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Surface • O formulă pentru curbura medie a suprafeţelor regulare
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume XLVI, Number 3, September 2001

ON A CERTAIN FAMILIES OF ANALYTIC FUNCTIONS WITH
NEGATIVE COEFFICIENTS

M.K. AOUF, H.M. HOSSEN AND A.Y. LASHIN

Abstract. We introduce the subclass Tj(n, m, λ, α) of analytic functions

with negative coefficients defined by Salagean operators Dn and Dn+m. In

this paper we give some properties of functions in the class Tj(n, m, λ, α)

and obtain numerous sharp results including (for example) coefficient es-

timates, distortion theorems, closure theorems and modified Hadamard

products of several functions belonging to the class Tj(n, m, λ, α). We

also obtain radii of close-to-convexity, starlikeness, and convexity for func-

tions belonging to the class Tj(n, m, λ, α) and consider integral operators

associated with functions belonging to the class Tj(n, m, λ, α).

1. Introduction

Let A(j) denote the class of functions of the form

f(z) = z +
∞∑

k=j+1

akzk (j ∈ N = {1, 2, . . . }), (1.1)

which are analytic in the unit disc U = {z : |z| < 1}. For a function f(z) in A(j), we

define

D0f(z) = f(z), (1.2)

D1f(z) = Df(z) = zf ′(z) (1.3)

and

Dnf(z) = D(Dn−1f(z)) (n ∈ N). (1.4)

The differential operator Dn was introduced by Salagean [5]. With the help

of the differential operator Dn, we say that a function f(z) belonging to A(j) is in

1991 Mathematics Subject Classification. 30C45.

Key words and phrases. analytic, Salagean operator, modified Hadamard product.
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the class Sj(n, m, λ, α) if and only if

Re
{

(1− λ)z(Dnf(z))′ + λz(Dn+mf(z))′

(1− λ)Dnf(z) + λDn+mf(z)

}
> α (n, m ∈ N0 = N ∪ {0}) (1.5)

for some α (0 ≤ α < 1) and λ (0 ≤ λ ≤ 1), and for all z ∈ U . The operator Dn+m

was studied by Sekine [7] and Aouf and Salagean [2].

Let T (j) denote the subclass of A(j) consisting of functions of the form

f(z) = z −
∞∑

k=j+1

akzk (ak ≥ 0; j ∈ N). (1.6)

Further, we define the class Tj(n, m, λ, α) by

Tj(n, m, λ, α) = Sj(n, m, λ, α) ∩ T (j). (1.7)

We note that by specializing the parameters j, n, m, λ and α, we obtain the

following subclasses studied by various authors:

(i) Tj(n, 1, λ, α) = P (j, λ, α, n), Tj(n, m, 0, α) = P (j, α, n) and

Tj(n, 1, 1, α) = P (j, α, n + 1) (Aouf and Srivastava [3]);

(ii) Tj(0, 1, λ, α) = P (j, λ, α) (Altintas [1]);

(iii) Tj(0, 0, 0, α) = Tα(j) and Tj(0, 1, 1, α) = Tj(1, 0, 1, α) = Cα(j) (Chatter-

jea [4] and Srivastava et al. [9]);

(v) Tj(n, m, 1, α) = Tj(n, m,α), where Tj(n, m,α) represents the class of

functions f(z) ∈ T (j) satisfying the condition

Re
{

z(Dn+mf(z))′

Dn+mf(z)

}
> α (n, m ∈ N0; 0 ≤ α < 1; z ∈ U); (1.8)

(iv) T1(0, 0, 0, α) = T ∗(α) and T1(0, 1, 1, α) = T1(1, 0, 1, α) = C(α) (Silver-

man [8]).

2. Coefficient estimates and other properties of the class Tj(n, m, λ, α)

Theorem 1. Let the function f(z) be defined by (1.6). Then f(z) ∈

Tj(n, m, λ, α) if and only if

∞∑
k=j+1

kn(k − α)[1 + (km − 1)λ]ak ≤ 1− α. (2.1)

The result is sharp.
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Proof. Assume that the inequality (2.1) holds true. Then we find that∣∣∣∣ (1− λ)z(Dnf(z))′ + λz(Dn+mf(z))′

(1− λ)Dnf(z) + λDn+mf(z)
− 1

∣∣∣∣ ≤

≤

∞∑
k=j+1

kn(k − 1)[1 + (km − 1)λ]ak|z|k−1

1−
∞∑

k=j+1

kn[1 + (km − 1)λ]ak|z|k−1

≤

≤

∞∑
k=j+1

kn(k − 1)[1 + (km − 1)λ]ak

1−
∞∑

k=j+1

kn[1 + (km − 1)λ]ak

≤ 1− α.

This show that the values of the function

Φ(z) =
(1− λ)z(Dnf(z))′ + λz(Dn+mf(z))′

(1− λ)Dnf(z) + λDn+mf(z)
(2.2)

lie in a circle which is centered at w = 1 and whose radius is 1 − α. Hence f(z)

satisfies the condition (1.5).

Conversely, assume that the function f(z) is in the class Tj(n, m, λ, α). Then

we have

Re
{

(1− λ)z(Dnf(z))′ + λz(Dn+mf(z))′

(1− λ)Dnf(z) + λDn+mf(z)

}
=

= Re


1−

∞∑
k=j+1

kn+1[1 + (km − 1)λ]akzk−1

1−
∞∑

k=j+1

kn[1 + (km − 1)λ]akzk−1

 > α, (2.3)

for some α (0 ≤ α < 1), λ (0 ≤ λ ≤ 1), n, m ∈ N0 and for all z ∈ U . Choose values of

z on the real axis so that Φ(z) given by (2.2) is real. Upon clearing the denominator

in (2.3) and letting z → 1− through real values, we can see that

1−
∞∑

k=j+1

kn+1[1 + (km − 1)λ]ak ≥ α

1−
∞∑

k=j+1

kn[1 + (km − 1)λ]ak

 . (2.4)

Thus we have the inequality (2.1).

Finally, the function f(z) given by

f(z) = z − 1− α

kn(k − α)[1 + (km − 1)λ]
zk (k ≥ j + 1; j ∈ N) (2.5)
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is an extremal function for the assertion of Theorem 1.

Corollary 1. Let the function f(z) defined by (1.6) be in the class

Tj(n, m, λ, α). Then

ak ≤
1− α

kn(k − α)[1 + (km − 1)λ]
(k ≥ j + 1). (2.6)

The equality in (2.6) is attained for the function f(z) given by (2.5).

Theorem 2. Let 0 ≤ α1 ≤ α2 < 1, 0 ≤ λ ≤ 1, j ∈ N and n, m ∈ N0. Then

Tj(n, m, λ, α1) ⊇ Tj(n, m, λ, α2). (2.7)

Proof. Let the function f(z) defined by (1.6) be in the class Tj(n, m, λ, α2)

and let α1 = α2 − δ. Then, by Theorem 1, we have
∞∑

k=j+1

kn(k − α)[1 + (km − 1)λ]ak ≤ 1− α2 (2.8)

and
∞∑

k=j+1

kn[1 + (km − 1)λ]ak ≤
1− α2

j + 1− α2
< 1. (2.9)

Consequently,
∞∑

k=j+1

kn(k − α1)[1 + (km − 1)λ]ak =
∞∑

k=j+1

kn(k − α2)[1 + (km − 1)λ]ak+

+δ
∞∑

k=j+1

kn[1 + (km − 1)λ]ak ≤ 1− α1. (2.10)

This completes the proof of Theorem 2 with the aid of Theorem 1.

Theorem 3. Let 0 ≤ α < 1, 0 ≤ λ1 ≤ λ2 ≤ 1, j ∈ N and n, m ∈ N0. Then

Tj(n, m, λ1, α) ⊇ Tj(n, m, λ2, α). (2.11)

Proof. It follows from Theorem 1 that
∞∑

k=j+1

kn(k − α)[1 + (km − 1)λ1]ak ≤
∞∑

k=j+1

kn(k − α)[1 + (km − 1)λ2]ak ≤ 1− α

for f(z) ∈ Tj(n, m, λ2, α).

Theorem 4. For 0 ≤ α < 1, 0 ≤ λ ≤ 1, j ∈ N and n, m ∈ N0,

Tj(n + 1,m, λ, α) ⊆ Tj(n, m, λ, α). (2.12)

6
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The proof of Theorem 4 follows also from Theorem 1.

3. Growth and distortion theorems

Theorem 5. Let the function f(z) defined by (1.6) be in the class

Tj(n, m, λ, α). Then for |z| = r < 1,

|Dif(z)| ≥ r − 1− α

(j + 1)n−i(j + 1− α)[1 + [(j + 1)m − 1]λ]
rj+1 (3.1)

and

|Dif(z)| ≤ r +
1− α

(j + 1)n−i(j + 1− α)[1 + [(j + 1)m − 1]λ]
rj+1 (3.2)

for z ∈ U and 0 ≤ i ≤ n. The equalities in (3.1) and (3.2) are attained for the

function f(z) given by

f(z) = z − 1− α

(j + 1)n(j + 1− α)[1 + [(j + 1)m − 1]λ]
zj+1 (z = ±r). (3.3)

Proof. Note that f(z) ∈ Tj(n, m, λ, α) if and only if

Dif(z) ∈ Tj(n− i, m, λ, α)

and that

Dif(z) = z −
∞∑

k=j+1

kiakzk. (3.4)

By Theorem 1, we know that

(j + 1)n−i(j + 1− α)[1 + [(j + 1)m − 1]λ]
∞∑

k=j+1

kiak ≤

≤
∞∑

k=j+1

kn(k − α)[1 + (km − 1)λ]ak ≤ 1− α, (3.5)

that is, that

∞∑
k=j+1

kiak ≤
1− α

(j + 1)n−i(j + 1− α)[1 + [(j + 1)m − 1]λ]
. (3.6)

The assertions (3.1) and (3.2) of Theorem 5 would now follow readily from

(3.4) and (3.6).
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Finally, we note that the equalities in (3.1) and (3.2) are attained for the

function f(z) defined by

Dif(z) = z − 1− α

(j + 1)n−i(j + 1− α)[1 + [(j + 1)m − 1]λ]
zj+1. (3.7)

This completes the proof of Theorem 5.

Corollary 2. Let the function f(z) defined by (1.6) be in the class

Tj(n, m, λ, α). Then, for |z| = r < 1,

|f(z)| ≥ r − 1− α

(j + 1)n(j + 1− α)[1 + [(j + 1)m − 1]λ]
rj+1 (3.8)

and

|f(z)| ≤ r +
1− α

(j + 1)n(j + 1− α)[1 + [(j + 1)m − 1]λ]
rj+1. (3.9)

The equalities in (3.8) and (3.9) are attained for the function f(z) given by

(3.3).

Proof. Taking i = 0 in Theorem 5, we immediately obtain (3.8) and (3.9).

Corollary 3. Let the function f(z) defined by (1.6) be in the class

Tj(n, m, λ, α). Then for |z| = r < 1,

|f ′(z)| ≥ 1− α

(j + 1)n−i(j + 1− α)[1 + [(j + 1)m − 1]λ]
rj (3.10)

and

|f ′(z)| ≤ 1 +
1− α

(j + 1)n−i(j + 1− α)[1 + [(j + 1)m − 1]λ]
rj (z ∈ U). (3.11)

The equalities in (3.10) and (3.11) are attained for the function f(z) given

by (3.3).

Proof. Setting i = 1 in Theorem 5, and making use of the definition (1.3),

we arrive at Corollary 3.

4. Convex linear combinations

In this section, we shall prove that the class Tj(n, m, λ, α) is closed under

convex linear combinations.

Theorem 6. Tj(n, m, λ, α) is a convex set.

Proof. Let the functions

fv(z) = z −
∞∑

k=j+1

ak,vzk (ak,v ≥ 0; v = 1, 2) (4.1)

8
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be in the class Tj(n, m, λ, α). It is sufficient to show that the function h(z) defined

by

h(z) = µf1(z) + (1− µ)f2(z) (0 ≤ µ ≤ 1) (4.2)

is also in the class Tj(n, m, λ, α). Since, for 0 ≤ µ ≤ 1,

h(z) = z −
∞∑

k=j+1

[µak,1 + (1− µ)ak,2]zk, (4.3)

with the aid of Theorem 1, we have
∞∑

k=j+1

kn(k − α)[1 + (km − 1)λ][µak,1 + (1− µ)ak,2] ≤ 1− α, (4.4)

which implies that f(z) ∈ Tj(n, m, λ, α). Hence Tj(n, m, λ, α) is a convex set.

Theorem 7. Let

fj(z) = z (4.5)

and

fk(z) = z − 1− α

kn(k − α)[1 + (km − 1)λ]
zk (k ≥ j + 1; n, m ∈ N0) (4.6)

for 0 ≤ α < 1 and 0 ≤ λ ≤ 1. Then f(z) is in the class Tj(n, m, λ, α) if and only if

it can be expressed in the form

f(z) =
∞∑

k=j

µkfk(z), (4.7)

where

µk ≥ 0 (k ≥ j) and
∞∑

k=j

µk = 1. (4.8)

Proof. Assume that

f(z) =
∞∑

k=j

µkfk(z) =

= z −
∞∑

k=j+1

1− α

kn(k − α)[1 + (km − 1)λ]
µkzk. (4.9)

Then it follows that
∞∑

k=j+1

kn(k − α)[1 + (km − 1)λ]
1− α

· 1− α

kn(k − α)[1 + (km − 1)λ]
µk =

=
∞∑

k=j+1

µk = 1− µj ≤ 1. (4.10)

9
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So, by Theorem 1, f(z) ∈ Tj(n, m, λ, α).

Conversely, assume that the function f(z) defined by (1.6) belongs to the

class Tj(n, m, λ, α). Then

ak ≤
1− α

kn(k − α)[1 + (km − 1)λ]
(k ≥ j + 1; n, m ∈ N0). (4.11)

Setting

µk =
kn(k − α)[1 + (km − 1)λ]

1− α
ak (k ≥ j + 1; n, m ∈ N0) (4.12)

and

µj = 1−
∞∑

k=j+1

µk, (4.13)

we can see that f(z) can be expressed in the form (4.7). This completes the proof of

Theorem 7.

5. Radii of close-to-convexity, starlikeness, and convexity

Theorem 8. Let the function f(z) defined by (1.6) be in the class

Tj(n, m, λ, α). Then f(z) is close-to-convex of order ρ (0 ≤ ρ < 1) in |z| < r1,

where

r1 = r1(n, m, λ, α, ρ) = inf
k

[
(1− ρ)kn−1(k − α)[1 + (km − 1)λ]

1− α

] 1
k−1

(k ≥ j + 1).

(5.1)

The result is sharp, the extremal function f(z) begin given by (2.5).

Proof. We must show that

|f ′(z)− 1| ≤ 1− ρ for |z| < r1(n, m, λ, α, ρ),

where r1(n, m, λ, α, ρ) is given by (5.1). Indeed we find from the definition (1.6) that

|f ′(z)− 1| ≤
∞∑

k=j+1

kak|z|k−1.

Thus

|f ′(z)− 1| ≤ 1− ρ

if
∞∑

k=j+1

(
k

1− ρ

)
ak|z|k−1 ≤ 1. (5.2)

10
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But, by Theorem 1, (5.2) will be true if(
k

1− ρ

)
|z|k−1 ≤ kn(k − α)[1 + (km − 1)λ]

1− α
,

that is, if

|z| ≤
[
(1− ρ)kn−1(k − α)[1 + (km − 1)λ]

1− α

] 1
k−1

(k ≥ j + 1). (5.3)

Theorem 8 follows easily from (5.3).

Theorem 9. Let the function f(z) defined by (1.6) be in the class

Tj(n, m, λ, α). Then f(z) is starlike of order ρ (0 ≤ ρ < 1) in |z| < r2, where

r2 = r2(n, m, λ, α, ρ) = inf
f

[
(1− ρ)kn(k − α)[1 + (km − 1)λ]

(k − ρ)(1− α)

] 1
k−1

(k ≥ j + 1).

(5.4)

The result is sharp, with the extremal function f(z) given by (2.5).

Proof. It is sufficient to show that∣∣∣∣zf ′(z)
f(z)

− 1
∣∣∣∣ ≤ 1− ρ for |z| < r2(n, m, λ, α, ρ),

where r2(n, m, λ, α, ρ) is given by (5.4). Indeed we find, again from the definition

(1.6), that

∣∣∣∣zf ′(z)
f(z)

− 1
∣∣∣∣ ≤

∞∑
k=j+1

(k − 1)ak|z|k−1

1−
∞∑

k=j+1

ak|z|k−1

.

Thus ∣∣∣∣zf ′(z)
f(z)

− 1
∣∣∣∣ ≤ 1− ρ

if
∞∑

k=j+1

(
k − ρ

1− ρ

)
ak|z|k−1 ≤ 1. (5.5)

But, by Theorem 1, (5.5) will be if(
k − ρ

1− ρ

)
|z|k−1 ≤ kn(k − α)[1 + (km − 1)λ]

1− α
,

that is, if

|z| ≤
[
(1− ρ)kn(k − α)[1 + (km − 1)λ]

(k − ρ)(1− α)

] 1
k−1

(k ≥ j + 1). (5.6)

Theorem 9 follows easily from (5.6).
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Corollary 4. Let the function f(z) defined by (1.6) be in the class

Tj(n, m, λ, α). Then f(z) is convex of order ρ (0 ≤ ρ < 1) in |z| < r3, where

r3 = r3(n, m, λ, α, ρ) = inf
k

[
(1− ρ)kn−1(k − α)[1 + (km − 1)λ]

(k − ρ)(1− α)

] 1
k−1

(k ≥ j + 1).

(5.7)

The result is sharp, with the extremal function f(z) given by (2.5).

6. Modified Hadamard products

Let the functions fv(z) (v = 1, 2) be defined by (4.1). The modified

Hadamard product of f1(z) and f2(z) is defined by

f1 ∗ f2(z) = z −
∞∑

k=j+1

ak,1ak,2z
k. (6.1)

Theorem 10. Let each of the functions fv(z) (v = 1, 2) defined by (4.1) be

in the class Tj(n, m, λ, α). Then

f1 ∗ f2(z) ∈ Tj(n, m, λ, β(j, n, m, λ, α)),

where

β(j, n, m, λ, α) = 1− j(1− α)2

(j + 1)n(j + 1− α)2[1 + λ[(j + 1)m − 1]]− (1− α)2
. (6.2)

The result is sharp.

Proof. Employing the technique used earlier by Schild and Silverman [6],

we need to find the largest β = β(j, n, m, λ, α) such that

∞∑
k=j+1

kn(k − β)[1 + (km − 1)λ]
1− β

ak,1ak,2 ≤ 1. (6.3)

Since
∞∑

k=j+1

kn(k − α)[1 + (km − 1)λ]
1− α

ak,1 ≤ 1 (6.4)

and
∞∑

k=j+1

kn(k − α)[1 + (km − 1)λ]
1− α

ak,2 ≤ 1, (6.5)

by the Cauchy-Schwarz inequality, we have
∞∑

k=j+1

kn(k − α)[1 + (km − 1)λ]
1− α

√
ak,1ak,2 ≤ 1. (6.6)
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Thus it is sufficient to show that

kn(k − β)[1 + (km − 1)λ]
1− β

ak,1ak,2 ≤
kn(k − α)[1 + (km − 1)λ]

1− α

√
ak,1ak,2 (k ≥ j + 1),

(6.7)

that is, that
√

ak,1ak,2 ≤
(k − α)(1− β)
(k − β)(1− α)

(k ≥ j + 1). (6.8)

Note that

√
ak,1ak,2 ≤

1− α

kn(k − α)[1 + (km − 1)λ]
(k ≥ j + 1). (6.9)

Consequently, we need only to prove that

1− α

kn(k − α)[1 + (km − 1)λ]
≤ (k − α)(1− β)

(k − β)(1− α)
(k ≥ j + 1), (6.10)

or, equivalently, that

β ≤ 1− (k − 1)(1− α)2

kn(k − α)2[1 + (km − 1)λ]− (1− α)2
(k ≥ j + 1). (6.11)

Since

A(k) = 1− (k − 1)(1− α)2

kn(k − α)2[1 + (km − 1)λ]− (1− α)2
(6.12)

is an increasing function of k (k ≥ j + 1), letting k = j + 1 in (6.12) we obtain

β ≤ A(j + 1) =
j(1− α)2

(j + 1)n(j + 1− α)2[1 + [(j + 1)m − 1]λ]− (1− α)2
, (6.13)

which proves the main assertion of Theorem 10.

Finally, by taking the functions

fv(z) = z − 1− α

(j + 1)n(j + 1− α)[1 + [(j + 1)m − 1]λ]
zj+1 (v = 1, 2), (6.14)

we can see that the result is sharp,

Theorem 11. Let f1(z) ∈ Tj(n, m, λ, α) and f2(z) ∈ Tj(n, m, λ, γ). then

f1 ∗ f2(z) ∈ Tj(n, m, λ, ξ(j, n, m, λ, α, γ)),

where

ξ(j, n, m, λ, α, γ) = (6.15)

= 1− j(1− α)(1− γ)
(j + 1)n(j + 1− α)(j + 1− γ)[1 + [(j + 1)m − 1]λ]− (1− α)(1− γ)

.
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The result is best possible for the functions

f1(z) = z − 1− α

(j + 1)n(j + 1− α)[1 + [(j + 1)m − 1]λ]
zj+1 (6.16)

and

f2(z) = z − 1− γ

(j + 1)n(j + 1− γ)[1 + [(j + 1)m − 1]λ]
zj+1. (6.17)

Proof. Proceeding as in the proof of Theorem 10, we get

ξ ≤ 1− (k − 1)(1− α)(1− γ)
kn(k − α)(k − γ)[1 + (km − 1)λ]− (1− α)(1− γ)

(k ≥ j + 1). (6.18)

Since the right hand side of (6.18) is an increasing function of k, setting

k = j + 1 in (6.18) we obtain (6.15). This completes the proof of Theorem 11.

Corollary 5. Let the functions fv(z) defined by

fv(z) = z −
∞∑

k=j+1

ak,vzk (ak,v ≥ 0, v = 1, 2, 3) (6.19)

be in the class Tj(n, m, λ, α). Then

f1 ∗ f2 ∗ f3(z) ∈ Tj(n, m, λ, δ(j, n, m, λ, α)),

where

δ(j, n, m, λ, α) = 1− j(1− α)3

(j + 1)2n(j + 1− α)3[1 + [(j + 1)m − 1]λ]2 − (1− α)3
. (6.20)

The result is best possible for the functions

fv(z) = z − 1− α

(j + 1)n(j + 1− α)[1 + [(j + 1)m − 1]λ]
zj+1 (v = 1, 2, 3). (6.21)

Proof. From Theorem 10, we have

f1 ∗ f2(z) ∈ Tj(n, m, λ, β(j, n, m, λ, α)),

where β is given by (6.2). Now, using Theorem 11, we get

f1 ∗ f2 ∗ f3(z) ∈ Tj(n, m, λ, δ(j, n, m, λ, α)),

where

δ(j, n, m, λ, α) =

= 1− j(1− α)(1− β)
(j + 1)n(j + 1− α)(j + 1− β)[1 + [(j + 1)m − 1]λ]− (1− α)(1− β)

=

14
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= 1− j(1− α)3

(j + 1)2n(j + 1− α)3[1 + [(j + 1)m − 1]λ]− (1− α)3
.

This completes the proof of Corollary 5.

Theorem 12. Let the functions fv(z) (v = 1, 2) defined by (4.1) be in the

class Tj(n, m, λ, α), then the function

h(z) = z −
∞∑

k=j+1

(a2
k,1 + a2

k,2)z
k (6.22)

belongs to the class Tj(n, m, λ, η(j, n, m, λ, α)), where

η(j, n, m, λ, α) = 1− 2j(1− α)2

(j + 1)n(j + 1− α)2[1 + [(j + 1)m − 1]λ]− 2(1− α)2
. (6.23)

The result is sharp for the functions fv(z) (v = 1, 2) defined by (6.14).

Proof. By virtue of Theorem 1, we obtain
∞∑

k=j+1

[
kn(k − α)[1 + (km − 1)λ]

1− α

]2

a2
k,1 ≤ (6.24)

≤

 ∞∑
k=j+1

kn(k − α)[1 + (km − 1)λ]
1− α

ak,1

2

≤ 1

and
∞∑

k=j+1

[
kn(k − α)[1 + (km − 1)λ]

1− α

]2

a2
k,2 ≤ (6.25)

≤

 ∞∑
k=j+1

kn(k − α)[1 + (km − 1)λ]
1− α

ak,2

2

≤ 1.

It follows from (6.24) and (6.25) that
∞∑

k=j+1

1
2

[
kn(k − α)[1 + (km − 1)λ]

1− α

]2

(a2
k,1 + a2

k,2) ≤ 1. (6.26)

Therefore, we need to find the largest η = η(j, n, m, λ, α) such that

kn(k − η)[1 + (km − 1)λ]
1− η

≤ 1
2

[
kn(k − α)[1 + (km − 1)λ]

1− α

]2

(k ≥ j + 1), (6.27)

that is,

η ≤ 1− 2(k − 1)(1− α)2

(k − α)2kn[1 + (km − 1)λ]− 2(1− α)2
(k ≥ j + 1). (6.28)

Since

B(k) = 1− 2(k − 1)(1− α)2

kn(k − α)2[1 + (km − 1)λ]− 2(1− α)2
. (6.29)
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is an increasing function of k (k ≥ j + 1), we readily have

η ≤ B(j + 1) = 1− 2j(1− α)2

(j + 1)n(j + 1− α)2[1 + [(j + 1)m − 1]λ]− 2(1− α)2
, (6.30)

and Theorem 12 follows at once.

7. A family of integral operators

Theorem 13. Let the function f(z) defined by (1.6) be in the class

Tj(n, m, λ, α), and let c be a real number such that c > −1. Then the function F (z)

defined by

F (z) =
c + 1
zc

∫ z

0

tc−1f(t)dt (c > −1) (7.1)

also belongs to the class Tj(n, m, λ, α).

Proof. From the representation (7.1) of F (z), it follows that

F (z) = z −
∞∑

k=j+1

bkzk,

where

bk =
(

c + 1
c + k

)
ak.

Therefore, we have

∞∑
k=j+1

kn(k − α)[1 + (km − 1)λ]bk =
∞∑

k=j+1

kn(k − α)[1 + (km − 1)λ]
(

c + 1
c + k

)
ak ≤

≤
∞∑

k=j+1

kn(k − α)[1 + (km − 1)λ]ak ≤ 1− α,

since f(z) ∈ Tj(n, m, λ, α). Hence, by Theorem 1, F (z) ∈ Tj(n, m, λ, α).

