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Redacţia: 400084 Cluj-Napoca, str. M. Kogălniceanu nr. 1 • Telefon:
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DATA DEPENDENCE OF THE FIXED POINTS SET OF WEAKLY
PICARD OPERATORS IN GENERALIZED METRIC SPACES

CLAUDIA BACOŢIU

Abstract. In this paper we will extend the results concerning the data de-
pendence of the fixed points set of weakly Picard operators to a generalized
metric space (X, d) with d(x, y) ∈ Rn, n ∈ N∗.

1. Introduction

Definition 1. Let x, y ∈ Rn, x = (x1, x2, ..., xn), y = (y1, y2, ..., yn). We will
consider, by definition:
• x ≤ y ⇔ xi ≤ yi ∀i = 1, n;
• | x |= (| x1 |, | x2 |, ..., | xn |);
• max(x, y) = (max(x1, y1),max(x2, y2), ...,max(xn, yn)).

Definition 2. Let X be a nonempty set; an application d : X × X → Rn
+ is called

generalized metric on X iff:
(i) d(x, y) ≥ 0 ∀x, y ∈ X; d(x, y) = 0 ⇔ x = y;
(ii) d(x, y) = d(y, x) ∀x, y ∈ X;
(iii) d(x, y) ≤ d(x, z) + d(z, y) ∀x, y, z ∈ X.
In this case, (X, d) is said to be a generalized metric space (g.m.s. on short).

The related definitions of completeness, weakly Picard operators, the operator
f∞ in a g.m.s. are the same as in the standard metric spaces.

Definition 3. If (X, d) is a g.m.s., we will consider the Pompeiu-Hausdorff
functional
H : P (X)× P (X) → (R+

⋃
{+∞})n, H = (H1,H2, ...,Hn)

Hi(A,B) := max{sup
a∈A

inf
b∈B

di(a, b), sup
b∈b

inf
a∈A

di(a, b)} ∀A,B ∈ P (X) ∀i = 1, n.

Definition 4. If (X, d) is a g.m.s., an operator f : X → X is called C-weakly Picard
iff f is weakly Picard and there exists C ∈Mn,n(R) such that
d(x, f∞(x)) ≤ Cd(x, f(x)) ∀x ∈ X.

Received by the editors: 17.09.2003.
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2. Main results

Theorem 1. Let (X, d) be a complete g.m.s. and f, g : X → X two operators. We
suppose that:
(i) there exist C,D ∈ Mn,n(R) such that f is C-weakly Picard and g is D-weakly
Picard;
(ii) there exists η ∈ Rn

+ such that d(f(x), g(x)) ≤ η ∀x ∈ X.
Then H(Ff , Fg) ≤ max{Cη,Dη}.

To prove this theorem we will use the next Lemma:
Lemma 1. If (X, d) is a g.m.s. and A, B ∈ P (X); η, ζ ∈ Rn

+ such that:
∀a ∈ A ∃b ∈ B : d(a, b) ≤ η;
∀b ∈ B ∃a ∈ A : d(a, b) ≤ ζ.
Then H(A,B) ≤ max{η, ζ}.

Proof -Theorem 1:
Let x ∈ Fg; then:
d(x, f∞(x)) ≤ Cd(x, f(x)) = Cd(g(x), f(x)) ≤ Cη.
By a similar argument, we have that d(x, g∞(x)) ≤ Dη ∀x ∈ Ff .
It follows from Lemma 1 that H(Ff , Fg) ≤ max{Cη,Dη}.�
If in Theorem 1 we take f, g A-orbitally contractions, we have:
Theorem 2. Let (X, d) be a complete g.m.s. and f, g : X → X two orbitally contin-
uous operators. We suppose that:
(i) ∃A ∈Mn,n(R), Ak −−−−→

k→∞
0 (i.e. the matrix A converges to zero) such that

d(f2(x), f(x)) ≤ Ad(f(x), x) ∀x ∈ X and
d(g2(x), g(x)) ≤ Ad(g(x), x) ∀x ∈ X;
(ii) there exists η ∈ Rn

+ such that d(f(x), g(x)) ≤ η ∀x ∈ X.
Then:
a) Ff 6= ∅ and Fg 6= ∅;
b) H(Ff , Fg) ≤ (I −A)−1η.

3. Applications

We will consider the following systems of integral equations with deviating
argument:

x(t) = x(a) +

b∫
a

K(t, s, x(s))ds ∀t ∈ [a, b] (1)

x(t) = x(a) +

b∫
a

N(t, s, x(s))ds ∀t ∈ [a, b] (2)

where K, N ∈ C([a, b]× [a, b]× Rn, Rn).
By Theorem 2 we have:
Theorem 3. We suppose that:
(i) K(a, s, u) = 0 ∈ Rn and N(a, s, u) = 0 ∈ Rn ∀s ∈ R ∀u ∈ Rn;
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(ii) there exists η ∈ Rn
+ such that

|K(t, s, u)−N(t, s, u)| ≤ η ∀t, s ∈ [a, b] ∀u ∈ Rn;
(iii) there exists L ∈Mn,n(R) such that
|K(t, s, u)−K(t, s, v)| ≤ L|u− v| ∀t, s ∈ [a, b] ∀u, v ∈ Rn and
|N(t, s, u)−N(t, s, v)| ≤ L|u− v| ∀t, s ∈ [a, b] ∀u, v ∈ Rn;
(iv) the matrix (b− a)L converges to zero.
If S1 and S2 are the solutions sets of the systems (1) and (2) in C([a, b], Rn) then:
a) S1 6= ∅ and S2 6= ∅;
b) H‖·‖(S1, S2) ≤ [I − (b− a)L](b− a)η;
where we consider the space C([a, b], Rn) with the generalized metric induced by the
Tchebychev norm ‖y‖ := (‖y1‖C[a,b], ‖y2‖C[a,b], ..., ‖yn‖C[a,b]) ∀y ∈ C([a, b], Rn) and
H‖·‖ is the related Pompeiu-Hausdorff functional.

Proof. We consider the operators
f, g : C([a, b], Rn) → C([a, b], Rn) defined by

f(x)(t) = x(a) +
b∫

a

K(t, s, x(s))ds ∀t ∈ [a, b] ∀x ∈ C([a, b];

g(x)(t) = x(a) +
b∫

a

N(t, s, x(s))ds ∀t ∈ [a, b] ∀x ∈ C([a, b]

and we will apply the Theorem 2.

We have f2(x)(t) = x(a) +
b∫

a

K(t, s, f(x(s))ds ∀t ∈ [a, b] ∀x ∈ C([a, b],

so |f2(x)(t)− f(x)(t)| ≤ (b− a)L‖f(x)− x‖ ⇒
‖f2(x)− f(x)‖ ≤ (b− a)L︸ ︷︷ ︸

converges to 0

‖f(x)− x‖, so Ff = S1 6= ∅.

By a similar argument, ‖g2(x)− g(x)‖ ≤ (b− a)L‖f(x)− x‖, so Fg = S2 6= ∅.
We also have ‖f(x)− g(x)‖ ≤ (b− a)η ∀x ∈ C([a, b]).
We are in the conditions of the Theorem 2 ⇒ H‖·‖(Ff , Fg) ≤ [I − (b− a)L](b− a)η,
i.e. H‖·‖(S1, S2) ≤ [I − (b− a)L](b− a)η.�
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ASYMPTOTIC FIXED POINT THEOREMS IN E-METRIC SPACES

T. BARANYAI

Abstract. In this paper we prove two asymptotical fixed point theorems
in E-metric spaces. The first theorem is a variant of Ciric-Reich-Rus the-
orem in E-metric space, the next theorem is the asymptotic variant of this
theorem.

Let E be a real linear space partially ordered by ≤ and let
E+ = {e ∈ E : e ≥ 0} be the positive cone of E. We consider on E a linear conver-
gence, i.e., a convergence with: ([1])

1.) if en = e, ∀n ∈ N ⇒ lim en = e.
2.) if lim en = e implies lim en′ = e for every subsequence (en′) of (en).
3.) lim en = e and lim fn = f imply lim(en + fn) = e + f .
4.) lim en = e implies lim(r · en) = r · e, ∀r ∈ R.
5.) if en ≤ fn , ∀n ∈ N and lim en = e, lim fn = f then e ≤ f .
6.) if en ≤ fn ≤ gn, ∀n ∈ N and lim en = lim gn = e then also lim fn = e.
Let X be a nonempty set and let E be an ordered linear space with a linear

convergence. An E-metric on X is a mapping d : X ×X −→ E+ subject to the usual
axioms:

1.) d(x, y) = 0E if and only if x = y.
2.) d(x, y) = d(y, x), ∀x, y ∈ X.
3.) d(x, y) ≤ d(x, z) + d(z, y), ∀x, y, z ∈ X.
By E-metric space we mean a nonempty set X with an E-metric on X. The

ordered space E is briefly called the metrizing space for X.
A sequence (xn) of elements of an E-metric space X is said convergent toward

x ∈ X (and we write xn → x) if d(xn, x) → 0 as n →∞.
A sequence (xn) in X is said to be a Cauchy sequence if d(xn, xm) → 0,

n, m →∞.
The E-metric space X is said to be sequentially complete, if each Cauchy

sequence in X converges to a point in X.
A subset Y of an E-metric space X is said to be bounded if the set

{d(x, y) : x, y ∈ Y } has an upper bound in E.

Received by the editors: 29.09.2003.
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We note FA := {x ∈ X|A(x) = x} - the fixed point set of A.

In this note we need the following results:
Theorem 1. (Ciric - Reich -Rus, [2], [3]) Let (X, d) be a complet metric space
and A : X −→ X be an operator. Suppose that there exists the numbers a, b, c such
that 0 ≤ a + b + c < 1, and let A be a map such that:

d(A(x), A(y)) ≤ a · d(x,A(x)) + b · d(y, A(y)) + c · d(x, y), ∀x, y ∈ X.

Then A has an unique fixed point.
Lemma 1. ([3]) Let X be a nonempty set and f : X −→ X a mapping. If there
exists k ∈ N such that Ffk = {x∗}, then Ff = {x∗}.

The first result is the generalization of Theorem 1 in E-metric spaces:
Theorem 2. Let X be a sequentially complete E-metric space. Let S, T, R : E+ −→
E+ are increasing operators and let A : X −→ X be an operator which satisfy the
following condition:

d(A(x), A(y)) ≤ S d(x,A(x)) + T d(y, A(y)) + R d(x, y), x, y ∈ X.

Suppose that
(i) 1E − T is a bijection
(ii) there exists x0 ∈ X such that,

∑
n∈N

[(1E − T )−1(S + R)]nd(x0, A(x0)) con-

verges.
Then A has an unique fixed point.
Proof. Let y = A(x). Then

d(A(x), A2(x)) ≤ S d(x,A(x)) + T d(A(x), A2(x)) + R d(x, A(x))

and we have that

(1E − T ) d(A(x), A2(x)) ≤ (S + R) d(x, A(x)).

Because (1E − T ) is a bijection, we have

d(A(x), A2(x)) ≤ (1E − T )−1 · (S + R) d(x, A(x))

. . .

d(An+1(x), An(x)) ≤ (1E − T )−1(S + R) d(An(x), An−1(x)) ≤ . . .

· · · ≤ [(1E − T )−1(S + R)]n d(x,A(x)), ∀n ∈ N∗.
We want to prove that the (Anx0)n is a Cauchy sequence:

d(An+m(x0), An(x0)) ≤ d(An+m(x0), An+m−1(x0))+

+d(An+m−1(x0), An+m−2(x0)) + ... + d(An+1(x0), An(x0)) ≤
≤ [(1E − T )−1(S + R)]n+m−1 d(x0, A(x0))+

+[(1E − T )−1(S + R)]n+m−2 d(x0, A(x0)) + . . .

· · ·+ [(1E − T )−1(S + R)]n d(x0, A(x0)) → 0. (ii)
Because the sequence is Cauchy and X is sequencially complete we have that

the sequence is convergent and let x∗ = lim Anx0.
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We have

d(x∗, A(x∗)) ≤ d(x∗, An(x0)) + d(An(x0), A(x∗)) ≤
≤ d(x∗, An(x0)) + S d(An−1(x0), An(x0)) + T d(x∗, A(x∗)) + R d(An−1(x0), x∗).

Hence

(1E − T )d(x∗, A(x∗)) ≤ d(x∗, An(x0)) + S d(An−1(x0), An(x0))+

+R d(An−1(x0), x∗)).
d(x∗, A(x∗)) ≤ (1E − T )−1[d(x∗, An(x0)) + S d(An−1(x0), An(x0))+

+R d(An−1(x0), x∗))] → 0.

By letting n → ∞ we have d(x∗, A(x∗)) = 0, i.e. FA = {x∗} and An(x0) →
x∗. �

The following theorem is the asymptotic variant of the Theorem 1 in E-metric
spaces.
Theorem 3. Let X be a sequentially complete E-metric space. Let S, T, R : E+ −→
E+ and let A : X −→ X be a map for which there exists k ∈ N∗ such that

d(Akx,Aky) ≤ S d(x, Akx) + T d(y, Aky) + R d(x, y), ∀x, y ∈ X.

Suppose that:
(i) 1E − T is a bijection
(ii) there exists x0 ∈ X such that,

∑
n∈N

[(1E − T )−1(S + R)]nd(x0, A
k(x0))

converges.
Then A has an unique fixed point.
Proof. We apply the Theorem 2 for the iterate Ak and we have that Ak has

an unique fixed point. Now apply the lemma and we have that the operator A has
an unique fixed point.

Remarks.
1. When S = 0 and T = 0, we have the asymptotic variant of Banach fixed

point theorem in E-metric spaces [1].
2. Let E = Rn then we have an asymptotic variant of Perov fixed point

theorem ([3]).
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APPROXIMATION BY GENERALIZED BRASS OPERATORS

ZOLTÁN FINTA

Abstract. We establish direct and converse theorems for generalized
Brass operators and for parameter dependent Brass - type operators, re-
spectively.

1. Introduction

In the paper [8], D. D. Stancu has introduced and investigated a linear positive
operator Ln,r : C[0, 1] → C[0, 1] defined by

(Ln,rf)(x) =
n−r∑
k=0

pn−r,k(x)
[

(1− x) f

(
k

n

)
+ x f

(
k + r

n

) ]
, (1)

where n > 2r ≥ 4 and pn−r,k(x) =
(

n
k

)
xk(1 − x)n−r−k, k = 0, n− r. The

operator Ln,2 has been given earlier by H. Brass in [4]. Stancu has established the
convergence of the sequence (Ln,r)n>2r, the representation of the remainder in the
approximation formula by means of the second - order divided differences and the
estimate of the order of approximation using the classical moduli of continuity, re-
spectively.

In what follows we give direct and converse theorems for the operator given
above. The converse results will be of Berens - Lorentz type [3] and of strong converse
inequality of type B, in the terminology of [7].

Furthermore, let us consider a new, parameter dependent linear positive op-
erator Lα

n,r : C[0, 1] → C[0, 1] defined by
(Lα

n,rf)(x) =

=
n−r∑
k=0

wn−r,k(x, α) ·
[

1− x(n− r − k)α
1 + (n− r)α

· f
(

k

n

)
+

x + kα

1 + (n− r)α
· f
(

k + r

n

) ]
,

(2)
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where n > 2r and

wn−r,k =
(

n− r
k

)
·
Πk−1

i=0 (x + iα) Πn−r−k−1
j=0 (1− x + jα)

(1 + α)(1 + 2α) . . . (1 + (n− 1)α)
,

where k = 0, n− r and α ≥ 0 is a parameter which may depend only on the natural
number n. In the case α = 0, L0

n,r is the generalized Brass operator defined by (1).
Similarly to ( 1 ), we shall prove direct and converse theorems for ( 2 ).

In the next sections we will use the weighted K− functional for f ∈ C[0, 1]
defined by

K2,φ(f, δ) = inf
{
‖f − g‖ + δ ‖φ2g′′‖ : g ∈ W 2

∞(φ)
}

, δ ≥ 0.

Here φ : [0, 1] → R is an admissible step - weight function of the Ditzian - Totik
modulus [1, pp. 8 - 9 ], ‖ · ‖ is the supremum norm on C[0, 1] and W 2

∞(φ) consists
of all functions g ∈ C[0, 1] such that g is twice continuously differentiable and ‖φ2g′′‖
is finite. It is well - known that K2,φ(f, δ) and ω2

φ(f,
√

δ) are equivalent [1, p. 11,
Theorem 2.1.1 ], where

ω2
φ(f, δ) = sup

0<h≤δ
sup

x±hφ(x)∈[0,1]

| f(x + hφ(x))− 2f(x) + f(x− hφ(x)) |

is the Ditzian - Totik modulus of smoothness of second order.

2. Direct and converse theorems

Our direct result is

Theorem 1. Let (Ln,r)n>2r be defined as in ( 1 ), ϕ(x) =
√

x(1− x), x ∈ [0, 1] and
φ : [0, 1] → R an admissible step -weight function of the Ditzian - Totik modulus with
φ2 concave. Then

|(Ln,rf)(x)− f(x)| ≤ 4 K2,φ

(
f,

n + r(r − 1)
n2

· ϕ(x)2

φ(x)2

)
holds true for x ∈ [0, 1] and f ∈ C[0, 1].

Proof. By [8, p. 214, Theorem 2.1 ] we have Ln,r(t− x, x) = 0 and

Ln,r((t− x)2, x) =
n + r(r − 1)

n2
· ϕ(x)2

On the other hand, the operator Ln,r is bounded as follows from

|(Ln,rf)(x)| ≤
n−r∑
k=0

pn−r,k(x) ·
[

(1− x)
∣∣∣ f (k

n

) ∣∣∣ + x
∣∣∣ f (k + r

n

) ∣∣∣ ]

≤ ‖f‖ ·
n−r∑
k=0

pn−r,k(x) = ‖f‖ (3)

Now we use [2, p. 398, Theorem 1 ], obtaining the assertion of the theorem.
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Corollary 1. Let Ln,r, ϕ and φ be given as in Theorem 1. Then

|(Ln,rf)(x)− f(x)| ≤ C ω2
φ

(
f,

√
n + r(r − 1)

n
· ϕ(x)
φ(x)

)
for x ∈ [0, 1] and f ∈ C[0, 1], where the constant C depends only on ϕ and φ.

Proof. It is a direct consequence of Theorem 1 and the equivalence between

K2,φ

(
f, n+r(r−1)

n2 · ϕ(x)2

φ(x)2

)
and ω2

φ

(
f,

√
n+r(r−1)

n · ϕ(x)
φ(x)

)
.

In order to prove the next theorems we need some Bernstein type inequalities.
Lemma 1. Let φ : [0, 1] → R be an admissible step - weight function of the Ditzian
- Totik modulus with φ2 concave, ϕ(x) =

√
x(1− x), x ∈ [0, 1] and n > 2r ≥ 4. Then

for f ∈ C[0, 1]
‖ϕ2(Ln,rf)′′‖ ≤ 4 (n− r) ‖f‖ (4)

and for smooth functions g ∈ C2[0, 1]

‖ϕ2(Ln,rg)′′‖ ≤ C1(r) ‖ϕ2g′′‖, (5)

‖φ2(Ln,rg)′′‖ ≤ C1(r) ‖φ2g′′‖, (6)
where C1(r) = 50r2 + 34r + 17.

Proof. Let

(L1
n,rf)(x) =

n−r∑
k=0

pn−r,k(x) f

(
k

n

)
, x ∈ [0, 1]

and

(L2
n,rf)(x) =

n−r∑
k=0

pn−r,k(x) f

(
k + r

n

)
, x ∈ [0, 1].

Then
(Ln,rf)(x) = (1− x) · (L1

n,rf)(x) + x · (L2
n,rf)(x), (7)

x ∈ [0, 1]. Furthermore, let λi
n−r,k : C[0, 1] → R (i = 1, 2) be positive linear func-

tionals defined by λ1
n−r,k(f) = f

(
k
n

)
and λ2

n−r,k(f) = f
(

k+r
n

)
, where k = 0, n− r

and f ∈ C[0, 1]. Then λ1
n−r,k(1) = λ2

n−r,k(1) = 1. Moreover, if Π1 denotes the set
of all algebraic polynomials of degree at most one then Li

n,r(Π1) ⊂ Π1 for i = 1, 2.
Therefore, by [2, p. 414, Lemma 3 ] we obtain

ϕ(x)2 |(Li
n,rf)′′(x)| ≤ 2 (n− r) ‖f‖ (8)

for x ∈ [0, 1], n > 2r and i = 1, 2.
On the other hand, in view of ( 7 ) we have

(Ln,rf)′′(x) = −2(L1
n,rf)′(x)+2(L2

n,rf)′(x)+(1−x)(L1
n,rf)′′(x)+x(L2

n,rf)′′(x). (9)

Using [6, p. 305, ( 2.1 ) ] we obtain

(L1
n,rf)′(x) = (n− r)

n−r−1∑
k=0

[
f

(
k + 1

n

)
− f

(
k

n

)]
· pn−r−1,k(x)
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and

(L2
n,rf)′(x) = (n− r)

n−r−1∑
k=0

[
f

(
k + r + 1

n

)
− f

(
k + r

n

)]
· pn−r−1,k(x).

Hence

ϕ(x)2 |(Li
n,rf)′(x) ≤ 1

2
(n− r) ‖f‖, (10)

i = 1, 2. Then, by ( 9 ), ( 8 ) and ( 10 ) we obtain

ϕ(x)2 |(Ln,rf)′′(x)| ≤ (n− r)‖f‖+ (n− r)‖f‖+ (1− x) · 2(n− r)‖f‖

+x · 2(n− r)|f‖ = 4(n− r)‖f‖,
which implies ( 4 ).

Furthermore,

λ1
n−r,k

((
t− k

n− r

)2
)

=
(

k

n
− k

n− r

)2

= r2 ·
(

k

n(n− r)

)2

≤ r2 ·
(

1
n

)2

and

λ2
n−r,k

((
t− k

n− r

)2
)

=
(

k + r

n
− k

n− r

)2

=
[(

k

n
− k

n− r

)
+
( r

n

)]2
≤ 2

[(
k

n
− k

n− r

)2 ( r

n

)2
]
≤ (2r)2 ·

(
1
n

)2

for n > 2r and k = 0, n− r. Thus, in view of [2, p. 144, Lemma 3 ] we have for
g ∈ C2[0, 1] :

‖φ2(Li
n,rg)′′‖ ≤ C ′(r) ‖φ2g′′‖, (11)

i = 1, 2, where C ′(r) = 48r2 + 32r + 8. By ( 9 ), we have
φ(x)2 · |(Ln,rg)′′(x)| ≤

≤ 2 φ(x)2 · |(L2
n,rg)′(x)− (L1

n,rg)′(x)|+
+ (1− x) · φ(x)2 |(L1

n,rg)′′(x)|+ x · φ(x)2 |(L2
n,rg)′′(x)| (12)

Therefore, in view of ( 11 ), we have to estimate φ(x)2 · |(L2
n,rg)′(x) − (L1

n,rg)′(x)|.
Using Taylor’s formulas

g

(
k + 1

n

)
= g(x)

(
k + 1

n
− x

)
g′(x) +

∫ k+1
n

x

(
k + 1

n
− u

)
g′′(u) du

and

g

(
k

n

)
= g(x) +

(
k

n
− x

)
g′(x) +

∫ k
n

x

(
k

n
− u

)
g′′(u) du,

we obtain
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(L1
n,rg)′(x) =

= (n− r)
n−r−1∑

k=0

[(
g

(
k + 1

n

)
− g(x)

)
−
(

g

(
k

n

)
− g(x)

)]
· pn−r−1,k(x)

= (n− r)

{
g′(x)

n−r−1∑
k=0

(
k + 1

n
− x

)
pn−r−1,k(x) +

+
n−r−1∑

k=0

pn−r−1,k(x)
∫ k+1

n

x

(
k + 1

n
− u

)
g′′(u) du −

− g′(x)
n−r−1∑

k=0

(
k

n
− x

)
pn−r−1,k(x) −

−
n−r−1∑

k=0

pn−r−1,k(x)
∫ k

n

x

(
k

n
− u

)
g′′(u) du

}
But, if

(Bn−r−1f)(x) =
n−r−1∑

k=o

pn−r−1,k(x) · f
(

k

n− r − 1

)
, f ∈ C[0, 1]

then Bn−r−1(t− x, x) = 0 and therefore
n−r−1∑

k=0

(
k + 1

n
− x

)
· pn−r−1,k(x) =

1
n
− r + 1

n
· x

and
n−r−1∑

k=0

(
k

n
− x

)
· pn−r−1,k(x) = −r + 1

n
· x,

respectively. Thus
(L1

n,rg)′(x) =

= (n− r) ·

{
1
n
· g′(x) +

n−r−1∑
k=0

pn−r−1,k(x)
∫ k+1

n

x

(
k + 1

n
− u

)
g′′(u) du −

−
n−r−1∑

k=0

pn−r−1,k(x)
∫ k

n

x

(
k

n
− u

)
g′′(u) du

}
(13)

Analogously, we have
(L2

n,rg)′(x) =

= (n− r) ·

{
1
n
· g′(x) +

n−r−1∑
k=0

pn−r−1,k(x)
∫ k+r+1

n

x

(
k + r + 1

n
− u

)
g′′(u) du

−
n−r−1∑

k=0

pn−r−1,k(x)
∫ k+r

n

x

(
k + r

n
− u

)
g′′(u) du

}
(14)
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ZOLTÁN FINTA

Thus ( 13 ) and ( 14 ) imply
(L2

n,rg)′(x)− (L1
n,rg)′(x) =

= (n− r) ·

{
n−r−1∑

k=0

pn−r−1,k(x)
∫ k+r+1

n

x

(
k + r + 1

n
− u

)
g′′(u) du −

−
n−r−1∑

k=0

pn−r−1,k(x)
∫ k+r

n

x

(
k + r

n
− u

)
g′′(u) du −

−
n−r−1∑

k=0

pn−r−1,k(x)
∫ k+1

n

x

(
k + 1

n
− u

)
g′′(u) du +

+
n−r−1∑

k=0

pn−r−1,k(x)
∫ k

n

x

(
k

n
− u

)
g′′(u) du

}
(15)

So we have to estimate |
∫ t

x
(t − u) g′′(u) du|. Because φ2 is concave, using [2, p.

399, ( 5 ) ] we obtain∣∣∣ ∫ t

x

(t− u) g′′(u) du
∣∣∣ ≤

∣∣∣ ∫ t

x

|t− u| · |g′′(u)| du
∣∣∣ ≤ ∣∣∣ ∫ t

x

|t− u|
φ(u)2

du
∣∣∣ · ‖φ2g′′‖

≤
∣∣∣ ∫ t

x

|t− x|
φ(x)2

du
∣∣∣ · ‖φ2g′′‖ ≤ (t− x)2

φ(x)2
· ‖φ2g′′‖

Hence

n−r−1∑
k=0

pn−r−1,k(x) ·
∣∣∣ ∫ k+r+1

n

x

(
k + r + 1

n
− u

)
g′′(u) du

∣∣∣ ≤
≤ ‖φ2g′′‖

φ(x)2
·

n−r−1∑
k=0

pn−r−1,k(x)
(

k + r + 1
n

− x

)2

,

n−r−1∑
k=0

pn−r−1,k(x) ·
∣∣∣ ∫ k+r

n

x

(
k + r

n
− u

)
g′′(u) du

∣∣∣ ≤
≤ ‖φ2g′′‖

φ(x)2
·

n−r−1∑
k=0

pn−r−1,k(x)
(

k + r

n
− x

)2

,

n−r−1∑
k=0

pn−r−1,k(x) ·
∣∣∣ ∫ k+1

n

x

(
k + 1

n
− u

)
g′′(u) du

∣∣∣ ≤
≤ ‖φ2g′′‖

φ(x)2
·

n−r−1∑
k=0

pn−r−1,k(x)
(

k + 1
n

− x

)2

28



APPROXIMATION BY GENERALIZED BRASS OPERATORS

and
n−r−1∑

k=0

pn−r−1,k(x) ·
∣∣∣ ∫ k

n

x

(
k

n
− u

)
g′′(u) du

∣∣∣ ≤
≤ ‖φ2g′′‖

φ(x)2
·

n−r−1∑
k=0

pn−r−1,k(x)
(

k

n
− x

)2

,

respectively. Using again Bn−r−1(t− x, x) = 0 and Bn−r−1(t2, x) = x2 + x(1−x)
n−r−1 we

obtain

n−r−1∑
k=0

pn−r−1,k(x)
(

k + r + 1
n

− x

)2

=

=
n−r−1∑

k=0

pn−r−1,k(x)

[(
k

n

)
+ 2

k

n
·
(

r + 1
n

− x

)
+
(

r + 1
n

− x

)2
]

=
(

n− r − 1
n

)2

·
[
x2 +

x(1− x)
n− r − 1

]
+ 2 · n− r − 1

n
·
(

r + 1
n

− x

)
· x +

+
(

r + 1
n

− x

)2

=
(

r + 1
n

)2

· x2 − 2
(

r + 1
n

)2

· x +
(

r + 1
n

)2

+
(

n− r − 1
n

)2

· x(1− x)
n− r − 1

≤
(

r + 1
n

)2

· (1− x)2 +
1

4(n− r − 1)
≤
(

r + 1
n

)2

+
1
4
· 1
n− r − 1

=
1
n
·
[
(r + 1)2

n
+

1
4
· n

n− r − 1

]
≤ 1

n
·
[
1
4
· (r + 1)2 + 1

]
, (16)

because

sup
{

n

n− r − 1
: n > 2r

}
<

2r

2r − r − 1
≤ 4,

where n > 2r ≥ 4. With similar arguments we obtain

n−r−1∑
k=0

pn−r−1,k(x) ·
(

k + r

n
− x

)2

=

=
(

r + 1
n

· x− r

n

)2

+
(

n− r − 1
n

)2

· x(1− x)
n− r − 1

≤
( r

n

)2

+
1
4
· 1
n− r − 1

≤ 1
n
·
(

1
4
· r2 + 1

)
, (17)

n−r−1∑
k=0

pn−r−1,k(x)
(

k + 1
n

− x

)2

=
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ZOLTÁN FINTA

=
(

r + 1
n

· x− 1
n

)2

+
(

n− r − 1
n

)2

· x(1− x)
n− r − 1

≤
( r

n

)2

+
1
4
· 1
n− r − 1

≤ 1
n
·
(

1
4
· r2 + 1

)
(18)

and
n−r−1∑

k=0

pn−r−1,k(x)
(

k

n
− x

)2

=

=
(

r + 1
n

)2

· x2 +
(

n− r − 1
n

)2

· x(1− x)
n− r − 1

≤
(

r + 1
n

)2

+
1
4
· 1
n− r − 1

≤ 1
n
·
[
1
4
(r + 1)2 + 1

]
. (19)

Now, in view of ( 15 ), ( 16 ), ( 17 ), ( 18 ) and ( 19 ) we obtain
2 φ(x)2 · |(L2

n,rg)′(x)− (L1
n,rg)′(x)| ≤

≤ 2
n− r

n
·
{

1
2
(r + 1)2 + 2 +

1
2
r2 + 2

}
· ‖φ2g′′‖

≤
(
2r2 + 2r + 9

)
· ‖φ2g′′‖.

