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STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume XLVIII, Number 4, December 2003

INTERPOLATING ON SOME NODES OF A GIVEN TRIANGLE

TEODORA CATINAS

Abstract. We consider the interpolation problem for some data on several
nodes of a given triangle. We show that an interpolant may be found by
dividing the initial problem into two subproblems, each one with some
fewer nodes. The main result is given in Theorem 5.

1. Introduction

We are interested in interpolation on certain nodes on a given triangle, using
the generalized Newton algorithm [1], [2]. This algorithm enables us to divide the
interpolation problem into two smaller subproblems.

We shall recall first some known results. Denote by II;(R®) the space of
polynomials in s variables and of degree at most k and by #(A) the cardinal of a
set A.

Theorem 1. (Gasca-Maeztu) see [2]. Let N be a set of (k+1)(k +2) nodes in R,
where s > 2. Suppose that there exist the hyperplanes Hy, Hy, ..., Hy in R® such that
a) NC HyUHU...U Hy;
b) #(NNH;)=i+1, 0<i<k.
Then arbitrary data on N can be interpolated by elements of I1;(R?).
The previous result generalizes the following theorem of Micchelli:

Theorem 2. see [1]. Interpolation of arbitrary data by an element of I1,,(R?) is
uniquely possible on a set N of %(m + 1)(m + 2) nodes if there exist m + 1 lines
Lo, L1, ..., L, whose union contains N and that have the property that each L; con-
tains exactly v + 1 nodes, i = 0, ..., m.

Next we present the Newton algorithm and its generalization (see [1] and [2]).

Algorithm 3. (The Newton algorithm for univariate polynomial interpolation). Let
g be a polynomial that interpolates a function f at the distinct nodes x1,...,x, and
let h =11, (x — ;). Then for suitable ¢, g+ ch will interpolate f at x1,...,Tpn, Tni1,
where T,+1 15 a new node. The algorithm is applied repeatedly, starting with n = 1.
The polynomial g can be of degree n — 1, but this is not necessarily.

Algorithm 4. (The generalized Newton algorithm). Let X be an arbitrary linear
space. Let g be a function (not necessarily a polynomial ) that interpolates the given
function f : X — R at the distinct nodes x1,...,z,. Let x,11 be a new node. We
require a function h that takes the value 0 at x1,...,2,, but has a nonzero value at
ZTpy1. For an appropriate value of ¢, g + ch will interpolate f at x1,...,Tn, Tpy1-
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At the next level of generalization, we replace {x1,...,xn} by any set of nodes
N, which needs not be finite. We assume that g interpolates f on N (in symbols,
gIN = fIN). Let y be a new node, y ¢ N. We require a functional h such that
h|N =0 and h(y) # 0. We may assume h(y) = 1. Then g + f(y)h interpolates f on
N U{y}.

In a further level of generalization we use g-+rh as an interpolant, but permit
r to be a function more general than simply a constant. We use the notation

Z={xe€ X :h(z)=0}
Consider a set N of nodes, let g interpolate f on NNZ(h) and r interpolate (f —g)/h
on N\Z(h). Then g+ rh interpolates f on N.
As pointed out in [1] and [2], this last generalization of the Newton algorithm
is successfully applied in Theorem 2.
An immediate conclusion is that this abstract version of the Newton algorithm

enables the dividing of an interpolation problem into two smaller subproblems, where
smallness refers to the number of interpolation conditions.

2. Interpolating on some nodes of a given triangle
Let f: T — R be a function defined on the triangle
Th={(z,y) ER*:0<z<h,0<y<hz+y<h}, heN. (1)
Let N = {X1, X, X3, X4, X5, Xs} be a set of six nodes situated on the edges of the
triangle 7T,, where X1(0, %), X2(0,2), X3(%,0), X4(%,0), X5(22,0), Xo(%,2). We
consider the Lagrange interpolation functionals
Ap = {X() [Ni(f) = flwi), 1 < <6}
The problem we deal with here is to
find r € TIy(R?) such that r interpolates f with regard to Az. (2)

We find an answer in the following way. Let Lo, L;, Lo denote the lines of
the triangle, such that {Xs} C Lo, {X1, X2} C L1, {X3, X4, X5} C Lo. The problem
here satisfies the hypothesis of the Micchelli’s theorem. Therefore, this result assures
that there exists an interpolant in ITo(R?) for f with regard to Az and this interpolant
is unique.

Next our purpose is to find this interpolant. For doing this we use the gen-
eralized Newton algorithm.

Let Iy denote an element of IT; (R?) whose zero set is the line Lo,

Z(l2) = A{(z,y) : la(z,y) = 0} = Lo.
We have N N Ly = { X3, X4, X5}, la(x,y) = y.
Let po € TI5(R?) interpolate f on N N Ly = {X3, X4, X5} . Therefore, ps has
the form
pa(z,y) = apz® + boz + co,
where ag, by and ¢y can be determined from the interpolation conditions:

pz(%ao) :f(%,o)
p2(5,0) = f(5,0) (3)
p2(%70) = f(%’o)
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Its expression is
pa(,y) = (3za® = fa + D3 0) + (z2® — P +3)f(4,0)
+ (—$52? + 182 - 3)f(£,0).

Let ¢1 € I1;(R?) interpolate (f — p2)/l2 on N\Z(l2) = {X1, Xa, Xg}. There-
fore, ¢; has the form
q(z,y) = arx + by + ¢,
where a1, by and ¢; can be determined from the interpolation conditions:

hy_ h
n(0,) = L0
0 %) _ £(0,22)—p2(0,28) (4)

%h
f(%%)—hpz(%a%)_
2
According to the generalized Newton algorithm we have that r = ps+1I2q; interpolates
f on N. So the interpolation problem is divided into two smaller subproblems, with
fewer interpolation conditions. The subproblems involve the determination of py and
q1, each regarding three interpolation conditions.
Since r obeys the interpolation conditions we obtain that r solves the inter-
polation problem on N.
The problem becomes easier to solve if we apply twice the generalized Newton
algorithm. We have to find an interpolant for ¢; on the set M := {X;, X5, Xs}. Let
1 denote an element of Hl(R2) whose zero set is the line L,

Z(lh) =A{(2,y) : li(z,y) = 0} = L.
We have M N Ly = {X1, Xa}, li(z,y) = 2.
Let p; € II;(R?) interpolate q; on M N Ly = {X;, X5} . Therefore, p; has
the form
p1(z,y) = azy + be,

where as and by can be determined from the interpolation conditions:

{ pl(ovg) ZQI(Oa%)
p1(0, %) = Q1(Oa %)

By (4), (5) becomes
p1(0, 1) = £©:8)-p2(0.5)

’ 3 I
p1(0 @) _ f(07%)§f2(07%) (6)
bl 3 :

3

Its expression is
pi(z,y) = o5 (Ry = DFO0,3) + 2=y +2)1(0, %)
+ %(7%y + ]‘)pQ(Oﬂ %) + %(%y - 2)])2(0, %)

Let qo € IIp(R?) interpolate (g1 — p1)/li on M\Z(l1) = {Xg} . Therefore, qo
is constant:

Cas b -m(E L)
qo = h .

2
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According to the generalized Newton algorithm we have that p; + l1¢p interpolates
g1 on M = {X;, Xs, Xg}. So the interpolation problem here involves the determi-
nation of pp, regarding two interpolation conditions, the initial interpolation problem
becoming much easier to solve. The polynomial p; + l1qy verifies the interpolation
conditions so it interpolates gyon M. We conclude with the following result.

Theorem 5. The initial interpolation problem (2) on N is solved by

r=p2+laqi = p2 +l2(p1 + l1qo0).
We shall illustrate the above theory with two practical examples. Consider
h =101 (1), fi : Tio — R, fi(z,y) = 2 +y* and fo : Tio — R, fo(z,y) =
/22 +y2. Consider r; the interpolant of f;, 7« = 1,2. Figures 1 and 2 display the
error |f;(x,y) — ri(x,y)|, plotted in Matlab.

3. The generalized Newton algorithm for linear functionals

As pointed out in [2], the generalized Newton algorithm can be applied not
only for point-evaluation functionals, but for arbitrary linear functionals. Consider
a linear space E and ®1, @5, ... some linear functionals defined on E. Let f be an
element of E to be interpolated. We assume that an element g is available in E such
that ®;(g) = ®;(f) for 1 <i < n. Next, select h in E so that ®;(h) =0for 1 <i<n
and ®,,1(h) = 1. The new interpolant will be of the form g+ ch, where ¢ = ®,,41(f).

We illustrate this by solving a problem proposed in [2].

Problem 6. Find p € II3(R) such that p(0) = 3, p'(1) = 4, fo x)dr = 5 and
fol 2?p(z)dx = 6.

Proof. We use the generalized Newton algorithm for hnear functlonals We con-
sider the linear functionals defined by: ®1(f) = f(0) fo x)dx, ®3(f) =
fol 22 f(x)dx, ®4(f) = f'(1), for some given f.

We assume that there exists g such that

®i(g) = ®i(p), =123 (7)
P4(g) = 0.
Select now h such that
®;(h)=0, i=1,2,3, (8)
Dy(h) = 1.

The interpolant of p is g + ch, where ¢ = ®4(f) = 4. Therefore we have to find the
interpolant of p, r := g + 4h from II3(R). We do this taking into account (7) and (8).
We have g € II3(R) and h € TI3(R) so g and h have the following expressions

g9(x) = ay2® + b12® + iz + dy,

h(z) = asx® + bax® + cox + do,
where a1, b1, c1, di, az, by, c2, d2 € R, and moreover a? + a3 # 0.

Solving the systems (7) and (8) we obtain the polynomials
g(x) = —2B447 + 3662° — TBa + 3,
2

65 3 5
h(sc)—5x 5% —|—5x.
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Therefore, the interpolant of p is

r(z) = —1922° + 3602 — 140z + 3 € I3(R).
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MINIMUM VALUE OF A MATRIX NORM WITH APPLICATIONS
TO MAXIMUM PRINCIPLES FOR SECOND ORDER ELLIPTIC
SYSTEMS

CRISTIAN CHIFU-OROS

Abstract. The purpose of this paper is to use an estimation of minimum
value of a matrix norm to improve some results given by I.A.Rus in 1969,
1973, and A.S. Muresan in 1975.

1. Introduction

Let us consider the following operator:

Lu = f:A aQu +§:A‘%+AU
._ijzl Ual'ial'j =1 lé)xi 0t

where A;j, A;, Ao € C(Q, M, (R)) and 2 C R™ is a bounded domain.
Let us also consider the following systems:

Lu =0, (1)

Lu = f, (2)

where f € C(Q,R").

There are some maximum principles for the solutions of (1) (see for example
[2], [5] and [8]).

In [5] the following principle is given:
Theorem 1. Suppose that:

1. the system (1) is strongly elliptic,

N 1/2
2. e*Le < 0, for each e € C?(Q,R™), with ||e|| := (Z e%) =1
i=1

2

- n 1/2
Ifu e C*Q,R")NC(Q,R") is a solution of (1), then ||ul| := uf) attains his
=1

maximum value on 0.

Received by the editors: 01.07.2003.
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The aim of this paper is to find conditions which imply condition 2 of Theorem
1. This will be done in section 2 of this paper. In section 3 we shall try to improve
some estimations for the norm of solution of system (2), estimations given in [4]
and [6].

Let A € M,(R), J the Jordan normal form of A. We know that there exist a
nonsingular matrix 7" such that A = TJT 1.
We will denote:
1 XS: ’I’Lk>\k, )\k cR

n

~ k=1

a = 5
%kzl ng Relp, \p € C\R

o= ITle 775

mp = |J—al|p

where Ay are the eigenvalues of A, nj is the number of A; which appears in Jordan
blocks (generated by Ax) and ||| is the euclidean norm of a matrix (see [1]).
We shall use the following result given in [1]:

Theorem 2. Let o) : R — R, (a) = [|[A — al,||, ||-|| being one of the following
norms: |||z, -l1s -llas |Illoo- In these conditions:

@1 (@) < Vnypmp.

Remark 1. In case of euclidean norm ||| and spectral norm |-||, we have that
o(@) < vpmp (see [1]). Because n > 2, if mp # 0, then:

@)-1(@) < Vnyrme.

2. Main result for the solution of system (1)

In this section we shall give conditions under which condition 2 of Theorem

1 holds in case A;; = a;; I, a;; € C(Q). Suppose that there exist 6 > 0 such that:

m

> aiti&; > 8 IE)* € € R (3)

4,5=1

Theorem 3. Suppose that (3) holds and:

1 W
£ Ao(2)¢ < — gz nllél* D (vimip)?, V¢ € R™, ¥ € Q. (4)
=1

n 1/2
If u € C*(Q,R") NC(QR"),u # 0, is a solution of (1), then ||jul| := (Z ui)

k=1
attains his mazimum value on OS).

Proof. Our result is based on the following remark which appears in [5]:

10
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If, for each = € ), there exist @;(x) € R,7 = 1, m, such that:

7(1,11]” 7@12[n e 70,1m1" 0
—agljn _GQQIrn e —GQmIn 0
' £ <0,
—am1ln —amal, —UmmIn 0
Ai(x) —ar(x)I, As(x) —ax(x)l, ... An(z)—an(x)l, Ay(x)

for all £ € RU™HD" € £ 0, Vo € Q then condition 2 of Theorem 1 holds.

So, it is enough to show that (4) implies (5).

Now it’s easy to see that if, for each = € Q, there exist g;(x) > 0 and
a;(z) € R, such that

[Ai(x) — 57'@)1 | <2ei(x),i=1,m, (6)

€ Ao ()€ < IISII Ze ), V€ €R™, (7)

then (5) holds.
For simplicity we shall prove this in case m =n = 2.
We have:
—ai1l> —a2l> 0
| —anl —agl> 0 E<=83G+&)-
Ai(z) — ar(z)lz Az(z) — 572(93)12 Ao(z)

6%(€3 + &5 +52(£1 +E+HE+EN) + 5 452 1€']17 141 () — @i (2) I |* +

g3 W2 14a(0) — B3(@) Bl + € Aot <
< AEF A oy AW AR oz

where § = (51752,53,54755756) eRO,£+£0,¢ = (55756) eR%¢ 7’é 0.

Now, according to Theorem 2 and Remark 1 we have that if m%, # 0,i = 1,m,
then for each x € Q, there exist a;(x) € R such that ||A;(x) — a;(z) .|| < vVnyemi.
So choosing €;(z) = 1/nypmt, the proof is done.

Remark 2. If m%, = 0,i = 1,m, then the conclusion of Theorem 3 holds if
£ Ao(2)€ <0,VE€R™, {#0,2 €Q

Example 1. Let us consider the system (1) in case m = n = 2 with Ay =

Ay = ( a1 G2 ) We suppose that as,az > 0. In this case we shall have:
as aj

A + A A
01 =82 =ar, V' =00 = L my = mp? = V2apa3, A —aily = A —arly =

(o )
,E1 = €2 = ag + as.
as 0

The condition (4) becomes:
. 2
£ Ao(2)€ < — 5 (az +a3)* [§]* € € Rz € (8)

11
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If (3) and (8) holds, then we have:

—ai1l2 —aq21s 0 1 )
& —anl —ag2ls 0 < 152 €11 (a3 + a3)+
A1 — CL1]2 A2 — a2-[2 AO(x)

2
452 I€')1* (a3 + a3) — 52 (02 +az)? €] = 452 [a3 + a3 — 4(az + a3)?] |€']” <0,

where 5 = (5175235375%55756) € RG,g 7é 035/ = (£5a£6) € RQ,gl 7é 0.
So, if (3) and (8) holds then, if u € C*(Q,R?)NC(Q,R?),u # 0, is a solution

of (1) in case m = n = 2, with Ay = Ay = ( @ a2 ,as, a3 > 0, then ||u|| attains

as ai
his mazimum value on OS).

3. Estimations for the solution of system (2)

In this section we shall try to improve some estimation for the norm of the
solution of system (2), estimations given in [4] and [6]. For other estimations see [3]
and [8].

Theorem 4. ([4],[6]): Suppose that:

1. the system (2) is strongly elliptic,

2. e*Le < —p?, for each e € C%(Q,R™), with |le| = 1,p € R*.
If u € C?(Q,R") N C(Q,R™) is a solution of (2), then:

lu(z)| < max{max |u(1:)|,12max|f(x)} ,z €.
P zeq

€N

As in section 2, we shall try to find conditions under which condition 2 of
Theorem 4 holds. In this way we shall be able to find a value of p.
In case m=1, system (2) becomes:

where B,C € C([a,b], M,(R)), f € C([a,b],R™).
If mp # 0, then we have the following result:

Theorem 5. Suppose that:

e*C(x)e < —in('ypmp)2, (10)

Ve € C?([a,b]R"),||e|| = 1,V €]a,b].
Ify € C?([a,b],R™),y # 0, is a solution of (9), then:

ly(z)| < max {[y(a)], [y(b)], . 5 max |f(z)] o, € [a,b].

~ z€la,b]

ngmi. — | B@) - Bl

12
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Proof. According to Theorem 2 and Remark 1 we have that, for each = €]a, b, there

exist F(z) € R such that HB(JE) — B(@)L,|| < ryemp.
We have: _
e*Le = — ||¢'||* + e* B(z)e + e*C(x)e = — ||¢']|® + e* (B(x) - ﬁ(x)In) ¢ +e*Cla)e <

—[1¢'I* + || B(a) - B 4 eC@e <

~ 2
L B@) - B@)n|| - dnteme)? = —p2@) <.
So e*Le < —p? and hence and from Theorem 4, Theorem 5 is proved.

Remark 3. In case that mp = 0, if there exist p # 0 such that e*C(z)e < —p?,Va €
la,b[, then the conclusion becomes:

Il + e*Cla)e < 4 |Bl@) - Bl

ly(z)| < max{|y<a>| Jy(®)], ~ max |f<x>|} zelab).

P z€la,b]
. . a; az
Example 2. Let us consider the system (9) with B = < )

as Qi
and ag, a3z > 0. In this case we shall have:

~ 0
B =a1, vr = %,m}? =+/2asa3 , and B — 315 = ( o %2 > The relation (10),

becomes:
e*C(z)e < —(ag + az)?, = €a,b[. (11)
If (11) holds and y € C?([a, b],R?) is a solution of (9), then:
4
1@} o € il

y 5 5 max
3a3 + 8azasz + 3a5 z€la,b

()| < max{|y(a> )]

In casem = 2, A;; = I,,, we shall consider the system:
0?u  0%*u Ju ou
Lu:=—+—-=+A4 —+ B —
v=sEt e T (@ y) 5+ (w,y)ay

where A, B,C € C(Q, M,,(R)), f € C(Q,R") and Q C R? is a bounded domain.
If mlfl # 0, mE # 0, then we have the following result:

+C(:I:7y)u:f(33,y), (12)

Theorem 6. Suppose that:
*C < _1 A A2 B, B2 1
e*C(z,y)e < Ik (vemz)” + (vEmp) ™|, (13)
Ve € C2(@,R),|lell = 1,¥(z,) € 0.
If u € C*(Q,R") NC(Q,R™),u # 0, is a solution of (12), then:

4 _
u(z,y)| < max< max |u(z,y)|, 55— max x, ,(z,y) € Q,
ju(z,y) {(M)em| @)l gy s y>|} (z,1)

where
2

PA(w,y) = n (vimd) 0 (EmE)* = Alw,y) - &, ) L)~ | B@, v) - B, p)1,

13
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Proof. According to Theorem 2 and Remark 1, if m7 # 0, m2 # 0, for each (z,y) € Q,
there exist a(x,y), 8(x,y) € R such that:

Az, y) = ale,y) ]l < Vaypmp

|BG.y) - Bl

We have:

* 2 * -~ * P
e*Le = —||eb||” — ||e, " + e*(A(x,y) — @z, y)Ln)el, + e (B(x,y) — Bla, y)n)el,+

. 1 - 1 ~ i
e Cla,y)e < 7 IA@.y) — 3@y Ll + 7 ||B@.y) = Ba.y)h| +e'Cla,ye <

A A2

< 1 [14G.v) — @) LI + | By) — B )|~ n (md) —n(vﬁm?f}:

= —p*(z,y) <0.

So e*Le < —p? and hence and from Theorem 4, Theorem 6 is proved.
Remark 4. In case that mp = 0,mZ # 0, if e*C(z,y)e < —1in (vng) then the
conclusion holds with p*(x,y) =n (’ygmg)Q — HB(z,y) - B(x, y)1n

Example 3. Let us consider the system (12) with A = B = ( Z; Zi ) . We suppose
that az,a3 > 0. In this case we shall have: a = E = a1, 74 =B = %,
méd =mB = \/2azas , A—al, = B — I, = ( 23 662 )
e*Cl(z,y)e < —2(ag + az)?, (14)
e*Le < M —2(ag +a3)? < 0.

If (14) holds and uw € C?*(,R?) N C(Q,R?),u # 0, is a solution of (12), we have:

2 _
< Q.
u(z,y)| < maX{(gﬂgl)anaQIU(z, Yl 502 1 Sazay + 302 (%, |/ (z, )I},(x,y) €
Let us consider now A;; = a;;1,,, a;; € C(Q). System (2) becomes:
“ 0?u u ou
— y (z) 2% - 1
Lu ; aij (@) In - o+ ;Al(m) 9o, T Ao@)u = f(), (15)

where A;, Ag € C(Q, M, (R)), f € C(Q,R™).
If m& # 0, then we have the following result:
Theorem 7. Suppose (3) holds and:

* 1 - % 7 \2 2 n
e*Ap(z)e < 152" ;(WFmF) Ve € C°(Q,R"™), |le|]| = 1,Vz € Q. (16)

14



MINIMUM VALUE OF A MATRIX NORM
If u € C*(Q,R") NC(Q,R"),u #0, is a solution of (15), then:
452 _
- - mase | (2§, 2 €.
i i ~ 2z
n;(VFmF)Q—; |4 () — @)L, || =<2

Remark 5. In case that mb = 0, if there exist p # 0 such that e*Ag(z)e < —p?,
then:

<
[u(z)| <max| max |u(z)],

1 _
< — .
ufe)] < mx { g fu(o)] % max 10} } o €
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BIVARIATE SPLINE-POLYNOMIAL INTERPOLATION

GH. COMAN AND MARIUS BIROU

Let A C R? be an arbitrary domain, f a real-valued function defined on A,
Z = {ZZ| Zi = (mi,yi), 1= L—N} C A and I(f) = {)\kf| k= 1,...,N} a set of
informations about f (evaluations of f and of certain of its derivatives at z;,...,2n).

A general interpolation problem is: for a given function f find a function g
that interpolates the data I(f) i.e.

Ak:f:Akga kzlaN

A solution of such a problem can be obtain by the generalization of the

bivariate Lagrange formula for the rectangular grid IT = {zo,...,Zm} X {yo,.- -, Yn}:
v(y)
;]Zo (@ = =i “'a’z)(y—yj)v’(yj) (@095) + Bmnf)ey) (1)
where

(Ronn)(@,9) = ul@)i, 70, ., omi £ +Z o (R RUREE)

with u(z) = (z — zg) ... (x — z,n,) and v(y) = (y —Y0) ... (y — Yn).
A first generalization of the formula (1) was given by J.F. Steffensen [4]:

vi(y)
N T A GG

=0 j=0

where
(Rmsz)(wvy):u(m)[xaan mm,f +Z {I,’ —{I,’ UI {I,’ )[yay07ayln”f(xlv)]

with
vi(y) = Y —yo) - (¥ = Yn.)-
The interpolation grid here is II; = {(z;,y:;)| i =0,m, j =0,n;}.
A second generalization of the Lagrange interpolation formula (1), that is
also an extension of the Steffensen formula (2) was given by D.D. Stancu [2]:

vi(y) .
ZZ e T T R

i=0 j=0

+(Bmn: ) (@,y) (3)

Received by the editors: 14.05.2003.
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where
(Rmmif)(mvy):u(m)[xvxm-- s Tm; £ +Z (z — ;) u, )[y 2 Yi0s - - Yings f(250)]

with v;(y) = (y — yi0) - - - (Y — yin,) and the 1nterpolat10n set

My = {(z4,yi;)| i =0,m, j =0,n;}.
Remark 1. The Steffensen formula (3) does not solve the general interpolation
problem, II; is only a particular case of the interpolatory set {z;,...,znx}.
Remark 2. Formula (3) is really a solution of the considered general problem.
Indeed, let Z; C Z be the set of nodes (x;,¥;), i = 1, N with the same abscises zy,
ie. Zy = {(xk,yr;)| j =0,n;} forall k=0,1,...,m. We have Z; # Z; for i # j and
Z =ZoU---UZpy.

