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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume XLVII, Number 2, June 2002

SIMPLE SUBALGEBRAS OF GROUP GRADED ALGEBRAS

ILUŞCA BONTA

Abstract. We study the situation when the 1-component A1 of a G-

graded O-algebra A has an O-simple subalgebra S ' Mn(O). We prove

that the centralizer CA(S) of S is a graded subalgebra of A, and that there

is a graded Morita equivalence between A and CA(S). This generalizes a

theorem of L. Puig.

1. Introduction

Let G be a finite group and let O be a commutative local noetherian ring,

complete with respect to the J(O)-adic topology, and such that the residue field

k = O/J(O) is algebraically closed of characteristic p > 0. AllO-algebras are assumed

to be finitely generated and free as O-modules.

If A =
⊕

g∈GAg and B =
⊕

g∈GBg are two G-graded O-algebras, then recall

that the O-algebra homomorphism f : A → B is called G-graded if f(Ag) ⊆ Bg for

all g ∈ G. A subalgebra C of A is a graded subalgebra if for any c =
∑

g∈G cg ∈ C,

the homogeneous component cg also belongs to C for all g ∈ G. In this case we have

that C =
⊕

g∈G Cg, where Cg = C ∩Ag.

An O-algebra S is called O-simple if is isomorphic to EndO(V ) for some free

O-module V , that is, if S isomorphic to a matrix algebra Mn(O) over O (where n is

the dimension of V ).

The centralizer of the subalgebra S in A is, by definition, the subalgebra

CA(S) = {a ∈ A | as = sa for all s ∈ S}.

If B is a G-graded O-algebra, then the matrix algebra A = Mn(B) is a G-

graded algebra, where for each g ∈ G, Ag consists of matrices with entries in Bg. The

A1 has a subalgebra S isomorphic to Mn(O), and there is an isomorphism CA(S) ' B

of G-graded algebras, mapping an element a ∈ CA(S) to eae = ea = ae, where e is
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the matrix having 1 in the top left corner and 0 elsewhere. Moreover, there is an

isomorphism A ' S ⊗O CA(S) of G-graded algebras, and there is a graded Morita

equivalence between A and B (see Section 3 below).

In this note we consider the converse situation. We assume that A =⊕
g∈GAg is a G-graded algebra and S ' Mn(O) is an O-simple subalgebra of A1,

and we show that there is a graded Morita equivalence between A and CA(S). This

generalizes a theorem of L. Puig [2] (see also [3, Sections 1.7 and 1.9]. For notions

and results on graded algebras and graded Morita equivalences we refer to [1].

2. Simple subalgebras

In this section A =
⊕

g∈GAg is a G-graded O-algebra and S ' EndO(L) be

a G-graded O-simple subalgebra of A1 with 1S = 1A. Let CA(S) be the centralizer

of S and let e be a primitive idempotent of S. The next results are generalizations of

[3, Propositions 7.5 and 7.6].

Proposition 2.1 With the above notations and assumptions, the following statements

hold.

a) CA(S) is a G-graded subalgebra of S.

b) There is an isomorphism of G-graded O-algebras given by

φ : S ⊗O CA(S) → A, φ(s⊗ a) = sa.

c) There is an isomorphism of G-graded O-algebras given by

η : CA(S) → eAe, η(a) = ea = ae = eae.

Proof. a) We know that CA(S) is a subalgebra of A. We have to prove that CA(S) is

G-graded subalgebra. For any a =
∑

g∈G ag ∈ A, if a ∈ CA(S), then we have as = sa

for all s ∈ S. It follows that
∑

g∈G ags =
∑

g∈G sag. Since S ⊆ A1, ags = sag for all

s ∈ S and g ∈ G. This means that ag ∈ CA(S) for all g ∈ G.

b) We know from the proof of [3, Proposition 7.5] that φ is an isomorphism

of O-algebras and that the map

ψ : A→ S ⊗O CA(S), ψ(a) =
∑

u,v∈U

(u−1ev ⊗
∑
w∈U

(euav−1e)w)
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is O-algebra homomorphism, which is the inverse of φ. Here U denotes a finite set

of invertible elements of S satisfying 1S =
∑

u∈U e
u (recall that all the primitive

idempotents of S are conjugate). We only have to verify that φ and ψ are grade-

preserving.

Because A is a G-graded algebra, we have that S⊗O CA(S) is also G-graded,

with components (S ⊗O CA(S))g = S ⊗O CA(S)g. If s⊗ ag ∈ S ⊗O CA(S)g, we have

that φ(s ⊗ ag) = sag belongs to SAg ⊆ A1Ag = Ag, hence φ(S ⊗O CA(S)g) ⊆ Ag.

Finally, if ag ∈ Ag then

ψ(ag) =
∑

u,v∈U

(u−1ev ⊗
∑
w∈U

(euagv
−1e)w) ∈ S ⊗O CA(S)g

since U ⊂ A1, so ψ(Ag) ⊆ S ⊗O CA(S)g.

c) We know that CA(S) and eAe are isomorphic as O-algebras. We have

to prove they are isomorphic as G-graded algebras. For all ag ∈ CA(S)g we have

η(ag) = eage belongs to eAge, so η(CA(S)g) ⊆ eAge. Consequently η is G-graded.

Similarly, the inverse of η, given by eae 7→
∑

u∈U (eae)u is a G-graded map, so the

proposition is proved.

Proposition 2.2. Let M be a G-graded A-module. Then there is an isomorphism

of G-graded A-modules given by

φ : Se⊗O eM →M, φ(s⊗m) = sm.

Proof. Since M is a G-graded A-module and e ∈ S ⊆ A1, we have that eM is

a G-graded eAe-submodule of M , hence eM is a G-graded CA(S)-module via the

isomorphism η of Proposition 2.1 c). Consequently Se ⊗O eM is a G-graded S ⊗O
CA(S)-module. We know that φ is homomorphism of A-modules. Letting 1A = 1S =∑

u∈U e
u be a primitive decomposition of the identity in S, consider the map

ψ : M → Se⊗O eM, ψ(m) =
∑
u∈U

u−1e⊗ eum,

where U is a finite set of invertible elements of S.
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We are going to show that ψ is the inverse of φ and that both maps are

grade-preserving. First we have that

(φ ◦ ψ)(m) = φ(
∑
u∈U

u−1e⊗ eum) =
∑
u∈U

φ(u−1e⊗ eum)

=
∑
u∈U

u−1eum =
∑
u∈U

eum = m,

because 1S = 1A =
∑

u∈U e
u.

On the other hand let m ∈ M and let s−1et be a basis element of S, where

s, t ∈ U . Then we have

(ψ ◦ φ)(s−1ete⊗ em) = ψ(s−1etem) =
∑
u∈U

u−1e⊗ eus−1etem

=
∑
u∈U

u−1e⊗ u(u−1eu)(s−1es)s−1tem

= s−1e⊗ etem = s−1ete⊗ em,

where we have used that eues = 0 unless u = s.

For all s ⊗ mg ∈ Se ⊗O eMg, we have that φ(s ⊗ mg) = smg belongs to

SMg ⊆ Mg, so φ(Se ⊗O eMg) ⊆ Mg. Similarly, if mg ∈ Mg, the ψ(mg) belongs to

Se⊗O eMg since U ⊂ A1 and e ∈ A1.

3. A Morita equivalence

We keep the notations and assumptions of the preceding section. The follow-

ing result is a generalization to the case of G-graded algebras of [2, Theorem 3].

Theorem 3.1. The algebras A and CA(S) are graded Morita equivalent.

Proof. Since A is isomorphic to S ⊗O CA(S) as G-graded algebras, it is enough to

prove the following statement. Let C be an O-algebra and let S ' EndO(L) be an

O-simple algebra. Then S ⊗O C is graded Morita equivalent to C. Indeed, consider

the functor

F : C−mod → S ⊗O C−mod, F (M) = L⊗O M.

Observe that if M =
⊕

x∈GMx is a G-graded C-module, then F (M) is a G-graded

S ⊗O C-module with components F (M)x = L ⊗O Mx for all x ∈ G. Moreover,

if M(g) is the g-th suspension of M (where M(g)x = Mxg for all x ∈ G), then
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F (M(g)) = F (M)(g). Therefore, the restriction of F gives a graded functor F gr :

C−gr → S ⊗O C−gr, which clearly commutes with the grade forgetting functor. It

remains to prove that F is an equivalence of categories. Observe that L ' Se, where

e is a primitive idempotent of S. By replacing A with A ⊗O C and e with e ⊗ 1,

Proposition 2.2 shows that any S ⊗O C-module is naturally isomorphic to a module

of the form L⊗OM , where M is a C-module. This immediately implies that F is an

equivalence.

Remark 3.2. Alternatively, we could have used the isomorphism CA(S) ' eAe of

G-graded algebras. Since 1A = 1S =
∑

u∈U e
u, we have that AeA = A. Consequently,

the G-graded bimodules Ae and e induce a graded Morita equivalence between A and

eAe.
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UNIVALENCE CONDITIONS FOR CERTAIN INTEGRAL
OPERATORS

DANIEL BREAZ, NICOLETA BREAZ

Abstract. In this paper the result of V. Pescar and S. Owa, on univalence

conditions of integral operators, is extended to the case of n univalent

functions. New results are presented in theorems 1 and 3.

1. Introduction

Let A be the class of functions f, which are analytic in the unit disc U =

{z ∈ C; |z| < 1} and f (0) = f ′ (0) − 1 = 0 and let us denote with S the class of

univalent functions.

Theorem A. [4] If f is the univalent in U ,α ∈ C and |α| ≤ 1
4 then the

function

Gα (z) =

z∫
0

[f ′ (t)]α dt

is univalent in U.

Theorem B. [3] If the function g ∈ S ,α ∈ C, |α| ≤ 1
4n then the function

defined by

Gα,n (z) =

z∫
0

[f ′ (tn)]α dt

is univalent in U for n ∈ N∗.

Theorem C. [2] Let α, a ∈ C,Re α > 0 and f ∈ A.

If
1− |z|2 Re α

Re α

∣∣∣∣zf ′′ (z)
f ′ (z)

∣∣∣∣ ≤ 1

(∀) z ∈ U then (∀) β ∈ U,Re β ≥ Re α, the function

Fβ (z) =

β

z∫
0

tβ−1f ′ (t)

 1
β
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is univalent.

Theorem D [1]. If the function g is olomorphic in U and |g (z)| < 1 in U ,

then for all ξ ∈ U and z ∈ U the following inequalities hold∣∣∣∣∣ g (ξ)− g (z)
1− g (z)g (ξ)

∣∣∣∣∣ ≤
∣∣∣∣ ξ − z

1− zξ

∣∣∣∣ (*)

and

|g′ (z)| ≤ 1− |g (z)|2

1− |z|2

the equalities hold in case g (z) = ε z+u
1+uz where |ε| = 1 and |u| < 1.

Remark E [1]. For z = 0, from inequality (*) we obtain for every ξ ∈ U∣∣∣∣∣ g (ξ)− g (0)
1− g (0)g (ξ)

∣∣∣∣∣ ≤ |ξ|

and, hence

|g (ξ)| ≤ |ξ|+ |g (0)|
1 + |g (0)| |ξ|

Considering g (0) = a and ξ = z, then

|g (z)| ≤ |z|+ |a|
1 + |a| |z|

for all z ∈ U.

Lemma F (Schwartz). If the function g is olomorphic in U, g (0) = 0 and

|g (z)| ≤ 1 (∀) z ∈ U then result:

|g (z)| ≤ |z| , (∀) z ∈ U and |g′ (0)| ≤ 1 the equalities hold in case g (z) ≤ εz

where |ε| = 1.

Theorem G [5]. Let α, γ ∈ C,Re α = a > 0, g ∈ A, g (z) = z + b2z
2 + ... .

If ∣∣∣∣g′′ (z)
g′ (z)

∣∣∣∣ ≤ 1
n

, (∀) z ∈ U

and

|γ| ≤ n + 2a

2
·
(

n + 2a

n

) n
2a

then (∀) , β ∈ C,Re β ≥ a,the function

Gβ,γ,n (z) =

β

z∫
0

tβ−1 · [g′ (tn)]γ dt


1
β

is univalent (∀) n ∈ N∗ \ {1} .
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Theorem H [5]. Let α, γ ∈ C,Re α = b > 0, g ∈ A, g (z) = z + a2z
2 + ... .

If ∣∣∣∣g′′ (z)
g′ (z)

∣∣∣∣ ≤ 1, (∀) z ∈ U

and

|γ| ≤ 1

max
|z|≤1

[
1−|z|2c

c · |z| · |z|+2|a2|
1+2|a2||z|

]
then (∀) β ∈ C,Re β ≥ b, the function

Gβ,γ (z) =

β

z∫
0

tβ−1 · [g′ (t)]γ dt


1
β

is univalent.

2. Main results

Theorem 1. Let α, γi ∈ C, (∀) i = 1, p,Re α = a ≥ 0, fi ∈ A, fi (z) =

z + ai
2z

2 + ..., (∀) i = 1, p.

If ∣∣∣∣f ′′i (z)
f ′i (z)

∣∣∣∣ ≤ 1
n

, (∀) z ∈ U, i = 1, p (1)

|γ1|+ ... +
∣∣γp

∣∣∣∣γ1 · ... · γp

∣∣ < 1 (2)

and ∣∣γ1 · ... · γp

∣∣ ≤ n + 2a

2
·
(

n + 2a

n

) n
2a

(3)

then (∀) β ∈ C,Re β ≥ a,the function

G (z) =

β

z∫
0

tβ−1 · [f ′1 (tn)]γ1 · ... ·
[
f ′p (tn)

]γp dt


1
β

is univalent (∀) n ∈ N∗ \ {1} .

Proof. Let

h (z)

z∫
0

[f ′1 (tn)]γ1 · ... ·
[
f ′p (tn)

]γp dt

p (z) =
1∣∣γ1 · ... · γp

∣∣ · h′′ (z)
h′ (z)

where
∣∣γ1 · ... · γp

∣∣ satisfies (3).

11
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We have

p (z) =
γ1∣∣γ1 · ... · γp

∣∣ · n · zn−1 · f ′′1 (zn)
f ′1 (zn)

+ ... +
γp∣∣γ1 · ... · γp

∣∣ · n · zn−1 · f ′′p (zn)
f ′p (zn)

Applying the relations (1) and (2) we obtain:

|p (z)| ≤ |γ1|∣∣γ1 · ... · γp

∣∣ ·
∣∣∣∣n · zn−1 · f ′′1 (zn)

f ′1 (zn)

∣∣∣∣+ ... +

∣∣γp

∣∣∣∣γ1 · ... · γp

∣∣ ·
∣∣∣∣∣n · zn−1 · f ′′p (zn)

f ′p (zn)

∣∣∣∣∣ ≤
≤
|γ1|+ ... +

∣∣γp

∣∣∣∣γ1 · ... · γp

∣∣ < 1

Considering Schwartz’s lemma we have:

1∣∣γ1 · ... · γp

∣∣ ·
∣∣∣∣h′′ (z)
h′ (z)

∣∣∣∣ ≤ ∣∣zn−1
∣∣ ≤ |z| ⇔

∣∣∣∣h′′ (z)
h′ (z)

∣∣∣∣ ≤ ∣∣γ1 · ... · γp

∣∣ · ∣∣zn−1
∣∣⇔

⇔

(
1− |z|2a

a

)
·
∣∣∣∣zh′′ (z)

h′ (z)

∣∣∣∣ ≤ ∣∣γ1 · ... · γp

∣∣ ·(1− |z|2a

a

)
· |zn| (4)

Let
′
s the function Q : [0, 1] → R,Q (x) =

(
1−x2a

a

)
· xn, x = |z| .

We have

Q (x) ≤ n + 2a

2
·
(

n + 2a

n

) n
2a

(∀) x ∈ [0, 1]

According to the conditions (3) and (4) we obtain:(
1− |z|2a

a

)
·
∣∣∣∣zh′′ (z)

h′ (z)

∣∣∣∣ ≤ 1

so, according to Theorem C, G is univalent.

Corollary 2. Let α, β, γ, δ ∈ C,Re δ = a > 0, f, g ∈ A, f (z) = z + a2z
2 +

..., g (z) = z + b2z
2 + ... .

If ∣∣∣∣f ′′ (z)
f ′ (z)

∣∣∣∣ ≤ 1
n

, (∀) z ∈ U∣∣∣∣g′′ (z)
g′ (z)

∣∣∣∣ ≤ 1
n

, (∀) z ∈ U

1
|α|

+
1
|β|

< 1

and

|αβ| ≤ n + 2a

2
·
(

n + 2a

n

) n
2a
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then (∀) γ ∈ C,Re γ ≥ a,the function

Dα,β,γ,n (z) =

γ

z∫
0

tγ−1 · [f ′ (tn)]α · [g′ (tn)]β dt


1
γ

is univalent (∀) n ∈ N∗ \ {1} .

Proof. In Theorem 1, we consider p = 2, f1 = f, f2 = g, γ1 = α, γ2 = β, γ =

β.

Remark. If in Theorem 1, we consider p =, f1 = g, γ1 = γ, γ = β, we

obtained Theorem G.

Theorem 3. Let α, γi ∈ C, (∀) i = 1, n,Re α = b > 0, fi ∈ A, fi (z) =

z + ai
2z

2 + ..., (∀) i = 1, n.

If ∣∣∣∣f ′′i (z)
f ′i (z)

∣∣∣∣ ≤ 1, (∀) z ∈ U, i = 1, n (5)

|γ1|+ ... + |γn|
|γ1 · ... · γn|

< 1 (6)

and

|γ1 · ... · γn| ≤
1

max
|z|≤1

[
1−|z|2b

b · |z| · |z|+2|c|
1+2|c||z|

] (7)

then (∀) β ∈ C,Re β ≥ b,the function

H (z) =

β

z∫
0

tβ−1 · [f ′1 (t)]γ1 · ... · [f ′n (t)]γn dt


1
β

is univalent (∀) n ∈ N .

Proof. Let

h (z) =

z∫
0

[f ′1 (t)]γ1 · ... · [f ′n (t)]γn dt

p (z) =
1

|γ1 · ... · γn|
· h′′ (z)

h′ (z)
where |γ1 · ... · γn| satisfies (7).

We have

p (z) =
γ1

|γ1 · ... · γn|
· f ′′1 (z)

f ′1 (z)
+ ... +

γn

|γ1 · ... · γn|
· f ′′n (z)
f ′n (z)

p is olomorph and |γ1 · ... · γn| satisfies the relation (7) implies |p (z)| < 1

according to (5) and (6).

13
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p (0) =
γ1a

1
2 + ... + γnan

2

|γ1 · ... · γn|
= c

|p (z)| ≤ |z|+ 2 |c|
1 + 2 |c| |z|

, (∀) z ∈ U ⇔ 1
|γ1 · ... · γn|

·
∣∣∣∣zh′′ (z)

h′ (z)

∣∣∣∣ ≤ |z|+ 2 |c|
1 + 2 |c| |z|

, (∀) z ∈ U ⇔(
1− |z|2b

b

)
·
∣∣∣∣zh′′ (z)

h′ (z)

∣∣∣∣ ≤ |γ1 · ... · γn| ·max
|z|≤1

[
1− |z|2b

b
· |z| · |z|+ 2 |c|

1 + 2 |c| |z|

]
≤ 1, (∀) z∈ U

so, according to Theorem C, H is univalent (∀) , n ∈ N .

Corollary 4. Let α, β, γ, δ ∈ C,Re δ = c > 0, f, g ∈ A, f (z) = z + a2z
2 +

..., g (z) = z + b2z
2 + ... .

If ∣∣∣∣f ′′ (z)
f ′ (z)

∣∣∣∣ ≤ 1, (∀) z ∈ U∣∣∣∣g′′ (z)
g′ (z)

∣∣∣∣ ≤ 1, (∀) z ∈ U

1
|α|

+
1
|β|

< 1

and

|αβ| ≤ 1

max
|z|≤1

[
1−|z|2c

c · |z| ·
|z|+2

|αa2+βb2|
|αβ|

1+2
|αa2+βb2|

|αβ| |z|

]
then (∀) γ ∈ C,Re γ ≥ c, the function

Fα,β,γ (z) =

γ

z∫
0

tγ−1 · [f ′ (t)]α · [g′ (t)]β dt


1
γ

is univalent.

Proof. In Theorem 3, we consider p = 2, f1 = f, f2 = g, γ1 = α, γ2 = β.

Remark. If in Theorem 3, we consider p = 1, f1 = g, γ1 = γ, γ = β, we

obtained Theorem H.
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ON A QUOTIENT CATEGORY

SIMION BREAZ AND CIPRIAN MODOI

Abstract. We construct a suitable quotient category, in order to give

natural interpretations of the notions almost projective module and almost

injective module.

