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ON NEARLY-COSYMPLECTIC HYPERSURFACES IN
NEARLY-KÄHLERIAN MANIFOLDS

M. BANARU

Abstract. It is proved that the type number of a nearly-cosymplectic

hypersurface in a nearly-Kählerian manifold is at most one. It is also

proved that such a hypersurface is minimal if and only if it is totally

geodesic.

1. Introduction

The theory of almost contact metric structures occupies one of the leading

places in modern differential-geometrical researches. It is due to a number of its

applications in modern mathematical physics (e.g. in classical mechanics [1] and in

theory of geometrical quantization [10]) and to the riches of the internal contents of

the theory as well, and also to its close connection with other sections of geometry.

One of the most important examples of almost contact metric structures, wich

appreciably determines their role in differential geometry, is the structure induced on

an oriented hypersurface in an almost Hermitian manifold. Well known scientists

such as D.E. Blair, S. Goldberg, V.F. Kirichenko, S. Sasaki, S. Tanno were engaged

in studying almost contact metric hypersurfaces in almost Hermitian manifolds.

In the present note, nearly-cosymplectic hypersurfaces in nearly-Kählerian

manifolds are considered. We can mention that the class of nearly-Kählerian manifolds

is one of the most important classes of almost Hermitian manifolds [9]. A great

number of significant works is devoted to its studying. For not going in details of

such an extensive subject, we remark only, that the six-dimensional sphere with a

nearly-Kählerian structure is considered in [7], [8], [11], [15] etc.
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The present work is a continuation of researches of the author, who studied

cosymplectic hypersurfaces in six-dimensional submanifolds of Cayley algebra before

(see [3], [4]).

2. Preliminaries

We consider an almost Hermitian (AH) manifold, i.e. a 2n-dimensional man-

ifold M2n with a Riemannian metric g = 〈·, ·〉 and an almost complex structure J .

Moreover, the following condition must hold

〈JX, JY 〉 = 〈X, Y 〉, X, Y ∈ ℵ(M2n),

where ℵ(M2n) is the module of smooth vector fields on M2n. All considered manifolds,

tensor fields and similar objects are assumed to be of the class C∞. We recall that the

fundamental (or Kählerian [14]) form of an almost Hermitian manifold is determined

by

F (X, Y ) = 〈X, JY 〉, X, Y ∈ ℵ(M2n).

Let
(
M2n, J, g = 〈·, ·〉

)
be an arbitrary almost Hermitian manifold. We fix a

point p ∈ M2n. As Tp(M2n) we denote the tangent space at the point p, {Jp, gp =

〈·, ·〉} is the almost Hermitian structure at the point p induced by the structure {J, g =

〈·, ·〉}. The frames adapted to the structure (or A-frames) look as follows [2]

(p, ε1, . . . , εn, ε1̂, . . . , εn̂),

where εa are the eigenvectors corresponded to the eigenvalue i =
√
−1, and εâ are

the eigenvectors corresponded to the eigenvalue −i, εâ = εa. Here the indice a ranges

from 1 to n, and we state â = a + n.

The matrix of the operator of the almost complex structure written in an

A-frame looks as follows:

(
Jk

j

)
=

 iIn 0

0 −iIn

,

where In is the identity matrix; k, j = 1, . . . , 2n. By direct computing, it is easy to

obtain that the matrixes of the metric g and of the fundamental form F in an A-frame
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look as follows, respectively:

(gkj) =

 0 In

In 0

, (Fkj) =

 0 iIn

−iIn 0

.

As it is well-known [9], an almost Hermitian manifold is called nearly-

Kählerian (NK), if

∇X(J)Y +∇Y (J)X = 0, X, Y ∈ ℵ(M2n),

where ∇ is the Levi-Civita connection of the metric.

Let N be an oriented hypersurface in an almost Hermitian manifold M2n,

and let σ be the second fundamental form of the immersion of N into M2n. As it is

well-known [16], the almost Hermitian structure on M2n induces an almost contact

metric structure on N . We recall [16], that an almost contact metric structure on an

odd-dimensional manifold N is defined by the system {Φ, ξ, η, g} of tensor fields on

this manifold, where ξ is a vector, η is a covector, Φ is a tensor of the type (1, 1) and

g is a Riemannian metric on N such that

η(ξ) = 1, Φ(ξ) = 0, η ◦ Φ = 0, Φ2 = −id + ξ ⊗ η,

〈ΦX, ΦY 〉 = 〈X, Y 〉 − η(X)η(Y ), X, Y ∈ ℵ(N).

The almost contact metric structure is called nearly-cosymplectic, if

∇X(Φ)Y +∇Y (Φ)X = 0, ∇X(η)Y +∇Y (η)X = 0, X, Y ∈ ℵ(N).

At the end of this section, note that when we give a Riemannian manifold

and its submanifold, the rank of the determined second fundamental form is called

the type number (see, for example, [12]).

3. Three theorems

Now, we can state the main results of this work.

THEOREM A. The type number of a nearly-cosymplectic hypersurface in

a nearly-Kählerian manifold is at most one.

Proof.
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Let N be an oriented hypersurface in a nearly-Kählerian manifold M2n. We

use the first group of Cartan structural equations of an almost contact metric structure

induced on a hypersurface in an almost Hermitian manifold [16]:

dωα = ωα
β ∧ ωβ + Bαβ

γωγ ∧ ωβ + Bαβγωβ ∧ ωγ +
(√

2Bαn
β + iσα

β

)
ωβ ∧ ω+

+
(
−
√

2B̃nαβ − 1√
2
Bαβn − 1√

2
Bαβ

n + iσαβ

)
ωβ ∧ ω,

dωα = −ωβ
α ∧ ωβ + Bαβ

γωγ ∧ ωβ + Bαβγωβ ∧ ωγ +
(√

2Bαn
β − iσβ

α

)
ωβ ∧ ω+

+
(
−
√

2B̃nαβ −
1√
2
Bαβn −

1√
2
Bαβ

n − iσαβ

)
ωβ ∧ ω, (1)

dω =
√

2Bnαβωα ∧ ωβ +
√

2Bnαβωα ∧ ωβ+

+
(√

2Bnα
β −

√
2Bnβ

α − 2iσα
β

)
ωβ ∧ ωα+

+
(
B̃nβn + Bnβ

n + iσnβ

)
ω ∧ ωβ +

(
B̃nβn + Bnβ

n − iσβ
n

)
ω ∧ ωβ ,

where

B̃abc = − i

2
Ja

b̂,ĉ
, B̃abc =

i

2
J â

b,c;

Babc = −B̃a[bc], Babc = −B̃a[bc];

Bab
c = − i

2
Ja

b̂,c
, Bab

c =
i

2
J â

b,ĉ.

Here and further, the indices a, b, c range from 1 to n and the indices α, β, γ range

from 1 to n− 1; â = a + n.
{
Babc

}
, {Babc} and

{
Bab

c

}
, {Bab

c} are the components

of Kirichenko virtual (KV ) and Kirichenko structural (KS) tensors, respectively [5].

Taking into account that an almost Hermitian structure is nearly-Kählerian

if and only if [6]

Babc + Bacb = 0, Babc + Bacb = 0, Bab
c = 0, Bab

c = 0,

we can rewrite the Cartan structural equations (1) in the following form:

dωα = ωα
β ∧ ωβ + Bαβγωβ ∧ ωγ + iσα

β ωβ ∧ ω+

+
(
−
√

2B̃nαβ − 1√
2
Bαβn + iσαβ

)
ωβ ∧ ω,

dωα = −ωβ
α ∧ ωβ + Bαβγωβ ∧ ωγ − iσβ

αωβ ∧ ω+

+
(
−
√

2B̃nαβ −
1√
2
Bαβn − iσαβ

)
ωβ ∧ ω, (2)

dω =
√

2Bnαβωα ∧ ωβ +
√

2Bnαβωα ∧ ωβ−
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ON NEARLY-COSYMPLECTIC HYPERSURFACES IN NEARLY-KÄHLERIAN MANIFOLDS

−2iσα
β ωβ ∧ ωα +

(
B̃nβn + iσnβ

)
ω ∧ ωβ +

(
B̃nβn − iσβ

n

)
ω ∧ ωβ .

Compareing (2) with the Cartan structural equations of a nearly-cosymplectic struc-

ture [16]:

dωα = ωα
β ∧ ωβ + Dαβγωβ ∧ ωγ + Dαβωβ ∧ ω,

dωα = −ωβ
α ∧ ωβ + Dαβγωβ ∧ ωγ + Dαβωβ ∧ ω, (3)

dω = −2
3
Dαβωα ∧ ωβ − 2

3
Dαβωα ∧ ωβ ,

where

Dαβγ =
i

2
Φα

[β̂,γ̂]
, Dαβγ = − i

2
Φα̂

[β,γ],

Dαβ =
3
2
iΦα

β̂,n
, Dαβ = −3

2
iΦα̂

β,n,

we get the conditions, whose simultaneous fulfilment is a criterion for the structure

on N to be nearly-cosymplectic:

1) Bαβγ = Dαβγ , 2) − 3√
2
B̃nαβ + iσαβ = −Dαβ , 3)

√
2Bnαβ = −2

3
Dαβ ,

4) σα
β = 0, 5) σβ

n = 0 (4)

and the formulae, obtained by complex conjugation (no need to write them down

explicitly).

From (4)3 we have

Dαβ = − 3√
2
Bnαβ .

We substitute this value in (4)2:

− 3√
2
B̃nαβ + iσαβ =

3√
2
Bnαβ .

Since

Bnαβ = −B̃n[αβ] = −1
2

(
B̃nαβ − B̃nβα

)
= −B̃nαβ ,

we obtain σαβ = 0. That is why we can rewrite the conditions (4) as follows:

1) Bαβγ = Dαβγ , 2) Bnαβ = −
√

2
3

Dαβ , 3) σαβ = 0,

4) σα
β = 0, 5) σβ

n = 0. (5)

We have that the conditions

σαβ = σα
β = σβ

n = 0
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are necessary for the structure, induced on an oriented hypersurface in a nearly-

Kählerian manifold M2n, to be nearly-cosymplectic. So, the matrix of the second

fundamental form of the immersion of a nearly-cosymplectic hypersurface into a

nearly-Kählerian manifold looks as follows:

(σps) =



0

0
...

0

0

0 . . . 0 σnn 0 . . . 0

0

0
...

0

0


, p, s = 1, . . . , 2n− 1. (6)

As it is evident, rank σ ≤ 1, i.e. the type number of the hypersurface is at most one,

Q.E.D.

t

Considering the matrix of the second fundamental form of the immersion of

N into M2n, we come to another result.

THEOREM B. A nearly cosymplectic hypersurface N in a nearly-Kählerian

manifold M2n is minimal if and only if

σ(ξ, ξ) = 0.

Proof.

Let us use a criterion of minimality for an arbitrary hypersurface [13]

gpsσps = 0, p, s = 1, . . . , 2n− 1.

Knowing how the matrix of the contravariant metric tensor looks [16]
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(gps) =



0

0
...

0

Iα

0 . . . 0 1 0 . . . 0

Iα

0
...

0

0


,

we have

gpsσps = gαβσαβ + gα̂β̂σα̂β̂ + gα̂βσα̂β + gαβ̂σαβ̂ + gαnσαn + gα̂nσα̂n + gnnσnn = σnn.

Therefore gpsσps = 0 ⇔ σnn = 0. The equality σnn = 0 means that σ(ξ, ξ) = 0,

Q.E.D.

t

THEOREM C. If N is a nearly-cosymplectic hypersurface in a nearly-

Kählerian manifold M2n and t is its type number, then the following statements are

equivalent:

1) N is a minimal hypersurface in M2n,

2) N is a totally geodesic hypersurface in M2n,

3) t ≡ 0.

Proof.

If a nearly-cosymplectic hypersurface is minimal, then in view of THEO-

REM B σnn = σ(ξ, ξ) = 0, and consequently the matrix (6) vanishes. This indicates

that the hypersurface is totally geodesic. It is evident that type number vanishes at

its every point.

Conversely, if t ≡ 0, then the matrix of the second fundamental form vanishes,

i.e. the hypersurface is totally geodesic. As σnn = 0, N is a minimal hypersurface in

M2n.

t
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4. Some additional results

Taking into account that the class of nearly-Kählerian manifolds contains all

Kählerian manifolds [9] as well as the class of nearly-cosymplectic manifolds contains

all cosymplectic manifolds [16], by force of THEOREM A we come to the following

results:

Corollary 1A. The type number of a nearly-cosymplectic hypersurface in a

Kählerian manifold is at most one.

Corollary 2A. The type number of a cosymplectic hypersurface in a nearly-

Kählerian manifold is at most one.

Corollary 3A. The type number of a cosymplectic hypersurface in a

Kählerian manifold is at most one.

Similarly, by force of THEOREM B and THEOREM C we have:

Corollary 1B (2B, 3B). A nearly-cosymplectic (cosymplectic, cosymplec-

tic) hypersurface in a Kählerian (nearly-Kählerian, Kählerian) manifold is minimal if

and only if σ(ξ, ξ) = 0.

Corollary 1C (2C, 3C). If N is a nearly-cosymplectic (cosymplectic,

cosymplectic) hypersurface in a Kählerian (nearly-Kählerian, Kählerian) manifold

M2n and t is its type number, then the following statements are equivalent:

1) N is a minimal hypersurface in M2n,

2) N is a totally geodesic hypersurface in M2n,

3) t ≡ 0.
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TWO INTEGRAL OPERATORS

DANIEL BREAZ, NICOLETA BREAZ

Abstract. The aim of this work is to prove the univalence criteria for

some integral operators.

1. Introduction

In this paper an equivalence criterion obtained by V. Pescar on integral op-

erators, see [5], is extended to the case of more S−class functions.

Theorem A [2]. If the function f (z) belongs to the class S then, for any

complex number γ, |γ| ≤ 1
4 the function

Fγ (z) =

z∫
0

(
f (t)

t

)γ

dt

is in S.

Theorem B [3]. If the function f is regular in unit disc U , f (z) = z+a2z
2+...

and (
1− |z|2

) ∣∣∣∣zf ′′ (z)
f ′ (z)

∣∣∣∣ ≤ 1

for all z ∈ U , then the function f is univalent in U.

Theorem C [1]. Let α be a complex number, Reα > 0, and f (z) = z +

a2z
2 + ... be a regular function in U . If

1− |z|2 Re α

Re α

∣∣∣∣zf ′′ (z)
f ′ (z)

∣∣∣∣ ≤ 1

for all z ∈ U , then for any complex number β, Re β ≥ Re α,the function

Fβ (z) =

 z∫
0

tβ−1f ′ (t) dt

 1
β

is in the class S.

Received by the editors: 21.12.2001.
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Theorem D [6]. If the function g is regular in U and |g (z)| < 1 in U , then

for all ξ ∈ U and z ∈ U the following inequalities hold∣∣∣∣∣ g (ξ)− g (z)
1− g (z)g (ξ)

∣∣∣∣∣ ≤
∣∣∣∣ ξ − z

1− zξ

∣∣∣∣ (1)

and

|g′ (z)| ≤ 1− |g (z)|2

1− |z|2

the equalities hold in case g (z) = ε z+u
1+uz where |ε| = 1 and |u| < 1.

Remark E [7]. For z = 0, from inequality (1) we obtain for every ξ ∈ U∣∣∣∣∣ g (ξ)− g (0)
1− g (0)g (ξ)

∣∣∣∣∣ ≤ |ξ|
and, hence

|g (ξ)| ≤ |ξ|+ |g (0)|
1 + |g (0)| |ξ|

Considering g (0) = a and ξ = z, then

|g (z)| ≤ |z|+ |a|
1 + |a| |z|

for all z ∈ U.

Theorem F [5]. Let γ ∈ C, f ∈ S, f (z) = z + a2z
2 + ... .

If ∣∣∣∣zf ′ (z)− f (z)
zf (z)

∣∣∣∣ ≤ 1, (∀) z ∈ U

and

|γ| ≤ 1

max
|z|≤1

[(
1− |z|2

)
· |z| · |z|+|a2|

1+|a2|·|z|

]
then

Fγ (z) =

z∫
0

(
f (t)

t

)γ

dt ∈ S

Theorem G [5]. Let α, β, γ ∈ C, f ∈ S, f (z) = z + a2z
2 + ... .

If ∣∣∣∣zf ′ (z)− f (z)
zf (z)

∣∣∣∣ ≤ 1, (∀) z ∈ U

Reγ ≥ Re δ > 0

and

|γ| ≤ 1

max
|z|≤1

[
1−|z|2 Re δ

Re δ · |z| · |z|+|a2|
1+|a2|·|z|

]
14
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then

Gβ,γ (z) =

β

z∫
0

tβ−1

(
f (t)

t

)γ

dt

 1
β

∈ S

2. Main results

Theorem 1. Let αn ∈ C, fn ∈ S, fn (z) = z + an
2 z2 + ..., n ∈ N∗.

If ∣∣∣∣zf ′n (z)− fn (z)
zfn (z)

∣∣∣∣ ≤ 1, (∀) n ∈ N∗, (∀) z ∈ U (2)

|α1|+ |α2|+ ... + |αn|
|α1 · α2 · ... · αn|

< 1 (3)

|α1 · α2 · ... · αn| ≤
1

max
|z|≤1

[(
1− |z|2

)
· |z| · |z|+|c|

1+|c|·|z|

] (4)

where

|c| =
∣∣α1a

1
2 + ... + αnan

2

∣∣
|α1 · α2 · ... · αn|

then

F (z) =

z∫
0

(
f1 (t)

t

)α1

· ... ·
(

fn (t)
t

)αn

dt ∈ S

Proof. We have fn ∈ S, (∀) n ∈ N∗ and fn(z)
z 6= 0, (∀) n ∈ N∗.

For z = 0 we have
(

f1(z)
z

)α1

· ... ·
(

fn(z)
z

)αn

= 1.

Consider the function

h (z) =
1

|α1 · α2 · ... · αn|
· F ′′ (z)

F ′ (z)

The function h (z) has the form:

h (z)=
1

|α1 · α2 · ... · αn|
·α1·

zf ′1 (z)− f1 (z)
zf1 (z)

+...+
1

|α1 · α2 · ... · αn|
·αn·

zf ′n (z)− fn (z)
zfn (z)

We have:

h (0) =
1

|α1 · α2 · ... · αn|
· α1 · a1

2 + ... +
1

|α1 · α2 · ... · αn|
· αn · an

2

By using the relations (2) and (3) we obtain

|h (z)| < 1

and

|h (0)| =
∣∣α1 · a1

2 + ... + αn · an
2

∣∣
|α1 · α2 · ... · αn|

= |c|
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Applying Remark E for the function h we obtain

1
|α1 · α2 · ... · αn|

·
∣∣∣∣F ′′ (z)
F ′ (z)

∣∣∣∣ ≤ |z|+ |c|
1 + |c| |z|

(∀) z ∈ U ⇔

⇔
∣∣∣∣(1− |z|2

)
· z · F ′′ (z)

F ′ (z)

∣∣∣∣ ≤ |α1 · α2 · ... · αn| ·
(
1− |z|2

)
· |z| · |z|+ |c|

1 + |c| · |z|
, (∀) z ∈ U

(5)

Let′s consider the function H : [0, 1] → R

H (x) =
(
1− x2

)
x

x + |c|
1 + |c|x

;x = |z| .

H

(
1
2

)
=

3
8
· 1 + |c|
2 + |c|

> 0 ⇒ max
x∈[0,1]

H (x) > 0

Using this result and the form (5) we have:∣∣∣∣(1− |z|2
)
· z · F ′′ (z)

F ′ (z)

∣∣∣∣ ≤
≤ |α1 · α2 · ... · αn| ·max

|z|<1

[(
1− |z|2

)
· |z| · |z|+ |c|

1 + |c| · |z|

]
, (∀) z ∈ U (6)

Applying the condition (4) in the form (6) we obtain:(
1− |z|2

) ∣∣∣∣zF ′′ (z)
F ′ (z)

∣∣∣∣ ≤ 1, (∀) z ∈ U,

and from Theorem B F ∈ S.

Corollary 2. Let α, β ∈ C, f, g ∈ S, f (z) = z+a2z
2+..., g (z) = z+b2z

2+..., .

If ∣∣∣∣zf ′ (z)− f (z)
zf (z)

∣∣∣∣ ≤ 1, (∀) z ∈ U∣∣∣∣zg′ (z)− g (z)
zg (z)

∣∣∣∣ ≤ 1, (∀) z ∈ U

1
α

+
1
β

< 1

|αβ| ≤ 1

max
|z|≤1

[(
1− |z|2

)
· |z| · |z|+|c|

1+|c|·|z|

]
where

|c| = |αa2 + βb2|
|αβ|

then

Fαβ (z) =

z∫
0

(
f (t)

t

)α

·
(

g (t)
t

)β

dt ∈ S

Proof. In Theorem 1, we consider n = 2, f1 = f, f2 = g, α1 = α, α2 = β.
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Remark. If in Theorem 1, we consider n = 1, f1 = f, α1 = γ, we obtained

Theorem F.

Theorem 3. Let αn, γ, δ ∈ C, fn ∈ S, fn (z) = z + an
2 z2 + ..., n ∈ N∗.

If ∣∣∣∣zf ′n (z)− fn (z)
zfn (z)

∣∣∣∣ ≤ 1, (∀) n ∈ N∗, (∀) z ∈ U (7)

|α1|+ |α2|+ ... + |αn|
|α1 · α2 · ... · αn|

< 1 (8)

Reγ ≥ Re δ > 0

|α1 · α2 · ... · αn| ≤
1

max
|z|≤1

[
1−|z|2 Re δ

Re δ · |z| · |z|+|c|
1+|c|·|z|

] (9)

where

|c| =
∣∣α1a

1
2 + ... + αnan

2

∣∣
|α1 · α2 · ... · αn|

then

G (z) =

γ

z∫
0

tγ−1

(
f1 (t)

t

)α1

· ... ·
(

fn (t)
t

)αn

dt

 1
γ

∈ S

Proof. We consider the function

h (z) =

z∫
0

(
f1 (t)

t

)α1

· ... ·
(

fn (t)
t

)αn

p (z) =
1

|α1 · α2 · ... · αn|
· h′′ (z)

h′ (z)

p (z)=
1

|α1 · α2 · ... · αn|
·α1·

zf ′1 (z)− f1 (z)
zf1 (z)

+...+
1

|α1 · α2 · ... · αn|
·αn·

zf ′n (z)− fn (z)
zfn (z)

By using the relations (7) and (8) we obtain

|p (z)| < 1

and

|p (0)| =
∣∣α1 · a1

2 + ... + αn · an
2

∣∣
|α1 · α2 · ... · αn|

= |c|

Applying Remark E for the function p we obtain

1
|α1 · α2 · ... · αn|

·
∣∣∣∣h′′ (z)
h′ (z)

∣∣∣∣ ≤ |z|+ |c|
1 + |c| |z|

(∀) z ∈ U ⇔

⇔

∣∣∣∣∣1− |z|2 Re δ

Re δ
· z · h′′ (z)

h′ (z)

∣∣∣∣∣ ≤ |α1 · α2 · ... · αn| ·
1− |z|2 Re δ

Re δ
· |z| · |z|+ |c|

1 + |c| · |z|
, (∀) z ∈ U

(10)
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Let′s consider the function Q : [0, 1] → R

Q (x) =
1− x2 Re δ

Re δ
x

x + |a2|
1 + |a2|x

;x = |z| .

Q

(
1
2

)
> 0 ⇒ max

x∈[0,1]
Q (x) > 0

Using this result and the relation (10) we have:

1− |z|2 Re δ

Re δ

∣∣∣∣zh′′ (z)
h′ (z)

∣∣∣∣ ≤
≤ |α1 · α2 · ... · αn| ·max

|z|<1

[
1− |z|2 Re δ

Re δ
· |z| · |z|+ |c|

1 + |c| · |z|

]
, (∀) z ∈ U (11)

Applying the condition (9) in the relation (11) we obtain:(
1− |z|2

) ∣∣∣∣zh′′ (z)
h′ (z)

∣∣∣∣ ≤ 1, (∀) z ∈ U,

and from Theorem C, G ∈ S.

Remark. If we consider γ = 1,Re δ = 1 we obtain Theorem 1.

Corollary 4. Let α, β, γ, δ ∈ C, f, g ∈ S, f (z) = z + a2z
2 + ..., g (z) =

z + b2z
2 + ..., .

If ∣∣∣∣zf ′ (z)− f (z)
zf (z)

∣∣∣∣ ≤ 1, (∀) z ∈ U∣∣∣∣zg′ (z)− g (z)
zg (z)

∣∣∣∣ ≤ 1, (∀) z ∈ U

Reγ ≥ Re δ > 0
1
α

+
1
β

< 1

|αβ| ≤ 1

max
|z|≤1

[
1−|z|2 Re δ

Re δ · |z| · |z|+|c|
1+|c|·|z|

]
where

|c| = |αa2 + βb2|
|αβ|

then

Gαβ,γ (z) =

γ

z∫
0

tγ−1

(
f (t)

t

)α

·
(

g (t)
t

)β

dt

 1
γ

∈ S

Proof. In Theorem 3, we consider n = 2, f1 = f, f2 = g, α1 = α, α2 = β.

Remark. If in Theorem 3, we consider n = 1, f1 = f, γ = β, we obtained

Theorem F.
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QUASILINEARIZATION FOR THE FORCED DÜFFING EQUATION

ADRIANA BUICĂ

Abstract. In this paper we present the quasilinearization method for the

periodic problem related to the forced Düffing equation. We obtain two

monotone sequences of approximate solutions, with quadratic order of con-

vergence. We work in the presence of lower and upper solutions. The

approximate problems are linear.