Theorem 14. Let the function

F (z) = z −
∞∑

k=j+1

akzk (ak ≥ 0, j ∈ N)

be in the class Tj(n, m, λ, α), and let c be a real number such that c > −1. Then the

function f(z) given by (7.1) is univalent in |z| < R∗, where

R∗ = inf
k

[
(k − α)kn−1[1 + (km − 1)λ](c + 1)

(1− α)(c + k)

] 1
k−1

(k ≥ j + 1). (7.2)

The result is sharp.
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Proof. From (7.1), we have

f(z) =
z1−c(zcF (z))′

c + 1
= z −

∞∑
k=j+1

(
c + k

c + 1

)
akzk.

In order to obtain the required result, it suffices to show that

|f ′(z)− 1| < 1 whenever |z| < R∗,

where R∗ is given by (7.2). Now

|f ′(z)− 1| ≤
∞∑

k=j+1

k(c + k)
c + 1

ak|z|k−1.

Thus |f ′(z)− 1| < 1 if
∞∑

k=j+1

k(c + k)
c + 1

ak|z|k−1 < 1. (7.3)

But Theorem 1 confirms that
∞∑

k=j+1

kn(k − α)[1 + (km − 1)λ]
1− α

ak ≤ 1. (7.4)

Hence (7.3) will be satisfied if

k(c + k)
c + 1

|z|k−1 <
kn(k − α)[1 + (km − 1)λ]

1− α
,

that is, if

|z| <
[
(k − α)kn−1[1 + (km − 1)λ](c + 1)

(1− α)(c + k)

] 1
k−1

(k ≥ j + 1). (7.5)

Therefore, the function f(z) given by (7.1) is univalent in |z| < R∗. Sharpness

of the result follows if we take

f(z) = z − (1− α)(c + k)
kn(k − α)[1 + (km − 1)λ](c + 1)

zk (k ≥ j + 1). (7.6)
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume XLVI, Number 3, September 2001

PROJECTORS WITH RESPECT TO SOME SPECIAL SCHUNCK
CLASSES

RODICA COVACI

Abstract. Let π be a set of primes and π′ the complement to π in the

set of all primes. The paper deals with establishing the projectors with

respect to some special Schunck classes: the class Sπ of all solvable π-

groups, the class N of all finite nilpotent groups and the class Gπ′ of all

π′-groups. A new proof is given for some of W. Gaschütz’s results from

[7] which show that, in any finite solvable group, the Sπ-projectors are the

Hall π-subgroups and the N -projectors are the Carter subgroups. Finally,

we prove that, in any finite π-solvable group, the Gπ′ -covering subgroups

are exactly the Hall π′-subgroups. Hence, we deduce that, in any finite

π-solvable group, the Gπ′ -projectors coincide with the Hall π′-subgroups.

1. Preliminaries

All groups considered in the paper are finite. We denote by π an arbitrary

set of primes and by π′ the complement to π in the set of all primes.

We remind some useful definitions:

Definition 1.1. a) We call X a class of groups if:

(1) {1} ∈ X;

(2) if G ∈ X and f is an isomorphism of G then f(G) ∈ X.

b) A class X of groups is a homomorph if X is closed under homomorphisms,

i.e. if G ∈ X and N is a normal subgroup of G then G/N ∈ X.

c) A group G is primitive if there is a maximal subgroup W of G with

coreGW = {1},

where

coreGW = ∩{W g/g ∈ G}.

1991 Mathematics Subject Classification. 20D10.

Key words and phrases. solvable groups, Schunck class, projector.
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d) A homomorph X is a Schunck class if X is primitively closed, i.e. if any

group G, all of whose primitive factor groups are in X, is itself in X.

Definition 1.2. Let X be a class of groups, G a group and H ≤ G.

a) H is X-maximal in G if:

(1) H ∈ X;

(2) H ≤ K ≤ G, K ∈ X ⇒ H = K.

b) H is an X-projector of G if for any normal subgroup N of G, HN/N is

X-maximal in G/N .

c) H is an X-covering subgroup of G if:

(1) H ∈ X;

(2) H ≤ K ≤ G, K0 E K, K/K0 ∈ X ⇒ K = HK0.

Definition 1.3. a) A group G is π-solvable if any chief factor of G is either

a solvable π-group or a π′-group. If π is the set of all primes, we obtain the notion of

solvable group.

b) A class X of groups is π-closed if:

G/Oπ′(G) ∈ X ⇒ G ∈ X,

where Oπ′(G) denotes the largest normal π′-subgroup of G. We shall call π-

homomorph, respectively π-Schunck class a π-closed homomorph, respectively a π-

closed Schunck class.

Theorem 1.4. ([6]) Let X be a homomorph, G a group and H ≤ K ≤ G. If

H is an X-covering subgroup of G, then H is an X-covering subgroup of K.

The connection between the special subgroups introduced above is given in

[7] and in [4] and is resumed in the following theorem:

Theorem 1.5. a) Let X be a class of groups, G a group and H a subgroup

of G. If H is an X-covering subgroup or an X-projector of G then H is X-maximal

in G.

b) Let X be a homomorph, G a group and H a subgroup of G. H is an

X-covering subgroup of G is and only if H is an X-projector in any subgroup K with

H ≤ K ≤ G. Particularly, any X-covering subgroup of G is an X-projector of G.

c) Let X be a Schunck class, G a finite solvable group, S and X-projector of

G and S ≤ H ≤ G. Then S is an X-projector in H.
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d) Let X be a Schunck class, G a finite solvable group and S a subgroup of

G. The following conditions are equivalent:

(1) S is an X-projector of G;

(2) S is an X-covering subgroup of G.

The following properties of projectors are also of special interest for this

paper:

Theorem 1.6. ([7]) Let X be a homomorph, G a group and H ≤ G.

a) H is an X-projector of G is and only if:

(1) H is X-maximal in G;

(2) for any minimal normal subgroup M of G, HM/M is an X-projector in

G/M .

b) If H is an X-projector of G and N is a normal subgroup of G, then HN/N

is an X-projector of G/N . This property holds for X-covering subgroups too.

Theorem 1.7. ([7]) Let X be a Schunck class, G a solvable group and B a

normal abelian subgroup of G. If:

(1) SB/B is an X-projector of G/B;

(2) S is X-maximal in SB,

then S is an X-projector of G.

In [2], [3] and [4], we established for finite π-solvable groups the following

result:

Theorem 1.8. ([2]) Let X be a π-homomorph.

a) X is a Schunck class if and only if any π-solvable group has X-covering

subgroups.

b) Any two X-covering subgroups of a π-solvable group G are conjugate in G.

Theorem 1.9. ([3], [4]) Let X be a π-homomorph. Then X is a Schunck

class if and only if any π-solvable group has X-projectors.

Corollary 1.10. Let X be a π-homomorph. The following conditions are

equivalent:

(1) X is a Schunck class;

(2) any π-solvable group has X-covering subgroups;

(3) any π-solvable group has X-projectors.
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Theorem 1.11. ([3]) If X is a π-Schunck class, then any two X-projectors

of a π-solvable group G are conjugate in G.

Particularly, for π the set of all primes, theorems 1.8-1.11 give well-known

results from [7] and [10] referring to finite solvable groups.

2. Projectors with respect to the class Sπ

Denote by Sπ the class of all solvable π-groups. We give a new proof

for the following result given by W. Gaschütz in [7]: In any finite solvable group, the

Sπ-projectors are exactly the Hall π-subgroups.

A positive integer n is said to be a π-number if for any prime divisor p of n

we have p ∈ π.

Definition 2.1. a) A finite group G is a π-group if |G| is a π-number.

b) A subgroup S of a group G is a π-subgroup if S is a π-group.

c) A subgroup S of a group G is an Hall π-subgroup if:

(1) S is a π-subgroup;

(2) (|S|, |G : S|) = 1, i.e. |G : S| is a π′-number.

We shall use the following properties of the Hall subgroups ([9]):

Proposition 2.2. If G is a group, S is an Hall π-subgroup of G and H is a

subgroup of G such that S ≤ H ≤ G, then S is an Hall π-subgroup of H.

Proposition 2.3. If G is a group, S is an Hall π-subgroup of G and N is a

normal subgroup of G, then SN/N is an Hall π-subgroup of G/N .

The Hall subgroups were given in [8]. Ph. Hall studied them for finite solvable

groups. In [5], S.A. Čunihin extended this study for finite π-solvable groups.

Theorem 2.4. (Ph. Hall, S.A. Čunihin, [9]) a) Any finite π-solvable group

G has Hall π-subgroups and Hall π′-subgroups.

b) If G is a finite π-solvable group, then:

(i) any two Hall π-subgroups of G are conjugate in G;

(ii) any two Hall π′-subgroups of G are conjugate in G.

Particularly, any finite solvable group G has Hall π-subgroups and they are

conjugate in G.

In preparation to the main theorem of this section, we prove the following

results:
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Theorem 2.5. Sπ is a homomorph.

Proof. Let G ∈ Sπ and N be a normal subgroup of G. G being solvable,

G/N is also solvable. G being a π-group, from |G/N | divides |G| we obtain that G/N

is a
√

π-group too. �

Theorem 2.6. If G is a finite solvable group and S is an Hall π-subgroup of

G, then S is Sπ-maximal in G.

Proof. By induction on |G|. We verify the two conditions from 1.2.a).

(1) S ∈ Sπ. Indeed, S is a π-group and S is solvable being a subgroup of a

solvable group.

(2) Let S ≤ H ≤ G and H ∈ Sπ. We prove that S = H. By 2.2, S is an Hall

π-subgroup of H. We consider two cases:

a) H = G. Then G ∈ Sπ and G is its own Hall π-subgroup. But S is

also an Hall π-subgroup of G. Applying 2.4.b), S and G are conjugate in G, hence

S = G = H.

b) H 6= G. By the induction, S is Sπ-maximal in H. But H ∈ Sπ. Hence

S = H. �

The main theorem in this section is from [7] and we give here a new proof.

Theorem 2.7. Let G be a finite solvable group and S a subgroup of G. S is

an Sπ-projector of G if and only if S is an Hall π-subgroup of G.

Proof. By induction on |G|.

Let S be an Sπ-projector of G. We prove like in [7] that S is an Hall π-

subgroup of G. Clearly S is a π-subgroup of G. We show that |G : S| is a π′-number.

Let M be a minimal normal subgroup of G. G being solvable, we have |M | = pk,

where p is a prime. Put S′ = SM . By 1.6, S′/M is an Sπ-projector of G/M . Hence,

by the induction, S′/M is an Hall π-subgroup of G/M . Two cases are considered:

a) p ∈ π. Then S′ ∈ Sπ. But, by 1.5.a), S is Sπ-maximal in G. So S = S′.

Then

|G : S| = |G : S′| = |G/M : S′/M | is a π′-number.

b) p 6∈ π. Then M ∩ S = {1}. So |G : S| is a π′-number, because:

|G : S| = |G : S′||S′ : S| = |G/M : S′/M ||SM : S|,
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where |G/M : S′M | is a π′-number and |SM : S| = |M : M ∩ S| = |M | = pk, where

p 6∈ π, hence p ∈ π′.

The converse has an original proof based on 1.6.a) and 2.6. Let S be an Hall

π-subgroup of G. We shall prove that S is an Sπ-projector of G. We use 1.6.a).

(1) S is Sπ-maximal in G, by 2.6.

(2) Let M be a minimal normal subgroup of G. We prove that SM/M is an

Sπ-projector of G/M . Indeed, by 2.3, SM/M is an Hall π-subgroup of G/M . Hence,

by the induction, we obtain that SM/M is an Sπ-projector of G/M . �

Corollary 2.8. Sπ is a Schunck class.

Proof. From 1.9, 2.7 and 2.4. �

Corollary 2.9. Let G be a finite solvable group and S a subgroup of G. The

following conditions are equivalent:

(1) S is an Hall π-subgroup of G;

(2) S is an Sπ-projector of G;

(3) S is an Sπ-covering subgroup of G.

Proof. From 2.7, 2.8 and 1.5.d). �

3. Projectors with respect to the class N

Denote by N the class of all finite nilpotent groups. We shall give a new

proof for the following W. Gaschütz’s result from [7]: In any finite solvable group, the

N -projectors are exactly the Carte subgroups.

Definition 3.1. Let G be a group and S a subgroup of G. S is a Carter

subgroup of G if:

(1) S is nilpotent;

(2) NG(S) = S.

The following properties given in [1] are important for our considerations:

Proposition 3.2. If G is a group, S is a Carter subgroup of G and H is a

subgroup of G such that S ≤ H ≤ G, then S is a Carter subgroup of H.

Proposition 3.3. If G is a group, S is a Carter subgroup of G and N is a

normal subgroup of G, then SN/N is a Carter subgroup of G/N .

Theorem 3.4. (R. Carter [1]) Let G be a finite solvable group. Then:

a) G has Carter subgroups;
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b) any two Carter subgroups of G are conjugate in G.

Theorem 3.5. N is a Schunck class.

Proof. Obviously N is a homomorph. Further, N is primitively closed.

Indeed, if G is a group such that all primitive factor groups G/N ∈ N , we can prove

that G ∈ N . For this, we use Wieland’s criterium for finite groups to be nilpotent: we

show that any maximal subgroup W of G is normal in G. Denote by N = coreGW .

Then G/N is primitive, hence G/N ∈ N . But W/N is maximal in G/N . Applying

now Wieland’s criterium for the nilpotent group G/N , we obtain that W/N is normal

in G/N , hence W is normal in G. �

Theorem 3.6. If G is a finite solvable group and S is a Carter subgroup of

G, then S is N -maximal in G.

Proof. By induction on |G|.

(1) S ∈ N , because S is a Carter subgroup.

(2) Let S ≤ H ≤ G with H ∈ N . We prove that S = H. Indeed, we have by

3.2 that S is a Carter subgroup of H. Consider two cases:

a) H = G. Then G ∈ N and so G is its own Carter subgroup. Applying

3.4.b), S and G are conjugate in G. It follows that S = G = H.

b) H 6= G. By the induction, S is N -maximal in H. But H ∈ N . Hence

S = H. �

The main result is:

Theorem 3.7. Let G be a finite solvable group and S a subgroup of G. S is

an N -projector of G if and only if S is a Carter subgroup of G.

Proof. Let S be an N -projector of G. We prove that S is a Carter subgroup

of G like in [7]. Clearly S is nilpotent. In order to show that NG(S) = S, let us

suppose that S 6= NG(S). Then S is maximal in H, where H ≤ NG(S). So S is a

normal subgroup in H. Now H solvable and S maximal in H imply |H : S| = pk,

with p prime. So H/S is a finite p-group, hence H/S is nilpotent. By 1.5.c), S is an

N -projector in H. From S normal in H, follows by 1.6.b) that SS/S is an N -projector

in H/S, hence SS/S is N -maximal in H/S ∈ N . So S = H, in contradiction with

the choice of H.

The converse has an original proof, based on 1.7 and 3.6. Let S be a Carter

subgroup of G. We prove that S is an N -projector of G by using 1.7. Let B be
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a minimal normal subgroup of G. G being solvable, B is abelian. By 3.5, N is a

Schunck class. By 3.6 we have that S is N -maximal in G and so S is N -maximal in

SB. Further, because, by 3.3, SB/B is a Carter subgroup of G/B, we can use the

induction for G/B and so SB/B is an N -projector of G/B. We apply now 1.7 and

so S is an N -projector of G. �

Corollary 3.8. Let G be a finite solvable group and S a subgroup of G. The

following conditions are equivalent:

(1) S is a Carter subgroup of G;

(2) S is an N -projector of G;

(3) S is an N -covering subgroup of G.

Proof. From 3.7 and 1.5.d). �

4. Projectors with respect to the class Gπ′

In this section we establish the Gπ′ -projectors of a finite π-solvable group,

proving that they coincide with the Hall π′-subgroups.

Remind that π is an arbitrary set of primes and π′ is the complement to π in

the set of all primes. Denote by Wπ the class of all finite π-solvable groups and by

Gπ′ the class of all π′-groups. Obviously

Gπ′ ⊆ Wπ.

All groups considered in this section are finite π-solvable groups.

Theorem 4.1. The class Gπ′ is a π-homomorph.

Proof. Let G ∈ Gπ′ and N a normal subgroup of G. Then |G/N |/|G|, hence

G/N ∈ Gπ′ . So Gπ′ is a homomorph. Gπ′ is π-closed. Indeed, if G/Oπ′(G) ∈ Gπ′ ,

then

|G| = |G/Oπ′(G)||Oπ′(G)|

is a π′-number and so G ∈ Gπ′ . �

Theorem 4.2. Let G be a finite π-solvable group and H a subgroup of G. H

is a Gπ′-covering subgroup of G is and only if H is an Hall π′-subgroup of G.

Proof. Let H be a Gπ′ -covering subgroup of G. We prove by induction on

|G| that H is an Hall π′-subgroup of G.

(1) H is a π′-subgroup of G, because H ∈ Gπ′ .
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(2) (|H|, |G : H|) = 1. Indeed, let M be a minimal normal subgroup of G.

H being a Gπ′ -covering subgroup of G, HM/M is by 1.6.b) a Gπ′ -covering subgroup

of G/M , hence, by the induction, HM/M is an Hall π′-subgroup of G/M . Being a

minimal normal subgroup of the π-solvable group G, M is either a solvable π-group

or a π′-group. We consider now two cases:

a) G/M ∈ Gπ′ . Then, HM/M being Gπ′ -maximal in G/M (see 1.5.a)), we

have HM/M = G/M and so HM = G. Let us suppose now that M is a solvable

π-group. Then

|G : H| = |HM : H| = |M : H ∩M |/|M |

is a π-number. Suppose that M is a π′-group. We know that G/M = HM/M ∈ Gπ′ .

Then |G| = |G/M ||M | is a π′-number. So G ∈ Gπ′ . But H is Gπ′ -maximal in G.

Hence H = G is its own Hall π′-subgroup.

b) G/M 6∈ Gπ′ . Then HM/M 6= G/M , hence HM 6= G. By 1.4, H is a

Gπ′ -covering subgroup in HM and it follows, by the induction, that H is a Hall π′-

subgroup of HM . Then |HM : H| is a π-number and |G : HM | = |G/M : HM/M |

is also a π-number. It follows that

|G : H| = |G : HM ||HM : H|

is a π-number.

Conversely, let H be an Hall π′-subgroup of G. We shall prove that H is an

Gπ′ -covering subgroup of G.

(1) H ∈ Gπ′ is clear.

(2) H ≤ L ≤ G, L0 E L, L/L0 ∈ Gπ′ imply L = HL0. We prove this by

induction on |G|. Two cases are considered:

(i) L 6= G. By 2.2, H is an Hall π′-subgroup of L. Applying the induction,

from H ≤ L = L, L0 E L, L/L0 ∈ Gπ′ follows L = HL0.

(ii) L = G. Again two cases are considered. If L0 = 1, then G = L ∼= L/L0 ∈

Gπ′ and G is its own Hall π′-subgroup. By 2.4.b), H and G are conjugate in G. Then

L = G = H = HL0.

If L0 6= 1, we have that there is a minimal normal subgroup M of G such that

M ≤ L0. From 2.3, HM/M is an Hall π′-subgroup of G/M . We apply the induction
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for G/M . Then, from

HM/M ≤ G/M = G/M, L0/M E G/M, (G/M)/(L0/M) ∼= G/L0 = L/L0 ∈ Gπ′ ,

it follows that

G/M = (HM/M)(L0/M).

Hence L = G = HML0 = HL0. �

Corollary 4.3. The class Gπ′ is a π-Schunck class.

Proof. Follows from 1.10, 4.1, 4.2 and 2.4.a). �

Corollary 4.4. Let G be a finite π-solvable group and H ≤ G. If H is an

Hall π′-subgroup of G, then H is a Gπ′-projector in G.

Proof. H being a Hall π′-subgroup of G, H is by 4.2 a Gπ′ -covering subgroup

of G. Then, H is by 1.5.b) a Gπ′ -projector in G. �

The main theorem in this section is the following:

Theorem 4.5. Let G be a finite π-solvable group and H a subgroup of G. H

is a Gπ′-projector of G if and only if H is an Hall π′-subgroup of G.

Proof. If H is an Hall π′-subgroup of G, then H is by 4.4 a Gπ′ -projector

of G.

Conversely, let H be a Gπ′ -projector of G. We prove by induction on |G|

that H is an Hall π′-subgroup of G.

(1) H is a π′-subgroup of G because, H being Gπ′ -maximal in G (see 1.5.a)),

we have H ∈ Gπ′ .

(2) |G : H| is a π-number. Indeed, let M be a minimal normal subgroup of

G. HM/M is by 1.6.b) a Gπ′ -projector in G/M , hence by the induction HM/M is

an Hall π′-subgroup of G/M . It follows that

|G : HM | = |G/M : HM/M |

is a π-number. M being a minimal normal subgroup of the π-solvable group G, M is

either a solvable π-group or a π′-group.

a) If M is a solvable π-group, then |G : H| = |G : HM ||HM : H|, where

|HM : H| = |M : H ∩M |/|M | is a π-number. It follows that |G : H| is a π-number.

b) If M is a π′-group, using that HM/M is a π′-group we notice that HM

is a π′-group. But H being a Gπ′ -projector in G, H is by 1.5.a) Gπ′ -maximal in G.
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Hence from H ≤ HM ≤ G and HM ∈ Gπ′ follows that H = HM . Then

|G : H| = |G : HM | = |G/M : HM/M |

is a π-number. �
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume XLVI, Number 3, September 2001

A NOTE ON τ-QUASI-INJECTIVE MODULES

SEPTIMIU CRIVEI

Abstract. Let τ be a hereditary torsion theory. We mention a character-

ization of τ -quasi-injective modules, as fully invariant submodules of their

τ -injective hull, and we give some properties for such modules. More-

over, the paper studies when τ -quasi-injective modules are quasi-injective

or not, in the case of the hereditary torsion theory τD whose τD-torsion

class consists of all semiartinian modules and τD-torsionfree class consists

of all modules with zero socle.

1. Preliminaries

Throughout this paper we will denote by R an associative ring with non-

zero identity and by τ a hereditary torsion theory on the category R-mod of left

R-modules. All modules considered in the paper will be left unital R-modules.

A module A is said to be semiartinian if every non-zero homomorphic image

of A contains a simple submodule [6, Chapter I, Definition 11.4.6]. Let A be a module

and let B be a submodule of A. Then A is semiartinian if and only if B and A/B are

semiartinian [6, Chapter I, Proposition 11.4.8].

A submodule B of a module A is said to be τ -dense (τ -closed) in A if A/B is τ -

torsion (τ -torsionfree). A non-zero module A is called τ -cocritical if A is τ -torsionfree

and each of its non-zero submodules is τ -dense in A.

A module A is said to be τ -injective if Ext1R(B,A) = 0 for every τ -torsion

module B. A module A is τ -injective if and only if A is a τ -closed submodule of its

injective hull [5, Proposition 8.2]. The class of τ -injective modules is closed under

taking direct products, direct summands and extensions [5, Proposition 8.4]. For any

module A, we will denote by E(A) and Eτ (A) the injective hull and the τ -injective

hull of A respectively.

1991 Mathematics Subject Classification. Primary 16S90; Secondary 16D70.
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In this paper, a non-zero module which is the τ -injective hull of each of its

non-zero submodules will be called minimal τ -injective.

For additional information on torsion theories we refer to [5].

2. Some properties

A module A is said to be τ -quasi-injective if whenever B is a τ -dense sub-

module of A, any g ∈ HomR(B,A) can be extended to h ∈ EndR(A) [1, Definition

4.1.19].

Remarks. a) Every quasi-injective module is τ -quasi-injective.

b) Every τ -injective module is τ -quasi-injective.

c) A ring R is a τ -quasi-injective R-module if and only if it is τ -injective.

d) If A is a τ -torsion τ -quasi-injective module, then A is quasi-injective.

The following theorem gives a characterization of τ -quasi-injective modules

similar to the well known characterization of quasi-injective modules, which are fully

invariant submodules of their injective hulls.

Theorem 2.1. Let A be a module. Then A is τ -quasi-injective if and only

if A is a fully invariant submodule of Eτ (A).

Proof. We may suppose that A 6= 0. Denote K = EndR(Eτ (A)).

Assume first that A is τ -quasi-injective and let f ∈ K. Denote g = f |A and

B = g−1(A). Consider the following commutative diagram

0 - B
i- A

j- Eτ (A) - Eτ (A)/A

	���v

��
�
�
�
�
�
�

g

	�
�

�
�

�
�

�

f
A

u
?

Eτ (A)

k
?

where i, j, k are inclusion monomorphisms and u : B → A is defined by u(b) = g(b)

for every b ∈ B.

We will show that B is a τ -dense submodule of A. The homomorphism g

induces a monomorphism w : A/B → Eτ (A)/A, defined by w(a + B) = g(a) + A for
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every a ∈ A. Then A/B is τ -torsion because Em(A)/A is τ -torsion. Hence B is a

τ -dense submodule of A.

Since A is τ -quasi-injective, there exists v ∈ EndR(A) such that vi = u.

By τ -injectivity of Eτ (A), there exists h ∈ K such that hj = kv. Thus h(A) ⊆ A.

Assume (h − f)(A) 6= 0. Then (h − f)(A) ∩ A 6= 0 and there exist x, y ∈ A, y 6= 0

such that y = (h − f)(x). It follows that (h − f)(x) = v(x) − f(x) = y, hence

f(x) = v(x)− y ∈ A. Then x ∈ B and y = v(x)− f(x) = 0, contradiction. Therefore,

(h − f)(A) = 0, i.e. f(A) = h(A) ⊆ A. Hence A is a fully invariant submodule of

Eτ (A).

Suppose now that A is a fully invariant submodule of Eτ (A). Let B be a

τ -dense submodule of A and let g ∈ HomR(B,A). The module Eτ (A)/B is τ -torsion

because Eτ (A)/A and A/B are τ -torsion. Then g extends to h ∈ K because Eτ (A)

is τ -injective. Since h(A) ⊆ A, g extends to an endomorphism of A. Therefore A is

τ -quasi-injective. �

Corollary 2.2. If every τ -injective module is injective, then every τ -quasi-

injective module is quasi-injective.

