Anul XLVII 2002

STUDIA
UNIVERSITATIS BABES-BOLYAI

MATHEMATICA
4

Redactia: 3400 Cluj-Napoca, str. M. Kogalniceanu nr. 1 e Telefon:
405300

SUMAR — CONTENTS - SOMMAIRE

GHEORGHE COMAN, IoAN A. RuUs and LEON TAMBULEA, Professor

Dimitrie D. Stancu, at his 75th Birthday Anniversary .................... 3
DAN BARBOSU, Approximation Properties of a Bivariate Stancu Type Operator .13
ANTAL BEGE, Fixed Points of R-Contractions ................ccoiiiiiiiiiii.. 19
GHEORGHE COMAN, I0ANA PoP and RADU T. TRIMBITAS, An Adaptive

Cubature on Triangle ........ ..o 27
OGUN DOGRU, On Bleimann, Butzer and Hahn Type Generalization of

Baldzs Operators ...........oiuiiin i e 37
ZOLTAN FINTA, On Approximation Properties of Stancu’s Operators ............ 47
TIoAN GANSCA, DELIA DRAGAN and RADU T. TRIMBITAS, On Generation of

Families of Surfaces ........... i 57
J. KOLUMBAN and A. So00s, Fixed Point Theorem in AE-Spaces ................ 65
IoN MiHoc and CRISTINA IoANA FATU, Relation Between the Amount of

Information and the Likelihood Function .............. ... ... ... ... .. 75
MARIA MiHoc, On the Classification of the Nomographic Functions of Four

Variables (II) ... 85



PeETRU T. MocANU, Application of Close to Convexity Criterion to Filtration

ToaN A. Rus, Iterates of Stancu Operators, Via Contraction Principle .........
DIMITRIE D. STANCU, Lucia A. CABULEA and DANIELA PoP,

Approximation of Bivariate Functions by Means of the Operators

S
FABIAN TODOR, On the Orthogonal Polynomials of Pareto and Applications

on Mathematical Models ........ ... ... i i
MARIA GABRIELA TRIMBITAS, Combined Shepard-Least Square Operators —

Computing them Using Spatial Data Structures ........................



STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume XLVII, Number 4, December 2002

PROFESSOR DIMITRIE D. STANCU, AT HIS 75th BIRTHDAY
ANNIVERSARY

GHEORGHE COMAN, IOAN A. RUS AND LEON TAMBULEA

Dedicated to Professor D.D. Stancu on his 75" birthday

1. We present briefly a short vita, the career and some of the research activity
of professor D.D. Stancu in approximation theory, numerical analysis and probability
theory.

He was born on February 11, 1927 in the township Calacea, Timis District,
Romania, in a farmer’s family. In the first years he had many difficulties, but with
the help of his mathematics teacher he succeeded to study in the prestigious Lyceum
”Moise Nicoara”, from the city Arad.

In the period 1947-1951 he studied at University ” Victor Babes”, from Cluj,
Romania. When he was a student he was mostly under the influence of academician
professor Tiberiu Popoviciu (1906-1975), a great master of numerical analysis and
approximation theory. This has strongly influenced and stimulated his research work.

After his graduation, in 1951, he was named assistant at the Department of
Mathematics, University ” Victor Babeg”, Cluj.

He has obtained the Ph. D. in Mathematics in 1956. His advisor for the
doctoral dissertation was professor Tiberiu Popoviciu.

In a normal succession, he advanced up to the rank of full professor, in 1969.

He was happy to benefite from fellowship at the University of Wisconsin, at
Madison, Numerical Analysis Department, conducted by the late professor Preston
C. Hammer. He spent at the University of Wisconsin, in Madison, the academic year

1961-1962.
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Professor D.D. Stancu has participated in different events in the USA; among
them we mention that he has presented contributed papers at several regional meet-
ings of the American Mathematical Society held in Chicago, Milwakee and New York.

He has a nice family. His wife, dr. Felicia Stancu was a lecturer of mathe-
matics at the same University. They have two daughters: Angela (1957) and Mirela
(1958), both teaching mathematics at secondary schools in Cluj-Napoca. From them
they have three grandchildren: Alexandru (1983) and George (1992) (the sons of
Mirela) and Stefana (1991) (the daughter of Angela).

Professor D.D. Stancu has taught several courses at the University ”Babeg-
Bolyai”, Cluj-Napoca: Mathematical Analysis, Numerical Analysis, Approximation
Theory, Probability Theory and Constructive Theory of Functions.

He has used probabilistic methods in Approximation Theory of Functions.
He had a large number of doctoral students, from Romania and abroad.

Besides the United States, Professor D.D. Stancu, he has participated in many
scientific events in Germany (Stuttgart, Hannover, Hamburg, Goettingen, Dortmund,
Miinster, Siegen, Wirzburg, Berlin, Oberwolfach), Italy (Roma, Napoli, Potenza,
L’Aquila), England (Lancaster, Durham), Hungary (Budapest), France (Paris), Bul-
garia (Sofia, Varna), Czech Republic (Brno).

His publication lists about 120 items.

There are more than 50 papers where his name is included in their titles.

Since 1961 he is a member of American Mathematical Society. He is also a
member of the society: ”Gesellschaft fiir Angewandte Mathematik und Mechanik”
(Germany).

He is for many years a reviewer of the journals: "Mathematical Reviews”
(USA) and ”Zentralblatt fiir Mathematik” (Germany).

He is Editor in Chief of Revue d’Analyse Numérique et de Théorie de
I’Approximation” (Cluj-Napoca, Romania) and a member of the Editorial Board of
the Italian journal Calcolo, published by Springer-Verlag.

In 1968 he has obtained one of the Research Awards of the Department of Ed-
ucation in Bucharest, for his research work in Numerical Analysis and Approximation

Theory.
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University ”Lucian Blaga”, from Sibiu, has accorded him, in 1995, the scien-
tific title of Doctor Honoris Causa.

In 1999 Professor D.D. Stancu has been elected a Honorary Member of the
Romanian Academy of Sciences.

In August 1999 he has participated at the ” Alexits Memorial Conference” in
Budapest.

In May, 2000 he has participated at the International Simposium on ” Trends
in Approximation Theory”, dedicated to the 60" birthday anniversary of Professor
Larry L. Schumacher. He has presented a contributed paper, in collaboration with
Professor J. Wanzer Drane, from University of South Carolina, Columbia, S.C.

In June 2000 Professor D.D. Stancu was invited to present colloquium talks
at several American Universities: Ohio State University, Columbus, OH., Univer-
sity of South Carolina, Columbia, S.C., Vanderbilt University, Nasville, TN., PACE
University, Pleasantville, N.Y.

The main contributions in research work of D.D. Stancu fall into the following
list of topics: Interpolation Theory, Numerical differentiation, Orthogonal Polynomi-
als, Numerical quadreatures and cubatures, Taylor-type expansions, Approximation
of functions by linear positive operators, Representation of remainders in linear ap-
proximation formulas, Probabilistic methods for construction and investigation of
linear positive operators of approximation, Use of interpolation and calculus of finite
differences in probability theory and mathematical statistics.

In 1996, Professor D.D. Stancu has organized in Cluj-Napoca, an ”Inter-
national Conference on Approximation and Optimization”, in conjonction with the
Second European Congress of Mathematics, held in Budapest.

At present he and his colleagues are organizing an ” International Symposium
on Numerical Analysis and Approximation Theory” (May 9-11, University Babesg-
Bolyai, Cluj-Napoca, Romania).

His intensive research work and his important results obtained in Numerical
Analysis and Approximation Theory has brought him recognition in his country and
abroad.

We conclude by wishing to DiDi Stancu many fruitfull and happy years, with

health and satisfactions in his research work.
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APPROXIMATION PROPERTIES OF A BIVARIATE STANCU TYPE
OPERATOR

DAN BARBOSU

Dedicated to Professor D.D. Stancu on his 75" birthday

Abstract. An extension of Stancu’s operator PT(na’ﬁ) to the case of bi-
variate functions is presented and some approximation properties of this

operator are discussed.

1. Preliminaries

In 1969 (see[8]), D.D. Stancu constructed and studied a linear and positive
operator, depending on two positive parameters o and § which satisfy the condition
0 < a < (. This operator, denoted by P,Sfy’g), associates to any function f € C([0,1])
the polynomial pled f, defined by:

(P&“’ﬁ)f) () = Z::OPmk(x) f (Zi%) (1.1)

where pp,i(x) are the fundamental Bernstein polynomials. In the monograph by F.
Altomare and M. Campiti ([1]) this operator is called "the operator of Bernstein-
Stancu”.

A first extensions of the operator (1.1) to the case of bivariate functions was
given by F. Stancu in her doctoral thesis (see [9]). The aim of the present paper is to
extend the operator (1.1) to the case of B-continuous (Bdgel continuous functions).
More exactly, we shall present a GBS (Generalized Boolean Sum) operator of Stancu

type and some properties of this operator.

Received by the editors: 17.09.2002.
2000 Mathematics Subject Classification. 41A10, 41A36, 41A63, 41A80.

Key words and phrases. Stancu’s operators, Korovkin theorem, bivariate function, modulus of smooth-

ness, Voronovskaia theorem.

13



DAN BARBOSU

The terminus of ”B-continuous function” was introduced by K. Bégel ([5],[6]).
A first result concerning the approximation of this kind of functions is due to E.
Dobrescu and I. Matei ([7]).

An important ”test function theorem”, (the analogous of the well known Ko-
rovkin theorem), for the approximation of B-continuous functions by GBS operators
was introduced by C. Badea and C. Cottin ([3)]. Approximation properties of the
GBS operators were studied by C. Badea, C. Cottin, H.H. Gonska, D. Kacsé and

many others.

2. The GBS operator of Stancu type

Let be I = [0,1] and let I? = [0,1] x [0,1] be the unit square. The space of
all B-continuous functions on I? will be denoted by Cy(I?).

Next, we consider four non-negative parameters oy, 31, @z, (32,5atisfying the
conditions 0 < oy < 31,0 < ag < Bo. If f € Cp(1?), the parametric extensions of the

operator P,(na’ﬂ)are defined respectively by:

(P 1) (@) =327 punl@)f ( 7'; iogl y) , 2.1)

n l
(P08 o) = X s (25525 ). 22)

It is easy to see that IPT(,{“’B Yand yPr(Laz’B 2are linear and positive operators, well
defined on Cy(I?).
Let Ly, : Co(I?) — Cu(I?) be the tensorial product of IPy(fl’ﬁl) and

SPLP) e,

Lm,n =z P?Slo‘;;lﬁl) ° P7£LO[27B2)' (23)

Then, Ly, , : Cp(I?) — Cy(I?) associates to any f € Cp(I?) the bivariate
polynomial

14
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k l
Lo f(2,9) Zk Ozl o Pk (2)Pn 1 (y) f (mt—%ﬁnj—%i) (2.4)

It is well known (see for example [4] or [10]) that the operator (2.4) has the
following properties:

Lemma 2.1. If e;; : I? > R (i,j € N,0 < i+ j < 2) are the test functions
the following equalities hold

() (Lmneoo)(x,y) = 1;

i) (Linnero)(@,y) = @ + 222,

(

(lll) ( mneol)(fvy) Y+ aﬁ+g§y’
(
(v

) (Lunuean)(ry) = o 4 MEIZDAC e ),

) (Lmneo)(,y) = y? 4 2= HlazPay) Cnufaytas)

for any (z,y) € I°.

Lemma 2.2 The operator (2.4) is linear and positive.

Definition 2.1. Let S, ,, : Cy(I%) — C,(I?) be the boolean sum ofIP,S@al’ﬁl)
P7(La2ﬁ2)

and , le.
S = PP 4y Plowf2) — plodf) o plesf) (2.5)
The operator S, , will be called GBS operator of Stancu type.
By direct computation, one obtains:
Lemma 2.3. If Sy, ,, : Cy(I%) — Cy(I?) is the GBS operator of Stancu type,
then

(Smnf) (2,9) =
ST o k(@) paa(y) x {1 (Etoty) (2.6)
+f (o) 7 (R 25|

for any f € Cy(I?) and any (x,y) € I°.

Remark 2.1. For a; = 81 = as = B2 = 0, the GBS operator of Stancu type
is reduced to the GBS operator of Bernstein type, which interpolates any function
f € Cy(I?) on the boundary of the unit square I?. If a1 = $; = 0 and s # 0, B2 # 0,
the corresponding operator interpolates any f € Cy(I?) on the left and respectively

15
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on the right side of the boundary of unit square I2. Others particular cases of the
GBS operator of Stancu type can be discussed in a similar way.

Theorem 2.1. For any f € Cy(I?),the sequence {Smnf i nen converges
to f, uniformly on I? as m and n tend to infinity

Proof. Let us to introduce the following notations

_ a1 —
U () = M B
_ 2Py
Un( )— n—|—ﬂ2 s
Wiy, y) = 2%+ 42 + ma(l — x) + (a(lm—flﬁxl))(fmx + B +ay)
ny(l —y) + (a2 — Boy)(2ny + B2 + ozz)

(n+ B2)?
Then the results contained in Lemma 2.1 can be written in the form

(Lmneoo) (z,y) = 1;

(Lin,n€10) (#,y) = @ + um(@);

(Lmneor) (z,y) =y + vn(y);

(L (€20 +€02)) (2,9) = 2 + 4 + Wy (2, ), for any (z,) € I.

Because the sequences {um () }tmen, {vn(2)}nen and {wp n(x)bmnen tend
to zero, uniformly on I? as m and n tend to infinity, we can apply the Korovkin -
type theorem for the approximation of B-continuous functions due C.Badea, I.Badea
and H.H.Gonska (see [2]. Applying this theorem, it follows that Sy, f tend to f,
uniformly on 12, for any f € Cy(I?) as m and n tend to infinity.

Next the approximation order of any function f € Cy(I?) by Sy, nf will be
established, using the mixed modulus of smoothness (see [3]). We need the following
result, due to C. Badea and C. Cottin [see [3]).

Theorem 2.2. Let X and Y be compact real intervals. Furthermore, let
L: G(X,)Y) — Co(X,Y) be a positive linear operator and U the associated GBS
operator. Then, for all f € Co(X,Y),(z,y) € X XY and 61,62 > 0 the inequality

((f =Uf)(=, y)l < If(fc yl- |1 - L(z;, y|+
{L(L;z,y) + &+ (z —0)%;2,y) ++52 — )2z, y)+ (2.7)
+m\/L w—o)z(y—*) ax,y) }wmimed(51752)
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holds.

Lemma 2.4. The bivariate operator of Stancu verifies the following equali-

ties:
I mx(l—x aq—B12)2
(1) m"((x O)Q;Iyy) - = (721(5132 brz) ;
— ny(1— Qo— 2
(i) Lo, ((y = %)% 2,y) = 20 %’,)Ligjz L

(ii)) Lin,n((z = 0)*(y = *)* = Garazmrss? <
{ma(l —2) + (a1 = frx)?} x {ny(1 —y) + (az — Boy)?} .
Proof. The equalities follow from the linearity of L,,, and Lemma 2.1. (I

Theorem 2.3. The GBS operators of Stancu Sy, verify the inequality:

(& s T @ Bl + T
+ﬁ . m\/{% + (a1 — B1z)?H G + (2 — Bay)?} } x

XWmized (51 52 ) )

(2.8)

for any 81,62 > 0 and any (x,y) € I

Proof. We apply the Lemma 2.4 and the inequalities z(1—z) < %, y(l—y) <
1 for any(z,y) € I2.0

Remark 2.2. The inequality (2.8) give us the order of the local approxima-
tion of f by Sy f.

The order of the global approximation of f € Cy(I%)by Sy, f is expressed
in

Theorem 2.4. The GBS operator of Stancu verify the following inequality:

(2.9)

9 Vm+4a? \/n+4a3
_ < Z .
|Sm,nf($7y) f(xvy)‘ = 4wmzzed ( m‘f’ﬁl 3 Tl+ﬁ2

Proof. Taking into account that (a; — B17)? < a2 and (as — B2y)? < o for

any (x,y) € I?, from Theorem 2.3, we get:

|Smnf(x,y) — flx,y)| <

1 ym+4a? 1 /n+4a3 /(m+4a2)(n+4a3)
ac + = wmized(5152)~
200 m+B1 200 n+By 40162(m A+ B1)(m + Ba)
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Choosing then

5 Vm+4a?
1= =

m+p1 2 n+ fa

Vn+403

)

it follows (2.9) and the proof ends OJ.

Remark 2.3. The inequality (2.9) can be more rafinated, taking into account

of the values of a1 ag with respect 51 and 3.
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FIXED POINTS OF R-CONTRACTIONS

ANTAL BEGE

Dedicated to Professor D.D. Stancu on his 75" birthday

Abstract. Let X be a set and R = (Rn)nzov R, C X x X a sequence of

binary relations on X. The operator f : X — X is R-contraction if

(z,y) € Rn = (f(2), f(y)) € Rns1.

The first theorem concerning R-contraction is due to Eilenberg [2]. Fur-
ther I. A. Rus [7] and Grudzinski [3] generalize this concept. We prove
some results which generalize the theorems in [7] and [3] under certain

conditions.

1. Introduction
Let X be a set, f : X — X an operator and F; be a fixed point set of f:
Fyi={r e X | f(x) = a}.
We introduce the following notations:
AX) = {(z,2) [z € X},
fP=1x, fl=f ') = f(f"(2), n>2

Let X be a nonempty set, R,, C X x X a sequence of symmetric binary relations on

X. Throughout this paper we suppose that:

a)
XxX=RyODRiD>..DOR,D ..

b)

D)

R, = A(z) ={(z,z) |z € X}.

n=0

Received by the editors: 01.09.2002.
2000 Mathematics Subject Classification. 06A10, 47H10.

Key words and phrases. R-contraction, fixed point.
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Firstly Eilenberg [2] proved the discrete version of Banach fixed point theorem. Later
I. A. Rus [7] introduced the concept of R-contractions:
Definition 1. The operator f : X — X is R-contraction if

(m,y) € Rn = (f('r)7f(y)) € Rn+1-

I. A. Rus [7], [6], [8] and indepently I. A. Grudzinsky [3] proved fixed point
theorems for R-contractions (see Bege [1]).
In this paper we generalize the concept of R-contractions and we prove some fixed

point theorems for this contractions.

