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THE ANNIVERSARY OF PROF. VASILE POP 

V . U R E C H E 

Prof. Vasile Pop was born on 17"' of January 1940 in the village of Bârsana, 

in the northern region of Remania. He attended primary school in Bârsana and 

gradiiated the high school in Sighetu Marmaţiei in 1957. In 1958 he became student 

at "Babeş-Bolyai" University in Chij-Napoca, at the Department of Mathematics and 

Mechanics. 

After gradnating the IJiiiversity, he is appointed teaching a.ssistent at the Ped-

agogica! Institute in Baia-Mare, where he hoids seminaries in Mathematical Analysis 

and Analytiral Geometry. In 1967 he becomes researcher at the Astronomical Obser-

vatory of the University of Cluj. In 1971 and 1974 he obtains two research scholarships 

at astronomical observatories in Czechoslovakia. 

His Ph.D. thesis " T h e study of secondary effects for RR-Lyrae variables" 

elaborated under the advisement of Prof. Gh. Chiş was sustained in 1978. After he 

obtained the Ph.D. title, he became Lecturer at the Central Institute for Didactic 

Personnel Training, and in 1979 he returns to the University of Cluj, as Lecturer at 

the Department of Mathematics. 

In 1990 Prof. Pop became Associate Professor and in 1995 he obtains his 

actual position of FulI Professor. Along the years, Prof. Pop has held severa! courses 

and has led various seminaries in Mathematics and Astronomy at the Matliematics 

Department but also at the Departments of Chemistry, Geology and Pliysics. His 

lectures are characterized by clarity and rigourness, and also by enthusiasm and tonic 

optimism extended to his students. 

In 1996 Prof. Pop was elected Assistant Dean of the Department of Mathe-

matics and Computer Science, position that he held unti! 2000 when he became Head 

of Mechanics and Astronomy. 
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As it concerns the academic activity of Prof. Vasile Pop, he published six 

books on the subjects he teaches, while his research concretized through the pub-

lication of over 60 papers. The scientific interest of Prof. Pop has focused on the 

following subjects: 

• The photometric s tudy RR Lyrae variables, for which he made over 10000 

observations. 

• The \ise of advanced mathematical concepts in the primary analysis of 

observational da ta , with an emphasis on spline functions. 

• Mathematical modeling of the internai structure of neutron stars. 

Among the most impor tant achievements of Prof, Pop we mention: 

• He was part of the team that developed and experimented with the pho-

toelectric photometer at the Cluj-Napoca Observatory. 

• The photometric study of the pulsating variables RT Comae Berenices, 

BE Eridani, XZ Cygni and of several eclipsing binaries 

• The spectophotometric study of the pulsating star Beta Cephei 

• The photometric s tudy of asteroids 433 Eros and 1 Ceres 

• The models of the equation of s tate neutron stars obtained by spline func-

tion fitting 

• The developmeiit of models for the internai s tructure of neutron stars. 

AU the results of his research were communicated at several congresses and 

symposia, naţional and internaţional conferences. A token of the naţional and inter-

naţional recognition of his scientific s ta tus is the fact that Prof. Pop was elected as a 

niember of the board of the National Romanian Astronomical Committee, while he 

is also a member of the International Astronomical Union and also of the European 

Astronomical Society. 

On this festive occasion, when he reaches the age of 60, we wish our colleague, 

"Many Happy Returns of the Day", health and success in all fields of activity to the 

thrive of Romanian astronomy. 
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The scientifîcal work 

a) Books and university lectures. 

[1] lancu, C., Pop, S.M., Pop, V. , Probabilităţi §Î statistică. Teoue şi aplicaţii, Ed. 

SERVOSAT, 1996, ISBN 973--97561^4-X (269 pagini}. 

[2] Pal, A,, Pop, V., Ureche, V., Astronomie. Culegere de probleme (cu soluţii), Ed. 

Presa Universitară Clujeană, 1998, ISBN 973-9354-28-9 (270 pagini). 

[3] Pop, V., Complemente de matematici pentru geologi, 1983, Universitatea "Babeş-

Bolyai" Cluj-Napoca (Litografiat, 267 pagini). 

[4] Oproiu, T, Pal, A., Pop, V. , Ureche, V., Astronom.i€. Culegere de exerciţii, 

probleme §î programe de calctd, 1985, Universitatea "Babe^-Bolyai" Cluj-Napoca 

(Litografiat, 348 pagini). 

[5] lancu, C-, Pop, V. , Ţoca, A., Matematici superioare 1987, Universitatea "Babeş-

Bolyai" Cluj-Napoca (Litografiat, 273 pagini). 

[6] Oproiu, T. Pal, A., Pop, V. , Ureche, V., Astronomie. Culegere de exerciţii, 

probleme §i programe de calcul, 1989, Universitatea "Babeş-Bolyai" Cluj-Napoca 

(Reeditat). 

[7] Pop, V. , Pop, D., Trigonometrie plană şi sferică, 1997, Universitatea "Babeş-

Bolyai" Cluj-Napoca (Litografiat, 105 pagini). 

b) Scientific works. 

[8] Janko, B., Pop, V . , About the solution of operaţional equations defined in tbe 

m.etric space by means of convergent metliod of second and third order, 1965, 

Lucrările Colocviului de teoria funcţiilor convexe cu aplicaţii la calculul numeric, 

Cluj-Napoca, 27-28. 

[9] Janko, B., Pop, V. , Asupra metodei hiperbolelor tangente aplicate la rezolvarea 

ecuaţiilor operaţionale neliniare, 1966, Studii şi Cercetări matematice, t.l8, nr.8, 

1147-1153. 

[10] Janko, B., Pop, V. , Asupra rezolvăm ecuaţiilor operaţionale definite în spaţii 

metrice cu ajutorul metodelor convergente de ordimd K, 1967, Studii şi Cercetări 

matematice, t . l9, ur.8,. 1155-1158. 
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[11] Chi§, G., P o p , V., Studiul fotometric al câmpului telescopului de tip Newton de 

la Observatorul Astronomic din Cluj, 1970, Studii şi Cerc. Astron., t . l5 , nr.2, 

147-155. 

[12] Pop , V., Curba de lumincă §i elementele fotometrice ale variabilei RT Comae 

Berenices, 1971, Studii şi Cerc. Astron., t . l6, nr. l , 33-37. 

[13] Todoran, I., Ureche, V., P o p , V. , Chiş, D., Fotometni fotoelectric al Observatoru-

lui Astronomic din Cluj. Determinarea coeficienţilor de extincţie şi a constantelor 

de trecere la sistemul standard UBV al lui Johnson, 1972, Studii şi Cerc. Astron., 

t . l7, nr. l , 33^43. 

[14] P o p , V., Todoran, I., Studiul fotometric al stelei pulsante BE Eridani, 1973, 

Studii şi Cerc. Astron., t . l8, nr. l , 67-71. 

[15] Pop , V., Efectul Blazhko, 1974, Anuarul Observatorului din Bucureşti, Ed. Acad. 

R.S.R., 239-271. 

[16] P o p , V., Chiş, D., The Reduction of the photoelectric observations to the UBV 

system and the use of the atmospheric extincti'on data, 1976, Contributions of the 

Astronomical Observatory, t . l , 27-32. 

[17] P o p , V., Chiş, D., Photoelectric observations of the asteroids 433 Eros and 1 

Ceres, 1976, Contributions of the Astronomical Observatory, t . l , 33-40. 

[18] Pop , V., Modalităţi de integrare a învăţământului de astronomie, 1977, Forum, 

nr.9, 29-31. 

[19] Pop , V., The secondarp effects of XZ Cygni, 1978, Studia Univ. Babeş-Bolyai, 

Mathem., nr . l , 21-29. 

[20] P o p , V. , Studiul efectelor secundare la stele variabile de tip RR Lyrae, 1978, Teză 

de doctorat, Univ. Babeş-Bolyai Cluj-Napoca. 

[21] Pop , V., Pop, P., Utilizarea funcţiilor spline de ajustare la studiul curbelor em-

pirice, 1978, Pregătirea tehnico-productivă, Editori A. Chircev, V. Lăscuş, T. 

Fodor, Cluj-Napoca, 171-192. 

[22] Pop , V., Photoelectric observations of XZ Cygni, 1978, Contributions of the 

Astronomical Observatory, 52-72. 
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[23] Pop, V . , The triple system VW Cephei, 1979, Studia Univ. Babeş-Bolyai, 

Mathem., nr.l, 23-27. 

[24] Pop, V . , Stadiul actual al cunoaşterii stelelor pulsante de tip RR Lyrae, 1980, 

Anuarul Astronomic, Ed. Acad. R.S.R., 241-287. 

[25] Chiş, D., Cristescu, C., Oprescu, G., P o p , V . , Şuran, M.D., Todoran, I., The 

binary system BS Draconis, 1980, Preprint, Central Institute of Physics, Centre 

for Astronomy and Space Sciences, A-7-1980, 1-25. 

[26] Pop, V. , Neutron stars and the testing of some gravitation theories, 1981, Na-

tional Symposium of Structurai Method and Models in Physics and Related Fields, 

121-123. 

[27] Pop, V., Efectele secundare la variabile pulsante de tip RR Lyrae, 1981, Anuarul 

Astronomic, Ed. Acad. R.S.R., 237-271. 

[28] Chiş, D-, P o p , V . , The Wolf-Rayet system CQ Cephei, 1983, Babeş-Bolyai Uni-

versity, Fac. of Math., Research Seminaries, Preprint 4, 152-156. 

[29] Pop, V., Problema variaţiei perioadei de pulsaţie la stele de tip RR Lyrae, 1983, 

Direcţii moderne în Astrononnie şi Astrofizica, Bucureşti, 55-56. 

[30] Pop, V. , The physical parameters of RR Lyrae stars, 1985, Babeş-Bolyai Univer-

sity. Fac. of Mathematics, Research Seminaries, Preprint 2, 64-78. 

[31] Pop, V . , Oproiu, T., lancu, C., Pop, P., A numerical model for relativistic stars, 

1985, Babeş-Bolyai University, Fac. of Mathematics, Research Seminars, Preprint 

2, 124-136. 

[32] Oproiu, T., Pal, A., P o p , V . , A BASIC Program for calculation of cometary 

Ephemerides, 1985, Babeş-Bolyai University, Fac. of Mathematics, Research Sem-

inars, Preprint 10, p.3-18. 

[33] Pop, V . , Oproiu, T., Numencal integration of a differential equation system oc-

curing in the relativistic modelling, 1986, Babeş-Bolyai University, Fac. of Mathe-

matics, Research Seminars, Preprint 3, (Proceedings of the Conference Differential 

Equations), 283-286. 

[34] Pop, V . , Chiş, D., Remarks on the period variation of XZ Cygni, 1986, Babeş-

Bolyai University, Fac. of Mathematics, Research Seminars, Preprint 6, 81-90. 
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[35] P o p , V . , Oproiu, T., Radu, E., Determination of the apparent positions of stars 

by means of microcomputers, 1987, Babeş-Bolyai University, Fac. of Mathematics, 

Research Seminars, Preprint 10, 183-196. 

[36] P o p , V . , Tehnica funcţiilor spline m astronomie, 1988, Lucrările Conferinţei 

de Matematică aplicată şi Mecanică, 20-23 octombrie, Institutul Politehnic Cluj-

Napoca, 107-115. 

[37] P o p , V . , Determination of isophoto wavelength of instrumental photometer sys-

tem, Babeş-Bolyai University, Fac. of Mathematics, Research Seminars, Preprint 

5, 269^273. 

[38] P o p , V . , The radial velocities of Beta Cephet, 1989, Babeş-Bolyai University, Fac. 

of Mathematics, Research Seminars, Preprint 5, 149-160. 

[39] P o p , V . , Perspective ale cercetării astronomice deschise de telescopul spaţial, 

1990, Babeş-Bolyai University, Fac. of Mathematics and Informatics, Lucrările 

Seminarului "Didactica Matematicii", vol.6, 253-260. 

[40] P o p , V . , lancu, C., Oproiu, T-, Use of cubic splmes to astronomical problems, 

1990, Babeş-Bolyai University, Fac. of Mathematics, Research Seminars, nos.2fe 

4, 93-102. 

[41] P o p , V . , Professor loan Armeanca (1990-1954) - Founder ofRomaman Atrophys-

ical Research, Babeş-Bolyai University, Fac. of Mathematics, Research Seminars, 

12, nos.2& 4, 155-158. 

[42] P o p , V . , The spectrophotometric observatwns of Beta Cephei, 1991, Romanian 

Astronomical Journal, vol.l , nr.1-2, 57-61, 

[43] P o p , V . , lancu, C., Oproiu, T., Spline techmque in emptrical data fittîng, 1992, 

Romanian Astronomical Journal, voi.2. nr.2, 141-147, 

[44] P o p , V . , Professor Gheorghe Chiş (1913-1981) An imtiator of variable stai's 

research in Romania and of articial satelUte observations in Cluj, 1993, Romanian 

Astronomical Journal, voL3, nr.l, 83-84. 

[45] P o p , V . , lancu, C., Oproi, T., Un model politropic pentru stele neutromce, 1995, 

Analele ştiinţifice ale Universităţii "Al.I. Cuza" din Iaşi, seria Matematica, t.XLI, 

137-143. 
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[46] Pop, V., Chiş, Gh.D., Variabila pidsantă XZ Cygni, 1995, Analele ştiinţifice ale 

Universităţii "Al.I. Cuza" din Iaşi, seria Matematica, t.XLI, 159-161. 
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Bolyai University, Fac. of Mathematics and Informatics, Lucrările Seminarului 

"Didactica Matematicii", voi.13, 85-89. 

[48] Pop, V. , lancu, C., Oproi, T. , Neutron star models with spline-fitted eqtiation of 
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[49] Pop, V., Profesorul dr. Vasiie Ureche la 60 de ani, 1995, Studia Univ. "Babeş-
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DUFOUR AND SORET EFFECTS ON FREE CONVECTION 
BOUNDARY-LAYER OVER A VERTICAL SURFACE EMBEDDED 

IN A POROUS MEDIUM 

M . A N G H E L , H . 8 . T A K H A R , A N D I . P O P 

Dedicated to Professor Vaaile Pop at his 60'^ anniversary 

A b s t r a c t . The diffusion-thermo (Dufour) and thermal-diffusion (Soret) 

effects on free convection bovmdary-layer over a vertical flat plate embed-

ded in a porous mediura is studied theoretically. The buoyancy efFect is 

due to the variation of temperatxire and concentration across the boundary-

layer. Results eire found in excellent agreement with those from the open 

literature. 

1. Introduction 

The subject of convective flow in porous media has attracted considerable 

attention in the last several decades and is now considered to be an important field of 

ătudy in the general areas of fluid dynamics and heat transfer. This topic has impor-

tant applications, such as heat transfer associated with heat recovery from geothermal 

systems and particularly in the field of large storage systems of agricultura! products, 

heat transfer associated with storage of nuclear waste, exothermic reaction in packed-

bed reactors, heat removai from nuclear fuel debris, flows in soils, petroleum extrac-

tion, control of pollutant spread in groundwater, solar power collectors and porous 

material regenerative heat exchangers, to name just a few applications. The growing 

volume of work devoted to this area is amply documented by the most recent books 

by Nield and Bejan [1], and Ingham and Pop [2]. 

Combined heat and mass transfer driven by buoyancy due to temperature 

and concentration variations is also of great practicai importance since there are 

many possible engineering application, such as the migration of moisture through the 
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air contained in fibrous insulation and grain storage installations, and the dispersion 

of chemical contaminants through water-saturated soil. A comprehensive review on 

the phenomena has been recently provided by Trevisan and Bejan [3], 

When beat and mass transfer over simultaneously in a moving fluid, the re-

lations between the fluxes and the driving potentials are of more intricate nature. It 

is known that an energy flux can be generated not only by temperature gradients 

but also by composition gradients. The energy flux caused by a composition gra-

dient is called the Dufour or diffusion-thermo eff"ect. On the other hand, mass (or 

concentration) fluxes can also be generated by temperature gradients and this is the 

Soret or thermal-diff"usion effect (see Kafoussias and Williams [4]). In general, Dufour 

and Soret effects are of a smaller order of magnitude than the eff"ects described by 

Fourier's or Fick's laws and are often neglected in heat and mass (or concentration) 

processes. There are, however, exccptions, The Soret effect, for instance, has been 

utilised for isotope separation and in mixture between gases with very light molecular 

weight (7/2, He) and of medium molecular weight {H^, air). Eckert and Drake [5] 

have found that the Dufour effect is of such magnitude tha t it cannot be neglected. 

Therefore, we shall investigate in this paper the Dufour and Soret eff"ects on the free 

convection boundary-layer over a vertical surface embedded in a porous medium using 

the Darcy-Boussinesq model. The parţial diiferential equations, governing this prob-

lem have been transformed by a similarity transformation into a system of ordinary 

differential equations, which is solved numerically using a double shooting method 

proposed by Takhar [6]. Results are shown to be in excellent agreement with those 

known from the open literature. 

2. B a s i c e q u a t i o n s 

Consider the steady free convection over a vertical surface of a uniform tem-

perature Tu, and a uniform mass (concentration) flux Cu,, which is embedded in a 

fluid-saturated porous medium of ambient temperature T^o and concentration Coo-, 

where Tu, > Too and Cw > Coo, respectively. Under the boundary-layer and Darcy-

Boussinesq approximalions, the basic boundary-layer equations are, see Nield and 
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Bejan [1] and Kafoussias and Williams [4], 

= 0 (1) d x a y 

u = ^—[PiT - Tec) + - ^oo)] (2) V 

d T d T d'^T , D r n k T d ' ^ C 
u— h V-;— = a (3) 

d x ^ ' ' d y ' ^ - ^ d y - ^ • C,Cp ây 

d C d C ^ Q'^C , D , n k T d ' ' T . . 
d x d y o y ^ Tm o y ^ 

which are to be solved along with the following boundaiy conditions 

u = 0 , T = T ^ , C = on x = 0 

Here x and y are co-ordinates measured normal and along the plate, respec-

tively, as in Bejan and Khair [7], u and t; are the velocity components along x and y 

axes, T is the fluid temperature, C is the mass (or concentration) flux, and the other 

quantities are defined in the Nomenclature. 

To solve Eqs. (l)-(5), we assume the following similarity variables, as defined 

by Cheng and Minkowycz [8] or Bejan and Khair [7], 

B = : { T - T ^ ) / A T 

(6) 

i/ 

where A T = T ^ - T ^ , A C C ^ - Coo and R.ay ^ g K p A T y / v a ^ is the local 

Rayleigh number. Sabsti tuting (6) into Eqs. (2)-(4), we get the following ordinary 

differential equations 

j " ^ ^Q' _ (7) 

e" - Jr Ds<f>" ^ ^ (8) 
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i... r _ i / 0 ' + Sr9" = 0 (9) 
Le^ 2' 

and the boundary conditions (5) become 

/ (0) = 0, 0(0) = 1, ^(0) = 1 
as r ] ^ o o 

where primes denote difFerentiatxon with respect to î/. Further, N is the buoyancy 

ratio parameter, Le is the Lewis number, Df and Sr are the modified Dufour and 

Soret numbers for porous media, and these quantities are defined as 

Ar r n PmhŢ^C _ DmkŢAT 

The parameters of interest in this problem are the local Nusselt number and 

the local Sherwood number, which are given by 

JVuy/RaJ/^ - -e'{Q), Sh,fRay^ = -<^'(0) (12) 

We notice that Eqs. (7)-(9) reduce to those of Bejan and Khair [7] when the Dufour 

and Soret effects are neglected, i.e. for D / = 5r = 0. 

