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SOME PROPERTIES OF THE INTEGRAL OPERATORS IN
UNIVALENT FUNCTION

R. AGHALARY AND S.R. KULKARNI

Abstract. In this paper we have obtained some properties of the integral

operators on the lines of Miller and Mocanu [2], Nour [4], after generalizing

several lemmas of the above mentioned authors needed in the course of

research.

1. Introduction

Let A denote the class of functions analytic in the unit disc U = {z : |z| < 1}

and normalized by f(0) = f ′(0)−1 = 0. Also let S denote the subclass of A consisting

of (normalized) functions f which are univalent in U . A function f(z) in S is said to

be starlike of order α if and only if

Re

{
zf ′(z)
f(z)

}
> α (z ∈ U, 0 ≤ α < 1).

Let S∗(α) denote the class of all functions which are starlike of order α in U .

It is well known that S∗(α) ⊆ S∗(0) ≡ S∗.

Let f, g be analytic in the unit disc U . We call the function f is a subordinate

to g, written f ≺ g, if there exists an analytic function φ with φ(0) = 0 and |φ(z)| < 1

such that f(z) = g(φ(z)).

Let ρ(A,B) consist of all functions g that are analytic in U with g(0) = 1

and satisfy the condition

g(z) ≺ 1 +Az

1 +Bz
(−1 ≤ B < A ≤ 1).

Finally a function f(z) ∈ A is said to be in the class S∗(A,B) if and only if

zf ′(z)
f(z)

∈ ρ(A,B).
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In the present paper we will investigate some properties of the integral oper-

ators. We shall make use of the results due to Miller and Mocanu [2] and Noor [4].

For the sake of convenience, we recall those results as the following lemmas:

Lemma 1 (Miller and Mocanu [2]). Let α ≥ 0, β > 0 and α+ δ = β+ γ > 0

and let the functiona ϕ(z) and φ(z) be in the class D defined by

D := {θ : θ(z) analytic in U, θ(z) 6= 0, and θ(0) = 1}.

Suppose also that

δ +Re

{
zϕ′(z)
ϕ(z)

}
≥ γ and Re

{
zφ′(z)
φ(z)

}
≤ βw(0)

where w(ρ) is given, in terms of the Gaussian hypergeometric function 2F1, by

w(ρ) =
1
β

[
(β + γ)2−2β(1−ρ)

2F1[2β(1− ρ), β + γ;β + γ + 1;−1]
− γ

]
(max{(β − γ − 1)/2β,−γ/β} ≤ ρ < 1)

Then for the integral operator I defined by

I(f)(z) =
(
β + γ

zγφ(z)

∫ z

0

{f(t)}αϕ(t)tδ−1dt

)1/β

we have

I(S∗) ⊂

 S∗ (φ(z) 6≡ 1)

S∗(w(0)) (φ(z) ≡ 1)

Lemma 2 (Noor [4]). Let ρj(z) ∈ ρ(A,B), (j = 1, 2). Then, for α > 0 and

β > 0,
αρ1(z) + βρ2(z)

α+ β
∈ ρ(A,B).

2. Some results related to the function space ρ(A,B)

Lemma 3. Let α ≥ 0 and D(z) maps U onto a (possibly many-sheeted)

region which is starlike with respect to the region. Let N(z) be analytic in E with

N(0) = D(0) = 0.

Then

(1− α)
N(z)
D(z)

+ α
N ′(z)
D′(z)

≺ 1 +Az

1 +Bz
⇒ N(z)

D(z)
≺ 1 +Az

1 +Bz
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where (1 ≤ B < A ≤ 1).

Proof. Let
N(z)
D(z)

=
1 +Aw(z)
1 +Bw(z)

.

Clearly w(0) = 0. We will prove that |w(z)| < 1, ∀ z ∈ U for, if not, by

Jack’s lemma [1] there exists z0 ∈ U , such that |w(z0)| = 1 and z0w
′(z0) = kw(z0),

k ≥ 1. We consider

ϕ(z) = (1− α)
N(z)
D(z)

+ α
N ′(z)
D′(z)

since
N ′(z)
D′(z)

=
N(z)
D(z)

+
D(z)
D′(z)

(
(A−B)w′(z)
(1 +Bw(z))2

)
.

So

ϕ(z0) = (1− α)
N(z0)
D(z0)

+ α
N ′(z0)
D′(z0)

=

=
N(z0)
D(z0)

+ α

(
D(z0)
z0D′(z0)

) (
(A−B)kw(z0)
(1 +Bw(z0))2

)
.

Now

∣∣∣∣ ϕ(z0)− 1
Bϕ(z0)−A

∣∣∣∣ =

∣∣∣∣∣∣∣∣
(A−B)w(z0)
1 +Bw(z0)

(
1 +

D(z0)
z0D′(z0)

kα

1 +Bw(z0)

)
(B −A)

1 +Bw(z0)

(
1− D(z0)kαBw(z0)

z0D′(z0)(1 +Bw(z0))

)
∣∣∣∣∣∣∣∣

or ∣∣∣∣ ϕ(z0)− 1
Bϕ(z0)−A

∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 +

D(z0)kα
z0D′(z0)(1 +Bw(z0))

1− D(z0)kαβw(z0)
z0D′(z0)(1 + βw(z0))

∣∣∣∣∣∣∣∣
Therefore∣∣∣∣ ϕ(z0)− 1

Bϕ(z0)−A

∣∣∣∣ > 1 ⇔
∣∣∣∣1 +

kαD(z0)
z0D′(z0)(1 +Bw(z0))

∣∣∣∣ >
>

∣∣∣∣1− kαw(z0)D(z0)
z0D′(z0)(1 +Bw(z0))

∣∣∣∣
But∣∣∣∣1 +

kαD(z0)
z0D′(z0)(1 +Bw(z0))

∣∣∣∣2 − ∣∣∣∣1− kαBw(z0)D(z0)
z0D′(z0)(1 +Bw(z0))

∣∣∣∣2 =

= (1−B)2
∣∣∣∣ D(z0)
z0D′(z0)

∣∣∣∣2 ∣∣∣∣ kα

1 +Bw(z0)

∣∣∣∣2 + 2kαRe
(

D(z0)
z0D′(z0)

)
> 0.

Hence ∣∣∣∣ ϕ(z0)− 1
Bϕ(z0)−A

∣∣∣∣ > 1
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and this is contradiction with this fact that ϕ(z) ≺ 1 +Az

1 +Bz
so |w(z)| < 1 and the

proof is complete.

By putting α = 0 we get the result due to Miller and Mocanu [3] as:

Corollary 1. Let the functions M(z) and N(z) be analytic in U with M(0) =

N(0) = 0 and let γ be a real number. Suppose also that N(z) maps U onto a (possibly

many-sheeted) region which is starlike with respect to the origin. Then

Re

{
M ′(z)
N ′(z)

}
> γ, (z ∈ U) ⇒ Re

(
M(z)
N(z)

)
> γ, (z ∈ U).

Lemma 4. Let α ≥ 0 and D(z) maps U onto a (possibly many-sheeted)

region which is starlike with respect to the region. Let N(z) be analytic in E with

N(0) = D(0) = 0 and
N ′(0)
D′(0)

= k then

(1− α)
N(z)
kD(z)

+ α
N ′(z)
kD′(z)

≺ 1 +Az

1 +Bz
⇒ N(z)

kD(z)
≺ 1 +Az

1 +Bz

(where −1 ≤ B < A ≤ 1).

Proof. Proceeding as in the proof of Lemma 3 we get our result.

By putting α = 0 we get the result due to Reddy and Padmanabhan [5] as:

Corollary 2. Let the functions N(z) and D(z) be analytic in U and let D(z)

maps U onto a many-sheeted starlike region. Suppose also that N(0) = D(0) = 0,
N ′(0)
D′(0)

= k and
N ′(z)
kD′(z)

∈ ρ(A,B), (k ≥ 1) then
N(z)
kD(z)

∈ ρ(A,B).

Lemma 5. Let α > 0 and f ∈ A. Then

(1− λ)
(
f(z)
z

)α−1

f ′(z) + λ

(
f(z)
z

)α

∈ ρ(A,B) ⇒
(
f(z)
z

)α

∈ ρ(A,B)

(where −1 ≤ B < A ≤ 1 and 0 ≤ λ ≤ 1).

Proof. Let (
f(z)
z

)α

=
1 +Aw(z)
1 +Bw(z)

.

Clearly w(0) = 0. We will prove |w(z)| < 1, ∀ z ∈ U . For, if not, by Jack’s

lemma [1] there exists z0 ∈ E, such that |w(z0)| = 1 and z0w
′(z0) = kw(z0), k ≥ 1.

Let

ψ(z) = (1− λ)
(
f(z)
z

)α−1

f ′(z) + λ

(
f(z)
z

)α

.
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But

α

(
zf ′(z)− f(z)

z2

) (
f(z)
z

)α−1

=
(A−B)w′(z)
(1 +Bw(z))2

or

f ′(z)
(
f(z)
z

)α−1

=
1 +Aw(z)
1 +Bw(z)

+
(A−B)zw′(z)
α(1 +Bw(z))2

Hence

ψ(z0) =
1 +Aw(z0)
1 +Bw(z0)

+
(1− λ)kw(z0)(A−B)

α(1 +Bw(z0))2

If we take φ(z) =
(1− λ)k

α(1 +Bw(z))
then we have

∣∣∣∣ ψ(z0)− 1
Bψ(z0)−A

∣∣∣∣ =

∣∣∣∣∣∣∣∣
(A−B)w(z0)
1 +Bw(z0)

(
1 +

(1− λ)k
α(1 +Bw(z0))

)
B −A

1 +Bw(z0)

(
1− (1− λ)kw(z0)B

α(1 +Bw(z0))

)
∣∣∣∣∣∣∣∣ =

=
∣∣∣∣ 1 + φ(z0)
1− φ(z0)Bw(z0)

∣∣∣∣
But the right hand side of above equivality is greater than 1, because

|1 + φ(z0)|2 − |1−Bw(z0)φ(z0)|2 = (1−B2)|φ(z0)|2 +
2(1− λ)k

α
> 0

and this is contradiction with hypothesis, so |w(z)| < 1 and the proof is complete.

By putting λ = 0 we get the result due to Noor [4] as

Corollary 3. If f(z) ∈ A and
(
f(z)
z

)α−1

f ′(z) ∈ ρ(A,B) then
(
f(z)
z

)α

∈

ρ(A,B) (where α ∈ N = {1, 2, 3, . . . }).

3. Some properties of the integral operators

Theorem 1. Let g ∈ S∗(A,B), then the function F (z) defined by

F (z) =
[
α−1

∫ z

0

g(t)1/αt−1dt

]α

is in the class S∗(A,B), (α > 0).

Proof. We know from Lemma 1 that F (z) ∈ S∗. But with direct calculation

we can write
zg′(z)
g(z)

= (1− α)
zF ′(z)
F (z)

+ α

(
1 +

zF ′′(z)
F ′(z)

)
So, by hypothesis,

(1− α)
zF ′(z)
F (z)

+ α

(
1 +

zF ′′(z)
F ′(z)

)
∈ ρ(A,B). (3.1)
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We consider N(z) = zF ′(z) and D(z) = F (z), then functions N(z) and D(z)

satisfy the conditions of Lemma 3. Now from (3.1) we have

(1− α)
N(z)
D(z)

+ α
N ′(z)
D′(z)

∈ ρ(A,B).

So, by lemma 3,
zF ′(z)
F (z)

=
N(z)
D(z)

∈ ρ(A,B)

and this completes the proof.

Theorem 2. Let α > 0, γ > 0, f(z) ∈ A and F (z) be defined by

F (z) =
(
α+ γ

zγ

∫ z

0

f(t)αtγ−1dt

)1/α

then (
f(z)
z

)α

∈ ρ(A,B) ⇒
(
F (z)
z

)α

∈ ρ(A,B).

Proof. Since

αF ′(z) =
(
−γ(α+ γ)
zγ+1

∫ z

0

f(t)αtγ−1dt+
α+ γ

zγ
f(z)αzγ−1

)
F (z)1−α =

=
(
−γ
z
F (z)α +

α+ γ

z
f(z)α

)
F (z)1−α

or
α

α+ γ

(
F (z)
z

)α−1

+
γ

α+ γ

(
F (z)
z

)α

=
(
f(z)
z

)α

(3.2)

But, by hypothesis,
(
f(z)
z

)α

∈ ρ(A,B). Therefore from (3.2) we have

α

α+ γ

(
F (z)
z

)α−1

F ′(z) +
γ

α+ γ

(
F (z)
z

)α

∈ ρ(A,B) (3.3)

Hence from (3.3) and Lemma 5 we get the desired result.

Theorem 3. Let α > 1, f, g ∈ A and function F (z) is defined by

F (z) =
[
α−1

∫ z

0

f(t)1/αg(t)(α−1)/αt−1dt

]α

. (3.4)

Then
zg′(z)
g(z)

∈ ρ(A,B) and
zf ′(z)
f(z)

∈ ρ(A,B) ⇒ 1
α

zF ′(z)
F (z)

∈ ρ(A,B).

Proof. It is clear, by Lemma 1, F ∈ S∗. By differentiation from (3.4) we get

F ′(z) = (f(z)1/αg(z)(α−1)/αz−1)(F (z))(α−1)/α

8
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or

zF (z)(1−α)/αF ′(z) = f(z)1/αg(z)(α−1)/α. (3.5)

By differentiation from (3.5) we get(
1 +

zF ′′(z)
F ′(z)

)
+

(
1− α

α

)
zF ′(z)
F (z)

=
1
α

zf ′(z)
f(z)

+
α− 1
α

zg′(z)
g(z)

.

But the right habd side of the above equality belongs to ρ(A,B), by lemma

2. So we have (
1 +

zF ′′(z)
F ′(z)

)
+

(
1− α

α

)
zF ′(z)
F (z)

∈ ρ(A,B). (3.6)

Let N(z) = zF ′(z) and D(z) = αF (z) then functions N(z) and D(z) satisfy

the condition of Lemma 3. But(
1 +

zF ′′(z)
F ′(z)

)
+

1− α

α

zF ′(z)
F (z)

= α
N ′(z)
D′(z)

+ (1− α)
N(z)
D(z)

(3.7)

So from relations (3.6), (3.7) and lemma 3 we have
N(z)
D(z)

=
zF ′(z)
αF (z)

∈ ρ(A,B)

and the proof is complete.
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ON 6-DIMENSIONAL HERMITIAN SUBMANIFOLDS OF CAYLEY
ALGEBRA

BANARU MIKHAIL

Abstract. Results have been obtained concerning one of the most impor-

tant characteristics of a Hermitian manifold which is a Ricci curvature.

One of the most beautiful and substantial examples of Hermitian manifolds

are the 6-dimensional oriented submanifolds of Cayley octave algebra. In the present

work a number of results on the characteristics of such manifolds are shown. Let’s

remember that Hermitian is named the manifold M2n, that has an almost complex

structure J and Riemannian metric g = 〈·, ·〉 when meeting the conditions:

1) 〈JX, JY 〉 = 〈X, Y 〉, X, Y ∈ ℵ(M);

2) [X, Y ] + J [JX, Y ] + J [X, JY ] − [JX, JY ] = 0.

1.

It is well-known that Ricci tensor ric of a Riemannian manifold is named

the tensor whose components are connected with the components of the tensor of

Riemannian curvature (Riemann-Christoffel tensor) as follows [4]:

ricij = Rk
ijk.

This tensor is symmetric; the value of the corresponding quadratic form on

vector X, X ∈ ℵ(M) is called Ricci curvature and is denoted S(X). Thus,

S(X) = ricijX
iXj , ‖X‖ = 1.

Let’s use the values of the spectrum of the Riemann-Christoffel tensor of

6-dimensional Hermitian submanifolds of octave algebra [1].

Rabcd = Râbcd = Râb̂cd = 0;

1991 Mathematics Subject Classification. 53C10, 58C05.

Key words and phrases. Hermitian manifolds, Ricci curvature, scalar curvature, Cayley algebra.
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Râbĉd = −
∑
ϕ

Tϕ
âĉT

ϕ
bd, (1)

where Tϕ
ij are the components of configuration tensor (or, in other words, the tensor

of Euler curvature). Here a, b, c, d = 1, 2, 3; â = a + 3; ϕ = 7, 8, i, j = 1, 2, 3, 4, 5, 6.

Let’s calculate the Ricci tensor spectrum for the 6-dimensional Hermitian

submanifolds of Cayley algebra. Taking into account (1), we get:

ricab = Rc
abc + Rĉ

abĉ = Rĉabc + Rcabĉ = 0;

ricâb = Rc
âbc + Rĉ

âbĉ = Rĉâbc + Rcâbĉ =

= Rcâbĉ = Râcĉb = −
∑
ϕ

Tϕ
âĉT

ϕ
cb;

ricab̂ = Rc
ab̂c

+ Rĉ
ab̂ĉ

= Rĉab̂c + Rcab̂ĉ =

= Rĉab̂c = −
∑
ϕ

Tϕ

ĉb̂
Tϕ

ac;

ricâb̂ = Rc
âb̂c

+ Rĉ
âb̂ĉ

= Rĉâb̂c + Rcâb̂ĉ = 0.

In view of the reality of the Ricci tensor,

ricab = ricâb̂; ricâb = ricab̂.

Therefore, the Ricci tensor spectrum is calculated as follows:

ricab = 0; ricâb = −
∑
ϕ

Tϕ
âĉT

ϕ
bc. (2)

Then, the Ricci curvature of Hermitian 6-dimensional submanifolds of octave

algebra is calculated as follows:

S(X) = −2
∑
ϕ

Tϕ
âĉT

ϕ
bcX

bXa = −2
∑
ϕ

(Tϕ
âĉXa)(Tϕ

bcX
b) =

= −2
∑
ϕ

(Tϕ
abX

b)(Tϕ
abX

b) = −2
∑
ϕ,a,b

|Tϕ
abX

b|2.

Thus,

S(X) = −2
∑
ϕ,a,b

|Tϕ
abX

b|2,

and so, we conclude that is correct

Theorem 1. The 6-dimensional Hermitian submanifold of Cayley algebra

has a nonpositive Ricci curvature, moreover the above mentioned curvature vanishes

in geodesic points and only in them.
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Consequence. The 6-dimensional Hermitian submanifold of Cayley algebra

is Ricci flat manifold then and only then, when it is a domain on the Kählerian plane.

2.

Let’s calculate the scalar curvature of the 6-dimensional Hermitian sub-

manifolds of Cayley algebra. Taking into account (2) we get

K = rici
i = −2

∑
ϕ,a,b

|Tϕ
ab|

2 ≤ 0.

Evidently, the scalar curvature of the 6-dimensional Hermitian submanifolds

of octave algebra is also nonpositive and becomes zero exclusively in geodesic points.

In this sense, the scalar curvature ”repeats” both the Ricci curvature and the bisec-

tional holomorphic curvature [2] of such manifolds.

If the considered manifold is a manifold of constant scalar curvature (K =

const), then we get, that ∑
ϕ,a,b

|Tϕ
ab|

2 = const

and therefore is correct.

Theorem 2. The 6-dimensional Hermitian submanifold of Cayley algebra is

a manifold of the constant scalar curvature in the case and only when the configuration

tensor has a constant length.

Let’s note that both the theorems sum up the well-known results obtained

by V. Kirichenko [3] on the 6-dimensional Kahlerian submanifolds of octave algebra.
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A KOROVKIN-TYPE THEOREM FOR THE APPROXIMATION OF
n-VARIATE B-CONTINUOUS FUNCTIONS

DAN BĂRBOSU

Abstract. The aim of this note is to extend the results from [1], [4] to the

case of n variate B-continuous functions in the sense of Bogel [5]. In the

section 1 we present the notions of n-variate B-continuous function and

uniform n-variate B-continuous function. Some relationship among these

notions are also presented. In the section 2, we discuss a Korovkin-type

criterion for the approximation by means of linear positive operators of the

B-continuous functions of n-variables. The main result of the paper is the

theorem 2.1. In the section 3 we present some applications of the theorem

2.1.

1. Let RIn

be the space of functions f : In →R, where I=[0,1] and n is a

positive integer. The notion of B-continuous function was introduced in [5] using the

operator ∆2 :RI2 →RI2

∆2 [f ;M,M ′] = ∆s1,s2 [f ;M,M ′] =

= f (s1, s2)− f (s1, x2)− f (x1, s2) + f (x1, x2) (1.1)

for any f ∈RI2
and any points M (x1, x2) ,M ′ (s1, s2) ∈ I2.

Let ∆2 :RI →RI be the univariate operator given by

∆2 [f ;M,M ′] = ∆s1 [f ;x1] = f (s1)− f (x1) (1.2)

for any f ∈RI and any points M (x1) ,M ′ (s1) ∈ I.

1991 Mathematics Subject Classification. 41-00, 41A10, 41A25, 41A35.

Key words and phrases. B-continuous function, uniform B-continuous function, B-bounded function,

parametric extension, boolean sum operator, Bernstein-Stancu operators, Bleimann-Butzer-Hahn operators.
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If f ∈RI2
and s1∆,s2 ∆ are the parametric extension of the operator (1,2),

then the following equality holds:

∆s1,s2 [f ;x1, x2] = (s1∆ ◦s2 ∆) [f ;x1, x2] . (1.3)

The last remark allows us to define the operator of n-variate difference by

Definition 1.1: Let f ∈RIn

be a given function and s1∆, . . . ,sn ∆ be the

parametric extensions of the operator (1,2). The operator ∆n :RIn →RI2
given by

∆n [f ;M,M ′] = ∆s1,...,sn
[f ;x1, . . . , xn] = (s1∆ ◦ . . . ◦sn

∆) [f ;x1, . . . , xn] (1.4)

for any functions f ∈RIn

and any points M (x1, . . . , xn) ,M ′ (s1, . . . sn) ∈ In is called

operator of n-variate difference.

Remark 1.1: It is easy to see that the representation

∆s1,...,sn
[f ;x1, . . . , x2] = f (s1, . . . , sn)−

n∑
i=1

f (x1, . . . , xi−1, si, xi+1, . . . , xn) +

+
n∑

i,j=1

f (x1, . . . , xi−1, si, xi+1, . . . , xj−1, sj , xj+1, . . . , xn)− . . .+(−1)n
f (x1, . . . , xn)

(1.5)

is valid.

Definition 1.2: The function f ∈RIn

is called B-continuous in the point

M (x1, . . . , xn) ∈ In is the equality

lim
(s1,...sn)→ (x1,...,xn)

∆s1,...,sn [f ;x1, . . . , x2] = 0 (1.6)

holds.

If f ∈RIn

is B-continuous at every point of In one says that f is B-continuous

on In and the set of all B-continuous functions on In is denoted by Cb (In) .

Definition 1.3: The function f ∈RIn

is uniform B-continuous on In if for

any ε > 0 there exists a δ = δ (ε) > 0 so that for any point (x1, . . . , xn) , (s1, . . . sn) ∈

In for which one has

|x1 − s1| < δ, . . . , |xn − sn| < δ (1.7)

the inequality
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|∆s1,...,sn
[f ;x1, . . . , x2]| < ε (1.8)

holds.