2. Generalized R-contractions

In this section we introduce the concept of generalized R-contraction and give
some examples.

Definition 2. Let X #0, R, C X x X, n € N. We say that
f: X — X generalized R-contraction of the type d; if

dy) (z, f(2)) € Rn, (4, f(y)) € R

= (f(2), f(y)) € Bnta
do) (2,y) € Bn, (2, f(2)) € R, (y, f(z)) € R

= (f(2), f(y)) € Bnta
ds) (z,y) € Rn, (z,f(y)) € Ry

= (f(2), f(y)) € Bnya

dy)
((E,f(!L‘)) € Rn = (f($)7f2<$)) € Rn+1
We remark that if an operator is R-contraction then it is a generalized dy4
contraction.

In the following part of this section we present some examples concerning

R-contractions and generalized contractions.
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Example 1 ( S. Reich [5])
Let (X, d) be a metric space and a,b,c € Ry, a+ b+ ¢ < 1 such that

If

R, = {(m,y) €eX x X |d(zy) < CIL_HC)-(ot—i—b—l—c)"-(S(X)}7

;LJ_FZC)-(S(X)}#Q)

then R,, satisfies the conditions (a) and (b) and f generalized contraction of the type
ds.

Y—{I€X|d($7f(x))§

Example 2 (R. Kannan [4])
Let (X,d) be a metric space, and f : X — X one operator for which exist a €

R, a < %, such that:

A(f @), F)) < a-[d, (@) + dy, )], Yoy € X.
If
Ry = {e) € X% X [dley) < 72 (205000}

a

o) 20,

then R, satisfies the conditions a) gi b) and f generalized R-contraction of the type d;.

Y:{x€X|d(x,f(x))§1

3. Main results

Theorem 3. Let X be a nonempty set, R, C X x X a sequence of symmet-
rical binary relations on X, satisfying the conditions a) b) and
c) If (xn)n>o0 s a sequence in X such that (zy,Znyk) € Ry, Vn,k >0, then there
exist unique © € X satisfying the condition (x,,x) € R,, Yn > 0.
Let f : X — X be a generalized R-contraction of type d3. Then [ has an unique
fixed point.

Proof.
Let xp € X , 2 = f(Xp—1), Yn > 1.
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From the form of Ry and definition 2 we have:
(z0,71) € Ro, (0,22) € Ro = (z1,22) = (f (z0), f (1)) € Ry,

(1‘0,1‘2) € Ry, (.130,.233) € Ry = (1‘1,1‘3) = (f (.130) ,f (xg)) € R;y.

From mathematical induction follows that: (21, z,41) € Ry, ¥n > 0.
But
(x1,2,) € Ry, (21,Zp41) € Rl = (22,2p41) € R, Yn>1
and generally
(g, Than) € R, Vk>0,Vn > 0.
Condition ¢1) implies the existence of unique z* € X such that (z*,z,,) € R,,, ¥n > 0.
But

(2", 2n) € Ry, (2%, 2p41) € Rpy1 C Ry = (f ("), 2n41) € Rpy1, Y0 > 0.

Because x* is unique, z* = f (z*).

If we have y* € X, for which y* = f (y*), then

(=% y") = (27, f(y")) € Ro = (f (=7), f (¥")) = («",9") € Ra

Similarly («*,y*) € R,, for all n.

From b) we have z* = y*.

Corollary 4. ([7], Theorem 2.1) If f : X — X is a R-contraction, and
R, C X x X, n € N, a sequence of binary symmetrical relations, satisfying the

conditions a) b) and c ) , then:
Fy={a"}

and

(f"(x0),2*) € Ry, Vzog€ X, neN.

Theorem 5. Let X be a nonempty set and R, C X x X, n € N a sequence
of symmetrical binary relations on X, satisfying the conditions a), b),
c)
If (Jcn)nzo is a sequence in X such that (zn,Znir) € Ry for allm, k € N then there
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exist unique © € X for which (x,,x) € Ry, Vn € N.

If f: X — X s a generalized R-contraction of type d1) and satisfies the following
condition:

e)

For every zg € X
(f" (z0),2) € Ry = (f"*! (20), f(2)) € Rut1  (n € N).

Then f has an unique fived point.
Proof.
In same way (see the proof of theorem 1) we have that if zg € X, x, = f (zp_1),

Vn > 1 then:
(xk,karn) € R, Vk >0, ¥Yn > 0.
The condition c¢;) implies the existence of the unique 2* € X such that

(J?*, xn) S Rn, Vn Z 0

But from e) :

(zn,2%) = (f" (20),2") € Ro = (f" (20), f(27)) = (wnt1, f(27)) € Ryt

We have (zg, f(z*)) € Rg so (zn, f(z*)) € R, for all n. The uniqueness of z* implies
In the next we prove the uniqueness of the fixed point:

Let *,y* € Fy. From b) (2%, f(2*)) € R, and (y*, f(y*)) € R, for all n > 0.
This implies that (z*,y*) € R, ( f generalized R-contraction of type d;)). So z* = y*.

Theorem 6. Let X be a nonempty set and R, C X x X, n € N a sequence
of symmetrical binary relations on X, satisfying the conditions a), b),
cz)
If (mn)nzo is a sequence in X such that (xn,Znik) € Ry, for all n, k € N then there
exist © € X (not necessary unique) for which (z,,x) € R, Vn € N.
f) For allx,y,z€ X, ne N

(2,y) € Rpntk, (Y,2) € Rppx = (x,2) € Ry,

If f: X — X is a generalized R-contraction of type d3) then Fy = {z*}.
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Proof.
We consider the iterares of f in xo: =, = f (xp_1), Vn>1.

From the first part of the proof of Theorem 1, there exist x* € X such that
(2", psk) € Ry Vn > 0.
f generalized R-contraction of type d3) which implies:
(", Tpyok) € Rpnak, (2%, Tpnaokt1) € Rusgr1 C Royypp =

= (f(2"),Tnrok11) € Ruyr1 C Rogpe

From condition f):
(", pyors1) € Rugr, (f(27), Tpyors1) € Rugr = (27, f (27)) € Ry,

@ F @) € () Bu=A)
nenN
which implies z* = f (z*).

The proof of uniqueness is same with the proof in Theorem 1.

Corollary 7. ( Grudzinski [3]) Let X be a nonempty set and R, C X x X,
n € N a sequence of reflexive and symmetrical binary relations on X, satisfying the
conditions a), b), c2), f) . Let f: X — X be R-contraction.
Then f has an unique fized point.
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An adaptive cubature on triangle

GH. COMAN, IOANA POP AND RADU T. TRIMBITAS

Dedicated to Professor D.D. Stancu on his 75" birthday

Abstract. Starting from an elementary cubature formula on triangle
which is exact on P3 (bivariate polynomials having global degree 2) an
adaptive cubature method is devised. Also a MATLAB implementation is

given.

1. Introduction

Let us consider the triangle A with the vertices V;, i = 1, 3, and the cubature

formula (see figure 1):

1
PZZE(V}+Vk)v {Zajak}:{15253}a

. 1)
rea(A
Iz/Tﬂm,y)dmdw ﬂ“}jﬂm

F1GURE 1. The triangle and edges’ midpoints.

It can be easily seen that P;, i = 1,3, are the midpoints of the triangle edges

and the formula is exact for each f € P3 (bivariate polynomials having total degree

Received by the editors: 01.09.2002.
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equal to 2). We shall try to turn this formula into and adaptive cubature algorithm.
The idea is to combine two elementary cubature formula, one which subevaluates I
and one which overestimates it. If the absolute value of the difference of the results
provided by these formulae is less than a given tolerance ¢, we stop, and the result is
the value given by the second formula. Otherwise, we proceed with a subdivision of

the triangle, and apply the same method to each triangle of the subdivision.

2. The algorithm

For a detailed description of an adaptive numerical integration algorithm see
[2, pp. 166-170]. We can decompose our triangle, denoted by A, into four triangles,
Ay, Ay, Az and A4 determined by vertices and the middle points (a Delaunay trian-
gulation, [1], see Figure 2). The first step will be the formula given by (1) applied to
A and the second step will be the same, but applied to each of the four triangle of the

triangulation, A;, i = 1,4. Let I; be the value provided by the elementary formula

Vs

T

FIGURE 2. Initial triangle and the subdivision

(1), and I, the value obtained summing the four values obtained applying (1) to each

triangle of the subdivision. A stopping criterion could be
|Il — I2| <eg,

where ¢ is the desired tolerance. If the criterion is not fulfilled, then we apply the
same procedure recursively to each triangle of the subdivision.
The detailed description is given in Algorithm 1.
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Algorithm 1 Adaptive cubature algorithm on triangle; call result := adapt(f, A, ¢),
where f is the function, A is the triangle and ¢ is the desired tolerance; elem _formula

implements the elementary cubature, given by (1)

Let Ay, Ay, Az, Ay be the triangles determined by vertices and midpoints
I, := elem_formula(f, A);
I, := elem_formula(f, A1) + elem _formula(f, As)+
elem_formula(f, As) + elem_formula(f, A4);

if |I, — I| < ¢ then

result := Iy;
else

result := adapt(f, A1, ) + adapt(f, Ag, &)+

adapt(f, As,e) + adapt(f, A4, €);

end if

3. The implementation

For adaptive cubature on triangle implementation see [3, 4].

We have implemented this algorithm in MATLAB!. The implementation fol-
lows the description given by algorithm 1. We introduced an auxiliary input pa-
rameter, trace, which (when is nonzero) allows us to obtain information about the
execution and to represent graphically the process of computing. When trace is set,
the additional output parameter, stat gives us the number of function evaluation and
the number of triangles. Some optimizations which save several function evaluations
are possible. Since the value I; is the value of the integral on the triangle A4, we
compute it once and give it as an input parameter further. We can do the same thing

with the values of function in midpoints. Here is the MATLAB source code:

function [vi,stat]=mpcubatd2vb(f,x,y,err,trace)
%cubature with middle points, exact for P_272%
%call vi=mpcubatd2(f,x,y,err,trace)

%f - the function

%%,y — coordinates of vertices

11\L—\TLAB©is a trademark of MathWorks, Inc., Natick, MA 01760-2098
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Y%err - the error

%trace - tracing indicator

global FEN TRIN

if nargin<b
trace=0;
else
if trace
clf
FEN=0; TRIN=0;
end
end
if nargin < 4
err=1e-3;
end
[xp,ypl=midpoints(x,y); %subdivision
fp=feval(f,xp,yp);
area=1/2*abs(det ([x(:),y(:),ones(3,1)]1));
I1=area/3*sum(fp);
vi=quadrg2(f,x,y,xp,yp,fp,err,area,Il,trace);
if trace & (nargout==2)
FEN=FEN+3;
stat=struct(’nev’,FEN, >ntri’,TRIN);

end

function vi=quadrg2(f,x,y,xp,yp,fp,err,area,ll,trace)
%cubature with midpoints, internal use

%call vi=quadrg2(f,x,y,xp,yp,fp,err,trace)

%f - the function

%x,y — coordinates of vertices

%xp,yp - midpoints coordinates
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%fp - value of f in barycenter

%err - the error

%area - area of the triangle

%I1 - the first estimation (elementary formula)

%trace - tracing indicator

global FEN TRIN
if trace
£i11(x,y,’r’, ’FaceColor’, ’none’, ’EdgeColor’,’k’); hold on;
axis equal
plot(xp,yp,’ok’);
%pause
end
vix=[xp(2),xp(1),x(3)]1; viy=[yp(2),yp(1),y(3)];
[P1Mx,P1My]l=midpoints(vix,vly);
v2x=[x(1) ,xp(3),xp(2)]; v2y=[y(1),yp(3),yp(2)]1;
[P2Mx,P2My]=midpoints (v2x,v2y) ;
v3x=[xp(3),x(2) ,xp(1)]; v3y=[yp(3),y(2),yp(1)];
[P3Mx,P3My]l=midpoints(v3x,v3y) ;
[P4Mx,P4Myl=midpoints(xp,yp) ;
fP1M=feval (f, P1Mx, P1My);
fP2M=feval (f, P2Mx, P2My);
fP3M=feval (f, P3Mx, P3My);
if trace
FEN=FEN+9;
TRIN=TRIN+4;
end
zz=area/12;
arean=area/4;
I11=zz*sum(fP1M) ;
I12=zz*sum(£P2M) ;
I13=zz*sum(fP3M) ;
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I14=zz* (fP1M(3)+fP2M (1) +fP3M(2));
I12=T11+112+113+114;
if abs(I2-I1)<err

vi=I2;

else

vi=quadrg2(f,vix,vly,P1Mx,P1My,fP1M, err,arean,Ill,trace)+...

quadrg2(f,v2x,v2y,P2Mx,P2My,fP2M,err,arean,112,trace)+. ..

quadrg2(f,v3x,v3y,P3Mx,P3My,fP3M,err,arean,113,trace)+. ..

quadrg2(f,xp,yp,P4Mx, P4My, [fP1M(3),fP2M(1),fP3M(2)],+...

err,arean,l14,trace);

end Y%if

function [bx,byl=midpoints(x,y)
bx=[x(2)+x(3) ,x (1) +x(8),x(1)+x(2)1/2;
by=[y(2)+y(3),y (D +y(3),y(1)+y(2)1/2;
4. A numerical example

We wish to approximate

/ f(zy) dedy,
A

where A is the triangle with vertices V;(0,0), V2(1,0), V3(0,1) and f is

f(z,y) =ysinz.

The graph of f is given in Figure 3.

The exact value is
cos(1) — 1/2 =~ 0.04030230586814,

obtained with the following Maple session:

> Digits:=20;

Digits :== 20

32



AN ADAPTIVE CUBATURE ON TRIANGLE

AN

NS
(N

FI1GURE 3. the graph of f

> w:=int(int(sin(x)*y,y=0..1-x),x=0..1);

1
= 1) — -
w := cos(1) 5
> evalf(w);
.04030230586813971740
For ¢ = 1072 we need no subdivision, as we can see from the following

MATLAB session fragment:

>> [vi2,stat]=mpcubatd2vb(@fintegr,x,y,le-3,1)

vi2 =

0.04028255698461

stat =

nev: 12

ntri: 4
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For ¢ = 10~* a subdivision was done (see Figure 4). The results are as follows:

>> [vi2,stat]=mpcubatd2vb(@fintegr,x,y,le-4,1)

vi2 =

0.04030110314738

stat =

nev: 48

ntri: 20

0.8 q

0.7 q

[¢] [¢]

0.6 q

0.5 4

0.4r q

[¢] [¢]

03 q
[¢] [¢] [¢]

0.2 q
[¢] [¢] [¢] [¢]

0.1 q

0 I I I I
0 0.2 0.4 0.6 0.8 1

FIGURE 4. Computing the integral for ¢ = 10~*. One subdivision

and 48 function evaluation needed

Finally, we try for e = 10~% (see Figure 5)

>> [vi2,stat]=mpcubatd2vb(@fintegr,x,y,le-6,1)
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1
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FIGURE 5. Computing the integral for ¢ = 1075, 228 function eval-

uation needed

vi2 =

0.04030231573315

stat =
nev: 228
ntri: 100
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ON BLEIMANN, BUTZER AND HAHN TYPE GENERALIZATION
OF BALAZS OPERATORS

OGUN DOGRU

Dedicated to Professor D.D. Stancu on his 75" birthday

Abstract. In this paper we introduced a generalization of Baldzs opera-
tors [4] which includes the Bleimann, Butzer and Hahn operators [6]. We
define a space of general Lipschitz type maximal functions and obtain the
approximation properties of these operators. Also we estimate the rate of
convergence of these operators. In the last section, we obtain derivative

and bounded variation properties of these generalized operators.

1. Introduction

In [4], K. Baldzs introduced the discrete linear positive operators defined by

(Fuh@) = ey 21

f(— ()anx)k, x>0, neN (1)
k=0

where a,, and b,, are positive numbers, independent of z.

After simple computation, we have

(Rpeg)(z) = 1

anT

n
(Rper)(x) = am

(Rues)(x) = ”(”U( anz )2 R

1+a,x @ 1+a,x
where e, represents the monomial e, (z) = 2™ for n = 0,1, 2.
These equalities show that both of classical Bohman-Korovkin theorems in

[7], [13] and weighted Korovkin type theorems in [10] and [9] do not valid.

Received by the editors: 01.10.2002.
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In [4], Voronoskaja type formula was given for operators (1), under the some
restriction of sequences a, and b,.

In [1] and [2], O. Agratini introduced a Kantorovich type integral form of op-
erators (1) and obtained the degree of approximation in polynomial weighted function
spaces.

By choosing a, = n”~1, bn =nf forn € Nand 0 < 8 < 1, the operator
(1) was denoted by the symbol R, Also, for some 0 < 3 < 1 values in [4], [5] and
]

[17], convergence, derivative and saturation properties of RLL/ were investigated by
K. Balazs, J. Szabados and V. Totik respectively.

A recent paper is given by O. Agratini in [2] about Voronovskaja type theorem
for Kantorovich type generalization of the R%i I,
On the other hand in [6], G. Bleimann, P.L. Butzer and L. Hahn introduced

the Bernstein type sequence of linear positive operator defined as

-n S k n k

(Laf)(a) = (14 2) an_kH)(k) p20.neN. (@
In [6], pointwise convergence properties of operators (2) are investigated on
compact subinterval [0, b] of [0,00) . In [11], T. Hermann investigated the behavior of
operators (2) when the growth condition for f is weaker than polynomial one. In [12],
C. Jayasri and Y. Sitaraman proved direct and inverse theorems of operators (2) in
T 174

+ :C>

for v = 0,1, 2, a Korovkin type theorem was given by O. Cakar and A.D. Gadjiev and

the some subspaces on positive real axis. In [8], by using the test functions

they obtained some approximation properties of (2) in a subclass of continuous and
bounded functions on all positive semi-axis.

The aim of this paper is to investigate the approximation properties of a
generalization of K. Baldzs’s operators R, in Bleimann, Butzer and Hahn operators

type on the all positive semi-axis.

2. Construction of the operators

We consider the sequence of linear positive operators

(4D = ey Z_:f< ) (@or azonen @
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where a,, and b, ; satisfy the following conditions for every n and k;

ank + by ), = ¢, and SN for n — oo. (4)
Cn

Since replacing b,, by by, i, these operators different from the operators R,,.