Hence, by ( 12 ) and ( 11 ) we get
φ(x)2 |(Ln,rg)′′(x)| ≤

≤ (2r2 + 2r + 9) · ‖φ2g′′‖+ (1− x) · C ′(r) ‖φ2g′′‖+ x · C ′(r) ‖φ2g′′‖
= (50r2 + 34r + 17) · ‖φ2g′′‖.

This means that ‖φ2(Ln,rg)′′‖ ≤ C1(r) · ‖φ2g′′‖, which was to be proved at ( 6 ).
If φ ≡ ϕ then we obtain ( 5 ), which completes the proof of lemma.

Remark 1. If φ ≡ ϕ then, by Corollary 2, we have

‖Ln,rf − f‖ ≤ C ω2
ϕ

(
f,

√
n + r(r − 1)

n

)
. (20)

Thus our first converse theorem will constitute an inverse of ( 20 ). More precisely
we have

Theorem 2. If f ∈ C[0, 1] and k > 2r, n > 2r, r ≥ 2 then we have

K2,ϕ

(
f,

n + r(r − 1)
n2

)
≤ ‖Lk,rf − f‖+ C · k

n
·K2,ϕ

(
f,

k + r(r − 1)
k2

)
,

where the constant C depends only on r ( it can be chosen as (r + 1)C1(r) ).

Proof. By Lemma 3 : (4)− (5) we obtain
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K2,ϕ

(
f, n+r(r−1)

n2

)
≤

≤ ‖f − Lk,rf‖+
n + r(r − 1)

n2
· ‖ϕ2(Lk,rf)′′‖

≤ ‖f − Lk,rf‖+
n + r(r − 1)

n2
·
{
ϕ2(Lk,r(f − g))′′‖+ ‖ϕ2(Lk,rg)′′‖

}
≤ ‖f − Lk,rf‖+

n + r(r − 1)
n2

·
{
4(k − r)‖f − g‖+ C1(r) · ‖ϕ2g′′‖

}
= ‖f − Lk,rf‖+

n + r(r − 1)
n

· k − r

n
·
{

4‖f − g‖+ C1(r) ·
1

k − r
· ‖ϕ2g′′‖

}
≤ ‖f − Lk,rf‖+

r + 1
2

· k

n
·
{

4‖f − g‖+ C1(r) · 2 ·
k + r(r − 1)

k2
· ‖ϕ2g′′‖

}
≤ ‖Lk,rf − f‖+ C · k

n
·
{
‖f − g‖+

k + r(r − 1)
k2

· ‖ϕ2g′′‖
}

.

Now taking infimum over all g ∈ C2[0, 1] we obtain the assertion of our theorem.
Remark 2. By Corollary 2, the implication

ω2
φ(f, δ) = O(δα) ⇒ |(Ln,rf)(x)− f(x)| ≤ C

(√
n + r(r − 1)

n
· ϕ(x)
φ(x)

)α

holds true for α ∈ (0, 2).
The converse result of Berens - Lorentz type is included in the next theorem

Theorem 3. Let (Ln,r)n>2r be defined by ( 1 ), ϕ(x)
√

x(1− x), x ∈ [0, 1] and
φ : [0, 1] → R an admissible step - weight function of the Ditzian - Totik modulus
with φ2 and ϕ2/φ2 concave functions on [0, 1]. Then for f ∈ C[0, 1] and α ∈ (0, 2) the
pointwise approximation

|(Ln,rf)(x)− f(x)| ≤ C

(√
n + r(r − 1)

n
· ϕ(x)
φ(x)

)α

,

x ∈ [0, 1] implies ω2
φ(f, δ) ≤ C δα, δ > 0.

Proof. We mention that C > 0 denotes a constant in this theorem which may
depends only on r and it can be different at each occurrence.

The statement of the theorem results from [2, p. 410, Theorem 3 ] with slight
modification using Lemma 3. Indeed, because n > 2r ≥ 4 we hqve n+r(r−1)

n < r+1
n .

Thus

|(Ln,rf)(x)− f(x)| ≤ C

(
r + 1

2

)α/2

·
(

n−1/2 · ϕ(x)
φ(x)

)α

.

By Lemma 3 : ( 4 ) we have |ϕ2(Ln,rf)′′‖ ≤ 4n‖f‖ for f ∈ C[0, 1]. Using ( 6 ) and
step by step the proof of [2, p. 410, Theorem 3 ] we obtain

ω2
φ(f, t) ≤ C

(
δα +

t2

δ2
· ω2

φ(f, δ)
)

, 0 < t ≤ δ
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which yields the assertion of the theorem by the well - known Berens - Lorentz lemma
[3].

To prove the strong converse inequality of type B for Ln,r we need another
lemmas.
Lemma 2. Let ϕ(x) =

√
x(1− x), x ∈ [0, 1] and n > 2r ≥ 4. Then for f ∈ C[0, 1]

‖ϕ3(Ln,rf)′′′‖ ≤ C2 n3/2‖f‖ (21)

and for smooth functions g ∈ C2[0, 1]

‖ϕ3(Ln,rg)′′′‖ ≤ C3(r)n1/2‖ϕ2g′′‖, (22)

where C2 =
√

61 + 3
√

22 + 2
√

2 + 11 and C3(r) = 3C ′(r) + 3
√

2 = 144r2 + 96r +
24 + 3

√
2.

Proof. By ( 9 ) we have

(Ln,rf)′′′(x) = −3(L1
n,rf)′′(x) + 3(L2

n,rf)′′(x) + (1− x)(L1
n,rf)′′′(x) + x(L2

n,rf)′′′(x).

Then

ϕ(x)3 · |(Ln,rf)′′′(x)| ≤ 3ϕ(x)3|(L1
n,rf)′′(x)|+ 3ϕ(x)3|(L2

n,rf)′′(x)|
+ (1− x)ϕ(x)3|(L1

n,rf)′′′(x)|+ xϕ(x)3|(L2
n,rf)′′′(x)|(23)

Using ( 8 ) we obtain

ϕ(x)3|(Li
n,rf)′′(x)| ≤ 2(n− r)ϕ(x)‖f‖ ≤ (n− r)‖f‖ (24)

for x ∈ [0, 1], n > 2r and i = 1, 2.
Furthermore, by means of the expressions

Tn,s(x) =
n∑

k=0

(k − nx)s pn,k(x), n = 1, 2, . . . , s = 0, 1, 2, . . .

we have the following estimates ( see [6, pp. 303 - 304 ] and [7, p.128, Lemma
9.4.4 ] ] ) : Tn,2(x) = nϕ(x)2, Tn,4(x) ≤ 11n2ϕ(x)4 and Tn,6(x) ≤ 61n3ϕ(x)6, where
x ∈ [1/n, 1− 1/n] and n ≥ 2. In this case ϕ(x) ≥ 1√

2n
, x ∈ [1/n, 1− 1/n]. Then, for

the Bernstein polynomials

(Bnf)(x) =
n∑

k=0

pn,k(x) f

(
k

n

)
, f ∈ C[0, 1]

and for x ∈ [1/n, 1− 1/n] we have

ϕ(x)3 · |(Bnf)′′′(x)| =

=
1

ϕ(x)3
·
∣∣∣ n∑

k=0

f

(
k

n

)
(k − nx)3pn,k(x)− 3(1− 2x)

n∑
k=0

f

(
k

n

)
(k − nx)2pn,k(x) −

−(3nx(1− x)− 2x(1− x) + 1)
n∑

k=0

f

(
k

n

)
(k − nx)pn,k(x) + 2nx(1− x)(1− 2x)

∣∣∣
≤ ‖f‖

ϕ(x)3
·
{

(Tn,6(x))1/2 + 3|1− 2x| (Tn,4(x))1/2
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APPROXIMATION BY GENERALIZED BRASS OPERATORS

+ |3nϕ(x)2 − 2ϕ(x)2 + 1| (Tn,2(x))1/2 + 2n|1− 2x| · ϕ(x)2
}

≤ ‖f‖
ϕ(x)3

·
{√

61n3/2ϕ(x)3 + 3
√

11nϕ(x)2(3nϕ(x)2 + 1)n1/2ϕ(x) + 2nϕ(x)2
}

≤ ‖f‖ ·
{√

61n3/2 + 3
√

22n3/2 + 5n3/2 + 2
√

2n3/2
}

=
(√

61 + 3
√

22 + 5 + 2
√

2
)

n3/2‖f‖. (25)

On the other hand, by [1, p. 125, ( 9.4.3 ) ] we have for x ∈ [0, 1/n]∪[1−1/n, 1]
and f ∈ C[0, 1] :

ϕ(x)3|(Bnf)′′′(x)| ≤ n−3/2·
∣∣∣ n(n− 1)(n− 2)

n−3∑
k=0

[
f

(
k + 3

n

)
− 3f

(
k + 2

n

)
+

+ 3f

(
k + 1

n

)
− f

(
k

n

)]
pn−3,k(x)

∣∣∣ ≤ 8n3/2‖f‖. (26)

Therefore, in view of ( 25 ) and ( 26 ) we get

ϕ(x)3|(Bnf)′′′(x)| ≤ (
√

61 + 3
√

22 + 2
√

2 + 5)n3/2‖f‖ (27)

for f ∈ C[0, 1] and x ∈ [0, 1].
Moreover, (L1

n,rf)(x) = (Bn−rg
1
n)(x) and (L2

n,rf)(x) = (Bn−rg
2
n)(x), where

g1
n(x) = f

(
n−r

n · x
)
, x ∈ [0, 1] and g2

n(x) = f
(

n−r
n · x + r

n

)
, x ∈ [0, 1], respectively.

Then, by ( 27 ) we obtain

ϕ(x)3|(L1
n,rf)′′′(x)| ≤ (

√
61 + 3

√
22 + 2

√
2 + 5)n3/2‖g1

n‖

≤ (
√

61 + 3
√

22 + 2
√

2 + 5)n3/2‖f‖
and

ϕ(x)3|(L1
n,rf)′′′(x)| ≤ (

√
61 + 3

√
22 + 2

√
2 + 5)n3/2‖g2

n‖

≤ (
√

61 + 3
√

22 + 3
√

2 + 5)n3/2‖f‖.
Hence, by ( 23 ) and ( 24 ) we have

ϕ(x)3|(Ln,rf)′′′(x)| ≤ 6n‖f‖+ (
√

61 + 3
√

22 + 2
√

2 + 5)n3/2‖f‖
≤ C2n

3/2‖f‖,
which was to be proved.

For ( 22 ) we use [7, p. 87, Lemma 8.4 ] :

‖ϕ3(Bng)′′′‖ ≤ 3√
2
n1/2‖ϕ2g′′‖.

Hence, by ( 23 ), replacing f by g, and ( 11 ) with φ ≡ ϕ we obtain

ϕ(x)3|(Ln,rg)′′′(x)| ≤

≤ 3C ′(r)‖ϕ2g′′‖+ (1− x) · ϕ(x)3|(Bn−rg
1
n)′′′(x)|+ x · ϕ(x)3|(Bn−rg

2
n)′′′(x)|

≤ 3C ′(r)‖ϕ2g′′‖+ (1− x) · 3√
2
(n− r)1/2 · ‖ϕ2(g1

n)′′‖+ x · 3√
2
(n− r)1/2 · ‖ϕ2(g2

n)′′‖
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≤ 3C ′(r)‖ϕ2g′′‖+ (1− x) · 3√
2
(n− r)1/2 ·

(
n− r

n

)2

· ‖ϕ2g′′‖+

+x · 3√
2
(n− r)1/2 ·

(
n− r

n

)2

· ‖ϕ2g′′‖ ≤ (3C ′(r) + 3
√

2)n1/2‖ϕ2g′′‖.

Hence ‖ϕ3(Ln,rg)′′′‖ ≤ C3(r)n1/2‖ϕ2g′′‖, which completes the proof of the lemma.

Lemma 3. Let (Ln,r)n>2r be defined by ( 1 ), ϕ(x) =
√

x(1− x), x ∈ [0, 1] and
a > 0, Ea,n =

{
x0 ∈ [0, 1] | x0 ± an−1/2ϕ(x0) ∈ [0, 1]

}
,

gM,n,x0(t) =
{

(t− x0)2, if |t− x0| ≥ Mn−1/2ϕ(x0)
0, otherwise.

Then (Ln,rgM,n,x0)(x0)/(n−1ϕ(x0)2) → 0 as M →∞ uniformly in n and x0 ∈ Ea,n.

Proof. Simple computations show, if x0 ∈ Ea,n then x0 ∈
[

a2

n+a2 , 1− a2

n+a2

]
. This

means that √
nϕ(x0) ≥ a

1 + a2
. (28)

Therefore, by ( 7 ) we obtain
n

ϕ(x0)2
· (Ln,rgm,n,x0) (x0) =

=
n

ϕ(x0)2
·

(1− x0)
∑∣∣∣ k

n−x0

∣∣∣≥Mn−1/2ϕ(x0)

pn−r,k(x0)
(

k

n
− x0

)2

+

+ x0

∑∣∣∣ k+r
n −x0

∣∣∣≥Mn−1/2ϕ(x0)

pn−r,k(x0)
(

k + r

n
− x0

)2


≤ n

ϕ(x0)2
·

{
(1− x0)

n−r∑
k=0

1
M2

· n

ϕ(x0)2
· pn−r,k(x0)

(
k

n
− x0

)4

+

+ x0

n−r∑
k=0

1
M2

· n

ϕ(x0)2
· pn−r,k(x0)

(
k + r

n
− x0

)4
}

=
1

M2
·
(

n

ϕ(x0)2

)2

·
{

(1− x0)
[

1
n4
· Tn−r,4(x0)− 4 · rx0

n4
· Tn−r,3(x0) +

+ 6 · (rx0)2

n4
· Tn−r,2(x0) +

(rx0)4

n4

]
+ x0

[
1
n4
· Tn−r,4(x0) −

− 4 · r(1− x0)
n4

· Tn−r,3(x0) + 6 · (r(1− x0))2

n4
· Tn−r,2(x0) +

(r(1− x0))4

n4

]}
=

1
M2

·
(

n

ϕ(x0)2

)2

·
{

1
n4
· Tn−r,4(x0)− 8 · r

n4
· ϕ(x0)2 · Tn−r,3(x0) +
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+ 6 · r2

n4
· ϕ(x0)2 · Tn−r,2(x0) +

r4

n4
· ϕ(x0)2(1− 3ϕ(x0)2)

}
.

Hence, by [1, p. 128, Lemma 9.4.4 ] and ( 28 ) we obtain
n

ϕ(x0)2
· (Ln,rgM,n,x0) (x0) ≤

≤ 1
M2

·
(

n

ϕ(x0)2

)2

· C

n4
·
{

(n− r)2ϕ(x0)4 + 8rϕ(x0)2 · (Tn−r,6(x0))
1/2 +

+ 6r2 · ϕ(x0)2(n− r)ϕ(x0)2 + r4ϕ(x0)2(1 + 3ϕ(x0)2)
}

≤ C

M2
· 1
n2ϕ(x0)2

·
{

n2ϕ(x0)4 + 8r2n3/2ϕ(x0)5 +

+ 6r2 · nϕ(x0)4 + r4ϕ(x0)2 + 3r4ϕ(x0)4
}
≤ C

M2
→ 0

as M → ∞. ( Here C > 0 denotes an absolute constant which can depends only on
r and it can be different at each occurrence ).
Remark 3. For n > 2r we have

1√
n
≤
√

n + r(r − 1)
n

≤
√

r + 1
2n

· 1√
n

Therefore, by Corollary 2 we have for φ ≡ ϕ the following direct result:

‖Ln,rf − f‖ ≤ C ω2
φ

(
f,

1√
n

)
. (29)

The constant C may depends only on ϕ, φ and r.

Thus the next theorem will constitute an inverse of type B for ( 29 ) :

Theorem 4. Let (Ln,r)n>2r be given by ( 1 ) and ϕ(x) =
√

x(1− x), x ∈ [0, 1].
Then there exist two constant K and C̃ ( C̃ may depends only on ϕ, φ andr ) such
that for all f ∈ C[0, 1] and m,n with M ≥ Kn we have

ω2
ϕ

(
f,

1√
n

)
≤ C̃ · m

n
· (‖Ln,rf − f‖ + ‖Lm,rf − f‖) (30)

Proof. Using ( 3 ), Lemma 3 : ( 4 ) - ( 5 ), Lemma 6 : ( 21 ) - ( 22 ) and Lemma 7,
we obtain ( 30 ) in view of [9, p. 372, Theorem 1 ].

3. A new generalized Brass operator

In this section we establish direct and converse theorems for the operators
defined by ( 2 ).

Theorem 5. Let (Lα
n,r)n>2r be given by ( 2 ) and ϕ(x) =

√
x(1− x), x ∈ [0, 1].

Then there exists an absolute constant C > 0 such that for all f ∈ C[0, 1] we have

‖Ln,rf − f‖ ≤ C ω2
ϕ

(
f ,

√
1

1 + α
·
(

n + r(r − 1)
n2

+ α

) )
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Proof. By [5, p. 1180, Lemma 3.1 ] we have for α > 0 and x ∈ (0, 1) the following
identity

wn−r,k(x, α) =
(

n− r
k

)
·
B
(
xα−1 + k, (1− x)α−1 + n− r − k

)
B (xα−1, (1− x)α−1)

.

Consequently, Lα
n,rf can be represented by means of the operator ( 1 ), as follows

(Lα
n,rf)(x) =

1
B (xα−1, (1− x)α−1)

·
∫ 1

0

t
x
α−1(1− t)

1−x
α −1 · (Ln,rf)(t) dt (31)

On the other hand, by ( 31 ) and [8, p. 214, Theorem 2.1 ] we have

Lα
n,r(u− x, x) =

=
1

B (xα−1, (1− x)α−1)
·
∫ 1

0

t
x
α−1(1− t)

1−x
α −1 · Ln,r(u− x, t) dt

=
1

B (xα−1, (1− x)α−1)
·
∫ 1

0

t
x
α−1(1− t)

1−x
α −1 ·

[
Lα

n,r(u− t, t) + Ln,r(t− x, x)
]

dt

=
1

B (xα−1, (1− x)α−1)
·
∫ 1

0

t
x
α−1(1− t)

1−x
α −1 (t− x) dt = 0 (32)

and
Lα

n,r((u− x)2, x) =

=
1

B (xα−1, (1− x)α−1)
·
∫ 1

0

t
x
α−1(1− t)

1−x
α −1 · Ln,r((u− x)2, t) dt

=
1

B (xα−1, (1− x)α−1)
·
∫ 1

0

t
x
α−1(1− t)

1−x
α −1 ·

[
Ln,r((u− t)2, t) +

+ 2(t− x)Ln,r(u− t, t) + (t− x)2
]

dt

=
1

B (xα−1, (1− x)α−1)
·
∫ 1

0

t
x
α−1(1− t)

1−x
α −1 · n + r(r − 1)

n2
· t(1− t) dt +

+
1

B (xα−1, (1− x)α−1)
·
∫ 1

0

t
x
α−1(1− t)

1−x
α −1 · (t− x)2 dt

=
1

1 + α
·
(

n + r(r − 1)
n2

+ α

)
· ϕ(x)2 (33)

Furthermore, by ( 3 )

|(Lα
n,rf)(x)| ≤ 1

B (xα−1, (1− x)α−1)
· |(Ln,rf)(t)| dt ≤ ‖f‖.

So
‖Lα

n,rf‖ ≤ ‖f‖ (34)

for all f ∈ C[0, 1]. Now, using ( 32 ), ( 33 ), ( 34 ) and the standard method [1,
Chap. 9 ], we obtain the assertion of the theorem.

In what follows we shall use some lemmas. These are the following:
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Lemma 4. For (Ln,r)n>2r, ϕ(x) =
√

x(1− x), x ∈ [0, 1] and f ∈ C[0, 1] we have

1
n
· ‖ϕ2(Ln,rf)′′‖ ≤ C0 (‖Ln,rf − f‖ + ‖LKn,rf − f‖) ,

where C0 > 0 is an absolute constant.
Proof. The announced inequality is the estimate ( 14 ) for m = Kn given in [9, p.
373 ], using the estimates ( 4 ), ( 5 ), ( 21 ), ( 22 ) and Lemma 7.

Lemma 5. For (Ln,r)n>2r, ϕ(x) =
√

x(1− x), x ∈ [0, 1] and f ∈ C[0, 1] we have

‖Lα
n,rf − Ln,rf‖ ≤ α

1 + α
· ‖ϕ2(Ln,rf)′′‖.

Proof. By ( 31 ) and Taylor’s formula :

(Ln,rf)(t) = (Ln,rf)(x) + (t− x)(Ln,rf)′(x) +
∫ t

x

(t− u)(Ln,rf)′′(u) du

we have

(Lα
n,rf)(x)− (Ln,rf)(x) =

1
B (xα−1, (1− x)α−1)

·
∫ 1

0

t
x
α−1(1− t)

1−x
α −1 ·

·
[
(t− x)(Ln,rf)′(x) +

∫ t

x

(t− u)(Ln,rf)′′(u) du

]
dt

=
1

B (xα−1, (1− x)α−1)
·
∫ 1

0

t
x
α−1(1− t)

1−x
α −1 ·

·
{∫ t

x

(t− u)(Ln,rf)′′(u) du

}
dt. (35)

Hence, by [1, p. 140, Lemma 9.6.1 ] we obtain

|(Lα
n,rf)(x)− (Ln,rf)(x)| =

1
B (xα−1, (1− x)α−1)

·
∫ 1

0

t
x
α−1(1− t)

1−x
α −1 ·

·
∣∣∣ ∫ t

x

|t− u|
u(1− u)

· u(1− u) |(Ln,rf)′′(u)| du
∣∣∣ dt

≤ ‖ϕ2(Ln,rf)′′‖
B (xα−1, (1− x)α−1)

·
∫ 1

0

t
x
α−1(1− t)

1−x
α −1 ·

· (t− x)2

x(1− x)
dt =

α

1 + α
· ‖ϕ2(Ln,rf)′′ V ert,

which was to be proved.
We have the following result:

Theorem 6. Let (Lα
n,r)n>2r be given by ( 2 ) and ϕ(x) =

√
x(1− x), x ∈ [0, 1]. If

α = α(n) and (α/(1 + α)) · n (C0 + C0 · C1(r) + 4K) ≤ α̃ < 1 then

(1− α̃) (‖Ln,rf − f‖+ ‖LKn,rf − f‖) ≤ ‖Lα
n,rf − f‖+ ‖Lα

Kn,rf − f‖ ≤
≤ (1 + α̃) (‖Ln,rf − f‖+ ‖LKn,rf − f‖)
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for all f ∈ C[0, 1]. Moreover, there exists an absolute constant C > 0 such that for
all f ∈ C[0, 1] we have

C−1 ω2
ϕ

(
f,

1√
n

)
≤ ‖Lα

n,rf − f‖+ ‖LKn,rf − f‖ ≤ C ω2
ϕ

(
f,

1√
n

)
.

Proof. We have, in view of Lemma 11 :
‖Lα

n,rf − f‖+ ‖Lα
Kn,rf − f‖ ≤

≤ ‖Lα
n,rf − Ln,rf‖+ ‖Ln,rf − f‖+ ‖Lα

Kn,rf − LKn,rf − f‖+ ‖LKn,rf − f‖

≤ α

1 + α
· ‖ϕ2(Ln,rf)′′‖+ ‖Ln,rf − f‖+

α

1 + α
· ‖ϕ2(LKn,rf)′′‖+ ‖LKn,rf − f‖.

Using Lemma 3 : ( 4 ) - ( 5 ), we obtain

‖ϕ2(LKn,rf)′′‖ ≤ ‖ϕ2(LKn,r(f − Ln,rf))′′‖+ ‖ϕ2(LKn,r(Ln,rf))′′‖
≤ 4Kn‖f − Ln,rf‖+ C1(r) · ‖ϕ2(Ln,rf)′′‖.

Thus

‖Lα
n,rf − f‖+ ‖Lα

Kn,rf − f‖ ≤ α

1 + α
· (1 + C1(r)) · ‖ϕ2(Ln,rf)′′‖ +

+
(

α

1 + α
· 4Kn + 1

)
· ‖Ln,rf − f‖+ ‖LKn,rf − f‖.

Hence, by Lemma 10 we obtain
‖Lα

n,rf − f‖+ ‖LKn,rf − f‖ ≤

≤ α

1 + α
· nC0 · (1 + C1(r)) · ( ‖Ln,rf − f‖+ ‖LKn,rf − f‖ ) +

+
(

α

1 + α
· 4Kn + 1

)
· ‖Ln,rf − f‖+ ‖LKn,rf − f‖

=
[
1 +

α

1 + α
· (nC0(1 + C1(r)) + 4K)

]
· ‖Ln,rf − f‖ +

+
[
1 +

α

1 + α
· nC0(1 + C1(r))

]
· ‖LKn,rf − f‖

≤ (1 + α̃) · ( ‖Ln,rf − f‖+ ‖LKn,rf − f‖ ) (36)

On the other hand
‖Ln,rf − f‖+ ‖LKn,rf − f‖ ≤
≤ ‖Lα

n,rf − Ln,rf‖+ ‖Lα
n,rf − f‖+ ‖Lα

Kn,rf − LKn,rf‖+ ‖Lα
Kn,rf − f‖

≤ α

1 + α
· ‖ϕ2(Ln,rf)′′‖+ ‖Lα

n,rf − f‖+
α

1 + α
· ‖ϕ2(LKn,rf)′′‖+ ‖Lα

Kn,rf − f‖.

Using Lemma 10 and Lemma 3 : ( 4 ) - ( 5 ), we obtain

‖Ln,rf − f‖+ ‖Lkn,rf − f‖ ≤

≤ α

1 + α
· nC0 · ( ‖Ln,rf − f‖+ ‖LKn,rf − f‖ ) + ‖Lα

n,rf − f‖ +

+
α

1 + α
·
(

4Kn‖Ln,rf − f‖+ C1(r)‖ϕ2(Ln,rf)′′‖
)

+ ‖Lα
Kn,rf − f‖
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≤ ‖Lα
n,rf − f‖+ ‖Lα

Kn,rf − f‖+
α

1 + α
· (nC0(1 + C1(r)) + 4Kn) · ‖Ln,rf − f‖ +

+
α

1 + α
· nC0(1 + C1(r)) · ‖LKn,rf − f‖

≤ ‖Lα
n,rf − f‖+ ‖Lα

Kn,rf − f‖+ α̃ ( ‖Ln,rf − f‖+ ‖LKn,rf − f‖ ) .

Hence

(1− α̃) ( ‖Ln,rf − f‖+ ‖LKn,rf − f‖ ) ≤ ‖Lα
n,rf − f‖+ ‖Lα

Kn,rf − f‖. (37)

In conclusion ( 36 ) and ( 37 ) imply the assertion of the theorem. Moreover,
by ( 29 ) and ( 30 ), we obtain the second statement of the theorem using the first
one.
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Computer Science, 1, M. Kogălniceanu st., Cluj, Romania

E-mail address: fzoltan@math.ubbcluj.ro

39
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THE FIRST EIGENVALUE AND THE EXISTENCE RESULTS

ANDREI HORVAT-MARC

Abstract. In this paper we establish some conditions to existence for the
solution of the boundary value problem

− 1

q (x)

(
p (x) u′ (x)

)′
= f

(
x, u (x) , w (p, q) u′ (x)

)
, x ∈ (0, h)

u (0) = u (1) = 0

The hypotheses from the main result contain assumption on the first
eigenvalue of some particular Sturm-Liouville problem. Using the lower
boundary for the first eigenvalue, we can give some conditions of existence.

1. Introduction and notation

We consider the equation

− (p (x) u′ (x))′ + q (x)u (x) = λr (x) u (x) (1)

for x ∈ [0, h], where p, p′, q, r ∈ C (0, h) and satisfies p (x) ≥ p0 > 0, q (x) ≥ 0,
r (x) ≥ r0 > 0 for x ∈ [0, h]. The Sturm-Liouville problem is to find all eigenvalues
λ for which the equation (1) has a nontrivial solution which satisfy the boundary
condition

αu (0) + βu′ (0) = 0
γu (h) + δu′ (h) = 0,

with α, β, γ, δ ∈ R such that α2 + β2 6= 0 and γ2 + δ2 6= 0. The corresponding
nontrivial solution is called an eigenfunction.
Example 1.1. For the problem

−u′′ (x) = λu (x) , x ∈ [0, π]

u (0) = (π) = 0
the eigenvalue are λk = k2, k ∈ N and the corresponding eigenfunction is uk (x) =
Ak sin kx, k ∈ N.

In general, the first eigenvalue λ1 of the Sturm-Liouville problem is too dif-
ficult to determinate. Using the Weinstein’s method of intermediate problem we can
find a lower boundary for λ1 see [4]), and by Rayleigh-Ritz method it’s possible to
determinate an upper boundary for λ1 .

Received by the editors: 30.09.2003.
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Example 1.2. [2] Let be the Sturm-Liouville problem

− (p (x) u′ (x))′ + q (x) u (x) = λu (x) , x ∈ [0, h]

u (0) = u (h) = 0

where p, p′, q ∈ C (0, h), 0 < p0 ≤ p (x) ≤ p1 and 0 ≤ q (x) ≤ q1 on [0, h]. We have
the next approximation for the eigenvalues of this problem

p0π
2k2

h2
≤ λk ≤

p1π
2k2

h2
+ q1, k ∈ N

In the sequel, we make the following notation:

(N1) Rβ is the set of all measurable functions q : (0, h) → [0,∞) such that
h∫
0

[q (x)]β dx = 1

where β is a real number, β 6= 0;
(N2) mβ = inf

q∈Rβ

λ1 and Mβ = sup
q∈Rβ

λ1;

(N3) Rα is the set of nonnegative measurable functions p on (0, h) such that
h∫
0

[p (x)]α dx = 1

where α is a real number, α 6= 0;
(N4) mα = inf

q∈Rα

λ1 and Mα = sup
q∈Rα

λ1;

(N5) B is the Euler beta function B (a, b) =
1∫
0

xa−1 (1− x)b−1
dx;

(N6) C (α)=


2α+1

α

(
α+1
2α+1

)1− 1
α

B2
(

1
2 , 1

2 + 1
2α

)
, for α ∈ (−∞,−1) ∪ (0,+∞)

−4 2α+1
α

(
α+1
2α+1

)1− 1
α

(∫∞
0

dt

(1+t2)
1
2−

1
2α

)
, for α ∈

(
− 1

2 , 0
) ;

(N7) The set

Γ = L2
q (0, 1) ={

u : [0, 1] → R;u is measurable function and
∫ 1

0
q (x) |u (x)|2 dx < ∞

}
.

is endowed with the inner product

(u, v)Γ =
∫ 1

0

q (x)u (x) v (x) dx (2)

and the norm

‖u‖Γ =
(∫ 1

0

q (x) |u (x)|2 dx

) 1
2

. (3)

(N8) L2
q

(
0, 1; R2

)
=

{
u : [0, 1] → R2;

∫ 1

0
q (x) |u (x)|2 dx < ∞

}
.
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(N9) The set H =
{
u ∈ L2

q (0, 1) ;u is absolute continuous and u′ ∈ L2
p (0, 1)

}
is en-

dowed with the inner product

(u, v)H =
∫ 1

0

p (x) u′ (x) v′ (x) dx (4)

and the norm

‖u‖H =
(∫ 1

0

p (x) |u′ (x)|2 dx

) 1
2

. (5)

Let us consider the Sturm-Liouville problem

u′′ (x) + λq (x) u (x) = 0, x ∈ (0, h) (6)

u (0) = u (h) = 0
The variational principle implies that the first eigenvalue λ1 can be founds as

λ1 = inf
u∈C∞0 (0,h)

u 6=0

∫ h

0
[u′ (x)]2 dx∫ h

0
q (x) [u (x)]2 dx

(7)

In the following, we remainder a result of Y. Egorov and V. Kondratiev
Lemma 1.1. [1] If β > 1, then

mβ =
(

1
h

)2− 1
β (β − 1)1+

1
β

β (2β − 1)
1
β

B2

(
1
2
,
1
2
− 1

2β

)
and Mβ = ∞.

