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Amelia-Anca Holhoş, Applications of Differential Subordination . . . . . . . . . . . . . 61
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Gouvernée par un Processus de Type Arima Fractionnaire . . . . . . . . . . . . . 107

Book Reviews . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117



STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume XLVIII, Number 2, June 2003

SOLUTIONS TO THE DIOPHANTINE EQUATION
(x + y + z + t)2 = xyzt

TITU ANDREESCU

Abstract. The main purpose of this paper is to study the Diophantine
equation (2). We will indicate nine different infinite families of positive
integral solutions to this equation.

1. Introduction

Generally, integral solutions to equations in three or more variables are given
in various parametric forms (see [2] or [6]). In the paper [5] it is proved that the
Diophantine equation x+ y + z = xyz has solutions in the units of the quadratic field
Q(
√

d) if and only if d = −1, 2 or 5 and in these cases all solutions are also given. The
problem of finding all integral solutions to this equation remains open. In our paper
[1] we constructed different families of infinite integral solutions to the equation

(x + y + z)2 = xyz. (1)

We have indicated a general method of generating such families of solutions by
using the theory of Pell’s equations. The problem of finding all solutions to equation
(1) is still open.

In this paper we use the theory of general Pell’s equations to generate nine
infinite families of positive integral solutions to the equation

(x + y + z + t)2 = xyzt. (2)

2. The General Pell’s Equation Ax2 −By2 = C

Recall that the equation

u2 −Dv2 = 1, (3)

where D is a positive integer that is not a perfect square is called Pell’s equation.
Denoting by (u0, v0) = (1, 0) its trivial solution, the main result concerning

equation (3) is the following (see [1], pp. 107-110 or [7]): There are infinitely many
solutions in positive integers to (3) and all solutions to equation (3) are given by
(un, vn)n≥0, where {

un+1 = u1un + Dv1vn

vn+1 = v1un + u1vn
(4)
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Here (u1, v1) represents the fundamental solution to (3), that is the minimal
solution different from (u0, v0).

It is not difficult to see that (4) is equivalent to

un + vn

√
D = (u1 + v1

√
D)n, n ≥ 0. (5)

Also, relations (5) could be written in the following useful matrix form:(
un+1

vn+1

)
=

(
u1 Dv1

v1 u1

) (
un

vn

)
, n ≥ 0

from where (
un

vn

)
=

(
u1 Dv1

v1 u1

)n (
1
0

)
, n ≥ 0 (6)

From (5) or (6) it follows immediately that
un =

1
2
[(u1 + v1

√
D)n + (u1 − v1

√
D)n]

vn =
1

2
√

D
[(u1 + v1

√
D)n − (u1 − v1

√
D)n], n ≥ 0

(7)

The main method of determining the fundamental solution (u1, v1) involves
continued fractions. Sometimes this solution is very large, for example if D = 991,
then {

u1 = 379516400906811930638014896080
v1 = 12055735790331359447442538767

In what follows we consider the general Pell’s equation

Ax2 −By2 = C, (8)

where A,B,C are positive integers with gcd(A,B) = 1 and A and B are not perfect
squares.

The solvability and unsolvability of equation (8) is discussed in our paper [3].
Concerning this equation we need the following result (see also [4]):

Theorem. If equation (8) is solvable in positive integers, then it has infinitely
many positive integral solutions.

Proof. We will use the Pell’s resolvent associated to equation (8):

u2 −ABv2 = 1. (9)

From the given conditions it follows that AB is not a perfect square so the
Pell’s equation (9) has infinitely many positive integral solutions. All such solutions
are given by (4) or (7), where D = AB.

If (x0, y0) is a solution to (8) and (u, v) is a solution to (9), then we can
construct a new solution to (8) by using the so-called multiplication principle:{

x = x0u + By0v
y = y0u + Ax0v

(10)

Indeed,

Ax2 −By2 = A(x0u + By0v)2 −B(y0u + Ax0v)2 =

= (Ax2
0 −By2

0)(u2 −ABv2) = C · 1 = C.
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SOLUTIONS TO THE DIOPHANTINE EQUATION (x + y + z + t)2 = xyzt

Taking into account that the Pell’s resolvent has infinitely many solutions,
the conclusion follows. �

In the case when equation (8) is solvable, all of its solutions can be expressed
in terms of the solutions to the associated general Pell’s equation

u2 −ABv2 = AC. (11)

For more details we refer to [3, Theorem 1] or [8].

3. Infinite Families of Solutions to Equation (2)

The transformations

x =
u + v

2
+ a, y =

u− v

2
+ a, z = b, t = c (12)

where a, b, c are positive integers, bring the equation (2) to the form

(u + 2a + b + c)2 =
bc

4
(u2 − v2) + abcu + a2bc.

Setting the conditions 2(2a+ b+ c) = abc and bc > 4, we obtain the following
general Pell’s equation

(bc− 4)u2 − bcv2 = 4[(2a + b + c)2 − a2bc]. (13)

There are nine triples (a, b, c) up to permutations satisfying the above condi-
tions: (1,6,4), (1,10,3), (2,2,6), (3,4,2), (3,14,1), (5,2,3), (4,1,9), (7,1,6), (12,1,5).

The following table contains the general Pell’s equations (13) corresponding to
the above triples (a, b, c), their Pell’s resolvent, both equations with their fundamental
solutions.

(a, b, c) General Pell’s equation (13) Pell’s resolvent and its
and its fundamental solution fundamental solution

(1,6,4) 5u2 − 6v2 = 120, (12, 10) r2 − 30s2 = 1, (11, 2)
(1,10,3) 13u2 − 15v2 = 390, (15, 13) r2 − 195s2 = 1, (14, 1)
(2,2,6) 2u2 − 3v2 = 96, (12, 8) r2 − 6s2 = 1, (5, 2)
(3,4,2) u2 − 2v2 = 72, (12, 6) r2 − 2s2 = 1, (3, 2)
(3,14,1) 5u2 − 7v2 = 630, (21, 15) r2 − 35s2 = 1, (6, 1)
(4,1,9) 5u2 − 9v2 = 720, (42, 30) r2 − 45s2 = 1, (161, 24)
(5,2,3) u2 − 3v2 = 150, (15, 5) r2 − 3s2 = 1, (2, 1)
(7,1,6) u2 − 3v2 = 294, (21, 7) r2 − 3s2 = 1, (2, 1)
(12,1,5) u2 − 5v2 = 720, (30, 6) r2 − 5s2 = 1, (9, 4)

By using the formula (10) we obtain the following sequences of solutions to
equations (13):

u(1)
m = 12r(1)

m + 60s(1)
m , v(1)

m = 10r(1)
m + 60s(1)

m ,

where r
(1)
m + s

(1)
m

√
30 = (11 + 2

√
30)m, m ≥ 1;

u(2)
m = 15r(2)

m + 195s(2)
m , v(2)

m = 13r(2)
m + 195s(2)

m ,

where r
(2)
m + s

(2)
m

√
195 = (14 +

√
195)m, m ≥ 1;

u(3)
m = 12r(3)

m + 24s(3)
m , v(3)

m = 8r(3)
m + 24s(3)

m ,
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where r
(3)
m + s

(3)
m

√
6 = (5 + 2

√
6)m, m ≥ 1;

u(4)
m = 12r(4)

m + 12s(4)
m , v(4)

m = 6r(4)
m + 12s(4)

m ,

where r
(4)
m + s

(4)
m

√
2 = (3 + 2

√
2)m, m ≥ 1;

u(5)
m = 21r(5)

m + 105s(5)
m , v(5)

m = 15r(5)
m + 105s(5)

m ,

where r
(5)
m + s

(5)
m

√
35 = (6 +

√
35)m, m ≥ 1;

u(6)
m = 42r(6)

m + 270s(6)
m , v(6)

m = 30r(6)
m + 210s(6)

m ,

where r
(6)
m + s

(6)
m

√
45 = (161 + 24

√
45)m, m ≥ 1;

u(7)
m = 15r(7)

m + 15s(7)
m , v(7)

m = 5r(7)
m + 15s(7)

m ,

where r
(7)
m + s

(7)
m

√
3 = (2 +

√
3)m, m ≥ 1;

u(8)
m = 21r(8)

m + 21s(8)
m , v(8)

m = 7r(8)
m + 21s(8)

m ,

where r
(8)
m + s

(8)
m

√
3 = (2 +

√
3)m, m ≥ 1;

u(9)
m = 30r(9)

m + 30s(9)
m , v(9)

m = 6r(9)
m + 30s(9)

m ,

where r
(9)
m + s

(9)
m

√
5 = (9 + 4

√
5)m, m ≥ 1.

Formulas (12) yield the following nine families of positive integers solutions
to the equation (2):

x(1)
m = 11r(1)

m + 60s(1)
m + 1, y(1)

m = r(1)
m + 1, z(1)

m = 6, t(1)m = 4

x(2)
m = 14r(2)

m + 195s(2)
m + 1, y(2)

m = r(2)
m + 1, z(2)

m = 10, t(2)m = 3

x(3)
m = 10r(3)

m + 24s(3)
m + 2, y(3)

m = 2r(3)
m + 2, z(3)

m = 2, t(3)m = 6

x(4)
m = 12r(4)

m + 12s(4)
m + 3, y(4)

m = 3r(4)
m + 3, z(4)

m = 4, t(4)m = 2

x(5)
m = 18r(5)

m + 105s(5)
m + 3, y(5)

m = r(5)
m + 3, z(5)

m = 14, t(5)m = 1

x(6)
m = 36r(6)

m + 240s(6)
m + 4, y(6)

m = 6r(6)
m + 30s(6)

m + 4, z(6)
m = 1, t(6)m = 9

x(7)
m = 10r(7)

m + 15s(7)
m + 5, y(7)

m = 5r(7)
m + 5, z(7)

m = 2, t(7)m = 3

x(8)
m = 14r(8)

m + 21s(8)
m + 7, y(8)

m = 7r(8)
m + 7, z(8)

m = 1, t(8)m = 6

x(9)
m = 18r(9)

m + 30s(9)
m + 12, y(9)

m = 12r(9)
m + 12, z(9)

m = 1, t(9)m = 5.

Remarks. 1) In [9] only solution (x(7)
m , y

(7)
m , z

(7)
m , t

(7)
m ) is found.

2) Note the atypical form of solution (x(6)
m , y

(6)
m , z

(6)
m , t

(6)
m ).

Acknowledgement. The author wishes to express his gratitude to Prof.
Dr. Dorin Andrica for helpful discussions related to this topic.
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ASYMPTOTICAL VARIANTS OF SOME FIXED POINT THEOREMS
IN ORDERED SETS

T. BARANYAI

Abstract. In this paper we will present some fixed point theorems in
ordered sets with condition for operator and its iterates too.

1. Introduction

Let (X,≤) be an ordered set (X 6= ∅) and f : X → X an operator. We denote
by

Ff = {x ∈ X : f (x) = x}
the fixed point set of f .

In this note we need the following results [1-7].
Theorem of Tarski. Let (X,≤) be a complete lattice, f : X → X an

increasing operator. Then Ff 6= ∅ and (Ff ,≤) is a complete lattice.
Theorem of Birkhoff-Bourbaki. Let (X,≤) be right inductive ordered set

and let f : X → X be an expansive operator. Then Ff 6= ∅.
Lemma. Let X be nonempty set and f, g : X → X two commuting operators.

Then:

(i) Fg = ∅ or Fg ∈ I (f);
(ii) Ff = ∅ or Ff ∈ I (g);

2. The main results

Theorem 1. Let (X,≤) be a an ordered set and f : X → X an increasing operator.
We suppose that there exist k ∈ N∗ and Y ⊂ X such that:

(a) fk (X) ⊂ Y ;
(b) (Y,≤) is a complete lattice.

Then Ff 6= ∅.
Proof. From (a) and (b) we have that the restriction of iterate fk has the following
properties fk |Y : Y → Y and fk is an increasing operator.

f is an increasing operator, i.e. for any x, y ∈ X we have

x ≤ y =⇒ f (x) ≤ f (y)

Received by the editors: 17.09.2002.
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f (x) ≤ f (y) =⇒ f (f (x)) ≤ f (f (y))

...........................................................

fk−1 (x) ≤ fk−1 (y) =⇒ fk (x) ≤ fk (y) .

Since (Y,≤) is a complete lattice, from Theorem of Tarski it follows that Ffk 6= ∅
and

(
Ffk ,≤

)
is a complete lattice. Because f and fk are commuting operators, from

Lemma we have that f
(
Ffk

)
⊂ Ffk .

We apply the Tarski Theorem to f : Ffk → Ffk and we conclude that there
exists at least a fixed point

(
∈ Ffk

)
which means that Ff 6= ∅.�

Theorem 2. Let (X,≤) be a an ordered set and f : X → X be an expansive operator.
We suppose that there exist k ∈ N∗ and Y ⊂ X such that:

(a) fk (X) ⊂ Y ;
(b) (Y,≤) is a right inductive ordered set.

Then Ff 6= ∅.
Proof. From (a) we have fk |Y : Y → Y . Since f is an expansive operator, i.e.

x ≤ f (x) , ∀x ∈ X,

we obtain
x ≤ f (x) ≤ f (f (x)) = f2 (x) ≤ ... ≤ fk−1 (x) ≤ fk (x) ,

which means that fk is an expansive operator. From Theorem of Birkhoff-Bourbaki
we have that Ffk 6= ∅. Let x∗ ∈ Ffk , we want to prove that x∗ ∈ Ff .

Suppose that x∗ is not a fixed point of f : f (x∗) 6= x∗. We have two cases:
x∗ < f (x∗) and x∗ > f (x∗).

Case I: x∗ < f (x∗)
Since f is an expansive operator we deduce

x∗ < f (x∗) ≤ f2 (x∗) ≤ ... ≤ fk−1 (x∗) ≤ fk (x∗) = x∗,

which is a contradiction.
Case II: x∗ > f (x∗)

x∗ > f (x∗) ≥ f2 (x∗) ≥ ... ≥ fk−1 (x∗) ≥ fk (x∗) = x∗,

which is also a contradiction.
Thus we have that x∗ ∈ Ff .�
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1971.
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume XLVIII, Number 2, June 2003

A MATHEMATICAL MODEL FOR THE STUDY OF GLYCAEMIC
HOMEOSTASY

ALEXANDRU BICA

Abstract. A mathematical model for the blood-glucose homeostasis is
built in this paper, using the previous models. The results of this paper
concern the stability of the equilibrium solutions of a nonlinear differential
system which govern the model.

1. Introduction

Here, we propose the study of some properties of the mechanisms which
are involved in the blood glucose concentration homeostasis. We have in view the
models which have been elaborated up to the present and we build a model for the
glycaemic homeostasy. In 1965 Ackerman, Gatewood, Rosevear and Molnar [1] have
been proposed a model described by a differential linear system in plane where the
parameters are the glucose deviation from his constant value (harvested in blood
in the morning after fasts overnight) and the similar deviation of a well-balanced
average concentration of hormones (insulin, glucagon, growth hormone, epinephrine,
cortisone). The destination of the model is to understand the treatment of diabetics
in assumption of the administer of some hypoglicaemiant medicine and of glucose.
The nonhomogeneous differential system which govern this model is the following:{

g
′
= −m1g −m2h + J

h
′
= −m3h + m4g + K

where, m1,m2,m3,m4 are positive constant, J(t) is the rate of infusion from the
intestines (or intravenously) of the glucose, K(t) is the intravenous rate of infusion
of the insulin, g = G − G0, h = H − H0. Here, G = G(t) is the blood glucose
concentration, H = H(t) is the glucose-regulation hormones concentration in the
blood and G0,H0 are the constant levels of this concentrations. We can see in the
above system that the action of the hormonal concentration, h, is prevalent of the
insulin type. In [1], some assumptions are used about the J and K functions and
about the constants mi, i = 1, 4 (for instance, (m1 +m3)2 < 4m1m3 +4m2m4) which
permit to solve the system and to obtain the solution in a damping oscillatory form
round about the G0 and H0 levels.

Afterwards, was been elaborated some models which contain the distinct ac-
tion of the hyperglicaemiant hormones. A summary presentation of these models can
be found in [3]. For instance the Automonov model contain three status parameters

Received by the editors: 15.02.2002.
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(insulin and epinephrine concentrations and the glucose concentration in three com-
partments) and lead to a system with 6 linear differential equations. In [3], starting to
the former models, the author build a model (together with the Rhode Island Hospital
research workers) considering the blood glucose concentration and the plasmatic lev-
els of hormones (insulin, glucagon, growth hormone, cortisone, thyroxin, epinephrine)
and of the free fatty acids and aminoacids. From these result a nonlinear neutral
system with 5 differential equations, which also describe various processes included
negative feedbacks. Some arguments for nonlinearity are exposed in [3] (we use these
arguments and other arguments in this article)

In [4] some algorithms are proposed for the mathematical modelling in gly-
caemic evolution of diabetics, with applications in treatment schemes. Here, are
considered the advanced diabetic cases which present the phenomena of glycosuria,
proposing a model with two status parameters : glycaemia and the sugar concentra-
tion in urine.

In the construction of the model, in this article, we consider the hypotheses
from [1] and [3] and the assertions from the medical monography [2]. Here, we consider
the effect of the interaction between the glucose and the hormones concerning on the
speed of glycaemic changes and we obtain a nonlinear differential system. Because
the glycaemic homeostasy contain negative feedback processes (in accord with [1],
[2], [3]), in each equation there is such terms. It is known that the mechanisms of
glycaemic homeostasy are so delicacy, and then the effect of the interaction between
the glucose and the hormones is attenuated by the great glycaemic values. This effect
will be appear in the first equation through the nonlinear term,

axy

x + G0
.

2. The construction of the model

The status parameters are the plasmatic concentrations of the glucose, G(t),
of the insulin, I(t), and of the average of hyperglycaemiant hormones, H(t) (glucagon,
cortisone, tyroxin, ACTH, growth hormone, epinephrine). Using the reasonings from
[1] and [3] we consider that G, I,H are derivable with continuous derivative functions
on an interval of [0,∞). Let G0, I0,H0 be the values of these functions at the initial
moment, t0 ∈ [0,∞) , which can be known by blood harvesting in the morning
after fasts overnight. Our aim is to obtain results using the classification of the
singular points in the plane and therefore we consider two dependent variables, x(t) =
G(t) − G0, y(t) = H(t) −H0 − (I(t) − I0). Then, the new status parameters are the
glycaemic deviation from his equilibrium value and the difference of such deviations
for insulin and hyperglycaemiant hormones.

The following hypotheses are used in the construction of the model :
a) Each status variable have influence upon the proper speed of changes into

a negative feedback process.
b) An increase of hyperglycaemiant hormones secretion provoke the increase

of glycaemia, and the release of insulin secretion lead to a diminution of glycaemia.
A glycaemic increase provoke the increase of insulin secretion and the decrease of
hyperglycaemiant hormones secretion.

c) The interaction between the glucose and hormones determine a moderate
modification of glycaemia. This hypothesis introduce in the first equation of the
system a nonlinear term. The intestinal absorption of the alimentary glucose under
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the action of the intestinal glucagon (a hyperglycaemiant hormone) can be described
by this nonlinear term too. This is the reason because the model can be described by
an autonomous differential system:

(1)

{
x′ = a

xy

x + G0
− bx + my

y′ = −cx− dy
, a, b, c, d,m > 0

with initial conditions:
(2) : x(0) = 0, y(0) = 0.

The terms −bx and −dy represent the negative feedback according to the
hypothesis a), the terms my and −cx are introduced by the hypothesis b) and the term
a

xy

x + G0
is the nonlinear term from the hypothesis c). We can see that x+G0 = G >

0, because the glycaemic values are always positive. The constant values a, b, c, d, m
and G0,H0, I0 are specific to each person. The constant b, c, d, m have the same
signification as in [1] and a is a coefficient of hormonal efficiency. For the most
persons we can consider the condition ac ≥ bd + mc, be fulfilled.

3. First approximation stability

We consider the open semiplane, D = {(x, y) ∈ R2 : x > −G0} and the
functions

U, V : D −→ R, given by

U(x, y) = a
xy

x + G0
− bx + my, V (x, y) = −cx− dy.

It can see that U, V ∈ C1(D) and so there are locally Lipschitz on D. Then each
Cauchy problem, (1)+(2) with initial conditions in D, has a unique maximal solution.
About the stability of equilibrium solutions of the system (1) we obtain :
Theorem 3.1. For each positive values of a, b, c, d, m,G0 the system (1) has in the
set D two echilibrium solutions P1(0, 0) and P2(x2, y2) , with x2 < 0, y2 > 0 , such
that P1(0, 0) is asymptotically stable, and P2(x2, y2) is saddle point. If (b−d)2 < 4mc
then P1(0, 0) is focus.

Proof. The equilibrium solutions of the system (1) are the solutions of the algebraic
system : {

U(x, y) = 0
V (x, y) = 0 ⇐⇒

{ axy

x + G0
− bx + my = 0

−cx− dy = 0
,

that is x1 = 0, y1 = 0 and

x2 =
−G0(bd + mc)
ac + bd + mc

, y2 =
cG0(bd + mc)

d(ac + bd + mc)
.

For the first approximation stability of the equilibrium solutions P1(0, 0) and
P2(x2, y2) we compute the eigenvalues of the Jacobi matrix for the vectorial field
(U, V ) in these points. In this sense, for P1(0, 0) :

det(JU,V (0, 0)− λI) =

∣∣∣∣∣∣∣
∂U(0, 0)

∂x
− λ

∂U(0, 0)
∂y

∂V (0, 0)
∂x

∂V (0, 0)
∂y

− λ

∣∣∣∣∣∣∣ =
∣∣∣∣ −b− λ m
−c −d− λ

∣∣∣∣ =
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= 0 ⇐⇒ λ2 + (b + d)λ + mc + bd = 0.

Because b + d > 0 and bd + mc > 0 we infer that Reλ1 < 0,Reλ2 < 0. Then
P1(0, 0) is asymptotically stable (uniform, because the system is autonomous). If
(b − d)2 − 4mc ≥ 0 then, this equilibrium point is a node and if (b − d)2 − 4mc < 0
, is focus. The condition (b − d)2 − 4mc < 0, is priori asserted in [1], using some
experiments, where the values of b and d are greater than m and c, but such that
|b− d| < 2mc. For the equilibrium point P2(x2, y2) ,

∂U(x2, y2)
∂x

=
aG0y2

(x2 + G0)2
− b =

(bd + mc)2 + amc2

acd

∂U(x2, y2)
∂y

=
ax2

x2 + G0
+ m = −bd

c

∂V

∂x
= −c,

∂V

∂y
= −d.

Then, det(JU,V (x2, y2)− λI) = 0 ⇐⇒

λ2 +
[
d− (bd + mc)2 + amc2

acd

]
λ− (bd + mc)2 + amc2

ac
− bd = 0.

Because λ1λ2 = − (bd + mc)2 + amc2

ac
− bd < 0, ∀a, b, c, d, m ∈ R∗

+, we infer that

λ1, λ2 ∈ R, λ1 > 0, λ2 < 0 and then P2(x2, y2) is saddle point, (we can see that
(x2, y2) ∈ D). The condition ac ≥ bd+mc lead to x2 ∈ [−G0

2 , 0), (statistical verified).

Remark 4. In the phase portrait, the unstable manifold of the saddle point is a
curve through this point which arrive in the attractor P1(0, 0), and the stable manifold
is the frontier of the attraction basin of the origin. Here is the immediate clinical
interpretations: each initial perturbation from the attraction basine of the equilibrium
value (G0,H0 − I0) will be attract to this value, prevalent after damping oscillations.
For each person there is an glycaemic unstable equilibrium value (x2), which can be
considered a frontier value over there appear hypoglycaemia (sometimes coma). It
can see that for the persons with great value for b and d the frontier value is far from
the equilibrium value (G0,H0 − I0) and the return to this last value is more fast.
This persons are protected by diabetes and hypoglycaemia, having a good glycaemic
homeostasy.
Theorem 4.1. The system (1) has no periodic solutions.

Proof. Computing the divergence of the vectorial field (U, V ),

div(U, V )(x, y) =
∂U

∂x
+

∂V

∂y
=

ayG0

(x + G0)2
− b− d

we see that this divergence has constant sign in the inside and in the outside of the
parabola :

y =
(b + d)
aG0

(x + G0)2.

This parabola is in the first and in the second cadrane.., having the peak (−G0, 0).
So, the origin is in the outside of this parabola and then there is no limit cycle round
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about the origin, after the Bendixon theorem. Because the second singular point is
saddle we infer that there is no limit cycle round about this point.

5. Stability after permanent perturbations

Let be the perturbed system:

(3)

{
x′ = a

xy

x + G0
− bx + my + R1(t, x, y)

y′ = −cx− dy + R2(t, x, y)

with R1 and R2 continuous functions on J ×D, where J ⊂ [0,∞) is interval.
Suppose that the permanent perturbations R1 and R2 are bounded in average,

that is they have the property: ∀ε > 0,∀T > 0,∃η > 0 and ∃ϕ = (ϕ1, ϕ2) : J −→ R2

such that
∫ t+T

t
ϕi(s)ds < η, i = 1, 2 and |Ri(t, x, y)| < ϕi(t),∀t ∈ J,∀(x, y) ∈ D with

‖(x, y)‖ < ε, i = 1, 2. Then we obtain :
Theorem 5.1. The zero solution of the system (1) is stable after permanent pertur-
bations bounded in average.

Proof. Can apply the theorem 1.8′.(page95) from [5] and use the uniform asymptotic
stability of the zero solution (after the first theorem), ∀a, b, c, d.m > 0.

Remark 6. From the previous theorem follow that the glycaemic value G0 is re-
sistant to the perturbations of impulse type with great initial values, but bounded in
average and rapid estinguished. Such perturbations can be the momentary unloadings
of epinephrine (in an emergency). If the permanent perturbations nonbounded in aver-
age became frequent, then can be appear some metabolic disorders. Such perturbations
lead to the new glycaemic homeostasy configuration, which can be expressed by the
autonomous perturbations. We study on the stability after autonomous perturbations.

Let us consider the system:

(4)

{
x′ = a

xy

x + G0
− bx + my + f(x, y)

y′ = −cx− dy + g(x, y)

where f, g ∈ C2(D) with f(0, 0) = 0, g(0, 0) = 0. We study this system with the first
approximation method.

The origin is equilibrium solution of this system having the eigenvalues equa-
tion :

λ2 + [b + d− ∂f(0, 0)
∂x

− ∂g(0, 0)
∂y

]λ− b
∂g(0, 0)

∂y
+

∂f(0, 0)
∂x

· ∂g(0, 0)
∂y

+

+bd− d
∂f(0, 0)

∂x
+ mc− ∂f(0, 0)

∂y
· ∂g(0, 0)

∂x
+ c

∂f(0, 0)
∂y

−m
∂g(0, 0)

∂x
= 0.

If
∂f(0, 0)

∂y
> 0, b >

∂f(0, 0)
∂x

, d >
∂g(0, 0)

∂y
and c >

∂g(0, 0)
∂x

then the eigenvalues

have negative real part and the solution is uniform asymptotic stable. The clinical
interpretation is : if the hyperglycaemiant perturbations not succeed to modify the
negative feedback characteristic of the homeostasis mechanism, then the equilibrium
value is resistant to such perturbations.
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If
∂f(0, 0)

∂x
> b and

∂g(0, 0)
∂y

> d then the zero solution of the system (4) is

unstable. This means that the positive feedback appearance at the both components
(glucose and hormones) lead to glycaemic instability.

We study now a particular case of autonomous perturbation, with g(x, y) =
yg(x), g ∈ C2(I), I ⊂ (−G0,∞), without the condition g(0) = 0, which means that
the perturbation in the hormonal secretion speed have influence only on the hormonal
feedback mechanism..

(5)

{
x′ = a

xy

x + G0
− bx + my + f(x, y)

y′ = −cx− dy + yg(x)
.

Supposing that 0 ∈ I, we can write the Taylor formula for the functions f and g :

(6) f(x, y) =
∂f(0, 0)

∂x
· x +

∂f(0, 0)
∂y

· y + ρ1(x, y)

g(x) = g(0) + g′(0)x + ρ2(x)

where ρ1(x, y) and ρ2(x) contain second order derivatives. For the stability study of
the zero solution of this system, after the first approximation method, the eigenvalues
equation is :

λ2 + [b + d− ∂f(0, 0)
∂x

− g(0)]λ + bd + mc− d · ∂f(0, 0)
∂x

+

+g(0) · ∂f(0, 0)
∂x

+ bg(0) + c · ∂f(0, 0)
∂y

= 0.

Proposition 6.1. The new feedback components,
∂f(0, 0)

∂x
and g(0) settle on the

stability of the zero solution and
∂f(0, 0)

∂y
establish the shape of the solutions in a

neighborhood of origin.