Definition 1.4: The function f ∈RIn

is B-bounded on In if there exists a

positive number K so that:

|∆s1,...,sn [f ;x1, . . . , x2]| ≤ K, (∀) (x1, . . . , xn) , (s1, . . . sn) ∈ In (1.9)

The relationships between B-continuous, uniform B-continuous and B-

bounded functions are immediately and are contained in the following two lemmas:

Lemma 1.1: If f ∈ Cb (In) then f is uniform B-continuous on In.

Lemma 1.2: If f ∈ Cb (In) then f is B-bounded on In.

2. We will establish a Korovkin type theorem for the approximation on

Cb (In). First, we establish an auxiliary result.

Lemma 2.1: Let f ∈ Cb (In) be arbitrarily chosen. For any positive num-

ber ε > 0 there exist n positives numbers Ai = Ai (ε) , i = 1, n so that for any

(x1, . . . , xn) , (s1, . . . sn) ∈ In one has:

|∆s1,...,sn
[f ;x1, . . . , xn]| ≤ ε

n + 1
+

n∑
i=1

Ai (ε) (xi − si)
2
. (2.1)

Proof. Because f ∈ Cb (In), from lemma 1.1 it follows that f is uni-

form B-continuous on In i.e. for (x1, . . . , xn) , (s1, . . . sn) ∈ In with |x1 − s1| <

δ (ε) , . . . , |xn − sn| < δ (ε) one has

|∆s1,...,sn [f ;x1, . . . , xn]| < ε

n + 1
. (2.2)

Let ε > 0 be a given positive number and (x1, . . . , xn) , (s1, . . . sn) ∈ In. The

inequalities |xi − si| < δ (ε) can be valid for all i ∈ {1, 2, . . . , n}, for (n− 1) values

of i ∈ {1, 2, . . . , n}, ..., for one value of i ∈ {1, 2, . . . , n} or for none of the values

i ∈ {1, 2, . . . , n}.

If |xi − si| < δ (ε) for any i ∈ {1, 2, . . . , n}, from (2.2) one deduces that

|∆s1,...,sn [f ;x1, . . . , xn]| < ε

n + 1
(2.3)
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Because f ∈ Cb (In), from lemma 1.2 it follows that there exists a positive

number K such that

|∆s1,...,sn
[f ;x1, . . . , xn]| ≤ K. (2.4)

We suppose that there is only one value j ∈ {1, 2, . . . , n} so that |xj − sj | ≥

δ (ε) .

If j = 1 then |x1 − s1| ≥ δ (ε) , |x2 − s2| < δ (ε) , . . . , |xn − sn| < δ (ε) .

For (x1, . . . , xn) , (s1, . . . sn) ∈ In with these properties we have

|∆s1,...,sn
[f ;x1, . . . , xn]| ≤ K · [δ (ε)]−2 (x1 − s1)

2
. (2.5)

This way, for the points (x1, . . . , xn) , (s1, . . . sn) ∈ In for which there is only

one value j ∈ {1, 2, . . . , n} such that |xj − sj | ≥ δ (ε) we have:

|∆s1,...,sn [f ;x1, . . . , xn]| ≤ K · [δ (ε)]−2
n∑

i=1

(xi − si)
2
. (2.6)

In a similar way, for the points (x1, . . . , xn) , (s1, . . . sn) ∈ In for which there

are only two values i, j ∈ {1, 2, . . . , n}, i 6= j such that |xi − si| ≥ δ (ε) , |xj − sj | ≥

δ (ε), we have:

|∆s1,...,sn [f ;x1, . . . , xn]| ≤ K · [δ (ε)]−22
n∑

i,j=1,i 6=j

(xi − si)
2 (xj − sj)

2 (2.7)

For all the points (x1, . . . , xn) , (s1, . . . sn) ∈ In for which |xi − si| ≥ δ (ε) ,

(∀) j ∈ {1, 2, . . . , n} we have:

|∆s1,...,sn [f ;x1, . . . , xn]| ≤ K · [δ (ε)]−2n

(x1 − s1)
2
. . . (xn − sn)2 . (2.8)

With these observations, for any (x1, . . . , xn) , (s1, . . . sn) ∈ In the next rela-

tion holds:

|∆s1,...,sn
[f ;x1, . . . , xn]| ≤ ε

n + 1
+ K · [δ (ε)]−2

n∑
i=1

(xi − si)
2 +

+K · [δ (ε)]−22
n∑

i,j=1,i 6=j

(xi − si)
2 (xj − sj)

2 + . . .+

+K · [δ (ε)]−2n

(x1 − s1)
2
. . . (xn − sn)2 (2.9)

18



A KOROVKIN-TYPE THEOREM FOR THE APPROXIMATION OF n-VARIATE B-CONTINUOUS FUNCTIONS

Because sk, xk ∈ [0, 1] (∀) k ∈ {1, 2, . . . , n} we have that (xk − sk)2 ≤ 1.

Using this observation and (2.9), one obtains:

|∆s1,...,sn [f ;x1, . . . , xn]| ≤

≤ ε

n + 1
+ K · [δ (ε)]−2

{
1 + [δ (ε)]−2 + . . . + [δ (ε)]−2n+2

}
(x1 − s1)

2 +

+K · [δ (ε)]−2
{

1 + [δ (ε)]−2 + . . . + [δ (ε)]−2n+22
}

(x2 − s2)
2 + . . .+

+K · [δ (ε)]−2 (xn − sn)2 . (2.10)

Choosing then

A1=K · [δ (ε)]−2
{

1 + [δ (ε)]−2 + . . . + [δ (ε)]−2n+2
}

A2=K · [δ (ε)]−2
{

1 + [δ (ε)]−2 + . . . + [δ (ε)]−2n+22
}

. . .

An=K · [δ (ε)]−2

it follows that (2.1) is valid.

Now we can establish the main result of the paper. We consider the following

functions on In :

e0 (s1, . . . sn) = 1, ei (s1, . . . sn) = si, i = 1, n ,(s1, . . . sn) ∈ In.

Theorem 2.1: Let {Lm1,m2,...,mn
} be a sequence of positive linear operators

mapping the functions of RIn

into functions of RIn

such that for all (x1, . . . xn) ∈ In

one has

i) Lm1,m2,...,mn (e0;x1, . . . xn) = 1;

ii) Lm1,m2,...,mn
(e0;x1, . . . xn) = xi + α

( i)
m1,m2,...,mn (x1, . . . xn) ,

i ∈ {1, 2, . . . , n} ;

iii) Lm1,m2,...,mn

(
n∑

i=1

e2
i ;x1, . . . xn

)
=

n∑
i=1

x2
i + δm1,m2,...,mn

(x1, . . . xn) ,

where the sequences
{

α
( i)
m1,m2,...,mn (x1, . . . xn)

}
,
{
δm1,m2,...,mn

(x1, . . . xn)
}

tend to

zero uniformly on In as m1,m2, . . . mn tend to infinity.

If f (·, . . . , ·) ∈ Cb (In) , we introduce the notation:

(?) Um1,m2,...,mn ( f ;x1, . . . xn) = Lm1,m2,...,mn ( f (x1, . . . xn)−∆·,...,· [ f ;x1, . . . xn])
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In the hypothesis i), ii), iii) the sequence {Um1,m2,...,mn
( f)} converges to f

uniformly on In, for any f ∈ Cb (In) .

Proof. It is obvious that Um1,m2,...,mn is a well-defined operator on Cb (In) .

Let f ∈ Cb (In) be arbitrarily chosen, (x1, . . . xn) ∈ In and ε > 0 given.

Because Lm1,m2,...,mn
is a linear operator reproducing the constant functions

(from the condition i)), we have:

f (x1, . . . xn)− Um1,m2,...,mn ( f ;x1, . . . xn) =

= Lm1,m2,...,mn
( ∆·,...,· [ f ;x1, . . . xn]) (2.11)

From the positivity of Lm1,m2,...,mn we have

|Lm1,m2,...,mn
( g ;x1, . . . xn)| =

max {Lm1,m2,...,mn
( g; x1, . . . xn) , Lm1,m2,...,mn

( −g ;x1, . . . xn)} (2.12)

for any g ∈ Cb (In).

Applying this result to G (s1, . . . sn) = ∆s1,...,sn
[f ;x1, . . . , x2] and using

the monotonicity of Lm1,m2,...,mn
and the lemma 2.1, we find (with A (ε) =

max {A1 (ε) , . . . , An (ε)}) the inequality:

|f (x1, . . . xn)− Um1,m2,...,mn
( f ;x1, . . . xn)| ≤

≤ Lm1,m2,...,mn

[
ε

n + 1
+ A (ε)

n∑
i=1

(xi − ·)2 ;x1, . . . , xn

]
. (2.13)

After some transformation of (2.13) we obtain:

|f (x1, . . . xn)− Um1,m2,...,mn
( f ;x1, . . . xn)| ≤

≤ ε

n + 1
+ A (ε) Lm1,m2,...,mn

(
n∑

i=1

e2
i ;x1, . . . , xn

)
−

−2 ·A (ε)
n∑

i=1

xi · Lm1,m2,...,mn (ei;x1, . . . , xn) +
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+A (ε) · Lm1,m2,...,mn (e0;x1, . . . , xn)
n∑

i=1

x2
i . (2.14)

Using now the hypothesis of the theorem, we can write:

|f (x1, . . . xn)− Um1,m2,...,mn
( f ;x1, . . . xn)| ≤

≤ ε

n + 1
+ A (ε) ·

{
δm1,...,mn

(x1, . . . , xn)− 2 ·
n∑

i=1

xiα
(i)
m1,...,mn

(x1, . . . , xn)

}
. (2.15)

Taking into account that
{

α
(i)
m1,...,mn (x1, . . . , xn)

}
, {δm1,...,mn

(x1, . . . , xn)}

tend to zero uniformly on In as m1,m2, . . . ,mn tend to infinity, from (2.15) we obtain

the desired result.

Remark 2.1: The positive operator Lm1,m2,...,mn
: Cb (In) → Cb (In) is the

product of the parametric extension Lx1
m1

, . . . , Lxn
mn

of the positive linear univariate

operator Lm : RI → RI .

Remark 2.2: In the case n=2, the theorem 2.1 reduced to the Korovkin-type

theorem established in [1]. The idea of the proof of the theorem 2.1 is suggested by

the idea from [1].

3. We shall present two applications of the theorem 2.1. For simplicity, we

consider the case n=3.

Example 1: We consider the Bernstein-Stancu´s operator B
〈α〉
m1 , B

〈β〉
m2 , B

〈γ〉
m3 :

RI → RI , given by

B
〈α〉
m1 (f) (x) =

m1∑
i=1

f
(

i
m1

)
· ωm1,i (x, α) , x ∈ I,

B
〈β〉
m2 (g) (y) =

m2∑
j=1

f
(

j
m2

)
· ωm2,j (y, β) , y ∈ I,

B
〈γ〉
m3 (h) (z) =

m3∑
k=1

f
(

k
m3

)
· ωm3,k (z, γ) , z ∈ I,

where ωm1,i (x, α),ωm2,j (y, β) , ωm3,k (z, γ) are the fundamental polynomials of

Bernstein-Stancu type, i.e.

ωm1,i (x, α) =

 m1

i

 x[i,−α]·(1−x)[m1−i,−α]

1[m1,−α] ,

ωm2,j (y, β) =

 m2

j

 y[j,−β]·(1−y)[m2−j,−β]

1[m2,−β] ,
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ωm3,k (z, γ) =

 m3

k

 z[k,−γ]·(1−z)[m3−k,−γ]

1[m3,−γ] .

In the precedent relation, x[i,−α] denotes the factorial power of x with the

exponent i and the increment -α, i.e.x[i,−α] = x (x + α) . . . (x + (i− 1) α) .

In same relation, the parameter α, β and γ satisfy the condition α = α (m1) ≥

0, β = β (m2) ≥ 0, γ = γ (m3) ≥ 0.

Let suppose that f ∈ Cb

(
I3
)
; the operators Lm1 , Lm2 , Lm3 : Cb

(
I3
)
→

Cb

(
I3
)

are the parametric extensions of the operator B
〈α〉
m1 , B

〈β〉
m2 , B

〈γ〉
m3 :

Lm1 ( f ) (x, y, z) =
m1∑
i=1

f
(

i
m1

, y, z
)
· ωm1,i (x, α) , x ∈ I;

Lm2 ( f ) (x, y, z) =
m1∑
i=1

f
(
x, j

m2
, z
)
· ωm2,j (y, β) , y ∈ I;

Lm3 ( f ) (x, y, z) =
m3∑
k=1

f
(
x, y, k

m3

)
· ωm3,k (z, γ) , z ∈ I.

The operator Lm1,m2,m3 is the product of the operators Lm1 , Lm2 , Lm3 and

it is defined by

Lm1,m2,m3 ( f ) (x, y, z) =

=
m1∑
i=0

m1∑
i=0

m3∑
k=0

f
(

i
m1

, j
m2

, k
m3

)
·ωm1,i (x, α) ·ωm2,j (y, β) ·ωm3,k (z, γ) .

By direct computation, one obtains

Lm1,m2,m3 (e0) (x, y, z) = 1, Lm1,m2,m3 (e1) (x, y, z) = x,

Lm1,m2,m3 (e2) (x, y, z) = y, Lm1,m2,m3 (e3) (x, y, z) = z,

Lm1,m2,m3

(
e2
1 + e2

2 + e2
3

)
(x, y, z) = x2 + y2 + z2+

+x(1−x)
1+α

[
1

m1
+ α

]
+ y(1−y)

1+β

[
1

m2
+ β

]
+ z(1−z)

1+γ

[
1

m3
+ γ
]

for any (x, y, z) ∈ I3. It follows that the sequence {Lm1,m2,m3}m1,m2,m3∈N satisfies

the hypothesis of the theorem 2.1 with

α(1)
m1,m2,m3

= α(2)
m1,m2,m3

= α(3)
m1,m2,m3

= 0

and

δm1,m2,m3(x1, x2, x3) =
x (1− x)

1 + α

[
1

m1
+ α

]
+

+
y (1− y)

1 + β

[
1

m2
+ β

]
+

z (1− z)
1 + γ

[
1

m3
+ γ

]
If α (m1) , β (m2) , γ (m3) tend to zero as m1,m2,m3 tend to infinity, from the

theorem 2.1 one obtains that the sequence {Um1,m2,m3 ( f )} , defined by

Um1,m2,m3 ( f ) (x, y, z) =
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=
m1∑
i=0

m1∑
i=0

m3∑
k=0

f

(
i

m1
,

j

m2
,

k

m3

)
· ωm1,i (x, α) · ωm2,j (y, β) · ωm3,k (z, γ) ·

·
{

f

(
i

m1
, y, z

)
+ f

(
x,

j

m2
, z

)
+ f

(
x, y,

k

m3

)
−

−f

(
i

m1
,

j

m2
, z

)
− f

(
i

m1
, y,

k

m3

)
− f

(
x,

j

m2
,

k

m3

)
+ f

(
i

m1
,

j

m2
,

k

m3

)}
converges to f, uniformly on I3, as m1,m2,m3 tend to infinity, for any f ∈ Cb

(
I3
)
.

This result was obtained first in the paper [1.3] without the theorem 2.1.

Example 2: In this example one consider the operator of Bleimann, Butzer

and Hahn L̃, L, L : RI → RI , given by

L̃ ( f) (x) =
m1∑
i=0

f

(
i

m1 − i + 1

)
· pm1,i (x) , pm1,i (x) =

 m1

i

 · xi

(1 + x)m1 ;

L ( g) (y) =
m2∑
j=0

g

(
j

m2 − j + 1

)
· qm2,j (y) , qm2,j (y) =

 m2

j

 · yj

(1 + y)m2 ;

L (h) (z) =
m3∑
k=0

h

(
k

m3 − k + 1

)
· rm3,k (z) , rm3,k (z) =

 m3

k

 · zjk

(1 + z)m3 .

The operator Lm1 , Lm2 , Lm3 are the parametric extensions of the operators

from above, i.e.

Lm1 ( f ) (x, y, z) =
m1∑
i=0

f

(
i

m1 − i + 1
, y, z

)
· pm1,i (x) ,

Lm2 ( f ) (x, y, z) =
m2∑
j=0

g

(
x,

j

m2 − j + 1
, z

)
· qm2,j (y) ,

Lm3 ( f ) (x, y, z) =
m3∑
k=0

h

(
x, y,

k

m3 − k + 1

)
· rm3,k (z) .

The product of these extensions is the positive linear operator

Lm1,m2,m3 ( f ) (x, y, z) =
m1∑
i=0

m1∑
i=0

m3∑
k=0

f

(
i

m1
,

j

m2
,

k

m3

)
·pm1,i (x)·qm2,j (y)·rm3,k (z) .
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It is easy to see that {Lm1,m2,m3} satisfies the hypothesis of theorem 2.1.

Applying then this theorem, it follows that the sequence {Um1,m2,m3 ( f)} , where

Um1,m2,m3 ( f) =
m1∑
i=0

m1∑
i=0

m3∑
k=0

f

(
i

m1
,

j

m2
,

k

m3

)
· pm1,i (x) · qm2,j (y) · rm3,k (z) ·

· ·
{

f

(
i

m1
, y, z

)
+ f

(
x,

j

m2
, z

)
+ f

(
x, y,

k

m3

)
−

−f

(
i

m1
,

j

m2
, z

)
− f

(
i

m1
, y,

k

m3

)
− f

(
x,

j

m2
,

k

m3

)
+ f

(
i

m1
,

j

m2
,

k

m3

)}
converges to f, uniformly on I3 as m1,m2,m3 tend to infinity.
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A NOTE ON STATE ESTIMATION FROM DOUBLY STOCHASTIC
POINT PROCESS OBSERVATION

DANG PHUOC HUY AND TRAN JUNG THAO

0. Introduction

In this note we study a state estimation of a Markovian semimartingale from

a doubly stochastic point process observation.

All stochastic processes below are supposed to be defined on a filtered prob-

ability space (Ω,F , (Ft)t≥0, P ) where (Ft) is a filtration satisfying usual conditions.

Consider a state estimation problem where the signal process is a real-valued

continuous semimartingale X that is also a Markov process given by

Xt = X0 +
∫ t

0

Hsds+Bt, t ∈ R+, (0.1)

where Ht is a continuous process and Bt is a standard Brownian motion, and the

observation is a doubly stochastic point process Nt driven by Xt: Nt is a point

process of intensity λt = λ(Xt) where λ is a nonnegative boolean function.

Denote by Zu
t the process exp(iuXt). We want to investigate the best state

estimation

πt(Zu
t ) = E[Zu

t |FN
t ] (0.2)

where FN
t is the natural filtration of the process Nt i.e. FN

t = σ(Ns, s ≤ t). In the

sequel the notation πt(. . . ) stands for the conditional expectation given FN
t .

1. A stochastic differential equation for the best state estimation of Zu
t

Theorem 1. πt(Zu
t ) satisfies the following equation:

πt(Zu
t ) = E[Zu

0 ] + iu

∫ t

0

πs(Zu
sHs)ds−

u2

2

∫ t

0

πs(Zu
s )+

+
∫ t

0

λ−1
s πs[(Zu

s − πs(Zu))(λs − πs(λs))](dNs − πs(λs)ds) (1.1)
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Proof. Applying the Ito formula to zu
t = exp(iuXt) we have

Zu
t = Zu

0 +
∫ t

0

(
iuHs −

u2

2

)
ds+ iu

∫ t

0

Zu
s dBs.

Zu
t is in fact a semimartingale, and the filtering equation from point process

observation [2] applied to Zu
t :

Zt(Zu) = E[Zu
0 ] +

∫ t

0

πs

[
Zu

s

(
iuHs −

u2

2

)]
ds+

+
∫ t

0

π−1
s (λ)[πs(Zuλs)− πs(Zu

s )πs(λs)][dNs − πs(λs)ds].

Now

πs{[Zu
s − πs(Zu

s )][λs − πs(λs)]} =

= πs[Zu
s λs − Zu

s πs(λs)− πs(Zu
s )λs + πs(Zu

s )πs(λs)] =

= πs(Zu
s λs)− πs[Zu

s πs(λs)]− πs[πs(Zu
s )λs] + πs(Zu

s )πs(λs). (1.2)

It follows from

πs[Zu
s πs(λs)] = E[Zu

sE(λs|FN
s )|FN

s ] =

= E(λs|FN
s )E(Zu

s |FN
s ) = πs(λs)πs(Zu),

and also from

πs[πs(Zu
s )λs] = πs(Zu

s )πs(λs)

that it remains only the first and the second terms in the left hand side of (1.2) and

we have:

πs(Zu
s λs)− πs(Zu

s )πs(λs) = πs[(Zu
s − πs(Zu

s ))(λs − πs(λs))]

and the equation (1.1) is thus completely proved.

Remark. In the multidimensional case, the signal process is a vector process

given by

Xt = X0 +
∫ t

0

Hsds+Bt

where X,H,B are multidimensional process. By Zu
t we denote now the process

exp(i〈u,Xt〉), where u = (u1, . . . , un) ∈ Rn, Xt = (X1
t , . . . , X

n
t ) and 〈, 〉 stands for the
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scalar product in Rn. And the best state estimation for Zu
t based on an observation

process that is a doubly stochastic point of intensity λt = λ(Xt) is

πt(Zu
t ) ≡ E[Zu

t |FN
t ] = E[exp i〈u,Xt〉|FN

t ]. (1.3)

The stochastic differential equation for πt(Zu
t ) is the same as (1.1) with Zu

t =

exp〈u,Xt〉.

In the next Section, we will establish a connection between the characteristic

function of Xt and the filter of Zu
t and so we will see that the laws of the signal Xt

can be completely determined by πt(Zu
t ).

2. Characteristic function of Xt

Put

ψt(u) = lim
∆t→0

1
∆t

E[exp(iu∆Xt)− 1|Xt] (2.1)

is the limit in the right hand side exists, where E[·|Xt] is the conditional expectation

given Xt.

Denote by ϕt(u) the characteristic function of Xt:

ϕt(u) = E[exp(iuXt)] = E[Zu
t ].

We note that

ϕt+∆t(u) = E[exp(iuXt+∆t)] = E[exp iu(Xt + ∆Xt)] =

= E[exp(iuXt exp iu∆Xt] =

= E[exp(iuXtE(exp iu∆Xt|Xt))]

ϕt+∆t(u)− ϕt(u) = E{(exp(iuXt)E[exp iu∆Xt − 1|Xt]}

It follows that

∂ϕt(u)
∂t

= lim
∆t↓0

E

{
(exp iuXt)

1
∆t

E[exp iu∆Xt − 1|Xt]
}
.

We have now:
∂ϕt(u)
∂t

= E[Zu
t ψt(u)]

ϕ0(u) = E[Zu
0 ]

(2.2)

29



DANG PHUOC HUY AND TRAN JUNG THAO

Next, we denote by FN
t−ε the σ-algebra generated by all Ns, s ≤ t− ε for all

small ε > 0. In noticing that by definition (2.1) ψt(u) is conditioning to the random

variable χt so it is independent of FN
t−ε and we have:

E[Zu
t ψ(u)] = E[E(Zu

t ψ(u)|FN
t−ε)] = E[ψt(u)E(Zu

t |FN
t−ε)].