Proof. By Theorem 2.1, if A is a τ -quasi-injective module, then A is a fully

invariant submodule of Eτ (A). But Eτ (A) = E(A). Hence A is a fully invariant

submodule of E(A), i.e. A is quasi-injective. �

Remark. By Theorem 2.1 and in a similar way as for quasi-injective modules,

it can be easily shown that the class of τ -quasi-injective modules is closed under taking

direct summands and any finite direct sum of copies of a τ -quasi-injective module is

τ -quasi-injective.

Theorem 2.3. Let

0 −→ A
f−→ B

g−→ C −→ 0

be a short exact sequence of modules and let h : B → A ⊕ D be a monomorphism,

where D is a module. If (hf)(A) is a τ -dense submodule of A ⊕ D and A ⊕ D is

τ -quasi-injective, then the above sequence splits.

Proof. Consider the diagram
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0 - A
f - B

g- C - 0

A⊕D

α
?

�θ
A⊕D

h
?

where α : A → A⊕D is the canonical injection. Since (A⊕D)/(hf)(A) is τ -torsion

and A⊕D is τ -quasi-injective, there exists an endomorphism θ : A⊕D → A⊕D such

that θhf = α. Let p : A⊕D → A be the canonical projection and define γ : B → A

by γ = pθh. Then γf = pθhf = pα = 1A, hence the above sequence splits. �

Corollary 2.4. Let f : A → B be a monomorphism of modules. If B is

τ -torsion and A⊕B is τ -quasi-injective, then A⊕B is τ -injective if and only if B is

τ -injective.

Proof. The ”if” part is obvious.

For the ”only if” part, in the Theorem 2.3, let h : B → A⊕B be the canonical

injection. Since B is τ -torsion, A and B/f(A) are τ -torsion. Hence (A⊕B)/(hf)(A) ∼=

(A ⊕ B)/f(A) is τ -torsion. By Theorem 2.3, f(A) is a direct summand of B, hence

A is τ -injective. Therefore A⊕B is τ -injective. �

3. The Dickson torsion theory

In this section we will establish further results in the case of a particular

hereditary torsion theory, namely the Dickson torsion theory.

For let T be the class of all semiartinian R-modules and let F be the class

of all R-modules with zero socle. Then τD = (T ,F) is a hereditary torsion theory.

The corresponding Gabriel filter F consists of all τD-dense left ideals of R (i.e. all

left ideals of R with R/I left semiartinian as an R-module).

An R-module D is τD-injective if any homomorphism from any left ideal

I ∈ F to D extends to R or equivalently if D is injective with respect to every short

exact sequence of modules 0 −→ A −→ B −→ C −→ 0, where C is τD-torsion (i.e. C

is semiartinian).

We consider now the following generalization of injectivity for modules. An

R-module D is said to be m-injective if for every maximal left ideal M of R the

R-module D is injective with respect to the inclusion monomorphism u : M → R [2,

Definition 1].
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The notions of τD-injectivity and m-injectivity are in fact the same [2, The-

orem 6]. By this reason, in the sequel we will use the notation m instead of τD. For

instance, injective and quasi-injective modules with respect to the Dickson torsion

theory will be called m-injective and m-quasi-injective modules respectively.

From the general context of torsion theories it follows that every module

A has an m-injective hull, denoted by Em(A), contained in E(A), unique up to an

isomorphism.

We have seen that every quasi-injective module is τ -quasi-injective. For the

Dickson torsion theory we will give several cases when quasi-injectivity and m-quasi-

injectivity are or are not the same.

Proposition 3.1. Let R be either left semiartinian or left m-cocritical. Then

every m-quasi-injective R-module is quasi-injective.

Proof. In both cases every, every non-zero left ideal is m-dense in R, hence

every m-injective module is injective. Now the result follows by Corollary 2.2. �

Corollary 3.2. Let R be a commutative noetherian domain with dim R ≤ 1.

Then every m-quasi-injective R-module is quasi-injective.

Proof. By hypotheses, every m-injective module is injective [2, Corollary 13].

Now the result follows by Corollary 2.2. �

In the sequel we will see that there exist m-quasi-injective modules which are

not m-injective and even quasi-injective modules which are not m-injective.

Theorem 3.3. Let A be an m-quasi-injective module which is not m-injective

and denote M = Em(A). Consider the Loewy series of M/A

0 = S0(M/A) ⊆ S1(M/A) ⊆ · · · ⊆ Sα(M/A) ⊆ Sα+1(M/A) ⊆ . . .

where, for each ordinal α ≥ 0,

Sα+1(M/A)/Sα(M/A) = Soc((M/A)/Sα(M/A))

and if α is a limit ordinal, then

Sα(M/A) =
⋃

0≤β<α

Sβ(M/A) .

For every ordinal α ≥ 0, let Mα be a submodule of M be such that Sα(M/A) =

Mα/A.
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Then every non-zero proper submodule Mα of M is m-quasi-injective, but not

m-injective.

Proof. Let α ≥ 1 be an ordinal such that Mα is a proper submodule of M

and let f ∈ EndR(M). Since A is m-quasi-injective, f(A) ⊆ A by Theorem 2.1.

Then f induces an endomorphism f∗ ∈ EndR(M/A). Since Mα/A = Sα(M/A) is

fully invariant [4, 3.11, p.25], f∗(Mα/A) ⊆ Mα/A, therefore f(Mα) ⊆ Mα, i.e. Mα

is m-quasi-injective. On the other hand, Mα is a proper submodule of Em(A) = M ,

hence Mα is not m-injective. �

Theorem 3.4. Let S be a simple module which is not m-injective and denote

M = Em(S). Consider the Loewy series of M

0 = S0(M) ⊆ S1(M) ⊆ · · · ⊆ Sα(M) ⊆ Sα+1(M) ⊆ . . .

where, for each ordinal α ≥ 0, Sα+1(M)/Sα(M) = Soc(M/Sα(M)) and if α is a limit

ordinal, then Sα(M) =
⋃

0≤β<α Sβ(M).

Then every non-zero proper submodule Sα(M) of M is quasi-injective, but

not m-injective.

Proof. Let α ≥ 1 be an ordinal such that Sα(M) is a proper submodule of

M . Then Sα(M) is a fully invariant submodule of M [4, 3.11, p.25], therefore m-

quasi-injective by Theorem 2.1. Also Sα(M) is semiartinian as a submodule of the

semiartinian module M . It follows that Sα(M) is quasi-injective. Since M = Em(S)

is minimal m-injective, Sα(M) is not m-injective. �

We have noted that every quasi-injective module is m-quasi-injective. The

converse is not true, as we can see in the following example.

Example 3.5. Let R be a unique factorization domain such that every

maximal ideal of R is not principal. Then R is an m-injective R-module which is not

injective [2, Theorem 15]. Hence R is m-quasi-injective. Since R is quasi-injective if

and only if R is injective, it follows that R is not quasi-injective.
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A DIFFUSION PROBLEM IN A CIRCULAR DOMAIN IN A
POROUS LAYER

T. GROŞAN AND I. POP

1. Introduction

Transport and flow phenomena in porous media or industrial synthetic

porous materials, arise in many diverse fields of science and engineering, ranging from

agricultural, biomedical, construction, ceramic, chemical, and petroleum engineering

to food and soil science, and powder technology. Fifty percent of more of the origi-

nal oil-in-plan is left in a typical oil reservoir by traditional recovery techniques. Oil

recovery processes constitute only a small fraction of an enormous, and still rapidly

growing, literature on porous media. In addition to oil recovery processes, the closely

related areas of soil science and hydrology are perhaps the best – established topics.

The study of groundwater flow and the restoration of aquifers that have been contam-

inated by various pollutants are important current areas of research in porous media

problems. The construction industry, transmission of water by building materials

is also an important problem that uses porous media. Phenomena involving porous

media are also numerous. Recent books by Ingham and Pop [1], Nield and Bejan [2],

Vafai [3] and Pop and Ingham [4] on transport phenomena in porous media clearly

demonstrate that flows in porous media are becoming a classical subject, once where

earlier developments have been confirmed by a large number of studies.

The present paper studies a diffusion problem in a porous layer of circular

form and thickness ∆z. We suppose that the pressure p does not vary with height.

Thus, the fluid motion is reduced to two – dimensional flow in a circular domain. We

assume that the domain’s boundary is impermeable, that at the moment t = 0 the
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fluid has an initial pressure, pi, and that a negative source is placed in the centre of

the domain. We will study the evolution of the pressure on time.

2. Basic Equation

We consider the two – dimensional flow of a viscous and compressible

fluid generated by a negative source of debit q placed in the porous layer. We study

the fluid motion in a circular domain where the source is placed in the centre of the

domain. The problem is described by the continuity equation, Darcy’s law and the

state equation as established by Cretu [5] or Ungureanu et al. [6]:

∂

∂x
(ρu) +

∂

∂y
(ρv)−Ms (x, y, t) = − ∂

∂t
(mρ) (1)

u = −K

µ

∂p

∂x
, v = −K

µ

∂p

∂y
(2)

ρ = ρ0e
β(p−p0) (3)

where x and y are Cartesian coordinates, u and v are velocity components along x

and y axes, respectively, K is the permeability of porous medium, ρ is the density, µ

is the viscosity, p is the pressure, ρ0 is te density at the atmospheric pressure p0 and

β is the compressibility coefficient defined as

β =
1
ρ

dρ

dp
(4)

Because the compressibility coefficient, β , is small equation (3) can be expressed as:

ρ ≈ ρ0 [1 + β (p− p0)] (5)

If we assume that the porous medium is homogeneous (K is constant in x

and y directions, respectively), µ is independent of the pressure p and that Ms = q

(constant), Eqs.(1) – (5) reduces, after some algebra to the following equation:

∂

∂x

(
Kx

∂p

∂x

)
+

∂

∂y

(
Ky

∂p

∂y

)
− q = c

∂p

∂t
(6)

and it describes the flow of a viscous fluid trough porous medium. In this equation

Kx and Ky denotes the permeability in x and y direction, respectively, q is the debit

and c is the hydraulic capacity.
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3. Application

Because the flow domain is circular the flow is symmetric. Thus, Eq. (5)

is written in polar coordinates (r,θ ) as follows (see, for example, Kohr [7]):

∂2p

∂r2
+

1
r

∂p

∂r
+

µ

k
q =

mβµ

k

∂p

∂t
(7)

where ∂/∂θ = 0 has been used. Equation (7) is now written in the non – dimensional

form by using the new variables

r∗ =
r

R
, p∗ =

p

pi
, t∗ =

kt

R2mβµ
, q∗ =

R2µq

kpi
(8)

where R is the radius of the circular domain. Substituting the variables (8) into Eq.

(7), it becomes

∂2p

∂r2
+

1
r

∂p

∂r
+ q =

∂p

∂t
(9)

where the star has been dropped.

We shall assume now that the boundary of the circular domain is impermeable

and that at t = 0 the initial pressure, pi, is constant and equal with one. Thus, the

initial and boundary conditions of Eq. (8) are

p(r, 0) = 1,
∂p

∂r
(1, t) = 0 (10)

Further, we notice that at r = 0, we have

lim
r→0

∂p
∂r

r
=

∂2p

∂r2
(11)

Therefore, Eq. (9) can be written as

r = 0 : 2
∂2p

∂r2
+ q =

∂p

∂t
(12)

r 6= 0 :
∂2p

∂r2
+

1
r

∂p

∂r
+ q =

∂p

∂t
(13)
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T. GROŞAN AND I. POP

We will use the finite difference operators for the derivatives, which appear

in Eqs. (12) and (13) (see Ixaru [8]):

∂p

∂r
=

1
2h

(pi+1 − pi−1)

∂2p

∂r2
=

1
h2

(pi−1 − 2pi + pi+1) (14)

∂p

∂r
=

1
∆t

(pi,n+1 − pi,n)

For r = 0 ( i = 0 ) we have

∂p

∂r
=

1
2h

(p1 − p−1) = 0 (15)

and we find that p1 = p−1 and the second order derivative becomes

∂2p

∂r2
=

1
h2

(p−1 − 2p0 + p1) =
2
h2

(p1 − p0) (16)

For r = 1 (i = n ) we obtain from the condition of boundary impermeability

∂p

∂r
=

1
2h

(pn+1 − pn−1) = 0 (17)

so that pn+1 = pn−1, and the second order derivative becomes

∂2p

∂r2
=

1
h2

(pn−1 − 2pn + pn+1) =
2
h2

(pn−1 − pn) (18)

The debit function has a nonzero value only in the origin, so that we have:

q(r, t) =


R2µq

kpi
0 for r = 0

0 for r 6= 0
(19)

Using (14) – (19) the equations (12) – (13) become:

j = 0 : p0,n+1 =
2∆t

h2
(p1 − p0) + q∆t + p0,n

j > 0 : pj,n+1 =
∆t

h2
(pj−1 − 2pj + pj+1) +

∆t

jh
(pj+1 − pj−1) + pj,n (20)

j = n : pn,n+1 =
2∆t

h2
(pn−1 − pn) + pn,n
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Equations (20) form an explicit scheme of finite difference for our problem.

For the study of convergence we have used a Fourier analysis. We write the pressure

p like a Fourier series (see Morton and Mayers [9]):

pj,n = λneik(jh) (21)

where λ is the amplification parameter and i =
√
−1. After some algebra using (20)

and (21) we found:

λ = 1− 4
∆t

h2
(22)

Because the condition of converge is that the amplification parameter must

be between –1 and 1 we have the condition

∆t

h2
≤ 1

2
(23)

4. Results and Discussion

The Eqs. (20) have been integrated using the time steep ∆t = 0.01 and

the spatial steep h = 0.2 and we can see from Eq. (23) that the convergence condition

is satisfied. In the Table 1. we have presented the results for q = -1. Obviously the

value of the pressure is decreasing in the entire domain, but the effect is more present

in the center of the domain. At different moment of time the pressure shape is the

same, but the values are lowers, as can see in Figure 1. This behaviour is similar to

the one described by Cretu [5] for a rectangular domain:

TABLE 1. The values of the pressure at different moment of time
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T. GROŞAN AND I. POP

∆t h = 0 h = 0.2 h = 0.4 h = 0.6 h = 0.8 h = 1

0 1 1 1 1 1 1

0.5 0.93955 0.95839 0.96902 0.97565 0.97930 0.98042

1 0.91090 0.92975 0.94042 0.94707 0.95074 0.95188

2 0.85372 0.87257 0.88324 0.88989 0.89355 0.89470

3 0.79654 0.81540 0.82606 0.83271 0.83628 0.83752

4 0.73936 0.75822 0.76888 0.77553 0.77920 0.78034

5 0.68218 0.70104 0.71170 0.71835 0.72202 0.72316

6 0.62500 0.64386 0.65452 0.66117 0.66484 0.66598

7 0.56782 0.58668 0.59734 0.60399 0.60766 0.60880

8 0.51064 0.52950 0.54016 0.54681 0.55048 0.55162

9 0.45346 0.47232 0.48298 0.48963 0.49330 0.49444

10 0.39628 0.41514 0.42580 0.43245 0.43612 0.43726

Fig.1. The variation of pressure p at different moment of time
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INVARIANT SETS OF RANDOM VARIABLES IN COMPLETE
METRIC SPACES

J.KOLUMBÁN AND A. SOÓS

1. Introduction

The most known fractals are invariant sets with respect to a system of

contraction maps, especially the so called self-similar sets. In a famous work, Hutchin-

son [6] first studied systematically the invariant sets in a general framework. He proved

among others the following: Let X be a complete metric space and f1, . . . , fm : X → X

be contraction maps. Then there exists a unique compact set K ⊆ X such that

K =
⋃m

i=1 fi(K).

If the maps fi are similitudes, this invariant set K is said to be self-similar.

Our aim in this work is to generalize the above theorem of Hutchinson for

random variables in complete metric spaces using some results from the theory of

probabilistic metric spaces.

The theory of probabilistic metric spaces, introduced in 1942 by K. Menger

[11], was developed by numerous authors, as it can be realized upon consulting the

list of references in [2], as well as those in [14]. The study of contraction mappings for

probabilistic metric spaces was initiated by V. M. Sehgal [16],[17], and H. Sherwood

[19].

Falconner [4],Graf [5], and Hutchinson and Rüschendorf [6] used contraction

methods to obtain random self-similar fractal sets by essential applying ordinary

metrics to a.e. realization in the random setting. The same ideas were used by

Arbeiter[1], Olsen [12], and Hutchinson and Rüschendorf [7],[8],[9], to obtain random

self similar fractal measures. In these works a finite first moment condition of the

distance function is essential. Using probabilistic metric space techniques, we can

weak this first moment condition, as will be shown for fractal sets in Section 4.
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2. Preliminaries

Let R denote the set of real numbers and R+ := {x ∈ R : x ≥ 0}.

A mapping F :R→ [0, 1] is called a distribution function if it is non-decreasing, left

continuous with inf F = 0.(see [2]) By ∆ we shall denote the set of all distribution

functions F. Let ∆ be ordered by the relation ”≤”: F ≤ G if and only if F (t) ≤ G(t)

for all real t. Also F < G if and only if F ≤ G but F 6= G. We set ∆+ := {F ∈ ∆ :

F (0) = 0}.

Throughout this paper H will denote the Heviside distribution function de-

fined by

H(x) =

 0, x ≤ 0,

1, x > 0.

Let X be a nonempty set. For a mapping F : X ×X → ∆+ and x, y ∈ X we

shall denote F(x, y) by Fx,y, and the value of Fx,y at t ∈ R by Fx,y(t), respectively.

The pair (X,F) is a probabilistic metric space (briefly PM space) if X is a nonempty

set and F : X ×X → ∆+ is a mapping satisfying the following conditions:

10. Fx,y(t) = Fy,x(t) for all x, y ∈ X and t ∈ R;

20. Fx,y(t) = 1, for every t > 0, if and only if x = y;

30. if Fx,y(s) = 1 and Fy,z(t) = 1 then Fx,z(s + t) = 1.

A mapping T : [0, 1]× [0, 1] → [0, 1] is called a t-norm if the following condi-

tions are satisfied:

40. T (a, 1) = a for every a ∈ [0, 1];

50. T (a, b) = T (b, a) for every a, b ∈ [0, 1]

60. if a ≥ c and b ≥ d then T (a, b) ≥ T (c, d);

70. T (a, T (b, c)) = T (T (a, b), c) for every a, b, c ∈ [0, 1].

A Menger space is a triplet (X,F , T ), where (X,F) is a probabilistic metric

space, where T is a t-norm, and instead of 30 we have the stronger condition

80. Fx,y(s + t) ≥ T (Fx,z(s), Fz,y(t)) for all x, y, z ∈ X and s, t ∈ R+.
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The (t, ε)-topology in a Menger space was introduced in 1960 by B. Schweizer

and A. Sklar [13]. The base for the neighbourhoods of an element x ∈ X is given by

{Ux(t, ε) ⊆ X : t > 0, ε ∈]0, 1[},

where

Ux(t, ε) := {y ∈ X : Fx,y(t) > 1− ε}.

If the t-norm T satisfies the condition

sup{T (a, a) : a ∈ [0, 1[} = 1,

then the (t, ε) -topology is metrizable (see [15]).

In 1966, V.M. Sehgal [16] introduced the notion of a contraction mapping

in PM spaces. The mapping f : X → X is said to be a contraction if there exists

r ∈]0, 1[ such that

Ff(x),f(y)(rt) ≥ Fx,y(t)

for every x, y ∈ X and t ∈ R+.

A sequence (xn)n∈N from X is said to be fundamental if

lim
n,m→∞

Fxm,xn
(t) = 1

for all t > 0. The element x ∈ X is called limit of the sequence (xn)n∈N, and we

write limn→∞ xn = x or xn → x, if limn→∞ Fx,xn
(t) = 1 for all t > 0. A probabilistic

metric (Menger) space is said to be complete if every fundamental sequence in that

space is convergent.

Set

D+ = {F ∈ ∆+ : sup
t∈R

F (t) = 1}.

In the following we always suppose that (X,F , T ) is a Menger space with F : X×X →

D+ and T is continuous.

Let A be a nonempty subset of X. The function DA : R → [0,1] defined by

DA(t) := sup
s<t

inf
x,y∈A

Fx,y(s)
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is called the probabilistic diameter of A. It is easy to check that DA ∈ ∆+. The set

A ⊆ X is probabilistic bounded if DA ∈ D+. If B and C are two subsets of X with

B ∩ C 6= ∅, then

DB∪C(s + t) ≥ T (DB(s), DC(t)), s, t ∈ R (1)

(see [3, Theorem 10]). In particular, every finite subset of X is probabilistic bounded.

We also define the probabilistic radius EA : R → [0, 1] of the set A:

EA(t) := sup
s<t

sup
y∈A

inf
x∈A

Fx,y(s).

By definition it is easy to verify the following property:

Lemma 2.1.

EA(t) ≥ DA(t),

and

DA(2t) ≥ T (EA(t), EA(t)), for all t > 0.

Let A and B nonempty subsets of X. The probabilistic Hausdorff-Pompeiu

distance between A and B is the function FA,B : R → [0,1] defined by

FA,B(t) := sup
s<t

T ( inf
x∈A

sup
y∈B

Fx,y(s), inf
y∈B

sup
x∈A

Fx,y(s)).

Lemma 2.2. For the nonempty subsets A and B of X we have

EA(t1 + 2t2) ≥ T (DB(t1), FA,B(t2)) for all t1, t2 > 0.

Proof. Let x, y ∈ A, z, u ∈ B and s1, s2 > 0. By 80 we have

Fx,y(s1 + 2s2) ≥ T (Fx,z(s1 + s2), Fz,y(s2)) ≥

≥ T (T (Fx,u(s2), Fu,z(s1)), Fy,z(s2)) ≥ T (T (Fx,u(s2), DB(s1)), Fy,z(s2)) =

= T (DB(s1)), T (Fx,u(s2), Fy,z(s2))).

Simple calculations show

sup
y∈A

inf
x∈A

Fx,y(s1 + 2s2) ≥ T (DB(s1), T ( inf
x∈A

sup
u∈B

Fx,u(s2), inf
z∈B

sup
y∈A

Fy,z(s2))).
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If we take the supremum by s1 < t1 and s2 < t2 we obtain the required inequality. �

Proposition 2.1. If C is a nonempty collection of nonempty closed bounded

sets in a Menger space (X,F , T ) with T continuous, then (C, FC , T ) is also Menger

space, where FC is defined by FC(A,B) := FA,B for all A,B ∈ C .

Proof. See [3],[10]. �

Proposition 2.2. Let Tm(a, b) := max{a + b − 1, 0}. If (X,F , Tm) is a

complete Menger space and C is the collection of all nonempty closed bounded subsets

of X in (t, ε)− topology, then (C,FC , Tm) is also a complete Menger space.

Proof. Let (An)n∈N be a fundamental sequence in C and let

A = {x ∈ X : ∀n ∈ N,∃xn ∈ An,∀t > 0, lim
n→∞

Fxn,x(t) = 1}. (2)

Let A denote the closure of A. By [3, Theorem 15] we have FAn,A = FAn,A, so it is

enough to show that (i) limn→∞ FAn,A(t) = 1, for all t > 0, and (ii) A ∈ C.

(i) Let t > 0 and ε > 0 be given. Then there exists nε(t) ∈ N such that

n, m > nε implies FAn,Am( t
4 ) > 1− ε

4 . Let n > nε(t). We claim that FAn,A(t) ≥ 1− ε.

If x ∈ A, then there is a sequence (xk)k∈N with xk ∈ Ak and

limk→∞ Fxk,x( t
4 ) = 1. So, for large enough k > nε(t), we have Fxk,x( t

4 ) > 1 − ε
4 .

Since FAn,Ak
( t
4 ) > 1 − ε

4 , there exist y ∈ An such that Fxk,y( t
4 ) > 1 − ε

4 . By 80 we

have Fx,y( t
2 ) > 1− ε

4 , hence

sup
s<t

inf
x∈A

sup
y∈An

Fx,y(s) > 1− ε

2
. (3)

Now suppose that y ∈ An is arbitrary. Choose integers k1 < k2 < ... < ki < ... so

that k1 = n and

FAk,Aki
(

t

2i+2
) > 1− ε

2i+2
,

for all k > ki. We have infz∈Aki
supx∈Ak

Fx,z( t
2i+1 ) > 1− ε

2i+2 . Then define a sequence

(yk) with yk ∈ Ak as follows. For k < n, let yk ∈ Akbe arbitrarily and yn = y. If

yki
has been chosen and ki < k ≤ ki+1, take yk ∈ Ak with Fyki

,yk
( t
2i+2 ) > 1 − ε

2i+2 .

Then, for ki < k ≤ ki+1 < ... < kj < l ≤ kj+1, we have

Fyl,yk
(

t

2i
) ≥ Fyk,yki

(
t

2i+1
) + Fyki

,yki+1
(

t

2i+2
) + ... + Fykj−1 ,ykj

(
t

2j+1
)+

+Fykj
,yl

(
t

2j+1
)− (j − i + 1) > 1− ε

2i+1
.
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Let 0 < r, 0 < η < 1, and choose i so that t
2i < r and ε

2i+1 < η. We have

Fyk,yl
(r) ≥ Fyk,yl

(
t

2i
) > 1− ε

2i+1
> 1− η.

Hence (yk) is a fundamental sequence, so it converges. Let x be its limit. Therefore

x ∈ A, and we have

Fx,y(
t

2
) ≥ Fx,yk

(
t

4
) + Fyk,y(

t

4
)− 1.

Select k > n such that Fx,yk
( t
4 ) > 1 − ε

4 . Since Fy,yk
( t
4 ) > 1 − ε

4 , it follows that

Fx,y( t
2 ) > 1− ε

2 . Therefore we have

sup
s<t

inf
y∈An

sup
x∈A

Fx,y(s) > 1− ε

2
. (4)

By (3), the lather implies

FAn,A(t) = sup
s<t

Tm( inf
x∈A

sup
y∈An

Fx,y(s), inf
y∈An

sup
x∈A

Fx,y(s)) > 1− ε.

Thus limn→∞ FAn,A(t) = 1, for all t > 0,hence part (i) is proved..

(ii) Taking ε = 1 in the last argument, we have proved that A is nonempty.

Next we have to show that A is bounded. Since limn→∞ FAn,A(t) = 1,

for all ε > 0 and t0 > 0 there exists n0 ∈ N such that, for every n > n0, we have

infx∈A supw∈An
Fx,w(t0) > 1−ε and infy∈An

supx∈A Fx,y(t0) > 1−ε. The set An being

probabilistic bounded, for all ε > 0 there is tε > t0 such that infu,v∈An
Fu,v(tε) > 1−ε.

