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Iluşca Bonta, On Separable Extensions of Group Graded Algebras . . . . . . . . . . . . 19

Ana-Maria Croicu, On the Eigenvalue Problem for a Generalized

Hemivariational Inequality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume XLVII, Number 1, March 2002

SOME REMARKS ON GROUPS OF POINTWISE SYMMETRIES OF
THIRD-ORDER ORDINARY DIFFERENTIAL EQUATIONS

GALINA BANARU

Abstract. A necessary and sufficient condition for a third-order ordinary

differential equation to possess a five-dimensional group of pointwise sym-

metries is established.

1. Introduction

The investigation of symmetries groups of differential equations in general

(and of ordinary differential equations in particular) is one of the most important

problems of differential equations geometry. The author of the present article studies

third-order ordinary differential equations. Before that [1] the author obtained a

complete solution of the problem in the case when such an equation has a seven-

dimensional or a six-dimensional group of pointwise symmetries: the corresponding

criteria have been obtained. (We recall [2] that seven is the maximum of the possible

dimension of the pointwise symmetries group of a third-order ordinary differential

equation). The present work is devoted to the analysis of the problem in the case

when the dimension of the pointwise symmetries group is equal to five.

2. Preliminaries

We consider a third-order ordinary differential equation

y′′′ = f(x, y, y′, y′′) (1)

given on a plane where the pseudo-group of point analytical transformations of coor-

dinates acts:

x̃ = ϕ1(x, y); ỹ = ϕ2(x, y).

2000 Mathematics Subject Classification. 53C10.
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The equation (1) is bound in an invariant way (concerning the given transforma-

tions) with such a geometrical object as a fiber space with a connection. The Cartan

structural equations of the above-mentioned fiber space looks as follows:

Dω1 = ω1 ∧ ω1
1 + Ω1

Dω2 = ω1 ∧ ω2
1 + ω2 ∧ ω2

2

Dω2
1 = ω2

1 ∧ (ω2
2 − ω1

1) + ω1 ∧ ω2
11 + ω2 ∧ ω1

11

Dω2
11 = ω2

11 ∧ (ω2
2 − 2ω1

1) + ω2
1 ∧ ω1

11 + Ω2
11 (2)

Dω1
1 = ω1 ∧ ω1

11 + Ω1
1

Dω2
2 = ω1 ∧ ω1

11 + Ω2
2

Dω1
11 = ω1

1 ∧ ω1
11 + Ω1

11.

The torsion-curvature forms of the equations (2) looks as follows:

Ω1 =
1
2
(aω2

1 + bω2
11) ∧ ω2

Ω2
11 =

1
2
(cω1 − eω2

1) ∧ ω2

Ω1
1 =

1
2
(gω1 + hω2

1 + kω2
11) ∧ ω2 +

1
2
bω2

11 ∧ ω2
1 (3)

Ω2
2 =

1
2
[3gω1 + (3h− 2m)ω2

1 + (3k − 2a)ω2
11] ∧ ω2 +

1
2
bω2

1 ∧ ω2
11

Ω1
11 = (

1
2
e+ g)ω1 ∧ ω2

1 +
1
2
[nω1 + rω2

1 + (h+m)ω2
11] ∧ ω2 + (

1
2
a− k)ω2

1 ∧ ω2
11.

The coefficients

a, b, c, e, g, h, k,m, n, r (4)

being present in the torsion-curvature forms make up a complete system of differential

invariants of the equation (1). They completely characterize the equation (1)and,

thus, determine its geometry. The differentials of the invariants are as follows:

da+ 2a(ω1
1 − ω2

2)− bω1
11 = hω1 + ...

db+ b(3ω1
1 − 2ω2

2) = (k − a)ω1 + ...

dc− 3cω1
1 = σ1

de− e(ω1
1 + ω2

2) = σ2 (5)

dg − g(ω1
1 + ω2

2) = σ3
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SOME REMARKS ON GROUPS

dh+ h(ω1
1 − 2ω2

2) + (a− k)ω1
11 = σ4

dk + 2k(ω1
1 − ω2

2) = σ5

dm+m(ω1
1 − 2ω2

2) = (r + bc)ω1 + ...

dn− n(2ω1
1 + ω2

2)− (g + e)ω1
11 = σ6

dr − 2rω2
2 −mω1

11 = σ7.

The right parts of all equalities are linear combinations of the main forms of the

second-order tangent element: ω1, ω2, ω2
1 , ω

2
11. We denote such combinations by the

symbols σi, σ, σ̃. From the given relations it is seen that the differential invariants

of the equation (1) are either relative invariants or become relative invariants when

some relative invariants vanish.

3. The main result

Now, we consider the invariant c. According to (5),

dc− 3cω1
1 = σ1. (6)

Thus, c is one of the invariants that is relative from the beginning. For this reason for

c, as well as for any relative invariant, two different cases are possible: c = 0 and c 6= 0.

From the multitude of third-order ordinary differential equations we select those for

which the invariant c is different from zero and all others differential invariants vanish:

a = b = e = g = h = k = m = n = r = 0. (7)

Let us do the canonization c
k= 1. In extracted particular case according to

(6), the differential form ω1
1 will be a linear combination of the main forms of the

second-order tangent element:

ω1
1 = tω1 + t1ω

2 + t2ω
2
1 + t3ω

2
11, (8)

where t, t1, t2, t3 are some new invariants. Having an exterior differentiation of the

equality (8), we shall find the relations for differentials of these invariants:

dt = σ8; dt1 − t1ω2
2 = σ9;

dt2 − t2ω2
2 = σ10; dt3 − t3ω2

2 = σ11. (9)
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The obtained relations show that the coefficients t1, t2 t3 are relative invariants and

t is an absolute invariant.

The exterior differentiation of (8) will give us another useful equality:

ω1
11 = pω1 + p1ω

2 + p2ω
2
1 + p3ω

2
11. (10)

(Here p, p1, p2 p3 are new invariants of the equation (1) we are interested in). Having

an exterior differentiation of (10), we get:

dp = σ12; dp1 − p1ω
2
2 = σ13;

dp2 − p2ω
2
2 = σ14; dp3 − p3ω

2
2 = σ15. (11)

Therefore, p1, p2, p3 are relative invariants and p is an absolute invariant.

Let us select the case when all the ”new” relative invariants vanish:

t1 = t2 = t3 = p1 = p2 = p3 = 0. (12)

In this case the equalities (8) and (10) will look as follows: ω1
1 = tω1; ω1

11 = pω1, and

the Cartan structural equations (2) will be written down as follows:

Dω1 = Dω2
2 = 0

Dω2 = ω1 ∧ ω2
1 + ω2 ∧ ω2

2

Dω2
1 = ω2

1 ∧ (ω2
2 − tω1) + ω1 ∧ (ω2

11 − pω2) (13)

Dω2
2 = ω2

11 ∧ (ω2
2 − 2tω1) + ω1 ∧ (

1
2
ω2 − pω2

1).

Having an exterior differentiation of (13), we shall be convinced that (13) are structure

equations of a some transformations group. The dimension of this group is equal to

five. For the equation (1) that we are interested in the group mentioned is a group of

pointwise symmetries (in the selected particular case). So, we have proved

Proposition I. If c 6= 0 and equalities (7) and (12) are fulfilled, then the equation

(1) has a five-dimensional group of pointwise symmetries. The structure equations of

this group looks as (13).

It turns out that the inverse statement is also true.

Proposition II. If the equation (1) has a five-dimensional group of pointwise sym-

metries, then c 6= 0 and equalities (7) and (12) are fulfilled.

6
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Proof. Assume the equation (1) possesses a five-dimensional group of point-

wise symmetries. Then among its differential invariants in (4) there is at least one that

is different from zero. Otherwise [1], the symmetries group is the seven-dimensional

group g2,6(3) (using the Cartan’s terminology [3]).

Let I be one of the relative invariants of the equation (1). Then its differential

satisfies the equality:

dI + I(s1ω1
1 + s2ω

2
2) = r1ω

1 + r2ω
2 + r3ω

2
1 + r4ω

2
11. (14)

We assume that I 6= 0. Canonizing I k= 1, from (14) we obtain:

s1ω
1
1 + s2ω

2
2 = r1ω

1 + r2ω
2 + r3ω

2
1 + r4ω

2
11. (15)

Having an exterior differentiation of this equality, as one of differential results we

obtain the relation:

dr1 − r1ω1
1 + (s1 + s2)ω1

11 = σ.

The invariant r1 (like the others invariants of the equation (1)) must be a constant in

the case when (2) are the structure equations of the symmetries group of (1). Under

this condition the last equality looks as follows:

−r1ω1
1 + (s1 + s2)ω1

11 = σ. (16)

Now, we assume that the invariant s2 is different from zero and express the differential

form ω2
2 . Substituting the relation for ω2

2 in (2), we obtain:

Dω2 = ω1 ∧ ω2
1 + ω2 ∧ (−s1

s2
ω1 + σ̃).

We have an exterior differentiation of this equality. Among others we obtain the

following relation:

−s1
s2

= 1, or s1 + s2 = 0.

As seen from (5), among the relative invariants only the invariant k satisfies this

condition. But being different from zero, the invariant k does not suit us for the

reason that if we admit that the equation (1) has not any other invariants different

from zero, then the symmetries group will be the six-dimensional group g4,2. If at

least one invariant is different from zero, then according to (15) and (16) the forms

7
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ω1
1 , ω

2
2 , ω

1
11 will turn out to be dependent on ω1, ω2, ω2

1 , ω
2
11 and, thus, the symmetries

group can not have a dimension more than four.

Hence, all the relative invariants from (4) for which s2 6= 0 must vanish.

Therefore

b = e = g = k = m = 0⇒ a = k = 0.

Moreover, the coefficients h, n, become relative invariants for which s2 6= 0. If we

consider this fact as mentioned before, we can come to conclusion that h = n = r = 0.

Only the invariant I = c satisfies the condition s2 = 0. Therefore, c 6= 0.

In this case, as it is mentioned before, the forms ω1
1 and ω1

11 are expressed in

a linear way though the main forms of the second order tangent element. If we admit

that any of invariants t1, t2, t3, p1, p2, p3, are different from zero, then owing to (9)

and (11) the form ω2
2 will also be dependent on ω1, ω2, ω2

1 , ω
2
11, and so the symmetries

group can not have a dimension more then four.

That’s why, in the case we are interested in t1 = t2 = t3 = p1 = p2 = p3 = 0.

The Proposition II is proved completely.

Proposition III. The structure equations (13) determine the transformations group

g5,5.

Proof. We substitute

ω1 = Θ2; ω2 = Θ1; ω2
2 = Θ1

1 + tΘ2;

ω2
1 = Θ1

2 + tΘ1; ω2
11 = −Θ1

22 + tΘ1
2 + pΘ1.

According to the substitution, the equations (13) may be written down as follows:

DΘ2 = DΘ1
1 = 0

DΘ1 = Θ1 ∧Θ1
1 + Θ2 ∧Θ1

2

DΘ1
2 = Θ1

22 ∧Θ2 + Θ1
2 ∧Θ1

1 (17)

DΘ1
22 = Θ2 ∧ ((2p− t2)Θ1

2 −
1
2
Θ1) + Θ1

22 ∧Θ1
1.

Now, we use the structural equations of the group g5,5 for the third-order ordinary

differential equation [3]:

DΘ1 = Θ1 ∧Θ1
1 + Θ2 ∧Θ1

2
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DΘ2 = 0

DΘ1
1 = 0

DΘ1
2 = Θ1

22 ∧Θ2 + Θ1
2 ∧Θ1

1

DΘ1
22 = Θ2 ∧ (m2Θ1

2 +m3Θ1) + Θ1
22 ∧Θ1

1.

It is quite evident that (17) are structure equations of g5,5, in addition, m2 =

2p− t2;m3 = − 1
2 . The Proposition III have been proved.

Remark. In our case the finite transformations of the group look as follows:

x̃ = c1x+ ψ(y);

ỹ = y + c2,

where ψ(y) is the general solution of the equation

ψ′′′ − (t2 − 2p)ψ′ +
1
2
ψ = 0.

Taking together all the proved statements, we state the following result:

Theorem. Third-order ordinary differential equations have a five-dimensional group

of pointwise symmetries if and only if c 6= 0, and conditions (7) and (12) are fulfilled.

In addition, the only possible group of pointwise symmetries is (with the precision to

an isomorphism) the group g5,5.

References

[1] Banaru G.A., On third-order ordinary differential equations with 6-dimensional and 7-
dimensional groups of pointwise symmetries, Vestnik MGU, 3(1994), 31-36.

[2] Banaru G.A., Third-order ordinary differential equations and g4,2- connection, Webs &
Quasigroups, Tver, 1994, 84-89.

[3] Cartan E., Les sous-groupes des groupes continus de transformations, Oeuvres com-
pletes, p.2, v.2, Paris, 1953.

Smolensk State Pedagogical University, Prjevalsky str., 4,
Smolensk, 214000, RUSSIA

E-mail address: banaru@keytown.com

Received: 25.04.2001

9
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ON SPECTRA OF SOME TENSORS OF SIX–DIMENSIONAL
KÄHLERIAN SUBMANIFOLDS OF CAYLEY ALGEBRA

M.B. BANARU

Abstract. The spectra of the metric tensor, of the almost complex struc-

ture, of the fundamental form, of the Riemannian curvature tensor, of the

Ricci tensor and of the Weyl tensor of six–dimensional Kählerian subman-

ifolds of Cayley algebra are computed.

It is proved that six–dimensional Kählerian submanifolds of Cay-

ley algebra are CRK–manifolds, i.e. their Weyl tensor of conformal cur-

vature is J–invariant.

1. Preliminaries

We consider an almost Hermitian manifold, i.e. a 2n–dimensional manifold

M2n with Riemannian metric g = 〈·, ·〉 and an almost complex structure J . Moreover,

the following condition must hold

〈JX, JY 〉 = 〈X, Y 〉, ∀X, Y ∈ ℵ(M2n),

where ℵ(M2n) is the module of smooth vector fields on M2n. All considered manifolds,

tensor fields and similar objects are assumed to be of the class C∞.

The specification of an almost Hermitian structure on a manifold is equivalent

to the setting of a G–structure, where G is the unitary group U(n) [1]. Its elements

are the frames adapted to the structure (A–frames). They look as follows:

(p, ε1, . . . , εn, ε1̂, . . . , εn̂),

where p ∈ M2n, εa are the eigenvectors corresponded to the eigenvalue i =
√
−1,

and εâ are the eigenvectors corresponded to the eigenvalue −i. Here a = 1, . . . , n;

â = a + n.

2000 Mathematics Subject Classification. 53C10, 58C05.

Key words and phrases. almost Hermitian manifold, Kählerian manifold, tensor spectrum, CRK–

manifold.
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Therefore, the matrices of the operator of the almost complex structure and

of the Riemannian metric written in an A–frame look as follows, respectively:

(Jk
j ) =

 iIn 0

0 −iIn

 ; (gkj) =

 0 In

In 0

 ; (1)

where In is the identity matrix; k, j = 1, . . . , n.

We recall that the fundamental form of an almost Hermitian manifold is

determined by

F (X, Y ) = 〈X, JY 〉, X, Y ∈ ℵ(M2n).

By direct computing it is easy to obtain that in an A–frame the fundamental form

matrix looks as follows:

(Fkj) =

 0 iIn

−iIn 0

 (2)

It is expedient to consider the other tensors written in an A–frame. This

corresponds to the problems of the study of almost Hermitian manifolds. We remark

that the notion of the tensor spectrum was introduced by V.F. Kirichenko [1].

2. Kählerian structure on M6 ⊂ O

Let O ≡ R8 be the Cayley algebra. As it well–known [2], two non–isomorphic

three fold vector cross products are defined on it by means of the relations

P1(X, Y, Z) = −X(Y Z) + 〈X, Y 〉Z + 〈Y,Z〉X − 〈Z,X〉Y,

P2(X, Y, Z) = −(XY )Z + 〈X, Y 〉Z + 〈Y,Z〉X − 〈Z,X〉Y,

where X, Y, Z ∈ O, 〈·, ·〉 is the scalar product in O, X → X is the conjugation

operator. Moreover, any other three fold vector cross product in the octave algebra

is isomorphic to one of the above–mentioned.

If M6 ⊂ O is a six–dimensional oriented submanifold, then the induced

almost Hermitian structure {Jα, g = 〈·, ·〉} is determined by the relation

Jα(X) = Pα(X, e1, e2), α = 1, 2,

where {e1, e2} is an arbitrary orthonormal basis of the normal space of M6 at a point

p, X ∈ Tp(M6) [2]. The submanifold M6 ⊂ O is called Kählerian, if the following

12
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condition is fulfilled

∇J = 0,

where ∇ is the Levi–Civita connection of the metric. The point p ∈ M6 is called

general [3], if

e0 6∈ Tp(M6) and Tp(M6) ⊆ L(e0)⊥,

where e0 is the unit of Cayley algebra and L(e0)⊥ is its orthogonal supplement. A

submanifold M6 ⊂ O, consisting only of general points, is called a general–type

submanifold [3]. In what follows all submanifolds M6 to be considered are assumed

to be of general–type.

3. Riemannian curvature tensor spectrum

The tensor of the Riemannian curvature (or Riemann–Christoffel tensor)

plays an important role in the geometry of manifolds. The outstanding American

mathematician Alfred Gray noted [4] that the identities the Riemannian curvature

tensor satisfies are very important for the study of almost Hermitian manifolds. Tak-

ing into account the properties of the symmetry and of the reality of this tensor as

well as the Ricci identity [5], [6], it is sufficient to obtain four (out of sixteen) types

of components, that determine completely its spectrum.

Now, let M6 ⊂ O be a six–dimensional Kählerian submanifold of the octave

algebra. In [7] the Cartan structure equations of Kählerian have been obtained:

dωa = ωa
b ∧ ωb;

dωa = −ωb
a ∧ ωb;

dωa
b = ωa

c ∧ ωc
b − T 7

âĥ
T 7

bgωh ∧ ωg,

where {T 7
kj} are the components of the configuration tensor of M6 [8] (or the Euler

curvature tensor [9]). Here and further a, b, c, d, g, h = 1, 2, 3; â = a + 3; k, j,m, l =

1, 2, 3, 4, 5, 6.

Taking into account the fact that the Cartan structure equations must look

as follows:

dωk = ωk
j ∧ ωj ;

dωk
j = ωk

m ∧ ωm
j +

1
2
Rk

jmlω
m ∧ ωl,

13
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we compute the spectrum of the Riemannian curvature tensor of six–dimensional

Kählerian submanifolds of Cayley algebra. We get such values

Rabcd = Râbcd = Râb̂cd = 0, (3)

Râbĉd = −2T 7
âĉT

7
bd.

We remark that the condition

Rabcd = Râbcd = Râb̂cd = 0 (4)

is a criterion [10] for an arbitrary almost Hermitian M6 ⊂ O to belong to the class

of R1–manifolds (in A. Gray’s terminology [4], or parakählerian manifolds [11], or

f–spaces [12]). But, however, A. Gray has proved [4] that every Kählerian manifold

is parakählerian. That’s why (4) could be obtained from the above–mentioned result

[10].

4. Ricci tensor spectrum

We recall that the Ricci tensor of a Riemannian manifold [5], [6] is determined

by the relation

rickj = Rl
kjl.

In view of the reality of the Ricci tensor for determining of its spectrum it is sufficient

to find the components ricab and ricâb. From (3) we get:

ricab = 0, ricâb = −2T 7
âĉT

7
cb.

Since the condition ricab = 0 is a criterion for an arbitrary almost Hermitian manifold

to possess a J–invariant Ricci tensor [13], we have the following Theorem.

Theorem I. Every six–dimensional Kählerian submanifold of Cayley algebra pos-

sesses a J–invariant Ricci tensor.

5. Weyl tensor spectrum

Now, we give the values of Weyl tensor spectrum of six–dimensional Kählerian

submanifolds of the octave algebra. This tensor is determined by

Wijkl = Rijkl +
1

n− 2
(ricikgjl + ricjlgik − ricilgjk − ricjkgil)+

14
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+
K

(n− 1)(n− 2)
(gjkgil − gjlgik),

where K is the scalar curvature of M6 [6]. Like in the case of the Riemannian curvature

tensor, proceeding from the properties of the Weyl tensor, it is sufficient to find the

components

Wabcd, Wâbcd, Wâb̂cd, Wâbĉd,

that determine completely the Weyl tensor spectrum. We obtain such values

Wabcd = 0, Wâbcd = 0,

Wâb̂cd = −1
2
(T 7

âĥ
T 7

hcδ
b
d + T 7

b̂ĥ
T 7

hdδ
a
c − T 7

âĥ
T 7

hdδ
b
c − T 7

b̂ĥ
T 7

hcδ
a
d) +

K
20

δba
cd ,

Wâbĉd = −2T 7
âĉT

7
bd +

1
2
(T 7

âĥ
T 7

hdδ
c
b + T 7

ĉĥ
T 7

hbδ
a
d) +

K
20

δc
bδ

a
d .

As the condition

Wâbcd = 0

is a criterion for an arbitrary almost Hermitian manifold to belong to the CRK–class

(or cR3–class [14]), we obtain the following Theorem.

Theorem II. Every six–dimensional Kählerian submanifold of Cayley algebra is a

CRK–manifold.

6. Table of classical tensors of six-dimensional Kählerian submanifolds of

Cayley algebra

Let us put together the obtained results. The spectra of the structure ten-

sors and of the fundamental form are found from (1) and (2). We remark that all

these data define more exactly the result [15] obtained on six–dimensional Hermitian

submanifolds of Cayley algebra.

15
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Tensor Tensor spectrum

Almost complex Ja
b = iδa

b , J â
b = 0, Ja

b̂
= 0, J â

b̂
= −iδb

a

structure

Riemannian gab, gâb = δa
b , gab̂ = δb

a, gâb̂ = 0

metric

Fundamental Fab, Fâb = −iδa
b , Fab̂ = iδb

a, Fâb̂ = 0

form

Riemannian Rabcd = 0, Râbcd = 0, Râb̂cd = 0,

curvature tensor Râbĉd = −2T 7
âĉT

7
bd

Ricci tensor ricab = 0, ricâb = −2T 7
âĉT

7
cb

Weyl tensor Wabcd = 0, Wâbcd = 0,

Wâb̂cd = − 1
2 (T 7

âĥ
T 7

hcδ
b
d + T 7

b̂ĥ
T 7

hdδ
a
c − T 7

âĥ
T 7

hdδ
b
c−

−T 7
b̂ĥ

T 7
hcδ

a
d) + K

20δba
cd ,

Wâbĉd = −2T 7
âĉT

7
bd + 1

2 (T 7
âĥ

T 7
hdδ

c
b + T 7

ĉĥ
T 7

hbδ
a
d)+

+ K
20δc

bδ
a
d
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ON SEPARABLE EXTENSIONS OF GROUP GRADED ALGEBRAS

ILUŞCA BONTA

Abstract. We study extension A → B of G-graded O-algebra, when G

is a finite group. Such extensions occur when we consider blocks of nor-

mal subgroups and the associated graded source algebra, and we prove a

refinement of a lifting theorem by B. Külshammer, T. Okuyama and A.

Watanabe.

1. G-graded interior algebras

1.1. Let G be a finite group and let O be a complete discrete valuation ring with

residue field k = O/J(O) of characteristic p > 0. Let A =
⊕

g∈G Ag and B =⊕
g∈G Bg be two G-graded O-algebras, and recall that the O-algebra homomorphism

f : A → B is called G-graded if f(Ag) ⊆ Bg for all g ∈ G.

If M =
⊕

x∈G Mx is a G-graded (A,A)-bimodule, we shall consider the O-

submodule

MA = {m ∈ M | am = ma for all a ∈ A}.

We say that B is a G-graded A-interior O-algebra if B is a G-graded (A,A)-

bimodule and (xa)y = x(ay) for all a ∈ A, x, y ∈ B. Observe that in this case,

the map β : A → B, β(a) = a1B = 1Ba is a unitary homomorphism of G-graded

O-algebras. Conversely, given a unitary homomorphism β : A → B of G-graded

O-algebras, then B becomes a G-graded A-interior O-algebra in an obvious way.

Let B be a G-graded A-interior O-algebra. It is well-known that B ⊗A B

is a G-graded (B,B)-bimodule, where if x ∈ Bg and y ∈ Bh then, by definition

x⊗A y ∈ (B ⊗A B)gh. Remark that the multiplication map

µ : B ⊗A B → B, µ(x⊗A y) = xy

for x, y ∈ B is a homomorphism of G-graded (B,B)-bimodules.
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Lemma 1.2. Let B be a G-graded A-interior O-algebra and let µ : B ⊗A B → B

denote the map of G-graded (B,B)-bimodules satisfying µ(x ⊗ y) = xy for x, y ∈ G.

Then the following statements are equivalent:

(1) There exists a homomorphism ν : B → B ⊗A B of G-graded (B,B)-

bimodules such that µ ◦ ν = 1B.

(2) There exists an element w =
∑k

j=1 xj ⊗ yj ∈ (B⊗A B)B where xj , yj are

homogeneous elements such that
∑k

j=1 xjyj = 1B.

Proof. If (1) holds, let ν : B → B ⊗A B be a map of G-graded (B,B)-bimodules such

that µ ◦ ν = idB, and let w = ν(1B).

Then w ∈ (B ⊗A B)B and µ(w) = µ(ν(1B)) = 1B . Since w has the form

w =
∑k

j=1 xj ⊗ yj and each xj , yj is a sum of homogeneous elements, we may clearly

assume that xj , yj are homogeneous, so (2) holds.

Conversely, assume that (2) holds. Since µ(w) =
∑k

j=1 xjyj = 1 ∈ B1, it

follows that if xj ∈ Bg, then yj ∈ Bg−1 , so w ∈ (B ⊗A B)1. Then the map

ν : B → B ⊗A B, ν(x) = xw = wx

is a homomorphism of G-graded (B,B)-bimodules, as for xg ∈ Bg, we have ν(xg) =

xgw ∈ (B ⊗A B)g. Moreover, for all x ∈ B µ(ν(x)) = xµ(ν(1)) = xµ(w) = x1B = x.

