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405300

SUMAR – CONTENTS – SOMMAIRE

R. Aghalary and S. B. Joshi, Differential Subordination and Starlikeness

of Analytic Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
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Ştefan Mirică, Feedback Differential Systems: Approximate and Limiting

Trajectories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .83
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume XLIX, Number 3, September 2004

DIFFERENTIAL SUBORDINATION AND STARLIKENESS
OF ANALYTIC FUNCTIONS

R. AGHALARY AND S. B. JOSHI

Abstract. In the present paper by using the method of differential sub-

ordination we aim to prove some classical results in univalent function

theory. In particular we give some new sufficient condition for an analytic

function to be starlike and convex in the unit disc U . Also by applying

Ruscheweyh derivative we investigate some argument properties of some

subclasses of univalent functions.

1. Introduction

Let A denote the class of functions of the form

f(z) = z +
∞∑

n=2

anz
n

which are analytic in the unit disc U = {z : |z| < 1}. For f and g which are analytic

in U , we say that f is subordinate to g,written f(z) ≺ g(z), if there exists an analytic

function ω in U such that ω(0) = 0, |ω(z)| < 1 and f(z) = g(ω(z)).

For 0 < b ≤ a, the function p ∈ A is said to be in P (a, b) if and only if

|p(z)− a| < b, z ∈ U.

Without loss of generality we omit the trivial case p(z) = 1 and assume that |1−a| < b.

For −1 ≤ B < A ≤ 1, the function p ∈ A is said to be in P [A,B] if and only if

p(z) ≺ 1 +Az

1 +Bz
, z ∈ U.
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R. AGHALARY AND S. B. JOSHI

Here the symbol ′ ≺′ stands for subordination.For 0 < b ≤ a, there is a correspondence

between P (a, b) and P [A,B], namely

P (a, b) ≡ P

[
b2 − a2 + a

b
,
1− a

b

]
.

Two subclasses of P (a, b) and P [A,B] that have been studied extensively by other

authors (e.g.see [2] )are P (1, b) and P [A,−1].

The object of the present paper is to investigate some argument properties of analytic

functions. We also obtain new sufficient condition for starlikeness and convexity.

First we introduce a subordination criterion for p(z) which is subordinate to(
1+z
1−z

)η

.

To establishing our main results,we shall need the following results, which are due to

Miller and Mocanu [4], Nunokawa [5] and Miller and Mocanu [4], respectively.

Lemma 1.1. Let h be a convex function in U and let λ be analytic in U with <λ(z) ≥

0. If q is analytic in U and q(0) = h(0), then

q(z) + λ(z)zq′(z) ≺ h(z),

implies

q(z) ≺ h(z) (z ∈ U).

Lemma 1.2. Let q be analytic in U with q(0) = 0 and q(z) 6= 0 in U. Suppose that

there exists a point z0 ∈ U such that

| arg q(z)| < πη

2
for |z| < |z0| (1)

and

| arg q(z0)| =
πη

2
, (2)

where 0 < η ≤ 1. Then we have

z0q
′(z0)

q(z0)
= ikη, (3)

where

k ≥ 1
2
(a+

1
a
) when arg q(z0) =

πη

2
, (4)

k ≤ −1
2

(a+
1
a
) when arg q(z0) =

−πη
2

, (5)
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and

q(z0)
1
η = ±ia (a > 0). (6)

Lemma 1.3. Let F be analytic in U and let G be analytic and univalent on Ū ,

with F (0) = G(0). If F is not subordinate to G, then there exist points z0 ∈ U and

ξ0 ∈ ∂U , and m ≥ 1 for which F (|z| < |z0|) ⊂ G(|z| < |z0|), F (z0) = G(ξ0) and

z0F
′(z0) = mξ0G

′(ξ0).

2. Main Results

We now state and prove our main results.

Lemma 2.1. Let p be analytic in U with p(0) = 1. If∣∣∣∣arg
[
p(z) +

λ

S(z)
zp′(z)

]∣∣∣∣ < π

2
δ (0 < δ ≤ 1, λ ≥ 0),

for some S(z) where S(z) ∈ P (a, b), then

| arg p(z)| < π

2
η,

where η (0 < η ≤ 1) is the solution of the equation

δ = η +
2
π

tan−1

(
λη
√
a2 − b2

a2 + ab+ ληb

)
. (7)

Proof. Let h(z) =
(

1+z
1−z

)δ

, we observe that h is convex and h(0) = 1. Applying

Lemma 1.1 for this h with λ(z) = λ
S(z) , we see that <p(z) > 0 in U and hence

p(z) 6= 0 in U . If there exists a point z0 ∈ U such that the conditions (1) and (2) are

satisfied, then (by Lemma 1.2) we obtain (3) under the restrictions (4),(5) and (6).

Since S(z) ∈ P (a, b) we have

S(z) = rei π
2 φ,

where a− b < r < a+ b and −2
π sin−1( b

a ) < φ < 2
π sin−1( b

a )
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At first, suppose that p(z0)
1
η = ia (a > 0), we obtain

arg
[
p(z0) +

λ

S(z0)
z0p

′(z0)
]

= arg p(z0) + arg
(

1 +
λ

S(z0)
z0p

′(z0)
p(z0)

)
=

π

2
η + arg

(
1 +

λ

rei π
2 φ
iηk

)
=

π

2
η + tan−1

(
ληk cos(π

2φ)
r + ληk sin(π

2φ)

)

≥ π

2
η + tan−1

(
λη cos(sin−1( b

a ))
a+ b+ λη b

a

)

=
π

2
η + tan−1

(
λη
√
a2 − b2

a2 + ab+ ληb

)
=

π

2
δ

This is a contradiction to the assumption of our lemma.

Next, suppose that p(z0) = −ia (a > 0). Applying the same method as the above,

we have

arg
[
p(z0) +

λ

S(z0)
z0p

′(z0)
]

=
−π
2
η − tan−1

(
λη
√
a2 − b2

a2 + ab+ ληb

)

=
−π
2
δ,

where δ is given by (7) which contradict the assumption. This completes the proof of

our lemma.

Theorem 2.2. Let η be as defined by (7). Let M(z) = zn + ... and N(z) = zn + ...

be analytic in U and such that, N satisfies

zN ′(z)
N(z)

∈ P (a, b).

Then ∣∣∣∣arg
[
(1− λ)

M(z)
N(z)

+ λ
M ′(z)
N ′(z)

]∣∣∣∣ < π

2
δ.

implies ∣∣∣∣arg
M(z)
N(z)

∣∣∣∣ < π

2
η.
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Proof. Consider the function p(z) = M(z)
N(z) and let S(z) = zN ′(z)

N(z) . Then by hypothesis,

p is analytic and p(0) = 1. Hence all the conditions of Lemma 2.1 are satisfied. Now

it is elementary to show that

(1− λ)
M(z)
N(z)

+ λ
M ′(z)
N ′(z)

= p(z) +
λ

S(z)
zp′(z).

And hence Theorem 2.2 follows from Lemma 2.1.

The ν− th order Ruscheweyh Derivative [6] Dν of a function f ∈ A is defined

by

Dνf(z) =
z

(1− z)1+ν
∗ f(z) = z +

∞∑
k=2

Bk(ν)akz
k,

where

Bk(ν) =
(1 + ν)(2 + ν)...(ν + k − 1)

(k − 1)!
.

The operator ′∗′ stands for the convolution or Hadamard product of two power series

f(z) =
∑∞

i=1 aiz
i and g(z) =

∑∞
i=1 biz

i defined by

(f ∗ g)(z) = f(z) ∗ g(z) =
∞∑

i=1

aibiz
i.

From the definition of Dν and the properties of convolution ′∗′ follows the identity

z(Dνf(z))′ = (1 + ν)D1+νf(z)− νDνf(z). (8)

Corollary 2.3. Let f ∈ A. If∣∣∣∣arg
[
(1− λ)

Dνf(z)
Dµg(z)

+ λ
(Dνf(z))′

(Dµg(z))′

]∣∣∣∣ < π

2
δ, (ν ≥ 0, µ ≥ 0, λ ≥ 0, 0 < δ ≤ 1)

for some g where Dµg(z) ∈ P [A,B], (−1 < B < A ≤ 1), then∣∣∣∣arg
Dνf(z)
Dµg(z)

∣∣∣∣ < π

2
η,

where η, (0 < η ≤ 1) is the solution of the equation

δ = η +
2
π

tan−1

λη cos
(
sin−1 A−B

1−AB

)
1+A
1+B + λη A−B

1−AB

 . (9)

Proof. If we let a = 1−AB
1−B2 .b = A−B

1−B2 ,M(z) = Dνf(z) and N(z) = Dµg(z) then in

this case η is given by (9) and the corollary now follows from Theorem 2.2.

Taking B 7→ A and g(z) = z in Corollary 2.3, we have
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Corollary 2.4. Let f ∈ A. If∣∣∣∣arg
[
(1− λ)

Dνf(z)
z

+ λ(Dνf(z))′
]∣∣∣∣ < π

2
δ, (ν ≥ 0, λ ≥ 0, 0 < δ ≤ 1),

then ∣∣∣∣arg
Dνf(z)

z

∣∣∣∣ < π

2
η,

where η, (0 < η ≤ 1) is the solution of the equation

δ = η +
2
π
tan−1λη.

By using the same technique as in the proof of Lemma 2.1, we obtain

Theorem 2.5. Let f ∈ A.If∣∣∣∣arg
[
(1− λ)

Dν+1f(z)
z

+ λ(Dν+1f(z))′
]∣∣∣∣ < π

2
δ, (ν ≥ 0, λ ≥ 0, 0 < δ ≤ 1),

then ∣∣∣∣arg
[
(1− λ)

Dνf(z)
z

+ λ(Dνf(z))′
]∣∣∣∣ < π

2
η,

where η, (0 < η ≤ 1) is the solution of the equation

δ = η +
2
π
tan−1

(
η

1 + ν

)
.

Corollary 2.6. Let f ∈ A. If

|arg(f ′(z) + λzf ′′(z))| < π

2
δ,

then ∣∣∣∣arg
[
(1− λ)

f(z)
z

+ λf ′(z)
]∣∣∣∣ < π

2
η

where η, (0 < η ≤ 1) is the solution of the equation

δ = η +
2
π

tan−1 η.

We note that, by making use of Theorem 2.3, one can construct several new results

for Bazilevic functions.
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Theorem 2.7. Let f ∈ A. If∣∣∣∣arg
[
(1− λ)

Dνf(z)
z

+ λ
(Dνf(z))′

z

]∣∣∣∣ < π

2
δ, (ν > 0, λ ≥ 0, 0 < δ ≥ 1)

then ∣∣∣∣arg
Dνf(z)
Dν−1f(z)

∣∣∣∣ < π

2
(η1 + η2),

where η1, η2 are the solutions of the equations

δ = η1 +
2
π

tan−1 λη1, (10)

and

δ = η2 +
2
π
tan−1λη2 +

2
π

tan−1

(
η2 + tan−1 λη2

ν

)
. (11)

Proof. Using Corollary 2.4 and Theorem 2.5, we obtain∣∣∣∣arg
Dνf(z)

z

∣∣∣∣ < π

2
η1, (12)

and ∣∣∣∣arg
Dν−1f(z)

z

∣∣∣∣ < π

2
η2, (13)

where η1 and η2 are defined by (10) and (11). Hence by using (12) and (13) we get

our result.

Letting ν = 1 and λ = 1 in Theorem 2.7 we have

Corollary 2.8. Let f ∈ A. If

| arg(f ′(z) + zf ′′(z))| < π

2
δ, (0 < δ ≤ 1)

then ∣∣∣∣arg
zf ′(z)
f(z)

∣∣∣∣ < π

2
(η1 + η2)

where η1 and η2 are the solutions of the equations

δ = η1 +
2
π

tan−1 η1,

and

δ = η2 +
2
π

tan−1 η2 +
2
π

tan−1(η2 + tan−1 η2).

9
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Lemma 2.9. Let λ be a function defined on U satisfies

η = inf
z∈U

(
<λ(z)− cot

π

2
δ|=λ(z)|

)
> 0, (14)

and let

β(η, δ) = (t0)δ

[
cos

π

2
δ − δη

2
sin

π

2
δ(t0 +

1
t0

)
]
, (15)

be such that 2β(η, δ) + η ≥ 0 with t0 =
cot π

2 δ+
√

cot2 π
2 δ+η2(1−δ2)

η(1+δ) .

If p be analytic in U with p(0) = 1,satisfies

<[p(z) + λ(z)zp′(z)] > β(η, δ)

then

| arg p(z)| < π

2
δ.

Proof. Let h(z) = ( 1+z
1−z )δ, we observe that h is convex and h(0) = 1. Applying

Lemma 1.1 for this h with λ(z), we see that <p(z) > 0 and hence p(z) 6= 0 in U . For

completing the proof of lemma we need only to show that p(z) ≺ h(z). If p(z) is not

subordinate to h, then by Lemma 1.3 there exist points z0 ∈ U and ξ0 ∈ ∂U , and

m ≥ 1 such that

p(|z| ⊂ |z0|) ⊂ q(U), p(z0) = q(ξ0) and z0p
′(z0) = mξ0q

′(ξ0).

Since p(z0) 6= 0, ξ0 6= ±1, by letting X and Y be the real and imaginary part of

λ(z0),from (14), we find that

X + cot
π

2
δY ≥ X − cot

π

2
δ|Y | ≥ η > 0,

and

X − cot
π

2
δY ≥ X − cot

π

2
δ|Y | ≥ η > 0. (16)

Further if we put ix = 1+ξ0
1−ξ0

and use the above observations, we obtain

p(z0) + λ(z0)z0p′(z0) = (ix)δ

[
1 + i

mδ

2
(X + iY )

1 + x2

x

]
.

For x 6= 0,

10
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<(p(z0) + λ(z0)z0p′(z0))

= <

 |x|δ
(
cos π

2 δ + i sin π
2 δ
) (

1− mδ
2 (Y − iX) 1+x2

|x|

)
ifx > 0

|x|δ
(
cos π

2 δ − i sin π
2 δ
) (

1 + mδ
2 (Y − iX) 1+x2

|x|

)
ifx < 0

=

 |x|δ
[
cos π

2 δ −
mδ
2 sin π

2 δ(X + cot π
2 δY ) 1+x2

|x|

]
ifx > 0

|x|δ
[
cos π

2 δ −
mδ
2 sin π

2 δ(X − cot π
2 δY ) 1+x2

|x|

]
ifx < 0.

Therefore, for x 6= 0, since λ(z0) satisfies (14) and m ≥ 1, we obtain

<(p(z0) + λ(z0)z0p′(z0)) ≤ |x|δ
[
cos

π

2
δ − δη

2
sin

π

2
δ

(
|x|+ 1

|x|

)]
= f(|x|)

Since f(t) with t = |x| attains its maximum value at point

t0 =
cot π

2 δ +
√

cot2 π
2 δ + η2(1− δ2)

η(1 + δ)
.

We have

<(p(z0) + λ(z0)z0p′(z0)) ≤ f(|x|) ≤ f(t0) = β(η, δ).

This is contradiction with our assumption. Hence we must have p(z) ≺ h(z). This

completes the proof.

Theorem 2.10. Let β(η, δ) be as defined by (15) so that 2β(η, δ) + η ≥ 0. Let

M(z) = zn + ... and N(z) = zn + ... be analytic in U such that for some α ∈ C, N

satisfies ∣∣∣∣= αN(z)
zN ′(z)

∣∣∣∣ ≤ tan
π

2
δ

(
< αN(z)
zN ′(z)

− η

)
,

Then

<
[
(1− α)

M(z)
N(z)

+ α
M ′(z)
N ′(z)

]
> β(η, δ),

implies ∣∣∣∣arg
M(z)
N(z)

∣∣∣∣ < π

2
δ.

Proof. Consider the function p(z) = M(z)
N(z) and let λ(z) = αN(z)

zN ′(z) . Then by hypothesis,p

is analytic and p(0) = 1 and all conditions of Lemma 2.9 are satisfied.Now it is

elementary to show that,

(1− α)
M(z)
N(z)

+ α
M ′(z)
N ′(z)

= p(z) + λ(z)zp′(z),

11
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and hence Theorem 2.10 follows from Lemma 2.9.

Taking M(z) = Dνf(z) and N(z) = z in Theorem 2.10 we have.

Corollary 2.11. Let f ∈ A, and let α be complex number satisfies

|=α| ≤ (tan
π

2
δ)<α.

Then

<
[
(1− α)

Dνf(z)
z

+ α(Dνf(z))′
]
> β(η, δ) (0 < δ ≤ 1, ν ≥ 0)

implies ∣∣∣∣arg
Dνf(z)

z

∣∣∣∣ < π

2
δ,

where η = [<α− cot π
2 δ|=α|].

Theorem 2.12. Let f ∈ A. If

<
[
(1− λ)

D1+νf(z)
z

+ λ(D1+νf(z))′
]
> β(η, δ) (0 < δ ≤ 1, ν ≥ 0, λ ∈ C)

then

arg
[
(1− λ)

Dνf(z)
z

+ λ(Dνf(z))′
]
<
π

2
δ,

where β(η, δ) is defined by (15) with η = 1
1+ν .

Proof. Suppose

p(z) = (1− λ)
Dνf(z)

z
+ λ(Dνf(z))′. (17)

It is clear that p is analytic and p(0) = 1. Differentiating of (17) with respect to

z,multiplying by z and using the identity (8) we obtain

(1− λ)
D1+νf(z)

z
+ λ(D1+νf(z))′ = p(z) +

1
1 + ν

zp′(z). (18)

Hence the result follows from(18) and Lemma 2.9.

To prove our next theorem, we shall need the following result, which is due to Miller

and Mocanu [3].

Lemma 2.13. Let Ω be a set in the complex plane C and suppose that the function

ψ : C2×U 7→ C satisfies ψ(ix, y, z) /∈ Ω, for all real x, y with y ≤ − 1+x2

2 and z ∈ U .If

the function zp ∈ A satisfies ψ(p(z), zp′(z), z) ∈ Ω, z ∈ U , then <p(z) > 0 holds for

all z ∈ U .

12
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Theorem 2.14. Let f ∈ A and ν ≥ 1. Also let δ ≈ 0.638324 and γ > 0 be the roots

of the equations (respectively)

δ tan
π

2
δ = 1, (19)

and

γ = ν tan
π

2
(δ − γ). (20)

If α ≥ 1 and

<
(

(1− α)
Dνf(z)

z
+ α(Dνf(z))′

)
>

−(1− 1
α )(2ξ(α)− 1)

1− (1− 1
α )(2ξ(α)− 1)

, (21)

then

<
(

Dνf(z)
Dν−1f(z)

)
> β, (22)

where ξ(α) =
∫ 1

0
dt

1+tα and β is the smallest positive root of the equation

2
√

[ν(1− β) + 1
2 ][βν + 1

2 −
β

1−β ]

|1− ν + 2βν|
= tan

π

2
γ. (23)

Proof. From (21) and using the well-known result of Hallenbeck and Ruscheweyh [1]

with identity

Dνf(z)
z

+ z

(
Dνf(z)

z

)′
=
(

1− 1
α

)
Dνf(z)

z
+

1
α

[
Dνf(z)

z
+ αz

(
Dνf(z)

z

)′]
,

we observe

<

[
Dνf(z)

z
+ z

(
Dνf(z)

z

)′]
> 0. (24)

Applying Corollary 2.11 to (20) we get∣∣∣∣arg
Dνf(z)

z

∣∣∣∣ < π

2
δ,

where δ is defined by (19).

Now by using the identity Dνf(z)
z = ν−1

ν
Dν−1

z + 1
ν (Dν−1f(z))′ and Corollary 2.4 we

obtain ∣∣∣∣arg
Dν−1f(z)

z

∣∣∣∣ < π

2
γ,

where γ is defined by (20).

13
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Setting p(z) =
(

Dνf(z)
Dν−1f(z) − β

)
1

1−β , F (z) = Dν−1f(z)
z , and by performing differentia-

tion and some algebraic simplifications, (24) deduces to

<ψ(p(z), zp′(z), z) > 0

where

ψ(r, s, z) = F (z)
(
β2ν + β − βν + r[(1− β)(1− ν) + 2β(1− β)ν]

)
+ F (z)

(
r2ν(1− β)2 + (1− β)s

)
.

Let us now put F (z) = X+iY and apply Lemma 2.13.Then for all x, y real and z ∈ U

we have

<ψ(ix, y, z) = X
(
(β2ν + β − βν)− ν(1− β)2x2 + (1− β)y

)
− Y x[(1− β)(1− ν) + 2β(1− β)].

From this we observe that

<ψ(ix, y, z) ≤ −(ax2 + bx+ c),

for all x real,y ≤ −(1+x2)
2 and z ∈ U , where

a = X

[
ν(1− β)2 +

(1− β)
2

]
, b = Y [(1− β)(1− ν) + 2β(1− β)ν] and

c = X

[
βν(1− β)− β +

1− β

2

]
.

Therefore <ψ(ix, y, z) ≤ 0 if and only if b2 ≤ 4ac this indeed equivalent to

| argF (z)| <
2
√

[ν(1− β) + 1
2 ][βν + 1

2 −
β

1−β ]

|1− ν + 2βν|
= tan

π

2
γ.

Hence if β be the smallest root of the equation (23) then <ψ(ix, y, z) ≤ 0 and so by

Lemma 2.13 we obtain <p(z) > 0 which is desired conclution.Therefore the proof is

complete.

Corollary 2.15. Let f ∈ A and δ ≈ 0.638324 and γ ≈ 0.39747 be the roots of the

equations (respectively),

δ tan
π

2
δ = 1 and γ = tan

π

2
(δ − γ).
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If

<(f ′(z) + zf ′′(z)) > 0,

then

<
(
zf ′(z)
f(z)

)
> β,

where β ≈ 0.46085 is the smallest positive root of the equation√
( 3
2 − β)

(
β + 1

2 −
β

1−β

)
β

= tan
π

2
γ.

Corollary 2.16. Let f ∈ A and δ ≈ 0.638324 and γ ≈ 0.4864 be the smallest roots

of the equations (respectively),

δ tan
π

2
δ = 1 and γ = 2 tan

π

2
(δ − γ).

If

<(f ′(z) + 2zf ′′(z) +
1
2
z2f ′′′(z)) > 0,

then

<
(

1 +
zf ′′(z)
f ′(z)

)
> 2β − 1,

where β ≈ 0.57669 is the the smallest positive root of the equation

2
√

( 5
2 − 2β)

(
2β + 1

2 −
β

1−β

)
4β − 1

= tan
π

2
γ.

Proof.Put ν = 2 in Theorem 2.14.

We also note that by using Corollary 2.15 one can get the other new sufficient condition

for convexity such as

Corollary 2.17. Let f ∈ A and δ ≈ 0.638324 and γ ≈ 0.39747 be the roots of the

equations,(respectively)

δ tan
π

2
δ = 1 and γ = tan

π

2
(δ − γ).

If

<(f ′(z) + 3zf ′′(z) + z2f ′′′(z)) > 0.

15
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Then

<
(

1 +
zf ′′(z)
f ′(z)

)
> β,

where β ≈ 0.46085 is the smallest positive root of the equation√
( 3
2 − β)

(
β + 1

2 −
β

1−β

)
β

= tan
π

2
γ.
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ON THE CONVERGENCE OF COLLOCATION SPLINE METHODS
FOR INTEGRAL DELAY PROBLEMS

F. CALIÒ, E. MARCHETTI AND R. PAVANI

Abstract. In some recent works we proposed a collocation method by

deficient splines to approximate the solution of Neutral Delay Differential

Equations and Volterra Delay Integral Equations. In this work we extend

that method to integro-differential equations. The existence and unique-

ness of the numerical solution is proved. Consistency and convergence of

this method are studied.

1. The problem

In this work we present some remarks about the convergence of a collocation

spline method for a problem which is the synthesis of models recently studied in

collaboration with Professor Georghe Micula.

Precisely we consider the following non linear first-order Fredholm integro-

differential problem with delay:

y′(x) = f(x, y(x), y(g(x)),
∫ T

0
K(x, t, y(t), y(g(t)))dt), x ∈ [0, T ]

y(0) = y0, y(x) = ψ(x), x ∈ [α, 0], α ≤ 0, α = Inf(g(x))
x∈[0,T ]

α ≤ g(x) ≤ x , x ∈ [α, T ]

(1)

where f : [0, T ]×R3 → R , K : [0, T ]×[0, T ]×R2 → R, g ∈ C[α, T ], ψ ∈ Cm−1[α, 0],

m > 1, m ∈ N .

(1) can be considered Volterra delay integro-differential problem by replacing

the upper limit of integration T by x.

Received by the editors: 10.09.2004.