On the other hand, x, y ∈ A there exist u, v ∈ An such that

Fx,u(t0) > 1− ε, Fy,v(t0) > 1− ε.

We have

Fx,y(3tε) ≥ Tm(Fx,u(tε), Fu,y(2tε)) ≥ Tm(Fx,u(t0), Tm(Fu,v(tε), Fv,y(t0))) > 1− 3ε.

Therefore DA(3tε) ≥ 1−3ε, consequently we have supt∈R DA(t) = 1. By [3], it follows

that DA = DA, hence A ∈ C. �

3. Invariant sets in E-spaces

The notion of E-space was introduced by Sherwood [20] in 1969. Next we

recall this definition. Let (Ω,K, P ) be a probability space and let (M,d) be a metric

space. The ordered pair (E , F ) is an E-space over the metric space (M,d) (briefly,
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an E-space) if the elements of E are random variables from Ω into M and F is the

mapping from E × E into ∆+ defined via F(x, y) = Fx,y, where

Fx,y(t) = P ({ω ∈ Ω| d(x(ω), y(ω)) < t})

for every t ∈ R. Usually (Ω,K, P ) is called the base and (M,d) the target space of

the E-space. If F satisfies the condition

F(x, y) 6= H, for x 6= y,

with H defined in section 2, then (E ,F) is said to be a canonical E-space. H. Sherwood

[20] proved that every canonical E-space is a Menger space under T = Tm, where

Tm(a, b) = max{a + b − 1, 0}. In the following we suppose that E is a canonical

E-space.

The convergence in an E-space is exactly the probability convergence. The

E-space (E ,F) is said to be complete if the Menger space (E ,F , Tm) is complete.

Proposition 3.1. If (M,d) is a complete metric space then the E-space (E , F )

is also complete.

Proof. This property is well-known if M = R (see e.g. [21, Theorem

VII.4.2.]). In the general case the proof is analogous and we omit it. �

Proposition 3.2. If A is a nonempty probabilistic bounded subset of E and

f : E → E is a contraction with ratio r then f(A) is also probabilistic bounded, where

f(A) = {f(x) |x ∈ A}.

Proof. We have

Df(A)(t) = sup
s<t

inf
u,v∈f(A)

Fu,v(s) =

= sup
s<t

inf
x,y∈A

P ({ω ∈ Ω| d(f(x)(ω), f(y)(ω)) < s}) ≥

≥ sup
s<t

inf
x,y∈A

P ({ω ∈ Ω| d(x(ω), y(ω)) <
s

r
}) ≥

≥ sup
s<t

inf
x,y∈A

Fx,y(s) = DA(t).

Since supt>0 DA(t) = 1, it follows that supt>0 Df(A)(t) = 1. �

The main result of this paper is the following:
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Theorem 3.1. Let (E , F ) be a complete E- space, N ∈ N∗,, and let

f1, ..., fN : E → E be contractions with ratio r1, ...rN , respectively. Suppose that

there exists an element z ∈ E and a real number γ such that

P ({ω ∈ Ω|d(z(ω), fi(z(ω)) ≥ t}) ≤ γ

t
, (5)

for all i ∈ {1, .., N} and for all t > 0. Then there exists a unique nonempty closed

bounded subset K of E such that

f1(K) ∪ ... ∪ fN (K) = K.

Proof. Let Φ : 2E → 2E be defined by

Φ(A) := f1(A) ∪ f2(A) ∪ ... ∪ fN (A).

Let A0 = {z} and An = Φ(An−1) for n ≥ 1. Let r = max{r1, ..., rN}, J be the finite

alphabet {1, .., N}, and, for σ = σ1...σn ∈ Jn, set fσ = fσ1 ◦ fσ2 ◦ ... ◦ fσn
. We have:

An = ∪σ∈Jnfσ(A0).

First we show that (An)n∈N is a fundamental sequence in (C, FC ,Tm).

Since An+k = Φn(Ak) and An = Φn(A0), we have

inf
u∈An

sup
v∈Ak+n

Fu,v(s) = inf
u∈∪σ∈Jnfσ(A0)

sup
v∈∪σ∈Jn fσ(Ak)

Fu,v(s).

Observe, there exists σ′ ∈ Jn such that

inf
u∈An

sup
v∈Ak+n

Fu,v(s) = inf
u∈fσ′ (A0)

sup
v∈∪σ∈Jnfσ(Ak)

Fu,v(s) ≥

≥ inf
u∈fσ′ (A0)

sup
v∈fσ′Ak

Fu,v(s) = inf
x∈A0

sup
y∈Ak

Ffσ′ (x),fσ′ (y)(s) ≥

≥ sup
y∈Ak

P ({ω ∈ Ω| rnd(z(ω), y(ω)) < s}) =

= max
y∈∪

τ∈Jk fτ (A0)
P ({ω ∈ Ω| rnd(z(ω), y(ω)) < s}) ≥

≥ max
y∈∪

τ∈Jk fτ (A0)
P ({ω ∈ Ω| rnd(z(ω), y(ω)) < s · (1 +

√
r + · · ·+

√
r

k−1)(1−
√

r)}) ≥

≥ max
τ∈Jk

P ({ω ∈ Ω| rn[d(z(ω), fτ1(z(ω))) + d(fτ1(z(ω)), fτ1τ2(z(ω))) + · · ·

· · ·+ d(fτ1···τk−1(z(ω)), fτ1···τk
(z(ω)))] < s · (1 +

√
r + · · ·+

√
r

k−1)(1−
√

r)}) ≥
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≥ max
τ∈Jk

[P ({ω ∈ Ω| d(z(ω), fτ1(z(ω))) <
s(1−

√
r)

rn
})+

+P ({ω ∈ Ω| d(fτ1(z(ω)), fτ1τ2(z(ω))) <
s(1−

√
r)
√

r

rn
}) + · · ·

· · ·P ({ω ∈ Ω| d(fτ1...τk−1(z(ω)), fτ1...τk
(z(ω))) <

s(1−
√

r)
√

r
k−1

rn
})]− (k − 1) ≥

max
τ∈Jk

[P ({ω ∈ Ω| d(z(ω), fτ1(z(ω))) <
s(1−

√
r)

rn
})+

+P ({ω ∈ Ω| rd(z(ω)), fτ2(z(ω))) <
s(1−

√
r)
√

r

rn
}) + · · ·+

+P ({ω ∈ Ω| rk−1d(z(ω), fτm
(z(ω))) <

s(1−
√

r)
√

r
k−1

rn
})]− (k − 1) =

= 1− min
τ∈Jm

[P ({ω ∈ Ω| d(z(ω), fτ1(z(ω))) ≥ s(1−
√

r)
rn

})+

+P ({ω ∈ Ω| d(z(ω), fτ2(z(ω))) ≥ s(1−
√

r)
√

r

rn+1
}) + · · ·+

+P ({ω ∈ Ω| d(z(ω), fτk
(z(ω))) <

s(1−
√

r)
√

r
k−1

rn+k−1
})] ≥

≥ 1− γ · rn

(
1

s(1−
√

r)
+

r1/2

s(1−
√

r)
+ ... +

r(k−1)/2

s(1−
√

r)

)
>

> 1− γ
rn

s(1−
√

r)2
.

Since

lim
n→∞

(
1− γ

rn

s(1−
√

r)2

)
= 1,

we have, for t > 0,

lim
n→∞

FAn,Ak+n
(t) = 1,

uniformly with respect to k. The space (E , F ) being complete, (An) is convergent.

Let K be its limit.

Next we show that K is a fixed point of Φ. For i ∈ {1, ..., N}, x ∈ An−1, y ∈ K

and s > 0, we have

Ffi(x),fi(y)(s) ≥ Fx,y(s).

There exists i ∈ J such that

inf
u∈Φ(An−1)

sup
v∈Φ(K)

Fu,v(s) = inf
u∈fi(An−1)

sup
v∈Φ(K)

Fu,v(s) ≥

≥ inf
x∈An−1

sup
y∈K

Ffi(x),fi(y)(s) ≥ inf
x∈An−1

sup
y∈K

Fx,y(s).
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In a similar way

inf
v∈Φ(K)

sup
u∈Φ(An−1)

Fu,v(s) ≥ inf
y∈K

sup
x∈An−1

Fx,y(s).

Then it follows

FAn,Φ(K)(
t

2
) ≥ FAn−1,K(

t

2
) for all t > 0.

Using 80 one obtains

FK,Φ(K)(t) ≥ Tm(FK,An(
t

2
), FAn,Φ(K)(

t

2
)) ≥ Tm(FK,An(

t

2
), FAn−1,K(

t

2
)).

Since limn→∞ An = K, we have

FK,Φ(K)(t) = 1 for all t > 0,

therefore

K = Φ(K).

For the uniqueness we suppose that there exist closed and bounded K and

K ′ such that Φ(K) = K and Φ(K ′) = K ′. For x ∈ K, y ∈ K ′, σ ∈ Jn, and s > 0,

we have

Ffσ(x),fσ(y)(s) ≥ Fx,y(
s

rn
).

Let σ′ ∈ Jn be such that

inf
v∈∪σ∈Jn fσ(K′)

sup
u∈∪σ∈Jn fσ(K)

Fv,u(s) = inf
x∈f ′σ(K′)

sup
u∈∪σ∈Jn fσ(K)

Fv,u(s) ≥

≥ inf
v∈fσ′ (K

′)
sup

u∈fσ′ (K)

Fv,u(s) ≥ inf
y∈K′

sup
x∈K

Fx,y(
s

rn
).

Similarly,

inf
v∈∪σ∈Jn fσ(K′)

sup
u∈∪σ∈Jn fσ(K)

Fv,u(s) ≥ inf
x∈K

sup
y∈K′

Fx,y(
s

rn
).

Since K = Φn(K) = ∪σ∈Jnfσ(K), K ′ = Φn(K ′) = ∪σ∈Jnfσ(K ′), we have

FK,K′(t) ≥ FK,K′(
t

rn
) for all t > 0.

Using limn→∞ rn = 0, we have

FKK′(t) = 1 for all t > 0,

therefore K = K ′. �
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Corollary 3.1. Let (E , F ) be a complete E- space, and let f : E → E be a

contraction with ratio r. Suppose there exists z ∈ E and a real number γ such that

P ({ω ∈ Ω| d(z(ω), f(z)(ω)) ≥ t}) ≤ γ

t
for all t > 0.

Then there exists a unique x0 ∈ E such that f(x0) = x0.

Remark: If the mean values
∫
Ω

d(z(ω), fi(x(ω)))dP for i ∈ {1, ..., N} are

finite, then by the Chebisev inequality, condition (5) is satisfied. However, the condi-

tion (5) can also be satisfied for
∫
Ω

d(z(ω), f(z(ω)))dP = ∞. For example, let Ω =]0, 1]

with the Lebesque measure and let f(x) = x(ω)
3 + 1

ω . Then for z(ω) ≡ 0, the above

expectation is ∞, but, for γ = 1, the condition (5) holds.

As in [6], the invariant set can be modeled by strings. Let N ≥ 1, and define

{1, ..., N}∗ = ∪k∈N{1, ..., N}k.

If τ ∈ {1, ..., N}∗, τ = τ1.τ2...τk, then | τ | = k is the length of τ. Set

fτ : E → E , fτ := fτ1 ◦ fτ2 ◦ ... ◦ fτk
. If A ⊂ E , we set Aτ1...τk

:= fτ (A) .

Let {1, ..., N}N carry the product of the discrete topology on {1, ..., N}. For

σ ∈ {1, ..., N}∗ ∪ {1, ..., N}N with k≤ | σ| let σ|k = σ1.σ2...σk be the restriction of σ

to its first k entries.

Let K be the invariant set from Theorem 3. As in [6], we can show that

a) Kσ1...σk
= ∪n

σk+1=1Kσ1...σkσk+1

b) K ⊃ Kσ1 ⊃ ... ⊃ Kσ1...σk
⊃ ....

Proposition 3.3. Let the hypotheses of Theorem 3 be satisfied. Then, for

all t > 0, we have

limk→∞Dfσ|k (K)(t) = 1.

Proof. Let An be the set defined in the proof of Theorem 3. If f is

an r-contraction, then Ff(An),f(K)(t) ≥ FAn,K(t) for t > 0. Let σ ∈ {1, ..., N}∗ ∪

{1, ..., N}N. Since limn→∞ FAn,K(t) = 1 for t > 0, it follows that

lim
n→∞

Ffσ|k(An),fσ|k(K)(t) = 1 (6)

uniformly with respect to k.
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We have

Dfσ|k(An)(t) = sup
s<t

inf
x,y∈fσ|k(An)

P ({ω ∈ Ω| d(x(ω), y(ω)) < s}) =

= sup
s<t

inf
u,v∈An

P ({ω ∈ Ω| d(fσ1...σk
(u)(ω), fσ1...σk

(v)(ω)) < s}) ≥

≥ sup
s<t

inf
u,v∈An

P ({ω ∈ Ω| rσ1 ...rσk
d(u(ω), v(ω)) < s}) ≥

≥ sup
s<t

inf
u,v∈An

P ({ω ∈ Ω| rkd(u(ω), v(ω)) < s}) ≥

≥ sup
s<t

inf
u,v∈An

[P ({ω ∈ Ω| d(u(ω), v(ω)) <
s

2r ∗ k
})+

+P ({ω ∈ Ω| d(z(ω), v(ω)) <
s

2rk
})]− 1 ≥

≥ 1− γ

(1−
√

r)2
· rn.

Hence

lim
k→∞

Dfσek(An)(t) = 1 for all t > 0 and n ∈ N.

By Lemma 2.2 we have

Dfσ|k(K)(t) ≥ Dfσ|k(An)(t) + Ffσ|k(An),fσ|k(K)(t)− 1.

Using (6) it follows the assertion. �

Proposition 3.4. For all σ ∈ {1, ..., N}N there exists a unique element

xσ ∈ ∩n∈NKσ1...σn

Proof. For every n ∈ N we choose an element xn ∈ Kσ1...σn . Let m < n,

then xm, xn ∈ Kσ1...σm
. Since

limk→∞Dfσ|k(K)(t) = 1 for t > 0, and ε > 0,

there exists m0 ∈ N such that, for all m > m0,

inf
x,y∈Kσ1...σm

P{ω ∈ Ω|d(x(ω), y(ω)) < t} > 1− ε.

It follows, for m,n > m0, P ({ω ∈ Ω|d(xn(ω), xm(ω)) < t}) > 1−ε, therefore (xn)n∈N

is a Cauchy sequence. Since the space (E ,F) is complete, it follows the convergence

of (xn)n∈N . Let xσ be its limit. Then xσ ∈ ∩n∈NKσ1...σn
.

Since limn→∞ DKσ1...σn
(t) = 1 for all t > 0, it follows that xσ is the unique

element of the intersection. �
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Proposition 3.5. The map π : {1, ..., N}N → K given by π(σ) = xσ is a

continuous map onto K.

Proof. Let σ = σ1...σn... ∈ {1, ..., N}N and let ε > 0. Since π(σ) = xσ ∈

∩n∈NKσ1...σn
and limn→∞ DKσ1...σn

(t) = 1 for all t > 0, there exists n0 ∈ N such

that

DKσ1...σn
(t) > 1− ε for all n > n0.

For y ∈ Kσ1...σn we have

P ({ω ∈ Ω| d(y, π(σ)) < t}) > 1− ε,

hence Kσ1...σn ⊂ Uπ(σ)(t, ε) for n > n0. Since Kσ1...σn contains the image of the open

set {β|βi = σi, if i ≤ n}, it follows π is continuous.

Let K ′ = π({1, ..., N}N). Observe K ′ ⊂ K and K ′ is a compact set. We show

that K ′ is an invariant set. If y ∈ K ′, then there exists σ ∈ {1, ..., N}N such that

y = π(σ) ∈ fσ1(K
′). So K ′ ⊂ ∪l

i=1fi(K ′).

If y ∈ ∪l
i=1fi(K ′) then there exists j ∈ {1, ..., l} such that y ∈ fj(K ′), hence,

for any σ′ ∈ {1, ..., N}N, y = fj(π(σ′)) = π(jσ′) ∈ K ′.

Since the closed bounded invariant set is unique, it follows K = K ′. �

Corollary 3.2. The invariant set in Theorem 3 is compact.

4. Self similar fractal sets

Recently Hutchinson and Rüschendorf [9] gave a simple proof for the ex-

istence and uniqueness of invariant random sets using the L∞-metric. The under-

lying probability space for the iteration procedure is generated by selecting inde-

pendent and identically distributed scaling laws. A scaling law S is an N-tuple

(S1, ...., SN ), N ≥ 2, of Lipschitz maps Si : Rn → Rn. Let ri = LipSi. A ran-

dom scaling law S = (S1, S2, ..., SN ) is a random variable whose values are scaling

laws. We write S = distS for the probability distribution determined by S and d= for

the equality in distribution.

If K is a random set, then the random set SK is defined (up to probability

distribution) by

SK = ∪iSiK
(i),
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where S,K(1), ...,K(N) are independent of one another and K(i) d= K.

We say K satisfies the scaling law S, or is a self-similar random fractal set,

if

SK
d= K, or equivalently SK = K.

Let C be the set of random compact sets K such that

ess sup
ω

dH(Kω, δω
B) < ∞, (7)

for some, and hence any, fixed compact set B ⊂ Rn, where dH is the hausdorff metric.

By δB we mean the random set equal a.s. to B. In [9], Hutchinson and Rüschendorf

generate random sets in the following manner:

Beginning with a nonrandom set K0 one defines a sequence of random sets

SK0 = ∪iSiK0,

S2K0 = ∪i,jSi ◦ Si
jK0,

S3K0 = ∪i,j,kSi ◦ Si
j ◦ Sij

k K0,

etc.: where Si = (Si
1, S

i
2, ..., S

i
N ), for i ∈ {1, ..., N}, are independent of each other and

of S, the Sij = (Sij
1 , Sij

2 , ..., Sij
N ), for i, j ∈ {1, ..., N} are independent of each other

and of S and Si, etc.

A construction tree ( or a construction process ) is a map ω : {1, ..., N}∗ → Γ,

where Γ is the set of (nonrandom) scaling laws. The sample space of all construction

trees is denoted by Ω̃. The underlying probability space (Ω̃, K̃, P̃ ) for the iteration

procedure is generated by selecting identical distributed and independent scaling laws

ω(σ) d= S for each σ ∈ {1, ..., N}∗ (see [9]). It is well known the following result:

Theorem 4.1. ([4],[5],[9]) If S = (S1, S2, ..., SN ) is a random scaling law

with

λ := ess sup
ω

rω < 1 (8)

(where rω = maxi LipSω
i ), then for any (nonrandom) compact set K0,

ess sup
ω

dH(SK0,K
∗) ≤ λk

1− λ
ess sup

ω
dH(K0,SK0) → 0

as k →∞, where K∗ does not depend on K0. In particular, SkK0 → K∗ a.s.

Moreover, up to probability distribution, K∗ is the unique random compact

set which satisfies S.
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However, using contraction method in probabilistic metric spaces,instead of

(6) we can give weaker conditions for the existence and uniqueness of invariant sets.

Theorem 4.2. Let E be the set of nonempty random compact sets A ⊂ Rn,

and let S be a random scaling law with λ = ess supω rω < 1. Suppose there exists

Z ∈ E and a positive number γ such that

P ({ω ∈ Ω| dH(Z(ω),S(Z(ω))) ≥ t}) ≤ γ

t
for all t > 0. (9)

Then there exists K∗ ∈ E such that S(K∗) = K∗.

Moreover, K∗ is unique up to probability distribution.

Proof. Define f : E → E , f(A) = SA. For A,B ∈ E , Ai d= A,Bi d= B, i ∈

{1, ..., N}, one checks that

Ff(A),f(B)(t) = P ({ω ∈ Ω| dH(f(A), f(B)) < t}) =

= P ({ω ∈ Ω| dH(∪N
i=1Si(ω)(Ai(ω)),∪N

i=1Si(ω)(Bi(ω))) < t}) ≥

≥ P ({ω ∈ Ω| λ ·max
i
·dH(Ai(ω)), Bi(ω)) < t}) =

= P ({ω ∈ Ω| λ · dH(A(ω), B(ω)) < t}) = FA,B(
t

λ
) for all t > 0.

It follows that f is a contraction with ratio λ and we can apply the Corollary 3.1 for

r = λ. For the uniqueness, let C the set of probability distribution of members of C,

i.e.

C = {distA|A ∈ C}.

We define on C the probability metric by

FA,B(t) = sup
s<t

sup{FA,B(s)|A d= A, B
d= B}.

It is easy to verify that S is a contraction map:

FSA,SB(t) ≥ FA,B(
t

λ
) for all t > 0.

Let K∗ and K∗∗ such that

SK∗ = K∗ and SK∗∗ = K∗∗.

As in the proof of the Theorem 3, one can show that

FK∗,K∗∗(t) = 1 for all t > 0. �

Remark. If condition (6) is satisfied, then (9) holds.
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume XLVI, Number 3, September 2001

M-LINEAR CONNECTION ON THE SECOND ORDER REONOM
BUNDLE

VASILE LAZAR

Abstract. The T 2M × R bundle represents the total space of a time

dependent geometry of second order. In this bundle it is studied a special

class of derivation rules, named M -linear connections.. There are given

their characterization and it is proved their existence. Finally there are

studied geometrical properties of one M -linear connection.

1. Introduction

The study of the time dependent Lagrange geometry (geometry of the reonom

Lagrange spaces ) was imposed from considerations of mechanic ,a systematically

study of this is finding in the M.Anastasiei and H.Kawaguchi paper [1],[2],[3].

On the other hand, research from the last years imposed into attention the

considerations in the superior order geometries where the total space is the prolonga-

tion of k order of the TM tangent bundle of a differential manifold or an associated

bundle named the osculator bundle of k order ( [5],[8],[13] ). From calculation

reasons we will approach here the case k = 2.

The study of the second order reonom bundle E = T 2M × R was done by

us in a previous work([6],[7]).

Let M be a differentiable manifold, dimM = n , x = (xi) the local

coordinates in a map (U,ϕ). We are considering T 2M the 2-jets bundle to the

tangent curves in x ∈ M . Locally on T 2M the coordinates are u = (xi, yi, zi)

with the following rule of change on the intersection of two local maps:

x̃i = x̃i(xj) (1.1)

ỹi =
∂x̃i

∂xj
yi

1991 Mathematics Subject Classification. 53C60, 53C05.

Key words and phrases. connections, reonom bundle.
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z̃i =
1
2

∂ỹi

∂xk
yk +

∂x̃i

∂xk
zk

T 2M has a structure of fibre bundle over R2n space ,which is not vectorial

one.

The reonom bundle of second order is the bundle of direct product E =

T 2M×R, in which variable on R is denoted by t and it is considered in applications

as being the time. In respect to the (1.1) changes on E we will haw also and t̃ = t.

Taking as a base the E manifold, we will develop a geometrical techniques

of derivation the sections on TE. The tangent space TuE present approaching

difficulties due to the fact that the natural bases { ∂

∂xi
,

∂

∂yi
,

∂

∂zi
,

∂

∂t
} it is changing

with the two order derivatives of
∂x̃i

∂xj
.

In order to eliminate this inconvenient we will consider an adapted base of a

nonlinear connection on E.

Let Π2 : E → M the canonical projection and Π∗
2 the cotangent

map,V2E = KerΠ∗
2 the vertical subbundle of second order. We are considering

also the bundle Π12 : E → TM × R and VE = KerΠ∗
12 the vertical subbundle

of first order, that at his turn, is subbundle of the vertical bundle of second order,

through his natural structure. Local bases in VE and V2E are respectively { ∂

∂xi
,
∂

t
}

and { ∂

∂yi
,

∂

∂zi
,

∂

∂t
} .

Definition 1. A nonlinear connection on E is a splitting of the TE in the

sum TE = V2E ⊕NE ,where NE will be named the normal subbundle of E.

Locally, a base in u→ NuE distribution is given by { δ

δxi
=

∂

∂xi
−N j

i

∂

∂yj
−

Mj
i

∂

∂zj
− K0

I

∂

t
} We are imposing further the conditions of global definition of the

adapted fields { δ

δyi
} and { δ

δxi
} ,

δ

δxi
=

∂x̃j

∂xi

δ

δx̃j
and

δ

δyi
=

∂x̃j

∂xi

δ

δỹj
(1.2)

Consequently, we are obtaining the next changing rules of the nonlinear con-

nection coefficients on E.

Ñ r
k

∂x̃r

∂xk
=

∂x̃r

∂xk
N k

i −
∂2x̃r

∂xi∂xk
zk +

∂2x̃r

∂xi∂xk
yi − 1

2
∂3x̃r

∂xi∂xj∂xk
yiyk.. (1.3)

M̃ r
k

∂x̃k

∂xi
=

∂x̃r

∂xk
Mk

i −
∂2x̃r

∂xi∂xk
yk (1.4)
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K̃ 0
i

∂x̃k

∂xi
= K0

i (1.5)

and analogue with (1.3) and (1.5) for Hj
i and H0

i .In consequence we will take

Hj
i =Mj

i and H0
i = K0

i in the following.

Giving a nonlinear connection on E is obtaining the next adapted local base

for TuE :
{

δ

δxi
,

δ

δyi
,

∂

∂zi
,

∂

∂t

}
that is changing as the vectors as it results from(1.2)

if there are verified the conditions (1.3) ,(1.4) ,(1.5) .

Considering a nonlinear connection fixed on E , we name d-tensor of (r, s)

type a real function ti1.....ir
j1.....js

(x, y, z, t) that is changing after rule:

t̃h1....hr

k1....ks
(ũ) =

∂x̃h1

∂xi1
....

∂x̃hr

∂xir
.
∂xj1

∂x̃k1
....

∂xjs

∂x̃ks
ti1....ir
j1....js

(u). (1.6)

On E we can introduce relatively to the given nonlinear connection , the

following geometrical structures.

F i
j = dxi ⊗ δ

δyj
+ δyi ⊗ ∂

∂zj
+ δt⊗ ∂

∂t
(1.7)

and his dual

F ∗i
j = δyi ⊗ δ

δxj
+ δzi ⊗ δ

δyj
+ δt⊗ ∂

∂t
. (1.7

′
)

The triplet (F,
∂

∂t
, δt) verifies the conditions : F 3 = δt ⊗ ∂

∂t
, δt(

∂

∂t
) = 1

and rank F = 2n + 1 and it is named the cotangent structure of second order ([12])

Structure ϕ = F − F 3 it is an almost tangent of second order structure on

E ([12]) , rank ϕ = 2n.

