ x = 0, /θx/ = |θ| /x/ ,

/x+ y/ ≤ /x/ + /y/ for each x, y ∈ X, θ ∈ R(C).

(iv) X is a Banach space with respect to the induced norm ‖·‖i := ‖·‖ · /·/ .

Remark 2.2. The operator /·/ is called a generalized norm. In view of (iii) and (ii3)
‖·‖i , is a real norm. In the rest of this paper all topological concepts will be understood
with respect to this norm.

Let L
(
Xj , Y

)
stand for the space of j-linear symmetric and bounded opera-

tors from Xj to Y , where X and Y are Banach spaces. For X,Y partially ordered
L+

(
Xj , Y

)
stands for the subset of monotone operators P such that

0 ≤ ai ≤ bi ⇒ P (a1, ..., aj) ≤ P (b1, ..., bj) .

Definition 2.3. The set of bounds for an operator Q ∈ L (X,X) on a generalized
Banach space (X,E, /·/) is defined to be:

B (Q) := {P ∈ L+ (E,E) , /Qx/ ≤ P /x/ for each x ∈ X} .

Let D ⊂ X and T : D → D be an operator. If x0 ∈ D the sequence {xn} given by

xn+1 := T (xn) = Tn+1 (x0)

is well defined. We write in case of convergence

T∞ (x0) := lim (Tn (x0)) = lim
n→∞

xn.

Let (X, (E,K, ‖·‖) , /·/) and Y be generalized Banach spaces, D ⊂ X an open
subset, G : D → Y a continuous operator and A (·) : D → L (X,Y ). A zero of operator
G is to be determined by a method starting at a point x0 ∈ D. The results are
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presented for an operator F = JG, where J ∈ L (Y,X). The iterates are determined
through a fixed point problem:

xn+1 = xn + yn, A (xn) yn + F (xn) = 0 (2.1)

⇔ yn = T (yn) := (I −A (xn)) yn − F (xn) .

Let U (x0, r) stand for the ball defined by

U (x0, r) := {x ∈ X : /x− x0/ ≤ r}

for some r ∈ K.
Next, we state the semilocal convergence analysis of method (2.1) using the

preceding notation.

Theorem 2.4. [5] Let F : D ⊂ X, A (·) : D → L (X,Y ) and x0 ∈ D be as defined
previously. Suppose:

(H1) There exists an operator M ∈ B (I −A (x)) for each x ∈ D.
(H2) There exists an operator N ∈ L+ (E,E) satisfying for each x, y ∈ D

/F (y)− F (x)−A (x) (y − x)/ ≤ N /y − x/ .

(H3) There exists a solution r ∈ K of

R0 (t) := (M +N) t+ /F (x0)/ ≤ t.

(H4) U (x0, r) ⊆ D.
(H5) (M +N)

k
r → 0 as k →∞.

Then, the following hold:
(C1) The sequence {xn} defined by

xn+1 = xn + T∞n (0) , Tn (y) := (I −A (xn)) y − F (xn) (2.2)

is well defined, remains in U (x0, r) for each n = 0, 1, 2, ... and converges to the unique
zero of operator F in U (x0, r) .

(C2) An apriori bound is given by the null-sequence {rn} defined by r0 := r and
for each n = 1, 2, ...

rn = P∞n (0) , Pn (t) = Mt+Nrn−1.

(C3) An aposteriori bound is given by the sequence {sn} defined by

sn := R∞n (0) , Rn (t) = (M +N) t+Nan−1,

bn := /xn − x0/ ≤ r − rn ≤ r,
where

an−1 := /xn − xn−1/ for each n = 1, 2, ...

Remark 2.5. The results obtained in earlier studies such as [7-12] require that operator
F (i.e. G) is Fréchet-differentiable. This assumption limits the applicability of the
earlier results. In the present study we only require that F is a continuous operator.
Hence, we have extended the applicability of these methods to include classes of
operators that are only continuous.
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Example 2.6. The j-dimensional space Rj is a classical example of a generalized
Banach space. The generalized norm is defined by componentwise absolute values.
Then, as ordered Banach space we set E = Rj with componentwise ordering with
e.g. the maximum norm. A bound for a linear operator (a matrix) is given by the
corresponding matrix with absolute values. Similarly, we can define the ”N” operators.
Let E = R. That is we consider the case of a real normed space with norm denoted
by ‖·‖. Let us see how the conditions of Theorem 2.4 look like.

Theorem 2.7. (H1) ‖I −A (x)‖ ≤M for some M ≥ 0.
(H2) ‖F (y)− F (x)−A (x) (y − x)‖ ≤ N ‖y − x‖ for some N ≥ 0.

(H3) M +N < 1,

r =
‖F (x0)‖

1− (M +N)
. (2.3)

(H4) U (x0, r) ⊆ D.
(H5) (M +N)

k
r → 0 as k →∞, where r is given by (2.3).

Then, the conclusions of Theorem 2.4 hold.

3. Applications to g-fractional calculus

We apply Theorem 2.7 in this section. Here basic concepts and facts come
from [4]. We need

Definition 3.1. Let α > 0, α /∈ N, dαe = m, d·e the ceiling of the number. Here
g ∈ AC ([a, b]) (absolutely continuous functions) and g is strictly increasing.

Let G : [a, b]→ R such that
(
G ◦ g−1

)(m) ◦ g ∈ L∞ ([a, b]).
We define the left generalized g-fractional derivative of G of order α as follows:(

Dα
a+;gG

)
(x) :=

1

Γ (m− α)

∫ x

a

(g (x)− g (t))
m−α−1

g′ (t)
(
G ◦ g−1

)(m)
(g (t)) dt,

(3.1)
a ≤ x ≤ b, where Γ is the gamma function.

We also define the right generalized g-fractional derivative of G of order α as
follows:(

Dα
b−;gG

)
(x) :=

(−1)
m

Γ (m− α)

∫ b

x

(g (t)− g (x))
m−α−1

g′ (t)
(
G ◦ g−1

)(m)
(g (t)) dt,

(3.2)
a ≤ x ≤ b.

Both
(
Dα
a+;gG

)
,
(
Dα
b−;gG

)
∈ C ([a, b]).

(I) Let a < a∗ < b. In particular we have that
(
Dα
a+;gG

)
∈ C ([a∗, b]). We notice

that

∣∣(Dα
a+;gG

)
(x)
∣∣ ≤

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Γ (m− α)

(∫ x

a

(g (x)− g (t))
m−α−1

g′ (t) dt

)
(3.3)
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=

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Γ (m− α)

(g (x)− g (a))
m−α

(m− α)

=

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Γ (m− α+ 1)
(g (x)− g (a))

m−α
, ∀ x ∈ [a, b] .

We have proved that

∣∣(Dα
a+;gG

)
(x)
∣∣ ≤

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Γ (m− α+ 1)
(g (x)− g (a))

m−α

≤

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Γ (m− α+ 1)
(g (b)− g (a))

m−α
<∞, ∀ x ∈ [a, b] , (3.4)

in particular true ∀ x ∈ [a∗, b] .
We obtain that (

Dα
a+;gG

)
(a) = 0. (3.5)

Therefore there exist x1, x2 ∈ [a∗, b] such that Dα
a+;gG (x1) = minDα

a+;gG (x), and
Dα
a+;gG (x2) = maxDα

a+;gG (x), for x ∈ [a∗, b].
We assume that

Dα
a+;gG (x1) > 0. (3.6)

(i.e. Dα
a+;gG (x) > 0, ∀ x ∈ [a∗, b]).

Furthermore ∥∥Dα
a+;gG

∥∥
∞,[a∗,b] = Dα

a+;gG (x2) . (3.7)

Here it is
J (x) = mx, m 6= 0. (3.8)

The equation
JG (x) = 0, x ∈ [a∗, b] , (3.9)

has the same set of solutions as the equation

F (x) :=
JG (x)

2Dα
a+;gG (x2)

= 0, x ∈ [a∗, b] . (3.10)

Notice that

Dα
a+;g

(
G (x)

2Dα
a+;gG (x2)

)
=

Dα
a+;gG (x)

2Dα
a+;gG (x2)

≤ 1

2
< 1, ∀ x ∈ [a∗, b] . (3.11)

We call

A (x) :=
Dα
a+;gG (x)

2Dα
a+;gG (x2)

, ∀ x ∈ [a∗, b] . (3.12)

We notice that

0 <
Dα
a+;gG (x1)

2Dα
a+;gG (x2)

≤ A (x) ≤ 1

2
. (3.13)

Hence it holds

|1−A (x)| = 1−A (x) ≤ 1−
Dα
a+;gG (x1)

2Dα
a+;gG (x2)

=: γ0, ∀ x ∈ [a∗, b] . (3.14)
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Clearly γ0 ∈ (0, 1) .
We have proved that

|1−A (x)| ≤ γ0 ∈ (0, 1) , ∀ x ∈ [a∗, b] . (3.15)

Next we assume that F (x) is a contraction over [a∗, b], i.e.

|F (x)− F (y)| ≤ λ |x− y| ; ∀ x, y ∈ [a∗, b] , (3.16)

and 0 < λ < 1
2 .

Equivalently we have

|JG (x)− JG (y)| ≤ 2λ
(
Dα
a+;gG (x2)

)
|x− y| , ∀ x, y ∈ [a∗, b] . (3.17)

We observe that

|F (y)− F (x)−A (x) (y − x)| ≤ |F (y)− F (x)|+ |A (x)| |y − x|

≤ λ |y − x|+ |A (x)| |y − x| = (λ+ |A (x)|) |y − x| =: (ξ1) , ∀ x, y ∈ [a∗, b] . (3.18)

Hence by (3.4), ∀ x ∈ [a∗, b] we get that

|A (x)| =
∣∣Dα

a+;gG (x)
∣∣

2Dα
a+;gG (x2)

≤ (g (b)− g (a))
m−α

2Γ (m− α+ 1)

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Dα
a+;gG (x2)

<∞. (3.19)

Consequently we observe

(ξ1) ≤

λ+
(g (b)− g (a))

m−α

2Γ (m− α+ 1)

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Dα
a+;gG (x2)

 |y − x| , (3.20)

∀ x, y ∈ [a∗, b] .
Call

0 < γ1 := λ+
(g (b)− g (a))

m−α

2Γ (m− α+ 1)

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Dα
a+;gG (x2)

, (3.21)

choosing (g (b)− g (a)) small enough we can make γ1 ∈ (0, 1).
We proved that

|F (y)− F (x)−A (x) (y − x)| ≤ γ1 |y − x| , where γ1 ∈ (0, 1) , ∀ x, y ∈ [a∗, b] .
(3.22)

Next we call and need

0 < γ := γ0 + γ1 = 1−
Dα
a+;gG (x1)

2Dα
a+;gG (x2)

+ λ

+
(g (b)− g (a))

m−α

2Γ (m− α+ 1)

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Dα
a+;gG (x2)

< 1, (3.23)

equivalently we find,

λ+
(g (b)− g (a))

m−α

2Γ (m− α+ 1)

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Dα
a+;gG (x2)

<
Dα
a+;gG (x1)

2Dα
a+;gG (x2)

, (3.24)
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equivalently,

2λDα
a+;gG (x2)+

(g (b)− g (a))
m−α

Γ (m− α+ 1)

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

< Dα
a+;gG (x1) , (3.25)

which is possible for small λ, (g (b)− g (a)).
That is γ ∈ (0, 1). Hence equation (3.9) can be solved with our presented iterative
algorithms.

Conclusion 3.2. (for (I))
Our presented earlier semilocal results, see Theorem 2.7, can apply in the above

generalized fractional setting for g (x) = x for each x ∈ [a, b] since the following
inequalities have been fulfilled:

‖1−A‖∞ ≤ γ0, (3.26)

and
|F (y)− F (x)−A (x) (y − x)| ≤ γ1 |y − x| , (3.27)

where γ0, γ1 ∈ (0, 1), furthermore it holds

γ = γ0 + γ1 ∈ (0, 1) , (3.28)

for all x, y ∈ [a∗, b], where a < a∗ < b.
The specific functions A (x), F (x) have been described above, see (3.12) and

(3.10), respectively.

(II) Let a < b∗ < b. In particular we have that
(
Dα
b−;gG

)
∈ C ([a, b∗]). We notice

that

∣∣(Dα
b−;gG

)
(x)
∣∣ ≤

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Γ (m− α)

(∫ b

x

(g (t)− g (x))
m−α−1

g′ (t) dt

)
(3.29)

=

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Γ (m− α+ 1)
(g (b)− g (x))

m−α

≤

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Γ (m− α+ 1)
(g (b)− g (a))

m−α
<∞, ∀ x ∈ [a, b] , (3.30)

in particular true ∀ x ∈ [a, b∗] .
We obtain that (

Dα
b−;gG

)
(b) = 0. (3.31)

Therefore there exist x1, x2 ∈ [a, b∗] such that Dα
b−;gG (x1) = minDα

b−;gG (x), and

Dα
b−;gG (x2) = maxDα

b−;gG (x), for x ∈ [a, b∗].
We assume that

Dα
b−;gG (x1) > 0. (3.32)

(i.e. Dα
b−;gG (x) > 0, ∀ x ∈ [a, b∗]).

Furthermore ∥∥Dα
b−;gG

∥∥
∞,[a,b∗] = Dα

b−;gG (x2) . (3.33)
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Here it is

J (x) = mx, m 6= 0. (3.34)

The equation

JG (x) = 0, x ∈ [a, b∗] , (3.35)

has the same set of solutions as the equation

F (x) :=
JG (x)

2Dα
b−;gG (x2)

= 0, x ∈ [a, b∗] . (3.36)

Notice that

Dα
b−;g

(
G (x)

2Dα
b−;gG (x2)

)
=

Dα
b−;gG (x)

2Dα
b−;gG (x2)

≤ 1

2
< 1, ∀ x ∈ [a, b∗] . (3.37)

We call

A (x) :=
Dα
b−;gG (x)

2Dα
b−;gG (x2)

, ∀ x ∈ [a, b∗] . (3.38)

We notice that

0 <
Dα
b−;gG (x1)

2Dα
b−;gG (x2)

≤ A (x) ≤ 1

2
. (3.39)

Hence it holds

|1−A (x)| = 1−A (x) ≤ 1−
Dα
b−;gG (x1)

2Dα
b−;gG (x2)

=: γ0, ∀ x ∈ [a, b∗] . (3.40)

Clearly γ0 ∈ (0, 1) .

We have proved that

|1−A (x)| ≤ γ0 ∈ (0, 1) , ∀ x ∈ [a, b∗] . (3.41)

Next we assume that F (x) is a contraction over [a, b∗], i.e.

|F (x)− F (y)| ≤ λ |x− y| ; ∀ x, y ∈ [a, b∗] , (3.42)

and 0 < λ < 1
2 .

Equivalently we have

|JG (x)− JG (y)| ≤ 2λ
(
Dα
b−;gG (x2)

)
|x− y| , ∀ x, y ∈ [a, b∗] . (3.43)

We observe that

|F (y)− F (x)−A (x) (y − x)| ≤ |F (y)− F (x)|+ |A (x)| |y − x| ≤

λ |y − x|+ |A (x)| |y − x| = (λ+ |A (x)|) |y − x| =: (ξ2) , ∀ x, y ∈ [a, b∗] . (3.44)

Hence by (3.30), ∀ x ∈ [a, b∗] we get that

|A (x)| =

∣∣∣Dα
b−;gG (x)

∣∣∣
2Dα

b−;gG (x2)
≤ (g (b)− g (a))

m−α

2Γ (m− α+ 1)

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Dα
b−;gG (x2)

<∞. (3.45)
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Consequently we observe

(ξ2) ≤

λ+
(g (b)− g (a))

m−α

2Γ (m− α+ 1)

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Dα
b−;gG (x2)

 |y − x| , (3.46)

∀ x, y ∈ [a, b∗] .
Call

0 < γ1 := λ+
(g (b)− g (a))

m−α

2Γ (m− α+ 1)

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Dα
b−;gG (x2)

, (3.47)

choosing (g (b)− g (a)) small enough we can make γ1 ∈ (0, 1).
We proved that

|F (y)− F (x)−A (x) (y − x)| ≤ γ1 |y − x| , where γ1 ∈ (0, 1) , ∀ x, y ∈ [a, b∗] .
(3.48)

Next we call and need

0 < γ := γ0 + γ1 = 1−
Dα
b−;gG (x1)

2Dα
b−;gG (x2)

+ λ

+
(g (b)− g (a))

m−α

2Γ (m− α+ 1)

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Dα
b−;gG (x2)

< 1, (3.49)

equivalently we find,

λ+
(g (b)− g (a))

m−α

2Γ (m− α+ 1)

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

Dα
b−;gG (x2)

<
Dα
b−;gG (x1)

2Dα
b−;gG (x2)

, (3.50)

equivalently,

2λDα
b−;gG (x2) +

(g (b)− g (a))
m−α

Γ (m− α+ 1)

∥∥∥(G ◦ g−1)(m) ◦ g
∥∥∥
∞,[a,b]

< Dα
b−;gG (x1) , (3.51)

which is possible for small λ, (g (b)− g (a)).
That is γ ∈ (0, 1). Hence equation (3.35) can be solved with our presented iterative
algorithms.

Conclusion 3.3. (for (II))
Our presented earlier semilocal iterative methods, see Theorem 2.7, can apply

in the above generalized fractional setting for g (x) = x for each x ∈ [a, b] since the
following inequalities have been fulfilled:

‖1−A‖∞ ≤ γ0, (3.52)

and
|F (y)− F (x)−A (x) (y − x)| ≤ γ1 |y − x| , (3.53)

where γ0, γ1 ∈ (0, 1), furthermore it holds

γ = γ0 + γ1 ∈ (0, 1) , (3.54)

for all x, y ∈ [a, b∗], where a < b∗ < b.
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The specific functions A (x), F (x) have been described above, see (3.38) and (3.36),
respectively.
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Abstract. In this paper a certain class of analytic univalent functions in the open
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ment properties and the effect of the certain integral operator to the elements of
this class are investigated.
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1. Introduction

Let A denote the class of functions of the form f(z) = z +
∞∑
k=2

akz
k, which are

analytic in the open unit disk U = {z ∈ C : |z| < 1}. Also let S denotes the subclass
of A consisting of univalent functions in U . A function f ∈ A is said to be starlike of
order γ (0 ≤ γ < 1) in U if

Re
zf ′(z)

f(z)
> γ.

We denote by S∗(γ), the class of all such functions. A function f ∈ A is said to be
convex of order γ (0 ≤ γ < 1) in U if

Re

(
1 +

zf ′′(z)

f ′(z)

)
> γ.

Let K(γ) denote the class of all those functions f ∈ A which are convex of order γ
in U . We have

f ∈ K(γ) if and only if zf ′(z) ∈ S∗(γ).
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Recently, Komatu [4] has introduced a certain integral operator Lλa (a > 0, λ > 0)

Lλaf(z) =
aλ

Γ(λ)

∫ 1

0

ta−2
(

log
1

t

)λ−1
f(zt)dt, z ∈ U, a > 0, λ > 0. (1.1)

Thus, if f ∈ A is of the form f(z) = z +
∞∑
k=2

akz
k, it is easily seen form (1.1) that

Lλaf(z) = z +

∞∑
n=2

(
a

a+ n− 1

)λ
anz

n, a > 0, λ > 0.

According to the above series expansion for Lλa one can define Lλa for all real λ. Using
the above relation, it is easy to verify that

z(Lλ+1
a f(z))′ = aLλaf(z)− (a− 1)Lλ+1

a f(z), a > 0, λ ≥ 0. (1.2)

We note that

(i) For a = 1, λ = k (k is any integer number), the multiplier transformation
Lλ1 = Ik, was studied by Flet [2] and Sălăgean [9];

(ii) For a = 1, λ = −k (k ∈ N0 = {0, 1, 2, . . .}), the differential operator L−k1 =
Dk, was studied by Sălăgean [9];

(iii) For a = 2, λ = k (k is any integer number), the operator Lk2 = Lk, was
studied by Uralegddi and Somantha [10];

(iv) For a = 2, the multiplier transformation Lλ2 = Iλ, was studied by Jung et
all [3].

If f ∈ A satisfies∣∣∣∣arg

(
zf ′(z)

f(z)
− η
)∣∣∣∣ < π

2
β, z ∈ U, 0 ≤ η < 1, 0 < β ≤ 1,

then f is said to be strongly starlike of order β and type η in U . If f ∈ A satisfies∣∣∣∣arg

(
1 + zf ′′(z)

f ′(z)
− η
)∣∣∣∣ < π

2
β, z ∈ U, 0 ≤ η < 1, 0 < β ≤ 1,

then f is said to be strongly convex of order β and type η in U . We denote by S∗(β, η)
and K(β, η), respectively, the subclasses of a consisting of all strongly starlike and
strongly convex of order β and type η in U . We also note that S∗(1, η) = S∗(η)
and K(1, η) = K(η). We shall use S∗(β) and K(β) to denote S∗(β, 0) and K(β, 0),
respectively, which are the classes of univalent starlike and univalent convex functions
of order β (0 ≤ β < 1).

Let P denote the class of functions of the form

p(z) = 1 +

∞∑
n=1

pnz
n,

which are analytic in U and satisfy the condition Re p(z) > 0. For two functions
f and g, analytic in U , we say that the function f is subordinate to g, and write
f(z) ≺ g(z), if there exists a Schwarz function w in U , such that f(z) = g(w(z)).
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For a > 0, let Sλ(a, η, h) be the class of functions f ∈ A satisfying the condition

1

1− η

(
z(Lλaf(z))′

Lλaf(z)
− η
)
≺ h(z), 0 ≤ η < 1, h ∈ P.

For simplicity we write

Sλ
(
a, η,

1 +Az

1 +Bz

)
= Sλ(a, η,A,B), −1 ≤ B < A ≤ 1.

2. Preliminaries

Lemma 2.1. [1] For β, γ ∈ C let h be convex univalent in U with h(0) = 1 and
Re (βh(z) + γ) > 0, if p is analytic in U with p(0) = 1, then

p(z) +
zp′(z)

βp(z) + γ
≺ h(z),

implies that p(z) ≺ h(z).

Lemma 2.2. [5] Let h be convex univalent in U and w be analytic in U with Rew(z) >
0. If p is analytic in U and p(0) = h(0), and

p(z) + zw(z)p′(z) ≺ h(z),

then p(z) ≺ h(z).

Lemma 2.3. [7] Let p be analytic in U with p(0) = 1 and p(z) 6= 0 for all z ∈ U .
Suppose that there exists a point z0 ∈ U such that

| arg p(z)| < π

2
α, |z| < |z0|,

and

| arg p(z0)| = π

2
α, 0 < α ≤ 1,

then we have
z0p
′(z0)

p(z0)
= ikα,

where

k ≥ 1

2

(
a+

1

a

)
, when arg p(z0) =

π

2
α,

k ≤ −1

2

(
a+

1

a

)
, when arg p(z0) = −π

2
α,

and

p(z0)
1
α = +ia.

Lemma 2.4. [8] The function

(1− z)γ ≡ exp(γ log(1− z)), γ 6= 0,

is univalent if only if γ is either in the closed disk |γ − 1| ≤ 1 or in the closed disk
|γ + 1| ≤ 1.
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Lemma 2.5. [6] Let q be analytic in U and let Θ and φ be analytic in a domain D
containing q(U) with φ(w) 6= 0 when w ∈ q(U). Set

Q(z) = zq′(z)φ(q(z)), h(z) = Θ(q(z)) +Q(z),

and suppose that

(1) Q is starlike; either

(2) h is convex;

(3) Re
zh′(z)

Q(z)
= Re

(
Θ′(q(z)

φ(q(z))
+
zQ′(z)

Q(z)

)
> 0.

If p is analytic in U with p(0) = q(0) and p(U) ⊂ D, and

Θ(p(z)) + zp′(z)φ(p(z)) ≺ Θ(q(z)) + zq′(z)φ(q(z)) = h(z),

then p(z) ≺ q(z), and q is the best dominant.

3. Main results

Theorem 3.1. Sλ(a, η, h) ⊂ Sλ+1(a, η, h), where

Re ((1− η)h(z) + η + (a− 1)) > 0.

Proof. Suppose that f ∈ Sλ(a, η, h), set

p(z) =
1

1− η

(
z(Lλ+1

a f(z))′

Lλ+1
a f(z)

− η
)
, z ∈ U, 0 ≤ η < 1,

where p is analytic function with p(0) = 1. By using the equation

z(Lλ+1
a f(z))′ = aLλaf(z)− (a− 1)Lλ+1

a f(z), a > 0, λ > 0, (3.1)

we have

(a− 1) + η + (1− η)p(z) = (a− 1) +
z(Lλ+1

a f(z))′

Lλ+1
a f(z)

. (3.2)

Hence from (3.1) and (3.2) we have

(a− 1) + η + (1− η)p(z) = a
Lλaf(z)

Lλ+1
a f(z)

. (3.3)

Differentiating logarithmically derivatives in both sides of (3.3) and using (3.1) we
have

1

1− η

(
z(Lλaf(z))′

Lλaf(z)
− η
)

=
zp′(z)

(a− 1) + η + (1− η)p(z)
+ p(z), 0 ≤ η < 1, z ∈ U.

Since Re ((1− η)h(z) + η + (a− 1)) > 0, applying Lemma 2.1, it follows that p(z) ≺
h(z), that is

1

1− η

(
z(Lλ+1

a f(z))′

Lλ+1
a f(z)

− η
)
≺ h(z),

and f ∈ Sλ+1(a, η, h). �
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Taking h(z) = 1+Az
1+Bz (−1 ≤ B < A ≤ 1) in Theorem 3.1, we have the following

Corollary:

Corollary 3.2. The inclusion relation Sλ(a, η,A,B) ⊂ Sλ+1(a, η,A,B) holds for any
a > 0.

Letting a = 1, λ = 0 and h(z) = ( 1+z
1−z )β in Theorem 3.1 and using

Sλ−1(a, η, h) ⊂ Sλ(a, η, h) we have the following inclusion relation:

Corollary 3.3. K(β, η) ⊂ S∗(β, η).