1. Introduction

In this paper we apply the quasilinearization method to the periodic problem

for the forced Düffing equation

 x′′ + kx′ + f(t, x) = 0

x(0) = x(T ), x′(0) = x′(T )

where f : [0, T ] × R → R is a continuous function and k ∈ R. Existence of a lower

and an upper solution is assumed. We say that α0 is a lower solution of the problem

(1.1) if α0 ∈ C2[0, T ] and

 α′′0 + kα′0 + f(t, α0) ≥ 0

α0(0) = α0(T ), α′0(0) = α′0(T )

Whenever the reversed inequality holds for some function β0 ∈ C2[0, T ], we say that

β0 is an upper solution.

Received by the editors: 30.05.2002.

2000 Mathematics Subject Classification. 34A45, 34B15.

Key words and phrases. periodic problem, Düffing equation, quasilinearization, quadratic convergence.
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We consider the following iterative schemes

 α′′n+1 + kα′n+1 + f (t, αn) + ∂f
∂x (t, αn) (αn+1 − αn) = 0,

αn+1(0) = αn+1(T ), α′n+1(0) = α′n+1(T )
(1.1)

 β′′n+1 + kβ′n+1 + f (t, βn) + ∂f
∂x (t, αn) (βn+1 − βn) = 0,

βn+1(0) = βn+1(T ), β′n+1(0) = β′n+1(T ).
(1.2)

The sequences (αn)n≥0 and (βn)n≥0 obtained as solutions of the linear problems

(1.1) and (1.2) are monotone and converge quadratically to the solution of (1.1). In

addition, we require, roughly speaking, that the nonlinear function f is decreasing

and convex.

We say that a sequence (αn)n≥0 converges quadratically to x∗ in C[0, T ] (with the

supremum norm), whenever there exist c > 0 and n0 ∈ N such that

||x∗ − αn+1|| ≤ c||x∗ − αn||2, for all n ≥ n0.

The type of problems which is the object of our work is extensively studied in the

literature. Let us remind only some references which are related to the technique

used in our paper. The method of lower and upper solutions for (1.1) is presented by

Wang-Cabada-Nieto in [11], together with a monotone iterative method . C. Wang

[10] studied the case of reversedly lower and upper solutions.

The quasilinearization method is a tool for obtaining approximate solutions to

nonlinear equations with rapide convergence. It was applied to a variety of problems

(see the monograph [8] by Lakshmikantham-Vatsala and the references therein), and

even some very efficient abstract schemes were given in [2, 3, 4]. Some boundary value

problems were studied with the quasilinearization method in [5, 6, 8, 9]. Our approach

is closely to [6] and some examples in [8], since we prefer to assume convexity for the

nonlinear part and obtain the approximations as solutions of corresponding linear

problems, rather than do not impose convexity but consider nonlinear approximate

problems (like in [5, 9]). Anyway, our results can be easily extended to the case of

nonlinearities of DC-type (i.e. f = f1 − f2, where f1 and f2 are convex), as in [8].
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2. Preliminaries

The aim of this section is to establish some comparison and existence results

for the linear problem of the form (1.1), which will be needed later on.

Lemma 2.1. Let g, l : [0, T ] → R be two continuous functions with l(t) < 0

for every t ∈ [0, T ]. Let x ∈ C2[0, T ] be such that − (x′′ + kx′ + l(t)x) = g(t)

x(0) = x(T ), x′(0) = x′(T ).

If g(t) ≥ 0 for all t ∈ [0, T ] then x(t) ≥ 0 for all t ∈ [0, T ].

Proof. First we prove by contradiction that x(0) ≥ 0. Let us assume that x(0) < 0.

We distinguish three cases: x′(0) = 0; x′(0) < 0 and x′(0) > 0. Every case lead to

(S) there exists t1 ∈ (0, T ) such that x(t1) < 0 and x′(t1) = 0.

Then t1 is a local minimum for x, which also implies that x′′(t1) > 0. When we

replace these in the following relation

− [x′′(t1) + kx′(t1) + l(t1)x(t1)] = g(t1)

we get a contradiction.

Let us prove now the above statement (S).

Case 1. Whenever x′(0) = 0, if we replace in the differential equation of x, we obtain

x′′(0) ≤ −l(0)x(0) < 0. Then x′ is strictly decreasing in some neighborhood of 0, V .

But x′(0) = 0. Thus x′(t) < 0 for all t ∈ V . Hence x is strictly decreasing in V .

Relation x(0) = x(T ) assures that (S) is valid.

Case 2. Whenever x′(0) < 0 we have that x′(t) < 0 in some neighborhood of 0. The

rest is like in Case 1.

Case 3. Whenever x′(0) > 0 we have that, also, x′(T ) > 0. Then x is strictly

increasing in some neighborhood of T . Relation x(0) = x(T ) guarantees (S).

Hence we know that x(0) = x(T ) ≥ 0. It is easy to see that the existence of some

t∗ ∈ (0, T ) with x(t∗) < 0 assures that (S) hold. But this lead to a contradiction, as

we have already proved. Then x(t) ≥ 0 for all t ∈ [0, T ]. �
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Lemma 2.2. Let l : [0, T ] → R be a continuous function with l(t) < 0 for all

t ∈ [0, T ]. Then the problem (2.3) has a unique solution for every g ∈ C[0, T ].

Proof. We apply Theorem 3.1, page 214 from [7] and deduce that it is sufficient

if we prove that the only solution of the corresponding homogeneous equation with

x(0) = x(T ) and x′(0) = x′(T ) is the null solution. It is easy to see that this is valid

on the base of Lemma 2.1. �

Throughout this paper let us consider

D =
{
x ∈ C2[0, T ] : x(0) = x(T ), x′(0) = x′(T )

}
.

Lemma 2.3. Let l : [0, T ] → R be a continuous function with l(t) < 0 for all

t ∈ [0, T ]. The linear operator L : D → C[0, T ], Lx = − (x′′ + kx′ + l(t)x) is bijective

and its inverse is positive and completely continuous between C[0, T ] to itself.

Proof. The bijectivity of L is assured by Lemma 2.2. It is easy to see that L is

continuous from D endowed with C2 norm

||x||C2 = ||x||+ ||x′||+ ||x′′||,

to C[0, T ] with the supremum norm, denoted here || · ||. Then L−1 exists and is

continuous between C[0, T ] and D. Of course, is continuous between C[0, T ] to itself.

Complete continuity of L−1 is assured because, in addition, D is compactly imbedded

in C[0, T ]. The positivity of L−1, i.e. y ≥ 0 implies L−1y ≥ 0, follows by Lemma 2.1.

�

3. Main results

Throughout this section let us denote

Ω = {(t, u) ∈ [0, T ]× R : α0(t) ≤ u ≤ β0(t)}

and consider the order interval in the space C[0, T ],

[α0, β0] = {x ∈ C[0, T ], α0(t) ≤ x(t) ≤ β0(t) for all t ∈ [0, T ]} ,

where α0, β0 ∈ C[0, T ] with α0(t) ≤ β0(t) for all t ∈ [0, T ]. The following Lemma is a

unicity result for the nonlinear problem (1.1).
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Lemma 3.1. Let f : [0, T ] × R → R be continuous and α0, β0 ∈ D, be a

lower and, respectively, an upper solution of (1.1), such that

α0(t) ≤ β0(t) for all t ∈ [0, T ].

Assume that f(t, ·) is C1 on R and ∂f
∂x (t, u) < 0 for all (t, u) ∈ Ω. Then (1.1) has at

most one solution in [α0, β0].

Proof. Whenever x and y are two solutions of (1.1) in [α0, β0], we have that z = x−y

satisfies the following relations

−(z′′ + kz′) = f(t, x(t))− f(t, y(t)) = l(t)z,

where

l(t) =


f(t,x(t))−f(t,y(t))

x(t)−y(t) , x(t) 6= y(t)
∂f
∂x (t, x(t)), x(t) = y(t).

It easy to see that l(t) < 0 for all t ∈ [0, T ] and that z ∈ D. We apply Lemma 2.2

and obtain that z = 0, i.e. x = y. �

The next theorem is our main result.

Theorem 3.1. Let f : [0, T ] × R → R be continuous and α0, β0 ∈ D, be a

lower and, respectively, an upper solution of (1.1), such that

α0(t) ≤ β0(t) for all t ∈ [0, T ].

Assume that f(t, ·) is C2 on R and convex on [α0(t), β0(t)] for all t ∈ [0, T ], and

that ∂f
∂x (t, u) < 0 for all (t, u) ∈ Ω. Then the sequences (αn) and (βn) given by the

iterative schemes (1.1) and (1.2) are well and uniquely defined in D, and converge

monotonically and quadratically in C[0, T ] to the unique solution of (1.1) in [α0, β0] .

Proof. The fact that αn and βn are well and uniquely defined in D is assured by

Lemma 2.2.

The differentiability and convexity of f(t, ·) on [α0(t), β0(t)] imply the following rela-

tions

∂f

∂x
(t, u)(v − u) ≤ f(t, v)− f(t, u) ≤ ∂f

∂x
(t, v)(v − u), (3.3)
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for all α0(t) ≤ u ≤ v ≤ β0(t).

We shall prove by induction that the following proposition is valid for all n ≥ 0.

(Pn)


αn ≤ αn+1 ≤ βn+1 ≤ βn

αn+1 is a lower solution of (1.1)

βn+1 is an upper solution of (1.1)

Let us verify first for n = 0. In order to avoid some complicated formulas, let us

denote L0x = −
(
x′′ + kx′ + ∂f

∂x (t, α0)x
)
. Using this notation, we can write (1.1) for

n = 0 in the form

L0α1 = f(t, α0)−
∂f

∂x
(t, α0)α0.

Then, using also the fact that α0 is a lower solution, we obtain

L0(α1 − α0) = L0α1 + α′′0 + kα′0 +
∂f

∂x
(t, α0)α0 = α′′0 + kα′0 + f(t, α0) ≥ 0.

By Lemma 2.1, it follows that

α0 ≤ α1.

Analogously one can prove that β1 ≤ β0.

Using one of the inequalities (3.3) we have

L0(β1 − α1) = f(t, β0)−
∂f

∂x
(t, α0)β0 − f(t, α0) +

∂f

∂x
(t, α0)α0 ≥ 0.

Thus, by Lemma 2.1,

α1 ≤ β1.

Let us prove now that α1 is a lower solution of (1.1). We have

α′′1 + kα′1 + f(t, α1) = f(t, α1)− f(t, α0)−
∂f

∂x
(t, α0)(α1 − α0) ≥ 0,

where we have used (1.1) and (3.3) for α0 ≤ α1.

Analogously, β1 is an upper solution for (1.1).

The proof of the fact that, if (Pn) is valid then (Pn+1) is true, can be done in the

same manner as above. In order to avoid the repetion, let us skip it.

At this moment we have that for every n ≥ 0, αn+1 ∈ D is a solution of the linear

differential equation (1.1) and that

α0(t) ≤ α1(t) ≤ ... ≤ αn(t) ≤ ... ≤ β0(t) for all t ∈ [0, T ].
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We shall prove that the sequence (αn) converges uniformly on [0, T ] and its limit is a

solution of (1.1).

For each t ∈ [0, T ], let us denote by x∗(t) the limit of the numerical sequence (αn(t))

and σn(t) = Lαn+1(t), where L is the linear operator between D and C[0, T ] given

by Lx = −(x′′ + kx′ − x). Using (1.1) we get that

σn(t) = f(t, αn) + αn+1(t) +
∂f

∂x
(t, αn(t)). (3.4)

Because the functions f and ∂f
∂x are continuous and the sequence (αn) is bounded in

C[0, T ], we have that (σn) is bounded in C[0, T ]. Also, we can write

αn+1 = L−1σn. (3.5)

By Lemma 2.3, L−1 is completely continuous. Hence the sequence (αn) is compact

in C[0, T ]. It is also monotone. Then it is uniformly convergent to x∗. When we pass

to the limit for n →∞ in (3.5) and (3.4) we get that x∗ = L−1 [f(t, x∗) + x∗]. Thus

x∗ ∈ D and Lx∗ = f(t, x∗) + x∗, which is equivalent to the fact that x∗ is a solution

of the problem (1.1).

Analogously, the sequence (βn) converges uniformly on [0, T ], and its limit is a solution

of (1.1). By Lemma 3.1, the solution is unique in [α0, β0].

In order to justify that the order of convergence of the sequence (αn) to x∗ is 2, we

denote

pn = x∗ − αn

and consider the linear operator L∗x = −
[
x′′ + kx′ + ∂f

∂x (t, x∗)x
]
. Let us remem-

ber that, by convexity of f , ∂f
∂x (t, x∗) ≥ ∂f

∂x (t, αn), since x∗ ≥ αn. The following

inequalities hold.

L∗pn+1 ≤ −
[
p′′n+1 + kp′n+1 +

∂f

∂x
(t, αn)pn+1

]
= −(x′′ + kx′)− ∂f

∂x
(t, αn)x∗ +

[
α′′n+1 + kα′n+1 +

∂f

∂x
(t, αn)αn+1

]
= f(t, x∗)− ∂f

∂x
(t, αn)pn − f(t, αn)

≤
[
∂f

∂x
(t, x∗)− ∂f

∂x
(t, αn)

]
pn

≤ a · p2
n.
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We have used relation (3.3) for αn ≤ x∗. The last inequality is true because the func-

tion ∂f
∂x (t, ·) is monotone increasing and Lipschitz on the compact interval [α0(t), β0(t)]

for each t ∈ [0, T ]. Using the positivity of L−1
∗ , assured by Lemma 2.3, we obtain

0 ≤ pn+1 ≤ aL−1
∗

(
p2

n

)
,

and than, continuity of L−1
∗ gives that there exists c > 0 with

||pn+1|| ≤ c||pn||2.

In the same manner one can prove the quadratic convergence of (βn). �
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TWO-VARIABLE VARIATIONAL-HEMIVARIATIONAL
INEQUALITIES

ENDRE BUZOGÁNY, ILDIKÓ ILONA MEZEI, VIORICA VARGA

Abstract. In this paper we guarantee the solution for two-variable

variational-hemivariational inequalities and we give some applications.

1. Introduction

The aim of this paper is to establish a two-variable result concerning the

hemivariational inequalities. These inequalities appear as a generalisation of varia-

tional inequalitis, but they are more general than these ones, having applications in

several branches of mathematics, mechanics, economy engineering.

The paper is organized as follows. In the Section 2 we formulate the prob-

lem and give some notions and results which will be used later. In Section 3 we

establish the main results of this paper, i.e. we guarantee solution for hemivaria-

tional inequality. Finally in Section 4 we give some applications. More preciselly,

we obtain a Brouwer’s type variational inequality, the Schauder fixed point theorem

(and Brouwer fixed point theorem), a hemivariational inequality of Panagiotopoulos-

Fundo-Rădulescu type, and a result concerning the Nash equilibrium theory.

2. Preliminaries

Let X be a Banach space, X∗ its dual. We consider the following hypotheses:

(HT ) T : X → Lp(Ω, Rk) is a linear, continuous operator, where p ∈ [1,∞),

k ≥ 1 and Ω is a bounded open set in RN .

(Hj) j : Ω×Rk → R is a Carathéodory function which is locally Lipschitz with

respect to the second variable and there exist h1 ∈ L
p

p−1 (Ω, R) and h2 ∈ L∞(Ω, R)

Received by the editors: 10.04.2002
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such that

|w| ≤ h1(x) + h2(x)|y|p−1

for a.e. x ∈ Ω, every y ∈ Rk and w ∈ ∂j(x, y), where ∂j(x, y) is the Clarke generalized

gradient of j, see [4], i.e. ∂j(x, y) = {w ∈ Rk : 〈w, z〉 ≤ j0
y(x, y; z), for all z ∈ Rk}

where j0
y(x, y; z) is the partial Clarke derivative of the locally Lipschitz mapping j(x, ·)

at the point y ∈ Rk with respect to the direction z ∈ Rk, where x ∈ Ω, that is

j0
y(x, y, z) = limsup y′→y

t→0+

j (x , y ′ + tz )− j (x , y ′)
t

.

Let K be a subset of X, A : K ×K  X∗, G : K ×X  R two set-valued

mappings with nonempty values. Under hypotheses (HT ) and (Hj) the main problem

of this paper is the following

(P) Find u ∈ K such that, for every v ∈ K

σ(A(u, u), v − u) + G(u, v − u) +
∫

Ω

j0
y(x, Tu(x), T v(x)− Tu(x))dx ⊆ R+.

Here σ(A(w, u), v − u) = sup
x∗∈A(w,u)

〈x∗, v − u〉. The (P) is equivalent with

(P’) Find u ∈ K such that, for every v ∈ K

σ(A(u, u), v − u) + infG(u, v − u) +
∫

Ω

j0
y(x, Tu(x), T v(x)− Tu(x))dx ≥ 0.

The euclidean norm in Rk and the duality pairing between the Banach space

and its dual will be denoted by | · |, resp. 〈·, ·〉.

In order to state existence results for (P), we need some notions and prelim-

inary results.

Definition 2.1. Let K be convex.

(i) A set-valued mapping F : K  X∗ is said to be upper demicontinuous at

x0 ∈ K (udc at x0 ∈ K) if for any h ∈ X, the real-valued function x 7→ σ(F(x), h) =

sup
x∗∈F(x)

〈x∗, h〉 is upper semicontinuous at x0. F is upper demicontinuous on K (udc

on K) if it is udc in every x ∈ K.

(ii) F : K  X∗ is said to be upper demicontinuous from the line segments

in K if the application t 7→ σ(F(tx + (1 − t)y), h) is upper semicontinuous on the

interval [0, 1], ∀x, y ∈ K, h ∈ X.
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(iii) F : K → X∗ is said to be w∗-demicontinuous in u0 if for any sequence

{un} ⊂ K converging to u0 (in the strong topology), the image sequence {F (un)}

converges to F (u0) in the weak∗-topology in X∗.

Remark 2.1. (i) If F(x) = {F (x)}, that is, if F is a single valued map, then

F is udc at u0 ∈ K if and only if the operator F : K → X∗ is w∗-demicontinuous at

u0 ∈ K.

(ii) If F(x) = {F (x)} is hemicontinuous, (see for example [8]), then F is udc

from the line segments in K.

The h 7→ σ(F(x), h) is a lower semicontinuous sublinear function.

Lemma 2.1. [11, Lemma 2.2] Let F : K  X∗ be an udc set-valued map with

bounded values, i.e. sup
x∗∈F(x)

‖x∗‖ < ∞, ∀x ∈ K. Then the function u 7→ σ(F(u), v−u)

is upper semicontinuous, ∀ v ∈ K.

Now, we recall some notions from [1]. Let Y, Z be two metric spaces and a

set-valued map (with nonempty values) F : Y  Z.

Definition 2.2. F is called lower semicontinuous at y ∈ Y (lsc at y) if and

only if for any z ∈ F (y) and for any sequence {yn}, converging to y, there exists a

sequence {zn}, zn ∈ F (yn) converging to z.

It is said to be lower semicontinuous (lsc) if it is lsc at every point y ∈ Y .

Let us consider a function f : Graph(F ) → R. We define the marginal func-

tion g : Y → R∪{+∞} by g(y) = supz∈F (y)f(y, z). We have the Maximum Theorem,

see [1, Theorem 1.4.16, p.48].

Lemma 2.2. If f and F are lower semicontinuous on Y , then the marginal

function is also lower semicontinuous.

Definition 2.3. Let K be a convex subset of X and let Z be a topological

vector space. The set-valued map F : K  Z (with nonempty values) is convex if and

only if ∀ x1, x2 ∈ K, ∀ λ ∈ [0, 1] : λF (x1) + (1− λ)F (x2) ⊆ F (λx1 + (1− λ)x2).

Remark 2.2. F : K  Z is convex if and only if ∀ xi ∈ K, ∀ λi ≥ 0 such

that
∑n

i=1 λi = 1, n ∈ N∗, we have
∑n

i=1 λiF (xi) ⊆ F (
∑n

i=1 λixi) .

Definition 2.4. The mapping F : K ⊆ X  X∗ is monotone if 〈f1−f2, u−

v〉 ≥ 0, ∀u, v ∈ K, ∀f1 ∈ F (u), f2 ∈ F (v).
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Lemma 2.3.([12, Lemma 1.]) If T and j satisfy the (HT ) and (Hj) respec-

tively and V1, V2 are non-empty subsets of X, then the mapping defined by

(u, v) 7→
∫

Ω

j0
y(x, Tu(x), T v(x))dx, (u, v) ∈ V1 × V2

is upper semicontinuous.

Lemma 2.4. [7] Let X be a Hausdorff topological vector space, K a subset

of X and for each x ∈ K, let S(x) be a closed subset of X, such that

(i) there exists x0 ∈ K such that the set S(x0) is compact;

(ii) S is KKM-mapping, i.e. for each x1, x2, . . . , xn ∈ K, co{x1, x2, . . . , xn} ⊆

∪n
i=1S(xi), where co stands for the convex hull operator.

Then
⋂

x∈K

S(x) 6= ∅.

3. Main results on Existence of Solutions for (P)

We need some additional hypotheses to obtain solution for (P).

(HG) (1) G(u, 0) ⊆ R+, ∀ u ∈ K;

(2) G(u, ·) is convex, ∀u ∈ K;

(3) G(·, ·) is lsc on K ×X;

(4) G(u, ·) is subhomogenous, i.e. tG(u, y) ⊆ G(u, ty), ∀t ∈ [0, 1], u ∈

K, y ∈ X.

(HA) (1) A has bounded values, i.e. sup
x∗∈A(u,v)

‖x∗‖ < ∞, ∀u, v ∈ K;

(2) A(v, ·) : K  X∗ is udc on K, ∀v ∈ K;

(3) A(·, u) : K  X∗ is udc from the line segments in K, ∀u ∈ K.

(4) A(·, u) has the monotonicity property

σ(A(v, u), v − u) ≥ σ(A(u, u), v − u),∀u, v ∈ K.

The main result of this paper is the following

Theorem 3.1. Let K be a convex, closed subset of a Banach space X and

A : K×K  X∗, G : K×X  R, T : X → Lp(Ω, Rk) and j : Ω×Rk → R satisfying

(HA), (HG), (HT ) and (Hj) respectively. In addition, if

(Hcoer) there exists a compact subset K0 of K and u0 ∈ K such that

{σ(A(u, u), u0 − u) + G(u, u0 − u) +
∫

Ω

j0
y(x, Tu(x), Tu0(x)− Tu(x))dx} ∩ R∗− 6= ∅,
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for all u ∈ K \K0. Then (P ) has at least a solution.

Proof. For w ∈ K, let

T1(w) = {u ∈ K : σ(A(u, u), w − u) + inf G(u, w − u)+

+
∫
Ω

j0
y(x, Tu(x), Tw(x)− Tu(x))dx ≥ 0};

T2(w) = {u ∈ K0 : σ(A(w, u), w − u) + inf G(u, w − u)+

+
∫
Ω

j0
y(x, Tu(x), Tw(x)− Tu(x))dx ≥ 0}.

Step 1. T1(u0) ⊆ K0, where u0 is from (Hcoer). Suppose that there exists

u ∈ T1(u0) ⊂ K such that u 6∈ K0. from the definition of T1(u0), we have that

σ(A(u, u), u0 − u) + inf G(u, u0 − u) +
∫

Ω

j0(x, Tu(x), Tu0(x)− Tu(x))dx ≥ 0.

But this contradicts the (Hcoer). Therefore T1(u0) ⊆ K0.

Step 2. We prove that T1 : K  K is KKM-mapping, i.e.

∀w1, ..., wn ∈ K : co{w1, ..., wn} ⊆
n⋃

i=1

T1(wi).

Contrary, we suppose that there exist λ1, . . . , λn ≥ 0,
n∑

i=1

λi = 1 such that w =
n∑

i=1

λiwi 6∈ T1(wi), for i = 1, n. Therefore

σ(A(w,w), wi − w) + inf G(w,wi − w)+

+
∫

Ω

j0(x, Tw(x),−Twi(x)− Tw(x))dx < 0, i = 1, n.

Let I = {i = 1, n : λi 6= 0}. Multiplying the above inequalities by λi for i ∈ I and

using the homogenity of T , we have

σ(A(w,w), λiwi − λiw) + λi inf G(w,wi − w)+

+
∫

Ω

j0(x, Tw(x),−T (λiwi)(x)− T (λiw)(x))dx < 0,∀i ∈ I.

Adding the above relations for i ∈ I and using that h 7→ σ(A(w,w), h) and h 7→

j0(x, Tw(x), h) are subadditive, z 7→ inf G(w, z) is convex for all w ∈ K, T is additive

and (HG)(1) we get

0 ≤ σ(A(w,w),
∑
i∈I

λiwi −
∑
i∈I

λiw) +
∑
i∈I

λi inf G(w,wi − w)+
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+
∫

Ω

j0(x, Tw(x),
∑
i∈I

T (λiwi)(x)−
∑
i∈I

T (λiw)(x))dx < 0,

which is absurd. Therefore, T1 is KKM-mapping.

Step 3. We prove that
⋂

w∈K

T1(w) 6= ∅. Here, T1(w) is the closure of T1(w).

Indeed, from Step 1, we have that T1(u) ⊆ K0. Since K0 is compact, T1(u0) is also

compact. Using the Step 2 and applying Lemma 2.4., we obtain that
⋂

w∈K

T1(w) 6= ∅.

Step 4.
⋂

w∈K

T1(w) =
⋂

w∈K

T2(w).

(a) Let u ∈
⋂

w∈K

T1(w) i.e. σ(A(u, u), w − u) + inf G(u, w − u) +∫
Ω

j0(x, Tu(x), Tw(x)− Tu(x))dx ≥ 0, ∀w ∈ K. From (Hcoer), we have that u ∈ K0.

From the (HA)(4), we can write that

σ(A(w, u), w−u)+ inf G(u, w−u)+
∫
Ω

j0(x, Tu(x), Tw(x)−Tu(x))dx ≥ 0, ∀w ∈ K,

i.e. u ∈
⋂

w∈K

T2(w).