1.3. We say B is a separable G-graded A-interiorO-algebra, if the equivalent condition

of Lemma 1.2 are satisfied.

This discussion is motivated by the following situation considered in [3] and

[4].

Let H be a finite group, N a normal subgroup of H and let G = H/N . Then

the group algebra OH can be regarded as a G-graded algebra, and ON is also an

H-algebra. Let b ∈ Z(ON) be a block independent, and assume that b is G-invariant,

that is, b ∈ Z(OH). Then the algebra B = bOH is a strongly G-graded O-algebra.

Note that β = {b} is a point of N on B1 and α = {b} is a point of H on B1.
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Let Pγ be a defect pointed group of Hα. Recall that if

BrB1
P : BP

1 → BP
1 /(

∑
Q<P

TrBQ
1 + J(O)BP

1 )

is the Brauer map, then there is a primitive idempotent i ∈ BP
1 such that BrB1

P (i) 6= 0,

and γ is the point of BP
1 containing i. The interior OP -algebra A := iBi = iOHi is

called a source algebra of B. By [4, Proposition 3.2], A is a strongly G-graded algebra

and the structural map OP → A, u 7→ iu = ui is a homomorphism of G-graded

algebras in a natural way (the degree of u ∈ P is uN ∈ G).

Lemma 1.4. With the above notations, the algebra A is a separable G-graded OP -

interior O-algebra.

Proof. By [5, Lemma 14.1] there are elements a, b ∈ BP
1 such that 1B = TrH

P (aib).

Consider the element

v =
∑

h∈[H/P ]

hai⊗ ibh−1 ∈ OH ⊗OP OH,

where [H/P ] is a set of representatives for the left cosets of P in H. Then as in [2,

Lemma 4], vh = hv for all h ∈ G and
∑

h∈[H/P ] haibt−1 = TrH
P (aib) = 1B . It follows

that the element w = ivi ∈ (A ⊗OP A)A satisfies µ(w) = i = 1A, hence by Lemma

1.2, A is a separable G-graded OP -interior algebra.

2. The lifting theorem

The following result is a generalization to the case of G-graded algebras of

[2, Theorem 3].

Theorem 2.1. Let B be a separable G-graded A-interior O-algebra, let I be an G-

graded ideal in an arbitrary G-graded A-interior O-algebra C such that I ⊆ J(I), and

let ρ : B → C/I be a unitary homomorphism of G-graded A-interior O-algebras.

Suppose that there exist a map of G-graded (A,A)-bimodules τ0 : B → C such

that τ0(x) + I = ρ(x) for x ∈ B. Then there exists a homomorphism of G-graded

A-interior O-algebras τ : B → C such that τ(x) + I = ρ(x) for x ∈ B.

Moreover τ is unitary and unique up to conjugation with elements in 1 + IA
1 .
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Proof. Since B is a separable G-graded A-interior O-algebra there exists an element

w =
∑k

j=1 xj ⊗ yj ∈ (B ⊗A B)B with xj , yj ∈ B homogeneous elements such that∑k
j=1 xjyj = 1B .

The construction τ is given in [1, Theorem 3]. We only have to verify that τ

is grade-preserving.

Consider the map of (A,A)-bimodules

θ : B ⊗A B → I2n

, θ(x⊗ y) = τn(xy)− τn(x)τn(y)

for x, y ∈ B. If xg ∈ Bg and yh ∈ Bh we have xgyh ∈ Bgh because B is a G-

graded A-algebra. We know that τn is a G-graded map of (A,A)-bimodules, so

τ(xgyh) ∈ Cgh and τ(xg) ∈ Cg, τ(yh) ∈ Ch (hence τ(xg)τ(yh) ∈ CgCh ⊆ Cgh).

Finally, τn(xgyh)− τn(xg)τn(yh) ∈ Cgh, so θ(x⊗ y) ∈ I2n ∩ Cgh. This means that θ

G-graded.

Consider the map of (A,A)-bimodules

λ : B ⊗A B ⊗A B → I2n

, λ(x⊗ y ⊗ z) = θ(x⊗ y)τn(z).

If xg ∈ Bg, yh ∈ Bh and zl ∈ Bl we have xgyh ∈ Bgh and zl ∈ Bl. Since θ

and τn are G-graded, we have θ(xg ⊗ yh) ∈ I2n ∩ Cgh and τn(zl) ∈ I2n ∩ Cl. It

follows that θ(xg ⊗ yh)τn(zl) belongs to (I2n ∩ Cgh)(I2n ∩ Cl) ⊆ I2n ∩ Cghl, hence

λ(xg ⊗ yh ⊗ zl) ∈ I2n ∩ Cghl. Then

η : B → I2n

, η(x) = λ(x⊗ w) =
k∑

j=1

θ(x⊗ xj)τn(yj)

is a map of G-graded (A,A)-bimodules with

τn(x)η(y)− η(xy) + η(x)τn(y) + I2n+1
= τn(xy)− τn(x)τn(y) + I2n+1

.

If xg ∈ Bg then xg ⊗ w ∈ B ⊗A B, and since λ is G-graded, we obtain λ(xg ⊗ w) ∈

I2n ∩ Cg. It follows that η is G-graded. We get a map of (A,A)-bimodules

τn+1 : B → C, τn+1(x) = τn(x) + η(x)
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with τn+1(x) + I2n

= τn(x) + I2n

and τn+1(x)τn+1(y) + I2n+1
= τn+1(xy) + I2n+1

for x, y ∈ B. Since τn and η are G-graded, if xg ∈ Bg we have τn(xg) ∈ Cg and

η(xg) ∈ I2n ∩ Cg, so τn(xg) + η(xg) ∈ Cg. Consequently τn+1 is G-graded.

We have constructed the sequence (τn)∞n=0. Since I ⊆ J(C) the map

τ : B → C, τ(x) = lim
n→∞

τn(x)

is a well-defined unitary homomorphism of G-graded A-interior O-algebras such that

τ(x) + I = τ0(x) + I = ρ(x) for x ∈ B.

Finally, suppose that τ ′ : B → C is another homomorphism of G-graded

A-interior O-algebras such that τ ′(x) + I = ρ(x) for x ∈ B. Then

δ : B → I, δ(x) = τ(x)− τ ′(x)

is a map of G-graded (A,A)-bimodules such that δ(xy) = τ(x)δ(y) + δ(x)τ ′(y) for

x, y ∈ B and clearly δ is grade-preserving.

We consider the map of (A,A)-bimodules

Φ: B ⊗A B → I, Φ(x⊗ y) = τ(x)δ(y)

for x, y ∈ B and let a = Φ(w) =
∑k

j=1 τ(xj)δ(yj) ∈ IA
1 . If xg ∈ Bg and yh ∈ Bh

then, since τ and δ are G-graded we have τ(xg)δ(yh) ∈ Cg(I ∩ Ch) ⊆ I ∩ Cgh, hence

Φ is G-graded too. Because B is a separable G-graded A-interior O-algebra, there

exists an element w =
∑k

j=1 xj ⊗ yj ∈ (B ⊗A B)B where xj , yj are homogeneous

elements such that
∑k

j=1 xjyj = 1B imply w ∈ (B ⊗A B)1. We have that Φ is a map

of G-graded (A,A)-bimodules. Therefore, if xj ∈ Bg and yj ∈ Bg−1 then τ(xj) ∈ Cg

and δ(yj) ∈ I ∩ Cg−1, so τ(xj)δ(yj) ∈ IA ∩ C1 = IA
1 .

References

[1] F. Castano Iglesias, J.Gómez Torrecillas and C.Năstăsescu, Separable functors in graded
rings, J. Pure Appl. Algebra 127(1998), 219-230.

[2] B. Külshammer, T. Okuyama and A. Watanabe, A lifting theorem with applications to
blocks and source algebras, Preprint 1999.

[3] B. Külshammer and L.Puig, Extensions of nilpotent blocks, Invent. Math. 102(1990),
17-71.

[4] A. Marcus, Twisted Group Algebras, Normal Subgroups and Derived Equivalences, Al-
gebras and Representation Theory 4(2001),25-54.
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ON THE EIGENVALUE PROBLEM FOR A GENERALIZED
HEMIVARIATIONAL INEQUALITY

ANA-MARIA CROICU

Abstract. In this paper the eigenvalue problem for a generalized hemivari-

ational inequality is studied. Some general existence results are obtained.

Applications from Engineering illustrate the theory.

1. Introduction

The mathematical theory of hemivariational inequalities and their applica-

tions in Mechanics, Engineering or Economics, were introduced and developed by

P.D. Panagiotopoulos ([38], [39], [40], [41], [42], [44]). This theory has been devel-

oped in order to fill the gap existing in the variational formulations of boundary value

problems (B. V. P.s) when nonsmooth and generally nonconvex energy functions are

involved in the formulations of the problem. In fact, this theory of hemivariational

inequalities may be considered as an extension of the theory of variational inequalities

([16], [23], [27], [26]). For a comprehensive treatment of the hemivariational inequality

problems we refer to the monographs ([39], [44], [36], [35]).

Until now many hemivariational inequalities have been formulated and stud-

ied ([36], [37], [43], [39], [14], [2], [17], [45], [35], [48], [31], [19], [3], [29], [30], [15],

[1], [28], [18], [8]), and eigenvalue problems for hemivariational inequalities have been

presented ([22], [33], [34], [20], [46], [7], [10], [6], [21]).

The study of eigenvalue problems for hemivariational inequalities has a deep

practical motivation. For instance, the loading-unloading problems and thus also the

hysteresis problems are typical examples for the theory of hemivariational inequali-

ties and can be reduced to the study of the eigenvalue problem. Indeed, D. Motreanu

Key words and phrases. Hemivariational inequlities, Eigenvalue problems, Clarke subdifferential, Mono-

tone operator, Set-valued mappings.
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and P. D. Panagiotopoulos ([44], [32]) proved that the global behaviour of a loading-

unloading problem of a deformable body is governed by a sequence of hemivariational

inequality expressions, one for each branch. They proved that the changing of branch

leads to an eigenvalue problem. The stability of a Von Karman plate in adhesive con-

tact with a rigid support or of Von Karman plates adhesively connected in sandwich

form is another motivation for the study of eigenvalue problems for hemivariational

inequalities ([24], [25]). Recent papers deal with eigenvalue hemivariational inequali-

ties on a sphere-like type manifold ([6], [7]), with nonsymmetric perturbed eigenvalue

hemivariational inequalities ([10], [46]), which imply applications in adhesively con-

nected plates, etc.

In this paper we deal with a type of eigenvalue problem for a hemivariational

inequality governed by two variable operators. The hemivariational inequality, which

gave rise to the problem studied here, was introduced in [12], [11] as an extension

to several hemivariational-variational problems. The aim of the present paper is

to provide general existence results of the solutions on real Banach spaces and real

reflexive Banach spaces. Finally, we illustrate our theoretical results by an application

to Engineering.

2. The abstract framework

We assume that the following statements are valid:

(H1) V is a real Banach space endowed with the norm topology, and V ∗ is

its dual endowed with the weak*-topology. Throughout the paper the duality pairing

between a Banach space and its dual is denoted by < ., . >;

(H2) T : V → Lp
(
Ω,<k

)
is a linear and continuous operator, where

1 ≤ p < ∞, k ≥ 1 and Ω ⊆ <n is a bounded open set in n-dimensional Euclidean

space;

(H3) A : V × V  V ∗ is a set-valued mapping;

The properties of the set-valued mapping A will be given later.

(H4) j = j (x, y) : Ω× <k → < is a Caratheodory function, which is locally

Lipschitz with respect to the second variable and satisfies the following assumption:

∃h1 ∈ L
p

p−1 (Ω,<) and h2 ∈ L∞ (Ω,<)
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such that

|z| ≤ h1 (x) + h2 (x) |y|p−1 a.e. x ∈ Ω,∀y ∈ <k,∀z ∈ ∂j (x, y)

where,

j0 (x, y) (h) = lim sup
y′→y
t→0+

j (x, y′ + th)− j (x, y′)
t

is the (partial) Clarke derivative of the locally Lipschitz mapping j (x, .) , x ∈ Ω fixed,

at the point y ∈ <k with respect to the direction h ∈ <k, and

∂j (x, y) =
{
z ∈ <k : 〈z, h〉 ≤ j0 (x, y) (h) ,∀h ∈ <k

}
is the Clarke generalized gradient of the mapping j (x, .) at the point y ∈ <k.

We recall some basic concepts, which are needed to formulate the problem

under consideration.

Definition 1. We say that the set-valued mapping A : V  V ∗ is monotone if it

satisfies the relation

〈f − g, u− v〉 ≥ 0 ,∀u, v ∈ V,∀f ∈ A (u) ,∀g ∈ A (v) .

Definition 2. We say that the set-valued mapping A (., v) : V  V ∗, where v ∈ V

fixed, has the monotone property (M) if it verifies the relation

sup
f∈A(u,v)

〈f, u− v〉 ≥ sup
g∈A(v,v)

〈g, u− v〉 ,∀u ∈ V. (M)

Remark 1. Every set-valued mapping A (., v) : V  V ∗ (where v ∈ V is fixed) which

is monotone has the monotone property (M), but the inverse is not always true.

Definition 3. The set-valued mapping A : V  V ∗ is said to be concave if

(1− α)A (x1) + αA (x2) ⊇ A ((1− α)x1 + αx2) ,∀α ∈ [0, 1] ,∀x1, x2 ∈ V.

Definition 4. The set-valued mapping = : V  V ∗ defined by

=u :=
{
f ∈ V ∗ : ‖f‖ = ‖u‖ , 〈f, u〉 = ‖u‖2

}
,∀u ∈ V

is called the duality map of V.

The duality map has the following representation:
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Proposition 1. (see [4]) For every u ∈ V , =u = ∂
(

1
2 ‖u‖

2
)
.

Because the Banach space V is endowed with the norm topology and its dual

V ∗ is endowed with the weak*-topology then, according to [35], [9], [5], [13], we can

state some properties of the duality map:

Theorem 2. Duality map = has the following properties:

(i) for every u ∈ V, the set =u is convex and

for every λ ∈ <, for every u ∈ V , = (λu) = λ= (u);

(ii) the set = (u) is weakly*-compact, for every u ∈ V ;

(iii) the duality map = is weakly*-upper semicontinuous.

The duality map = is successfully involved in the representation of the semi-

inner products.

The semi-inner products (., .)± : V × V → < are defined (according to

[13]) by

(x, y)+ = ‖y‖ lim
t→0+

‖y + tx‖ − ‖y‖
t

(x, y)− = ‖y‖ lim
t→0+

‖y‖ − ‖y − tx‖
t

.

Remark 2. If V is a Hilbert space endowed with the inner product (., .)V , then

(x, y)+ = (x, y)− = (x, y)V , ∀x, y ∈ V.

Thus, let us note the representations of the semi-inner products:

Proposition 3. (see [13]): The following estimations hold:

(x, y)+ = max {〈f, x〉 : f ∈ =y}

(x, y)− = min {〈f, x〉 : f ∈ =y} .

Our goal is to study the following problem (EP):

Find u ∈ V, λ ∈ < \ {0} such that

sup
f∈A(u,u)

〈f, v − u〉+
∫

Ω

j0 (x, Tu (x)) (Tv (x)− Tu (x)) dx ≥ λ (v − u, u)+ ,∀v ∈ V

(EP)
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which is the eigenvalue problem corresponding to the hemivariational inequality prob-

lem (P):

Find u ∈ V such that

sup
f∈A(u,u)

〈f, v − u〉+
∫

Ω

j0 (x, Tu (x)) (Tv (x)− Tu (x)) dx ≥ 0,∀v ∈ V. (P)

Remark 3. In fact, the eigenvalue problem (EP) is equivalent with the following

problem:

Find u ∈ V, λ ∈ < \ {0} such that

sup
f∈A(u,u)

〈f, v〉+
∫

Ω

j0 (x, Tu (x)) (Tv (x)) dx ≥ λ (v, u)+ , ∀v ∈ V.

Because our approach is based on the results obtained for the problem (P),we will take

into account the earliest formulation of the eigenvalue problem (EP).

For the general study of this eigenvalue problem (EP) we need some to recall

results about the existence of solutions of the problem (P).

Theorem 4. (see [12]) Assume that all the hypotheses (H1)-(H4) are satisfied. More-

over, the following assumptions hold:

(i) for each v ∈ V, the set-valued mapping A (., v) : V  V ∗ has the monotone

property (M) and it is weakly*-upper semicontinuous from the line segments of V in

V ∗ ;

(ii) for each u ∈ V, the set-valued mapping A (u, .) : V  V ∗ is weakly*-upper

semicontinuous;

(iii) there exists a compact subset K ⊆ V, and an element u0 ∈ V such that

the coercivity condition

sup
f∈A(u,u)

〈f, u0 − u〉+
∫

Ω

j0 (x, Tu (x)) (Tu0 (x)− Tu (x)) dx < 0 ,∀u ∈ V�K

holds;

(iv) for each u, v ∈ V, the set A (u, v) is weakly*-compact.

Then the problem (P) admits a solution u ∈ V .

If in addition A (u, u) is a convex set, then u is also a solution of the following

problem (Pc):

Find u ∈ V, f ∈ A (u, u) such that

〈f, v − u〉+
∫

Ω

j0 (x, Tu (x)) (Tv (x)− Tu (x)) dx ≥ 0 , ∀v ∈ V. (Pc)

29



ANA-MARIA CROICU

We define the set R(A,j,V) of asymptotic directions by

R (A, j, V ) =


w ∈ V | ∃ (un) ⊆ V, tn := ‖un‖ → ∞, wn := un

‖un‖ ⇀ w,

inff∈A(un,un) 〈f, un〉 −
∫
Ω
j0 (x, Tun (x)) (−Tun (x)) dx ≤ 0

 .

Theorem 5. (see [11]) Assume that all the hypotheses (H1)-(H4) are satisfied, and

V is a real reflexive Banach space. Moreover,

(i) for each v ∈ V, the set-valued mapping A (., v) : V  V ∗ is weakly-upper

semicontinuous from the line segments of V into V ∗ , concave and monotone;

(ii) for each u ∈ V, the set-valued mapping A (u, .) : V  V ∗ is weakly-upper

semicontinuous;

(iii) R (A, j, V ) = ∅;

(iv) for each u, v ∈ V , the set A (u, v) is weakly-compact.

Then the problem (P) admits a solution.

If in addition the set A(u,u) is convex, then the problem (Pc) admits solution

also.

3. The main results

The aim of our study is to provide verifiable conditions ensuring the existence

of solutions to problem (EP). Our existence results concerning problem (EP) are the

following.

Theorem 6. Assume that all the hypotheses (H1)-(H4) are satisfied. Moreover, the

following assumptions hold:

(i) for each v ∈ V, the set-valued mapping A (., v) : V  V ∗ has the monotone

property (M) and it is weakly*-upper semicontinuous from the line segments of V in

V ∗ ;

(ii) for each u ∈ V, the set-valued mapping A (u, .) : V  V ∗ is weakly*-upper

semicontinuous;

(iii) there exists a compact subset K ⊆ V , and an element u0 ∈ V such that

‖u0‖ ≤ ‖u‖ , ∀u ∈ V \K
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and

sup
f∈A(u,u)

〈f, u0 − u〉+
∫

Ω

j0 (x, Tu (x)) (Tu0 (x)− Tu (x)) dx < 0,∀u ∈ V�K;

(iv) for each u, v ∈ V, the set A (u, v) is weakly*-compact.

Then for every λ < 0, the problem (EP) admits a solution u ∈ V .

If in addition A (u, u) is a convex set, then the following problem (EPc):

Find u ∈ V, λ ∈ < \ {0} , f ∈ A (u, u) such that

〈f, v − u〉+
∫

Ω

j0 (x, Tu (x)) (Tv (x)− Tu (x)) dx ≥ λ (v − u, u)+ , ∀v ∈ V

(EPc)

admits a solution u ∈ V, f ∈ A (u, u) for every λ < 0.

Theorem 7. Assume that all the hypotheses (H1)-(H4) are satisfied, and V is a real

reflexive Banach space. Moreover,

(i) for each v ∈ V, the set-valued mapping A (., v) : V  V ∗ is weakly-upper

semicontinuous from the line segments of V into V ∗ , concave and monotone;

(ii) for each u ∈ V, the set-valued mapping A (u, .) : V  V ∗ is weakly-upper

semicontinuous;

(iii)R (A, j, V ) = ∅;

(iv) for each u, v ∈ V , the set A (u, v) is weakly-compact.

Then the problem (EP) admits a solution.

If in addition the set A(u,u) is convex, then the problem (EPc) admits solution

also.

Remark 4. Under the assumptions of the Theorems 6, 7 not only the eigenvalue

problem (EP) but also the hemivariational inequality (P) admits solution.

4. Proofs of the theorems

4.1. Proof of the first theorem. The assumptions of the Theorem 6 allow to apply

Theorem 4.

First, let us note that the eigenvalue inequality of problem (Ep) can be rewrit-

ten, according to the Proposition 3, as

sup
f∈A(u,u)

〈f, v − u〉+
∫

Ω

j0 (x, Tu (x)) (Tv (x)− Tu (x)) dx ≥ λ sup
g∈=u

〈g, v − u〉 ,

∀v ∈ V.
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So,

sup
f∈A(u,u)

〈f, v − u〉 − λ sup
g∈=u

〈g, v − u〉

+
∫

Ω

j0 (x, Tu (x)) (Tv (x)− Tu (x)) dx ≥ 0,∀v ∈ V.

Consider λ < 0. Hence, (−λ) > 0 and in this case we can obtain

sup
f∈A(u,u)

〈f, v − u〉+ sup
g∈=u

〈(−λ) g, v − u〉

+
∫

Ω

j0 (x, Tu (x)) (Tv (x)− Tu (x)) dx ≥ 0,∀v ∈ V.

By the Theorem 2(i), we can note that

sup
f∈A(u,u)

〈f, v − u〉+ sup
g∈=(−λu)

〈g, v − u〉

+
∫

Ω

j0 (x, Tu (x)) (Tv (x)− Tu (x)) dx ≥ 0,∀v ∈ V. (1)

Knowing that supa∈A,b∈B (φ (a) + ψ (b)) = supa∈A φ (a)+supb∈B ψ (b) , prob-

lem (EP) and the inequality (1) lead us to the following problem:

Find u ∈ V such that

sup
f∈F (u,u)

〈f, v − u〉+
∫

Ω

j0 (x, Tu (x)) (Tv (x)− Tu (x)) dx ≥ 0,∀v ∈ V (EPn)

where, we denoted by F the set-valued mapping defined by F : V ×V  V ∗, F (u, v) =

A (u, v) + = (−λv).

We show that all the hypotheses of the Theorem 4 are verified in the case of

the problem (EPn).

’Hypothesis (i)’:

Let v ∈ V be a fixed element. Then, using the monotone property (M) of

A (., v) , we have

sup
f∈F (u,v)

〈f, u− v〉 = sup
f∈A(u,v)+=(−λv)

〈f, u− v〉 = sup
f∈A(u,v)
g∈=(−λv)

(〈f, u− v〉+ 〈g, u− v〉)

= sup
f∈A(u,v)

〈f, u− v〉+ sup
g∈=(−λv)

〈g, u− v〉

≥ sup
f∈A(v,v)

〈f, u− v〉+ sup
g∈=(−λv)

〈g, u− v〉 = sup
f∈F (v.v)

〈f, u− v〉 .

This proves that the set-valued mapping F (., v) has the monotone property

(M).
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Moreover, the definition of the mapping F and the assumption (i) on the

operator A(.,v) imply that the mapping F (., v) is weakly*-upper semicontinuous from

the line segments of V in V ∗.

’Hypothesis (ii)’:

Because A (u, .) is weakly*-upper semicontinuous, by the assumption (ii),

and because = (.) is weakly*-upper semicontinuous, according to the Theorem 2(iii),

it follows that F (u, .) is weakly*-upper semicontinuous.

’Hypothesis (iii)’:

Let both K ⊆ V and u0 ∈ V be the elements from the assumption (iii). The

question we need to ask is if:

sup
f∈F (u,u)

〈f, u0 − u〉+
∫

Ω

j0 (x, Tu (x)) (Tu0 (x)− Tu (x)) dx < 0 ,∀u ∈ V�K

i.e.

sup
f∈A(u,u)

〈f, u0 − u〉+ sup
g∈=(−λu)

〈g, u0 − u〉

+
∫

Ω

j0 (x, Tu (x)) (Tu0 (x)− Tu (x)) dx < 0 ,∀u ∈ V�K

which leads us to the

sup
f∈A(u,u)

〈f, u0 − u〉+
∫

Ω

j0 (x, Tu (x)) (Tu0 (x)− Tu (x)) dx

< λ sup
g∈=u

〈g, u0 − u〉 ,∀u ∈ V�K. (2)

We note that the left hand side of the relation (2) is less than zero, by the

assumption (iii). Moreover, the right hand side of the relation (2) is greater than

zero, for λ < 0, because of the Proposition 1 and assumption (iii). Precisely, for

∀g ∈ =u = ∂
(

1
2 ‖u‖

2
)
, ∀u ∈ V \K,

〈g, u0 − u〉 ≤ 1
2
‖u0‖2 − 1

2
‖u‖2 ≤ 0,

which implies that

sup
g∈=u

〈g, u0 − u〉 ≤ 0. (3)

If we multiply the inequality (3) by λ (λ < 0), we obtain

λ sup
g∈=u

〈g, u0 − u〉 ≥ 0.

As a conclusion, the ’hypothesis (iii)’ is verified.
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’Hypothesis (iv)’:

By the assumption (iv), as well as by the Theorem 2(ii), we can infer that

the set F (u, v) is weakly*-compact, for every u, v ∈ V.

Finally, according to the Theorem 4 the eigenvalue problem (EP) admits a

solution u ∈ V, when λ < 0.

In addition, if A (u, u) is convex, it follows from the Theorem 2(i) that F (u, u)

is also convex. So, by the second part of the Theorem 4, we infer that the eigenvalue

problem (EPc) admits solution for every λ < 0.