Introduction

The study of finite rank torsion free abelian groups using quasi-notions (see

[2]) imposed in module theory the notions as ”almost projective module”, ”almost

injective module” and ”almost flat module” ([1], [6], [9], [10]). In [11], E. Walker give

a natural setting for the study of quasi-homomorphisms of abelian group, constructing

the quotient category of the category of the abelian groups modulo the Serre class

of all bounded groups, and he shows, that this quotient category is equivalent to the

category constructed by Reid in [7], in order to give a categorial interpretation of the

B. Jónson’s quasi-decomposition theorem (see [2, Corollary 7.9]).

In this paper we show, using a analogous construction to the E. Walker’s

one, that the mentioned ”almost-notions” have natural interpretations in a suitable

quotient category.

1. The basic construction

Let A be an additive category and S ⊆ N∗ be a multiplicative system such

that 1 ∈ S. We consider the class of all homomorphisms of the form nA = n1A, with

A ∈ A and n ∈ S, and we denote it by Σ. Then, for each A ∈ A, the class of all

homomorphisms belonging to Σ having the domain or the codomain A are sets, being

subclasses of the set EndA(A). Thus the left, respectively right, fractional category

of A with respect Σ is defined [5, chap. 1, 14.6]. Moreover, it is straightforward

2000 Mathematics Subject Classification. 16E40.

Key words and phrases. quotient category, almost projective module, almost injective module.
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to check that Σ is a bicalculable multiplicative system of homomorphisms in A in

the sense of [5, chap. 1, 1.14] so, the notions of left fractional category, the right

fractional category and the category of additive fraction of A with respect Σ coincide

[5, chap. 1, 14.5 and chap. 4, 7.5]. We shall denote by A[Σ−1] this category, and

by qA : A → A[Σ−1] (or simply q if there is no danger of confusion) the canonical

functor. Recall that, this functor makes invertible the homomorphisms belonging to

Σ, and satisfies the following universal property: for every category B and for every

functor F : A → B making invertible all homomorphisms of Σ, there is a unique

functor F̄ : A[Σ−1] → B such that F̄q = F . Note that we may consider, the objects

of A[Σ−1] are the same as the objects of A, in which case q(A) = A for all A ∈ A,

and

HomA[Σ−1](A,B) = {q(nB)−1q(f)q(mA)−1 = q(nmB)−1q(f) =

q(f)q(nmA)−1 | f ∈ HomA(A,B) and n, m ∈ S}.

Since the category A[Σ−1] may be seen as the category of left (right) fractions, the

homomorphism q(nB)−1q(f) : A → B in this category may be visualized as a diagram

of homomorphisms in A:

A
f

��@
@@

@@
@@

B

nB��~~
~~

~~
~

B


A

nA��~~
~~

~~
~ f

��@
@@

@@
@@

A B


Keeping in the mind that f = 1−1

B f , we shall denote sometimes the above homomor-

phism by n−1f or, how we shall see, by 1
n ⊗ f .

Note that the functor q is left and right exact (that is, it commutes with finite

limits and colimits), hence if A is finitely complete or finitely cocomplete then A[Σ−1]

has the same property [5, chap. 1, 14.5]. Moreover, if A is an abelian category, then

A[Σ−1] is abelian too [5, chap. 4, 7.6].

Let A be a full subcategory of an additive category B. Let A′ be the full

subcategory of B[Σ−1] consisting of those objects q(A), with A ∈ A. The inclusion

functor i : A → B induce a fully faithful functor ī : A[Σ−1] → B[Σ−1] which factors

through A′, the induced functor being representative, hence it is an equivalence.
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In the sequel, we assume that the category A is a locally small (that is, the

subobjects of an object form a set) abelian category. A full subcategory T of the

category A is called thick or Serre class if, for every exact sequence

0 → A → B → C → 0

in A, B ∈ T if and only if A ∈ T and C ∈ T . Then, the class of homomorphisms in

A

ΣT = {f | Ker(f) ∈ T , Coker(f) ∈ T }

is a bicalculable multiplicative system and the category A[Σ−1] is defined [5, chap. 4,

7.7 and 7.8], and it is denoted by A/T . In addition, the canonical functor carries all

object from T into 0, and we can give the universal property with functors satisfying

this condition [5, chap 4, exercise 7.3, f)] (see also [4, Section III]).

Remark 1.1 Using the construction of the fractional category of A with

respect to ΣT , [5, Theorem 1.14.1], we observe that in this case the category A/T is

exactly the category constructed by Gabriel in [4]. We recall that in this construction

the groups of homomorphisms in the quotient category A/T which is induced by a

Serre class T are the limit

HomA/T (A,B) = lim−→A/A′∈T ,B′∈T Hom(A′, B/B′)

and the operations are canonical.

Returning to our case, we say that an object A ∈ A is S-bounded if there is

n ∈ S such that nA = 0. If more precision is required, then the object A is called

bounded by n ∈ S. It is straightforward to check that the class of all S-bounded

objects of A forms a thick subcategory, the extremes of an extension being bounded

by the same integer as the middle term, and this by the product of the integers which

bound the extremes. We denote by S this subcategory. Clearly, the categories A[Σ−1]

and A/S are isomorphic.

Lemma 1.2. Let A be an abelian category, 1 ∈ S ⊆ N∗ and Σ = {nA|A ∈

A, n ∈ S}. Then the following hold for the category A[Σ−1]:

a) The homomorphism q(f) is a monomorphism in A[Σ−1] if and only if

ker f is S-bounded, for every homomorphism f in A. The homomorphism n−1f is a

monomorphism in A[Σ−1] if and only if q(f) is a monomorphism in A[Σ−1].
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b) The homomorphism q(f) is an epimorphism in A[Σ−1] if and only if

coker f is S-bounded, for every homomorphism f in A. The homomorphism n−1f is

an epimorphism in A[Σ−1] if and only if q(f) is an epimorphism in A[Σ−1].

c) The homomorphism q(f) is an isomorphism in A[Σ−1] if and only if ker f

and coker f are S-bounded, for every homomorphism f in A. The homomorphism

n−1f is an isomorphism in A[Σ−1] if and only if q(f) is an isomorphism in A[Σ−1].

Proof. The sentences relative to f are easy consequences of exactness of q.

But n−1
A are isomorphisms in A[Σ−1], for all A ∈ A, and this completes the proof.

As is [11] we consider the category Z[S−1]A, whose objects are the same as

the objects of A, and the homomorphisms sets are

HomZ[S−1]A(A,B) ∼= Z[S−1]⊗HomA(A,B),

for all A,B ∈ A. The proof of the following results is inspired by the E. Walker’s

proof of [11, Theorem 3.1].

Proposition 1.3. The categories A[Σ−1] and Z[S−1]A are isomorphic.

Proof. We shall view the quotient category A/S as in Remark 1.1. If

n ∈ S and A ∈ A, then we will denote A[n] = Ker(nA) and nA = Im(nA). If

n′A : A → nA is the canonical epimorphism nA and in = iAn : A[n] → A is the

canonical monomorphism, we have the exact sequence

0 → A[n]
iA
n→ A

n′A→ nA → 0.

Moreover, denote by αn = αA
n : nA → A/A[n] the canonical isomorphism and by

pn = pA
n = αA

n n′A the canonical projection.

Let f : A → C be a homomorphism in A and n ∈ S. Then the diagram

0 // A[n]
iA
n // A

pA
n //

f

��

A/A[n] // 0

0 // C[n]
iC
n // C

pC
n // C/C[n] // 0

and the equalities nCfiAn = fnAiAn = 0 imply that there exists a homomorphism

fn : A/A[n] → C/C[n] such that fnpn
A = pn

Cf . Then fnαn : nA → C/C[n]. The

objects A/nA and C[n] are in the class S, so fnαn represents a homomorphism

fnαn ∈ HomA/B(A,C).
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ON A QUOTIENT CATEGORY

We consider the additive functor F : Z[S−1]A → A/B with F (A) = A and

F ( 1
nf) = fnαn for every homomorphism 1

nf in Z[S−1]A.

In order to construct the inverse of F , we define a functor G : A/B →

Z[S−1]A, putting G(A) = A for every object A, and for homomorphisms constructing

the image by G in the following way: Let g ∈ HomA/B(A,B) be a homomorphism

which is represented by g′ : A′ → B/B′ and n ∈ S such that nA/A′ = 0 and nB′ = 0.

Then we can suppose that g is represented by g : nA → B/B[n]. We put G(g) =
1

n2 ((αB
n )−1gn′A).

We denote by g′ the composition between the restriction of g to n2A with

the canonical projection π : B/B[n] → B/B[n2] and we obtain

g′(αA
n2)−1pB

n2 = πgn2 = πngn = πpB
n (αB

n )−1gn = pB
n2(αB

n )−1gn.

It follows, using the universal property of cokernels,

((αB
n )−1gn)n2 = g′(αA

n2)−1.

Thus

F (G(g)) = (αB
n )−1gn)n2αn2 = g′ = g.

If 1
nf ∈ Z[S−1] Hom(A,B), then

G(F (
1
n

f)) = G(fnαn) =
1
n2

((αB
n )−1fnαB

n n)) =
1
n2

nf =
1
n

f,

and the proof is complete.

Proposition 1.4. The canonical functor q : A → Z[S−1]A preserves the

injective objects and the projective objects.

Proof. Let I be an injective object in A and let 0 → A
1
n α
→ B be a monomor-

phism in Z[S−1]A. Then α : A → B is a homomorphism in A for which exists n ∈ S

with n Ker(α) = 0. Because I is an injective object, we obtain the exact sequence of

abelian groups

Hom(B, I) → Hom(A, I) → Hom(Ker(α), I) → 0.

Applying the tensor product with S, which is an exact functor, because the group

Z[S−1] is torsion free, we find the exact sequence

Z[S−1] Hom(B, I) → Z[S−1] Hom(A, I) → Z[S−1] Hom(Ker(α), I) → 0
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in which Z[S−1] Hom(Ker(α), I) = 0 because for every f ∈ Hom(Ker(α), I) we have

nf = fnKer(α) = 0, hence n Hom(Ker(α), I) = 0. It follows that q(I) is an injective

object in Z[S−1]A.

Dual it may be proved that S preserves the projective objects.

Corollary 1.5. If A is an abelian category with enough injective objects,

then:

a) Z[S−1]A has enough injective objects,

b) for all A,C ∈ A and n ∈ S there exists the canonical isomorphisms

Extn
Z[S−1]A(C,A) ∼= Z[S−1]⊗ Extn

A(C,A).

Proof. a) We choose an injective resolution for A in A:

0 → A → I → I/A → 0,

and Proposition 1.4 proves that

0 → q(A) → q(I) → q(I/A) → 0

represents an injective resolution in Z[S−1]A.

b) We proceed by induction, using an injective resolution as in a). For the

first step of the induction, observe that Z[S−1] ⊗ Ext1A(C,A) and Ext1Z[S−1]A(C,A)

are isomorphic, being both the cokernels of the homomorphism Z[S−1] HomA(C, I) →

Z[S−1] HomA(C,A). Furthermore, for every 1 ≤ n ∈ S we have the isomorphisms

Extn
Z[S−1]A(C, I/A) ∼= Extn+1

Z[S−1]A(C,A),

respectively

Extn
A(C, I/A) ∼= Extn+1

A (C,A).

Corollary 1.6. If A has enough projective objects, then Z[S−1]A has the

same property.

2. Almost projective and almost injective objects

Throughout of this section, A will be a locally small abelian category with

enough projective and enough injective objects. An object P of A is called S-

almost projective (injective), if q(P ) is an projective (respectively injective) object

in Z[S−1]A.
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Lemma 2.1. Let F : A → B be an additive functor. Then there exists a

unique functor F̄ : Z[S−1]A → Z[S−1]B such that F̄qA = qBF

Proof. The statement is a consequence of the universal property of a quotient

category modulo a Serre class and of the fact that, F being additive, for every n ∈ S

and for every A ∈ A we have F (nA) = nF (A).

If A is an object in A, then we shall denote by

HA = Hom(A,−) : A → Ab

the canonical covariant functor, and by

H̄A : Z[S−1]A → Z[S−1]Ab

the functor, which is induced by H.

We recall that an abelian group G is a S-torsion group if the order of every

element g ∈ G is in S and G is S-bounded if there exists n ∈ S such that nG = 0.

We record the following characterization of the almost projective objects:

Proposition 2.2. For a P ∈ A, the following conditions are equivalent:

(i) P is S-almost projective;

(ii) The group Ext1A(P,A) is S-torsion, for all A ∈ A;

(iii) The group Ext1A(P,A) is S-bounded, for all A ∈ A;

(iv) There is an integer n = n(P ) ∈ S, such that n Ext1A(P,A) = 0 for all

A ∈ A;

(v) There is an integer n = n(P ) ∈ S, such that n cokerHP (α) = 0, for all

epimorphisms α in A;

(vi) The functor H̄P is exact.

Proof. As we have seen before in 1.5, Ext1Z[S−1]A(P,A) ∼= Z[S−1] ⊗

Ext1A(A,B), so (i)⇔(ii) is immediate. Moreover, the implications (iv)⇒(iii), (iii)⇒(ii)

and (iv)⇒(v) are obvious.

(ii)⇒(iv). We suppose that, for every n ∈ S, there exists An ∈ A such that

n ExtA(P,An) 6= 0. Then

Ext1A(P,
∏
n∈S

An) ∼=
∏
n∈S

Ext1A(P,An)

is not S-torsion.
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(v)⇒(vi) follows by 1.2.

(vi)⇒(iii) The exactness of H̄P implies that the group cokerHP (α) is

bounded by an integer nα > 0 for any epimorphism α in A. By the Ker-Coker

Lemma, we deduce that Ext1A(P,A) are bounded, for all A ∈ A

We will say that the exact sequence in A:

E : 0 → K
α→ L

β→ M → 0

S-splits if it represents a splitting exact sequence in Z[S−1]A and, consequently, a

S-monomorphism or a S-epimorphism S-splits if it splits in Z[S−1]Mod-R.

Lemma 2.3. Let E : 0 → K
α→ L

β→ M → 0 be an exact sequence in Mod-R.

The following are equivalent:

a) E S-splits;

b) There exists β′ : M → L such that ββ′ = n1M for some integer n ∈ S;

c) There exists α′ : L → K such that α′α = n1L for some integer n ∈ S.

Proof. This statement is a consequence of the characterization of the split

short exact sequences [5, Exercise 4.3.13], using the fact that, for some integer n ∈ S,

the homomorphism nA represents the identity of A in Z[S−1]Mod-R.

Corollary 2.4. The following are equivalent for an R-module P :

a) P is an almost projective;

b) Every epimorphism M → P → 0 in A splits in Z[S−1]A;

c) P is isomorphic in Z[S−1]Mod-R to a S-direct summand in a free module;

d) There exist an integer n ∈ S, a family of R-homomorphisms ϕi : P → R,

i ∈ I, and xi ∈ P , i ∈ I, such that na =
∑

i∈I ϕi(a)xi for all a ∈ P .

Proof. a) ⇒ b) If α : M → P is an epimorphism and P is almost projective,

then the kernel of H̄P (α) : HomA(P,M) → HomA(P, P ) is bounded by an integer

n ∈ S and this shows that there exists α′ : P → M such that αα′ = n1P .

b) ⇒ c) is obvious.

c) ⇒ d) If P is S-isomorphic to a S-direct summand in R(I), let β : R(I) →

P be a S-epimorphism which splits in Z[S−1]Mod-R, and let ϕ : P → R(I) be a

homomorphism such that βφ = n1P . We choose a basis (ei)i∈I in R(I). Denote

by ϕi : P → R the composite homomorphisms πiϕ, where πi : R(I) → R are the

canonical projections, and put xi = β(ei), where (ei)i∈I is the canonical basis in
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R(I). Since, for every a ∈ P , ϕi(a) = 0 for almost all i, we may write ϕ : P → R,

ϕ =
∑

i∈I ϕi and we obtain

na = βϕ(a) =
∑
i∈I

(βϕi)(a) =
∑
i∈I

(ϕi(a)β(ei)) =
∑
i∈I

(ϕi(a)xi).

d) ⇒ c) The family ϕi : P → R induces a homomorphism ϕ : P → R(I),

while the correspondences ei 7→ xi give a homomorphism β : R(I) → P which is

an epimorphism in Z[S−1]Mod-R. Moreover, βϕ = n1P showing that β splits in

Z[S−1]Mod-R.

The implication c) ⇒ a) is a consequence of the following observation: the

class of projective objects in an abelian category is closed with respect the direct

summands and the canonical functor preserves the projective objects.

We shall say that the pair ((ϕi)i∈I , (xi)i∈I) is a S-dual basis for P . Observe

that for a finite generated module we may suppose that I is a finite set.

Corollary 2.5. If P is a S-almost projective right R-module, then Z[S−1]⊗P

is a projective Q⊗R-module.

Proof. We consider ((ϕi)i∈I , (xi)i∈I) a S-dual basis for P . Then there exists

an integer n ∈ S such that for every m ∈ M , we have nm =
∑

i∈I ϕi(m)xi. Thus

(1⊗ ϕi,
1
n
⊗ xi) ∈ Z[S−1]⊗HomZ[S−1]⊗R(Z[S−1]⊗M, Z[S−1]⊗R)× Z[S−1]⊗M,

with i ∈ I, is a dual basis for the Z[S−1]⊗R-module Z[S−1]⊗M .

Remark 2.6. The converse of the previous statement is not true. Indeed,

if A is a torsion abelian group which is not a bounded group, then it is not almost

projective over Z (see corollary 2.8), but 0 = Z[S−1]⊗ A is a projective Z[S−1]⊗ Z-

module.

Proposition 2.7. If R is a hereditary ring, then an R-module is S-almost

projective if and only if it is a direct sum between a projective R-module and a R-

module which is bounded as an abelian group.

Proof. Let P be a S-almost projective R-module. If F is a free R-module

and β : F → P is a R-epimorphism then β splits in Z[S−1]Mod-R, hence there

exists β′ : P → F such that ββ′ = n1P for some integer n ∈ S. Hence Ker(β′)

is bounded as an abelian group and it follows that P and Im(β′) are isomorphic
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in Z[S−1]Mod-R. Observe that Im(β′) is projective and it follows that the exact

sequence 0 → Ker(β′) → P → Im(β′) → 0 splits. The converse it obvious.

Corollary 2.8. An abelian group is S-almost projective as Z-module if and

only if it is a direct sum between a free abelian group and a S-bounded group.

In an analogous way we may prove

Proposition 2.9. The following are equivalent for an object I ∈ A:

(i) I is S-almost injective;

(ii) The group ExtA(A, I) is S-torsion for all A ∈ A;

(iii) The group Ext1A(A, I) is S-bounded, for all A ∈ A;

(iv) There is an integer n = n(I) ∈ S, such that n Ext1A(A, I) = 0 for all

A ∈ A;

(v) There is an integer n = n(I) ∈ S, such that n cokerHI(α) = 0, for all

monomorphisms α in A;

(vi) The functor H̄I is exact.

Corollary 2.10. An abelian group A is almost injective as an Z-module if

and only if A ∼= B ⊕D with B a bounded group and D a divisible group.

For almost injective R-modules, as in the standard case we obtain an analo-

gous statement to the Baer’s criterion [8, Proposition I.6.5].

Proposition 2.11. The R-module I is almost injective if and only if there

exists an integer n ∈ S such that for every right ideal U of R and for every R-

homomorphism α : U → R, there exists r ∈ R such that nα(x) = rx for all x ∈ U .

3. Almost flat modules

In the end we give the interpretation for the almost-flat modules, introduced

by Albrecht and Goeters in [1].

If A is a left R-module, and TA = − ⊗R A : Mod-R → Ab is the tensor

product functor, we shall denote by TA : Z[S−1]Mod-R → Z[S−1]Ab the induced

functor. We say that A is S-almost flat if and only if the functor TA is exact. We

obtain the following characterization which shows that our definition is compatible

with the definition of almost flat modules given in [1].

Proposition 3.1. Let A be a left R-module. Then the following are equiva-

lents:

26



ON A QUOTIENT CATEGORY

a) A is S-almost flat;

b) If f : M → N is a monomorphism in Mod-R, then the kernel of the

canonical homomorphism f ⊗R 1A : M ⊗R A → N ⊗R A is S-bounded;

c) There exists n ∈ S such that for every monomorphism f : M → N in

Mod-R we have n Ker(f ⊗R 1A) = 0;

d) If M ∈ Mod-R, then Tor1R(M,A) is S-bounded;

e) There exists n ∈ S such that n Tor1R(M,A) = 0 for all M ∈ Mod-R.