(b) Let u ∈
⋂

w∈K

T2(w), i.e. σ(A(v, u), v − u) + inf G(u, v − u) +∫
Ω

j0(x, Tu(x), T v(x) − Tu(x))dx ≥ 0, ∀v ∈ K. Let v ∈ K be an arbitrary element.

Let vt = tv + (1− t)u, t ∈ [0, 1]. Clearly, vt ∈ K. We have

σ(A(vt, u), vt−u)+inf G(u, vt−u)+
∫

Ω

j0(x, Tu(x), T vt(x)−Tu(x))dx ≥ 0, ∀t ∈ [0, 1].

From the linearity of T , we have that

σ(A(vt, u), t(v − u)) + inf G(u, t(v − u))+

+
∫

Ω

j0(x, Tu(x), t(Tv(x)− Tu(x)))dx ≥ 0, ∀t ∈ [0, 1].

From the (HG) (4) and from the fact that j0
y(x, Tu(x), ·) is positive homogeneous, we

obtain

σ(A(vt, u), v−u)+inf G(u, v−u)+
∫

Ω

j0(x, Tu(x), T v(x)−Tu(x))dx ≥ 0, ∀t ∈ (0, 1].

Using (HA) (3), we have that lim sup
t→0+

σ(A(vt, u), v−u) ≤ σ(A(u, u), v−u). Therefore,

σ(A(u, u), v − u) + inf G(u, v − u) +
∫

Ω

j0(x, Tu(x), T v(x)− Tu(x))dx ≥ 0.

Since v ∈ K was arbitrary, u is a solution for (P). �

Step 5.
⋂

w∈K

T1(w) =
⋂

w∈K

T2(w).
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Clearly,
⋂

w∈K

T2(w) ⊆
⋂

w∈K

T1(w) from Step 4. Conversely, let v ∈
⋂

w∈K

T1(w).

We prove that v ∈
⋂

w∈K

T2(w). Since T1(u0) ⊂ K0, we have that
⋂

w∈K

T1(w) ⊆ K0.

Therefore, v ∈ K0 ∩ T1(w), ∀w ∈ K.

Now, let u ∈ K be a fixed element. Since v ∈ T1(u), there exists a sequence

{vn} from T1(u) such that vn → v. Since vn ∈ T1(u), we have

σ(A(vn, vn), u− vn) + inf G(vn, u− vn) +
∫

Ω

j0(x, Tvn(x), Tu(x)− Tvn(x))dx ≥ 0.

From (HA)(4), we have

σ(A(u, vn), u− vn) + inf G(vn, u− vn) +
∫

Ω

j0(x, Tvn(x), Tu(x)− Tvn(x))dx ≥ 0.

From (HA)(1) and (2), applying Lemma 2.1 we obtain that v 7→ σ(A(u, v), u − v) is

usc, therefore

lim sup
n→∞

σ(A(u, vn), u− vn) ≤ σ(A(u, v), u− v).

From Lemma 2.2 (with F = G, Y := K × X, Z := R, f((y1, y2), z) = −z, where

z ∈ G(y1, y2)) and (HG)(3) we have that v 7→ inf G(v, u− v) is usc, therefore

lim sup
n→∞

inf G(vn, u− vn) ≤ inf G(v, u− v).

Using the Lemma 2.3 we get the following inequality

lim sup
n→∞

∫
Ω

j0(x, Tvn(x), Tu(x)− Tvn(x))dx ≤
∫

Ω

j0(x, Tv(x), Tu(x)− Tv(x))dx.

Summarizing the above relations, we get

σ(A(u, v), u− v) + inf G(v, u− v)+

+
∫

Ω

j0(x, Tv(x), Tu(x)− Tv(x))dx ≥ 0,

i.e. v ∈ T2(u). Since u was arbitrary, we have that v ∈
⋂

u∈K

T2(u).

Step 6. From Steps 3, 4 and 5, we have that
⋂

w∈K

T1(w) 6= ∅, which means

that u is a solution for (P).�

Remark 3.1 If K is compact in the above theorem, the hypothesis (Hcoer)

can be omitted.
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4. Applications

As a first application, we can deduce easily the Schauder fixed point theorem

from Theorem 3.1. on Banach spaces. For the completeness, we give the proof.

Corollary 4.1 Let K be a compact, convex subset of a Banach space X and

f : K → K be a continuous function. Then f has a fixed point.

Proof. Let A ≡ 0, j ≡ 0, T ≡ 0 and G : K ×X  R defined by G(u, v) =

[‖u + v − f(u)‖ − ‖u− f(u)‖,∞).

We verify (HG). Clearly, G(u, 0) = [0,∞) = R+ and v  G(u, v) is convex,

∀ v ∈ K. Since f is continuous, the function (u, x) 7→ ‖u + x− f(u)‖ − ‖u− f(u)‖ is

continuous also. Therefore, it’s easy to prove that (u, x)  G(u, x) is lsc on K ×X.

The subhomogeneity of G(u, ·) for t = 0 and t = 1 is trivial. Otherwise, this follows

from the triangle inequality. Therefore, from Theorem 3.1 it follows that there exists

u0 ∈ K such that

[‖v − f(u0)‖ − ‖u0 − f(u0)‖,∞) = G(u0, v − u0) ⊆ R+, ∀ v ∈ K.

In particular, we have ‖v − f(u0)‖ − ‖u0 − f(u0)‖ ≥ 0, ∀ v ∈ K. Let

v := f(u0). We have −‖u0 − f(u0)‖ ≥ 0, i.e. u0 = f(u0). �

Corollary 4.2 (Brouwer fixed point theorem) Let f : K → K be a continuous

function, K being a compact, convex subset of Rn. Then f has a fixed point.

Corollary 4.3 [12, Theorem 1.] Let K be a compact and convex subset of a

Banach space X and j and T satisfying (Hj) and (HT ) respectively. If the operator

A : K → X∗ is w∗-demicontinuous, then there exists u ∈ K such that

(PPFR) 〈Au, v − u〉+
∫

Ω

j0
y(x, Tu(x), T v(x)− Tu(x))dx ≥ 0, ∀v ∈ K.

Proof. Let A : K × K  X∗ defined by A(v, u) = {A(u)}, ∀u, v ∈ K and

G ≡ 0. Let v ∈ K be fixed. From Remark 2.1, A(v, ·) is udc on K (with bounded

values). Therefore, (HA) holds. Since σ(A(u, u), v − u) = 〈Au, v − u〉, the assertion

follows easily from Theorem 3.1. �

The following result is of Browder’s type, see [2].

Corollary 4.4 Let K be a convex, closed subset of a Banach space, A :

K × K  X∗ be an operator satisfying (HA). Suppose that there exists a compact

subset K0 ⊂ K and u0 ∈ K such that σ(A(u, u), u0 − u) < 0, ∀u ∈ K \ K0. Then
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there exists u ∈ K such that

σ(A(u, u), v − u) ≥ 0, ∀v ∈ K.

Proof. We apply Theorem 3.1 for G ≡ 0, j ≡ 0 and T ≡ 0. �

Remark 4.1 Similar results were obtained by Y-Q. Chen in [3] and by A.

M. Croicu and I. Kolumbán in [5].

Finally let X1 and X2 two Banach spaces, K1 ⊆ X1, K2 ⊆ X2 two nonempty

closed, convex sets. Let Fi : K1 × K2 → X∗
i , i = 1, 2 two operators. Our aim is to

give existence result for the following problem:

Find (u1, u2) ∈ K1 ×K2 such that

(NP ) 〈F1(u1, u2), x− u1〉 ≥ 0, ∀x ∈ K1

〈F2(u1, u2), y − u2〉 ≥ 0, ∀y ∈ K2.

The above problem is originated from the Nash equilibrium points, see [10]

and [9].

Theorem 4.1 Suppose that

(i) for every xi ∈ Ki, i = 1, 2 the mappings F1(·, x2) : K1 → X∗
1 and

F2(x1, ·) : K2 → X∗
2 are monotones and udc on the line segments in K1 respective K2

(in particular hemicontinuous);

(ii) for every xi ∈ Ki, i = 1, 2 the mappings F1(·, x2) : K1 → X∗
1 and

F2(x1, ·) : K2 → X∗
2 are w∗-demicontinuous;

(iii) there exist K0
i ⊆ Ki, i = 1, 2 compact sets and x0

i ∈ K0
i such that for

every (x1, x2) ∈ (K1 ×K2) \ (K0
1 ×K0

2 )

〈F1(x1, x2), x0
1 − x1〉+ 〈F2(x1, x2), x0

2 − x2〉 < 0.

Then (NP ) has at least a solution.

Proof. First let j ≡ 0, G ≡ 0 and T ≡ 0 in Theorem 3.1. Moreover, let

X := X1 ×X2, K := K1 ×K2 and A : K ×K  X∗ be a single-valued map, defined

by

A((x, y), (z, t)) = (F1(x, t), F2(z, y)), ∀(x, y), (z, t) ∈ K.
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Clearly, A satisfies (HA). Let K0 := K0
1 × K0

2 and u0 := (x0
1, x

0
2) ∈ K0. The

K0 and u0 satisfy the (Hcoer) condition from Theorem 3.1. Therefore, there exists

u = (u1, u2) ∈ K such that 〈A(u, u), w − u〉 ≥ 0, ∀w ∈ K. This is equivalent with

〈F1(u1, u2), w1 − u1〉+ 〈F2(u1, u2), w2 − u2〉 ≥ 0, ∀wi ∈ Ki, i = 1, 2.

Substituting w2 := u2 and w1 := u1 respectively, we obtain that u =

(u1, u2) ∈ K is a solution for (NP ). �

Remark 4.2 If K1 and K2 are compact sets, the hypothesis (iii) from the

above theorem can be omitted.

Remark 4.3 From the above theorem we obtain also the Brouwer fixed point

theorem (see Corollary 4.2) choosing K = K1 = K2 , F1(u1, u2) = −f(u1) + u2 and

F2(u1, u2) = u2 − u1.
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FUNCTIONALS WHICH SATISFY A MAXIMUM PRINCIPLE

CRISTIAN CHIFU-OROS

Abstract. The purpose of this paper is to present some examples of func-

tionals, defined on the solutions of an elliptic equation, which satisfy a

maximum principle.

1. Introduction

Let Ω be a domain in Rn with boundary ∂Ω. Let us consider the following

differential operator:

Lu :=
n∑

i,j=1

aij
∂2

∂xi∂xj
+

n∑
i,j=1

bi
∂

∂xi
+ c (1)

We assume that L satisfies the following maximum principles ([1]):

MP: There is a subset Γ ⊂ ∂Ω such that, if:

1. u ∈ C(Ω)

2. the derivatives of u occurring in L are continuous in Ω\Γ

3. Lu ≥ 0,in Ω\Γ

then sup
Ω

ϕ (u) = sup
Γ

ϕ (u)

Let us consider the following system:

Luk + fk(x, u) = 0, k = 1,m, x ∈ Ω. (2)

Let ϕ ∈ C2(Rm). The following result is given in [3] (see also [1]):

Theorem 1.1. Let u be a solution of (2). If:

(i) the hessian of ϕ is positive semidefinite,

(ii) −
m∑

k=1

∂ϕ(y)
∂yk

fk(x, y) + c(x)
[
ϕ(y)−

m∑
k=1

∂ϕ(y)
yk

yk

]
≥ 0,∀y ∈ Rm,

then sup
Ω

ϕ (u) = sup
Γ

ϕ (u)

Received by the editors: 06.06.2002.

43



CRISTIAN CHIFU-OROS

The purpose of this paper is to use the Theorem 1.1 for constructing func-

tionals defined on the solution of system (2), which satisfy a maximum principle.

If c = 0, then the condition (ii) from Theorem 1.1, becomes:

−
m∑

k=1

∂ϕ(y)
yk

fk(x, y) ≥ 0,∀y ∈ Rm

m∑
k=1

∂ϕ(y)
yk

fk(x, y) ≤ 0,∀y ∈ Rm

∂ϕ

∂y1
f1 + ... +

∂ϕ

∂ym
fm ≤ 0,∀y ∈ Rm

We assume fk(x, y) = fk(y), and we can choose ϕ by solving the partial differential

equation:
dy1

f1
=

dy2

f2
= ... =

dym

fm
(3)

in the form ϕ(y) = k, where k is a constant.

2. Examples of functionals which satisfies MP

We will consider the system given in [1] ∆u + f(u, v) = 0

∆v + g(u, v) = 0
(4)

1. Let f(u, v) = − 1
β

v, g(u, v) = αu. We have:
∆u− 1

β
v = 0

∆v + αu = 0
(5)

The functional corresponding to this system is ϕ(u, v) = αu2 + βv2. Hence, since

α ≥ 0, β > 0, ϕ satisfies Theorem 1.1. We have:

Theorem 2.1. If (u,v) is a solution of (5) and α ≥ 0, β > 0, then αu2 +βv2

verifies MP.

Remark 2.1. This result represent a generalization of example 1, given in

[1].

2. Let f(u, v) = −αu− βv, g(u, v) = δu + γv.We have: ∆u− αu− βv = 0

∆v + δu + γv = 0
(6)
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The equation corresponding to this system is:

du

−αu− βv
=

dv

δu + γv

If u = zv, we obtain:
γz + δ

γz2 + (α + δ)z + β
= −1

v
dv

and if we put
∫ γz + δ

γz2 + (α + δ)z + β
dz = lnF (z), we will have:

ϕ(u, v) = Φ
[
vF

(u

v

)]
,Φ ∈ C1(R)

We can consider ϕ(u, v) = vF
(u

v

)
, but because of F, the properties of such

functional are very hard to study.

What we can observe is that if α = δ we have:

γz + α

γz2 + 2αz + β
dz = −1

v
dv

In this way we will obtain:

ϕ(u, v) = Φ
(√

γu2 + αuv + βv2
)

where Φ ∈ C1(R).

If we put Φ(t) = t2, then:

ϕ(u, v) = γu2 + αuv + βv2.

Theorem 2.2. If (u,v) is a solution of (6), and the matrix

 2γ α

α 2β

is

positive semidefinite i.e. γ ≥ 0, α2 ≤ 4βγ, then γu2 + αuv + βv2 verifies MP.

Remark 2.2. This result represents a generalization of 1.

3. In the general case of system (4) ∆u + f(u, v) = 0

∆v + g(u, v) = 0

the corresponding equation is
du

dv
=

f(u, v)
g(u, v)

:

g(u, v)du− f(u, v)dv = 0. (7)
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We consider the differential form ω = g(u, v)du − f(u, v)dv. ω is a total

differential if:
∂g

∂v
= −∂f

∂u
. (8)

We will choose ϕ in the form:

ϕ(u, v) =

(u,v)∫
(0,0)

g(u, v)du− f(u, v)dv + C (9)

The conditions of Theorem 1.1, becomes:

g(u, v)

u∫
0

∂g(u, v)
∂v

du− f(u, v)

v∫
0

∂f(u, v)
∂u

dv ≤ 0 (10)

∂g

∂u
−

v∫
0

∂f2(u, v)
∂u2

dv ≥ 0 (11)

∂g

∂u
−

v∫
0

∂2f(u, v)
∂u2

dv

  u∫
0

∂2g(u, v)
∂v2

du− ∂f

∂v

 ≥
(

∂g

∂v
− ∂f

∂u

)2

(12)

Because of (8) we have:

−∂2f

∂u2
=

∂2g

∂u∂v
;

∂2g

∂v2
= − ∂2f

∂u∂v
; −

v∫
0

∂2f

∂u2
dv =

∂g

∂u
;

u∫
0

∂2g

∂v2
du = −∂f

∂v

In these conditions, (10), (11), (12), becomes

0 ≤ 0

∂g

∂u
≥ 0 (13)(

∂g

∂v

)2

≤ −∂g

∂u

∂f

∂v
(14)(

∂f

∂u

)2

≤ −∂g

∂u

∂f

∂v
(15)

It is obvious that (14) or (15) are satisfied if:

∂f

∂v
≤ 0. (16)

Theorem 2.3. In conditions (8), (13), (14/15), (16), if (u,v) is a solution

of (4), then (9) verifies MP.

Remark 2.3. If f(u, v) = f(v), g(u, v) = g(u), the conditions from above

are: ǵ(u) ≥ 0, f́(v) ≤ 0. This case appears in [1].
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As an example if f(u, v) = u − 2v, g(u, v) = 2u − v, then the conditions of

Theorem 2.3 are satisfied and this implies that (u− v)2 verifies MP.

Let us consider now the functions from 2, i.e.

f(u, v) = −αu− βv

g(u, v) = γu + δv

From (8) we have δ = α, and so g is g(u, v) = γu + αv.

Conditions (13), (14/15), (16) are: γ ≥ 0, β ≤ 0, α2 ≤ βγ. In conclusion if

(u,v) is a solution of (4), with f and g as above, and γ ≥ 0, β ≤ 0, α2 ≤ βγ, then
1
2
γu2 + 2αuv +

1
2
βv2 verifies MP.

Remark 2.4. In this way ( but choosing another method) we have obtained

a functional as in 2, and the condition are the same.

4. Let us consider the system −∆u = λf(x, u)− v

−∆v = δu− γv
(17)

This system appears in [2] and the authors are looking for the existence of a positive

solution. We will try to find a functional with the properties from Theorem 1.1.

Let f(x, u) = f(u). We have: −∆u = λf(u)− v

−∆v = δu− γv
(18)

We will put f1(u, v) = λf(u)− v, g1(u, v) = δu− γv, and obtain: ∆u + f1(u, v) = 0

∆v + g1(u, v) = 0
(19)

From (8) we have −γ = −λf́(u), i.e. f́(u) =
γ

λ
u

(19) becomes:  ∆u + γu− v = 0

∆v + δu− γv = 0
(20)

The conditions (13), (14/15),(16), are satisfied if δ ≥ 0, γ2 ≤ δ.

So, if δ ≥ 0, γ2 ≤ δ, , and (u,v) is a solution of (20), then
1
2
δu2 +2γuv +

1
2
v2,

verifies MP.

Remark 2.5. This is a particular case of example given at 3.
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Remark 2.6. If we try to find ϕ, in the classical way, we´ll obtain δu2 +

2γuv + v2, which, in the same conditions, verifies MP.

Remark 2.7. We can try to find a integrating factor for

(δu− γv)du + (v − λf(u))dv = 0

from:

(δu− γv)
∂µ

∂v
− (v − λf(u))

∂µ

∂u
+ (−γ + λf́(u))µ = 0.

Let us consider now the system:
∆u + f(u, v, w) = 0

∆v + g(u, v, w) =

∆w + h(u, v, w) = 0

(21)

5. Let f(u, v, w) = −v − w, g(u, v, w) = u − w, h(u, v, w) = u + v, (21)

becomes: 
∆u− v − w = 0

∆v + u− w = 0

∆w + u + v = 0

(22)

Let ϕ(u, v) = u2 + v2 + w2. Condition (ii) from Theorem 1.1 becomes:

∂ϕ

∂u
f(u, v, w) +

∂ϕ

∂v
g(u, v, w) +

∂ϕ

∂w
h(u, v, w) ≤ 0.

ϕ satisfies this condition, and the hessian of ϕ is


2 0 0

0 2 0

0 0 2

 which is positive

definite. We have the following result:

Theorem 2.4. If (u,v,w) is a solution of (22) then u2+v2+w2 verifies MP.

6. Let f(u, v, w) = −βv − γw, g(u, v, w) = αu − γw, h(u, v, w) = αu + βv,

(21) becomes: 
∆u− βv − γw = 0

∆v + αu− γw = 0

∆w + αu + βv = 0

(23)
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Let ϕ(u, v) = αu2 + βv2 + γw2. Condition (ii) from Theorem 1.1 is verified

by ϕ. The hessian of ϕ is


2α 0 0

0 2β 0

0 0 2γ

 which is positive definite if α, β, γ ≥ 0.

Theorem 2.5. If (u,v,w) is a solution of (24), and α, β, γ ≥ 0, then αu2 +

βv2 + γw2 verifies MP.

7. Let f(u, v, w) = w−v, g(u, v, w) = u−w, h(u, v, w) = v−u, (21) becomes:
∆u + w − v = 0

∆v + u− w = 0

∆w + v − u = 0

(24)

Let ϕ1(u, v, w) = u2 + v2 + w2. (ii) from Theorem 1.1 is verified by ϕ, and

the hessian of ϕ is


2 0 0

0 2 0

0 0 2

 which is positive definite.

Theorem 2.6. If (u,v,w) is a solution of (24) then u2+v2+w2 verifies MP.

Let now ϕ2(u, v) = u2 + v2 + w2 + uv + uw + vw. ϕ verifies the condition (ii)

from Theorem 1.1. The hessian of ϕ is:
2 1 1

1 2 1

1 1 2

 ∼


2 0 0

0 3
2 0

0 0 7
6


and it is positive definite. In this way we obtain the following result:

Theorem 2.7. If (u,v,w) is a solution of (230 then u2+v2+w2+uv+uw+vw

verifies MP.

Remark 2.8. It is obvious that the example from above prove the fact that

the functional corresponding to a system, and which satisfy am maximum principle,

is not unique.

8. Let f(u, v, w) = −u+v−w, g(u, v, w) = −u−v+w, h(u, v, w) = u−v−w,

(21) becomes: 
∆u− u + v − w = 0

∆v − u− v + w = 0

∆w + u− v − w = 0

(25)
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Let ϕ(u, v) = u2 + v2 + w2. (ii) becomes −2(u2 + v2 + w2) ≤ 0, and the

hessian of ϕ, as we saw, is positive definite. We have:

Theorem 2.8. If (u,v,w) is a solution of (25) then u2+v2+w2 verifies MP.

Remark 2.9. If f(u, v, w) = −αu + βv − γw, g(u, v, w) = −αu − βv +

γw, h(u, v, w) = αu − βv − γw, with α, β, γ ≥ 0, and (u,v,w) is a solution of the

corresponding system, then αu2 + βv2 + γw2 verifies MP.

Let us suppose now that c 6= 0. Condition (ii) from Theorem 1.1 becomes:

− ∂ϕ

∂y1
f1 − ...− ∂ϕ

∂ym
fm + c

(
ϕ− ∂ϕ

∂y1
y1 − ...− ∂ϕ

∂ym
ym

)
≥ 0

(f1 + cy1)
∂ϕ

∂y1
+ ... + (fm + cym)

∂ϕ

∂ym
≤ cϕ

Let ϕ = y2
1 + ... + y2

m. We have:

2y1f1 + ... + 2ymfm + c
(
y2
1 + ... + y2

m

)
≤ 0 (26)

If m = 2 then (26) becomes:

2uf(u, v) + 2vg(u, v) + c(u2 + v2) ≤ 0 (27)

Remark 2.10. If f = cu and g = cv, condition (27) is verified for c ≤ 0, and

so u2 + v2 verifies MP.

Remark 2.11. If f(u, v) = −αu + βv, g(u, v) = −βu − γv, then condition

(27) is verified for α, β ≥ 0, and c ≤ 0

Remark 2.12. In general case if c ≤ 0 and tf(t1, ..., tk−1, t, tk+1, ..., tm) ≤ 0,

then
m∑

i=1

u2
i satisfies MP.

Remark 2.13. If we take ϕ(u, v) = αu2 + βv2 + γw2 (for the system with f

and g like in remark 11), then condition (27) take place if c ≤ 0, α, γ > 0, β2 < αγ.
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X -MAXIMAL SUBGROUPS IN FINITE π-SOLVABLE GROUPS
WITH RESPECT TO A SCHUNCK CLASS X

RODICA COVACI

Abstract. Let π be an arbitrary set of primes and X be a π-Schunck

class, i.e. X is a π-closed Schunck class. The paper establishes an exis-

tence and conjugacy theorem on X -maximal subgroups in finite π-solvable

groups. For the proof of the main result are used some theorems given

in [4] generalizing Ore’s theorems from [8]. Finally, some applications on

X -projectors in finite π-solvable groups are given.

1. Preliminaries

All groups considered in the paper are finite. We denote by π an arbitrary

set of primes and by π′ the complement to π in the set of all primes.

Some definitions will be reminded here:

Definition 1.1. A group G is primitive if G has a stabilizer W , i.e. a

maximal subgroup W of G such that coreGW = {1}, where

coreGW = ∩{W g/g ∈ G}.

Definition 1.2. a) A group G is π-solvable if any chief factor of G is either

a solvable π-group or a π′-group. If π is the set of all primes, we obtain the notion of

solvable group.

b) A class X of groups is π-closed if:

G/Oπ′(G) ∈ X ⇒ G ∈ X ,

where Oπ′(G) denotes the largest normal π′-subgroup of G.

Definition 1.3. a) A class X of groups is a homomorph if X is closed under

homomorphism, i.e. if G ∈ X and N is a normal subgroup of G, then G/N ∈ X .

Received by the editors: 15.04.2002.
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b) A homomorph X is a Schunck class if X is primitively closed, i.e. if any

group G, all of whose primitive factor groups are in X , is itself in X .

c) We shall call π-homomorph, respectively π-Schunck class, a π-closed ho-

momorph, respectively a π-closed Schunck class.

Definition 1.4. Let X be a class of groups, G a group and H a subgroup of

G.

a) H is an X -maximal subgroup of G if: (i) H ∈ X ; (ii) H ≤ H∗ ≤ G, H∗ ∈ X

imply H = H∗.

b) H is an X -projector of G if for any normal subgroup N of G, HN/N is

X -maximal in G/N .

c) H is an X -covering subgroup of G if: (i) H ∈ X ; (ii) H ≤ K ≤ G, K0 C K,

K/K0 ∈ X imply K = HK0.

The following results will be used in the paper:

Proposition 1.5. ([1]) A solvable minimal subgroup of a finite group is

abelian.

Proposition 1.6. ([6]) Let G be a group and N a subgroup of G. The

following two conditions are equivalent:

(1) N is normal in G and G/N is primitive;

(2) there is a maximal subgroup W of G such that N = coreGW .