Because of the left continuity of (FN
t ) we have by letting ε→ 0

E[Zu
t ψt(u)] = E[ψt(u)E(Zu

t |FN
t )] = E[ψt(u)πt(Zu

t )]

then we have the following

Proposition 1. The law of the signal Xt can be determined in term of

filtering by the following equation:

∂ϕt(u)
∂t

= E[ψt(u)πt(Zu
t )]

ϕ0(u) = E[Zu
0 ]

(2.3)

We will see in next Section that Xt can be recognized by filtering and the

process Ht.

3. An expression of the function ψt(u)

The equation (1.1) can be rewritten as:

dXt = Htdt+ dBt (3.1)

or

∆Xt = Ht∆t+ ∆Bt (3.2)

where ∆Xt = Xt+∆t − Xt, ∆Bt = Bt+∆t − Bt, Bt is a Brownian motion and since

EBtBs = min(t, s), we have

E[exp iu∆Xt − 1|Xt] = exp[iuHt(Xt)∆t]E[exp iu∆Bt|Xt]− 1

It follows from the fact that ∆Bt is normally distributed with mean 0 and

covariance ∆t

E[iu∆Bt|Xt] = exp
[
−1

2
u2∆t

]
.
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Hence,

ψt(u) = lim
∆t→0

1
∆t

E[exp iu∆Xt − 1|Xt] =

= exp
(
iuHt −

u2

2

)
or

ψt(u) = exp
(
iuHt −

u2

2

)
. (3.3)

A substitution of this expression of ψt into (2.3) yields

Proposition 2.

∂ϕt(u)
∂t

= E

{[
exp

(
iuHt −

u2

2

)]
πt(Zu

t )
}

ϕ0(u) = E[Z0]

(3.4)

4. A Bayes formula for the best state estimation of Zu
t

We know that by a change of reference probability P → Q such that Pt � Qt

for all restriction Pt and Qt of P and Q respectively to (Ω,Ft), we have [1]

EP [Ut|Gt] =
EQ[UtLt|Gt]
EQ[Lt|Gt]

where Ut is a real-valued bounded process adapted to Ft,Gt is any sub σ-field of

Ft : Gt ⊂ Ft and Lt =
dPt

dQt
.

Now, for a doubly stochastic point process Yt of intensity λt = λ(Xt) we have

Lt =

 ∏
0≤s≤t

λ(Xs)∆Ns

 exp
{∫ t

0

(1− λ(Xs))ds
}
.

We note that under Q the process Nt is a Poisson process of intensity 1. And

we have

πt(Zu
t ) =

EQ[Zu
t Lt|FN

t ]
EQ[Lt|FN

t ]
=
EQ[Lt exp iuXt|FN

t ]
EQ[Lt|FN

t ]
.
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ON THE OSTROWSKI’S INTEGRAL INEQUALITY FOR
LIPSCHITZIAN MAPPINGS AND APPLICATIONS

S.S. DRAGOMIR

Abstract. A generalization of Ostrowski’s inequality for lipschitzian map-

pings and applications in Numerical Analysis and for Euler’s Beta function

are given.

1. INTRODUCTION

The following theorem contains the integral inequality which is known in the

literature as Ostrowski’s inequality [2, p. 469].

THEOREM 1.1. Let f : [a, b] → R be a differentiable mapping on (a, b)

whose derivative is bounded on (a, b) and denote ‖f ′‖∞ = supt∈(a,b) |f ′(t)| < ∞. Then

for all x ∈ [a, b] we have the inequality∣∣∣∣∣f(x)− 1
b− a

∫ b

a

f(t)dt

∣∣∣∣∣ ≤
[

1
4

+
(x− a+b

2 )2

(b− a)2

]
(b− a)‖f ′‖∞.

The constant 1
4 is sharp in the sense that it can not be replaced by a smaller

one.

In this paper we prove that Ostrowski’s inequality also holds for lipschitzian

mappings and apply it in obtaining a Riemann’s type quadrature formula for this

class of mappings. Applications for Euler’s Beta function are also given.

1991 Mathematics Subject Classification. 26D15, 26D99.

Key words and phrases. Ostrowski’s Inequality, Numerical Integration, Beta Mapping.
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2. OSTROWSKI’S INEQUALITY FOR LIPSCHITZIAN MAPPINGS

The following inequality for lipschitzian mappings holds:

THEOREM 2.1. Let u : [a, b] → R be an L−lipschitzian mapping on [a, b],

i.e.,

|u(x)− u(y)| ≤ L|x− y| for all x, y ∈ [a, b].

Then we have the inequality∣∣∣∣∣
∫ b

a

u(t)dt− u(x)(b− a)

∣∣∣∣∣ ≤ L(b− a)2
[

1
4

+
(x− a+b

2 )2

(b− a)2

]
. (2.1)

for all x ∈ [a, b] .

The constant 1
4 is the best possible one.

Proof. Using the integration by parts formula for Riemann-Stieltjes integral we have∫ x

a

(t− a)du(t) = u(x)(x− a)−
∫ x

a

u(t)dt

and ∫ b

x

(t− b)du(t) = u(x)(b− x)−
∫ b

x

u(t)dt.

If we add the above two equalities, then we get

u(x)(b− a)−
∫ b

a

u(t)dt =
∫ b

a

p(x, t)du(t) (2.2)

where

p(x, t) :=
{

t− a if t ∈ [a, x)
t− b if x ∈ [x, b]

,

for all x, t ∈ [a, b].

Now, assume that ∆n : a = x
(n)
0 < x

(n)
1 < ... < x

(n)
n−1 < x

(n)
n = b is a sequence

of divisions with ν(∆n) → 0 as n →∞, where ν(∆n) := maxi∈{0,...,n−1}(x
(n)
i+1 − x

(n)
i )

and ξ
(n)
i ∈ [x(n)

i , x
(n)
i+1]. If p : [a, b] → R is Riemann integrable on [a, b] and v : [a, b]

→ R is L-lipschitzian on [a, b], then∣∣∣∣∣
∫ b

a

p(x)dv(x)

∣∣∣∣∣ =

∣∣∣∣∣ lim
ν(∆n)→0

n−1∑
i=0

p(ξ(n)
i )[v(x(n)

i+1)− v(x(n)
i )]

∣∣∣∣∣
≤ lim

ν(∆n)→0

n−1∑
i=0

∣∣∣p(ξ(n)
i )

∣∣∣ (x(n)
i+1 − x

(n)
i )

∣∣∣∣∣v(x(n)
i+1)− v(x(n)

i )

x
(n)
i+1 − x

(n)
i

∣∣∣∣∣
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≤ L lim
ν(∆n)→0

n−1∑
i=0

|p(ξ(n)
i )|(x(n)

i+1 − x
(n)
i ) = L

∫ b

a

|p(x)|dx. (2.3)

Applying the inequality (2.3) for p(x, t) as above and v(x) = u(x), x ∈ [a, b],

we get ∣∣∣∣∣
∫ b

a

p(x, t)du(t)

∣∣∣∣∣ ≤ L

∫ b

a

|p(x, t)|dt

= L[
∫ x

a

[
t− a|dt +

∫ b

x

|t− b|dt

]
=

L

2
[(x− a)2 + (b− x)2]

= L(b− a)2[
1
4

+
(x− a+b

2 )2

(b− a)2
] (2.4)

and then by (2.4), via the identity (2.2), we deduce the desired inequality (2.1).

Now, assume that the inequality (2.1) holds with a constant C > 0, i.e.,∣∣∣∣∣
∫ b

a

u(t)dt− u(x)(b− a)

∣∣∣∣∣ ≤ L(b− a)2
[
C +

(x− a+b
2 )2

(b− a)2

]
(2.5)

for all x ∈ [a, b].

Consider the mapping f : [a, b] → R, f(x) = x in (2.5). Then∣∣∣∣x− a + b

2

∣∣∣∣ ≤ C +
(x− a+b

2 )2

(b− a)2

for all x ∈ [a, b]; and then for x = a, we get

b− a

2
≤

(
C +

1
4

)
(b− a)

which implies that C ≥ 1
4 and the theorem is completely proved.

The following corollary holds:

COROLLARY 2.2. Let u : [a, b] → R be as above. Then we have the

inequality: ∣∣∣∣∣
∫ b

a

u(t)dx− u(
a + b

2
)(b− a)

∣∣∣∣∣ ≤ 1
4
L(b− a)2. (2.6)
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Remark 2.3. It is well known that if f : [a, b] → R is a convex mapping on

[a, b], then Hermite-Hadamard’s inequality holds

f

(
a + b

2

)
≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)
2

. (2.7)

Now, if we assume that f : I ⊂ R → R is convex on I and a, b ∈ Int(I), a < b, then

f ′+ is monotonous nondecreasing on [a, b] and by Theorem 2.1 we get

0 ≤ 1
b− a

∫ b

a

f(x)dx− f

(
a + b

2

)
≤ 1

4
f ′+(b)(b− a) (2.8)

which gives a counterpart for the first membership of Hadamard’s inequality.

3. A QUADRATURE FORMULA OF RIEMANN TYPE

Let In : a = x0 < x1 < ... < xn−1 < xn = b be a division of the interval

[a, b] and ξi ∈ [xi, xi+1] (i = 0, ..., n − 1) a sequence of intermediate points for In.

Construct the Riemann sums

Rn(f, In, ξ) =
n−1∑
i=0

f(ξi)hi

where hi := xi+1 − xi.

We have the following quadrature formula

THEOREM 3.1. Let f : [a, b] → R be an L−lipschitzian mapping on [a, b]

and In, ξi (i = 0, ..., n−1) be as above. Then we have the Riemann quadrature formula∫ b

a

f(x)dx = Rn(f, In, ξ) + Wn(f, In, ξ) (3.1)

where the remainder satisfies the estimation

|Wn(f, In, ξ)| ≤ 1
4
L

n−1∑
i=0

h2
i + L

n−1∑
i=0

(
ξi −

xi + xi+1

2

)2

≤ 1
2
L

n−1∑
i=0

h2
i (3.2)

for all ξi (i = 0, ..., n− 1) as above.

The constant 1
4 is sharp in (3.2).
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Proof. Apply Theorem 2.1 on the interval [xi, xi+1] to get∣∣∣∣∫ xi+1

xi

f(x)dx− f(ξi)hi

∣∣∣∣ ≤ L

[
1
4
h2

i +
(

ξi −
xi + xi+1

2

)2
]

. (3.3)

Summing over i from 0 to n− 1 and using the generalized triangle inequality

we get

|Wn(f, In, ξ)| ≤
n−1∑
i=0

∣∣∣∣∫ xi+1

xi

f(x)dx− f(ξi)hi

∣∣∣∣
≤ L

n−1∑
i=0

[
1
4
h2

i +
(

ξi −
xi + xi+1

2

)2
]

.

Now, as (
ξi −

xi + xi+1

2

)2

≤ 1
4
h2

i

for all ξi ∈ [xi, xi+1](i = 0, ..., n− 1) the second part of (3.2) is also proved.

Note that the best estimation we can get from (3.2) is that one for which

ξi = xi+xi+1
2 obtaining the following midpoint formula:

COROLLARY 3.2. Let f, In be as above. Then we have the midpoint rule∫ b

a

f(x)dx = Mn(f, In) + Sn(f, In)

where

Mn(f, In) =
n−1∑
i=0

f

(
xi + xi+1

2

)
hi

and the remainder Sn(f, In) satisfies the estimation

|Sn(f, In)| ≤ 1
4
L

n−1∑
i=0

h2
i .

Remark 3.3. If we assume that f : [a, b] → R is differentiable on (a, b) and

whose derivative f ′ is bounded on (a, b) we can put instead of L the infinity norm

‖f ′‖∞ obtaining the estimation due to Dragomir-Wang from the paper [1].
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4. APPLICATIONS FOR EULER’S BETA MAPPING

Consider the mapping Beta for real numbers

B(p, q) :=
∫ 1

0

tp−1(1− t)q−1dt, p, q > 0

and the mapping ep,q(t) := tp−1(1− t)q−1, t ∈ [0, 1].

We have for p, q > 1 that

e′p,q(t) = ep−1,q−1(t)[p− 1− (p + q − 2)t].

If t ∈
[
0, p−1

p+q−2

)
then e′p,q(t) > 0 and if t ∈

(
p−1

p+q−2 , 1
]

then e′p,q(t) < 0 which

shows that for t0 = p−1
p+q−2 we have a maximum for ep,q and then:

sup
t∈[0,1]

ep,q(t) = ep,q(t0) =
(p− 1)p−1(q − 1)q−1

(p + q − 2)p+q−2
; p, q > 1.

Consequently

|e′p,q(t)| ≤
(p− 2)p−2(q − 2)q−2

(p + q − 4)p+q−4
max

t∈[0,1]
|p− 1− (p + q − 2)t|

= max {p− 1, q − 1} (p− 2)p−2(q − 2)q−2

(p + q − 4)p+q−4
; p, q > 2

for all t ∈ [0, 1] and then

‖ e′p,q‖∞ ≤ max {p− 1, q − 1} (p− 2)p−2(q − 2)q−2

(p + q − 4)p+q−4
p, q > 2. (4.1)

The following inequality for Beta mapping holds

PROPOSITION 4.1. Let p, q > 2 and x ∈ [0, 1]. Then we have the in-

equality

|B(p, q)− xp−1(1− x)q−1|

≤ max {p− 1, q − 1} (p− 2)p−2(q − 2)q−2

(p + q − 4)p+q−4
[
1
4

+ (x− 1
2
)2]. (4.2)

The proof follows by Theorem 2.1 applied for the mapping ep,q and taking

into account that ‖ e′p,q‖∞ satisfies the inequality (4.1).
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COROLLARY 4.2. Let p, q > 2. Then we have the inequality∣∣∣∣B(p, q)− 1
2p+q−2

∣∣∣∣ ≤ 1
4

max {p− 1, q − 1} (p− 2)p−2(q − 2)q−2

(p + q − 4)p+q−4
.

Now, if we apply Theorem 3.1 for the mapping ep,q we get the following

approximation of Beta mapping in terms of Riemann sums.

PROPOSITION 4.3. Let In : a = x0 < x1 < ... < xn−1 < xn = b

be a division of the interval [a, b] , ξi ∈ [xi, xi+1] (i = 0, ..., n − 1) a sequence of

intermediate points for In and p, q > 2. Then we have the formula

B(p, q) =
n−1∑
i=0

ξp−1
i (1− ξi)

q−1hi + Tn(p, q)

where the remainder Tn(p, q) satisfies the estimation

|Tn(p, q)| ≤ max {p− 1, q − 1} (p− 2)p−2(q − 2)q−2

(p + q − 4)p+q−4

×

[
1
4

n−1∑
i=0

h2
i +

n−1∑
i=0

(
ξi −

xi + xi+1

2

)2
]

≤ 1
2

max {p− 1, q − 1} (p− 2)p−2(q − 2)q−2

(p + q − 4)p+q−4

n−1∑
i=0

h2
i .

Particularly, if we choose above ξi = xi+xi+1
2 (i = 0, ..., n−1) then we get the approx-

imation

B(p, q) =
1

2p+q−2

n−1∑
i=0

(xi + xi+1)p−1(2− xi − xi+1)q−1 + Vn(p, q)

where

|Vn(p, q)| ≤ 1
4

max {p− 1, q − 1} (p− 2)p−2(q − 2)q−2

(p + q − 4)p+q−4

n−1∑
i=0

h2
i .
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EXPONENTIAL STABILITY OF EVOLUTION OPERATORS

DAN RADU LAŢCU AND PETRE PREDA

Abstract. The aim of this paper is to give some sufficient, respectively

necessary and sufficient conditions, for the exponential stability of evolu-

tion operators in infinite-dimensional spaces. The obtained results are like

those, of Datko-type, for evolutionary processes which are linear operators-

valued.

1. Introduction

Let X be a Banach space and let (Xt)t≥0 be a family of parts of X.

Definition 1. The family of applications Φ(t, t0) : Xt0 → Xt, t ≥ t0 ≥ 0,

will be called an evolution operator in X, if the following conditions are satisfied:

i) Φ(t, t)x = x, for all t ≥ 0 and x ∈ Xt.

ii) Φ(t, s)Φ(s, t0) = Φ(t, t0), for all t ≥ s ≥ t0 ≥ 0.

iii) Φ(·, s)x : [s,∞) → X is continuous, for all s ≥ 0 and x ∈ Xs.

iv) There is a nondecreasing function p(·) : R+ → (0,∞), such that

‖Φ(t, s)x‖ ≤ p(t− s)‖x‖, for all t ≥ s ≥ 0 and x ∈ Xs.

Remark 1. Condition iv) can be replaced by

v) There are M,ω > 0 such that

‖Φ(t, s)x‖ ≤ Meω(t−s)‖x‖,

for all t ≥ s ≥ 0 and x ∈ Xs.

Proof. Let iv) be satisfied and let t ≥ s ≥ 0 and x ∈ Xs. Then there are

n ∈ N and r ∈ [0, 1) such that t− s = n + r. We have

‖Φ(t, s)x‖ ≤ p(t− s− n)‖Φ(s + n, s)x‖ ≤ p(1)n+1‖x‖.

1991 Mathematics Subject Classification. 34D05, 93D20.
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Let ω > max{0, ln p(1)}. Then

‖Φ(t, s)x‖ ≤ p(1)eωn‖x‖ ≤ p(1)eω(t−s)‖x‖.

The converse is obviously. �

In the sequel we will denote by M and ω those constants which satisfy con-

dition v).

Definition 2. The evolution operator Φ(·, ·) will be called exponentially

stable, if there are ν > 0 and a function N(·) : R+ → (0,∞) such that

‖Φ(t, t0)x‖ ≤ N(t0)e−ν(t−t0)‖x‖,

for all t ≥ t0 ≥ 0 and x ∈ Xt0 .

Remark 2. Let Φ(·, ·) be an evolution operator. The following assertions

are equivalent:

(1) Φ(·, ·) is exponentially stable.

(2) There are ν > 0 and N(·) : R+ → (0,∞) such that

‖Φ(t, t0)x‖ ≤ N(s)e−ν(t−s)‖Φ(s, t0)x‖,

for all t ≥ s ≥ t0 ≥ 0 and x ∈ Xt0 .

Definition 3. The evolution operator Φ(·, ·) will be called uniformly expo-

nentially stable, if there are N, ν > 0 such that

‖Φ(t, t0)x‖ ≤ Ne−ν(t−t0)‖x‖,

for all t ≥ t0 ≥ 0 and x ∈ Xt0 .

Remark 3. The evolution operator Φ(·, ·) is uniformly exponentially stable

if and only if there are N, ν > 0 such that

‖Φ(t, t0)x‖ ≤ Ne−ν(t−s)‖Φ(s, t0)x‖,

for all t ≥ s ≥ t0 ≥ 0 and x ∈ Xt0 .

Lemma. Let Φ(·, ·) be an evolution operator. If there are r > 0 and a

continuous function g : [r,∞) → (0,∞) such that inf
t>r

g(t) < 1,

‖Φ(t, t0)x‖ ≤ g(t− t0)‖x‖, for all t0 ≥ 0, t ≥ t0 + r and x ∈ Xt0 ,

then Φ(·, ·) is uniformly exponentially stable.
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Proof. Let δ > r such that g(δ) < 1.

For t ≥ t0 ≥ 0 there is n ∈ N such that nδ ≤ t− t0 < (n + 1)δ.

Let x ∈ Xt0 . Then

‖Φ(t, t0)x‖ ≤ Meω(t−nδ−t0)‖Φ(t0 + nδ, t0)x‖ ≤

≤ Meω(t−nδ−t0)g(δ)n‖x‖.

Denoting ν =
− ln g(δ)

δ
> 0, it follows that

‖Φ(t, t0)x‖ ≤ Meωδeνδe−ν(t−t0)‖x‖.

Denoting N = Me(ω+ν)δ, we obtain

‖Φ(t, t0)x‖ ≤ Ne−ν(t−t0)‖x‖,

for t ≥ t0 ≥ 0 and x ∈ Xt0 . �

Theorem 1. The evolution operator Φ(·, ·) is uniformly exponentially stable

if and only if there is K ∈ (0,∞) such that∫ ∞

t

(∫ u+1

u

‖Φ(s, t)x‖ds

)
du ≤ K‖x‖, for all t ≥ 0 and x ∈ Xt.

Proof. Let Φ(·, ·) be an evolution operator which satisfy, for a K > 0, the

condition of the hypothesis. We have

‖Φ(t, t0)x‖ ≤ Meω(t−s)‖Φ(s, t0)x‖,

so

eωs‖Φ(t, t0)x‖ ≤ Meωt‖Φ(s, t0)x‖, for t ≥ s ≥ t0 ≥ 0 and x ∈ Xt0 .

Let t ≥ t0 + 1. Integrating successively the last relation we obtain

1
ω

(eω − 1)eωu‖Φ(t, t0)x‖ ≤ Meωt

∫ u+1

u

‖Φ(s, t0)x‖ds,

for u ∈ [t0, t− 1], and so

eω − 1
ω2

(eωt−ω − eωt0)‖Φ(t, t0)x‖ ≤

≤ Meωt

∫ t−1

t0

(∫ u+1

u

‖Φ(s, t0)x‖ds

)
du ≤ MKeωt‖x‖.
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It follows that

e−ω‖Φ(t, t0)x‖ ≤ e−ω(t−t0)‖Φ(t, t0)x‖+
MKω2

eω − 1
‖x‖ ≤

≤ M

(
1 +

Kω2

eω − 1

)
‖x‖.

For t0 ≤ t < t0 + 1 and x ∈ Xt0 we have

‖Φ(t, t0)x‖ ≤ Meω(t−t0)‖x‖ ≤ Meω‖x‖.

Denoting L = Meω

(
1 +

Kω2

eω − 1

)
. we obtain

‖Φ(t, t0)x‖ ≤ L‖x‖, for all t ≥ t0 ≥ 0 and x ∈ Xt0 .

It follows that, for t ≥ s ≥ t0 ≥ 0, x ∈ Xt0 , we have

‖Φ(t, t0)x‖ = ‖Φ(t, s)Φ(s, t0)x‖ ≤ L‖Φ(s, t0)x‖.

When t ≥ t0 + 1, we obtain

‖Φ(t, t0)x‖ ≤ L

∫ u+1

u

‖Φ(s, t0)x‖ds, for all u ∈ [t0, t− 1],

and so

(t− 1− t0)‖Φ(t, t0)x‖ ≤ L

∫ t−1

t0

(∫ u+1

u

‖Φ(s, t0)x‖ds

)
du ≤ LK‖x‖.

It follows by the preceding lemma that Φ(·, ·) is uniformly exponentially sta-

ble.