If β = 1, then M1 = ∞ and m1 = 4
h .

If 0 < β < 1
2 , then

Mβ =
(

1
h

)2− 1
β (1− β)1+

1
β

β (1− 2β)
1
β

B2

(
1
2
,

1
2β

)
and mβ = 0.

If β < 0, then

Mβ =
(

1
h

)2− 1
β (1− β)1+

1
β

β (1− 2β)
1
β

B2

(
1
2
,
1
2
− 1

2β

)
and mβ = 0.

If 1
2 ≤ β < 1, then Mβ = ∞ and mβ = 0.

For the Sturm-Liouville problem

(p (x) u′ (x))′ + λu (x) = 0, for x ∈ (0, 1) (8)

u (0) = u (1) = 0.
The first eigenvalue for this problem is given by

λ1 = inf
u∈C∞0 (0,h)

u 6=0

∫ 1

0
p (x) [u′ (x)]2 dx∫ 1

0
[u (x)]2 dx

. (9)

We have the following result
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Lemma 1.2. [1] If α > − 1
2 , α 6= 0 then Mα = C (α) and mα = 0.

If α < −1 then mα = C (α) and Mα = ∞.
If −1 ≤ α ≤ − 1

2 , then Mα = ∞ and mα = 0.

2. Existence results

In that follows, we assume that f : [0, 1]×R2 → R satisfies the Caratheodory
condition, i.e.

(i) the application f (x, ·) : R2 → R is continuous a.e. for x ∈ [0, 1];
(ii) the application f (·, s) : [0, 1] → R is measurable for every s ∈ R2.

Let us consider the nonlinear boundary value problem

− 1
q (x)

(p (x) u′ (x))′ = f (x, u (x) , w (x) u′ (x)) , for x ∈ (0, 1) (10)

u (0) = u (1) = 0.
Consider the operator A : H → Γ defined by

A (u) (x) = − 1
q (x)

(p (x)u′ (x))′ . (11)

We have

(Au, u)Γ =
∫ 1

0

q (x)
[
− (p (x) u′ (x))′

q (x)

]
u (x) dx

= −p (x) u′ (x)u (x)|10 +
∫ 1

0

p (x) (u′ (x))2 dx = ‖u‖2H .

Hence,

‖u‖2Γ ≤
1
λ1

(Au, u)Γ ≤
1
λ1
‖Au‖Γ · ‖u‖Γ .

Therefore,

‖u‖Γ ≤
1
λ1
‖Lu‖Γ . (12)

Theorem 2.1. Suppose that

(H1) w (x) ≤
√

p(x)
q(x) on [0, 1];

(H2) the application f : [0, 1]× R2 → R satisfies the Caratheodory conditions and

|f (x, s, t)| ≤ a |t|+ b |s|+ g

for every x ∈ (0, 1); t, s ∈ R and g ∈ Γ;
(H3) there exist a, b ∈ [0,∞) small enough that

a

λ1
+

b√
λ1

< 1.

Then, the problem (10) has at least one solution in H.

Proof. For the beginning, we write problem (10) as a fixed point problem. For this,
consider the operator J : H → L2

q

(
0, 1; R2

)
given by
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J (u) = (u, u′)

and the Nemitskii operator Nf : L2
q

(
0, 1; R2

)
→ Γ defined by

Nf (u) (x) = f (x, u1 (x) , w (x)u2 (x))

where u = (u1, u2). The hypothesis (H2) ensures that the Nemitskii operator is well
defined and continuous, see [3] for details. We have the diagram

H
J−→ L2

q

(
0, 1; R2

) Nf−→ Γ A−1

−→ H

Now, we have that the operator T : H → H, T = A−1NfJ is completely continuous
and the problem (10) is equivalent to the equation

Tu = u, u ∈ H.

We have ‖T‖2H = (AT, T )Γ ≤ ‖T‖Γ · ‖AT‖Γ = ‖T‖Γ · ‖nf‖Γ. ¿From (12), we obtain
‖T‖Γ ≤

1
λ1
‖AT‖Γ = 1

λ1
‖Nf‖Γ. So,

‖T‖H ≤ 1√
λ1

‖Nf‖Γ . (13)

By (H2) we have

‖Nf‖Γ =

 1∫
0

q (x) |f (x, u (x) , w (x) u′ (x))|2 dx


1
2

≤

 1∫
0

q (x) {g (x) + a |u (x)|+ b |w (x)u′ (x)|}2 dx


1
2

≤ ‖g‖Γ + a ‖u‖Γ + b

 1∫
0

q (x) w2 (x) (u′ (x))2 dx


1
2

Now, hypothesis (H1) implies that

‖Nf‖Γ ≤ ‖g‖Γ + a ‖u‖Γ + b

(∫ 1

0

p (x) (u′ (x))2 dx

) 1
2

≤ ‖g‖Γ + a ‖u‖Γ + b ‖u‖H .

Since ‖u‖2Γ ≤
1
λ1
‖u‖2H , results ‖Nf‖Γ ≤ ‖g‖Γ + a√

λ1
‖u‖H + b ‖u‖H . Hence,

by (13), we obtain

‖Tu‖H ≤
‖g‖Γ√

λ1

+
(

a

λ1
+

b√
λ1

)
‖u‖H .

Now, conform to hypothesis (H3) we can find a real number r > 0 such that

‖Tu‖H < ‖u‖H for u ∈ H with ‖u‖ ≥ r.
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By Lerray - Schauder principle, result that equation Tu = u has at least one
solution in H.

In a similar way, we can prove the next result

Theorem 2.2. Let us consider the boundary value problem

− 1
q (x)

(p (x)u′ (x))′ = f (x, u (x) , u′ (x)) , for any x ∈ (0, 1) (14)

u (0) = u (1) = 0

Suppose that the mapping f satisfies H2 and
(H4) there exist a, b ∈ (0,∞) small enough that

a

λ1
+

b√
λ1

√
q1

p0
< 1

Then, the problem (14) has at least one solution in H.

An analogous result remains if we consider the interval [0, h].

Example 2.3. For the Sturm - Liouville problem

−u′′ = λ (1 + sinx)u, for u ∈ [0, π]

u (0) = u (π) = 0
it can establish the inequality 0.5394 ≤ λ1 ≤ 0.54088, see [4]. So, the boundary value
problem

1
1 + sin x

· u′′ (x) = f (x, u, u′) , for x ∈ [0, π]

u (0) = u (1) = 0

has at least one solution if the mapping f : [0, π]×R2 → R satisfies the Caratheodory
condition and

|f (x, s, t)| ≤ |t|+ |s|
4

+ g (x)

for x ∈ (0, π) and g ∈ L2
q (0, π).

3. The First Eigenvalue and the Existence Results

Now, in Theorem 2.2 we put the estimation from Lemma 1.2 and obtain the
following result

Theorem 3.3. Consider the nonlinear boundary value problem

− (p (x)u′ (x))′ = f (x, u (x) , u′ (x)) , for x ∈ (0, 1) (15)

u (0) = u (1) = 0

Suppose that f satisfies (H2) and
(H5) the nonnegative measurable mapping p : [0, 1] → R is such that
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p0 = inf
x∈(0,1)

p (x) > 0 and
1∫
0

p (x)α
dx = 1 for α ≤ −1;

(H6) there exist the numbers a, b ∈ (0,∞) small enough that
a

mα
+

b
√

p0mα
< 1,

with

mα =
2α + 1

α

(
α + 1
2α + 1

)1− 1
β

B2

(
1
2
,
1
2

+
1
2α

)
.

Then, the problem (15) has at least one solution in H.

By Theorem 2.2 and Lemma 1.1, we obtain

Theorem 3.4. Consider the nonlinear boundary value problem

− 1
q (x)

u′′ (x) = f (x, u (x) , u′ (x)) , for x ∈ (0, h) (16)

u (0) = u (h) = 0

Suppose that f satisfies (H2) and
(H7) the nonnegative measurable mapping q : [0, h] → R is such that

q1 = sup
x∈(0,h)

q (x) < ∞ and

h∫
0

q (x)β
dx = 1 for β > 1

(H8) there exists the numbers a, b ∈ (0,∞) small enough that
a

mα
+

b√
q1
mβ

< 1,

with

Mβ =
(

1
h

)2− 1
β (1− β)1+

1
β

β (1− 2β)
1
β

B2

(
1
2
,
1
2
− 1

2β

)
.

Then, the problem (16) has at least one solution.
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MODULES OVER TRIANGULATED CATEGORIES
AND LOCALIZATION

CIPRIAN MODOI

Abstract. For a compactly generated triangulated category we gives a
new proof for the fact that the category of modules over its subcategory
consisting of all compact objects it is not only the colocalization, but also
the localization of the category of finitely presented modules over the full
triangulated category. We do not only prove the existence of a right adjoint
for the restriction functor, but we give it explicitly.

A problem arising in the study of (compactly generated) triangulated cate-
gories is to find some abelian categories closely related to a given triangulated one. A
such category is the category of finitely presented contravariant functors defined on it
with values in the category of abelian groups. We denote it here by Mod- T , where T
is the triangulated category. The Yoneda embedding gives an universal homological
functor h : T → Mod- T [3, 5.1.18]. A result due to Neeman [3, 5.3.9] says, that
a triangulated functor between two triangulated categories T → S have a right or
a left adjoint if and only if the induced functor Mod- T → Mod-S does. But it is
also not easy to deal with the category Mod- T , since it may be not well-powered [3,
Appendix C], in the sense that an object may have a proper class (which is not a
set) of subobjects (quotients). In the same work of Neeman [3], was observed that a
”good” approximation of the category Mod- T is the category Ex((T α)op,Ab), whose
objects are additive functors (T α)op → Ab which take coproducts fewer than α ob-
jects in products in Ab. Here α is a fixed regular cardinal, T α is the full subcategory
of α-compact objects of T , in the sense of the definition [3, 4.2.7], and it is supposed
to be skeletally small. Precisely, the category Ex((T α)op,Ab) is the colocalization of
Mod- T [3, 6.5.3]. In the case C = T ℵ0 that is α = ℵ0 we have Ex(Cop,Ab) = Mod- C
contains all functors Cop → Ab. In this note we find a new proof for the fact that
Mod- C is not only the colocalization, but also the localization of Mod- T , an explicit
formula for the right adjoint of the restriction functor being also given.

A few words about terminology and notations: By Ab we shall denote the
category of abelian groups. We shall write A → B respectively Aop → B to emphasize
that we deal with a covariant (contravariant) functor between two given categories A
and B. It is well–known that an associative ring R may be regarded as a preadditive

Received by the editors: 01.08.2003.
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Key words and phrases. triangulated category, module over an preadditive category, compact object,
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category with a single object, and then a right R-module means a functor Rop → Ab.
The additive functors Aop → Ab, defined on an arbitrary preadditive category A
will also call (right) modules over A, or simply A-modules. We denote by A(a′, a)
and HomA(M ′,M) the set of morphism between objects a′ and a, in the category A,
respectively the class of all natural transformations between A-modules M ′ and M .

For basic facts about abelian categories, we refer the reader to [4], and for
the general theory of triangulated categories to [3]. Even if in the text all references
concerning abelian categories are to [4], the personal experience of the author playing
a rôle here, this things may be found also in many works, for example in Gabriel’s [1].

By a (right) module over a preadditive category T , we understand, as in the
case of ordinary modules over a ring, an additive contravariant functor M : T op →
Ab. If T is skeletally small, then the class of all modules over T together with the
natural transformations between them, form a Grothendieck category, denoted by
Mod- T [4, chapter 4, 4.9], where the limits and the colimits are computed pointwise.
Returning to the general case, a module N over the category T is called finitely
presented, if there is an exact sequence of functors and natural transformations

T (−, s) → T (−, t) → N → 0.

Denote by Mod- T the class of all finitely presented modules over T . Note that, even
if the class of all modules over T forms only a illegitimate category, in the sense that
the class of the natural transformations between two such modules may be proper,
this does not happen with Mod- T . Indeed, by the Yoneda Lemma we infer that the
class of all natural transformation between two finitely presented modules is actually
a set, Mod- T together with natural transformations being a good defined category.
If, in addition, T is triangulated, then by [3, 5.1.10], the category Mod- T is an abelian
one.

Let T be a triangulated category, and C its full subcategory consisting of all
compact objects. Recall that an object c ∈ T is called compact provided that the
covariant functor T (c,−) : T → Ab commutes with direct sums. It is well–known,
and also easy to see, that C is a thick subcategory of T , that means, a triangulated
subcategory which closed under direct summands. Throughout of this note we assume
T has arbitrary coproducts, C is a skeletally small category, and it generates T , i.e.
T (c, x) = 0 for all c ∈ C implies x = 0.

The functor h : T → Mod- T , h(t) = T (−, t) is a homological embedding,
which send any object t of T into a projective object of Mod- T . Moreover, since
T is idemsplit (that is every idempotent t → t splits, for all t ∈ T ) [3, 1.6.8], every
projective object of Mod- T is of this form [3, 5.1.11]. Restricting to C the images of
h on each object t ∈ T , we obtain a homological functor h̄ : T → Mod- C, h̄(t) =
T (−, t)|C . Clearly h̄ commutes with coproducts, and for any M ∈ Mod- C, there is
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an exact sequence⊕
j∈J h̄(dj) // ⊕

i∈I h̄(ci) // M // 0

h̄
(⊕

j∈J dj

)
// h̄
(⊕

i∈I ci

)
// M // 0,

with dj and ci belonging to C.
Since h is an universal homological functor [3, 5.1.18], it results an exact

functor π making commutative the diagram

T h //

h̄ ##HHHHHHHHH Mod- T
π

��
Mod- C.

Because every additive contravariant functor takes finite coproducts to products, we
lie in the hypothesis of [3, chapter 6]. It follows that π(M) = M |C [3, 6.5.2], and
Mod- C is the colocalization of Mod- T , what means, the functor π has a fully–faithful
left adjoint L : Mod- C → Mod- T . This adjoint is determined by its right exactness,
and by the equality

L

(⊕
i∈I

h̄(ci)

)
= h

(⊕
i∈I

ci

)
,

for all ci ∈ C [3, 6.5.3]. Denote by v : 1Mod- C → πL and u : Lπ → 1Mod- T the unit,
respectively the counit, of this adjunction. It is well–known that the fully–faithfulness
of L is equivalent to the existence of an inverse for v [4, chapter 1, 13.11].

Lemma 1. Any projective object P of Mod- C is of the form, h̄(c) for an object
c =

⊕
i∈I ci ∈ T , with ci ∈ C, and the induced map

T (c, x) → HomC(h̄(c), h̄(x))

is an isomorphism for all x ∈ T .

Proof. A projective object P of Mod- C is a direct summand of a direct sum⊕
j∈J C(−, dj), and because C is idemsplit, it follows P ∼= h̄(

⊕
i∈I ci) = h̄(c).

Using the isomorphism of adjunction, and then the Yoneda isomorphism, we
have

HomC(h̄(c), h̄(x)) = HomC(h̄(c),π(h(x))) ∼= HomT (L(h̄(c)),h(c))
∼= HomT (h(c),h(x)) ∼= T (c, x).

We record also an analogous for injectives:
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Lemma 2. [2, Lemma 1] Any injective object Q of Mod- C is of the form h̄(q), for
an object q ∈ T , and the induced map

T (x, q) → HomC(h̄(x), h̄(q))

is an isomorphism for all x ∈ T .

Lemma 3. The assignement M 7→ HomC(h̄(−),M) gives a functor

R : Mod- C → Mod- T .

Proof. The unique problem which arises is that HomC(h̄(−),M) : T op → Ab is
actually finitely presented, for all M ∈ Mod- C.

Choose an injective resolution for M :

0 → M → Q1 → Q2.

Fix an object x ∈ T . Applying the left exact functor HomC(h̄(x),−) to this injective
resolution, and using Lemma 2, it follows that there are two objects q1, q2 ∈ T , and
a commutative diagram of abelian groups:

0 // HomC(h̄(x),M) // HomC(h̄(x), Q1) // HomC(h̄(x), Q2)

0 // HomC(h̄(x),M) // T (x, q1) // T (x, q2).

Therefore Hom(h̄(−),M) is pointwise the kernel of the natural transformation
T (−, q1) → T (−, q2) between two finitely presented T -modules. Then, by [3, 5.1.10],
this functor belongs to Mod- T .

Now we are ready to give the main result of this note.

Theorem 4. The functor R : Mod- C → Mod- T is the fully–faithful right adjoint of
the functor π : Mod- T → Mod- C, so the category Mod- C is not only the colocaliza-
tion, but also the localization of the category Mod- T .

Proof. Let c ∈ C, and M : Cop → Ab be a C-module. Then, the Yoneda isomorphism

HomC(h̄(c),M) = HomC(T (−, c)|C ,M) ∼= HomC(C(−, c),M) ∼= M(c)

shows that πR(M) = R(M)|C = Hom(h̄(−),M)|C is naturally isomorphic to M .
Denote by v′ : πR → 1Mod- C this isomorphism.

Let now N : T op → Ab be a finitely presented T -module. Then we have

Rπ(N) =HomC(h̄(−),π(N)) ∼= HomT (L(h̄(−)), N)

= HomT (Lπ(h(−)), N),

and again an Yoneda isomorphism

HomT (h(−), N) ∼= N.
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The counit uh(−) : Lπ(h(−)) → h(−) of the adjunction between L and π
gives a morphism HomT (uh(−), N), which induced by the above isomorphisms an
another one

u′N : N ∼= HomT (h(−), N) → HomT (Lπ(h(−)), N) ∼= Rπ(N),

so a natural transformation u′ : 1Mod- T → Rπ.
Fix c ∈ C, t ∈ T , M ∈ Mod- C and N ∈ Mod- T . The maps R(v′M ), v′π(N)

are clearly isomorphisms since v′ is so. Moreover, the maps

(π(u′N ))c : π(N) = N(c) → HomC(h̄(c), N |C)
and

(u′R(M))t : HomC(h̄(t),M) → HomC(h̄(t),HomC(h̄(−),M)|C)
are isomorphisms too, by an analogous argument to the one used for v. Hence, the
naturality of these morphisms implies the equalities

R(v′M )u′R(M) = 1R(M) and v′π(N)π(u′N ) = 1π(N),

which show that R is the right adjoint of π, with the unit u′ and the counit v′.
Finally the fully–faithfulness of R is equivalent, by [4, chapter 1, 13.10], to

the fact that v′ is invertible.

Remark 5. The subcategory Kerπ of Mod- T , consisting of the objects sended by π
into 0 is both localizing and colocalizing, and the categories Mod- T / Kerπ, Mod- C
and Kerπ\Mod- T are all equivalent.
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UNIVALENCE CRITERIA CONNECTED WITH ARITHMETIC
AND GEOMETRIC MEANS

HORIANA OVESEA-TUDOR

Abstract. In this paper we obtain some univalence criteria connected
with arithmetic and geometric means of the expressions f/g and f ′/g′,
where f and g are analytic functions in the unit disk.

1. Introduction

We let Ur = { z ∈ C : |z| < r } denote the disk of z-plane, where r ∈
(0, 1], U1 = U and I = [0,∞). Let A be the class of functions f analytic in U such
that f(0) = 0, f ′(0) = 1. Our consideration apply the theory of Löwner chains; we
first recall here the basic result of this theory, from Pommerenke.
Theorem 1.1. ([4]). Let L(z, t) = a1(t)z + a2(t)z2 + . . . , a1(t) 6= 0 be analytic in
Ur for all t ∈ I, locally absolutely continuous in I and locally uniform with respect to
Ur. For almost all t ∈ I suppose

z
∂L(z, t)

∂z
= p(z, t)

∂L(z, t)
∂t

, ∀z ∈ Ur,

where p(z, t) is analytic in U and satisfies the condition Rep(z, t) > 0 for all z ∈
U, t ∈ I. If |a1(t)| → ∞ for t →∞ and {L(z, t)/a1(t)} forms a normal family in Ur,
then for each t ∈ I the function L(z, t) has an analytic and univalent extension to the
whole disk U .

2. Univalence criteria and arithmetic mean

In this section we derive several interesting criteria of univalence related to
arithmetic mean. The method of prove is based on Theorem 1.1 and on construction
of a suitable Löwner chain.
Theorem 2.1. Let α, β, γ be complex numbers such that α 6= −1,

|α− β| ≤ |β + 1|, |γ − 1| < 1, |γ(α + 1)− (β + 1)| ≤ |β + 1|,
and let f ∈ A. If there exists a function g ∈ A such that the inequalities∣∣∣∣ γ(α + 1)g′(z)− 1− β

f(z)
g(z)

· g′(z)
f ′(z)

∣∣∣∣ < ∣∣∣∣ 1 + β
f(z)
g(z)

· g′(z)
f ′(z)

∣∣∣∣ (1)

Received by the editors: 08.07.2003.

55



HORIANA OVESEA-TUDOR

and∣∣∣∣ [γ(α + 1)g′(z)− 1− β
f(z)g′(z)
f ′(z)g(z)

]
|z|2 + (1− |z|2)

[
(γ − 1)

(
1 + β

f(z)g′(z)
f ′(z)g(z)

)

+
zf ′′(z)
f ′(z)

− zg′′(z)
g′(z)

+ β
zg′(z)
g(z)

(
1− f(z)g′(z)

f ′(z)g(z)

)]∣∣∣∣ ≤ ∣∣∣∣ 1 + β
f(z)g′(z)
f ′(z)g(z)

∣∣∣∣ (2)

are true for all z ∈ U , then the function

Fγ(z) =
(

γ

∫ z

0

uγ−1f ′(u)du

)1/γ

(3)

is analytic and univalent in U , where the principal branch is intended.

Proof. Let us prove that there exists a real number r ∈ (0, 1] such that the
function L : Ur × I −→ C , defined formally by

L(z, t) =

(
γ

∫ e−tz

0

uγ−1f ′(u)du+ (4)

+
e(2−γ)t − e−γt

1 + α
zγ

[
f ′(e−tz)
g′(e−tz)

+ β
f(e−tz)
g(e−tz)

])1/γ

is analytic in Ur , for all t ∈ I. Let us consider the function

h(z, t) =
f ′(e−tz)
g′(e−tz)

+ β
f(e−tz)
g(e−tz)

.

We have h(0, t) = 1 + β and we observe that h(0, t) 6= 0. Indeed, if h(0, t) = 0 then
β = −1 and from the condition |α − β| ≤ |β + 1| it follows α = −1 which is a
contradiction with the hypothesis α 6= −1. Therefore there is a disk Ur1 , 0 < r1 ≤ 1,
in which h(z, t) 6= 0 for all t ∈ I. Denoting

h1(z, t) = γ

∫ e−tz

0

uγ−1f ′(u)du

we have h1(z, t) = zγh2(z, t) and is easy to see that h2 is analytic in Ur1 for all
t ∈ I, h2(0, t) = e−γt. The function

h3(z, t) = h2(z, t) +
e(2−γ)t − e−γt

1 + α
h(z, t)

is also analytic in Ur1 and

h3(0, t) =
e−γt

1 + α

[
(α− β) + (1 + β)e2t

]
.

Let us now prove that h3(0, t) 6= 0 for any t ∈ I. We have h3(0, 0) = 1. Assume that
there exists t0 > 0 such that h3(0, t0) = 0. It follows e2t0 = (β −α)/(1 + β) and since
|α − β| ≤ |β + 1| we get e2t0 ≤ 1 and this inequality is imposible. Therefore, there
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is a disk Ur2 , r2 ∈ (0, r1] in which h3(z, t) 6= 0 for all t ∈ I. Then we can choose an
uniform branch of [h3(z, t)]1/γ analytic in Ur2 , denoted by h4(z, t), that is equal to

a1(t) = e
2−γ

γ t

[
(α− β)e−2t + (1 + β)

1 + α

]1/γ

at the origin, and for a1(t) we fix the principal branch, a1(0) = 1. From these consid-
erations, it follows that the relation (4) may be written as

L(z, t) = z · h4(z, t) = a1(t)z + a2(t)z2 + . . . ,

and then the function L(z, t) is analytic in Ur2 . Since |γ−1| < 1 implies Re(2/γ) > 1,
it follows that limt→∞ |a1(t)| = ∞. We saw also that a1(t) 6= 0 for all t ∈ I.
From the analyticity of L(z, t) in Ur2 it follows that there is a number r3, 0 < r3 < r2,
and a constant K = K(r3) such that

| L(z, t)/a1(t) | < K, ∀z ∈ Ur3 , t ∈ I,

In consequence, the family { L(z, t)/a1(t) } is normal in Ur3 . From the analyticity of
∂L(z, t)/∂t, for all fixed numbers T > 0 and r4, 0 < r4 < r3, there exists a constant
K1 > 0 (that depends on T and r4 ) such that∣∣∣∣ ∂L(z, t)

∂t

∣∣∣∣ < K1, ∀z ∈ Ur4 , t ∈ [0, T ].

It follows that the function L(z, t) is locally absolutely continuous in I, locally uniform
with respect to Ur4 . Let us set

p(z, t) = z
∂L(z, t)

∂z

/
∂L(z, t)

∂t
(5)

and

w(z, t) =
p(z, t)− 1
p(z, t) + 1

(6)

The function p(z, t) is analytic in Ur, 0 < r < r4. The function p(z, t) has an analytic
extension with positive real part in U , for all t ∈ I, if the function w(z, t) can be
continued analytically in U and |w(z, t)| < 1 for all z ∈ Uand t ∈ I.
After computation we obtain:

w(z, t) = A(z, t) · e−2t + B(z, t)(1− e−2t) , (7)

where

A(z, t) =
γ(α + 1)g′(e−tz)− 1− β f(e−tz)

g(e−tz) ·
g′(e−tz)
f ′(e−tz)

1 + β f(e−tz)
g(e−tz) ·

g′(e−tz)
f ′(e−tz)

(8)

B(z, t) = γ − 1+ (9)

+

e−tzf ′′(e−tz)
f ′(e−tz) − e−tzg′′(e−tz)

g′(e−tz) + β e−tzg′(e−tz)
g(e−tz)

(
1− f(e−tz)

g(e−tz) ·
g′(e−tz)
f ′(e−tz)

)
1 + β f(e−tz)

g(e−tz) ·
g′(e−tz)
f ′(e−tz)

.
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From (1) and (2) we deduce that w(z, t) is analytic in U. In view of (1), from (7) and
(8) we have

|w(z, 0)| = |A(z, 0)| =

∣∣∣∣∣∣ γ(α + 1)g′(z)− 1− β f(z)
g(z) ·

g′(z)
f ′(z)

1 + β f(z)
g(z) ·

g′(z)
f ′(z)

∣∣∣∣∣∣ < 1 (10)

For z = 0, t > 0, since |γ(α + 1)− (1 + β)| ≤ |β + 1| and |γ − 1| < 1 we get

|w(0, t)| =
∣∣∣∣ γ(α + 1)− (1 + β)

1 + β
e−2t + (γ − 1)(1− e−2t)

∣∣∣∣ < 1 (11)

If t > 0 is a fixed number and z ∈ U, z 6= 0, then the function w(z, t) is analytic in Ū
because |e−tz| ≤ e−t < 1 for all z ∈ Ū and it is known that

|w(z, t)| = max
|ζ|=1

|w(ζ, t)| = |w(eiθ, t)|, θ = θ(t) ∈ R (12)

Let us denote u = e−teiθ. Then |u| = e−t and because u ∈ U , from (7), (8) and (9)
taking into account (2) we get

|w(eiθ, t)| ≤ 1. (13)

From (10), (11), (12) and (13) we conclude that |w(z, t)| < 1 for all z ∈ U and t ∈ I.
From Theorem 1.1 it results that L(z, t) has an analytic and univalent extension to
the whole disk U , for each t ∈ I. But L(z, 0) = Fγ(z) and then the function Fγ defined
by (3) is analytic and univalent in U.
Remark. Suitable choices of g yields various type of univalence criteria, so we can
take g(z) ≡ z, g(z) ≡ f(z) or g(z) ≡ z · f ′(z).
If in Theorem 2.1 we take g(z) ≡ z we have the following result.
Corollary 2.1. Let α, β, γ be complex numbers such that α 6= −1,

|α− β| ≤ |1 + β|, |γ − 1| < 1, |γ(α + 1)− (β + 1)| ≤ |β + 1| ,

and let f ∈ A. If the inequalities∣∣∣∣ γ(α + 1)− 1− β
f(z)

zf ′(z)

∣∣∣∣ <

∣∣∣∣ 1 + β
f(z)

zf ′(z)

∣∣∣∣
and ∣∣∣∣ [γ(α + 1)− 1− β

f(z)
zf ′(z)

]
· |z|2+

+(1− |z|2)
[
(γ − 1)

(
1 + β

f(z)
zf ′(z)

)
+

zf ′′(z)
f ′(z)

+ β

(
1− f(z)

zf ′(z)

)]∣∣∣∣ ≤ ∣∣∣∣1 + β
f(z)

zf ′(z)

∣∣∣∣
are true for all z ∈ U , then the function Fγ defined by (3) is analytic and univalent
in U.

Number of corollaries we can get for particular values of parameters α and
β. We shall formulate only two: for β = 0 and for α = β = 0.
For β = 0 we obtain from Corollary 2.1 a generalization of the well-known condition
for univalence established by Ahlfors.
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Corollary 2.2. Let α, γ be complex numbers such that α 6= −1, |α| ≤ 1,
|γ − 1| < 1, |γ(α + 1)− 1| ≤ 1 and let f ∈ A. If the inequality∣∣∣∣ [γ(α + 1)− 1]|z|2 + (1− |z|2)

[
zf ′′(z)
f ′(z)

+ γ − 1
]∣∣∣∣ ≤ 1

is true for all z ∈ U , then the function Fγ defined by (3) is analytic and univalent in
U .

In the case γ = 1 we get F1(z) = f(z) and we have the univalence criterion
found by Ahlfors ([1]).
Corollary 2.3. ([1]). Let α ∈ C, |α| ≤ 1, α 6= −1 and let f ∈ A. If the inequality∣∣∣∣ α|z|2 + (1− |z|2)zf ′′(z)

f ′(z)

∣∣∣∣ ≤ 1

holds for z ∈ U , then the function f is univalent in U .
For α = β = 0 we get

Corollary 2.4. Let γ ∈ C, |γ − 1| < 1. If the inequality∣∣∣∣ (1− |z|2)zf ′′(z)
f ′(z)

+ γ − 1
∣∣∣∣ ≤ 1

is true for all z ∈ U , then the function Fγ defined by (3) is analytic and univalent in
U .

