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MATHEMATICA

2
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PROFESSOR PETRU T. MOCANU ON HIS 70th BIRTHDAY

Professor Petru T. Mocanu was born on June 1, 2001 in Brăila, Romania. He

attended primary and secondary school in Brăila, then went on to take his undergradu-

ate (1950-1953) and postgraduate degrees (1953-1957) at the Faculty of Mathematics,

University of Cluj (now the Babeş-Bolyai University of Cluj-Napoca). In 1959 he de-

fended his doctoral dissertation which was written under the guidance of the great

Romanian mathematician G. Călugareanu. Professor Mocanu’s doctoral thesis was

entitled Variational methods in the theory of univalent functions.

Professor Mocanu has worked at Babeş-Bolyai University as Assistant Pro-

fessor (1953-1957), Lecturer (1957-1962), Associate Professor (1962-1970) and Full

Professor (1970 to the present). He was Visiting Professor at Conakry, Guinea (1966-

1967) and at Bowling Green State University, Ohio, USA (fall semester, 1992), and

invited to give lectures to international audiences at many different universities since

1966. These have included various universities in the United States and Germany,

including University of Michigan, Iowa University, and the University of Hagen. Pro-

fessor Mocanu has also taught at the University of Rouen in France, the Universities

of Lodz and Lublin in Poland, the University of Jyvaskyla in Finland and other uni-

versities in Hungary and Moldavia.

Professor Mocanu has held a number of distinguished positions at Babeş-

Bolyai University. He has served as Dean of the Faculty of Mathematics (1968-1976

and 1984-1987), Head of the Sub-Department of Function Theory (1976-1984 and

1990-2000), Head of Department of Mathematics and Vice-Rector of the University

(1990-1992). He is also the Chief Editor of Mathematica (Cluj), a member of the

Editorial Board of Studia Universitatis Babeş-Bolyai and Bulletin de Mathématiques

S.S.M.R., the Chairman of the Seminar of Geometric Function Theory, Department

of Mathematics at Babeş-Bolyai University and the Head of the Romanian School of

Univalent Functions.
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Since 1972 Professor Mocanu has been an active supervisor of doctoral de-

grees; under his guidance 25 students have completed PhD degrees and another 10

are currently preparing their dissertations. He has a wide range of teaching interests

and many students have benefited from his expertise.

Among the subjects he has offered is a basic course on Complex Analysis and

he has developed many other specialized courses (Univalent Functions, Differential

Subordinations, Geometric Function Theory, Measure Theory, Hardy Spaces etc.) He

is also the author of two handbooks on Complex Analysis that have become standard

texts for Romanian students of mathematics.

Professor Mocanu is also:

- Corresponding Member of Romanian Academy,

- President of the Romanian Mathematical Society,

- Member of the American Mathematical Society,

- Doctor Honoris Causa, University ”Lucian Blaga”, Sibiu (Romania) - 1998,

- Doctor Honoris Causa, University of Oradea (Romania) - 2000.

In terms of published research Professor Mocanu’s output has been prodi-

gious. He is the author more than 155 papers in the field of Geometric Function

Theory (Univalent Functions) and has written two important monographs: Geo-

metric Theory of Univalent Functions (in Romanian), Ed. Casa Cărţii de Ştiinţă,

Cluj-Napoca, 1999, 410 pages (with T. Bulboacă and Gr. Şt. Sălăgean) and Dif-

ferential Subordinations: Theory and Applications, Marcel Dekker, Inc., New York,

Basel, 2000, 459 pages (with S. S. Miller). Approximately 200 mathematicians world-

wide have cited his research in more than 500 papers. The work of Professor Mocanu

and Professor Miller on the method of differential subordinations (admissible func-

tion method) has an international reputation and has proved very influential within

research activity in the field of Geometric Function Theory.

Professor Mocanu obtained important results in the following domains (see

”Scientific Papers”):

- extremal problems in the theory of univalent functions [1-5, 8, 9,

12, 13, 15, 17, 18, 20-22, 24, 25, 27, 37, 42, 47, 72, 91, 125, 144]
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- new classes of univalent functions (well known is the class of alpha-

convex functions) [7, 10, 14-16,19, 23, 26-32, 34-36, 38, 40, 41, 43, 46, 65, 70, 95, 99,

102, 103, 109, 114, 124, 126, 130, 131, 142]

- integral operators on classes of univalent functions [44, 45, 48, 55-58,

62-64, 66, 67, 69-71, 73, 76, 78, 80-83, 88-90, 92-94, 96-98, 100, 102, 103, 106, 110,

111, 115, 123, 129, 132, 136, 146, 151]

- differential subordinations [49, 50, 52, 53, 61, 64, 68, 74, 77, 79, 85-87,

101, 104, 105, 107, 111-113, 119, 122, 137, 139, 141]

- conditions of diffeomorphism in the complex plane [51-54, 59, 60,

75, 95,128, 143, 154]

- sufficient conditions for injectivity, starlikeness or convexity [116-

118, 120, 121, 128, 133-135, 138, 140, 145, 147-150, 152, 153, 155].

Scientific Papers

[1] O generalizare a teoremei contracţiei n clasa S de funcţii univalente, Stud. Cerc. Mat.,
Cluj , 8 (1957), 303-312.

[2] Asupra unei generalizări a teoremei contracţiei n clasa funcţiilor univalente, Stud. Cerc.
Mat., Cluj 9(1958), 149-159.

[3] Despre o teoremă de acoperire ı̂n clasa funcţiilor univalente, Gaz. Mat. Fiz., Ser. A
(N.S) 10(63)(1958), 473-477.

[4] O problemă variaţională relativă la funcţiile univalente, Studia Univ. Babeş-Bolyai,
III, 3(1958), 119-127.

[5] O problemă extremală ı̂n clasa funcţiilor univalente, Stud. Cerc. Mat., Cluj 11(1960),
99-106.

[6] O teoremă asupra funcţiilor univalente, Studia Univ. Babeş-Bolyai, I, 1 (1960), 91-95.
[7] Asupra razei de stelaritate a funcţiilor univalente, Stud. Cerc. Mat., Cluj 11 (1960),

337-341.
[8] Asupra unui domeniu extremal ı̂n clasa funcţiilor univalente, Studia Univ. Babeş-

Bolyai, I, 1(1961), 221-224.
[9] Domenii extremale ı̂n clasa funcţiilor univalente, Stud. Cerc. Mat., Cluj, 2, 12(1961),

303-314.
[10] Sur le rayon d’étoilement et le rayon de convexité de fonctions holomorphes, Mathe-

matica (Cluj), 4(27)(1962), 57-63.
[11] Despre raza de stelaritate şi raza de convexitate a funcţiilor olomorfe, Stud. Cerc. Mat.

Cluj 13(1962), 93-100.
[12] Asupra unei probleme extremale relativă la funcţiile univalente, Stud. Cerc. Mat., Cluj

14(1963), 85-91.
[13] On the equation f(z) = af(a) in the class of univalent functions, Mathematica (Cluj),

6(29)(1964), 63-79.
[14] Asupra razei de convexitate a funcţiilor olomorfe, Studia Univ. Babeş-Bolyai, Math.

Phys., 9, 2(1964), 31-33.
[15] Funcţii univalente pe sectoare, Stud. Cerc. Mat., Cluj, 17(1965), 625-931.
[16] Convexity and starlikeness of conformal mappings, Mathematica(Cluj), 8(31)(1966),

91-102.
[17] Generalized radii of starlikeness and convexity of analytic functions, Studia Univ.

Babeş-Bolyai, Math. Phys., 11, 2(1966), 43-50.
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[18] About the radius of starlikeness of the exponential function, Studia Univ. Babeş-Bolyai,
Math. Phys. 14, 1(1969), 35-40.

[19] Une propriété de convexité généralisée dans la théorie de la représentation conforme,
Mathematica (Cluj), 11(34)(1969), 43-50.

[20] Sur la géometrie de la représentation conforme, Mathematica(Cluj), 12(35)(1970), 299-
308.

[21] An extremal problem for univalent functions associated with the Darboux formula,
Ann.Univ. M.Curie-Sklodowska, A, 18(1968/1969/1970), 131-135.

[22] Sur deux notions de convexité generalisée dans la représentation conforme, Studia
Univ. Babeş-Bolyai , Math. Mech., 16, 2(1971), 13-19.

[23] On generalized convexity in conformal mappings, Rev. Roumaine Math. Pures Appl.,
16(1971), 1541-1544. (with M.O.Reade).

[24] On the holomorphic product of Haar measures, Mathematica (Cluj), 13(36)(1971),
229-233.

[25] Equations fonctionnelles aux implications, Studia Univ. Babeş-Bolyai, Math. 17,
1(1972), 33-36.

[26] All a-convex functions are starlike, Rev. Roumaine Math. Pures Appl. 17, 9(1972),
1395-1397 (with S.S.Miller and M.O. Reade).

[27] A generalized property of convexity in conformal mappings, Rev. Roumaine Math.
Pures Appl. 17, 9(1972), 1391-1394.

[28] Sur une propriété d’étoilement dans la théorie de la representation conforme , Studia
Univ. Babeş-Bolyai, Math., 17, 2(1972), 55-58.

[29] On Bazilevic functions, Proc. Amer. Math. Soc., 39, 1(1973), 173-174. (with M.O.
Reade and E. Zlotkiewicz).

[30] All a-convex functions are univalent and starlike, Proc. Amer. Math. Soc., 37, 2(1973),
553-554. (with S.S. Miller and M.O. Reade).

[31] Numerical computation of the a-convex Koebe functions, Studia Univ. Babeş-Bolyai,
Math. Mech. 19, 1(1974), 37-46. (with Gr. Moldovan and M.O. Reade).

[32] Bazilevic functions and generalized convexity, Rev. Roumaine Math. Pures Appl., 19,
2(1974), 213-224. (with S.S. Miller and M.O. Reade).

[33] On the functional f(z1)/f ′(z2) for typically-real functions, Rev. Anal. Numer. Théorie
Approx. 3, 2(1974), 209-214. (with M.O. Reade and E. Zlotkiewicz).

[34] On a subclass of Bazilevic functions, Proc. Amer. Math. Soc., 45, 1(1974), 88-92. (with
P. Eenigenburg , S. Miller and M. Reade).

[35] The radius of alpha-covexity for the class of starlike univalent functions, alpha-real,
Rev. Roumaine Math. Pures Appl., 20, 5(1975), 561-565. (with M.O. Reade ).

[36] Alpha-convex functons and derivatives in the Nevanlinna class, Studia Univ. Babeş-
Bolyai, Ser. Math, 20(1975), 35-40. (with S.S. Miller).

[37] An extremal problem for the transfinite diameter of a continuum, Mathematica (Cluj),
17(40), 2(1975), 191-196. (with D. Ripeanu ).

[38] The radius of alpha-convexity for the class of starlike univalent functions, alpha-real,
Proc. Amer. Math. Soc., 51, 2(1975), 395-400. (with M.O. Reade).

[39] The Hardy class for functions in the class MV [a, k], J. of Math. Analysis and Appl.,
51, 1(1975), 35-42. (with S.S. Miller and M.O. Reade).

[40] Janowski alpha-convex functions, Ann. Univ. M. Curie-Sklodowska, 29, A(1975), 93-
98. (with S.S. Miller and M.O. Reade ).

[41] On generalized convexity in conformal mappings II, Rev. Roumaine Math. Pures Appl.,
21, 2(1976), 219-225. (with S.S. Miller and M.O. Reade).

[42] The Hardy class of functions of bounded argument rotations, J. Austral. Math. Soc.
A, 21, 1(1976) 72-78. (with S.S. Miller).

[43] On the radius of alpha-convexity, Studia Univ. Babeş-Bolyai, Ser. Math., 22, 1(1977),
35-39. (with S.S. Miller and M.O. Reade).

[44] The order of starlikeness of a Libera integral operator, Mathematica (Cluj), 19(42),
1(1977), 67-73. (with M.O. Reade and D. Ripeanu).

[45] A particular starlike integral operator, Studia Univ. Babeş-Bolyai, Math., 22, 2(1977),
44-47. (with S.S. Miller and M.O. Reade).
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[46] The order of starlikeness of alpha-convex functions, Mathematica (Cluj), 20(43),
1(1978), 25-30. (with S.S. Miller and M.O. Reade).

[47] Second order of differential inequalities in the complex plane, J. of Math. Analysis and
Appl., 65, 2(1978), 289-305. (with S.S. Miller).

[48] Starlike integral operators, Pacific J. of Math., 79, 1(1978), 157-168. (with S.S. Miller
and M.O. Reade).

[49] Proprietăţi de subordonare ale unor operatori integrali, Sem. Itin. Ec. Funct. Aprox.
Conv., Cluj-Napoca (1980), 83-90.

[50] Subordonări diferenţiale şi teoreme de medie ı̂n planul complex, Sem. Itin. Ec. Funct.
Aprox. Conv., Timişoara (1980), 181-185.

[51] Starlikeness and convexity for non-analytic functions in the unit disc, Mathematica
(Cluj), 22(45), 1(1980), 77-83.

[52] On classes of functions subordinate to the Koebe function, Rev. Roumaine Math. Pures
Appl., 26, 1(1981), 95-99. (with S.S. Miller).

[53] On a differential inequality for analytic functions in the unit disc, Studia Univ. Babeş-
Bolyai, Math. 26, 2(1981), 62-64.

[54] Sufficient conditions of univalency for complex functions in the class C1 , Rev. Anal.
Numer. Theorie Approximation, 10, 1(1981), 75-79.

[55] On the order of starlikeness of convex function of order alpha, Rev. Anal. Numer.
Theorie Approximation, 10, 2(1981), 195-199. (with D. Ripeanu and I. Şerb).

[56] The order of starlikeness of certain integral operators, Mathematica (Cluj), 23(46),
2(1981), 225-230. (with D. Ripeanu and I. Şerb).

[57] Operatori integrali care conservă convexitatea şi aproape convexitatea, Sem. Itin. Ec.
Funct. Aprox. Conv., Cluj-Napoca (1981), 257-266.

[58] On the order of starlikeness of the Libera transform of starlike functions of order alpha,
Sem. of Functional Analysis and Numerical Analysis, Babeş-Bolyai Univ. Cluj-Napoca,
preprint no. 4(1981) , 85-92. (with D. Ripeanu and I. Şerb).

[59] Spirallike non-analytic functions, Proc. Amer. Soc., 82, 1(1981), 61-65. (with H. Al-
Amiri).

[60] Certain sufficient conditions for univalency of the class C1, J. of Math. Analysis and
Appl., 80, 2(1981), 387-392. (with H. Al-Amiri).

[61] Differential subordinaton and univalent functions, Michigan Math. J., 28(1981), 157-
171. (with S.S. Miller).

[62] The order of starlikenessof the Libera transform of the class of starlike functions of
order , Mathematica (Cluj), 24(47), 1-2(1982), 73-78. (with D. Ripeanu and I. Şerb).

[63] Convexitatea unor funcţii olomorfe, Sem. Itin. Ec. Funct. Aprox. Conv., Cluj-Napoca
(1982), 207-210.

[64] Sur l’ordre de stelarité d’une classe de fonctions analytiques, Seminar of Functional
Analysis and Numerical Methods, Babeş-Bolyai Univ. Cluj-Napoca, Preprint no.
1(1983), 89-106. (with D. Ripeanu and I. Şerb).

[65] On some particular classes of starlike integral operators, Seminar of Geometric Func-
tion Theory, Babeş-Bolyai Univ. Cluj-Napoca, Preprint no. 4(1982/1983), 159-165.
(with S.S. Miller and M.O. Reade).

[66] General second order inequalities in the complex plane, Idem, 96-114. (with S.S.
Miller).

[67] Some integral operators and starlike functions, Idem, 115-128.
[68] On a Briot-Bouquet differential subordination, General Inequalities, 3(1983), 339-348.

(with P. Eenigenburg, S.S. Miller and M.O. Reade).
[69] Convexity and close-to-convexity preserving integral operators, Mathematica (Cluj),

25(48), 2(1983), 177-182.
[70] On starlike functions with respect to symmetric points, Bull. Math. Soc. Math., RSR,

28(76), 1(1984), 46-50.
[71] On some classes of regular functions, Studia Univ. Babeş-Bolyai, Ser. Math., 29(1984),

61-65. (with Gr. Sălăgean).
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[72] Sur un problem extremal, Seminar of Functional Analysis and Numerical Methods,
Babeş-Bolyai Univ., Cluj-Napoca, Preprint no. 1(1984), 105-122. (with M. Iovanov
and D. Ripeanu).

[73] Convexity of some particular functions, Studia Univ. Babeş-Bolyai, Ser. Math.,
29(1984), 70-73.

[74] On a Briot-Bouquet differential subordination, Rev. Roumaine Math. Pures Appl., 29,
7(1984), 567-573. (with P. Eenigenburg, S.S. Miller and M.O. Reade).

[75] On some starlike nonanalytic functions, Itin. Sem. On Funct. Eq., Approx. and Con-
vexity, Cluj-Napoca (1984), 107-112.

[76] Subordination-preserving integral operators, Transactions of the Amer. Math. Soc.,
283, 2(1984), 605-615. (with S.S. Miller and M.O. Reade).

[77] Univalent solutions of Briot-Bouquet differential equations, J. of Diff. Equations, 56,
3(1985), 297-309. (with S.S. Miller).

[78] On starlike functions of order alpha, Itin. Sem. On Funct. Eq., Approx. and Convexity,
Cluj-Napoca, 6(1985), 135-138.

[79] On some classes of first order differential subordinations, Michigan Math. J., 32(1985),
185-195. (with S.S. Miller).

[80] Starlikeness conditions for Alexander integral, Itin. Sem. On Funct. Eq., Approx. and
Convexity, Cluj-Napoca, 7(1986), 173-178.

[81] Some integral operators and starlike functions, Rev. Roumaine Math. Pures Appl., 21,
3(1986), 231-235.

[82] On a class of spirallike integral operators, Idem, 225-230. (with S.S. Miller).
[83] On starlikeness of Libera transform, Mathematica (Cluj), 28(51), 2(1986), 153-155.
[84] On a theorem of M. Robertson, Seminar on Geometric Function Theory, Babeş-Bolyai

Univ., Cluj-Napoca, 5(1986), 77-82.
[85] Mean-value theorems in the complex plane, Idem, 63-76. (with S.S. Miller).
[86] The effect of certain integral operator on functions of bounded turning and starlike

functions, Idem, 83-90. (with M. Iovanov).
[87] Convexity of the order of starlikeness of the Libera transform of starlike functions of

order alpha, Idem, 99-104. (with D. Ripeanu and I. Serb).
[88] Best bound of the agument of certain functions with positive real part, Idem, 91-98.

(with D. Ripeanu and M. Popovici).
[89] Subordination by convex functions, Idem, 105-108. (with V. Selinger).
[90] On strongly-starlike and strongly-convex functions, Studia Univ. Babeş-Bolyai, Ser.

Math., 31, 4(1986), 16-21.
[91] Differential subordination and inequalities in the complex plane, J. of Diff. Equations,

67, 2(1987), 199-211. (with S.S. Miller).
[92] Marx-Strohhaecker differential subordinations systems, Proc. Amer. Math. Soc., 99,

3(1987), 527-534. (with S.S. Miller).
[93] On a close-to-convexity preserving integral operator, Studia Univ. Babeş-Balyai, Ser.

Math., 32, 2(1987), 53-56.
[94] On starlike images by Alexander integral, Itin. Sem. on Funct. Eq., Approx. and Con-

vexity, Cluj-Napoca, 6(1987), 245-250.
[95] Alpha-convex nonanalytic functions, Mathematica (Cluj), 29(52), 1(1987), 49-55.
[96] Best bound for the argument of certain analytic functions with positive real part (II),

Seminar on Functional Analysis and Numerical Methods, Babeş-Bolyai Univ., Cluj-
Napoca, 1(1987), 75-91. (with M. Popovici and D. Ripeanu).

[97] Some starlikeness conditions for analytic functions, Rev. Roumaine Math. Pures Appl.,
33(1988), 1-2, 117-124.

[98] Integral operators and starlike functions, Itin. Sem. On Funct. Eq., Approx. and Con-
vexity, Cluj-Napoca, 6(1988), 233-236.

[99] Conformal mappings and refraction law, Babeş-Bolyai Univ., Fac. of Math., Research
Seminars, 2(1988), 113-116.

[100] On an inequality concerning the order of starlikeness of the Libera transform of starlike
functions of order alpha, Seminar of Mathematical Analysis, Babeş-Bolyai Univ., Fac.
of Math., Research Seminars, 7(1988), 29-32. (with D. Ripeanu and I. Şerb).
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[102] Alpha-convex integral operator and strongly-starlike functions, Studia Univ. Babeş-
Bolyai, Ser. Math, 34, 2(1989), 16-24.

[103] Alpha-convex integral operator and starlike functions of order beta, Itin. Sem. On
Funct. Eq., Approx. and Convexity, Cluj-Napoca, (1989), 231-238.

[104] The theory and applications of second-order differential subordinations, Studia Univ.
Babeş-Bolyai, Ser. Math., 34, 4(1989), 3-33. (with S.S. Miller).

[105] On a simple sufficient condition for starlikeness, Mathematica (Cluj), 31(54), 2(1989),
97-101. (with V. Anisiu).

[106] Integral operators on certain classes of analytic functions, Univalent Functions, Frac-
tional Calculus and their Applications, 1989, 153-166. (with S.S. Miller).

[107] On an integral inequality for certain analytic functions, Mathematica Panonica 1,
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Studia Univ. Babeş-Bolyai, Math.37, 4(1992), 35-42 (with H. Al-Amiri).

[119] A special differential subordination and its application to univalency conditions, Cur-
rent Topics in Analytic Function Theory, World Scientific, Singapore, London (1992),
171-185(with S.S. Miller).

[120] On a starlikeness condition, Mathematica, 35(58), 2(1993), 175-178.
[121] Some simple criteria for starlikeness and convexity, Libertas Mathematica, 13(1993),

27-40.
[122] Averaging operators and a generalized Robinson differential inequality, J. Math. Anal.

Appl., 13, 2(1993), 459-469 (with S.S. Miller).
[123] Starlikeness of certain integral operators, Mathematica, 36(59) 2(1994), 179-184.
[124] On certain subclasses of starlike functions Studia Univ. Babeş-Bolyai , Math., 34,
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Dedicated to Professor Petru T. Mocanu on his 70th birthday

Abstract. We introduce a class, namely, Hn(b, M) of certain analytic

functions. For this class we determine sufficient condition in terms of

coefficients, coefficient estimate, maximization theorem concerning the co-

efficients, and radius problem.

1. Introduction

Let A denote the class of functions of the form

f(z) = z +
∞∑

k=2

akzk (1.1)

which are analytic and univalent in the unit disc U = {z : |z| < 1}. We use Ω

to denote the class of functions w(z) in U satisfying the conditions w(0) = 0 and

|w(z)| < 1 for z ∈ U . For a function f(z) in A, we define

D0f(z) = f(z), (1.2)

D1f(z) = Df(z) = zf ′(z), (1.3)

and

Dnf(z) = D(Dn−1f(z)) (n ∈ N = {1, 2, . . . , }). (1.4)

The differential operator Dn was introduced by Salagean [11]. With the help

of the differential operator Dn, we say that a function f(z) belonging to A is in the

1991 Mathematics Subject Classification. 30C45.

Key words and phrases. analytic, Salagean operator, complex order.
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class Fn(b, M) if and only if∣∣∣∣∣∣∣∣
b− 1 +

Dn+1f(z)
Dnf(z)
b

−M

∣∣∣∣∣∣∣∣ < M, z ∈ U, (1.5)

where M >
1
2

and b 6= 0, complex.

It follows by Kulshrestha [6] that g(z) ∈ H0 (1,M) = F (1,M) if and only if

for z ∈ U

zg′(z)
g(z)

=
1 + w(z)

1−mw(z)
, (1.6)

where m = 1− 1
M

(
M >

1
2

)
and w(z) ∈ Ω.

One can easily show that f(z) ∈ Hn(b, M) if and only if there is a function

g(z) ∈ H0(1,M) = F (1,M) such that

Dnf(z) = z

[
g(z)
z

]b

. (1.7)

Thus from (1.6) and (1.7) it follows that f(z) ∈ Hn(b, M) if and only if for

z ∈ U

Dn+1f(z)
Dnf(z)

=
1 + [b(1 + m)−m]w(z)

1−mw(z)
, (1.8)

where m = 1− 1
M

(
M >

1
2

)
and w(z) ∈ Ω.

By giving specific values to n, b and M , we obtain the following important

subclasses studied by various authors in earlier works:

(1) H0(b, M) = F (b, M) (Nasr and Aouf [7]) and H1(b, M) = G(b, M) (Nasr

and Aouf [8]).

(2) H0(cos λe−iλ,M) = Fλ,M and H1(cos λe−iλ,M) = Gλ,M

(
|λ| < π

2

)
(Kulshrestha [4]).

(3) H0((1−α) cos λe−iλ,∞) = Sλ(α)
(
|λ| < π

2
, 0 ≤ α < 1

)
(Libera [6]) and

H1((1−α) cos λe−iλ,∞) = Cλ(α)
(
|λ| < π

2
, 0 ≤ α < 1

)
(Chichra [3] and Sizuk [14]).

(4) H0(b, M) = S(1 − b) (Nasr and Aouf [9]) and H1(b, M) = C(b) (Wia-

trowski [15] and Nasr and Aouf [10]).

(5) H0((1 − α) cos λe−iλ,M) = FM (λ, α) and H1((1 − α) cos λe−iλ,M) =

GM (λ, α)
(
|λ| < π

2
, 0 ≤ α < 1

)
(Aouf [1,2]).
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(6) H0(1, 1) = F (1, 1) Singh [12] and H0(1,M) = F (1,M) (Singh and Singh

[13]).