Clearly, if we choose a, = 1, by, = n — k + 1 for every n and k then
¢n = n + 1 the conditions (4) are satisfied. These operators turn out into Bleimann,
Butzer and Hahn operators. Therefore, these operators are a Bleimann, Butzer and

Hahn operators type generalization of Baldzs operators.

3. Approximation properties

In this section, we will give a Korovkin type theorem in order to obtain
approximation properties of operators (3).

In [14], B. Lenze introduced a Lipschitz type maximal function as

£ 0) — sup L0 @)
* t>0 |£C - t|a '
t#x

Firstly, we define a space of general Lipschitz type maximal functions.

Let W[ be the space of functions defined as
a [e3%
L= : 1 n @ ald, < — 5 2
W {f sup(l + a,t) f(xt)_M(lJranx) x O} (5)

where f is bounded and continuous on [0,00), M is a positive constant, 0 < a < 1

and f, is the following function

[f(t) = f(=)]
al®)l) = —F/——a—-
Example 1. For any M; > 1, let the sequence of functions f,, be
1+ Mia,x
ful@) = 1+a,z

Then for all z,t > 0, x # t, we have

_ (M1 — 1)an ‘J; - t‘
|f(t) = f(x)] = (1 + anz)(1 + ant)’

By choosing M; — 1 < M, one obtains f, € W .

Also, if % is bounded then W) C Lipys, (o) where M; is a positive
anT

constant which satisfies the following inequality

g — ! < M;.
1+anx 14+ a,t
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Really, if f € W/’ then for all z,t > 0, x # ¢ we can write

ro - sl <0 (12 (5 ) ot

and f € Lipy, (a). Clearly that, if a,, <1 or z > 1 then # is bounded.
An T
Theorem 2. If L, is the sequence of positive linear operators acting from

W2 to Cp[0,00) and satisfying the following conditions for v = 0,1

| () o= ()

then, for any function f in WS one has

— 0 forn — oo (6)
Cp

[Lnf = fllc, — 0 for n— oo.

where Cp [0,00) denotes the space of functions which is bounded and continuous on
[0, 00) .

Proof. This proof is similar to the proof of Korovkin theorem.

Let f € W,. Since f is continuous on [0,00), for any € > 0 there exists a
0 > 0 such that

ant anT

1—|—ant_1—|—anx

[f(t) = f(x)] < € for

and since f is bounded on [0, 00), there is a positive constant M such that

2M an(t — ) 2 ant an
t) — < - 0.
£(8) = £ ()] 02 [(1+ant)(1+anx)} ‘l—i—a,ﬂf 1+anz
Thus, for all ¢,x € [0,00) one has
2M an(t — z) 2
t . 7
16 - o)l < e+ 5 | et ] @
By using basic properties of positive linear operators, we have
ILnf = flle, < NEnlf = f@)Dlc, +
+ ey 1(Zn1) = 1le, (®)

By using the inequality (7) and conditions (6) in (8), the proof is complete.
Now, we will give the first main result about approximation properties of
operators (3) with the help of Theorem 2.
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Theorem 3. If A,, is the sequence of positive linear operators defined by (3),
then for each f € W5

1(Anf) _chB — 0 for n— oc.

Proof. For the operators in (3), it is easily to verify that

(Anl)(z) =1

ant n  apT
An = —
< (1+ant>> (z) cn l+ane
2 2 2
ant n anT 1 n apx
An mn _ o mn e n )
( (1+ant> >(m) (cn) (1+anx> +cncn1—|—anm

By using the conditions (4) and Theorem 2, the proof is obvious.

4. Approximation order

In this section, we give a result about rate of convergence of operators (3).
Theorem 4. If f € W[ then for all x > 0 we have

(4u1)(0) = £ < 31 (2 1)a 9)

Cn
where the constants M and 0 < a <1 are defined in the definition of the space W[’
and the operators A,, are defined in (3).
Proof. If f € W, we can write

(Anf)(2) — f()]

a “ 1 |k “ 1 * In
<M n — - anx)”
< <1+an$> (1—|—anac)nk;0 bk <1+anbkk> <k’)( )
From the conditions (4), we get
1 _bug
ko e,
1 ”— n
T bn,k

If we use this equality in the last inequality, we obtain

((Anf) () = f ()]

a “1 1 - n
<M = o - n — Un “ n k-
< <1+an$) & (L + anz)" kZ|k z(cn — ank)] (k)(a )

=0
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2 2
By using the Holder inequality for p = ~ q = o and considering
((Aneo)(z))*=* =1 we have
[(Anf)(z) — f(z)] (10)
a @ 1 n n bl
< M n k— o — ank 2 N k
< (Cn(l +an3;)) <(1 T anz)" ’;( z(cp — ank)) (k) (anT) )

On the other hand, it is obvious that

zn: <Z) (ana)® = (1+ anz)",

k=0

’ (n) (anx)k = na,z(l + anx)n_l’
1

. k(" (anz)* = (anz)*n(n — 1)1 + apz)" 2 + anzn(l + a,z)" L.
2+

By using these equalities, after simplifications, we obtain

m Z(k — z(cy — ank))? (Z) (anz)* <

k=0

If we use last inequality in (10), we have

(Anf)@) - f@) < M ())x (” . 1>“

en(14 apx
- () (e-1)
1+a,x Cn

«
Since ( n® ) < 1, the proof is complete.
1+a,x

Since Theorem 4 is valid for all z > 0, this proof gives uniform convergence

of the operators A, to f without using Korovkin type theorem.

5. Derivative properties

Firstly, explicit formula for derivatives of Bernstein polynomials with differ-
ence operators is obtained by G.G. Lorentz in [15, p.12]. A lot of studies have included
derivative properties of positive linear operators. In [16], D.D. Stancu obtained the
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monotonicity properties from different orders of the derivatives of Bernstein polyno-
mials with the help of divided differences.

In this part, we will give some derivative properties of operators A,, defined
in (3) with the help of difference operators.

We can easily compute:

L D)) = nan(1+ ) ; G ] () e )

bn,k n,k

and by using induction method for derivatives of k—order, we have
dk
dzk

(Anf)(x) (12)

nk v n—=k
=nn-1)...(n— ak anx) "k kr— anx)”
== 1)k b1 o) ARG ("

v

where A* f < ) is difference operator defined as

() = i(l)’” 5 ().

bn,k = bn,k

bn,k

Theorem 5. Let f € C1[0,00). Then the operators A, have the monotonic-

ity properties.

Proof. If f € C'[0,00) then f € C* [ k k“} . Therefore, from (11) we

br,k? b,k
can write
L 40 @) = mag (1 + 0y Z_j / r©de("
Since / + FE)dE >0 (< 0) for /() > 0 (< 0), we have
T (A0)(@) 2 0(<0) Tor f(x) 2 0(<0)

and this completes the proof.

In [15, p.23], G.G. Lorentz gives an estimate related to the total variation of
Bernstein polynomials. Similarly, in the following theorem, we give an estimate of
bounded variation between the operators A,, and f.

Theorem 6. The operators A, preserve the functions of bounded variation
on [0,00).
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Proof. By using formula (11), we get

ValAnf) = 7‘$<Anf><x) s
0

_1 n
nan(n )/ 1+a x)” =g,
0

n—1

IN

k=0 nk

Since £k > —1 and —k +n > 0, we can write

1+ KkI'(=k+n)
a,I'(1 +n)

o0
/anx 1+ apz) " tde =
0

If we use properties of Gamma function in this equality, we have

o0

/(an:r)k(l + apz) " tdr =

0

kl(ln—k—1)!

apn!

By using this equality in (13), we obtain

Va(Anf) <V(f)

which gives the proof.
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ON APPROXIMATION PROPERTIES OF STANCU’S OPERATORS

ZOLTAN FINTA

Dedicated to Professor D.D. Stancu on his 751" birthday

Abstract. The purpose of the paper is to present pointwise and uniform
approximation theorems for some Stancu’s operators using the classical
moduli of smoothness and the second modulus of smoothness of Ditzian -

Totik.

1. Introduction

One of the most studied operator (see e.g. the bibliography of [1]) is
B2 : C[0,1] — CJ0,1],

Bf{(f,x):zn: wnyk(x,a).f<k), n=12..., z€[0,1], a>0, (1)
k=0

n

where

n\ I (z+ie) T2y~ " (1— 2+ jo)

] Q+a)(1+2a)...(1+(n—1)a)

wn,k(x7 O[) =

(2)

and « is a parameter which may depend only on the natural number n. This positive
linear polynomial operator was introduced by D. D. Stancu in [15]. In the case a = 0,

B¢ is the Bernstein operator B,, given by

Bn(fvx) = Z

k=0

i a—aytor (1)), 3)

The Stancu - Kantorovich polynomial operator was defined in [14] as follows:
K2 : LP[0,1] — LP[0,1], 1<p< oo,

n k41

Ky(f,z)=(n+1) Z Wy (2, @) - fu) du, n=1,2,..., x€[0,1] (4)
k=0 n4+1
Received by the editors: 20.09.2002.
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and « and wy i (x, o) have the same meaning as above. For o = 0, K2 is the Kan-

torovich operator K,, given by

n k41
nA1

Kalfr) =) 30 () eyt [ s au (5)

k
k=0

n+1
The spaces LP[0,1], 1 < p < oo, are endowed with the norm

1/p

1
= { [ 1P b 1sp<o
0
For p = oo we consider C0, 1] instead of L>[0,1] with
11l =1l fllee = sup{[f ()] : = €[0,1]}.

The corresponding operator to Bernstein operator on the positive semiaxis is

the so - called Szész - Mirakjan operator defined by S,, : Cg[0,00) — Cg[0, c0),

= (nz)*
Sp(fyx) =e™" kZ_O <k') f(i), n=12,...,z €[0,00), (6)

where Cg[0,00) denotes the set of all bounded and continuous functions on [0, 00)

endowed with the norm

[fll« = sup{[f ()] : = €[0,00)}.

The operator S,, was generalized by Stancu in [16], obtaining S? operators

Sg(f,x)z(l—i—nﬁ)_x/B.i <B+Tll>—k.x(x+ﬁ)...(x+(k—l)ﬁ) -f(k), ™)

k! n
k=0

where 3 > 0 is a parameter depending on the natural number n.
Furthermore, in the paper [17], Stancu has introduced a generalization of the

well - known Baskakov operator  V,, : Cp[0,00) — Cgl[0, 00),

o0 n+k—1

Vi(f,x) = Z

xk(ler)"k-f(fl) ,n=1,2...,x€0,00), (8)

k=0 k
defined by
= k
Vi) =3 wsten) -1 (2) )
k=0
where
ntk—1\ T2 (x+iv) [T/ (1+57)
On (2, 7) = d 1= (10)

k Mt 4z +r)
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and v > 0 depends on the natural number n.

The purpose of this paper is to establish pointwise and uniform approximation
properties for the operators (1) — (2), (4), (7) and (9) — (10). On the other hand
the paper will be a survey of some results given by the author regarding the above
mentioned Stancu’s operators.

To establish these results we shall use the following notations:

1/p

gty = sup { / 9z + 1) — g(x)? da:} ,

0<h<t

g€ L?)0,1], 1<p<oo, z,x+he]0,1];

wo(g,t) = sup sup |g(x+h)—2g(x)+g(z — h)|,
0<h<t z,zxhel

geC(I), I=10,1 or I=][0,00);

wi(g,t) = sup  sup |g(x+ hp(x)) — 2g9(x) + g(@ — he(x))],
0<h<t zthe(z)el

g € Cl0,1] and p(z) = V(1 — ),
g € Cpl0,00) and ¢(z) =z or

g € Cgl0,00) and cp(x):\/m;

1 1/p
wy(g,t)y = S {/O l9(z + ho(z)) — 29(z) + g(x — ho(2))|” dz } :

g € LP[0,1], 1 <p < oo, =+ he(x) € [0,1]

and ¢(z) = (1l —x), v €[0,1];

wy(g,t) = sup sup  |g(z + ho(x)) — 29(z) + gla — ho(x))],
0<h<t zxh¢(x)€[0,00)

g € Cp[0,00) and ¢ : [0,00) — R is an admissible

step - weight function ( see [3] ).

Here we mention that throughout this paper C' and Cj denote absolute con-

stants and not necessarily the same at each occurrence.
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2. Theorems

In [5, Theorem 1] we have proved the following

Theorem 1. For f € C[0,1] and x € [0,1] we have

[eY 1+ na
|Bn(f7x)_f($)| < Cwy <f7\/n(1+a)1'(1—$)>

Remark 1. We can obtain the estimate of Theorem 1 with C' = 2 using [13,
p. 255, Theorem 2.1 ].
Furthermore, by [6, p. 100, Theorem 1 |, we have
Theorem 2. Let f € C[0,1] and a = a(n) =o(n 1), an<1,n=12....
Then
B2 (f,0) - ()] < ¢ =)
holds ezactly when ws (f,h) < C h%, h>0.

Using [2, p. 79, Theorem A] or [6, p. 100, Theorem 3 ], we get
Theorem 3. For f € C[0,1] and ¢(x) = y/z(1 — x), x € [0,1] we have

1BR(f) = fl < Cwf (f, nl(lJer)>

The next result requires the following lemma ( see [12, p. 317, ( 2.1 )] or

[19] ):
Lemma 1. Let f € C[0,1] and p(z) = y/2(1 — ), x € [0,1]. Then

LB < Co I1Balh) ~ 7

where Cy is an absolute constant.

Then our result is ( see [7, p. 2, Theorem 3] ) :

Theorem 4. Let f € C[0,1], p(z) = /z(1 — ), x € [0,1] and a = a(n),
2Coan<1l,n=12,..., where Cy denotes the absolute constant of Lemma 1 above.

Then there exists an absolute constant C > 0 such that

CTHBa(f) = fI < 1B (f) — /I

IN

C [|Bn(f) = 1l

and

Ctwi(f,n %) < IB(f) — £l

IN

C w(f.n12).
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Hence, in view of [3, p. 177, (1 9.3.3 ) |, we obtain immediately

Corollary 1. Let f € C[0,1], p(z) = \/2(1 —2), € [0,1], @ = a(n) with
2Cian<l,n=12,...and 0<d < 2. Then

IBS(f) = fIl = O(m™°7%) iff wg(f,h) = O(h®), h>0.

The following results will be in connection with the operator K. More

precisely, we have ( see [8, Theorem 1, Lemma 2 and Theorem 3] ) :

Theorem 5. Let f € LP[0,1], 1 <p < o0 and ¢(z) = \/z(1 — z), z € [0,1].
Then there exists C > 0 such that

@) 1K) = flly < C {S(fn™ )+ 07 (I fllp}
where a = a(n) = O(n™!) and 1 < p < oo;
(i) 1K (f) = flh < C {wf(fin )1 +07" | fl},
where a = a(n) = O(n™*).
For the converse result we need a lemma :

Lemma 2. For f € LP[0,1], 1 < p < oo and ¢(x) = \/z(1 —x), z € [0,1]

we have

1
- le*(Kn(£)"ls < Co 1Ka(f) = flps
where Cy is an absolute constant.

Remark 2. The above Lemma does not hold for p =1 (see [8, Remark 2]).

Our result is
Theorem 6. Let f € LP[0,1], 1 <p < o0, p(x) = /(1 —x), x € [0,1] and

a=an),p/lp—1) Choan<d <1l n=12..., where Cy denotes the absolute

constant of Lemma 2. Then

(1 =0) [Kn(f) = fllp < IEZ() = fllp < (140) [[Kn(f) = fllp

and there exists an absolute constant C > 0 such that

CH g (Fn ™)y + (), S IKS (D= Fllp < C [ (Fin 2y +w(fin 1), ]
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In what follows we give the theorems concerning to the operator S2 using [9,
p. 62, Theorem 1] and [10] :
Theorem 7. For f € C[0,00) and z € [0,00) we have

1S5(f,2) = f(a)] < 2w <f, (mi)j).

Theorem 8. Let f € Cp[0,00) and p(x) = /z, z € [0,00). Then
IS55) ~ fll. < € w5 (f,\/i 45 ) .

Theorem 9. Let f € Cp[0,00), ¢(z) = vz, x € [0,00) and 8 = B(n),
2Cy Bn<d<l,n=1,2,..., where Cy denotes the absolute constant of Lemma 3
below. Then

(L =) I8u(f) = flle < IS = flle < (L +0) 1Sulf) = [l

and there exists an absolute constant C > 0 such that

CTlwf(fn ) < ISP — flle < Cwf(fn7YP).

Lemma 3. [19

Let f € Cpl0,00) and p(x) = \/z, © € [0,00). Then

(S ()"l < Co 1Su(f) = FlIs

S

where Cy is an absolute constant.
Finally, we give the results about the operator VY. This operator is linear,
positive and bounded, but it does not preserve the linear functions. Therefore we

consider the following two cases :

a)

Li(f.x) = ao(n) -V, (f,2) + aw(n) - Vi (f,2), (11)
where
n=mnyp<n <An, lag(n)| + a1 (n)] < A,
ap(n) + ai(n) =1, ap(n) -nygt +ai(n) -nyt =0
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and v =y(n) < B/(4n),n=1,2,...,0 < B < 1. Here A and B are given

absolute constants. Following [11] ( see also [4] ), we have

Theorem 10. Let L) : Cp[0,00) — Cg[0,00) be given by ( 11 ), o(x) =
z(l4+2x), z € [0,00) and ¢ : [0,00) — R be an admissible step - weight function of
the Ditzian - Totik modulus and v = v(n) < B/(4n), n=1,2,...,0< B < 1. Then

B(f,x)— fz w¢ 7171/2~M x 00
L) - S < Cuf (£ 50 e pioo)

In particular, we obtain a local estimation of the approximation error for

p=1:
LE(2) — f@) < Cwf (f,\/“’“?jw))

and we get a uniform ( global ) estimation of the approximation error for ¢ = ¢ :

ILA() = flle < CwE(f,n'2).

b)
k=0
where
k—1 . " '
) = th=1) Ilico @+1) Iloy 0457 (13)

k [ (42 +1)
(' see also [18] ). By [10], we have
Theorem 11. For V) : Cpl0,00) — Cpl0,00) given by ( 12 ) - ( 13 ),
f € Cpl0,00), p(z) = y/z(l+x), x € [0,00) and 0 < v < 1 we have
~ 1 ol
Y _ < b _ _r .
) = Al < 0 (/5 + 2 )
Theorem 12. Let f € Cg[0,0), ¢(z) = /x(1+ ), z € [0,00) and v =

v(n), 2 Co-(v/1=7) - n<d <1l n=12,..., where Cy denotes the absolute

constant of Lemma 4 below. Then

(1 =8) IVa(f) = fll« < VI = Flle < A46) [Va(f) = £l
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and there exists an absolute constant C > 0 such that

Clwi(f,n ) < V() = flle < Cwi(f,n3).