2. Ore’s generalized theorems

In [4] are given some theorems generalizing Ore’s theorems from [8]. In order

to be used in the present paper, we remind them:

Theorem 2.1. Let G be a primitive π-solvable group. If G has a minimal

normal subgroup which is a solvable π-group, then G has one and only one minimal

normal subgroup.

Corollary 2.2. If G is a primitive π-solvable group, then G has at most one

minimal normal subgroup which is a solvable π-group.

Corollary 2.3. If a primitive π-solvable group G has a minimal normal

subgroup which is a solvable π-group, then G has no minimal normal subgroups which

are π′-groups.
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Theorem 2.4. If G is a primitive π-solvable group and N is a minimal

normal subgroup of G which is a solvable π-group, then CG(N) = N .

Theorem 2.5. Let G be a π-solvable group such that:

(i) there is a minimal subgroup M of G which is a solvable π-group and

CG(M) = M ;

(ii) there is a minimal normal subgroup L/M of G/M such that L/M is a

π′-group. Then G is primitive.

Theorem 2.6. If G is a π-solvable group satisfying (i) and (ii) from 2.5.,

then any two stabilizers W1 and W2 of G are conjugate in G.

Theorem 2.7. If G is a primitive π-solvable group, V < G, such that there

is a minimal normal subgroup M of G which is a solvable π-group and MV = G,

then V is a stabilizer of G.

3. An existence and conjugacy theorem on X -maximal subgroups in finite

π-solvable groups

In preparation for the main theorem we give the following lemma:

Lemma 3.1. If G is a finite group, W is a maximal subgroup of G and

A 6= {1} is a normal subgroup of G, such that AW = G and A ∩W = {1}, then A is

a minimal normal subgroup of G.

Proof. We have that A 6= {1} is a normal subgroup of G. Let now A∗ 6= {1}

be a normal subgroup of G, such that A∗ ≤ A. We shall prove that A∗ = A. Since

W ≤ A∗W ≤ AW = G,

it follows that A∗W = W or A∗W = G. But, if we suppose that A∗W = W , we have

A∗ ⊆ A ∩W = {1},

hence the contradiction A∗ = {1}. So A∗W = G. In order to prove that A∗ = A,

suppose that A∗ < A. This means that there is an element a ∈ A \ A∗ ⊆ G = A∗W .

Then a = a∗w, with a∗ ∈ A∗, w ∈ W . It follows that

w = (a∗)−1a ∈ A ∩W = {1},

hence w = 1, which implies the contradiction a = a∗ ∈ A∗. So A∗ = A. �

The main theorem of this paper is the following:
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Theorem 3.2. Let X be a π-Schunck class, G a π-solvable group and A an

abelian normal subgroup of G with G/A ∈ X . Then:

(1) there is a subgroup S of G with S ∈ X and AS = G;

(2) there is an X -maximal subgroup S of G with AS = G;

(3) if S1 and S2 are X -maximal subgroups of G with AS1 = G = AS2, then

S1 and S2 are conjugate in G.

Proof.

(1) Let

S = {S∗/S∗ ≤ G, AS∗ = G}.

Since G ∈ S, we have S 6= ∅. Considering S ordered by inclusion and applying Zorn’s

lemma, S has a minimal element S. Obviously, AS = G.

We shall prove that S ∈ X .

Put D = S ∩ A. Let us notice that D is a normal subgroup of G. Indeed, if

g ∈ G and d ∈ D, we have g = as, with a ∈ A, s ∈ S, and so, A being abelian and D

being normal in S,

g−1dg = (as)−1d(as) = s−1a−1das = s−1a−1ads = s−1ds ∈ D.

Let W be a maximal subgroup of S. Then D ≤ W , else DW 6= W , hence

W < DW ≤ S

and so DW = S. But this implies

G = AS = ADW = AW,

which means that W ∈ S, in contradiction with the minimality of S in S.

Put N = coreSW . We have D ≤ N . Indeed, from D ≤ W it follows that

D = Dg ≤ W g for any g ∈ S, hence D ≤ coreSW = N . Then

S/N ∼= (S/D)/(N/D).

But

S/D = S/S ∩A ∼= AS/A = G/A ∈ X .

X being a homomorph, it follows that S/N ∈ X .
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For any primitive factor group S/N of S, we have S/N ∈ X . Indeed, S/N

being primitive, it follows from 1.6. that there is a maximal subgroup W of S such

that N = coreSW . But we proved that in this case we have S/N ∈ X . This means

that any primitive factor group S/N of S is in X . The primitive closure of X leads

now to S ∈ X . Thus (1) is proved.

(2) Let now

S∗ = {S/S ≤ G, S ∈ X , AS = G}

ordered by inclusion. Because of (1), S∗ 6= ∅. By Zorn’s lemma, S∗ has a maximal

element S ∈ S∗. Obviously, S ≤ G, S ∈ X , AS = G. We shall prove that S in an

X -maximal subgroup of G. Let S ≤ S∗ ≤ G, with S∗ ∈ X . Then S = S∗, as the

following considerations show: from AS = G it follows that AS∗ = G and so S∗ ∈ S∗;

but S ≤ S∗, S∗ ∈ S∗ imply by the maximality of S that S = S∗.

(3) Let S1 and S2 be X -maximal subgroups of G with AS1 = G = AS2. We

shall prove by induction on |G| that S1 and S2 are conjugate in G.

Let us distinguish two cases:

a) G ∈ X . S1 and S2 being X -maximal subgroups of G, we have S1 = G = S2

and so S1 and S2 are conjugate in G.

b) G 6∈ X . It means that there is a primitive factor group G/N with G/N 6∈

X , else the primitive closure of X leads to the contradiction G ∈ X . We also have

NS1 6= G and NS2 6= G. Indeed, if we suppose, for example, that NS1 = G, we

obtain

NS1/N = G/N 6∈ X

and on the other side

NS1/N ∼= S1/S1 ∩N ∈ X .

Let us prove that AN/N is minimal normal subgroup of G/N . The factor

group G/N being primitive, we apply 1.6. and there is a minimal subgroup W of G

with N = coreGW . We have A 6⊆ W , because supposing that A ≤ W it follows that

for any g ∈ G, A = Ag ≤ W g, hence

A ≤ ∩{W g/g ∈ G} = coreGW = N
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and

G/A = AS1/A ∼= S1/A ∩ S1 ∈ X

and so

G/N ∼= (G/A)/(N/A) ∈ X ,

in contradiction with G/N 6∈ X . Put A1 = A ∩W . Since W is a maximal subgroup

of G, we have AW = W or AW = G. But AW = W implies A ≤ W , a contradiction.

So AW = G. It is easy to prove that A1 is a normal subgroup of G. Indeed, if

g ∈ G = AW and a1 ∈ A1, put g = aw, with a ∈ A, w ∈ W and, A being abelian

and A1 being normal in W , we have:

g−1a1g = (aw)−1a1(aw) = w−1a−1a1aw = w−1a1a
−1aw = w−1a1w ∈ A1.

We are now in the hypotheses of lemma 3.1. Indeed, W/A1 is a maximal

subgroup of G/A1, A/A1 is a normal 6= {1} subgroup of G/A1 satisfying:

A/A1 ·W/A1 = G/A1 and A/A1 ∩W/A1 = {1}.

It follows that A/A1 is a minimal normal subgroup of G/A1. From this and from the

isomorphism

AN/N ∼= A/A1

we obtain that AN/N is minimal normal subgroup of G/N .

Denote by M = AN . It follows that for i = 1, 2, we have

(NSi)M = (NSi)(AN) = G.

Furthermore, NSi/N is a stabilizer of G/N , for i = 1, 2. In order to prove this,

we use theorem 2.7. In the primitive π-solvable group G/N , we consider NSi/N <

G/N and M/N = AN/N minimal normal subgroup of G/N . Obviously, M/N ·

NSi/N = G/N . It remains to prove that M/N is a solvable π-group. Being a

minimal normal subgroup of the π-solvable group G/N , M/N is either a solvable

π-group or a π′-group. If we suppose that M/N is a π′-group, we obtain

M/N ≤ Oπ′(G/N) ≤ G/N

and

(G/N)/Oπ′(G/N) ∼= ((G/N)/(M/N))/(Oπ′(G/N)/(M/N)).
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But X being a homomorph, we have

(G/N)/(M/N) ∼= G/M ∼= G/AN ∼= (G/A)/(AN/A) ∈ X

and

(G/N)/Oπ′(G/N) ∈ X ,

hence by the π-closure of the class X we obtain the contradiction G/N ∈ X . It follows

that M/N is a solvable π-group. Applying 2.7., NSi/N is a stabilizer of G/N .

The next step in our proof is to show that NS1/N and NS2/N are conjugate

in G/N . For this, we apply theorem 2.6. to the π-solvable group G/N . Indeed, G/N

satisfies the conditions (i) and (ii) from theorem 2.5., as we prove below:

(i) M/N = AN/N is minimal normal subgroup of G/N , such that M/N is a

solvable π-group and CG/N (M/N) = M/N . The last condition follows from theorem

2.4. applied to the primitive π-solvable group G/N and its minimal normal subgroup

M/N which is a solvable π-group.

(ii) There is a minimal normal subgroup (L/N)/(M/N) of (G/N)/(M/N),

such that (L/N)/(M/N) is a π′-group. Indeed, if we suppose the contrary, then any

minimal normal subgroup (L/N)/(M/N) of the π-solvable group (G/N)/(M/N) is

a solvable π-group. But M/N being a solvable π-group, it follows that L/N is also

a solvable π-group. Theorem 2.1. applied to the primitive π-solvable group G/N ,

which has the minimal normal subgroup M/N such that M/N is a solvable π-group,

leads to the conclusion that G/N has one and only one minimal subgroup. Since L/N

is a 6= {1} normal subgroup of G/N , two possibilities can happen:

1) L/N is a minimal normal subgroup of G/N . It follows that M/N =

L/N , in contradiction with the assumption that (L/N)/(M/N) is a minimal normal

subgroup of (G/N)/(M/N).

2) L/N is not a minimal normal subgroup of G/N and so M/N < L/N . But

this also leads to a contradiction, as the following shows:

G/N = M/N ·NS1/N < L/N ·NS1/N = G/N.

We are now in the hypotheses of theorem 2.6., hence NS1/N and NS2/N are

conjugate in G/N . It follows that

NS1 = (NS2)g = NSg
2 ,
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where g ∈ G.

Denote by

G∗ = NS1 = NSg
2

and by

A∗ = A ∩G∗.

We can now apply the induction for G∗, where G∗ = NS1 < G. Indeed, A∗

is an abelian normal subgroup of G∗, with

G∗/A∗ = G∗/A ∩G∗ ∼= AG∗/A = ANS1/A = G/A ∈ X

and S1 and Sg
2 are X -maximal subgroups in G∗. We also have:

A∗S1 = (A ∩G∗)S1 = S1(A ∩G∗) = (S1A) ∩G∗ = G ∩G∗ = G∗

and

A∗Sg
2 = (A ∩G∗)Sg

2 = Sg
2 (A ∩G∗) = (Sg

2A) ∩G∗ = (S2A)g ∩G∗ = G ∩G∗ = G∗.

By the induction, S1 and Sg
2 are conjugate in G∗. It follows that S1 and S2 are

conjugate in G. �

Remarks. a) Theorem 3.2. was earlier establishes in [2], but the proof was

based on some of R. Baer’s theorems from [1]. In the present paper, we give a new

proof, based on Ore’s generalized theorems given in [4].

b) Particularly, for π the set of all primes, we obtain from theorem 3.2. a

theorem given in [6] by W. Gaschütz.

4. Projectors in finite π-solvable groups

Theorem 3.2 is important for the study of projectors in finite π-solvable

groups, as the following result (given in [3]) shows:

Theorem 4.1. If X is a π-Schunck class, then any two X -projectors of a

π-solvable group G are conjugate in G.

Proof. By induction on |G|. We remind the proof from [3]:

Let S1 and S2 be two X -projectors of G. Let M be a minimal normal sub-

group of G. Put S∗
1 = MS1 and S∗

2 = MS2. Applying the induction for G/M , we

60



X -MAXIMAL SUBGROUPS IN FINITE π-SOLVABLE GROUPS

obtain that S∗
1/M and S∗

2/M are conjugate in G/M , hence S∗
1 and S∗

2 are conjugate

in G, i.e. S∗
1 = (S∗

2 )g, with g ∈ G.

We prove that S1 and S2 are conjugate in G, considering the two cases which

are possible for the minimal normal subgroup M of the π-solvable group G:

1) M is a solvable π-group. Then by 1.5., M is abelian. We are now in the

hypotheses of theorem 3.2.: S∗
1 is π-solvable, where

S∗
1 = MS1 = MSg

2 ,

M is a normal abelian subgroup of S∗
1 , with S∗

1/M ∈ X and S1 and Sg
2 are X -maximal

subgroups in S∗
1 . Applying theorem 3.2., we deduce that S1 and Sg

2 are conjugate in

S∗
1 . It follows that S1 and S2 are conjugate in G.

2) M is a π′-group. Then

M ≤ Oπ′(S∗
1 )

and

S∗
1/Oπ′(S∗

1 ) ∼= (S∗
1/M)/(Oπ′(S∗

1 )/M) ∈ X ,

which imply by the π-closure of X that S∗
1 ∈ X . Hence by the fact that S1 and Sg

2

are X -maximal in S∗
1 , we obtain S1 = S∗

1 = Sg
2 . �

The conjugacy theorem 4.1. on projectors can be completed with an existence

theorem. In [5], we proved by means of Ore’s generalized theorems ([4]) the following

result:

Lemma 4.2. Let X be a π-homomorph. X is a Schunck class is and only if

any finite π-solvable group G has X -covering subgroups.

It is well-known that for a homomorph X and a finite group G, any X -covering

subgroup of G is also an X -projector of G. Thus lemma 4.2. leads to the following

existence theorem on projectors:

Theorem 4.3. If X is a π-Schunck class, then any finite π-solvable group

G has X -projectors.

In [3] we proved the following result:

Lemma 4.4. A π-homomorph X with the property that any finite π-solvable

group has X -projectors is a Schunck class.
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Theorem 4.5. Let X be a π-homomorph. X is a Schunck class if and only

if any finite π-solvable group has X -projectors.
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ON SOME Ω-PURE EXACT SEQUENCES OF MODULES

IULIU CRIVEI

Abstract. Let R be an associative ring with non-zero identity. We shall

consider a family Ω of left R-modules of the form R/Rrn, where r ∈ R

and n ≥ 1 is a natural number depending on r such that rn 6= 0 for

each r 6= 0. We shall characterize Ω-pure exact sequences of right R-

modules and absolutely Ω-pure right R-modules. We shall also establish

the structure of Ω-pure-projective right R-modules.

1. Introduction

In this paper we denote by R an associative ring with non-zero identity and

all R-modules are unital. By Mod-R we denote the category of right R-modules.

By a homomorphism we understand an R-homomorphism. The injective hull of an

R-module A is denoted by E(A).

Let Ω be a class of left R-modules and let

0 −→ A
f−→ B

g−→ C −→ 0 (1)

be a short exact sequence of right R-modules, where f and g are homomorphisms.

If the tensor product f ⊗R 1D : A ⊗R D → B ⊗R D is a monomorphism for every

D ∈ Ω, it is said that the sequence (1) is Ω-pure. If A is a submodule of B, f is

the inclusion monomorphism and the sequence (1) is Ω-pure, then A is said to be an

Ω-pure submodule of B.

A right R-module M is called projective with respect to the sequence (1)

if the natural homomorphism HomR(M,B) → HomR(M,C) is surjective. A right

R-module is called injective with respect to the sequence (1) (or with respect to the

monomorphism f) if the natural homomorphism HomR(B,M) → HomR(A,M) is
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surjective. A right R-module P is said to be Ω-pure-projective if P is projective with

respect to every Ω-pure short exact sequence of right R-modules.

Following Maddox [2], a right R-module M is said to be absolutely pure if

M is pure in every right R-module which contains M as a submodule.

If Ω = {R/Rr | r ∈ R}, then an Ω-pure exact sequence (1) is called RD-pure

[5].

Denote by N the set of natural numbers, by Z the ring of integers, R∗ =

R \ {0}, N∗ = N \ {0} and by P(N∗) the set of all subsets of N∗.

Let ϕ : R → P(N∗) be a function such that for every r ∈ R∗ and every

n ∈ ϕ(r), rn 6= 0.

In this paper we shall consider the family of left R-modules

Ω = {R/Rrn | r ∈ R∗ , n ∈ ϕ(r)} .

Notice that if the exact sequence (1) is RD-pure, then it is Ω-pure. Also, if ϕ(r) = {1}

for every r ∈ R, then Ω-purity is the same as RD-purity.

We shall characterize Ω-pure short exact sequences and we shall determine

the structure of Ω-pure-projective right R-modules. Also, we introduce the notion of

absolutely Ω-pure right R-module and we establish some properties for such modules.

2. Basic results

We shall recall two results which will be used later in the paper.

Theorem 2.1. [4, Proposition 2.3] Let T be a set of right R-modules which

contains a family of generators for Mod-R and let p−1(T ) be the class of all short

exact sequences in Mod-R with the property that every R-module in T is projective

with respect to them. Then:

(i) For every right R-module L there exists a short exact sequence

0 −→ N −→ M −→ L −→ 0

in p−1(T ) with M ∈ T .

(ii) Every right R-module which is projective with respect to each sequence in

p−1(T ) is a direct summand of a direct sum of R-modules in T .
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Lemma 2.2. [6, Lemma 7.16] Consider the commutative diagram with exact

rows in Mod-R

M1

f1 //

ϕ1

��

M2

f2 //

ϕ2

��

M3
//

ϕ3

��

0

0 // N1

g1 // N2

g2 // N3

The following statements are equivalent:

(i) There exists α : M3 → N2 with g2α = ϕ3;

(ii) There exists β : M2 → N1 with βf1 = ϕ1.

Now we can characterize Ω-pure submodules.

Theorem 2.3. Let A be a submodule of a right R-module B. Then the

following statements are equivalent:

(i) A is Ω-pure in B.

(ii) For every r ∈ R∗ and every n ∈ ϕ(r),

Arn = A ∩Brn .

(iii) For every r ∈ R∗ and every n ∈ ϕ(r), c = brn ∈ A for some b ∈ B

implies c = arn for some a ∈ A.

Proof. (i) ⇐⇒ (ii) A is Ω-pure in B if and only if for every r ∈ R∗ and every n ∈ ϕ(r)

the sequence of Z-modules

0 → A⊗R R/Rrn f⊗1R/Rrn

−→ B ⊗R R/Rrn g⊗1R/Rrn

−→ C ⊗R R/Rrn → 0 (2)

is exact, where f : A → B is the inclusion homomorphism. It is known the isomor-

phism of Z-modules

D ⊗R R/K ∼= D/DK ,

where D is a right R-module and K is a left ideal of R. Then the sequence (2) is

exact if and only if the sequence of Z-modules

0 −→ A/Arn f1−→ B/Brn g1−→ C/Crn −→ 0 (3)

is exact, where f1(a+Arn) = a+Brn for every a ∈ A. But f1 is injective if and only

if A∩Brn ⊆ Arn. Since the converse inclusion is clear, it follows that A is Ω-pure in

B if and only if for every r ∈ R∗ and every n ∈ ϕ(r), we have Arn = A ∩Brn.
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(ii) =⇒ (iii) Assume that (ii) holds. Let r ∈ R∗ and n ∈ ϕ(r). Then

Arn = A ∩ Brn. Let c = brn ∈ A for some b ∈ B. Then c ∈ A ∩ Brn = Arn. Hence

there exists a ∈ A such that c = arn.

(iii) =⇒ (ii) Assume that (iii) holds. Let r ∈ R∗ and n ∈ ϕ(r). Let

c ∈ A ∩ Brn. Then there exists a ∈ A such that c = arn. Then c ∈ Arn. It follows

that A ∩Brn ⊆ Arn. Therefore, A ∩Brn = Arn. �

Theorem 2.4. The following statements are equivalent:

(i) The exact sequence (1) of right R-modules is Ω-pure.

(ii) For every r ∈ R∗, for every n ∈ ϕ(r) and for every commutative diagram

of right R-modules:

A
f

// B

rnR

k

OO

v
// R

h

OO
(4)

where k and h are homomorphisms and v is the inclusion homomorphism, there exists

a homomorphism w : R → A such that k = wv.

(iii) For every r ∈ R∗ and for every n ∈ ϕ(r), the right R-module R/rnR is

projective with respect to the exact sequence (1) of right R-modules.

Proof. We may suppose without loss of generality that A is an Ω-pure submodule of

B and f is the inclusion homomorphism.

(i) =⇒ (ii) Assume that (i) holds. Let r ∈ R∗ and n ∈ ϕ(r). Now consider the

commutative diagram (4) of right R-modules, where v is the inclusion homomorphism.

Denote b = h(1) and c = k(rn). Then

c = fk(rn) = hv(rn) = h(rn) = brn .

By Theorem 2.3, there exists a ∈ A such that c = arn. Define the homomorphism

w : R → A by w(1) = a. Then

wv(rn) = w(rn) = arn = c = k(rn) ,

hence k = wv.

(ii) =⇒ (i) Assume that (ii) holds. Let r ∈ R∗, n ∈ ϕ(r) and suppose that

c = brn ∈ A for some b ∈ B. Define the homomorphisms h : R → B by h(1) = b and
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k : rnR → A by k(rns) = cs for every s ∈ R. If rns = rnt for some s, t ∈ R, then

cs− ct = c(s− t) = brn(s− t) = 0 ,

hence k is well defined. Let v : rnR → R be the inclusion homomorphism. We have

hv(rn) = h(rn) = brn = c = fk(rn) ,

that is, hv = fk. Thus we obtain a commutative diagram (4). Hence there exists an

homomorphism w : R → A such that k = wv. Denote a = w(1). Then

c = k(rn) = wv(rn) = w(rn) = arn .

By Theorem 2.3, the exact sequence (1) is Ω-pure.

(ii) =⇒ (iii) Assume that (ii) holds. Let r ∈ R∗ and n ∈ ϕ(r). Consider the

exact sequence of right R-modules

0 −→ rnR
v−→ R

q−→ R/rnR −→ 0 (5)

where v is the inclusion homomorphism and q is the natural projection. Let p :

R/rnR → C be a homomorphism. Since R is projective, there exists a homomorphism

h : R → B such that gh = pq. We have ghv = pqv = 0, hence there exists a

homomorphism k : rnR → A such that hv = fk. Hence there exists a homomorphism

w : R → A such that wv = k. Thus we obtain a commutative diagram

0 // A
f

// B
g

// C // 0

0 // rnR

k

OO

v
// R

h

OO

q
// R/rnR

p

OO

// 0

(6)

with exact rows. By Lemma 2.2, there exists a homomorphism u : R/rnR → B such

that p = gu. Therefore R/rnR is projective with respect to the exact sequence (1).

(iii) =⇒ (ii) Assume that (iii) holds. Let r ∈ R∗ and n ∈ ϕ(r). Consider the

commutative diagram of right R-modules (4), where v is the inclusion homomorphism.

We construct the exact sequence (5), where q is the natural projection. Since ghv =

gfk = 0, there exists a homomorphism p : R/rnR → C such that pq = gh. Thus we

obtain a commutative diagram (6) with exact rows. Since R/rnR is projective with

respect to the sequence (1), there exists a homomorphism u : R/rnR → B such that
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p = gu. By Lemma 2.2, there exists a homomorphism w : R → A such that k = wv.

�

By Theorems 2.1 and 2.4, we deduce the following two corollaries, giving the

structure of Ω-pure-projective R-modules.

Corollary 2.5. For every right R-module L there exists a short exact se-

quence of right R-modules

0 −→ N −→ M −→ L −→ 0

where M is Ω-pure-projective and N is an Ω-pure submodule of M .

Corollary 2.6. Every Ω-pure-projective right R-module is a direct summand

of a direct sum of R-modules of the form R/rnR, where r ∈ R and n ∈ ϕ(r).

Corollary 2.7. Let r ∈ R∗ and n ∈ ϕ(r). Then the following statements are

equivalent:

(i) The right ideal rnR is Ω-pure in R.

(ii) The right ideal rnR is a direct summand of R.

Proof. (i) =⇒ (ii) Assume that (i) holds. Consider the exact sequence (5) of right

R-modules. By Theorem 2.4, R/rnR is projective with respect to the sequence (5).

Then the sequence (5) splits, that is, rnR is a direct summand of R.

(ii) =⇒ (i) Clear. �

3. Absolutely Ω-pure modules

We shall give the following definition.

Definition. A right R-module A is called absolutely Ω-pure if A is Ω-pure

in each right R-module which contains it as a submodule.

In the sequel we shall denote by A the class of absolutely Ω-pure right R-

modules.

Theorem 3.1. Let A be a right R-module. Then the following statements

are equivalent:

(i) A ∈ A.

(ii) A is Ω-pure in E(A).
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(iii) For every r ∈ R∗ and n ∈ ϕ(r), A is injective with respect to the inclusion

homomorphism v : rnR → R.

Proof. (i) =⇒ (ii) Clear.

(ii) =⇒ (iii) Assume that (ii) holds. Denote B = E(A) and let r ∈ R∗ and

n ∈ ϕ(r). Let k : rnR → A be a homomorphism. Since B is injective, there exists

a homomorphism h : R → B such that hv = fk. By Theorem 2.4, there exists a

homomorphism w : R → A such that k = wv. Hence A is injective with respect to v.

(iii) =⇒ (i) Assume that (iii) holds. Let r ∈ R∗ and n ∈ ϕ(r). Let B be a

right R-module which contains A as a submodule. Consider the commutative diagram

(4) of right R-modules, where f is the inclusion homomorphism. Then there exists a

homomorphism w : R → A such that wv = k, because A is injective with respect to

v. By Theorem 2.4, A is Ω-pure in B, that is, A is absolutely Ω-pure. �

Remark. Every injective right R-module is absolutely Ω-pure.

Corollary 3.2. The class A is closed under taking direct products and direct

summands.