Theorem 3.4. Let 0 < ρ < 1, γ 6= 1 and a ≥ 1 be a real number satisfying either
|2aγρ− 1| ≤ 1 or |2aγρ+ 1| ≤ 1. If f ∈ A satisfies the condition

Re

(
1 +

Lλaf(z)

Lλ+1
a f(z)

)
> 1− ρ, z ∈ U, (3.4)

then (
za−1Lλ+1

a f(z)
)γ ≺ q1(z) =

1

(1− z)2aγρ
,

where q1 is the best dominant.

Proof. Denoting p(z) = (za−1Lλ+1
a f(z))γ , it follows that

zp′(z)

p(z)
= γa

Lλaf(z)

Lλ+1
a f(z)

. (3.5)

Combing (3.4) and (3.5), we find that

1 +
zp′(z)

aγp(z)
≺ 1 + (2ρ− 1)z

1− z
, (3.6)

and if we set Θ(w) = 1, φ(w) = 1
γaw , and q1(z) = 1

(1−z)2aγρ , then by the assumption

of the theorem and making use of Lemma 2.5, we know that q1 is univalent in U . It
follows that

Q(z) = zq′1(z)φ(q1(z)) =
2ρz

1− z
,

and

h(z) = Θ(q1(z)) +Q(z) =
1 + (2ρ− 1)z

1− z
.

If we consider D such that

q(U) =
{
w : |w

1
ξ − 1| < |w

1
ξ |, ξ = 2γρa

}
⊂ D,

then it is easy to check that the conditions (i) and (ii) of Lemma 2.5 hold true. Thus,
the desired result of Theorem 3.4 follows from (3.6). �

Theorem 3.5. Let h be convex univalent function in U and

Re (c+ η + (1− η)h(z)) > 0, z ∈ U.
If f ∈ A satisfies the condition

1

1− η

(
z(Lλaf(z))′

Lλaf(z)
− η
)
≺ h(z), 0 ≤ η < 1,
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then
1

1− η

(
z(LλaFc(f)(z))′

LλaFc(f)(z)
− η
)
≺ h(z), 0 ≤ η < 1,

where Fc is the integral operator defined by

Fc(f)(z) =
c+ 1

zc

∫ z

0

tc−1f(t)dt. (3.7)

Proof. From (3.7), we have

z(LλaFc(f)(z))′ = (c+ 1)Lλaf(z)− cLλaFc(f)(z). (3.8)

Let

p(z) =
1

1− η

(
z(LλaFc(f)(z))′

LλaFc(f)(z)
− η
)
, (3.9)

where p is analytic function with p(0) = 1. Then, using (3.8) we get

c+ η + (1− η)p(z) = (c+ 1)
Lλaf(z)

LλaFc(f)(z)
. (3.10)

Differentiating logarithmically in both sides of (3.10) and multiplying by z, we have

p(z) +
zp′(z)

c+ η + (1− η)p(z)
=

1

1− η

(
z(Lλaf(z))′

Lλaf(z)
− η
)
.

Since Re (c+ η + (1− η)p(z)) > 0 thus by Lemma 2.1, we have

p(z) =
1

1− η

(
z(LλaFc(f)(z))′

LλaFc(f)(z)
− η
)
≺ h(z).

�

Letting h(z) = 1+Az
1+Bz (−1 ≤ B < A ≤ 1) in the Theorem 3.5, we have the

following Corollary.

Corollary 3.6. If f ∈ Sλ(a, η,A,B), then Fc(f) ∈ Sλ(a, η,A,B), where Fc(f) is the
integral operator defined by (3.7).

Theorem 3.7. Let f ∈ A, 0 < δ ≤ 1, a ≥ 1 and 0 ≤ γ < 1. If∣∣∣∣arg

(
z(Lλaf(z))′

Lλag(z)
− γ
)∣∣∣∣ < π

2
α,

for some g ∈ Sλ(a, η,A,B). Then∣∣∣∣arg

(
z(Lλ+1

a f(z))′

Lλ+1
a g(z)

− γ
)∣∣∣∣ < π

2
α.

where α (0 < α ≤ 1) is the solution of the equation

δ =


α+ 2

π +
α cos π2 t1

(1−η)(1+A)
1+B + η + (a− 1) + α sin π

2 t1
, B 6= −1,

α, B = −1,

(3.11)
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and

t1 =
2

π
arcsin

(
(1− η)(A−B)

(1− η)(1−AB) + (η + a− 1)(1−B2)

)
. (3.12)

Proof. Let

p(z) =
1

1− γ

(
z(Lλ+1

a f(z))′

Lλ+1
a g(z)

− γ
)
.

Using (1.2), it is easy to see that

((1− γ)p(z) + γ)Lλ+1
a g(z) = aLλaf(z)− (a− 1)Lλ+1

a f(z). (3.13)

Differentiating (3.13) and multiplying by z, we obtain

(1− γ)zp′(z)Lλ+1
a g(z) + ((1− γ)p(z) + γ) z(Lλ+1

a g(z))′

= az(Lλaf(z))′ − (a− 1)z(Lλ+1
a f(z))′. (3.14)

Since g ∈ Sλ(a, η,A,B), by Theorem 3.1, we have g ∈ Sλ+1(a, η,A,B). Let

q(z) =
1

1− γ

(
z(Lλ+1

a g(z))′

Lλ+1
a g(z)

− η
)
.

Then by using (1.2) once again, we have

q(z)(1− η) + η + (a− 1) = a
Lλag(z))′

Lλ+1
a g(z)

. (3.15)

From (3.14) and (3.15), we obtain

zp′(z)

q(z)(1− η) + η + (a− 1)
+ p(z) =

1

1− γ

(
z(Lλ+1

a f(z))′

Lλ+1
a g(z)

− η
)
.

Since q(z) ≺ 1+Az
1+Bz (−1 ≤ B < A ≤ 1), we have∣∣∣∣q(z)− 1−AB

1−B2

∣∣∣∣ < A−B
1−B2

, z ∈ U, B 6= −1, (3.16)

and
1−A

2
≤ Re q(z), z ∈ U, B 6= −1. (3.17)

Therefore, from (3.16) and (3.17), for B 6= −1, we obtain∣∣∣∣q(z)(1− η) + η + (a− 1)− (1− η)(1−AB)

1−B2
− η − (a− 1)

∣∣∣∣ < (1− η)(A−B)

1−B2
.

For B 6= −1, we have

Re (q(z)(1− η) + η + (a− 1)) >
(1− η)(1−A)

2
+ η + (a− 1).

Let

q(z)(1− η) + η + (a− 1) = r exp

(
i
Φ

2

)
,

where

(1− η)(1−A)

1−B
+ η + (a− 1) < r <

(1− η)(1 +A)

1 +B
+ η + (a− 1), −t1 < Φ < t1,
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and t1 is given by (3.12), and

(1− η)(1−A)

2
+ η + (a− 1) < r <∞.

We note that p is analytic in U with p(0) = 1, so by applying the assumption and
Lemma 2.2 with

w(z) =
1

q(z)(1− η) + η + (a− 1)
,

we have Re w(z) > 0. Set

Q(z) =
1

1− γ

(
z(Lλaf(z))′

Lλag(z)
− γ
)
, 0 ≤ γ < 1.

At first, suppose that p(z0)
1
α = ia(a > 0). For B 6= −1 we have

arg Q(z0) = arg

(
z0p
′(z0)

q(z0)(1− η) + η + (a− 1)
+ p(z0)

)
=
π

2
α+ arg

(
1 + ikα

(
r exp

(
iπ

2
Φ

))−1)

=
π

2
α+ arg

(
1 +

ikα

r

(
exp

(
−iπ

2
Φ

)))

≥ π

2
α+ arctan

 kα sin
π

2
(1− Φ)

r + kα cos iπ2 (1− Φ)



≥ π

2
α+ arctan

 α cos
π

2
t1

(1− η)(1 +A)

1 +B
+ η + (a− 1) + α sin

π

2
t1


=
π

2
δ,

where δ and t1 are given by (3.11) and (3.12), respectively.

Similarly, for the case B = −1, we have

arg Q(z) = arg

(
z0p
′(z0)

q(z0)(1− η) + η + (a− 1)
+ p(z0)

)
≥ π

2
α.

These results obviously contradict the assumption.
Next, suppose that p(z0)

1
α = −ia (a > 0), B = −1 and z0 ∈ U . Applying the same



On a certain subclass of analytic univalent functions 35

method we have

arg Q(z0) = arg

(
z0p
′(z0)

q(z0)(1− η) + η + (a− 1)
+ p(z0)

)
=
−π
2
α+ arg

(
1− ikα

(
r exp

(
iπ

2
Φ

))−1)

≤ −π
2
α− arctan

 kα sin
π

2
(1− Φ)

r + kα cos
iπ

2
(1− Φ)


≤ −π

2
α− arctan

 α cos
iπ

2
t1

(1−η)(1+A)
1+B + η + (a− 1) + α sin

π

2
t1


=
−π
2
δ,

where δ and t1 are given by (3.11) and (3.12) respectively.
Similarly, for the case B = −1, we have

arg Q(z) = arg

(
z0p
′(z0)

q(z0)(1− η) + η + (a− 1)
+ p(z0)

)
≤ −π

2
α,

which contradicts the assumption of Theorem 3.7. Therefore, the proof of Theorem
3.7 is completed. �

Theorem 3.8. Let f ∈ A, 0 < δ ≤ 1, a ≥ 1, 0 ≤ γ < 1 and Re (c+ η(1− η)h(z)) > 0.
If ∣∣∣∣arg

(
z(Lλaf(z))′

Lλag(z)
− γ
)∣∣∣∣ < π

2
α,

for some g ∈ Sλ(a, η,A,B). Then∣∣∣∣arg

(
z(Lλ+1

a Fc(f)(z))′

Lλ+1
a Fc(g)(z)

− γ
)∣∣∣∣ < π

2
α,

where Fc is defined by (3.8), and α (0 < α ≤ 1) is the solution of the equation given
by (3.11).

Proof. Let

p(z) =
1

1− γ

(
z(LλaFc(f)(z))′

LλaFc(g)(z)
− γ
)
.

Since g ∈ Sλ(a, η,A,B), so Theorem 3.5 implies that Fc(g) ∈ Sλ(a, η,A,B). Using
(3.9) we have

((1− γ)p(z) + γ)LλaFc(g)(z) = z(LλaFc(f)(z))′.

Now, by a simple calculation, we get

(1− γ)zp(z)′ + ((1− γ)p(z) + γ) (c+ η + (1− η)q(z)) = (c+ 1)
z(Lλaf(z))′

LλaFc(g)(z)
,
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where

q(z) =
1

1− η

(
z(LλaFc(g)(z))′

LλaFc(g)(z)
− η
)
.

Hence we have

1

1− γ

(
z(Lλaf(z))′

Lλag(z)
− γ
)

= p(z) +
zp′(z)

q(z)(1− η) + η + c
.

The remaining part of the proof in Theorem 3.8 is similar to that Theorem 3.7 and
so we omit it. �
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for a subclass of bi-univalent functions
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this class. In certain cases, our estimates improve some of those existing coefficient
bounds.
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1. Introduction

Let A denote the class of functions f which are analytic in the open unit disk
U = {z : |z| < 1} with in the form

f(z) = z +

∞∑
n=2

anz
n. (1.1)

Let S be the subclass of A consisting of the form (1.1) which are also univalent

in U and let P be the class of functions ϕ(z) = 1 +
∞∑
n=1

ϕnz
n that are analytic in U

and satisfy the condition Re (ϕ(z)) > 0 in U . By the Caratheodory’s lemma (e.g., see
[11]) we have |ϕn| ≤ 2.

The Koebe one-quarter theorem [11] states that the image of U under every
function f from S contains a disk of radius 1

4 . Thus every such univalent function has

an inverse f−1 which satisfies

f−1 (f (z)) = z , (z ∈ U)

and

f
(
f−1 (w)

)
= w ,

(
|w| < r0 (f) , r0 (f) ≥ 1

4

)
,
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where

f−1 (w) = w − a2w
2 +

(
2a2

2 − a3

)
w3 −

(
5a3

2 − 5a2a3 + a4

)
w4 + · · · .

A function f ∈ A is said to be bi-univalent in U if both f and f−1 are univalent
in U. For a brief history and interesting examples in the class Σ, see [27].

Lewin [20] studied the class of bi-univalent functions, obtaining the bound 1.51
for modulus of the second coefficient |a2| . Netanyahu [22] showed that max |a2| = 4

3

if f ∈ Σ. Subsequently, Brannan and Clunie [7] conjectured that |a2| ≤
√

2 for f ∈ Σ.
Brannan and Taha [8] introduced certain subclasses of the bi-univalent function class
Σ similar to the familiar subclasses. Recently, many authors investigated bounds for
various subclasses of bi-univalent functions ([5], [10], [13], [18], [19], [21], [24], [27],
[28], [29]).

The Faber polynomials introduced by Faber [12] play an important role in var-
ious areas of mathematical sciences, especially in geometric function theory. Grun-
sky [14] succeeded in establishing a set of conditions for a given function which are
necessary and in their totality sufficient for the univalency of this function, and in
these conditions the coefficients of the Faber polynomials play an important role.
Schiffer [25] gave a differential equations for univalent functions solving certain ex-
tremum problems with respect to coefficients of such functions; in this differential
equation appears again a polynomial which is just the derivative of a Faber polyno-
mial (Schaeffer-Spencer [26]).

Not much is known about the bounds on the general coefficient |an| for n ≥ 4. In
the literature, there are only a few works determining the general coefficient bounds
|an| for the analytic bi-univalent functions ([6], [9], [15], [16], [17]). The coefficient
estimate problem for each of |an| ( n ∈ N\ {1, 2} ; N = {1, 2, 3, ...}) is still an open
problem.

For f (z) and F (z) analytic in U , we say that f subordinate to F, written f ≺ F ,

if there exists a Schwarz function u(z) =
∞∑
n=1

cnz
n with |u(z)| < 1 in U , such that

f (z) = F (u (z)) . For the Schwarz function u (z) we note that |cn| < 1. (e.g. see
Duren [11]).

A function f ∈ Σ is said to be BΣ (µ, λ, ϕ) , λ ≥ 1 and µ ≥ 0, if the following
subordination hold

(1− λ)

(
f(z)

z

)µ
+ λf ′(z)

(
f(z)

z

)µ−1

≺ ϕ (z) (1.2)

and

(1− λ)

(
g(w)

w

)µ
+ λg′(w)

(
g(w)

w

)µ−1

≺ ϕ (w) (1.3)

where g (w) = f−1 (w) .

In this paper, we use the Faber polynomial expansions to obtain bounds for the
general coefficients |an| of bi-univalent functions in BΣ (µ, λ, ϕ) as well as providing
estimates for the initial coefficients of these functions.
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2. Main results

Using the Faber polynomial expansion of functions f ∈ A of the form (1.1), the
coefficients of its inverse map g = f −1 may be expressed as, [3],

g (w) = f−1 (w) = w +

∞∑
n=2

1

n
K−nn−1 (a2, a3, ...)w

n,

where

K−nn−1 =
(−n)!

(−2n+ 1)! (n− 1)!
an−1

2 +
(−n)!

[2 (−n+ 1)]! (n− 3)!
an−3

2 a3

+
(−n)!

(−2n+ 3)! (n− 4)!
an−4

2 a4

+
(−n)!

[2 (−n+ 2)]! (n− 5)!
an−5

2

[
a5 + (−n+ 2) a2

3

]
(2.1)

+
(−n)!

(−2n+ 5)! (n− 6)!
an−6

2 [a6 + (−2n+ 5) a3a4]

+
∑
j≥7

an−j2 Vj ,

such that Vj with 7 ≤ j ≤ n is a homogeneous polynomial in the variables a2, a3, ..., an
[4]. In particular, the first three terms of K−nn−1 are

1

2
K−2

1 = −a2,

1

3
K−3

2 = 2a2
2 − a3, (2.2)

1

4
K−4

3 = −
(
5a3

2 − 5a2a3 + a4

)
.

In general, for any p ∈ N, an expansion of Kp
n is as, [3],

Kp
n = pan +

p (p− 1)

2
E2
n +

p!

(p− 3)!3!
E3
n + ...+

p!

(p− n)!n!
Enn , (2.3)

where Epn = Epn (a2, a3, ...) and by [1],

Emn (a1, a2, ..., an) =

∞∑
m=1

m! (a1)
µ1 ... (an)

µn

µ1!...µn!
, (2.4)

while a1 = 1, and the sum is taken over all nonnegative integers µ1, ..., µn satisfying

µ1 + µ2 + ... + µn = m, (2.5)

µ1 + 2µ2 + ... + nµn = n.

Evidently, Enn (a1, a2, ..., an) = an1 , [2].
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Theorem 2.1. For λ ≥ 1 and µ ≥ 0, let f ∈ BΣ (µ, λ, ϕ) . If am = 0 ; 2 ≤ m ≤ n−1,
then

|an| ≤
2

µ+ (n− 1)λ
; n ≥ 4 (2.6)

Proof. Let functions f given by (1.1). We have

(1− λ)

(
f(z)

z

)µ
+ λf ′(z)

(
f(z)

z

)µ−1

= 1 +
∞∑
n=2

Fn−1 (a2, a3, ..., an) anz
n−1, (2.7)

and

(1− λ)

(
g(w)

w

)µ
+ λg′(w)

(
g(w)

w

)µ−1

= 1 +

∞∑
n=1

Fn−1 (A2, A3, ..., An) anw
n−1

where

F1 = (µ+ λ)a2, (2.8)

F2 = (µ+ 2λ)

[
µ− 1

2
a2

2 + a3

]
,

F3 = (µ+ 3λ)

[
(µ− 1) (µ− 2)

3!
a3

2 + (µ− 1) a2a3 + a4

]
,

In general, (see [9]).
On the other hand, the inequalities (1.2) and (1.3) imply the existence of two

positive real part functions u (z) = 1 +
∞∑
n=1

cnz
n and v (w) = 1 +

∞∑
n=1

dnw
n where

Reu (z) > 0 and Rev (w) > 0 in P so that

(1− λ)

(
f(z)

z

)µ
+ λf ′(z)

(
f(z)

z

)µ−1

= ϕ(u(z)) (2.9)

and

(1− λ)

(
g(w)

w

)µ
+ λg′(w)

(
g(w)

w

)µ−1

= ϕ(v(w)) (2.10)

where

ϕ(u(z)) = 1 +

∞∑
n=1

n∑
k=1

ϕkE
k
n (c1, c2, ..., cn) zn, (2.11)

and

ϕ(v(w)) = 1 +

∞∑
n=1

n∑
k=1

ϕkE
k
n (d1, d2, ..., dn)wn. (2.12)

Comparing the corresponding coefficients of (2.9) and (2.11) yields

[µ+ (n− 1)λ] an =

n−1∑
k=1

ϕkE
k
n−1 (c1, c2, ..., cn−1) , n ≥ 2 (2.13)
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and similarly, from (2.10) and (2.12) we obtain

[µ+ (n− 1)λ] bn =

n−1∑
k=1

ϕkE
k
n−1 (d1, d2, ..., dn−1) , n ≥ 2. (2.14)

Note that for am = 0 ; 2 ≤ m ≤ n− 1 we have bn = −an and so

[µ+ (n− 1)λ] an = ϕ1cn−1

− [µ+ (n− 1)λ] an = ϕ1dn−1

Now taking the absolute values of either of the above two equations and using the
facts that |ϕ1| ≤ 2, |cn−1| ≤ 1and |dn−1| ≤ 1, we obtain

|an| ≤
|ϕ1cn−1|

µ+ (n− 1)λ
=

|ϕ1dn−1|
µ+ (n− 1)λ

≤ 2

µ+ (n− 1)λ
. (2.15)

�

Theorem 2.2. Let f ∈ BΣ (µ, λ, ϕ) , λ ≥ 1 and µ ≥ 0. Then

(i) |a2| ≤ min

{
2

µ+ λ
,

√
8

(µ+ 2λ) (µ+ 1)

}
(ii) |a3| ≤ min

{
4

(µ+ λ)
2 +

2

µ+ 2λ
,

8

(µ+ 2λ) (µ+ 1)
+

2

µ+ 2λ

} (2.16)

Proof. Replacing n by 2 and 3 in (2.13) and (2.14), respectively, we find that

(µ+ λ)a2 = ϕ1c1, (2.17)

(µ+ 2λ)

[
µ− 1

2
a2

2 + a3

]
= ϕ1c2 + ϕ2c

2
1, (2.18)

−(µ+ +λ)a2 = ϕ1d1, (2.19)

(µ+ 2λ)

[
µ+ 3

2
a2

2 − a3

]
= ϕ1d2 + ϕ2d

2
1 (2.20)

From (2.17) or (2.19) we obtain

|a2| ≤
|ϕ1c1|
µ+ λ

=
|ϕ1d1|
µ+ λ

≤ 2

µ+ λ
. (2.21)

Adding (2.18) to (2.20) implies

(µ+ 2λ) (µ+ 1) a2
2 = ϕ1 (c2 + d2) + ϕ2

(
c21 + d2

1

)
or, equivalently,

|a2| ≤

√
8

(µ+ 2λ) (µ+ 1)
. (2.22)

Next, in order to find the bound on the coefficient |a3|, we subtract (2.20) from (2.18).
We thus get

2 (µ+ 2λ)
(
a3 − a2

2

)
= ϕ1 (c2 − d2) + ϕ2

(
c21 − d2

1

)
(2.23)

or

|a3| = |a2|2 +
|ϕ1 (c2 − d2)|

2 (µ+ 2λ)
≤ |a2|2 +

2

µ+ 2λ
(2.24)
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Upon substituting the value of a2
2 from (2.21) and (2.22) into (2.24), it follows that

|a3| ≤
4

(µ+ λ)
2 +

2

µ+ 2λ

and

|a3| ≤
8

(µ+ 2λ) (µ+ 1)
+

2

µ+ 2λ
.

�

If we put λ = 1 in Theorem 2.2, we obtain the following consequence.

Corollary 2.3. Let f ∈ BΣ (µ, ϕ) , µ ≥ 0. Then

|a2| ≤
2

µ+ 1

and

|a3| ≤
4

(µ+ 1)
2 +

2

µ+ 2

Remark 2.4. The above estimates for |a2| and |a3| show that Corollary 2.3 is an
improvement of the estimates given in Prema and Keerthi ([23], Theorem 3.2) and
Bulut ([9], Corollary 3).

If we put µ = 1 in Theorem 2.2, we obtain the following consequence.

Corollary 2.5. Let f ∈ BΣ (λ, ϕ) , λ ≥ 1. Then

|a2| ≤
2

λ+ 1

and

|a3| ≤
4

(λ+ 1)
2 +

2

1 + 2λ

Remark 2.6. The above estimates for |a2| and |a3| show that Corollary 2.5 is an
improvement of the estimates given in Bulut ([9], Corollary 2).
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univalent functions related to simple logistic
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Abstract. The author investigates the relationship between unified subclasses of
analytic univalent functions and simple logistic activation function to determine
the initial Taylor series coefficients alongside classical Fekete-Szegő problem.

Mathematics Subject Classification (2010): 30C45, 33E99.

Keywords: Analytic, univalent, sigmoid, logistic activation, Fekete-Szegő,
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1. Introduction and preliminaries

The theory of special functions are significantly important to scientist and en-
gineers with mathematical calculations. Though not with any specific definition but
its applications extends to physics, computer etc. In the recent time, theory of spe-
cial function has been overshadowed by other fields such as real analysis, functional
analysis, differential equation, algebra and topology.
There are various special functions but we shall concern ourselves with one of the
activation function popularly known as sigmoid function or simple logistic function.
By activation function, we meant an information process inspired by the same way
biological nervous system (such as brain) process information. This composed of large
number of highly interconnected processing element, that is neurons, working as a unit
to solve or process a specific task. It also learns by examples, can not be programmed
to solve a specific task. Sigmoid function (simple logistic activation function) has a
gradient descendent learning algorithm, its evaluation could be done in several ways
(even by truncated series expansion).
The simple logistic activation function is given as

L(z) =
1

1 + e−z
(1.1)
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which is differentiable, it outputs real number between 0 and 1, it maps a very large
input domain to a small range of outputs, it never loses information because it is one-
to-one function and it increases monotonically. It is evidently clear from the afore-
mentioned that sigmoid function is a great tool in geometric function theory.
As usual we denote by A the class of function of the form

f(z) = z +
∞∑
k=2

akz
k (z ∈ U) (1.2)

which are analytic in the open unit disk U = {z : |z| < 1, z ∈ C} with normalization
f(0) = f ′(0)−1 = 0. Let S be the subclass of A consisting of univalent functions. For
two functions f and ϕ analytic in the open unit disk, we say that f is subordinate to
ϕ written as f ≺ ϕ in U or f(z) ≺ ϕ(z) if there exist Schwarz function ω(z) analytic
in U with w(0) = 0 and |ω(z)| < 1 such that f(z) = ϕ(ω(z)), z ∈ U . It is clear
from the Schwarz lemma that f(z) ≺ ϕ(z), (z ∈ U) which implies that f(0) = ϕ(0)
and f(U) ⊂ ϕ(U). Suppose that ϕ is univalent in U then f(z) ≺ ϕ(z) if and only if
f(0) = ϕ(0) and f(U) ⊂ ϕ(U).

Lemma A. [7] If a function p ∈ P is given by

p(z) = 1 + p1z + p2z
2 + . . . (z ∈ U)

then |pk| ≤ 2, k ∈ N where P is the family of all functions analytic in U for which
p(0) = 1 and Re(p(z)) > 0, (z ∈ U).