2000 Mathematics Subject Classification. 65L05, 65D07, 65D15.
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As usual we write problem (1) in the following form

y′(x) = f(x, y(x), y(g(x)), z(x)), x ∈ [0, T ]

z(x) =
∫ T

0
K(x, t, y(t), y(g(t)))dt

y(0) = y0, y(x) = ψ(x), x ∈ [α, 0], α ≤ 0, α = Inf(g(x))
x∈[0,T ]

α ≤ g(x) ≤ x , x ∈ [α, T ]

(2)

In the following we assume g(x) = x− τ, where τ ∈ R, τ > 0 is the constant

delay. Let yτ = y(x− τ) and T = Mτ for some M ∈ N .

1. Suppose that f(x, y, yτ , z) is a smooth function satisfying the following

Lipschitz condition

||f(x, y1, yτ1, z1)− f(x, y2, yτ2, z2)|| ≤

L1(||y1 − y2||+ ||yτ1 − yτ2||+ ||z1 − z2||)

∀ (x, y1, yτ1, z1), (x, y2, yτ2, z2) ∈ [0, T ]×R3.

2. Suppose also that the kernel K(x, t, y, yτ ) is a smooth bounded function

satisfying the following Lipschitz condition

||K(x, t, y1, yτ1)−K(x, t, y2, yτ2)|| ≤

L2(||y1 − y2||+ ||yτ1 − yτ2||)

∀ (x, t, y1, yτ1), (x, t, y2, yτ2) ∈ [0, T ]× [0, T ]×R2.

In these conditions, the problem (2) has a unique solution (see for example [2]).

To face this mathematical model we propose a numerical model based on

direct collocation spline method using the well known advantages of a collocation

method and of a spline approximation. In particular we construct splines pertaining

to low regularity class and with weak regularity conditions in the junction points.

The collocation allows to recursively define a piecewise approximating poly-

nomial and is characterized (differently from what is suggested by the literature) by

the fact that knowledge gathered in previous steps is completely utilized, thus refining

the approximating solution, even at price of a heavier computational load.

Let r ∈ N , N = rM and ∆ be the following uniform partition of the

interval [0, T ]:

∆ : 0 = x0 < x1 < ... < xk < xk+1 < ... < xN = T , xk = kh, h = T
N .

18
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Here we approximate the solution of (2) by means of functions pertaining

to the class of spline of degree m ≥ 2 and deficiency 2, denoted by s : [0, T ] → R,

(s ∈ Sm, s ∈ Cm−2).

Precisely, the spline function s is defined in Ik = [xk, xk+1] as:

sk(x) :=
m−2∑
j=0

s
(j)
k−1(xk)(x− xk)j/j! +

ak

(m− 1)!
(x− xk)m−1 +

bk
m!

(x− xk)m

We choose to determine coefficients ak, bk by the following system of collocation

conditions s′k(xk + h
2 ) = f(xk + h

2 , sk(xk + h
2 ), sk−r(xk + h

2 − τ), zk(xk + h
2 ))

s′k(xk+1) = f(xk+1, sk(xk+1), sk−r(xk+1 − τ), zk(xk+1))
(3)

where

zk(xk +
h

2
) =

k−1∑
j=0

∫ (j+1)h

jh

K(xk +
h

2
, t, sj(t), sj−r(t− τ))dt+

+
∫ kh+ h

2

kh

K(xk +
h

2
, t, sk(t), sk−r(t− τ))dt

and

zk(xk+1) =
k∑

j=0

∫ (j+1)h

jh

K(xk + h, t, sj(t), sj−r(t− τ))dt

provided that

s
(i)
k (xk) = lim

x→xk

s
(i)
k−1(x), x ∈ [xk−1, xk] for i = 0, ...,m− 2

si(x) = ψ(x), for i = −r, ...,−1.

Our model is thus reduced to compute the solution of the system (3), through

which the spline is determined on the interval Ik.The system can be either non-linear

or linear according to f(x, y(x), y(g(x)), z(x)).
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2. Existence and uniqueness of numerical solution

If we set in [xk, xk+1], k = 0, 1, ..., N − 1:

Ak(x) =
∑m−2

j=0 s
(j)
k−1(xk)(x− xk)j/j! ,

Bk =

 ak (h
2 )m−2

bk (h
2 )m−1

 , Yk =

 A′k(xk + h
2 )

A′k(xk+1)

 ,
P =

1
(m− 2)!

P0 with P0 =

 1 1
m−1

2m−2 2m−1

m−1



Φk(Bk) =


f(xk + h

2 , Ak(xk + h
2 ) + ak

(m−1)! (
h
2 )m−1 + bk

m! (
h
2 )m,

sk−r(xk + h
2 − τ), zk(xk + h

2 ))

f(xk+1, Ak(xk+1) + ak

(m−1)!h
m−1 + bk

m!h
m,

sk−r(xk+1 − τ), zk(xk+1))


then (3) becomes:

PBk = Φk(Bk)−Yk

Taking into account that P0 is non singular ∀m > 1, system (3) is equivalent

to

Bk = (m− 2)!P−1
0 (Φk(Bk)−Yk) (4)

Theorem 1. Let us consider the nonlinear first-order Fredholm integro-differential

equation with delay in (2). If functions f and K satisfy the Lipschitz conditions 1.

and 2. and if h is small enough, then there exists a unique spline approximation

solution s(x) of the problem (2) given by the above construction.

Proof. The proof of Theorem 1 consists of showing that (4) defines for all sufficiently

small h, a contraction mapping. This comes straightforward from the hypotheses and

we omit the details of the proof.
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In general, zk(xk + h
2 ), zk(xk+1) in (3) have to be approximated by numerical

quadrature: zk(xk + h
2 ) ' Zk(xk + h

2 ), zk(xk+1) ' Zk(xk+1), where

Zk(xk +
h

2
) =

k−1∑
l=0

n(l)∑
j=0

w
(l)
j K(xk +

h

2
, t

(l)
j , sl(t

(l)
j ), sl−r(t

(l)
j − τ))

 +

+
n(k)∑
j=0

w
(k)
j K(xk +

h

2
, t

(k)
j , sk(t(k)

j ), sk−r(t
(k)
j − τ))

with xl ≤ t
(l)
j ≤ xl+1 (l = 0, 1, ..., k − 1) xk ≤ t

(k)
j ≤ xk + h

2

Zk(xk+1) =
k∑

l=0

n(l)∑
j=0

w
(l)
j K(xk+1, t

(l)
j , sl(t

(l)
j ), sl−r(t

(l)
j − τ))


with xl ≤ t

(l)
j ≤ xl+1(l = 0, 1, ..., k) and we assume that maxj,l

∣∣∣w(l)
j

∣∣∣ ≤W <∞.

System (3) is then reduced to

Bk = (m− 2)!P−1
0 (Ψk(Bk)−Yk) (5)

with

Ψk(Bk) =

 f(xk + h
2 , sk(xk + h

2 ), sk−r(xk + h
2 − τ), Zk(xk + h

2 ))

f(xk+1, sk(xk+1), sk−r(xk+1 − τ), Zk(xk+1))


Theorem 2. Under the assumptions stated above and if h is small enough, there

exists a unique solution of system (5).

Proof. As in Theorem 1, the proof consists of showing that (5) defines for all suffi-

ciently small h, a contraction mapping.

3. Consistency and convergence of the collocation method

Let y(x) ∈ Cm+1[0, T ], sk(x) be the deficient spline approximating y(x) in

[xk, xk+1] , (k = 0, 1, ..., N − 1) and denote with ek(x) = sk(x) − y(x) the error

function for x ∈ [xk, xk+1].
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Considering y(x) = y(xk) + y′(xk)(x− xk) + ...+ y(m+1)(ηk) (x−xk)m+1

(m+1)!

(xk < ηk < x) then

ek(x) = [
m−2∑
j=0

s
(j)
k−1(xk)
j!

(x− xk)j +
ak

(m− 1)!
(x− xk)m−1 +

bk
m!

(x− xk)m] +

−
[
y(xk) + y′(xk)(x− xk) + ...+ y(m+1)(ηk)

(x− xk)m+1

(m+ 1)!

]
(xk < ηk < x)

consequently

ek(x) = ek(xk) +
m−2∑
j=1

s
(j)
k−1(xk)− y(j)(xk)

j!
(x− xk)j +

+
ak − y(m−1)(xk)

(m− 1)!
(x− xk)m−1 +

bk − y(m)(xk)
m!

(x− xk)m +

−y
(m+1)(ηk)
(m+ 1)!

(x− xk)m+1

(xk < ηk < x)

If we set for k = 0, 1, ..., N − 1

βk,m−1 =
ak − y(m−1)(xk)

h2

βk,m =
bk − y(m)(xk)

h

γk,j =
s
(j)
k−1(xk)− y(j)(xk)

hm−j+1
, j = 1, ...,m− 2

ϕk,i(x) =
(x− xk)i

hi
(i = 1, 2, ...)

and

Tk(y(x)) =
y(m+1)(ηk)
(m+ 1)!

, xk < ηk < x

then the error becomes

ek(x) = ek(xk) + hm+1
∑m−2

j=1
γk,j

j! ϕk,j(x)+

+hm+1
[

βk,m−1
(m−1)!ϕk,m−1(x) + βk,m

m! ϕk,m(x)− Tk(y(x))ϕk,m+1(x)
] (6)
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with
e′k(x) = e′k(xk) + hm

∑m−2
j=2

γk,j

(j−1)!ϕk,j−1(x)+

+hm
[

βk,m−1
(m−2)!ϕk,m−2(x) + βk,m

(m−1)!ϕk,m−1(x)− T ′k(y(x))ϕk,m(x)
] (7)

where

T ′k(y(x)) =
y(m+1)(µk)

m!
, xk < µk < x

Lemma 3. Let the hypotheses 1. and 2. hold for f and K, then there exists a

constant c independent of h such that∑m−2
j=1 γk,j = O(h) for all k = 0, 1, ..., N − 1

Proof. The proof comes straightforward from Lemma 4.3 [1].

Lemma 4. (i) Let f(x, y, yτ , z) have continuous derivatives of order one with respect

to y, yτ , z in [0, T ]

(ii) Let K(x, t, y, yτ ) have continuous derivatives of order one with respect to

y, yτ in T

then |βk,m−1|+ |βk,m| ≤ B for all k = 0, 1, ..., N − 1, where B is a real constant.

Proof. Let k = 0, then e0(0) = e′0(0) = 0 as x0 = 0. We observe that ϕ0,ν(h
2 ) = 1

2ν

and ϕ0,ν(h) = 1, ν = 1, 2, ...,m+1, taking account of Lemma 3, from (7) we obtain:
β0,m−1
(m−2)!

1
2m−2 + β0,m

(m−1)!
1

2m−1 = T ′0(y(
h
2 )) 1

2m + e′0(
h
2 ) +O(h)

β0,m−1
(m−2)! + β0,m

(m−1)! = T ′0(y(h)) + e′0(h) +O(h)
(8)

In order to prove that (8) has a unique limited solution, we follow Theorem

1 in [2], taking account of the delay terms.

We observe that a simple calculation yields for k = 0, 1, ..., N − 1, using the

hypotheses on f and K

e′k(xk +
h

2
) =

∂

∂y
f(xk +

h

2
, y∗k, y

∗
kτ , z

∗
k) ek(xk +

h

2
) +

+
∂

∂yτ
f(xk +

h

2
, y∗k, y

∗
kτ , z

∗
k) ek(xk +

h

2
− τ) +

+
∂

∂z
f(xk +

h

2
, y∗k, y

∗
kτ , z

∗
k) δk(xk +

h

2
)

where:
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y∗k is between y(xk + h
2 ) and sk(xk + h

2 ),

y∗kτ between y(xk + h
2 − τ) and sk(xk + h

2 − τ),

z∗k between z(xk + h
2 ) and zk(xk + h

2 ),

ek(xk + h
2 − τ) = sk(xk + h

2 − τ)− y(xk + h
2 − τ) and

δk(xk +
h

2
) =

∫ xk+ h
2

x0

[
∂

∂y
K(xk +

h

2
, t, y∗(t), y∗τ (t− τ))e(t) +

∂

∂yτ
K(xk +

h

2
, t, y∗(t), y∗τ (t− τ))e(t− τ)]dt

y∗(t) being between y(t) and s(t), y∗τ (t− τ) between y(t− τ) and s(t− τ).

In the same way we obtain

e′k(xk+1) =
∂

∂y
f(xk+1, y

∗, y∗τ , z
∗) ek(xk+1) +

+
∂

∂yτ
f(xk+1, y

∗, y∗τ , z
∗) ek(xk+1 − τ) +

+
∂

∂z
f(xk+1, y

∗, y∗τ , z
∗) δk(xk+1)

with suitable y∗k , y∗kτ , z∗k, y
∗(t), y∗τ (t− τ) and an obvious definition of

ek(xk+1 − τ) and δk(xk+1).

Consequently we obtain

e′0(
h

2
) =

∂

∂y
f(
h

2
, y∗0 , y

∗
0τ , z

∗
0) e0(

h

2
) +

+
∂

∂yτ
f(
h

2
, y∗0 , y

∗
0τ , z

∗
0) e0(

h

2
− τ) +

+
∂

∂z
f(
h

2
, y∗0 , y

∗
0τ , z

∗
0) δ0(

h

2
)

and

e′0(h) =
∂

∂y
f(h, y∗0, y

∗
0τ , z

∗
0) e0(h) +

+
∂

∂yτ
f(h, y∗0, y

∗
0τ , z

∗
0) e0(h− τ) +

+
∂

∂z
f(h, y∗0, y

∗
0τ , z

∗
0) δ0(h)
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so that, according to Lemma 1 in [2], the unique solution β0,m−1, β0,m of the system
β0,m−1
(m−2)!

1
2m−2 + β0,m

(m−1)!
1

2m−1 = 1
2mT

′
0(y(

h
2 ))

β0,m−1
(m−2)! + β0,m

(m−1)! = T ′0(y(h))

can be regarded as the solution β0,m−1, β0,m of the system (8) for h→ 0 and

β0,ν = β0,ν +O(h), ν = m− 1,m.

Let k = 1, we observe from (6) and (7) that e1(x1) = e0(x1) = O(hm+1) and

e′1(x1) = e′0(x1) = O(hm+1), we proceed by induction on k in the same way as for

k = 0. The proof of the Lemma follows immediately.

Theorem 5. Under the assumptions stated in Lemma 4, then there exists a constant

C independent of h such that the error function e(x) satisfies for all x ∈ [0, T ] the

following inequalities

|e(x)| ≤ C hm+1

|e′(x)| ≤ C hm

Proof. We initially prove the Theorem for x = xk. If we set Mm+1 = max |T ′k(y(x))|
k,x∈[0,T ]

,

then |Tk(y(x))| ≤ Mm+1 for all x ∈ [0, T ]; from (6) and Lemma 3 the following

relation holds:

|ek(xk)| ≤
∣∣ek−1(xk−1)

∣∣ + hm+1(c+B +Mm+1)

where c is real constant.

Taking into account that |e1(x1)| ≤ hm+1(B +Mm+1) then

|e2(x2)| ≤ |e1(x1)|+ hm+1(c+B +Mm+1) ≤ hm+1(c+ 2(B +Mm+1)),

and

|ek(xk)| ≤ Nhm+1(c+B +Mm+1) (9)

It follows that |ek(xk)| ≤ C1h
m+1.

Taking into account of (6) we obtain for x ∈ [xk, xk+1]

|ek(x)| ≤ |ek(xk)|+ hm+1
∑m−2

j=1
|γk,j |

j! ϕk,j(x)+

+hm+1
∣∣∣βk,m−1
(m−1)!ϕk,m−1(x) + βk,m

(m)! ϕk,m(x)− Tk(y(x))ϕk,m+1(x)
∣∣∣
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from (9), Lemma 3 and Lemma 4 and |ϕk,j(x)| ≤ 1, j = 1, ...,m+ 1 we obtain

|ek(x)| ≤ Nhm+1(c+B +Mm+1) + c hm+1
m−2∑
j=1

1
j!

+

+hm+1

∣∣∣∣B(
1

(m− 1)!
+

1
(m)!

) +Mm+1

∣∣∣∣
it follows |ek(x)| ≤ C hm+1.

Analogously we obtain

|e′k(x)| ≤ Nhm(c+B +Mm+1) + c hm
m−2∑
j=2

1
(j − 1)!

+

+hm

∣∣∣∣B(
1

(m− 2)!
1 +

1
(m− 1)!

) +Mm+1

∣∣∣∣
It follows |e′k(x)| ≤ C1 h

m.

Because any upper bound for |ek(x)| and for |e′k(x)| is independent of k, the

thesis follows.
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AN INTEGRAL EQUATION WITH MODIFIED ARGUMENT

MARIA DOBRIŢOIU

Abstract. By the fixed point theorem given in the first part of Rus [3]

and an idea of Sotomayor [9], a theorem of differentiability of the solution

of the equation

x(t) =

∫ b

a

K(t, s, x(s), x(ϕ(s)))ds + g(t), t ∈ [α, β]

is given.

1. Notations and preliminaries

Let X be a nonempty set, A : X → X an operator and we shall use the

following notation:

FA := {x ∈ X| A(x) = x} - the fixed point set of A.

Definition 1.1. (Rus [6] or [7]) Let (X, d) be a metric space. An operator

A : X → X is Picard operator if there exists x∗ ∈ X such that:

(a) FA = {x∗}

(b) the sequence (An(x0))n∈N converges to x∗, for all x0 ∈ X.

Definition 1.2. (Rus [6] or [7]) Let (X, d) be a metric space. An operator

A : X → X is weakly Picard operator if the sequence (An(x0))n∈N converges for all

x0 ∈ X and the limit (which may depend on x0) is a fixed point of A.

If A is a weakly Picard operator, then we consider the following operator

A∞ : X → X, A∞(x) = lim
n→∞

An(x)
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It is clear that A∞(X) = FA.

In the section 2 we need the following results (see [4] and [3]).

Perov’s theorem. Let (X, d), with d(x, y) ∈ Rm, be a complete generalized

metric space and A : X → X an operator. We suppose that there exists a matrix

Q ∈ Mmm(R+), such that

(i) d(A(x), A(y)) ≤ Qd(x, y), for all x, y ∈ X;

(ii) Q → 0 as n →∞.

Then

(a) FA = {x∗},

(b) An(x) → x∗ as n →∞ and

d(An(x), x∗) ≤ (I −Q)−1Qnd(x0, A(x0)).

Rus theorem. (Rus [3]) Let (X, d) be a metric space (generalized or not)

and (Y, ρ) be a complete generalized metric space (ρ(x, y) ∈ Rm).

Let A : X × Y → X × Y be a continuous operator. We suppose that:

(i) A(x, y) = (B(x), C(x, y)), for all x ∈ X, y ∈ Y ;

(ii) B : X → X is a weakly Picard operator;

(iii) There exists a matrix Q ∈ Mmm(R+), Qn → 0 as n →∞, such that

ρ(C(x, y1), C(x, y2)) ≤ Qρ(y1, y2),

for all x ∈ X, y1 and y2 ∈ Y .

Then the operator A is weakly Picard operator. Moreover, if B is Picard

operator, then A is Picard operator.

In the section 3 we need the following definition and result (see [8]).

Definition 1.3. (Rus [8]) A matrix Q ∈ Mnn(R) converges to zero if Qk

converges to the zero matrix as k →∞.

Theorem 1.1. (Rus [8]) Let Q ∈ Mnn(R+). The following statements are

equivalent:

(i) Qk → 0 as k →∞;
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(ii) The eigenvalues λk, k = 1, n of the matrix Q, verify the condition

|λk| < 1, k = 1, n;

(iii) The matrix I−Q is non-singular and (I−Q)−1 = I+Q+· · ·+Qn+. . . .

2. The main result

We consider the following Fredholm integral equation with modified argument

x(t) =
∫ b

a

K(t, s, x(s), x(ϕ(s)))ds + g(t), t ∈ [α, β], (1)

where α, β ∈ R, α ≤ β, a, b ∈ [α, β], g ∈ C([α, β], Rm), K ∈ C([α, β]× [α, β]×Rm ×

Rm, Rm), x ∈ C([α, β], Rm) and ϕ ∈ C([α, β], [α, β]).

We have

Theorem 2.1. We suppose that there exists Q ∈ Mmm(R+) such that:

(i) [(β − α)Q]n → 0 as n →∞;

(ii)


|K1(t, s, u, v)−K1(t, s, w, z)|

. . .

|Km(t, s, u, v)−Km(t, s, w, z)|

 ≤ Q


|u1 − w1|+ |v1 − z1|

. . .

|um − wm|+ |vm − zm|


for all u, v, w, z ∈ Rm, t, s ∈ [α, β].

Then

(a) the equation (1) has in C([α, β], Rm) a unique solution, x∗(·, a, b);

(b) for all x0 ∈ C([α, β], Rm) the sequence (xn)n∈N , defined by

xn+1(t; a, b) :=
∫ b

a

K(t, s, xn(s; a, b), xn(ϕ(s); a, b))ds + g(t)

converges uniformly to x∗, for all t, a, b ∈ [α, β], and
|xn

1 (t; a, b)− x∗1(t; a, b)|

. . .

|xn
m(t; a, b)− x∗m(t; a, b)|

 ≤

≤ [I − (β − α)Q]−1[(β − α)Q]n


|x0

1(t; a, b)− x1
1(t; a, b)|

. . .

|x0
m(t; a, b)− x1

m(t; a, b)|
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(c) the function

x∗ : [α, β]× [α, β]× [α, β] → Rm, (t, a, b) → x∗(t; a, b)

is continuous;

(d) if K(t, s, ·, ·) ∈ C1(Rm ×Rm, Rm), for all t, s ∈ [α, β], then

x∗(t; ·, ·) ∈ C1([α, β]× [α, β], Rm), for all t ∈ [α, β].

Proof. Let ‖ · ‖ be a generalized Chebyshev norm on X := C([α, β]3, Rm)

i.e.

‖x‖ :=


‖x1‖∞

. . .

‖xm‖∞

 .

Let we consider the operator B : X → X defined by

B(x)(t; a, b) :=
∫ b

a

K(t, s, x(s; a, b), x(ϕ(s); a, b))ds

for all t, a, b ∈ [α, β].

From (i) and (ii) and the Perov’s theorem we have (a)+(b)+(c).

(d) Let we prove that there exists
∂x∗

∂a
and

∂x∗

∂a
∈ X.

If we suppose that there exists
∂x∗

∂a
, then from (1) we have

∂x∗(t; a, b)
∂a

= −K(t, a, x∗(a; a, b), x∗(ϕ(a); a, b))+

+
∫ b

a

[(
∂Kj(t, s, x∗(s; a, b), x∗(ϕ(s); a, b))

∂xi

)
∂x∗(s; a, b)

∂a
+

+
(

∂Kj(t, s, x∗(s; a, b), x∗(ϕ(s); a, b))
∂xi

)
∂x∗(ϕ(s); a, b)

∂a

]
ds.

This relation suggest to consider the following operator

C : X ×X → X,
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C(x, y)(t; a, b) := −K(t, a, x(a; a, b), x(ϕ(a); a, b))+ (2)

+
∫ b

a

[(
∂Kj(t, s, x(s; a, b), x(ϕ(s); a, b))

∂xi

)
y(s; a, b)+

+
(

∂Kj(t, s, x(s; a, b), x(ϕ(s); a, b))
∂xi

)
y(ϕ(s); a, b)

]
ds.

From (ii), we remark that(∣∣∣∣∂Kj(t, s, u, v)
∂xi

∣∣∣∣) ≤ Q (3)

for all t, s ∈ [α, β] and u, v ∈ Rm.

From (2) and (3) it follows that

‖C(x, y1)− C(x, y2)‖ ≤ (β − α)Q,

for all x, y1, y2 ∈ X.

If we take the operator

A : X ×X → X ×X, A = (B,C),

then we are in the conditions of the Rus theorem. From this theorem, the operator

A is a Picard operator and the sequences

xn+1(t; a, b) =
∫ b

a

K(t, s, xn(s; a, b), xn(ϕ(s); a, b))ds + g(t)

yn+1(t; a, b) := −K(t, a, xn(a; a, b), xn(ϕ(a); a, b))+

+
∫ b

a

[(
∂Kj(t, s, xn(s; a, b), xn(ϕ(s); a, b))

∂xi

)
yn(s; a, b)+

+
(

∂Kj(t, s, xn(s; a, b), xn(ϕ(s); a, b))
∂xi

)
yn(ϕ(s); a, b)

]
ds

converges uniformly (with respect to t, a, b ∈ [α, β]) to (x∗, y∗) ∈ FA, for all

x0, y0 ∈ X.

If we take x0 = y0 = 0, then y1 =
∂x1

∂a
. By induction we prove that

yn =
∂xn

∂a
. Thus

xn unif.−→ x∗ as n →∞,
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∂xn

∂a

unif.−→ y∗ as n →∞.

These imply that there exists
∂x∗

∂a
and

∂x∗

∂a
= y∗.