Proof. If
∂f(0, 0)

∂y
≤ 1

4c
[b − d − ∂f(0, 0)

∂x
+ g(0)]2 −m then the origin is a node or a

saddle point. Is saddle point if [b−∂f(0, 0)
∂x

]·[d−g(0)] < c[m+
∂f(0, 0)

∂y
], and a uniform

asymptotic stable node if [b− ∂f(0, 0)
∂x

] · [d−g(0)] > c[m+
∂f(0, 0)

∂y
] and d > g(0), b >

∂f(0, 0)
∂x

. The origin is unstable node if [b − ∂f(0, 0)
∂x

] · [d − g(0)] > c[m +
∂f(0, 0)

∂y
]

and d < g(0), b <
∂f(0, 0)

∂x
. When

∂f(0, 0)
∂y

≤ 1
4c

[b − d − ∂f(0, 0)
∂x

+ g(0)]2 −m the

eigenvalues are complex conjugated and the shape of the solutions in a neighborhood

of the origin is oscillatory. In this case, the sign of b + d− g(0)− ∂f(0, 0)
∂x

decide the
stability of the zero solution.

In the case
∂f(0, 0)

∂y
≤ 1

4c
[b − d − ∂f(0, 0)

∂x
+ g(0)]2 −m we distinguish the

situations :

(i) If b+d−g(0)− ∂f(0, 0)
∂x

> 0, then Reλ1,2 < 0 and the origin is asymptotic
stable focus.
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(ii) If b + d− g(0)− ∂f(0, 0)
∂x

< 0, then Reλ1,2 > 0 and the origin is unstable
focus.

(iii) If b + d− g(0)− ∂f(0, 0)
∂x

= 0, then

λ1,2 = ± i

2

√
4c[m +

∂f(0, 0)
∂y

]− [b− d + g(0)− ∂f(0, 0)
∂x

]2.

Remark 7. We can realize the clinical interpretations: If the origin is a saddle point,
then the negative feedback mechanism of the glucose or of the hormones is overturned
and this means a transition from a moderate diabetes to an advanced diabetes.. In
the case of asymptotic stable node the negative feedback is preserved and the glycaemic
value G0 is resistant to perturbations. The case of unstable node correspond to positive

feedback and advanced diabetes.. If
∂f(0, 0)

∂y
increase then in the first equation of the

system (5) is fortified the insulin action, which means the presence of the insulin
therapy. If the origin is an asymptotic stable focus then the insulin dose is best,
succeeding to maintain the glycaemy at a nondangerous level. In the case of unstable
focus the treatment is inefficient.

We note µ =
∂f(0, 0)

∂x
and consider this value as a parameter and for fixed

g(0) let be µ0 = b + d − g(0). Suppose that f and g are of C∞ class and obtain the
following result:

Theorem 7.1. If f ∈ C∞(D), g ∈ C∞(I),
∂f(0, 0)

∂y
> 0 and ∆ < 0, then there is

a value of the µ parameter for which appear a Hopf bifurcation, corresponding to a
periodic solution of the system (5).

Proof. It can see that Reλ1,2(µ0) = 0 si
∂Reλ1,2(µ0)

∂µ
= 1

2 > 0. Because for each other

value of µ the zero solution is a focus, using the theorem of Hopf we infer that there
is a periodic solution and the zero solution is a centre. The existence of a periodic
solution can be proved in an other way, using the divergence of the vectorial field
(Φ,Ψ) : D −→ R2, with

Φ(x, y) = a
xy

x + G0
− bx + my + f(x, y)

Ψ(x, y) = −cx− dy + yg(x)

and the curve which limit the regions from D where the divergence have a constant

sign, is, y =

b + d− g(x)− ∂f(x, y)
∂x

aG0

 (x + G0)2. If µ = µ0, Then the point (0, 0) is

on this curve, which imply that in each neighborhood of origin the divergence change
the sign. Then, according to the theorem of Bendixon, there is a limit cycle round
about the origin.

Remark 8. If µ < µ0 then the origin is an asymptotic stable focus. When µ >
µ0, the origin is a unstable focus. Therefore, when µ increase crossing through µ0

appear a Hopf bifurcation and periodic solution with the loss of the stability. We can
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observe that the periodic solutions appear only during the treatment. The bifurcation
parameter can be selected also g(0). For a person with hyperglycaemia the value G0

is great, differing from the value of a healthy person. Therefore the value G0 from the
system (4) or (5) differ by the G0 from the system (1).
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FITTING OF SOME LINEARISABLE REGRESSION MODELS

NICOLETA BREAZ AND DANIEL BREAZ

Abstract. In this paper, we obtain fitting conditions for some linearisables
regressional models. These conditions are refering to the matrix of sample
data.

1. Introduction

The fitting condition for those models, which, by substitution, can be reduced
to a linear model, is refering to the matrix of new sample data/variables that results
by substitution. In this paper, we consider models such as the polynomial, spline and
piecewise linear model and we give for these, fitting conditions in the matrix of initial
sample data/variables.

Let be the multiple linear model

Y = α1X1 + ... + αpXp + ε (1)

and a sample data
yT = (y1, y2,..., yn) ∈ <n,

x =
(

x1 ,x2, ..., xp

)
=


x11 x12 ... x1p

x21 x22 ... x2p

... ... ... ...
xn1 xn2 ... xnp

 ∈ Mn,p, n > p.

Denoting αT =
(

α1, α2, ..., αp

)
∈ <p, εT = (ε1, ε2, ..., εn) ∈ <n from

(1) we obtain the matriceal form y = xα + ε.
The principle of least squares leads to the fitting model:

y = xa + e,

with

aT = (a1, a2, ..., ap) ∈ <p, eT = (e1, e2, ..., en) ∈ <nand
n∑

i=1

e2
i = min .

In case of a linear model which contains a constant term we have

y = xα + ε = x0α0 + uαp + ε (2)

with x0 = (x1,x2, ...,xp−1) ,αT
0 = (α1, α2, ..., αp−1) ,uT = (1, 1, ..., 1) ∈ <n, x =

(x0,u) ,α =
(
αT

0 , αp

)
.

The following result is well known in the literature:
Theorem 1.

Received by the editors: 21.10.2002.
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i)For model (1) if x has full column rank (the xj are linearly independent)
the least squares estimators ai for αi, i = 1, p are uniquely defined by

a =
(
xT x

)−1
xT y,aT = (a1, a2, ..., ap) ∈ <p.

ii)For model (2) if x has full column rank (the xj are linearly independent)
the least squares estimators ai for αi, i = 1, p are uniquely defined by

a0 = (a1, a2, ..., ap−1)
T =

(
x̂T

0 x̂0

)−1
x̂T

0 ŷ, ap = y −
p−1∑
k=1

akxk

where

y =
1
n

n∑
i=1

yi, xk =
1
n

n∑
i=1

xik, x̂0 = Px0, ŷ = Py, P = I − 1
n
uuT .

Remark 2. The Theorem 1 ii) holds for any of the conditions

rank (x) = p, or rank (x0) = p− 1

because P is a linear transformation and we have

rank (x) = p ⇒ rank (x0) = p− 1 ⇒ rank (Px0) = rank (x̂0) = p− 1.

2. Main results

We consider the polynomial model

Y = α0 + α1X + ... + αrX
r + ε (3)

with a sample data (xi, yi) , i = 1, n.
By replacing Xj = Zj , j = 1, r the model becomes

Y = α0 + α1Z1 + ... + αrZr + ε.

According to Theorem 1, if rank(z) = r + 1, then the fitting solution for (3)
is given by

a =
(
ẑT
0 ẑ0

)−1
ẑT
0 ŷ, a0 = y −

r∑
k=1

akzk

where

z0 =


z11 z12 ... z1r

z21 z22 ... z2r

... ... ... ...
zn1 zn2 ... znr

 , z =


1 z11 z12 ... z1r

1 z21 z22 ... z2r

... ... ... ... ...
1 zn1 zn2 ... znr

 .

In order to give for model (3) a theorem similar to Theorem 1 we search for
a relation between the sample data matrix

x =


x1

x2

...
xn
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and ”the substitution matrix”

z =


1 x1 x2

1 ... xr
1

1 x2 x2
2 ... xr

2

... ... ... ... ...
1 xn x2

n ... xr
n

 .

Theorem 3. If there are at least r + 1 distinct values of the variable X in
the sample data matrix, then the least squares fitting solutions of (3) can be written
uniquely as

a =
(
ẑT
0 ẑ0

)−1
ẑT
0 ŷ,aT = (a1, a2, ..., ar) ∈ <r, a0 = y −

r∑
k=1

akzk,

where

ẑ0 = Pz0, ŷ = Py, P = I − 1
n
uuT

and z0 is the Vandermonde type matrix with n lines, each containing the first r
integer powers of the n sample values, without the column which contains the vector
uT = (1, 1, ..., 1) ∈ <n.

Proof. We assume that the r + 1 distinct values of X, are the first r + 1
values, without limiting the generality. Obviously it is necessary that r + 1 ≤ n. If
rank(z) = r + 1, where z is the Vandermonde matrix attached to the n values data
for X then the theorem holds. Thus it is enough to prove that rank(z) = r + 1.

We consider in z the r + 1 order minor formed with the rows which contain
the r + 1 distinct values:

d =

∣∣∣∣∣∣∣∣
1 x1 x2

1 ... xr
1

1 x2 x2
2 ... xr

2

... ... ... ... ...
1 xr+1 x2

r+1 ... xr
r+1

∣∣∣∣∣∣∣∣ .
Since the r + 1 values of the Vandermonde discriminant d are distinct, it

follows that d 6= 0,and rank(z) = r + 1.�
We next consider the model

Y = f(X1, X2, ..., Xp) + ε (4)

where

f(X1, X2, ..., Xp) =
{

a1X1 + a2X2 + ... + apXp , (X1, X2, ..., Xp) ∈ I
b1X1 + b2X2 + ... + bpXp , (X1, X2, ..., Xp) ∈ J

with I and J, two subsets of <p such as I ∪ J = <p and I ∩ J = ∅.
We use the notations:
-xI the matrix containing those rows from the sample data matrix which

belong to I ,as vectors in <p

-xJ the matrix containing those rows from the sample data matrix which
belong to J , as vectors in <p

-yI the vector containing those components yi for which
xi = (X1, X2, ..., Xp)i ∈ I

-yJ the vector containing those components yj for which
xj = (X1, X2, ..., Xp)j ∈ J.
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Theorem 4. If rank(xI) = p, rank(xJ) = p and 2p ≤ n then the least
squares fitting solution of model (4) is uniquely given by

a =
(
xT

I xI

)−1
xT

I yI and b =
(
xT

J xJ

)−1
xT

J yJ , with aT ,bT ∈ <p.
Proof. Using the least squares criteria we have

S =
n∑

i=1

[yi − f (xi1, xi2, ..., xip)]
2 = min,

∂S

∂aj
= 0,

∂S

∂bj
= 0, j = 1, p,

∂S

∂aj
=

∂

∂aj

(
n∑

i=1

[yi − f (xi1, xi2, ..., xip)]
2

)
.

Denoting A = {i | (xi1, xi2, ..., xip) ∈ I} and B = {i | (xi1, xi2, ..., xip) ∈ J}
we obtain

∂S

∂aj
=

∂

∂aj

(∑
i∈A

[yi − f (xi1, xi2, ..., xip)]
2

)
+

∂

∂aj

(∑
i∈B

[yi − f (xi1, xi2, ..., xip)]
2

)
=

= 2
∑
i∈A

[yi − f (xi1, xi2, ..., xip)] ·
(
− ∂f

∂aj

)
+ 2
∑
i∈B

[yi − f (xi1, xi2, ..., xip)] ·
(
− ∂f

∂aj

)
From

∂S

∂aj
= 0

we obtain∑
i∈A

[yi − (a1xi1 + ... + apxip)] · xij +
∑
i∈B

[yi − (b1xi1 + ... + bpxip)] · 0 = 0.

Finally, we have∑
i∈A

[yi − (a1xi1 + ... + apxip)] · xij = 0.

Similarly, from
∂S

∂bj
= 0

we obtain ∑
i∈B

[yi − (b1xi1 + ... + bpxip)] · xij = 0.

Then the following holds xT
I xIa = xT

I yI , xT
J xJb = xT

J yJ . From hypothesis
we have rank(xI) =rank(xJ) = p, so follows that

a =
(
xT

I xI

)−1
xT

I yI and b =
(
xT

J xJ

)−1
xT

J yJ .

We observe that xI ∈ Mn1,p, xJ ∈ Mn2,p, n1 + n2 = n where
n1 =card{(xi1, xi2, ..., xip) | (xi1, xi2, ..., xip) ∈ I}
n2 =card{(xi1, xi2, ..., xip) | (xi1, xi2, ..., xip) ∈ J}

where ”card” denotes the number of elements of a given set.
Moreover, it is necessary that p ≤ n1, p ≤ n2 so the condition 2p ≤ n is

required.�
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Theorem 5. If in model (4) the function f is given on k subdomains
I1, I2, ..., Ik, then the principle of the least squares leads to

aS =
(
xT

IS
xIS

)−1
xT

IS
yIS

,

where (
aS
)T =

(
aS
1 , aS

2 , ..., aS
p

)
∈ <p, ∀s ∈ 1, k and xIS

,yIS
are defined as above.

Finally we consider

Y = f (X) + ε (5)

with f a spline function of order r, r ≥ 1 and with m nodes, m ≥ 1.
The spline function f has the form

f (X) = α0 + α1X + ... + αrX
r +

m∑
k=1

βk (X − vk)r
+

where v1 < v2 < ... < vm are its nodes.
We denote that after substituting Xj = Zj , j = 1, r, (X − vk)r

+ = tk, k =
1,m, the model becomes a linear model with m + r variables and a constant term.

Remark 6.
i) We assume that the nodes vk, k = 1,m are given. These can be taken such

that in any open interval generated there is at least one value from the n values given
for X. In this case m + 1 ≤ n.

ii) Also we can define a spline function whose nodes are among the sample
data of X. If m < n we consider m values of X increasingly ordered as nodes of f such
that in any interval (−∞, v1) , (v1, v2) , ..., (vm,∞) at least one values of X exists. In
this case 2m + 1 ≤ n.

In the next theorem we use the notations:

V r (q1, q2,..., qs) =


q1 q2

1 ... qr
1

q2 q2
2 ... qr

2

... ... ... ...
qs q2

s ... qr
s

 ,

V r
1 (q1, q2,..., qs) =


1 q1 q2

1 ... qr
1

1 q2 q2
2 ... qr

2

... ... ... ... ...
1 qs q2

s ... qr
s



V ′ (q1, q2,..., qs) =


(q1 − v1)

r
+ (q1 − v2)

r
+ ... (q1 − vm)r

+

(q2 − v1)
r
+ (q2 − v2)

r
+ ... (q2 − vm)r

+

... ... ... ...
(qs − v1)

r
+ (qs − v2)

r
+ ... (qs − vm)r

+

 .

Theorem 7. If m + r + 1 ≤ n and among the n values of X there is at least
one value situated in each of the m+1 open intervals delimited by nodes and there are
another r distinct values situated in (−∞, v1) then the model is uniquelly fitted by
aj = cj , j = 1, r , bk = cr+k, k = 1,m, cT = (c1, ..., cm+r) ∈ <m+r, c =

(
ẑT
0 ẑ0

)−1
ẑT
0 ŷ

where

ẑ0 = Pz0, ŷ = Py, P = I − 1
n
uuT ,u = (1, 1, ..., 1) ∈ <n,

z0 = (V r (x1, x2,..., xn) : V ′ (x1, x2,...xs)) .
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Proof. We note that model (5) is a linear model with m + r variables and
a constant term. In order for the theorem to remain valid one of the conditions
rank(z) = m + r + 1 or rank(z0) = m + r is required. Taking into account that
the rank of a matrix is not affected by swaping some rows we consider the values of
variable to be ordered as x1 ≤ x2 ≤ ... ≤ xn. From hypothesis, there are r+1 distinct
values in (−∞, v1) and in the other intervals there is at least one value. Without loss
of generality we take the first m + r + 1 values such that

x1, x2, ..., xr+1 ∈ (−∞, v1) , xr+2 ∈ (v1, v2) , xr+3 ∈ (v2, v3) , ..., xr+n+1 ∈ (vm,∞)
(6)

We denote with d the minor formed with the first m + r + 1 rows of z, so we
have d =detM with

M = (V r
1 (x1, x2,..., xm+r+1) : V ′ (x1, x2,..., xm+r+1)) .

Since:

(xi − vk)r
+ =

{
(xi − vk)r

, xi ≥ vk

0, xi < vk

we obtain d =detM ′ where

M ′ =
(

V r
1 (x1, x2,..., xr+1) Or+1,m

V r
1 (xr+2, xr+3,..., xm+r+1) V

)
and

V =


(xr+2 − v1)

r
... 0 0

... ... ... ...
(xm+r − v1)

r
... (xm+r − vm−1)

r 0
(xm+r+1 − v1)

r
... (xm+r+1 − vm−1)

r (xm+r+1 − vm)r


Further we obtain

d = [(xm+r+1 − vm)r (xm+r − vm−1)
r · ... · (xr+2 − v1)

r] ·
· [(xr+1 − xr) (xr+1 − xr−1) · ... · (x2 − x1)] .

Since the first r + 1 values are distinct it follows from (6) that d 6= 0 and
rank(z) = m + r + 1.

Remark 8. If those m nodes are among the values of X then 2m+r+1 ≤ n.
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UNITARY PRODUCTS AGAIN

R. G. BUSCHMAN

Abstract. Inverses with respect to unitary products are obtained for some
functions. These provide further Möbius type of inversion formulas. Lists
of powers, products, and summation identities are included.

1. Introduction

The Dirichlet product which is restricted to relatively prime divisors is called
the unitary product. It was introduced by Vaidyanathaswamy [14], and it has been
further considered by Cohen [1], [2], Davison [3], Gessley [4], Gioia [5], Gioia and
Goldsmith [6], Goldsmith [7], Rearick [9], Scheid [10], Sivaramakrishnan [11], Sub-
barao [12], Subbarao and Gioia [13], and others. We use the notation

(α t β)(n) =
∑

km=n
(k,m)=1

α(k)β(m),

αt2 = α t α, αt−1 = unitary inverse, etc.

(1.1)

This product is commutative, associative, and the identity for the Dirichlet
product serves as the identity. There are non-trivial divisors of 0 as can be seen by
setting α = β = δ2. The unitary product of multiplicative functions is multiplicative.
A function α has a t-inverse provided that α(1) 6= 0.

In Section 2 we set forth the definitions of the operations and the number-
theoretic functions which are to be used. Inverses of a number of functions with
respect to the unitary product are given in Section 3. These are used in order to
write out some Möbius type of inversion formulas, one of which involves the Möbius
function µ. Lists of unitary powers, unitary products, and alternative factorizations
are included in the final section. The alternative factorizations provide us with sum-
mation identities which involve various number-theoretic functions.

Received by the editors: 14.10.2002.
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2. Definitions

The domain of definition of number-theoretic functions is, as usual, taken to
be the positive integers. We use the following notations for operations.

(α · β)(n) = α(n)β(n) (pointwise product)

(α ∗ β)(n) =
∑

km=n

α(k)β(m) (Dirichlet product)

(α�β)(n) =
∑

[k,m]=n

α(k)β(n) (lcm-product)

α2 = α · α, α∗2 = α ∗ α, α�2 = α�α, etc.

α∗−1 = Dirichlet inverse of α, etc.

(2.1)

All of these product are associative, commutative, and there are identity
elements

(ν0 · α) = α, ε ∗ α = α, ε�α = α, for all α. (2.2)

No non-trivial divisors of zero exist for the ∗-product, but they do exist for
the other products. The set of number theoretic functions which satisfy the condition
α(1) 6= 0 forms a group under Dirichlet multiplication. In this group α ∗ β is a
multiplicative function if both α and β are multiplicative; that is, the multiplicative
functions form a subgroup; see Niven and Zuckerman [8]. Some properties of all of
these multiplications can be found in Scheid [10].

We use ε for the identity, ε(n) = 1 if n = 1, and = 0 otherwise. We choose
the symbols ν0 for the multiplicative identity for the pointwise product, ν0 = 1 for
all n; νk(n) = nk; κ(n) for the number of square-free divisors of n, κ(n) = 2ω(n);
λ for Liouville’s function, λ(n) = (−1)Ω(n); µ for the Möbius function, µ(n) = 0 if
p2|n, and = (−1)ω(n) otherwise. Let τk(n) = the number of ways of writing n as a
product of k factors, τ2 = τ , σk(n) = the sum of the kth powers of the divisors of
n, σ1 = σ; ω(n) = the number of prime divisors of n; and Ω(n) = the total number
of divisors of n. In addition we let δk(n) = 1 if n = k, = 0 otherwise; generalized
Möbius functions µC

k = (µ · νk) = ν∗−1
k , µC

0 = µ; µD
k = τ∗−1

k , µD
1 = µ; µM

k = P ∗−1
k ,

µM
1 = µ, Jk = νk ∗ µ Jordan’s totient, J1 = φ; Pk(n) = 1 if n = mk, = 0 otherwise,

P2 = P , the characteristic function for squares; Qk(n) = 1 if n is kth-power-free, = 0
otherwise, Q2 = Q = µ2; and S(n) = the number of divisors of n2.

In our work the superscript symbol † is used to denote the unitary analogs
of our previously defined number-theoretic functions, instead of the more customary
symbol ∗. This is done in order to avoid possible confusion with ∗-multiplication.
We define some of the more important analogous functions which occur naturally in
connection with the t-product.

µ† = (−1)ω = νt−1
0 . (2.3)

µ†k = Pt−1
k , µ†1 = µ†. (2.4)
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σ†k(n) = sum of the kth powers of the
unitary divisors of n,

σ†0 = τ †, σ†1 = σ†.

(2.5)

τ †k(n) = νtk
0 (n) = (µ†)t−k

τ †−1 = µ†, τ †0 = ε, τ †1 = ν0, τ †2 = τ † = κ.

(2.6)

The function (µ†)tk is the unitary analog of µD
k ; µ†k, of µM

k . For k > 0, the
function τ †k counts the number of ways of expressing n as a product of k factors which
are relatively prime in pairs.

3. Inverses and inversion formulas

The Möbius inversion formula (for sums over divisors) is given by

α = ν0 ∗ β ⇔ β = µ ∗ α. (3.1)

Since the t-inverse of ν0 is µ†, an analog of the Möbius inversion formula is

α = ν0 t β ⇔ β = µ† t α. (3.2)

A generalization follows from the definitions.

α = τ †k t β ⇔ β = (µ†)tk t α. (3.3)

Some of the t-inverses have been derived.

κt−1 = (µ†)t2 = τ †−2. (3.4)

Pt−1
k = µ†k. (3.5)

Qt−1 = µ. (3.6)
(κ · µ)t−1 = (κ ·Q). (3.7)
(µ · S)t−1 = (Q · S). (3.8)

(νk ·Q)t−1 = µC
k . (3.9)

These lead to a number of further inversion formulas. As one example, an
alternative analog for the Möbius inversion which retains µ, instead of ν0, in the
formulas reads

α = Q t β ⇔ β = µ t α. (3.10)
Some other examples follow.

α = Pk t β ⇔ β = µ†k t α. (3.11)

α = (κ · µ) t β ⇔ β = (κ ·Q) t α. (3.12)
α = (µ · S) t β ⇔ β = (Q · S) t α. (3.13)

α = (νk ·Q) t β ⇔ β = µC
k t α. (3.14)

The completely t-multiplicative functions are simply the ∗-multiplicative
functions. Hence, if ξ is ∗-multiplicative, we have the three important properties
of completely multiplicative functions, see Scheid [10].

ξ · (α t β) = (ξ · α) t (ξ · β). (3.15)

ξt−1 = (ξ · µ†). (3.16)
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ξtr = (ξ · τ †k). (3.17)
Further, if η is multiplicative and ξ has a t-inverse, then

(η · ξ)t−1 = (η · ξt−1). (3.18)

Hence for any ∗-multiplicative function η we have the general inversion for-
mula

α = η t β ⇔ β = (η · µ†) t α. (3.19)
We note that (α ∗β)(n) and (αtβ)(n) are equal at squarefree n. Since Q(n)

is ∗-multiplicative and equals 0 except at squarefree n, we have

(α ∗ β) ·Q = (α ·Q) t (β ·Q). (3.20)

The operation of pointwise multiplication of functions by Q can be seen to
map the ∗-products into the t-products which are evaluated at squarefree numbers.
This may seem to be of limited value, but it does give us a way to build up another list
from any list of Dirichlet products. From the known result λ ∗ ν0 = P and evaluation
of the pointwise products, we can thus show that µ t Q = ε, which leads to the
Möbius inversion formula (3.10). Formulas (3.16) and (3.20) are a source for various
t-inverses.

For completely ∗-multiplicative functions Vaidyanathaswamy [14] had ob-
tained a relation which connects four different products.

(α t β) ∗ (α · β) = (α�β). (3.21)

Two additional identities of Scheid [10] are of interest, since they also provide
connections among various products. The first of these is a corollary of his formula
for a product of n-factors; compare with (2.8). For ∗-multiplicative functions

ξ ∗ (α t β) = (ξ ∗ α) t (ξ ∗ β) t (µ† · ξ). (3.22)

(α · (β ∗ ν0)) t (β · (α ∗ ν0)) = (α · β) ∗ (α�β). (3.23)

4. Lists of Products

Since not many explicit unitary products appear in the literature, a number
of examples have been obtained. First, a few t-powers are known.

κtr = τ †2r. (4.1)

µtr = µD
r . (4.2)

Qtr = (τr ·Q). (4.3)
Many special cases of (3.21)-(3.23) are themselves of interest. Several of the

special cases resulting from (3.20) have been included in the list.

α t ε = α. (4.4)

κ t ν0 = τ †3 . (4.5)

κ t µ† = ν0. (4.6)

κ t τ †k = τ †k+2. (4.7)

κ t φ† = σ†. (4.8)
λt2 = (κ · λ). (4.9)
µ tQ2k = ε. (4.10)
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µ t (µ · τ) = (µ · S). (4.11)
µ t (τ ·Q) = Q. (4.12)

µC
k t (σk ·Q) = Q. (4.13)

µC
k t (Jk ·Q) = µ. (4.14)

νt2
0 = κ. (4.15)

νtk
0 = τ †k . (4.16)

ν0 t νk = σ†k. (4.17)

ν0 t µ† = ε. (4.18)
ν0 t φ† = ν1. (4.19)

ν0 t J†k = νk. (4.20)

ν0 t τ †k = τ †k+1. (4.21)

ν1 t µ† = φ†. (4.22)

νk t µ† = J†k . (4.23)
Q t (νk ·Q) = (σk ·Q). (4.24)

Q t (κ · µ) = µ. (4.25)
Q t (κ ·Q) = (S ·Q). (4.26)
Q t (µ · S) = (µ · τ). (4.27)

Q t (Jk ·Q) = (νk ·Q). (4.28)
(κ ·Q) t (µ · S) = µ. (4.29)

(µ · σk) t (νk ·Q) = µ. (4.30)
(µ · Jk) t (νk ·Q) = Q. (4.31)

µ† t σ†k = νk. (4.32)

µ† t τ †k = τ †k−1. (4.33)

σ†k t φ† = (ν1 · σ†k−1) = (νk · σ†1−k). (4.34)

τ † t φ† = σ†. (4.35)
A few examples are presented of mixed products which involve both the

Dirichlet and the unitary results. Since σ†k has a known Dirichlet series generating
function, some Dirichlet products which involve it can be obtained.

λ ∗ (µ t (τ ·Q)) = ε. (4.36)

ν1 t (ν1�µ†) = φ†. (4.37)
(νk t νm) ∗ σk+m = (σk · σm). (4.38)

νk ∗ νm ∗ σ†k+m = (σk · σm). (4.39)
Alternative factorizations can be interpreted as summation identities. Many

examples exist; we list a few of them.

λ�2 = λt2 ∗ ν0. (4.40)

ν0�νk = νk ∗ σ†k. (4.41)

νk t σ†m = νm t σ†k. (4.42)

P ∗ Pt2 = P�2. (4.43)
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In the spirit of Liouville’s summation identities, (4.42) and (4.43) can be
rewritten, respectively, ∑

rs=n
(r,s)=1

νk(r)σ†m(s) =
∑
rs=n

(r,s)=1

νm(r)σ†k(s), (4.44)

∑
hj=n

∑
km=h

(k,m)=1

P (j)P (k)P (m) =
∑

[k,m]=n

P (k)P (m). (4.45)
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ROBUST STABILITY OF COMPACT C0-SEMIGROUPS ON
BANACH SPACES

SÂNZIANA CARAMAN

Abstract. It is a well-known fact that many properties, of a compact
semigroup, are preserved under bounded perturbations. In this paper we
show that the asymptotic stability is also preserved, provided that the
spectral radius of the perturbation is not greater than the modulus of
the spectral bound of the semigroup’s generator. We achieve our goal by
improving Pazy’s result concerning the behaviour of the spectrum of the
generator.