Let φ(z) be an analytic univalent function with positive real part in U and φ(U)
be symmetric with respect to the real axis, starlike with respect to φ(0) = 1 and
Φ′(0) > 0. Ma and Minda [6] gave unified representation of various subclasses of

starlike and convex functions using the classes S∗(φ) and C(φ) satisfying zf ′(z)
f(z) ≺ φ(z)

and 1+ zf ′′(z)
f ′(z) ≺ φ(z) respectively, which includes several well-known classes as special

case.
Take for example, if

φ(z) =
1 +Az

1 +Bz
, (−1 ≤ B < A ≤ 1)

the class S∗(φ) reduces to the class S∗[A,B] introduces by Janowski in [4].
In 1933, Fekete and Szegő [3] proved that

|a22 − µa3| ≤


4µ− 3, µ ≥ 1

1 + exp−
2µ

1−µ , 0 ≤ µ ≤ 1

3− 4µ µ ≤ 0

holds for function f ∈ S and the result is sharp. The problem of finding the sharp
bounds for the non-linear functional |a3 − µa22| of any compact family of functions
is popularly known as the Fekete-Szegő problem. Several known authors at different
time have applied the classical Fekete-Szegő to various classes to obtain various sharp
bounds the likes of Keogh and Merkes in 1969 [5] obtained the sharp upper bound
of the Fekete-Szegő functional |a22 − µa3| for some subclasses of univalent function S
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(see also [1,11,12,14,15]). The Hadamard product (or convolution) of f(z) given by
(1.2) and

ϕ(z) = z +

∞∑
k=2

ϕkz
k

is defined by

(f ∗ ϕ)(z) = z +
∞∑
k=2

akϕkz
k = (ϕ ∗ f)(z)

Therefore, Dn(f ∗ϕ)(z) = D(Dn−1(f ∗ϕ)(z)) = z+
∑∞
k=2 k

nakϕkz
k where Dn is the

well known Sălăgean derivative operator[13] defined as

D0f(z) = f(z), D1f(z) = D(f(z)) = zf ′(z), . . . ,

Dnf(z) = D(Dn−1f(z)) = z +

∞∑
k=2

knakz
k

Recently, Murugusundaramoorthy et al [8] also applied the Hadamard product to
discuss a new class of functions denoted by Mg,h(φ) see for detail in [8].
Our major focus in this work is to investigate the simple logistic sigmoid activa-
tion function as related to the unified subclass of starlike and convex functions
Mα,h
n,g (b,Φk,m) to determine the initial Taylor series coefficients and discuss its Fekete-

Szegő functional.
For the purpose of our intention we recall the following:
Lemma B. [2] Let L be a Sigmoid function defined in (1.1) and

Φk,m = 2L(z) = 1 +

∞∑
k=1

(−1)k

2k

[ ∞∑
m=1

(−1)m

m!
zm

]k
then Φk,m ∈ P, |z| < 1 where Φk,m is a modified sigmoid function.
Lemma C. [2] Let

Φk,m(z) = 1 +

∞∑
k=1

(−1)k

2k

[ ∞∑
m=1

(−1)m

m!
zm

]k
then

|Φk,m| < 2.

Lemma D. [2] If Φk,m ∈ P is starlike then f is a normalized univalent function of the
form (1.2).
Taking k = 1, Joseph-Fadipe et al [2] proved that
Remark A. Let

Φ(z) = 1 +

∞∑
m=1

Cmz
m

where Cm = (−1)(−1)m
2m! |Cm| ≤ 2,m = 1, 2, 3, . . . this result is sharp for each m (see

also [10]).
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Definition 1. For b ∈ C. Let the class Mα,g
n,h (b,Φk,m) denote the subclass of A consisting

of functions f of the form (1.2), and

g(z) = z +

∞∑
k=2

gkz
k, h(z) = z +

∞∑
k=2

hkz
k,

gk > 0, hk > 0, gk − hk > 0

satisfying the following subordination condition

1 +
1

b

[
(1− α)

Dn(f ∗ g)(z)

Dn(f ∗ h)(z)
+ α

(Dn(f ∗ g)(z))′

(Dn(f ∗ h)(z))′
− 1

]
≺ Φk,m(z)

where α ≥ 0, n ∈ N0, Φk,m is a simple logistic sigmoid activation function and Dn is
the Sălăgean derivative operator [13].
We state here that we are not assuming Φk,m(U) in Definition 1 to be symmetric with
respect to the real axis and starlike with respect to Φk,m(0) = 1. To show that class
Mα,g
n,h (b,Φk,m) is non empty, let us consider the function f(z) = z

1−z . We assume

γ(z) = 1 +
1

b

[
(1− α))

Dn(f ∗ g)(z)

Dn(f ∗ h)(z)
+ α

[Dn(f ∗ g)(z)]′

[Dn(f ∗ h)(z)]′
− 1

]
,

we have

γ(z) = 1 +
2n

b
(1− α)(g2 − h2)z + . . . .

Clearly γ(0) = 1 and

γ′(0) =
2n

b
(1− α)(g2 − h2) > 0,

hence

f(z) =
z

1 + z
∈Mα,g

n,h (b,Φk,m).

Remark B. With various special choices of functions g, h,Φk,m, b and the real number
α, the class Mα,g

n,h (b,Φk,m) reduces to several known classes and lead to other new
classes.
Examples. 1. Suppose Φk,m(z) = φ(z), then the class Mα,g

n,h (b,Φk,m) reduces to the

class Mα,g
n,h (b, φ)

2. If Φk,m = φ, n = 0, α = 0, the class M0,g
0,h(b,Φk,m) = Mg,h(b, φ) and if b = 1 in

Example 2 the class reduces to class Mg,h(φ) studied in [8].
3. Furthermore, if we put g(z) = z

(1−z)2 , h(z) = z
1−z then the class

Mα,g
n,h (b,Φk,m) = M

α, z
(1−z)2

n, z
1−z

(b,Φk,m),

we can continue to generate many classes with various special choices of the functions
and parameters involved.
Suppose we let

Φk,m(z) =

√
1± z2 + z√

1± z2
,

then the class Mα,g
n,h (b,Φk,m) becomes Mα,g

n,h (b,
√
1±z2+z√
1±z2 ).
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2. Main result

Theorem 2.1. Let

Φk,m(z) = 1 +

∞∑
k=1

(−1)k

2k
[

∞∑
m=1

(−1)m

m!
zm]k

where Φk,m ∈ A is a modified logistic sigmoid activation function and Φ′k,m(0) > 0.

If f(z) given by (1.2) belongs to the class Mα,n
g,h (b,Φk,m), gk > 0, hk > 0, gk − hk > 0,

k ≥ 2 then

|a2| ≤
b

2n+1(1 + α)(g2 − h2)

|a3| ≤
b2(1 + 3α)h2

22 × 3n(1 + 2α)(1 + α)2(g2 − h2)(g3 − h3)

|a4| ≤
6nb3(h2g3 + h3g2 − 2h2h3)

23n+3 · 3n(g4 − h4)

×
[

(1 + 5α)h2
(1 + 2α)(1 + α)3(g3 − h3)(g2 − h2)2

− 2n × 3n−1

6nb2(1 + 3α)(h2g3 + h3g2 − 2h2h3)

]
.

Proof. If f ∈Mα,n
g,h (b,Φk,m), then

1 +
1

b

[
(1− α)

Dn(f ∗ g)(z)

Dn(f ∗ h)(z)
+ α

[Dn(f ∗ g)(z)]′

[Dn(f ∗ h)(z)]′
− 1

]
= Φk,m(z) (2.1)

A computation shows that

Dn(f ∗ g)(z)

Dn(f ∗ h)(z)
= 1 + 2na2(g2 − h2)z + [22n(h22 − g2h2) + 3na3(g3 − h3)]z2+ (2.2)

[4na4(g4 − h4) + 6na2a3(2h2h3 − h3g2 − h2g3)]z3 + . . .

[Dn(f ∗ g)(z)]′

[Dn(f ∗ h)(z)]′
= 1+2n+1a2(g2−h2)z+[22n+2(h22−g2h2)+3n+1a3(g3−h3)]z2+ (2.3)

[4n+1a4(g4 − h4) + 6n+1a2a3(2h2h3 − h3g2 − h2g3)]z3 + . . .

and Taylor series expansion of Φk,m is given as

Φk,m(z) = 1 +
1

2
z − 1

24z3
+

1

240z5
− 1

64
z6 +

779

20160
z7 − . . . (2.4)

From (2.1), (2.2), (2.3) and (2.4) we have

2n+1(1 + α)(g2 − h2)a2 = b (2.5)

3n(1 + 2α)(g3 − h3)a3 =
b2(1 + 3α)h2

4(1 + α)2(g2 − h2)
(2.6)

and

4n(1 + 3α)(g4 − h4)a4 = 6n(1 + 5α)(h3g2 + h2g3 − 2h2h3)a2a3 −
b

24
(2.7)

Equations (2.5), (2.6) and (2.7) give the desired results of Theorem 2.1.
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Theorem 2.2. Let Φk,m(z) = 1 +
∑∞
k=1

(−1)k
2k

(
∑∞
m=1

(−1)m
m! zm)k where Φk,m ∈ A is a

modified logistic sigmoid activation function and Φ′k,m(0) > 0. If f(z) given by (1.2)

belongs to the class Mα,n
g,h (b,Φk,m), gk > 0, hk > 0, gk − hk > 0 and µ ∈ R, k ≥ 2 then

|a3 − µa22| ≤
b2

22(1 + α)2(g2 − h2)(g3 − h3)

[
(1 + 3α)h2
3n(1 + 2α)

− µ(g3 − h3)

2n(g2 − h2)

]
. (2.8)

Proof. A simple computation from (2.5) and (2.6) gives the desire result of Theorem
2.2.
Corollary 2.3. Let Φk,m(z) = 1 +

∑∞
k=1

(−1)k
2k

(
∑∞
m=1

(−1)m
m! zm)k where Φk,m ∈ A is a

modified logistic sigmoid activation function and Φ′k,m(0) > 0. If f(z) given by (1.2)

belongs to the class Mα,g
0,h (b,Φk,m), gk > 0, hk > 0, gk − hk > 0, k ≥ 2 then

|a2| ≤
b

2(1 + α)(g2 − h2)

|a3| ≤
b2(1 + 3α)h2

4(1 + 2α)(1 + α)2(g2 − h2)(g3 − h3)

|a4| ≤
b3(h2g3 + h3g2 − 2h2h3)

8(g4 − h4)

[
(1 + 5α)h2

(1 + 2α)(1 + α)3(g3 − h3)(g2 − h2)2

− 1

3b2(1 + 3α)(h2g3 + h3g2 − 2h2h3)

]
.

Corollary 2.4. Let

Φk,m(z) = 1 +

∞∑
k=1

(−1)k

2k
(

∞∑
m=1

(−1)m

m!
zm)k

where Φk,m ∈ A is a modified logistic sigmoid activation function and Φ′k,m(0) > 0.

If f(z) given by (1.2) belongs to the class Mα,0
0,h (b,Φk,m), gk > 0, hk > 0, gk − hk > 0

and µ ∈ R, k ≥ 2 then

|a3 − µa22| ≤
b2

4(1 + α)2(g2 − h2)(g3 − h3)

[
(1 + 3α)h2
(1 + 2α)

− µ(g3 − h3)

2n(g2 − h2)

]
.

Furthermore, suppose we put α = 0 in Corollaries 2.3 and 2.4 we have respec-
tively the following
Corollary 2.5. Let

Φk,m(z) = 1 +
∞∑
k=1

(−1)k

2k
(
∞∑
m=1

(−1)m

m!
zm)k

where Φk,m ∈ A is a modified logistic sigmoid activation function and Φ′k,m(0) > 0.

If f(z) given by (1.2) belongs to the class M0,g
0,h(b,Φk,m), gk > 0, hk > 0, gk − hk > 0,

k ≥ 2 then

|a2| ≤
b

2(g2 − h2)

|a3| ≤
b2h2

4(g2 − h2)(g3 − h3)
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|a4| ≤
b3(h2g3 + h3g2 − 2h2h3)

8(g4 − h4)

[
h2

(g3 − h3)(g2 − h2)2
− 1

3b2(h2g3 + h3g2 − 2h2h3)

]
.

Corollary 2.6. Let

Φk,m(z) = 1 +

∞∑
k=1

(−1)k

2k
(

∞∑
m=1

(−1)m

m!
zm)k

where Φk,m ∈ A is a modified logistic sigmoid activation function and Φ′k,m(0) > 0.

If f(z) given by (1.2) belongs to the class M0,g
0,h(b,Φk,m), gk > 0, hk > 0, gk − hk > 0

and µ ∈ R, k ≥ 2 then

|a3 − µa22| ≤
b2

4(g2 − h2)(g3 − h3)

[
h2 −

µ(g3 − h3)

2n(g2 − h2)

]
.

Concluding, with various special choices of α, n, b and other parameters involved,
many interesting coefficient bounds and Fekete-Szegő inequalities could be obtained.

Acknowledgment. The author wish to thank the referees for their useful suggestions.
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Certain sufficient conditions for parabolic starlike
and uniformly close-to-convex functions
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Abstract. In the present paper, we study certain differential subordinations and
obtain sufficient conditions for parabolic starlikeness and uniformly close-to-
convexity of analytic functions.
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formly close-to-convex function, differential subordination.

1. Introduction

Let A denote the class of all functions f analytic in E = {z : |z| < 1}, normalized
by the conditions f(0) = f ′(0)− 1 = 0. Therefore, Taylor’s series expansion of f ∈ A,
is given by

f(z) = z +
∞
∑

k=2

akz
k.

Let the functions f and g be analytic in E. We say that f is subordinate to g written
as f ≺ g in E, if there exists a Schwarz function φ in E (i.e. φ is regular in |z| <
1, φ(0) = 0 and |φ(z)| ≤ |z| < 1) such that

f(z) = g(φ(z)), |z| < 1.

Let Φ : C2 × E → C be an analytic function, p an analytic function in E with
(p(z), zp′(z); z) ∈ C2 × E for all z ∈ E and h be univalent in E. Then the function p
is said to satisfy first order differential subordination if

Φ(p(z), zp′(z); z) ≺ h(z),Φ(p(0), 0; 0) = h(0). (1.1)

A univalent function q is called a dominant of the differential subordination (1.1) if
p(0) = q(0) and p ≺ q for all p satisfying (1.1). A dominant q̃ that satisfies q̃ ≺ q for
all dominants q of (1.1), is said to be the best dominant of (1.1). The best dominant
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is unique up to a rotation of E.
A function f ∈ A is said to be parabolic starlike in E, if

ℜ
(

zf ′(z)

f(z)

)

>

∣

∣

∣

∣

zf ′(z)

f(z)
− 1

∣

∣

∣

∣

, z ∈ E. (1.2)

The class of parabolic starlike functions is denoted by SP . A function f ∈ A is said
to be uniformly close-to-convex in E, if

ℜ
(

zf ′(z)

g(z)

)

>

∣

∣

∣

∣

zf ′(z)

g(z)
− 1

∣

∣

∣

∣

, z ∈ E, (1.3)

for some g ∈ SP . Let UCC denote the class of all such functions. Note that the
function g(z) ≡ z ∈ SP . Therefore, for g(z) ≡ z, condition (1.3) becomes:

ℜ (f ′(z)) > |f ′(z)− 1| , z ∈ E. (1.4)

Define the parabolic domain Ω as under:

Ω = {u+ iv : u >
√

(u− 1)2 + v2}.

Note that the conditions (1.2) and (1.4) are equivalent to the condition that
zf ′(z)

f(z)
and f ′(z) take values in the parabolic domain Ω respectively.
Ronning [8] and Ma and Minda [4] showed that the function defined by

q(z) = 1 +
2

π2

(

log

(

1 +
√
z

1−√
z

))2

(1.5)

maps the unit disk E onto the parabolic domain Ω. Therefore, the condition (1.2) is
equivalent to

ℜ
(

zf ′(z)

f(z)

)

≺ q(z), z ∈ E, (1.6)

and condition (1.4) is same as

ℜ (f ′(z)) ≺ q(z), z ∈ E, (1.7)

where q(z) is given by (1.5).
It has always been a matter of interest for the researchers to find sufficient conditions

for uniformly starlike and close-to-convex functions. The operators f ′(z),
zf ′(z)

f(z)
, 1 +

zf ′′(z)

f ′(z)
have played an important role in the theory of univalent functions. Various

classes involving the combinations of above differential operators have been introduced
in literature by different authors. For f ∈ A, define differential operator J(α; f) as
follows:

J(α; f)(z) = (1− α)
zf ′(z)

f(z)
+ α

(

1 +
zf ′′(z)

f ′(z)

)

, α ∈ R.

In 1973, Miller et al. [5] studied the class Mα (known as the class of α-convex func-
tions) defined as follows:

Mα = {f ∈ A : ℜ[J(α; f)(z)] > 0, z ∈ E} .
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They proved that if f ∈ Mα, then f is starlike in E. In 1976, Lewandowski et al. [3]
proved that if f ∈ A satisfies the condition

ℜzf ′(z)

f(z)

(

1 +
zf ′′(z)

f ′(z)

)

> 0, z ∈ E,

then f is starlike in E. Further, Silverman [9] defined the class Gb by taking quotient

of operators 1 +
zf ′′(z)

f ′(z)
and

zf ′(z)

f(z)
:

Gb =

{

f ∈ A :

∣

∣

∣

∣

1 + zf ′′(z)/f ′(z)

zf ′(z)/f(z)
− 1

∣

∣

∣

∣

< b, z ∈ E

}

.

The class Gb had been studied by Tuneski ([7], [12]). For f ∈ A, define differential
operator I(α; f) as follows:

I(α; f)(z) = (1− α)f ′(z) + α

(

1 +
zf ′′(z)

f ′(z)

)

, α ∈ R.

Let Hα(β) be the class of normalized analytic functions defined in E which satisfy the
condition

ℜ[I(α; f)(z)] > β, z ∈ E,

where α and β are pre-assigned real numbers. The class Hα(0) was introduced and
studied by Al-Amiri and Reade [1] in 1975. They proved that the members of Hα(0)
are univalent for α ≤ 0. In 2005, Singh et al. [11] studied the class Hα(α) and proved
that the functions in Hα(α) are univalent for 0 < α < 1. Recently, the class Hα(β)
has been studied by Singh et al. [10]. They established that members of Hα(β) are
univalent for α ≤ β < 1. In the present paper, we use the technique of differential
subordination to study differential operators I(α; f)(z) and J(α; f)(z) and we obtain
certain sufficient conditions for uniformly close-to-convex and parabolic starlike func-
tions in terms of differential subordinations involving the operators I(α; f)(z) and
J(α; f)(z). To prove our main results, we shall use the following lemma of Miller and
Mocanu [6].

Lemma 1.1. Let q be a univalent in E and let θ and φ be analytic in a domain D

containing q(E), with φ(w) 6= 0, when w ∈ q(E). Set Q(z) = zq′(z)φ[q(z)], h(z) =
θ[q(z)] +Q(z) and suppose that either
(i) h is convex, or
(ii) Q is starlike.
In addition, assume that

(iii) ℜ
(

zh′(z)

Q(z)

)

> 0 for all z in E. If p is analytic in E, with p(0) = q(0), p(E) ⊂ D

and

θ[p(z)] + zp′(z)φ[p(z)] ≺ θ[q(z)] + zq′(z)φ[q(z)], z ∈ E,

then p(z) ≺ q(z) and q is the best dominant.
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2. Main result

Theorem 2.1. If f ∈ A, satisfies the differential subordination

(1− α)f ′(z) + α

(

1 +
zf ′′(z)

f ′(z)

)

≺ (1− α)

{

1 +
2

π2

(

log

(

1 +
√
z

1−√
z

))2
}

+α











1 +

4
π2

√
z

1−z
log

(

1+
√
z

1−
√
z

)

1 + 2
π2

(

log
(

1+
√
z

1−
√
z

))2











, z ∈ E, (2.1)

for 0 < α ≤ 1, then

f ′(z) ≺ 1 +
2

π2

(

log

(

1 +
√
z

1−√
z

))2

, z ∈ E i.e. f ∈ UCC.

Proof. Let us define the function θ and φ as follows:

θ(w) = (1− α)w + α

and

φ(w) =
α

w
.

Obviously, the function θ and φ are analytic in domain D = C \ {0} and φ(w) 6= 0 in
D. Define the functions Q and h as follows:

Q(z) = zq′(z)φ(q(z)) =
αzq′(z)

q(z)

and

h(z) = θ(q(z)) +Q(z) = (1− α)q(z) + α

(

1 +
zq′(z)

q(z)

)

.

Further, select the functions p(z) = f ′(z), f ∈ A and q(z) = 1 + 2
π2

(

log
(

1+
√
z

1−
√
z

))2

,

we obtain (2.1) reduces to

(1− α)p(z) + α

(

1 +
zp′(z)

p(z)

)

≺ (1 − α)q(z) + α

(

1 +
zq′(z)

q(z)

)

= h(z). (2.2)

Now,

Q(z) =

4α
√
z

π2(1−z) log
(

1+
√
z

1−
√
z

)

1 + 2
π2

(

log
(

1+
√
z

1−
√
z

))2 (2.3)

and

zQ′(z)

Q(z)
=

1 + z

2(1− z)
+

√
z

(1− z) log
(

1+
√
z

1−
√
z

) −
4
√
z

π2(1−z) log
(

1+
√
z

1−
√
z

)

1 + 2
π2

(

log
(

1+
√
z

1−
√
z

))2 . (2.4)
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It can easily be verified that ℜzQ′(z)

Q(z)
> 0 in E and hence Q is starlike in E.

Also we have

h(z) = (1− α)

{

1 +
2

π2

(

log

(

1 +
√
z

1−√
z

))2
}

+ α











1 +

4
π2

√
z

1−z
log

(

1+
√
z

1−
√
z

)

1 + 2
π2

(

log
(

1+
√
z

1−
√
z

))2











and

zh′(z)

Q(z)
=

1 + z

2(1− z)
+

√
z

(1− z) log
(

1+
√
z

1−
√
z

) −
4
√
z

π2(1−z) log
(

1+
√
z

1−
√
z

)

1 + 2
π2

(

log
(

1+
√
z

1−
√
z

))2

+

(

1− α

α

)

{

1 +
2

π2

(

log

(

1 +
√
z

1−√
z

))2
}

.

For 0 < α ≤ 1, we have ℜzh′(z)

Q(z)
> 0.

The proof, now, follows from (2.2) by the use of Lemma 1.1. �

Theorem 2.2. Let α be a positive real number. If f ∈ A satisfies

(1− α)
zf ′(z)

f(z)
+ α

(

1 +
zf ′′(z)

f ′(z)

)

≺ 1 +
2

π2

(

log

(

1 +
√
z

1−√
z

))2

+ α











4
π2

√
z

1−z
log

(

1+
√
z

1−
√
z

)

1 + 2
π2

(

log
(

1+
√
z

1−
√
z

))2











, z ∈ E, (2.5)

then
zf ′(z)

f(z)
≺ 1 +

2

π2

(

log

(

1 +
√
z

1−√
z

))2

i.e. f ∈ SP .

Proof. Let us define the function θ and φ as follows:

θ(w) = w

and

φ(w) =
α

w
.

Obviously, the function θ and φ are analytic in domain D = C \ {0} and φ(w) 6= 0 in
D. Define Q and h as under:

Q(z) = zq′(z)φ(q(z)) =
αzq′(z)

q(z)

and

h(z) = θ(q(z)) +Q(z) = q(z) +
αzq′(z)

q(z)
.
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On writing p(z) =
zf ′(z)

f(z)
, f ∈ A and q(z) = 1+

2

π2

(

log

(

1 +
√
z

1−√
z

))2

, (2.5) becomes

p(z) +
αzp′(z)

p(z)
≺ q(z) +

αzq′(z)

q(z)
. (2.6)

Here Q is given by (2.3) and zQ′(z)
Q(z) is given by (2.4). It can easily be verified that

ℜzQ′(z)

Q(z)
> 0 in E and hence Q is starlike in E. Further

h(z) = 1 +
2

π2

(

log

(

1 +
√
z

1−√
z

))2

+ α











4
π2

√
z

1−z
log

(

1+
√
z

1−
√
z

)

1 + 2
π2

(

log
(

1+
√
z

1−
√
z

))2











and therefore, we have

zh′(z)

Q(z)
=

1 + z

2(1− z)
+

√
z

(1− z) log
(

1+
√
z

1−
√
z

) −
4
√
z

π2(1−z) log
(

1+
√
z

1−
√
z

)

1 + 2
π2

(

log
(

1+
√
z

1−
√
z

))2

+

(

1

α

)

{

1 +
2

π2

(

log

(

1 +
√
z

1−√
z

))2
}

.

Since α > 0, therefore, we have ℜzh′(z)

Q(z)
> 0.

Thus, the proof follows from (2.6) by the use of Lemma 1.1. �

3. Deductions

Setting α = 1 in Theorem 2.1, we get:

Corollary 3.1. If f ∈ A satisfies

zf ′′(z)

f ′(z)
≺

4
π2

√
z

1−z
log

(

1+
√
z

1−
√
z

)

1 + 2
π2

(

log
(

1+
√
z

1−
√
z

))2 , z ∈ E,

then

f ′(z) ≺ 1 +
2

π2

(

log

(

1 +
√
z

1−√
z

))2

i.e. f ∈ UCC.

Writing α = 1
2 in Theorem 2.1, we obtain:

Corollary 3.2. Let f ∈ A satisfy the differential subordination

f ′(z) +
zf ′′(z)

f ′(z)
≺ 1 +

2

π2

(

log

(

1 +
√
z

1−√
z

))2

+

4
π2

√
z

1−z
log

(

1+
√
z

1−
√
z

)

1 + 2
π2

(

log
(

1+
√
z

1−
√
z

))2 = F (z), (3.1)
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then

f ′(z) ≺ 1 +
2

π2

(

log

(

1 +
√
z

1−√
z

))2

i.e. f ∈ UCC.

Remark 3.3. In 2011, Billing et al. [2] proved the following result:
If f ∈ A satisfies the condition

∣

∣

∣

∣

f ′(z) +
zf ′′(z)

f ′(z)
− 1

∣

∣

∣

∣

<
5

6
, z ∈ E, (3.2)

then f ∈ UCC.

Note that, Corollary 3.2 is a particular case of Theorem 2.1 corresponding to
the above result (given by (3.2)). For comparison, we plot the image of unit disk
under the function F(z) given by (3.1) and this image is given by light shaded portion
of Figure 3.1. We notice that, by virtue of Corollary 3.2 the differential operator

f ′(z)+
zf ′′(z)

f ′(z)
takes values in the whole shaded portion of the Figure 3.1 to conclude

that f ∈ UCC, whereas by (3.2) the same operator can take values only in a disk of
radius 5/6 centered at 1 (shown by dark portion of Figure 3.1) to conclude the same

result. Thus, the region for variability of operator f ′(z) +
zf ′′(z)

f ′(z)
is extended largely

in Corollary 3.2.

