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Operators • Aproximare punctuală prin operatori Szász-Mirakjan

generalizaţi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Doina Ionac, Some Duality Theorems for Linear-Fractional Programming

Having the Coefficients in a Subfield K of Real Numbers • Asupra

unor teoreme de dualitate pentru programarea liniar-fracţională având
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A STUDY OF FUNCTORS ASSOCIATED
WITH TOPOLOGICAL GROUPS

AVISHEK ADHIKARI AND P.K. RANA

Abstract. The aim of this paper is to construct functors associated with

topological groups as well as to investigate these functors. More precisely,

we prove that for a given topological groups G there always exists a con-

travariant functor F (G) from the homotopy category of pointed topological

spaces and homotopy classes of base point preserving continuous maps to

the category of groups and homomorphisms. We also prove that

(i) the functor F (G) is natural in G in the sense that if the topo-

logical groups G and H have the same homotopy type then the groups

F (G)(X) and F (H)(X) are isomorphic, for every pointed topological space

X; and

(ii) the functor F (G) is homotopy type invariant in the sense that

if X and Y are two pointed spaces having the same homotopy type then

the groups F (G)(X) are F (G)(Y ) are isomorphic.

Moreover, given two topological groups G and H and a contin-

uous homomorphism α : G → H, we show that there always exists a

natural transformation between the functors F (G) and F (H) associated

with topological groups G and H respectively.

1. Introduction

Throughout this paper we assume that (X, x0) is pointed topological space

and maps are base point preserving continuous maps. For simplicity, we write X in

place of (X, x0).

Now we recall following definitions and statements:

Definition 1.1. A pointed topological space is a nonempty topological space

with a distinguished element.
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Definition 1.2. A pointed topological group is a group G whose underlying

set is equipped with a topology such that:

(i) The multiplication map µ : G×G → G, given by (x, y) 7→ xy, is continuous

if G×G has the product topology;

(ii) The inversion map i : G → G, given by x 7→ x−1, is continuous.

Then (G, e) is a pointed topological space where e is the identity element.

Definition 1.3. Let A ⊂ X and let f0, f1 : X → Y be base point preserving

continuous maps with f0|A = f1|A. We write f0 ' f1rel.A, if there is a continuous

map F : X × I → Y with F : f0 ' f1 and F (a, t) = f0(a) = f1(a), ∀ a ∈ A and all

t ∈ I. Such a map F is called a homotopy relative to A from f0 and f1 and is denoted

by F : f0 ' f1rel.A.

Definition 1.4. If f : X → Y is base point preserving continuous maps, its

homotopy class is the equivalence class [f ] = {g ∈ C(X, Y ) : f ' g}, where C(X, Y )

denotes the set all base point preserving continuous maps from X to Y .

The family of all such homotopy classes is denoted by [X;Y ].

Definition 1.5. A base point preserving continuous map f : X → Y is a

homotopy equivalence if there is a base point preserving continuous map g : Y → X

with g ◦ f ' IX and f ◦ g ' IY . Two spaces X and Y have the same homotopy type

denoted by X ≈ Y if there is a homotopy equivalence f : X → Y .

Definition 1.6. A category C consists of

(a) a class of objects X, Y, Z, . . . denoted by Ob(C);

(b) for each ordered pair of objects X, Y a set of morphisms with domain X

and range Y denoted by C(X, Y );

(c) for each ordered triple of objects X, Y and Z and a pair of morphisms

f : X → Y and g : Y → Z, their composite is denoted by gf : X → Z, satisfying the

following two axioms:

(i) associativity: if f ∈ C(X, Y ), g ∈ C(Y, Z) and h ∈ C(Z,W ), then h(gf) =

(hg)f ∈ C(X, W );

(ii) identity: for each object Y in C there is a morphism IY ∈ C(Y, Y ) such

that if f ∈ C(X, Y ), then IY f = f and if h ∈ C(Y, Z), then hIY = h.
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Definition 1.7. Let C and D be categories. A contravariant functor T from

C to D consists of

(i) an object function which assigns to every object X of C an object T (X)

of D; and

(ii) a morphism function which assigns to every morphism f : X → Y in C,

a morphism T (f) : T (Y ) → T (X) in D such that

(a) T (IX) = IT (X);

(b) T (gf) = T (f)T (g), for g : Y → W in C.

Definition 1.8. Let C and D be categories. Suppose T1 and T2 are both

contravariant functors from C and D. A natural transformation φ from T1 to T2 is a

function from the objects of C to the morphisms of D such that for every morphism

f : X → Y in C the following condition hold:

φ(X)T1(f) = T2(f)φ(Y ).

Lemma 1.9. Homotopy is an equivalence relation on the set C(X, Y ) of all

base point preserving continuous maps from X to Y .

Lemma 1.10. Let fi : X → Y and gi : Y → Z, for i = 0, 1, be continuous.

If f0 ' f1 and g0 ' g1, then g0 ◦ f0 ' g1 ◦ f1; that is [g0 ◦ f0] = [g1 ◦ f1].

In section 2, we construct and investigate functors associated with topological

groups.

2. Functors associated with topological groups

We now construct functors associated with topological groups.

Let (X, x0) be a topological space with base point x0 and (G, e) be a topolog-

ical group with identity e and f : X → G be a continuous map such that f(x0) = e.

Now we construct the set M = set of all base preserving continuous maps

from (X, x0) to (G, e).

Then we have the following Proposition:

Proposition 2.1. Let (X, x0) be a pointed topological space. The set M

of all base point preserving continuous maps from X to G, forms a group under the
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composition ’�’ on M defined by

(f1�f2)(x) = f1(x) · f2(x), ∀ x ∈ X, f1, f2 ∈ M,

where the right hand side multiplication ’·’ is the multiplication defined on the topo-

logical group G.

Proof. First we show that M is nonempty.

Let C : X → G be defined by C(x) = e, ∀ x ∈ X. Then C is a constant map

such that C ∈ M ⇒ M 6= ∅.

Let f1, f2 ∈ M . Then

(f1�f2)(x0) = f1(x0) · f2(x0) = e · e = e,

by definition.

Thus f1�f2 is a base preserving map. Since G be a topological group and

the map, M ×M → M ,

(f1, f2) 7→ f1�f2, ∀ f1, f2 ∈ M,

is continuous and hence f1�f2 is a base point preserving continuous map from X to

G. Hence f1�f2 ∈ M .

Let f1, f2, f3 ∈ M . Then

((f1�f2)�f3)(x) = (f1�f2)(x) · f3(x) =

= (f1(x) · f2(x)) · f3(x) == f1(x) · (f2(x) · f3(x)) =

= f1(x) · (f2�f3)(x) = (f1�(f2�f3))(x).

Thus ((f1�f2)�f3)(x) = (f1�(f2�f3))(x), ∀ x ∈ X.

Hence (f1�f2)�f3 = f1�(f2�f3).

⇒ ’�’ associative.

Now

(f1�C)(x) = f1(x) · C(x) = f1(x) · e = f1(x)

and

(C�f1)(x) = C(x)f1(x) = e · f1(x) = f1(x).
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Thus (f1�C)(x) = (C�f1)(x), ∀ x ∈ X ⇒ f1�C = C�f1.

⇒ C is a identity map from X to G.

Since C is a base point preserving continuous map from X to G and hence

C ∈ M .

Let f1, f2 ∈ M such that (f1�f2)(x) = C(x)

⇒ f1(x) · f2(x) = C(x) ⇒ f1(x) · f2(x) = e.

Also f2(x) · f1(x) = e.

Thus f1(x) · f2(x) = f2(x) · f1(x) = e i.e.

(f1�f2)(x) = (f2�f1)(x) = e, ∀ x ∈ X.

This shows that for each base point preserving continuous map there exists

its inverse in M and hence (M,�) is a group.

We now carries over the composition ’�’ on M to give an operation ’∗’ on

homotopy classes such that

[f ] ∗ [g] = [f�g], ∀ f, g ∈ M

where f�g is defined in Proposition 2.1.

Theorem 2.2. If X be a pointed topological space and G is a topological

group with base point e, then [X;G] is a group.

Proof. Let X be an arbitrary pointed topological space and G be a topolog-

ical group.

Let [X;G] = set of all homotopy classes of base point preserving continuous

maps from X to G i.e. [X;G] = {[f ] such that f : X → G is a base point preserving

continuous map}.

Now we define a composition ’∗’ on [X;G] by the rule:

[f ] ∗ [g] = [f�g], ∀ f, g ∈ M.

f1 ∈ [f ] and g1 ∈ [g] ⇒ f1 ' f and g1 ' g respectively.

⇒ f1�g1 ' f�g, as the composite of two homotopic maps are homotopic.

⇒ [f1�g1] = [f�g], by Lemma 1.10.
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⇒ [f1] ∗ [g1] = [f ] ∗ [g] ⇒ ’∗’ is well defined.

Then by using proposition 2.1, [X;G] is a group under the composition ’∗’.

Theorem 2.3. If f : X → Y is a base point preserving continuous map,

then f induces a homomorphism f∗ : [Y ;G] → [X;G], for each topological group G.

Proof. Define f∗ : [Y ;G] → [X;G] by

f∗([h]) = [h ◦ f ], ∀ [h] ∈ [Y ;G].

h0, h1 : Y → G and h0 ' h1 ⇒ h0 ◦ f ' h1 ◦ f ⇒ [h0 ◦ f ] = [h1 ◦ f ], by

Lemma 1.10 i.e. [h0] = [h1] ⇒ f∗([h0]) = f∗([h1]). ⇒ This map is well defined.

Let [h1], [h2] ∈ [Y ;G].

Now f∗([h1] ∗ [h2]) = f∗([h1�h2]) = [(h1�h2] ◦ f ], by definition. Thus ∀ x ∈

X,

[((h1�h2) ◦ f)(x)] = [(h1�h2)(f(x))] = [h1(f(x)) · h2(f(x))],

by definition of the product in [Y ;G]

= [(h1 ◦ f)(x) · (h2 ◦ f)(x)] = [((h1 ◦ f)�(h2 ◦ f))(x)]

⇒ [(h1�h2) ◦ f ] = [(h1 ◦ f)�(h2 ◦ f)] = [h1 ◦ f ] ∗ [h2 ◦ f ]

= f∗([h1] ∗ f∗([h2]).

Thus f∗([h1] ∗ [h2]) = f∗([h1]) ∗ f∗([h2]) ⇒ f∗ is a group homomorphism.

Theorem 2.4. Let α : G → H is a continuous group homomorphism between

topological groups, then α induces a group homomorphism, α∗ : [X;G] → [X;H].

Proof. Define α∗ : [X;G] → [X;H] by

α∗([f ]) = [α ◦ f ], ∀ f : X → G.

Let f1, f2 : X → G and f1 ' f2 ⇒ α ◦ f1 ' α ◦ f2 i.e. [f1] = [f2] ⇒

[α ◦ f1] = [α ◦ f2] ⇒ α∗([f1]) = α∗([f2]).

Thus this map is well defined.

Let [f1], [f2] ∈ [X;G].

Then α∗([f1] ∗ [f2]) = α∗[(f1�f2)] = [α ◦ (f1�f2)], by definition.
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Thus ∀ x ∈ X,

[(α ◦ (f1�f2))(x)] = [α((f1�f2)(x))] = [α(f1(x) · f2(x))]

= [α(f1(x)) · α(f2(x))] = [(α ◦ f1)(x) · (α ◦ f2)(x)] = [((α ◦ f1)�(α ◦ f2))(x)]

⇒ [α ◦ (f1�f2)] = [(α ◦ f1)�(α ◦ f2)] = [α ◦ f1] ∗ [α ◦ f2] = α∗([f1]) ∗ α∗([f2]).

Thus α∗([f1] ∗ [f2]) = α∗([f1]) ∗ α∗([f2]) ⇒ α∗ is a group homomorphism.

Let Htp denote the category of pointed topological spaces and homotopy

classes of their base point preserving continuous maps and Grp be the category of

groups and their homomorphisms. Then we have the following theorems:

Theorem 2.5. For a given topological group G, there exists a contravariant

functor

F (G) : Htp → Grp.

Proof. Using Theorems 2.2-2.3, define F (G)(X) = [X;G] which is a group

and also for α : X → Y in Htp, α∗ = F (G)(α) : [Y,G] → [X;G] by

α∗([g]) = [g ◦ α], ∀ [g] ∈ [Y ;G].

Let α : X → Y and β : Y → Z be base point preserving continuous maps,

then β ◦ α : X → Z is also a base point preserving continuous map.

Thus (β ◦ α)∗ = F (G)(β ◦ α) : [Z;G] → [X;G] by

(β ◦ α)∗([g]) = [g ◦ (β ◦ α)], ∀ [g] ∈ [Z;G].

Thus ∀ x ∈ X,

[(g ◦ (β ◦ α))(x)] = [g((β ◦ α)(x))]

= [g(β(α(x)))] = [(g ◦ β)(α(x))] = [((g ◦ β) ◦ α)(x)]

⇒ [g ◦ (β ◦ α)] = [(g ◦ β) ◦ α] = α∗([(g ◦ β)]) = α∗(β∗([g])) = (α∗ ◦ β∗)([g]).

Thus ∀ [g] ∈ [Z;G], (β ◦ α)∗ = α∗ ◦ β∗.
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Also, for identity map IX : X → X, I∗X = F (G)(IX) : [X;G] → [X;G]

defined by

I∗X([g]) = [g ◦ IX ] = [g].

Hence F (G) is a contravariant functor.

Given topological groups G and H, ∃ two contravariant functors F (G) and

F (H). Then F (G) and F (H) have the following relation:

Theorem 2.6. Given topological groups G, H and a continuous homomor-

phism α : G → H there exists a natural transformation

α∗ : F (G) → F (H).

Proof. For [g] ∈ [Y ;G] and f : X → Y ,

F (H)(f)(α∗([g])) = F (H)(f)([α ◦ g]) = [(α ◦ g) ◦ f ]

i.e. f∗(α∗([g])) = [(α ◦ g) ◦ f ] ⇒ (f∗ ◦ α∗)([g]) = [(α ◦ g) ◦ f ] and

α∗(f∗([g])) = α∗([g ◦ f ]) = [α ◦ (g ◦ f)]

i.e. (α∗ ◦ f∗)([g]) = [α ◦ (g ◦ f)].

Thus f∗ ◦ α∗ = α∗ ◦ f∗ ⇒ α∗ is a natural transformation.

Lemma 2.7. If two topological groups G and H have the same homotopy

type, then the homotpy equivalence is a homomorphism.

Proof. Since G and H have the same homotopy type then there exist con-

tinuous maps f : G → H, g : H → G such that f(e) = e′, g(e′) = e, g ◦ f ' IG and

f ◦ g ' IH , where IG : G → G and IH : H → H are identity maps. Then f and g are

both homotopy equivalences.

Since G and H are topological groups, ∃ continuous multiplications µ : G ×

G → G and µ′ : H ×H → H such that the square

10
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G×G
µ - G

H ×H

f × f

?

µ′
- H

f

?

is commutative i.e. µ′ ◦ (f × f) = f ◦ µ.

Now (f ◦ µ)(x, y) = f(µ(x, y)) = f(xy) and

(µ′ ◦ (f × f))(x, y) = µ′((f × f)(x, y))

= µ′(f(x), f(y)) = f(x) · f(y).

Thus f(xy) = f(x) · f(y), ∀ x, y ∈ G ⇒ f is a homomorphism.

Also, g is a homomorphism.

Thus we prove that the homotopy equivalences f and g are continuous group

homomorphisms from G to H and H to G respectively.

Theorem 2.8. If two topological groups G and H are such that G and H have

the same homotopy type, then the groups F (G)(X) and F (H)(X) are isomorphic, for

every pointed topological space X.

Proof. Since the topological groups G and H have the same homotopy type,

then there exist base point preserving continuous maps f : G → H, g : H → G such

that g ◦ f ' IG and f ◦ g ' IH , where IG : G → G and IH : H → H are identity

maps.

Let f∗ : F (G)(X) → F (H)(X) be defined by

f∗([α]) = [f ◦ α], ∀ [α] ∈ F (G)(X).

Using Theorem 2.4 and Lemma 2.7, f∗ is a homomorphism from F (G)(X) to

F (H)(X).

Then f∗ satisfies the following properties:

(i) if f ' g ⇒ f∗ = g∗;

(ii) IG : G → G ⇒ IG∗ = IdF (G)(X);

11
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(iii) (g ◦ f)∗ = g∗ ◦ f∗

for (g ◦ f)∗ : F (G)(X) → F (G)(X) defined by

(g ◦ f)∗([α]) = [(g ◦ f) ◦ α], ∀ [α] ∈ F (G)(X)

= [g ◦ (f ◦ α)] = g∗([f ◦ α]) = g∗(f∗([α])) = (g∗ ◦ f∗)([α]).

Thus ∀ [α] ∈ F (G)(X), (g ◦ f)∗ = g∗ ◦ f∗.

Since g ◦ f ' IG, we have (g ◦ f)∗ = IG∗, by (i) ⇒ g∗ ◦ f∗ = IdF (G)(X), by

(ii) and (iii) i.e. g∗ ◦ f∗ = Id.

Again since f ◦ g ' IH , we have similarly

f∗ ◦ g∗ = Id.

Since f∗ is a homomorphism and g∗ ◦ f∗ = Id ⇒ f∗ is a monomorphism.

Again since f∗ is a homomorphism and g∗ ◦ f∗ = Id ⇒ f∗ is a epimorphism. Thus

f∗ is an isomorphism and g∗ as its inverse.

Therefore the groups F (G)(X) and F (H)(X) are isomorphic.

Lemma 2.9. Let G be a topological group and X, Y be two pointed topolog-

ical spaces such that X and Y belong to the same homotopy type. Then the groups

F (G)(X) and F (G)(Y ) are isomorphic, where F (G) is a contravariant functor from

Htp to Grp given in Theorem 2.5.

Proof. Let X, Y be two pointed topological spaces having the same homo-

topy type, then ∃ base point preserving continuous maps f : X → Y and g : Y → X

such that f ◦ g ' IY and g ◦ f ' IX , where IX : X → X and IY : Y → Y are identity

maps.

Define f∗ : F (G)(Y ) → F (G)(X) by

g∗([α]) = [α ◦ f ], ∀ [α] ∈ F (G)(Y ).

Using Theorem 2.3 and Theorem 2.5, f∗ is a homomorphism from F (G)(Y )

to F (G)(X).

Then f∗ satisfies the following properties:

(i) if f ' g ⇒ f∗ = g∗;

12
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(ii) IX : X → X ⇒ I∗X = IdF (G)(X),

for I∗X : F (G)(X) → F (G)(X) defined by

I∗X([α]) = [α ◦ IX ] = [α], ∀ [α] ∈ F (G)(X)

i.e. I∗X = IdF (G)(X)

(iii) (g ◦ f)∗ = f∗ ◦ g∗,

for (g ◦ f)∗ : F (G)(X) → F (G)(X), defined by

(g ◦ f)∗([α]) = [α ◦ (g ◦ f)], ∀ [α] ∈ F (G)(X) = [(α ◦ g) ◦ f ] =

= f∗([α ◦ g]) = f∗(g∗([α])) = (f∗ ◦ g∗)([α]).

Thus ∀ [α] ∈ F (G)(X), (g ◦ f)∗ = f∗ ◦ g∗.

Since g ◦ f ' IX , we have (g ◦ f)∗ = I∗X , by (i) ⇒ f∗ ◦ g∗ = IdF (G)(X), by

(ii) and (iii) i.e. f∗ ◦ g∗ = Id.

Again since f ◦ g ' IY , we have similarly

g∗ ◦ f∗ = Id.

Since f∗ is a homomorphism and g∗ ◦ f∗ = Id ⇒ f∗ is a monomorphism.

Again since f∗ is a homomorphism and f∗ ◦g∗ = Id ⇒ f∗ is a epimorphism.

Therefore f∗ is an isomorphism and g∗ as its inverse.

Thus the groups F (G)(X) and F (G)(Y ) are isomorphic.

Theorem 2.10. For a given topological group G there always exists a con-

travariant functor F (G) : Htp → Grp such that F (G) is homotopy type invariant.

Proof. Using Lemma 2.9, it follows that F (G) is a homotopy type invariant

functor in th sense that if X and Y are the same homotopy type then the groups

F (G)(X) and D(G)(Y ) are isomorphic.
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SOME HOMEOMORPHISM THEOREMS

FLORICA ALDEA

Abstract. In this paper we give homeomorfism result for operators that

satisfies Borsuk condition.

1. Introduction

Let X be a Banach space and f : X → X be an operator such that Ff 6= ∅.

There are many papers in which using the fixed point theory we obtain the surjectivity

of 1X − f (see: Aldea [1, 2], Browder [4], Danes [8], Danes-Kolomy [9], Deimling [10],

Rus [14, 15, 16].

The aim of this paper is to give an answer to the following question. What conditions

must satisfy f such that 1X − f be a homeomorphism?

Rus proved in [15] that if f is a ϕ contraction then 1X − f is a homeomorphism. In

order to prove this he used a bijectivity and a data dependence results.

Also, it is possible to obtain homeomorphism result using domain invariance

result respective closing range theorem (see: Cramer-Ray [6], Crandall-Pazzy [7],

Dowing-Kirk [11], Zeidler [17]).

Following a similar technique we will give an answer to the mention question in case

that operator f satisfy Borsuk condition.

Definition 1.1. Let X be a Banach space and f : X → X an operator. We say that

f satisfies Borsuk condition (shortly (B)), if there exists η > 0 and ε > 0 such that

for all x1, x2 ∈ X, inequality

||f(x1)− f(x2)|| < η

1991 Mathematics Subject Classification. 47H10.

Key words and phrases. homeomorphism, fixed points, Borsuk condition.
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implies

||x1 − x2|| < ε.

Now we will give some operators’ classes which satisfy (B) condition.

Remark 1.1. LetX be a Banach space. If f : X → X is near identity (in Campanato

sense [5]), then f satisfies condition (B).

Proof. Because f is near 1X there exists constants λ, k ∈ (0, 1) such that

||x1 − x2 − λ(f(x1)− f(x2))|| ≤ k · ||x1 − x2||, for all x1, x2 ∈ X

(1)

or

(1− k)||x1 − x2|| ≤ λ||f(x1)− f(x2)||, for all x1, x2 ∈ X.

So there are η > 0 and ε

(
=

λ

1− k
η

)
> 0 such that from ||f(x1) − f(x2)|| < η we

have ||x1 − x2|| < ε. We obtain that f verifies condition (B).

Remark 1.2. Let X be Banach space. If f : X → X is dilatation, then f satisfies

(B) condition.

Proof. Because f is dilatation there exists c > 1 such that

c||x1 − x2|| ≤ ||f(x1)− f(x2)||, for all x1, x2 ∈ X

So there are η > 0 and ε
(
=
η

c

)
> 0 such that from ||f(x1) − f(x2)|| < η we have

||x1 − x2|| < ε. We obtain that f verifies condition (B).

Remark 1.3. Let X Banach space. If f : X → X is strong accretive, then f satisfies

condition (B).

Proof. Because f is strong accretive there is k > 1 such that

k||x1 − x2|| ≤ ||f(x1)− f(x2)||, for all x1, x2 ∈ X

So there are η > 0 and ε
(
=
η

k

)
> 0 such that from ||f(x1) − f(x2)|| < η we have

||x1 − x2|| < ε. We obtain that f verifies (B) condition.

Definition 1.2. (Rus, [15]) A function ϕ : R+ → R+ is a comparison function if ϕ

is increasing and ϕn(t) → 0 when n→∞ for all t ∈ R+.

16
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2. Main result

In what follows, we solve the problem for case of an operator which is sum of

two operators and one of them satisfies condition (B).

Theorem 2.1. (Granas, [12]) Let X be a Banach space and operator F : X → X

be a complete continuous . If operator f : X → X satisfies condition (B) (with

f(x) = x− F (x) for all x ∈ X), then f is surjective.