The converse is immediately by direct calculation. �

Theorem 2. Let Φ(·, ·) be an evolution operator. If there are α > 0 and a

function H(·) : R+ → (0,∞) such that∫ ∞

t

(∫ u+1

u

eα(s−t)‖Φ(s, t)x‖ds

)
du ≤ H(t)‖x‖, for all t ≥ 0 and x ∈ Xt,

then there is a function N(·) : R+ → (0,∞) such that

‖Φ(t, t0)x‖ ≤ N(t0)e−α(t−t0)‖x‖, for all t ≥ t0 ≥ 0 and x ∈ Xt0 .

Hence Φ(·, ·) will be exponentially stable.

Proof. Let t0 ≥ 0, t ≥ t0 + 1 and x ∈ Xt0 . We have

‖Φ(t, t0)x‖ ≤ Meω(t−s)‖Φ(s, t0)x‖, for s ∈ [t0, t].
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It follows that

e−αt0e(ω+α)s‖Φ(t, t0)x‖ ≤ Meωteα(s−t0)‖Φ(s, t0)x‖,

and by integration, for u ∈ [t0, t− 1], we have

e−αt0
eω+α − 1

ω + α
e(ω+α)u‖Φ(t, t0)x‖ ≤ Meωt

∫ u+1

u

eα(s−t0)‖Φ(s, t0)x‖ds,

and so

(e(ω+α)(t−1) − e(ω+α)t0)‖Φ(t, t0)x‖ ≤

≤ Meωt

∫ t−1

t0

(∫ u+1

u

eα(s−t0)‖Φ(s, t0)x‖ds

)
du,

from which

(eα(t−t0)−(ω+α) − e−ω(t−t0))‖Φ(t, t0)x‖ ≤ M
(ω + α)2

eω+α − 1
H(t0)‖x‖.

It follows that

eα(t−t0)‖Φ(t, t0)x‖ ≤ eω+α

(
M

(ω + α)2

eω+α − 1
H(t0) + M

)
‖x‖.

Denoting N(t0) = Meω+α

(
(ω + α)2

eω+α−1
H(t0) + 1

)
, we obtain

‖Φ(t, t0)x‖ ≤ N(t0)e−α(t−t0)‖x‖.

For t0 ≤ t < t0 + 1 and x ∈ Xt0 we have

‖Φ(t, t0)x‖ ≤ Meωeαe−α(t−t0)‖x‖.

So, it follows that

‖Φ(t, t0)x‖ ≤ N(t0)e−α(t−t0)‖x‖, for all t ≥ t0 ≥ 0 and x ∈ Xt0 . �

Using in the proofs of the theorems the p power of the norm, respectively the

p power of the inner integral (p ∈ [1,∞)), we obtain the following results.

Corollary 1. Let Φ(·, ·) be an evolution operator and p ∈ [1,∞) be arbitrar-

ily. The following assertions are equivalent.

1) Φ(·, ·) is uniformly exponentially stable.

2) There is K ∈ (0,∞) such that∫ ∞

t

(∫ u+1

u

‖Φ(s, t)x‖pds

)
du ≤ K‖x‖p, for all t ≥ 0 and x ∈ Xt.
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DAN RADU LAŢCU AND PETRE PREDA

3) There is K ∈ (0,∞) such that∫ ∞

t

(∫ u+1

u

‖Φ(s, t)x‖ds

)p

du ≤ K‖x‖p, for all t ≥ 0 and x ∈ Xt.

Corollary 2. Let Φ(·, ·) be an evolution operator and p ∈ [1,∞) be arbitrar-

ily.

1) If there are α > 0 and a function H(·) : R+ → (0,∞) such that∫ ∞

t

(∫ u+1

u

eα(s−t)‖Φ(s, t)x‖pds

)
du ≤ H(t)‖x‖p, for all t ≥ 0 and x ∈ Xt,

then there is N(·) : R+ → (0,∞) such that

‖Φ(t, t0)x‖ ≤ N(t0)e−
α
p (t−t0)‖x‖, for all t ≥ t0 ≥ 0 and x ∈ Xt0 .

2) If there are a function H(·) : R+ → (0,∞) and α > 0 such that∫ ∞

t

(∫ u+1

u

eα(s−t)‖Φ(s, t)x‖ds

)p

du ≤ H(t)‖x‖p, for all t ≥ 0 and x ∈ Xt,

then there is N(·) : R+ → (0,∞) such that

‖Φ(t, t0)x‖ ≤ N(t0)e−α(t−t0)‖x‖, for all t ≥ t0 ≥ 0 and x ∈ Xt0 .
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ON THE CONVERGENCE OF ITERATIVE PROCESS FOR
NON-LOCAL PROBLEM SOLUTION IN SURGERY

I. OZTURK AND M.M. LAFISHEVA

Abstract. In this study a priori estimate for the solution of parabolic

differential equation in surgery was found. Then this estimate was used to

prove the convergence of iterative process.

1. In domain Q = Ωx (0, T ) ,Ω ≡ {x = (x1, x2) : r0 < x1 < R, 0 < x2 < π},

consider the following problem

∂u

∂t
=

1
x1

∂

∂x1

(
x1k (x, t)

∂u

∂x1

)
+

1
x2

1

∂

∂x2

(
k (x, t)

∂u

∂x2

)
+ f (x, t) , (1)

 k ∂u
∂x1

|x1=r0 =
∫ α

r0
udx1 − µ1 (t, x2) , x1 = r0,

−k ∂u
∂x1

= βu− µ2 (t, x2) , x1 = R,
(2)

 k 1
x1

∂u
∂x2

= γ1u− χ1 (x1, t) , x2 = 0,

−k 1
x1

∂u
∂x2

= γ2u− χ2 (x1, t) , x2 = π,
(3)

u (x, 0) = u0 (x) , (4)

where α is a certain number of the interval (r0, R), k (x, t) ≥ c1 >

0, u0 (x) , f, β, µυ, γυ, χυ, (υ = 1, 2) are well known functions which satisfies smooth-

ness conditions necessary for the solution to exist [1]. Problem (1)-(4) appeared

during mathematical simulation of the processes of the heat transference into tissue

[5]. In [1], the existence of the solution of the problem (1)-(4) is proved by using the

potential method.

1991 Mathematics Subject Classification. 65L,34K.
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Our nearest goal is to get a priori estimate for the solution of problem (1)-

(4) whence particularly uniqueness of the solution will be shown. Then the obtained

priori estimate will be used to prove iterative process convergence.

Since the problem with non-local condition (2) generates a non self-conjugate

problem and the sign of corresponding differential operator is not defined, the gen-

eral theory developed for stability and difference scheme cannot be applied to the

above mentioned problem. Besides, non-local condition does not allow to use of any

disjunction scheme for the solution of two-dimensional problem (1)-(4).

All these difficulties can be overcome, if the following sequence of problems

is considered instead of problem (1)-(4).



∂
s
u

∂t = L
s
u +f, L

s
u ≡ 1

x1

∂
∂x1

(
x1k

∂
s
u

∂x1

)
+ 1

x2
1

∂
∂x2

(
k ∂

s
u

∂x2

)
, k ∂

s
u

∂x1
=

∫ α

r0

s−1
u dx1 − µ1, x1 = r0,

−k ∂
s
u

∂x1
= β

s
u−µ2, x1 = R, k 1

x1

∂
s
u

∂x2
= γ1

s
u−χ1, x2 = 0,

−k 1
x1

∂
s
u

∂x2
= γ2

s
u−χ2, x2 = π,

s
u (x, 0) = u0 (x) , s = 1, 2, ...

(5)

where s is iterative index.

In each iteration, the problem (5) becomes regular, so for the numerical solu-

tion of (5), local one-dimensional schemes can be used [2]. Now let’s multiply equation

(1) with the scalar product x1u and integrate by parts, we obtain

1
α

∂

∂t

(
x1, u

2
)

+
(
x1, ku2

x1

)
+

(
1
x1

, ku2
x2

)
+

∫ π

0

Rβu2 (R, x2, t) dx2+

+
∫ π

0

r0u (r0, x2, t)
(∫ α

r0

u (x1, x2, t) dx1

)
dx2 +

∫ R

r0

γ2u
2 (x1, π, t) dx1+

+
∫ R

r0

γ1u
2 (x1, 0, t) dx1 = (f, x1u)+

∫ π

0

Rµ2u (R, x2, t) dx2+
∫ π

0

r0µ1u (r0, x2, t) dx2+

+
∫ R

r0

χ2 (x1, t) u (x1, π, t) dx1 +
∫ R

r0

χ1 (x1, t)u (x1, 0, t) dx1. (6)
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Let’s estimate the right hand-side integrals of (6). Using S.L. Sobolev’s em-

bedding theorem [3], we get

∫ π

0

r0µ1u (r0, x2, t)dx2 ≤
r0

2

(∫ π

0

u2 (r0, x2, t) dx2 +
∫ π

0

µ2
1dx2

)
≤

≤ r0ε

2

∫ π

0

‖ux1‖
2
L2(x1)

dx2 +
r0Cε

2

∫ π

0

‖ux1‖L2(x1)
dx2 +

r0

2

∫ π

0

µ2
1dx2 ≤

≤ ε

2
‖
√

x1ux1‖
2
0 +

Cε

2
‖
√

x1u‖2
0 +

r0

2

∫ π

0

µ2
1dx2, (7)

where ‖u‖L2(x1)
means that the norm is taken in correspondence with variable x1, ε >

0, Cε > 0 are positive constants.

In the same way we find the following

∫ π

0

Rµ2u (R, x2, t) dx2 ≤
R

2r0
ε ‖
√

x1ux1‖
2
0 +

R

2r0
Cε ‖

√
x1u‖2

0 +
R

2

∫ π

0

µ2
2dx2, (8)

∫ R

r0

χ2u (x1, π, t) dx1 ≤
1
2

∫ R

r0

(
ε ‖ux2‖

2
L2(x2)

+ Cε ‖u‖2
L2(x2)

)
dx1 +

1
2

∫ R

r0

χ2
2dx1 ≤

≤ Rε

2

∥∥∥∥ 1
√

x1
ux2

∥∥∥∥2

0

+
Cε

2r0
‖
√

x1u‖2
0 +

1
2

∫ R

r0

χ2
2dx1, (9)

∫ R

r0

χ1u (x1, 0, t) dx1 ≤
Rε

2

∥∥∥∥ 1
√

x1
ux2

∥∥∥∥2

0

+
Cε

2r0
‖
√

x1u‖2
0 +

1
2

∫ R

r0

χ2
1dx1. (10)

Let’s estimate the left hand-side integrals of (6) which corresponds to non-

local condition (2):

r0

∫ π

0

u (r0, x2, t)
(∫ α

r0

u (x1, x2, t) dx1

)
dx2 ≤

≤ r0

2

(∫ π

0

∫ α

r0

u2 (x1, x2, t) dx1dx2 +
α− r0

2

∫ π

0

u2 (r0, x2, t) dx2

)
≤

≤ 1
2

∫ π

0

∫ R

r0

x1u
2 (x1, x2, t) dx1dx2+

r0 (α− r0)
2

∫ π

0

(
ε ‖ux1‖

2
L2(x1)

+ Cε ‖u‖2
L2(x1)

)
dx2

≤ 1
2

(1 + (α− r0)Cε) ‖
√

x1u‖2
0 +

(α− r0)
2

ε ‖
√

x1ux1‖
2
0 , (11)
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(f, x1u) ≤ 1
2
‖
√

x1f‖2
0 +

1
2
‖
√

x1u‖2
0 , (12)

where ‖u‖2
0 =

∫ π

0

∫ R

r0
u2dx1dx2.

Having substituted inequalities (7)-(12) in (6) and chosen sufficiently small

ε, we find

∂

∂t
‖
√

x1u‖2
0 + ν1 ‖

√
x1ux1‖

2
0 + ν2

∥∥∥∥ 1
√

x1
ux2

∥∥∥∥2

0

≤

≤ ‖
√

x1f‖2
0 + M (ε) ‖

√
x1ux1‖

2
0 + R |µ|2 + |χ|2 , (13)

where ν1 = 2c1 − ε
[
1 + (α− r0) + R

r0

]
> 0, ν2 = 2 (c1 −Rε) > 0,M (ε) = 1 +(

1 + 2+R
r0

)
Cε,

|µ|2 =
∫ π

0

(
µ2

1 + µ2
2

)
dx2, |χ|2 =

∫ R

r0

(
χ2

1 + χ2
2

)
dx1.

Integrating the inequality (13) from 0 to t we get

∥∥√x1u
∥∥2

0
+ ν1

∥∥√x1ux1

∥∥2

2,Qt
+ ν2

∥∥∥ 1√
x1

ux2

∥∥∥2

2,Qt

≤

≤ ‖
√

x1f‖2
2,Qt

+ M (ε)
∫ t

0

‖
√

x1u‖2
0 dτ + ‖

√
x1u (x, 0)‖2

0 +

+R

∫ t

0

|µ (τ)|2dτ +
∫ t

0

|χ (τ)|2dτ, (14)

where ‖u‖2
2,Qt

=
∫ t

0
‖u‖2

0dτ .

From inequality (14), we have

‖
√

x1u‖2
0 ≤ M (ε)

∫ t

0

‖
√

x1u‖2
0 dτ + F (t) (15)

where F (t) =
∥∥√x1f

∥∥2

2,Qt
+

∥∥√x1u (x, 0)
∥∥2

0
+ R

∫ t

0
|µ (τ)|2dτ +

∫ t

0
|χ (τ)|2dτ .
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Using well-known Lemma 1.1 [4], from (15) it is obtained

y (t) ≤ eM(ε)ttF (t) , y (t) =
∫ t

0

‖
√

x1u‖2
0dτ. (16)

By making use of (16), we obtain a necessary estimate from (14)

‖
√

x1u‖2
0 + ν1 ‖

√
x1ux1‖

2
2,Qt

+ ν2

∥∥∥∥ 1
√

x1
ux2

∥∥∥∥2

2,Qt

≤

≤ M (t)
[
‖
√

x1f‖2
2,Qt

+ ‖
√

x1u (x, 0)‖2
0 +

∫ t

0

|µ (τ)|2 dτ +
∫ t

0

|µ (τ)|2 dτ

]
. (17)

Since r0 < x1 < R,
√

x1 can be ignored in estimate (17). So we have

‖u‖2
0+ν1 ‖ux1‖

2
2,Qt

+ν2 ‖ux2‖
2
2,Qt

≤ M (t)
[
‖f‖2

2,Qt
+ ‖u0 (x)‖2

0 +
∫ t

0

(
|µ (τ)|2 + |χ (τ)|2

)
dτ

]
.

(18)

It is clear from estimate (18) that the problem (1)-(4) has a unique solution.

2. Let’s designate
s
z =

s
u−u, then for

s
z, we have

∂
s
z

∂t
= L

s
z,

 k ∂
s
z

∂x1
=

∫ α

r0

s−1
z dx1

−k ∂
s
z

∂x1
= β

s
z, x1 = R, k 1

x1

∂
s
z

∂x2
= γ1

s
z, x2 = 0,

−k 1
x1

∂
s
z

∂x2
= γ2

s
z, x2 = π,

s
z (x, 0) = 0.

Using estimate (18) for
s
z, we find

∥∥∥s
z
∥∥∥2

0
≤ M (t)

∫ t

0

∫ π

0

(∫ α

r0

s−1
z dx1

)2

dx2dt ≤ M (T ) (α− r0)
∫ T

0

∥∥∥s−1
z

∥∥∥2

0
dt,

or after integration with respect to t from 0 to T , we have

53



I. OZTURK AND M.M. LAFISHEVA

∥∥∥s
z
∥∥∥

2,QT

≤
√

M (T ) T (α− r0)
∥∥∥s−1

z
∥∥∥

2,QT

,M (T ) = TeM(ε)T . (19)

Suppose q = TeM(ε)T
√

α− r0 < 1. From (19), we obtain the estimate

∥∥∥s
z
∥∥∥

2,QT

≤ qs
∥∥∥0
z
∥∥∥

2,QT

.

Thus the iterative process is convergent in the norm ‖·‖2,QT
, for sufficiently

small T or small α− r0.
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PERTURBATIONS OF CERTAIN NONLINEAR PARTIAL FINITE
DIFFERENCE EQUATIONS

B.G. PACHPATTE

Abstract. In the present paper we establish some new variation of con-

stants formulae for nonlinear perturbed partial finite difference equations

in two independent variables. We also present some applications to convey

the importance of our results in the qualitative theory of certain partial

finite difference equations.

1. Introduction

During the past few years the abundance of applications is stimulating a rapid

development of the theory of finite difference equations. A variety of new methods

and tools are developed by different investigators to study the various types of finite

difference equations. In the theory of ordinary finite difference equations the method

of variation of parameters is a very useful tool in studying the properties of solutions

of perturbed finite difference equations. Motivated and inspired by the results given in

[5], see also [1-4, 6-10], in the present paper we establish some representation formulae

related to the solutions of a certain nonlinear partial finite difference equation and

its perturbed partial finite difference equation in two independent variables. We also

use these formulae to study certain properties of the solutions of the corresponding

perturbed partial finite difference equation.

2. Statement of results

In what follows, we let N0 = {0, 1, 2, . . . }, and

N(x0) = {x0, x0 + 1, x0 + 2, . . . }, N(y0) = {y0, y0 + 1, y0 + 2, . . . },

1991 Mathematics Subject Classification. 34A10, 39A12.

Key words and phrases. perturbations, finite difference equations, two independent variables, variation

of constants formulae, boundedness.
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for x0, y0 in N0. The empty sums and products are taken to be 0 and 1 respectively.

For any functions z(x, y), w(m,n), z(x, y, w(m,n)), x, y,m, n in N0, we define

∆1z(x, y) = z(x + 1, y)− z(x, y), ∆2z(x, y) = z(x, y + 1)− z(x, y),

∆2∆1z(x, y) = ∆1z(x, y + 1)−∆1z(x, y)),

∆mz(x, y, w(m,n)) = z(x, y, w(m + 1, n))− z(x, y, w(m,n)),

∆nz(x, y, w(m,n)) = z(x, y, w(m,n + 1))− z(x, y, w(m,n)).

We denote the product N(x0)×N(y0) by N(x0, y0). For (x0, y0), (x, y) in N(x0, y0)

we define

φ(x, y, x0, y0, w(x, y)) = ∆wz(x, y, x0, y0, w(x, y)),

where

∆wz(x, y, x0, y0, w(x, y))(w(x + 1, y)− w(x, y))) =

= z(x, y, x), y0, w(x + 1, y))− z(x, y, x0, y0, w(x, y)).

We consider the nonlinear partial finite difference equation

∆1∆1u(x, y) = f(x, y, u(x, y)), u(x, y0) = u(x0, y) = u0, (E)

and its perturbed nonlinear finite difference equation

∆2∆1v(x, y) = f(x, y, v(x, y)) + g(x, y, v(x, y)), v(x, y0) = v(x0, y) = u0, (P )

for (x, y) in N(x0, y0), where u, v are real-valued functions defined on N(x0, y0), f, g

are real-valued functions defined on N(x0, y0)×R, R denotes the set of real numbers,

and u0 is a constant. We use u(x, y, x0, y0, u0) and v(x, y, x0, y0, u0) to denote the

solutions of (E) and (P ) respectively passing through the point x(x0, y0) ∈ N(x0, y0).

A useful nonlinear variation of constants formula is established in the follow-

ing theorem.

Theorem 1. Suppose that u(x, y, x0, y0, u0) is the unique solution of (E) and

φ(x + 1, y, x0, y0, w(x, y)), φ−1(x + 1, y, x0, y0, w(x, y)) exist for (x, y) in N(x0, y0).

Then any solution v(x, y, x0, y0, u0) of (P ) satisfies the relation

v(x, y, x0, y0, u0) = u(x, y, x0, y0, u0 +
x−1∑
s=x0

y−1∑
t=y0

φ−1(s + 1, t, x0, y0, w(s, t))×

×[A(s, t, x0, y0, w(s, t)) + g(s, t, v(s, t, x0, y0, u0))]) (2.1)
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where w(x, y) is a solution of the equation

∆2∆1w(x, y) = φ−1(x + 1, y, x0, y0, w(x, y))[A(x, y, x0, y0, w(x, y))+

+g(x, y, v(x, y, x0, y0, u0))], w(x, y0) = w(x0, y) = u0, (2.2)

for (x, y) in N(x0, y0) and

A(x, y, x0, y0, w(x, y)) = −{[∆1u(x, y + 1, x0, y0, w(x, y + 1))−

−∆1u(x, y + 1, x0, y0, w(x, y))] + [∆wu(x + 1, y + 1, x0, y0, w(x, y + 1))−

−∆wu(x + 1, y, x0, y0, w(x, y))]∆1w(x, y + 1)}, (2.3)

for (x, y) ∈ N(x0, y0).

Another interesting and useful representation formula is given in the following

theorem.

Theorem 2. Suppose that u(x, y, x0, y0, u0) is the unique solution of (E) and

φ(x + 1, y, x0, y0, w(x, y)), φ−1(x + 1, y, x0, y0, w(x, y)) exist for (x, y) ∈ N(x0, y0).