If L7, is the Lagrange’s operator for the interpolates nodes z,...,z,, and
Ly ., i = 0,m are the Lagrange’s operators for the nodes y;o,...,¥yin; respectively,
then we have
=Ly f+ RS (4)
with . @
x B u(z
(Lo f)(z,y) = ; mf(m,y)
and
fai, ) = (L, )i, ) + (RY f)(i,0), i=0,m ()
with

Uz

) =S W) e
(Lnif)(mzay) jgo (y _yij)vg(yij)f(xz’y”).
If the remainder terms are written with the divided differences, from (4) and
(5) follows formula (3).
Remark 3. Usually the degree m of the operator L}, is more greater than the
largest degree of LY i.e. m > max{no,...,nm}, which imply a large computational
complexity of the polynomial interpolation from (3), say

m  Nn;

(Ph)@y) ZZ (z — zi)u .Tz)( vi(y)' — f(@i, yij).

=0 j=0 Yy - ym) (ylj)

From this reason and the another ones, instead of Lagrange polynomial oper-
ator L? we can use a spline interpolation function of Lagrange, Hermite or Birkhoff

type.
1. Spline polynomial interpolation of Lagrange type

Let S} 5, ; be the spline interpolation operator of the degree 2n — 1, that
interpolates the function f with regard to the variable x at the nodes (x,y), k = 0,m
ie.

(ST.2n—1)(z,y) Zazx +Zb (z — ;)] i (6)
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for which

(Sf,anlf)(mkay) :f(mk,y)’ k‘:O’L
(SiQn—lf)(p’O) (a,y) =0, p=n2n—1, a >z,

The spline function of Lagrange type can also be written in the form
(St 2n— 1)@, y) Zsk f(@r,y

where s are the corresponding cardinal splines i.e., they are of the same form (6),
but with the interpolatory conditions

Sk(:l?]) :(sk]‘, k,j:O,m.

This way, formula (3) becomes

SN, ) i) + (RA)z.) (®)

i=0 j=0 y yu) (yz)

where (Rf)(x,y) is the remainder term.
Taking into account that for f(-,y) € C™[zo, n]

(RS o 1f)(2,9) = / " onla, 8) O (5, y)ds

xo
with
e (z — 5)1_1
onlrns) = B\ S0
it follows
Theorem 1. If f € C™°(A) then
(Rf)(a,y) = / (2, )10 (s, ) ds + ©)
+Zsz )Y, yio, - - s Yings (@i, )]
and if f € CPTY(A) with p = max{no,...,n,} we have
BN = [ onlr) /"0 s, 9)ds+ (10)
xo
m Yin;
+3so) [ 01O )
i=0 Yio

with

bty = YD i( vl) (g =3

— (v —yi)vilyiy) i
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2. Spline polynomial interpolation of Hermite type

Let S’fign_l be the spline interpolation operator of the degree 2n — 1, that
interpolates the function f and certain of its derivatives with regard to the variable
x at the nodes (zy,y), k= 0,m, i.e.

(St2n—1)(z,y) Zax +Zzbk1 (z — )Y 2n 7 (11)

k=0 j=0
for which
(Stron—1 )9 @k, y) = F9 (@x,y), k=0,m, j=0q (12)
(SfI,anlf)(nO) (a,y) =0, p=mn,2n—1, a>x,

The spline function of Hermite type can also be written in the form

(St 2n-1)(@,y) Zzsk xk,y)

k=0 j=0
where si; are the corresponding cardinal splines i.e., they are of the same form (11),
but with the interpolatory conditions

555)(%) 0, k=0,m, v#k, ¢q=0,q,

Sg)(l‘k) 5an q=0,q
sgf;)( ) =0, p=n,2n—1, a >z,

This way, formula (3) becomes
- % (1,0) . .. R 13
ZZ Z T T A

where
vi(y) = (Y — yio) - - - (Y — Yin:)
and (Rf)(z,y) is the remainder term.
In this case the set of information about f is

I(f) = {f(l’O)(xzayZ]” i = Oama .7 = O,’I’Li, = anz} (14)
Taking into account that for f(-,y) € C™[zg, Tm]

(RE o ) (,y) = / " on (e, 8) F"0) (s, y)ds

with
= T S S i S
Pl i —1—-1)!
i=0 [=0

and that

m o g
(R)(x:y) = (Ripon o N)@y) + DY su(z)(RY . f"0) (@i, y)

=0 [=0

it follows
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Theorem 2. If f € C™°(A) then

(Rf)(x,y) = / " or(@, $)f0 (s, y)ds + (15)
m qi
+ Z Z Sil (.’E)'UZ (y)[y7 Yioy - - - Yings f(l70) (‘ria )]
=0 [=0
and if f € C™PTY(A) with p = max{no,...,nm,} then
(Rf)(x,y) = / " or(@, $)f (s, y)ds + (16)

m g Yiyng
#3003 sa@) [ bl 07 o
Y

i=0 1=0 i
with

wm(y,w:(y_t)ii—i( vly) (v 1)

n;! — (W —yi)vily)  na

3. Spline polynomial interpolation of Birkhoff type

Let Sg 5,—1 be the spline interpolation operator of the degree 2n — 1, that
interpolates the function f and certain of its partial derivatives to the variable x at
the nodes (zy,y), k = 0,m, i.e.

(SB2n1 ), y) Zazm +Zmex—ka3 ! (17)
k=0 j€I;
for which
(Sé,Qn—lf)(j’o) (.’Ek,y) = f(j,O) (mkay)a k= O,m, J € Iy (18)
(S]%,2n71f)(p70) (Oé, O) =0, p=n2n—1, a>zy

The spline function of Birkhoff type can also be written in the form

(San 1)@, y) ZZSA UUL y)

k=0 jel}

where si; are the corresponding cardinal splines i.e., they are of the same form (17),
but with the interpolatory conditions:

sg)(mu) =0, k=0m,v#£k qgel,
S;CJ)(:L‘]C) 5]q, qel
sgf;)( ) =0, p=n,2n—1, a >z,

If the set of informations of f is

I(f) = {f" @i, yij)l i =0,m, j=0,n;, 1 € I} (19)
we can use the interpolation formula of Lagrange
FEN @i, y) = (LY, FCN) (@i,y) + (RY ., ) (@i, y) (20)
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This way, formula (3) becomes

I Z(%f“%i,ym+<Rf><x,y> (21)

22 v~ vVl (v)

where (Rf)(z,y) is the remainder term.
Taking into account that for f(-,y) € C"[zo,Zn]

(RE s ) y) = / " on(z,8) {0 (s, y)ds

with
( S)n -1
<PB($,S) = Zzszl Tl)
=0 leI;
and that
(RA)(@,y) = (R oper H)@,y) + DY sa(@)(RY,, f0) (i, y)
i=0 leT;
it follows
Theorem 3. If f € C™°(A) then
BN = [ entes) 0050+ (22)

+Zzszl )y Yios - Yines £ (i, )]

=0 Ilel;

with v;(y) = (y — Yio) - - - (¥ — Yin;) and if f € CPHL(A) with p = max{ng,...,nm}
then

BN = [ entes) 00 s, )ds+ (23)
m Yin
+30sa@oi) [ a0 )
1=0 leI; Yio
where
_ -0y & vily) (g =Y
Yn(b:1) = n;! Zo W —vij)vilyis) !
4. Example

One considers the function f(z,y) = exp(—z? — 3?) on the rectangular do-
mains A = [—1,1] x [-1,1] and the interpolation nodes P; — Pi7
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P Py Py
Ps Py Py
P P
) Pig |1
P, P Pys
Py P, Pys

Py
Py
P
Py
P
Ps
Py
P
Py

= (—1, —1) P10 = (0,05)

= (_170) Py = (Ov 1)

= (—1, 1) Pl-) = (05, —05)
= (-0.5,-0.5) Pi3 = (0.5,0)

= (-0.5,0) Py = (0.5,0.5)
= (—05,05) P15 = (1, —1)
:(05_1) Pig :(170)

= (0, —05) P17 = (1, 1)

= (070)

We will use the formulas (8), (13) and (21) for n = 2 (cubic spline with regard

the variable x).

In fig. 1 is given the graph for the function f.
In fig. 2 is used the information of Lagrange type.
In fig. 3 is used information of Hermite type, i.e.

{f90(P,) :

i=T1,17,

j=0,1}

In fig. 4 is used a set of information of Birkhoff type:

{f(P) :

fig.2a
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FREE CONVECTION BOUNDARY LAYER OVER A VERTICAL
PERMEABLE CONE EMBEDDED IN A FLUID SATURATED
POROUS MEDIUM WITH INTERNAL HEAT GENERATION

TEODOR GROSAN AND SERBAN RARES POP

1. Introduction

Heat transfer through porous media has important practical applications such
as oil extraction, thermal insulation, geophysical flows, water waste disposal, etc.
Recent monographs by Ingham and Pop (1998, 2002), Nield and Bejan (1999), Vafai
(2000) and Pop and Ingham (2001) give excellent summary of the work on the subject.

The phenomenon of internal heat generation is present in many situations,
especially in the field of nuclear energy and composite superconductors (see Horvat
et al., 2001; Malinowski, 1993). Studies in natural convection driven by internal heat
generation has been done by Roberts (1967), Jahn and Reinke (1974), Hardee and
Nilson (1977), Stewart and Dona (1988), Crepeau and Clarksean (1997), etc.

The present paper studies the free convection from a vertical permeable cone
embedded in a fluid saturated porous medium the effects of internal heat generation
being present. The case of a variable temperature at the cone surface is considered,
see Fig. 1.

2. Basic equation

Under Boussinesq and boundary layer approximation the governing equations
can be written as:

=0 1
Or * oy (1)
gcosyKp
(T - Tx) (2)
v

or  orT 2T 4"
hnll g 3
u8x+v8y a 8y2+p0p (3)
where r = xcosy is the cone radius, v is the kinematic viscosity, K the

permeability,a,, is the thermal diffusivity, q/” is the internal heat, p the density and

C,, is the specific heat at constant pressure. Indexes w and oo refer to the cone surface
P

and ambient conditions.

Received by the editors: 20.03.2003.
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Further we introduce the stream function v given by

o _
%, rv = aiy (4)

ru =

so that the equations (1)-(3) become:
1 % _ gcosyKp3

— T-T.
Lo s B 1) )
1 (03T 9 aT *T 4"
1(ovoT 0y oT a4+ 1 (6)
r \Jy 0xr Oz Jy 0y?  pC,
subject to the boundary conditions:
fa—w:ax”, Ty = Too + Az for y =0 (7)
ox
g—wﬁO,TﬁTooforyﬁO (8)
Y

where A is a positive constant and a, n, A are constants with ¢ > 0 for
injection and a < 0 for suction.
In order to solve equations (5)-(6)we introduce the following similarity vari-

ables:
1/2 T-Tx 1/2
¥ = anrRal2[(n), 6(n) = 7>, 0= Ral/(y/z) 9)
where Ra is the local Rayleigh number defined as by:
_ gBK cosy(T —Too)x  gBK cosyAz* T

VO, VO,

Ra, (10)

In order that the similarity solution of equations (5)-(6) exist, we assume following
Crepeau and Clarksean (1997), that the internal heat generation ¢’ is given by:
" km Eu - Too —
q = %Raxe n (11)
On using (9) and (11) in (5) and (6) we obtain the following ordinary differ-
ential equations of the motion:

=0 (12)
0"+ % O — fAfO+e =0 (13)
Combining (12) and (13) we get
J %f@’ M2 +e =0 (14)
along with the boundary conditions
f0) = —fu, f/(0)=1, f—0 forn— oo (15)
where f,, is the mass flux parameter given by
fo= 2a ( AV >1/2 (16)
A+ 3 \ gBK cosvA
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For the above similar equations we considered that
A—1
= — 17
n=" (17)
as it was found in Postelnicu et al. (2000), for the corresponding flat plate case.

In this case, the local Nusselt number is given by:

Nug/Ral/? = —f"(),0) (18)
3. Results and discussions

Equation (14) with the boundary condition (17) has been solved numerically
using a shooting method (see, Chakraborty 1998) for A = 0,1/3 and 1/2 and f,, =
—2,—1,—-0.5,0,0.5,1 and 2. Results obtained for the Nusselt number were compared
in Table 1 with the results previously obtained by Cheng et al.(1985), and we can see
that the results are in a very good agreement.

This table shows also that the presence of internal heat generation leads
to the decrease of the local heat transfer. Figures 2-4 present the non-dimensional
temperature profiles in the absence of internal heat generation and figures 5-7 the
same profiles when internal heat generation is present. It can be seen from these
figures that the thickness of boundary layer increases with the increase of the mass
flux parameter, f,,. This phenomenon is more significant for law values of \.

Figure 8 shows the variation of Nusselt number, f”(A,0), with the mass flux
parameter f,. It is noticed that in the both cases with and without internal heat
generation, the heat transfer is more significant for higher values of the mass flux
parameter.

Table 1. Values of the local Nusselt number, — f” (A, 0)

A Without internal heat generation | With internal heat generation
Cheng et al. (1985) | present results present results
0 0.769 0.7687 0.1963
1/3 0.921 0.9210 0.3937
1/2 0.992 0.9900 0.4799
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Figure 1. Physical model

Figure 2. Velocity profiles for A = 0 and some values of the mass flux parameter f,
when the effect of internal heat generation is not present
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Figure 3. Velocity profiles for A = 1/3 and some values of the mass flux parameter
fw when the effect of internal heat generation is not present

Figure 4. Velocity profiles for A = 1/2 and some values of the mass flux parameter
fw when the effect of internal heat generation is not present
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Figure 5. Velocity profiles for A = 0 and some values of the mass flux parameter f,
when the effect of internal heat generation is present

Figure 6. Velocity profiles for A = 1/3 and some values of the mass flux parameter
fw when the effect of internal heat generation is present
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Figure 7. Velocity profiles for A = 1/2 and some values of the mass flux parameter
fw when the effect of internal heat generation is present

Figure 8. Variation of the local Nusselt number, — f”(0), with the mass flux
parameter f,, when the effect of internal heat generation is not present (........ ) and
when the effect of internal heat generation is present (____)

31



TEODOR GROSAN AND SERBAN RARES POP

References

[
2]
3]
[4]

[5]

[6]

7]

8]

[9]
(10]

(1]

(12]

(13]

32

S. Chakraborty, Some Problems of Flow and Heat Transfer in Magnetohydrodynamics,
Ph. D. Thesis, Tezpur University, Assam, India, 1998.

P. Cheng, T. T. Le, 1. Pop, Natural convection of a Darcian fluid about a cone, Inter-
national Communication in heat and Mass Transfer, Vol. 12, 1985, 705-717.

R. V. Crepeau, R. Clarksean, Similarity solutions of natural convection with internal
heat generation, Journal of Heat Transfer, Vol. 119, 1997, 183-185.

H. C. Hardee, P. H. Nilson, Natural convection in porous media with heat generation,
Nuclear Science Engineering, Vol. 63, 1977, 119-132.

A. Horvat, I. Kljenak, J. Marn, Two-dimensional large eddy simulation of turbulent
natural convection due to internal heat gemeration, International Journal of Heat and
Mass Transfer, Vol. 44, 2001. 3985-3995.

D. B. Ingham, I. Pop (eds.), Transport Phenomena in Porous Media, Pergamon, Oxford,
Vol. T 1998, Vol. II 2002.

M. Jahn, H. H. Reinke, Free convection heat transfer with internal energies sources: cal-
culation and measurements, Paper NC 2.8, Proceedings, 5th International Heat Transfer
Conference, Tokio, Japan, 1974, 74-78.

L. Malinowski, Nowel model for evolution of mormal zones in composite super-
conductors, Cryogenetics, Vol. 33, 16(1993), 724-728.

D. Nield, A. Bejan, Convection in Porous Media, 2nd ed., Springer, New York, 1999.
I. Pop, D. B. Ingham, Convective Heat Transfer: Mathematical and Computational
Modelling of Viscous Fluids and Porous Media, Pergamon, Oxford, 2001.

A. Postelnicu, T. Grosan, I. Pop, Free convection boundary-layer with internal heat
generation over permeable surface in porous medium, International Communication in
Heat and Mass Transfer, Vol. 27, 2000, 729-738.

P. H. Roberts, Convection in horizontal layers with internal heat generation, Theory,
Jornal of Fluid Mechanics, Vol. 30, 20(1967), 33-49.

W. E. Stewart, C. L. G. Dona, Free convection in a heat-generating porous medium in
a finite vertical cylinder, Vol. 110, 1988, 517-520.

FAacuLry OF MATHEMATICS AND COMPUTER SCIENCE,
” BABES-BOLYAI” UNIVERSITY CLUJ-NAPOCA

FRAUNHOFER-INSTITUT FUER TECHNO-UND WIRTSCHAFTSMATHEMATIK,
KAISERSLAUTERN



STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume XLVIII, Number 4, December 2003

CLASSES OF UNIVALENT FUNCTIONS

WITH NEGATIVE COEFFICIENTS

AMELIA ANCA HOLHOS

Abstract. In this paper we define and study

new

Tn (A, B,a, 3,7) of univalent functions with negative coefficients.

1. Introduction

classes

Let U denote the open unit disc: U = {z; 2€ C and |z| <1} and let S

denote the class of functions of the form:
f2) =2+ a;7
j=2

which are analytic and univalent in U.

For f € S we define the differential operator D™ ( Saldgean [1] )

Df(z) = f(2)
D'f(z) = Df(z)=2f(2)

and
D"f(z) =D(D"'f(z)) ; neN" ={1,23,..}.
We note that if -
flz) =2+ Zajzj
j=2
then

D"f(z)=z+ Zj"ajzj ; z€ UL
j=2

Let T denote the subclass of S which can be expressed in the form:

f) =2 =Y larl 2
k=2

We say that a function f € T is in the class T, x(4, B, o, 5,7)

0<pB<1,-1<A<B<1,0<B<1if

Fn,A(Z)

Received by the editors: 11.01.2002.

33

)

zeU

(1)

0<ax<l,

(2)



AMELIA ANCA HOLHOS

B
— 5 a#0
<y<{ (B=Aa (3)
B-4 { 1 5 a=0
where
Fux(2) = (1 =XND"f(2) + AD" "' f(z) ; A>0; feT (4)
Remark 1.
For(z) = z-— Z 1+ (k— 1)\ |ax| 2*
k=2
Fia(z) = szk (14 (k— 1)A] |ax| 2*
Foa(z) = Z—an 1+ (k—1)\] |ax| 2 (5)
For n = 0, (A B,a,B3,v) = T3(A,B,a,(,7) and for n = 1,
T1\(A,B,a, 8,7) = C)\( ;. B3,7).
The class T (A a,B,7) and C5(A,B,a,3,v) was studied by S.B.Joshi
and H.M.Srivastava [3] S.B.Joshi [2].

2. Characterization theorem

Theorem 2. Let f € T , f(z) = z — Y |ag|z*. Then f(z) is in the class
k=2

Tn,/\(A7B7au/87’Y) Zf and Only Zf

Do larl KL+ Ak = DI{(k = 1) + B[(B = A)y(k —a) = B(k = )]} <

k=2
< /B-A)1-a) (6)
and the result is sharp.

If we denote

D, (k,A,B,a,B,v,\) =
= K'1+AEk-D{(k-1)+B8[(B-A4)v(k—a)-B(k-1)} (7)

then (6) becomes

oo

Z|ak|Dn(k7A7B7a7ﬂ77a)‘)Sﬂ’y(BfA)(lfa) (8)

k=2

Proof. Assume that

> lar K" [+ Ak = D] {(k — 1) + B[(B — A)y(k —a) — B(k —1)]} <
k=2
< By(B-A)(1 -«
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and let |z| = 1. Then we have

’anA |—
—-B|(B - A) [an x (2) = aFox (2)] = B [2F}, 5 (2) = Fax (2)]|
= |ZF711 A ’ -

BB~ A)V B]ZFn, (2) + [B = (B = A)ya] Fux (2)]

14 (k= 1)A\] |ag| 2%| —

[(B—A)y— Blz—[(B—A)y— B] Sk [1+ (k — DA] ax| 5+
k=2

—p

+[B— (B—A)yalz—[B— (B—A)ya] Y k" [1+ (k — 1)A] |ag| ¥
k=2

+ (k= 1)A] |ax| 2k —

(B=A)y(1—a)z—[(B—A)y—B]S k"™ [1+ (k— DA fag| #—
k=2

—p

—[B = (B - A)va] Zk” 1+ (k= 1)\ |ax| 2*

k=2
< DR k=) [0+ (k= D)Naxl[2]° = B(B—A)y(1—a) |2 +
+B((B— A)y = B] Y K" 1+ (k= 1)A][ax| 2"
k=2

+B[B — (B — A)ya] Y k" [1+ (k — 1A Jax| |2|*
k=2

DKL+ (k= D] Jar| {(k = 1) + B[(B = A)y(k —a) = B(k = 1)]} -

k=2

IA

=By (B-A)(1-0a)<0

Consequently, by the maximum modulus theorem , the functions f(z) is in the class

Tn,)x(A7 B7 «, ﬁa ’Y)
Conversely, assume that

Z;é,\((z)) 1
n,A\Z
-an [0 o[ ]|
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SR (L= k) [L+ (k= 1)A]|ax| 2
k=2

(B=A)y(1—a)z—[(B—A)y—B]Y k" [1+ (k= 1)\]Jax| &~ —
k=2

< p

— (B~ (B - Aa)] Sk [+ (k- DA Ja] 2
k=2

Since |Re (2)| < |z| for any z, we have

SR (k= 1) [1+ (k — DA [y 2*
Re k=2

=) <6
BB—=A)y(l-a)z= Y k" [L+ (k=D fax| (B = A)y(k —a) - B(k - 1)] 2*

k=2

Letting z — 1 through real values, upon clearing the denominator in the last
inequality we obtain

DRk = DL+ (k= DA Jax| <
k=2

BY(B — A)(1—a) = S k" [L+ (k — DAl Jaxl B1(B — A)y(k — ) — Bk —1)]
k=2

and this inequality gives the required condition.
The function

o Bv(B = A)(1—a) )
f&) =2 S T N L+ BB - A7 2= ) — B}
is an extremal function for the theorem. O

Remark 3. Forn =0 and n =1 the result of Theorem 1 was obtain by Joshi and
Srivastava [3].