Theorem 2.2. Let X be a Banach space, F, L : X → X be two continuous operators

with F compact and functions ϕ, ψ : [0,∞) → [0,∞). Suppose that:

(i)

ϕ(||x1 − x2||) ≤ ||f(x1)− f(x2)|| (2)

for all x1, x2 ∈ X with f(x) = 1X(x)− F (x), for all x ∈ X;

(ii)

||L(x1)− L(x2)|| ≤ ψ(||x1 − x2||) (3)

for all x1, x2 ∈ X;

(iii) ϕ(0) = 0, ϕ bijective and ϕ−1 comparison function;

(iv) ψ(0) = 0 and ψ comparison function.

Then 1X − f is bijective.

Proof. First, we prove that FF+L = ∅. In order to apply Theorem 2.1 we will prove

that f verifies condition (B). Let x1, x2 from X such that ||f(x1)−f(x2)|| < η. From

(2) and ϕ bijective we have

ϕ(||x1 − x2||) ≤ ||f(x1)− f(x2)|| < η

||x1 − x2|| ≤ ϕ−1(η) < ϕ−1(η) + 1 = ε

so f verifies condition (B).

From Theorem 2.1 we have that f is surjective. From (2) and (iii) we obtain that

f is injective. Operator f is continuous from hypothesis and continuity of inverse

operator results from inequality (2); so f is homeomorphism.

Let x ∈ X, because f is homeomorphism we define operator

R : X → X; x 7−→ R(x)

17
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such that

f(R(x)) = L(x) for all x ∈ X.

From (2) and (3) we have that

ϕ(||R(x1)−R(x2)||) ≤ ||f(R(x1))− f(R(x2))|| = ||L(x1)− L(x2)||

≤ ψ(||x1 − x2||)

for all x1, x2 ∈ X. Because ϕ is invertible

||R(x1)−R(x2)|| ≤ (ϕ−1 ◦ ψ)(||x1 − x2||) (4)

for all x1, x2 ∈ X.

Because ϕ−1, ψ are comparison functions we obtain that

||R(x1)−R(x2)|| ≤ ϕ−1(||x1 − x2||) (5)

for all x1, x2 ∈ X. But ϕ−1 is comparison function. From the last statement and (4)

we apply fixed point theorem for ϕ-contractions (see Rus [16]) we have FR = {x∗}.

From the definition of R results

(1X − F )(x∗) = L(x∗) ⇐⇒ FF+L = {x∗}.

Second, we prove that 1X − (F + L) is bijective.

Let y ∈ X.We denote by Ly operator L+y. It is easy to prove that operator Ly verifies

inequality (3), so applying first part of our proof we have that FF+Ly
= {x∗} ⇐⇒

equation F (x) + L(x) + y = x has only one solution. So 1X − (F + L) is bijective.

Theorem 2.3. If we add to the hypotheses of Theorem 2.2 the following:

(v) ϕ(t) ≥ ψ(t) for all t ≥ 0;

(vi) there is the inverse of 1[0,∞) − (ϕ−1 ◦ ψ) and it is continuous.

Then 1X − (F + L) is homeomorphism.

Proof. From Theorem 2.2 we have that operator 1X−(F +G) is bijective, continuity

of its results from the continuity of F and L.

Let xi the unique solution of equations x− F (x)− L(x) = yi, for i = 1, 2.
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From (2) and (3) we have

ϕ(||x1 − x2||) ≤ ||f(x1)− f(x2)|| = ||L(x1)− L(x2) + y1 − y2||

≤ ||L(x1)− L(x2)||+ ||y1 − y2||

≤ ψ(||x1 − x2||) + ||y1 − y2|| =⇒

From (iii) resuts

||x1 − x2|| ≤ (ϕ−1 ◦ ψ)(||x1 − x2||) + ϕ−1(||y1 − y2||)

≤ (ϕ−1 ◦ ψ)(||x1 − x2||) + ||y1 − y2||) ⇐⇒

(1[0,∞) − (ϕ−1 ◦ ψ))(||x1 − x2||) ≤ ||y1 − y2|| =⇒

||x1 − x2|| ≤ (1[0,∞) − (ϕ−1 ◦ ψ))−1(||y1 − y2||) (6)

From last inequality and (vi) we have that

||(1X − (F +L))−1(y1)− (1X − (F +L))−1(y2)|| ≤ (1[0,∞)− (ϕ−1 ◦ψ))−1(||y1− y2||)

Which means that (1X − (F + L))−1 is continuous operator, so 1X − (F + L) home-

omorphism.

Remark 2.1. If X is finite dimensional Banach space, then Theorems 2.1, 2.2 are

true without assumption of compactness on operator F .

Theorem 2.4. (Altman, [3]) Let X be a finite dimensional Banach space, F, L :

X → X two continuous operators and constants c > 0 and k > 0. Suppose that:

(i)

c · ||x1 − x2|| ≤ ||f(x1)− f(x2)|| (7)

for all x1, x2 ∈ X with f(x) = 1X(x)− F (x), for all x ∈ X;

(ii)

||L(x1)− L(x2)|| ≤ k · ||x1 − x2|| (8)

for all x1, x2 ∈ X;

(iii)

K < c.

Then

(a) FF+L = {x∗};
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(b) 1X − (F + L) : X → X is homeomorphism;

(c) Operator (1X − (F + L))−1 : X → X is Lipschitz continuous.

Proof. In order to prove theorem, we apply Theorem 2.2 and 2.3 considering ϕ(t) =

c · t with c > 1 and ψ(t) = k · t with k < 1.

These functions verify assumption (i)-(v) from mentioned theorems.

Function (1[0,∞) − (ϕ−1 ◦ ψ))(t) =
c− k

c
t verifies (vi).

Conclusion (c) of Altman’s theorem results from inequality (6).

References

[1] F. Aldea, Surjectivity via fixed point structures, Seminar on Fixed Point Theory ”Babeş-
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INTERPOLATION RESULTS FOR SOME CLASSES
OF ABSOLUTELY SUMMING OPERATORS

CRISTINA ANTONESCU

Abstract. K. Miyazaki, [9], has introduced the class of (p, q; r)-absolutely

summing operators, which generalize the class of (p, q)-absolutely summing

operators, introduced by Mitiagin and Pe lczynski in 1966.

We establish an interpolation result for (p, q; r)−absolutely sum-

ming operators and also for some other operator classes which generalize

Miyazaki”s classes.

1. Introduction

The interpolation properties of the p−summable and the (p, q)-absolutely

summing operators are well known. Miyazaki has extended the result concerning the

interpolation stability for (p, q)−absolutely summing operators to the more general

ideal of (p, q; r)-absolutely summing operators, which he introduced [9]. In this paper

we will look at his result, because it relies on the presumption that the ideal of (p, q; r)-

absolutely summing operators is normed, which in general does not happen, this

ideal being only quasi-normed. N. Tita [11], [12] has introduced and studied ideals

of operators which are (Φ,Ψ)-absolutely summing, where Φ and Ψ are symmetric

norming functions, and which are more general than the (p, q)-absolutely summing

operators and the largest part of the ideals studied by Miyazaki. Due to the non-

linearity of the symmetric norming functions, nothing could be ascertained regarding

the interpolation properties of these ideals of operators. For this reason we ask the

question of existence of ideals of operators more general than those of Miyazaki, and

which still satisfy the stability result proved by him. In order to answer to the above

question we construct a class of absolutely summing opetators, which is based on the

Lorentz-Zygmund spaces of sequences.

Key words and phrases. p-absolutely summing operators, p-q absolutely summing operators, symmetric

norming function, Lorentz-Zygmund sequence ideals.
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The present paper is a revised and extended version of [1]. This revision

became necessary as we had not, at the time of writing [1], been aware of Myazaki”s

work, and we realized that the class we had introduced was not satisfactorily moti-

vated nor exhaustively treated.

2. Preliminaries

We first introduce some notation and recall a few known results. Throughout

the paper N denotes the set of all positive integers, while E,F are Banach spaces over

Γ, where Γ is the real or the complex field. By F (E) we denote a finite set of vectors

x1, ..., xn in E. We denote

L(E,F ) := {T : E → F : T is linear and bounded} ,

and we let E∗ be the dual space, E∗ = L(E,Γ). By UE we denote the unit ball

{x ∈ E : ‖x‖ ≤ 1} . For a ∈ E∗ and x ∈ E, let 〈x, a〉 := a (x) . We denote by l∞

the set of all scalar sequences, {xn}n , with the property ‖x‖∞ := sup
n∈N

|xn| < ∞,

and by c0 the set of all scalar sequences, {xn}n , with the property lim
n→∞

|xn| = 0.

For 0 < p < ∞, we let lp denote the set of all scalar sequences {xn}n such that

‖x‖p :=

( ∞∑
n=1

|xn|p
) 1

p

< ∞.

The operator classes, which are the subject of this article, are closely related

to some vector-valued sequence spaces. For this reason we shall recall here a few

definitions and results about these spaces.

Definition 1. ([5]) Let 1 ≤ p ≤ ∞. The vector sequence {xn}n in E is strongly

p−summable if the corresponding scalar sequence {‖xn‖}n is in lp. We denote by

lstrong
p (E) the set of all such sequences in E.

It is clearly a vector space under pointwise operations, and a natural norm is

given by ‖{xn}‖strong
p :=

( ∞∑
n=1

‖xn‖p

) 1
p

, respectively ‖{xn}‖strong
∞ := sup

n
‖xn‖ .

Definition 2. ([5]) Let 1 ≤ p ≤ ∞. The vector sequence {xn}n in E is weakly

p−summable if the scalar sequences {|〈x∗, xn〉|}n are in lp for every x∗ ∈ E∗. We

denote by lweak
p (E) the set of all such sequences in E.
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It is clearly a vector space under pointwise operations, and a norm is

given by ‖{xn}‖weak
p := sup

x∗∈UE∗

( ∞∑
n=1

|〈x∗, xn〉|p
) 1

p

, respectively ‖{xn}‖weak
∞ :=

sup
x∗∈UE∗

sup
n
|〈x∗, xn〉| = sup

n
‖xn‖ = ‖{xn}‖strong

∞ .

Definition 3.([13]) For x = {xn}n ∈ l∞, let

sn (x) := inf {σ ≥ 0 : card {i : |xi| ≥ σ} < n} .

Proposition 4. ([13]) The numbers sn (x) have the following properties:

(1) . ‖x‖∞ = s1 (x) ≥ s2 (x) ≥ ... ≥ 0, for all x = {xn}n ∈ l∞;

(2) . sn+m−1 (x + y) ≤ sn (x)+sm (y) , for all x = {xi}i ∈ l∞, y = {yi}i ∈ l∞,

and n, m ∈ {1, 2, ...} , where x + y = {xi + yi}i ;

(3) . sn+m−1 (x · y) ≤ sn (x) · sm (y) , for all x = {xi}i ∈ l∞, y = {yi}i ∈ l∞,

and n, m ∈ {1, 2, ...} , where x · y = {xi · yi}i ;

(4) . If x = {xm}m ∈ l∞ and card {m : xm 6= 0} < n then sn (x) = 0.

If the sequence x = {xn}n ∈ l∞ is ordered such that |xn| ≥ |xn+1| , for any

natural n, then sn (x) = |xn| , [13] .

Definition 5. (Lorentz sequence spaces) ([9]) Let 1 ≤ p ≤ ∞, 1 ≤ q < ∞, or

1 ≤ p ≤ ∞, q = ∞. The vector sequence {xn}n in E is strongly (p, q)−summable if
∞∑

n=1

[
i

1
p−

1
q · sn (‖x‖)

]q
is finite, respectively sup

n
i

1
p · sn (‖x‖) is finite, where

sn (‖x‖) := sn

(
{‖xi‖E}i

)
.

The space of all such sequences in E will be called the Lorentz sequence space

and will be denoted by lstrong
p,q (E) . In particular, if E = Γ, then lstrong

p,q (Γ) is denoted

lp,q.

It is clear that lstrong
p,q (E) is a vector space under pointwise operations, and

a natural quasi-norm is given by

‖{xn}‖strong
p,q :=

( ∞∑
n=1

[
i

1
p−

1
q · sn (‖x‖)

]q) 1
q

,

respectively

‖{xn}‖strong
p,∞ := sup

n
i

1
p · sn (‖x‖) .

It is important for our future considerations to recall the lexicografic order

of the Lorentz spaces.
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Proposition 6. ([7], [9]) (1) Let 1 ≤ p < ∞, 1 ≤ q < q1 ≤ ∞. Then lstrong
p,q (E) ⊂

lstrong
p,q1

(E) and for every {xi}i ∈ lstrong
p,q (E) ,

‖{xn}‖strong
p,q1

≤ c (p, q, q1) · ‖{xn}‖strong
p,q .

(2) Let 1 ≤ p < p1 ≤ ∞, 1 ≤ q, q1 ≤ ∞. Then lstrong
p,q (E) ⊂ lstrong

p1,q1
(E) and,

for every {xi}i ∈ lstrong
p,q (E) ,

‖{xn}‖strong
p1,q1

≤ c (p, p1, q, q1) · ‖{xn}‖strong
p,q .

We now recall, from [6], some basic facts about the classical real interpolation

method, called the K-method. An interpolation method is a method of constructing

interpolation spaces from a given couple of spaces. For the reader interested in finding

an introduction to interpolation theory we recommend, for example, [2], [6], [15].

We consider couples (A0, A1) of topological vector spaces A0, A1, which are

both continuously embedded in a topological vector space A. We denote this by

Ai ↪→ A, i = 1, 2 and we say that (A0, A1) is an interpolation couple.

If (A0, A1) , (B0, B1) are two such couples with A0, A1 ↪→ A, B0, B1 ↪→ B

and if A and B are two other spaces with A ↪→ A and B ↪→ B we say that A and

B are interpolation spaces with respect to the couples (A0, A1) and (B0, B1) if the

following interpolation property is fulfilled:

For every linear operator T such that T : A0 → B0, T : A1 → B1 it follows

that T : A → B.

Here we let the symbol T : A → B denote that the restriction to A of the

linear operator T is continuous.

Let (A0, A1) be an interpolation couple of quasi-normed spaces. For every

a ∈ A0 + A1 we define the functional

K (t, a, A0, A1) = K (t, a) = inf
a=a0+a1

(
‖a0‖A0

+ t · ‖a1‖A1

)
,

where ai ∈ Ai, i = 0, 1, and 0 < t < ∞.

For 0 < θ < 1 and 0 < q ≤ ∞ the spaces

(A0, A1)θ,q :=
{

a; a ∈ A0 + A1 :
(∫ ∞

0

[
t−θ ·K (t, a)

]q dt

t

)
< ∞

}
,
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if q < ∞, and

(A0, A1)θ,∞ :=
{

a; a ∈ A0 + A1 : sup
t>0

supt−θ ·K (t, x) < ∞
}

with the quasi-norm

‖a‖(A0,A1)θ,q
:=
(∫ ∞

0

[
t−θ ·K (t, a)

]q dt

t

) 1
q

,

respectively

‖a‖(A0,A1)θ,∞
= sup

t>0
supt−θ ·K (t, x) ,

are interpolation spaces. We have the following fundamental interpolation theorem.

Theorem 7. ([6]) If (A0, A1) , (B0, B1) are two interpolation couples of quasi-normed

spaces and if T is a linear operator such that T : A0 → B0, T : A1 → B1 are both

bounded, having the quasi-norms bounded from above by M0 and M1 respectively, then

T : (A0, A1)θ,q → (B0, B1)θ,q is also bounded, and its quasi-norm is bounded from

above by M for which we have the so called convexity inequality M ≤ M1−θ
0 ·Mθ

1 .

Theorem 8. ([13]) Let 1 ≤ p0 < p1 < ∞, 1 ≤ q0, q1, q ≤ ∞, 0 < θ < 1. If
1
p = 1−θ

p0
+ θ

p1
then

(
lstrong
p0,q0

(E) , lstrong
p1,q1

(E)
)
θ,q

= lstrong
p,q (E) . Moreover, the quasi-

norms on both sides are equivalent.

We can now introduce some classes of absolutely summing operators.

Definition 9. ([5]) Let 1 ≤ p < ∞. An operator T ∈ L(E,F ) is called absolutely

p-summing, we write T ∈ Πp(E,F ), if there is a constant c ≥ 0 such that(
n∑

i=1

‖Txi‖p

) 1
p

≤ c · sup
a∈UE∗

(
n∑

i=1

|〈xi, a〉|p
) 1

p

,

for every finite family of elements x1, ...xn ∈ E.

For T ∈ Πp(E,F ) we define πp (T ) := inf c, the infimum being taken over all

constants c ≥ 0 for which the above inequality holds.

Note that πp (·) is a norm on the space of absolutely p−summing operators,

[5] , [10].

The most deep result concerning absolutely p−summing operators is given

by the following statement called the domination theorem.

Theorem 10. ([5], [10]) Let 1 ≤ p < ∞, T ∈ L(E,F ) and K be a weak*-compact

norming subset of UE∗ . Then T ∈ Πp(E,F ) if and only if there is a constant c and a
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regular probability measure µ on K such that

‖Tx‖ ≤ c ·
(∫

UE∗

(|〈x, x∗〉|)p
dµ (x∗)

) 1
p

,

for every x ∈ E, and πp (T ) = inf c.

We conclude this section by recalling the definition of the (p, q; r)−absolutely

summing operators

Definition 11. ([9]) For 1 ≤ p, q, r ≤ ∞ an operator T ∈ L (E,F ) is called

(p, q; r)−absolutely summing provided there exists a constant c > 0 such that

‖{Txi}‖strong
p,q ≤ c · ‖{xi}‖weak

r

for every {xi} ∈ F (E) . We denote by Πp,q;r (E,F ) the space of such operators acting

between E and F.

The smallest number c for which the above inequality holds is denoted by

πp,q;r (T ) .

It is observed in [7] that πp,q;r (·) is a quasi-norm on the space of (p, q; r)-

absolutely summing operators.

3. Results

We are first concerned with the interpolation result for (p, q; r)−absolutely

summing operators established in [9], as we also indicated in the introduction.

Theorem 12. Let 1 ≤ p1 < p2 < ∞, 1 ≤ q1, q2, q, r < ∞ and 0 < θ < 1. If
1
p = 1−θ

p1
+ θ

p2
then (Πp1,q1;r (E,F ) ,Πp2,q2;r (E,F ))θ,q ⊂ Πp,q;r (E,F ) .

Proof. We shall use an idea owed to H. König, see Proposition 3 from [8] , but first

we must prove that (Πp1,q1;r (E,F ) ,Πp2,q2;r (E,F )) is an interpolation couple.

Let T ∈ Πp1,q1;r (E,F ) and {xi}i ∈ F (E) . It follows that there exists a

constant c > 0 such that ‖{Txi}‖strong
p1,q1

≤ c · ‖{xi}‖weak
r .

But we know that ‖{Txn}‖strong
p2,q2

≤ c · ‖{Txn}‖strong
p1,q1

. Thus we obtain

‖{Txn}‖strong
p2,q2

≤ c · ‖{Txn}‖strong
p1,q1

≤ c̃ · ‖{xi}‖weak
r . In conclusion T ∈ Πp2,q2;r (E,F )

and Πp1,q1;r (E,F ) ⊂ Πp2,q2;r (E,F ) .

Let now T ∈ Πp2,q2;r (E,F ) and take {xi}n
i=1 ∈ F (E) with ‖{xi}‖weak

r = 1.

The estimate of the K−functional

K (t, T, Πp1,q1;r (E,F ) ,Πp2,q2;r (E,F )) =
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= inf {πp1,q1;r (S) + t · πp2,q2;r (T − S) : S ∈ Πp1,q1;r (E,F )} ≥

inf
{
‖{Sxi}‖strong

p1,q1
+ t · ‖{(T − S) xi}‖strong

p2,q2
: S ∈ Πp1,q1;r (E,F )

}
≥

inf
{
‖{yi}‖strong

p1,q1
+ t · ‖{Txi − yi}‖strong

p2,q2
: y1, ..., yn ∈ F

}
=

= K
(
t, {Txi}i , lstrong

p1,q1
(F ) , lstrong

p2,q2
(F )
)

implies that

‖T‖(Πp1,q1;r(E,F ),Πp2,q2;r(E,F ))
θ,q

≥ ĉ · ‖{Txi}‖(lstrong
p1,q1 (F ),lstrong

p2,q2 (F ))
θ,q

.

But we know that ‖{Txi}‖(lstrong
p1,q1 (F ),lstrong

p2,q2 (F ))
θ,q

≥ ˜̃c · ‖{Txi}‖lstrong
p,q (F ) . Therefore,

by taking the supremum over all {xi}n
i=1 ∈ F (E) with ‖{xi}‖weak

r = 1, we get that

‖T‖(Πp1,q1;r(E,F ),Πp2,q2;r(E,F ))
θ,q

≥ c · πp,q;r (T ) .

In conclusion (Πp1,q1;r (E,F ) ,Πp2,q2;r (E,F ))θ,q ⊂ Πp,q;r (E,F ) , as wanted.

We now recall some results concerning the Lorentz-Zygmund sequence spaces,

which were introduced by C.Bennet and K. Rudnick, [3], and generalize the Lorentz

sequence spaces.

Definition 13. ([3], [4]) Let 1 ≤ p, q ≤ ∞ and −∞ < γ < ∞. The Lorentz-Zygmund

sequence spaces are defined as follows

lp,q,γ =

{
ξ = {ξn}n ∈ c0 :

∞∑
n=1

[
n

1
p−

1
q · (1 + log n)

γ

· sn (ξ)
]q

< ∞

}
,

if q < ∞, and

lp,∞,γ =
{

ξ = {ξn}n ∈ c0 : sup
n

[
n

1
p · (1 + log n)

γ

· sn (ξ)
]

< ∞
}

.

Remark 1. ([4]) The formulas

‖·‖p,q,γ :=

( ∞∑
n=1

[
n

1
p−

1
q · (1 + log n)

γ

· sn (·)
]q) 1

q

,

respectively

‖·‖p,∞,γ := sup
n

[
n

1
p · (1 + log n)

γ

· sn (·)
]
,

define quasi-norms on lp,q,γ , respectively on lp,∞,γ .

The lexicografic order of the Lorentz-Zygmund sequence spaces is impor-

tant for our proofs so we establish it here.

Proposition 14. The following inclusions hold:
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1. lp0,q,γ0
⊆ lp1,q,γ1

, for 1 ≤ p0 < p1 < ∞, 1 ≤ q ≤ ∞, −∞ < γ0, γ1 < ∞;

2. lp,q0,γ ⊆ lp,q1,γ , for 1 ≤ p < ∞, 1 ≤ q0 < q1 ≤ ∞, γ > 0.

Moreover, in the first case, there is a constant c1 such that

‖x‖p1,q,γ1
≤ c1 ·‖x‖p0,q,γ0

for every x ∈ lp0,q,γ0
and in the second case there

is a constant c2 such that ‖x‖p,q1,γ ≤ c2 · ‖x‖p,q0,γ for every x ∈ lp,q0,γ .

To prove this proposition, we shall need the following results.

Theorem 15. ([4]) Let 0 < q ≤ ∞ and let ϕ, ρ ∈ B αρ < βϕ. Then λq (ϕ)is

continuously embedded in λq (ρ) , where

λq (ϕ) =

{
ξ = {ξn}n ∈ c0 :

∞∑
n=1

[ϕ (n) · sn (ξ)]q · n−1 < ∞

}
,

if q < ∞, and λ∞ (ϕ) =
{

ξ = {ξn}n ∈ c0 : sup
n

[ϕ (n) · sn (ξ)] < ∞
}

.

In [14] N. Tita has established a relation between Lorentz spaces and Lorentz-

Zygmund spaces, which is content of the next result.

Theorem 16. Let 1 ≤ p, q ≤ ∞, 0 < γ < ∞ and ξ = {ξn}n ∈ c0. Then ξ ∈ lp,q,γ ⇔{
2

n−1
p · s2n−1 (ξ)

}
n
∈ lr,q where γ = 1

r −
1
q . Moreover, there are constants c̃ (p, q, γ)

and c (p, q, γ) such that c̃ (p, q, γ) ·
∥∥∥{2

n−1
p · s2n−1 (ξ)

}
n

∥∥∥
r,q
≤ ‖ξ‖p,q,γ ≤

≤ c (p, q, γ) ·
∥∥∥{2

n−1
p · s2n−1 (ξ)

}
n

∥∥∥
r,q

.