Lemma 4. [19] Let f € Cg[0,00) and p(z) = Jz(1+z), = € [0,00).

Then

LISV e < Co IVal) ~ fll,

where Cy is an absolute constant.
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ON GENERATION OF FAMILIES OF SURFACES
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Dedicated to Professor D.D. Stancu on his 75" birthday

Abstract. In this paper we define families of interpolation surfaces of
Hermite and Birkhoff type. Particular cases of these surfaces are illustrated

graphically.

1. Introduction

The modelling and remodelling of surfaces come up in different activities as
civil engineering, industries of airplanes, ships, automobiles, industrial and artistic
objects, scientific research and others.

There exists a large number of classical and modern methods for generating
surfaces. As modern methods for generating surfaces we mention those of Bézier,
Coons, Shepard and others [5], frequently encountered in Computer Aided Design
(CAD) and Computer Aided Geometric Design (CAGD).

In our paper we present two procedures for defining surfaces.

2. Surfaces with two support curves and tangent ribbons

In this section we define a family of surfaces each one containing the same
two opposite space curves, say (C1) and (C2) and different tangent ribbons (across-
boundary derivatives), see Figure 1.

Suppose the curves (C1) and (Cs) are represented by the equations:

=0 = x
cnd Y wmd (@) YT coa 2.1)
z = ho(x) z = hy(z),
For the given functions ho(z), hi(z), mo(z) and y1(z), x € [0,a], let us find the
surface (5), having the equation z = f(z,y), € [0,a], y € [0,y1(z)], which satisfies

Received by the editors: 01.11.2002.
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F1GURE 1. A surface with two support curves and tangent ribbons

the following conditions:

f(@,0) = ho(z),  fla,y1(2)) = ha(z),
f;(l‘,O) = mo(x), f;2($ayl(x)) = ml(x)a S [O,CL].

The unique solution of the problem (2.2) is the third-degree Hermite interpolation

polynomial with respect to the y-variable. By direct calculus one obtains:

f (x,y; ho(.’E), hy (x),mo(m),ml (.’I?)) =
[mo(z) +ma(2)]y1(z) — 2[h1 (z) — ho(z)] 5

yi() v (2.3)
3[h(z) = ho(z)] _yyfl(%) [2mo(z) + mi (z)] y> + mo(x)y + ho(z).

In cardinal form [5], the polynomial f is:

f (@, y; ho(z), hi(z), mo(z), m1(2)) = HY (y;y1(2)) ho(z)+
H; (y;91(x)) mo(z) + H3 (y; 91 () ma(z) + Hi (y;y1(x)) b (z),
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where the cardinal (blending) functions H: (y;y1(z)), i = 0,3 are

[yi(z) — Z/]2 2y + y1(z)]

HY (y;91(x)) = ) :
12 (i (a)) = 20—l
2000 () = WY@y
H3 (y;91(x)) 2@
1 (rian@) = LD o e 0.0l y € 0. (o)

The equation:

z = f(wvy;yl(m)ahO(m)ahl(m)amO(m)aml(m))7 T € [O,CL], Yy € [Ovyl(m)]’

where f is given by (2.3) or (2.4), represents a family of surfaces which depend on
y1(z), ho(x), hi(x), mo(z), my(x). The functions mg(z) and m,(z) determine the
shape of each surface.

Remark 2.1.

a) A surface (S) and its symmetric with respect to Oz plane has the equa-

tion:

z = f (.’E, |y|,y1(w),ho(m),hl(w),mo(w),ml(w)) > (26)

where (/S [O,CL], |y| < yl(x)
b) A surface (S) and its symmetric with respect to yOz plane is represented

by the equation:

z = f |zl y,ya (), ho(|z]), ha(Jz]), mo(l2]), ma(|])) , (2.7)

where |z| < a, y € [0,y1(z)].
¢) The equation of the surface (S) and its symmetric with respect to 2Oz

and yOz planes is:

z=f (|« lyl;vr (12]) s ho (|21)) , mo(|2]), ma (|]), (2.8)

|z < a, ly| <y ().
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Figure 2 shows the surface from the family (2.8), where f is given by (2.3)

corresponding to the following data:

ho(#) = — (2 — 15)(z — 20) — ——a(z — 20) + ——a(z — 15),

75 125 125
1 . 2rm 3
hl(m)—1+§sm1—5 x+§ ,
1 m
mo(z) = gcosg(m+1),
1
my(x) = - 9= 20, yi(z) = 20.

FIGURE 2. A surfaces from the family (2.8)

3. Surfaces having a point and a curve as supports

Let us consider the point A(0,0, ho) and a curve (C) represented, in cylindri-

cal coordinate system, by the following equations:

x = p1(u) cosu,
(€)9 v = pi(u)sin(u), (3.1)
z = hy(u), u € [0, 27].
(see figure 3).
1. For the beginning we determine a curve (C*) which passes through the

point A and a fixed point of the curve (C), which will be denoted by
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F1GURE 3. A surface having a point and a curve as supports

B(p1(u) cosu, p1(u) sinu, hi(u)), u - fixed for the moment and having in A and b
the slopes mg(u) and m;(u) respectively.
The curve (C*) is uniquely represented by a third degree Hermite interpola-

tion polynomial in v-variable, similar to (2.3):

T = 0vcosu
(C*){ y=wvsinu
z = h (v; ho, hi(u), mo(u), m1(u)p1(u)),

v €0, p1(u)], u € [0,27], ufixed, where

h (v; ho, b1 (u), mo(u), mi(u), pr(u)) =
[mo(u) +mi(u)] p1(u)2[hi(u) = ho] 3

) ! (32
N 3[hi(u) — ho] — p;Q(EZ)me(U) + ml(“)]v2 + mo(u) + ho,

or in canonical form

h (v; ho, by (u), mo(u), m (u)p1 (u)) = HY (v; py(u)) ho+

(3.3)
+ H; (v; p1(u)) mo(u) + Hj (v; pr(u)) ma (u) + H3 (05 p1(u)) b (u)
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with 2
HY (v; p1(u)) = [p1(w) — 7;)]? ([Z;) + p1(u)] ’
Hj (v;p1(u)) = W’
) (3.4)
H3 (v; p1(w) = %7
H3 (v;p1(u)) = %7

v € [0, p1(u)], u € [0,27], u fixed.
The surface (T') generated by the curve (C*), for u-variable is represented by

the equations:

T = vCosu,
()4 y = vsin, (3.5)
z = h(v; ho, ha(u), mo(u), my(u), p1(u)),
where u € [0, 27], v € [0, p1(u)], and h is given by (3.2) or (3.3).
A surface from the family (3.5) corresponding to the data
1 1
mo(u) = =z, ma(u) =
hi(u) =5+ sinbu — |sinbu|, p1(u) = 15.

is represented in Figure 4.

N
WSS
NS

;
N5

Nut

FIGURE 4. A surface from family (3.5)
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2. Next, we consider that the generating curve (C*) passes through the points

A and B, in A has the slope mg(u) and for v = po(u), u-fixed, it has an inflexion

point. Such a curve is unique represented with the aid of a third degree Birkhoff

interpolation polynomial [4].

The surface (¥) generated by the curve (C*) when u is variable, u € [0, 27]

has the following parametric equations:

T =vCosu
y =vsinu (3.6)

z = B (v; ho, h1(u),mo(u), po(u), p1(w)) ,

where

(u) v? [[v = 3po(u)] + mo(u)v + ho,

u € [0,27], v € [0, p1(u)].

We note that the equations (3.6) represents a family of surfaces. The shape

of each member of this family depends on hg, hi(u), mo(u), po(u) and p(u). The

surface from family (3.6) corresponding to the particular case

1
ho =8, hi(u) =1+ Fsinl2u, mo(u) = -1,

po(u) =15, p1(u) =20

is given in Figure 5.
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FIXED POINT THEOREM IN AE-SPACES

J. KOLUMBAN AND A. SOOS

Dedicated to Professor D.D. Stancu on his 75" birthday

The theory of metric spaces is a very useful tool in applied mathematics.
However, by some practical problems this theory can not be applied. For this
reason the concept of probabilistic metric space was introduced in 1942 by Menger
[7]. Tt was developed by numerous authors, as it can be realized upon consulting
the list of references in [2], as well as those in [10]. Menger proposed to replace the
distance d(z,y) by a distribution function F,, whose value F, ,(t), for any real
number t, is interpreted as the probability that the distance between x and y is
less than t. The study of contraction mappings for probabilistic metric spaces was
initiated by Sehgal [12],[13], Sherwood [16] and Bharucha-Reid [14]. Radu in [§]
and [9] introduced other types of contractions in probabilistic metric spaces. The
notion of E-space was introduced by Sherwood [16] in 1969 as a generalization of
Menger space for random variables. For new results and applications of probabilistic
analysis one can consult Constantin and Istratescu’s book [2]. New results in fixed
point theory in probabilistic metric spaces can be find in [4] and in Hadzic’s book

Hutchinson and Riischendorf [5] showed that the Brownian motion can be
characterized as a fixed point of a special stochastic process. They proved a fixed
point theorem using a first moment condition. Our goal is to generalize this idea
and to replace the first moment condition by a more less restrictive hypothesis.
Using a generalization of the notion of E-space to the so called AE-space we will
prove a new fixed point theorem. As application Brownian bridge-type stochastic
fractal interpolation functions will be constructed.

In the first section we recall the notions of probabilistic metric space and
E-space. The next section contains the definition and some properties of AE-space.
The main result of this paper is the fixed point theorem in section 3. The last section
contain an application of our main theorem to the stochastic fractal interpolation.

1. Probabilistic metric spaces

Let R denote the set of real numbers and R, := {x € R: z > 0}.

A mapping F : R — [0,1] is called a distribution function if it is
non-decreasing and left continuous.

By A we shall denote the set of all distribution functions F. Let A be
ordered by the relation 7<”, i.e. F < G if and only if F(t) < G(t) for all real t.
Also F < G if and only if FF < G but F # G.

We set At :={F e A: F(0) =0}

Received by the editors: 08.10.2002.
Key words and phrases. probabilistic metric space, fixed point, fractal interpolation.
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Let H denote the Heviside distribution function defined by

0, <0,

Let X be a nonempty set. For a mapping F : X xX — AT andz,y € X we
shall denote F(z,y) by F ,, and the value of F} , at t € R by F, ,(t), respectively.

The pair (X, F) is a probabilistic metric space (briefly PM space) if
X is a nonempty set and F : X x X — AT is a mapping satisfying the following
conditions:

19 F, y(t) = Fy (t) for all z,y € X and ¢ € R;

20 F, ,(t) = 1, for every t > 0, if and only if z = y;

30if F, ,(s) =1and F, ,(t) =1 then F, (s +t) = 1.

A mapping T : [0,1] x [0,1] — [0,1] is called a t-norm if the following
conditions are satisfied:

4% T'(a,1) = a for every a € [0, 1];

5% T'(a,b) = T'(b,a) for every a,b € [0, 1];

6° if @ > ¢ and b > d then T'(a,b) > T(c,d);

7% T(a,T(b,c)) = T(T(a,b),c) for every a,b,c € [0,1].

We list here the simplest:

Ty(a,b) = max{a+b— 1,0},

T>(a,b) = ab,

T5(a,b) = Min(a,b) = min{a, b},

A Menger space is a triplet (X, F,T'), where (X,F) is a probabilistic
metric space, T is a t-norm, and instead of 3° we have the stronger condition:

80 F, y(s+1t) > T(Fy (), Fsy(t)) for all z,y,2z € X and s,t € R.

If the t-norm T satisfies the condition

sup{T(a,a) :a € [0,1[} =1,

then the (¢, €) -topology is metrizable (see [11]).

In 1966, V.M. Sehgal [13] introduced the notion of a contraction mapping
in probabilistic metric spaces.

The mapping f : X — X is said to be a contraction if there exists
r €]0, 1] such that

Fp(2),1() (1) 2 Fay (1)

for every z,y € X and t € R,.

A sequence (2, )nen from X is said to be fundamental if

lim F, .. ()=1
n,m— oo

for all t > 0.

The element x € X is called limit of the sequence (z,)nen, and we write
lim,, 00 Ty, = x Or T, — @, if lim,,_ o Fy 5, (t) =1 for all ¢ > 0.

A probabilistic metric (Menger) space is said to be complete if every
fundamental sequence in that space is convergent.

For example, if (X, d) is a metric space, then the metric d induces a mapping
F: X x X — AT, where F(z,y) = Fy, is defined by

Fpy(t)=H(t—d(z,y)), t € R.
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Moreover (X, F, Min) is a Menger space. Bharucha-Reid and Sehgal show that
(X, F, Min) is complete if the metric d is complete (see [14]). The space (X, F, Min)
thus obtained is called the induced Menger space.

The notion of E-space was introduced by Sherwood [16] in 1969. Next we
recall this definition and we show that if (X, d) is a complete metric space then the
E-space is also complete.

Let (92, K, P) be a probability space and let (Y, p) be a metric space.

The ordered pair (£,F) is an E-space over the metric space (Y,p)
(briefly, an E-space) if the elements of £ are random variables from Q into Y and
F is the mapping from &€ x £ into A% defined via F(z,y) = F ,, where

Fyy(t) = P({w € Q p(z(w),y(w)) <t})
for every t € R.
If F satisfies the condition

Fla,y) # H, if z#y,

then (&, F) is said to be a canonical E-space. Sherwood [16] proved that every
canonical £-space is a Menger space under T = Ty,,, where Ty, (a,b) = max{a + b —
1,0}. In the following we suppose that £ is a canonical E-space.

The convergence in an £-space is exactly the probability convergence.

The E-space (€, F) is said to be complete if the Menger space (€, F,T,,)
is complete.

If we start with a complete metric space (X, d) then we obtain a complete
E-space.

Proposition 1.1. ([6]) If (X,d) is a complete metric space then the E-
space (€, F) is also complete.

2. AE-spaces

Let A be a nonempty set and, for A € A, let (Y*,d") be metric space.
Denote E* the set of random variables from € into Y and let

FA e x &M — AT
be defined via F*(z,y) := F}\,, where

F,(t) = P({w € Qld*(a* (), y*(w)) < t})

for all ¢ € R. Denote

Fpy(t) = ireliFwAy(t)

and
F(z,y) == Fyy.
The ordered pair (£*, F*) is an E-space over the metric space Y.
Let Y :=[] e, Y, € € Y and define

. A : : A (A A _

E={ze E\E | tli)rgo }\reliP({w € Qd* (M w),eMw)) < t}) =1}.

Remark. £ is the set of bounded random functions. The convergence in
£ is similar to the uniform convergence in metric space.

The triplet (€, F,T) is called AE-space.

In the following let T := T,,.

Proposition 2.1. (£, F,T) is a Menger space.
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Proof. Conditions 1° and 2 are satisfied by definition. Since Fgg\y satisfies
8¢ for all A € A, we can write
A A
Fry(t+s) > T(F.(t),F2,(s) >
> 1nfmaX(F)‘ ( )—i—FA (s) —1,0) >
)

> max(lan L(t +1DfF y(8)—1,0) =
T(Fw,z(t)’ Fz7y<5>)

for all ¢t,s € R;. Taking the infimum over A we obtain the triangle inequality:

F,,(t+s) = Airéﬁ B} (t+5) > T(Fy.(t), F.y(s))

for all t,s e Ry. O
Proposition 2.2. If (Y d) are complete metric spaces for all A € A,
then (€,F,T) is a complete Menger space.
Proof. Let (z,,)nen be a Cauchy sequence of elements of &, i.e.
lim F,, ., (t)= lim inf P({w € QldMz)(w),zp (W) <thHh =1 (2.2

»m
n,m— 00 n,m—oo

for all £ > 0 and
lim inf P({w € Q|d*(z)}(w), e w)) < t}) = 1. (2.3)

t—o0 ANEA

Since, for A € A
P({w € Qld* (@3 (w), 7, (W) < t}) > Fa, . (1),

it follows that for € > 0, exists n. € N such that, if n > n. and m > n. then
P({w € Qld Nz} (w), z), (W) <t}) >1—e

So, (2))nen is a Cauchy sequence in the E-space (5’\ FA). According to Proposition
1 (&}, F*) is complete for all A € A. Denote 2 := lim,, o, 7)), and 2 := (z}|\ €
A).

Now we have to show that

(1) imp—oo Fy, »(t) =1 for all t > 0,

and

(ii) z € £.