Proof. a) ⇒ b) If the sequence 0 → M
f→ N is exact in Mod-R, then q(f)

is a monomorphism, and it follows that T̄A(q(f)) = q(TA(f)) is a monomorphism in

Z[S−1]Ab showing that Ker(TA(f)) is S-bounded.

b) ⇒ a) Let 0 → q(L) → q(M) → q(N) → 0 be an exact sequence in

Z[S−1]Mod-R. Then, from [4, Corollaire III.1], there exists an exact sequence 0 →

L′ → M ′ → N ′ → 0 in Mod-R such that we have the commutative diagram with

exact rows
0 // q(L) //

��

q(M) //

��

q(N) //

��

0

0 // q(L′) // q(M ′) // q(N ′) // 0

in Z[S−1]Mod-R, the vertical arrows being isomorphisms. The short exact sequence

0 → L′ → M ′ → N ′ → 0 induces by hypothesis the exact sequence in Ab

0 → B → TA(L′) → TA(M ′) → TA(N ′) → 0,

with B a S-bounded group. This shows that in the commutative diagram

0 // T̄A(L) //

��

T̄A(M) //

��

T̄A(N) //

��

0

0 // T̄A(L′) // T̄A(M ′) // T̄A(N ′) // 0

the rows are exact, and the vertical arrows are isomorphisms. It follows that the

sequence 0 → T̄A(L) → T̄A(M) → T̄A(N) → 0 is exact, hence A is S-almost flat.

b) ⇒ d) Let M be a right R-module, and let 0 → K
f→ P → M → 0 be an

exact sequence with P projective. We apply TA to obtain Tor1
R(M,A) ∼= Ker(TA(f)).

Observe that the last group is S-bounded, because f is a monomorphism.

d) ⇒ e) The proof is similar with the proof of [1, Proposition 2.1]
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e) ⇒ c) follows from the fact that for every monomorphism f : M → N , the

group Ker(TA(f)) is a homomorphic image of Tor1R(N/f(M), A). The implication

c) ⇒ b) is obvious.

Corollary 3.2. An abelian group G is S-almost flat as an Z-module if and

only if G = B ⊕H with B a S-bounded group and H a torsion free group

Proof. If G = B⊕H with B a S-bounded group and H a torsion free group,

then for every abelian group K we obtain Tor(K, G) ∼= Tor(K, B) and the last group

is S-bounded.

Conversely, if Tor(K, G) is bounded by n ∈ S for all K ∈ Ab then then

for every integer m > 1, using the isomorphism Tor(Z(m), G) ∼= G[m] ([3, Property

62(H)]), we obtain nG[m] = 0, proving that the torsion part of G is bounded by n.

Therefore, G splits and its torsion part is a S-bounded group.
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CATEGORICAL SEQUENCES AND APPLICATIONS

GRAŢIELA CICORTAŞ

Abstract. Ralph Fox characterized the Lusternik-Schnirelmann category

using the categorical sequences. In this paper we define the notion of G-

categorical sequence, where G is a compact Lie group, and we prove that

the result of Fox remains true for the equivariant Lusternik-Schnirelmann

category.

1. Introduction

In the study of some problems of differential geometry, L. Lusternik and

L. Schnirelmann introduced a new numerical topological invariant, defined for every

closed subset A of a manifold M, called the category (Lusternik- Schnirelmann cate-

gory) of A in M. This number is the minimum cardinality of a categorical covering of

A in M, where ”categorical covering” means a covering by categorical sets (see [5]).

This is a well-known and much studied homotopy invariant (see [3],[4],[5]).

It gives important informations about the existence of critical points: when M is a

smooth manifold, the Lusternik- Schnirelmann category of M is a lower bound for

the number of critical points of a smooth function on M.

2. Categorical sequences

Let M be a topological space. A subset A ⊂ M is called categorical in M if

there exists an open subset U ⊂ M such that A ⊂ U and U is contractible in M .

Following Fox [3], we define the category of X ⊂ M in M by the minimal

number k such that X can be covered by k categorical subsets in M . We denote

cat(X, M) = k.

2000 Mathematics Subject Classification. 58E05.

Key words and phrases. Lusternik-Schnirelmann category, G-category, G-categorical sequence.
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Because every subset of a contractible set in M is also contractible in M , we

obtain that every categorical subset of M is contractible in M ; the converse is not

true.

A covering of X by categorical subsets of M is called a categorical covering

of X in M ; a categorical covering which verifies the minimal condition from definition

is called minimal categorical covering.

Definition 2.1. A finite sequence {A1, A2, . . . , Ak = X} of closed subsets of

X is called a categorical sequence of X in M if:

(i) A1 ⊂ A2 ⊂ . . . ⊂ Ak

(ii) A1, A2 −A1, . . . , Ak −Ak−1 are categorial subsets in M.

The number k is called the length of categorical sequence {A1, A2, . . . , Ak}.

Ralph Fox [3] established the following characterization of category in terms

of categorical sequences:

Theorem 2.1. Let M be a separable, arcwise connected, metric space, and

let X ⊂ M be a subspace such that cat(X, M) < ∞.

Then the category of X in M , cat(X, M), is the minimum of the lengths of

the categorical sequences of X in M.

3. Categorical sequences method for equivariant Lusternik-Schnirelmann

category

For the definition and the properties of equivariant category we follow Fadell

[2].

Let M be a topological space and let G be a compact Lie group which acts

on M. Let A be an invariant subspace of M. A homotopy H : A× I −→ M is called

equivariant if H(gx, t) = gH(x, t),∀x ∈ A,∀g ∈ G.

Definition 3.1. The set A is called G-categorical in M if there exists an

equivariant homotopy H : A × I −→ M such that H0 = H(·, 0) is the inclusion and

H1 = H(·, 1) has the image in a single orbit Orb(x).

Here Orb(x) = {gx|g ∈ G} = Gx is the orbit of the point x. The G-orbits

should be considered as ”equivariant points”. (A is G-categorical if it can be deformed

equivariant in an orbit Gx.)
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Definition 3.2. Let X be an invariant subspace of M. We say that X has

G-category k in M and we denote Gcat(X, M) = k if X can be covered by k G-

categorical open subsets in M , and k is the minimal number with this property. If

X cannot be covered by a finite number of such G-categorical open subsets in M, we

say that Gcat(X, M) = ∞.

We define Gcat(X, M) = 0 if X = ∅.

If G acts trivially on M , then the G-category is exactly the Lusternik-

Schnirelmann category.

In general, Gcat(X, M) ≥ cat(X/G,M/G). If the action of G on X is free,

then Gcat(X, M) = cat(X/G,M/G).

For G-category we know some properties, which are contained in the following

proposition (see Fadell [2]):

Proposition 3.1. (i) (normalisation) If X is an invariant subspace of M ,

G-categorical (open or closed), then

Gcat(X, M) = 1

(ii) (monotonicity)If X, Y are two invariant subspaces of M and X ⊆ Y, then

Gcat(X, M) ≤ Gcat(Y,M)

(iii) (subadditivity) If X, Y are two invariant subspaces of M , then

Gcat(X ∪ Y, M) ≤ Gcat(X, M) + Gcat(Y, M)

(iv) (invariance) If φ : M −→ M is an equivariant homeomorphism and X

is an invariant subspace of M , then

Gcat(X, M) = Gcat(φ(X),M)

(v) (continuity) If M is a G-ANR and X is an invariant subspace of M, then

there is an open, invariant subset U ⊆ M such that X ⊆ U and

Gcat(X, M) = Gcat(U,M)

(vi) If Gcat(X, M) = k, then X has k orbits.

Now, we define the corresponding notion of categorical sequence in equivari-

ant context:
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Definition 3.3. We say that a finite sequence {A1, A2, . . . , Ak = X} of

closed, invariant subsets of X is a G-categorical sequence of X in M if:

(i) A1 ⊂ A2 ⊂ . . . ⊂ Ak

(ii) A1, A2 −A1, . . . , Ak −Ak−1 are G-categorical subsets in M.

k is called the length of G-categorical sequence {A1, A2, . . . , Ak}.

The main result is contained in the following theorem:

Theorem 3.1. Let M be a separable, arcwise connected, metric space and

let G be a compact Lie group which acts on M. Let X be a invariant subspace of M

such that Gcat(X, M) < ∞.

In these conditions Gcat(X, M) is the minimum of the lengths of the G-

categorical sequences of X in M .

For the proof of this theorem, we need the following lemma:

Lemma 3.1. Let M be a separable, arcwise connected, metric space and let

G be a compact Lie group which acts on M. Let X and Y be two invariant subspaces

of M such that X, Y are disjoint and open in their union X ∪ Y.

Then

Gcat(X ∪ Y, M) = max{Gcat(X, M), Gcat(Y,M)}.

Proof. Let X =
⋃

i∈I Xi, Y =
⋃

i∈I Yj , where the open subsets Xi and Yj

are G-categorical in M and these coverings of X and Y are minimal.

The covering {Xi ∪ Yj}(i,j)∈I×J is open and G-categorical for X ∪ Y in M ;it

contains a subcovering by s sets such that s = max{| I |, | J |}. Then Gcat(X ∪

Y, M) ≥ max{Gcat(X, M), Gcat(Y,M)}.

From Proposition 3.1.(ii) we obtain Gcat(X, M) ≤ Gcat(X ∪ Y, M) and

Gcat(Y, M) ≤ Gcat(X ∪ Y, M).

Then the above inequality holds.�

The proof of Theorem 3.1. We follow the method established by Fox in

[3].

First, we will prove that if {A1, A2, . . . , Ak = X} is a G-categorical sequence

of X in M, then Gcat(X, M) ≤ k.

If k = 1, then Gcat(X, M) ≤ 1.
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Suppose this statement true for k ≤ r − 1; let {A1, A2, . . . , Ak = X} be a

G-categorical sequence for X in M. Because A is G-categorical in M, by Proposition

3.1(v) there is an open, invariant subset U ⊂ M such that A1 ⊂ U and U is G-

categorical in M.

We prove that {A2 − U,A3 − U, . . . , Ar − U} is a G-categorical sequence of

X − U in M (with the length r − 1). The sequence {A1, A2, . . . , Ak = X} is G-

categorical; then A1 ⊂ A2 ⊂ . . . ⊂ Ak = X and A2 − U ⊂ A3 − U ⊂ . . . ⊂ Ar − U =

X − U. The set A2 − A1 is G-categorical in M and A2 − A1 ⊂ A2 − U ; then the set

A2 − A1 is G-categorical in M. A2 and U being invariant sets, we prove easily that

A2 − U is invariant:

∀x ∈ A2 − U,∀g ∈ G ⇔ x ∈ A2 and x /∈ U and g ∈ G ⇔ (x ∈ A2 and g ∈ G)

and (x /∈ U and g ∈ G)

We know that gx ∈ A2; suppose that gx ∈ U. But U is invariant, so g−1gx ∈ U

and we obtain that x ∈ U ; this statement is a contradiction.

In the same way, we show that all the sets Ak−U are invariants, for k = 2, r.

Also, the sets (A3−U)− (A2−U) = A3−A2, . . . , (Ar −U)− (Ar−1−U) =

Ar −Ar−1 are G-categorical in M.

We just must justify that all these sets are closed, but this is very easy:

Ak − U = Ak ∩ (CU) = Ak ∩ CU = Ak ∩ (CU) = Ak − U, k = 2, r.

We conclude that the sequence {A2 − U,A3 − U, . . . , Ak − U = X − U} is a

G-categorical sequence of X − U in M ; from the induction hypothesis, we obtain:

Gcat(X − U,M) ≤ r − 1.

By using the subadditivity property of Proposition 3.1, we obtain:

Gcat(X, M) ≤ Gcat(X − U,M) + Gcat(U,M) ≤ (r − 1) + 1 = r

Now, we will prove that there is a G-categorical sequence of X in M, such

that its length is ≤ Gcat(X, M).

For Gcat(X, M) = 1 this statement is true.

Suppose that this is true also for Gcat(X, M) ≤ r−1 and let {B1, B2, . . . , Br}

be a minimal, G-categorical, open covering of X in M.
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We define the sets:

Ci = {x ∈ X|x ∈ Bj ,∀j ≤ i, x /∈ Bj ,∀j > i}, i = 1, r;

these sets are closed in X.

We consider the sets C1 and X − B1; they are closed and disjoint in the

(metric, so) normal space X. Then there is an open subset D1 ⊂ X such that

C1 ⊂ D1

D1 ∩ (X −B1) = ∅

We suppose that we have j−1 open subsets D1, D2, . . . , Dj−1 of X such that

for i ≤ j − 1 the following relations are true:

Ci −D1 ∪D2 ∪ . . . ∪Di−1 ⊂ Di

Di ∩ (X −Bi) = ∅

The subsets X −Bj and Cj −
⋃

i<j Di are closed in X and disjoint:

(X −Bj) ∩ (Cj −
⋃
i<j

Di) ⊂ (X −Bj) ∩ (Cj − Cj−1) ⊂ (X −Bj) ∩Bj = ∅

Then there is Dj ⊂ X open such that:

Cj −
⋃
i<j

Di ⊂ Dj

Dj ∩ (X −Bj) = ∅

For the subsets D1, D2, . . . , Dr as above, the following relations are true:

D1 −D1 ⊂ B1 − C1 ⊂ B2 ∪B3 ∪ . . . ∪Br⋃
i≤r

(Di −Di) ⊂ B2 ∪B3 ∪ . . . ∪Br

We obtain that

Gcat(
⋃
i≤r

(Di −Di),M) ≤ r − 1

From the induction hypothesis, there is a G-categorical sequence {A1, A2, . . . , Ak−1 =⋃
i≤r(Di −Di)} of the set

⋃
i≤r(Di −Di) in M, and its length is k − 1 ≤ r − 1.

We prove that {X∩A1, X∩A2, . . . , X∩Ak−1, X} is a G-categorical sequence

of X in M.
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All these sets are closed in X. From A1 ⊂ A2 ⊂ . . . ⊂ Ak−1 we obtain that

X∩A1 ⊂ X∩A2 ⊂ . . . ⊂ X∩Ak−1 ⊂ X. The subsets A1, A2, . . . , Ak−1 are G-invariant,

so X ∩A1, X ∩A2, . . . , X ∩Ak−1 are G-invariant. The subset A1 is G-categorical in

M and X ∩ A1 will be also G-categorical in M. The subsets X ∩ A2 − X ∩ A1 =

X ∩ (A2 −A1), . . . , X ∩Ak−1 −X ∩Ak−2 = X ∩ (Ak−1 −Ak−2) are G-categorical in

M, because A2 −A1, . . . , Ak−1 −Ak−2 are G-categorical in M.

We just must justify that X −X ∩Ak−1 is a G-categorical subset in M. It is

easy to see that X−X∩Ak−1 = X−X∩(∪i≤r(Di−Di)) is open in X (∪i≤r(Di−Di)

is closed in X) and it is invariant. Every component of X −X ∩Ak−1 is contained in

one of the sets Di ⊂ Bi; every Bi is G-categorical in M. By using Proposition 3.1(ii)

and Lemma 3.1 we obtain that X −X ∩Ak−1 is G-categorical in M. �

G-categorical sequences can be used for the proof of product inequality; for

nonequivariant case, the reader can see [3] and [4].

For two G-spaces X, Y, we define the action of G on the product space X×Y

by

G× (X × Y ) −→ X × Y

g(x, y) = (gx, gy).

Proposition 3.2. Let X, Y two separable, arcwise connected, metric G-

spaces. If X and Y are G-invariant, then

Gcat(X × Y ) ≤ Gcat(X) + Gcat(Y )− 1

Proof. Let {A1, A2, . . . , Am = X} be a G-categorical sequence of X in X

and let {B1, B2, . . . , Bn = Y } be a G-categorical sequence of Y in Y. We consider the

sets

Ck =
⋃

i+j=k+1

Ai ×Bj .

All these sets are closed and G-invariant (because Ai, 1 ≤ i ≤ m, Bj , 1 ≤ j ≤ n are

G-invariant).

From A1 ⊂ . . . ⊂ Am = X and B1 ⊂ . . . ⊂ Bn = Y, we obtain that C1 ⊂

. . . ⊂ Cm+n−1 = X×Y. We only must show that {C1, C2−C1, . . . , Cm+n−1−Cm+n−2}

are G-categorical in X × Y.
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A1 is G-categorical in X; then there is an equivariant homotopy HA : A1 ×

I −→ X such that HX,0 = HX(·, 0) is the inclusion and HX,1 = HX(·, 1) has the

image in a single orbit Orb(xA1). The same holds for B1 and the equivariant homotopy

HY : B1 × I −→ Y, with corresponding orbit Orb(yB1). Then

H : (A1 ×B1)× I −→ X × Y

defined by

H((x, y), t) = (HX(x, t),HY (y, t))

is G-invariant: H(g(x, y), t) = H((gx, gy), t) = (HX(gx, t),HY (gy, t)) =

(gHX(x, t), gHY (y, t)) = gH((x, y), t),∀(x, y) ∈ X × Y,∀g ∈ G. Also, H(·, 0) is the

inclusion and H(·, 1) has the image in a single orbit Orb(xA1 , yB1). We conclude that

C1 is G-categorical in X × Y.

Writing Ck+1 −Ck =
⋃

i+j=k+2

(Ai −Ai−1)× (Bj −Bj−1), 1 ≤ k ≤ m + n− 2,

(A0 = ∅ and B0 = ∅ for convenience), it is easy to see that (Ai−Ai−1)× (Bj −Bj−1)

is G-categorical in X × Y and the sets (Ai − Ai−1) × (Bj − Bj−1), (Ai′ − Ai′−1) ×

(Bj′ −Bj′−1), i + j = i′ + j′; i 6= i′, j 6= j′, satisfy the assumption of Lemma 3.1.

Then Ck+1 − Ck is G-categorical in X × Y. �
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NUMERICAL SOLUTION OF THE KORTEWEG - DE VRIES
BURGERS EQUATION BY USING QUINTIC SPLINE METHOD

TALAAT EL SAYED ALI EL DANAF

Abstract. In this work we will discuss the solution of the modified Burgers

equation by using the collocation method with quintic splines. The test

problem will be obtained discuss the accuracy of this problem. We make

a comparison between the numerical and exact solution of the modified

Burgers equation. The last section to discuss the stability analysis of this

method.

1. Introduction

In this paper we will introduce a numerical solution for the Korteweg -de

Vries Burgers equation (KdVB) which is a non-linear partial differential equation

which involves both damping and dispersion take the following form

ut + εuux − νuxx + µuxxx = 0 (1)

This equation was derived by Su and Gardner [1] for a wide class of nonlinear system in

the weak non-linearity and long wavelength approximation. The steady state solution

of the KdVB equation has been shown to model [2] weak plasma shocks propagation

perpendicularly to a magnetic field. When diffusion dominates dispersion the steady

state solutions of the KdVB equation are monotonic shocks, and when dispersion

dominates, the shocks are oscillatory. The KdVB equation has been obtained when

including electron inertia effects in the description of weak nonlinear plasma waves

[3]. The KdVB equation has also been used in a study of wave propagation through

liquid field elastic tube [4] and for a description of shallow water waves on viscous fluid

[5]. Canosa and Gazdag [6], who discussed the evolution of non-analytic initial data

into a monotonic shock, have given brief details of a numerical solution for the KdVB

equation using the accurate space derivative method. In this chapter we will use the

finite element method with Quintic Spline interpolation function, and we will show
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the state of solution in variant times. Grad and Hu [3] showed that the dissipation

effects dominate over dispersive effect when:

4µ ≤ ν2 (2)

In this case the solution of (1) is a shock decreasing monotonically from the upstream

to the downstream value of u. if

ν2 < 4µ (3)

The dispersive effects dominate over the dispative effects; in this case the shock be-

comes oscillatory upstream and monotonic downstream. In this work we introduce

the Quintic Spline with finite element method to solve the KDVB equation, and dis-

cuss the stability and the accuracy of this solution comparing with the exact solution

[7] with some initial and boundary conditions.

2. Exact Solution of the KdVB Equation

In this section we will introduce the exact solution of the KdvB equation

which appeared at the first time for the two dimensional KdVB equation at [7]. We

modify the solution to take the form:

12ν2

εµ

[
1− e

2ν
εµ (x−ωt)

(e
ν

εµ (x−ωt) + E)2

]
(4)

where E,is a positive constant, ω = 12ν2

25µ , ε is the coefficient of the nonlinear term,

ν is the viscosity coefficient and µ is the coefficient of the disperisive term. We note

that the accuracy of the numerical solution depend on E.