The triplet (F ∗,
∂

∂t
, δt) it is also a cotangent structure of second order named

adjoint to F .

Analogue ϕ∗ = F ∗ − F 3 it is a tangent structure of second order adjoint to

ϕ .Easily there can be deduced links between these structures ([6]) ..

2. Linear d-connections on E

Let E = T 2M × R be the reonom bundle of second order endowed with a

nonlinear connection conveniently chosen NΓ = (Mi
j ,N i

j ,Ki
j) that determines the

TE = VE ⊗ HE ⊗ NE decomposition, with the corresponding projectors .A field

X ∈ X (E) will be decomposed in X = vX + hX + nX.
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Definition 2. It is named linear d-connection on E a D linear connection

on E that preserves trough parallelism the distributions VE,HE,NE.

Theorem 1. A linear connection D on E is a d-connection if and only

if there are verified one of the following conditions :

a) (v + h)DXnY = 0 , (v + n)DXhY = 0 , (h + n)DXvY = 0

b) DXY = vDXvY + hDXhY + nDXnY

c) Dv = Dh = Dn = 0

d) DP1 = 0, DP2 = 0 DP3 = 0 where P1 = (n+h)−v ,P2 = (n+v)−h , P3 =

(v + h)− n there are almost product structure on E.

The proof results from the fact that: DXnY ∈ NE ,DXhY ∈ HE,

DXvY ∈ VE.

Because D is a R-linear application that can be extended to the whole

d-tensors algebra, it results that :

Proposition 2. It is only one operator of covariant derivation Dn
X named

normal derivation thus that :

Dn
XY = DnXY and Dn

Xf = (nx)f : ∀X, Y ∈ X (E), f ∈ F(E). (2.1)

Locally Dn can be expressed the following way :

Dn
δ

δxk

δ

δxj
=

1

L
i

jk

δ

δxi

Dn
δ

δxk

δ

δyj
=

2

L
i
jk

δ

δyi
(2.2)

Dn
δ

δxk

δ

δyj
=

3

L
i
jk

∂

∂zi
+ L0

jk

∂

∂t
; Dn

δ

δxk

∂

∂t
= L0

0k

∂

∂zi
+ L0

ok

∂

∂t

Analogous it is defined the Dh covariant h−derivation with the following

local expressions.

Dh
δ

δyk

δ

δxj
=

1

F
i
jk

δ

δxi
; Dh

δ

δzk

∂

∂zj
=

3

F
i
jk

∂

∂zi
+ F 0

jk

∂

∂t
(2.3)

Dh
δ

δyk

δ

δyj
=

2

F
i
jk

δ

δyi
; Dh

δ

δyk

∂

∂t
= F i

0k

∂

∂zi
+ F 0

0k

∂

∂t
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and in totally the same way it is introduced Dv covariant v−derivation with local

expressions

Dv
∂

∂zk

.
δ

δxj
=

1

C
i
jk

δ

δxi
; Dv

∂

∂zk

.
∂

∂t
= Ci

0k

∂

∂zi
+ C0

0k

∂

∂t

Dv
∂

∂zk

.
δ

δyj
=

2

C
i
jk

δ

δyi
; Dv

∂

∂t

∂

∂t
= C0

00

∂

∂t
(2.4)

Dv
∂

∂zk

.
∂

∂zj
=

3

C
i
jk

∂

∂zi

The curvatures and torsions of a linear d−connection are written and are

finding their local expressions through the direct calculation.([6])

3. M-linear connection on E

Let D be a linear d− connection on E with local coefficients given by

(2.1);(2.2);(2.3).

Definition 3. A d− linear connection D on E it is said that it is a M−

linear connection (Miron -connection) if:

1

L
i

jk=
2

L
i
jk =

3

L
i
jk;

1

F
i

jk=
2

F
i

jk=
3

F
i

jk;
1

C
i

jk=
2

C
i
jk =

3

C (3.1)

Let F and ϕ the almost cotangent structures of second order and respectively

second order tangent locally given by (1.7) and ϕ = F − F 3 ,and (F ∗, ϕ∗) their

adjoint structures:

Definition 4. a) A D- linear connection on E is a F -linear connection(

respectively F ∗) if D = 0 and D
∂

∂t
= 0 (respectively DF ∗ = 0, D

∂

∂t
= 0).

b) A D− linear connection on E is a (ϕ, ϕ∗) -linear connection on E if

DF = DF ∗ = 0 and D
∂

∂t
= 0

c) A D− linear connection on E is a ϕ−linear connection (respectively

ϕ∗− linear connection ) if Dϕ = 0 (respectively Dϕ∗ = 0 )

d) A D− linear connection on E is a (ϕ, ϕ∗) − linear connection if

Dϕ = Dϕ∗ = 0

Proposition 3. A D -linear connection on E is a (F, F ∗) -linear

connection if and only if is a (ϕ, ϕ∗) -linear connection.
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Proof. From DF = 0 ⇒ DF 3 = 0 ⇒ D(F − F 3) = 0 ⇒ Dϕ = 0 and

from DF ∗ = 0 ⇒ D(F −F ∗) = 0 ⇒ Dϕ∗ = 0 . Reciprocal , we have ϕ∗F 3 = 0 and

F 3ϕ∗ = 0 (taking into account that F 3(Xu) ∈ VuE) .It results that DF 3 = 0 and

together with Dϕ = 0 , Dϕ∗ = 0 we are obtaining that D(ϕ + F 3) = DF = 0 and

(Dϕ∗ + F 3) = DF ∗ = 0.

Proposition 4. A (F.F ∗)-linear connection is a d−linear connection on

E (F, F ∗) .

Proof:Is a (F, F ∗)− linear connection is a (ϕ, ϕ∗)−linear connection and

using the fact that v = ϕ2ϕ∗2 , ϕ∗2 = n and ϕ∗ϕ − ϕ∗2ϕ = h it results that

Dn = Dh = Dh = 0 is a d− linear connection on E .

Theorem 5. A D linear connection on E is a M −linear connection if

and only if is a (F, F ∗)-linear connection .

Proof:From the proposition 3.2 it results that if D is a (F, F ∗)-linear

connection than it is also a d-linear connection.

Because

(D δ

δxk

F )(
δ

δxj
) = (Dn

δ

δxk

F )(
δ

δxj
) = (Dn

δ

δxk

F )(
δ

δxj
)− FDn

δ

δxk

δ

δxj
=

= Dn
δ

δxk

δ

δyj
−

3

L
i

jk F (
δ

δxi
) = (

2

L
i

jk −
3

L
i

jk)
δ

δyi
.

We are obtaining that (D δ

δxk

)(
δ

δxj
) = 0 ⇔

2

L=
3

L .In an analogue way, taking these

values of the adapted base fields, yields that DF = DF ∗ = 0 ,and hence D is a M−

linear connection on E.

We are waking the notifications F 3 = p and q = I − p.

Theorem 6. There exists M−linear connections on E. One of them is

given by :

B

DX Y =
B

DqX qY +
B

DqX pY +
B

DpX qY +
B

DpX pY (3.2)

where:
B

DqX qY = ϕ2

[(
v +

h

2

)
X, ϕ∗2y

]
+ v

[(
n +

h

2

)
X, vY

]
+
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ϕn

[(
n +

h

2

)
X, ϕ∗hX

]
+ ϕ∗v

[(
n +

h

2

)
X, ϕhY

]
+ ϕ∗2

[(
n +

h

2

)
X, nY

]
B

DqX pY = p [qX , pY ] (3.3)

B

DpX qY =
1
2
{ϕ2

[
pX ,ϕ2Y

]
+ ϕ∗2 [

pX ,ϕ2Y
]
+ (

h

2
+ n)

[
pX , (v +

h

2
)Y

]
}+

+
1
4
{ϕn [pX ,ϕ∗hY ] + ϕ∗v [pX , hY ] .}

B

DpX pY =
0

∇pX pY − δt(X)δt(Y )
0

∇ ∂

∂t

∂

∂t
(3.4)

and
0

∇ is a linear connection on E .

Proof. Trough the direct calculation it is verified that D is a linear

connection and that Dϕ = Dϕ∗ = 0, so D is a M− linear connection.

Given to X and Y values of the adapted base, from(3.3) results :

Corollary 7. The following functions on E

Lk
ij =

∂Ml
j

∂zi
Mk

l +
∂N k

j

∂zi
; F k

ij =
∂Mk

j

∂zi
; Ck

ij = 0

Lk
i0 = Lk

0j = F k
0j = C0

i0 = C0
0j = C0

00 = 0 . (3.5)

defining the coefficients of a M −linear connection on E ,named Berwald connection

in the reonom bundle of second order

An interesting problem is the determination of the M−linear connection

compatible with respect to a given metric structure on E . We will approach this in

a coming paper .
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A FORMULA FOR THE MEAN CURVATURE OF AN IMPLICIT
REGULAR SURFACE

CORNEL PINTEA

Abstract. In this paper we will find a formula for the absolute value of the

mean curvature of an implicit regular surface (S) f(x, y, z) = a, expressed

in terms of the partial derivatives of the function f .

1. Introduction

The most used formulas for the Gaussian curvature or for the mean curvature

of a regular surface are those that are expressed locally in terms of the coefficients of

the first and second fundamental forms.

However for an implicit regular surface (S) f(x, y, z) = a there exists a for-

mula for the Gaussian curvature expressed in terms of the partial derivatives of the

function f , that is,

K = − 1

||
−→
∇f ||4

∣∣∣∣∣∣∣∣∣∣∣∣

fxx fxy fxz fx

f
yx

f
yy

f
yz

f
y

f
zx

f
zy

f
zz

f
z

f
x

f
y

f
z

0

∣∣∣∣∣∣∣∣∣∣∣∣
(1)

In this paper we are going to prove a similar formula for the absolute value of the

mean curvature of an implicit regular surface.

For the mean curvature H of a regular surface S we have the following local

formula

H =
1
2
· eG− 2fF + gE

EG− F 2
(2)

where

E = −→r u · −→r u = ||−→r u ||2, F = −→r u · −→r v , G = −→r v · −→r v = ||−→r v ||2

are the coefficients of the first fundamental form and

e =
(−→r

u
,−→r

v
,−→r

uu
)√

EG− F 2
, f =

(−→r
u
,−→r

v
,−→r

uv
)√

EG− F 2
, g =

(−→r
u
,−→r

v
,−→r

vv
)√

EG− F 2
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are the coefficients of the second fundamental form with respect to the local

parametrization r : U → S, compatible with the orientation of the surface.

Let V ⊆ R3 be an open set, f : V → R be a differentiable function and

a ∈ Im f be a regular value of f . It is well known that S = f−1(a) is an orientable

regular surface. For p ∈ S, then one of the partial derivatives f
x
(p), f

y
(p), f

z
(p) is

non zero, at least. If f
z
(p) 6= 0, for instance, then, according to the implicit function

theorem, the last variable z can be unically expressed by means of the first two

variable x and y. In other words the regular surface S = f−1(a) is locally, around the

point p, the graph of a function z = z(x, y), (x, y) ∈ U , where U is a conveniently

chosen open set. Therefore the mapping r : U → S, r(x, y) = (x, y, z(x, y)) is a local

parametrization of S at p, namely f(x, y, z(x, y)) = a, ∀(x, y) ∈ U . This is the type

of local parametrization that we are going to use for all over this paper.

It is very easy to see that −→r
x
× −→r

y
= 1

fz

−→
∇f which means that the local

parametrization r : U → S, r(x, y) = (x, y, z(x, y)) of S at p is compatible with the

orientation
−→
∇f

||
−→
∇f ||

of S iff fz (p) > 0 and of course uncompatible iff fz (p) < 0.

In any case the relation

2|H| = |eG− 2fF + gE

EG− F 2
| (3)

holds.

2. The main formula

In this section we will prove the already anounced formula for the absolute

value of the mean curvature of an implicit regular surface.

Theorem 2.1. Let V ⊆ R3 be an open set, f : V → R be a smooth function

and a ∈ Im f be a regular value of the f. For the absolute value of the mean curvature

H of the implicit regular surface (S) f(x, y, z) = a, at the point p ∈ S, we have the

following formula

|H| = 1

2||
−→
∇f ||

|
[
∆ f − (Hess f)

( −→
∇f

||
−→
∇f ||

,

−→
∇f

||
−→
∇f ||

)]
|, (4)

where
−→
∇f is the gradient of f, ∆ is the Laplace’s operator and Hess f is the Hessian

of f , all of them being considered at the point p.
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Proof. Assuming that for p ∈ f−1(a) we have f
z
(p) 6= 0, it follows that S

is locally, around the point p, the graph of a function z = z(x, y), (x, y) ∈ U and

consider the above stated local parametrization r : U → S, r(x, y) = (x, y, z(x, y)).

The coefficients of the two fundamental forms are

E = 1 + z2
x
, F = z

x
· z

y
, G = 1 + z2

y

e = zxx√
1+z2

x
+z2

y

, f = zxy√
1+z2

x
+z2

y

, g = zyy√
1+z2

x
+z2

y

2|H| = |eG− 2fF + gE

EG− F 2
| = | (1 + (fx)2)fyy − 2fxfyfxy + (1 + fy)2fxx

[1 + z2
x + z2

y ]3/2
|. (5)

Because f(x, y, z(x, y)) = a, ∀ (x, y) ∈ U , it follows that fx + zxfz = 0

fy + zyfz = 0
that is

 zx = − fx

fz

zy = − fy

fz
.

(6)

¿From relations (6) we get
zxx = − ∂

∂x

[
fx(x,y,z(x,y))
fz(x,y,z(x,y))

]
= − f2

z fxx−2fxfzfxz+f2
xfzz

f3
z

zxy = − ∂
∂y

[
fx(x,y,z(x,y))
fz(x,y,z(x,y))

]
= − f2

z fxy−fyfzfxz−fxfzfyz+fxfyfzz

f3
z

zyy = − ∂
∂x

[
fy(x,y,z(x,y))
fz(x,y,z(x,y))

]
= − f2

z fyy−2fyfzfyz+f2
y fzz

f3
z

.

(7)

Replacing the partial derivatives z
x
, z

y
, z

xx
, z

xy
, z

yy
given by the relations (6), (7)in

the formula (5) we obtain

2|H| =

∣∣
(f2

y
+f2

z
)(fxx f2

z
−2fx fz fxz +fzz f2

x
)

f5
z

− 2
fx fy (fx fy fzz−fy fz fxz−fx fz fyz +fxy f2

z
)

f5
z

+
(f2

x
+f2

z
)(fyy f2

z
−2fy fz fyz +fzz f2

y
)

f5
z[ f2

x
+f2

y
+f2

z

f2
z

]3/2

∣∣

=
∣∣ |fz |

3

f5
z

[ f2
y

f2
z

fxx − 2fxf2
y

fz fxz + f2
x

f2
y

fzz + f4
z

fxxfxf3
z

fxz + f2
x

f2
z

fzz − 2f2
x

f2
y

fzz + 2fxf2
y

fz fxz√
f2

x
+ f2

y
+ f2

z

3 +

+
2f2

x
fy fz fyz − 2fxfy f2

z
fxy + f2

x
f2

z
fyy − 2f2

x
fy fz fyz + f2

x
f2

y
fzz + f4

z
fyy − 2fy f3

z
fyz + f2

y
f2

z
fzz√

f2
x

+ f2
y

+ f2
z

3

]∣∣ =

=
∣∣ |fz |

3

f5
z

f2
z

(
f2

y
fxx + f2

z
fxx − 2fxfz fxz + f2

x
fzz − 2fxfy fxy + f2

x
fyy + f2

z
fyy − 2fy fz fyz + f2

y
fzz

)
||
−→
∇f ||3

∣∣ =

=
∣∣ f2

x
(fyy + fzz ) + f2

y
(fxx + fzz ) + f2

z
(fxx + fyy )− (Hess f)(

−→
∇f,

−→
∇f) + f2

x
fxx + f2

y
fyy + f2

z
fzz

||
−→
∇f ||3

∣∣
where

(Hesss f)(
−→
∇f,

−→
∇f) = (f

x
, f

y
, f

z
)


f

xx
f

xy
f

xz

f
yx

f
yy

f
yz

fzx fzy fzz




f
x

f
y

fz

 =
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= f
xx

f2
x

+ f
yy

f2
y

+ f
zz

f2
z

+ 2f
xy

f
x
f

y
+ 2f

xz
f

x
f

z
+ 2f

yz
f

y
f

z
.

Therefore for the absolute value of the mean curvature wee have

|H| =
1

2

∣∣ f2
x
(fxx + fyy + fzz ) + f2

y
(fxx + fyy + fzz + f2

z
(fxx + fyy + fzz )− (Hess f)(

−→
∇f,

−→
∇f)

||
−→
∇f ||3

∣∣ =

=
1
2

∣∣ (f2
x

+ f2
y

+ f2
z
)(f

xx
+ f

yy
+ f

zz
)− (Hess f)(

−→
∇f,

−→
∇f)

||
−→
∇f ||3

∣∣ =

=
1
2

∣∣ ||−→∇f ||2 ·∆f − (Hess f)(
−→
∇f,

−→
∇f)

||
−→
∇f ||3

∣∣ =

=
1

2||
−→
∇f ||

∣∣[∆f − (Hess f)
( −→

∇f

||
−→
∇f ||

,

−→
∇f

||
−→
∇f ||

)]∣∣.�
Corollary 2.2. If V ⊆ R3 is an open set, f : V → R is a smooth harmonic

mapping and a ∈ Im f is a regular value of f , then for the absolute value of the

mean curvature of the implicit regular surface (S) f(x, y, z) = a we have the following

formula:

|H| = 1

2||
−→
∇f ||3

∣∣(Hess f)(
−→
∇f,

−→
∇f)

∣∣. (8)

3. Example

It is well know that the locus of the orthogonal projections of the center of

the ellipsoid (E) x2

a2 + y2

b2 + z2

c2 = 1 on its tangent planes is the so called pedal surface

of E, that is the regular surface

S = {(x, y, z) ∈ R3 | (x2 + y2 + z2)2 = a2x2 + b2y2 + c2z2}\{0}.

We will compute the absolute value of the mean curvature of the pedal surface of E

in its points.

For this purpose consider p = (x0, y0, z0) ∈ S, the function

f : R3\{0} → R, f(x, y, z) = (x2 + y2 + z2)2 − a2x2 − b2y2 − c2z2

and observe that S = f−1(0).
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The partial derivatives of first and second order of f are

fx = 4x(x2 + y2 + z2)− 2a2x

f
y

= 4y(x2 + y2 + z2)− 2b2y

f
z

= 4z(x2 + y2 + z2)− 2c2z

fxx = 4(x2 + y2 + z2) + 8x2 − 2a2 fxy = fyx = 8xy fxz = fzx = 8xz

f
yy

= 4(x2 + y2 + z2) + 8y2 − 2b2 f
yz

= f
zy

= 8yz

f
zz

= 4(x2 + y2 + z2) + 8z2 − 2c2 .

Therefore in the points (x, y, z) of the regular surface S we have ||
−→
∇f ||2 = 4(a4x2 +

b4y2 +c4z2), or equivalent ||
−→
∇f || = 2(a4x2 +b4y2 +c4z2)1/2. Observe that ||

−→
∇f || 6= 0

in all the points of the surface S = f−1(0). Therefore the critical set of f doesn’t

intersects the level set S = f−1(0), this being of course an argument on the regularity

of S.

On the other hand ∆f = 20(x2 + y2 + z2)− 2(a2 + b2 + c2) and

(Hessf)(
−→
∇f,

−→
∇f) = f

xx
f2

x
+ f

yy
f2

y
+ f

zz
f2

z
+ 2f

xy
f

x
f

y
+ 2f

xz
f

x
f

z
+ 2f

yz
f

y
f

z
=

= (4(x2 + y2 + z2) + 8x2− 2a2)[16x2(x2 + y2 + z2)2− 16a2x2(x2 + y2 + z2) + 4a4x2]+

+(4(x2 + y2 + z2) + 8y2 − 2b2)[16y2(x2 + y2 + z2)2 − 16b2y2(x2 + y2 + z2) + 4b4y2]+

+(4(x2 + y2 + z2) + 8z2 − 2c2)[16z2(x2 + y2 + z2)2 − 16c2z2(x2 + y2 + z2) + 4c4z2]+

+16xy[4x(x2 + y2 + z2)− 2a2x][4y(x2 + y2 + z2)− 2a2y]+

+16xz[4x(x2 + y2 + z2)− 2a2x][4z(x2 + y2 + z2)− 2c2z]+

+16yz[4y(x2 + y2 + z2)− 2a2y][4z(x2 + y2 + z2)− 2c2z] =

= 48(x2 + y2 + z2)(a4x2 + b4y2 + c4z2).

Replacing all of these values considered in p, in the formula (4), we obtain

|H
S1

(p)| =

=
1

4(a4x2
0

+ b4y2
0

+ c4z2
0
)1/2

∣∣20(x2
0

+ y
2
0

+ z
2
0
)− 2(a

2
+ b

2
+ c

2
)−

48(x2
0

+ y2
0

+ z2
0
)(a4x2

0
+ b4y2

0
+ c4z2

0
)

4(a4x2
0

+ b4y2
0

+ c4z2
0
)

∣∣ =

=
|4(x2

0
+ y2

0
+ z2

0
)− (a2 + b2 + c2)|

2(a4x2
0

+ b4y2
0

+ c4z2
0
)1/2

=
∣∣2

√√√√ a2x2
0

+ b2y2
0

+ c2z2
0

a4x2
0

+ b4y2
0

+ c4z2
0

−
1

2

a2 + b2 + c2√
a4x2

0
+ b4y2

0
+ c4z2

0

∣∣.
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FIRST ORDER DIFFERENTIAL SUBORDINATIONS AND
INEQUALITIES IN A BANACH SPACE

DORINA RĂDUCANU

Abstract. Let E be a complex Banach space and let B = {x ∈ E :

‖x‖ < 1} be the unit ball in E. Let p : B → C be holomorphic in B

and let q be holomorphic and univalent in the unit disc U . We prove

that if p satisfies some differential subordinations and inequalities, then

p(B) ⊂ q(U). Applications of these results are presented.

1. Introduction

S. Gong and S.S. Miller [1] have dealt with holomorphic functions defined on a

complete circular domain in Cn, which satisfy certain partial differential inequalities

or subordinations. In this paper we consider similar relationships for holomorphic

functions from the unit ball B into C.

The following sets {x ∈ E : ‖x‖ < r ≤ 1} and {x ∈ E : ‖x‖ ≤ r ≤ 1} will

be denoted Br, respectively Br.

Let H(Br), r ∈ (0, 1] be the class of functions f : Br → C that are holomor-

phic in Br, i.e. have the Fréchet derivative f ′(x) in each point x ∈ Br.

2. First order differential subordinations

Lemma 1. Let r0 ∈ (0, 1) and let f ∈ H(Br0) with f(0) = 0 and f(x) 6≡ 0.

If x0 ∈ Br0 and

|f(x0)| = max{|f(x)| : x ∈ Br0} (1)

then there exists m ∈ C with Re m ≥ 1 such that

f ′(x0)(x0) = mf(x0). (2)
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Proof. We have zx ∈ Br0 for all z ∈ U and x ∈ Br0 . We consider the

function g(z) =
f(zx0)
f(x0)

, for z ∈ U . From (1) we obtain

|g(z)| =
∣∣∣∣f(zx0)
f(x0)

∣∣∣∣ < 1, for all z ∈ U.

Since g(0) = 0, we can apply Schwarz’s lemma to obtain |g(z)| ≤ |z|, z ∈ U

and thus ∣∣∣∣f(zx0)
f(x0)

∣∣∣∣ ≤ |z|, for z ∈ U.

At the point z = r, r ∈ (0, 1) we have

Re
f(rx0)
f(x0)

≤ r. (3)

A simple calculation leads to

f ′(x0)(x0)
f(x0)

=
d

dr

[
f(rx0)
f(x0)

] ∣∣∣∣∣
r=1

= lim
r↗1

f(rx0)− f(x0)
(r − 1)f(x0)

= lim
r↗1

[
1− f(rx0)

f(x0)

]
1

1− r
.

Taking real parts and using (3) we obtain

Re
f ′(x0)(x0)
f(x0)

≥ lim
r↗1

(1− r)
1

1− r
= 1,

which proves the lemma.

We will extend the ideas in Lemma 1, but first we need to consider the

following class of functions.

Definition 1. We denote by Q the set of functions q that are analytic and

injective on U \ E(q), where E(q) = {ζ ∈ ∂U : lim
z→ζ

q(z) = ∞} and are such that

q′(ζ) 6= 0, for ζ ∈ ∂U \ E(q).

Lemma 2. Let q ∈ Q and let p ∈ H(B) with p(0) = q(0). If p(B) 6⊂ q(U)

then there exist r0 ∈ (0, 1), x0 ∈ Br0 and ζ0 ∈ ∂U \ E(q) such that

(i) p(x0) = q(ζ0)

(ii) p′(x0)(x0) = mζ0q
′(ζ0), where Re m ≥ 1.

Proof. Since p(0) = q(0) and p(B) 6⊂ q(U) there exists r0 ∈ (0, 1) such

that p(Br0) ⊂ q(U) and p(Br0) ∩ q(∂U) \ E(q) 6= ∅. Hence there exist x0 ∈ Br0

and ζ0 ∈ ∂U \ E(q) such that p(x0) = q(ζ0). If we let f(x) = q−1(p(x)), for x ∈

Br0 , then f is holomorphic in Br0 and satisfies |f(x0)| = |ζ0| = 1, f(0) = 0 and

|f(x)| ≤ 1, for x ∈ Br0 . Thus f satisfies the conditions of Lemma 1 and we obtain

that there eixsts m ∈ C, with Re m ≥ 1 such that f ′(x0)(x0) = mf(x0). Since
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p(x) = q(f(x)), we have p′(x) = q′(f(x))f ′(x) and using ζ0 = f(x0), we obtain

p′(x0)(x0) = q′(f(x0))f ′(x0)(x0) = mζ0q
′(ζ0).

Definition 2. Let Ω be a set in C, q ∈ Q. We define ψ[Ω, q] to be the class

of functions ψ : C2 ×B → C that satisfy the condition:

ψ(r, s;x) 6∈ Ω, whenever r = q(ζ), s = mζq′(ζ),

x ∈ B, ζ ∈ ∂U \ E(q) and Re m ≥ 1.

We are now prepared to present the main result of this section.