Figure 3.1

Taking α = 1 in Theorem 2.2, we have the following result.
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Corollary 3.4. Suppose that f ∈ A satisfies

zf ′′(z)

f ′(z)
≺ 2

π2

(

log

(

1 +
√
z

1−√
z

))2

+

4
π2

√
z

1−z
log

(

1+
√
z

1−
√
z

)

1 + 2
π2

(

log
(

1+
√
z

1−
√
z

))2 = G(z), (3.3)

then

zf ′(z)

f(z)
≺ 1 +

2

π2

(

log

(

1 +
√
z

1−√
z

))2

i.e. f ∈ SP .

Remark 3.5. In 2011, Billing et al. [2] also proved the following result which gives the
parabolic starlikeness for the functions belonging to the class A:
If f ∈ A satisfies the differential inequality

∣

∣

∣

∣

zf ′′(z)

f ′(z)

∣

∣

∣

∣

<
5

6
, z ∈ E, (3.4)

then f ∈ SP .

Figure 3.2

Clearly, Corollary 3.4 is a particular case of Theorem 2.2 corresponding to the
above result given by (3.4). For comparison, we plot the image of unit disk under the
function G(z) given by (3.3) and this image is shown in the light shaded portion of

Figure 3.2. In the light of Corollary 3.4, the differential operator
zf ′′(z)

f ′(z)
takes values

in the whole shaded portion of the Figure 3.2 to conclude that f ∈ SP , but (3.4)

indicates that for the same conclusion, operator
zf ′′(z)

f ′(z)
can take values only in the
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disk of radius 5/6 centered at origin and this portion is shown by dark portion of Fig

3.2. Thus, the region for variability of operator
zf ′′(z)

f ′(z)
has been extended largely.

On writing α = 1
2 in Theorem 2.2, we get:

Corollary 3.6. If f ∈ Ap satisfies

zf ′(z)

f(z)
+

zf ′′(z)

f ′(z)
≺ 1 +

4

π2

(

log

(

1 +
√
z

1−√
z

))2

+

4
π2

√
z

1−z
log

(

1+
√
z

1−
√
z

)

1 + 2
π2

(

log
(

1+
√
z

1−
√
z

))2 , z ∈ E,

then
zf ′(z)

f(z)
≺ 1 +

2

π2

(

log

(

1 +
√
z

1−√
z

))2

i.e. f ∈ SP .
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Sufficient conditions for Janowski starlike
functions

Kanika Sharma and V. Ravichandran

Abstract. Let p be an analytic function defined on the open unit disc D with
p(0) = 1. The conditions on C, D, E, F are derived for p(z) to be subordinate
to (1 + Az)/(1 + Bz), (−1 ≤ B < A ≤ 1) when C(z)z2p′′(z) + D(z)zp′(z) +
E(z)p(z) + F (z) = 0 or C(z)p2(z) + D(z)zp′(z) + E(z)p(z) + F (z) = 0 or
|D(z)zp′(z) + E(z)p(z) + F (z)| < M , (M > 0), where C,D,E, F are complex-
valued functions. Sufficient conditions for confluent (Kummer) hypergeometric
function, generalized and normalized Bessel function of the first kind of complex
order and integral operator to be subordinate to (1 +Az)/(1 +Bz) are obtained
as applications. Few more applications are discussed.

Mathematics Subject Classification (2010): 30C80, 30C45.

Keywords: Convex and starlike functions, differential subordination, confluent
hypergeometric function, Bessel function.

1. Introduction

Let H denote the class of analytic functions in the unit disc D := {z ∈ C : |z| < 1}.
For a fixed positive integer n, let H[a, n] be the subset of H consisting of functions p
of the form p(z) = a + pnz

n + pn+1z
n+1 + · · · . Let An denote the class of analytic

functions in D of the form

f(z) = z +

∞∑
k=n+1

akz
k,

and let A := A1. Let S denote the subclass of A consisting of univalent (one-to-one)
functions. For −1 ≤ B < A ≤ 1, the class S∗[A,B] defined by

S∗[A,B] :=

{
f ∈ A :

zf ′(z)

f(z)
≺ 1 +Az

1 +Bz

}
is the class of Janowski starlike functions [9]. For 0 ≤ β < 1, S∗[1− 2β,−1] := S∗(β)
is the usual class of starlike functions of order β;

S∗[1− β, 0] := S∗β = {f ∈ A : |zf ′(z)/f(z)− 1| < 1− β} and
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S∗[β,−β] := S∗[β] = {f ∈ A : |zf ′(z)/f(z)− 1| < β|zf ′(z)/f(z) + 1|}.
These classes have been studied, for example, in [2, 3, 14, 16]. The class S∗ := S∗(0)
is the class of starlike functions. Recently, the authors have investigated the sufficient
conditions for a function to belong to various subclasses of S∗[A,B] in [20, 19, 15].
A function f ∈ A is said to be close-to-convex of order β [13, 8] if Re(zf ′(z)/g(z)) > β
for some g ∈ S∗. More results regarding these classes can be found in [7, 10].

In Theorem 2.1 of this paper, we investigate the conditions on C,D,E, F so that

C(z)z2p′′(z) +D(z)zp′(z) + E(z)p(z) + F (z) = 0

implies that p(z) ≺ (1 + Az)/(1 + Bz), (−1 ≤ B < A ≤ 1), where C,D,E, F are
complex-valued functions. Miller and Mocanu [11] have obtained the linear integral
operators that preserve analytic function with positive real part. We extend this result
by investigating the sufficient conditions for integral operator to be subordinate to
(1 + Az)/(1 + Bz) by applying Theorem 2.1. We also apply Theorem 2.1 to obtain
sufficient conditions for generalized and normalized Bessel function of the first kind
of complex order and confluent (Kummer) hypergeometric function to be subordinate
to (1 +Az)/(1 +Bz). For A = 1, B = −1, all these applications get reduced to some
well-known results. As an application, we also get some conditions on functions f ∈ A,
g ∈ H[1, 1] so that their product fg ∈ S∗[A,B]. Section 3 deals with the problem of
finding conditions on C,D,E, F so that C(z)p2(z)+D(z)zp′(z)+E(z)p(z)+F (z) = 0
or |D(z)zp′(z)+E(z)p(z)+F (z)| < M , (M > 0) implies that p(z) ≺ (1+Az)/(1+Bz).

Let Q be the class of functions q that are analytic and injective in D \ R(q),
where

R(q) := {y ∈ ∂D : lim
z→y

q(z) =∞},

and are such that q′(y) 6= 0 for y ∈ ∂D \ R(q). The following results are required in
our investigation.
Lemma 1.1. [13, Theorem 2.2d, p.24] Let p ∈ H[a, n] and q ∈ Q with p(z) 6≡ a and
q(0) = a. If p ⊀ q, then there points z0 ∈ D, ζ0 ∈ ∂D \ R(q) and an m ≥ n ≥ 1 such
that p({z : |z| < |z0|}) ⊂ q(D),
(i) p(z0) = q(ζ0),
(ii) z0p

′(z0) = mζ0q
′(ζ0),

(iii) Re((z0p
′′(z0)/p′(z0)) + 1) ≥ mRe((z0q

′′(z0)/q′(z0)) + 1).
Lemma 1.2. [13, Theorem 2.3i, p.35] Let Ω ⊂ C and suppose that ψ : C3 × D → C
satisfies the condition ψ(iρ, σ, µ+ iν; z) /∈ Ω whenever ρ, σ, µ and ν are real numbers,
σ ≤ −n(1 + ρ2)/2, µ + σ ≤ 0. If p ∈ H[1, n] and ψ(p(z), zp′(z), z2p′′(z); z) ∈ Ω for
z ∈ D, then Re p(z) > 0 in D.

2. Main results

Theorem 2.1. Let n be a positive integer, −1 ≤ B < A ≤ 1, C(z) = C ≥ 0. Suppose
that the functions D,E, F : D→ C satisfy
(i) ReD(z) ≥ C,
(ii) Either ReE(z) > 0 and ReF (z) > 0 or more generally,

(A−B)(ReD(z)− C)n+ (1 +A)(1 +B) ReE(z) + (1 +B)2 ReF (z) > 0,
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(iii) ((AB − 1) ImE(z)− (B2 − 1) ImF (z))2

<
(
(A−B)(ReD(z)− C)n+ (1 +A)(1 +B) ReE(z) + (1 +B)2 ReF (z)

)
(
(A−B)(ReD(z)− C)n− (1−A)(1−B) ReE(z)− (1−B)2 ReF (z)

)
.

If p ∈ H[1, n], (1 +B)p(z) 6= (1 +A) and satisfy

Cz2p′′(z) +D(z)zp′(z) + E(z)p(z) + F (z) = 0, (2.1)

then p(z) ≺ (1 +Az)/(1 +Bz).

Proof. For p ∈ H[1, n], define the function q : D→ C by

q(z) =
−(1−A) + (1−B)p(z)

(1 +A)− (1 +B)p(z)
. (2.2)

Then q is analytic in D and q(0) = 1. A simple computation shows that

p(z) =
(1−A) + (1 +A)q(z)

(1−B) + (1 +B)q(z)
, (2.3)

p′(z) =
2(A−B)q′(z)

((1−B) + (1 +B)q(z))2
(2.4)

and

p′′(z) =
2(A−B)((1−B) + (1 +B)q(z))q′′(z)− 4(A−B)(1 +B)(q′(z))2

((1−B) + (1 +B)q(z))3
. (2.5)

Using (2.3), (2.4) and (2.5) in (2.1), a calculation shows that q satisfies the following
equation

Cz2q′′(z)− 2C(1 +B)

(1−B) + (1 +B)q(z)
(zq′(z))2 +D(z)zq′(z)

+
E(z)((1−A) + (1 +A)q(z))((1−B) + (1 +B)q(z))

2(A−B)

+
F (z)((1−B) + (1 +B)q(z))2

2(A−B)
= 0.

(2.6)

Let ψ : C3 × D→ C be defined by

ψ(r, s, t; z) = Ct− 2C(1 +B)

(1−B) + (1 +B)r
s2 +D(z)s

+
E(z)((1−A) + (1 +A)r)((1−B) + (1 +B)r)

2(A−B)

+
F (z)((1−B) + (1 +B)r)2

2(A−B)
.

(2.7)

Then the condition (2.6) is equivalent to ψ(q(z), zq′(z), z2q′′(z); z) ∈ Ω = {0}.
To show that Re q(z) > 0 for z ∈ D, from Lemma 1.2, it is sufficient to prove that
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Reψ(iρ, σ, µ+ iν; z) < 0 in D for any real ρ, σ, µ and ν satisfying σ ≤ −n(1 + ρ2)/2,
µ+ σ ≤ 0. For z ∈ D, it follows from (2.7) that

Reψ(iρ, σ, µ+ iν; z) = Cµ− 2C(1−B2)σ2

(1−B)2 + (1 +B)2ρ2
+ σReD(z)

+
ReE(z)

(
(1−A)(1−B)− (1 +A)(1 +B)ρ2

)
2(A−B)

+
((1−B)2 − (1 +B)2ρ2) ReF (z)

2(A−B)

+
(B2 − 1)ρ ImF (z)

A−B
+

(AB − 1)ρ ImE(z)

A−B
.

(2.8)

Using conditions ReD(z) ≥ C ≥ 0, µ+ σ ≤ 0 and σ ≤ −n(1 + ρ2)/2, we get

Cµ+ σReD(z) ≤ −Cσ + σReD(z) ≤ −n(1 + ρ2)(ReD(z)− C)/2

and

− 2C(1−B2)σ2

(1−B)2 + (1 +B)2ρ2
≤ 0.

Thus from (2.8), we have

Reψ(iρ, σ, µ+ iν; z) ≤ −n
2

(1 + ρ2)(ReD(z)− C) +
(AB − 1)ρ ImE(z)

A−B

+
ReE(z)

(
(1−A)(1−B)− (1 +A)(1 +B)ρ2

)
2(A−B)

+
((1−B)2 − (1 +B)2ρ2) ReF (z)

2(A−B)

+
(B2 − 1)ρ ImF (z)

A−B
=: aρ2 + bρ+ c,

where

a = − 1

2(A−B)

(
(A−B)(ReD(z)− C)n+ (1 +A)(1 +B) ReE(z)

+ (1 +B)2 ReF (z)
)
,

b = − 1

2(A−B)

(
2(AB − 1) ImE(z)− 2(B2 − 1) ImF (z)

)
,

c = − 1

2(A−B)

(
(A−B)(ReD(z)− C)n− (1−A)(1−B) ReE(z)

− (1−B)2 ReF (z)
)
.

In view of the conditions (ii) and (iii) of Theorem 2.1, we see that a < 0 and b2−4ac <
0 respectively. So, Reψ(iρ, σ, µ + iν; z) < 0 in D. Hence by Lemma 1.2, we deduce
that Re q(z) > 0, that is, by using (2.2), we get

−(1−A) + (1−B)p(z)

(1 +A)− (1 +B)p(z)
≺ 1 + z

1− z
.
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Therefore, there exist an analytic function w in D with w(0) = 0 and |w(z)| < 1 such
that

−(1−A) + (1−B)p(z)

(1 +A)− (1 +B)p(z)
=

1 + w(z)

1− w(z)

which gives that p(z) = (1 +Aw)/(1 +Bw) and thus, p(z) ≺ (1 +Az)/(1 +Bz). �

By taking A = 1 and B = −1 in Theorem 2.1, we get the following result.

Corollary 2.2. Let n be a positive integer, C(z) = C ≥ 0. Suppose that the functions
D,E, F : D→ C satisfy

(i) ReD(z) ≥ C,
(ii) (ImE(z))2 <

(
(ReD(z)− C)n)

(
(ReD(z)− C)n− 2 ReF (z)

)
.

If p ∈ H[1, n] and satisfy Cz2p′′(z) +D(z)zp′(z) + E(z)p(z) + F (z) = 0, then

Re p(z) > 0.

By taking C(z) = 0 and F (z) = 0 in Theorem 2.1, we get the following result
for first order differential subordination.

Corollary 2.3. Let n be a positive integer, −1 ≤ B < A ≤ 1. Suppose that the functions
D,E : D→ C satisfy

(i) ReD(z) ≥ 0,

(ii) ReE(z) > (−n(A−B) ReD(z))/((1 +A)(1 +B)),

(iii) ((AB − 1) ImE(z))2 <
(
(A−B)nReD(z) + (1 +A)(1 +B) ReE(z)

)
(
(A−B)nReD(z)− (1−A)(1−B) ReE(z)

)
.

If p ∈ H[1, n], (1 + B)p(z) 6= (1 + A) and satisfy D(z)zp′(z) + E(z)p(z) = 0, then
p(z) ≺ (1 +Az)/(1 +Bz).

Next, we study the confluent (Kummer) hypergeometric function Φ(a, c; z) given by

Φ(a, c; z) =
Γ(c)

Γ(a)

∞∑
n=0

Γ(a+ n)

Γ(c+ n)

zn

n!
=

∞∑
n=0

(a)n
(c)n

zn

n!
, (2.9)

where a, c ∈ C, c 6= 0,−1,−2, · · · , and (λ)n denotes the Pochhammer symbol given by
(λ)0 = 1, (λ)n = λ(λ+1)n−1. The function Φ ∈ H[1, 1] is a solution of the differential
equation

zΦ′′(a, c; z) + (c− z)Φ′(a, c; z)− aΦ(a, c; z) = 0 (2.10)

introduced by Kummer in 1837 [21]. The function Φ(a, c; z) satisfies the following
recursive relation

cΦ′(a; c; z) = aΦ(a+ 1; c+ 1; z).

When Re c > Re a > 0, Φ can be expressed in the integral form

Φ(a; c; z) =
Γ(c)

Γ(a)Γ(c− a)

∫ 1

0

ta−1(1− t)c−a−1etzdt.
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There has been several works [1, 11, 17, 18] studying geometric properties of the
function Φ(a; c; z), such as on its close-to-convexity, starlikeness and convexity. By
the use of Theorem 2.1, we obtain the following sufficient conditions for

Φ(a, c; z) ≺ (1 +Az)/(1 +Bz).

Corollary 2.4. Let n be a positive integer and −1 ≤ B < A ≤ 1.
If (1 +B)Φ(a, c; z) 6= (1 +A) and a, c ∈ R satisfy
(i) (A−B)(c− 2)− (1 +A)(1 +B)|a| > 0,
(ii) (a− 1)2B − (1 + a)2A < 0,
(iii) a2(A−B)(AB−1)2+2a(A+B)(AB−1)2+(A−B)(AB(AB+4c2−8c+2)+1) < 0,
then Φ(a; c; z) ≺ (1 +Az)/(1 +Bz).

Proof. To begin with, note that in view of (2.10), the function Φ(a, c; z) satisfies (2.1)
with C(z) = 1, D(z) = c− z, E(z) = −az and F (z) = 0. Since by the given condition
(i), c > 2, we get ReD(z) = c− x > C for z ∈ D. The given condition (i) yields

(A−B)(ReD(z)− C)n+ (1 +A)(1 +B) ReE(z) + (1 +B)2 ReF (z)

> (A−B)(c− 2)− (1 +A)(1 +B)ax

> (A−B)(c− 2)− (1 +A)(1 +B)|a| > 0.

For z = x+ iy ∈ D, we have

((AB − 1) ImE(z)− (B2 − 1) ImF (z))2 −
(
(A−B)(ReD(z)− C)n

+(1 +A)(1 +B) ReE(z) + (1 +B)2 ReF (z)
)(

(A−B)

(ReD(z)− C)n− (1−A)(1−B) ReE(z)− (1−B)2 ReF (z)
)

= (AB − 1)2a2y2 − ((A−B)(c− x− 1)− (1 +A)(1 +B)ax)

((A−B)(c− x− 1) + (1−A)(1−B)ax)

< (AB − 1)2a2(1− x2)− ((A−B)(c− x− 1)

−(1 +A)(1 +B)ax)((A−B)(c− x− 1)

+(1−A)(1−B)ax) =: G(x) = px2 + qx+ r,

where

p = (A−B)
(
(a− 1)2B − (a+ 1)2A

)
,

q = 2(c− 1)(A−B)((a+ 1)A+ (a− 1)B)

and

r = a2(AB − 1)2 − (c− 1)2(A−B)2.

Using (ii) and (iii), we get p < 0 and q2 − 4pr < 0 respectively. So, G(x) < 0 and
thus, all the conditions of the Theorem 2.1 are satisfied.
Hence, Φ(a; c; z) ≺ (1 +Az)/(1 +Bz). �

Remark 2.5. Taking A = 1 and B = −1 in Corollary 2.4, we get the following well
known result:

If a, c ∈ R such that c > 1 +
√

1 + a2, then Re Φ(a; c; z) > 0.
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Miller and Mocanu [11] have obtained the linear integral operators I such that
I[Pn] ⊆ Pn, where Pn = {f ∈ H[1, n] : Re f(z) > 0 for z ∈ D}. We extend this result
by investigating the sufficient conditions for I[f ](z) ≺ (1 +Az)/(1 +Bz) for f ∈ Pn.

Corollary 2.6. Let γ ∈ C \ {0} such that Re γ ≥ 0, n be a positive integer, −1 ≤ B <
A ≤ 1. Suppose that φ, ψ ∈ H[1, n] such that φ(z) 6= 0 and ψ(z) 6= 0 for z ∈ D. Define
the integral operator I as

I[f ](z) =
γ

zγφ(z)

∫ z

0

f(t)tγ−1ψ(t)dt.

If for f ∈ Pn, the following conditions hold:

Re
( φ(z)

γψ(z)

)
≥ 0, (2.11)

n(A−B) Re
( φ(z)

γψ(z)

)
+ (1 +A)(1 +B) Re

(γφ(z) + zφ′(z)

γψ(z)

)
− (1 +B)2 Re f(z) > 0,

(2.12)

(
(AB − 1) Im

(γφ(z) + zφ′(z)

γψ(z)

)
+ (B2 − 1) Im f(z)

)2
<
(
n(A−B) Re

( φ(z)

γψ(z)

)
+ (1 +A)(1 +B) Re

(γφ(z) + zφ′(z)

γψ(z)

)
− (1 +B)2 Re f(z)

)(
n(A−B) Re

( φ(z)

γψ(z)

)
− (1−A)(1−B) Re

(γφ(z) + zφ′(z)

γψ(z)

)
+ (1−B)2 Re f(z)

)
,

(2.13)

then I[f ](z) ≺ (1 +Az)/(1 +Bz).

Proof. Suppose that the function f ∈ Pn satisfy (2.11)– (2.13). Define the function
p : D→ C by

p(z) =
γ

zγφ(z)

∫ z

0

f(t)tγ−1ψ(t)dt. (2.14)

Result [13, Lemma 1.2c, p. 11] together with some calculations show that p is well
defined and p ∈ H[1, n]. On differentiating (2.14), we see that p satisfies the differential
equation

D(z)zp′(z) + E(z)p(z)− f(z) = 0,

where D(z) = φ(z)/γψ(z) and E(z) = (γφ(z) + zφ′(z))/γψ(z). It is easy to verify
that (2.11), (2.12) and (2.13) respectively shows that the conditions (i), (ii) and (iii)
of Theorem 2.1 are satisfied with C = 0, F (z) = −f(z). Therefore, by Theorem 2.1,
it follows that p(z) ≺ (1 +Az)/(1 +Bz). �

Taking A = 1 and B = −1 in Corollary 2.6, we get the following result.
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Corollary 2.7. Let γ ∈ C \ {0} such that Re γ ≥ 0, n be a positive integer. Suppose
that φ, ψ ∈ H[1, n] such that φ(z) 6= 0 and ψ(z) 6= 0 for z ∈ D. Define the integral
operator I as

I[f ](z) =
γ

zγφ(z)

∫ z

0

f(t)tγ−1ψ(t)dt.

If for f ∈ Pn, the following conditions hold:(
Im
(γφ(z) + zφ′(z)

γψ(z)

))2
<
(
nRe

( φ(z)

γψ(z)

))(
nRe

( φ(z)

γψ(z)

)
+ 2 Re f(z)

)
, (2.15)

then Re(I[f ](z)) > 0.

Remark 2.8. [13, Lemma 4.2a, p. 202] proves that if∣∣∣∣Im(γφ(z) + zφ′(z)

γψ(z)

)∣∣∣∣ ≤ (nRe
( φ(z)

γψ(z)

))
,

then I[Pn] ⊂ Pn. Since for any f ∈ Pn, we have(
nRe

( φ(z)

γψ(z)

))
<
(
nRe

( φ(z)

γψ(z)

)
+ 2 Re f(z)

)
.

Therefore, Corollary 2.7 can be regarded as one of the particular case of [13, Lemma
4.2a, p. 202].

Next, we study the generalized and normalized Bessel function of the first kind
of order p, up(z) = up,b,c(z) given by the power series

up(z) =

∞∑
n=0

(−c/4)n

(k)n

zn

n!
,

where b, p, c ∈ C such that k = p + (b + 1)/2 and k 6= 0,−1,−2, · · · . The function
up ∈ H[1, 1] is a solution of the differential equation

4z2u′′p(z) + 4kzu′p(z) + czup(z) = 0. (2.16)

The function up(z) also satisfy the following recursive relation

4kup(z) = cup+1(z),

which is useful for studying its various geometric properties. More results regarding
this function can be found in [6, 5, 4]. By the use of Theorem 2.1, we obtain the
following sufficient conditions for up(z) ≺ (1 +Az)/(1 +Bz).

Corollary 2.9. Suppose that −1 ≤ B < A ≤ 1 and (1 +B)up(z) 6= 1 +A. If b, p, c ∈ R
satisfy the following conditions

(i) 4(A−B)(k − 1)− (1 +A)(1 +B)|c| > 0,

(ii) c2 < AB((2−AB)c2 − 64(k − 1)2),

then up(z) ≺ (1 +Az)/(1 +Bz).
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Proof. In view of (2.16), the function up(z) satisfies (2.1) with C(z) = 4, D(z) = 4k,
E(z) = cz and F (z) = 0. Since by the given condition (i), k > 1, we get ReD(z) =
4k > C. The given condition (i) yields

(A−B)(ReD(z)− C)n+ (1 +A)(1 +B) ReE(z) + (1 +B)2 ReF (z)

> 4(A−B)(k − 1)− (1 +A)(1 +B)|c| > 0.

For z = x+ iy ∈ D, we have

((AB − 1) ImE(z)− (B2 − 1) ImF (z))2 −
(
(A−B)(ReD(z)− C)n

+(1 +A)(1 +B) ReE(z) + (1 +B)2 ReF (z)
)(

(A−B)

(ReD(z)− C)n− (1−A)(1−B) ReE(z)− (1−B)2 ReF (z)
)

= (AB − 1)2c2y2 − (4(A−B)(k − 1) + (1 +A)(1 +B)cx)

(4(A−B)(k − 1)− (1−A)(1−B)cx)

< (AB − 1)2c2(1− x2)− (4(A−B)(k − 1)

+(1 +A)(1 +B)cx)(4(A−B)(k − 1)− (1−A)(1−B)cx)

=: H(x) = px2 + qx+ r,

where

p = −(A−B)2c2, q = −8c(k − 1)
(
A2 −B2

)
and

r = c2(AB − 1)2 − 16(k − 1)2(A−B)2.

From the hypothesis, we obtain p < 0 and

q2 − 4pr = 4c2(A−B)2
(
AB

(
c2(AB − 2) + 64(k − 1)2

)
+ c2

)
< 0.

So, H(x) < 0. Therefore, by applying Theorem 2.1, we conclude that

up(z) ≺ (1 +Az)/(1 +Bz). �

Remark 2.10. If A = 1 and B = −1, then Corollary 2.9 reduces to [4, Theorem 2.2,
p. 29]. So, Corollary 2.9 generalises [4, Theorem 2.2, p. 29].

The following result gives the sufficient conditions for functions h ∈ An to belong
to the class of Janowski starlike functions.

Corollary 2.11. Let n be a positive integer, −1 ≤ B < A ≤ 1, C(z) = C ≥ 0. Suppose
that the functions D,E, F : D→ C satisfy
(i) ReD(z) ≥ C,
(ii) Either ReE(z) > 0 and ReF (z) > 0, or more generally,

(A−B)(ReD(z)− C)n+ (1 +A)(1 +B) ReE(z) + (1 +B)2 ReF (z) > 0,

(iii) ((AB − 1) ImE(z)− (B2 − 1) ImF (z))2

<
(
(A−B)(ReD(z)− C)n+ (1 +A)(1 +B) ReE(z)

+(1 +B)2 ReF (z)
)(

(A−B)(ReD(z)− C)n

−(1−A)(1−B) ReE(z)− (1−B)2 ReF (z)
)
.
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If h ∈ An, (1 +B)zh′(z)/h(z) 6= (1 +A) and satisfy

Cz3
(

2
(h′(z)
h(z)

)3
− 3h′(z)h′′(z)

h2(z)
+
h′′′(z)

h(z)

)
+ (2C +D(z))

z2
(h′′(z)
h(z)

−
(h′(z)
h(z)

)2)
+ (D(z) + E(z))

zh′(z)

h(z)
+ F (z) = 0,

then h ∈ S∗[A,B].