Proof. It follows as for injectivity [3, Proposition 2.2]. �

Lemma 3.3. The class A is closed under taking direct sums.

Proof. Let (Ai)i∈I be a family of absolutely Ω-pure right R-modules and let A =

⊕i∈IAi. Let r ∈ R∗ and n ∈ ϕ(r) and let k : rnR → A be a homomorphism.

Since k(rnR) is generated by k(rn), there exists a finite subset J ⊆ I such that

k(rnR) ⊆ ⊕i∈JAi = D. By Corollary 3.2, D ∈ A. Therefore by Theorem 3.1, there

exists a homomorphism q : R → D such that qv = u, where u : rnR → D is the

homomorphism defined by u(rns) = k(rns) for every s ∈ R. Let α : D → A be the

inclusion homomorphism. Then αqv = αu = k. By Theorem 3.1, A ∈ A. �

Theorem 3.4. Let (1) be a short exact sequence of right R-modules and let

A,C ∈ A. Then B ∈ A.

Proof. Similar to the proof given for absolutely F/U -pure modules [1, Theorem 2.7].

�
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QUANTITATIVE ESTIMATES FOR SOME LINEAR AND POSITIVE
OPERATORS

ZOLTÁN FINTA

Abstract. The purpose of this paper is to establish quantitative estimates

for the rate of convergence of some linear and positive operators. The most

of them are generated by special functions.

1. Introduction

For the Bernstein operator

Bn(f, x) =
n∑

k=0

 n

k

xk(1− x)n−kf

(
k

n

)
, f ∈ C[0, 1], ϕ(x) =

√
x(1− x)

it is well - known that there exists an absolute constant C > 0 such that

|Bn(f, x)− f(x)| ≤ C ω2

(
f,

√
x(1− x)

n

)
, x ∈ [0, 1] (1)

and

‖Bn(f)− f‖ ≤ C ωϕ
2

(
f,

√
1
n

)
. (2)

(see [2, p. 308, Theorem 3.2] and [3, p. 117, Theorem 9.3.2], respectively). Here

ω2(f, δ) = sup
0<h≤δ

sup
x,x±h∈[0,1]

|f(x + h)− 2f(x) + f(x− h)|

is the usual second moduli of smoothness and

ωϕ
2 (f, δ) = sup

0<h≤δ
sup

x±hϕ(x)∈[0,1]

|f(x + hϕ(x))− 2f(x) + f(x− hϕ(x))|,

Received by the editors: 04.06.2002.

2000 Mathematics Subject Classification. 41A10, 41A36.

Key words and phrases. the first and the second moduli of smoothness, the first and the second modulus

of smoothness of Ditzian - Totik.
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ϕ(x) =
√

x(1− x), x ∈ [0, 1] is the second modulus of smoothness of Ditzian - Totik.

Furthermore, we shall use the first and second moduli of smoothness of a function

g : I → < as defined by

ω1(g, δ) = sup
0<h≤δ

sup
x,x+h∈I

|g(x + h)− g(x)|,

ω2(g, δ) = sup
0<h≤δ

sup
x,x±h∈I

|g(x + h)− 2g(x) + g(x− h)|,

and the following Ditzian - Totik type moduluses of smoothness:

ωϕ
1 (g, δ) = sup

0<h≤δ
sup

x±hϕ(x)∈[0,1]

∣∣∣ g(x +
h

2
ϕ(x)

)
− g

(
x− h

2
ϕ(x)

) ∣∣∣,
g ∈ C[0, 1], ϕ(x) =

√
x(1− x),

ωϕ
2 (g, δ)∞ = sup

0<h≤δ
sup

x±hϕ(x)∈[0,∞)

|g(x + hϕ(x))− 2g(x) + g(x− hϕ(x))|,

g ∈ CB [0,∞), ϕ(x) =
√

x,

where CB [0,∞) denotes the set of all bounded and continuous functions on [0,∞).

The aim of this paper is to establish pointwise and global uniform quantitative

estimates for some linear and positive operators using the above mentioned moduluses

of smoothness, obtaining estimates similar to (1) and (2). These operators are the

following:

1. Stancu’s operator [9]:

Sα
n (f, x) =

n∑
k=0

wn,k(x, α)f
(

k

n

)
, f ∈ C[0, 1], α ≥ 0

and

wn,k(x, α) =

 n

k

 ∏k−1
i=o (x + iα)

∏n−k−1
j=0 (1− x + jα)∏n−1

r=0 (1 + rα)
;

2. Lupaş’ operator [5]:

B̄n(f, x) =
1

B(nx, n− nx)
·
∫ 1

0

tnx−1(1− t)n(1−x)−1 f(t) dt, x ∈ (0, 1)

and B̄n(f, 0) = f(0), B̄n(f, 1) = f(1);

3. Miheşan’s operators [7]:
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a) if 2F1(a, b, c, z) is the hypergeometric function and in the integral form

2F1(a, b, c, z) =
1

B(a, c− a)
·
∫ 1

0

ta−1(1− t)c−a−1(1− tz)−b dt,

a, b, c, z ∈ <, |z| < 1, c 6= 0,−1,−2, . . . and c > a > 0 then

F ∗
n(f, x) =

n∑
k=0

2F1

(
x
α + k, b, 1

α + n, z
)

2F1

(
x
α , b, 1

α , z
) · wn,k(x, α) · f

(
k

n

)
,

f ∈ C[0, 1], x ∈ [0, 1], α > 0, b ≥ 0, 0 ≤ z < 1;

b) if 1F1(a, c, z) is the confluent hypergeometric function of the first kind

and in the integral form

1F1(a, c, z) =
1

B(a, c− a)
·
∫ 1

0

ta−1(1− t)c−a−1ezt dt,

a, c, z ∈ <, c 6= 0,−1,−2, . . . and c > a > 0 then

F∗n(f, x) =
n∑

k=0

 n

k

 ·
∫ 1

0
t

x
α +k−1(1− t)

1−x
α +n−k−1ezt f(t) dt∫ 1

0
t

x
α−1(1− t)

1−x
α −1ezt dt

,

f ∈ C[0, 1], x ∈ [0, 1], α > 0, z ≥ 0;

c)

L∗n(f, x) = e−na
∞∑

k=0

(na)k

k!
· nx(nx + 1) . . . (nx + k − 1)

na(na + 1) . . . (na + k − 1)
·

· 1F1(na− nx, na + k, na) · f
(

k

n

)
,

f ∈ C[0,∞), x ∈ [0, a];

d)

L̃n(f, x) =
(

b + c

c

)−nx ∞∑
k=0

b(b + 1) . . . (b + k − 1)
c(c + 1) . . . (c + k − 1)

·

·nx(nx + 1) . . . (nx + k − 1)
k!

·
(

b

b + c

)k

·

· 2F1

(
nx + k, c− b, c + k,

b

b + c

)
· f
(

k

n

)
,

f ∈ C[0,∞), x ∈ [0,∞) 0 < b < c.

4. Furthermore, we define a generalization of Goodmann and Sharma’s oper-

ator as follows:

Uα
n (f, x) = f(0)wn,0(x, α) + f(1)wn,n(x, α)+
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+
n−1∑
k=1

wn,k(x, α)
∫ 1

0

(n− 1)

 n− 2

k − 1

 tk−1(1− t)n−1−kf(t) dt,

f ∈ C[0, 1], α ≥ 0.

Remark 1. a) For b = c we obtain

L̃n(f, x) = 2−nx
∞∑

k=0

nx(nx + 1) . . . (nx + k − 1)
2k k!

f

(
k

n

)
.

This operator was introduced by Lupaş in [6].

b) Here we mention that throughout this paper C denotes absolute constant and not

necessarily the same at each occurrence.

2. Theorems

Before we state our results let us observe that the operators introduced in 1),

2), 3a), 3b) and 4) are generated by special functions. Indeed, if Bα : C[0, 1] → C[0, 1],

Bα(f, x) =

∫ 1

0
t

x
α−1(1− t)

1−x
α −1 f(t) dt∫ 1

0
t

x
α−1(1− t)

1−x
α −1 dt

;

Fα
b,z : C[0, 1] → C[0, 1],

Fα
b,z(f, x) =

∫ 1

0
t

x
α−1(1− t)

1−x
α −1(1− zt)−b f(t) dt∫ 1

0
t

x
α−1(1− t)

1−x
α −1(1− zt)−b dt

and Fα
z : C[0, 1] → C[0, 1],

Fα
z (f, x) =

∫ 1

0
t

x
α−1(1− t)

1−x
α −1ezt f(t) dt∫ 1

0
t

x
α−1(1− t)

1−x
α −1ezt dt

then, in view of [9, Theorem 3.1] and [7, Propoziţia 2.18 and Propoziţia 2.19] we have

Sα
n (f, x) = Bα(Bn(f), x); (3)

Uα
n (f, x) = Bα(Un(f), x), (4)

where

Un(f, x) = f(0)(1− x)n + f(1)xn+

+
n−1∑
k=1

 n

k

xk(1− x)n−k ·
∫ 1

0

(n− 1)

 n− 2

k − 1

 tk−1(1− t)n−1−k f(t) dt,
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f ∈ C[0, 1], is the Goodman - Sharma’s operator [8];

B̄n(f, x) = B 1
n
(f, x); (5)

F ∗
n(f, x) = Fα

b,z(Bn(f), x) (6)

and

F∗n(f, x) = Fα
z (Bn(f), x). (7)

Furthermore, let us consider the following notations

β(n, x, α, b, z) =
1
n

(1− z)−(b+1) · x(1− x)
1 + α

+ (1− z)−(b+1) · αx(1− x)
1 + α

+

+ 2 (1− z)−(b+1) ·
(
1− (1− z)2(b+1)

)
x2,

x ∈ [0, 1], α > 0, b ≥ 0, 0 ≤ z < 1;

γ(n, x, α, z) =
1
n

ez · x(1− x)
1 + α

+ ez · αx(1− x)
1 + α

+ 2 ez (1− e−2z) x2,

x ∈ [0, 1], α > 0, z ≥ 0;

β′(n, α, b, z) =
1
4n

(1− z)−(b+1) · 1
1 + α

+
1
4

(1− z)−(b+1) · α

1 + α
+

+ 2 (1− z)−(b+1)
(
1− (1− z)2(b+1),

)
α > 0, b ≥ 0, 0 ≤ z < 1 and

γ′(n, α, z) =
1
4n

ez · 1
1 + α

+
1
4

ez · α

1 + α
+ 2 ez(1− e−2z),

α > 0, z ≥ 0, respectively.

The next theorem contains the local approximation results for the above

mentioned operators:

Theorem 1. For all f ∈ C[0, 1] we have

a) |Sα
n (f, x)− f(x)| ≤ C ω2

(
f,
√

1+nα
n(1+α) · x(1− x)

)
, x ∈ [0, 1];

b) |Uα
n (f, x)− f(x)| ≤ C ω2

(
f,

√(
2

n+1 + α
)
· x(1−x)

1+α

)
, x ∈ [0, 1];

c) |B̄n(f, x)− f(x)| ≤ C ω2

(
f,
√

x(1−x)
n+1

)
, x ∈ [0, 1];

d) |F ∗
n(f, x)− f(x)| ≤ C ω1

(
f,
√

β(n, x, α, b, z)
)

, x ∈ [0, 1];

e) |F∗n(f, x)− f(x)| ≤ C ω1

(
f,
√

γ(n, x, α, z)
)

, x ∈ [0, 1].

For all f ∈ C[0,∞) we have
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f) |L∗n(f, x)− f(x)| ≤ C ω2

(
f,
√

x
n + x(a−x)

na+1

)
, x ∈ [0, a];

g) |L̃n(f, x)− f(x)| ≤ C ω2

(
f,
√

x
n + nx2(c−b)+c(b+1)x

nb(c+1)

)
, x ∈ [0,∞).

With the notations ‖f‖ = sup {|f(x)| : x ∈ [0, 1]} for f ∈ C[0, 1] and

‖f‖∞ = sup {|f(x)| : x ≥ 0} for f ∈ CB [0,∞), the global approximation results can

be included in the following theorem:

Theorem 2. For all f ∈ C[0, 1] and ϕ(x) =
√

x(1− x) we have

a) ‖Sα
n (f)− f‖ ≤ C ωϕ

2

(
f,
√

1+nα
n(1+α)

)
;

b) ‖Uα
n (f)− f‖ ≤ C ωϕ

2

(
f,

√
1

1+α

(
2

n+1 + α
) )

;

c) ‖B̄n(f)− f‖ ≤ C
{

ωϕ
2

(
f,
√

1
n

)
+ ωϕ

2

(
f,
√

2
n+1

)}
;

d) ‖F ∗
n(f)− f‖ ≤ C ωϕ

1

(
f, 4
√

β′(n, α, b, z)
)

,

e) ‖F∗n(f)− f‖ ≤ C ωϕ
1

(
f, 4
√

γ′(n, α, z)
)

.

For all f ∈ CB [0,∞) and ϕ(x) =
√

x we have

f) ‖L̃n(f)− f‖∞ ≤ C ωϕ
2

(
f,
√

1
n

)
∞

, when b = c.

3. Proofs

Proof of Theorem 1. The statements a), b), c) can be proved with the same method,

therefore we shall give the proof for b). In fact a) was proved in [4, Lemma 4], when

0 < α(n) · n ≤ 1 (n = 1, 2, . . .), obtaining the estimate (1) for Sα
n .

At first, let us observe that Uα
n preserves the linear functions. Indeed, by (4),

[8, (2.2)] and definition of Bα we get

Uα
n (u− x, x) = Bα (Un(u− x, t), x)

= Bα (Un((u− t) + (t− x), t), x)

= Bα (t− x, x) =
B
(

x
α + 1, 1−x

α

)
B
(

x
α , 1

α

) − x = 0. (8)
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Moreover, by (4) and [8, (2.2) - (2.3)] we obtain

Uα
n

(
(u− x)2, x

)
= Bα

(
Un((u− x)2, t), x

)
= Bα

(
Un((u− t)2 + 2(u− t)(t− x) + (t− x)2, t), x

)
= Bα

(
Un((u− t)2, t) + (t− x)2, x

)
= Bα

(
2t(1− t)

n + 1
+ t2 − 2xt + x2, x

)
=

2
n + 1

·
B
(

x
α + 1, 1−x

α + 1
)

B
(

x
α , 1−x

α

) +
B
(

x
α + 2, 1−x

α

)
B
(

x
α , 1−x

α

) −

− 2x ·
B
(

x
α + 1, 1−x

α

)
B
(

x
α , 1−x

α

) + x2 ·
B
(

x
α , 1−x

α

)
B
(

x
α , 1−x

α

) =
(

2
n + 1

+ α

)
· x(1− x)

1 + α
. (9)

Finally, by (4) and [8, (2.4)] we get

|Uα
n (f, x)| ≤ Bα (|Un(f, t)|, x)

≤ ‖Un(f)‖ · Bα(1, x) = ‖Un(f)‖ ≤ ‖f‖.

Thus

‖Uα
n (f)‖ ≤ ‖f‖. (10)

Now, let g ∈ C2[0, 1]. By Taylor’s formula we have

g(u) = g(x) + (u− x)g′(x) +
∫ u

x

(u− v)g′′(v) dv. (11)

Hence, by (8) we have

Uα
n (g, x)− g(x) = Uα

n

(∫ u

x

(u− v)g′′(v) dv , x

)
.

Then, by (9)

|Uα
n (g, x)− g(x)| ≤ Uα

n

(∣∣∣ ∫ u

x

|u− v| · |g′′(v)| dv
∣∣∣, x)

≤ Uα
n

(
(u− x)2, x

)
· ‖g′′‖ =

(
2

n + 1
+ α

)
· x(1− x)

1 + α
· ‖g′′‖.

Hence, by (10)

|Uα
n (f, x)− f(x)| ≤ |Uα

n (f − g, x)− (f − g)(x)|+ |Uα
n (g, x)− g(x)|

≤ 2 ‖f − g‖+
(

2
n + 1

+ α

)
· x(1− x)

1 + α
· ‖g′′‖.
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Thus

|Uα
n (f, x)− f(x)| ≤ 2 inf

g

{
‖f − g‖+

(
2

n + 1
+ α

)
· x(1− x)

1 + α
· ‖g′′‖

}
= 2 K2

(
f,

(
2

n + 1
+ α

)
· x(1− x)

1 + α

)
.

Using the equivalence between K2(f, δ) and ω2(f,
√

δ ) (see [2, p. 177, Theorem 2.4])

we obtain that

|Uα
n (f, x)− f(x)| ≤ C ω2

(
f,

√(
2

n + 1
+ α

)
· x(1− x)

1 + α

)
.

In view of [7, Lemma 2.22] and [7, (2.50)] we have that L∗n and L̃n preserve

the linear functions and

L∗n((u− x)2, x) =
x

n
+

x(a− x)
na + 1

and

L̃n((u− x)2, x) =
x

n
+

nx2(c− b) + c(b + 1)x
nb(c + 1)

,

respectively. Using the same idea as above, we get

|L∗n(f, x)− f(x)| ≤ C ω2

(
f,

√
x

n
+

x(a− x)
na + 1

)
and

|L̃n(f, x)− f(x)| ≤ C ω2

(
f,

√
x

n
+

nx2(c− b) + c(b + 1)x
nb(c + 1)

)
.

Thus we have proved the f) and g) statements.

For d) and e) we use the standard method:

|f(u)− f(x)| ≤ ω1(f, |u− x|) ≤ (1 + δ−2(u− x)2) ω1(f, δ),

where u, x ∈ [0, 1] and δ > 0. Hence

|F ∗
n(f, x)− f(x)| ≤

[
1 + δ−2 · F ∗

n((u− x)2, x)
]
· ω1(f, δ) (12)

and

|F∗n(f, x)− f(x)| ≤
[
1 + δ−2 · F∗n((u− x)2, x)

]
· ω1(f, δ), (13)

respectively. Therefore we have to estimate F ∗
n((u − x)2, x) and F∗n((u − x)2, x).

These estimates can be found by (6) and (7), if we determine an upper and lower

bound for Fα
b,z(f, x) and Fα

z (f, x), respectively.
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Let b > 0 and f ≥ 0 on [0, 1] ( for b = 0 we receive back the Stancu’s

operator using the definition of F ∗
n ). Then there exists a natural number m such

that m ≤ b < m + 1. From 0 < 1− z ≤ 1− zt ≤ 1 (0 ≤ z < 1, 0 ≤ t ≤ 1) we obtain

(1− zt)m+1 < (1− zt)b ≤ (1− zt)m. Hence

Fα
b,z(f, x) ≤

∫ 1

0
t

x
α−1(1− t)

1−x
α −1(1− zt)−m−1 f(t) dt∫ 1

0
t

x
α−1(1− t)

1−x
α −1(1− zt)−m dt

=

∫ 1

0
t

x
α−1(1− t)

1−x
α −1(1− zt)−m+1 · (1− zt)−2 · f(t) dt∫ 1

0
t

x
α−1(1− t)

1−x
α −1(1− zt)−m+1 · (1− zt)−1 dt

≤ (1− z)−2 ·
∫ 1

0
t

x
α−1(1− t)

1−x
α −1(1− zt)−m+1 · f(t) dt∫ 1

0
t

x
α−1(1− t)

1−x
α −1(1− zt)−m+1 dt

.

Using (m− 1)− times the last inequality, we obtain

Fα
b,z(f, x) ≤ (1− z)−m−1 ·

∫ 1

0
t

x
α−1(1− t)

1−x
α −1f(t) dt∫ 1

0
t

x
α−1(1− t)

1−x
α −1 dt

≤ (1− z)−(b+1) ·
∫ 1

0
t

x
α−1(1− t)

1−x
α −1f(t) dt∫ 1

0
t

x
α−1(1− t)

1−x
α −1 dt

(14)

In similar way

Fα
b,z(f, x) ≥ (1− z)b+1 ·

∫ 1

0
t

x
α−1(1− t)

1−x
α −1f(t) dt∫ 1

0
t

x
α−1(1− t)

1−x
α −1 dt

. (15)

Analogously, from 1 ≤ ezt ≤ ez (z ≥ 0, 0 ≤ t ≤ 1 ) and f ≥ 0 on [0, 1], we get

Fα
z (f, x) ≤ ez ·

∫ 1

0
t

x
α−1(1− t)

1−x
α −1f(t) dt∫ 1

0
t

x
α−1(1− t)

1−x
α −1 dt

(16)

and

Fα
z (f, x) ≥ e−z ·

∫ 1

0
t

x
α−1(1− t)

1−x
α −1f(t) dt∫ 1

0
t

x
α−1(1− t)

1−x
α −1 dt

, (17)

respectively. Now, by (6), (14) and (15) we have
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F ∗
n((u− x)2, x) =

= Fα
b,z

(
Bn((u− x)2, t), x

)
= Fα

b,z

(
Bn((u− t)2 + 2(u− t)(t− x) + (t− x)2, t), x

)
= Fα

b,z

(
Bn((u− t)2, t) + (t− x)2, x

)
= Fα

b,z

(
t(1− t)

n
+ t2 − 2xt + x2, x

)
≤ 1

n
· (1− z)−(b+1) ·

B
(

x
α + 1, 1−x

α + 1
)

B
(

x
α , 1−x

α

) + (1− z)−(b+1) ·
B
(

x
α + 2, 1−x

α

)
B
(

x
α , 1−x

α

) −

− (1− z)b+1 · 2x ·
B
(

x
α + 1, 1−x

α

)
B
(

x
α , 1−x

α

) + (1− z)−(b+1) · x2 ·
B
(

x
α , 1−x

α

)
B
(

x
α , 1−x

α

)
=

1
n

(1− z)−(b+1) · x(1− x)
1 + α

+ (1− z)−(b+1) · αx(1− x)
1 + α

+

+ 2 (1− z)−(b+1) ·
(
1− (1− z)2(b+1)

)
x2

= β(n, x, α, b, z). (18)

Hence, by (12) and choosing δ2 = β(n, x, α, b, z) we get for C = 2

|F ∗
n(f, x)− f(x)| ≤ C ω1

(
f,
√

β(n, x, α, b, z)
)

.

Analogously, by (7), (16) and (17) we have

F∗n
(
(u− x)2, x

)
= Fα

z

(
Bn((u− x)2, t), x

)
= Fα

z

(
Bn((u− t)2, t) + (t− x)2, x

)
= Fα

z

(
t(1− t)

n
+ t2 − 2xt + x2, x

)
≤ 1

n
· ez ·

B
(

x
α + 1, 1−x

α + 1
)

B
(

x
α , 1−x

α

) + ez ·
B
(

x
α + 2, 1−x

α

)
B
(

x
α , 1−x

α

) −

− e−z · 2x ·
B
(

x
α + 1, 1−x

α

)
B
(

x
α , 1−x

α

) + ez · x2 ·
B
(

x
α , 1−x

α

)
B
(

x
α , 1−x

α

)
=

1
n
· ez · x(1− x)

1 + α
+ ez · αx(1− x)

1 + α
+ 2ez(1− e−2z)x2

= γ(n, x, α, z). (19)

Hence, by (13) and choosing δ2 = γ(n, x, α, z) we get for C = 2

|F∗n(f, x)− f(x)| ≤ C ω1

(
f,
√

γ(n, x, α, z)
)

,
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which completes the proof of the theorem.

Proof of Theorem 2. For the proof of a) see [1, Theorem A]. The proof of b) is a

standard one [3, Chapter 9]: using (11), (8), [3, p. 141, (9.6.1)] and (9), we obtain

for g ∈ C2[0, 1] :

|Uα
n (g, x)− g(x)| ≤ Uα

n

(∣∣∣ ∫ u

x

|u− v|
ϕ2(v)

· |ϕ2(v)g′′(v)| dv
∣∣∣, x)

≤
(

2
n + 1

+ α

)
· 1
1 + α

· ‖ϕ2g′′‖.

Hence, by (10), we have

|Uα
n (f, x)− f(x)| ≤ |Uα

n (f − g, x)− (f − g)(x)|+ |Uα
n (g, x)− g(x)|

≤ 2 ‖f − g‖+
(

2
n + 1

+ α

)
· 1
1 + α

· ‖ϕ2g′′‖.

Using [3, p. 11, Theorem 2.1.1] we obtain

‖Uα
n (f)− f‖ ≤ C ωϕ

2

(
f,

√
1

1 + α

(
2

n + 1
+ α

) )
.

For c) we can write:

‖B̄n(f)− f‖ ≤ ‖B̄n(f)− S
1
n
n (f)‖+ ‖S

1
n
n (f)− f‖.

On the other hand, by (3), (5), (2) and a), we have

|B̄n(f, x)− S
1
n
n (f, x)| ≤

≤ 1∫ 1

0
tnx−1(1− t)n(1−x)−1 dt

·
∫ 1

0

|f(t)−Bn(f, t)| · tnx−1(1− t)n(1−x)−1 dt

≤ ‖f −Bn(f)‖ ≤ C ωϕ
2

(
f,

√
1
n

)
and

‖S
1
n
n (f)− f‖ ≤ C ωϕ

2

(
f,

√
2

n + 1

)
.

In conclusion

‖B̄n(f)− f‖ ≤ C

{
ωϕ

2

(
f,

√
1
n

)
+ ωϕ

2

(
f,

√
2

n + 1

)}
.

For the proof of d) and e) we use

|f(u)− f(x)| ≤ ω1(f, |u− x|) ≤
(
1 + δ−4(u− x)2

)
ω1(f, δ2),
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where u, x ∈ [0, 1] and δ > 0. But, in view of [3, p. 25, Corollary 3.1.3] we have

ω1(f, δ2) ≤ C ωϕ
1 (f, δ),

where ϕ(x) =
√

x(1− x), x ∈ [0, 1]. So

|f(u)− f(x)| ≤ C
(
1 + δ−4(u− x)2

)
ωϕ

1 (f, δ).