4.2. Proof of the second theorem. For the proof of the Theorem 7, we pro-

ceed in the same way. Again, for λ < 0, we note that the eigenvalue problem (Ep) is

equivalent to the hemivariational inequality problem

Find u ∈ V such that

sup
f∈F (u,u)

〈f, v − u〉+
∫

Ω

j0 (x, Tu (x)) (Tv (x)− Tu (x)) dx ≥ 0 ,∀v ∈ V (EPn)

where, we denoted by F the set-valued mapping defined by F : V ×V  V ∗, F (u, v) =

A (u, v) + = (−λv).

We show that all the hypotheses of the Theorem 5 are verified in the case of

the problem (EPn).

’Hypothesis (i)’:

First, let us emphasize that, because V is a reflexive Banach space, there

exists an equivalent norm on V, such that under this new norm, the duality map is

a single-valued monotone demicontinuous function. Having this, let v ∈ V be a fixed

element. Then using the fact that A (., v) is monotone, we have

〈f1 + = (−λv)− f2 −= (−λv) , u1 − u2〉 = 〈f1 − f2, u1 − u2〉 ≥ 0,

for every f1 ∈ A (u1, v) , f2 ∈ A (u2, v) .

This proves that the set-valued mapping F (., v) is monotone.

By the definition of the operator F , and the assumption (i), it follows that

F (., v) is concave.

Moreover, the definition of the mapping F and the assumption (i) on the

operator A(.,v) imply that the mapping F (., v) is weakly-upper semicontinuous from

the line segments of V in V ∗.
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’Hypothesis (ii)’:

Because A (u, .) is weakly-upper semicontinuous, by the assumption (ii), and

because = (.) is demicontinuous, it follows that F (u, .) is weakly-upper semicontinu-

ous.

’Hypothesis (iii)’:

Assume, by contradiction, that there exists w ∈ R (F, j, V ) . This means that

∃ (un) ⊆ V, tn := ‖un‖ → ∞, wn :=
un

‖un‖
⇀ w such that

inf
f∈F (un,un)

〈f, un〉 −
∫

Ω

j0 (x, Tun (x)) (−Tun (x)) dx ≤ 0. (4)

Taking into account the definition of the operator F , inequality (4) becomes:

inf
f∈A(un,un)

〈f, un〉 − λ〈=un, un〉 −
∫

Ω

j0 (x, Tun (x)) (−Tun (x)) dx ≤ 0. (5)

Knowing that

−λ〈=un, un〉 > 0

the relation (5) may be true if and only if the next inequality holds:

inf
f∈A(un,un)

〈f, un〉 −
∫

Ω

j0 (x, Tun (x)) (−Tun (x)) dx ≤ 0.

We can conclude that w ∈ R (A, j, V ) , which is a contradiction with our

assumption (iii).

’Hypothesis (iv)’:

By the assumption (iv), as well as by the definition of the operator F, we can

infer that the set F (u, v) is weakly-compct, for every u, v ∈ V.

Finally, according to the Theorem 7, the eigenvalue problem (EP) admits a

solution u ∈ V, when λ < 0.

In addition, if A (u, u) is convex, it follows that F (u, u) is also convex. So, by

the second part of the Theorem 5, we infer that the eigenvalue problem (EPc) admits

solution, for every λ < 0.

5. Applications to Engineering

Our results can be applied directly to the study of B. V. P.s in Engineering.

Let us analyze a very general situation which leads us to the hemivariational inequality

problem (EP). For instance, let us consider an open, bounded, connected subset
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Ω ⊆ <3 referred to a fixed Cartesian coordinate system Ox1x2x3 and we formulate

the problem

−∆u+ h(u) + cu = f in Ω (6)

u = 0 on Γ. (7)

Here Γ is the boundary of Ω and we assume that Γ is sufficiently smooth

(C1,1-boundary is sufficient), c is a given constant, and h is a continuous function,

which has the property

u (x)h (u (x)) ≥ 0,∀x ∈ Ω. (8)

In order to physically motivate problem (6),(7) in a simple way, we interpret

u as the temperature of a medium in a region Ω. The differential equation in (6)

describes a stationary temperature state with the heat source f − h(u) − cu that

depends on temperature (see [47]).

We seek a function u such that to verify (6), (7) with

−f ∈ ∂j (x, u) (9)

where j (x, .) is a locally Lipschitz function.

Let us consider the Sobolev space V = H1
0 (Ω), which can be viewed as a

Hilbert space endowed with the inner-product

(u, v) =
∫

Ω

uvdx, ∀u, v ∈ V.

Let us denote by C (Ω) the constant of the Poincaré-Friedrichs inequality∫
Ω

v2dx ≤ C (Ω)
∫

Ω

(∇v)2 dx, ∀v ∈ V. (10)

Moreover, let us assume that the following directional growth condition holds:

j0 (x, ξ) (−ξ) ≤ α (x) | ξ |, ∀x ∈ Ω,∀ξ ∈ < (11)

for some nonnegative function α ∈ L2 (Ω) , with

‖α‖L2(Ω) ≤
1

C (Ω)
. (12)

Now, we multiply (6) by (v − u) and integrate over Ω. This gives us the

following relation∫
Ω

−∆u (v − u) dx+
∫

Ω

h (u) (v − u) dx+ c

∫
Ω

u (v − u) dx =
∫

Ω

f (v − u) dx. (13)
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Then from the Gauss-Green Theorem applied to (13) we are led to the equal-

ity ∫
Ω

∇u∇ (v − u) dx+
∫

Ω

h (u) (v − u) dx+ c

∫
Ω

u (v − u) dx

=
∫

Γ

∂u

∂n
(v − u) dΓ +

∫
Ω

f (v − u) dx. (14)

Because u, v ∈ H1
0 (Ω) the surface integral vanishes.

Relation (9) implies that

−f (v − u) ≤ j0 (x, u) (v − u) . (15)

If we introduce the notation

a (u, v) =
∫

Ω

∇u∇vdx

then the relations (14) and (15) give us the inequality

a (u, v) +
∫

Ω

h (u) (v − u) dx+ c

∫
Ω

u (v − u) dx

+
∫

Ω

j0 (x, u) (v − u) dx ≥ 0,∀v ∈ V. (16)

Let us note that there exists a linear monotone continuous operator B : V →

V ∗ such that

〈B (u) , v〉 = a (u, v) , ∀u, v ∈ V.

Consider = : V → V ∗ the duality isomorphism

〈=u, v〉 = (u, v) , ∀u, v ∈ V

Thus, if we consider the following multivalued mapping

A : V × V  V ∗

A (u, v) = B (u) + = (h (v))

then the hemivariational inequality (16) lead us to the following problem:

find u ∈ V such that for any v ∈ V

sup
f∈A(u,u)

〈f, v − u〉+
∫

Ω

j0 (x, u) (v − u) dx ≥ (−c) 〈=u, v − u〉 (EPeng)
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First, let us remark that the operator A satisfies the assumptions (i), (ii),

(iv) of the Theorem 7. All we have to do now is to verify if the assumption (iii) is

satisfied. For this goal, let us assume that there exists w ∈ R (A, j, V ) . So,

∃ (un) ⊆ V, tn := ‖un‖L2(Ω) →∞, wn :=
un

‖un‖L2(Ω)

⇀ w such that

∫
Ω

(∇un)2 dx+
∫

Ω

h (un)undx−
∫

Ω

j0 (x, un (x)) (−un (x)) dx ≤ 0. (17)

There exists a rank m such that ‖un‖L2(Ω) > 1, for every n ≥ m. By the Holder

inequality and because of the relations (10), (11), (12), the following evaluation holds

for every un, n ≥ m:∫
Ω

(∇un)2 dx ≥ 1
C (Ω)

∫
Ω

(un)2 dx >
1

C (Ω)

(∫
Ω

(un)2 dx
) 1

2

=
‖un‖L2(Ω)

C (Ω)
≥ ‖α‖L2(Ω) · ‖un‖L2(Ω) ≥

∫
Ω

α (x) · | u (x) | dx

≥|
∫

Ω

j0 (x, u (x)) (−u (x)) dx |≥
∫

Ω

j0 (x, u (x)) (−u (x)) dx.

The last evaluation and the property (8) of the function h show us that the

relation (17) is impossible. This contradiction guarantees that the assumption (iii) of

the Theorem 7 is also satisfied.

Since all the assumptions of the Theorem 7 are ensured and the embedding

V ⊆ L2 (Ω) is linear and continuous, we can prove the existence of solutions of (EPeng)

for all c > 0.
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WHEELER-FEYNMAN PROBLEM ON A COMPACT INTERVAL

VERONICA ANA DÂRZU

Abstract. In this paper the problem (1)+(2) is studied.

1. Introduction

In the paper [1] and [3] the author study the Weeler-Feynman problem on R.

In this paper we consider the following Weeler-Feynman problem:

x′(t) = f(t, x(t), x(t− h), x(t + h)), t ∈ [a, b], (1)

x(t) = ϕ(t), t ∈ [t0 − h, t0 + h], (2)

where t0 ∈ [a, b], a ≤ t0 − h, t0 + h ≤ b and ϕ ∈ C1[t0 − h, t0 + h]

2. Remarks and examples

2.1. By a solution of (1) we understand a function x ∈ C[a − h, b + h] ∩ C1[a, b]

which satisfies the relation (1) for all t ∈ [a, b].

2.2. Let α, β, γ ∈ R, β 6= 0, γ 6= 0, t0 ∈ [a, b]. We consider the following problem:

x′(t) = αx(t) + βx(t− h) + γx(t + h)), t ∈ [a, b], (3)

x(t) = ϕ(t), t ∈ [t0 − h, t0 + h], (4)

where t0 ∈ [a, b], a ≤ [t0 − h, t0 + h] ≤ b.

We shall apply the method of steps on intervals [t0, b] and [a, t0] to find some

”if and only” conditions for the existence of a solution of problem (3)+(4).

Let t ∈ [t0, t0 + h]

ϕ′(t) = αϕ(t) + βϕ(t− h) + γx(t + h)
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Then:

x(t) := x1(t) =
1
γ

[αϕ(t− h) + βϕ(t− 2h)− ϕ′(t− h)], t ∈ [t0 + h, t0 + 2h]

Let t ∈ [t0 + h, t0 + 2h]

x′1(t) = αx1(t) + βϕ(t− h) + γx(t + h)

Then:

x(t) := x2(t) =
1
γ

[αx1(t− h) + βϕ(t− 2h)− x′1(t− h)], t ∈ [t0 + 2h, t0 + 3h]

By the same way the final step on [t0, b]:

xnb
(t) =

1
γ

[αxnb−1(t− h) + βxnb−2(t− 2h)− x′nb−1(t− h)], t ∈ [t0 + nbh, b]

where nb = [ b−t0
h ].

By the same way on [a, t0] we find na = [ t0−a
h ].

Let n := max{na, nb}.

Let ϕ ∈ Cn+1[t0 − h, t0 + h].

Let x ∈ Cn[a− h, b + h] ∩ Cn+1[a, b] be a solution of problem (3)+(4).

We have:

x(k+1)(t) = αx(k)(t) + βx(k)(t− h) + γx(k)(t + h), k ∈ 0, 1, . . . , n

For t = t0, we have:

ϕ(k+1)(t0) = αϕ(k)(t0) + βϕ(k)(t0 − h) + γϕ(k)(t0 + h), k ∈ {0, 1, . . . , n}

Then the problem (3)+(4) has a solution if and only if:

ϕ(k+1)(t0) = αϕ(k)(t0) + βϕ(k)(t0 − h) + γϕ(k)(t0 + h), k ∈ {0, 1, . . . , n}.

2.3. For the case in which β = 0 or γ = 0 see [2].
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3. The main result

In what follow we consider the problem (1)+(2). We need the following

conditions.

Let na := [ t0−a
h ], nb := [ b−t0

h ], n := max{na, nb}.

Let f ∈ Cn+1([a, b]×R3).

(C1):For all u1 ∈ [a, b], u2, u4, u5 ∈ R, there exist a unique u3∈R, u3 =

f1(u1, u2, u4, u5), f1∈Cn+1([a, b]×R3), such that, u5 = f(u1, u2, u3, u4).

(C2):For all u1 ∈ [a, b], u2, u3, u5∈R, there exist a unique u4∈R, u4 =

f2(u1, u2, u3, u5), f2∈Cn+1([a, b]×R3), such that, u5 = f(u1, u2, u3, u4).

We have

Theorem 1. Let f ∈ Cn+1([a, b] × R3) satisfies (C1) and (C2). If ϕ ∈

Cn+1[t0 − h, t0 + h], then the problem (1)+(2) has a unique solution if and only if ϕ

satisfies the following condition:

ϕ(k+1)(t0) = [f(t, ϕ(t), ϕ(t− h), ϕ(t + h)](k)
t=t0 , , k ∈ {0, 1, . . . , n}. (5)

Proof. By the method of steps we construct the solution of (1) +(2) as follows.

Let t ∈ [t0, t0 + h]

ϕ′(t) = f(t, ϕ(t), ϕ(t− h), x(t + h))

From (C2) we have

x(t) := x1(t) = f2(t− h, ϕ(t− h), ϕ(t− 2h), ϕ′(t− h)), t ∈ [t0 + h, t0 + 2h] .

By the same method we find the final step:

xnb
(t) = f(t− h, xnb−1(t− h), xnb−1(t− 2h), x′nb−1(t− h)), t ∈ [t0 + nbh, b]

where nb = [ b−t0
h ].

We must have:

ϕ(t0 + h) = x1(t0 + h)

xp(t0 + (p + 1)h) = xp+1(t0 + (p + 1)h), p ≤ nb − 1
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By the same way we have the solution on [a, t0] with the condition

ϕ(t0 − h) = x−1(t0 − h)

x−p(t0 − (p + 1)h) = x−(p+1)(t0 − (p + 1)h), p ≤ na − 1

where na = [ t0−a
h ].

So the solution is:

x(t) =



x−na(t) dacă t ∈ [a, t0 − nah]

x−k(t) dacă t ∈ [t0 − (k + 1)h, t0 − kh], 1 ≤ k ≤ na − 1

ϕ(t) dacă t ∈ [t0 − h, t0 + h]

xk(t) dacă t ∈ [t0 + kh, t0 + (k + 1)h], 1 ≤ k ≤ nb − 1

xnb
(t) dacă t ∈ [t0 + nbh, b]

Let n = max{na, nb}.

Now we prove the necessity of the condition (5). Let x ∈ C[a − h, b + h] ∩

C1[a, b] a solution of the problem (1)+(2).

Then x ∈ Cn[a− h, b + h] ∩ Cn+1[a, b] is a solution.

We have:

x(k+1)(t) = [f(t, x(t), x(t− h), x(t + h))](k), t ∈ [a, b], k ∈ {0, 1, . . . , n}.

For t = t0, we have (5).
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CERTAIN SUBCLASSES OF MEROMORPHIC UNIVALENT
FUNCTIONS WITH MISSING AND TWO FIXED POINTS

S.R. KULKARNI AND MRS. S.S. JOSHI

Abstract. The systematic study of some novel subclasses Ω∗pi(α, β, µ, z0),

(i = 0, 1) consisting functions of the type

f(z) = a0z
−1 +

∞∑
n=0

ap+nzp+n, a0 > 0, ap+n ≥ 0, p ∈ N

which are meromorphic and univalent in U∗ = {z : 0 < |z| < 1} is pre-

sented here. The various results for example coefficient estimates, radius

of convexity, distortion theorem are obtained for f(z) to be in the above

mentioned classes.

1. Introduction and Definitions

Let Ω denote the class of functions of the form

f(z) = a0z
−1 +

∞∑
n=1

anzn, a0 > 0 (1.1)

which are analytic in the punctured disk U∗ = {z : 0 < |z| < 1}. Further, Ω∗ is the

class of all functions in Ω which are univalent in U∗. We denote by Ω∗p, a subclass of

Ω∗ consisting functions of the form

f(z) = a0z
−1 +

∞∑
n=0

ap+nzp+n, a0 > 0, ap+n > 0, p ∈ N, (1.2)

N = {1, 2, 3, · · · }.

Definition. A function f(z) belonging to the class Ω∗p is in the class Ω∗p(α, β, µ) if it

satisfies the condition ∣∣∣∣ z2f ′(z) + a0

µz2f ′(z)− a0 + (1 + µ)αa0

∣∣∣∣ < β, (1.3)

for some 0 ≤ α < 1, 0 < β ≤ 1 and 0 ≤ µ ≤ 1.

2000 Mathematics Subject Classification. 30C4S.
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For a given real number z0(0 < z0 < 1). Let Ωpi(i = 0, 1) be a subclass of Ω∗p

satisfying the condition z0f(z0) = 1 and −z2
0f ′(z0) = 1 respectively.

Let

Ω∗pi(α, β, µ, z0) = Ω∗p(α, β, µ) ∩ Ωpi (i = 0, 1). (1.4)

In our systematic investigation of the various properties and characteristics

of the class Ω∗pi(α, β, µ), we shall require use of number of other classes of functions

associated with Ω∗p. First of all, a function f ∈ Ω∗p is said to be meromorphic starlike

of order α in U∗ if it satisfies the inequality

Re

{
zf ′(z)
f(z)

}
> −α, z ∈ U∗, 0 ≤ α < 1. (1.5)

On the other hand, a function f ∈ Ω∗p is said to convex of order α in U , if it satisfies

the inequality

Re

{
1 +

zf ′′(z)
f ′(z)

}
> −α, z ∈ U∗, 0 ≤ α < 1. (1.6)

For other subclasses of meromorphic univalent function, one may refer to the

recent work of Aouf [1], Aouf and Darwish [2], Cho et al [3], Joshi et al [4], Srivastava

and Owa [5]. In the present paper we obtain coefficient estimates, distortion theo-

rems, closure theorems and radius of convexity of order δ(0 ≤ δ < 1) for the classes

Ω∗pi(α, β, µ, z0)(i = 0, 1). Further, we look for necessary and sufficient condition that

a subset B of the real interval [0, 1] should satisfy the property ∪zr∈BΩ∗p0(α, β, µ, zr)

and ∪zr∈BΩp1(α, β, µ, zr) each forms a convex family. The techniques used are similar

to Uralegaddi and Ganigi [6].

2. Main Results

Coefficient Estimates

Theorem 1. Let the function f(z) be defined by (1.2) is in the class Ω∗p(α, β, µ) if

and only if
∞∑

n=0

(p + n)(1 + µβ)ap+n ≤ βa0(1− α)(1 + µ). (2.1)

The result is sharp and is given by

f(z) =
a0

z
+

β(1− α)(1 + µ)a0z
p+n

(p + n)(1 + µβ)
, n ≥ 1. (2.2)

Proof. The proof of Theorem 1 is straightforward, hence omitted.
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Theorem 2. Let the function f(z) be defined by (1.2). Then f(z) ∈ Ω∗p0(α, β, µ, z0)

if and only if
∞∑

n=0

[
(p + n)(1 + µβ)
β(1− α)(1 + µ)

+ zp+n+1
0

]
ap+n ≤ 1. (2.3)

Proof. Since f(z) ∈ Ω∗p0(α, β, µ, z0), we have

z0f(z0) = a0 +
∞∑

n=0

ap+nzp+n+1
0 , a0 ≥ 0, ap+n ≥ 0,

which gives

a0 = 1−
∞∑

n=0

ap+nzp+n+1
0 (2.4)

substituting this value of a0 (given by (2.4)) in Theorem 1, we get the desire assertion.

Theorem 3. Let the function f(z) be defined (1.2). Then f(z) ∈ Ω∗p1(α, β, µ, z0) if

and only if
∞∑

n=0

(p + n)
[

(1 + µβ)
β(1− α)(1 + µ)

− zp+n+1
0

]
ap+n ≤ 1. (2.5)

Proof. Since −z2
0f ′(z0) = 1, we have

a0 = 1 +
∞∑

n=0

(p + n)ap+nzp+n+1
0 (2.6)

Eliminating a0 from (2.1) and (2.6) we get the required result.

An immediate consequence of Theorem 2 and Theorem 3 may be stated as

the following.

Corollary 1. Let, f(z) given by (1.2) be in the class Ω∗p0(α, β, µ, z0) then

ap+n ≤ β(1 + µ)(1− α)
(p + n)(1 + µβ) + β(1 + µ)(1− α)zp+n+1

0

. (2.7)

The equality in the (2.7) is attained for the function f(z) given by

f(z) =
(p + n)(1 + µβ) + β(1 + µ)(1− α)zp+n+1

z[(p + n)(1 + µβ) + β(1 + µ)(1− α)zp+n+1
0 ]

, (2.8)

p ∈ N,n ≥ 0.

Corollary 2. Let the function f(z) given by (1.2) in the class Ω∗p1(α, β, µ, z0) then

ap+n ≤ β(1 + µ)(1− α)
(p + n)[(1 + µβ)− β(1 + µ)(1− α)zp+n+1

0 ]
. (2.9)

The equality holds for the function f(z) given by

f(z) =
(p + n)(1 + µβ) + β(1 + µ)(1− α)zp+n+1

z(p + n)[(1 + µβ)− β(1 + µ)(1− α)zp+n+1
0 ]

. (2.10)
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3. Distortion Theorem

In this section, we prove distortion theorem associated with the classes intro-

duced in section 1, we first state the following theorem.

Theorem 4. Let f(z) ∈ Ω∗p0(α, β, µ, z0) then,

|f(z)| ≥ p(1 + µβ)− β(1 + µ)(1− α)rp+1

r[p(1 + µβ) + β(1 + µ)(1− α)zp+1
0 ]

, (3.1)

for 0 < |z| = r < 1. The result is sharp.

Proof. Since f ∈ Ω∗p0(α, β, µ, z0), by applying assertion (2.3) of Theorem 2, we obtain

∞∑
n=0

ap+n ≤ β(1 + µ)(1− α)
p(1 + µβ) + β(1 + µ)(1− α)zp+1

0

. (3.2)

Further from (2.4), we have

a0 = 1−
∞∑

n=0

ap+nzp+n+1
0

≥ (1 + µβ)p
p(1 + µβ) + β(1 + µ)(1− α)zp+1

0

. (3.3)

Hence we have

|f(z)| ≥ a0r
−1 − rp

∞∑
n=0

ap+n

≥ p(1 + µβ)− β(1 + µ)(1− α)rp+1

r[p(1 + µβ) + β(1 + µ)(1− α)zp+1
0 ]

, (3.4)

by using (3.2) and (3.3). Further, the result is sharp for the function f(z) given by

f(z) =
p(1 + µβ)− β(1 + µ)(1− α)zp+1

z[p(1 + µβ) + β(1 + µ)(1− α)zp+1
0 ]

. (3.5)

Theorem 5. If f(z) ∈ Ω∗p1(α, β, µ, z0) then

|f(z)| ≤ p(1 + µβ) + β(1 + µ)(1− α)rp+1

r[p(1 + µβ)− β(1 + µ)(1− α)zp+1
0 ]

(3.6)

for 0 < |z| = r < 1. The result is sharp.

Proof. It follows from assertion (2.5) of Theorem 3, that
∞∑

n=0

ap+n ≤ β(1 + µ)(1− α)
p[(1 + µβ)− β(1 + µ)(1− α)zp+1

0 ]
(3.7)

and
∞∑

n=0

(p + n)ap+n ≤ β(1 + µ)(1− α)
[(1 + µβ)− β(1 + µ)(1− α)zp+1

0 ]
. (3.8)
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From (2.6) we have

a0 = 1 +
∞∑

n=0

(p + n)ap+nzp+n+1
0 (3.9)

≤ (1 + µβ)
[(1 + µβ)− β(1 + µ)(1− α)zp+1

0 ]
.

Hence we have

|f(z)| ≤ a0r
−1 + rp+1

∞∑
n=0

ap+n

≤ p(1 + µβ) + β(1 + µ)(1− α)rp+1

rp[(1 + µβ)− β(1 + µ)(1− α)zp+1
0 ]

, (3.10)

by using (3.7) and (3.9). Further the result is sharp for the function given by

f(z) =
p(1 + µβ) + β(1 + µ)(1− α)zp+1

zp[(1 + µβ)− β(1 + µ)(1− α)zp+1
0 ]

. (3.11)

4. Closure Theorems

Let the functions fj(z) be defined, for j = 1, 2, · · · ,m by

fj(z) =
a0,j

z
+

∞∑
n=0

ap+n,jz
p+n (a0,j > 0, ap+n,j ≥ 0) z ∈ U∗. (4.1)

Theorem 6. Let fj(z) defined by (4.1) be in the class Ω∗p0(α, β, µ, z0). Then the

function h(z) defined by

h(z) =
m∑

j=0

djfj(z), (dj ≥ 0) (4.2)

is also in the same class Ω∗p0(α, β, µ, z0), where

m∑
j=0

dj = 1. (4.3)

Proof. According to the definition (4.2) we have

h(z) =
b0

z
+

∞∑
n=0

bp+nzp+n, (4.4)

where

b0 =
m∑

j=0

dja0,j and bp+n =
m∑

j=0

djap+n,j , (n = 0, 1, 2, · · · ,m).

Since fj(z) ∈ Ω∗p0(α, β, µ, z0) (j = 0, 1, 2, · · · ,m), using Theorem 2 we have

∞∑
n=0

{(p + n)(1 + µβ) + β(1− α)(1 + µ)zp+n+1
0 } ≤ β(1− α)(1 + µ)
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for every j = 0, 1, · · · ,m. Therefore we have
∞∑

n=0

{(p + n)(1 + µβ) + β(1− α)(1 + µ)zp+n+1
0 }(

m∑
j=0

djap+n,j)

=
m∑

j=0

dj{
∞∑

n=0

[(p + n)(1 + µβ) + β(1− α)(1 + µ)zp+n+1
0 ]ap+n,j}

≤ (
m∑

j=0

dj)β(1− α)(1 + µ)

= β(1− α)(1 + µ)

which shows that h(z) ∈ Ω∗p0(α, β, µ, z0).

Theorem 7. Let the functions fj(z)(j = 0, 1, · · · ,m) defined by (4.1) be in the class

Ω∗p1(α, β, µ, z0) for every j = 0, 1, · · · ,m. Then the function h(z) defined by (4.2) is

also in the same class Ω∗p1(α, β, µ, z0), under the assumption (4.3).