Proof. Let the function p : D → C be defined by p(z) = zh′(z)/h(z). Then p is
analytic in D with p(0) = 1. A calculation shows that

zp′(z)

p(z)
= 1 +

zh′′(z)

h′(z)
− zh′(z)

h(z)
.

The result now follows from Theorem 2.1. �

We obtain our next application by taking n = 1, C(z) = F (z) = 0, D(z) = 1,
h(z) = f(z)g(z) with f ∈ A, g ∈ H[1, 1] and E(z) = −1− zh′′(z)/h′(z) + zh′(z)/h(z)
in Corollary 2.11.

Corollary 2.12. Let −1 ≤ B < A ≤ 1. Suppose that the functions f ∈ A, g ∈ H[1, 1]
and K(z) = zf ′(z)/f(z) + zg′(z)/g(z)− ((2zf ′g′ + zf ′′g + zg′′f)/(f ′g + g′f)) satisfy
(i) (1 +B)z(f ′(z)g(z) + g′(z)f(z)) 6= (1 +A)f(z)g(z),
(ii) ReK(z) > 1− (A−B)/((1 +A)(1 +B)),
(iii) ((AB − 1)(ImK(z)− 1))2 <

(
(A−B) + (1 +A)(1 +B)(ReK(z)− 1)

)(
(A−B)− (1−A)(1−B)(ReK(z)− 1)

)
then fg ∈ S∗[A,B].

3. Two more sufficient conditions for Janowski starlikeness

For p ∈ H[1, n], Miller and Mocanu [13, Example 2.4m, p. 43] obtained the
conditions on C,D,E, F so that

Re(C(z)p2(z) +D(z)zp′(z) + E(z)p(z) + F (z)) > 0⇒ Re p(z) > 0, z ∈ D.
In contrast to the above result, in this section, for −1 ≤ B < A ≤ 1, we investigate
conditions on C,D,E, F so that for z ∈ D,

C(z)p2(z) +D(z)zp′(z) + E(z)p(z) + F (z) = 0⇒ p(z) ≺ (1 +Az)/(1 +Bz)

and then give an application.

Theorem 3.1. Let n be a positive integer, −1 ≤ B < A ≤ 1. Suppose that the functions
C,D,E, F : D→ C satisfy
(i) ReD(z) ≥ 0,
(ii) (A−B)nReD(z)+(1+A)(1+B) ReE(z)+(1+B)2 ReF (z)+(1+A)2 ReC(z) > 0,
(iii) ((1−AB) ImE(z) + (1−B2) ImF (z) + (1−A2) ImC(z))2

<
(

(A−B)nReD(z) + (1 +A)(1 +B) ReE(z) + (1 +B)2 ReF (z)
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+(1 +A)2 ReC(z)
)(

(A−B)nReD(z)

−(1−A)(1−B) ReE(z)− (1−B)2 ReF (z)− (1−A)2 ReC(z)
)
.

If p ∈ H[1, n], (1 +B)p(z) 6= (1 +A) and satisfy

C(z)p2(z) +D(z)zp′(z) + E(z)p(z) + F (z) = 0, (3.1)

then p(z) ≺ (1 +Az)/(1 +Bz).

Proof. For p ∈ H[1, n], define the function q : D→ C by

q(z) =
−(1−A) + (1−B)p(z)

(1 +A)− (1 +B)p(z)
. (3.2)

Then q is analytic in D and q(0) = 1. Proceeding as in Theorem 2.1, the differential
equation (3.1) takes the following form

D(z)zq′(z) +
C(z)((1−A) + (1 +A)q(z))2

2(A−B)

+
E(z)((1−A) + (1 +A)q(z))((1−B) + (1 +B)q(z))

2(A−B)

+
F (z)((1−B) + (1 +B)q(z))2

2(A−B)
= 0.

(3.3)

Let ψ : C2 × D→ C be defined by

ψ(r, s; z) = D(z)s+
C(z)((1−A) + (1 +A)r)2

2(A−B)

+
E(z)((1−A) + (1 +A)r)((1−B) + (1 +B)r)

2(A−B)

+
F (z)((1−B) + (1 +B)r)2

2(A−B)
.

(3.4)

It follows from (3.3) that ψ(q(z), zq′(z); z) ∈ Ω = {0}. Now to ensure that Re q(z) > 0
for z ∈ D, from Lemma 1.2, it is enough to establish that Reψ(iρ, σ; z) < 0 in D for
any real ρ, σ, satisfying σ ≤ −n(1 + ρ2)/2. For z ∈ D in (3.4), a computation using
condition (i) yields that

Reψ(iρ, σ; z) = σReD(z) +
((1−A)2 − (1 +A)2ρ2) ReC(z)

2(A−B)

+
(A2 − 1)ρ ImC(z)

A−B
+

(AB − 1)ρ ImE(z)

A−B

+
ReE(z)

(
(1−A)(1−B)− (1 +A)(1 +B)ρ2

)
2(A−B)

+
((1−B)2 − (1 +B)2ρ2) ReF (z)

2(A−B)
+

(B2 − 1)ρ ImF (z)

A−B

≤ −n
2

(1 + ρ2) ReD(z) +
((1−A)2 − (1 +A)2ρ2) ReC(z)

2(A−B)
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+
ReE(z)

(
(1−A)(1−B)− (1 +A)(1 +B)ρ2

)
2(A−B)

+
((1−B)2 − (1 +B)2ρ2) ReF (z)

2(A−B)
+

(B2 − 1)ρ ImF (z)

A−B

+
(A2 − 1)ρ ImC(z)

A−B
+

(AB − 1)ρ ImE(z)

A−B
=: aρ2 + bρ+ c, (3.5)

where

a = − 1

2(A−B)

(
(A−B)nReD(z) + (1 +A)(1 +B) ReE(z)

+ (1 +B)2 ReF (z) + (1 +A)2 ReC(z)
)
,

b = − 1

(A−B)

(
(1−AB) ImE(z) + (1−B2) ImF (z) + (1−A2) ImC(z)

)
,

c = − 1

2(A−B)

(
(A−B)nReD(z)− (1−A)(1−B) ReE(z)

− (1−B)2 ReF (z)− (1−A)2 ReC(z)
)
.

In view of the conditions (ii) and (iii), we see that a < 0 and b2−4ac < 0 respectively.
So, Reψ(iρ, σ, µ+ iν; z) < 0 in D. Hence, by Lemma 1.2, we deduce that Re q(z) > 0,
that is, by using (3.2), we get

−(1−A) + (1−B)p(z)

(1 +A)− (1 +B)p(z)
≺ 1 + z

1− z
.

Therefore, there exist an analytic function w in D with w(0) = 0 and |w(z)| < 1 such
that

−(1−A) + (1−B)p(z)

(1 +A)− (1 +B)p(z)
=

1 + w(z)

1− w(z)

which gives that p(z) = (1 +Aw)/(1 +Bw) and thus, p(z) ≺ (1 +Az)/(1 +Bz). �

The next result follows by taking p(z) = zf ′(z)/f(z) in Theorem 3.1.

Corollary 3.2. Let n be a positive integer, −1 ≤ B < A ≤ 1, C(z) = C ≥ 0. Suppose
that the functions D,E, F : D→ C satisfy
(i) ReD(z) ≥ 0,
(ii) (A−B)nReD(z)+(1+A)(1+B) ReE(z)+(1+B)2 ReF (z)+(1+A)2 ReC(z) > 0,
(iii) ((1−AB) ImE(z) + (1−B2) ImF (z) + (1−A2) ImC(z))2

<
(

(A−B)nReD(z) + (1 +A)(1 +B) ReE(z) + (1 +B)2 ReF (z)

+(1 +A)2 ReC(z)
)(

(A−B)nReD(z)− (1−A)(1−B) ReE(z)

−(1−B)2 ReF (z)− (1−A)2 ReC(z)
)
.

If f ∈ An, (1 +B)zf ′(z)/f(z) 6= (1 +A) and satisfy

C(z)
(zf ′(z)
f(z)

)2
+D(z)

(
1 +

zf ′′(z)

f ′(z)
− zf ′(z)

f(z)

)zf ′(z)
f(z)

+ E(z)
(zf ′(z)
f(z)

)
+ F (z) = 0,
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then f ∈ S∗[A,B].

We close this section by finding conditions on D,E, F so that p(z) ≺ (1+Az)/(1+Bz)
when |D(z)zp′(z) + E(z)p(z) + F (z)| < M , (M > 0).

Theorem 3.3. Let n be a positive integer, M > 0 and −1 ≤ B < A ≤ 1. Suppose that
the functions D,E, F : D→ C satisfy

n(A−B)|D(z)| − (1 + |A|)(1 + |B|)|E(z)| ≥ (1 + |B|)2(M + |F (z)|). (3.6)

If p ∈ H[1, n] and satisfy

|D(z)zp′(z) + E(z)p(z) + F (z)| < M, (3.7)

then p(z) ≺ (1 +Az)/(1 +Bz).

Proof. In view of condition (3.7), we must have |E(0) + F (0)| < M . Suppose that
G(z) = D(z)zp′(z) + E(z)p(z) + F (z). If we assume that p is not subordinate to
(1 + Az)/(1 + Bz) =: q(z), then by Lemma 1.1, there exist points z0 ∈ D, ζ0 ∈ ∂D
and an m ≥ n such that

p(z0) = q(ζ0) =
1 +Aζ0
1 +Bζ0

(3.8)

and

z0p
′(z0) = mζ0q

′(ζ0) =
m(A−B)ζ0
(1 +Bζ0)2

. (3.9)

Using (3.8), (3.9) , (3.6) and the fact that |ζ0| = 1 and m ≥ n, we get

|G(z0)| = 1

|1 +Bζ0|2
|m(A−B)ζ0D(z0) + (1 +Aζ0)(1 +Bζ0)E(z0) + (1 +Bζ0)2F (z0)|

≥ 1

(1 + |B|)2
(
m(A−B)|D(z0)| − |1 +Aζ0||1 +Bζ0||E(z0)| − |1 +Bζ0|2|F (z0)|

)
≥ 1

(1 + |B|)2
(
n(A−B)|D(z0)| − (1 + |A|)(1 + |B|)|E(z0)| − (|1 + |B|)2|F (z0)|

)
≥M.

Since this contradicts (3.7), we get our required result. �
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Explicit limit cycles of a cubic polynomial
differential systems

Ahmed Bendjeddou and Rachid Boukoucha

Abstract. In this paper, we determine sufficient conditions for a cubic polynomial
differential systems of the form{

x′ = x+ ax3 + bx2y + cxy2 + ny3

y′ = y + sx3 + ux2y + vxy2 + wy3

where a, b, c, n, s, u, v, w are real constants, to possess an algebraic, non-algebraic
limit cycles, explicitly given. Concrete examples exhibiting the applicability of
our result is introduced.
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1. Introduction

An important problem of the qualitative theory of differential equations is to
determine the limit cycles of a system of the form{

x′ = dx
dt = P (x, y)

y′ = dy
dt = Q(x, y)

(1.1)

where P (x, y) and Q(x, y) are coprime polynomials and we denote by n =
max {degP,degQ} and we say that n is the degree of system (1.1). A limit cycle
of system (1.1) is an isolated periodic solution in the set of all periodic solution of
system (1.1) see [4, 6, 10], and it is said to be algebraic if it is contained in the zero
level set of a polynomial function, see for example [1, 2, 8]. We usually only ask for the
number of such limit cycles, but their location as orbits of the system is also an inter-
esting problem. And an even more difficult problem is to give an explicit expression
of them. We are able to solve this last problem for a given system of the form (1.1).
Until recently, the only limit cycles known in an explicit way were algebraic. In [3, 5, 7]
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examples of explicit limit cycles which are not algebraic are given. For instance, the
limit cycle appearing in van der Pol’s system is not algebraic as it is proved in [9].

In this paper, we determine sufficient conditions for a planar systems of the form{
x′ = x+ ax3 + bx2y + cxy2 + ny3

y′ = y + sx3 + ux2y + vxy2 + wy3
(1.2)

where a, b, c, n, s, u, v and w are real constants, to possess an explicit algebraic, non-
algebraic limit cycles. Concrete examples exhibiting the applicability of our result is
introduced.

We define the trigonometric functions

f (θ) = 3a+ c+ u+ 3w + 4 (a− w) (cos 2θ) + 2 (b+ n+ s+ v) (sin 2θ)

+ (a− c− u+ w) (cos 4θ) + (b− n+ s− v) (sin 4θ)

g (θ) = 3s− 3n− b+ v + 4 (n+ s) (cos 2θ) + 2 (u− c− a+ w) (sin 2θ)

+ (c− a+ u− w) (sin 4θ) + (b− n+ s− v) (cos 4θ)

2. Main result

Our main result is contained in the following theorem.

Theorem 2.1. Consider a multi-parameter cubic polynomial differential system (1.2),
then the following statements hold.

H1) if

3a+ c+ u+ 3w+ 4 |a− w|+ 2 |b+ n+ s+ v|+ |a− c− u+ w|+ |b− n+ s− v| < 0,

3s− 3n− b+ v + 4 |n+ s|+ 2 |u− c− a+ w|+ |c− a+ u− w|+ |b− n+ s− v| < 0,

then system (1.2) has limit cycle explicitly given in polar coordinates (r, θ) , by

r (θ, r∗) = exp

(∫ θ

0

f (µ)

g (µ)
dµ

)√√√√√√√r2∗ + 16

∫ θ

0

exp

(
−
∫ ω

0

2f (µ)

g (µ)
dµ

)
g (ω)

 dω

where a, b, c, n, s, u, v , w are real constants, and

r∗ = 4

√√√√√√√√
exp

(
2

∫ 2π

0

f (µ)

g (µ)
dµ

)
1− exp

(
2

∫ 2π

0

f (µ)

g (µ)
dµ

) ∫ 2π

0

exp

(
−
∫ ω

0

2f (µ)

g (µ)
dµ

)
g (ω)

 dω

H2) if f (θ) , and g (θ) are not constant functions for all θ ∈ R, then this limit
cycle is non algebraic limit cycle.

Moreover, this limit cycle is a stable hyperbolic limit cycle.
H3) if f (θ) = λ, g (θ) = β are constant functions for all θ ∈ R where λ, β ∈ R∗−,

then this limit cycle is algebraic limit cycle given by r2∗ = −8
λ i e: x2 + y2 = −8

λ is the
circle.
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In short, since it is well known that the polynomial differential systems of degree
1 have no limit cycles, it remains the following open question:

Open question. Are there or not polynomial differential systems of degree 2 exhibiting
explicit non-algebraic limit cycles.

Proof. In order to prove our results we write the polynomial differential system (1.2) in
polar coordinates (r, θ) , defined by x = r cos θ, and y = r sin θ, then system becomes{

r′ = r + f (θ) r3

θ′ = g (θ) r2
(2.1)

where θ′ = dθ
dt , r

′ = dr
dt .

According to

3s− 3n− b+ v + 4 |n+ s|+ 2 |u− c− a+ w|+ |c− a+ u− w|+ |b− n+ s− v| < 0

hence g (θ) < 0 for all θ ∈ R, then θ′ is negative for all t, which means that the
orbits (r (t) , θ (t)) of system (2.1) have the opposite orientation with respect to those
(x (t) , y (t)) of system (1.2).

Taking as new independent variable the coordinate θ, this differential system
writes

dr

dθ
=
f (θ)

g (θ)
r +

8

g (θ)

1

r
(2.2)

which is a Bernoulli equation.

By introducing the standard change of variables ρ = r2 we obtain the linear
equation

dρ

dθ
=

16

g (θ)
+

2f (θ)

g (θ)
ρ (2.3)

The general solution of linear equation (2.3) is

ρ (θ) = exp

(∫ θ

0

2f (µ)

g (µ)
dµ

)k + 16

∫ θ

0

exp

(
−
∫ ω

0

2f (µ)

g (µ)
dµ

)
g (ω)

 dω

 (2.4)

where k ∈ R
Then the general solution of Bernoulli equation (2.2) is

r (θ) = exp

(∫ θ

0

f (µ)

g (µ)
dµ

)√√√√√√√k + 16

∫ θ

0

exp

(
−
∫ ω

0

2f (µ)

g (µ)
dµ

)
g (ω)

 dω (2.5)

where k ∈ R
Notice that system (1.2) has a periodic orbit if and only if equation (2.5) has a

strictly positive 2π periodic solution.
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It is easy to check that the solution r (θ; r0) of the differential equation (2.2)
such that r (0, r0) = r0 is

r (θ; r0) = exp

(∫ θ

0

f (µ)

g (µ)
dµ

)√√√√√√√r20 + 16

∫ θ

0

exp

(
−
∫ ω

0

2f (µ)

g (µ)
dµ

)
g (ω)

 dω (2.6)

where r0 = r (0) .

A periodic solution of system (2.1) must satisfy the condition r (2π, r0) = r (0, r0) ,
which leads to a unique value r0 = r∗ , given by

r∗ = 4

√√√√√√√ exp
(∫ 2π

0
2f(µ)
g(µ) dµ

)
1− exp

(∫ 2π

0
2f(µ)
g(µ) dµ

) ∫ 2π

0

exp

(
−
∫ ω

0

2f (µ)

g (µ)
dµ

)
g (ω)

 dω (2.7)

Since

3a+ c+ u+ 3w + 4 |a− w|+ 2 |b+ n+ s+ v|+ |a− c− u+ w|+ |b− n+ s− v| < 0

and

3s− 3n− b+ v + 4 |n+ s|+ 2 |u− c− a+ w|+ |c− a+ u− w|+ |b− n+ s− v| < 0

we have f (µ) < 0 , g (µ) < 0 for all µ ∈ [0, 2π] hence r∗ > 0.
Injecting this value of r∗ in (2.6), we get the candidate solution

r (θ, r∗) = 4 exp

(∫ θ

0

f (µ)

g (µ)
dµ

)
√√√√√√√√√√√√√√√

exp
(∫ 2π

0
2f(µ)
g(µ)

dµ
)

1−exp
(∫ 2π

0
2f(µ)
g(µ)

dµ
) ∫ 2π

0

exp

(
−
∫ ω

0

2f (µ)

g (µ)
dµ

)
g (ω)

 dω

+

∫ θ

0

exp

(
−
∫ ω

0

2f (µ)

g (µ)
dµ

)
g (ω)

 dω

So, if r (θ; r∗) > 0 for all θ ∈ R, we shall have r (θ; r∗) > 0 would be periodic
orbit, and consequently a limit cycle. In what follows it is proved that r (θ; r∗) > 0
for all θ ∈ R. Indeed

r (θ, r∗) = 4 exp

(∫ θ

0

f (µ)

g (µ)
dµ

)
√√√√√√√√√√√√√√√

exp
(∫ 2π

0
2f(µ)
g(µ)

dµ
)

1−exp
(∫ 2π

0
2f(µ)
g(µ)

dµ
) ∫ 2π

0

exp

(
−
∫ ω

0

2f (µ)

g (µ)
dµ

)
g (ω)

 dω

+

∫ θ

0

exp

(
−
∫ ω

0

2f (µ)

g (µ)
dµ

)
g (ω)

 dω
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> 4 exp

(∫ θ

0

f (µ)

g (µ)
dµ

)
√√√√√√√√√√√√√√√

∫ 2π

0

exp

(
−
∫ ω

0

2f (µ)

g (µ)
dµ

)
−g (ω)

 dω

+

∫ θ

0

exp

(
−
∫ ω

0

2f (µ)

g (µ)
dµ

)
g (ω)

 dω

= 4 exp

(∫ θ

0

f (µ)

g (µ)
dµ

)√√√√√√√√
∫ θ

2π

e
−

∫ ω

0

2f (µ)

g (µ)
dµ

g (ω)

 dω

= 4 exp

(∫ θ

0

f (µ)

g (µ)
dµ

)√√√√√√√∫ 2π

θ

exp

(
−
∫ ω

0

2f (µ)

g (µ)
dµ

)
−g (ω)

 dω > 0

because f (µ) < 0, g (µ) < 0 for all µ ∈ R , hence f(µ)
g(µ) > 0 for all µ ∈ R

Consequently, this is a limit cycle for the differential system (1.2).
This completes the proof of statement H1 of Theorem 2.1.

If f (θ) and g (θ) are not constant functions for all θ ∈ R, the curve
(r (θ) cos θ, r (θ) sin (θ)) in the (x, y) plane with

r (θ; r∗)
2

= exp

(∫ θ

0

2f (µ)

g (µ)
dµ

)r2∗ + 16

∫ θ

0

exp

(
−
∫ ω

0

2f (µ)

g (µ)
dµ

)
g (ω)

 dω


is not algebraic. More precisely, in Cartesian coordinates r (θ; r∗)

2
= x2 + y2 and

θ = arctan
(
y
x

)
, the curve defined by this limit cycle is

f (x, y) = x2 + y2 − exp

(∫ arctan( yx )

0

2f (µ)

g (µ)
dµ

)

×

r2∗ + 16

∫ arctan( yx )

0

exp

(
−
∫ ω

0

2f (µ)

g (µ)
dµ

)
g (ω)

 dω

 = 0.
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But there is no integer n for which both ∂(n)f
∂xn and ∂(n)f

∂yn vanish identically.

To be convinced by this fact, one has to compute for example ∂f
∂x , that is

∂f

∂x
(x, y) = 2x+

y exp

(
2f(arctan( yx ))
g(arctan( yx ))

)
exp

(∫ arctan( yx )

0

2f (µ)

g (µ)
dµ

)
x2 + y2

r2∗

+16

y exp

(
2f(arctan( yx ))
g(arctan( yx ))

)
exp

(∫ arctan( yx )

0

2f (µ)

g (µ)
dµ

)
x2 + y2

×
∫ arctan( yx )

0

exp

(
−
∫ ω

0

2f (µ)

g (µ)
dµ

)
g (ω)

 dω +
16y

(x2 + y2) g
(
arctan

(
y
x

))
Since f (x, y) appears again, it will remains in any order of derivation, therefore the
curve f (x, y) = 0 is non-algebraic and the limit cycle will also be non-algebraic.

In order to prove the hyperbolicity of the limit cycle notice that the Poincaré
return map is Π (ρ0) = ρ (2π, ρ0), for more details see [5, section 1.6].

An easy computation shows that

dr (2π; r0)

dr0

∣∣∣∣
r0=r∗

= exp

(∫ 2π

0

2f (µ)

g (µ)
dµ

)
> 1.

because f (µ) g (µ) > 0 for all µ ∈ R
Therefore the limit cycle of the differential equation (2.2) is unstable and hy-

perbolic. Consequently, this is a stable and hyperbolic limit cycle for the differential
system (1.2). This completes the proof of statement H2 of Theorem 2.1.

Suppose now that f (θ) = λ, g (θ) = β are constant functions for all θ ∈ R.
According to

3a+ c+ u+ 3w + 4 |a− w|+ 2 |b+ n+ s+ v|+ |a− c− u+ w|+ |b− n+ s− v| < 0

3s− 3n− b+ v + 4 |n+ s|+ 2 |u− c− a+ w|+ |c− a+ u− w|+ |b− n+ s− v| < 0

hence f (θ) = λ < 0, g (θ) = β < 0 for all θ ∈ R. then

r∗ =

√√√√√√√√16

β

exp

(
2

∫ 2π

0

λ

β
dµ

)
1− exp

(
2

∫ 2π

0

λ

β
dµ

) (∫ 2π

0

(
exp

(
−2

∫ ω

0

λ

β
dµ

))
dω

)
=

√
− 8

λ
> 0,

Injecting this value of r∗ in (2.6), we get the solution

r (θ, r∗) = exp

(
λ

β
θ

)√
−8

λ
+

16

β

∫ θ

0

(
exp

(
−2

∫ ω

0

λ

β
dµ

))
dω

r (θ, r∗) =

√
− 8

λ
> 0,
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for all θ ∈ R
In Cartesian coordinates

r (θ; r∗)
2

= x2 + y2 = − 8

λ

this limit cycle is algebraic (is the circle).
This completes the proof of statement H3 of Theorem 2.1. �

The following examples are given to illustrate our result.

Example 2.2. If we take a = s = w = −1, b = 2, c = −2, n = 1, and u = v = 0 then
system (1.2) reads {

x′ = x− x3 + 2x2y − 2xy2 + y3

y′ = y − x3 − y3

equivalent to {
x′ = x+ (y − x)

(
x2 − xy + y2

)
y′ = y − (y + x)

(
x2 − xy + y2

)
has a non-algebraic limit cycle whose expression in polar coordinates (r, θ) is,

r (θ, r∗) = eθ

√
r2∗ − 4

∫ θ

0

(
e−2ω

2− sin 2ω

)
dω

where θ ∈ R, with f (θ) = g (θ) = −8 + 4 (sin 2θ), and the intersection of the limit
cycle with the OX+ axis is the point having r∗

r∗ =

√
2e4π

e4π − 1

∫ 2π

0

(
2

2− sin 2ω
e−2ω

)
dω ' 1. 191 2

Moreover
dr (2π; r0)

dr0

∣∣∣∣
r0=r∗

= e4π > 1.

This limit cycle is a stable hyperbolic limit cycle.
Is the results presented by Jaume Llibre and Benterki Rebiha in [3] .

Example 2.3. If we take a = s = w = −2, b = 5, c = −5, n = 2, and u = v = 1 then
system (1.2) reads {

x′ = x− 2x3 + 5x2y − 5xy2 + 2y3

y′ = y − 2x3 + x2y + xy2 − 2y3

has a non-algebraic limit cycle whose expression in polar coordinates (r, θ) is,

r (θ, r∗) = exp (θ)

√
r2∗ + 4

∫ θ

0

(
exp (−2ω)

−4 + 3 (sin 2ω)

)
dω

where θ ∈ R, with f (θ) = −16 + 12 (sin 2θ) , g (θ) = −16 + 12 (sin 2θ), and the
intersection of the limit cycle with the OX+ axis is the point having r∗

r∗ = 4

√
exp (4π)

1− exp (4π)

(∫ 2π

0

(
exp (−2ω)

−16 + 12 (sin 2ω)

)
dω

)
' 1. 001 0
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Moreover
dr (2π; r0)

dr0

∣∣∣∣
r0=r∗

= e4π > 1.