3. Results and discussion 

The system of ordinary differential equations (7)-(10) was solved numerically 

using a double shooting method as proposed by Takhar [6] for several values of the 

pertinent parameters N, le, Df and Sr. To verify the proper treatment of the 

problem, the present solution for D / = 5r = O has been compared with that of Bejan 

and Khair [7], see Table 1. It can be seen from this table that the present results are 

in excellent agreement with those reported by Bejan and Khair [7]. It should also be 

mentioned that for 7V = £>/ = 5r = O, we found Nuy/Ray = -0.4439, which agrees 

very well with the earlier value of -0.444 reported by Cheng and Minkowycz [8]. 
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T A B L E 1 

Comparison of the local Nusselt and Sherwood numbers 

N Le Df Sr Bejan and 

Khair [7] 

Present Bejan and 

Khair [7] 

Present 

1 1 0 0 0.628 0.6276 0.628 0.6276 

1 2 0 0 0.593 0.5926 0.930 0.9295 

1 4 0 0 0.559 0.5586 1.358 1.3575 

1 6 0 0 0.541 0.5408 1.685 1.6847 

1 8 0 0 0.529 0.5295 1.960 1.9599 

1 10 0 0 0.521 0.5215 2.202 2.2021 

1 100 0 0 0.470 0.4702 7.139 7.1391 

Table 2 shows the values of the local Nusselt and Sherwood numbers for sorne 

values of the parameters N, Df and Sr when Le ~ 1. It is seen that in'the Caaes I and 

II both the local Nusselt and Sherwood numbers first decrease to minimum values 

then they increase. However, in the Case III, the local Nusselt number increases, 

while the locai Sherwood number decreases monotonically as Df decreases and Sr 

increases. 

Typical velocity, temperature and concentration profiles are shown in Figs. 

1-3 for some values of the parameters N, Le, Df and Sr. By comparing these figures 

with Figs. 4 and 6 from Bejan and Khair [7], we can conclude that the flow field 

is appreciably influenced by thermal-difFusion (Soret) as well as the difFusion-thermo 

(Dufour) effects. 
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TABLE 2 

Values of the local Nusselt and Sherwood numbers for some values of the parameters 

N, Df and Sr when Le = 1 

Nomenclat i i re 

C concentration 

Cp specific heat at constant pressure 

Cs concentration susceptibility 

Df Dufour number 

Dm mass difFusivity 

/ non-dimensional stream function 

g acceleration due to gravity 

kr thermal difFusion ratio 

N Le Df 5 r NUyRtty ShyRay^^^ 

Case I 

1 1 0.030 2.0 0.7201 0.1447 

1 1 0.037 1.6 0.7080 0.0116 

1 1 0.050 1.2 0.6966 0.1656 

1 1 0.075 0.8 0.6883 0.3155 

1 1 0.150 0.4 0.6943 0.4619 

1 1 0.600 0.1 0.8206 0.5602 

Case n 

-5 1 0.15 0.4 0.9956 0.7037 

-4 1 0.15 0.4 1.2361 1.0934 

-3 1 0.15 0.4 0-7338 0.5023 

-2 1 0.15 0.4 0.5535 0.3394 

Case III 

0.2 1 0.150 0.4 0.5392 0.3394 

0.5 1 0.075 0,8 0.5895 0.2620 

0.8 1 0.030 2.0 0.6760 0.1433 
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K permeability of porous medium 

Le Lewis number 

N buoyancy rat io parameter 

Nuy local Nusselt number 

Ray local Rayîeigh number 

Shy local Sherwood number 

Sr Soret number 

T fluid tempera tura 

Tm mean fluid t empera tu ra 

u.v velocity components in x and y directions 

x.y Cartesian co-ordinates normal to the plate and along it, respectively 

Greek s y m b o l s 

Qm efFective thermal diffusivity of the fluid sa tura ted porous medium 

(3 coefficient of the rmal expansion 

l3* coefficient of expansion with concentrat ion 

7] similarity variable 

d, <p non-dimensional t empera tura and concentration profiles 

u kinematic viscosity 

ip stream function 

Superscr ip t 

' differentiation with respect to r) 
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A M O D E L OF A F L O W IN A R I N G C A N A L 

S I M I N A B O D E A 

Dedicated to Professor Vasile Pop at his 60"" anniversary 

Abstract. We model the nonstationary movement of the incompressible 
flow in a ring canal with viscosity, gravity and surface tension. 

This paper is concerned with the modelling of the nonstationary motion of a 

viscous, incompressible fluid contained in an uncovered ring canal. The upper surface 

changes with the motion of the fluid, so we deal with a free boundary problem, The 

unknown functions are not only the velocity field u and the pressure p, but also the 

domain Q. The efFect of the surface tension on the upper free boundary is included. 

The externai forces are gravity and wind force which acts on the free boundary and 

in fact generates the motion of the flow. 

We write the equations using the euclidian coordinates (xi,x2,a;3) or the 

cylindrical coordinates (r, O, z)\ the components of the velocity field are then denoted 

by (ui,U2,"3) or {ur,ug,u^) respectively. In describing the equations of motion we 

will assume that all variables are nondimensionahzed in the usual way. 

Let C = S^ X I X Ii, I = [0,1], h = [O,/], / > 1 be the ring canal (see Fig.l) 

and Q the domain occupied by the fluid with fixed boundary denoted by S and free 

boundary denoted by T. Let Q = S^ x P be the fluid domain at equilibrium, with 

the upper boundary S and the rest boundary (the bottom and the walls) denoted by 

B, 

: ri < r < r., ^ e [O, 27r], z - 1}. 

To describe the free surface of the fluid, we assume small perturbations of the 

equilibrium surface S and parametrize the free boundary of the liquid with a function 

^ : 5 ^ K, So, the height of the free surface is a function of horizontal coordinates 
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^ € 5". The domain occupied'by the fluid is 

O 

The velocity field is a fimction 

Figiire 1 

Let n denote the exterior normal vector oî dQ (or dQ) and let r i , i = 1,2, 

denote the tangential directions. We introduce the străin tensor 

{Sx.)ij - ^{âiUj -^djui) 

and the notations 

bu • Sv • = ^ 

:~n • Sti - n 

5y' Ti -Su - n 

The components of the stress tensor are: 

<Tij =pSij - 2iy{Su)ij. 
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The motion of the fluid in the interior is governed by the Navier-Stokes equa-

tions for an incompressible fluid with viscosity v (the reciprocal o f the Reyno lds 

number); 

dtu + {u • V ) u - i^Au + V p + p V z = O (1) 

V • u - O (2) 

where g is the acceleration o f gravity. It is natural to consider the pressure p : l î ( t ) —> 

1 in the ferm 

P= PQ- gz + P 

where Pq is the atmospheric pressure above the liquid and p is the hydrostatic pressure. 

Thedensity does not appear because o f the nondimensionalization. After substitution, 

the. gravity term in (1) is el iminated. 

On the free surface we have the kinematic boundary condit ion which states 

that the fluid particles d o not cross the free surface (which is equivalent with the 

geometric condition that t} always parametrizes the free surface): 

dtf] = u^ - {drr})ur - {der))us on F. (3) 

Ifwe neglected the surface tension, the remaining boundary condit ion on F would 

be the equality o f the stress on the two sides of the surface. T h e effect o f surface 

tension is to introduce a discontinuity in the normal stress proporţ ional to the mean 

curvature H{r)) of the free surface F. Our boundary condit ion on F is therefore 

p-~2uS:i:=g7j-0H{ri)+f3 

(4) 

where j3 is the nondimensionalized coeffîcient of the surface tension and / = ( / i , / 2 , fs) 

is the wind force. The gravity term gr/ appears because the f o rm (o) for the pressure 

is considered. 

From a physical point o f view, the usual boundary condit ion it = O on S can 

, not be considered here because of the contact between the free surface and the fixed 

boundary (we can not assume that is not mov ing at all on the walls, so we can not 

25 



SIMINA B O D E A 

"stick" the free surface on the fixed boundary); but it is natural to consider that the 

velocity vanishes in the normal dierction, so 

U ' U = 0 . (5) 
E 

Because of the arbitrary (non-smooth) contact between the free surface and 

the fixed boundary, this condition is not enough to solve the problem, so we have 

to pose some conditions in the tangential directions too (mere precisely we need to 

describe how the liquid touches the walls of the canal). For the mathematical well-

posedness of the problem, there are two possible conditions: 

" s 

b) the solution is periodic in the r direction of the canal, (6) 

{u, p, 7/)(ri, O = 7;)(r2, 9, z, t) V^, t. 

Physically, the condition a) assume no friction on the fixed boundary; the 

condition b) note that the liquid behaves similarly at the confluence with the two 

walls, so this condition overlooked the centrifugal force. In order to solve the problem, 

we shall choose the condition a). 

We need also to prescribe the contact angle between the free surface and the 

fixed boundary, We shall choose it to be So, the free surfax:e is moving on the 

walls, but the value of the contact angle should remain constant. This condition can 

be writen as; 
drT] -drV 

r=ri 

For similar problems with contact angle O or tt see [2], [3] and the references presented 

there. 

From a mathematical perspective, we also run into diffîculties because the 

fixed boundary is not smooth. This problem can be avoided by rounding off the 

corners at the basis of the canal or (at least from the mathematical point of view) 

by considering the fluid domain going down infinitely. In the second case we loose 

the advantage of the compact domain (due to which the spectrum of the linearized 

operator is discrete) and we go too far from the "physical presence" - the canal, so 

26 
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we shall consider tha t the "contact" between te bot tom and the walls of the canal is 

smooth. 

The iniţial codition is 

{u,ri) ={uo,T}o). 
t=o 

(8) 

The idea of modelling this problem issues from a practicai necesity; at the 

institute for Environmental Physics of the University of Heidelberg, a cana l with 3.5m 

diameter is being constructed (see Fig.2). For the formulation and solving of similar 

problems in (semi-)infinite domain, see [1], [2] and [3]. The paper [6] solved a similar 

problem in a compact domain too, but the whole boundary is free {and close to a 

•sphere). 

We collect now all the equations of the movement of a flow in a ring canal: 

dtu + {u • V)« - uAu + V p = O in Q 

V - îi = O in n 

diT) = - {drr])ur - {der))ue on V 

p-2iyS:^=gV-PH{v)-\-h on T 

SI' fi (i=l,2) onr 

u • n =0. 
E 

ârt] = dr-q = O 

{u^T}) = 

27 



SIMINA B O D E A 
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NEW ESTIMATION OF T H E R E M A I N D E R IN T H E T R A P E Z O I D A L 
F O R M U L A W I T H A P P L I C A T I O N S 

S . S . D R A G O M I R A N D T . C . P E A C H E Y 

Dedicated to Professor Vasile Pop at his 60"' anniversary 

A b s t r a c t . A new inequality for the trapezoidal formula in terms of p-

norms is presented with applications to numerical integration and special 

means. 

l, Introduction 

Integral inequali t ies have been used extensively in most s u b j e c t s involving 

athematical analysis . T h e y are part icular ly useful for approx imat ion theory and 

numerical analysis in which es t imates of approximat ion errors are involved. In this 

paper, by the use of an integral identity, we point out some new integral inequali-

ties for the trapezoidal rule and apply these to special means : p- logarithrnic means , 

(ogarithmic means, identric m e a n s etc . , and in numerical integrat ion. 

Classically, the error bounds for the trapezoidal quadrature rule depend on 

the maximum norms of the second derivative o f the integrând. T h e new upper bounds 

for the quadrature rules obta ined in this paper have the mer i t t h a t they depend on 

only the first derivative o f the integrând and thus they are part icularly useful for 

integrals with integrands having bounded first derivatives, but unbounded second 

•erivatives in some norms . 

2, The Results 

We shall s tar t with the following l e m m a which contains an interest ing integral 

identity. 
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L e m m a 2.1. Let f [a, b] R be a dîfferentiable mapping on (a, 6) with 
f G Z'i[a,6]. Then we have the identity 

P r o o f . Our proof uses the well-known relations 

[ '^dtn-l ( " • • • / ' f{U) dto = f" (2.2) 
•/o Ja Ja Ja 

and 

/ dU-i[ f m)dto= r^r"^"!? ^f{u)du (2.3) 
Jt^-i Jti Jt„ 

valid for f £ L-\ [a, h] and any positive integer n. We consider 

! = f f {y-x)f'iy)dxdy 
J a J a 

f f {y~x)f'{y)dydx - f [ {x-y)f{y)dydx = T.-T^. 
J a J X J a J a 

Applying (2.3) to the inner integral in Ti gives 

/•b pb rb pb fb 

Ti = dx du / f{t) dt^ dx [f{b) - f{u)] du 
jfl^ Jx Ju Ja Jx 

= ^ {v~a)[S{b)-f{v)]dv:=j^{a-v)f{v)dv-Y^-[b-aff{b). 

Similarly, applying (2.2) to T2, 

T2= j\h~v)f{v)dv-\{h~aff{a). 

Combining these yields 

^ = î^i - - l\a - b)f{v) dv + i(6 - a)^[/(a) + /(6)] 

and the identity (2.1) foilows. 

The lemma may be used to prove 
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Theorem 2.2. With the above assumptions, we have 

' ^ i i / ' i i o o , 

2 6 - a A ^ 
< < 

. ( p + l ) ( P + 2 ) 

ll/ ' ill-

1 + 1 -
P 9 

(2.4) 

P roo f . From (2.1) 

2 b - a j ^ ^ ' - [ b - a y Ja 

We treat the three cases in tu rn . 

(i) Silice 

[ f a " ~ L la " " 

s o t h a t / < i ( 6 - a ) | l / ' i | o c . 

n, 

(ii) By Holder's integral inequality 

/ rb rb / rb /-b .h rb r r \ f f 

J j \ y - x \ \ f ( y } \ d x d y < i j J \ y ~ ^ f d x d y j y j J U ' i y j l ^ d x d y 

= K H b ~ a ) m % 

" where 
li li b rb b rb 2 ( 6 -

K- = I J^ = 2 (y - x)^ = 

using the symmetry of the integrând. Thus 

' ' ' \ y - ^ \ \ f ' { y ) \ d x d y < 
a Ja 

1 . 1 80 that with i + i = 1 we obtain 

' 2 ( 6 - a ) 
. ( P + 1 ) ( P + 2)J \ \ f % 

as required. 
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(iii) Finally, we have that 

fb /-b 

J a J a 
\y-x\\r{y)\dxdy< max \y — x\ f''f\f'{y)\dxdy=(b-a)'\\r\\: 

Ja Ja 

showing that I < ||/'ili- The three cases in (2.4) have now been proved. 

R e m a r k 2.3.1. If p = 9 = 2 we have 

f { a ) + m l 
f{x) dx (2.5) 

2 h - a 

R e m a r k 2 .3 .2 . In the paper [2], S. S. Dragomir and S. Wang have obtained 

the following similar re-sult as a particular case of aii Ostrowski type inequality. 

î{a) + m 1 

h-a Ja 
f{x) dx (2 .6 ) 

where 7 := inffg(a,6) f{t) > -00 and T := supig^^^^) f{t) < 00. 

R e m a r k 2 .3 .3 . In [1] S- S. Dragomir and S. Wang have obtained the fol-

lowing result 

/ ( a ) + / ( 6 ) 1 
h i 

dx < 
( p + i ) p 

(2.7) 

as a particular case of Ostrowski's inequality for ?-norms. Since 

. ( p + l ) ( p + 2 ) . 
< for p > 3, 

then our estimate in (2.4) is better thăn that embodied in (2.7). 

R e m a r k 2 .3 .4 . In [3], S. S. Dragomir and S. Wang obtained the inequality 

f { a ) + m 1 
^ f n xl dx < ll /t i : (2 .8) 

as a particular case of an Ostrowski type inequality for the Li norm. 

R e m a r k 2 .3 .5 . In 1938, by means of geometrical considerations, K. S. K. 

lyengar [4, p.471] has proved the following inequality 

/ ( a ) + / ( 6 ) 1 
"— [ f{x) dx 
- a Ja 

^ (fe-a)H/1loo „ i m - f i a ) ) ' ^ { b - a)||f li. 
Mb-a)\\f'\ 

(2.9) 

which is a better inequality than our first inequality in (2.2). 
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In conclusion, Theorem 2.2 gives the following new result 

hL dx < 
2(6 - a) 

( p + l ) ( P + 2 ) . 
11/1 

where p > 1 and i + ^ = 1, and the particular case 

f{a) + m 1 f{x) dx 
b — a < 

6 ll/'l 

(2 .10) 

(2 ,11) 
2 b — a 

AII our further applications for special means and in numerica] integration for the 

bapezoidal formula will be based on these new results. 

3. Applications T o S p e c i a l M e a n s 

Let us recall first some special means that we will use in the sequel: 

(a) The arithmetic m-ean: A = A{a, b) ~ {a + b)/2, a, 6 > O, 

c) the harmomc mean: H = H{a,b) : = ţ ^ t , a , 6 > O, 

b - a 
In 6 — In a 

(b) the geometric mean: G = G{a, b) : = \/a6, a, 6 > O, 

(c) the harmonic mean: } 

(d) the logarithmic mean: 

L ^ L{a,b) := | 

(e) the identnc m.ean: 

1= /(a,fe) • 

(f) the p-logarithmic mean: 

Lp = Ip(o ,6) : = < 

1 b' 

a = b 

i{ a ~ b 

i f a ^ 6 

a,b> O, 

a , 6 > O, 

if a = 6 

î p T W ^ 

a , 6 > 0 , and p € 1 R \ { - 1 , 0 } . 
i f a ^ 6 

These means are often used in numerical approximation and in other areas. 

The following simple relationships are known; 

F{<G<L<Î<A 
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and Lr, is monotonically increasing in p G B with Lq := I and L-i :- L. 

1. Let us assume that / : (O.oo) IR, f{x) = x', s e H \ { - 1 , 0 } and 

1, l - f i = l . Then obviously 

2 2 V ' 

1 f^ 
/ f{^)dx 

- a Ja 

1 
a Ja 

dx 

Since / ' (a:) 

J o 

so the inequality (2.10) becomes 

That is, we have 

b — a 

i/q 

2(6 - a) 

. ( p + l ) ( p + 2)J 

\ A { a ' , b ' ) - L l { a , b ) \ < \ s \ { b - a ) 
L ( P + 1 ) ( P + 2 ) J 

for O < a < 6 < oo. In particular, for p = g = 2, 

(3.2) 

2. Let us assume that f : (O, oo) H, f{x) = ^ and p, g > I with ^ + ^ = 1 

Then 

2 2 ^ ' ^ 

b — a 
f { x ) dx = 

1 r dx l n 6 - l n a 

b — a .L X b — a 

l/g 

«c 
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rhen (2.10) becomes 

This yields the inequali ty 

Q < L - H < 

f o r 0 < a < 6 < o c . 

< LZl,{a,b) 

{b-a)LH 

- Ll. •iq 
L ( p + l ) ( p + 2 ) . 

L 
s-\ (3.3) 

In part icular , for p = g = 2 we have 

^ < L - H < 
{h-a)LH (3.4) 

3. Let us assume t h a t / : (0 ,oo) ^ IR, f{x) = I n x and p,q > \ wi th 

1. Then 
p 9 

2 2 

\ f ^ 1 1 , 
— / f{x)dx-- / \nxdx=:T In — - 1 = l n / , 

'hen inequality (2.10) gives 

| l n G - l n / | < ( f c - a ) 

Thus 

^ dx 
l/g 

2 

/ 
1 < ^ < exp ( 6 - a ) 

l ( p + l ) (p + 2)J 

2 

L 
- l 
-q 

( p + l ) ( p + 2) 
- l 

for O < a < 6 < 00. 

(3.5) 

In par t icular , for p = g = 2 we have 

1 < ^ < exp 
( 6 - a ) 

.VEl- 2 J 

(3.6) 
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4. A p p l i c a t i o n s In N u m e r i c a l In tegra t i on 

We discuss here the application of the inequality (2.10) in Numerical Integra-

tion to obtain some new estimates of the remainder term in the classical trapezoidal 

rule. 

T h e o r e m 4.1 . Let / : [a, 6] iR 6e a differentiable function on {a,b) 

and assume that f is q-integrable on [a , 6], that îs that f € Lq[a,b], q > l. If 

If^ : a = xo < xi < ... < Xn — b is a partiiion of [a, b], then we have 

.6 
/ f{x)dx = T { f j H ) ^ R { f J k ) 

J a 
(4.1) 

wher^T{f,Ik) iS the trapezoidal quadrature rule, i.e., 

n - l 

T { f , h ) = Y . 
8 = 0 

f{Xi) + f{x,+i) (4.2) 

where hi = Xi+i - x^ for a// i = 0,1, 2 , . . . , n - 1 and the remainder R{f, h) satisfîes 

the inequality 

WfJh)\< ( p + l ) ( p + 2 ) J l i/ ' l 

n-l 
(4.3 

P r o o f . Applying the inequality (2.10) on the interval [a:i,Xj+i] where i 

0 , 1 , . , . , n — 1 we have that 

- / 
Jx, 

< [ ( p + l ) ( p + 2)^ \Jx, 
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for a l H = 0 , 1 , 2 , . . . , n — 1. S u m m i n g these i n e q u a l i t i e s a n d u s i n g H o l d e r ' s d i sc re te 

inequality we have t h a t 

n - l 

t=0 

f { X i ) - \ ~ f { X i + i ) 
hi 

- / m 
Jxi 

dx 

< 2 

7 £ i i / 

E " . 
1 = 0 \ J x , 

L ( p + l ) ( p + 2 ) . 

