Anul X1,V 2000

STUDIA
UNIVERSITATTS BABES-BOLYAI

MATHEMATICA
|

Redactia: 3400 Cluj-Napoca, str. M. Kogalniceanu nr. 1 ¢ Telefon:
194315

SUMAR - CONTENTS - SOMMAIRE

V. URECHE, The 60" anniversary of Prof. Vasile Pop e Profesorul Vasile Pop
laB0deant ... .. 3

M. ANGHEL, H.S. TAKHAR and I. Pop, Dufour and Soret Effects on Free Convection
Boundary-Layer over a Vertical Surface Embedded in a Porous Medium e
Efecte Dufour si Soret in stratul limita convectiv liber pe o suprafaga
verticald plasatd intr-un mediu poros ......... ... ... . 11

S. Bopea, A Model of a Flow in a Ring Canal ¢ Un model de curgere mtr-un canal
melar ... 23

S.S. DRAGOMIR and T.C. PEACHEY, New Estimation of the Remainder in the
Trapezoidal Formula with Applications ¢ O noud estimare a restului in
formula trapezoidala cu aplicatii .. ... ... ... 31

A. HAMPU, About the P-Model of the Stochastic Vectorial Programming Problems
with Simple Recourse e Despre P-modelul problemelor de programare

vectoriald stochasticd cu recurs simplu ... ..o 43




































DUFOUR AND SORET EFFECTS ON FREE CONVECTION BOUNDARY-LAYER

Bejan [1] and Kafoussias and Williams [4],

9 oy =0 . (1)
= gT[ﬂ(T—Too)+ﬁ‘{U — C)] (2)
or  oT 8T | Dukr 8*C
“or T Vo "% ay ' C.C, By 3
aCc  9C _,, 9°C | Dmkr O°T
dr ' Oy oy T oy

which are to be solved along with the following boundary conditions

vu=0 T=T,, C=t.. on z=0

Here z and y are co-ordinates measured normal and along the plate, respec-
tively, as in Bejan and Khair [7], # and v are the velocity components along z and y
axes, T is the fluid temperature, C' is the mass (or concentration) flux, and the other
quantities are defined in the Nomenclature.

To solve Eqs. (1)-(5), we assume the following similarity variables, as defined

by Cheng and Minkowycz [8] or Bejan and Khair {7],
8 = (T — Too) /AT
(6)

13

where AT = Ty — Too, AC = Cp — Co and Ray = gR BATy/vam, is the local
Rayleigh number. Substituting (6) mto Eqs. (2)-(4), we get the following ordinary

differential equations

f” — __9/ _ N’él (7)

9 — —f# 4 Dyd" =0 (8)
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DUFOUR AND SORET EFFECTS ON FREE CONVECTION BOUNDARY-LAYER

TABLE 1
Comparison of the local Nusselt and Sherwood numbers
N | Le | Df | Sr | Bejan and | Present | Bejan and | Present
Khair [7] Khair [7]
11 0|0 0.628 0.6276 0.628 0.6276
112010 0.593 0.5926 0.930 0.9295
1{ 441010 0.559 0.5586 1.358 1.3575
1{6 | 0,0 0.541 0.5408 1.685 1.6847
1| 80|60 0.529 0.5295 1.960 1.9599
1/10] 010 0.521 0.5215 2.202 2.2021
1100 0 | 0 0.470 0.4702 7.139 7.1391

Table 2 shows the values of the local Nusselt and Sherwood numbers for sorne
values of the parameters N, Df and Sr when Le — 1. It is seen that in'the Cases I and
11 both the local Nusselt and Sherwood numbers first decrease to minimum values
then they increase. However, in the Case III, the local Nusselt number increases,
while the local Sherwood number decreases monotonically as Df decreases and Sr
increases.