Proof. The proof of Theorem 7, can be given on using the same techniques as in the

proof of Theorem 6, using Theorem 3.

Theorem 8. The class Ω∗p0(α, β, µ, z0) is closed under convex linear combination.

Proof. Let fj(z)(j = 0, 1, · · · ,m) defined by (4.1) be in the class Ω∗p0(α, β, µ, z0), it

is sufficient to show that the function H(z) defined by

H(z) = λf1(z) + (1− λ)f2(z), 0 ≤ λ ≤ 1, (4.5)

is also in the class Ω∗p0(α, β, µ, z0). Since

H(z) =
λa0,1 + (1− λ)a0,2

z
+

∞∑
n=0

{λap+n,1 + (1− λ)ap+n,2}zp+n

with the aid of Theorem 2, we have
∞∑

n=0

{(p + n)(1 + µβ) + β(1− α)(1 + µ)zp+n+1
0 }[λap+n,1 + (1− λ)ap+n,2]

≤ β(1− α)(1 + µ) (4.6)

which implies that H(z) ∈ Ω∗p0(α, β, µ, z0). In a similar manner, by using Theorem 3,

we can prove the following Theorem.

Theorem 9. The class Ω∗p1(α, β, µ, z0) is closed under convex linear combination.

Theorem 10. Let

f0(z) = 1/z (4.7)
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and

fp+n(z) =
(p + n)(1 + µβ) + β(1 + µ)(1− α)zp+n+1

z[(p + n)(1 + µβ) + β(1 + µ)(1− α)zp+n+1
0 ]

, n ≥ 0 (4.8)

then f(z) is in the class Ω∗p0(α, β, µ, z0), if and only if it can be expressed in the form:

f(z) =
∞∑

n=0

λnfn(z), where λn ≥ 0, (4.9)

λi = 0(i = 1, 2, · · · , p− 1, p ≥ 2) and
∞∑

n=0

λn = 1. (4.10)

Proof. Assume that

f(z) =
∞∑

n=0

λnfn(z)

= λ0/z +
∞∑

n=0

[(p + n)(1 + µβ) + β(1 + µ)(1− α)zp+n+1]λp+n

z[(p + n)(1 + µβ) + β(1 + µ)(1− α)]zp+n+1
0

=
1
z

[
λ0 +

∞∑
n=0

(p + n)(1 + µβ)λp+n

[(p + n)(1 + µβ) + β(1 + µ)(1− α)zp+n+1
0 ]

]

+
∞∑

n=0

β(1 + µ)(1− α)λn+pz
p+n

(p + n)(1 + µβ) + β(1 + µ)(1− α)zp+n+1
0

Then it follows from theorem 2, that
∞∑

n=0

(p + n)(1 + µβ) + β(1 + µ)(1− α)zp+n+1
0

β(1 + µ)(1− α)
β(1 + µ)(1− α)λp+n

(p + n)(1 + µβ) + β(1 + µ)(1− α)zp+n+1
0

=
∞∑

n=0

λp+n = 1− λ0 ≤ 1.

Also by definition we have z0fp+n(z0) = 1. Therefore

z0f(z0) =
∞∑

n=0

λp+nz0fp+n(z0) =
∞∑

n=0

λp+n = 1.

This implies f ∈ Ωp0, so by theorem 2, f(z) ∈ Ω∗p0(α, β, µ, z0).

Conversely, assume that the function f(z) given by (1.2) belongs to the class

Ω∗p0(α, β, µ, z0). Then

ap+n ≤ β(1 + µ)(1− α)
(p + n)(1 + µβ) + β(1 + µ)(1− α)zp+n+1

0

, n ≥ 0. (4.11)

Setting

λp+n =
[(p + n)(1 + µβ) + β(1 + µ)(1− α)zp+n+1

0 ]
β(1 + µ)(1− α)

ap+n, n ≥ 0
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and

λ0 = 1−
∞∑

n=0

λp+n.

Hence, it is observed that f(z) can be expressed in the form (4.9). This completes

the proof of Theorem 10.

In a similar manner, we can prove the following Theorem.

Theorem 11. Define

f0(z) =
1
z

(4.12)

and

fp+n(z) =
(p + n)(1 + µβ) + β(1 + µ)(1− α)zp+n+1

z(p + n)[(1 + µβ)− β(1 + µ)(1− α)zp+n+1
0 ]

, n ≥ 0 (4.13)

then f(z) is in the class Ω∗p1(α, β, µ, z0) if and only if it can be expressed in the form

(4.9) where λn ≥ 0 and (4.10).

5. Radius of Convexity

In this section we determine the radius of convexity of order δ(0 ≤ δ < 1) for

the class Ω∗pi(α, β, µ, z0)(i = 0, 1).

Theorem 12. Let the function defined by (1.2) be in the class Ω∗p0(α, β, µ, z0) or

Ω∗p1(α, β, µ, z0), then f(z) is convex of order δ(0 ≤ δ < 1) in 0 < |z| < R∗(α, β, µ, δ)

where

R∗(α, β, µ, δ) = inf
n

[
(1− δ)(1 + µβ)

(1− α)β(1 + µ)(p + n + 2− δ)

]1/(p+n+1)

, n ≥ 0. (5.1)

The result (5.1) is sharp.

Proof. It is sufficient to show that∣∣∣∣1 +
zf ′′(z)
f ′(z)

∣∣∣∣ ≤ (1− δ), 0 ≤ δ < 1,

for 0 < |z| < R∗(α, β, µ, δ).

We have∣∣∣∣f ′(z) + [zf ′(z)]′

f ′(z)

∣∣∣∣ ≤ ∞∑
n=0

(p + n)(p + n + 1)ap+n|z|p+n+1

a0 −
∑∞

n=0(p + n)ap+n|z|p+n+1
.

Thus ∣∣∣∣f ′(z) + [zf ′(z)]′

f ′(z)

∣∣∣∣ ≤ (1− δ)
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if
∞∑

n=0

(p + n)(p + n + 2− δ)ap+n|z|p+n+1 ≤ (1− δ)a0 (5.2)

when f(z) ∈ Ω∗p0(α, β, µ, z0), using (2.4) we find that inequality (5.2) is equivalent to

∞∑
n=0

{(p + n)(p + n + 2− δ)|z|p+n+1 + (1− δ)zp+n+1
0 }ap+n ≤ (1− δ). (5.3)

But Theorem 2 ensures
∞∑

n=0

(1− δ)
[

(p + n)(1 + µβ)
β(1− α)(1 + µ)

+ zp+n+1
0

]
ap+n ≤ (1− δ). (5.4)

Hence (5.3) holds if

{(p + n)(n + p + 2− δ)|z|p+n+1 + (1− δ)zp+n+1
0 }ap+n

≤
{

(1− δ)
[

(p + n)(1 + µβ)
β(1− α)(1 + µ)

+ zp+n+1
0

]}
ap+n, n ≥ 0,

or if

|z| ≤
[

(1− δ)(1 + µβ)
(1− α)β(1 + µ)(p + n + 2− δ)

]1/(p+n+1)

, n ≥ 0.

Thus f(z) is convex of order δ(0 ≤ δ < 1) in 0 < |z| < R∗(α, β, µ, δ).

In other case when f(z) ∈ Ω∗p1(α, β, µ, z0) using (2.6) we find that the in-

equality (5.2) is equivalent to

∞∑
n=0

(p + n)[(p + n + 2− δ)|z|p+n+1 − (1− δ)zp+n+1
0 ]ap+n ≤ (1− δ). (5.5)

Therefore, in view of Theorem 3, the inequality (5.5) holds if

(p + n)[(p + n + 2− δ)|z|p+n+1 − (1− δ)zp+n+1
0 ]ap+n

≤ (1− δ)(p + n)
[

(1 + µβ)
(1− α)β(1 + µ)

− zp+n+1
0

]
ap+n

or if

|z| ≤
[

(1− δ)(1 + µβ)
(1− α)β(1 + µ)(p + n + 2− δ)

]1/(p+n+1)

, n ≥ 0.

This completes the proof of theorem 12.

Sharpness for the class Ω∗p0(α, β, µ, z0) follows by taking the functions f(z)

given by (2.8), whereas for the class Ω∗p1(α, β, µ, z0), sharpness follows if we take the

function given by (2.10).

Remark. The conclusion of Theorem 12 is independent of z0.
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6. Convex Family

Let B be a nonempty subset of a real interval [0, 1]. We define a family

Ω∗p0(α, β, µ, B) by

Ω∗p0(α, β, µ, B) = ∪zr∈BΩ∗p0(α, β, µ, zr).

If B has only one element, then Ω∗p0(α, β, µ, B) is known to be a convex family by

Theorems 6 and 8. It is interesting to investigate this class for other subset B.

We shall make use of the following

Lemma 1. If f(z) ∈ Ω∗p0(α, β, µ, z0) ∩ Ω∗p0(α, β, µ, z1) where z0 and z1 are distinct

positive numbers then f(z) = 1/z.

Proof. If f(z) ∈ Ω∗p0(α, β, µ, z0) ∩ Ω∗p0(α, β, µ, z1) and let

f(z) = a0z
−1 +

∞∑
n=0

ap+nzp+n, a0 > 0, ap+n > 0, p ∈ N,

then

a0 = 1−
∞∑

n=0

ap+nzp+n+1
0 = 1−

∞∑
n=0

ap+nzp+n+1
1

since ap+n ≥ 0, z0 > 0 and z1 > 0, this implies ap+n ≡ 0 for each n ≥ 0 and

f(z) = 1/z. Hence the proof of lemma is complete.

Theorem 13. If B is contained in the interval [0, 1], then Ω∗p0(α, β, µ, B) is a convex

family if and only if B is connected.

Proof. Suppose B is connected and z0, z1 ∈ B with z0 ≤ z1. To prove Ω∗p0(α, β, µ, B)

is a convex family it suffices to show, for

f(z) = a0z
−1 +

∞∑
n=0

ap+nzp+n ∈ Ω∗p0(α, β, µ, z0),

g(z) = b0z
−1 +

∞∑
n=0

bp+nzp+n ∈ Ω∗p0(α, β, µ, z1),

and 0 ≤ λ ≤ 1, that there exists a z2(z0 ≤ z2 ≤ z1) such that

h(z) = λf(z) + (1− λ)g(z)
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is in the Ω∗p0(α, β, µ, z2). Since f ∈ Ω∗p0(α, β, µ, z0) and g(z) ∈ Ω∗p0(α, β, µ, z1). We

have

a0 = 1−
∞∑

n=0

ap+nzp+n+1
0

b0 = 1−
∞∑

n=0

bp+nzp+n+1
1 .

Therefore we have

t(z) = zh(z)

= λa0 + (1− λ)b0 + λ
∞∑

n=0

ap+nzp+n + (1− λ)
∞∑

n=0

bp+nzp+n

= 1 + λ

∞∑
n=0

(zp+n − zp+n+1
0 )ap+n + (1− λ)

∞∑
n=0

(zp+n+1 − zp+n+1
1 )bp+n (6.1)

t(z) being real when z is real with t(z0) ≤ 1 and t(z1) ≥ 1, there exists z2 ∈ [z0, z1],

such that t(z2) = 1. This implies that

z2h(z2) = 1 for some z2, z0 ≤ z2 ≤ z1, that is h(z) ∈ Ωp0.
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Now, in view of (6.1) and z2h(z2) = 1, we have

∞∑
n=0

[(p + n)(1 + µβ)− β(1− α)(1 + µ)zp+n+1
2 ]{λap+n + (1− λ)bp+n}

= λ
∞∑

n=0

[(p + n)(1 + µβ)− β(1− α)(1 + µ)zp+n+1
0 ]ap+n

+(1− λ)
∞∑

n=0

[(p + n)(1 + µβ)− β(1− α)(1 + µ)zp+n+1
1 ]bp+n

+β(1− α)(1 + µ)λ
∞∑

n=0

[zp+n+1
2 − zp+n+1

0 ]ap+n

+β(1− α)(1 + µ)(1− λ)
∞∑

n=0

[zp+n+1
2 − zp+n+1

1 ]bp+n

= λ
∞∑

n=0

[(p + n)(1 + µβ) + β(1− α)(1 + µ)zp+n+1
0 ]ap+n

+(1− λ)
∞∑

n=0

[(p + n)(1 + µβ) + β(1− α)(1 + µ)zp+n+1
1 ]bn+p

≤ λβ(1− α)(1 + µ) + (1− λ)β(1− α)(1 + µ)

= β(1− α)(1 + µ)

by Theorem 2, since f(z) ∈ Ω∗p0(α, β, µ, z0) and g(z) ∈ Ω∗p0(α, β, µ, z1). Hence we

have h(z) ∈ Ω∗p0(α, β, µ, z2), by Theorem 2. Since z0, z1 and z2 are arbitrary, the

family Ω∗p0(α, β, µ, B) is convex.

Conversely, if B is not connected, then there exists z0, z1 and z2 such that

z0, z1 ∈ B and z2 6∈ B and z0 < z2 < z1. Assume that f(z) ∈ Ω∗p0(α, β, µ, z0) and

g(z) ∈ Ω∗p0(α, β, µ, z1) are not both equal to 1/z. Then, for fixed z2 and 0 ≤ λ ≤ 1,

we have from (6.1)

t(λ) = t(z2, λ) = 1+λ
∞∑

n=0

ap+n(zp+n+1
2 −zp+n+1

0 )+(1−λ)
∞∑

n=0

bp+n(zp+n+1
2 −zp+n+1

1 ).

Since t(z2, 0) < 1 and t(z2, 1) > 1, there must exists; λ0, 0 < λ0 < 1, such that

t(z2, λ0) = 1 or z2h(z2) = 1, where h(z) = λ0f(z) + (1 − λ0)g(z). Thus h(z) ∈

Ω∗p0(α, β, µ, z2). From Lemma 1, we have h(z) 6∈ Ω∗p0(α, β, µ, B). Since z2 ∈ B

and h(z) 6= z. This implies that the family Ω∗p0(α, β, µ, B) is not convex which is a

contradiction.
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CONTINUITY AND SUPERSTABILITY OF JORDAN MAPPINGS

YOUNG WHAN LEE AND GWANG HUI KIM

Abstract. We show that every strong approximate one-to-one Jordan

functional on an algebra is a Jordan functional and every approximate

one-to-one Jordan functional on a Banach algebra is continuous.

1. Introduction

A linear mapping f from a normed algebra A into a normed algebra B is an

ε-homomorphism if for every a, b in A

‖f(ab)− f(a)f(b)‖ ≤ ε ‖a‖ ‖b‖ .

In [7, Proposition 5.5], Jarosz proved that every ε-homomorphism from a Banach

algebra into a continuous function space C(S) is necessarily continuous, where S is a

compact Hausdorff space. A Jordan functional on a Banach algebra A is a nonzero

linear functional φ such that φ(a2) = φ(a)2 for every a in A. Every Jordan functional

φ on A is multiplicative [2]. We are concerned with linear mappings f on Banach

algebras which are approximate Jordan mappings. A linear mapping f from a normed

algebra A into a normed algebra B is called an ε-approximate Jordan mapping if for

all a in A ∥∥f(a2)− f(a)2
∥∥ ≤ ε ‖a‖2

.

If B is the complex field, then f is called an ε-appoximate Jordan functional. For

ε-appoximate mappings the reader is referred to [3],[4],[5],[6],[9],[10],[11].

A linear mapping f is a strong ε-approximate Jordan mapping if ||f(a2) −

f(a)2|| < ε. Also a continuous linear mapping f between normed algebras is an ε-

near Jordan mapping if ‖f − J‖ ≤ ε for some continuous Jordan mapping J . In this

paper, we prove that every strong ε-approximate one-to-one Jordan functional on an

2000 Mathematics Subject Classification. Primary 39B82, Secondary 46H40, 46J10.

Key words and phrases. Banach algebra, Automatic continuity, Jordan mapping, Superstability.
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algebra is a Jordan functional and every ε-approximate one-to-one Jordan functional

on a Banach algebra is continuous.

2. Main Results

Theorem 1. If f is a strong ε-approximate one-to-one Jordan functional on an

algebra A, then f is a Jordan functional. In particular if A is a Banach algebra, then

f is continuous.

Proof. Since, for every x, y ∈ A, |f
(
(x + y)2

)
− f(x + y)2| ≤ ε, we have |f(xy +

yx)−2f(x)f(y)| ≤ 3ε. If x and y are commute, |f(xy)−f(x)f(y)| ≤ 3ε
2 . Now we use

the method of the proof in [1]. Let c(ε) = 1+
√

1+4ε
2 . Note that c(ε)2 − c(ε) = ε and

c(ε) > 1. Let a ∈ A. If a 6= 0 we may assume that |f(a)| > c(ε) because |f(ta)| > c(ε)

for some t ∈ R and f((ta)2) = f(ta)2 implies f(a2) = f(a)2. Say |f(a)| = c(ε) + p for

some p > 0. Then

|f(a2)| = |f(a)2 − (f(a)2 − f(a2))| ≥ |f(a)2| − |(f(a)2 − f(a2))|

≥ (c(ε) + p)2 − ε > c(ε) + 2p.

By induction, |f(a2n)| > c(ε) + (n + 1)p for all n = 1, 2, 3, · · · . For every x, y, z ∈ A

which they are commute, |f(xyz)− f(xy)f(z)| ≤ 3ε
2 and |f(xyz)− f(x)f(yz)| ≤ 3ε

2 .

So |f(xy)f(z)− f(x)f(yz)| ≤ 3ε. Hence

|f(xy)f(z)− f(x)f(y)f(z)|

≤ |f(xy)f(z)− f(x)f(yz)|+ |f(x)f(yz)− f(x)f(y)f(z)| ≤ 3ε + |f(x)|3ε

2
.

By letting x = a, y = a and z = a2n, we have

|f(a2)− f(a)2| ≤
3ε + |f(a)| 3ε

2

|f(a2n)|
.

Letting n −→ +∞ shows that f(a2) = f(a)2.

Theorem 2. Let f be an ε-approximate Jordan functional on a normed algebra A

with the multiplicative norm. Then for each a ∈ A, either |f(a)| ≤ 1+
√

1+4ε
2 ‖a‖ or

f(a2) = f(a)2.

Proof. Let a ∈ A and c = a
‖a‖ . If |f(a)| > 1+

√
1+4ε
2 ‖a‖ then |f(c2n

)| > c(ε)+(n+1)p

for all n = 1, 2, 3 and for some p, where c(ε) = 1+
√

1+4ε
2 , by the proof of Theorem 1.
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For any natural number m,n,

|f(cncm)− f(cn)f(cm)|

≤ |f((cn + cm)2)− f(cn + cm)2|+ |f((cn)2)− f(cn)2|+ |f((cm)2)− f(cm)2|

≤ ε

2

(
‖cn + cm‖2 + ‖cn‖2 + ‖cm‖2

)
= 3ε.

Then we have

|f(c2)− f(c)2| ≤ 1
|f(c2n)|

(
|f((c2)f(c2n

)− f(c2 + c2n

)|

+|f(c2 · c2n

)− f(c2)f(c2n

)|+ |f(c)||f(c · c2n

)− f(c)f(c2n

)|
)

≤ 6ε + 3|f(c)|ε
|f(c2n)|

−→ 0 as n −→∞.

This shows that f(a2) = f(a)2.

Corollary 3. Let S be a compact Hausdorff space and C(S) the set of all continuous

complex valued functions. If f is an ε-approximate Jordan mapping from a Banach

algebra A with the multiplicative norm into C(S), then for each a ∈ A, either ‖f(a)‖ ≤
1+
√

1+4ε
2 ‖a‖ or f(a2) = f(a)2.

Proof. For every x ∈ S, we can define a linear functional fx : A −→ C by fx(a) =

f(a)(x) for all a ∈ A. Then for every a ∈ A,

|fx(a2)− fx(a)2| ≤
∥∥f(a2)− f(a)2

∥∥ ≤ ε ‖a‖2
.

By Theorem 2, either ‖fx(a)‖ ≤ 1+
√

1+4ε
2 or fx(a2) = fx(a)2 for any a ∈ A. Then we

complte the proof.

In Theorem 2 and Corollary 3 we used the assumption that an algebra A has

the multiplicative norm. It is not known that whether they hold or not without such

condition. With another condition we obtain the following theorem.

Theorem 4. Let f be an ε-approximate Jordan functional on a Banach algebra A

such that f(a) = 0 implies f(a2) = 0 for each a ∈ A. Then f is continuous and

‖f‖ ≤ 1+
√

1+4ε
2 .

Proof. If A does not posses a unit, then we can extened f to A ⊕ (λ1) by putting

f(a
⊕

λ1) = f(a)+λ, and the extended f is still an ε -approximate Jordan functional.

Thus without loss of generality we may assume that A has a unit. Suppose that f

is discontinuous. Then the kernel Ker(f) of f is a dense subset of A. Since the unit
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element 1 is the closure of Ker(f), we can choose c ∈ Ker(f) such that ‖c− 1‖ ≤ 1
3 .

Then c is invertible, and c−1 = 1 +
∑∞

n=1 (1− c)n. And so
∥∥c−1

∥∥ ≤ 1
1−‖c−1‖ ≤

3
2 . Let

b = c
‖c‖ ∈ Ker(f). Then b−1 = ‖c‖ c−1and

∥∥b−1
∥∥ ≤ 2. Put |f(b−1)| = α. Note that

for every x, y ∈ A

|f(xy + yz)− 2f(x)f(y)| ≤ |f((x + y)2)− (f(x + y))2|

+|f(x2)− f(x)2|+ |f(y2)− f(y)2| ≤ 2ε(‖x‖2 + ‖y‖2 + ‖x‖ ‖y‖).

If b−1 is not in Ker(f), then for every a in A with ‖a‖ = 1,

|f(a)| =
1
2α
|2f(a)f(b−1)|

≤ 1
2α

(|2f(a)f(b−1)− f(ab−1 + b−1a)|

+ |f(bb−1ab−1 + b−1ab−1b)− 2f(b−1ab−1)f(b)| ≤ 28ε

α
.

Thus f is bounded and it is a contradiction. Therefore b−1 is in Ker(f). By assump-

tion, b−2 is in Ker(f). Then for every a in A with ‖a‖ = 1,

|f(a)| = 1
2
(|f(a + b−1ab)|+ |f(a + bab−1)|+ |f(b−1ab + bab−1)|)

=
1
2
(|f(a + b−1ab)− 2f(b−1a)f(b)|+ |f(a + bab−1)− 2f(ab−1)f(b)|

+|f(b−1ab + bab−1)− 2f(bab)f(b−2)|) ≤ 35ε.

Thus f is continuous. Since |f(a2)−f(a)2| < ε for every a ∈ A with ‖a‖ = 1,

|f(a2)| − ε ≤ |f(a2)| ≤ ‖f‖ and consequently ‖f‖ ≥ ‖f‖2 − ε. This proves ‖f‖ ≤
1+
√

1+4ε
2 .

Corollary 5. Every ε-approximate one-to-one Jordan functional on a Banach algebra

is continuous and its norm is less than or equal to 1+
√

1+4ε
2 .

Let f be an ε-near Jordan mapping from a Banach algebra A into a Banach

algebra B. Then there exists a Jordan mapping J such that ‖f − J‖ ≤ ε. For every

a in A,∥∥f(a2)− f(a)2
∥∥ ≤

∥∥f(a2)− J(a2)
∥∥ +

∥∥f(a)2 − J(a)2
∥∥

≤ ε ‖a‖2 + ‖f(a)− J(a)‖ ‖f(a)‖+ ‖J(a)‖ ‖f(a)− J(a)‖

≤ (ε + ε ‖f‖+ ε ‖J‖) ‖a‖2
.
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Therefore f is a ε(1 + ‖f‖ + ‖J‖)-approximate Jordan mapping. We are

concerned with it’s converse. By the method of the proof in [8] we obtain the following

theorem.

Theorem 6. For every ε > 0 and K > 0, there exists a positive integer m such that

every ε
m -approximate Jordan mapping with norm less than or equal to K on a finite

demensional Banach algebra A is an ε- near Jordan mapping.

Proof. Let J(A) be the set of all bounded Jordan mapping on a finite dimensional

Banach algebra A,BL(A) the set of all bounded linear mappings on A, and let for

each f in BL(A)

N(f) = inf {‖f − J‖ : J ∈ J(A)},

M = {f ∈ BL(A) : N(f) ≥ ε and ‖f‖ ≤ k}

and

Gn =

{
f ∈ BL(A) : sup

‖a‖≤1

∥∥f(a2)− f(a)2
∥∥ ≥ ε

n

}
.

Since M is a closed and bounded subset of a finite dimensional space BL(A), M is

compact. Since Gn is open for each n and

M ⊂ BL(A) \ J(A) ⊂
∞⋃

n=1

Gn,

there is m such that M ⊂ Gm. If f ∈ BL(A) \Gm, then f ∈ BL(A) \M . Therefore

if f is an ε
m - approximate Jordan mapping then f is an ε- near Jordan mapping.
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RELATION BETWEEN THE PALAIS-SMALE CONDITION AND
COERCIVENESS FOR MULTIVALUED MAPPINGS

MEZEI ILDIKÓ ILONA

Abstract. The aim of this paper is to study the coerciveness property of

a class of multivalued mappings satisfying the Palais-Smale condition.

1. Introduction

Many papers has been devoted to show that the Palais-Smale condition

implies the coerciveness. In the differentiable case this property is studied by L.

Caklovici, S.Li, and M. Willem [2], for the locally Lipschitz functionals by Cs. Varga

and V. Varga [11]. For the class of functions introduced by A. Szulkin [10], which

is lower semicontinuous, this property has been proved by D. Goeleven in the paper

[7]. For continuous functionals this result is proved by Fang [6]. These results are

generalized by J.-N. Corvellec, see [4].

In a recent paper D. Motreanu and V.V. Motreanu [8] studied this problem

for a class of functional of type Φ + γ, where Φ is a locally Lipschitz function and γ

is a proper, convex, lower semicontinuous functional.

In this paper we study the coerciveness of the function γ + σ, where σ is a

locally Lipschitz function and γ is a convex lower semicontinuous function. The main

tool used in the proof the coerciveness property is the classical Ekeland’s variational

principle [5].