This limit cycle is a stable hyperbolic limit cycle.

Example 2.4. If we take a = c = u = s = v = w = −1 and b = n = 1, the system
(1.2) reads {

x′ = x− x3 + x2y − xy2 + y3

y′ = y − x3 − x2y − xy2 − y3

in polar coordinates (r, θ) we obtained f (θ) = λ = −8, g (θ) = β = −8, and r∗ =√
−8
λ = 1 hence

r (θ, r∗) = r (θ, 1) = exp

(∫ θ

0

dµ

)√√√√√√√1 + 16

∫ θ

0

exp

(
−
∫ ω

0

2dµ

)
−8

 dω = 1

for all θ ∈ R.
The system has a algebraic limit cycle whose expression in Cartesian coordinates

(x, y) becomes

r (θ; r∗)
2

= x2 + y2 = 1

this limit cycle is the circle.

Example 2.5. If we take a = c = u = w = − 1
2 , b = n = 1

4 , and s = v = − 1
4 , the

system (1.2) reads {
x′ = x− 1

2x
3 + 1

4x
2y − 1

2xy
2 + 1

4y
3

y′ = y − 1
4x

3 − 1
2x

2y − 1
4xy

2 − 1
2y

3

in polar coordinates (r, θ) we obtained f (θ) = λ = −4, g (θ) = β = −2 and r∗ =√
−8
λ =

√
2 hence

r (θ, r∗) = r
(
θ,
√

2
)

= exp

(∫ θ

0

2ds

)√√√√√√√2 + 16

∫ θ

0

exp

(
−
∫ ω

0

4ds

)
−2

 dω =
√

2

for all θ ∈ R.
The system has a algebraic limit cycle whose expression in Cartesian coordinates

(x, y) becomes

r (θ; r∗)
2

= x2 + y2 = 2

this limit cycle is the circle.
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Fixed point theorems for a system of operator
equations with applications

Cristina Urs

Abstract. The purpose of this paper is to present some existence and uniqueness
theorems for a general system of operator equations. The abstract result gener-
alizes some existence results obtained in [V. Berinde, Generalized coupled fixed
point theorems for mixed monotone mappings in partially ordered metric spaces,
Nonlinear Anal. 74 (2011) 7347-7355] for the case of coupled fixed point problem.
We also provide an application to a system of integro-differential equations.

Mathematics Subject Classification (2010): 47H10, 54H25, 34B15.

Keywords: Fixed point, contractive condition, metric space, coupled fixed point,
integral equation.

1. Introduction

The classical Banach contraction principle is remarkable in its simplicity and it
is perhaps the most widely applied fixed point theorem in all analysis. This is because
the contractive condition on the operator is easy to test and it requires only the
structure of a complete metric space for its setting (see S. Banach [1]). This principle
is also a very useful tool in nonlinear analysis with many applications to operatorial
equations, fractal theory, optimization theory and other topics. Several authors have
been dedicated to the improvement and generalization of this principle (see [3], [6],
[4], [5], etc.)

The purpose of this paper is to present some existence and uniqueness results
which will extend and generalize some theorems obtained by V. Berinde in [2] for the
case of coupled fixed point problems. We also provide an application to an integral
equation system. For related results see also [7].

This work was possible due to the financial support of the Sectorial Operational Program for Human

Resources Development 2007 − 2013, co-financed by the European Social Fund, under the project
number POSDRU/159/1.5/S/132400 with the title ,,Young successful researchers- professional de-

velopment in a international and interdisciplinary enviroment”.
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2. Main results

The first result is an existence and uniqueness result which generalizes Theorem
3 presented by V. Berinde in [2].

Theorem 2.1. Let X be a nonempty set and suppose there is a metric d on X such
that (X, d) is a complete metric space. Let T1, T2 : X ×X → X be two operators for
which there exists a constant k ∈ [0, 1) such that

d(T1(x, y), T1(u, v)) + d(T2(x, y), T2(u, v)) ≤ k(d(x, u) + d(y, v)),

for all (x, y), (u, v) ∈ X ×X.
Then we have the following conclusions:
(i) there exists a unique element (x∗, y∗) ∈ X ×X such that{

x∗ = T1(x∗, y∗)
y∗ = T2(x∗, y∗)

(ii) the sequence (Tn1 (x, y), Tn2 (x, y))n∈N converges to (x∗, y∗) as n→∞

Tn+1
1 (x, y) : = Tn1 (T1(x, y), T2(x, y))

Tn+1
2 (x, y) : = Tn2 (T1(x, y), T2(x, y))

for all n ∈ N.
(iii) we have the following estimation

d(Tn1 (x0, y0), x∗) ≤ kn

1− k
d(x0, T1(x0, y0))

d(Tn2 (x0, y0), y∗) ≤ kn

1− k
d(y0, T2(x0, y0))

(iv) let F1, F2 : X ×X → X be two operators such that, there exist ε1, ε2 > 0 with

d(T1(x, y), F1(x, y)) ≤ ε1

d(T2(x, y), F2(x, y)) ≤ ε2

for all (x, y) ∈ X ×X. If (a∗, b∗) ∈ X ×X is such that{
a∗ = F1(a∗, b∗)
b∗ = F2(a∗, b∗)

then

d(x∗, a∗) + d(y∗, b∗) ≤ ε1 + ε2
1− k

Proof. (i)- (ii)
We define T : X ×X → X ×X by

T (x, y) = (T1(x, y), T2(x, y)).

Lets denote Z := X ×X and d∗ : Z × Z → R+

d∗((x, y), (u, v)) :=
1

2
(d(x, u) + d(y, v))

for all (x, y), (u, v) ∈ X ×X.
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Then we have

d∗(T (x, y), T (u, v)) =
d(T1(x, y), T1(u, v)) + d(T2(x, y), T2(u, v))

2
.

Then we denote (x, y) := z, (u, v) := w we get that

d∗(T (z), T (w)) ≤ k · d∗(z, w)

for every z, w ∈ X ×X.
Hence we obtained Banach’s contraction condition. Applying Banach’s contraction
fixed point theorem we get that there exists a unique element (x∗, y∗) := z∗ ∈ X ×X
such that

z∗ = T (z∗)

and it is equivalent with {
x∗ = T1(x∗, y∗)
y∗ = T2(x∗, y∗)

.

For each z ∈ X ×X, we have that Tn(z)→ z∗ as n→∞ where

T 0(z) : = z, T 1(z) = T (x, y) = (T1(x, y), T2(x, y))

T 2(z) = T (T1(x, y), T2(x, y)) = (T 2
1 (x, y), T 2

2 (x, y))

and in generally

Tn+1
1 (x, y) : = Tn1 (T1(x, y), T2(x, y))

Tn+1
2 (x, y) : = Tn2 (T1(x, y), T2(x, y)).

We get that Tn(z) = (Tn1 (z), Tn2 (z)) → z∗ = (x∗, y∗) as n→ ∞, for all z = (x, y) ∈
X ×X.
So for all (x, y) ∈ X ×X we have that

Tn1 (x, y) → x∗ as n→∞
Tn2 (x, y) → y∗ as n→∞.

(iii) We apply Banach’s contraction principle and we have successively

d(Tn1 (x0, y0), x∗) ≤ kn

1− k
d(x0, T1(x0, y0))

d(Tn2 (x0, y0), y∗) ≤ kn

1− k
d(x0, T2(x0, y0))

(iv) Let us consider F : X ×X → X ×X given by F (x, y) = (F1(x, y), F2(x, y)) and

d∗(T (x, y), F (x, y)) = d∗((T1(x, y), T2(x, y)), (F1(x, y), F2(x, y)))

=
d(T1(x, y), F1(x, y)) + d(T2(x, y), F2(x, y))

2
≤ ε,

where ε := ε1+ε2
2 .

Then, by the data dependence theorem related to Banachs contraction principle we
get that

d(x∗, a∗) + d(y∗, b∗) ≤ ε1 + ε2
1− k

.
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Hence we get that

d∗((x∗, y∗), (a∗, b∗)) ≤ ε

1− k
. �

An existence and uniqueness result, similar to Theorem 2.1, is the following theorem.

Theorem 2.2. Let X be a nonempty set and suppose there is a metric d on X such
that (X, d) is a complete metric space. Let T1, T2 : X ×X → X be two operators for
which there exists a constant k ∈ [0, 1) such that, for each (x, y), (u, v) ∈ X ×X, we
have

max{d(T1(x, y), T2(u, v)), d(T2(x, y), T2(u, v))} ≤ k ·max{d(x, u), d(y, v)}.
Then we have the following conclusions:
(i) there exists a unique element (x∗, y∗) ∈ X ×X such that{

x∗ = T1(x∗, y∗)
y∗ = T2(x∗, y∗)

(ii) the sequence (Tn1 (x, y), Tn2 (x, y))n∈N converges to (x∗, y∗) as n→∞

Tn+1
1 (x, y) : = Tn1 (T1(x, y), T2(x, y))

Tn+1
2 (x, y) : = Tn2 (T1(x, y), T2(x, y))

for all n ∈ N.
(iii) we have the following estimation

d(Tn1 (x0, y0), x∗) ≤ kn

1− k
d(x0, T1(x0, y0))

d(Tn2 (x0, y0), y∗) ≤ kn

1− k
d(y0, T2(x0, y0))

(iv) let F1, F2 : X ×X → X be two operators such that, there exist ε1, ε2 > 0 with

d(T1(x, y), F1(x, y)) ≤ ε1

d(T2(x, y), F2(x, y)) ≤ ε2

for all (x, y) ∈ X ×X. If (a∗, b∗) ∈ X ×X is such that{
a∗ = F1(a∗, b∗)
b∗ = F2(a∗, b∗)

then

max{d(x∗, a∗), d(y∗, b∗)} ≤ max{ε1, ε2}
1− k

.

Proof. (i)- (ii)
We define T : X ×X → X ×X by

T (x, y) = (T1(x, y), T2(x, y)).

Lets denote Z := X ×X and d∗ : Z × Z → R+

d∗((x, y), (u, v)) :=
1

2
max{d(x, u), d(y, v)}

for all (x, y), (u, v) ∈ X ×X.



Fixed point theorems for a system of operator equations 91

Then we have

d∗(T (x, y), T (u, v)) =
1

2
max{d(T1(x, y), T1(u, v)), d(T2(x, y), T2(x, y), T2(u, v))}

If we denote (x, y) := z, (u, v) := w we get that

d∗(T (z), T (w)) ≤ k ·max{d(x, u), d(y, v)} = k · d∗(z, w)

for every z, w ∈ X ×X.
Hence we obtained Banach’s type contraction condition. By Banach’s contraction
fixed point theorem we get that there exists a unique element (x∗, y∗) := z∗ ∈ X ×X
such that

z∗ = T (z∗)

and it is equivalent with {
x∗ = T1(x∗, y∗)
y∗ = T2(x∗, y∗)

.

For each z ∈ X ×X, we have that Tn(z)→ z∗ as n→∞ where

T 0(z) : = z, T 1(z) = T (x, y) = (T1(x, y), T2(x, y))

T 2(z) = T (T1(x, y), T2(x, y)) = (T 2
1 (x, y), T 2

2 (x, y))

and in generally

Tn+1
1 (x, y) : = Tn1 (T1(x, y), T2(x, y))

Tn+1
2 (x, y) : = Tn2 (T1(x, y), T2(x, y)).

We get that Tn(z) = (Tn1 (z), Tn2 (z)) → z∗ = (x∗, y∗) as n→ ∞, for all z = (x, y) ∈
X ×X.
So, for all (x, y) ∈ X ×X we have that

Tn1 (x, y) → x∗ as n→∞
Tn2 (x, y) → y∗ as n→∞.

(iii) We apply Banach’s contraction principle and we have successively

d(Tn1 (x0, y0), x∗) ≤ kn

1− k
d(x0, T1(x0, y0))

d(Tn2 (x0, y0), y∗) ≤ kn

1− k
d(x0, T2(x0, y0))

(iv) Let us consider F : X ×X → X ×X given by

F (x, y) = (F1(x, y), F2(x, y))

and

d∗(T (x, y), F (x, y)) = d∗((T1(x, y), T2(x, y)), (F1(x, y), F2(x, y)))

=
1

2
max{d(T1(x, y), F1(x, y)), d(T2(x, y), F2(x, y))} ≤ ε

where ε := max{ε1,ε2}
2 .



92 Cristina Urs

Then, applying the abstract data dependence theorem related to Banachs contraction
principle we get that

max{d(x∗, a∗), d(y∗, b∗)} ≤ max{ε1, ε2}
1− k

.

We obtain that
d∗((x

∗, y∗), (a∗, b∗)) ≤ ε

1− k
. �

3. An application

In this section, we will consider the following problem: x(t) =
b∫
a

K(s, t, x(s), y(s))ds

y′′(t) = f(s, x(s), y(s)), y(a) = 0 y(b) = 0

(3.1)

This problem is equivalent to
x(t) =

b∫
a

K(s, t, x(s), y(s))ds

y(t) = −
b∫
a

G(t, s)f(s, x(s), y(s))ds,

where G : [a, b]× [a, b]→ R is given by

G(t, s) :=

{ (s−a)(b−t)
b−a , if s ≤ t

(t−a)(b−s)
b−a , if s ≥ t

.

Assumption (*) Suppose that K : [a, b]2 × R2 → R and f : [a, b]2 × R2 → R are
continuous functions and satisfy the following Lipschitz conditions

|K(t, s, u1, v1)−K(t, s, u2, v2)| ≤ α |u1 − u2|+ β |v1 − v2|
|f(s, u1, v1)− f(s, u2, v2)| ≤ γ |u1 − u2|+ δ |v1 − v2| ,

for every t, s ∈ [a, b] and u1, v1, u2, v2 ∈ R, where α, β, γ, δ > 0 such that

max

{
(α(b− a) + γ

(b− a)2

8
),

(
β(b− a) + δ

(b− a)2

8

)}
< 1.

Let X = (C[a, b], ‖·‖C) be the Banach space of continuous functions endowed
with the norm

‖x‖c := max
t∈[a,b]

|x(t)| .

We define the following operators

T1, T2 : X ×X → X, (x, y)→ T1(x, y) and (x, y)→ T2(x, y),

where

T1(x, y)(t) =

b∫
a

K(s, t, x(s), y(s))ds
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T2(x, y)(t) = −
b∫
a

G(t, s)f(s, x(s), y(s))ds.

An existence and uniqueness result for the system (3.1) is the following theorem.

Theorem 3.1. Consider the problem (3.1) with K, f : [a, b]2 × R2 → R and suppose
that Assumption (*) is satisfied. Then there exists a unique solution (x∗, y∗) of the
problem (3.1).

Proof. We verify that T1 and T2 satisfy the hypotheses of Theorem 2.1. Indeed, for
every t ∈ [a, b], we have

|T1(x, y)(t)− T1(u, v)(t)| =

∣∣∣∣∣∣
b∫
a

K(s, t, x(s), y(s))ds−
b∫
a

K(s, t, u(s), v(s))ds

∣∣∣∣∣∣
≤

b∫
a

|K(s, t, x(s), y(s))−K(s, t, u(s), v(s))| ds

≤ α
b∫
a

|x(s)− u(s)| ds+ β

b∫
a

|y(s)− v(s)| ds

≤ α ‖x− u‖C (b− a) + β ‖y − v‖C (b− a).

Taking the max
t∈[a,b]

in the above relation we get that

‖T1(x, y)− T1(u, v)‖C ≤ α(b− a) ‖x− u‖C + β(b− a) ‖y − v‖C .

On the other hand, for every t ∈ [a, b], we have

|T2(x, y)(t)− T2(u, v)(t)| =

∣∣∣∣∣∣−
b∫
a

G(t, s)f(s, x(s), y(s))ds+

b∫
a

G(t, s)f(s, u(s), v(s))ds

∣∣∣∣∣∣
≤

b∫
a

G(t, s) |f(s, u(s), v(s))− f(s, x(s), y(s))| ds

≤ γ
b∫
a

G(t, s) |u(s)− x(s)| ds+ δ

b∫
a

G(t, s) |v(s)− y(s)| ds

≤ γ ‖u− x‖C

b∫
a

G(t, s)ds+ δ ‖v − y‖C

b∫
a

G(t, s)ds.

Taking the max
t∈[a,b]

in the above relation we obtain

‖T2(x, y)− T2(u, v)‖C ≤ γ
(b− a)2

8
‖u− x‖C + δ

(b− a)2

8
‖v − y‖C .



94 Cristina Urs

Hence we get that

‖T1(x, y)− T1(u, v)‖C + ‖T2(x, y)− T2(u, v)‖C

≤ [α(b− a) + γ
(b− a)2

8
] ‖x− u‖C + [β(b− a) + δ

(b− a)2

8
] ‖y − v‖C

≤ max

{
(α(b− a) + γ

(b− a)2

8
), (β(b− a) + δ

(b− a)2

8
)

}
(‖x− u‖C + ‖y − v‖C).

Since the hypothesis of Theorem 2.1 is satisfied we get that the problem (3.1) has a
unique solution on I. �
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Compact hypersurfaces in a locally symmetric
manifold

Junfeng Chen and Shichang Shu

Abstract. Let M be an n-dimensional compact hypersurface in a locally sym-
metric manifold Nn+1. Denote by S and H the squared norm of the second
fundamental form and the mean curvature of M . Let |Φ|2 be the nonnegative
C2-function on M defined by |Φ|2 = S − nH2. In this paper, we prove that if
M is oriented and has constant mean curvature and |Φ| satisfies Pn,H,δ(|Φ|) ≥ 0,
then (1) |Φ|2 = 0, (i) H = 0 and M is totally geodesic in Nn+1, (ii) H 6= 0 and M
is totally umbilical in the unit sphere Sn+1(1); or (2) |Φ|2 = BH if and only if (i)
H = 0 and M is a Clifford torus, (ii) H 6= 0, n ≥ 3, and M is an H(r)-torus with
r2 < (n−1)/n, (iii) H 6= 0, n = 2, and M is an H(r)-torus with 0 < r < 1, r2 6= 1

2
.

If M has constant normalized scalar curvature R, R̄ = R − 1 ≥ 0, R̃ = R − δ
and S satisfies ϕn,R̄,R̃,δ(S) ≥ 0, then (1) M is totally umbilical in Sn+1(1); or

(2) M is a product S1(
√

1− r2) × Sn−1(r), r =
√

n−2
n(R+1)

, where Pn,H,δ(x) and

ϕn,R̄,R̃,δ(x) are defined by (1.7) and (1.10).

Mathematics Subject Classification (2010): 53B20, 53A10.

Keywords: Locally symmetric, Riemannian manifolds, hypersurfaces, totally um-
bilical.

1. Introduction

If the ambient manifolds possess very nice symmetry, for example, the sphere,
many important results had been obtained in the investigation of the minimal hy-
persurfaces and hypersurfaces with constant mean curvature or constant scalar cur-
vature. One can see [1], [3], [5], [8], [9], [16] and [19]. For minimal hypersurfaces in
a unit sphere, Simons [16], Chern-do Carmo-Kobayashi [5] and Lawson [8] obtained
the following famous integral inequality and rigidity result:
Theorem 1.1. ([5, 8, 16]) Let M be an n-dimensional closed minimal hypersurface in
a unit sphere Sn+1(1). Then ∫

M

(S − n)Sdv ≥ 0. (1.1)
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In particular, if

0 ≤ S ≤ n,

then S = 0 and M is totally geodesic, or S ≤ n and M is the Clifford torus

Mm,n−m = Sm
(√

m

n

)
× Sn−m

(√
n−m
n

)
,

where S is the squared norm of the second fundamental form of M .

In the case of closed hypersurfaces with constant mean curvature H, H. Alencar
and M. do Carmo [1] obtained the following integral inequality∫

M

|Φ|2
{
n(1 +H2)− n(n− 2)√

n(n− 1)
H|Φ| − |Φ|2

}
dv ≤ 0, (1.2)

where |Φ|2 is a nonnegative C2-function on M defined by |Φ|2 = S − nH2.

In order to represent our theorem, we need some notation (one can see [1]). An

H(r)-torus in Sn+1(1) is the product immersion Sn−1(r)× S1(
√

1− r2) ↪→ Rn ×R2,

where Sn−1(r) ⊂ Rn, S1(
√

1− r2) ⊂ R2, 0 < r < 1, are the standard immersions. In
some orientation, H(r)-torus has principal curvatures given by

λ1 = · · · = λn−1 =
√

1− r2/r, λn = −r/
√

1− r2.

For each H ≥ 0, set

PH(x) = x2 +
n(n− 2)√
n(n− 1)

Hx− n(1 +H2),

and let BH be the square of the positive root of PH(x) = 0. By using (1.2), Alencar
and do Carmo [1] also proved the following result:

Theorem 1.2. ([1]) Let M be a closed and oriented hypersurface in a unit sphere
Sn+1(1) with constant mean curvature H. Assume that |Φ|2 ≤ BH , then

(1) either |Φ|2 = 0, M is totally umbilical; or |Φ|2 = BH .

(2) |Φ|2 = BH if and only if

(i) H = 0 and M is a Clifford torus;

(ii) H 6= 0, n ≥ 3, and M is an H(r)-torus with r2 < (n− 1)/n;

(iii) H 6= 0, n = 2, and M is an H(r)-torus with 0 < r < 1, r2 6= 1
2 .

We should note that Zhong [19] also obtained the following important result:

Theorem 1.3. ([19]) Let M be a closed hypersurface in a unit sphere Sn+1(1) with
constant mean curvature H. Then

(1) if S < 2
√
n− 1, M is a small hypersphere Sn(r) of radius r =

√
n

n+S ;

(2) if S = 2
√
n− 1, M is either a small hypersphere Sn(r0) or an H(r)-torus

S1(r)× Sn−1(t), where r2
0 = n

n+2
√
n−1

, r2 = 1√
n−1+1

and t2 =
√
n−1√
n−1+1

.
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In the case of hypersurfaces with constant scalar curvature, H. Li [9] obtained
the following integral inequality∫

M

(S − nR̄)[n+ 2(n− 1)R̄− n− 2

n
S (1.3)

− n− 2

n

√
(S + n(n− 1)R̄)(S − nR̄)]dv ≤ 0,

and the following important result:
Theorem 1.4. ([9]) Let M be an n-dimensional (n ≥ 3) compact hypersurface in a unit
sphere Sn+1(1) with constant normalized scalar curvature R and R̄ = R− 1 ≥ 0. If

nR̄ ≤ S ≤ n

(n− 2)(nR̄+ 2)
{n(n− 1)R̄2 + 4(n− 1)R̄+ n}, (1.4)

then either S = nR̄ and M is totally umbilical, or

S =
n

(n− 2)(nR̄+ 2)
{n(n− 1)R̄2 + 4(n− 1)R̄+ n}

and M is a product

S1(
√

1− r2)× Sn−1(r), r =

√
n− 2

n(R+ 1)
.

Recently, many researchers begin to study the ambient manifolds which do not
possess symmetry in general, for example, the locally symmetric manifolds and the
pinched Riemannian manifolds. One can see [6], [7], [12-15] and [17].

Let Nn+1 denote the locally symmetric manifold whose sectional curvature KN

satisfies the following condition

1/2 < δ ≤ KN ≤ 1,

at all points x ∈ M . If M is a compact minimal hypersurface in Nn+1, Hineva and
Belchev [7], Chen [2], Shui and Wu[15], obtained the following important rigidity
theorems:
Theorem 1.5. ([7]) Let M be an n-dimensional compact minimal hypersurface in a
locally symmetric manifold Nn+1. If

S ≤ (2δ − 1)n

n− 1
, (1.5)

then S is constant.
Theorem 1.6. ([2], [15]) Let M be an n-dimensional compact minimal hypersurface in
a locally symmetric manifold Nn+1. If

S ≤ (2δ − 1)n, (1.6)

then
(1) S = 0, M is totally geodesic and locally symmetric; or
(2) S = n, M is a product V m( nm ) × V n−m( n

n−m ), m = 1, 2, · · · , n − 1, where

V r(c) denotes the r-demensional Riemannian manifold with constant sectional cur-
vature c.
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By making use of the generalized maximal principle duo to Omori [11] and Yau
[18], the author [13] and [14] obtained the following:
Theorem 1.7. ([13]) Let M be an n-dimensional complete hypersurface with constant
mean curvature H in Nn+1. Assume that the sectional curvature Kn+1in+1i of Nn+1

at point x of M satisfies
∑
i λiKn+1in+1i = nH, where λ1, λ2, · · · , λn are the principal

curvatures at point x of M , then
(1) if S < 2

√
n− 1(2δ − 1), M is totally umbilical;

(2) if S = 2
√
n− 1(2δ − 1), (n ≥ 3), M is locally a piece of an H(r)-torus

S1(r)× Sn−1(t), where r2 = 1√
n−1+1

and t2 =
√
n−1√
n−1+1

.

Theorem 1.8. ([14]) Let M be an n-dimensional complete hypersurface with constant
mean curvature H in Nn+1. Assume that the sectional curvature Kn+1in+1i of Nn+1

at point x of M satisfies
∑
i λiKn+1in+1i = nH, where λ1, λ2, · · · , λn are the principal

curvatures at point x of M , then
(1) if S < D(n,H), then M is totally umbilical;
(2) if S = D(n,H), then
(i) H = 0 and M is locally a piece of a Clifford torus;
(ii) H 6= 0, n ≥ 3 and M is locally a piece of an H(r)-torus with r2 < (n−1)/n;
(iii) H 6= 0, n = 2 and M is locally a piece of an H(r)-torus with r2 6= 1/2,

0 < r < 1, where

D(n,H) = (2δ − 1)n+
n3H2

2(n− 1)
− (n− 2)nH

2(n− 1)
[n2H2 + 4(n− 1)(2δ − 1)]1/2.