3. Numerical Solution of the KdVB Equation with Collocation Quintic

Spline Method

Consider the KdVB equation (1), where the ε is a positive parameter and

the subscripts x, and t indicate to the differentiation with respect to x and t. The

boundary conditions are chosen from:

u(a, t) = 1, u(b, t) = 0

ux(a, t) = 0 = ux(b, t)

uxx(a, t) = 0 = uxx(b, t)
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Consider xi = a + ih, h = b−a
N , i = −3,−2, ..., N + 3. Then Π := a = x0 < x1 < ... <

xn = b is an equal distance partition of the interval [a,b] by the knots xi. Define the

quintic B-spline function as

φi(x) = 1
h5



(x− xi−3)5 x ∈ [xi−3, xi−2]

(x− xi−3)5 − 6(x− xi−2)5 x ∈ [xi−2, xi−1]

(x− xi−3)5 − 6(x− xi−2)5 + 15(x− xi−1)5 x ∈ [xi−1, xi]

(x− xi−3)5 − 6(x− xi−2)5 + 15(x− xi−1)5

−20(x− xi)5 x ∈ [xi, xi+1]

(x− xi−3)5 − 6(x− xi−2)5 + 15(x− xi−1)5

−20(x− xi)5 + 15(x− xi+1)5 x ∈ [xi+1, xi+2]

(x− xi−3)5 − 6(x− xi−2)5 + 15(x− xi−1)5

−20(x− xi)5 + 15(x− xi+1)5 − (x− xi+2)5 x ∈ [xi+2, xi+3]

0 otherwise.

and let φi(x), be those quintic splines, for i = 0, 1, , N . Let

xn = span{φ−2, φ−1, φ0, φ1, ..., φN+1, φN+2}

form a basis for the function defined over [a, b], where the values of the quintic splines

φi(x) , and all its first, and second derivatives vanishes outside the interval [xi−3, xi+3].

We establish the value of φi(x) and its derivatives in the following table:

Table 1
x xi−3 xi−2 xi−1 xi xi+1 xi+2 xi+3

φ 0 1 26 66 26 1 0

φ
′

0 5
h

50
h 0 −50

h
−5
h 0

φ
′′

0 20
h2

40
h2

−120
h2

40
h2

20
h2 0

φ
′′′

0 60
h3

−120
h3 0 120

h3
60
h3 0

Our task is to find an approximate solution uN (x, t) to the solution u(x, t) in the

form:

uN (x, t) =
N+2∑
i=−2

φi(xj)δi(t) (5)

Where δi are unknowns dependent on time to be determined. Substitute

from the values of φi(x) and its derivatives into (1), and suppose that δi are linearly
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interpolated between two levels n and n + 1 by

δi = θδn+1
i + (1− θ)δn

i

Where 0 ≤ θ ≤ 1 is a parameter at the time n∆t . The time derivative descriptive

using the finite difference formula

dδ

dt
=

δn+1
i − δn

i

∆t

We get
N+2∑
i=−2

(φi +
θε∆t

h
φ

′

i − ν
θ∆t

h2
φ

′′

i + µ
θ∆t

h3
φ

′′′

i )δn+1
i =

=
N+2∑
i=−2

(φi +
(1− θ)ε∆t

h
φ

′

i − ν
(1− θ)∆t

h2
φ

′′

i + µ
(1− θ)∆t

h3
φ

′′′

i )δn
i (6)

Giving the parameter θ the value 1/2 we get the Crank-Nicolson formula

which implies the recurrence relation

N+2∑
i=−2

(φi+
ε∆t

2h
φ

′

i−ν
∆t

2h2
φ

′′

i +µ
∆t

2h3
φ

′′′

i )δn+1
i =

N+2∑
i=−2

(φi+
ε∆t

2h
φ

′

i−ν
∆t

2h2
φ

′′

i +µ
(∆t

2h3
φ

′′′

i )δn
i

(7)

Applying the boundary condition we can eliminate δ−2, δ−1, δN+1 and δN+2

to get the following system of non linear equations:

aiδ
n+1
i−2 +biδ

n+1
i−1 +ciδ

n+1
i +diδ

n+1
i+1 +eiδ

n+1
i+2 = a

′

iδ
n
i−2+b

′

iδ
n
i−1+c

′

iδ
n
i +d

′

iδ
n
i+1+e

′

iδ
n
i+2 (8)

We can write this system of equations in the form

A [δ] δn+1 = B [δ] δn (9)

where the matrices and are Penta-diagonal matrices. The elements of the matrices

and are given by:

ai = 1− r1zi−2 − r2 + r3, a
′

i = 1 + r1zi−2 + r2 + r3

bi = 26− 10r1zi−2 − 2r2 + 2r3, b
′

i = 26 + 10r1zi−2 + 2r2 − 2r3

ci = 66 + 6r2, c
′

i = 66− 6r2

di = 26 + 10r1zi−2 − 2r2 − 2r3, d
′

i = 26− 10r1zi−2 + 2r2 + 2r3

ei = 1 + r1zi−2 − r2 + r3, e
′

i = 1− r1zi−2 + r2 − r3 (10)
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where

r1 =
5εδt

2h
, r2 =

10νδt

h2
,

r3 =
30µδt

h3
,

zi−2 = δi−2 + 26δi−1 + 66δi + 26δi+1 + δi+2

To solve this system we apply at first the initial condition to determine

δ0
−2, δ−1, δ

0
0 , ..., δ0

N , δ0
N+1, δ

0
N+2

When t = 0, equation (6) takes the formula

u0
N (x, t) =

N+2∑
i=−2

φi(xj)δi(t)0 (11)

The approximate solution must satisfy the following:

(a). It must agree with the initial condition u (x, 0) at the knots and

(b). The first, second, and third derivatives of the approximate initial condition agree

with those of the exact initial conditions at both ends of the range. So we get the

system:

Aδ0 = u0(x) (12)

Where A is (N + 5)x(N + 5) square matrix which can be restored by the

Penta -diagonal algorithm to (N + 1)x5. In the following we will give an illustration

to point out how to as an example to compute the element of the matrix A. substitute

from (8),(10) and (11) in (12)we have,

a
′

0δ
0
−2 + b

′

0δ
0
−1 + c

′

0δ
0
1 + d

′

0δ
0
1 + e

′

0δ
0
2 = u0(x0)

i.e.

(1 + r1z−2 + r2 + r3)δ0
−2 + (26 + 10r1z−2 + 2r2 − 2r3)δ0

−1 + (66− 6r2)δ0
0+

+(26− 10r1z−2 + 2r2 + 2r3)δ0
1 + (1− r1z−2 + r2 − r3)δ0

2 = u0(x0) (13)
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Substitute the values of r1, r2, and z−2 in (13) and use the boundary condi-

tions to eliminate δ−2 and δ−1 to get the first row in the matrix A and so on.

A =



54 60 6 0 0 0 · · · 0 0 0 0 0

25.25 67.5 26.25 1 0 0 · · · 0 0 0 0 0

1 26 66 26 1 0
...

...
...

...
...

...

0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 0

... 1 26 66 26 1

0 · · · · · · · · · · · · · · · · · · · · · · · · 6 60 54


,

By solving the system (13) we get {δ0
−2, δ

0
−1, δ

0
0 , ..., δ0

N , δ0
N+1, δ

0
N+2}. So we

iterate by using the Pascal program, and hence the solution of equation (1) written

as:

u(x, t) = δi−2 + 26δi−1 + 66δi + 26δi+1 + δi+2 (14)

4. Stability Analysis

We apply the Von-Neumann stability for equation (9) so we must linearize

this equation and put the nonlinear term as zi−2 = d + 26d + 66d + 26d + d = 120d,

according to the Von-Neuman we have

δn
j = εneikxj (15)

Hence after dividing by at both sides of equation (9) with the help of equation

(16) we get

g =
A + iB

A− iB
(16)

where

g =
εn+1

εn
,

A = 4 cos2(kh) + 26 cos2(
kh

2
) + 3 + r2(cos(kh) + 2)(cos(kh)− 1)

A1 = 4 cos2(kh) + 26 cos2(
kh

2
) + 3− r2(cos(kh) + 2)(cos(kh)− 1)

B = 4r2 sin(kh)(cos2(frackh2) + 5) + 4r3 sin(kh)(cos(kh)− 1) (17)

We note that A1 < A2 , so

| g| = | A2 + B2

A2
1 + B2

| ≤ 1

Which means that the Quintic Splines method is unconditionally stable.
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5. Test Problem

Canoza and Gazdag [4] have shown that the steady state solution for the

KdvB equation with boundary conditions u(a, t) = 1 and u(b, t) = 0, exhibits different

Behaviour depending on the relative values of ν and µ: (a)it is a shock wave decreasing

monotonically from upstream to downstream if

ν2 ≥ 4µ

(b) it is a shock wave which becomes oscillatory upstream and monotonic downstream

if

ν2 < 4µ

These observations are confirmed in the following simulations take the initial condition

as the step function

u(x, t) =

 1 if 0 ≤ x ≤ 150,

0 if x > 150.
(18)

With µ and like Canoza and Gazdag [4] when ν = 6.0, and 0.1 and 0.05. So

we take the boundary conditions as:

u(0, t) = 1, u(220, t) = 0,

ux(0, t) = 0 = ux(220, t) (19)

Now we make some comparison between the exact solution (4) with ε = 2

and the parameter E = 1000. Note. The value of the constant E is large to be in the

neighborhood of the boundary conditions.

6. Graphics

In this section we plot some graphics to note the behaviour of our numerical

solution at some various values of the viscosity and dispressive coefficients, as follows.

Figures(1.a-1.f) show the behavior of the computed solution with, ν = 5, µ =

6 it means that ν2 near to 4µ and at time step ∆t = 0.02, and ∆x = 0.55 It is

confirmed that when the viscosity value is large (ν=5) then numerical solution of the

KdVB equation is a shock wave decreasing monotonically from the upstream to the

downstream value of the solution [5]. Similar shock wave solutions have been obtained

for Burgers’ equation [6,7].
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Figures (2a-2f) show the behavior of the solution from t=0sec to t=50sec,

with ν = 1, µ = 20 ,∆t = 0.02, and ∆x = 0.55. We see that oscillations is increasing

with respect to the time, but it is still stable.
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Figures (3.a - 3.f) show the behavior of the numerical solution at ν = 2 and

µ = 4, which means that ν2 ≡ 4µ , which give a very smooth solution, and we will

discuss the errors later.
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Figures (4.a - 4.f), show the behaviour of the computed solution for ν = 0.05

at times from t = 0 to t = 50. When viscosity value is small the numerical solution of

the KdVB equation is a shock wave which becomes oscillatory upstream and mono-

tonic downstream confirming the theoretical treatment [8,9,10]. These graphs also

show that as n is decreased further the computed solutions become more oscillatory.

The results are consistent with graphs presented by Vliegenthart for KdV equation,

where for identical initial conditions similar behavior is observed [8].
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7. Computational Results

In this section we compare between the numerical and exact solution for the

KdVB equation and the errors of the Collocation method at each time step
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Table 2

The errors for the numerical solution of the KdvB equation by using Collocation

with quintic Splines atν = 5, µ = 6,∆t = 0.02sec and ε = 2for the time t = 10Sec.

to t = 60Sec.

Time(Sec) 10 20 30 40 50 60

L2x103 0.0010 0.0012 0.0013 0.0012 0.0012 0.0011

L∞x103 0.0002 0.0002 0.0003 0.0003 0.0003 0.0003

As we note from table 2 the numerical results are very close to the exact results

atnu = 5, µ = 6t = 10sec, and ∆t = 0.02sec, ∆x = 0.73cm. For the time increases

the results are still close to the exact one which means that the method is very

accurate. The errors are given in the following table.

Table 3

The errors for the numerical solution of the KdvB equation by using Collocation

with quintic Splines ν = 1, µ = 2,∆t = 0.02sec and ε = 2for the time t = 10Sec. to

t = 60Sec.

Time (Sec) 10 20 30 40 50 60

L2x103 0.0005 0.0006 0.0008 0.0010 0.0012 0.0016

L∞x103 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001

Table 4

gives the relation between the numerical and exact solution of KdV-Burgers

equation by using Collocation method atν = 0.05µ = 1, t = 10sec, ∆t = 0.02sec and

ε = 2

Time (Sec) 10 20 30 40 50 60

L2x103 1.1723 1.2886 1.3618 1.4161 1.4598 1.4964

L∞x103 0.6 0.6 0.6 0.6 0.6 0.6

As we said before the numerical solution to the KdVB equation by using the Collo-

cation method depends on the ratio ν2

4µ << 1, and when the ratio is very closed the

solution is more accurate and the method is very good to examine
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Table 5

The errors for the numerical solution of the KdvB equation by using Collocation

with quintic Splines atµ = 10, ν = 1,∆t = 0.02sec and ε = 2 for the time t = 10Sec.

to t = 60Sec.

Time(Sec) 10 20 30 40 50 60

L2x103 60.534 66.394 70.084 72.821 75.013 76.847

L∞x103 23.865 23.866 23.867 23.868 23.869 23.870

Table 6

The errors for the numerical solution of the KdvB equation by using Collocation

with quintic Splines atµ = 1, ν = 2,∆t = 0.02sec and ε = 2 for the time t = 10Sec.

to t = 60Sec.

Time (Sec) 10 20 30 40 50 60

L2 x 103 0.0032 0.0032 0.0031 0.0031 0.0031 0.0031

L∞ x 103 0.0013 0.0014 0.0014 0.0014 0.0014 0.00014

Table 7

The errors for the numerical solution of the KdvB equation by using Collocation

with quintic Splines at µ = 0.1, ν = 0.005,∆t = 0.02sec and ε = 2 for the time

t = 10Sec. to t = 60Sec.

Time (Sec) 10 20 30 40 50 60

L2 x 103 0.0128 0.0144 0.0154 0.0160 0.0167 0.0171

L∞ x 103 0.0059 0.0060 0.0063 0.0060 0.0065 0.0059

Table 8

The errors for the numerical solution of the KdvB equation by using Collocation with

quintic Splines at µ = 0.1, ν = 0.005,∆t = 0.02sec and ε = 2 for the time t = 10Sec.

to t = 60Sec.

Time (Sec) 10 20 30 40 50 60

L2 x 103 8x10−5 8x10−5 8x10−5 8x10−5 8x10−5 8x10−5

L∞ x 103 5x10−5 5x10−5 5x10−5 5x10−5 5x10−5 5x10−5

8. Conclusion

The finite element method with the quintic spline is capable of producing an

accurate and stable numerical solution for the Korteweg-de Vries-Burgers’ equation

even while the values of the viscosity coefficient are small [11]. The linear stability
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analysis shows that the numerical scheme is unconditionally stable. This is the first

trail to compute numerically, the solution of the KDVB equation. So, this work

compares the numerical solution of the KDVB equation with the exact one. But,

there is no available other numerical example in the literatures to compare with.
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ON UNIFORMLY CONVEX MAPPINGS OF A BANACH SPACE
INTO THE COMPLEX PLANE

DORINA RĂDUCANU

Abstract. Let E be a complex Banach space and let E be the unit ball in

E, i.e. B = {x ∈ E : ‖x‖ < 1} . We introduce a new class of holomorphic

functions in B and we obtain a few results concerning this new class.

1. Introduction

Let E∗be the dual space of E. For any A ∈ E∗we consider χ (A) =

{x ∈ E : A (x) 6= 0} and γ (A) = E\χ (A) . If A 6= 0 then χ (A) is dense in E and

χ (A) ∩ B̂ is dense B̂, where B̂ = {x ∈ E : ‖x‖ = 1} .

Let H (B) be the family of all functions f : B → C, f (0) = 0 that are

holomorphic in B, i.e. have the Fréchet derivative f ′ (x) in each point x ∈ B. If

f ∈ H (B), then in some neighbourhood V of the origin, f (x) =
∞∑

m=1
Pm,f (x) , where

the series is uniformly convergent on V and

Pm,f : E → C are continuous and homogeneous polynomials of degree m.

Let U = {z ∈ C : |z| < 1}. Denote by CV the family of functions

f (z) = z +
∞∑

n=2

anzn (1)

that are convex in the unit disk U .

Goodman [1] defined the following subclass of CV .

Definition. A function f is called uniformly convex in U if f is in CV and

has the property that for every circular arc γ contained in U , with center ζ also in U ,

the arc f (γ) is a convex arc.

Goodman gave a two-variable analytic characterization of this class, denoted

by UV C.
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Theorem 1. A function of the form (1) is in UCV if and only if

Re
{

1 + (z − ζ)
f ′′ (z)
f ′ (z)

}
≥ 0 , (z, ζ) ∈ U × U. (2)

Also, Goodman proved that the best known bounds on the coefficients for

the family UV C are |an| ≤ 1
n , n ≥ 2.

Ma and Minda [3] and Ronning [4] independently found a more applicable

one-variable characterization for UV C.

Theorem 2. A function f of the form (1) is in UV C if and only if

Re
{

1 +
zf ′′ (z)
f ′ (z)

}
≥

∣∣∣∣zf ′′ (z)
f ′ (z)

∣∣∣∣ , z ∈ U. (3)

2. The class UCVA

Let A ∈ E∗, A 6= 0. For any f ∈ H (B) of the form

f (x) = A (x) +
∞∑

n=2

Pn,f (x) , x ∈ B (4)

and for any a ∈ χ (A) ∩ B̂ we set

fa (z) =
f (za)
A (a)

, z ∈ U. (5)

Obviously

fa (z) = z +
∞∑

n=2

Pn,f (a)
A (a)

zn , z ∈ U. (6)

Moreover, it is easy to check that

f (n)
a (z) =

f (n) (za) (a, ..., a)
A (a)

, n ∈ N, z ∈ U. (7)

We denote by UCVA the family of all functions f ∈ H (B) of the form (4)

such that, for any a ∈ χ (A) ∩ B̂ the function fa belongs to the class UCV.

By using the properties of the functions in UCV, we obtain a few results

concerning the family UCVA.

Theorem 3. If f ∈ UCVA and a ∈ B̂, then

|Pn,f (a)| ≤ 1
n
|A (a)| , n ≥ 2 (8)
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Proof. Suppose that f ∈ UCVA. If a ∈ χ (A)∩B̂, then fa ∈ UCV and hence

we get (9) . If a ∈ γ (A) ∩ B̂, evidently a = lim
m→∞

am, where am ∈ X (A) ,m ∈ N.

There exists rm ∈ R+ such that am

rm
∈ B̂. Clearly (rm)m≥0 is bounded for the origin

is an interior point of B. Since am

rm
∈ χ (A) ∩ B̂,m ∈ N, by the first part of the proof

we have ∣∣∣∣Pn,f

(
am

rm

)∣∣∣∣ ≤ 1
n

∣∣∣∣A (
am

rm

)∣∣∣∣ , m ∈ N.

Hence

|Pn,f (am)| ≤ rn−1
m

n
|A (am)| , m ∈ N.

By taking the limit with m →∞, we obtain Pn,f (a) = 0.

Corollary 1. All f ∈ UCVA vanish on γ (A) ∩B.

Corollary 2. If f ∈ UCVA , then

‖Pn,f‖ ≤
1
n
‖A‖ , n ≥ 2

The following theorems provide necessary and sufficient conditions for func-

tions in H (B) to belong to the class UCVA.

Theorem 4. Let f ∈ UCVA and f ′ (x) 6= 0, for all x ∈ B. Then

Re
{

1 +
f ′′ (x) (x, x)

f ′ (x)

}
≥

∣∣∣∣f ′′ (x) (x, x)
f ′ (x)

∣∣∣∣ , x ∈ χ (A) ∩B. (9)

Proof. Let x ∈ χ (A) ∩B, x 6= 0. Then a = x
‖x‖ ∈ χ (A) ∩ B̂ and hence the

function fa belongs to the class UCV . From (3) we have

Re
{

1 +
zf ′′a (z)
f ′a (z)

}
≥

∣∣∣∣zf ′′a (z)
f ′a (z)

∣∣∣∣ , z ∈ U.

By using the equality

zf ′′a (z)
f ′a (z)

=
f ′′ (za) (za, za)

f ′ (za) (za)
, z ∈ U

we obtain

Re
{

1 +
f ′′ (za) (za, za)

f ′ (za) (za)

}
≥

∣∣∣∣f ′′ (za) (za, za)
f ′ (za) (za)

∣∣∣∣ , z ∈ U.

By setting z = ‖x‖, we get (9) .
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Theorem 5. Let f ∈ H (B) , f ′ (0) = A and f ′ (x) 6= 0, for all x ∈ B. If

Re
{

1 +
f ′′ (x) (x, x)

f ′ (x)

}
≥

∣∣∣∣f ′′ (x) (x, x)
f ′ (x)

∣∣∣∣ , x ∈ B (10)

then f ∈ UCVA.

Proof. Let a ∈ χ (A) ∩ B̂. Then f ′a (z) = f ′ (za) (a) 6= 0, z ∈ U\ {0} and

zf ′′a (z)
f ′a (z)

=
f ′′ (za) (za, za)

f ′ (za)
, z ∈ U.