1. Preliminaries

Consider X a Banach space and T = (T (t))t≥0 a C0-semigroup with generator
A : D(A) ⊂ X → X, denoted by (A,D(A)).

We use the theoretical notations for R(λ, A), ρ(A), σ(A), for the resolvent,
the resolvent set and, respectively, the spectrum of A. We also use the following
notations: the point spectrum σp(A) = {λ ∈ C | λI −A is not injective}; the spectral
bound s(A) = sup{Re λ | λ ∈ σ(A)}; the spectral radius r(A) = sup{|λ| | λ ∈ σ(A)}.

Let us also remind that the semigroup T is asymptotically stable if

lim
t→∞

‖T (t)x‖ = 0 for any x ∈ X.

We also use to say that a certain property of the semigroup is robust whenever it is
preserved under some bounded perturbations.

2. About the spectrum and robust asymptotic stability of a compact semi-
group

In the following we shall need an auxiliary result from complex analysis, the
proof of which is included for the reader’s convenience.

Lemma 1. Let {λn}∞n=1 be a sequence in Sa,b = {λ ∈ C | a ≤ Re λ ≤ b}, where
a, b are real numbers, such that lim

n→−∞
|Im λn| = ∞. Then there is t > 0 such that

{etλn}∞n=1 has infinitely many acumulation points.

Proof. We may assume that 0 ≤ Im λn for all n ≥ 1. Let J = [0, 1] and {qm}∞m=1 be
a dense sequence in [0, 2π].
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Let {An}∞n=1 be an enumeration of the sets Bm,k = {reis | s ∈ qm +
[0, k−1], ea ≤ r ≤ eb}, for k,m ∈ IN. The claim is that ther is t > 0 and a subse-
quence {λnk

}∞k=1 such that etλnk ∈ Ak for every k ≥ 1. Clearly the assertion follows
from this.

To establish the claim, choose n1 ∈ N such that A1 ⊆ {reis; s ∈ (Im λn1)J,
ea ≤ r ≤ eb}. Let J1 ⊆ J be a closed subinterval with A1 = {reis | s ∈ (Im λn1)J1,
ea ≤ r ≤ eb}. Inductively, we obtain a subsequence {λnk

}∞k=1 of {λn}∞n=1 and closed
intervals J ⊇ J1 ⊆ J2 ⊇ · · · such that Ak = {reis | s ∈ (Im λnk

)Jk, ea ≤ r ≤ eb} for
k ≥ 1. Choose any t ∈

⋂
k≥1

Jk. Then etλnk ∈ Ak for all k ≥ 1.

The following theorem improves in the second part one of Pazy’s results [3],
and using another approach, also gives a more elementary proof, for the first part of
the theorem.

Theorem 2. Let X be a Banach space and T = (T (t))t≥0 a compact C0-semigroup
with generator (A,D(A)). Then σ(A) consists of a sequence of isolated eigenvalues
{λn}∞n=1, with finite multiplicity, and satisfies lim

n→∞
Re λn = −∞.

Proof. It is known that {λ ∈ C | Re λ ≥ w} ⊂ ρ(A) for some w ∈ IR.
As ρ(A) 6= ∅ choose η ∈ ρ(A) and define R(η, A) ∈ L(X). As (T (t))t≥0 is a
compact semigroup it follows that R(η;A) is a compact operator [3] which means
that σ(R(η;A)) is a sequence of isolated eigenvalues {ηn}∞n=1 for R(η;A) having 0
as the single accumulation point [2]. By the spectral mapping theorem we have
σ(R(η, A)) = {0} ∪ {(η − λ)−1 | λ ∈ σ(A)}. Since eigenvalues of R(η;A) correspond
to eigenvalues of (A,D(A)) having the same finite multiplicity, then, the first part of
our claim follows.

Let us denote by {λn}∞n=1 the sequence of eigenvalues of A.

As ηn =
1

η − λn
, which means λn = η − 1

ηn
it follows that for ηn → 0,

λn →∞ and thus {λn}∞n=1 is an unbounded sequence.
Consider now Sa,b = {λ ∈ C | a ≤ Re λ ≤ b} with a, b ∈ IR, a < b, and denote

by {λnk
}k∈N = Sa,b ∩ σ(A).
Suppose that {λnk

}k∈N∗ is an infinite set. As {λn}n∈N∗ is unbounded
we deduce that lim

k→∞
|Im λnk

| = ∞. Then, by Lemma 1, it follows there ex-

ists t0 > 0 such that {et0λnk }∞k=1 has infinitely many accumulation points.
Then the spectral inclusion theorem et0σ(A) ⊂ σ(T (t0)), and the fact that
{et0λnk }k∈N∗ ⊆ {et0λn}n∈N∗ imply σ(T (t0)) has infinitely many accumulation points.
But T (t0) is a compact operator, therefore it has at most one point of accumula-
tion. That means that {λnk

}k∈N∗ is always finite for any a, b ∈ IR, a < b and
lim

n→∞
Re λn = −∞.

In the following, we shall use a perturbation result from the semigroup theory.

Lemma 3. Let (A,D(A)) be the generator of a C0–semigroup defined on a Banach
space X. If B ∈ L(X), then C = A + B, where D(C) = D(A), is the generator of
a C0-semigroup (S(t))t≥0. In addition if (T (t))t≥0 is compact then (S(t))t≥0 is also
compact.
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Now, let’s consider L(X) the space of all linear, bounded operators defined
on X.

Theorem 4. Let X be a Banach space and let (A,D(A)) be the infinitesimal generator
of an asymptotically stable, compact C0-semigroup (T (t))t≥0. If B ∈ L(X) and B
commutes with A, with r(B) < |s(A)|, then the semigroup S = (S(t))t≥0 generated by
A + B is also asymptotically stable.

Proof. As (T (t))t≥0 is stable it follows that it is also bounded and therefore σ(A) ⊆
{λ ∈ C | Re λ ≤ 0}. By Theorem 2.4 [1], a necessary and sufficient condition for the
strong stability of T = (T (t))t≥0 is σp(A) ∩ iIR = ∅. Therefore, as σ(A) = {λn}∞n=1

and Re λn < 0 for any n ∈ N∗ and as lim
n→∞

Re λn = −∞ it follows that s(A) =

max
n
{Re λn} < 0.

By Lemma 3, the semigroup S = (S(t))t≥0 generated by A + B, is also
compact. That means that, by the previous theorem, σ(A + B) = {µn}n∈N∗ with
lim

n→∞
Re µn = −∞ and so s(A + B) = max

n
{Re µn}.

If s(A + B) ≤ s(A) < 0, it means that s(A + B) < 0 and thus
σp(A + B) ∩ iIR = ∅ and in this case S is asymptotically stable. Suppose that
s(A + B) > s(A). As B commutes with A, a theorem of Kato [2] assures us, that the
Pompeiu–Hausdorff distance between σ(A) and σ(A + B) does not exceed the r(B),
dist(ζ, σ(A + B)) ≤ r(B) if ζ ∈ σ(A).

As s(A + B) − s(A) ≤ dist
ζ∈σ(A)

(ζ, σ(A + B)) ≤ r(B) < |s(A)| it follows that

s(A + B) < 0, which proves the theorem.
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Let f be a bivariate real-valued function defined on a domain D ⊂ R2, Z =
{zi| zi = (xi, yi), i = 1, . . . , N} ⊂ D and I(f) = {λkf | k = 1, . . . , n} a set of
informations on f (punctual evaluation of f and of certain of its derivatives).

It is well known the Shepard’s interpolation operator S0, defined by

(S0f)(x, y) =
N∑

i=1

Ai(x, y)f(xi, yi),

where

Ai(x, y) =
N∏

j=1
j 6=i

dµ
j (x, y)

/  N∑
k=1

N∏
j=1
j 6=k

dµ
j (x, y)


with dj(x, y) = ((x− xj)2 + (y − yj)2)1/2, µ ∈ R+ and n = N .

Remark 1. Here λkf = f(xk), k = 1, . . . , N .
A basic characteristic of an approximation operator is its degree of exactness,

usually abreviated by ”dex”.
As dex(S0) = 0, a first problem which appears in regard to the operator

S0 is its low degree of exactness. In order to increase it, the Shepard’s operator S0

was combined with others interpolation operators. In this way were defined Shepard
operators of Lagrange-type [6], Taylor-type [1, 3], Hermite-type [5], Birkhoff-type [2],
etc.

The most general case, studied in [2], is the Shepard operator of Birkhoff-type.
The information set about f , in this case, is

IB(f) = {λp,q
k f | λp,q

k f = f (p,q)(xk, yk), (p, q) ∈ Ik ⊂ N2, k = 1, . . . , N}
with |IB(f)| = n.

Now, if Ik(f) is the information of f at the point zk (Ik(f) = {λp,q
k f | (p, q) ∈

Ik}, Zk,νk
= {zk+j | j = 0, 1, . . . , νk − 1}, νk ∈ N∗ and Ik,νk

(f) = {λp,q
k+jf | (p, q) ∈

Ik+j , j = 0, 1, . . . , νk − 1}, where zN+i = zi, i ∈ N, one denotes by Brk

k the Birkhoff
polynomial of the total degree rk which interpolates the data Ik,νk

(f), i.e.

λp,q
k+jB

rk

k = λp,q
k+jf, (p, q) ∈ Ik+j , j = 0, 1, . . . , νk − 1.

The operator SB defined by

SBf =
N∑

k=1

AkBrk

k f (1)

was called combined Shepard operator of Birkhoff-type.

Received by the editors: 01.03.2003.
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The degree of exactness of the operator SB is

dex(SB) = min{rk| k = 1, . . . , N}.

The difficult problem arising in regard to the operator SB is to select the
subsets Ik,νk

(f) of the given set IB(f) such that the Birkhoff polynomials Brk

k to
exist for all k = 1, . . . , N .

The goal of this paper is to consider some particular cases of Birkhoff-type
information for which the existence and the uniqueness of the corresponding Birkhoff
interpolation polynomials are assured.

1. Taylor type information

As a particular Birkhoff-type information, that was already studied, is Taylor-
type information

IT (f) = {λp,q
k f | λp,q

k f = f (p,q)(zk), p, q ∈ N, p + q ≤ nk, k = 1, . . . , N}

Using this information was constructed so called Shepard operator of Taylor-
type Sm [1], [3] defined by

(Smf)(x, y) =
N∑

i=1

Ai(x, y)(Tm
i f)(x, y)

where Tm
i f is the bivariate Taylor operator of the total degree m:

(Tm
i f)(x, y) =

∑
p+q≤m

(x− xi)p

p!
(y − yi)q

q!
f (p,q)(xi, yi),

respectively Sm1,...,mN
[1]:

(Sm1,...,mN
f)(x, y) =

N∑
i=1

Ai(x, y)(Tmi
i f)(x, y)

where Tmi
i is the Taylor’s polynomial of the degree mi and the interpolation nodes

xi.

2. Bivariate Abel-Gonciarov interpolation

In the univariate case, the Abel-Gonciarov interpolation problem is based on
the information set

I(f) = {f(x0), f ′(x1), . . . , f (n)(xn)}
The polynomial

(Pnf)(x) =
n∑

i=0

pn,i(x)f (i)(xi)

for which
pn,i(xj) = δij , i, j = 0, 1, . . . , n

is the corresponding Abel-Gonciarov polynomial that interpolates the date I(f), i.e.

(Pnf)(i)(xi) = f (i)(xi), i = 0, 1, . . . , n.
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Remark 2. For xn = xn−1 = · · · = x1 = x0, Pnf becomes the Taylor
polynomial Tnf :

(Tnf)(x) =
n∑

i=0

(x− x0)i

i!
f (i)(x0).

For the bivariate case, let us consider the interpolation problem: for a real-
valued function defined on D and for a given set of points Z = {zi ∈ D| i = 0, 1, . . . , n}
for which the information

In(f) = {f (p,q)(zp+q)| p, q ∈ N, p + q = 0, 1, . . . , n} (2)

exists, find a polynomial P ∈ P2 (the set of all bivariate polynomials), with the
minimal total degree, that interpolates the data In(f).

Such a problem will be called a bivariate Abel-Gonciarov interpolation prob-
lem.

Also, a solution of such a problem is called a bivariate Abel-Gonciarov inter-
polation polynomial. Next it will be abreviated by Gnf , where n is its total degree.

Since |In(f)| = (n + 1)(n + 2)/2, the solution of the above interpolation
problem, is a bivariate polynomial of the total degree n:

Pn(x, y) =
∑

i+j≤n

aijx
iyj . (3)

Lemma 1. Let be D ⊂ R2, zi ∈ D, i = 0, 1, . . . , n and f : D → R a function
for which In(f) exists. Then, for all n ∈ N∗, there exists an unique polynomial of the
total degree n, Gnf , that interpolates the data In(f).

Proof. Applying the interpolation conditions to the polynomial from (3),
one obtains∑

i+j≤n

i[p]j[q]xi−p
p+qy

j−q
p+qaij = f (p,q)(xp+q, yp+q), p + q = 0, 1, . . . , n, (4)

which is a (n+1)(n+2)/2× (n+1)(n+2)/2 linear algebraic system in the unknowns
aij , i + j ≤ n. The matrix of this system, say M , is an upper diagonal matrix with
nonzero elements on its diagonal. Hence detM 6= 0 and the proof follows.

Definition 1. The operator Gn is called the bivariate Abel-Gonciarov poly-
nomial interpolation operator.

Remark 3. Gn exists and is unique for all n ∈ N∗ and dex(Gn) ≥ n
(lemma 1).

We have

(Gnf)(x, y) =
∑

i+j≤n

gij(x, y)f (i,j)(xi+j , yi+j), (5)

where gij are the corresponding fundamental interpolation polynomials:

g
(p,q)
ij (xi+j , yi+j) =

{
1, for (p, q) = (i, j)
0, otherwise.

3. Combined Shepard operator of Abel-Gonciarov-type

If in (1), instead of Brk

k is taken Abel-Gonciarov operator Grk

k that interpo-
lates the information

Ik,rk
(f) = {f (p,q)(zk+p+q)| p, q ∈ N, p + q = 0, 1, . . . , rk} (6)

41



GH. COMAN AND I. TODEA

for k = 1, . . . , N , with the specification that zN+k = zk, one obtains the Shepard-type
operator SG

r1,...,rN
:

(SG
r1,...,rN

f)(x, y) =
N∑

k=1

Ak(x, y)(Grk

k f)(x, y).

Definition 2. The operator SG
r1,...,rN

is called the bivariate Shepard operator
of Abel-Gonciarov-type.

From (5), it follows that

(Grk

k f)(x, y) =
∑

i+j≤rk

grk,i,j(x, y)f (i,j)(xk+i+j , yk+i+j)

with

g
(p,q)
rk,i,j(xk+i+j , yk+i+j) =

{
1, for (p, q) = (i, j)
0, otherwise.

Remark 3. The existence and uniqueness of the interpolating polynomials
Grk

k , k = 1, . . . , N implies the existence and the uniqueness of the operator SG
r1,...,rN

.
Theorem 1. Let be M = max{rk| k = 1, . . . , N}. If µ > M then

(SG
r1,...,rN

f)(p,q)(zk+p+q) = f (p,q)(zk+p+q), p + q = 0, 1, . . . , rk

for all k = 1, . . . , N .
Proof. First, we note that

A
(p,q)
k (xi, yi) = 0 for (p, q) ∈ N2, p + q = 0, 1, . . . , ri, i 6= k

A
(p,q)
k (xk, yk) = 0, p + q = 1, . . . , rk

(7)

It follows that

(SG
r1,...,rN

f)(p,q)(zi+p+q) =
N∑

k=1

(AkGrk

k f)(p,q)(zi+p+q) =

=
N∑

i=1

Ak(zi+p+q)(Grk

k f)(p,q)(zi+p+q)

As,
Ak(xi, yi) = δki

(Grk

k f)(p,q)(zi+p+q) = f (p,q)(zi+p+q),

one obtains
(SG

r1,...,rN
f)(p,q)(zi+p+q) = f (p,q)(zi+p+q)

for p + q = 0, 1, . . . , ri and i = 1, . . . , N .
Theorem 2. Let be r = min{rk| k = 1, . . . , N}. Then

dex(SG
r1,...,rN

) = r.

Proof. We have to check that

SG
r1,...,rN

eij = eij , for all i, j ∈ N with i + j ≤ r
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where eij(x, y)xiyj . But, Grk

k eij = eij for i + j ≤ rk for all k = 1, . . . , N (dex(Grk

k ) =
rk). Hence Grk

k eij = eij for i + j ≤ r (r ≤ rk, k = 1, . . . , N). It follows that

SG
r1,...,rN

eij =
N∑

k=1

Akeij = eij

N∑
k=1

Ak = eij

(
∑N

k=1 Ak = 1).
Remark 4. For r1 = · · · = rN the operator SG

r1,...,rN
becomes, say SG

r , given
by

(SG
r f)(x, y) =

N∑
k=1

Ak(x, y)(Gr
kf)(x, y)

where Gr
k is the Abel-Gonciarov operator that interpolates the data Ik,r(f). It means

that all the polynomials Gr
kf have the same degree r and dex(SG

r ) = r.

4. Particular cases

1. I(f) = {f (p,q)(xk, yk)| p + q = 0, 1; k = 1, . . . , N}
The Abel-Gonciarov polynomials G1

kf are

(G1
kf)(x, y) = f(xk, yk) + (x− xk)f (1,0)(xk+1, yk+1) + (y − yk)g(0,1)(xk+1, yk+1),

k = 1, . . . , N , with xN+1 = x, and yN+1 = y1.
The corresponding Shepard operator SG

1 is given by

(SG
1 f)(x, y) =

N∑
k=1

Ak(x, y)(G1
kf)(x, y)

and dex(SG
1 ) = 1.

2. As a second example one considers the Shepard operator of Abel-
Gonciarov-type which use the information

I(f) = {f (p,q)(xi, yi)| p + q = 0, 1, 2; i = 1, . . . , N} (8)

(SG
2 f)(x, y) =

N∑
k=1

Ak(x, y)(G2
kf)(x, y)

where

(G2
kf)(x, y) = f(xk, yk) + (x− xk)f (1,0)(xk+1, yk+1) + (y − yk)f (0,1)(xk+1, yk+1)+

+
(x− xk)(x + xk − 2xk+1)

2
f (2,0)(xk+2, yk+2)+

+[(x− xk+1)(y − yk+1)− (xk+1 − xk)(yk+1 − yk)]f (1,1)(xk+2, yk+2)+

+
(y − yk)(y + yk − 2yk+1)

2
f (0,2)(xk+2, yk+2).

Is easy to verify that the operator SG
2 interpolates the data (8) and dex(SG

2 ) = 2.
Next we give the corresponding graphs for the function f(x, y) = x exp(−x2−y2) and
form some Shepard-type operators on the rectangular domain D = [−2, 2] × [−2, 2],
for N = 10 and interpolation nodes given bellow:

(-1.9204,1.9204), (-1.9204,-1.6910), (-0.9812,-1.6910), (-0,9812,1.3152),
(0.0876,1.5156), (0.2881,-0.0208), (-0.1127,-0.8893), (0.9561,-1.1565),
(0.7557,0.8707), (1.5774,-3490)
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SHEPARD METHOD - FROM APPROXIMATION TO

INTERPOLATION

ION COZAC

Abstract. In this paper we review the local Shepard method that uses
Franke-Little weights, in order to give necessary and su�cient conditions
when this method yields an interpolation function. Next we give a practical
algorithm to solve this problem, which is based on geometric algorithms.
This paper is a re�nement of the results presented in [5] and [6].

1. The Local Shepard Method

Let consider the bi-dimensional case of two independent variables x and y
for a function f : z = f(x, y), where (x, y) ∈ R2 with (x, y, z) ∈ R3. Given n
interpolation points, we want to �nd an interpolation function Φ with z = Φ(x, y)
de�ned for (x, y) ∈ D in such a way that F (xi, yi) = f(xi, yi) for all j = 1, . . . , n.

If the nodes (xj , yj) (j = 1, . . . , n) do not form a rectangular grid but are
arranged in a completely arbitrary and unordered way, we can use spline surfaces or
the Shepard method. The Shepard method has proven well suited for the graphic
representation of surfaces. Its approximating function Φ is uniquely determined
independently from the ordering of the nodes (xi, yi) (i = 1, . . . , n). The function
f : z = f(x, y) for (x, y)D, where D is an arbitrary region of the Oxy plane, is
approximated for the given nodes (xi, yi) by the function

Φ(x, y) =
n∑

i=1

wi(x, y) · fi (1)

where the weight functions are de�ned as

wi(x, y) =
(ρ− ri(x, y))µ

+∑n
l=1 ((ρ− rl(x, y))µ

+

(1a)

with the notations

ri(x, y) =
√

(x− xi)2 + (y − yi)2 (1b)

and

sµ
+ =

{
sµ, s ≥ 0
0, s < 0 (1c)

So we can write

Φ(x, y) =
∑n

i=1 ((ρ− ri(x, y))µ
+ · fi∑n

i=1 ((ρ− ri(x, y))µ
+

(2)

Received by the editors: 01.10.2002.
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The parameters ρ and µ are determined at the beginning of the interpolation process.
The exponent µ can be chosen arbitrarily. If 0 < µ ≤ 1 the function Φ has peaks at
the nodes. If µ > 1 the function is level at the nodes.

The function Φ uses only those nodes (xj , yj) within a disc of radius ρ when
calculating a new functional value Φ(x, y), id est, this is a local method. We use a fast
local Shepard approximation with Franke-Little weights because of the very reduced
complexity order, which is very important for computer graphics applications.

Theorem 1. Let d := min{rj(xl, yl) | j, l = 1, . . . , n and j 6= l}. Φ (as de�ned in (2))
is an interpolation function if and only if ρ ≤ d.

Proof. The following two conditions are ful�lled for each (x, y) ∈ D :

0 ≤ wi(x, y) ≤ 1
n∑

i=1

wi(x, y) = 1

The following two conditions are ful�lled if and only if ρ ≤ d :

wi(xj , yj) = 0 for each i 6= j and each (x, y) ∈ D;

wi(xi, yi) = 1 (i = 1, . . . , n). �

2. Improving the Local Shepard Method

We need to analyse three problems when using the Shepard method. The
�rst one is how to organise the input data (the set P ) in such a way that we can
quickly �nd all the nodes lying inside of a disc having the centre (x, y) and the radius
ρ. This problem can be solved in O(n log n) pre-processing time, and �nding all the
necessary nodes needs O(n log n+ k) time, where k is the number of the found nodes
([1], [6]).

The second problem is how to determine an acceptable value for the param-
eter ρ. We impose for this value the following conditions:

• the disc having the radius ρ must cover at least one node from P, wherever
we place this disc in the interior of the ConvHull(P );

• this disc must not cover too much close nodes: we need to quickly compute
the value Φ(x, y).

This problem can be solved in O(n log n) time, determining the Delaunay
diagram of the set P . This diagram is composed by triangles whose vertices are
nodes from P , and the interior of the circumcircle of any triangle does not contain
any other node from P. We choose the maximum radius of the circumcircle of any
triangle: the value of ρ.

The third problem is how to modify the Shepard method in order to obtain
an interpolation function. Precisely, we have to answer the following question. Is the
below linear equations system (3) uniquely solvable?

Ψ(xi, yi) :=

∑n
j=1 (ρ− rj(xi, yi))

µ
+ · zj∑n

j=1 (ρ− rj(xi, yi))
µ
+

= fi for i = 1, . . . , n (3)

Theorem 2. There exists a positive value µ0 in such a way that for any µ > µ0 the
system (3) is uniquely solvable.
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Proof. Suppose, without loss of generality, that ρ = 1 (we can apply a simple
scaling operation). By elementary transformations (each equation is multiplied by
the denominator of Ψ(xi, yi)), and because ri(xj , yj) = rj(xi, yi) we obtain that the
matrix of (3) has the following properties:

it is symmetric, all the values which lie on the main diagonal are 1,
and all the

other values lie in the interval [0,1); but is not necessarily diagonal
dominant!

Can we determine a value for µ in such a way so that the system matrix of
(3) is diagonal dominant?

Let si(µ) :=
n∑

j=1,j 6=1

(1− ri(xj , yj))
µ
+. We can determine a value µ so that

si(µ) < 1, because si(µ) is a continuous, decreasing function (all the terms are less
than 1), and lim

µ→∞
si(µ) = 0. �

To calculate the values Ψ(x, y) we need only those points from P, which lie
inside the disc having the centre (x, y) and the radius ρ. How can we �nd an optimal
value (minimum) for the parameter ρ so that

(i) Ψ can be de�ned at least on ConvHull(P );
(ii) Ψ(xi, yi) = f(xi, yi) for i = 1, . . . , n; id est, Ψ is indeed an interpolation

function.
The proposed algorithm is given below.

Step 1. Determine the Delaunay diagram of the set P. Let considers three
non-collinear nodes pi, pj , pk that de�ne a triangle of the diagram, and ρijk be the
circumcircle of the triangle pipjpk. This circle does not contain any other node - this
is an important property of the Delaunay diagram ([1], [3]).

Let d := mindist(pi, pj) | i, j = 1, . . . , n and i 6= j, and ρ = max ρijk. The
value of d can be quickly determined by scanning all the triangles of the Delaunay
diagram. If ρ ≤ d then we can easily see that (i) and (ii) are ful�lled.

Step 2. (only if ρ > d). In this case only (i) is ful�lled, so we try to solve
the system (3). We need to �nd the values zi (which are unknown) to ful�l (ii). It is
necessary to try di�erent values for the parameter m until the system matrix of (3)
is non-singular and well conditioned. At this moment we can solve the system using
an iterative method (Jacobi, Gauss-Seidel).

3. Conclusions

The authors of [2] gave a "suggestion" about how to choose the values of the
two parameters of the Shepard method:

"To avoid peaks at the nodes, choose 2 ≤ µ ≤ 6. Our tests indicate that
0.1 ≤ ρ ≤ 0.5 is the preferred range, where we recommend to choose a small value for
ρ in case of many available nodes and a larger ρ for problems with few nodes.

For the local method, however, any choice of ρ near the recommended upper
bound of 0.5 leads to unsatisfactory results."

We don't have any other indication about how to determine these two param-
eters. The user has to choose manually many couples (ρ, µ) until he gets the expected
results.
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This is why we gave in this paper an algorithm that automatically deter-
mines these two parameters, depending on the topology of the set P. More than that,
we improve this method in order to accelerate the computations, and to obtain an
interpolation function.

References

[1] Franco P. Preparata, Michael I. Shamos - Computational Geometry; an Introduction /
Springer Verlag 1988.

[2] Gisela Engeln-Mullges, Frank Uhlig (1996) - Numerical Algorithms with C / Springer
1996.

[3] M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkoph - Computational Geometry.
Algorithms and Applications / Springer 1997.

[4] Gheorghe Coman, Radu Trâmbiµa³ - Bivariate Shepard Interpolation / Research Sem-
inar, Seminars of Numerical and Statistical Calculus, Babe³-Bolyai University, Cluj-
Napoca 1999, pp 41-83.

[5] Ion Cozac - Geometric Algorithms Used in Interpolation / Sesiunea de comunic ri ³ti-
inµi�ce, Universitatea "Petru Maior", Tîrgu-Mure³ 2000, pp 13-18.

[6] Ion Cozac - C utare într-un disc de raz  �x  / Buletinul �tiinµi�c, Universitatea "Petru
Maior", Tîrgu-Mure³ 2002, pp 94-97.

"Petru Maior" University of Tg. Mure³, Romania
E-mail address: cozac@uttgm.ro

52
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ON THE NECESSARY AND SUFFICIENT CONDITION FOR THE
REGULARITY OF A MULTIDIMENSIONAL INTERPOLATION

SCHEME

NICOLAE CRAINIC

Abstract. In this article we will present the necessary and sufficient con-
dition for the regularity of a multidimensional interpolation scheme, in
the case when the interpolation indexes are taken from an arbitrary set S
from Nd. In particular, if the index set S (of the interpolation space PS )
is inferior with respect to Nd, we obtain the theorem 3.4.2. from [1]. The
set ∆d

k from Nd, given by the relation (1), together with the proposition 1,
are the key elements that allow us to approach the theorem in a general
context and to give another proof for it, compared of course with the one
given in [1].