From the definitions of the classes F (b, M) and Hn(b, M), we observe that

f(z) ∈ Hn(b, M) if and only if Dnf(z) ∈ F (b, M). (1.9)

The purpose of the present paper is to determine sufficient condition in terms

of coefficients for function belong to Hn(b, M), coefficient estimate, and maximization

of |a3 − µa2
2| on the class Hn(b, M) for complex value of µ. Further we obtain the

radius of disc in which Re
{

Dn+1f(z)
Dnf(z)

}
> 0, wherever f(z) belongs to Hn(b, M).

2. A sufficient condition for a function to be in Hn(b, M)

Theorem 1. Let the function f(z) defined by (1.1) and let
∞∑

k=2

{(k − 1) + |b(1 + m) + m(k − 1)|}kn|ak| ≤ |b(1 + m)|, (2.1)

holds, then f(z) belongs to Hn(b, M), where m = 1− 1
M

(
M >

1
2

)
.

Proof. Suppose that the inequality (2.1) holds. Then we have for z ∈ U

|Dn+1f(z)−Dnf(z)| − |b(1 + m)Dnf(z) + m(Dn+1f(z)−Dnf(z))|

=

∣∣∣∣∣
∞∑

k=2

kn(k − 1)akzk

∣∣∣∣∣−
∣∣∣∣∣b(1 + m)

{
z +

∞∑
k=2

knakzk

}
+ m

∞∑
k=2

kn(k − 1)akzk

∣∣∣∣∣ ≤
≤

∞∑
k=2

kn(k − 1)|ak|rk −

{
|b(1 + m)|r −

∞∑
k=2

|b(1 + m) + m(k − 1)|kn|ak|rk

}
=

=
∞∑

k=2

{(k − 1) + |b(1 + m) + m(k − 1)|}kn|ak|rk − |b(1 + m)|r.

Letting r → −1, then we have

|Dn+1f(z)−Dnf(z)| − |b(1 + m)Dnf(z) + m(Dn+1f(z)−Dnf(z))| =

=
∞∑

k=2

{(k − 1) + |b(1 + m) + m(k − 1)|}kn|ak| − |b(1 + m)| ≤ 0, by (2.1).

Hence it follows that∣∣∣∣∣∣∣∣
Dn+1f(z)
Dnf(z)

− 1

b(1 + m) + m

{
Dn+1f(z)
Dnf(z)

− 1
}

∣∣∣∣∣∣∣∣ < 1, z ∈ U.
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Letting

w(z) =

Dn+1f(z)
Dnf(z)

− 1

b(1 + m) + m

{
Dn+1f(z)
Dnf(z)

− 1
} ,

then w(0) = 0, w(z) is analytic in |z| < 1 and |w(z)| < 1. Hence we have

Dn+1f(z)
Dnf(z)

=
1 + [b(1 + m)−m]w(z)

1−mw(z)

which shows that f(z) belongs to Hn(b, M).

3. Coefficient estimate

Theorem 2. Let the function f(z) defined by (1.1) be in the class

Hn(b, M), z ∈ U .

(a) If 2m(k − 1)Re {b} > (k − 1)2(1−m)− |b|2(1 + m), let

N =
[

2m(k − 1)Re {b}
(k − 1)2(1−m)− |b|2(1 + m)

]
, k = 2, 3, . . . , j − 1.

Then

|aj | ≤
1

jn(j − 1)!

j∏
k=2

|b(1 + m) + (k − 2)m|, (3.1)

for j = 2, 3, . . . , N + 2; and

|aj | ≤
1

jn(j − 1)(N + 1)!

N+3∏
k=2

|b(1 + m) + (k − 2)m|, j > N + 2. (3.2)

(b) If 2m(k − 1)Re {b} ≤ (k − 1)2(1−m)− |b|2(1 + m), then

|aj | ≤
(1 + m)|b|
jn(j − 1)

, for j ≥ 2, (3.3)

where m = 1− 1
M

(
M >

1
2

)
and b 6= 0, complex.

The inequalities (3.1) and (3.3) are sharp.

Proof. Since f(z) ∈ Hn(b, M), so from (1.8) we have that

∞∑
k=2

kn(k − 1)akzk =

{
b(1 + m)z +

∞∑
k=2

kn[b(1 + m) + m(k − 1)]akzk

}
w(z) (3.4)

which is equivalent to
j∑

k=2

kn(k − 1)akzk +
∞∑

k=2

dkzk =
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=

{
b(1 + m)z +

j−1∑
k=2

kn[b(1 + m) + m(k − 1)]

}
akzkw(z),

where dj ’s are some complex numbers.

Then since |w(z)| < 1, we have∣∣∣∣∣∣
j∑

k=2

kn(k − 1)akzk +
∞∑

j=k+1

dkzk

∣∣∣∣∣∣ ≤
≤

∣∣∣∣∣b(1 + m)z +
j−1∑
k=2

kn[b(1 + m) + m(k − 1)]akzk

∣∣∣∣∣ . (3.5)

Squaring both sides of (3.5) and integrating round |z| = r < 1, we get, after

taking the limit when r → 1

j2n(j − 1)2|aj |2 ≤ (1 + m)2|b|2+

+
j−1∑
k=2

k2n{|b(1 + m) + m(k − 1)|2 − (k − 1)2}|ak|2. (3.6)

Now there may be following two cases:

(a) Let 2m(k − 1)Re {b} > (k − 1)2(1 − m) − (1 + m)|b|2. Suppose that

j ≤ N + 2; then for j = 2, (3.7) gives

|a2| ≤
(1 + m)|b|

2n

which gives (3.1) for j = 2. We establish (3.1), by mathematical induction. Suppose

(3.1) is valid for k = 2, 3, . . . , j − 1. Then it follows from (3.6)

j2n(j − 1)2|aj |2 ≤ (1 + m)2|b|2+

+
j−1∑
k=2

k2n{|b(1+m)+m(k−1)|2−(k−1)2} 1
k2n((k − 1)!)2

k∏
p=2

|b(1+m)+(p−2)m|2 =

=
1

((j − 1)!)2

j∏
k=2

|b(1 + m) + (k − 2)m|2.

Thus, we get

|aj | ≤
1

jn(j − 1)!

j∏
k=2

|b(1 + m) + (k − 2)m|,

which completes the proof of (3.1).

Next, we suppose j > N + 2. Then (3.6) gives

j2n(j − 1)2|aj |2 ≤ (1 + m)2|b|2+
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+
N+1∑
k=2

k2n{|b(1 + m) + m(k − 1)|2 − (k − 1)2}|ak|2+

+
j−1∑

k=N+3

k2n{|b(1 + m) + m(k − 1)|2 − (k − 1)2}|ak|2 ≤

≤ (1 + m)2|b|2 +
N+2∑
k=2

{|b(1 + m) + m(k − 1)|2 − (k − 1)2}|ak|2.

On substituting upper estimates for a2, a3, . . . , aN+2 obtained above, and

simplifying, we obtain (3.2).

(b) Let 2m(k− 1)Re {b} ≤ (k− 1)2(1−m)− (1+m)|b|2, then it follows from

(2.7)

j2n(j − 1)2|aj |2 ≤ (1 + m)2|b|2, (j ≥ 2)

which proves (3.3).

The bounds in (3.1) are sharp for the function f(z) given by

Dnf(z) =


z

(1−mz)
b(1+m)

m

, m 6= 0,

z exp(bz), m = 0.

(3.7)

The bounds in (3.3) are sharp for the function fk(z) given by

Dnfk(z) =



z

(1−mzk−1)
b(1 + m)
m(k − 1)

, m 6= 0,

z exp
(

b

k − 1
zk−1

)
, m = 0.

(3.8)

4. Maximization of |a3 − µa2
2|

We shall need in our discussion the following lemma:

Lemma 1. [5] Let w(z) =
∞∑

k=1

ckzk ∈ Ω, if µ is any complex number, then

|c2 − µc2
1| ≤ max{1, |µ|} (4.1)

for any complex µ. Equality in (4.1) may be attained with the functions w(z) = z2

and w(z) = z for |µ| < 1 and |µ| ≥ 1, respectively.
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Theorem 3. If a function f(z) defined by (1.1) is in the class Hn(b, M) and

µ is any complex number, then

|a3 − µa2
2| ≤

|b(1 + m)|
2 · 3n

max{1, |d|}, (4.2)

where

d =
2 · 3nµb(1 + m)

22n
− [b(1 + m) + m]. (4.3)

The result is sharp.

Proof. Since f(z) ∈ Hn(b, m), we have

w(z) =
Dn+1f(z)−Dnf(z)

[b(1 + m)−m]Dnf(z) + mDn+1f(z)
=

=

∞∑
k=2

kn(k − 1)akzk−1

b(1 + m) +
∑∞

k=2 kn[b(1 + m) + m(k − 1)]akzk−1
=

=

∞∑
k=2

kn(k − 1)akzk−1

b(1 + m)

1 +

∞∑
k=2

kn[b(1 + m) + m(k − 1)]akzk−1

b(1 + m)


−1

. (4.4)

Now compare the coefficients of z and z2 on both sides of (4.4). We thus

obtain

a2 =
b(1 + m)

2n
c1, (4.5)

and

a3 =
b(1 + m)

2 · 3n
{c2 + [b(1 + m) + m]c2

1}. (4.6)

Hence

a3 − µa2
2 =

b(1 + m)
2 · 3n

[c2 − dc2
1], (4.7)

where

d =
2 · 3nµb(1 + m)

22n
[b(1 + m) + m].

Taking modulus both sides in (4.7), we have

|a3 − µa2
2| ≤

|b(1 + m)|
2 · 3n

|c2 − dc2
1|. (4.8)

Using Lemma 1 in (4.8), we have

|a3 − µa2
2| ≤

|b(1 + m)|
2 · 3n

max{1, |d|}.
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Finally, the assertion (4.2) of Theorem 3 is sharp in view of the fact that the

assertion (4.1) of Lemma 1 is sharp.

5. Radius Theorem

The following theorem may be obtained with the help of (1.9) and Theo-

rem 3 of Nasr and Aouf [7].

Theorem 4. Let the function f(z) defined by (1.1) be in the class Hn(b, M).

Then

Re
{

Dn+1f(z)
Dnf(z)

}
> 0 for |z| < rn,

where

rn = 2

{
|b|(1 + m) +

[
|b|2(1 + m)2 − 4

{
Re (b)

(
1 + m

m

)
− 1

}
− 1

] 1
2
}−1

(5.1)

such that

|b|2(1 + m)2 ≥ 4
{

Re (b)
(

1 + m

m

)
− 1

}
.

The result is sharp for the function f0(t), where

Dnf0(z) = z(1−mz)−b( 1+m
m ) (5.2)

and

t =

r

[
r −m

(
b

b

) 1
2
]

m

[
1−mr

(
b

b

) 1
2
] .

Remarks on Theorem 4.

(i) Putting n = 0, we get the sharp radius of starlikeness of the class F (b, M)

studied by Nasr and Aouf [7].

(ii) Putting n = 1, we get the sharp radius of convexity of the class G(b, M)

which is investigated by Nasr and Aouf [8].
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STARLIKE, CONVEX AND ALPHA-CONVEX FUNCTIONS OF
HYPERBOLIC COMPLEX AND OF DUAL COMPLEX VARIABLE

SORIN G. GAL

Dedicated to Professor Petru T. Mocanu on his 70th birthday

1. Introduction

The study of functions of hyperbolic complex and of dual complex va-

riable was done in [11-12] and continued in the very recent papers [1-6].

In this paper we begin the study of a geometric theory for such of functions,

in the general setting of nonanalytic functions.

It is known that for the functions of usual complex variable, the geometric

theory is based on the identification of the field of usual complex numbers with the

two-dimensional Euclidean plane. But according to the Cayley-Klein scheme, there

are nine plane geometries, corresponding to all possible combinations which can be

formed for the three kinds of measures of angles and the three kinds of measure of

distances (see [13, p. 195-219], [14, p. 214-288]):

1) Elliptic geometry, Euclidean geometry, Hyperbolic geometry, based on the

same elliptic (usual) measure of angles but having three different kinds of measures

for distances, i.e. elliptic measure, parabolic measures and hyperbolic measure, re-

spectively.

The analytic model for these geometries are the usual complex numbers.

2) Co-Euclidean geometry, Galilean geometry, Co-Minkowskian geometry,

based on the same parabolic measure of angles but having the three different kinds

of measures for distances as in the case 1, respectively.

The analytic model for these geometries are the dual complex numbers.

3) Cohyperbolic geometry, Minkowskian geometry, doubly hyperbolic geom-

etry, based on the same hyperbolic measure of angles but again having the three

different kinds of measures of distances, as above, respectively.
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The analytic model for these last three geometries are the hyperbolic complex

numbers.

A geometric theory for (analytic) functions of usual complex variable, based

on the hyperbolic geometry was done in [7].

In the next sections we will consider a few geometrical aspects for (nonan-

alytic) functions of hyperbolic complex and of dual complex variables, based on the

Minkowskian geometry and on the Galilean geometry, respectively.

Besides the fact that in this way we introduce several plane transformations

with new geometrical properties, our method permits an unitary treatment for the

geometric theories of functions of usual complex, of hyperbolic complex and of dual

complex variables.

Section 2 contains some preliminaries facts.

In the Sections 3 and 4 we introduce and study the classes of starlike, con-

vex and alpha-convex functions of hyperbolic complex and of dual complex variable,

respectively.

The methods were suggested by the classical ones in [8-10].

2. Preliminaries

First let us recall some known facts about the complex-type numbers (see

e.g. [6], [13-14]). It is known that excepting an isomorphism, three kinds of complex

numbers are important:

(i) Cq, q 6∈ R, q2 = −1, called the system of usual complex numbers,

(ii) Cq, q 6∈ R, q2 = 0, called the system of complex numbers,

(iii) Cq, q 6∈ R, q2 = +1, called the system of hyperbolic complex numbers,

where Cq = {z = x + qy; x, y ∈ R}.

For simplicity, let us denote q = i if q2 = −1, q = d if q2 = 0 and q = h is

q2 = +1.

If q = i, then Cq is a field, if q = d then Cq is a ring with the set of

divisors of zero given by Zq = {z = x + qy; x = 0, y ∈ R} and if q = h then Cq

is a ring with the zero divisors Zq = {z = x + qy;x, y ∈ R, |x| = |y|}. Obviously

Zq = {z ∈ Cq; ρq(z) = 0}, where ρq(z) is defined below, for all q ∈ {i, d, h}.
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For z = x + qy ∈ Cq, let us denote z = x − qy, (so zz = x2 − q2y2 ∈ R),

ρq(z) =
√
|zz|, for r > 0 let us denote U

(q)
r = {z ∈ Cq; ρq(z) < r}, C

(q)
r = {z ∈

Cq; ρq(z) = r}, for all q ∈ {i, d, h}.

In the Euclidean geometry, C
(i)
r is a circle of radius r and of center (0, 0), C

(d)
r

represents the straigth lines x = −r and x = +r, and C
(h)
r represents the hyperbolas

x2 − y2 = −r2, x2 − y2 = r2.

The polar coordinates and the exponentials are defined as follows. Let z =

x + qy ∈ Cq. For q = i they are well-known.

For q = d we have |z|d = x, ϕ = argd z =
y

x
, z 6∈ Zd, and z = |z|d(1 + dϕ) =

|z|dedϕ
d , where ez

d = exedy
d = ex(1 + dy).

For q = h we have ehy
h = cosh(y) + h sinh(y), ez

h = exehy
h = ex cosh y +

hex sinh y, |z|h = (sgnx)
√

x2 − y2, ϕ = argh z = arcth
y

x
, z = |z|hehϕ

h , for x2−y2 > 0,

and |z|h = (sgny)
√

y2 − x2, ϕ = arcth
x

y
, z = q|z|hehϕ

h , for y2 − x2 > 0. In the first

case z is called of first kind (1-kind) and in the other case it is called of second kind

(2-kind).

Note that Zq = {z ∈ Cq; |z|q = 0}, for all q ∈ {i, d, h}.

Let q ∈ {i, d, h} and γ : I → Cq, γ(t) = x(t) + qy(t), t ∈ I (bounded or

unbounded interval) be a differentiable path in Cq, such that γ′(t) 6∈ Zq, t ∈ I.

Then argq[γ′(t)] represents the ”Q”-angle with the positive sense of Ox-axis, of the

”Q”-tangent at the path γ in the point γ(t), where by convention, everywhere in the

paper ”Q” means the words Euclidean, Galilean and Minkowskian, for q = i, d and

h, respectively.

Let us denote Dh(f)(z) = z
∂f

∂z
− z

∂f

∂z
, Dh(f)(z) = z

∂f

∂z
+ z

∂f

∂z
, f = U +hV ,

z = x + hy, where (see [7])

∂f

∂z
=

1
2

[
∂U

∂x
+

∂V

∂y

]
+

h

2

[
∂V

∂x
+

∂U

∂y

]
,

∂f

∂z
=

1
2

[
∂U

∂x
− ∂V

∂y

]
+

h

2

[
∂V

∂x
− ∂U

∂y

]
,

i.e.

Dh(f)(z) = x
∂V

∂y
+ y

∂V

∂x
+ h

[
x

∂U

∂y
+ y

∂U

∂x

]
,

Dh(f)(z) = x
∂U

∂x
+ y

∂U

∂y
+ h

[
x

∂V

∂x
+ y

∂V

∂y

]
.
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It is easy to verify the following formulas

Dh(f) = −Dh(f), Dh(f) = Dh(f), Dh(Re f) = hIm [Dh(f)],

Dh[Re f ] = Re Dh(f), Dh(Im h) = hRe Dh(f), Dh[Im f ] = Im Dh(f),

∂f

∂ϕ
= hDh(f),

∂f

∂|z|h
=

1
|z|h

Dh(f), Dh(|f |h) = h|f |hIm
Dh(f)

f
,

Dh(|f |h) = |f |hRe
Dh(f)

f
, Dh(argh f) = hRe

Dh(f)
f

, Dh(argh f) = Im
Dh(f)

f
,

which immediately imply

∂|f |h
∂ϕ

= |f |hIm
Dh(f)

f
,

∂|f |h
∂|z|h

=
|f |h
|z|h

Re
Dh(f)

f
, (1)

∂ argh f

∂ϕ
= Re

Dh(f)
f

,
∂ argh f

∂|z|h
=

1
|z|h

Im
Dh(f)

f
, (2)

where in all the above formulas ϕ = argh z, |z|h 6= 0, |f(z)|h 6= 0.

Also, if h ∈ C1(R), then Dh(h(zz)) = 0 and Dh[h(argh z)] = 0.

Note that these formulas are valid for all the cases when z and f(z) are of

first or of second kind. On the other hand, in comparison with the case q = i in [8],

among the above formulas only three differ (by sign) from those in [8], namely those

which give formulas for Dh(Im f), Dh(argh f) and
∂|f |h
∂ϕ

.

3. Starlike functions

Let f : U
(q)
1 → Cq be of C1-class on U

(q)
1 , f = U +qV , where q is any between

i, d and h.

Definition 3.1. We say that f is Symmetrically Uniformly (shortly (SU)) -

”Q” starlike function on U
(q)
1 , if f is univalent on U

(q)
1 \ Zq, f(z) ∈ Zq iff z ∈ Zq and

moreover, for any fixed ρ ∈ (−1, 1) \ {0}, we have

∂

∂ argq z
(argq f(z)) > 0, for all |z|q = ρ. (3)

The univalency of f is required only on U
(q)
1 \Zq (and not on the whole U

(q)
1 ),

because the geometric condition in (3) holds only on U
(q)
1 \ Zq.
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Remarks. 1) If q = i, then we obtain the classical conditions in [8]: f is

(SU)-Euclidean starlike, if f is univalent on the whole U
(i)
1 , f(0) = 0 and

Re
Dif

f
> 0, for all z ∈ U

(i)
1 \ {0}, (4)

where Dif = z
∂f

∂z
− z

∂f

∂z
and

∂f

∂z
,

∂f

∂z
, z = x + iy, are given in [8].

¿From [8] it follows that (4) implies the starlikeness of all the sets f(U (i)
r ),

0 < r < 1, which suggested us the denomination of ”Symmetrically Uniformly” for f .

In fact it is well-known that (see e.g. [10, Theorem 3.1]) if f is analytic and

f ′(0) = 0, then f is (SU)-starlike if and only if f is starlike (in the classical sense).

Since simple calculations show that Di(f) = x
∂V

∂y
−y

∂V

∂x
+ i

(
y
∂U

∂x
− x

∂U

∂y

)
and

Re
Di(f)

f
=

1
U2 + V 2

{
x

(
U

∂V

∂y
− V

∂U

∂y

)
+ y

(
V

∂U

∂x
− U

∂V

∂x

)}
,

it follows that f generates the injective vectorial transform defined on U
(i)
1 (in fact on

the Euclidean image of U1(i)), F (x, y) = (U(x, y), V (x, y)), with U(0, 0) = V (0, 0) = 0

and satisfying

x

[
U

∂V

∂y
− V

∂U

∂y

]
+ y

[
V

∂U

∂x
− U

∂V

∂x

]
> 0, ∀ x2 + y2 ≤ 1, x 6= 0, y 6= 0 (5)

(since obviously (4) is equivalent with (5)).

2) Let q = d. First, in this case the condition ”f(z) ∈ Zd iff z ∈ Zd”,

means that ”U(x, y) = 0 iff x = 0”. For z ∈ U
(d)
1 \ Zd we have z = |z|d(1 + dϕ),

ϕ = argd z ∈ R, x = |z|d = r 6= 0, y = rϕ (r fixed in (−1, 1) \ {0}), and (3) becomes

∂

∂ϕ
(argd f) =

∂

∂ϕ

(
V

U

)
=

UV ′
ϕ − V U ′

ϕ

U2
> 0,

where V ′
ϕ =

∂V

∂x
· ∂x

∂ϕ
+

∂V

∂y
· ∂y

∂ϕ
= x

∂V

∂y
, U ′

ϕ = x
∂U

∂y
.

As an immediate conclusion it follows that a (SU)-Galilean starlike function

f generates the injective vectorial transform on U
(d)
1 \Zd, F (x, y) = (U(x, y), V (x, y)),

with U(x, y) = 0 iff x = 0 and satisfying

x

(
U

∂V

∂y
− V

∂U

∂y

)
> 0, ∀ x ∈ (−1, 1) \ {0}, y ∈ R. (6)

Note that (6) is equivalent with the inequality

x
∂

∂y

(
V

U

)
> 0, ∀ x ∈ (−1, 1) \ {0}, y ∈ R.
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3) Let q = h. The condition ”f(z) ∈ Zh iff z ∈ Zh” is equivalent with

”|U(x, y)| = |V (x, y)| iff |x| = |y|”. Let z 6∈ Zh, then argh f(z) = arcth
V

U
, for

U2 − V 2 > 0 and argh f(z) =
U

V
, for V 2 − U2 > 0. Denoting argh z = ϕ ∈ R,

|z|h = r ∈ (−1, 1) \ {0} and (3) becomes

[
arcth

(
V

U

)]′
ϕ

=

(
V

U

)′
ϕ

1−
(

V

U

)2 =
UV ′

ϕ − V U ′
ϕ

U2 − V 2
> 0, if U2 − V 2 > 0

and

[
arcth

(
U

V

)]′
ϕ

=

(
U

V

)′
ϕ

1−
(

U

V

)2 =
UV ′

ϕ − V U ′
ϕ

U2 − V 2
> 0, if V 2 − U2 > 0.

Now, taking into account that for fixed r and independent of the fact that z

is of the first or second kind, we have
∂x

∂ϕ
= y and

∂y

∂ϕ
= x, by simple calculations it

follows that a (SU)-Minkowskian starlike function f , generates the injective vectorial

transform on U
(h)
1 \ Zh, F (x, y) = (U(x, y), V (x, y)) with |U(x, y)| = |V (x, y)| iff

|x| = |y|, satisfying the differential inequality

1
U2 − V 2

{
x

[
U

∂V

∂y
− V

∂U

∂y

]
− y

[
V

∂U

∂x
− U

∂V

∂x

]}
> 0, ∀ |x2 − y2| < 1, |x| 6= |y|.

(7)

On the other hand, taking into account the relations satisfied by Dh(f)(z) in

Section 2, we easily obtain that (7) (and therefore (3)) is equivalent with

Re
Dh(f)(z)

f(z)
> 0, for all z ∈ U

(h)
1 \ Zh. (8)

4) It is immediate that by the conditions in Definition 3.1, f has in addition

the following property of univalency: if z1 6= z2, z1 ∈ Zq, z2 ∈ U
(q)
1 \ Zq, then

f(z1) 6= f(z2).

5) The differential inequalities (5), (6), (7), suggest us that each kind of

starlikeness in Definition 3.1 is completely independent in respect with the other two,

as can be seen in the following simple examples.

Note that in all these examples, U and V are of C1-class on the whole R2.

Example 1. Let U(x, y) = x, V (x, y) = x100ey. The function f(z) =

U(x, y) + dV (x, y), z = x + dy, is (SU)-Galilean starlike in U
(d)
1 , since it is univalent
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on U
(d)
1 \ Zd, U(x, y) = 0 iff x = 0, and (6) is satisfied. But even if f(z) = U(x, y) +

iV (x, y), z = x + iy, satisfies f(0) = 0, however f cannot be (SU)-Euclidean starlike,

because (5) is not satisfied in any U
(i)
r , r ∈ (0, 1], and f is not univalent on the whole

U
(i)
1 .