Typical velocity, temperature and concentration profiles are shown in Figs.
1-3 for some values of the parameters N, Le, Df and Sr. By comparing these figures
with Figs. 4 and 6 from Bejan and Khair [7], we can conclude that the flow field
is appreciably influenced by thermal-diffusion (Soret) as well as the diffusion-thermo

(Dufour) effects.
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M. ANGHEL, H.3. TAKHAR, AND 1. POP

TABLE 2
Values of the local Nusselt and Sherwood numbers for some values of the parameters

N,Df and Sr when Le =1

~ |Le| pf | 5r | NuyRay, | ShyRa,™?
Case I
1} 1]0.036]20 0.7201 0.1447
1 {1 1003718 0.7080 0.0116
1 {1 [0.050]1.2 0.6966 0.1656
1 |1 1007508 0.6883 0.3155
1 |1 (0.150|04 0.6943 0.4619
1 11 ]0600)0.1 0.8206 0.5602
Case 11
51015 04 0.9956 0.7037
4111|015 |04 1.2361 1.0934
311015 |04 0.7338 0.5023
-2 11015 |04 0.5535 0.3394
Case II1
02 1 (0150{04 0.5392 0.3394
05| 1 (0075108 0.5895 0.2620
0.8 1 [0.030]|20 0.6760 0.1433
Nomenclature
C concentration

Cp  specific heat at constant pressure
Cs  concentration susceptibility

Df  Dufour number

D, mass diffusivity

f non-dimensional stream function
g acceleration due to gravity

ke thermal diffusion ratio
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SIMINA BODEA

¢ € S. The domain occupied 'by the fluid is

Figure 1

The velocity field is a function

Let n denote the exterior normal vector of Q (or Q) and let 73,7 = 1,2,

denote the tangential directions. We introduce the strain tensor
1
(Su)ij — 5(&'“;‘ + 0jui)

and the notations

Sy =7-S4-n
The components of the stress tensor are:
di; = p(yz'j - 2V(Su);j.
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NEW ESTIMATION OF THE REMAINDER IN THE TRAPEZOIDAL FORMULA

Theorem 2.2. With the above assumptions, we have

2520 oo
’ 2 b-alj, '\ | 1(p+1)tp+1)} st~
£ ]l
(2.4)
Proof. From (2.1)
: b-al, 4 - b0 Juta

We treat the three cases in turn.

(1) Since

b pb v
// 1Y = LI ES Y ey e ||f‘lIMI/ |y — Tiavar = M —
aJa a a

so that 1 < (b~ @)|[f'}lco-

(ii) By Holder’s integral inequality

fbfbly |1 ()] dz dy (/j ly_:c|Pd;cdy)" (/ab/:if/(ynqd:cdy’

K¥ (b a)3lfil

I

[
where

K b b
] 2(b —
I“—j j Iy—-’ﬂra.):ay—-fll ’ ( — z)P dudz =
using the symmetry of the integrand. Thus

b rb
Iy — ol [['(y) de dy < ‘_— |

eda

g0 that with £ + 1 = 1 we obtain

[(,,+ 1)(p+2)J 1571

as required.
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S.S. DRAGOMIR AND T.C. PEACHEY

(iii) Finally, we have that

rb ook

b pb
J/ | ()] dz dy = (b - @) |}

aJa

Iy—xllf’(y)ldwdy<l max |y -2l

ala
showing that I < ||f’|l;. The three cases in (2.4) have now been proved.
Remark 2.3.1. If p= ¢ = 2 we have

]f(a) +f00) 1
| 2

o @ — (2.5)

Remark 2.3.2. In the paper [2], S. S. Dragomir and S. Wang have obtained

the following similar result as a particular case of an Ostrowski type inequality.

‘f(a) +fb) 1

f(z)dz (2.6)

b—aj,

where 7y := infie(ap) f(t) > —00 and T := SUP¢¢ (a,0) f (E) < 00
Remark 2.3.3. In [1] S. S. Dragomir and S. Wang have obtained the fol-

lowing result

(2.7)

LUED ORI R

—a

(p+1)°

as a particular case of Ostrowski’s inequality for g-norms. Since

V,@IWJ —| e,

then our estimate in (2.4) is better than that embodied in (2.7).

Remark 2.3.4. In [3], S. S. Dragomir and 5. Wang obtained the inequality
b
H+10) 1 [y,

<7 (2.8)

as a particular case of an Ostrowski type inequality for the L; norm.
Remark 2.3.5. In 1938, by means of geometrical considerations, K. S. K.
lyengar [4, p.471] has proved the following inequality

flay+f) 1 b—a)llfle  (F0) = f(a)® _ (b—a)llf Ik
—a/af(”)"“ Tap—afl

(2.9)
which is a better inequality than our first inequality in (2.2).
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5.5. DRAGOMIR AND T.C. PEACHEY
4. Applications In Numerical Integration

We discuss here the apphcation of the inequality (2.10) in Numerical Integra-
tion to obtain some new estimates of the remainder term in the classical trapezoidal
rule.