From (10), we obtain fa ∈ UCV , for all a ∈ χ (A) ∩ B̂. Hence f ∈ UCVA.
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A UNIVALENCE CONDITION

DORINA RĂDUCANU AND PAULA CURT

Abstract. In this paper we obtain a sufficient condition for univalence

concerning holomorphic mappings of the unit ball in the space of n-complex

variables.

1. Introduction

Let Cn be the space of n-complex variables z = (z1, ..., zn) with the Euclidean

inner product 〈z.w〉 =
n∑

k=1

zkw̄k and norm ‖z‖ = 〈z, z〉
1
2 .

Let Bn denote the open unit ball in Cn,i.e. Bn = {z ∈ Cn : ‖z‖ < 1}.We

denote by L (Cn) the space of continuous linear operators from Cn into Cn,i.e .n× n

complex matrices A = (Ajk) with the standard operator norm

‖A‖ = sup {‖Az‖ : ‖z‖ < 1} , A ∈ L (Cn)

I = (Ijk) denotes the identity in L (Cn).

Let H (Bn) be the class of holomorphic mappings

f (z) = (f1 (z) , ..., fn (z)) , z ∈ Bn

from Bn into Cn. We say that f ∈ H (Bn) is locally biholomorphic in Bn if f has a

local holomorphic inverse at each point in Bn or equivalently, if the derivative

Df (z) =
(

∂fk (z)
∂zj

)
1≤j,k≤n

is nonsingular at each point z ∈ Bn.

A mapping v ∈ H (Bn) is called a Schwarz function if ‖v (z)‖ ≤ ‖z‖ , for all

z ∈ Bn.

If f, g ∈ H (Bn) then f is subordinate to g (f ≺ g) in Bn if there exists a

Schwarz function v such that f (z) = g (v (z)) , z ∈ Bn.
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A function L : Bn × [0,∞) → Cn is a subordination chain if L (·, t) is holo-

morphic and univalent in Bn, L (0, t) = 0, for all t ∈ [0,∞) and L (z, s) ≺ L (z, t),

whenever 0 ≤ s ≤ t < ∞.

The subordination chain L : Bn× [0,∞) → Cn is a normalized subordination

chain if DL (0, t) = etI, for t ∈ [0,∞).

A basic result in the theory of n-complex variables subordination chains is

due to J. A. Pfaltzgraff.

Theorem 1. [5] Let L (z, t) = etz + ... be a function from Bn × [0,∞) into

Cn such that:

(i)L (·, t) ∈ H (Bn), for all t ∈ [0,∞)

(ii) L (z, t) is a locally absolutely continuous function of t, locally uniformly

with respect to z ∈ Bn.

Let h (z, t) be a function from Bn×[0,∞) into Cn which satisfies the following

conditions:

(iii) h (·, t) ∈ H (Bn) , h (0, t) = 0, Dh (0, t) = I and Re 〈h (z, t) , z〉 ≥ 0, for

all t ∈ [0,∞) and z ∈ Bn.

(iv) For each T > 0 and r ∈ (0, 1) there is a number K = K (r, T ) such that

‖h (z, t)‖ ≤ K (r, T ), when ‖z‖ ≤ r and t ∈ [0, T ].

(v) For each z ∈ Bn, h (z, ·) is a measurable function on [0,∞).

Suppose h (z, t) satisfies

∂L (z, t)
∂t

= DL (z, t)h (z, t) , a.e t ∈ [0,∞), for all z ∈ Bn (1)

Further, suppose there is a sequence (tm)m≥0 , tm > 0 increasing to ∞ such

that

lim
m→∞

e−tmL (z, tm) = F (z) (2)

locally uniformly in Bn.

Then for each t ∈ [0,∞), L (·, t) is univalent in Bn.

P. Curt obtained a version of Theorem 1 for subordination chains which are

not normalized .

Theorem 2. [2] Let L (z, t) = a1 (t) z + ..., a1 (t) 6= 0 be a function from

Bn × [0,∞) into Cn such that:

(i) L (·, t) ∈ H (Bn) for all t ∈ [0,∞)
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(ii) L (z, t) is a locally absolutely continuous function of t, locally uniformly

with respect to z ∈ Bn

(iii) a1 (t) ∈ C1[0,∞) and lim
t→∞

|a1 (t)| = ∞.

Let h (z, t) be a function from Bn×[0,∞) into Cn which satisfies the following

conditions:

(iv) h (·, t) ∈ H (Bn), h (0, t) = 0 and Re 〈h (z, t) , z〉 ≥ 0, for all t ∈ [0,∞)

and z ∈ Bn

(v) For each z ∈ Bn, h (z, ·) is a measurable function on [0,∞)

(vi)For each T > 0 and r ∈ (0, 1) , there exists a number K = K (r, T ) such

that ‖h (z, t)‖ ≤ K (r, T ) , when ‖z‖ ≤ r and t ∈ [0, T ] .

Suppose h (z, t) satisfies

∂L (z, t)
∂t

= DL (z, t) h (z, t) , a.e. t ∈ [0,∞), for all z ∈ Bn (3)

Further suppose there is a sequence (tm)m≥0 , tm > 0 increasing to ∞ such

that

lim
m→∞

L (z, tm)
a1 (tm)

= F (z) (4)

locally uniformly in Bn.

Then for each t ∈ [0,∞), L (·, t) is univalent in Bn.

2. Univalence conditions

By using Theorem 2, we obtain an univalence condition which generalize some

n-dimensional univalence criteria [2] , [3] , [5].

Theorem 3. Let f : Bn → Cn be a locally biholomorphic function in

Bn, f (0) = 0, Df (0) = I and let a : [0,∞) → C be a function which satisfies the

conditions:

(i) a ∈ C1[0,∞), a (0) = 1, a (t) 6= 0, for all t ∈ [0,∞)

(ii) lim
t→∞

|a (t)| = ∞

(iii) Re a′(t)
a(t) > 0, for all t ∈ [0,∞).

If

max
‖z‖=e−t

∥∥∥∥(a (t)− ‖z‖) (Df (z))−1
D2f (z) (z, ·) +

a (t)− a′ (t)
2

I

∥∥∥∥ <

<
|a (t) + a′ (t)|

2
(5)

for all t ∈ [0,∞), then f is an univalent function in Bn.
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Remark

The second derivative of a function f ∈ H (Bn) is a symmetric bilinear op-

erator D2f (z) (·, ·) on Cn ×Cn and D2f (z) (w, ·) is the linear operator obtained by

restricting D2f (z) to {w} × Cn. The linear operator D2f (z) (z, ·) has the matrix

representation

D2f (z) (z, ·) =

(
n∑

m=1

∂2fk (z)
∂zj∂zm

zm

)
1≤j,k≤n

Proof. We define

L (z, t) = f
(
e−tz

)
+
(
a (t) et − 1

)
e−tDf

(
e−tz

)
(z) , t ∈ [0,∞), z ∈ Bn (6)

We wish to show that L (z, t) satisfies the conditions of Theorem 2 and hence

L (·, t) is univalent in Bn, for all t ∈ [0,∞). Since f (z) = L (z, 0) we obtain that f is

an univalent function in Bn.

It is easy to check that a1 (t) = a (t) and hence a1 (t) 6= 0, lim t →∞|a1 (t)| =

∞ and a1 ∈ C1[0,∞).

We have L (z, t) = a1 (t) z+(holomorphicterm). Thus lim
t→∞

L(z,t)
a1(t)

= z, locally

uniform with respect to Bnand hence (4) holds with F (z) = z. Obviously L (z, t)

satisfies the absolute continuity requirements of Theorem2.

Straightforward calculations show that

DL (z, t) =
a (t) + a′ (t)

2
Df

(
e−tz

)
[I − E (z, t)] , (7)

where, for each fixed (z, t) ∈ Bn × [0,∞), E (z, t) is the linear operator defined by

E (z, t) = −a (t)− a′ (t)
a (t) + a′ (t)

I−

−2
a (t)− e−t

a (t) + a′ (t)
(
Df

(
e−tz

))−1
D2f

(
e−tz

) (
e−tz, ·

)
(8)

For t = 0, we have

I − E (z, 0) =
2

1 + a′ (0)
I, for all z ∈ Bn (9)

Since 1 + a′ (0) 6= 0 , we obtain that I − E (z, 0) is an invertible operator.

For t > 0, E (·, t) : Bn → L (Cn,Cn) is holomorphic and from the weak

maximum modulus theorem [4] it follows that ‖E (z, t)‖ can have no maximum in Bn

unless ‖E (z, t)‖ is of constant value throughout Bn. If z = 0 and t > 0 we have

‖E (0, t)‖ =
∣∣∣∣a (t)− a′ (t)
a (t) + a′ (t)

∣∣∣∣ < 1.
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We also have

‖E (z, t)‖ ≤ max
‖w‖=1

‖E (w, t)‖

If we let u = e−tw with ‖w‖ = 1, then ‖u‖ = e−t and by using (5) we obtain

‖E (z, t)‖ ≤ max
‖w‖=1

‖E (w, t)‖ =

= max ‖u‖ = e−t

∥∥∥∥2 (a (t)− ‖u‖)
a (t) + a′ (t)

(Df (u))−1
D2f (u) (u, ·) +

a (t)− a′ (t)
a (t) + a′ (t)

I

∥∥∥∥ < 1.

Since ‖E (z, t)‖ < 1 for all z ∈ Bn and t > 0, it follows I − E (z, t) is an

invertible operator,too.

Further calculations show that

∂L (z, t)
∂t

=
a (t) + a′ (t)

2
Df

(
e−tz

)
[I − E (z, t)] (z) =

DL (z, t) = [I − E (z, t)]−1 [I + E (z, t)] (z) .

Hence L (z, t) satisfies the differential equation (3), for all z ∈ Bn and t ∈

[0,∞), where

h (z, t) = [I − E (z, t)]−1 [I + E (z, t)] (z) (10)

It remains to show that h (z, t) satisfies the conditions (iv) , (v) and (vi) of

Theorem 2. Clearly h (z, t) satisfies the holomorphy and measurability requirements

and h (0, t) = 0.

Since

‖h (z, t)− z‖ = ‖E (z, t) (h (z, t) + z)‖ ≤ ‖E (z, t)‖ · ‖h (z, t) + z‖ < ‖h (z, t) + z‖

We have 〈Re h (z, t) , z〉 ≥ 0, for all (z, t) ∈ Bn × [0,∞).

By using the inequality∥∥∥[I − E (z, t)]−1
∥∥∥ ≤ [1− ‖E (z, t)‖]−1

we obtain

‖h (z, t)‖ ≤ 1 + ‖E (z, t)‖
1− ‖E (z, t)‖

‖z‖ .

The conditions of Theorem 2 being satisfied it follows that the functions

L (z, t) , t ≥ 0 are univalent in Bn. In particular f (z) = L (z, 0) is univalent in Bn.

Remarks

1) If a (t) = et, t ∈ [0,∞), then Theorem 3 becomes the n-dimensional version

of Becker’s univalence criterion [4] .
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2) For a (t) = et+ce−t

1+c , t ≥ 0, c ∈ C \ {−1} , |c| ≤ 1, Theorem 3 becomes the

n-dimensional version of Ahlfors and Becker’s univalence criterion [2] .

3) If a (t) = e(α−1)t+ce−t

1+c , t ≥ 0, c ∈ C \ {−1} , |c| ≤ 1 and α ∈ R with

α ≥ 2, we obtain the generalization of Ahlfors and Becker’s n-dimensional

criterion of univalence due to P. Curt [3].
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CUBATURE FORMULAS ON TRIANGLE

MILENA SOLOMON

Abstract. In this article are presented some cubature formulas on triangle

T which are obtained by the product of known quadrature formulas and

some formulas obtaining by an approximation formula on triangle.

1. Introduction

Let T = {(x, y) ∈ R2| x ≥ 0, y ≥ 0, x + y ≤ 1} the standard triangle from

the Euclidean space R2, f : T → R an integrable function on T , λif , i = 0,m, some

given information of f and w a nonnegative weight function on T1.

Definition 1. The formula∫∫
T

w(x, y)f(x, y)dxdy =
m∑

i=0

Aiλif + Rm(f) (1)

is called a cubature formula. The parameters Ai, i = 0,m, are the coefficients and

Rm(f) is the remainder term.

A way to construct cubature formulas on T is to use the quadrature formulas

which are known from unidimensional case.

2. Cubature formulas

Consider

I(f) =
∫∫

T

f(x, y)dxdy =
∫ 1

0

∫ 1−x

0

f(x, y)dxdy. (2)

An efficient way to construct cubature formulas is to use the quadrature

formulas after the integral (2) was transformed into integral on D = [0, 1]× [0, 1].

Thus, we introduce the substitution y = t(1− x) and yields

I(f) =
∫ 1

0

(1− x)
(∫ 1

0

f(x, t(1− x))dt

)
dx. (3)

67



MILENA SOLOMON

In order to compute the integral on [0, 1] × [0, 1], it can be use the product

of two quadrature formulas, for example:∫ 1

0

g(t)dt =
nt∑

i=1

Tig(ti) + R(g),

where R(g) = 0, ∀ g ∈ Pdt and∫ 1

0

(1− x)g(x)dx =
nx∑
j=1

Aj(1− xj)g(xj) + R(g),

where R(g) = 0, ∀ g ∈ Pdx
.

Thus, we obtained an approximation on the form:

Q(f) =
nx∑
i=1

nx∑
j=1

AjTi(1− xj)f(xj , ti(1− xj)). (4)

For example, if we use the Simpson’s rule:∫ 1

0

g(t)dt ≈ 1
6

[
g(0) + 4g

(
1
2

)
+ g(1)

]
it is obtained∫ 1

0

f(x, t(1− x))dt =
1
6

[
f(x, 0) + 4f

(
x,

1− x

2

)
+ f(x, 1− x)

]
+ R1(f)

and the Simpson’s rule again∫ 1

0

(1− x)
1
6

[
f(x, 0) + 4f

(
x,

1− x

2

)
+ f(x, 1− x)

]
dx =

=
1
6

[∫ 1

0

(1− x)f(x, 0)dx + 4
∫ 1

0

(1− x)f
(

x,
1− x

2

)
dx +

∫ 1

0

(1− x)f(x, 1− x)dx

]
=

=
1
36

[
f(0, 0) + 2f

(
1
2
, 0

)]
+

4
36

[
f

(
0,

1
2

)
+ 4f

(
1
2
,
1
4

)]
+

+
1
36

[
f(0, 1) + 2f

(
1
2
,
1
2

)]
+ R(f)

it follows

Theorem 1. If f ∈ B12(0, 0), then∫∫
T

f(x, y)dxdy =
1
36

[f(0, 0) + f(0, 1)] +
1
18

[
f

(
1
2
, 0

)
+ 2f

(
0,

1
2

)]
+

+
2
9
f

(
1
2
,
1
4

)
+

1
18

f

(
1
2
,
1
2

)
+ R(f) (5)
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where

R(f) =
1

720
f (3,0)(ξ1, 0) +

1
32

f (2,1)(ξ2, 0)− 25
576

f (0,3)(0, η1)−
7

192
f (1,2)(ξ2, η2)

with ξ1, ξ2, η1 ∈ [0, 1] and (ξ3, η3) ∈ T1.

If we use the first level, trapezoidal’s quadrature∫ 1

0

g(t)dt =
1
2
[g(0) + g(1)]− 1

2
g′′(ξ)

it is obtained: ∫ 1

0

f(x, t(1− x))dt ' 1
2
[f(x, 0) + f(x, 1− x)]

and, in the second level, the Simpson’s quadrature:∫ 1

0

g(t)dt =
1
6

[
g(0) + 4g

(
1
2

)
+ g(1)

]
− 1

2880
f (4)(ξ)

⇒
∫ 1

0

1− x

2
[f(x, 0) + f(x, 1− x)]dx =

1
12

[f(0, 0) + f(0, 1)+

+4
[
f

(
1
2
, 0

)
+ f

(
1
2
,
1
2

)]
+ f(1, 0) + f(1, 0)

]
+ R(f)

Thus

Theorem 2. If f ∈ B12(0, 0), then:∫∫
T

f(x, y)dxdy =
1
12

f(0, 0) +
1
12

f(0, 1) +
1
3
f

(
1
2
, 0

)
+

+
1
3
f

(
1
2
,
1
2

)
+

1
6
f(1, 0) + R(f) (6)

where

R(f) = − 1
30

f (3,0)(ξ1, 0)− 1
16

f (2,1)(ξ2, 0)− 1
18

f (0,3)(0, η1)−
13
240

f (1,2))(ξ3, η3)

with ξ1, ξ2, η1 ∈ [0, 1] and (ξ3, η3) ∈ T1.

Another way to obtain the cubature formulas is to start from an approxima-

tion formula on T1.

Let B1 be the Birkhoff’s operator:

(B1f)(x, y) = f(1− y, y) + (x + y − 1)f (1,0)(0, y)

which generates the approximation formula

f = B1f + Rf.
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After integration on T it is obtained:∫∫
T

f(x, y)dxdy =
∫ 1

0

(1− y)f(1− y, y)dy − 1
2

∫ 1

0

(y − 1)2f (1,0)(0, y)dy.

Applying to each integrals the Simpson’s quadrature, it is obtained:∫ 1

0

(1− y)f(1− y, y)dy ' 1
6
f(1, 0) +

1
3
f

(
1
2
,
1
2

)
∫ 1

0

(1− y)2f (1,0)(0, y)dy ' 1
6

[
f (1,0)(0, 0) + f (1,0)

(
0,

1
2

)]
.

It follows:

Theorem 3. If f ∈ B11(0, 0), then:∫∫
T

f(x, y)dxdy =
1
6

[
f(1, 0) + 2f

(
1
2
,
1
2

)]
−

− 1
12

[
f (1,0)(1, 0) + f (1,0)

(
0,

1
2

)]
+ R(f) (7)

where:

R(f) = − 1
12

f (2,0)(ξ, 0), ξ ∈ [0, 1].

Starting from Lagrange’s operator:

(L1f)(x, y) =
1− x− y

1− y
f(0, y) +

x

1− y
f(1− y, y)

and Hermite operator

(H2f)(x, y) =
(1− x− y)(1− x + y)

(1− x)2
f(x, 0)+

+
y(1− x− y)

1− x
f (0,1)(x, 0) +

y2

(1− x)2
f(x, 1− x)

one obtains an interpolation formula

f = L1H2f + R12f

where

(L1H2f)(x, y) = (1 + y)(1− x− y)f(0, 0) + x(1− x− y)f (0,1)(0, 0)+

+
y2(1− x− y)

1− y
f(0, 1) +

x

1− y
f(1− y, y).
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After integration on T , one obtain:∫∫
T

f(x, y)dxdy = f(0, 0)
∫ 1

0

∫ 1−x

0

(1 + y)(1− x− y)dxdy+

+f (0,1)(0, 0)
∫ 1

0

∫ 1−x

0

x(1− x− y)dxdy + f(0, 1)
∫ 1

0

∫ 1−x

0

y2(1− x− y)
1− y

dxdy+

+
∫ 1

0

∫ 1−x

0

x

1− y
f(1− y, y)dxdy =

=
5
24

f(0, 0) +
1
24

f (0,1)(0, 0) +
1
24

f(0, 1) +
∫ 1

0

∫ 1−x

0

x

1− y
f(1− y, y)dxdy.

In order to compute the integral
∫ 1

0

∫ 1−x

0

x

1− y
f(1− y, y)dxdy, we use the

following cubature formulas:∫∫
T

f(x, y)dxdy =
1
6

[
g

(
1
2
, 0

)
+ g

(
0,

1
2

)
+ g

(
1
2
,
1
2

)]
+ R(f)

and we obtain∫ 1

0

∫ 1

0

x

1− y
f(1− y, y)dxdy ' 1

12
f(1, 0) +

1
6
f

(
1
2
,
1
2

)
.

Thus, we arrive at the following result:

Theorem 4. If f ∈ B11(0, 0), then:∫∫
T

f(x, y)dxdy =
5
24

f(0, 0) +
1
24

f (0,1)(0, 0) +
1
12

f(0, 1) +
1
6
f

(
1
2
,
1
2

)
+ R(f) (8)

where:

R(f) = − 1
24

f (2,0)(ξ, 0), ξ ∈ [0, 1].
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AN EXISTENCE UNIQUENESS THEOREM FOR AN INTEGRAL
EQUATION MODELLING INFECTIOUS DISEASES

TIBERIU TRIF

Abstract. By using a global inversion theorem due to R. Plastock [3], we

prove an existence uniqueness result concerning the initial-value problem

for the delay nonlinear integral equation x(t) = ψ(t) +

∫ t

t−τ

f(s, x(s))ds.

We establish also the continuous dependence on ψ of the solution of this

equation.

1. Introduction

To describe the spread of certain infectious diseases, K. L. Cooke and J. L.