We recognize here the expression (1−|z|2)zf ′′(z)/f ′(z) which appears in the
condition for univalence established by Becker. We know that if this value lies in the
unit disk U , then the function f is univalent in U and we observe that if this value lies
in a disk with the same radius 1, but with the center in the point 1− γ, |γ − 1| < 1
we obtain the analyticity and the univalence of the function Fγ .
If in Theorem 2.1 we take f ≡ g we have a very simple result given by
Corollary 2.5. Let α, β, γ ∈ C such that α 6= −1, |α− β| ≤ |β + 1|,
|γ − 1| < 1, |γ(α + 1)− (β + 1)| ≤ |β + 1| and let f ∈ A. If the inequality∣∣∣∣ f ′(z)− 1 + β

γ(α + 1)

∣∣∣∣ <
|1 + β|

|γ(α + 1)|

is true for all z ∈ U , then the function Fγ defined by (3) is analytic and univalent in
U .

Example. Let γ ∈ C, |γ − 1| < 1. Then the function

F (z) = z ·
[

1 +
1− |γ|
1 + γ

· z
]1/γ

is analytic and univalent in U .
To prove it consider the function f ∈ A of the form

f(z) = z +
1− |γ − 1|

2γ
· z2
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and we apply corollary 2.5 with α = β. So we have∣∣∣∣ f ′(z)− 1
γ

∣∣∣∣ = ∣∣∣∣γ − 1
γ

+
1− |γ − 1|

γ
· z
∣∣∣∣ ≤ |γ − 1|

|γ|
+

1− |γ − 1|
|γ|

<
1
|γ|

.

Remark. For the case γ = 1 we have F1(z) = f(z) and from Theorem 2.1 we find
the results obtained by S. Kanas and A. Lecko [ 3].

3. Univalence criteria and geometric mean

Substituting the arithmetic mean by the geometric one in the construction
of the Löwner chain we obtain the following
Theorem 3.1. Let α, β, γ be complex number such that |γ − 1| < 1,
Reγ > 1/2 and let f ∈ A, f ′(z)f(z)/z 6= 0 in U. If there exists a function g ∈
A, g′(z)g(z)/z 6= 0 in U , such that the inequalities∣∣∣∣∣ f ′(z)

(
g′(z)
f ′(z)

)α

·
(

g(z)
f(z)

)β

− 1

∣∣∣∣∣ < 1 , (14)∣∣∣∣∣
[
f ′(z) ·

(
g′(z)
f ′(z)

)α(
g(z)
f(z)

)β

− 1

]
· |z|2+ (15)

+(1− |z|2)
[
α

(
zf ′′(z)
f ′(z)

− zg′′(z)
g′(z)

)
+ β

(
zf ′(z)
f(z)

− zg′(z)
g(z)

)
+ γ − 1

]∣∣∣∣ ≤ 1

are true for all z ∈ U , then the function

Fγ(z) =
(

γ

∫ z

0

uγ−1f ′(u)du

)1/γ

(16)

is analytic and univalent in U , where the principal branch is intended.
Proof. The method of the proof is similar to those of Theorem 2.1. Let us

define

L(z, t) =

[ ∫ e−tz

0

uγ−1f ′(u)du+ (17)

+
(
e(2−γ)t − e−γt

)
zγ

(
f ′(e−tz)
g′(e−tz)

)α(
f(e−tz)
g(e−tz)

)β
]1/γ

It can be shown that L(z, t) is an analytic function in Ur, r ∈ (0, 1] for all t ∈
I, L(z, t) = a1(t)z + a2(t)z2 + . . . , where

a1(t) = e
2−γ

γ t

(
1 +

1− γ

γ
e−2t

)1/γ

(18)

We fix a determination of (1/γ)1/γ denoted by δ. For a1(t) we fix the determination
equal to δ for t = 0. Since |γ − 1| < 1 it follows that limt→∞ |a1(t)| = ∞ and from
Reγ > 1/2 we have |γ − 1| < |γ| and then a1(t) 6= 0 for all t ∈ I.
Moreover, it can be prove that there is a disk Ur0 , 0 < r0 < r such that
L(z, t) is locally absolutely continuous in I, locally uniform with respect to Ur0 and
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{L(z, t)/a1(t)} is a normal family in Ur0 . For the functions p(z, t) and w(z, t) defined
in (5) and (6), by computation we get

w(z, t) =

[
f ′(e−tz)

(
g′(e−tz)
f ′(e−tz)

)α(
g(e−tz)
f(e−tz)

)β

− 1

]
· e−2t+

+(1− e−2t)
[
α

(
e−tzf ′′(e−tz)

f ′(e−tz)
− e−tzg′′(e−tz)

g′(e−tz)

)
+

+ β

(
e−tzf ′(e−tz)

f(e−tz)
− e−tzg′(e−tz)

g(e−tz)

)
+ γ − 1

]
.

We observe that the function w(z, t) is well-defined and analytic in U for each t ∈ I.
The rest of the proof runs exactly as in Theorem 2.1. From Theorem 1.1 it results
that the function L(z, t) has an analytic and univalent extension to the whole disk U ,
for each t ∈ I, in particular L(z, 0). But

L(z, 0) =
( ∫ z

0

uγ−1f ′(u)du

)1/γ

and then also the function Fγ defined by (16) is analytic and univalent in U.

For g(z) ≡ z we can deduce the following
Corollary 3.1. Let α, β, γ ∈ C such that |γ − 1| < 1, Reγ > 1/2 and let f ∈
A, f ′(z)f(z)/z 6= 0 in U . If the inequalities∣∣∣∣∣

(
z

f(z)

)β

( f ′(z) )1−α − 1

∣∣∣∣∣ < 1

∣∣∣∣∣
[(

z

f(z)

)β

(f ′(z))1−α − 1

]
|z|2+

+(1− |z|2)
[
α

zf ′′(z)
f ′(z)

+ β

(
zf ′(z)
f(z)

− 1
)

+ γ − 1
]∣∣∣∣ ≤ 1

hold for all z ∈ U , then the function Fγ defined by (16) is analytic and univalent in
U .

For α = 0 and β = 1, from Corollary 3.1 we get
Corollary 3.2. Let γ ∈ C, |γ − 1| < 1, Reγ > 1/2 and let f ∈ A, f ′(z)f(z)/z 6= 0
in U . If the inequalities ∣∣∣∣ zf ′(z)

f(z)
− 1

∣∣∣∣ < 1∣∣∣∣ (zf ′(z)
f(z)

− 1
)
|z|2 + (1− |z|2)

(
zf ′(z)
f(z)

+ γ − 2
) ∣∣∣∣ ≤ 1

hold for all z ∈ U, then the function Fγ defined by (16) is analytic and univalent in
U .

For g(z) ≡ f(z), from Theorem 3.1 we get the following useful result
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Corollary 3.3. Let γ ∈ C, |γ − 1| < 1, Reγ > 1/2 and let f ∈ A. If the inequality

| f ′(z)− 1 | < 1 (19)

hold for all z ∈ U , then the function Fγ defined by (16) is analytic and univalent in
U .

Indeed, the inequality (14) becomes (19) and the inequality (15) will be∣∣ (f ′(z)− 1)|z|2 + (1− |z|2)(γ − 1)
∣∣ ≤ 1.

This inequality is true under the assumption |γ − 1| < 1 and in view of (19).
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ON THE DIRECT LIMIT OF A DIRECT SYSTEM
OF COMPLETE MULTIALGEBRAS

COSMIN PELEA

Abstract. In this paper we will prove that the direct limit of a direct
system of complete multialgebras is a complete algebra.

1. Introduction

This paper deals with multialgebras. An important instrument in the study
of the multialgebras is fundamental relation of a multialgebra, which can bring us into
the class of the universal algebras. In [9] we proved that the fundamental algebra of a
multialgebra verifies the identities of the given multialgebra. When trying to obtain
multialgebras that verify (even in a weak manner) the identities of their fundamen-
tal algebra we obtained a new class of multialgebras. In the particular case of the
semihypergroups these multialgebras are the complete semihypergroups that is why
we called this multialgebras complete. We will prove that the complete multialgebras
form a class of multialgebras closed under the formation of the direct limits of direct
systems.

2. Preliminaries

Let τ = (nγ)γ<o(τ) be a sequence with nγ ∈ N = {0, 1, . . .}, where o(τ) is an
ordinal and for any γ < o(τ), let fγ be a symbol of an nγ-ary (multi)operation and let
us consider the algebra of the n-ary terms (of type τ) P(n)(τ) = (P(n)(τ), (fγ)γ<o(τ)).

Let A be a set and P ∗(A) the set of the nonempty subsets of A. Let
A = (A, (fγ)γ<o(τ)) be a multialgebra, where, for any γ < o(τ), fγ : Anγ → P ∗(A)
is the multioperation of arity nγ that corresponds to the symbol fγ . One can admit
that the support set A of the multialgebra A is empty if there are no nullary multi-
operations among the multioperations fγ , γ < o(τ). Of course, any universal algebra
is a multialgebra (we can identify an one element set with its element).

Defining for any γ < o(τ) and for any A0, . . . , Anγ−1 ∈ P ∗(A)

fγ(A0, . . . , Anγ−1) =
⋃
{fγ(a0, . . . , anγ−1) | ai ∈ Ai, i ∈ {0, . . . , nγ − 1}},
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we obtain a universal algebra on P ∗(A) (see [11]). We denote this algebra by P∗(A).
As in [6], we can construct, for any n ∈ N, the algebra P(n)(P∗(A)) of the n-ary term
functions on P∗(A).

A mapping h : A → B between the multialgebras A and B of the same type
τ is called homomorphism if for any γ < o(τ) and for all a0, . . . , anγ−1 ∈ A we have

(1) h(fγ(a0, . . . , anγ−1)) ⊆ fγ(h(a0), . . . , h(anγ−1)).

A bijective mapping h is a multialgebra isomorphism if both h and h−1 are multial-
gebra homomorphisms. The multialgebra isomorphisms can also be characterized as
being those bijective homomorphisms for which (1) holds with equality.
Proposition 1. [8, Proposition 1] For a homomorphism h : A → B, if n ∈ N,
p ∈ P(n)(τ) and a0, . . . , an−1 ∈ A then h(p(a0, . . . , an−1)) ⊆ p(h(a0), . . . , h(an−1)).

The fundamental relation of a multialgebra A as the transitive closure α∗

of the relation α given on A as follows: for x, y ∈ A, xαy if and only if x, y ∈
p(a0, . . . , an−1) for some n ∈ N, p ∈ P (n)(P∗(A)) and a0, . . . , an−1 ∈ A (see [7] and
[9]). The relation α∗ is the smallest equivalence relation on A such that the factor
multialgebra A/α∗ is a universal algebra. We denoted the class of a ∈ A modulo α∗

by a and A/α∗ by A. We also denoted the algebra A/α∗ by A and we called it the
fundamental algebra of the multialgebra A.

Proposition 2. [9, Proposition 3] The following conditions are equivalent for a mul-
tialgebra A = (A, (fγ)γ<o(τ)) of type τ :

(i) for all γ < o(τ), for all a0, . . . , anγ−1 ∈ A,

a ∈ fγ(a0, . . . , anγ−1) ⇒ a = fγ(a0, . . . , anγ−1).

(ii) for all m ∈ N, for all q, r ∈ P (m)(τ) \ {xi | i ∈ {0, . . . ,m − 1}}, for all
a0, . . . , am−1, b0, . . . , bm−1 ∈ A,

q(a0, . . . , am−1) ∩ r(b0, . . . , bm−1) 6= ∅ ⇒ q(a0, . . . , am−1) = r(b0, . . . , bm−1).

The multialgebras which verify one of the equivalent conditions (i) and (ii)
from the previous proposition are generalizations for the complete semihypergroups
(see [3, Definition 137]). This fact suggests the following:
Definition 1. A multialgebra which satisfies one of the equivalent conditions from
the previous proposition will be called complete multialgebra.
Remark 1. As we have seen in [9], a hypergroup (H, ◦) can be identified with a
multialgebra (H, ◦, /, \) with three binary multioperations, with H 6= ∅, ◦ associative
(i.e. (a ◦ b) ◦ c = a ◦ (b ◦ c), for all a, b, c ∈ H) and

(2) a/b = {x ∈ H | a ∈ x ◦ b}, b\a = {x ∈ H | a ∈ b ◦ x}.

Remark 2. In [10] the complete hypergroups are defined as the complete semihyper-
groups which are hypergroups. For any elements a and b from a complete hypergroup
(H, ◦) there exists b′ ∈ H such that a/b = a ◦ b′ and b\a = b′ ◦ a (see [10, Theorem
146]). Thus, a hypergroup (H, ◦) is complete if and only if the multialgebra (H, ◦, /, \)
from the previous remark is a complete multialgebra.
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One can construct the category of the multialgebras of the same type τ where
the morphisms are the multialgebra homomorphisms and the product is the usual
mapping composition. We will denote this category by Malg(τ). The complete
multialgebras form a full subcategory CMalg(τ) of the category Malg(τ).

3. The direct limit of a direct system of complete multialgebras

Let A = ((Ai | i ∈ I), (ϕij | i, j ∈ I, i ≤ j)) be a direct system of complete
multialgebras and let multialgebra A∞ = (A∞, (fγ)γ<o(τ)) be the direct limit of the
direct system A.

Remind that (I,≤) is a directed preordered set and the mappings ϕij (i, j ∈
I, i ≤ j) are such that for any i, j, k ∈ I, with i ≤ j ≤ k, ϕjk ◦ ϕij = ϕik and
ϕii = 1Ai

, for all i ∈ I. Also remind that the set A∞ is the direct limit of the direct
system of sets ((Ai | i ∈ I), (ϕij | i, j ∈ I, i ≤ j)) and it is obtained as follows: on the
disjoint union A of the sets Ai one defines the relation ≡ as follows: for any x, y ∈ A
there exist i, j ∈ I, such that x ∈ Ai, y ∈ Aj , and x ≡ y if and only if ϕik(x) = ϕjk(y)
for some k ∈ I with i ≤ k, j ≤ k. This relation on A is an equivalence and A∞ is the
quotient set A/≡ = {x̂ | x ∈ A} (see [6]).

The multioperations of the direct limit multialgebra are defined as follows:
let γ < o(τ) and x̂0, . . . , x̂nγ−1 ∈ A∞ and for any j ∈ {0, . . . , nγ − 1} let us consider
that xj ∈ Aij (ij ∈ I). Then

fγ(â0, . . . , ânγ−1) = {â ∈ A∞ | ∃m ∈ I, i0 ≤ m, . . . , inγ−1 ≤ m,

a ∈ fγ(ϕi0m(a0), . . . , ϕinγ−1m(anγ−1))}.

Lemma 1. [10, Lemma 2] Let p ∈ P(n)(τ) and a0, . . . , an−1 ∈ A. If i0, . . . , in−1 ∈ I
are such that aj ∈ Aij

for all j ∈ {0, . . . , n− 1} then

p(â0, . . . , ân−1) = {â ∈ A∞ | ∃m ∈ I, i0 ≤ m, . . . , in−1 ≤ m,

a ∈ p(ϕi0m(a0), . . . , ϕin−1m(an−1))}.

Let A = ((Ai | i ∈ I), (ϕij | i, j ∈ I, i ≤ j)) be a direct system of multialge-
bras and let us consider J ⊆ I such that (J,≤) is also directed. We will denote by AJ

the direct system whose carrier is (J,≤), consisting of the multialgebras (Ai | i ∈ J)
and the homomorphisms (ϕij | i, j ∈ J, i ≤ j).
Proposition 3. [10, Proposition 1] Let A be a direct system of multialgebras with
the carrier (I,≤) and let us consider J ⊆ I such that (J,≤) is a directed preordered
set cofinal with (I,≤). Then the multialgebras lim−→A and lim−→AJ are isomorphic.

Remark 3. This proposition was proved for the case when (I,≤) is an ordered set.
Yet, the antisymmetry of the relation ≤ is not involved in the proof.

The main result of this paper is the following:
Theorem 1. The category CMalg(τ) is a subcategory of the category Malg(τ) which
closed under direct limits of direct systems.

Proof. Let A = ((Ai | i ∈ I), (ϕij | i, j ∈ I, i ≤ j)) a direct system of complete
multialgebras, let n ∈ N, q, r ∈ P(n)(τ) \ {xj | j ∈ {0, . . . , n − 1}} and â0, . . . , ân−1,
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b̂0, . . . , b̂n−1 ∈ A∞. We can consider that the representatives a0,. . . , an−1, b0,. . . , bn−1

of the given classes are from the set Ak (k ∈ I). If

q(â0, . . . , ân−1) ∩ r(b̂0, . . . , b̂n−1) 6= ∅
then there exists a ∈

⋃
i∈I Ai such that

â ∈ q(â0, . . . , ân−1) ∩ r(b̂0, . . . , b̂n−1).

From â ∈ q(â0, . . . , ân−1) it results that there exist m′ ∈ I, m′ ≥ k, and a′ ≡ a such
that

a′ ∈ q(ϕkm′(a0), . . . , ϕkm′(an−1)) ⊆ Am′ .

Analogously, from â ∈ r(b̂0, . . . , b̂n−1) it follows that there exist m′′ ∈ I, m′′ ≥ k, and
a′′ ≡ a such that

a′′ ∈ r(ϕkm′′(b0), . . . , ϕkm′′(bn−1)) ⊆ Am′′ .

Let x̂ be an arbitrary element from q(â0, . . . , ân−1). Then there exists l ∈ I with
k ≤ l such that

x ∈ q(ϕkl(a0), . . . , ϕkl(an−1)) ⊆ Al.

From a′ ≡ a ≡ a′′ we deduce the existence of an element m′′′ ∈ I with m′ ≤ m′′′,
m′′ ≤ m′′′, such that ϕm′m′′′(a′) = ϕm′′m′′′(a′′). Since (I,≤) is directed, there exists
m ∈ I with m′′′ ≤ m and l ≤ m. According to Proposition 1 we have

ϕlm(x) ∈ ϕlm(q(ϕkl(a0), . . . , ϕkl(an−1)))

⊆ q(ϕlm(ϕkl(a0)), . . . , ϕlm(ϕkl(an−1)))

= q(ϕkm(a0), . . . , ϕkm(an−1)) ⊆ Am.

Also,

ϕm′m(a′) ∈ ϕm′m(q(ϕkm′(a0), . . . , ϕkm′(an−1)))

⊆ q(ϕm′m(ϕkm′(a0)), . . . , ϕm′m(ϕkm′(an−1)))

= q(ϕkm(a0), . . . , ϕkm(an−1)) ⊆ Am

and, analogously,

ϕm′′m(a′′) ∈ r(ϕkm(b0), . . . , ϕkm(bn−1)) ⊆ Am.

But

ϕm′m(a′) = ϕm′′′m(ϕm′m′′′(a′)) = ϕm′′′m(ϕm′′m′′′(a′′)) = ϕm′′m(a′′),

and, since the multialgebra Am is complete it follows that

ϕlm(x) ∈ q(ϕkm(a0), . . . , ϕkm(an−1)) = r(ϕkm(b0), . . . , ϕkm(bn−1)).

Consequently, x̂ ∈ r(b̂0, . . . , b̂n−1). Thus we have proved that

q(â0, . . . , ân−1) ⊆ r(b̂0, . . . , b̂n−1).

Similarly, one can show that q(â0, . . . , ân−1) ⊇ r(b̂0, . . . , b̂n−1), so, we have

q(â0, . . . , ân−1) = r(b̂0, . . . , b̂n−1).
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Thus the multialgebra A∞ is complete.

Corollary 1. Let A = ((Ai | i ∈ I), (ϕij | i, j ∈ I, i ≤ j)) be a direct system of
multialgebras. If any i, j ∈ I have an upper bound k ∈ I such that Ak is a complete
multialgebra, then A∞ is a complete multialgebra.

This follows from the previous theorem and Proposition 3 since the set

J = {k ∈ I | Ak is a complete multialgebra}
(with the restriction of ≤ from I) is a directed preordered set cofinal with (I,≤).

In [12] are proved the following theorems:
Theorem 2. [12, Theorem 3] Let (((Hi, ◦i) | i ∈ I), (ϕij | i, j ∈ I, i ≤ j)) be a direct
system of semihypergroups. The direct limit (H ′, ◦) of this system is a semihypergroup.
Theorem 3. [12, Theorem 4] Let (((Hi, ◦i) | i ∈ I), (ϕij | i, j ∈ I, i ≤ j)) be a direct
system of semihypergroups having the property that for any i, j ∈ I there exists k ∈ I,
i ≤ k, j ≤ k such that Hk is a hypergroup. The direct limit (H ′, ◦) of this system is
a hypergroup.
Remark 4. In [12] is considered that (I,≤) is partially ordered, but the property holds
even if (I,≤) is only preordered.
Remark 5. If we see each hypergroup (Hi, ◦i) as a multialgebra (Hi, ◦i, /i, \i) as in
Remark 1 we obtain a direct system of multialgebras of type τ . If we consider for this
system the direct limit multialgebra (H∞, ◦∞, /, \) then H ′ = H∞, ◦ = ◦∞ and the
multioperations /, \ are obtained from ◦ using (2).

From Remark 2, Theorem 3 and Theorem 1 we have:
Corollary 2. The direct limit of a direct system of complete (semi)hypergroups is a
complete (semi)hypergroup.

Using, in addition, Corollary 1 we also have:
Corollary 3. Let (((Hi, ◦i) | i ∈ I), (ϕij | i, j ∈ I, i ≤ j)) be a direct system of
semihypergroups having the property that for any i, j ∈ I there exists k ∈ I, i ≤ k,
j ≤ k such that Hk is a complete (semi)hypergroup. The direct limit (H ′, ◦) of this
system is a complete (semi)hypergroup.
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A REMARKABLE STRUCTURE AND CONNECTIONS
ON THE TANGENT BUNDLE

MONICA PURCARU AND MIRELA TÂRNOVEANU

Abstract. The present paper deals with the conformal almost symplec-
tic structure on TM. Starting from the notion of conformal almost sym-
plectic structure in the tangent bundle, we define the notion of general
conformal almost symplectic d-linear connection and respective conformal
almost symplectic d-linear connection with respect to a conformal almost

symplectic structure Â, corresponding to the 1-forms ω and ω̃ in TM . We
determine the set of all general conformal almost symplectic d-linear con-
nections on TM , in the case when the nonlinear connection is arbitrary
and we find important particular cases.

1. Introduction

The geometry of the tangent bundle (TM, π, M) has been studied by R.Miron
and M.Anastasiei in [6], by R.Miron and M.Hashiguchi in [7], by V.Oproiu in [8], by
Gh.Atanasiu and I.Ghinea in [1], by R.Bowman in [2], by K.Yano and S.Ishihara in
[10],etc.

Concerning the terminology and notations, we use those from [4].
Let M be a real C∞-differentiable manifold with dimension n, (n=2n’) and

(TM, π, M) its tangent bundle.
If (xi) is a local coordinates system on a domain U of a chart on M, the

induced system of coordonates on π−1(U) is (xi, yi), (i = 1, ..., n).
Let N be a nonlinear connection on TM , with the coefficients N j

i(x, y), (i, j =
1, ..., n).

We consider on TM an almost symplectic structure A defined by:

A(x, y) =
1
2
aij(x, y)dxi ∧ dxj +

1
2
ãij(x, y)δyi ∧ δyj , (1)

Received by the editors: 31.03.2004.
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where (dxi, δyi), (i = 1, ..., n) is the dual basis of
(

δ
δxi ,

∂
∂yi

)
, and (aij(x, y), ãij(x, y))

is a pair of given d-tensor fields on TM , of the type (0,2), each of them alternate and
nondegenerate.

We asociate to the lift A the Obata’s operators:{
Φir

sj = 1
2 (δi

sδ
r
j − asja

ir), Φ∗ir
sj = 1

2 (δi
sδ

r
j + asja

ir),
Φ̃ir

sj = 1
2 (δi

sδ
r
j − ãsj ã

ir), Φ̃∗ir
sj = 1

2 (δi
sδ

r
j + ãsj ã

ir).
(2)

Obata’s operators have the same properties as the ones associated with a Finsler space
[7].

Let A2(TM) be the set of all alternate d-tensor fields, of the type (0,2) on
TM . As is easily shown, the relations on A2(TM) defined by (3):{

(aij ∼ bij) ⇔
(
(∃) λ(x, y) ∈ F(TM), aij(x, y) = e2λ(x,y)bij(x, y)

)
,(

ãij ∼ b̃ij

)
⇔

(
(∃) µ(x, y) ∈ F(TM), ãij(x, y) = e2µ(x,y)b̃ij(x, y)

)
,

(3)

is an equivalence relation on A2(TM).

Definition 1.1. The equivalent class: Â of A2(TM)/∼ to which the almost symplectic
tensor field A belongs, is called conformal almost symplectic structure on TM .

Thus:

Â = {A′|A′
ij(x, y) = e2λ(x,y)aij(x, y) and Ã′

ij(x, y) = e2µ(x,y)ãij(x, y)}. (4)

2. General conformal almost symplectic d-linear connections on TM.

Definition 2.1. A d-linear connection, D, on TM , with local coefficients
DΓ(N) = (Li

jk, L̃i
jk, C̃i

jk, Ci
jk), is called general conformal almost symplectic d-linear

connection on TM if:

aij|k = Kijk, aij |k = Qijk, ãij|k = K̃ijk, ãij |k = Q̃ijk, (5)

where Kijk, Qijk, K̃ijk, Q̃ijk are arbitrary tensor fields, of the type (0, 3) on TM , with
the properties:

Kijk = −Kjik, Qijk = −Qjik, K̃ijk = −K̃jik, Q̃ijk = −Q̃jik (6)

and , denote the h-and respective v-covariant derivatives with respect to D.

Particularly, we have:

Definition 2.2. A d-linear connection, D, on TM , with local coefficients DΓ(N) =
(Li

jk, L̃i
jk, C̃i

jk, Ci
jk), for which there exists the 1-forms ω and ω̃ in TM , ω = ωidxi+

ω̇iδy
i, ω̃ = ω̃idxi + ˙̃

iωδyi such that:
aij|k = 2ωkaij , aij |k = 2ω̇kaij ,

ãij|k = 2ω̃kãij , ãij |k = 2
.
ω̃k ãij ,

(7)
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where and denote the h-and v-covariant derivatives with respect to D,is called con-
formal almost symplectic d-linear connection on TM , with respect to the conformal
almost symplectic structure Â, corresponding to the 1-forms ω, ω̃ and is denoted by:
DΓ(N,ω, ω̃).

We shall determine the set of all general conformal almost symplectic d-linear
connections, with respect to Â.

Let
0

DΓ(
0

N) = (
0

Li
jk,

0

L̃i
jk,

0

C̃i
jk,

0

Ci
jk) be the local coefficients of a fixed d-

linear connection
0

D on TM. Then any d-linear connection, D, on TM , with local
coefficients: DΓ(N) = (Li

jk, L̃i
jk, C̃i

jk, Ci
jk),can be expresed in the form:



N i
j =

0

N i
j −Ai

j ,

Li
jk =

0

Li
jk +Al

k

0

C̃i
jl −Bi

jk,

L̃i
jk =

0

L̃i
jk +Al

k

0

Ci
jl −B̃i

jk,

C̃i
jk =

0

C̃i
jk −D̃i

jk,

Ci
jk =

0

Ci
jk −Di

jk,

Al

j
0
|k

= 0,

(8)

where (Ai
j , B

i
jk, B̃i

jk, D̃i
jk, Di

jk) are components of the difference tensor fields of

DΓ(N) from
0

D Γ(
0

N), [4] and
0

,
0

denotes the h-and v-covariant derivatives with

respect to
0

D.

Theorem 2.1. Let
0

D be a given d-linear connection on TM , with local coefficients
0

DΓ(
0

N) = (
0

Li
jk,

0

L̃i
jk,

0

C̃i
jk,

0

Ci
jk). The set of all general conformal almost symplectic

d-linear connections on TM, with local coefficients DΓ(N) = (Li
jk, L̃i

jk, C̃i
jk, Ci

jk)
is given by:
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N i
j =

0

N i
j −Xi

j ,

Li
jk =

0

Li
jk +

0

C̃i
jm Xm

k + 1
2ais(a

sj
0
|k

+ asj

0

|m Xm
k −Ksjk) + Φir

hjX
h
rk,

L̃i
jk =

0

L̃i
jk +

0

Ci
jm Xm

k + 1
2 ãis(ã

sj
0
|k

+ ãsj

0

|m Xm
k − K̃sjk) + Φ̃ir

hjX̃
h
rk,

C̃i
jk =

0

C̃i
jk + 1

2ais(asj

0

|k −Qsjk) + Φir
hj Ỹ

h
rk,

Ci
jk =

0

Ci
jk + 1

2 ãis(ãsj

0

|k −Q̃sjk) + Φ̃ir
hjY

h
rk, Xi

j
0
|k

= 0,

(9)

where Xi
j , Xi

jk, X̃i
jk, Ỹ i

jk, Y i
jk are arbitrary tensor fields on TM ,

0

,
0

denote the

h-and respective v-covariant derivatives with respect to
0

D and Kijk, Qijk, K̃ijk, Q̃ijk

are arbitrary tensor fields of the type (0,3) on TM with the properties (6).
Particular cases:
1. If Xi

j = Xi
jk = X̃i

jk = Ỹ i
jk = Y i

jk = 0 in Theorem 2.1. we have:

Theorem 2.2. Let
0

D be a given d-linear connection on TM , with local coefficients
0

DΓ(
0

N) = (
0

Li
jk,

0

L̃i
jk,

0

C̃i
jk,

0

Ci
jk). Then the following d-linear connection D, with

local coefficients DΓ(
0

N) = (Li
jk, L̃i

jk, C̃i
jk, Ci

jk) given by (10) is a general conformal
almost symplectic d-linear connection with respect to Â:



Li
jk =

0

Li
jk + 1

2ais(a
sj

0
|k
−Ksjk),

L̃i
jk =

0

L̃i
jk + 1

2 ãis(ã
sj

0
|k
− K̃sjk),

C̃i
jk =

0

C̃i
jk + 1

2ais(asj

0

|k −Qsjk),

Ci
jk =

0

Ci
jk + 1

2 ãis(ãsj

0

|k −Q̃sjk),

(10)

where
0

,
0

denote the h-and respective v-covariant derivatives with respect to the

given d-linear connection
0

D and Kijk, Qijk, K̃ijk, Q̃ijk are arbitrary tensor fields of
the type (0,3) on TM with the properties (6).