Remark 1.1. We should note that in theorem 1.7 and theorem 1.8, the condition∑
i λiKn+1in+1i = nH, where λ1, λ2, · · · , λn are the principal curvatures at point x

of M , is needed. But if δ = 1, Nn+1 is a unit sphere Sn+1(1), then Kn+1in+1i = 1,∑
i λiKn+1in+1i = nH, by theorem 1.7 and theorem 1.8, we obtain some important

results for complete hypersurfaces in a unit sphere Sn+1(1) (see [13] and [14]).
In this paper, we shall study the compact hypersurfaces with constant mean

curvature and constant scalar curvature in a locally symmetric manifold Nn+1. In
order to present our theorems, we denote by H the mean curvature of M and S the
squared norm of the second fundamental form of M . We define a polynomial Pn,H,δ(x)
by

Pn,H,δ(x) =

(
5δ − 3

2
+H2

)
nx2 − n(n− 2)√

n(n− 1)
Hx3 − x4 − 1

2
(1− δ)n2H2. (1.7)

We shall prove the following:
Main Theorem 1.1. Let M be an n-dimensional compact and oriented hypersurface
with constant mean curvature in a locally symmetric manifold Nn+1. Then∫

M

{(
5δ − 3

2
+H2

)
n|Φ|2 − n(n− 2)√

n(n− 1)
H|Φ|3 − |Φ|4 − 1

2
(1− δ)n2H2

}
dv ≤ 0.

(1.8)
In particular, if |Φ| satisfies

Pn,H,δ(|Φ|) ≥ 0, (1.9)

then either
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(1) |Φ|2 = 0 and

(i) H = 0 and M is totally geodesic in Nn+1,

(ii) H 6= 0 and M is totally umbilical in the unit sphere Sn+1(1); or

(2) |Φ|2 = BH , if and only if

(i) H = 0 and M is a Clifford torus.

(ii) H 6= 0, n ≥ 3, and M is an H(r)-torus with r2 < (n− 1)/n.

(iii) H 6= 0, n = 2, and M is an H(r)-torus with 0 < r < 1, r2 6= 1
2 .

We also define a function ϕn,R̄,R̃,δ(x) by

ϕn,R̄,R̃,δ(x) =
n− 1

n
(x− nR̄)[

5δ − 3

2
n+ 2(n− 1)R̄− n− 2

n
x (1.10)

− n− 2

n

√
(x+ n(n− 1)R̃)(x− nR̄)]

− 1

2
(n− 1)(1− δ)

[
(5δ − 3)n+ 2(n− 1)R̄+ nR̃+

3n− 2

n(n− 1)
x

]
.

We shall prove the following:

Main Theorem 1.2. Let M be an n-dimensional compact hypersurface in a locally
symmetric manifold Nn+1 with constant normalized scalar curvature R and R̄ =
R− 1 ≥ 0, R̃ = R− δ. Then∫

M

{n− 1

n
(S − nR̄)

[5δ − 3

2
n+ 2(n− 1)R̄− n− 2

n
S (1.11)

− n− 2

n

√
(S + n(n− 1)R̃)(S − nR̄)

]
− 1

2
(n− 1)(1− δ)

[
(5δ − 3)n+ 2(n− 1)R̄+ nR̃+

3n− 2

n(n− 1)
S
]}
dv ≤ 0.

In particular, if S satisfies

(1.12) ϕn,R̄,R̃,δ(S) ≥ 0,

then either

(1) S = nR̄ and M is totally umbilical in the unit sphere Sn+1(1); or

(2) S = n
(n−2)(nR̄+2)

{n(n− 1)R̄2 + 4(n− 1)R̄+ n} and M is a product

S1(
√

1− r2)× Sn−1(r), r =

√
n− 2

n(R+ 1)
.

Remark 1.2. If δ = 1, that is, Nn+1 is the unit sphere Sn+1(1), (1.8) reduces to (1.1)
if H = 0 and (1.2). Main theorem 1.1 reduces to the theorem 1.1, if H = 0, of Simons,
Chern-do Carmo-Kobayashi and Lawson [16, 5, 8] and theorem 1.2 of Alencar and do
Carmo [1]. We should note that (1.11) reduces to (1.3) and Main theorem 1.2 reduces
to the theorem 1.4 of H. Li [9].
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2. Preliminaries

Let Nn+1 be the locally symmetric manifold with sectional curvature KN satis-
fies the condition 1/2 < δ ≤ KN ≤ 1 at all points x ∈M , M be the compact oriented
hypersurface in Nn+1. Let {e1, e2, . . . , en, en+1} be a local frame of orthonormal vec-
tor fields in Nn+1 such that, restricted to M the vectors {e1, e2, . . . , en} are tangent
to M , the vector en+1 is normal to M . We shall make use of the following convention
on the ranges of indies:

1 ≤ i, j, k, . . . ≤ n, 1 ≤ A,B,C, . . . ≤ n+ 1.

Let {ωij} be the connection 1-form of M , h = {hij} be the second fundamental form
of M . The squared norm of h is denoted by S =

∑n
i,j=1(hij)

2. Let {KABCD} and

{Rijkl} be the components of the curvature tensors of Nn+1 and M , respectively.
Since Nn+1 is a locally symmetric manifold, we have

KABCD,E = 0. (2.1)

Let {hijk} and {hijkl} be the covariant derivative of {hij} and {hijk}, respectively.
We call ξ = 1

n

∑n
i=1 hiien+1 the mean curvature vector of M . The mean curvature of

M is given by H = 1
n

∑n
i=1 hii.

It is well known that for an arbitrary hypersurface M of Nn+1, we have

dωi = −
∑
j

ωij ∧ ωj , ωij + ωji = 0, (2.2)

dωij = −
∑
k

ωik ∧ ωkj + (1/2)
∑
k,l

Rijklωk ∧ ωl, (2.3)

Rijkl = Kijkl + hikhjl − hilhjk, (2.4)

n(n− 1)R =
∑
i,j

Kijij + n2H2 − S, (2.5)

where R is the normalized scalar curvature of M .
The Codazzi equation and Ricci identities are

hijk − hikj = Kn+1ikj = −Kn+1ijk, (2.6)

hijkl − hijlk =
∑
m

himRmjkl +
∑
m

hmjRmikl. (2.7)

Let f be a smooth function on M . The first, second covariant derivatives fi, fij and
Laplacian of f are defined by

df =
∑
i

fiθi,
∑
j

fijθj = dfi +
∑
j

fjθji, ∆f =
∑
i

fii. (2.8)

We introduce an operator � due to Cheng-Yau [4] by

�f =
∑
i,j

(nHδij − hij)fij . (2.9)

Since M is compact, the operator � is self-adjoint (see [4]) if and only if∫
M

(�f)gdv =

∫
M

f(�g)dv, (2.10)
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where f and g are smooth functions on M .
Setting f = nH in (2.9), from (2.5), we have

�(nH) =
∑
i,j

(nHδij − hij)(nH)ij (2.11)

=
∑
i

(nH)(nH)ii −
∑
i,j

hij(nH)ij

=
1

2
∆(nH)2 −

∑
i

(nHi)
2 −

∑
i,j

hij(nH)ij

=
1

2
n(n− 1)∆R− 1

2
∆(
∑
i,j

Kijij) +
1

2
∆S − n2|∇H|2 −

∑
i,j

hij(nH)ij .

The Laplacian ∆hij of the second fundamental form h of M is defined by ∆hij =∑n
k=1 hiikk. From Chern-do Carmo-Kobayashi [5], by a simple and direct calculation,

we have

∆hij =nHKn+1in+1j −
∑
k

Kn+1kn+1khij + nH
∑
k

hikhkj (2.12)

− Shij +
∑
k,l

{Klkikhlj +Klkjkhli + 2Klijkhlk}+ (nH)ij .

Choose a local frame of orthonormal vector fields {ei} such that at arbitrary point x
of M

hij = λiδij , (2.13)

then at point x we have∑
i,j

hij∆hij =nH
∑
i

λiKn+1in+1i − S
∑
i

Kn+1in+1i (2.14)

+
∑
i,j

(λi − λj)2Kijij − S2 + nH
∑
i

λ3
i +

∑
i

λi(nH)ii.

The following result due to Okumura [10], Alencar and do Carmo [1] will be very
important to us.
Lemma 2.1. ([10], [1]) Let µ1, µ2, . . . , µn be real numbers such that

∑
i µi = 0, and∑

i µ
2
i = β2, where β = const. ≥ 0. Then

− n− 2√
n(n− 1)

β3 ≤
∑
i

µ3
i ≤

n− 2√
n(n− 1)

β3, (2.15)

and equality holds in the right-hand (left-hand) side if and only if (n − 1) of the µ′is
are non-positive and equal ((n− 1) of the µ′is are nonnegative and equal).

3. Proof of Main Theorem 1.1

Proof. We suppose that the mean curvature of M is constant and put a nonnegative
C2-function |Φ|2 by

|Φ|2 = S − nH2, (3.1)
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then M is totally umbilical if and only if |Φ|2 = 0. Since 1
2 < δ ≤ KN ≤ 1, we have

nH
∑
i

λiKn+1in+1i − S
∑
i

Kn+1in+1i (3.2)

= −1

2

∑
i,j

(λi − λj)2Kn+1in+1i −
1

2
S
∑
i

Kn+1in+1i +
n

2

∑
i

λ2
iKn+1in+1i

≥ −1

2

∑
i,j

(λi − λj)2 − 1

2
Sn+

n

2
δ
∑
i

λ2
i

= −1

2
[nS − 2n2H2 + nS]− 1

2
nS +

δ

2
nS

= −n
2

(3− δ)|Φ|2 − n2

2
(1− δ)H2,∑

i,j

(λi − λj)2Kijij ≥ δ
∑
i,j

(λi − λj)2 = 2nδ(S − nH2) = 2nδ|Φ|2. (3.3)

Since
∑
i

(H − λi) = 0,
∑
i

(H − λi)2 = S − nH2 = |Φ|2, by Lemma 2.1, we have∣∣∣∑(H − λi)3
∣∣∣ ≤ n− 2√

n(n− 1)
|Φ|3.

Thus

nH
∑
i

λ3
i = 3nH2S − 2n2H4 − nH

∑
i

(H − λi)3 (3.4)

≥ 3nH2(|Φ|2 + nH2)− 2n2H4 − n|H| n− 2√
n(n− 1)

|Φ|3

= 3nH2|Φ|2 + n2H4 − n|H| n− 2√
n(n− 1)

|Φ|3.

From (3.1)-(3.4), (2.14) and H = const., we have∑
i,j

hij∆hij ≥
(

5δ − 3

2
+H2

)
n|Φ|2 − n(n− 2)√

n(n− 1)
|H||Φ|3 − |Φ|4 − 1

2
(1− δ)n2H2.

(3.5)
Therefore, we have

1

2
∆S =

∑
i,j,k

h2
ijk +

∑
i,j

hij∆hij (3.6)

≥
(

5δ − 3

2
+H2

)
n|Φ|2 − n(n− 2)√

n(n− 1)
|H||Φ|3 − |Φ|4 − 1

2
(1− δ)n2H2.

Since M is compact and oriented, we can choose an orientation for M such that
H ≥ 0. From (3.6), we have∫

M

{(
5δ − 3

2
+H2

)
n|Φ|2 − n(n− 2)√

n(n− 1)
H|Φ|3 − |Φ|4 − 1

2
(1− δ)n2H2

}
dv ≤ 0.

(3.7)
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From (1.9) and (3.7), we have(
5δ − 3

2
+H2

)
n|Φ|2 − n(n− 2)√

n(n− 1)
H|Φ|3 − |Φ|4 − 1

2
(1− δ)n2H2 = 0. (3.8)

(1) If |Φ|2 = 0, from (3.8), we have (1 − δ)n2H2 = 0. This implies that H = 0
and M is totally geodesic in Nn+1, or δ = 1, that is, Nn+1 is the unit sphere Sn+1(1)
and M is totally umbilical in Sn+1(1).

(2) If |Φ|2 6= 0, we have the equalities in (3.2)-(3.7) hold. Therefore, we have for
any i, j, k

hijk = 0. (3.9)

Putting

ϑ = −
∑
i,j,k

hij(Kn+1kikj +Kn+1ijkk).

From (2.17) of Chern-do Carmo-Kobayashi [5], we have

Kn+1ijk,l = Kn+1ijkl −Kn+1in+1khjl −Kn+1ijn+1hkl +
∑
m

Kmijkhml, (3.10)

whereKn+1ijk,l is the restriction toM of the covariant derivativeKABCD,E ofKABCD

as a curvature tensor of Nn+1. Since we suppose that Nn+1 is a locally symmetric
one, we have KABCD,E = 0. From (3.10), we obtain that

Kn+1ijkl = Kn+1in+1khjl +Kn+1ijn+1hkl −
∑
m

Kmijkhml. (3.11)

From (3.11) and the equalities of (3.2) and (3.3), we have

ϑ =nH
∑
i

λiKn+1in+1i − S
∑
k

Kn+1kn+1k (3.12)

+
∑
i,j,k,m

hij(hmjKmkik + hmkKmijk)

=− n

2
(3− δ)|Φ|2 − n2

2
(1− δ)H2 +

1

2

∑
i,k

(λi − λk)2Kikik

=
3

2
n(δ − 1)|Φ|2 − 1

2
(1− δ)n2H2 ≤ 3

2
n(δ − 1)|Φ|2.

On the other hand, we define the globally vector field $ by

$ =
∑
i,j,k

(hikKn+1jij + hijKn+1ijk)ek.

The divergence of $ can be written by

div$ =
∑
i,j,k

∇k(hikKn+1jij + hijKn+1ijk).

From (3.9), we obtain that

ϑ =
∑
i,j,k

(hikkKn+1jij + hijkKn+1ijk)− div$ = −div$. (3.13)
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From (3.12) and (3.13), we have div$ ≥ 3
2n(1− δ)|Φ|2 ≥ 0. Since M is compact, by

the Green’s divergence theorem, we have
∫
M

3
2n(1−δ)|Φ|2 = 0. Since we suppose that

|Φ|2 6= 0, we have δ = 1. We infer that Nn+1 is the unit sphere Sn+1(1) and (3.8)
reduces to

|Φ|2{n(1 +H2)− n(n− 2)√
n(n− 1)

H|Φ| − |Φ|2} = 0. (3.14)

From (3.14), we can get |Φ|2 = BH . Therefore, from theorem 1.2 of Alencar and do
Carmo [1], we know that Main theorem 1.1 is true. This completes the proof of Main
Theorem 1.1. �

4. Proof of Main Theorem 1.2

In this section, we shall suppose that the normalized scalar curvature R of M is
constant. We first need the following Lemma:
Lemma 4.1. Let M be an n-dimensional hypersurface in a locally symmetric manifold
Nn+1 with constant normalized scalar curvature R and R̄ = R− 1 ≥ 0. Then∑

i,j,k

h2
ijk ≥ n2|∇H|2. (4.1)

Proof. Taking the covariant derivative of (2.5), and using the fact KABCD,E = 0 and
R = const., we get

n2HHk =
∑
i,j

hijhijk.

It follows that

∑
k

n4H2(Hk)2 =
∑
k

∑
i,j

hijhijk

2

≤

∑
i,j

h2
ij

∑
i,j,k

h2
ijk, (4.2)

that is

n4H2|∇H|2 ≤ S
∑
i,j,k

h2
ijk. (4.3)

On the other hand, from (2.5), Kijij ≤ 1 and R−1 ≥ 0, we have n2H2−S ≥ 0. From
(4.3), we know that lemma 4.1 follows.

Now we shall prove Main theorem 1.2. From (2.1), (2.11), (2.13) and (3.6), we
have

�(nH) ≥
∑
i,j,k

h2
ijk − n2|∇H|2 (4.4)

+

(
5δ − 3

2
+H2

)
n|Φ|2 − n(n− 2)√

n(n− 1)
|H||Φ|3 − |Φ|4 − 1

2
(1− δ)n2H2.

Putting R̄ = R− 1, R̃ = R− δ, by (2.5), we know that

1

n2
[n(n− 1)R̄+ S] ≤ H2 ≤ 1

n2
[n(n− 1)R̃+ S], (4.5)
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n− 1

n
(S − nR̃) ≤ |Φ|2 = S − nH2 ≤ n− 1

n
(S − nR̄). (4.6)

By (2.5), (4.5) and (4.6), we get from (4.4)

�(nH) ≥n− 1

n
(S − nR̃)

[
5δ − 3

2
n+ (n− 1)R̄+

1

n
S

]
(4.7)

− n− 1

n
(S − nR̄)

n− 2

n

√
(S + n(n− 1)R̃)(S − nR̄)

−
[
n− 1

n
(S − nR̄)

]2

− 1

2
(1− δ)(S + n(n− 1)R̃)

=
n− 1

n
(S − nR̄)

[
5δ − 3

2
n+ (n− 1)R̄+

1

n
S

]
+
n− 1

n
(nR̄− nR̃)

[
5δ − 3

2
n+ (n− 1)R̄+

1

n
S

]
− n− 1

n
(S − nR̄)

n− 2

n

√
(S + n(n− 1)R̃)(S − nR̄)

−
[
n− 1

n
(S − nR̄)

]2

− 1

2
(1− δ)(S + n(n− 1)R̃)

=
n− 1

n
(S − nR̄)

[
5δ − 3

2
n+ 2(n− 1)R̄− n− 2

n
S

− n− 2

n

√
(S + n(n− 1)R̃)(S − nR̄)

]

− 1

2
(n− 1)(1− δ)

[
(5δ − 3)n+ 2(n− 1)R̄+ nR̃+

3n− 2

n(n− 1)
S

]
,

where R̄− R̃ = δ − 1 is used. Since M is compact, from (2.10), we have∫
M

�(nH)dv = 0.

By (4.7), we get

∫
M

{
n− 1

n
(S − nR̄)

[5δ − 3

2
n+ 2(n− 1)R̄− n− 2

n
S (4.8)

− n− 2

n

√
(S + n(n− 1)R̃)(S − nR̄)

]
− 1

2
(n− 1)(1− δ)

[
(5δ − 3)n+ 2(n− 1)R̄+ nR̃+

3n− 2

n(n− 1)
S
]}
dv ≤ 0.
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From (1.12) and (4.8), we have

n− 1

n
(S − nR̄)

[5δ − 3

2
n+ 2(n− 1)R̄− n− 2

n
S (4.9)

− n− 2

n

√
(S + n(n− 1)R̃)(S − nR̄)

]
− 1

2
(n− 1)(1− δ)

[
(5δ − 3)n+ 2(n− 1)R̄+ nR̃+

3n− 2

n(n− 1)
S
]

= 0.

(1) If S = nR̄, from (4.9), we have

−1

2
(n− 1)(1− δ)

[
(5δ − 3)n+ 2(n− 1)R̄+ nR̃+

3n− 2

n(n− 1)
S

]
= 0. (4.10)

Since S = nR̄ and R̃ = R̄+ 1− δ, from δ > 1
2 and R̄ ≥ 0, we have

(5δ − 3)n+ 2(n− 1)R̄+ nR̃+
3n− 2

n(n− 1)
S = 2(2δ − 1)n+

3n− 2

n− 1
nR̄ > 0.

Thus, from (4.10), we have δ = 1, that is, Nn+1 is the unit sphere Sn+1(1) and
S = nR̄. From (4.6), we have |Φ|2 = 0 and M is totally umbilical in Sn+1(1).

(2) If S 6= nR̄, we know that the equalities in (4.8), (4.7), (4.4), (3.2) and (3.3)
hold. We infer that

Kijij = δ,
∑
i,j,k

h2
ijk = n2|∇H|. (4.11)

From (4.9), we have S = const., (2.5) and (4.11) imply that H = const. and hijk = 0,
for any i, j, k. Putting

ϑ = −
∑
i,j,k

hij(Kn+1kikj +Kn+1ijkk),

and making use of the same assertion as in the proof of Main theorem 1.1, we conclude
that δ = 1, that is, Nn+1 is the unit sphere Sn+1(1), and (4.9) reduces to

n− 1

n
(S − nR̄)[n+ 2(n− 1)R̄− n− 2

n
S (4.12)

− n− 2

n

√
(S + n(n− 1)R̄)(S − nR̄)] = 0.

From (4.12), we have

S =
n

(n− 2)(nR̄+ 2)
{n(n− 1)R̄2 + 4(n− 1)R̄+ n}.

Therefore, from theorem 1.4 of H. Li [9], we know that Main theorem 1.2 is true.
This completes the proof of Main Theorem 1.2. �
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Convergence of the Neumann series
for a Helmholtz-type equation

Nicolae Valentin Păpară

Abstract. We pursue a constructive solution to the Robin problem of a
Helmholtz-type equation in the form of a single layer potential. This represen-
tation method leads to a boundary integral equation. We study the problem on
a bounded planar domain of class C2. We prove the convergence of the Neu-
mann series of iterations of the layer potential operators to the solution of the
boundary integral equation. This study is inspired by several recent papers which
cover the iteration techniques. In [7], [8], [9], D. Medkova obtained results regard-
ing the successive approximation method for Neumann, Robin and transmission
problems.

Mathematics Subject Classification (2010): 76D10, 35J05, 81Q05, 65N38.

Keywords: Helmholtz equation, Robin problem, single layer potential, integral
equation method, successive approximation.

1. Introduction

The study of the Helmholtz equation has received broad attention in
[1], [2], [3]. The equation is connected to several physical phenomena. The general
form of the equation is

∆u+ λ2u = 0

with Im λ > 0. In this paper we study the Robin problem for the Helmholtz equation
in a bounded planar domain D ⊂ R2 of class C2. We present an iteration tech-
nique which is suited to be used for a numerical computation of the solution of the
Robin problem. The technique is based on the Neumann series of iterations of the
layer potential operators. In the past the technique was studied by W.L. Wendland
(see [11], [12]). More recently the Neumann series were used by D. Medkova for sev-
eral problems associated with the Stokes system, including Robin and transmission
problems, in the papers [7], [8], [9].

In general, the boundary value problems associated with the Helmholtz equa-
tion are not uniquely solvable when coupled with the general condition Im λ > 0.
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The values of λ for which the Helmholtz equation is not uniquely solvable are called
irregular frequencies (see also [2], section 2.1). In this paper we restrict the study of
the equation to the case Re λ = 0. In this particular case the equation is

∆u− k2u = 0, (1.1)

with k > 0. This equation is also known as the Klein-Gordon equation. It is connected
to quantum mechanics. We consider the Robin boundary condition

∂u

∂ν
+ αu = g, (1.2)

where ν is the outward unit normal vector of D, α > 0 is a constant and g ∈
C(∂D,R2) .

We pursue the solution u ∈ C2(D,R2)∩C1(D,R2) of the boundary value prob-
lem (1.1),(1.2) in the form of a single layer potential

u(x) =

∫
∂D

E(x, y)h(y) dy,

where E(x, y) is the fundamental solution of the equation (1.1) and h ∈ C(∂D,R2)
is a boundary function called density. The function u defined above as a single layer
potential solves equation (1.1).

The fundamental solution of the Helmholtz equation in R2 is given by

E(x, y) =
1

2π
K0(k|x− y|) =

i

4
H

(1)
0 (k|x− y|),

where K is the modified Bessel function of the second kind and H(1) is the Hankel
function of the first kind.

We will require to assume that the domains D have smooth boundaries because
several proofs in this paper will use Green’s formula and the compactness of the layer
potential operators which are true for smooth domains. There are several established
properties regarding the layer potentials on smooth domains (see [1], [2]). We simply
state the following well known facts. In the sequel we will assume that the bounded
domain D ⊂ R2 is of class C2.

Definition 1.1. For h ∈ C(∂D,C2) define the single layer potential S with density h
by

Sh(x) =

∫
∂D

E(x, y)h(y) dy, x ∈ R2 \ ∂D,

and the double layer potential D with density h by

Dh(x) =

∫
∂D

∂E(x, y)

∂ν
h(y) dy, x ∈ R2 \ ∂D.

Lemma 1.2. The single layer potential operator S : C(∂D,C2)→ C(∂D,C2) is given
by

Sh(x) =

∫
∂D

E(x, y)h(y) dy = lim
z→x

∫
∂D

E(z, y)h(y) dy, x ∈ ∂D.
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The double layer potential operator K : C(∂D,C2) → C(∂D,C2) is given by

Kh(x) =

∫
∂D

∂E(x, y)

∂ν
h(y) dy = lim

z→x, z∈D
Dh(z) +

1

2
h(x), x ∈ ∂D.

The single layer potential operator satisfies

∂Sh(x)

∂ν
=

1

2
h(x) +K ′h(x), x ∈ ∂D,

where K ′ is the adjoint operator of K.

The equalities above are called limiting relations. They relate the values of the
layer potentials in the domain with the boundary values.

Lemma 1.3. The operators S, K and K ′ are compact.

Furthermore there are several other properties of the layer potential operators. If
we define the operators S, K, K ′ on the space L2(∂D), then S, K, K ′ are bounded.

2. Convergence of the Neumann series

Consider a solution of the problem (1.1),(1.2) in the form of a single layer po-
tential u = Sh with h ∈ C(∂D,R2). Since the single layer potential satisfies the
limiting relations in Lemma 1.2, the Robin boundary condition (1.2) becomes

1

2
h(x) +K ′h(x) + αSh(x) = g(x), x ∈ ∂D. (2.1)

This is a boundary integral equation. The invertibility of the operator

1

2
I +K ′ + αS

and the solvability of the equation were proved in [4]. The proof of the invertibility
uses the Fredholm theory. Since the operators S and K ′ are compact, the operator
I/2 + K ′ + αS has index 0. One can use Green’s formula to prove the injectivity of
the operator, from which it follows that the operator I/2 +K ′ + αS is invertible.

We will prove the convergence of a series of iterations of the layer potential
operators to the solution of the boundary integral equation (2.1). The series is called
Neumann series. In this way we give a constructive solution to the boundary value
problem (1.1),(1.2).

In the proof of the convergence we will use the following lemmas which were
proved for the Stokes system by D.Medkova in [7], [8], [10]. We prove the lem-
mas corresponding to the layer potential operators associated with the Klein-Gordon
equation. They are instrumental in finding a range for the spectrum of the operator
I/2 +K ′ + αS.

Lemma 2.1. Denote ‖S‖L2(∂D,C2) = M . Let h ∈ C(∂D,C2). Then∫
∂D

|Sh|2 dy ≤M
∫
∂D

h · Sh dy.
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Proof. For f, g ∈ L2(∂D,C2) define

〈f, g〉 =

∫
∂D

f · Sg dy.