Let Nd = {i = (i1, i2, . . . , id)/ik ≥ 0, ik ∈ N, k = 1, d}, |i| = i1 + i2 + . . . + id,
and the definitions:
1. We say that i = (i1, i2, . . . , id) ∈ Nd is in the relation “≤” with j = (j1, j2, . . . , jd) ∈
Nd and we write i ≤ j when 0 ≤ ik ≤ jk for any k = 1, d.
2. We say that I ⊂ Nd is a lower set with respect to Nd if for any i ∈ I and j ∈ Nd

so that j ≤ i, we have j ∈ I . In the same manner we can define the inferior set with
respect to any set S ⊂ Nd

If ∆d
k ⊂ Nd,

∆d
k =

k⋃
i1=0

k−i1⋃
i2=0

. . .

k−(i1+...+id−2)⋃
id−1=0

{i1, . . . , id−1, k − (i1 + . . . + id−1)} (1)

we have T d
n =

⋃n
k=0 ∆d

k, that is

T d
n =

n⋃
k=0

∆d
k =

n⋃
k=0

k⋃
i1=0

k−i1⋃
i2=0

. . .

k−(i1+...+id−2)⋃
id−1=0

{i1, . . . , id−1, k − (i1 + . . . + id−1)}

is a lower set with respect to Nd.
Proposition 1. Any set S from Nd can be written in the form

S =
n⋃

t=1

∆′d
kt

(2)

where kn = max
i∈S

|i|, 0 ≤ k1 ≤ . . . ≤ kn, ∆′d
kt
⊂ ∆d

kt
and ∆d

kt
, t = 1, n, are given by

(1).

Received by the editors: 07.01.2003.
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Proposition 2. If P ∈ PS and S ⊂ Nd given by (2), then for any x =
(x1, x2, . . . , xd) ∈ Rd and i = (i1, i2, . . . , id) ∈ S ⊂ Nd, we have

P (x) =
∑
i∈S

aix
i1
1 xi2

2 . . . xid

d =
n∑

t=1

Pkt
(x), Pkt

(x) =
∑

i∈∆′d
kt

aix
i1
1 xi2

2 . . . xid

d , t = 1, n

The α = (α1, α2, . . . , αd) ∈ S ⊂ Nd order derivatives of P are:

∂α1+α2+...+αd

∂xα1
1 ∂xα2

2 . . . ∂xαd

d

P (x) =

=
∑

i∈S ,α≤i

ai
i1!

(i1 − α1)!
i2!

(i2 − α2)!
. . .

id!
(id − αd)!

xi1−α1
1 xi2−α2

2 . . . xid−αd

d ,

and those of those of Pkt
are:

∂α1+α2+...+αd

∂xα1
1 ∂xα2

2 . . . ∂xαd

d

Pkt
(x) =

∂kt

∂xα1
1 ∂xα2

2 . . . ∂x
αd−1
d−1 ∂x

kt−(α1+α2+...+αd−1)
d

Pkt
(x) =

= α1!α2! . . . αd−1![kt − (α1 + α2 + . . . + αd−1)]! aα1,α2,...,αd−1,kt−(α1+α2+...+αd−1),

for any x = (x1, x2, . . . , xd) ∈ Rd.
In what follows, whenever we write S we will denote an arbitrary set from

Nd. By extending from a set I inferior with respect to Nd (see also [1]) to an arbitrary
set S from Nd, we define the following notions.
Definition 1. A polinomial multidimensional interpolation scheme (E ,PS ) consists
of:

(a) A set of nodes Z = {xq}m
q=1 = {(xq,1, xq,2, . . . , xq,d)}m

q=1 from Rd

(b) An interpolation space

PS =

{
P/P (x) =

∑
i∈S

aix
i1
1 xi2

2 . . . xid

d , ai ∈ R, x = (x1, x2, . . . , xd) ∈ Rd

}
,

which is the space of the d variables polinomes with real coefficients where
S is an arbitrary subset of Nd, and

(c) An incidence matrix E = (eq,α), 1 ≤ q ≤ m, α ∈ S, where eq,α = 0 or 1.
The interpolation problem associated with (E ,PS ) consists of find-

ing the polinomes P ∈ PS , that would satisfy the equations

∂α1+α2+...+αd

∂xα1
1 ∂xα2

2 . . . ∂xαd

d

P (xq) = cq,α (3)

for any q = 1,m and α = (α1, α2, . . . , αd) ∈ S with eq,α = 1 where cq,α

are arbitrary real constants
The (3) equations make up a system of linear equations whose unknowns

are the real coefficients of the polinome P . The matrix M(E ,Z ) of this sys-
tem is at the same time the matrix of the interpolation scheme (E ,PS ), and it is
called Vandermonde matrix. If M(E ,Z ) is a square matrix, then its determinant,
detM(E ,Z ) = D(E ,Z ), is the determinant of the system (3), and of the interpola-
tion scheme (E ,PS ), and it is called Vandermonde determinant.
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If in definition 1 we consider that S is a set I inferior with respect to Nd,
then, according to [1], (E ,PI ) is a Birkhoff interpolation scheme, the E matrix is
the Birkhoff incidence matrix, and the interpolation polynom P is a Birkhoff poli-
nome. Also, according to [1], by various particularisations of the Birkhoff interpola-
tion scheme, we obtain the Lagrange, Hermite, Taylor and Abel interpolation schemes,
with their corresponding incidence matrices and interpolation polinomes.
Definition 2. Let S be a set from Nd and (E ,PS ) the corresponding multidimen-
sional interpolation scheme. We say that E = (eq,α) is an Abel incidence matrix,
if for any α ∈ S , eq,α = 1 for exactly one q ∈ 1,m. The scheme, the polinome
and the interpolation problem corresponding to the Abel incidence matrix, are called
Abel interpolation scheme, Abel interpolation polinome, respectively Abel interpolation
problem.
Definition 3. The multidimensional interpolation scheme (E ,PS ) is called normal
if |E | = dimPS .

Because in the present article we will work only with normal interpolation
schemes, from now on, whenever we discuss an interpolation scheme, we will consider
it normal.
Definition 4. We say that an interpolation scheme (E ,PS ) is

(a) singular, if D(E ,Z ) = 0 for any choice of the set of nodes Z ,
(b) regular, if D(E ,Z ) 6= 0 for any choice of the set of nodes Z and
(c) almost regular, if D(E ,Z ) 6= 0 for almost all choices of the set of nodes Z .

Definition 5. Two interpolation schemes are equivalent when the systems of their
interpolation problems are equivalent.
Theorem 1. The interpolation scheme (E ,PS ) is regular if and only if it is equivalent
with an Abel interpolation scheme.

Proof. If E is a Abel matrix and if the order of the coefficients of the interpolation
polinome and the order of the derivatives from the interpolation system are those
which correspond to the order of the elements of the set S , then the matrix of the
interpolation system is superior triangular. If not, by switching lines or (and) columns
in M(E ,Z ), we can obtain what we have previously shown, and thus it follows that
the new determinant is different from the previous one only through its sign. It follows
that the determinant of this matrix is:

dS = ±
∏
α∈S

α!

where α! = α1!α2! . . . αd!. It follows that dS 6= 0, and as a result (E ,PS ) is regular.
Conversely, we assume that (E ,PS ) is regular and let P be the solution of

the interpolation problem of this interpolation scheme, where:

P (x) = P (x1, x2, . . . , xd) =
∑
i∈S

aix
i1
1 xi2

2 . . . xid

d

for any x = (x1, x2, . . . , xd) ∈ Rd and ai ∈ Rd (real constants, since the given scheme
is regular).

With the same E and PS we show that we have Q ∈ PS (by construction) for
which (E ,PS ) is Abel, and the two interpolation systems (of the regular scheme and
of the Abel scheme) are equivalent having the same solutions: the ai ∈ R. For this we
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consider the next regrouping S =
⋃n

t=1 ∆′d
kt

of all indexes of the polinome coefficients
P , with 0 ≤ k1 ≤ k2 ≤ . . . ≤ kn, kn = max

i∈S
|i| , ∆′d

kt
⊂ ∆d

kt
and ∆d

kt
, t = 1, n, given

by (1) (their existence is ensured by proposition 1). Let be:

Q(x) = Q(x1, x2, . . . , xd) =
∑
i∈S

bix
i1
1 xi2

2 . . . xid

d =

=
n∑

t=1

Qkt(x), Qkt(x) =
∑
i∈S

bix
i1
1 xi2

2 . . . xid

d

We will determine bi so that (E ,PS ) is Abel and bi = ai, for any i ∈ S . For
the beginning let be the system:∑

i∈S ,α≤i

bi
i1!

(i1 − α1)!
. . .

id!
(id − αd)!

xi1−α1
q,1 . . . xid−αd

q,d = cq,α (4)

with q ∈ 1,m and eq,α = 1 for any α ∈ S and

Z = {xq}m
q=1 = {(xq,1, xq,2 . . . xq,d)}m

q=1 ⊂ Rd.

For α = (α1, α2, . . . , αd−1, kn − (α1 + α2 + . . . + αd−1)) ∈ ∆′d
kn

and α ≤ i,
i ∈ ∆′d

kn
. In this case the system (4) is equivalent with∑

i∈∆′d
kn

,α≤i

bi
i1!

(i1 − α1)!
. . .

id!
(id − αd)!

xi1−α1
q,1 . . . xid−αd

q,d = cq,α,

that is, according to proposition 2, equivalent with the system

α1!α2! . . . αd−1![kn− (α1 +α2 + . . .+αd−1)]! bα1,α2,...,αd−1,kn−(α1+α2+...+αd−1) = cq,α.

We consider in what follows

cq,α = cα1,α2,...,αd−1,kn−(α1+α2+...+αd−1)
def
=

= α1!α2! . . . αd−1![kn − (α1 + α2 + . . . + αd−1)]! aα1,α2,...,αd−1,kn−(α1+α2+...+αd−1).

It follows that

bα1,α2,...,αd−1,kn−(α1+α2+...+αd−1) = aα1,α2,...,αd−1,kn−(α1+α2+...+αd−1),

for any α = (α1, α2, . . . , αd−1, kn − (α1 + α2 + . . . + αd−1)) ∈ ∆′d
kn

, from where we
have

dim P∆′d
kn

=

=
∣∣∣{α ∈ (α1, α2, . . . , αd−1, kn − (α1 + α2 + . . . + αd−1)) ∈ ∆′d

kn
}
∣∣∣ =

∣∣∣∆′d
kn

∣∣∣
(each derivative α ∈ ∆′d

kn
of Q is interpolated only once), and

Qkn(x) =
∑

i∈∆′d
kn

bix
i1
1 xi2

2 . . . xid

d =
∑

i∈∆′d
kn

aix
i1
1 xi2

2 . . . xid

d = Pkn(x)

If α ∈ ∆′d
kn−1

, and α ≤ i, then i ∈ ∆′d
kn−1

∪∆′d
kn

, and the system (4) becomes
successively
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∑
i∈∆′d

kn−1
∪∆′d

kn
,α≤i

bi
i1!

(i1 − α1)!
. . .

id!
(id − αd)!

xi1−α1
q,1 . . . xid−αd

q,d = cq,α,

∑
i∈∆′d

kn−1
,α≤i

bi
i1!

(i1 − α1)!
. . .

id!
(id − αd)!

xi1−α1
q,1 . . . xid−αd

q,d +

+
∑

i∈∆′d
kn

,α≤i

bi
i1!

(i1 − α1)!
. . .

id!
(id − αd)!

xi1−α1
q,1 . . . xid−αd

q,d = cq,α.

We take now

cq,α
def
=

∑
i∈∆′d

kn
,α≤i

ai
i1!

(i1 − α1)!
. . .

id!
(id − αd)!

xi1−α1
q,1 . . . xid−αd

q,d +

+α1!α2! . . . αd−1![kn−1−(α1+α2+. . .+αd−1)]! aα1,α2,...,αd−1,kn−1−(α1+α2+...+αd−1).

(for i ∈ ∆′d
kn

, bi = ai) and considering the proposition 2, we obtain the system

α1!α2! . . . αd−1![kn−1−(α1 +α2 + . . .+αd−1)]! bα1,α2,...,αd−1,kn−1−(α1+α2+...+αd−1) =

= α1!α2! . . . αd−1![kn−1−(α1+α2+. . .+αd−1)]! aα1,α2,...,αd−1,kn−1−(α1+α2+...+αd−1),

that is

bα1,α2,...,αd−1,kn−1−(α1+α2+...+αd−1) = aα1,α2,...,αd−1,kn−1−(α1+α2+...+αd−1)

for any α = (α1, α2, . . . , αd−1, kn−1 − (α1 + α2 + . . . + αd−1)) ∈ ∆′d
kn−1

.
It follows that

dim P∆′d
kn−1

=

=
∣∣∣{α = (α1, α2, . . . , αd−1, kn−1 − (α1 + α2 + . . . + αd−1)) ∈ ∆′d

kn−1
}
∣∣∣ =

∣∣∣∆′d
kn−1

∣∣∣
(each derivative α ∈ ∆′d

kn−1
of Q is interpolated only once), respectively

Qkn−1(x) =
∑

i∈∆′d
kn−1

bix
i1
1 xi2

2 . . . xid

d =
∑

i∈∆′d
kn−1

aix
i1
1 xi2

2 . . . xid

d = Pkn−1(x)

Continuing in the same manner, we obtain that for α ∈ ∆′d
k1

, the system (4)
is successively equivalent with

∑
i∈∆′d

k1
∪...∪∆′d

kn
,α≤i

bi
i1!

(i1 − α1)!
. . .

id!
(id − αd)!

xi1−α1
q,1 . . . xid−αd

q,d = cq,α,
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i∈∆′d

k1
,α≤i

bi
i1!

(i1 − α1)!
. . .

id!
(id − αd)!

xi1−α1
q,1 . . . xid−αd

q,d +

+
∑

i∈∆′d
k2
∪...∪∆′d

kn
,α≤i

bi
i1!

(i1 − α1)!
. . .

id!
(id − αd)!

xi1−α1
q,1 . . . xid−αd

q,d = cq,α

In this final system we take

cq,α
def
=

n∑
u=2

∑
i∈∆′d

ku
,α≤i

ai
i1!

(i1 − α1)!
. . .

id!
(id − αd)!

xi1−α1
q,1 . . . xid−αd

q,d +

+ α1!α2! . . . αd−1![k1 − (α1 + α2 + . . . + αd−1)]! aα1,α2,...,αd−1,k1−(α1+α2+...+αd−1).

(for i ∈ ∆′d
k2
∪ . . . ∪∆′d

kn
, bi = ai).

It follows that in this case we have also

bα1,α2,...,αd−1,k1−(α1+α2+...+αd−1) = aα1,α2,...,αd−1,k1−(α1+α2+...+αd−1)

for any α = (α1, α2, . . . , αd−1, k1 − (α1 + α2 + . . . + αd−1)) ∈ ∆′d
k1

, and thus

dim P∆′d
k1

=

=
∣∣∣{α = (α1, α2, . . . , αd−1, k1 − (α1 + α2 + . . . + αd−1)) ∈ ∆′d

k1
}
∣∣∣ =

∣∣∣∆′d
k1

∣∣∣ ,

(each derivative α ∈ ∆′d
k1

of Q is interpolated only once), respectively

Qk1(x) =
∑

i∈∆′d
k1

bix
i1
1 xi2

2 . . . xid

d =
∑

i∈∆′d
k1

aix
i1
1 xi2

2 . . . xid

d = Pk1(x)

In the end, it follows that
n∑

t=1

dim P∆′d
kt

= |S | = dimPS ,

and

Q(x) =
n∑

t=1

Qkt(x) =
n∑

t=1

Pkt(x) = P (x)

is the solution of the interpolation problem of the Abel scheme (E ,PS ) (each derivative
α ∈ S of Q is interpolated only once). It follows, according to definition 5, that
(E ,PS ) is equivalent to an Abel interpolation scheme q.e.d.
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APPLICATIONS OF DIFFERENTIAL SUBORDINATIONS

AMELIA-ANCA HOLHOŞ

Abstract. In this paper, by using the method of differential subordina-
tions, we obtain a more general condition, from which it could be found
the conditions for starlikenes [2], [3], [4].

1. Introduction and definitions

Let U denote the open unit disk.
Let H = H (U) denote the class of functions analytic in U
For n a positive integer and a ∈ C, let

H [a, n] =
{

f ∈ H ; f(z) = a + anzn + an+1z
n+1 + . . .

}
with H0 = H [0, 1]

Recall the concept of subordination :
Let f and g be in H . The function f is said to be subordinate to g, written

f ≺ g or f(z) ≺ g(z), if there exists a function ϕ analytic in U, with ϕ(0) = 0 and
|ϕ(z)| < 1, such that f(z) = g(ϕ(z)).

If g is univalent, then f ≺ g if and only if f(0) = g(0) and f(U) ⊂ g(U).
Let Ψ : C3 ×U → C and let h be univalent in U. If p is analytic in U and

satisfies the (second-order) differential subordination

Ψ(p(z), zp′(z), z2p”(z), z) ≺ h(z) (1)
then p is called a solution of the differential subordination. The univalent function q
is called a dominant of the solutions of the differential subordinations, or more simply
a dominant, if p ≺ q for all p satisfying (1).

A dominant q̃ that satisfies q̃ ≺ q for all dominants q of (1) is said to be the
best dominant of (1).( Note that the best dominant is unique up to a rotation of U).

If we require the more restrictive condition p ∈ H [a, n], then p will be called
an (a, n) - solution, q an (a, n) - dominant and q̃ the best (a, n) - dominant.

Theorem A. ( M. Obradovic, T. Yaguchi, H. Saitoh [4]). Let q be a convex
function in U , with q(0) = 1 and Re[q(z)] > 1

2 , z ∈ U.If 0 ≤ α < 1, p is analytic in
U with p(0) = 1 and if

(1− α)p2(z) + (2α− 1)p(z)− α + (1− α)zp′(z) ≺

(1− α)q2(z) + (2α− 1)q(z)− α + (1− α)zq′(z) ≡ h(z), (2)
then p ≺ q and q is the best dominant of (2).

Received by the editors: 20.09.2002.
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Theorem B. (Sufficient conditions for starlikeness, P. T. Mocanu, Gh. Oros
[2]). Let the function h(z) = 1+(2α+1)µz+αµ2z2 where α > 0 and 0 < µ ≤ 1+ 1

2α .

If p(z) = 1 + p1z + p2z
2 + . . . is analytic in U and satisfies the condition

αzp′(z) + αp2(z) + (1− α)p(z) ≺ h(z),

then p(z) ≺ 1 + µz and this result is sharp.
Theorem C. (Sufficient conditions for starlikeness II, P. T. Mocanu, Gh.

Oros [3]) Let q be a convex function in U, with q(0) = 1, Re q(z) > α−β
2α ; α >

0, α + β > 0 and let

h(z) = αnzq′(z) + αq2(z) + (β − α)q(z). (3)

If the function p(z) = 1 + pnzn + . . . satisfies the condition :

αzp′(z) + αp2(z) + (β − α)p(z) ≺ h(z),

where h is given by (3) ,then p(z) ≺ q(z) where q is the best dominant.
Theorem D. (S. S. Miller, P. T. Mocanu, [1]) Let q be univalent in U and

let θ in Φ be analytic in a domain D containing q(U), with Φ(w) 6= 0, when w ∈ q(U).
Set Q(z) = zq(z)Φ[q(z)] , h(z) = θ[q(z)] + Q(z) and suppose that

i) Q is starlike in U, and
ii) Re zh′(z)

Q(z) = Re
[

θ′[q(z)]
Φ[q(z)] + zQ′(z)

Q(z)

]
> 0, z ∈ U.

If p is analytic in U, with p(0) = q(0), p(U) ⊂ D and

θ[p(z)] + zp′(z)Φ[p(z)] ≺ θ[q(z)] + zq′(z)Φ[q(z)] = h(z),

then p ≺ q, and q is the best dominant.

2. Main Results

Theorem 1. Let q be convex in U, with Re[2aq(z) + b] > 0, q(0) = 1, when
a, b ∈ C, a 6= 0 and let

h(z) = aq2(z) + bq(z) + czq′(z); c > 0.

If the function p ∈ H [1, n], i.e. p(z) = 1 + pnzn + . . . satisfies the differential
subordination :

ap2(z) + bp(z) + czp′(z) ≺ h(z),
then p ≺ q and q is the best (1, n) - dominant.

Proof. (On checking the conditions of Th.D)
Let

θ(w) = aw2 + bw

Φ(w) = c 6= 0 , ∀w ∈ q(U)
Q(z) = zq′(z)Φ[q(z)] = czq′(z)

i); Q(z) = czq′(z) is starlike because q(z) is convex and c > 0.

ii) Re
zh′(z)
Q(z)

= Re
[
θ′[q(z)]
Φ[q(z)]

+
zQ′(z)
Q(z)

]
= Re

[
2aq(z) + b

c
+ z

Q′(z)
Q(z)

]
=

= Re
[
2aq(z)

c
+

b

c
+ z

Q′(z)
Q(z)

]
> 0,

because
Re[2aq(z) + b] > 0.
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The conditions of Th.D is satisfied and we have: for p ∈ H [1, n] which
satisfies ap2(z) + bp(z) + czp′(z) ≺ h(z) we have p ≺ q and q is the best (1, n) -
dominant.

Remark 1. For q(z) = 1+µz univalent in U, with α > 0 and 0 < µ ≤ 1+1/α,
if

a = α
b = 1− α
Φ(w) = α

we obtain the result given in Theorem B (P. T. Mocanu, Gh. Oros, [2])
Remark 2. For q convex in U, with q(0) = 1, Re q(z) > α−β

2α , if
a = α
b = β − α
Φ(w) = α · u, when α > 0 and α + β > 0,

we reobtain the Theorem C (P. T. Mocanu, Gh. Oros, [3])
Remark 3. Let q be a convex function in U, with q(0) = 1 and Re q(z) > 1

2 ;
z ∈ U

If a = 1− α
b = 2α− 1 ;α ∈ [0, 1)
θ(w) = (1− α)w2 + (2α− 1)w − α
Φ(w) = 1− α,

we obtain the condition for starlikeness of Theorem A. (M. Obradovic, T. Yaguchi,
H. Saitoh [4]).
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METHOD ON PARTIAL AVERAGING FOR
FUNCTIONAL-DIFFERENTIAL EQUATIONS WITH HUKUHARA’S

DERIVATIVE

TERESA JANIAK AND ELŻBIETA  LUCZAK-KUMOREK

1. Introduction

In classical system of functional-differential equations it is possible to mid-
dle both complete and partial equations. Complete averaging was presented by
Bogolubov ([1]).

In this paper, we use a partial middling method in the case of functional-
differential inclusions with Hukuhara’s derivative, i.e. for inclusions of the form

DhX(t) ∈ F (t, Xt, ) (1)

where DhX denotes a Hukuhara’s derivative ([2]) of a multivalued mapping X,
Xt : Θ → Xt(Θ) = X(t + Θ) for Θ ∈ [−r, 0], r > 0, F is a map from [0, T ]× C0 into
CC(Rn), and C0 is a metric space of all continuous mapping Φ : [−r, 0] → Conv(Rn).

The application of this method leads to a reduced form of the initial equations
system and is useful in the case when the means of certain functions do not exist.

The results of this paper generalize the results of V. A. P lotnikov ([5]), where
the generalized system ẋ(t) ∈ F (t, x) was investigated.

2. Notations and definitions

By Conv(Rn) we will denote the family of all nonempty compact and convex
subsets of the real n-dimensional Euclidean space Rn with the Hausdorff metric H
defined by:

H(A,B) = max
{

sup
a∈A

inf
b∈B

|a− b|, sup
b∈B

inf
a∈A

|a− b|
}

for A,B ∈ Conv(Rn), where | · | denotes the Euclidean norm.
It is know that (Conv(Rn),H) is a complete metric space ([3]). Let CC(Rn)

denote the space of all nonempty compact but necessarily convex subsets of Conv(Rn).
By d we will denote the distance between two collections A,B ∈ CC(Rn) i.e.

d(A,B) = max
{

max
a∈A

min
b∈B

H(a, b), max
b∈B

min
a∈A

H(a, b)
}

for a, b ∈ Conv(Rn).

Received by the editors: 08.10.2002.

2000 Mathematics Subject Classification. 34A60, 34K15.

Key words and phrases. multifunction, differential inclusions.

65



TERESA JANIAK AND ELŻBIETA  LUCZAK-KUMOREK

Let us denote by ρ a distance between A ∈ CC(Rn) and B ∈ Conv(Rn)
defined by:

ρ(A,B) = max
{

sup
a∈A

inf
b∈B

H(a, b), sup
b∈B

inf
a∈A

H(a, b)
}

Let X : [0, T ] → Conv(Rn) be a given mapping. Using the definition of the
difference in Conv(Rn) the Hukuhara derivative DhX ([2]) of X may be introduced
in the following way:

DhX(t) = lim
h→0+

1/h(X(t + h)−X(t)) = lim
h→0+

1/h(X(t)−X(t− h)) (2)

where X is assumed to belong to the class D of all functions such that both differences
in (2) are possible.

The mapping X : [0, T ] → Conv(Rn) will be called Hukuhara differentiable
in [0, T ] if DhX exists for every t ∈ [0, T ].

A function X : [0, T ] → Conv(Rn) is called absolutely continuous if for every
positive number ε there is a positive number δ such that

k∑
i=1

H(X(βi), X(αi)) < ε whenever α1 < β1 ≤ α2 < β2 ≤ . . . ≤ αk < βk

and
k∑

i=1

(βi − αi) < δ.

The Aumann-Hukuhara’s integral for multifunction F : [0, T ] → CC(Rn) is
a collection G ∈ CC(Rn) defined by:

G =
{

g ∈ Conv(Rn) : g =
∫ t

0

f(t)dt for f(t) ∈ F (t)
}

where f : [0, T ] → Conv(Rn) and integral of f on a set [0, T ] is the Hukuhara integral
defined in the paper ([2]).

Finally, denote by Cα a metric space of all continuous mapping V : [−r, α] →
Conv(Rn) where α ≥ 0, r > 0, with metric ρα defined by:

ρα(V1, V2) = sup
−r≤t≤α

H(V1(t), V2(t)) for V1, V2 ∈ Cα.

We say that X is a solution of (1) with the initial absolutely continuous
multifunctions Φ : [−r, 0] → Conv(Rn) if X is an absolutely continuous function from
[−r, T ] into Conv(Rn) with the properties:

X(t) = Φ(t) for t ∈ [−r, 0]
and X satisfies the inclusions (1) for a.e. t ∈ [0, T ] .

3. The theorem on partial middling

Let F i : [0,∞)× C0 → CC(Rn) (i = 1, 2) satisfy the following conditions:
1◦ F i(·, U) : [0,∞) → CC(Rn) is measurable for fixed U ∈ C0

2◦ there exists a M > 0 such that d(F i(t, U), {0}) ≤ M for (t, U) ∈ [0,∞)× C0

3◦ F i(t, ·) : C0 → CC(Rn) satisfies for fixed t ∈ [0,∞) the Lipschitz condition of
the form:

d
(
F i(t, U), F i(t, V )

)
≤ Kρ0(U, V )
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where K > 0, U, V ∈ C0

4◦ there exists a limit

lim
T→∞

1
T

d

(∫ T

0

F 1(t, U)dt,

∫ T

0

F 2(t, U)dt

)
= 0

uniformly with respect to U ∈ C0.
In this part we shall study differential inclusions of the form

DhX1(t) ∈ εF 1(t,X1
t ) for a.e. t ≥ 0 (3)

and
DhX2(t) ∈ εF 2(t,X1

t ) for a.e. t ≥ 0 (4)

where ε > 0 is a small parameter.
We shall consider (3) and (4) together with the initial conditions

X1(t) = X2(t) = Φ(t) for t ∈ [−r, 0] (5)

where Φ : [−r, 0] → ConvRn is a given absolutely continuous multifunction.
In paper ([4]) the following theorem has been proved.
Theorem 1. Let δ : [0, T ] → R be a non-negative Lebesgue integreable

function and let Φ ∈ C0 be an absolutely continuous. Suppose that F : [0, T ]× C0 →
CC(Rn) satisfy the following conditions:

1) F (·, U) : [0, T ] → CC(Rn) is measurable for fixed U ∈ C0

2) there exists a M > 0 such that d(F (t, U), {0}) ≤ M for (t, U) ∈ [0, T ]× C0

3) F (t, ·) : C0 → CC(Rn) satisfies for fixed t ∈ [0, T ] the Lipschitz conditions of
the form

d (F (t, U), F (t, V )) ≤ K(t)ρ0(U, V )

where K : [0, T ] → R+ is a Lebesgue integrable function, U, V ∈ C0.
Furthermore let Y : [−r, T ] → Conv(Rn) be an absolutely continuous

mapping such that

4) Y (t) = Φ(t) for t ∈ [−r, 0],

5) ρ(DhY (t), F (t, Yt) ≤ δ(t) for a.e. t ∈ [0, T ].
Then there is a solution X of an initial-value problem:{

DhX(t) ∈ F (t, Xt) for a.e. t ∈ [−r, 0],
X(t) = Φ(t) for t ∈ [−r, 0]

such that H(X(t), Y (t)) ≤ ξ(t) for t ∈ [0, T ]
and H(DhX(t), DhY (t)) ≤ δ(t) + K(t)ξ(t) for a.e. t ∈ [0, T ]
where ξ(t) =

∫ t

0
δ(s) exp[m(t)−m(s)]ds and m(t) =

∫ t

0
K(r)dr.

Now we can prove the main result of this paper, where in Theorem 2 by
CC(Rn) we will denote the spaces of all nonempty compact and convex subsets of
Conv(Rn).