3. Closure Theorems

Let the functions f; be of the form:
fi(e)=2=) lar|z" ; 2€U 5 j=12,...m 9)
k=2

we shall prove the following results for the closure of functions in the classe
Tn,)\(AaBaaa/Ba’Y)'

Theorem 4. Let the functions f;(z) defined by (3.1) be in the class
Tox(A, B,a, B,7). Then the function h(z), defined by

o0 m

1
W) =2 =S bl 5 5 with b=~ Jay 10
() =2 = Y Il 2 5 with by = — 3 Ja| (10)

k=2 j=1

also belongs to the class Ty, A (A, B, o, 3,7).
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Proof. As f;(z) € Ty A(A, B, o, 3,7) it follows from Theorem 1. that

oo

Z|ak]|Dn (/{,A7B7OZ,B,’Y,)\)Sﬂ’Y(B_A)(l_OZ) ; J:1u277m (11)
k=2
Therefore
o 0o 1 m
Z'bk|Dn(k‘7A7B7a7ﬁa’7a)‘) = ZDn(k7A7B,Oé,ﬁ,’Y7)\) %Z'akj‘
k=2 k=2 j=1

IN

Brv(B = A)(1 - )
hence, by Theorem 1 ,
h (Z) S Tn,)\(A7 B7 «, ﬁa ’Y)

O
Remark 5. For n = 0 we obtain Theorem 1 as Joshi[2]. For n = 1 we obtain
Theorem 2 as Joshi[2].
Theorem 6. Let f; (z) € T, A(A, B,a, 3,7). Then the function h(z), defined by,
h(z) =Y _|d;| f; (2); where Y |d;| =1 (12)
j=1 j=1

is also in the class T, A (A, B, o, 3,7).
Proof. By using definition of h (z), we have

hiz) = Y ldj [Zzakﬂzk] =2 1di| = > " 1d;] lak;| 2

j=1 k=2 j=1 k=2j=1

= Z_Z Z‘deakﬂzk ZDn(k7Avaavﬁ’7’)‘) Z‘dj||akj|
j=1

k=2 \j=1 k=2

= ZDH (k,A,B,O&,ﬂ,’Y, )‘) |ak1| |d1| +ZDH (k,A,B,O[,ﬁ,")/, /\) ‘ak2| |d2| +

k=2 k=2
£ 3D, (b A B By ) ]
< ] (B~ AY(L— ) + Jdo] B2(B — A)(1 - ) +
o] (B — A)(1 — 0)
= 5B - A1 - @)Y s = BB - A1)
which implies that h (z) € T,L:(IA, B,a, 5,7). 0

Remark 7. For n =0 obtain Theorem 3 as Joshi[2]. For n = 1 we obtain Theorem
4 as Joshi2].

Theorem 8. Let the functions

fi(z)=2=>_lar|z" € T, (A, B, e, 8,7)
k=2
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and

f2 (Z) =z - Z |a]€2|Z]c S Tn+1,)\(A7Baa7ﬁ7’y)'
k=2

Then the function p(z) defined by

oo

2
p(Z) =z gz (|ak1 + ak,‘2|) Zk S TnJ\(AaBaaaﬂa’Y)'

k=2
PT’OOf. Let fl (Z) € Tn,A(Avaaaﬂer) and f2 (Z) € TTL-‘rl,)\(A?B?o@ﬂvFY) ; by uSing
Theorem 1. we get , respectively ,

> Dy (kA B,a, 3,7, )) |agi| < By(B — A)(1 - a) (13)
k=2

and
ZDTH—l (k,A,B,Oé,ﬁ,’Y,)\) |ak2‘ Sﬂ’Y(B—A)(l—Oé) (14)
k=2

We have (see (7))

oo

zan (k,A,B7O[,ﬂ,’Y,)\) ‘ak2| ZD’IL+1 (k7A,B,CK,ﬁ,’Y7)\) |ak2‘ S
k=2 k=2

< Py(B-A)(1-a)

IN

2 9
g;Dn (ko A, B.a, 7,0 |aia| < 56v(B = A)(1 - )

2 — 1
gan (k7A7B7aaBa75 )‘) ‘a/k?2| < 3/67(3 - A)(l - Oé) =
k=2

2 o0
32 Dn (kA B, 3,5, 0) [lasa | + laxel] < By(B = A)(1—a) =
k=2

2 oo
p(Z) =z = 72 |ak1 +Clk,2| Zk € Tn,k(AaBaaaﬂa’Y)'
3k:2

4. Integral Operators

Theorem 9. Let the functions f (z) defined by (1), be in the class T, (A, B, o, 5,7),
and let ¢ be a real number such that ¢ > —1.
Then the function F (z) defined by

c+1 ? c—1
- /Ot ) dt (15)

also belongs to the class Ty z(4A, B, o, 3,7).

F(z)=
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Proof. By using the representation of F (z), it follows that
oo

F(z)=z— Z |br| 2%, where  |by| =
k=2

c+1
c+k

|k

f S Tn,)\(AaB;Ohﬂ,'V) = ZDn (k,A,B,Oé,ﬁ,’Y,)\) |ak| S 67(3 - A)(l - a)

k=2

> D, (k, A, B o, 3.7, )) |bi] > Dy (k, A, B,a, 8,7, \)

k=2 k=2

< Y Dn(k,A B o, 8,7, ) |ax]

k=2
Sy(B = A)(1 - a)

IN

= F(Z) S Tn,A(AaBaaaB7’Y)'

c+1| |<
—|a
c+k k

(16)

O

Theorem 10. Let ¢ be a real number such that ¢ > —1. If F'(z) € T, (A, B, 8,7)

then the function f(z) defined by

F(z):CJr‘l/ 1o f (8) dt
z¢ 0
is univalent in |z| < R, where
[P (kA B0, 5,7, (c+ D] 7
= inf >2
= { IB-A-a)cthk]| FZ

The result is sharp for

B BY(B — A)(1 —a) (c+k)zF
&) =2y A Bad s F=?

Proof. Let F(z)=2z— Y |ax| 2* , it folows from (15) that
k=2

217C[2°F (2)] 2 c+k &
f(Z)*T*Z*kzﬂc+1 lak| 2

(19)

F(Z) € Tn7/\(A,B,Oé,ﬁ,’Y) = EDTL (k7AaBaa>/67’y’)‘) |a’k| S 67(3_‘4)(1 —Oé) =
k=2

oo

Dn (k,AaBaaa/B777>‘) |ak|
DTN B-o A 5

k=2

If
k(c+k)|z"" D,k A B,a,B,7, )\
ct1 B(B-A)(1-a)

or if

Dn (k»AaBaa,ﬁ»%)\) (C+ ]_) kil
By(B — A)(1 —a)k(c+k)

|z|<{

(20)
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then

c+k _ . c+k e
I (2) — 1 Zk T lax] 2571 SZkC+1|ak||z| ' <
k=2

n(k,A,B,O&,ﬁ,’Y,)\)kLkl
- kZ HB-Ai-a) =

But from |f’(z) — 1| < 1,]z| < R, we deduce that f is univalent in the disc
|z] < R.
The result is sharp and the extremal function is given by (18). O

Theorem 11. Letce R, ¢ > —1. If

F(Z) =z Z|ak|zk € Tn,)x(AaBaaaﬂafY)
k=2

then the function f (z) given by

F(z):c+1/oztc_1f(t)dt

ZC

is starlike of order p (0 <p<1) in |z| < R*(p,A,B,a,8,7v) where

(1-p)(c+1) Dy (kA B, 8,7, )] 77 |
[ (k—p)(c+k)By(B—A)1—a) ] i k>2.

R* = inf
k

The result is sharp.

: 2f"(2) .
Proof. Is sufficient to show that -1 <(1-p), in |z| < R*.

f(2)
Now
= c+k = c+k
e | PR s S ) s 2
T < o S w1
1= 3" &f fag] 241 1= 37 & farl 2]
k=2 k=2
provided
(k- k _
Z(p) (” )akuz’“ <1
= 1—p c+1
By using
ZD kABa,ﬂ% )|a’k|<1

2T B0

= c+k k—1
1
> (1=5) (550 e <

the inequality

holds if
k‘—pC+ ||k; 1 Dn<k7Avaa7ﬁa’Y7)‘) k> 2
l-pectl By(B-A)(1-a) 7 7
or if
(1—p)(c+1)Dn(k,A7B,a,ﬂ,%A)}’“
2| < ; k>2.
i [ F—p)ct k) (B - A1)
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Hence, f(z) € S*(p) in |z| < R*. The sharpness follows if we take the
function F' (z) , given by
_ ) Sk
A)BA—a)z" s
(k’,A7B,OZ,B,’Y,)\) -

F(z):zf(D]i
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STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume XLVIII, Number 4, December 2003

ON LACUNARY INVARIANT SEQUENCE SPACES DEFINED
BY A SEQUENCE OF MODULUS FUNCTIONS

VATAN KARAKAYA AND NECIP SIMSEK

Abstract. The purpose of this paper is to introduce and study some se-
quence spaces which are defined by combining the concepts of lacunary
convergence, invariant mean and the sequence of modulus functions We
also examine some topological properties of these spaces.

1. Introduction

Let ¢, and cdenote the Banach spaces of real bounded and convergent se-
quences x = (zj) normed by ||z|| = sup |zy|, respectively.
k

Let o be a mapping of the set of positive integers into itself. A continuous
linear functional ¢ on f,, the space of real bounded sequences, is said to be an
invariant mean or g-mean if and only if

i. ¢ (z) > 0 when the sequence x = (z,) has z, > 0 for all n,

ii. ¢(e) >0, where e= (1,1,1,..) and,

iii. ¢ (2yn)) =0 (2) for all z € .
Let V,, denote the set of bounded sequence all of whose invariant means are equal. In
particular, if ¢ is the translation n — n + 1, then a o-mean reduce to a Banach limit
(see, Banach [1]) and set V, reduce to ¢, the spaces of all almost convergent sequences
(see, Lorentz [7] ).

If = (x,), write Tz = T%,, = (Ty(n)). It can be shown (Schaefer [16]) that

Vy, = {:C €l lillcrn tin () = £, uniformly in n,} { =0 — limx, where

Tp + Tol(n) T oo + Tok(n)
k41 '

Here 0% (n) denote the k" iterate of the mapping o at n. The mapping o is
one to one and such that o* (n) # n for all positive integers n and k. Thus a o- mean
¢ extends the limit functional on ¢, the spaces of convergent sequence, in the sense
that ¢ (x) = limz for all z € c. (see, Mursaleen [11]).

We call V, as the space of o-convergent sequences.

A sequence x = (xy) is said to be strongly o-convergent (Mursallen [12]) if

tkn ({,C) =

k
there exists a number ¢ such that lilgn% > ‘x,,j (n) — €| = 0 uniformly in n.
j=1

Received by the editors: 04.03.2002.
2000 Mathematics Subject Classification. Primary 43A10, 43A20; Secondary 46H20.
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We denote [V,] as the set of all strongly o-convergent sequences. In case
o(n) =n+1, [V,] reduce to [¢], the space of all strong almost convergent sequence
(Maddox [8]).

Also the strongly almost convergent sequences was studied by Freedman et
all [4], independently.

By a lacunary 6 = (k.); » = 0,1,2,... where ky = 0, we shall mean an
increasing sequence of non-negative integers with k. — k,._; — oo as r — oo. The
intervals determined by 0 will be denoted by I. = (k,_1,k,] and h,. = k. — k,_1. The
ratio kfil will be denoted by ¢,.. The space of lacunary strongly convergent sequence

Ny was defined by Freedman et al [4] as:

.1
Ny = {x = (x) : hinh— Z |z — ¢ = O,forsomeﬁ}

" kel

Recently, the concept of lacunary strong o-convergence was introduced by
Savas [14] which is a generalization of the idea of lacunary strong almost convergence
due to Das and Mishra [2].

A modulus function f is a function from [0, 00) to [0, c0) such that
i. f(x)=0if and only if z =0
i flz+y) < f(z)+ f(y), for all z,y >0

iii. f is increasing,

iv. f is continuous from the right at zero.

Since |f (z) — f (y)| < f (Jx — yl), it follows from conditions (ii) and (iv) that
f is continuous everywhere on [0,00).

A modulus function may be bounded or unbounded. For example, f (t) =
is bounded but f (t) =t (0 < p < 1) is unbounded.

Ruckle [13] and Maddox [9], Savas [15] and other authors used modulus func-
tion to construct new sequence spaces.

Recently, Kolk ( [6], [7]) gave an extension of X (f) by considering a sequence
of moduli F' = (f) i.e.,

X (fe) = {2 = (zx)  (fi (J2x])) € X}

In this paper by combining lacunary sequence , invariant mean and a sequence
of modulus functions, we define the following new sequence spaces:

—-

_t_
t+1

o1 : :
[wg,F]a = {x : hrmh— Z fie ([ten (2)]) = O,umformlymn}

" kel,

1
[we, Fly = {x : limh— Z fx (|ten (x = 1)]) = 0, uniformly inn, forsomel}
" kel

(w, Fl, = {x : suphiZk: € I-fr (|ten (z)]) < oo}

rn Ty

IR . .
(wy, F] = {z : h;n - ; fi ([tken (z = 1)]) = 0, uniformly inn, forsomel}
Some sequence spaces are obtained by specializing F, 6, . For example, if
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=(2"), o(n)=n+1land f; () =z for all k, then [w,, F], = @ (see, Das
and Sahoo [B]). If o (n) =n+1 and fi (z) = f for all k, then [wa,F]g [ (f)], and
[we, F] = [ (f)] (see, Mursaleen and Chishti [12]).

When o (n) = n+ 1, the spaces [wd, F|,, [we, F], and [wg®, F], reduce to
the spaces [wo, F],, [0, F], and [s, F], respectively, where

[, Flg = {w = () : hm— > fi (|din (2 = 1)]) =
" kel,
uniformly inn, for some1}

a,nd
X +§U + +...+.T +

If # = (27), then [wg,F]g = [wg,F]7 (we, Fly = [we, F| and [w, F|, =
[wee, F.

o

2. Main Results

We have

Theorem 2.1. For any a sequence of modulus functions F = (i), [wg, F} o [Wos Flg,
(wye, F, and [w,, F| are linear spaces over the set of complex numbers.

Proof. We shall prove the result only for [wg, F } o- The others can be treated similarly.

Let z,y € [wS,F]Gand o, € C. Then there exist integers H, and Kgsuch that
la| < H, and |B| < Kg. We have

i 2o Ji (ten (0 = By)|) < Ha = 32 fr (Iten (2)])

kel,. kel,

+K5* > Filten ()

" kel,
This implies ax + By € [wg, F}a O

We will now give a lemma.

Lemma 2.2. Let f be a modulus and let 0 < 6 < 1. Then for each |ty (x)| > § for
all k and n we have

F(tn (@)]) < 2 (1) 67 [t (2)]

f ([ten (2)]) §f<1+ ['t’“"é(x)]) gf(1)+f<[t’m§(x)|D

<7 (14 20 <o ()57 )

Proof.

O

Theorem 2.3. For a sequence of modulus functions F = (fr) and any lacunary
sequence 0 = (k,.),
(we, Fly C [w, Fl,.

o
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Proof. Let F' = (fi) be a sequence of modulus functions and = € [w,, F],. Put
sup fr (1) = M We can write
k

1
7 > fi (Jtkn (2) <*ka [tin (z = 1)]) +* ka 1)
" kel, " kel, " kel
ka |tk (= 1)]) + T,M

" kel,
where T} is integer number such that |I| < 7;. Hence x € [wi°, F],.
Now for any lacunary sequence 6 = (k,.), we give connection between [w,, F],
and [wg, F]. O
Theorem 2.4. Let 8 = (k,) be a lacunary sequence with liminf g, > 1. Then for
sequence of modulus functions F = (fi),

[w, F] C [w; Fl,

Proof. Suppose that liminf ¢, > 1, then there exists § > 0 such that ¢, > 1+ ¢ for
T
all . Then for x € [w,, F|, we write

k- kr_1

i (ftin (2 = D)) > ,}z Fic Jtkn (2 = D)+ 2 S fe (i (&= D)
" k=1

k=1 " k=1

== > filltkn (x =1)])

kel

> %Mhi S i (ln (D))

kel

L
=

By taking limit as » — oo uniformly in, hence we obtain z € [w,, F'],. This
completes the proof. O

Theorem 2.5. Let § = (k) be a lacunary sequence with limsup ¢, < oo. Then for
any sequence of modulus functions F = (fi),

[wJ’F]Q - [me]

Proof. If limsup ¢, < oo, there exists H > 0 such that ¢, < H for all » > 1. Let
x € [wy, F], and € > 0. There exists R > 0 such that for every j > R and all n

A; —h > i (Jtwn (2 = D)) <

I kel,
We can also find M > 0 such that A; < K for all j =1,2,.... Now let m be

any integer with k,._1 < m < k,., where r > R. We have

LS el - <
k=1

1 o

e ([ten (z = 1))

r—1 1

i ([trn (x = D)
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R r

SO feltin @ =D+ —— 33 filltn (&~ D))
k'r

j=1kel; T j=R+1kel,

9 ihﬂ

j=R+1

1
krfl

1 1
< sup A; | kp +
kr—l (]SII; j) f kr—l
1 1
Mkgr +
r—1 n kr—l
1
<
- krfl
Since k,._1 — o0 as r — oo, it follows that

= felltia o= 1)) =0
k=1

< €(hrt1+hpi2 + ...+ hy)

Mkr +eH

uniformly in n and consequently x € [w,, F]. Hence the proof completes. O

Theorem 2.6. Let 8 = (k) be a lacunary sequence 1< liminf ¢, < limsup g, < oo.
T

Then for any sequence of modulus functions F' = (fi),

[me]G: [vaF]

Proof. Theorem 2.6 follows the theorems 2.5 and 2.4. O
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ON A GENERAL CLASS OF GAMMA APPROXIMATING
OPERATORS

VASILE MIHESAN

Abstract. Many authors introduced and studied positive linear operators,
using Euler’s gamma function I'p, p > 0. We shall define a more general
linear transform Fﬁ,‘“’% a,b € R, from which we obtain as particular cases
the gamma first-kind transform and the gamma second-kind transform.
For different values of a and b we obtain several gamma type operators
studied in the literature.

1. Introduction

Many authors introduced and studied positive linear operators, using Euler’s
gamma function: [3], [4], [7], [8], [9].

We shall define a more general linear transform from which we obtain as par-
ticular cases the gamma first-kind transform and the gamma second-kind transform.

Euler’s gamma function is defined for p > 0 by the following formula

I'(p) = /000 e P ldt (1.1)

T(p) = /01 s (i) du (1.2)

For a,b € R we define the (a,b)-gamma transform of a function f by the
functional (see also [5])

T 1)) = s [ et e e ar (13)

where T is defined by (1.1) (or (1.2)) and f € Ly j0(0, 00) such that T{"”|f| < oo.
The above relation is equivalent with

(T2 f) (z) = %p) /01 In?~! <i) f (xub (; In i)) du (1.4)

For different values of a and b we obtain several gamma type operators studied
by many authors.

which can be written as

Received by the editors: 15.10.2003.
Key words and phrases. Euler’s gamma function, gamma first-kind transform, gamma second-kind trans-
form, positive linear operators.
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2. The Gamma first-kind transform

If we put in (1.3) b = 0 we obtain the gamma first-kind transform of function f

(T4 f)(2) = ﬁ /OOO e Pl f <ac <;>a> dt (2.1)

where f € Lj 0.[0,00) such that Féa)|f| < 00.
One observes that Fz(,a) is a positive linear functional.
We state and prove:

)

Lemma 2.1. The moment of order k of the functional 1"1(,(1 has the following value

_ D(p+ka) ,

= ¥, x> 0. 2.2
p*eT(p) 22)

Proof. By using (1.1) we easily obtain

ka
1 & t
I'@e)(z :—/ e Pk () dt
70 = 165 »
k oo
— xi/ e typtka—l g ka O
0

- T(p)pke pkel'(p)
Consequently we obtain
ey (z) = m L T®ey(z) = m 2 (2.3)
Particular cases
Case 1. If we consider ¢ =1 in (2.1) we obtain
(Cpf)e) = (0 9)e) = s [ et (2 ) (2.0
L'(p) Jo p

For a = 1, Lemma 2.1 leads us to the following
Corollary 2.2. The moment of order k, k € N, of the functional I'y, has the following
values

(Tyen)(x) = Wﬂ, z>0.
We deduce
=x e xzzilﬁ —x2~x:£2
(Tper)(x) =, (Ipez)(z) el Lp((t —2)%52) .

If we choose p = n, n € N in (2.4) then we obtain Post-Wider’s positive linear
operator, defined for f € Ly ;0.(0,00) by

(Pof)(z) = ﬁ /OOO ety ("ff) dt. (2.5)

If we replace p by nz, for n € N and « > 0, in (2.4), we reobtain Rathore’s
positive linear operator [8], defined for f € L1 j0.(0,00) by

(R f)@) = = (71”) /0 T etynanig (;) dt. (2.6)
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Corollary 2.3. One has
Pu((t—2)%2) = =, Ra((t—a)%a) =~
n ( r),xr) = ) n xr),xr)= n'

Proof. Tt is obtained from Corollary 2.2.
Szasz’s operator is defined by the following formula

> nx k
sun =y S (2) a0 (27)

n
k=0

If we apply gamma transform (2.4) to Szasz’s operator we obtain the following
positive linear operator.
Theorem 2.4. The following identity

> (nx)* P
Tp(Snf) (@) Z(k!) = fzwf(fi), >0 (28)

k=0
holds true. Here (p)o =1 and (p)r =plp+1)...(p+k—1), k> 1.

Proof.
) o) k
e s (i) L
/0 . Z<p> k! <n

k=0

<kz) /oo o t(BEH1) k=1 gy
0

pt+k

p
r k
( ) (p+k) (nﬂp)
S nx)k Pk (k

k! (nz+p)ptk’ \n /)’

n [2] A. Lupag considered the operator L., defined for f € C[0,00) by

(Lo =23 G () (29)

k=0

Iy (Snf)()

which reproduces linear functions.

This operator is similar with Szasz’s operator. In [2] the author asks to find
properties of operator L,. Some approximation properties were given in [1]. In the
following theorem we shall prove that this operator can be obtained by the composite
of Rathore’s operator with Szasz’s operator.

Theorem 2.5. a) If P, is the Post-Wider’s operator (2.5) then Bif = P,(Snf),
where B}, is the Baskakov’s operator

B =3 (" e (5) w20

k=0
b) If R, is the Rathore’s operator (2.6) then
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Proof. The proof is obtained from Theorem 2.4 for p = n in the first case and for
p = nx in the second case.
Corollary 2.6. The operator L, can be written in the following manner

(Lof)a) = 3 T2 [071,...,2;4 |

n
k=0

Proof. We apply Theorem 2.4(b), using for the Szasz’s operator the following formula

[ 1 k A
(Snf)(x) *Z |:Oan7"'anaf:| z.
k=0
Case 2. If we replace a = —1 in (2.1) we obtain the following gamma trans-
form
~ _ 1 Rl px
r = (Y :7/ Ll (52) de 2.1
(@) = OV 0@ = o5 [ e () (2.10)

where I is the gamma function (1.1), p > 0, and f € Ly 10(0, 00) such that T'| f| < oo.
One observes that fp is a positive linear functional.

Lemma 2.7. The moment of order k, k € N, k < p, of the functional fp has the

following value

T L(p —k) k
Iyerp(x) = ———=(px)®, x>0.
Proof. It is obtained from Lemma 2.1, for a = —1.
We deduce
_ ) 22 _ ) 22
([Fpea) = o+ =i Tyt =)o) = .

If we put p =n+ 1 in (2.9) we obtain the gamma operator introduced and
studied by A. Lupag and M. Miiller [4]

(G f) (@) = ;/OOO et g <<n+1>x> it (2.11)

t
Corollary 2.8.

[\

Gu((t —2)%7) = —.