Theorem 4.1. Let f : [a,b] = IR be a differentiable function on (a,b)
and assume that f' is g-integrable on [a,b], that w5 that f' € Lgla, 8], ¢ > 1. If

Ihia=1z0< % <...< Ty — b is a partilion of [a, 6], then we have

~b
j F(z)dz = T(f, In) + R(f, In) (4.1)

a

where T(f, I} 15 the trapezordal quadrature rule, i.e.,

f(zi) + f(@ig1) (4.9)

n-1
T(f,In) =)
31=0

where h; = z;41 — 2; for alli=0,1,2,... ,n—1 and the remander R(f, I1,) satisfies

the wnequality

n—1
|R(f, In)| < ‘mj [¥id! \ (4.3

Proof. Applying the inequality (2.10) on the interval [z;, zi41] where ¢

0,1,...,n—1 we have that

S _/z. ‘ < lmJ (J:{::
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NEW ESTIMATION OF THE REMAINDER IN THE TRAPEZOIDAL FORMULA

forall:=0,1,2,... ,n — 1. Summing these inequalities and using Holder’s discrete

inequality we have that

) ) |7 sy

1=0 ' T

P——;”’ (, Wi

erera) o (B(C
9 L /-1 \ ¥

eeral )

i=1

| The theorem is thus proved.

Corollary 4.2. With the above assumptions, if f' € Lala,b] we have

m(";‘ )’

=1 /

) ))

(4.4)

Suppose now that I denotes the equidistant partitioning of [a, b] given by

Iy - .’L‘,'=a+b"a'

For this partition we have the following corollary.

Corollary 4.3. Under the assumptions of Theorem 4.1,

/ " flz) dz = Tu(f) + Ra(f)

there T, (f) 1s the trapezodal quadrature rule for the partition Iy, that s

=)

and the remainder term R, (f) satisfies the estumate

n—-1

2n

‘a+1

1=0

l ’ forn > 1.

(4.6)

(47)
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S.5. DRAGOMIR AND T.C. PEACHEY

In particular, for p = 2, we have

(4.8)

V6 om

Given any € > 0, we are able using (4.7), to establish the minimum number
of nodes such that the error in the numerical integration based on the equidistant
trapezoidal rule is smaller than e. This is contained in the following corollary.

Corollary 4.4. Given any constant ¢ > 0, if n > n., where

+1

Ne =

[(p+ 1)(P+?)‘

then |R.(f)| <e.
Example 4.4. We give an example where the bound on R, provided by
(4.8) is better than those previously known. The equivalent bound imposed by (2.7)

with p=2is
i (4.9)
that imposed by (2.8) is
(4.10)
while that implied by (2.9) is
|Ra| < (b;a)z “f: (4.11)

As the example, we take ¢ = 0, b = 1 and f(z) = £?/3e~2%/3 50 wnat 1121 —
= z)e” /2 In this case ||f'||o is infinite so (4.11) yields nothing useful.
Since f'(z) is positive on (0, 1), we have [ |f'(z)|dz = f(1) — f(0) = e~%*. Thus
(4.10) is
e”?3 0513

|Ra| <

Also

40


















ALEXANDRU HAMPU

Definition 2. A point 2° € K is multiple minimum risk solution if it is an
efficient solution for (1), that is if there is no = € K so that fi(z, &) > f:(zV.£) for

i € I and for at least j € I, j # i we should have 1,(z.&1 > f;(z°,&,).

2. Solving the P-model stochastic programming problem with multiple

objective functions

We introduce the next assumptions for the problem (1):

(i) the random variables ¢;, & have a normal distribution and are indepen-
dent;

(i) the feasible set K is a compact and nonempty set in R®.