Also, f(z) = U(x, y) + hV (x, y), z = x + hy, cannot be (SU)-Minkowskian

starlike in U
(h)
1 , firstly because it is not satisfied the condition |U(x, y)| = |V (x, y)| iff

|x| = |y|, secondly (7) is not satisfied, and thirdly f is not univalent on U
(h)
1 \ Zh.

Example 2. Let U(x, y) = x +
1
2
(x2 − y2), V (x, y) = y − xy. By [8],

f(z) = U(x, y) + iV (x, y) = z +
1
2
z2, z = x + iy, is (SU)-Euclidean starlike in U

(i)
1 .

But f(z) = U(x, y) + dV (x, y), z = x + dy, cannot be (SU)-Galilean starlike in U
(d)
1

(for example, (6) does not hold) and f(z) = U(x, y) + hV (x, y), z = x + hy, cannot

be (SU)-Minkowskian starlike in U
(d)
1 (for example, (7) does not hold).

Example 3. Let U(x, y) = xex2
, V (x, y) = yey2

. The vectorial function

F (x, y) = (U(x, y), V (x, y)) is injective on the whole R2. Let f(z) = U(x, y) +

dV (x, y), z = x + dy. Then f is (SU)-Galilean starlike on U
(d)
1 , because U(x, y) = 0

iff x = 0, and (6) becomes

x2ex2
(1 + 2y2)ey2

> 0, for all x 6= 0, y ∈ R.

Let us denote g(t) = tet2 . Since g′(t) = et2(1+2t2) > 0, g is strictly increasing

on R, and as consequence we obtain |U(x, y)| = |V (x, y)| iff |x|e|x|2 = |y|e|y|2 iff

g(|x|) = g(|y|) iff |x| = |y|.

The function f(z) = U(x, y)+hV (x, y), z = x+hy, also is (SU)-Minkowskian

starlike on U
(h)
1 , because (7) becomes

ex2
ey2

(x2 − y2)
H(x2)−H(y2)

> 0, for all x2 − y2 6= 0,

taking into account that H(t) = te2t is strictly increasing on R+.

Now, let us denote f(z) = U(x, y) + iV (x, y), z = x + iy. We have f(0) = 0

and (5) becomes

ex2
ey2

[x2 + y2 + 4x2y2] > 0, for all x 6= 0, y 6= 0,

which means that f is (SU)-Euclidean starlike too (on U
(i)
1 ).
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Remark. Let q = d or h. We will say that a region G ⊂ Cq is (SU)-

”Q” starlike if there exists f : U
(q)
1 → Cq as in Definition 3.1, such that G = f [U (q)

1 ].

Then it would be of interest to give internal geometric characterizations (in Euclidean

language) of the (SU)-”Q” starlike regions.

In the following we will obtain some sufficient conditions for (SU)-”Q” star-

likeness. Thus, because U
(d)
1 is an usual convex domain, combining [6, Corollary 3.2]

with Definition 3.1 and relation (6), we obtain
Theorem 3.1. Let f : U

(d)
1 → Cd, f(z) = U(x, y) + dV (x, y), z = x + dy, be

of C1-class. If f satisfies the conditions
(i) U(x, y) = 0 iff x = 0,

(ii) xU
∂V

∂y
> 0 on U

(d)
1 \ Zd,

(iii)
∂V

∂y
6= 0,

∂U

∂x
> 0,

∂U

∂y
= 0 on U

(d)
1 (conditions of univalency),

then f is (SU)-Galilean starlike on U
(d)
1 .

An example of f satisfying Theorem 3.1 is for U(x, y) = x, V (x, y) = (x + 1)100ey.

Note that this f is univalent on the whole U
(d)
1 .

Another example is f(z) =
z

(1 + z)2
, z = x+ dy, which can be written in the

form f = U + dV , with U(x, y) =
x

(1 + x)2
, V (x, y) =

y(1− x)
(1 + x)3

.

Now, as in the case q = i in [8], it is of interest to see how the geometric

conditions together with the local univalency (imposed by using the Jacobian) could

imply the (global) univalency, in the cases q = d and q = h too.

The ideas of proof of Theorem 1 in [8] can be summarized by two properties

which must to be checked:

f is univalent on C(q)
r , for any fixed r ∈ (0, 1), (9)

f(C(q)
r1

) ∩ f(C(q)
r2

) = ∅, for any r1, r2 ∈ (0, 1), r1 6= r2. (10)

But the case q = i is essentially different from the cases q = d and q = h,

because while for q = i, f(C(i)
r ), r ∈ (0, 1), are Jordan curves, in the cases q = d

and q = h (because of the zero divisors) they are not anymore, which will require

additional conditions on f , as can be seen in the following results.
Theorem 3.2. Let f : U

(d)
1 → Cd, f(z) = U(x, y) + dV (x, y), z = x + dy, be

of C1-class. If f satisfies the conditions:
(i) |f(x)|d = 0 iff |z|d = 0,
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(ii) J(f)(z) > 0, for all z ∈ U
(d)
1 \ Zd, (here J(f)(z) denotes the Jacobian of

f),

(iii) x
∂

∂y

(
V

U

)
> 0, for all x ∈ (−1, 1) \ {0}, y ∈ R,

(iv) Denoting L−(x) = lim
y→−∞

argd f(z), L+(x) = lim
y→+∞

argd f(z),

argd f(z) =
V (x, y)
U(x, y)

, z = x + dy ∈ U
(d)
1 \ Zd (by (iii), L−(x), L+(x) exist finite or

infinite),

I(x) = (L−(x), L+(x)) if x > 0, I(x) = (L+(x), L−(x)) if x < 0,

and supposing

I(α) ∩ I(β) = ∅, for all α ∈ (0, 1), β ∈ (−1, 0),
⋂

x∈(0,1)

I(x) 6= ∅,
⋂

x∈(−1,0)

I(x) 6= ∅,

(11)

then f is (SU)-Galilean starlike on U
(d)
1 .

Proof. We have to prove that f is univalent on U
(d)
1 \ Zd. In this sense we

will show that for q = d, (9) and (10) hold.

For any r ∈ (0, 1) we have C
(d)
r = C

(d+)
r ∪ C

(d−)
r , C

(d+)
r ∩ C

(d−)
r = ∅, where

C(d+)
r = {z = x + dy; x = r}, C(d−)

r = {z = x + dy; x = −r}.

Note that C
(d+)
r ∩ Zd = ∅, C

(d−)
r ∩ Zd = ∅ and that by (i) it follows that

f(C(d+)
r ) ∩ Zd = ∅, f(C(d−)

r ) ∩ Zd = ∅.

In order to prove (9), let z1, z2 ∈ C
(d)
r , z1 6= z2. r ∈ (0, 1) be fixed. If

|z1|d = −|z2|d, then by (11) it follows argd f(z1) 6= argd f(z2), i.e. f(z1) 6= f(z2). So

let |z1|d = |z2|d. We have two possibilities:

a) |z1|d = |z2|d = r;

b) |z1|d = |z2|d = −r.

In both cases ϕ1 = argd z1 6= argd z2 = ϕ2 and by (iii) we get

∂

∂ϕ
[argd f(z)] > 0, ϕ = argd z, i.e. argd f(z1) 6= argd f(z2),

which proves (9).

Now, let r1, r2 ∈ (0, 1), r1 6= r2. We will prove that

f(C(d−)
r1

) ∩ f(C(d+)
r2

) = ∅, f(C(d+)
r1

) ∩ f(C(d−)
r2

) = ∅ (12)

and

f(C(d+)
r1

) ∩ f(C(d+)
r2

) = ∅, f(C(d−)
r1

) ∩ f(C(d−)
r2

) = ∅, (13)
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which obviously will imply (10).

Indeed, (12) is immediate by (11). Let θ ∈
⋂

x∈(0,1)

I(x) be fixed.

For any ρ ∈ (0, 1), by (9) it follows that the system

argd f(z) = θ, |z|d = ρ (14)

yields a unique point z = ρedϕ
d , ϕ = ϕ(ρ). Differentiating in respect with ρ, we obtain[

∂

∂x

(
V

U

)]
(ρ, ρϕ(ρ)) + [ρϕ(ρ)]′

[
∂

∂y

(
V

U

)]
(ρ, ρϕ(ρ)) = 0. (15)

On the other hand, for the values of z in (14), denoting R(ρ) = |f(z)|d =

U(ρ, ρϕ(ρ)), we obtain

R′(ρ) =
∂U

∂x
(ρ, ρϕ(ρ)) + (ρϕ(ρ))′

∂U

∂y
(ρ, ρϕ(ρ)). (16)

Eliminating (ρϕ(ρ))′ between (15) and (16) and taking into account (i), (ii)

and (iii), we get

R′(ρ) =
J(f)(ρ, ρϕ(ρ))[

U
∂

∂y

(
V

U

)]
(ρ, ρϕ(ρ))

6= 0, for all ρ ∈ (0, 1),

i.e. R′(ρ) keeps the same sign on (0,1), which immediately implies that f(C(d+)
r1 ) ∩

f(C(d+)
r2 ) = ∅.

Now, let θ ∈
⋂

x∈(−1,0)

I(x). For any ρ ∈ (−1, 0), reasoning as above, we obtain

that f(C(d−)
r1 ) ∩ f(C(d−)

r2 ) = ∅, which proves (13) and therefore the theorem.

Remarks. 1) From the proof we can see how the geometric condition (iii),

together with the condition of local univalency in (ii) imply the global univalency on

U
(d)
1 \ Zd. In comparison with Theorem 1 in [8], because of the zero divisors Zd in

this case appears the additional condition (11).

2) The function in the previous Example 1 satisfies Theorem 3.2. Another

example is f = U + dV , with U(x, y) = x2 and V (x, y) = xey.

Analysing the proof of Theorem 3.2, we see that the condition (11) can be

replaced by others. Thus we easily obtain
Corollary 3.1. Let f : U

(d)
1 → Cd, f(z) = U(x, y) + dV (x, y), z = x + dy,

be of C1-class. If f satisfies the conditions (i), (ii), (iii) in the statement of Theorem
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3.2 and ⋂
x∈(0,1)

I(x) 6= ∅,
⋂

x∈(−1,0)

I(x) 6= ∅, |f(z1)|d 6= |f(z2)|d,

for all z1 = x1+dy1, z2 = x2+dy2 ∈ U
(d)
1 \Zd, with x1x2 < 0, then f is (SU)-Galilean

starlike on U
(d)
1 \ Zd.

Remark. The function f in Example 3 and f(z) =
z

(1 + z)2
satisfy Corollary

3.1.

For functions of hyperbolic complex variable we can prove
Theorem 3.3. Let f : U

(h)
1 → Ch, f(z) = U(x, y) + hV (x, y), z = x + hy,

be of C1-class. If f satisfies the conditions:
(i) |f(z)|h = 0 iff |z|h = 0,
(ii) J(f)(z) > 0, for all z ∈ U

(h)
1 \ Zh,

(iii) Re
Dhf(z)

f(z)
> 0, for all z ∈ U

(h)
1 \ Zh,

(iv) (x2 − y2)[U2(x, y)− V 2(x, y)] > 0, on U
(h)
1 \ Zh,

(v) if x1x2 < 0 then U(x1, y1)U(x2, y2) < 0 and if y1y2 < 0 then

V (x1, y1)V (x2, y2) < 0, on U
(h)
1 \ Zh,

(vi) Denoting

As
1(r) = arcth

[
lim

ϕ→−∞

V (sr coshϕ, sr sinhϕ)
U(sr coshϕ, sr sinhϕ)

]
,

Bs
1(r) = arcth

[
lim

ϕ→+∞

V (sr coshϕ, sr sinhϕ)
U(sr coshϕ, sr sinhϕ)

]
,

As
2(r) = arcth

[
lim

ϕ→−∞

U(sr sinhϕ, sr coshϕ)
V (sr sinhϕ, sr coshϕ)

]
,

Bs
2(r) = arcth

[
lim

ϕ→+∞

U(sr sinhϕ, sr coshϕ)
V (sr sinhϕ, sr coshϕ)

]
,

s ∈ {−1,+1}, r ∈ (0, 1), (by (iii), (iv) these numbers exist, finite or infinite and
As

p(r) < Bs
p(r), p ∈ {1, 2}, s ∈ {−1,+1}, r ∈ (0, 1)) and supposing that⋂

r∈(0,1)

(As
p(r), B

s
p(r)) 6= ∅, p ∈ {1, 2}, s ∈ {−1,+1},

then f is (SU)-Minkowskian starlike on U
(h)
1 .

Proof. We have to prove that f is univalent on U
(h)
1 \ Zh, in this sense

showing that (9) and (10) hold for q = h.

First, it is obvious that for any r ∈ (0, 1) we have

C(h)
r = C

(h+
1 )

r ∪ C
(h−1 )
r ∪ C

(h+
2 )

r ∪ C
(h−2 )
r , where for p = 1, 2
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C
(h+

p )
r = {z ∈ Ch; z if of p-kind and |z|h = r},

C
(h−p )
r = {z ∈ Ch; z if of p-kind and |z|h = −r},

the four sets being disjoint two by twos.

The univalency of f on each between the above four sets, easily follows from

(iii) (since it is equivalent with (3)).

On the other hand, by (iv) we get

f(C(h+
1 )

r ) ∩ f(C(h+
2 )

r ) = ∅, f(C(h−1 )
r ) ∩ f(C(h−2 )

r ) = ∅,

f(C(h−1 )
r ) ∩ f(C(h+

2 )
r ) = ∅, f(C(h+

1 )
r ) ∩ f(C(h−2 )

r ) = ∅,

and by (v) we get

f(C(h+
1 )

r ) ∩ f(C(h−1 )
r ) = ∅, f(C(h+

2 )
r ) ∩ f(C(h−2 )

r ) = ∅,

which immediately proves (9).

Now, let r1, r2 ∈ (0, 1), r1 6= r2. In order to prove (10), we have to check

sixteen relations of the form

f(C
(ds

p)
r1 ) ∩ f(C(dt

l)
r2 ) = ∅, (17)

with p, l ∈ {1, 2}, s, t ∈ {+,−}.

For p 6= l, (17) follows by (iv). For s 6= t, (17) follows by (v). Therefore it

remains to prove the following four relations

f(C(h+
1 )

r1 ) ∩ f(C(h+
1 )

r2 ) = ∅, f(C(h−1 )
r1 ) ∩ f(C(h−1 )

r2 ) = ∅,

f(C(h+
2 )

r1 ) ∩ f(C(h+
2 )

r2 ) = ∅, f(C(h−2 )
r1 ) ∩ f(C(h−2 )

r2 ) = ∅.
(18)

In order to obtain the first relation, let θ ∈ (A+1
1 , B+1

1 ) be fixed.

For any ρ ∈ (0, 1), by (7) we get that the system

argh f(z) = θ, z = x + hy, |z|h = ρ, (19)

yields a unique point z = ρehϕ
h , ϕ = ϕ(ρ). For this value of z let us denote R(ρ) =

|f(z)|h. We will show that R(ρ), ρ ∈ (0, 1), is strictly monotonous on (0,1), i.e.

d|f |h
d|z|h

=
dR

dρ
keeps the same sign on (0, 1), (20)

which will imply the desired conclusion.

In this sense we follow the ideas of proof in [8, Theorem 1].

34



STARLIKE, CONVEX AND ALPHA-CONVEX FUNCTIONS

Differentiating (19) in respect with ρ and using (2), we obtain

1
ρ
Im

Dh(f)
f

+ ϕ′(ρ)Re
Dh(f)

f
= 0. (21)

Then by (1) we get

dR

dρ
= R

(
1
ρ
Re

Dh(f)
f

+ ϕ′(ρ)Im
Dh(f)

f

)
. (22)

Eliminating ϕ′(ρ) between (21) and (22) (since Re Dh(f)
f 6= 0), we obtain

dR

dρ
Re

Dh(f)
f

=
R

ρ

[
Re

Dh(f)
f

Re
Dh(f)

f
− Im

Dh(f)
f

Im
Dh(f)

f

]
=

=
R

ρ
Re

[
Dh(f)

f

(
Dh(f)

f

)]
=

R

ρ
· 1
U2 − V 2

Re [Dh(f) · Dh(f)].

Since by direct calculation Re [Dh(f) · Dh(f)] = (x2 − y2)J(f), we get the

formula

dR

dρ
Re

Dh(f)
f

=
R

ρ
· x2 − y2

U2 − V 2
J(f),

which can be written in the form

d|f(z)|h
d|z|h

Re
Dh(f)

f
=
|f(z)|h
|z|h

· x2 − y2

U2 − V 2
J(f). (23)

As conclusion, the sign of
d|f(x)|h

d|z|h
is the same with the sign of

|f(z)|h
|z|h

. But

because U
(h+

1 )
1 = {z = x + hy ∈ U

(h)
1 ; x2 − y2 > 0, x > 0} is obviously a connected

set (in R2), by the hypothesis it follows that the continuous function F : U
(h+

1 )
1 → R,

F (z) =
|f(z)|h

ρ
=
|f(z)|h
|z|h

keeps the same sign on U
(h+

1 )
1 , which proves the first relation

in (18).

Taking now θ ∈ (A−1
1 , B−1

1 ) and again considering (18) but for ρ ∈ (−1, 0),

by similar reasonings we obtain (23), which will imply that f(C(h−1 )
r1 )∩ f(C(h−1 )

r2 ) = ∅,

r1 6= r2.

Analogously we can prove the last two relations in (18), which completes the

proof.

Remarks. 1) The previous Example 3 satisfies Theorem 3.3, while f(z) =

z2z do not satisfies it, but still is starlike.
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2) By the relations coshϕ =
√

1 + sinh2 ϕ and denoting sinhϕ = t, it is easy

to see that the conditions in Theorem 3.3,(vi), can be written as

As
1(r) = arcth

[
lim

t→−∞

V (sr
√

1 + t2, srt)
U(sr

√
1 + t2, srt)

]
,

Bs
1(r) = arcth

[
lim

t→+∞

V (sr
√

1 + t2, srt)
U(sr

√
1 + t2, srt)

]
,

and similarly for As
2(r), Bs

2(r), s ∈ {−1,+1}, r ∈ (0, 1).

3) Condition (iv) in Theorem 3.3 assures that the kind of z ∈ U
(h)
1 is not

changed by f . On the other hand, it is obvious that (iv), (v), (vi) can be replaced by

other conditions.

4. Convex and alpha-convex functions

Let q be any between i, d, h, f : U
(q)
1 → Cq, f(z) = U(x, y) + qV (x, y),

z = x + qy, f of C2-class on U
(q)
1 . For any fixed r ∈ (0, 1), let us consider the

differentiable path in Cq, γq(ϕ) = f(C(q)
r ), where ϕ = argq z is variable and |z|q is

constant (|z|q = r if q = i, |z|q = ±r if q = d, h).

Then

γ′q(ϕ) =
∂U

∂x
· ∂x

∂ϕ
+

∂U

∂y
· ∂y

∂ϕ
+ q

[
∂V

∂x
· ∂x

∂ϕ
+

∂V

∂y
· ∂y

∂ϕ

]
, (24)

and argq[γ′q(ϕ)] represents the ”Q”-angle (with the positive sense of Ox-axis) of the

”Q”-tangent at the path f(C(q)
r ) in γq(ϕ).

Definition 4.1. We say that f is (SU)-”Q” convex on U
(q)
q if f is univalent

on U
(q)
1 \ Zq, γ′q(ϕ) ∈ Zq iff z ∈ Zq and moreover, for any fixed r with Ar = {z ∈

Cq; |z|q = r} ∩ (U (q)
1 \ Zq) 6= ∅, we have

∂

∂ϕ
(argq γ′q(ϕ)) > 0, for all z ∈ Ar. (25)

Remarks. 1) Let q = i. Then by (24) and by x = r cos ϕ, y = r sinϕ,

ϕ ∈ (0, 2π], we get that (25) is equivalent with the inequality
∂

∂ϕ
[argi Di(f)] > 0, and

we obtain the equivalent inequality in [8]

Re
D2

i (f)(z)
Di(f)(z)

> 0, z ∈ U
(i)
1 \ {0}.
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2) Let q = d. In this case z = x(1 + dϕ), where x = ±r, y = xϕ, ϕ ∈ R,

γ′d(ϕ) = x
∂U

∂y
+ q

[
x

∂V

∂y

]
, argd(γ

′
d(ϕ)) =

∂V

∂y
/
∂U

∂y
,

for x 6= 0, and simple calculations show that a (SU)-Galilean convex function f ,

generates the injective vectorial transform on U
(d)
1 \ Zd, F (x, y) = (U(x, y), V (x, y)),

with
∂U

∂y
(x, y) = 0 iff x = 0 and satisfying

x

(
∂U

∂y
· ∂2V

∂y2
− ∂V

∂y
· ∂2U

∂y2

)
> 0, ∀ x ∈ (−1, 1) \ {0}, y ∈ R. (26)

Obviously that (26) is equivalent with

x
∂

∂y
[(∂V/∂y)/(∂U/∂y)] > 0, x ∈ (−1, 1) \ {0}, y ∈ R.

A simple example of (SU)-Galilean convex function is f = U + dV , with

U(x, y) = xey, V (x, y) = −y. Note that f is univalent on the whole U
(d)
1 .

3) Let q = h. In this case, we obtain: z = |z|h(coshϕ+h sinhϕ) if z is of first

kind, z = |z|h(sinhϕ + h coshϕ) if z is of second kind, ϕ ∈ R, |z|h = ±r (constant),

and in both cases
∂x

∂ϕ
= y,

∂y

∂ϕ
= x.

Then by (24) we obtain

γ′h(ϕ) = x
∂U

∂y
+ y

∂U

x
+ h

(
x

∂V

∂y
+ y

∂V

∂x

)
= qDh(f)(z),

which immediately implies argh[γ′h(ϕ)] = argh[Dh(f)(z)].

Reasoning exactly as in the case of starlikeness, we can say that f is (SU)-

Minkowskian convex on U
(h)
1 , if f is univalent on U

(h)
1 \Zh, Dh(f)(z) ∈ Zh iff z ∈ Zh

and

Re
D2

h(f)(z)
Dh(f)(z)

> 0, for all z ∈ U
(h)
1 \ Zh. (27)

A simple example of (SU)-Minkowskian convex function is f(z) = z2z, z =

x + hy.

4) Let q = d or h. We will say that a region G ⊂ Cq is (SU)-”Q” convex,

if there exists f : U
(q)
1 → Cq, (SU)-”Q” convex function on U

(q)
1 such that G =

f(U (q)
1 ). An interesting question would be to find internal geometric characterization

(in Euclidean language) of the (SU)-”Q” convex regions.

By using the ideas in [9], at end we can introduce the concept of alpha-convex

functions.
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The Remarks 2 after the Definitions 3.1 and 4.1, suggest

Definition 4.2. Let f : U
(d)
1 → Cd, f(z) = U(x, y) + dV (x, y), z = x + dy,

be of C2-class on U
(d)
1 and α a real number. The function f is called (SU)-Galilean

α-convex if f is univalent on U
(d)
1 \ Zd, U(x, y) = 0 iff x = 0,

∂U

∂y
(x, y) = 0 iff x = 0,

and for all x ∈ (−1, 1) \ {0}, y ∈ R, we have

(1− α)
∂[D(U, V )]

∂y
+ α

∂

[
D

(
∂U

∂y
,
∂V

∂y

)]
∂y

> 0,

where D(U, V ) = x

(
V

U

)
.

Note that f(z) = U(x, y)+dV (x, y), z = x+dy, with U(x, y) = xey, V (x, y) =

e2y is (SU)-Galilean α-convex, for any α > −1.

By the relations (8) and (27) we can introduce

Definition 4.3. Let f : U
(h)
1 → Ch, f(z) = U(x, y) + hV (x, y), z = x +

hy, be of C2-class on U
(h)
1 and α a real number. The function f is called (SU)-

Minkowskian α-convex if f is univalent on U
(h)
1 \Zh, |U(x, y)| = |V (x, y)| iff |x| = |y|,∣∣∣∣x∂V

∂y
+ y

∂V

∂x

∣∣∣∣ = ∣∣∣∣x∂U

∂y
+ y

∂U

∂x

∣∣∣∣ iff |x| = |y| and on U
(h)
1 \ Zh we have

Re
[
(1− α)

Dh(f)(z)
f(z)

+ α
D2

h(f)(z)
Dh(f)(z)

]
> 0.

Note that f(z) = z2z, z = x + hy, is (SU)-Minkowskian α-convex, for any

α ∈ R.

Remark. A deeper study of the function classes introduced in this paper

together with a corresponding theory for spirallike functions will be done in another

paper.

Also, the method in this paper can be extended to functions of hypercomplex

variables, as for example of quaternionic variable, or even in abstract Clifford algebras,

and will be done elsewhere.
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GENERALIZATION OF CERTAIN CLASSES OF UNIVALENT
FUNCTIONS WITH NEGATIVE COEFFICIENTS

H. M. HOSSEN

Dedicated to Professor Petru T. Mocanu on his 70th birthday

Abstract. The object of the present paper is to obtain coefficient esti-

mates, some properties, distortion theorem and closure theorems for the

classes R∗
n(α) of analytic and univalent functions with negative coefficients,

defined by using the n-th order Ruscheweyh derivative. We also obtain sev-

eral interesting results for the modified Hadamard product of functions be-

longing to the classes R∗
n(α). Further, we obtain radii of close-to-convexity,

starlikeness and convexity and integral operators for the classes R∗
n(α).