Proof. Tt is obtained from Lemma 2.7 for p =n + 1.
Several papers have dealt with these operators: [3], [4], [9].
3. The Gamma second-kind transform

If we choose in (1.3) a = 0 then we obtain the gamma second-kind transform
of a function f

(T )() = ﬁ /Ooo e~ flwe™")dt (3.1)

where I' is the gamma function (1.1), p > 0, and f€ L1 j0.[0, 00) such that ].",()b)|f| < 0.
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We consider here only the case b = 1.
x L[ -
(i f)(x) = (I‘Z()l)f)(x) = @/0 e Pl f(ze ) dt (3.2)

Formula (3.2) is equivalent with (see (1.4))

1
() () = ﬁ / Pt L () du

u

Clearly, I'} is a positive linear functional.
Lemma 3.1. The moment of order k, k € N, of the functional ', has the following
value

k
x
r: = —
( pek)(x) (k+1)p
Proof. We can write successively
1 et t\k a* 1 t(k+1)
(Trer)(z) = —/ e~ P (xe)dt = —/ e dt =
P L'(p) Jo L'(p) Jo
at  T(p) a*

S T(p)(k+1)p  (k+ 1)
By using (3.1), for p = a, @ > 0 we obtain the positive linear operator

(Aaf)(a) = %a) / T et flwe Y, (3.3)

or equivalent (see (3.2))

(Aaf)(@) = ﬁ /0 1na—1% F(tx)dt, (3.4)

This operator was introduced by the author in [5] and it is strongly related

with Cesaro means of order « (see [5]). This operator is an approximating operator
for & — 0, for example, « = 1/n, n € N.
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MINIMAL CURVES IN ALMOST MINKOWSKI MANIFOLD

SORIN NOAGHI

Abstract. In a Lorentz manifold [M, g] with a global timelike vector field
Z which respects g (Z,Z) = —1 and its distribution is involutive, we con-
sider a topological norm and this corresponding length of curves. We find
the local equations of minimal curve of this length functional.

1. Introduction

Let M be a (n + 1) dimensional connected paracompact without boundary
manifold and ¢g a nondegenerate bilinear form with diagonal form +,+,...,4+,- to each
tangent space.

Given a global vector field Z so that g(Z,Z) = —1 on M, we say that the
structure (M, g, Z) is a time-normalized space-time manifold.

Definition 1.1. A time-normalized space-time manifold (M,g,Z) is an almost
Minkowski manifold if the distribution:

reMv—{X eT,M|g(X,Z)=0}is involutive.

Definition 1.2. A time-normalized space-time manifold (M, g, Z) for which there is
f: M — R sothat Z = Vf is called a functional normalized space-time manifold
and it is noted (M, g, f).
Remark 1. Obviously any functional normalized space-time manifold is an almost
Minkowski manifold.

In [5] the necessary and sufficient conditions for a time-normalized space-time
manifold are given to be an almost Minkowski manifold.
Proposition 1.1. Let (M,g,Z) be a time-normalized space-time manifold with
H' (M) = {0}. The necessary and sufficient conditions for the existence of an atlas
A of M, so that the local coordinates of g respects:

Ons1 = Z and 595;;1 = 8%b;j1, Va,b=Tn+1 (1)

is (M, g, Z) to be a functional normalized space-time manifold.
Proof. We define the 1—form w = g4p+1dx®. Then:

agan+1 agbn-‘,—l a b
dw-( b Bga dx® N\ dx

Received by the editors: 26.11.2002.
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and the condition (1) implies dw = 0 and by hypothesis w is an exact 1-form and
there exist f: M — R so that:

df =w & ﬁdgc“ = Gan+1dx® or
ox®
ab OF g of
9" 5 = Onar = ba Op=0n1=>Vf=2
Reciprocally if Vf = Z then gopii = 8f Ogan-t1 _ Obn+1

b a
Remark 2. The restrictive condition of almost M;ivnkowski ?f?anifold does not imply
the chronologicity. For example if M = S! x R with g = —df? + dt? admits the curve
v (s) = (s, to) which is a closed timelike curve, and (M, g; %) is a almost Minkowski
manifold.
If Lor (M) denotes the set of Lorentz metrics. with partial ordering relation:

Gi<g2 & Vpe M, VX € T,M, g1 (X, X)<0=¢2(X,X) <0
then by [1, Prop. 6.4.9] the functional-normalized space-time manifold can be char-
acterize by the following statement:

Proposition 1.2. A Lorentz manifold (M, g) can be become a functional normaliza-
tion Lorentz manifold if and only if a causal metric g; exists, so that g < g;.

2. Minimal curve in almost Minkowski manifold

Definition 2.1. We call Z—norm on a almost Minkowski manifold the application:
||, :TM — R, defined by:

X1 =l (X, 2) + /9 (X, 2)° + g (X, X)
Remark 1. a) It is proved in [5] that:
1X], = min{\ >0, ~\Z, < X < \Z,}
where the ordering relation on T, M is defined by:
X<Yo(X=Y)V(g(Y -X,Y —X)<0Ag(Z,Y — X)<0)

b) For a almost Minkowski manifold (M, g, Z), the expression of the norm in
the preferential atlas A (which exists [5]) with:

an—&-l =7
Gant1 = —0p.1,Va=1,n+1
is:
1X|, = | X"t +4/gi; X7 X7 Vi, j =1,n where X = X®0y,a=1,n+1

If p1, p2 € M, we note the 2, ,, the set of C* curves from p; to ps and its
subsets:

P1P2_ v, Bl — M, g( /(t) v(t) >0, Vt € (o, 0]}

p1p2 = {7 [a, 8] = M, g (v (t), Zyw)) <0, Vt € [a, 5]}

b = 1711008l = M, g (v (1), Zy0) = 0, VE € [, ]}
Definition 2.2. For v € Q,,,, we define the Z—length of v by:

B
0= [ Wl
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Theorem 2.1. If vy € Qplpz exist so that:
Lz () <Lz (v), Yy €9y
then there is a parametrization of g which in local preferential coordinates verifies:
d?z} 1 {871,11, Ohge Bhbc} % dz§

b7 152 ozx¢ oxb 9z | ds ds

p1p2

h

=0,Va=1n+1

where:

b gap if (a,b) # (n+1,n+1)
@7\ 0if (a,0) = (n+1,n+1)
and the local equations of v are:

2
z® = (s) - dy dy dvy _
{al,nﬂ,se[a’,ﬂ’] with (g(ds’z> +g(d8’d8 -

Proof. Let be v € QF _ with the local preferential atlas

p1p2
i zt =z (1) o
A azln—i—l’te[am Theng(dt, y(t))>01mphes
d“”"Jr < 0. and the Z-length functional is:
A dz" 1 dzt dx
Lz(’Y):/ {— 7 +m dt where i,5 € 1,n
We denote:

616, () ==+ G

and we calculate:

0gij da’ dz? da’ 1
oG _ 81’"7‘ diwt% . oG — +6’rb+1 + gimdimt (1 — 5n+ )
ox™ dot dei | Ox™ m dzi d
2\/9ij“ar & 9ij“ar 5:
Because (g;;),;_15 is a matrix of a positive definite bilinear form, it is possible to find
j:l,n
; 2
a parametrization of v so that gijddis df; lorg (ds , Z) +g (ZZ, ZZ) = 1. Then the
Euler-Lagrange system of the Z- length functional for the curves of Qp », Decomes:
oG d (0G \ _ 0
oxm™ ds oxm' )
1 9gi; dz* dx? d dx’
- (5"+1 _ (5”+1 =0.
20x™ ds ds ds +gim s ds ( m )

For m # n + 1 we have:
Eat 1 [agim 9gjm 59@} de’ dr?  Ogiy dat dz™t!

Gim ds? OxJ oxi  Oxm| ds ds = Ox"tl ds ds =0

or

] d?axt 1 891:m 8gjm 8g,;j dﬂjzdij_i_
Gim ds? oxJ ozt ox™m | ds ds

1 [ 9Gim Ont1m 5gm+1} dx’ da?

2

Oxntl oxi  dzm | ds E+
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WL [ 9im | Ognyim 3gn+1j} dz™ 1 dijJr
Qxntl Oxd ox™ ds ds
_|_1 |:agn+1m (9gn+1m _ 3gn+1n+1} d$n+l d$n+1 -0
2 | Ozntl Ozl ox™m ds ds
that is:
d*x 1 l:agbm agam . 8gab:| dmadixb —0 (2)
Jam™ 52 Oz Oxb dx™| ds ds
where a,b € 1,n +1
For m = n + 1 the Euler-Lagrange equation become:
1 0gi; dzt dxd B
20z™ ds ds
o d? O9on+1 . Ofan+1 Ogap | dz® da®
(oo =gwrame) i+ 5 | St + St - R T =0 O

Therefore the relations 2 and 3 implies:
n d%af 1 [0hay | Ohac  Ohyc %dmﬁ
bds? ds ds

=0,Va=1 1
Ox¢ Oxb Ox@ Ve 7t

where:
J/— gabif (a,b)#(n—kl,n—kl)
@ 0if (a,0) = (n+1,n+1)
Remark 2. The analogous statement for the case 2, . # ¢. For Qplpz # ¢ the

1’

equation g (dt , Z) = 0 becomes —z"1 = (0 hence

2"t =k, where k is a constant. If exist yg € Qmpz so that

Lz (v0) <Lz (y), ¥y e

than we can find a parametrization of vy so that its local preferential coordinates

verify:
~ 2 i 87“ aﬁi, 2 j
thddsQ +3 |:3£L’]k (')Jk - BJL"J} ddxs Cfiis =0
e — 0, Vi,j,k=T,n
where h” = gij (xl 22, ..z k)

If p1, po are on the same pure timelike curve, meaning that:

31@ : h17[ﬂ - A4} ﬁ/(OO = P1, 7/03) =D2, 7 ( ) = A(t ( ) v(t)s where A (1 () >0
or A(t) < 0, we can find a parametrization of 7y in the preferentlal coordinates, so
that:

pP1P2

dxg
dt

Lz(w) = |zg*(8) —ag™ ()] <

/ { da" (1) ’ + \/ g, ) W(f)} dt = Ly (v)

dt dt dt
for every v € Qplp2 ifA>0andye€Q, , if A<O.

Corollary 2.1. Let (M, g, f) be a almost Minkowski manifold. For any p; € M,there
is a neighborhood V7, so that for any p, € Vi with QF  # ® there is at least a curve

Y0 € QF

=+0,,4, Ya=1,n+ 1 and:

p1p2

ap, Which is minimal for the Z—length functional
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- 0
Remark 3. We can state the same results for Qmm and Qplpz.

References

[1] S. W. Hawking, G. F. Ellis, The large scalar structure of space-time, Cambridge Univ.
Press. London/New-York, 1973.

[2] S. Noaghi, The equations of minimal curves in time-normalized space-time manifold,
Ann. Univ. Timisoara Vol. XXXIV, fasc. 2, 1996, 235-246.

[3] S. Noaghi, Functional normalized Lorentz manifold, Ann. Univ. Timisoara, 36(1998),
no. 1, 89-100.

[4] S. Noaghi, The study of manifold with a field of tangent cones (Lorentzian case), Ph.
D. thesis, 1998, (Romanian) Univ. of Timisoara, Romania.

[5] D. I. Papuc, A New Geometry of a Lorentzian Manifold, Publicationes mathematicae,
Debrecen Tomus 52(1998), fasc. 1-2.

UNIVERSITY OF PETROSANI, UNIVERSITY STREET, NoO. 20,

2675 PETROSANI, ROMANIA
E-mail address: snoaghi@mail.recep.ro

59



STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume XLVIII, Number 4, December 2003

ON A PARTICULAR FIRST ORDER NONLINEAR DIFFERENTIAL
SUBORDINATION II

GEORGIA TRINA OROS

Abstract. We find conditions on the complex-valued functions B, C, D in
unit disc U and the positive constants M and N such that

|B(2)2(2) + C(2)p*(2) + D(2)p(2)| < M
implies |p(z)| < N, where p is analytic in U, with p(0) = 0.

1. Introduction and preliminaries
We let H[U] denote the class of holomorphic functions in the unit disc
U={zeC: |z| <1}
For a € C and n € N* we let
Hla,n] = {f € H[U], f(z) =a+anz" +ans12" ™ +..., 2€ U}

and
An ={f € H[U), f(2) =2+ ani12" +ang22" P+ .., 2 €U}
with 4; = A.
~ We let Q denote the class of functions ¢ that are holomorphic and injective
in U\ E(q), where

E(q) = {C €U : ;LHEQ(Z) = 00}

and furthermore ¢'(¢) # 0 for ¢ € OU \ E(q), where E(q) is called exception set.
In order to prove the new results we shall use the following:
Lemma A. [1] (Lemma 2.2.d p. 24) Let ¢ € Q, with ¢(0) = a, and let

p(2) =a+anz" +an 12" 4L
be analytic in U with p(z) #Z a and n > 1. If p is not subordinate to q, then there
exist points zg = roe’® € U, ro < 1 and {y € OU \ E(q), and an m > n > 1 for which

p(Ur,) C q(U),
(i) p(z0) = q(¢o)
(ii) zop/(ZO?/(: 7)71(06]/@0); ‘mdc ")
ZoP" (%o 09 %0
(’L’LZ) RGW + 1> mRe |:q,(<0) + 1:| :

Received by the editors: 04.03.2003.
2000 Mathematics Subject Classification. 30C80.
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In [1] chapter IV, the authors have analyzed a first-order linear differential
subordination
B(2)zp(2) + C(2)p(2) + D(2) < h(z), (1)
where B, C, D and h are complex-valued functions in the unit disc U. A more general
version of (1) is given by
B(z)zp(2) + C(2)p(2) + D(2) € Q, (2)
where Q) C C.

In [2] we found conditions on the complex-valued functions B, C, D, E in the
unit disc U and the positive constants M and N such that

|B(2)2p' (2) + C(2)p*(2) + D(2)p(2) + E(2)| < M

implies |p(z)| < N, where p € H[0, n].
In this paper we shall consider a particular first-order nonlinear differential
subordination given by the inequality

|B(2)2p'(2) + C(2)p*(2) + D(2)p(2)| < M 3)

We find conditions on the complex-valued functions B,C, D such that (3)
implies |p(z)| < N where p € H[0,n].

In some cases, given the functions B, C, D and the constant M we will deter-
mine an appropriate N such that (3) implies |p(z)| < N.

2. Main results

The results in [2] can certainly be used in the special case when E(z) = 0.
However, in this case we can improve those results by the following theorem:
Theorem. Let M > 0, N > 0, and let n be a positive integer. Suppose that the
functions B,C, D : U — C satisfy B(z) # 0,

ReDE) S
) Re) = ) ()
(ii) InB(2) + D(2)| = 1 [M + N*|C(2)]].
If p € H[0,n] and
|B(2)2p/(2) + C(2)p*(2) + D(2)p(2)| < M (5)
then
p(2)] < N.
Proof. If we let
W (z) = B(2)2p(2) + C(2)p*(2) + D(2)p(2), (6)
then from (6) we obtain
W (2)| = [B(2)2p/(2) + C(2)p* () + D(2)p(2)]. (7)
From (7) and (5) we have
[W(z)| <M, zeUl. (8)

Assume that |p(z)| £ N, which is equivalent with p(z) A Nz = ¢(z).
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According to Lemma A, with ¢(z) = Nz, there exist zp € U, zp = roe'®,
ro < 1, 6y € [0,27), ¢ € U, |¢| = 1 and m > n, such that p(z) = N¢ and
zop'(20) = mN¢.

Using these conditions in (7) we obtain for z = 2

(W (20| = [B(20)mN¢ + C(20) N*¢ + D(29)N¢| = ()
= [N[B(z0)m + D(z0)] + C(20)N*¢| >
> N|[B(z0)m + D(z)| = N*|C(z)|-

Since m > n and B(z) # 0, from condition (i) we have
D(z) D(z)
B(z) B(z)

m +

n + ,

and
ImB(2) + D(2)| = [nB(2) + D(2)|.
For z = 2y, we have
ImB(z0) + D(20)| = [nB(20) + D(20)]-
Using this last result and condition (ii) together with (9) we deduce that
[W(20)| = N[nB(z0) + D(20)| = N*|C(z0)| = M.

Since this contradicts (8) we obtain the desired result |p(z)| < N. O

Instead of prescribing the constant N in Theorem, in some cases we can use
(ii) to determine an appropriate N = N(M,n, B, C, D) so that (5) implies |p(z)] < N.
This can be accomplished by solving (ii) for N and by taking the supremum of the
resulting function over U. The conditions (ii) is equivalent to

|C(2)|[N? = N|nB(z) + D(2)| + M < 0. (10)
The inequality (10) holds if:
[nB(z) + D(2)|* > 4|C(2)]. (11)

In this case we let
N = sup InB(2) + D(2)| — \/InB(z) + D(2)|2 — 4M|C(2)|
|2l<1 2/C(2)]
2M
= sup
iz1<1 [nB(z) + D(2)| + \/|nB(2) + D(2)|2 — 4M|C(z)]
If this supremum is finite, we have the following version of the Theorem:

Corollary. Let M > 0 and let n be a positive integer. Suppose that p € H[0,n], and
the functions B,C, D : U — C, with B(z) # 0, C(z) # 0, satisfy:

Re {gg” > —n, |nB(z)+ D(2)| > 4|C(2)|

and let
2M

S nB(2) + D(2) + /InB(2) + D(2)P — 4M|C(2)]

N = < 0

Then
|B(2)2p(2) + C(2)p”(2) + D(2)p(2)| < M
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implies
Ip(2)] < N.

Ifn=1,B(z)=3+20C(:2)=1,D(2)=1—2, M=1, N=2—+/3.
In this case from Corollary, we deduce
Example 1. If p € H[0, 1], then

(3 +2)2p'(2) +p°(2) + (1 = 2)p(2)| < 1
implies
p(2)] <2 - V3.

7—+/33
Ifn=3,B(z) =142 C(z) =2, D(z) =4 — 3z, M:27N:T\/>. In
this case from Corollary, we deduce:

Example 2. If p € H[0, 3], then
|(14 2)2p/(2) + 22p*(2) + (4 — 32)p(2)| < 2

implies
7—-/33
p(a)] < =2
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SOME SUFFICIENT CONDITIONS FOR UNIVALENCE

HORIANA OVESEA

Abstract. In this paper we prove the analyticity and the univalence of the
functions which are defined by means of integral operators. In particular
cases we find some known results.

1. Introduction

We denote by U, = {z € C : |z] < r} the disk of z-plane, where r € (0,1],
Uy =U and I = [0, 00).

Let A be the class of functions f analytic in U such that f(0) =0, f/(0) = 1.
Let S denote the class of function f € A, f univalent in U. The usual subclasses
of S consisting of starlike functions and a-convex functions will be denoted by S*
respectively M.
Definition 1.1. ([2])Let f € A, f(2)f'(z) # 0 for 0 < |z| <1 and let o > 0. We
denote by
2f'(2) 2f"(2)
f(z) f'(2)
If ReM(«t, f) > 0 in U, then f is said to be an a- convex function (f € M,).
Theorem 1.1. ([2]). The function f € M, if and only if there exists a function

g € S* such that
1 (% g= :
fl) = (a / gu%u> )

Definition 1.2. ([5]) Let f € A. We said that f € S*(a,b) if

+1) (1)

M(a,f)=(1-a) + of

zf'(2)
—al < b, zl <1, 3
e g 3)
where
a€C, Rea>b, [a—1| <b. (4)

Theorem 1.2. ([1]) Let f € A. If for all z € U

z N(Z)

f'(z)

(1 -2 <1 (5)

then the function f is univalent in U.

Received by the editors: 21.05.2003.
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2. Preliminaries

Theorem 2.1. ([4]) Let L(z,t) = a1(t)z + az(t)z® + ..., a1(t) # 0 be analytic in U,
for allt € I, locally absolutely continuous in I and locally uniform with respect to U,..
For almost all t € I suppose
L L

eyt
where p(z,t) is analytic in U and satisfies the condition Rep(z,t) > 0 for all z €
U, tel. If |a1(t)| = oo fort — oo and {L(z,t)/a1(t)} forms a normal family in U,,
then for each t € I the function L(z,t) has an analytic and univalent extension to the
whole disk U.

Yz e U, (6)

3. Main results
Theorem 3.1. Let f, g € A and let « be a complex number, |a — 1| < 1. If
1) )

9@ )

(1— 2% <1, VzeU, (7)

then the function

z 1/
1) = (o [ s an) ®
0
is analytic and univalent in U.

Proof. Let us prove that there exists a real number r € (0, 1] such that the function
L :U,x — C defined formally by

—t

e 'z /e
L(z,t) = VO 9° " (u) f (w)du + (e — e‘t)zga‘l(e‘tz)f'(e‘t@] )

is analytic in U, for all ¢t € I.

Since g € A, the function h(z) = @ is analytic in U and h(0) = 1. Then there is a
disk U,,, 0 < 7 <1, in which h(z) # 0 for any z € U,, and we choose the uniform
branch of (h(2))*~! equal to 1 at the origin, denoted by h;.

For the function

ha(t) = /O T u i (0) () d

we have ha(z,t) = 2%h3(z,t) and is easy to see that hs is also analytic in U,,. The
function

ha(z,t) = hs(z,t) + (e — e e @ Vhy(e7'2) f' (e "2)
is analytic in U,, and we have hy(0,t) = e~ [1 + (1/a — 1)e~2!] # 0 for any t € I.
It results that there exist ro € (0,r1] such that hs(z,t) # 0 in U,,. Then we can
choose an uniform branch of [h4(z,t)]'/ analytic in U,., denoted by hs(z,t), which is
equal to a;(t) = e[l + (1/a — 1)e~ 2]/« at the origin and for a;(t) we fix a
determination.
From this considerations it results that the relation (9) may be written as

L(z,t) = zhs(z,t) = a1(t)z + ag(t)2® + ...

and then the function L(z,t) is analytic in U,,.
Since |a — 1| < 1 it results that lim, . |a1(t)] = cc.
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It is easy to prove that L(z,t) is locally absolutely continous in I, locally uniformly
with respect to U,, and that {L(z,t)/a;1(¢)} is a normal family in U,,, r3 € (0,72].
It follows that the function p(z,t) defined by (6) is analytic in U,, r € (0, r3], for all
t > 0.

In order to prove that the function p(z,t) has an analytic extension with positive real
part in U, for all ¢ € I, it is sufficient to prove that the function w(z,t) defined in U,
by

p(Z, t) -1

p(z,t) +1

can be continued analytically in U and |w(z,t)| < 1for all z € U and t € I.
After computation we obtain

w(z, t) =

w(z,t) = (1 —e2) [(a -1

e tzg' (e7tz)  etaf"(e7t2)
gle~*z) fretz)
From (7) we deduce that the function w(z,t) is analytic in the unit disk U. We have

w(z,0) = 0 and also |w(0,t)] = [(1 — e 2)(a —1)| < |a— 1] < 1.
Let us denote u = e~*e?. Then |u| = e~* and taking into account the relation (7) we
have

(10)

/ 1
o)1) ")
glu) — f'(u)
Using the maximum principle for all z € U\ {0} and ¢t > 0 we conclude that |w(z,t)| <
1 and finally we have |w(z,t)| < 1for all z € U and t € I.

From Theorem 2.1 it results that the function

2.0 = ([ o rwa)

is analytic and univalent in U and then the function H defined by (8) is analytic and
univalent in U.
For particular choices of f and g we get the following

Corollary 3.1. Let f € A and let a € C, |a — 1| < 1. If

2f"(2)
f'(2)

F) = (a /0 Tuet f’(u)du)l/a (12)

is analytic and univalent in U.

<1

w(e?, )] = (1 - |uf?)

1/

(1= [2%) S1-Ja—1(1 -2, VzeU, (11)

then the function

Proof. For the function g(z) = z, from (7) we have

2f"(z)
f'(2)
We observe that if the condition (5) of Theorem 1.2 will be replaced by the strong

condition (11), then we have not only the univalence of the function f (a« =1) , but
we obtain also the univalence of the function F' defined by (12).

(112

—&—a—l‘gl
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Corollary 3.2. Letge A andlet a € C, |a—1| < 1. If

1 29'(2)
(a=1) 9(z)

G(z) = <a /0 ’ g”‘l(u)du> v (14)

is analytic and univalent in U.