Theorem 1. Let ψ ∈ ψ[Ω, q]. If p ∈ H(B) with p(0) = q(0) and if p satisfies

ψ(p(x), p′(x)(x);x) ∈ Ω, for x ∈ B (4)

then p(B) ⊂ q(U).

Proof. Assume p(B) 6⊂ q(U). By Lemma 2 there exist x0 ∈ B, ζ0 ∈ ∂U\E(q)

and m ∈ C with Re m ≥ 1 that satisfy (i), (ii) of Lemma 2. Using these conditions

with r = p(x0), s = p′(x0)(x0) and x = x0 in Definition 2 we obtain

ψ(p(x0), p′(x0)(x0);x0) 6∈ Ω.

Since this contradicts (4) we must have p(B) ⊂ q(U).

We next apply Theorem 1 to two important particular cases corresponding

to q(U) being the unit disc and q(U) being the right half-plane.

If we take q(z) = z in Definition 2 and Theorem 1 we obtain the following

result.

Corollary 1. Let Ω be a set in C and let ψ : C2 ×B → C be such that

ψ(eiθ;meiθ;x) 6∈ Ω, whenever x ∈ B, θ ∈ R and Re m ≥ 1. (5)

If p ∈ H(B) with p(0) = 0 and if p satisfies

ψ(p(x), p′(x)(x);x) ∈ Ω, for x ∈ B

then |p(x)| < 1, for x ∈ B.

If we take q(z) =
1 + z

1− z
in Definition 2 and Theorem 1 we obtain:

Corollary 2. Let Ω be a set in C and let ψ : C2 ×B → C be such that

ψ(ai, s;x) 6∈ Ω, whenever x ∈ B, a ∈ R, and Re s ≤ −1 + a2

2
. (6)
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If p ∈ H(B) with p(0) = 1 and if p satisfies

ψ(p(x), p′(x)(x);x) ∈ Ω, for x ∈ B

then Re p(x) > 0, for x ∈ B.

3. Examples

In this section we present a seris of examples of differential inequalities by

applying the two corollaries of the previous section.

Example 1. Let Ω = U and let ψ(r, s;x) = α(|r|+ |s|)+β‖x‖, where α ≥ 1
2

and β ≥ 0. If p ∈ H(B) with p(0) = 0, then

α(|p(x)|+ |p′(x)(x)|) + β‖x‖ < 1 ⇒ |p(x)| < 1.

Proof. To use Corollary 1 we need to shoe that the condition (5) is satisfied.

This follows since

|ψ(eiθ,meiθ;x)| =
∣∣∣α(1 + |m|) + β‖x‖

∣∣∣ ≥ α(1 + |m|) ≥ α(1 + Re m) ≥ 2α ≥ 1.

Remark. When α =
1
2

and β = 0 we have

|p(x)|+ |p′(x)(x)| < 2 ⇒ |p(x)| < 1.

The proof of the following example also follows from Corollary 1.

Example 2. Let Ω = U and let ψ(r, s;x) = α(x)r + βs, where β ≥ 0 and

α : B → C such that Re α(x) ≥ 1− β. If p ∈ H(B) with p(0) = 0, then

|α(x)p(x) + βp′(x)(x)| < 1 ⇒ |p(x)| < 1.

Example 3. Let Ω = {z ∈ C : Re z > 0} and let ψ(r, s;x) = r2 + s. If

p ∈ H(B) with p(0) = 1, then

Re [p2(x) + p′(x)(x)] > 0 ⇒ Re p(x) > 0.

Proof. To use Corollary 2 we need to show that the condition (6) is satisfied.

This follows since

Re ψ(ai, s;x) = −a2 + Re s ≤ −3a2 − 1
2

< 0.

The proof of the following example also follows from Corollary 2.
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Example 4. Let Ω = {z ∈ C : Re z > 0} and let ψ(r, s;x) = α(x)r + βs,

where β ≥ 0 and α : B → C such that |Im α(x)| ≤ β. If p ∈ H(B) with p(0) = 1,

then

Re [α(x)p(x) + βp′(x)(x)] > 0 ⇒ Re p(x) > 0.
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A NOTE ON STANDARD TOPOLOGICAL CONTEXTS WITH
PSEUDOMETRIC

CHRISTIAN SĂCĂREA

Abstract. Standard topological contexts are a valuable tool in represent-

ing several classes of ordered algebraic structures. While investigating

Contextual Topology, pseudometric contexts were introduced as a tool in

approximating objects by their attributes. Here we describe the interac-

tion between these two classes, i.e., pseudometric contexts and standard

topological contexts, pointing out whether the Hartung duality extends

in the case of metric lattices or not. Moreover, the meaning of being a

contraction or being continuous in the case of multivalued pseudometric

morphisms is investigated.

1. Introduction

Formal Concept Analysis was introduced first in an attempt of restructuring

lattice theory (see [Wi82]). Since then, Formal Concept Analysis developed contin-

uously to a theory of interpreting data by revealing the fundamental patterns of it.

These patterns are then synthesized in a structure called concept lattice. Ten years

later, standard topological contexts were introduced as a valuable tool in representing

0–1 lattices via Formal Concept Analysis ([Ha92]). This representation could be also

considered as the first step in investigating the links between Topology and Formal

Concept Analysis.

In [Sa00a] pseudometric and metric formal contexts were introduced as a

generalization of the well known concepts of a metric on a set. By this generalization,

the notion of metric extends on a formal context by the mathematization of a well

known fact: Formal contexts are representing data sets. Usually, a data set is a

record of several measurements or informations about a set of objects and a set of

attributes of interest. These attributes are specific for the topic in study but some

of these are more characteristic than others. (Pseudo)metric contexts, and uniform
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contexts as well, captures at best this phenomenon, i.e., that an attribute is more

or less characteristic for an object as another one. For more informations, see for

example [Sa00b].

This paper describes the links between standard topological contexts and

pseudo metric contexts, investigating whether the well known duality between stan-

dard topological contexts and 0–1 lattices remains valid if we consider 0–1 pseudo-

metric lattices. Moreover, we shall describe how some properties of 0–1 pseudometric

lattices like being a contraction or being continuous reflects in the category of standard

topological contexts with pseudometric.

2. Basic Definitions and Results

We briefly sketch the duality between bounded lattices and standard topo-

logical contexts developed in [Ha92] and [Ha93]. We recall some definitions and basic

facts, for other definitions and results we refer to [GW96].

By (X, τ) we denote a topological space, where X is the underlying set

and T is the family of all closed sets of that space. We start with a triple

KT := ((G, ρ), (M,σ), I) consisting of two topological spaces (G, ρ), (M,σ) and a

binary relation I ⊆ G×M . For A ⊆ G and B ⊆M , we define two derivations by

A′ := {m ∈M | gIm for all g ∈ A} and

B′ := {g ∈ G| gIm for all m ∈ B}.

These form a Galois-connection which gives rise to a complete lattice

B(KT ) := {(A,B)| A ⊆ G,B ⊆M,A′ = B,B′ = A}

which is known as the concept lattice of the context KT . The elements of B(KT )

are called (formal) concepts. If (A,B) is a concept of KT , the sets A and B are

called the extent and the intent of the concept (A,B). For two concepts, the relation

subconcept–superconcept is given by

(A,B) ≤ (C,D) ⇔ A ⊆ B(⇔ B ⊇ B).
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A closed concept is a concept consisting in each component of a closed set with

respect to the corresponding topology. The set of all closed concepts is denoted by

BT (KT ) := {(A,B) ∈ B(KT )| A ∈ ρ and B ∈ σ}.

The triple KT := ((G, ρ), (M,σ), I) is called a topological context if the

following two conditions are satisfied:

(i) A ∈ ρ⇒ A′′ ∈ ρ;B ∈ σ ⇒ B′′ ∈ σ.

(ii) Sρ := {A ⊆ G| (A,A′) ∈ BT (KT )} is a subbasis of ρ and

Sσ := {B ⊆M | (B,B′) ∈ BT (KT )} is a subbasis of σ.

Under these assumptions, BT (KT ) with the induced order is a 0–1 lattice in

which infima and suprema can be described as follows

(A1, B1) ∧ (A2, B2) = (A1 ∩A2, (B1 ∪B2)′′);

(A1, B1) ∨ (A2, B2) = ((A1 ∪A2)′′, B1 ∩B2).

For each g ∈ G, the concept γg := (g′′, g′) is called the object concept

of G and for each m ∈ M , the concept µm := (m′,m′′) is called the attribute

concept of m. We call a context clarified if g, h ∈ G with g′ = h′ implies g = h and

m,n ∈M with m′ = n′ implies m = n. A clarified context is called reduced if each

object concept is completely join-irreducible and each attribute concept is completely

meet-irreducible. For each context K := (G,M, I), every g ∈ G and m ∈ M , we

define:

g ↙ m⇔ g\Im and (g′ ⊂ h′ ⇒ m ∈ h′);

g ↗ m⇔ g\Im and (m′ ⊂ n′ ⇒ g ∈ n′);

g ↙↗ m⇔ g ↙ m and g ↗ m.

We call two contexts K1 and K2 isomorphic if there are bijective maps

α : G1 → G2 and β : M1 → M2 such that for all g ∈ G1 and m ∈ M1, the following

condition is fulfilled:

gI1m⇔ α(g)I2β(m).

For each H ⊆ G and N ⊆ M , the context (H,N, I ∩ (H × N)) is called a

subcontext of K. This subcontext is compatible if (A,B) ∈ B(K) implies (A ∩

H,B ∩N) ∈ B(H,N, I ∩ (H ×N)).

91



CHRISTIAN SĂCĂREA

Proposition 2.1. A subcontext (H,N, I ∩ (H × N)) of K is compatible if

and only if

ΠH,N : B(K) → B(H,N, I ∩ (H ×N)) with (A,B) 7→ (A ∩H,B ∩N)

is a surjective complete lattice homomorphism.

A subcontext (H,N, I ∩ (H × N)) of a purified context K is called arrow–

closed if for h ∈ H, the relation h ↙ m implies m ∈ N and for n ∈ N , the relation

g ↗ n implies g ∈ H.

A topological context is called a standard topological context if in addi-

tion the following hold:

(R) KT is reduced;

(S) gIm⇒ ∃(A,B) ∈ BT (KT ) with g ∈ A and m ∈ B;

(Q) ({I, (ρ×σ)|{I) is a quasicompact space where {I := (G×M)\I and ρ×σ

denotes the product topology on G×M .

Let now L be a 0–1 lattice. A nonempty lattice filter F of L is called an

I-maximal filter [Ur78] if there exists a nonempty lattice ideal I of L such that

F ∩ I = ∅ and every proper superfilter F̃ ⊃ F already contains an element of I. We

denote the set of all I-maximal proper filters of L by F0(L). Dually, the set I0(L) of all

F-maximal ideals is introduced. The dual space of L, called the standard topological

context of L is defined by

KT (L) := ((F0(L), ρ0), (I0(L), σ0),∆)

where F∆I :⇔ F ∩ I 6= ∅ and the topologies ρ0 and σ0 are given by the subbasis

Sρ0 := {Fa| a ∈ L};Fa := {F ∈ F0(L)| a ∈ F},

Sσ0 := {Ia| a ∈ L}; Ia := {I ∈ I0(L)| a ∈ I}.

KT (L) is the reduced context of all filters and ideals of L and it is a standard topo-

logical context. The 0–1 lattice L is isomorphic to BT (KT (L)) via the isomorphism

ιA : L→ BT (KT (L)); ιA(a) = (Fa, Ia).

Conversely, every standard topological context KT is isomorphic to

KT (BT (KT )) via the pair of homeomorphisms

ψKT : G→ F0(BT (KT )), g 7→ {(A,B) ∈ BT (KT )|g ∈ A},
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φKT : M → I0(BT (KT )), m 7→ {(A,B) ∈ BT (KT )|m ∈ B}.

Let KT
1 and KT

2 be standard topological contexts. A pair of maps (α, β) with

α : G1 → G2 and β : M1 → M2 is called a context embedding of KT
1 into KT

2 if

the contexts KT
1 and ((α(G1), ρ2|α(G1)), (β(M1), σ2|β(M1)), I2 ∩ (α(G1)× β(M1))) are

isomorphic as topological contexts with respect to (α, β).

If KT is a topological context, a subcontext ((H, ρ|H), N, σ|N ), I ∩H × N))

is called weakly compatible if

(A,B) ∈ BT (KT ) ⇒ (A ∩H,B ∩N) ∈ B(H,N, I ∩ (H ×N)).

A context embedding (α, β) between two standard topological contexts KT
1

and KT
2 is called a standard embedding of KT

1 into KT
2 if the following conditions

are satisfied:

(a) ((α(G1), ρ2|α(G1)), (β(M1), σ2|β(M1)), I2 ∩ (α(G1) × β(M1))) is a weakly

compatible subcontext of KT
2;

(b) For (A,B) ∈ BT (KT
1), there exists (C,D) ∈ BT (KT

2) such that

(α(A), β(B)) = ((C ∩ α(G1)), (D ∩ β(M1))).

Preimages of I-maximal filters (resp. ideals) are not maximal again, so we

have to define appropriate morphisms between standard topological contexts to im-

prove a categorical dual equivalence between the category of bounded lattices and the

category of standard topological contexts.

A multivalued function F : X → Y from a set X to a set Y is a binary

relation F ⊆ X × Y such that prX(F ) = X, where prX denotes the projection onto

X. For A ⊆ X and B ⊆ Y we define
FA := prY (F ∩ (A× Y )) = {y ∈ Y | (a, y) ∈ F for some a ∈ A};

F−1B := prX(F ∩ (X ×B)) = {x ∈ X | (x, b) ∈ F for some b ∈ B};

F [−1]B := {x ∈ X | Fx ⊆ B}.
Note that FA =

⋃
a∈A Fa and F−1B =

⋃
b∈B F

−1b. If F : X → Y and

G : Y → Z are multivalued functions their relational product

G ◦ F := {(x, z) ∈ X × Z | (x, y) ∈ F and (y, z) ∈ G for some y ∈ Y }

is a multivalued function from X to Z.
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We shall call a multivalued standard morphism from KT
1 to KT

2 a pair

(R,S) : KT
1 → KT

2, where KT
1 and KT

2 are standard topological contexts, R is a mul-

tivalued function from G1 to G2 and S is a multivalued function from M1 to M2

satisfying the following conditions:

(i) (R[−1]A,S[−1]B) ∈ BT (KT
1) for every (A,B) ∈ BT (KT

2);

(ii) Rg = Rg′′ = Rg for every g ∈ G1 and

Sm = Sm′′ = Sm for every m ∈M1.

Remark 1. Condition (ii) can be understood in lattice theoretical terms.

Every element g ∈ G1 correspond to exactly one I-maximal filter of BT (KT
1). The

demand on Rg to be a closed extent means that Rg corresponds to a lattice filter of

BT (KT
2).

Every multivalued standard morphism induces a 0-1 lattice homomorphism

and vice versa. In order to make this assignment functorial we have to modify the rela-

tional composition of multivalued standard morphisms, since the relational composi-

tion of two multivalued standard morphisms is not necessarily a multivalued standard

morphism.

Let (R1, S1) : KT
1 → KT

2 and (R2, S2) : KT
2 → KT

3 be multivalued standard

morphisms between standard topological contexts. We define

(R2, S2)�(R1, S1) := (R2�R1, S2�S1)

where

(R2�R1)g1 := ((R2 ◦R1)g1)′′ and (S2�S1)m1 := ((S2 ◦ S1)m1)′′

and ◦ denotes the relational product, i.e.

(R2 ◦R1)g1 := {g3 ∈ G3 | g3 ∈ R2g2 for some g2 ∈ R1g1} and, dually,

(S2 ◦ S1)g1 := {m3 ∈M3 | m3 ∈ S2m2 for some m2 ∈ S1m1}.

The class of all standard topological contexts together with the multivalued

standard morphisms with � as composition yields a category which is dually equiva-

lent to the category of 0-1 lattices with 0-1 lattice homomorphisms.
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3. Standard Topological Contexts with Pseudometric

If we want to represent several classes of ordered algebraic structures, stan-

dard topological contexts are the best tool to do this. On the other hand, if we want

to approximate objects by their attributes in a given formal context, we have to mod-

ify this approach towards a topological formal concept analysis and to investigate a

generalization on formal contexts of the classical notion of a metric (see [Sa00b]).

Definition 3.1. Let G and M be two sets. We call pseudometric between

G and M a map d : G×M → R satisfying the following rectangle condition:

(R) d(g,m) ≤ d(g, n) + d(h,m) + d(h, n), g, h ∈ G, m, n ∈M,

and, for every g ∈ G and ε > 0, there is an attribute m ∈M with d(g,m) < ε. Dually,

for every m ∈M and every ε > 0, there is an object g ∈ G with d(g,m) < ε.

If d is a pseudometric between G and M , then d∨ : G × G → R defined

by d∨(g, h) := infm∈M (d(g,m) + d(h,m)), g, h ∈ G is a pseudometric on G. Dually,

d∧ : M ×M → R defined by d∧(m,n) := infg∈G(d(g,m) + d(g, n)),m, n ∈ M is a

pseudometric on M .

Definition 3.2. A formal context K := (G,M, I) is called a pseudometric

context if there is a pseudometric d : G×M → R between G and M satisfying the

following two conditions, called ε-conditions:

∀ε ≥ 0 ∀g ∈ G ∃m ∈M : gIm and d(g,m) < ε,

∀ε ≥ 0 ∀m ∈M ∃g ∈ G : gIm and d(g,m) < ε.

We shall call a pseudometric context standard if d(A,B) = inf{d(a, b) | a ∈

A, b ∈ B} = 0 for every concept (A,B) of K.

Let K := (G,M, I; d) be a pseudometric context. We consider G and M as

topological spaces with the pseudometric topology given by d∨ and d∧, respectively.

As we have seen before, a topological context is a triple (G,M, I) where G and M

are topological spaces and I ⊆ G ×M is a binary relation between them, satisfying

some compatibility conditions with the topologies on G and M . If in addition the

topological context satisfies some separation and compactness properties, it is called

a standard topological context and it was shown by G. Hartung that the category of

standard topological contexts is dual equivalent to that of 0–1 lattices.
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A question arises naturally: what are the connections between pseudometric

contexts and standard topological ones? As in the topological algebra, there are

two possibilities. On the one hand, we can demand that the topologies on G and

M are generated by the pseudometrics induced by d. We shall call such a context a

compatible pseudometric context, i.e., KT := ((G, Td∨), (M, Td∧ , I) is a standard

topological context where Td∨ denotes the pseudometric topology on G, and Td∧

denotes the pseudometric topology on M .

On the other hand, we can simply consider standard topological contexts

with pseudometric, i.e., no compatibility conditions between the topologies on G

and M and the given pseudometric are required.

In the following we shall investigate the categories of standard topological

contexts with a compatible pseudometric or not and we shall take a look whether an

extension of the Hartung duality to the pseudometric case is possible or not. Beside of

this extension, we are mainly interested on how some properties of pseudometric lat-

tice homomorphisms are reflected into the properties of standard topological context

morphisms.

Remark 2. Before starting these investigations, remember that R can be

understood as the concept lattice of the context (Q,Q,≤). Since (Q, d) is a metric

space, where d is the natural metric on Q, then (Q,Q,≤) is a metric context. The

metric on R ' B(Q,Q,≤) can be understood as a kind of ”reflection” of the contex-

tual metric d on (Q,Q,≤) on the concept lattice. The following Lemma ([Sa00b])

synthesizes this phenomenon in its full generality.

Lemma 3.1. Let K := (G,M, I; ρ) be a pseudometric context. The map

d : B(G,M, I)× B(G,M, I) → R, defined by

d((A,B), (C,D)) := max{ρ(A,D), ρ(C,B)},

is a pseudometric on B(G,M, I), the concept lattice of K.

Let K1 := (G1,M1, I1; d1) and K2 := (G2,M2, I2; d2) be standard topological

contexts with pseudometric. A morphism between them is defined as a pair of mul-

tivalued functions R : G1 → G2 and S : M1 →M2 (i.e., R and S are binary relations

on G1 × G2 and M1 ×M2, respectively, satisfying prG1
R = G1 and prM1

S = M1)

with the properties:
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(i) (R[−1]A,S[−1]B) ∈ BT (KT
1 ) for every (A,B) ∈ BT (KT

2 );

(ii) Rg = Rg′′ = Rg for every g ∈ G1, and

Sm = Sm′′ = Sm for every m ∈M1;

(iii) d2(Rg, Sm) ≤ d1(g,m) for every g ∈ G1 and m ∈M1.

The pair (R,S) will be called multivalued pseudometric morphism.

Lemma 3.2. The class of all standard topological contexts with pseudometric

together with the multivalued pseudometric morphisms between them yields a category

denoted by TopCond. The class of all compatible pseudometric contexts is a full

subcategory CCM of TopCond.

Proof. Let K := (G,M, I; d) be a pseudometric context, the identity (Re, Se)

where Re : G → G and Se : M → M are defined by Reg := g′′ and Sem := m′′,

respectively, is a multivalued standard morphism. Since d(Reg, Sem) = d(g′′,m′′) ≤

d(g,m) for every g ∈ G and m ∈ M , we conclude that (Re, Se) is a multivalued

pseudometric morphism, i.e., the identity in the category of standard topological

contexts is also identity in TopCond.

Let now (R1, S1) : (K1, d1) → (K2, d2) and (R2, S2) : (K2, d2) →

(K3, d3) be multivalued metric morphisms. We shall prove that their composition

(R2, S2)�(R1, S1) := (R2�R1, S2�S1) is again a multivalued pseudometric mor-

phism.

By definition of �, (R2�R1)g1 := ((R2 ◦ R1)g1)′′ for every g1 ∈ G1. Dually,

we have (S2�S1)m1 := ((S2 ◦ S1)m1)′′ for every m2 ∈M2. The following holds:

d3((R2�R1)g1, (S2�S1)m1) = d3(((R2 ◦R1)g1)′′, ((S2 ◦ S1)m1)′′)

≤ d3((R2 ◦R1)g1, (S2 ◦ S1)m1)

= d3(R2(R1g1), S2(S1m1))

= d3({g3 ∈ G3 | g3 ∈ R2g2 for some g2 ∈ R1g1},

{m3 ∈M3 | m3 ∈ R2m2 for some m2 ∈ R1m1}).

But (R1, S1) and (R2, S2) are multivalued pseudometric morphisms, and so

d2(R1g1, S1m1) ≤ d1(g1,m1) for every g1 ∈ G1 and m1 ∈M1

d3(R2g2, S2m2) ≤ d2(g2,m2) for every g2 ∈ G2 and m2 ∈M2.
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For every g2 ∈ R1g1 and m2 ∈ S1m1, we have d3(R2g2, S2m2) ≤ d2(g2,m2) which

implies

d3(R2(R1g1), S2(S1m1)) = d3(
⋃

g2∈R1g1

R2g2,
⋃

m2∈S1m1

S2m2)

= inf{d3(g3,m3) | g3 ∈
⋃

g2∈R1g1

R2g2,

m3 ∈
⋃

m2∈S1m1

S2m2}

≤ inf{d3(g3,m3) | g3 ∈ R2g2,m3 ∈ S2m2},

for every g2 ∈ R1g1 and every m2 ∈ S1m1

= d3(R2g2, S2m2) for every g2 ∈ R1g1,m2 ∈ S1m1

≤ d2(g2,m2) for every g2 ∈ R1g1,m2 ∈ S1m1.

Hence d3(R2(R1g1), S2(S1m1)) ≤ inf{d2(g2,m2) | g2 ∈ R1g1,m2 ∈ S1m1} =

d2(R1g1, S1m1) ≤ d1(g1,m1). Since associativity is naturally inherited, the above

condition completes our proof. �

Lemma 3.3. If (L, ρ) is a 0-1-lattice and ρ : L × L → R is a pseudometric

on L, then KT (L), the standard topological context of L, is a standard pseudometric

context.

Proof. As we have seen before, to every 0-1-lattice L, we can define a standard

topological context denoted by KT (L) := (F0(L), I0(L),∆) where F∆I :⇔ F ∩I 6= ∅.

We shall define a pseudometric d : F0(L)×I0(L) → R on KT (L), by d(F, I) :=

inf{ρ(g,m) | g ∈ F,m ∈ I} = ρ(F, I). Let F ∈ F0(L). Then d(F, F ′) = d(F, {I ∈

I0(L) | F ∩ I 6= ∅}) = 0 since d(F, I) = 0 for every I ∈ I0(L) with F ∩ I 6= ∅, i.e.,

I ∈ F ′. Let us prove the rectangle inequality for d. Let (F, I), (F, J), (K,J) and

(K, I) in F0(L)× I0(L) be arbitrary chosen. We have to prove that

d(F, I) ≤ d(F, J) + d(K,J) + d(K, I).
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Then

d(F, I) = inf{ρ(f, i) | f ∈ F, i ∈ I}

≤ inf{ρ(f, i) + ρ(k, j) + ρ(k, i) | f ∈ F, i ∈ I} for j ∈ J, k ∈ K

≤ inf{ρ(f, i) + ρ(k, j) + ρ(k, i) | f ∈ F, i ∈ I, j ∈ J, k ∈ K}

≤ inf{ρ(f, i) | f ∈ F, i ∈ I}+ inf{ρ(k, j) | k ∈ K, j ∈ J}

+ inf{ρ(k, i) | k ∈ K, i ∈ I}

= d(F, J) + d(K,J) + d(K, I).

If (A,B) ∈ B(KT (L)), we conclude that d(A,B) = 0 by the definition of the

incidence relation and of the set distance; hence (KT (L), d) is a standard pseudometric

context. �

Remark 3. Since d∨ is the pseudometric induced on F0(L) by d, we have

d∨(F1, F2) = inf{d(F1, I) + d(F2, I) | I ∈ I0}; hence we conclude that generally, the

pseudometric d∨ does not induce the topology on F0(L) (which has as subbasis of

closed sets the family {Fa | a ∈ L}, where Fa := {F ∈ F0(L) | a ∈ F}). Indeed, for

two filters F1, F2 ∈ F0(L) we will often be able to find an ideal I ∈ I0(L) which has

a non empty intersection to F1 and F2 and therefore d∨(F1, F2) = 0.

In the following we shall consider only the case where KT is a standard

topological context with pseudometric. Let KT := (G,M, I) be a standard topological

context and let (Pε)ε≥0 be a family of non empty relations, Pε ⊆ G×M with ε ≥ 0,

which are satisfying the following conditions:

(M ′) Pε(x, y) → Pδ(x, y), δ ≥ ε

Pε ∧ Pδ(k, z) ∧ Pη(k, y) → Pε+δ+η(x, y).