Theorem 2. Suppose F i : [0,∞) × C0 → CC(Rn), (i = 1, 2, ) satisfy the
conditions 1◦ – 4◦. Then, for each η > 0 and T > 0 there exists a ε0(η, T ) such that
for every ε ∈ (0, ε0] the following conditions are satisfied:

(i) for each solution X1(·) of (3) there exists a solution X2(·) of (4) such that:
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H
(
X1(t), X2(t)

)
≤ η for t ∈

[
−r,

T

ε

]
(6)

(ii) for each solution X2(·) of (4) there exists a solution X1(·) of (3) such that (6)
holds.

Proof. Let X1(·) be a solution of (3) on [−r, 0]. In order to prove the
theorem we shall consider the solution X2(·) of the inclusion (4) in such a way that
for t ∈ [−r, 0], X1(t) = X2(t) = Φ(t), hence H(X1(t), X2(t)) = 0 < η. We will
prove inequality (6) on the interval

[
0, T

ε

]
. To do this divide the interval

[
0, T

ε

]
on

m-subintervals [ti, ti+1], where ti = iT
εm , i = 0, 1, . . . ,m− 1 and write a solution X1(·)

in the form: 
X1(t) = Φ(t) for t ∈ [−r, 0]

X1(t) = X1(ti) + ε

∫ t

ti

V 1(τ)dτ for t ∈ [ti, ti+1]
(7)

where V 1(t) ∈ F 1(t, X1
t ).

Let us consider a function Y 1(·) defined by
Y 1(t) = Φ(t) for t ∈ [−r, 0]

Y 1(t) = Y 1(ti) + ε

∫ t

ti

U1
i+1(τ)dτ for t ∈ [ti, ti+1]

(8)

where U1
i+1(·), i = 0, 1, . . . ,m − 1 are measurable functions such that U1

i+1(t) ∈
F 1(t, Y 1

ti
) and

H
(
V 1(t), U1

i+1(t)
)

= ρ
(
V 1(t), F 1(t, Y 1

ti
)
)

= min
U(t)∈F 1(t,Y 1

ti
)
H
(
V 1(t), U(t)

)
.

By virtue of (7) for every t ∈ [ti, ti+1] we have

H
(
X1(t), Y 1(ti)

)
= H

(
X1(ti) + ε

∫ t

ti

V 1(τ)dτ, Y 1(ti)
)
≤

≤ H
(
X1(ti), Y 1(ti)

)
+ εM(t− ti) ≤ δi + εM(t− ti)

where δi = H(X1(ti), Y 1(ti)), i = 0, 1, . . . ,m− 1.
Furthermore, for t ∈ [ti, ti+1], we have

H
(
V 1(t), U1

i+1(t)
)
≤ d

(
F 1(t, X1

t ), F 1(t, Y 1(ti)
)
≤

≤ Kρ0(X1
t , Y 1

ti
) (9)

But

ρ0(X1
t , Y 1

ti
) ≤ ρ0(X1

t , X1
ti

) + ρ0(X1
ti

, Y 1
ti

) =
= sup−r≤s≤0 H

(
X1(t + s), X1(ti + s)

)
+ sup−r≤s≤0 H

(
X1(ti + s), Y 1(ti + s)

)
By the definition of X1(·) and the properties of multifunction F 1(t, X1

t ) we
have:

sup
−r≤s≤0

H
(
X1(t + s), X1(ti + s)

)
≤ MT

m
for t ∈ [ti, ti+1]
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Furthermore by the definition X1(·) and Y 1(·) and using of (7) and (8), we
have

sup
−r≤s≤0

H

(
X1(ti + s), Y 1(ti + s)) = sup

ti−r≤τ≤ti

(H(X1(τ), (Y 1(τ)
)

=

= sup
ti−r≤τ≤ti

{
H

(
X1(ti) + ε

∫ τ

ti

V 1(s)ds, Y 1(ti) + ε

∫ τ

ti

U1
i+1(s)ds

)}
≤

≤ sup
ti−r≤τ≤ti

{
H
(
X1(ti), Y 1(ti)

)
+ εH

(∫ τ

ti

V 1(s)ds,

∫ τ

ti

U1
i+1(s)ds

)}
≤

≤ δi + sup
ti−r≤τ≤ti

ε

∫ τ

ti

d
(
F 1(s,X1

s ), F 1(s, Y 1
ti

)
)
ds ≤

≤ δi + sup
ti−r≤τ≤ti

ε

{∫ τ

ti

[
d
(
F 1(s,X1

s ), {0}
)

+ d
(
F 1(s, Y 1

ti
), {0}

)]
ds

}
≤ δi + 2εMr.

Therefore, inequality (9) for t ∈ [ti, tii+1] can be written as follows

H
(
V 1(t), U1

i+1(t)
)
≤ K

(
MT

m
+ δi + 2εMr

)
. (10)

By virtue of (7), (8) and (10), it follows

δi = H(X1(ti), Y 1(ti)) =

= H

(
X1(ti−1) + ε

∫ ti

ti−1

V 1(τ)dτ, Y 1(ti−1) + ε

∫ ti

ti−1

U1
i (τ)dτ

)
≤

≤ H(X1(ti−1), Y 1(ti−1)) + εH

(∫ ti

ti−1

V 1(τ)dτ,

∫ ti

ti−1

U1
i (τ)dτ

)
≤

≤ δi−1 + ε

∫ ti

ti−1

H
(
V 1(τ), U1

i (τ)
)
dτ ≤ δi−1 + εK(ti − ti−1)

(
MT

m
+ δi−1 + 2εMr

)
= δi−1 +

K · T
m

(
MT

m
+ δi−1 + 2εMr

)
= δi−1

(
1 +

KT

m

)
+

KT

m

(
MT

m
+ 2εMr

)
= δi−1

(
1 +

a

m

)
+

b

m
,

where a = KT and b = KT
(

MT
m + 2εMr

)
.
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TERESA JANIAK AND ELŻBIETA  LUCZAK-KUMOREK

Hence,

δi ≤ δi−1

(
1 +

a

m

)
+

b

m
≤
(

1 +
a

m

)[
δi−2

(
1 +

a

m

)
+

b

m

]
+

b

m
≤

≤
(

1 +
a

m

)i

δ0 +
(

1 +
a

m

)i−1 b

m
+ . . .

b

m
=

=
b

m

(
1 +

(
1 +

a

m

)
+ . . . +

(
1 +

a

m

)i−1
)

=
b

a

((
1 +

a

m

)i

− 1
)
≤

≤ b

a
(ea − 1) =

M

m
(2εmr + T )(eKT − 1),

where i = 0, 1, . . . ,m− 1.
For t ∈ [ti, ti+1] we have

H(X1(t), X1(ti)) = H

(
X1(ti) + ε

∫ t

ti

V 1(τ)dτ, X1(ti)
)
≤

≤ εH

(∫ t

ti

V 1(τ)dτ, {0}
)
≤ εM · T

εm
=

MT

m

and H(Y 1(t), Y 1(ti)) ≤ MT
m .

Hence, we obtain

H(X1(t), Y 1(t)) ≤ H(X1(t), X1(ti)) + H(X1(ti), Y 1(ti))

+H(Y 1(ti), Y 1(t)) ≤ 2MT

m
+

M

m
(2εmr + T )(eKT − 1)

(11)

Now we shall consider the function
Y 2(t) = Φ(t) for t ∈ [−r, 0]

Y 2(t) = Y 2(ti) + ε

∫ t

ti

U2
i+1(τ)dτ for t ∈ [ti, ti+1]

(12)

where U2
i+1(·), i = 0, 1, 2, . . . ,m − 1, are measurable functions such that U2

i+1(t) ∈
F 2(t, Y 1

ti
).
Let us notice that by virtue of condition 40 for each η1 > 0 and T > 0 there

exists a ε0(η1, T ) > 0 such that for every ε ≤ ε0 we have the following inequalities:

d

(
εm

iT

∫ iT
εm

0

F 1(t, Y 1
ti

)dt,
εm

iT

∫ iT
εm

0

F 2(t, Y 1
ti

)dt

)
≤ η1

2i
(13)

and

d

(
εm

(i + 1)T

∫ (i+1)T
εm

0

F 1(t, Y 1
ti

)dt,
εm

(i + 1)T

∫ (i+1)T
εm

0

F 2(t, Y 1
ti

)dt

)
≤ η1

2(i + 1)
(14)

where i = 1, 2, . . . ,m− 1. Let us observe that (i+1)T
εm = ti+1 and iT

εm = ti.
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By virtue of (13), (14) and the Hausdorff metric condition we have

d

(∫ ti+1

ti

F 1
(
t, Y 1

ti

)
dt,

∫ ti+1

ti

F 2
(
t, Y 1

ti

)
dt

)
≤

≤ d

(∫ ti+1

0

F 1
(
t, Y 1

ti

)
dt,

∫ ti+1

0

F 2
(
t, Y 1

ti

)
dt

)
+

+d

(∫ ti

0

F 1
(
t, Y 1

ti

)
dt,

∫ ti

0

F 2
(
t, Y 1

ti

)
dt

)
≤

≤ η1

2i
· iT

εm
+

η1

2(i + 1)
· T (i + 1)

εm
=

η1T

εm
.

Then

H

(∫ ti+1

ti

U1
i+1(τ)dτ,

∫ ti+1

ti

U2
i+1(τ)dt

)
≤ η1T

εm

and
H(Y 1(ti+1), Y 2(ti+1)) ≤ H(Y 1(ti), Y 2(ti))+

+ εH

(∫ ti+1

ti

U1
i+1(τ)dτ,

∫ ti+1

ti

U2
i+1(τ)dt

)
≤

≤ H(Y 1(ti), Y 2(ti)) +
η1T

m
≤ . . . ≤ m · η1T

m
= η1T,

(15)

where i = 0, 1, . . . ,m− 1.
Using the inequality (15) and the fact that for t ∈ [ti, ti+1]

H(Y 1(t), Y 1(ti)) ≤
MT

m
and H(Y 2(t), Y 2(ti)) ≤

MT

m

we have
H(Y 1(t), Y 2(t)) ≤ H(Y 1(t), Y 1(ti)) + H(Y 1(ti), Y 2(ti))

+H(Y 2(ti), Y 2(t)) ≤ 2MT

m
+ η1T

(16)

By assumption 30 it follows that

d(F 2(t, Y 2
t , )F 2(t, Y 1

ti
)) ≤ Kρ0(Y 2

t , Y 1
ti

)

Similarly, as in the proof of the inequality (9) and making use of the inequality
(16) we obtain

ρ0(Y 2
t , Y 1

ti
) ≤ ρ0(Y 2

t , Y 2
ti

) + ρ0(Y 2
ti

, Y 1
ti

)

≤ MT

m
+

2MT

m
+ η1T =

3MT

m
+ η1T

Hence d(F 2(t, Y 2
t , )F 2(t, Y 1

ti
)) ≤ K

(
3MT

m + η1T
)
.

By virtue of (12) we have:

ρ
(
DhY 2(t), εF 2(t, Y 2

t )
)

= ρ
(
DhY 2(t), εF 2

(
t, Y 1

ti

))
+d
(
εF 2

(
t, Y 1

ti

)
, εF 2

(
t, Y 2

t

))
≤ Kε

(
3MT

m
+ η1T

)
.
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Now, using existence theorem (see Theorem 1) there exists at least a solution
X2(·) of (4) such that for t ∈ [0, T/ε]

H(Y 2(t), X2(t)) ≤
∫ t

0

Kε

(
3MT

m
+ η1T

)
exp[εK(t− s)]ds ≤

≤
(

3MT

m
+ η1T )(eKT − 1

)
.

Using the inequalities (11) and (16) it follows

H
(
X1(t), X2(t)

)
≤ H

(
X1(t), Y 1(t)

)
+ H

(
Y 1(t), Y 2(t)

)
+ H

(
Y 2(t), X2(t)

)
≤ 4MT

m
eKT + 2εMreKT + η1TeKT .

Therefore, choosing m > 12MTeKT

η , η1 = η
3TeKT and ε < η

6MreKT we get the
inequality

H(X1(t), X2(t)) ≤ η for t ∈ [0, T/ε].
Adopting now the procedure presented above we get the condition (ii). In

this way the proof is completed for t ∈
[
−r, T

ε

]
.
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POLYNOMIAL ORBITS IN DIRECT SUM OF FINITE EXTENSION
FIELDS

PETRA KONEČNÁ

Abstract. Let K1, . . . , Kn be a finite extensions of the field F . We de-
scribe the structure of finite orbits and determine its precycle and cycle
lengths in the direct sum K1⊕ . . .⊕Kn which are induced by polynomials
from F .

Let R be a commutative ring, k ∈ N0, l ∈ N and f ∈ R[X]. By a finite orbit of
f in R with precycle length k and cycle length l we mean a sequence (x1, x2, . . . , xk+l)
of distinct elements of R such that

f(xi) = xi+1 for all i ∈ {1, 2, . . . , k + l − 1} , and f(xk+l) = xk+1 .

Elements xi, i = k + 1, . . . , l are called fixpoints of f of order l. Let k ∈ N0. By a
k-iterate of f in R we mean a polynomial fk such that

f0(x) = (x), f1(x) = f(x), fk+1(x) = f(fk(x))

Let K/F be an algebraic field extension. Then Cycl(K/F) is the set of all possible
cycle lengths in K of polynomials over F. Consider an algebraic field extension K/F .
The following proposition determine the structure of finite orbits in K of polynomials
f ∈ F [X].
Proposition 1. [1] Let K/F be an algebraic field extension, k ∈ N0, l ∈ N, and
let (x1, x2, . . . , xk+l) be a sequence of distinct elements of K. Then the following
assertions are equivalent:

a): (x1, x2, . . . , xk+l) is a finite orbit of a unique polynomial f ∈ F [X] with
precycle length k and cycle length l such that for a certain d

deg f <

k+d∏
i=1

degF (xi) .

b): (x1, x2, . . . , xk+l) is a finite orbit of a polynomial f ∈ F [X] with precycle
length k and cycle length l.

c): There holds F (x1) ⊃ F (x2) ⊃ . . . ⊃ F (xk+1) = . . . = F (xk+l), there
exist d, m ∈ N and τ ∈ AutF

(
F (xk+1)

)
such that l = dm, ord(τ) = m, the

elements x1, . . . , xk+d are pairwise not conjugate over F , and

xk+µd+j = τµ(xk+j) for all j ∈ {1, . . . , d} and µ ∈ {1, . . . ,m− 1} .
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By proposition, let K/F be an algebraic field extension of degree n and N
the number of irreducible monic polynomials of degree n over F . Then the set of all
possible cycle lengths in K of polynomials over F is given by

Cycl(K/F) =
{
dm

∣∣ 1 ≤ d ≤ N, 1 ≤ m|n
}

.

In the present paper we shall describe the structure of finite polynomial orbits
and determine the set of all possible cycle lengths of polynomials over F in the direct
sum of finite extension fields K1, . . . ,Kn which is given by⋃

K
′
i⊆Ki

Cycl(K
′

1 ⊕ . . .⊕K
′

n/F),

over all n-tuple (K
′

1 ⊕ . . .⊕K
′

n) with Cycl(K
′

1 ⊕ . . .⊕K
′

n/F) are different.
As an application of this general case we can obtain the set of all cycle lengths

for special rings which are direct sum of finite extension fields, for example ring of
circulant matrices over a finite field which is very important in the coding theory.

First we recall some properties of cycles and polynomials in the following
lemmas.
Lemma 1. [1] Let F be a field, let f1, . . . , fm ∈ F [X], m ∈ N be pairwise coprime
polynomials, and let g1, . . . , gm ∈ F [X] be any polynomials. Then there exists a unique
polynomial f ∈ F [X] such that

deg(f) <

m∏
j=1

deg(fj) and f ≡ gj mod fj for all j ∈ {1, . . . ,m} .

Lemma 2. [6] Let R be a ring. If a ∈ R, fn(a) = a and j is the smallest integer
satisfying fj(a) = a, then j divides n. Cyclic elements of order n of f coincide with
those fixpoints of fn which are not fixpoints of fd, where d runs over all proper divisors
of n.

Lemma 3. All conjugated elements in the finite extension of the field F have the
same cycle length of a polynomial f ∈ F.

Proof. This follows immediately from properties of any automorphism of the algebraic
closure of K.

Theorem 1. Let K/F be an algebraic field extension of degree n, N the number
of irreducible monic polynomials of degree n over F and s ∈ N. Then the set of all
possible cycle lengths of f in the direct sum Ks is given by
Cycl(Ks/F ) = {m · lcm(d1, . . . ,dt) | t ≤ s,d1, . . . ,dt are distinct, d1 + · · · + dt ≤
N and m|n}.

Proof. Let (x̄1, . . . , x̄l) be a cycle of polynomial f in Ks with length l, where x̄i =
(x(1)

i , . . . , x
(s)
i ) and x

(j)
i ∈ K.

Then fl(x̄i) = x̄i and fl(x
(j)
i ) = x

(j)
i for any i = 1, . . . , l, j = 1, . . . , s.

For any j = 1, . . . , s consider the least positive integers lj ≤ l with flj (x
(j)
i ) =

x
(j)
i . By Lemma 2 we have that lj divides l and lj is a cycle length of f in K. Hence by

Proposition, lj can be written in the form lj = djmj , where dj = 1, . . . , N and mj |n,
whence l = m · lcm(d1, . . . ,ds), where m is a positive integer which divides n.
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From the set {d1, . . . , ds} choose t elements d1, . . . , dt, which are different.
Assume to the contrary that d1 + · · · + dt > N. Then there are positive integers
j1, j2 = 1, . . . , s, i1, i2 = 1, . . . , l, j1 6= j2, i1 6= i2 such that elements xj1

i1
, xj2

i2
are

conjugated. Lemma 3 implies that cycles (xj1
1 , . . . , xj1

l1
), (xj2

1 , . . . , xj2
l2

) must have the
same cycle length of the type d ·m, it means dj1 = dj2 . Contradiction.

Let m, d1, . . . , dt be positive integers such that m|n, dj ≤ N, and d1 + · · · +
dt ≤ N, j = 1, . . . , t ≤ s. Then there is a unique t-tuple of polynomials f (1), . . . , f (t)

over F with cycles (x(j)
1 , . . . , x

(j)
dj

, . . . , x
(j)
mdj

), such that x
(j)
1 , . . . , x

(j)
dj

are pairwise non

conjugated elements. Let p
(j)
i be the minimal polynomials of elements xj

i . Then by
Lemma 1 there is a unique polynomial f ∈ F [x] such that

deg(f) <
t∏

j=1

dj∏
i=1

deg(p(j)
i ) and f ≡ f(j) mod

dj∏
i=1

p(j)
i for all j ∈ {1, . . . , t}

and
fmdj (x

(j)
i ) = x

(j)
i .

Put l = m · lcm(d1, . . . ,ds) = m · lcm(d1, . . . ,dt), then fl(x̄i) = x̄i and so l ∈
Cycl(Ks/F ).

Theorem 2. Let K1,K2, . . . ,Kr be finite extensions of the field F , s1, . . . , sr, r ∈ N.
Then

Cycl(Ks1
1 ⊕ · · · ⊕Ksr

r /F) = {lcm(li) | li ∈ Cycl(Ksi
i /F)}.

Proof. Let l ∈ Cycl(Ks1
1 ⊕ · · · ⊕ Ksr

r /F). Then there is a polynomial f ∈ F [x] with
the cycle

(
(x̄(1)

1 , . . . , x̄
(r)
1 ), . . . , (x̄(1)

l , . . . , x̄
(r)
l )

)
, where x̄

(i)
j ∈ Ksi

i for i = 1, . . . , r, j =
1, . . . , l. Then

(x̄(1)
j , . . . , x̄

(r)
j ) = fl

(
(x̄(1)

j , . . . , x̄
(r)
j )

)
=

(
fl(x̄

(1)
j ), . . . , fl(x̄

(r)
j )

)
.

Consider the least positive integers li ≤ l with fli(x̄
(i)
j ) = x̄

(i)
j . By lemma 2 we have

li|l, therefore li ∈ Cycl(Ksi
i /F) and l = lcm(li).

Let li ∈ Cycl(Ksi
i /F) for i = 1, . . . , r. Then there are polynomials f (i) over

F with cycles (x̄(i)
1 , . . . , x̄

(i)
li

) such that f
(i)
li

(x̄(i)
j ) = x̄

(i)
j for j = 1, . . . , li. Consider

polynomials pi over F as products of minimal polynomials of non conjugated ele-
ments in the cycle (x̄(i)

1 , . . . , x̄
(i)
li

). Now the fact, that different li-tuples (x̄(i)
1 , . . . , x̄

(i)
li

)
don’t consist conjugated elements for i = 1, . . . , r, implies that these polynomials are
pairwise coprime and by Lemma 1 we have a polynomial f ∈ F [x] such that

f ≡ f (i) mod pi for all j ∈ {1, . . . , r} .

Hence fli(x̄
(i)
j ) = x̄

(i)
j and if l = lcm(li), then l ∈ Cycl(Ks1

1 ⊕· · ·⊕Ksr
r /F).

Theorem 3. Let L1, . . . , Ln are algebraic extensions of a field F, L
′

1, . . . , L
′

n are any
subfields such that F ⊆ L

′

i ⊆ Li for i = 1, . . . , n.

Let x̄1 = 〈x(1)
1 , . . . , x

(n)
1 〉, . . . , x̄k+l = 〈x(1)

k+l, . . . , x
(n)
k+l〉 are different elements of the

direct sum L1 ⊕ · · · ⊕ Ln.
Let d(L

′

i), t(L
′

i), N(L
′

i) are nonnegative integers such that
d(L

′

i) is the number of non-conjugated elements of L
′

i in the set {x(i)
k+1, . . . , x

(i)
k+l},

t(Li
i) is the number of non-conjugated elements of L

′

i in the set {x(j)
1 , . . . , x

(j)
k }−
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−{x(j∗)
k+1, . . . , x

(j∗)
k+l} for j = 1, . . . , n and some j∗ ∈ {1, . . . , n} such that L

′

j∗ = L
′

i,

N(L
′

i) is the number of irreducible polynomials in F [X] of degree [L
′

i : F ].
Then following assertions are equivalent:

a): The sequence (x̄1, . . . , x̄k+l) is a finite orbit of a polynomial f ∈ F [X] in
the direct sum L1 ⊕ · · · ⊕Ln with precycle length k and cycle of the length
l in the direct sum L

′

1 ⊕ · · · ⊕ L
′

n.

b): For i = 1, . . . , n, there are sequences of fields

Li ⊇ F (x(i)
1 ) ⊇ · · · ⊇ F (x(i)

ki
) ⊇ F (x(i)

ki+1) = · · · = F (x(i)
ki+li

) = · · · = F (x(i)
k+l) = L

′

i

where ki ∈ N0, li ∈ N, k = max(ki) and
l ∈ Cycl(Ks1

1 ⊕ · · · ⊕ Ksr
r /F) = Cycl(L

′

1 ⊕ · · · ⊕ L
′

n/F) and for every i =
1, . . . , n it holds

t(L
′

i) +
∑

L
′
j=L

′
i,d(L

′
j) are distinct

d(L
′

j) ≤ N(L
′

i).

Proof. Let (x̄1, . . . , x̄k+l) is a finite orbit of a polynomial f ∈ F [X] in the direct sum
of algebraic field extensions L1 ⊕ · · · ⊕ Ln with precycle length k and cycle in the
direct sum L

′

1 ⊕ · · · ⊕ L
′

n of the length l.
Then by definition for j = 1, . . . , k + l − 1 it holds

f(x̄j) = f(〈x(1)
j , . . . , x

(n)
j 〉) = 〈f(x(1)

j ), . . . , f(x(n)
j )〉 = 〈x(1)

j+1, . . . , x
(n)
j+1〉 = x̄j+1

and for j = k + 1, . . . , k + l

fl(x̄j) = fl(〈x(1)
j , . . . , x

(n)
j 〉) = 〈fl(x

(1)
j ), . . . , fl(x

(n)
j )〉 = 〈x(1)

j , . . . , x
(n)
j 〉 = x̄j .

Then for every i = 1, . . . , n there is a finite orbit (x(i)
1 , . . . , x

(i)
k+l) of the poly-

nomial f ∈ F [X] in the field Li.

Consider least positive integers ki ∈ N0, li ∈ N such that fli(x
(i)
j ) = x

(i)
j for

every j > ki. Then by definition and lemma2 li is the cycle length of i-th finite orbit,
ki is the precycle length of i-th orbit and k = max(ki).

By proposition we obtain sequences of fields

Li ⊇ F (x(i)
1 ) ⊇ · · · ⊇ F (x(i)

ki
) ⊇ F (x(i)

ki+1) = · · · = F (x(i)
k+l) = L

′

i.

Let K1, . . . ,Kr be distinct fields such that {K1, . . . ,Kr} = {L′

1, . . . , L
′

n} and suppose
that Ki appears si times, so

L
′

1 ⊕ · · · ⊕ L
′

n = Ks1
1 ⊕ · · · ⊕Ksr

r .

Now assume to the contrary that

t(L
′

i) +
∑

L
′
j=L

′
i,d(L

′
j) are distinct

d(L
′

j) > N(L
′

i).

Then there is a pair of conjugated elements such that one of them is in some
precycle and the second one in some other cycle and it is in contradiction with lemma3.
From b) to a) it follows immediately from Lemma1 and Theorem2.
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SPLINE APPROXIMATION FOR SOLVING SYSTEM OF FIRST
ORDER DELAY DIFFERENTIAL EQUATIONS

MOKHTAR A. ABDEL NABY, MOHAMED A. RAMADAN, AND SAMIR T. MOHAMED

Abstract. In a previous work, [9], the authors introduced a new technique
using a spline function to find an approximate solution for first order delay
differential equations. In this presented paper, we develop and modify the
lemmas in [9] so that the technique can be extended to work for the case of
numerical approximation for solving system of first order delay differential
equations. Error estimation and convergence are also considered and tested
using numerical examples. The stability of the technique is investigated.

1. Introduction

Consider the system of first order delay differential equations of the form:

y
′
(x) = f1(x, y(x), z(x), y(g(x))), a ≤ x ≤ b

z
′
(x) = f2(x, y(x), z(x), z(g(x))), y(x0) = y0, z(x0) = z0 (1)

y(x) = φ(x), z(x) = φ(x), x ∈ [a∗, a]

In recent years many studies were devoted to the problems of approximate
solutions of system ordinary as well as delay differential equations by spline functions
[2-6] and [8-10]. While in [1] A. Ayad investigated the spline approximation for
Fredholm integro differential equations. Also G. Micula and H. Akca [7] have studied
the numerical solutions of system of differential equations with deviating argument by
spline functions. Our introduced method is a one step method o(hm+α) in y(i) (x) and
z(i) (x) where i = 0, 1 . The modulus of continuity of y′(x) and z′ (x) is o(hα), 0 < α ≤
1 and m is an arbitrary positive integer which is equal to the number of iterations used
in computing the spline function. Assuming f1, f2 ∈ C([a, b]×R3) we shall investigate
the error estimation and convergence as well as the stability of the method.

2. Description of the spline method

Rewriting the system (1) in the following form:

y
′
(x) = f1(x, u1, v1, u

∗
1), a ≤ x ≤ b

z
′
(x) = f2(x, u1, v1, v

∗
1) (2)

y(x0) = y0, z(x0) = z0, y(x) = φ(x), z(x) = φ(x), x ∈ [a∗, a]

Received by the editors: 21.10.2002.
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The function g is called the delay function and it is assumed to be continuous
on the interval [a, b] and satisfies the inequality a∗ ≤ g(x) ≤ x, x ∈ [a, b] and φ, φ ∈
C[a∗, a].