The integral operator S has a symmetric kernel E(x, y). Therefore the product defined
before is conjugate symmetric. Since the kernel E(x, y) is positive, we deduce that
the product 〈·, ·〉 is positive definite. Then 〈·, ·〉 is an inner product on L2(∂D,C2).
Holder’s inequality gives∫

∂D

|Sh|2 dy =

(
sup

f∈L2,‖f‖=1

|〈f, h〉|

)2

.

From the Schwartz inequality we deduce∫
∂D

|Sh|2 dy ≤ 〈h, h〉 sup
f∈L2,‖f‖=1

〈f, f〉,

from which we get∫
∂D

|Sh|2 dy ≤ 〈h, h〉 sup
f∈L2,‖f‖=1

(∫
∂D

|Sf |2 dy
)1/2

.

This means ∫
∂D

|Sh|2 dy ≤ ‖S‖L2(∂D,C2)

∫
∂D

h · Sh dy.

The lemma is proved. �

Lemma 2.2. Let h ∈ C(∂D,C2). Then∫
∂D

Sh ·
(
∂Sh

∂ν
+ αSh

)
dy =

∫
D

(
k2|Sh|2 + |∇Sh|2

)
dy +

∫
∂D

α|Sh|2 dy.

Proof. If we apply Green’s formula∫
G

(ψ∆ϕ+∇ϕ · ∇ψ) dy =

∫
∂G

ψ
∂ϕ

∂ν
dy

for the vector components of Sh and Sh on the domain D, we obtain∫
D

(
Sh ·∆Sh+∇Sh · ∇Sh

)
dy =

∫
∂D

Sh · ∂Sh
∂ν

dy.

The equality implies∫
D

(
Sh · k2Sh+ |∇Sh|2

)
dy =

∫
∂D

Sh · ∂Sh
∂ν

dy,

and therefore∫
∂D

Sh ·
(
∂Sh

∂ν
+ αSh

)
dy =

∫
D

(
k2|Sh|2 + |∇Sh|2

)
dy +

∫
∂D

α|Sh|2 dy. �

Lemma 2.3. Let h ∈ C(∂D,C2). Then∫
R2\∂D

(
k2|Sh|2 + |∇Sh|2

)
dy =

∫
∂D

h · Sh dy.
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Proof. From Green’s formula we have∫
D

(
Sh · k2Sh+ |∇Sh|2

)
dy =

∫
∂D

Sh · ∂Sh
∂ν

dy,

Using the limiting relations in Lemma 1.2, we get∫
D

(
k2|Sh|2 + |∇Sh|2

)
dy =

∫
∂D

Sh · (h/2 +K ′h)dy. (2.2)

If we apply Green’s formula on the expanding domains Dc ∩B(0, r) that converge to
Dc and we use the Sommerfeld condition (see also [2], [10])

∂u

∂|x|
(x) + ku(x) = o

(
|x|−1/2

)
,

then we deduce∫
Dc

(
k2|Sh|2 + |∇Sh|2

)
dy =

∫
∂D

Sh · (h/2−K ′h)dy. (2.3)

From (2.2) and (2.3) we get∫
R2\∂D

(
k2|Sh|2 + |∇Sh|2

)
dy =

∫
∂D

h · Sh dy. �

The following theorem gives a range for the spectrum of the operator I/2 +K ′+αS.
It will be used to find a suitable norm on C(∂D,C2), in order to prove the convergence
of the Neumann series.

Theorem 2.4. The spectrum σ of the operator

1

2
I +K ′ + αS : C(∂D,C2)→ C(∂D,C2)

satisfies

σ(I/2 +K ′ + αS) ⊂ (0, 1 +Mα].

Proof. Suppose λ is a complex eigenvalue of the operator I/2 + K ′ + αS with the
corresponding eigenvector h ∈ C(∂D,C2). Then

λ

∫
∂D

h · Sh dy =

∫
∂D

Sh · (I/2 +K ′ + αS)h dy,

from which it follows

λ

∫
∂D

h · Sh dy =

∫
∂D

Sh

(
∂Sh

∂ν
+ αSh

)
dy.

We showed in Lemma 2.3 that∫
∂D

h · Sh dy =

∫
R2\∂D

(
k2|Sh|2 + |∇Sh|2

)
dy ≥ 0.

Assume that
∫
∂D

h · Sh dy = 0. Then Sh ≡ 0 and therefore

(I/2 +K ′ + αS)h =
∂Sh

∂ν
+ αSh = 0.
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From the invertibility of the operator I/2 + K ′ + αS we deduce h = 0, which is a
contradiction. Therefore ∫

∂D

h · Sh dy > 0.

In Lemma 2.2 we proved that∫
∂D

Sh

(
∂Sh

∂ν
+ αSh

)
dy ≥ 0.

It follows that λ ≥ 0 and, since the operator I/2 +K ′ +αS is invertible, we obtain
λ > 0, which proves the first part of the estimate of the range of

σ

(
1

2
I +K ′ + αS

)
.

If we use Lemmas 2.1, 2.2 and 2.3, then we successively deduce

λ =

∫
∂D

Sh
(
∂Sh
∂ν + αSh

)
dy∫

∂D
h · Sh dy

,

λ =

∫
D

(
k2|Sh|2 + |∇Sh|2

)
dy +

∫
∂D

α|Sh|2 dy∫
R2\∂D (k2|Sh|2 + |∇Sh|2) dy

,

λ ≤ 1 +

∫
∂D

α|Sh|2 dy∫
R2\∂D (k2|Sh|2 + |∇Sh|2) dy

,

λ ≤ 1 +

∫
∂D

α|Sh|2 dy∫
∂D

h · Sh dy
≤ 1 +Mα.

The theorem is proved. �

Theorem 2.5. Let g ∈ C(∂D,R2) and 0 < c < 2/(1 + Mα). Define the operator
T = I − c(I/2 +K ′ + αS). Then the series

∞∑
j=0

c T jg (2.4)

converges in C(∂D,R2) to the solution of the boundary integral equation

1

2
h+K ′h+ αSh = g.

Remark 2.6. The series (2.4) is called Neumann series. We will use the spectrum of
the operator I/2 +K ′+αS to prove the convergence. It is well known (see [8]) that
if ‖T‖ < 1, then

∞∑
j=0

T j = (I − T )−1.

We need the following lemma about the relation between the eigenvalues and the
norms in a complex Banach space. We state the lemma without proof. The lemma
can be found in [8].
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Lemma 2.7. Let X be a complex Banach space and B the set of the norms on X that
are equivalent to the original norm. Suppose A is a bounded linear operator in X and
r(A) is the spectral radius of A. Then

r(A) = inf
‖·‖∈B

‖A‖.

Proof. (proof of theorem 2.5) From Theorem 2.4 we have

σ(I/2 +K ′ + αS) ⊂ (0, 1 +Mα].

Using the definitions that we made, T = I − c(I/2 +K ′ + αS) and

c ∈
(

0,
2

1 +Mα

)
,

we obtain σ(T ) ⊂ (−1, 1) and therefore r(T ) < 1.
From Lemma 2.7 we deduce that there is an equivalent norm ‖·‖∗ on C(∂D,C2),

such that ‖T‖∗ < 1. It follows that the Neumann series
∞∑
j=0

c T jg

converges to

c(I − T )−1g =

(
1

2
I +K ′ + αS

)−1
g = h,

which ends the proof. �
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Book reviews

René L. Schilling, Mass und Integral - Eine Einführung für Bachelor-Studenten,
x+172 pp, Walter de Gruyter, Berlin/Bsoton, 2015, ISBN: 978-3-11-034814-9/pbk;
eISBN(PDF): 978-3-11-035064-7; eISBN(EPUB): 978-3-11-038332-4.

This is a text of a course on measure theory and integration for students in
mathematics and physics. The main goal of the book is to present the basic properties
of the Lebesgue measure and integral needed in higher analysis, probability theory
and mathematical physics.

The presentation is based on an abstract approach – σ-algebras, Dynkin sys-
tems, monotone classes. The measure is introduced using the Carathéodori extension
theorem from semi-rings of sets, allowing a quick definition of Lebesgue measure on
R. The Lebesgue measure and integral on Rd are introduced as a product measure
and integral, via the Fubini-Tonelli theorem.

The integrals of positive measurable functions f are defined as suprema of the
integrals of measurable positive step functions majorized by f , and for real and ex-
tended real-valued measurable functions in the usual way, writing them as differences
of positive measurable functions. The Lebesgue criterium of Riemann integrability is
proved as well.

The convergence theorems (monotone convergence theorem, Lebesgue domi-
nated convergence theorem, Egorov’s theorem) are applied to the study of integrals
with parameters – continuity and differentiability. The basic properties of Lp-spaces –
Riesz-Fischer completeness theorem, Riesz theorem on the convergence of sequences
of functions in Lp (‖fn− f‖p → 0 ⇐⇒ ‖fn‖p → ‖f‖p , provided fn(x)→ f(x) a.e.),
Jensen inequality – are presented in detail. Applications are given to the convolu-
tion of functions and measures and to Fourier transform (Riemann-Lebesgue lemma,
Wiener algebra, Plancherel’s theorem).

The Lebesgue-Nikodým theorem is applied to the change of coordinate formula
for integrals. The book ends with the study of functional analytic properties of the
spaces Lp and C(T ) (for T a local compact metric space). One proves the density
of some classes of functions in Lp, Riesz representation theorems for the duals of Lp

and C(T ), and one studies the weak convergence of measures (an important topic in
stochastic analysis).

Some additional questions are discussed in an Appendix: the existence of non-
measurable sets, the integration of complex-valued functions, separability of C(T ),
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regularity of measures. Also, the exercises included at the end of each chapter complete
the main text with further results and examples.

The book is very well organized, with clearly written conditions in all theorems,
succeeding to present by a cleaver choice of the included topics, in a relatively small
number of pages, some basic results of measure theory and integration, with em-
phasis on Lebesgue measure and integral in Rd and applications. For further results
and applications, author’s book, R. L. Schilling, Measures, Integrals and Martingales,
Cambridge University Press, Cambridge 2001 (3rd printing), is highly recommended.

Hannelore Lisei

Daniel Alpay, An advanced complex analysis problem book. Topological vector spaces,
functional analysis, and Hilbert spaces of analytic functions, Birkhäuser/Springer,
New York, NY 2015, ix+525 p., ISBN 978-3-319-16058-0/pbk.

Usually in a first course on Complex Analysis analytic functions are consid-
ered as individuals, not as elements of some Hilbert, Banach or Fréchet spaces. Also
some topological notions are introduced intuitively, without any rigorous topological

foundation. Here one can mention the definition of the Riemann sphere Ĉ simply

as Ĉ = C ∪ {∞}, the introduction of the uniform convergence on compact sets via
Morera’s theorem, proofs of the Riemann mapping theorem without appealing to
compactness arguments.

The aim of this book is to fill in this gap, i.e. to get students familiar with some
notions of functional analysis in the context of spaces of analytic functions, based on
the unifying idea of reproducing kernel Hilbert space. By an adequate choice of the
reproducing kernel one obtains the basic spaces of analytic functions: the Bargmann-
Segal-Fock space, the Bergman space and the Hardy space. Besides the analytic de-
scription a geometric geometric one is considered as well.

The problems in the book are labeled Exercise, for which solutions are given,
or Question or Problem, left without solutions or with solutions given in a previous
book of the author:

[CAPB] D. Alpay, A Complex Analysis Problem Book, Birkhäuser/Springer
Basel AG, Basel, 2011.

The first chapter of the book, 1. Algebraic prerequisites, contains some results on
sets, functions, groups, matrices. The second one, 2. Analytic functions, contains some
elements of complex analysis, a more detailed presentation being given in [CAPB].

The presentation of topological and functional analytic aspects is done in the
second part of the book, II. Topology and Functional Analysis, having the chapters: 3.
Topological spaces, 4. Normed spaces (Banach and Hilbert spaces, operators - bounded
and unbounded), 5. Locally convex topological vector spaces (countably normed and
Fréchet spaces, topologies on spaces of analytic functions and their duals, normal fam-
ilies), 6. Some functional analysis (Fourier transform, Stieltjes integral, density results
in L2-spaces). The third part, III. Hilbert Spaces of Analytic Functions, contains the
chapters 7. Reproducing kernel Hilbert spaces, 8. Hardy spaces, 9. de Branges-Rovnyak
Spaces, 10. Bergman spaces , and 11. Fock spaces.
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Written by an expert in the area, the book is dedicated to beginning graduate
students aiming a specialization in complex analysis. Teachers of complex analysis
will find some supplementary material here and those of functional analysis a source
of concrete examples. The presentation is restricted to one variable but, as the author
promises in the Prologue to the book, a volume dedicated to several variables is in
preparation.

S. Cobzaş

Marek Jarnicki and Petter Pflug, Continuous nowhere differentiable functions. The
monsters of analysis, Springer Monographs in Mathematics, Springer - Cham, Heidel-
berg, New York, Dordrecht, London, 2015, xii+299 p., ISBN 978-3-319-12669-2/hbk;
978-3-319-12670-8/ebook.

After Newton put the basis of the differential calculus and applied it to the
study the physical world, there was a general belief between mathematicians that a
continuous function must be differentiable excepting a finite number of points. The
famous mathematician and physicist A.-M. Ampère even published a proof of this
result (based on some intuitively justified geometric reasonings on the behavior of
curves) which was generally accepted by the mathematical community and included
in almost every calculus book of that time. So the presentation by Karl Weierstrass
in 1872 in front of the Königliche Akademie der Wissenschaften, Berlin, of his famous
nowhere differentiable continuous function

∑∞
k=0 a

k cos(bkπx), x ∈ R, came as a great
surprise, not very pleasant for some of them. Emile Picard said that if Newton had
known about such functions he would never create calculus, and Ch. Hermite wrote to
Stieltjes: “Je me détourne avec effroi et horreur de cette plaie lamentable des fonctions
continues qui nont point de dérivées.”. H. Poincaré – who was the first to call such
functions monsters – claimed that the functions were an arrogant distraction, and of
little use to the subject: “They are invented on purpose to show that our ancestors
reasoning was at fault, and we shall never get anything more out of them.”

But, finally, the mathematicians had to accept the existence of these functions
and to reconsider some results based on the idea of differentiability of continuous
functions as well as the idea of proof – replace the geometric intuitive reasonings by
rigorous analytic ones, as this was done by Weierstrass in his proof of nondifferentia-
bility. These comments and others are nicely presented in the introductory chapter of
the book, 1. Introduction: A Historical Journey.

The present book present in a rigorous and systematic way results related to
this kind of functions, starting with classical and ending with some very recent and
some open problems.

The first part I. Classical results, contains results obtained from the middle of the
nineteenth century up to about 1950. Although the proofs are based on complicated
arguments, they are accessible to undergraduate students.

Part II. Topological methods, shows that these strange functions not even that do
exist, but they are in big quantities, in the sense of Baire category. For instance, the
set of nowhere differentiable continuous functions are of second Baire category (and
so contain a dense Gδ-set) in the space C[a, b] (Banach-Mazurkiewicz-Jarnik and Saks
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theorems). The same is true about the set of functions f ∈ A(D) (holomorphic in the
open unit disk D and continuous on D̄ – the disk algebra) such that f |∂D is nowhere
differentiable.

Part III. Modern approach, requires some more advanced tools from analysis, as
measure theory and Fourier transform. The last chapter of this part (Chapter 12) is
concerned with the existence of (closed) linear spaces of such functions (properties
called lineability and spaceability - see the next review).

B. Riemann claimed that the function R(x) =
∑∞
n=1 n

−2 sin(πn2x), x ∈ R, is
also nowhere differentiable, a result that turned out to be false. The difficult problem of
the points of differentiability or nondifferentiability of this function, that preoccupied
many famous mathematicians as, e.g., G. H. Hardy, is treated in detail in the fourth
part of the book, having only one chapter, 13. Riemann function.

For reader’s convenience 9 appendices, dealing with topics as Fourier transform,
harmonic and holomorphic functions, Poisson summation formula, etc, are included.

By bringing together results scattered in various publications, some of them
hardly to find or/and hardly to read (I mean old papers), presenting them in a uni-
tary and rigorous way (using a modern language and style) with pertinent historical
comments, the authors have done a great service to the mathematical community. The
book presents interest for all mathematicians, but also for people (engineers, physi-
cists, etc) having a basic background in calculus, interested in the evolution of some
fascinating problems in this area, simply to formulate, but hardly to solve. Under-
graduate, graduate students and teachers will find an accessible source of interesting
examples, and possible be attracted by some hard problems remained unsolved till
now.

S. Cobzaş

Richard M. Aron, Luis Bernal-González, Daniel M. Pellegrino and Juan B. Seoane
Sepúlveda; Lineability. The search for linearity in mathematics, Monographs and
Research Notes in Mathematics, CRC Press, Boca Raton, FL, 2015, xix+308 p,
ISBN: 978-1-4822-9909-0/hbk;
978-1-4822-9910-6/ebook.

For a long time many mathematicians (including great names like A. M. Ampère)
believed that any continuous function must be differentiable on a large subset of its
domain of definition. So was a great shock when K. Weierstrass presented in 1872 his
famous continuous and nowhere differentiable function:

∑∞
k=0 a

k cos(bkπx) , where
0 < a < 1, b is an odd integer and ab > 1+2π/2. Although such functions were devised
before by B. Bolzano (1830), B. Riemann (1861), H. Hankel (1870), Weierstrass was
the first who published such a result. In spite of the natural assumption that the
existence of these “pathological” (or “strange”) functions is an exception, it turned
out that they form large sets in the sense of Baire category. S. Banach (1931) and S.
Mazurkiewicz (1936) proved that the set ND[a, b] of nowhere differentiable functions
is of second Baire category (and so dense) in the space C[a, b]. The situations is
the same with the set (S)(I) of C∞-functions with are nowhere real-analytic on the
interval I ⊂ R (called singular functions). A classical example is that of the function
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f(x) = exp(−1/x2) which is of class C∞ but no analytic at 0. Du Bois-Raymond
(1876) constructed a function in (S)(I) and H. Salzmann and K. Zeller (1955) proved
that the set of singular functions is of second Baire category in C∞(I).

The purpose of the present monograph is to analyze the situations when a class
of functions in a given space contains a linear subspace. More exactly, a subset M of
a topological vector space X is called:

• µ-lineable if M ∪ {0} contains a vector subspace of dimension µ;
• µ-spaceable if M ∪ {0} contains a closed vector subspace of dimension µ;
• µ-dense 0-lineable if M ∪ {0} contains a dense vector subspace of dimension

µ.
Here µ is a cardinal number. If µ ≥ ℵ0, then the set M is called simply lineable,

spaceable, or dense-lineable. The first who proved the existence of such a subspace
was V. I. Gurariy (1966): the set ND[0, 1] contains an infinite dimensional vector
space. Although some scattered results in this area were obtained in the last third of
the preceding century, a systematic study of these problems started at the beginning
of the current millennium. The survey paper by the last three authors, Bull. Amer.
Math. Soc. 51 (2014), 71–130, can be considered as a forerunner of the present volume.

The authors examine the existence of linear subspaces in various classes of func-
tions, as reflected by the headings of the chapters: 1. Real analysis, 2. Complex analy-
sis, 3. Sequence spaces, measure theory and integration, 4. Universality, hypercyclicity
and chaos, 5. Zeros of polynomials in Banach spaces. Other situations (divergent
Fourier series, norm attaining functionals, etc) are discussed in Chapter 6. Miscella-
neous.

The book is fairly self-contained - each chapter starts with a section, What one
needs to know, and the first chapter (unnumbered), Preliminary notions and tools,
contains also some additional notions and results used throughout the book.

Written by four experts in the area, whose substantial contributions are included
in the book, most of them obtained in this millennium, the present monograph is
addressed to postgraduate, but also to young or senior researchers wanting to enter
the subject. Mathematicians interested in analysis, understood in a broad sense, will
find a lot of interesting results collected in it.

Valeriu Anisiu

Valeriu Soltan; Lectures on Convex Sets, World Scientific Publishing Co. Pte. Ltd.,
Singapore 2015, x+405 pp, ISBN 978-9814656689; ISBN 978-9814656696.

The present book is devoted to a systematic study of algebraic and topological
properties of convex subsets of the Euclidean space Rn. As it is known these objects
form the background of various mathematical disciplines, as convex geometry and
operation research.

After two preliminary chapters 0. Preliminaries, and 1. The affine structure of
Rn, the study of convex sets starts in the second chapter with some algebraic and
topological properties (relative interior, closure and relative boundary). Convex hulls,
convex cones and conic hulls are treated in Chapters 3 and 4. Chapter 5 is concerned
with some important topics in optimization and operation research – recession cones,



122 Book reviews

normal cones and barrier cones. The separation and support properties of convex
sets are discussed in Chapter 6. Extreme points, extreme faces and representations of
convex sets in terms of extreme points are discussed in Chapter 7, while Chapter 8
is concerned with the exposed structure of convex sets and representation theorems
(Straszewicz, Klee, Soltan). In the last chapter of the book, Chapter 9. Polyhedra, the
results obtained in the previous chapters are applied to the study of this important
class of convex sets.

The book is very well written. Each chapter ends with a section of notes and
comments, and a set of exercises, with solutions given at the end of the book, complet-
ing the main text. Carefully done drawings illustrates the main notions introduced
throughout the book.

The book is written at undergraduate level or entry-level graduate courses on
geometry and convexity, the prerequisites being undergraduate courses on linear al-
gebra, analysis and elementary topology. In spite of its relatively elementary level,
the book contains many important results in finite dimensional convexity, necessary
in many other mathematical areas. By the detailed and rigorous presentation of the
material it can be recommended for self-study as well.

Nicolae Popovici

Arthur Benjamin, Gary Chartrand and Ping Zhang; The Fascinating World of
Graph Theory, Princeton University Press, Princeton NJ, 2015, xii+322 p., ISBN
978-0-691-16381-9/hbk; 978-1-4008-5200-0/ebook).

The book is designed to introduce the field of Graph Theory to a broad audience
and to also serve as an introductory textbook. Although the content is traditional
for an undergraduate course, the way of presentation is not: the authors manage to
motivate all topics with interesting applications, historical problems and discussion
of concepts from an intuitive point of view.

After a funny prologue, chapter one deals exclusively with games, puzzles and
problems that may be modeled using graphs. The basic notions of graphs and multi-
graphs are introduced and the way they capture the situations from reality are ex-
plained.

Graph classification is the topic of the second chapter. The basic idea of iso-
morphism is introduced and the reconstruction problem is the first unsolved problem
discussed.

Chapter three introduces basic notions revolving around connectivity and dis-
tance. Both vertex and edge cuts are discussed along with several interesting appli-
cations.

Chapter four introduces trees and their basic properties. Among important topics
we mention Cayley’s formula for labeled trees and minimal spanning trees.

Graph traversal is treated in chapters five and six. There is a nice discussion of
both Euler tours and the Chinese Postman Problem, both of which are edge traversals,
and Hamilton cycles, which is edge traversal. Chapter six concludes with a discussion
of the Traveling Salesman Problem.
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Chapters seven and eight deal with graph decompositions, that is, partitions of
the edge set of a graph. The latter concludes with Instant Insanity puzzle.

The ninth chapter treats orientations of graphs with an emphasis on tournaments
and concludes with a nice application of tournaments for voting schemes.

Drawing graphs is the subject of Chapter ten. This is a well-presented standard
material on topological graph theory.

The last two chapters deal with colouring: vertex colouring (Chapter 11) and
edge colouring (Chapter 12).

The good integration of biographical sketches, human aspects and mathematics
serves a good pedagogy. From the total of more than 300 pages, 50 is of gradual and
well-chosen exercises A remarkable feature of this book is the constant effort to reveal
the beauty of Mathematics in general and Graph Theory in particular.

Drawbacks of this works are little emphasizes on algorithms, the lack of mention
to NP-Completeness, and lack of proofs for some important theorems.

Intended audience: undergraduates in Mathematics and Computer Science, pro-
fessors which would like to use this as a textbook, anyone interested in discrete math-
ematics - its results, history and evolution.

Radu Tr̂ımbiţaş

The Best Writing on Mathematics 2015, Edited by Mircea Pitici, Princeton Univer-
sity Press 2016, xxvi+376 pp., ISBN: 978-0-691-16965-1.

This is the sixth volume in a series edited by M. Pitici and published with PUP
(2010, 2011, 2012, 2013, 2014). As the other volumes it contains a collection of 27 es-
says (a greater number than in the previous volumes), first published in 2014, dealing
with various topics of mathematics and its applications. In a consistent Introduction
(12 pages) the author explains the reasons for writing these volumes and the need for
the popularization of mathematics: “That is why each volume should be seen in con-
junction with the others, part of a serialized enterprise meant to facilitate the access
to and exchange of ideas concerning diverse aspects of the mathematical experience.”.
This introductory part contains a brief survey on the writings on mathematics - both
printed and online sources.

The volume contains more contributions, in comparison with previous ones, deal-
ing with mathematical games and puzzles – How puzzles made us human (P. Mutalik),
Let the game continue (C. Mulcahyand and D. Richards), Challenging magic squares
for magicians (A. T. Benjamin and E. J. Brown), Candy Crush’s puzzling mathematics
(T. Walsh), A prehistory of Nim (L. Rougetet).

Some papers discuss philosophical and foundation aspects of mathematics –
Gödel, Gentzen, Goodstein: The magic sound of a G-string (J. von Plato), A guide
for the perplexed: What mathematicians need to know to understand philosophers of
mathematics (M. Balaguer), Writing about Math for the perplexed and the traumatized
(S. Strogatz).

In the paper Synthetic biology, real mathematics (by D. Mackenzie) applications
to biology are discussed.
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The future of high school mathematics and an analyze of the gap between Chi-
nese and US students is presented in two papers. The relations between mathematics
and art are discussed in two papers, one on Albrecht Dürer’s painting and the other
one on the quaternion group as a group of symmetry, while the beauty in mathematics
is discussed in a paper by C. Cellucci.

Other contributions are dealing with geometry, the pigeonhole principle, chaos
and billiard, big data manipulations, the Ontario lottery retailer scandal.

Dealing with topics of general interest – as history and philosophy, teaching,
the occurrence of mathematics in everyday life, etc, – presented in an attractive and
accessible manner, the books appeals to a large audience, including mathematicians
of all levels of instruction, but also to anyone interested in the development of science
and its applications.

Horia F. Pop
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