2000 Mathematics Subject Classification. 49J53.
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2. Preliminaries

Let (X, ‖ · ‖) be a real Banach space and let A : X  X be a multivalued

map with A(x) 6= ∅, ∀x ∈ X, i.e DomA = X. Let X∗ be the dual of X.

Definition 2.1 [1] A : X  X is Lipschitz around x ∈ X if there exists a

positive constant l and a neighborhood U of x such that

∀x1, x2 ∈ U, ‖y1 − y2‖ ≤ l‖x1 − x2‖, ∀y1 ∈ A(x1), y2 ∈ A(x2).

If A is Lipschitz around all x ∈ X, we say that A is locally Lipschitz.

Definition 2.2[9] The generalized directional derivative of the locally Lips-

chitz function f : X → R at the point x0 ∈ X in the direction h ∈ X is defined

by

f0(x0, h) = lim sup
x→x0 t↘0

f(x+ th)− f(x)
t

.

Let p ∈ X∗ such that ‖p‖∗ <∞, where ‖p‖∗ = sup{〈p, x〉 : ‖x‖ ≤ 1, x ∈ X}.

Lemma 2.1 If A : X  X is locally Lipschitz, then the function x 7→

σ(A(x), p) is locally Lipschitz, where

σ(A(x), p) = sup{〈p, y〉 : y ∈ A(x)}, p ∈ X∗.

Proof. We consider an arbitrary x0 ∈ X. Since A is locally Lipschitz, there

exist l > 0 and an U neighborhood of x0 such that:

∀x1, x2 ∈ U,∀y1 ∈ A(x1), y2 ∈ A(x2) : ‖y1 − y2‖ ≤ l‖x1 − x2‖.

We can suppose that σ(Ax1, p) ≥ σ(Ax2, p). It’s easy to verify that

0 ≤ σ(Ax1, p)− σ(Ax2, p) ≤ sup
y1∈Ax1,y2∈Ax2

〈p, y1 − y2〉.

But

sup
yi∈Axi

〈p, y1 − y2〉 = sup
yi∈Axi

〈p, y1 − y2
‖y1 − y2‖

‖y1 − y2‖〉 =

= sup
yi∈Axi

〈p, y1 − y2
‖y1 − y2‖

〉 · ‖y1 − y2‖ ≤ ‖p‖∗ · l · ‖x1 − x2‖,

providing that y1 6= y2 .The case y1 = y2 is trivial.
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Therefore x 7→ σ(Ax, p) is locally Lipschitz. �

We consider an appropriate class of function as [9, chapter3].

Let J : X → R be a function given by

(H) J(x) = ψ(x) + σ(A(x), p),

where ψ : X → R is a convex lower semicontinuous function, A : X  X is a locally

Lipschitz multivalued map and p ∈ X∗.

Definition 2.3 A point u ∈ X is said to be critical point of J for p ∈ X∗ if

it satisfies the following variational inequality

ψ(v)− ψ(u) + (σ(A(·), p))0(u, v − u) ≥ 0, ∀v ∈ X.

Definition 2.4 The function J satisfies the Palais-Smale condition at level c

(briefly (PS)c) if for each sequence {un} ⊂ X such that J(un) → c and ψ(v)−ψ(un)−

(σ(A(·), p))0(un, v − un) ≥ −εn‖v − un‖, ∀v ∈ X, where εn → 0, {un} contains a

convergent subsequence.

Definition 2.5 We say that J is coercive, if for ‖u‖ → ∞ we have J(u) →∞.

As we said above our main tool is the Ekeland’s principle, which we recall

now.

Theorem 2.1 Let X be a complete metric space and let f : X → (−∞,∞] be

a lower semicontiuous function such that infXf ∈ R. Let ε > 0 and u ∈ X be given

such that f(u) ≤ infXf + ε. Then for every λ > 0, there exists an element v ∈ X,

such that

i) f(v) < f(u);

ii) f(v) < f(w) + ε
λ · d(v, w), for every w 6= v;

iii) d(u, v) ≤ λ.

3. Main result

Theorem 3.1 Let X be a Banach space,J a bounded bellow function satisfying

(H) and p ∈ X∗ such that ‖p‖∗ <∞. Define

c := lim inf
‖u‖→∞

J(u).

69



MEZEI ILDIKÓ ILONA

Then, if c ∈ R, there exists a sequence {vn} ⊂ X such that:

(i) ‖vn‖ → ∞;

(ii) J(vn) → c;

(iii) ψ(v) − ψ(vn) + (σ(A(·), p))0(vn, v − vn) ≥ −εn · ‖v − vn‖, where εn →

0, ∀v ∈ X.

Proof. From the definition of c there exists a sequence un such that

J(un) ≤ c+ 1
n and ‖un‖ ≥ 2n, for n ∈ N \ {0} sufficiently large. Evidently J is lower

semicontinuous and so we can apply the Theorem 2.1, with f = J , ε = c+ 1
n − infX J

and λ = n.

Thus there exists vn ∈ X such that:

(1) J(vn) ≤ J(un) ≤ c+
1
n

;

J(w) > J(vn)− 1
n

(
c+

1
n
− infXJ

)
‖vn − w‖, ∀w 6= vn;

(2) ‖un − vn‖ ≤ n.

Thus, for each w ∈ X we have

J(w)− J(vn) ≥ − 1
n

(
c+

1
n
− infXJ

)
‖w − vn‖.

Let w = (1 − t)vn + tv, where v is fixed in X and t ∈ [0, 1]. Replacing w in

the last inequality we obtain

ψ(vn + t(v − vn))− ψ(vn) + σ(A((1− t)vn + tv), p)− σ(A(vn), p) ≥ −εnt‖v − vn‖,

where εn =
(
c+ 1

n − infX J
)

1
n .

Since ψ is convex, we have

t(ψ(v)− ψ(vn)) + σ(A((1− t)vn + tv), p)− σ(A(vn), p) ≥ −εnt‖v − vn‖.

Dividing this relation by t we get

(3) ψ(v)− ψ(vn) +
1
t

[
σ(A(vn + t(v − vn)), p)− σ(A(vn), p)

]
≥ −εn‖v − vn‖.
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Taking the limit as t↘ 0 and using that

σ(A(·, p))0(vn, v − vn) = lim sup
wn→vn t↘0

σ(A(wn + t(v − vn)), p)− σ(A(wn), p)
t

≥

≥ lim
t↘0

σ(A(vn + t(v − vn)), p)− σ(A(vn), p)
t

we obtain

ψ(v)− ψ(vn) + (σ(A(·), p))0 (vn, v − vn) ≥ −εn‖v − vn‖, εn → 0,

∀v ∈ X i.e. exactly the (iii).

From (2) and (1) we have ‖vn‖ ≥ ‖un‖ − ‖un − vn‖ ≥ 2n − n = n, and

J(vn) → c respectively thus we have constructed a sequence such that (i), (ii) and

(iii) are satisfied. �

Corollary 3.1 Let X be a Banach space and let J : X → R be a function

of the form J(x) = ψ(x) + σ(Ax, p), with ‖p‖∗ < ∞ satisfying (H) and the (PS)

condition. If J is bounded bellow, then J is coercive.

Proof. We proceed by contradiction. Assume that

c = lim inf
‖u‖→∞

J(u) ∈ R.

Then by the main theorem, there exists a sequence vn such that ‖vn‖ → ∞,

J(vn) → c and ψ(v) − ψ(vn) + (σ(A(·), p))0 (vn, v − vn) ≥ −εn‖v − vn‖, ∀v ∈ X,

where εn → 0. Since J satisfies the (PS) condition, we can choose a convergent

subsequence of {vn}, which is in contradiction with ‖vn‖ → ∞. �

Remark 3.1 The Corollary 3.1 generalize some results from the papers [2],

[11], [7] and [8].
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1990.

[2] L. Caklovic, S. J. Li, M. Willem, A note on Palais - Smale condition and coercivity,
Differential Integral Equations, 3, (1990), 799 - 800.

[3] F.H. Clarke, Nonsmooth analysis and Optimization, Wiley, New York, 1983.
[4] J.-N. Corvellec, A note on coercivity of lower semicontinuous functions and nonsmooth

critical point theory, Serdica Math. Journ., 22 (1996), 57-68
[5] I. Ekeland, On the variational principle, Journ. Math. Anal. Appl. 47(1974), 324-353.
[6] G. Fang, On the existence and the classification of critical points for non-smooth

functionals, Can. J. Math. 47 (4), 1995, 684-717.

71



MEZEI ILDIKÓ ILONA
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COMMON FIXED POINT THEOREMS FOR MULTIVALUED
OPERATORS ON COMPLETE METRIC SPACES

AUREL MUNTEAN

1. Introduction

The purpose of this paper is to prove a common fixed point theorem for

multivalued operators defined on a complete metric space. Then, as consequences, we

obtain some generalizations of several results proved in [6] for singlevalued operators.

For other results of this type see [1], [2], [3] and [5]. The metric conditions

which appears in Theorem 3.1 generalize some conditions given in [6].

2. Preliminaries

Let X be a nonempty set. We denote:

P (X) := {A ⊂ X | A 6= ∅} and Pcl(X) := {A ∈ P (X) | A = Ā}.

If (X, d) is a metric space, B ∈ P (X) and a ∈ A, then

D(a,B) := inf{d(a, b) | b ∈ B}.

Definition 2.1. If T : X ( X is a multivalued operator, then an element

x ∈ X is a fixed point of T, iff x ∈ T (x).

We denote by FT := {x ∈ X | x ∈ T (x)} the fixed points set of T.

Definition 2.2. Let (Tn)n∈N∗ be a sequence of multivalued operators Tn :

X → P (X), (∀) n ∈ N∗. Then we denote by

Com(T ) := {x ∈ X | x ∈ Tn(x), (∀)n ∈ N∗} =
⋂

n∈N∗
FTn

the common fixed points set of the sequence (Tn)n∈N∗ .

2000 Mathematics Subject Classification. 47H10, 54H25.
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Lemma 2.3. (I.A.Rus [4]). Let ϕ : Rk
+ → R+ (k ∈ N∗) be a function and

denote by ψ : R+ → R+, the mapping given by ψ(t) = ϕ(t, t, ..., t), (∀) t ∈ R+.

Suppose that the following conditions are satisfied:

i) (r 6 s, r, s ∈ Rk
+) ⇒ ϕ(r) 6 ϕ(s);

ii) ϕ is upper semi-continuous;

iii) ψ(t) < t, for each t > 0.

Then lim
n→∞

ψn(t) = 0, for each t > 0.

In [6], T.Veerapandi and S.A.Kumar gave the following result:

Theorem 2.4. Let X be a Hilbert space, Y ∈ Pcl(X) and Tn : Y → Y ,

for n ∈ N, be a sequence of mappings.

We suppose that at least one of the following conditions is satisfied:

i) there exist real numbers a, b, c, satisfying 0 6 a, b, c < 1 and a+ 2b+

2c < 1 such that for each x, y ∈ Y and x 6= y,

‖Ti(x)− Tj(y)‖2 6 a · ‖x− y‖2 + b

(
‖x− Ti(x)‖2 + ‖y − Tj(y)‖2

)
+

+
c

2

(
‖x− Tj(y)‖2 + ‖y − Ti(x)‖2

)
, for i, j;

ii) there exist a real number h satisfying 0 6 h < 1 such that for all

x, y ∈ Y and x 6= y,

‖Ti(x)− Tj(y)‖2 6 h ·max
{
‖x− y‖2, 1

2

(
‖x− Ti(x)‖2 + ‖y − Tj(y)‖2

)
,

1
4

(
‖x− Tj(y)‖2 + ‖y − Ti(x)‖2

)}
, for i, j.

Then, (Tn)n∈N∗ has a unique common fixed point.

3. The main results

The first result of this section improve and generalize Theorem 2.4 in the

multivoque case.

Theorem 3.1. Let (X, d) be a complete metric space and S, T : X →

Pcl(X) multivalued operators.

We suppose that there exists a function ϕ : R3
+ → R+ such that:

i) (r 6 s, r, s ∈ R3
+) ⇒ ϕ(r) 6 ϕ(s);

ii) ϕ(t, t, t) < t for each t > 0;
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iii) ϕ is continuous;

iv) for each x ∈ X, any ux ∈ S(x) and for all y ∈ X, there exists uy ∈ T (y)

so that we have

d2(ux, uy) 6 ϕ

(
d2(x, y) ,

d2(x, ux) + d2(y, uy)
2

,
d2(x, uy) + d2(y, ux)

4

)
.

In these conditions, FS = FT = {x∗}.

Proof. Let x0 ∈ X arbitrarily. Then we can construct a sequence (xn) ⊂ X

such that  x2n+1 ∈ S(x2n)

x2n+2 ∈ T (x2n+1)
(∀)n ∈ N.

Denote by dn := d(xn , xn+1), n ∈ N. We have several steps in our proof.

Step I. Let us prove that the sequence (dn) is monotone decreasing. Indeed,

we have successively:

d2
2n+1 = d2(x2n+1, x2n+2) 6

6 ϕ
(
d2(x2n, x2n+1),

d2(x2n, x2n+1) + d2(x2n+1, x2n+2)
2

,

d2(x2n, x2n+2) + d2(x2n+1, x2n+1)
4

)
6

6 ϕ

(
d2
2n ,

d2
2n + d2

2n+1

2
,

(d2n + d2n+1)2

4

)
< max

{
d2
2n ,

d2
2n + d2

2n+1

2

}
= d2

2n,

from where it follows d2n+1 < d2n. By an analogous method we have d2n+2 < d2n+1.

Step II. We prove that lim
n→∞

dn = 0.

For this purpose, let us define ψ : R+ → R+, by ψ(t) = ϕ(t, t, t). Obviously,

ψ is monotone increasing and ψ(t) < t, (∀) t > 0.

By induction, we can prove that d2
n 6 ψn(d2

0), (∀)n > 1.

Indeed, we have

d2
1 6 ϕ

(
d2
0 ,

d2
1 + d2

0

2
,

(d0 + d1)2

4

)
6 ϕ(d2

0, d
2
0, d

2
0) = ψ(d2

0).

If inequality d2
2n 6 ψ2n(d2

0) is true, then we get successively:

d2
2n+1 6 ϕ

(
d2
2n ,

d2
2n + d2

2n+1

2
,

(d2n + d2n+1)2

4

)
6 ϕ(d2

2n, d
2
2n, d

2
2n) = ψ(d2

2n) 6

≤ ψ(ψ2n(d2
0)) = ψ2n+1(d2

0).

By passing to limit as n→∞, if d0 > 0 it follows

lim
n→∞

d2
n 6 lim

n→∞
ψn(d2

0) = 0, and hence lim
n→∞

dn = 0.
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For d0 = 0, the sequence (dn) being decreasing it is obviously that

lim
n→∞

dn = 0.

Step III. We’ll prove that the sequence (xn) is Cauchy in X, i.e. for each

ε > 0, there exists k ∈ N such that for each m,n > k, d(xm, xn) < ε.

Suppose, by contradiction, that (x2n) is not Cauchy sequence. Then, there

exists ε > 0 such that for each 2k ∈ N there exist 2mk, 2nk ∈ N, 2mk > 2nk > 2k,

with the property d(x2mk
, x2nk

) > ε.

In what follows, let us suppose the numbers 2m(k) and 2n(k) as follows:

2m(k) := inf{2mk ∈ N | 2mk > 2nk > 2k, d(x2nk
, x2mk−2) 6 ε, d(x2nk

, x2mk
) > ε}

and 2n(k) := 2nk. Then, (∀) 2k ∈ N we have:

ε < d(x2n(k), x2m(k)) 6 d(x2n(k), x2m(k)−2) + d(x2m(k)−2, x2m(k)−1)+

+d(x2m(k)−1, x2m(k)).

Using step II, we deduce that

lim
k→∞

d(x2n(k), x2m(k)) = ε. (1)

From the triangle inquality, we get:

|d(x2n(k), x2m(k)−1)− d(x2n(k), x2m(k))| 6 d(x2m(k)−1, x2m(k))

and

|d(x2n(k)+1, x2m(k)−1)− d(x2n(k), x2m(k))| 6 d(x2m(k)−1, x2m(k)) + d(x2n(k), x2n(k)+1).

Using again step III and the relation (1), it follows
lim

k→∞
d(x2n(k), x2m(k)−1) = ε

lim
k→∞

d(x2n(k)+1, x2m(k)−1) = ε.

(2)

Then, we have successively:

d(x2n(k), x2m(k)) 6 d(x2n(k), x2n(k)+1) + d(x2n(k)+1, x2m(k)) 6 d(x2n(k), x2n(k)+1)+

+

[
ϕ(d2(x2n(k), x2m(k)−1),

d2(x2n(k), x2n(k)+1) + d2(x2m(k)−1, x2m(k))
2

,
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d2(x2n(k), x2m(k)) + d2(x2m(k)−1, x2n(k)+1)
4

] 1
2

.

Because ϕ is continuous, passing to the limit as k →∞, we have:

ε 6

[
ϕ

(
ε2, 0,

ε2

2

)] 1
2

6
[
ψ(ε2)

] 1
2 < ε, a contradiction.

Step IV. We prove that FT 6= ∅.

Because (xn) is Cauchy sequence in the complete metric space (X, d) we

obtain that there exists x∗ ∈ X such that lim
n→∞

xn = x∗.

From x2n+1 ∈ S(x2n) we have that there exists un ∈ T (x∗) such that:

d2(x2n+1, un) 6

≤ ϕ

(
d2(x2n, x

∗) ,
d2(x2n, x2n+1) + d2(x∗, un)

2
,
d2(x2n, un) + d2(x∗, x2n+1)

4

)
<

< max
{
d2(x2n, x

∗) ,
d2(x2n, x2n+1) + d2(x∗, un)

2
,
d2(x2n, un) + d2(x∗, x2n+1)

4

}
:= M.

Consequently, we have the following situations:

a. Case M = d2(x2n, x
∗). In this case, we have

d2(x2n+1, un) 6 d2(x2n, x
∗),

from where

lim
n→∞

d(x2n+1, un) 6 lim
n→∞

d(x2n, x
∗) = 0,

i.e.

lim
n→∞

d(x2n+1, un) = 0.

b. Case M =
d2(x2n, x2n+1) + d2(x∗, un)

2
. We deduce successively:

d2(x2n+1, un) 6
d2(x2n, x2n+1) + d2(x∗, un)

2
6

≤ d2(x2n, x2n+1) + [d(x∗, x2n+1) + d(x2n+1, un)]2

2
,

i.e. d2(x2n+1, un)−2·d(x∗, x2n+1)·d(x2n+1, un)−[d2(x2n, x2n+1)+d2(x∗, x2n+1)] 6 0,

therefore

d(x2n+1, un) 6 d(x∗, x2n+1) +
√

2 · d2(x∗, x2n+1) + d2(x2n, x2n+1).
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Passing to the limit in this inequality, as n→∞, we obtain

lim
n→∞

d(x2n+1, un) = 0.

c. Case M =
d2(x2n, un) + d2(x∗, x2n+1)

4
. In this case, from the inequal-

ity

d2(x2n+1, un) 6
d2(x2n, un) + d2(x∗, x2n+1)

4
,

we have, again,

lim
n→∞

d(x2n+1, un) = 0.

Passing to the limit, as n→∞, in inequality

d(x∗, un) 6 d(x∗, x2n+1) + d(x2n+1, un),

on the basis of the limit lim
n→∞

d(x2n+1, un) = 0, we obtain d(x∗, un) → 0 as n→ 0.

Since un ∈ T (x∗), (∀)n ∈ N and T (x∗) is a closed set, it follows that

x∗ ∈ T (x∗), i.e. x∗ ∈ FT .

Step V. We’ll obtain, now, the conclusion of our theorem. We first prove

that FS ⊂ FT .

Let x∗ ∈ FS . From x∗ ∈ S(x∗) we have that there exists u ∈ T (x∗) such

that

d2(x∗, u) 6 ϕ

(
d2(x∗, x∗) ,

d2(x∗, x∗) + d2(x∗, u)
2

,
d2(x∗, u) + d2(x∗, x∗)

4

)
.

If we suppose that d(x∗, u) > 0, then we obtain

d2(x∗, u) 6 ϕ

(
0,

d2(x∗, u)
2

,
d2(x∗, u)

4

)
<
d2(x∗, u)

2
,

a contradiction. Thus, d(x∗, u) = 0, which means that u = x∗. It follows that

x∗ ∈ T (x∗) and so FS ⊂ FT .

We shall prove now the equality FS = FT betwen the fixed points set for S

and T.

If we assume that there exists y∗ ∈ FT such that y∗ 6= x∗ ∈ FS , then

we have

d2(x∗, y∗) 6 ϕ

(
d2(x∗, y∗) ,

d2(x∗, x∗) + d2(y∗, y∗)
2

,
d2(x∗, y∗) + d2(y∗, x∗)

4

)
=

= ϕ

(
d2(x∗, y∗) , 0 ,

d2(x∗, y∗)
2

)
6 ψ(d2(x∗, y∗)) < d2(x∗, y∗),
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a contradiction, proving the fact that FS = FT ∈ P (X).

In fact, we have obtained, even more, namely that FS = FT = {x∗}. �

Corollary 3.2. Let (X, d) be a complete metric space and S, T : X → Pcl(X)

multivalued operators .

We suppose that there exist a, b, c ∈ R+, a + 2b + 2c < 1, such that for

each x ∈ X, each ux ∈ S(x) and for all y ∈ X, there exists uy ∈ T (y) so that we

have

d2(ux, uy) 6 a · d2(x, y) + b · [d2(x, ux) + d2(y, uy)] +
c

2
· [d2(x, uy) + d2(y, ux)].

Then, FS = FT = {x∗}.

Proof. Applying Theorem 3.1 for the function ϕ : R3
+ → R+, ϕ(t1, t2, t3) =

at1 + 2bt2 + 2ct3, which satisfies the conditions i), ii) and iii) of this theorem, we

obtain the conclusion. �

Remark 3.3. If T and S are singlevalued operators, then Corollary 3.2 is

Theorem 3 from [6].

Corollary 3.4. Let (X, d) be a complete metric space and S, T : X →

Pcl(X) multivalued operators.

We suppose that there exists h ∈]0, 1[ such that for each x ∈ X, any

ux ∈ S(x) and for all y ∈ X, there exists uy ∈ T (y) so that we have

d2(ux, uy) 6 h ·max
{
d2(x, y) ,

d2(x, ux) + d2(y, uy)
2

,
d2(x, uy) + d2(y, ux)

4

}
.

In these conditions, FS = FT = {x∗}.

Proof. We apply Theorem 3.1 for the function ϕ : R3
+ → R+, ϕ(t1, t2, t3) =

h ·max{t1, t2, t3}, which satisfies the conditions i), ii) and iii) of this theorem.

�

Remark 3.5. Corollary 3.4 is a generalization for multivalued operators of

Theorem 4 from [6], theorem proved for singlevalued operators in Hilbert spaces.

Remark 3.6. Let (X, d) be a complete metric space and (Tn)n∈N be a

sequence of multivalued operators Tn : X → Pcl(X), (∀)n ∈ N.

If each pair of multivalued operators (T0, Tn), for n ∈ N∗, satisfies similar

conditions as in Theorem 3.1, then FTn = FT0 = {x∗}, for all n ∈ N∗.

We next give a generalization of Theorem 1 of N.Negoescu [2].
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Theorem 3.7. Let (X, d) be a compact metric space, S, T : X → Pcl(X)

and ϕ : R3
+ → R+. Suppose that the following conditions are satisfies:

i) (r 6 s; r, s ∈ R3
+) ⇒ ϕ(r) 6 ϕ(s);

ii) ϕ(t, t, t) < t, (∀) t > 0;

iii) S or T be continuous;

iv) d2(ux, uy) < ϕ

(
d2(x, y) , d(x, ux) ·d(y, uy) , d(x, uy) ·d(y, ux)

)
, for all

x, y ∈ X, x 6= y and for all (ux, uy) ∈ S(x)× T (x).

In these conditions:

a. S or T has a strict fixed point;

b. if both S and T have such fixed points, then the pair (S, T) has a common

fixed point.

Proof. a. Let S be continuous and we consider the function f(x) :=

D(x, S(x)). Because f is continuous on X, it follows that f takes its minimum

value, i.e. there exists x0 ∈ X such that f(x0) = inf{f(x) | x ∈ X}.

We prove that x0 is a fixed point of S or some x1 ∈ S(x0) is a fixed

point of T.

Indeed, we choose:

x1 ∈ S(x0) be such that d(x0, x1) = D(x0, S(x0));

x2 ∈ T (x1) be such that d(x1, x2) = D(x1, T (x1));

x3 ∈ S(x2) be such that d(x2, x3) = D(x2, S(x2)).

We shall prove that D(x0, S(x0)) = 0 or D(x1, T (x1)) = 0, i.e. x0 ∈ S(x0)

or x1 ∈ T (x1). We suppose that D(x0, S(x0)) > 0 and D(x1, T (x1)) > 0. Hence,

using the inequality iv), we have:

d2(x1, x2) < ϕ

(
d2(x0, x1) , d(x0, x1) · d(x1, x2) , d(x0, x2) · d(x1, x1)

)
6

6 max
{
d2(x0, x1) , d(x0, x1) · d(x1, x2)

}
:= M.

Consequently, we distinguish the following situations:

I. Case M = d2(x0, x1). In this case, we deduce d(x1, x2) < d(x0, x1).

II. Case M = d(x0, x1) · d(x1, x2). In this case, we have d2(x1, x2) <

d(x0, x1) · d(x1, x2). Since d(x1, x2) = D(x1, T (x1)) > 0, it follows that d(x1, x2) <
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d(x0, x1). Now,

d2(x3, x2) < ϕ

(
d2(x2, x1) , d(x2, x3) · d(x1, x2) , d(x2, x2) · d(x1, x3)

)
6

6 max
{
d2(x1, x2) , d(x2, x3)) · d(x1, x2)

}
.

Analogously, it follows that d2(x2, x3) < d2(x1, x2) or d2(x2, x3) <

d(x2, x3) · d(x1, x2).

In the second situations, if d(x2, x3) = 0, we obtain a contradiction. Thus,

it follows that d(x2, x3) < d(x1, x2).