Proof of Proposition 14. 1. Consider ϕ : (0,∞) → (0,∞) defined

by ϕ (t) = t
1

p0 · (1 + log |t|)γ0 and ρ : (0,∞) → (0,∞) defined by ρ (t) = t
1

p1 ·

(1 + log |t|)γ1 . Then ϕ, ρ ∈ B and βϕ = 1
p0

, αρ = 1
p1

, [4] . Hence if 0 < p0 < p1 < ∞,

then αρ < βϕ, and Theorem 15 applies to give the desired inclusion.

To prove 2., note that by Theorem 16 ξ ∈ lp,q0,γ ⇔
{

2
n−1

p · s2n−1 (ξ)
}

n
∈

lr0,q0 where γ = 1
r0
− 1

q0
. Let q1 > q0 and r1 such that γ = 1

r1
− 1

q1
. It follows that

r0 < r1 and further on lr0,q0 ⊆ lr1,q1 . So we obtain that
{

2
n−1

p · s2n−1 (ξ)
}

n
∈ lr1,q1

which then implies that ξ ∈ lp,q1,γ .

Remark 2. We must give here an explanation. In [14] there were given results for the

operator ideals L
(s)
p,q,γ , where s is an additive and multiplicative s-scale, an s−scale

being a rule s : T ∈ L (E,F ) → {sn (T )} ∈ l∞ which assigns to every linear and

bounded operator a bounded scalar sequence with the following properties:

1. ‖T‖ = s1 (T ) ≥ s2 (T ) ≥ ... ≥ 0, for all T ∈ L(E,F );
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2. sn+m−1 (T + S) ≤ sn (T ) + sm (S) , for all T, S ∈ L(E,F ) and n, m ∈

{1, 2, ...} ;

3. sn+m−1 (T ◦ S) ≤ sn (T ) · sm (S) , for all T ∈ L(F, F0), S ∈ L(E,F ) and

n, m ∈ {1, 2, ...} ;

4. sn (T ) = 0, dimT < n;

5. sn (IE) = 1, if dimE ≥ n, where IE (x) = x, for all x ∈ E.

We call sn (T ) the n-th s−number of the operator T. For properties, examples

of s−numbers and relations between different s-numbers we refer the reader to [10],

[12], [13].

If we take account of the similarity between the axioms of the sequence

{sn (T )}n , where s is an additive s-scale, T ∈ L(E,F ), and the properties of

{sn (x)}n , where x = {xn}n ∈ l∞, we can transfer the result obtained in [14] by

N. Tita from L
(s)
p,q,γ to lp,q,γ .

In [14], an interpolation result for the Lorentz-Zygmund operator ideals L
(s)
p,q,γ

is also established. We can also transfer this to the sequence spaces case, as follows.

Theorem 17. Let 1 ≤ p0 < p1 < ∞, 1 ≤ q0 ≤ q1 ≤ ∞, 1 ≤ q ≤ ∞, 0 < γ0, γ1 < ∞

and 0 < θ < 1. Then (
lp0,q0,γ0

, lp1,q1,γ1

)
θ,q

⊆ lp,q,γ ,

where 1
p = 1−θ

p0
+ θ

p1
and γ = (1− θ) · γ0 + θ · γ1.

Moreover for every x ∈
(
lp0,q0,γ0

, lp1,q1,γ1

)
θ,q

the following inequality is true

‖x‖p,q,γ ≤ c (p, q, γ) · ‖x‖(lp0,q0,γ0 ,lp1,q1,γ1)θ,q

.

We start now our construction which generalizes Miyazaki’s spaces..

Definition 18. Let 1 ≤ p < ∞, 1 ≤ q ≤ ∞, −∞ < γ < ∞. The vector se-

quence {xn}n in E is strongly (p, q, γ)−summable if {‖xn‖}n ∈ lp,q,γ . We denote

by lstrong
p,q,γ (E) the set of all such sequences in E. It is easy to see that lstrong

p,q,γ (E)

is a vector space under pointwise operations, and a natural quasi-norm is given by

‖{xn}‖strong
p,q,γ := ‖{‖xn‖}‖p,q,γ .

Remark 3. It is not hard to verify that all the above results for lp,q,γ can be

transferred to lstrong
p,q,γ (E) .
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Definition 19. Suppose that 1 ≤ p, q, r ≤ ∞ and −∞ < γ < ∞. An operator

T ∈ L (E,F ) is called (p, q, γ; r)−absolutely summing provided there exists a constant

c > 0 such that ‖{Txm}‖strong
p,q,γ ≤ c · ‖{xm}‖weak

r , for every {xm}m ∈ F (E) . We

denote by Πp,q,γ;r (E,F ) the space of such operators acting between E and F.

The smallest number c for which the above inequality holds is denoted by

πp,q,γ;r (T ) .

Remark 4. It is routine to verify that the constant coming from ‖·‖strong
p,q,γ can be

used to prove the triangle inequality, and thus πp,q,γ;r (·) is a quasi-norm on the space

of (p, q, γ; r)−absolutely summing operators.

Theorem 20. Let 1 ≤ p1 < p2 < ∞, 1 ≤ q1 ≤ q2 ≤ ∞, 1 ≤ q, r ≤ ∞, 0 < γ1, γ2 < ∞

and 0 < θ < 1. If 1
p = 1−θ

p1
+ θ

p2
and γ = (1− θ) · γ1 + θ · γ2 then(

Πp1,q1,γ1;r (E,F ) ,Πp2,q2,γ2;r (E,F )
)
θ,q

⊂ Πp,q,γ;r (E,F ) .

Proof. We shall use the idea from the case of (p, q; r)−absolutely summing operators.

First we must prove that
(
Πp1,q1,γ1;r (E,F ) ,Πp2,q2,γ2;r (E,F )

)
is an interpolation

couple.

Let T ∈ Πp1,q1,γ1;r (E,F ) and {xi}i ∈ F (E) . It follows that there exists a

constant c > 0 such that ‖{Txi}‖strong
p1,q1,γ1

≤ c · ‖{xi}‖weak
r . But ‖{Txn}‖strong

p2,q2,γ2
≤

c · ‖{Txn}‖strong
p1,q1,γ1

. Hence we obtain

‖{Txn}‖strong
p2,q2,γ2

≤ c · ‖{Txn}‖strong
p1,q1,γ1

≤ c̃ · ‖{xi}‖weak
r .

¿From this it follows that T ∈ Πp2,q2,γ2;r (E,F ) , and therefore Πp1,q1,γ1;r (E,F ) ⊂

Πp2,q2,γ2;r (E,F ) .

Let now T ∈ Πp2,q2,γ2;r (E,F ) and pick {xi}n
i=1 ∈ F (E) with ‖{xi}‖weak

r =

1. The estimate of the K−functional K
(
t, T, Πp1,q1,γ1;r (E,F ) ,Πp2,q2,γ2;r (E,F )

)
=

inf
{
πp1,q1,γ1;r (S) + t · πp2,q2,γ2;r (T − S) : S ∈ Πp1,q1,γ1;r (E,F )

}
≥

inf
{
‖{Sxi}‖strong

p1,q1,γ1
+ t · ‖{(T − S)xi}‖strong

p2,q2,γ2
: S ∈ Πp1,q1,γ1;r (E,F )

}
≥

inf
{
‖{yi}‖strong

p1,q1,γ1
+ t · ‖{Txi − yi}‖strong

p2,q2,γ2
: y1, ..., yn ∈ F

}
=

= K
(
t, {Txi}i , lstrong

p1,q1,γ1
(F ) , lstrong

p2,q2,γ2
(F )
)

, implies that

T(Πp1,q1,γ1;r(E,F ),Πp2,q2,γ2;r(E,F ))
θ,q

≥ ĉ · ‖{Txi}‖(lstrong
p1,q1,γ1 (F ),lstrong

p2,q2,γ2 (F ))
θ,q

.
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But we know that ‖{Txi}‖(lstrong
p1,q1 (F ),lstrong

p2,q2 (F ))
θ,q

≥ ˜̃c · ‖{Txi}‖strong
p,q,γ . Taking the

supremum, over all these {xi}n
i=1 ∈ F (E) , we get

‖T‖(Πp1,q1,γ1;r(E,F ),Πp2,q2,γ2;r(E,F ))
θ,q

≥ c · πp,q;r (T ) .

In conclusion
(
Πp1,q1,γ1;r (E,F ) ,Πp2,q2,γ2;r (E,F )

)
θ,q

⊂ Πp,q,γ;r (E,F ) .

We can further on generalize the Miyasaki operator classes. First we introduce

some vector-valued sequence spaces.

Definition 21. Let 1 ≤ p, q < ∞, −∞ < γ < ∞. The vector sequence {xn}n in E is

weakly (p, q, γ)−summable if the scalar sequences {|〈x∗, xn〉|}n are in lp,q,γ for every

x∗ ∈ E∗. We denote by lweak
p,q,γ (E) the set of all such sequences in E.

Proposition 22. Suppose that 1 ≤ q < p < ∞ and γ < 0, or 1 ≤ q < p < ∞

and 0 < γ such that 1
q −

1
p ≥ γ. Then lweak

p,q,γ (E) is a vector space under pointwise

operations, and the formula

‖{xn}‖weak
p,q,γ := sup

x∗∈UE∗

( ∞∑
n=1

[
n

1
p−

1
q (1 + log n)

γ

|〈x∗, xn〉|
]q) 1

q

defines a quasi-norm ‖·‖weak
p,q,γ : lweak

p,q,γ (E) → R+.

Proof. The first step is to show that the quantity in the right side of the formula

is finite. We shall apply the closed graph theorem like in the case of absolutely

p−summing operators, cf. [5]. Let x = {xn}n ∈ lweak
p,q,γ (E) and associate with it the

map u : E∗ → lp,q,γ given by u (x∗) = {〈x∗, xn〉}n . Note that u is a well-defined linear

map. Consider now a sequence {x∗k}k which converges to x∗0 in E∗.Then for each n,

the scalar sequence {〈x∗k, xn〉}k converges to 〈x∗0, xn〉 . Thus, if we take into account

the fact that
{

n
1
p−

1
q (1 + log n)

γ
}
∈ c0, for which purpose we have made the choice

of p, q and γ, we obtain as a consequence, that u has closed graph. Therefore, u is

bounded. In other words

‖u‖ = sup
x∗∈UE∗

( ∞∑
n=1

[
n

1
p−

1
q (1 + log n)

γ

|〈x∗, xn〉|
]q) 1

q

< ∞.

Now it is easy to check that ‖·‖weak
p,q,γ is a quasi-norm on lweak

p,q,γ (E).

Definition 23. Let 1 ≤ p, q < ∞ and −∞ < γ < ∞. Suppose that 1 ≤ s < r < ∞

and α < 0, or 1 ≤ s < r < ∞ and 0 < α are such that 1
s −

1
r ≥ α. An operator
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T ∈ L(E,F ) is called (p, q, γ; r, s, α)−absolutely summing if there exists a constant

c ≥ 0 such that ‖{Txi}‖strong
p,q,γ ≤ c · ‖{xi}‖weak

r,s,α for every {xi} ∈ F (E) . We denote by

Πp,q,γ;r,s,α (E,F ) the space of such operators acting between E and F.

The smallest number c for which the above inequality holds is denoted by

πp,q,γ;r,s,α (T ) .

Remark 5. It is straightforward to verify that the constant coming from ‖·‖strong
p,q,γ

can be used to prove the triangle inequality and thus πp,q,γ;r,s,α (·) is a quasi-norm on

the space of (p, q, γ; r, s, α)−absolutely summing operators.

Remark 6. Using the domination theorem it is routine to prove that

Πp,q,γ;p,q,γ (E,F ) ⊇ Πq (E,F ) .

Moreover πq (T ) ≥ πp,q,γ;p,q,γ (T ) for every T ∈ Πq (E,F ) .

If the sequence αn =
{

n
q
p−1 · (1 + log n)γ·q

}
is a decreasing one then

Πp,q,γ;p,q,γ (E,F ) is of the type ΠΦ,Ψ (E,F ) , where Φ,Ψ are symmetric norming func-

tion.

The following theorem, which is a representation result for our class of oper-

ators, will be the essential ingredient in our main theorem.

Theorem 24. Let 1 ≤ p, q < ∞ and −∞ < γ < ∞. Suppose that 1 ≤ s < r < ∞

and α < 0, or 1 ≤ s < r < ∞ and 0 < α are such that 1
s −

1
r ≥ α. Then an operator

T ∈ L(E,F ) is (p, q, γ; r, s, α)−absolutely summing if and only if T̂
(
lweak
r,s,α (E)

)
is

contained in lstrong
p,q,γ (F ) , where T̂ : {xi}i → {Txi}i. In this case∥∥∥T̂ : lweak

r,s,α (E) → lstrong
p,q,γ (F )

∥∥∥ = πp,q,γ;r,s,α (T ) .

The proof is similar to the case of p−absolutely summing operators, cf. [5],

so we omit it.

We are now ready to state our main result.

Theorem 25. Let 1 ≤ p, q < ∞ and −∞ < γ < ∞. Suppose that 1 ≤ s < r < ∞

and α < 0, or 1 ≤ s < r < ∞ and 0 < α are such that 1
s −

1
r ≥ α. Let also 0 < θ < 1.

Then

(
Πp1,q1,γ1;r,s,α (E,F ) ,Πp2,q2,γ2;r,s,α (E,F )

)
θ,q

⊆ Πp,q,γ;r,s,α (E,F ) ,
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where 1
p = 1−θ

p1
+ θ

p2
and γ = (1− θ) · γ1 + θ · γ2.

Proof. We shall use an idea owed to A. Pietsch, see [10], Proposition 1.2.6. First

we must prove that
(
Πp1,q1,γ1;r,s,α (E,F ) ,Πp2,q2,γ2;r,s,α (E,F )

)
is an interpolation

couple.

Let T ∈ Πp1,q1,γ1;r,s,α (E,F ) and {xi}i ∈ F (E) . It follows that there exists

a constant c̃ > 0 such that ‖{Txi}‖strong
p1,q1,γ1

≤ c̃ · ‖{xi}‖weak
r,s,α . But we know that

‖{Txn}‖strong
p2,q2,γ2

≤ c · ‖{Txn}‖strong
p1,q1,γ1

. Therefore

‖{Txi}‖strong
p2,q2,γ2

≤ c · ‖{Txi}‖strong
p1,q1,γ1

≤ c · ‖{xi}‖weak
r,s,α .

In conclusion T ∈ Πp2,q2;r,s,α (E,F ) and Πp1,q1,γ1;r,s,α (E,F ) ⊂ Πp2,q2,γ2;r,s,α (E,F ) .

Let now {xi}i ∈ lweak
r,s,α (E) . We define the operator X : T ∈ L(E,F ) →

{Txi}i . It follows from the preceding representation theorem that {Txi}i ∈

lstrong
p1,q1,γ1

(F ), if T ∈ Πp1,q1,γ1;r,s,α (E,F ) and {Txi}i ∈ lstrong
p2,q2,γ2

(F ) , if T ∈

Πp2,q2,γ2;r,s,α (E,F ) . Thus

X : Πp1,q1,γ1;r,s,α (E,F ) → lstrong
p1,q1,γ1

(F ) ,

X : Πp2,q2,γ2;r,s,α (E,F ) → lstrong
p2,q2,γ2

(F ) ,

are linear and bounded.

It now follows from the interpolation Theorems 6 and 8 that

X :
(
Πp1,q1,γ1;r,s,α (E,F ) ,Πp2,q2,γ2;r,s,α (E,F )

)
θ,q

→(
lstrong
p1,q1,γ1

(E) , lstrong
p2,q2,γ2

(E)
)

θ,q
⊆ lstrong

p,q,γ (E)

Hence the assertion follows from the representation theorem.
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[14] N. Tiţa, Some properties of Lorentz-Zygmund ideals, preprint, 1999.
[15] H. Triebel, Interpolation theory, functions spaces, differential operators, VEB,

Deutscher Verlag der Wiss., Berlin, 1978.

”Dr. Ioan Mesota” College, 2200 Brasov, Romania
E-mail address: adiant@fx.ro

36



STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume XLVI, Number 4, December 2001

LACUNARY STRONG A-CONVERGENCE WITH RESPECT
TO A MODULUS

TUNAY BILGIN

Abstract. The definition of lacunary strong convergence with respect to a

modulus is extended to a definition of lacunary strong A-convergence with

respect to a modulus when A = (aik) is an infinite matrix of complex num-

bers. We study some connections between lacunary strong A-convergence

with respect to a modulus and lacunary A-statistical convergence.

1. Introduction

The notion of modulus function was introduced by Nakano [11]. We recall

that a modulus f is a function from [0,∞) to [0,∞) such that

(i) f(x) = 0 if and only if x = 0,

(ii) f(x + y) ≤ f(x) + f(y) for x, y ≥ 0,

(iii) f is increasing and

(iv) f is continuous from the right at 0. It follows that f must be continuous

on [0,∞).

Connor [2], Esi [3], Kolk [8], Maddox [9], [10], Öztürk and Bilgin [12], Pehlivan

and Fisher [13], Ruckle [14] and others used a modulus function to construct sequence

spaces.

Following Freedman et al. [4], we call the sequence θ = (kr) lacunary if it is

an increasing sequence of integers such that k0 = 0, hr = kr − kr−1 →∞ as r →∞.

The intervals determined by θ will be denoted by Ir = (kr−1, kr] and qr = kr/kr−1.

These notations will be used throughout the paper. The sequence space of lacunary

1991 Mathematics Subject Classification. 40A05, 40F05.

Key words and phrases. lacunary sequence, modulus function, statistical convergence.
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strongly convergent sequences Nθ was defined by Freedman et al. [4], as follows:

Nθ =

{
x = (xi) : lim

r→∞
h−1

r

∑
i∈Ir

|xi − s| = 0 for some s

}
.

Recently, the concept of lacunary strongly convergence was generalized by

Pehlivan and Fisher [13] as below:

Nθ(f) =

{
x = (xi) : lim

r→∞
h−1

r

∑
i∈Ir

f(|xi − s|) = 0 for some s

}
.

Let A = (aik) be an infinite matrix of complex numbers. We write Ax =

(Ai(x)) if Ai(x) =
∞∑

k=1

aikxk converges for each i.

The purpose of this paper is to introduce and study a concept of lacunary

strong A-convergence with respect to a modulus.

2. Nθ(A, f) Convergence

Definition. Let A = (aik) be an infinite matrix of complex numbers and f

be a modulus. We define

Nθ(A, f) =

{
x = (xi) : lim

r→∞
h−1

r

∑
i∈Ir

f(|Ai(x)− s|) = 0 for some s

}
,

N0
θ (A, f) =

{
x = (xi) : lim

r→∞
h−1

r

∑
i∈Ir

f(|Ai(x)|) = 0

}
.

A sequence x = (xk) is said to be lacunary strong A-convergent to a number

s with respect to a modulus if there is a complex number s such that x ∈ Nθ(A, f).

Note that, if we put f(x) = x, then Nθ(A, f) = Nθ(A) and N0
θ (A, f) = N0

θ (A). If

x ∈ Nθ(A), we say that x is lacunary strong A-convergent to s. If x is lacunary

strong A-convergent to the value s with respect to a modulus f , then we write xi →

s(Nθ(A, f)). If A = I unit matrix, we write Nθ(f) and N0
θ (f) for Nθ(A, f) and

N0
θ (A, f), respectively. Hence Nθ(f) is the same as the space Nθ(f) of Pehlivan and

Fisher [13].

Nθ(A, f) and N0
θ (A, f) are linear spaces. We consider only N0

θ (A, f). Suppose

that x, y ∈ N0
θ (A, f) and a, b are in C, the complex numbers. Then there exist integers

40



LACUNARY STRONG A-CONVERGENCE WITH RESPECT TO A MODULUS

Ta and Tb such that |a| ≤ Ta and |b| ≤ Tb. We therefore have

h−1
r

∑
i∈Ir

f(|aAi(x) + bAi(y)|) ≤ Tah−1
r

∑
i∈Ir

f(|Ai(x)|) + Tbh
−1
r

∑
i∈Ir

f(|Ai(y)|).

This implies that ax + by ∈ N0
θ (A, f).

Now we give relation between lacunary strong A-convergence and lacunary

strong A-convergence with respect to a modulus.

Theorem 1. Let f be any modulus. Then Nθ(A) ⊆ Nθ(A, f) and N0
θ (A) ⊆

N0
θ (A, f).

Proof. We consider Nθ(A) ⊆ Nθ(A, f) only. Let x ∈ Nθ(A) and ε � 0. We

choose 0 < δ < 1 such that f(u) < ε for every u with 0 ≤ u ≤ δ. We can write

h−1
r

∑
i∈Ir

f(|Ai(x)− s|) = h−1
r

∑
1

f(|Ai(x)− s|) + h−1
r

∑
2

f(|Ai(x)− s|)

where the first summation is over |Ai(x)− s| ≤ δ and the second over |Ai(x)− s| � δ.

By definition of f , we have

h−1
r

∑
i∈Ir

f(|Ai(x)− s|) ≤ ε + 2f(1)δ−1h−1
r

∑
i∈Ir

|Ai(x)− s|.

Therefore x ∈ Nθ(A, f).

Theorem 2. Let f be any modulus. If lim
t→∞

f(t)
t

= β � 0, then Nθ(A) =

Nθ(A, f).

Proof. If lim
t→∞

f(t)
t

= β � 0, then f(t) ≥ βt for all t � 0. Let x ∈ Nθ(A, f).

Clearly,

h−1
r

∑
i∈Ir

f(|Ai(x)− s|) ≥ h−1
r

∑
i∈Ir

β|Ai(x)− s| = βh−1
r

∑
i∈I

|Ai(x)− s|,

therefore x ∈ Nθ(A). By using Theorem 1 the proof is complete.

We now give an example to show that Nθ(A) 6= Nθ(A, f) in the case when

β = 0. Consider A = I and the modulus f(x) =
√

x. In the case β = 0, define xi to

be hr at the first term in Ir for every r and xi = 0 otherwise. Then we have

h−1
r

∑
i∈Ir

f(|Ai(x)|) = h−1
r

∑
i∈Ir

√
|xi| = h−1

r

√
|hr| → 0 as r →∞

and so x ∈ Nθ(A, f). But h−1
r

∑
i∈Ir

|Ai(x)| = h−1
r

∑
i∈Ir

|xi| = h−1
r hr → 1 as r →∞

and so x 6∈ Nθ(A).

Theorem 3. Let f be any modulus. Then
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(i) For lim inf qr � 1 we have w(A, f) ⊆ Nθ(A, f).

(ii) For lim sup qr ≺ ∞ we have Nθ(A, f) ⊆ w(A, f).

(iii) w(A, f) = Nθ(A, f) is 1 � lim infr qr ≤ lim supr qr ≺ ∞,

where w(A, f) =

{
x = (xi) : lim

n→∞
n−1

n∑
i=1

f(|Ai(x)− s|) = 0 for some s

}
(see, Esi

[3]).

Proof. (i) Let x ∈ w(A, f) and lim inf qr � 1. There exist δ � 0 such that

qr = (kr/kr−1) ≥ 1 + δ for sufficiently large r. We have, for sufficiently large r, that

(hr/kr) ≥ δ/(1 + δ) and (kr/hr) ≤ (1 + δ)/δ. Then

k−1
r

kr∑
i−1

f(|Ai(x)− s|) ≥ k−1
r

∑
i∈Ir

f(|Ai(x)− s|)

= (hr/kr)h−1
r

∑
i∈Ir

f(|Ai(x)− s|)

≥ δ/(1 + δ)h−1
r

∑
i∈Ir

f(|Ai(x)− s|)

which yields that x ∈ Nθ(A, f).