Hence

|F ∗
n(f, x)− f(x)| ≤ C

[
1 + δ−4F ∗

n((u− x)2, x)
]
ωϕ

1 (f, δ) (20)

and

|F∗n(f, x)− f(x)| ≤ C
[
1 + δ−4F∗n((u− x)2, x)

]
ωϕ

1 (f, δ). (21)

By (18), (19) and β(n, x, α, b, z) ≤ β′(n, α, b, z), γ(n, x, α, z) ≤ γ′(n, α, z) for all x ∈

[0, 1], we obtain

F ∗
n((u− x)2, x) ≤ β′(n, α, b, z)

and

F∗n((u− x)2, x) ≤ γ′(n, α, z).

In conclusion, by (20) and choosing δ4 = β′(n, α, b, z) we get for C = 2 the assertion

d) of Theorem 2, and, by (21) and δ4 = γ′(n, α, z) we obtain for C = 2 the assertion

e) of Theorem 2.

For f) we use again the standard method [3, Chapter 9]: if g ∈ CB [0,∞) is twice

differentiable such that g′, ϕ2g′′ ∈ CB [0,∞) then, by [3, p. 141, (9.6.1)] and [7, (2.50)]

for b = c, we have

|L̃n(g, x)− g(x)| ≤ L̃n

(∣∣∣ ∫ u

x

|u− v|
v

· |vg′′(v)| dv
∣∣∣, x)

≤ L̃n

(
(u− x)2

x
, x

)
· ‖ϕ2g′′‖∞ =

2
n
· ‖ϕ2g′′‖∞.

Because L̃n(1, x) = 1 (see [7, (2.50)]) we get ‖L̃n(f)‖∞ ≤ ‖f‖∞, f ∈ CB [0,∞). Thus

‖L̃n(f)− f‖∞ ≤ ‖L̃n(f − g)− (f − g)‖∞ + ‖L̃n(g)− g‖∞

≤ 2 ‖f − g‖∞ +
2
n
‖ϕ2g′′‖∞.

Hence

‖L̃n(f)− f‖∞ ≤ 2 Kϕ
2

(
f,

1
n

)
∞

≤ C ωϕ
2

(
f,

√
1
n

)
∞
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(see [3, p. 11, Theorem 2.1.1] for the equivalence between Kϕ
2

(
f, 1

n

)
∞ and

ωϕ
2

(
f,
√

1
n

)
∞

).
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[5] Lupaş, A. : Contribuţii la teoria aproximării prin operatori liniari, Ph. D. Thesis, Cluj
- Napoca, 1975.
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MAXIMAL SETS ON A HYPERSPHERE

VASILE POP

Abstract. It is studied the problem of the maximum number of points

situated on a hypersphere of radius 1 with the property that the distances

between any two points is at least r. It is solved the case r =
√

2.

1. Introduction

The goal of this paper is to find the maximum number of points of hyper-

sphere, such that the distances between every two points is great that a given number.

The solution of the problem in the general case is very difficult. we solved the problem

in a remarcable particular case.

Let Sn = {(x1, . . . , xn) ∈ Rn| x2
1 + · · · + x2

n = 1} be the unit sphere in Rn.

For every real number r ∈ [0, 2] we define the natural numbers N(n, r) and N(n, r)

by: N(n, r) is the maximum number of elements of a set M ⊆ Sn−1 with the property

that the distance d(A,B) between every two points A,B ∈ M satisfies the relation

d(A,B) > r.

N(n, r) is the maximum numbers of elements of a set M ⊆ Sn−1 with the

property d(A,B) ≥ r for every A,B ∈ M .

We think that the determination of a general expression for the functions

N,N : N∗ × [0, 2] → N is not possible. We solve the problem for r =
√

2. The

following properties of N and N are easy to verify.

1. N(n, r) ≤ N(n, r);

2. N(n, r) ≤ N(n + 1, r);

3. N(n, r) ≤ N(n + 1, r);

4. N(n, r1) ≤ N(n, r2) for n1 > n2;

5. N(n, r1) ≤ N(n, r2) for r1 > r2;

6. N(1, r) = 2 for r ∈ [0, 2).

Received by the editors: 05.02.2002.
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7. N(1, 2) = 0;

8. N(1, r) = 2;

9. N(2, r) =

 π

arcsin
r

2

;

10. N(2, r) = N(2, r), if
π

arcsin
r

2

6∈ N;

11. N(2, r) = N(2, r)− 1, if
π

arcsin
r

2

∈ N;

12. N(n, 2) = 0, N(n, 2) = 2.

Theorem 1. For every natural number n ≥ 1 we have

N(n,
√

2) = n + 1 and N(n,
√

2) = 2n.

Proof. The distance between the points X = (x1, . . . , xn) and Y =

(y1, . . . , yn) is:

d2(X, Y ) =
n∑

k=1

(xk − yk)2.

We have

d(X, Y ) >
√

2 ⇔ d2(X, Y ) > 2

⇔
n∑

k=1

x2
k +

n∑
k=1

y2
k + 2

n∑
k=1

xkyk > 2

⇔
n∑

k=1

xkyk < 0 (1)

Taking account of the symmetry of the sphere, we can suppose that

A1 = (−1, 0, . . . , 0).

For X = A1, condition (1) for implies y1 > 0, ∀ Y ∈ Mn.

Let X = (x1, X), Y = (y1, Y ) ∈ Mn \ {A1}, X,Y ∈ Rn−1.

We have
n∑

k=1

xkyk < 0 ⇒ x1y1 +
n−1∑
k=1

xkyk < 0 ⇔
n−1∑
k=1

x′ky′k < 0,

where

x′k =
xk√∑

x2
k

, y′k =
yk√∑

y2
k

,
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therefore

(x′1, . . . , x
′
n−1), (y

′
1, . . . , y

′
n−1) ∈ Sn−2

and verify condition (1).

If an is the search number of points in Rn, we obtain an ≤ 1 + an−1 and

a1 = 2 implies that an ≤ n + 1.

We show that an = n+1, giving an example of a set Mn with (n+1) elements

satisfying the conditions of the problem.

A1 = (−1, 0, 0, 0, . . . , 0, 0)

A2 =
(

1
n

,−c1, 0, 0, . . . , 0, 0
)

A3 =
(

1
n

,
1

n− 1
c1,−c2, 0, . . . , 0, 0

)
A4 =

(
1
n

,
1

n− 1
c1,

1
n− 1

c2,−c3, . . . , 0, 0
)

An−1 =
(

1
n

,
1

n− 1
c1,

1
n− 2

c2,
1

n− 3
c3, . . . ,−cn−2, 0

)
An =

(
1
n

,
1

n− 1
c1,

1
n− 2

c2,
1

n− 3
c3, . . . ,

1
2
cn−2,−cn−1

)
An+1 =

(
1
n

,
1

n− 1
c1,

1
n− 2

c2,
1

n− 3
c3, . . . ,

1
2
cn−2, cn−1

)
where

ck =

√(
1 +

1
n

) (
1− 1

n− k + 1

)
, k = 1, n− 1.

We have
n∑

k=1

xkyk = − 1
n

< 0 and
n∑

k=1

x2
k = 1, ∀ X, Y ∈ {A1, . . . , An+1}.

This points are on the unit sphere in Rn and the distance between any two

points are equal to

d =
√

2

√
1 +

1
n

>
√

2.

Remark. For n = 2 the points form an equilateral triangle in the unit circle;

for n = 3 the four points from a regular tetrahedron and in Rn the points from an n

dimensional regular simplex.

For the function N we have N(1,
√

2) = 2.

(M = {−1, 1}, N = (2,
√

2) = 4), (M = {(−1, 0), (1, 0), (0,−1), (0, 1)})
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By induction, intersecting the hypersphere Sn from Rn+1 with the hyperplane

xn+1 = 0 we obtain the hypersphere Sn, which contains a maximal set with 2n points

and considering the points (0, . . . , 0,−1) and (0, . . . , 0, 1) on Sn we obtain a maximal

set with 2(n + 1) points, hence N(n + 1,
√

2) = 2(n + 1).

We remark that a maximal set for N(n,
√

2) is

M = {(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, . . . , 0, 1), (−1, 0, . . . , 0),

(0,−1, 0, . . . , 0), . . . , (0, . . . , 0,−1)}

with n distances equal with 2 and the rest of C2
2n − n = 2n(n − 1) distances equal

with
√

2.

It is known that every real euclidean n-dimensional space is isomorphic with

Rn and we can transpose the results by the isomorphism.

If (V, 〈·, ·〉) is an real euclidean space, by the theorem 1, we have the following

consequences.

Proposition 1. If the dimension of V is n, then for any (n+2) vectors with

norm 1, there exists two with the distances is at most
√

2.

Proposition 2. If the dimension of V is n, then for any (n + 2) nonzero

vectors there exists two vectors with an acute angle(
d(X, Y ) ≤

√
2, ‖X‖ = ‖Y ‖ = 1 ⇔ 〈X, Y 〉 ≥ 0 ⇔ X̂, Y ≤ π

2

)
Proposition 3. If in euclidean space V there exists a set of (n + 1) vectors

{X1, . . . , Xn, Xn+1} with the property 〈Xi, Xj〉 < 0, for any i 6= j, i, j = 1, n, then

the dimension of V is dim V ≥ n.

2. Applications

Problem 1. Let n ∈ N∗ be a natural number. Find all m ∈ N∗ so that there

exists a matrix A ∈ M(m,n)(R) with the property that all elements of the matrix

A ·At, outside the main diagonal to be negative numbers.

Solution. Denote by L1, . . . , Lm ∈ Rn the lines of matrix A. The element

bij of the matrix B = A ·At is the inner product 〈Li, Lj〉, so the condition is that for

i 6= j to have 〈Li, Lj〉 < 0. From proposition 3 we obtain m ≤ n + 1.
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Problem 2. If {P1, . . . , Pn, Pn+1} is a set of polynomials with real coefficients

so that: ∫ 1

0

Pi(x)Pj(x)dx < 0, for any i 6= j,

then at least one polynomial has the degree at least (n− 1).

Solution. Denote by V the real vector space generated by the polynomials

P1, . . . , Pn, Pn+1, and on V define the inner product

〈f, g〉 =
∫ 1

0

f(x)g(x)dx.

Using the proposition 3, it result that dim V ≥ n. If degPk < n − 1 for all

k = 1, n + 1, then V is a subspace in the space of polynomials with degree ≤ n − 2,

with the dimension (n− 1). We obtain the contradiction n ≤ n− 1.

Problem 3. Show that the inequalities

a1a2 + b1b2 < 0

a1a3 + b1b3 < 0

a1a4 + b1b4 < 0

a2a3 + b2b3 < 0

a2a4 + b2b4 < 0

a3a4 + b3b4 < 0

does not hold simultaneously.

Solution. In euclidean plane R2 consider the points Ai(ai, bi), i = 1, 4. The

condition aiaj +bibj < 0 is equivalent with the angle ÂiOAj >
π

2
, which is impossible

for every i 6= j.

Remark. Another remarkable value for r is r = 1. We have not succeed to

find N(n, 1) but we suppose that N(n, 1) = n(n + 1).
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CRITICAL SETS OF 1-DIMENSIONAL MANIFOLDS

LIANA ŢOPAN

Abstract. In this paper we give characterizations for the critical sets of

the 1-dimensional manifolds. Given a non-empty set K ⊂ M , with M a

smooth manifold of dimension 1, is K the set of critical points for some

smooth function f : M → R?

1. Introduction

Let M be a smooth 1-dimensional manifold and f : M → R a smooth func-

tion. The point p ∈ M is a critical point of f if, for some chart (U,ϕ) around p,

ϕ(p) is a critical point of the function f ◦ ϕ−1 : ϕ(U) → R, i.e. rangϕ(p)f ◦ ϕ−1 = 0,

or (f ◦ ϕ−1)′(ϕ(p)) = 0. Otherwise, p will be a regular point of f . The set of all

critical points of f is called the critical set of f and will be denoted by C(f). The

number y0 ∈ R is a critical value of f if it is the image of a critical point and a regular

value if it is the image of a regular point. The set of critical values of f is called the

bifurcation set of f and is denoted by B(f). A set C ⊂ M is called critical if it is the

critical set of some smooth function f : C → R; C = C(f). C is properly critical if f

can be chosen to be proper.

If M = R, the atlas which gives the structure of M has one single chart

(R, 1R). In this case, x ∈ C(f) if and only if f ′(x) = 0. The following theorem

[To-An] characterizes the critical sets of R.

Theorem 1.1. C ⊂ R is critical if and only if C is closed.

It follows that any finite union of closed bounded intervals (some of them

might be degenerated to a point), together with two closed unbounded intervals, one

Received by the editors: 06.06.2002.
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of them to −∞ and the other to +∞, is a critical set. Also, any Cantor (real) set,

beeing closed, will be critical.

For the case M = R, there are no other requirements for the set C to be crit-

ical, except to be closed. This is, in fact, the minimal condition for a set to be critical

(it is easy to see that any critical set is closed). If we impose some supplementary

conditions on C, it will become properly critical.

Theorem 1.2. Let C be a subset of R. If C is compact, C is properly

critical.

Proof. C being compact, it is closed, so critical. C is bounded, and there is

some r > 0 with C ⊂ (−r, r). Choose R > r. Let g : R → R be a smooth positive

function which satisfies

1. g(x) = 1, ∀ x ∈ (−r, r)

2. g(x) = 0, ∀ x ∈ (−∞,−R) ∪ (R,+∞)

3. 0 ≤ g(x) ≤ 1, ∀ x ∈ R. (see [To-An]).

A theorem of Whitney provides that any closed subset of R is the set of the

zeros of a smooth positive real function (see [An-To]) and let f : R → R have this

property : C = f−1(0). Define h : R → R, by

h(x) = f(x)g(x) + e|x|(1− g(x)).

h is smooth on R \ {0}. For x ∈ (−r, r), since g(x) = 1, then h(x) = f(x) and h is

smooth on (−r, r), which is an open neighborhood of 0. It follows that h is smooth

on the entire R.

It is easy to verify that h−1(0) = C. For x0 ∈ C, since x0 ∈ (−r, r), then

g(x0) = 1 and h(x0) = f(x0) = 0. For h(x0) = 0, since f(x) ≥ 0, e|x| > 0 and

0 ≤ g(x) ≤ 1 for all x, then f(x0)g(x0) = e|x0|(1 − g(x0)) = 0, so f(x0) = 0 and

g(x0) = 1, which means that x0 ∈ f−1(0) = C.

Let H : R → R be the function given by H(x) =
x∫
0

h(t)dt. Obviously, C(H) =

C. To prove that H is a proper function, it is enough to verify that |H(x)| → ∞ as

|x| → ∞ (see [Ra]).
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For x > R, we have

H(x) =

x∫
0

h(t)dt =

R∫
0

h(t)dt +

x∫
R

h(t)dt =

R∫
0

h(t)dt +

x∫
R

etdt =

=

R∫
0

h(t)dt + ex − eR = ex +

R∫
0

h(t)dt− eR

so lim
x→∞

H(x) = ∞.

For x < −R, we have

H(x) = −
0∫

x

h(t)dt = −
−R∫
x

h(t)dt−
0∫

−R

h(t)dt =

= −
0∫

−R

h(t)dt−
0∫

−R

e−tdt = −
0∫

−R

h(t)dt + eR − e−x

so lim
x→−∞

H(x) = −∞.

It follows that C is the critical set of the smooth and proper function H, so

C is properly critical. �

The converse of the above theorem is not true. There are smooth proper

functions f : R → R, whose critical sets are not compact. For example, f(x) =

x + sinx, whose critical set is C(f) = {(2k + 1)| k ∈ Z}, discrete and unbounded in

R, so non-compact.
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2. Critical Sets on 1-Dimensional Manifolds

Using the characterization of the connected and compact 1-dimensional man-

ifolds, it follows that it is enough to study the critical sets of the interval [0, 1] on the

real axis and of the circle S1 on the plane.

Let M be a smooth 1-dimensional manifold, connected and compact (with

or without boundary). According to a theorem of Whitney , M can be prop-

erly embedded in R3 ( i.e. there exists an injective and proper immersion

i : M ↪→ R3). Also, there exists f : M → R smooth, which is a Morse function

(f is said to be a Morse function if its critical points are all non-degenerated. The

critical points of a Morse function are, also, isolated in M).

Let S = C(f) ∪ ∂M . As M is of dimension 1, ∂M will be either a smooth

compact 0-manifold without boundary, or the empty set. Anyway, ∂M will be at the

most a finite union of points. Also, from the compactness of M it follows that C(f) is

finite, too, C(f) beeing a discrete subset of a compact. So S is finite and M \S has a

finite number of components L1,. . ., LN , which are smooth 1-dimensional manifolds.

Proposition 2.1. f is a diffeomorphism between each Li and an open

interval of R.

Proof. Let L be one of the manifolds Li. For all x ∈ L, we have

(df)x = (df|L)x 6= 0, so f is a local diffeomorphism on L. Since L is

connected, it follows that f(L) is a connected open set. But f(L) is

contained in the compact f(M), so f(L) is an open interval (a, b).

We prove now that f is injective on L, and then f|L will be a diffeomorphism.

Let p ∈ L and c = f(p) ∈ (a, b). Let Q be the set of all points q ∈ L with the property

that there is an arc γ : [c, d] → L joining q and p, γ(c) = p, γ(d) = q and (f ◦γ)(t) = t,

for all t ∈ [c, d]. Since p ∈ Q, then Q is non-empty.

Q is an open set of L: Let q ∈ Q. There is an arc γ : [c, d] → L such that

γ(c) = p, γ(d) = q and (f ◦ γ)(s) = s, for s in the interval [c, d]. But f beeing a local

diffeomorphism in q, there exists a neighborhood Vq of q for which f|Vq
: Vq → f(Vq)

is a diffeomorphism. We may choose Vq to be an open connected subset of M . Then

f(Vq) = (c′, c′′), with a < c′ < d < c′′ < b. It follows that γ and (f|Vq
)−1 coincide on
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(c′, d] and γ can be extended on [d, c′′) such that it coincides with (f|Vq
)−1. It follows

that any point of Vq can be joined to p, so Vq ⊂ Q and Q is open in L.

Q is closed in L: It is enough to show that L \ Q is open. Let l ∈ L \ Q.

Then l cannot be joined to p with the requiered conditions. As before, there exists a

neighborhood Vl of l with f|Vl
: Vl → f(Vl) diffeomorphism, Vl open and connected

and f(Vl) = (c′, c′′). Suppose there exists a point q ∈ Vl which can be joined to p.

Take Vq ⊂ Q a neighborhood of q. Every point in Vl ∩ Vq can be joined to p, because

of Vq and, the same time, cannot be joined to p, beeing on Vl. So, in fact, no point

of Vl can be joined to q, which means that Vl ⊂ L \Q, and L \Q is open.

Since L is connected, then Q = L. Let p 6= q, p, q ∈ L. We showed that there

is an arc γ : [c, d] → L, with γ(c) = p, γ(d) = q and (f ◦ γ)(t) = t, for all t ∈ [c, d].

We have:

f(p) = f(γ(c)) = (f ◦ γ)(c) = c and

f(q) = f(γ(d)) = (f ◦ γ)(d) = d,

so f(p) 6= f(q), which shows that f is non-injective, so f is a diffeomorphism between

L and the open interval (a, b). �

Since every Li is diffeomorphic to an open interval, then Li \ Li has at the

most two points, ∀ i = 1, N . We can suppose that for all i = 1, N , Li \Li has exactly

two points. Indeed, since Li is diffeomorphic to an open interval, then Li \ Li has

at least one point, and if Li \ Li has exactly one point, it could be only for the case

when N = 1 and M = S1.

A point p ∈ S is either a point of the boundary of M , or the intersection

point of the boundaries of two sets Li and Lj . It cannot be the intersection point of

three sets Li, Lj and Lk, since M is 1-dimensional and the situation below cannot

happen.
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We call L1, . . ., Lk a chain if for all j = 1, k − 1, Lj and Lj+1 have exactly

one single intersection point pj (which belongs to both boudaries). Denote by p0 the

other boundary point of L1 and by pk the other boundary point of Lk. Since we have

a finite number of Li, there is a maximal chain, to which we cannot add an other Li.

Proposition 2.2. If L1, . . ., Lk is a maximal chain, it contains all Li, i =

1, N . If L0 and Lk have an intersection point (which will belong to both boundaries),

then M is diffeomorphic to a circle. Otherwise, M is diffeomorphic to a closed interval

of R.

Proof. Let us suppose that there exists some Li which does not belong to

the maximal chain. We denote it by L. L cannot contain p0 or pk, since the chain

cannot be extended. L contains none of the points pi, i = 1, k − 1, since Li, Li+1 and

L would have a common boundary point. It follows that L does not intersect
k⋃

i=1

Li,

which is a contradiction to the connectivity of M .

We prove now the second part of the proposition. We construct the requiered

diffeomorphisms by using the following lemma:

Lemma 2.3. Let g : [a, b] → R be continuous, smooth on [a, b]\{c} and such

that g′ > 0, for all x ∈ [a, b]\{c}. Then there exists a smooth map ǧ : [a, b] → R which

agrees to g in a neighborhood of the points a and b and whose derivative is positive

on [a, b].

Sketch of the proof: Let g be a smooth non-negative function, which vanishes

outside (a, b), is equal to 1 in a neighbourhood of c and satisfies
b∫

a

g(t)dt = 1. Define
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g̃ : [a, b] → R, by

g̃(x) = g(a) +

x∫
a

[kg(t) + g′(t)(1− g(t))]dt,

with

k = g(b)− g(a)−
b∫

a

g′(t)(1− g(t))dt

a strictly positive constant. �

The restriction of f to any Li is a diffeomorphism. The monotony of f could

change when f passes through a boundary point of Li. To avoid this inconvenient,

we use a technical trick. Let f(pj) = aj . Then f|Lj
is a diffeomorphism between Lj

and the interval (aj−1, aj) (or (aj , aj−1)). For each j = 1, k, choose an affine map

τj : R → R such that τj(aj−1) = j − 1 and τj(aj) = j (the map τj is of the form

t → αt + β, α, β ∈ R). Let fj : Lj → [j − 1, j] be the maps given by fj = τj ◦ f .

If a0 6= ak, the maps fj will agree on every common point of their domains.

We may construct the map F : M → [0, k], having the following properties:

1. F|Lj
= fj

2. F is continuous on M

3. F is a diffeomorphism on M \ {p1, . . . , pk−1}

By using Lemma 2.3, f can be chosen to be a diffeomorphism on M .

If a0 = ak, let gj = exp [i
2π

k
fj ]. We may define now G : M → S1, such that:

1. G|Lj
= gj

2. G is continuous on M

3. G is a diffeomorphism on M \ {p1, . . . , pk−1}

Again, G can be made to be a global diffeomorphism. �

We obtained

Theorem 2.4. (the classification of connected compact 1-manifolds) Any

smooth connected and compact 1-dimensional manifold is diffeomorphic either to S1,

or to the interval [0, 1].

The last theorem provides that it is enough to find the critical sets of S1 and

of [0, 1].
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Theorem 2.5. Let K ⊂ [0, 1]. Then K is critical in [0, 1] if and only if K

is closed in [0, 1].

Proof. Any critical set is closed. Conversely, let K be a closed subset of

[0, 1]. Since [0, 1] is closed in R, then K is closed in R. According to Theorem 1.1,

there is a smooth function f : R → R with C(f) = K. Let g : [0, 1] → R, g = f|[0,1].

g is smooth and C(g) = K. �

Theorem 2.6. Let K ⊂ S1. Then K is critical in S1 if and only if K is

closed in S1.

Proof. If K is critical, K is closed. Conversely, let K be a closed subset of

S1. Suppose that K 6= S1 (S1 is the critical set of any constant function defined on

S1). K is a compact subset of the plane and the only component of its complement is

multiply connected. Using the characterisation of the critical sets of the plane given

by Norton and Pugh [No-Pu], it follows that K is the critical set of a smooth map

f : R2 → R. C(f) = K. Then K will be the critical set of f|S2 : S2 → R. �
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European Congress of Mathematics: Barcelona, July 10-14, 2000, Vol. I, l+582 pp.,

ISBN: 3-7643-6417-3, Vol. II, xii+641 pp., ISBN:3-7643-6418-1, Carles Casacuberta,

Rosa Maria Miró-Roig, Sebastià Xambó-Descamps- Editors, Progress in Mathemat-

ics, Birkhäuser Boston-Basel-Berlin 2001.

These are the proceedings of the Third European Congress of Mathematics

(3ecm), held from July 10th to July 14th, 2000, in Barcelona. The congress was orga-

nized by the Societat Catalana de Matématiques, under the auspices of the European

Mathematical Society (EMS). The initiative of the organizations of ECMs belongs

to Max Karoubi (France) and was et on course shortly after the creation of EMS in

1990. The first ECM took place in Paris in 1992 and the second in Budapest in 1996.

The 3ecm was attended by over than 1300 people coming from 87 countries.

There were awarded the EMS Prizes to 8 young mathematicians: S. Alekser (Israel),

R. Cerf (France), D. Gartsgory (U.S.A.), E. Grenier (France), D. Joyce (U.K.), V.

Lafforgue (France), S.Yu. Nemirovski (Russia), P. Seidel (France). The Felix Klein

Prize was attributed to D.C. Dobson (U.S.A.). The first volume contains short presen-

tations of the winners. The volume contains also the speeches delivered at the opening

and at the closing ceremonies, including two addresses by Rolf Jeltch, President of

the EMS, on the aims and perspectives of the EMS.

Beside this introductory material, the first volume contains the articles writ-

ten by plenary (8) and parallel speakers (30).

The second volume contains the the articles by prize winners and those

presented and the mini-symposia organized during the Congress. There nine mini-

symposian dealing with the following topics: Computer Algebra, Curves over Finite

Fields and Codes, Free Boundary Problems, Mathematical Finance, Quantum Chaol-

ogy, Quantum Computing, String and M-Theory, Contact Geometry and Hamiltonian
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Dynamics, Wavelet Applications in Signal Processing. Seven round tables on topics

of general interest were also organized. A third volume, containing material from

these round tables, will be published jointly by Societat Catalana de Matématiques

and Centre Internacional de Mètodes Numèrics en Enginyeria (CIMNE), Barcelona.