Kaplan [1] proposed the following delay integral equation:

x(t) =
∫ t

t−τ

f(s, x(s))ds. (1)

In this equation, x(t) is the proportion of infectives in a population at time t, τ is

the length of time an individual remains infectious, and f(t, x(t)) is the proportion of

new infectives per unit time.

It should be mentioned that Eq. (1) can be also interpreted as an evolution

equation for a single species population. In this case, x(t) is the number of individuals

at time t, τ is the lifetime, and f(t, x(t)) is the number of new births per unit time.

It is assumed that each individual lives exactly to the age τ , and then dies.

In this paper we are concerned with the initial-value problem associated to

the equation

x(t) = ψ(t) +
∫ t

t−τ

f(s, x(s))ds. (2)

2000 Mathematics Subject Classification. 45G10, 45M20, 47H99.
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More precisely, we look for positive continuous solutions of Eq. (2), when the propor-

tion φ(t) of infectives is known for t ∈ [−τ, 0], i.e.

x(t) = φ(t) for all t ∈ [−τ, 0]. (3)

Obviously, we must assume that φ and ψ satisfy the equality

φ(0) = ψ(0) +
∫ 0

−τ

f(s, φ(s))ds. (4)

Conditions ensuring the existence of at least one positive continuous solution

of the initial-value problem (2)–(3) (with ψ = 0) have been given by R. Precup

[4, 5, 6], E. Kirr [2], R. Precup and E. Kirr [7], and T. Trif [12]. It should be noted

that, essentially, all these papers make use of different fixed point theorems. In the

present paper we provide another approach of the problem (2)–(3). Namely, we obtain

at once an existence uniqueness result, as well as the continuous dependence on ψ

of the solution, for the initial-value problem (2)–(3) by using the following global

inversion theorem due to R. Plastock [3] as the basic tool:

Theorem 1 ([3, Corollary 2.3]). Let E and F be Banach spaces, let A : E →

F be a local homeomorphism, and let u : R+ ×R+ → R+ be a continuous function.

Assume that the following conditions are satisfied:

(i) u(·, s) is strictly increasing for every s > 0 and u(0, s) = 0 for all s ∈ R+;

(ii) lim
‖x‖→∞

‖A(x)‖ = ∞;

(iii) there exists a completely continuous operator A1 : E → F such that the

operator A2 := A+A1 satisfies

‖A2(x)−A2(y)‖ ≥ u(‖x− y‖, r)

for every r > 0 and all x, y ∈ E with ‖x‖ ≤ r, ‖y‖ ≤ r.

Then A is a (global) homeomorphism.

2. Main result

Concerning the initial-value problem (2)–(3) we will use the following hy-

potheses:
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(H1) f : [−τ,∞[ × R → R is a continuous function whose partial derivative

with respect to the second argument, denoted by f ′x(t, x), is continuous on

[−τ,∞[ × R;

(H2) a is a positive real number, while φ : [−τ, 0] → [a,∞[ and ψ : [0,∞[ → R

are continuous functions satisfying (4);

(H3) there exists a locally integrable function b : [−τ,∞[ → R such that

f(t, u) ≥ b(t) for all (t, u) ∈ [−τ,∞[ × [a,∞[

and

ψ(t) +
∫ t

t−τ

b(s)ds > a for all t ∈ R+;

(H4) there exist a continuous function g : R+ → R+ and a continuous nonde-

creasing function h : R+ → R+ satisfying∫ ∞

1

1
h(u)

du = ∞, (5)

such that

|f(t, u)| ≤ g(t)h(|u|) for all (t, u) ∈ R+ ×R.

Theorem 2. Suppose that the hypotheses (H1)–(H4) are fulfilled. Let T

be an arbitrary positive real number and let E be the Banach space consisting of all

continuous functions from [−τ, T ] to R, endowed with the usual sup-norm. Then the

operator A : E → E, defined by

A(x)(t) := x(t)− φ(t) + ψ(0) if t ∈ [−τ, 0]

A(x)(t) := x(t)−
∫ t

t−τ
f(s, xφ(s))ds if t ∈ ]0, T ]

for all x ∈ E and all t ∈ [−τ, T ], where xφ : [−τ, T ] → R is the function defined by

xφ(t) :=

 φ(t) if t ∈ [−τ, 0]

x(t) if t ∈ ]0, T ],

is a global homeomorphism. In particular, there exists a unique continuous function

x : [−τ, T ] → [a,∞[, satisfying (3) and (2) for all t ∈ ]0, T ].

Proof. It is immediately seen that A is correctly defined because the hy-

potheses (H1) and (H2) guarantee that A(x) is a continuous function for each x ∈ E.
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Further, let A1 : E → E be the operator defined by A1(x) := IdE(x)−A(x), i.e.

A1(x)(t) := φ(t)− ψ(0) if t ∈ [−τ, 0]

A1(x)(t) :=
∫ t

t−τ
f(s, xφ(s))ds if t ∈ ]0, T ]

for all x ∈ E and all t ∈ [−τ, T ].

From the definitions of A and A1 it follows that for all x, y ∈ E we have

|A(x)(t)−A(y)(t)| = |x(t)− y(t)|

|A1(x)(t)−A1(y)(t)| = 0

if t ∈ [−τ, 0], whilst

|A(x)(t)−A(y)(t)| ≤ |x(t)− y(t)|+
∫ t

0

|f(s, x(s))− f(s, y(s))|ds

|A1(x)(t)−A1(y)(t)| ≤
∫ t

0

|f(s, x(s))− f(s, y(s))|ds

if t ∈ ]0, T ]. These inequalities ensure that A and A1 are continuous and that A1 is

completely continuous, by virtue of the Arzelá–Ascoli theorem.

Now we prove that A is a local homeomorphism. In fact, we will prove a little

bit more: for all x ∈ E and all r > 0, the restriction of A to the ball B(x, r) is injective.

To see this, let x ∈ E and r > 0 be arbitrarily chosen. Further, let y, z ∈ B(x, r) be so

that A(y) = A(z). Since A(y)(t) = y(t)−φ(t)+ψ(0) and A(z)(t) = z(t)−φ(t)+ψ(0)

for all t ∈ [−τ, 0], it follows that y(t) = z(t) for all t ∈ [−τ, 0]. On the other hand, if

we set mx := min x([0, T ]), Mx := max x([0, T ]), and

M := max { |f ′x(s, u)| | s ∈ [0, T ], u ∈ [mx − r,Mx + r] },

then for each t ∈ [0, T ] it holds that

y(t)−
∫ t

t−τ

f(s, yφ(s))ds = z(t)−
∫ t

t−τ

f(s, zφ(s))ds,

hence

|y(t)− z(t)| ≤
∫ t

t−τ

|f(s, yφ(s))− f(s, zφ(s))|ds

≤
∫ t

0

|f(s, y(s))− f(s, z(s))|ds

≤ M

∫ t

0

|y(s)− z(s)|ds.
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By the Gronwall inequality we conclude that y(t) = z(t) for all t ∈ [0, T ]. Hence y = z

and A is a local homeomorphism, as claimed.

Next, we prove that A satisfies condition (ii) in Theorem 1. To this end,

remark that for each x ∈ E and each t ∈ [0, T ] it holds that

x(t) = A(x)(t) +
∫ t

t−τ

f(s, xφ(s))ds.

Taking into account the hypotheses (H2) and (H4), we deduce that

|x(t)| ≤ ‖A(x)‖+
∫ 0

−τ

f(s, φ(s))ds+
∫ t

0

|f(s, x(s))|ds

≤ ‖A(x)‖+ φ(0) +
∫ t

0

g(s)h(|x(s)|)ds.

By a modified version of the Gronwall inequality (see M. Rădulescu and S. Rădulescu

[9, p. 103]) we conclude that∫ |x(t)|

‖A(x)‖+φ(0)

1
h(u)

du ≤
∫ t

0

g(s)ds ≤
∫ T

0

g(s)ds

for all x ∈ E and all t ∈ [0, T ]. This inequality and (5) imply the validity of the

condition (ii) in Theorem 1.

In conclusion, all the conditions in Theorem 1 are satisfied if the function u :

R+ ×R+ → R+ is defined by u(r, s) := r. Therefore, A is a global homeomorphism,

hence there exists a unique x ∈ E such that A(x) = ψ̃, where ψ̃ : [−τ, T ] → R is the

function defined by

ψ̃(t) :=

 ψ(0) if t ∈ [−τ, 0]

ψ(t) if t ∈ ]0, T ].

Clearly, x satisfies (3) and (2) for all t ∈ ]0, T ]. We claim that x(t) ≥ a for all

t ∈ [−τ, T ]. To see this, set

T0 := inf { t ∈ [−τ, T ] | ∀ s ∈ [−τ, t] : x(s) ≥ a }.

According to (H2), we have T0 ≥ 0. Assume that T0 < T . Since the function

∀ t ∈ R+ 7−→ ψ(t) +
∫ t

t−τ

b(s)ds ∈ R

is continuous, it follows from (H3) that the real number ε, defined by

ε := min
t∈[0,T ]

(
ψ(t) +

∫ t

t−τ

b(s)ds
)
− a,
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is positive. Set α := min x([−τ, T ]), β := max x([−τ, T ]),

γ := max { |f(s, u)| | s ∈ [−τ, T ], u ∈ [α, β] },

and then choose δ > 0 such that 4γδ ≤ ε and

|ψ(t)− ψ(T0)| <
ε

2
for all t ∈ [T0, T0 + δ] ∩ [0, T ].

The assumption T0 < T implies the existence of a point t ∈ [T0, T0 + δ] ∩ [0, T ] such

that x(t) < a. But, on the other hand, we have

x(t) = ψ(t) +
∫ T0

T0−τ

f(s, x(s))ds−
∫ t−τ

T0−τ

f(s, x(s))ds+
∫ t

T0

f(s, x(s))ds

≥ ψ(T0) +
∫ T0

T0−τ

b(s)ds−
∫ t−τ

T0−τ

|f(s, x(s))|ds−
∫ t

T0

|f(s, x(s))|ds

+ψ(t)− ψ(T0)

≥ a+ ε− 2γ(t− T0)−
ε

2
≥ a+

ε

2
− 2γδ ≥ a.

The obtained contradiction shows that T0 = T . Consequently, x(t) ≥ a for all t ∈

[−τ, T ]. 2

Suppose that the hypotheses (H1)–(H4) are satisfied. Let T and E be as in

the statement of Theorem 2, and let x : [−τ, T ] → [a,∞[ be the unique continuous

function satisfying (3) and (2) for all t ∈ ]0, T ]. Further, let ψn : [0,∞[ → R (n ∈ N)

be a sequence of continuous functions satisfying

ψn(0) = φ(0)−
∫ 0

−τ

f(s, φ(s))ds

and

ψn(t) +
∫ t

t−τ

b(s)ds > a for all t ∈ R+,

for each positive integer n. According to Theorem 2, for every n there exists a unique

continuous function xn : [−τ, T ] → [a,∞[ such that

xn(t) = φ(t) for all t ∈ [−τ, 0]

xn(t) = ψn(t) +
∫ t

t−τ
f(s, xn(s))ds for all t ∈ ]0, T ].

Corollary 3. If (ψn) → ψ uniformly on [0, T ], then (xn) → x uniformly on

[−τ, T ].
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Proof. For each positive integer n, let ψ̃n : [−τ, T ] → R be the function

defined by

ψ̃n(t) :=

 ψn(0) if t ∈ [−τ, 0]

ψn(t) if t ∈ ]0, T ].

Then for all n we have xn = A−1(ψ̃n). On the other hand, x = A−1(ψ̃), where ψ̃

is defined as in the proof of Theorem 2. Since A−1 is continuous and (ψ̃n) → ψ̃

uniformly on [−τ, T ], we conclude that (xn) → x uniformly on [−τ, T ]. 2

Corollary 4. Suppose that the hypotheses (H1)–(H4) are fulfilled. Then there

exists a unique continuous function x : [−τ,∞[ → [a,∞[, satisfying (3) and (2) for

all t ∈ ]0,∞[.

Proof. According to Theorem 2, for each T > 0 there exists a unique continu-

ous function xT : [−τ, T ] → [a,∞[, satisfying (3) and (2) for all t ∈ ]0, T ]. Therefore,

for all T1 > T2 > 0 and all t ∈ ]0, T2] it holds that xT1(t) = xT2(t). This remark

enables us to define the function x : [−τ,∞[ → [a,∞[ as follows: given t ∈ [−τ,∞[,

select a real number T ≥ t and then set x(t) := xT (t). Clearly, x is the unique

continuous function from [−τ,∞[ to [a,∞[, satisfying (3) and (2) for all t ∈ ]0,∞[. 2

Example. Let λ be a real number satisfying

λ min
t∈[0,π]

∫ t

t−2

ln(1 + sin2 s)ds > 1 (6)

and let γ0 be a root of the equation

√
γ = λ

∫ 2

0

ln(1 + γ2 sin2 s)ds, (7)

lying in ]1,∞[ (due to (6), Eq. (7) has at least one root in ]1,∞[). Then there exists

a unique continuous function x : [−2,∞[ → [1,∞[, satisfying

x(t) = γ0 for all t ∈ [−2, 0]

x(t) =
∫ t

t−2
(λ+ s+)

√
x(s) ln

(
1 + x2(s) sin2 s

)
ds for all t ∈ ]0,∞[,

where s+ := max{0, s}.
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This follows by Corollary 4 because all the hypotheses (H1)–(H4) are fulfilled

if we choose τ := 2, a := 1,

f : [−2,∞[ × R → R f(t, u) := (λ+ t+)
√
|u| ln(1 + u2 sin2 t),

φ : [−2, 0] → R φ(t) := γ0,

ψ : [0,∞[ → R ψ(t) := 0,

b : [−2,∞[ → R b(t) := λ ln(1 + sin2 t),

g : R+ → R+ g(t) := λ+ t,

h : R+ → R+ h(u) :=
√
u ln(1 + u2).
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CRITICAL AND VECTOR CRITICAL SETS IN THE PLANE

LIANA ŢOPAN

Abstract. Given a non-empty set C ⊂ R2, is C the set of critical points

for some smooth function f : R2 → R or vectorial map f : R2 → R2? In

this paper we give some results in this direction.

1. Introduction

A point p ∈ R2 is critical for a smooth function f : R2 → R if its derivative

at p is zero. (df)p = 0. This means
∂f

∂x
(p) =

∂f

∂y
(p) = 0, in a smooth chart in p.

The set of all critical points of f is denoted by C(f). The image of C(f) is the set

of critical values B(f) = f(C(f)). If x is not critical, then it is regular. We say that

C ⊂ R2 is critical if C = C(f) for some smooth f : R2 → R. A proper function

has the property that f−1(K) is compact for all compact sets K. Equivalently, when

f : R2 → R, |f(x)| → ∞ iff |x| → ∞. We say that C ⊂ R2 is properly critical if f can

be chosen to be proper. Clearly, a critical set is closed. What other properties does

it have? In the compact case, there is just one other requirement.

Theorem. [No-Pu] Let C be a compact non-empty subset of R2. The

following assertions are equivalent:

1. C is critical

2. C is properly critical

3. The components of its complement are multiply connected.

A component of a topological space is a maximal connected subset of the

space. It is multiply connected if it is not simply connected. The condition on multiply

connectivity is a topological condition on the complement, not on the space. If C is

any finite set of points or a Cantor set in the plane, then it is properly critical. Their

complements are multiply connected. On the other hand, a circle is not critical. If C

2000 Mathematics Subject Classification. 57R45, 58K05, 58E05, 58C25.
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is the union of a circle and a point, then it is critical if and only if the point is inside

the circle.

If its critical set is noncompact, it is unreasonable to expect properness of

f . If C = C(f) is closed, unbounded and connected, then by Sard’s theorem, f is

constant on C, f(C) = c, and f−1(c) is noncompact, so f is not proper.

Theorem. If C ⊂ R2 is critical, compact and non-empty, then any bounded

component of its complement has disconnected boundary. In particular, no compact

curve in R2, smooth or not, is a critical set.

Given a closed, noncompact set K ⊂ R2 when is there a smooth function

f : R2 → R such that K = C(f)? We say that ∞ is arcwise accessible in U ⊂ R2 if

there is an arc α : [0,∞) → U such that α(t) →∞ as t →∞.

Theorem. [No-Pu] A closed set K ⊂ R2 is critical if and only if ∞ is arcwise

accessible in each simply connected component of R2 \K.

2. Vector critical sets

Let f : R2 → R2 be a smooth map. The point p ∈ R2 is a critical point of f

if rankpf ≤ 1. If f is given by f = (f1, f2), then in some local chart around p, p is

critical point of f if and only if the Jacobi matrix of f in p is singular, which means:

det


∂f1

∂x
(x0, y0)

∂f1

∂y
(x0, y0)

∂f2

∂x
(x0, y0)

∂f2

∂y
(x0, y0)

 = 0

The set C ⊆ R2 is vector critical if it is the critical set of some smooth map f : R2 →

R2. In which conditions will a critical set C ⊂ R2 be vector critical? For a class of

subsets of the plane, the answer is given by the following theorem:

Theorem. Any critical set C ⊂ R2 is vector critical.

Proof: Since C is critical, there is a smooth function f : R2 → R, so that

C = C(f), where

C(f) =
{

(x0, y0) ∈ R2 :
∂f

∂x
(x0, y0) =

∂f

∂y
(x0, y0) = 0

}
.
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Define F : R2 → R2, by F (x, y) = (h(x, y), y), where h : R2 → R is given by

h(x, y) =

x∫
0

([∂f

∂x
(x, y)

]2

+
[∂f

∂y
(x, y)

]2)
dx.

Since h is smooth, so is F . We show that C(f) = C(F ).

The Jacobi matrix of f in some point (x0, y0) ∈ R2 is

J(F )(x0, y0) =


[∂f

∂x
(x0, y0)

]2

+
[∂f

∂y
(x0, y0)

]2 ∂h

∂y
(x0, y0)

0 1

 .

For (x0, y0) ∈ C(f), we have
∂f

∂x
(x0, y0) =

∂f

∂y
(x0, y0) = 0, so

J(F )(x0, y0) =

 0
∂h

∂y
(x0, y0)

0 1


and (x0, y0) ∈ C(F ). Conversely, if (x0, y0) ∈ C(F ), it follows that[∂f

∂x
(x0, y0)

]2

+
[∂f

∂y
(x0, y0)

]2

= 0, and then
∂f

∂x
(x0, y0) =

∂f

∂y
(x0, y0) = 0, so

(x0, y0) ∈ C(f). �

If, in theorem above f is supposed to be a harmonic function (this means

that f has the property
∂2f

∂x2
(x, y) +

∂2f

∂y2
(x, y) = 0 ), then F could be defined to be

the map F = (f, g), where g : R2 → R is the smooth map which is the solution of the

system 
∂g

∂x
(x, y) = −

∂f

∂y
(x, y)

∂g

∂y
(x, y) =

∂f

∂x
(x, y).

The converse of this theorem is not true. There are more vector critical sets

than critical. A vector critical set which is not critical is the circle in the plane. The

map F : R2 → R2 given by F (x, y) = (
x3

3
+ xy − x, y) is critical exactly on the unit

circle in R2.
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3. The family of excellent mappings

An excellent mapping is a smooth function f : R2 → R2 whose critical points

are all folds or cusps. A fold is a critical point such that, after smooth local changes

of coordinates in the domain and image, the function is of the form

f(x, y) = (x2, y),

the critical point being taken to the origin. For a cusp, after a change of coordinates,

the function is of the form

f(x, y) = (xy − x3, y),

where the critical point is taken to the origin.

For an excellent mapping, the set of critical points will consist of smooth

curves; we call these general folds of the mapping. Also, the cusp points are isolated

on the general fold. Let f be an excellent mapping and C a general fold of f through

p. Thus p will be a fold point if the image of C near p is a smooth curve with non-zero

tangent vector at p, and p will be a cusp point if the tangent vector is zero at p but

it becoming non-zero at a positive rate as we move away from p on C.

Let f : R2 → R2 be an excellent mapping. The derivative of f with respect

to V at p is the vector in R2

∇V f(p) = lim
t→0+

1
t
[f(p + tV )− f(p)].

For each p ∈ R2, consider the vectors V ′ = ∇V f(p) as a function of vectors V with

|V | = 1. We shall use a certain system of curves defined by f in an open set R ⊂ R2.

We let R contain p if the vectors V ′ are not all of the same length. For any p ∈ R,

there will be a pair of opposite directions at p such that for V in these directions,
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|V ′| is a minimum. (For V in the perpendicular direction, |V ′| will be a maximum.)

Now R is filled up by smooth curves in these directions; we call these curves curves

of minimum ∇f .