2. If Kijk = K̃ijk = Q̃ijk = Qijk = 0 in Theorem 2.1 we have :

Theorem 2.3. Let
0

D be a given d-linear connection on TM , with local coefficients
0

DΓ(
0

N) = (
0

Li
jk,

0

L̃i
jk,

0

C̃i
jk,

0

Ci
jk). The set of all almost symplectic d-linear connec-

tions on TM, with local coefficients DΓ(N) = (Li
jk, L̃i

jk, C̃i
jk, Ci

jk) is given by:
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N i
j =

0

N i
j −Xi

j ,

Li
jk =

0

Li
jk +

0

C̃i
jm Xm

k + 1
2ais(a

sj
0
|k

+ asj

0

|m Xm
k) + Φir

hjX
h
rk,

L̃i
jk =

0

L̃i
jk +

0

Ci
jm Xm

k + 1
2 ãis(ã

sj
0
|k

+ ãsj

0

|m Xm
k) + Φ̃ir

hjX̃
h
rk,

C̃i
jk =

0

C̃i
jk + 1

2aisasj

0

|k +Φir
hj Ỹ

h
rk,

Ci
jk =

0

Ci
jk + 1

2 ãisãsj

0

|k +Φ̃ir
hjY

h
rk, Xi

j
0
|k

= 0,

(11)

where Xi
j , Xi

jk, X̃i
jk, Ỹ i

jk, Y i
jk are arbitrary tensor fields on TM and

0

,
0

denote

the h-and respective v-covariant derivatives with respect to
0

D.
3. If Kijk = 2aijωk, K̃ijk = 2ãijω̃k, Q̃ijk = 2ãij

˙̃ωk, Qijk = 2aijω̇k, such that
ω = ωidxi + ω̇iδy

i and respective ω̃ = ω̃idxi + ˙̃ωiδy
i are two 1-forms in TM , then

from (9) we have the set of all conformal almost symplectic d-linear connections on
TM :

Theorem 2.4. Let
0

D be a given d-linear connection on TM , with local coefficients
0

DΓ(
0

N) = (
0

Li
jk,

0

L̃i
jk,

0

C̃i
jk,

0

Ci
jk). Then set of all conformal almost symplectic d-linear

connections on TM , with respect to Â, corresponding to the 1-forms ω and ω̃, with
local coefficients DΓ(N,ω, ω̃) = (Li

jk, L̃i
jk, C̃i

jk, Ci
jk) is given by:



N i
j =

0

N i
j −Xi

j ,

Li
jk =

0

Li
jk +

0

C̃i
jm Xm

k + 1
2ais(a

sj
0
|k

+ asj

0

|m Xm
k)− δi

jωk + Φir
hjX

h
rk,

L̃i
jk =

0

L̃i
jk +

0

Ci
jm Xm

k + 1
2 ãis(ã

sj
0
|k

+ ãsj

0

|m Xm
k)− δi

jω̃k + Φ̃ir
hjX̃

h
rk,

C̃i
jk =

0

C̃i
jk + 1

2aisasj

0

|k −δi
jω̇k + Φir

hj Ỹ
h
rk,

Ci
jk =

0

Ci
jk + 1

2 ãisãsj

0

|k −δi
j
˙̃ωk + Φ̃ir

hjY
h

rk,

Xi

j
0
|k

= 0,

(12)

where Xi
j , Xi

jk, X̃i
jk, Ỹ i

jk, Y i
jk are arbitrary tensor fields on TM , ω = ωidxi+ω̇iδy

i

and respective ω̃ = ω̃idxi + ˙̃ωiδy
i are arbitrary 1-forms in TM and

0

,
0

denote the

h-and respective v-covariant derivatives with respect to
0

D.
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4. If Xi
j = Xi

jk = X̃i
jk = Ỹ i

jk = Y i
jk = 0 in Theorem 2.4. we have:

Theorem 2.5. Let
0

D be a given d-linear connection on TM , with local coefficients
0

DΓ(
0

N) = (
0

Li
jk,

0

L̃i
jk,

0

C̃i
jk,

0

Ci
jk). Then the following d-linear connection D, with local

coefficients DΓ(
0

N,ω, ω̃) = (Li
jk, L̃i

jk, C̃i
jk, Ci

jk) given by (13) is a conformal almost
symplectic d-linear connection with respect to Â, corresponding to the 1-forms ω and
ω̃:



Li
jk =

0

Li
jk + 1

2aisa
sj

0
|k
− δi

jωk,

L̃i
jk =

0

L̃i
jk + 1

2 ãisã
sj

0
|k
− δi

jω̃k,

C̃i
jk =

0

C̃i
jk + 1

2aisasj

0

|k −δi
jω̇k,

Ci
jk =

0

Ci
jk + 1

2 ãisãsj

0

|k −δi
j
˙̃ωk,

(13)

where
0

,
0

denote the h-and respective v-covariant derivatives with respect to the

given d-linear connection
0

D and ω = ωidxi + ω̇iδy
i and respective ω̃ = ω̃idxi + ˙̃ωiδy

i

are two given 1-forms in TM .

5. If we take an almost symplectic d-linear connection as
0

D in Theorem 2.5,
then (13) becomes: 

Li
jk =

0

Li
jk −δi

jωk,

L̃i
jk =

0

L̃i
jk −δi

jω̃k,

C̃i
jk =

0

C̃i
jk −δi

jω̇k,

Ci
jk =

0

Ci
jk −δi

j
˙̃ωk.

(14)

6. If we take a conformal almost symplectic d-linear connection with respect

to Â as
0

D in Theorem 2.4, we have

Theorem 2.6. Let
0

D be a given conformal almost symplectic d-linear connec-

tion on TM , with local coefficients:
0

DΓ(
0

N,ω, ω̃) = (
0

Li
jk,

0

L̃i
jk,

0

C̃i
jk,

0

Ci
jk). The

set of all conformal almost symplectic d-linear connections on TM , with respect
to Â, corresponding to the 1-forms ω and ω̃, with local coefficients DΓ(N,ω, ω̃) =
(Li

jk, L̃i
jk, C̃i

jk, Ci
jk) is given by:
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N i
j =

0

N i
j −Xi

j ,

Li
jk =

0

Li
jk +(

0

C̃i
jm +δi

jω̇m)Xm
k + +Φir

hjX
h
rk,

L̃i
jk =

0

L̃i
jk +(

0

Ci
jm +δi

j
˙̃ωm)Xm

k + Φ̃ir
hjX̃

h
rk,

C̃i
jk =

0

C̃i
jk +Φir

hj Ỹ
h
rk,

Ci
jk =

0

Ci
jk +Φ̃ir

hjY
h

rk,

Xi

j
0
|k

= 0,

(15)

where Xi
j , Xi

jk, X̃i
jk, Ỹ i

jk, Y i
jk are arbitrary tensor fields on TM , ω = ωidxi+ω̇iδy

i

and respective ω̃ = ω̃idxi + ˙̃ωiδy
i are two arbitrary 1-forms in TM and

0

,
0

denote

h-and respective v-covariant derivatives with respect to
0

D.
7. If we take Xi

j = 0 in Theorem 2.6 we obtain:

Theorem 2.7. Let
0

D be a given conformal almost symplectic d-linear connection

on TM , with local coefficients:
0

DΓ(
0

N,ω, ω̃) = (
0

Li
jk,

0

L̃i
jk,

0

C̃i
jk,

0

Ci
jk). The set of all

conformal almost symplectic d-linear connections on TM , with respect to Â, which

preserve the nonlinear connection
0

N , corresponding to the 1-forms ω and ω̃, with local

coefficients DΓ(
0

N,ω, ω̃) = (Li
jk, L̃i

jk, C̃i
jk, Ci

jk) is given by:



Li
jk =

0

Li
jk +Φir

hjX
h
rk,

L̃i
jk =

0

L̃i
jk +Φ̃ir

hjX̃
h
rk,

C̃i
jk =

0

C̃i
jk +Φir

hj Ỹ
h
rk,

Ci
jk =

0

Ci
jk +Φ̃ir

hjY
h

rk,

(16)

where Xi
j , Xi

jk, X̃i
jk, Ỹ i

jk, Y i
jk are arbitrary tensor fields on TM .
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[6] R. Miron, M. Anastasiei, The Geometry of Lagrange Spaces: Theory and Applications,
Kluwer Acad. Publ., FTPH, no. 59, 1994.

[7] R. Miron, M. Hashiguchi, Conformal Finsler Connections, Rev.Roumaine Math.Pures
Appl., 26, 6(1981), 861-878.

[8] V. Oproiu, On the Differential Geometry of the Tangent Bundle, Rev. Roum. Math.
Pures Appl., 13, 1968, 847-855.

[9] M. Purcaru, Structuri geometrice remarcabile ı̂n geometria Lagrange de ordinul al doilea,
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume XLIX, Number 1, March 2004

ON CERTAIN CLASSES OF P-VALENT FUNCTIONS WITH
NEGATIVE COEFFICIENTS. II

G. S. SǍLǍGEAN AND H. M. HOSSEN AND M. K. AOUF

Abstract. The object of the present paper is to obtain modified
Hadamard products (convolutions) of several functions belonging to the
classes T ∗(p, α) and C(p, α) consisting of analytic and p-valent functions
with negative coefficients. We also obtain class preserving integral operator
of the form

F (z) =
c + p

zc

∫ z

0

tc−1 f(t) dt, c > −p

for the classes T ∗(p, α) and C(p, α) . Conversely, when F belongs to
T ∗(p, α) and C(p, α) , radii of p-valence of f defined by the above equation
are obtained.

1. Introduction

Let S(p) denote the class of functions of the form

f(z) = zp +
∞∑

n=1

ap+nzp+n, (p ∈ N = {1, 2, · · · })

which are analytic and p-valent in the unit disc U = {z : |z| < 1}. A function f of
S(p) is called p-valent starlike of order α if f satisfies the following conditions

Re
{

zf ′(z)
f(z)

}
> α, z ∈ U (1.1)

and ∫ 2π

0

Re
{

zf ′(z)
f(z)

}
dθ = 2pπ

for 0 ≤ α < p, p ∈ N and z ∈ U. We denote by S∗(p, α) the class of all p-valent
starlike functions of order α. The class S∗(p, α) was studied by Patil and Thakare
[3]. Further a function f of S(p) is called p-valent convex of order α if f satisfies the
following conditions

Re
{

1 +
zf ′′(z)
f ′(z)

}
> α, z ∈ U (1.2)

Received by the editors: 17.03.2004.

2000 Mathematics Subject Classification. 30C45.
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and ∫ 2π

0

Re
{

1 +
zf ′′(z)
f ′(z)

}
dθ = 2pπ

for 0 ≤ α < p, p ∈ N and z ∈ U. We denote by K(p, α) the class of all p-valent
convex functions of order α.

It follows from (1.1) and (1.2) that

f(z) ∈ K(p, α) if and only if zf ′(z)/p ∈ S∗(p, α), 0 ≤ α < p.

Let T (p) denote the subclass of S(p) consisting of functions of the form

f(z) = zp −
∞∑

n=1

ap+nzp+n (ap+n ≥ 0; p, n ∈ N). (1.3)

We denote by T ∗(p, α) and C(p, α) the classes obtained by taking intersections, respec-
tively, of the classes S∗(p, α) and K(p, α) with T (p), that is T ∗(p, α) = S∗(p, α)∩T (p)
and C(p, α) = K(p, α) ∩ T (p).

The classes T ∗(p, α) and C(p, α) were studied by Owa [2].
In order to prove our results for functions belonging to the classes T ∗(p, α)

and C(p, α) we shall require the following lemmas given by Owa [2] and Aouf [1].

Lemma 1.1. Let the function f be defined by (1.3); then f ∈ T ∗(p, α) if and only
if

∞∑
n=1

(p + n− α)ap+n ≤ p− α.

The result is sharp for the functions

f(z) = zp − p− α

p + n− α
zp+n, n ∈ N. (1.4)

Lemma 1.2. Let the function f be defined by (1.3); then f ∈ C(p, α) if and only if
∞∑

n=1

(p + n)(p + n− α) ap+n ≤ p(p− α).

The result is sharp for the functions

f(z) = zp − p(p− α)
(p + n)(p + n− α)

zp+n, n ∈ N.

2. Modified Hadamard product

Let the functions fi be defined, for i ∈ {1, 2, 3}, by

fi(z) = zp −
∞∑

n=1

ap+n,i zp+n (ap+n,i ≥ 0). (2.1)

The modified Hadamard product (convolution) of f1 and f2 is defined here by

f1 ∗ f2(z) = zp −
∞∑

n=1

ap+n,1 ap+n,2 zp+n.
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Theorem 2.1. Let the functions fi, i ∈ {1, 2}, defined by (2.1) be in the class
T ∗(p, α). Then f1 ∗ f2(z) ∈ T ∗(p, β(p, α)), where

β(p, α) = p− (p− α)2

(p + 1− α)2 − (p− α)2
. (2.2)

The result is sharp.
Proof. Employing the technique used earlier by Schild and Silverman [4],

we need to find the largest β = β(p, α) such that
∞∑

n=1

p + n− β

p− β
ap+n,1 ap+n,2 ≤ 1.

Since
∞∑

n=1

p + n− α

p− α
ap+n,1 ≤ 1 and

∞∑
n=1

p + n− α

p− α
ap+n,2 ≤ 1,

by the Cauchy-Schwarz inequality we have
∞∑

n=1

p + n− α

p− α

√
ap+n,1 ap+n,2 ≤ 1.

Thus it is sufficient to show that
p + n− β

p− β
ap+n,1 ap+n,2 ≤

p + n− α

p− α

√
ap+n,1 ap+n,2 (n ≥ 1),

that is
√

ap+n,1 ap+n,2 ≤
(p− β)(p + n− α)
(p− α)(p + n− β)

.

Note that
√

ap+n,1 ap+n,2 ≤
p− α

p + n− α
(n ≥ 1).

Consequently, we need only to prove that

p− α

p + n− α
≤ (p− β)(p + n− α)

(p− α)(p + n− β)
(n ≥ 1)

or, equivalently, that

β ≤ p− n (p− α)2

(p + n− α)2 − (p− α)2
, (n ≥ 1).

Since

Ψ(n) = p− n (p− α)2

(p + n− α)2 − (p− α)2
, (n ≥ 1), (2.3)

is an increasing function of n (n ≥ 1), letting n = 1 in (2.3) we obtain

β ≤ Ψ(1) = p− (p− α)2

(p + 1− α)2 − (p− α)2
,

which completes the proof of Theorem 1.
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Finally, by taking the functions

fi(z) = zp − p− α

p + 1− α
zp+1, (i ∈ {1, 2}), (2.4)

we can see that the result is sharp.

In a similar manner, with the aid of Lemma 1.2, we can prove
Theorem 2.2. Let the functions fi, i ∈ {1, 2}, defined by (2.1) be in the class
C(p, α). Then f1 ∗ f2(z) ∈ C(p, β(p, α)), where

β(p, α) = p− (p− α)2

(p + 1− α)2(p + 1)/p− (p− α)2
.

The result is sharp for the functions

fi(z) = zp − p (p− α)
(p + 1)(p + 1− α)

zp+1, i ∈ {1, 2}. (2.5)

Theorem 2.3. Let the function f1 defined by (2.1) be in the class T ∗(p, α) and let the
function f2 defined by (2.1) be in the class T ∗(p, γ); then f1 ∗f2(z) ∈ T ∗(p, ζ(p, α, γ)),
where

ζ(p, α, γ) = p− (p− α)(p− γ)
(p + 1− α)(p + 1− γ)− (p− α)(p− γ)

.

The result is sharp.
Proof. Proceeding as in the proof of Theorem 2.1, we get

ζ ≤ Φ(n) = p− n (p− α)(p− γ)
(p + n− α)(p + n− γ)− (p− α)(p− γ)

. (2.6)

Since the function Φ(n) is an increasing function of n (n ≥ 1), letting n = 1 in (2.6)
we obtain

ζ ≤ Φ(1) = p− (p− α)(p− γ)
(p + 1− α)(p + 1− γ)− (p− α)(p− γ)

,

which evidently proves Theorem 2.3.
Further, taking

f1(z) = zp − p− α

p + 1− α
zp+1 and f2(z) = zp − p− γ

p + 1− γ
zp+1. (2.7)

Theorem 2.4. Let the function f1 defined by (2.1) be in the class C(p, α) and the
function f2 defined by (2.1) be in the class C(p, γ); then f1 ∗ f2(z) ∈ C(p, ζ(p, α, γ)),
where

ζ(p, α, γ) = p− (p− α)(p− γ)
(p + 1− α)(p + 1− γ)(p + 1)/p− (p− α)(p− γ)

.

The result is sharp for the functions

f1(z) = zp − p(p− α)
(p + 1)(p + 1− α)

zp+1 and f2(z) = zp − p(p− γ)
(p + 1− γ)(p + 1)

zp+1.
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Corollary 2.1. Let the functions fi, i ∈ {1, 2, 3}), defined by (2.1) be in the class
T ∗(p, α); then f1 ∗ f2 ∗ f3(z) ∈ T ∗(p, η(p, α)), where

η(p, α) = p− (p− α)3

(p + 1− α)3 − (p− α)3
.

The result is the best possible for the functions

fi(z) = zp − p− α

p + 1− α
zp+1, i ∈ {1, 2, 3}).

Proof. From Theorem 2.1 we have f1 ∗ f2(z) ∈ T ∗(p, β(p, α)), where β is
given by (2.2). We use now Theorem 2.3 and we get f1 ∗ f2 ∗ f3(z) ∈ T ∗(p, η(p, α)),
where

η(p, α) = p− (p− α)(p− β)
(p + 1− α)(p + 1− β)− (p− α)(p− β)

= p− (p− α)3

(p + 1− α)3 − (p− α)3
.

This completes the proof of Corollary 2.1.
Corollary 2.2. Let the functions fi, i ∈ {1, 2, 3}), defined by (2.1) be in the class
C(p, α); then f1 ∗ f2 ∗ f3(z) ∈ C(p, η(p, α)), where

η(p, α) = p− (p− α)3

(p + 1− α)3(p + 1)2/p2 − (p− α)3
.

The result is the best possible for the functions

fi(z) = zp − p(p− α)
(p + 1− α)(p + 1)

zp+1, i ∈ {1, 2, 3}).

Theorem 2.5. Let the function f1 defined by (2.1) be in the class T ∗(p, α) and the
function f2 defined by (2.1) be in the class T ∗(p, γ); then f1 ∗ f2(z) ∈ C(p, β(p, α, γ)),
where

β(p, α, γ) = p− (p + 1)(p− α)(p− γ)
p(p + 1− α)(p + 1− γ)− (p + 1)(p− α)(p− γ)

.

The result is sharp.

Proof. Since f1 ∈ T ∗(p, α) and f2 ∈ T ∗(p, γ), we have
∞∑

n=1

(p + n− α) ap+n,1 ≤ p− α and
∞∑

n=1

(p + n− γ) ap+n,2 ≤ p− γ.

It follows that
∞∑

n=1

(p + n− α)(p + n− γ) ap+n,1ap+n,2 ≤ (p− α)(p− γ).

We want to find the largest β = β(p, α, γ) such that
∞∑

n=1

(p + n− β)(p + n) ap+n,1ap+n,2 ≤ p(p− β).

81
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This will be certainly satisfied if
(p + n− β)(p + n)

p(p− β)
≤ (p + n− α)(p + n− γ)

(p− α)(p− γ)
(n ≥ 1),

or

β ≤ p− n(p + n)(p− α)(p− γ)
p(p + n− α)(p + n− γ)− (p + n)(p− α)(p− γ)

(n ≥ 1).

Since

K(n) = p− n(p + n)(p− α)(p− γ)
p(p + n− α)(p + n− γ)− (p + n)(p− α)(p− γ)

(n ≥ 1) (2.8)

is an increasing function of n (n ≥ 1), letting n = 1 in (2.8) we obtain

β ≤ K(1) = p− (p + 1)(p− α)(p− γ)
p(p + 1− α)(p + 1− γ)− (p + 1)(p− α)(p− γ)

,

and so β(p, α, γ) = K(1). Finally, the result is sharp for the functions f1 and f2

defined by (2.7).
Theorem 2.6. Let the functions fi, i ∈ {1, 2}, defined by (2.1) be in the class
T ∗(p, α); then the function

h(z) = zp −
∞∑

n=1

(
a2

p+n,1 + a2
p+n,2

)
zp+n (2.9)

belongs to the class T ∗(p, δ(p, α)), where

δ(p, α) = p− 2(p− α)2

(p + 1− α)2 − 2(p− α)2
.

The result is sharp.
Proof. By virtue of Lemma 1.1, we obtain

∞∑
n=1

{
p + n− α

p− α

}2

a2
p+n,1 ≤

{ ∞∑
n=1

p + n− α

p− α
ap+n,1

}2

≤ 1 (2.10)

and
∞∑

n=1

{
p + n− α

p− α

}2

a2
p+n,2 ≤

{ ∞∑
n=1

p + n− α

p− α
ap+n,2

}2

≤ 1. (2.11)

It follows from (2.10) and (2.11) that
∞∑

n=1

1
2

{
p + n− α

p− α

}2 (
a2

p+n,1 + a2
p+n,2

)
≤ 1.

Therefore, we need to find the largest δ such that

p + n− δ

p− δ
≤ 1

2

{
p + n− α

p− α

}2

,

that is

δ ≤ p− 2n(p− α)2

(p + n− α)2 − 2(p− α)2
(n ≥ 1).
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Since

D(n) = p− 2n(p− α)2

(p + n− α)2 − 2(p− α)2
(n ≥ 1)

is an increasing function of n (n ≥ 1), we readily have

δ ≤ D(1) = p− 2(p− α)2

(p + 1− α)2 − 2(p− α)2
.

The result is sharp for the functions fi, i ∈ {1, 2} given by (2.4).
Theorem 2.7. Let the functions fi, i ∈ {1, 2}, defined by (2.1) be in the class
C(p, α); then the function h(z) defined by (2.9) belongs to the class C(p, δ(p, α)),
where

δ(p, α) = p− 2p(p− α)2

(p + 1)(p + 1− α)2 − 2p(p− α)2
.

The result is sharp for the functions fi, i ∈ {1, 2} defined by (2.5).

3. Integral operators

Theorem 3.1. Let the function f defined by (1.3) be in the class T ∗(p, α) and let
d be a real number such that d > −p; then the function F defined by

F (z) =
d + p

zd

∫ z

0

td−1f(t) dt (3.1)

also belongs to the class T ∗(p, α).
Proof. From the representation of F it follows that

F (z) = zp −
∞∑

n=1

bp+nzp+n, where bp+n =
d + p

d + p + n
ap+n.

Therefore
∞∑

n=1

(p + n− α)bp+n =
∞∑

n=1

(p + n− α)
d + p

d + p + n
ap+n ≤

∞∑
n=1

(p + n− α)ap+n ≤ p− α,

since f ∈ T ∗(p, α). Hence, by Lemma 1.1, F ∈ T ∗(p, α).

Putting d = 1− p in Theorem 3.1 we get the following corollary.
Corollary 3.1. Let the function f defined by (1.3) be in the class T ∗(p, α) and let
F be defined by

F (z) =
1

z1−p

∫ z

0

f(t)
tp

dt;

then F ∈ T ∗(p, α).
Theorem 3.2. Let d be a real number such that d > −p. If F ∈ T ∗(p, α), then the
function f defined by (3.1) is p-valent in |z| < R∗

p, where

R∗
p = inf

n

[
p(p + n− α)(d + p)

(p + n)(p− α)(d + p + n)

]1/n

.

The result is sharp.
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Proof. Let F (z) = zp −
∑∞

n=1 ap+nzp+n (ap+n ≥ 0). It follows from (3.1)
that

f(z) =
z1−d

(
zdF (z)

)′
d + p

= zp −
∞∑

n=1

d + p + n

d + p
ap+nzp+n.

To prove the result it suffices to show that∣∣∣∣f ′(z)
zp−1

− p

∣∣∣∣ ≤ p for |z| < R∗
p.

Now∣∣∣∣f ′(z)
zp−1

− p

∣∣∣∣ =

∣∣∣∣∣−
∞∑

n=1

(p + n)
d + p + n

d + p
ap+nzn

∣∣∣∣∣ ≤
∞∑

n=1

(p + n)
d + p + n

d + p
ap+n |z|n.

Thus |f ′(z)/zp−1 − p| ≤ p if
∞∑

n=1

p + n

p

d + p + n

d + p
ap+n |z|n ≤ 1. (3.2)

But Lemma 1.1 confirm that
∞∑

n=1

p + n− α

p− α
ap+n ≤ 1.

Thus (3.2) will be satisfied if

(p + n)(d + p + n)
p(d + p)

|z|n ≤ p + n− α

p− α
(n ≥ 1)

or if

|z| ≤
[

p(p + n− α)(d + p)
(p + n)(p− α)(d + p + n)

]1/n

(n ≥ 1). (3.3)

The required result follows now from (3.3). The result is sharp because the functions

f(z) = zp − (p− α)(d + p + n)
(p + n− α)(d + p)

zp+n (n ≥ 1)

are defined by (3.1) when F are given by (1.4).

In a similar manner, with the aid of Lemma 1.2, we can prove the following
theorem.
Theorem 3.3. Let the function f defined by (1.3) be in the class C(p, α) and let d
be a real number such that d > −p. Then the function F defined by (3.1) also belongs
to the class C(p, α).
Theorem 3.4. Let d be a real number such that d > −p. If F ∈ C(p, α), then the
function f defined by (3.1) is p-valent in |z| < R∗∗

p , where

R∗∗
p = inf

n

[
(p + n− α)(d + p)
(p− α)(d + p + n)

]1/n

.
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The result is sharp for the functions

f(z) = zp − p(p− α)(d + p + n)
(p + n)(p + n− α)(d + p)

zp+n (n ≥ 1).
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THE STUDY OF REMAINDER FOR SOME CUBATURE
FORMULAS FOR TRIANGULAR DOMAIN

ILDIKO SOMOGYI

The purpose of this paper is to give some practical cubature formulas in
approximation of the integral

I =
∫

D

f (x, y) dxdy (1)

where D is a triangular domain, D = {(x, y)/x ≥ 0, y ≥ 0, x + y ≤ h} and f : D → R
is an integrable function on D. We would like to construct some practical cubature
formulas of the following form:

I =
m∑

i=1

n∑
j=1

Aijf (xi, yj) + Rmn(f)

where Aij are the coefficients of the formula and Rmn(f) the remainder. We will use
the quadrature rules given by Bruno Welfer in [2] for triangular domain and we will
study the remainder of these rules and some optimal properties. To obtain the error
of the approximation formula we will use a generalization of the Peano Theorem,
when the function is a member of the so-called Sard space. We will note with Bpq the
Sard space where p, q ∈ N, p + q = m. Let Ω = [0, h]× [0, h] where h ∈ R+, then the
Sard space Bp,q(0, 0) is the set of all of the functions f : Ω → R with the following
properties:

1. f (p,q) ∈ C(Ω)
2. f (m−j,j)(·, 0) ∈ C[0, h], j = 0, ..., q − 1
3. f (i,m−i)(0, ·) ∈ C[0, h], i = 0, ..., p− 1

Theorem 1. Let L : Bpq(0, 0) → R be a continuous linear functional. If Ker(L) =
P 2

m−1 then

L(f) =
∑
j<q

∫ h

0

Km−j,j(s)f (m−j,j)(s, 0)ds +
∑
ı́<p

Ki,m−i(t)f (i,m−i)(0, t)dt+

+
∫ ∫

ω

Kp,q(s, t)f (p,q)(s, t)dsdt (2)

Received by the editors: 12.12.2003.
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where

Km−j,j(s) = L(x,y)

[
(x− s)m−j−1

+

(m− j − 1)!
yj

j!

]
, j < q

Ki,m−i(t) = L(x,y)

[
xi

i!
(y − t)m−i−1

+

(m− i− 1)!

]
, i < p

Kp,q(s, t) = L(x,y)

[
(x− s)p−1

+

(p− 1)!
(y − t)q−1

+

(q − 1)!

]
.

First of all we consider the cubature formula with a single knots:∫ ∫
D

f(x, y)dxdy =
h2

2
f(

h

3
,
h

3
) + R1(f). (3)

Because the degree of exactness of this formula is equal with 1, we can use
the first theorem and follows:
Theorem 2. If f (2,0)(·, 0) ∈ C[0, h], f (0,2)(0, ·) ∈ C[0, h] and f (1,1)(x, y) ∈ C(D) then
we can give the following delimitation of the error in formula (3):

|R1(f)| ≤ h4

72
M20f +

h4

72
M02f +

89h4

1944
M11f,

where

M20f = max
x∈[0,h]

|f (2,0)(x, 0)|,M02f = max
y∈[0,h]

|f (0,2)(0, y)|,M11f = max
D

|f (1,1)(x, y)|.

Proof. Theorem 1 implies the following error representation:

R1(f) =
∫ h

0

K20(s)f (2,0)(s, 0)ds +
∫ h

0

K02(s)f (0,2)(0, t)dt

+
∫ ∫

Th

K11(s, t)f (1,1)(s, t)dsdt (4)

and
K20(s) = Rxy [(x− s)+]

K02(t) = Rxy [(y − t)+]

K11(s, t) = Rxy
[
(x− s)0+(y − t)0+

]
.

Therefore the so-called Peano-kernels has the representation

K20(s) =

{
(h−s)3

6 − h2

2 (h
3 − s), s ≤ h

3
(h−s)3

6 , s ≥ h
3

K02(t) =

{
(h−t)3

6 − h2

2 (h
3 − t), t ≤ h

3
(h−t)3

6 , t ≥ h
3
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and

K11(s, t) =

{
(h−t−s)3

6 − h2

2 , 0 ≤ s, t ≤ h
3

(h−t−s)3

6 , 0 ≤ s ≤ h
3 , h

3 ≤ t ≤ h or h
3 ≤ s ≤ h, 0 ≤ t ≤ h

3

If we study the sign of these functions, we conclude that K20 and K02 are
positive functions at the interval [0, h] and K11(s, t) ≤ 0, 0 ≤ s, t ≤ h

3 and K11(s, t) ≥
0 if 0 ≤ s ≤ h

3 , h
3 ≤ t ≤ h or h

3 ≤ s ≤ h, 0 ≤ t ≤ h
3 .

Since ∫ h

0

K20(s)ds =
h4

72
,∫ h

0

K02(t)dt =
h4

72
,

and ∫ ∫
D

|K11(s, t)| dsdt =
89h4

1944
,

from (4) finally yields the theorem.
Let now consider the following formula:∫

D

∫
f(x, y)dxdy =

h2

6

[
f(0,

h

2
) + f(

h

2
, 0) + f(

h

2
,
h

2
)
]

+ R2(f). (5)

The degree of exactness of this formula is 2, therefore we can use the theorem
1 for the representation of the error, an we can give the following delimitation of the
approximation error:
Theorem 3. If f (3,0)(·, 0) ∈ C[0, h], f (2,1)(·, 0) ∈ C[0, h], f (0,3)(0, ·) ∈ C[0, h] and
f (1,2)(s, t) ∈ C(D) than we have

|R2(f)| ≤ M30f
h5

720
+ M21f

h5

364
+ M03f

h5

720
+ M12f

h5

24
(6)

where
M30f = max

s∈[0,h]

∣∣∣f (3,0)(s, 0)
∣∣∣ ,M21f = max

s∈[0,h]

∣∣∣f (2,1)(s, 0)
∣∣∣ ,

M03f = max
t∈[0,h]

∣∣∣f (0,3)(0, t)
∣∣∣ and M12f = max

D

∣∣∣f (1,2)(s, t)
∣∣∣ .