By the relation (2.2) for all ¢ > 0 and € > 0 there exists n. € N such that
for n,m > n. and A € A

P({w € QM @hw), k) < gD > 1- 5.
Since

({wEQIdA( (), et w) <t}) >
> P({w € Qld* (a3 (w), o, (w)) < })+P({w€QIdk( m(w )»xk(w))<%})—1>1—6

we have

)1\r€1fF/ t)y>1—c¢

for allt > 0 and € > 0. So
lim F, ,(t)=1, forall ¢>0.

n— o0
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In order to show (ii) we use relation (2.3). For € > 0 there exists t. > 0
such that for all ¢ > t. the following inequalities hold

Fpe(2t) > T(Fy, (1), Fy, e(t) > T(Fy, »(1), Fy, (1)) >

>1—§+Fxme(t)—1>l—e.
0

3. The main result

The main result of this paper is the following fixed point theorem:

Theorem 3.1. Let (£,F,T) be a complete AE- space, and let f : € — &
be a contraction with ratio r. Suppose there exists z € £ and a real number v such
that

sup P({w € Q| d*(z*(w), f(2Y)(w)) > t}) < J for allt > 0.
AeA t

Then there exists a unique xo € £ such that f(xo) = xo.
Proof. Let ag = z and a,, = f(an—1) for n > 1.
First we show that (ay)nen is a fundamental sequence in (£, F,T).
Let f, = fo---o f n-times.
Since an1k = fn(ar) and a,, = fn(ag), we have

Famann8) = P utan) (5) 2 It P({ € 9] (X (), a} (@) < s}) =

> inf P({w € O r"d*(z* (W), ap(w)) < s+ (L+Vr+-+ VPHa = VoY) >
> P({w € Q| r"[d (2 (w), f(zA W) + dM ([ (2} (@), f2(2 (@))) + -+ +
+d (fi1 (@), (@) <5 (L VT4 + V7 (1= V) >
> it [P({w € 9 (W), S @) < Loy

Tn’ﬂ

LP({w € O @), o) < LTV

,,m,

k—1
FP({w € Q] & (fuor (), fi () < STV gy

> inf [P({w € 0] (2 w), (@) < Loy

1P({w € Q) rd (), (W) < SETVIOVTy

/]/-TL

k—1
LP({w € O N A W) F(A W) < LYV gy gy -

,rn

=1- itelg[P({w € Q| P (W), f(Mw))) > 3(1;7n\/;«)})Jr

LP({w € 0 dNP W), (P w) > STV

Tn+1

k—1
FP(fw € Q) (W), [P W) < SV

rn+k—1
X 1 #1/2 F(k=1)/2
>1—ny-rm b ——
=i <s<1—ﬁ>+s<l—ﬁ>+ +s(1—ﬁ)>>
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,rn

EECE

Since

we have, for t > 0,

lim Fy, a,.,() =1,

n—oo
uniformly with respect to k. The space (€, F,T) being complete, (a,,) is convergent.
Let z¢ be its limit.
Next we show that x is a fixed point of f.
For we have

t t
Fan7f(w0)(§) Z Fan—l,ﬂﬁo(i) fOr all t > 0

Using 8° it follows

t t t t
Fsz(:rro)(t) 2 T(Fa:o,an<§)a Fan,f(zo)(§)) 2 T(Fw07an(§)’Fanflxajo(§)>'

Since limy, o0 @ = o, we have
Foo fwo)(t) =1 forall t>0,

therefore
f(zo) = o.
For the uniqueness we suppose that there exists an other element 2’ € £
such that f(z’) = a’. For n € N and ¢ > 0, we have

t
Fﬂfo,x’ (t) = Ffﬂ,(x0)7f7z(w/)(t) Z Fwo’x/ <7‘n> .
Since lim,,_,o, ™" = 0, we have
Fpy(t) =1 forallt >0,

therefore zg = z’. O

4. Application: stochastic fractal interpolation

In [5] Hutchinson and Riischendorf showed that the Brownian bridge can
be characterized as the fixed point of a ”scaling” function. Indeed, let (2, K, P) be
a probability space and let A = R, the set of positive real numbers. Define the
Brownian bridge as the stochastic process (X})ier . with the following properties:

P{we Q] t— X t,w) is continuous}) =1,
and, for every t > 0 and every h > 0,

XMt 4 h) — XMH)LN(0, AR),

thus
P QXMNt+h - x* = 71 ’ 5 d
w € t , W tw)<zT})= / e 2xZn2 dt.
3 X ) (tw) H V21h\ J oo

N(a,b) denote the normal distribution with mean a and variance b.
We suppose

X*0,w)=0 as. and X*Lw)=1 a.s.
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Denote I = [0, 1], and define the functions

1 S

q>1 :I—)[O,i], @1(8)257
and ) )
@yl [0, @i(s) = S; .

Let A € A and denote p* the random point with distribution N (0, %)
Let 3,05 : R x A — R be the affine transformations characterized by

©2(0,A) = 0, o1 (1,\) = ©3(0,)\) = p*, v3(1,\) =1 for all A € A. Denote 77 =
Lipp? = |p*|, 13 = Lippy = |1 — p*|. For ¢3, »3 we obtain
pr(a,A) =pa and  3(a, ) = (1—p*a+pt.
Denote L the set of functions from R x A to R,
L:={u:RxA—R}
Let 11,19 : L — L be mappings satisfying the following property:

A
), =12

¥i(u)(a,A) = u(a, 277“12
Let
S} =@} o
Using the definition of the process, we have
d 1
X/\|X*(%):p*(t) = St o XA(2t), telo, 5]

Similarly

1
XM xa()op (0 £ 30 X2t —1), tels

1].
2’]

This relations can be written as follows
XA xoa ()= () L LS} 0 XA 0 @77 (1), e [0,1].
For each A > 0, we have
XML 1,80 0 XA o071,

where X*® £ X* are chosen independently of one another.

Let Y» = L;(]0,1]) and d* the Euclidean metric in R, for all A\ € A. In
this case £* is the space of real random variables and & is their product space. By
Theorem 2.2 (£, F,T) is a complete AE- space. Consider the function f : & — &,
defined by f := (f*|A € A) where

FAX) =18 o XD 0 @7t
for all X € £. If X is a fixed point of f then, for all A € A,
X3 £ A X).
Hutchinson and Riischendorf [5] proved that, if the set of all functions
Z € & such that

sup A2 E, / |Z(t, \,w)|dt < 0o
A€A I
there exists a fixed point of f. Motivated by this result, we consider the following
problem.
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Let A be a nonempty set and let 0 =ty < t; < .. <ty =1,1 € R,
i €{0,..., N} be N + 1 given points. Consider N bijections
O I — [tio1, i) =1,

for i € {1,..., N}, with Lipschitz constant c;.
Let Y* := Li(I) and let B(\) > 0 for all A € A. For u,v € Y*, define

w0)i= 50 ( [ 1uta) = v(a)lda).

Let &€ be defined as in previous section with e = 0.

For all A € A and i € {1,..., N} define the random function ¢? : R — R,
gof‘ € Lipt<V, and 7"@‘)‘ denote its Lipschitz constant. Let v; : A — R be real
functions. Consider the mappings v¥; : L — L such that

1/11(’“) (a7 )‘) = u(avlyi()‘))v

and S be defined as above, i.e. S := ¢ o). Suppose for A € A there exists
d(A) > 0 such that the following Lipschitz condition will be satisfied:

ir){fP({w € Qlo(AN) / |u(a,v;(N\),w) —v(a,vi(A\),w)|da < s}) >
I
> iI;f P{w € QBN /[ lu(a, A, w) — v(a, \,w)|da < s})

for all u,v € &.

Let p be given random variable (i € {0,..., N}). Suppose the next inter-
polation properties are fulfilled:

forue&, AeAandie{l,..,N—-1}

o (u(0,\,w)) = py(w)  a.s. (4.4)
P (0,2 w)) = M u(l,\w) =pw)  as. (4.5)
eyl A\ w) =py(w) as.

If x € £ then the random function f(x) is defined by

Pa) =St oz o ®, (4.7)
Theorem 4.1. Suppose

o~ 2 (@)aiB)
ess sgp ilelﬁ ; 0y <1 (4.8)

and there exists a real number v such that

sup P({w € Q| Zai|tpf‘(0)| >t}) < % for allt > 0. (4.9)
AEA
Then there exists a random fractal interpolation function z* € £ such that
fa®) =
and
ot A\ w) =pr(w) as., i€{0,..,N}, A€ A. (4.10)
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Proof. For the random functions z,z: I X AXx Q — R, i € {1,...,n} let as
define

F, .(t) = 1an({w € QIB(A (/ |z(a, A\, w) (a,)\,w)|da) < t}).

Assuming this has been done, in order to show that f is a contraction map
we compute

Fy@),(=)(t) = inf P({w € QM (f(2), f(2) < t}) =

= inf P(fw € 2302 Z/m (i(2(@7(a), A w)) —
—A (G @A)l < 1) 2

> mf P{w € QBN Zr w)ay /I [i(z(a, A, w))— ¥i(2(a, \,w))|da) < t})>
. N a;ry (w)B(A

>l P(lw e (; 5&%“) 500 -
(/1 lbs((a, A w)) — i ((a, )\,w))da) e

>

)1\25\ P{w e Qr (/1 lz(a, A\, w) — z(a,)\7w)|da> < t}).

So we have .

Fy@),5)(#) 2 Foo(2)-
Using Theorem 3.1 for the contraction f there exists a fractal interpolation
function z*.
Next we have to show the interpolation property of z*. For ¢ € {1,..., N}
we have the following equalities

ety Aw) = f@*(ti, A\ w)) = S} (" (tn, A w)) = i (w).
]
This fractal interpolation function z* can be considered a generalized Brow-
nian motion.
Remark: If
sup BN E, Y ailg? (0)] < oo

A€A
then, by Tchebysev inequality, (4.9) is fulfilled.

References

[1] A. T. Bharucha-Reid, Fized point theorems in probabilistic analysis, Bull. Amer.
Math. Soc. 82(1976), 641-657.

[2] Gh. Constantin, I. Istratescu, Elements of Probabilistic Analysis, Kluwer Academic
Publishers, 1989.

[3] O. Hadzié¢, E. Pap, Fized point theory in probabilistic metric spaces, Kluwer Acad.
Publ., 2001.

[4] O. Hadzié¢, R. Meciar, E. Pap, A Fized Point Theorem in Probabilistic Metric Spaces
and Application, Journal of Mathematical Analysis and Application, 202 (1996),
433-449.

73



(5]

74

J. KOLUMBAN AND A. SOOS

J. E. Hutchinson, L. Riischendorf, Selfsimilar Fractals and Selfsimilar Random Frac-
tals, Progress in Probability, 46, (2000), 109-123.

J. Kolumbén, A. Soés, Invariant sets of random variables in complete metric spaces,
Studia Univ. Babes-Bolyai, Mathematica, XLVII, 3 (2001), 49-66.

K. Menger, Statistical Metrics, Proc.Nat. Acad. of Sci.,U.S.A. 28 (1942), 535-537.
V. Radu, On some contraction type mappings in Menger spaces, Sem. Teor. Prob.
Apl. Univ. Timisoara 78, 1985.

V. Radu, On some fized point theorem in PM-spaces, Lectures Notes in Mathematics,
Springer Verlag, 1233(1987), 125-133.

B. Schweizer, A. Sklar, Probabilistic Metric Spaces, North Holland, New-York, Ams-
terdam, Oxford, 1983.

B. Schweizer, A. Sklar, E. Thorp, The Metrization of Statistical Metric Spaces, Pacific
Journal of Mathematics, 10 (1960), no. 2, 673-675.

V. M. Sehgal, Some Fized Point Theorems in Functional Analysis and Probability,
Ph.D.Thesis, Wayne State University, 1966.

V. M. Sehgal, A Fized Point Theorem for Mappings with a Contractive Iterate, Proc.
Amer. Math. Soc.,23 (1969), 631-634.

V. M. Sehgal, A. T. Bharucha-Reid, Fized Points of Contraction Mappings on Prob-
abilistic Metric Spaces, Math. Systems Theory, 6 (1972), 92-102.

H. Sherwood, Complete Probabilistic Metric Spaces, Z.Wahrsch.verw. Geb., 20 (1971),
117-128.

H. Sherwood, FE-spaces and their relation to other classes of probabilistic metric
spaces, J.London Math. Soc., 44 (1969), 441-448.

BABES-BOLYAI UNIVERSITY, FACULTY OF MATHEMATICS
AND COMPUTER SCIENCE, CLUJ-NAPOCA
E-mail address: kolumban@math.ubbcluj.ro, asoos@math.ubbcluj.ro



STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume XLVII, Number 4, December 2002

RELATION BETWEEN THE AMOUNT OF INFORMATION AND
THE LIKELTHOOD FUNCTION

ION MIHOC AND CRISTINA IOANA FATU

Dedicated to Professor D.D. Stancu on his 75" birthday

Abstract. The objective of this paper is to give some properties for the
Fisher information measure and as well as some relations and informational

characterizations.

1. Introduction

The notion of information plays a central role both in the life of the person
and of society, as well as in all kinds of scientific research. The notion of information
is so universal, it penetrates our everyday life so much that from this point of view,
it can be compared only with the notion of energy [5],[6].

The information theory is an important branch of probability theory and it
has very much applications in mathematical statistics. The notion of information
plays a central role in the fundamental statistical works of R.A.Fisher. Thus, e.g.,
Fisher characterized a sufficient statistical function by the fact that it exhausts all
the information on the estimated parameter, contained by the sample.

Let X be a random variable on the probability space (2, K, P). A statistical
problem arises when the distribution of X is not known and we want to draw some
inference concerning the unknown distribution of X on the basis of a limited number
of observations on X. A general situation may be described as follows: The functional
form of the distribution function is known and merely the values of a finite number
of parameters,involved in the distribution function, are unknown; i.e., the probability
density function of the random variable X is known except for the value of a finite

number of parameters. In general, the parameters 61,05, ..., 8 will not be subject to
Received by the editors: 29.10.2002.

2000 Mathematics Subject Classification. 94A17.
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any a priori restrictions; i.e., they may take any values. However, the parameters may
in some cases be restricted to certain intervals. In the next we shell restrict ourselves

to the case of a single parameter 6.

2. Fisher’s information measure

Let X be a continuous random variable and its probability density function
f(x;0) depends on a parameter 6 which values in a specified parameter space Dy, Dy
C R.Thus we are confronted, not with one distribution of probability, but with a
family of distributions. To each value of 8, § € Dy there corresponds one member of
the family. A family of probability density functions will be denoted by the symbol
{f(x;0);0 € Dy} .Any member of this family of probability density functions will be
denoted by the symbol f(x;8),0 € Dy.

Let S, (X) = (X1, X, ..., X,,) denote a random sample from a distribution
that has a probability density function which is one member (but which member we
do not known) of the family {f(x;0);0 € Dy} of the probability density functions.
That is, our sample arises from a distribution that has the probability distribution
f(z;0),0 € Dy.Our problem is that of defining a statistic T = T'(X1, Xo, ..., X,,), so
that if xq,xo,...,z, are the observed experimental values of X;Xs,..., X,,,then the
number ¢t = t(x1, x2, ..., z,) will be a good point estimate of 6.

In the next we suppose that the parameter 6§ is unknown and we estimate a
specified function of 0, g(6) with the help of statistic T' = T'(X1, Xa, ..., X;;) which is
based on a random sample S, (X) = (X3, Xa, ..., X;,), where X; are independent and
identically distributed (i.i.d.) random variable with density f(x;#),0 € Dy.

A well known means of measuring the quality of the statistic

T =T(X1, Xa, ..., Xy)

is to use the inequality of Cramér-Rao which states that, under certain regularity
conditions for f(x;6) (more particularly, it requires the possibility of differentiating
under the integral sign) any unbiased estimator of ¢g(#) has variance which satisfies
the following inequality [4]
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VarT > L?I(jz]o) - (2.1)
_ g 0)?
BRACE (2.1a)
where
re®) = [ (PEEED) sty - 22)
of(x;0)
/facﬁ < 50 > dz, (2.3)
and

o0

L( i 0) 2
/ /(8 xl,xg, xn,9)> L(z1, 29, ... Tp; 0)dzy...dT) = (2.5)

(mngéx;m) ] - ”/Q (W)Qf(x;e)dx, (2.6)

f(a:;@):f(a:i;e),izl,n, (27)

L(6) = E [<8lnL(x1,z2,...,xn;ﬂ))Q] _ 2.0

=nk

n
L(z1, 22, ...y xpn; 0) = Hf(a:igﬁ) (2.8)
i=1
is the joint probability density function of X1, X, ..., X,,.

This joint probability density function of X7, Xo, ..., X,, may be regarded as
a function of 6 and it is called the likelihood function of the random sample S, (X) =
(X1X3, .., Xn).

The quantity Ix(f) is known as Fisher' s information measure and it mea-
sures the information about g(#) which is contained in an observation of X.Also, the
quantity I,(0) = n.Ix () measures the information about ¢g(#) contained in a random
sample S,,(X) = (X1Xa, ..., Xp,),than then X;, i = 1,n are independent and identi-
cally distributed random variables with density f(x;8),0 € Dy. An unbiased estimator
of g(#) that achieves this minimum from (2.1) is known as an efficient estimator.
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3. Some properties of Fisher’s information measure

Let f(x;0),0 € Dy be a positive probability density function in the interval
[a,b] depending on the continuous parameter ¢ in a continuously differentiable way.

Definition 1. [6], [3]. The gain of information when a distribution with
probability density function f(x;6p) is replaced by another one with probability den-
sity function f(z;6;) has the form

If (z;601)|f (;00)] = I(61]|60) = (3.1)
b
B 200 1o f(x;01) .
,-/f( ;01) log, f(x;QO)d . (3.2)

Theorem 1. Let X be a continuous random variable with probability density

function f(x;0),0 € Dy. Then we have the following relation
d*1(61/6)

k 6?2 _— = Ir[f(z;00)], (3.3)
where
b
(3 60)] /<a1n£0;§ :60) ) f (@3 60)d, (3.4)
k=1In2. (3.6)

Proof. Indeed, if we have in view the form (3.1) of the gain of information

and we compute the derivative, we obtain

b
dI(91H00) - d / . f(x,&l)
7d01 = dT% f(z;01)log, - dx

b
_ df (x;61) f(z;01) oy d f(x;601) _
— /( ) log, =00 —l—f(m,@l)d—allogQ f(x;90)> dx =

b
1 dn f(z;61) f(x:6h)  df(z;61) _
= E/ ( iy ) T dn > du =

[ (mdiets) 200
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respectively,

722'90 = k/(1+1 ;) df(;fﬂ . (3.7)

Now, if we compute the second derivative of 1(0;]|0y) , we get

d*I(04)00) 1 / 1 df (z;01)
de‘f’_k/ f(fv;fh)( df )

a

) e

and, hence, if we consider #; = 6y,we obtain

*1(6, \\90
de%

df xZ; 90) de(,T;Ho) -
/fx%( a0y )d +k/ g

a

1
= %Ip[f(x;ﬂo)], (3.9)
because from the relation

b

/f(:v;eo)d:v =1, (3.10)

a

we obtain

b b
/Mdaz =0 de =0. (3.11)

g, 62

a a

Remark 1. From this theorem it follows that the gain of information can
be considered as a generating-function of the Fisher information measure [2].