(ii) If lim sup qr ≺ ∞ then there exists K � 0 such that qr ≺ K for every

r. Now suppose that x ∈ Nθ(A, f) and ε � 0. There exists m0 such that for every

m ≥ m0,

Hm = h−1
m

∑
i∈Im

f(|Ai(x)− x|) ≺ ε.

We can also find T � 0 such that Hm ≤ T for all m. Let n be any integer

with kr ≥ n � kr−1. Now write

n−1
n∑

i=1

f(|Ai(x)− s|) ≤ k−1
r

kr∑
i=1

f(|Ai(x)− s|)

= k−1
r−1

(
m0∑

m=1

+
kr∑

m=m0+1

) ∑
i∈Im

f(|Ai(x)− s|)

= k−1
r−1

m0∑
m=1

∑
i∈Im

f(|Ai(x)− s|) + k−1
r−1

kr∑
m=m0+1

∑
i∈Im

f(|Ai(x)− s|)

≤ k−1
r−1

m0∑
m=1

∑
i∈Im

f(|Ai(x)− s|) + ε(kr − km0)k
−1
r−1

= k−1
r−1(h1H1 + h2H2 + · · ·+ hm0Hm0) + ε(kr − km0)k

−1
r−1

≤ k−1
r−1

(
sup

1≤i≤m0

Hikm0

)
+ εK ≺ k−1

r−1km0T + εK
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from which we deduce that x ∈ w(A, f). (iii) follows from (i) and (ii).

The next result follows from Theorem 2 and 3.

Theorem 4. Let f be any modulus. If lim
t→∞

f(t)
t

= β � 0 and l ≺

lim infr qr ≤ lim supr qr ≺ ∞, then Nθ(A) = w(A, f).

3. Lacunary A-statistical convergence

The notation of statistical convergence was given in earlier works [1], [4],

[6], [15] and [16]. Recently, Fridy and Orhan [7] introduced the concept of lacunary

statistical convergence:

Let θ be a lacunary sequence. Then a sequence x = (xk) is said to be lacunary

statistically convergent to a number s if for every ε � 0, lim
r→∞

h−1
r |Kθ(ε)| = 0, where

|Kθ(ε)| denotes the number of elements in Kθ(ε) = {i ∈ Ir : |xi − s| ≥ ε}. The set

of all lacunary statistical convergent sequences is denoted by Sθ.

Let A = (aik) be an infinire matrix of complex numbers. Then a sequence

x = (xk) is said to be lacunary A-statistically convergent to a number s if for every

ε � 0, lim
r→∞

h−1
r |KAθ(ε)| = 0, where |KAθ(ε)| denotes the number of element in

KAθ(ε) = {i ∈ I : |Ai(x)− s| ≥ ε}. The set of all lacunary A-statistical convergent

sequences is denoted by Sθ(A).

The following Theorem gives the relation between of the lacunary A-statistical

convergence and lacunary strongly A-convergence.

Let I1
r = {i ∈ Ir : |Ai(x)−s| ≥ ε} = KAθ(ε) and I2

r = {i ∈ Ir : |Ai(x)−s| ≺

ε}.

Theorem 5. Let A be a limitation method, then

(i) xi → s(Nθ(A)) implies xi → s(Sθ(A)).

(ii) x is bounded and xi → s(Sθ(A)) implys xi → s(Nθ(A)).

(iii) Sθ(A) = Nθ(A) is x is bounded.

Proof. (i) If ε � 0 and xi → s(Nθ(A)) we can write

h−1
r

∑
i∈Ir

|Ai(x)− s| ≥ h−1
r |KAθ(ε)|ε.

It follows that xi → s(Sθ(A)). Note that in this part of the proof we do not

need the limitation method of A.

43



TUNAY BILGIN

(ii) Suppose that x is lacunary A-statistical convergent to s. Since x

is bounded and A is limitation method, there is a constant T > 0 such that

|Ai(x)− s| ≤ T for all i. Therefore we have, for every ε � 0, that

h−1
r

∑
i∈Ir

|Ai(x)− s| ≤ h−1
r

∑
i∈I1

r

|Ai(x)− s|+ h−1
r

∑
i∈I2

r

|Ai(x)− s| ≤ Th−1
r |KAθ(ε)|+ ε.

Taking the limit as ε → 0, the result follows. (iii) follows from (i) and (ii).

Now we give the relation between of the lacunary A-statistical convergence

and lacunary strongly A-convergence with respect to modulus.

Theorem 6. (i) For any modulus f , xi → s(Nθ(A, f)) implies xi →

s(Sθ(A)).

(ii) f is bounded and xi → s(Sθ(A)) imply xi → s(Nθ(A, f)).

(iii) Sθ(A) = Nθ(A, f) if f is bounded.

Proof. (i) Let f be any modulus. If ε � 0 and xi → s(Nθ(A, f)) we can

write

h−1
r

∑
i∈Ir

f(|Ai(x)− s|) ≥ h−1
r

∑
i∈I1

r

f(|Ai(x)− s|) � h−1
r |KAθ(ε)|f(ε).

It follows that xi → s(Sθ(A)).

(ii) Suppose that f is bounded. Since f is bounded, there exists an integer

T such that f(x) ≤ T for all x ≥ 0. We see that

h−1
r

∑
i∈Ir

f(|Ai(x)− s|) ≤ h−1
r

∑
i∈I1

r

f(|Ai(x)− s|) + h−1
r

∑
i∈I2

r

f(|Ai(x)− s|)

≤ Th−1
r |KAθ(ε)|+ f(ε).

Since f is continuous and xi → s(Sθ(A)), it follows from ε → 0 that xi →

s(Nθ(A, f)). (ii) follows from (i) and (ii).

As an example to show that Sθ(A) 6= Nθ(A, f) when f is unbounded, consider

A = I. Since f is unbounded, there exists a positive sequence 0 ≺ y1 ≺ y2 ≺ . . . such

that f(yi) ≥ hi. Define the sequence x = (xi) by putting xki
= yi for i = 1, 2, . . . and

xi = 0 otherwise. We have x ∈ Sθ(A), but x 6∈ Nθ(A, f).

Finally we consider the case when xk → s implies xk → s(Nθ(A, f)).

Lemma 7. ([6]) If lim inf qr � 1 then xi → s(S) implies xi → s(Sθ).
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Theorem 8. Let lim inf qr � 1, A is regular and f is bounded. Then xi → s

implies xi → s(Nθ(A, f)).

Proof. Let xi → s. By regularity of A and definition of statistical con-

vergence we have Ai(x) → s(S). Since lim inf qr � 1 it follows lemma 7 that

Ai(x) → s(Sθ) i.e. xi → s(Sθ(A)). Thus, using Theorem 6, we have xi → s(Nθ(A, f)).
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A GENERALIZED INVERSION FORMULA
AND SOME APPLICATIONS

EMIL O. BURTON

Abstract. In this paper we shall establish a general result involving

Dirichlet product of arithmetical functions, which provides information

on the subtle properties of the integers.

1. Introduction and preliminaries

The Möbius function µ(n) is defined as follows:

µ(1) = 1, µ(q1 · q2 · · · · · qk) = (−1)k

if all the primes q1, q2, . . . , qk are different; µ(n) = 0 if n has a squared factor. The

Möbius inversion formula is a remarkable tool in numerous problems involving integers

and there are other inversion formulas involving µ(n). In particular, we obtain the

following well-known theorem:

If

G(x) =
bxc∑
n=1

F
(x

n

)
for all positive x, (x ≥ 1), then

F (x) =
bxc∑
n=1

µ(n)G
(x

n

)
and conversely.

Many of these inversion formulas can be written in the form of a single formula

which generalizes them all.

2. The main result

First of all, we establish the following theorem:
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Theorem 1. Given arithmetical functions α, β, u : N∗ → C such that

α ∗ β = u, u(n) =

 1, if n = 1

0, if n ≥ 2

let h : A× N∗ → A be a function, such that:

a) h(x, 1) = x for all x ∈ A, where A ⊂ C, A 6= ∅.

b) h(h(x, n), k) is constant for x constant and nk = constant, where x ∈ A

and n, k ∈ N∗.

Let F,G : C → C be functions such that F (x) = G(x) = 0 for all x ∈ C \ A.

Suppose that the both series:∑
n,k∈N∗

α(n)β(k)G(h(h(x, n), k)),
∑

n,k∈N∗
β(n)α(k)F (h(h(x, n), k))

converge absolutely.

Then, for all x ∈ A, we have

F (x) =
∑

n∈N∗
β(n)G(h(x, n)) (1)

if and only if

G(x) =
∑

n∈N∗
α(n)F (h(x, n)). (2)

Proof. Suppose that (1) is true. It follows that∑
n∈N∗

α(n)F (h(x, n)) =
∑

n∈N∗
α(n)

∑
k∈N∗

β(k)G(h(h(x, n), k)) =

=
∑

n∈N∗

∑
k∈N∗

α(n)β(k)G(h(h(x, n), k)).

An absolutely convergent series can be rearranged in an arbitrary way without

affecting the sum. We have

α(1)β(1) = 1, G(h(h(x, 1), 1)) = G(h(x, 1)) = G(x).

We can arrange the terms as follows:∑
n,k,d∈N∗
nk=d6=1

α(n)β(k)G(h(h(x, n), k)) =
∑

d∈N∗,d 6=1

G(h(h(x, n), k))
∑

n,k∈N∗
nk=d,d6=1

α(n)β(k) = 0,

because α ∗ β = u.
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Therefore ∑
n∈N∗

α(n)F (h(x, n)) = G(x).

Conversely, (2) implies (1) and hence the theorem is proved.

3. Examples

1) Letting A = [0,∞), h : A× N∗ → A,

h(x, n) =
x

n
, h(x, 1) =

x

1
= x for all x ∈ A;

h(h(x, n), k) = h
(x

n
, k

)
=

x

nk
= constant

for nk = constant and x = constant.

Consider the mappings F,G : [0,∞) → C such that F (x) = G(x) = 0 for all

x ∈ [0, 1). We deduce from theorem 1, that

F (x) =
∑
n≤x

β(n)G
(x

n

)
and

G(x) =
∑
n≤x

α(n)F
(x

n

)
are equivalent. Moreover, if we let α(n) = 1 for all n ∈ N∗, we deduce that

F (x) =
∑
n≤x

µ(n)G
(x

n

)
and

G(x) =
∑
n≤x

F
(x

n

)
are equivalent for all positive x, (x ≥ 1).

2) Let us denote by P (x) the number of the integers k ∈ N∗ such that k ≤ x,

k 6= ab for all a, b ∈ N∗, b ≥ 2. It is known that∑
2n≤x

P (x1/n) = bx− 1c.

We deduce from theorem 1 that∑
2n≤x

µ(n)bx1/n − 1c = P (x).
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3) The number Q(x) of squarefree numbers not exceeding x satisfies

∑
x/n2≥1

Q(x/n2) = bxc.

If we use theorem 1, we have

∑
x/n2≥1

µ(n)
⌊ x

n2

⌋
= Q(x).

4) If |z| < 1, we have

z

1− z
=

∑
n∈N∗

zn.

Letting A = U(0, 1), h(z, n) = zn, F (z) = z, G(z) =
z

1− z
, α(n) = 1,

β(n) = µ(n) for all n ∈ N∗, we have:

∑
n,k∈N∗

β(n)α(k)F (h(h(z, n), k)) =
∑

n,k∈N∗
µ(n)znk

∑
n,k,d∈N∗

nk=d=const

|µ(n)znk| ≤
∑

n,k,d∈N∗
nk=d=const

|znk| =
∑
d∈N∗

∑
nk=d

|z|nk ≤
∑
d∈N∗

d|z|d

(because
∑

nk=d

|z|nk ≤ d|z|d).

It is possible to apply Cauchy’s test:

lim
d→∞

d

√
d|z|d = lim

d→∞

d
√

d · |z| = |z| < 1.

It follows that series
∑

n,k∈N∗
β(n)α(k)F (h(h(z, n), k)) converges absolutely for

all z ∈ U(0, 1). We can also show that
∑

n,k∈N∗
α(n)β(k)G(h(h(z, n), k)) converges

absolutely. We deduce from theorem 1 that

z

1− z
=

∑
n∈N∗

zn

and

z =
∑

n∈N∗
µ(n)

zn

1− zn
,

are equivalent for all z ∈ U(0, 1).
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PARALLEL NUMERICAL METHODS FOR SOLVING NONLINEAR
EQUATIONS

IOANA CHIOREAN

1. Introduction

The basis for constructing a parallel algorithm is either a serial algorithm or

the problem itself. In trying to parallelize a serial algorithm a pragmatic approach

would seem reasonable. Serial algorithm are analysed for frequently occurring basic

elements which are then put into parallel form. These parallelization principles rely

on definite serial algorithms. This corresponds to the serial way of thinking normally

encountered in numerical analysis. What is needed is a parallel way of thinking.

In the following, we shall apply these principles to some numerical methods

for solving single non-linear equations.

First we shall consider the one-dimensional case and assume that the real

function f(x) has only one zero in the interval [a, b].

The methods for the determination of zeros can be subdivided into two types:

(i) search methods

(ii) locally iterative methods.

2. Search methods

2.1. The Bisection Method. The simplest search method is the bisection method,

with the following code:

Repeat

c := (a + b)/2;

If f(a) ∗ f(c) > 0 then a := c

else b := c

Until abs(b− a) < ε;
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Considering f given as a function, continuous over the interval [a, b], the serial

bisection method needs log2((b − a)/ε) function evaluations, additions and multipli-

cations to enclose the zero in an interval of length ε.

We could adapt this serial algorithm at a parallel execution with 3 processors,

by means of three sequences, an, bn and cn, every processor generating one of them:

a[0] := a;

b[0] := b;

c[0] := (a + b)/2;

n := 0;

Repeat in parallel

n := n + 1;

If f(a[n− 1]) ∗ f(c[n− 1]) > 0 then begin

a[n] := c[n− 1];

b[n] := b[n− 1];

c[n] := (a[n] + b[n])/2

end

else begin

a[n] := a[n− 1];

b[n] := c[n− 1];

c[n] := (a[n] + b[n])/2

end

Until abs(b[n]− a[n]) < ε

Unfortunately, this parallel version of the bisection method does not bring

a speed improvement, because, mainly, the number of operations is still of log2((b −

a)/ε) order, and we have to take into account the time spend for the processors

communications.

But, if we think in parallel, the bisection method can clearly be performed

on a computer consisting of r processors: for each iteration step the function is

simultaneously evaluated at r points which thereby subdivide the actual interval in

r + 1 equidistant subintervals. The new interval points are chosen on the basis of the
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signs of the function values. So, this parallel bisection method requires logr+1((b −

a)/ε) evaluations. The speed-up ratio is therefore

S =
log2((b− a)/ε)

logr+1((b− a)/ε)
= log2(r + 1).

2.2. Other Search Methods. As we saw, in applying the bisection method it is

sufficient to have a function which is continuous over the interval [a, b]. With functions

having a high degree of smoothness, high order search methods can be constructed,

which will converge yet faster.

The example given by Miranker [5] demonstrates this principle.

Let f(x) be a function which is differentiable over [0, 1] and let f ′(x) ∈ [m,M ]

(m,M > 0) for all x ∈ [0, 1]. An algorithm is developed for a computer able to evaluate

this function values yi = f(xi), xi ∈ [0, 1], (i = 1, 2), in parallel.

Initially, two piecewise linear functions S(x), S(x), are defined which enclose

f(x) in [x1, x2] (see Fig.1).
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We see that S(x) ≤ f(x) ≤ S(x), where

S(x) :=


y1 + M(x− x1), x ≤ (M − s)x1 + (x−m)x2

M −m

y2 + m(x− x2), x ≥ (M − x)x1 + (s−m)x2

M −m

where s :=
y2 − y1

x2 − x1
. In a similar manner we define S(x).

The zero z of f is on the right-hand side of the zero x∗1 of S(x):

z ≥ x∗1 = max
{

x1 −
y1

M
,x2 −

y2

m

}
and

z ≤ x∗2 = min
{

x− y1

m
,x2 −

y2

M

}
.

Considering each possible case, it can be shown that the inequality

x∗2 − x∗1
x2 − x1

≤ 1− m

M

applies.

Comparing this method with the parallelized bisection method it is possible

to obtain a speed-up, provided that

m

M
≥ 2

3

applies.

Remark. Miranker shows, also, that is f ∈ C2[0, 1], the algorithm even has

quadratic convergence.

3. Locally iterative methods

The best known locally iterative methods are the Newton’s method and the

secant method. Because the second one is a discrete version of the first one (the

derivative is replaced by the difference quotient), we shall discuss only the secant

method.

For x0 an initial approximation and supposing, without restriction of gener-

ality, that f ∈ Cd[a, b], f ′(x) 6= 0, for all x ∈ (a, b) and f(a) < 0 and f(b) > 0.

The the serial secant method is the following:

if f(a) · f ′′(a) > 0 then x0 = b else x0 = a; n := 0;

Repeat
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n := n + 1;

x[n] := a− b− a

f(b)− f(a)
f(a)

If f(x[n]) < 0 then a := x[n];

else b := x[n]

Until abs(x[n]− x[n− 1]) < ε

Denoting

δk := max |z − x[k]|,

where z is the zero of f , we speak of convergence of order λ, if

lim
k→∞

δk+1

(δk)λ
= c > 0

applies.

It is known that the serial secant method has the order of convergence
1 +

√
5

2
' 1.618 . . . . Trying to parallelize this serial algorithm, we can use 3 pro-

cessors to generate the sequences an, bn and cn, according to the following code:

a[0] := a;

b[0] := b;

c[0] := (a[0] ∗ f(b[0])− b[0] ∗ f(a[0]))/(f(b[0])− f(a[0]));

n := 0;

Repeat in parallel

n := n + 1;

if f(c[n− 1]) < 0 then begin

a[n] := c[n− 1];

b[n] := b[n− 1];

c[n] := (a[n] ∗ f(b[n])− b[n] ∗ f(a[n]))/(f(b[n])− f(a[n]))

end

else if f(c[n− 1]) > 0 then

begin

a[n] := a[n− 1];

b[n] := c[n− 1];

c[n] := (a[n] ∗ f(b[n])− b[n] ∗ f(a[n]))/(f(b[n])− f(a[n]))
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end

Until f(c[n− 1]) = 0;

Unfortunately, this algorithm does not bring an important improvement in

speed-up, because of the time of communication between processors. But we may

think the secant method directly in parallel, as follows.

We imagine an SIMD computer with r processors (see Chiorean [1]). Starting

with approximations x0,1;x0,2; . . . , x0,r of z, it is requires to determine r improuved

approximations

xk+1,i = φk,i(xk,1;xk−1,1; . . . , x0,r)

at every iteration step. Here,

φk,i : R(k+1)r → Rr, k ≥ 0.

According to Corliss [3], the iteration series xk,i remains close to the zero z

if the starting approximation is suitable, and that it will thus finally converge to the

zero.

Taking into account all this, and considering an SIMD parallel computer with

r = 3 processors, the serie xk,i, i = 1, 2, 3 for the secant parallel method is generated

in the following way:

xk+1,1 = xk,1 −
xk,1 − xk,2

f(xk,1)− f(xk,2)
f(xk,1)

xk+1,2 = xk,2 −
xk,2 − xk,3

f(xk,2)− f(xk,3)
f(xk,2)

xk+1,3 = xk,3 −
xk,3 − xk,1

f(xk,3)− f(xk,1)
f(xk,3),
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where xk,i are those in the Fig.2.

It can be proved that the order of convergence for this parallel secant method

is 2, compared with 1,618. . . for the serial secant method.
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POINTWISE APPROXIMATION BY GENERALIZED
SZÁSZ-MIRAKJAN OPERATORS

ZOLTÁN FINTA

Abstract. In this paper we establish some local approximation properties

for a generalized Szász - Mirakjan - type operator.

1. Introduction

It is well - known the operator of Szász - Mirakjan [11] defined by

(Snf)(x) = e−nx
∞∑

k=0

(nx)k

k!
f

(
k

n

)
, (1)

where f is any function defined on [0,∞) such that (Sn|f |)(x) < ∞. The operator Sn

was generalized by Pethe and Jain in [10], by Stancu in [12] and by Mastroianni in

[7], obtaining Sα
n operators

(Sα
nf)(x) = (1+nα)−x/α ·

∞∑
k=0

(
α +

1
n

)−k

·x(x + α) . . . (x + (k − 1)α)
k!

f

(
k

n

)
, (2)

where α is a nonnegative parameter depending on the natural number n and f is any

real function defined on [0,∞) with (Sα
n |f |)(x) < ∞. This operator has been also

considered by Della Vecchia and Kocic’ [3]. It was studied extensively the uniform

convergency in compact interval, monotonicity, convexity, evaluation of the remainder

in approximation formula and degeneracy property of the operators ( 2 ), respectively.

In [6] Lupaş has introduced the following operator:

(Lnf)(x) = 2−nx
∞∑

k=0

(nx)k

2k k!
f

(
k

n

)
, (3)

where f : [0,∞) → R, (nx)0 = 1 and (nx)k = nx(nx + 1) . . . (nx + k − 1), k ≥ 1.

This operator was studied by Agratini [1] and Miheşan [8]. In fact we have S
1/n
n = Ln

[7, p. 250 ].

1991 Mathematics Subject Classification. 41A36, 41A40.

Key words and phrases. Szász - Mirakjan operator, modulus of smoothness.
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The purpose of this paper is to establish pointwise approximation properties

for the Szász - Mirakjan - type operator defined by ( 2 ).

In what follows we denote by CB [0,∞) the set of all bounded and continuous

functions on [0,∞) endowed with the norm ‖f‖ = sup{ |f(x)| : x ∈ [0,∞) }.

Let ∆2
h(f, x) = f(x − h) − 2f(x) + f(x + h) (x ≥ h) be the usual symmetric second

difference of f and ω2(f, δ) = sup0<h≤δ, x≥h |∆2
h(f, x)| the modulus of smoothness

of f.

2. Main results

The following results give some local approximation properties for Sα
n :

Theorem 1. For every function f ∈ C[0,∞) we have

|(Sα
nf)(x)− f(x)| ≤ 2 ω2

(
f ,

√
(α +

1
n

)
x

2

)
. (4)

Proof. Let e0(x) = 1 and e1(x) = x (x ≥ 0). In view of [7, p. 239, Theorem 2.3 ] we

obtain that Sα
n reproduces every linear function and (Sα

n (e1 − xe0)2)(x) = (α + 1
n )x,

x ≥ 0. Then, by [9, p. 255, Theorem 2.1 ] we have

|(Sα
nf)(x)− f(x)| ≤

(
1 +

1
2

(
α +

1
n

)
· x

h2

)
ω2 (f, h) .

Putting here h =
√

(α + 1/n) x/2 we obtain (4). Specifically we have

|(Lnf)(x)− f(x)| ≤ 2 ω2(f,
√

x/n).

Thus the theorem is proved.

Let f ∈ CB [0,∞) and β ∈ (0, 1]. Then the Lipschitz - type maximal function

of order β of f is defined as

f∼β (x) = sup
t6=x

t∈[0,∞)

|f(x)− f(t)|
|x− t|β

, x ∈ [0,∞).

Moreover, we define for f ∈ CB [0,∞), β ∈ (0, 1] and h > 0 the following kind of

generalized Lipschitz - type maximal function of order β and step - size h,

f∼β,h(x) = sup
t6=x

t∈[0,∞)

|∆1
h(f, x)−∆1

h(f, t)|
|x− t|β

, x ∈ [0,∞),
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where ∆1
h(f, x) = f(x + h)− f(x), x ∈ [0,∞), h > 0. Then, by standard method [5]

we obtain the following result:

Theorem 2. Let f ∈ CB [0,∞) and β ∈ (0, 1]. Then for all x ∈ [0,∞) and

all h > 0 we have the inequalities

a) |(Sα
nf)(x)− f(x)| ≤ f∼β (x) · (Sα

n (· − x)β)(x);

b) |(Sα
nf)(x)− f(x)| ≤ f∼β (x) · (2x/n)β/2;

c) |(Sα
nf)(x)− f(x)| ≤

{
1
h

∫ h

0
f∼β,s(x) ds

}
(Sα

n (· −x)β)(x) +
{

1
h f∼β,h(x)

}
· 1

1+β ·

· (Sα
n (· − x)1+β , x);

d) |(Sα
nf)(x)− f(x)| ≤

{
1
h

∫ h

0
f∼β,s(x) ds

}
(2x/n)β/2 +

{
1
h f∼β,h(x)

}
· 1

1+β ·

· (2x/n)(1+β)/2.