In order to find the multiple minimum risk solution we perform the next
steps:

a) we determine the deterministic equivalent of the second stage’s constraints,
meaning the constraints of problem (2);

b) we determine the deterministic equivalent of the constraints of problem
(3%

¢) we determine the deterministic equivalent of the constraints of problem
(1);

d) we determine the optimal solution for a synthesis function F* of the r
objective functions.

a) Let the constraints of the second stage of the problem (1) be

P(Tz+wy =t >p2. >0, y>0,

where the first of these inequalities can be written as:

qu gi2 .. GQip 3]
ga1 g2 ... gopn T
+
gmzl gm22 e gmzﬂ zn /
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ALEXANDRU HAMPU

Hence, for each & € I we will find a minimum risk solution zx =
(zk1,Zk2, -+ ., Tknj, and what remains to be found is the efficient solution for those r
objective functions, meaning the one which provides ”the best compromise”.

d) A lot of choice criteria of the synthesis function are known, but we stopped
at the model that minimize the distances’ sum between maximum values and the

values in an any z point of the objective function:

F*(z) =miny
k=1

R |

The 2% point in which this minimum is obtained will be the efficient point

ze€X (

for problem(1). In the given form in relation (5) the problem can’t be solved, that’

why we search [or an equivalent form that can be calculable. We note:

For z € K, the t; (2) function values set will be an interval [ay, bx]; taking into
account that Laplace’s function is continuous and strictly increasing, instead of the
criterion from relation (5), that mean, instead of the differences between maximum of
the objective function ®(bx) and its value in a tx(z) point, we will use b — 1 (z), but
if we want the two relations to be equivalent, the function should be linear. Hence
we will linearize Laplace’s function on given intervals, to provide an approximation
precision of probability 0,005.

Be A = (Ag, Ay, ..., A1) an equidistant partition of the [—3, 3] interval,

A=[-3~2,5;-2-1,5-1,-0,5,0;0,5;1;1,5;2; 2,5; 3].

Having this division we obtain the intervals: 7, — (=00, =3); I1 — [-3,-2,5);..;
112 = [21 5:3)3 113 = [3)+m)
It is known that for a random variable X with normal distribution, with 3

mean m and variance ¢2 it follows that:
Pla<X<@)=F(f)-Fla) =&l "1-¢ —

50



ABOUT THE P-MODEL OF THE STOCHASTIC VECTORIAL PROGRAMMING PROBLEMS

and using the Laplace’s function table this probability can be determined. We consider
now a division A’ = (& = Aj, Af,..., A, = 8). It follow that P(a < X < 8) =
Pit+p2+ - +pa where we note p; = P(A;_1 < X < Ay),2=1,2,...,n.

On this base for the chosen division A we determine the coefficients:

A m A,_1—m
K= A TA i=1,2,...,12, (6)
<A0—m _p T®mm
Fo= Ag — (o0} =0
/M —_® Ap—m
K3 %~ A, =0.

We agree to say that [, is a significant interval for Laplace’s function if
K:>0,01,5=0,1,2,... 13.
In table 1 the values wii.) and K, are written for every real value which
can take, taking into account the chosen A division.

Table 1

te(z) | —oo -3 -2,5 -2 -15 -1 —0,5
A Ao A1 A Az Ay Ag
®(1,) | 0,0014 0,005 0,015 0,045 0,09 0,15 0,19
K, 0 001 003 009 018 0,30 0,38

0 0,5 1 1,5 2 2,5 3 +o0
A As A7 As Ay A Ap A

0,19 0,15 0,09 0,045 0,015 0,005 0,0014

0,38 0,30 0,18 0,09 0,03 0,01 0

Let be {ax,bx], k = 1,2,...,r the codomain of the function te(z), ¢ € K,

ax € I.x and bx € 1.+ and we note
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ALEXANDRU HAMPU

Knowing that A3, A%, ..., A}, are incompatible events, and B, BY,...,Bf _,

are compatible, the relation (11) becomes:

(I)(bk) —WITL P = P(Ag) -+ P(A‘lc) +---+ PAT ) +

+ P(B)+ -+ PUBL_) — ) P(BINBf)-

1,720
1
-3 P{Bf'nB;‘nB’;)—---—(_1)’k-lp(ﬂ B: ) —riaT A =
LI oF ok _—
m=1 u=0 g=u

ST PBENBfNB) - -

fig—1
(n=)-
g=0

Replacing in this formula the terms with their corresponding values, given by

(10),(11) we calculate the values of the ®(bx) — @(tx(z)), k — 1, 2,..