1. Introduction

Let A denote the class of functions f(z) of the form

f(z) = z +
∞∑

k=2

akzk (1.1)

which are analytic in the unit disc U = {z : |z| < 1}. We denote by S the subclass

of univalent functions f(z) in A. The Hadamard product of two functions f(z) ∈ A

and g(z) ∈ A will be denoted by f ∗ g(z), that is, if f(z) is given by (1.1) and g(z) is

given by

g(z) = z +
∞∑

k=2

bkzk, (1.2)

then

f ∗ g(z) = z +
∞∑

k=2

akbkzk. (1.3)

Let

Dnf(z) =
z(zn−1f(z))(n)

n!
(1.4)

1991 Mathematics Subject Classification. 30C45.

Key words and phrases. analytic, univalent, Ruscheweyh derivative, modified Hadamard product.
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for n ∈ N0 = N ∪ {0} and z ∈ U , where N = {1, 2, 3, . . . }. This symbol Dnf(z) was

named the n-th order Ruscheweyh derivative of f(z) by Al-Amiri [3]. We note that

D0f(z) = f(z) and D1f(z) = zf ′(z). By using the Hadamard product, Ruscheweyh

[5] observed that if

Dβf(z) =
z

(1− z)β+1
∗ f(z) (β ≥ −1) (1.5)

then (1.4) is equivalent to (1.5) when β = n ∈ N0.

It is easy to see that

Dnf(z) = k +
∞∑

k=2

δ(n, k)akzk, (1.6)

where

δ(n, k) =
(

n + k − 1
n

)
. (1.7)

Note that

z(Dnf(z))′ = (n + 1)Dn+1f(z)− nDnf(z) (cf. [5]). (1.8)

Let Rn(α) denote the classes of functions f(z) ∈ A which satisfy the condition

Re
{

z(Dnf(z))′

Dnf(z)

}
> α, (z ∈ U) (1.9)

for some α (0 ≤ α < 1) and n ∈ N0. The class Rn(α) was studied by Ahuja [1,2].

From (1.8) and (1.9) it follows that a function f(z) in A belongs to Rn(α) is

and only if

Re
{

Dn+1f(z)
Dnf(z)

}
>

n + α

n + 1
(z ∈ U). (1.10)

Let T denote the subclass of S consisting of functions f(z) of the form

f(z) = z −
∞∑

k=2

akzk (ak ≥ 0). (1.11)

In the present paper we introduce the following classes R∗
n(α) by using the

n-th order Ruscheweyh derivative of f(z), defined as follows:

Definition. We say that f(z) is in the class R∗
n(α) (0 ≤ α < 1, n ∈ N0), if

f(z) defined by (1.11) satisfies the condition (1.10).

We note that R∗
n(0) = R∗

n was studied by Owa [4] and R∗
0(α) = T ∗(α) (the

class of starlike functions of order α) and R∗
1(α) = C(α) (the class of convex functions
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of order α), were studied by Silverman [7]. Hence R∗
n(α) is a subclass of T ∗(α) ⊂ S.

Further, we can show that R∗
n+1(α) ⊂ R∗

n(α) for every n ∈ N0.

2. Coefficient Estimates

Theorem 1. Let the function f(z) be defined by (1.11). Then f(z) is in

the class R∗
n(α) if and only if

∞∑
k=2

(k − α)δ(n, k)ak ≤ 1− α. (2.1)

The result is sharp.

Proof. Assume that the inequality (2.1) holds and let |z| = 1. Then we get

∣∣∣∣Dn+1f(z)
Dnf(z)

− 1
∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣
−

∞∑
k=2

(δ(n + 1, k)− δ(n, k))akzk−1

1−
∞∑

k=2

δ(n, k)akzk−1

∣∣∣∣∣∣∣∣∣∣
≤

≤

∞∑
k=2

(
k − 1
n + 1

)
δ(n, k)ak|z|k−1

1−
∞∑

k=2

δ(n, k)ak|z|k−1

≤

∞∑
k=2

(
k − 1
n + 1

)
δ(n, k)ak

1−
∞∑

k=2

δ(n, k)ak

≤ 1− α

n + 1
.

This shows that the values of
Dn+1f(z)
Dnf(z)

lies in a circle centered at w = 1

whose radius is
1− α

n + 1
. Hence f(z) satisfies the condition (1.10) hence further, f(z) ∈

R∗
n(α).

For the converse, assume that the function f(z) defined by (1.11) belongs to

the class R∗
n(α). Then we have

Re
{

Dn+1f(z)
Dnf(z)

}
= Re


1−

∞∑
k=2

δ(n + 1, k)akzk−1

1−
∞∑

k=2

δ(n, k)akzk−1

 >
n + α

n + 1
(2.2)

for 0 ≤ α < 1 and z ∈ U . Choose values of z on the real axis so that
Dn+1f(z)
Dnf(z)

is

real. Upon clearing the denominator in (2.2) and letting z → 1− through real values,

we get

(n + 1)

(
1−

∞∑
k=2

δ(n + 1, k)ak

)
≥ (n + α)

(
1−

∞∑
k=2

δ(n, k)ak

)
(2.3)
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which gives (2.1). Finally the function f(z) given by

f(z) = z − 1− α

(k − α)δ(n, k)
zk (k ≥ 2) (2.4)

is an extremal function for the theorem.

Corollary 1. Let the function f(z) defined by (1.11) be in the class R∗
n(α).

Then

ak ≤
1− α

(k − α)δ(n, k)
(k ≥ 2). (2.5)

The equality in (2.5) is attained for the function f(z) given by (2.4).

3. Some properties of the class R∗
n(α)

Theorem 2. Let 0 ≤ α1 ≤ α2 < 1 and n ∈ N0. Then we have

R∗
n(α1) ⊇ R∗

n(α2). (3.1)

Proof. Let the function f(z) defined by (1.11) be in the class R∗
n(α2) and

α1 = α2 − ε. Then, by Theorem 1, we have

∞∑
k=2

(k − α2)δ(n, k)ak ≤ 1− α2

and
∞∑

k=2

δ(n, k)ak ≤
1− α2

2− α2
< 1. (3.2)

Consequently

∞∑
k=2

(k − α1)δ(n, k)ak =
∞∑

k=2

(k − α2)δ(n, k)ak + ε
∞∑

k=2

δ(n, k)ak ≤ 1− α1. (3.3)

This completes the proof of Theorem 2 with the aid of Theorem 1.

Theorem 3. R∗
n+1(α) ⊆ R∗

n(α) for 0 ≤ α < 1 and n ∈ N0.

Proof. Let the function f(z) defined by (1.11) be in the class R∗
n+1(α); then

∞∑
k=2

(k − α)δ(n + 1, k)ak ≤ 1− α (3.4)

and since

δ(n, k) ≤ δ(n + 1, k) for k ≥ 2, (3.5)
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we have
∞∑

k=2

(k − α)δ(n, k)ak ≤
∞∑

k=2

(k − α)δ(n + 1, k)ak ≤ 1− α. (3.6)

The result follows from Theorem 1.

4. Distortion theorem

Theorem 4. Let the function f(z) defined by (1.11) be in the class R∗
n(α).

Then we have for |z| = r < 1

r − 1− α

(2− α)(n + 1)
r2 ≤ |f(z)| ≤ r +

1− α

(2− α)(n + 1)
r2 (4.1)

and

1− 2(1− α)
(2− α)(n + 1)

r ≤ |f ′(z)| ≤ 1 +
2(1− α)

(2− α)(n + 1)
r. (4.2)

The result is sharp.

Proof. In view of Theorem 1, we have
∞∑

k=2

ak ≤
1− α

(2− α)(n + 1)
. (4.3)

Consequently, we have

|f(z)| ≥ r − r2
∞∑

k=2

ak ≥ r − 1− α

(2− α)(n + 1)
r2 (4.4)

and

|f(z)| ≤ r + r2
∞∑

k=2

ak ≤ r +
1− α

(2− α)(n + 1)
r2 (4.5)

which prove the assertion (4.1).

From (4.3) and Theorem 1, it follows also that
∞∑

k=2

kak ≤
1− α

n + 1
+ α

∞∑
k=2

ak ≤
2(1− α)

(2− α)(n + 1)
. (4.6)

Consequently, we have

|f ′(z)| ≥ 1− r
∞∑

k=2

kak ≥ 1− 2(1− α)
(2− α)(n + 1)

r (4.7)

and

|f ′(z)| ≤ 1 + r
∞∑

k=2

kak ≤ 1 +
2(1− α)

(2− α)(n + 1)
r, (4.8)

which prove the assertion (4.2). This completes the proof of Theorem 4.
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The bounds in (4.1) and (4.2) are attained for the function f(z) given by

f(z) = z − 1− α

(2− α)(n + 1)
z2 (z = ±r). (4.9)

Corollary 2. Let the function f(z) defined by (1.11) be in the class R∗
n(α).

Then the unit disc U is mapped onto a domain that contains the disc

|w| < (2− α)(n + 1)− (1− α)
(2− α)(n + 1)

(4.10)

The result is sharp with extremal function f(z) given by (4.9).

5. Closure theorems

Let the functions fi(z) be defined, for i = 1, 2, . . . ,m, by

fi(z) = z −
∞∑

k=2

ak,iz
k (ak,i ≥ 0, k ≥ 2) (5.1)

for z ∈ U .

We shall prove the following results for the closure of functions in the classes

R∗
n(α).

Theorem 5. Let the functions fi(z) defined by (5.1) be in the class R∗
n(α)

for every i = 1, 2, . . . ,m. Then the function h(z) defined by

h(z) =
m∑

i=1

cifi(z) (ci ≥ 0) (5.2)

is also in the class R∗
n(α), where

m∑
i=1

ci = 1. (5.3)

Proof. According to the definition of h(z), we can write

h(z) = z −
∞∑

k=2

(
m∑

i=1

ciak,i

)
zk. (5.4)

Further, since fi(z) are in R∗
n(α) for every i = 1, 2, . . . ,m, we get
∞∑

k=2

(k − α)δ(n, k)ak,i ≤ 1− α (5.5)

for every i = 1, 2, . . . ,m. Hence we can see that
∞∑

k=2

(k − α)δ(n, k)

(
m∑

i=1

ciak,i

)
=

m∑
i=1

ci

( ∞∑
k=2

(k − α)δ(n, k)ak,i

)
≤
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=

(
m∑

i=1

ci

)
(1− α) ≤ 1− α (5.6)

with the aid of (5.5). This proves that the function h(z) is in the class R∗
n(α) by

means of Theorem 1. Thus we have the theorem.

Theorem 6. The class R∗
n(α) is closed under convex linear combinations.

Proof. Let the functions fi(z) (i = 1, 2) defined by (5.1) be in the class

R∗
n(α). Then it is sufficient to prove that the function

h(z) = λf1(z) + (1− λ)f2(z) (0 ≤ λ ≤ 1) (5.7)

is in the class R∗
n(α). Since, for 0 ≤ λ ≤ 1,

h(z) = z −
∞∑

k=2

{λak,1 + (1− λ)ak,2}zk, (5.8)

we readily have

∞∑
k=2

(k − α)δ(n, k){λak,1 + (1− λ)ak,2} ≤ 1− α, (5.9)

by means of Theorem 1, which implies that h(z) ∈ R∗
n(α).

Theorem 7. Let

f1(z) = z (5.10)

and

fk(z) = z − 1− α

(k − α)δ(n, k)
zk (k ≥ 2) (5.11)

for 0 ≤ α < 1 and n ∈ N0. Then f(z) is in the class R∗
n(α) if and only if can be

expressed in the form

f(z) =
∞∑

k=1

λkfk(z) (5.12)

where λk ≥ 0 and
∞∑

k=1

λk = 1. (5.13)

Proof. Assume that

f(z) =
∞∑

k=1

λkfk(z) = z −
∞∑

k=2

1− α

(k − α)δ(n, k)
λkzk. (5.14)
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Then we have

∞∑
k=2

(k − α)δ(n, k)
1− α

· 1− α

(k − α)δ(n, k)
λk =

∞∑
k=2

λk = 1− λ1 ≤ 1. (5.15)

So by Theorem 1, f(z) ∈ R∗
n(α).

Conversely, assume that the function f(z) defined by (1.11) belongs to the

class R∗
n(α). Again, with the aid of Theorem 1, we get

ak ≤
1− α

(k − α)δ(n, k)
(k ≥ 2). (5.16)

Setting

λk =
(k − α)δ(n, k)

1− α
ak (k ≥ 2), (5.17)

and

λ1 = 1−
∞∑

k=2

λk. (5.18)

Hence, we can see that f(z) can be expressed in the form (5.12). This completes the

proof of Theorem 7.

Corollary 3. The extreme points of the class R∗
n(α) are the functions f1(z)

and fk(z) (k ≥ 2) given by Theorem 7.

6. Modified Hadamard product

Let the functions fi(z) (i = 1, 2) be defined (5.1). The modified Hadamard

product of f1(z) and f2(z) is defined by

f1 ∗ f2(z) = z −
∞∑

k=2

ak,1ak,2z
k. (6.1)

Theorem 8. Let the functions fi(z) (i = 1, 2) defined by (5.1) be in the class

R∗
n(α). Then f1 ∗ f2(z) ∈ R∗

n(β(n, α)), where

β(n, α) =
(n + 1)− 2

(
1− α

2− α

)2

(n + 1)−
(

1− α

2− α

)2 . (6.2)

The result is sharp.
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Proof. Employing the technique used earlier by Schild and Silverman [4],

we need to find the largest β = β(n, α) such that

∞∑
k=2

(k − β)δ(n, k)
1− β

ak,1ak,2 ≤ 1. (6.3)

Since
∞∑

k=2

(k − α)δ(n, k)
1− α

ak,1 ≤ 1 (6.4)

and
∞∑

k=2

(k − α)δ(n, k)
1− α

ak,2 ≤ 1, (6.5)

by the Cauchy-Schwarz inequality we have

∞∑
k=2

(k − α)δ(n, k)
1− α

√
ak,1ak,2 ≤ 1. (6.6)

Thus it is sufficient to show that

(k − β)δ(n, k)
1− β

ak,1ak,2 ≤
(k − α)δ(n, k)

1− α

√
ak,1ak,2 (k ≥ 2), (6.7)

that is, that
√

ak,1ak,2 ≤
(k − α)(1− β)
(k − β)(1− α)

(k ≥ 2). (6.8)

Note that
√

ak,1ak,2 ≤
1− α

(k − α)δ(n, k)
(k ≥ 2). (6.9)

Consequently, we need only to prove that

1− α

(k − α)δ(n, k)
≤ (k − α)(1− β)

(k − β)(1− α)
(k ≥ 2), (6.10)

or, equivalently, that

β ≤
δ(n, k)− k

(
1− α

k − α

)2

δ(n, k)−
(

1− α

k − α

)2 (k ≥ 2). (6.11)

Since

A(k) =
δ(n, k)− k

(
1− α

k − α

)2

δ(n, k)−
(

1− α

k − α

)2 (6.12)
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is an increasing function of k (k ≥ 2), letting k = 2 in (6.12), we obtain

β ≤ A(2) =
(n + 1)− 2

(
1− α

2− α

)2

(n + 1)−
(

1− α

2− α

)2 , (6.13)

which completes the proof of the theorem. Finally, by taking the functions fi(z) given

by

fi(z) = z − 1− α

(2− α)(n + 1)
z2 (i = 1, 2), (6.14)

we can see that the result is sharp.

Corollary 4. For f1(z) and f2(z) as in Theorem 8, we have

h(z) = z −
∞∑

k=2

√
ak,1ak,2z

k (6.15)

belongs to the class R∗
n(α).

The result follows from the inequality (6.6). It is sharp for the same functions

fi(z) (i = 1, 2) as in Theorem 8.

Theorem 9. Let f1(z) ∈ R∗
n(α) and f2(z) ∈ R∗

n(β), then f1 ∗ f2(z) ∈

R∗
n(γ(n, α, β)), where

γ(n, α, β) =
(n + 1)− 2

(
1− α

2− α

)(
1− β

2− β

)
(n + 1)−

(
1− α

2− α

)(
1− β

2− β

) . (6.16)

The result is sharp for the functions

f1(z) = z − 1− α

(2− α)(n + 1)
z2 (6.17)

and

f2(z) = z − 1− β

(2− β)(n + 1)
z2. (6.18)

Proof. Proceeding as in the proof of Theorem 8, we get

γ ≤ B(k) =
δ(n, k)− k

(
1− α

k − α

)(
1− β

k − β

)
δ(n, k)−

(
1− α

k − α

)(
1− β

k − β

) . (6.19)
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Since the function B(k) is an increasing function of k (k ≥ 2), setting k = 2 in (6.19),

we obtain

γ ≤ B(2) =
(n + 1)− 2

(
1− α

2− α

)(
1− β

2− β

)
(n + 1)−

(
1− α

2− α

)(
1− β

2− β

) . (6.20)

This completes the proof of Theorem 9.

Corollary 5. Let the functions fi(z) (i = 1, 2, 3) defined by (5.1) be in the

class R∗
n(α), then f1 ∗ f2 ∗ f3(z) ∈ R∗

n(ζ(n, α)), where

ζ(n, α) =
(n + 1)2 − 2

(
1− α

2− α

)3

(n + 1)2 −
(

1− α

2− α

)3 . (6.21)

The result is best possible for the functions

fi(z) = z − 1− α

(2− α)(n + 1)
z2 (i = 1, 2, 3). (6.22)

Proof. From Theorem 8, we have f1 ∗ f2(z) ∈ R∗
n(β), where β is given by

(6.2). We use now Theorem 9, we get f1 ∗ f2 ∗ f3(z) ∈ R∗
n(ζ(n, α)), where

ζ(n, α) =
(n + 1)− 2

(
1− α

2− α

)(
1− β

2− β

)
(n + 1)−

(
1− α

2− α

)(
1− β

2− β

) =
(n + 1)2 − 2

(
1− α

2− α

)3

(n + 1)2 −
(

1− α

2− α

)3 .

This completes the proof of Corollary 5.

Theorem 10. Let the functions fi(z) (i = 1, 2) defined by (5.1) be in the

class R∗
n(α). Then the function

h(z) = z −
∞∑

k=2

(a2
k,1 + a2

k,2)z
k (6.23)

belongs to the class R∗
n(ϕ(n, α)), where

ϕ(n, α) =
(n + 1)−

(
2(1− α)
2− α

)2

(n + 1)− 2
(

1− α

2− α

)2 . (6.24)

The result is sharp for the functions fi(z) (i = 1, 2) defined by (6.14).

51



H. M. HOSSEN

Proof. By virtue of Theorem 1, we obtain

∞∑
k=2

[
(k − α)δ(n, k)

1− α

]2
a2

k,1 ≤

[ ∞∑
k=2

(k − α)δ(n, k)
1− α

ak,1

]2

≤ 1 (6.25)

and
∞∑

k=2

[
(k − α)δ(n, k)

1− α

]2
a2

k,2 ≤

[ ∞∑
k=2

(k − α)δ(n, k)
1− α

ak,2

]2

≤ 1. (6.26)

It follows from (6.25) and (6.26) that
∞∑

k=2

1
2

[
(k − α)δ(n, k)

1− α

]2
(a2

k,1 + a2
k,2) ≤ 1. (6.27)

Therefore, we need to find the largest ϕ = ϕ(n, α) such that

(k − ϕ)δ(n, k)
1− ϕ

≤ 1
2

[
(k − α)δ(n, k)

1− α

]2
(k ≥ 2), (6.28)

that is

ϕ ≤
δ(n, k)− 2k

(
1− α

k − α

)2

δ(n, k)− 2
(

1− α

k − α

)2 (k ≥ 2). (6.29)

Since

D(k) =
δ(n, k)− 2k

(
1− α

k − α

)2

δ(n, k)− 2
(

1− α

k − α

)2 (6.30)

is an increasing function of k (k ≥ 2), we readily have

ϕ ≤ D(2) =
(n + 1)−

(
2(1− α)
2− α

)2

(n + 1)− 2
(

1− α

2− α

)2 , (6.31)

and Theorem 10 follows at once.

Theorem 11. Let f1(z) ∈ R∗
n1

(α), and f2(z) ∈ R∗
n2

(α). Then the modified

Hadamard product f1 ∗ f2(z) ∈ R∗
n1

(α) ∩R∗
n2

(α).

Proof. Since f2(z) ∈ R∗
n2

(α), we have from (4.3) that

ak,2 ≤
1− α

(2− α)(n2 + 1)
. (6.32)

From Theorem 1, since f1(z) ∈ R∗
n1

(α), we have
∞∑

k=2

(k − α)δ(n1, k)
1− α

ak,1 ≤ 1. (6.33)
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Now, from (6.32) and (6.33), we have

∞∑
k=2

(k − α)δ(n1, k)
1− α

ak,1ak,2 ≤
1− α

(2− α)(n2 + 1)

∞∑
k=2

(k − α)δ(n1, k)
1− α

ak,1 ≤

≤ 1− α

(2− α)(n2 + 1)
≤ 1.

Hence f1 ∗ f2(z) ∈ R∗
n1

(α). Interchanging n1 and n2 by each other in the above, we

get f1 ∗ f2(z) ∈ R∗
n2

(α). Hence the theorem.

7. Radii of close-to-convexity, starlikeness and convexity

Theorem 12. Let the function f(z) defined by (1.11) be in the class R∗
n(α),

then f(z) is close-to-convex of order ρ (0 ≤ ρ < 1) in |z| < r1(n, α, ρ), where

r1(n, α, ρ) = inf
k

[
(1− ρ)(k − α)δ(n, k)

k(1− α)

] 1
k−1

(k ≥ 2). (7.1)

The result is sharp, with the extremal function f(z) given by (2.4).

Proof. We must show that |f ′(z)− 1| ≤ 1− ρ for |z| < r1(n, α, ρ). We have

|f ′(z)− 1| ≤
∞∑

k=2

kak|z|k−1.

Thus |f ′(z)− 1| ≤ 1− ρ if

∞∑
k=2

(
k

1− ρ

)
ak|z|k−1 ≤ 1. (7.2)

Hence, by Theorem 1, (7.2) will be true if

k|z|k−1

1− ρ
≤ (k − α)δ(n, k)

1− α

or if

|z| ≤
[
(1− ρ)(k − α)δ(n, k)

k(1− α)

] 1
k−1

(k ≥ 2). (7.3)

The theorem follows easily from (7.3).

Theorem 13. Let the function f(z) defined by (1.11) be in the class R∗
n(α),

then f(z) is starlike of order ρ (0 ≤ ρ < 1) in |z| < r2(n, α, ρ), where

r2(n, α, ρ) = inf
k

[
(1− ρ)(k − α)δ(n, k)

(k − ρ)(1− α)

] 1
k−1

(k ≥ 2). (7.4)

The result is sharp, with the extremal function f(z) given by (2.4).
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Proof. It is sufficient to show that
∣∣∣∣zf ′(z)

f(z)
− 1
∣∣∣∣ ≤ 1− ρ for |z| < r2(n, α, ρ).

We have

∣∣∣∣zf ′(z)
f(z)

− 1
∣∣∣∣ ≤

∞∑
k=2

(k − 1)ak|z|k−1

1−
∞∑

k=2

ak|z|k−1

.

Thus
∣∣∣∣zf ′(z)

f(z)
− 1
∣∣∣∣ ≤ 1− ρ if

∞∑
k=2

(k − ρ)ak|z|k−1

1− ρ
≤ 1. (7.5)

Hence, by Theorem 1, (7.5) will be true if

(k − ρ)|z|k−1

1− ρ
≤ (k − α)δ(n, k)

1− α

or if

|z| ≤
[
(1− ρ)(k − α)δ(n, k)

(k − ρ)(1− α)

] 1
k−1

(k ≥ 2). (7.6)

The theorem follows easily from (7.6).

Corollary 6. Let the function f(z) defined by (1.11) be in the class R∗
n(α),

then f(z) is convex of order ρ (0 ≤ ρ < 1) in |z| < r3(n, α, ρ), where

r3(n, α, ρ) = inf
k

[
(1− ρ)(k − α)δ(n, k)

k(k − ρ)(1− α)

] 1
k−1

(k ≥ 2). (7.7)

The result is sharp, with the extremal function f(z) given by (2.4).

8. Integral operators

Theorem 14. Let the function f(z) defined by (1.11) be in the class R∗
n(α)

and let the function F (z) be defined by

F (z) =
c + 1
zc

∫ z

0

tc−1f(t)dt. (8.1)

Then

(i) for every c, c > −1, F (z) ∈ R∗
n(α)

and

(ii) for every c, −1 < c ≤ n, F (z) ∈ R∗
n+1(α).
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Proof. (i) From the representation of F (z), it follows that

F (z) = z −
∞∑

k=2

bkzk, (8.2)

where

bk =
(

c + 1
c + k

)
ak. (8.3)

Therefore,
∞∑

k=2

(k − α)δ(n, k)bk =
∞∑

k=2

(k − α)δ(n, k)
(

c + 1
c + k

)
ak ≤

≤
∞∑

k=2

(k − α)δ(n, k)ak ≤ 1− α,

since f(z) ∈ R∗
n(α). Hence, by Theorem 1, F (z) ∈ R∗

n(α).

(ii) In view of Theorem 1 it is sufficient to show that
∞∑

k=2

(k − α)δ(n + 1, k)
(

c + 1
c + k

)
ak ≤ 1− α. (8.4)

Since

δ(n, k)− δ(n + 1, k)
(

c + 1
c + k

)
≥ 0 if − 1 < c ≤ n (k = 2, 3, . . . )

the result follows from Theorem 1.

Putting c = 0 in Theorem 14, we get

Corollary 7. Let the function f(z) defined by (1.6) be in the class R∗
n(α)

and let the function F (z) be defined by

F (z) =
∫ z

0

f(t)
t

dt. (8.5)

Then F (z) ∈ R∗
n+1(α).

Theorem 15. Let the function F (z) = z −
∞∑

k=2

akzk (ak ≥ 0) be in the class

R∗
n(α), and let c be a real number such that c > −1. Then the function f(z) defined

by (8.1) is univalent in |z| < r∗, where

r∗ = inf
k

[
(c + 1)(k − α)δ(n, k)

k(c + k)(1− α)

] 1
k−1

, (k ≥ 2). (8.6)

The result is sharp.