Suppose that f1 : [a, b] × R3 → R is continuous and satisfies the Lipschitz
conditions

|f1(x, u1, v1, u
∗
1)− f1(x, u2, v2, u

∗
2)| ≤ L1{|u1 − u2|+ |v1 − v2|+ |u∗1 − u∗2 |} (3)

and there exist a constant B1 so that

|u∗1 − u∗2 | ≤ B1 |f1(x, u1, v1, u
∗
1)− f1(x, u2, v2, u

∗
2)| (4)

Also Suppose that f2 : [a, b]×R3 → R is continuous and satisfies the Lipschitz
conditions

|f2(x, u1, v1, v
∗
1)− f2(x, u2, v2, v

∗
2)| ≤ L2{|u1 − u2|+ |v1 − v2|+ |v∗1 − v∗2 |} (5)

and there exist a constant B2 so that

|v∗1 − v∗2 | ≤ B2 |f2(x, u1, v1, v
∗
1)− f2(x, u2, v2, v

∗
2)| (6)

∀(x, u1, v1, u
∗
1), (x, u2, v2, u

∗
2), (x, u1, v1, v

∗
1), (x, u2, v2, v

∗
2) ∈ ([a, b]×R3)

These conditions assure the existence of a unique solutions of y and z of system (1).
Let 4be a uniform partition of the interval [a, b] defined by the nodes
4 : a = x0 < x1... < xk < xk+1... < xn = b, xk = x0 + kh, h = b−a

n <
1 and k = 0(1)n− 1
we define the spline function approximating the solutions y and z by S(x) and
S(x) where

S(x) =
{

S4(x), a ≤ x ≤ b
φ(x), a∗ ≤ x ≤ a

S(x) =
{

S4(x), a ≤ x ≤ b

φ(x), a∗ ≤ x ≤ a

Choosing the required positive integer m, we define S4(x) and S4(x) by:

S4(x) = S
[m]
k (x) = S

[m]
k−1(xk) + (7)∫ x

xk

f1(x, S
[m−1]
k (x), S

[m−1]

k (x), S[m−1]
k (g(x)))dx

S4(x) = S
[m]

k (x) = S
[m]

k−1(xk) + (8)∫ x

xk

f2(x, S
[m−1]
k (x), S

[m−1]

k (x), S
[m−1]

k (g(x)))dx

where S
[m]
−1 (x0) = y0, S

[m]

−1 (x0) = z0, S
[m]
−1 (g(x0)) = φ(g(x0)), S

[m]

−1 (g(x0)) = φ(g(x0))

with S
[m]
k−1(xk) and S

[m]

k−1(xk) are the left hand limit of S
[m]
k−1(x) and S

[m]

k−1(x) as x → xk

of the segment S4(x) and S4 (x) defined on [xk−1, xk]. In equation (7), (8) we use

80



SYSTEM OF FIRST ORDER DELAY DIFFERENTIAL EQUATIONS

the following m iterations for x ∈[xk ,xk+1], k = 0(1)n− 1 and j = 1(1)m

S
[j]
k (x) = S

[m]
k−1(xk) +

∫ x

xk

f1(x, S
[j−1]
k (x), S

[j−1]

k (x), S[j−1]
k (g(x)))dx (9)

S
[j]

k (x) = S
[m]

k−1(xk) +
∫ x

xk

f2(x, S
[j−1]
k (x), S

[j−1]

k (x), S
[j−1]

k (g(x)))dx

S
[0]
k (x) = S

[m]
k−1(xk) + Mk (x− xk)

S
[0]

k (x) = S
[m]

k−1(xk) + Mk (x− xk)

where Mk = f1(xk, S
[m]
k−1(xk), S

[m]

k−1(xk), S[m]
k−1(g(xk))) and

Mk = f2(xk, S
[m]
k−1(xk), S

[m]

k−1(xk), S
[m]

k−1(g(xk)))

Such S4(x), S4 (x) ∈ C[a, b]×R3 are exist and unique.

3. Error estimation and convergence

To estimate the error, we represent the exact solution as described by the
following scheme.

y[0](x) = y(x) = yk + y
′
(ζk)(x− xk) (10)

z[0](x) = z(x) = zk + z
′
(ηk)(x− xk)

where ζk, ηk ∈(xk,xk+1), y(xk) = yk, z(xk) = zk. For 1 ≤ j ≤ m we write

y[j](x) = y(x) = yk +
∫ x

xk

f1(x, y[j−1](x), z[j−1](x), y[j−1](g(x)))dx (11)

z[j](x) = z(x) = zk +
∫ x

xk

f2(x, y[j−1](x), z[j−1](x), z[j−1](g(x)))dx

Set ω(h) = max{ω(y
′
, h), ω(z

′
, h)} where ω(y

′
, h) and ω(z

′
, h) are the mod-

ului of continuity for the functions y
′
(x) and z′(x).

Moreover, we denote to the estimated error of y(x) and z(x) at any pointx ∈
[a, b] by:

e(x) = |y(x)− S4(x)| , ek = |yk − S4(xk) | (12)

e(x) =
∣∣z(x)− S4(x)

∣∣ , ek =
∣∣zk − S4(xk)

∣∣
Lemma 3.1. [1]. Let α and β be non negative real numbers and {Ai}m

i=1be
a sequence satisfying A1 ≥ 0, Ai ≤ α + βAi+1 for i = 1(1)m− 1 then:

A1 ≤ βm−1Am + α
m−2∑
i=0

βi

Lemma 3.2. [1]. Let α and β be non negative real numbers, β 6= 1and
{Ai}k

i=0 be a sequence satisfying
A0 ≥ 0, Ai+1 ≤ α + βAi for i = 0(1)k then:

Ak+1 ≤ βk+1A0 + α
[βk+1 − 1]

[β − 1]
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Definition 3.1. [4] for any x ∈[xk ,xk+1], k = 0(1)n − 1and j = 1(1)m we
define the operator Tkj(x) by:

Tkj(x) =
∣∣∣y[m−j](x)− S

[m−j]
k (x)

∣∣∣ +
∣∣∣z[m−j](x)− S

[m−j]

k (x)
∣∣∣ (13)

whose norm is defined by: ‖Tkj‖ = max
x∈[xk,xk+1]

{Tkj(x)}

Lemma 3.3. For any x ∈[ xk ,xk+1], k = 0(1)n− 1and j = 1(1)m, then

‖Tkm‖ ≤ [1 + h(c0 + c0)] (ek + ek) + 2hω(h) (14)
‖Tk1‖ ≤ c1(ek + ek) + c2h

mω(h) (15)

where c0 = L1
1−L1B1

, c0 = L2
1−L2B2

, c1 =
∑m

i=0 (c0 + c0)
i and c2 = 2 (c0 + c0)

m−1 are
constants independent of h.

Proof. Using (3), (4), (5), (6), (9), (10), (11) and (12), it is easy to proof
the lemma.

Lemma 3.4. Let e(x), e(x) be defined as in (12), then there exist constants
c3, c4, c3, c4 independent of h such that the following inequalities hold:

e(x) ≤ (1 + hc3) ek + hc3ek + c4h
m+1ω(h) (16)

e(x) ≤ hc3ek + (1 + hc3) ek + c4h
m+1ω(h) (17)

where c3 = c0c1, c4 = c0c2, c3 = c0c1 and c4 = c0c2

Proof. Using (3), (4), (7), (11), (12) and (15) we get:

e(x) ≤
∣∣∣y(x)− S

[m]
k (x)

∣∣∣ ≤ ek + c0 ‖Tk1‖
∫ x

xk

dx

≤ (1 + hc3) ek + hc3ek + c4h
m+1ω(h)

Similarly using (5), (6), (8), (11), (12) and (15), we can proof the other
part of the lemma where c3 = c0c1, c4 = c0c2, c3 = c0c1 and c4 = c0c2 are constants
independent of h.

Definition 3.2. Let A = [aij ] and B = [bij ] be two matrices of the same
order then we say that A ≤ B
iff:

(i) both aijand bij are non negative
(ii) aij ≤ bij ∀ i, j.
Using matrix notation we let

E(x) = [e(x) e(x)]T , Ek = [ek ek]T and C = [c4 c4]
T

where T stands for the transpose, then from lemma 3.4, we write

E(x) ≤ (I + hA) Ek + Chm+1ω(h) (18)

where I is the unit matrix of order 2 and A =
(

c3 c3

c3 c3

)
.

Definition 3.3. Let T = [Ti,j ] be an m× n matrix, then we define

‖T‖ = max
i

n∑
j=0

|ti,j | .

Using this definition the inequality (18) yields:

‖E(x)‖ ≤ (1 + h ‖A‖) ‖Ek‖+ ‖C‖hm+1ω(h).
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This inequality holds for x ∈ [a, b] . Setting x = xk+1, we obtain:

‖Ek+1‖ ≤ (1 + h ‖A‖) ‖Ek‖+ ‖C‖hm+1ω(h).

Using lemma 3.2 and noting that ‖E0‖ = 0,we get:

‖E(x)‖ ≤ ‖C‖hm+1ω(h)

[
(1 + h ‖A‖)k+1 − 1

]
1 + h ‖A‖ − 1

≤ ‖C‖
‖A‖

[(
1 +

‖A‖ (b− a)
n

)n

− 1
]

hmω(h)

≤ ‖C‖
‖A‖

[
e(‖A‖(b−a)) − 1

]
hmω(h)

≤ c5h
mω(h) = o(hm+α)

where c5 = ‖C‖
‖A‖

[
e(‖A‖(b−a)) − 1

]
is a constant independent of h. Using definition 3.3,

we get:

e(x) ≤ c5h
mω(h) (19)

e(x) ≤ c5h
mω(h)

now we are going to estimate
∣∣∣y′

(x)− S
′

∆(x)
∣∣∣ . Using (3), (4), (7), (11), (12), (15) and

(19), we get: ∣∣∣y′
(x)− S

′

∆(x)
∣∣∣ ≤ c6h

mω(h)

where c6 = c0 [2c1c5 + c2] is a constant independent of h. Similarly using (5), (6),
(8), (11), (12), (15) and (19), we get:

∣∣∣z′
(x)− S

′

∆(x)
∣∣∣ ≤ c7h

mω(h)

where c7 = c0 [2c1c5 + c2] is a constant independent of h.
Thus from above lemma we have arrived to the following theorem:
Theorem 3.1. Let y(x), z(x) be the exact solutions of the system (1). If

S∆(x), S∆(x) given by (7), (8) are the approximate solutions for the problem, f1, f2 ∈
C

(
[a, b]×R3

)
, then the inequalities

∣∣∣y(q)(x)− S
(q)
∆ (x)

∣∣∣ ≤ c8h
mω(h)∣∣∣∣z(q)(x)− S

(q)

∆ (x)
∣∣∣∣ ≤ c9h

mω(h)

hold for all x ∈ [a, b] and q = 0, 1 where c8 and c9 are constants independent of h.
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4. Stability of the method

To study the stability of the method given by (7), (8) we change S∆(x) to
W∆(x) and S∆(x) to W∆(x) where

W4(x) = W
[m]
k (x) = W

[m]
k−1(xk) + (20)∫ x

xk

f1(x, W
[m−1]
k (x),W

[m−1]

k (x),W [m−1]
k (g(x)))dx

W4(x) = W
[m]

k (x) = W
[m]

k−1(xk) + (21)∫ x

xk

f2(x,W
[m−1]
k (x),W

[m−1]

k (x),W
[m−1]

k (g(x)))dx

W
[m]
−1 (x0) = y∗0 ,W

[m]

−1 (x0) = z∗0 ,W
[m]
−1 (g(x0)) = φ(g(x0)),W

[m]

−1 (g(x0)) = φ(g(x0)),

with W
[m]
k−1(xk) andW

[m]

k−1(xk) are the left hand limit of W
[m]
k−1(x) andW

[m]

k−1(x) as x →
xk of the segment of W4(x) and W4 (x) defined on [xk−1 ,xk]. In equations (20) and
(21), we use the following m iterations. For x ∈[xk ,xk+1], k = 0(1)n−1 and j = 1(1)m

W
[j]
k (x) = W

[m]
k−1(xk) +

∫ x

xk

f1(x,W
[j−1]
k (x),W

[j−1]

k (x),W [j−1]
k (g(x)))dx (22)

W
[j]

k (x) = W
[m]

k−1(xk) +
∫ x

xk

f2(x, W
[j−1]
k (x),W

[j−1]

k (x),W
[j−1]

k (g(x)))dx

W
[0]
k (x) = W

[m]
k−1(xk) + Nk (x− xk)

W
[0]

k (x) = W
[m]

k−1(xk) + Nk (x− xk)

Nk = f1(xk,W
[m]
k−1(xk),W

[m]

k−1(xk),W [m]
k−1(g(xk)))

Nk = f2(xk,W
[m]
k−1(xk),W

[m]

k−1(xk),W
[m]

k−1(g(xk)))

Moreover, we use the following notation.

e∗(x) = |S4(x)−W4(x)| , e∗k = |S4(xk)−W4(xk)| (23)

e∗(x) =
∣∣S4(x)−W4(x)

∣∣ , e∗k =
∣∣S4(xk)−W4(xk)

∣∣
Definition 4.1. For any x ∈[ xk ,xk+1], k = 0(1)n − 1 and j = 1(1)m we

define the operator T ∗
kj(x) by:

T ∗
kj(x) =

∣∣∣S[m−j]
k (x)−W

[m−j]
k (x)

∣∣∣ +
∣∣∣S[m−j]

k (x)−W
[m−j]

k (x)
∣∣∣ (24)

whose norm is defined by
∥∥∥T ∗

kj

∥∥∥ = max
x∈[xk,xk+1]

{T ∗
kj(x)}.

Lemma 4.1. For any x ∈[ xk ,xk+1], k = 0(1)n− 1 and j = 1(1)m, then

‖T ∗
km‖ ≤ [1 + h(c0 + c0)] (e∗k + e∗k) (25)

‖T ∗
k1‖ ≤ c1(e∗k + e∗k) (26)

where c0, c0 and c1are constants defined as in lemma 3.3 Proof. Using (3), (4), (5),
(6), (9), (22) and (23) it is easy to prove the above lemma
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Lemma 4.2. Let e∗(x), e∗(x) be defined as in (23), then there exist constants
c3, c3 independent of h such that the following inequalities hold:

e∗(x) ≤ (1 + hc3) e∗k + hc3e
∗
k (27)

e∗(x) ≤ hc3e
∗
k + (1 + hc3) e∗k (28)

Proof. Using (3), (4), (5), (6), (7), (8), (20),(21), (23) and (26) the proof
is similar to the proof in lemma 3.4. On the light of definition 3.2 and matrix notation

E∗(x) = [e∗(x) e∗(x)]T and E∗
k = [e∗k e∗k]T then from lemma 4.2, we write

E∗(x) ≤ (I + hA)E∗
k (29)

where I and A are matrices defined as in (18) using definition 3.3. The inequality
(29) yields:
‖E∗(x)‖ ≤ (1 + h ‖A‖) ‖E∗

k‖ .
This inequality holds for any x ∈ [a, b] . Setting x = xk+1,we get:∥∥E∗

k+1

∥∥ ≤ (1 + h ‖A‖) ‖E∗
k‖

Using lemma 3.2, we obtain:

‖E∗(x)‖ ≤ (1 + h ‖A‖)k+1 ‖E∗
0‖

≤
(

1 +
‖A‖ (b− a)

n

)n

‖E∗
0‖

≤ e‖A‖(b−a) ‖E∗
0‖

≤ c10 ‖E∗
0‖

where c10 = e‖A‖(b−a) is a constant independent of h. Now using definition 3.3, we
obtain:

e∗(x) ≤ c10 ‖E∗
0‖ (30)

e∗(x) ≤ c10 ‖E∗
0‖

To estimate
∣∣∣S′

∆(x)−W
′

∆(x)
∣∣∣ we use (3), (4), (7), (20), (23), (26) and (30),

we obtain: ∣∣∣S′

∆(x)−W
′

∆(x)
∣∣∣ ≤ c11 ‖E∗

0‖

where c11 = 2c0c1c10 is a constant independent of h. Similarly using (5), (6), (8),
(21), (23), (26) and (30) we get∣∣∣S′

∆(x)−W
′

∆(x)
∣∣∣ ≤ c12 ‖E∗

0‖

where c12 = 2c0c1c10 is a constant independent of h. Thus from above lemma
we have arrived to the following theorem

Theorem 4.1. Let S∆(x), S∆(x) given by (7), (8) be the approximate
solutions of the problem (1) with the initial conditions y(x0) = y0, z(x0) = z0 and
let W∆(x),W∆(x) given by (20), (21) are the approximate solutions for the same prob-
lem with the initial conditions y∗(x0) = y∗0 , z∗(x0) = z∗0 and f1, f2 ∈ C

(
[a, b]×R3

)
then the inequalities ∣∣∣S(q)

∆ (x)−W
(q)
∆ (x)

∣∣∣ ≤ c13 ‖E∗
0‖∣∣∣S(q)

∆ (x)−W
(q)

∆ (x)
∣∣∣ ≤ c14 ‖E∗

0‖
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hold for all x ∈ [a, b] and q = 0, 1 ‖E∗
0‖ = max{|y0 − y∗0 | , |z0 − z∗0 |} where c13,

c14 are constants independent of h.

5. Numerical example

The method is tested using the following example in the interval [0, 1] with
step size h=0.1 where m = 4 and m = 5. To test the stability of the method we do
change in the initial condition by adding 0.00001.

Example 5.1. Consider the system of delay differential equation

y
′
(x) = y(x)− z(x) + y (x/2)− ex/2 + e−x, 0 ≤ x ≤ 1

z
′
(x) = −y(x)− z(x)− z (x/2) + e−x/2 + ex

y(x) = ex, z(x) = e−x, x ≤ 0, y(0) = 1, z(0) = 1.

The exact solution is y = ex, z = e−x.

Table I
x m First Apr. Absolute error Second Apr. Abs diff. bet.

the num. sol.
0.1 4 y = 1.105170911 7.6× 10−9 1.105182139 1.1× 10−5

0.1 5 y = 1.105170918 2.9× 10−11 1.105182147 1.1× 10−5

0.2 4 y = 1.221402377 3.8× 10−7 1.221415306 1.3× 10−5

0.2 5 y = 1.221402778 2× 10−8 1.221415714 1.3× 10−5

0.3 4 y = 1.349851046 7.8× 10−6 1.349866173 1.5× 10−5

0.3 5 y = 1.349859939 1.1× 10−6 1.349875098 1.5× 10−5

0.4 4 y = 1.491771687 5.3× 10−5 1.491789545 1.8× 10−5

0.4 5 y = 1.491836988 1.2× 10−5 1.491854936 1.8× 10−5

0.5 4 y = 1.648505578 2.2× 10−4 1.648526745 2.1× 10−5

0.5 5 y = 1.64878964 6.8× 10−5 1.648811008 2.1× 10−5

0.6 4 y = 1.821472326 6.5× 10−4 1.821497444 2.5× 10−5

0.6 5 y = 1.822380782 2.6× 10−4 1.822406275 2.5× 10−5

0.7 4 y = 2.012179165 1.6× 10−3 2.012208952 3× 10−5

0.7 5 y = 2.014537772 7.9× 10−4 2.014568184 3× 10−5
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Table II
x m First Abr. Absolute error Second Apr. Sol. Abs. diff. bet.

the num. sol.
0.1 4 z = 0.9048374116 6.4× 10−9 0.9048445718 7.2× 10−6

0.1 5 z = 0.9048374182 1.8× 10−10 0.9048445788 7.2× 10−6

0.2 4 z = 0.8187301857 5.7× 10−7 0.8187347665 4.6× 10−6

0.2 5 z = 0.8187307828 3× 10−8 0.8187353697 4.6× 10−6

0.3 4 z = 0.7408112275 7× 10−6 0.740813402 2.2× 10−6

0.3 5 z = 0.7408189118 6.9× 10−7 0.740821138 2.2× 10−6

0.4 4 z = 0.6702800604 4× 10−5 0.6702799171 1.4× 10−7

0.4 5 z = 0.6703255091 5.5× 10−6 0.6703254446 6.6× 10−8

0.5 4 z = 0.6063734706 1.6× 10−4 0.6063710188 2.5× 10−6

0.5 5 z = 0.606555279 2.5× 10−5 0.6065530007 2.3× 10−6

0.6 4 z = 0.5483243125 4.9× 10−4 0.5483194985 4.8× 10−6

0.6 5 z = 0.5488891836 7.8× 10−5 0.548884684 4.5× 10−6

0.7 4 z = 0.4953086589 1.3× 10−3 0.4953013317 7.3× 10−6

0.7 5 z = 0.4967716293 1.9× 10−4 0.4967648351 6.8× 10−6

6. Conclusions

A new technique using spline function approximation to numerically solve the
system of first order delay differential equation is presented. The convergence and
stability are discussed. Also, error analysis and stability are investigated showed in
table I where m the number of iterations. Tables I and II show improvements of error
analysis and stability. Also, from the sixth column of the tables one can see that the
algorithm is stable.
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ON SOME UNIVALENCE CONDITIONS IN THE UNIT DISK

VERONICA NECHITA

Abstract. In this paper we obtain by the method of subordination chains
an univalence criterion for analytic functions defined in the unit disk, which
generalizes a criterion due to D.Răducanu.

1. Introduction

We denote by Ur the disk {z ∈ C : |z| < r}, where 0 < r ≤ 1 and by U = U1

the unit disk of the complex plane C.
Let A denote the class of analytic functions in the unit disk U which satisfy

the conditions f (0) = f ′ (0)− 1 = 0.
Let f and F be analytic functions in U . The function f is said to be subor-

dinate to F , written f ≺ F or f (z) ≺ F (z), if there exists a function w analytic in
U , with w (0) = 0 and |w (z)| ≤ 1, and such that f (z) = F (w (z)). If F is univalent,
then f ≺ F if and only if f (0) = F (0) and f (U) ⊂ F (U).

A function L (z, t), z ∈ U , t ≥ 0 is a subordination chain if L (·, t) is analytic
and univalent in U , for all t ≥ 0, and L (z, s) ≺ L (z, t), when 0 ≤ s ≤ t < ∞.

Theorem 1. [1] Let r ∈ (0, 1] and L : Ur × [0,∞) → C be an analytic function in
the disk Ur, for all t ≥ 0, L (z, t) = a1 (t) z + .... If

(i) L (z, ·) is locally absolutely continuous in [0,∞), locally uniform with re-
spect to Ur,

(ii) there exists a function p (z, t) analytic in U for all t ∈ [0,∞) and mea-
surable in [0,∞) for each z ∈ U , such that Re p (z, t) > 0, for z ∈ U , t ∈ [0,∞),
and

∂L (z, t)
∂t

= z
∂L (z, t)

∂z
p (z, t) ,

for z ∈ Ur, and for almost all t ∈ [0,∞),

(iii) a1 (t) 6= 0, for t ≥ 0, lim
t→∞

|a1 (t)| = ∞ and
{

L (z, t)
a1 (t)

}
t≥0

is a normal

family in Ur,
then for each t ≥ 0, L (z, t) has an analytic and univalent extension in U .

Received by the editors: 18.09.2002.
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2. Main Result

Theorem 2. Let f ∈ A be an analytic function in U of the form f (z) = z+a2z
2 + ...

for all z ∈ U , α ∈ C, a ∈ R such that
∣∣∣∣ 2
aα

− 1
∣∣∣∣ ≤ 1 and Re (aα− 1) > 0. If∣∣∣∣∣

(
2

aα
− 1

) [
1− (1− |z|a)

zf ′ (z)
f (z)

]
+ (1− |z|a) z

d

dz

[
log

z( 2
a +1) (f ′ (z))

2
a

(f (z))
2
a +1

]∣∣∣∣∣ ≤ |z|a ,

(1)
for all z ∈ U , then f is univalent in U .

Proof. Let L : U × [0,∞) → C be the function

L (z, t) :=
[
f

(
e−tz

)]
1−α

f
(
e−tz

)
+

(eat − 1) e−tzf ′ (e−tz)

1− (eat − 1)
(

e−tzf ′ (e−tz)
f (e−tz)

− 1
)


α

. (2)

Because f (z) 6= 0 for all z ∈ U\ {0}, the function

f1 (z, t) :=
e−tzf ′ (e−tz)

f (e−tz)
= 1 + ...

is analytic in U . Hence, the function

f2 (z, t) :=
e−tzf ′ (e−tz)

f (e−tz)
− 1 = a2e

−tz + ...

is analytic in U .
It follows from

f3 (z, t) := 1 +
(eat − 1) f1 (z, t)

1− (eat − 1) f2 (z, t)
= eat + ...

that there exists an r ∈ (0, 1] such that f3 is analytic in Ur and f3 (z, t) 6= 0, for all
z ∈ Ur, t ∈ [0,∞).

We choose an analytic branch in Ur of the function

f4 (z, t) := [f3 (z, t)]α = eaαt + ....

We have that

L (z, t) =
[
f

(
e−tz

)]
1−α

f
(
e−tz

)
+

(eat − 1) e−tzf ′ (e−tz)

1− (eat − 1)
(

e−tzf ′ (e−tz)
f (e−tz)

− 1
)


α

(3)

= f
(
e−tz

)
[f4 (z, t)]α = e(aα−1)t + ...

is an analytic function in Ur.
From (3) we have L (z, t) = a1 (t) z + ..., where

a1 (t) = e(aα−1)t,

a1 (t) 6= 0, for all t ∈ [0,∞) and lim
t→∞

|a1 (t)| = lim
t→∞

et Re(aα−1) = ∞.

From (2), by a simple calculation, we obtain

∂L (z, t)
∂t

=
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= e−tzf ′
(
e−tz

) [
f

(
e−tz

)] −α

f
(
e−tz

)
+

(eat − 1) e−tzf ′ (e−tz)

1− (eat − 1)
(

e−tzf ′ (e−tz)
f (e−tz)

− 1
)


α

·

(4)

·

−1 + α

a + (eat − 1)
[
−1 +

e−tzf ′ (e−tz)
f (e−tz)

+
e−tzf ′′ (e−tz)

f ′ (e−tz)

]
1− (eat − 1)

(
e−tzf ′ (e−tz)

f (e−tz)
− 1

)


∂L (z, t)
∂z

=

= e−tzf ′
(
e−tz

) [
f

(
e−tz

)] −α

f
(
e−tz

)
+

(eat − 1) e−tzf ′ (e−tz)

1− (eat − 1)
(

e−tzf ′ (e−tz)
f (e−tz)

− 1
)


α

·

(5)

·

1− α

(eat − 1)
[
−1 +

e−tzf ′ (e−tz)
f (e−tz)

+
e−tzf ′′ (e−tz)

f ′ (e−tz)

]
1− (eat − 1)

(
e−tzf ′ (e−tz)

f (e−tz)
− 1

)


We observe that
∣∣∣∣∂L (z, t)

∂t

∣∣∣∣ is bounded on [0, T ], for any T > 0 fixed and

z ∈ Ur. Therefore, the function L is locally absolutely continuous in [0,∞), locally

uniform with respect to Ur. We also have
∣∣∣∣L (z, t)

a1 (t)

∣∣∣∣ ≤ k, for all z ∈ Ur and t ∈ [0,∞).

Then, by Montel’s Theorem,
{

L (z, t)
a1 (t)

}
t∈[0,∞)

is a normal family in Ur.

Let p : Ur × [0,∞) → C be the function defined by

p (z, t) =

∂L (z, t)
∂t

z
∂L (z, t)

∂z

If the function

w (z, t) =
1− p (z, t)
1 + p (z, t)

=
z
∂L (z, t)

∂z
− ∂L (z, t)

∂t
.

z
∂L (z, t)

∂z
+

∂L (z, t)
∂t

(6)

is analytic in U × [0,∞) and |w (z, t)| < 1, for all z ∈ U and t ≥ 0, then p has an
analytic extension with positive real part in U , for all t ≥ 0.

From (4), (5) and (6) we obtain

w (z, t) =
(

2
aα

− 1
) [

eat −
(
eat − 1

) e−tzf ′ (e−tz)
f (e−tz)

]
+

+
(
eat − 1

) [
2
a

+ 1−
(

2
a

+ 1
)

e−tzf ′ (e−tz)
f (e−tz)

+
2
a

e−tzf ′′ (e−tz)
f ′ (e−tz)

]
.
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We have |w (z, 0)| =
∣∣∣∣ 2
aα

− 1
∣∣∣∣ ≤ 1 for all z ∈ U , with a and α in the conditions

of the theorem. For t > 0, |w (z, t)| < max
|z|=1

|w (z, t)| =
∣∣w (

eiθ, t
)∣∣, where θ ∈ R, so we

have to proove that
∣∣w (

eiθ, t
)∣∣ ≤ 1.

Consider u = e−teiθ, then u ∈ U and |u| = e−t. We have∣∣w (
eiθ, t

)∣∣ =
∣∣∣∣( 2

aα
− 1

) [
1
|u|a

−
(

1
|u|a

− 1
)

uf ′ (u)
f (u)

]
+

(
1
|u|a

− 1
)
·

·
[
2
a

+ 1−
(

2
a

+ 1
)

uf ′ (u)
f (u)

+
2
a

uf ′′ (u)
f ′ (u)

]∣∣∣∣
and from (1) it follows that

∣∣w (
eiθ, t

)∣∣ ≤ 1.
Then, by Theorem 1, the function L is a subordination chain and L (z, 0) =

f (z) is univalent in U . �

Theorem 3. Let f ∈ A be a locally univalent function in U , f (z) = z + a2z
2 + ...

for all z ∈ U , a, α ∈ C such that
∣∣∣∣ 2
aα

− 1
∣∣∣∣ ≤ 1 and Re (aα− 1) > 0. If∣∣∣∣∣

(
2

aα
− 1

) [
1− (1− |z|a)

zf ′ (z)
f (z)

]
+ (1− |z|a) z

d

dz

[
log

z( 2
a +1) (f ′ (z))

2
a

(f (z))
2
a +1

]∣∣∣∣∣ ≤ |z|a ,

for all z ∈ U , where
z( 2

a +1) (f ′ (z))
2
a

(f (z))
2
a +1

denotes the analytic branch of the function,

then f is univalent in U .
Remark 1. For a = 2 we obtain the univalence condition from [3]
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ON THE DIRECT PRODUCT OF MULTIALGEBRAS

COSMIN PELEA

Abstract. This paper presents some properties of the direct product of a
family of multialgebras of the same type.