Considering the relation (5) and taking into account the things presented

previously, we proved:

Theorem 2. Problem (1) is equivalent with the following linear programming

problem:
k=1

{e—-1 fx—1

~(=n+tp (N Bf;) _ P(A%)P(B*)

In this form the synthesis function is calculable and we obtain after replacing
the values, a linear programming problem whose solution is efficient solution for (1),

and for the 2> point we can calculate the maximum of each objective function.
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STUDIA UNIV. “BABE§-BOLYAI”, MATHEMATICA, Volume XLV, Number 4, December 2000

ON DIFFERENTIABLE FUNCTIONS PRESERVING RATIONALITY
AND IRRATIONALITY

ALEXANDRU HORVATH

Dedicated to Professor Vasile Pop at his 60°" anniversary

Abstract. In this paper we construct nonlinear differentiable functions f,
with the property f(Q) C Q and f(R\ Q) C R\ Q. The construction is
based on some convergence properties of the sequences of convex functions
and on a criterion of irrationality for numbers expressed as series of rational
numbers. The main theorem of the paper states that the set of functions
with this property is dense in (C(R), || - ||).

Assume that a and b are rational numbers and a # 0. Then obviously, the
i value of the linear function f(z)} = az + b 1s rational if and only if z is rational.

1 Let us say a function f: R — R has the property of preserving rationality if

AQ)CcQ and fR\Q)CR\Q (1)

It is natural to investigate the existence of a differentiable functions with this
property, which is not linear. The question in fact is: how rich the set of functions

Ewith this property is?
Just the linearity is not a consequence of the differentiability and the property

[{1), as is shown by the function f: R — R given by:

/z if z>1
fley = (2)
2—z if z<1

However, the linear and the above function as well are both monotone. In
[addition, the derived function of each of them is nowhere vanishing. This kind of

onstructions seams to lead us always to monotone functions.
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ALEXANDRU HORVATH

Y

The goal of this paper is to give the answer, how rich the class of differentiable
functions with the property (1) is. We prove the following
Theorem 1. The set of differentiable functions f, with the property that f(z) is
rational if and only if x is rational, is dense in the space of continuous functions,
with respect to the uniform convergence topology.

In the body of the paper all functions are defined on R and take their values
in R.
After some preliminary facts and results, we recall a criterion of irrationality (Lemma
3), which is followed by the main result and its proof.

We start with a well known property of the convex functions:

Lemma 1. Let [ be a conver function. Then the left derivative f'(x — 0) s left

continuous and the right derivatwe f'(z + 0) is right continuous.
For the proof see, for example, {2].

Lemma 2. Let {f,}n be a sequence of left (right) continuous functions. If {fn}n

converges untformly the sequence { fn}n 1s left (right) equicontinuous.

The proof is similar to that of Theorem 7.24 [4], which discusses the case of

continuous functions.

Proposition 1. Let {f,}, be a sequence of convex functions which is pointwise con-
vergent to f. Assume that {f.(z — 0)}, and {fu(z + 0)}n converges uniformly lo
1_(2) and l4+(z) respectively. Then l_(z) < f'(x —0) and f'(z +0) < l4 (z).

In particular, if imy— 0o (f (2 + 0) — fi(z — 0)) = 0, pointuise for any z,
then f is a differentiable function, and its dertvative f' is the common limit of thel

sequences of the left and right derivatives of the functions f,.

Proof. Set an arbitrary ¢ > (. Then there exists an integer n. such that for

any z and any n > n. we have

liz)—e< fr(z—0).
64




























| THE CONTINUITY OF THE OPTIMAL VALUE OF A LINEAR-FRACTIONAL PROGRAM

!
} Definition 3. Problem PF(z) is a pseudo-regular problem if the following conditions

hold:
i) X #0,

11). f is not constant function on X,

ey ———

ui). dz+dog >0, foranyz € X.

3. The following theorems will establish a relationship between the problems

PF(z) and PL(z) concerning strictly consistency of these problems.

Theorem 1. Let problem PF(z) be pseudo-regular. Then PF(z) is strictly consistent
if and only if PL(z) 1s strictly consistent.