Theorem 2. Let X be a continuous random variables and f(x;0) its prob-
ability density function which depends on a parameter 6 with values in the specified
parameter space Dy and , more f(x;0) is absolutely continuous in 0. If 0 is a local

parameter for X, i.e.,

f(z;0) = fi(x —0),0 € Dy, (3.12)
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then
Ip[f(2;0)] = Ir[fi(z — 0)], (3.13)
where
1 0f(z:0)]
i@l = [ | g | faod (314
2
Telhlz ~0) = /R [fl (xl— 0) = (59_ 9)] fulw = 6)dz, (3.15)

are Fisher’s information measures.

Proof. Indeed, from (3.12) and (3.14), we obtain

oo

Ip[f(z:0)] :_/ _f(;; 5 af(;g e)rf(:c;ﬂ)d:p -
:Z :fl(xl— 5) 8f1(§9_ 0)} =0y
:_Z :—ﬁgiigrﬁ(m—@d:ﬂ:
:Z :ﬁgz;rﬁ(u)du:
= Ir[fi(u)],

if we have in view the change of variables

u=x—6. (3.16)

Corollary 3. If the parameter 0 is a scale parameter for X with center m

as follows
f(x;0) = eV fo(x — m)e ], —00 < 0 < o0, (3.17)
then
Ir[f(z;0)] = Ir(f2), (3.18)
when _ 2
Ip(fa) = / {1 - xﬁg] fol@)da, (3.19)

constantly in 0 and m,-0o < 6, m < oo.
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Proof. From (3.17), we obtain

f(x:0) _

20 90 e palle —m)e ) =
= —f(@:0) — (= m)e (e — m)e~),
where
fow) = P2y (e,
Then
elfw0) = [ | g o] flas)i =

f(x;0)

L @mme e —me )\
{ ! (w:0) } flas 6)da.

— 00

If we make the following change of variables

v=(zx—m)e?,

then we obtain

oo

telsao) = [ [-1- ;E;] fa(o)do,

— 00

because we have

{_1 (@ —m)e  fif(z —m)e ] } £ 0)ds = {_1 ~ Ufé(v)r f2(v)do.

f(z;0) f2(v)

/
= T [=f@0) — (@ —m)e2 5z —m)e"]]> , =
/ [ } f(z;0)dx
/

(3.20)

(3.21)

(3.22)

(3.23)

(3.24)

(3.25)
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4. Application

Let X be a continuous random variable which follows a normal distribution,

that is, its probability density function is defined by

1 1 /z—m\?>
exp§ —= ,z €R, (4.1)
2mo 2 o

where ¢ > 0 and m € R are the two parameters of the distribution, namely, m is a

flaym, o) =

location parameter and o2 is a scale parameter.

Then for the function

g(x;m,0?) = —In f(a;m, 0%) = (4.2)

2
1 1 —
=InV2rm +§ln02+§ (x m) , (4.3)

we obtain

dg(xz;m,0%)  x—m
oz o (44)

g(x;m,0?)
0x?
and from here it follows that the probability density (4.1) is a strongly unimodal func-

1

tion and more it is an absolute continuous function, if we have in view the following
remark.

Remark 2. [1] Let X be a continuous random variable on the probability
space (2, K, P) and f(z) , z € (a,b),a < b, (a,b) C R its probability density function.
If the function g,defined as

9(x) = —In f(z), € (a,b) (4.6)

is a convex function, than f is called strongly unimodal.
Such strongly unimodal probability density function is absolutely continuous

within (a,b) and more

g'(x) =~ o) ,(f(2) # 0,2 € (a,0)) (4.7)
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is a non-decreasing function.

Also, we say that X is absolutely continuous random variable if its probability

density f(x) is an absolutely continuous function.

Then, according to the relation (2.2), when § = m, we obtain

1
Ip(z;0) = Ip(z;m) = o

Now, we consider the relation

f(x;0) = e fo(x — m)e %), —00 < § < +00

and if

then

and from (4.9), we obtain

f(z;0) = efef(v) =

where

(4.9)

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)
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OF FOUR VARIABLES (II)

MARIA MIHOC

Dedicated to Professor D.D. Stancu on his 75" birthday

Abstract. In this article we analysed the determinants Massau for some
functions of four variables. We constructed also the nomograms in space
with coplanar points and compound nomograms consisting of plane nomo-

grams with alignment points.

In [3] the focus is on the study of the functions of four variables and their
classification according to the rank of the functions with respect to each variable they
depend on.

Further proceeding with this study implies the analysis of the nomograms in
space with coplanar points (the nomograms on which the function can be nomograph-
ically represented) for some of those function classes.

A lot of authors beginning with R. Soreau, then J. Wojtowicz [5, 6], M.
Warmus [4] have dealt with the correct definition of the rank of the functions of
three variables with respect to one of its variables (and respectivelly, to all variables).
They defined this rank as being equal to the minimum number of linear independent
functions from the expression of F(z1,22,23). This expression consists of a sum of
products where every product term consists of two factors; one of them is a function
of one variable (i.e. to one with respect to which we define the rank), the second
factor is a function of the other two variables.

We have extended [3] this definition to the case of the functions of four vari-
ables F'(z1, 22, 23,24).

Definition 1. [3] The function of four variables F'(21, 22, 23, 24) is said to be

of rank n with respect to z1, if there exist the functions U;(z1), Vi(22, 23, 24), i = 1, n,

Received by the editors: 01.09.2002.
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so that:

n

F(217227237Z4) = ZUi(zl)%(zbz&Z‘l) (1)

i=1

where n is the greatest possible natural number for which (1) occurs.

The functions U;(21), i = 1,n are linear independent, V;(22,23,24), i = 1,n
are linear independent too.

Definition 2. [3] The function F' = F(z1, 22, 23, 24) is called nomographic in
space if:

a) the rank of the function F' with respect to each of its variables is greater

than one,

Xi(z1) Xo(z1) Xs(z1) Xua(z1)

F(21,29,23,24) = Niz) Nalz) Y@ Ylw) (2)
Z1(23) Za(23) Zs(23) Za(23)
Ti(za) To(za) Ts(za) Ta(z4)

The determinant of type (2) will be called a Massau form (or determinant
Massau) of the function F.

Theorem 3. [3] If the function of four variables F(z1,za,23,24) is nomo-
graphic in space, then it is of rank two, three or four with respect to each of the

variables z;, i = 1,4 i.e. it has one of the forms:

F = X1G1 + XQGQ (3)
F = X1G1 + X2G2 + X3G3 (4)
F = X1G1 + XQGQ + X3G3 + X4G4 (5)

with respect to variable z1. The functions Gy, i = 1,4 are the rank one, two or three
with respect to their variables.

We have introduced the following abbreviations:

F = F(z1, 22,23, 24); X; = Xi(=1), Y; = Yi(22),

Z; = Zi(z3), T; = Ti(24), Gi = Gi(22,23,24), i

Il
—
b
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Definition 4. The nomographic representation of the function F' (that has
been brought to the form (2)) is equivalent to the nomographic representation of the
equation Soreau associated to this function.

The equation Soreau has been obtained by equalisation with zero of the de-
terminant Massau from (2).

The functions F', which have the forms (3)-(5) (or can be brought to these
forms) can be nomographically represented by nomograms with coplanar points, be-
cause the determinant (2) equated with zero leads to the condition of coplanarity of
four points in space, P;(z,y,z), i = 1,4 (i.e. four points situated in the same plane).
The coordinates of these points are (in the system of cartesian coordinates in space

XOY Z):

A (z;) Y= As(2i) - Az (z:)
Ag(z)’ Ag(zi)’ Ay(z)’

and A;(z;), i,j = 1,4 successively take the values X;(z1), Yj(22), Z;(z23), Tj(z4),
j=T1/4.

The formulas (6) are obtained by division of the elements of determinant
(2) by those of the fourth column. If at least one element of the last column of the
determinant is equal to zero, we can apply an elementary transformation in order to
obtain at least one column with all elements different from zero.

Each of point P; is situated on the curves C; (of the parameter z;), where
(6) are their parametric equations. By elimination of the parameter z; from (6) we

obtain the equations of two cylindrical surfaces
Si(x,y) =0, Si(x,2z) =0, i=1,4. (7)

The intersection of these surfaces gives exactly the distort curve C; in space.
Therefore, the function of four variables F' brought to the form (2) can be nomo-
graphically represented by a nomogram in space with coplanar points (see fig. 1).
The nomogram consists of four scales (z;), i = 1,4. These scales are situated on the
distort curves in space, C;, i = 1, 4.

The nomogram in figure 1 is employed as follows: We provide the values of
the three variables of the equation F(z1,22,23,24) = 0. These values are also the
marks of the scales of the variables z;, situated on the curve Cy, i = 1, 3; three points

87



MARIA MIHOC

FIGURE 1. The nomogram in space with coplanar points

correspond to them on this curves. These points determine a plane that intersects the
fourth curve at another point. The mark of the respective point will give the required
value of the variable to arrive at (the fourth variable of the equation).

We proceed to the analysis of some classes of functions F'(z1, 22, 23, 24), which
are of rank r., with respect to variables z;, i = 1,4, where 2 < r,, < 4. We will write
the forms Massau, to which they can be brought, and we will construct the nomogram
by which these functions are represented.

I. The function F is of rank two with respect to each of its variables z;, i = 1,4
(having form (3))

F=XG + X5Gs

where the functions G;, i = 1,2 are of rank one each with respect to variable zo, i.e.
Gi(22, 23, 24) = Yi(22) Hi(23, 24) (8)

the functions H;(z3,24), ¢ = 1,2 are also of rank one each with respect to their
variables
H;(z3,21) = Zi(23)Ti(24). 9)

According to the remarks above, the function F' take the form:

F= Xl}quTl + X2Y2Z2T2. (10)
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Six determinants Massau (respectively six equations Soreau) correspond to

this function i.e.:

Xy

T

X

Y;
0
0

X
0
Z>
0

X5

Y
0
0

Xo
0
Zy
0

Xo
0
0

T

0
0
Z>
Ty

0
Y
0
1>

0
Y,
Z

0

0
Ya
-7,
0

Zs
-7

0
Y,
0
T

X
0
Zy

X

T

X

Ys
0
0

X5

Y
0
0

Xo
0
Zy

Xo
0
0

Ty

0
Zy
T,

0
-Ys
0
T

0
Yy
— 7y

0

0
Vs
0
T

0
i
Zs

0
0
Al
1

All these forms Massau are distinctly projective, because there cannot exist

a square matrix of fourth order, whose determinant is different from zero, by which

one of the forms (11) a)-f) can be brought to any of the remaining forms.

Only the form Massau (and the equation Soreau) (11)a) will be analized

below. By multiplying first column of the determinant from the equation (11)a) with

the positive factor a, adding it to the last column and then dividing each of its lines

by the elements of the last column we obtain the equation Soreau:

S |

Q= O

1 X5
aX
v
Y,
0

0

The equation (12) also gives the parametric equations of the curve C;, i = 1, 4;

in this case they are the straight lines D;, i.e. D; are the supports for the scales of
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the variables z; of the nomogram in space.

1 1 X5 Zy
Dy : = - = —— =0; Ds: =0 =0 = ——
1 T a Yy 0 X, z ; 3 z Yy z 7
(13)
Y 1 17Ty
2 x ) Y2 z ) 4 x a ) z aT2
™ Z
! ~ e
1 S o,
! Pg "‘\\
/ 4 e
’ ~
] 3“3 Ty
{ 24—1 22 ]
{ Fy " leatliddlilis L
J 0 Py ;
i | P 1 Y
! ’ 1 !
L | N W 4
- . P )
1 '
?\ ¢
X !
Al !
'\h‘sﬁ\;

F1GURE 2. The nomogram in space with straight lines

The scales of the variables z; and z, are situated on the plan XOY and those
of the variables z3 and z4 on the plan XOZ (see figure 2).

The use of the nomogram is that in the general case of a nomogram in space
with coplanar points.

Due to the particular position of the straight lines D;, i = 1,4, we can also
imagine another nomogram for the function (3), brought to the form (11)a), more
convenient for the user. This is a compound nomogram consisting of nomograms

with alignment points; each constitutive nomogram has three scales in the same plan.
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The equation Soreau (11)a) can be decomposed into four equations, i.e.

z=0 y=20
w 0 1 w 0 1 (14)
1 1& 1|=p 0 _é 1|=p
a aXi B 71 -
0 E 1 1 15 1
Y, a aly

The first two equations of (14) are the equations of the plans XOY and
X O0Z; and the others two are the equations Soreau, which represent the conditions of
alignment of three points in the respective plans. The first line of each determinant
Massau from (14) include the parametric equations of the axis OX, which is the
support of a mute scale (a scale without marks). The other lines of the determinants
give the parametric equations of the scales z;, i = 1,4 of the function (10).

Each of the last two equations (14) is nomographically represented by a plan
nomogram with alignment points with straight line scales for the variables z; and 2z

(respectively z3 and z4) and a mute scale.

V x

FIGURE 3
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The use of the compound nomogram is the following (see figure 3): A straight
line that crosses the axis OX (mute scale) in one point is plotted through two of the
points of the given mark (which correspond to the given values of variables of (10)).
The last point is also joined by a straight line with the third point, of given mark
situated on the third scale. The point where the alignment line crosses the fourth
scale gives the values of the fourth variable.

We mention the fact that each of four variables of the function (10) can be
found if the three other variables are known.

We recall the fact that the genus of one nomogram of the equation of three
variables is the number of curve scales of the nomogram consists of. We define now
the genus of the nomogram in space.

Definition 5. The genus of a nomogram in space with coplanar points is
equal with the number of curve scales the nomogram consists of.

According to this definition the genus of a nomogram in space can be zero,
one, two, three or four.

Therefore, the nomograms in space built for the function (10), both the nomo-
gram with coplanar points and the compound nomogram consisting of nomograms
with alignment points, are of genus zero; its sales have parallel supports.

The function (10) can be represented and by another nomogram of genus zero

if we subject the determinant Massau from (11)a) to the following transformations

X; X5

0 1
aXi + bXs aXl}j: bXs
0 — 0 1
0 0 — = __ 1
CZ2 — dZ1
T2 0 Tl
aTy + cTy aTs + cTy

and two those nomograms are (see figure 4).

In this case, the function (10) is represented by a nomogram of genus two
with straight line scales for the variables z» and z3, and curve scales for the variables
z1 and z4.
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FIGURE 4. The nomogram of genus zero

Other equations (11) can also be represented by similar nomograms with
coplanar points, or by a compound nomogram consisting of two plane nomograms
with alignment points (like those above). The difference only consisting in the change

of the variables of scales of the nomogram, while their supports stay fixed.
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APPLICATION OF CLOSE TO CONVEXITY CRITERION TO
FILTRATION THEORY

PETRU T. MOCANU

Dedicated to Professor D.D. Stancu on his 75" birthday

Abstract. We give new and more simple proofs for the univalence of cer-
tain functions related to an inverse boundary problem in the theory of

filtration. These proofs are based on the criterion of close to convexity.

1. Introduction and statement of the results

Let U be the unit disc of the complex plane C and let H(U) denote the class
of holomorphic functions in U.

A function f € H(U), with f(0) = 0 is called starlike if it is univalent and
f(U) is starlike (with respect to the origin). A necessary and sufficient condition for
f to be starlike is given by f’(0) # 0 and
21'(2)
f(2)

A function f € H(U) is called convex if it is univalent and f(U) is convex.

Re

>0, zeU

A necessary and sufficient condition for f to be convex is given by f/(0) # 0

and
zf"(2)
f'(z)

It is easy to show that the function f is convex if and only if the function

Re

+1>0, zeUl.

9(z) = zf'(z) is starlike (Alexander duality theorem).
The function f € H(U) is called close-to-convex if there exists a convex

function ¢ such that

Received by the editors: 14.10.2002.
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According to Alexander duality theorem the function f is close-to-convex if
there exists a starlike function g such that
2f(2)
9(2)

It is well known that all close to convex functions are univalent [4], [6].

Re >0, z€U. (1)

In a mathematical model of the theory of filtration [2], [3], [5] it occurs the
problem of finding conditions for univalence of the function F' defined in the lower

half-plane Q@ = {( € C: Im ¢ < 0} by

F(¢) =G(¢) + H(C), (2)
with )
N a1 o(t)dt
and

2T MW1-C T, NA4id/1-
H() = ——ZarctamiC = ——log—H—C,
m A T TN —i\/1 =2
where T'> 0, A\, N € [0,1] with A2 + V> =1 and
N4iny/1-¢% _
—_— ™
N —ixy/1-C

L. A. Aksentiev in [1] proved the following result by using the argument

0 < arg

principle.

Theorem 1. If the function ¢ is increasing on [—1,1], then the function F
given by (2) is univalent in the half-plane €.

We shall give a more simple proof of this theorem by using the criterion of
close to convexity.

In addition we shall prove the following result.

Theorem 2. If the function ¢ is increasing on [—1,1], then the function G
given by (8) is univalent in the domain D = C\ [-1,1].

2. Proof of Theorem 1

For z € U, let consider the transform

1+2
1—=2

¢=—i

)

which maps the unit disc U on the lower half-plane €.
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The function F' becomes

f2) = F \/1+22/ %@(t)dt

2
—i— arctan , zel.

™

V2A V1 + 22
Noo1—2z

Since
f'(2) = G'(O¢ (2) + H' () (),
where

/ 1—14C
W¢Tf?’ (-2
V1—t2 1
=1 ﬁ[t— ]wwﬁ:ﬂVT_@/}
H(C) = 21T AN ¢

T -

2
(1=2)*

. VI—t2
Fiz) = Wm/ t+i—(t—1i)z
L 2V/2TAN 1+ 2

T - R PV

G'(Q) =

p(t)dt

and
((2) = -

we deduce

dep(t)

Since
(1—2)2 4+ XN2(1+2)? = il —z + A1+ 2)][A+d+ (A —1i)z],

we deduce

A
N i — )21+ 22f(2 \[/ ARTEA=D2 A
1t+z— (t—1)z
2v2T AN 1+2
71' 1—z4+A1+2)]
For A € [0,1] and ¢ € [—1, 1], we have

A+i+(A—1
Re ATIFORAZDz 0y
t+i—(t—1)z
On the other hand we have
1 1
ReézRe7>O, zeU.
1—z+ A1+ 2) 1=z
1 z+Z
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Hence for A € [0, 1], from (4) we deduce
Re {(A+i+(A—i)z]V1+22f(2)} >0, zeU. (5)

Let the function g be defined by

z

A4+ (\—i)z]V1+ 22

9(2) =

Since
2g'(2) A—1i)z 22

9(z) 7 A+i+(A—i)z 1422

and
22 <1
‘1+2°72
(A—1)z kz 1
R =R - U
ATt iz STtk 2 FEY

with |k] = |[(A —1)/(A+14)| = 1, we deduce

R zeU

o 29 )
R 9(2)

which shows that g is starlike. Since (5) can be rewritten as the inequality (1), we

>0, zeU,

deduce that f is close to convex, hence f is univalent in U and this implies that F' is

univalent in €.