By a similar way we prove that there exists
∂x∗

∂b
. �

3. Example

In what follows we consider the following system of Fredholm integral equa-

tions 
x1(t) =

∫ b

a

[
1
8
(t + s)x1(s) +

1
4
x1(s/2)

]
ds + 1− cos t

x2(t) =
∫ b

a

[
1
2
x1(x) +

2t + s

4
x2(s) +

3
4
x2(s/2)

]
ds + sin t

, (4)

t, a, b ∈ [0, 1], where a, b ∈ [0, 1], g ∈ C([0, 1], R2), g(t) = (g1(t), g2(t)), g1(t) =

1− cos t, g2(t) = sin t, K ∈ C([0, 1]× [0, 1]× R2 × R2, R2),

K(t, s, x(s), x(ϕ(s))) = (K1(t, s, x(s), x(ϕ(s))),K2(t, s, x(s), x(ϕ(s)))),

K1 =
1
8
(t + s)x1(s) +

1
4
x1(s/2), K2 =

1
2
x1(x) +

2t + s

4
x2(s) +

3
4
x2(s/2),

ϕ ∈ C([0, 1], [0, 1]), ϕ(s) = s/2 and x ∈ C([0, 1], R2).

From the condition (ii) of the theorem 2.1 we have |K1(t, s, x(s), x(s/2))−K1(t, s, x(s), z(s/2))|

|K2(t, s, x(s), x(s/2))−K2(t, s, x(s), z(s/2))|

 ≤

≤

 1/4 0

1/2 3/4

  |x1(s)− z1(s)|+ |x1(s/2)− z1(s/2)|

|x2(s)− z2(s)|+ |x2(s/2)− z2(s/2)|

 , t, s ∈ [0, 1],

which lead to matrix

Q =

 1/4 0

1/2 3/4

 , Q ∈ M22(R+),

that according to the theorem 1.1 and definition 1.3, converges to zero,

Therefore the conditions of the theorem 2.1 are satisfies and we have

- the system of equations (4) has in C([0, 1], R2) a unique solution x∗(·, a, b);
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- for all x0 ∈ C([0, 1], R2) the sequence (xn)n∈N, defined by

xn+1(t; a, b) :=
∫ b

a

K(t, s, xn(s; a, b), xn(ϕ(s); a, b))ds + g(t)

converges uniformly to x∗, for all t, a, b ∈ [0, 1], and
|xn

1 (t; a, b)− x∗1(t; a, b)|

. . .

|xn
m(t; a, b)− x∗m(t; a, b)|

 ≤ [I −Q]−1Qn


|x0

1(t; a, b)− x1
1(t; a, b)

. . .

|x0
m(t; a, b)− x1

m(t; a, b)


- the function

x∗ : [0, 1]× [0, 1]× [0, 1] → R2, (t; a, b) → x∗(t; a, b)

is continuous;

- if K(t, s, ·, ·) ∈ C1(R2 × R2, R2), for all t, s ∈ [0, 1], then

x∗(t; ·, ·) ∈ C1([0, 1]× [0, 1], R2), for all t ∈ [0, 1].
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume XLIX, Number 3, September 2004

NOTE ON THE SOLVABILITY OF A SYSTEM OF EQUATIONS

ZOLTÁN FINTA

Abstract. In this note we formulate sufficient conditions for the solvabil-

ity of a system of equations in Rd (d ≥ 1) using attached polynomial

system of equations. The solution of the last system tends to the solution

of the original system and the approximation error will be estimated by

means of the modulus of smoothness and K−functional, respectively.

1. Introduction

Let (X, ‖ · ‖X) be a real or complex normed space and denote by L(X) the

space of all continuous linear operators from X to X. For an operator A ∈ L(X) and

an element y ∈ X let us consider the equation (I − A)(x) = y. Approximating the

operator A by another operator Ã ∈ L(X) and the element y by ỹ ∈ X, we arrive

at a new equation (I − Ã)(x̃) = ỹ. This equation usually is easier to solve and it is

called the near equation of (I − A)(x) = y. The problem to give estimations of the

error ‖x− x̃‖X with the aid of A, Ã, y and ỹ has been studying extensively (see e.g.

[6]).

The algorithm described in [4] provides the solutions of the system of equa-

tions fi(x1, x2, . . . , xd) = 0, i ∈ {1, 2, . . . , d}, located in Πd
i=1 [0, 1], and a polynomial

system of equations is used in place of the near equation.

The purpose of this paper is to give sufficient conditions regarding the func-

tions fi which imply the solvability of the system of equations fi(x1, x2, . . . , xd) = 0,

i ∈ {1, 2, . . . , d}, d ≥ 2, using different attached polynomial system in comparison
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with [4]. This last system will be given by means of the multivariate Bernstein - Dur-

rmeyer polynomials defined on a simplex. The approximation error will be estimated

using a K−functional. The case d = 1 is treated separately, where the attached equa-

tion contains the well - known Bernstein polynomial, and the approximation error is

estimated by the Ditzian - Totik modulus of smoothness.

2. Main results

For a function f : [0, 1] → R the Bernstein polynomials are defined by

(Bnf)(x) =
n∑

k=0

pn,k(x) f

(
k

n

)
,

where

pn,k(x) =

 n

k

 xk(1− x)n−k, x ∈ [0, 1], n ≥ 1.

Let us consider the equation

f(x) = 0 (1)

and let

(Bnf)(x) = 0 (2)

be the attached equation to (1). Our first result is:

Theorem 1. Let f : [0, 1] → R be a continuously differentiable function such that

f(0) · f(1) < 0 and there exists q > 0 with the property |f ′(x)| ≥ q for all x ∈ [0, 1].

If y ∈ [0, 1] is a solution of the equation (1) then there exists a sequence (xn)n≥1 such

that xn is a solution of (2) for all n ≥ 1 and limn→∞ xn = y. Moreover, we have the

estimations

|xn − y| ≤ 1
q

(10 + 4
√

3) ω2
ϕ

(
f, n−1/2

)
, n ≥ 1,

where

ω2
ϕ

(
f, n−1/2

)
= sup

0<t≤n−1/2
sup

x∈[0,1]

|f(x + tϕ(x))− 2f(x) + f(x− tϕ(x))|,

36



NOTE ON THE SOLVABILITY OF A SYSTEM OF EQUATIONS

ϕ(x) =
√

x(1− x), x ∈ [0, 1] is the Ditzian - Totik modulus of smoothness. Further-

more, if f ∈ C2[0, 1] then

lim
n→∞

n(Bnf)(y) =
1
2

y(1− y)f ′′(y)

and

|xn − y| ≤ 1
qn

(
5
2

+
√

3
)
‖f ′′‖∞,

where n ≥ 1 and ‖ · ‖∞ is the sup - norm on [0, 1].

Proof. The hypotheses f(0) · f(1) < 0 and |f ′(x)| ≥ q, x ∈ [0, 1] imply that y is the

unique solution of (1). Furthermore, (Bnf)(0) = f(0) and (Bnf)(1) = f(1). So, by

f(0) · f(1) < 0 we obtain (Bnf)(0) · (Bnf)(1) < 0, which implies the existence of a

solution xn of the equation (2) for all n ≥ 1. On the other hand, in view of Lagrange’s

mean - value theorem there exists zn between y and xn such that

f(xn) = f(xn)− f(y) = f ′(zn) · (xn − y).

Hence, by |f ′(x)| ≥ q, x ∈ [0, 1] we get

|xn − y| ≤ 1
q
· |f(xn)| = 1

q
· |f(xn)− (Bnf)(xn)|

≤ 1
q
·max{|f(x)− (Bnf)(x)| : x ∈ [0, 1]}

=
1
q
· ‖f −Bnf‖∞ → 0 as n →∞ (3)

This means that limn→∞ xn = y. Using (3) and [5, p. 452, Corollary 11] we have

|xn − y| ≤ 1
q

(10 + 4
√

3) ω2
ϕ

(
f, n−1/2

)
(4)

If f ∈ C2[0, 1] then, in view of Voronovskaja theorem [3, p. 307, Theorem

3.1] and f(y) = 0,

lim
n→∞

n(Bnf)(y) =
1
2

y(1− y)f ′′(y).

Using the definition of ω2
ϕ

(
f, n−1/2

)
and [7, p. 47, ( 2 )], we obtain

f(x + tϕ(x))− 2f(x) + f(x− tϕ(x)) =
∫ t

2 ϕ(x)

− t
2 ϕ(x)

∫ t
2 ϕ(x)

− t
2 ϕ(x)

f ′′(x + u1 + u2) du1du2.
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Hence

ω2
ϕ

(
f, n−1/2

)
≤ ‖f ′′‖∞ · sup

0<t≤n−1/2
sup

x∈[0,1]

t2ϕ2(x) ≤ 1
4n

.

By (4) we arrive at the estimation

|xn − y| ≤ 1
qn

·
(

5
2

+
√

3
)
· ‖f ′′‖∞,

which completes the proof.

Using same ideas it can be proved the following:

Corollary 1. Let f : [0, 1] → R be a continuous function such that f(0) · f(1) < 0

and there exists q > 0 with the property q|x− x′| ≤ |f(x)− f(x′)| for all x, x′ ∈ [0, 1].

If y ∈ [0, 1] is a solution of the equation (1) then there exists a sequence (xn)n≥1 such

that xn is a solution of (2) for all n ≥ 1 and

|xn − y| ≤ 1
q

(
10 + 4

√
3
)

ω2
ϕ

(
f, n−1/2

)
.

Remark 1. A solution xn of the equation (Bnf)(x) = 0, n ≥ 1, can be obtained by

Bairstow’s method [9, pp. 301 - 303].

In what follows we consider the multivariate Bernstein - Durrmeyer polyno-

mials introduced by Derriennic [2] as

(Mnf)(x) =
(n + d)!

n!

∑
(β/n)∈T

Pn,β(x)
∫

T

Pn,β(u)f(u) du,

where x, u ∈ Rd, x = (x1, . . . , xd), u = (u1, . . . , ud), β = (k1, . . . , kd) with ki integers,

and T = {u : 0 ≤ ui,
∑d

i=1 ui ≤ 1}. Furthermore, Pn,β(u) is given by

Pn,β(u) =
n!

β!(n− |β|)!
uβ(1− |u|)n−|β|,

where β! = k1! . . . kd!, uβ = uk1
1 . . . ukd

d ( uki
i = 1 if ki = ui = 0 ), |u| =

∑d
i=1 ui and

|β| =
∑d

i=1 ki. We define, by virtue of [1, p. 112, (2.9)],

P (D) =
d∑

i=1

∂

∂xi
xi(1− |x|) ∂

∂xi
+

∑
i<j

(
∂

∂xi
− ∂

∂xj

)
xixj

(
∂

∂xi
− ∂

∂xj

)
.

Now we consider the following system of equations:

fi(x) = 0, i ∈ {1, 2, . . . , d}, (5)
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where fi : T → R, and let

(Mnfi)(x) = 0, i ∈ {1, 2, . . . , d} (6)

be the attached system of equations to (5). We denote by ‖ · ‖ a norm on Rd.

Theorem 2. Let (f1, . . . , fd) : T → Rd be a continuous function. If y ∈ T is a

solution of (5), (xn)n≥1, xn = (xn
1 , . . . , xn

d ) is a solution of (6) for all n ≥ 1 and there

exist q > 0 and i0 ∈ {1, 2, . . . , d} with the property q‖x − x′‖ ≤ |fi0(x) − fi0(x
′)| for

all x, x′ ∈ T then limn→∞ ‖xn − y‖ = 0. Moreover, we have the estimation

‖xn − y‖ ≤ 2
q

K
(
fi0 , n

−1
)
, n ≥ 1,

where

K
(
fi0 , n

−1
)

= inf { ‖fi0 − g‖∞ + n−1 ‖P (D)g‖∞ : g ∈ C2(T ) }

and ‖ · ‖∞ is the sup - norm on T. If f ∈ C2(T ) then

lim
n→∞

n(Mnfi0)(y) = P (D)fi0(y).

Proof. We have

‖xn − y‖ ≤ 1
q
· |fi0(x

n)− fi0(y)| = 1
q
· |fi0(x

n)|

=
1
q
· |fi0(x

n)− (Mnfi0)(x
n)|

≤ 1
q
· ‖Mnfi0 − fi0‖∞ ≤ 2

q
·K

(
fi0 , n

−1
)
, n ≥ 1,

in view of [1, p. 115, ( 3.2 )]. Hence limn→∞ ‖xn − y‖ = 0.

If f ∈ C2(T ), then, by [1, p. 112, Lemma 2.1 ] and fi0(y) = 0 we obtain

lim
n→∞

n(Mnfi0)(y) = P (D)fi0(y),

which was to be proved.

Remark 2. Let q > 0 and f = (f1, . . . , fd) : Rd → Rd be a differentiable function

with ‖f ′(x)‖∗ = sup{‖f ′(x)(z)‖ : ‖z‖ ≤ 1} ≥ q for all x ∈ Rd. Then the condition

‖f(x) − f(x′)‖ ≥ q‖x − x′‖ for all x, x′ ∈ Rd is not necessarily true for d ≥ 2 ( see

[8, p. 81, 3.23 ]).
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Remark 3. Following [4] we have: the system of equations (6) can be transformed

into an equivalent ”triangular” polynomial system using the Gröbner basis algorithm.

So the solvability of the last system of equations can be traced back to the solvability

of a polynomial equation with one unknown. To solve this equation we apply again

Bairstow’s method on [0, 1]. After that we generate all solutions of the ”triangular”

polynomial system located in T. Thus we arrive at the solutions xn of (6), n ≥ 1.

It may happen that the polynomial equation with one unknown has not solutions in

[0, 1]. In this case the polynomial system of equation has not solution either and the

polynomial system must be rephrased.

Remark 4. In [4] another attached system of equation is given, namely

(B̃nfi)(x) = 0, i ∈ {1, 2, . . . , d},

where x = (x1, . . . , xd) ∈ D, D =
∏d

i=1 [0, 1], fi : D → R and

(B̃nfi)(x) =
n∑

i1=1

n∑
i2=1

. . .
n∑

id=1

fi

(
i1
n

, . . . ,
id
n

) d∏
j=1

 n

ij

 (xj)ij · (1− xj)n−ij .
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[4] B. Finta, A. Horváth, Solving Systems of Nonlinear Equations on a Domain (to appear).

[5] I. Gavrea, Estimates for positive linear operators in terms of the second order Ditzian -

Totik modulus of smoothness, Rend. Circ. Mat. Palermo, Serie II, 68 (2002), 439-454.

[6] L. V. Kantorovich, G. P. Akilov, Functional Analysis, Editura Ştiinţifică şi Enciclope-
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A STUDY ON METRICS AND STATISTICAL ANALYSIS

DĂNUŢ MARCU

Abstract. The purpose of this article is to introduce some classes of met-

rics, to describe their importance to mathematics and the sciences, to state

the basic theorems concerning these classes, to state some new theorems

which we have obtained by using topological methods, and even provide a

proof here and there. But, the main purpose, is to state many of the open

problems around these concepts and to show how much of this subject

might be understood by topological means.

1. Introduction

Everyone is familiar with the triangle inequality. This inequality played a

major role in the definition of a topological space.

ρ(a, b) ≤ ρ(a, c) + ρ(b, c)

Still familiar to topologists is the ultrametric inequality.

ρ(a, b) ≤ max{ρ(a, c), ρ(b, c)}

But there are more inequalities of importance to mathematics which topologists are

not familiar with. For example, there is the four-point inequality,

ρ(a, b) + ρ(c, d) ≤ max{ρ(b, c) + ρ(a, d), ρ(a, c) + ρ(b, d)}

and there is the pentagon inequality

ρ(a, b)+ ρ(c, d)+ ρ(c, e)+ ρ(d, e) ≤ ρ(a, c)+ ρ(a, d)+ ρ(a, e)+ ρ(b, c)+ ρ(b, d)+ ρ(b, e)

Received by the editors: 25.03.2004.

2000 Mathematics Subject Classification. 62C07.

Key words and phrases. metrics, ultrametrics, statistical analysis.
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and there is the negative-type inequality

ρ(a, b) + ρ(b, c) + ρ(a, c) + ρ(d, e) + ρ(d, f) + ρ(e, f)

≤ ρ(a, d) + ρ(a, e) + ρ(a, f) + ρ(b, d) + ρ(b, e) + ρ(b, f) + ρ(c, d) + ρ(c, e) + ρ(c, f)

All of these inequalities turn out to be important in various parts of mathematics

and, especially, in the applications of mathematics to the sciences.

2. Statistics

The standard definition states that multivariate statistical analysis and, es-

pecially, that more applied part of multivariate statistical analysis which is called

multivariate data analysis, is concerned with data collected on several dimensions of

the same individual. A cursory examination of the literature of that subject reveals

that a major concern, worthy of a few chapters in a typical textbook, is the following

situation and resulting problem: For each of n objects, each of k tests is performed

with a result which might be a real number. This gives us an n× k matrix. We wish

to combine this test data and produce an n × n matrix of non-negative reals which

measures the “similarity” or “dissimilarity” of the objects so far as their test results

indicate. If the tests have been designed to give a reasonable notion of similarity,

then this similarity matrix usually satisfies the axioms of a metric space. We wish

to determine what kind of distance concept has been isolated, that is, what kind of

metric space has been constructed.1 Of course, with real data, things are not as sim-

ple as we have described. In most cases, the data has to be transformed, some data

is missing and has to be reconstructed and the data has error or even spurious entries

and has to be approximated. Only then can the data be represented in some fashion

which makes it possible to use our human facilites to understand this data. So, before

analysing distance data, we need some means of classifying metric spaces and some

compendium of reasonable representations or embeddings.

1This topic is a huge one. There are many textbooks devoted to the various aspects of this problem. A

bibliography listing only articles which appeared up to 1975 has 7530 entries.
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3. Kinds of Metrics

Here is a list of the basic kinds of metrics:

• 1. ultrametric

• 2a. L2-embeddable

• 2b. four-point property

• 3. L1-embeddable

• 4. hypermetric

• 5. spherical

• 6. negative-type

• 7. one positive eigenvalue

• 8. L∞-embeddable

Each property implies those properties listed below it, except that 2a. does not imply

2b.

The purpose of this article is to introduce these classes of metrics, to describe

their importance to mathematics and the sciences, to state the basic theorems con-

cerning these classes, to state some new theorems which we have obtained by using

topological methods, and even provide a proof here and there. But, the main purpose,

is to state many of the open problems around these concepts and to show how much

of this subject might be understood by topological means.

4. Ultrametrics

Ultrametric spaces are well-known to topologists and perhaps even better

known to number theorists and analysts. K. Hensel invented the p-adic numbers

in 1897. These numbers carry a natural ultrametric structure and there are now

textbooks on “Ultrametric Calculus” and “Non-Archimedean Functional Analysis”.

A closely related topic which has attracted attention of many topologists is spherical

completeness. The ultrametric inequality was formulated at least as early as 1934 by

Hausdorff, but the term ultrametric was coined only in 1944 by M. Krasner. In 1956,
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deGroot characterized the ultrametric spaces, up to homeomorphism, as the strongly

zero-dimensional metric spaces.2

But, questions at a topological level of generality, remain open. It does not

seem to be known which non-metric spaces are “essentially” ultrametric:

Problem 1. Characterize those topological spaces X such that, for every continu-

ous pseudometric ρ on X, there is a continuous ultra-pseudometric σ on X which

generates a larger topology.

Ultrametric spaces have emerged in the last fifteen years as a major concern

in statistical mechanics, in neural networks and in optimization theory. The history

of this emergence is quite interesting.

In 1984, Mezard, Parisi, Sourlas, Toulouse and Virasoro published an article

on the mean-field theory of spin glasses in which they established that the distribu-

tion of “pure states” in the configuration space is an ultrametric subspace. Within a

few years, it was shown that the “graph partitioning problem” in finite combinatorics

could be “mapped onto” the spin glass problem and thus that the solution space for

this problem also has an ultrametric structure. S. Kirkpatrick then found numeri-

cally that the solutions for certain travelling salesman problems3 seem to scatter in

an ultrametric fashion. J. P. Bouchaud and P. Le Doussal have conjectured that,

in optimization problems in which “the imposed constraints cannot all be satisfied

simultaneously, the optimal configurations (i.e., those which minimize the number

of unsatisfied constraints) spread in an ultrametric way in the configuration space”.

These kinds of problems are known as frustrated optimization problems.

No results of this kind have actually been proven, except in special classes

of spin glasses. All other indications are numerical or by reduction. It would be of

major significance to many fields to show that this phenomenon occurs under some

general circumstances.

2Nyikos and Purisch have extensively investigated the relationship between ultrametrics and generalized

metrics and orderability
3Is there an infinitary version of the travelling salesman problem? Examples might be “When do metric

spaces admit space-filling curves of finite length?” or “When do they admit ε-dense curves of finite length for each

ε > 0?”
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Problem 2. Give some reasonable conditions on non-negative continuous real-valued

functions {fi : i < n} on a metric space X so that, if K is minimal for Y = {x ∈ X :∑
{fi(x) : i < n} = K} non-empty, then Y is ultrametric. Formulate this question

more accurately.

A recent and effective strategy in handling optimization problems is to use

simulated annealing and random walks to find global solutions. In problems where the

local solutions have an ultrametric structure, it is therefore essential to understand

random walks on ultrametric spaces. There has been much work already on different

ways in which to define such random walks.

There are, undoubtedly, quite general theorems which show that the natural

metric on sufficiently few independent stochastic processes which are nontrivial on

sufficiently few of sufficiently many coordinates is arbitrarily close to being ultramet-

ric. It seems likely that, to obtain a statement and proof of such a theorem, we should

state and prove an infinite version first.

Problem 3. Let {Rx : x ∈ X} be a finite set of independent stochastic processes

acting on Rω, independently of the coordinates, so that

(∀x ∈ X)(∀t ∈ R)Probt(|{n ∈ ω : Rx(n) 6= 0}| < ω) = 1

Let d be the metric defined on X by d(x, x′) = E(L1(|Rx − Rx′ |)) for a suitable

measure on ω. Prove that d is an ultrametric.

Problem 4. Can an asymptotic finitary version of problem 3 be stated and proved?

Can the assumptions be made sufficiently reasonable so as to show that the numerical

evidence for ultrametricity of phylogenetic trees in evolution is inevitable?

In examining the numerical evidence for ultrametricity, and in proving the-

oretical results about the tendency of finite data to approach ultrametricity, there is

a need for answering a fundamental question: How can we measure how far a given

metric is from being an ultrametric?

The main method used in spin glasses for answering this question is based on

the following:
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Proposition 1 (Jardine, 1967). If ρ is a metric on a finite set, then there is an

ultrametric τ which minimizes sup{|ρ(x, y)− τ(x, y)| : x, y ∈ X} among those τ such

that (∀x, y ∈ X)τ(x, y) ≤ ρ(x, y).

This analog of the subharmonic in potential theory which is called the sub-

dominant ultrametric can be quite pathological. R. Rammal, G. Toulouse and M.

Virasoro in their article Ultrametricity for Physicists ask whether there are optimal

lp ultrametric approximations for a given metric where 1 ≤ p ≤ ∞ (and specifically

ask it for 1 and ∞). Noting that the proposition can be viewed as an optimal l∞

ultrametric approximation among those ultrametrics below a given metric, we have

obtained the next result:

Theorem 1. If ρ is a metric on a finite space, then there is an ultrametric τ which

minimizes sup{|ρ(x, y)− τ(x, y)| : x, y ∈ X} among all ultrametrics τ .

There may be several choices for the ultrametric in theorem 1 but perhaps

this duplication only occurs in a trivial way.

Problem 5. Is there, up to some kind of manipulation, always an unique ultrametric

τ which minimizes sup{|ρ(x, y)− τ(x, y)| : x, y ∈ X} among all ultrametrics τ?

But, our construction in theorem 1, seems to take exponential time, while

Jardine’s only takes polynomial time.

Problem 6. Is there a polynomial algorithm for computing an ultrametric τ which

minimizes sup{|ρ(x, y)− τ(x, y)| : x, y ∈ X} among all ultrametrics τ?

Krivanek showed that computing the closest ultrametric above a given metric

is NP-complete.

Problem 7. Show that the subdominant ultrametric can be quite pathological. That

is, show that the subdominant ultrametric of a given metric ρ can be arbitrarily close

to zero, even when there is an ultrametric quite close to ρ in the supremum norm.

Jardine’s theorem was extended by Bayod and Martinez-Maurica, in 1990, to

totally disconnected locally compact spaces. But, they failed to obtain a characteri-

zation.
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Problem 8. Characterize those metric spaces which have a subdominant ultrametric.

Problem 9. Can theorem 1 be extended to a reasonable class of infinite metric spaces?

Returing to the problem of Rammal, Toulouse and Virasoro:

Problem 10. If ρ is a metric on a finite (or arbitrary) set, then is there an ultrametric

τ which minimizes
∑
{|ρ(x, y) − τ(x, y)| : x, y ∈ X} among all ultrametrics τ? How

does one construct τ?