Proof. If we take f(z) = z, from (7) we obtain the relation (13). So we find a result
from paper [3].

For the function f € A, f'(z) = 22 from theorem 3.1 we get the following

z

Theorem 3.2. Let g€ A and let v € C, o —1] < 1. If

(112

<1, VzeU, (13)

then the function

(1= 2%

/
az‘q(z)—l‘gL Vz e U, (15)
9(2)

Glz) = (a /0 ’ gaiw du)l/a (16)

s analytic and univalent in U.

then the function

The operator (16) is just the integral operator introduced by Prof. P. T.
Mocanu in the integral representation of a-convex functions.
Corollary 3.3. Letg€e A, a« € C, la—1| < 1. If
zg'(z) 1 1
9(z) a7 |af’
then the function G defined by (16) is analytic and univalent in U.

Remark . Let a € (0, 2) and let g € S*(1,1). Then the function G defined by (16)
is analytic and univalent in U.

Indeed, if we consider a = 1/a and b = 1/]a|, the conditions (4) are satisfied for
a € (0, 2). But here we obtain only the univalence of G.

If in theorem 3.1 we take f = g ,we have

Theorem 3.3. Let f € A andleta € C, la—1| < 1. If
2f'(z) | 2f"(2)
11—z [(a—1 + <1,
(1= e ffo = D32+ 22
then the function f is univalent in U.

Corollary 3.4. Let f € A, B € C, Ref > % If
| M(B, f)=pB1<I8| (18)

for all z € U, then the function f is univalent in U.
Proof. For =1/a, from |o — 1| < 1 we get Re8 > § and
LN\ )1
-1 -2 IM _
(5-1) i+ st = e -0

Remark. In the case g > %, the condition (18) implies ReM (5, f) > 0 and from
Theorem 1.1 we get that f is a B-convex function.

Vz e U,

VzeU (17)
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BOOLE LATTICES OF IDEMPOTENTS IN A RING

IOANA POP

Abstract. In this paper, we will show that in a ring R, there exist maximal
subsets of commuting idempotents. On these maximal subsets, one can
define Boole lattice structures which induce Boole rings which usually are
not subrings of R. If R is a Boole ring, we obtain the Stone’s Theorem.

Let V be a linear space over the skewfield K and EndV the set of endomor-
phisms of V.

If f,g € EndV then the functions f+¢g:V — V and go f: V — V defined
by:

(f+9) (@) =f(z)+g(z) and (fog)(z)=f(g(x))

are endomorphisms of V', that is f + g, fog € EndV.

The set EndV is a ring with respect to the operations defined above. This
ring is not commutative if dimV > 2. An endomorphism f of V is called projector
of Vif f2 = f.

Starting from the papers of W.J. Gordon [3] and W.J. Gordon and
E.W.Cheney [4], F.J. Delvos and W. Schempp are presenting in their book [1] the
construction of lattices of projectors from EndV which are commutative. They use
these lattices in the approximation and interpolation theory.

In this paper, we will associate Boole lattices to a ring (associative) with the
unit R. An element a € R with the property a? = a is called idempotent. Thus, the
projectors of V' correspond to the idempotent elements of the ring EndV .

If R is a Boole ring, i.e. every element of a € R is idempotent, then these
lattices coincide with the Boole lattice associated to R, according to Stone’s Theorem
which establishes a bijection between Boole lattices and Boole rings. Note that every
Boole ring R is commutative and 2a = 0 for Va € R.

Let I (R) = {a € R|a* = a} , P (I (R)) the set of subsets of I (R) and

P ={X eP(I(R)|Va,be X;ab=ba}.

Remarks. a) We have I (R) = R if and only if R is a Boole ring. In this case,
P’ =P (R) and R is the only maximal element of P’.

b) We have {0,1} € P".
Theorem 1. 1) For every X € P’ there exists a maximal element Y in (P’, C) such
that X C Y.

2) If Y is a maximal element of P’ then 0,1 € Y.

Received by the editors: 08.05.2003.
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Proof. 1) If P” is a non empty chain from C = {X’ € P’|X C X'} then
X'ecC
X'ePr
Thus, according to Zorn’s lemma there exist maximal elements in C.
2) The elements 0 and 1 are idempotent and they commute with every y € Y.
So Y U{0,1} € P’ and using the maximality of Y in P’ it results that 0,1 € Y.

Theorem 2. If Y is a maximal element in (P’, C) then:
i) Y is stable with respect to the multiplication in R, i.e.

z,yeY =>axyeY
ii) The relation ” <” defined on Y by
rLly&sSry==2x
is an ordering relation and 0 respectively 1 is the least respectively the greatest element
in (Y, <).
iii) The ordered set (Y, <) is a Boole lattice. In this lattice we have
rAy=ay,zVy=x+y—ayandz’' =1—z (1)

where z Ay =inf (z,y), x Vy = sup(x,y) and z’ is the complement of x.
Proof. i) From z,y € Y it results that x,y are idempotents which commute, which
implies that
(xy)Q = TYry = 392212 =2y
so zy is idempotent. Since the elements of Y are commuting, it results that for Vz € Y
we have
(zy)z =2 (yz) =z (2y) = (z2)y = (z2) y = z (zy),

so xy commutes with every element of Y.

This means that Y U {zy} € P’, which together with the maximality of ¥ in
(P',Q), implies that zy € Y.

ii) Since the elements of Y are idempotents, it results that for Vo € X we
have

? =z,
so x < x. Thus the ” <7 relation is reflexive. If z,y,z € Y then
r<yandy<z=zy=zxandyz =y
Using the fact that y is idempotent we deduce that
(xy)(yz) =ay = ayz=ay=az=c=>x <2

So the 7 <7 relation is also transitive.

If z,y € Y then using the fact that the elements of Y are commuting, we
have:

r<yandy<z=zy=czandyr=y=z =y

which shows that the relation ” <7 is antisymmetric.

We have proved that ” <7 is an order relation on Y. For Vz € Y, from

Oxr=0and z1l =x

it results that 0 < z and =z < 1.
So, 0 and 1 are the least respectively the greatest element in (Y, <).
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iii) For Va,y € Y we have

(zy)z = 2%y = zy, (zy) y = 2y® = 2y

and
(x—l—y—xy)ac:x2+yw—xy:b:x+yx—yx2=x+yx—y:v:;v,
(@+y—zyy=ay+y’ —ay’ =ayt+y—ay=y
which shows that xy <z, zy <yandz <zx+y—zyandy<zx+y—xy, soxyis a

lower bound and x + y — zy is a upper bound of z and y.
If z € Y then

<z z<y=>z2r=z2y=2=2"(xy) =22 = 2z(xy) = 2= 2 <y

and
r<zy<z=>rz=0,9y2=y
from which it results
zlx+y—ay)=zzx+zy—zay=x+y—xy

hence z <z + y — xy.

So xy is the greatest lower bound and = + y — xy is the least upper bound of
x and y.

So

sANy=zyand xVy=z+y—xy

Thus we have proved that (Y, <) is a lattice.

Now we will show that this lattice is also distributive. If z,y, z € Y then
xANyVz)=zly+z—yz)=zy+xz—zyz,
(xAyY)V(xAz)=(2y)V (22) = 2y + 22 — zyrz = oy + 2 — TYZ

SO
zA(yVz)=(xAy)V(zAz) (2)
Here we notice that the identity (2) is true in a lattice if and only if the
following identity is also true:
xV(yAz)=(xVy) A(zVz)

Thus (Y, <) is a distributive lattice having 0 the least element and 1 the
greatest element.
For Vz € Y we have

tAN1l-z)=r—2’=2—2=0,
eVAl-z)=z+l—-z—-z(l-2)=1—-az+2=1
which shows that 2’ = 1 — z is the complement of z.

So we proved that (Y, <) is a Boole lattice.
Corollary. If X € P’ then the relation ” <” defined on X

rLly&sSary==2x

is an order relation.
Theorem 3. If Y is a maximal element in (P’, C) then & defined by

rBy=x+y—2zxy
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is an operation on Y and Y is a Boolean ring with respect to & and the multiplication
induced by the multiplication in R.
Proof. Applying Stone’s Theorem to the Boole lattice (Y,V,A) it follows that the
equalities

zxy = (zAY)V (2 Ny) (3)
Ty = TAYy
are defining operations in Y and (Y, %, ) is a Boole ring.

From (1) and (3) it results :

zry = [p(1-yV[Ql-2)y=2(0-y)+(1-2)y-z(1-y)(l-2)y=
= z-ayty-—ay—s(l-z—y+yz)y=
= r+y—ay—zy—ay+aiy+ay’ —ryry =
= z4+y—zry—zy—axy+aryt+ry—rzy=x+y—2zxy=x>dy
Corollary. a) If Y is a maximal element in P’ then the ring (Y, @®,-) is a subring of
R if and only if
2z=0forvVz €Y (4)

We know that the ring (Y, ®,-) is a subring of R if and only if
rhy=x+yforVr,yeY (5)

and
B)e2zy=0Ve,yeY <2z =0,Vz €Y

The last equivalence takes place because 1 € Y.

b) If Y is a maximal element in P’ and R # {0}, then the ring (Y, ®,-) is a
subring of R if and only if the characteristic of R is 2.

The condition (4) is verified if and only if 2z = 0 for © = 1 € R which implies
that R has the characteristic 2.

¢) Let K be a field of characteristic greater than 2 (in particular, K could be
R or C) and R = EndV. In this case, if Y is a maximal element in P’, then the ring
(Y,@®,-) is not a subring of R.

We know that if & € K then the function

ta : VoV, t,(2)=ax

is an endomorphism of V', ie. t, € EndV = R, and ¢ : K — R, p(a) = t, is a
unitary and injective homomorphism of rings.

So the characteristic of R concides to the characteristic of K, so R has a
characteristic different from 2.

d) Stone’s Theorem. If (R,+,") is a Boole ring then R is a Boole lattice
with respect to the operations ” V” and ” A” defined by

xVy=z+y—xyand x Ay =2y

The correspondence (R, +, ) — (R, V, A) introduces a bijection between the
class of Boole rings and the class of Boole lattices.

On the other side, if (R, V,A) is a Boole lattice then R is a Boole ring with
respect to the operations ” +” and ” -7 defined by

r+y=@Ay)V (@' ANy) andzy=x Ay
If we denote the above bijection by ¢, we have o~ (R,V,A) = (R, +, ")
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This theorem results from Theorems 2 and 3 and from Corollary a), taking
into account that in this case P’ =P (R) and Y = R.
Theorem 4. If R is a ring with unit and ¢ # X € P’  i.e. X is a non empty subset
of R composed by idempotents which commute, then the elements of R such as

11212 -+ - Tiny V Z21T22 . .. T2ny V...V TR1TE2 -+ - Tkny, (6)

where z;; € X (i=1,...,k;j=1,...,n%;k,n, € N*) are idempotents and commute
between them.

The set X of elements such as (6) is a distributive lattice with respect to the
relation 7 < 7. This lattice is generated by X.

Proof. From Theorem 1 it results that there exists a maximal element Y € P’ such
that X CY and from Theorem 2 we know that (Y, <) is a distributive lattice.

From X C Y and the fact that (Y, <) is a lattice, it results that X C Y.

So elements such as (6) are idempotents and commute between them. If y, z
are elements such as (6), that is y, z € X, then it is obvious that y V z € X and from
the distributivity of the operation ” A” (which coincides with 7 - ”7) with respect to
7 V7 it results that yz is also such as (6).

This means that X is a sublattice of (Y, <).

From (6) it results that X C X. If Z is a sublattice of Y and X C Z, then
from (6) it follows that X C Z.

Thus we have proved that X is the least sublattice of Y which includes X.

So (Y7 §) is a distributive lattice generated by X.

Remarks. Considering R = EndV in Theorem 4, where V is a linear space over R
or C, we obtain Propositions 6 and 7, section 1.2 from [1].

Theorem 5. If R is a ring with unit and ¢ # X € P' and X = {1 — z|x € X} then
the elements such as (6) where z;; € XUX® (i=1,...,k;j=1,...,n; k,n, € N*)
are idempotents which commute and the set X of this elements is a Boole lattice
generated by X.

Proof. If x,y € X U X¢ then we can easily prove that x and y are idempotents and
2y = yzr. Using Theorem 1 it follows that there exists a maximal element Y € P’
such that X U X CY.

From Theorem 2 it results that (Y, <) is a Boole lattice and from the proof

of Theorem 4 it follows that X is the sublattice of Y generated by X U X¢.
So X is a distributive lattice. If z € X then
rA(l-—z) = z—2’=2—2=0,
xV(l—ux) r+l-z—a(l-2)=1-z+2’=1—-a+2=1

which shows that 0,1 € X.
Using de Morgan’s formulas in the Boole lattice Y

(yVz) =y Az and (yAz) =y V2

for Vy,z € Y, and using the distributiveness, it follows that the complement of an
element of X is also in X.

So X is a Boole sublattice of the lattice Y.

We have X C X and if Z is a Boole sublattice of Y which includes X then

cZ.

>l
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This means that X is the smallest Boole lattice including X that is X is
generated by X.
Remarks. Considering, in Theorem 5, R = EndV where V is a linear space over R

or C it results the construction of the Boole algebra of projectors, given in section
1.4. of [1].
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A REPRESENTATION OF p-CONVEX SET-VALUED MAPS
WITH VALUES IN R

DORIAN POPA

Abstract. For a p-convex set-valued map with compact values in R is
given a representation theorem as a sum of an additive function and a
compact interval.

1. Introduction

Let X be a real vector space. We denote by Py(X) the set of all nonempty
subsets of X. A subset D of X is said to be p-convex, where p is a real number in the
interval (0, 1), if for every x,y € D we have:

(1 —-p)x+py € D.
It is known (see [4]) that every p-convex and closed subset of a real topological

vector space is a convex set. A i—convex set is called midconvex set.

Let D be a p-convex and nonempty subset of X. A set-valued map F': D —
Po(R) is said to be p-convex if for every x,y € D we have:

(1=p)F(z) +pF(y) € F((1 = p)x +py).
A function f: D — R is said to be p-convez (concave) if for every z,y € D
we have:
f(A=plz+py) < ()1 -p)f(2)+pfy)
The following assertions, which are true for midconvex set-valued maps and
functions [3], holds for p-convex set-valued maps and functions.
A set valued map F : D — Py(R) is p-convex if and only if the graph of F,
defined by
Graph F = {(z,y) e X xR: y € F(z)},
is a p-convex subset of the vector space X x R.
A function f: D — R is p-convex if and only if the epigraph of f, defined by

Epif={(z,t) e X xR: f(x) <t},
is a p-convex subset of the vector space X x R.

Example 1.1. Let f,g: D — R be two functions such that f(z) < g(z) for every
x € D. Then the set valued map F' : D — Py(R) given by the relation

Fz) = [f(x), g()]

Received by the editors: 25.03.2003.
2000 Mathematics Subject Classification. 54C60, 39B05.
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for every z € D is p-convex if and only if f is p-convex and g is p-concave.
Proof. Let z,y € D. We have

(1-=p)F(z) +pF(y) = [(1 —=p)f(z) + pf(y), (1 —p)g(x) + pg(y)]
and

F((1 =p)x+py) = [f((1 —p)x+py),g((1 — p)x + py)].
The relation

(1-=p)F(z) +pF(y) € F((1 —p)z + py)

holds if and only if we have

(A =plz+py) < (1 —p)f(z)+pfy)
and

(1 =p)g(@) +pg(y) < g((1 = p)z + py),
hence f is p-convex and g is p-concave.
Remark 1.1. If FF : D — Py(R) is a p-convex set-valued map with closed values,

then it is convex valued.
Proof. Let x € D. We have

(1 =p)F(x) +pF(z) C F((1 - p)x +px) = F(x),

hence F'(x) is a p-convex subset of R and being closed it is a convex subset of R. O

The goal of this paper is to give a representation of p-convex set-valued maps
with compact values in R. For additive set-valued function this problem was studied
by H. Réadstrom [8]. Later K. Nikodem [5], gave a characterization of midconvex
set-valued maps with compact values in R. A representation of the solutions of a
generalization of Jensen equation for set-valued maps is given by the author in [7].
K. Nikodem, F. Papalini and S. Vercillo [6], established conditions under which every
midconvex set-valued function can be represented as a sum of an additive function and
a convex set-valued function. We prove that an analogous result holds for p-convex
set-valued maps with compact values in R.

2. Main results

For the characterization of p-convex set-valued maps with compact values in
Po(R) we need some lemmas.
Lemma 2.1. ([2]) Let p € (0,1). Denote by (Pp)n>1 the sequence of sets defined as

follows: Py ={0,p,1}; if P, = {O,pg), e ,pf"‘”}, where
0<pi) <o <p D <1,
is defined, put
Py =Py U{(L=p)pif ™ +pplf) : 1<k <27}

(0) (2n) _

where py”’ =0 and p, * = 1. Then the set
P= U P,
n>1

is dense in the interval [0, 1].
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Lemma 2.2. ([2]) Let X be a real linear space and D a p-convexr and nonempty
subset of X. Then D is q-convex for each q € P, where P is the set defined in Lemma
2.1.

Lemma 2.3. Let X be a real linear space, D a p-conver and nonempty subset of X.
If a set-valued map F : D — Py(Y) is p-convex then it is q-convex for every q € P,
where P is the set defined in Lemma 2.1.

Proof. From the p-convexity of F' it results that Graph F' is a p-convex subset of
X x R, and using Lemma 2.2 we obtain that Graph F is g-convex for every ¢ € P.
Then F is g-convex for every q € P. [J

Theorem 2.1. Let D be a linear subspace of the real linear space X and F : D —
Po(R) be a p-convex set-valued map with bounded values. Then there exists an additive
function a : D — R and two real numbers s,t, s < t, such that for every x € D

a(z) + s < F(z) < a(z) + t.

Proof. Following the method used in [5], for any € D put f(z) = inf F(z) and
g(z) =sup F(z). Then f: D — R is p-convex and g : D — R is p-concave. Indeed,
for every z,y € X we have:

f((L=p)x+py) = fF(1-p)z+py)
inf((1 —p)F(z) +pF(y))
— inf((1 - p)F(x) + inf(pF (y))
= (1=p)f(@)+pf(y),

hence f is a p-convex function and analogously g is a p-concave function. We have
also

IN

flz) < F(z) < g(x)

for every xz € D.

Let h: D — R, h(z) = g(x) — f(z) for every x € D. Obviously h is p-concave
and h(z) > 0 for every € D. We prove that h is a constant function.

The function —h is p-convex, hence the set Epi(—h) is p-convex and it follows
from Lemma 2.2 that Epi(—h) is g-convex for every ¢ € P. It follows that —h is a
g-convex function for ¢ € P, hence h is g-concave for q € P.

Suppose that h is nonconstant. Then there exist z,y € X, x # y, such that

h(z) < h(y). Using the density of P in [0, 1] it follows that there exists ¢t > 1, n € P,

such that:
t(h(x) = h(y)) + h(y) < 0.
From the g-concavity of h with ¢ € P we get:

h (1@3; (-t + (1 - 1) y)

%h(tm (1 ty)+ (1 - 1) h(y)

h(z)

Y

and foreward it follows
h(tz + (1 —t)y) < th(z) + (1 - t)h(y) = t(h(x) — h(y)) + h(y) <O,
contradiction with nonnegativity of the values of h.
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Hence there exists ¢ € R such that h(z) = ¢, for every = € X.
The function f = g — ¢ is p-concave and being p-convex satisfies the relation

f(A=plz+py) =1 -p)f(z)+pf(y). (1)

We prove that there exists an additive function @ : D — R and k& € R such
that f(z) = a(z) + k for every z € D.
For z =0 and y € D in (1) we have

flpy) = pf(y) + (1 —p)f(0). (2)
For y =0 and z € D in (1) we have
f(=p)z) = (1 —p)f(x) +pf(0). 3)

Let u,v € D. From (1), (2), (3) we have

(( D)
s (725) 4 ()
_ (()1

f(u+wv)

IS

p> +pf( )+pf<)
+ (1- (1=p)f(0) —pf(0)
= f(u ) f( ) — £(0).

The function a : D — R, a(z) = f(z) — f(0), € D, is additive. Indeed for
any =,y € X we have:

a(x+y) = flz+y) = f0) = f(x) + f(y) = £(0) = £(0) = a(z) + a(y).

Denoting s = f(0) we obtain f(z) = a(x) + s and g(x) = a(z) + ¢ for every
x €D, wheret=s+c. O
Corollary 2.1. Let D be a linear subspace of a real linear space X and F : D — Py(R)
be a p-convex set-valued map with compact values.

Then there exists an additive function a : D — R and a compact interval I
in R such that

Fx)=a(z)+1
for every x € D.

Proof. In view of Theorem 2.1, there exist an additive function ¢ : D — R and
s,t € R, s <t, such that

a(x) +s < F(z) <alz)+t

for every x € D. Taking account of the Remark 1.1, F'(z) is a convex subset of R,
hence

F(z) =la(z) + s,a(x) +t] = a(z) + T

for every xz € D, where I = [s,t]. O
Remark 2.1. If p is a rational number in the interval (0,1) then the converse of
Corollary 2.1 is true.
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Proof. Let a : D — R be an additive function, I a compact interval in R and
F(z) = a(z)+1 for every x € D. Taking into account that a is rationally homogeneous
[1] it follows that

F((1-p)z+py) = a((l-p)z+py)
1 —p)a(x) + pa(y) + (1 —p)I +pI
1—p)

(1—
(1 =p)F(z) +pF(y)
for every z,y € D. [

The results proved in Theorem 2.1 and Corollary 2.1 are extensions of the
results obtained in [5] for midconvex-valued maps.
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ON A CLASS OF PARAMETRIC PARTIAL LINEAR COMPLEX
VECTOR FUNCTIONAL EQUATIONS

ICE B. RISTESKI, KOSTADIN G. TRENCEVSKI, AND VALERY C. COVACHEV

Abstract. In this paper one class of parametric complex vector partial
linear functional equations is solved.

0. Introduction

First we introduce the following notations. Let V, V' be finite dimen-
sional complex vector spaces and Z;, ¢ € N, be vectors in V. We may assume
that Z; = (z;1(t), ..., 2in(t))T, where z;;(t) (1 < j < n) are complex functions and
O = (0,...,0)T is the zero-vector in V or V. We also denote by V° the subspace
of all real vectors in V (thus V = V° 4 iV9), and by £(V°, V') the space of linear
mappings V* — V. Let (m,n) be the greatest common divisor of m and n.

In the present paper our object of investigation will be the following functional

equation
m+n m—1

n—1
(S S ) 0w
1=1 j=0 =0

(Zm+n+i =7Z;,, ac€ C),
where C is the field of complex numbers and f; : V2 — V' (1 < i < m +n) are
unknown complex vector functions.

The above equation for a = 1 was solved in [1] under the assumption that
the functions and variables are real. But the argument given there is valid only if the
greatest common divisor of m and n is 1. Also, one special general case is solved in
[2]. The theorems of [2] concerning the cases m # n should be modified to give the
general continuous solutions.