The ECMs are major events in the life of the European mathematical com-

munity, particularly this one, organized within the World Mathematical Year 2000

and having as motto Shaping the 21st Century.

The volumes are a must for any mathematics library.

S. Cobzaş

Roland Hagen, Steffen Roch and Bernd Silbermann, C∗−algebras and Numerical

Analysis, Monographs and Textbooks in Pure and Applied Mathematics, Vol. 236,

M. Dekker, Inc., Basel - New York 2001, 376 pages, ISBN: 0-8247-0460-6.

The book is concerned with two apparently unrelated fields–numerical anal-

ysis and Banach and C∗-algebras. Its aim is to emphasize how tools and results from

Banach and C∗-algebras (e.g. Gelfand’s theory, Fredholm theory, states and ideals)

shed a new light on numerical methods for solving operator equations or eigenvalue

problems. These methods are adequate mainly for the study of the stability of these

methods. Other questions, such as, e.g., the rapidity of convergence, can’t be treated

within this framework. The general idea is the following: one considers an operator

equation Ax = y, where A is a continuous linear operator on a normed space X, and

a sequence (An) of continuous linear operators on X (the approximation operators),

and the approximate equations Anxn = yn, n ∈ N. One supposes that the sequence

(An) converges strongly to A, i.e. Anz → Az in the norm of X, for every z ∈ X. If

further, starting with some n0 the equations Anxn = yn have unique solutions xn for

all sequences (yn) converging to y, and the sequence (xn) converges to x (the solution

of Ax = y), then the approximation method (An) is called applicable. By a result of

N.I. Polski (1963), if A is invertible then the approximation method (An) is applicable

if and only if there is an n0 such that the operators An are invertible for n ≥ n0 and

the norms of their inverses are uniformly bounded. Such approximation sequences

are called stable. Typical examples of approximation methods are the Galerkin type
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methods or, more generally, finite section methods, which are largely studied in the

book, with emphasis on equations with Toeplitz and Hankel operators and their fi-

nite sections. If the operator A is not invertible then one works with Moore-Penrose

generalized inverses for matrices and for operators on Hilbert space or for elements

of C∗-algebras.

One denotes by F the set of all uniformly bounded sequences (An) of opera-

tors on a Banach space X. With respect to the operations of addition, multiplication,

multiplication by scalars, and the sup-norm ‖(An)‖ = supn ‖An‖, F becomes a Ba-

nach algebra, and the set G of all sequences (An) in F with ‖An‖ → 0 is a closed

ideal in F . The main goal of the book is to prove that the quotient algebra F/G

is the adequate frame for the study of many problems of numerical analysis. For

instance, the sequence (An) of approximation operators is stable if and only if the

coset (An) + G is invertible in the algebra F/G (a result of A.V Kozak (1973)). A

finer and deeper study of numerical methods requires to work in some C∗-subalgebras

of the Banach algebra F . Beside the numerical solutions of operator equations, the

algebraic approach proposed by the authors allows to treat problems concerning the

approximation of eigenvalues, computation and stability of spectra or pseudospec-

tra, the study of Rayleigh quotients of eigenvalues, of numerical ranges and of the

asymptotic behavior of the determinants of the matrices An.

A good idea on the contents of the book is given by the headings of its

chapters: 1. The algebraic language of numerical analysis; 2. Regularization of ap-

proximation methods; 3. Approximation of spectra; 4. Stability analysis for concrete

approximation methods; 5. Representation theory; 6. Fredholm sequences; 7. Self-

adjoint sequences.

Containing fine results from analysis and functional analysis applied to nu-

merical methods, the book is addressed to a wide audience, first students who want

to see applications of functional analysis and to learn numerical analysis, but also to

mathematicians and engineers interested in theoretical aspects of numerical analysis.

The value of the book is raised by the wealth of nontrivial examples illustrating the

theoretical concepts. The authors are well known specialists in functional analysis,

and the book incorporates many of their recent results, some of them published here

for the first time.
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S. Cobzaş

V. V. Beletsky, Essays on the Motion of Celestial Bodies, Transl. from the Russ. by

Andrei Iacob, Birkhäuser Verlag, Basel-Boston-Berlin, 2001, XVIII+372 pp, ISBN

3-7643-5866-1.

The book under review is the story of some interesting theoretical investiga-

tions in the mechanics of space flight, i.e., in the theory of motion of spacecraft. Some

new problems of celestial mechanics are discussed as well.

...”Dear Fagot, show us something simple for the start” – it is with this

epigraph from M. Bulgakov’s The Master and Margarita that the first essay of the

book under review begins. And the reader is not being lied to – the book begins with

some well known, and for that reason simple, classical results about unperturbed and

perturbed motion of a satellite, the problem of two fixed centers, the influence of the

radiation pressure on the orbit of a satellite, the ”Laplace Theorem”, the restricted

three-body problem, etc.

The book uses results published by other scientists, but essentially contains

the outhor’s own research. The problems treated in this essay (first Russian edition

in 1972) continue to be investigated and developed by many authors. Interesting later

developments was made by A. P. Ivanov in the theory of impact-free motions and by

the author in the problem of the dynamics of a system of linked bodies.

In order to reveal the beauty of the research process leading to the results,

the emphasis is put on the analysis that can be carried out on the level of graphs

and drawings, and sometimes numbers. Whenever possible, the investigation relies

on maximum intuitive, elegant geometric tools. The book can be read profitably by

anyone with the mathematical background typically offered in the first few years of

undergraduate studies in mathematics, physics and engineering, including students,

teachers, scientists and engineers.

As V. I. Arnold and Ya. B. Zeldovich remark in they review of the first

edition of Beletsky’s ”Essays” (Priroda, No. 10, 1973, 115-117), this book ”marks

the affirmation of a new style in the scientific literature. The author explains in a

frank and detailed manner the reasons behind each calculation, its difficulties, and

102



BOOK REVIEWS

the psychological side of the research. The book contains no attempts to inflate

the importance of results or to give results while hiding the methods used to obtain

them. The book is adorned by humorous illustrations by I. V. Novozhilov, Doctor in

Physico-Mathematical Sciences. ... The general impression that the ”Essays” make is

not that this is a boring lesson, but rather a discussion with brilliant, knowledgeable

and wise interlocutor. Even people with little interests in space problems will go

through the book with satisfactions, perhaps omitting the calculations.”

The Russian edition of this book was awarded the 1999 F. A. Zander Prize

of the Russian Academy of Science.

Ferenc Szenkovits

Functional Analysis, Lecture Notes in Pure and Applied Mathematics, Vol. 150,

Edited by Klaus D. Bierstedt, Albrecht Pietsch, Wolfgang M. Ruess and Dietmar

Vogt, M. Dekker, Inc., New York 1994, xviii + 526 pp, ISBN 0-8247-9066-9.

These are the Proceedings of an International Symposium on Functional

Analysis, held in Essen, Germany, November 24-30, 1991. The first goal of the confer-

ence was to emphasize and deep the interaction between three branches of functional

analysis: (i) the geometry of Banach spaces; (ii) the theory of Fréchet spaces with

applications to analysis and partial differential equations (PDE); (iii) semigroups

of operators and evolution equations. The second one was to vitalize the scientific

contacts between functional analysts in East and West, by taking advantage on the

political opening which occurred that time in Eastern Europe.

The conference was structured into three main lecture series delivered by S.

Heinrich (the topic (i)), R. Meise (ii), and Ph. Bénilan (iii), and about 30 further

contributions. The volume contains 29 articles by 39 authors from 12 countries all

around the world, and cover nearly all the topics presented at the conference, plus

some additional ones.

To be more specific we mention some of them. Ph. Bénilan and P. Wittbold

wrote a survey on nonlinear evolution equations in Banach spaces. Another survey, by

S. Heinrich, is concerned with random approximation in numerical analysis. An inter-

esting paper by A. Pelczynski surveys properties of function spaces depending on the
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dimension of their domains of definition. Applications of orthonormal trigonometric

systems to the geometry of Banach spaces are presented in a paper by A. Pietsch and J.

Wenzel. There are several papers dealing with the analysis of vector-valued functions

or with spaces of vector-valued functions as, for instance, vector-valued versions of

some representation theorems in analysis (W. Arendt), vector-valued Lagrange inter-

polation and convergence of Hermite series (H. König), spaces of Lipschitz functions

on Banach spaces (Ch. Stegall), Freét spaces of continuous vector-valued functions

(P. Domanski and L. Drewnowski). Ultradistributions and with applications to PDE

are discussed in two papers, one by R. Meise, B.A. Taylor and D. Vogt, and the other

one by M. Langenbruch. Extensions of Josefson-Nissenzweig and Pitt’s theorems to

Fréchet setting are done by J. Bonet and M. Lindström, and M.S. Ramanujan and

D. Vogt, respectively. Other topics are: spaces of harmonic functions (M. Zahariuta),

Liouville theorem for coherent analytic sheaves (V. P. Palamodov), interpolation for

Hardy spaces on disk and on bidisc (V. Kisliakov).

In spite of the time passed since the publication of the volume, the included

topics are still valuable references for the working mathematician interested in func-

tional analysis, mainly in its applications to the analysis of vector-valued functions,

to spaces of vector-valued functions and to PDE.

S. Cobzaş

Ronald Cross, Multivalued Linear Operators, Monographs and Textbooks in Pure

and Applied Mathematics, Vol. 213, M. Dekker, Inc., Basel - New York 1998, ix+335

pages, ISBN: 0-8247-0219-0.

Let X, Y be linear spaces over the field K = R or C. A relation is a multival-

ued mapping T : D(T ) ⊂ X → 2Y \ {∅}. The relation T is called linear if D(T ) is a

subspace of X and T (αx+βy) = αTx+βTy, for all x, y ∈ D(T ) and scalars α, β. The

simplest example of a linear relation is the inverse T−1 of a linear operator T : X → Y ,

defined by T−1y = {x ∈ X : Tx = y}. In this case D(T−1) = R(T ) = T (X). Linear

relations were considered in the early thirties of the last century by J. von Neumann

in order to define the adjoints of non-densely defined linear differential operators.
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The aim of the present book is to develop a systematic study of linear rela-

tions, especially in the framework of normed spaces. Beside giving some elegant and

transparent formulations and proofs of some theorems in classical operator theory in

Banach spaces as, e.g., the closed graph and the closed range theorems, the study of

linear relations contributes to the enrichment and clarification of many aspects of the

operator theory, mainly those concerned with non-closable and non-densely-defined

linear operators.

The first three chapters of the book, I. Linear relations: Algebraic prop-

erties, II. Normed linear relations, and III. Adjoints of linear relations, provide a

self-contained foundation course on linear relations. Ch. IV, Operational quantities of

linear relations, is concerned with various numerical functions defined on some classes

of linear relations, most of them being generalizations of some well known quantities

in the theory of bounded linear operators. Some important classes of linear relations,

such as compact, precompact, strictly singular, strictly cosingular, upper and lower

semi-Fredholm, are introduced and studied in Ch. V, Semi-Fredholm linear relations.

The spectral theory for linear relations is developed in Chapters VI, Spectral theory

and VII, The essential spectrum. The emphasis in Ch. VIII, The second adjoints

of linear relations is on weakly compact and weakly completely continuous linear

relations with applications to Tauberian theorems.

The book, largely based on the results obtained by the author and his col-

laborators or doctoral students, presents for the first time in book form a systematic

treatment of various aspects of multivalued linear relations.

For these reasons, the book is of interest to a large audience, including re-

searchers in functional analysis and operator theory, differential equations (ordinary

or partial), mathematical economics and other domains. Its first three chapters can

be used for advanced graduate, or post-graduate, courses in functional analysis or

operator theory.

Tiberiu Trif

Solomon Leader, the Kurzweil-Henstock Integral and Its Differentials–A Unified

Theory of Integration on R and Rn, Monographs and Textbooks in Pure and Applied

Mathematics, Vol. 242, M. Dekker, Inc., Basel - New York 2001, viii+335 pages,

105



BOOK REVIEWS

ISBN: 0-8247-0535-1.

The main defects of the Riemann integral are the restriction to bounded

integrands and feeble convergence properties. These defects were remedied by the

Lebesgue integral, and its development led to general measure theory and integration

on measure spaces, with many applications in functional analysis and probability

theory. Beside requiring tedious preliminaries, the Lebesgue integral involve abso-

lute integrability, so that the semiconvergent improper Riemann integrals can not be

treated within this theory. A significant breakthrough was done around 1960 indepen-

dently by J. Kurzweil and R. Henstock. Their main idea was to replace the number

δ measuring the finesse of a division by a function δ( ), called a gauge function.

This simple modification yields the so called generalized Riemann integral, whose

properties overcome the defects of both Riemann and Lebesgue integrals.

The present book is essentially based on the results published by the author

between the years 1985 and 1995, mainly in the journal Real Analysis Exchange.

Inspired by some ideas of Kurzweil and Henstock, he develops a process of integration

based on ”summants”, which are functions S defined on the set of all tagged intervals

contained in an elementary figure (a finite union of closed intervals) K. A tagged cell is

a pair (I, t), where I is an interval in [−∞,∞] and t is an endpoint of I. This definition

includes equivalents of Lebesgue, Stieltjes, Denjoy-Perron integrals, considered on

bounded as well as on unbounded intervals. Another important innovation is the

definition of differentials based on the integration of summants–a differential is an

equivalence class on an interval K with respect to the equivalence relation
∫

K
|S−S′| =

0. In this approach, every function f on K induces an integrable differential df and

every integrable differential is the differential of a function. Also, the fundamental

theorem of calculus can be proved under very general hypotheses.

The book is divided into eleven chapters headed as follows: 1. Integration

of summants; 2. Differentials and their integrals; 3. Differentials with special prop-

erties; 4. Measurable sets and functions; 5. The Vitali Covering Theorem applied to

differentials; 6. Derivatives and differentials; 7. Essential properties of functions; 8.

Absolute continuity; 9. Conversion of Lebesgue-Stieltjes integrals into Lebesgue inte-

grals; 10. Some results on higher dimensions; 11. Mathematical background. Each
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section ends with a set of exercises, some of them being research topics, deserving

further investigation.

The book can be used as a textbook for a graduate course on special topics

in real analysis, or as a supplementary text for first year graduate courses in real

analysis. It can be used also as a monograph by people interested in the foundation

of integration theory and calculus.

S. Cobzaş

Stephen Lynch, Dynamical Systems with Applications using MAPLE.

The book is a good introduction to dynamical systems theory. In the first part

of the text, differential equations are used to model examples taken from mechanical

systems, chemical kinetics, electric circuits, interacting species and economics. In

the second part real and complex discrete dynamical systems are considered, with

examples taken from economics, population dynamics, nonlinear optics and material

science.

The theory and applications are presented with the aid of the MAPLE alge-

braic manipulation package. Throughout the book, MAPLE is viewed as a tool for

solving systems or producing exciting graphics. The author suggests that the reader

should save the relevant example programs. These programs can then be edited ac-

cordingly when attempting the exercises at the end of each chapter.

The text is aimed at graduate students and working scientists in various

branches of applied mathematics, natural sciences and engineering. The material

is intelligible to readers with a general mathematical background. Fine details and

theorems with proof are kept at a minimum. This book is informed by the research

interests of the author which are nonlinear ordinary differential equations, nonlinear

optics and fractals. Some chapters include recently published research articles and

provide a useful resource for open problems in nonlinear dynamical systems.

An efficient tutorial guide to MAPLE is included. The knowledge of a com-

puter language would be beneficial but not essential. The MAPLE programs are

kept as simple as possible and the author’s experience has shown that this method of

teaching using MAPLE works well with computer laboratory class of small sizes.
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I recommend ”Dynamical Systems with Applications using MAPLE” as a

good handbook for a diverse readership, for graduates and professionals in mathe-

matics, physics, science and engineering.

Damian Trif

Jon H. Davis, Differential Equations with MAPLE, Birkhäuser Verlag 2000, xiv +

409 pp, ISBN 0-8176-4181-5.

Differential Equations is an important subject in pure and applied mathemat-

ics. MAPLE is a program for symbolic manipulation of mathematical expressions,

numerical computations and graphics. The ability of Maple to handle complicated

calculations makes it possible to deal with much more interesting and substantial

problems than are possible if only hand calculations are allowed.

Some differential equations are susceptible to analytic means of solution while

others require the generation of numerical solution trajectories to see the behavior of

the equation under study. Maple can be used for both situations. The student does

not understand an algorithm unless he can code it and, of course, the solution curve

plots are more informative than columns of numbers when numerical methods are

used.

The first part of the text introduces MAPLE, by a self contained discussion.

The second part covers conventional differential equation topics: first order equations,

n-th order equations and systems, periodic solutions, stability, boundary value prob-

lems, Laplace transform methods and numerical methods. The last part of the text

consists of MAPLE differential equations applications and some hard programming

projects.

The book integrates MAPLE with differential equations by using it to inves-

tigate topics that are inaccessible without computational aid. There are routines for

recognizing and solving a variety of differential equation problems but more impor-

tant is the experience of what sort of problems have simple solutions and what the

form of those solutions should look like.
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MAPLE exercises are part of the learning process. It is important that stu-

dents undertake learning MAPLE as a programming tool. This enables them to use

MAPLE to solve their own problems.

As universities throughout the world move to incorporate a programming

package into the differential equations curricula, I recommend this book as an excellent

combination of basic theory of differential equations and MAPLE.

Prof. Damian Trif

109



BOOK REVIEWS

Cristian E. Gutiérrez, The Monge-Ampére Equation, Progress in Nonlinear Differen-

tial Equations and Their Applications, Birkhäuser Boston-Basel-Berlin, 2001.

The classical Monge-Ampére equation has been the center of considerable

interest in recent years because of its important role in several areas of applied math-

ematics. In reflecting these developments, this works stresses the geometric aspects

of this theory, using some techniques from harmonic analysis - covering lemmas and

set decompositions. Moreover, Monge-Ampére type equations have applications in

the areas of differential geometry, the calculus of variations, and several optimization

problems, such that Monge-Kantorovitch mass transfer problem.

This book is an essentially self-contained exposition of the theory of weak

solutions, including the regularity results of L.A. Caffarelli. The presentation unfolds

systematically from introductory chapters, and an effort is made to present complete

proofs of all theorems. There are included examples, illustrations, bibliographical

references at the end of each chapter, and a comprehensive index.

The topics covered in the book include: Generalized solutions, Non-

divergence equations, The cross-sections of Monge-Ampére, Convex solutions of

D2u = 1 in Rn, Regularity theory, W 2,p estimates.

The Monge-Ampére equation is a concise and useful book for students and

researchers in the field of nonlinear equations.

Adriana Buică

Raghavan Narasimhan and Yves Noevergelt, Complex Analysis in One Variable,

Second Edition, Birkhäuser Verlag, Basel-Boston-Berlin 2001, xiv + 381 pp, ISBN

3-7643-4164-5 and 0-8176-4164-5.

The book is a presentation of complex analysis in one variable with connec-

tions to other branches of mathematics (several complex variables, real analysis, de

Rham theory etc.). It has two parts. The first part, due to Raghavan Narasimhan, is

essentially just a reprint of the first edition and contains the theory of complex anal-

ysis. The second part, due to Yves Noevergelt, is a collection of exercises, problems,

examples and relevant references.

110



BOOK REVIEWS

The first three chapters of the first part (Elementary theory of holomorphic

functions, Covering spaces and the Monodromy theorem and The winding number and

the Residue theorem) deal with classical material. They also include the Looman-

Menchoff theorem. Chapter 4 presents Picard’s theorem. Chapters 5 and 6 are

devoted to inhomogenous Cauchy-Riemann equation, Runge’s theorem and its various

application. The Riemann Mpping theorem is presented in the next chapter. Chapter

8 (Functions of several complex variables) is meant to contrast the behavior in higher

dimensions with that in the complex plane. Chapter 9 is an introduction on Riemann

surfaces. Chapter 10 contains Tom Wolff’s proof of the Corona theorem. The last

chapter, Chapter 11, deals with subharmonic functions and their generalizations to

several variables.

The book is addressed to graduate students who intend to specialize in math-

ematics. It can also be useful in doctoral work in mathematics, teaching careers in

colleges or technical activities. The book requires knowledge of multivariable calculus,

set theory, Lebesgue integration and elementary functional analysis.

Grigore Şt. Sălăgean

p-Adic Functional Analysis, Lecture Notes in Pure and Applied Mathematics:

Vol. 192, W.H. Schikhof. C. Perez-Garcia, J. Kakol - Editors, M. Dekker, New York

1997, 399 pp, ISBN 0-8247-0038-4.

Vol. 207, J.Kakol, N. De Grande-De Kimpe, V. Perez-Garcia - Editors, M. Dekker,

Inc., New York 1999, 331 pp, ISBN 0-8247-8254-2.

p-Adic (ultrametric or non-archimedean) analysis is the analysis over a field

with an ultrametric valuation, i.e. a valuation | | satisfying the strong (or ultrametric)

triangle inequality

|a + b| ≤ max{|a|, |b|},

which is essential for the entire theory. Classical examples of non-archimedean (n.a.)

valued fields are the fields Qp, for p a prime natural number, which entail the name

”p-adic analysis” attributed to the domain. It was developed by A.F. Monna in a

series of papers published in Proceedings of the Dutch Royal Academy of Sciences,
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starting with 1943. He collected the results up to 1973 in a book, A.F. Monna, Analyse

Non-Archimédienne, Springer Verlag, Berlin 1973. Another book on the same topic

is A.C.M. van Rooij, Non-Archimedean Functional Analysis, M. Dekker, New York

1978.

Although, at the beginning, the theory looked a little strange and useless,

the efforts of a permanently increasing number of mathematicians transformed it

into a well established mathematical discipline. Beside interesting and nontrivial

results, most of them drastically contrasting with those in classical real or complex

analysis, the theory has found recently some spectacular applications to mathematical

physics and probability theory. Two recent books, V.S. Vladimirov, I.V. Volovich,

E.J. Zelenov, p-adic numbers in mathematical physics, World Scientific, Singapore

1994, and A.Yu. Khrennikov, p-adic valued distributions in mathematical physics,

Kluwer AP, Dordrecht 1994, are good sources for these applications .

Motivated by the growing interest in n.a. functional analysis, a conference on

this topic was organized in 1990 at Laredo, Spain, by Jose M. Bayod, N. De Grande-

De Kimpe and J. Martinez-Maurica. Its Proceedings were published by M. Dekker

in 1992 as volume 137 in the series Lecture Notes in Pure and Applied Mathematics

(LNPAM).

The present two volumes contain the Proceedings of the fourth conference,

held in 1996 at the University of Nijmegen, The Netherlands, and of the fifth con-

ference held in 1998 at the University Adam Mickiewicz of Poznan, Poland. They

reveal the state of the art in the realm of n.a. analysis and contain research articles

presented at the conference in 30-minute talks.

The fourth conference was attended by over than 40 researchers from 15 coun-

tries. The 1996 Proceedings volume (vol. 192 in LNPAM) contain 29 papers dealing

with topics as spaces of p-adic analytic or continuous functions, functional and differ-

ential p-adic equations, uniform approximation (Stone-Weierstrass type theorems),

almost periodic functions, Euclidean models for p-adic spaces, inductive limits of

locally convex spaces and closed graph theorems, hypergeometric series, Tauberian

theorems. N.a. convexity has a more algebraic character than the classical (real)

convexity and is developed in a paper on locally convex modules.
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The fifth conference was attended by mathematicians from Europe, North and

South America, Africa and Japan, and its Proceedings, the volume 207 in LNPAM,

contain 21 contributed papers. Various topics discussed by the participants were

inspired by recent designs for p-adic models in modern physics and probability theory.

Again, p-adic analytic functions and the properties of spaces of analytic functions

are discussed in several papers. Other topics included in the volume are: Fourier

transform for p-adic tempered distributions, spectral properties of p-adic Banach

algebras, Banach-Dieudonné theorem, orthonormal bases, Mahler bases .

These conferences on p-adic functional analysis, and the corresponding Pro-

ceedings volumes, are the most authoritative sources in this relatively new area of

investigation which is p-adic analysis. The volumes are addressed first to researchers

in p-adic analysis, but researchers in mathematical physics and probability theory

will find new and unexpected approaches to their field. The young researchers can

find here a fertile land, with a lot of open problems deserving further investigation.

S. Cobzaş

Victor P. Pikulin and Stanislav Pohozaev, Equations of Mathematical Physics–A

practical course, Birkhäuser Verlag, Basel-Boston-Berlin 2001, viii+207 pp., ISBN: 3-7643-

6501-3.

The aim of this book is to present the main methods and tools for solving the basic

problems from mathematical physics. This course is addressed especially to students for

the study of the main equations from the mathematical physics, but it is also a valuable

book for all those interested in the theory of partial differential equations, by means of the

superposition method. Regarding the structure of the book, let me list the titles of the

three chapters: I. Elliptic Problems (including the Green function method and the method

of conformal mappings) II. Hyperbolic Problems (including the Fourier, Laplace and Hankel

integral transforms) III. Parabolic problems (including also the Fourier and Laplace integral

transform methods and the method of separation of variables). Let us remark that each

chapter contain several examples, as well as, problems for independent study and answers

to them.

Because of the importance of the domain, the very good quality of the paper and

the writing style of the authors, I must recommend this well written book as a textbook for
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students and a mini-handbook for other scientists from applied mathematics.

Adrian Petruşel

Categorical Perspectives, Editors: Jürgen Koslowski and Austin Metlon, Trends in

Mathematics, Birkhäuser (2001), x+281pp, SBN 0-8176-4186-6 SPIN 10761690 ISBN

3-7643-4186-6.

The volume under review contains papers presented at the conference held in honor

of Professor George E. Strecker’s 60th birthday which was held in August 1998 on Kent

State University.