Proof. We will use the same method like in the previous theorem, than the
error of the formula (5) is

R2(f) =
∫ h

0

K30(s)f (3,0)(s)ds +
∫ h

0

K21(s)f (2,1)(s, 0)ds +
∫ h

0

K03(t)f (0,3)(0, t)dt+

+
∫

D

∫
K12(s, t)f (1,2)(s, t)dsdt

where

K30(s) =

{
(h−s)4

24 − h3

6 (h
2 − s)2, s < h/2

(h−s)4

24 , s ≥ h/2
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K21(s) =

{
(h−s)4

24 − h3

12 (h
2 − s), s < h/2

(h−s)4

24 , s ≥ h/2

K12(s, t) =

{
(h−s−t)3

6 − h2

6 (h
2 − t), 0 < s, t < h/2

(h−s−t)3

6 , otherwise

and

K03(t) =

{
(h−t)4

24 − h2

6 (h
2 − t)2, t < h/2

(h−t)4

24 , t ≥ h/2

The kernel functions K30 and K03 are positive on the interval [0, h] and their
integral on the same interval is equal with h5

720 . Also we have max
s∈[0,h]

|K21(x, y, s)| = h4

384

and max
(s,t)∈D

|K12(x, y, s, t)| = h3

12 , therefore we can give the following delimitation of

the absolute error:

|R2(f)| ≤

∣∣∣∣∣
∫ h

0

K30(s)f (3,0)(s, 0)ds

∣∣∣∣∣ +

∣∣∣∣∣
∫ h

0

K21(s)f (2,1)(s, 0)ds

∣∣∣∣∣ +

+

∣∣∣∣∣
∫ h

0

K03(t)f (0,3)(0, t)dt

∣∣∣∣∣ +
∣∣∣∣∫

D

∫
K12(s, t)f (1,2)(s, t)dsdt

∣∣∣∣
≤ M30f

∫ h

0

|K30(s)| ds +
h4

364

∫ h

0

∣∣∣f (2,1)(s, 0)
∣∣∣ ds+

+ M03f

∫ h

0

|K03(t)| dt +
h3

12

∫
D

∫ ∣∣∣f (1,2)(s, t)
∣∣∣ dsdt

≤ M30f
h5

720
+ M21f

h5

364
+ M03f

h5

720
+ M12f

h5

24
.

Finally we consider the following cubature formula:∫
D

∫
f(x, y)dxdy =

h2

120

[
3f(0, 0) + 3f(h, 0) + 3f(0, h) + 8f(

h

2
, 0)+

+8f(
h

2
,
h

2
) + 8f(0,

h

2
) + 27f(

h

3
,
h

3
)
]

+ R3(f).

Because the degree of exactness of this formula is equal with 3, we can give
the following theorem for the delimitation of the absolute error:
Theorem 4. If f (4,0)(s, 0) ∈ C [0, h], f (3,1)(s, 0) ∈ C [0, h], f (0,4) (0, t) ∈ C [0, h],
f (1,3) (0, t) ∈ C [0, h] and f (2,2)(s, t) ∈ C(D) then

|R3(f)| ≤ M40f
h6

8640
+ M31f

7h6

1440
+ M13f

7h6

1440
+ M04f

h6

8640
+ M22f

h6

768
,

where

M40f = max
s∈[0,h]

∣∣∣f (4,0)(s, 0)
∣∣∣ ,M31f = max

s∈[0,h]

∣∣∣f (3,1)(s, 0)
∣∣∣ ,M13f = max

t∈[0,h]

∣∣∣f (1,3)(0, t)
∣∣∣ ,
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M04f = max
t∈[0,h]

∣∣∣f (0,4)(0, t)
∣∣∣ ,M22f = max

(s,t)∈D

∣∣∣f (2,2)(s, t)
∣∣∣ .

Proof. We will use again the generalization of the Peano theorem in bidi-
mensional case and we have

R3(f) =
∫ h

0

K40(s)f (4,0)(s, 0)ds +
∫ h

0

K31(s)f (3,1)(s, 0)ds +
∫ h

0

K04(t)f (0,4)(0, t)dt+

+
∫ h

0

K13(t)f (1,3)(0, t)dt +
∫

D

∫
K22(s, t)f (2,2)(s, t)dsdt

where the K40,K31,K13 and K22 are the so-called kernel functions, and they have
the following representation:

K40(s) =


(h−s)5

5! − h2

120

[
(h−s)3

2 + 8 ( h
2−s)3

3 + 9 ( h
3−s)3

2

]
, s ∈

[
0, h

3

]
(h−s)5

5! − h2

120

[
(h−s)3

2 + 8 ( h
2−s)3

3

]
, s ∈ (h

3 , h
2 )

(h−s)5

5! − h2

120
(h−s)3

2 , s ∈
[

h
2 , h

]

K31(s) =


− (h−s)5

5! − h2

120

[
h (h−2s)2

2 + h (h−3s)2

2

]
, s ∈

[
0, h

3

]
− (h−s)5

5! − h3

240 (h− 2s)2, s ∈ (h
3 , h

2 )
− (h−s)5

5! s ∈
[

h
2 , h

]

K13(t) =


− (h−t)5

5! − h2

120

[
h (h−2t)2

2 + h (h−3t)2

2

]
, t ∈

[
0, h

3

]
− (h−t)5

5! − h3

240 (h− 2t)2, t ∈ (h
3 , h

2 )
− (h−t)5

5! t ∈
[

h
2 , h

]
and

K22(s, t) =

=



(h−s−t)4

4! − h2

120

[
8(h

2 − s)(h
2 − t) + 27(h

3 − s)(h
3 − t)

]
, 0 ≤ s, t ≤ h

3
(h−s−t)4

4! − h2

1208(h
2 − s)(h

2 − t) h
3 ≤ s ≤ h

2 , 0 ≤ t ≤ h
2 ,

0 ≤ s ≤ h
3 , h

3 ≤ t ≤ h
2

(h−s−t)4

4! , 0 ≤ s ≤ h
2 , h

2 ≤ t ≤ h,
h
2 ≤ s ≤ h, 0 ≤ t ≤ h

2

The K40,K31 and the K13 functions do not change their sign at the interval
[0, h] and if we calculate the maximum of the function K22 we obtain max

D
|K22(s, t)| =
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h4

384 , therefore for the absolute value of the error we have the following delimitation:

|R3(f)| ≤

∣∣∣∣∣
∫ h

0

K40(s)f (4,0)(s, 0)ds

∣∣∣∣∣ +

∣∣∣∣∣
∫ h

0

K31(s)f (3,1)(s, 0)ds

∣∣∣∣∣ +

+

∣∣∣∣∣
∫ h

0

K04(t)f (0,4)(0, t)dt

∣∣∣∣∣ +

∣∣∣∣∣
∫ h

0

K13(t)f (1,3)(0, t)dt

∣∣∣∣∣ +

+
∣∣∣∣∫

D

∫
K22(s, t)f (2,2)(s, t)dsdt

∣∣∣∣
≤ M40f

∫ h

0

|K40(s)| ds + M31f

∫ h

0

|K31(s)| ds + M04f

∫ h

0

|K04(t)| dt+

+ M13f

∫ h

0

|K13(t)| dt + M22f
h6

768

= M40f
h6

8640
+ M31f

7h6

1440
+ M04f

7h6

1440
+ M04f

h6

1440
+ M22f

h6

768
.

Remark 1. The cubature formula (5) has an optimal character, because it satisfy the
conditions established by Stroud in [5] regarding the minimal number of knots for a
cubature formula. If the degree of exactness of a cubature formula is equal with 2 then
the minimal number of the knots is N = n+1 where n is the dimension number. The
cubature formula (5) with the degree of exactness 2 and three knots, has a minimal
number of knots.
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ON A CLASS OF GENERALIZED GAUSS-CHRISTOFFEL
QUADRATURE FORMULAE

D. D. STANCU, IOANA TASCU, AND ALINA BEIAN-PUTURA

Abstract. We consider Gauss-Christoffel-Stancu quadrature rules, over
the interval [−1, 1], using m Gaussian nodes and s preassigned multiples
nodes, so that the node polynomial of these fixed nodes does not change
sign in (−1, 1). The Gaussian nodes xk of formula (2) are determined so
that the degree of exactness of this quadrature formula to be the highest
possible. These can be found either by means of the formula (10) or
by determining the minimum of the function F of m variables (11). We
give explicit formulae for the coefficients and for the remainders. Several
illustrative examples are presented for certain preassigned multiple nodes.

1. In a memoir published by E. B. Christoffel in 1858 [1] has been considered
a generalization of the classical Gauss quadrature formula, by introducing certain
preassigned simple nodes situated outside the integration interval (−1, 1).

This formula has the following form∫ 1

−1

f(x)dx =
m∑

k=1

Akf(xk) +
n∑

j=1

Bjf(bj) + R(f), (1)

where bj are preassigned nodes (the fixed nodes), not situated in the interval (−1, 1), f
is an integrable function on this interval and R(f) is the remainder of this quadrature
formula. The free nodes xk are selected so that formula (1) has the highest degree of
exactness. We will call xk the fundamental or the Gaussian nodes.

2. In 1957 D. D. Stancu [4] has introduced and investigated a quadrature
formula using multiple fixed nodes ai and simple Gaussian nodes xk.

It has the form∫ 1

−1

f(x)dx =
m∑

k=1

Akf(xk) +
s∑

i=1

ri−1∑
j=0

Ci,jf
(j)(ai) + R(f). (2)

Let us denote by u(x) the node polynomial of the free nodes xk and by ω(x)
the node polynomial of the fixed nodes, that is

u(x) = (x− x1)(x− x2) . . . (x− xm), (3)

ω(x) = (x− a1)r1(x− a2)r2 . . . (x− as)rs . (4)

Received by the editors: 07.10.2003.
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We assume that ri are natural numbers so that we have ω(x) = 0 on the
integration interval (−1, 1).

Given the fixed nodes ai and their multiplicities ri, the problem is then to
determine the simple nodes xk and the coefficients Ak and Ci,j so that formula (2)
has the highest degree of exactness.

In order to find the Gaussian nodes xk we shall start from the Lagrange-
Hermite interpolation formula using the simple nodes xk, the multiple nodes ai and
other nondetermined simple nodes t1, t2, . . . , tm, distinct from the other nodes. It has
the form

f(x) = (H2m+p−1f)(x) + (R2m+p−1f)(x), (5)
where we use as nodes the roots of the polynomial P (x) = u(x)ω(x)v(x), u and ω
being defined at (3) and (4), while

v(x) = (x− t1)(x− t2) . . . (x− tm), p = r1 + r2 + · · ·+ rs.

The interpolation polynomial H2m+p−1 has the following expression (see [4]):

(H2m+p−1f)(x) =
m∑

k=1

uk(x)
uk(xk)

· v(x)
v(xk)

· ω(x)
ω(xk)

f(xk)+

+
m∑

h=1

u(x)
u(th)

· vh(x)
vh(th)

· ω(x)
ω(th)

f(th)+

+
s∑

i=1

ri−1∑
j=0

ri−j−1∑
ν=0

(x− ai)j

j!

[
(x− ai)ν

ν!

(
1

ωi(x)

)(ν)

ai

]
ωi(x)f (j)(ai),

where

uk(x) = u(x)/(x− xk), vh(x) = v(x)/(x− th), ωi(x) = ω(x)/(x− ai)ri .

3. By integrating the preceding interpolation formula we obtain a quadrature
formula of the following form∫ 1

−1

f(x)dx =
m∑

k=1

Akf(xk) +
m∑

h=1

Bhf(th) +
s∑

i=1

ri−1∑
j=0

Ci,jf
(j)(ai) + R(f), (6)

where

Ak =
∫ 1

−1

uk(x)
uk(xk)

· v(x)
v(xk)

· ω(x)
ω(xk)

dx, (7)

Bh =
∫ 1

−1

u(x)
u(th)

· vh(x)
vh(th)

· ω(x)
ω(th)

dx, (8)

Ci,j =
ri−j−1∑

ν=0

∫ 1

−1

(x− ai)j

j!

[
(x− ai)ν

ν!

(
1

ωi(x)

)(ν)

ai

]
ωi(x)dx, (9)

R(f) =
∫ 1

−1

u(x)v(x)ω(x)
[
x,

xk

1 ,
th
1 ,

ai

ri
; f
]

dx.

The brackets used in this remainder represent the symbol for divided differ-
ences.
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4. Now we want to determine the nodes xk so that we have Bh = 0 (h =
1, 2, . . . ,m) for any values of the parameters t1, t2, . . . , tm. It is easy to see that this
is equivalent with the condition that the polynomial u(x) is orthogonal on (−1, 1),
with respect to the weight function ω(x), with any polynomial of degree m− 1, since
t1, t2, . . . , tm are arbitrary numbers.

But it is known [4] that we must have

Um(x) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Lm(x) Lm+1(x) . . . Lm+p(x)
Lm(a1) Lm+1(a1) . . . Lm+p(a1)
L′

m(a1) L′
m(a1) . . . L′

m+p(a1)
. . . . . . . . . . . .

L
(r1−1)
m (a1) L

(r1−1)
m+1 (a1) . . . L

(r1−1)
m+p (a1)

Lm(a2) Lm+1(a2) . . . Lm+p(a2)
. . . . . . . . . . . .

Lm(as) Lm+1(as) . . . Lm+p(as)
L′

m(as) L′
m+1(as) . . . L′

m+p(as)
. . . . . . . . . . . .

L
(rs−1)
m (as) L

(rs−1)
m+1 (as) . . . L

(rs−1)
m+p (as)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

: ω(x), (10)

where by Ln we denote the Legendre polynomial of degree n:

Ln(x) = (2n · n!)−1[(x2 − 1)n](n) and u(x) = Ũm(x).

If we take into consideration the formula (8) for the coefficient Bh, we can
see that in order to have B1 = · · · = Bm = 0 it is necessary and sufficient that∫ 1

−1

ω(x)u(x)g(x)dx = 0,

where g(x) is any polynomial of degree m− 1.
But it is known [4] that in this case the node polynomial u(x) can be found

by means of the formula (10).
We make the remark that the nodes xk can be found also by determining the

minimum of the following function of m variables

F (u1, . . . , um) =
∫ 1

−1

ω(x)(x− u1)2 . . . (x− um)2dx. (11)

5. Because t1, t2, . . . , tm are arbitrary numbers, we can make tk → xk (k =
1, 2, . . . ,m).

In this case we arrive at the following quadrature formula of Gauss-Christoffel-
Stancu type ∫ 1

−1

f(x)dx =
m∑

k=1

Akf(xk) +
s∑

i=1

ri−1∑
j=0

Ci,jf
(j)(ai) + R(f), (12)

where

Ak =
∫ 1

−1

(
uk(x)
uk(xk)

)2
ω(x)
ω(xk)

dx
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and

R(f) =
∫ 1

−1

ω(x)u2(x)
[
x,

xk

2 ,
ai

ri
; f
]

dx, k = 1,m; i = 1, s.

One observes that all the coefficients Ak are positive.
Assuming that f ∈ C2m+p(−1, 1), by using the mean-value theorem of di-

vided differences we can give the following representation of the remainder

R(f) =
f (2m+p)(ξ)
(2m + p)!

∫ 1

−1

ω(x)u2(x)dx, ξ ∈ (−1, 1). (13)

6. Now we make the remark that if the polynomial of the fixed nodes:
±a1,±a2, . . . ,±as (2s = r) is even, then we can obtain the following equation for
determining the Gaussian nodes xk:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Lm(x) Lm+2(x) . . . Lm+r(x)
Lm(a1) Lm+2(a1) . . . Lm+r(a1)
L′

m(a1) L′
m+2(a1) . . . L′

m+r(a1)
. . . . . . . . . . . .

L
(r1−1)
m (a1) L

(r1−1)
m+2 (a1) . . . L

(r1−1)
m+r (a1)

Lm(a2) Lm+2(a2) . . . Lm+r(a2)
. . . . . . . . . . . .

Lm(as) Lm+2(as) . . . Lm+r(as)
L′

m(as) L′
m+2(as) . . . L′

m+r(as)
. . . . . . . . . . . .

L
(rs−1)
m (as) L

(rs−1)
m+2 (as) . . . L

(rs−1)
m+r (as)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0, (14)

where by Ln(x) we denote again the Legendre orthogonal polynomial of degree n.
7. If we normalize the orthogonal polynomial given at (10), then we obtain

Û(x) =
1

γm

√
(−1)pβm

βm+pGmGm+1
· Um(x),

where γm is the coefficient of xm from the Legendre polynomial Lm(x), that is

γm =
∫ 1

−1

L2
m(x)dx =

2
2m + 1
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and by Gk we denote the following determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Lk(a1) Lk+1(a1) . . . Lk+p−1(a1)
L′

k(a1) L′
k+1(a1) . . . L′

k+p−1(a1)
. . . . . . . . . . . .

L
(r1−1)
k (a1) L

(r1−1)
k+1 (a1) . . . L

(r1−1)
k+p−1(a1)

Lk(a2) Lk+1(a2) . . . Lk+p−1(a2)
L′

k(a2) L′
k+1(a2) . . . L′

k+p−1(as)
. . . . . . . . . . . .

Lk(as) Lk+1(as) . . . Lk+p−1(as)
. . . . . . . . . . . .

L
(rs−1)
k (as) L

(rs−1)
k+1 (as) . . . L

(rs−1)
k+p−1(as)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

By using the known Christoffel-Darboux formula from the theory of orthogo-
nal polynomials, we can obtain for the coefficients Ak of the quadrature formula (12)
the expressions

Ak =
∫ 1

−1

Ûm(t)ω(t)dt

(t− xk)Û ′
m(xk)ω(xk)

=
1

√
λm ω(xk)Û ′

m(xk)Ûm−1(xk)
.

8. In order to present some illustrations we consider that the fixed nodes are:
a1 = −1, a2 = 1, having different orders of multiplicities.

If the polynomial of the fixed nodes is ω(x) = (1 + x)(1 − x)2, then the
Gaussian nodes can be found by solving the equation∣∣∣∣∣∣∣∣

Lm(x) Lm+1(x) Lm+2(x) Lm+3(x)
Lm(−1) Lm+1(−1) Lm+2(−1) Lm+3(−1)
Lm(1) Lm+1(1) Lm+2(1) Lm+3(1)
L′

m(1) L′
m+1(1) L′

m+2(1) L′
m+3(1)

∣∣∣∣∣∣∣∣ = 0.

It leads to the solution of the equation

(2m + 5)[Lm(x)− Lm+2(x)]− (2m + 3)[Lm+1(x)− Lm+3(x)] = 0,

eliminating the roots of the polynomial ω(x).

If we take m = 1 we find the Gaussian node x1 = −1
5

and the quadrature
formula of degree of exactness four∫ 1

−1

f(x)dx =
1

108

[
27f(−1) + 125f

(
−1

5

)
+ 64f(1)− 12f ′(1)

]
+

2
1125

f (5)(ξ),

given first in [4].
For m = 2 we get the Gaussian nodes

x1 = −2
√

2 + 1
7

, x2 =
2
√

2− 1
7

.

By using these nodes and the fixed nodes a1 = −1 (simple) and a2 = 1
(double), we can obtain a quadrature formula of degree of exactness six.
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If we now consider that ω(x) = (1 − x2)2 then the Gaussian nodes and the
fixed nodes are the roots of the equation

(2m + 7)Lm(x) + (2m + 3)Lm+1(x)− 2(2m + 5)Lm+2(x) = 0.

In the case m = 3 we obtain a quadrature formula of degree of exactness
nine, namely∫ 1

−1

f(x)dx =
1

105

[
19f(−1) + f ′(−1) + 54f

(
− 1√

3

)
+ 64f(0)+

+54f

(
1√
3

)
− f ′(1) + 19f(1)

]
+

1
589396500

f (10)(ξ).

Considering also the case ω(x) = (1−x2)3, formula (10) leads to the solution
of the equation

(2m + 7)(2m + 9)(2m + 11)Lm(x)− 3(2m + 5)(2m + 7)(2m + 11)Lm+2(x)+

+3(2m + 3)(2m + 7)(2m + 9)Lm+4(x)− (2m + 3)(2m + 5)(2m + 7)Lm+6(x) = 0.

In the case m = 2 we obtain the following quadrature formula of degree of
exactness nine∫ 1

−1

f(x)dx =
1

3360

[
1173f(−1) + 156f ′(−1) + 8f ′′(−1) + 2187f

(
−1

3

)
+

+2187f

(
1
3

)
+ 8f ′′(1)− 156f ′(1) + 1173f(1)

]
− 2

442047375
f (10)(ξ).

For m = 3 we get the Gaussian nodes

x1 = −
√

3
11

, x2 = 0, x3 =

√
3
11

and a Gauss-Christoffel quadrature formula of degree of exactness eleven.
9. Considering that we have an arbitrary real fixed node a, of multiplicity

2s, we arrive at a quadrature formula of the form∫ 1

−1

f(x)dx =
m∑

k=1

Akf(xk) +
2s−1∑
h=0

Bhf (h)(a) + R(f),

where the remainder has the expression

R(f) =
f (2m+2s)(ξ)
(2m + 2s)!

∫ 1

−1

(x− a)2sÛ2
m(x)dx.

The Gaussian nodes can be found by solving the equation∣∣∣∣∣∣∣∣∣∣
Lm(x) Lm+1(x) . . . Lm+2s(x)
Lm(a) Lm+1(a) . . . Lm+2s(a)
L′

m(a) L′
m+1(a) . . . L′

m+2s(a)
. . . . . . . . . . . .

L
(2s−1)
m (a) L

(2s−1)
m+1 (a) . . . L

(2s−1)
m+2s (a)

∣∣∣∣∣∣∣∣∣∣
= 0,

omitting the root a of multiplicity 2s.
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In the case when ω(x) = x2 and we take m = 5 we find the Gaussian nodes

−x1 = x4 =

√
21 + 2

√
14

33
, −x2 = x3 =

√
21− 2

√
14

33
and we are able to obtain a quadrature formula having the degree of exactness eleven,
namely ∫ 1

−1

f(x)dx =
1

514500
{440832f(0) + 8960f ′′(0)+

+27(5446− 537
√

14)[f(x1) + f(x4)] + 27(5446 + 537
√

14)[f(x2) + f(x3)]}+

+
1

476804928600
f (12)(ξ).

Considering also the case ω(x) = x4 and m = 3 we get the Gaussian nodes

x1 = −
√

7
3

, x2 = 0, x3 =
√

7
3

and the following quadrature formula∫ 1

−1

f(x)dx =
1

36015

{
50160f(0) + 3500f ′′(0) + 10935

[
f

(
−
√

7
3

)
+ f

(√
7

3

)]}
+

+
1

404157600
f (10)(ξ).

Ending this paper we mention that D. D. Stancu and A. H. Stroud have tabu-
lated the values of the nodes, the coefficients and the remainders, with 20 significant
digits, in the paper [6].
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1997.

[3] T. Popoviciu, Asupra unei generalizări a formulei de integrare numerică a lui Gauss,
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Presa Universitară Clujeană, 2002.
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A NEW CONVEXITY CRITERION

RÓBERT SZÁSZ

Abstract. In this paper we have obtained a simple sufficient condition for
the convexity of analytic functions defined in the unit disc U = {z ∈ C :
|z| < 1}.

1. Introduction

Let A be the class of functions which are analytic in the unit disc U = {z ∈
C | |z| < 1} and has the form f(z) = z + a2z

2 + a3z
3 + . . . .

The analytic function f is said to be in the class P, if and only if f(0) = 1 and
Re f(z) > 0, ∀ z ∈ U . If f and g are analytic in the unit disc U ,we say that f
is subordinate to g in U if there exist a function Φ analytic in U , so that Φ(0) =
0, |Φ(z)| < 1, and f(z) = g(Φ(z)) for all z ∈ U . The subordination shall be denoted
by f ≺ g. If g is univalent, then f is subordinated to g if and only if f(0) = g(0) and
f(U) ⊂ g(U).
We say that the analytic function f is convex in U if it is univalent and f(U) is a
convex domain in C . It is well known that a function f is convex if and only if

f ′(0) 6= 0 and Re

(
1 +

z f ′′(z)
f ′(z)

)
> 0, for all z ∈ U . Let K denote the subset of A

consisting of convex functions. In order to show our main result,we need the following
lemmas.

Lemma 1. (Herglotz) [1]
A function f belongs to P if and only if there is a measure µ on [0, 2π] so that

f(z) =
∫ 2π

0

1 + ze−it

1− ze−it
dµ(t) and µ ([0, 2π]) = 1 .

Lemma 2. (H.S.Wilf)[4]

If Re

(
1
2

+
∞∑

n=1

bnzn

)
> 0, ∀ z ∈ U and f(z) =

∞∑
n=1

anzn is a convex function, then

∞∑
n=1

anbnzn ≺ f(z) .

Received by the editors: 03.12.2002.
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2. Main result

Theorem 1. If f ∈ A and Re

(
zf ′′(z) +

z2

2
f ′′′(z)

)
>

−1
π + 4 ln 2

for z ∈ U then

f ∈ K.

Proof. If f ∈ A then it has the form f(z) = z +
∞∑

n=2

anzn. The condition

Re
(
zf ′′(z) + z2

2 f ′′′(z)
)

>

> −1
π+4 ln 2 = −c is equivalent with 1 +

1
c

(
zf ′′(z) +

z2

2
f ′′′(z)

)
∈ P and using the

Lemma 1 we obtain the following representation:

1 +
1
2c

∞∑
n=2

n2(n− 1)anzn−1 = 1 + 2
∞∑

n=2

zn−1

∫ 2π

0

e−it(n−1) dµ(t)

From the last equality we deduce that:

an =
4c

n2(n− 1)

∫ 2π

0

e−it(n−1) dµ(t)

and

f(z) = z + 4c
∞∑

n=2

zn

n2(n− 1)

∫ 2π

0

e−it(n−1) dµ(t)

After a simple calculation we get that

1 +
zf ′′(z)
f ′(z)

=

1
4c

+
∞∑

n=2

zn−1

n− 1

∫ 2π

0

e−it(n−1) dµ(t)

1
4c

+
∞∑

n=2

zn−1

n(n− 1)

∫ 2π

0

e−it(n−1) dµ(t)

We introduce the notations h(z) =
1
4c

+
∞∑

n=2

zn−1

n− 1
and g(z) =

1
4c

+
∞∑

n=2

zn−1

n(n− 1)
. It

is easy to observe that h(z) =
1
4c

+ log
1

1− z
and h is a convex function.

Because Re

(
1
2

+
∞∑

n=1

zn

n + 1

)
> 0, ∀ z ∈ U and h is convex using Lemma 2 it follows

that g(z) ≺ h(z).
The convexity of h implies

1
4c

+
∞∑

n=2

zn−1

n(n− 1)

∫ 2π

0

e−it(n−1) dµ(t) ∈ h(U), (1)
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1
4c

+
∞∑

n=2

zn−1

n− 1

∫ 2π

0

e−it(n−1) dµ(t) ∈ h(U) (2)

for every z ∈ U and every measure µ for which µ ([0, 2π]) = 1.

If 0 < c <
1
4

then Re h(z) > 0, z ∈ U and we can draw two tangent lines to the curve

Γ = ∂h(U). Let denote with α the measure of the angle between the two tangent
lines which contains h(U). From(1) and (2) follows that

|arg

1
4c

+
∞∑

n=2

zn−1

n− 1

∫ 2π

0

e−it(n−1) dµ(t)

1
4c

+
∞∑

n=2

zn−1

n(n− 1)

∫ 2π

0

e−it(n−1) dµ(t)

| < α

and so a sufficient condition for Re
(
1 + zf ′′(z)

f ′(z)

)
> 0, z ∈ U is α =

π

2
.

The curve Γ has the h(eiθ) = u(θ) + iv(θ), θ ∈ (0, 2π) parametric representation.
The equality α =

π

2
is equivalent with the existence of θ1, θ2 ∈ [0, 2π] with the

properties

u(θ1)
u′(θ1)

=
v(θ1)
v′(θ1)

,
u(θ2)
u′(θ2)

=
v(θ2)
v′(θ2)

,
v′(θ1)
u′(θ1)

· v′(θ2)
u′(θ2)

= −1

Because h(U) is symmetric with respect to the real axis,we deduce that θ2 =
2π − θ1 and after calculation we get c = 1

π+2 ln 2 .

Example. Let λ be a real number so that 0 < λ < e−1
e(π+2 ln 2) then the function

f(z) = z + λ

∫ z

0

∫ t

0

1
u2

∫ u

0

s2

es − 1
dsdu dt belongs to K.

Proof. After derivation we get that: zf ′′(z) +
z2

2
f ′′′(z) = λ

z2

ez − 1
, z ∈ U . In [1] had

been proved that q(z) =
ez − 1

z
is a convex function in U which implies the inequality:

Re q(z) >
e− 1

e
, z ∈ U. (2)

From (2) follows that |q(z)| > e− 1
e

, z ∈ U or equivalently∣∣∣∣ z

ez − 1

∣∣∣∣ < e

e− 1
, z ∈ U. (3)

Using (3) it is easy to deduce that

Re

(
zf ′′(z) +

z2

2
f ′′′(z)

)
= λ Re

z2

ez − 1
> λ

−e

e− 1
=

−1
π + 2 ln 2

, z ∈ U

which is the condition of Theorem 1.
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CORRIGENDUM:
ON THE IRRATIONALITY OF SOME ALTERNATING SERIES

J. SÁNDOR AND J. SONDOW

The aim of this note is to point out that Theorem 1 of the first author’s paper
[1] is incorrect, and to replace it with Theorem A below and give an application.

Theorem 1. Let (an) be a sequence of positive integers such that

an(a1a2 . . . an−1)2 → ∞ as n → ∞. Then the series
∞∑

n=1

(−1)n−1

an(a1 . . . an−1)2
is irra-

tional.
The constant sequence (an) = 2, 2, . . . is a counterexample. The mistake

in the proof lies in assuming that, with ui = (a1 . . . ai−1)−2 and vi = ai, the sum
n∑

i=1

(−1)i−1ui/vi is a rational number with denominator v1 . . . vn. In fact, the denom-

inator is vn(v1 . . . vn−1)2.
The following result is a generalization of Lemma 1 in [1].
Theorem A. Let (rn) = (hn/kn) be a sequence of rational numbers, with

kn > 0, satisfying
(i) r2 < r4 < r6 < · · · < r5 < r3 < r1 and
(ii) lim inf

n→∞
kn|rn+1 − rn| = 0. Then the alternating series

r1 − (r1 − r2) + (r3 − r2)− (r3 − r4) + . . .

converges and its sum is irrational.
Proof. It follows from (i) and (ii) that the conditions of Leibniz’s alternating

series test are satisfied. Thus the series converges and its sum, θ, lies between the
partial sums rn and rn+1, for n = 1, 2, . . . Suppose now that θ = a/b is rational, b > 0.
Then (ii) and the inequalities 0 < |θ− rn| < |rn+1− rn| imply that 0 < |akn− bhn| <
bkn|rn+1 − rn| < 1, for some n ≥ 1. This contradicts the fact that akn − bhn is an
integer, completing the proof. �

As an application of Theorem A (or of Lemma 1), we obtain a new proof that
if pn/qn is the n-th convergent of an infinite simple continued fraction, n = 0, 1, 2, . . . ,

then the sum of the series p0/q0+
∞∑

n=0

(−1)n/(qnqn+1) is an irrational number, namely,

the value of the continued fraction.