1. Introduction

The multialgebras can be seen as relational systems which generalize the
universal algebras. In the same way as in [4] the Cartesian product of a family of
structures is organized as a structure it is possible to organize the Cartesian product
of the supporting sets of a family of multialgebras as a multialgebra (see [9]). An
important tool in the hyperstructure theory is the fundamental relation of a multi-
algebra (see [5]). The definition of this relation involves the term functions of the
universal algebra of the nonempty sets of the given multialgebra and their images for
some one element sets. These images of term functions are also used to obtain some
identities that furnishes important classes of multialgebras. We will characterize them
when our multialgebra is the direct product of a given family of multialgebras and
we will prove that such an identity holds for the direct product if it holds for each
member of the product.

We will also see that the definition of the multioperations in the direct product
is natural in the way that the resulting multialgebra is the product in a category of
multialgebras.

2. Preliminaries

Let τ = (nγ)γ<o(τ) be a sequence with nγ ∈ N = {0, 1, . . .}, where o(τ) is an
ordinal and for any γ < o(τ), let fγ be a symbol of an nγ-ary (multi)operation and let
us consider the algebra of the n-ary terms (of type τ) P(n)(τ) = (P(n)(τ), (fγ)γ<o(τ)).

Let A be a nonempty set and P ∗(A) the family of nonempty subsets of A. Let
A = (A, (fγ)γ<o(τ)) be a multialgebra, where, for any γ < o(τ), fγ : Anγ → P ∗(A) is
the multioperation of arity nγ that corresponds to the symbol fγ . One can admit that
the support set A of the multialgebra A is empty if there are no nullary multioperations
among the multioperations fγ , γ < o(τ).

Of course, any universal algebra is a multialgebra (we can identify an one
element set with its element).

As in [9] we can see the multialgebra A as a relational system (A, (rγ)γ<o(τ))
if we consider that, for any γ < o(τ), rγ is the nγ + 1-ary relation defined by

(a0, . . . , anγ−1, anγ
) ∈ rγ ⇔ anγ

∈ fγ(a0, . . . , anγ−1). (1)

Received by the editors: 21.02.2003.
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Defining for any γ < o(τ) and for any A0, . . . , Anγ−1 ∈ P ∗(A)

fγ(A0, . . . , Anγ−1) =
⋃
{fγ(a0, . . . , anγ−1) | ai ∈ Ai, ∀i ∈ {0, . . . , nγ − 1}},

we obtain a universal algebra on P ∗(A) (see [7]). We denote this algebra by P∗(A).
As in [4], we can construct, for any n ∈ N, the algebra P(n)(P∗(A)) of the n-ary term
functions on P∗(A).

A mapping h : A → B between the multialgebras A and B of the same type
τ is called homomorphism if for any γ < o(τ) and for all a0, . . . , anγ−1 ∈ A we have

h(fγ(a0, . . . , anγ−1)) ⊆ fγ(h(a0), . . . , h(anγ−1)). (2)

A bijective mapping h is a multialgebra isomorphism if both h and h−1 are multi-
algebra homomorphisms. As it results from [7], the multialgebra isomorphisms can
be characterized as being those bijective homomorphisms for which (2) holds with
equality.

Proposition 1. For a homomorphism h : A → B, if n ∈ N, p ∈ P(n)(τ) and
a0, . . . , an−1 ∈ A then

h(p(a0, . . . , an−1)) ⊆ p(h(a0), . . . , h(an−1)).

Proof. We will use the steps of construction of a term.
Step 1. If p = xi (i ∈ {0, . . . , n− 1}) then

h(p(a0, . . . , an−1)) = h(en
i (a0, . . . , an−1)) = h(ai)

= en
i (h(a0), . . . , h(an−1))

= p(h(a0), . . . , h(an−1)).

Step 2. Suppose that the statement has been proved for p0, . . . ,pnγ−1 ∈ P(n)(τ)
and that p = fγ(p0, . . . ,pnγ−1). Then we have

h(p(a0, . . . , an−1)) = h(fγ(p0, . . . , pnγ−1)(a0, . . . , an−1))

= h(fγ(p0(a0, . . . , an−1), . . . , pnγ−1(a0, . . . , an−1)))

= h(
⋃
{fγ(b0, . . . , bnγ−1) | bi ∈ pi(a0, . . . , an−1), i ∈ {0, . . . , nγ − 1}})

=
⋃
{h(fγ(b0, . . . , bnγ−1)) | bi ∈ pi(a0, . . . , an−1), i ∈ {0, . . . , nγ − 1}}

⊆
⋃
{fγ(h(b0), . . . , h(bnγ−1))) | bi ∈ pi(a0, . . . , an−1), i ∈ {0, . . . , nγ − 1}}.

Since for any i ∈ {0, . . . , nγ − 1}, bi ∈ pi(a0, . . . , an−1) it follows

h(bi) ∈ h(pi(a0, . . . , an−1)) ⊆ pi(h(a0), . . . , h(an−1)));

so we have,

h(p(a0, . . . , an−1)) ⊆ fγ(p0(h(a0), . . . , h(an−1)), . . . , pnγ−1(h(a0), . . . , h(an−1)))

= fγ(p0, . . . , pnγ−1)(h(a0), . . . , h(an−1))

= p(h(a0), . . . , h(an−1))

which finishes the proof.
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Remark 1. If for any γ < o(τ) and for all a0, . . . , anγ−1 ∈ A we have equality in (2),
then

h(p(a0, . . . , an−1)) = p(h(a0), . . . , h(an−1)).
The proof can be done as before, but it it also results from some properties that can
be established for the universal algebra P∗(A) (see [1]).

We can easily construct the category of the multialgebras of the same type τ
where the morphisms are considered to be the homomorphisms and the composition
of two morphisms is the usual mapping composition and we will denote it by Malg(τ).

Let q, r ∈ P(n)(τ). Using the model offered by [4] and looking at the defini-
tions of the hyperstructures from [2] and also at the generalizations presented in [10],
named Hv-structures, we can consider that the n-ary (strong) identity

q = r

is said to be satisfied on a multialgebra A if

q(a0, . . . , an−1) = r(a0, . . . , an−1)

for all a0, . . . , an−1 ∈ A, where q and r are the term functions induced by q and r
respectively on P∗(A). We can also consider that a weak identity (the notation is
intended to be as suggestive as possible)

q ∩ r 6= ∅
is said to be satisfied on a multialgebra A if

q(a0, . . . , an−1) ∩ r(a0, . . . , an−1) 6= ∅
for all a0, . . . , an−1 ∈ A, where q and r have the same signification as before. Many
important particular multialgebras are defined as being those multialgebras which
satisfy a given set of identities.

3. Direct products of multialgebras

Given a family of relational systems of the same type τ = (nγ + 1)γ<o(τ),
(Ai = (Ai, (rγ)γ<o(τ)) | i ∈ I), in [4] is defined the direct product of this family as
being the relational system obtained on the Cartesian product

∏
i∈I Ai considering

that for (a0
i )i∈I , . . . , (a

nγ

i )i∈I ∈
∏

i∈I Ai,

((a0
i )i∈I , . . . , (a

nγ

i )i∈I) ∈ rγ ⇔ (a0
i , . . . , a

nγ

i ) ∈ rγ , ∀i ∈ I.

If we consider a family {Ai}i∈I of multialgebras of type τ and the relational systems
defined by (1), the relational system that results on the Cartesian product

∏
i∈I Ai

from the above considerations is a multialgebra of type τ with the multioperations:

fγ((a0
i )i∈I , . . . , (a

nγ−1
i )i∈I) =

∏
i∈I

fγ(a0
i , . . . , a

nγ−1
i ), (3)

for any γ < o(τ). This multialgebra is called the direct product of the multialgebras
(Ai | i ∈ I). We observe that the canonical projections of the product, eI

i , i ∈ I, are
multialgebra homomorphisms.
Proposition 2. The multialgebra

∏
i∈I Ai constructed this way, together with the

canonical projections, is the product of the multialgebras (Ai | i ∈ I) in the category
Malg(τ).
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Proof. For any multialgebra B and for any family of multialgebra homomorphisms
(αi : B → Ai | i ∈ I) there is only one homomorphism α : B →

∏
i∈I Ai such that

αi = eI
i ◦ α for any i ∈ I.

Indeed, there exists only one mapping α such that the diagram∏
i∈I Ai

eI
i // Ai

B

α

OO

αi

;;wwwwwwwwww

is commutative. This mapping is defined by α(b) = (αi(b))i∈I . Now, all we have to
do is to verify that α is a multialgebra homomorphism. If we consider γ < o(τ) and
b0, . . . , bnγ−1 ∈ B then

α(fγ(b0, . . . , bnγ−1)) = {α(b) | b ∈ fγ(b0, . . . , bnγ−1)}
= {(αi(b))i∈I | b ∈ fγ(b0, . . . , bnγ−1)}.

From b ∈ fγ(b0, . . . , bnγ−1) it follows that for any i ∈ I,

αi(b) ∈ αi(fγ(b0, . . . , bnγ−1)) ⊆ fγ(αi(b0), . . . , αi(bnγ−1)),

so we have

α(fγ(b0, . . . , bnγ−1)) ⊆
∏
i∈I

fγ(αi(b0), . . . , αi(bnγ−1))

= fγ((αi(b0))i∈I , . . . , (αi(bnγ−1))i∈I)

= fγ(α(b0), . . . , α(bnγ−1))

which finishes the proof.

Lemma 1. For every n ∈ N, p ∈ P(n)(τ) and (a0
i )i∈I , . . . , (an−1

i )i∈I ∈
∏

i∈I Ai, we
have

p((a0
i )i∈I , . . . , (an−1

i )i∈I) =
∏
i∈I

p(a0
i , . . . , a

n−1
i ). (4)

Proof. We will use again the steps of construction of a term.
Step 1. If p = xj (j ∈ {0, . . . , n− 1}) then

p((a0
i )i∈I , . . . , (an−1

i )i∈I) = en
j ((a0

i )i∈I , . . . , (an−1
i )i∈I) = (aj

i )i∈I

=(en
j (a0

i , . . . , a
n−1
i ))i∈I =

∏
i∈I

en
j (a0

i , . . . , a
n−1
i ) =

∏
i∈I

p(a0
i , . . . , a

n−1
i ).

Step 2. Suppose that the statement has been proved for p0, . . . ,pnγ−1 ∈ P(n)(τ)
and that p = fγ(p0, . . . ,pnγ−1). Then we have

p((a0
i )i∈I , . . . , (an−1

i )i∈I) = fγ(p0, . . . , pnγ−1)((a0
i )i∈I , . . . , (an−1

i )i∈I)

= fγ(p0((a0
i )i∈I , . . . , (an−1

i )i∈I), . . . , pnγ−1((a0
i )i∈I , . . . , (an−1

i )i∈I))

= fγ(
∏
i∈I

p0(a0
i , . . . , a

n−1
i ), . . . ,

∏
i∈I

pnγ−1(a0
i , . . . , a

n−1
i ))

But
(xi)i∈I ∈ fγ(

∏
i∈I

p0(a0
i , . . . , a

n−1
i ), . . . ,

∏
i∈I

pnγ−1(a0
i , . . . , a

n−1
i ))
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if and only if for each j ∈ {0, . . . , nγ − 1} and i ∈ I, there exists some bj
i ∈

pj(a0
i , . . . , a

n−1
i ) such that

(xi)i∈I ∈ fγ((b0
i )i∈I , . . . , (b

nγ−1
i )i∈I) =

∏
i∈I

fγ(b0
i , . . . , b

nγ−1
i ),

thus

p((a0
i )i∈I , . . . , (an−1

i )i∈I) =
∏
i∈I

fγ(p0(a0
i , . . . , a

n−1
i ), . . . , pnγ−1(a0

i , . . . , a
n−1
i ))

=
∏
i∈I

fγ(p0, . . . , pnγ−1)(a0
i , . . . , a

n−1
i )

=
∏
i∈I

p(a0
i , . . . , a

n−1
i )

which finishes the proof of the lemma.

Proposition 3. If (Ai | i ∈ I) is a family of multialgebras such that q ∩ r 6= ∅ is
satisfied on each multialgebra Ai then q ∩ r 6= ∅ is also satisfied on the multialgebra∏

i∈I Ai.

Proof. Let us consider that q ∩ r 6= ∅ is satisfied on each multialgebra Ai, where
q, r ∈ P(n)(τ). This means that for all i ∈ I and for any a0

i , . . . , a
n−1
i ∈ Ai we have

q(a0
i , . . . , a

n−1
i ) ∩ r(a0

i , . . . , a
n−1
i ) 6= ∅. Using Lemma 1, it follows that

q((a0
i )i∈I , . . . , (an−1

i )i∈I) ∩ r((a0
i )i∈I , . . . , (an−1

i )i∈I)

=
∏
i∈I

q(a0
i , . . . , a

n−1
i ) ∩

∏
i∈I

r(a0
i , . . . , a

n−1
i )

=
∏
i∈I

(q(a0
i , . . . , a

n−1
i ) ∩ r(a0

i , . . . , a
n−1
i )) 6= ∅

and the statement is proved.

Proposition 4. If (Ai | i ∈ I) is a family of multialgebras such that q = r is satisfied
on each multialgebra Ai then q = r is also satisfied on the multialgebra

∏
i∈I Ai.

Proof. Consider that q, r ∈ P(n)(τ). For all i ∈ I and for any a0
i , . . . , a

n−1
i ∈ Ai we

have q(a0
i , . . . , a

n−1
i ) = r(a0

i , . . . , a
n−1
i ). Using Lemma 1, it follows that

q((a0
i )i∈I , . . . , (an−1

i )i∈I) =
∏
i∈I

q(a0
i , . . . , a

n−1
i ) =

∏
i∈I

r(a0
i , . . . , a

n−1
i )

= r((a0
i )i∈I , . . . , (an−1

i )i∈I)

and the statement is proved.
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“Babeş–Bolyai” University, Faculty of Mathematics
and Computer Science, Str. Mihail Kogălniceanu nr. 1,
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A FUNCTIONAL CHARACTERIZATION OF THE
SYMMETRIC-DIFFERENCE OPERATION

VASILE POP

Abstract. Let M be a set and P(M) the family of the subsets of M .
On P(M) we consider the set of all binary operations O(P(M)) and on
O(P(M)) we define a relation that we call the subordination relation. Then
we show that the only group operation on P(M), subordinate to the union,
is the symmetric difference.

1. Introduction

Let M be an arbitrary set and P(M) = {A| A ⊂ M}, the family of the
subsets of M . On the set of the binary operations on P(M) we define the following
subordination relation:

If f, g : P(M)×P(M) → P(M) are binary operation on P(M), we say that f
is subordinate to g or that g subordinates f , if f(X, Y ) ⊂ g(X, Y ) for all X, Y ∈ P(M)
and we denote f ≤ g.

Our purpose is to determine those operations that confers to P(M) a group
structure and which subordinate the intersection or are subordinated to the union.

2. Main results

For M and P(M) mentioned above, we denote O(P(M)) the set of all binary
operation on the set P(M):

O(P(M)) = {f : P(M)× P(M) → P(M)| f is a function }.

Remark 1. a) Among the usual operations, let us mention:
– the operation ∅: f(X, Y ) = ∅, for all X, Y ∈ P(M);
– the operation M : f(X, Y ) = M , for all X, Y ∈ P(M);
– the intersection (∩): f(X, Y ) = X ∩ Y , for all X, Y ∈ P(M);
– the union (∪): f(X, Y ) = X ∪ Y , for all X, Y ∈ P(M);
– the difference (\): f(X, Y ) = X \ Y , for all X, Y ∈ P(M);
– the symmetric difference (∆):

f(X, Y ) = X∆Y = (X ∪ Y ) \ (X ∩ Y ) = (X \ Y ) ∪ (Y \X)

b) The following subordination relations hold?

∅ ≤ ∩ ≤ ∪ ≤ M.

Received by the editors: 08.10.2002.
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c) For f, g ∈ O(P(M)) given operators, the operations ∩,∪ and ∆ are defined
by:

(f ∩ g)(X, Y ) = f(X, Y ) ∩ g(X, Y ),
(f ∪ g)(X, Y ) = f(X, Y ) ∪ g(X, Y ),
(f∆g)(X, Y ) = f(X, Y )∆g(X, Y ),

for all X, Y ∈ P(M).
Proposition 1. The subordinate relation is an order relation, which deter-

mines on O(P(M)) a lattice, where:

inf{f, g} = f ∩ g and sup{f, g} = f ∪ g, for f, g ∈ O(P(M)).

Proof. Let i, f, g, u ∈ O(P(M)).
If i ≤ f and i ≤ g, then i(X, Y ) ⊂ f(X, Y ) and i(X, Y ) ⊂ g(X, Y ). So

i(X, Y ) ⊂ (f ∩ g)(X, Y ). The maximal operation i, which verifies this inclusion is
i = f ∩ g.

If f ≤ u and g ≤ u, then f(X, Y ) ⊂ u(X, Y ) and g(X, Y ) ⊂ u(X, Y ). So
(f ∪ g)(X, Y ) ⊂ u(X, Y ). The minimal operation u, which verifies this inclusion is
u = f ∪ g. �

It is known that the operation ∆ determines on P(M) a group structure and
∆ ≤ U . We will show that, if M is a finite set, then this property characterizes the
symmetric difference, that is ∆ is the unique group operation on P(M), subordinated
to the union.

Theorem 1. If M is a finite set, then the symmetric difference ∆ is the
unique binary operation on P(M) which is subordinated to the union and which de-
termines on P(M) a group structure.

Proof. a) If we denote by ”∗” an operation which satisfies the requirements
of the theorem, from ∅ ∗ ∅ ⊂ ∅ we have ∅ ∗ ∅ = ∅. So the only element that could be
the unit element is ∅.

b) We show by induction after |X| that X ∗X = ∅ for all X ∈ P(M).
For |X| = 0 we have x = ∅ and ∅ ∗ ∅ = ∅.
We suppose X ∗X = ∅ for all X ∈ P(M) with |X| ≤ n and let A ∈ P(M)

with |A| = n + 1.
If X ⊂ A, then X ∗A ⊂ X∪A = A, so the translation restricted to P(M) has

values in P(M). Being an injection, it is a surjection, since P(A) is finite. Thus, there
exists the set B ⊂ A such that tA(B) = A ∗ B = ∅. If we suppose that B 6= A, then
|B| ≤ n and from the induction hypothesis we have B ∗B = ∅. From A ∗B = B ∗B
we have A = B, which is a contradiction that shows that A ∗A = ∅.

c) Using an induction on |B| = k we show that if A∩B = ∅, then A∗B = A∪B.
For k = 0, A ∗ ∅ = A ∪ ∅ = A is immediately verified since ∅ is the unit

element.
For k = 1, B = {x}, x 6∈ A. If A∗{x} = C ⊂ A∪{x} then C ∗{x} ⊂ C∪{x},

that is: A ∗ ({x} ∗ {x}) ⊂ C ∪ {x} or A ∗ ∅ ⊂ C ∪ {x} or A ⊂ C ∪ {x}. Since x 6∈ A
it follows that A ⊂ C and C ⊂ A ∪ {x}. So, either C = A or C = A ∪ {x}. But
C = A ∗ {x} 6= A, so we finally obtain C = A ∪ {x}.

For k = n + 1, let B = Bn ∪ {y} with |Bn| = n. Bn ∩ A = ∅ and y 6∈ A,
y 6∈ Bn.
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We have

A ∗B = A ∗ (Bn ∪ {y}) = A ∗ (Bn ∗ {y}) = (A ∗Bn) ∗ {y} =

= (A ∗Bn) ∪ {y} = (A ∪Bn) ∪ {y} = A ∪ (Bn ∪ {y}) = A ∪B

d) We show that X ∗ Y = X∆Y = (X \ Y ) ∪ (Y \ X). Let X ∩ Y = Z,
X \ Z = U , Y \ Z = V where U, V, Z are disjoint.

We have

X ∗ Y = (Z ∪ U) ∗ (Z ∪ V )
c)
= (U ∗ Z) ∗ (Z ∗ V ) =

= U ∗ (Z ∗ Z) ∗ V
b)
= U ∗ ∅ ∗ V

a)
= U ∗ V

c)
= U ∪ V

= (X \ Z) ∪ (Y \ Z) = (X \ Y ) ∪ (Y \X) = X∆Y. �

Theorem 2. If M is a finite set, then the unique operation on P(M) which
subordinates the intersection and which determines on P(M) a group structure is the
operation ∆ defined by:

f(X, Y ) = X∆Y = X∆Y = M \ (X∆Y ), X, Y ∈ P(M).

Proof. If we denote by ”>” such an operation, then X ∩ Y ⊂ X>Y ⇔
X>Y ⊂ X ∪ Y ⇔ X>Y ⊂ X ∪ Y .

Let us denote X>Y = X ∗ Y and show that (P(M), ∗) is a group.
The function c : P(M) → P(M), c(X) = X = M \X is a bijection and the

structure induced from the group (P(M),>) is X ∗ Y = c−1(c(X)>c(Y )) = X>Y .
Using now the previous theorem and the relation X ∗ Y ⊂ X ∪ Y we deduce

that ∗ = ∆, so X>Y = X∆Y or, equivalent, X>Y = X∆Y = X∆Y . �
Remark 2. The proofs of the theorems have essentially used the fact that

the set M is finite. It is an open problem whether the results take place for infinite
sets.
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A NEW SUBCLASS OF CONVEX FUNCTIONS

SZÁSZ RÓBERT

Abstract. In this paper we have studied a class of univalent functions
defined in the unit disc U = {z ∈ C : |z| < 1}.

1. Introduction

Let A be the class of the analytic functions in the open disc U = {z ∈ C :
|z| < 1}, which satisfy the conditions f(0) = 0 and f ′(0) = 1.
We denote by K the class of univalent functions for which we have: K ⊂ A and for
every function f ∈ K the domain f(U) is a convex set in the complex plane.
It is well known that

K = {f ∈ A : Re

(
1 +

zf ′′(z)
f ′(z)

> 0
)

for all z ∈ U}.

We introduce the notation

Kλ =
{

f ∈ A : (∃)λ ∈ U,

∣∣∣∣λ|z|2 +
(
1− |z|2

) zf ′′(z)
f ′(z)

∣∣∣∣ < 1, (∀)z ∈ U

}
.

The condition which defines the class Kλ is a univalence criterion,whose proof and
generalisation can be found in [4],[5].

2. Preliminaries

Definition 1. Let f and g be two analytic functions in U. The function f is subordinate
to g if there exists an analytic function denoted by Φ with the properties: |Φ(z)| < 1,
z ∈ U , Φ(0) = 0 and f(z) = g (Φ(z)) , z ∈ U . The fact that f is subordinate to g will
be denoted by f ≺ g.
Observation 1. If f and g are two analytic functions in U , g is univalent, f(0) = g(0)
and f(U) ⊂ g(U) then f is subordinate to g.

To prove our main result we will need the following lemmas.

Lemma A. If the function f is analytic in U and z0 ∈ U , then z0f
′(z0) is the outward

normal to the boundary of the domain f(Ur0), where r0 = |z0| and Ur0 = {z ∈ C :
|z| < r0}.

Lemma B. (Miller and Mocanu) [2] Let q be analytic and univalent in U.
q(0) = a and let p(z) = a + pnzn + . . . be analytic in U with p(z) 6= a, n ≥ 1. If p ⊀ q
then there exists points r0e

iΘ0 = z0 ∈ U and ζ0 ∈ ∂U and m ≥ n for which
(i) p(Ur0) ⊂ q(U)
(ii) p(z0) = q(ζ0)

Received by the editors: 06.11.2002.
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(iii) z0p
′(z0) = mζ0q

′(ζ0).
If q(z) = a+az

1−z with Re(a) > 0 then q(U) = {w ∈ C : Re w > 0} and Lemma B
becomes:

Lemma B’. Let p be analytic in U, p(z) = a + pnzn + . . . , p 6≡ a,Re a >
0, n ≥ 1.
If Re p(z) ≯ 0, z ∈ U then there exists z0 ∈ U, x, y ∈ R for which

(i) p(z0) = ix
(ii) z0p

′(z0) = y ≤ −1
2 [x2 + 1]

3. Main result

We observe that if fδ(z) =
e(1+δ)z − 1

1 + δ
then 1 +

zf ′′δ (z)
f ′δ(z)

= 1 + (1 + δ)z and

so fδ is not a convex function in U if δ > 0.
Theorem 1. If λ ∈ U then Kλ * K.

Proof. We will prove that for λ ∈ U exists a δ > 0 for which fδ ∈ Kλ.
If λ ∈ U then |λ| = 1− ε,ε ∈ (0, 1) and from the triangle inequality results that:∣∣∣∣λ|z|2 +

(
1− |z|2

) zf ′′δ (z)
f ′δ(z)

∣∣∣∣ ≤ (1− ε)|z|2 +
(
1− |z|2

)
(1 + δ)|z| , z ∈ U. (1)

Let r = |z| and g(r) = (1 − ε)r2 + (1 − r2)(1 + δ)r. After calculations we get that
g(r) ≤ (1 + δ)r(δ) where r(δ) is the positive root of the equation g′(r) = 0. .
To show that there exists δ ∈ (0,+∞) for which∣∣∣∣λ|z|2 + (1− |z|2)zf ′′δ (z)

f ′δ(z)

∣∣∣∣ < 1 for all z ∈ U (2)

it is enough to show the existence of δ with the property (1 + δ)r(δ) < 1. The last
assertion holds because:

lim
δ→o

(1 + δ)r(δ) =
|λ|+

√
|λ|2 + 3
3

< 1. (3)

This completes the proof of the theorem .

Theorem 2. K−1 ⊂ K.

Proof. 1. We will use Lemma B’ to prove our assertion.

If we put λ = −1 and p(z) = 1 +
zf ′′(z)
f ′(z)

the inequality∣∣∣∣λ|z|2 +
(
1− |z|2

) zf ′′(z)
f ′(z)

∣∣∣∣ < 1, z ∈ U

may be rewritten in the following form∣∣−1 +
(
1− |z|2

)
p(z)

∣∣ < 1, z ∈ U. (4)

If Re p(z) ≯ 0, z ∈ U then according to Lemma B’ there are z0 ∈ U and x, y ∈ R so
that

(i) p(z0) = ix
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(ii) z0p
′(z0) = y ≤ −1

2

(
x2 + 1

)
and we get that

∣∣−1 +
(
1− |z0|2

)
p(z0)

∣∣ =
∣∣−1 +

(
1− |z0|2

)
ix

∣∣ ≥ 1 which inequality
is in contradiction with (4).

Theorem 3. Let γ be a positive real number.The integral operation I defined by the
equality

I(f)(z) = F (z) =
γ + 1
zγ

∫ z

0

f(t)tγ−1dt (5)

satisfies the relation I(K−1) ⊂ K−1.

Proof. Let f ∈ K−1.We must show that the inequality∣∣∣∣−|z|2 +
(
1− |z|2

) zf ′′(z)
f ′(z)

∣∣∣∣ < 1, z ∈ U

implies that ∣∣∣∣−|z|2 +
(
1− |z|2

) zF ′′(z)
F ′(z)

∣∣∣∣ < 1, z ∈ U.

Let q(z) =
zF ′′(z)
F ′(z)

. We define the following set

B =
{
r ∈ [0,+∞) :

∣∣− |z|2 +
(
1− |z|2

)
q(z)

∣∣ < 1, (∀)z ∈ Ur

}
where Ur = {z ∈ C : |z| ≤ r}. The set B isn’t empty because 0 ∈ B. Let r0 = sup B.
For a fixed z the equality

∣∣− |z|2 +
(
1− |z|2

)
(x + iy)

∣∣ = 1 defines a circle in the x0y
system of coordinates. Let’s denote this circle by Cz. Because for all z ∈ U the center
O1

(
|z|2

1−|z|2 , 0
)

of the circle Cz is on the real axis 0x and the point p(-1,0) is on the

circle Cz,we conclude that if
∣∣z1| < |z2|,then every point of the circle Cz1 except p

are inside the circle Cz2 .The above assertion shows that if r0 < 1, then there exists
z0 ∈ U, |z0| = r0 so that

∣∣ − |z0|2 +
(
1− |z0|2

)
q(z0)

∣∣ = 1 and the domain q(Ur0) is
inside the circle Cz0 . The border of the domain q(Ur) is tangent to the circle Cz0

in the point q(z0) which implies that the outward normal z0q
′(z0) to the border of

q(Ur0) is outward normal to the circle Cz0 . From (5) we get that :

q(z) +
zq′(z)

1 + γ + q(z)
=

zf ′′(z)
f ′(z)

, z ∈ U (6)

We will prove that Re
1

1 + γ + q(z)
> 0, z ∈ U .