2 

\ j = 0 ^ 

\ r { x ) \ u x 

/ n - l / / / . r .+ i 

E 
\ i = 0 \ / / / 

[ ( p + l ) ( p + 2 )J 

i / n - l \ t 

\ i = l / 

[The theorem is t hus p r o v e d . 

G o r o l l a r y 4 . 2 . With the abovc assumptions, i f f G L 2 [ a , 6 ] / inue 

i l / ' l 
/ n - l \ ă 

\ i = i / 

(4 .4 ) 

Suppose n o w t h a t deno tes t h e e q u i d i s t a n t p a r t i t i o n i n g o f [a, 6] g i v e n b y 

b — a 
/ / , : a;,- = a H i, i = 0 , 1 , . . . , n . 

For this p a r t i t i o n we have t h e f o l l o w i n g c o r o l l a r y . 

C o r o l l a r y 4 . 3 . Under the assumptions of Theorem 4 - i , 

f f { x ) d x = T M ) - ^ R n { f ) 

J a 

ehercTn{f) is the trapezoidal quadrature rule f o r the p a r t i t i o n / / » , that ts 

n - l 

2 n 
t=0 

a + î 
b - a \ 

/ . 

and the remainder term H n { f ) satisfies the estimate 

f o r n > 1. 

(4 .5) 

(4 .6 ) 

(4 .7 ) 
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în particular, for p = 2, we have 

\/6 " 
(4 .8 ) 

Given any e > O, we are able using (4 .7) , to establish the minimum number 

of nodes such that the error in the numerical integration basec! on the equidistant 

trapezoidal rule is smaller than €. T h i s is contained in the following corollaiy. 

Corol lary 4 .4 . Given any constant e > O, if n > n^, where 

n^ = 
L ( p + l ) ( p + 2) 

+ 1 

then j / l n ( / ) i < e-

E x a m p l e 4 . 4 . W e give an example where the bound on Rn provided by 

(4.8) is better than those previously known. T h e equivalent bound imposed by (2 .7) 

with p = 2 is 

that imposed by (2 .8) is 

\/3 n 

while that imphed by (2 .9) is 

|H„|< ( f r - a ) ' l l / " 

(4.9) 

(4 .10) 

(4 .11) 
4 n 

As tiie example , we take a = O, 6 = 1 and f{x) = ^^2/3^-21/3 g^ _ 

- In this case ||/'j|oo is infinite so (4 .11) yields nothing useful. 

Since f'{x) is positive on ( 0 , 1 ) , we have \f'ix)\dx = f(l] - / (O) = Thus 

(4 .10) is 

e - 2 / 3 0 .513 
\Rn\< 

AIso 
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Inserting this into (4.9) gives 

while (4.8) becomes 

. /2 1 0 .535 
V 7 n n 

, 1 1 0 .378 
7 n n 

Thus in this example the new bound is superior. 
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ABOUT THE P-MODEL OF THE STOCHASTIC VECTORIAL 
PROGRAMMING PROBLEMS WITH SIMPLE RECOURSE 

A L E X A N D R U H A M P U 

Dedicated to Professor Vasile Pop ai his anniversary 

Abstract. This work deals with the P-model of the stochastic vectorial 
programming problems with simple recourse in two stages with probabilis-
tic constraints. The problem is formulated in this case and the way of 
solving it is stated by converting the probabilistic constraints into their 
deterministic equivalent and seaxching the deterministic equivalent of the 
objective functions. The problem is reduced from the multi-objactive case 
to a single objective function by using a synthesis function obtained by 
the minimization criterion of distances' sum between possible maximum 
of each objective function and its value in a certain point. 

1. Introduction 

The P-model was considered for the first time by A. Charnes and W. W . 

Cooper [3] and by Charnes and Kirby [4] for stochastic programming problem with 

recourse. Stancu-Minasian [11] generalizes the P-model presented by Charnes and 

Cooper frora an objective function to r objective functions, introducing the notion 

of multiple minimum risk solution as a generalization of the minimum risk solution 

independently introduced by B. Bereanu [1] and Charnes and Cooper [3]. 

In the present work we want to generalize the model for an objective function, 

proposed by Charnes and Kirby [4] to the r objective functions. A.Prekopa [10] 

underlines that the solutions of P-model with probabilistic constraints have not been 

studied and due to the author's knowledge for the vectorial case the problem hasn't 

been formulated yet. 
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We formulate the P - m o d d of atot^astic programming with multiple objective 
ftinctions (of minimum risk) 

«lax A ( x , ^2) = P[zk{x) - qly > «^j, fc € / = { 1 , 2 , . . . , r } 
(1) 

subject to: 

Bx<h 

> O, y > O 

where Zk{x) = c*,xi + Ck^x^ + • • • + CknXn. k e I linear functions, Uk, k e I 

are given values ^̂  ^ , . . . , i 1,2 is a random vector defined on the 

probability space (fî, iC, P), A is an m, x « matrbc, T is an m^ x n matrbc, PT is the 

m2 X m2 identity matrix, a: is an n-vector, 2, is an m2-vector, B is an mg x n matrix, 

Pi, i = 1,2 are vectors of mi respectively mz dimension, having the components some 

prescribed probabilities, 6 is an mg vector. The matrices A and T might have random 

elements. 

Solving problem (1) means solving of the two so called stages; in order to 

make notiacations easier we begin with the second stage which is: 

mingjy, kel 

subject to: 

PiTx + Wy^^2)>P2 

> O, 2/ > O, 

for the given x and . 

The first stage of the problem (1) ig 

yrn^fkix,^2)=P[z,ix)~gly>u,l k€l 

subject to: 

> O, X € /C2 
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where K-z is the set of those x € E " vectors for which the constraints of the second 

stage are satisfied, that means the set 

iiTs = {a: € M"! for each exists y > O so that P{Tx + Wy = ^2) > P2}-

We note with K\ the set of those a: G R " vectors for which the constraints 

of the first stage are satisfied, that means iCi = { x € P{Ax < ^i) > Pi, x > 

O, X € iiTa}. We note with Kz the set of those x € M" vectors that satisfies the 

constraints Bx < b. The interpretation of the model is: x represents a decision that 

has to meet the requirements of the constraints P{Ax < 6 ) > Pi > PiTx = ^2) > î>2, 

Bx < b. Because of the fact that the first two constraints contain random elements, 

it is possible, that due to some causes, the constraints shouldn't be met and we will 

consider that this happens for the second constraint P{Tx < C2) > P2; in this case a 

recourse-decision y is taken and by it this constraint will be fulfilled, so it becomes 

P{Tx + Wy = ^2) > P2, where for the problem with simple recourse we get W = Im2-

The recourse decision y influences each objective function, this being penalised with 

(jjy, kel value, where qk = {qk\,qk2,-• - ,<ikmi)-

Definition 1. A feasible solution for (1) is a vector x such that for any it 

satisfies the first stage constraints and such that, for any ^2» it is always possible to 

find a feasible solution to the second stage. 

The problem that interests is how we can obtain the multiple minimum risk 

solutions of the problem (1) taking into account that both the objective function and 

some of the constraints of the problem are probabilistic. 

Solving the problem (1) which we write as 

Vmax /ife(x,^2) = P [ zk {x ) ~ q l y > Ufe], k e l (4) 

subject to: 

xeKi, 

means finding the multiple minimum risk solution. 
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Definition 2. A point x^ e K is multiple minimum risk solution if it is an 

efficient solution for (1), that is if there is no a: 6 A" so that fi{x,^2) > for 

i € / and for at least j we should have > fA^^Ai)-

2. Solving the P-mode! stochastic programming problem with multiple 

objective functions 

We introduce the next assumptions for the problem (1): 

(i) the random variables , have a normal distribution and are indepen-

dent; 

steps: 

(ii) the fea^ible set iC is a compact and nonempty set in R" . 

In order to find the multiple minimum risk solution we perform the next 

a) we determine the deterministic equivalent of the second stage's constraints, 
meaning the constraints of problem (2); 

b) we determine the deterministic equivalent of the constraints of problem 

(3); 

c) we determine the deterministic equivalent of the constraints of problem 

(1) ; 

d) we determine the optimal solution for a synthesis function F* of the r 
objective functions. 

a) Let the constraints of the second stage of the problem (1) be 

P{Tx x>0, y>0, 

where the first of these inequalities can be written as: 

/ 
9u 912 . . . gin 

921 922 ... 92n 

Xi 

X2 

\ 9m-2\ 9m-22 ••• Qm-in J ^ Xn j 

+ 
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+ 

1 O 

o 1 

o o 

\ / \ 
yii 

2/22 

« 1 

2̂2 

1 / \ 2/2n / y / J \ P2m2 ^ 

> 

/ \ 
P21 

P22 

Be /Cs = O Ga n • • • n C?^^ where 

Gi = {xe K"! P[{giiXi_ + gi2X2 + • • • + ginXn + y2i) = 6»] > P2i, y2i > 0}, 

î = 1 , 2 , . . m 2 . 

We determine the deterministic equivalent of G'j, î = 1, 2 , . . . , m2 set: 

G. € P{giix^ + gi2X2 + • • • + ginXn + Va ^ 6 i ) > P2i, y2t > 0} = 

= P{y2i = - gnXi ~ gi2X2 >p2i , y2i > 0} ^ 

= { x e - ~ gi2X2 gin^n > 0) > P2i} = 

:={xe P{^2i < gnXi + gi2X2 + • • - + ginX^] < P2,} = 

= {xe R") F(giixi + gi2X2 + • • • + < P2i} = 

= { x e gnxi + gi2X2 + • • • + ginXn < F~\p2i ) } , z = 1 , 2 , . . . , ms, 

where we note with F the probability distribution function of the random variable 

I = 1, 2, . . . , 7712-

So we obtain the /\2 = Gi O G2 O • - - O Gm, set. 

b) The determination of the deterministic equivalent of probabilistic con-

straints of problem (3) is solved in a similar way. Hence, let the constraints be; 

whirh may be written as: 

hii hi2 

^21 ^22 

hln 

h2n 

^ hmil h,ni2 • • • ^min 

\ / \ 

«2 

\ ^n / 

< 

Ol 

ei 2 

\ ^Imi j 

> 

/ \ 
VW 

P\2 

Plm, 
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We consider the sets: 

Hj = {x P{hjiXi hj2X2 + • • • + hjnXri < i l j ) > Pij} = 

= {x& R"! < hjiXi + hj2X2 + • • • + hjr^Xn) < Pij} = 

- { x e F{hjiX: + hj2X2) + • • - + hjr^Xn) < Pij} = 

= {x e 1R"| hjiXi + hj2X2 + • --i-hjnXn < F ' ^ p i j ) } , j == l,2,..-,Tni. 

We obtain the A"i = H i H H2r\ - - - n Hy^ • 

Also we determine the /I3 = {r G Bx < 6} set. 

c) The determination of the deterministic equivalent of the problem (1) means 

to obtain a deterministic vectorial programming problem with r objective functions. 

.For this we will search to determine, first of aii the deterministic equivalent of each 

objective function. 

Let be problem (1) written as: 

Vmax = P[zk{x) - qly > u^], k e I 

subject to: 

X e K. 

For any ^ € / , the objective function fk{x,^2) îs: 

fk{x,^2) = P[Zk{x) - qlv > Ufc] = 

= P{Zk{x) - -9uXi ~gi2X2 gin^n)-

-9^2(62 -921^1 - 922X2 92riXn) 

-<ikm2{^2m2 " ^mal^^l " 9m22^2 gimn^n) > «fc]. 

We note 

"Oh = + 5^262 + • • • + g^ma^ms = + V Vkm^, 

which is aiso a random variable, with a normal distribution, which will have the] 

following parameters: 

Vk ~Vkl+Vk2-^ î- Vkm^ ~ + <ik2^22 + " " ' + î f e m s f s m j 
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and 

= ^ /Dink) ^ yjD[riki) 4- D{qk2) + • • • + = 

- ^J<il^m2l) + + • • • + qlrr^M^m.) ^ 

= ^J'il^Ur + + • • • + 'ilmA. :3m3 

We note 

= Ikiguxi -¥qki9\2X2 + • •••^qkiQiuXn + • • • + 

+ qk292\<^\ + qk2922^2 H H 

+ qkm:i9m223^2 H h qkm^gminXn-

It foilows: 

) 2 
where $ is Laplace's function. 

Because <î> is a strict increasing function, it results that its maximum is ob-

tained for max M^) + - uk - Vk 
'Vk 

or the equivalent for max(2/j(a;) + z'^[x)) 

taking into account that the other terms are constants and positives. 

Hence we proved the next theorem: 

T h e o r e m 1. The minimum risk solution of the problem 

Vmax = - qly > "a] , ke î 

SMhject to: 

X e K 
I 
ÎS given by the linear programming problem solution 

max(2ft(z) + z'^{x)), k G /. 
x^K 
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Hence, for each fc 6 / we will find a minimum risk solution Xk = 

{xki , Xk2, • • •, and what remains to be found is the efficient solution for those r 

object ive functions, meaning the one which provides " the best compromise" . 

d) A lot o f choice criteria of the synthesis function are known, but we stopped 

at the mode l that minimize the distances' sum between m a x i m u m values and the 

values in an any x point of the object ive function: 

F*(x) = m i n V 
fc=i x&K 

'^nk J. 

T h e x^ point in which this minimum is obtained will be the efficient point 

for p r o b i e m ( l ) . In the given form in relation (5) the problem can 't be solved, that ' 

why we search for an equivalent form that can be calculable. We note: 

For 
X G A , the t/( (iî) function values set will be an interval [fî;^, b^lj taking into 

account that Laplace's function is continuous and strictly increasing, instead of the 

criterion from relation (5) , that mean, instead of the differences between m a x i m u m of 

the objective function ^ {bk) and its value in a t^ix) point, we will use bk - i f c ( x ) , but 

if we want the two relations to be equivalent, the function should be linear. Hence. 

we will linearize Laplace's function on given intervals, to provide an approximation 

precision o f probability 0,005. Be A = ( A o , A l , . . . , A i s ) an equidistant partition of the [—3,3] interval, 

A = [ - 3 ; - 2 , 5 ; - 2 ; - 1 , 5 ; - 1 ; - 0 , 5 ; 0; 0 ,5 ; 1; 1,5; 2; 2 ,5 ; 3]. 

Having this division we obtain the intervals: IQ - ( - o o , - 3 ) ; h ~ [ - 3 , - 2 , 5 ) ; , , . ; 

/ I 2 - [ 2 , 5 , 3 ) ; / I 3 = : [ 3 , + O O ) . 

It is known that for a random variable X with normal distribution, with a 

mean m and variance tr^ it follows that: 

P { a < X < 0 ) = F{0) - Fia) == $ ~ $ 
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and using the Laplace's function table this probability can be determined. We consider 

now a division A ' = (a = Af,, A i , . . . , A^ = 0). It follow that P{a < X < 0) = 

Pi +P2 + • • • + where we note pi - P ( A i _ i < X < A i ) , î = 1,2,. . . ,n. 

On this base for the chosen division A we determine the coefRcients: 

Ki = 

Ai m A, _ i - m 

Kn = 

A i - A , _ i 

/ Ao-m 

\ 

i= 1,2,. . . ,12, (6) 

- $ 
—00 — m 

Ao - ( - o o ) 

K 13 

''oo - m 

V 
- <î> 

Ai2 — rn 

= 0, 

= O, 
oo - Ai2 

We agree to say that Is is a significant interval for Laplace's function if 

A', > 0 , 0 1 , 5 - 0 , 1 , 2 , . . . , 13. 

In table 1 the values and K, are written for every real value which 

can take, taking into account the chosen A division. 

Table 1 

h{x) - o o - 3 - 2 , 5 - 2 ~ L 5 - 1 - 0 , 5 

A Ao A l As Aa A4 A5 

Mh) 0,0014 0,005 0,015 0,045 0,09 0,15 0,19 

Ks 0 0,01 0,03 0,09 0,18 0,30 0,38 

0 0,5 1 1,5 2 2,5 3 + 0 0 

A As A7 As Ag A io A i i Ai2 

0,19 0,15 0,09 0,045 0,015 0,005 0,0014 

0,38 0,30 0,18 0,09 0,03 0,01 0 

Let be [ak,bk], k = l , 2 , . . . , r the codomain of the function tk{x), x € A', 

Ofe 6 I.k and bk € Lk and we note 
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Let be the efficient solution of problem (5); this belongs to a certain 

Is, interval s = 0 , 1 , 2 , . . . , 13, which has a certain length and whose a vahie 

correspond, therefore we consider : 

- E^ is the event that the solution to belong to an interval of length v ' l - a k , 

- E^ is the event that the solution should be on an interval of length v'̂  - wf 

- E2 is the event that the solution should be on an interval of length U3 - v^ 

- Ei' is the event that the solution should be on an interval of length bk - vf^. tk 

The probabilities of those events are: 

Vj - Clk 

bk - o.k' 
= 

bk 

bk - O-k 

bk - o,k 

- 1 . 

(7) 

We consider : 

- F^ is the event that the interval should be included in 

- F f is the event that the interval [ijc(x), t;^) should be included in I^k^^ 

- F.^ is the event that the interval should be included in 

- is the event that the interval uj;) should be included in 

- Fj^ is the event that the interval should be included in 

Taking into account the relation (6), probabilities of these events are: 

[vi - - . . . , -

We consider the incompatible events: 

is the event that should belong the interval •yf), 

A^ is the event that x^ should belong the interval [tk,V2)^ 

(8) 

a'? is the event that should belong to the interval [tk{x),bk). 
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H e n c e : ^ = E ^ n F ^ , y l j = f i F f , . . . , = ^ t ^ ^ ^ t , ' 

k-s'l- s^. 
F o r t h i s e v e n t t h e p r o b a b i l i t i e s w i l l b e ; 

k k 

m — 1 , 2 , . - . , / f e . 

W e i n t r o d u c e t h e c o m p a t i b l e e v e n t s : 

BQ i s t h e e v e n t t h a t x^ s h o u l d b e l o n g t o t h e i n t e r v a l 

B l i s t h e e v e n t t h a t s h o u l d b e l o n g t o t h e i n t e r v a l 

i s t h e e v e n t t h a t s h o u l d b e l o n g t o t h e i n t e r v a l 

F o r t h i s e v e n t s , i t i m p l i e s t h a t ; 

PiBi) = - ) + + + • • • + 

F ( B f ) - m ) - ^ v i ) == + • • • + ^ ( ^ s + ' J 

(9) 

(10) 

w h e r e = ~ ^ f ^ f J ' 

W e n o t e V ^ ' = ^ g u B g ^ ) , V , ' = ) , . . . , = « „ l U B f ^ ^ J , 

= ( A j ' ^ ) u s i n g P o i n c a r e ' s f o r m u l a , a f t e r r e o r d e r i n g o f t h e t e r m s , r e s u l t s : 

- [ x ) ) == ( V ? U u • • • u ) = ( 1 1 ) 

U B J U y i î U B f U • • - U U B i ' ; . ! U A f j 

^ U y l ţ U • - • U A f , U U B f U • • • U -

= P { A ' ' U B * ) - P { A ^ ) + P { B ' ' ) -

i where w e n o t e d : A " A ' ^ U A ' l V ••• U A f ^ , B ' ' B j U B f U • • - U A ' ' a n d B ^ 

b e i n g c o m p a t i b l e e v e n t s . 
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Knowing that , A ţ , . . . , Af^ are incompatible events, and S j , B f , . . . , fîf^ _ i 

are corapatible, the relation (11) becomes: 

$ ( 6 , ) ~ = P { 4 ) + P{At) + • • • + + 

+ F ( B f ) + • • • + - E PiBt n B^)-
. , i = 0 

- V n B^ n B^) ( - i ) ' - ^ F f n - = 

ik ^k _ ^k 

m=:l u=0 q=u 

E ^ ( S f n s J n B ^ ) 

/ik-l \ 

P I s j -
Vg^O / 

Replacing in this formula the terms with their corresponding values, given by 

(10),(11) we calculate the values of the ^ b k ) fc - 1 ,2 , . -
Considering the relation (5) and taking into account the things presented 

previously, we proved; 

Theorem 2. Problem (1) is equivalent with the following hnear programming 

problem: 

F* - min V 
xeK ^ fe=i 

Vm - ^'m-1 (13) 

11=0 q=u 

L m = l 

ffc-1 i f c - 1 

i . . i=o 

-(-l)'^-^P f i Bj j - P{A')P{B') 

In this ferm the synthesis function is calculable and we obtain after replacing 

the values, a linear programming problem whose solution is efficient solution for (1), 

and for the point we can calculate the maximum of each objective function. 
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3. A p p l i c a t i o n 

In a factory two types of products Px and P2 are manufac tu red and in their 

composition the raw mater ia ls M i , M 2 , M 3 and M4 are included in the amoun t s in-

dicated in table i . T h e m a x i m u m amounts t ha t can be assured for the raw mater ia ls 

MI,M2 and M3 are random variables normally distr ibuted: ^(12,2) for M i , ^21 (7 ,2) 

for M2 and ^22(18,3) for M3 are quanti t ies which depend on the possibilities of deliv-

ery of the provider. For a good tide of product ion it is required tha t the probabil i t ies 

that the necessary amoun t of raw mater ia ls M i , M2 and M3 to be lower or equal t han 

the delivered quanti t ies , to be at least 0,2 , 0,3 and 0,6. T h e necessary quant i ty of 

raw material M4 should be a max imum of 18 units. 