Received by the editors: 01.03.2004.
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BOOK REVIEWS

Agostino Abbate, Casimer M. DeCusatis, Pankaj K. Das, Wavelets and Subbands.
Fundamentals and Applications, Birkhäuser, Boston Basel Berlin, 2002, ISBN
0-8176-4136-X.

The volume presents in a typical style some researches and noteworthy direc-
tions particularly aimed at providing stimulus and inspiration to workers interested
in the broad areas of related to wavelets and their applications. The content of the
book is divided into three parts.

In the first part (Fundamentals) the authors enlarge on a systematic study of
wavelets and subbands concepts. It is written with a concern for simplicity and clarity.
The section offers detailed and explanation of some concepts and methods accompa-
nied by carefully selected worked examples. The aim of this part is to familiarize the
reader with a lot of basic notions regarding wavelet and subband transforms, such
as: Fourier transform as a wave transform, wavelet transform, time-frequency analy-
sis, multiresolution analysis, wavelet frames, connection between wavelets and filters,
analysis and synthesis filters, iterated filters for subbands, filter banks for subbands.
Also, the link between discrete and continuous wavelets and subbands is explained.

The second part (Wavelets and Subbands) includes advanced topics and a
more in-depth technical treatment of the subject matter. The information is struc-
tured in the following chapters: Time and Frequency Analysis of Signals; Discrete
Wavelet Transform: from Frames to Fast Wavelet Transform; Theory of Subband
Decomposition; Two-Dimensional Wavelet Transforms and Applications.
Within the scope of this section, the authors investigate the large body of work that
has been done in applying wavelet and subband methods to image processing and
compression.

The third part (Applications) contains some practical applications of wavelets
and subbands. Divided in three chapters, these include image processing, image com-
pression, pattern recognition, and signal-to-noise improvement. The communication
application concentrates on spread spectrum systems which have applications to wire-
less communication, digital multitone, code division multiple access and excision.

At the end of the book are inserted four appendices: Fourier Transform,
Discrete Fourier Transform, z-Transform and Orthogonal Representation of Signals.

We point out that for additional information, the reader is referred to the
many excellent references in the literature which are listed at the end of each part. In
the same time, in order to sustain the objectives of the book, a generous bibliography
is listed over 20 pages.
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In our opinion, the monograph is a valuable text for a broad audience includ-
ing graduates, researches and professionals in signal processing.

Octavian Agratini

Erik M. Alfsen and Frederic W. Shultz, Geometry of State Spaces of Operator
Algebras, Mathematics: Theory and Applications, Birkhäuser Verlag, Boston-Basel-
Berlin 2003, xiii+467 pp., ISBN 0-8176-4319-2 and 3-7643-4319-2.

The aim of the present book is to give a complete geometric description of
the state spaces of operator algebras, meaning to give axiomatic characterizations of
those convex sets that are state spaces of C∗-algebras, von Neuman algebras, and of
their nonassociative analogs - JB-algebras and JBW-algebras. A previous book by
the same authors -State spaces of operator algebras - basic theory, orientations and
C∗-products, published by Birkhäuser in 2001, contains the necessary prerequisites on
C∗-algebras and von Neumann algebras but, for the convenience of the reader, these
results are summarized in an appendix at the end of the present book with exact
references to previous one for proofs.

The problem of the characterization of state spaces of operator algebras was
raised in the early 1950s and was completely solved by the authors of the present
book in Acta Mathematica 140 (1978), 155-190, and 144 (1980), 267-305 (the second
paper has also H. Hanche-Olsen as co-author). Although the axioms for state spaces
are essentially geometric, many of them have physical interpretations. The authors
have included a series of remarks concerning these interpretations along with some
historical notes.

The book is divided into three parts. Part I (containing Chapters 1 through
6) can serve as an introduction for novices to Jordan algebras and their states. Jordan
algebras were originally introduced as mathematical model for quantum mechanics
(in 1934 by P. Jordan, J. von Neumann and E. Wigner), starting from the remark
that the set of observables is closed under Jordan multiplication, but not necessarily
under associative multiplication. Part II (Chapters 7 and 8) develops the spectral
theory for affine functions on convex sets. The functional calculus developed in this
part reflects a key property of the subalgebra generated by a single element and,
physically, it represents the application of a function to the outcome of an experiment.
Part III (Chapters 9,10,11) gives the axiomatic characterization of operator algebra
state spaces and explain how the algebras can be reconstructed from their state spaces.

This valuable book, together with the previous one on C∗-algebras, presents
in a manner accessible to a large audience, the complete solution to a long standing
problem, available previously only in research papers, whose understanding requires
a solid background from the readers.

It is aimed to specialists in operator algebras, graduate students and math-
ematicians working in other areas (mathematical physics, foundation of quantum
mechanics)

S. Cobzaş
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Jan Andres and Lech Górniewicz, Topological Fixed Point Principles for Boundary
Value Problems, Topological Fixed Point Theory and Its Applications 1, Kluwer
Academic Publishers, Dordrecht-Boston-London, 2003, 761 + xvi pp., ISBN 1-4020-
1380-9.

The monograph is devoted to the topological fixed point theory for single-
valued and multivalued mappings in locally convex spaces and its applications to
boundary value problems for ordinary differential equations and inclusions and to
multivalued dynamical systems.

Chapter I, Theoretical background (126 pp.) gathers together several topo-
logical and analytical notions and results such as: locally convex spaces, absolute
retracts (AR-spaces) and absolute neighborhood retracts (ANR-spaces), selections
of multivalued mappings, admissible mappings, Lefschetz fixed point theorem, fixed
point index in locally convex spaces, Nielson number etc.

In Chapter II, General principles (106 pp.), topological principles necessary
for applications are presented, namely: Aronszajn-Browder-Gupta type results on the
topological structure of fixed point sets, inverse limit method, topological dimension
of fixed point sets, topological essentiality, relative theories of Lefschetz and Nielson,
periodic point theorems, fixed point index for condensing maps, approximation meth-
ods in the fixed point theory of multivalued mappings, topological degree by means
of approximation methods and continuation principles based on fixed point index and
coincidence index.

Chapter III, Applications to differential equations and inclusions (366 pp.), is
devoted to the applications of the general principles to boundary value problems for
ordinary differential equations and inclusions on compact or non-compact intervals
and to dynamical systems. The following problems are mainly considered: existence
of solutions, topological structure of solution sets, topological dimension of solution
sets, multiplicity results, periodic and almost periodic solutions and Wazewski type
results.

Three Appendices concerning almost periodic and derivo-periodic functions
and multivalued fractals are also included. A large and exhaustive list of References
(58 pp.) and a subject Index are added.

The authors are known as experts in their field and most of presented results
are their own. The book is self-contained and every chapter concludes by a section of
Remarks and Comments giving to the reader historical information and suggestions
for further studies.

Authors’ intention has been to make deep results of algebraic topology and
nonlinear analysis accessible to a wider auditorium and by this, to stimulate the
interest of applied mathematicians (mathematical economists, population dynamics
experts, theoretical physicists etc.) for such type of methods.

I believe that this monumental monograph will be extremely useful to post-
graduate students and researchers in topological fixed point theory, nonlinear analysis,
nonlinear differential equations and inclusions, dynamical systems, optimal control
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and chaos and fractals. This book should stimulate a great deal of interest and
research in topological methods in general and in their applications in particular.

Radu Precup

Emmanuele DiBenedetto, Real Analysis, Birkhäuser Advanced Texts, Birkhäuser
Verlag, Boston-Basel-Berlin 2002, xxiv+485 pp., ISBN 0-8175-4231-5.

The aim of this book is to present at graduate level the basic results in real
analysis, needed for researchers in applied analysis - PDEs, calculus of variations,
probability, and approximation theory. Assuming only the knowledge of the basic
results about the topology of RN , series, advanced differential calculus and algebra
of sets, the author develops the whole machinery of real analysis bringing the reader
to the frontier of current research.

The emphasis is on measure and integration in RN , meaning Lebesgue and
Lebesgue-Stieltjes measures, Radon measures, Hausdorff measure and dimension. The
topological background, including Tihonov compactness theorem, Tietze and Urysohn
theorems, is developed with full proofs. The specific of the book is done by the treat-
ment of some more specialized topics than those usually included in introductory
courses of real analysis. Between these topics I do mention a detailed presentation
of covering theorems of Vitali and Besicovitch, the Marcinckiewicz integral, the Le-
gendre transform, the Rademacher theorem on the a.e differentiability of Lipschitz
functions. Fine topics, as a.e. differentiability of functions with bounded variation
and of absolutely continuous functions and the relation with the integral, are worked
out.

The spaces Lp are also presented in details in Chapter V - completeness,
uniform convexity (via Hanner’s inequalities), duality, weak convergence, compactness
criteria. The next chapter of the book (Ch. VI) contains a brief introduction to
abstract Banach and Hilbert spaces. Distributions, weak differentials and Sobolev
spaces are presented in Chapter VII.

The last two chapters of the book, Chapters VIII and IX, contains more
specialized topics as maximal functions and Fefferman-Stein theorem, the Calderón-
Zygmund decomposition theorem, functions of bounded mean oscillation (BMO),
Marcinkiewicz interpolation theorem, embedding theorems for Sobolev spaces,
Poincaré inequality, Morrey spaces.

Each chapter is completed by a set of exercises and problems that add new
features and shed new light on the results from the main text.

Bringing together, in a relatively small number of pages, important and dif-
ficult results in real analysis that are of current use in application to PDEs, Fourier
and harmonic analysis and approximation, this valuable book is of great interest to
researchers working in these areas, but it can be used for advanced graduate courses
in real analysis as well.

Stefan Cobzaş
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Stefan Czerwik, Functional Equations and Inequalities in Several Variables, World
Scientific, New Jersey-London-Singapore-Hong Kong, 2002, ISBN 981-02-4837-7.

In the recent period (especially in the last three decades) functional equations
became an important branch of mathematics. The book under review is intended to
present a survey of classical results and more recent developments in the theory of
functional equations in several variables. Particularly the results of the Polish school
of functional equations are emphasized.

The book is divided into three parts. The first one is devoted to the study
of additive and convex functions defined on linear spaces endowed with semilinear
topologies. The classical results of Bernstein-Doetch, Picard, and Mehdi, concerning
the relationship between the continuity and the local boundedness of a convex func-
tion, are presented in Chapter 4. Closely related to this problem are the so-called
Kuczma-Ger set classes, studied in Chapter 5. The rest of the material included in
the first part deals with familiar functional equations like Cauchy, D’Alembert, and
quadratic equations.

Part II, entitled Ulam-Hyers-Rassias Stability of Functional Equations, is
entirely concened with the examination of the stability problem. It has originally
been posed by S. M. Ulam in 1940 with regard to the Cauchy functional equation. In
1941 D. H. Hyers gave a significant partial solution to this problem, but a substantial
generalization of Hyers’ result has been obtained by Th. M. Rassias in 1978. Rassias’
paper has rekindled the interest of the mathematicians in the field of stability of
functional equations. Since then a great number of articles have appeared in the
literature. This second part of Czerwik’s book brings together the stability results
concerning several functional equations like Cauchy, Pexider, Jensen, D’Alembert,
gamma, and quadratic, obtained by many authors.

Particularly valuable, Part III contains a systematic examination of set-valued
functional equations, which has been lacking in the mathematical literature. Set-
valued versions of the Cauchy, Jensen, Pexider, and quadratic equations are studied
in this part. Finally, the author investigates some special kinds of set-valued functions
like subadditive, superadditive, subquadratic, K-convex, and K-concave set-valued
functions.

Twenty-one of the thirty-seven chapters contain valuable notes at the end,
providing useful references to related material. The bibliography counts 216 refer-
ences.

Written by an expert in domain, the book is an excellent tool for any reader
interested to get an idea about the basic results and the latest research directions in
the field of functional equations.

Lokenath Debnath, Wavelet Transforms and Their Applications, Birkhäuser, Boston
Basel Berlin, 2002, ISBN 0-8176-4204-8.

The last two decades have produced tremendous developments in the math-
ematical theory of wavelets and their great variety of applications. Since wavelet
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analysis is a relatively new subject, this monograph is intended to be self-contained.
The book is designed as a modern and authoritative guide to wavelets, wavelet trans-
form, time-frequency signal analysis and related topics.

It is known that some research workers look wavelets upon as a new basis
for representing functions, others consider them as a technique for time-frequency
analysis and some others think of them as a new mathematical subject. All these ap-
proaches are gathered in this book, which presents an accessible, introductory survey
of new wavelet analysis tools and the way they can be applied to fundamental analysis
problems. We point out the clear, intuitive style of presentation and the numerous
examples demonstrated thorough the book illustrate how methods work in a step by
step manner.

This way, the book becomes ideal for a broad audience including advanced
undergraduate students, graduate and professionals in signal processing. Also, the
book provides the reader with a through mathematical background and the wide
variety of applications cover the interdisciplinary collaborative research in applied
mathematics. The information is spread over 565 pages and is structured in 9 chapters
as follows:

1. Brief Historical Introduction
2. Hilbert Spaces and Orthonormal Systems
3. Fourier Transforms and Their Applications
4. The Gabor Transform and Time-Frequency Signal Analysis
5. The Wigner-Ville Distribution and Time-Frequency Signal Analysis
6. Wavelet Transforms and Basic Properties
7. Multiresolution Analysis and Construction of Wavelets
8. Newland’s Harmonic Wavelets
9. Wavelet Transform Analysis of Turbulence.

At the end of the book a key and hints for selected exercises are included.
In order to stimulate further interest in future study and to sustain the present

material, a generous bibliography is listed.
Octavian Agratini

Andrzej Granas and James Dugundji, Fixed point theory, Springer-Verlag, New
York-Berlin-Heidelberg, 2003, 13 figs. xv+ 690 pages, ISBN 0-387-00173-5.

Fixed point theory represents one of the most powerful tools for various prob-
lems from pure, applied and computational mathematics. The abstract theory, the
computation of fixed points and various applications, mainly for proving the existence
of solutions to several classes of nonlinear operator equations, occupies a central place
in today’s mathematics. Over 150 monographs and proceedings, as well as more then
10, 000 papers deal with this topic. Two very new journals are entirely dedicated to
fixed point theory and its applications.

The new edition of Granas and Dugundji’s book is, in my opinion, the most
important and complete survey in the last years on fixed point theory and its applica-
tions. The book goes through almost all the basic results in fixed point theory, from
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elementary theorems to advanced topics, from ordered, metric or topological struc-
tures to algebraic topology. The main text is self-contained, the necessary background
material being collected in an appendix at the end of the book. Each chapter ends
with ”Miscellaneous Results and Examples” and some very important ”Notes and
Comments”. Several nice photographs of famous mathematicians in the field pigment
the text.

The book is organized in six important parts, each of them containing several
chapters, twenty on the whole.

Part I (”Elementary Fixed Point Theorems”, 74 pages) includes ba-
sic results and applications in ordered and metric structures. The main topics of this
part are: the Banach contraction principle, the continuation method for contractive
maps, the Knaster-Tarski and Tarski-Kantorovitch theorems, the Bishop-Phelps re-
sult, Caristi’s fixed point theorem, Nadler’s extension of Banach contraction principle
to set-valued operators, the KKM operator theory and the fixed point theory for
nonexpansive operators.

Part II (Theorem of Borsuk and Topological Transversality, 112
pages) presents several fundamental results in the topological fixed point theory: the
antipodal theorem of Borsuk (and as consequence, the Brouwer fixed point theorem),
Schauder’s fixed point principles, the infinite-dimensional version of Borsuk theorem,
the theory on topological transversality based on the notion of essential map, the
Leray-Schauder principle and the nonlinear alternative. As applications, the Fan
coincidence theorem, the mini-max inequality and the Kakutani and Ryll-Nardzewski
theorems are also presented.

Part III (Homology and Fixed Points, 50 pages) is dedicated to the
Lefschetz-Hopf theorem for polyhedra.

Part IV (Leray-Schauder Degree and Fixed Point Index, 120 pages)
presents the notions of topological degree and fixed point index. This part starts with
the presentation of Brouwer’s degree, defined for maps on the Euclidian spaces, and
then the concept is extended for compact maps in normed linear spaces. Further
on, the case of an arbitrary metric absolute neighborhood retracts is also consid-
ered. Bifurcation results in absolute neighborhood retracts and existence theorems
for boundary value problems related to partial differential equations are nice applica-
tions of this theory.

Part V (The Lefschetz-Hopf Theory, 122 pages) is deals with the
Lefschetz fixed point theorem and the Hopf index theorem. Several extensions of the
Lefschetz theory to wider classes of maps and spaces are also included.

Part VI (Selected Topics, 97 pages) contains advanced topics of alge-
braic topology: Finite-Codimensional Čech Cohomology, Vietoris Fractions ans Co-
incidence Theory.

The Bibliography is organized as follows:
I General Reference Texts (Monographs, Lecture Notes, Surveys, Articles)

with more than 700 titles
I Additional References with more than 400 titles.
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An Appendix, a List of Symbols, an Index of Names and an Index
of Terms are also included.

From the above considerations, it is more than obviously that this new edition
of Granas-Dugundji’s monograph is, in fact, a new book. New and interesting results
and applications can be found all over the book. The style is alert and pleasant. The
technical presentation of the book is exceptional.

The book Fixed Point Theory, by Andrzej Granas and James
Dugundji, which appeared in the series Springer Monograph in Mathemat-
ics, is an inspired publication of Springer-Verlag Publishing House and I am sure
that it will be a very useful work for anyone (postgraduate students, Ph.D. students,
researchers, etc.) who is involved in fixed point theory in particular and nonlinear
analysis in general.

Adrian Petruşel

Srdjan Stojanovic, Computational financial mathematics using Mathematica: optimal
trading stocks and options, Birkhäuser Verlag, Boston - Basel - Berlin, 2003, XI+481
pages.

The book consists in 481 pages i.e. 8 chapters, a bibliography and an index
and includes CD-ROM. Srdjan Stojanovic taught the course on Financial Mathemat-
ics at the University of Cincinnati since 1998 and at Purdue University during the
academic year 2001-2002. This book is an expanded version of those courses, built
with the help of the students during the time when Srdjan Stojanovic taught them
computational financial mathematics and MATHEMATICAR programming.

A very interesting and very actual book, because now, the computer make an
integrand part of our life. The author, himself, underlines in the Introduction, that
the book is addressed to students and professors of academic programs in financial
mathematics (like computational finance and financial engineering). Anyway, the
mathematical background would be Calculus, Differential Equations and Probability,
but varies according to the objectives of the reader. The book is, as recommends the
author, divided in some parts according to the required mathematical level as follows:
the basics (for the Chapters 1-4), intermediate level (the Chapters 5 and 7), advanced
level (for the Chapters 6 and 8).

In the Chapter 1, Cash Account Evolution, ordinary differential equations
are solving with MathematicaR, and symbolic and numerical solutions of ODEs are
presented.

The Chapter 2, Stock Price Evolution, explains to the reader what are
stocks and then presents the stock price modeling, i.e. some stochastic differential
equations. An other aim of this chapter is to be acquainted with Itô calculus and
with multivariable and symbolic Itô calculus. Also, some relationship between SDEs
and PDEs are presented.
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In the Chapter 3, European Style Stock Options, the first paragraph
deals with the notion of stock option. Then, the Black and Scholes PDE and hedging
are presented and the Black and Scholes PDE are symbolically solved. Also, the
generalized Black and Scholes formulas are presented.

In the Chapter 4, Stock Market Statistics, the stock market data import
and manipulation are presented. Then, the chapter deals with the volatility estimates,
i.e. scalar case, and also deals with the appreciation rate estimates (the scalar case)
and the statistical experiments (Bayesian and non-Bayesian). In the same chapter,
the vector basic price model statistics and the dynamic statistics, like the filtering of
conditional Gaussian processes, are treated.

In the Chapter 5, Implied Volatility for European Options, the option
market data is presented. After that, the Black and Scholes theory is made obvious
vs. market data (the implied volatility) and then, the numerical PDEs, the optimal
control and the implied volatility are studied.

The Chapter 6, American Style Stock Options, deals with the american
options, the obstacle problems and presents the general implied volatility for american
options.

Very important, the Chapter 7, Optimal Portfolio Rules, presents the
utility of wealth, the Merton’s optimal portfolio rule derived and implemented, the
portfolio rules under appreciation rate uncertainty, the portfolio optimization under
equality constraints, the portfolio optimization under inequality constraints.

In the Chapter 8, Advanced Trading Strategies, the reduced Monge-
Ampère PDEs of advanced portfolio hedging and the hypoelliptic obstacle problems
in optimal momentum trading are presented.

As we have already said, the book is accompanied by a CD-ROM, but the
book is not a software product. Informations about further developments might be
available at the web site CFMLab.com. The reader may direct comments to the same
address.

Diana Andrada Filip

Advances in Gabor Analysis, Hans G. Feichtinger and Thomas Strohmer - Editors,
Applied and Numerical Harmonic Analysis, Birkhäuser Verlag, Boston-Basel-Berlin
2003, xviii+356 pp., ISBN 0-8176-4239-0 and 3-7643-4239-0.

In 1946 Dennis Gábor (Nobel prize for physics in 1971) had the idea to use
linear combinations of a set of regularly spaced, discrete time and frequency translates
of a single Gaussian function to expand arbitrary square-integrable functions. The
idea turned out to be a very fruitful and far-reaching one, with spectacular applica-
tions to quantum mechanics and electrical engineering. The Heisenberg uncertainty
principle, discussed at large in one of the included chapters, is the core of the time-
frequency analysis and of Gabor analysis. Gabor analysis attracted many first rate
mathematicians due to the highly non-trivial mathematics lying behind it. A strong
impulse came from the development of frames in Hilbert space, leading to important
problems of practical computation - rate of convergence, stability, density. In the last
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time, M.A. Rieffel, R.E. Howe and T.J. Steger found some unexpected connections
with operator algebras.

The present book can be considered as a continuation of two previous ones:
Gabor Analysis and Algorithms: Theory and Applications, H. G. Feichtinger and T.
Strohmer - Editors, Birkhäuser 1998, and the book by K. Gröchenig, Foundations
of Time-frequency Analysis, Birkhäuser 2001. It contains survey chapters, but new
results that have been not published previously are also included. The introductory
chapter of the book, written by H.G. Feichtinger and T. Strohmer, contains a clear
outline of the contents as well as some comments on the future developments in Gabor
analysis.

Beside this introductory chapter, the book contains other eleven chapters,
written by different authors, and dealing with various questions in Gabor analysis
and its applications: uncertainty principles, Zak transforms, Weil-Heisenberg frames,
Gabor multipliers, Gabor analysis and operator algebras, approximation methods,
localization properties, optimal stochastic encoding, applications to digital signal pro-
cessing and to wireless communication.

Written by leading experts in the field, the volume appeals, by its interdisci-
plinary character, to a large audience, both novices and experts, theoretically inclined
researchers and practitioners as well. It brilliantly illustrates how application areas
and pure and applied mathematics can work together with profit for all.

S. Cobzaş

Enrico Giusti, Direct Methods in the Calculus of Variations, World Scientific,
London-Singapore-Hong Kong, 2003, vii+403 pp., ISBN 981 238 043 4.

Let Ω be a domain in Rn and F (x, u, z) a function from Ω×RN×Rn×N to R.
One denotes x = (xi)1≤i≤n, u = (uα)1≤α≤N , and z = (zα

i ), 1 ≤ i ≤ n, 1 ≤ α ≤ N.
The fundamental problem of the calculus of variations consists in finding a function
u : Ω → RN which minimizes the integral functional

(1) F(u, Ω) =
∫

Ω

F (x, u(x), Du(x))dx,

provided u satisfies some suitable conditions, the most frequent being a boundary
condition, u = U on ∂Ω. Supposing F of class C1, replacing u by u + tϕ, where
ϕ = U on ∂Ω, it follows that g(t) = F(u + tϕ, Ω) has a minimum at t = O, implying
g′(0) = 0. This condition leads to Euler (called sometimes Euler-Lagrange) equations

(2)
∂

∂xi

(
∂F

∂zα
i

(x, u(x), Du(x))
)
− ∂F

∂uα
(x, u(x), Du(x)) = 0,

for α = 1, ..., N, that give a necessary condition of minimum. This approach is useful
when the Euler equations can be explicitly integrated, particularly for n = N = 1,
leading to an explicit solution of the minimum problem, but with growing difficulties
in higher dimensions.

The direct method in the calculus of variations, initiated by Riemann, con-
sists in proving the existence of the minimum of F and discovering its properties,
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mainly regularity, without appealing to Euler equations. The usual assumptions,
under which such an approach works, are lower semicontinuity of F and some con-
vexity conditions (convexity, quasi-convexity, polyconvexity, rank-one convexity) on
the function F , combined with some compactness hypotheses on the domain of F ,
requiring compactness criteria in appropriate function spaces.

The present book follows this approach to the study of minima of the func-
tional (1), an outline of its contents, along with some historical remarks, being given in
the Introduction to the book. The book is divided into ten chapters: 1. Semi-classical
theory, 2. Measurable functions, 3. Sobolev spaces, 4. Convexity and semicontinu-
ity, 5. Quasi-convex functionals, 6. Quasi-minima, 7. Hölder continuity, 8. First
derivatives, 9. Partial regularity, 10. Higher derivatives.

The prerequisites for the reading are basic properties of the Lebesgue integral
and Lp spaces, and some elements of functional analysis, the more special topics being
presented with full proofs in the second and the third chapters of the book. Compact-
ness in Lp, Morrey-Campanato spaces, John-Nirenberg theorem on BMO functions,
the interpolation theorems of Marcinkiewicz and Stampachia, and elements of Haus-
dorf measure in the second chapter, and a short introduction to Sobolev spaces (in-
cluding embedding and trace theorems, Poincaré and Sobolev-Poincaré inequalities)
in the third one.

The various aspects of the direct methods in the calculus of variations a
treated in the rest of the book - semicontinuity (Chapters 4 and 5) and regularity
(Chapters 6 to 10). A special emphasis is put on quasi-minima.

The field owes much to the Italian school of mathematics, starting with L.
Tonelli, and continuing with the substantial contributions and ideas of E. De Giorgi,
C. Miranda, M. Giaquinta, G. Modica, G. Anzelotti, L. Ambrosio and the author.
The book reflects very well these contributions, along with those of other well known
mathematicians as J. Moser, J. Nash, B. Dacorogna, S. Benstein, O. Ladyzenskaia,
A. Ioffe, K. Uhlenbeck, J. Maly, H. Federer, L. Evans, R. Gariepy, et al.

It can be recommended for graduate courses or post-graduate courses in the
calculus of variations, or as reference text.

J. Kolumbán

Israel Gohberg, Seymour Goldberg and Marinus A. Kaashoek, Basic Classes of
Linear Operators, Birkhäuser Verlag, Basel-Boston-Berlin 2003, xvii+423 pp., ISBN
3-7643-6930-2.

The book provides an introduction to Hilbert and Banach spaces, with em-
phasis on operator theory, its aim being to stimulate the students to expand their
knowledge of operator theory. It is designed for senior undergraduate and graduate
students, the prerequisites being familiarity with linear algebra and Lebesgue inte-
gration (an appendix contains some results in this area with references). At the same
time, the book is written in such a way that it can serve as an introduction to the
two volume treatise by the same authors, Classes of Linear Operators, published by
Birkhäuser, 1990 (Vol I), and 1993 (Vol. II).

117



BOOK REVIEWS

The book is based on a previous one of the authors, Basic Operator Theory,
Birkhäuser 1981, but the present one differs substantially from the previous one. The
changes reflect the experience gained by the authors by using the old text in various
courses, as well as the recent developments in operator theory. This affected the choice
of the topics, proofs and exercises. They included more examples of concrete classes
of linear operators as, for instance, Laurent, Toeplitz and singular integral operators,
the theory of traces and determinants in an infinite dimensional setting and Fredholm
theory. The theory of unbounded operators is expanded.

The material is presented in a way to make a natural transition from linear
algebra and analysis to operator theory, keeping it at an elementary level. The main
part of the book (Chapters I to X) deals with the Hilbert case. It starts with a
chapter on the geometry of Hilbert spaces, and continues with the study of operators
acting on them. This study comprises bounded linear operators, Laurent and Toeplitz
operators on Hilbert space, unbounded operators, and spectral theory (including the
operational calculus). As applications one considers the oscillations of an elastic string
and iterative methods for solving linear equations in Hilbert space (relying on spectral
theory).

The Banach space setting is treated in Chapters XI to XVI. These contain
the basic principles of Banach spaces, linear operators, compact operators, Poincaré
operators and their determinants and traces, Fredholm operators, Toeplitz and sin-
gular integral operators. The last chapter of the book, Chapter XVII, is concerned
with some fix point theorems for non linear operators.

Each chapter ends with a set of exercises, chosen to expand reader’s compre-
hension of the material or to add new results.

By the careful choice of the topics and by the numerous examples included,
the book provides the reader with a firm foundation in operator theory, and demon-
strates the power of the theory in applications. A list for further reading is presented
at the end of the book.

S. Cobzaş

Nonlinear Analysis and its Applications to Differential Equations, M. R. Grossinho,
M. Ramos, C. Rebelo and L. Sanchez, Editors, Progress in Nonlinear Differential
Equations and Their Applications; Vol. 43, Birkhäuser, Boston-Basel-Berlin, 2001,
380 pp., ISBN 0-8176-4188-2.

This volume presents a significant part of the material given in the autumn
school on “Nonlinear Analysis and Differential Equations” held at the CMAF (Cen-
tro de Matemática e Aplicações Fundamentais), University of Lisbon, in September-
October 1998.

Part 1: Short courses (143 pp.), includes key articles offering a systematic
approach to some classes of problems in ordinary differential equations and partial dif-
ferential equations: C. De Coster and P. Habets, An overview of the method of lower
and upper solutions for ODEs; E. Feireisl, On the long-time behaviour of solutions
to the Navier-Stokes equations of compressible flow; J. Mawhin, Periodic solutions
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of systems with p-Laplacian-like operators; W.M. Oliva, Mechanics on Riemannian
manifolds; R. Ortega, Twist mappings, invariant curves and periodic differential equa-
tions; and K. Schmitt, Variational inequalities, bifurcation and applications.

Part 2: Seminar papers, includes short articles representative of the recent
research of participants: F. Alessio, M. Calanchi and E. Serra, Complex dynamics in
a class of reversible equations; L. Almeida and Y. Ge, Symmetry and monotonicity
results for solutions of certain elliptic PDEs on manifolds; J. Andres, Nielsen number
and multiplicity results for multivalued boundary value problems; D. Arcoya and J.L.
Gámez, Bifurcation theory and application to semilinear problems near the resonance
parameter; P. Benevieri, Orientation and degree for Fredholm maps of index zero
between Banach spaces; A. Cabada, E. Liz and R.L. Pouso, On the method of upper
and lower solutions for first order BVPs; A. Cañada, J.L. Gámez and J.A. Montero,
Nonlinear optimal control problems for diffusive elliptic equations of logistic type; A.
Capietto, On the use of time-maps in nonlinear boundary value problems; P. Drábek,
Some aspects of nonlinear spectral theory; C. Fabry and A. Fonda, Asymmetric non-
linear oscillators; T. Faria, Hopf bifurcation for a delayed predator-prey model and
the effect of diffusion; M. Fečkan, Galerkin-averaging method in infinite-dimensional
spaces for weakly nonlinear problems; D. Franco and J.J. Nieto, PBVPs for ordinary
impulsive differential equations; M.R. Grossinho, F. Minhós and S. Tersian, Homo-
clinic and periodic solutions for some classes of second order differential equations;
J. Jacobsen, Global bifurcation for Monge-Ampère operators; M. Kunze, Remarks on
boundedness of semilinear oscillators; D. Lupo and K.R. Payne, The dual variational
method in nonlocal semilinear Tricomi problems; F. Pacella, Symmetry properties of
positive solutions of nonlinear differential equations involving the p-Laplace operator;
A.M. Robles-Pérez, A maximum principle with applications to the forced Sine-Gordon
equation; A.V. Sarychev and D.F.M. Torres, Lipschitzian regularity conditions for the
minimizing trajectories of optimal control problems; and I. Schindler and K. Tintarev,
Abstract concentration compactness and elliptic equations on unbounded domains.