Problem 11. Which metric spaces have an (uniformly) equivalent metric ρ for which

there is an ultrametric τ such that
∑
{|ρ(x, y)− τ(x, y)| : x, y ∈ X} is finite?

It would be quite useful to associate, to each metric, an ultrametric which is

somehow derived from it in a natural way. But, this seems unlikely.

Problem 12. Let the family of all metrics on a (finite, countable or arbitrary) set

X be equipped with an lp metric. Is there a continuous retraction of metrics onto

ultrametrics?

Note that when p = ∞, this problem is entirely topological.

Ultrametric spaces can be embedded in linearly ordered spaces, but this is not

an isometric embedding. To provide an isometric representation, we must use another

device, well-known to natural scientists as a dendrogram (see p. 769 of Rammal). This

method is equally valid for infinite spaces.

5. Additive Trees

The representation of ultrametrics by dendrograms leads one to consider a

more general kind of diagram called an additive tree in the social sciences literature or

a phylogenetic tree (this term has many inexact definitions) in the biological literature.

Suppose (V,E) is a tree (a graph without cycles or loops) in which each edge has an

“weight” which is a non-negative real number. The distance between any two vertices

x, y ∈ V is defined to be the sum of the weights of the edges which make up the

unique minimal path from x to y. It is an exercise in graph theory to show that this

distance is a metric which satisfies the four-point property.

Theorem 2. Any ultrametric space satisfies the four-point property.
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In 1971, Bunemann showed that, in fact, any metric on a finite set satisfying

the four-point property could be represented as the vertices of a graph equipped with

this “path distance”.

Definition 1. An R-tree is an (uniquely) arcwise connected metric space in which

each arc is isometric to a subarc of the reals.

In 1985, Mayer and Oversteegen constructed an universal R-tree of a given

weight. This construction allows us to prove that the path metric or intrinsic metric

on an R-tree satisfies the four-point condition and that, conversely, any metric space

satisfying the four-point condition can be represented as a set of points in an R-tree.4

Indeed, the concept of an additive tree may be valuable for arbitrary com-

pletely regular spaces:

Problem 13. Characterize those topological spaces X such that, for every continuous

pseudometric ρ on X, there is a continuous pseudometric σ on X with the four-point

property which generates a larger topology.

Any linearly ordered connected compactum satisfies problem 13.

This representation by additive trees is not, by any means, only a theoret-

ical concern. It is an useful way of representing data which satisfies the four-point

condition (see p. 395 of Shepard). Note that this is the right diagram for repre-

senting evolution in which rates of evolution may be different for different species.

Dendrograms assume that the rates are uniform for all species.

Additive trees are obviously easy to interpret. A topologist might ask whether

one can use the intrinsic metric of more general spaces to represent metric spaces of

a broader kind. The answer is yes.

Proposition 2. Any separable metric space can be represented as a subset of a sub-

space of R3 equipped with the intrinsic metric.

4Rudnik and Borsuk have asked whether there is an one-dimensional subset X of R2 in which every two

points is joined by an arc of finite length and in which every intrinsic isometry in R2 is an isometry.
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But, this proposition shows by its strength, its uselessness. We must keep in

mind that, to be useful, a representation must take advantage of human facilities.5

Problem 14. Characterize those metric spaces which can be represented as a subset

of a (simply connected) continuum in R2 with the intrinsic metric.

For example, any ultrametric space, such as K5 with the graph metric,6 can

be so represented but K(3, 3) cannot be so represented.

Problem 15. Is there a version of Kuratowski’s test for planarity of graphs which

answers problem 14 for graph metrics? That is, is there a finite list of “forbidden”

graphs?

While testing a metric for ultrametricity requires testing each set of three

points (and thus can be done in O(n3) computing time), testing a metric for the

four-point condition seems to require testing each set of four points and that would

require O(n4) time. But, there is a beautiful way of converting additive trees into

ultrametrics.

Definition 2. If ρ is a metric on a set X and v ∈ X and c is an appropriate constant,

then, for each x, y ∈ X, define δ(x, y) = c + ρ(x, y)− ρ(x, v)− ρ(y, v). δ is the Farris

transform of ρ.

Proposition 3 (Farris, 1970). δ is an ultrametric if and only if ρ satisfies the

four-point condition.

This theorem is not hard to prove: it just requires some manipulation. Of

course δ and ρ do not generate the same topology even if we choose c carefully.

But, Farris’ lemma is quite useful. We see immediately that we can test the

four-point condition in just O(n3) time. Actually, testing ultrametricity and thus the

four-point condition can even be done in O(n2 log n) time.

Problem 16. Which metric spaces can be represented up to uniform equivalence by

a subset of a space (or an R-tree) with the intrinsic metric and finite total length?

5But, despite this, many articles in the optimization literature ask for minimizing the total length of a

graph which represents a given finite metric space. This should also be explored for infinite metric spaces.
6Any connected graph has a graph metric which is the largest metric in which the distance between any

two vertices which are joined by an edge is 1
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6. L1-Embeddable Metrics and their Decompositions

A metric space (X, ρ) where X is finite is said to be l1-embeddable if we can

embed X isometrically into l1.

Do such metric spaces occur in nature? Is this class useful for statistical

analysis? It is often true that real-life estimates of similarity are obtained by forming

a linear combination of various criteria. Such estimates, such metrics are precisely

the L1-embeddable metrics ! Let us make this exact.

Definition 3. Let (X,M, σ) be a measure space. For A,B ∈ M, define ρ(A,B) =∫
A4B

dσ. We call ρ L1-embeddable.

Since we use integration, we are restricted to estimating similarity by linear

combinations of various criteria. But, this still allows us to represent a broad range

of metrics.

Proposition 4. Let ρ be a metric on a finite set. Then, ρ is l1-embeddable if and

only if ρ is L1-embeddable.

Theorem 3. If a metric ρ on X satisfies the four-point-condition, then ρ is L1-

embeddable.

Proof. Represent (X, ρ) by a subset of an R-tree Y with the intrinsic metric. Choose

v ∈ X. For each x ∈ X, let Ax be the unique shortest path in Y from x to v. Let

M be the set of all Borel sets of Y . Let µ be the measure which assigns to each

Borel set B the sum of the lengths of all disjoint families of paths in B. Let f be the

constant one function. Now, the intrinsic metric between x and y coincides with the

L1 metric on (Y,M, σ).

In the analysis of statistical data, it is not only important to recognize L1-

embeddable distances but also to be able to decompose distance data into an

L1-combination of more primitive distances. That is, we want to be able to carry

out “linear decompositions” whenever this is possible and to identify when this is

not possible.
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Definition 4. Suppose (X, ρ) is a metric space. If there are metric spaces {(Xi, ρi) :

i ∈ I} and a one-to-one map π : X →
∏
{Xi : i ∈ I} such that (∀x, y ∈ X)ρ(x, y) =∑

i∈I |π(x)(i)− π(y)(i)| and if {π(x)(i) : x ∈ X} = Xi, then we say π is a decompo-

sition (X, ρ) as a subdirect L1-product of metric spaces.

This is motivated by the important existence of subdirect representations in

algebra.

Theorem 4. Every metric space can be decomposed in a “maximal” manner as a sub-

direct L1-product of subsets of the reals and one more irreducible metric space. Every

L1-embeddable metric space is decomposed completely into a subdirect L1-product of

subsets of the reals.

Proof. Construct π, inductively, on an well-ordered set I.7 If this has been

done on an initial segment J ⊂ I and i is the least element of I − J , then de-

fine ρ∗(x, y) = ρ(x, y) −
∑
{|π(x)(i) − π(y)(i)| : i ∈ J} and let Σ = {σ ∈ RX :

ρ∗ − σ satisfies the triangle inequality } be partially ordered by defining σ ≤ σ′ if,

for all x, x′ ∈ X, σ(x, x′) ≤ σ′(x, x′). Choose a maximal σ ∈ Σ and define, for each

x ∈ X, π(x)(i) = σ(i).

Problem 17. Is there a “maximal” decomposition of metric spaces as a subdirect

L1-product of additive trees (or Hilbert spaces) and one more irreducible metric space

so that every additive tree (or Hilbert space) remains its unique factor?

The notion of L1-decomposition is well-motivated by the central importance

of “dimension reduction” in multivariate data analysis. In his influential textbook,

Kshirsagar said “The aim of the statistician undertaking multivariate analysis is to

reduce the number of variables by employing suitable linear transformations ... thus

reduces the dimensionality of the problem.” Reasonable decompositions accomplish

this by removing the interaction between coordinates.

Problem 18. Are there reasonable Lp decompositions for 1 < p ≤ ∞?

7The reals themselves can be decomposed into two copies of the reals, namely as the line y = x, and

this is why we require an well-ordering of the factors. With a restriction to integer-valued metrics, this is no longer

an issue.
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DĂNUŢ MARCU

A more useful L1-decomposition would do more and break down the remain-

ing irreducible factor in theorem 4 into an L1-product of other irreducible factors

whenever possible. We are able neither to prove such a theorem or even to formulate

this accurately. The criterion by which such a decomposition should be judged is that

it should have as a corollary the following result of R. L. Graham and P. M. Winkler

and reported in Proc. Nat. Acad. Sci. 81 (1984) 7259.

Theorem 5 (Graham, Winkler). Any finite graph can be canonically embedded

isometrically into a maximum cartesian product of irreducible factors.

The existence of the decomposition by subdirect products for varieties is a

true theorem of universal algebra but, this is not a variety and so this seems to be of

no help.

The general problem of identifying L1-embeddability turns out to be signif-

icant in operations research. The problem of multicommodity flows is set in a graph

in which each edge has a capacity and a demand. We seek a flow on the edges of the

graph so that flow on each edge meets demand and does not exceed capacity. The

so-called Japanese theorem of 1971 states that a capacity and demand are feasible i.e.,

can be met if there is a metric ρ on the vertices of the graph so that (c−r)ρ ≥ 0. The

celebrated Ford-Fulkerson theorem in operations research is just this theorem in the

special and tractable case of single commodity flows in which the demand occurs on a

single edge. Usually, the Ford-Fulkerson condition is not sufficient when the demand

is more complicated. However, Lomonosov showed in 1978 that this condition is still

sufficient when the demand lies on an L1-embeddable subgraph.

7. Graphs and Hamming Distance

Indeed, theorem 5 illustrates the intimate connection between L1-

embeddability and Hamming distance. If we use factors in which all non-zero dis-

tances are 1 and a counting measure, then the L1-distance is precisely the Hamming

distance. This Hamming distance is useful in estimating distances between binary
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strings, since error-correcting codes can be designed which do nothing more than re-

place a string with the “closest” string of a certain kind. Although Avis showed that

any finite L1-embeddable metric space embeds in a “weighted” hypercube, it is not

true that an integer-valued L1-embeddable metric can be embedded in the hypercube

2κ with the Hamming distance.

Problem 19. Give necessary and sufficient conditions for an integer-valued (L1-

embeddable) metric to be embeddable in 2κ with the Hamming distance.

For example, a necessary condition is that triangles must have even perimeter.

There is a huge literature on graphs which can be embedded in hypercubes

and metrics which can be embedded in graphs8, but this beautiful theory carries us

too far away from our topic.

8. Compactness and L∞-Embeddable Metrics

A classical result of Banach and Mazur, published in 1932, states that any

separable metric space can be isometrically embedded in L∞(κ) when κ is the con-

tinuum. But, more is true. Suppose (X, d) is a metric space. Fix a ∈ X and define

an isometric embedding π of X into C∗(X) ⊂ L∞(|X|) by defining π(x) by setting

π(x)(x′) = d(x, x′)− d(a, x′).

Theorem 6 (Banach, Mazur; 1932). Any metric space can be isometrically em-

bedded in L∞(κ) for sufficiently large κ.

This theorem, surprisingly, is essentially finitary.

Theorem 7. If every finite subset of a metric space X is L∞-embeddable, then X is

L∞-embeddable.

Proof. Define, for each finite F ⊂ X, E(F ) to be the set of all mappings φ from

X into Rκ which are isometric when restricted to F and achieve the supremum, for

any pair, on a coordinate specifically assigned to that pair. These form a centred

family of closed sets. If we restrict ourselves to maps which, for some x ∈ X, satisfy

8Djoković characterized graphs that can be embedded into hypercubes in 1973.
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φ(x) ≡ 0, then each E(F ) is a subset of a fixed compact set and so we have a nonempty

intersection.9

This leads us to the three basic compactness problems for L∞-embeddable

(or L1-embeddable, or Lp-embeddable) metrics.

• If every finite subset of a metric space X can be embedded in l∞ (or l1,

or lp), then must X be embeddable in some L∞ (or L1, or Lp)?

• If n ∈ ω, then what is the minimal kn ∈ ω (if it exists) such that any (l1-

embeddable, lp-embeddable) finite metric space of size n can be embedded

in lkn
∞ (lkn

1 , lkn
p )?

• If n ∈ ω, then what is the minimal kn ≤ ω (if it exists) such that any

metric space which cannot be embedded in ln∞ (ln1 , lnp ) has a subspace of

size kn which also cannot be embedded in ln∞ (ln1 , lnp )?

For the first of these problems, Witsenhausen showed that, if every finite subset of a

metric space X is embeddable in l1, then X is embeddable in some L1. Results of

Yang and Zhang show that, if every finite subset of a metric space X is embeddable

in l2, then X is embeddable in some L2. The situation for Lp seems to be unclear:

Problem 20. If every finite subset of a metric space X can be embedded in lp, then

must X be embeddable in some Lp?

Problem 21. Find a general compactness theorem which implies that the solution to

the first compactness problem is positive for all p.

For the second problem, Schoenberg noted in 1938 that, although the con-

struction in the proof of theorem 6 above seems to require n coordinates, we can omit

one coordinate without difficulty. This shows that kn ≤ n − 1 for l∞. Wolfe showed

that, in fact, kn ≤ n − 2 for l∞. Witsenhausen has obtained the lower and upper

bounds n− 2 ≤ kn ≤ n(n− 1)/2 for l1 and, later, Ball showed that kn ≤ n(n− 1)/2

for any lp. But, none of these results solve the problem completely:

9Of course, Lp might not be locally compact but this is irrelevant. We work in the Tychonoff product

topology.
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Problem 22. If n ∈ ω, then what is the minimal kn ∈ ω (if it exists) such that any

l1-embeddable finite metric space of size n can be embedded in lkn
1 ? What about for lp

when 1 < p ≤ ω?

This second problem has an interesting variation. Suppose D = {1, 2, 3} has

the “distance” in which 1 and 3 are distance one apart and all other pairs are at

distance zero. What is the least kn such that any connected graph on n vertices can

be embedded in a product of kn many copies of D with the L1 distance? It is not

obvious that kn exists and is finite.

This may seem a strange problem, but this is exactly the “addressing problem

for loop switching” posed by R. L. Graham and H. O. Pollak in 1971 in the Bell System

Technical Journal and solved by P. M. Winkler in 1983. The answer is kn = n− 1.10

The third problem is quite interesting. It may involve finite approximations

to topological orientability.

Proposition 5 (S. Malitz and J. Malitz, 1992). If a metric space X cannot

be embedded in R2 with the l∞-norm (or, equivalently, the l1-norm), then X has a

subspace of size 11 which cannot be embedded in R2 with the l∞-norm (or, equivalently,

the l1-norm). Thus, determining whether a finite metric space can be embedded in R2

with the l∞-norm can be done in polynomial time.

They state the existence of such a number (like 11), for Rn when n ≥ 3 is an

open question, and that their methods get “wildly complicated”.

But, we have obtained the following results.

Theorem 8. There is no N such that a finite metric space X cannot be embedded

in R3 with the l∞-norm if and only if X has a subspace of size N which cannot be

embedded in R3 with the l∞-norm.

Proof. Use a Mobius strip in which the width of the strip is much smaller than N

times the radius of the circle. Apply compactness to get a finite subset which is still

sufficiently “Mobius”.

10These are “squashed cubes”, but the problem for graphs in ordinary cubes remains open.
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Problem 23. Is it true that there is no N such that a finite metric space X cannot

be embedded in R3 with the l1-norm if and only if X has a subspace of size N which

cannot be embedded in R3 with the l1-norm? Is this true for some Rn? Can the

construction in theorem 8 be carried out in some Rn with the l1-norm?

Theorem 9. Determining whether a finite metric space X can be embedded in R6

with the l∞-norm is NP-complete.

Proof. The axes of a cube can be each be assigned one of three dimensions in

exactly six ways. This assignment must be constant on the product of a cube and a

line. If we join together two such products in such a way that all coordinates change,

then knowing the assignment on one side of the join gives us exactly two possibilities

on the other side of the join. Thus, using three more dimensions we can code the

3-colorability of graphs which is NP-complete.

Problem 24. Let 3 ≤ n ≤ 5. Is determining whether a finite metric space X can be

embedded in Rn with the l∞-norm NP-complete?

Problem 25. Is determining whether a finite metric space X can be embedded in Rn

with the l1-norm NP-complete?

9. L2-Embeddable Metrics

The problem of characterizing metric spaces which embed in Euclidean space

of some dimension is a classical one and was solved by Menger in the 1930’s. There is

a book by Blumenthal entitled Distance Geometry and even a Mathematical Reviews

section 51K devoted to this topic. But, in fact, this is an easy problem in R2 with the

Euclidean (l2) metric. For if a space embeds in R2 and a, b, c are points in that space

which do not satisfy the equality ρ(a, b) + ρ(b, c) = ρ(a, c) under any permutation,

then a is, without loss of generality, embedded arbitrarily. Now, b is embedded on

some circle centred at a, but otherwise its position is arbitrary. We deduce that c

must be placed in one of two positions, but this choice is again arbitrary. But, now

any further point must occupy an uniquely determined position. Thus, the position
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of any point is determined uniquely once we have three points “in general position”.

In the general setting of the Euclidean metric on Rn, the situation is analogous.

Much of the work in distance geometry is devoted to characterizing Euclidean

spaces, Banach spaces, hyperbolic spaces, inner product spaces and so forth entirely

from the combinatorial properties of their metrics. But, we will not discuss here this

fascinating topic and its intense activity since 1932 nor will we discuss the interesting

work on the “distance-one-preserving” maps of A. D. Aleksandrov.

What is surprising and important to us is that ultrametrics are L2-

embeddable.

Theorem 10 (Lemin, 1985; Vestfrid and Timan, 1979 for l∞). Any ultrametric

space of cardinality κ can be embedded isometrically in generalized Hilbert space {f ∈

Rκ :
∑
{f(α) : α ∈ κ} < ∞}.

This requires some work.

Another surprising fact is that L2-embeddable metrics are L1-embeddable.

Theorem 11. Any L2-embeddable space is L1-embeddable.

Problem 26. Give a direct proof that any L2 embeds isometrically into some L1(µ).

Can this be done by integration over projections onto hyperplanes of codimension 1?

What happens for p 6= ∞?

But, the most important fact about L2-embeddable metrics is that they are

the basic notion of MDS: multi-dimensional scaling. This is a huge topic about which

entire books have been written and for which there are many software packages being

sold.

The basic purpose of MDS, the thing that these packages accomplish, is to

take a set of data, either an n×k matrix showing the results of tests or an n×n matrix

which already exhibits similarity data, and to do the best job possible in representing

this data as points in the plane or in a higher-dimension Euclidean space.

There is a lot involved here. Scaling the similarity data with real numbers,

reconstruction of missing and spurious data, approximation to a metric which is em-

beddable in some Euclidean space. The problem of reconstructing missing data is an
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important one. Sippl and Scheraga, Proc. Nat. Acad. Sci. USA 83 (1986) 2283 and

Schlitter 1987 in pursuit of reconstructing distance data in problems on nuclear mag-

netic resonance, showed that we need only a 4× n submatrix of the distance matrix

to reconstruct effectively in R3 so long as the 4 points chosen are in general position.

Problem 27. What happens in the reconstruction problem for the L1 or L∞ metric?

Problem 28. If (X, ρ) is a metric space, then what are necessary and sufficient

conditions on A ⊂ X2 so that, whenever ρ′ is another metric on X such that ρ �

A = ρ′ � A, we must have ρ = ρ′. What if we only want ρ and ρ′ to be equivalent or

uniformly equivalent?

Problem 29. Find k(n) so that, if A is a metric space which can be embedded in

ln∞, then is there a finite set B ⊂ A of size k(n) such that knowing all the distances

between points of A and points of B allows one to reconstruct the distance matrix.

Problem 30. Where does Lp-embeddable fit into the scheme we have given? Does

ultrametric imply Lp-embeddable which implies L1-embeddable, when p 6= ∞? Are the

classes of Lp-embeddable metrics comparable?

10. Hypermetric Spaces and Spaces of Negative Type

The notion of L1-embeddable differs greatly from additive trees and ultra-

metrics in that it does not seem to have a definition by a simple inequality. It is

suspected that there are no simple characterizations of L1-embeddable metrics, but

this has never been established.

Problem 31. Is there a first-order characterization of L1-embeddability?

A. Neyman showed in 1984 that there is no characterization which is a finite

conjunction of inequalities. Of course, by compactness, there is an infinite conjunction

of first-order formulas which characterizes L1-embeddable.

The attempts to characterize L1-embeddable by means of inequalities has led

to some interesting inequalities which must be satisfied by any L1-embeddable metric.

These include the hypermetric inequalities.
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Definition 5. A hypermetric inequality is defined for each b : X → Z such that∑
{b(x) : x ∈ X} = 1 and states that

∑
{b(x)b(y)d(x, y) : x, y ∈ X} ≤ 0. A metric

space which satisfies each hypermetric inequality is said to be a hypermetric space.

While this scheme is a little hard to understand at first, there are relatively

few instances which are not satisfied automatically. In fact, the least complicated

instance is accomplished by the b’s which are 1, 1, 1,−1,−1. This yields the pentagon

inequality, cited in the introduction. The easiest way to understand the hypermetric

inequalities is to note that they forbid the bipartite graphs K(n, n + 1) when n ≥ 2.

Theorem 12. L1-embeddable metrics are hypermetric.

Proof. A cut pseudometric on a set X is a binary-valued pseudometric induced

by any A ⊂ X which is defined by letting ρ(x, x′) = 1 iff |{x, x′} ∩ A| = 1. Any

L1-embeddable metric is a linear combination of cut pseudometrics. Hypermetricity

is clearly preserved by linear combinations. So, it suffices to show that cut pseudo-

metrics are hypermetric. This means that we must show that, whenever a, b, c, d ≥ 0,

we have a + c− b− d = 1 ⇒ (a− b)(c− d) ≤ 0 which is easy.

Nevertheless, these inequalities do not characterize L1-embeddable metrics. In

1977, Assouad and, independently, Avis in 1981, showed that the graph obtained by

deleting two adjacent edges from K7 is hypermetric, but not L1-embeddable. More

sophisticated inequality schemes valid for L1-embeddable metrics were devised by

Deza and Laurent in 1992.

Despite their humble birth as approximations to L1-embeddability, hyper-

metrics are significant to geometry. Consider the problem of identifying the metrics

on Rn which are scalar multiples of the usual metric on each straight line (these are

called projective metrics). This is Hilbert’s fourth problem. In 1974, Pogorolev char-

acterized projective metrics in R2. In 1986, Szabo defined a complicated example of

a projective metric on R3 which does not satisfy Pogorolev’s characterization. To see

how hypermetrics are closely related to the fourth problem, we need a concept from

convex geometry. A zonoid is a convex set which is arbitrarily close in the Hausdorff
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metric to convex polytopes in Rn. Alexander showed in 1988 that whenever the dual

unit ball of a finite-dimensional normed linear space M (with a projective metric) is

not zonoid, Pogorolev’s characterization does not work. In 1975, Kelly proved that

this problem is equivalent to determining whether the dual space of M is hypermetric.

To get a projective metric on R3 which does not satisfy Pogorolev’s characterization,

we need only a projective metric which is not hypermetric. L∞(R3) works!

Problem 32. Does L∞(R3) satisfy the pentagonal inequality? Characterize the pro-

jective metrics on R3 which disobey the pentagonal inequality or hypermetric inequal-

ities (or weaker properties).

It was proved in 1993 however by Deza, Grishukhin and Laurent, making use

of Voronoi theory, that hypermetric spaces can be described by a finite list of inequal-

ities. This is amazing, since the hypermetric scheme is infinite and does not seem to

contain any redundancies. We don’t know if this follows from logical considerations

alone.

Another surprising aspect of the hypermetric inequalities is that, despite their

failure to characterize the L1-embeddable metrics, they do carry some power. Indeed,

any hypermetric space still has some “Euclidean” structure.

Consider the example of a “distance” space consisting of the the points on the

n-sphere with the metric defined by the square of the Euclidean metric. Of course,

if we examine any three nearby and nearly collinear points, we see that this is not a

metric space, but it certainly has many metric subspaces.

Definition 6. If a metric space X can be isometrically embedded in some n-sphere

with the square of the Euclidean metric, then we say that X is spherical.