Proof. From (8.1), we have

f(z) =
z1−c(zcF (z))′

c + 1
(c > −1) = z −

∞∑
k=2

(
c + k

c + 1

)
akzk. (8.7)
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In order to obtain the required result it suffices to show that

|f ′(z)− 1| < 1 in |z| < r∗.

Now

|f ′(z)− 1| ≤
∞∑

k=2

k(c + k)
c + 1

ak|z|k−1.

Thus |f ′(z)− 1| < 1, if
∞∑

k=2

k(c + k)
c + 1

ak|z|k−1 < 1. (8.8)

But Theorem 1 confirms that
∞∑

k=2

(k − α)δ(n, k)
1− α

ak ≤ 1. (8.9)

Hence (8.8) will be satisfied if

k(c + k)|z|k−1

c + 1
<

(k − α)δ(n, k)
1− α

(k ≥ 2)

or if

|z| <
[
(c + 1)(k − α)δ(n, k)

k(c + k)(1− α)

] 1
k−1

(k ≥ 2). (8.10)

Therefore f(z) is univalent in |z| < r∗. Sharpness follows if we take

f(z) = z − (1− α)(c + k)
(k − α)δ(n, k)(c + 1)

zk (k ≥ 2). (8.11)
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Dedicated to Professor Petru T. Mocanu on his 70th birthday

Abstract. The object of the present paper is to obtain several interest-

ing results involving coefficient estimates for analytic normalized functions

belonging to certain classes defined in terms of the convolution with the

extremal function for the class of starlike functions of order α, 0 ≤ α < 1.

1. Introduction

Let A1 denote the class of functions of the form

f(z) = z +
∞∑

n=2

anzn (1.1)

which are analytic in the unit disc U = {z : |z| < 1}. And let S denote the subclass of

A1 consisting of analytic and univalent functions f(z) in the unit disc U . A function

f(z) of S is said to be starlike of order α if and only if

Re
{

zf ′(z)
f(z)

}
> α (z ∈ U) (1.2)

for some α (0 ≤ α < 1). We denote the class of all starlike functions of order α by

S∗(α).

Now, the function

Sα(z) =
z

(1− z)2(1−α)
(1.3)

is the well-known extremal function for S∗(α). Setting

C(α, n) =

n∏
k=2

(k − 2α)

(n− 1)!
(n = 2, 3, . . . ), (1.4)

1991 Mathematics Subject Classification. 30C45.

Key words and phrases. analytic, starlike, convolution.
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Sα(z) can be written in the form

Sα(z) = z +
∞∑

n=2

C(α, n)zn. (1.5)

Note that C(α, n) is a decreasing function of α, 0 ≤ α < 1, and satisfies

lim
n→∞

C(α, n) =


∞, α < 1/2

1, α = 1/2

0, α > 1/2.

(1.6)

Let (f ∗ g)(z) denote the convolution or Hadamard product of two functions

f(z) and g(z), that is, if f(z) is given by (1.1) and g(z) is given by

g(z) = z +
∞∑

n=2

bnzn, (1.7)

then

(f ∗ g)(z) = z +
∞∑

n=2

anbnzn. (1.8)

Recently, many classes defined by convolution of f(z) and Sα(z) have been studied by

Ahuja and Silverman [1], Owa and Ahuja [11, 12], Sheil-Small, Silverman, and Silvia

[15], Silverman and Silvia [16], and Ruscheweyh and Singh [14].

We denote by Pα(β, γ,A, B) the class of functions f(z) in A1 that satisfy the

condition

(f ∗ Sα)′(z) ≺ 1 + [B + (A−B)(1− β)]γz

1 + Bγz
(z ∈ U) (1.9)

for some α (0 ≤ α < 1), β (0 ≤ β < 1, γ (0 < γ ≤ 1), and −1 ≤ A < B ≤ 1,

0 < B ≤ 1, where ≺ means subordination. For f ∈ Pα(β, γ,A, B), the values of

(f ∗ Sα)′(z) lie in a disc centered at
1− [B + (A−B)(1− β)]Bγ2

1−B2γ2
whose radius is

(B −A)γ(1− β)
1−B2γ2

.

We observe that, by specializing the parameters α, β, γ,A and B, we obtain

the following subclasses studied by various authors:

(1) P1/2(0, 1,−1, 1) = {f ∈ A1 : Re f ′(z) > 0, z ∈ U} (Mac-Gregor [8]).

(2) P1/2(0, γ,−1, 1) =
{

f ∈ A1 : f ′(z) ≺ 1− γz

1 + γz
, z ∈ U

}
(Padmanabhan

[13] and Caplinger and Causey [4]).

(3) P1/2(β, γ,−1, 1) =
{

f ∈ A1 : f ′(z) ≺ 1 + (2β − 1)γz

1 + γz
, z ∈ U

}
(Juneja

and Mogra [7]).

60



ON CERTAIN CLASSES OF FUNCTIONS DEFINED BY CONVOLUTIONS

(4) P1/2(0, 1, A, B) =
{

f ∈ A1 : f ′(z) ≺ 1 + Az

1 + Bz
, z ∈ U

}
(Mehrok [9]).

(5) P1/2(β, γ,A, B) =
{

f ∈ A1 : f ′(z) ≺ 1+[B+(A−B)(1−β)]γz
1+Bγz , z ∈ U

}
(Aouf

and Owa [3]).

(6) Pα(β, γ,−1, 1) =
{

f ∈ A1 : (f ∗ Sα)′(z) ≺ 1 + (2β − 1)γz

1 + γz
, z ∈ U

}
(Owa and Ahuja [12]).

(7) Pα(0, 1,−1, 1) = {f ∈ A1 : Re (f ∗ Sα)′(z) > 0, z ∈ U} (Ahuja and Owa

[2]).

It is well-known that the functions in P1/2(0, 1,−1, 0) and P1/2(0, 1, A, B) are

univalent in U .

Further, we say that a function f(z) in A1 belongs to the class Qα(β, γ,A, B)

if and only if zf ′(z) ∈ Pα(β, γ, A,B) for all z ∈ U . Finally, denote by Rα(β, γ,A, B)

the class of functions f(z) in A1 that satisfy the condition

1
z
(f ∗ Sα)(z) ≺ 1 + [B + (A−B)(1− β)]γz

1 + Bγz
(1.10)

for some α, β, γ,A, and B as defined above. Note that

R1/2(0, 1, A, B) =
{

f ∈ A1 :
f(z)

z
≺ 1 + Az

1 + Bz
, z ∈ U

}
.

In Section 2, we first prove that

Qα(β, γ, A, B) ⊂ Pα(β, γ, A, B) ⊂ Rα(β, γ,A, B),

and we then determine coefficient inequalities for the functions belonging to these

classes. Finally, the coefficient inequalities for some subclasses of Pα(β, γ, A, B) and

Qα(β, γ, A,B) are obtained.

2. Coefficient Inequalities

First we examine the relationship between Pα(β, γ,A, B) and

Qα(β, γ, A,B). We need the following very useful result due to Jack [6], and Suf-

fridge [17].

Lemma 1. Let w(z) be analytic in U with w(0) = 0. If |w(z0)| = max
|z|=r

|w(z)|,

then we have

z0w
′(z0) = kw(z0),

where k is a real number and k ≥ 1.
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Theorem 1. Qα(β, γ, A, B) ⊂ Pα(β, γ, A, B).

Proof. Let f ∈ Qα(β, γ, A, B). Then zf ′(z) ∈ Pα(β, γ, A,B) and therefore

(zf ′ ∗ Sα)′(z) ≺ g(z), (2.1)

where g(z) =
1 + [B + (A−B)(1− β)]γz

1 + Bγz
is convex univalent in U . In view of the

principle of subordination and the Schwarz’s Lemma [10], it follows that (2.1) is

equivalent to ∣∣∣∣ (zf ′ ∗ Sα)′(z)− 1
Bγ(zf ′ ∗ Sα)′(z)− [B + (A−B)(1− β)]γ

∣∣∣∣ < 1. (2.2)

Define w(z) by

(zf ′ ∗ Sα)(z)
z

=
1 + [B + (A−B)(1− β)]γw(z)

1 + Bγw(z)
. (2.3)

We observe that
(zf ′ ∗ Sα)(z)

z
= (f ∗ Sα)′(z).

Thus (2.3) can be written as

w(z) =
(f ∗ Sα)′(z)− 1

[B + (A−B)(1− β)]γ −Bγ(f ∗ Sα)′(z)
. (2.4)

Note that w(z) is analytic in U and w(0) = 0. We need to show that |w(z)| < 1 for

all z ∈ U . On the contrary, suppose |w(z)| 6< 1. Then by Lemma 1, there exists a

point z0 ∈ U such that |w(z0)| = 1, z0w
′(z0) = kw(z0) for some k ≥ 1. Therefore,

(2.3) yields

(z0f
′ ∗ Sα)′(z0)− 1 =

(A−B)(1− β)γw(z0)(1 + T (z0))
1 + Bγw(z0)

,

and

Bγ(z0f
′ ∗ Sα)′(z0)− [B + (A−B)(1− β)]γ =

=
(B −A)(1− β)γ[1−Bγw(z0)T (z0)]

1 + Bγw(z0)

where T (z0) =
k

1 + Bγw(z0)
, and hence (2.2) implies that∣∣∣∣ 1 + T (z0)

1−Bγw(z0)T (z0)

∣∣∣∣ < 1.

This last inequality gives

(1−B2γ2)|T (z0)|2 < −2Re [(1 + Bγw(z0))T (z0)]. (2.5)
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Since the right side of (2.5) is equal to −2k and k ≥ 1, we conclude that (2.5) is

not possible. This contradiction thereby shows that |w(z)| < 1 for all z ∈ U , and

hence (2.4) immediately proves that f ∈ Pα(β, γ,A, B). The proof of the theorem is

completed.

Theorem 2. Pα(β, γ, A,B) ⊂ Rα(β, γ,A, B).

Proof. Let f ∈ Pα(β, γ, A,B). Then it follows that

1
z
(zf ′ ∗ Sα)(z) ≺ g(z),

where g(z) =
1 + [B + (A−B)(1− β)]γz

1 + Bγz
is convex univalent in U and hence h(z) =

zf ′(z) ∈ Rα(β, γ,A, B). Therefore, in view of (1.10), we have

1
z

(∫ z

0

h(t)
t

dt ∗ Sα

)
(z) =

∫ 1

0

(h ∗ Sα)(tz)
tz

dt ≺ g(z).

This implies that

f(z) =
∫ z

0

h(t)
t

dt ∈ Rα(β, γ,A, B),

which completes the proof of the theorem.

Corollary 1. If f(z) ∈ Pα(β, γ, A, B), then we have∣∣∣∣arg
1
z
(f ∗ Sα)(z)

∣∣∣∣ ≤ sin−1

(
(B −A)γ(1− β)|z|

1−Bγ2[B + (A−B)(1− β)]|z|2

)
.

The bound is sharp.

We next obtain a sufficient condition in terms of the modulus of the coeffi-

cients for a function to be in Pα(β, γ,A, B).

Theorem 3. Let the function f(z) defined by (1.1) satisfies the condition

∞∑
n=2

n(1 + Bγ)C(α, n)|an| ≤ (B −A)γ(1− β) (2.6)

for 0 ≤ α < 1, 0 ≤ β < 1, 0 < γ ≤ 1, and −1 ≤ A < B ≤ 1, 0 < B ≤ 1. Then f(z)

is in the class Pα(β, γ,A, B).

Proof. We use a method of Clunie and Keogh [5]. Assuming the inequality

(2.6), we have

|(f ∗ Sα)′(z)− 1| − γ|B(f ∗ Sα)′(z)− [B + (A−B)(1− β)]| =

=

∣∣∣∣∣
∞∑

n=2

nC(α, n)anzn−1

∣∣∣∣∣− γ

∣∣∣∣∣(B −A)(1− β) +
∞∑

n=2

BnC(α, n)anzn−1

∣∣∣∣∣ ≤
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≤
∞∑

n=2

nC(α, n)|an||z|n−1 − γ

{
(B −A)(1− β)−

∞∑
n=2

BnC(α, n)|an||z|n−1

}
≤

≤
∞∑

n=2

n(1 + Bγ)C(α, n)|an| − (B −A)γ(1− β) ≤ 0

for all z ∈ U . Consequently, by the maximum modulus theorem, it follows that

f(z) ∈ Pα(β, γ, A, B). The equality in (2.6) is attained for the functions of the form

fn(z) = z +
(B −A)γ(1− β)
n(1 + Bγ)C(α, n)

zn (n ≥ 2).

Example. The function f(z) = z +
∞∑

n=2

anzn given by

(f ∗ Sα)(z) = z +
∞∑

n=2

C(α, n)anzn =

= − [B + (A−B)(1− β)]
B

z +
(B −A)(1− β)

B2γ
ln(1−Bγz) (2.7)

belongs to Pα(β, γ, A, B) but
∞∑

n=2

n(1 + Bγ)C(α, n)
(B −A)γ(1− β)

|an| =
∞∑

n=2

n(1 + Bγ)C(α, n)
(B −A)γ(1− β)

(B −A)(1− β)
nC(α, n)

Bn−2γn−1 =

=
∞∑

n=2

(1 + Bγ)(Bγ)n−2 > 1

for each α, β, γ,A, B (0 ≤ α < 1, 0 ≤ β < 1, 0 < γ ≤ 1, −1 ≤ A < B ≤ 1, 0 < B ≤

1). This example shows that the converse of Theorem 3 may not be true.

Motivated by Theorem 3 and the above Example, we now consider a class

Hα(β, γ, A, B) of precisely those functions in A1 which are characterized by the con-

dition (2.6): that is, f(z) ∈ Hα(β, γ, A, B) if and only if f(z) satisfies (2.6) for some

α, β, γ,A, B (0 ≤ α < 1, 0 ≤ β < 1, 0 < γ ≤ 1, −1 ≤ A < B ≤ 1, 0 < B ≤ 1).

Clearly, Hα(β, γ, A,B) ⊂ Pα(β, γ, A, B). This containment is proper because f(z)

given by (2.7) belongs to Pα(β, γ,A, B) −Hα(β, γ,A, B). We next prove a theorem

about convolutions of functions in Hα(β, γ,A, B). But first we need the following

Lemma 2. If f(z) = z+
∞∑

n=2

anzn ∈ Hα(β, γ,A, B) and g(z) = z+
∞∑

n=2

bnzn ∈

A1 with |bn| ≤ 1 for every n, then (f ∗ g)(z) ∈ Hα(β, γ,A, B).

Proof. The result follows from (2.6) upon noting that
∞∑

n=2

n(1 + Bγ)C(α, n)
(B −A)γ(1− β)

|an||bn| ≤
∞∑

n=2

n(1 + Bγ)C(α, n)
(B −A)γ(1− β)

|an| ≤ 1.
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Remark. The condition |bn| ≤ 1 is best possible because if |bn| > 1 for some

n, then (
z +

(B −A)γ(1− β)
n(1 + Bγ)C(α, n)

zn

)
∗ g(z) 6∈ Hα(β, γ,A, B).

Theorem 4. If f, g ∈ Hα(β, γ, A,B) with

α ≤ 1 + Bγβ

1 + Bγ
(2.8)

then f ∗ g(z) ∈ Hα(β, γ,A, B).

Proof. According to Lemma 2, it suffices to show that the modulus of the

n-th coefficient, |bn|, is bounded above by 1. Note that

C(α, n) =

∞∏
k=2

(k − 2α)

(n− 1)!
≥ 2(1− α)

(n− 1)!

n∏
k=3

(k − 2) >
(B −A)(1− α)

Bn
.

Thus from (2.6) we have

|bn| ≤
(B −A)γ(1− β)
n(1 + Bγ)C(α, n)

<

<
(B −A)γ(1− β)

n(1 + Bγ)
Bn

(B −A)(1− α)
=

Bγ(1− β)
(1− α)(1 + Bγ)

. (2.9)

This last expression is bounded above by 1 if (2.8) holds and the proof is completed.

Remark. The condition (2.8) cannot be eliminated. The function

fn(z) = z +
(B −A)γ(1− β)
n(1 + Bγ)C(α, n)

zn = z + anzn (n ≥ 2)

is in Hα(β, γ,A, B) but fn ∗ fn(z) 6∈ Hα(β, γ,A, B) for α close enough to 1 to assure

that an > 1.

With the aid of Theorem 3, we have

Theorem 5. Let the function f(z) defined by (1.1) satisfies the condition

∞∑
n=2

n2(1 + Bγ)C(α, n)|an| ≤ (B −A)γ(1− β) (2.10)

for 0 ≤ α < 1, 0 ≤ β < 1, 0 < γ ≤ 1 and −1 ≤ A < B ≤ 1, 0 < B ≤ 1. Then f(z)

is in the class Qα(β, γ,A, B).
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Proof. We note that f(z) ∈ Qα(β, γ, A, B) if and only if zf ′(z) ∈

Pα(β, γ,A, B). Since zf ′(z) = z +
∞∑

n=2

nanzn, we may replace an by nan in The-

orem 3. Further, the equality in (2.10) holds for the functions of the form

fn(z) = z +
(B −A)γ(1− β)

n2(1 + Bγ)C(α, n)
zn (n ≥ 2). (2.11)

Following the method of Theorem 3, we obtain a sufficient condition in terms

of the modulus of the coefficients for a function to be in Rα(β, γ, A,B).

Theorem 6. Let the function f(z) defined by (1.1) satisfies the condition

∞∑
n=2

(1 + Bγ)C(α, n)|an| ≤ (B −A)γ(1− β) (2.12)

for 0 ≤ α < 1, 0 ≤ β < 1, 0 < γ ≤ 1 and −1 ≤ A < B ≤ 1, 0 < B ≤ 1. Then f(z)

is in the class Rα(β, γ,A, B). The equality in (2.12) is attained for the functions of

the form

fn(z) = z +
(B −A)γ(1− β)
(1 + Bγ)C(α, n)

zn (n ≥ 2). (2.13)

Remark. The proof of Theorem 6 is omitted. Furthermore, analogous to

subclass Hα(β, γ, A,B) of Pα(β, γ,A, B) and Theorem 4, it is a simple exercise to

introduce and study corresponding subclasses of Qα(β, γ,A, B) and Rα(β, γ,A, B).

The next theorem gives the coefficient bounds for the functions in the class

Pα(β, γ,A, B).

Theorem 7. Let the function f(z) defined by (1.1) be in the class

Pα(β, γ,A, B). Then we have

|an| ≤
(B −A)γ(1− β)

nC(α, n)
(n ≥ 2). (2.14)

These bounds are sharp.

Proof. Let f(z) ∈ Pα(β, γ, A,B). Then it follows from the definition of

subordination

(f ∗ Sα)′(z) =
1 + [B + (A−B)(1− β)]γw(z)

1 + Bγw(z)
, (2.15)

66



ON CERTAIN CLASSES OF FUNCTIONS DEFINED BY CONVOLUTIONS

where w(z) =
∞∑

k=1

tkzk is analytic and satisfies the condition |w(z)| < 1 for all z in U .

On simplification, (2.15) gives

γ

[
(B −A)(1− β) +

∞∑
n=2

BnC(α, n)anzn−1

][ ∞∑
n=1

tnzn

]
=

= −
∞∑

n=2

nC(α, n)anzn−1. (2.16)

Equating corresponding coefficients on both sides of (2.16) we find that the coefficient

an on the right side depends only on the coefficients a2, a3, . . . , an−1 on the left side.

Therefore, since |w(z)| < 1, (2.16) gives

γ

∣∣∣∣∣(B −A)(1− β) +
n−1∑
k=2

BkC(α, k)akzk−1

∣∣∣∣∣ ≥
∣∣∣∣∣

n∑
k=2

kC(α, k)akzk−1 −
∞∑

k=n+1

bkzk−1

∣∣∣∣∣
for all n ≥ 2. Writting z = reiθ, r < 1, squaring both sides of the preceeding

inequality and then integrating, we obtain

γ2

[
(B −A)2(1− β)2 +

n−1∑
k=2

B2k2(C(α, k))2|ak|2r2(k−1)

]
≥

≥
n∑

k=2

k2(C(α, k))2|ak|2r2(k−1) +
∞∑

k=n+1

|bk|2r2(k−1).

Taking the limit as r → 1−, we have

γ2

[
(B −A)2(1− β)2 +

n−1∑
k=2

B2k2(C(α, k))2|ak|2
]
≥

≥ n2(C(α, n))2|an|2 +
n−1∑
k=2

k2(C(α, k))2|ak|2. (2.17)

Since 0 < γ ≤ 1 and 0 < B ≤ 1, (2.17) immediately yields

(B −A)2γ2(1− β)2 ≥ n2(C(α, n))2|an|2

which proves (2.14). The bounds in (2.14) are sharp for the functions f(z) defined by

(f ∗ Sα)(z) =
∫ z

0

1− [B + (A−B)(1− β)]γtn−1

1−Bγtn−1
dt (2.18)

for n ≥ 2 and for all z ∈ U .
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Corollary 2. Let the function f(z) defined by (1.1) be in the class

Qα(β, γ,A, B). Then we have

|an| ≤
(B −A)γ(1− β)

n2C(α, n)
(n ≥ 2). (2.19)

These bounds are sharp.

Proof. We need only replace an by nan in Theorem 7.

Remark. We can show that the inclusion Qα(β, γ,A, B) ⊂ Pα(β, γ,A, B)

and Hα(β, γ, A,B) ⊂ Pα(β, γ,A, B) are both proper. In particular, for f(z) given by

(2.18) it follows that

f(z) = z +
(B −A)γ(1− β)

nC(α, n)
zn + · · · = z + anzn + . . .

is in Pα(β, γ,A, B) but f 6∈ Qα(β, γ, A, B) and f 6∈ Hα(β, γ,A, B) because an exceeds

the coefficients bounds of the above Corollary 2 and (2.6).

By using the arguments similar to Theorem 7, we obtain the following

Theorem 8. Let the function f(z) defined by (1.1) be in the class

Rα(β, γ, A, B). Then we have

|an| ≤
(B −A)γ(1− β)

C(α, n)
(n ≥ 2). (2.20)

These bounds are sharp for the function f(z) given by

(f ∗ Sα)(z) =
(

1− [B + (A−B)(1− β)]γzn−1

1−Bγzn−1

)
z. (2.21)

3. Subclasses of Pα(β, γ,A, B) and Qα(β, γ,A, B)

In view of Theorem 3, we introduce the following classes. Let

Pα(β, γ,A, B; k) be the subclasses of Pα(β, γ,A, B) consisting of functions of the form

f(z) = z +
k∑

i=1

Bipiz
i +

∞∑
n=k+1

anzn, (3.1)

where 0 ≤ pi < 1, 0 ≤
k∑

i=2

pi < 1, and

Bi =
(B −A)γ(1− β)
i(1 + Bγ)C(α, i)

(i = 2, 3, . . . , k). (3.2)

68



ON CERTAIN CLASSES OF FUNCTIONS DEFINED BY CONVOLUTIONS

Further, let Qα(β, γ,A, B; k) be the subclass of Qα(β, γ,A, B) consisting of functions

of the form

f(z) = z +
k∑

i=2

Eipiz
i +

∞∑
n=k+1

anzn, (3.3)

where 0 ≤ pi < 1; 0 ≤
k∑

i=2

pi < 1, and

Ei =
(B −A)γ(1− β)
i2(1 + Bγ)C(α, i)

(i = 2, 3, . . . , k). (3.4)

Theorem 9. Let the function f(z) defined by (3.1) satisfies the condition

∞∑
n=k+1

n(1 + Bγ)C(α, n)|an| ≤ (B −A)γ(1− β)

(
1−

k∑
i=2

pi

)
(3.5)

for 0 ≤ α < 1, 0 ≤ β < 1, 0 < γ ≤ 1, and −1 ≤ A < B ≤ 1, 0 < B ≤ 1. Then f(z)

is in the class Pα(β, γ,A, B; k).

Proof. By virtue of Theorem 3, we note that

f(z) = z +
k∑

i=2

Bipiz
i +

∞∑
n=k+1

anzn

belongs to the class Pα(β, γ,A, B; k) if

k∑
i=2

i(1 + Bγ)C(α, i)Bipi +
∞∑

n=k+1

n(1 + Bγ)C(α, n)|an| ≤ (B −A)γ(1− β), (3.6)

or if
k∑

i=2

(B −A)γ(1− β)pi +
∞∑

n=k+1

n(1 + Bγ)C(α, n)|an| ≤ (B −A)γ(1− β). (3.7)

This is equivalent to the condition (3.5). Further, by taking the function given by

f(z) = z +
k∑

i=2

Bipiz
i +

(B −A)γ(1− β)
n(1 + Bγ)C(α, n)

zn (n ≥ k + 1), (3.8)

we can show that the result (3.5) is sharp.

Putting pi = 0 (i = 2, 3, . . . , k) in Theorem 9, we have

Corollary 3. Let the function f(z) defined by (3.1) with pi = 0 (i =

2, 3, . . . , k). If f satisfies
∞∑

n=k+1

n(1 + Bγ)C(α, n)|an| ≤ (B −A)γ(1− β) (3.9)
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for 0 ≤ α < 1, 0 ≤ β < 1, 0 < γ ≤ 1, and −1 ≤ A < B ≤ 1, 0 < B ≤ 1, then

f(z) ∈ Pα(β, γ, A, B; k).