We have t o establish the quant i ty of eacli product P i and P2 so t h a t the 

probability of currency benefit to be at least 75 units which to be m a x i m u m , and 

the probability t h a t to ta l benefit should be least 65 units which also to be max imum, 

the values of these benefits for a uni t of product are to be found in the table 2 and 

knowing tha t , the penalt ies are follows: 

- the currency benefit decreases with one currency unit for each undelivered 

in time unit f rom the raw mater ia l M2 which composes P i product , and two currency 

unit for raw mater ia l M2 and P2 product; 

- the to ta l benefit decreases with two uni ts for every undelivered t ime unit 

from raw mater ia l M i which composes P i product , and one unit for raw mater ia l M i 

and Po product. 

Table 2 

Raw materials Currency Total 

Ml M2 M3 M4 benefit benefit 

P roduc t s Pi 3 1 3 1 9 7 

P2 1 1 2 3 9 9 

- Solving -

The problem has the next form: 

V m a x = P{9x i + 9x2 - q jy2 > 75) 
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V m a x = + 9 x 2 - q ' ^ y 2 > 6 5 ) 

s u b j e c t t o : 

P ( 3 a î i + a ; 2 < 6 ) > 0 , 2 
/ 

P 
l 1 

3 2 

\ / ^ / , . \ / \ 

\ 
> 

\ / 

/ 0 , 3 

+ 
\ 

1 O 

O 1 

î/21 

\ 2/22 / 

0 , 6 ^ 2 2 / _ 

+ Z X 2 < 1 8 

X > O, î/ > O 

W e d e t e r m i n e t h e K = A ' i D / \ 2 O K3 s e t . 

A'2 { x e M"| P ( x i + X 2 + 2/21 - > O, 3, 

P ( 3 x i + 2 x 2 + ^22 = 6 2 ) > 0 , 6 , 1/21 > O, y 2 2 > 0 } -

= { x e P ( 6 i < + X 2 ) < 0 , 7 , P f e < 3 x i + 2 x 2 ) < 0 , 4 } 

= {x g M " | F ( x i + X 2 ) < 0,7, P ( 3 x i + 2 x 2 ) < 0,4} = 

- { x € + X 2 < P - ^ { 0 , 7 ) , 3 x 1 + 2 x 2 < 4 ) } -

= {xe M"! + X2 < O, 5 + 7, 3xi + 2x2 < " O , 3 + 18} 

= { x £ + X 2 < 7 , 5 , 3 x j + 2 x 2 < 1 7 , 7 } . 

A ' i { x € R " | P ( 3 x i - f x 2 < 6 ) > 0 , 2 , x G I u , x > 0 } = 

= { x e < 3 x 1 + X 2 ) < 0 , 8 , X € A ' 2 , X > 0 } = 

= {xe F{Zxi + X2) < 0,8, X G A'2, X > 0} = 

3 x i + X 2 < F - ^ ( 0 , 8 ) , X G 7 ^ 2 , x > 0 } = 

= {xe I R " j 3 x i + X 2 < 1 2 , 8 , X G K2, > 0 } 

A 3 = {x G x i + 3 x 2 < 18} 

( 1 4 ) 
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K is obtained solving the system: 
/ 

â i + X2 < 7,5 

Sxi+2X2 < 17,7 

3x1+^2 < 12,8 

x i + 3 a : 2 < 1 8 

XI > O 

> O 

We determine the deterministic equivalent of Ihe two objective functions and 

!et the first of them be: 

Vmax / i (x,6) + 9x2 - qh^ > 75); 

/ \ / . \ 

(15) 

gîy2 = {QU Qn) 
\ y22 ] \ 62 - 3xi - 2X2 j 

- ^21 - Xi - X2 + 2̂ 22 - 6x1 - 4X2 = -7X1 — 5X2 + ^21 + 2̂ 22-

We note rĵ  - ijn + ijn where rin - 1̂2 = 2̂ 22-

We calculate the paranieters of this random variable: 

Th = M{r}n + ^12) - M(6i) + ^(262) = ^21 + 2̂ 22 - 7 + 2 • 18 43 

= v ^ D M - v'^(^ii) + DM = + 9Î2-0(e22) -

= "v/^n'^i, + - V I • 4 + 4 • 9 = V40 6,325 

We replace in (15) the determined values and we obtain: 

Vmax/i(x,6) = -P[9xi + 9x2 - ( -7x i - 5x2 + 6 1 + 262) > 75] = x€K 

= P(16xi + 14x2 - - 262 > 75) = P(16xi + 14x2 - > 75) = 

= P(16xi + 14X2 - 75 > r?i) =r P ^ V i - Vi . 16xi + 14x2 - 75 - _ < 
'rii 

• /16xi + 14X2 - 118^ 
V 6,326 

+ 0,5 
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M a x i m u m o f t h i s f u n c t i o n i s o b t a i n e d , a c c o r d i n g t o t h e o r e m 1 f o r p r o b l e m ' s 

s o l u t i o n . 

m a x ( 1 6 a : i 4 - 1 4 1 2 ) 
x€/C 

(16) 

S o l v i n g ( 1 6 ) i s o b t a i n e d m a x ( 1 6 x i + 1 4 x 2 ) = 1 1 0 , 3 f o r a^i = 2 , 6 5 a n d X 2 = 
x^K 

4 , 8 5 a n d i t r e s u U s : 

V m a x / i ( x , | 2 ) = ^ ( 
x^K \ 

1 1 0 , 3 - 1 1 8 \ 
+ 0 , 5 = 

6 , 3 2 5 ) 

^ $ ( - 1 , 2 1 7 ) + 0 , 5 = ^ - 0 , 3 8 8 + 0 , 5 = 0 , 1 1 2 . 

C a i c u l a t i n g t l i e m i n i m a l a n d m a x i m a l v a i u e o f t h e t e r m t i ( x ) = 

1 6 ^ 1 + 1 4 ^ 2 — I J ^ o b t a i n a i = — 1 8 , 6 , 61 = — 1 , 2 1 7 . a i v a i u e w a s o b t a i n e d 
6 , 3 2 6 > , i . 

i n x \ =• X2 = 0 . 

W e d e t e r m i n e t h e d e t e r m i n i s t i c e q u i v a l e n t o f t h e s e c o n d o b j e c t i v e f u n c t i o n : 

V m a x / 2 ( a ; , 6 ) = - P l ^ i C i + 9 x 2 - q l y 2 > 6 5 ) , 
x^K 

(17 ) 

w h e r e 

Î 2 î /2 = ( 9 2 1 ? 2 2 ) 
V y 2 2 ) 

( C ^ 
6 1 - X i - X2 

^ 6 2 - 3 x i - 2 x 2 ^ 

= (2 1) 

= 2 6 i - 2 x i - 2 X 2 + 6 2 - 3 X 1 - 2 X 2 - - 5 X 1 - 4 x 2 + 2 ^ 1 + 6 2 

R e p l a c i n g i n ( 1 7 ) w e o b t a i n : 

V m a x / 2 ( x , e 2 ) == - P ( 1 2 x i + 1 3 x 2 " 2 ^ 1 - 6 2 > 6 5 ) ^ 
x£K 

(18) 

= P ( 1 2 x i + 1 3 X 2 - î?2 > 6 5 ) = P{ti2 < 1 2 x i + 1 3 x 2 - 6 5 ) 

U s i n g t h e s a m e r e l a t i o n s a s f o r t h e first o b j e c t i v e f u n c t i o n w e o b t a i n : ^ 2 — 

= 5 , a n d ( 1 8 ) b e c o m e s 

V m a x / 2 ( x , ^ 2 ) = P 
x^K 

^ V2 - V2 ^ + 1 3 x 2 - 6 5 - 7/2 

\ 
< 

'V2 

A 2 x i + 1 3 x 2 - 9 7 \ 
+ 0 , 5 

w h o s e m a x i m u m i s o b t a i n e d f o r t h e p r o b l e m ' s s o l u t i o n : 

m ^ ( 1 2 x i + 1 3 x 2 ) (19) 
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S o l v i n g ( 1 9 ) w e o b t a i n m a x ( 1 2 x i + 1 3 x 2 ) = 9 5 , 2 5 f o r a ş i = 2 , 2 5 a n d x ^ - 5 , 2 5 
x^K 

a n d i t r e s u l t s t h a t : 

V m a x / 2 ( 2 ; , 6 ) 
9 5 , 2 5 - 9 7 \ 

+ 0 , 5 = ^ ( - 0 , 3 5 ) + 0 , 5 = 

= - 0 , 1 3 7 + 0 , 5 = 0 , 3 6 3 

h a v i n g a i - - 1 9 , 4 , i g ^ - 0 , 3 5 . 

F r o m { 7 ) - ( 1 2 ) r e l a t i o n s a n d t h e o r e m 2 , w e c a l c u l a t e t h e e f f i c i e n t s o l u t i o n o f 

( 1 4 ) : 

F o r / i f u n c t i o n i n a c c o r d i n g w i t h ( 1 1 ) r e s u l t s 

where: 
p ţ ^ i j ^ + 1 4 x 2 - 1 1 8 \ 1 5 , 6 

6 , 3 2 5 1 7 , 3 8 3 
• 0 + 

1 6 x i + 1 4 x 2 - 1 1 8 \ 0 , 5 

+ 

+ 

- 2 

- 1 . 5 

6 , 3 2 5 > 1 1 7 , 3 8 3 

1 6 x i + 1 4 x 2 — 1 1 8 \ 0 , 5 

6 , 3 2 5 ) 1 7 , 3 8 3 

1 6 x i + 1 4 x 2 -- m'^ \ 0 , 5 

6 , 3 2 5 1 7 , 3 8 3 

0,01+ 

• 0 , 0 3 + 

0 , 0 9 + 

+ [ _ 1 , 2 1 7 ^ . 0 , 1 8 
6 , 3 2 5 1 7 , 3 8 3 

and we o b t a i n ; 

P ( S ^ ) = ( 0 , 0 6 + 0 , 1 9 + 0 , 1 1 ) + ( 0 , 1 9 + 0 , 1 1 ) + 0 , 1 1 -

- ( 0 , 1 9 + 0 , 1 1 ) - 0 , 1 1 - 0 , 1 1 - 0 , 1 1 = 0 , 1 4 

$(6i) - $(fi(x)) = + P{B^) - F(A^)P{B'] = 

1 6 x i + 1 4 x 2 - 1 1 8 

6 , 3 2 5 
• 0 , 0 4 8 + 0 , 2 8 0 7 

F o r / 2 i t f o l l o w s t h a t : 

( 3 + 1 6 , 4 

1 9 , 0 5 
0+ 

+ - 2 , 5 
1 2 x 1 + 1 3 x 2 - 9 7 \ 0 , 5 

5 ) 1 9 , 0 5 
0 , 0 1 + 
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1 2 x 1 + 1 3 x 2 - 9 7 \ 0 , 5 

+ - 1 , 5 -

5 J 1 9 , 0 5 

1 2 x 1 + 1 3 x 2 - 9 7 \ 

/ 1 9 , 0 5 

• 0 , 0 3 + 

0 , 0 9 + 

+ - 1 -
1 2 x 1 + 1 3 x 2 - 9 7 \ 0 , 5 

1 9 , 0 5 

+ - 0 , 5 -
1 2 x 1 + 1 3 x 2 - 9 7 \ 0 , 5 

+ 

\ 

- 0 , 3 5 -

/ 1 9 , 0 5 

0,18+ 

• 0 , 3 + 

1 2 x ] + 1 3 X 2 - 9 7 \ 0 , 1 5 

5 . j 

1 2 x 1 + 1 3 x 2 - 9 7 

• 0 , 3 8 = 

H H ) - = 

5 

P ( S ^ ) = 0 , 1 4 2 8 

1 2 x i + 1 3 x 2 - 9 7 

1 9 , 0 5 

0 , 0 1 9 1 - 0 , 0 1 4 1 

• 0 , 0 1 6 + 0 , 1 3 1 

T h e e f f i c i e n t s o l u t i o n i s g i v e n b y t h e l i n e a r p r o g r a m n i i n g p r o b l e m ' s s o h i t i o n : 

F * = M I N M B I ) - ^ { T I { X ) ) + $ ( 6 2 ) - = 

X^K 

m m 
X€K 

1 6 x i + 1 4 x 2 - 1 1 8 

6 , 3 2 5 

1 2 x 1 + 1 3 x 2 - 9 7 

- 0 , 0 4 8 + 0 , 2 8 0 7 -

0 , 0 1 6 + 0 , 1 3 1 

= m m ( - l , 9 8 1 2 x 1 - 1 , 7 4 1 5 x 2 + 1 4 , 9 1 9 1 ) 

r g K 

S o l v i n g t h e p r o b l e m , w e o b t a i n t h e s o l u t i o n x = ( 2 , 6 5 ; 4 , 8 5 ) . 

W e d e t e r m i n e f o r t h e t w o o b j e c t i v e f u n c t i o n s t h e m a x i m u m v a l u e s w h i c h arej 

o b t a i n e d i n t h e p o i n t x = ( 2 , 6 5 ; 4 , 8 5 ) : 

/ i ( x ) = ^ ( - 1 , 2 1 7 ) + 0 , 5 ^ - 0 , 3 8 8 + 0 , 5 = = 0 , 1 1 2 

F 2 { X ) = ^ 
1 2 - 2 , 6 5 + 1 3 4 , 8 5 - 9 7 ^ 

+ 0 , 5 = ^ { 0 , 4 3 ) + 0 , 5 = 0 , 6 6 7 
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ON D I F F E R E N T I A B L E F U N C T I O N S P R E S E R V I N G R A T I O N A L I T Y 

A N D I R R A T I O N A L I T Y 

A L E X A N D R U H O R V A T H 

Dedicated to Professor Vbsiie Pop at his 60"" anniversary 

Abstract . In this paper we construct nonlinear differentiable functions / , 
with the property / ( Q ) C Q and / ( R \ Q) C R \ Q. The construction is 
based on some convergence properties of the sequences of convex functions 
and on a criterion of irrationality for numbers expressed as series of raţional 
numbers. The main theorem of the paper states that the set of functions 
with this property is dense in (C(R) , || • ||). 

Assume that a and b are raţiona! numbers and a ^ 0. Then obviously, the 

i value of the linear fiinction f{x) = ax + b is raţional if and oniy if x is raţional. 

I Let us say a function / : R R has the property of preserving rationality if 

/ ( Q ) C Q and / ( R \ Q ) c R \ Q . (1) 

It is natural to investigate the existence of a differentiable functions with this 

property, which is not linear. The question in fact is: how rich the set of functions 

[with this property is? 

Just the linearity is not aconsequence of the difîerentiability and the property 

1(1), as is shown by the function / : R - i R given by: 

/( X = 
l/x if x>l 

2-X if X <1 
(2) 

However, the linear and the above function as well are both monotone. In 

fadclition, the derived function of each of them is nowhere vanishing. This kind of 

onstructions seams to lead us always to monotone functions. 
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Fix apo int x. Applied for the sequence { / U ^ ^ - O ) } » ' Lemma 1 and 2 provide 

an 7? > O with the following property: for any Q <h<rj and any n one has 

On the other hand 

If we let n oo, then the above inequalities give: 

Finaily, we have 

- c < f { x ' Q ) + € as h ^ Q . 

Since € was arbitrary, the first inequality follows. By an analogous way we 

obtain the second one. The last assertion is now obvious. 

Notice, that the above proposition provides differentiable functions as the 

limit of a sequence of non-difFerentiabie functions. This is one of the key points of the 

paper. The second one is the use of the following irrationality criterion. For its proof 

i see [5] -

Lemma 3 (Criterion of irrationality). Let {p n}n ond" {şnln S€QU6nces of îutegei 

nmbers and Un = Assume that the following condttions are satzsfied: 

I (1) > 1 /oî" any n, and pn ji^ O for infimtely many n, 

\ (2) there exists a sequence of real numbers {a„)n, such that [«„^ — Wnî < «n 

for any n and m > n, and 

(3) = O, where [qi, denotes the least common mul-

tiple of the numbers 91, ...,ît»-
Then the series X]r=i ff converges, and its value ts an irrational number. 
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Now we start to constmct a sequence of convex, piecewise linear functions. 

Choose two non-zero numbers m j < mo and a point in the plain with coordinates 

(xo,î/o)- Define the function /o as foUows: 

Mx) = 
yo + mi{x - xo), for x < xo 

I yo + îTi2(x--Xo), for X > X q . 

This function is obviously convex and piecewise linear. Let {en}n be a se-

quence of positive real numbers, such thatc „+ i < \€n for any integer n > 1. Consider 

the points 

Mlixo- €i,yo- (\mi) and M}{xq + ei,yo + €17712) 

on the graph of the function /q. Define the function fi, in such a way that its 

restriction to { - 0 0 , xq - «i] U [xq + e i , oo ) is equal to the restriction of /q to this 

subset. On the other hand, the graph of its restriction to [xq - 4- ei] is the 

segment M j M ^ . The graph of the function f i has two angular points (i.e. / i is not 

differentiable at xq — and xo + ^i). 

Repeat the above construction for both of these angular points, using now €2 

instead of €1. The new function /2 has four angular points on its graph, namely 

Mf{xo - €1 - €2,yo - c imi - £2^1), 

M|(zo - 61 + £2, yo - e i ' " ! + 

Miixo + 61 - yo + -

+ ei + 62, yo + eîm2 + 62^2), 

and it stili remains convex and piecewise linear. Iterating the above step, we obtain 

for every n, a convex piecewise linear function /n , which has on its graph 2" angular; 

points M p , i = 1, ...,2"-. The coordinates of these points have the following form: 

x = Xo + SiCi + S2€2 + ... + Sn€n, (3) 

y = + + (4), 
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where Sk ~ ± 1 and f i k is a certain combination of mi and m ^ for any k = 1, ...,n, 

Notice that they depend on n and i as well. 

Now we are able to formulate the main result of the paper: 

Propos i t ion 2. T h e s e q u e n c e { / n } n c o n s t r u c t e d above c o n v e i y e s u n i f o r m l y t o a 

f u n c t î o n f . T h e Urnit f i s a n o n l i n e a r d i j f e r e n t i a b l e f u n c t i o n . M o r e o v e r , f { x ) i s 

raţional t f a n d o n l y i f x i$ r a ţ i o n a l , p r o v i d e d t h a t t h e p a r a m e t e r s m i , m 2 , X Q , y o a n d 

€„ are p r o p e r l y c h o s e n i n t h e c o n s t r u c t i o n . 