:_-‘Pror)f, The proof essentially is based on Charnes-Cooper variable change [1], [5]. O

Theorem 2. If problem PF(z) is reqular then the following properties hold:

(1) If the dual problem DL(z) 1s strictly consistent then the optimal value
function F' 1s upper semicontinuous at z with respect to Z'.

(11) If the primal problem PF(z) is strictly consistent then the optimal value
,Junction F 15 lower semi-continuous at z with respect to Z'.

(1ir) If both problems PF(z) and DL(z) are strictly conststent then the optimal

lalue function F 1s continuous at ¢ with respect to Z'.

| Proof. (i) Since problem DL(z) is strictly consistent, it results, by Theorem 3.3 [2],
that the optimal value function of the problem PL(z) is upper semi-continuous at
with respect to Z’. The problem PF(z) is regular, so that by Theorem 2.2.3 [3], it
follows that the problems PL(z) and PF(z) have the same optimal value function,
that is F(2') = S(z'), Yz’ € Z'. Therefore, F is upper semi-continuous at z with
i[-respect to Z'.

(ii) Because, problem PF(z) is strictly consistent, it follows, in conformity
with Theorem 1, that PL(z) is strictly consistent. Then by Theorem 3.3 [2), it results
that the optimal value function S of the problem PL(z) is lower semi-continuous at
z with respect to Z’. The problem PF(z) is regular, so that by Theorem 2.2.3 (3],
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FROBENIUS FUNCTORS AND FUNCTOR CATEGORIES

DHomp(F(X), )

H —
Dax. FDHomy (X, —)

where Dax,_ . FDHoma(X, -) — DHom(F(X), -} is the B morphism defined for
every Y € B—mod by:

Dax,y (A)(s) = Max,y (5)),
for all A € DHoma (X, G(Y)),s € Homg(F(X),Y).

3.11. Proposition. With the above notations, t, — t, o Trp, that is, 1y is the

composite map

Homp(F(X), F(M)) =¥~ Hom4(X, W) 3— k.

Proof. From the above diagram we have:

= brm)(idr(ay) = Dax,p(m)

Then, using 3.9, we have for s € Homp(F(X), F(M)):

= (ts o Trp)(s).
3.12. If U/ is an object of B. we have a similar formula to calculate G(U).
There are B-modules Y, N and a morphism

z: Homp(—, N) - DHomg(Y, —)
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SOME APPLICATIONS OF THE FIBER CONTRACTION THEOREM

Let we prove that there exists % and %* € Cl[—e,b] x [0,1] x [0, ¢]).

If we suppose that there exists Fu;\_ then from (3.3) we obtain

a2 =0. for t€][—c0],

| and

a % t o
'di(ta)‘lw) - [ g}-(t! 8, u*(s: ’\1“1): U*(’\Sw’\iw)v u.(s -, )"w)) (57/\l“"})d3+
0

Oy ¥
*OK . . . ou*
; %(t,s,u (s, \,w), u*(As, A, w), u*(s —w, A, w)) 51 (s, A, w)ds+

* 9K . o’
+A Ba(t.s,u*(s,/\,w),u (/\S,A,W), u o —w,/\,w“a—A\o —w,/\,w)ds,

for t € [0,8], where K = K (¢, s, u1, ua, us).
Because of the following relationship

ai(z,)\,w)

oy = K(Xs, ds,u" (A8, A, w), u* (A5, A, w)u" (As —w, A, w))+

z:1=As

* 9K

(s, 81, u%(51, A\, w), u*(As1, A w), vt (57 —w, A, w))dsy,
0

we have that

- g%(t’ 5,u" (5, A, w), 4" (As, A, w), u" (s —w, A, w))——(Xs, A, w)ds+
0 Jug

+/ sg!l(t,s.u*(s,/\,w),u*(/\s,/\,w),u"‘(s—w,)\,w))-

0

K (As, As, w* (s, A\, w), u* (A5, A, w), u*(As — w, A, w)))ds+
ot -

+/ si(t,s,u“‘(s,/\,u),u*(/\s,/\,w),u‘(s—w,)\,w))-
a 8“2

As -
/ ai ds+

fort €[0,8].
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