Similarly, we obtain

Theorem 10. Let the function f(z) defined by (3.2) satisfies the condition

∞∑
n=k+1

n2(1 + Bγ)C(α, n)|an| ≤ (B −A)γ(1− β)

(
1−

k∑
i=2

pi

)
(3.10)

for 0 ≤ α < 1, 0 ≤ β < 1, 0 < γ ≤ 1, and −1 ≤ A < B ≤ 1, 0 < B ≤ 1. Then f(z)

is in the class Qα(β, γ,A, B; k).

Corollary 4. Let the function f(z) be defined by (3.2) with pi = 0 (i =

2, 3, . . . , k). If f(z) satisfies

∞∑
n=k+1

n2(1 + Bγ)C(α, n)|an| ≤ (B −A)γ(1− β) (3.11)

for 0 ≤ α < 1, 0 ≤ β < 1, 0 < γ ≤ 1, and −1 ≤ A < B ≤ 1, 0 < B ≤ 1, then

f(z) ∈ Qα(β, γ, A, B; k).

Remark. Putting A = −1 and B = 1 in the above theorems we get the

results obtained by Ahuja and Owa [2].
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TÜNDE JAKAB

Dedicated to Professor Petru T. Mocanu on his 70th birthday

1.Introduction

We denote the class of starlike functions of order α by S∗(α), and the

class of convex functions of order α by K(α). The function

sα(z) =
z

(1− z)2(1−α)
= z +

∞∑
n=2

C(α, n)zn

is the well-known extremal function for S∗(α), where

C(α, n) =

n∏
k=2

(k − 2α)

(n− 1)!
(n ≥ 2).

Let (f ∗ g)(z) denote the Hadamard product of two functions f(z) and g(z), that

is, if f(z) and g(z) are given by

f(z) = z +
∞∑

n=2

anz
n, and g(z) = z +

∞∑
n=2

bnz
n,

then

(f ∗ g)(z) = z +
∞∑

n=2

anbnz
n.

Let T denote the class of functions of the form

f(z) = z −
∞∑

n=2

anz
n (an ≥ 0), (1)

which are analytic in the unit disc U = {z ∈ C : |z| < 1}.

If f(z) is given by (1) and

g(z) = z −
∞∑

n=2

bnz
n (bn ≥ 0),

then the Hadamard product of f and g is defined by

(f ∗ g)(z) = z −
∞∑

n=2

anbnz
n.
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Let R[α, β] be a subclass of T , consisting functions which satisfies

(f ∗ sα)(z) ∈ S∗(β) for 0 ≤ α < 1 and 0 ≤ β < 1. Futher let C[α, β]

be a subclass of T of functions satisfying zf ′(z) ∈ R[α, β] for 0 ≤ α < 1 and 0 ≤

β < 1. R[α, β] is called the class of functions α-prestarlike of order β with negative

coefficients.

Lemma 1.[7] Let the function f(z) be defined by (1). Then f(z) is in the

class R[α, β] if and only if

∞∑
n=2

(n− β)C(α, n)an ≤ 1− β.

Lemma 2.[3] Let the function f(z) be defined by (1). Then f(z) is in the class

C[α, β] if and only if
∞∑

n=2

n(n− β)C(α, n)an ≤ 1− β.

Since f(z) defined by (1) is univalent in the unit disc if
∞∑

n=2
nan ≤ 1; we can see

that f ∈ R[α, β] is univalent if 0 ≤ α ≤ 1
2 ; and a function f(z) ∈ C[α, β] is univalent

in the unit disc if 0 ≤ α ≤ 3−β
2(2−β) .

Lemma 3.[2, Th.8] Let f(z) a function defined by (1) be in the class

C[α, β]. Then f belongs to the class R[α, γ], where

γ =
2

3− β
.

2.Convolutions

Theorem 1. If a function f(z) defined by (1) belongs to the class R[α, β]

with 0 ≤ β < 1 and 0 ≤ α ≤ 3−β
2(2−β) , then (f ∗ f ∗ ... ∗ f︸ ︷︷ ︸

m

)(z), m ∈ N= {1, 2, ...} belongs

to the class R[α, β], too.

Proof. Using Lemma 1 we have
∞∑

n=2

(n− β)C(α, n)am
n ≤

[
1− β

2(1− α)(2− β)

]m−1

(1− β) ≤ 1− β

with 0 ≤ β < 1 and 0 ≤ α ≤ 3−β
2(2−β) .

Theorem 2. If a function f(z) defined by (1) belongs to the class C[α, β]

cu 0 ≤ β < 1 and 0 ≤ α ≤ 7−3β
4(2−β) , then (f ∗ f ∗ ... ∗ f︸ ︷︷ ︸

m

)(z) ∈ C[α, β],

(m ∈ N).
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Proof. Using Lemma 2 we have

∞∑
n=2

n(n− β)C(α, n)am
n ≤

[
1− β

4(1− α)(2− β)

]m−1

(1− β) ≤ 1− β

with 0 ≤ β < 1 and 0 ≤ α ≤ 7−3β
4(2−β) .

Theorem 3. Let a function f(z) defined by (1) be in the class R[α, β]

with 0 ≤ β < 1 and 0 ≤ α ≤ 3−β
2(2−β) ; and let the function g(z) defined by

g(z) = z −
∞∑

n=2

bnz
n (bn ≥ 0)

be in the class C[α, β] with 0 ≤ β < 1 and 0 ≤ α ≤ 3−β
2(2−β) . Then we have

(f ∗ f ∗ ... ∗ f︸ ︷︷ ︸
p

∗ g ∗ g ∗ ... ∗ g︸ ︷︷ ︸
q

)(z) ∈ C[α, β], p, q ∈ N.

Proof. Applying Lemma 1 and Lemma 2 we have

∞∑
n=2

n(n− β)C(α, n)ap
nb

q
n ≤

≤
[

1− β

2(1− α)(2− β)

]p [
1− β

4(1− α)(2− β)

]q−1

(1− β) ≤ 1− β

if 0 ≤ β < 1, 0 ≤ α ≤ 3−β
2(2−β) and 0 ≤ α ≤ 7−3β

4(2−β) .

But we have 3−β
2(2−β) <

7−3β
4(2−β) , and results 0 ≤ α ≤ 3−β

2(2−β) .

We need the following notation

fi(z) = z −
∞∑

n=2

an,iz
n (an,i ≥ 0, i = 1, 2) (2)

and the following results from [1]:

Theorem 4.[1] Let the function f1(z) defined by (2) be in the class R[α, β]

with 0 ≤ α ≤ 1
2 and 0 ≤ β < 1 and let the function f2(z) defined by (2) be in the class

R[α, τ ] with 0 ≤ α ≤ 1
2 and 0 ≤ τ < 1. Then (f1 ∗ f2)(z) ∈ R[α, ψ], where

ψ = 1− (1− β)(1− τ)
2(1− α)(2− β)(2− τ)− (1− β)(1− τ)

.

The result is sharp for the functions

f1(z) = z − 1− β

2(1− α)(2− β)
z2 and f2(z) = z − 1− τ

2(1− α)(2− τ)
z2.
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Theorem 5.[1] Let the function f1(z) defined by (2) be in the class C[α, β] with

0 ≤ α ≤ 1
2 and 0 ≤ β < 1 and let the function f2(z) defined by (2) be in the class

C[α, τ ] with 0 ≤ α ≤ 1
2 and 0 ≤ τ < 1. Then (f1 ∗ f2)(z) ∈ C[α, ψ], where

ψ = 1− (1− β)(1− τ)
4(1− α)(2− β)(2− τ)− (1− β)(1− τ)

.

The result is sharp for the functions

f1(z) = z − 1− β

4(1− α)(2− β)
z2 and f2(z) = z − 1− τ

4(1− α)(2− τ)
z2.

The following two theorems are generalizations of the Theorem 4 and Theorem

5.

Theorem 6. Let the functions fi(z) (i = 1, 2, ...,m) defined by (2)

be in the classes R[α, βi] with 0 ≤ α ≤ 1
2 and 0 ≤ βi < 1 for all i = 1, 2, ...,m.

Then(f1 ∗ f2 ∗ ... ∗ fm)(z) belongs to the class R[α, ψ], where

ψ = 1−

m∏
i=1

(1− βi)

2m−1(1− α)m−1
m∏

i=1

(2− βi)−
m∏

i=1

(1− βi)
.

The result is sharp for the extremal functions defined by

fi(z) = z − 1− βi

2(1− α)(2− βi)
z2 (i = 1, 2, ...m).

Proof. We apply the method of the mathematical induction.

For m = 2 and β1 = β, β2 = τ , our theorem is reduced to Theorem 4, which

is true. Suppose that

fi(z) ∈ R[α, βi] (i = 1, 2, ..., k; k ∈ N, k ≥ 2) ⇒

⇒ (f1 ∗ f2 ∗ ... ∗ fk)(z) ∈ R[α, ψ′],

where

ψ′ = 1−

k∏
i=1

(1− βi)

2k−1(1− α)k−1
k∏

i=1

(2− βi)−
k∏

i=1

(1− βi)
.

If fk+1 ∈ R[α, βk+1], then from Theorem 4, we have

((f1 ∗ f2 ∗ ... ∗ fk) ∗ fk+1)(z) ∈ R[α, ψ],
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where

ψ = 1− (1− ψ′)(1− βk+1)
2(1− α)(2− ψ′)(2− βk+1)− (1− ψ′)(1− βk+1)

,

which is equivalent to

ψ = 1−

k+1∏
i=1

(1− βi)

2k(1− α)k
k+1∏
i=1

(2− βi)−
k+1∏
i=1

(1− βi)
.

This means that if the theorem is true for m = k, then it is true for m = k + 1, so

that it is true for all m ≥ 2.

Theorem 7. Let the functions fi(z) (i = 1, 2, ...,m) defined by (2)

be in the classes C[α, βi] with 0 ≤ α ≤ 1
2 and 0 ≤ βi < 1 for all i = 1, 2, ...,m.

Then(f1 ∗ f2 ∗ ... ∗ fm)(z) belongs to the class C[α, ψ], where

ψ = 1−

m∏
i=1

(1− βi)

4m−1(1− α)m−1
m∏

i=1

(2− βi)−
m∏

i=1

(1− βi)
.

The result is sharp for the functions

fi(z) = z − 1− βi

4(1− α)(2− βi)
z2 (i = 1, 2, ...m).

Proof. For m = 2 and β1 = β, β2 = τ , our theorem is reduced to Theorem 5,

which is true.

Suppose that

fi(z) ∈ C[α, βi] (i = 1, 2, ..., k; k ∈ N, k ≥ 2) ⇒

⇒ (f1 ∗ f2 ∗ ... ∗ fk)(z) ∈ C[α, ψ′],

where

ψ′ = 1−

k∏
i=1

(1− βi)

4k−1(1− α)k−1
k∏

i=1

(2− βi)−
k∏

i=1

(1− βi)
.

If fk+1 ∈ C[α, βk+1], then from Theorem 5, we have

((f1 ∗ f2 ∗ ... ∗ fk) ∗ fk+1)(z) ∈ C[α, ψ],

where

ψ = 1− (1− ψ′)(1− βk+1)
4(1− α)(2− ψ′)(2− βk+1)− (1− ψ′)(1− βk+1)

,
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TÜNDE JAKAB

which is equivalent to

ψ = 1−

k+1∏
i=1

(1− βi)

4k(1− α)k
k+1∏
i=1

(2− βi)−
k+1∏
i=1

(1− βi)
,

which means that the theorem is true for all m ≥ 2.

Theorem 8. If f(z) ∈ C[α, βi] (i = 1, 2, ...,m) with0 ≤ α ≤ 1
2 and

0 ≤ βi < 1 for all i = 1, 2, ...,m, then(f1 ∗ f2 ∗ ... ∗ fm)(z) ∈ R[α, τ ], where

τ = 1−

m∏
i=1

(1− βi)

2 · 4m−1(1− α)m−1
m∏

i=1

(2− βi)−
m∏

i=1

(1− βi)
.

The result is sharp.

From Theorem 6 (or Theorem 7) and Lemma 3 we obtain the result.

Theorem 9. Let the functions fi(z) (i = 1, 2) defined by (2) be in the

class C[α, β] with 0 ≤ α ≤ 1
2 and 0 ≤ β < 1. Then the function h(z) defined by

h(z) = z −
∞∑

n=2

[
a2

n,1 + a2
n,2

]
zn

belongs to the class R[α, γ], where

γ = 1− (1− β)2

4(1− α)(2− β)2 − (1− β)2
.

The result is sharp.

Using Theorem 9 (or Theorem 10) from [1] and Lemma 3 we obtain

immediately the result.
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume XLVI, Number 2, June 2001

NORM ESTIMATES, COEFFICIENT ESTIMATES AND SOME
PROPERTIES OF SPIRAL-LIKE FUNCTIONS

YÛSUKE OKUYAMA

Dedicated to Professor Petru T. Mocanu on his 70th birthday

Abstract. This is a survey of the author’s talk at the VIIIth Romanian-

Finnish Seminar in Iassy, Romania, in 23-27 August 1999. We shall state

the sharp estimates of the norms of pre-Schwarzian and Schwarzian deriva-

tives of spiral-like functions and about the optimal growth estimates of

coefficients of them. We shall also remark that some spiral-like function

f(z) = z + a2z
2 + · · · is normalized and univalent on the unit disk D but

satisfies a2f(z) + 1 = 0 for some z ∈ D.

1. Introduction

We consider an analytic function f on the unit disk D normalized so that

f(0) = f ′(0) − 1 = 0. For a constant β ∈ (−π/2, π/2), such a function f is called

β-spiral-like if f is univalent on D and for any z ∈ D, the β-logarithmic spiral

{f(z) exp(−eiβt); t ≥ 0} is contained in f(D). It is equivalent to the analytic condi-

tion that <(e−iβzf ′(z)/f(z)) > 0 in D. We denote by SP (β) the set of β-spiral-like

functions. We call fβ(z) := z(1 − z)−2eiβ cos β ∈ SP (β) the β-spiral Koebe function.

Note that SP (0) is the set of starlike functions and that f0(z) = z(1− z)−2 is the

Koebe function. The β-spiral Koebe function conformally maps the unit disk onto

the complement of the β-logarithmic spiral {fβ(−e−2iβ) exp(−eiβt); t ≤ 0} in C. For

the known results about these classes of the functions, see, for example, [1].
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Key words and phrases. spiral-like function, pre-Schwarzian derivative, Schwarzian derivative, growth

estimate, strongly normalized univalent function.
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2. Norm estimates

For a locally univalent holomorphic function f , we define

Tf =
f ′′

f ′
and Sf = (Tf )′ − 1

2
(Tf )2,

which are said to be the pre-Schwarzian derivative (or nonlinearity) and the

Schwarzian derivative of f , respectively. For a locally univalent function f in D,

we define the norms of Tf and Sf by

‖Tf‖1 = sup
z∈D

(1− |z|2)|Tf (z)| and ‖Sf‖2 = sup
z∈D

(1− |z|2)2|Sf (z)|,

respectively.

As well as ‖Sf‖2, the norm ‖Tf‖1 has a significant meaning in the theory of

Teichmüller spaces. For example, see [8], [2] and [13].

We shall give the best possible estimate of the norms of pre-Schwarzian deriva-

tives for the class SP (β).

Main Theorem 1 ([9]). For any f ∈ SP (β), where β ∈ (−π/2, π/2), we

have the following.

I) In the case |β| ≤ π/3, we have

‖Tf‖1 ≤ ‖Tfβ
‖1 = 2|2 + e2iβ |. (1)

II) In the case |β| > π/3, we have ‖Tf‖1 ≤ ‖Tfβ
‖1, where

‖Tfβ
‖1 = max

0≤m≤ 4
3 sin |β|

2m cos β

(
1 +

√
m2 + 4− 4m sin |β|
m2 + 1− 2m sin |β|

)
and (2)

2|2 + e2iβ | < ‖Tfβ
‖1 < 2

(
1 +

4
3

sin 2|β|
)

. (3)

In particular, ‖Tfβ
‖1 → 2 as |β| → π/2.

In both cases, the equality ‖Tf‖1 = ‖Tfβ
‖1 holds if and only if f is a rotation of the

β-spiral Koebe function, i.e., f(z) = (1/ε)fβ(εz) for some |ε| = 1.

The proof of Main Theorem 1 is in [9]. From the proof, if |β| ≤ π/3, the

function (1− |z|2)|Tfβ
(z)| does not attain its supremum in D. However if |β| > π/3,

it does since

max
∂D3z0

lim sup
D3z→z0

(1− |z|2)|Tfβ
(z)| = 2|2 + e2iβ | < ‖Tfβ

‖1.
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This phenomenon of phase transition seems to be quite interesting.

Remark. Clearly, the β-spiral Koebe function fβ converges to idD (which

is bounded) locally uniformly on D as |β| → π/2 but does not converge to it with

respect to the norm ‖ ·‖1 since lim|β|→π/2 ‖Tfβ
‖1 = 2. On the other hand, it is known

that a normalized analytic function f is bounded if ‖Tf‖1 < 2. In fact, the value 2 is

the least one of the norms of unbounded normalized analytic functions.

We would also like to mention the related works about norm estimates of

pre-Schwarzian derivatives in other classes by Shinji Yamashita [11] and Toshiyuki

Sugawa [10].

Theorem 2.1. Let 0 ≤ α < 1 and f be a normalized analytic function.

If f is starlike of order α, i.e., <(zf ′(z)/f(z)) > α, then ‖Tf‖1 ≤ 6− 4α.

If f is convex of order α, i.e., <(1+zf ′′(z)/f ′(z)) > α, then ‖Tf‖1 ≤ 4(1−α).

If f is strongly starlike of order α, i.e., arg(zf ′(z)/f(z)) < πα/2, then

‖Tf‖1 ≤ M(α)+2α, where M(α) is a specified constant depending only on α satisfying

2α < M(α) < 2α(1 + α).

All of the bounds are sharp.

On the other hand, we also obtain the estimate of the norms of Schwarzian

derivatives of β-spiral-like functions.

Main Theorem 2 ([9]). Assume |β| < π/2. For any f ∈ SP (β), ‖Sf‖2 ≤

‖Sfβ
‖2 = 6.

In the rest of this article, we shall state two remarks about spiral-like func-

tions.

3. Order estimates of the coefficients

Knowing the norm ‖Tf‖1 enables us to estimate the growth of coefficients of

f . For example, the following holds.

Theorem 3.1 (cf.[7]). Let (3/2) < λ ≤ 3. For a normalized analytic function

f(z) = z + a2z
2 + a3z

3 + · · · such that ‖Tf‖1 ≤ 2λ, it holds that an = O(nλ−2) as

n → +∞. This order estimate is best possible.
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However the sharp estimate of coefficients of f ∈ SP (β) has been already

obtained by Zamorski [12] in 1960. We would like to remark that we can derive the

sharp growth estimate of coefficients of f ∈ SP (β) from this.

Theorem 3.2 (Zamorski). If f(z) = z + a2z
2 + a3z

3 + · · · is in SP (β) and

|β| < π/2, then

|an| ≤
n−1∏
k=1

∣∣∣∣1 +
e2iβ

k

∣∣∣∣ (4)

for n ≥ 2. The equality in (4) holds for some n ≥ 2 if and only if f is a rotation of

the β-spiral Koebe function fβ.

Remark. This is also shown in terms of generalized spiral-like functions by

C. Burniak, J. Stankiewicz and Z. Stankiewicz [4](1980).

Corollary 3.1. Let |β| < π/2 and f(z) = z +a2z
2 +a3z

3 + · · · be a β-spiral-

like function. Then it holds that

an = O(ncos 2β) (n → +∞). (5)

This order estimate is sharp.

Remark. In the case |β| < π/4, this is shown by Basgöze and Keogh in

[3](1970).

4. Strongly normalized univalent functions are not always holomorphic.

The following is known.

Theorem 4.1. For a holomorphic function φ on a simply connected domain

A, there exists a locally univalent meromorphic function f on A such that

Sf = φ.

The solution is unique up to postcomposition of an arbitrary Möbius transformation.

We assume A = D. Nehari showed that if ‖φ‖2 = supz∈D |φ(z)|(1−|z|2)2 ≤ 2,

then f is univalent and meromorphic on D. It is well-known that if f is strongly

normalized, i.e., f(0) = f ′(0)− 1 = f ′′(0) = 0, then f is holomorphic on D. Since for

a normalized analytic function f(z) = z + a2z
2 + · · · , g := f/(a2f + 1) is strongly

normalized and ‖Sf‖2 = ‖Sg‖2, we have the following.
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Proposition 4.1 ([6], [5] Corollary 2). If a normalized analytic function

f(z) = z + a2z
2 + · · · satisfies ‖Sf‖2 ≤ 2, then f is univalent and a2f + 1 6= 0 on D.

In [5] Chuaqui and Osgood remark that a strongly normalized univalent func-

tion f is not always holomorphic if ‖Sf‖2 > 2. Spiral-like functions are examples for

this fact.

Theorem 4.2. If |β| is sufficiently close to π/2, the β-spiral-Koebe function

fβ(z) = z + a2z
2 + · · · satisfies a2fβ(z) + 1 = 0 for some z ∈ D.
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ON THE UNIVALENCE OF CONVEX FUNCTIONS OF COMPLEX
ORDER

HORIANA OVESEA, IRINEL RADOMIR

Dedicated to Professor Petru T. Mocanu on his 70th birthday

Abstract. In this note we study the univalence of the functions f who

belong to the class of convex functions of complex order introduced by

Nasr and Aouf [2]. The results obtained improve the results from paper

[3].

1. Introduction

Let A be the class of functions f analytic in the unit disk U = {z ∈ C : |z| <

1} and such that f(0) = 0, f ′(0) = 1.

Let S denote the class of functions f ∈ A, f univalent in U .

Nasr and Aouf defined the class of functions f ∈ A, f ′(z) 6= 0 in U , for which

Re[1 + zf ′′(z)/(αf ′(z))] > 0, where α ∈ C. For a fixed complex number α,

α 6= 0 , let us denote this class by N(α),

N(α) =
{

f ∈ A : Re

(
1 +

1
α

zf ′′(z)
f ′(z)

)
> 0, f ′(z) 6= 0, (∀)z ∈ U

}
(1)

Theorem 1.1 ([3]). Let α be a complex number, α 6= 0 and let f ∈ N(α). If

α ∈ D, where

D = D1 ∪D2 ∪ [−1/2, −1/4] ∪ [1/4, 3/2] and (2)

D1 = {α ∈ C : |α| ≤ 1/4}

D2 = {α ∈ C : |α− 1/2| ≤ 1/2 and π/3 ≤ | arg α| ≤ π/2},

then the function f is univalent in U .
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2. Preliminaries

Theorem 2.1 ([4]). Let f ∈ A. Let α, β, c be complex numbers, Reβ >

0, Re(2α + β) > 0, Reα
β > −1/2, |c(α + β) + α| + |α| ≤ |α + β|. If there exists an

analytic function g, g ∈ A, such that∣∣∣∣(1 + c)
f ′(z)
g′(z)

− 1
∣∣∣∣ < 1, (∀)z ∈ U,

∣∣∣∣[(1 + c)
f ′(z)
g′(z)

− 1
]
|z|2(α+β) +

1− |z|2(α+β)

α + β

(
zg′′(z)
g′(z)

− α

)∣∣∣∣ ≤ 1

for all z ∈ U \ {0}, then the function

F (z) =
(

β

∫ z

0

uβ−1f ′(u)du

)1/β

is analytic and univalent in U .

The results obtained are proved by using Theorem 2.1 in the particular case

f ≡ g and α = 1− β. For this choise, from Theorem 2.1 we get the following

Corollary 2.1. Let f ∈ A and let β, c be complex numbers. If |β − 1| < 1,

|c| < 1, |c + 1− β|+ |β − 1| ≤ 1 and∣∣∣∣c|z|2 + (1− |z|2)
(

zf ′′(z)
f ′(z)

+ β − 1
)∣∣∣∣ ≤ 1, (∀)z ∈ U, (3)

then the function

F (z) =
(

β

∫ z

0

uβ−1f ′(u)du

)1/β

(4)

is analytic and univalent in U .

Theorem 2.2 ([1]). If g is a starlike function in U and −1/2 ≤ α ≤ 3/2,

then the function

G(z) =
∫ z

0

(
g(u)
u

)α

du

is a close-to-convex function in U .

Lemma 2.1. If g is a starlike function in U and a is a fixed point from the

unit disk U , then the function

h(z) =
a · z

(a + z)(1 + az)g(a)
· g

(
a + z

1 + az

)
(5)

is a starlike function in U .
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3. Main results

Theorem 3.1. Let α, β be complex numbers, α 6= 0, |β − 1| < 1 and let

f ∈ N(α). If

|α| < 1− |β − 1|
2

, (6)

then it exists an univalent function F in U , such that

f(z) =
∫ z

0

(
F (u)

u

)β−1

F ′(u)du , z ∈ U. (7)

Proof. Let us consider the function

g(z) = z · (f ′(z))1/α
, α 6= 0.

We have
zg′(z)
g(z)

= 1 +
1
α

zf ′′(z)
f ′(z)

(8)

Because f ∈ N(α) it follows that Re[zg′(z)/g(z)] > 0 in U and hence g is a starlike

function in U . Let h be the function defined by (5), h(z) = z + a2z
2 + . . . . We obtain

a2 =
h′′(0)

2
= (1− |a|2)g′(a)

g(a)
− 1 + |a|2

a

and then
zg′(z)
g(z)

=
1 + a2z + |z|2

1− |z|2
(9)

The relations (8) and (9) lead to

zf ′′(z)
f ′(z)

= α

(
zg′(z)
g(z)

− 1
)

= α
a2z + 2|z|2

1− |z|2
(10)

Taking into account (10) it results

c|z|2 + (1− |z|2)
(

zf ′′(z)
f ′(z)

+ β − 1
)

= (11)

= (c + 2α + 1− β)|z|2 + αa2z + β − 1 .