P r o o f . By the above construction {/n}n «s an increasing sequence of contin-

uous, convex functions. Define a continuous function g as follows: its restriction to 

X = (—oo.xo — 2ei] U [a;o + 2fi ,oo) is equal to the restriction of /o to this set, and 

the graph of its restriction to [xo — 2€i, a:o + 2€i] is a segment. Then f n < 9 for any n. 

In particular the sequence { f n } n is upper bounded, hence pointwise convergent, too. 

Actually, it converges uniformly because /„ = /o on X for any n and the functions 

are convex (or directly because of the formula (5)). 

Therefore the limit function / is convex and continuous. Since f o < f < 9 , 

it is also nonlinear. 

Now we will prove that / is differentiable. It is a matter of simple computation 

to prove by induction the following formulas, to make (1) and (2) more precise: 

f i k = 
_ m - l ) /2"- ' ' ] ]mi + - - U i i - l) /2"-^]])m2 

T = r 

Here [x] denotes the integer part of x. Moreover, it is not difficult to see that 

the slopes of the line segments of the function fn are 

= mi + - mi), where i = 0,1,... , 2" 
ii 

iiiorder, so that m-ô n = fni and m.2n,n = 

(5) 
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Consider now the functions - 0) and /^(a; + 0). For arbitrary x and n 

one has 

hence for any p > O 

m-2 — mi 

which means the uniform convergence of — 0)}n- Obviously this is valid for 

{ f^ {x + 0 ) } „ , Loo. Notice that 

m2 - mi 
¥ 

hence we conclude the differentiability o f / , by Proposition 1. 

Finally, we have to investigate the behavior of the function / with respect 

to the raţional points on its graph. Assume that = and the numbers 

2/0, " î l , m2 are raţional, such that for any i and n the slope mj „ is non-zero, 

i.e. 

(2" - î )mi - f î 'ma # 0,n e N and f = 0 , 1 , 2 " (6) 

Assume that x is not an accumulation point of the set of x-values expressed 

as in (1). Then the sequence {/n(a;)}n is constant for n sufficientiy large, in particular 

f{x) is raţional if and only if x is raţional. Now consider the accumulation points of 

tlie above set, These points are exactly those, which have the forni 

X = = + where = ± 1 . 
r»=l 

But Lemma 3, with the choice an ~ assures us that all these 

numbers are irrational. Similarly, y = f{x) has the form 

y = 2/0 + ^ where e n = ± l . 
n=l 
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Now with the choice a„ = {|mi| + Lemma 3 gives the irra-

tionality of y. Hence Proposition 2 is proved. 

It remains the proof of the main Theorem, stated in the introductory part of 

' the paper. 

Proof (of the main Theorem 1). First, notice that all the above results 

are valid for concave, instead of convex, functions too (i.e. for mi > 7712). 

Consider an arbitrary continuous function g and fix an arbitrary e > 0. Then 

g can be approximated by a piecewise linear continuous function / , such that 

(a) - / ( x ) i < c/2, for any x, 

(b) the angular points of / are aii isolated points and have raţionai coordinates, 

(c) the slopes are different, non~zero raţional numbers, 

(d) the consecutive slopes satisfy the condition (3). 

Now in a sufficiently small neighborhood of the angular points repeat our 

main construction. The (easy) details are left to the reader. 

Finally, here it is a conjecture for further investigations. Notice at the first, 

that cur construction allow the derivative of the function vanish. Indeed, if one chooses 

Io = î/o = O, mi = - 2 and ?n2 = 3 then the function / will be differentiable with 

derivative - 2 on the left-hand side and derivative 3 on the right-hand side. Because 

of the Darboux property of derivatives, / ' must be O somewhere in between. 

C o n j e c t u r e The derivative of any differentiable function with property (1) 

can only vanish on an irrational point. 

Acknowledgment I would like to thank dr. Zoitân Finta, Babeş-Bolyai Uni-

versity of Cluj-Napoca, who had drawn this problem into my attention. Also I am 

Indebted to an unknown referee for valuable comments, including the suggestion for 

an appropriate titie, the example (2) and tlie conjecture above, 
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D O I N A l O N A C 

Dedicated to Professor Vasile Pop at hts 60''* anniversary 

A b s t r a c t . In the paper we give some sufficient conditions for the con-

tinuity and iipper and lower semi-continuity of the optimal value of a 

linear-fractional programming problem with respect to the problem coeffi-

cients. For this we use some regularity and strictly consistency conditions 

of the linear-fractional problem as well as some similar continuity results 

obtained by Cojocaru and Dragomirescu for the general linecvr programs. 

1. Here, we apply some known results for the continuity of the opt imal value of 

the linear program [2], [4], [8] in order to obtain sufficient conditions for the continuity 

and semi-continuity of the optimal values of a linear-fractional programming problem, 

verifying some regularity or pseudo-regularity conditions. Another aspects of the 

optimal value function continuity for linear programs can be found in [4], [5], [8]. In 

the case of nonlinear optimization problems some topological sufficient conditions for 

the optimal value continuity and upper and lower semi-continuity are given in [6], [7]. 

2. Let consider the linear-fractional programming problem: 

P F ( z ) . F ind 

f , , . cx -h Co 
m a x s f [x] = ^ •\Ax<b,x>0} . 

ax + do ) 

where A = {uij) is a m x n dimensional matr ix (m < n) of rank m with real elements, 

c and (f are real vectors of dimension n, 6 is a given real vector of dimension m and 

co and do are given real numbers. 
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By 2 = {A, b, c', d') we denote a point in the (m x n + m + 2 (n + 1))' dimen-

sional Euclidean space of the problem PF(z) coefficients, 

z = { z e {A, b, c', d') € 6 e E" ' , e' G d' € 

where c' = (C^, CQ) , d' = (cF, do) . 

Next, we will designate by / the objective function of the linear fractional 

problem (PF) and by X the feasible set of the problem PF(z). 

Next we suppose on the problem PF(z) that: dx + do > O, Va; € X. 

Let F : E U { ± 0 0 } be the optimal value function of PF(z): 

i r r . . ' / sup{/{ îr )|xeA'} , for A ' ^ 0 
F[A,b,c,d) - < 

[ - c o , for X = 0 

and let Z' - {z e Z\ - 00 < F{z) < +00} . 

Definition 1. (i) If the feasible set X ^ the problem PF(z) is called consistent. 

(ii) IfX* = {:c € W\Ax < > 0} ^ 0 the problem PF(z) ts called strictly 

consistent. 

Problem PF(z) can be converted by the variable change y = tx into: 

PL(z). Find 

Ma'£{{cy cot)\Ay - bt < 0,dydoi - l,y > 0,t > 0}. 

The objective of linear program PL(z) will be denoted by g{y,t) = cy + cot, 

the feasible set by XL and optimal value function by S (A, 6, c\ d'). We can associate 

to problem PF{z) a dual problem DL(z), which is the dual problem of tlie linear 

program PL(z): 

DL{z). Find 

Min{w\A'^u -\-dw>c, -bu + d^w > cq, w > O, if € M}. 

Definition 2. Problem PF(z) ts a regular problem if the following conditions hold: 

i). X ^ 0, 

ii), the objective function f is not constant on X, 

lii). there exists M > O such that ^ < dx da < M, for any x £ X. 
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Defînition 3. Problem PF(z) is a pseudo-regular problem if the foUowing conditions 

hold: 

1 0 , 

I ii), f is nat constant fimction on X, 

iii), dx + do > O, for any x £ X. 

3. The following theorems will establish a relationship between the problems 

PF(z) and PL(z) concerning strictly consisiency of these problems. 

Theorem 1. Let problem PF(z) be pseudo-regular. Then PF(z) is strictly consistent 

if and only if PL(z) is strictly consistent. 

'^Proof. The proof essentially is based on Charnes-Cooper variable change [1], [5]. • 

Theorem 2. If problem PF(z) is regular then the foUowing properties hold: 

(i) If the dual problem DL(z) ts strictly consistent then the optim-al value 

^nction F is upper semtcontîmious at z with respect to Z'. 

(li) If the primai problem PF(z) is strictly consistent then the optimal value 

1; fmction F is lower semi-continuous at z with respect to Z'. 

(tiz) Ifboth problems PF(z) and DL(z) are strictly consistent then the optimal 

\value functton F is continuom at z with respect to Z'. 

\ Proof (i) Since problem DL(z) is strictly consistent, it results, by Theorem 3.3 [2], 

that the optimal value function of the problem PL(z) is upper semi-continuous at 

with respect to Z'. The problem PF(z) is regular, so that by Theorem 2.2.3 [3], it 

foilows that the problems PL(z) and PFfz) have the same optimal value function, 

that is F{z') = S{z'), \/z' G Z'. Therefore, F is upper semi-continuous at 2 with 

[•respect to Z'. 

(ii) Because, problem PF(z) is strictly consistent, it foilows, in conformity 

with Theorem 1, that PL(z) is strictly consistent. Then by Theorem 3.3 [2], it results 

that the optimal value function S of the problem PL(z) is lower semi-continuous at 

z with respect to Z'. The problem PF(z) is regular, so that by Theorem 2.2.3 [3], 
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it follows that the problems PL(z) and PF{2) have the same optimal value function. 

Therefore, F is upper semi-continuous at z with respect to Z'. 

(iii) If the problem PF(2) is strictly consistent, in virtue of Theorem 1, it 

follows that problem PL(z) is strictly consistent too. Since problems PL(z) and DL(z) 

are strictly consistent, according to Theorem 3.3 [2], it results that the optimal value 

function S of problem PL(z) is continuous on 2 with respect to Z'. The problem 

PF(z) is regular, so that by Theorem 2.2.3 [3], it follows that the problems PL(z) and 

PF(z) have the same optimal value function. Therefore, F is continuous at ^ with 

respect to Z'. 
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Dedicated to Professor Vasile Pop at his anniveraary 

Abstract . If F is a functor having the functor G both as a left and right 

adjoint, then one can associate to F a transfer map. The pair (F, G) is 

called a FVobenius pair. In this paper we discuss of Frobenius functors 

between functor categories and their transfer maps. 

1. Introduction 

The functors F: A B and G : B ^ A ave said to form a Frobenius pair if 

G is both a left and a right adjoint of F. 

If {F,G) is a Frobenius pair, then one may define (see [3], [2] natural the 

tranformations 

TVF : H o m B ( F H , F ( - ) ) ^ H o m ^ C - . - ) , 

Ttg : H o m ^ ( G ( - ) , G ( - ) ) H - H o m e { - , - ) 

which satisfy the usual properties of the trace map TTH from group representation 

theory. These transformations we also investigated in [5], 

This paper is a sequel of [5], and it is inspired by the work of J.A. Green [4] 

on functor categories over group algebras. We show that a pair of Frobenius functors 

between mod and S - m o d , where A and B are finite dimensional /:-algebras, 

induce Frobenius functors T and Q between the the categories ^-Mmod and S-Mmod 

of contravariant functors from >1—mod, respectively B - m o d to / i -Mod. Therefore 

Higman's theorem characterizing reiaţively ^-projective objects holds in this case 

toc. 
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AU OUE categories and functors will be additive. Rings are associative with 

unity, and modules are unital and left, unless otherwise specified. Benson's book [1] 

contains the needed facts on functor categories, and in [6] many of Green's results 

were generalized to gronp graded algebras. 

2. The transfer map 

2.1. Let A and B be axiditive categories, F : A B a.n (additive) functor and 

G : 5 -4 a right adjoint of F . Denote by 

the adjunction isoinorphism, and let 

be tlie unit, and 

p:FoG-^ ide, pb = : o G){B) B 

the counit of this adjunction, where A £ A and B £ B. 

2.2. If G is also a left adjoint of F, then F and G are called Frobemxis functors and 

{F,G) is a Frobemus pair. In this case we also have the adjunction isomorphism 

7 _ . _ : H o m ^ ( G ( - ) , - ) H o m s ( - , F ( - ) ) 

with unit 

^ : l e f o G , ^B = 7s,G(B){idG(fî ) ) : B ^ {F o G)(B), 

and counit 

T:GOF-^ id^, TA == : (Go A 

for aWAeA and B e B. 

2.3. The functors F and G induce natural the transformations 

Resp = R e s F ( - , - ) : H o m ^ { - , - ) H o i n 8 ( F ( - ) , F { - ) ) . f F ( f ) 

R e s G - R e s G ( - , - ) : H o m s ( - , - ) ^ H o r n ^ ( G ( - ) , G ( - ) ) , g m - G { g ) 
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for a n y m o r p h i s m / i n a n d for a n y m o r p h i s m g i n 13. 

S i n c e F a n d G a r e F r o b e n i u s f u n c t o r s , w e m a y d e f i n e n a t u r a l t r a n s f o r m a t i o n s 

in the o p p o s i t e d i r e c t i o n . 

2 . 4 . T h e m a p 

T r p = T r F ( A , A ' ) : H o m B { F ( A ) , F { A ' ) ) H o m ^ { A , A ' ) , 

/ TVp ( f ) TA' o G ( f ) o (TA 

is the transfer (or t r a c e ) m a p a s s o c i a t e d to F. S i m i l a r l y , 

T r c = T r G { B , B ' ) : H o m ^ ( G ( B ) , G ( B ' ) ) ^ H o m s ( B , B ' ) , . 

g^TxG (g) = PB- o F(g) o 4b 

is the t r a n s f e r m a p a s s o c i a t e d to G. F o r e v e r y o b j e c t A oî A d e n o t e a l s o 

Ca - e(F}A = r A O ( T A e E n d ^ ( A ) . 

II W e r e c a l l f r o m [5, L e m m a 1 . 4 a n d P r o p o s i t i o n 1 . 7 ] s o m e p r o p e r t i e s o f t h e 

trace m a p . 

j 2.5. P r o p o s i t i o n a ) For all f € H o m e ( F ( A ) , F ( A ' ) ) , 

' I V F ( f ) = T a ' o a A , F ( A ) = T p ( A ) , A ' ^ ''"A-

b) For all f: A-i A3 in A, u: F{Ai) and v: F{A3)^F{A4) 

mB, 

T r F ( v o F ( f ) o u ) = T r F ( v ) o f o T r F ( u ) . 

In particular, I m X r F i s a n "ideal" 0 / H o m ^ ( A 2 , A 3 ) . 

c ) We have that e ^ = ( T r p o R e S F ) ( i d A ) . Moreover, ca is a central element 

o / E n d ^ ( A ) , and for any morphism f: A\ A^ in A we have 

( T t f o R e s F ) ( f ) = eAa o f = f c e A , . 
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F 
d) (Ttansitivity) Let {F,G) and {F',G') be Frobenius pairs, where A 

am 

Trp o Trp'. 

B^C and C B ^ A. Then (F ' o F,G o G') is a Frobenius pair, and Trp'oP 

3. Functor categories and transfer 

3.1 . Let fc be a field and A a finite dimensional fc-algebra. We denote by 

yl-Mmod the (abelian) category A-Mmod =Mod(y4—mod) of Â;-Unear contravariant 

functors T: A—mod —> k—Mod and natural transformations q:T -¥T'. 

For any (finitely generated) module M € A—mod, H o m A ( - , M ) € A-Mmoc 

is the functor represented by M. Yoneda's lemma states that for any T E A-Mmod, 

the corr^pondence 

Hom(HomR(- , M), T) T(M) , <i> <^M(idM) 

is a /;-isomorphism, and this implies that every morphism <j> : HomA(—,M) 

HomA(—,M') has the form 4> = Hom(—,f) for a unique morpViism f : M M' 

in A—mod. Define the ^:-linear covariant functor 

: . A - m o d A -Mmod, M h-j- H o m A ( - , M), f H o m A ( - , f ) . 

Then for any M, M' £ A - m o d , the map 

HomA(M,M' ) H o m ( H o m A ( - , M ) , H o m A ( - , M ' ) ) 

is a Ar-isomorphism, so is a ful! embedding of A - m o d in A-Mmod. 

3 .2 . Let A and B be finite dimensional fc-algebras and F : A—mod —> S—mod a 

/:-linear covariant functor. Denote A = A-Mmod and B — B-Mmod. 

One can associate to a functor 

as follows. If U is an object and /?: f / U' a morphism in fî, define 

F(U){X] = UiF{X)], F{U){f) = U{F{f)), 
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for any ^ m o d u l e X and morphism f\X-^X'm. ^ - m o d , and define 

F{/3)(.Y) = : U{F{X)) ^ U'{F{X)), 

for all X € A - m o d . It is not difficult to show that F is a A:-linear, covariant and 

exact functor. Actually, we have a /:-linear contravariant functor F F, 0 

<{> from F Q n ( A - m o d , S - m o d ) to where, if : Fi F2 is a natura! 

transformation between the functors Fi ,F2 : A-mod B - m o d , then the natural 

transformation 0 : F2 F i is defîned by 

<f>u{X) = U{<f>x), f o r all 17 € B, X G ^ l - m o d . 

Moreover, if F : A~moâ ~> S - m o d , F ' ; S - m o d C - m o d and F " - F'o F, then 

F" = F o F ' . 

3.3. Let (F, G) be a Frobenius pair, where F : A - m o d fî-mod and G : B - m o d 

A - m o d , and consider the functors 

g = F: B A 3.nd B. 

It is easy to see that these definitions are compatible with the Yoneda embeddings 

y ^ and y ^ , that is, we have the isomorphisms (coming from 2.1 and 2.2) 

- H o r a B { - , F ( X ) ) in B, 

a _ , y : e H o m B ( - , Y ) - H o m A ( - , G ( Y ) ) in A. 

3.4. Lemma. i$ a Frobenius pair. 

Proof. The natural transformations «7, p, ^ and r defined in 2.1 and 2.2 induce the 

natural transformations (t : Q o J^ -i- idA^ P • o Q, ^ : :F o g ide, and 

r : id^ - f ^ o Since F is a left adjoint of G, the compositions 

f''-^' FoGoF'^ F and G'^^GoFoG^'G 

. are the identity transformations of F and G respectively. 

It follows from 3.2 and 3.3 that the compositions 

g ^ g o j ^ o g ' ^ - ^ g and t ' ' ^ T o g o T ' ^ T 
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are the identity transformations of Q and ^ respectively, hence ^ is a left adjoint of 

f, the unit of this adjunction is p and the counit is cr. Similarly, ^ is a left adjoint 

of with unit r and counit 

3.5. Since ia a Frobenius pair, for any objects T e A and U E B there are 

natural isomorphisms 

We want to establish a connection between AR.U and FU,T' OCX,Y, 1Y,X- From 

a basic result on adjoint functors we know that OIT,U — G[f) TT as composition of 

natural transformations. By 3.2, we have for any X G mod: 

G{f)ix) = F(/)(X) = M X ) : ^ U { F { X ) ) , 

where : F ( r ) ( F ( X ) ) G{T){F{X)) = T{{G o F){X)). From these equalities we get: 

<^T,Um - (G{f)0TT)iX)=:^G{f){X)0TT{X) 

Similary, for any Y € 5—mod, we have 

'YU,TIY) = 9G{Y) o î 7 ( a y , G ( y ) ( i d G ( r ) ) ) -

3.6. Since ( J", G) is a Frobenius pair, for any objects T,T' £ yl-Mmod we may define 

the transfer map 

/ H-J- ' L : : F ( f ) ^ O-T' o G { f ) o T T , 

where T and <r are defined in the proof of the preceding iemma. 

For every object T of A denote 

e r - e(:F) j = <tt O r ^ € End^ (T). 
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As in Proposition 2.5 c) , we have that e r = (Tr^ o Res:F)(idT) and for any morphism 

\:Ti in ^ 

(TTJF O = CŢJ o<P — ^ . o e x i -

Moreover, we have that e r l X ) = T{ex) for any X G i 4 - m o d . Indeed, 

e7-(A'') = (<Tr orT)(X) = <tt{X) OTT{X) 

= T{ax)oTirx]^T{Txoax)=-T{ex). 

Clearly, the statements of [5, Proposition 1.7] and Higman's criterion [5, 

Theorem 2.2] hold in this new context. 

3.7. Next, we establish the connection between the transfer niaps TrjF and T i f -

Let M, M' 6 A - m o d and let 

0 : : ^ H o m A ( - , M ) : r H o m A ( - , M' ) -

Then there is a unique morphism 

H o m B ( - , F ( M ) ) - > H o m B { - , F ( M ' ) ) 

such that the foilowing diagram is commutativc ; Yoneda's lemma implies that there is 

aunique h e H o m B ( F ( M ) , F ( M ' ) ) such that this morphism has the form H o m B ( - , h } . 