3. Proof of Theorem 2

For z € U, let consider the Jukowski transform

1 1
which maps the unit disc U onto the domain D = C\ [-1,1].

The function G, given by (3) becomes

_ . _1 _ 2 ! p(t)dt
o) = Gl()] = 21 >/1(1_2t2+z2) —

Since for t = cos 6, we have

1+ ze 1—22—2izsinf

1—ze 0 14 22—2zco86’

and we deduce

1 (" 1+ ze % zsin @
= — 0 - 2i
9(2) /77r leost) L—ze"e * "1+ 22— 2zcos0

98



APPLICATION OF CLOSE TO CONVEXITY CRITERION TO FILTRATION THEORY

1 [T 14 ze "

Since the function ¢(cosf) is increasing on [—m, 0] and decreasing on [0, 7],

—T

by applying the well known theorem of Kaplan concerning the Poisson integral [4],

we deduce that g is univalent in U and this implies that G is univalent on D.
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ITERATES OF STANCU OPERATORS, VIA CONTRACTION
PRINCIPLE

IOAN A. RUS

Dedicated to Professor D.D. Stancu on his 75" birthday

Abstract. In this note we prove that some Stancu operators are weakly

Picard operators.

Let o, € R, 0 < a < and let n € N*. We consider the Stancu operators

(7, 2D)
P Cl0,1] — C[0,1]

f = Pn,oc,ﬁ(f)

where

Puns @)= 37 (35) (1)t - 0

Let P, 5 be the m'™ iterate of the operator P, 3. We have

e’

Theorem 1. Let n € N* and 3 > 0. Then for all f € C[0,1],
P:?O,ﬂ(f)(x) - f(O) as m — 090,

n}

n+pG]"

Proof. Consider the Banach space (C [07 Zﬂ] - C) where || - [l is
n

uniformly with respect to x € [0,

the Chebyshev norm. Let

n
X, = — = .
L ={reclutglimo=} aer
We remark that
(a) X, is a closed subset of C {0, nL

}, v e R;
+ 0
(b) X, is an invariant subset of P, o g for all 3 >0, n € N*, v € R;
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n n
C |0, = X, i titi fC |0, ——|.
@ o] U X, s paron 0.2

Now we prove that
Poog: Xy — Xy
is a contraction, for all n € N*, > 0 and v € R.

Let f,g € X,. From (1) we have

|1 Pr0,5(F) (@) = Poo,p(9)()] = |Paos(f — 9)(@)] <

< ( (Z)a:ku - :c)"k> 1f = gllc =

- a=ais—glo < (1- (1-225) ) 17 gl

From this we have that

IPasah) ~ Paostolle < (1= (1 25) ) 17 = dle,

for all f,g € X,,.
We remark that 1 — (1 - > <1.
n+pf

On the other hand the constant function v € X, and is a fixed point of P, o g.
Let f e C {0, niﬂ} Then f € Xy and from the contraction principle
([5]) it follows that
Pl 5()(x) = F(0) as m — ox.

n

Theorem 2. Let n € N* and oo > 0. Then for all f € C|0,1],

Plaalf)(@) = f(1) as m — oo
‘ , @
uniformly with respect to x € [ ,1} .
n—+aoa
Proof. Let X, := {f eC { a ,1] | £(1) :'y}, v € R. Then
n+ o

(a) X, is a closed subset of C {a, 1}, for all v € R;
n—+ o
(b) X, is an invariant subset of the operator P,  q, for all v € R, @ > 0 and

n € N7,

« (0%
C 1| = X, i titi fC 1].
© [+} U ;i pastiion o [+}

Let us prove that
Pn,a,a|Xw Xy — X
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is a contraction, for all n € N*, a > 0 and v € R.
Let f,g € X,. From (1) we have

o n
||Pn,o/,oz(f) 7Pn,a,a(g)HC' S <1 - <n+a> > ||ffg||c

On the other hand the constant function 7 is a fixed point of P, .o and
v e X,.

Now the proof follows from the contraction principle.

Remark 1. For the case o = 8 = 0, see [4] and [6].

Remark 2. Let (X, d) be a complete metric space. By definition an operator
A: X — X is weakly Picard operator (briefly, WPO) if the sequences (A™(x))men
converges, for all € X, and the limit (which may depend on z) is a fixed point of
A.

For an WPO we consider the operator A defined by

A* X - X, A®(z):= lim A™(x).

m—0o0

In the terms of WPOs we can formulate the Theorem 1 and 2 as follow
Theorem 1°. Letn € N* and 3 > 0. Then the Stancu operators P, o g are

WPOs on C [0, n}
n+p0

Theorem 2’. Letn € N* and o > 0. Then the Stancu operators P, o o are
WPOs on C [a, 1
n+a«a
Remark 3. The applications of the contraction principle to study the iter-

ations of other approximation operators ([1]-[3]) will be presented elsewhere.
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APPPROXIMATION OF BIVARIATE FUNCTIONS BY MEANS
OF THE OPERATORS S;’,‘L’%“’b

DIMITRIE D. STANCU, LUCIA A. CABULEA, AND DANIELA POP

Dedicated to Professor D.D. Stancu on his 75" birthday

Abstract. By starting from the Steffensen theta operator 0%, defined at
(2.1), one constructs the bivariate operator given at (2.2), which depends
on the parameters a, 3, a,b. In the case 8 = b = 0 one obtains the Stancu
operators S,;%,, investigated anterior in the paper [10]. In the case a =
a = 0 we get a bivariate operator of Cheney-Sharma. For the remainder of
the approximation formula (3.1) we present three representations: (3.2),
(3.3) and (3.4). In the final part of the paper we give estimations of the
order of approximation of a bivariate function f by means of the operators

introduced at (2.2).

1. Introduction

It is known that the omega operators {2, considered in 1902 by Jensen [3],

include the shift operator E®, defined by (E*f)(xz) = f(x + a), the central mean

p(ez)orfe2)

An operator T" which commutes with all shift operators is called a shift

operator u, defined by

(unf)(x) =

DO =

and the integration operator.

invariant operator, that is TE* = ET.

A special case of an omega operator is represented by the theta operator 6,
introduced in 1927 in his book [11] by J.F. Steffensen. Such an operator is sometime
called delta operator and is denoted by @ in the book of F.B. Hildebrand [2],

Received by the editors: 01.09.2002.
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published in 1956. This last term was used very often by specialists in umbral
calculus: G.-C. Rota [6], S. Roman [5] and others.

A theta operator 0 is a shift-invariant operator for which fe; is a con-
stant different from zero, where e (t) = t.

Typical examples of theta operators are represented by the forward, back-
ward and central differences operators Ay, Vy,, 0y, as well as by the prederivative
operator Dy = Ay /h. We consider that Dy is the derivative operator D.

Another, very interesting example is represented by the Abel operator A, =

DE® = E®D, which in the case of p,,(z;a) = x(x — ma)™ ! leads to the formula:

Apm(z;a) = ma(z — (m —1)a)™ 2.

It is known that a 6 operator can be expressed as a power series in the
derivative operator.

One can see that: (i) for every theta operator  we have 6c = 0, where ¢ is a
constant; (ii) if p,, is a polynomial of degree m, then 0p,, is of degree m — 1. This is
the reason that the 6 operators are called reductive operators.

A sequence of polynomials (p,,) is called by I.M. Sheffer [7] and Gian-Carlo
Rota [6], as well by his collaborators, the sequence of basic polynomials if we have:
po(z) = 1, pr(0) = 0 (m > 1), 0p,, = mpm—1. These polynomials were called
by Steffensen [12] poweroids, considering that they represent an extension of the
mathematical notion of power.

It is easy to see that: (i) if (p,,) is a basic sequence of polynomials for a theta
operator, then it is a basic sequence; (ii) if (p,,) is a sequence of basic polynomials,
then it is a basic sequence for a theta operator.

By induction can be proved that every theta operator has a unique sequence
of basic polynomials associated with it.

J.F. Steffensen [12] observed that the property of the polynomial sequence
em(x) = ™ to be of binomial type, can be extended to any sequence of basic poly-
nomials associated to a theta operator.

Nlustrative examples: (i) if 6 is the derivative operator D, then p,,(z) = a™;

(ii) if @ is the prederivative operator Dj, = Ay /h, then we obtain the factorial power:

pm(z) = 2™ = z(z —h) ... (x — (m — 1)h).
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2. Use of the Steffensen theta operator 6% for construction the approxi-

mating operators Sﬁl’ff{“’b

Now let us consider the theta operator of Steffensen [12]:

1
g8 = ~[1- E~*EP, (2.1)

where a and 3 are nonnegative parameters.

In this case the basic polynomials are

. — a,3 — [m—1,—a] _ z [m,—a]
pm(x; 0, B) = poP (x) = x(z + a + mp) x+mﬁ(a:+mﬂ) .

These are polynomials of binomial type.

By using them we can give a generalized Abel-Jensen combinatorial formula
(z+y)(x+y+mp)m—tel =

_Z( ) x+a+kﬁ)[k 1,—e] (y+a+(m—k)ﬁ)[m_1_k7_"].

Selecting y = 1 — x we can write the identity

(1+a+mp)m-t-ol =

i( > (x+a+ k)bl —2)1 — 2+ a+ (m — k)g)m—t=F=al,

k=0

We introduce the polynomials p;’ ( ), defined by the relation

(1+ o+ mp)m=tmelpth (z) =

Ms

( > z+a+ k)1 )1 -2+ a+ (m—k)g)mtkoal
k=0

Let f be a real-valued bivariate function defined on the square D = [0, 1] x

[0, 1].
We define the bivariate operator S,",‘;’%a’b by means of the formula
m n o
(st ) = 3wt (5.2), (2.2
k=0 j=0
where

,—al a n . j—1,—a : n—1—j,—a
(et ") = (T )atrari)li ol (-

Now we present two special cases of this operator:
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(i) In the case 8 = b = 0 we have

Sy ) ZZPM z)qs ;(y )f(;li)

k=0 j=0
where
(a3 m —Q m— —Q m,—«
ps() = ()b i pimel,
g ;(y) = (n> Y el(1 — gl el ke,
’ J
The approximation properties of this operator have been studied in the paper
[10].
(ii) If @ = a = 0 we obtain
( mnf)(xyﬁ7 _ZzpmkxﬁQn,j(yy )f (m;n>7
k=0 j=0
where
(T:)x(x RGN 1 — 4 (m— k)BT
pm,k(x;ﬁ) = (1+m6)m_1
and

(?)y(yﬂb)j‘l( T
Qn,j(y; b) = (1_~_nb)n71 !

This operator represents an extension to two variables of the second

operator of Cheney-Sharma [1].

We can see that
(Sm,neO,O)(xa y) =1, (Sm,nel,O)(‘Tv y) =x

(Sm,neOJ)(xv y) =Y, (Sm,nel,l)(x7 y) =Y.

For es0(z,y) = 2% and eg2(z,y) = y? we have
(Sm,ne2,0)(2,y) = (Smez)(2),

(Sm,ne(),Q)(xv y) = (SneQ) (y)

and we can write [1]:

lim (Spe)(z) =22,  lim (Spex)(y) = 32,

m—00 n—o0

uniformly on the interval [0, 1].

According to the bivariate criterion of Bohman-Korovkin, we can state
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Theorem 2.1. If f € C(D) and o = a(m) — 0, mB(m) — 0 for m — oo,

while b= b(n) — 0 and nB(n) — 0 when n — oo, then we have

lim (Sm,nf)(x’y) = f(x,y),

m,n— o0

uniformly on the square D.

3. Evaluation of the remainder

Since the approximation formula

flay) = (SR ), y) + (R f) (@, y) (3.1)

has the degree of exactness (1,1), by applying an extension of the Peano theorem (see
[8]) we are able to find an integral representation of the remainder.

We now formulate

Theorem 3.1. If f € C%2%(D), then we can give the following integral

representation for the remainder of formula (3.1):
(R0 ) (w, y) = (3.2)
1 1
— [ Gl Oyt + [ H ) 0 (0, 2)de
0 0

1 1
- / / G2 (8 ) HE (2, ) fO2) (1, 2)dbdz,
0 0
where

Gol(t @) = (RSP0 (1),

HE(z,y) = (R5,) (),
with

polt) = Sle =t et () = 5ly— = +ly - 2]

and the use of the notation

o f(u,v)

(n,s) —
Fw ) ou Ovs

(r,s =0,1,2).

Proof. Formula (3.2) can be obtained if we use a representation of Peano-
Milne type, given in the paper [8], for the remainder of a bivariate linear approxima-
tion formula having a certain degree of exactness.
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r—1

r
If we assume that « € [ , } , we can give for the Peano kernel G%° (¢, )
m

the following expression

i=1 ; )
k 1—1 1
_ o3 AR -
E P () (t m) if te [ , m}
k=0

r—1 r
a k . r—1
_ E pmﬁ(w) (t— m) if te — 74
k=0
Gol(ta) =

kipg;i(x) <:lt> it e %]

m r- .
B8k . 1—1 4
_szl’k<m_t> if te m ,m:|
k=i
(r<i<
The dual Peano kernel H%®(z,y) has a similar expression.
If we take into account that on the square D we have G%P(t,x) < 0 and

H%b(z,y) < 0, we can apply the first law of the mean to the integrals and we find
that

(Rt f)(,y) =

1 1
:f@’o)(f,y)/ G?Aﬁ(t,z)dtﬁ(o’z)(wm)/ Hyy* (2, y)dz—
0

0

e | [ e o] | [ 1 H: )]

where £ and 7 are certain points from the interval (0, 1).

It is easy to see that we have

1
1
| Gattaidt = 5(Ryeao)a),
0

1
1
| H s = S (Beoz)w),
0

where R%? and R%" are the univariate remainders:
R =T—-8%° R =T-852°

Now we can state the following
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Corollary 3.1. If f € C?2(D), then the remainder of the approzimation

formula (3.1) can be represented under the following Cauchy form
(B ) (. y) = (3.3)

= S (R3Per) (@) f20(E, ) + 5 (RePes) O (o)~

LR ea) @) (R er) () 2D (€.

Because (S%Pf)(z) and (S%°f)(y) are interpolatory at both sides of the
interval [0, 1], we can conclude that (R%%es)(x) contains the factor z(z — 1), while
(R%e3)(y) has the factor y(y — 1).

Since R%Peg = 0, R¥beq = 0 and the remainder is different from zero for any
convex function f of the first order, we can apply a criterion of T. Popoviciu [4] and
we find that the remainder is of simple form. Consequently we can state the following

Theorem 3.2. If the second-order divided differences of the function f are

bounded on the square D, we can give an expression of the remainder of the formula

(5.1) in terms of divided differences
(R%’ﬁi“bf)(w,y) = (R%’ﬂez,o)(ﬂf)[xm,h$m,2,$m,3; f(ty)] =

(R e0.2) ) [Yn,1s Yn,2 Yn,ai [, 2)) =

Tm,1yTLm,2, Tm,3

—(R%Peq0)(z)(Ribeo ) (y) s f(t2)], (3.4)

Yn,1yYn,2,Yn,3
WAETe Ty 15 Tm,2, Tm 35 Yn,1s Yn,2, Yn,3 GT€ certain points in the interval [0,1].
If we apply the mean-value theorem to the divided differences, we arrive at

the Corollary 3.1.

4. Estimation of the order of approximation

We will use the bivariate modulus of continuity

w(fa61a62) = Sup{|f($7y) - f(m/7y/)| : ‘l‘ - xl| S 617 |y - y/| S 62}7

where (x,y) and (2/,y’) are points of the square D and 61,92 € R;.
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Because the constants are reproduced by our operator and pm k( x) > 0,

qzl]’ (y) >0, when z,y € [0, 1], we can write

[f@,y) = (SEe" )@, y)] <

<ZZP z)qpt(y ‘fxy f(i i)’

k=0 j=0

By using a basic property of the modulus of continuity, we can write

f(@,y) = (S5t f) (@ y)l <

LS s AN
S 1+?me7k(x) (33— m) 52 an’J <y_ n) w(f751752)'

Since our partial operators are mterpolatory in 0 and 1, we can write

S (@) (x - ’“) = (8%ea) () — a? = —(RePen)(a) = T gas
k=0

m m

By selecting

(5126\/%, (ngdﬂw (C>O,d>0),

|f(a,y) = (Sl )@, y)| <

< |:1+ %A?H’BwL tBﬁ’b} w (f;C\/x(l :L,),(i\/y(1 y)) .
c a m n

If we choose ¢ = d = 2 and take into consideration that ¢(1 —t) <

we get

1
- 0,1],
Jon (0.1
we can state

Theorem 4.1. The order of approximation of the function f € C(D) is
evaluated by the following inequality

= saﬁa”f||<[1+ <Aaﬁ+Bab>} (f;l 1),

m’ n
1 1
where A%P = o () , Bab =0 ()
m n

In the particular case « = f = a = b = 0, we obtain the inequality
3 1 1
1f = Bmnfll < iw <f§ ﬁ’ \/ﬁ> )
corresponding to the approximation by the bidimensional Bernstein polynomial B, ,,.
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ON THE ORTHOGONAL POLYNOMIALS OF PARETO AND
APPLICATIONS ON MATHEMATICAL MODELS

FABIAN TODOR

Dedicated to Professor D.D. Stancu on his 75" birthday

Abstract. The advantage of determining the differential stochastic equa-
tions with applications in Economy, through an orthogonal polynomial sys-
tem unfolds from the fact that we can approximate the solution, improve

the solution, and determine the degree of precision of the approximation.

We shall make such a determination through the orthogonal polynomials
associated with the law of Pareto.

The advantage of determining the differential stochastic equations with ap-
plications in Economy, through an orthogonal polynomial system unfolds from the
fact that we can approximate the solution, improve the solution, and determine the
degree of precision of the approximation.