Then any solution v(x, y, x0, y0, u0) of (P ) satisfies the relation

v(x, y, x0, y0, u0) = u(x, y, x0, y0, u0) +
x−1∑
s=x0

y−1∑
t=y0

B(x, y, x0, y0, w(s, t))+

+
x−1∑
s=x0

y−1∑
t=y0

φ(x, y, x0, y0, w(x, y))×

×φ−1(s + 1, t, x0, y0, w(s, t))[A(s, t, x0, y0, w(s, t))+

+g(s, t, v(s, t, x0, y0, u0))], (2.4)

where A(x, y, x0, y0, w(x, y)) is given by (2.3) and

B(x, y, x0, y0, w(s, t)) = [∆wu(x, y, x0, y0, w(s, t + 1))−

−∆wu(x, y, x0, y0, w(s, t))]∆1w(s, t + 1), (2.5)

where w(x, y) is a solution of (2.2).
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3. Proof of Theorem 1

Since u(x, y, x0, y0, u0) is the solution of (E), by the method of variation of

parameters we can find the solution of (P ) by the relation

v(x, y, x0, y0, u0) = u(x, y, x0, y0, w(x, y)), w(x0, y) = w(x, y0) = u0, (3.1)

where the function w(x, y) is yet to be determined. For this it is necessary that

∆1v(x, y, x0, y0, u0) = u(x + 1, y, x0, y0, w(x + 1, y))− u(x, y, x0, y0, w(x, y)) =

= ∆1u(x, y, x0, y0, w(x, y))+

+∆wu(x + 1, y, x0, y0, w(x, y))∆1w(x, y). (3.2)

From (3.2) we have

∆2∆1v(x, y, x0, y0, u0) = ∆1u(x, y + 1, x0, y0, w(x, y + 1))−

−∆1u(x, y, x0, y0, w(x, y)) + ∆wu(x + 1, y + 1, x0, y0, w(x, y + 1))∆1w(x, y + 1)−

−∆wu(x + 1, y, x0, y0, w(x, y))∆1w(x, y) =

= ∆1u(x, y + 1, x0, y0, w(x, y))−∆1u(x, y, x0, y0, w(x, y))+

+∆1u(x, y + 1, x0, y0, w(x, y + 1))−∆1u(x, y + 1, x0, y0, w(x, y))+

+∆wu(x + 1, y + 1, x0, y0, w(x, y + 1))∆1w(x, y + 1)−

−∆wu(x + 1, y, x0, y0, w(x, y))∆1w(x, y + 1)+

+∆wu(x + 1, y, x0, y0, w(x, y))∆1w(x, y + 1)−

−∆wu(x + 1, y, x0, y0, w(x, y))∆1w(x, y) =

= ∆2∆1u(x, y, x0, y0, w(x, y)) + {[∆1u(x, y + 1, x0, y0, w(x, y + 1))−

−∆1u(x, y + 1, x0, y0, w(x, y))] + [∆wu(x + 1, y + 1, x0, y0, w(x, y + 1))−

−∆wu(x + 1, y, x0, y0, w(x, y))]∆1w(x, y + 1)}+

+∆wu(x + 1, y, x0, y0, w(x, y))∆2∆1w(x, y) =

= ∆2∆1u(x, y, x0, y0, w(x, y))−A(x, y, x0, y0, w(x, y))+

+∆wu(x + 1, y, x0, y0, w(x, y))∆2∆1w(x, y). (3.3)

Now from (E), (P ) and (3.3) we have

f(x, y, v(x, y, x0, y0, u0)) + g(x, y, v(x, y, x0, y0, u0)) =
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= f(x, y, u(x, y, x0, y0, w(x, y))−A(x, y, x0, y0, w(x, y))+

+φ(x + 1, x0, y0, w(x, y))∆2∆1w(x, y),

which because of (3.1) and the fact that φ−1(x + 1, y, x0, y0, w(x, y)) exists, reduces

to

∆2∆1w(x, y) = φ−1(x + 1, y, x0, y0, w(x, y))[A(x, y, x0, y0, w(x, y))+

+g(x, y, v(x, y, x0, y0, u0))], w(x0, y) = w(x, y0) = u0, (3.4)

which determined the required function w(x, y). The solutions of (3.4) then determine

w(x, y). Further from (3.4) we have

w(x, y) = u0 +
x−1∑
s=x0

y−1∑
t=y0

φ−1(s + 1, t, x0, y0, w(s, t))[A(s, t, x0, y0, w(s, t))+

+g(s, t, v(s, t, x0, y0, w(s, t))]. (3.5)

From (3.5) and (3.1), (2.1) is immediate. The proof is complete.

4. Proof of Theorem 2

For x0 ≤ m ≤ x, y0 ≤ n ≤ y, x0,m, x ∈ N(x0), y0, n, y ∈ N(y0), we have

∆mu(x, y, x0, y0, w(m,n)) = u(x, y, x0, y0, w(m + 1, n))− u(x, y, x0, y0, w(m,n)) =

= ∆wu(x, y, x0, y0, w(m,n))∆1w(m,n). (4.1)

From (4.1) we have

∆n∆mu(x, y, x0, y0, w(m,n)) = ∆wu(x, y, x0, y0, w(m,n + 1))∆1w(m,n + 1)−

−∆wu(x, y, x0, y0, w(m,n))∆1w(m,n) =

= ∆wu(x, y, x0, y0, w(m,n + 1))∆1w(m,n + 1)−

−∆wu(x, y, x0, y0, w(m,n))∆1w(m,n + 1)+

+∆wu(x, y, x0, y0, w(m,n))∆1w(m,n + 1)−

−∆wu(x, y, x0, y0, w(m,n))∆1w(m,n) =

= [∆wu(x, y, x0, y0, w(m,n + 1))−

−∆wu(x, y, x0, y0, w(m,n))]∆1w(m,n + 1)+

+∆wu(x, y, x0, y0, w(m,n))∆2∆1w(m,n) =

= B(x, y, x0, y0, w(m,n))∆1w(m,n + 1)+
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+φ(x, y, x0, y0, w(m,n))∆2∆1w(m,n). (4.2)

Now keeping x, y,m fixed in (4.2), set n = t and sum over t from y0 to y− 1,

and then keeping x, y, t fixed in the resulting inequality, set m = s and sum over s

from x0 to x− 1, to obtain

u(x, y, x0, y0, w(x, y)) = u(x, y, x0, y0, u0) +
x−1∑
s=x0

y−1∑
t=y0

B(x, y, x0, y0, w(s, t))+

+
x−1∑
s=x0

y−1∑
t=y0

φ(x, y, x0, y0, w(s, t))∆2∆1w(s, t). (4.3)

If w(x, y) is any solution of (2.2), then the result (2.4) follows from (4.3),

(3.1) and (2.2). The proof is complete.

5. Some applications

In this section we use the formulae given in Theorems 1 and 2 to study

the boundedness of the solutions of perturbed finite difference equation (P ) under

some suitable conditions on the functions involved in (P ). We say that the solution

u(x, y, x0, y0, u0) of (E) is globally uniformly stable if there exists a constant M > 0

such that |u(x, y, x0, y0, u0)| ≤ M |u0|, for f(x, y) ∈ N(x0, y0) and |u0| < ∞.

We shall need the following special version of the inequality established be

Pachpatte in [8,Theorem 1].

Lemma. Let u(x, y) and h(x, y) be real-valued nonnegative functions defined

on N2
0 and c ≥ 0 be a constant. If

u(x, y) ≤ c +
x−k∑
s=0

y−1∑
t=0

h(s, t)u(s, t),

for x, y ∈ N0, then

u(x, y) ≤ c

x−1∏
s=0

[
1 +

y−1∑
t=0

h(s, t)

]
,

for x, y ∈ N0.

We first give the following application of the variation of constants formula

established in Theorem 1.
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Theorem 3. Let the solution u(x, y, x0, y0, u0) of (E) be globally uniformly

stable and the hypothesis of Theorem 1 hold. Further, suppose that

|φ−1(x + 1, y, x0, y0, w(x, y))[A(x, y, x0, y0, w(x, y))+

+g(x, y, v(x, y, x0, y0, u0))| ≤ p(x, y)|w(x, y)|], (5.1)

for (x, y) ∈ N(x0, y0) where p(x, y) is a real-valued nonnegative function defined on

N(x0, y0) and
x−1∏
s=x0

[
1 +

y−1∑
t=y0

p(s, t)

]
< ∞, (5.2)

for (x, y) ∈ N(x0, y0). Then any solution v(x, y, x0, y0, u0) to (P ) is bounded for

(x, y) ∈ N(x0, y0).

Proof. By Theorem 1, any solution v(x, y, x0, y0, u0) of (P ) satisfies

v(x, y, x0, y0, u0) = u(x, y, x0, y0, w(x, y)), w(x, y0) = w(x0, y) = u0, (5.3)

where w(x, y) is given by (3.5) is a solution of (2.2). Using (3.5) and (5.1) we have

|w(x, y)| ≤ |u0|+
x−1∑
s=x0

y−1∑
t=y0

|φ−1(s + 1, t, x0, y0, w(x, t))×

×[A(s, t, x0, y0, w(s, t)) + g(s, t, v(s, t, x0, y0, y0))]| ≤

≤ |u0|+
x−1∑
s=x0

y−1∑
t=y0

p(s, t)|w(s, t)|. (5.4)

Now a suitable application of Lemma to (5.4) yields

|w(x, y)| ≤ |u0|
x−1∏
s=x0

[
1 +

y−1∑
t=y0

p(s, t)

]
. (5.5)

The right hand side of (5.5) can be made sufficiently small by using (5.2) and

assuming that |u0| is sufficiently small, i.e.

|w(x, y)| ≤ ε, (5.6)

where ε > 0 is arbitrary, constant. From (5.3) we have

|v(x, y, x0, y0, u0)| = |u(x, y, x0, y0, w(x, y)| (5.7)

From the global uniform stability of the solution u(x, y, x0, y0, u0) of (E) and

(5.6) and (5.7) we have

|v(x, y, x0, y0, u0)| ≤ Mε,
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which implies the boundedness of the solution of (P ). The proof is complete.

We next give the following application of the variation of constants formula

established in Theorem 2.

Theorem 4. Assume that the hypotheses of Theorem 2 hold and the functions

involved in (2.4) satisfy

x−1∑
s=x0

y−1∑
t=y0

|B(x, y, x0, y0, w(x, y))| ≤ M1, (5.8)

|φ(x, y, x0, y0, w(x, y))φ−1(s + 1, t, x0, y0, w(s, t))| ≤ M2, (5.9)

|A(x, y, x0, y0, w(x, y)) + g(x, y, v(x, y, x0, y0, u0))| ≤

≤ p(x, y)|v(x, y, x0, y0, u0)|, (5.10)

where M1 and M2 are nonnegative constants and p(x, y) is a real-valued nonnegative

function defined on N(x0, y0) and

x−1∏
s=x0

[
1 +

y−1∑
t=y0

p(s, t)

]
< ∞, (5.11)

for (x, y) ∈ N(x0, y0). Then for every bounded solution u(x, y, x0, y0, u0) of (E) for

(x, y) ∈ N(x0, y0), the corresponding solution v(x, y, x0, y0, u0) of (P ) is bounded for

(x, y) ∈ N .

The proof of this theorem follows by using (5.8)-(5.10) in (2.4) and applying

Lemma and condition (5.11). Here we omit the details.

We note that the results given in Theorem 1-4 can very easily be extended

when the perturbation term g involved in (P ) is of the more general type i.e. when

the equation (P ) is of the form

∆2∆1v(x, y) = f(x, y, v(x, y)) + g(x, y, v(x, y), T v(x, y)),

v(x, y0) = v(x0, y) = u0, (P ′)

where

Tv(x, y) =
x−1∑
s=x0

y−1∑
t=y0

h(x, y, s, t, v(s, t)).

The formulations of such results corresponding to the equations (E) and

(P ′) are very close to that of the results given in the above theorems with suitable

modifications and hence we do not discuss the details.
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HYDRODYNAMICAL CONSIDERATIONS ON THE GAS STREAM
IN THE LAGRANGIAN POINT L1 OF A CLOSE BINARY SYSTEM

TITUS PETRILA AND RODICA ROMAN

Abstract. Taking into consideration Euler’s equation for an ideal fluid

and having in view some basic hypotheses specified for hydrodynamic ap-

proach, in the case when the potential of massic forces is of Roche type,

an integral of Bernoulli type is established. It is shown that it is impos-

sible for a fluid to surpass a certain maximum velocity vmax and that the

critical velocity of the sound in a fluid depends on the parameters of the

Roche model. The conditions in which the fluid motion is subsonic or su-

personic are analyzed. In addition the density, the pressure of the fluid

and the sound velocity are expressed as function of the fluid velocity and

the potential of the massic forces. Then, the Lagrangian point L1 is con-

sidered as a source with its output q and the fluid motion is analyzed in

the corresponding close vicinity. The obtained results could also be used

as initial conditions for the integration of the mass transfer equations.

1. Introduction

The problem of the mass transfer in stellar binary systems is relatively old.

It was approached by Kuiper (1941) in his pioneer work. Then, Kopal (1958),

Kruszewsky (1964), Plavec et al. (1964, 1965) and many other authors have re-

viewed this problem, especially with considerations on the orbital period changes.

In the above-mentioned papers, the problem of the mass transfer was approached

without any hydrodynamic considerations. With computed orbits of single particles,

some of the above mentioned authors have demonstrated, theoretically, the existence

of rings around the primary component, or some gas streams in the corresponding

systems. Other authors also tried to use hydrodynamical considerations: Prendergast

(1960), Biermann (1971), Prendergast and Taam (1974). Nevertheless, it was used an

arbitrary way to establish the initial conditions for the integration of the differential
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equations of the correspondent motion. That is why, by taking into consideration

some basic hypotheses we have studied the problem of the mass transfer in a close

vicinity of the inner Lagrangian point, L1 and the corresponding results could be used

for a better estimation of the initial conditions.

2. Basic hypotheses

For the study of the mass transfer in close binary systems, through the meth-

ods appropriate to the hydrodynamics, we are obliged to make some hypotheses in

order to draw the theoretical model very near to the physical reality. These basic

hypotheses will be reviewed in the present section:

a) The two component stars of a binary systems are revolving in circular

orbits, about their common mass center. Such an approximation is suited for a great

majority of the close binary systems.

b) The fluid flow is assumed as being stationary. This hypothesis is good

enough for the detached and semi-detached binary systems, whose light curves have

the same behaviour in each cycle, with some small irregularities. Such an assumption

is not suited for those binary systems whose stellar components are in contact and

the corresponding irregularities are very frequent and well marked.

c) The gas flow is considered only in the orbital plane and an approach of the

two dimensions problem may be accepted. This assumption is based on the fact that

the resultant force of the corresponding effective forces lies in the orbital plane and

it has an endeavour to press the gas stream towards this plane. Indeed, the effective

forces, which are operating on the gas stream, are: the forces of the gravitational

attraction , the centrifugal force and the Coriolis force . Here we have in view a

rotating barycentric coordinates system (M,x,y,z) where the origin M is situated in

the common mass-center and the two component stars S1 and S2 are always situated

on the x-axis, while (x,M,y) plane coincides with the orbital plane. In such conditions

the gravitational forces are given by:

−→
F atr1 = −G

m1m

r2
1

−→r 1

r1
,

−→
F atr2 = −G

m2m

r2
2

−→r 2

r2
, (1)
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with: −→r 1 = (x + R1)
−→
i +y

−→
j +z

−→
k , −→r 2 = (x−R2)

−→
i +y

−→
j +z

−→
k ,

where R1 and R2 are the distances of the two stellar components from the common

mass-center.

In addition we have:

−→
F centrif = −m−→ω × (−→ω ×−→r ) = mω2

(
x
−→
i + y

−→
j

)
(2)

−→
F Coriolis = −2m−→ω ×−→vr = 2mω

(
y
−→
i − x

−→
j

)
(3)

with: −→v r = x
−→
i + y

−→
j + z

−→
k .

In Eqs. (1) - (3) m1,2 are the masses of the two stellar components (S1

and S2), while m represents the mass of a gas particle. As it is shown by Biermann

(1971), the use of two dimensions only (in the orbital plane) is equivalent either

to a cylindrical model of the system or, to a gas flow of constant thickness. The

corresponding thickness may be considered as a function of temperature.

d) The gas flow is assumed as being adiabatic. Such an assumption is suited

if:

- the mean free path for photons is small compared to the characteristic

dimensions of the considered binary - system;

- the thermal time scale of the gas is long compared to the transfer time scale.

Now, from theoretical considerations on the mass transfer in close binary

- systems (eg. Kippenhahn et al., 1967) it follows the fact that the corresponding

problem has two phases: the first one is characterized by a fast flow of the gas, to the

thermal time scale of the star which is losing mass. The second phase is characterized

by a slow gas flow, to the nuclear time scale. In the slow phase of the mass transfer,

the corresponding gases may be considered as being transparent and their thermal

behaviour is determined by the radiation field of the two stellar components .

In the phase of fast mass transfer, the mean free path for photons is small

enough while the thermal time scale is long enough in order to surmise that adiabacy

is a good approximation.

e) We are considering a binary system as being semi-detached because the

assumptions b) and d) are not suited for contact systems.
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f) We are assuming that for pressure the law of perfect gas may be adopted:

P =
k%T

µma
(4)

where % is the fluid density, T is the temperature, k = 1, 38054 ∗ 10−23JK−1 is

Boltzmann‘s, constant, µ is the relative molecular mass (in units of atomic mass) and

ma is the proton mass (see Ureche, 1987).

g) The gas flow is assumed as being laminar throughout, without turbulence

and irrotational . As it is known, (Biermann, 1971), the Reynolds number can be

written as the product of the Mach number of the flow and ratio of a characteristic

length scale to the gas-dynamical mean free path. The Reynolds number for the gas

flow in binary systems is evaluated as being of the order of 108 (Kopal,1958). On the

other hand it is known from experiments (e.g. Biermann, 1971) that the supersonic

turbulence is strong connected with the properties of the boundary layers. Neverthe-

less, there are no fixed boundaries in a close binary system and, consequently, there

is no a simple theory to discuss the properties of possible boundary layers. In such

conditions it is very difficult to draw an important conclusion concerning the turbu-

lence. For simplicity the gas flow is assumed as being laminar throughout.(obvious

with the exception of the area situated behind the shock wave ) .

h) The magnetic fields are neglected, even if they could be important in some

binary systems. But, as it is shown (Biermann, 1971) in the phase of fast mass

transfer, the magnetic fields are important only if their strength is of the order of

103 Gauss or greater . In the phase of slow mass transfer 10 Gauss have already

appreciable effects. But for the phase of fast mass transfer no observed example is

known to have such a magnetic field. On the other hand, for the phase of slow mass

transfer which can be identified with many observed binary systems, the value of 10

Gauss is below observational limits. Anyhow, if we take them into consideration, the

problem becomes more complicated, because in the motion equations we have to add

a supplemental term of form
−→
j ×

−→
B , where

−→
j is the density of the stream while

−→
B

is the magnetic induction. In addition, in equation of the energy we should have a

supplemental term of the form
−→
j ·
−→
E , where

−→
E represents the strength of the electric

field (Ureche, 1987).
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i) For the gravitational field of each stellar component, the Roche potential is

assumed. Since the stars, which are losing mass, are evolving far from main sequence,

they have an increased concentration of density. Therefore, the tides do not change

very much the gravitational potential. Hence, the Roche potential may be considered

as a good approximation.

j) Finally, we are assuming that there is a synchronization between the axial

rotation of the two stellar components and the corresponding orbital motion, that is,

for the angular velocity, we can write: ω = 2π
P = const.

3. Subsonic, supersonic and hypersonic motions in the jet of stellar matter

From the Euler‘s equation, written for an ideal fluid, that is:

%

[
∂−→v
∂t

+
1
2
grad

(
v2

)
+ rot−→v ×−→v

]
= %

−→
f − grad P,

in the hypothesis of a steady state, we can write:

%

[
1
2
grad

(
v2

)
+ rot−→v ×−→v

]
= %

−→
f − grad P. (5)

If we are considering now that there is a scalar function U (potential) so that

−→
f = grad U,

then Eq.(5) can be written in the form:

%

[
1
2
grad

(
v2

)
+ rot−→v ×−→v

]
= % grad U − grad P. (6)

In addition, if we assume that the compressible fluid is a barotropic one, we

may consider that there is a scalar function h , so that grad h = grad P
% . Therefore,

from Eq. (6) it is evident that on any stream line we have:

v2

2
− U + h = C1 = const. (7)

which, in fact, is the Bernoulli‘s integral.

In the hypothesis of a perfect gas and in an izentropic evolution, we can write:

P = k %γ , where γ > 1 represents the adiabatic exponent.

Moreover, from the relationship: h =
∫

dh =
∫

dP
% we have at once:

h =
γ

γ − 1
P

%
, (8)
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and the Hugoniot formula leads to:

c2 =
dP

d%
= γ

P

%
. (9)

Therefore Eqs. (8) and (9) lead to:

h =
c2

γ − 1
(10)

In such conditions, Eq. (7) becomes:

v2

2
− U +

c2

γ − 1
= C1 . (11)

Here the constant C1 may be determined if we use Eq. (11) for an arbitrary

point situated somewhere on the Roche equipotential surface. On such a surface the

velocity is null and the corresponding potential is URoche = const. On the other hand,

it is known that on such equipotential surfaces, we also have a constant density, hence

%Roche = const.

Now, from relationship P = k %γ , written for an arbitrary point of the Roche

equipotential surface, we have:

PRoche = k %γ
Roche = constant

and Eq. (9) leads to:

c2
Roche = γ

PRoche

%Roche

= constant.

For an arbitrary point of the Roche equipotential surface we are able to

determine the value of the constant C1 , that is:

−URoche +
c2

γ − 1
= C1.

and Eq. (11) may be written in the form:

v2

2
− U +

c2

γ − 1
= −URoche +

c2
Roche

γ − 1
(12)

whence we have at once:

c2 = c2
Roche

[
1− (γ − 1)(v2 − 2U + 2URoche)

2c2
Roche

]
. (13)

The solution of Eq.(13) will be found in the range of real numbers only if it

is satisfied the condition:

1 ≥ (γ − 1)(v2 − 2U + 2URoche)
2c2

Roche

,
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or:

v2 ≤ 2c2
Roche

γ − 1
+ 2 (U − URoche) .

Therefore, in its motion, a fluid cannot surpass (exceed) a maximum velocity vmax ,

given by the relationship:

v2
max =

2c2
Roche

γ − 1
+ 2 (U − URoche) . (14)

If in a point situated somewhere on a stream line, the fluid velocity becomes

equal to the sound velocity in the same point, that is if we can write v = c = c∗ ,

then from Eq. (12) we have:

c2
∗ =

γ − 1
γ + 1

[
2
c2
Roche

γ − 1
+ 2 (U∗ − URoche)

]
.

where c∗ represents the critical sound velocity in fluid, while U∗ is the corresponding

potential.

If v > c∗ we have the case of the supersonic motion.

If v < c∗ we have the case of the subsonic motion. Furthermore, from Eq.(9)

we can write: c2 = kγ%γ−1 or c2
Roche = kγ%γ−1

Roche and Eq.(13) becomes:

% = %Roche

[
1− (γ − 1) (v2 − 2U + 2URoche)

2c2
Roche

] 1
γ−1

. (15)

Here we have in view the relationship: P = k%γ or: % =
(

P
k

) 1
γ and Eq. (8) leads to:

P = PRoche

[
1− (γ − 1)(v2 − 2U + 2URoche)

2c2
Roche

] γ
γ−1

. (16)

In conclusion, the relationships (13), (15) and (16) give us the explicit functions c(v),

%(v) and P(v). During the study of the mass transfer, it was put in evidence a very

luminous patch - a hot spot - in that place where the jet of matter hit the atmosphere

of the star which is receiving mass. The existence of such a patch was also detected

by observational methods. Consequently it was created a true theory of such named

”hot spot”, in order to explain some irregularities (fluctuations) observed in the light

curves of the eclipsing binary systems. Prendergast and Taam (1974) try to explain

such a hot spot as a consequence of the heating determined by the shock wave which

arise in that place and have estimated a temperature of the order of 35000 K. In

front of the shock wave the jet motion is hypersonic, that is the jet matter must

be accelerated by the gravitational attraction until to velocities characterized by the
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Mach number M ≥ 5. If we assume that the fluid motion is hypersonic, izentropic

and steady (the jet matter being assumed as a perfect gas), for each stream line we

have dS = 0. Further, from Eq. (7) we have at once:

v dv − dU + dh = 0

but dh = dP
% and consequently we can write:

dP

P
=

%

P
dU − %v

P
dv.