1. Main Results

Now we will give the following results.
Theorem 1. Ifa =1, (m,n) = 1 and m +n > 2, then the general continuous
solution of the functional equation (1) is

£(U, V) = Fi(U + V)Re U + Fy(U + V)Im U + G;(U + V) (2)

(1<i<m+n),

Received by the editors: 18.09.2002.
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so that

n+m

> Gi(U) = —m[Fi(U)Re U + F,(U)Im U],

where Fy; : V — LOVO,V') (i=1,2)and G; : V — V' (1 <i <m+n—1) are arbitrary
continuous complex vector functions.
Proof. We accept the convention to reduce the indices mod(m + n). If we set

m—+n

S = Zz
=1

mS
Ti=2i+Zipn+- + Zipm—1—

1< < -1
T2 (i<igmtn-1, (9

the vectors T; (1 < i < m+mn—1) and S are independent since (m,n) = 1. The
equation (1) becomes

it mS nS
Z i (Ti +—, - Ti) (4)
Pl m+n m-+mn
S S
+fmin(~T1=To =+ = Tonpno1t — ) LT+ Tyt +Tpnio1) = O.
m-+n m-+mn
We introduce the new notations
mS nS
. — = q; 1< <
fl<U+ n man U) 9:(U,S) (1<i<m+n),
ie.,
nU —mV
; =g —— 1<i< .
FUNV) =gi( =05 U V) (1 <i<metn) (5)
The equation (4) is transformed into
m+n—1
> 6i(Ti,8) + gman(-T1 = To =+ = Tpyn1, S) = O. (6)
i=1
By the substitution T1 =Ty =---=T,_1 =T, 1 = =Tp1p-1 =0,
we obtain
9r(Tr,S) = —gmin(—=Tr,S) — H.(S) (1<r<m+n-—1). (7)
Putting (7) into (6), we get
m4+n—1 m+n—1
Gmin(-T1=To = =Tpin 1, 8) = D> gmia(-Ti,8)+ > Hi(S). (8)
i=1 i=1
We conclude that the function
1 m+n—1
(U,8) = gm+a(U,S) + m+n—2 ; i(8) ()
satisfies the functional equation
m+n—1
K(Zi+ 22+ +Zpin-, S) = Z K(Z;,8). (10)

i=1
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Using the continuity of K, from (10) we deduce that for fixed S
K(U,S) = c1ReU + ¢Im U,
where Re U resp. Im U denotes the real resp. imaginary part of U. The mappings
c1,co € L(V°,V') may depend upon S. Hence,
K(U,V) = Fi(V)Re U + F,(V)Im U, (11)
where F; : V — £(V°, V') are continuous functions.

From (9), (11) and (7) we obtain

1
Imin(U, V) = Fl(V)ReU-i-fz(V)ImU—m ; Hy(V),
9-(U,V) = F,(V)ReU + F,(V)ImU — H,(V) (12)
1 m+n—1
_ H;(V 1<r< —1).
2 ; (V) I<r<m+n-1)

From (5) and (12) we deduce that
nU —mV

£:(U.V) = Fy(U + V)Re (=2 M)

)+ F2(U + V)i -
m+n—1
> H(U+V) (1<r<m+tn-1),
=1

nU—mV)

1

-H.(U+V _—
(U+ )+m+n_2
nU—mV)

Fonin(U +V) = F1(U+V)Re( +F2(U+V)Im(

m+mn
m+n—1

> H(U+V). (13)

i=1

1
Cm4n-—2
By denoting
m(U +V)

m(U—&—V)}
m-+n

—F1(U+V)Re[ e

} — F(U + V)Im [

1 m~+n—1
5 Y H(U+V)-H.(U+V)=G,(U+V) (1<r<m+n-1),

m-+n — 4
=1

(U+V)

—F,(U+ V)Re [m M]

e }FQ(U+V)Im {mern

m+n—1
> Hi{(U+V)=Gm(U+V),

i=1

1
m-+n— 2

from (13) we get (2).
The converse can be established by a straightforward verification. [
Example 1. The general continuous solution of the functional equation

fi(Zy + 2o, Z3)+ fo(Zo+Zs, Zh) + f3(Zs +Z1, Z5) = O

is given by

=

=

<
Il

FL(U+V)ReU+ F,(U+V)ImU+ G1(U+ V),
85



ICE B. RISTESKI, KOSTADIN G. TRENCEVSKI, AND VALERY C. COVACHEV

f3(U, V) = =F1(U+V)Re (U+2V)—F5(U+V)Im (U+2V) -G, (U+V)-G2(U+V),
where F, Fy : V — L(V°, V') and G1,G5 : V — V' are arbitrary continuous complex

vector functions.
Corollary. The general continuous solution of the vector functional equation

m—+n

Y 9iZit -t Lo, o+ Lot o+ L) = O
i=1

if (myn) =1 and m+n > 2 is given by
9:(U, V) =F(V)ReU+ F(V)ImU+ G;(V) (1<i<m+n),

m—+n

> Gi(V) = —m[Fi(V)ReV + Fy(V)Im V],

where F1, Fy : V — LOOV), G; :V = V' (1 <i < m+n—1) are arbitrary

continuous complex vector functions.
Proof. Put f;(U, V) =¢,(U,U+ V) in Theorem 1. O

Theorem 2. The general continuous solution of the complex vector functional equa-
tion (1) if a = 1, (myn) =d > 1, m/d = p, n/d = q and p+ q > 2 is given

by
fiar;(U, V) = F1;(U+ V)ReU 4 Fy;(U+ V)Im U + G;;(U + V)
0<i<p+q-1, 1<j<d),
p+q—1
> Gy(U) = H;(U) - p[Fy;(U)Re U + F;(U)Im U] (1< j <d),
=0
d
Y H,;(U) =0,
j=1
where

Fij:V—LOV) (i=1,2; 1<j<d),
Hj: V-V (1<j<d-1),
Gij: V=V (0<i<p+q-21<j<d)
are arbitrary continuous complex vector functions.
Proof. We set
fi(U, V) =g;(U,U+V) (1<i<m+n)
and we obtain

m+n

Z 9i(Zi+Zig1+ -+ Zipm—1, Ln+Zo+ -+ Zpyn) = 0.
i=1

Let us introduce the new vectors
Vi=Zi+Zip1+ - +Zizg1 (1<i<m+n) sothat Vi,in=V;
and
W =Zi+Zs+ -+ Loy
They are not independent because

p+q—1
Z Vi =W (1<j<4d).
1=0
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The vectors V; (1 < i < m+n—d) and W are independent because the
rank of the matrix of linear forms determining them is m + n — d + 1, which is easy
to verify. In the sequel we will use all vectors (17) and (18) but we must have always
in mind that (19) holds. The equation (16) becomes

m+n
Z 9i(Vi+Viga+ -+ Vigp_1a, W)=0.
i=1
It can be written in the following form
d ptq—-1

Z Z Gid+i(Via+sj + Viignarj + -+ Vigp-1as;, W)= 0.
j=1 i=0

If we set here
Vid+j:0 (OSZSPJFQ*Qa j:1727"'7T717T+15""d)5
V(p+q—1)d+j:W (j:1,2,...,7’*1,T+17...,d)7

we get
p+q—1
H,.(W
Z Gid+r(Vider + Vigvyasr + -+ Viigp—1)arr, W) — pg_q) =0 (1<r<d
i=0
and

d
> H.(W)=0.

By using the corollary of Theorem 1 we get
Gid++(U, V) = Fl,(V)Re U+ Fo,.(V)ImU + G;(V) (0<i<p+q—1; 1<r<d),

p+g-1
> Gi(V) = Ho(V) = p[F1,(V)Re V + Fp(V)Im V] (1 <7 < d),
=0

where
Fi:V—=L0%V) (i=1,2,1<r<d),
Gir: V=V (0<i<p+q—2;1<r<d),
H.:V—=V (1<r<d-1)

are arbitrary continuous complex vector functions. By application of (15) these for-
mulas give (14).

It is easy to prove that the functions f; : V2 — V' (1 < i < m + n) defined
by (15) satisfy the complex vector functional equations (1). O
Example 2. The general continuous solution of the functional equation

f1(Zy + Zo + Z3 + Zy, Zs + Zg) + f2(Zo + 23 + Zy + Z5, Zo + Z1)
+f3(Zs 4+ Zy+ Zs + Zg, Zy+ Zo) + fo(Zy + Zs + Z + Z1, Zy + Zs3)
+f5(Zs +Ze + Zy + Zo, Zg+ Zs) + fo(Ze +Zy +Zo+ 23, Zy+Z5) = O
is given by
f1(U, V) =F1(U+V)ReU + F5; (U + V)ImU + G (U 4+ V),
f2(U, V) = Fi5(U+ V)Re U + Fpo (U + V)Im U + G2 (U + V),
f3(U, V) = F11(U+V)ReU + Fo (U+ V)ImU + G (U + V),
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f1(U, V) = F15(U + V)Re U + Fp(U + V)Im U 4 G12(U + V),
f5(U, V) = —F1(U+ V)Re (U +2V) — F5;(U + V)Im (U + 2V)
+H(U+V)-Gnu(U+V)-G1(U+V),
f6(U, V) = —F15(U+ V)Re (U +2V) — Fpo(U + V)Im (U + 2V)
—Hi(U+V)-Gn(U+V)-Gi2(U+V),
where
Fij:V—LO"V) (i=1,2),
Gij: V-V (i=0,1; j=1,2),
H V=YV
are arbitrary continuous complex vector functions.
Theorem 3. The most general solution of (1) if a =1 and m =n is

£i(U, V) (1<i<m) are arbitrary,
fm-H(U’V):Hz(U+V)_fz(VaU) (1 Slgm)v (20)

iHi(U) -0,
i=1

where H; : V — V' (1 <i < m —1) are arbitrary functions.
Proof. Put f;(U,V)=G;(U,U+V). O
Ezxample 3. The most general solution of the equation
fi(Zy + Zo, Zs + Zs) + fo(Zo + Zs, Zy+ Zn)
+f3(Zs + Za, Zn + Z2) + f4(Za +Z1, L2+ Z3) = O
is
f1(U, V), f2(U,V) are arbitrary,
f3(U7V) = Hl(U +V) - fl(V7U)a
f4(U, V)= -H;(U+V) - f»2(V,U),
where Hy : V — V' is an arbitrary function.

Theorem 4. If a™™ # 1 and m # n, the general solution of the functional equation
(1) is given by

fi(U,V)=F,(U+a"V) - Fi1,(a"U+V)+ A4, (1<i<m+n), (21)
where F; :V — V' (1 <i < m+n) are arbitrary complex vector functions, and A;
m+n

are arbitrary constant complex vectors such that >, A; = O.
i=1
Proof. If we introduce new functions g; by the equation

fi(U,V)=¢,(U+a™V, a"U+V) (1<i<m+n), (22)

then equation (1) becomes

m+n m—1 n—1
—1—j —1—j

E gi( E a™ iy + E A"t i g
=1 j=0 =0

m—1 n—1

fn—1—j —1—j _

E a™ T Ly + E a” ]Zm+i+j) =0,

=0 =0
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ie.,
m4+n m4+n—1 m+n—1

Zgi( Z ajzm+i—1—j, Z ajZi_l_]):O, (23)
=1 j=0 =0

Since a™*™ # 1, this transformation is possible. Also we may introduce new

vectors V; by
m4+n—1

V,; = Z ajZm.H_l_j (1 <i< m—!—n)
§=0

but the equation (23) takes the form

m—+n
> 6i(Vi, Vi) = 0. (24)
i=0
By putting V; =0 (j =1,2,...,i—1,i+1,...,i+n—1,i+n+1,...,m+n)
we obtain

9i(Vi, Vien) = F;(Vy) + Gi(Vizn) (1 <i<m+n). (25)
On the basis of the expression (25), the equation (24) becomes
m+n
D IFi(Vi) +Gi(Vin)] = O,
i=1
or

m-+n
Z [F5(Vi) + Gmyi(Vi)] = O. (26)

i=1
From (26) it follows that

Giym(Vi) = —F;(Vy) +A; (1 <i<m+n), (27)

where A; are arbitrary constant complex vectors with the property

m—+n

Z A; = O.
=1

On the basis of the expression (27), the equality (25) has the form
9:(U, V) = Fi(U) + Fin(V) + A (1 <i<m+n), (28)

m—+n

where >° A, =O.
=1

On the basis of the equalities (28) and (22), we obtain (21). O
Ezample 4. If a® # 1, the general solution of the functional equation

f1(a®Zy + aZs + Zs, Zy) + f2(a°Zo + aZs + Zs, Z)
+f3(a*Zs + aZy + Z1, Zo) + f1(a*Zys + aZy + Zo, Z3) = O

is given by

(U, V) =F(U+d®*V) - F,(aU+ V) + Ay,
£2(U, V) = F,(U+a®*V) — F3(aU + V) + Ay,
f3(U, V) = F3(U+a*V) — Fy(aU + V) + 43,
+a*V) = F(aU+V) — A — Ay — A3,

=
a
=
i
=
=)
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where F; : V — V' (i = 1,2, 3,4) are arbitrary complex vector functions, and A; (i =
1,2, 3) are arbitrary constant complex vectors.
Theorem 5. If a™T # 1 and m = n, the most general solution of the functional
equation (1) is

firm(U, V) = =f;(V,U)+ 4; (1<i<m), (29)
where f; - V? — V' (1 <i<m) and A; (1 <i < m) are arbitrary complex constant

m
vectors such that >, A; = O.
i=1
Proof. By the transformations which were exhibited in the proof of the previous
theorem we may bring the equation (1) to the form (24).
For V; =0 (j=1,2,...,i—1i+1,....i+m—1,i+m+1,...,2m) the
equation (24) becomes
9i(Vi, Vigm) + gixm(Vigm, Vi) = A; (1 <i <m), (30)

where A; (1 <4 < m) are arbitrary complex constant vectors. By substituting (30)
into (1), we obtain that it must hold

On the basis of this equality and (30), we obtain (29). O
Ezxample 5. If a* # 1, the most general solution of the functional equation
f1(aZy + Za, aZs + Zy) + f2(aZo + Zs, aZy + 7))

+f3((1Z3 + 2y, aZq + ZQ) + f4(aZ4 + 71, aZo + Z3) =0
is given by
fi(U, V) (i=1,2) are arbitrary,
f3(U, V) =—f1(U, V) + 4,
f4(U, V) = —f1(U, V) — 4,
where A is an arbitrary complex constant vector.
If @™t = 1, then the functional equation (1) may be transformed in the
following way.
We introduce new vectors by the equality

V,=a"'Z;, e, Z;,=d7 'V, (1<i<m+n).

Then the equation (1) becomes

m—+n m—1

n—1
Z f; (am72+2 Z Vi, g2+ Z Vm+i+_’i) = 0. (31)
i=1 =0 j=0

Now, if we put
9:(U, V) = f;(a™*H'U, a™ " 2TV) (1 <i<m+n),

ie.,
(U, V) = g;(a" ™70, a™™27V) (1 <i<m+n), (32)
the functional equation (31) takes the form

m—+n

m—1 n—1
> gi(z Vieis D Vm+i+j) =0. (33)
=1 j=0 =0
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The equation (33) is just the equation (1) for a = 1.
Theorem 6. If a™*t" =1, (m,n) =1 and m +n > 2, then the general continuous
solution of the functional equation (1) is given by

£(U, V) = F(a"?7U + a™ ™27 V)Re (a" T2 7'U) (34)

+F2(an+2—iU + &m+n+2—iv)1m (a’n—‘rQ—iU) + Gi(an+2—iU + am+n+2—iv)
(1<i<m+n), so that

m—+n

> Gi(U) = —m[Fi(U)Re U + F,(U)Im U], (35)

where F; : V — LOVO, V) (i=1,2) and G; : V — V' (1 <i <m+n—1) are arbitrary
continuous complex vector functions.

Proof. The proof immediately follows from (33), (32) and Theorem 1. [J

Theorem 7. If a™*™ =1, (m,n) =d > 1, m/d=p, n/d =q and p+ q > 2, then
the general continuous solution of the functional equation (1) is

fiari (U, V) = Fi;(@" 27U 4 a™ 27 V)Re ("7 7'0) (36)
+F2j (an+27iU + am+n+27iV)Im (an+27iU) + Gij(an+27iU + am+n+2,iv)
0<i<p+q—1; 1<j<d)

so that

p+q—1
3" Gi;(U) = Hj(U) = p[F1;(U)Re U + F;(U)Im U] (1<j<d),  (37)
1=0

> H;(U) =0, (38)

where
Fij:V—LOV) (i=1,2, 1<j<d),
Gij: V=V (0<i<p+q-—2 1<j<d),

Hj:V—>V/ (1<j<d-1)
are arbitrary continuous complex vector functions.
Proof. On the basis of the expressions (33), (32) and Theorem 2 we derive the proof
of the theorem. [J
Theorem 8. If a™ "™ = 1 and m = n, then the most general solution of the functional
equation (1) is given by

£ (U, V) (1<i<m) are arbitrary,
(U, V) = Hi(a"t?7U + o™t 270V) (39)
= [i(@" 0, oMTTY) . (1< <m),

m
where H; : V — V' are arbitrary complex vector functions such that Y H;(U) = O.
i=1

Proof. The proof immediately follows from (33), (32) and Theorem 3. 0
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2. A Special Functional Equation

Now, we will solve the following functional equation

m—+n

Z f(z a™ e JZH—Jv Zan - z+m+j> =0, (40)

which is obtained as a special case of the equation (1) for f; = f (1 <i < m+ n).
Theorem 9. If a™™™ # 1, then the most general solution of the complex vector
functional equation (40) is given by

- B F(U+a™V)-F(@U+V) (m # n),
fU.V) = G(U+amV, amU+V)=GaU+V, U+a™V)  (m=n),

where F:V — V', G :V? — V' are arbitrary complex vector functions.
Proof. We set

f(U,V)=¢g(U+a™V, a"U+V) (42)
into (40) and deduce that
m+n m—+1
Sy (Z A"V IZ g+ Z L
1=1 7=0
m—1 n—1
am e jZH—j + Zan - ZZ-‘,—’HH—j) =0,
7=0 7=0
ie.,
m+n m+n—1 ) m+n—1 )
S o(( Y @Zinas Y @'Zias)=o0. (43)
i=1 §=0 §=0

This transformation of the equation (40) is possible since a™*" # 1.
Now we introduce new vectors
m+n+1
V, = Z ajZi,l,j (1 <i1<m+ n) (44)
j=0
The linear forms (44) are independent since their determinant is (@™ — 1)™+7~1,
Making use of these notations, the equation (43) becomes

m—+n
> 9(Vi, Vi) = 0. (45)
i=1
If m 7& n, we set V1 = V2 = . = Vm_1 = Vm+1 = Vm+2 = - =
Viin—1 = O and we get
9(U, V) = F(U) + F1(V). (46)
We substitute g from (46) into (45) and obtain
m—+n
Y IF(Vi) + Fi(Vi)] =0,
i=1
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which implies that F;(V;) = —F(V;). Hence,
9(U, V) = F(U) - F(V). (47)
If m = n, the equation (43) yields
9(U,V)+4(V,U) =0,
ie.,
g(U,V)=G(U,V)-G(V,U). (48)
From (42), (47) and (48) we conclude that (41) holds. It is easy to verify that
(41) satisfies (40). O
Example 6. If a® # 1, then the most general solution of the functional equation
f(CLZ1 + Zg, Zg) + f(aZ2 + Zg, Zl) + f(ClZ3 + Zl, Z2) =0
is given by
f(U,V)=F(U+d*V) - FaU+V),
where F': V — V' is an arbitrary complex vector function.
Example 7. If a* # 1, the most general solution of the functional equation

faZy + Za, aZs + Zy) + f(aZs + Z3, aZy + Zy)
+f(aZs + Zy, aZy + Zo) + f(aZy+Z, aZo +Z3) = O
is given by
f(U, V) =G(U+d?V, a?U+V) - Ga*U+V, U+adV),

where G : V2 — V' is an arbitrary complex vector function.
Theorem 10. If a™™ =1, (m,n) =1 and m +n > 2, then the general continuous
solution of the functional equation (40) is given by

m4+n
f(U,V) = Y [Fi(a'U + 0" V)Re (a'U) + Fo(a'U + a7 V)Im (a'U)] (49
=1
m—+n—1
+ Z (a'U +a""™V) — G;(a'U + a™V)]

—m[F (U + amV)Re (U4 a™V)+ F(U+a"V)Im (U + a"V)],
where F; : V — LOOV) (i=1,2) and G; : V — V' (1 <i <m+n—1) are arbitrary
complex vector functions.
Proof. Let us put Z; = a*~'T; (1 <i<m+n). The equation (40) becomes

m—+n

Z f( m—+i—2 Z Tz+j gmtn— Q—HZTerz j) - 0. (50)

Now we make the substltutlons
fla™T72U, am+"_2+iV) = (U, V) (1<i<m+n),
ie.,
f(U, V) = fi(a" U, a™™T27V) (1 <i<m+n), (51)

and we obtain
m-+n

> fz(Z Tt Z Tsisj) = O. (52)
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The equation (52) is just the equation (1) for a = 1, and its solution is
determined by Theorem 1.
By an application of Theorem 1, and by (51) we get
fi(U, V) = Pi(a"T*7"U 4+ o™ "2 7"V)Re (a"*7'U) (53)
+P2(a"+27iU + am+n+27iv)1m (an+27iU) 4 Qi(an+27iU + am+n+27iv)
(1 <i<m+n), so that

m—+n

> Qi(U) = —m[P(U)Re U + P,(U)Im U],

where P;: V — LV, V') (i=1,2) and Q; : V — V' (1 <i < m + n) are continuous
complex vector functions. By addition of all equations (53) and putting
Pl(U) = (m + n)Fl(U), PQ(U) = (m + TL)}‘_‘Q(IJ)7
QZ(U) = (m+n)Gn+2,1(U) (i: 1,2,...,m—|—n)
we obtain (49). O
Example 8. If a® = 1, the general continuous solution of the functional equation
flaZy + Zy, Z3) + f(aZa + Z3, Z1) + f(aZs + Zy, Zy) = O
is given by
f(U, V) = Fi(aU + V)Re (aU) + F5(aU + V)Im (aU)
+F1(a*U + V)Re (a®U) + F»(a®U + V)Im (a*U)
—F(U+a®V)Re (U + 2a*V) — F5(U + a®V)Im (U + 2a2V)
+G1(aU + V) — G1(U + ¢*V) + G2(a®U +aV) — G2 (U + a*V),
where F; : V — LV, V') (i =1,2) and G; : V — V' (i = 1,2) are arbitrary complex
vector functions.
Theorem 11. Ifa™*™ =1, (m,n) =d > 1, m/d=p, n/d=q and p+ q > 2, then
the general continuous solution of the functional equation (40) is given by

d—2 p+q-—1
FOV)= > Y [Frje(@ U +a " V)Re (a"7U) (54)
j=—1 i=0

+Fy j42(a" U 4 a7 IV Im (0" 4IU) + G o (a"TIU 4 0TIV,
so that

> Gi(U) = H;(U) - p[Fi;(U)Re (U) + Fo; (U)Im (U)] (1 <j <d)
i=0
and
d
> H;(U) =0,
j=1
where

Fij :V—LO"V) (i=1,2; 1<j<d),
Gij: V=V (0<i<p+q—2 1<j<d),
H;: V-V (1<j<d-1)

are arbitrary continuous complex vector functions.

94



ON A CLASS OF PARAMETRIC PARTIAL LINEAR COMPLEX VECTOR FUNCTIONAL EQUATIONS

Proof. We can start from equation (50). From (49) and (50) on the basis of Theorem
2 we get,

U, V) = Pyj(a" 77120 4 o2 47IV)Re (a0 55
I j

+Py; (" dmITIY 4 gmAntT2oid=iy ) I (o IT20)
+Qij(anfid7j+2U+an+m+27id7jv) (O S i Sp‘i’q* 1; 1 S] S d),

p+q—1
Z Qij(U) = K;(U) — p[P1;(U)Re (U) + Po;(U)Im (U)] (1 <j<d), (56)

d
> K;(U) = (57)

j=1
where
Py:V—LOVV) (i=1,2 1<j<d),
Qij: V-V (0<i<p+q-2 1<j<d),
K;: V-V (1<j<d-1)
are continuous functions.