For any p ∈ R and vector V 6= 0, ∇V f(p) = 0 if and only if p is a singular

point and V is tangent to the curve of minimum ∇f .

Consider any general fold curve C. If a curve of minimum ∇f cuts C at a

positive angle at p, then for the tangent vector V (p), ∇V f(p) 6= 0, and hence p is

a fold point. Suppose C is tangent to a curve of minimum ∇f at p. Then p is not

a fold point, and hence is a cusp point, since f is excellent. Set V ∗ = ∇V∇V f(p);

then V ∗ 6= 0. Since ∇V f(p) = 0, ∇vf(p′) is approximately in the direction of ±V ∗

for p′ on C near p. It follows that ∇W f(p) is a multiple of V ∗, for all vectors W .

As we move along the general fold through p, ∇V f(p′) changes from a negative to

a positive multiple of V ∗ (approximately); hence V (p′) cutes the curves of minimum

∇f in opposite senses on the two sides of p. Therefore the curves of minimum ∇f

lying on one side of C cut C on both sides of p. We call this side of C the upper side

and the other the lower side.

The image of C has a cusp at f(p), pointing in the direction of −V ∗. For

any vector W not tangent to C at p, ∇W f(p) is a positive or negative multiple of V ∗,

according as W points into the upper or lower side of C.
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Let f and g be mappings R2 → R2 and ε(p) a positive continuous function

in R. We say g is an ε-approximation to f if

|g(p)− f(p)| < ε(p), ∀p ∈ R.

If f and g are r-smooth, we say g is an (r, ε)-approximation to f if this

inequality holds, and also the similar inequalities for all partial derivatives

of orders ≤ r, using fixed coordinate systems. We speak of general

approximations and r-approximations in the two cases.

Let f : R2 → R2 be an excellent mapping. We describe certain approxima-

tions g to f which have the singularities of f and also further singularities.
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(a) Arbitrary approximations: For any smooth curve C in the plane which

touches no general fold, we may introduce two new folds, one at C and one near C.

For each p ∈ C, let pt, −1 ≤ t ≤ 1, denote the points of a line segment Sp

approximately perpendicular to C in p, with p0 = p. We may choose these segments

so that they cover a neighborhood U of C which touches no general fold of f . We

change f to obtain g as follows: as t runs from −1 to 1, let g(pt) run along f(Sp)

from f(p−1) to f(p), then back a little, then on through f(p) to f(p1). If f and C

are smooth, we may construct g to be smooth. C is a fold for g and so is a curve C ′,

consisting of the points p1/2, for example. We may let g = f in R2 \U . With U small

enough, g is an arbitrarily good approximation of f .

(b)Approximations with first derivatives: Let C0 be a curve of fold points of

f , without cusps. It may be the whole or a part of a complete general fold of f . We

show that we may define g to be an arbitrarily good approximation of f together with

first derivatives, so that there is a new pair of folds near C0. If C0 is closed, there will

be no new cusps for g; otherwise, the new folds will meet in a pair of cusp points for

g.

We may let pt denote points of a neighborhood of C0, as in (a), so that the

image of each Sp under f is an arc folded over on itself, the fold occurring at p. Let

g(pt) = f(pt) for −1 ≤ t ≤ 0; as t runs from 0 to 1, let g(pt) move along f(Sp)

towards f(p1), then back a little, and then forward again to f(p1). So, we obtain two

new folds.

We show that we may make g approximate to f near a given point p of C0.

Then, the approximation is possible near the all of C0.

We may choose the coordinates so that f , near p, is given by

f(x, y) = (x2, y).

We may define a smooth function φ : R → R, so that:

1. φ(−t) = φ(t), for all t ∈ R

2. φ(0) = 1

3. φ(t) = 0, for |t| ≥ 1

4. 0 ≤ φ′(t) ≤ φ′(− 1
2 ) = α, for t < 0.
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For ε > 0, define g : R2 → R2 by

g(x, y) =

x2 +
10ε2

α
φ

x− 2ε

ε

 , y

 .

g is smooth and the Jacobian matrix of g has the form

J(g)(x, y) =

 2x +
10ε

α
· φ′

x− 2ε

ε

 0

0 1



For x ∈ (−∞, ε] ∪ [3ε,∞), φ

x− 2ε

ε

 = 0. So, p is also a critical point of g.

Moreover, as

detJ(g)(2ε, y) = 4ε +
10ε

α
· φ′(0) = 4ε > 0

detJ(g)

5ε

2
, y

 = 5ε +
10ε

α
· φ′

1

2

 = 5ε +
10ε

α
· (−α) = −5ε < 0

detJ(g)(3ε, y) = 6ε +
10ε

α
· φ′(1) = 6ε > 0,

then there are two numbers x1 ∈ (2ε, 5ε
2 ) and x2 ∈ ( 5ε

2 , 3ε), so that

det J(g)(x1, y) = det J(g)(x2, y) = 0 :

these define the points of the new folds.

Also, g is an approximation of f with first derivatives:∣∣∣∣2x +
10ε

α
φ′

(
x− 2ε

ε

)
− 2x

∣∣∣∣ =
∣∣∣∣10ε

α
φ′

(
x− 2ε

ε

)∣∣∣∣ ≤ 10ε, ∀x ∈ R.

We show now how we may insert cusps. We consider several types of approx-

imation.

(a)Arbitrarily approximation: We show that we may insert a pair of nearby

arcs where the new function g will have fold points and run them together to give the

new cusps.
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We consider the smooth curve C, which touches no general fold of f and

p ∈ C, as before. Suppose that near the regular point p, f is given by f(x, y) = (x, y).

Define φ as before and define g : R2 → R2 by

g(x, y) =
(

x +
2ε

α
φ

(x

ε

)
φ

(y

ε

)
, y

)
.

Then g is smooth, is an arbitrarily good approximation of f and g = f outside a

small neighborhood of p. The critical points of g are those of f and those given by

det J(g)(x, y) = det

 1 +
2

α
φ

y

ε

 φ′

x

ε

 2

α
φ

x

ε

 φ′

y

ε


0 1

 = 0,

or

1 +
2

α
φ

y

ε

 φ′

x

ε

 = 0.

Since detJ(g)(0, 0) = 1 > 0, det J(g)

ε

2
, 0

 = 1 +
2

α
· 1 · (−α) = −1 < 0,

and detJ(g)(2ε, 0) = 1 > 0, it is clear that there are two folds cutting the x-axis. If

φ is sufficiently simple shape, these come together in two cusps.

(b)Approximations with first derivatives: Let p be a fold point of f , on a

critical curve of f which contains no cusp points. Near p, f is given by f(x, y) =

(x2, y). We define g : R2 → R2, by

g(x, y) =
(

x2 +
10ε2

α
φ

(
x− 2ε

ε

)
φ

(y

ε

)
φ

(y

ε

)
, y

)
,

with φ chosen as before. Outside a little neighborhood of p, g = f . We have

J(g)(x, y) =

 2x +
10ε

α
φ′

x− 2ε

ε

 φ

y

ε

 ∂g

∂y
(x, y)

0 1

 ,

so detJ(g)(0, 0) =
10ε

α
φ′(−2)φ(0) = 0, which means p is a critical point of g. Since

det J(g)(2ε, 0) = 4ε +
10ε

α
φ′(0)φ(0) = 4ε > 0
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det J(g)

5ε

2
, 0

 = 5ε +
10ε

α
(−α)φ(0) = −5ε < 0

det J(g)(3ε, 0) = 6ε +
10ε

α
φ′(1)φ(0) = 6ε > 0,

det J(g) becomes zero for two points of the x-axis. We obtain two new folds, joined

at two cusp points, and g is an arbitrarily good approximation of f , together with

first derivatives:∣∣∣∣∣∣2x +
10ε

α
φ′

x− 2ε

ε

 φ

y

ε

− 2x

∣∣∣∣∣∣ =

∣∣∣∣∣∣
10ε

α
φ′

x− 2ε

ε

 φ

y

ε

∣∣∣∣∣∣ <

<
10ε

α
· α · 1 = 10ε, ∀ (x, y) ∈ R2.

(c) Approximations with first and second derivatives: Let p be a cusp point of f . Near

p, f is given by f(x, y) = (xy − x3, y). Define g near p by setting

g(x, y) =
(
xy − x3

[
1− 2φ

(x

ε

)
φ

(y

ε

)]
, y

)
.

Then

J(g)(x, y) =


y − 3x2

1− 2φ

x

ε

 φ

y

ε

 + 2x3 ·
1

ε
φ′

x

ε

 φ

y

ε

 ∂g

∂y
(x, y)

0 1


The curve C of general fold of g coincides with the original critical curve

C0: y = 3x2 of f for |x| ≥ ε, it contains p and, by symmetry, is in the x-direction.

Since
∂f1

∂x
(p) =

∂f1

∂y
(p) = 0,

∂2f1

∂x2
∂x∂y(p) = 1 şi

∂3f1

∂x3
(p) = 6,

p is a cusp point for g [Wh]. At points of C where x ≤ −ε, g = f and

J(g)(x, y)

 y − 3x2 x

0 1

, so
∂2f1

∂x2
(x, y) = −6x > 0. For x ≥ ε, g = f and

∂2f1

∂x2
(x, y) = −6x < 0. On the other hand, since

∂2f1

∂x2
(p) = 0 and

∂3f1

∂x3
(p) > 0,

we have that
∂2f1

∂x2
(x, y) has the same sign as x for x 6= 0 and |x| small enough.
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Therefore, as x runs from −ε to ε, if we run along C,
∂J

∂x
=

∂2f1

∂x2
changes sign at least

three times. With the function φ of simple shape, it will change sign exactly three

times; that is g will have three cusp points. We have thus introduced two new cusps,

the three cusps lying on a single general fold curve.

Differentiating g, it follows that g is an arbitrarily good approximation of f ,

together with first and second derivatives.

Let f : R2 → R2 be an excellent mapping and p a cusp point on the general

fold C. Suppose there is a smooth curve A which moves from p to∞ into the lower side

of C and which touches no general fold. Then there is arbitrarily good approximation

g to f which agrees with f outside a neighborhood U of A, and for which the part of

the fold near p is replaced by a pair of folds going near A, to ∞, without cusp points.

This may be seen as follows. Around p, f is given by f(x, y) = (xy − x3, y).

Each line y = a > 0 is mapped by f so as to fold over on itself twice. The lines

y = a ≤ 0 have no such folds. We need merely insert such folds near the negative

y-axis, to join the above folds. These can be extended down along all of A.

We saw that cusps may be eliminated from regions by arbitrarily good ap-

proximations. This is not true for folds.

Theorem 3.1. Let p be a fold point of the excellent mapping f . Then for any

neighborhood U of p, each sufficiently good approximation g to f which is excellent

has a fold point in U .

Proof: Since p is a fold point, there are two points p1 and p2 in U where the

Jacobian has opposite signs. Let Ui be a circular neighborhood of pi (i = 1, 2) which

touches no fold, and let U ′
i be an interior circular neighborhood. For a sufficiently

good approximation g to f , if gt is the deformation of g into f ,

gt(q) = g(q) + t[f(q)− g(q)] (0 ≤ t ≤ 1),

then the image of the boundary ∂Ui does not touch the image of U ′
i under f :

gt(q) 6= f(q′), q ∈ ∂Ui, q′ ∈ U ′
i , 0 ≤ t ≤ 1.

Hence g(Ui) and f(Ui) cover f(U ′
i) the same algebraic number of times. For f , this

number is ±1. Hence there is a point p′i in U ′
i such that the Jacobian of g at p′i is of
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the same sign as the Jacobian of f in Ui. But the Jacobians of g at p′1 and at p′2 are

of opposite sign. Then the segment p′1 p′2 contains a singular point of g, and since g

is excellent, there is a fold point of g in U . �

Theorem 3.2. If Q is a bounded closed set in which f is non-singular, then

any sufficiently good approximation g to f is non-singular in Q.

Proof: It follows since the Jacobian involves only first derivatives. �

Theorem 3.3. Let the arc A have end points p1 and p2 where f is non-

singular. Then, for any sufficiently good 1-approximation g to f which is excellent,

any arc A′ from p1 to p2 which cuts only fold points of f and g cuts the same number

of folds (mod 2) for each.

Proof: This is clear, since the Jacobian of f and of g have the same sign at

each pi. �

Theorem 3.4. Let p be a cusp point of f . Then for any neighborhood U of

p, each sufficiently good 1-approximation g of f which is excellent has a cusp point in

U .

Proof: There is a curve A = p1 p2 p3 p4 of minimum ∇f in U , which cuts the

fold C through p at the points p2 and p3. The open arc p2 p3 lies in the upper part

of C and the open arcs p1 p2 and p3 p4 lie in the lower part. There is an arc B from

p1 to p4 in the lower part of C, lying in U , such that A and B bound a region R′

filled by curves of minimum ∇f . For any sufficiently good 1-approximation g to f ,

there will be an arc A∗ of minimum ∇g, near A, which will bound, with part of B,

a region R∗ filled by curves of minimum ∇g. Also, g will be non-singular in B, and

there will be fold points of g in R∗. The set Q of fold and cusp points of g in the

closure R∗ is a closed set. There is a lowest curve D of minimum ∇g in R∗ which

touches Q in a point p∗. Since p∗ is not in B, p∗ ∈ R∗. p∗ is a singular point of g.

Also, by definition of D, the general fold of g through p∗ does not cross the curve D,

and hence is tangent to D. Therefore, p∗ is not a fold point of g and it follows that

p∗ is a cusp point of g. �

Theorem 3.5. For any bounded closed set Q in which the only singularities

of f are fold points, any sufficiently good 2-approximation g of f which is excellent

has only folds in Q.
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Proof: Let p be a fold point of f in Q and let A be a short segment perpen-

dicular to the fold, centered at p. Since J(f) is of opposite signs at the two ends of

A, so F (g) will be. Hence J(g) will vanish somewhere on A. Since f is excellent, the

directional derivative of J(f) in the direction of A is non-zero, hence the same is true

for g and g has just one general fold cutting A. Thus the general folds of g are like

those of f in Q, if the 2-approximation is good enough. Since the directions of curves

of minimum ∇g and of general folds for g are nearly parallel to the similar curves for

f , the conditions for fold points will be satisfied at all general fold points of g in Q,

for a good approximation. Hence g will have no cusp points in Q. �

Theorem 3.6. Let U be a neighborhood of the cusp point p of f . Then for

any sufficiently good 2-approximation g to f which is excellent, there will be a cusp

point p′ of g in U , on a general fold C ′; there will be no other general folds of g in

U , and the number of critical points of g on C ′ in U will be odd.

Proof: There will be a unique general fold C ′ of g in U . At two points p1,

p2 of the general fold C of f , on opposite sides of p, the curves of minimum ∇f cut

C in opposite senses; the same will be true, using g, for similar points p′1, p′2 of C ′.

Hence there will be an odd number of cusps of g between these points. There will be

no cusps in C ′ ∩ U outside these points. �

Theorem 3.7. With U , p and f as in the last theorem, any sufficiently good

3-approximation g to f has a unique general fold in U , with a unique cusp point on

it.

Proof: There is a unique C ′ as in the last theorem, with a cusp point p′.

Since ∇v ∇v f(p) 6= 0, the similar relation ∇v′ ∇v′ g(p′) 6= 0 holds. We see that ∇v′g

is in opposite directions on opposite sides of p′ on C ′, and hence p′ is the only cusp

of g in U . �
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the Plane, Matemática Contemporanea, vol. 13, 1997, 181-228.

[No-Pu] Norton A., Pugh Ch., Critical Sets in the Plane, Michigan Journal of Math., 38,
1991, 441-459.

[Th1] Thom R., Quelques propriétés globales des varétés différentiables, Comment. Math.
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Haakan Hedenmalm, Boris Korenblum and Kehe Zhu, Theory of Bergman Spaces,

Graduate Texts in Mathematics Vol. 199, Springer-Verlag, New York Berlin Heidel-

berg, 2000, ix+286 pp., ISBN: 0-387-98791-6.

Along with Hardy spaces, Bergman spaces constitute the most important

spaces of analytic functions. While the function theory and and operator theory

connected with Hardy spaces (zeros, interpolation, invariant subspaces, Toeplitz and

Hankel operators) were well understood fifteen years ago, the study of their close

relatives, the Bergman spaces, turned to be much more difficult. Significant break-

throughs, both function theoretic and operator theoretic, were done in the 1990’s,

and the present book concentrates on these latest developments. Some of them not

achieved the final form so that the reader is brought to the frontier of current re-

search in the area. The exercise sections at the end of each chapter includes, beside

routine problems which can be used as homework assignments, also nontrivial ones

(with references) or even open problems.

The Bergman spaces were introduced by the Polish mathematician Stefan

Bergman in his book The kernel function and conformal mapping, ( a second revised

edition was published by the American Mathematical Society in 1970). Let D be the

unit disk in C. For −1 < α < ∞ and 0 < p ≤ ∞, the Bergman space Ap
α = Ap

α(D) is

the space of analytic functions in Lp(D, dAα), for dAα = (α+1)(1−|z|2)dA(z), where

dA(z) = π−1dxdy is the normalized Lebesgue measure on D. One puts Ap = Ap
0.

They are closed subspaces in Lp, so that Ap
α is a complete linear metric space for

0 < p < 1, respectively a Banach space for p ≥ 1. For 1 < p < ∞ the duality relation

(Ap
α)∗ = Aq

α, with p−1 + q−1 = 1, holds, while for 0 < p ≤ 1 the dual of Ap
α is the

Bloch space B, which plays in the theory of Bergman spaces the same role as does

the space BMOA in the theory of Hardy spaces. The Bloch space can be identified
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with the space of all analytic functions on D which are Lipschitz with respect to the

Bergman metric.

The analogue of the Poisson transform in the context of Bergman spaces is

the Berezin transform, which leads to the definition of a space of BMO type on the

disk, whose analytic part is the Bloch space. The fixed points of the Berezin transform

are exactly the harmonic functions.

The study of invariant subspaces of Bergman spaces is one of the central

topic of the book. In fact, the old famous open problem of the existence of nontrivial

invariant subspaces in separable Hilbert spaces is equivalent to a question of existence

of some special z-invariant subspaces in the Hilbert-Bergman space A2, explaining

the growing interest in the study of Bergman spaces. With every invariant subspace

I ⊂ Ap
α one associates an extremal problem – find G ∈ Ap

α which solves the extremal

problem sup{Ref (n)(0) : f ∈ I, ‖f‖p,α ≤ 1}. It turns that G must be an Ap
α-inner

function. One proves the existence of invariant subspaces I of arbitrary finite index

n =dim(I/zI).

Other important topics treated in the book are: interpolation and sampling,

characterizations of zero sets in Ap
α, cyclicity. One doesn’t know geometric character-

izations of zero sets as well as characterizations of cyclic vectors in Bergman spaces.

The prerequisites for the reading of the book are elementary real, complex,

and functional analysis, and some familiarity with Hardy spaces Hp.

The authors are well known specialists in the field, and the book incorporates

a lot of their original results.

Introducing the reader to an area of investigation of major interest, situated

at the intersection between complex and functional analysis, the book appeals to

graduate students and new researchers in these fields.

Ştefan Cobzaş
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Marián Fabian, Petr Habala, Petr Hájek, Vicente Montesinos Sanatalucia, Jan Pelant,

Václav Zizler, Functional Analysis and Infinite-Dimensional Geometry, Canadian

Mathematical Society (CMS) Books in Mathematics, Vol. 8, Springer-Verlag, New

York Berlin Heidelberg, 2001, ix+451 pp., ISBN: 0-387-95219-5.

Banach spaces are the natural framework for many branches of mathematics

as operator theory, nonlinear functional analysis, abstract analysis, optimization the-

ory, probability theory. The last years were marked by an intense research activity

in this area with spectacular discoveries solving old standing problems or leading to

new area of investigation. In fact the interplay between theory and its applications is

more dialectical – for instance, in the case of probability theory, Banach space theory

furnishes powerful tools and far reaching generalizations for probability theory but,

at the same time, a lot of deep results in Banach space theory are proved by prob-

abilistic methods. The situation is the same with abstract analysis – the study of

the differentiability of vector valued functions led from the beginning to the introduc-

tion of some geometric concepts in Banach space theory (smoothness, rotundity), and

still continue to generate new important classes of Banach spaces as Radon-Nikodym

spaces, Asplund spaces, etc. A good account on the current state of affairs in this

field is given in the books of R. Deville, G. Godefroy and V. Zizler, Smoothness and

Renormings in Banach Spaces, Pitman, New York 1993, and M. FÁbian, Differen-

tiability of Convex Functions and Topology– Weak Asplund Spaces, J. Wiley&Sons,

New York 1997.

The specific of the present book is that it brings the reader from the fun-

damental results of the theory and leads him/her to the frontier of current research.