Theorem 13 (Deza, Grishukhin, Laurent). Every finite hypermetric space is

spherical.

Problem 33. Is any (countable, separable, arbitrary) hypermetric space isometrically

embeddable in some appropriately defined κ-sphere? What is the correct infinitary

notion of spherical?
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Problem 34. There is at least an example of a spherical space which is not hyper-

metric?

Note that it does not suffice to take an appropriate sphere, since this will not

satisfy the triangle inequality.

Moving even further into weak properties, we can identify the negative-type

inequalities. These are defined exactly like the hypermetric inequalities, except that

we require only
∑
{b(x) : x ∈ X} = 0.

Definition 7. A negative-type inequality is defined for each b : X → Z such that∑
{b(x) : x ∈ X} = 0 and states that

∑
{b(x)b(y)d(x, y) : x, y ∈ X} ≤ 0. A metric

space which satisfies each negative-type inequality is said to be a space of negative-

type.

Again, it is easiest to understand the negative-type inequalities as forbidding

the graph K(n, n) when n ≥ 3.11

So, hypermetric spaces and spaces of negative-type are defined by analogous

schemes of inequalities, and spherical spaces are characterized by embeddability in a

specific Euclidean-style space. Nevertheless, spherical spaces interpolate hypermetric

spaces and spaces of negative-type !

Theorem 14 (Deza, Grishukhin). Every spherical space has negative-type and

thus every hypermetric space has negative-type.

Of course, metric spaces of negative-type need not be hypermetric. The graph

K(2, 3) demonstrates this. This graph also answers one of the two parts of the next

question, but which one?

Problem 35. What is an example of a negative-type metric space which is not spher-

ical? What is an example of a spherical space which is not hypermetric?

In the application to Hilbert’s fourth problem, we used the fact that L∞(R3)

is not hypermetric.

Problem 36. Is L∞(R3) of negative type? For which n is L∞(Rn) of negative type?

11One easily embeds K(2, 2) in R3 and, of course, Kn is ultrametric.
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The next classical result is beautiful and surprising and demonstrates imme-

diately why spherical metrics are of negative-type.

Theorem 15 (I. J. Schoenberg, 1938). A metric space is of negative-type if and

only if it can be embedded in some Rn with the metric which is the square of the

Euclidean metric.

Actually, in the language of linear algebra, this was first proved by Cayley !

Ponder theorem 15. It says that any metric of negative type can be squared

and suddenly it is embedded in Euclidean space. But, this squaring is such a “nice”

transformation ! The reason that we have not discussed the topological level of

generality, since leaving additive trees becomes clear. All of these properties: L2-

embeddable, L1-embeddable, hypermetric, spherical, negative type all coincide up

to homeomorphism, up to uniform homeomorphism, even up to composition of the

metric with a monotone function.

Let us call this composition a “scaling” and then be more exact.

Definition 8. If f : [0,∞) → [0,∞) is a function whose limit at zero is zero, then

the scaling of a metric ρ by f is the function ρf defined by ρf (x, y) = f(ρ(x, y)).

Proposition 6. Any scale which is concave up preserves the triangle inequality.

Delistathis has noted the well-known transformation x → x
1+x which is used

to bound metrics provides the most common example of an application of proposi-

tion 6.

The notion of scaling can be used to approach the problem of deciding how

“geometric” these weaker metric concepts are.12 Certainly, all separable metric spaces

can be embedded by an uniform homeomorphism into Hilbert space (this was proved

first by Mysior, it seems). But, not all separable metric spaces can be embedded by

a re-scaling into Hilbert space.

Theorem 16. There is a separable metric space which cannot be scaled to embed in

a pentagonal (and thus, Euclidean or negative-type) space.

12Note that scaling preserves ultrametricity, but maybe not additive tree distances.
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Proof. Take the bipartite graph K(n, n) for all possible choices of n and multiplied

by all possible choices of positive rational numbers.

Every finite metric space has a scale which embeds it into l2 but whether one

can get these scales in an uniform manner is unknown.

Problem 37 (Maehara, 1986). Is there a scale which embeds all metric spaces of

fixed size n (even size 5) into l2 simultaneously?

11. Lipschitz Constants and Eigenvalues

Another property of a transformation weaker than uniform homeomorphism

but incomparable to scaling is that of an α-Lipschitz map. We say that two metrics

ρ and π are α-Lipschitz where α ≥ 1 if every quotient ρ(x,y)
π(x,y) and its inverse is at most

α. Of course, two metrics are 1-Lipschitz if and only if they coincide. This notion

enables us to ask whether an arbitrary metric is α-Lipschitz to an Euclidean metric

and so forth.

Note that the square root scaling is not α-Lipschitz for any constant α.

So, there is no reason to expect L2-embeddable, L1-embeddable, hypermetric, and

negative-type to be α-Lipschitz for any constant α.

Proposition 7 (J. Bourgain, T. Figiel, V. Milman). There is a finite metric

space which is not 2-Lipschitz isometrically embeddable in l2.

Theorem 17. There is, for each α > 2, a finite metric space which is not α-Lipschitz

to a space of negative type (or a subset of l2).

Note that K(n, n) is easily shown not to be (
√

2− ε)-Lipschitz isometrically

embeddable in l2.

Problem 38. Is there a metric space of negative type which is not α-Lipschitz iso-

metrically embeddable to a subset of l2?

In their pursuit of pathological examples in the geometry of Banach spaces,

Bourgain, Milman and Wolfson did establish a Ramsey-theoretic theorem showing

that in the disorder of arbitrary finite metric spaces can be found a certain amount

65
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of “Euclidean behavior”. That is, arbitrary finite metric spaces do have fair-sized

subsets which do embed into l2.

Theorem 18 (J. Bourgain, T. Figiel, V. Milman). For every α > 1, there

is C > 0 such that every finite metric space contains a subset which is α-Lipschitz

embeddable in l2 and has size at least C log |X|.

Indeed, Bourgain, Milman and Wolfson defines their own metric inequality

which says that a metric space has type 2 if there is ε > 0 so that, for any labelling

of points by the vertices of an n-cube, the l2-sum of the diagonals is less than ε times

the l2-sum of the edges. They show that a metric space of type 2 contains copies of

ln1 up to a Lipschitz constant.

Problem 39. Does type 2 fit naturally into the scheme of hypermetric and negative-

type inequalities?

Problem 40. What Lipschitz constants, if any, exhibit the distinction between L2-

embeddable, L1-embeddable, hypermetric, negative-type and one positive eigenvalue?

Another transformation of metrics derives from the notion of a Robinsonian

metric. This is a metric ρ whose underlying set admits a linear order ≤ such that

a ≤ b ≤ c ≤ d ⇒ ρ(a, d) ≤ ρ(b, c). Thus, Robinsonian metrics are metrics which are

“compatible” with a linear order. Ultrametrics are Robinsonian, but we know little

more than this.

Problem 41. Are additive metrics Robinsonian? Are Robinsonian metrics of nega-

tive type (or hypermetric)? What if we allow ≤ to be a partial order of some kind?

Let us now turn to eigenvalues. Suppose we are given any n points in some

Euclidean space and compute the distance matrix. This matrix is symmetric and

thus has all real eigenvalues. It has zero entries along the diagonal and has exactly

one positive and n− 1 negative eigenvalues. It turns out that if a metric has negative

type, then it is still true that the distance matrix has exactly one positive eigenvalue.

Theorem 19. Any metric space which is of negative type has a single positive eigen-

value.
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The existence of a single positive eigenvalue represents the weakest metric

property which has so far been isolated.

Definition 9. If (X, ρ) is a metric space and, for each finite {ai : i ∈ n} ⊂ X,

the n × n distance matrix whose (i, j)-th entry is ρ(ai, aj) has exactly one positive

eigenvalue, then we say that (X, ρ) has one positive eigenvalue.

To see that this definition is reasonable, one should note that if a matrix has

a particular eigenvalue, then any square submatrix also has that eigenvalue. K(3, 3)

is not negative-type and, indeed, it has two positive eigenvalues.

Problem 42. What are the metric spaces (of smallest cardinality) which do not have

one positive eigenvalue?

An example due to Winkler of a metric space with one positive eigenvalue

which is not of negative type is the bipartite graph K(5, 2) with a single edge added

between the two points on the “side” with only two points.13

Problem 43. Can any metric space be scaled to have one positive eigenvalue?

The scaling method we described (taking the square root) shows that any

metric of negative type can be scaled to be Euclidean, but it is unknown what happens

for metrics with one positive eigenvalue.

Problem 44. Is there a metric space which has one positive eigenvalue which cannot

be scaled to have negative type (equivalently, to be Euclidean)?

Problem 45. Which Tychonoff spaces have, for each continuous pseudometric, an

equivalent (or generating a larger topology) continuous pseudometric with one positive

eigenvalue?

Further work has been done on investigating the characteristic polynomial of

distance matrices of graphs by R. L. Graham and L. Lovász. This work is beyond the

scope of this article, but, no doubt, investigating the characteristic polynomial of an

arbitrary metric space would be rewarding.

13An elegant proof of this was given by Deza and Maehara in 1990 and Marcu in 1991.
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Problem 46. Is there an useful class of metric spaces strictly weaker than those with

exactly one positive eigenvalue?

12. Quasi-Metrics

The notion of asymmetric distances occur frequently in the literature. In

optimization theory, for example, the “windy postman” problem is a version of the

travelling salesman problem in which the quasi-metric represents times needed to

cover a distance and so, “depending on the wind”, there is asymmetry.

Another significant application of asymmetric distances is in psychological

measurement. The influential 1978 article by Cunningham explains why this is so.

“There are some situations in which the direction of the dissimilarity measurement

may make a difference.” He continues: “As an example, consider the case of people

judging the similarity of two stimuli which differ markedly in their prominence or

number of known traits”. In 1977, Tversky found that people gave a consistently

higher rating when asked questions like “How similar is North Korea to Red China”

than when asked questions like “How similar is Red China to North Korea”.

The notion of an additive tree and the notion of the four-point property both

generalize to the asymmetric case naturally, but these generalizations do not seem to

be equivalent. Bandelt in 1990 found equations which characterize the asymmetric

generalization of additive trees.

Besides, these generalizations from the symmetric case, there is no available

means of classifying asymmetric distances.

The distance matrices for finite subsets of a quasi-metric spaces are not sym-

metric and thus these matrices may have some eigenvalues which are not real.

Problem 47. Do all quasi-metric spaces have an equivalent quasi-metric with all real

eigenvalues?

Problem 48. Let X be a completely regular (topological) space. Is there, for every

continuous quasi-metric on X, another continuous quasi-metric which generates a
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larger topology and all of whose eigenvalues are real? What if we require these quasi-

metrics to generate completely regular topologies?

Problem 49. Formulate problems whose solution would make progress towards the

understanding of asymmetric distance data.

13. Conclusion

The understanding of distance data is a fundamental goal of the natural and

social sciences. To create this understanding, there are problems of reconstruction

and approximation which are perhaps mainly problems in optimization theory and

thus in linear algebra or non-linear analysis. But, the problems of transformation,

representation and classification are topological problems. Although the data is finite,

solving the corresponding infinitary problems gives asymptotic and efficient methods

for solving the finite problems.14 Moreover, finite combinatorists find all but the most

graph-theoretic of these problems far too geometric or topological.15 Although the use

of distances suggests that this is a geometric problem, the importance of transforming

the data in a non-linear manner, and the key role of approximation and reconstruction

eliminates geometers from all but the most artificial and rigid of these problems.

The importance of Lp in the classification may suggest that these problems lie in the

territory of Banach space experts, but the absence of linearity immediately disqualifies

these problems from consideration by all but the most heretical of functional analysts.

This is a problem which is directly adjacent to graph theory, optimization

theory, operations research, geometry, and the theory of stochastic processes. This

is a problem of immediate and great importance to communications theory, to sta-

tistical mechanics, to mathematical psychology, to mathematical taxonomy and to

14The importance of algorithms and complexity of computation is key to making the infinite important.

If the uncountable fails, we must need enumeration and there will often be no algorithm. If the countably infinite

fails, we must need to quantify over subsets and this often gives a lower bound on complexity.
15But, it seems that a large part of the theory of distances in graphs may be extended usefully, with

some work, to a theory of L1-embeddable metrics.
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multivariate statistical analysis whose significance will only increase when a more so-

phisticated theory is developed. This is a problem whose solution can be developed

by topologists.
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume XLIX, Number 3, September 2004

AN INTERPOLATION BASED COLLOCATION METHOD
FOR SOLVING THE DIRICHLET PROBLEM

SANDA MICULA

Abstract. In this paper we study the numerical solution of a boundary

integral equation reformulation of the Dirichlet problem. We give a brief

outline of both this problem and its solvability and of a collocation method

based on interpolation. We conclude the paper by giving an error analysis

of this collocation method.

1. The Exterior Dirichlet Problem

We will study only the exterior Dirichlet problem, but would like to mention

that all the results hold for the interior Dirichlet problem, as well, since their integral

equation reformulations are very similar.

Let D denote a bounded open simply-connected region in R3, and let S denote

its boundary. Let D = D ∪ S and denote by De = R3 −D the region complementary

to D. Let De = De ∪ S. At a point P ∈ S, let nP denote the unit normal directed

into D, provided that such a normal exists. Also assume that S is a piecewise smooth

surface that can be decomposed into a finite union of smooth surfaces intersecting each

other along common edges at most. In addition, assume that S has a triangulation

Tn = {∆n,k | 1 ≤ k ≤ n} with mesh size h (such a triangulation can be obtained as

the image of a composition of bijections mk from the unit simplex σ onto a planar

triangle ∆k and bijections Fj from a right triangle onto each smooth piece Sj of S;

for details, see Micula [6, Chapter 2]).

Received by the editors: 08.11.2004.
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The Exterior Dirichlet Problem. Find u ∈ C1(De) ∩ C2(De) that satisfies

∆u(P ) = 0, P ∈ De

u(P ) = f(P ), P ∈ S (1)

u(P ) = O(P−1),
∂u(P )

∂r
= O(|P |−2) , as r = |P | → ∞ uniformly in

P

|P |

with f ∈ C(S) a given boundary function.

The boundary value problem (1) has been studied extensively (see Mikhlin

[8], Günter [5], Colton [4]). Here we only give a very brief outlook at results on the

solvability of the problem (1).

The Divergence Theorem (see Atkinson [2, Theorem 7.1.2]) can be used to

obtain a representation formula for harmonic functions.

We seek a solution of (1) in the form of a double layer potential

u(A) =
∫
S

ρ(Q) · ∂

∂nQ

[
1

|A−Q|

]
dSQ, A ∈ De (2)

Using a limiting argument, we obtain the second kind integral equation

2πρ(P )−
∫
S

ρ(Q) · ∂

∂nQ

[
1

|P −Q|

]
dSQ = f(P ), P ∈ S (3)

The kernel function in (3) is given by

∂

∂nQ

[
1

|P −Q|

]
=

nQ · (P −Q)
|P −Q|3

=
cos θQ

|P −Q|2
(4)

where θQ denotes the angle between nQ and (P − Q). Equation (3) can now be

written as

ρ(P )− 1
2π

∫
S

ρ(Q) · cos θQ

|P −Q|2
dSQ = f̂(P ), P ∈ S (5)

where f̂(P ) =
1
2π

f(P ). For simplicity, we will write f(P ) instead of f̂(P ).

Write the equation (5) in operator form:

(I −K)ρ = f (6)

We have (see Mikhlin [8, Chapters 12 and 16]):
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Theorem 1.1. Let S be a C2 surface. Then the equation (6) has a unique

solution ρ ∈ X for each given function f ∈ X, with X = C(S) or X = L2(S).

Theorem 1.2. Let S be a smooth surface with De a region to which the

Divergence Theorem can be applied. Assume the function f ∈ C(S). Then, the

Dirichlet problem (1) has a unique solution u ∈ C∞(De).

2. A Collocation Method

We will use a collocation method where the collocation nodes are the inter-

polation (of order r) nodes, chosen the following way:

qi,j =
(

i + (r − 3i)α
r

,
j + (r − 3j)α

r

)
, i, j ≥ 0, i + j ≤ r (7)

for some 0 < α < 1/3 (these are points interior to the unit simplex, but they get

mapped into points interior to each triangle in Tn). For corresponding Lagrange

functions (see Micula [6, pg. 7-11]), for g ∈ C(S) define an operator Pn by

Png(P ) =
fr∑

j=1

g (mk(qj)) lj(s, t), (s, t) ∈ σ, P = mk(s, t) ∈ ∆k (8)

This interpolates g(P ) over each triangular element ∆k ∈ S, with the inter-

polating function polynomial in the parametrization variables s and t.

Define a collocation method with (7). Denote vk,j = mk(qi). Substitute

ρn(P ) =
fr∑

j=1

ρn (vk,j) lj(s, t)

P = mk(s, t) ∈ ∆k, k = 1, ..., n (9)

into (5). To determine the values {ρn(vk,j)}, force the equation resulting from the

substitution to be true at the collocation nodes {v1, ..., vnfr
}. This leads to the linear

system

ρn(vi) − 1
2π

n∑
k=1

fr∑
j=1

ρn(vk,j)
∫
σ

cos θvk,j

|vi −mk(s, t)|2

· |(Dsmk ×Dtmk)(s, t)| dσ = f(vi), i = 1, ..., nfr (10)
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which we write abstractly as

(I − PnK)ρn = Pnf (11)

which will be compared to (6). We have the following result.

Theorem 2.1. Let S be a C2 surface as described earlier, with Fj ∈ Cr+2.

Then for all sufficiently large n, say n ≥ n0, the operators I − PnK are invertible

on L∞(S) and have uniformly bounded inverses. For the solution ρ of (6) and the

solution ρn of (10)

‖ρ− ρn‖∞ ≤
∥∥(I − PnK)−1

∥∥ · ‖ρ− Pnρ‖∞ , n ≥ n0 (12)

Furthermore, if f ∈ Cr+1(S), then

‖ρ− ρn‖∞ = O(hr+1), n ≥ n0 (13)

For the proof, see, for example, Atkinson [1].

So interpolation of order r, leads to an error of order O(hr+1). But super-

convergent methods can be developed. Next, we want to explore in more detail the

collocation method based on piecewise constant interpolation (the centroid method)

and show that it is superconvergent at the collocation points. Define the operator Pn

by

Png(P ) = g(Pk), P ∈ ∆k, k = 1, ..., n (14)

for g ∈ C(S). Then, Pn is a bounded operator on C(S) with ‖Pn‖ = 1. Define a

collocation method with (14). Substitute

ρn(P ) = ρn(Pk), P = mk(s, t) ∈ ∆k, k = 1, ..., n (15)

into (5). To determine the values {ρn(Pk)}, force the equation resulting from the

substitution to be true at the collocation nodes {Pk | k = 1, ..., n}. This leads to the

linear system

ρn(Pi) +
1
2π

n∑
k=1

ρn(Pk) ·
∫
σ

cos θQk

|Pk −mk(s, t)|2

· |(Dsmk ×Dtmk) (s, t)| dσ = f(Pk), i = 1, ..., n (16)
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which can be rewritten abstractly as

(I + PnK) ρn = Pnf (17)

which will be compared to (6).

By Theorem 2.1., for the true solution ρ of (6) and the solution ρn of the

collocation equation (17), we have

‖ρ− ρn‖∞ = O(h), n ≥ n0 (18)

For g ∈ C(σ), consider the interpolation formula (14), which has degree of precision

0. Integrating it over σ, we obtain∫
σ

g(s, t) dσ ≈
∫
σ

Lτg(s, t) dσ =
1
2
g

(
1
3
,
1
3

)
(19)

which has degree of precision 1.

For τ ⊂ R2, a planar triangle and for a function g ∈ C(τ), the function

Lτg(x, y) = g

(
mτ

(
1
3
,
1
3

))
= g(Pτ ) (20)

is the constant polynomial interpolating g at the node mτ

(
1
3
,
1
3

)
= Pτ (the centroid

of τ). We have the following.

Lemma 2.2. Let τ be a planar right triangle and assume the two sides which

form the right angle have length h. Let g ∈ C2(τ). Let Φ ∈ L1(τ) be differentiable

with the first derivatives DxΦ, DyΦ ∈ L1(τ). Then∣∣∣∣∣∣
∫
τ

Φ(x, y) (I − Lτ ) g(x, y) dτ

∣∣∣∣∣∣ ≤ ch2

∫
τ

(|Φ|+ |DΦ|) dτ

 ·max
τ

{
|Dg|, |D2|g

}
(21)

For the proof, see Micula [6, pg 74-75].

This result can be extended to general triangles, provided

sup
n

[
max

∆n,k∈Tn

r(∆n,k)
]

< ∞ (22)

where

r(τ) =
h(τ)
h∗(τ)

(23)
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with h(τ) and h∗(τ) denoting the diameter of τ and the radius of the circle inscribed

in τ , respectively.

Corollary 2.3. Let τ be a planar triangle of diameter h, let g ∈ C2(τ), and

let Φ ∈ L1(τ) with both first derivatives in L1(τ). Then∣∣∣∣∣∣
∫
τ

Φ(x, y)(I − Lτ )g(x, y)

∣∣∣∣∣∣ ≤ c (r(τ))h2

∫
τ

(|Φ|+ |DΦ|) dτ


· max

τ

{
‖Dg‖∞, ‖D2g‖∞

}
(24)

where c (r(τ)) is some multiple of r(τ) of (23).

Since formula (22) has degree of precision 1 (odd) over σ, extending it to a

square would not improve the degree of precision, which means the same error bound

as in Lemma 2.2 is true for a parallelogram formed by two symmetric triangles.

We want to apply the above results to the individual subintegrals in

Kg(Pi) =
1
2π

n∑
k=1

∫
σ

cos θQk

|Pk −mk(s, t)|2
ρ (mk(s, t))

· |(Dsmk ×Dtmk) (s, t)| dσ (25)

with the role of g played by ρ (mk(s, t)) |(Dsmk ×Dtmk) (s, t)|, and the role of Φ

played by
cos θQk

|Pk −mk(s, t)|2
. For the derivatives of this last function, we have

Theorem 2.4. Let i be an integer and S be a smooth Ci+1 surface. Then

∣∣∣∣Di
Q

(
cos θQ

|P −Q|2

)∣∣∣∣ ≤ c

|P −Q|i+1
, P 6= Q (26)

with c a generic constant independent of P and Q.

For details of the proof, see Micula [6, pg.76].

For the error at the collocation node points, we have the following.

Theorem 2.5. Assume the hypotheses of Theorem 2.1, with each Fj ∈ C2.

Assume ρ ∈ C2. Assume the triangulation Tn of S satisfies (22) and is symmetric. For

those integrals in (25) for which Pi ∈ ∆k, assume that all such integrals are evaluated
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with an error of O(h2). Then

max
1≤i≤n

|ρ(Pi)− ρ̂n(Pi)| ≤ ch2 log h (27)

Proof. We will bound

max
1≤i≤n

|K(I − P )nu(vi)|

For a given node point vi, denote ∆∗ the triangle containing it and denote:

T ∗n = Tn − {∆∗}

By our assumption, the error in evaluating the integral of (25) over ∆∗ will be O(h2).

Partition T ∗n into parallelograms to the maximum extent possible. Denote by

T (1)
n the set of all triangles making up such parallelograms and let T (2)

n contain the

remaining triangles. Then

T ∗n = T (1)
n ∪ T (2)

n .

It is easy to show that the number of triangles in T (1)
n is O(n) = O(h−2), and the

number of triangles in T (2)
n is O(

√
n) = O(h−1).

It can be shown that all but a finite number of the triangles in T (2)
n , bounded

independent of n, will be at a minimum distance from vi. That means that the

triangles in T (2)
n are “far enough” from vi, so that the function G(vi, Q) is uniformly

bounded for Q being in a triangle in T (2)
n (where we denote by G(P,Q) =

cos θQ

|P −Q|2
).

First, consider the contribution to the error coming from the triangles in

T (2)
n . By Lemma 2.2. the error over each such triangle is O

(
h2‖D2g‖∞

)
, since the

area of each triangle is O(h2) and using our earlier observation. Having O(h−1) such

triangles in T (2)
n , the total error coming from triangles in T (2)

n is O
(
h3‖D2g‖∞

)
.

Next, consider the contribution to the error coming from triangles in T (1)
n .

By Lemma 2.2., the error will be of size O(h2) multiplied times the integral over each

such parallelogram of the maximum of the first derivatives of G(vi, Q) with respect

to Q. Combining these we will have a bound

ch2

∫
S−∆∗

(|G|+ |DG|) dSQ (28)
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By Theorem 2.4., the quantity in (28) is bounded by

ch2

∫
S−∆∗

(
1

|P −Q|
+

1
|P −Q|2

)
dSQ (29)

Using a local representation of the surface and then using polar coordinates,

the expression in (29) is of order

ch2 (h + log h)

Thus, the error arising from the triangles in T (1)
n is O(h2 log h). Combining the error

arising from the integrals over ∆∗, T (1)
n , and T (2)

n , we have (27).