H o m B ( - , / i } 

3.8. P r o p o s i t i o n . Let and h as above. Then 

= H o m A t - , TrF(h ) ) : H o m A ( ~ , M ) H o m A { - , M ' ) . 

Proof. Denote T = H o m A ( - , M) and T ' = H o m A ( - , M ' ) , and let X be an A-module . 

By definition, we have 

TT:F{(f>) - o-T' o g{<p) o t t , 

81 



ADRIAN MADAR AND ANDREI MARCUS 

w h e r e r e c a l l t h a t w e h a v e t h e e q u a l i t i e s 

TT(X) = T{TX) = H o m A { 7 X > i d M ) , 

CRT'(X) = T{(TX) = HOMA(<TX,IDM')-

M o r e o v e r , 

GMX) = F{<F>)M = MX) 

~ t F i X ) , ! ^ ' ° H o m B ( l d F ( X ) , i l ) o 7 F ( X ) , M -

B y P r o p o s i t i o n 2 . 5 a ) i t f o l l o w s t h a t 

( T r : F ^ ) ( X ) = T r F ( X , M ' ) o H o m B ( i d F ( x ) , h ) o R e s F ( X , M ) , 

a n d f o r a n y / G H o m A ( X , M ) , 

( T r : r . ^ ) ( X ) ( f ) = T r F ( R e s F ( f ) o h ) ^ f o T r F { h ) 

== H o m A ( i d x , T r F ( h ) ) . 

3 . 9 . L e t T G A - m m o d . B y a w e l l - k n o w n t h e o r e m o f A u s l a n d e r a n d R e i t e n , T is 

finitely p r e s e n t e d i f a n d o n l y i f t h e r e e x i s t M,X £ > 1 — m o d a n d a m o r p h i s m 

a : H o m A ( - , M ) - j - D H o m A ( X , - ) 

i n ^ - M m o d s u c h t h a t T 2:: I m a . ( H e r c D d e n o t e s t h e A r - d u a l . ) 

D e n o t e t a = a j v / O d A / ) G Z ? H o m A { X , M ) . B y Y o n e d a ' s l e m m a w e h a v e that 

t a a l s o d e t e r m i n e s a, s i n c e 

a r ( / ) = £ > H o m A ( i d x ; f ) ( t , ) , 

f o r a l l Y E A - m o d a n d / G H o m A ( Y , M ) . 

I n t h e i a s t p a r t o f t h i s p a p e r w e g i v e s i m i l a r s p e c i l î c a t i o n s f o r a n d Q{U). 

3 . 1 0 . W e h a v e t h a t ~ I m ^ ( a ) ~ I m b , w h e r e 6 i s t h e u n i q u e m o r p h i s m w h i d 

m a k c s t h e f o l l o w i n g d i a g r a m c o m m u t a t i v e . 
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D H o m B ( F ( X ) , - ) TDBomAiX,-) 
Dax,~ 

where Dax,- • TDBomxi'^, D H o m ( F ( X ) , - ) is the B morphism defined for 

every Y € B—mod by : 

Dax,Y{X){s) = X{ax.Y{s)), 

f o r a l l A e D H o m A ( X , G { Y ) ) , s G H o m B { F ( X ) , Y ) . 

3.11. Proposition. With the above notations, U — ta oTvp, that is, tb is the 

composîte map 

HomB(F(X), F(M)) Hom^{X, W) ^ k. 

Proof. From the above diagram we have: 

= ^F(M)(idF(Af)) = Dax,F(M) 

Then, using 3.9, we have for s € HomB(F(X), F{M)): 

- ( / «oTrF){s ) . 

3.12. If U is an object of we have a similar formula to calculate G{U). 

There are B-modules Y, N and a morphism 

2 : H o m B ( - , N ) H > D H o m B ( Y , - ) 
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such that U ~ Imz, and let t̂  ~ ZAr(idN) G DHomB(Y,N). It follows that 

e(i^) ~ I m a ( z ) - I m x , 

where x is the unique morphism such that the following diagram is commutative. 

£ ) H o m ^ ( G ( y ) , - ) a O T o m s { y , - ) 
Djy.-

With the same proof as above (just exchanging F and G), we obtain 

3 .13 . Propos i t ion . With the above notations lue have t^ ~ iz o TFQ • 

3.14 . We shall use these results to discuss semisimplicity of fimctors. Let M be an 

^-module, a : HomA(—, M) —)• D(HomA(M, —) be a morphisin in ^ = X-mmod, and 

let ta = aA/{idM)- Then by [4, Lemma 7.1], we have that T = Ima is a sernisimple 

functor if and oniy if <a(</(EndA(M)) = 0. 

If in addition M is indecomposable and Sm = HomA(-, M)/RadA{—, M) 

denotes the simple functor associated to M, then Ima ~ SM is and only if 

t , ^ O, ia{./(EndA(M)) 0. 

If M is indecomposable, then it follows by 3.3 that HeadJ?^(SM) is a direct summand 

of HeadHomB(-, F{M)). Here we denoted HeadT - T/RadT and by J the Jacobson 

radical. 

3 .15 . T h e o r e m . If M is an indecomposable A-module, then JF(5m) is sernisimple 

îfand only î/TrF(J(EndB(F(M)))) C J(EndA{M)). 

Proof. Let M be an indecomposable ^-module. Consider a morphism ta • 

EndA(M) k, such that 

ta^Q, i . ( J (EndA(M))) = 0, 
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(that is Kera = J(EndA(M)). Then by 3.9, ta induces a morphism a : H o m A ( - , M ) 

D(HomA(M,-) such that Ima ~ SM- From 3.10 and Proposition 3.11 we know 

that there exists a morphism b : HomB(- ,F{M)) D(HomB(F(M), - ) such that 

T{Sm) — Imb and tb = ta oTrp. lî T{Sm) is semisimple, then by 3.14 we obtain that 

i4TrF(J(EndB(F(M))))) == 0. It foliows from the definition of that 

TrF(J(EndB(F(M)))) C Kera = J(EndA{M)). 

Conversely, if 1>F(J(EndB(F(M)))) C J(EndA(M)), we deduce that 

T6(EndB(F(M))) - O, which means that Imb ~ J (Sm) is semisimple. 
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V I O R I C A M U R E Ş A N 

Dedicated to Professor Vasile Pop at his 60*'* anniversary 

Abstract . The main results of this paper are an existence, uniqueness and 
continuous data dependence theorem and a theorem for the differentiabil-
ity with respect to parameters for the solutions of an integral equation 
with deviating argumente. The Picard operators' technique and the Fiber 
contraction theorem are used. 

1. Introduction 

The purpose of this paper is to study the data dependence and the 

difFerentiability with respect to parameters for the solution of the following integral 

equation: 

m I / ^€ [0 ,6 ] , A G [0,1], ^ G [O,c] 
u(t) = < Jo 

ipit), te[-c,d], 

where K € C([0, b] x [O, b] x M^) and e C[~c, 0]. 

We apply the Contraction principie and the Fiber contraction theorem given 

by Hirsch and Pugh ([5]) and generalized by Rus {[12] and [13]). For A = O or A - 1 

we obtain an integral equation with delay. This kind of equations has studied in riiany 

papers as [l]-[4]. For o; = O we obtain an integral equation with linear modifîcation 

of the argument. This kind of equation has been studied in many papers too and we 

quote here [6]-[9]. Both kinds of equations appear in many practicai problems from 

biology, chemistry, astronomy, technical sciences. 
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The following Cauchy problem {[7]): 

provide us an integral equation of such kind as that studied in this paper. 

2. Fiber contraction theorem 

In order to obtain our results, we need the Contraction principie and the 

Fiber contraction theorem. In what follows we will present these theorems. 

Let .X be a nonempty set and T : X -)• X an operator. We denote by FT the 

fixed point set of T, that is 

D e f i n i t i o n 2 .1 . (Rus [11]) Let {X,d) be a metric space. An operator T : 

A' X is a Picard operator if there exists x* e X such that: 

(b) the sequence (T"{a;o))«gN converges to x*, for all XQ e X. 

We have 

Theorem 2.1. (Contraction principie) Let {X,d) be a complete metric space 

anclT •. X X a contraction, with the constant c. Then T is a Picard operator and 

d{x\T^{xo))< •:^d{xo,T{xo)) 
A c 

for all XQ E X. 

T h e o r e m 2.2. (Hirsch-Pugh [5], Rus [12]) (Fiber contraction theorem) Let 

(X, d) be a metric space, {Y,p) be a complete metric space and T: X x Y ^ X x Y 

be a continuous operator. 

We suppose that: 

(i)T{x,y) = {T,{x),T2{x,y)); 

(n) Ti : X X is a Picard operator; 

(iîî) there exists c e ]0 ,1 [ such that 

p{T2{x,y),T2{x.z))<cp{y,z), 
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for all X £ X and all y,z 6Y. 

Then the operator T is a Picară operator. 

R e m a r k 2 . 1 . T h e o r e m 2.1 was general ized by Rus i n [12] as F i b e r P i c a r d 

operators t h e o r e m a n d i n [13] as a F i b e r general ized contra<: t ion t h e o r e m . T h e o r e m 

2.2 and i t s genera l i za t ions can be used fo r p r o v i n g so lu t i on o f o p e r a t o r i a ! equa t ions 

to be d i f fe ren t iab le . 

3. M a i n r e s u l t s 

Le t A € [0 ,1 ] a n d w € [0,c] be. We consider t h e f o l l o w i n g i n t eg ra l 

equation: 

^ ( 0 ) + / K{t,s.u{s),u{Xs),u{s-uj))ds, f e [ 0 , 6 ] 
< Jo w - ^ ; 

^ { t ) , f € [ - c , 0 ] , 

where K € ^ ( [ 0 , b] x [O, b] x M^) a n d ip e C [ - c , 0] are g iven func t i ons . 

We have 

T h e o r e m 3 . 1 . (existence a n d uniqueness i n space) We snppose that the 

following Lipschilz condition is satisfied: 

(î) there extst I j > O, i = 1,3, such that 

3 
- I<{t,S,Vi,V2,V3)\ < - V i l , 

1 = 1 

for aUt,se [0,6] and all Ui,Vi e M, 1,3. 

Then 

(a) for all A G [0 ,1 ] and all u; G [0 ,c ] , the equation (3.Î) has in C[-c,b] a 

mique solution z' — 

(b) for all 00 € C([-c, b]), the sequence defined by 

Jo 

<p{t), t € [ - c , 0 ] 

convcrges uniformly to z* on [—c,6]; 
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(c) the fnnction z' : [-c,b] x [0,1] x [0,c] ^ R, z'{t,X,u;) is 

continuous. 

P r o o f . L e t 1| • ||b b e a B i e l e c k i n o r m o n C [ - c , d e f i n e d b y 

m a x 

w h e r e r > 0 . 

W e c o n s i d e r t h e o p e r a t o r A : C[-c,b] C[~c,b], d e f i n e d b y 

^(0)+ f Kit,s,z{s),z{Xs),z{s-uj])ds, te[0,b] 
:= < Jo 

<p{i.), t e [ - c , 0 ] . 

W e h a v e - - O, f o r a l l t € [ - c , 0 ] . 

B y u s i n g t h e c o n d i t i o n ( i ) , w e o b t a i n 

~ {Aiw)){t)\ < I i f -
Jo 

+L2 r \z{Xs) - + L^ f \z{s - u ) - w{s -
Jo Jo 

f o r a l U e [ 0 , f e ] . 

T h e r e f o r e , 

< 
T X t T 

\z - u ; | |b < 

+ ^ m a x - e " ^ ^ ) + L z m a x ( 1 -
A te[0,6i f€ [0 ,6 ] 

< 

E^' F LI \ 

f o r a l H e [ 0 , 6 ] , 

S o w e o b t a i n 

\{A{z)){t) - < i + y + j il^ -

f o r a l H € [ 0 , 6 ] . 

I t f o l l o w s t h a t 

\\A{z) - A{W)\\B < LA\\Z - W\\B, 
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for a l l z,w 6 C [ - c , b ] , w h e r e 

T \ X J 

W e c a n c h o o s e r l a r g e e n o u g h s o t h a t < 1 . 

B y a p p l y i n g T h e o r e r n 2 . 1 t o t h e o p e r a t o r A, w e o b t a i n ( a ) , ( b ) a n d ( c ) . 

I n w h a t f o l l o w s w e c o n s i d e r t h e f o l l o w i n g i n t e g r a l e q i i a t i o n ; 

^ ( 0 ) + I K { t , s, t t ( s , A . w ) , u ( A s , A . u » ) , u { s — ui, X , u j ) ) d s , 
Jo 

u{t,\,Lo) = • 
/ e [ 0 , 6 ] , A e [ 0 , i ] , U } e [ 0 , c ] 

^ { t ) , i e [ - c , 0 ] , 

w h e r e K £ C ( [ 0 , 6 ] x [O, b] x E ^ ) a n d f e C { - c , 0 ] a r e g i v e n f u n c t i o n s . 

S o w e h a v e : 

Theorem 3.2. We suppose that: 

( i ) K £ C ^ { [ 0 , b ] x [ 0 , b ] x U ^ ) ; 

( i î ) f € c , 0 ] ÎS a given function such that 

for all UI e [ 0 , c ] , -

( m ) there exist Mi > O such that 

< M i , i = 1 , 3 , 

( 3 . 2 ) 

for all t , s e [O, b] and all Ui 6 M , t = 1 , 3 . 

The TI 

( a ) the equatîon ( 3 . 2 ) has in C { [ - u j , b ] x [ 0 , 1 ] x [ 0 , c ] ) a umque solution u"; 

(b) f o r all t i o G C ( [ - u ; , 6 ] x [ 0 , 1 ] x [ 0 , c ] ) , the sequence ( u n ) n G N , defined by 

« ,^ (0 ) + / K { t , 5 , W n ( s , A . w ) , U n ( A 5 , A . w ) , « „ ( s - w , A , u j ) ) d s , 
Jo 

t e [ 0 , b ] , A e [ 0 , 1 ] , w 6 [ 0 , c ] 
Un+i{t) := ' 
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converges uniformly to u* on [ — x [ 0 , 1 ] x [ 0 , c ] and 

where 

In - U'WB < - " o l l f l , 

F M-, \ F M-> \ 
L = M l + + M a M l + - p + M s + 1 

V ^ / V / 

- l 

anrf ii • 11b is a Bielecki norm. on C ( [ 0 , 6] x [ 0 , 1 ] x [O, w ] ) dejined by 

i lw l lR = m a x 

t6 [ -c ,6 ] ,Ae [0 , l l ,w€[0 ,c ] 

where r > 0 ; 

C c ; u * € C { [ - c , f c ] x [ 0 , l ] x [ 0 , c ] ) ; 

(d) -^Lo) e 6] x [ 0 , 1 ] ) , for all uj € [O, c ] . 

P r o o f . L e t Ji: - C ( [ - c , b] x [ 0 , 1 ] x [ 0 , c ] ) b e a n d H • \\B t h e B i e l e c k i n o r m o n 

X d e f i n e d b e f o r e . 

W e c o n s i d e r t h e o p e r a t o r T i : X X , d e f i n e d b y 

(/?(0) + I K{t, $,u{s, X,U;), u{Xs, X,LJ),U{S — ui, \,U!))ds, 

Jo 

t e [ 0 , 6 ] , A € [ 0 , 1 ] , o; € [ 0 , c ] 

B y t h e s a m e p r o o f a s o f t h e T h e o r e r r i 3 . 1 w e o b t a i n ( a ) , ( b ) a n d ( c ) . 

L e t w* b e t h e s o l u t i o n o f t h e e q u a t i o n ( 3 . 2 ) . S o w e h a v e 

9? (0 ) + / s , u * ( s , A , w ) , « ' ( A s , A . w ) , ^ ' ( s - w , A , a ; ) ) r f s , 
Jo 

u*{t,X,0j) i e [ 0 , 6 ] , A e [ 0 , 1 ] , o; G [ 0 , c ] 

^ ^ ( i ) , i e [ - c , 0 ] . 

W e r e r a a r k t h a t 

K{t,t,u*{t,X,u}),u'{Xt,X,u;),u*{t - w , A , w ) ) + 

i e [ 0 , 6 ] , A € [ 0 , 1 ] , u ; € [ 0 , c ] 

^ <p'{t), t e h c , 0 ] . 

du' 
B e c a u s e o f c o n d i t i o n s ( i ) a n d ( i i ) w e h a v e t h a t is a c o n t i n u o u s funct ion, ] 
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du* du* 
Let we prove tha t there exists and G C([~c,b] x [0,1] x [O, c]). 

OA aX 
du* If we suppose t h a t there exists then f rom (3.3) we obta in 
CfA 

d\ 
= fo r te[-c,0], 

|[ and 

du* f OK 
- ţ i , A,uj) - ^̂  (i, A,uj) — f - f — ( t , s, A,u;), u*(As, A, w), u*(s — w, (s, A,u;)<is+ 

Jo OUi o A 

+ f ^{t,S,U*{s,X,Lo),U*{Xs,X,Uj),U*(s '•UJ,X,LJ))^{Xs,X,U/)ds-{-
JQ oti2 OX 

+ 
du' 

f s, u*(s, A, w), u'fAâ, A,aj), - w, - u;, X,u)ds, 
Jo 0U3 aX 

for t € [O, 6], where K = K{t,.s, ui, U2, «3). 

Because of the following relationship 

du* 
^ — ( 2 , A,u;) = A'(As, As, î x * ( A s , A, u ; ) , u * ( A ^ s , A ,a ; )n ' ' (As — w , A,u;))+ 

OZ z:=:\s 

I^Xs QJ^ 

+ J — ( A s , s i , u * ( s i , A,a;),-u*(Asi, A,w),u*(si - w, A,uj))dsi , 

we have tha t 

+ ^{t,s,u*{s,X,u),u*{Xs,X,to),ii*{s-uj,X,ui))~(Xs,X,Lo)ds+ 

+ f s. u*(s, X,ij), u*(Xs, x , u j ) , u*(s - w, A,uj))-
Jo 

•[A'(As, As, îi* (As, A.w), u*(A^s, A ,^ ) , u*{Xs - u/, A,u'))]cis+ 
rt QJ'^ 

+ / — ( ^ , « , « ' ( 5 , A,a;),ti*(As, A,u;),î/*(s -Lc , A,u;})-
JQ 0U2 

ds-\-
f ^ ' dK 

[for [0,6]. , 
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b y 

T h i s r e l a t i o n s u g g e s t u s t o c o n s i d e r t h e o p e r a t o r T j . X y. X X , d e f i n e d 

O, f o r t e [ - c , 0 ] ; 

f " ( s — w , A , c j ) ) î / ( s , 
Jo 

+ f 
Jo. 

dK 

dxti 

Jo C/W2 

A , w ) : = • { Xs,u{Xs,X,u>),u{X'^s,X,u;),u{Xs - w , X , u i ) ) ] d s - i -

+ / S - T , — ( i , s , w ( s , A , u j ) , u ( A 5 , A , u j ) , u ( s - u ; , A , t j ) ) -
Jq OU2 

dsi 
f^^ dK 

ot 

/

t ^ J.r 

s, u{s, A , w ) , î i ( A s , A , w ) , u { s - u ) , X , u ) ) y { s - ui, X,w)ds, 

f o r [ 0 , 6 ] , A € [ 0 , 1 ] , u j G [ 0 , c ] . 

B y u s i n g ( i i i ) , w e o b t a i n 
y) ~ T 2 { u , z)\\b < + ^ + M a j -

f o r a l l u , y , z £ X . 

M2 
C h o o s i n g r = M i + + M 3 + 1 w e h a v e t h a t T 2 i s a c o n t r a c t i o n . 

A 

I f w e t a k e t h e o p e r a t o r T \ X x X X x X , T ~ [ T i , T 2 ) , t h e n w e a r e i n 

t h e c o n d i t i o n s o f t h e T h e o r e m 2 . 2 . 