To establish the saturation result for Sα
n we use the following Voronovskaja -

type formula:

Theorem 3. Let f ∈ C[0,∞) be twice differentiable at some point x > 0 and

let us assume that f(t) = O(t2). If α = α(n) then

lim
n→∞

n((Sα
nf)(x)− f(x)) =

 x
2 f ′′(x), for α = o(n−1)

x f ′′(x), for α = n−1.
(5)

Proof. We obtain formula ( 5 ) following the proof of [1, Theorem 4 ]. Indeed, by

Taylor’s expansion

f

(
k

n

)
− f(x) =

(
k

n
− x

)
f ′(x) +

(
k

n
− x

)2(1
2
f ′′(x) + ε

(
k

n
− x

))

we obtain

(Sα
nf)(x)− f(x) = f ′(x)(Sα

n (e1 − xe0))(x) +
1
2
f ′′(x)(Sα

n (e1 − xe0)2)(x) +

+ (Sα
n ((e1 − xe0)2ε))(x),

where ε is bounded and limt→0 ε(t) = 0. Because Sα
n leaves linear functions invariant

we have

(Sα
nf)(x)− f(x) =

1
2
f ′′(x)(Sα

n (e1 − xe0)2)(x) + (Sα
n ((e1 − xe0)2ε))(x). (6)
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Recalling the Cauchy - Schwarz inequality we obtain

(Sα
n ((e1 − xe0)2ε))(x) ≤ (Sα

n (e1 − xe0)2)(x) (Sα
n ((e1 − xe0)2ε))(x)

≤ ‖ε2‖
(

α +
1
n

)2

x2.

But α = o(n−1) or α = n−1 therefore

lim
n→∞

n(Sα
n ((e1 − xe0)2ε))(x) = 0.

Hence we conclude that ( 6 ), α = o(n−1) or α = n−1 and (Sα
n (e1 − xe0)2)(x) =(

α + 1
n

)
x lead us to the asymptotic formula ( 5 ).

The saturation result is as follows:

Theorem 4. Let f ∈ C[0,∞), f(x) = O(x2) and α = α(n) such that

α = o(n−1) or α = n−1. If (Sα
nf)(x)− f(x) = ox(x/n) (x ≥ 0, n →∞) then f is a

linear function; furthermore

|(Sα
nf)(x)− f(x)| ≤ M · x

n
(x ≥ 0, n = 1, 2, . . .)

holds if and only if f has a derivative belonging to Lip 1, where

Lip 1 = { f : |f(x + h)− f(x)| ≤ Kfh, x ≥ 0, h > 0 }.

Proof. By [4, Theorem 5.1 ] we have that f is locally and hence globally linear.

Furthermore, we have (Sα
n (e1 − xe0)2)(x) = (α + 1

n )x and the proofs of [4, Theorem

5.1 ] and [4, Theorem 5.4 ] hold for Sα
n on every finite interval [a, b] ⊆ [0,∞)

and (Sα
nf)(x) − f(x) = O(x/n) implies that f has a derivative which is absolutely

continuous on every interval (a, b) ⊆ [0,∞). But, in view of Theorem 3 we have

limn→∞ (n/x) ((Sα
nf)(x)−f(x)) = f ′′(x)/2 or limn→∞ (n/x) ((Sα

nf)(x)−f(x)) =

f ′′(x) at every point x, where f ′′(x) exists. So (Sα
nf)(x)− f(x) = O(x/n) implies

f ′′(x) = O(1) and this is the same as f ′ ∈ Lip 1.

The reverse statement follows from Theorem 1 since f ′ ∈ Lip 1 implies

ω2(f, δ) = O(δ2). Thus the theorem is proved.

In [7, p. 244, Theorem 4.2 ] is established the inequality f(x) ≤ (Sα
nf)(x),

x ≥ 0 for a convex function f ∈ CB [0,∞). The next theorem gives a similar result

without use the evaluation of the remainder term.
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Theorem 5. Let f ∈ CB [0,∞) be a convex function.

Then f(x) ≤ (Snf)(x) ≤ (Sα
nf)(x) for all x ≥ 0.

Proof. The first inequality is known [2]. For the second inequality we consider the

following Taylor’s expansion:

(Snf)(t) = (Snf)(x) + (t− x)(Snf)′(x) +
∫ t

x

(t− u)(Snf)′′(u) du.

Hence, by [7, p. 240, Theorem 2.8 ] we obtain

(Sα
nf)(x)− (Snf)(x) =

=
1

Γ
(

x
α

) · ∫ ∞

0

e−t t
x
α−1 (Snf)(αt) dt− (Snf)(x)

=
1

α Γ
(

x
α

) · ∫ ∞

0

e−
t
α

(
t

α

) x
α−1

[ (Snf)(t)− (Snf)(x) ] dt

=
1

α Γ
(

x
α

) · ∫ ∞

0

e−
t
α

(
t

α

) x
α−1

[(t− x)(Snf)′(x) +

+
∫ t

x

(t− u)(Snf)′′(u) du

]
dt.

But (Sα
ne1)(x) = e1(x), therefore

(Sα
nf)(x)− (Snf)(x) =

=
1

α Γ
(

x
α

) ·{∫ x

0

e−
t
α

(
t

α

) x
α−1

·
[ ∫ x

t

(u− t)(Snf)′′(u) du

]
dt +

+
∫ ∞

x

e−
t
α

(
t

α

) x
α−1

·
[ ∫ t

x

(t− u)(Snf)′′(u) du

]
dt

}
.

On the other hand

(Snf)′′(x) = e−nx · n2
∞∑

k=0

(nx)k

k!
·∆2

1/n(f,
k

n
) ≥ 0

for the convex function f [ 2, p. 136 ]. So (Sα
nf)(x) ≥ (Snf)(x).

Remark. The inequality f(x) ≤ (Sα
nf)(x) can be proved by Jensen’s in-

equality as well.

Indeed, let

sn,k(x, α) = (1 + nα)−x/α ·
(

α +
1
n

)−k

· x(x + α) . . . (x + (k − 1)α)
k!

, k ≥ 0.
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Then, by [7, p. 239, Theorem 2.3 ] we have
∑∞

k=0 sn,k(x, α) = 1 and
∞∑

k=0

k

n
sn,k(x, α) = x, x ≥ 0. (7)

Using Jensen’s inequality we obtain

m∑
k=0

sn,k(x, α) f

(
k

n

)
+

 ∑
k≥m+1

sn,k(x, α)

 f(0) ≥ f

(
m∑

k=0

sn,k(x, α) · k

n

)
.

Hence, by continuity of f and ( 7 ) we obtain

(Sα
nf)(x) =

∞∑
k=0

sn,k(x, α) f

(
k

n

)
≥ f

( ∞∑
k=0

sn,k(x, α) · k

n

)
= f(x).

This completes the proof.
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- Szász type operator, Stud. Univ. Babeş - Bolyai, Math., XXV ( 1980 ), 70 - 76.
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SOME DUALITY THEOREMS FOR LINEAR-FRACTIONAL
PROGRAMMING HAVING THE COEFFICIENTS IN A SUBFIELD K

OF REAL NUMBERS

DOINA IONAC

Abstract. In this paper we obtain some duality results for linear-

fractional programming having the coefficients in a field K of real numbers,

having the property that the rational numbers set Q ⊆ K.

1. We consider the following linear-fractional programming problem:

(PF). Find

Max

{
f (x) ≡ cx + c0

dx + d0
|Ax ≤ b, x ≥ 0

}
,

where A = (aij) is a m× n matrix (m < n) with rankA = m and with the elements

in K, c and d are n-vectors with components in K, b is a m-vector with components

in K and c0 and d0 are constants in K.

Let X be the feasible set in Rn of the problem PF, and let XK be the feasible

set of the problem PF in Kn defined by XK = X ∩Kn.

Next, we suppose that:

(a) dx + d0 > 0, ∀x ∈ X,

and also we will denote by E the set

E = {x ∈ Rn|x ≥ 0, dx + d0 > 0}.

Obviously, X ⊆ E and E is a convex set.

Definition 1. i) The problem (PF) is called regular if X is nonempty, f is not

constant and it exists M > 0 such that: 0 < dx + d0 < M , ∀x ∈ X.

ii) The problem (PF) is called pseudo-regular if X is non-empty, f is not

constant and verifies the condition (a).

Key words and phrases. Fractional programming, duality, regular and pseudo-regular programs.
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Next we study some duality properties for problem (PF) under the hypothesis

of regularity and pseudo-regularity which is larger than considered, for instance, by

Shesham [5]. Some examples [2’] show that there are regular linear-fractional problems

with unbounded feasible solution set X having an infinite optimum value.

2. A way to construct a dual for problem (PF) is by transforming it into a

linear programming problem by the variable change y = tx:

(PL). Find

Max{(cy + c0t|Ay − bt ≤ 0, dy + d0t = 1, y ≥ 0, t ≥ 0}.

Let the objective function of problem (PL) be denoted by g(y, t) = cy + c0t.

Also let XL be the feasible set of the problem (PL).

The following property extends to the case when (PF) is regular a similar

result obtained by Charnes-Cooper [1] (see, [3], [6], [7]) under the supposition that X

is a bounded nonempty set.

Theorem 2. (i) If the problem (PF) is regular then for every feasible solution (y, t)

of the problem (PL), we have t > 0.

(ii) If problem (PF) satisfy the condition (a), then for any x′ ∈ X, there

exists (y′, t′) ∈ XL, such that x′ = y′

t′ and f(x′) = g(y′, t′).

(iii) If problem (PF) is regular then for any feasible solution (y′, t′) of the

problem (PL) there exists a feasible solution x′ ∈ X of (PF) such that x′ = y′

t′ and

f(x′) = g(y′, t′).

Next we need an auxiliary results which establishes the relationship between

problems (PF) and (PL) that generalizes for regular linear-fractional programming a

result obtained by Charnes-Cooper [1] (see, also [3], [6]) in the case when the feasible

set is bounded and nonempty:

Theorem 3. If the problem (PF) is regular, then only one of the following statements

holds:

(i) The problems (PF) and (PL) have both optimal solutions and its optimal

values are equal and finite. Moreover, if (y∗, t∗) is an optimal solution of (PL) then

x∗ = y∗

t∗ is an optimal solution for (PF) and conversely if x′′ is an optimal solution

of (PF) there exists an optimal solution (y′′, t′′) of (PL) such that y′′ = t′′x′′.
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(ii) The problems (PF) and (PL) have both infinite optimal values, that is

sup{f(x)|x ∈ X} = sup{g(y, t)|(y, t) ∈ XL} = +∞.

3. Let XK be the feasible set of the problem (PFK),

(PFK). Find

Max

{
cx + c0

dx + d0
|Ax ≤ b, x ≥ 0, x ∈ Kn

}
,

that is XK = X ∩Kn.

We consider also the auxiliary linear programming problem (PLK) on the

field K associated to the problem (PL):

(PLK). Find

Max{(cy + c0t)|Ay − bt ≤ 0, dy + d0t = 1, y ≥ 0, t ≥ 0, (y, t) ∈ Kn+1}.

Remark 1. The feasible set XK is a polytop (i.e. the intersection of a finite number

of closed semi-spaces) and since aij , cj , bi ∈ K, (i = 1, 2, ...,m and j = 1, 2, ..., n),

any extremal points of X is an element in Kn.

The following result establishes a relationship between (PF) and (PFK):

Theorem 4. If the condition (a) holds then the following statements are true:

(i) Problem (PF) is infeasible (i.e. X = ∅) if and only if the problem (PFK)

is infeasible (i.e. XK = ∅).

(ii) Problem (PF) has no optimal solution, if and only if (PFK) has no op-

timal solution.

(iii) Problem (PF) has an optimal solution if and only if the problem (PFK)

has an optimal solution.

(iv) If x′ is an optimal solution of the problem (PF) and x′′ is an optimal

solution for problem (PFK), then f(x′) = f(x′′).

Proof. The proof of this theorem has the same main idea that a similar result for

rational programming problems from [4]. �

4. We can associate to problem (PF) a linear dual (see, [6]) which is the dual

of the auxiliary linear programming problem (PL):

DL. Find

Min z,
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subject to:

Atu + dz ≥ c,

bu− d0z ≤ −c0,

u ≥ 0, u ∈ Rm, z ∈ R.

Let consider the problem:

DLK. Find

Min z,

subject to

Atu + dz ≥ c,

bu− d0z ≤ −c0, and

u ≥ 0, z ∈ K, u ∈ Km.

Theorem 5. If the problem (PF) is regular only one of the statement holds:

(i) Both problems (PF) and (DL) (primal and dual) has feasible solutions.

In this case, both problems have optimal solutions and its optimal values are equal.

(ii) problem (PF) has feasible solutions and (DL) has not feasible solutions.

In this case, the problem (PF) has an infinite optimum.

Proof. Since by hypothesis (PF) is regular, it has feasible solutions, and by Theorem

2, problem (PL) has feasible solutions too. Then by linear programming duality

theorem only one of the following two cases holds:

a) the dual problem (DL) is a feasible problem;

b) the dual (DL) is an unfeasible problem.

(i) If the dual problem (DL) is a feasible problem then the optimal values of

the primal and dual problems are equal. But then, by Theorem 3, the optimal values

of the problems (PF) and (PL) are equal.

(ii) If the dual problem (DL) is an unfeasible problem then, by the linear

programming duality theorem, it follows that problem (PL) has an infinite optimal

value. But then, by Theorem 3, the problem (PF) has an infinite optimal value too.

�

Theorem 6. If the problem (PFK) is regular only one of the following statements

holds:
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(i) Both primal and dual problems (PFK) and (DLK) have feasible solutions.

In this case, both problems have optimal solutions and its optimal values are equal.

(ii) Problem (PFK) has feasible solutions and (DLK) has not. In this case,

the problem (PFK) has an infinite optimum.

Proof. By duality Theorem 5, only one of the following cases holds:

a) Both primal and dual problems (PF) and (DL) are feasible problems. In

this case, both problems have optimal solutions and its optimal values are equal.

b) Problem (PF) is a feasible problem and (DL) is an unfeasible problem. In

this case the problem (PF) has an infinite optimum.

(i) Let consider the case when both problems (PF) and (DL) have feasible

solutions. Then, by Theorem 4 and by Theorem 3.2 [2], it follows that the problems

(PFK) and (DLK) have optimal solutions and its optimal values are equal with that of

(PF) and (DL), respectively. Therefore, under the theorem hypotheses the problems

(PFK) and (DLK) have optimal solutions and its optimal values are equal.

(ii) On the other part, when (DL) is unfeasible, from Theorem 5 it follows

that problem (PF) has an infinite optimum. But then by Theorem 3.2 [2], (DLK) is

an unfeasible problem and by Theorem 4 (PFK) has an infinite optimum. �
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ON GAUSS TYPE FUNCTIONAL EQUATIONS AND MEAN
VALUES BY H. HARUKI AND TH. M. RASSIAS

ZHENG LIU

Abstract. In this paper we give a concise summary of some recent results

on Gauss type functional equations and mean values by H. Haruki and Th.

M. Rassias.

1. Introduction

Ten years ago, in [5] Haruki reconsidered the Gauss’ functional equation

f

(
a + b

2
,
√

ab

)
= f(a, b) (a, b > 0), (1.1)

where f : R+ ×R+ → R is an unknown function.

It is well known that f(a, b) = AG(a, b) satisfies (1.1) where AG(a, b) is

the airhtmetic-geometric mean of Gauss of a, b defined as the common limit of the

sequences (an), (bn) given recurrently by

a0 = a, b0 = b, an+1 = (an + bn)/2, bn+1 =
√

anbn.

The result given by Haruki may be stated as follows.

Theorem 1.1. Let f : R+ × R+ → R. If f can be represented by the form,

containing some function p, in R+ ×R+

f(a, b) =
1
2π

∫ 2π

0

p(r)dθ,

where p : R+ → R and p′′(x) is continuous in R+, then the only solution of (1.1) is

given by

f(a, b) = c1
1

AG(a, b)
+ c2, (1.2)

where c1 and c2 are arbitrary real numbers.

1991 Mathematics Subject Classification. 39B22.

Key words and phrases. Gauss’ functional equation, monotonic function, power mean.
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It should be noted that Gauss established an integral representation of

AG(a, b) as

AG(a, b) =

(
1
2π

∫ 2π

0

dθ√
a2 cos2 θ + b2 sin2 θ

)−1

. (1.3)

So, (1.2) can be represented by using (1.3) as

f(a, b) =
c1

2π

∫ 2π

0

dθ√
a2 cos2 θ + b2 sin2 θ

+ c2.

May be motivated by this fact, in [5] Haruki considered the following type

mean value of a, b

M(a, b; p(r)) := p−1

(
1
2π

∫ 2π

0

p(r)dθ

)
,

where p : R+ → R, p′′(x) is a continuous function in R+, p = p(x) is strictly monotonic

in R+, and denote
√

a2 cos2 θ + b2 sin2 θ by r.

The following theorem was proved in [5].

Theorem 1.2. Let c1(6= 0) and c2 be arbitrary real constants.

(i) M(a, b; p(r)) = AG(a, b) holds for all positive real numbers a, b if and only

if p(r) = c1(1/r) + c2.

(ii) M(a, b; p(r)) = G(a, b) holds for all positive real numbers a, b if and only

if p(r) = c1(1/r2) + c2.

(iii) M(a, b; p(r)) = A(a, b) holds for all positive numbers a, b if and only if

p(r) = c1 log r + c2.

(iv) M(a, b; p(r)) =

√
a2 + b2

2
holds for all positive real numbers a, b if and

only if p(r) = c1r
2 + c2.

(v) There exists no p(r) such that M(a, b; p(r)) = H(a, b) holds for all positive

real numbers a, b.

Since then, around the above two theorems, a series of new generalization

appeared one after another.

We would like to make a survey in this paper.

Throughout this paper, let a and b be two any positive real numbers. A

mean value of a, b, denoted by M(a, b) is defined to be a real-valued function M ,

which satisfies the following postulates:

(P1) M : R+ ×R+ → R;

(P2) M(a, b) = M(b, a) (symmetry property);
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(P3) M(a, a) = a (reflexivity property).

The arithmetic, geometric, and harmonic mean values of a, b are denoted by

A(a, b), G(A, b) and H(a, b), respectively.

In what follows, we also use the power means defined by

Pq(a, b) =
(

aq + bq

2

) 1
q

for q 6= 0, while, for q = 0,

P0(a, b) = G(a, b).

We denote also the power function

en(x) = xn for n 6= 0

and

e0(x) = log x.

2. Gauss Type Functional Equations

f

(
a + b

2
,

2ab

a + b

)
= f(a, b) (a, b > 0), (2.1)

where f : R+×R+ → R is an unknown function of the above equation. By following

the theory on Gauss’ functional equation (cf. [1], [2], [3], [4]), a new result on this

functional equation is given as

Theorem 2.1. Let f : R+ ×R+ → R be a function. If f can be represented

by

f(a, b) =
1
2π

∫ 2π

0

q(s)dθ (a, b > 0),

where s = a cos2 θ + b sin2 θ, q : R+ → R is a function such that q′′(x) is continuous

in R+, then the only solution of (2.1) is given by

f(a, b) = c1
1√
ab

+ c2,

where c1 and c2 are arbitrary real numbers.

An open problem for the functional equation (2.1) is given as follows:

Let f : R+ × R+ → R be a continuous function in R+ × R+. Is the only

continuous solution of the functional equation (2.1) given by

f(a, b) = F (ab),
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where F : R+ → R is an arbitrary continuous function of a real variable x?

In [13], the author treat the functional equation

f

(√
ab,

2ab

a + b

)
= f(a, b) (a, b > 0), (2.2)

where f : R+ ×R+ → R is an unknown function of the above equation.

By following the theory on Gauss’ functional equation, we obtained

Theorem 2.2. Let f : R+ ×R+ → R be a function. If f can be represented

by

f(a, b) =
1
2π

∫ 2π

0

u(t)dθ (a, b > 0),

where t =
(

cos2 θ

a2
+

sin2 θ

b2

)− 1
2

, u : R+ → R is a function such that u′′(x) is con-

tinuous in R+, then the only solution of (2.2) is given by

f(a, b) = c1GH(a, b) + c2,

where c1 and c2 are arbitrary real numbers.

GH(a, b) is the geometric-harmonic mean of a and b defined as the common

limit of the sequences (an), (bn) given recurrently by

a0 = a, b0 = b, an+1 =
√

anbn, bn+1 =
2anbn

an + bn
.

Also, an open problem for the functional equation (2.2) is given as follows:

Let f : R+ × R+ → R be a continuous function in R+ × R+. Is the only

continuous solution of the functional equation (2.2) given by

f(a, b) = F (GH(a, b)),

where F : R+ → R is an arbitrary continuous function of a real variable x?

In [16], G. Toader considered a more general functional equation

f(Pq(a, b), Ps(a, b)) = f(a, b). (2.3)

Denote

rn(θ) = (an cos2 θ + bn sin2 θ)1/n, n 6= 0

and

r0(θ) = lim
n→0

rn(θ) = acos2 θbsin2 θ.
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For a strictly monotonic function p : R+ → R, consider the function

f(a, b; p, n) =
1
2π

∫ 2π

0

p(rn(θ))dθ. (2.4)

G. Toader proved the following theorem.

Theorem 2.3. If the function f is a solution of (2.3) which can be repre-

sented by (2.4), where p has a continuous second-order derivative in R+, then

p = c1eq+s−n + c2, (2.5)

where c1 and c2 are arbitrary real numbers.

Remark. For n = 2, q = 1 and s = 0, we get the necessity part of Theorem

1.1. For n = 1, q = 1 and s = −1, we get the necessity part of Theorem 2.1. For

n = −2, q = 0 and s = −1, we get the necessity part of Theorem 2.2. In all these

three cases, as we have already mentioned, the condition is also sufficient.

In [17], the following theorem was proved.

Theorem 2.4. If n 6= 0, q = n and s = −n, then the function f given by

(2.4) and p given by (2.5), verifies the relation (2.3).

In [10], Kim and Rassias considered a generalized functional equation, namely

f(P k
q (a, b), P k

s (a, b)) = f(a, b) (2.6)

where

P k
q (a, b) = (ab)(1−k)/2

(
aq + bq

2

) k
q

.

The following theorem was proved.

Theorem 2.5. If the function f is a solution of (2.6) which can be repre-

sented by (2.4), where p has a continuous second-order derivative in R+, then

p = c1e−n+kq+ks + c2,

where c1 and c2 are arbitrary real numbers.

Clearly, Theorem 2.3 is a special case of Theorem 2.5.

In [18], S. Toader, Rassias and G. Toader consider a more general functional

equation

f(M(a, b), N(a, b)) = f(a, b), (2.7)

where M and N are two given means.
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It is not difficult to prove the following theorem.

Theorem 2.6. If the function f defined by (2.4) in case n = 1 is a solution

of (2.6), where p has a continuous second-order derivative in R+, then the function

p is a solution of the differential equation

p′′(c) + 4p′(x)[M ′′
ab(c, c) + N ′′

ab(c, c)] = 0.

Remark. In case n = 1, Theorem 2.3 and Theorem 2.5 can be deduced from

Theorem 2.6.

3. Mean Values by H. Haruki and Th.M. Rassias

In [7], Haruki and Rassias considered the following two mean values of a, b:

M(a, b; q(s)) := q−1

(
1
2π

∫ 2π

0

q(s)dθ

)
,

where q : R+ → R, q′′(x) is a continuous function in R+, q = q(x) is strictly monotonic

in R+, and denote a cos2 θ + b sin2 θ by s; and

M(a, b;u(t)) := u−1

(
1
2π

∫ 2π

0

u(t)dθ

)
,

where u : R+ → R, u′′(x) is a continuous function in R+, u = u(x) is strictly

monotonic in R+, and denote (cos2 θ/a + sinθ /b)−1 by t.