�
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FEEDBACK DIFFERENTIAL SYSTEMS: APPROXIMATE
AND LIMITING TRAJECTORIES

ŞTEFAN MIRICĂ

Abstract. A ”feedback differential system” is defined as a (generally dis-

continuous) parameterized differential inclusion (in particular, differential

equation), that usually appears in the description of the complete solu-

tion of an optimal control problem or a differential game. In this article

one obtains certain invariant characterizations of the uniform limits of two

types of approximate trajectories: the well-known ”Euler polygonal lines”

and the less known ”Isaacs approximate trajectories” suggested by the

natural assumption of the discrete (step-by-step) ”action” of a player in

optimal control and differential games. The main results state that under

very general hypotheses on the data, the limiting Euler and, respectively,

Isaacs-Krassovskii-Subbotin trajectories are Carathéodory solutions of two

distinct associated differential inclusions defined by corresponding ”u.s.c.-

convexified” limits of the original orientor fields. In particular, one provides

a counter-example of a ”conjecture” in Krassovskii and Subbotin(1974) and

one gives a complete proof of the correct variant of this conjecture.

1. Introduction

The aim of this paper is to obtain certain ”invariant” characterizations of

the uniform limits of the well-known ”Euler polygonal lines” in the general theory

of Ordinary Differential Equations (ODE), on one hand and, on the other hand, of

the less known ”Isaacs approximate trajectories” of ”proper” feedback differential
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Key words and phrases. feedback differential system, differential inclusion, Carathéodory trajectory,
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systems, naturally appearing in the description of the complete solutions of optimal

control problems and differential games.

We recall that the ”limiting Euler trajectories” are frequently used not only

in the general theory of ODE (e.g. Kurzweil(1986)[9]) and differential inclusions

(e.g. Aubin and Cellina(1984)[1]) to prove the existence of classical (Newton or

Carathéodory) solutions but also in the description of corresponding numerical algo-

rithms; in a more general setting of certain types of differential inclusions, the study

of the limiting Euler trajectories has been recently taken-up in Clarke et al(1998)[3].

On the other hand, the limiting ”Isaacs-Krassovskii-Subbotin” trajectories

have been considered first in Krassovskii and Subbotin(1974)[8] in an attempt to

put on a more rigorous basis the rather heuristical approach in Isaacs(1965)[7] which

referred only to the corresponding ”approximate” trajectories; however, Krassovskii

and Subbotin(1974), without mentioning Isaacs’ name, identified ”Isaacs approximate

trajectories” as ”Euler polygonal lines” (which is not true, as the definitions below

show) and, moreover, formulated a ”conjecture” (contradicted by the counterexample

in Remark 4.3 below) according to which these limiting trajectories are Carathéodory

solutions of a certain associated differential inclusion.

The main results of this paper are contained in Sections 3 and 4 below and

show that under some mild hypotheses on the data, these types of limiting trajec-

tories are Carathéodory solutions of certain associated u.s.c.-convexified differential

inclusions which are closely related to concepts introduced by Cesari(1983)[2], Filip-

pov(1988)[5] and Mirică(1992)[10] in different contexts.

As a general idea, we point out that, as in [1], [2], [3], [11], etc., in the

proofs of the main results in Sections 3 and 4 below, we shall use, in a more explicit

manner, a string of arguments based, first, on the ”compactness” [Theorem 0.3.4 in

Aubin and Cellina(1984)[1]] (which may be considered a refinement of the well-known

Arzelà-Ascoli theorem), then the so called Banach-Saks-Mazur Lemma in Functional

Analysis (e.g. Yosida(1974)[15]) and, finally, some arguments from basic Measure

Theory (e.g. Dunford and Schwartz(1958)[4]).
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One may note also that the results in Sections 3 and 4 below may explain

some of the apparent ”anomalies” pointed out in [Clarke et al(1998)[3], Section 4.1.2]

and the role of the usual hypotheses in the general theory of ODE.

The paper is organized as follows: in Section 2 we present the necessary

notations, definitions and preliminary results needed in the sequel and in Section 3

we prove the main result and some comments concerning the characterization of the

limiting Euler(E-) trajectories; in Section 4 we prove in the same way the more com-

plicated analogous results regarding the limiting Isaacs-Krassovskii-Subbotin(IKS)

trajectories.

2. Notations, definitions and preliminary results

In this paper we shall be concerned mainly with a feedback differential

system (actually a ”parameterized differential inclusion”) of the form

x′ ∈ F (t, x) := f(t, x, U(t, x)), x(t0) = x0, t ∈ I = [t0, t1], (2.1)

defined by a non-empty set (of ”control parameters”) U , a parameterized vector field

f(., ., .) : D × U → Rn and a multifunction (”feedback strategy”) U(., .) : D ⊆

R × Rn → P(U) where P(U) denotes the family of all subsets of U ; we note that

in the particular case in which U ⊆ Rn, f(t, x, u) ≡ u one has a ”general” (non-

parameterized) differential inclusion

x′ ∈ F (t, x) := U(t, x), x(t0) = x0, t ∈ I = [t0, t1], (t0, x0) ∈ D (2.2)

while in the case the multifunction U(., .) is either absent or ”reduces” to a point,

U(t, x) ≡ {u0}, for some fixed point u0 ∈ U , the inclusion in (2.1) becomes an

”ordinary differential equation”

x′ = g(t, x) := f(t, x, u0), x(t0) = x0, (t0, x0) ∈ D. (2.3)

In what follows, a ∆ − approximate solution is related to a partition (”division”)

of the interval I = [t0, t1] denoted by ∆ = {τ j ; j ∈ {0, 1, ...k + 1}} where t0 =

τ0 < τ1 < ... τk < τk+1 = t1 and whose ”norm”( or ”mesh size”) is defined by

|∆| := max{τ j+1 − τ j ; 0 ≤ j ≤ k}.
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Definition 2.1. If ∆ = {τ j ; j = {0, 1, ...k + 1}} is a partition of the interval

I = [t0, t1] then x∆(.) ∈ AC(I;Rn) is said to be:

(i) an Euler ∆− approximate solution of (2.1) if there exists a finite subset,

{vj ; j ∈ {0, 1, ...k}} ⊂ Rn such that:

x∆(t0) = x∆(τ0) = x0, vj ∈ F (τ j , x∆(τ j)), j ∈ {0, 1, ...k} (2.7)

x∆(t) = x∆(τ j) + (t− τ j)vj ∀ t ∈ Ij = [τ j , τ j+1]; (2.8)

(ii) an Isaacs ∆−approximate solution if there exists a finite subset, {uj ; j ∈

{0, 1, ...k}} ⊂ U such that the mappings f(., x∆(.), uj) are (Lebesgue) integrable and

satisfy the following relations:

x∆(t0) = x∆(τ0) = x0, uj ∈ U(τ j , x∆(τ j)), j ∈ {0, 1, ...k} (2.9)

x∆(t) = x∆(τ j) +
∫ t

τj

f(s, x∆(s), uj)ds ∀ t ∈ Ij = [τ j , τ j+1]. (2.10)

Remark 2.2. We note first that the mappings x∆(.) in (2.8), (2.10) are

defined ”recurrently” on the sub-intervals Ij = [τ j , τ j+1] ⊂ I, j ∈ {0, 1, ...k}

starting from the initial value x∆(τ0) = x0 and choosing, at each step, a point

vj ∈ F (τ j , x∆(τ j)) (respectively, uj ∈ U(τ j , x∆(τ j))); moreover, on each sub-interval

Ij the mapping x∆(.) in (2.10) is a Carathéodory solution of the O.D.E.

x′(t) = f(t, x(t), uj) a.e.(Ij), j ∈ {0, 1, ...k}, Ij = [τ j , τ j+1] (2.11)

while the corresponding mapping in (2.8) is a piecewise affine mapping with the con-

stant derivative vj ∈ F (τ j , x∆(τ j)) on the sub-interval Int(Ij) = (τ j , τ j+1); one may

note that while an Euler ∆−solution may be defined for general (non-parameterized)

differential inclusions, the Isaacs ∆− solutions in (2.10) are specific to the ”properly

parameterized” differential inclusions in (2.1) since in the case of the general ones in

(2.2), they become Euler ∆− solutions.

Further on, as it is well known, the ”integrability” condition in Def.1(ii)

(which is rather difficult to verify in the general case) is implied by the fact that the

mappings f(., ., u), u ∈ U are Carathéodory vector fields (e.g. [5], [9], [11], etc.); for
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the proof of the main result in Section 3 below we need the following more restrictive

property:

Hypothesis 2.3. The data of the problem (2.1) have the following properties:

(i): U 6= ∅, D = Int(D) ⊆ R×Rn (i.e. is open) and U(., .) : D → P(U) has

non-empty values at each point;

(ii): the mapping f(., ., .) : D×U → Rn is such that there exists a null subset

If ⊂ pr1D such that:

(ii1): the mappings f(., x, u), x ∈ pr2D, u ∈ U are measurable;

(ii2): the mappings f(t, ., u), t ∈ pr1D \ If , u ∈ U are continuous;

(iii): the multifunctions F (., .) := f(., ., U(., .)) and U(., .) are ”jointly” locally

integrably-bounded in the sense that for any compact subset D0 ⊂ D there exists an

integrable mapping c(.) ∈ L1(pr1D0;R+) and a null subset I0 ⊂ pr1D0 such that:

||f(t, x, u)|| ≤ c(t) ∀ (t, x) ∈ D0, t ∈ pr1D0 \ I0, u ∈ U(D0) (2.12)

where U(D0) :=
⋃
{U(s, y); (s, y) ∈ D0}.

One may note that property (iii) is implied by the usual hypothesis accord-

ing to which U is a compact topological space and f(., ., ) is continuous (with re-

spect to all variables); moreover, property (ii) implies the fact that f(., ., u), u ∈ U

are Carathéodory vector fields hence the definition of the Isaacs ∆ − solutions in

Def.2.4(ii) makes sense without the ”artificial” requirement of the integrability con-

dition.

On the other hand, for the study of the limiting Euler-trajectories in Section

3 we need only a simpler ”local boundedness” property of the orientor field F (., .)

(see Th.3.1 below).

In what follows we shall study the corresponding types of ”limiting trajecto-

ries” defined as ”uniform limits” of the approximate trajectories in Def.2.1; we recall

that the ”limiting Euler trajectories” are frequently used not only in the general

theory of ODE (e.g. Kurzweil(1986)[9]) and differential inclusions (e.g. Aubin and

Cellina(1984)[1]) to prove the existence of classical (Newton or Carathéodory) solu-

tions but also in the description of certain numerical algorithms; on the other hand,
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the limiting ”Isaacs-Krassovskii-Subbotin” (IKS- trajectories have been considered

first in Krassovskii and Subbotin(1974)[8] in an attempt to put on a more rigorous

basis the rather heuristical approach in Isaacs(1965)[7] which referred only to the

corresponding ”approximate” trajectories.

Definition 2.4. The continuous mapping x(.) ∈ C(I;Rn) is said to be:

(i): an Euler(E)-trajectory of the problem in (2.1) if there exist a se-

quence of partitions ∆m = {τ j
m; j ∈ {0, 1, ...km + 1}}, m ∈ N of the interval

I = [t0, t1], the subsets {vj
m; j ∈ {0, 1, ...km}} ⊂ Rn and the corresponding Euler

∆m − solutions, xm(.) := x∆m(.), m ∈ N in (2.7),(2.8) such that:

|∆m| → 0, xm(t) → x(t) uniformly for t ∈ I as m →∞; (2.13)

(ii): an Isaacs-Krassovskii-Subbotin(IKS)-trajectory of the problem (2.1) if

there exist a sequence of partitions ∆m = {τ j
m; j ∈ {0, 1, ...km + 1}}, m ∈ N of the

interval I = [t0, t1], the subsets {uj
m; j ∈ {0, 1, ...km}} ⊂ U and the corresponding

Isaacs ∆m − solutions, xm(.) := x∆m(.), m ∈ N in (2.9), (2.10) such that the

properties in (2.13) are satisfied.

Note that, in general the uniform limit of xm(.) (in the topology generated

by the norm ‖x(.)‖C := max{‖x(t)‖; t ∈ I} of the space C(I;Rn) of continuous

mappings) need not be absolutely continuous (AC), not even a.e. differentiable; a

sufficient condition for this property is given in the following [compactness theorem

0.3.4 in Aubin and Cellina[1]] which seems to be more suitable than the classical

Arzelà-Ascoli theorem, in the study of Carathéodory-type differential inclusions and

differential equations.

Theorem 2.5 (compactness). Let X be a Banach space, let I ⊂ R be an

interval and let {xm(.)} ⊂ AC(I;X) be a sequence of AC mappings with the following

properties:

(i): for each t ∈ I the subset {xm(t); m ∈ N} ⊂ X is relatively compact;

(ii): there exists an integrable function c(.) ∈ L1(I;R+) such that

‖x′
m(t)‖ ≤ c(t) a.e.(I) ∀ m ∈ N.
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Then there exists a subsequence {xmj (.)} and a mapping x(.) ∈ AC(I;X) such that

(1): xmj
(.) → x(.) uniformly on each compact subset of I;

(2): x′
mj

(.) → x′(.) weakly in the space L1(I;X) of integrable mappings.

One may note that in the case X = Rn, if xm(.) are equally bounded and

property (ii) is satisfied then xm(.) are also uniformly equi-continuous hence one

may apply the Arzelà-Ascoli Theorem but the conclusion in Theorem 2.5 is stronger,

stating not only the fact that the limit is AC but also the weak convergence (in L1)

of the derivatives.

As in the study of many other problems (e.g. [11]), at a certain stage of the

proofs of the main results, we shall use the following important theorem in Functional

Analysis which seems to belong, jointly, to Banach, Saks and Mazur though in some

books and monographs only one, two or no names are mentioned.

Theorem 2.6 (Banach-Saks-Mazur). Let X be a normed space, let X∗

be its dual and let xm, x ∈ X, m ∈ N be such that xm → x weakly i.e. such that

x∗(xm) → x∗(x) ∀ x∗ ∈ X∗.

Then for each m ∈ N there exist the integer im ≥ m and the real numbers,

ci
m ∈ R such that

ci
m ≥ 0,

im∑
m

ci
m = 1 and ‖ym − x‖ → 0 if ym :=

im∑
m

ci
mxi.

For the proof and equivalent statements of this important result we refer to Yosida

[15], to Dunford and Schwartz [4] and to the references therein.

Finally, we shall use also the following result in Measure Theory which is very

often used as a piece of ”Mathematical folklore”.

Theorem 2.7. (Measure Theory). Let X be a Banach space, let I =

[a, b] ⊂ R be a compact interval and let xm(.), x(.) ∈ L1(I;X) be such that xm(.) →

x(.) strongly in L1.

Then there exist a subsequence xmj
(.) such that xmj

(t) → x(t) a.e.(I).

For a proof of this theorem we refer to Theorem 3.3.6 and Corollary 3.6.13

in Dunford and Schwartz [4].
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In what follows ‖.‖ denotes the Euclidean norm on Rn, if r > 0 and x ∈ Rn

then Br(x) := {y ∈ Rn; ‖y−x‖ < r} and if A ⊂ Rn then Int(A), Cl(A), co[A], co[A]

denote the interior, the closure, the convex hull and, respectively, the closed convex

hull of A.

3. Limiting Euler trajectories

In this section we use Theorems 2.5, 2.6, 2.7 to obtain certain ”invariant”

characterizations of the limiting Euler trajectories in Def.2.4(i) and, in particular, of

existence theorems for solutions of upper semicontinuous convex-valued differential

inclusions and differential equations.

Theorem 3.1. If the ”orientor field” F (., .) : D = Int(D) ⊆ R × Rn →

P(Rn) is locally bounded in the sense that for any compact subset D0 ⊂ D there

exists c > 0 such that

‖v‖ ≤ c ∀ v ∈ F (D0) :=
⋃
{F (t, x); (t, x) ∈ D0} (3.1)

and x(.) ∈ C(I;Rn) is an Euler trajectory in the sense of Def.2.4(i) of the differential

inclusion in (2.2) then x(.) is a Carathéodory (AC) solution of the u.s.c.-convexified

differential inclusion

x′ ∈ F co(t, x) :=
⋂
δ>0

co[F ((t− δ, t + δ)×Bδ(x))]. (3.2)

Proof. From Def.2.4(i) it follows that there exist a sequence of partitions ∆m =

{τ j
m; j ∈ {0, 1, ...km + 1}}, m ∈ N of the interval I = [t0, t1], the subsets

{vj
m; j ∈ {0, 1, ...km}} ⊂ Rn and the corresponding Euler ∆m − solutions, xm(.) :=

x∆m(.),m ∈ N in (2.7),(2.8), hence such that the following relations are satisfied on

the intervals Ij
m = [τ j

m, τ j+1
m ]:

xm(t) = xm(τ j
m) + (t− τ j

m)vj
m, t ∈ Ij

m, vj
m ∈ F (τ j

m, xm(τ j
m)) (3.3)

and such that the properties in (2.13) hold true; obviously, the property in (3.3) is

equivalent with the fact that

x′
m(t) = vj

m ∀ t ∈ (τ j
m, τ j+1

m ), j ∈ {0, 1, ...km}, x(t0) = x0. (3.4)
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On the other hand, since D ⊆ R × Rn is open and x(.) is continuous, there exists

r > 0 and a rank mr ∈ N such that

D0 := {(t, y); t ∈ I, y ∈ Br(x(t)) := Cl(Br(x(t))} ⊂ D (3.5)

(t, xm(t)) ∈ D0 ∀ t ∈ I, m ≥ mr. (3.6)

As already stated, the general idea is to show that Theorems 2.5, 2.6, 2.7 are succes-

sively applicable to the above sequence {xm(.); m ≥ mr} ⊂ AC(I;Rn); to this end

we note that from the fact that (τ j
m, xm(τ j

m)) ∈ D0 ∀ m ≥ mr, j ∈ {0, 1, ...km} and

from the properties in (3.1) and (3.4) it follows that

‖x′
m(t)‖ ≤ c ∀ t ∈ I \ {τ j

m; j ∈ {0, 1, ...km}, m ≥ mr. (3.7)

Therefore Th.2.5 is applicable to the sequence {xm(.); m ≥ mr} hence taking possibly

a subsequence, without loss of generality, we may assume that x(.) ∈ AC(I;Rn) and

that x′
m(.) → x′(.) weakly in L1(I;Rn); next, we apply first Th.2.6 to obtain the

existence of the non-negative numbers ci
m ≥ 0 and of the natural numbers im ≥ m

such that
im∑
m

ci
m = 1, ‖

im∑
m

ci
mx′

i(.)− x′(.)‖L1 → 0 as m →∞ (3.8)

while from Th.2.7 it follows that, taking possibly a subsequence, one may assume that

there exists a null subset I2 ⊂ I such that:

ci
m ≥ 0,

im∑
m

ci
m = 1, ym(t) :=

im∑
m

ci
mx′

i(t) → x′(t) ∀ t ∈ I \ I2. (3.9)

From (2.13) it follows now that for each δ > 0 there exists a rank mδ ≥ mr such that

∀ t ∈ I, m ≥ mδ ∃j = j(t, m) ∈ {0, 1, ...km} such that (τ j
m, xm(τ j

m)) ∈ (t− δ, t + δ)×

Bδ(x(t)) which, in view of (3.4) and of the fact that vj
m ∈ F (τ j

m, xm(τ j
m)) implies:

x′
m(t) ∈ F ((t− δ, t + δ)×Bδ(x(t)) ∀ t ∈ I \ {τ j

m; j ∈ {0, 1, ...km + 1}},m ≥ mδ

and which, in turn, in view of (3.9), implies the fact that x(.) is a Carathéodory

solution of the differential inclusion in (3.2).

In the particular case of locally bounded but otherwise arbitrary vector fields

in (2.3) we obtain immediately the following result.
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Corollary 3.2. If g(., .) : D = Int(D) ⊆ R×Rn → Rn is a vector field that is

locally bounded in the sense of (3.1) and x(.) ∈ C(I;Rn) is an Euler-trajectory of

the ODE in (2.3) in the sense of Def.2.4(i) then x(.) is a Lipschitzian (Carathéodory)

solution of the differential inclusion

x′ ∈ gco(t, x) :=
⋂
δ>0

co[g((t− δ, t + δ)×Bδ(x))]. (3.10)

In particular, if g(., .) is continuous (with respect to both variables) then x(.) is a

continuously differentiable (”Newton’s”) solution of the same equation.

Remark 3.3. One may note that the statement in Cor.3.2 is much weaker

than the corresponding one in Cor.4.2 below for IKS-trajectories of ODE and simple

examples (e.g. [Clarke et al.[3], Section 4.1.2]) show that it cannot be significantly

improved; according to these examples, even if g(., .) is continuous, an E-trajectory

may not be a C-solution of (2.3) and, on the other hand, a Newton (i.e., of class C1)

solution may not be an E-trajectory. The only case in which an equivalence analogous

to the one in Cor.4.2 may hold seems to be that of the ”Peano-Lipschitz vector fields”,

g(., .), which are continuous with respect to both variables and locally-Lipschitz with

respect to the second one or, slightly more general, that have the uniqueness property

in the theory of ODE.

4. Limiting Isaacs-Krassovskii-Subbotin trajectories

The main result of this section is the following theorem giving the correct

variant of the ”conjecture” in [Krassovskii and Subbotin (1974)[8], Section 2.7].

Theorem 4.1. If Hypothesis 2.3 is satisfied and x(.) ∈ C(I;Rn) is a IKS-

trajectory in the sense of Def.2.4(ii) then x(.) is a Carathéodory solution of the u.s.c.-

convexified differential inclusion

x′ ∈ F co
u (t, x) :=

⋂
δ>0

co[
⋃
{f(t, y, U(s, z)); y ∈ Bδ(x),

(s, z) ∈ (t− δ, t + δ)×Bδ(y)}].
(4.1)

Proof. From Def.2.4(ii) it follows that there exist a sequence of partitions ∆m =

{τ j
m; j ∈ {0, 1, ...km + 1}}, m ∈ N , of the interval I = [t0, t1], the subsets {uj

m; j ∈
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{0, 1, ...km}} ⊂ U and the corresponding Isaacs ∆m−solutions, xm(.) := x∆m(.),m ∈

N in (2.9),(2.10), hence such that:

xm(t0) = xm(τ0) = x0, uj
m ∈ U(τ j

m, xm(τ j
m)), j ∈ {0, 1, ...km} (4.2)

xm(t) = xm(τ j
m) +

∫ t

τj
m

f(s, xm(s), uj
m)ds ∀ t ∈ Ij

m = [τ j
m, τ j+1

m ] (4.3)

and such that the properties in (2.13) hold true; as already noted, the property in

(4.3) is equivalent with the fact that there exists a null subset, I1 ⊂ I, I1 ⊃ {τ j
m; m ∈

N, j ∈ {0, 1, ...km + 1} such that:

x′
m(t) = f(t, xm(t), uj

m) ∀ t ∈ (τ j
m, τ j+1

m ) \ I1, x(t0) = x0. (4.4)

On the other hand, since D ⊆ R×Rn is open and x(.) is continuous (hence x(I) ⊂ Rn

is compact), there exist r, mr > 0 such that (3.5) and (3.6) hold.

As in the proof of Th.3.1, the general idea is to show that Theorems 2.5, 2.6,

2.7 are successively applicable to the above sequence {xm(.); m ≥ mr} ⊂ AC(I;Rn);

to this end we note that from Hypothesis 2.3(iii) it follows that for the compact subset

D0 ⊂ D in (3.5) there exists an integrable function c(.) ∈ L1(I;R+) and a null subset

I0 ⊂ I = pr1D0 such that (2.12) holds; further on, since from (3.6) it follows that,

in particular, (τ j
m, xm(τ j

m)) ∈ D0, hence uj
m ∈ U(τ j

m, xm(τ j
m)) ⊂ U(D0), from (2.12)

and (4.4) it follows that:

‖x′
m(t)‖ ≤ c(t) ∀ t ∈ I \ (I0 ∪ I1), m ≥ mr. (4.5)

Therefore Th.2.5 is applicable to the sequence {xm(.); m ≥ mr} hence taking possibly

a subsequence (without loss of generality), we may assume that x(.) ∈ AC(I;Rn) and

also that x′
m(.) → x′(.) weakly in L1(I;Rn); next, we apply Th.2.6 to obtain the

existence of the non-negative numbers ci
m ≥ 0 and of the natural numbers im ≥ m

such that (3.8) holds while from Th.2.7 it follows that, taking possibly a subsequence,

one may assume that there exists a null subset I2 ⊂ I, I2 ⊃ I1, such that (3.9) holds.