(M∞) ∀δ ≥ ε : Pδ(x, y) → Pε(x, y), ε ≥ 0.

(M0) ∀g ∀ε ∃m : Pε(x, y).

A morphism (R,S) : (KT
1 , Pε)ε≥0 → (KT

2 , Qε)ε≥0 has to satisfy the following

compatibility condition

(C) Pε(g1,m1) ⇒ ∃g2 ∈ Rg1 ∃m2 ∈ Sm1 : Qε(g2,m2), ε ≥ 0.
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Lemma 3.4. The class of multicontexts (KT , Pε)ε≥0, where KT is a standard

topological context and (Pε)ε≥0 a family of binary relations on G × M satisfying

(M ′), (M∞) and (M0), together with the multivalued standard morphisms which are

satisfying condition (C) yields a category denoted by TopConε.

Proof. Let ε ≥ 0 be arbitrary chosen and KT be a standard topological context.

The identity morphism (Rε, Sε) : KT → KT where Reg := g′′ and Sem := m′′ is

obviously satisfying condition (C). Let us now consider (R1, S1) : (KT
1 , Pε)ε≥0 →

(KT
2 , Qε)ε≥0 and (R2, S2) : (KT

2 , Qε)ε≥0 → (KT
3 , Rε)ε≥0 two morphisms between ob-

jects in TopConε. We shall prove that their composition in Topcon, i.e., (R2, S2)�

(R1, S1) = (R2�R1, S2�S1) is a morphism between objects of TopConε, i.e.,

Pε(g1,m1) ⇒ ∃g3 ∈ (R2�R1)g1 ∃m3 ∈ (S2�S1)m : Rε(g3,m3).

Since the given morphisms are satisfying condition (C) and, by definition,

(R2�R1)g1 := ((R2 ◦ R1)g1)′′ and (S2�S1)m1 = ((S2�S1)m1)′′, we conclude that

Pε(g1,m1) implies the existence of a g2 ∈ R1g1 and an m2 ∈ S1m1 with Qε(g2,m2),

which implies the existence of elements g3 ∈ R2(R1g1) and m3 ∈ S2(S1m1) with

Rε(g3,m3). Since g3 ∈ R2(R1g1) ⊆ (R2 ◦ R1)g′′1 and m3 ∈ S2(S1m1) ⊆ (S2 ◦ S1)m′′
1

our proof is complete. �

Proposition 3.5. The category TopCond of standard topological contexts

with pseudometric is equivalent to TopConε.

Proof. Let F : TopCond → TopConε defined on objects by F (KT , d) =

(KT , Pε)ε≥0 and on morphisms in an obvious way. The functor F is obviously faithful.

Let (R,S) : F (KT
1 , d1) → F (KT

2 , d2) be a morphism of TopConε, that means (R,S) :

(KT
1 , Pε)ε≥0 → (KT

2 , Qε)ε≥0. We only have to prove that d2(Rg1, Sm1) ≤ d1(g1,m1)

for every g1 ∈ G1 and m1 ∈M1.

Let g1 ∈ G1 and m1 ∈ M1 be arbitrary chosen and define ε := d1(g1,m1).

It follows that Pε(g1,m1) and by (C), there is a g2 ∈ Rg1 and an m2 ∈ Sm1

with Qε(g2,m2), i.e., d2(g2,m2) ≤ ε. Hence d2(Rg1, Sm1) = inf{d2(g2,m2) | g2 ∈

Rg1,m2 ∈ Sm1} ≤ ε, i.e., F is full.

If (KT , Pε)ε≥0 is an object in TopConε, we define a pseudometric d : G ×

M → [0,+∞] by d(g,m) := inf{δ ≥ 0 | Pδ(g,m)}. As we have seen in the precedent

section, d is well-defined and is a pseudometric between G and M . Hence, we have
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found an object (KT , d) in TopCond with F (KT , d) ∼= (KT , Pε)ε≥0 which concludes

the proof. �

We shall now investigate whether the duality between standard topological

contexts and 0–1 lattices can be extended to the metric case. Even this will not

be generally true, it is of interest to investigate how some properties of morphisms

between pseudometric 0–1 lattices are reflected in the category TopCond as equivalent

properties of standard multivalued morphisms.

Let (R,S) : (KT
1, d1) → (KT

2, d2) be a morphism in TopCond. This morphism

induces fRS : (BT (KT
2 ), ρ2) → (BT (KT

1 ), ρ1) a 0–1 lattice homomorphism defined by

fRS(A,B) = (R[−1]A,S[−1]B) where R[−1]A = {g1 ∈ G1 | Rg1 ⊆ A} and S[−1]B =

{m1 ∈M1 | Sm1 ⊆ D}. By definition,

ρ1(fRS(A,B), fRS(C,D)) = ρ1((R[−1]A, S[−1]B), (R[−1]C,S[−1]D)

= max{d1(R[−1]A,S[−1]D), d1(R[−1]C,S[−1]B)}.

The morphism (R,S) is in TopCond, i.e., it satisfies d2(Rg1, Sm1) ≤ d1(g1,m1) for

every g1 ∈ G1 and m1 ∈ M1; hence d1(g1,m1) ≥ d2(Rg1, Sm1) ≥ d2(A,D) for every

g1 ∈ R[−1]A and every m ∈ S[−1]D, and so d1(R[−1]A,S[−1]D) ≥ d2(A,D). By a

similar calculus, we obtain d1(R[−1]C,S[−1]B) ≥ d2(C,B) which implies the following

inequality:

ρ1(fRS(A,B), fRS(C,D)) ≥ ρ2((A,B), (C,D)).

As we can see, condition (iii) has as consequence that on the “lattice side”

the mappings are not the usually contractions. To avoid this, we will impose for

context morphisms the following compatibility condition

(iv) d1(R−1g2, S
−1m2) ≤ d2(g2,m2) for every g2 ∈ G2 and m2 ∈M2.

In fact, let (R,S) : (KT
1 , d1) → (KT

2 , d2) be such a morphism and consider

fRS : (BT (KT
2 ), ρ2) → (BT (KT

1 ), ρ1) the induced 0–1 lattice homomorphism. Then

ρ1(fRS(A,B), fRS(C,D)) = max{d1(R[−1]A,S[−1]D), d1(R[−1]C,S[−1]B)}.
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Since R[−1]A = {g1 ∈ G1 | Rg1 ⊆ A} where A ⊆ G2, we have R[−1]A =⋃
T⊆A,T 6=∅

⋂
a∈T R

−1a and S[−1]D =
⋃

T ′⊆D,T ′ 6=∅
⋂

d∈T ′ S
−1d. It follows

d1(R[−1]A,S[−1]D) = d1(
⋃

T⊆A,T 6=∅

⋂
a∈T

R−1a,
⋃

T ′⊆D,T ′ 6=∅

⋂
d∈T ′

S−1d)

≤ d1(
⋂
a∈T

R−1a,
⋂

d∈T ′

S−1d)

for every non empty subsets T ⊆ A and T ′ ⊆ D. Choose T := {a} with a ∈ A and

T ′ := {d} with d ∈ D, then

d1(R[−1]A,S[−1]D) ≤ d1(R−1a, S−1d) ≤ d2(a, d)

for every a ∈ A and d ∈ D; hence d1(R[−1]A,S[−1]D) ≤ d2(A,D).

Analogously, we are able to prove that d1(R[−1]C,S[−1]B) ≤ d2(C,B); hence

fRS is a contraction.

Remark 4. The dual inequality to (iv), i.e.,

d1(R−1g2, S
−1m2) ≥ d2(g2,m2)

implies (iii). Indeed, for every g1 ∈ G1 and m1 ∈M1, we have

d2(Rg1, Sm1) = inf d2(g2,m2) ≤ inf d1(R−1g2, S
−1m2) ≤ d1(g1,m1).

Lemma 3.6. The class of standard topological contexts with metric together

with all multivalued standard morphisms between them satisfying condition (iv) yields

a category denoted by TopCon′d.

Proof. The unit morphism (Re, Se) : (KT , d) → (KT , d) defined by Reg := g′′

and Sem := m′′ satisfies (C ′), since R−1
e h = {g ∈ G | h ∈ g′′} and S−1

e n = {m ∈

M | n ∈ m′′}. In particular, h ∈ R−1h and n ∈ S−1n, hence d(R−1
e h, S−1

e n) ≤ d(h, n)

for every h ∈ G and n ∈M .

Let (R1, S1) : (KT
1 , d1) → (KT

2 , d2) and (R2, S2) : (KT
2 , d2) → (KT

3 , d3) be

two multivalued standard morphisms which are satisfying (iv). We shall prove that

their composition (R2, S2)�(R1, S1) = (R2�R1, S2�S1) : (KT
1 , d1) → (KT

2 , d2) is also

satisfying (iv).
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For g3 ∈ G3 and m3 ∈M3 we have

(R2�R1)−1g3 = {g1 ∈ G1 | g3 ∈ ((R2 ◦R1)g1)′′}

⊇ {g1 ∈ G1 | g3 ∈ R2(R1g1)}

= {g1 ∈ G1 | g1 ∈ (R2 ◦R1)−1g3}

= {g1 ∈ G1 | g1 ∈ R−1
1 (R−1

2 g3))}

= {g1 ∈ G1 | ∃g2 ∈ G2 : (g2, g1) ∈ R−1, (g3, g2) ∈ R−1
2 }

= {g1 ∈ G1 | ∃g2 ∈ G2 : g1 ∈ R−1
1 g2, g2 ∈ R−1

2 g3}.

In a similar manner, we are able to prove that

(S2�S1)−1m3 ⊇ {m1 ∈M1 | ∃m2 ∈M2 : m1 ∈ S−1m2,m2 ∈ S−1
2 m3},

hence

d1((R2�R1)−1g3, (S2�S1)−1m3)

≤ d1({g1 ∈ G1 | ∃g2 ∈ G2 : g1 ∈ R−1
1 g2, g2 ∈ R−1

2 g3},

{m1 ∈M1 | ∃m2 ∈M2 : m1 ∈ S−1
1 m2, m2 ∈ S−1

2 m2})

= inf{d1(g1,m1) | ∃g2 ∈ G2 : g1 ∈ R−1
1 g2, g2 ∈ R−1

2 g3,

∃m2 ∈M2 : m1 ∈ S−1
1 m2,m2 ∈ S−1

2 m3}

= inf{d1(R−1
1 g2, S

−1
2 m2) | g2 ∈ R−1

2 g3,m2 ∈ S−1
2 m3}

≤ inf{d2(g2,m2) | g2 ∈ R−1
2 g3,m2 ∈ S−1

2 m3}

= d2(R−1
2 g3, S

−1
2 m3) ≤ d3(g3,m3).

�

If we split again the pseudometric d : G×M → [0,+∞] in the family of re-

lations (Pε)ε≥0, compatibility condition (C ′) for (R,S) : (KT
1 , Pε)ε≥0 → (KT

2 , Qε)ε≥0

changes to

(C ′) Qε(g2,m2) ⇒ ∃g1 ∈ R−1g2 ∃m1 ∈ S−1m2 : Pε(g1,m1).

Lemma 3.7. The class of multicontexts (KT , Pε)ε≥0, where KT is a standard

topological context and Pε is a binary relation between the object and the attribute
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set of KT satisfying axioms (M ′), (M0) and (M∞) is the object class of a category

denoted TopCon′ε, whose morphisms are the multivalued standard morphisms which

are satisfying (C ′).

Proof. The identity (Re, Se) is obviously a morphism in TopCon′ε. Let (R1, S1) :

(KT
1 , Pε)ε≥0 → (KT

2 , Qε)ε≥0 and (R2, S2) : (KT
2 , Qε)ε≥0 → (KT

3 , Rε)ε≥0 be morphisms

in TopCon′ε. Their composition is again in TopCon′ε. To see this, let g3 ∈ G3 and

m3 ∈ M3 with Rε(g3,m3). Then there are g2 ∈ R−1
2 g3 and m2 ∈ S−1

2 m3 with

Qε(g2,m2), hence there are g1 ∈ R−1
1 g2 and m1 ∈ S−1

1 m2 with Pε(g1,m1). Now,

g1 ∈ R−1
1 g2 ⊆ (R2 ◦R1)−1g3 ⊆ (R2�R1)−1g3,

m1 ∈ S−1
1 m2 ⊆ (S2 ◦ S − 1)−1m3 ⊆ (S2�S1)′m3

which completes the proof. �

Proceeding in a similar manner as before, we can prove the following Lemma:

Lemma 3.8. The categories TopCon′d and TopCon′ε are equivalent.

Let us denote the functors from the Hartung duality by T and S. The functor

T : Lat→ TopCon is defined on objects by T(L) = KT (L) and for any morphism

f : L1 → L2, the image of f by T is a multivalued standard morphism Tf : KT (L2) →

KT (L1) defined by Tf = (Rf , Sf ) where

Rf ⊆ F0(L2)×F0(L1), (F2, F1) ∈ Rf ⇔ f−1(F2) ⊆ F1,

Sf ⊆ I0(L2)× I0(L1), (I2, I1) ∈ Sf ⇔ f−1(I2) ⊆ I1.

The functor S is defined on objects by S(KT ) := BT (KT ) and for every multival-

ued standard morphism (R,S) : KT
1 → KT

2, the image of (R,S) by S is a 0-1-

lattice homomorphism S : BT (KT
2) → BT (KT

1) is defined by S(R,S) := fRS where

fRS(A,B) := (R[−1]A,S[−1]B) for all closed concepts (A,B) in KT
2.

As we have seen before, the restriction of S to the metric case, S : TopCond →

Latd, is well-defined, the morphisms in Latd being the expansive mappings with

respect to the correspondent pseudometric of a lattice L in Latd.

Consider now f : (L1, ρ1) → (L2, ρ2) satisfying ρ2(f(x), f(y)) ≥ ρ1(x, y) for

every x, y ∈ L1. Then d1(F1, I1) ≤ d2(f(F1), f(I1)) ≤ d2(F2, I2) for all F2 ∈ R−1
f F1

and I2 ∈ S−1
f I1 since (F2, F1) ∈ Rf is equivalent to F2 ⊆ f(F1), and (I2, I1) ∈ Sf is

equivalent to I2 ⊆ f(I1). It follows that d1(F1, I1) ≤ d2(R−1
f F1, S

−1
f I1). Moreover,
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d1(RfF2, SfI2) = inf d1(F1, I1) ≤ inf d2(f(F1), f(I1)) ≤ d2(F2, I2) which proves that

if we consider expansive mappings as morphisms between metric lattices, both (iii)

and the dual of (iv) are satisfied, i.e., the restriction of T to the metric case T :

Latd → TopCond is also well-defined.

Example:

Let us consider the following lattice the metric being labeled on its Hesse-

diagram, the morphism f being given by arrows:

As one can easily check, f is an expansion. Now

R−1
f = {F2 ∈ F0(L2) | (F2, F1) ∈ Rf}

= {F2 ∈ F0(L2) | f−1(F2) ⊆ F1}

= {F2, F3, [1)}

and, dually, S−1
f (I1) = {I2, I3, (0]}. As we can easily see, d2(F2, I2) = 4, d1(F1, I1) = 3

i.e., the dual of (iv) (and so (iii)) is satisfied.

Remark 5. While dealing with mappings between (pseudo)metric spaces,

contractions are more often used as expansive maps. We are considering expansions in

this section in order to give a necessary condition that the isomorphisms ι : (L, ρ) →
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(BT (KT (L)), d) and (Rα, Sβ) : (KT , d) → (KT (BT (KT )), ρ) belong to the considered

categories.

Unfortunately, the map ι : (L, ρ) → (BT (KT (L)), d) even if an isomorphism in

Lat, fails to be an isomorphism in Latd (i.e., a bijective isometry). Indeed, d(ιa, ιb) =

d((Fa, Ia), (Fb, Ib)) = max{ρ(Fa, Ib), ρ(Fb, Ib)} ≤ ρ(a, b) for every a, b ∈ L. Obviously,

ι can not generally be an isometry and so the categories Latd and TopCond fails to

be dual equivalent.

On the other hand, consider (KT , d) a standard topological context in

TopCond. Then (Rα1 , Sβ1) : (KT , d) → (KT (BT (KT )), ρ) is a multivalued pseu-

dometric morphism. Indeed, consider F ∈ F0(BT (KT )) and I ∈ I0(BT (KT )). Then

for every g ∈ R−1
α F and m ∈ S−1

β I,

ρ(F, I) = ρ(α(g)′′, β(m)′′) ≤ ρ(α(g), β(m)) ≤ σ((A,B), (C,D))

for every (A,B) ∈ BT (KT ) with g ∈ A, and every (C,D) ∈ BT (KT ) with m ∈ D.

Since σ((A,B), (C,D)) = max{d(A,D), d(C,B)}, choose for (A,B) := (G, ∅) and

for (C,D) := (∅,M). Then d(C,B) = 0 and d(A,D) ≤ d(g,m). It follows that

ρ(F, I) ≤ d(R−1
α F, S−1

β I), i.e., the dual of (iv) which then implies (iii).

Remark 6. Generally, (Rα, Sβ) can not be an isomorphism in TopCond

since from the above calculus we deduce that ρ(F, I) = 0 for every F ∈ F0(BT (KT ))

and I ∈ I0(BT (KT )), and so T and S are failing even to be adjoint.

Even if contractions or expansions between pseudometric spaces have proved

their usefulness several times, for example in establishing a duality between pseu-

dometric complete lattices and pseudometric contexts, the condition that a map is

expansive is too strong in order to obtain a categorical duality or an adjoint situa-

tion between the restrictions of the two functors T and S to the (pseudo)metric case.

More general, the most used morphisms between pseudometric spaces are continuous

maps. In the following we shall define the analogous concept in the case of standard

topological contexts with pseudometric.

Definition 3.3. The multivalued standard morphism (R,S) : (KT
1, d1) →

(KT
2, d2) between two standard topological contexts with pseudometric is called pseu-

dometric continuous if for every ε > 0 and every g2 ∈ G2, there is a δ > 0 so that

for every m2 ∈M2, with d2(g2,m2) < δ, we have d1(R−1g2, S
−1m2) < ε.
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The morphism (R,S) is called pseudometric uniformously continuous if

for every ε > 0, every g2 ∈ G2 and m2 ∈M2 there is a δ > 0 such that d2(g2,m2) < δ

implies d1(R−1g2, S
−1m2) < ε.

We shall denote the category of standard topological contexts with pseudo-

metric with pseudometric continuous morphisms by TCd and that of pseudometric

lattices with continuous lattice homomorphism by Ld and we shall prove that the re-

strictions of the well-known functors T and S of the Hartung duality, T : Ld → TCd

and S : TCd → Ld, respectively, are well-defined. We have seen before that the object

maps of T and S, respectively, are well-defined.

Proposition 3.9. For every pseudometric continuous standard multivalued

morphism (R,S) : (KT
1, d1) → (KT

2, d2), the induced lattice morphism S(R,S) :=

fRS : (BT (KT
2), ρ2) → (BT (KT

1), ρ1) defined by fRS(A,B) := (R[−1]A,S[−1]B) is a

continuous mapping with respect to the metric topology of the correspondent concept

lattices.

Proof. Consider ε > 0 and (A,B) ∈ BT (KT
2). Then, for every a ∈ A,

there is a δ > 0 such that for every m2 ∈ M2 with d2(a,m2) < δ, we have that

d1(R−1a, S−1m2) < ε. Take a closed concept (C,D) ∈ BT (KT
2) whose distance to

(A,B) is less than δ, i.e., d2(A,D) < δ and d2(C,B) < δ. Then, for the chosen

a ∈ A, we shall find a d ∈ D with d2(a, d) < δ, hence d1(R−1a, S−1d) < ε. Since

d1(R[−1]A,S[−1]D) ≤ d1(R−1a, S−1d), it follows that d1(R[−1]A,S[−1]D) < ε. The

same holds for d1(R[−1]C,S[−1]B) concluding that ρ1(fRS(A,B), fRS(C,D)) < ε, i.e.,

fRS is continuous. �

Remark 7. Analogous arguments shows that if (R,S) is a pseudometric

uniformously continuous morphism, then the induced 0-1-lattice homomorphism fRS

is uniformously continuous too.

Proposition 3.10. For every continuous pseudometric 0-1-lattice homomor-

phism f : (L1, ρ1) → (L2, ρ2), the induced multivalued standard morphism (Rf , Sf ) :

(KT (L2), d2) → (KT (L1), d1) is pseudometric continuous.

Proof. Consider F1 ∈ F0(L1) and I1 ∈ I0(L1). Then, for every x ∈ F1, there

is a δ > 0 such that for every y ∈ L1 with ρ1(x, y) < δ, we have ρ2(f(x), f(y)) < ε.

Then, for every y ∈ I1 with ρ1(x, y) < δ, we have d1(F1, I1) < δ. By the definition of

R−1
f F1 and S−1

f I1, we obtain that d2(R−1
f F1, S

−1
f I1) < ε. �
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Remark 8. If f is uniformously continuous then (Rf , Sf ) is pseudometric

uniformously continuous too.

The above results say nothing else than the restriction of the two functors to

the pseudometric continuous case are well-defined.

Consider now ι : (L, ρ) → (BT (KT (L)), d) defined by ιa := (Fa, Ia). In order

to prove the continuity of ι we have to show that for every ε > 0 and every a ∈ L, there

is a δ > 0 such that for every b ∈ L with ρ(a, b) < δ, we have d((Fa, Ia), (Fb, Ib)) < ε.

By definition, d((Fa, Ia), (Fb, Ib)) := max{σ(Fa, Ib), σ(Fb, Ib)} < ε if and only

if σ(Fa, Ib) = inf ρ(F, I) < ε. It follows that there is an F ∈ Fa and an I ∈ Ib with

ρ(F, I) < ε.

On the other hand, since a ∈ F and b ∈ I, we conclude that ρ(F, I) ≤ ρ(a, b).

Choose δ := ε, hence ι is continuous. Moreover, since δ do not depend on a ∈ L,

we can conclude that ι is uniformously continuous. As one can easily see, ι is not a

homeomorphism, hence the categories TCd and Ld are not dual equivalent.

The same holds for (Rα, Sβ) : (KT , d) → (KT (BT (KT )), ρ). Since the pseu-

dometric ρ on KT (BT (KT )) is the trivial one, and since there are several examples

of pseudometrics on KT which are not trivial, we conclude that (Rα−1 , Sβ−1), i.e.,

the inverse of (Rα, Sβ) in the category TopCond is pseudometric continuous (and

even more, pseudometric uniformously continuous), but (Rα, Sβ) itself is generally

not pseudometric continuous.
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KELVIN-HELMHOLTZ INSTABILITY OF RIVLIN-ERICKSEN
VISCOELASTIC FLUID IN POROUS MEDIUM

R.C. SHARMA, SUNIL, AND SURESH CHAND

Abstract. Kelvin-Helmholtz instability of Rivlin-Ericksen elastico-

viscous fluid in porous medium is considered. The case of two uniform

streaming fluids separated by a horizontal boundary is considered. It

is found that for the special case when perturbations in the direction of

streaming are ignored, perturbation transverse to the direction of stream-

ing are found to be unnafected by the presence of streaming. In every

other direction, a minimum value of wave-number has been found and the

system is unstable for all wave-numbers greater than this minimum wave

number.

1. Introduction

When two superposed fluids flow one over the other with a relative hor-

izontal velocity, the instability of the plane interface between the two fluids, when it

occurs in this instance, is known as ’Kelvin-Helmholtz instability’. The instability of

the plane interface separating two uniform superposed streaming fluids, under varying

assumptions of hydrodynamics, has been discussed in the celebrated monograph by

Chandrasekhar [1]. The experimental observation of the Kelvin-Helmholtz instability

has been given by Francis [2]. The medium has been assumed to be non-porous.

With the growing importance of viscoelastic fluids in modern technology and

industries and the investigations on such fluids are desirable. The Rivlin-Ericksen

fluid is one such viscoelastic fluid. Many research workers have paid their attention

towards the study of Rivlin-Ericksen fluid. Johri [3] has discussed the viscoelastic

Rivlin-Ericksen incompressible fluid under time-dependent pressure gradient. Sisodia

and Gupta [4] and Srivastava and Singh [5] have studied the unsteady flow of a dusty

1991 Mathematics Subject Classification. 47.20, 47.50, 47.65, 52.35.Q.

Key words and phrases. Rivlin-Ericksen fluid, porous medium, viscoelasticity.
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elastico-viscous Rivlin-Ericksen fluid through channel of different cross-sections in the

present of the time dependent pressure gradient. Recently, Sharma and Kumar [6]

have studied the thermal instability of a layer of Rivlin-Ericksen elastico-viscous fluid

acted on by a uniform rotation and found that rotation has a stabilizing effect and

introduces oscillatory modes in the system.

The flow through a porous medium has been of considerable interest in recent

years particularly among geophysical fluid dynamicists. An example in the geophys-

ical context is the recovery of crude oil from the pores of reservoir rocks. A great

number of applications in geophysics may be found in a recent book by Phillips [7].

The gross effect when the fluid slowly percolates through the pores of the rock is

given by Darcy’s law. As a result, the usual viscous term in the equation of motion of

Rivlin-Ericksen fluid is replaced by the resistance term
[
− 1

k1

(
µ + µ′

∂

∂t

)
−→q

]
, where

µ and µ′ are the viscosity and viscoelasticity of the Rivlin-Ericksen fluid, k1 is the

medium permeability and −→q is the Darcian (filter) velocity of the fluid. Generally,

it is accepted that comets consists of a dusty ’snowball’ of a mixture of frozen gases

which, in the process of their journey, changes from solid to gas and vice-versa. The

physical properties of comets, meteorites and interplanetary dust strongly suggest the

importance of porosity in astrophysical contex (McDonnel [8]). The instability of the

plane interface between two uniform superposed and streaming fluids through porous

medium has been investigated by Sharma and Spanos [9]. More recently, Sharma et

al. [10] have studied the thermosolutal convection in Rivlin-Ericksen fluid in porous

medium in the presence of uniform vertical magnetic field.

Keeping in mind the importance of non-Newtonian fluids in modern tech-

nology and industries and various applications mentioned above, Kelvin-Helmholtz

instability of Rivlin-Ericksen viscoelastic fluid in porous medium has been considered

in the present paper.

2. Formulation of the problem and perturbation equations

The initial stationary state, whose stability we wish to examine is that of

an incompressible elastico-viscous Rivlin-Ericksen fluid in which there is a horizontal

streaming in the x-direction with velocity U(z) through a homogeneous, isotropic

porous medium. The character of the equilibrium of this initial state is determined
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by supposing that the system is slightly disturbed and then following its further

evolution.