We recommend this book to those mathematicians working in nonlinear anal-
ysis, ordinary differential equations, partial differential equations and related fields.

Radu Precup

Steven G. Krantz and Harold R. Parks, The Implicit Function Theorem - History,
Theory and Applications, Birkhäuser, Boston-Basel-Berlin, 20002, ISBN 0-8176-
4285-4 and 3-7643-4285-4.

The Implicit Function Theorem (IFT) and its closest relative - the Inverse
Function Theorem - are two fundamental results of mathematical analysis with deep
and far reaching applications to various domains of mathematics, as partial differential
equations, differential geometry, geometric analysis, optimization. The aim of the
present book is to present some fundamental implicit function theorems along with
some nontrivial applications.

Some historical facts concerning the evolution of the ideas of function and
implicit function, are presented in the second chapter of the book, History. It turns
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out that the origins of the notion of implicit function can be traced back to I. Newton
(in 1669), G.W. Leibniz, who used implicit differentiation as early as 1684, and J.-L.
Lagrange, who applied in 1670 the inverse function theorem for real analytic functions
to some problems in celestial mechanics. The first explicit formulation of the implicit
function theorem for holomorphic functions was done by A. Cauchy, and the first
real variable formulation belongs to U. Dini in the academic year 1876/77 at the
University of Pisa. In the third chapter, Basic ideas, the authors present two proofs
of the IFT (the finite dimensional case) - one by induction and one via the inverse
function theorem and Banach contraction principle.

Ch. 4, Applications, deals with existence results for differential equations
(Picard’s theorem), numerical homotopy methods and smoothness of the distance
function to a smooth manifold.

Ch. 5, Variations and generalizations, is concerned with IFT for non-smooth
functions and for function with degenerate Jacobian.

The highlight of the book is Ch. 6, Advanced implicit function theorems,
presenting Hadamard’s global inverse function theorem and the famous Nash-Moser
implicit function theorem.

A Glossary of notions and a bibliography complete the book.
Collecting together disparate ideas in an important area of mathematical

analysis and presenting them in an accessible but rigorous way, the book is of great
interest to mathematicians, graduate or advanced undergraduate students, who want
to learn or to apply the powerful tools supplied by implicit function theorems.

Tiberiu Trif

Sergiu Kleinerman and Francesco Nicolò, The Evolution Problem in General Relativ-
ity, Progress in Mathematical Physics, Vol. 25, Birkhäuser Verlag, Boston - Basel -
Berlin 2003, xxii+385 pp., ISBN 3-7643-4254-4 and 0-8176-4254-4.

From the Preface: ”The aim of the present book is to give a new self-contained
proof of the global stability of the Minkowski space, given in D. Christodoulou and S.
Kleinerman, The global nonlinear stability of the Minkowski space, Princeton Math-
ematical Series, Vol. 41. Princeton 1993 (Ch-Kl). We provide a new self-contained
proof of the main part of that result, which concerns the full solution of the radiation
problem in vacuum, for arbitrary asymptotically flat initial data sets. This can be
also interpreted as a proof of the global stability of the external region of Scwarzschild
spacetime.

The proof, which is a significant modification of the argument in Ch-Kl,
is based on a double null foliation of spacetime instead of the mixed null-maximal
foliation used in Ch-Kl. this approach is more naturally adapted to the radiation
features of the Einstein equations and leads to important technical simplifications.”

The book is fairly self-contained, the basic notions from differential geometry
being reviewed in the first chapter. This chapter contains also a review of known
results on Einstein equations and initial data value problems in general relativity,
and the formulation of the main result.
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The rest of the book is devoted to technical preparations for the proof, and
to the proof of the main result. These chapters are headed as follows: 2. Analytic
methods in the study of the initial value problems, 3. Definitions and results, 4.
Estimates for the connection coefficients, 5. Estimates for the Riemann curvature
tensor, 6. The error estimates, 7.The initial hypersurface and the last slice, and 8.
Conclusions. This last chapter contains a rigorous derivation of the Bondi mass as
well as of the connection between the Bondi mass and the ADM mass.

This important monograph, presenting the detailed proof of an important
result in general relativity, is of great interest to researchers and graduate students in
mathematics, mathematical physics, and physics in the area of general relativity.

Paul A. Blaga

JuliánLópez-Gómez, Spectral theory and nonlinear functional analysis, Research
Notes in Mathematics, Vol. 426, Chapman & Hall/CRC, New York Washington
2001, xii+265 pp., ISBN 1-58488-249-2.

The general abstract problem this monograph deals with is the following one:
For U and V real Banach spaces consider the operator

F : R× U → V

of the form
F(λ, u) = L(λ)u + N(λ, u)

and the associated equation

(∗) F(λ, u) = 0

where the following conditions are assumed to be satisfied:
The construction of the spectral theory is based on appropriate definitions of

the notions of bifurcation point, nonlinear eigenvalue and algebraic eigenvalue. One
of the principal goals of the monograph is characterizing the nonlinear eigenvalues of
L by means of a so called generalized algebraic multiplicity of L at λ0. As the author
says ”Our generalized algebraic multiplicity, subsequently denoted by χ[L(λ);λ0] is a
natural number that provides a finite order algorithm to calculate the change of the
Leray-Schauder degree as λ crosses λ0, thereby ascertaining and establishing the deep
relationship between algebraic/analytic and topological invariants arising in nonlinear
functional analysis.”

The algebraic multiplicity can be defined if and only if λ0 is an algebraic
eigenvalue of L. The most crucial property of the algebraic multiplicity is established
by Theorem 1.2.1: λ0 is a nonlinear eigenvalue of L if and only if χ[L(λ);λ0] is odd.

If V = U and L(λ) = T −λIU , where T is a continuous linear operator acting
in U , and IU stands for the identity operator of U , if λ0 is an isolated eigenvalue of
T and T − λ0IU is Fredholm of index zero, then the order ν of λ0 is an algebraic
eigenvalue of L. In this case χ[L(λ);λ0] = dim N [(T − λ0IU )ν ]. Hence χ[L(λ);λ0]
equals the classical algebraic multiplicity of λ0 as an eigenvalue of T .
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If U = V = Rd, d ≥ 1, and λ0 is an algebraic eigenvalue of L, then χ[L(λ);λ0]
is odd if and only if the determinant of L(λ) in any basis changes sign as λ crosses
λ0.

We have selected some basic properties of the algebraic multiplicity as they
are listed in the Introduction of the monograph. This Introduction is in fact a well
written detailed abstract of the book, with historical comments and, whenever possi-
ble, finite dimensional examples and counterexamples involved. As a general aspect
of the approach, we remark the intention of the author to present the results in the
most simple, but significant context. Hence, more sophisticated topological notions,
variational aspects and monotonicity techniques appear only in the last two sections
6 and 7.

The book summarizes the authors new results in the nonlinear bifurcation
theory some of which were subjects of the various lectures presented by him in the
last decade. They extend and complete classical contributions in the field due to Ize,
Fitzpatrick and Pejsachowicz, Rabinowitz, Rabier, Magnus, Ramm and others.

The book is addressed to researchers in nonlinear functional analysis and
operator equations. It can be used also for advanced graduate or postgraduate courses.

A. B. Németh

Piotr Mikusiński and Michael D. Taylor, An Introduction to Multivariable Analysis -
From Vector to Manifold, Birkhäuser Verlag, Basel-Boston-Berlin 2002, x+295 pp.,
ISBN 0-8176-4234-X and 3-7643-4234-X.

The aim of the present book is to provide a quick and smooth introduction
to multivariable calculus, including differential calculus and Lebesgue integration in
RN , and culminating with calculus on manifolds. The more geometric and intuitive
approach, based on K-vectors and wedge product, allows the authors to overcome
some of the difficulties encountered in the study of differential forms and, at a same
time, to give full and rigorous coverage of the fundamental theorems, including Stokes
generalized theorem.

The first two chapters of the book, Ch. 1, Vectors and volumes, and Ch.
2, Metric spaces, contain the algebraic and topological background needed for the
development of multivariable analysis. As more specialized topics included in the first
chapter we mention the Binet-Cauchy formula for determinants with applications to
K-dimensional volumes of parallelipipeds in RN .

Differential calculus for mappings from open subsets of RN to RM , including
Taylor’s formula and inverse and implicit function theorems, is developed in Ch. 3,
Differentiation. As application one proves the Lagrange multiplier rule.

Lebesgue integration is developed in Ch. 4, The Lebesgue integral, following
the approach proposed in the book by Jan and Piotr Mikusiński Introduction to
Analysis - from Number to Integral, J. Wiley 1993, in the case of functions of one
variable. The building starts from ”bricks”, which are intervals [a, b) ⊂ RN , and the
integrals of step functions (= linear combinations of characteristic functions of bricks),
and defining then the integrable functions f and their integrals by the conditions
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f =

∑∞
n=1

∫
fn, where (fk) is a sequence of step functions with

∑∞
n=1

∫
|fn| < ∞

and f(x) =
∑∞

n=1 fn(x) whenever
∑∞

n=1 |fn(x)| < ∞. Measurable sets are defined
later as sets whose characteristic functions are integrable.

Ch. 5, Integral on manifolds, starts with the proof of the change of variables
formula for the integrals, the most complex proof in the book, and continues with
the study of Cr manifolds embedded in RN and the integrals of real-valued functions
defined on manifolds.

Ch. 6, K−vectors and wedge products, develops the fundamental properties of
K− vectors in RN , the wedge and dot products, and the Hodge star operator. These
are essential tools for the next and the last chapter of the book, Ch. 7, Vector analysis
on manifolds, the highlight of the book. This chapter is dealing with integration of
differential forms on oriented manifolds and the proofs of fundamental theorems of
the calculus on manifolds: Stokes theorem and Poincaré lemma. The particular case
of Green formula is emphasized.

The authors strongly motivate the abstract notions by a lot of intuitive exam-
ples and pictures. The exercises at the end at each section range from computational
to theoretical.

The book is highly recommended for basic undergraduate or graduate courses
in multivariable analysis for students in mathematics, physics, engineering or econom-
ics.

Ştefan Cobzaş

Laurenţiu Modan, Calcul Diferenţial Real, Editura CISON, Bucureşti, 2002.

This book is firstly destined to the students of Computer Science Faculties,
but it is also recommended to the students of all other universities, where the Real
Analysis is teaching.

Having as subject Real Differential Calculus the book looks for giving correct
reasonings to the students, so that to permit them a high mathematical education
becoming good specialists, endowed by the logic which insure them finding the best
decision in the domain they will work.

The author chosed a walk between theoretical and practical knowledges sup-
ported by many excellent examples and exercises.

The book develops its all fundamental notions in 4 chapters: Elements of
topology, Elements of numerical and function sequences in IR and IRn, Numerical and
function series, including Taylor and MacLaurin power series, and finally Functions
of several variables.

Of the end of the book in Appendix the author presents four sets of special
problems of the great didactical interest.

This book is warmly recommended to the users, not only for its content and
presentation, but also for its mathematical beauty.

Gh. Micula
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Jürgen Moser, Selected Chapters in the Calculus of Variations, (Lectures notes by
Oliver Knill), Lectures in Mathematics, ETH Zürich, Birkhäuser Verlag, Basel-
Boston-Berlin 2003, xvi+132, ISBN 3-7643-2185-7.

This book is based on the lectures presented by J. Moser in the spring of
1998 at the Eidgenössische Technische Hochschule (ETH) Zürich. The course was
attended by students in the 6th and 8th semesters, by some graduate students and
visitors from ETH. The German version of the notes was typed in the summer of of
19988 and J. Moser carefully corrected it the same year in September. A translation
was done in 2002 and figures were included, but the original text remained essentially
unchanged.

The lectures are concerned with a new development in the calculus of vari-
ations - the so called Aubry-Mather Theory. It has its origins in the research of the
theoretical physicist S. Aubry on the motion of electrons in two dimensional crys-
tal, and in that of J. Mather on monotone twist maps, appearing as Poincaré maps
in mechanics. They were studied by G. Birkhoff in 1920s, but it was J. Mather in
1982 who succeeded to make substantial progress proving the existence of a class of
closed invariant subsets, called now Mather sets. The unifying topic of both Aubry
and Mather approaches is that of some variational principles, a point that the book
makes very clear.

The material is grouped in three chapters: 1. One-dimensional variational
problems; 2. Extremal fields and global minimals; 3. Discrete systems, Applications.

The first chapter collects the basic results from the classical theory, the notion
of extremal fields being a central one. In the second chapter the variational problems
on the 2-dimensional torus are investigated, leading to the notion of Mather set. In
the last chapter the connection with monotone twist maps is made, as a starting point
of Mather’s theory, and the discrete variational problems lying at the basis of Aubry’s
theory are presented.

The aim of the book is not to present the things in their greatest generality,
but rather to emphasize the relations of the newer developments with classical notions.

The progress made in the area since 1998 is shortly presented in an Appendix
along with some additional literature.

The book is ideal for advanced courses in the calculus of variations and its
applications.

S. Cobzaş

Vladimir Müller, Spectral Theory of Linear Operators (and spectral Systems in Ba-
nach Algebras), Operator Theory: Advances and Applications, Vol. 139, Birkhäuser
Verlag, Basel-Boston-Berlin 2003, x+381, ISBN 3-7643-6912-4.

The book is devoted to the basic results in spectral theory in Banach algebras
for both single elements and for n-tuples of commuting elements, with emphasis on
the spectral theory of operators on Banach and Hilbert spaces. The unifying idea,
allowing to present in an axiomatic and elementary way various types of spectra - the
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approximate point spectrum, Taylor spectrum, local spectrum, essential spectrum, etc
- is that of regularity in a Banach algebra. A regularity is a subset R of a unital Banach
algebraA having some nice properties as : ab ∈ R ⇐⇒ a, b ∈ R; e ∈ R; Inv(A) ⊂ R.
The spectrum of an element a ∈ A with respect to a regularity R is defined by
σR(a) = {λ ∈ C : a − λe /∈ R}. For R = Inv(A) one obtains the usual spectrum
σ(a) of the element a. This notion, introduced and studied by the author and V.
Kordula (Studia Math. 113 (1995), 127-139), is sufficiently general to cover many
interesting cases of spectra but, at the same time, sufficiently strong to have non-
trivial consequences as, e.g., the spectral mapping theorem.

The first chapter of the book, Ch. I, Banach algebras, presents the basic
results on spectral theory in Banach algebras, including the axiomatic theory of spec-
trum via regularities. A special attention is paid to approximate point spectrum and
its connection with removable and non-removable ideals. In the second chapter, Ch.
II, Operators, these notions and results are specified to the very important case of op-
erators on Banach and Hilbert spaces. Chapter III, Essential spectrum, is concerned
with spectra in the Calkin algebra B(X)/K(X), and with Fredholm and Browder
operators. Although having a rather involved definition, the Taylor spectrum for
commuting finite systems of operators seems to be the natural extension of ordinary
spectrum for single operators, due mainly to the existence of functional calculus for
functions analytic in a neighborhood of it. The presentation of Taylor functional cal-
culus is done in the fourth chapter in an elementary way, without the use of sheaf
theory and cohomological methods, following the ideas from a paper by the author of
the book (Studia Math. 150 (2002), 79-97).

The last chapter of the book, Ch. IV, Orbits and capacity, is concerned with
the study of orbits, meaning sequences {Tnx : n = 0, 1, ...} in Banach or Hilbert
spaces, a notion closely related to those of local spectral radius and capacity of an
operator. Some Baire category results of the author on the boundedness of the orbit
are included.

The book is clearly written and contains a lot of material, some of it appearing
for the first time in book form. At the same time, the author tried successfully to
keep the presentation at an elementary level, the prerequisites being basic functional
analysis, topology and complex function theory (some needed results are collected in
an Appendix at the end of the book).

The book, or parts of it, can be used for graduate or postgraduate courses,
or as a reference text.

S. Cobzaş

Manfred Reimer, Multivariate Polynomial Approximation, International Series of
Numerical Mathematics, Vol. 144, Birkhäuser Verlag, Basel-Boston-Berlin, 2003, pp.
358. ISBN 3-7643-1638-1.

This monograph brings a new breath over an old field of research - the ap-
proximation of functions by using multivariate polynomials. Besides surveying both
classical and recent results in this field, the book also contains a certain amount of new
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material. The theory is characterized both by a large variety of polynomials which can
be used and by a great richness of geometric situations which occur. Among these ap-
proached families of polynomials, we recall: Gegenbauer polynomials, the polynomial
systems of Appell and Kampé de Feriét, the space Pr(Sr−1), r ∈ N \ {1}, of polyno-
mial restriction, onto the unit sphere Sr−1 and its subspaces, the most important of
them being rotation-invariant subspaces.

The author investigates polynomial approximation to multivariate functions
which are defined by linear operators. The reader will meet Bernstein polynomials, the
Weierstrass theorem, the concept of best approximation and interpolatory projections
in the space of the continuous real functions defined on a compact subset of Rr, r ∈ N,
as well.

Distinct sections are devoted to quadratures. For example, the following are
presented: Gauss quadratures, quadrature on the sphere, the geometry of nodes and
weights in a positive quadrature, quadrature on the ball.

Hyperinterpolation represents another important concept treated by Manfred
Reimer. It is a generalization of interpolation which shares with it the advantage of
an easy evaluation but achieves simultaneously the growth order of the minimal pro-
jections. This new positive discrete polynomial approximation method is established
on the sphere and then it is carried over to the balls of lower dimension.

By using summation methods such as Cesàro method or a method based on
the Newman-Shapiro kernels, positive linear approximation operators are generated.
A special consideration is given to the approximation on the unit ball Br, r ≥ 2. More
precisely, orthogonal projections, Appell series and summation methods, interpolation
on the ball are studied.

Among the book’s outstanding features is the inclusion of some applications
and a large variety of problems. As regards the applications, the author studies a
recovery problem for real functions F belonging to a given space X and which are to be
reconstructed from the values λF , where λ runs in a family of linear functionals on X.
This way are presented both Radon transform, k-plane transform and reconstruction
by approximation. As regards the problems, these are attached to help the reader to
become familiar with the multivariate theory. All exercises are solved in a separate
appendix.

Multivariate Polynomial Approximation includes the author’s own research
results developed over the last ten years, some of which build upon the results of
others and some that introduce new research opportunities. His approach and proofs
are straightforward constructive making the book accessible to graduate students in
pure and applied mathematics and to researchers as well.

Octavian Agratini

Luigi Ambrosio and Paolo Tilli, Selected Topics on ”Analysis in Metric Spaces”,
APPUNTI, Scuola Normale Superiore, Pisa 2000, 133 pp.

The aim of these notes, based on a course taught by the first author in the
academic year 1988-89 at the Scuola Normale Superiore di Pisa, is to present the main
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mathematical prerequisites needed to study or to do research in the field of Analysis
in Metric Spaces. This relatively new and rapidly expanding area of investigation has
as target to transpose to the case of metric spaces as many as possible results from
classical analysis. In order to obtain consistent results, one supposes the metric space
(X, d) endowed with a Borel measure µ that is finite on bounded sets and doubling,
meaning that it values on balls in X satisfy the inequality µ(B2r(x) ≤ Cµ(Br(x)).
Important contributions to the subject have been done by the authors of this book,
by their coworkers from SNS di Pisa, and by M. Gromov, J. Cheeger, P. Hajlasz, P.
Koskela, J. Heinonen.

The book contains six chapters: 1. Some preliminaries in measure theory; 2.
Hausdorff measures and covering theorems in metric spaces; 3. Lipschitz functions in
metric spaces; 4. Geodesic problem and Gromov-Hausdorff convergence; 5. Sobolev
spaces in a metric framework; 6. A quick overview on the theory of integration.

Although in some places the proofs are only sketched with the specification
of a source, the book covers a lot of topics. The last chapter of the book presents De
Giorgi’s approach to the theory of integration based on Cavalieri’s formula.

The bibliography at the end of the book contains the basic references in the
field.

Written in a clear and pleasant style, the book is a good introductory text to
this promising area of investigation - the Analysis on Metric Spaces.

S. Cobzaş

Lectures Notes on Analysis in Metric Spaces, a cura di Luigi Ambrosio and Francesco
Serra Cassano, Scuola Normale Superiore, Pisa 2000, 121 pp.

The book contains the notes of an international Summer School on Analysis
in Metric Spaces, organized by L. Ambrosio, N. Garofalo, P. Serapioni, and F. Serra
Cassano in May of 1999 at the Scuola Normale Superiore di Pisa.

There are included five papers, representing the edited and a little expanded
versions of lectures delivered at the school: 1. Thierry Coulhon, Random walks and
geometry on infinite graphs, pp. 5-36; 2. Guy David Uniform rectifiability and quasi-
minimal sets, pp. 37-54; 3. Pekka Koskela, Upper gradients and Poincaré inequali-
ties, pp. 55-69; 4. Stephen Semmes, Derivatives and difference quotients for Lipschitz
or Sobolev functions on various spaces, pp. 71-103; 5. Richard L. Wheeden, Some
weighted Poincaré estimates in spaces of homogeneous type, pp. 105-121.

The main concern of Analysis in Metric Spaces is to see to what extent
results from classical analysis extend to the more general framework of metric spaces.
Among these results I do mention the introduction of Sobolev spaces via the methods
of upper gradients and Poincaré inequalities, treated in several papers in the volume.
The first paper discusses the discrete case of analysis on graphs, with special emphasis
on Cayley graphs.

Surveying new results, some of them belonging to the authors of the contri-
butions, in this rapidly growing field of investigation situated at the border between
analysis, topology and geometry, the book is of great interest for researchers working
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in this area, as well as for people desiring to become acquainted with its powerful
methods.

S. Cobzaş

Steven G. Krantz and Harold R. Parks, A Primer of Real Analytic Functions,
Birkhäuser Advanced Texts, Birkhäuser Verlag, Boston-Basel-Berlin 2002, xii+205
pp., ISBN 0-8175-4264-1.

Complex analytic functions of one or several complex variables are presented
in a lot of books, at introductory level and at advanced as well.

Their older and poorer relatives - the real analytic functions - having totally
different features, found their first book treatment in the first edition of the present
book, published by Birkhäuser in 1992. Real analytic functions are an essential tool
in the study of embedding problem for real analytic manifolds. They have also appli-
cations in PDEs and in other areas of analysis.

With respect to the first edition, beside the revision of the presentation, some
new material on topologies on spaces of real analytic functions and on the Weierstrass
preparation theorem, has been added.

The basic results on real analytic functions are presented in the first two
chapters: Ch. Elementary properties, and Ch. 2 Multivariable calculus of real ana-
lytic functions, including implicit and inverse function theorems, Cauchy-Kowalewski
theorem.

Chapters 3, Classical topics and 4 ,Some questions in hard analysis, contain
more advanced topics as Besicovitch’s theorem, Whitney’s extension and approxima-
tion theorems, quasi-analytic classes and Gevrey classes, Puiseux series.

Ch. 5, Results motivated by PDEs, is concerned with topics as division of
distributions, the FBI transform (FBI comes here from the name of mathematical
physicists Fourier, Bros and Iagnolitzer), and Paley-Wiener theorem.

The last chapter, Ch. 6, Topics in geometry, contains a discussion of some
deep and difficult results as embedding of real analytic manifolds, sub- and semi-
analytic sets, the structure theorem for real analytic varieties.

Bringing together results scattered in various journals or books and presenting
them in a clear and systematic manner, the book is of interest first of all for analysts,
but also for applied mathematicians and for researcher in real algebraic geometry.

Stefan Cobzaş

Steven G. Krantz, Handbook of Logic and Proof Techniques for Computer Science,
Birkhäuser Boston, Inc., Boston, MA; Springer-Verlag, New York, 2002. xx+245pp.,
ISBN 0-8176-4220-X.

Logic plays a key role in modern mathematics and computer science. How-
ever, the vast number of topics, the unusual and sometimes difficult formalism and
terminology, made most of the modern logic inaccessible to all but the experts.
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The present book is a comprehensive overview of the most important topics
in modern logic emphasizing ideas essential in Computer Science as axiomatics, com-
pleteness, consistency, decidability, independence, recursive functions, model theory,
P/NP completeness. Some of these topics are: first-order logic, semantics and syntax,
axiomatics and formalism in mathematics, the axioms of set theory, elementary set
theory, recursive functions, the number systems, methods of mathematical proof, the
axiom of choice, proof theory, category theory, complexity theory, Boolean algebra,
the word problem.

The book was written to be accessible for non experts. It contains defini-
tions, plenty of concrete examples and a clear presentation of the main ideas, on the
other hand avoids complicated proofs, difficult notations, difficult formalisms. Self-
contained, the book is designed for those mathematicians, engineers and especially
computer scientists who need a quick understanding of some key ideas from logic.

The vast bibliography also makes this book an excellent modern logic resource
for the working mathematician.

Csaba Szántó

Bhimsen K. Shivamoggi, Perturbations Methods for Differential Equations,
Birkhäuser Verlag, Basel-Boston-Berlin 2003, xiv+354, ISBN 3-7643-4189-0
and 0-8176-4189-0.

The mathematical problems associated with nonlinear equations, generally,
are very complex. So that, one practical approach is to seek the solutions of these
nonlinear equations as the perturbations of known solutions of a linear equation. A
perturbative solution of a nonlinear problem becomes viable if it is close to the solution
of another problem we already know how to solve.

After a chapter containing the asymptotic series and expansions, this book
presents the regular perturbation methods for differential and partial differential
equations. Other methods, such as the strained coordinates method, the averag-
ing method, the matched asymptotic expansion method, the multiple scales method,
are also very detailed presented. Very important is the fact that each chapter con-
tains certain important applications, especially to fluid dynamics, but also to solid
mechanics and plasma physics. Moreover, each chapter contains a section of specific
exercises, and an appendix with basic mathematical tools.

Many methods and procedures are very well described without technical
proofs. It is obvious the intention of the author to convince the reader to understand
the phenomena and to learn how to apply correctly the suitable presented method.

”Perturbation Methods for Differential Equations” can serve as a textbook for
undergraduate students in applied mathematics, physics and engineering. Researchers
in these areas will also find the book an excellent reference. A comprehensive bibli-
ography and an index complete the book.

Gh. Micula
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Alain Escassut, Ultrametric Banach Algebras,, World Scientific, London - Singapore
- Hong Kong 2003, xiii+275 pp., ISBN 981-238-194-5.

The book is concerned with the spectral theory of ultrametric Banach alge-
bras over an algebraically closed complete ultrametric field. As it is well known, in
the classical case due to Gelfand’s representation theory every commutative complex
Banach algebra can be viewed as an algebra of functions on a compact space, whose
points characterize all maximal ideals, which are all of codimension 1. Any such
algebra admits a holomorphic functional calculus.

In the ultrametric case the situation is much more complicated, because an
ultrametric Banach algebra can have maximal ideals of infinite codimension. It turns
out that a key role in constructing an ultrametric spectral theory is played by the
family of multiplicative semi-norms on an ultrametric Banach algebra, allowing to
define a kind of Gelfand transform. There exists also a spectral semi-norm defined by
‖a‖si = limn ‖an‖1/n, which is also equal to the supremum of all multiplicative semi-
norms. It is also possible to construct a holomorphic functional calculus. The basic
idea is to associate methods based on affinoid algebras (called also ”Tate algebras”)
with methods based on holomorphic functional calculus involving very thin properties
of analytic functions of one variable. The present book is the first that treats together
both of these subjects. Concerning holomorphic mappings in the ultrametric case,
references are given to another book by the same author, Analytic Elements in p-adic
Analysis, World Scientific, Singapore 1995.

The author is well known specialist in the field and the book is largely based
on his original results.

The book will be of interest to researchers in non-archimedean analysis (or
ultrametric analysis), a field having its origins in the work of the Dutch mathemati-
cians A. F. Monna and T. A. Springer, and which still is in the focus of attention of
several research centers. Recently there have been found some applications of non-
archimedean analysis to mathematical physics, see V. S. Vladimirov, I. V. Volovich
and E. J. Zelenov, p-Adic Analysis and Mathematical Physics, World SCientific, Sin-
gapore 1994.

S. Cobzaş

Mathematics and War, Editors: Bernhelm Booß-Bavnek and Jens Høyrup, Birkhäuser
Verlag, Basel-Boston-Berlin 2003, viii+416 pp., ISBN 3-7643-1634-9.

The volume contains some of the contributions delivered at the International
Meeting on Mathematics and War, held in Karlskrona, Sweden, from 29 to 31 august,
2002, together with some invited papers. The idea was to bring together mathemati-
cians, historians, philosophers and military, to discuss some of the interconnections
between warfare and mathematics. As it is well known after the World War II, there
has been a strong mathematization of warfare and of the concepts of modern war,
which in its turn deeply influenced the development of some areas of mathematics.
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The papers included in the volume deal with topics ranging from histori-
cal, philosophical, ethical aspects of the problem, to more technical aspects like the
functioning of weapons, the actual planning of war and information warfare. The
perspectives the authors approaches the treated theme also differ from one to other -
some papers are written from a pacifist point of view (more or less explicitly), while
others are not. Some of the papers are dealing with history, but focused on the last
sixty years, e.g., WW II and the Kosovo war.

The volume is organized in four parts: I. Perspectives from mathematics, II.
Perspectives from the military, III. Ethical issues, IV. Enlightenment perspectives.

The first part contains studies on military work in mathematics 1914-1945
(R. Siegmund-Schultz), on the Enigma code breaking (E. Rakus-Anderson), on the
defence work of A. N. Kolmogorov (A. N. Shiryaev), on the discovery of maximum
pricilple by Lev Pontryagin (R. V. Gamkrelidze), and on the mathematics and war
in Japan (S. Fukutomi).

The second part is written by military and deals with topics as information
warfare (U. Bernhard and I. Ruhmann), the exposure of civilians under the modern
”safe” warfare (E. Schmägling), duels of systems and forces (H. Löfstedt).

The third part is concerned with N. Bohr’s and A. Turing’s involving in
military research (I. Aaserud and A. Hodges, respectively), and K. Ogura and the
”Great Asia War” (T. Makino).

The last part contains two studies - one on mathematical thinking and inter-
national law (I. M. Jarvard), and one on modeling the conflict and cooperation (J.
Scheffran).

The aim of the volume is to draw the attention of scientists, military and
philosophers on the dramatic consequences that the use of science, particularly of
mathematics, for military purposes can have on the development of humanity, and to
trace some possible way of preventing this disaster.

S. Cobzaş
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