The aim of the editors was to exhibit some fundamental facts in the category theory

and some interaction between this and other domains (topology, computer science, etc.). The

volume contains 15 teaching, expository and research papers.

As teaching papers we mention the papers of Y. T. Rhineghost The Functor that

Wouldn’t be and The Emergence of Functors as well as the George E. Strecker’s paper 10

Rules for Surviving as a Mathematician and Teacher and the Alois Zmrzlina’s paper Too

Many Functors. Expository papers are Categories: A Free Tour by Letz Schróder, Contribu-

tions and Importance of Professor George E. Strecker’s Research by Jürgen Koslowski, Con-

nections and Polarities by Austin Melton and Categorical Closure Operators by G. Castellini.

As research papers the reader can find Extension of Maps from Dense Subspaces by H. L.

Bentley, Characterisation of subspaces of Important Types of Convergence Spaces in the

Realm of Convenient Topology by Gerhard Preu, The Naturals are Lndelöf iff Ascoli Holds

by Y. T. Rhineghost, Revisiting the Celebrated Thesis of J. de Groot: ”Everything is Linear”

by Ludvik Janos, Finite Ultrametric Spaces and Computer Science by Vladimir A. Lemin,

The Copnumber of a Graph is Bounded by [3/2 genus (G)]+3 by Bernd S. W. Schroeder and

Abelian Groups: Simultaneosly Reflective and Coreflective Subcategories versus Modules by

Robert El Bashir, Horst Herrlich and Miroslav Hušek.

The authors are experts from quite different well known schools.

The book permits an easy access to the current information in the field. Graduate

students and researchers interested in category theory and related areas will take a full

benefit and they find here a good source of inspiration.

Simion Breaz
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Stefan Caenepeel and Freddy Van Oystaeyen Editors, Hopf Algebras and Quantum Groups.

Lecture notes in pure and applied mathematics 209, Marcel Dekker, New York-Basel, 2000,

xii+309 pp., Softcover, ISBN 0-8247-0395-2.

The volume under review is based on the proceedings of the colloquium on Hopf

Algebras and Quantum Groups held at the Free University of Brussels, Belgium. It con-

tains high quality refereed research papers and survey papers covering topics like Nichols

algebras and pointed Hopf algebras, cross product algebras, graded coalgebras, coalgebra-

Galois extensions, Doi-Hopf modules, cyclic cohomology, Schur-Weyl categories, classical Lie

superalgebras and finite-dimensional quantum groupoids.

The authors and their contributions are the following. N. Andruskievitsch and H.-J.

Schneider, Lifting of Nichols algebras of type A2 and pointed Hopf algebras of order p4; Y.

Bespalov and B. Drabant, Survey of cross product algebras; C. Boboc, A Morita-Takeuchi

context for graded coalgebras; T. Brzeziński, Coalgebra-Galois extension from the extension

theory point of view; ıS. Caenepeel, B. Ion, G. Militaru and S. Zhu, Separable functors

for the category of Doi-Hopf modules II; M.A. Farinati and A. Solotar, Cyclic cohomology

of coalgebras, coderivations and de Rham cohomology; D. Gurevich and Z. Mriss, Schur-

Weyl categories and non-quasiclassical Weyl-type formula; Y. Kashina, A generalized power

map for Hopf algebras; I.M. Musson, Associated varieties for classical lie superalgebras; D.

Nikshych and L. Vainerman, Algebraic version of a finite-dimnesional quantum groupoid; F.

Panaite and F. Van Oystaeyen, Quasi-Hopf algebras and the centre of a tensor category; Ş.

Raianu, An easy proof for the uniqueness of integrals; M. Takeuchi, The coquasitriangular

Hopf algebra associated to a rigid Yang-Baxter Coalgebra; A. Tyc, On the regularity of the

algebra of covariants for actions of pointed Hopf algebras on regular commutative algebras;

A. Van Daele and Y. Zhang, A survey on multiplier Hopf algebras.

The book is an important addition to the literature on this subject which had a

tremendous development in the last 15 years. It will be a useful source of information and

ideas for researchers in algebra, number theory and mathematical physics, and for all those

interested in Hopf algebras.

Andrei Marcus

Gary F. Birkenmaier, Jae Keol Park, Young Soo Park (Eds), International symposium on

ring theory, Birkhäuser Verlag, Boston, 2001, xviii+446 pp., Hardcover, ISBN 0-8176-4158-0.
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The present volume is the Proceedings of the Third Korea-China-Japan Interna-

tional Symposium on Ring Theory held jointly with the Second Korea-Japan Joint Ring

Theory Seminar, which took place at Kyongju, Korea, between June 28 and July 3, 1999.

It contains more than 30 both survey and research articles of mathematicians from

Korea-China-Japan area, but also from Europe and the United States.

The articles covering various actual topics of Ring Theory may be classified in

several main branches: Classical Ring Theory, Module Theory, Representation Theory, Hopf

Algebras Theory and some other special subjects.

In the papers on classical part of Ring Theory, the results refer to stability proper-

ties of exchange rings, generalized principally injective maximal ideals, Auslander-Gorenstein

rings, skew polynomial rings, non-commutative valuation rings, generalized Jordan deriva-

tions, theories of Harada in artinian rings, quasi-Frobenius or finitely pseudo-Frobenius rings.

Among the topics connected to Module Theory we mention generalized deviations

of posets and applications, good conditions for the total, generalizations of injectivity, a

short history of the flat cover conjecture, CS-properties, dual bimodules and Nakayama

permutations, maximal t-corational extensions, torsion-free modules over valuation domains,

generalized Matlis duality, hopfian modules or linkage maps.

Representation Theory is present through semicentral reduced algebras, derived

equivalences and tilting theory, generalized Jordan derivations, Hecke orders, cellular orders

and quasi-hereditary orders, infinite quivers and cohomology groups.

Topics of Hopf Algebras included in the articles are the coinduced functor and

homological properties of Hopf modules, Hopf algebra coaction and group-graded rings or

QcF -algebras.

The final section presents several open problems, especially on Classical Ring The-

ory and Module Theory, offering ideas for future research.

The well-known mathematicians which contributed to this book, touching a rather

wide range of important topics of the nowadays research in Ring Theory, make the volume a

valuable tool and source of inspiration for an algebraist working on a high level in this field.

Septimiu Crivei

Schwartz, Laurent – A Mathematician Grappling with His Century, Birkhäuser, 2001, 504

pp., Softcover, ISBN 3-7643-6052-6.
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“I am a mathematician”. It is the first sentence of this autobiography of Laurent

Schwartz. A great Romanian mathematician, Gr. C. Moisil, used to say that one of the

biggest temptations of a mathematician is to be only a mathematician. Without any doubt,

Laurent Schwartz is a good illustration of how someone could be determined enough to resist

such a temptation.

It would be pointless to try to describe the contents of the book. What could be

said in just a few lines about an entire life of one of the greatest mathematicians of the last

century, who was, at the same time, one of its greatest consciences?! Let me only mention

that he did not stay away from any important problem or idea. He was involved in the

communist movement, as a supporter of the ideas of Trotzki, he experienced the problems

of the Jewish people during the second World War, being himself a Jew. After the war,

he became involved in a lot of committees, fighting for the rights of people from Algeria,

Vietnam or Afghanistan. He was one of the founders of the International Committee of

Mathematicians, an international organization which managed to help some of the Soviet

mathematicians that were subjects to persecution in their country, back in the communist

period.

Of course, in any (auto)biography of a scientist, the personal and professional mat-

ters do interfere, they cannot be treated separately. This is no exception. If I didn’t say a

word about the mathematics of Laurent Schwartz, it is because this is, by now, well known

to any mathematician. It is, nevertheless, instructing to find out about the mathematical

discoveries and inventions of Schwartz came into being.

A great scientist is not necessarily a good writer. I would rather say that the writing

skill is the exception, not the rule, but the book of Schwartz is more fascinating than a novel.

It really keeps you awake at night. Usually, we are smiling unconfidentely when someone

tells us: “My life was a novel”. The life of Schwartz was, indeed.

Let me mention that the book is, also, a valuable (and personal, of course) contri-

bution to the history of mathematics of the twentieth century. Many important figures of

contemporary mathematics are present in the pages of Schwartz autobiography, not only as

colleagues and friends, but also as relatives (he is the nephew of Jacques Hadamard and the

son in law of Paul Lévy).

A final word of appreciation is due to the photographic material present in the

book, which is very interesting and inedit.

Paul A. Blaga
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I. John Cagnol, Michael P. Polis, Jean-Paul Zolesio (Eds.)- Shape Optimization and Optimal

Design, Lecture Notes in Pure and applied Mathematics, vol. 216, Marcel Dekker, New

York-Basel, 2001, ISBN: 0-8247-0556-4.

II. Giuseppe Da Prato, Jean-Paul Zolesio (Eds.)-Partial Differential Equation

Methods in Control Analysis, Lecture Notes in Pure and Applied Mathematics, vol. 188,

Marcel Dekker, New York-Basel-Hong Kong, 1997, ISBN: 0-8247-9837-6.

The first volume mentioned comprises papers from the sessions ”Distributed Pa-

rameter Systems” and ”Optimization Methods and Engineering Design” held within the 19th

conference System Modeling and Optimization in Cambridge, England.

The second volume presents papers from the Conference on Control and Shape

Optimization held at Scuola Normale Superiore di Pisa, Italy. Both the conferences were

organized by the International Federation for Information Processing (IFIP).

The papers present the latest developments and major advances in the fields of

active and passive control for systems governed by partial differential equations- in particular

in shape analysis and optimal shape design.

Traditionally, optimal shape design has been treated as a branch of the calculus

of variations, more specifically of optimal control. The subject interfaces with at least four

fields: optimization, optimal control, PDEs and their numerical solutions.

The main question that optimal shape design tries to answer is: ”What is the best

shape for a physical system?”.

Many problems that arise in technical and industrial applications can be formulated

as the minimization of functionals with respect to a geometrical domain which must belong

to an admissible family. Optimal shape design is used in various fields, like those mentioned

in the books: fluid mechanics, linear elasticity, thermo-elasticity, soil mechanics, electricity,

aircraft industry, material sciences, biodynamics.

The authors of the articles are well known for important results in this field of

research.

Some of the aspects treated are:

• shape sensitivity analysis (that is the sensitivity of the solutions with respect to

the shape of the domain) for the Navier-Stokes equation, Maxwell’s equation,

for some problems with singularities (I)
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• the study of the material derivative, the shape derivative on a fractured mani-

fold (I), the shape derivative for the Laplace-Beltrami equation (II), the shape

hessian for a nondifferentiable variational free boundary problem (II),the shape

gradients for mixed finite element formulation (II),the eulerian derivative for

non-cylindrical functionals (I)

• numerical aspects (using finite element approximation and other methods, some

of them original) for: shape problems in linear elasticity (I), parallel solution

of contact problems (I), modeling of oxygen sensors (I), control of a periodic

flow around a cylinder (I), shape identification problems associated with the

stationary heat conduction in 2D(II)

• boundary controllability of thermo-elastic plates (I)

• regularity properties for the weak solutions to certain parabolic equations(II)

• homogenization and continuous dependence for Dirichlet problems, asymptotic

analysis on singular perturbations (II), asymptotic analysis of aircraft wing

model in subsonic flow (I)

• mapping method in problems governed by hemivariational inequalities (I)

• feedback laws for the optimal control of parabolic variational inequalities

Many more subjects are treated in the 41 papers by 50 authors, which allow the reader

to get a good idea about the latest research directions in this very active field of applied

mathematics.

Daniela Inoan

Stephanie Frank Singer, Symmetry in Mechanics: A Gentle, Modern Introduction,

Birkhäuser, Boston-Basel-Berlin, 2001, VII+193 pp, ISBN 0-8176-4145-9.

This book is aimed at anyone who has observed that symmetry yields simplification

and wants to know why. The author eschews density of topics and efficiency of presentation

in favor of a gentler tone, a coherent story, digressions on mathematicians, physicists and

their notations, simple examples worked out in detail, and reinforcement of the basics.

This text introduces some basic constructs of modern symplectic geometry in the

context of an old celestial mechanics problem, the two-body problem. The derivation of

Kepler’s laws of planetary motion from Newton’s laws of gravitation are presented, first in

the style of an undergraduate physics course, and then again in the language of symplectic
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geometry. All necessary constructs of symplectic geometry are introduced and illustrated in

text.

Chapter 0 covers some preliminary material. Here are presented basic notations

and conventions, the physical and mathematical background.

Chapter 1 presents the two-body problem, i.e., the derivation of Kepler’s laws of

planetary motion from Newton’s laws of gravitation in the classical language of vector cal-

culus.

Chapters 2-7 develope the concepts and terminology necessary for the final chapter,

providing a detailed translation between the quite different languages of mathematics and

physics. In this part are presented: the symplectic structure of the phase space of mechanical

systems (chapter 2), a bridge to differential geometry (chapter 3), the importance of total

energy (chapter 4), symmetries as Lie group actions (chapter 5), the Lie algebras of infinites-

imal symmetries (chapter 6), and relationship between conserved quantities and momentum

maps. This part of the monograph contains many examples, illustrations and exercices.

Chapter 8 presents the derivation it started with (chapter 1), but in the more

sophisticated language of modern symplectic and differential geometry, presented in the

previous chapters.

Readers desiring broader or more sophisticated texts should consult the Recom-

mended Reading sections.

For the student, mathematician or physicist, this gentle introduction to symplec-

tic reduction via mechanics will be a rewarding experience. This book can be used as a

supplement to courses on differential geometry or Lie theory, or could be a major compo-

nent of a course on symplectic geometry or classical mechanics, providing motivation for a

more standard exposition of the mathematics. It would also be appropriate at the end of

an example-driven semester course on classical mechanics, in which case students should be

encouraged to work out the symplectic versions of examples treated earlier. Symmetry in Me-

chanics requires only competency in multivariable calculus, linear algebra and introductory

physics.

Ferenc Szenkovits

Recent Advances in Operator Theory and Related topics – The Béla Szőkefalvi-Nagy

Memorial Volume, László Kérchy, Ciprian Foias, Israel Gohberg, Heinz Langer - Editors,

l+669 pp., Operator Theory: Advances and Applications, Vol. 127, Birkhäuser Verlag,
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Boston-Basel-Berlin 2001, ISBN 3-7643-6607-9.

Béla Szőkefalvi-Nagy was born in Kolozsvár, Transylvania, (now Cluj-Napoca, Ro-

mania), in 1913. In 1929 his family moved to Szeged, Hungary, where he followed the

university, having as teachers great mathematical personalities as F. Riesz and A. Haar.

Soon he became a collaborator of F. Riesz and their collaboration culminated in the mono-

graph ”Leo̧ns d’analyse fonctionelle” published in 1952, a standard reference in functional

analysis, translated into six languages. He passed away in 1998 and the present volume

contains the proceedings of Szőkefalvi-Nagy Memorial Conference held in Szeged in August

1999. The conference was attended by 91 mathematicians all over the world, who deliv-

ered 19 plenary talks in the morning and 63 talks in two parallel sections in the afternoon.

The volume contains 35 contributed talks by participants at the conference or by experts

who were unable to attend the conference. The included papers deal with various topics in

operator theory, a field which owes so much to Szőkefalvi-Nagy, written by friends, former

students or collaborators. Among the contributors we mention: D. Alpay, I. Gohberg, H.

Bercovici, C. Foias, A. E. Frazho, J. B. Conway, L. Zsido, R G. Douglas, J. Eschmeier, J.

Esterle, D. Gaşpar, N. Suciu, Z. Sebestyén, L. Kérchy, H. Langer.

Beside these research papers, the volume contains the farewell speech given by

Ciprian Foias at the grave site in Szeged, some reminiscences by Israel Gohberg, and a

presentation of the life and work of Szőkefalvi-Nagy by L. Kérchy and H. Langer. A list

of publications of Szőkefalvi-Nagy and some photos from the family album provided by

Erszébet Szőkefalvi-Nagy, Béla’s daughter, are also included.

Giving tribute to one of the founders of modern operator theory and bringing to-

gether important contributions of leading experts in operator theory, this valuable volume

will be of interest first to operator theorists, but also to researchers in functional analysis

and mathematical physics.

S. Cobzaş

Turaev, V. – Introduction to Combinatorial Torsions, Birkhäuser (Lectures in Mathematics,

ETH Zürich), 2000, 123 pp., Softcover, ISBN 3-7643-6403-3.

In the recent period, the various kind of torsions became an important tool in low

dimensional topology. The book under review, written by one of the best experts in the
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field, aims to provide a systematic introduction to combinatorial torsions of cellular spaces

and manifolds (especially the three dimensional case).

The first notion of torsion was introduced by Reidemeister in 1935 and the theory

was later developed mainly by Whitehead and Milnor.

The book is divided in three chapters. The first two are devoted to an exposition

of the algebraic theory of torsions as well as to various geometrical realisations due to Rei-

demeister, Franz, Whitehead, Milnor. There is presented, also, a notion due to the author,

the so-called “maximal abelian torsion” and it is examined the connection between different

torsions and and the Alexander polynomial of links and 3-manifolds.

The final chapter deals with more special subjects, namely some other notions in-

troduced by the author: sign-refined torsions and other structures on manifolds (homological

orientations, Euler structures) with an application to the construction of the Conway link

function for homology 3-spheres. Finally, there is described the connection between the

sign-refined torsions and the Seiberg-Witten invariant of 3-manifolds.

The intended audience includes graduate students and researchers in mathematics

and physics, intersted in low dimensional topology, with a background in combinatorial

topology and homological algebra.

Paul A. Blaga

Jonathan M. Borwein and Adrian S. Lewis, Convex Analysis and Nonlinear Optimization,

Theory and Examples, Canadian Mathematical Society (CMS) Books in Mathematics, Vol.

3, Springer-Verlag, New York Berlin Heidelberg, 2000, ISBN:0-387-98940-4.

The book is a concise account of convex analysis, its applications and extensions.

It is aimed primarily at first-year graduate students, so that the treatment is restricted to

Euclidean space, a framework equivalent, in fact, to the space Rn, but the coordinate free

notation, adopted by the authors, is more flexible and elegant. The proof techniques are

chosen, whenever possible, in such a way that the extension to infinite dimensions be obvious

for readers familiar with functional analysis (Banach space theory). Some of the challenges

arising in infinite dimensions are discussed in Chapter 9, Postscript: Infinite versus finite

dimensions, in which case the results involve deeper geometric properties of Banach spaces.

The last section of this chapter contains notes on previous chapters, explaining which results

extend to infinite dimension and which not, as well as sources where these extensions can be

found.

122



BOOK REVIEWS

The authors adopted a succint style, avoiding as much as possible complicated tech-

nical details, their goal being ”to showcase a few memorable principles rather than to develop

the theory to its limits”. The book consists of short, self-contained sections, each followed

by a rather extensive set of exercises grouped into three categories: examples that illustrate

the ideas in the text or easy expansions of sketched proofs (no mark); important pieces of

additional theory or more testing examples (marked by one asterisk); and longer, harder

examples or peripheral theory (marked by two asterisks). Some bibliographical comments

are also included along with these exercises, an approach which allow the authors to cover a

large variety of topics. A good idea on the included material is given by the headings of the

chapters and the presentation of some topics included in the main text or in exercises.

Ch. 1, Background - Euclidean spaces, symmetric matrices, in the main text, and

Radstrom cancellation, recession cones, affine sets, inequalities for matrices, in exercises.

Ch. 2, Inequality constraints - optimality conditions, theorems of alternative, max-

functions, in the main text, and nearest points, coercivity, Carathéodory’s theorem, Kir-

choff’s law, Schur convexity, steepest descent, in exercises.

Ch. 3, Fenchel duality - subgradients and convex functions, the value function, the

Fenchel conjugate, in the main text, and normal cones, Bregman distances, Log-convexity,

Duffin’s duality gap, Psenichnii-Rockafellar condition, order-convexity and order subgradi-

ents, symmetric Fenchel duality, in exercises.

Ch. 4, Convex analysis - continuity of convex functions, Fenchel biconjugation,

Lagrangian duality, in the main text, and polars and polar calculus, extreme and exposed

points, Pareto minimization, von Neumann minimax theorem, Kakutani’s saddle point the-

orems, Fisher information function, in exercises.

Ch. 5, Special cases - polyhedral convex sets and functions, functions of eigenvalues,

duality, convex process duality, in the main text, and polyhedral algebra, polyhedral cones,

convex spectral functions, DC functions, normal cones, order epigraphs, multifunctions, in

exercises.

Ch. 6, Nonsmooth optimization - generalized derivatives, regularity and strict differ-

entiability, tangent cones, the limiting subdifferential, in the main text, and Dini derivatives

and subdifferentials, mean value theorem, regularity and nonsmooth calculus, subdifferen-

tials of eigenvalues, contingent and Clarke cones, Clarke’s subdifferentials, in exercises.

Ch. 7, Karush-Kuhn-Tucker theory - metric regularity, the KKT theorem, metric

regularity and the limiting subdifferential, second order conditions,in the main text, and
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Lipschitz extension, closure and Ekeland’s principle, Liusternik theorem, Slater condition,

Hadamard’s inequality, Guignard optimality conditions, higher order conditions, in exercises.

Ch. 8, Fixed points - the Brouwer fixed point theorem, selection and the Kakutani-

Fan fixed point theorem, variational inequalities, in the main text, and nonexpansive map-

pings and Browder-Kirk fixed point theorem, Knaster-Kuratowski-Mazurkiewicz principle,

hairy ball theorem, hedgehod theorem, Borsuk-Ulam theorem, Michael’s selection theo-

rem, Hahn-Katetov-Dowker sandwich theorem, single-valuedness and maximal monotonic-

ity, cuscos and variational inequalities, Fan minimax inequality, Nash equilibrium, Bolzano-

Poincaré-Miranda intermediate value theorem, in exercises.

There is a chapter, Chapter 10, containing a list of named results and notation,

organized by sections. Beside this, the book contains also an Index.

The bibliography counts 168 items.

Written by two experts in optimization theory and functional analysis, the book is

an ideal introductory teaching text for first-year graduate students. By the wealth of highly

non-trivial exercises, many of which are guided, it can serve for self-study too.

Stefan Cobzaş

Andreas Juhl, Cohomological Theory of Dynamical Zeta Functions, Progress in Mathemat-

ics, Vol. 194 Birkhäuser Verlag, Boston-Basel-Berlin 2001, x+709 pp., ISBN 3-7643-6405-X.

Dynamical zeta functions are associated to dynamical systems with a countable set

of periodic orbits. The dynamical zeta functions of the geodesic flow of locally symmetric

spaces of rank one are known as the generalized Selberg zeta functions.

The present book is concerned with these zeta functions from a cohomological point

of view. Originally, the Selberg zeta functions appeared in the spectral theory of automorphic

forms and were suggested by an analogy between Weil’s explicit formula for the Riemann

zeta function and Selberg’s trace formula. The purpose of the cohomological theory is to

understand the analytical properties of the zeta functions on the basis of suitable analogs of

the Lefschetz fixed point formula in which periodic orbits of the geodesic flow take the place

of fixed points. According to geometric quantization the Anosov foliations of the sphere

bundle provide a natural source for the definition of the cohomological data in the Lefschetz

formula. The Lefschetz formula method can be considered as a link between the automor-

phic approach (Selberg trace formula) and Ruelle’s approach (transfer operators). It yields

a uniform cohomological characterization of the zeros and poles of the zeta functions and
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a new understanding of the functional equations from an index theoretical point of view.

The divisors of the Selberg zeta functions also admit characterizations in terms of harmonic

currents on the sphere bundle which represent the cohomology classes in the Lefschetz for-

mulas in the sense of Hodge theory. The concept of harmonic currents to be used for that

purpose is introduced here for the first time. Harmonic currents for the geodesic flow of a

noncompact hyperbolic space with a compact convex core generalize the Patterson-Sullivam

measure on the limit set and are responsible for the zeros and poles of the corresponding

zeta function.

The book is not a textbook but describes the present state of the art of the research

in a new field on the cutting edge of global analysis, harmonic analysis and dynamical

systems. The majority of results suggest generalizations and raise new questions, some open

problems being emphasized explicitly throughout the text. It should be appealing not only to

specialists on zeta functions which will find their objects of favorite interest connected in new

ways with index theory, geometric quantization methods, foliation theory and representation

theory. In this way the book will attract specialists in geometric quantization methods. From

the point of view of smooth hyperbolic dynamics the Lefschetz formula method is a link

between the automorphic method and the method of Perron-Frobenius operators, relations

which are far from being fully understood.

Paul A. Blaga

Flávio Ulhoa Coelho, Héctor A. Merklen (editors): Representations of algebras, proceedings

of the conference held in São Paulo, Lecture notes in pure and applied mathematics, Volume

224, Marcel Dekker, 2001, xvii+282 pp., ISBN 0-8247-0733-8.

Seventy-two researchers from 17 different countries attended the Conference on

Representations of Algebras-São Paulo (CRASP), held at the Instituto de Matemática e Es-

tat́ıstica of the Universidade de São Paulo. There were 14 invited talks and 32 contributions.

This book is a valuable collection of these contributions covering almost every re-

search topic belonging to the large domain called Representation Theory of Algebras. We can

find new results related with Hopf, derived tubular, tame tilted, symmetric quasi-Schurian,

wild hereditary, concealed-canonical, Koszul, coil, quasitilted and Brauer star algebras. A

complete classification of the representation-infinite connected tame tilted algebras with al-

most regular connecting component is given. The existence of almost split morphisms and
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sequences in some special categories is discussed and we have a combinatorial characteriza-

tion of hereditary categories containing simple objects. The concept of twisted Hopf algebra

is introduced following the constructions which appeared in the theory of Ringel-Hall alge-

bras and quantum groups.

The collection proves to be an excellent guide for getting familiarized with the

newest developments in Algebra Representations Theory.

Andrei Mărcuş
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