We shall prove now that for each δ > 0 there exists a rank mδ ≥ mr such

that ∀ t ∈ I \ I1, m ≥ mδ one has:

x′
m(t) ∈

⋃
{f(t, xm(t), U(s, z)); (s, z) ∈ (t− δ, t + δ)×Bδ(xm(t))} (4.6)
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which, in view of (2.13) and (3.9), implies in the following way the fact that x(.) is a

Carathédory solution of the differential inclusion in (4.1): from (2.13) it follows that

for δ > 0 there exists a rank mδ ≥ mr such that xm(t) ∈ Bδ(x(t)) ∀ t ∈ I, m ≥ mδ

hence from (4.6) it follows that for each δ > 0, t ∈ I \ I1 one has:

x′
m(t) ∈

⋃
{f(t, y, U(s, z)); y ∈ Bδ(x(t)), (s, z) ∈ (t− δ, t + δ)×Bδ(y)}

which, in view of (3.9), implies the fact that x(.) is a C-solution of (4.1).

To prove (4.6) we use first the well-known absolute continuity of the Lebesgue

integral, J 7→
∫

J
c(s)ds to obtain that for δ > 0 there exists ηδ > 0 such that∫

J

c(s)ds < δ ∀ J ⊂ I, µ(J) < ηδ;

next, we use the property in (2.13) to obtain the existence of a rank mδ ≥ mr such

that

|∆m| < min{δ, ηδ}, ‖xm(t)− x(t)‖ < δ ∀ m ≥ mδ, t ∈ I

hence, in particular, such that:∫ t

τj
m

c(s)ds < δ, t− τ j
m ≤ |∆m| < δ ∀ t ∈ Ij

m = [τ j
m, τ j+1

m ].

Therefore from (3.3), (3.4) and (4.5) it follows that:

‖xm(t)− xm(τ j
m)‖ ≤

∫ t

τj
m

c(s)ds < δ, ∀ t ∈ Ij
m = [τ j

m, τ j+1
m ]

hence (τ j
m, xm(τ j

m)) ∈ (t− δ, t + δ)×Bδ(xm(t)) and the relation in (4.6) follows from

(3.4) and from the fact that uj
m ∈ U(τ j

m, xm(τ j
m)).

In the particular case of the Carathéodory ODE in (2.3) we obtain the fol-

lowing result.

Corollary 4.2. If g(., .) : D = Int(D) ⊆ R × Rn → Rn is a Carathéodory

vector field in the sense of Hypothesis 2.3(ii),(iii) then x(.) ∈ AC(I;Rn) is an IKS-

trajectory of the ODE in (2.3) iff it is a Carathéodory solution of the same equation.

Proof. If x(.) ∈ AC(I;Rn) is a Carathéodory(C) solution of (2.3) then,

obviously, for any partition ∆ of the interval I it is an Isaacs ∆− solution hence x(.)

is an IKS-trajectory in the sense of Def.2.4(ii).

94



FEEDBACK DIFFERENTIAL SYSTEMS: APPROXIMATE AND LIMITING TRAJECTORIES

Conversely, if x(.) ∈ C(I;Rn) is a IKS-trajectory then according to Th.3.1

it is a C-solution of the differential inclusion in (4.1) which, in this case, is defined by

the orientor field

F co
u (t, x) = (g(t, .))co(x) :=

⋂
δ>0

co[g(t, Bδ(x))];

finally, since g(t, .) is assumed to be continuous for t ∈ pr1D \ Ig for some null subset

Ig ⊂ pr1D, it is easy to see that

F co
u (t, x) = (g(t, .))co(x) = {g(t, x)} ∀ t ∈ pr1D \ Ig, x ∈ pr2D

hence x(.) is a C-solution of (2.3).

Remark 4.3. We recall that the ”conjecture” in [Krassovskii and Subbotin

(1974)[8], Section 2.7] (in the case of the single-valued feedback strategies U(., .) =

{u(., .)}), states that ”using standard tools in the theory of ODE one may prove that

any ”perfect” (i.e. IKS) trajectory is a ”generalized” trajectory in the sense that it

is a Carathéodory solution of the associated differential inclusion” in (3.2).

Besides the fact that Theorems 2.5, 2.6, 2.7 above (that have been used

essentially in the proof of Th.3.1, 4.1) may hardly be taken as ”standard tools in

the theory of ODE”, the conjecture may be considered justified only in the case the

multifunctions in (4.1) and (3.2) are related as follows: F co
u (t, x) ⊆ F co(t, x) ∀ (t, x) ∈

D as it is the case of the vector fields g(., .) in Cor.4.2, since one may write successively:

F co
u (t, x) ≡ g(t, .)co(x) ≡ {g(t, x)} ⊆ F co(t, x) ≡ gco(t, x); in the general case, the

orientor fields in (4.1) and (3.2) may not be related in this way and very simple

examples show that Krassovskii-Subbotin conjecture is false. For instance, if d(.) is

the well-known ”Dirichlet function”

d(t) :=

 1 if t ∈ Q

0 if t ∈ R \Q

and f(t, x, u) ≡ d(t) + u, U(t, x) ≡ {1− d(t)} ⊂ U := [0, 1] then obviously F (t, x) ≡

F co(t, x) ≡ {1} while the convexified u.s.c.-limit in (4.1) is given by: F co
u (t, x) ≡

d(t) + [0, 1]; therefore, the only C-solution of (3.2) that satisfies x(0) = 0 ∈ R is

the function x(t) = t, t ∈ I = [0, 1] while taking a sequence {∆m} of partitions of
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I = [0, 1] such that τ j
m ∈ Q it follows that x0(t) ≡ 0 is an IKS-trajectory of (2.1)

that it is not a C-solution of (3.2).
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume XLIX, Number 3, September 2004

ON STRONGLY NONLINEAR PARABOLIC FUNCTIONAL
DIFFERENTIAL EQUATIONS OF DIVERGENCE FORM

LÁSZLÓ SIMON

Abstract. We consider initial boundary value problems for second order

strongly nonlinear parabolic equations where also the main part contains

functional dependence on the unknown function.

Introduction

This investigation was motivated by works [4], [5] of M. Chipot on ”nonlocal

evolution problems” for the equation

Dtu−
n∑

i,j=1

Di[aij(l(u(·, t))Diu] + a0(l(u(·, t))u = f in Ω×R+ (0.1)

where Ω ⊂ Rn is a bounded domain with sufficiently smooth boundary,

n∑
i,j=1

aij(ζ)ξiξj ≥ λ|ξ|2 for all ξ ∈ Rn, ζ ∈ R

with some constant λ > 0,

l(u(·, t)) =
∫

Ω

g(x)u(x, t)dx

with a given function g ∈ L2(Ω). Existence and asymptotic properties (as t→∞) of

solutions of initial-boundary value problems for (0.1) were proved. That problem was

motivated by diffusion process (for heat or population), where the diffusion coefficient

depends on a nonlocal quantity.

Received by the editors: 13.10.2004.
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Our aim is to consider similar problems for quasilinear parabolic functional

differential equations of the form

Dtu−
n∑

i=1

Di[ai(t, x, u(t, x), Du(t, x);u)] + a0(t, x, u(t, x), Du(t, x);u)+ (0.2)

b(t, x, u(t, x);u) = f in QT0 = (0, T0)× Ω

with homogeneous Dirichlet boundary and initial conditions, where the functions

ai : QT0 ×Rn+1 × Lp(0, T0;V ) → R

(with V = W 1,p
0 (Ω), 2 ≤ p < ∞) satisfy conditions which are generalizations of

conditions for strongly nonlinear parabolic differential equations, considered in [3],

[7], [8] by using the theory of monotone type operators; ai have polynomial (p − 1

power) growth with respect to u(t, x), Du(t, x) and b may be quickly increasing in

u(t, x).

1. Existence in [0, T0]

Let Ω ⊂ Rn be a bounded domain having the uniform C1 regularity property

(see [1]) and V = W 1,p
0 (Ω) the usual Sobolev space of real valued functions which is

the completion of C∞0 (Ω) with respect to the norm

‖ u ‖=
[∫

Ω

(|Du|p + |u|p)
]1/p

.

Denote by Lp(0, T0;V ) the Banach space of the set of measurable functions u :

(0, T0) → V such that ‖ u ‖p is integrable and define the norm by

‖ u ‖p
Lp(0,T0;V )=

∫ T0

0

‖ u(t) ‖p
V dt.

The dual space of Lp(0, T0;V ) is Lq(0, T0;V ?) where 1/p + 1/q = 1 and V ?

is the dual space of V (see, e.g., [6], [11]).

Assume that

I. The functions ai : QT ×Rn+1×Lp(0, T0;V ) → R satisfy the Carathéodory

conditions for arbitrary fixed v ∈ Lp(0, T0;V ) (i = 0, 1, ..., n).
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II. There exist bounded (nonlinear) operators g1 : Lp(0, T0;V ) → R+ = and

k1 : Lp(0, T0;V ) → Lq(QT0) such that

|ai(t, x, ζ0, ζ; v)| ≤ g1(v)[|ζ0|p−1 + |ζ|p−1] + [k1(v)](t, x)

for a.e. (t, x) ∈ QT0 , each (ζ0, ζ) ∈ Rn+1 and v ∈ Lp(0, T0;V ).

III.
∑n

i=1[ai(t, x, ζ0, ζ; v)− ai(t, x, ζ0, ζ?; v)](ζi − ζ?
i ) > 0 if ζ 6= ζ?.

IV. There exist bounded operators g2 : Lp(0, T0;V ) → R+, k2 :

Lp(0, T0;V ) → L1(QT0) such that
n∑

i=0

ai(t, x, ζ0, ζ; v)ζi ≥ g2(v)[|ζ0|p + |ζ|p]− [k2(v)](t, x)

for a.e. (t, x) ∈ QT0 , all (ζ0, ζ) ∈ Rn+1, v ∈ Lp(0, T0;V ) and g2(v) ≥ c2 with some

constant c2 > 0,

lim
‖v‖X→∞

‖ k2(v) ‖L1(QT0 )

‖ v ‖p
X

= 0 (1.3)

where we used the notation X = Lp(0, T0;V ). Further, if the sequence (vk)is bounded

in Lp(0, T0;V ) and convergent in Lp(QT0) then the sequence [k2(vk)](t, x)is equiinte-

grable in QT0 .

V. If (uk) → u weakly in Lp(0, T0;V ) and strongly in Lp(QT0) then

lim
k→∞

‖ ai(t, x, uk(t, x), Duk(t, x);uk)− ai(t, x, uk(t, x), Duk(t, x);u) ‖Lq(QT0 )= 0.

VI. b : QT0 × R × Lp(0, T0;V ) satisfies the Carathéodory condition for each

fixed v ∈ LP (0, T0;V ),

0 ≤ b(t, x, ζ0; v)ζ0 ≤ ψ(ζ0)ζ0 ≤ const[b(t, x, ζ0; v)ζ0 + 1]

with some continuous nondecreasing function ψ with ψ(0) = 0.

VII. If (uk) → u in the norm of Lp(QT0) then for a suitable subsequence

b(t, x, uk(t, x);uk) → b(t, x, u(t, x);u) for a.e. (t, x) ∈ QT0 .

Theorem 1.1. Assume I - VII. Then for any f ∈ Lq(0, T0;V ?) there exists

u ∈ Lp(0, T0;V ) ∩ C([0, T0];L2(Ω)) such that u(0) = 0,

b(t, x, u(t, x);u), u(t, x)b(t, x, u(t, x);u) ∈ L1(QT0),
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u is a distributional solution of (0.2). Further, for arbitrary T ∈ [0, T0],

v ∈ Lp(0, T0;V ) ∩ C1([0, T0];L2(Ω)) with v(0) = 0, v ∈ L∞(QT0)

we have ∫ T

0

〈Dtv(t), u(t)− v(t)〉dt+ (1.4)

∫
QT

[
n∑

i=1

ai(t, x, u,Du;u)(Diu−Div) + a0(t, x, u,Du;u)(u− v)

]
dtdx+

1
2
‖ u(T )− v(T ) ‖2

L2(Ω) +
∫

QT

b(t, x, u(t, x);u)(u− v)dtdx =

∫ T

0

〈f(t), u(t)− v(t)〉dt.

Proof. Define

bk(t, x, ζ0; v) = b(t, x, ζ0; v) if b(t, x, ζ0; v) < k,

bk(t, x, ζ0; v) = k if b(t, x, ζ0; v) ≥ k,

bk(t, x, ζ0; v) = −k if b(t, x, ζ0; v) ≤ −k,

[A(u), v]T =∫
QT

[
n∑

i=1

ai(t, x, u(t, x), Du(t, x);u)Div + a0(t, x, u(t, x), Du(t, x);u)v

]
dtdx,

[Bk(u), v]T =
∫

QT

bk(t, x, u(t, x);u)vdtdx, u, v ∈ X = Lp(0, T0;V );

with a fixed u0 ∈ X

[Ãu0(u), v]T =∫
QT

[
n∑

i=1

ai(t, x, u(t, x), Du(t, x);u0)Div + a0(t, x, u(t, x), Du(t, x);u0)v

]
dtdx.

It is not difficult to show that by I, II, IV (for fixed k)

(A+Bk) : Lp(0, T0;V ) → Lq(0, T0;V ?)

is bounded (i.e. it maps bounded sets into bounded sets) and coercive, i.e.

lim
‖v‖X→∞

[(A+Bk)(v), v]T0

‖ v ‖X
= +∞.
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Further, it is well known (see, e.g., [2]) that Ãu0 : X → X? is demicontinuous (i.e. if

(uj) → u strongly in X then (Ãu0(uj)) → Ãu0(u) weakly in X?) and pseudomonotone

with respect to

D(L) = {v ∈ X : Dtv ∈ X?, v(0) = 0},

i.e. if

(uj) → u weakly in X, (Dtuj) → Dtu weakly in X? and

lim sup
j→∞

[Ãu0(uj), uj − u]T0 ≤ 0

then

lim
j→∞

[Ãu0(uj), uj − u]T0 = 0 and (Ãu0(uj)) → Ãu0(u) weakly in X?.

By using assumption V, it is easy to show that also A+Bk : X → X? is demicontin-

uous and pseudomonotone with respect to D(L) (see [10]).

Consequently, for each k there exists uk ∈ D(L) such that

Dtuk + (A+Bk)(uk) = f in [0, T0]. (1.5)

(See, e.g., [2].) Applying (1.5) to v = uk, we obtain by IV and Hölder’s inequality for

any T ∈ [0, T0]

1
2
‖ uk(T ) ‖2

L2(Ω) +c2 ‖ uk ‖p
Lp(0,T ;V ) −

∫
QT

k2(uk)dtdx+ (1.6)

[Bk(uk), uk]T ≤‖ f ‖Lq(0,T ;V ?)‖ uk ‖Lp(0,T ;V ) .

According to VI [Bk(uk), uk]T ≥ 0, thus (1.3), (1.6), II imply that

‖ uk ‖Lp(0,T0;V ), ‖ A(uk) ‖p
Lp(0,T0;V ?), [Bk(uk), uk]T0 are bounded. (1.7)

Consequently, (1.6) and boundedness of k2 imply that

‖ uk ‖L∞(0,T0;L2(Ω)) is bounded. (1.8)

By using VI, |bk| ≤ |b| ≤ |ψ|, we find

|bk(t, x, uk(t, x);uk)| ≤ [ψ(1) + ψ(−1)|+ bk(t, x, uk(t, x);uk)uk
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which implies by (1.7) that∫
QT0

|bk(t, x, uk(t, x);uk)|dtdx is bounded. (1.9)

According to (1.5)

Dtuk = [f −A(uk)]−Bk(uk)) (1.10)

where the first term is bounded in Lq(0, T ;V ?) and the second term is bounded in

L1(QT0). Thus Proposition 1 of [3] implies that there is a subsequence of (uk) (for

simplicity denoted again by (uk)) such that

(uk) → u weakly in Lp(0, T0;V ), strongly in Lp(QT0) and a.e. in QT0 . (1.11)

Further, by (1.7) there exists w ∈ Lq(0, T0;V ?) such that

(A(uk)) → w weakly in Lq(0, T0;V ?). (1.12)

Since by IV k2(uk)(t, x) is equiintegrable in QT0 , we obtain from (1.6), (1.8), (1.11)

u ∈ L∞(0, T0;L2(Ω)), lim
T→0

‖ u ‖L∞(0,T0;L2(Ω))= 0. (1.13)

We obtain from (1.11), assumption VII and the definition of bk that

bk(t, x, uk(t, x);uk) → b(t, x, u(t, x);u) a.e. in QT0 , so (1.14)

ukbk(t, x, uk(t, x);uk) ≥ 0, (1.15)

(1.7), Fatou’s lemma imply

ub(t, x, u(t, x);u) ∈ L1(QT0) and so by VI uψ(u) ∈ L1(QT0). (1.16)

From (1.14), (1.16), VI and Vitali’s theorem we obtain

bk(t, x, uk(t, x);uk) → b(t, x, u(t, x);u) in L1(QT0), ψ(u) ∈ L1(QT0) (1.17)

because for arbitrary ε > 0

|bk(t, x, ζ0;uk)| ≤ |b(t, x, ζ0;uk)| ≤ |ψ(ζ0)| ≤ εψ(ζ0)ζ0 + ψ(1/ε) + |ψ(−1/ε)|

if |ζ0| > 1/ε, so by (1.7) (bk(t, x, uk(t, x);uk)) is equiintegrable in QT0 .
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From (1.5), (1.11), (1.12), (1.17) we obtain as k →∞

Dtu+ w + b(t, x, u(t, x);u) = f (1.18)

in distributional sense.

In order to show w = A(u), we prove

lim sup
k→∞

[A(uk), uk − u]T0 ≤ 0. (1.19)

Since by (1.11), V

lim
k→∞

[A(uk)− Ãu(uk), uk − u]T0 = 0,

(1.19) will imply

lim sup
k→∞

[Ãu(uk), uk − u]T0 ≤ 0,

thus we obtain from (1.11), (1.12) w = Ãu(u) = A(u) (see, e.g., Remark 4 in [8]).

Applying (1.5) to uk − v with some

v ∈ Lp(0, T0;V ) ∩ C1([0, T0];L2(Ω)) ∩ L∞(QT0) with v(0) = 0,

we have for any T ∈ [0, T0]∫ T

0

〈Dtv, uk − v〉dt+
1
2
‖ uk(T )− v(T ) ‖2

L2(Ω) +
∫ T

0

〈A(uk), uk − v〉dt+ (1.20)

∫
QT

bk(t, x, uk(t, x);uk)(uk − v)dtdx =
∫ T

0

〈f(t), uk − v〉dt.

Since

[A(uk), uk − v]T = [A(uk), uk − u]T + [A(uk), u− v]T

and by Fatou’s lemma, (1.7), (1.14), (1.15)

lim inf
k→∞

∫
QT

bk(t, x, uk(t, x);uk)ukdtdx ≥
∫

QT

b(t, x, u(t, x);u)udtdx, (1.21)

we obtain from (1.20) (by using (1.11), (1.12), (1.17))

lim sup
k→∞

[A(uk), uk − u]T ≤
∫ T

0

〈Dtv, v − u〉dt+ (1.22)

∫
QT

b(t, x, u(t, x);u)(v − u)dtdx+
∫ T

0

〈f(t)− w(t), u− v〉dt.
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Consider the sequence (vν) of Theorem 3 in [3], approximating the function u which

satisfies all the conditions of that theorem by (1.13), (1.17), and apply (1.22) to

v = vν . Then Proposition 3 of [3] implies (as ν →∞) (1.19). Thus we have also

lim
k→∞

[A(uk), uk − u]T = 0, (A(uk)) → A(u) weakly in Lq(0, T0;V ?) (1.23)

(see, e.g., [8]). So, (1.18), w = A(u) imply that u satisfies (0.2) in distributional sense.

Finally, we show u ∈ C([0, T0];L2(Ω)), u(0) = 0 and (1.4). From (1.11),

(1.17), (1.20), (1.23) one obtains as k →∞

lim sup
k→∞

∫
QT

bk(t, x, uk(t, x);uk)ukdtdx ≤
∫ T

0

〈Dtv, v − u〉dt+ (1.24)

∫
QT

b(t, x, u(t, x);u)vdtdx+ [f −A(u), u− v]T .

Applying (1.24) again to v = vν (approximating u), we find

lim sup
k→∞

∫
QT

bk(t, x, uk(t, x);uk)ukdtdx ≤
∫

QT

b(t, x, u(t, x);u)udtdx. (1.25)

Further, by (1.11) for a.e. T ∈ [0, T0]

(uk(T )) → u(T ) a.e. in Ω,

so by (1.8) for a.e. T ∈ [0, T0]

(uk(T )) → u(T ) in L2(Ω).

Consequently, from (1.20), (1.21), (1.25) one derives (1.4) for a.e. T ∈ [0, T0]. Since

all the terms in (1.4) are continuous in T , except possibly the term

‖ u(T )− v(T ) ‖L2(Ω), (1.26)

the latter can be extended to a continuous function in T and (1.4) holds for all

T ∈ [0, T0].

For any smooth testing function w (defined in Ω) (u(T ), w)L2(Ω) is continuous

in T because (0.2) holds in distributional sense and the term in (1.26) is continuous

in T , thus u ∈ C([0, T0];L2(Ω)) and so by (1.13) the initial condition u(0) = 0 is

satisfied which completes the proof of Theorem 1.1.
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2. Boundedness and stabilization

Denote by Lp
loc(0,∞;V ) the set of functions v : (0,∞) → V such that for

each fixed finite T0 > 0, v|(0,T0) ∈ Lp(0, T0;V ) and let Q∞ = (0,∞) × Ω, Lα
loc(Q∞)

the set of functions v : Q∞ → R such that v|QT0
∈ Lα(QT0) for any finite T0. By

using a ”diagonal process”, it is not difficult to prove (see, e.g., [9])

Theorem 2.1. Assume that we have functions ai : Q∞×Rn+1×Lp
loc(0,∞;V ) → R,

b : Q∞ × R × Lp
loc(0,∞;V ) → R such that they satisfy I - VII for any finite T0 > 0

and ai(t, x, ζ0, ζ; v)|QT0
, b(t, x, ζ0; v)|QT0

depend only on v|(0,T0) (Volterra property).

Then for any f ∈ Lq
loc(0,∞;V ?) there exists u ∈ Lp

loc(0,∞;V ) which is a solution for

any finite T0 (in the sense of Theorem 1.1).

Theorem 2.2. Let the assumptions of Theorem 2.1 be satisfied such that in IV we

have g2 : Lp
loc(0,∞;V ) → R+ and k2 : Lp

loc(0,∞;V ) → L1
loc(Q∞), satisfying for any

v ∈ Lp
loc(0,∞;V ), g2(v) ≥ c2 > 0 and∫

Ω

|k2(v)|dx ≤ c4

[
sup
[0,t]

|y|p1/2 + ϕ(t) sup
[0,t]

|y|p/2 + 1

]
with some constants c4, p1 < p, p > 2 and lim∞ ϕ = 0 where

y(t) =
∫

Ω

v(t, x)2dx;

finally, ‖ f(t) ‖V ? is bounded.

Then for the solutions u, formulated in Theorem 2.1,
∫
Ω
u(t, x)2dx is bounded

for t ∈ [0,∞).

The idea of the proof. If u is a solution in (0,∞) then the assumptions of

the theorem imply that y(t) =
∫
Ω
u(t, x)2dx satisfies the inequality

y(T2)− y(T1) + c5

∫ T2

T1

[y(t)]p/2dt ≤

c6

∫ T2

T1

[
sup
[0,t]

yp1/2 + ϕ(t) sup
[0,t]

yp/2 + 1

]
dt, 0 < T1 < T2 <∞

with some constants c5 > 0, c6. It is not difficult to show that this inequality and

p > 2, p1 < p imply the boundedness of y.
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3. Examples

1. The conditions of Theorem 1.1 are satisfied if

ai(t, x, ζ0, ζ; v) = [H(v)](t, x)a1
i (t, x, ζ0, ζ) + [G(v)](t, x)a2

i (t, x, ζ0, ζ), i = 1, ..., n,

a0(t, x, ζ0, ζ; v) = [H(v)](t, x)a1
0(t, x, ζ0, ζ) + [G0(v)](t, x)a2

0(t, x, ζ0, ζ)

where H : Lp(QT0) → L∞(QT0) is bounded and continuous operator with the prop-

erty: There exists a constant c2 > 0 such that H(v) ≥ c2 for all v;

G,G0 : Lp(QT0) → L
p

p−1−ρ (QT0), (0 ≤ ρ < p− 1)

are bounded and continuous operators, G(v) ≥ 0 for all v and

lim
‖v‖X→∞

∫
QT0

|G0(v)|
p

p−1−ρ

‖ v ‖p
X

= 0.