The following two theorems are proved.

Theorem 3.1. Let c1(6= 0) and c2 be arbitrary real constants.

(i) M(a, b; q(s)) = A(a, b) holds for all positive real numbers a, b if and only

if q(s) = c1s + c2.

(ii) M(a, b; q(s)) = G(a, b) holds for all positive real numbers a, b if and only

if q(s) = c1(1/s) + c2.

(iii) M(a, b; q(s)) = P 1
2
(a, b) holds for all positive real numbers a, b if and

only if q(s) = c1 log s + c2.

(iv) M(a, b; q(s)) =
√

H(a, b)G(a, b) holds for all positive real numbers a, b if

and only if q(s) = c1(1/s2) + c2.

Theorem 3.2. Let c1(6= 0) and c2 be arbitrary real constants.

(i) M(a, b, u(t)) = G(a, b) holds for all positive real numbers a, b if and only

if u(t) = c1t + c2.
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(ii) M(a, b, u(t)) = H(a, b) holds for all positive real numbers a, b if and only

if u(t) = c1(1/t) + c2.

(iii) M(a, b, u(t)) = P− 1
2
(a, b) holds for all positive real numbers a, b if and

only if u(t) = c1 log s + c2.

(iv) M(a, b, u(t)) =
√

A(a, b)G(a, b) holds for all positive real numbers a, b if

and only if u(t) = c1t
2 + c2.

Noticed that the geometric-harmonic mean GH(a, b) can be represented by

a first complete elliptic integral as

GH(a, b) =
1
2π

∫ 2π

0

dθ√
cos2 θ

a2
+

sin2 θ

b2

, (3.1)

the author in [12] considered the mean value of a, b

M(a, b; v(z)) = v−1

(
1
2π

∫ 2π

0

v(z)dθ

)
,

where v : R+ → R, v′′(x) is a continuous function in R+, v = v(x) is strictly

monotonic in R+, and denote (cos2 θ/a2 + sin2 θ/b2)−
1
2 by z.

The following theorem is proved.

Theorem 3.3. Let c1(6= 0) and c2 be arbitrary real constants.

(i) M(a, b; v(z)) = GH(a, b) holds for all positive real numbers a, b if and only

if v(z) = c1z + c2.

(ii) M(a, b; v(z)) = G(a, b) holds for all positive real numbers a, b if and only

if v(z) = c1z
2 + c2.

(iii) M(a, b; v(z)) = H(a, b) holds for all positive real numbers a, b if and only

if v(z) = c1 log z + c2.

(iv) M(a, b; v(z)) = (H(a2, b2))1/2 holds for all positive real numbers a, b if

and only if v(z) = c1(1/z2) + c2.

(v) There exists no v(z) such that M(a, b; v(z)) = A(a, b) holds for all positive

real numbers a, b.

It should be noted that in [8] Kim also considered the mean value M(a, b; v(z))

and got the results (ii), (iii), (iv) of Theorem 3.3.
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In [16] and [17], G. Toader and Rassias considered a generalization of the

above mentioned four mean values M(a, b; p(r)), M(a, b; q(s)), M(a, b;u(t)) and

M(a, b; v(z)) as follows:

Denote

rn(θ) = (an cos2 θ + bn sin2 θ)1/n, n 6= 0,

and

r0(θ) = lim
n→0

rn(θ) = acos2 θbsin2 θ.

For a strictly monotonic function p : R+ → R, set

M(a, b; p, rn) = p−1

(
1
2π

∫ 2π

0

p(rn(θ))dθ

)
.

It is easy to prove that M(a, b; p, rn) is a mean value.

As was stated in Theorem 1.2, Theorem 3.1, Theorem 3.2 and Theorem 3.3,

the means M(a, b; p, rn) can represent some known means for special choice of p and

n. In [10], the following theorem was proved.

Theorem 3.4. If for some twice continuously differentiable function p the

mean M(a, b; p, rn) reduces at the power mean Pq(a, b), then

p = c1e2q−n + c2,

where c1 and c2 are arbitrary real numbers.

In [17], the following theorem was proved.

Theorem 3.5. The mean M(a, b; p, rn) reduces to the power mean Pq(a, b)

for arbitrary n if

p = c1e2q−n + c2, c1, c2 ∈ R

and q takes one of following values; (i) q = 0, (ii) q = n; or (iii) q = n/2.

In [9], Kim considered some further extensions of values by H. Haruki and

Th.M. Rassias as follows:

M(a, b;h(s)) :=
1

H(a, b)
h−1

(
1
2π

∫ 2π

0

h(s)dθ

)
, (3.2)

where h : R+ → R, h′′(x) is a continuous function in R+, h = h(x) is strictly

monotonic in R+, and denote (cos2 θ/a2 + sin2 θ/b2)−1 by s,

M(a, b; k(s)) :=
1

H(a, b)
k−1

(
1
2π

∫ 2π

0

k(s)dθ

)
, (3.3)
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where k : R+ → R, k′′(x) is a continuous function in R+, k = k(x) is strictly

monotonic in R+, and denote (a cos θ)2 + (b sin θ)2 by s.

The following theorems are proved:

Theorem 3.6. Let c1(6= 0) and c2 be arbitrary real constants.

(i) M(a, b;h(s)) = A(a, b) holds for all positive real numbers a, b if and only

if h(s) = c1s + c2.

(ii) M(a, b;h(s)) = ab(a + b)/(a2 + b2) holds for all positive real numbers a, b

if and only if h(s) = c1(1/s) + c2.

(iii) M(a, b;h(s)) = H(a, b) holds for all positive real numbers a, b if and only

if h(s) = c1 log s + c2.

(iv) M(a, b;h(s)) =
√

2(a + b)2(ab)2/(3a4 + 3b4 + 2(ab)2) holds for all posi-

tive real numbers a, b if and only if h(s) = c1(1/s2) + c2.

(v) M(a, b;h(s)) =
√

(a2 + b2)(a + b)2/8ab holds for all positive real numbers

a, b if and only if h(s) = c1s
2 + c2.

Theorem 3.7. Let c1(6= 0) and c2 be arbitrary real constants.

(i) M(a, b; k(s)) = (a2 + b2)(a+ b)/4ab holds for all positive real numbers a, b

if and only if k(s) = c1s + c2.

(ii) M(a, b; k(s)) = A(a, b) holds for all positive real numbers a, b if and only

if k(s) = c1(1/s) + c2.

(iii) M(a, b; k(s)) = (a+b)3/8ab holds for all positive real numbers a, b if and

only if k(s) = c1 log s + c2.

(iv) M(a, b; k(s)) =
√

(ab)(a + b)2/2(a2 + b2) holds for all positive real num-

bers a, b if and only if k(s) = c1(1/s2) + c2.

(v) M(a, b; k(s)) =
√

(a + b)2(3a4 + 3b4 + 2(ab)2)/32(ab)2 holds for all posi-

tive real numbers a, b if and only if k(s) = c1s
2 + c2.

Instead of (3.2) and (3.3), in [14] the author considered in general, the fol-

lowing two mean values of a, b:

M(a, b;h(s), q) :=
1

Pq(a, b)
h−1

(
1
2π

∫ 2π

0

h(s)dθ

)
, (3.4)

and

M(a, b; k(s), q) :=
1

Pq(a, b)
k−1

(
1
2π

∫ 2π

0

k(s)dθ

)
, (3.5)

where h(s) and k(s) are just the same as in (3.2) and (3.3).
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Moreover, denote

sn(θ) = (a2n cos2 θ + b2n sin2 θ)
1
n , n 6= 0,

and

s0(θ) = lim
n→0

sn(θ) = a2 cos2 θb2 sin2 θ.

If p : R+ → R is a strictly monotonic function, then

M(a, b; p, sn; q) =
1

Pq(a, b)
p−1

(
1
2π

∫ 2π

0

p(sn(θ))dθ

)
defines a mean value of a, b. Clearly, (3.4) is given for n = −1 and (3.5) is given for

n = 1.

We have the following two theorems.

Theorem 3.8. If for some twice continuously differentiable function p the

mean M(a, b; p, sn; q) reduces at the power mean Pr(a, b), then

p = c1e(q+r)/2−n + c2,

where c1 and c2 are arbitrary real numbers.

Theorem 3.9. The mean M(a, b; p, sn; q) reduces to the power mean Pr(a, b)

for arbitrary n if

p = c1e(q+r)/2−n + c2, c1, c2 ∈ R

and r takes one of the following values: (i) r = −q or (ii) r = q = n.

In [10], Kim and Rassias considered a new mean value

M(a, b; p, rn,k) := (ab)(1−k)/2p−1

(
1
2π

∫ 2π

0

p(rn,k(θ))dθ

)
(3.6)

where p : R+ → R is a strictly monotonic function, n and k are real numbers,

rn,k(θ) = (akn cos2 θ + bkn sin2 θ)
1
n , n, k 6= 0,

and

r0,k(θ) = lim
n→0

rn,k(θ) = ak cos2 θbk sin2 θ, k 6= 0.

The mean can represent some known means for special choice of p, k and n.

Two well-known examples are given for n = 2, k = 1, p(x) = x−1 and n = −2, k = 1,

p(x) = x respectively. They correspond to the arithmetic-geometric mean of Gauss

(1.3) and geometric-harmonic mean (3.1) respectively.
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Kim and Rassias in [10] also considered the following generalization of the

power means defined by

Hk
q (a, b) = (ab)(1−k)/2

(
2aqbq

aq + bq

)k/q

, k 6= 0

for q 6= 0, while Hk
0 (a, b) = limq→0 Hk

q (a, b) =
√

ab for q = 0.

It is not difficult to prove the following theorems.

Theorem 3.10. If the mean M(a, b; p, rn,k) reduces to the power mean

P k
q (a, b) = Hk

−q(a, b) for some twice continuously differentiable function p, then

p = c1e(2kq−nk2)/k2 + c2,

where c1 and c2 are arbitrary real numbers.

Theorem 3.11. The mean M(a, b; p, rn,k) reduces to the power mean

P k
q (a, b) for some arbitrary n if

P = c1e(2kq−nk2)/k2 + c2, c1, c2 ∈ R

and q takes one of the following values: (i) q = 0, (ii) q = nk; or (iii) q = nk/2.

Theorem 3.12. Let c1(6= 0) and c2 be arbitrary real constants.

(i) M(a, b; p, r1,k) =
1
2
(ak + bk)(ab)(1−k)/2 holds for all positive real numbers

a, b if and only if p(s) = c1s + c2.

(ii) M(a, b; p, r1,k) = G(a, b) holds for all positive real numbers a, b if and

only if p(s) = c1(1/s) + c2.

(iii) M(a, b; p, r1,k) =
1
4
(ab)(1−k)/2(ak/2 + bk/2)2 holds for all positive real

numbers a, b if and only if p(s) = c1 log s + c2.

(iv) M(a, b; p, r1,k) =
√

2(ab)(k+2)/4

(ak + bk)1/2
holds for all positive real numbers a, b if

and only if p(s) = c1(1/s2) + c2.

(v) M(a, b; p, r1,k) =
[3(a2k + b2k) + 2(ab)k]1/2

[8(ab)(k−1)]1/2
holds for all positive real

numbers a, b if and only if p(s) = c1s
2 + c2.

Theorem 3.13. Let c1(6= 0) and c2 be arbitrary real constants.

(i) M(a, b; p, r−1,k) = G(a, b) holds for all positive real numbers a, b if and

only if p(s) = c1s + c2.

(ii) M(a, b; p, r−1,k) = 2(ab)(k+1)/2(ak +bk)−1 holds for all positive real num-

bers a, b if and only if p(s) = c1(1/s) + c2.
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(iii) M(a, b; p, r−1,k) = 4(ab)(1+k)/2(ak/2 + bk/2)−2 holds for all positive real

numbers a, b if and only if p(s) = c1 log s + c2.

(iv) M(a, b; p, r−1,k) =
1√
2
(ak + bk)1/2(ab)(2−k)/4 holds for all positive real

numbers a, b if and only if p(s) = c1(1/s2) + c2.

(v) M(a, b; p, r−1,k) =
[8(ab)k+1]1/2

[3(a2k + b2k) + 2(ab)k]1/2
holds for all positive real

numbers a, b if and only if p(s) = c1s
2 + c2.

Instead of (3.6), Rassias and Kim in [15] introduce in general, the following

mean values of a, b:

M(a, b; p, rn,k; q) := [Pq(a, b)](1−k)p−1

(
1
2π

∫ 2π

0

p(rn,k(θ))dθ

)
where p(rn,k(θ)) is just the same as in (3.6).

The following theorems are proved.

Theorem 3.14. If the mean M(a, b; p, rn,k; q) reduces to the power mean

Ps(a, b) for some twice continuously differentiable function p, then

p = c1e 2q(k−1)+2s

k2 −n
+ c2,

where c1 and c2 are arbitrary real numbers.

Theorem 3.15. The mean M(a, b; p, rn,k; q) reduces to the power mean

Ps(a, b) for some arbitrary n if

p = c1e 2q(k−1)+2s

k2 −n
+ c2, c1, c2 ∈ R

and s takes one of the following values: (i) s = q = 0, (ii) s = −q, k = 2, (iii)

s = q = nk; or (iv) s = q = nk/2.

Acknowledgment. The author is greatly indebted to Professor Th.M. Ras-

sias for his encouragement of doing this work and presentation of references [10], [11],

[15] and [18].

References

[1] G. Almkvist, B. Berndt, Gauss, Landen, Ramanujan, the arithmetic-geometric mean,
ellipses, π, and the Ladies Diary, Amer. Math. Monthly, 95(1988), 585-607.

[2] J. Arazy, T. Claeson, S. Janson, J. Peetre, Means and their iterations, Proceedings of
the Nineteenth Nordic Congredd of Mathematicians, Reykjavik, 1984, 191-212.

[3] D.A. Cox, The arithmetic-geometric mean of Gauss, L’Enseign. Math., 30(1984), 275-
330.

[4] C.F. Gauss, Werke, Göttingen-Leipzig, 1868-1927.
[5] H. Haruki, New Characterizations of the arithmetic-geometric mean of Gauss and other

well-known mean values, Publ. Math. Debrecen, 38(1991), 323-332.

86



ON GAUSS TYPE FUNCTIONAL EQUATIONS

[6] H. Haruki, Th.M. Rassias, A new analogue of Gauss’ functional equation, Internat. J.
Math. & Math. Sci. 18(1995), 749-756.

[7] H. Haruki, Th.M. Rassias, New characterizations of some mean values, J. Math. Anal.
Appl. 202(1996), 333-348.

[8] Y.H. Kim, New characterization of well-known mean values, Far East J. Math. Sci.
6(16)(1998), 939-947.

[9] Y.H. Kim, On some further extensions of the characterizations of mean values by H.
Haruki and Th.M. Rassias, J. Math. Anal. Appl., 235(1999), 598-607.

[10] Y.H. Kim, Th.M. Rassias, Properties of some mean values and functional equations,
Pan American Mathematical Journal (to appear).

[11] Y.H. Kim, Th.M. Rassias, On some mean value theorems and functional equations, Pan
American Mathematical Journal (to appear).

[12] Z. Liu, Geometric-Harmonic means and characterizations of some mean-values, (to
appear).

[13] Z. Liu, A Gauss type functional equation, (to appear).
[14] Z. Liu, On new generalizations of certain mean values by H. Haruki and Th.M. Rassias,

(to appear).
[15] Th.M. Rassias, Y.H. Kim, New characterizations of some mean values and functional

equations, Mathematica (to appear).
[16] G. Toader, Some mean values related to the arithmetic-geometric mean, J. Math. Anal.

Appl. 218(1998), 358-368.
[17] G. Toader, Th.M. Rassias, New properties of some mean values, J. Math. Anal. Appl.

232(1999), 376-383.
[18] S. Toader, Th.M. Rassias, G. Toader, A Gauss type functional equation, International

Journal of Mathematics and Mathematical Sciences (to appear).

Department of Mathematics and Physics, Anshan Institute of Iron and
Steel Technology, Anshan 114002, Liaoning, People’s Republic of China

87
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SEMILINEAR EQUATIONS IN HILBERT SPACES
WITH QUASI-POSITIVE NONLINEARITY

CRISTINEL MORTICI

Abstract. The problem is to show that Ax + F (x) = 0 has a solution,

where A is linear, maximal monotone and the nonlinearity F is a quasi-

positive operator of Leray-Schauder type. The existence result is obtained

as a consequence of the properties of the Leray-Schauder degree. Finally,

some applications are given.

1. Introduction

Let H be a real Hilbert space with the inner product denoted by < ·, · > and

the corresponding norm

‖x‖ =
√

< x, x > , x ∈ H.

Let us consider the semilinear equation

Ax + F (x) = 0, (1.1)

where A : D(A) ⊂ H → H is a densely defined linear operator and N : H → H

is nonlinear. We establish an existence and uniqueness result for the equation (1.1)

under some monotonicity conditions. Moreover, assume that A is maximal monotone.

Equations of the form (1.1) arise in natural way in the theory of elliptic equations or

integro-differential equations.

An operator F : H → H is called quasi-positive if there exists α ∈ R such

that

< F (x), x >≥ α ‖F (x)‖2 , ∀x ∈ H, x 6= 0. (1.2)

This notion is close related with the angle-bounded operators. First, the

angle-boundedness concept is defined for linear operators acting from a Banach space
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into its dual, then the definition can be extended to nonlinear operators. For details,

see [7].

2. The Results

We give the following:

Lemma 2.1. If F : H → H is a quasi-positive operator with α > 1/2, then

‖x− F (x)‖ ≤ ‖x‖ , ∀x ∈ H, x 6= 0.

Proof. We have:

‖x− F (x)‖2 =< x− F (x), x− F (x) >=

= ‖x‖2 − 2 < F (x), x > + ‖F (x)‖2 ≤

≤ ‖x‖2 − (2α− 1) ‖F (x)‖2 ≤ ‖x‖2 . �

If A is linear, maximal monotone, then for all λ > 0, the operator I + λA is

invertible with continuous inverse (I + λA)−1 : H → H and∥∥(I + λA)−1
∥∥ ≤ 1.

For proof and further properties, see [3].

Now, the equation (1) can be written as

(I + A)x = x− F (x) ⇔ x = (I + A)−1(x− F (x)),

or

x = T (x) ⇔ (I − T )(x) = 0, (2.1)

where T = (I + A)−1(I − F ).

If F is an operator of Leray-Schauder type, then I − F is compact and con-

sequently, T is compact, as the product of a continuous operator with a compact

one.

Indeed, if D ⊂ H is bounded and (xn)n≥1 ⊂ D, then there exists x such

that (I − F )(xkn
) → (I − F )(x), at least on a subsequence. Further, (I + A)−1 is

continuous, so Txkn
→ Tx.

In conclusion, the operator I−T is compact perturbation of the identity map

and consequently, the Leray-Schauder degree can be considered.
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Roughly speaking, the degree of φ at y, relative to D, denoted d(φ,D, y), is

a measure of the number of the solutions of the equation φ(x) = y in D.

In an infinite dimensional Banach space X, the Leray-Schauder degree is

defined for compact perturbations of the identity map, also named Leray-Schauder

operators, φ ∈ (LS). Some properties of the Leray-Schauder degree are of interest in

our work.

Proposition 2.1. Let φ : D ⊂ X → X be such that I − φ is compact and

let y ∈ X \ φ(∂D). Then the Leray-Schauder degree d(φ,D, y) satisfies the following

properties:

(a) If d(φ,D, y) 6= 0, then y ∈ φ(D).

(b) If H ∈ C([0, 1]×D,X) is such that I−H(t, ·) is compact, for all t ∈ [0, 1]

and y ∈ X \H([0, 1]× ∂D), then the degree

d(H(t, ·), D, y) = constant , ∀ t ∈ [0, 1].

(c) The degree for the identity map I : X → X is

d(I,D, y) =

 1 , y ∈ D

0 , y /∈ D
.

For more details, see [4], [5].

Now, we can establish the following existence result:

Theorem 2.1. Let A : D(A) ⊂ H → H, 0 ∈ IntD(A), linear, maximal

monotone and F : H → H be an (LS) - operator such that

< F (x), x >≥ α ‖F (x)‖2 , ∀x ∈ H, x 6= 0,

for some α > 1/2. Then the equation Ax + F (x) = 0 has at least one solution

x ∈ D(A).

Proof. Let B = B(0, r) be such that B ⊂ D(A). We have seen that the

equation Ax + F (x) = 0 is equivalent with

(I − T )(x) = 0,

where T = (I + A)−1(I − F ) is compact.

Let us consider the Leray-Schauder homotopy

H(t, x) = x− tT (x) , x ∈ B, t ∈ [0, 1].
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If 0 ∈ H(1, ∂B), the conclusion follows immediately. In order to use the

invariance to homotopy of the Leray-Schauder degree, we prove that 0 /∈ H([0, 1), ∂B).

Let us suppose by contrary that H(t, x) = 0, for some x ∈ ∂B and t ∈ [0, 1). It results

‖x‖ = t ‖T (x)‖ ≤ ‖T (x)‖ =
∥∥(I + A)−1(I − F )

∥∥ ≤
≤

∥∥(I + A)−1
∥∥ · ‖x− F (x)‖ ≤ ‖x− F (x)‖ ≤ ‖x‖ .

We must have equalities all over, in particular T (x) = 0. Hence x = 0 ∈ ∂B,

contradiction. This means that 0 /∈ H([0, 1], ∂B) and further,

d(H(1, ·), B, 0) = d(H(0, ·), B, 0) ⇒

⇒ d(I − T,B, 0) = d(I,B, 0) = 1.

In conclusion, d(I − T,B, 0) 6= 0, thus the equation (I − T )(x) = 0 and

equivalent, the equation Ax + F (x) = 0 has at least one solution in D(A). �

3. An Application

Now, we are in position to show how the theoretical results from the previous

section can be applied to the elliptic boundary value problems.

Let Ω ⊂ Rn be open, bounded and let aij ∈ C1(Ω), 1 ≤ i, j ≤ n be real

valued functions satisfying the ellipticity property

n∑
i,j=1

aijξiξj ≥ 0 , ∀ ξ = (ξ1, ..., ξn) ∈ Rn.

Let us consider the following elliptic problem
−

n∑
i,j=1

∂

∂xj

(
aij(t)

∂x

∂xi

)
+ g(t, x) = 0 in Ω

u = 0 on ∂Ω

(3.1)

The particular case g(t, x) = a0(t)x, with a0 ∈ C(Ω), a0 > p > 0, is studied

in [3], using Lax-Milgram theorem. Some existence results are also obtained in [1] and

[2], as a consequence of some general considerations about saddle points. The general

case of problem (3.1) is studied in [6], under the assumption that the nonlinear part

is strongly monotone.
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Here we assume that g satisfies∫
Ω

g(t, x(t)) · x(t) dt ≥ α

∫
Ω

g2(t, x(t)) dt, (3.2)

for some α > 1/2. Remark that in case g(t, x) = a0(t)x, the condition (3.2) is fulled

with α < 1/ ‖a0‖ .

Under the condition (3.2), the problem (3.1) has at least one solution in weak

sense. Indeed, we can apply theorem 2.1 in the following functional background:

H = L2(Ω) , Ax = −
n∑

i,j=1

∂

∂xj

(
aij(t)

∂x

∂xi

)
, D(A) = H2(Ω) ∩H1

0 (Ω)

and (Fx)(t) = g(t, x). The problem (3.1) can be written in the abstract form

Ax + F (x) = 0 , x ∈ D(A) ⊂ L2(Ω).

We have:

< Ax, x >=
∫

Ω

n∑
i,j=1

aij
∂x

∂xj
· ∂x

∂xi
≥ 0,

and I + A is surjective, e.g. [2], therefore A is maximal monotone.