If Re (1 + γ + q(z)) ≯ 0 for all z ∈ U then we can apply Lemma B’ and we get that
there are z0 ∈ U and x, y ∈ R with the properties

(a) Re (1 + γ + q(z0)) = ix
(b) z0q

′(z0) = y ≤ − 1
2 (x2 + 1).

Replacing in (6) results that Re

(
1 + γ + q(z0) +

z0q
′(z0)

1 + γ + q(z0)

)
= Re

(
ix +

y

ix

)
= 0

on the other hand from (6) we get that:

Re

(
1 + γ + q(z0) +

z0q
′(z0)

1 + γ + q(z0)

)
= Re

(
1 + γ +

z0f
′′(z0)

f ′(z0)

)
> 0
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The contradiction shows that Re (1 + γ + q(z)) > 0 for all z ∈ U . Let’s return now

to the proof of the theorem. The inequality Re
1

1 + γ + q(z0)
> 0 is equivalent to :∣∣∣∣arg

1
1 + γ + q(z0)

∣∣∣∣ <
π

2
(7)

Using (7) and the fact that z0q
′(z0) is the outward normal to the circle Cz0 , we obtain

that q(z0) +
z0q

′(z0)
1 + γ + q(z0)

/∈ Int Cz0 or equivalently∣∣∣∣−|z0|2 +
(
1− |z0|2

) (
q(z0) +

z0q
′(z0)

1 + γ + q(z0)

)∣∣∣∣ ≥ 1

which implies that
∣∣∣∣−|z0|2 +

(
1− |z0|2

) z0f
′′(z0)

f ′(z0)

∣∣∣∣ ≥ 1, z ∈ U in contradiction with

the condition f ∈ K−1.

Conjecture. If |λ| ≤ 1 and Kλ ⊂ K then λ = −1.
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ÉVOLUTION DES COURS GOUVERNÉE PAR UN PROCESSUS DE
TYPE ARIMA FRACTIONNAIRE

TRAN HUNG THAO AND CHRISTINE THOMAS-AGNAN

Abstract. A suitable model for the evolution of options in a financial
market is proposed. It exhibits a long term dependence of options that
is not expressed in the usual Black-Scholes model. A fractional processes
of ARIMA type is chosen to model the perturbation of the evolution. A
solution for a modified model is found.

1. Introduction

Il est bien connu que l’évolution du cours de l’action est habituellement décrite
par l’équation de Black et Scholes:

dSt = St(µdt + νdWt), 0 ≤ t ≤ T (1.1)

où St est le prix de l’action à l’instant t, µ et ν sont deux constantes, Wt est un
mouvement brownien standard et T est la date d’échéance de l’option à étudier. Pour
simplifier, on va se restreindre au cas univarié.

Dans ce modèle (1.1), le rapport relatif dSt

St
entre le changement du prix de

l’action et lui-même est supposé non seulement proportionnel à la durée du temps de
ce changement mais aussi bruit é par le bruit blanc markovien dWt. Et par conséquent,
la solution St de (1.1) est un processus de Markov qui ne présente qu’une dépendance
très faible et aussi qu’une sorte d’indépendance avec le passé lointain. Mais il est
évident que, pour la plupart des processus économiques, l’hypothèse d’absence de
mémoire n’est pas tenable. Le prix de l’action St à l’instant t peut être influencé
par son comportement longtemps avant, ce qui est incompatible avec la propriété de
Markov. Et le risque de l’action doit être représenté par un modèle comportant une
dépendance. C’est pourquoi nous proposons ici un modèle des cours perturbé par
un processus asymptotique à une série temporelle de type ARIMA qui exprime une
évolution de longue mémoire.

Considérons d’abord un bruit modélisé par un processus ARIMA Y défini
par

Ys = (1− L)−dΦ(L)−1Θ(L)εs, s = 0, 1, 2, ..., [T ] (1.2)

où (εs) est un bruit blanc qui est une suite de variables aléatoires de moyennes nulles,
non corrélées et de même variance σ, L est l’opérateur de retard, Φ et Θ sont des
polynômes de retard ayant leurs racines à l’extérieur du disque unité, d est l’ordre
fractionnaire de différentiation.

Received by the editors: 03.07.2002.
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On sait que la représentation moyenne mobile du processus peut s’écrire

Y =
s∑

k=1

h
(d)
s−kεk (1.3)

où les coefficients moyennes mobiles peuvent être approchés par

h(d)
s ≈ Θ(1)

Φ(1)Γ(1)
sd−1

avec s grand et où Γ désigne la fonction gamma.
On considère maintenant un processus Z défini par:

Zr =
1

T d− 1
2
Y[Tr], 0 ≤ r ≤ 1 (1.4)

où [x] est la partie entière de x.
Nous renvoyons les lecteurs aux résultats présentés dans [3] où l’on peut

trouver que, par un calcul et par l’application du théorème de Donsker on obtient
l’approximation suivante:

Zr =
1

T d− 1
2

[Tr]∑
k=1

h
(d)
[Tr]−k.εk

≈ σΘ(1)
Φ(1)Γ(d)

[Tr]∑
k=1

(
r − k

T

)d−1[
W

( k

T

)
−W

(k − 1
T

)]
où W est un mouvement brownien. On peut écrire aussi:

Zr ≈ σΘ(1)
Φ(1)Γ(d)

∫ r

0

(r − s)d−1dWs, 0 ≤ r ≤ 1. (1.5)

L’intégrale stochastique dans (1.5) joue un rôle essentiel dans la description de la
présence d’une dépendance à long terme d’un prix d’action dans l’évolution du cours.

On peut revenir au temps t avec 0 ≤ t ≤ T par un changement de variable
s = u

T en remplaçant r
T par t et en notant que le mouvement brownien Ws est un

processus auto-similaire, c’est-à-dire, Ws ≡ W u
T
∼ 1

T Wu (identique en loi). On a
alors:

Zr ≡ ZtT =
σΘ(1)

Φ(1)Γ(d)
.

1
T d

∫ t

0

(t− u)d−1dWu, 0 ≤ t ≤ T. (1.6)

En posant d− 1 = α (α < 1
2 ) on considère l’int égrale stochastique dans (1.6):

Bt ≡
∫ t

0

(t− u)αdWu, 0 ≤ t ≤ T, α > 0, (1.7)

qui sera choisie pour modélisé la perturbation dans notre modèle de long terme de
l’évolution du cours.

Nous proposons donc de substituer au modèle (1.1) le modèle suivant

dSt = St(µdt + νdBt), S0 donné, (1.8)

St : prix d’option, µ et ν :constantes, Bt défini par (1.7), avec α = H − 1
2 > 0

(H > 1
2 ).

On désigne par Ft le σ-tribu engendré par la variable aléatoire donnée S0 et
par tout Bs, s ≤ t : Ft = σ(S0, Bs, s ≤ t).
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Une solution St de (1.8) est un processus stochastique Ft-adapté satisfaisant
la relation suivante

St = S0 + µ

∫ t

0

Ssds + ν

∫ t

0

SsdBs (1.8)′

où la dernière intégrale est définie comme suit:∫ t

0

SsdBs = StBt −
∫ t

0

BsdSs

en supposant que St soit presque surement borné.
Le modèle (1.8) est celui de Black et Scholes où on a remplacé le mouvement

brownien Wt par le processus fractionnaire Bt afin d’avoir un prix d’option de longue
mémoire.

2. Relation entre la perturbation Bt et le mouvement brownien fraction-
naire

Certains auteurs ont aussi considéré le modèle suivant

dSt = µStdt + νStdWH
t (2.1)

où WH
t est un mouvement brownien fractionnaire de paramètre de Hurst H, 0 ≤ H ≤

1 (voir [2], [5]). On rappelle que WH
t est un processus gaussien centré avec fonction

de covariance donnée par

R(s, t) = E(WH
s WH

t ) =
VH

2
(s2H + t2H − |t− s|2H) (2.2)

où VH est une constante. Si H = 1
2 alors VH = 1, R(s, t) = 1

2 (s+t−|t−s|) = min(s, t)
et on a un mouvement brownien standard ordinaire. Alors (2.1) est le modèle bien
connu de Black et Scholes.

L’équation (2.1) ne peut pas être résolue dans le cadre de la théorie de
l’intégrale stochastique d’Itô, car WH

t n’est plus un semi-martingale en général, sauf
le cas où H = 1

2 . Des calculs stochastiques nouveaux sont élaborés (voir [2]) pour
traiter des telles situations, mais il semble qu’ils sont encore loin des besoins pratiques
dans la finance. On sait aussi que le mouvement brownien fractionnaire admet une
représentation de la forme

WH
t =

1
Γ(1− α)

{
Ut +

∫ t

0

(t− s)αdWs

}
, (2.3)

où Γ désigne la fonction de gamma, Wt un mouvement brownien standard, α = H− 1
2 ,

et Ut =
∫ 0

−∞[(t−s)α−(−s)α]dWs. Parce que Ut est un processus avec des trajectoires
absolument continues il suffit de considérer le deuxième terme qui correspond à (1.7).

On a ainsi démontré qu’on a des raisons de choisir Bt défini par (1.7) au lieu
de WH

t = 1
Γ(1+α) {Ut + Bt} et de Wt comme la perturbation du prix de l’action dans

un marché financier.
Revenant au modèle (1.8) du paragraphe 1, on va approximer Bt par un

semimartigale.
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3. Approximation du processus Bt

Pour chercher une solution asymptotique pour le modèle (1.8) on a besoin
d’une approximation du processus Bt.

D’abord, pour chaque ε > 0 on définit un processus Bε
t comme suit

Bε
t =

∫ t

0

(t− s + ε)αdWs, 0 < α <
1
2

(3.1)

où Wt est le mouvement brownien correspondant à Bt dans (1.7).
On voit que Bε

t est un semimartingale continu:

dBε
t =

( ∫ t

0

α(t− s + ε)α−1dWs

)
dt + εαdWt. (3.2)

En effet, d’après le théorème de Fubini, on a:∫ t

0

∫ s

0

(s− u + ε)α−1dWuds =
∫ t

0

[ ∫ s

u

(s− u + ε)α−1ds
]
dWu

=
1
α

[ ∫ t

0

(s− u + ε)αdWu − εαWt

]
=

1
α

[
Bε

t − εαWt

]
, d’ où:

Bε
t =

∫ t

0

∫ s

0

α(s− u + ε)α−1dWuds + εαWt et il en result (3.2).

On suppose dans cet article que 1
2 < H < 1, c’est à dire que 0 < α < 1

2 . On
peut alors établie le résultat suivant

Théorème 1. Bε
t converge vers Bt dans L2(Ω) lors que ε tend vers 0. Cette conver-

gence est uniforme par rapport à t ∈ [0, T ].
De la preuve du ce théorème, on obtient aussi l’estimation suivante:

sup
0≤t≤T

E|Bε
t −Bt|2 ≤ K(α)ε

1
2+α, α = H − 1

2
, 0 < α <

1
2
.

Démonstration.
En appliquant le théorème des accroissements finis à la function continument

dérivable u → uα, on a:

|(t− s + ε)α − (t− s)α| ≤ αε sup
0≤θ≤1

|(t− s + θε)α−1|

= αε(t− s)α−1, 0 < α = H − 1
2

<
1
2
. (3.3)

D’après l’isométrie de l’intégration d’Itô, on voit que

E|Bε
t −Bt|2 = E

∣∣∣ ∫ t

0

[
(t− s + ε)α − (t− s)α

]
dWs

∣∣∣2
=

∫ t

0

∣∣(t− s + ε)α − (t− s)α
∣∣2ds (3.4)
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L’inégalité (3.3) appliquée au membre droite de (3.4) nous donne:∫ t

0

∣∣(t− s + ε)α − (t− s)α
∣∣2ds ≤ α2ε2

∫ t

0

|t− s|2α−2ds =

= α2ε2

∫ t−ε

0

|t− s|2α−2ds + α2ε2

∫ t

t−ε

|t− s|2α−2ds

≤ α2ε2 ε2α−1

1− 2α
+ α2ε2 ε2α−1

1− 2α
= C(α)ε2α+1, (3.5)

où C(α) est une constante ne dépendant que de α : C(α) = 2α2

1−2α .
Par conséquent,

sup
0≤t≤T

‖Bε
t −Bt‖ ≤ K(α)ε

1
2+α → 0, (3.6)

lorsque ε → 0, où 0 < α < 1
2 ,K(α) =

√
C(α) et ‖ · ‖ désigne la norme dans L2(Ω).

Donc Bε
t converge dans L2(Ω) vers Bt et la convergence est uniforme par

rapport à t ∈ [0, T ]. �

Remplacer Bt par le semimartingale Bε
t permet alors un calcul stochastique

usuel sans faire appel à des techniques difficiles comme le calcul de Malliavin.

4. Modèle (1.8) modifié

En se basant sur le Théorème 1 ci-dessus, nous proposons d’étudier ici un
modèle modifié qui nous permettera d’utiliser le calcul d’Itô et facilitera les applica-
tions pratiques en prenant en compte de conséquences à long terme de chaque prix
d’actif.

Pour chaque ε > 0 on associe à (1.8) le modèle asymptotique suivant:

dSε
t = µSε

t dt + νSε
t dBε

t , S0 = x, (4.1)

où Bε
t est défini comme dans le paragraphe 3 et x est une variable aléatoire positive

donnée. Parce que

dBε
t =

( ∫ t

0

α(t− s + ε)α−1dWs

)
dt + εαdWt (4.2)

on a

dSε
t = Sε

t

[
µ + να

∫ t

0

(t− s + ε)α−1dWs

]
dt + εανSε

t dWt. (4.3)

En désignant le crochet dans (4.3) par Hε
t qui est un processus à trajectoires absolu-

ment continues, on peut reécrire (4.3) par

dSε
t = Sε

t Hε
t dt + εανSε

t dWt. (4.4)

(4.4) est une équation différentielle stochastique qui peut être résolue par le calcul
d’Itô.

Hε
t = µ + να

∫ t

0

(t− s + ε)α−1dWs. (4.5)

Théorème 2. Pour le modèle modifié

dSt = St(µdt + νdBε
t ),
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avec la condition initiale S0 = x, où x est une variable aléatoire donnée telle que
‖x‖2 = E [x]2 < ∞, Bε

t =
∫ t

0
(t− s + ε)αdWs, α > 0, nous avons la solution suivante:

Sε
t = x exp

(
µt +

1
2
ν2ε2αt + νBε

t

)
. (4.6)

Démonstration.
L’équation (4.4) peut s’écrire

dSε
t

Sε
t

= Hε
t dt + εανdWt. (4.7)

Appliquons la formule d’Itô à fonction f(u) = log u avec u = Sε
t > 0:

log Sε
t = log Sε

0 +
∫ t

0

dSε
t

Sε
t

+
1
2

∫ t

0

− 1
(Sε

s)2
(εανSε

s)2ds.

D’où ∫ t

0

dSε
t

Sε
t

= log
Sε

t

Sε
0

− 1
2
(εαν)2t. (4.8)

On déduit de (4.7) et (4.8) que

Sε
t = Sε

0 exp
(1

2
ν2ε2αt + νεa +

∫ t

0

Hε
sds

)
. (4.9)

D’autre part on a∫ t

0

Hε
sds = µt + να

∫ t

0

∫ s

0

(s− u + ε)α−1dWuds.

Comme on a déjà calculé avant l’énoncé du Thérème 1:∫ t

0

∫ s

0

(s− u + ε)α−1dWuds =
∫ t

0

[ ∫ s

u

(s− u + ε)α−1ds
]
dWu

=
1
α

[ ∫ t

0

(s− u + ε)αdWu − εαWt

]
=

1
α

(
εαWt −Bε

t

)
.

soit ∫ t

0

Hε
sds = µt− νεαdWt + νBε

t . (4.10)

On suppose que Sε
0 = x est le cours observé à la date t = 0 et est une variable aléatoire

indépendante de Bt ( c’est -à - dire indépendante de Wt). En remplaçant (4.10) dans
(4.9) on obtient enfin:

Sε
t = x exp

(1
2
ν2ε2αt + µt + νBε

t

)
, (4.11)

ce qu’il faudrait démontrer. �
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5. Convergence

On constate que dans l’ expression (4.11), lorsque ε → 0 le terme 1
2ν2ε2αt

tend vers 0 tandis que Bε
t → Bt dans L2(Ω) uniformement par rapport à t ∈ [0, T ].

Alors on considère un processus S∗t défini par:

S∗t = S0 exp(µt + νBt). (5.1)

Et on a un résultat de convergence comme suivant:
Théorème 3. Le processus S∗t défini par le formule (5.1) est la limite dans L2(Ω)
de Sε

t lorsque ε tend vers 0. Cette convergence est uniforme par rapport à t ∈ [0, T ].

Démonstration.
On a

St − S∗t = x exp
(
µt− 1

2
ν2ε2αt + νBt

)
− x exp

(
µt + νBt

)
= x exp

(
µt + νBt

)[
exp

(
− 1

2
ν2ε2αt + ν(Bε

t −Bt)
)
− 1

]
(5.2)

En désignant par ‖ · ‖ le norme dans L2(Ω) on voit que

‖x‖ = Ex2 < 0 par hypothèse, (5.3)

‖ exp(µt + νBt)‖ ≤ eµt exp(ν‖Bt‖) ≤ eµT exp
(
ν

T
1
2+α

√
1 + 2α

)
, (5.4)

où ‖Bt‖ est calculé d’après l’isométrie d’Itô:

‖Bt‖2 = E
[ ∫ t

0

(t− s)αdWs

]2 = E

∫ t

0

(t− s)2αds =
t1+2α

1 + 2α
.

D’autre part, il résulte de la relation eA − 1 = A + o(A) que

‖ exp
[
− 1

2
ν2ε2αt+ν(Bε

t −Bt)
]
−1‖ ≤ 1

2
ν2ε2αt+ν‖Bε

t −Bt‖+ o
(
‖Bε

t −Bt‖
)
, (5.5)

On a déjà une estimation de ‖Bε
t −Bt‖ par la formule (3.6) du Théorème 1:

‖Bε
t −Bt‖ ≤ K(α)εα+ 1

2 , (5.6)

où K(α) est une constante ne dépendant que de α. Par conséquent

‖ exp
[
− 1

2
ν2ε2αt + ν(Bε

t −Bt)
]
− 1‖ ≤ ν2ε2αT + 2K(α)εα+ 1

2 . (5.7)

Il résulte enfin de (5.2), (5.4) et (5.7) que

sup
0≤t≤T

‖Sε
t − St‖ ≤

[
exp

(
µT +

νT
1
2+α

√
1 + 2α

)][
ν2Tε2α + 2K(α)εα+ 1

2

]
→ 0. (5.8)

d’où la conclusion du Théorème 3. �
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6. Solution du modèle fractionnaire

Nous revenons au modèle fractionnaire proposé au début:{
dSt = St(µdt + νdBt)
S0 = x donné, Bt =

∫ t

0
(t− s)αdWs, 0 < α < 1

2 .
(1.8)

Définition. On appelle une solution du modèle fractionaire (1.8) la L2-limite de la
solution du modèle modifié lorsque ε → 0:

St ≡ S∗t = L2 − lim
ε→0

Sε
t .

Par cette définition et par Thérème 3 on a maintenant la solution de (1.8):
St = x exp(µt + νBt).

Existence et Unicité de la solution
L’existence de la solution St est assurée par Théorème 3. Par ailleurs, le

modèle modifié est donné sous la forme d’une équation différentielle stochastique
linéaire gouvernée par un semimartingale avec des coefficients constants et avec la
condition ES2

0 < ∞. Alors il existe uniquement une telle solution St. L’unicité est
au sens de l’espace L2(Ω), car si S

∗(1)
t et S

∗(2)
t sont deux solutions de Sε

t dans L2(Ω)
alors on a

‖S∗(1)t − S
∗(2)
t ‖ ≤ ‖S∗(1)t − Sε

t ‖+ ‖Sε
t − S

∗(2)
t ‖ → 0,

lorsque ε → 0.

7. Sur l’opportunité d’arbitrage

Il est bien connu en mathématiques financières que l’absence d’arbitrage est
essentiellement équivalent à l’existence d’une mesure de martingale. Alors une ques-
tion naturelle se pose: Est-ce-que le principe d’absence d’arbitrage est violé dans notre
modèle où le processus gouvernant Bt n’est plus un semimartingale?

La réponse, est que la solution St du modèle fractionnaire proposé peut être
approximée avec une exactitude arbitraire par une solution Sε

t du modèle modifié
gouverné par un semimartingale où il n’existe aucune opportunité d’arbitrage. C’est
là un des avantages de notre approche à calcul stochasticque fractionnaire appliqué à
la finance par rapport aux autres approches.

Bibliographie
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BOOK REVIEWS

Zdzislaw Denkowski, Stansislaw Migórski and Nikolas S. Papageorgiu, An In-
troduction to Nonlinear Analysis, Vol. I, Theory, 689 pp, ISBN 0-306-47392-5,
Vol. II, Applications, 823 pp, ISBN 0-306-47456-5, Kluwer Academic Publishers,
Boston-Dordrecht-London 2003.

The aim of this two volume treatise is to present some basic results in
nonlinear analysis along with some applications. The methods and tools of nonlinear
analysis rely heavily on results from other mathematical disciplines, first of all linear
functional analysis (Banach space theory), topology and measure theory. In order
to make a newcomer acquainted with the needed results from these areas and to
prevent him to waste time and energy to browse over various specific books, the
authors decided to gather in the first volume the basic results that are often used in
nonlinear analysis. In the next we shall pass to a detailed analysis of the volumes.

Volume I: Theory

The volume is divided into five chapters corresponding to specific areas in-
cluded: 1. Elements of topology (102 pp); 2. Elements of measure theory (150 pp); 3.
Banach spaces (149 pp); 4. Set-valued analysis (112 pp); 5. Nonsmooth analysis (148
pp).

The first chapter contains the basic notions, constructions and results from
topology – separation properties, nets and filters, connectedness, compactness, metriz-
ability, continuity and uniform continuity, completeness, topologies on function
spaces. Measure theory and integration is treated in the second chapter, and in-
cludes basic constructions in measure theory, Radon-Nikodym theorem, measures and
measurable functions on topological spaces, Polish and Souslin spaces, Carathéodori
functions (Scorza-Dragoni theorem). The third chapter is concerned with the fun-
damental properties of Banach and Hilbert spaces and of operators acting on them:
Hahn-Banach theorem, fundamental principles, weak and weak∗ topologies, separa-
tion of convex sets. A special attention is paid to function spaces (including Sobolev
spaces) and their duality, compactness and weak compactness criteria in such spaces.

Although the majority of the results are presented with full proofs, some
difficult theorems (as, e.g., Tietze and Urysohn theorems, the paracompactness of
metric spaces, Nikodym boundedness theorem, Lyapunov convexity theorem, some
extension theorems for measures, James’ criterium of weak compactness, Eberlein-
Smulian theorem, Bishop-Phelps theorem) are only enounced with exact references
to the sources where a proof can be found.

Chapter 4, Set-valued analysis (112 pp), presents the basic results of multi-
valued analysis – various convergence types for sets and multifunctions, continuity,
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measurability, set-valued measures and integration, measurable and continuous se-
lections. A comprehensive treatment of these topics is given in another two volume
treatise published also at Kluwer A. P. by S. Hu and N. S. Papageorgiu, Handbook
on multivalued analysis, Vol. I (1997), Vol. II (2000).

The last chapter of this volume is concerned with nonsmooth analysis includ-
ing differential calculus in Banach spaces, convex functions and their subdifferentials,
generalized subdifferentials of locally Lipschitz functions, optimization and minimax
theorems, tangent and normal cones.

Volume II, Applications

The first chapter of the second volume, Nonlinear operators and fixed points
(168 pp), discusses nonlinear compact and Fredholm operators, measures of non-
compactness and set-contractions, monotone operators, accretive operators and semi-
groups of nonlinear operators, Ekeland variational principle, fixed points.

After this somewhat transition chapter, making a bridge between the the-
ory treated in the first chapter to the applications from the second one, one passes
to more applied topics: 2. Ordinary differential equations (144 pp); 3. Partial dif-
ferential equations (228); 4. Optimal control and calculus of variations (147 pp); 5.
Mathematical economics (105 pp). Of course that it is impossible to give in one chap-
ter a comprehensive treatment of the subject, the aim of the authors being rather to
emphasize how the techniques developed so far work to give new insights.

For instance, in the second chapter, the approach to differential equations is
done via critical point theory and minimax techniques (Mountain Pass, Saddle Point
and Linking Theorems). Differential inclusions as well as Hamiltonian systems with
emphasis on the existence of periodic trajectories, are also considered.

Partial differential equations, treated in the third chapter, are one of the main
domain of applications of nonlinear analysis and, at the same time, a source for many
problems and results. Here the main idea is to show that there are some unifying
themes, lying underneath the huge amount of apparently unrelated techniques used
to solve partial differential equations. The main topics are: eigenvalue problems and
maximum principles, nonlinear elliptic problems, evolution equations, Γ-convergence
for functions and G-convergence for operators.

Another important field of applications where the method of nonlinear analy-
sis are essential is optimal control, treated in the fourth chapter. Again the treatment
is restricted to topics that illustrate the techniques developed in the previous chap-
ters, and they include: existence and relaxation, sensitivity analysis, the maximum
principle, Hamilton-Jacobi-Belman equation, viscosity solutions, controllability and
observability. The last section of this chapter is devoted to the calculus of variations,
a field as old as the calculus itself, but still of great interest.

Finally, the last chapter of the book deals with some problems in mathemat-
ical economics, a domain that knew a remarkable progress in the last forty years, and
allowed to some mathematicians to win a Nobel prize in economics. From this vast
domain the authors selected some topics: Walras equilibria in competitive economies,
growth models for both discrete time and continuous time cases, growth models under
uncertainty, stochastic games.
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Each chapter contains a set of exercises (around 50), followed by solutions,
completing the main text. A section of remarks, containing historical comments,
references to related results as well as indications for further reading, is also included
in each chapter.

This fairly self-contained two volume book is a very good introductory text
to a variety of topics in nonlinear analysis and its applications. It, or parts of it, can
be used for graduate or post-graduate courses, or as a reference text.

S. Cobzaş

p-Adic Functional Analysis, Lecture Notes in Pure and Applied Mathematics:
Vol. 222, A. K. Katsaras, W. H. Schikhof, L. Van Hamme - Editors, M. Dekker, New
York 2001, viii+322 pp, ISBN 0-8247-0611-0.

These are the Proceedings of the Sixth International Conference on p-adic
Functional Analysis held in 2000 at the University of Ioannina, Greece. Starting with
Laredo, Spain 1990, each two years a conference on these topics was held in various
countries, most of the proceedings being published by M. Dekker in the same series
as the present one.

This conference was attended by about 40 mathematicians from various coun-
tries, reputed specialists who, in 30 minutes talks, reported on their latest results in
p-adic or non-archimedean (n.a.) analysis. Among the participants were J. Aguayo,
H. Ochsenius (Chile), J. Araujo, C. Perez-Garcia (Spain), K. Boussaf, A. Escassut
(France), N. De Grande-De Kimpe (Belgium), J. Kakol (Poland), A.K. Katsaras, C.G.
Petalas (Greece), A. Khrennikov, K.-O. Lindhal, M. Nilsson (Sweden), A.J. Lemin
(Russia), P.N. Natarajan (India), W.H. Schikhof (The Netherlands), B. Dragovich
(Yugoslavia), M. Berz (USA), H. Keller (Switzerland), et al.

The volume contains 26 research papers covering a large area of topics in
p-adic analysis and its applications as – n.a. locally convex spaces (2 papers) and se-
quence spaces, n.a. vector measures and integral representations of linear operators,
n.a probability measures, compact perturbations of linear operators, spctral radius
of derivations, n.a. Banach-Stone theorem, p-adic analytic functions, p-adic differen-
tial equations, commutation relations for operators on non-classical Hilbert spaces,
dynamical systems (3 papers), embedding n.a. metric spaces in classical Lp-spaces,
ultrametric Hopf algebras, Levi-Civita fields, ergodicity of p-adic spheres, and more.

As the preceding ones, this volume will became an indispensable reference
for those working in non-archimedean analysis and its applications.

S. Cobzaş
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