Similarly, we deduce successively:

D(x2, S(x2)) = d(x2, x3) < d(x1, x2) < d(x0, x1) = f(x0),

which contradict the minimality of f(x0). Therefore, D(x0, S(x0)) = 0 or

D(x1, T (x1)) = 0. So, x0 ∈ S(x0) or x1 ∈ T (x1).

b. We assume that there exist u ∈ S(u) and v ∈ T (v), such that u 6= v.

Then, using the hypothesis iv) we get, again, a contradiction:

d2(u, v) < ϕ

(
d2(u, v) , d(u, u) · d(v, v) , d2(u, v)

)
6 d2(u, v).

So, u=v, meaning that u is a common fixed point of S and T. �

Remark 3.8. If ϕ : R3
+ → R+, ϕ(t1, t2, t3) = max{t1, t2, t3}, from

Theorem 3.7, we get a result of Negoescu [2, Theorem 1].

Remark 3.9. We note that Theorem 3.7 is true for S = T : X → Pcl(X).
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THE ϕ-CATEGORY OF SOME PAIRS OF PRODUCTS OF
MANIFOLDS

CORNEL PINTEA

Abstract. In this paper we will show that in certain topological conditions

on the manifold M, the ϕ-category of the pairs

(Pn(R)×M, T a ×Rm−a), (Pn(R)×M, T a × Sm−a)

is infinite for suitable choices of the numbers m, n, a.

1. Introduction

Let us first recall that the ϕ-category of a pair (M,N) of smooth manifolds

is defined as

ϕ(M,N) = min{#C(f) | f ∈ C∞(M,N)},

where C(f) denotes the critical set of the smooth mapping f : M → N and #C(f)

its cardinality. For more details, see for instance [AnPi].

In the previous papers [Pi1], [Pi3] is studied the ϕ-category of the pairs

(P
n
(R),Rm), (Pn(R), Sm), (Pn(R), T a ×Rm−a) and is proved that it is infinite for

suitable choices of the numbers m,n, a.

Using those results as well as some others, in this paper we will show the same

think for some pairs of the form (Pn(R)×M,T a×Rm−a), (Pn(R)×M,T a×Sm−a).

2. Some useful results

In this section we will recall some results proved in some various previous

papers and which we are going to use in the next sections.

Theorem 2.1. ([Pi1]) Let M, N be compact connected differentiable manifolds having

the same dimension m. In these conditions the following statements are true:

(i) If m ≥ 3 and π1(N) has no subgroup isomorphic with π1(M), then ϕ(M, N) ≥ ℵ0;

(ii) If m ≥ 4 and πq(M) 6∼= πq(N) for some q ∈ {2, 3, . . . , m− 2}, then ϕ(M, N) ≥ ℵ0.
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If G, H are two groups, then the algebraic ϕ- categoryof the pair (G, H) is

defined as

ϕalg(G, H) = min{[H : Im f ] | f ∈ Hom(G, H)}.

Recall that for an abelian group G the subset t(G) of all elements of finite order forms

a subgroup of G called the torsion subgroup.

Proposition 2.2. ([Pi2]) If G,H are finitely generated abelian groups such that

rank[G/t(G)]<rank[H/t(H)], then ϕalg(G, H) ≥ ℵ0

Theorem 2.3. ([Pi2]) Let Mm, Nn be compact connected differential manifolds such

that m ≥ n ≥ 2. If ϕalg(π(M), π(N)) ≥ ℵ0, then ϕ(M,N) ≥ ℵ0.

Theorem 2.4. ([Pi3]) If M is a smooth manifold and n is a natural number such

that dim M < n, then ϕ(M,Rn) = ϕ(M,Sn).

Theorem 2.5. ([Pi3]) If n is a natural number such that n+1 and n+2 are not powers

of 2, then we have

ϕ(Pn(R), Sm) = ϕ(Pn(R),Rm) ≥ ℵ0 if n < m ≤ 2[log2n]+1 − 2

ϕ(Pn(R), Sm) = ϕ(Pn(R),Rm) = 0 if m ≥ 2n− 1.

Theorem 2.6. ([Pi3]) If Mn, Nn, P are differentiable manifolds such that π(P ) is

a torsion group and π(N) is a free torsion group and p : M → N is a differentiable

covering mapping, then ϕ(P,M) = ϕ(P,N).

Corollary 2.7. ([Pi3]) If M is a differentiable mapping such that π(M) is a torsion

group, then ϕ(M,Rn) = ϕ(M,T a ×Rn−a), for any a ∈ {1, . . . , n− 1}. In particular,

for a = n we get that ϕ(M,Rn) = ϕ(M,Tn).

Theorem 2.8. ([Pi4]) If n is a natural number such that n+1 and n+2 are not powers

of 2, then we have

ϕ(Pn(R),Rm) ≥ ℵ0 if n < m ≤ 2[log2n]+1 − 2

ϕ(Pn(R),Rm) = 0 if m ≥ 2n− 1.

3. Main results

In this section we will see the announced topological conditions on the mani-

fold M in order that the ϕ-category of the pairs (Pn(R)×M,T a×Rm−a), (Pn(R)×

M,T a × Sm−a) to be infinite.
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Theorem 3.1. If M,N,P are differentiable manifolds such that dim M ≤ dim N ≤

dim P and M is injectively immersable in N, then ϕ(M,P ) ≤ ϕ(N,P ).

Proof. Let j : M → N be an injective immersion and f : N → P be a differential

mapping. Recall that if α : X → Y is a morphism of vector spaces (linear mapping)

then dim X = dim Kerα + dim Imα. Further on we have successively:

x ∈ C(f ◦ j) ⇔ rankx(f ◦ j) < dim M ⇔ dim Imd(f ◦ j)x < dim M ⇔

⇔ dim M − dim Kerd(f ◦ j)
x

< dim M ⇔ dim Ker[(df)
j(x) ◦ (dj)

x
] > 0 ⇒

⇒ dim Ker(df)
j(x) > 0 ⇔ dim N − dim Im(df)

j(x) > 0 ⇔

⇔ dim Im(df)
j(x) < dim N ⇔ rank

j(x)f < dim N ⇔ j(x) ∈ C(f).

Therefore we showed that j[C(f ◦ j)] ⊆ C(f), which implies that

#C(f ◦ j) = #j[C(f ◦ j)] ≤ #C(f),

that is ϕ(M,P ) ≤ #C(f ◦ j) ≤ #C(f). The last inequalities holds for any differential

mapping f : N → P , which means that

ϕ(M,P ) ≤ ϕ(N,P ).�

Theorem 3.2. If n is a natural number such that n+1, n+2 are not powers of 2 and

M is a differential manifold such that π(M) is a torsion group, then we have

(i) ϕ(Pn(R)×M,T a ×Rm−a) ≥ ℵ0 if n + dim M ≤ m ≤ 2[log2n]+1 − 2,

∀ a ∈ {1, . . . ,m− 1};

(ii) ϕ(Pn(R)×M,T a×Rm−a) = 0 if m ≥ 2(n+dim M) and M is a compact

manifold.

Proof. (i) First of all observe that, according to corollary 2.7, ϕ(Pn(R) ×M,T a ×

Rm−a) = ϕ(Pn(R) × M,Rm). Because Pn(R) can be embedded in Pn(R) × M it

follows, according to theorem 3.1, that ϕ(Pn(R)×M,Rm) ≥ ϕ(Pn(R),Rm). But in

the given hypothesis we get that ϕ(Pn(R),Rm) ≥ ℵ0, because of theorem 2.8, that is

we have

ϕ(Pn(R)×M,T a ×Rm−a) = ϕ(Pn(R)×M,Rm) ≥ ϕ(Pn(R),Rm) ≥ ℵ0.

(ii) Follows easily from the equality ϕ(Pn(R)×M,T a×Rm−a) = ϕ(Pn(R)×

M,Rm) and from the Whitney’s embedding theorem.�
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Theorem 3.3. If n is a natural number such that n+1, n+2 are not powers of 2 and

M is a differential manifold, then we have

(i) ϕ(Pn(R)×M,Sm) = ϕ(Pn(R)×M,Rm) ≥ ℵ0

if n + dim M < m ≤ 2[log2n]+1 − 2;

(ii) ϕ(Pn(R)×M,Sm) = ϕ(Pn(R)×M,Rm) = 0 if m ≥ 2(n + dim M)

and M is a compact manifold.

Proof. (i) First of all observe that, according to theorem 2.1, ϕ(Pn(R)×M,Sm) =

ϕ(Pn(R) ×M,Rm). Because Pn(R) can be embedded in Pn(R) ×M it follows, ac-

cording to 3.1, that ϕ(Pn(R)×M,Rm) ≥ ϕ(Pn(R),Rm). But in the given hypothesis

we get that ϕ(Pn(R),Rm) ≥ ℵ0, because of theorem 2.8, that is we have

ϕ(Pn(R)×M,Sm) = ϕ(Pn(R)×M,Rm) ≥ ϕ(Pn(R),Rm) ≥ ℵ0.

(ii) Follows easily from the equality ϕ(Pn(R)×M,Sm) = ϕ(Pn(R)×M,Rm)

and from the Whitney’s embedding theorem.�

Theorem 3.4. If m ≥ 3, n ≥ 2 are natural numbers and M is a compact connected

differentiable manifold such that n + dim M = m, then

(i) ϕ(Pn(R)×M,T a × Sm−a) ≥ ℵ0; ∀ a ∈ {1, . . . ,m− 2}

(ii) ϕ(Pn(R)×M,Tm) ≥ ℵ0

(iii) ϕ(Pn(R)×M,Sm) ≥ ℵ0 if m ≥ 4.

Proof. (i) Because π(T a×Sm−a) ' π(T a)×π(Sm−a) ' (Z× · · · × Z)︸ ︷︷ ︸
a times

, it follows that

π(T a×Sm−a) has no subgroup isomorphic with π(Pn(R)×M) ' π(Pn(R))×π(M) '

Z2×π(M). Therefore, according to theorem 2.1 (i), it follows that ϕ(Pn(R)×M,T a×

Sm−a) ≥ ℵ0. The inequality ϕ(Pn(R)×M,Tm) ≥ ℵ0 can be proved in the same way.

(iii) Because πn(Pn(R) ×M) ' πn(Pn(R)) × πn(M) ' πn(Sn) × πn(M) '

Z × πn(M) and πn(Sm) = 0 it follows that πn(Pn(R) × M) 6' πn(Sm). Therefore,

according to theorem 2.1 (ii), it follows that ϕ(Pn(R)×M,Sm) ≥ ℵ0.�

Theorem 3.5. If m,n are natural numbers and M a compact connected differential

manifold such that n + dim M ≥ m ≥ 2 and π(M) is a torsion group, then

ϕ(Pn(R)×M,T a × Sm−a) ≥ ℵ0, ∀ a ∈ {1, . . . ,m− 1}.
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Proof. Because π(Pn(R) ' Z2 and π(M) are torsion groups, it follows that

π
(
Pn(R) × M

)
' π(Pn(R) × π(M) ' Z2 × π(M) is a torsion group too. Because

π(T a×Sm−a) ' π(T a)×π(Sm−a) ' (Z× · · · × Z)︸ ︷︷ ︸
a times

×π(Sm−a) is a free torsion group,

it follows that Hom
(
π
(
Pn(R)×M

)
, π(T a × Sm−a)

)
= 0, that is

ϕalg

(
π
(
Pn(R)×M

)
, π(T a × Sm−a)

)
≥ ℵ0,

which means, according to theorem 2.3, that

ϕ
(
Pn(R)×M,T a × Sm−a

)
≥ ℵ0.�

Theorem 3.6. If m,n are natural numbers and M a compact connected differential

manifold such that n + dim M ≥ m ≥ 2 and π(M) is a free abelian group with

rankπ(M) < m− 1, then

ϕ(Pn(R)×M,T a × Sm−a) ≥ ℵ0 ∀ a ∈ {rank π(M) + 1, . . . ,m− 1}.

Proof. Because π
(
Pn(R)×M

)
' Z2 × π(M) it follows that

π
(
Pn(R)×M

)
t
(
π
(
Pn(R)×M

)) ' π(M).

Therefore rank
π
(
Pn(R)×M

)
t

(
π
(
Pn(R)×M

)) =rankπ(M) < a =rankπ(T a × Sm−a). Using propo-

sition 2.2, it follows that ϕalg(π
(
Pn(R)×M

)
, π(T a×Sm−a)) ≥ ℵ0, that is, according

to theorem 2.3, one can conclude that ϕ(Pn(R)×M,T a × Sm−a) ≥ ℵ0.�

4. Applications

Example 4.1. Let n1, . . . , np be natural numbers such that ni + 1, ni + 2 are not

powers of 2, for some i ∈ {1, . . . , p}.

(i) If n1 + . . . + np < m ≤ 2[log2 ni]+1 − 2, then

ϕ(Pn1(R)× . . .× Pnp
(R), T a ×Rm−a) ≥ ℵ0 (∀) a ∈ {1, . . . ,m− 1} and

ϕ(Pn1(R)× . . .× Pnp
(R), Sm) = ϕ(Pn1(R)× . . .× Pnp

(R),Rm) ≥ ℵ0

(ii) If m ≥ 2(n1 + . . . + np), then

ϕ(Pn1(R)× . . .× Pnp(R), T a ×Rm−a) = 0 ∀ a ∈ {1, . . . ,m− 1},
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and ϕ(Pn1(R)× . . .× Pnp
(R), Sm) = ϕ(Pn1(R)× . . .× Pnp

(R),Rm) = 0

Proof. It is enough to take in the theorems 3.2, 3.3

M = Pn1(R)× . . .× Pni−1(R)× Pni+1(R)× . . .× Pnp
(R).�

Example 4.2. (i) If m,n1, . . . , np ≥ 2 are natural numbers such that n1 + . . .+np ≥

m ≥ 2, then ϕ(Pn1(R)× . . .× Pnp(R), T a × Sm−a) ≥ ℵ0, (∀) a ∈ {1, . . . ,m− 1}.

(ii) If a, b, m, n1 . . . np ≥ 2 are natural numbers such that a < b and a + n1 +

. . . + np ≥ m ≥ 2, then ϕ(Pn1(R)× . . .× Pnp(R)× T a, T b × Sm−b) ≥ ℵ0.

Proof. (i) It is enough to take in the theorem 3.5 M = Pn2(R)× . . .× Pnp(R).

(ii) It is enough to take in the theorem 3.6 M = Pn2(R)×. . .×Pnp(R)×T b.�
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PICARD PAIRS AND WEAKLY PICARD PAIRS OF OPERATORS

ALINA SÎNTĂMĂRIAN

Abstract. The purpose of this paper is to introduce the notions of Pi-

card pair, c-Picard pair, weakly Picard pair and c-weakly Picard pair of

operators and to present examples for these notions. We also study the

data dependence of the common fixed points set of c-weakly Picard pairs

of operators.

1. Introduction

Let (X, d) be a metric space. Further on we shall need the following notations

P (X) := { Y | ∅ 6= Y ⊆ X }

Pcl(X) := { Y | Y ∈ P (X) and Y is a closed set }

and the following functionals

D : P (X)× P (X) → R+, D(A,B) = inf { d(a, b) | a ∈ A, b ∈ B },

H : P (X)× P (X) → R+ ∪ {+∞}, H(A,B) = max
{

sup
a∈A

D(a,B), sup
b∈B

D(b, A)
}

.

Let f1, f2 : X → X be two operators. We denote by Gf1 the graph of f1, by

Ff1 the fixed points set of f1 and by (CF )f1,f2 the common fixed points set of f1 and

f2.

The purpose of this paper is to study the following problems:

Problem 1.1. Let (X, d) be a metric space and f1, f2 : X → X be two operators.

Determine the metric conditions which imply that (f1, f2) is a (weakly) Picard pair

of operators or (and) f1, f2 are (weakly) Picard operators.

Problem 1.2. Let (X, d) be a metric space and f1, f2, g1, g2 : X → X be four

operators such that (CF )f1,f2 , (CF )g1,g2 6= ∅. We suppose that there exists η > 0 with

2000 Mathematics Subject Classification. 47H10, 54H25.

Key words and phrases. fixed point, common fixed point, Picard operator, weakly Picard operator, Picard

pair of operators, weakly Picard pair of operators.

89



ALINA SÎNTĂMĂRIAN

the property that for each x ∈ X, there are ix, jx ∈ {1, 2} so that d(fix
(x), gjx

(x)) ≤ η.

In these conditions estimate the Pompeiu-Hausdorff distance H((CF )f1,f2 , (CF )g1,g2).

Throughout the paper we follow the terminology and the notations from Rus

[7], [8] and Rus-Mureşan [9], [10].

2. Picard pairs and weakly Picard pairs of operators

Definition 2.1. [Rus [6], [7], [8]] Let (X, d) be a metric space. An operator f : X → X

is a Picard operator (briefly P. o.) iff there exists x∗ ∈ X such that Ff = {x∗} and

(fn(x0))n∈N converges to x∗, for all x0 ∈ X.

Let (X, d) be a metric space. We say that a P. o. f : X → X is a c-Picard

operator (c ∈ [0,+∞[) (briefly c-P. o.) iff the following condition is satisfied

d(x, x∗) ≤ c d(x, f(x)),

for each x ∈ X, where x∗ is the unique fixed point of f .

Definition 2.2. [Rus [6], [7], [8]] Let (X, d) be a metric space. An operator f : X → X

is a weakly Picard operator (briefly w. P. o.) iff for each x0 ∈ X, the sequence

(fn(x0))n∈N converges and its limit is a fixed point of f .

For examples of P. o. and w. P. o. see for instance Rus [6], [7], [8].

Let (X, d) be a metric space and f : X → X be a w. P. o.. We consider the

operator f∞ : X → Ff , defined as follows

f∞(x) = lim
n→∞

fn(x),

for each x ∈ X.

Definition 2.3. [Rus-Mureşan [10]] Let (X, d) be a metric space and f : X → X be

a w. P. o.. We say that f is a c-weakly Picard operator (c ∈ [0,+∞[) (briefly c-w.

P. o.) iff the following condition is satisfied

d(x, f∞(x)) ≤ c d(x, f(x)),

for each x ∈ X.

Examples of c-w. P. o. are given in Rus-Mureşan [10].

Definition 2.4. Let (X, d) be a metric space and f1, f2 : X → X be two operators.

We say that the pair of operators (f1, f2) is a Picard pair of operators (briefly P. p.

o.) iff there exists x∗ ∈ X such that (CF )f1,f2 = {x∗} and for each x ∈ X and for
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every y ∈ {f1(x), f2(x)}, the sequence (xn)n∈N defined as follows: x0 = x, x1 = y

and x2n−1 = fi(x2n−2), x2n = fj(x2n−1), for each n ∈ N∗, where i, j ∈ {1, 2}, with

i 6= j, converges to x∗.

The sequence (xn)n∈N is, by definition, a sequence of successive approxima-

tions for the pair (f1, f2), starting from (x0, x1).

Definition 2.5. Let (X, d) be a metric space and f1, f2 : X → X be two operators

which form a P. p. o.. We say that (f1, f2) is a c-Picard pair of operators (c ∈

[0,+∞[) (briefly c-P. p. o.) iff the following condition is satisfied

d(x, x∗) ≤ c d(x, y),

for each (x, y) ∈ Gf1 ∪Gf2 , where x∗ is the unique common fixed point of f1 and f2.

Definition 2.6. Let (X, d) be a metric space and f1, f2 : X → X be two operators.

We say that the pair of operators (f1, f2) is a weakly Picard pair of operators (briefly

w. P. p. o.) iff for each x ∈ X and for every y ∈ {f1(x), f2(x)}, there exists a

sequence (xn)n∈N such that :

( i) x0 = x, x1 = y;

( ii) x2n−1 = fi(x2n−2) and x2n = fj(x2n−1), for each n ∈ N∗, where i, j ∈

{1, 2}, with i 6= j;

( iii) the sequence (xn)n∈N is convergent and its limit is a common fixed point

of f1 and f2.

Definition 2.7. Let (X, d) be a metric space and f1, f2 : X → X be two op-

erators which form a w. P. p. o.. Then we consider the multivalued operator

(f1, f2)∞ : Gf1 ∪ Gf2 → P ((CF )f1,f2) as follows: for each (x, y) ∈ Gf1 ∪ Gf2 ,

we define (f1, f2)∞(x, y) = { z ∈ (CF )f1,f2 | there exists a sequence of successive

approximations for the pair (f1, f2), starting from (x, y), that converges to z }.

Definition 2.8. Let (X, d) be a metric space and f1, f2 : X → X be two operators

which form a w. P. p. o.. We say that (f1, f2) is a c-weakly Picard pair of operators

(c ∈ [0,+∞[) (briefly c-w. P. p. o.) iff there exists a selection f∞1,2 of (f1, f2)∞ such

that

d(x, f∞1,2(x, y)) ≤ c d(x, y),

for each (x, y) ∈ Gf1 ∪Gf2 .
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Remark 2.1. It is obvious that a P. p. o. is a w. P. p. o. and a c-P. p. o. is a

c-w. P. p. o..

Further on we shall give some examples of c-P. p. o. and c-w. P. p. o..

Theorem 2.1. Let (X, d) be a complete metric space and f1, f2 : X → X be two

operators for which there exists a ∈ [0, 1/2[ such that

d(f1(x), f2(y)) ≤ a [d(x, f1(x)) + d(y, f2(y))],

for each x, y ∈ X.

Then Ff1 = Ff2 = {x∗}, (f1, f2) is c-P. p. o. and f1 and f2 are c-P. o., with

c = (1− a)/(1− 2a).

Proof. The conclusion follows immediately from Kannan’s theorem [3] and from the

Theorem 2 given by Rus in [5]. �

Theorem 2.2. Let (X, d) be a complete metric space and f1, f2 : X → X be two

operators for which there exist a, b ∈ R+, with a + b < 1 such that

d(f1(x), f2(y)) ≤ a d(x, f1(x)) + b d(y, f2(y)),

for each x, y ∈ X.

Then Ff1 = Ff2 = {x∗} and (f1, f2) is c-P. p. o., with c = (1 −

min {a, b})/[1− (a + b)].

Theorem 2.3. Let (X, d) be a complete metric space and f1, f2 : X → X be two

operators. We suppose that there exist α, β, γ ∈ R+, with α + 2β + 2γ < 1 such that

d(f1(x), f2(y)) ≤ α d(x, y)+β [d(x, f1(x))+d(y, f2(y))]+γ [d(x, f2(y))+d(y, f1(x))],

for each x, y ∈ X.

Then Ff1 = Ff2 = {x∗} and (f1, f2) is c-P. p. o., with c = [1− (β + γ)]/[1−

(α + 2β + 2γ)].

Proof. The fact that Ff1 = Ff2 = {x∗} follows from a theorem given by Rus in [4].

In order to prove the second part of the conclusion we shall take again the

proof.

Let i, j ∈ {1, 2}, with i 6= j. Let x0 ∈ X and we take x2n−1 = fi(x2n−2),

x2n = fj(x2n−1), for each n ∈ N∗.
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We have

d(x1, x2) = d(fi(x0), fj(x1)) ≤

≤ αd(x0, x1) + β[d(x0, fi(x0)) + d(x1, fj(x1))] + γ[d(x0, fj(x1)) + d(x1, fi(x0))] =

= αd(x0, x1) + β[d(x0, x1) + d(x1, x2)] + γd(x0, x2) ≤

≤ αd(x0, x1) + β[d(x0, x1) + d(x1, x2)] + γ[d(x0, x1) + d(x1, x2)]

and hence

d(x1, x2) ≤ (α + β + γ)/[1− (β + γ)] d(x0, x1).

Similarly, we have that

d(x2, x3) ≤ (α + β + γ)/[1− (β + γ)] d(x1, x2).

By induction we get that

d(xn, xn+1) ≤
[

α + β + γ

1− (β + γ)

]n

d(x0, x1),

for each n ∈ N.

This implies that (xn)n∈N is a convergent sequence, because (X, d) is a com-

plete metric space. The limit of the sequence (xn)n∈N is the unique common fixed

point x∗ of f1 and f2.

We have

d(xn, x∗) ≤
[

α + β + γ

1− (β + γ)

]n 1− (β + γ)
1− (α + 2β + 2γ)

d(x0, x1),

for each n ∈ N.

For n = 0, we obtain

d(x0, x
∗) ≤ [1− (β + γ)]/[1− (α + 2β + 2γ)] d(x0, fi(x0)).

So, we can assert that (f1, f2) is a c-P. p. o., with c = [1− (β +γ)]/[1− (α+2β +2γ)].

�

Remark 2.2. If we take α = β = 0 in the metric condition of the Theorem 2.3, then

the part which affirms that Ff1 = Ff2 = {x∗} is a result given by Chatterjea in [1]

and we have that (f1, f2) is c-P. p. o., with c = (1− γ)/(1− 2γ).
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Theorem 2.4. Let (X, d) be a complete metric space and f1, f2 : X → X be two

operators for which there exist a1, . . . , a5 ∈ R+, with a1 +a2 +a3 +2max {a4, a5} < 1

such that

d(f1(x), f2(y)) ≤ a1 d(x, y) + a2 d(x, f1(x)) + a3 d(y, f2(y))+

+a4 d(x, f2(y)) + a5 d(y, f1(x)),

for each x, y ∈ X.

Then Ff1 = Ff2 = {x∗} and (f1, f2) is c-P. p. o., with c = (1 − l)−1, where

l = max {(a1 + a2 + a4)/[1− (a3 + a4)], (a1 + a3 + a5)/[1− (a2 + a5)]}.

Proof. The proof is made similarly with that of the Theorem 2.3. �

Theorem 2.5. Let (X, d) be a complete metric space and f1, f2 : X → X be two

operators. We suppose that there exists a ∈ [0, 1[ such that

d(f1(x), f2(y)) ≤ a max {d(x, y), d(x, f1(x)), d(y, f2(y)),

1/2 [d(x, f2(y)) + d(y, f1(x))]},

for each x, y ∈ X.

Then Ff1 = Ff2 = {x∗} and (f1, f2) is c-P. p. o., with c = (1− a)−1.