I t f o l l o w s f r o m t h i s t h e o r e m t h a t T i s a P i c a r d o p e r a t o r . S o , t h e s e q u e n c e s 

( w n ) n e N , ( î / n ) n e N , w h e r e 

-t 

U n + i { t , X , u j ) :— • 

, î i n ( 5 , A , u ; ) , Un ( A s , A , u ; ) , u „ ( s - w , A , a ' ) ) ( f 5 , 

Jo 

i e [ 0 , b ] , X e [ Q , i ] , u ; e [ o , c ] 

^ ( t ) , / G [ - c , 0 ] 

r e s p e c t i v e l y 
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dK f dK 
+ / A,u;),Wn(As, A , a ' ) , u n { s - u ; , A,a;))ţ/n(As, 

JQ 

Jo OU2 

L 

[A'(As, As, u„(A.s, A,uj) ,Un(A^s, A ,w) , u „ ( A s - w, A,u'))](i,s+ 

' dK 

o 

o dt 

' dK 

f ^ K 

Jo OU2 

(As, s i , îirt(si, A .w) , Un(Asi, A ,w) , « n ( s i — u>, X,u/))ds], ds+ 

JQ OU3 

for t e [O, h], X e [0 ,1] , w G [O, c] and 

yr,+i{t, X,uj) f o r i € [ - c , 0 ] , 

converge uni formly o n [ - c , b] x [0,1] x [O, c] to u* respectively to y*, for all uo,yo £ X 

and { u * , y * ) e F T -

I f we take «o = O, yo = O, t he i i y i — 

B y i n d u c t i o n we can p rove t h a t y^ — 
(ja 

(d \ 
T h u s (un )neN converges u n i f o r m l y to u* a n d ) converges u n i f o r m l y 

, , , du* . a u -
to y'. B y u s m g a Weiers t rass a r g u m e n t , we conc lude t h a t exists a n d = y . 

du* 
These i m p l y t h a t -7— is a con t inuous f u n c t i o n . 

oX 

R e m a r k 3 . 1 . I n t h e paper [14], A . T ă m â ş a n has studied the differentiability 

with respect to A for nonlinear pantograph equation. 
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ON THE EXISTENCE AND UNIQUENESS OF A SOLUTION FOR 
AN ELLIPTIC PROBLEM 

l U L I U S O R I N P O P A N D W E N - A N Y O N G 

Dedicated to Professor Vasile Pop at his 60''' anniversary 

A b s t r a c t . Existence, uniqvieriess and a maximum principie for the so-

lution of a nonlinear elliptic problem is obtained. The underlying ideea 

combines the fix point theorem and a maximum priciple regularizaţi on. 

1. Introduction 

In this work we show existence and uniqueness of a soiution for a quasilinear 

elliptic problem. Under the assumptions below, a maximum principie is also obtained. 

Let n be a bounded domain in > 1) with a Lipschitz continuous boundary. W e 

deal here with the following nonlinear elliptic problem 

P r o b l e m P. 

3{u)- Au+V = f , in Q, 
(1 .1) 

u = O, on dQ, 

/? : E ^ IR being a strictly increasing function. Throughout this paper we assume, 

withoui loss of generality, that /?(0) = 0. However, there are no growth conditions 

imposed on 0 in the vicinity of O, wliere its derivative rnay become infinite. Such 

problems can be ijivestigated through the theory of nionotone operators (see, e.g. 

[5]). Other possible approaches are the construction of sub- an supersolutions ([3]). 

We give here a different proof , based on the fix point theorem. First, the original 

problem is approximated by a sequence of problems, for which the difTerential operator 

is bounded on a closed convex subset. For the approximating problems, the Banach 

contraction principie guarantees the existence and uniqueness of a soiution. Finally, 

the sequence of solutions are shown to converge to the unique soiution of Problem P. 
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About the problem in (1-1), we make the following assumptions. 

(Al) Ş is continuous and differentiable a.e. (almost everywhere), /?(0) = O, 0'{u) > 

Iff > O and 0' may be infinite in 0. 

(A2) V is and divergence free, or it satisfies the condition 

(A3) / € is positive a.e.. The nonlinearity function 8 is strongly monotone. 

Its smoothness may be weakened, but the above assumption makes the presentation 

easier. However, we do not impose any growth condition in O, therefore the cor-

responding operator may be unbounded. The assumption in (Al) implies tha t the 

derivative of /? is finite almost everywhere, excluding 0. Then there are two positive 

constants such that 

O < < / ? ' ( « ) < c ( £ ) < o o , ( 1 . 2 ) 

for any real u > £, 

The speed of the first order term is essentially bounded. It is either diver-

gence free, or controlled by the inequality in (A2). We are interested here in positive 

solutions, so the right hand side of the problem in (1.1) is positive (a. e. in Q). 

Moieover, we assume / essentialy bounded, so a constant M > O can be found s.t. 

f{x) < M a.e. in Q. 

The Laplace operator in (1.3) can be replaced by V ^ V u , A being a symmet-

ric, positive definite matr ix. There would be no changes in what follows, excepting 

the essential bounds for V, if this is not divergence free. In this case the inequality 

in (A2) becomes < ^IpXmin, where Xmin stands for the minimal eigenvalue of 

A. Analogous, other boundary conditions may also be considered here, but only if 

they provide a positive solution. This restriction is fulfilled in many of the caaes of 

practicai interest. 

A usual definition of the solution for (1.1) is 
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Definition 1 .1. u is called a solution of the problem in (1.1) iff w € and for 

all if € -HoH^) the equation holds true 

{j3{u),^) + V^:.) + (V - Vu, <p) = { / , (1.3) 

In this paper we show that the problem in (1.3) has a unique solution, which 

is positive and essentially bounded. This is stated in the following 

T h e o r e m . Under the assumptions (Al ) , (A2) and (A3), the problem in (1.1) 

has a unique weak solution satisfying 

O < < M/l0 

almost everywhere in Cl. 

Here and below we use the standard notation. In particular, we let (•, •) stand 

for theinner product on and |{-)| for the norm in Correspondingly, ||-||i 

denotes the norm in If necessary, || • denotes the norm in 

The paper is organized as follows. In the next section we prove a maximum 

principie for the perturbed nonlinear problems approximating the one in (1.3). Section 

3 is devoted to the proof of existence of a solution for the above mentioned problems. 

Finaliy the main result is obtained. 

2. A maximum principie 

In this section we consider a perturbation of the nonlinear problems in (1.1). 

Concretely, let e be an artificial positive small number and consider the perturbed 

problem 

Problem Pg. 

+ = / + /?(£), in n , 
(2.1) 

t/ = O, on dQ, 

In fact. Problem P^ is similar to Problem P, but the boundary data are perturbed by 

£. This idea has been applied in the analysis of some cla-ss of degenerate equations 

(see, e.g., [2]). The resulting Dirichlet problem is reduced to P^, with homogeneous 
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boundary conditions. As for tlie original problem in (1.1), a weak ferm reads 

Definition 2 .1 . u is called a solution of the problem in (2.1) iff w € and for 

all <p € Boi^) equation holds true 

i/3{u + e), <p) + {Vu, V ^ ) + {V - Vu, = (/ + 0{e),<p). (2.2) 

A solution for Problem Pe is sought in the following set 

( M 1 
W = a.e. l . (2.3) l - h j 

In this case u is positive a.e. in Q and the derivative of Ş is bounded, as given in 

(1.2). It is clear that, W is closed and convex. In fact, by considering the above set, 

a maximum principie has been stated. This is shown in the following 

Theorem 2.1. Assume (Al). (A2) and (A3). Then, if a weak solution of Problem 

P^ exists, it belongs ta W. 

Proof. We start with the proof of the lower bound because this is essential in our 

approach. This is done by reductio ad absurdum, following the ideas used in [1] for 

the proof of the weak maximum principie. Assume that 

inf u < O, 

(here the infimum sliould be understood as the essential one). Let be a positive 

(a.e.) function in HQ{Q). Since / > O, for any 5 < O, the monotonicity o f l e a d s to 

the inequality 

Thus, if u solves Problem Pg, the following holds true 

(/?(« + £) - 0{e + <î), + (Vu, V ^ ) + (V • Vu, <p)>0 

for all > O in //"o(Q). Moreover, (^g = [S — u]^ is an HQ{Q) function, which is also 

positive a.e. in 0 (here [o;]^ = a; if x > O, otherwise [x]^ = 0). Taking (ps in the 

100 



ON T H E E X I S T E N C E A N D U N I Q U E N E S S O P A S O L U T I O N F O R AN B L L I P T I C P R O B L E M 

above inequality yields 

f (/?(« + s)- 0{e + S))iS f Vu-V{S-u)-i- f u)V . > 0. 
Ju<S Ju<6 

Denoting by Qs the support of [tf - u]^ and applying the Cauchy inequality, the above 

relation becomes 

f + _ + S)){u -S)+ < 

,n4n5tipp{Vu}) 

where si/pp{Vw} is the support of Vu. Now, the monotonicity of /? yields 

Hence, the following holds true (for any J < 0) 

Next, the Sobolev embedding theorem is appiied. ii d > 2 (where d stands for the 

dimension of the domain Cl), because ^^ lies in we get 

Now, the Holder inequality for the last term yields 

< liV'llco nsupp{V«)})^ I b i l l o , ^ , ^ ' 

where the inclusion Cls C U was ased. Therefore 

n siippjVu}} > C, (2.4) 

where C > O does net depend on S. Analogous, if d = 2, the same property of 

the above set can be obtained. This shows that the essentiai infimum of u is finite. 

Moreover, since the constant in (2.4) does not depend on S, the inequality must hold 

as â tends to inf u. That is, the function u attains its infimum in O on a set of positive i l 
measure, where at the same time its gradient vanishes (since the function is constant 

ahriost everywhere there). This contradicts the inequality in (2.4) and therefore the 
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assumption on the infimum of u is false. A similar argument shows that u has a finite 

essential supremum. The equality in (2.1) can be rewritten as 

{0{u + f ) - /3{â + s), <p) + {Vu, V<f) + {V • Vu, ¥?) = ( / + 0{e) - 0{S + e),<f), 

for any real number 6. Assume now that the essential supremum of u lies above 
M 

taking an arbitrary S > Mjlş and = [w — «5]+ € everything foliows as 

before. In this case we have 

0{S-\-6)-0{e)>lşS>M, 

and therefore 

The rest of the proof relies on similar arguments as for the îower bound. • 

Remark 2.1. Everywhere in the proof £ can be taken O since the upper bound for 

in (1.2) is never used in the proof. Therefore the above maximum principie remains 

valid also for the problem in (1.1), in its weak form. 

3. Existence and uniqueness 

In this part existence and uniqueness of a solution for Problem Pg is obtained, 

This is done by a fix point argument. To do so let K be a constant which will be 

given below and define, for e H ] { Q ) and x ^ 

dK (V', == /t <p) + (VV, Vv?) + {V • Vip, <fi), 

ÎK,.(x; - K{x. - (/?{x + e) - m , 9) + (/, 

which are linear. Clearly, aj^ is also bounded. The same holds for fK,e since x 

positive a.e. in and therefore we can get 

< {k\\x\\ + ||(^(X +£) i l + m + ||/||) 

< + C(e))||xll + m + ||/||] Hv̂ lj, 

where C{£) is the constant in (1.2). Recalling the notation in (2.3), an iteration can 

be induced through T : VV, the operator giving the solution of the following 

102 



ON T H E B X I S T E N C E A N D UNIQUENESS OF A S O L U T I O N F O R AN E L L I P T I C P R O B L E M 

problem Problem Aux: Let xp e W . Find € such that 

(3.1) 

for all G ^oU^^)-
Now the iteration can be defined as 

(3.2) 

for i > O and £ W arbitarily choosen. This will help us in the proof of existence and 

uniqueness for the solution of Problem P^, These properties cannot be obtained as a 

direct consequence of a nonlinear Lax-Milgram lemma since the differential operator 

appearing here is bounded only on a subset of Hl{Q.). If K satisfies 

K>C{e), and K>lp (3,3) 

(the last inequahty being implied by the first one if £ is smail), the coercivity of a^ 

follows as a consequence of the Cauchy inequality 

=KUf + rliV^lp - ll^jlocIlVVIIIIVll 

"^h + WVWl 
where i) = . Clearly, this choice of t] satisfies the inequality 

\\V\\l<2v<4lp, (3.5) 

and therefore (A2) and (3.3) ensures the coercivity of a^ • 

Remark 3.1. If V is divergence free, applying the GauB divergence theorem, a simple 

calculation shows that, for any HQ function (p we get 

and therefore (V • V^, y) = 0. In this case the coercivity of a^ holds true without 

imposing any bounds for ||K)(oo, namely 
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\i -t}) ^ W, the Lax-Milgrara lemma can be applied to get a unique solution 

Tip 6 HQ{Q) of Problem Aux , which is linear. In this way, we havedefined an operator 

T f rom W to In fact, a similar proof as the one given for Theorem 2.1 leads 

to the following result ^ 

L e m m a 3 .1 . Assume (Al), (A2), (A3) and G W. Then TW C W. 

Having defined the iterative scheme, a convergence result for the correspond-

ing sequence is necessary. Below we will show that, under the restrictions in (3.3), T 

is a contraction mapping on the convex and closed set W with an appropriate norm, 

SG Us can be taken as 

Ue — lim . 
i—voo 

In this case, assuming the above limit makes sense, it is easy to see that we have 

obtained a solution in W o f Problem Pg. 

The existence of limi_yoo V** in W can be immediately seen by applying the 

fixed point theorem to T. This stateraent is supported by the following lemma 

L e m m a 3 .2 . Assume (Al), (A2), (A3) and 6 W. If K satisfies the inequalities 

în (3.3), then there is a norm. on HQ{Q,) eqnivolent to the ustial one, such that T ts 

contractive on the closed set W. 

Proof. We consider here only the case V is not divergence free. Lemma 3.1 shows 

that W is preserved by T . Note that 

is a norm on HQ {Q) , where r] was choosen in (3.4). Moreover, Hv'llif < y / a j c i f , p̂)-

With this new norm, T is a contraction mapping on the closed subset W, as follows 

from (3.1) 

= I A' (Vi - - W i PiiP^ + s), f ) I 
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for any V * ! . ^ ^ ^ between + 5 and •02 + In the above inequalities the 

mean value theorem, the inequalities in (3.3), ( 1 2 ) , and tiie positiveness of 

have been used. Hence, since 

llv ' lk > \ "''11-11 11 

recalling the inequalities in (3.5), by taking (p = Tţi'j-T'V'g the proof is completed. • 

Remark 3.2. If V is divergence free, the norm || • ||i<- can be defined as 

Then, in the above proof we get 

K-lj. 
K l l V ' i - V ' s l k l I ^ ' V ' i - r V ' s l k -

Remark 3.3. The above iteration relies on the operator T , which has been used in 

[3], pp. 96. But we show that T is a contraction mapping, at least for the present 

problems, in the setting defined in the proof of Lemma 3.2. This approach was 

considerd in [4]. The monotonicity of T can iead to an alternative proof similar to 

the one in [3]. 

The above results show that Problem Pe has a unique solution Wg in W . But 

in the frame set in Lernma 3.2, the uniqueness holds in the whole / f o ( Q ) . 

L e m m a 3 .3 . Assume (Al), (A 2), (A3) and ^W. If K satisfies the inequalities 

m (3.3), Problem P^ has at most one solution u^ 6 Hq{Q). 

Proof. Assume first V is not of divergence 0. Let ^ ffU^)' ^hen ip ~ 9 £ 

Assuming that both solve Problem P^ with the same •'p^, testing with (p = il^ — 6 and 

subtracting the corresponding equalities for both sohitions yields 

O = ( W + £) - + e) , V- - + l|V(V - + {V • V ( V ~e),i>- 9) 

> IM - ^ i p + î i v ( V ' - - m o o i i v ( i / . - -

> livii; 
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where (1.2) has been used. Assumption (A2) on V guarantees that the multiplication 

constant above is strictly positive, therefore - 0)i| = O, so and 9 coincide a.e. 

in Q. 

The case V • 7 = O can be handled as before. In this situation the first order 

term [V • - 0), ^ - d) vanishes as shown in Remark 3.1. • 

Remark 3.4. A similar approach shows that the original Problem P admits at most 

one solution in HQ{^). 

Up to now we have considered Problem P j , which, as seen before, admits 

a unique solution Ue satisfying a maximum principie. Moreover, ||ws|li is uniformly 

bounded as e goes to O, as resulting from 

where the constant C depends on M , l^, CI, but can be choosen the same for all £ less 

than a given one. T h e uniform boundedness results immediately since the first term 

of the left-hand side is positive. Therefore the sequence {uc, £ > 0 } is compact in Hi 

and admits a weakly convergent subsequence, denoted - for simplicity - {we}- If we 

denote the weak limit by u, the subsequence converges strongly in L^ and a.e. in fi 

to u. Thus, by the continuity of /?, we get 

(3.6) 

for all <p € HQ{9,). Therefore the limit u is a solution of Problem P in the sense 

of Definition 1.1. This, together with the maximum principie and the uniqueness 

result mentioned in Remarks '2.1 and 3.4 demonstrates the main result stated in the 

introduction 

106 



ON THE EXISTENCE AND UNIQUENESS OP A SOLUTION F O R AN ELLIPTIC P R O B L E M 

T h e o r e m 3 . 4 . Under the assxtmptions (Al), (A2) and (AS), Problem P has a umque 

weak solution satisfying 

O < < Mjlp 

almost everywhere in Q. 
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FIXED POINTS, ZEROS AND SURJECTIVITY 

I . A . R U S A N D F . A L D E A 

Dedicated to Professor Vnsile Pop at his 60'^ anniversary 

Abstract. Let ( X , + ) be an aV^elian group and / : X X an opera tor . 

In this paper we s tudy the connections between fixed points, zeros and 

surjectivity proper ty of opera tor / . 

1. Introduction 

There are many papers which use the theory of fixed point to prove the surjectivity of 

an oparator (see Deimling [9], Dugundji-Granas [10], Rus [14, 16, 17, 18], Zeidler [20], 

Aldea [1, 2],...). Also there are papers which study when a surjective operators has 

fixed point {see Bae-Cho-Yeam [3], Browder [4], Ciric [5], Cramer-Ray [6], Danes [7], 

Danes-Kolomy [8], Kasahara [12], Moraies [13], Rus [15], Wang-Li-Gaolser i [19],...)-

Let be an abelian group and C M { / ; X X | an operator}. By 

defiuition; 

(i) X has the fixed point property with respect to JT, if / 6 ^ implies Fj 

(ii) X has the zero point property with respect io T,\{ f ^ T implies Zj ^ 0. 

(iii) X has the sjirjectivity property with respect to if / 6 ^ implies / is surjective. 

The aim of this paper is to s tudy tlie following problem: 

Problem 1. (see Rus, [18]) Determine the condition on X and J^ such that the 

following statements are equivalent: 

(a) X has the fixed point property with respect to T. 

(b) X has the zero point property with respect to JT. 

(c) X has the surjectivity property with respect to T. 
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For st\idy of this problem we use the following definition. 

D e f i n i t i o n 1 .1 . (Rus, [18]j Lef : ->• IR+. Functionip is a comparison fxinction 

if satisfies: 

(i) <p is monotone increasing; 

(ii) converges to O for allt>Q. 

D e f i n i t i o n 1 .2 . Let X be a Banach space. An operator f : X X is a dilating 

operator if there is k > 1 such that 

for all X, y £ X. 

A generalization of the last definition is the following. 

D e f i n i t i o n 1 .3 . .[18]j Let X be a Banach space and v? : 

function. An operator f : X X is a <f-dilating operator if 

(1) 

a comparison 

\ \ f { ^ ) - f i y ) \ \ > H \ \ ^ ~ y \ \ ) (2) 

for all X , y £ X. 

Let / ; A" —̂  X be an opera tor . In presant paper we use the followimg nota t ion: 

Fj = { x € X \ f{x) = x} 

Z j = { x e X \ f{x) = 0} 

2. M a i n r e s i i l t 

In this section we give an answer to Problem 1. Other answer f rom the same problem 

was given by Gilespie and Will iams in [11]. They have studied the s ame problem for 

X a Banach spaces and T ~ {f : X X \ f continucus and di la t ing opera tor} . 

From our answer we can obta in the Gillespie- Will iams answer's. 