We take into account (56) and (57) and we add together all equations (55).
In this way we obtain (55) with

Pj(U) = (m+n)F1;(U), Py;(U) = (m+n)F;(U),
Qij(U) = (m +n)Gi;(U), K;(U) = (m+n)H;(U)
(0<i<p+q—2 1<j<d).O

Example 9. If a® = 1, then the general continuous solution of the functional
equation

f(aPZy + a*Zy + aZs + Zy, aZs + Zg) + f(a®Zy + a*Zs + aZy + Zs, aZs + Z,)
+f(a®Zs + a*Zy + aZs + L, aZy + Zo) + f(a°Zy + a*Zs + aZe + Z1, aZo + Zs3)
+f(a®Zs+ a’Ze + aZy + Ly, aZs+Zy) + f(a®Zg+ a*Zy + aZo + Zs3, aZy+Z5) = O
is given by
f(U, V) = F11(aU + a®V)Re (aU) + F1(aU + a®V)Im (aU)
+F11(a*U + aV)Re (a*U) + Fp1 (a®*U + aV)Im (a*U)
—F11(a®U + a*V)Re (a®U + 2a*V) — Fy1(a°U + a®*V)Im (a°U + 2a°V)
+F12(U 4 a*V)Re (U) + Fou(U 4 a*V)Im (U)

+F12(a*U 4 V)Re (a*U) + Fy(a*U + V)Im (a*U)
) = Faa(a
)

++

—F15(a*U + a®*V)Re (a*U + 2a*V) — F3(a*U + a*V)Im (a*U + 24*V)
+Go1(aU + a®V) — Go1(a®U + a®*V) + Gpa(aU + a*V) — Goa(a*U + a®V)
+G11(a*U + aV) — G11(a®U + V) + G12(a*U + V) — G12(a*U + a*V)
+H,(a’U 4 a*V) — Hy(a*U + a*V),
where Fy; - V — LOV°V) (i,j =1,2); Gy :V =V (i=0,1; j =1,2) and

Hy : V — V' are arbitrary continuous complex vector functions.
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Theorem 12. If a™™™ = 1 and m = n, the most general solution of the functional
equation (40) is given by

fU,V) = Y [R(d'U, a"™'V) = F(a'U, a"7'V) + Hi(a""'V + a'U))],
i=1
Y H;(U) =0, (58)
i=1

where F; : V> — V' (1 <i<m)and H; : V — V' (1 <i < m—1) are arbitrary
complez vector functions.

Proof. We start again from the equation (50). According to Theorem 3 and (49) we
have

(U, V) = P(a™ 420, @™ +27V) (1< < m),

f(U, V) =Qi(a™ U + ™" 27V — Py(a™ 27V, o™ 27U) (1 <i<m),

Z Qi(U) = 0. (59)

By addition we get (58) with
Pi (U, V) = QmFm_i+2 (U, V), Qz (U) = 2mHm_i+2 (U) O
Example 10. If a* = 1, the most general solution of the functional equation

flaZy + Zo, aZs + Z4) + f(aZo + Z3, aZy + Zl)

+f(aZs+ Zy, aZy + Zs) + f(aZy+ 21, aZy+ Z3) = O
is given by
f(U,V) = F(aU, a*V) — F1(aV, a*U) 4 F»(a*U, V)

—F(a*V, U) + H (a®*U +aV) — H;(U + V),

where F; : V2 — V' (i = 1,2) and H; : V — V' are arbitrary complex vector functions.
Now, as special cases we obtain the results given in [3,4,5].
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ALGORITHMS FOR APPROXIMATION WITH LOCALLY
SUPPORTED RATIONAL SPLINE PREWAVELETS ON THE
SPHERE

DANIELA ROSCA

Abstract. In [5], some locally supported rational spline prewavelets on
the sphere were constructed. We present here another two properties of
them and some algorithms for decomposition, reconstruction and approxi-
mation, together with some numerical tests. A comparison with the spher-
ical harmonics approach shows the advantage of the small support of our
prewavelets.

1. Introduction

Consider the unit sphere S? of R*, S? = {x € R?* : ||x|| = 1} . In [5] the fol-
lowing construction were made.

We considered the polyhedron IT having the bound §2, the vertices situated on
S? and triangular faces such that no face contains the origin O and O is situated inside
the polyhedron. The set of its faces was denoted 7° = {T,79,...,T0}. Then we
projected each triangle of 79 onto S2, getting a triangulation of the sphere, denoted
U ={UP,0?,...,U8} , where UY = p (T?) and p : @ —» S?, is the radial projection

x Y z
p(z,y,2) = <\/;1:2 o NZEST: — NGRS +z2> , for all (z,y,2) € Q.
We divided each triangle T} into four triangles, taking the mid-points of the edges.
Thus, we obtained a refined triangulation of 2, denoted 7% = {T},T%,...,T¢,}.
Continuing the refinement process we built the triangulations 77 for arbitrary level
j € N. The projection 47 = p (77) is a triangulation of S%. We denoted by V7 the set
of all vertices of plane triangles in 7.

Let M M;M;, be a triangle of 77, with the vertices of coordinates (z1,y1,21),
(%i,Yi,2i) s (T, Yk, zx) Tespectively. Let MMM, be its radial projection onto S2.
Then we defined the functions <p§wl, associated to the vertex My, as

Received by the editors: 21.03.2003.
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©hr, (M5 712,713) =
-1
0
m o | |1
T1 Y1 21
— Ti Yi Zi|-|, . ) o
- T Yk 2 T; Yi Zi
Ty Yr 2 1
0, on the triangles of &’ that do not contain Mj.

, on each triangle M{M]M; of U7,

It is immediately that the function 90%41 is continuous on S? and the set
{cp{;, v € Vj} is a basis of the space Y/ = span {go{,, vE Vj} . We denoted by VJ the
set of the j-level neighbors of the vertex v.

Due to the refinement relation

ol =it 4 Z eIt weVi jeN,
wGVH'1

we deduce that Y/ C V!, Then we defined an inner product on S? based on the
coarsest triangulation 770 :

(F,G), = (Fop,Gop)g
2d2.
= ) F(n)G (n) zdw (n),
Tego/p(T) lazm + brns + crns|®

where 7 = (91,72,73), the numbers ar, by, cr,dr are the coefficients of z,y, z and 1
of the polynomial function

z y =z 1
1 Y1 2 1
T2 Y2 22 1
z3 ys 23 1

and the triangle T has the vertices M; (z;,y;,2i), ¢ = 1,2,3. The inner product (-,-),
may be interpreted as a “multi-weighted” inner product, with the weights
2d2
T (M, m2,73) = . 3 (1)
larm + brnz + crns|

‘ Afterwards and we considered the space YW/ as the orthogonal complement

of VI into Vit! .
Vit = vigHwi. (2)
The spaces W/ were called the wavelet spaces. We determined a basis in each W7,

consisting of prewavelets of small supports. This basis consists in the following func-
tions:

Wl () = 0%, W () + 0%, (1), (3)
with
0£17u(n) = Sal@éjJ Z SwSOJJrl
uev]+1
hou () = sl M+ Y el (),
uEVaJrjl
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: « ” : H — 3 = 3
where u is a “new” vertex, mid-point of the edge [a1a2], 84y = —357, Say = —35;»
= ﬁ +6(i,51), te; = 50— +0 (i, s2) . Here s, and s, are the number of neighbors

28589 | )
of the vertices ay resp. as, 0 (i,s) = \//\2—1"('{\7/\), A= _5'*'2*/271. By bg, b1, .

Sp;

i

ey b51,1 we
denoted the ordered neighbors of a1, starting with by = w and by co, ¢1,...,¢s,—1 We
denoted the ordered neighbors of as, starting with ¢g = u.

The set {3, u € VIH1\VJ} was proved to be a stable basis of L* (S?) (see
[5], Section 3).

In the next section we present the algorithms of decomposition and recon-
struction.

2. Decomposition and reconstruction

Consider {¢]}, ., basis of V/ and {¢Z}UGV1+1\Vj basis of WJ. With a

fixed ordering of the vertices in V7 and in V/*!\V/, we can regard these bases as row
vectors:

¢ = (‘P%)UEV]- and ¥/ = (wi)uevj+1\vj .
Then any elements fi = > filgpl and ¢/ = Y J9pd in V7 resp. W can be
vevi ueviti\vi
written as
fi =& resp. ¢’ =Wigl, (4)

where f/ is the column vector (fJ and g7 is the column vector (g7)

U)vGVj wevitiwi

Since V/~'and W/~ lare subspaces of V7, there exist two unique matrices P’
and @7 such that

I =@®IPi and V! =IQI. (5)

Take now f/ € VJ. Equation (2) implies that there exist unique f7—' € Vi~ and
¢’~!' € Wi—! such that

fP=r"1+g" (6)
Substituting (4) into (6) yields the following equation:
QIS = I-1gi1 q,jflgjfl

and then, using (5) and the fact that ®/ is a basis for V7, we find
g .
(P] Qj) < gi—1 > =1 (7)

The block matrix (P7 @7) is called the two-scaled matriz. It is nonsingular and it
must be inverted in order to compute the coefficient vectors f7=! and g/~! from
a given coefficient vector f/. Repeating the above calculations for the levels j =
m,m — 1,...,1, we obtain the decomposition algorithm.

Algorithm D
101



DANIELA ROSCA

m € N highest level

Input : £ = (fJ") ey the values of a given function f™ € V™
at the nodes v € V™.
(1) For each level j = m,m —1,...,1, solve the linear system (7)
and get £/~ and g/~!.
Output : g (j=0,1,...,m—1) wavelet coefficients,

f0 coefficient of approximation.

Thus, the function f™ € V™ was decomposed into
fr=r+g"+g' +... 49",
meaning an approximation f0 € V° and a sum of details (wavelets) g € W, i =
0,1,...,m—1.
Let us come back to the system (7) .The entries of P? and @7 are evaluations
of the bases ®’ resp. ¥/. Their expressions are

' ' 1 ifw=w, ' '
Phey =9l M (w)=9 3 fweV], , resp. ¢, =" (w).
0 otherwise

The system (7) can be written

(7 &) ()= (2) ®

Using the Schur complement matrix Qé = Qé - sz {, we reduce the system (8) to

(o &) (e )-(8 r)
0 Q) g )"\ & -Pit] )’
This means that we have to solve the system
Qg =1 - Pt}
for computing g/~! and then calculate f’~! from the substitution
O i
Besides the lower dimension, the system (8) has also the advantage that is better

conditioned than the system (7).
The next step is to write the reconstruction algorithm.
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Algorithm R

Input : m € N highest level
g/,j=0,1,...,m—1 coefficient vectors of a given function g/ € W/
£0 coefficient vector of a given function f° € V°
For each 1eve1j:1,2,...,m '
(1) (a) compute f{ from f] = £/~! + Qg’~",

(b) compute £ from f] = PJf/ + Q}g/~*
Output : ™
The locality of the supports of our bases has the advantage that the matrices
ng and @é are sparse. In ng , on each column we have two nonzero entries and in Qvg,
on each column and row we have n = max{11, {2t (v) — 1,v € V'}} nonzero entries.
Here t (v) denotes the number of neighbors of the vertex v.

3. Thresholding

A typically application of wavelets is data compression using thresholding.
Numerical examples will be given in Section 5.

A given function f™ € V™ is first decomposed into its components
%%, ...,g™ ", using the algorithm D, with Schur complement. The wavelet
components g/ € W/ are replaced by the functions g/ € W7, by modifying their
coefficients according to a particular strategy (for more details see [7]). Here we use
the strategy called hard thresholding, which means that for a threshold thr > 0, we
set, for u € VIHI\V7,

0, otherwise.

The ratio of number of subsequent nonzero coefficients to the total number

m—1
> |{u e VItW\VI . gi # 0}|
=0

m—1
> VIV
7j=0

is called the compression rate.
Reconstruction with the algorithm R, applied to the modified functions g,
yields an approximant f™ € V™ of the original function f™, given by

=4+ +. g

The resulting approximation error is

m—1
em= =3 (- 9).

Jj=0

4. Other properties of our prewavelets

We prove here two properties which were not mentioned in [5].
Proposition 1. The function 1g> : S2 — R, 1g2(n) = 1 for all n € S?, belongs
to the space VO and therefore to all the spaces V7. As a consequence, the prewavelets
have a vanishing moment of order zero.
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Proof. First we show that on each triangle U = A; Ay Az of U°, A; (x4, yi,2i), 1 =
1,2,3 we have

O, +Ph, + 0%, = 1, (9)
which is equivalent to

m 72 73 m n2 M3 m nM2 M3

T2 Y2 22 T3 Y3 23 1 Y1 A

I3 Ys z3 n I Y1 2 " T2 Y2 22 —1
m m om0 m n2 n3 0 m n2 n3 0O
1 oy oz 1 To Y2 22 1 3 y3 23 1
o Y2 z9 1 I3 Y3 z3 1 I Y1 z1 1
z3 Y3 z3 1 1 Y1 2 1 T2 Y2 22 1

for all (n1,m2,m3) € U. This is immediately if we split the determinant from the
denominator after the last column.

Now let us take an arbitrary point (7;,72,7n3) of the sphere. It will be situ-
ated on a spherical triangle U € U° having the vertices M/, M}, M3, which are the
projections of the points My, M, Ms, situated on the polyhedron. Then we can write

1= 1g2 (01,72, M3) = Par, (M1, 725M3) + Oy (11512,m3) + D, (M152,78) -

Since at (11,72,73) all other pyramidal functions ¢, v € V°, take the value zero, we

may write
1S2 = Z (pg
veEVO

As a consequence, we can state that for every element ¢/~! of the wavelet
space W/—1,
<1S2,g]_1>* =0 for all j € N*.
This means that our wavelets have a vanishing moment of order zero with respect to
the scalar product (-, -)

% *

0= /gH(n)wT(m,nz,ns)dw(n)a

TETOP(T)
with wr the weight-functions given by (1).
Since
(Ls2,9'7"), = (ls20p, ¢/ 'op), =(la,g' ' op),
1 )

= > (T) / (977" op) (x) d2(x)
TeT® T
1 . ; )

= 3 > (¢ op) (wi) + (97" op) (w2) + (977 o p) (w3)

[wiwaw3z]€TI

= 2t ).

weVI
we finally obtain
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O

Next we apply this result to obtain another identity which show the fact that
a sum of prewavelets 1) ~1 is constant over coarse and fine vertices.

Proposition 2. Let
Sty = Y.t (n), nes®
ueVi\vVi-1

Then we have
i 3 ifweVi\VIiTL
sty ={ 2y Sy

Proof. For u € VJ\VJ~=1 the number of its neighbors is ¢ (u) = 6. Therefore we can
write the weighted sum as

S m=6 Y. wit().
wevi\vi-1
First let w be a fine vertex, i.e. w € V7\VJ~1. From the previous proposition we have
0=> t@ei  pw)= Yt )+ Y )¢ ().
ueVvi weVi\vi-1 vevi-1
(10)
With w being the mid-point of an edge [a1as], a1, a2 € VI~1, we obtain from (3) that

Yoot ) = Yt el (W) + () ol ()

veVI—1 veVi—1
= t(a1) ol (Plar)) +t(a2) of o, (P(az))
3 3
= —2_2_-_3 11
573 (11)

The symmetry property 71 (p (u)) = ¢! (p (w)) yields
Yl pw) = >t pw) = Yty (pw) =3,
ueVIi\vi-1t weVIi\vi-1

taking into account (10) and (11).
Finally, let v € V7~ be a coarse vertex.Then

3

FeW) = Y tely o) = g 2 tw)
ueVy ueVy
3
= _2t—(1})6t (U) = -9.

5. Some numerical tests

To illustrate the efficiency of our prewavelets, we took as the initial poly-
hedron the regular octahedron and we performed five levels of decomposition. The
total number of vertices at the level five is 4098. We considered a data set jump
consisting of 36 x 72 measurements on the sphere at the points P;; (65, ¢;) , given by
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TABLE 1. Reconstruction errors for some compression rates

comp. rate | nr. of zero coeff. ||e5HOo ||e5H2 mean (e5)
0.05 3888 59.2191 | 992.7856 | 12.5437
0.1 3683 17.6250 | 220.3438 | 2.5425
0.25 3070 1.4023 | 12.9496 | 0.1287

0.5 2046 0.0527 0.4462 | 0.0039
0.75 1024 0.0005 0.0034 | 1.97-107°

their spherical coordinates (6, ¢), where (6;), ;.55 are equidistant nodes of the in-
terval [—7, 7] and (), ;<36 are equidistant nodes of the interval [—7/2,7/2]. This
dataset is constant over the sphere, except to a small portion, where it has a very big
jump (see Figure 1). Such functions appear in crystallography (see [6]).

First we approximated this data with the function f°> € V® (figure 2). The
measured approximation errors were

36 T2
e = ﬂ22|f’5 (Z,])—]ump(z,3)| = 10984’
i=1 j=1
TRRRE: 2 1/2
e = gz D) —jump )| | = 04424
i=1 j=1

Then we performed the decomposition, thresholding and reconstruction using the
algorithms described in Section 2 and Section 3. We denoted by e’ the vector f> —f° =

( - fg) , and we measured the errors

veV
[l = max|e® ()] = max|e® ()],
) 1/2
ol = (Sle-2f)
veEVS
mean (e”) = L{) Z |e5(v)|.
|V |vEV5

The errors are tabulated in Table 1.

To compare our approach, whose strength is the locality of the prewavelets
support, we took the case of spherical harmonic polynomials. For more details about
spherical harmonics, see [4]. The basis functions are the polynomial kernels. Their
supports are localized, but not local. An example of a polynomial kernel is given in
Figure 5. Here we can see that its support covers the whole sphere. The wavelet de-
composition was described in [1], Chapter 3. We performed 6 levels of decomposition.
At the level j = 6, the total number of vertices was 22711 = 8192. Figure 6 show the
approximation at the level 6. The oscillations around the jump, which occur because
of the global support, are avoided in our approach.

Finally, let us mention that, to our knowledge, no construction of locally
supported continuous prewavelets was made so far.
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FIGURE 2. The approximation f° at the level 5.

F1GURE 3. Approximation with the compression rate 0.05.
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FIGURE 4.

F1GURE 5. An example of kernel of spherical harmonics: localized
but supported on the whole sphere.

F1GURE 6. Approximation at the level 6, using the kernels of spher-
ical harmonics.
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H.M. Antia, Numerical Methods for Scientists and Engineers, Birkhduser Verlag,
Boston—Basel-Berlin, 2002, 864 pages, Hardcover, ISBN: 3-7643-6715-6.

This book is a comprehensive exposition (almost 900 pages) of numerical
methods usable in science and engineering. It is intended to fulfill the difficult task
to cover all elementary topics in numerical computations and to discuss them such
that to enable their practical implementation.

The first two chapters are on errors in numerical computation.

The third chapter is dedicated to methods for solving linear algebraic systems
(direct methods and iterative stationary methods). Chapter 4 deals with interpola-
tion. An advanced topic of this chapter is interpolation of more dimensions. The
next chapter is on (numerical) differentiation. Numerical integration (including mul-
tivariate) is the subject of chapter 5. Nonlinear equations in R and R™ are treated in
the seventh chapter. Chapter 8 is on optimization. Chapter 9, ”Functional approxi-
mation”, presents various least square approximations, FFT and Laplace transform,
Cebyshev, Padé and Li-approximation. Algebraic eigenvalue problem is the subject
of chapter 10. Chapter 11 treats ordinary differential equations — numerical methods
for initial value problems and two-points boundary value problems. In chapter 12
one finds an advanced topics — integral equations — not too present in older classi-
cal books. The last chapter, 13, is dedicated to the numerical methods for partial
differential equations.

Bibliographies accompany each chapter.

The book contains also over 500 exercises and problems, whose answer and
hints are in appendix A. Over 100 well-chosen worked out examples, which illustrate
the usability of the methods and their pitfalls are also included. The accompanying
CD contains good quality Fortran and C programs and tests (appendix B and C, only
on CD).

Intended audience: students, computer scientists, researchers in science and
engineering, practicing engineers.

Radu T. Trimbitag

Roger Godement, Analyse Mathématique, Springer, Berlin - Heidelberg - New York.
I. Convergence, fonctions elementaires, (1998), 2éme édition corrigé 2001, xx+458
pp, ISBN 3 540 42057-6 ;

II. Calcul différentiel et intégral, séries de Fourier, fonctions holomorphes, (1998),
2éme édition corrigé 2003, viii+490 pp, ISBN 3 540 00655-9;

IIT. Fonctions analytiques, différentielles et variétés, surfaces de Riemann, 2002,
ix+338 pp, ISBN 3 540 66142-5;

IV. Intégration et théorie spéctrale, analyse harmonique, le jardin des délices
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modulaires, 2003, xii+599 pp, ISBN 3 540 43841-6.

This four volume book is an unusual treatise on mathematical analysis, in
the sense that the main target of the author is not to present the results in their strict
logical connections with shortest proofs possible (called Blitzbeweise by the author),
but rather to emphasize the historical evolution of mathematical ideas. Due to this
nonlinear character of the exposure, there are some repetitions, but each new approach
to a subject sheds a new light on it, revealing new faces and opening new perspectives.
These repetitions lead to the increase of the size of the book but, as a former member
of Bourbaki group, the author adopted one of their basic principles : ”don’t spare
paper”. By the numerous comments and footnotes spread through the four volumes,
the author put in evidence the sinuous way the notions and results travelled before
reaching the clarity and logical rigor of the 20th century. The volumes contain a
lot of examples of miscalculations and wrong reasonings (derapages or acrobatie sans
filet) of great mathematicians as Newton, the Bernoullis, Euler, Cauchy, Fourier,
a.0., leading to correct or to false results. This shows that many notions and results
were often seized by the intuition of the great creators of mathematical analysis (les
Fondateurs), initially in an obscure and confusing manner. For us many of these
thinks look very simple and clear, but this took sometimes fifty or even hundred
of years years of evolution, discussions, or arguments. Beside these comments of
mathematical character there are a lot of political and social considerations concerning
pure and applied mathematics (mainly its military and social applications), and on
the responsibility of scientists and governs for the use of the research for military
purposes. In the last 25 years the author was deeply involved in such questions, and
some of his ideas and conclusions are collected in a Postface at the end of the second
volume, with special references to armament race and the construction of A and H
bombs by the USA and SSSR.

The first two volumes of the book (Chapters I through VII) are concerned
with the differential and integral calculus of the functions of one variable (real or com-
plex), including elements of Fourier analysis and holomorphic functions. Some results
on differential calculus in R™ are treated (including the implicit function theorem in
R?). An appendix to Chapter III contains some results on metric, normed and inner
product spaces. A specific feature of the book is the early treatment of some topics
considered as advanced - summable families (convergence en vrac), analytic functions,
Radon measures, Schwartz distributions, Weierstrass theory of elliptic functions. A
more advanced treatment of some of these results can be found in the third volume
of the book.

The third volume contains three chapters: VIII. La théorie de Cauchy, IX.
Différentielles et intégrales a plusieurs variables, and X. La surface de Riemann d’une
fonction algébrique. In Chapter VIII one continues the study of holomorphic func-
tions, started in the second volume, with the Cauchy integral formula and its ap-
plications to the calculus of residues, to complex Fourier transform (including the
Paley-Wiener theorem) and to Mellin transform. Chapter IX contains a discussion
on tensors, differential varieties, differential forms and their integration, culminating
with Stokes theorem. The last chapter of this volume contains a brief introduction to
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Riemann surfaces, a subject that was yet touched at the end of the first volume when
dealing with the functions Arg z and Log z.

The last volume of the treatise contains two chapters: XI. Intégration et
transformation de Fourier, and XII. Le jardin des délices modulaires ou, I’opium des
mathématiciens.  The chapter on integration, based on the famous course taught
for a long period by the author at the University Paris VII, develops the integra-
tion theory following Daniell’s approach, like Bourbaki. One constructs the spaces
LP including completeness and duality results, and one proves Lebesgue-Fubini and
Lebesgue-Nikodym theorems. The author insists on the notion of Polish space, a
term suggested by him to Bourbaki when he was a member of the group, a that was
adopted immediately by Bourbaki and by the mathematical community as well. The
construction of Haar invariant measure on a locally compact group G, with applica-
tions to Fourier transform on L'(G) and L?(G), is included. This chapter contains
also an introduction to operators on Hilbert space, and to unitary representations of
locally compact topological groups.