Proof. The fact that Ff1 = Ff2 = {x∗} follows from a theorem given by Ćirić in

[2]. For the second part of the conclusion, the proof is made similarly with that of

the Theorem 2.3. �

Theorem 2.6. Let (X, d) be a complete metric space and ϕ : R5
+ → R+ be a contin-

uous function which satisfies the following two conditions:

( iϕ) ϕ is monoton increasing in each variable;

( iiϕ) ϕ(t, t, t, 2t, 0) ≤ t, ϕ(t, t, t, 0, 2t) ≤ t and ϕ(t, 0, 0, t, t) ≤ t, for each t > 0.

Let f1, f2 : X → X be two operators for which there exists a ∈ [0, 1[ such that

d(f1(x), f2(y)) ≤ a ϕ(d(x, y), d(x, f1(x)), d(y, f2(y)), d(x, f2(y)), d(y, f1(x))),

for each x, y ∈ X.

Then Ff1 = Ff2 = {x∗} and (f1, f2) is c-P. p. o., with c = (1− a)−1.

Proof. The proof is made similarly with that of the Theorem 2.3, taking into account

the properties of the function ϕ. �
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Remark 2.3. It is an open question if the operators f1 and f2 from the Remark 2.2,

the Theorems 2.2, 2.3, 2.4, 2.5 or 2.6 are P. o..

Theorem 2.7. Let (X, d) be a complete metric space and f1, f2 : X → X be two

continuous operators. We suppose that there exist a1, a2 ∈ [0, 1[ such that for each

i, j ∈ {1, 2}, with i 6= j we have

d(fi(x), fj(fi(x))) ≤ ai d(x, fi(x)),

for each x ∈ X.

Then Ff1 = Ff2 ∈ Pcl(X) and (f1, f2) is c-w. P. p. o., with c = (1 −

max {a1, a2})−1.

Proof. We show in the beginning that Ff1 = Ff2 . Let x∗ ∈ Ff1 . Then we have

d(x∗, f2(x∗)) = d(f1(x∗), f2(f1(x∗))) ≤ a1 d(x∗, f1(x∗)) = 0.

So x∗ ∈ Ff2 and thus we are able to write that Ff1 ⊆ Ff2 . Analogously we get that

Ff2 ⊆ Ff1 . Hence Ff1 = Ff2 .

It is not difficult to see that Ff1 and Ff2 are closed sets. In order to prove

that let i ∈ {1, 2} and xn ∈ Ffi
, for each n ∈ N, with the property that xn → x∗, as

n → ∞. From xn = fi(xn), for each n ∈ N and taking into account the fact that fi

is continuous we get, by letting n to tend to infinity, that x∗ = fi(x∗), i. e. x∗ ∈ Ffi .

So Ffi
is a closed set.

Further on we shall prove that (CF )f1,f2 6= ∅. Let i, j ∈ {1, 2}, with i 6= j.

Let x0 ∈ X and we put x2n−1 = fi(x2n−2), x2n = fj(x2n−1), for each n ∈ N∗. We

have

d(x1, x2) = d(fi(x0), fj(x1)) = d(fi(x0), fj(fi(x0))) ≤

≤ ai d(x0, fi(x0)) = ai d(x0, x1).

Similarly, we have that

d(x2, x3) ≤ aj d(x1, x2).

We put a = max {a1, a2}. By induction we get that

d(xn, xn+1) ≤ an d(x0, x1),

for each n ∈ N.
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This implies that (xn)n∈N is a convergent sequence, because (X, d) is a com-

plete metric space. Let x∗ = limn→∞ xn. From x2n−1 = fi(x2n−2), x2n = fj(x2n−1),

for each n ∈ N∗ and taking into account the fact that f1 and f2 are continuous, it

follows that x∗ ∈ (CF )f1,f2 . So (CF )f1,f2 = Ff1 = Ff2 6= ∅. By an easy calculation

we have

d(xn, x∗) ≤ an/(1− a) d(x0, x1),

for each n ∈ N.

For n = 0 we get

d(x0, x
∗) ≤ (1− a)−1 d(x0, x1).

Therefore (f1, f2) is a c-w. P. p. o., where c = (1−max {a1, a2})−1. �

Remark 2.4. It is an open question if the operators f1 and f2 from the Theorem 2.7

are w. P. o..

3. Data dependence of the common fixed points set of c-weakly Picard

pairs of operators

Theorem 3.1. Let (X, d) be a metric space and f1, f2, g1, g2 : X → X be four

operators. We suppose that :

( i) (f1, f2) is a cf -w. P. p. o. and (g1, g2) is a cg-w. P. p. o.;

( ii) there exists η > 0 such that for each x ∈ X, there are ix, jx ∈ {1, 2} so

that

d(fix(x), gjx(x)) ≤ η.

Then

H ((CF )f1,f2 , (CF )g1,g2) ≤ η max {cf , cg}.

Proof. It is not difficult to see that

H ((CF )f1,f2 , (CF )g1,g2) ≤ max

{
sup

x∈(CF )g1,g2

d(x, f∞1,2(x, fix
(x))),

sup
x∈(CF )f1,f2

d(x, g∞1,2(x, gjx
(x)))

}
.
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If x ∈ (CF )g1,g2 , then we have

d(x, f∞1,2(x, fix
(x))) ≤ cf d(x, fix

(x)) = cf d(gjx
(x), fix

(x)) ≤ cf η.

If x ∈ (CF )f1,f2 , then we get

d(x, g∞1,2(x, gjx(x))) ≤ cg d(x, gjx(x)) = cg d(fix(x), gjx(x)) ≤ cg η.

From these, using the following lemma (see [8])

Lemma 3.1. Let (X, d) be a metric space and A,B ∈ P (X). We suppose that there

exists η ∈ R, η > 0 such that :

( i) for each a ∈ A, there exists b ∈ B so that d(a, b) ≤ η,

( ii) for each b ∈ B, there exists a ∈ A so that d(b, a) ≤ η.

Then H(A,B) ≤ η.

We obtain the conclusion of the theorem. �

Further on we shall give some consequences of the abstract result given in

Theorem 3.1.

Theorem 3.2. Let (X, d) be a complete metric space and f1, f2, g1, g2 : X → X be

four operators. We suppose that :

( if ) there exists af ∈ [0, 1/2[ such that

d(f1(x), f2(y)) ≤ af [d(x, f1(x)) + d(y, f2(y))],

for each x, y ∈ X;

( ig) there exists ag ∈ [0, 1/2[ such that

d(g1(x), g2(y)) ≤ ag [d(x, g1(x)) + d(y, g2(y))],

for each x, y ∈ X;

( ii) there exists η > 0 such that for each x ∈ X, there are ix, jx ∈ {1, 2} so

that

d(fix
(x), gjx

(x)) ≤ η.

Then Ff1 = Ff2 = {x∗f}, Fg1 = Fg2 = {x∗g} and

d(x∗f , x∗g) ≤ η (1− a)/(1− 2a),

where a = max {af , ag}.
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Proof. From the Theorem 2.1 we have that Ff1 = Ff2 = {x∗f} and that (f1, f2) is

cf -P. p. o., with cf = (1− af )/(1− 2af ). From the same theorem we also have that

Fg1 = Fg2 = {x∗g} and that (g1, g2) is cg-P. p. o., with cg = (1− ag)/(1− 2ag). The

fact that d(x∗f , x∗g) ≤ η (1−a)/(1−2a) follows immediately from the Remark 2.1 and

the Theorem 3.1. �

Theorem 3.3. Let (X, d) be a complete metric space and f1, f2, g1, g2 : X → X be

four operators. We suppose that :

( if ) there exist af , bf ∈ R+, with af + bf < 1 such that

d(f1(x), f2(y)) ≤ af d(x, f1(x)) + bf d(y, f2(y)),

for each x, y ∈ X;

( ig) there exist ag, bg ∈ R+, with ag + bg < 1 such that

d(g1(x), g2(y)) ≤ ag d(x, g1(x)) + bg d(y, g2(y)),

for each x, y ∈ X;

( ii) there exists η > 0 such that for each x ∈ X, there are ix, jx ∈ {1, 2} so

that

d(fix
(x), gjx

(x)) ≤ η.

Then Ff1 = Ff2 = {x∗f}, Fg1 = Fg2 = {x∗g} and

d(x∗f , x∗g) ≤ η max {cf , cg},

where cf = (1−min {af , bf})/[1−(af +bf )] and cg = (1−min {ag, bg})/[1−(ag+bg)].

Proof. From the Theorem 2.2 we have that Ff1 = Ff2 = {x∗f} and that (f1, f2)

is cf -P. p. o.. From the same theorem we also have that Fg1 = Fg2 = {x∗g} and

that (g1, g2) is cg-P. p. o.. Now, the fact that d(x∗f , x∗g) ≤ η max {cf , cg} follows

immediately from the Remark 2.1 and the Theorem 3.1. �

Theorem 3.4. Let (X, d) be a complete metric space and f1, f2, g1, g2 : X → X be

four operators. We suppose that :

( if ) there exist αf , βf , γf ∈ R+, with αf + 2βf + 2γf < 1 such that

d(f1(x), f2(y)) ≤ αf d(x, y) + βf [d(x, f1(x)) + d(y, f2(y))]+

+γf [d(x, f2(y)) + d(y, f1(x))],
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for each x, y ∈ X;

( ig) there exist αg, βg, γg ∈ R+, with αg + 2βg + 2γg < 1 such that

d(g1(x), g2(y)) ≤ αg d(x, y) + βg [d(x, g1(x)) + d(y, g2(y))]+

+γg [d(x, g2(y)) + d(y, g1(x))],

for each x, y ∈ X;

( ii) there exists η > 0 such that for each x ∈ X, there are ix, jx ∈ {1, 2} so

that

d(fix(x), gjx(x)) ≤ η.

Then Ff1 = Ff2 = {x∗f}, Fg1 = Fg2 = {x∗g} and

d(x∗f , x∗g) ≤ η max {cf , cg},

where cf = [1− (βf + γf )]/[1− (αf + 2βf + 2γf )] and cg = [1− (βg + γg)]/[1− (αg +

2βg + 2γg)].

Proof. From the Theorem 2.3 we have that Ff1 = Ff2 = {x∗f} and that (f1, f2) is

cf -P. p. o.. From the same theorem we also have that Fg1 = Fg2 = {x∗g} and that

(g1, g2) is cg-P. p. o.. The fact that d(x∗f , x∗g) ≤ η max {cf , cg} follows immediately

from the Remark 2.1 and the Theorem 3.1. �

Theorem 3.5. Let (X, d) be a complete metric space and f1, f2, g1, g2 : X → X be

four operators. We suppose that :

( if ) there exist af
1 , . . . , af

5 ∈ R+, with af
1 + af

2 + af
3 + 2 max {af

4 , af
5} < 1 such

that

d(f1(x), f2(y)) ≤ af
1 d(x, y) + af

2 d(x, f1(x)) + af
3 d(y, f2(y))+

+af
4 d(x, f2(y)) + af

5 d(y, f1(x)),

for each x, y ∈ X;

( ig) there exist ag
1, . . . , a

g
5 ∈ R+, with ag

1 + ag
2 + ag

3 + 2 max {ag
4, a

g
5} < 1 such

that

d(g1(x), g2(y)) ≤ ag
1 d(x, y) + ag

2 d(x, g1(x)) + ag
3 d(y, g2(y))+

+ag
4 d(x, g2(y)) + ag

5 d(y, g1(x)),

for each x, y ∈ X;
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( ii) there exists η > 0 such that for each x ∈ X, there are ix, jx ∈ {1, 2} so

that

d(fix
(x), gjx

(x)) ≤ η.

Then Ff1 = Ff2 = {x∗f}, Fg1 = Fg2 = {x∗g} and

d(x∗f , x∗g) ≤ η max {cf , cg},

where cf = (1 − lf )−1, with lf = max {(af
1 + af

2 + af
4 )/[1 − (af

3 + af
4 )], (af

1 + af
3 +

af
5 )/[1 − (af

2 + af
5 )]} and cg = (1 − lg)−1, with lg = max {(ag

1 + ag
2 + ag

4)/[1 − (ag
3 +

ag
4)], (a

g
1 + ag

3 + ag
5)/[1− (ag

2 + ag
5)]}.

Proof. From the Theorem 2.4 we have that Ff1 = Ff2 = {x∗f} and that (f1, f2) is

cf -P. p. o.. From the same theorem we also have that Fg1 = Fg2 = {x∗g} and that

(g1, g2) is cg-P. p. o.. Now, the fact that d(x∗f , x∗g) ≤ η max {cf , cg} follows from the

Remark 2.1 and the Theorem 3.1. �

Theorem 3.6. Let (X, d) be a complete metric space and f1, f2, g1, g2 : X → X be

four operators. We suppose that :

( if ) there exists af ∈ [0, 1[ such that

d(f1(x), f2(y)) ≤ af max {d(x, y), d(x, f1(x)), d(y, f2(y)),

1/2 [d(x, f2(y)) + d(y, f1(x))]},

for each x, y ∈ X;

( ig) there exists ag ∈ [0, 1[ such that

d(g1(x), g2(y)) ≤ ag max {d(x, y), d(x, g1(x)), d(y, g2(y)),

1/2 [d(x, g2(y)) + d(y, g1(x))]},

for each x, y ∈ X;

( ii) there exists η > 0 such that for each x ∈ X, there are ix, jx ∈ {1, 2} so

that

d(fix(x), gjx(x)) ≤ η.

Then Ff1 = Ff2 = {x∗f}, Fg1 = Fg2 = {x∗g} and

d(x∗f , x∗g) ≤ η (1−max {af , ag})−1.
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Proof. From the Theorem 2.5 we have that Ff1 = Ff2 = {x∗f} and that (f1, f2)

is cf -P. p. o., with cf = (1 − af )−1. From the same theorem we also have that

Fg1 = Fg2 = {x∗g} and that (g1, g2) is cg-P. p. o., with cg = (1− ag)−1. The fact that

d(x∗f , x∗g) ≤ η (1−max {af , ag})−1 follows immediately from the Remark 2.1 and the

Theorem 3.1. �

Theorem 3.7. Let (X, d) be a complete metric space and ϕf , ϕg : R5
+ → R+ be two

continuous functions which satisfy the following conditions:

( iϕf,g
) ϕf and ϕg are monoton increasing in each variable;

( iiϕf,g
) ϕf (t, t, t, 2t, 0) ≤ t, ϕf (t, t, t, 0, 2t) ≤ t and ϕf (t, 0, 0, t, t) ≤ t, for each

t > 0 and ϕg(t, t, t, 2t, 0) ≤ t, ϕg(t, t, t, 0, 2t) ≤ t and ϕg(t, 0, 0, t, t) ≤ t,

for each t > 0.

Let f1, f2, g1, g2 : X → X be four operators. We suppose that :

( if ) there exists af ∈ [0, 1[ such that

d(f1(x), f2(y)) ≤ af ϕf (d(x, y), d(x, f1(x)), d(y, f2(y)), d(x, f2(y)), d(y, f1(x))),

for each x, y ∈ X;

( ig) there exists ag ∈ [0, 1[ such that

d(g1(x), g2(y)) ≤ ag ϕg(d(x, y), d(x, g1(x)), d(y, g2(y)), d(x, g2(y)), d(y, g1(x))),

for each x, y ∈ X;

( ii) there exists η > 0 such that for each x ∈ X, there are ix, jx ∈ {1, 2} so

that

d(fix
(x), gjx

(x)) ≤ η.

Then Ff1 = Ff2 = {x∗f}, Fg1 = Fg2 = {x∗g} and

d(x∗f , x∗g) ≤ η (1−max {af , ag})−1.

Proof. From the Theorem 2.6 we have that Ff1 = Ff2 = {x∗f} and that (f1, f2)

is cf -P. p. o., with cf = (1 − af )−1. From the same theorem we also have that

Fg1 = Fg2 = {x∗g} and that (g1, g2) is cg-P. p. o., with cg = (1 − ag)−1. Now, the

fact that d(x∗f , x∗g) ≤ η (1 − max {af , ag})−1 follows immediately from the Remark

2.1 and the Theorem 3.1. �
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Theorem 3.8. Let (X, d) be a complete metric space and f1, f2, g1, g2 : X → X be

four operators. We suppose that :

( if ) there exist af
1 , af

2 ∈ [0, 1[ such that for each k, l ∈ {1, 2}, with k 6= l we

have

d(fk(x), fl(fk(x))) ≤ af
k d(x, fk(x)),

for each x ∈ X;

( ig) there exist ag
1, a

g
2 ∈ [0, 1[ such that for each k, l ∈ {1, 2}, with k 6= l we

have

d(gk(x), gl(gk(x))) ≤ ag
k d(x, gk(x)),

for each x ∈ X;

( ii) there exists η > 0 such that for each x ∈ X, there are ix, jx ∈ {1, 2} so

that

d(fix
(x), gjx

(x)) ≤ η.

Then

H((CF )f1,f2 , (CF )g1,g2) ≤ η (1−max {af
1 , af

2 , ag
1, a

g
2})−1.

Proof. From the Theorem 2.7 we have that (f1, f2) is cf -w. P. p. o., with cf =

(1−max {af
1 , af

2})−1 and that (g1, g2) is cg-w. P. p. o., with cg = (1−max {ag
1, a

g
2})−1.

The conclusion follows from the Theorem 3.1. �
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Numér. Théor. Approx. 8 (1), 1979, 83-87.
[6] I. A. Rus, Weakly Picard mappings, Comment. Math. Univ. Carolinae 34 (4), 1993,

769-733.
[7] I. A. Rus, Picard operators and applications, Seminar on Fixed Point Theory, “Babeş-
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CHARACTERIZATIONS OF INJECTIVE MULTIPLIERS ON
PARTIALLY ORDERED SETS

ÁRPÁD SZÁZ AND JÓZSEF TÚRI

Abstract. An ordered pair (D, E ) of subsets of a partially ordered set

A is called a pairing in A if the meet D ∧E = inf {D, E } exists for all

D ∈ D and E ∈ E . Moreover, the set D is said to separate the points

of E if for each E1, E2 ∈ E with E1 6= E2 there exists D ∈ D such

that D ∧ E1 6= D ∧ E2.

A function F of D to E is called nonexpansive if F (D) ≤
D for all D ∈ D . Moreover, the function F is called a multiplier if

F ( D1) ∧D2 = D1 ∧ F ( D2) for all D1, D2 ∈ D. If in particular D is a

meet semilattice in A , then the function F is a nonexpansive multiplier

if and only if F ( D1 ∧D2) = F ( D1) ∧D2 for all D1, D2 ∈ D.

After summarizing some basic properties of pairings, nonexpan-

sive functions and multipliers, it is shown that if F is a multiplier of D
onto E , then E separates the points of D if and only if F is injective

and D separates the points of E . Moreover, some sufficient conditions

are given in order that a nonexpansive function and a multiplier of D to

E be the identity function of D .

The results obtained naturally extends and supplement some for-

mer statements of G. Szász, J. Szendrei, Á. Száz and G. Pataki on multi-

pliers on semilattices and partially ordered sets. Moreover, they are also

closely related to the works of several mathematicians on the extensions

of semilattices and semigroups by the module theoretic methods of R. E.

Johnson, Y. Utumi, G.D. Findlay and J. Lambek.
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multipliers.
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1. Partially ordered sets

According to Birkhoff [2, p.1] a nonvoid set A together with a reflexive,

transitive and antisymmetric relation ≤ is briefly called a poset. The use of the

script letter is mainly motivated by the fact that each poset A is isomorphic to a

family of sets partially ordered by set inclusion. The isomorphism is established by

the mapping A 7→ ]A ] , where A ∈ A and ] A ] = {B ∈ A : B ≤ A } .

As usual, a poset A is called (1) totally ordered if for each A , B ∈ A

either A ≤ B or B ≤ A holds, (2) well-ordered if each nonvoid subset of A has

a minimum (least element). Moreover, a subset D of A is called (1) descending if

A ∈ A , D ∈ D and A ≤ D imply A ∈ D , and (2) cofinal if for each A ∈ A

there exists D ∈ D such that A ≤ D .

The infimum (greatest lower bound) and the supremum (least upper bound)

of a subset D of a poset A will be understood in the usual sense. However, instead

of inf D and supD , we shall use the lattice theoretic notations
∧
D and

∨
D ,

respectively. Thus, for instance E =
∧
D if and only if E ∈ A such that for each

A ∈ A we have A ≤ E if and only if A ≤ D for all D ∈ D .

However, in the sequel, we shall only need some very particular cases of the

above definitions whenever, for A , B ∈ A , we write A ∧ B = inf {A , B} and

A ∨ B = sup {A , B} . Concerning the operation ∧ , we shall frequently use the

next simple theorems which, in their present forms, are usually not included in the

standard books on lattices.

Theorem 1.1. If A is a poset and A , B , C , D ∈ A , then

(1) A ≤ B if and only if A = A ∧B ; and thus A = A ∧A ;

(2) A ≤ B and C ≤ D imply A ∧ C ≤ B ∧D whenever A ∧ C and

B ∧D exist.

Theorem 1.2. If A is a poset and A , B , C ∈ A , then

(1) A ∧B = B ∧A whenever either B ∧A or A ∧B exist ;

(2) (A∧B )∧C = A∧ ( B∧C ) whenever A∧B and B∧C and moreover

either (A ∧B ) ∧ C or A ∧ ( B ∧ C ) exist.
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Remark 1.3. A slightly weaker form of the assertion (2) can be found in Birkhoff

[2, Theorem 1, p.8]. Moreover, a somewhat weaker form of the dual of this assertion

can be found in Grätzer [7, Exercise 31, p.8].

Theorem 1.4. If A is a poset and D ⊂ A , then the following assertions are

equivalent :

(1) D is descending ;

(2) A ∈ A and D ∈ D imply A ∧D ∈ D whenever A ∧D exists .

Remark 1.5. From the above theorems, by using the dual A (≥) of the poset A (≤) ,

one can easily get some analogous theorems for the operation ∨ and the ascending

subsets of A (≤) . However, in the sequel, we shall mainly need the operation ∧ .

Therefore, we shall assume here some rather particular terminology.

A nonvoid subset B of poset A is called a semilattice in A if D∧E exists

in A and belongs to B for all D , E ∈ B . Moreover, a nonvoid subset D of a

semilattice B in a poset A is called an ideal of B if D ∧ E is in D for all D ∈ D

and E ∈ B . Note that, by Theorem 1.5, D is an ideal of B if and only if D is

descending subset of B .

If D and E are subsets of a poset A such that D∧E exists for all D ∈ D

and E ∈ E , then we write D ∧ E = {D ∧ E : D ∈ D , E ∈ E } . Note that if B

is a semilattice in a poset A , then B = B ∧ B . Moreover, if D and E are ideals of

B , then D = D ∧B and D ∩ E = D ∧ E . Therefore, the ideal D ∩ E inherits some

useful properties of D and E .

2. Separating pairings in posets

Definition 2.1. For every subset D of a poset A , we define

D∗ =
{

A ∈ A : ∀ D ∈ D : ∃ A ∧D
}

.

Concerning the mapping ∗ of P (A) to itself, we can easily establish the

following

Theorem 2.2. If D and E are subsets of a poset A , then the following assertions

are equivalent :

(1) E ⊂ D∗ ; (2) D ⊂ E∗ .
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Proof. Suppose that the assertion (1) holds and D ∈ D . Then, E ∈ D∗ for all

E ∈ E . Therefore, D ∧ E = E ∧D exists for all E ∈ E . Consequently, D ∈ E∗ ,

and thus the assertion (2) also holds.

The converse implication (2) =⇒ (1) can now be immediately established by

interchanging the roles of D and E in the implication (1) =⇒ (2) .

Remark 2.3. From the above theorem, by [29, Lemma 2.3], it follows that the

mappings ∗ and ∗ establish a Galois connection between the posets P (A) and

P (A) .

Therefore, as an immediate consequence of [29, Theorem 2.4], we can also

state

Theorem 2.4. If A is a poset, then

(1) D∗ = D∗∗∗ for all D ⊂ A ;

(2) the composite mapping ∗∗ is a closure operation on P (A ) such that

P (A )∗ = P (A )∗∗;

(3) the restriction of the mapping ∗ to P (A )∗ is an inversion invariant

injection of P (A )∗ onto itself.

Hence, by [29, Theorem 1.9], it is clear that in particular we also have

Corollary 2.5. If A is a poset, then P (A )∗ is a complete poset.

Definition 2.6. If D and E are nonvoid subsets of A such that E ⊂ D ∗, then we

say that the ordered pair (D, E ) is a pairing in A .

Our prime example for pairings is described in the following

Theorem 2.7. If A is a poset with A∗ 6= ∅ , then A∗ is the largest subset of A

such that (A∗, A ) is a pairing in A . Moreover, A∗ is a semilattice in A .

Proof. The first statement is immediate from Definition 2.6 and Theorem 2.2. To

prove the second statement, note that if A, B ∈ A∗ and C ∈ A , then by Definition

2.1 A ∧ B and A ∧ ( B ∧ C ) exist. Therefore, by Theorem 1.2, (A ∧ B ) ∧ C =

A ∧ (B ∧ C ) also exists. Thus, again by Definition 2.1, A ∧B ∈ A∗.

Definition 2.8. If (D, E) is a pairing in a poset A such that for any

E1, E2 ∈ E , with E1 6= E2 , there exists D ∈ D such that E1 ∧D 6= E2 ∧D , then

we say that D separates the points of E .

Concerning the existence of separating pairings, we can only state the follow-

ing generalization of [28, Theorem 2.9], and its immediate consequences.
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Theorem 2.9. If (D, E ) is a pairing in a poset A such that D is a cofinal subset

of E , then D separates the points of E .

Corollary 2.10. If A is a poset such that A∗ is cofinal in A , then A∗ separates

the points of A .

Corollary 2.11. If A is a semilattice, then A separates the points of itself.

In the sequel, we shall also need the following rather particular

Theorem 2.12. Let (D , E ) be a pairing in a poset A such that D ⊂ E . Suppose

that U ⊂ D and V ⊂ E such that U ∧ D ⊂ U and U ∧ V ⊂ V . Moreover,

suppose that U separates the points D and V separates the points of U . Then V

also separates the points of D .