We shall make such a determination through the orthogonal polynomials
associated with the law of Pareto. By these means we will step into Numerical
Analysis.

I) We have seen the stochastic equations applied in Economy such that (see

[4])

g = pdt + odX (1.1)

or the Black & Scholem variante, that is to say:

OV 1 5,0V OV B

where r and o are constants -if we have a simplyfied version of the problem - but in

a more general case of the problem, these constants are dependent on .

Received by the editors: 17.09.2002.
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This solution may be expressed by orthogonal polynomials, that is to say we

found the formula:
V(z,7) =V (z,0)exp(A,T) Zan P, ( (1.3)

where P,(x) for n = 0,1,2,3... are the orthogonal polynomial associated for the

Pareto distribution, and a,, (1) are the coefficients (see [4]).

To obtain (1.3), we have the following hypothesis: (:2((?) =canda =c—3 >0,

then the found Pareto law had the following probability density:
N= 2 A and A=1 1.4
flz— )_JEO‘T where x> X an =1. (1.4)

In order to construct the orthogonal polynomial system associated to the

weights p () = f(x—1) given by (1.4) - we must use the following formula, (see [3])

My M, ... M,
M, My ... M,
1 T z"

where M,, = f x"ﬁdm and b,, = the normalization constant.

M, i; the moment of order n of the density p(z) = f(xr —1) = &5 for
r>lasA=1

The M,, moments for n = 0,1, 2, 3...are estimated by improper integrals as

the superior limit is oo, which exist if a > n.
o0
Clearly, by the following transformation: v = % in this integral [ ax" "ty
1
we have the results

Joutemldy = 2~ if @ > noasif a <1 orif & = 1 the integral does
0
not exist. The results are: M, = -2~ for a > n that is to say: My = 1,
My = 25, My = 24, ..., M, = 2%,

The orthogonal polynomials associated with the Pareto law, that is to say

P, (x) given by (1.5) are expressed by the following relation:

Pozbo, Pl—bl |:£C—a1:|
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P, = by R CESIEI ) + m(afl)(a72)(a,3)+

a?(2a+1) 7t
+(a—1)(a—3)(a2—2)2
Py () = by [7 ] (1.6)

for a > n.

(1)

1) In applications we may conclude early that formula (1.3) which renders
the value V of the option will be trucated by the orthogonal polynomials of Pareto,
having the condition o > n for the existence of these polynomials.

In order to know in which manner the above mentioned condition is implied

in the applications, we must revise the definition of « = ¢ — 3 = ;2(8) -3>0.

For the r(t) interest rate of the active S, which is the stochastic processes in

the capital market, we may say there are few mentioned models(see [1]).

Also, for the o2 (t) variance, or the o (t) volatility of active S, there are
several mathematical models, inclusively by Hermite and Laguerre orthogonal poly-
nomials(see [2]).

Therefore in a given time period ¢ € (a, b), the strategy over the r(t) rate and
its relation with o2 (t), will be optimized. By these means, the value of o will be
determined knowingly, through knowledge of mathematical models, and then we will

see how the (1,3) formula will be truncated.

2) Another application of Pareto’s law will appear from the following propo-
sition:

a) "If x obeys to the Pareto’s law with « and A, then the variable y =
log(1+ §) will obey to the exponential law of éme(m,

Therefrom the following statement

b)”If x(1y,T(2), .- T(n) i5 a sample of ordinated values of a distribution x of

Pareto, then the variables x (i) will be expressed such as:

k
ray = A [ +0) -1

j=1
for k =1,2..n; where v; are independent Pareto variables”.
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Certainly, the b) statement results from a) especially due to variable y obeying
to an exponential law and we apply the exponential law theorems concerning the
ordinated variables extracted from an n volume sample.

In conclusion, the independent Pareto variables will be used in order statistics.
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COMBINED SHEPARD-LEAST SQUARE OPERATORS —
COMPUTING THEM USING SPATIAL DATA STRUCTURES

MARIA GABRIELA TRiMBITAS

Dedicated to Professor D.D. Stancu on his 75" birthday

Abstract. The low degree of exactness and large number of computation
required are well-known drawbacks of classical Shepard operator. They
can be overcome using combined Shepard operators and local interpolation
schemes. Spatial data structures could support efficient evaluation of such

operators.

1. Introduction

Unfortunately, the classical Shepard operator (see [1]) defined by

(Snuf) (@) = D wi() f () (1)
k=0

|z — g~
wp(z) = 57— 2)
> | —ay|H
k=0
where |.| denotes the Euclidean norm in R*; and X = {zg,21,...,2,} C R® is a set

of n + 1 pairwise distinct points, has a low degree of exactness (i.e. 0) and requires a
large amount of computation. The solution is to replace the values of f by a suitable
polynomial interpolation operator (Lyf)(z;xy), which can depend on k (see [2, 3],
and the references therein) and the weight functions given by (2) with the so called

Franke-Little weights:
(R — |z — =)}
RH|x — zp |*
(R — |z — =)
Ri|x — z;|»

wg(T) = —
=0

Received by the editors: 08.10.2002.
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(see [7, 6, 5]). In (3), R is a given positive real constant, and the + subscript denotes
the positive part.

The local variant of (1) is
(SE L F) (@) =" o) (Le ) (5 28), (4)

called the combined local Shepard-type operator.

In order to compute the various local Shepard-type interpolants we are inter-
ested to report efficiently the point located into the ball B(z, R). The naive approach
(computing dj, = |z — x| and checking dj, < R) needs a time O(n) for each point
z. Computational geometry techniques and data structures allow us to perform this
task in polylogarithmic time [4].

In this paper L,,f will be a least square approximation polynomial.

2. Combined Shepard least-square local operators

We shall consider two kind of discrete least-square approximation polynomi-

als:

1. polynomials which reproduces the values of f in =y, k =0, n;

2. polynomials which reproduces the values of f and of the first order partial

derivatives of f in zy, k = 0, n.

Only the bivariate operators will be considered.

Proposition 1. The following relation hold
(S uf) (x,95) = (Lif) (x5, 95)

and

0 , = 0
e (Sk . f) (@) ;) = 5 (Lif) (@5.y;)

0 = 0
3y (Sk.f) (@jy5) = ay (Lif) (xj,95)
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Proof. It can be shown that, for all k£ and j, the weights (3) satisfy

1 ifk=yjy,
wy (Tj,y5) = Ok = ) (5)
0 otherwise.
k=0
and
0 _ 0 _
57 0k (@5,95) = ay (zj,y;) = 0. (7)

(5) implies
(SELF) (@jou5) =D (w5,55) (L f) (@5,9) = (Li f) (5, 95);
k=0

From (5) and (7), one obtains

a n
E (SL#f zj,Y;i) Z [—wk (zj,y;) (L f) (x5, 95)

k=0
0 0
+ wy, (z,y5) o (L f) (z5,95)| = y (Lif) (x5, 95),

and analogously in y. O
Thus (S’ﬁ’uf) maintains the local shape properties of Ly f.
Let f be f(z,yr), for e g5 f(zx,yx) and fyx be 2 f(wy,yx) respectively.

For the first case Ly, f is defined by

(Lef) (2,y) = ciy (2 — 2)” + o (@ — 20) (y = yi) + cha(y — yi)’ @

+ @ — o) + s (y — yr) + fi-

The coefficients are the solution of the following discrete least-square problem

> wil@r, yr) [or (@ — 21)” + cra (@ — 1) (Y — yi) + crs(y — yr)’
iZh 9)
+epa(r — zk) + crs(y — ya) + fr — fi]” — min,

where
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R, is a radius of influence about node (z;,y;) (in general not equal to R) and d; is
the Euclidean distance between (z,y) and (x;,y;). The problem (9) leads us to a
5 x 5 system of linear equations.

Another possible choice for Ly, is

(Lif) (@, y) := cia (& — k) + oy — yr) + fi; (10)

analogously, in this case, we obtain a 2 x 2 system of linear equation. It is easy to

show, using Proposition 1, that the combined local Shepard operators obtained in

this way reproduce the values of f in z, k = 0, n.

For the second case we choose

(Lif) (2,y) := ¢y (2 — 21)* + o — 22) (¥ — Y) + Gz (Y — va)?
(11)

+ fo k(T —zk) + fyr(y — yr) + fi-

The corresponding least square problem is

sz’(l’kayk) [er1(z — 2k)” + era(z — 2) (Y — Y&) + ks (Y — yi)”
0 (12)
+ k(@ = 2k) + fyuly — ye) + fr — £ — min,
and it leads us to a 3 x 3 system of linear equations.

Another possibility is given by
(Lif) (@,y) = cra(@ — 24)° + oz — 24)* (¥ — i)

+ crg(z —mp) (Y —yr)” + cha(y —yn)®
(13)
+ ¢y (& = 21)* + o (@ — ) (y — yn)
+ cha(y = uk)* + faon(® — 2) + fyn(y — yr) + fi-
The choice (8) appears in [6, 7, 5, 9, 8, 10, 11], (10) in [11], but (11) and (13) are
original.
The efficient computation of the operator given by (4) requires the efficient
solving of a circular range searching problem.
Let P := {p1,...,pn} be a set of point from R® and R a region from the
same space. A s-dimensional range searching problem asks for the points from P
lying inside the query region R. If the region is a hyperparallelepiped, i.e. R =
[z1,2]] X -+ X [zs,2.], then we have an orthogonal range-searching problem. If R
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is a ball from R®, we have a circular range searching problem. Our approach is
to solve a simpler orthogonal range searching problem instead of the circular range
searching (since this approach eliminates a large number of points) and then to check

the reported points.

3. Implementation

One of the most used data structure for orthogonal range query is the range
tree[4]. A solution based on range tree is given in [12].

Another solution is inspired from a paper of Renka[8]. The smallest bounding
k

min?

K ax] is partitioned into an uniform grid of

box containing the nodes [];_, [a: zk
cells, having VR cells on each dimension. Each cell points to the list of point indices

contained in that cell. Such an example for the 2D case is given in Figure 1.

x2

x5

x3 6  x1

RS

F1GURE 1. A 2D grid of cell and its representation

The algorithm 1 describes the creation of the data structure. If the second
argument N R is not provided we can initialize it with a default value; Renka suggests
in [9]

NR = [(N/3)"/ 4™

The orthogonal range searching is easy to implement using this data structure
(the algorithm 2): first the cell which must be scanned are determined (i.e. the cell
which intersects the searching domain), and then the list of points corresponding to
that cell are concatenated. The points from the outer cells which lie outside the
searching range must be eliminated.
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Algorithm 1 Creating the cell grid

Input: the set of N points P, the number of cells, NR (optional);
Output: a grid of cell LCELL, each containing the list of points in the cell
set all cells to nil;

{compute the cell sizes}

dey = min(NR, |z}, —xL. | +1);

max

dCS = mll'l(NR, fonax - xfninJ + 1))
for K .= N downto 1 do
{find the cell}

i1 = min(NR, [z¥ —zl. | +1);
is :=min(NR, 2% — 22, | +1);
add K to the list LCELL(iy, ... ,is);

end for

Now we are able to compute the local Shepard interpolant on a set of points

e build the spatial data structure;
e for each point x in X
— perform the orthogonal range searching into the hypercube centered
in z and with the radius R

— apply formulas (3) and (4).

This approach has a drawback: the accuracy tends to decrease into the areas
where the interpolation nodes are sparse. We can avoid this situation, allowing R,
and R to vary with k: the radii are choosen such that the ball B(z;, R,) contains at
least N, nodes and the ball B(z, R) contains at least N,, nodes. Thus, instead of an
orthogonal range searching we perform a N,-th (or a N,-th) nearest neighbor search
of z; and z, respectively. This can be done scanning the grid in a circular fashion
starting with the cell containing z. In order to facilitate the scanning we can associate
a Boolean indicator to each cell, which is true when the cell was already scanned.
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Algorithm 2 The orthogonal range searching
PTLIST := nil,

{determine the outer cells, i. e. the scan limits}
iming := max(1, [(liminf; —zl . )/dei | + 1);

imazy := min(NR, | (limsupy — x\;.)/dc1] + 1)

iming := max(1, |(liminfs — x5 ;) /des]| + 1);
imazs := min(NR, | (limsups — 3 ;,)/dcs ] + 1)

for i1 := iminy to imaz; do

for iy := imin, to imax, do
JL:= LCELL(iy,...,is);
if the cell (i1,...,%s) is peripheral then
remove the points which lay cell outside the searching range from JL;
end if
concatenate PTLIST and JL

end for

end for

The algorithms described above are implemented in MATLAB!. The cell grid
is represented as a structure which contains information about the grid: dimension,
number of cell over each coordinates, the size of a cell, minimum and maximum in
each coordinate and a cell array, where each cell contains an array with point indices;
this representation allows easy location of cell and concatenation of point lists.

The linear system which gives the solution of least square system can be ill-
conditioned. For this reason the system is solved using a QR factorization. If the
results are not satisfactory (system too ill-conditioned) more points are added, and

the solving process is redone.

1MATLAB@is a trademark of the MathWorks, Inc. Natick, MA 01760-2098
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4. Examples and graphs

One of the most frequent function used as example to illustrate Shepard

interpolation is the Franke’s function [6, 8], f1 : [0,1] x [0,1] — R, given by:

fi(z,y) =0.75exp (— ((9z — 2)* + (9y — 2)*) /4)
+0.75exp (—(9z + 1)*/49 — (9y + 1)/10)
+0.5exp (— ((9z = 7)* + (9y — 3)?) /4)

—0.2exp (—(97 — 4)> — (9y — 7)) .

Its graph appears in Figure 2(a). Figures 2(b) and 2(c) give the graphs of local
Shepard operator combined with a least square polynomial having the degree 1 (given
by formula (10)) and 2 (formula (8)), respectively. The graph of the local Shepard
interpolant combined with a 2nd degree least square polynomial, considering first
order partial derivatives (formula (11)) is given in Figure 2(d). All the interpolants
were obtained taking p = 2, N, = 17 and N,, = 23. The best result is obtained
for the 2nd degree least square polynomial, without derivatives. This phenomenon

deserves further investigations.
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BOOK REVIEWS

William Arveson, A Short Course on Spectral Theory, Graduate Texts in Mathe-
matics, Vol. 209, Springer, New York, Berlin, Heidelberg, 2002, x+135 pp., ISBN
0-387-95300-0.

The fundamental problem of operator theory is the calculation of spectra of
operators on infinite dimensional spaces, especially on Hilbert spaces. The theory has
deep applications to the study of partial differential and integral operators, to the
mathematical foundation of quantum mechanics, noncommutative K-theory and the
classification of simple C*-algebras.

The aim of the present book, based on a fifteen-week course taught for several
times by the author at the University of Berkeley, is to make the reader acquainted
with the basic results in spectral theory, needed for the study of more advanced topics
listed above. The prerequisites are elementary functional analysis and measure theory.

In the first chapter, Spectral theory and Banach algebras, the theory is de-
veloped in the natural framework of Banach algebras and includes spectral radius,
regular representation, the spectral permanence theorem, and an introduction to an-
alytic functional calculus. The abstract notions are illustrated on concrete examples
of operators.

Ch. 2, Operators on Hilbert space, is concerned with spectral theory for op-
erators on Hilbert space and their C*-algebras, normal operators, compact operators,
spectral measures. For the sake of clarity the treatment is restricted to separable
Hilbert spaces. A good companion in reading this part could be another book by the
same author: An invitation to C*-algebras, Springer 1998.

Ch. 3, Asymptotics: Compact perturbations and Fredholm theory, contains
the Calkin algebra, Riesz theory for compact operators, Fredholm operators and Fred-
holm index.

In the last chapter, Ch. 4, Methods and applications, a variety of operator
theoretic methods are applied to determine the spectra of Toeplitz operators, the
results being definitive only for Toeplitz operators with continuous symbol. An ele-
mentary theory of Hardy spaces H? is also developed. The book ends with the study
of states on C*-algebras and a proof of Gelfand-Naimark representation theorem.

The book is a clear, short and thorough introduction to spectral theory,
accessible to first or second year graduate students. As the author points out in the
Preface: 7this material is the essential beginning for any serious student in modern
analysis”.

S. Cobzag

Raymond A. Ryan, Introduction to Tensor Products of Banach Spaces, Springer
Monographs in Mathematics, Springer, New York Berlin Heidelberg, 2002, xiv+4225
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pp., ISBN: 1-85233-437-1.

Quoting from the Preface: "tensor products are a natural and productive
way to understand many of the themes of modern Banach space theory and ”ten-
sorial thinking” yields insight into many mysterious phenomena”. The first book
on normed tensor products was written by R. Schatten in 1950, followed by the
fundamental works of A. Grothendieck — Produits tensoriels topologiques et espaces
nucléaires, Memoirs AMS 1955, and the famous ”"Resumé” published at Sao Paolo in
1953 (reprinted 1996).

The aim of the present book is to give a thorough and relatively short in-
troduction to tensor products of Banach spaces, starting from the algebraic theory,
presented in the first chapter, and bringing the reader to the frontier of current re-
search in the area.

The two basic constructions of tensor norms on the tensor product of two
Banach spaces are presented in Chapters 2, The projective tensor product, and 3.
The inductive tensor product. The relevance of the approximation property for the
theory of tensor products (e.g. the study of reflexivity), and the efficiency of the tools
furnished by tensor products in the study of approximation property are presented in
Chapter 4, The approzimation property.

Chapter 5, The Radon-Nikodym property, is concerned with vector measures
and vector integration (Pettis and Bochner) and with representability of various types
of operators on C(K) and L;(u) spaces.

The study of cross-norms is done in Chapters 6, The Chevet-Saphard tensor
products, and 7, Tensor norms, and includes Grothendieck’s inequality, p-summing
and p-integral operators.

The last chapter of the book, Chapter 8, Operator ideals, contains a brief
introduction to this related topic. For a full treatment of the interrelations between
tensor products and operator ideals, the reader is referred to the recent book of A.
Defant and K. Floret, Tensor norms and operator ideals, North Holland 1993.

The book has also three appendices: A. Suggestions for further reading, B.
Summability in Banach spaces, and C. Spaces of measures.

The book is an excellent introduction to the theory of tensor products and it
is highly recommended to graduate students in analysis and to researchers in other
areas needing results from this field.

S. Cobzag
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