T h e o r e m 2 .1 . Let be an abeltan grotip. Let T C 

f : X —y X. We suppose that: 

(i) f ^ T implies f is injective operator; 
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(îl) f e : f and f { X ) = X implies F^-i ^ 0 ; 

(lîi) For all f there is n o ( / ) € M such that + I x € 

(tv) For all f £ !F and yo ^ X impty f + yo £ 

Then the fotlowing statement are equivalent: 

(a) X has the fixed point property with respect to T . 

(b) X has the zero point property with respect to T . 

(c) X has the surjectivity property with respect to T . 

P r o o f . ( a ) : ^ (b) Let f e let g : X ^ X be an operator define by a; iH-

/""(x) -f X. From (iii), Hence Fg ^ 0. This implies % ^ 0. So Zj 0. 

( b ) ^ (c) Let yo G X and / € T. We take g : X ^ X, x }[x) - yo- It is clear 

that g From (b) we have that Zg ^ 0. But this implies that there exists xo € A' 

such that / (xo) = yo-

(c) ^ (b) Let / e JT. From {ii) and (c) we have that F^-x ^ 0. So ^ 0-

Now the problem is to find conditions for operator / (a generic element of T) such 

that the hypothesis ©f Theorem 2.1 are satisfied. 

If we take the set X a Banach space and T — { f : X ^ X \ f is (p-diia,tmg operator} 

we obtain: 

T h e o r e m 2 . 2 . Let X be a Banach spaces, ^ : 1R+ -4- IR+ a function, and JT = {/ : 

A' —> JV I / is — dilatîng operxitor}. Suppose that (f satisfies : 

(i) <p{0) == 0 ; 

( l î ) ip is bijectîve; 

(iii) comparison function; 

(ivj there isneM such that ^ " ( f ) ~ t > <p{t) for all t > 0 . 

Then the conclusion of Theorem 2.1 holds. 

Proof . Using the hypothesis we will prove that assumptions (i)-(iv} from Theorm 

2.1 are satisfied. 

{i)Th.2.i From (i) and (ii) we have that for all x, y from X with x y we have 

O < v^dk- - t/ll) < W f i x ) - / ( î / ) | | f { x ) i= f { y ) 
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so / is injective. 

(îOt/i.2.1 Because / is bijective we have 

for all X, y £ X. 

But is a comparison function, so 

for all X, y ^ X. 

W e apply fixed point theorem for v:?-contraction ([18]) and we have 0. 

From (2) for all n 6 N we have 

for all X, y f rom X. 

A Isc 

\\r{x)+X - iriy)+î/)ii > + ^ - in^)+ 

-lir(?/) + y - iriy) + = lir(^) ~ riy)\\- I k - yil (4) 

for all n € N and x, y € X. 

From (3) and (4) we have 

\ \ r { x ) + X - - ( r (y) + y)|| > - î/ji) ~ - î/|| (5) 

for all n G N and x, y £ X. 

From (iv) we have that there is no 6 N such that 

\\r°{x) + X- [niv] + y)ll > -y\\) -11^- j/ll > ^ ( i k ~ y\\] (6) 

So there is no € such that + I x € 

{iv)Th.2.i That property is verified using the definition of 

So the hypothesis of Theorem 2.1 are fulfilled which implies that the conclusion of 

Theorem 2.2 holds. 

Also f rom Theorem 2.1 we obtain following theorem. 
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T h e o r e m 2.3. (Gillespie-Wiliams, [11]; Let X be a Banach space and 

T = {f : X X \ f continuous dilating oparator}. Then the concluston of Theorem 

2.1 holds. 

Proo f . W e will prove that for X Banach spaces and operators class T = {f : X 

X I / continuous dilating operator } statements ( i ) - ( i v ) from Teorema 2.1 are satisfied. 

Let / G 

( i ) Let x,y he in X, X y we have that 

O < • Ilar - y|| < - f{y)\\ ^ f ( x ) ^ / ( y ) , 

so / is injective. 

( i i ) Because / is dilating and surjective we have that / is bijective and 

for all X, y frora X. 

So / - l 

IS contraction. Then F ' f - i (Banach contraction principie), 

( i i i ) If / is dilatating wiht constant k, then / " is dilatating operator with constant 

Ar", for all n € H. W e choose no > 1 such that k""" >2. Then 

I i r ° ( x ) + - ro{y) ~ yii > - 1) - - yjj 

so there is no 6 N such that /"o + I x is dilating operator. 

( i v ) Using the definition of dilating operator statement ( i v ) is obvious. 

Using the facts proved and Theorem 2.1 we have (a ) (b ) (c ) . 

Gillespie and Wi l iams showed in {11] that in the finite dimensional Banach spaces 

operators f : X X which are dilating and continuous are surjective. From Theorem 

2.1 the surjective of an operator is equivalent with fixed point property and with zero 

point property. 

113 



l . A . R U S A N D F - A L D E A 

T h e o r e m 2.4. Let X be a finite dimensional Banach space, ^ : K+ ^ M+ such that 

(ii) f ÎS bîjective; 

(iii) comparison funcUon. 

We consider the set :F = {f : X X \ f is ^p - dUating and conttnuous operator}. 

Thcn X has the fixed point property with respect to T. 

P r o o f . It is knowii tha t any finite dimensional spaces is izomorph with IR" and the 

fixed point property is kept in the case of izomorph spaces. It is enough to prove the 

theorem for X E " . 

Because / is 9?-dilating operator and <f satisfies (i) and (ii) we have that / is injective. 

Also / is continuoas , so / (M") is open set. 

(The last s ta tement is true because in finite dimensional spaces an operator which is 

local injective and continuous is open.) 

In order to prove tha t / (M") is a closed set, we consider the sequence y„ from 

convergent to y*. We will prove tha t y* e / (K") - Because 

for all X, y e and / : ^ /{IR") is bijective, we have that : 

for all u, v e 

Function <p is bijective and is comparison function so, 

i i r ' N - r ' M i i < f-'iiw-^w) 

for all u, V from / ( K " ) is uniform continuous. 

Because pn € / (M") we have that there is x„ G E " such tha t Vn = f [ x n ) — y * • 

Operator is uniform continuous so 
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Using continuity of / we obtein 

f{xn) f{z*) but 

f M ^ f 

(9) 

which means /{z") = y* y' G / ( K " ) . So, / ( M " ) closed set. Because we proved 

that / ( M " ) is open set we have that / ( M " ) = / is surjective. 

Operator / : IR'̂  M" is bijective, is comparison function and (8) take place, thcn 

from fixed point theorem for y-contraction (see Rus, [18]) we have that Fj-i 0 > 

F/ ^ 0 for a\\ f £ <=> X has the fixed poiiit property with respect to T. 

T h e o r e m 2.5. (Gîllespie-Wîllîams, [ l l ] j / / X is a finit dimensional Banach space 

and f is contimtous dilating operator. Then Fj ^ Q. 

P r o o f . Because / is dilating operator there is Ar > 1 such that / is v'-diîating operator 

with (fi{t) = k • t. Function ip verifies assumptions (i), (ii) and (iii) from Teorema 2.4 

and f £ T. Using Teorema 2.1 we have that Fj ^ 0. 

For infinit dimensional case there is the following open problem. 

Open problem. (Gillespie-Williams) Let X be an infinit dimensional space and / a 

continuous dilating operator. Is / a surjective operator? 
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BOOK REVIEWS 

T. Banakh, T, Radul, M. Zarichnyi, Absorbing Sets in Infinite-Dimensional Manifolds, 

Mathematical Studies, Monograph Series, Volume 1, VNTL Publisliers, Ukraine, 

1996. 

The book is devoted to the theory of absorbing sets and its applications, 

most of them consisting in beautiful and short characterizations of many remarkable 

spaces. The tern:i space, stands for separable, metrizable topologtcal space. 

The first chapter of the book contains an exposition of the basic theory of 

absorbing sets. 
A spare A' is said to be C-absorbing (with respect to a given class C of spaces) 

if: 

a) X is strongly C-umversol ANR (absolute neighborhood retract) satisfying 

SDAP (strong discrete approximation property) 

b) X e «tC (i.e. X is a countable un ion of spaces from C) 

c) X is a Za space (i.e. X is a countable union of ^-spaces in C. 

[recali tha t a set A C X is a ^'-space if for every open cover U of X, there 

exists a continuous m a p f : X ^ X such that f [ X ) n A = 0 and / , idx are i7-close, 

i.e. for each xeX with f{x) x, there exists U ^U such that x G f/, / ( x ) G U]. 

The second chapter, "Construction of absorbing sets", contains examples of 

absorbing sets with respect to several classes of sets, sometimes defîned by dimensional 

conditions. 

The third chapter contains some even more technical results concerning strong 

universality for pairs and for spaces. 

The last two chapters include applications to infinite products, topological 

groups, convex sets, spaces of probability measures. 
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The results included in the 232 pages of the book integrate the work of the 

authors with work of many other mathematicians such as K. Borsuk, C. Bessaga, A . 

Pelcziiisky, H. Torunczyk, M. Bestvina, J. Mogilski, T . Dobrowolski, O. Keller. 

The book contains many exercises and notes and comments at the end of 

each chapter. 
V . Anisiu 

Steven G. Krantz, Handbook of Complex Vanables. Birkhauser, Boston-Basel-Berlin 

1999, 290 pp., ISBN 0-8176-4011-8. 

The present book consists an excellent introduction and reference for under-

graduate students, graduale students, engineers and all researchers interested in the 

study of basic concepts of complex analysis of one variabie. The book is divided into 

sixteen chapters. The first two contain a detailed introduction and overview in the 

theory of complex numbers, holomorphic functions and Cauchy integrals. Chapter 3 

is devoted to some applications of the Cauchy theory, such as: the Cauchy estimates, 

Liouville's theorem, the fundamental theorem of algebra, the zeros of holomorphic 

functions, uniqueness of analytic continuation, etc. Isolated singularities and Laurent 

series are studied in Chapter 4. In this chapter it is clearly presented the calculus of 

residues and its applications to the calculation of definite integrals and surns. Chapter 

5 is concerned with some problems and questions concerning the argument principie, 

that have a geometric and qualitative nature rather than an analytical one. These 

questions center around the issue of the local geometric behavior of a holomorphic 

function. The purpose of chapter 6 is to study the notion of conformai mapping, 

while the concepts of harmonic functions are presented in chapter 7. Chapters 8, 9 

are concerned with the theory of infinite series and products and their applications to 

obtain the Weierstrass and Mittag-Leffler factorization theorems, Jensen's formula, 

etc. Chapter 10 and 11 deal with some problems about analytic continuation and 

raţional approximation theory. In chapter 12 contains a brief discussion about the 

notion of schlicht (one-to-one) functions and a historical discussion concerning Bieher-

bach conjecture. Chapter 13 treats the most important special functions: the G a m m a 

function of Euler, the Beta function of Legendre, and the Zeta function of Riemann. 
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On the other hand, the author has made a special effort to include a detailed material 

on areas of engineering and physics in which complex variable theory is appUed. This 

discussion is included in botli chapters 14 and 15. The book conchides with a brief 

discussion of the software that is useful for understanding several concepts of one 

complex variable theory. 

Written by an eminent specialist in the field, in a clear and rigorous man-

ner, the book contains a lot of results which are very often illustrated by particular 

examples followed by diagrams and figures (as, for instance, the appendix to chapter 

14), A special emphasis is put on the applications of complex analysis to engineering 

and physics. The author has made also special efforts to give through references to 

all topics presented. 

It can be used as a standard reference in the field. I recommend it warmly 

to all desiring to learn, to teach or to use complex variable theory. 

G, Kohr 

D. Repovs and P. V . Semenov, Couttnuous Selections of Multivalued Mappings Math-

ematics and Its Applications Voi. 455, viii + 356 pp, Kluwer Academic Publishers, 

Dordrecht Boston London 1998, ISBN: 0-7923-5277-7. 

Multivalued analysis is a field which has been intensively developing in the last 

years, mainly in connection with its deep applications to optimization theory, convex 

analysis and mathematical economics. Although there are several good books dealing 

with multivalued analysis (as, e.g., J.-P. Aubin and H. Frankowska, Set-Valued Anal-

ysis, Birkhăuser 1990, and G. Beer, Topologies on Closed and Convex Sets, Kluwer 

A.P. 1993), this is the first monograph devoted to a systematic treatment of various 

aspects of the theory of continuous selections, a subject which has its roots in the pi-

oneering work done by E. Michael in the mid 1950's. The book focuses on continuous 

selections for lower semi-continuous multivalued mappings on paracompact spaces, 

but rneasurable selections are considered too, via the unifying approach proposed by 

G. Mâgerl in 1978. In fact, the paracompactness and lower semicontinuity are the 

natural framework in which continuous selections can be treated; the existence of a 

continuous selection for a multivalued mapping F : X -^Y, X,y topological spaces, 
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forces F to be lower semicontinuous, and if any convex-valued lower semicontinuous 

mapping F with closed convex values from a topological space X to a Banach space 

y admits a continuous selection then the space X must be paracompact. 

The book is divided into three parts; A. Theory, B. Results, and C. Appli-

cations. The first part of the book develops the basic of the theory, being aimed 

to students in mathennatics in their senior year or at post-graduate level. It starts 

by an introductory section surveying the results from topology and funcţional anal-

ysis, needed for the understanding of the book. The proofs in this part are given 

in details and are presented in a structured form - part one Construction and part 

two Verification. The first part contains the ateps of the proof and the properties 

which have to be verified, whereas in the second part these properties are effectively 

checked. Although the book has no exercises, these steps of the proofs can be used 

as exercises for seif-training by the beginner. The verification part can be skipped by 

the experienced reader. 

The second part is devoted to specialists in the area and its goal is to give a 

comprehensive survey on the existing results on continuous selections. In this part, 

one proves selection theorems for more general multivalued maps than lower semi-

continuous, as almost lower semicontinuous, quasi lower semicontinuous, etc. The 

condition on the map to have convex values is also relaxed by considering paraconvex 

sets, topological convex structure or working with an axiomatic approach to convex-

ity. A section is devoted to measurable selections. In this part most of the proof 

are omitted or only sketched, in order to cover maximum of results in a reasonable 

number of pages. 

The third part of the book, a very interesting one, contains applications of 

the developed machinery. Among these we mention: Bartle-Graves type theorems 

and liftings, the homeomorphism of separable Banach spaces, fixed-point theorems, 

metric projections and differential inclusions. 

The bibliography of the book counts 422 items. 
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Written by two eminent specialist in the area and including their original 

results, the book is a valuable contribution to multivalued analysis and its applica-

tions, appealing to a large audience, including graduate students and research math-

ematicians interested in general topology, funcţional analysis, convex sets and convex 

analysis, optimization theory, and mathematiral economics. 

S. Cobzaş 

Myroslav Sheremeta, Analytic Functions of Bounded Index, Mathematical Studies -

Monograph Series, vol.6, V N T L Publishers, Lvov 1999, 141 pp-, TSBN 966-7148-77-7. 

In this monograph the author investigates properties of analytic functions 

of bounded index in arbitrary domains. In the case of entire functions of bounded 

index there are many results which are not typical for more general classes of analytic 

functions. Some results of such kind are included in the presant monograph. It 

consists of seven chapters. The first chapter deals with the notion of a function with 

bounded index, and includes some properties of such functions, It is also included a 

theorem of Hayman in the case of entire functions of bounded index (Theorem 1.5), 

as well as some applications of this result. Chapter 2 is devoted to some problems 

concerning value distribution of functions of bounded /-index. The aim of chapter 

3 is to obtain some growth of entire and analytic functions of bounded /-index in a 

disc {a: G C : < K } . Moreover, in the same chapter are pointed several path of 

growth investigations of these functions. Chapter 4 is concerned with the notion of a 

function of bounded / - M - i n d e x while Chapter 5 studies several properties of analytic 

solutions of some linear differential equations, related to boundedness o f / - index . In 

chapter 6 there are investigated conditions on a positive continuous function l on 

[0,oo) ensuring the existence of an entire function of prescribed growth and bounded 

/-index. Chapter 7 concludes with the case of entire functions of bounded l-index. 

The book is clearly written, introducing the reader to the area of analytic 

functions of bounded index. The final part of the book contains very useful historical 

coraments about this subject. It can be recommended warmly to researchers interested 

in the concept of analyticity of bounded index. 

G. Kohr 
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Nik Weaver, Lipschîtz Algebras, World Scientific, Singapore 1999, 223 pp., ISBN; 981-

02-3873-8. 

Althoiigh important and having a rich and beautiful theory, the spaces of 

Lipschitz functions have been less studied than other function spaces of funcţional 

analysis. A possible explanation, suggested by the author in the Preface, could be 

the fact that the algebraic properties of the spaces of Lipschitz functions on a metric 

space X are intimately related with the metric structure of the underlying space 

X , while the properties of the spaces C ( X ) and L '^ iX ] are the functional-analytic 

realizations of topological or measiire structures, The fact that the metric structures 

are finer and deeper than topological ones, makes the subject harder to handle. 

The main objects of the present book are the space Lipo{-Y) of scalar-valued 

Lipschitz functions vanishing at a distinguished point e € X, normed by L{f) = 

sup{|/{p) - f[q)\/p{p,g) : P,q e X, p 9}, and the space Lip(X) of all scalarly-

valued bounded Lipschitz functions on the metric spax:e X , equipped with the norm 

|j/||i = m a x { L ( / ) , |j/j|cc}- Both of them are Banach spaces and if X îs of finite 

diameter then Lipo(X) is a Banach algebra. Lip{X} is also a Banach algebra satisfying 

the (unessentially) weaker law < 2\\f\\i\\g\\L- The spaces of Lipschitz functions 

have some universality properties, making them important tools of funcţional analysis. 

For instance, if ^ is a commutative unital Banach algebra then the Gefand transform 

takes A nouexpansively into C(A(yl) ) , where A (A) is the carrier space {the field 

of Banach algebra homomorphisms from A to the ba.se field F), Endowed with the 

relative *-topology A{A) is a compact Hausdorff space. Considering A ( A ) with the 

inherited metric, the Gelfand transform takes A nonexpansively into Lip(A(A)) . Also 

for a metric space X with distiguished element e there is a Banach space E and an 

isometrical imbedding of X into E such that every nonexpansive map / from X into 

another Banach space F satisfying / ( e ) = O, extends uniquely to a nonexpansive linear 

maap from E to F. Furthermore the dual of the space E is isometrically isomorphic 

to Lipo(X). There are two realizations of Lipo(X) as a dual Banach space, one by de 

Leeuw and other by Arens-Eells, which are carefully presented in the second chapter 

of the book, Ch. 2, The predual. The first chapter of the book, Ch. 1 Lipschitz spaces, 

contains the basic results on metric spaces and Lipschitz functions. 
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The objects of the third chapter, Ch. 3 Ltttle Lipschttz spaces, are functions 

in Lipo(A^), X a compact metric space with distinguished point, satisfying the con-

dition; for every e > O there is 5 > O such that | / (p) - f{q)\ < €p{p,q) whenever 

p{p,q) < S. Such functions are called little Lipschitz functions and the corresponding 

subspaces of Lipo(X) and Lip{A') are denoted by lipo(X and lip(A'), respecţively. 

Under some hypotheses we have Lipo(X) = l i p o ( X ) " , showing that Lipo(vY) can be 

even a double dual Banach space. 

Banach algebra properties of the spaces Lipo(^) and L i p ( ^ ) , meaningideals , 

carrier spaces, spectral synthesis, derivations, are studied in Ch. 4 Lipschitz algebras, 

while Ch. 5 Lipschitz lattices is concerned with lattice properties of these spaces. Ch. 

6, Measurable Lipschitz algebras, is concerned with measurable metric spaces (X, / i ) 

and the spaces Lip{X,/i) of bounded measurable Lipschitz functions. 

In the final chapter of the book, Ch. 6 Derivations, the author studies deriva-

tions on Lipschitz algebras, giving the right extension to a very general setting of the 

well known fact tha t a differentiable function is Lipschitz if and only if its differential 

is bounded. The last section of this chapter contains a brief account on noncom-

mutaive Lipschitz algebras, a field which is still in constructions, deserving fur ther 

investigation. 

The book is clearly written and contains a wealth of material on spaces of 

Lipschitz functions, available for the first time in book form. It is fairly self-contained, 

accessible to students acquainted with the basics of measure theory and funcţional 

analysis. The open problems, posed in various places in the book, open new research 

opportunities for the diligent reader. 

S. Cobzaş 
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