Proof. Suppose that D1, D2 ∈ D such that D1 6= D2. Then, since U separates

the points of D , there exists U ∈ U such that D1 ∧ U 6= D2 ∧ U . Moreover, since

U ∧ D ⊂ U , we also have D1 ∧ U, D2 ∧ U ∈ U . Therefore, since V separates the

points of U , there exists V ∈ V such that ( D1 ∧ U) ∧ V 6= (D2 ∧ U) ∧ V . Hence,

by Theorem 1.2, it follows that D1 ∧ ( U ∧ V ) 6= D2 ∧ ( U ∧ V ) . Moreover, since

U ∧ V ⊂ V , we also have U ∧ V ∈ V . Therefore, the required assertion is also true.

Corollary 2.13. If A is a poset and D is an ideal of A∗ such that D separates

the points of A∗ and A separates the points of D, then A also separates the points

of A∗.

3. Nonexpansive functions on posets

Definition 3.1. A function F of a subset D of a poset A to A is called nonex-

pansive if F (D) ≤ D for all D ∈ D .

Clearly, the identity function ∆D of D is nonexpansive. Moreover, to provide

a less trivial example, we can also at once state

Example 3.2. If T is a subset of an upper complete poset A , then the function

◦ , defined by A◦ = sup {V ∈ T : V ≤ A } for all A ∈ A , is nonexpansive. Note

that, in particular, A may be the family of all subsets of a set X and T may be a

topology on X.

Remark 3.3. To let the reader feel the importance of nonexpansive functions, it is

also worth mentioning that if F is a nonexpansive function of a poset A to itself,
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then the minimal elements of A are fixed points of F . The dual statement has

previously been stressed by Bronsted [4].

By the corresponding definitions, we evidently have the following two theo-

rems.

Theorem 3.4. If (D, E ) is a pairing in a poset A and F is a function of D

to E , then the function F ′, defined by F ′(D) = F (D) ∧ D for all D ∈ D , is

nonexpansive. Moreover, F is nonexpansive if and only if F ′ = F .

Corollary 3.5. If F is a nonexpansive function of an ideal D of a semilattice A

onto a subset E of A , then E ⊂ D .

Theorem 3.6. If (D, E ) is a pairing in a poset A and F is a function of D to

E , then the following assertions are equivalent :

(1) F is nonexpansive ;

(2) F ( D1) = F ( D1)∧D2 for all D1 ∈ D and D2 ∈ A with D1 ≤ D2 .

Remark 3.7. In this respect, it is also worth noticing that a function F of a poset

D to another E is nondecreasing if and only if F (D1) = F ( D1) ∧ F ( D2) for all

D1, D2 ∈ D with D1 ≤ D2 .

Therefore, in addition to Theorem 3.6, we may also naturally state the fol-

lowing theorem of [18].

Theorem 3.8. If (D, E ) is a pairing in a poset A and F is a function of D to

E , then the following assertions are equivalent :

(1) F is nonexpansive and nondecreasing ;

(2) F ( D1)∧D2 = F ( D1)∧F ( D2) for all D1, D2 ∈ D with D1 ≤ D2 .

In contrast to the injective nondecreasing functions, the inverse of an injective

nonexpansive function need not be nonexpansive. Namely, we have the following

natural extension of an observation of Szász [22, p.449].

Theorem 3.9. If F is an injective function of a subset D of a poset A to A such

that both F and F−1 are nonexpensive, then F = ∆D.

Proof. Note that, in this case, we have D = F−1
(
F (D)

)
≤ F (D) ≤ D , and hence

F (D) = D for all D ∈ D .

Analogously to [8, (4.43) Theorem], we can also prove the following

Theorem 3.10. If F is an injective nonexpansive function of an ideal D of a

well-ordered set A to A , then F = ∆D.
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Proof. If this is not the case, then by the well-orderedness of A there exists a

smallest element D of D such that F (D) 6= D . Hence, by the nonexpansibility of

F , it follows that F (D) < D . Moreover, by using Corollary 3.5 and the injectivity

of F , we can see that F (D) ∈ D and F
(
F (D)

)
6= F (D) . But, this contradicts

the minimality of D.

Moreover, as a dual of [8, (4.43) Theorem], we can also state

Theorem 3.11. If F is an injective nondecreasing function of a dually well-ordered

set A to itself, then F is nonexpansive.

Hence, by using Theorem 3.9, we can easily derive

Corollary 3.12. If F is an injective nondecreasing function of a dually well-ordered

set A onto itself, then F = ∆A.

Proof. In this case, F−1 is also an injective nondecreasing function of A onto itself .

Therefore, by Theorem 3.11, not only F , but also F−1 is nonexpansive. Therefore,

Theorem 3.9 can be applied.

Moreover, as an immediate consequence of Theorems 3.11 and 3.10, we can

also state

Corollary 3.13. If F is an injective nondecreasing function of a well-ordered and

dually well-ordered set A to itself, then F = ∆A.

4. Nonexpansive multipliers on posets

Definition 4.1. If (D, E ) is a pairing in a poset A , then a function F of D to E

is called a multiplier if F (D1) ∧D2 = D1 ∧ F ( D2) for all D1, D2 ∈ D .

The above definition can be illustrated with the following examples of [18].

Example 4.2. If (D, E ) is a pairing in a poset A such that D ⊂ E , then the

identity function ∆D of D is a nonexpansive multiplier.

Example 4.3. If (D, E ) is a pairing in a poset A such that D is a semilattice in

A , then for each A ∈ E the function F , defined by F (D) = A∧D for all D ∈ D ,

is a nonexpansive multiplier.

Example 4.4. Let A be a distributive lattice [2, p.12] with a least element O and

a greatest element X such that X 6= O . Choose A ∈ A such that A 6= O , and

define D = {D ∈ A : A ∧D = O } and F (D) = A ∨D for all D ∈ D. Then
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D is an ideal of A such that D does not separate the points of A , and F is a

nonextendable multiplier such that D < F (D) for all D ∈ D .

Remark 4.5. Moreover, it is also worth noticing that F is meet-preserving and

D ∩ F (D) = ∅ .

The importance of nonexpansive multipliers is also apparent from the follow-

ing theorems of [18].

Theorem 4.6. If (D, E ) is a pairing in a poset A and F is a function of D to

E , then the following assertions are equivalent :

(1) F is a nonexpansive multiplier ;

(2) F ( D1) ∧D2 = F ( D1) ∧ F (D2) for all D1, D2 ∈ D .

Corollary 4.7. If (D, E ) is a pairing in a poset A and F is a nonexpansive

multiplier of D onto E , then ( E , E ) is also a pairing in A .

Theorem 4.8. If (D, E ) is a pairing in a poset A and F is a function of D to

E , then each of the following assertions implies the subsequent one :

(1) F is a nonexpansive multiplier ;

(2) F ( D1) = D1 ∧ F ( D2) for all D1, D2 ∈ D with D1 ≤ D2 ;

(3) F ( D1 ∧ D2) = F ( D1) ∧ D2 for all D1 ∈ D and D2 ∈ A with

D1 ∧D2 ∈ D.

Corollary 4.9. If (D, E ) is a pairing in a poset A and F is a nonexpansive

multiplier of D to E , then F is nondecreasing.

Theorem 4.10. If (D, E ) is a pairing in a poset A such that D is a semilattice

in A , and F is a function of D to E , then the following assertions are equivalent :

(1) F is a nonexpansive multiplier ;

(2) F ( D1 ∧D2) = F ( D1) ∧D2 for all D1, D2 ∈ D ;

(3) F ( D1) = D1 ∧ F ( D2) for all D1, D2 ∈ D with D1 ≤ D2 .

Corollay 4.11. If (D, E ) is a pairing in a poset A such that D is a semilattice in

A , and F is a nonexpansive multiplier of D onto E , then F is meet-preserving

and E is also a semilattice in A .

Corollay 4.12. If F is a nonexpansive multiplier of an ideal D of a semilattice A

onto a subset E of A , then F is idempotent and E is also an ideal of A .

Moreover, as some straightforward generalizations of [28, Theorems 6.2 and

6.3], we can also prove the following two theorems.
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Theorem 4.13. If (D, E ) is a pairing in a poset A such that D separates the

points of E , and F is a multiplier of D to E such that F ′(D) ⊂ E , then F is

nonexpansive .

Proof. If D ∈ D, then by the above assumption on F ′ we have F ′(D) ∈ E .

Hence, by the corresponding definitions and Theorem 1.2, it is clear that

F ′(D) ∧Q =
(
F (D) ∧D

)
∧Q = Q ∧

(
F (D) ∧D

)
=

(
Q ∧ F (D)

)
∧D =

(
F (Q) ∧D

)
∧D = F (Q) ∧ ( D ∧D ) = F (Q) ∧D = Q ∧ F (D) = F (D) ∧Q

for all Q ∈ D. Hence, since D separates the points of E , it follows that

F ′(D) = F (D) . Therefore, F ′ = F , and thus by Theorem 3.3 F is nonexpansive.

Theorem 4.14. Let (D, E ) be a pairing in a poset A such that E ∧ D ⊂ E .

Suppose that F is a multiplier of a subset D
F

to E such that D
F

separates the

points of E . Define

F− =
{

(D, E ) ∈ D × E : ∀ Q ∈ D
F

: E ∧Q = D ∧ F (Q)
}

.

Then F− is the largest multiplier of a subset D
F−

of D to E such that F ⊂ F−.

Moreover, if in particular D is a semilattice in A , then D
F−

is already an ideal of

D.

5. Injective multipliers on posets

The following theorem has mainly been suggested by Máté [14, Proposition

4]. For a generalization, see also [26, Theorem 2.3].

Theorem 5.1. If (D, E) is a pairing in a poset A and F is a multiplier of D onto

E , then the following assertions are equivalent :

(1) E separates the points of D ;

(2) F is injective and D separates the points of E .

Proof. Suppose that the assertion (1) holds. Then, for any D1, D2 ∈ D with

D1 6= D2 , there exists E ∈ E such that D1 ∧ E 6= D2 ∧ E . Hence, by choosing

D ∈ D such that E = F (D) , we can see that

F ( D1) ∧D = D1 ∧ F (D) = D1 ∧ E 6= D2 ∧ E = D2 ∧ F (D) = F (D2) ∧D .

Therefore, F ( D1) 6= F ( D2) , and thus the first part of the assertion (2) also holds.
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Moreover, since for any E1, E2 ∈ E with E1 6= E2 there exist D1, D2 ∈ D

with D1 6= D2 such that E1 = F ( D1) and E2 = F (D2) , it is clear that the

second part of the assertion (2) is also true.

Suppose now that the assertion (2) holds. Then, by the first part of the

assertion (2), for any D1, D2 ∈ D with D1 6= D2 , we have F (D1) 6= F ( D2) .

Therefore, by the second part of the assertion (2), there exists D ∈ D such that

F ( D1) ∧D 6= F (D2) ∧D . Hence, by defining E = F (D) , we can see that E ∈ E

such that

D1 ∧ E = D1 ∧ F (D) = F ( D1) ∧D 6= F ( D2) ∧D = D2 ∧ F (D) = D2 ∧ E .

Therefore, the assertion (1) also holds.

Now, as some immediate consequences of Theorem 5.1, we can also state

Corollary 5.2. If (D, E) is a pairing in a poset A such that E separates the points

of D , then every multiplier F of D onto E is injective.

Corollary 5.3. If (D, E) is a pairing in a poset A such that there exists an injective

multiplier F of D onto E , then the following assertions are equivalent :

(1) D separates the points of E ; (2) E separates the points of D .

Corollary 5.4. If (D, E) is a pairing in a poset A such that D separates the

points of E , and F is a multiplier of D onto E , then the following assertions are

equivalent :

(1) F is injective ; (2) E separates the points of D .

Moreover, by using Theorems 5.1 and 2.12, we can also prove the following

Theorem 5.5. Let (D, E) is a pairing in a poset A such that D ⊂ E . Suppose

that F is an injective multiplier of a subset D
F

of D onto a subset E
F

of E such

that D
F
∧D ⊂ D

F
and F ′(D

F
) ⊂ E, and D

F
separates the points of E . Then E

F

separates the points of D .

Proof. In this case, by Theorem 5.1, E
F

separates the points of D
F
. Moreover,

by Theorem 4.13, F is nonexpansive. Therefore, if E ∈ E
F
, then by

choosing D ∈ D
F

such that E = F (D) and using Theorem 4.8, we can see that

E ∧ Q = F (D) ∧ Q = F ( D ∧ Q ) ∈ E
F

for all Q ∈ D. Thus, in particular,

E
F
∧ D

F
⊂ E

F
also holds. Hence, by Theorem 2.12, it is clear that the required

assertion is also true.
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By the above theorem, it is clear that in particular we also have

Corollary 5.6. Let A be a poset and suppose that F is an injective multiplier of an

ideal D of A∗ onto a subset E of A such that D separates the points of A . Then

E separates the points of A∗.

Moreover, by using Theorem 5.5, we can see that in some particular cases the

maximal extension F− of an injective multiplier F is also injective.

Theorem 5.7. Let (D, E) be a pairing in a poset A such that D ⊂ E and

E ∧D ⊂ E. Suppose that F is an injective multiplier of a subset D
F

of D to E such

that D
F
∧D ⊂ D

F
and D

F
separates the points of E. Then F− is also injective.

Proof. In this case, by Theorem 5.5, the range E
F

of F separates the points of

D . Hence, since F− is an extension of F , it is clear that the range E
F−

of F−

separates the points of the domain D
F−

of F−. Therefore, by Theorem 5.1, the

required assertion is also true.

Corollary 5.8. Let A be a poset and suppose that F is an injective multiplier of

an ideal D of A∗ to A such that D separates the points of A . Then F− is also

injective.

6. Some further results on injective multipliers

A counterpart of the following theorem is attributed to Devinatz and

Hirschman by Wang [31, p.1134].

Theorem 6.1. If (D, E) is a pairing in a poset A , and F is an injective multiplier

of D onto E , then F−1 is an injective multiplier of E onto D .

Proof. In this case, we evidently have

F−1( E1) ∧ E2 = F−1( E1) ∧ F
(
F−1( E2)

)
=

F
(
F−1( E1)

)
∧ F−1(E2) = E1 ∧ F−1( E2)

for all E1, E2 ∈ E .

Now, we are ready to prove the following counterpart of Theorem 3.9.

Theorem 6.2. If (D, E ) is a pairing in a poset A such that E separates the points

of D , and F is a multiplier of a subset D
F

of D onto E such that F ′(D
F
) ⊂ D∩E ,

then F = ∆D
F
.

115
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Proof. In this case, by Theorem 5.1, F is injective and D
F

separates the points of E .

Hence, by Theorem 6.1, it follows that F−1 is a multiplier of E onto D
F
. Moreover,

by Theorem 4.13, it is clear that not only F , but also F−1 is nonexpansive. Namely,

we have

(
F−1

)′(E) = F−1(E) ∧ E = F
(
F−1(E)

)
∧ F−1(E) = F ′( F−1(E)

)
∈ D

for all E ∈ E . Therefore, by Theorem 3.9, the required assertion is also true.

Hence, it is clear that in particular we also have

Corollary 6.3. If A is a poset and F is a multiplier of a subset D of A∗ onto a

subset E of A such that F ′(D) ⊂ A∗ ∩ E and E separates the points of A∗, then

F = ∆D.

Corollary 6.4. If F is a multiplier of a subset D of A onto a subset E of A such

that F ′(D) ⊂ E and E separates the points of A∗, then F = ∆D.

Moreover, by using Corollary 6.3, we can also prove the following

Theorem 6.5. If A is a poset and F is a multiplier of a subset D of A∗ to A

such that the sets F−1(A∗) and F
(
F−1(A∗)

)
separates the points of A and A∗,

respectively , then F = ∆D.

Proof. Define D0 = F−1(A∗) and E0 = F
(
F−1(A∗)

)
, and denote by F0 the

restriction of F to D0. Then, by the corresponding definitions, it is clear that

D0 ⊂ D and E0 ⊂ A∗ (
in fact, E0 = F (D) ∩ A∗) , and F0 is a multiplier of D0

onto E0. Moreover, from Theorem 4.13 we can see F0 is nonexpansive. Therefore,

F0
′ = F0, and thus F0

′(D0) = E0. Hence, by using Corollary 6.3, we can infer that

F0 = ∆D0 . On the other hand, from Theorem 4.14, we know that F0 has a unique

maximal extension F −
0 . Therefore, we necessarily have F −

0 = ∆A∗ , and thus the

required assertion is also true.

Now, as an immediate consequence of this theorem, we can also state

Corollary 6.6. If F is a multiplier of a subset D of a poset A onto a subset E of

A such that both D and E separate the points of A , then F = ∆D.

From Theorem 6.2, by Theorem 5.1, it is clear that the following theorem is

also true.
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Theorem 6.7. If (D, E ) is a pairing in a poset A such that D separates

the points of E, and F is an injective multiplier of D onto E such that

F ′(D) ⊂ D ∩ E, then F = ∆D.

Moreover, by using Theorem 5.5 instead of Theorem 5.1, we can also prove

the following

Theorem 6.8. Let (D, E) is a pairing in a poset A such that D ⊂ E . Suppose

that F is an injective multiplier of a subset D
F

of D to E such that D
F
∧D ⊂ D

F

and F ′(D
F
) ⊂ D ∩ E, and D

F
separates the points of E . Then F = ∆D

F
.

Proof. In this case, by Theorem 4.13, F is nonexpansive. On the other hand, by

Theorem 6.1, F−1 is a multiplier of the range E
F

of F onto D
F
. Moreover, by

Theorem 5.5, E
F

separates the points of D. Therefore, again by Theorem 4.13, F−1

is also nonexpansive. Namely, we again have
(
F−1

)′(E) ∈ D for all E ∈ E
F

.

Therefore, by Theorem 3.9, the required assertion is also true.

Hence, it is clear that in particular we also have

Corollary 6.9. If A is a poset and F is an injective multiplier of an ideal D of

A∗ to A such that F ′(D) ⊂ A∗ and D separates the points of A , then F = ∆D.

Corollary 6.10. If F is an injective multiplier of an ideal D of a semilattice A to

A such that D separates the points of A , then F = ∆D.
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ON SOME INEQUALITIES FOR THE ε-ENTROPY NUMBERS

NICOLAE TIŢA

Abstract. We prove the inequalities:
k∑

n=1

αnεn (S1 + . . . + Sr) ≤ (2r − 1) c

k∑
n=1

αn (εn(S1) + . . . + εn(Sr))

and
k∑

n=1

αn εn(S1 . . . Sr) ≤ (2r − 1) c

k∑
n=1

αnεn(S1) . . . εn(Sr),

k = 1, 2, . . . , r ≥ 2, where (εn(S)) is the sequence of ε - entropy numbers

of the linear and bounded operator S : X → X (S ∈ L(X)) and (αn) is

such that 1 = α1 ≥ . . . ≥ 0 and αnr ≤ c
nr−1 αn, ∀n ∈ N . X is a Banach

space.

1. Introduction

Let X be a Banach space and let T : X → X be a linear and bounded operator

(T ∈ L(X)). The ε - entropy numbers of the operator T are defined, [1],[2],[4],[6], as

follows:

εn(T ) = inf{σ > 0 : ∃y1, . . . yn ∈ X s.t. TUX ⊆ ∪n
i=1{yi + σUX}}, n = 1, 2, . . . ,

where UX = {x ∈ X :‖ x ‖≤ 1}.

It is well known [1],[4],[6] that: ‖ T ‖= ε1(T ) ≥ ε2(T ) ≥ . . . ≥ 0 and

εn1n2(S + T ) ≤ εn1(S) + εn2(T ), εn1n2(ST ) ≤ εn1(S)εn2(T ), n1, n2 = 1, 2, . . ..

In the papers [5],[6] are presented the inequalities:

k∑
n=1

εn(S + T )
n

≤ 3
k∑

n=1

εn(S) + εn(T )
n

(a)

2000 Mathematics Subject Classification. 47B06, 47B10.

Key words and phrases. Entropy numbers, symmetric norming functions.
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k∑
n=1

εn(ST )
n

≤ 3
k∑

n=1

εn(S) · εn(T )
n

, k = 1, 2, . . . (b)

By reiteration we obtain:

k∑
n=1

εn (S1 + . . . + Sr)
n

≤ 3r−1
k∑

n=1

εn(S1) + . . . + εn(Sr)
n

(a′)

and an analog inequality (b’) for the product of r operators.

In this paper we prove, in a simple way, that the factor 3r−1 can be replaced

by (2r − 1) .

More generally, is [6], the sequence
(

1
n

)
is replaced by (αn) , where

1 = α1 ≥ α2 ≥ . . . ≥ 0 and αn2 ≤ c
nαn, ∀n ∈ N

2. Results

Firstly we remark that, from the inequalities of ε-entropy numbers for the

sum and product of two operators we obtain:

Proposition 1.1 The ε- entropy numbers verify the following inequalities:

εnr (S1 + . . . + Sr) ≤ εn (S1) + . . . + εn (Sr) (1)

εnr (S1 . . . Sr) ≤ εn (S1) . . . εn (Sr) (2)

Now we prove:

Theorem 1.2. The ε-entropy numbers verify the inequalities:

k∑
n=1

αn εn (S1 + . . . + Sr) ≤ (2r − 1) c
k∑

n=1

αn (εn (S1) + . . . + εn (Sr)) (3)

k∑
n=1

αnεn (S1 . . . Sr) ≤ (2r − 1) c
k∑

n=1

αnεn (S1) . . . εn (Sr) , (4)

where (αn) is a sequence such that 1 = α1 ≥ α2 ≥ . . . ≥ 0 and

αnr ≤ c
nr−1 αn, ∀n ∈ N ; k = 1, 2, . . .

Proof. We prove only (4). Tthe proof for (3) is similar. By using the

inequality (2) and the fact that the sequence (εn(S)) is non increasing we obtain:
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k∑
n=1

αnεn (S1 . . . Sr) ≤
(k+1)r−1∑

n=1

αnεn (S1 . . . Sr) =

=
k∑

n=1

(n+1)r−1∑
i=nr

αiεi (S1 . . . Sr) ≤

≤
k∑

n=1

[(n + 1)r − nr]αnrεnr (S1 . . . Sr) ≤

≤
k∑

n=1

(
2k − 1

)
nr−1 c

nr−1
αnεnr (S1 . . . Sr) ≤

≤ (2r − 1) c
k∑

n=1

αnεn(S1) . . . εn(Sr).

The proof is fulfiled.

3. Application

Let l∞ be the normed space of all bounded sequence, where

‖ x ‖∞= sup
n
|xn|.

For all x ∈ l∞, card(x) = card{n ∈ N : xn 6= 0}. We denote by K the set of all

sequences x ∈ l∞ such that card(x) ≤ n and x1 ≥ x2 ≥ . . . ≥ 0.

A function φ : K → R is called symmetric norming function, [3],[4],[6], if:

1. φ(x) > 0, for x ∈ K, x 6= 0;

2. φ(αn) = αφ(x), α ≥ 0, x ∈ K;

3. φ(x + y) ≤ φ(x) + φ(y);

4. φ(1, 0, 0, . . .) = 1;

5. If x, y ∈ K are such that

k∑
i=1

xi ≤
k∑

i=1

yi, k = 1, 2, . . .

then φ(x) ≤ φ(y).

Example of such functions are: φ∞ : x ∈ K → x1, φ1 : x ∈ K →
∑n

1 xi and

φω : x ∈ K →
∑n

i=1
xi

i .
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It is known, [3],[6],[7], that, for all symmetric norming function φ, the func-

tions: φ(p) : (xi) ∈ K → (φ (xp
i ))

1
p , 1 ≤ p < ∞ and φ : (xi) ∈ K → φ ({αixi}) are

symmetric norming functions.

If x ∈ l∞ are such that x1 ≥ x2 ≥ . . . ≥ 0, we consider

φ(x) = lim
n→∞

φ(x1, . . . , xn, 0, 0, . . .).

In [4], [7], the classes L
(ε)
φ(p)

(X) are considered, where L
(ε)
φ(p)

(X) = {T ∈ L(X) :

φ(p) ({εn(T )}) < ∞}, 1 ≤ p < ∞ . If φ is replaced by φ, from the inequality (a) and

the Minkowski inequality (for φ(p),[3],[4],[7]) in [5], [7] is proved that

‖ T ‖(ε)

φ(p)
= φ(p) (εn(T )) = (φ ({αnεp

n(T )}))
1
p is a quasi-norm.

From the above inequality (a’) and the properties (2) and (5) of the functions

φ, it results that:

‖
r∑

n=1

Sn ‖(ε)

φ
≤ 3r−1

r∑
n=1

‖ Sn ‖(ε)

φ
,

but from the theorem 1.2 we obtain that the factor 3r−1 can be replaced by (2r − 1)

if αn = 1
n , n = 1, 2, . . . . A similar result is also true for all sequences (αn) as above.

Remarks: For the dyadic entropy numbers en(T ) = ε2n−1(T ), n = 1, 2, . . . , are

known, [4] , [7], the inequalities:

k∑
n=1

en(S ? T ) ≤ 2
k∑

n=1

en(S) ? en(T ),

where ? is + or •.

For the case of r operators r > 2 it results:

k∑
n=1

en(S1 ? . . . ? Sr) ≤ r

k∑
n=1

en(S1) ? . . . ? en(Sr), k = 1, 2, . . .

This results from the fact that e(n−1)r+1 (S1 ? . . . ? Sr) ≤ en(S1) ? . . . ? en(Sr)

as follows:

k∑
n=1

en (S1 ? . . . ? Sr) ≤
rk∑

n=1

en (S1 ? . . . ? Sr) =
k∑

n=1

rn∑
i=(n−1)r+1

ei (S1 ? . . . ? Sr)

≤ r
k∑

n=1

e(n−1)r+1 (S1 ? . . . ? Sr) ≤ r
k∑

n=1

en (S1) ? . . . ? en (Sr) .
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We can also prove the inequality
k∏

n=1

en

(
r∏

i=1

Si

)
≤

k∏
n=1

r∏
i=1

er
n (Si) , k = 1, 2, . . . ; r ≥ 2.
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Department of Mathematics, 2200 Braşov, Romania
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