If c = β − 1− 2α, from (6) it follows that |c| < 1 and also

|c + 1− β|+ |β − 1| = |2α|+ |β − 1| < 1 .

Since h is a starlike function, then |a2| ≤ 2 and in view of (6) , the relation (11)

becomes ∣∣∣∣ c|z|2 + (1− |z|2)
(

zf ′′(z)
f ′(z)

+ β − 1
)∣∣∣∣ =
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= |αa2z + β − 1| ≤ 2|α|+ |β − 1| < 1 .

From Corollary 2.1 we conclude that the function

F (z) =
(

β

∫ z

0

uβ−1f ′(u)du

)1/β

is analytic and univalent in U .

We have F β−1(z)F ′(z) = zβ−1f ′(z) and therefore

f ′(z) =
(

F (z)
z

)β−1

F ′(z).

It follows that the function f is given by (7), where F is analytic and univalent in U .

If in Theorem 3.1 we take β = 1, then we have f(z) = F (z) and we get the

following result

Corollary 3.1. Let α be a complex number, α 6= 0 and let f ∈ N(α).

If |α| < 1/2, then the function f is univalent in U .

Theorem 3.2. Let α be a complex number , α 6= 0 and let f ∈ N(α). If

α ∈ D, where

D = D1 ∪ [1/2, 3/2] ∪ {−1/2} , (12)

D1 = {α ∈ C : |α| < 1/2} ,

then the function f is univalent in U .

If α is a real number, α 6∈ D, then the function

f(z) =
∫ z

0

(1− u)−2αdu (13)

belongs to the class N(α) but it is not univalent in U .

Proof. If α ∈ D1, from Corollary 3.1 it follows that f is an univalent function.

Let α be a real number, α ∈ [−1/2, 3/2]\{0}. In the same manner as in Theorem 3.1

we consider the function g(z) = z(f ′(z))1/α. The function g being a starlike function,

from Theorem 2.2 it follows that the function

G(z) =
∫ z

0

(
g(u)
u

)α

du =
∫ z

0

f ′(u)du = f(z)

is a close-to-convex function. For the function f defined by (13) a short computation

gives

1 +
1
α

zf ′′(z)
f ′(z)

=
1 + z

1− z
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For z ∈ U we have Re(1 + z)/(1− z) > 0 and hence f ∈ N(α).

For β ∈ R, β 6= 0, we know that the function h(z) = (1− z)β is univalent in U if and

only if β ∈ [−2, 2]. From (13) we get

f(z) =
1

2α− 1
[

(1− z)−2α+1 − 1
]

, α 6= 1/2

and then the function f is not univalent if α < −1/2 or α > 3/2.
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Abstract. A basic result in the theory of univalent functions is well-known

inequality
∣∣−2

∣∣z2
∣∣ +

(
1− |z|2

)
zf ′′ (z) /f ′ (z)

∣∣ ≤ 4 |z| where f is an univa-

lent function in the unit disc. In this note we obtain a similar result for

univalent functions in the upper half-plane.

1. Introduction.

Let U be the unit disc {z : z ∈ C, |z| < 1} and let A be the class of analytic

and univalent functions in U . We denote by S the class of the functions f , f ∈ A,

normalized by conditions f (0) = f ′ (0)− 1 = 0.

As a corollary of the inequality of the second coefficient, for the functions in

the class S, it results the following well-known theorem:

Theorem A. If the function f belongs to the class A, then for all z ∈ U we

have ∣∣∣−2 |z|2 +
(
1− |z|2

)
zf ′′ (z) /f ′ (z)

∣∣∣ ≤ 4 |z| .

The Theorem A is the starting point for solving some problems (distortion

theorem, rotation theorem) in the class S.

We denote by D the upper half-plane {z : Im (z) > 0} and by SD the class

of analytic and univalent functions in the domain D. In this note we obtain a result,

similar to the Theorem A, for functions in the class SD.

Paper presented at the International Conference on Complex Analysis and The 8th Romanian-Finnish

Seminar, Iaşi, 23-27 August 1999.
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2. Main results.

Let g : U → D be the function defined from

g (z) = i
1− z

1 + z
(1)

The function g belongs to the class A and g (U) = D.

We denote by Dr the disc g (Ur), where r ∈ (0, 1], Ur = {z : |z| < r} and

U1 = U . We observe that, for all 0 < r < s ≤ 1 we have Dr ⊂ Ds ⊂ D1 = D and

hence for all ξ ∈ D, there exists r0 ∈ (0, 1) such that ξ ∈ Dr, for all r ∈ (r0, 1).

Let ξr and Rr be the numbers defined from

ξr = i
1 + r2

1− r2
, Rr =

2r

1− r2
(2)

For ξ = g (z), where |z| = r, we have

|ξ − ξr|2 =
4

∣∣z + r2
∣∣2

|1 + z|2 (1− r2)2
(3)

Because for all z, |z| = r < 1, we have∣∣z + r2
∣∣ = |r + rz| (4)

it result that

|ξ − ξr| = Rr (5)

and hence Dr is the disc with the center at the point ξr and the radius Rr.

Lemma. For all fixed point ξ ∈ D there exists r0 ∈ (0, 1) and ur ∈ U such

that for all r ∈ (r0, 1)

ξ = ξr + Rrur (6)

and

lim
r→1

ur = −i, lim
r→1

[Rr (1− |ur|)] = Im (ξ) . (7)

Proof. If ξ ∈ D, then
∣∣g−1 (ξ)

∣∣ < 1 and hence for all r0,
∣∣g−1 (ξ)

∣∣ < r0 < 1

we have ξ ∈ Dr, for all r, r0 < r < 1.

For xr = Re (ur), yr = Im (ur), X = Re (ξ), Y = Im (ξ) we have

X = xr
2r

1− r2
, Y =

1 + r2

1− r2
+ yr

2r

1− r2
(8)

for all r, r0 < r < 1 and hence

lim
r→1

xr = lim
r→1

(
1− r2

)
X

2r
= 0, lim

r→1
yr = lim

r→1

(
1− r2

)
Y − 1− r2

2r
= −1 (9)

94



ON UNIVALENT FUNCTIONS IN A HALF-PLANE

From (8) we have(
1− |ur|2

)
Rr =

[
1−

(
1− r2

)2
X2 +

((
1− r2

)
Y −

(
1 + r2

))2

4r2

]
· 2r

1− r2
(10)

It result that

lim
r→1

(
1− |ur|2

)
Rr = lim

r→1

2
(
1 + r2

)
Im (ξ)−

(
1− r2

)
|ξ|2 − 1 + r2

2r
= 2Im (ξ) (11)

and hence

lim
r→1

[(1− |ur|) Rr] = Im (ξ) (12)

Theorem. If the function f is analytic and univalent in the domain D, for

all ξ ∈ D we have ∣∣∣∣i− Im (ξ)
f ′′ (ξ)
f ′ (ξ)

∣∣∣∣ ≤ 2 (13)

Proof. Let ξ be a fixed point in the domain D. From Lemma it result that

there exists r0 ∈ (0, 1) such that ξ ∈ Dr for all r ∈ (r0, 1). We consider the function

gr : U → C defined from

gr (u) = f (ξr + Rru) (14)

where r ∈ (r0, 1).

For all fixed r, r ∈ (r0, 1) the function gr is analytic and univalent in U and

from Theorem A it result that∣∣∣∣−2 |u|2 +
(
1− |u|2

)
Rr

uf ′′ (ξr + Rru)
f ′ (ξr + Rru)

∣∣∣∣ ≤ 4 |u| (15)

From Lemma it result that for fixed point ξ ∈ D there exists ur ∈ U such

that ξ = ξr + Rrur and hence, from (15) we obtain

lim
r→1

∣∣∣∣−2 |ur|2 +
(
1− |ur|2

)
Rr

urf
′′ (ξ)

f ′ (ξ)

∣∣∣∣ ≤ 4 lim
r→1

|ur| (16)

Because lim
r→1

ur = −i and lim
r→1

[(1− |ur|) Rr] = Im (ξ) , form (16) we obtain

the inequality (13).

Remark. The function f defined from

f (ξ) = ξ2 (17)

is analytic and univalent in the domain D and∣∣∣∣i− Im (ξ)
f ′′ (ξ)
f ′ (ξ)

∣∣∣∣ =
∣∣∣∣i− Im (ξ)

1
ξ

∣∣∣∣ (18)
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If we observe that
∣∣∣∣i− Im (ξ)

1
ξ

∣∣∣∣ = 2 for ξ = i, it result that the inequality

(13) is best possible.

Univ. ”Transilvania” Braşov, Faculty of Sciences, Romania
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Abstract. In this note we define the notions of convexity for analytic

functions in the ellipse E =

{
z = x + iy ∈ C :

x2

a2
+

y2

b2
− 1 < 0

}
, a >

b > 0. We obtain sufficient conditions for an analytic function to be a

convex function in the ellipse E.

1. Introduction and preliminaries

Let g be a complex function defined in the unit disc U = {z ∈ C : |z| <

1}. For z = x + iy ∈ U we consider u(x, y) = Reg(z) and v(x, y) = Img(z). The

function g belongs to the class C1(U), respectively C2(U) if the functions u and v

of the real variables x and y have continuous first order, respectively second order,

partial derivatives in U [1].

For g ∈ C1(U) the following operators are defined

Dg(z) = z
∂g

∂z
− z

∂g

∂z
and Jg =

∣∣∣∣∂g

∂z

∣∣∣∣2 − ∣∣∣∣∂g

∂z

∣∣∣∣2
where

∂g

∂z
=

1
2

(
∂g

∂x
− i

∂g

∂y

)
and

∂g

∂z
=

1
2

(
∂g

∂x
+ i

∂g

∂y

)
.

P.T. Mocanu [1] obtained sufficient conditions for a non-analytic function in

the unit disc, to be univalent and convex.

Definition 1. [1] A function g of the class C1(U) is a convex function in U

if it is univalent and g(U) is a convex domain.

A sufficient condition for convexity is given in the following theorem.

Theorem 1. [1] If the function g ∈ C1(U) satisfies the conditions

(i) g(0) = 0, Dg ∈ C1(U) and g(z)Dg(z) 6= 0, for all z ∈ U \ {0},

Paper presented at the International Conference on Complex Analysis and The 8th Romanian-Finnish

Seminar, Iaşi, 23-27 August 1999.
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(ii) Jg(z) > 0, for all z ∈ U

(iii) Re
D2g(z)
Dg(z)

> 0, for all z ∈ U \ {0}

then g is a convex function in U .

2. Main results

Let f be an analytic function in the ellipse E.

Definition 2. The function f is a convex function in E if it is an univalent

function in E and f(E) is a convex domain.

In the next two theorems, sufficient conditions for an analytic function in E

to be convex in E, are given.

Theorem 2. If the analytic function f : E → C satisfies the conditions

(i) f(0) = 0 and f ′(z) 6= 0, for all z ∈ E,

(ii) the inequality

(a2 + b2)Re
[
zf ′′(z)
f ′(z)

+ 1
]
− (a2 − b2)Re

[
zf ′′(z)
f ′(z)

+ 1
]

> 0 (1)

holds for all z ∈ E, then f is a convex function in E.

Proof. Let h : U → E be the function defined by

h(z) =
a + b

2
z +

a− b

2
z. (2)

Then h belongs to the class C1(U), is an univalent function in U and h(U) =

E.

We consider the functions g : U → C, g = f ◦ h. In order to prove that f is a

convex function in E it is sufficient to show that the function g satisfies the conditions

from theorem 1. We have

Dg(z) = f ′(u)
(

a + b

2
z − a− b

2
z

)
(3)

where u = h(z) ∈ E. Since f ′(u) 6= 0, for all u ∈ E, then g(z)Dg(z) 6= 0, for all

z ∈ U \ {0}. The Jacobian of g is

Jg(z) = ab|f ′(u)|2 > 0, for all z ∈ U.

We also have

D2g(z)
Dg(z)

=
f ′′(u)
f ′(u)

(
a + b

2
z − a− b

2
z

)
+

(a + b)z + (a− b)z
(a + b)z − (a− b)z

. (4)
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From u =
a + b

2
z +

a− b

2
z and u =

a− b

2
z +

a + b

2
z we obtain

z =
1

2ab
[(a + b)u− (a− b)u] (5)

and hence Re
D2g(z)
Dg(z)

> 0, for all z ∈ U , holds only if

(a2 + b2)Re
[
uf ′′(u)
f ′(u)

+ 1
]
− (a2 − b2)Re

[
uf ′′(u)
f ′(u)

+ 1
]

> 0, for all u ∈ E.

Remark. For a = b (E = U), the conditions from above are the same with

the well-known conditions for convexity for analytic functions in the unit disc.

Theorem 3. If the analytic function f : E → C satisfies the conditions

(i) f(0) = 0 and f ′(z) 6= 0, for all z ∈ E,

(ii) the inequalities

Re
[
zf ′′(z)
f ′(z)

+ 1
]

>
1
2

(6)

and ∣∣∣∣arg
[
zf ′′(z)
f ′(z)

+ 1
]∣∣∣∣ ≤ arccos

3(a2 − b2)
a2 + b2

(7)

are true, for all z ∈ E, then f is a convex function in E.

Proof. In order to prove that the function f is convex in E it is sufficient to

show that the inequality (1) is true. From (6) we have∣∣∣∣zf ′′(z)
f ′(z)

+ 1
∣∣∣∣ ≥ ∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ =
∣∣∣∣zf ′′(z)

f ′(z)

∣∣∣∣ ≥ Re
zf ′′(z)
f ′(z)

(8)

and ∣∣∣∣zf ′′(z)
f ′(z)

+ 1
∣∣∣∣ >

1
2
, (9)

for all z ∈ E.

From (17) we also have

Re
[
zf ′′(z)
f ′(z)

+ 1
]

∣∣∣∣zf ′′(z)
f ′(z)

+ 1
∣∣∣∣ >

3(a2 − b2)
a2 + b2

, (10)

for all z ∈ E.

Using the inequalities (8), (9) and (10) we obtain

(a2 + b2)Re
[
zf ′′(z)
f ′(z)

+ 1
]
− (a2 − b2Re

[
zf ′′(z)
f ′(z)

+ 1
]

>
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> (a2 + b2)Re
[
zf ′′(z)
f ′(z)

+ 1
]
− (a2 − b2)

[∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ + 1
]

>

> (a2 + b2)Re
[
zf ′′(z)
f ′(z)

+ 1
]
− (a2 − b2)

[∣∣∣∣zf ′′(z)
f ′(z)

+ 1
∣∣∣∣ + 1

]
>

> 3(a2 − b2)
∣∣∣∣zf ′′(z)

f ′(z)
+ 1

∣∣∣∣− (a2 − b2)
[∣∣∣∣zf ′′(z)

f ′(z)
+ 1

∣∣∣∣ + 1
]

> 0,

for all z ∈ E.
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The purpose of this paper is to generalize some results about functions of

class C1 on the unit disc obtained by P.T.Mocanu in [1], considering functions of

class C1 on an elliptic domain. We also obtained a sufficient condition for univalency,

by introducing the notion of starlikeness with respect to the origin for functions of

class C1 on the elliptic domain.

Let E denote the elliptic domain

E :=
{

z = x + iy ∈ C : x2

a2 + y2

b2 − 1 < 0
}

.

Consider a complex function defined on E of the form f(z) = u(x, y)+iv(x, y).

For r ∈ (0, 1) and θ ∈ [0, 2π], the elliptic coordinates of a point z = x+ iy from E are{
x = ar cos θ

y = br sin θ.
Definition 1. The function f : E → C is said to be of class C1(E) if the

real functions u = Ref and v = Imf , of the real variables x = Rez, y = Imz, are

continuous and have continuous first order partial derivatives in E.

For f ∈ C1(E), we denote

Df(z) = z
∂f

∂z
− z

∂f

∂z
(1)

Df(z) =
z(a2 + b2)− z(a2 − b2)

2ab

∂f

∂z
+

z(a2 + b2)− z(a2 − b2)
2ab

∂f

∂z
(2)

where
∂

∂z
=

1
2ab

(
a2 ∂

∂x
− ib2 ∂

∂y

)
Paper presented at the International Conference on Complex Analysis and The 8th Romanian-Finnish
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and
∂

∂z
=

1
2ab

(
a2 ∂

∂x
+ ib2 ∂

∂y

)
.

The linear differential operators defined by (1) and (2) verify the rules of the

differential calculus, for example:

D(f + g) = Df + Dg,

D(fg) = fDg + gDf,

D( f
g ) = gDf−fDg

g2 ,

D(f ◦ g) = ∂f
∂g Dg + ∂f

∂g Dg;

For a = 1 and b = 1, from (1) and (2), we obtain the differential operators

defined in [Mo].

The two operators have the following properties:

Df = −Df Df = Df

D Re f = i Im Df DRe f = ReDf

D Im f = −iRe Df D Im f = ImDf

D |f | = i |f | Im Df
f D |f | = |f |Re Df

f

D arg f = −iRe Df
f D arg f = Im Df

f

We also have:

∂f

∂θ
= iDf and

∂f

∂r
=

1
r
Df

where z = r(a cos θ + ib sin θ).

From here we deduce that

∂ |f |
∂θ

= − |f | Im Df

f
and

∂ |f |
∂r

=
|f |
r

Re
Df

f
(3)

∂

∂θ
arg f = Re

Df

f
and

∂

∂r
arg f =

1
r

Re
Df

f
(4)

The Jacobian of the function f ∈ C1(E) is given by

102



NON-ANALYTIC FUNCTIONS IN AN ELLIPSE

Jf =
∣∣∣∣∂f

∂z

∣∣∣∣2 − ∣∣∣∣∂f

∂z

∣∣∣∣2 .

It is known that a function verifying Jf > 0, z ∈ E, is locally univalent and

preserves the orientation.

Definition 2. The continuous function f : E → C , f(0) = 0, is called

starlike in E with respect to the origin if it is univalent in E and f(E) is a starlike

set.

Theorem 3. A functionf ∈ C1(E) that satisfies the conditions:

(i) f(0) = 0 and f(z) 6= 0 for all z ∈ E\{0},

(ii)Jf(z) > 0 for all z ∈ E,

(iii)Re Df(z)
f(z) > 0 for all z ∈ E\{0},

is starlike in E.

Proof. We denote Er :=
{

z = x + iy ∈ C : x2

(ar)2
+ y2

(br)2
− 1 < 0

}
and Cr =

f(∂Er) for r ∈ (0, 1). From (4) and (iii) we deduce that

∂

∂θ
arg f(r(a cos θ + ib sin θ)) > 0, for all θ ∈ [0, 2π] and all r ∈ (0, 1).

Therefore Cr is a starlike curve (not necesarry simple) with respect to the origin, for

all r ∈ (0, 1).

In order to prove the univalency of f it is enough to show that Cr are Jordan

curves and they are each two disjoint. From the condition (i) follows that the curves

Cr, r ∈ (0, 1), are homotopic in C\{0}, therefore the index of Cr with respect to the

origin is the same, for each r ∈ (0, 1), i.e. n(Cr, 0) = const. Because of the condition

(ii) there exists a neighbourhood of the origin such that f is univalent and preserves

orientation in this neighbourhood. Thus we have an r0 ∈ (0, 1) such that for every

r < r0, n(Cr, 0) = 1, meaning that the variation of the argument along Cr is 2π. We

conclude that Cr is a Jordan curve, for each r ∈ (0, 1).

In order to prove that every two different curves Cr and Cr′ are disjoint, we

will show that for any ray starting from the origin, the modulus of the unique point

of intersection of this ray with the curve Cr is a strictly increasing function of r, as r

increases in the interval (0, 1).

Let us fix ϕ ∈ (0, 2π). The system
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arg f(z) = ϕ

z = r(a cos θ + ib sin θ)
,r ∈ (0, 1)

has a unique solution θ = θ(r), that gives us the unique point z = r(a cos θ +

ib sin θ). For this value of z we consider

R(r) = |f(z)| (5)

We will show that R(r) is strictly increasing in (0, 1).

From (5), by differentiating with respect to r, we get

dR

dr
= R

(
1
r

Re
Df

f
− dθ

dr
Im

Df

f

)
. (6)

From the relation arg f(z) = ϕ, we obtain

1
r

Im
Df

f
+

dθ

dr
Re

Df

f
= 0. (7)

By eliminating dθ
dr between the equations (6) and (7) we get

dR

dr
Re

Df

f
=

R

r

(
Re

Df

f
Re

Df

f
+ Im

Df

f
Im

Df

f

)
or

dR

dr
Re

Df

f
=

1
r

Re
(
DfDf

)
A simple calculus shows that Re

(
DfDf

)
= abr2Jf , therefore

dR

dr
Re

Df

f
== abrJf,

Because dR
dr > 0, R is a strictly increasing function in (0, 1). We proved the univalency

of f .

We have that the domain f(Ur) is starlike for each r ∈ (0, 1) and f(Ur) ⊂

f(Ur′) for 0 < r < r′ < 1. It follows that f(U) is also a starlike domain. Our theorem

is proved.
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Abstract. In this work we prove a new univalence criterion for the

analicity and univalence in the unit disc U = {z ∈ C : |z| < 1} of an

integral operator.

1. INTRODUCTION

Let A be the class of the functions f which are analytic in the unit disc and

f(0) = f ′(0) − 1 = 0 . We denote by S the class of the functions f ∈ A which are

univalent in U.

In the theory of univalent functions an interesting problem is to find those

integral operators which preserve the univalence of the class S.

Many authors studied the problem of integral operators which preserve the

class S. In this sense, important results are due to Y. J. Kim, E.P. Merkes [1], M.

Nunokawa [3] and J. Pfaltzgraff [5].

2. PRELIMINARIES

We will need the following theorem in this paper.

THEOREM A[4]. Let α be a complex number, Reα > 0 and

f ∈ A.

If

(
1− |z|2Reα

) ∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ ≤ Reα (1)

for all z ∈ U , then the function

Paper presented at the International Conference on Complex Analysis and The 8th Romanian-Finnish
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Fα(z) =
[
α

∫ z

0

uα−1f ′(u)du

] 1
α

(2)

is in the class S.

3. MAIN RESULT

THEOREM. Let g ∈ S and α = a + bi be a complex number and

a ∈ (0, 4]. If

a4 + a2b2 − 4 ≥ 0, a ∈
(

0,
1
2

)
and a2 + b2 − 16 ≥ 0, a ∈

[
1
2
, 4

]
(3)

then the function

Hα(z) =

[
α

∫ z

0

uα−1

(
g(u)
u

) 1
α

du

] 1
α

(4)

is in the class S.

Proof. Let us consider the function

f(z) =
∫ z

0

(
g(u)
u

) 1
α

du. (5)

The function f is regular in U.From (5) we have

f ′(z) =
(

g(z)
z

) 1
α

, f ′′(z) = ( 1
α

(
g(z)

z

) 1
α−1

zg′(z)−g(z)
z2

and

1− |z|2a

a

∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ ≤ 1− |z|2a

a
√

a2 + b2

(
z(g′(z))

g(z)
+ 1

)
. (6)

for all z ∈ U .

From (6) we obtain

1− |z|2a

a

∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ ≤ 1− |z|2a

a
√

a2 + b2

(
1 + |z|
1− |z|

+ 1
)

. (7)

and hence we get

1− |z|2a

a

∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ ≤ 2
a
√

a2 + b2

1− |z|2a

1− |z|
(8)

for all z ∈ U .
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Let us note |z| = x, x ∈ (0, 1) and φ(x) = 1−x2a

1−x , a > 0. It easy to prove that

φ(x) ≤

 1 if a ∈
(
0, 1

2

)
2a if a ∈ [ 12 ,∞)

(9)

Using a ∈ (0, 4] and the relations (8),(9),(3) we obtain

(
1− |z|2a

a

) ∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ ≤ 1 (10)

for all z ∈ U.

From (5) we have f ′(z) =
(

g(z)
z

) 1
α

and using (10) by Theorem A it results

that the function Hα is in the class S.
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DATA DEPENDENCE OF THE FIXED POINTS SET OF
MULTIVALUED WEAKLY PICARD OPERATORS

IOAN A. RUS, ADRIAN PETRUŞEL, ALINA SÎNTĂMĂRIAN

Dedicated to Professor Petru T. Mocanu on his 70th birthday

Abstract. The purpose of this paper is to present data dependence re-

sults for some multivalued weakly Picard operatorors such as: Reich-type

operators, graphic-contractions.

1. Introduction

The purpose of this paper is to study the following problem (see Lim [9], Rus

[21], Rus-Mureşan [23], etc).

Problem. Let (X, d) be a metric space and T1, T2 : X → P (X) two multivalued

operators. If the fixed points sets FT1 and FT2 are nonempty and there exists η > 0

such that H(T1(x), T2(x)) ≤ η, for all x ∈ X, estimate H(FT1 , FT2), where H is the

Hausdorff-Pompeiu generalized functional on P (X).

Throughout the paper we follow the terminologies and the notations from

Rus [20]. For the convenience of the reader, we recall some of them.

Let (X, d) be a metric space. We denote:

P (X) := {A|A is a nonempty subset of X}, Pcl(X) := {A ∈ P (X)|A - closed},

Pb(X) := {A ∈ P (X)| A− bounded}, Pcp(X) := {A ∈ P (X)|A - compact},

Pb,cl(X) := Pb(X) ∩ Pcl(X).

If A,B ∈ P (X), then we define the functional:

D(A,B) := inf{d(a, b)|a ∈ A, b ∈ B},

1991 Mathematics Subject Classification. 47H10, 54H25.
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and the following generalized functionals:

ρ(A,B) := sup{D(a,B)|a ∈ A}, H(A,B) := max{ρ(A,B), ρ(B,A)}.