Finally, if g is compact perturbation of the identity, then the assertion is

proved.
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DYNAMICS ON (Pcp(X),Hd) GENERATED BY A SET
OF DYNAMICS ON (X, d)

IOAN A. RUS, BOGDAN RUS

Abstract. In this paper we study the following problem: Let (X, d) be a

complete metric space. Let f1, . . . , fm : X → X be some continuous weakly

Picard operators. These operators generates the following operator

Tf : Pcp(X) → Pcp(X), A 7→ f1(A) ∪ · · · ∪ fm(A).

Is the operator Tf : (Pcp(X), Hd) → (Pcp(X), Hd) weakly Picard operator?

1. Introduction

Let X be a nonempty set and f1, . . . , fm : X → X some operators. These

operators generate the following operator on P (X)

Tf : P (X) → P (X), Tf (A) := f1(A) ∪ · · · ∪ fm(A).

The problem is to study the operator Tf depending on the properties of the

operators f1, . . . , fm. In what follow we shall study this problem from the point of

view of the Picard operators theory.

Throughout this paper we follow terminologies and notations in [27] and [36].

See also [31], [32] and [34]. For the multivalued operator theory see [36], [2], [21], [23].

2. Iterated Picard operator systems

We begin our study with the following open problem

Problem 1. (see [32] and [34]) Let (X, d) be a complete metric space and

f1, . . . , fm : X → X continuous Picard operators. Is the operator Tf : (Pcp(X),Hd) →

(Pcp(X),Hd) Picard operator?

For the Problem 1 we have the following partial results:

1991 Mathematics Subject Classification. 47H10, 54H25.

Key words and phrases. iterated Picard operator system, fractal operator, Bessaga operator, Janos

operator, attractor.
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Theorem 2.1. (see [1], [13], [6], [42]) If the operators f1, . . . , fm are a-

contraction, then the operator

Tf : Pcp(X) → Pcp(X)

is an a-contraction.

Remark 2.1. By definition, the unique fixed point of Tf is the attractor of

the iterated operator systems (IOS) f1, . . . , fm.

Theorem 2.2. (see [33]) If the operators f1, . . . , fm are ϕ-contractions, then

the operator Tf : Pcp(X) → Pcp(X) is a ϕ-contraction.

Theorem 2.3. (see [24]) If the operators f1, . . . , fm are of Meir-Keeler type,

then the operator Tf : Pcp(X) → Pcp(X) is a Meir-Keeler type operator.

The following open problems are in connection with the Problem 1.

Problem 2. Let X be a nonempty set and f1, . . . , fm Bessaga operators.

Does there exist Y ⊂ P (X) such that

(a) Tf (Y ) ⊂ Y ,

(b) Tf : Y → Y is Bessaga operator?

Problem 3. Let X be a nonempty set and f1, . . . , fm Janos operators. Does

there exist Y ⊂ P (X) such that

(a) Tf (T ) ⊂ Y ,

(b) Tf : Y → Y is Janos operator?

Problem 4. Let (X, d) be a complete metric space and f1, . . . , fm : X →

X continuous Bessaga operators. Is the operator Tf : Pcp(X) → Pcp(X) Bessaga

operator?

Problem 5. Let (X, d) be a complete metric space and f1, . . . , fm : X → X

continuous Janos operators. Is the operator Tf : Pcp(X) → Pcp(X) Janos operator?

In the case m = 1 we have

Example 2.1. Let f : R → R, f(x) =
1
2
x and Tf : P (R) → P (R),

Tf (A) = f(A). We remark that f is Bessaga operator (f is
1
2
-contraction), but

cardFTf
> 1. For example {0}, R, R+, R−, R∗+, R∗−, {2k|k ∈ Z}, are fixed points of

Tf .

Theorem 2.4. Let X be a nonempty set and f : X → X a Bessaga operator.

Then there exists Y ⊂ P (X) such that
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(a) Tf (Y ) ⊂ Y

(b) Tf : Y → Y is Bessaga operator.

If cardX > 1, then there exists Y ⊂ P (X) such that cardY > 1.

Proof. Here Tf is the following operator, Tf : P (X) → P (X), Tf (A) = f(A).

By a theorem of Bessaga ([27]) there exists a metric d on X such that (X, d) is a

complete metric space and f : (X, d) → (X, d) is an a-contraction. By a theorem

of Nadler ([22]) the operator Tf : (Pcp(X),Hd) → (Pcp(X),Hd) is an a-contraction.

By the contraction principle Tf |Pcp(X) is Picard operator. So, Tf |Pcp(X) is Bessaga

operator (Y = Pcp(X, d)).

Theorem 2.5. Let (X, d) be a compact metric space and f : X → X contin-

uous Janos operator. Then the operator Tf : Pcp(X) → Pcp(X) is Janos operator.

Proof. By a theorem of Janos ([27]) there exists an equivalent metric (with

d) ρ on X such that f : (X, ρ) → (X, ρ) is an a-contraction. By a theorem of Nadler

([22]) the operator Tf : (Pcp(X),Hρ) → (Pcp(X),Hρ) is an a-contraction, These imply

that

δHρ : (Tf (Pcp(X))) ≤ aδHρ(Pcp(X))

and

δHρ
: (Tn

f (Pcp(X))) ≤ anδHρ
(Pcp(X)).

So ⋂
n∈N

Tn
f (Pcp(X)) = {{x∗}}

where x∗ is the unique fixed point of f .

3. Iterated weakly Picard operator systems

The basic problem of this paper is the following

Problem 6. Let (X, d) be a complete metric space and f1, . . . , fm : X → X

continuous WPOs. Is the operator Tf : Pcp(X) → Pcp(X) WPO?

The following open problems are in connection with the Problem 6.

Problem 7. Let (X, d) be a complete metric space and f1, . . . , fm ∈

C(X, X). We suppose that

Ffi = Ffn
i
6= ∅, i = 1,m, n ∈ N∗.
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We ask if

FTf
= FT n

f
6= ∅, n ∈ N∗.

Problem 8. Let (X, d) be a compact metric space and f1, . . . , fm ∈ C(X, X).

We suppose that ⋂
n∈N

fn
i (X) = Ffi , i = 1,m.

Does the operator Tf satisfy the condition⋂
n∈N

Tn
f (Pcp(X)) = FTf

?

Problem 9. (see [4], [26]) Let (X, d) be a complete metric space and fi ∈

C(X, X), i = 1,m. We suppose that

ωfi
(x) 6= ∅, ∀ x ∈ X, ∀ i = 1,m.

Does this imply that

ωTf
(A) 6= ∅, ∀ A ∈ Pcp(X)?

Problem 10. (see [4], [26]) Let (X, d) be a complete metric space and

fi ∈ C(X, X), i = 1,m. If there exists x ∈ X such that the recurrent point set of fi,

R
(x)
fi

6= ∅, i = 1,m,

does exist A ∈ Pcp(X) such that

RTf
(A) 6= ∅?

In the case m = 1, we have

Example 3.1. Let X be a Banach space, K ∈ C([a, b] × [a, b] × X, X),

K(t, s, ·) : X → X a LK-Lipschitz operator, for all t, s ∈ [a, b]. Let f : C([a, b], X) →

C([a, b], X) be defined by

f(x)(t) = x(a) +
∫ t

a

K(t, s, x(s))ds.

Let Xα := {x ∈ C([a, b], X)|x(a) = α}, α ∈ X. Then

• X =
⋃

Xα is a partition of X,

• f is continuous,

• Xα ∈ Icl(f),
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• f |Xα
is a Picard operator, α ∈ X,

• Tf : Pcp(Xα) → Pcp(Xα) is Picard operator, α ∈ X,

• Tf :
⋃

α∈X

Pcp(Xα) →
⋃

α∈X

Pcp(Xα) is WPO with respect to the generalized

Hausdorff-Pompeiu metric.

More general we have

Theorem 3.1. Let (X, d) be a complete metric space, X =
⋃
α∈J

Xα a partition

of X, f : X → X a continuous operator such that:

(i) Xα ∈ Icl(f),

(ii) f : Xα → Xα is a-contraction, for all α ∈ J .

Then there exists S(X) ⊂ P (X) such that:

(i) S(X) ∈ I(Tf ),

(ii) Tf : S(X) → S(X) is WPO with respect to the generalized Hausdorff-

Pompeiu metric on S(X).

Proof. By a theorem of Nadler Tf : Pcp(Xα) → Pcp(Xα) is a-contraction for

all α ∈ J . Let S(X) :=
⋃
α∈J

Pcp(Xα). Then for all A ∈ S(X), Tn
f (A) converges to

T∞f (A). If A ∈ Pcp(Aα), then T∞f (A) ∈ Pcp(Xα), and is the unique fixed point of Tf

in Pcp(Xα).

4. Attractor and sequences of contractions

Let (X, d) be a complete metric space, f1, . . . , fm : X → X a-contractions.

Then Tf : Pcp(X) → Pcp(X) is a-contraction. By definition the unique fixed point of

Tf , A∗, is the attractor of the iterated operator system f1, . . . , fm. The attractor A∗

has the following properties (see [13], [43], [1],...):

a)

(i) ∅ 6= A∗ is compact,

(ii) fi(A∗) ⊂ A∗, for 1 ≤ i ≤ m,

(iii) A∗ is minimal with respect to (i) and (ii).

b) for all x ∈ A∗, there exists a sequence i1, . . . , is, . . . such that

fi1 ◦ fi2 ◦ · · · ◦ fis
(y) → x as s →∞,

for all y ∈ X.
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The above properties of the attractor give rise to the following problems:

Problem 11. Let (X < d) be a complete metric space and f, fn : X → X,

n ∈ N . We suppose that

(i) f and fn are a-contractions, n ∈ N ,

(ii) fn
d→ f .

Does f∞n converges to f∞?

Problem 12. Let (X, d) be a complete metric space and f, fn : X → X

WPOs, n ∈ N . If (fn)n∈N converges to f , does (f∞n )n∈N converges to f∞?

Problem 13. Let (X, d) be a complete metric space and f1, . . . , fm : X → X

ϕ-contractions. Let (gn)n∈N a sequence in {f1, . . . , fm}. Does converge the sequences

xn := (g0 ◦ · · · ◦ gn)(x)

and

yn := (gn ◦ · · · ◦ g0)(x)?

Problem 14. Let (X, d) be a complete metric space and fn : X → X

a rn-contraction, n ∈ N . If rn → 0 as n → ∞, does fn converges to a constant

operator?

We have the following result for the above problems

Theorem 4.1. (see [28]) Let (X, d) be a complete metric space and f, fn :

X → X, n ∈ N . We suppose that:

(a) f is Picard operator (Ff = {x∗});

(b) the sequence (fn)n∈N is asymptotical uniform convergent to f ;

(c) Ffn 6= ∅, for all n ∈ N .

If x∗n ∈ Ffn
, then x∗n → x∗ as n →∞.

Proof. By definition the sequence (fn)n∈N is asymptotical uniform conver-

gent to f if for all ε > 0 there exist n0(ε),m0(ε) such that

d(fm
n (x), fm(x)) < ε

for all n ≥ n0(ε), m ≥ m0(ε) and all x ∈ X.

We have

d(x∗n, x∗) = d(fm
n (x∗n), fm(x∗)) ≤

≤ d(fm
n (x∗n), fm(x∗n)) + d(fm(x∗n), fm(x∗)).
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Let ε > 0 and n0(ε),m0(ε) such that

d(fm
n (x∗n), fm(x∗n)) ≤ ε

2
,

for all n ≥ n0(ε), m ≥ m0(ε).

On the other hand for each n ≥ n0(ε) there exists mn(ε) such that

d(fmn(ε)(x∗n), x∗) <
ε

2
.

Theorem 4.2. (see [1], [5], [18]) Let (X, d) be a complete metric space and

fn : X → X a αn-contraction, such that αn → 0 as n → ∞. Let x∗ ∈ X. Then the

following statements are equivalent:

(i) there exists x0 ∈ X such that fn(x0) → x∗ as n →∞;

(ii) fn(x) → x∗ as n →∞, for all x ∈ X;

(iii) x∗n → x∗ as n →∞, where x∗n is the unique fixed point of fn.

Proof. (i) ⇒ (ii). From the condition (i) we have

d(fn(x), x∗) ≤ d(fn(x), fn(x0)) + d(fn(x0), x∗) ≤

≤ and(x, x0) + d(fn(x0), x∗).

(ii) ⇒ (ii). We have

d(x∗n, x∗) ≤ d(fn(x∗n), fn(x∗)) + d(fn(x∗), x∗) ≤

≤ αnd(x∗n, x∗) + d(fn(x∗), x∗).

So

d(x∗n, x∗) ≤ 1
1− αn

d(fn(x∗), x∗) → 0 as n →∞.

(iii) ⇒ (i). It follows from

d(fn(x∗), x∗) ≤ d(fn(x∗), fn(x∗n)) + d(fn(x∗n), x∗) ≤

≤ (αn + 1)d(x∗n, x∗).

Remark 4.1. For other results for the Problem 11-14 see [1], [5], [10], [22],

[18], [19], [28], [36].
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[38] I.A. Rus, S. Mureşan, Data dependence of the fixed points set of some weakly Picard

operators, Seminar Itinerant, Cluj-Napoca, 2000.
[39] R.S. Strichartz, Fractal in the large, Canad. J. Math., 50(1996), 638-657.
[40] B. Scerbacov, Poisson stability of the solutions of differential equations, Chişinău,
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ON CERTAIN INEQUALITIES INVOLVING THE IDENTRIC MEAN
IN n VARIABLES

TIBERIU TRIF

Abstract. In this paper we establish one Chebyshev type and two Ky Fan

type inequalities for the weighted identric mean in n variables.

1. Introduction and notation

Let n ≥ 2 be a given integer, let

An−1 = { (λ1, . . . , λn−1) | λi ≥ 0, i = 1, . . . , n− 1, λ1 + · · ·+ λn−1 ≤ 1 }

be the Euclidean simplex, and let µ be a probability measure on An−1. For each

i ∈ { 1, . . . , n }, the ith weight wi associated to µ is defined by

wi =
∫

An−1

λidµ(λ) if 1 ≤ i ≤ n− 1,

wn =
∫

An−1

(1− λ1 − · · · − λn−1)dµ(λ),

where λ = (λ1, . . . , λn−1) ∈ An−1. Obviously, wi > 0 for all i ∈ { 1, . . . , n }, and

w1 + · · ·+ wn = 1. We also define

wij =
∫

An−1

λiλjdµ(λ) if 1 ≤ i, j ≤ n− 1,

win = wni =
∫

An−1

λi(1− λ1 − · · · − λn−1)dµ(λ) if 1 ≤ i ≤ n− 1,

wnn =
∫

An−1

(1− λ1 − · · · − λn−1)2dµ(λ).

Taking into account the Liouville formula (see, for instance, [1])∫
An−1

λp1−1
1 · · ·λpn−1−1

n−1 f(λ1 + · · ·+ λn−1)dλ1 · · · dλn−1

=
Γ(p1) · · ·Γ(pn−1)

Γ(p1 + · · ·+ pn−1)

∫ 1

0

xp1+···+pn−1−1f(x)dx,

1991 Mathematics Subject Classification. 26D15.
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in the special case µ = (n− 1)! we get wi = 1/n for all i ∈ { 1, . . . , n } and

wii =
2

n(n + 1)
for all i ∈ { 1, . . . , n },

wij =
1

n(n + 1)
for all i, j ∈ { 1, . . . , n }, i 6= j.

Next, recall that the identric mean I(x1, x2) of the positive real numbers x1

and x2 is defined by

I(x1, x2) =
1
e

(
xx2

2

xx1
1

)1/(x2−x1)

if x1 6= x2,

I(x1, x1) = x1.

It is easily seen that the following integral representation holds:

I(x1, x2) = exp
(∫ 1

0

log(tx1 + (1− t)x2)dt

)
. (1.1)

Given X = (x1, . . . , xn) ∈ ]0,∞[n, we set

λ ·X := λ1x1 + · · ·+ λn−1xn−1 + (1− λ1 − · · · − λn−1)xn

for all λ = (λ1, . . . , λn−1) ∈ An−1. Starting from (1.1), in [7] it was pointed out that

I(X;µ) := exp

(∫
An−1

log(λ ·X)dµ(λ)

)
can be considered as the weighted identric mean of x1, . . . , xn. For µ = (n − 1)! we

obtain the unweighted and symmetric identric mean of x1, . . . , xn

I(X) = I(x1, . . . , xn) = exp

(
(n− 1)!

∫
An−1

log(λ ·X)dλ1 · · · dλn−1

)
.

As in the case of other means, I(X;µ) can be generalized as follows: for each

real number r we set Xr := (xr
1, . . . , x

r
n), and then define

Ir(X;µ) := (I(Xr;µ))1/r if r 6= 0,

I0(X;µ) := lim
r→0

Ir(X;µ) = xw1
1 · · ·xwn

n (see [5]).

The means Ir(X;µ) are special cases of the so-called Stolarsky-Tobey means intro-

duced in [5]: namely Ir(X;µ) = Er,r(X;µ). Consequently, several inequalities (of the

Jensen, Minkowski, Hölder, Rennie, and Kantorovich type, respectively) involving the

means Ir can be obtained as special cases of the results listed in [5]. In Section 2 of
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this paper we complete these inequalities by proving a Chebyshev type inequality for

Ir.

Let

A(X;µ) := w1x1 + · · ·+ wnxn and G(X;µ) := xw1
1 · · ·xwn

n

be the weighted arithmetic and geometric mean, respectively, of x1, . . . , xn. For µ =

(n− 1)! we obtain the usual arithmetic and geometric mean of x1, . . . , xn

A(X) = A(x1, . . . , xn) =
x1 + · · ·+ xn

n
,

G(X) = G(x1, . . . , xn) = (x1 · · ·xn)1/n.

A famous result due to Ky Fan asserts that if 0 < xi ≤ 1/2 for all i ∈ { 1, . . . , n },

then
G(X;µ)

G(1−X;µ)
≤ A(X;µ)

A(1−X;µ)
, (1.2)

where 1 − X := (1 − x1, . . . , 1 − xn). The following refinement of (1.2) has been

recently obtained in [7]:

G(X;µ)
G(1−X;µ)

≤ I(X;µ)
I(1−X;µ)

≤ A(X;µ)
A(1−X;µ)

. (1.3)

In Section 3 of this paper we establish a converse of the left inequality in (1.3) as well

as an improvement of the right inequality in (1.3).

2. Chebyshev’s inequality for the identric mean in n variables

Theorem 2.1. Let X = (x1, . . . , xn) ∈ Rn and Y = (y1, . . . , yn) ∈ Rn such

that 0 < x1 ≤ · · · ≤ xn and 0 < y1 ≤ · · · ≤ yn, and let X · Y := (x1y1, . . . , xnyn).

Then

Ir(X;µ)Ir(Y ;µ) ≤ Ir(X · Y ;µ) for all r > 0,

Ir(X;µ)Ir(Y ;µ) ≥ Ir(X · Y ;µ) for all r < 0.

Proof. According to Chebyshev’s inequality, we have

(λ ·Xr)(λ · Y r) ≤ λ · (X · Y )r

for all r ∈ R and all λ ∈ An−1, hence∫
An−1

log(λ ·Xr)dµ(λ) +
∫

An−1

log(λ · Y r)dµ(λ) ≤
∫

An−1

log(λ · (X · Y )r)dµ(λ)
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for all r ∈ R. Exponentiating both sides yields

I(Xr;µ)I(Y r;µ) ≤ I((X · Y )r;µ) for all r ∈ R.

This inequality implies the conclusion of the theorem. �

Besides the identric mean I(x1, x2) of the positive real numbers x1 and x2,

the logarithmic mean of x1 and x2 is another important special case of the Stolarsky

mean of x1 and x2. Recall that the logarithmic mean of x1 and x2 is defined by

L(x1, x2) =
x1 − x2

log x1 − log x2
if x1 6= x2,

L(x1, x1) = x1.

Theorem 2.2. Let x1, x2, y1, y2 be positive real numbers.

If (x1 − x2)(y1 − y2) > 0, then

L(x1, x2)L(y1, y2) < L(x1y1, x2y2), (2.1)

while if (x1 − x2)(y1 − y2) < 0, then

L(x1, x2)L(y1, y2) > L(x1y1, x2y2). (2.2)

In the proof we shall use the elementary

Lemma 2.3. The following assertions are true:

a) f1(v) = v log v − v + 1 is strictly decreasing from ]0, 1[ onto ]0, 1[, and

strictly increasing from ]1,∞[ onto ]0,∞[.

b) f2(v) = v log v − 2v + log v + 2 is strictly increasing from ]0,∞[ onto

]−∞,∞[.

c) f3(v) = v2 − 2v log v − 1 is strictly increasing from ]0, 1[ onto ]− 1, 0[.

d) f4(v) = v log2 v − (v − 1)2 is strictly increasing from ]0, 1[ onto ]− 1, 0[.

Proof of the Theorem 2.2. Suppose first that (x1 − x2)(y1 − y2) > 0. Due to

the symmetry, we may assume that x1 > x2 and y1 > y2, so u := x1
x2

> 1, v := y1
y2

> 1.

Taking into account the homogeneity of L, inequality (2.1) is equivalent to

u− 1
log u

· v − 1
log v

<
uv − 1

log u + log v
,
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i. e. to

(u− 1)(v − 1)(log u + log v)− (uv − 1) log u log v < 0. (2.3)

Let v ∈ ]1,∞[ be fixed, and let f : ]0,∞[→ R be the function defined by

f(u) := (u− 1)(v − 1)(log u + log v)− (uv − 1) log u log v. (2.4)

Then we have

f ′(u) = (v − 1− v log v) log u +
u− 1

u
(v − 1− log v),

f ′′(u) =
v − 1− log v − u(v log v − v + 1)

u2
.

Since v > 1, by virtue of Lemma 2.3 a) and b) we obtain

f ′′(u) <
v − 1− log v − (v log v − v + 1)

u2
= −v log v − 2v + log v + 2

u2
< 0

for all u ∈ ]1,∞[, hence f ′ must be strictly decreasing on ]1,∞[. Therefore f ′(u) < 0

for u > 1, because f ′(1) = 0. This implies that f is also strictly decreasing on ]1,∞[.

Consequently, f(u) < 0 for u > 1, because f(1) = 0. This proves the validity of (2.3).

Suppose now that (x1 − x2)(y1 − y2) < 0, and assume that x1 > x2 and

y1 < y2. Then we have u := x1
x2

> 1 and v := y1
y2

< 1. Depending on u and v, we

distinguish the following possible cases:

Case I. uv = 1.

Then inequality (2.2) is equivalent to L(u, 1)L(1/u, 1) > 1. Since L(1/u, 1) =

L(u, 1)/u, this transforms into the well-known inequality L(u, 1) >
√

u = G(u, 1) (see

[8]).

Case II. uv > 1.

Then inequality (2.2) is equivalent to (2.3). Let v ∈ ]0, 1[ be fixed, and let

f : ]0,∞[→ R be the function defined by (2.4). By virtue of Lemma 2.3 a) and c),

for all u ∈ ]1/v,∞[ we have

f ′′(u) <
v − 1− log v − 1

v (v log v − v + 1)
u2

=
v2 − 2v log v − 1

u2v
< 0,

hence f ′ must be strictly decreasing on ]1/v,∞[. But f ′(1/v) = v log2 v − (v − 1)2 <

0, according to Lemma 2.3 d), so f ′(u) < 0 for u > 1/v. This implies that f is
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also strictly decreasing on ]1/v,∞[. Consequently, f(u) < 0 for u > 1/v, because

f(1/v) = 0. This proves the validity of (2.3).

Case III. uv < 1.

Then inequality (2.2) is equivalent to

(u− 1)(v − 1)(log u + log v)− (uv − 1) log u log v > 0. (2.5)

Let again v ∈ ]0, 1[ be fixed, and let f : ]0,∞[→ R be the function defined by (2.4).

Set

ṽ :=
v − 1− log v

v log v − v + 1
.