Here we can use the following relationship: %
P = γ

c2 and consequently we

have:
dP

P
=

γ

c2
dU − γv

c2
dv

Finally, if we have in view the Mach number M = v
c , we can write :

dP

P
=

γM2

v2
dU − γM2 dv

v
. (17)

As it was before mentioned, we can use the relationship: c2 = γP
% and, if we

accept Clapeyron law: P = %RT it follows that:

c2 = γRT (18)

or, by differentiation it follows that:

2c dc = γdTR (19)

Now, from Eqs. (18) and (19) we have at once:

dT

T
= 2

dc

c
, (20)

and from Eq.(11) on a stream line we can write:

v dv − dU +
2c dc

γ − 1
= 0. (21)

In such conditions, Eq. (20) becomes:

dT

T
= − (v dv − dU) (γ − 1)

c2

or, if we have in view the Mach number, M:

dT

T
= −(γ − 1) M2

(
dv

v
− dU

v2

)
. (22)
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From Eqs. (17) and (22) it is evident that, since M2 is a great number (the fluid

motion being assumed as hypersonic one) , to a small change in the velocity on a

stream line could correspond a great change for the pressure and temperature. From

the relationship: M = v
c we can write:

dM

M
=

dv

v

(
1−M

dc

dv

)
(23)

By differentiation, from Eq. (11) it follows:

v − dU

dv
+

2c

γ − 1
dc

dv
= 0

and Eq.(23) can be written in the form:

dM

M
=

dv

v
[
1−M γ−1

2c

(
−v + dU

dv

)] ,

or
dM

M
=

(
1 +

γ − 1
2

M2 −M
γ − 1

2c

dU

dv

)
dv

v
. (24)

Moreover, from Eq.(21) we can obtain a relationship for dv , and Eq.(24) becomes:

dM

M
=

(
1 +

γ − 1
2

M2 −M
γ − 1

2c

dU

dv

) [
dU

v2
− 2

M2(γ − 1)
dc

c

]
. (25)

If we consider the fluid motion as being a hypersonic one, we can use the

following approximation:
dU

v2
≈ 0.

and Eqs. (17), (22) and (25) lead to:

dP

P
= −γM2 dv

v
(26)

dT

T
= −(γ − 1)M2 dv

v
(27)

dM

M
=

(
1 +

γ − 1
2

M2 −M
γ − 1

2c

dU

dv

) [
− 2

M2(γ − 1)
dc

c

]
. (28)

The shock wave, which arises in the close vicinity of the secondary component,

practically is stuck to this star. The very high temperatures from behind of the shock

determine ionization and dissociation of the particles and, consequently, the laminar

model of the fluid cannot be used. Behind of the shock wave arises a zone of turbulence

that, in fact, is a zone of the complementarity of the secondary star. Moreover, as a

strong increasing of the temperature, this zone can be put in evidence through the

direct astronomical observations.
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4. The study of the fluid motion in the close vicinity of the point L1

Further, in the present section we shall consider that in the Lagrangian point

L1 we have a mass source, with the corresponding output q . In such a condition, the

continuity equation (see L. Dragos, 1981) will be written in the form:

div (%−→v ) = q δ (−→x ) , (29)

where δ (−→x ) is Dirac‘s distribution. Let us consider that the fluid motion take place in

the orbital plane, where r = |−→x |. Thus, from the study of the Roche equipotentials it

is known that the tangents, in the orbital plane, drawn in L1, have the corresponding

slopes θ0 and −θ0, where:

tg2θ0 =
2x−3

L1
+ 2m2

m1
(1− xL1)

−3 +
(
1 + m2

m1

)
x−3

L1
+ m2

m1
(1− xL1)

−3 −
(
1 + m2

m1

) (30)

(The corresponding numerical values are listed by Plavec and Kratochvil (1964), for

the mass ratio m2
m1

).

In the hypothesis that in the range θ0 ∈ [−θ0, θ0] there are not preferential

directions, Eq. (29) becomes (see L. Dragos, 1981):

1
r

d

dr
(%rv) =

q

2πr
δ(r). (31)

The corresponding homogenous equation of Eq.(31) is:

1
r

d

dr
(%rv) = 0,

which have the solution:

%v =
C

r
. (32)

The value of the constant C will be determined in such a way that the equation of the

continuity to be total satisfied, and not only in a certain range which do not contain

the origin and is specified by the relationship: C = q
2π . In such a case, the solution

(32) becomes:

%v =
q

2πr
(33)
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with r2 = x2 + y2. From the relationships: c2 = dP
d% and P = k%γ we obtain

% =
(

c2

kγ

) 1
γ−1

and from Eq. (33) we have at once:

v =
q

2π(kγ)
1

1−γ

c
2

1−γ

r
. (34)

Now, from Eq. (12) we have:

c2 = (γ − 1)
(

U − URoche +
c2
Roche

γ − 1
− v2

2

)
,

and Eq.(34) can be written in the form:

v =
q

2π(kγ)
1

1−γ

(γ − 1)
1

1−γ

r

(
U − URoche +

c2
Roche

γ − 1
− v2

2

) 1
1−γ

. (35)

Therefore if we consider now a point A (xA, yA) on a stream line, we know the value

UA and r2
A = x2

A + y2
A, and from Eq.(35) we obtain the value of vA .

If vA > c∗, we have a supersonic motion.

If vA < c∗ the motion is subsonic.

Finally, Eq. (35) could also be used in order to obtain the initial value of

the velocity, which is useful in order to perform the integration of the equation of

fluid motion at a great distance from L1, but taking a suitable value for r . That is

why, the study of the fluid motion could be performed on a natural way, the initial

conditions being not imposed in an arbitrary way.
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume XLVI, Number 1, March 2001

INEQUALITIES FOR GENERALIZED CONVEX FUNCTIONS WITH
APPLICATIONS II

JÓZSEF SÁNDOR

In the first part [23] of this series on Inequalities for Generalized Convexity

we have studied the most important results and ideas of the author (and coauthors)

related to the Jensen inequality. In this part we shall study Hadamard’s (or Jensen-

Hadamard’s, or Hermite-Hadamard’s) integral inequality for convex or generalized

convex functions. This inequality was applied for the first time by Hadamard in the

study of the Riemann zeta function [4]. Many new applications in geometry, special

functions, number theory, theory of means, etc. have been published by the author

(for References, see [9-25] and Part I). We plan to publish in Part IV of these series

some of these applications (Part III will be devoted to Jessen’s inequality). As we have

stated in the first part [23], in many cases only the new results will be presented with

a proof; the other results will be stated only, with connections and/or applications

to known theorems. In the course of this survey many new results, new connections,

hints, or applications will be pointed out.

2. Hadamard’s inequality

Let f : [a, b] → R be a convex function (in the classical sense). Then

Hadamard’s inequality (or ”inequalities”) states that

(b− a)f
(

a + b

2

)
≤
∫ b

a

f(x)dx ≤ (b− a)
[
f(a) + f(b)

2

]
. (1)

This is in fact Corollary 1.1 of Theorem 1.1 from [23]. In the literature

(which is quite extensive) there exist papers where the left-side of (1) is called as

”Jensen’s inequality”, while the right-side is due to Hadamard (or vice-versa). In the

last time many papers call (1) as the Hermite-Hadamard inequality, since it seems

that Hermite was the first discoverer of these relations ([6]). In that period, Jensen
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also has an important role in the theory of convexity and inequalities of type (1)

([16]).

A. The first extension of the left side of (1) for generalized convex functions

has been discovered in 1982 by the author.

Theorem 2.1. ([9]) Let f ∈ C2k[a, b] (k ≥ 1, integer) be a 2k-convex function

on (a, b). Then
k−1∑
j=0

(b− a)2j+1

22j(2j + 1)!
f (2j)

(
a + b

2

)
≤
∫ b

a

f(x)dx. (2)

This result became widely known after its publication in an international

journal [10].

For a particular case, namely k = 2 one gets:

Corollary 2.1. Let f : [a, b] → R, f ∈ C4[a, b] and f (4)(t) ≥
(>)

0 on (a, b).

Then ∫ b

a

f(x)dx ≥
(>)

(b− a)
[
f

(
a + b

2

)
+

(b− a)2

24
f ′′
(

a + b

2

)]
. (3)

Remark 2.1. To show the power of this inequality, let us consider, as an

immediate application, a > 0, b = a + 1 and let f1(x) =
1
x

, f2(x) = − lnx (x > 0)

which fulfill the above conditions. After certain elementary computations one can

deduce the double-inequality

2a + 2
2a + 1

e1/6(2a+1)2 <
e(

1 +
1
a

)a <

√
1 +

1
a
· e−1/3(2a+1)2 (4)

for all real numbers a > 0. Clearly, this implies the weaker relations

2a + 2
2a + 1

<
e(

1 +
1
a

)a <

√
1 +

1
a

(5)

which in turn are quite strong to imply, or improve certain known results. For exam-

ple, the much studied inequality by Pólya and Szegö [8], namely

e

2n + 2
< e−

(
1 +

1
n

)n

<
e

2n + 1
(n ≥ 1, integer) (6)

follows immediately, even in improved form from (5). All inequalities of [2] are par-

ticular cases, or implications of relations (5). For applications to Stirling’s theorem

80



INEQUALITIES FOR GENERALIZED CONVEX FUNCTIONS WITH APPLICATIONS II

and other inequalities for the number e we quote the recent papers [21], [24], [25]. We

note that when f is strictly 2k-convex, we have strict inequality in (2) (the same in

the particular case (3)).

In 1989 H. Alzer [1] has extended the right side of (1):

Theorem 2.2. Let f be as in Theorem 2.1. Then∫ b

a

f(x)dx ≤ 1
2

2k−1∑
i=1

(b− a)i

i!
[f (i−1)(a) + (−1)i−1f (i−1)(b)] (7)

When f is strictly 2k-convex, then (7) holds true with strict inequality.

Remark 2.2. By using (7), the following rational approximation of the

exponential function can be deduced ([1]):

For all x > 0 and all integers n ≥ 0 we have

1 +
1
2

2n∑
i=0

(−x)i+1

(i + 1)!

1 +
1
2

2n∑
i=0

xi+1

(i + 1)!

< e−x <

1 +
1
2

2n+1∑
i=0

(−x)i+1

(i + 1)!

1 +
1
2

2n+1∑
i=0

xi+1

(i + 1)!

(8)

Inequalities of this type have applications in irrationality proofs (see [11]).

In 1991 the author obtained common generalizations of Theorem 2.1 and 2.2.

Theorem 2.3. ([17]) Let f be as in Theorem 2.1. Let t ∈ [a, b] arbitrary

chosen. Then∫ b

a

f(x)dx ≥
2k∑
i=1

[
(t− a)i − (t− b)i

i!

]
· (−1)i−1f (i−1)(t)+

+
1

(2k)!

{
(b− a)2k

22k−1
[f (2k−1)(t)− f (2k−1)(a)] + Sk,a,b(t)

}
, (9)

respectively ∫ b

a

f(x)dx ≤
2k∑
i=1

[
(t− a)i − (t− b)i

i!

]
· (−1)i−1f (i−1)(t)+

+
1

(2k)!
{(b− a)2k[f (2k−1)(t)− f (2k−1)(a)] + Sk,a,b(t)}, (10)

where

Sk,a,b(t) =
∫ b

a

(b− x)2kf (2k)(x)dx− 2
∫ b

a

(b− x)2kf (2k)(x)dx.

When f is strictly 2k-convex, then all inequalities in (9) and (10) are strict.
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Remark 2.3. Clearly, this result has a lot of particular cases. For example,

by putting t = a and t = b resp. in (10), after addition we get Alzer’s inequality (7).

By doing the same thing in (9), we get

Theorem 2.4. With the same conditions,

1
2

2k∑
i=1

(b− a)i

i!
[f (i−1)(a) + (−1)i−1f (i−1)(b)]+

+
(b− a)2k

22k−2(2k)!
[f (2k−1)(b)− f (2k−1)(a)] ≤

∫ b

a

f(x)dx. (11)

By applying (9) and (10) for t =
a + b

2
, and remarking that

(x− a)2k ≤
(

b− a

2

)2k

for x ∈
[
a,

a + b

2

]
,

while

(b− x)2k ≤
(

b− a

2

)2k

for x ∈
[
a + b

2
, b

]
,

we get firstly our result (2) as well as the following:

Theorem 2.5. With the same conditions,∫ b

a

f(x)dx ≤
k−1∑
j=0

(b− a)2j+1

22j(2j + 1)!
f (2j)

(
a + b

2

)
+

+
1

(2k)!22k
(b− a)2k[f (2k−1)(b)− f (2k−1)(a)]. (12)

In what follows, let us use the following notations:

Ak ≡ Ak(a, b, f) = f (2k−1)(b)− f (2k−1)(a);

Bk = Bk(a, b, f) = f (k−1)(a) + (−1)f (k−1)(b).

The following two auxiliary results will be necessary:

Lemma 2.1. (”Green-Lagrange identity”) For f, g ∈ Cn[a, b] one has the

identity∫ b

a

g(n)(x)f(x)dx = [g(n−1)(x)f(x)− · · ·+ (−1)n−1g(x)f (n−1)(x)]
∣∣∣b
a
+

+(−1)n

∫ b

a

g(x)f (n)(x)dx. (13)
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Lemma 2.2. (Chebisheff’s integral inequality) Let u, v : [a, b] → R be two

synchrone functions (i.e. functions having the same type of monotonicity). Then

1
b− a

∫ b

a

u(x)v(x)dx ≥ 1
b− a

∫ b

a

u(x)dx · 1
b− a

∫ b

a

v(x)dx (14)

When u and v are asynchrone functions (having different type of monotonic-

ity), then the inequality sign in (14) is reversed. It is known that equality holds in

(14) only when one of u and v is constant on [a, b], eventually excepting a numerable

subset of [a, b] (see [5]).

We now are able to state the following result:

Theorem 2.6. Let f (2k) (k ≥ 1, integer) be a continuous, decreasing function

on [a, b]. Then∫ b

a

f(x)dx ≤
2k∑

j=1

1
2j · j!

(b− a)jBj +
1

22k
· (b− a)2k

(2k + 1)!
Ak. (15)

If f (2k) is monotone increasing, then the sign of inequality in (15) reverses.

Proof. Let g(x) =
(

x− a + b

2

)n

in (13). By remarking that

g(k)(x) = n(n− 1) . . . (n− k + 1)
(

x− a + b

2

)n−k

,

after certain elementary computations one can deduce the following identity∫ b

a

f(x)dx =
n∑

j=1

1
2j · j!

Bj +
(−1)n

n!

∫ b

a

(
x− a + b

2

)n

f (n)(x)dx. (16)

Let now n := 2k in (16) and put u(x) := f (2k)(x), v(x) :=
(

x− a + b

2

)2k

in

(14). Since u and v are monotone increasing functions, we have∫ b

a

(
x− a + b

2

)2k

f (2k)(x)dx ≤ 1
22k(2k + 1)!

(b− a)2kAk,

and the result follows.

Theorem 2.7. Let f (2k−1) be increasing and continuous on [a, b]. Then∫ b

a

f(x)dx ≤
2k−1∑
j=1

1
2j · j!

(b− a)jBj (17)

When f (2k−1) is decreasing, (17) holds true with reversed inequality.
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Proof. Apply (16) with n := 2k + 1 and put

u(x) := f (2k−1)(x), v(x) :=
(

x− a + b

2

)2k−1

.

Remarking that ∫ b

a

(
x− a + b

2

)2k−1

dx = 0

we obtain from Lemma 2.2 that∫ b

a

(
x− a + b

2

)2k−1

f (2k−1)(x)dx ≤ 0

and (17) follows.

B. Hadamard’s inequality has the following geometrical interpretation: the

area below the graph of f on [a, b] lies between the areas of two trapeziums, namely

the one formed by the points of coordinates (a, f(a)); (b, f(b)) with the Ox axis, the

second one formed by the tangent to the graph of f at the point
(

a + b

2
, f

(
a + b

2

))
with the Ox axis. By rotating these trapeziums round about the Ox axis, we get

three volumes,

V = π

∫ b

a

f2(x)dx,

V1 =
π(b− a)

3
[f2(a) + f(a)f(b) + f2(b)],

V2 =
π(b− a)

3

[
3f2

(
a + b

2

)
+

(b− a)2

4

(
f ′
(

a + b

2

))2
]

.

Since, when f is positive and convexe, we have V ≤ V1, and under certain

conditions V2 ≤ V , one can deduce the following result.

Theorem 2.8. Let f : [a, b] → R be nonnegative and convex. Then

1
b− a

∫ b

a

f2(x)dx ≤ 1
3
[f2(a) + f(a)f(b) + f2(b)]. (18)

If, in addition f is differentiable in x0 :=
a + b

2
, and the following condition

is satisfied:

(i) f

(
a + b

2

)
− b− a

2
f ′
(

a + b

2

)
> 0 and f ′

(
a + b

2

)
> 0, then

1
b− a

∫ b

a

f2(x)dx ≥ f2

(
a + b

2

)
+

(b− a)2

12

[
f ′
(

a + b

2

)]2
. (19)
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Proof. The above stated geometric arguments for the proof of (18) and (19)

can be made rigorous. Indeed, for (18), let K : [a, b] → R be a linear function having

the properties f(a) = K(a), f(b) = K(b). Therefore,

K(t) =
t− a

b− a
f(b) +

b− t

b− a
f(a), t ∈ [a, b].

Since f is convex and positive, f2(t) ≤ K2(t). Since it is immediate that∫ b

a

K2(t)dt =
b− a

3
[f2(a) + f(a)f(b) + f2(b)],

the result follows. For the proof of (19) let us remark that f(x) ≥ f(x0)+(x−x0)f ′(x0)

for all x ∈ [a, b], x0 ∈ (a, b). Put x0 :=
a + b

2
and write that

f2(x) ≥
[
f(x0) +

(
x− a + b

2

)
f ′(x0)

]2
,

where f ′(x0) > 0. An elementary computation shows that∫ b

a

[
f(x0) +

(
x− a + b

2

)
f ′(x0)

]2
dx = f2

(
a + b

2

)
+

(b− a)2

12

[
f ′
(

a + b

2

)]2
,

and this finishes the proof.

Remark 2.4. Without differentiability one can assume only that

f ′+

(
a + b

2

)
> 0 and f

(
a + b

2

)
− b− a

2
f ′+

(
a + b

2

)
> 0.

When f is nonnegative differentiable, and concave, without any condition one

has
1

b− a

∫ b

a

f2(x)dx ≤ f2

(
a + b

2

)
+

(b− a)2

12

[
f ′
(

a + b

2

)]2
(20)

Indeed, by 0 < f(x) ≤ f(x0) + f ′(x0)(x − x0), by taking squares and inte-

grating, we obtain (20). Without differentiablity (20) holds with f ′+

(
a + b

2

)
in place

of f ′
(

a + b

2

)
.

Since
x2 + xy + y2

3
≤ x2 + y2

2
, inequality (18) refines the right side of

Hadamard’s inequality applied to the convex function f2. Inequality (18) has been

applied in the Theory of means ([14]).

Let p : [a, b] → R be a strictly positive monotone function, and define

Ep,f (a, b) = Ep,f =
∫ b

a

p(x)f(x)dx
/∫ b

a

p(x)dx.

In paper [20] the following results have been proved:
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Theorem 2.9. Let f be a convex function. Then

Ep,f ≥ f(A) + f ′+(A)Cp, (21)

where A =
a + b

2
, and Cp = Cp(a, b). If p is increasing, the Cp ≥ 0; while for

decreasing p one has Cp ≤ 0.

Remark 2.5. Therefore, when f ′+(A) ≥ 0 one can deduce

Ep,f ≥ f(A) + f ′+(A)Cp ≥ f(A), for increasing p.

This generalizes and refines the left side of Hadamard’s inequality.

Theorem 2.10. Let f be convex, with f(b) ≥ f(a). If p is a decreasing

function, then

Ep,f ≤ f(a) +
f(b)− f(a)

b− a

∫ b

a

(x− a)p(x)dx ≤ f(a) + f(b)
2

(22)

The same is valid if f(b) ≤ f(a) and p increasing.

Finally, as a generalization of (18) we quote (see [20]):

Theorem 2.11. Let f be positive and convex, with f(b) ≥ f(a). Let p be a

decreasing function. Then

Ep,fn ≤
n∑

k=0

(
n

k

)
fk(a)

(
f(b)− f(a)

b− a

)n−k ∫ b

a

(x− a)n−kp(x)dx ≤

≤
n∑

k=0

(
n

k

)
fk(a)(f(b)− f(a))n−k

n− k + 1
(23)

(Here n ≥ 1 is a positive integer and
(

n

k

)
denotes a binomial coefficient.)

Theorem 2.12. Let f be positive and concave. Then

Ep,fn ≤
n∑

k=0

(
n

k

)
fn−k(A)(f ′+(A))k

∫ b

a

(x−A)kp(x)dx. (24)

If f ′+(A) ≥ 0 and p is decreasing, the right side of (24) can be majored by
n∑

k=0

(
n

k

)
fn−k(A)(f ′+(A))k(b− a)k 1 + (−1)k

(k + 1) · 2k+1
. (25)

Remark 2.6. For p ≡ 1, n = 2, f positive and concave one obtains the

inequality
1

b− a

∫ b

a

f2(x)dx ≤ f2(A) + (f ′+(A))2
(b− a)2

12
. (26)
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C. In the precedent paragraph in certain cases we have obtained refinements

of the Hadamard inequality (or for one part of it).

Let now suppose that the continuous function f : [a, b] → R has a strictly

increasing derivative on (a, b). By Lagrange’s mean-value theorem easily follows

f(x) − f(y) < f ′(x)(x − y) for all x, y ∈ (a, b). By integrating with respect to x

we get ∫ b

a

f(x)dx < (b− a)f(y)− y[f(b)− f(a)] + λ = g(y),

where

λ =
∫ b

a

xf ′(x)dx = bf(b)− af(a)−
∫ b

a

f(x)dx

and g : [a, b] → R is defined as above. Clearly, g′(y) = (b − a)f ′(y) − [f(b) − f(a)],

so by the Lagrange mean-value theorem, g′(y0) = 0 for some y0 ∈ (a, b). Since f ′ is

strictly increasing, obviously g′(y) > g′(y0) = 0 for y > y0 and g′(y) < g′(y0) = 0 for

y < y0. Therefore y0 is a minimum-point of the function g, that is g(y0) ≤ g(y) for

all y ∈ [a, b]. Thus we have obtained the following result, which in fact appeared in

[19]:

Theorem 2.13. If f satisfies the above conditions, then∫ b

a

f(x)dx <
b− a

2

{
f(y0)− y0

[
f(b)− f(a)

b− a

]
+

bf(b)− af(a)
b− a

}
(27)

where y0 is defined by the equality

f ′(y0) =
f(b)− f(a)

b− a
. (28)

For this choice of y = y0, inequality (27) is optimal.

Remark 2.7. Clearly, inequality (27) is valid for all y0 ∈ (a, b), but for y0

given by (28) we obtain the strongest result. By selecting y0 =
a + b

2
in (27) we get

the following refinement of the right side of Hadamard’s inequality:∫ b

a

f(x)dx <
b− a

2

[
f

(
a + b

2

)
+

f(a) + f(b)
2

]
<

b− a

2
[f(a) + f(b)]. (29)

This is due to P.S. Bullen [7].

Indeed, the first inequality is a consequence of (7), while the second one is

equivalent to f

(
a + b

2

)
<

f(a) + f(b)
2

.