Let p, ρ, g, v, v′,−→q (U(z), 0, 0) denote, respectively, the pressure, density, ac-

celeration due to gravity, kinematic viscosity, kinematic viscolasticity, and velocity of

Rivlin-Ericksen viscoelastic fluid. This fluid layer is assumed to be flowing through

an isotropic and homogeneous porous medium of porosity ε and medium permeability

k1 and interfacial tension effect is ignored. Then the equations of motion, continuity

and incompressibility for the Rivlin-Ericksen elastico-viscous fluid through a porous

medium are given by

ρ

ε

[
∂−→q
∂t

+
1
ε
(−→q · ∇)−→q

]
= −∇p + ρ−→g − ρ

k1

(
v + v′

∂

∂t

)
−→q , (1)

∇ · −→q = 0, (2)

ε
∂ρ

∂t
+ (−→q · ∇)ρ = 0. (3)

Let δp, δρ and −→u (u, v, w) denote the perturbations in pressure p, density ρ

and velocity −→q (U(z), 0, 0) respectively. Then, the linearized perturbation equations

of fluid layer become

ρ

ε

[
∂−→u
∂t

+
1
ε
(−→q · ∇)−→u +

1
ε
(−→u · ∇)−→q î

]
= −∇δp +−→g δp− ρ

k1

(
v + v′

∂

∂t

)
−→u , (4)

∇ · −→u = 0, (5)[
ε

∂

∂t
+ (−→q · ∇)

]
δp = −w

dρ

dz
. (6)

Analyzing the disturbances into normal modes, we seek solutions whose de-

pendence on x, y and t is of the form

exp[i(kxx + kyy + nt)], (7)

where n is the growth rate, k = (k2
x + k2

y)1/2 is the resultant wave number and kx, ky

are horizontal wave numbers.

Substituting for δρ, Eq.(4) with the help of Eqs.(5),(6) and expression (7)

yields[
iρ

ε2
(εn + kxU) +

ρ

k1
(v + inv′)

]
−→u +

ρ

ε2
w(DU )̂i = −∇δp + i−→g w(Dρ)

εn + kxU
, (8)

where î is unit vector in the x-direction and D = d/dz.
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Writing the three component equations of (8) and eliminating u, v and δp

with the help of (5), we obtain

D

[{
iρ

ε2
(εn + kxU) +

ρ

k1
(v + inv′)

}
Dw − ikxρ

ε2
(DU)w

]
−

−k2

[
iρ

ε2
(εn + kxU) +

ρ

k1
(v + inv′)

]
w = igk2(Dρ)

w

εn + kxU
. (9)

3. Two uniform streaming fluids separated by a horizontal boundary

Consider the case when two superposed streaming fluids of uniform den-

sities ρ1 and ρ2, uniform viscosities µ1 and µ2 and uniform viscoelasticities µ′1 and µ′2

are separated by a horizontal boundary at z = 0. The subscript 1 and 2 distinguish

the lower and the upper fluids respectively.

The density ρ2 of the upper fluid is taken to be less than the density ρ1 of

the lower fluid so that, in the absence of streaming, the configuration is stable, and

the porous medium throughout is assumed to be isotropic and homogeneous. Let the

two fluids be streaming with constant velocities U1 and U2. Then in each of the two

regions of constant ρ, µ, µ′ and U , Eq.(9) reduces to

(D2 − k2)w = 0. (10)

The boundary conditions to be satisfied here are:

(a) Since U is discontinuous at z = 0, the uniqueness of the normal displace-

ment of any point on the interface, according to Eq.(8), implies that

w

εn + kxU
, (11)

must be continuous at an interface.

(b) Integrating Eq.(9) between 0−η and 0+η and passing to the limit η = 0,

we obtain, in view of (11), the jump condition

∆0

[{
iρ

ε2
(εn + kxU) +

ρ

k1
(v + inv′)

}
Dw − ikxρ

ε2
(DU)w

]
= igk2∆0(ρ)

(
w

εn + kxU

)
0

(12)

(for z = 0) while the equation valid everywhere else (z 6= 0) is

D

[{
iρ

ε2
(εn + kxU) +

ρ

k1
(v + inv′)

}
Dw − ikxρ

ε2
(DU)w

]
−
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−k2

[
iρ

ε2
(εn + kxU) +

ρ

k1
(v + inv′)

]
w = igk2(Dρ)

w

εn + kxU
. (13)

Here ∆0(f) = f(z0 + 0)− f(z0− 0) is the jump which a quantity experiences

at the interface z = z0; and the subscript 0 distinguish the value a quantity, known

to be continuous at an interface, takes at the interface z = z0.

The general solution of Eq.(10) is a linear combination of the integrals e+kz

and e−kz. Since
w

εn + kxU
must be continuous on the surface z = 0 and w cannot

increase exponentially on either side of the interface, the solutions appropriate for two

regions are

w1 = A(εn + kxU1)e+kz, (z < 0) (14)

w2 = A(εn + kxU2)e−kz, (z > 0). (15)

Applying the boundary condition (12) to the solutions (14)-(15), we obtain

the dispersion relation [
1 +

ε

k1
(α1v

′
1 + α2v

′
2)

]
n2+

+
[
2kx

ε
(α1U1 + α2U2) +

kx

k1
(α1v

′
1U1 + α2v

′
2U2)−

iε

k1
(α1v1 + α2v2)

]
n+

+
[
k2

ε2
(α1U

2
1 + α2U

2
2 )− ikx

k1
(α1v1U1 + α2v2U2)− gk(α1 − α2)

]
= 0, (16)

where

α1,2 =
ρ1,2

ρ1 + ρ2
, v1,2 =

µ1,2

ρ1,2
, v′1,2 =

µ′1,2

ρ1,2
.

v1

(
=

µ1

ρ1

)
, v′1

(
=

µ′1
ρ1

)
, v2

(
=

µ2

ρ2

)
and v′2

(
=

µ′2
ρ2

)
are the kinematic viscosities and

kinematic viscoelasticities of the lower and upper fluids respectively.

Equation (16) yields

in = −
[
+

ε

k1
(α1v1 + α2v2) +

2ikx

ε
(α1U1 + α2U2) +

ikx

k1
(α1v

′
1U1 + α2v

′
2U2)

]
±

±

{[
ε

k1
(α1v1 + α2v2)

]2

− 4ikxα1α2

k1
(v1 − v2)(U1 − U2)+

+
4k2

xα1α2

εk1
(v′2U1 − v′1U2)(U1 − U2)−

2iεkx

k2
1

[(α2
1v1v

′
1U1 + α2

2v2v
′
2U2)+

+α1α2(v1v
′
2U1 + v′1v2U2) + α1α2(U1 − U2)(v1v

′
2 − v′1v2)]+

+
[
kx

k1
(α1v

′
1U1 + α2v

′
2U2)

]2

+
4α1α2k

2
x

ε2
(U1 − U2)2−
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−4gk(α1 − α2)
[
1 +

ε

k1
(α1v

′
1 + α2v

′
2)

]} 1
2

. (17)

Some cases of interest are now considered.

(a) When kx = 0, equation (17) yields

in = − ε

k1
(α1v1 + α2v2)±

{[
ε

k1
(α1v1 + α2v2)

]2

−

−4gk(α1 − α2)
[
1 +

ε

k1
(α1v

′
1 + α2v

′
2)

]} 1
2

. (18)

Here we assume kinematic viscosities v1, v2 and kinematic viscoelasticities

v′1, v
′
2 of the two fluids to be equal i.e., v1 = v2 = v, v′1 = v′2 = v′. However, any of

the essential features of the problem are not obscured by this simplifying assumption.

Eq.(18), then, becomes

in = −εv

k1
±

[(
εv

k1

)2

+ 4gk(α2 − α1)
{

1 +
εv′

k1

}] 1
2

. (19)

(i) Unstable case

For the potentially unstable configuration (ρ2 > ρ1), it is evident from Eq.(19)

that one of the values of in is positive which means that the perturbations grow with

time and so the system is unstable.

(ii) Stable case

For the potentially stable configuration (ρ2 < ρ1), Eq.(19) yields that both

the values of in are either real, negative or complex conjugates with negative real

parts implying stability of the system.

It is interesting to note from above that for the special case when pertur-

bations in the direction of streaming are ignored (kx = 0), the system is unstable

for potentially unstable configuration and the system is stable for potentially stable

configuration and not depending upon kinematic viscoelasticity, medium porosity and

medium permeability. This is in contrast to the case of Walters’ viscoelastic fluid B′,

where the system can be stable or unstable depending upon kinematic viscoelaticity,

medium porosity and medium permeability (Sharma et al. [11]).

It is also clear from Eq.(18), that for the special case when perturbations in

the direction of streaming are ignored (kx = 0), the perturbation transverse to the

direction of streaming (ky 6= 0) are unaffected by the presence of streaming.
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(b) In every other direction, instability occurs when

α1α2k
2
x

ε2
(U1 − U2)2 > gk(α1 − α2). (20)

The kinematic viscosities v1 and v2 and the kinematic viscoelasticies v′1 and

v′2 of two fluids here are assumed to be equal (let v1 = v2 = v, v′1 = v′2 = v′), but this

simplifying assumption does not obscure any of the essential features of the problem.

Thus for a given difference in velocity (U1 − U2) and for a given direction of

the wave-vector
−→
k , instability occurs for all wave numbers.

k >

[
gε2(α1 − α2)

α1α2(U1 − U2)2 cos2 θ

]
, (21)

where θ is the angle between the direction of
−→
k (kx, ky, 0) and

−→
U (U, 0, 0), i.e. kx =

k cos θ. Hence, for a given velocity differences (U1 − U2), instability occurs for the

least wave number when
−→
k is in the direction of

−→
U and this minimum wave number;

kmin, is given by

kmin =
[

gε2(α1 − α2)
α1α2(U1 − U2)2

]
. (22)

For k > kmin, the system is unstable.
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John J. Benedetto, Harmonic Analysis and Applications, Studies in Advanced

Mathematics, CRC Press, Boca Raton-New York-London-Tokyo 1997, xix+336 pp.,

ISBN 0-8493-7879-6.

The present book is a textbook and an essay, the author goal being ”to present

harmonic analysis at level that exhibits its vitality, intricacy and simplicity, power,

elegance, and usefulness” (from the Preface). The author restricts to classical har-

monic analysis, the fundamental components being the the trigonometric functions,

with emphasis on analysis, meaning determination of harmonics or components of a

given function, and synthesis, meaning the reconstruction of this function in terms

of its components. The methods are primarily those of real analysis with very little

complex analysis, the development being done within the framework of spaces L1 and

L2. The prerequisites for the reading of the book are a basic course in real analy-

sis as, e.g., J. Benedetto, ”Real Variable and Integration”, B.G. Teubner, Stuttgart

1976. Although abstract harmonic analysis (invariant measures on locally compact

groups, Banach algebras, representation theory) are not considered, the treatment

has a Banach algebra flavor, and is a substantial part of the harmonic analysis on a

commutative locally compact group.

A selection of the book (the corresponding numbers of definitions and propo-

sitions are listed in Prologue I) was used by the author as material for upper under-

graduate courses, taught for many years to students in engineering, physics, computer

science, and mathematics. The exercises at the end of each chapter range from ele-

mentary to difficult and from theoretical to computational and/or computed oriented

(using MATLAB programs). The first 30 exercises of each chapter are appropriate

for Course I.

The book contains many examples from engineering and physics and very

interesting historical comments on the evolution of the ideas in this very fertile areas
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of mathematics, which shaped the development of mathematics in the 20th century

(measure theory, topology, set theory, functional analysis).

The book is, in essence, on classical harmonic analysis, including careful

proofs of the basic theorems, but the exposition is done in a way to provide perspec-

tives of many topics, some of them (e.g. Wiener’s Generalized Harmonic Analysis)

being extensively treated. Due to these perspectives, of lengthy historical comments

and exercises, the book can serve also as a textbook for more advanced courses than

Course I. Also, the limitation to classical harmonic analysis is compensated to some

extent by a serious bibliography, referenced at appropriate junctures in the text.

Written by a leading specialist in harmonic analysis, with over than 100

published papers (including 9 books), the present book is a very good text on harmonic

analysis, its applications and evolution, and can be used as a textbook as well as an

essay for students and as general reference for engineers, mathematicians, physicists,

and other people using harmonic analysis.

S. Cobzaş

Joseph A. Cima and William T. Ross, The Backward Shift on the Hardy Space,

Mathematical Surveys and Monographs Vol. 79, xi+ 199 pp., American Mathemati-

cal Society 2000, ISBN: 0-8218-2083-4.

The book is devoted to the study of invariant subspaces of the backward

shift operator on the Hardy space Hp of analytic functions on the open unit disc

D = {|z| < 1}. The backward shift operator B is defined by

Bf =
f − f(0)

z
= a1 + a2z + a3z

2 + ...

for f = a0 + a1z + a2z
2 + ... ∈ Hp.

As the backward shift operator on H2 (the Hilbert case) is presented in detail

in Nikolskĭı’s book Treatise on the Shift Operator, Springer Verlag, Berlin-New York

1986, the authors of the present book focus on the Banach case (p ∈ [1,∞)) and

the Fréchet case (p ∈ (0, 1)). The characterization of the invariant subspaces of

the backward operator on Hp for 1 ≤ p < ∞ was settled down by R. Douglas, H. S.

Shapiro and A. Shields, Annale Institut Fourier (Grenoble) 20 (1970), 37-76. The case

120



BOOK REVIEWS

p ∈ (0, 1) was solved by A.B. Aleksandrov, Investigations on Linear Operators and the

Theory of Functions IX, Zap. Nauchn. Sem. Leningrad Otdel. Mat. Inst. Steklov

(LOMI), 92 (1979), 7-29, in a paper which was never translated from its original

Russian and using a quite complicated technique–distribution theory and Coiffman’s

atomic decomposition for the Hardy space. The authors gather up these results

together with the necessary background material which is surveyed in appropriate

places. The reader is supposed to be acquainted with the basic of functional analysis

(at the level of Rudin’s book), complex function theory and Hp spaces (Duren’s and

Garnett’s books), and harmonic analysis (Stein’s book).

The main results and the technique used for their proofs are briefly, but in a

very clear manner, explained in the first chapter of the book entitled Overview.

A good idea on the organization of the book is given by the headings of the

rest of its chapters: 2. Classical boundary value results; 3. The Hardy space on the

disk; 4. The Hardy spaces on the upper-half plane; 5. The backward shift on Hp for

p ∈ [1,∞); 6. The backward shift on Hp for p ∈ (0, 1).

Written by two eminent specialists and combining techniques from functional

analysis, operator theory, harmonic analysis, real and complex analysis, this beautiful

book appeals to a large audience, meaning people interested in the topics listed above.

It can be used also as a textbook for advanced graduate or post-graduate courses.

Stefan Cobzaş

121



BOOK REVIEWS

David L. Jagerman, Difference Equations with Applications to Queues, Pure and

Applied Mathematics Series, Vol. 233, M. Dekker, Inc., Basel - New York 2000,

xi+241 pages, ISBN: 0-8247-9007-3.

This monograph presents a theory of difference and functional equations with

continuous argument, based on a generalization of the Riemann integral introduced

by N.E. Nörlund in his famous monograph published in 1924. This approach permits

greater flexibility in constructing solutions and approximate solving nonlinear first

order equations by a variety of of methods, including an adaptation of the Lie-Gröbner

theory.

Ch. 1, Operators and Functions, is a general overview of the operators and

functions which are important in the difference calculus. Ch. 2, Generalities on Dif-

ference Equations, considers the genesis of difference and gives a number of exercises.

Casorati’s determinant is introduced, and Heyman’s theorem and a theorem of of

Milne-Thompson on the asymptotic behavior of the linear independence of solutions

are proved.

Chapters 3 and 4, Nörlund Sums: Part one and Part two, respectively,

contain the basic properties of Nörlund sums as well as representations obtained by

means of Euler-Maclaurin expansions. Fourier expansions and the extension to the

complex plane of the Euler-Maclaurin representation are also studied. Some examples

are included.

Ch. 5, The First Order Difference Equation, as the title shows, deal with

first order difference equations, both linear and nonlinear. The method of Trues-

dell for differential-difference equations is discussed and applied to a queuing model.

Simultaneous first-order nonlinear equations are solved approximately.

In Ch. 6, The Linear Equation with Constant Coefficients, beside the study of

linear equations with constant coefficients, some methods of solving partial difference

equations are also included. Application is made to the probability P (t) that an

M/M/1 queue be empty, given that it is initially empty. An asymptotic development

for P (t) is obtained for large t and a practical approximation is constructed.

The final chapter, Ch. 7,Linear Difference Equations with Polynomial Co-

efficients, describes the linear difference equations with polynomial coefficients. The
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method of depression of the order, the Casorati’s determinant and Heyman’s theorem,

are some of the tools used in this chapter. However, the main technique for solution

is based on the π, ρ operator method of Boole and Milne-Thompson, which constructs

the solution in terms of factorial series. Application is made to the last-come-first-

served queue with exponential reneging; in particular, the Laplace transform is ob-

tained for the waiting time distribution.

J. Sándor

Kenneth L. Kuttler, Modern Analysis, Studies in Advanced Mathematics, CRC

Press, Boca Raton-New York-London-Tokyo 1998, 572 pp., ISBN 0-8493-7166-X.

This is an advanced course on real and abstract analysis, meaning topology,

functional analysis, measure theory and integration, and applications.

The first two chapters, 1. Set theory and topology and 2. Compactness

and continuous functions, contain the basic of general topology including Urysohn’s

lemma, Stone-Weierstrass theorem and Arzela-Ascoli compactness criterium. Ti-

chonoff’s theorem on the compactness of the product is proved in the chapter on

locally convex spaces (Chapter 6). Functional analysis is developed in three chapters:

3.Banach spaces, 4. Hilbert spaces, and 6. Locally convex topological vector spaces

(separation theorems, weak and weak topologies, Tychonoff’s fixed point theorem).

Brouwer fixed point theorem is proved in Appendix 4 at the end of the book. There

is also a chapter, 5. Calculus in Banach space, exposing the basic results on Fréchet

differentiability, including the inverse function theorem and applications to ordinary

differential equations.

A good part of the book is devoted to measure theory and integration, with

emphasis on Lebesgue measure and integral, and on Radon measures. This is done in

the chapters: 7. Measures and measurable functions (monotone classes and algebras,

Egoroff’s convergence theorem), 8. The abstract Lebesgue integral, 9. The construc-

tion of measures (outer measures and Caratheodory’s definition of measurable sets,

Radon measures and Riesz representation theorem for positive functionals on Cc(Ω)),

10. Lebesgue measure (Lebesgue measure in Rn, change of variables by linear trans-

formations, polar coordinates), 11. Product measures (Fubini and Tonelli theorems,
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completion of a product measure), 12. The Lp spaces (completeness, density of simple

functions, continuity of translation operator, separability, convolution, mollifiers, and

density of smooth functions), 13. Representation theorems (Radon-Nikodym theo-

rem, Clarkson inequality, the duals of Lp, 1 ≤ p < ∞, and C(T ), for T compact),

14. Fundamental theorem of calculus (Vitali covering theorem, differentiation with

respect to Lebesgue measure, the change of variables for multiple integrals), 15. Gen-

eral Radon measures (Besicovitch covering theorem, differentiation with respect to

Radon measures, Young measures). A chapter, 23. Integration of vector valued func-

tions, presents the Bochner integral and Riesz representation theorem for the dual of

Lp(Ω, X), X a Banach space).

Three chapters, 19. Hausdorff measures, 20. The area formula, and 21 The

coarea formula, deal with Hausdorff measures and very general change of variable

formulas for surface integrals in Rn.

Among the applications, we mention Chapter 17. Probability, containing a

short but thorough exposition of basic results in probability theory. Other applica-

tions are to Fourier analysis and distribution theory given in chapters 16. Fourier

transforms (based on Schwartz class of rapidly decreasing smooth functions and on

tempered distributions), 18 Weak derivatives (Morrey’s inequality and Rademacher

theorem on a.e. differentiability of Lipschitz functions), 22. Fourier analysis in Rn

(Marcinckiewicz interpolation theorem, Calderon-Zygmund decomposition, Michlin’s

generalization to Lp of Plancherel theorem, Calderon-Zygmund theory of singular

integrals).

The last chapter of the book, 24. Convex functions, presents some of the

most important results on convex functions, culminating with a proof of Alexandrov’s

theorem on a.e. twice differentiability of convex functions.

Three appendices: 1. The Hausdorff maximal theorem, 2. Stone’s theorem

and partitions of unity, 3. Taylor series and analytic functions, and 4. The Brouwer

fixed point theorem, complete the main text. There are also a set of well chosen

exercises at the end of each chapter, some of them routine, others containing more

advanced topics and results which were not included in the main body of the book.
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The book is an ideal text for graduate-level real analysis courses and basic

courses on measure theory, using a modern approach. Its specific feature is the pre-

sentation, with complete proofs and in an accessible but rigorous way, of some deep

results in modern analysis, available only in more specialized texts and needing a lot

of technicalities for their understanding.

We warmly recommend the book to all people desiring to teach or to learn

some fundamental results in modern analysis, in a reasonable period of time.

S. Cobzaş

Rafael H. Villarreal, Monomial Algebras, Pure and Applied Mathematics 238, Marcel

Dekker 2010, ix+455pp, ISBN 0-8247-0524-6.

The volume under review presents methods which can be used to study mono-

mial algebras and their presentation ideals including computational methods.

The book is divided in 11 chapters. Chapter 1 contains the basic facts and

methods on commutative algebra and homological algebra. In order to present the

basic properties of monomial algebras, the author presents in Chapter 2 the affine and

graded algebras and in Chapter 3 he exhibits the importance of Rees algebras and

associated graded algebras. Chapters 4 and 5 present the Hilbert series of graduates

modules and Stanley-Reisner rings which are used in the Sanley’s proof of the upper

bound conjecture for simplicial spheres. In Chapters 6, 8 and 9 the connections

between monomial algebras, graph theory and polyhedral theory are presented. The

author presents in Chapter 7, 9 and 10 some features of toric ideals the monomial

curves, the affine toric varieties and their toric ideals.

The book contains 280 exercises and numerous examples and graphs. There-

fore, graduate students and researchers interested in commutative algebra and in its

connections with computational issues in algebraic geometry and combinatorics will

find this volume very useful.

S. Breaz

Sorin Dăscălescu, Constantin Năstăsescu, Şerban Raianu, Hopf Algebras. An

Introduction. Monographs and textbooks in pure and applied mathematics 235,
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Marcel Dekker, New York-Basel, 2001, ix+401 pp., Hardcover, ISBN 0-8247-0481-9.

The volume under review is aimed to introduce the reader to modern results

on Hopf algebras. The material, presented from a ring theoretical point of view, has

grown out of courses given over several years by the authors at the University of

Bucharest.

The book is divided into 7 chapters. Chapter 1 presents basic facts on alge-

bras and coalgebras, while Chapter 2 studies categories of comodules over a coalgebra.

Chapter 3 examines in some depth cosemisimple, semiperfect and co-Frobenius coalge-

bras. Chapter 4 introduces bialgebras, Hopf algebras and Hopf modules, and Chapter

5 is devoted to integrals, the case of Hopf algebras obtained by Ore extensions be-

ing thoroughly treated. Chapter 5 discusses actions and coactions of Hopf algebras

on algebras, and Hopf-Galois extensions. The last chapter presents various results

on finite dimensional Hopf algebras, such as the order of the antipode, the Nichols-

Zoeller theorem, character theory, the Taft-Wilson theorem, pointed Hopf algebras of

dimension pn. Appendices on the language of category theory and on C-groups and

C-cogroups are also included. Each section contains many exercises accompanied by

detailed solutions.

The authors are among the most important contributors to the field, and

the above choice of topics reflects their interests. The presentation is very clear and

reasonably self contained for a graduate student. The book is one of the best choices

for a graduate course on Hopf algebras, and it will definitely be a valuable investment

for any student and researcher interested in algebra.

Andrei Marcus

Martin Väth, Volterra and Integral Equations of Vector Functions, Pure and

Applied Mathematics, Vol. 224, M. Dekker, Inc., Basel - New York 2000, vi+349

pages, ISBN: 0-8247-0342-1.

The book is dealing with Volterra-type integral equations of the form

(1) x(t) =
∫ t

0

f(t, s, x(s))ds + g(t)
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where f, g are given functions and x is the unknown function, all taking values in a

Banach space (usually infinite dimensional). In fact the author considers a more gen-

eral situation of some operator equations assumed to satisfy some ”Volterra-typical”

conditions. The emphasis is on the well-posedness of the problems, meaning exis-

tence, uniqueness and continuous dependence on the data, however the main part

of the book is concerned with the existence of the solutions. A specific feature of

the book is the extensive use of methods based on measures on noncompactnes, on

fixed point theorems of Darbo type, and on quasinormed preideal spaces of vector

functions.

The first chapter of the book, Ch. 1, Preliminaries, is concerned with fixed

point theorems (mainly for operators which are condensing with respect to a measure

of noncompactness), Bochner measurable functions and integrals, Lebesgue-Bochner

function spaces, and ideal spaces. The framework is that of functions with values in

a pseudometric space (more general than a Banach space), which is more appropriate

for the subsequent development.

Ch. 2, General Existence Results, based mainly on author’s original results,

deals with existence results for abstract Volterra operators satisfying some bound-

edness and compactness conditions, containing as particular cases many types of

Volterra operators.

The main tool used in the third chapter, Integral Operators in Banach Spaces,

for defining integral operators and studying their properties (boundedness and com-

pactness) is that of Carathéodori functions. To prove compactness results for integral

operators, the author uses merely equimeasurability conditions rather than equiconti-

nuity ones, leading to the notion of strict Carathéodori function. The general frame-

work for the study of integral operators is that of ideal spaces. In fact, the author

have written a book on this topic - ”Ideal Spaces”, Lect. Notes in Math. Vol. 1664,

Springer Verlag, Berlin 1997.

The last chapter of the book, Ch. 4, Dependence on Parameters, is con-

cerned with continuous dependence on the data, the averaging principle in nonlinear

mechanics and Bogoljubov type theorems.

Developing general principles and results for Volterra type integral equations,

most based on author’s original results, and specifying them to particular equations
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arising in models from physics, mechanics and biology, the book will be of great inter-

est for researchers in applied functional analysis, differential and integral equations,

and their applications in other areas of human knowledge.

S. Cobzaş
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