In this note we need the following well known properties of the functionals D and H

(see Nadler [13], Reich [15], Rus [19], [20],...).

Lemma 1.1 Let A,B ∈ P (X) and q ∈ R, q > 1, be given.

Then for every a ∈ A, there exists b ∈ B such that d(a, b) ≤ qH(A,B).

Lemma 1.2. Let A,B ∈ P (X). We suppose that there exists η ∈ R, η > 0,

such that

( i) for each a ∈ A there is b ∈ B such that d(a, b) ≤ η;

( ii) for each b ∈ B there is a ∈ A such that d(a, b) ≤ η.

Then H(A,B) ≤ η.

Lemma 1.3. Let A ∈ P (X) and x ∈ X. Then D(x,A) = 0 iff x ∈ A.

If T : X → P (X) is a multivalued operator, then we denote by FT the fixed

points set of T , i. e.

FT := {x ∈ X|x ∈ T (x)}.

2. Multivalued weakly Picard operators

Let us start the section by recalling an important notion.

Definition 2.1. Let (X, d) be a metric space and T : X → Pcl(X) a multi-

valued operator. By definition, T is a weakly Picard operator (briefly w.P.o.) iff for

all x ∈ X and all y ∈ T (x), there exists a sequence (xn)n∈N such that:

( i) x0 = x, x1 = y,

( ii) xn+1 ∈ T (xn), for all n ∈ N,

( iii) the sequence (xn)n∈N is convergent and its limit is a fixed point of T .

Remark 2.2. A sequence (xn)n∈N satisfying the condition ( ii) and ( iii),

in the Definition 2.1 is, by definition, a sequence of successive approximations of T

starting from x0.

Example 2.3. [see Rus [22]] If t : X → X is a singlevalued w.P.o., then

the multivalued operator T : X → Pcl(X), T (x) := {t(x)}, for each x ∈ X, is a

multivalued w.P.o.
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Example 2.4. Let ti : X → X, i ∈ {1, 2, . . . , n}, be singlevalued contrac-

tions. Then the multivalued operator T : X → Pcl(X), T (x) = {t1(x), . . . , tn(x)}, for

each x ∈ X, is a multivalued w.P.o.

Example 2.5. [see Covitz-Nadler [4] and Reich [15]] Let (X, d) be a com-

plete metric space and T : X → Pcl(X) be a multivalued contraction. Then T is a

multivalued w.P.o.

Other examples will be given in the next paragraphs.

3. Data dependence of the fixed points set of Reich-type operators

The first main result of this paper is the following:

Theorem 3.1. Let (X, d) be a complete metric space and T1, T2 : X →

Pcl(X), be two multivalued operators. We suppose that :

( i) there exist αi, βi, γi ∈ R+, αi + βi + γi < 1, such that

H(Ti(x), Ti(y)) ≤ αid(x, y) + βiD(x, Ti(x)) + γiD(y, Ti(y)),

for all x, y ∈ X and i ∈ {1, 2};

( ii) there exists η > 0 such that

H(T1(x), T2(x)) ≤ η, for all x ∈ X.

Then

( a) FTi ∈ Pcl(X), i ∈ {1, 2},

(b) the operators T1, T2 are w.P.o. and

H(FT1 , FT2) ≤ η(1−min{γ1, γ2})(1−max{α1 + β1 + γ1, α2 + β2 + γ2})−1.

Proof. (a) From a theorem of Reich (Theorem 5 in [15]), we have that FTi
∈ P (X),

i ∈ {1, 2}. Let us prove that the fixed points set of a multivalued operator T , satisfying

a condition of type (i) (with α, β, γ ∈ R+, α+ β + γ < 1) is closed. For this purpose

let xn ∈ FT , n ∈ N, such that xn → x∗, as n→ +∞. We have:

D(x∗, T (x∗)) ≤ d(x∗, xn) +D(xn, T (x∗)) ≤ d(x∗, xn) +H(T (xn), T (x∗)) ≤

≤ d(x∗, xn) + αd(xn, x∗) + βD(xn, T (xn)) + γD(x∗, T (x∗)).
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From this relation we have that

D(x∗, T (x∗)) ≤ (1 + α)(1− γ)−1d(x∗, xn) → 0, as n→∞.

Hence, by Lemma 1.3, x∗ ∈ T (x∗).

(b) Let q ∈]1,min{(α1 + β1 + γ1)−1, (α2 + β2 + γ2)−1}[. Let x0 ∈ FT1 and

x1 ∈ T2(x0) such that

d(x0, x1) ≤ qH(T1(x0), T2(x0)) ≤ qη.

Using again Lemma 1.1, there exists x2 ∈ T2(x1) such that

d(x1, x2) ≤ q(α2 + β2)(1− qγ2)−1d(x0, x1).

By induction, we prove that there exists a sequence of successive approxima-

tions of T2, starting from x0 ∈ FT1 , such that

d(xn, xn+1) ≤ L2(q)d(xn−1, xn), n ∈ N∗,

where L2(q) = q(α2 + β2)(1− qγ2)−1 < 1.

This relation implies that xn → x∗, as n → ∞. By standard argument we

prove that x∗ ∈ FT2 and

d(xn, x∗) ≤ [1− L2(q)]−1[L2(q)]nqη, n ∈ N.

For n = 0, we obtain

d(x0, x
∗) ≤ [1− L2(q)]−1qη. (1)

By a similar way, we have that for all y0 ∈ FT2 and y1 ∈ T1(y0), there exists

a sequence of successive approximations of T1 such that

yn → y∗ ∈ FT1 , as n→∞

and

d(yn, y∗) ≤ [1− L1(q)]−1][L1(q)]nqη, n ∈ N,

where L1(q) := q(α1 + β1)(1− qγ1)−1 < 1.

For n = 0, we have

d(y0, y∗) ≤ [1− L1(q)]−1qη. (2)
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By Lemma 1.2, using (1) and (2) we have

H(FT1 , FT2) ≤ [1−max{L1(q), L2(q)}]−1qη.

Letting q ↘ 1, we get the conclusion. �

Remark 3.2. For βi = γi = 0 we have a result given by Lim [9]. See also

Rus [21].

4. Data dependence of the fixed points set of multivalued graphic-

contraction-type operators

A multivalued graphic-contraction-type operator is a multivalued operator

T : X → Pcl(X) satisfying a contraction-type condition for all x ∈ X and y ∈ T (x).

We have:

Theorem 4.1. Let (X, d) be a complete metric space and T1, T2 : X →

Pcl(X) such that :

( i) there exist αi, βi ∈ R+, αi + βi < 1 such that

H(Ti(x), Ti(y)) ≤ αid(x, y) + βiD(y, Ti(y)),

for every x ∈ X, every y ∈ Ti(x) and for i ∈ {1, 2};

( ii) there exists η > 0 such that H(T1(x), T2(x)) ≤ η, for all x ∈ X.

If :

( iii) T1, T2 are closed multivalued operators

or

( iv) there exist two continuous functions ψ1, ψ2 : R5
+ → R+ such that :

( iv1) H(Ti(x), Ti(y)) ≤ ψi(d(x, y), D(x, Ti(x)), D(y, Ti(y)), D(x, Ti(y)), D(y, Ti(x))),

for all x, y ∈ X and for i ∈ {1, 2};

( iv2) ψi(0, 0, s, s, 0) < s, if s > 0, i ∈ {1, 2};

( iv3) If u1 ≤ u2 and v1 ≤ v2 then ψi(u, u1, v, w, v1) ≤ ψi(u, u2, v, w, v2), for

all ui, vi, u, v, w ∈ R+ and i ∈ {1, 2},

then

( a) FTi
∈ Pcl(X), for i ∈ {1, 2};

(b) Ti are w.P.o., for i ∈ {1, 2};

( c) H(FT1 , FT2) ≤ η(1−min{β1, β2})(1−max{α1 + β1, α2 + β2})−1.
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Proof. Let us have (i), (ii) and (iii). From Lemma 2 in Rus [19] and (iii) we have Ti

are w.P.o. and FTi
∈ P (X), for i ∈ {1, 2}. Let us prove that FTi

∈ Pcl(X), i ∈ {1, 2}.

For this purpose, let (xn)n∈N ⊂ FTi be a convergent sequence to an element x∗ ∈ X.

It is sufficient to prove that x∗ ∈ FTi
. We have: xn ∈ Ti(xn), n ∈ N . From (iii) it

follows that x∗ ∈ Ti(x∗), for i ∈ {1, 2}.

Let us have (i), (ii) and (iv). Using Theorem 1 in [19] we obtain FTi
∈ P (X),

for i ∈ {1, 2}. Let us prove again that FTi is closed in X for each i ∈ {1, 2}. As before,

let (xn)n∈N ⊂ FTi
be a convergent sequence to a point x∗ ∈ X. Then:

D(x∗, Ti(x∗)) ≤ d(x∗, xn) +D(xn, Ti(x∗)) ≤ d(x∗, xn) +H(Ti(xn), Ti(x∗)) ≤

≤ d(xn, x∗)+ψi(d(xn, x∗), D(xn, Ti(xn)), D(x∗, Ti(x∗)), D(xn, Ti(x∗)), D(x∗, Ti(xn))) ≤

≤ d(x∗, xn) + ψi(d(xn, x∗), 0, D(x∗, Ti(x∗)), D(xn, Ti(x∗)), d(x∗, xn)).

Letting n→∞, we have:

D(x∗, Ti(x∗)) ≤ ψi(0, 0, D(x∗, Ti(x∗)), D(x∗, Ti(x∗)), 0).

From (iv2) it follows thatD(x∗, Ti(x∗)) = 0 and hence x∗ ∈ FTi
, for i ∈ {1, 2}.

So, we get the conclusions (a) and (b). For (c) let x0 ∈ FT1 .

For every q > 1, there exists x1 ∈ T2(x0) such that d(x0, x1) ≤

qH(T1(x0), T2(x)) ≤ qη. For x1 ∈ T2(x0) and 1 < q < min
{

1
α1 + β1

,
1

α2 + β2

}
there is x2 ∈ T2(x1) such that d(x1, x2) ≤ qH(T2(x0), T2(x1)) ≤ q[α2d(x0, x1) +

β2D(x1, T2(x1))] ≤ q[α2d(x0, x1) + β2d(x1, x2)] and hence

d(x1, x2) ≤
qα2

1− qβ2
d(x0, x1).

By induction, one prove that there exists a sequence of successive approxima-

tions for T2, starting from x0 ∈ FT1 such that d(xn, xn+1) ≤ p2(q)d(xn−1, xn), where

p2(q) =
qα2

1− qβ2
< 1. This implies that:

1) xn → x∗, as n→∞,

2) x∗ ∈ FT2 ,

3) d(xn, x∗) ≤
[p2(q)]n

1− p2(q)
d(x0, x1) ≤

[p2(q)]n

1− p2(q)
qη, n ∈ N.

Interchanging the roles, one can prove that for each y0 ∈ FT2 , there exists a

sequence of successive approximations for T1, starting from y0 such that

1’) yn → y∗, as n→∞,
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2’) y∗ ∈ FT1 ,

3’) d(yn, y∗) ≤
[p1(q)]n

1− p1(q)
d(y0, y1) ≤

[p1(q)]n

1− p1(q)
qη, n ∈ N, (where p1(q) =

qα1

1− qβ1
< 1).

For n = 0 we get d(x0, x
∗) ≤ qη

1− p2(q)
and d(y0, y∗) ≤ qη

1− p1(q)
. As

consequence H(FT1 , FT2) ≤ qη[1−max{p1(q), p2(q)}]−1.

Letting q ↘ 1, the conclusion follows. �

5. Applications

We shall prove now a data dependence result for the following equation:

φ(u) + ψ(u) = v, u ∈ U. (3)

Let us denote by Sψ,v the solutions set for (3). We have:

Theorem 5.1. Let (U, ‖ · ‖U ) and (V, ‖ · ‖V ) be real Banach spaces and let

φ : U → V be a continuous linear operator from U onto V . Put α = sup{inf{‖u‖U |u ∈

φ−1(v)}, v ∈ V, ‖v‖V ≤ 1}.

Then, for every v1, v2 ∈ V and every lipschitzian operators ψ1, ψ2 : U → V

(with the same Lipschitz constant L > 0) satisfying the following assertions:

i) there is η1 > 0 such that ‖v1 − v2‖V ≤ η1;

ii) there exists η2 > 0 such that ‖ψ1(u)− ψ2(u)‖V ≤ η2, for each u ∈ U ;

iii) αL < 1

are true the conclusions:

a) Sψi,vi
∈ Pcl(U), for i ∈ {1, 2};

b) H(Sψ1,v1 , Sψ2,v2) ≤
α(η1 + η2)

1− αL
.

Proof. From a result given by B. Ricceri (see [17], Theorem 4) it follows that Sψi,vi 6=

∅ and Sψi,vi
= FixFi, where Fi : U → Pcl(U) is a multivalued αL-contraction, given

by the formula Fi(u) = φ−1(vi − ψi(u)), for i ∈ {1, 2} (see also [18]). From Theorem

3.1 one have:

H(Sψ1,v1 , Sψ2,v2) ≤
1

1− αL
sup
u∈U

H(F1(u), F2(u)).

But H(F1(u), F2(u)) = H(φ−1(v1−ψ1(u)), φ−1(v2−ψ2(u))) ≤ α‖v1−ψ1(u)−

v2 + ψ2(u)‖ ≤ α(η1 + η2), for each u ∈ U and hence the conclusion follows. �
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Let us consider now the following functional equations of n-th order:

ϕ(x) ∈ G1(x, ϕ(f1(x)), . . . , ϕ(fn(x))), x ∈ X, (4)

ϕ(x) ∈ G2(x, ϕ(g1(x)), . . . , ϕ(gn(x))), x ∈ X, (5)

where ϕ is an unknown function and the multivalued operators G1, G2 and the singl-

evalued functions fk, gk (k ∈ {1, 2, . . . , n}) are given. Let us denote by Si (i ∈ {1, 2})

the space of continuous solutions for problems (4) and (5) respectively.

Theorem 5.2. Let X be a compact metric space and Y be a nonempty,

closed, convex subset of a Banach space. Let G1, G2 : X × Y n → Pcl,cv(Y ) be mul-

tivalued operators and fk, gk : X → X, k ∈ {1, 2, . . . , n} functions. We assume the

following conditions on the given operators:

i) there exist two functions βi : Rn+ → R+ non-decreasing with respect to

each variable with the property βi(t, t, . . . , t) ≤ ait, for each t > 0, with

0 ≤ ai < 1 such that one have:

H(Gi(x, y1, . . . , yn), Gi(x, z1, . . . , zn)) ≤ βi(‖y1 − z1‖, . . . , ‖yn − zn‖),

for x ∈ X, yk, zk ∈ Y (k ∈ {1, 2, . . . , n}) and for i ∈ {1, 2};

ii) fk, gk : X → X are continuous, k ∈ {1, 2, . . . , n};

iii) G1, G2 are lower semicontinuous (l.s.c.);

iv) there exist ηk, η̃ > 0 such that ‖fk(x) − gk(x)‖ ≤ ηk for k ∈

{1, 2, . . . , n} and H(G1(x, y1, . . . , yn), G2(x, y1, . . . , yn)) ≤ η̃, for x ∈ X

and y1, . . . , yn ∈ Y .

Then:

a) Si ∈ Pcl(C), for i ∈ {1, 2} (where C = C(X,Y ) is the space of continuous

functions from X to Y );

b) H(S1, S2) ≤ (1−max {a1, a2}) [β(η1, . . . , ηn) + η̃].

Proof. From Theorem 4.1 in Wȩgrzyk [26] we get that Si = FTi
, where Ti : C →

Pcl,cv(C), i ∈ {1, 2} are multivalued operators given by the formulae:

T1(ϕ) = {ψ ∈ C|ψ(x) ∈ G1(x, ϕ(f1(x)), . . . , ϕ(fn(x))), x ∈ X}

and

T2(ϕ) = {ψ ∈ C| ψ(x) ∈ G2(x, ϕ(g1(x)), . . . , ϕ(gn(x))), x ∈ X}.
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From Lemma 4.1 in the same paper [26], we have that H(Ti(ϕ1), Ti(ϕ2)) ≤

γi(d(ϕ1, ϕ2)), for ϕ1, ϕ2 ∈ C, where γi(t) = βi(t, . . . , t), for t ∈ R+ and d(ϕ1, ϕ2) =

sup{‖ϕ1(x)− ϕ2(x)‖ | x ∈ X}.

By i) it follows that Ti are multivalued ai-contractions, for i ∈ {1, 2}. Then,

we obtain:

Si ∈ Pcl(C), for i ∈ {1, 2}

and

H(S1, S2) = H(FT1 , FT2) ≤ [1−max {a1, a2}] sup
ϕ∈C

H(T1(ϕ), T2(ϕ)). (6)

On the other side, let us estimate H(T1(ϕ), T2(ϕ)).

For this purpose, let ϕ1 ∈ T1(ϕ). Then ϕ1(x) ∈

G1(x, ϕ(f1(x)), . . . , ϕ(fn(x))), x ∈ X. We have

D(ϕ1(x), G2(x, ϕ(g1(x)), . . . , ϕ(gn(x))) ≤ H(G1(x, ϕ(f1(x)), . . . , ϕ(fn(x))),

G2(x, ϕ(g1(x)), . . . , ϕ(gn(x))) ≤ H(G1(x, ϕ(f1(x)), . . . , ϕ(fn(x))),

G1(x, ϕ(g1(x)), . . . , ϕ(gn(x))) +H(G1(x, ϕ(g1(x)), . . . , ϕ(gn(x))),

G2(x, ϕ(g1(x)), . . . , ϕ(gn(x)))) ≤ β(‖ϕ(f1(x))−ϕ(g1(x))‖, . . . , ‖ϕ(fn(x))−ϕ(gn(x))‖)+η̃.

From the uniform continuity of ϕ on the compact space X and from iv) we

get that

‖ϕ(fk(x))− ϕ(gk(x))‖ ≤ ηk, for each x ∈ X.

Hence we conclude that

D(ϕ1(x), G2(x, ϕ(g1(x)), . . . , ϕ(gn(x))) ≤ β(η1, . . . , ηn) + η̃,

for each x ∈ X.

Then, for a fixed ε > 0 and for every x ∈ X there exists zx ∈

G2(x, ϕ(g1(x)), . . . , ϕ(gn(x))) such that

‖ϕ1(x)− zx‖ ≤ β(η1, . . . , ηn) + η̃ + ε.

Using the same argument like in the proof of Lemma 4.1 from [26] we infer

that for every ε > 0 there exists a continuous function ϕ2 ∈ T2(ϕ) such that

d(ϕ1, ϕ2) ≤ β(η1, . . . , ηn) + η̃ + ε.
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It follows D(ϕ1, T2(ϕ)) ≤ β(η1, . . . , ηn) + η̃. From the analogous inequality:

D(ϕ2, T1(ϕ)) ≤ β(η1, . . . , ηn) + η̃, for every ϕ2 ∈ T2(ϕ) we get that

H(T1(ϕ), T2(ϕ)) ≤ β(η1, . . . , ηn) + η̃.

Making use of the estimate (6), we obtain

H(S1, S2) ≤ (1−max {a1, a2}) [β(η1, . . . , ηn) + η̃]. �

Remark 5.3. For other applications see [2], [3], [7], [8], [11], [24].
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[17] B. Ricceri, Une propriété topologique de l’ensemble des points fixed d’une contraction
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Abstract. In this note we define two classes of functions, which are called

α-starlike and α-harmonic starlike and we obtain some properties concern-

ing these classes.

1. Introduction and preliminaries

Let Cn be the space of n-complex variables z = (z1, . . . , zn) with the

norm ‖z‖ = max
1≤k≤n

|zk|. The unit polydisc {z ∈ Cn : ‖z‖ < 1} is denoted by P .

Let H(P ) be the family of all holomorphic functions from P into C. The

Fréchet derivative of f ∈ H(P ) is

Df(z) =
(

∂f

∂z1
(z), . . . ,

∂f

∂zn
(z)

)
, z ∈ P

and D2f(z) =
(

∂2f

∂zk∂zj
(z)

)
1≤k,j≤n

is the Fréchet derivative of the second order of

f .

Let A denote the class of all functions f ∈ H(P ) which satisfy the conditions

f(0) = 0 and
∂f

∂zk
(0) = 1, 1 ≤ k ≤ n.

In several papers K. Dobrowolska, J. Dziubinski, R. Sitarski [1], [2] and E.

Janiec [4] have studied the subclasses of the class A consisting in starlike and convex

functions.

Let S∗(P ) be the class of all functions f ∈ A, f(z) 6= 0 for all z ∈ P \ {0},

satisfying the condition

Re
zDf(z)′

f(z)
> 0, for z ∈ P (1)

Paper presented at the International Conference on Complex Analysis and The 8th Romanian-Finnish

Seminar, Iaşi, 23-27 August 1999.
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where Df(z)′ is the transpose of Df(z). The functions of this class are called starlike

on P .

Let Sc(P ) be the class of all functions f ∈ A, zDf ′(z) 6= 0, z ∈ P \ {0}, for

which

Re

(
1 +

zD2f(z)z′

zDf(z)′

)
> 0, for z ∈ P (2)

where z′ is the transpose of z. The class Sc(P ) is the class of convex functions on P .

We shall use the following theorem to prove our results.

Theorem 1. [3] Let q be a holomorphic and univalent function on U = {z ∈

C : |z| ≤ 1} without at most one point ζ ∈ ∂U , which is a simple pole. Let p : P → C

be a holomorphic function on P with p(0) = q(0). If p(P ) 6⊂ q(U), then there exist

ζ0 ∈ ∂U , r0 ∈ (0, 1), z0 ∈ r0P and m ≥ 1 such that

p(z0) = q(ζ0) (3)

z0Df(z0)′ = mζ0q
′(ζ0) (4)

Re

(
1 +

z0D
2f(z0)z′0

z0Df(z0)′

)
≥ m Re

(
1 +

ζ0q
′′(ζ0)

q′(ζ0)

)
. (5)

2. Main results

Let α be a complex number. A function f ∈ A, f(z) 6= 0, z ∈ P \ {0} is

called α-starlike on P if the function

G(z) = (1− α)f(z) + αzDf(z)′, for z ∈ P (6)

is a starlike function on P . We denote by S∗
α(P ) the class of α-starlike functions on

P .

Since G ∈ S∗(P ), from (1) and (6) it follows that a function f is α-starlike

on P if

Re

[
p(z) + α

zDp(z)′

1− α + αp(z)

]
> 0, for all z ∈ P, (7)

where p(z) =
zDf(z)′

f(z)
.

The definitions of the classes S∗(P ), Sc(P ) and S∗
α(P ) imply immediately

S∗
0 (P ) = S∗(P ) and S∗

1 (P ) = Sc(P ).

Theorem 2. If f ∈ S∗
α(P ) and α ∈ C with

∣∣∣∣α− 1
2

∣∣∣∣ ≤ 1
2
, then f ∈ S∗(P ).
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Proof. We assume that Re
zDf(z)′

f(z)
6> 0 for some z ∈ P . Let q : U \{1} → C

be the function defined by q(z) =
1 + z

1− z
.

If p(z) =
zDf(z)′

f(z)
, z ∈ P then we have p(0) = q(0) = 1 and p(P ) 6⊂ q(U).

From Theorem 1 there exist ξ0 ∈ ∂U , r0 ∈ (0, 1) and z0 ∈ r0P such that p(z0) =

q(ζ0) and z0Dp(z0)′ = mζ0q
′(ζ0), m ≥ 1. It follows Rep(z0) = Re q(ζ0) = 0 and

z0Dp(z0)′ < 0. We obtain

Re

[
p(z0) + α

z0Dp(z0)′

1− α + αp(z0)

]
=

z0Dp(z0)′

|1− α + αp(z0)|2
Re(α− |α|2).

Since
∣∣∣∣α− 1

2

∣∣∣∣ ≤ 1
2 it follows Re

[
p(z0) +

αz0Dp(z0)′

1− α + αp(z0)

]
≤ 0 which contra-

dicts (7). We get Re
zDf(z)′

f(z)
> 0 for all z ∈ P and then f ∈ S∗(P ).

The notion of α-starlikeness was introduced with the help of the generalized

arithmetical mean of the functions f(z) and zDf(z)′. We now consider a new class

of functions using the generalized harmonic mean of the functions f(z) and zDf(z)′.

Let α be a complex number. The function f ∈ A, f(z) 6= 0, zDf(z)′ 6= 0 for

z ∈ P \ {0} is called α-harmonic starlike if the function F : P → C defined by

1
F (z)

=
1− α

f(z)
+

α

zDf(z)′
, for z ∈ P (8)

is a starlike function on P .

We denote by SH∗
α(P ) the class of α-harmonic starlike functions on P . We

have SH∗
0 (P ) = S∗(P ) and SH∗

1 (P ) = Sc(P ). Using (1) and (8) it follows that a

function f belongs to the class SH∗
α(P ) if

Re

[
p(z) +

zDp(z)′

p(z)
− (1− α)

zDp(z)′

α + (1− α)p(z)

]
> 0, for all z ∈ P, (9)

where p(z) =
zDf(z)′

f(z)
.

Theorem 3. If f ∈ SH∗
α(P ) and α ∈ C with

∣∣∣∣α− 1
2

∣∣∣∣ ≥ 1
2

then f ∈ S∗(P ).

The proof is similar with the proof of Theorem 2.

Remark. The classes S∗
α(P ) and SH∗

α(P ) are the extensions of the α-starlike

and α-harmonic starlike functions in the unit disc U = {z ∈ C : |z| < 1} which were

obtained by N.N. Pascu [5] and N.N. Pascu, D. Răducanu [6].
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