Remark 2.8. Inequality (27) is valid also for a strictly convex function f ,

and has been rediscovered in [3]. For applications in the theory of means, see [19], [3].
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The following refinements of the Hadamard inequalities have been published

by the author in cooperation with J.E. Pečarić and S.S. Dragomir [15]:

Theorem 2.14. Let n ≥ 1 be a positive integer and let f : [a, b] → R be a

convex function. Then

f

(
a + b

2

)
≤

∫ b

a

. . .

∫ b

a

f

(
n+1∑
i=1

xi

n + 1

)
dx1 . . . dxn+1

(b− a)n+1
≤

≤

∫ b

a

. . .

∫ b

a

f

(
n∑

i=1

xi

n

)
dx1 . . . dxn

(b− a)n
≤ · · · ≤

∫ b

a

∫ b

a

f

(
x1 + x2

2

)
dx1dx2

(b− a)2
≤

≤

∫ b

a

f(x)dx

b− a
≤ f(a) + f(b)

2
. (30)

Remark 2.9. When n = 1 we have the following simple relations:

f

(
a + b

2

)
≤ 1

(b− a)2

∫ ∫
[a,b]2

f

(
x + y

2

)
dxdy ≤ 1

b− a

∫ b

a

f(x)dx ≤ f(a) + f(b)
2

(31)

In applications (e.g. in the theory of Euler Gamma function), this inequality

has a special importance.

D. We will conclude our survey with the study of certain mappings associated

to the Hadamard inequalities.

Let f : [a, b] → R be a convex function, and define the following mappings:

H,G,L : [0, 1] → R, given by

H(t) =
1

b− a

∫ b

a

f

[
tx + (1− t)

a + b

2

]
dx, (32)

G(t) =
1
2

{
f

[
ta + (1− t)

a + b

2

]
+ f

[
(1− t)

a + b

2
+ tb

]}
, (33)

L(t) =
1

2(b− a)

∫ b

a

{f [ta + (1− t)x] + f [(1− t)x + tb]}dx. (34)

The following three theorems contain certain properties of these mappings

(see [18]).

Theorem 2.15. Let H be defined by (32). Then
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(i) f

(
a + b

2

)
≤ 2

b− a

∫ a+3b
4

3a+b
4

f(x)dx ≤
∫ 1

0

H(t)dt ≤

≤ 1
2

[
f

(
a + b

2

)
+

1
b− a

∫ b

a

f(x)dx

]
(35)

and H is a convex mapping.

(ii) If f is differentiable (and convex), then

0 ≤ 1
b− a

∫ b

a

f(t)dt−H(t) ≤ (1− t)

[
f(a) + f(b)

2
− 1

b− a

∫ b

a

f(x)dx

]
(36)

and

0 ≤ f(a) + f(b)
2

−H(t) ≤ [f ′(b)− f ′(a)](b− a)
4

, t ∈ [0, 1]. (37)

Remark 2.10. Relation (36) gives a new refinement of the right side of (1).

Theorem 2.16. Let G be defined by (33). Then

(i) G is convex and increasing on [0, 1];

(ii) inf
t∈[0,1]

G(t) = G(0) = f

(
a + b

2

)
; sup

t∈[0,1]

G(t) = G(1) =
f(a) + f(b)

2
;

(iii) H(t) ≤ G(t) for all t ∈ [0, 1];

(iv)
2

b− a

∫ a+3b
4

3a+b
4

f(x)dx ≤ 1
2

[
f

(
3a + b

4

)
+ f

(
a + 3b

4

)]
≤
∫ 1

0

G(t)dt ≤

≤ 1
2

[
f

(
a + b

2

)
+

f(a) + f(b)
2

]
;

(v) If f is differentiable (and convex), then

0 ≤ H(t)− f

(
a + b

2

)
≤ G(t)−H(t) for all t ∈ [0, 1].

Remark 2.11. Since H(1) =
1

b− a

∫ b

a

f(x)dx, (iii) gives a generalization,

while (v) a refinement of Hadamard’s inequalities.

Theorem 2.17. Let L be defined by (34). Then

(i) L is a convex mapping on [0, 1];

(ii) G(t) ≤ L(t) ≤ 1− t

b− a

∫ b

a

f(x)dx + t
f(a) + f(b)

2
≤ f(a) + f(b)

2
for all

t ∈ [0, 1]; and sup
t∈[0,1]

L(t) =
f(a) + f(b)

2
;

(iii) H(1− t) ≤ L(t) and
H(t) + H(1− t)

2
≤ L(t) for all t ∈ [0, 1].
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Remark 2.12. Since L(0) =
1

b− a

∫ b

a

f(x)dx, relation (ii) offers a general-

ization and new refinement of Hadamard’s inequalities.
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[15] J. Sándor, J.E. Pečarić and S.S. Dragomir, A note on the Jensen-Hadamard inequality,
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Note added in proof. In the first part ([23]) for Theorem 1.3 the Reference

[29] is stated incorrectly. The paper in question is the following: J.E. Pec̆arić,

Remark on an inequality of S. Gabler, J. Math. Anal. Appl. 184(1994), 19-21.

Babeş-Bolyai University, 3400 Cluj-Napoca, Romania
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ON A HYBRID FDTD-MoM TECHNIQUE: 2-D CASE

CODRUŢA VANCEA, FLORIN VANCEA,

NIKOLAOS K. UZUNOGLU AND DIMITRA I. KAKLAMANI

Abstract. FDTD techniques offer fast simulations and small memory re-

quirements while MoM is more suitable for free-space field simulations but

needs more processing power and memory. A hybrid method that com-

bines the advantages of both would be highly useful in free-space scattering

simulation.

1. Introduction

The finite-difference time-domain (FDTD) solution of Maxwell’s curl equa-

tions is analogous to existing finite-difference solutions of scalar wave propagation and

fluid-flow problems in that the numerical model is based upon a direct solution of the

governing partial differential equations.

The simplicity and the ability to handle complex geometry make the FDTD

method flexible to implement. It is successfully applied for a wide variety of electro-

magnetic wave interaction problems. FDTD is a nontraditional approach to numeri-

cal electromagnetic wave modeling of complex structures for engineering applications,

where the method of moments has dominated for many years.

A. Some general characteristic of proposed technique. The goal of this paper

is to develop a hybrid technique using FDTD method and MoM technique, combining

the benefits of both while ensuring the stability of the method. The analysis is done

for a combined two-dimensional conducting and dielectric electromagnetic structure.

We must preserve a certain ratio between the spectral component of the

considered impulse with the highest significant frequency and the FDTD grid step,

respectively the time step.

This condition must be also respected inside the dielectric.
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The FDTD method introduces a non-physical dispersion (artificial, numerical

reason) for the phase velocity, dispersion which is more important as the highest

frequency component of the incident wave is represented using less points.

For a pure FDTD simulation, this dispersion must behave like a deformation

of the original impulse, as small as possible to avoid the reflections on the boundary

of the analyzed domain.

The reflection on the boundary of the analyzed domain appear because both

the values of incident wave and MoM - computed scattered field suppose an ideal

behavior of dispersion while the values resulted from FDTD are affected by the nu-

merical dispersion.

Therefore, a grid not fine enough with respect to the shape and duration

of the incident wave impulse leads to unnatural reflections on the boundary, even if

inside the domain the FDTD behavior is acceptable.

B. FDTD algorithm - two dimensional case. The field is described by Maxwell’s

curl equations:
∂H

∂t
= − 1

µ
∇× E (1)

∂E

∂t
=

1
ε
∇×H − σ

ε
E (2)

where E is the electric field in volts/meter; H is the magnetic field in amperes/meter;

ε is the electrical permittivity in farads/meter; σ is the electrical conductivity in

siemens/meter; µ is the magnetic permeability in henrys/meter.

The FDTD algorithm for electromagnetic wave interactions for TM case, with

Ez, Hx and Hy field component only:

∂Hx

∂t
= − 1

µ

∂Ez

∂y
(3)

∂Hy

∂t
= − 1

µ

∂Ez

∂x
(4)

∂Ez

∂t
=

1
ε

(
∂Hy

∂x
− ∂Hx

∂y
− σEz

)
(5)

Then, we use the centered finite-difference expression for the space and time

derivatives:

Fn(i, j) = F (idx, jdy, ndt)
∂Fn(i, j)

∂x
=
Fn(i+ 1/2, j)− Fn(i− 1/2, j)

dx
+O(dx2)
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∂Fn(i, j)
∂t

=
Fn+1/2(i, j)− Fn−1/2(i− 1/2, j)

dt
+O(dt2)

and finally we have the formula:

ψn+4(i, j) = −dtσ(i, j)
ε(i, j)

ψn+3(i, j) + dt
σ(i, j)
ε(i, j)

ψn+1(i, j)− ψn(i, j)+

+
1

µ0ε(i, j)

(
dt

dx

)2

(ψn+2(i+ 1, j) + ψn+2(i− 1, j))+

+
1

µ0ε(i, j)

(
dt

dy

)2

(ψn+2(i, j + 1) + ψn+2(i, j − 1))+

+2

(
1− 1

µ0ε(i, j)

(
dt

dx

)2

− 1
µ0ε(i, j)

(
dt

dy

)2
)
ψn+2(i, j) (6)

where ψ = Ez.

To ensure the stability of the time-stepping algorithm, dt must be chosen to

satisfy the inequality:

cmaxdt ≤ (1/dx2 + 1/dy2)−1/2 (7)

where cmax is the maximum electromagnetic wave phase velocity within the media

being modeled.

2. Formulation of the problem

Let us consider a 2D problem with the layout shown in Fig.1. The analyzed

domain contains a dielectric zone with arbitrary shape and parameters placed in the

proximity of a perfectly conductive material of linear cross-section. The entire system

is illuminated with a plane wave propagating towards the origin at an arbitrary angle.

The wave will produce secondary scattering waves on the dielectric and will reflect

completely on the perfect conductor surface.

We will use during the following computations two boundaries: ∂S∞ the

boundary placed at infinite and ∂Sc united with ∂Sd the boundary of the analyzed
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domain. For simplicity of geometry generation, the conductor is parallel with Oy

axis, but the method allows any placement of it.

Fig.1. Studied case of scattering problem

3. Mathematical formulation

A. General facts. The wave speed in free space: c = 3 ∗ 108m/s

The free space permittivity: ε0 = 8.8419 ∗ 10−12F/m

The free space permeability: µ = 4 ∗ π ∗ 10−7H/m

The dielectric conductivity: σ = 10−9S/m

The dimensions of the analized domain are Lx = 30m, Ly = 20m.

The incident wave is travelling leftwards in the air. It is one cosine impulse

length iw = 4 ∗ 10−9s, starting tangential in zero.

The incidence angle of the wave, counterclockwise from Ox axis is α = π/4.

We must have a fine grid to respect the shape and duration of the incident

wave impulse. This condition will prevent the unnatural reflections on the boundary.

The place occupied in space by the impulse (for 45 degrees incidence):

Impulse length: iw ∗ c = 4 ∗ 10−9 ∗ 3 ∗ 108 = 1.2s

The grid step: dx = dy = dl = 0.1m

Number of nodes: iw/(dl ∗
√

2) = 1.2/(0.1 ∗ 1.414 . . . ) = 8.4
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The phase of the wave, which starts at the far end of domain:

Tph = (Lx ∗ cos(α) + Ly ∗ sin(α))/c

The scattering problem is solved for two shapes of dielectric. More complex

structures of dielectric shapes can be solved in a similar mode.

In this paper, the shapes of dielectric analized are cylindrical with rectangular

and respectively circular cross-sections. The rectangular dielectric is placed in the

centre of analized zone and it has the dimensions Lx/2m,respectively Ly/2m. The

relative permitivity is εrel = 10. The circular cross-section dielectric is also placed

in the centre of the analized zone, with radius Ly/3m. The relative permitivity is

εrel = 2.

B. Green’s theorem. Derivations of integral equations. For the computation

of the field values from the contour we have two Helmholz equations:

∇2ψs
ω +

ω2

c2
ψs

ω = 0 (8)

∇2Gω(r, r′) +
ω2

c2
Gω(r, r′) = −δ(r − r′) (9)

where Gω(r, r′) is the Fourier Transform for Green function, ψs
ω is the scattered field

and r, r′ are the vectors of the position.

δ(r − r′) is Dirac function.

On the conductor, the scattered field is zero: ψs
ω = 0.

For the field computation, we apply the Green’s theorem in time domain on

the area outside ∂Sd, ∂Sc and inside ∂S∞.

ψs(r, t) scattered field

ψ0(r, t) incident wave

ψ(r, t) total field ψ(r, t) = Ez(r, t)

Gω(r, r′) Fourier Transform for Green function

G(r, r′, t− t′) 2D free-space Green function

G(r, r′, t− t′) =
H(t− t′ − u/c)√∣∣∣∣(t− t′)2 − u2

c2

∣∣∣∣
(10)

u = |r − r′|
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H(x) Heaviside unit step function∫∫
s

(Gω(r, r′)∇2ψs
ω(r′)−∇2Gω(r, r′)ψs

ω(r))dxdy =

=
∫

∂S∞

(
Gω(r, r′)

∂ψs
ω(r)
∂n

− ∂Gω(r, r′)
∂n

ψs
ω(r)

)
dl+

+
∫

∂Sd

(
Gω(r, r′)

∂ψs
ω(r)
∂n

− ∂Gω(r, r′)
∂n

ψs
ω(r)

)
dl+

+
∫

∂Sc

(
Gω(r, r′)

∂ψs
ω(r)
∂n

− ∂Gω(r, r′)
∂n

ψs
ω(r)

)
dl (11)

The first integral is zero because the field vanishes at infinity.

Considering ∂Sd + ∂Sc = ∂S, we have:∫∫
S

(δ(r − r′)ψs
ω(r′))dx′dy′ =

∫
∂S

(
Gω(r, r′)

∂ψs
ω(r)
∂n

− ∂Gω(r, r′)
∂n

ψs
ω(r)

)
dl (12)

Now we use the Inverse Fourier Transform to transform the Green function

in time domain and we obtain:

ψ(r, t) = ψ0(r, t)+

+
∫

∂Sd

dl

(
G(r, r′, t− t′) ∗ ∂ψ

s(r, t)
∂n

− ∂G(r, r′, t− t′)
∂n

∗ ψs(r, t)
)

+

+
∫

∂Sc

dl

(
G(r, r′, t− t′) ∗ ∂ψ

s(r, t)
∂n

)
(13)

The system of integral equations has the number of equations equal with the

number of points from discretization made on ∂Sd and ∂Sc. For the points on ∂Sc,

the field values ψ(r, t) are zero.
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C. Computation of the convolution integrals. For the derivative of G and ψ,

we have the expressions:

∂G(rc, ndt− t′)
∂n

=
Gcont(ic, jc)−Gint(ii, ji)

dn
;

∂ψs(rc, ndt)
∂n

=
ψs

cont(ic, jc)− ψs
int(ii, ji)

dn
, (14)

where Gcont is the Green function relative to contour nodes, Gint is the Green function

relative to interior-contour nodes, ψcont is the field values on the contour nodes, ψint

is the field values on the interior-contour nodes and the boundary ∂S is equal with

∂Sd + ∂Sc.

Considering the symbol ∗ for the convolution operator, the integral becomes:∫
∂S

dl

(
G(r, r′, t− t′) ∗ ∂ψ

s(r, t)
∂n

− ∂G(r, r′, t− t′)
∂n

∗ ψs(r, t)
)

=

=
∫
∂S

dl
1
dn

(Gcont(r, r′, t− t′) ∗ ψs
int(r, t)−Gint(r, r′, t− t′) ∗ ψs

cont(r, t)) ∼=

∼=
∑

j∈contour

dl

dn
(Gcont(r, r′, t− t′) ∗ ψs

int(r, t)|j −Gint(r, r′, t− t′) ∗ ψs
cont(r, t)|j) (15)

The approach from (15) is correct because we know that for an arbitrary

function f(r), the contour integral over f(r) means sum over all points on the contour:∫
C

f(r)dl ∼=
∑

j∈contour

dlf(r)|j (16)

Moreover, the values for the Green function relative to interior nodes and

contour, respectively, do not change at different time steps and they can be computed

before the loops begin in the program.

Each node pair may use a finite number of such non-zero Green function

values since the Green function for a given u = |r − r′| decays with the inverse of

time. Therefore, a precision of 10−1 will require approximately ten values of the Green

function per node pair.

The definition for the convolution is:

G(r, r′, t− t′) ∗ ψs(r, t) =
∫ t

−∞
G(r, r′, t− t′)ψs(r, t′)dt′ = I(t) (17)

We calculate the integral at time t = (n + 1)dt, so we will make a notation

and then we will write the integral as sum of integrals. The sum can be separated in
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three terms. The first two integrals are evaluated and the rest implies the calcul of

Green function.

I(t)|t=(n+1)dt,r = I(n+1)(r)

I(n+1)(r) =
∫ (n+1)dt

ndt+ dt
2

G(r, r′, t− t′)ψs(r, t′)dt′+

+
∫ dt

2 t

0

G(r, r′, t− t′)ψs(r, t′)dt′ +
n∑

k=1

ψs|r,k′

∫ kdt+ dt
2 t

kdt− dt
2

G(r, r′, t− t′)dt′ (18)

The first integral from (18) is zero for all points except for the reference point

which we neglect. The second integral from (18) is zero because at the beginning the

field value is zero. The last integral is analytically calculated.

For the Green function, we know that:

G(r, r′, t− t′) = 0 for t− t′ < |r − r′|/c;

(or (n+ 1)dt− t′ < |r − r′|/c)
(19)

and
G(r, r′, t− t′) = 1/

√
(t− t′)− |r − r′|2/c2,

for t− t′ > |r − r′|/c;

(or (n+ 1)dt− t′ > |r − r′|/c)

(20)

4. Numerical results

A. Estimation of the error. Estimation of the error arising from neglecting of

I1 =
∫ (n+1)dt

ndt+dt/2

G(r, r′, t− t′)ψ(r, t′)dt′

form sum (18) has the analytical expression:

Er(dt) = πcdt/8

For example, if the time step dt = 10−10 we have

Er(dt) = π · 3 · 108 · 10−10/8 ∼= 0.0117

The above computing coefficient multiplies the field on the interior contour

at time (n+ 1)dt which is not yet known and will be computed using the values from

the whole summation, fed into FDTD method. This leaves us no other choice than

to ignore the whole term when computing the scattered field on the contour at time

(n+ 1)dt.
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As we know, the relation for computing the scattered field suppose the con-

volution between the wave shape in a point and the correspondent Green function

over time. For computational reason (the occupied memory, the time needed for the

computing) the sum which calculates this integral must be truncated. The sum trun-

cation is another error source that can lead to parasite reflections on the boundary

or to a reduction of the response induced by the conductor on the system.

B. Analysis of the Stability. For the test of the stability, we must run the program

for different steps in space and time. Because the results must be comparable, we

must take the measure to fix the initial conditions of the simulation.

The elements that are fixed (must be fixed) are:

1. the dimension of the analyzed domain

2. the absolute position of the conductor

3. the dimension of the conductor

4. the absolute position of the dielectric

5. the absolute dimension of the dielectric

6. the position of the wave front at starting moment of the simulation.

The absolute position of the conductor doesn’t pose any problem being fixed.

Also the position of the wave front could be chosen at point (Lx, Ly) at moment t = 0.

The simulation implementations in the program groups the sum terms in

order to take advantage of the Green function values duplications for pairs of points

placed at same relative distance.

Let us consider for example the tested geometry. The domain has 31 × 21

points (grid values) and the conductor has 21 × 2 points (grid values) which nor-

mally would require to compute the Green function for 2× 140× 140 points rising to

approximately 39.000 sets of values.

Using the fact that the points on the contour are regularly spaced and the

distances between the pairs of points are repeated, the number of Green function to

compute and, of course, to store is reduced to approximately only 770.

This significant reduction of the necessary memory (of about 50 times), allows

simulations with a step seven times finer (7×7 ∼= 50) than without the optimization.
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The price paid for these optimizations is solving the problem on a grid with

the step on x equal with the step on y, and uniform distributed on the boundary.

The advantages obtained by indexed computations of Green function remain

valid, but in a lesser way, for non-equal x and y steps, uniform distributed.

The stability of the method is proven by Fig.2 and Fig.3, containing field

plots over space at the same moment of time but being computed with different space

steps. The same stands true for Fig.4 and Fig.5 in the circular section case.
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THE ROLE OF APPLIED MATHEMATICS

WOLFGANG L. WENDLAND

Magnificus, Spectabiles, Professors, dear friends, ladies and gentlemen!

This is a very touching moment for my dear wife and me. The honorous

doctorate of the Babeş-Bolyai University is a very great honour for me and I want to

express my sincere gratitude to my dear colleagues, in particular to Professor Micula

- thank you so much - to Professor Rus and to Professor Ţâmbulea. Dear Prorector

Szilágyi, thank you so much for your kindness and for your flattering laudatio which

makes me rather uncomfortable but also very happy. And Magnificus Simon, thank

you much for this great honour! I will try to be a good scholar and ambassador.

Now, let me say a few words on my profession.

Mathematics is one of the oldest cultural achievements of mankind, as early

as literature, art and music. ”Mathematics must be understood as a human activity,

a social phenomenon, part of human culture, historically evolved, intelligible only in

a social context” [1].

In fact, mathematics has always been developed or discovered (?) in combi-

nation with other fields. Here are some historical examples:

Pythagoras (582-505 b. Chr.) discovered irrational numbers from the pro-

fane problem of partitioning a given surface, which triggered his studies of geometry

and numbers. He introduced the concepts of axioms, theorems, proofs and logical

reasoning. As we know, because of troubles with tyrant Polykrates of Samos, he

became a political refugee immigrating to Italy.

Archimedes (287-212 b. Chr.) was regarded by his king Hieron of Syracuse

as top engineer because of his numerous inventions and discoveries such as fundamen-

tal laws of hydrostatics, the spiral pump, sets of pulleys, catapults and war machines,

Given at the University Babeş-Bolyai in Cluj-Napoca, Romania, on April 7th 1999, on the occasion of

his nomination as ”Doctor Honoris Causa”.
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the concave mirror. King Hieron was very angry at Archimedes’ absurd mathemati-

cal activities like approximation methods for computing roots and π, developing the

concept of the Riemann integral and of differentiation. We all know about the tragic

end of Archimedes and of Greek sophistication due to the brutal Roman conquest of

Syracuse.

I. Newton (1643-1727) was a famous physicist who developed differential

and integral calculus for deriving Kepler’s laws from the fundamental law of gravity,

and his theory of light arose in connection with his work on optical instruments.

However, he himself rated his mathematical work much higher than his achievements

in physics and astronomy.

G. Leibniz (1646-1716) was an allround genius, a famous lawyer, historian

and philosopher who enjoyed mathematics almost like a hobby. He developed differ-

ential and integral calculus, theory of determinants, power series, successive iteration,

division of polynomials and two mechanical calculators; one of them based on dual

numbers. Modern analysis owes him the elegant and simple rules of calculus.