By Lemma 2.3 a), b), and c) we have 1 < ṽ < 1/v. It is immediately seen that

f ′′(u) > 0 for u ∈ ]1, ṽ[ and f ′′(u) < 0 for u ∈ ]ṽ, 1/v[. Consequently, f ′ is strictly

increasing on ]1, ṽ[ and strictly decreasing on ]ṽ, 1/v[. Since f ′(1) = 0 and f ′(1/v) =

v log2 v − (v − 1)2 < 0, it follows that there exists a unique v̄ ∈ ]ṽ, 1/v[ such that

f ′(v̄) = 0, f ′(u) > 0 for u ∈ ]1, v̄[, and f ′(u) < 0 for u ∈ ]v̄, 1/v[. Therefore f is strictly

increasing on ]1, v̄[ and strictly decreasing on ]v̄, 1/v[. Since f(1) = f(1/v) = 0, we

can conclude that f(u) > 0 for all u ∈ ]1, 1/v[. This completes the proof of (2.5). �

Remark. It would be interesting to study whether Theorem 2.2 can be

generalized for n variables (the author does not know the answer).

3. Two inequalities related to (1.3)

In this section, both a converse of the left inequality in (1.3) and a refinement

of the right inequality in (1.3) are obtained. They are contained in the following two

theorems.

Theorem 3.1. If X = (x1, . . . , xn) ∈ ]0, 1/2]n, then it holds that

log
I(X;µ)

I(1−X;µ)
− log

G(X;µ)
G(1−X;µ)

(3.1)

≤

(
n∑

i=1

wixi

)(
n∑

i=1

wi

xi(1− xi)

)
−

n∑
i=1

wi

1− xi
.

110
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Theorem 3.2. If X = (x1, . . . , xn) ∈ ]0, 1/2]n, then it holds that

log
A(X;µ)

A(1−X;µ)
− log

I(X;µ)
I(1−X;µ)

(3.2)

≥ 1− 2x̄

2x̄2(1− x̄)2

n∑
i,j=1

(wij − wiwj)xixj ,

where x̄ := max {x1, . . . , xn }.

In the proofs of Theorem 3.1 and Theorem 3.2 we shall use the following

lemmas.

Lemma 3.3. Let J ⊆ R be a nonempty interval, let X = (x1, . . . , xn) ∈ Jn,

and let φ : J → R be a twice differentiable function such that φ′′(x) ≥ 0 for all x ∈ J .

Then it holds that
n∑

i=1

wiφ(xi)−
∫

An−1

φ(λ ·X)dµ(λ) (3.3)

≤
n∑

i=1

wixiφ
′(xi)−

(
n∑

i=1

wixi

)(
n∑

i=1

wiφ
′(xi)

)
.

Proof. The nonnegativity of φ′′ ensures that

φ(λ ·X) ≥ φ(xi) + φ′(xi)(λ ·X − xi)

for all i ∈ { 1, . . . , n } and all λ ∈ An−1. Integrating over An−1 with respect to µ

yields

φ(xi)−
∫

An−1

φ(λ ·X)dµ(λ) ≤ xiφ
′(xi)− φ′(xi)(w1x1 + · · ·+ wnxn)

for all i ∈ { 1, . . . , n }. Multiplying both sides by wi and then summing the obtained

inequalities, we get (3.3). �

Given the nonempty interval J ⊆ R, to each function φ : J → R we associate

the function Lφ : Jn → R defined by

Lφ(X) :=
∫

An−1

φ(λ ·X)dµ(λ)− φ

(
n∑

i=1

wixi

)
X = (x1, . . . , xn) ∈ Jn.

Lemma 3.4. Suppose that φ has a continuous second derivative in J , and let

X = (x1, . . . , xn) ∈ Jn, x := min {x1, . . . , xn }, x̄ := max {x1, . . . , xn }. Then there
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exists a point x̃ ∈ [x, x̄] such that

Lφ(X) =
1
2
φ′′(x̃)Le2(X),

where e2(x) = x2.

Proof. Set λ0 := (w1, . . . , wn−1) ∈ An−1 and x0 := w1x1 + · · · + wnxn.

Obviously, x0 = λ0 ·X. Next, let ϕ : An−1 → R be the function defined by ϕ(λ) :=

φ(λ ·X). For each λ = (λ1, . . . , λn−1) ∈ An−1 there exists ξ ∈ ]0, 1[ such that

ϕ(λ) = ϕ(λ0) + dϕ(λ0)(λ− λ0) +
1
2
d2ϕ(λ0 + ξ(λ− λ0))(λ− λ0),

hence

φ(λ ·X) = φ(x0) + φ′(x0)
n−1∑
i=1

(xi − xn)(λi − wi) (3.4)

+
1
2
φ′′(xξ)

n−1∑
i,j=1

(xi − xn)(xj − xn)(λi − wi)(λj − wj),

where xξ := (λ0 + ξ(λ− λ0)) ·X. Further, let

m := inf φ′′([x, x̄]) and M := sup φ′′([x, x̄]).

Taking into account that

n−1∑
i,j=1

(xi − xn)(xj − xn)(λi − wi)(λj − wj) =

(
n−1∑
i=1

(xi − xn)(λi − wi)

)2

≥ 0,

from (3.4) we get

1
2
m

n−1∑
i,j=1

(xi − xn)(xj − xn)(λi − wi)(λj − wj)

≤ φ(λ ·X)− φ(x0)− φ′(x0)
n−1∑
i=1

(xi − xn)(λi − wi)

≤ 1
2
M

n−1∑
i,j=1

(xi − xn)(xj − xn)(λi − wi)(λj − wj)

for all λ = (λ1, . . . , λn−1) ∈ An−1. Integrating over An−1 with respect to µ yields

1
2
m

n−1∑
i,j=1

(wij − wiwj)(xi − xn)(xj − xn) ≤ Lφ(X)

≤ 1
2
M

n−1∑
i,j=1

(wij − wiwj)(xi − xn)(xj − xn).
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As a simple computation shows, we have

n−1∑
i,j=1

(wij − wiwj)(xi − xn)(xj − xn) = Le2(X),

hence 1
2mLe2(X) ≤ Lφ(X) ≤ 1

2MLe2(X). Now, the continuity of φ′′ ensures the

existence of a point x̃ ∈ [x, x̄] such that Lφ(X) = 1
2φ′′(x̃)Le2(X). �

Proof of the Theorem 3.1. Inequality (3.1) follows at once from (3.3) if we

take J := ]0, 1/2] and φ : J → R to be the function φ(x) = log(1− x)− log x, whose

second derivative is

φ′′(x) =
1− 2x

x2(1− x)2
≥ 0 for all x ∈ J.

�

Proof of the Theorem 3.2. With the same choices for J and φ, from Lemma

3.4 we conclude the existence of a point x̃ ∈ [x, x̄] such that

log
A(X;µ)

A(1−X;µ)
− log

I(X;µ)
I(1−X;µ)

=
1− 2x̃

2x̃2(1− x̃)2
Le2(X)

=
1− 2x̃

2x̃2(1− x̃)2

n∑
i,j=1

(wij − wiwj)xixj

≥ 1− 2x̄

2x̄2(1− x̄)2

n∑
i,j=1

(wij − wiwj)xixj ,

because φ′′ is decreasing on J . �

Remark. For µ = (n− 1)!, inequalities (3.1) and (3.2) reduce to

log
I(X)

I(1−X)
− log

G(X)
G(1−X)

≤ 1
n2

(
n∑

i=1

xi

)(
n∑

i=1

1
xi(1− xi)

)
− 1

n

n∑
i=1

1
1− xi

and

log
A(X)

A(1−X)
− log

I(X)
I(1−X)

≥ 1− 2x̄

2n2(n + 1)x̄2(1− x̄)2

n
n∑

i=1

x2
i −

(
n∑

i=1

xi

)2
 ,

respectively.
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BOOK REVIEWS

T. Banakh, T. Radul, M. Zarichnyi, Absorbing Sets in Infinite-Dimensional Manifolds

Mathematical Studies Monograph Series, Volume 1, VNTL Publishers, Ukraine, 1996,

232 pp.

The book is devoted to the theory of absorbing sets and its applications,

most of them consisting in beautiful and short characterizations of many remarkable

spaces. The term space, stands for separable, metrizable topological space.

The first chapter of the book contains an exposition of the basic theory of

absorbing sets.

A space X is said to be C-absorbing (with respect to a given class C of spaces)

if:

a) X is strongly C-universal ANR (absolute neighborhood retract) satisfying

SDAP (strong discrete approximation property)

b) X ∈ σC (i.e. X is a countable union of spaces from C)

c) X is a Zσ space (i.e. X is a countable union of Z-spaces in C.

[recall that a set A ⊆ X is a Z-space if for every open cover U of X, there

exists a continuous map f : X → X such that f(X) ∩ A = ∅ and f, idX are U-close,

i.e. for each x ∈ X with f(x) 6= x, there exists U ∈ U such that x ∈ U, f(x) ∈ U ].

The second chapter, ”Construction of absorbing sets”, contains examples of

absorbing sets with respect to several classes of sets, sometimes defined by dimensional

conditions.

The third chapter contains some even more technical results concerning strong

universality for pairs and for spaces.

The last two chapters include applications to infinite products, topological

groups, convex sets, spaces of probability measures.
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The results included in the 232 pages of the book integrate the work of the

authors with work of many other mathematicians such as K. Borsuk, C. Bessaga, A.

Pe lczińsky, H. Toruńczyk, M. Bestvina, J. Mogilski, T. Dobrowolski, O. Keller.

The book contains many exercises and notes and comments at the end of

each chapter.

V. Anisiu

G.P. Galdi, J.G. Heywood and R. Rannecher Eds., Fundamental Directions in Math-

ematical Fluid Mechanics, Birkhäuser, Boston-Basel-Berlin 2000, 293 pp., ISBN 3-

7643-6414-9.

This volume consists of six research articles, written by excellent experts

in fluid mechanics. Each of these articles treats an important topic in the theory

of Navier-Stokes equations in a rigorous mathematical manner. A very important

problem in this area is to go beyond the presently known global existence of weak

solutions, to the global existence of smooth solutions, for which uniqueness result

and continuous dependence on the data can be provided. For this reason, Galdi’s

article An introduction to the Navier-Stokes initial-boundary value problem gives an

overview of this topic. The article of Gervasio, Quarteroni and Saleri Spectral ap-

proximation of Navier-Stokes equations is devoted to extension of spectral Galerkin

methods to domains with complicated geometries by using the techniques of domain

decomposition. It is well known that the rigorous explanation of bifurcation phe-

nomena in fluid mechanics has been a main topic in the theory of the Navier-Stokes

equations. The article of Heywood and Nagata Simple proofs of bifurcation theorems

introduces bifurcation theory in a general setting that is convenient for application to

the Navier-Stokes equations. The two articles of Heywood and Padula On the steady

transport equation and On the existence and uniqueness theory for the steady com-

pressible viscous flow give a simplified approach to the theory of steady compressible

viscous flows. Finally the article of Rannacker Finite element methods for the in-

compressible Navier-Stokes equations combines the theory and implementation of the

finite element method, with an emphasis on a priori and a posteriori error estimation

and adaptive mesh refinement.
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The book is an important addition to the literature and it will be a very good

investment for interested researchers.

M. Kohr

Andreescu, T., Gelca, R., Mathematical Olympiad Challenges, Birkhauser, Boston -

Basel - Berlin, 2000, 260 pp + xv, ISBN 0-8176-4155-6.

This beautiful book of T. Andreescu and R. Gelca is a comprehensive col-

lection of high level and non-standard problems for mathematical olympiads and

competitions. The both authors were educated at the strong Romanian mathemat-

ics school and therefore their present work contains a part of this past experience.

At present, Titu Andreescu is the Executive Director of the American Mathematics

Competitions. Under his guidance the US Olympic Team has obtained very high

scores (first place with perfect score in 1994), and was situated on the third place

at the least World Mathematical Olympiad in Korea. USA will be the host of the

2001 Mathematical Olympiad and T. Andreescu is the director of the organizing com-

mittee. I have to note that the book begins with the following words of the famous

Romanian mathematician Grigore Moisil : ”Matematică, matematică, matematică,

atâta matematică? Nu, mai multă! (”Mathematics, mathematics, mathematics, so

much mathematics? No, even more! ”). In fact these words give us a good expression

of the spirit of this book : create and solve more and more problems since this is the

best way to learn and to understand mathematics.

The included problems are clustered into three self-contained chapters : Ge-

ometry and Trigonometry, Algebra and Analysis, Number Theory and Combinatorics,

each of them containing ten sections. For instance, the topics of sections in Geometry

and Trigonometry are the following : A property of equilateral triangles, Dissections

of polygonal surfaces, Regular polygons, Cyclic quadrilaterals, Power of a point, Geo-

metric constructions and transformations, Problems with physical flower, Tetrahedra

inscribed in parallelepipeds, Telescopic sums and products in trigonometry, Trigono-

metric substitutions. A background material, some representative examples, and

beautiful diagrams are included to complete each section. Most of the proposed prob-

lems were successfully tested in classrooms as well as in national and international
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mathematical competitions. From this point of view the Romanian experience is very

well represented. The second part of the book contains the completed and detailed

solutions of the proposed problems. These are presented in a very didactic way, en-

couraging the readers to move away from routine exercises and memorized algorithms

toward creative solutions and non-standard problem-solving techniques. The name

of author and source of most of the proposed problems are mentioned in this part.

At the end of the book a glossary of used definitions and fundamental properties is

included.

In the authors‘ preface one can read that this work ”... is written as a

textbook to be used in advanced problem solving courses, or as a reference source for

people interested in tackling challenging mathematical problems”. I have to conclude

that in this respect all the purposes of the book are successfully fulfilled.

Dorin Andrica

T.M. Atanackovic, A. Guran, Theory of Elasticity for Scientists and Engineers,

Birkäuser, Boston-Basel-Berlin, 2000, 374 pp., ISBN 0-8176-4072-X.

The present book is intended to be an introduction to theory of elasticity.

It is a new and comprehensive text, as well as a good reference work providing an

excellent introduction to theory of elasticity and its applications. The book contains

ten chapters. The first chapter has an introductory character, containing the theory

of stress. The second chapter begins with the description of deformation at a point.

Further, the nonlinear strain tensor is obtained and the geometrical meaning of its

components are studied. On the other hand, the strain tensor in the case of small

deformations is derived by linearization and its properties are examined. We remark

that these preliminary chapters treat the basic concepts of stress and strain, using

only Cartesian vector and tensor notation. Chapter three treats the relation between

stress and strain. This chapter introduces constitutive equations for an elastic body

and the thermoelastic stress-strain relation. Chapter four is devoted to some bound-

ary value problems of elasticity theory. The authors give a summary of equations of

linear elasticity theory and use the scalar and vector potential theory to solve several

problems in this field (the Lamé potential, the Galerkin vector, the Love function,
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the method of Papkovich and Neuber, etc.). The aim of chapter five is to give a

presentation of a large number of some important problems of elasticity theory for

which solutions are available (torsion, bending and rotation of a prismatic rod). This

chapter is a very good reference source for researchers in the field. Chapter six is

concerned with the plane strain, plane stress, and generalized plane stress problems

and presents several methods to solve these problems (the complex variable method,

Fourier transform method). Chapter seven is devoted to the energy method in elas-

ticity theory. The aim of chapter eight is to derive the von Kármán theory of plates

and in chapter nine is treated the contact and elastic impact problems for elastic

bodies. The last chapter of the book refers to the stability of elastic bodies. Some

examples illustrating stability analysis are included. At the end of each chapter a

selected number of problems are given.

To conclude, I think this book is very important for introducing readers in

mechanical engineering, mechanics and applied mathematics to a modern view of

theory of elasticity. The book is clearly written, contains a wealth of information,

introducing the reader to a modern and active area of investigations.

I recommend this book to all specialists in this area.

M. Kohr
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William G. Litvinov, Optimization in Elliptic Problems with Applications to Mechan-

ics of Deformable Bodies and Fluid Mechanics, Operator Theory Advances and Ap-

plications, Vol. 119, Birkhäuser Verlag, Basel-Boston-Berlin 2000, 522 pages, ISBN

3-7643-6199-9.

The author offers the reader a thorough introduction to contemporary re-

search in optimization theory for elliptic systems with its numerous applications, and

a textbook at the undergraduate and graduate levels for courses in pure and applied

mathematics.

The mathematical models of the modern technology and production contain

elliptic equations and systems. Optimization of the processes from these models is

reduced to optimization problems for elliptic equations and systems. The numerical

solution of such problems is associated with some questions. Some of them are the

following:

• The setting of the optimization problem ensures the existence of a solu-

tion on a set of admissible controls, which is a subset of some infinite-

dimensional vector space.

• Reduction of the infinite-dimensional problem to a sequence of finite di-

mensional problems such that the solutions of the finite-dimensional prob-

lems converge to the solution of the infinite-dimensional problem.

• Numerical solution of the finite dimensional problems.

The book is devoted to these questions. Attention is focused on the settings of the

problems, on the proof of existence theorems, and on the method of approximate

solution of optimization problems. For elliptic equations and systems the author in-

vestigates optimization problems in which the coefficients of equations, the shape of

domains, and right-hand sides of equations are considered to be controls. The re-

sults are applied to various optimization problems of mechanics of deformable bodies,

plates, shells, composite materials, and structures made of them, as well as to the

optimization problems of mechanics of viscous fluids.

The book is written in an accessible and self-contained manner. It will be of

interest to research mathematicians and science engineers working in solid and fluid

mechanics, and in optimization theory of partial differential equations.
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P. Szilágyi

Vladimir Maz’ya, Serguei Nazarov, Boris Plamenevskij, Asymptotic Theory of Elliptic

Boundary Value Problems in Singularly Perturbed Domains, Volume I. 435 pages,

ISBN 3-7643-6397-5, Volume II. 323 pages, ISBN 3-7643-6398-3, Operator Theory

Advances and Applications, Vols. 111 and 112, Birkhäuser Verlag, Basel-Boston-

Berlin, 2000.

The book is devoted to the development and applications of asymptotic meth-

ods to boundary value problems for elliptic equations in singularly perturbed domains

Ω, which can have corners, edges, small holes, small slits, thin ligaments etc. The

boundary value problems are considered first in domains Ω(ε) that depend on a small

parameter ε, where Ω(0) = Ω. So the boundary of the domain Ω(0) is not smooth and

contains a number of singular points, contours or surfaces. A transition from Ω(0)

to Ω(ε) results in the fact that isolated points convert into small cavities, contours

convert into thin tubes and surfaces into flat holes, or the boundary of the domain

near a conical point or an edge becomes smooth and so on. These perturbations of

the domain are said to be singular, in the contrast to regular perturbations, when the

boundaries of the domains Ω(0) and Ω(ε) are closed smooth surfaces. The authors

investigate the behaviour of solutions uε of the boundary value problems, eigenvalues

of the corresponding operator, and the behaviour of different functionals as ε → 0.

A lot of attention is paid to particular problems of mathematical physics.

Most of the problems considered in the two volumes emerged from problems in hydro-

dynamics and aerodynamics, the theory of elasticity, fracture mechanics, electrostatics

and others. A substantial body of results has been accumulated on the applications

of asymptotic methods to physical problems. This knowledge has been particularly

useful in a broad range of engineering problems.

The authors offer in the 20 chapters of the book a complete theory of bound-

ary value problems in domains, which have corners, edges or other singularities. Most

of the material presented in the book is based on results of the authors, which have

been partly published in scientific journals. This book can be considered as unique
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in the mathematical literature, because it presents for the first time a profound and

complete mathematical analysis of the asymptotic theory of elliptic boundary value.

Finally we remark, that the book originally was published by Akademic Verlag

GmbH, Germany, under the title ”Asymptotic Theorie Elliptischer Radwertaufgaben

in singulär gestörten Gebieten” in 1991.

P. Szilágyi

Ring Theory and Algebraic Geometry, Editors: Ágnel Granja, Hose Ágnel Hermida,

Alain Verschoren, Lecture Notes in Pure and Applied Mathematics, vol. 221, Marcel

Dekker (2001), xv+339pp, ISBN 0-8247-0559-9.

The volume under review presents papers presented at the ”Fift International

Conference on Algebra and Algebraic Geometry (SAGA V)”, held at the University

of León, Spain.

The aim of this book is to exhibit some interaction between algebra and al-

gebraic geometry and it contains 20 research papers and surveys. The contributors

are important specialists in some actual domains in mathematics: modules and lat-

tices, algebras and representation theories, affine and projective algebraic varieties,

simplicial and cellular complexes, cones, polytipes, arithmetics, etc.

Brzeziński, Caenepeel, Militaru and Zhu study condition when induction func-

tors and their adjuncts are separable; Bueso, Gómez-Torecillas and Lobillo character-

ize the solvable polinomial algebras and present an algorithm to compute the Gelfand-

Kirillov dimension for f.g. modules over these algebras; Campillo and Pisón ”show

how mathematics in toric geometry can be understood of appropriate classes of com-

mutative semigroups”; Cuadra and Van Oystaeyen present properties for some invari-

ants of coalgebras (the Picard group and the Brauer group); Escoriza and Torrecillas

give the concept of multiplication object in monoidal categories; Facchini describes

some connections between ”semi-local endomorphism ring” and ”Krull-Schmidt the-

orems”; Hartillo-Hermoso presents an algoritm which compute a global Bernstein

polynomial; Morey and Vasconcelos study the divisors of Rees algebras of ideals.

Mention that the others contributors of this volume are: Cabezas, Camacho, Gómez,
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Jiménez-Merhan, Pastor, Reyes, Rodrigeuz, Calderón-Martin, Martin-Gonzáles, Cor-

riegos, Sáncez-Giralda, Castro-Jiménes, Moreno-Frias, Gago-Vargas, Gonzáles, Idel-

hadj, Yahya, S. Gonzáles, Matinez, Malliavin, Núnez, Pisaborro, Smet, Verchoren,

Ucha-Enriquez, Verchoren, Vidal.

The authors are well-knows experts from quite different schools.

The book permits an easy access to the present state of knowledge. Students

and researchers interested in Ring Theory and in Algebraic Geometry will take a full

benefit and they find here a good source of inspiration.

Simion Breaz

Constantin Udrişte, Geometric Dynamics, Mathematics and Its Applications, Vol.

513, Kluwer Academic Publishers, Dordrecht-Boston-London 2000, xvi+395 pp.,

ISBN: 0-7923-5277-7.

A field line is a curve α : I → D of class C1, satisfying the differential equa-

tion α′(t) = X(α(t)) (or the equivalent integral equation α(t) = α(t0)+
∫ t

t0
X(α(s))ds)

where D is an open connected subset of Rn and X is a vector field of class C1 on D.

Geometric dynamics is a tool for developing a mathematical representation of real

world phenomena, based on the notion of field line. The author systematically exem-

plifies the theoretical mathematical concepts on examples from the applied sciences:

theoretical mechanics, physics, thermodynamics, biology, chemistry etc. The basic

idea of the author is to emphasize that a field line is a geodesic of a suitable geomet-

rical structure on a given space (the so called Lorentz-Udrişte world-force law). That

means that creating wider classes of Riemann-Jacobi, Riemann-Jacobi-Lagrange, or

Finsler-Jacobi manifolds, one obtains that all trajectories of a given vector field are

geodesics.

The book is divided into 11 chapters headed as follows: 1. Vector fields, 2.

Particular vector fields, 3. Field lines, 4. Stability of equilibrium points, 5. Potential

differential systems of order one and catastrophe theory, 6. Field hypersurfaces, 7.

Bifurcation theory, 8. Submanifolds orthogonal to field lines, 9. Dynamics induced

by a vector field, 10. Magnetic dynamical systems and Sabba Ştefănescu conjectures,
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11. Bifurcation in the mechanics of hypoelastic granular material (this last chapter

is written by Lucia Drăguşin).

The characteristic feature of the book is the strong interplay between math-

ematics and its applications to other areas, which makes it of interest to a large au-

dience, including first years graduates, teachers, and researchers whose work involves

mathematics, mechanics, physics, engineering, biology, and economics.

Stefan Cobzaş
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