The book by P. Habala, P. Hájek and V. Zizler, Introduction to Banach Spaces, could

be considered as a preliminary version , or a skeleton, of the book, but the present

one is considerably revised, updated and completed.

The book is based on graduated courses taught at the University of Alberta

in Edmonton in the years 1984-1997, were the principal part of the text was prepared.

In fact, each author spent some time at this university.

The book is divided into twelve chapters headed as follows: 1. Basic Concepts

in Banach Spaces, 2. Hahn-Banach and Banach Open Mapping Theorems, 3. Weak
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Topologies, 4. Locally Convex Spaces, 5. Structure of Banach Spaces, 6. Schauder

Bases, 7. Compact Operators on Banach Spaces, 8. Differentiability of Norms,

Uniform Convexity, 10. Smoothness and Structure, 11. Weakly Compactly Generated

Banach Spaces, 12. Topics in Weak Topology. By its organization, the book can be

used as a textbook for various types of courses in functional analysis: undergraduate

first (Chapters 1-3 and 7) or second (Chapters 4-6, 8 and 10), graduate two-semester

(Chapters 1-9), one semester (Chapters 1-3, 5 and 6 or 7), or graduate advanced

one-semester (Chapters 8-10, or 11 and 12).

Beside classical material, the book contains also some recent and more spe-

cialized results as smooth variational principles, Lipschitz and uniform classification

of Banach spaces, Asplund and weak Asplund spaces, Borel and analytic structures

in Banach spaces, including original results of the authors.

The book is fairly self-contained, the prerequisites being basic courses in real

analysis and topology (at the level of, e.g., Royden’s book on real analysis). To make

the text more accessible, the authors included the proofs of many facts considered as

folklore by the specialists but which may look not such obvious for the newcomer and

difficult to find. The book contain a large number of exercises with detailed hints,

completing the main text with many important results.

The book is a valuable contribution to Banach space literature and can be

used as a solid introduction to functional analysis, smoothing the way to more spe-

cialized books or research papers.

Stefan Cobzaş
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Frank Deutsch, Best Approximation in Inner Product Spaces, Canadian Mathemati-

cal Society (CMS) Books in Mathematics, Vol. 7, Springer-Verlag, New York Berlin

Heidelberg, 2001, xv+337 pp, ISBN:0-387-98940-4.

The book is based on a graduate course on Best Approximation taught by

the author for over than twenty five years at the Pennsylvania State University. The

course was attended by various categories of students - engineers, computer scientists,

statisticians and mathematicians - who did not own the basic facts of functional and

real analysis (e.g. Lp-spaces), necessary for the treatment of the subject in the context

of normed linear spaces. In order to save the time necessary for these prerequisites

and to concentrate on best approximation problems, the author decided to restrict

the exposition to the framework of inner product spaces. These are the closest to

the Euclidean space, such that the intuition and drawings help the reader to better

understand the origins and the motivation of many considered notions and tools,

without any references to other sources (excepting some linear algebra and advanced

calculus).

The main innovation of the author is to work with incomplete inner product

spaces rather than with Hilbert ones. This approach involves some technicalities

but one gains in generality. For instance, Riesz representation theorem for the dual

of a Hilbert space X is not true for inner product spaces, but the author finds a

generalized representation for a functional x∗ ∈ X∗ by a sequence (xn) in X such

that x∗(x) = limn < y, xn >, y ∈ X, and ‖x∗‖ = limn ‖xn‖. The sequence (xn)

is Cauchy so that, if X is complete, x = limn xn represents the functional x∗, and

one obtains the Riesz representation theorem. This result allows to obtain a proof

of the Hahn-Banach extension theorem in the case of inner product spaces without

appealing to the Axiom of Choice. The author shows that a functional x∗ ∈ X∗ is

represented by an element of X if and only if x∗ attains its norm on the unit ball of

X. The representable functionals are important tools in the study of proximinality

of various subsets of inner product spaces - hyperplanes, half-spaces, polyhedral sets,

cones - as well as in the characterizations of best approximation elements. This is

done in Chapters 4, Characterizations of best approximation, and 6, Bounded linear
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functionals and best approximation from hyperplanes and half-spaces, which are largely

based on original results of the author.

As applications, we mention the study of generalized solutions (least square

method) of linear equations and of generalized inverses of matrices and linear opera-

tors. A new proof of Weierstrass approximation theorem is also obtained.

A special attention is paid to algorithms for best approximation treated in

Ch. 9, The method of alternating projections. This one, and Chapters 10, Constrained

interpolation from a convex set, and 11, Interpolation and approximation, incorporate

again a lot of original results of the author.

The last chapter of the book, Ch. 12, Convexity of Chebyshev sets, is con-

cerned with the still unsolved problem of convexity of Chebyshev sets in Hilbert space.

Each chapter ends with a set of exercises and very interesting historical notes.

Written by a well-known specialist in best approximation theory, the book

contains a good treatment of best approximation in inner product spaces and can be

used as a textbook for graduate courses or for self-study.

Stefan Cobzaş

Operator Theory and Analysis, The M. A. Kaashoek Anniversary Volume, H. Bart,

I. Gohberg and A.C.M. Ran - Editors, Operator Theory, Advances and Applications,

Vol. 122, Birkhäuser Verlag, Boston-Basel-Berlin 2001, xxxix + 425 pp., ISBN

3-7643-6499-8.

The present volume contains the proceedings of the workshop organized at

the Vrije Universiteit Amsterdam on November 12-14, 1997, on the occasion of the

sixtieth birthday of Marinus (Rien) Adrianus Kaashoek. Professor M.A. Kaashoek

is one of the leading experts in operator theory and its applications (especially to

electrical engineering), the founder and the head of the Analysis and Operator Theory

Group in Amsterdam. He published 6 books and over than 140 papers, many in

cooperation with I. Gohberg. The worksop was attended by 44 participants from

all over the world which presented 21 plenary lectures followed by lively discussions.

An opening address, written by I. Gohberg and red by S. Goldberg, presents the

charming personality and the remarkable scientific achievements of Professor M. A.
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Kaashoek. Some personal reminiscences are presented by three of his PhD students:

H. Bart, A.C.M. Ran and H.J. Woerdman. A photo, a Curriculum Vitae and a list

of publications of M.A. Kaashoek are also included.

Beside these addresses and biographical material, the volume contains 16

contributed papers covering a wide range of topics in functional analysis and opera-

tor theory, centered around domains where the ideas and results of M.A. Kaashoek

played an important role: factorization of matrix valued functions, Nevanlinna-Pick

interpolation theory, spectral theory, Toeplitz operators, Jordan chains. Among the

contributors to the volume we mention: V. Adamyan, R. Mennicken, D. Alpay, A.

Dijksma, Y. Peretz, D.Z. Arov, H. Dym, R.L. Ellis, I. Gohberg, B. Nagy, A.E. Frazho,

P. Lancaster, A. Markus, H. Langer.

Bringing together important new contributions to operator theory and its

applications, written by leading experts in the field, the volume will be of interest to

a wide range of readers in pure and applied mathematics and engineering.

S. Cobzaş

Daniel Beltiţă and Mihai Şabac, Lie Algebras of Bounded Operators, Operator The-

ory, Advances and Applications, Vol. 120, Birkhäuser Verlag, Boston-Basel-Berlin

2001, viii + 217 pp., ISBN 3-7643-6404-1.

The importance in the theory of finite dimensional Lie algebras of the Jordan

canonical structure of linear map acting on finite-dimensional vector spaces is well

known and well understood. The aim of the present book is to study the infinite

dimensional case, emphasizing the role played by bounded operators on Banach spaces

in the study of infinite dimensional Lie algebras. In fact, there is an interaction

between operator theory and Lie algebra theory, the last offering solutions to some

long-standing questions in operator theory related to the construction of joint spectral

theory for non-commuting tuples of operators. Although in the infinite dimensional

case one cannot speak about a plane Jordan canonical structure, like in the case of

matrices, there are some classes of operators (Dunford spectral, Foiaş decomposable,

scalar generalized and Colojoară scalar generalized operators) which admit a kind of

Jordan decomposition.
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The first chapter of the book, I. Preliminaries, containing three sections: A.

Lie Algebras, B. Complexes, C. Spectral Theory, surveys the basic of Lie algebra the-

ory, Koszul complexes in Banach spaces, and spectral theory for bounded operators.

In this part, the proofs of the results which can be found in already existing books

are omitted, with exact references to the corresponding books.

The rest is devoted to the exposition of the main theme of the book: the

interplay between Lie algebra theory and spectral theory of bounded operators. A

good idea on the topics the authors are dealing with is given by the headings of the

chapters: II. The Commutators and Nilpotence Criteria, III. Infinite Dimensional

Variants of Lie and Engel Theorems, IV. Spectral Theory for Solvable Lie Algebras of

Operators, V. Semisimple Lie Algebras of Operators.

Modulo some basic results on Lie algebras and spectral theory, the book is

self-contained. Original results of the authors, some of them published for the first

time, are included. A rich bibliography, counting 173 items and covering practically

all that was published in the field up to the present book, is included at the end of

the book.

Exposing in a clear and accessible manner deep results on the interplay be-

tween Lie algebra theory and spectral theory of bounded operators on Banach spaces,

the book will appeal to researchers working in both of these two areas. It can be used

also as a base text for advanced graduate or postgraduate courses.

S. Cobzaş
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Robert E. Megginson, An Introduction to Banach Space Theory, Graduate Texts in

Mathematics Vol. 183, Springer-Verlag, New York Berlin Heidelberg, 1998, xix+596

pp., ISBN: 0-387-98431-3.

Many books on Banach spaces as, e.g., M. Day, Normed Linear Spaces, 3rd

Edition, Springer Verlag 1973, or J. Lindenstrauss and L. Tzafriri, Classical Banach

Spaces, Vols. I(1977) and II(1979), also published by Springer Verlag, can be used

by graduate students wishing to do research in Banach space theory, but can be

too difficult for a student at his first contact with functional analysis. The aim of the

present book is to provide this student with detailed proofs and a careful presentation

of the fundamental results in Banach space theory. The only prerequisites for its

reading are some measure theory and topology as presented, for instance, in W.

Rudin’s book Real and Complex Analysis, McGraw Hill 1987. Measure theory is

used only for the applications of Banach space theory to the spaces Lp, and not as

an essential tool in the development of the subject. Restricting to sequence spaces

and treating only metric theory of Banach spaces, it is possible to use the book

for an undergraduate course. Nets, which are extensively used in the study of weak

topologies, are presented in detail in the first section of the second chapter. Appendix

D is devoted to ultranets and Tihonov’s compactness theorem. Other Appendices are

A. Prerequisites, B. Metric Spaces and C. The spaces `p and `n
p .

The book contains five chapters and four appendices, as presented above.

Ch. 1, Basic concepts, includes norms, linear operators, Baire category and three

fundamental theorems, quotients, direct sums, Hahn-Banach theorem, dual spaces

and reflexivity. Ch. 2, The weak and weak∗ topologies, contains some results on

topology, topological vector spaces and locally convex spaces needed for the study

on weak and weak∗ topologies on Banach spaces (including weak compactness and

James’ theorem, extreme points and Krein-Milman’s theorem, support points, support

functionals and Bishop-Phelps subreflexivity theorem). Ch. 3, Linear operators, is

concerned with linear operators and their adjoints, compact and weakly compact

operators (including Schauder and Gantmacher theorems and Riesz’ theory). Ch. 4,

Schauder bases, contains some basic results on Schauder bases in Banach spaces. The

last section of this chapter is devoted to a presentation of James space J . The last
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chapter of the book, Ch. 5, Rotundity and smoothness, presents some results from

the geometry of banach spaces – rotundity, uniform rotundity and generalizations,

smoothness, uniform smoothness and generalizations.

Each section is followed by a set of exercises completing the main text. A

lot of historical notes and comments are spread through the book, mentioning the

original sources or tracing the development of the ideas. The bibliography at the end

of the book counts 249 items.

The result is an excellent book on the basics of Banach spaces, which can be

warmly recommended as a textbook for the introduction to the subject.

Stefan Cobzaş

Theodore W. Gamelin, Complex Analysis, Springer New York, Berlin, Heidelberg,

2001, 478 pp., ISBN 0-387-95069-9.

This is a beautiful book which provides a very good introduction to com-

plex analysis for students with some familiarity with complex numbers. It is based

on lectures given over the years by the author at several places, particularly the In-

teruniversity Summer School at Perugia (Italy) (the present reviewer was one of those

students that took his wonderful course in Perugia in 1992), also UCLA, Brown Uni-

versity, Valencia (Spain), and La Plata (Argentina). The book consists of three parts.

The first part includes Chapters I-VII. It presents a basic material about the complex

plane and elementary functions, analytic functions, line integrals and harmonic func-

tions, complex integration and analyticity, power series, Laurent series and isolated

singularities, and the residue calculus.

The second part contains chapters VIII-XI and includes certain special topics

such as the logarithmic integral (the argument principle, Rouché’s theorem, Hurwitz’s

theorem, etc), the Schwarz lemma and hyperbolic geometry, harmonic functions and

the reflection principle, and conformal mappings (the Riemann Mapping Theorem,

the Schwarz-Christoffel formula, compactness of families of functions, etc).

The third part contains chapters XII-XVI. This part consists of a careful selec-

tion of several topics which certainly serve to complete the coverage of all background

necessary for passing PhD qualifying exams in complex analysis, such as compact
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families of meromorphic functions, approximation theorems, some special functions

(the Gamma function, Laplace transform, the Zeta function, Dirichlet series), the

Dirichlet problem and Riemann surfaces.

The book is clearly written, with rigorous proofs, in a pleasant and accessible

style. It is warmly recommended to students and all researchers in complex analysis.

Gabriela Kohr

Approaches to Singular Analysis, Juan Gil, Daniel Grieser, Matthias Lesch - Editors,

Operator Theory, Advances and Applications, Vol. 125, Subseries ”Advances in

Partial Differential Equations”, Birkhäuser Verlag, Boston-Basel-Berlin 2001, vi +

256 pp., ISBN 3-7643-6518-8.

The book is based on the workshop ”Approaches to Singular Analysis”, held

at the Humboldt University Berlin in April 8-10, 1999, and contains articles by the

participants at the workshop as well as some invited contributions. The aim of the

workshop was to bring together young mathematicians interested in partial differen-

tial equations on singular configurations. Two main approaches to these problems can

be emphasized: (1) the pseudodifferential approach, meaning to set up a pseudodif-

ferential calculus adapted to the underlying configuration (the schools of R. Melrose

at MIT, of B.-W. Schulze at Potsdam, and the results of B.A. Plamenevski and his

coworkers), and (2) the direct approach, meaning the analysis of the geometric differ-

ential operators (Dirac, Laplace, etc.) in specific situations (there is a vast literature

on these topics as, e.g., the papers by Brüning and Seeley, Cheeger, Lesch, Müller,

a.o.).

There are included 5 papers by the participants and 3 invited contributions.

The contributed papers deal with Boutet de Monvel’s calculus for pseudodifferential

operators (E. Schrohe, pp. 85-116), the b-calculus (D. Grieser, pp. 30-84),completed

by a paper by R. Lauter and J. Seiler on a comparison between cone algebra nad

b-calculus (pp. 117-130). A paper by J. Seiler (pp. 1-29) is dealing with cone algebra

and kernel characterization of Green operators, and one by D. Grieser and M. Gruber

with singular asymtotics (pp. 117-130).
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The three invited papers are by B.-W. Schulze on operator algebras with

symbol hierarchies on manifolds with singularities (pp. 167-207), J. Brüning on the

resolvent expansion on singular spaces (pp. 208-233), and the last by B. Fedosov,

B.-W. Schulze and N. Tarkhanov on general index formula on toric manifolds with

conucal points (pp. 234-256).

Bringing together important contributions in the field of partial differential

and pseudodifferential operators, this collection of papers will be of interest for re-

searchers and scholars working in this area, as well as for those interested in applica-

tions to mathematical physics.

Radu Precup

Problems and Methods in Mathematical Physics - The Siegfried Prössdorf Memorial

Volume, J. Elschner, I. Gohberg and B. Silbermann - Editors, Operator Theory,

Advances and Applications, Vol. 121, Birkhäuser Verlag, Boston-Basel-Berlin 2001,

viii+523 pp., ISBN 3-7643-6477-7.

In the Spring of 1997 preparations had begun for a conference in honor of

Siegfried Prössdorf’s 60th birthday, but his sudden and untimely death stopped for a

while these plans. Nevertheless, many of his friends and colleagues decided that the

conference, the 11th TMP, be organized and dedicated to honor the life and work of

S. Prössdorf. The Conference took place in Chemnitz, Germany, from March 25 to

28, 1999, and the present volume contains its proceedings. The volume starts with

three contributions, by Bernd Silbermann, V. Maz’ya and Jürgen Sprenkels, evok-

ing the life and the charming personality of S. Prössdorf as well as his outstanding

contributions to integral and pseudodifferential equations, numerical analysis, oper-

ator theory, boundary value problems, boundary element and approximation theory.

The lists of Prössdorf’s publications (134 papers and 6 books) and of dissertations

conducted by him are also included.

Beside these three papers, the volume contains 24 original papers, most writ-

ten by friends an coworkers of S. Prössdorf, dealing with topics which were close to

the broad spectrum of his scientific preoccupations. There is a joint paper by S.

Prössdorf and M. Yamamoto, started during Yamamoto’s visit in September 1997
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at the Weierstrass Institut für Angewandte Analysis und Stochastik in Berlin, and

finished by Yamamoto alone.

Containing important contributions to integral and pseudodifferential equa-

tions, boundary value problems, operator theory and applications in physics and

engineering, the volume is addressed to a wide audience in the mathematical and

engineering science.

Paul Szilágyi

Karlheinz Gröchenig, Foundations of Time-Frequency Analysis, Applied and Numer-

ical Harmonic Analysis, Birkhäuser Verlag, Boston-Basel-Berlin 2001, xv+359 pp,

ISBN 3-7643-4022-3 and 0-8176-4022-3.

Time-frequency analysis is a form of local Fourier analysis that treats time

and frequency simultaneously and symmetrically. Classical Fourier analysis employs

two complementary representations to describe functions - the function f and its

Fourier transform f̂ . The study of the relations between f and f̂ is governed by

two principles: (1) the smoothness-and-decay principle (if f is smooth then f̂ decays

quickly, and if f decays quickly then f̂ is smooth), and (2) the uncertainty principle

(f and f̂ cannot be simultaneously small). In applications, for instance, the variable

x ∈ R may signify ”time” and f(x) is the amplitude or electric field , while the Fourier

transform f̂(ω) is understood as the amplitude of the frequency ω.

Time-frequency analysis has its roots in the early development of quantum

mechanics by H. Weyl, E. Wigner and J. von Neumann around 1930, and in the

theoretical foundation of information theory by D. Gabor in 1946. Time-frequency

analysis as an independent mathematical field was established by A.J.E.M Janssen

around 1980. Its characteristic features consist in the richness and beauty of the

involved mathematical structures and applications, ranging from the theory of short-

time Fourier transform and classical results about the Wigner distribution, via the

recent theory of Gabor frames, to quantitative methods in time-frequency analysis

and the theory of pseudodifferential operators.

Although its contents is intimately related to applications in signal analysis

and quantum mechanics, the book, written by a mathematician, is primarily devoted

109



BOOK REVIEWS

to mathematicians, its aim being a detailed mathematical investigation of the rich

and elegant structures underlying time-frequency analysis. It is also accessible to

engineers and physicists with a more theoretical orientation. The book is written

at an introductory level, with detailed calculations whenever necessary, the main

prerequisites being a solid course in analysis and some Hilbert space theory.

The book starts with an introductory chapter containing an exposition (with-

out proofs) of the basic principles of Fourier analysis. Other necessary results, from

functional analysis and Lebesgue integration, are mentioned in an Appendix at the

end of the book. The mathematical theory of time-frequency analysis is developed

in the rest of the chapters: 2. Time-frequency analysis and the uncertainty principle

, 3.The short-time Fourier transform, 4. Quadratic time-frequency representations,

5. Discrete time-frequency representations: Gabor frames, 6. Existence of Gabor

frames, 7. The structure of Gabor frames, 8. Zak transform methods, 9. The

Heisenberg group: A different point of view, 10. Wavelet tranforms, 11. Modulation

spaces, 12. Gabor analysis of modulation spaces, 13. Window design and Wigner’s

lemma, 14. Pseudodifferential operators.

Supplying a unified and systematic introduction to the mathematical foun-

dations of time-frequency analysis and emphasizing the interdiscliplinary aspects of

the subject, the book is of great interest for mathematicians, physicists, engineers in

signal and image analysis, researchers and professionals in wavelet and mathematical

signal analysis. By the detailed and careful presentation of the subject, the book can

be used by graduate students too.

Damian Trif
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