C.F. Gauss (1777-1855) started his career with number theory and the proof

of the fundamental theorem of algebra as a student - he was 22 years old when getting

his PhD in absentia at Helmstedt - but professionally he was hired as an astronomer,

continued as the director of surveying engineers, then developed the theory of electro-

magnetism and with Weber constructed the telegraph. But mathematics fascinated

him most: He pioneered complex function theory, differential geometry and geodesy,

least squares methods and the solution of linear equations, theory of algebraic equa-

tions and potential theory - he even proved the existence of solutions to boundary

integral equations (my hobby). He was a close friend of Farkas Bolyai, who worked

here in Cluj and published a great two-volume book on mathematics. His son Janos

Bolyai from Cluj invented the non-Euclidean geometry independently of Gauss which

became a necessary prerequisite for Einstein’s theory of relativity. This university is

named after F. and J. Bolyai!

S. Kowalewskaya (1850-1891) corrected a conjecture of Weierstrass and

gave a constructive proof for the convergence of Cauchy’s algorithm providing the

most general existence proof for systems of partial differential equations. She then

made significant contributions to complex function theory, potential theory, Abelian

108



THE ROLE OF APPLIED MATHEMATICS

integrals and algebraic geometry. But she achieved her greatest success in the theory

of the gyroscope apart from contributions to optics, celestial mechanics and astro-

physics.

V. von Neumann (1903-1957) began with complex function theory and

was then working with D. Hilbert on the foundation of mathematics, continuing with

topology, functional analysis, measure theory, quantum field theory and stochastics,

treating problems in meteorology, hydro- and aerodynamics, spherical shock waves,

game theory (for the Navy) and the foundation of computer science. He developed

the ENIAC in 1944 and the MANIAC in 1951 which was the basic computational tool

for America’s hydrogen bomb.

Mathematics as a profession by itself, however, is not older than 150 years.

And the distinction between pure and applied mathematics is even younger - to me

this distinction seems rather artificial. The greatest mathematicians do both: pure

and applied mathematics; each side fertilizes the other.

But what is pure and what is applied mathematics? Mathematical theories in

their complex and abstract structures grow at their frontiers through continuous in-

teraction between mathematicians and all kinds of researchers. The advance is fed by

information and desire from all areas of real and intellectual life. In order to make pre-

dictions about future possible states, mathematical models provide the corresponding

tools. But ”no real phenomenon is perfectly described by any mathematical model.

There’s usually a choice among several incomplete models, each more or less suit-

able” [1]. And H.M. Enzensberger says [2]: ”The unforeseen utility of mathematical

models is somewhat puzzling. It is no means clear why highly precise mental produc-

tions, devised entirely in isolation from empirical reality... should be so capable of

explaining and manipulating the real world around us. Many have marveled at ”the

unreasonable effectiveness of mathematics”. ... One explanation that presents itself -

though not especially popular among the guardians of tradition - might be that one

and the same evolutionary process has produced the universe at large and our brain,

so that a weak anthropic principle determines that we observe the same operating

rules in physical reality and in our own thought processes.”

So, applied mathematics can be seen as that part of mathematics that deals

with models of real life problems. This kind of work is done by many people, not only
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professional mathematicians. Among the Nobel Prize winners since 1970, I found

at least 14 in physics, 3 each in chemistry, medicine and economy who used and

developed deep mathematics for their outstanding achievements. Examples:

1979: A.M. Cormack, Sir G.N. Hounsfield: Computer assisted tomography.

1979: S.L. Glashow, A. Salan, S. Weinberg: Formulation of the standard

model unifying weak and electromagnetic interaction.

1982: K.G. Wilson: Theory of critical phenomena in connection with phase

transitions.

1990: J.I. Friedman, H.W. Kendall, R.E. Taylor: Scattering of electrons,

protons, bound neutrons and the development of the quark model.

1990: H.M. Markowitz, M.M. Miller, W.F. Sharpe: Theory of financial eco-

nomics.

1998: J.A. Pole: Computational methods in quantum chemistry.

Mathematics, however, is explicitly excluded from the Nobel prize; probably

since Mittag-Leffler, who was at the same time a famous mathematician at the Royal

Academy and the University of Stockholm disliked the playboyish A. Nobel. These

feelings were probably mutual.

During the first half of this century, the terminus applied mathematics was

used for teaching mathematics to engineering students. But in the second half, ”the

most striking development in engineering... has been the increasing use of mathe-

matics in the analysis of engineering problems. No longer is skill in the use of a

slide rule sufficient mathematical equipment for a practising engineer. For instance,

control engineers use sophisticated, and very often abstract, mathematical concepts,

some electrical engineers have to be acquainted with quantum mechanics, others with

transform theory, and civil and mechanical engineers reading research papers on con-

tinuum mechanics encounter a bewilderingly wide range of mathematical techniques;”

writes I. Sneddon in [5]. Nowadays exist engineering sciences.

Sneddon’s Encyclopaedic Dictionary [5] and also the Mathematical Handbook

[6] by G.A. and T.M. Korn covers mathematical analysis of very high level, I doubt

that I am familiar with more than 20% of it. Thus, our engineering colleagues do

applied mathematics to a great extent, too.
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In [5] and [6] one can also find references to the work of two famous math-

ematicians and professors of this university: To L. Fejer (1880-1959) who taught in

Cluj from 1905 till 1911 and whom we owe fundamental results in harmonic analysis,

complex function theory and interpolation, and to F. Riesz (1880-1956) who worked

here 1911-1920 and who has made decisive inventions in the functional analysis of

Hilbert and Banach spaces, harmonic analysis and approximation theory.

In all engineering fields, the modern tools of electronic computers led to the

new branch of scientific computing and simulation in applied mathematics [3] which

now is indispensable in computer tomography, geometric design, reconstruction and

visualization, direct and inverse scattering of electromagnetic and acoustic fields, heat

transfer and radiation, stress and damage analysis in solid mechanics, all branches

of fluid mechanics from aircraft design to sedimentation and groundwater pollution,

signal processing, network analysis and planning, chemical processing, etc., etc. -

and the combination of several field models to multifield problems resulting in new

technologies such as the intelligent wing, nondestructive thermography, noise reduced

helicopters or most effective sex-segregated baby diapers.

Nowadays industry uses mathematics often directly. This resulted in the

fashionable new field of industrial mathematics [4]. The E & E Chief of Exxon, E.E.

David in a report for the NSF of the US [7]: ”Apparently, too few people recognize

that the high technology that is so celebrated today is essentially mathematical tech-

nology... Mathematics is, or should be playing an integral role in America’s industry’s

approach to its challenges, at home and abroad.”

Indeed, mathematics seems to be the key technology of our future (see [8])

and also the ”language of engineers”.

The enormous demand for applied mathematics creates completely new math-

ematical concepts such as qualitative reliability and corresponding tools for critical

evaluation of physical and constutive models; cost and time efficient computational

algorithms, new solution methods due to new computer technologies (e.g. paral-

lelization), attractive presentation of computational results, adequate learning and

teaching of the new mathematical technologies.
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These challenges will also influence mathematics in general since ”applied

mathematics is not illegitimate or marginal. Advances in mathematics for science

and technology often are inseparable from advances in pure mathematics” [1].

As it seems, we are living in the high time of mathematics!

However, professional mathematicians are somehow excluded from corre-

sponding benefits. After a stimulating and optimistic start into a seemingly new

mathematical era about 20 years ago public opinion has changed more recently. Of

course, mathematicians with their persistent obsession of truth and typical slow-

ness in acceptance of empirical relations or new - often false - algorithms of pushing

economists and engineers, are then seen as blocking obstacles of progress. One of the

leading engineers in finite element analysis claims that mathematicians are rubber

stampers but not inventors - they ”prove” 10 years behind nothing but that engi-

neers are doing right. Mathematicians think in counterexamples whereas engineers

think in examples; and a mathematician always hesitates to publish anything that is

not yet completely and rigorously justified within a mathematical theory. However,

there are several examples where mathematical cautiousness would have saved a lot

of money and even human lives. I recall the destruction of cooling towers at Ferry-

bridge in 1966, the desastrous sinking of a new Norwegian oil platform in 1993, or

less spectacular, the elk test affair of the new Mercedes compact cars, convergence of

finite element approximations towards wrong solutions because of negligence of dis-

tributional derivatives in modern analysis. In all these cases, design engineers blindly

trusted professional software. So, on the path from applied mathematics to the nu-

merical algorithm used for the software, critical information was lost since responsible

people did not know enough mathematics.

As was mentioned before, here is a new challenge for applied mathematics:

Every mathematical method that is used for the simulation of real life problems should

nowadays also provide reliable information on the validity of the model and also

reliable error inclusions since every mathematical model is based on some idealization

that covers the true problem only partly and every computational, numerical method

is incorrect to a certain extent. Of course, such worries are highly unwelcome in

modern rushing life which unfortunately seems to be driven by the golden calf of

financial profit.
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”It is often not obvious how closely ”pure” and ”applied” mathematics are

intertwined; this may be one of the reasons why the status of mathematical research

is hugely undervalued in today’s society. In addition, there is surely no other field

in which the cultural lag is no enormous... One can state dispassionately that great

segments of the population have never progressed beyond the mathematical level of

the ancient Greeks. An equivalent backwardness in other fields - e.g. in medicine,

or physics - would be perilous. This is very dangerous since never has a civilization

been so infused with mathematical methology - right down to its everyday life - and

so dependent on it as ours!” [2].

The danger for mathematics as a profession can rather clearly be seen nowa-

days. In my state which is booming in high technology, the State Commission for the

Future Structural Development of the State Universities recommends reduction of the

mathematical staff by 25% within the next 9 years, in spite of official state expert’s

recommendation in 1996 to expand scientific computing and numerical mathematics

significantly. We currently discuss whether an open key professorship in this field

should remain in the mathematical department or better be moved into some field of

engineering applications or to computer science. ”Der Spiegel” chose ”Nobel prizes

for nonsense” as headline of an article on the world congress of mathematics 1998

in Berlin. The number of freshmen and graduate students in mathematics dropped

significantly during the last years in spite of their marvelous job chances.

Hence, it is just not enough to do good mathematics, pure and applied. We

professional mathematicians must reform the education of school teachers in mathe-

matics - it is simply improper to drill intelligent children with boring formalities. We

also must reform our university teaching by showing our students from the beginning

the power and beauty of applied mathematics, by treating difficult real life problems

instead of agonizing them with ancient calculations. We must learn how to talk to our

colleagues in other fields and must direct our research interests to challenging open

problems of real life applications. The applied part of mathematics is livelier than

ever but to me it is not so clear that professional mathematicians are really gripping

the situation.

I hope that there will come a time when the following joke due to Professor

Collatz will not be understood anymore: Two men in a balloon lost direction in fog.
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Fortunately by the time they saw a man on the ground and asked him shouting: Where

are we? It took a while before the man replied: You are in the gondola of a balloon!

Disappointed, the balloon captain remarked to his friend: This was bad luck to meet

a mathematician in our situation. - How did you know, he was a mathematician? -

Firstly, replied the captain, before he made any statement he obviously was thinking

hard. Secondly, his statement was clear and perfectly correct but - completely useless!

I am sure that applied mathematics is extremely useful!

Mulţumesc!
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Ravi P. Agarwal, Difference Equations and Inequalities: Theory, Methods and

Applications, Second Edition, Revised and Expanded, M. Dekker, Inc., Basel - New

York 2000, xiii+971 pages, ISBN: 0-8247-9007-3.

Although difference equations manifest themselves as mathematical models

describing real life situations in probability theory, queueing problems, statistics,

stochastics time series, combinatorial analysis, number theory, electrical networks,

quanta in radiation, genetics, economics, psychology, sociology, etc., these are some-

times considered as the discrete analogs of differential equations. It is an indisputable

fact that difference equations appeared much earlier than differential equations and

were very important for their development. It is only recently that difference equa-

tions have started receiving the attention they deserve. Perhaps this is largely due

to the advent of computers, where differential equations are solved by using their

approximate difference equation formulations.

The monograph under review is a virtual encyclopedia of results concerning

difference equations. This second edition discusses solutions to linear and nonlinear

difference equations, highlights discrete versions of Rolle’s theorem, the mean value

theorem, Taylor’s formula, Hospital’s rule, Kneser’s theorem. The author investigates

the stability and oscillatory properties of solutions of difference equations, explores

a unified treatment of boundary value problems, introduces difference inequalities in

several independent variables, explains Duffing’s, van der Pol’s, and Hill’s equations

(among other classical equations), evaluates Sturm-Liouville problems and related

inequalities.

In this new edition, beside a new chapter on the qualitative properties of

solutions of neutral difference equations, new material has been added in all existing

chapters of the first edition. This includes a variety of interesting examples from
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real world applications, new theorems, over 200 additional problems and 400 further

references.

J. Sándor

Jonathan M. Borwein and Adrian S. Lewis, Convex Analysis and Nonlinear Opti-

mization, Theory and Examples, Canadian Mathematical Society (CMS) Books in

Mathematics, Vol. 3, Springer-Verlag, New York Berlin Heidelberg, 2000, ISBN:0-

387-98940-4.

The book is a concise account of convex analysis, its applications and exten-

sions. It is aimed primarily at first-year graduate students, so that the treatment is

restricted to Euclidean space, a framework equivalent, in fact, to the space Rn, but

the coordinate free notation, adopted by the authors, is more flexible and elegant.

The proof techniques are chosen, whenever possible, in such a way that the extension

to infinite dimensions be obvious for readers familiar with functional analysis (Banach

space theory). Some of the challenges arising in infinite dimensions are discussed in

Chapter 9, Postscript: Infinite versus finite dimensions, in which case the results

involve deeper geometric properties of Banach spaces. The last section of this chap-

ter contains notes on previous chapters, explaining which results extend to infinite

dimension and which not, as well as sources where these extensions can be found.

The authors adopted a succint style, avoiding as much as possible compli-

cated technical details, their goal being ”to showcase a few memorable principles

rather than to develop the theory to its limits”. The book consists of short, self-

contained sections, each followed by a rather extensive set of exercises grouped into

three categories: examples that illustrate the ideas in the text or easy expansions

of sketched proofs (no mark); important pieces of additional theory or more testing

examples (marked by one asterisk); and longer, harder examples or peripheral theory

(marked by two asterisks). Some bibliographical comments are also included along

with these exercises, an approach which allow the authors to cover a large variety of

topics. A good idea on the included material is given by the headings of the chapters

and the presentation of some topics included in the main text or in exercises.
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Ch. 1, Background - Euclidean spaces, symmetric matrices, in the main text,

and Radstrom cancellation, recession cones, affine sets, inequalities for matrices, in

exercises.

Ch. 2, Inequality constraints - optimality conditions, theorems of alterna-

tive, max-functions, in the main text, and nearest points, coercivity, Carathéodory’s

theorem, Kirchoff’s law, Schur convexity, steepest descent, in exercises.

Ch. 3, Fenchel duality - subgradients and convex functions, the value func-

tion, the Fenchel conjugate, in the main text, and normal cones, Bregman distances,

Log-convexity, Duffin’s duality gap, Psenichnii-Rockafellar condition, order-convexity

and order subgradients, symmetric Fenchel duality, in exercises.

Ch. 4, Convex analysis - continuity of convex functions, Fenchel biconjuga-

tion, Lagrangian duality, in the main text, and polars and polar calculus, extreme

and exposed points, Pareto minimization, von Neumann minimax theorem, Kaku-

tani’s saddle point theorems, Fisher information function, in exercises.

Ch. 5, Special cases - polyhedral convex sets and functions, functions of

eigenvalues, duality, convex process duality, in the main text, and polyhedral alge-

bra, polyhedral cones, convex spectral functions, DC functions, normal cones, order

epigraphs, multifunctions, in exercises.

Ch. 6, Nonsmooth optimization - generalized derivatives, regularity and strict

differentiability, tangent cones, the limiting subdifferential, in the main text, and Dini

derivatives and subdifferentials, mean value theorem, regularity and nonsmooth cal-

culus, subdifferentials of eigenvalues, contingent and Clarke cones, Clarke’s subdiffer-

entials, in exercises.

Ch. 7, Karush-Kuhn-Tucker theory - metric regularity, the KKT theorem,

metric regularity and the limiting subdifferential, second order conditions,in the main

text, and Lipschitz extension, closure and Ekeland’s principle, Liusternik theorem,

Slater condition, Hadamard’s inequality, Guignard optimality conditions, higher order

conditions, in exercises.

Ch. 8, Fixed points - the Brouwer fixed point theorem, selection and the

Kakutani-Fan fixed point theorem, variational inequalities, in the main text, and
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nonexpansive mappings and Browder-Kirk fixed point theorem, Knaster-Kuratowski-

Mazurkiewicz principle, hairy ball theorem, hedgehod theorem, Borsuk-Ulam theo-

rem, Michael’s selection theorem, Hahn-Katetov-Dowker sandwich theorem, single-

valuedness and maximal monotonicity, cuscos and variational inequalities, Fan mini-

max inequality, Nash equilibrium, Bolzano-Poincaré-Miranda intermediate value the-

orem, in exercises.

There is a chapter, Chapter 10, containing a list of named results and nota-

tion, organized by sections. Beside this, the book contains also an Index.

The bibliography counts 168 items.

Written by two experts in optimization theory and functional analysis, the

book is an ideal introductory teaching text for first-year graduate students. By the

wealth of highly non-trivial exercises, many of which are guided, it can serve for

self-study too.

Ştefan Cobzaş

Function Spaces– The Fifth Conference, Edited by Henryk Hudzik and Leszek

Skrzypczak, Lecture Notes in Pure and Applied Mathematics Vol. 213, Marcel

Dekker, Inc New York-Basel 2000, xiv + 511 pp. ISBN: 0-8247-0419-3.

These are the proceedings, edited by H. Hudzyk and L. Skrzypczak, of the

fifth conference Function Spaces, held in Poznan, Poland, one of the satellite confer-

ences associated with of the International Congress of Mathematicians, Berlin 1998.

The conference was attended by 121 mathematicians from Poland and abroad. Dur-

ing the conference two special sessions were organized: one dedicated to Wladislaw

Orlicz (1903-1990), the founder of the Poznan school of functional analysis, and the

other dedicated to Genadǐı Lozanovsky (1937-1976), a member of the famous St. Pe-

tersburg school of lattice theory. The personality of W. Orlicz and his mathematical

achievements are evoked in two papers; Wladyslaw Orlicz: his life and contributions

to mathematics by L. Maligranda and W. Wnuk, and Recent developments of some

ideas and results of W. Orlicz on unconditional convergence by L. Drewnowski. There

are also two papers dedicated to G. Lozanovsky: G. Ya. Lozanovsky: his life by Rita
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Lozanovskaya, and G. Ya. Lozanowsky: his contributions to the theory of Banach

lattices by Y. A. Abaramovich and A. I. Veksler.

Beside these expository papers, the volume contains also 40 research papers,

covering a large variety of topics from general theory to particular spaces, topological

and geometrical properties, order structures and the interpolation of operators. A ma-

jor theme of the volume is the geometry of Banach spaces, focusing on Orlicz spaces

and fixed point theory. Other topics are disjointness preserving operators, integral op-

erators, Hardy inequalities and Hardy operators, Hardy dyadic spaces, Köthe-Bochner

function spaces, polynomial and multilinear properties of Banach spaces, and much

more.

Among the contributors to the volume we mention: Y. A. Abramovich, A.

K. Kitover, Bor-Luh Lin, Z. Cieselski, Shutao Chen, R. Urbanski, L. Maligranda, J.

Kakol, G. Lewicki, Pei-Kee Lin, J. G. Llavona, R. Taberski, N. Popa, a.o.

The volume is a valuable addition to the existing literature on function spaces

and will be an indispensable tool for researchers in functional analysis and its appli-

cations.

Ştefan Cobzaş

George Isac, Topological Methods in Complementarity Problems, Nonconvex Opti-

mization and its Applications Vol. 41, Kluwer Academic Publishers, Dordrecht 2000,

704 pp, ISBN: 0-7923-6274-8

As far as we know, after the author’s volume ”Complementarity Problems”

in Springer’s Lecture Notes in Mathematics (Nr. 1528, 1992) this monography is

the second one dedicated wholly to this subject. It is especially dedicated to the

study of nonlinear complementarity problems in infinite dimensional spaces. Since the

literature on this subject is very large, here only theoretical problems are considered,

and first of all those which are related to topological methods.

The first chapter concerns on the notion of the cone in a topological vector

space, on the order relation it introduces. The relation of the order and the topology is

essential and in this respect some fundamental types of cones (and ordered topological
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vector spaces) such as normal, regular, completely regular, well based, polyedral cones

are defined and their properties are studied.

In the second chapter the reader get the definition of the complementarity

problem, the history of the term and a philosophy about the its importance. We

remind the simplest form of the Nonlinear Complementarity Problem (NCP): Let

〈E,E∗〉 be a dual system of locally convex spaces and let K ⊂ E be a a closed

pointed convex cone, K∗ ⊂ E∗ be its dual cone. Suppose that f : E → E∗ is

a function. Find x0 ∈ K such that f(x0) ∈ K∗ and 〈x0, f(x0)〉 = 0. Further a

classification of the complementarity problems is given. Inside the two main class:

Topological complementarity problems and Order complementarity problems, and

especially in the first one a great variety of types are distinguished, such as various

linear and nonlinear problems. The chapter ends with the list of the main problems

which can be stated about complementarity problems (existence, unicity, dependence

on parameters, sensitivity etc.).

Chapter 3 deals with the mode of appearance of the complementarity in

mathematical programming, game theory, variational inequalities, etc. Besides purely

mathematical formulations a lot of concrete economical, mechanical and technical

problems are considered such as various equilibrium questions in the economy, in

traffic flows, problem of maximizing oil production, problems in structural engineer-

ing, fluid flows, elasticity etc.

A short chapter is devoted to the equivalence of the complementarity problem

with fixed point problems, with variational inequalities, minimization problems etc.

Chapter 5 deals with the solvability of the various types of NCP-s. Beginning

with the classical existence and uniqueness theorems of Dorn, Cottle and Karamar-

dian the chapter continues with the more recent results of existence and uniqueness

results of NCP-s and their equivalent formulations. Global solvability, feasibility,

boundendess of solution set are also considered.

The tietles of the following chapters are suggestive enough to reflect their spe-

cial content: 6. Topological degree and complementarity. 7. Zero-epi mapping and

complementarity. 8. Exceptional family of elements and complementarity. 9.Condi-

tions (S)+ and S(S)1+ : application to complementarity theory. 10. Fixed points,
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coincidence equations on cones and complementarity. 11. Other topological results

on complementarity theory.

Each chapter is followed by references, and a global reference list exists at the

end of the volume. A Glossary of notations and an Index completes the monography.

The exposition implies the usage of a very large number of auxiliary results

from topology and functional analysis. These results are only stated with biblio-

graphic indications. Only the results strictly related to the subject are proved. The

resulting text becomes this way a good reference book in the field, which can be used

also as a guide for lectures or for the introduction in the subject. It is intended for

mathematicians, engineers, economists and for anybody interested in the subject.

A.B. Németh
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