The last chapter of the treatise is devoted to more specialized topics related
to modular functions - theta and L series, elliptic functions and integrals, the Lie
algebra SL(2). It can be used as an introduction to this area of research with very
reach possibilities of generalization.

Reflecting author’s encyclopaedic knowledge of mathematics and written in
a live and attractive style (a perfect illustration of the famous "French spirit”), the
book will be a valuable help for those teaching mathematical analysis or desiring to
be acquainted with the evolution of the mathematical ideas. The historical, social
and ethical comments accompanying the main text, reflects the complex personality
of the author and his broad interests.

S. Cobzasg

Robert L. Ellis and Israel Gohberg, Orthogonal Systems and Convolution Operators,
Operator Theory: Advances and Applications, Vol. 140, Birkh&duser Verlag, Basel-
Boston-Berlin 2003, xvi+236, ISBN: 3-7643-6929-9.

The Szeg6 polynomials are polynomials that are obtained by the Gramm-
Schmidt orthogonalization process from 1,z,22, ... in the space L?(T), T the unit
circle, that are orthogonal with respect to the inner product

s
1) <fi>um g [ G feti
2 J_,
Here w is a positive integrable weight function. G. Szegd proved that all the zeros of
the Szegd polynomials lie inside the unit circle. M. G. Krein extended Szeg6’s theorem
to the case of a not necessarily positive weight function w, when the inner product
(1) need not to be positive definite, and the corresponding space is called a space
with indefinite inner product. In this case the distribution of the zeros of orthogonal
polynomials is much more complicated than in the definite case, and is connected with
the numbers of positive and negative eigenvalues of some Toeplitz matrices associated
with the orthogonal polynomials. Krein investigated also the continuous analogues of
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orthogonal polynomials, by replacing the Toeplitz matrix by a convolution operator
on L%(0,a). Together with H. Langer, he proved an analogue of Krein’s theorem.

Based on the research done by the authors and their colleagues for nearly fif-
teen years, the book is devoted to a unified and thorough presentation of these results,
along with many extensions and generalizations. These extensions are concerned with
matrix- and operator-valued polynomials, functions and operators, considered both
in the discrete and continuous case. The unifying theme is that of the orthogonaliza-
tion with invertible squares in modules over C*-algebras. One of the main features
of the book is the interplay between polynomials and operator theory — the theory of
Toeplitz matrices, Wiener-Hopf operators, Fredholm operators and their indices.

The book book is of interest for analysts but, as the developed theory has
many applications to some engineering problems (mainly in signal processing and
prediction theory), the engineers and physicists will find a lot of interesting things in
it too.

P. T. Mocanu

Writing the History of Mathematics: Its Historical Development, Editors: Joseph W.
Dauben and Christoph J. Scriba, Historical Studies-Science Networks, Birkh&user
Verlag, Basel-Boston-Berlin 2002, xxxvii4+689 pp, ISBN: 3-7643-6167-0.

”History of mathematics’ is concerned with the development in time of the
unfolding of mathematics, whereas ”historiography of mathematics” deals with schol-
arly research, reconstruction and description of the past development of the history
of mathematics. The aim of the present book is to provide a perspective on how and
why history of mathematics has developed in various countries and at different times.

The idea to initiate a study of the history of history of mathematics was
settled down at a meeting in Oberwolfach, Germany, in the early 1990s. Subsequently
J. Dauben and Ch. Scriba accepted the editorial responsibility of the project, and
the task was accomplished with the help of more than forty collaborators, and with
support from several institutions and organizations.

The first part of the book, Countries, contains 20 chapters, the first 19,
written by different authors, deals with the history of history of mathematics in
different countries. The last chapter, Postscriptum, discusses some connections of the
history of mathematics with teaching and society, the impact of electronic media, and
the humanism of mathematics.

The second part of the book contains three hundred short biographies of
prominent contributors to the history of mathematics, including some great names of
contemporary mathematics — J. Dieudonné, A. N. Kolmogorov, D. J. D Struik, B. L.
van der Warden, A. Weil. Some portraits are also included.

The third part contains a list of abbreviations, the bibliography and an index.

All the included material was drafted and circulated, being revised and rewrit-
ten several times, and finally reconsidered in the context of the entire project by the
team of scholars overseeing the project.

The result is this monumental book, that is of great interest not only to
mathematicians but also to people interested in the history of science in general.

Paul A. Blaga
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Philippe Blanchard and Erwin Briining, Mathematical Methods in Physics—
Distributions, Hilbert Space Operators and Variational Methods, Progress in
Mathematical Physics, Vol. 26, Birkhauser Verlag, Boston-Basel-Berlin 2002, pp.
xxii+463, ISBN: 3-7643-4228-5 and 0-8176-4228-5.

The book contains a detailed exposition of the basic mathematical facts and
tools needed in quantum mechanics and in classical and quantum field theory. The
book is divided into three parts: I, it Distributions, II, Hilbert space operators and
II1, Variational methods.

The first part contains a fairly complete presentation of Schwarz theory of
distributions, including the necessary elements of locally convex spaces. The emphasis
is on the analytical aspects of the theory as: Fourier transform, convolution and ap-
proximation of distributions by regularizing sequences, holomorphic functions and the
relations of distributions with boundary values of analytic functions. Many carefully
chosen and very interesting examples, as the distribution § of Dirac, the principal
value distribution, the Sokhotski-Plemelji formula, give a strong motivation for the
developed topics and make the lecture more attractive. Applications of the theory of
distributions to ODEs and PDEs are given. This part ends with a discussion of other
classes of generalized functions — Gelfand-Shilov generalized functions and Komatsu
hyperfunctions.

In the second part, after some introductory results on the geometry of Hilbert
spaces and orthonormal bases, one passes to the study of linear operators on Hilbert
space and their spectral theory. The focus is on properties needed for the study
of Schrodinger operator in quantum mechanics. The authors consider the principal
classes of bounded and unbounded operators on Hilbert space: self-adjoints, sym-
metric, closable, unitary, trace operators, Hilbert-Schmidt operators. One insists
on the C*-algebra properties of the space B(H) of bounded linear operators on the
Hilbert space H. As application one considers the interpretation of the spectrum of
self-adjoint Hamiltonian.

The last part of the book is concerned with direct methods in the calculus
of variations and constrained minimization, with applications to boundary and eigen-
value problems. A short presentation of the Hohenberg-Kohn variational principle is
included. The authors have written another book Variational methods in mathemat-
ical physics. A unified approach, Springer Verlag, Berlin 1992, devoted to variational
methods.

The book is fairly self-contained, the prerequisites being advanced differential
calculus (including Lebesgue integration) and familiarity with basic results in ODEs
and PDEs Four appendices contain some supplementary material from topology, func-
tional analysis and algebra.

By presenting in a rigorous way and with many historical comments the
basic results needed for quantum mechanics, the book will be of great interest to
physicists and engineers using the mathematical apparatus in their research. For
mathematicians interested in an accurate presentation of non-trivial applications of
relatively abstract areas of mathematics, the book is a valuable source of examples.

S. Cobzag
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Yves Nievergelt, Foundations of Logic and Mathematics, Birkh&user Verlag, Boston,
2002, xvi + 416 pp., Hardcover, ISBN 0-8176-4249-8.

This book is a modern introduction to the foundations of Logics and Math-
ematics, written with a permanent care for the possible applications of some rather
classical topics in modern fields of science and especially in Computer Science.

The present volume is structured into two main parts, namely A. Theory,
containing Chapters 0-4, and B. Applications, containing Chapters 5-7.

Chapter 0 sets the fundamentals concerning Boolean algebraic logic, dis-
cussing logical formulae, logical truth and connectives, tautologies and contradic-
tions, methods of proof and Karnaugh tables. Chapter 1 refers to logic and deductive
reasoning, having as main topics propositional and classical implicational calculus,
proofs by contraposition, proofs with connectives or quantifiers and predicate calcu-
lus. Chapter 2 contains the basic material of Set Theory, including operations for
sets, relations, functions, equivalence and ordering relations. Chapter 3 deals with
mathematical induction, definition and (arithmetic) properties of natural numbers, in-
tegers and rational numbers, also referring to finite and infinite cardinality and ending
with some arithmetic in finance. Chapter 4 discusses decidability and completeness,
the selected topics being on logics for scientific reasoning, incompleteness, automated
theorem proving, transfinite methods, transitive sets and ordinals and regularity of
well-formed sets.

Chapter 5 presents the relationship between Number Theory and Code The-
ory, containing the classical Euclidean Algorithm, digital expansion of integers, prop-
erties of primes and modular arithmetic as well as some very practical information
on modular codes, such as the International Standard Book Number (ISBN) code,
the Universal Product Code (UPC) and the Bank Identification Code, and Rivest-
Shamir-Adleman (RSA) codes in public key cryptography. Chapter 6 deals with
(cyclic) permutations, arrangements and combinations, elements of probabilities, the
most of these with the finality of describing the ENIGMA machines. Chapter 7,
which is mainly an introduction to Graph Theory, discusses several types of graphs
(directed, undirected, path-connected, weighted or bipartite), Euler and Hamiltonian
circuits, trees, but also some of their applications in science, concerning the shape of
molecules and hydrocarbons or sequences of radioactive decays.

The book is well written, concise and organized and contains an impressive
quantity of information on rather different topics. I should emphasize the numerous
examples (more than 1000) and exercises (again more than 1000) throughout the text
as well as the several projects at the end of each chapter, that propose some more
difficult problems, sometimes suggesting further bibliographic sources.

I warmly recommend the volume to students in Mathematics and Computer
Science, but also to those interested in the foundations of these sciences.

Septimiu Crivei

M. M. Rao, Z. D. Ren, Applications of Orlicz Spaces, Marcel Dekker, Inc., New
York-Basel, 2002.
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This book is written by well-known specialists in the theory of Orlicz spaces.
Their book ”Theory of Orlicz spaces”, Marcel Dekker, New York 146, 1991 and the
work of S.T. Chen ”Geometry of Orlicz spaces”, Dissertationes Math., 356 (1996),
1-204, together with the present volume cover a great part of the modern theory of
Orlicz spaces and its applications.

In order to obtain complete solutions for some problems, the authors prefer
to work in Orlicz spaces L?(S, ¥, i), where ¢ is an N-function (instead of a general
Young function) and where the measure space (S,%,u) is either purely atomic or
diffuse and finite (o-finite). On the other hand they consider both the cases when
L?(S,3%, u) is endowed with the Orlicz or Luxemburg norm. Exact values for several
geometric constants of Orlicz spaces are computed in the case ¢ := ¢s,s € (0,1),
where ¢, is an intermediate function between ¢o(u) = u? and a given N-function.

In Chapter II one obtains lower and upper bounds for James constant and for
von Neumann-Jordan constant of Orlicz spaces endowed equally with Orlicz and Lux-
emburg norms. Exact values for these constants are obtained for L?:([0,1]), L?*(R)
and (%> endowed with both norms. In chapters III-V similar estimates are given for
other geometric constants as: the normal structure coefficient, weak convergent se-
quence coefficient, Jung constant, Kottman constant and for the packing constant of
Orlicz spaces. All such estimates are expressed in terms of quantitative indices of
N-functions. In chapter VI the authors consider some problems of Fourier Analysis in
Orlicz and generalized Orlicz spaces. So, they present conditions implying the almost
everywhere convergence of Fourier or conjugate Fourier series of all f € L?([0,1]), or
that the Haar system of functions forms an unconditional basis in L?([0,1]). In the
next chapter applications to prediction theory are presented — for instance a neces-
sary and sufficient condition for a prediction operator (with respect to a Chebyshev
subspace of L?(u)) to be linear. Other applications in the field of stochastic analysis
and of partial differential equations with solutions in Orlicz-Sobolev spaces are also
presented.

The book is well-written, self-contained, with many bibliographical com-
ments, suggestive examples and a rich list of references (from old ones to very recent
titles). Many of the results in the book were not yet known thirty years ago and
some were even not known ten years ago. The book is recommended to graduate
students and research workers in the field of Banach space theory, probability, partial
differential equations, approximation theory etc.

Toan Serb

Hrushikesh N. Mhaskar and Devidas V. Pai, fundamentals of Approximation Theory,
Alpha Science International Ltd., 2000, xv+541 pp., Hardcover, ISBN 1-84265-016-5.

Understood in a broad sense, approximation is one of the major themes of
mathematics — approximate mathematical objects with simpler ones, easier to handle.
The development of the computers made it even more important — the numerical
algorithms are based on discretization techniques that are, in fact, approximation
procedures.

The book under review is dedicated to a comprehensive presentation of basic
tools and results in approximation theory, understood as a mathematical discipline.
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Its characteristic features are the clarity of the exposure, a careful choice of the
included topics and the permanent interplay between classical and abstract (meaning
functional analytic) tools.

The best idea on its content can be given by a short presentation of the
chapters. Ch. I, Density theorems, deals with Weierstrass type theorems for both
trigonometric polynomials and algebraic (of Fejér’s and Bernstein), Korovkin’s theo-
rems, Stone-Weierstrass theorem.

In Ch. II, Linear Chebyshev approzimation, after presenting some results on
the existence and uniqueness of best approximation in abstract normed spaces, the
authors pass to the concrete case of uniform approximation by polynomials, includ-
ing existence, Chebyshev alternation theorem, Haar spaces and uniqueness, strong
uniqueness and continuity of the metric projection operator. A special attention is
paid to discretization and algorithms for computing the best approximation polyno-
mials (Remes algorithms).

Ch. III, The degree of approzimation, is concerned with quantitative aspects
of approximation theory, emphasizing the the connections between the smoothness
properties (expressed in terms of some moduli of continuity and smoothness) and
the degree of approximation. The chapter contains both direct and converse deep
theorems, belonging to Jackson, Favard, Markov, Bernstein. Bernstein’s theorem on
the approximation by analytic functions is included too.

Ch. IV, Interpolation, is an introduction to various interpolation procedures —
Lagrange, Taylor, Abel-Gonchearov, Hermite. Evaluations of the errors are included.

Ch. V, Fourier series, contains a brief introduction to the subject, with
emphasis on convergence and summability.

Ch. VI, Spline functions, aims to give a short but thorough introduction to
spline functions, viewed as a new tool of approximation, and showing how the ideas
developed in the first four chapters look like in this case.

Ch. VII, Orthogonal polynomials, introduce the reader to this very important
area of mathematical analysis.

The last chapter of the book, Ch. VIII, Best approximation in normed linear
spaces, is concerned with best approximation in abstract setting. The authors put
in evidence the deep relations between the geometry of the normed space and its
approximation properties - existence and uniqueness of best approximation, continuity
of the metric projection, convexity of Chebyshev sets. The last section is concerned
with optimal recovery problems.

Each chapter ends with a section of historical notes and a set of exercises.
Some of these are routine, completing the main text, but there also challenging exer-
cises, taken from current research papers. For these ones detailed hints are included.

A comprehensive bibliography of 302 items is included.

The authors are well known specialists in the domain and the book incorpo-
rates a lot of their original results.

Based on an over that 10 years teaching experience, the book can be used for
special graduate or post-graduate courses. The chapters are relatively independent,
so that parts of the book can be used for different courses. The prerequisites are
advanced calculus and basic topology, measure theory and functional analysis.
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Covering, in a clear and comprehensive manner, the basic results in approx-
imation theory, both classical and abstract as well, I think the book will become a
standard reference in the field.

S. Cobzag

A. Brown and Ken R. Goodearl, Lectures on Algebraic Quantum Groups. Advanced
courses in mathematics - CRM Barcelona, Birkhduser Verlag, Basel-Boston-Berlin,
2002, ix+349 pp., Softcover, ISBN 3-7643-6714-8.

The term ‘quantum groups’ refers to a rapidly growing field of mathematics
and mathematical physics which appeared in the 1980’s theoretical physics and sta-
tistical mechanics. The volume under review is an expanded version of the lectures
given by the authors in September 2000 at the Centre de Ricerca Mathematica in
Barcelona, and it focuses on two types of algebras. First, there are the so called
‘quantum coordinate rings’ which are deformations of the classical coordinate rings
of algebraic groups or related algebraic varieties. The second type consists of ‘quan-
tized enveloping algebras’, which are deformations of universal enveloping algebras of
semisimple Lie algebras or of affine Kac-Moody Lie algebras.

The book is divided into three parts. Part I contains the fundamental back-
ground material. The second part deals with generic quantized coordinate rings, while
the third part focuses on quantized algebras at roots of unity. The presentation begins
at a point accessible to a graduate student. Later, the style becomes more informal,
only sketches of proofs are given, and some topics are presented in a survey manner.
There are also many exercises aimed at the non expert reader. Some topics such as
the nature of the prime spectrum of a generic quantized algebra, and the relationship
between the Hopf algebra structure of the algebra and the Poisson algebra structure
of the centre are covered for the first time in book form.

The authors are important contributors to the subject, and their book is a
very useful addition to the literature. I warmly recommend it to anyone interested in
quantum groups.

Andrei Marcus

Miklés Laczkovich, Conjecture and Proof, The Mathematical Association of America,
Washington, DC, 2001, x+118 pp., Softcover, ISBN 0-88385-722-7.

The book under review is an extended version of the lectures given by the
author at an one-semester course based on creative problem solving of the Budapest
Semesters in Mathematics. This is a program for American and Canadian students
initiated by Paul Erd6s, Laszl6 Lovasz, Vera T. S6s, and Laszlé Babai. The book is di-
vided into two parts (Proofs of Impossibility—Proofs of Nonexistence, Constructions—
Proofs of Existence)and discusses questions from various fields of mathematics: num-
ber theory, algebra and geometry. It contains important and interesting results like
the transcendence of e, the Banach-Tarski paradox, the existence of Borel sets of
arbitrary finite class, while the necessary prerequisites are kept at the level of an in-
troductory calculus course. All these features will make this volume into a valuable
source of inspiration for students and teachers of mathematics.
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Andrei Marcus

Nicolai N. Vorobiev, Fibonacci Numbers, Birkhauser Verlag, Basel-Boston—Berlin
2002, x+176 pp, ISBN 3-7643-6135-2.

The book under review is translated from the Russian 6th edition by Mircea
Martin and it presents the bearing of Fibonacci numbers on mathematics.

In Chapter 1 (The Simplest Properties of Fibonacci numbers) the basic prop-
erties of Fibonacci numbers are given, as Binet’s formula and applications of this
result. In Chapter 2 (Number-Theoretic Properties of Fibonacci Numbers) the main
aim is the study of the divisibility of Fibonacci numbers. We mention here Theorem
11 saying that any to consecutive Fibonacci numbers are relatively prime, and the
more general result Theorem 12, which says that ged(um, Un) = Uged(m,n)- In Chapter
3, entitled Fibonacci Numbers and Continued Fractions, the continued fractions are
described using Fibonacci numbers. Legendre’s Theorem, Vahlen’s Theorem, Borel’s
Theorem, and Hurwitz’s Theorem about continuous fractions are presented. In Chap-
ter 4, “Fibonacci Numbers and Geometry”, the author presents connection between
Fibonacci numbers and results of classical geometry and graph theory. In Chapter 5
(Fibonacci Numbers and Search Theory) specific variants of minimum problems are
discussed: “estimate the minimizing point T together with the minimum value f(T)
taken by f at this point” (Problem A) and “approximate the minimizing point Z”.

It is well know the fact that Fibonacci numbers have had an important impact
on areas as art, architecture, political economy, and other domains, hence many
specialists in other domains than mathematics should be interested by them. The
book under review is very well written, the prerequisites for reading it are minimal
hence it is easy to read. Also, the book will be useful for any student, teacher, and
researcher.

Simion Breaz

Toma Albu, Cogalois Theory, Marcel Dekker, New York—Basel 2003, xii+341 pp,
ISBN 0-8247-0949-7.

The classical Galois theory says that E/F is a finite Galois extension, then the
lattice Intermediate(E/F) of all intermediate fields is anti-isomorphic to the lattice of
subgroups of Gal(E/F). There are however field extensions which are not necessarily
Galois, but have a dual property, that is, there is a lattice isomorphism between
Intermediate(F/F') and the lattice of subgroups of a group A canonically associated
to E/F. Such extensions are called extensions with A-Cogalois correspondence.

The book under review is the first which offers a systematic investigation of
this concept. One should note that the term Cogalois appeared in literature in 1980
in a paper of C. Greither and D.K. Harrison, while the term extension with Cogalois
correspondence was introduced by the author and F. Nicolae.

The volume is divided into two parts. The first part deals with finite ex-
tensions, and consists of 10 chapters. These chapters contain the necessary prelimi-
naries and investigate the following aspects of the theory: G-radical extensions, Co-
galois extensions, Cogalois connections associated to G-radical extensions, strongly
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G-Kummer extensions (which are extensions with G/F*-Cogalois correspondence),
almost G-Cogalois extensions, finite Galois extensions which are Cogalois, radical,
Kneser or G-Cogalois, Kummer extensions. Applications to Algebraic Number The-
ory and connections with graded algebras and Hopf algebras are also discussed.

The second part considers infinite extensions and has 5 chapters. The first
problem here is to find suitable generalizations of the above concepts. The author dis-
cusses infinite G-Kneser extensions, infinite G-Cogalois extensions, infinite Kummer
extensions, and infinite Galois G-Cogalois extensions, which involve profinite groups.

The author is an important contributor to the subject, and the volume con-
tains many of his results. The book is carefully written and it is accessible to graduate
students. Familiarity with basic abstract algebra, Galois theory and some Galois co-
homology is assumed. Over 250 exercises, an up-to-date bibliography and an extensive
index add to the value of the book.

This volume is especially recommended to students and researchers in Alge-
braic Number Theory, but any algebraist will find here interesting ideas and informa-
tion.

Andrei Marcus

M. W. Wong, Wavelet Transforms and Localization Operators, Operator Theory:
Advances and Applications, Vol. 136, Birkhiuser Verlag, 2002, pp. 156. ISBN:
3-7643-6789-X.

Wayvelet analysis is an emerging mathematical discipline, that has begun to
play a serious role in a broad range of applications, including signal processing, data
and image compression, solution of partial differential equations, modeling multiscale
phenomena, and statistics. In the present book, the author studies wavelet transforms
and localization operators in the context of infinite-dimensional and square-integrable
representations of locally compact and Hausdorff groups. At the same time, fruit-
ful approaches have been developed as regards Daubechies operators on the Weyl-
Heisenberg group, localization operators on the affine group, wavelet multipliers on
the Euclidean space, the book providing the reader with the spectral theory of wavelet
transforms and localization operators in the form of Schatten - von Neumann norm
inequalities. The information is structured in 26 chapters as follows:

Introduction / Schatten - von Neumann Classes / Topological Groups / Haar
Measures and Modular Functions / Unitary Representations / Square-Integrable Rep-
resentations / Wavelet Transforms / A Sampling Theorem / Wavelet Constants /
Adjoints / Compact Groups / Localization Operators / S, Norm Inequalities / Trace
Class Norm Inequalities / Hilbert-Schmidt Localization Operators / Two-Wavelet
Theory / The Weyl-Heisenberg Group / The Affine Group / Wavelet Multipliers /
The Landau-Pollak-Slepian Operator / Products of Wavelet Multipliers / Products
of Daubechies Operators / Gaussians / Group Actions and Homogeneous Spaces / A
Unification / The Affine Group Action on R.

In order to sustain the above material, a good bibliography containing 108
titles is listed. The author offers clear explanations of every concept and method
making the book accessible and valuable to researchers and graduate students alike.

Octavian Agratini
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