Further, a1
i , a

2
i satisfy the usual conditions: They are Carathéodory functions,

|a1
i (t, x, ζ0, ζ)| ≤ c1(|ζ0|p−1 + |ζ|p−1) + k1(x)

with some constant c1, k1 ∈ Lq(Ω), i = 0, 1, ..., n;
n∑

i=1

[a1
i (t, x, ζ0, ζ)− a1

i (t, x, ζ0, ζ
?)](ζi − ζ?

i ) > 0 if ζ 6= ζ?;

n∑
i=0

a1
i (t, x, ζ0, ζ)ζi ≥ c3(|ζ0|p + |ζ|p)− k2(x)

with some constant c3 > 0, k2 ∈ L1(Ω);

|a2
i (t, x, ζ0, ζ)| ≤ c1(|ζ0|ρ + |ζ|ρ), 0 ≤ ρ < p− 1, i = 0, 1, ..., n;

n∑
i=1

[a2
i (t, x, ζ0, ζ)− a2

i (t, x, ζ0, ζ
?)](ζi − ζ?

i ) ≥ 0;

n∑
i=1

a2
i (t, x, ζ0, ζ)ζi ≥ 0.

By using Young’s and Hölder’s inequalities it is not difficult to show that the condi-

tions I - V are fulfilled.

A simple special case for a1
i , a

2
i are:

a1
i (t, x, ζ0, ζ) = ζi|ζ|p−2, i = 1, ..., n, a1

0(t, x, ζ0, ζ) = ζ0|ζ0|p−2, a2
i = 0.
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The operator H may have e.g. one of the forms:

ϕ
(∫

Qt
bv
)

where ϕ : R→ R is a continuous function, ϕ ≥ c2 > 0 (constant),

b ∈ Lq(QT );

ϕ

([∫
Qt
|v|β

]1/β
)

with some 1 ≤ β ≤ p;

The operators G,G0 may have e.g. one of the forms:

ψ0

(∫ t

0

a(τ, x)v(τ, x)dτ
)
, ψ0

(∫
Ω

a(t, x)v(t, x)dx
)
,

ψ0

([∫ t

0

|v(τ, x)|βdτ
] 1

β

)
,

where ψ0 : R→ R is continuous, |ψ0(θ)| ≤ const|θ|p−1−ρ0 with some ρ0 > ρ, ψ0(θ) ≥ 0

for G, a ∈ L∞.

The operators G,G0 may have also the forms∫ t

0

h(t, τ, x, v(τ, x))dτ or h(t, x, v(χ(t), x))

where

|h(t, τ, x, θ)|, |h(t, x, θ)| ≤ const|θ|p−1−ρ0 ,

0 ≤ χ(t) ≤ t, χ ∈ C1 and h ≥ 0 for G.

2. The conditions on ai of Theorem 1.1 are satisfied if

ai(t, x, ζ0, ζ; v) = [Hi(v)](t, x)ã1
i (t, x, ζ0, ζi) + [Gi(v)](t, x)ã2

i (t, x, ζ0, ζi)

where ζi 7→ ã1
i (t, x, ζ0, ζi) is strictly increasing for i = 1, ..., n;

|ã1
i (t, x, ζ0, ζi)| ≤ c1(|ζ0|p−1 + |ζi|p−1) + k1(x)

with some constant c1, k1 ∈ Lq(Ω), i = 0, 1, ..., n;

ã1
i (t, x, ζ0, ζi)ζi ≥ c2|ζi|p − k2(x), i = 1, ..., n

with some constant c2 > 0, k2 ∈ L1(Ω); ζi 7→ ã2
i (t, x, ζ0, ζi) is monotone nondecreasing

such that ã2
i (t, x, ζ0, ζi) = 0 if ζi = 0 (i = 1, ..., n);

|ã2
i (t, x, ζ0, ζi)| ≤ c1(|ζ0|ρ + |ζi|ρ) with 0 ≤ ρ < p− 1, i = 0, 1, ..., n.
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Operators Hi satisfy the same conditions as H in Example 1 and operators Gi satisfy

the same conditions as G, G0, respectively, in Example 1.

Example on b. b(t, x, ζ0; v) = ψ(ζ0)G̃(v) where G̃ : Lp(QT0) → L∞(QT0) is

a continuous operator with the property

0 < c1 ≤ G̃(v) ≤ c2 <∞ for any v

with some constants c1, c2.

The conditions of Theorem 2.1 are fulfilled for the Examples 1,2 if

H,Hi : Lp
loc(Q∞) → L∞(Q∞), G,Gi : Lp

loc(Q∞) → L
p

p−1−ρ (Q∞)

satisfy the above conditions for any finite T0 and they have the Volterra property;

further, a1
i , a

2
i , ã

1
i , ã

2
i satisfy the above conditions for any t.

The conditions of Theorem 2.2 are satisfied if the following additional

condition is fulfilled:∫
Ω

|G0(v)|
p

p−1−ρ dx ≤ c4

[
sup
[0,t]

|y|p1/2 + ϕ(t) sup
[0,t]

|y|p/2 + 1

]

for any v ∈ Lp
loc(0,∞;V ) with y(t) =

∫
Ω
v(t, x)2dx and ‖ f(t) ‖V ? is bounded.

The operator G0 may have e.g. one of the forms

ψ0

(∫
Ω

a(t, x)v(t, x)dx
)
, ψ0

([∫
Ω

|a(t, x)||v(t, x)|βdx
]1/β

)
,

ϕ0(t)χ0

([∫
Ω

|a(t, x)||v(t, x)|2dx
]1/2

)

where 1 ≤ β ≤ 2, a ∈ L∞, ψ0, ϕ0, χ0 : R→ R are continuous,

|ψ0(θ)| ≤ const|θ|p−1−ρ0 with some ρ0 > ρ,

|χ0(θ)| ≤ const|θ|p−1−ρ, lim
∞
ϕ0 = 0.
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume XLIX, Number 3, September 2004

CONSTRUCTION OF GAUSS-KRONROD-HERMITE
QUADRATURE AND CUBATURE FORMULAS

DANIEL VLADISLAV

Abstract. We study Gauss-Kronrod quadrature formula for Hermite

weight function for the particular cases n = 1, 2, 3, we introduce a new

Gauss-Kronrod-Hermite cubature formula and we describe the form of the

weights and nodes.

1. Introduction. Quadrature and cubature rules of Gauss-Hermite type

Let us consider the weight function ρ(x) = e−x2
, defined and positive on

(−∞,∞). The quadrature rule of Gauss-Hermite type corresponding to this weight

function is: ∫
R

e−x2
f(x)dx =

m∑
k=0

Am,kf(ak) + Rm[f ]. (1)

The nodes ak, k = 0,m, the coefficients Am,k, k = 0,m and the remainder

term can be determined using the properties of Hermite orthogonal polynomials,

defined as follows:

Hm(x) = (−1)mex2 dm

dxm
[e−x2

]. (2)

It has been proved (see [1]) that:

(i) the nodes ak, k = 0,m, are the zeros of the Hermite orthogonal polynomial

of degree m + 1;

(ii) the coefficients Am,k, k = 0,m would be computed with the formula:

Am,k =
2m+1m!

√
π

Hm(ak)H ′
m+1(ak)

(3)

Received by the editors: 10.12.2003.
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(iii) the remainder term Rm[f ], for f ∈ C2m+2(R), has the representation:

Rm[f ] =
(m + 1)!

√
πf (2m+2)(ξ)

2m+1(2m + 2)!
, −∞ < ξ < ∞. (4)

We also consider the Gauss-Hermite cubature rule of the form:∫ ∫
R2

P (x, y)f(x, y)dxdy =
m∑

i=0

n∑
j=0

Ai,jf(xi, yj) + Rm,n[f ]. (5)

It has been proved (see [1]) that in this formula the coefficients are computed

with:

Ai,j = A
[1]
m,iA

[2]
n,j =

2m+1m!
√

π

Hm(xi)H ′
m+1(xi)

· 2n+1n!
√

π

Hn(yj)H ′
m+1(yj)

(6)

where the nodes xi, i = 0,m and yj , j = 0, n are respectively the zeros of Hermite

orthogonal polynomials Hm+1,Hn+1.

If f ∈ Cm+1,n+1(R2) then the remainder term has the expression:

Rm,n[f ] =
π(m + 1)!

2m+1(2m + 2)!
f (2m+2,0)(ξ1, η1) +

π(n + 1)!
2n+1(2n + 2)!

f (0,2n+2)(ξ2, η2) (7)

−
√

π(m + 1)!
2m+1(2m + 2)!

·
√

π(n + 1)!
2n+1(2n + 2)!

f (2m+2,2n+2)(ξ3, η3).

2. Study upon the quadrature rule of Gauss-Kronrod type with Hermite

weight function

In this section we consider the Gauss-Kronrod quadrature formula with Her-

mite weight function ρ(x) = e−x2
, nonnegative and defined on R∫

R
ρ(x)f(x)dx =

m∑
i=1

σif(xi) +
m+1∑
k=1

σ∗kf(x∗k) + Rm[f ] (8)

where xi = x
(m)
i are the Gaussian nodes (i.e. the zeros of Hm(·, ρ), the mth degree

orthogonal polynomial relative to the measure dσ(t) = ρ(t)dt on R) and the nodes x∗k

(the Kronrod nodes) and weights σi = σ
(m)
i , σ∗k = σ

(m)∗
k are determined such that (8)

has maximum degree of exactness 3m + 1, i.e.

Rm[f ] = 0, ∀ f ∈ P3m+1. (9)

It is well known that x∗k must be the zeros of the (monic) orthogonal polyno-

mial H∗
m+1 of degree m + 1 relative to the measure ρ∗(x) = Hm(x, ρ)ρ(x) on R.
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Even through Hm, and hence ρ∗, changes sign on R, it is known that H∗
m+1

exists uniquely (see e.g. [3]). There is no guarantee, however, that the zeros x∗k of

H∗
m+1 are real, neither that the interlacing property of Gauss nodes with nodes of

Kronrod type holds.

We study in the following the cases m = 1, m = 2 and m = 3, i.e. we check

the existence of quadrature rules with 3, 5 and 7 nodes.

For case m = 1 we found the Gauss-Kronrod quadrature formula with 3

nodes: ∫
R

e−x2
f(x)dx =

√
π

6
f

(
−
√

3
2

)
+

2
√

π

3
f(0) +

√
π

6
f

(√
3

2

)
+ R2[f ]

where H1(x) = x represent the Hermite polynomial with zeros x1 = 0 and the poly-

nomial H∗
2 (x) = x2 − 3

2
has been determined from the orthogonality condition:∫

R
e−x2

H∗
2 (x)H1(x)xkdx = 0, k = 0, 1.

For the computation of the coefficients we used the formula (see [5])

σi = γi +
‖Hm‖2dρ

H∗
m+1(xi)H ′

m(xi)
, i = 1, 2, . . . ,m

and

σ∗k =
‖Hm‖2dσ

Hm(x∗k)H∗1
m+1(x

∗
k)

, k = 1, 2, . . . ,m + 1

where γi = γ
(m)
i are the Christoffel numbers (i.e. the weights in the Gaussian quad-

rature rule and ‖ · ‖dρ the L2-norm for the weight function).

One can observe that all the zeros of polynomial H∗
2 are real and they interlace

with the zero of polynomial H1.

For the case m = 2, one gets the following quadrature formula∫
R

e−x2
f(x)dx =

=
√

π

30

[
f(−

√
3) + 9f

(
−
√

2
2

)
+ 10f(0) + 9f

(√
2

2

)
+ f(

√
3)

]
+ R2[f ].

Here one can observe that all the nodes are real and the interlacing property

is satisfied. All the coefficients of formula are positive.
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If m = 3 Stieltjes polynomial, respective H∗
4 has two real zeros and two

complex zeros, fact that doesn’t assure us the existence of Gauss-Kronrod quadrature

formula in this case.

3. Construction of Gauss-Kronrod-Hermite type cubature formula

Let f : R2 → R be a integrable Riemann function. Applying the Gauss-

Kronrod quadrature formula with Hermite measure∫
R

e−x2
f(x, y)dx =

m∑
i=1

Am,if(xi, y) +
m+1∑
k=1

A∗
m,kf(x∗k, y) + Rm[f ]

which will multiply with measure ρ(y) = e−y2
, obtaining the measure p(x, y) =

e−(x2+y2) of the double integrals, after that we integrate, term by term and we obtain:∫ ∫
R2

e−(x2+y2)f(x, y)dxdy =
m∑

i=1

Am,i

∫
R

e−y2
f(xi, y)dy +

m+1∑
k=1

A∗
m,ke−y2

f(x∗k, y)+

+Rm[f ]
∫

R
e−y2

dy.

For the integrals above we apply again one of quadrature rule of Gauss-

Kronrod type:∫
e−y2

f(xi, y)dy =
n∑

j=1

An,jf(xi, yj) +
n+1∑
l=1

A∗
n,lf(xi, y

∗
l ) + Rn[f ]

and ∫
e−y2

f(x∗k, y)dy =
n∑

j=1

An,jf(x∗k, yj) +
n+1∑
l=1

A∗
n,lf(x∗k, y∗l ) + Rn[f ]

respectively.

From here, it results the cubature rule:∫ ∫
R2

e−(x2+y2)f(x, y)dxdy ≈
m∑

i=1

n∑
j=1

Am,iAn,jf(xi, yj)

+
m∑

i=1

n+1∑
l=1

Am,iA
∗
n,lf(xi, y

∗
l ) +

m+1∑
k=1

n∑
j=1

A∗
m,kAn,jf(x∗k, yj)

+
m+1∑
k=1

n+1∑
l−1

A∗
m,kA∗

n,lf(x∗k, y∗l )
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with Gauss nodes (xi, yj), i = 1,m, j = 1, n and Kronrod nodes (x∗k, y∗l ), k = 1,m + 1,

l = 1, n + 1, respectively mixed nodes of form (x∗k, yj) and (xi, y
∗
l ).

The coefficients of Gauss-Kronrod-Hermite type cubature rules could be de-

termined from:

Ai,j = Am,iAn,j , A∗
i,l = Am,iA

∗
n,l,

A∗
k,j = A∗

m,kAn,j , A∗
k,l = A∗

m,kA∗
n,l

where

Am,i = γi +
‖Hm‖2

H∗
m+1(xi)H ′

n(xi)
, i = 1,m

An,j = γj +
‖Hn‖2

H∗
n+1(yj)H ′

n(yj)
, j = 1, n

A∗
n,l =

‖Hn‖2

Hn(y∗l )H∗′
n+1(y

∗
l )

, l = 1,m + 1

A∗
m,k =

‖Hm‖2

Hm(x∗k)H ′
m+1(x

∗
k)

, k = 1,m + 1.

4. Example

1. For the case m = n = 1 we have:∫ ∫
R2

e−(x2+y2)dxdy ' (A1,1)2f(x1, y1) + A1,1A
∗
1,1f(x1, y

∗
1) + A1,1A

∗
1,2f(x1, y

∗
2)+

+A∗
1,1A1,1f(x∗1, y1) + A∗

1,2A1,1f(x∗2, y1) + (A∗
1,1)

2f(x∗1, y
∗
1) + A∗

1,1A
∗
1,2f(x∗1, y

∗
2)+

+A∗
1,2A

∗
1,1f(x∗2, y

∗
1) + (A∗

1,2)
2f(x∗2, y

∗
2),

where x1 = 0 = y1 and x∗1 = −
√

3
2

= y∗1 , x∗2 =
√

3
2

= y∗2 .

The values of the weights of this formula are:

A1,1 =
2
√

π

3
respectively A∗

1,1 =
√

π

6
= A∗

1,2.

From here result the following cubature formula:∫ ∫
R2

e−(x2+y2)f(x, y)dxdy ' 4π

9
f(0, 0)+

+
π

9

[
f

(
0,−

√
3
2

)
+ f

(
0,

√
3
2

)
+ f

(
−
√

3
2
, 0

)
+ f

(√
3
2
, 0

)]
+

115



DANIEL VLADISLAV

+
π

36

[
f

(
−
√

3
2
,−
√

3
2

)
+ f

(
−
√

3
2
,

√
3
2

)
+ f

(√
3
2
,−
√

3
2

)
+ f

(√
3
2
,

√
3
2

)]
.

For f(x, y) = x2y2 we have∫ ∫
R

e−(x2+y2)x2y2dxdy =
∫

R
x2e−x2

dx

∫
R

y2e−y2
dy =

√
π

2
·
√

π

2
=

π

4

representing the exact value of this integral.

Applying cubature formula we obtain:∫ ∫
R2

e−(x2+y2)x2y2dxdy =
π

35

[
3
2
· 3
2

+
3
2
· 3
2

+
3
2
· 3
2

+
3
2
· 3
2

]
=

π

36
· 4 · 9

4
=

π

4

2. For the case m = n = 2 we have:∫ ∫
R2

e−(x2+y2)f(x, y)dxdy ' (A2,1)2f(x1, y1)+A2,1A2,2f(x1, y2)+A2,2A2,1f(x2, y1)+

+(A2,2)2f(x2, y2) + A2,1A
∗
2,1f(x1, y

∗
1) + A2,1A

∗
2,2f(x1, y

∗
2) + A2,1A

∗
2,3f(x1, y

∗
3)+

+A2,2A
∗
2,1f(x2, y

∗
1) + A2,2A

∗
2,2f(x2, y

∗
2) + A2,2A

∗
2,3f(x2, y

∗
3)+

+A∗
2,1A2,1f(x∗1, y1) + A∗

2,1A2,2f(x∗1, y2) + A∗
2,2A2,1f(x∗2, y1) + A∗

2,2A2,2f(x∗2, y2)+

+A∗
2,3A2,1f(x∗3, y1) + A∗

2,3A2,2f(x∗3, y2) + (A∗
2,1)

2f(x∗1, y
∗
1) + A∗

2,1A
∗
2,2f(x∗1, y

∗
2)+

+A∗
2,1A

∗
2,3f(x∗1, y

∗
3) + A∗

2,2A
∗
2,1f(x∗2, y

∗
1) + (A∗

2,2)
2f(x∗2, y

∗
2) + A∗

2,2A
∗
2,3f(x∗2, y

∗
3)+

+A∗
2,3A

∗
2,1f(x∗3, y

∗
1) + A∗

2,3A
∗
2,2f(x∗3, y

∗
2) + (A∗

2,3)
2f(x∗3, y

∗
3),

where the gaussian nodes are: x1 = −
√

2
2

= y1 and x2 =
√

2
2

= y2 the roots of the

orthogonal polynomial of Hermite type: H2(x) = x2 − 1
2
. The Stieltjes polynomial

is: H∗
3 (x) = x(x2 − 3) with the roots: x∗1 = −

√
3 = y∗1 , x∗2 = 0 = y∗2 , x∗3 =

√
3 = y∗3 ,

representing the Kronrod nodes.

The values of the weights of this formula are:

A2,1 =
3
√

π

10
= A2,2

and

A∗
2,1 =

√
π

30
= A∗

2,3, A∗
2,2 =

√
π

3
.

∫ ∫
R2

e−(x2+y2)f(x, y)dxdy =
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f(0, 0).

References

[1] D. D. Stancu, Gh. Coman, P. Blaga, Analiză numerică şi teoria aproximării, Presa
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Pietro Aiena, Fredholm and Local Spectral Theory, with Applications to

Multipliers, Kluwer Academic Publishers, Dordrecht-Boston-London 2004, xiv +

444 pp, ISBN: 1-4020-1830-4.

Let T be an operator acting on a complex Banach space X. The local re-

solvent of T at a point x ∈ X is the set ρT (x) of all λ ∈ C for which there exist

an open neighborhood Uλ ⊂ C of λ and an analytic function f : Uλ → X such

that (1) (µI − T )f(µ) = x, for all µ ∈ Uλ. Obviously that the analytic function

fx(µ) = (µI − T )−1x satisfies this relation on the resolvent set ρ(T ) of the operator

T , but it could exist other analytic functions satisfying (1), even on neighborhoods

of some points in the spectrum σ(T ) of T . The set ρT (x) is open and contains ρ(T ).

The local spectrum of T at x is σT (x) = C \ ρT (x), and σT (x) ⊂ σ(T ).

The local spectral theory is systematically treated in a recent book by K. B.

Laursen and M. M. Neumann, An Introduction to Local Spectral Theory, Oxford

University Press 2000, containing also some elements of Fredholm theory, mainly

those which can be approached by the methods of local spectral theory.

The emphasis of the present book is first on Fredholm theory, developed in

connection with Kato decomposition and a property called the single-valued exten-

sion property (SVEP). This property, which means that the only analytic function f

satisfying the relation (µI − T )f(µ) = 0 for any µ in a neighborhood of an arbitrary

point λ ∈ C is the null function f ≡ 0, has deep connections with Fredholm theory. It

was considered first by Dunford in 1952 and is systematically studied in the treatise

on operator theory by Dunford and Schwartz, and in other books on spectral theory

of operators. The author presents also the abstract Fredholm theory in semi-prime
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Banach algebras. The main applications of Fredholm theory considered in the book

are to multipliers on Banach algebras.

Another direction of investigation studied in the book is that of perturbation

theory for classes of operators which occur in Fredholm theory, completing the existing

monographs on this topic (as, e.g., Kato’s classical treatise) with more recent results.

The author tried to make the book as self-contained as possible, by proving

some elementary facts about the notions considered. Of course that, as a research

monograph, it requires from the reader an acquaintance with basic complex function

theory and functional analysis, including classical Fredholm theory.

The book can be used for graduate courses in operator theory or by profes-

sional mathematicians working in the subject or interested in its applications to other

areas of investigation.

S. Cobzaş

Fundamental Directions in Mathematical Fluid Mechanics, G. P. Galdi,

J. G. Heywood, R. Rannacher (Editors), Birkhäuser Verlag, 2000.

The present volume consists of six articles, written by very good experts in

the field, each article treating an important topic in the theory of the Navier-Stokes

equations, at the research level. As it is well known, the most famous problem in

this area is to go beyond the presently known global existence of weak solutions,

to the global existence of smooth solutions, for which uniqueness and continuous

dependence on the data can be proved. In fact, Galdi’s article, An introduction to

the Navier-Stokes initial-boundary value problem, gives an overview of the state of

research regarding this subject.

Then the book moves on to a discussion of new developments of the finite

element Galerkin method. The article by Rannacher, Finite element methods for the

incompressible Navier-Stokes equations, treats both the theory and implementation
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of the finite element methods, with an emphasis on a priori and a posteriori error

estimation and adaptive mesh refinement.

The article by Gervasio, Quarteroni and Saleri Spectral approximation of

Navier-Stokes equations is devoted on spectral Galerkin methods and their exten-

sion to domains with complicated geometries, by employing the techniques of domain

decomposition.

The article by Heywood and Nagata Simple proofs of bifurcation theorems

introduces in a rigorous way bifurcation theory in a general setting that is convenient

for application to the Navier-Stokes equations.

The two articles by Heywood and Padula, On the steady transport equation

and On the existence and uniqueness theory for the steady compressible viscous flow,

yield a simplified approach to the theory of steady compressible viscous flow. The ex-

tension of Navier-Stokes theory to compressible viscous flows, studied in these papers,

opens up a beautiful point of view of theoretical and numerical problems.

The book is very well written and enjoyable. It is addressed to researchers,

advanced students, and all mathematicians interested to the research level on some

of the most important topics in the field of fluid mechanics.

Mirela Kohr

Leszek Gasiński and Nikolaos S. Papageorgiou, Nonsmooth critical point

theory and nonlinear boundary value problems, Chapman & Hall/CRC, 2004.

One often encounters practical situations where the associated energy func-

tional to a nonlinear elliptic problem is not smooth. Several methods have been

elaborated in the last decades in order to handle such kind of problems, see the theo-

ries of Chang (1981), Szulkin (1986), Degiovanni and Marzocchi (1994), Frigon (1998),

Motreanu and Panagiotopoulos (1999).
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The aim of the monograph of L. Gasiński and N. S. Papageorgiou is to present

a comprehensive exposition of the aforementioned (non-smooth) critical point theo-

ries, as well as to provide us with various applications and concrete examples.

The book is as self-contained as possible and it is made more interesting by the

perspectives in various sections, where the authors mention the historical background

and development of the material and provide the reader with detailed explanations

and updated references.

The first chapter is dedicated to the background material used throughout

the book, as basic elements from Sobolev spaces, Set-Valued analysis, Non-smooth

analysis (Clarke’s calculus of locally Lipschitz functions, weak slope), Nonlinear Op-

erators.

In the second chapter the authors present the existing nonsmooth critical

point theories. This part is very well written; the reader obtains a complete pic-

ture about these theories. In the first two sections the locally Lipschitz functionals

(Chang’s theory) as well as constrained locally Lipschitz functionals (the non-smooth

version of Struwe’s theory) are treated. In the third section the critical point theory

of locally Lipschitz functions is developed which are perturbed by a convex, proper

and lower semicontinuous functional. This part unifies the theories of Chang and

Szulkin. We point out that Motreanu and Panagioutopoulos (1999) were the first au-

thors, and not Kourogenis, Papadrianos and Papageorgiou (2002) as it is mentioned

in the book (page 204, paragraph 2.3), who considered this class of functionals. In

the fourth section the classical local linking theorem is extended to locally Lipschitz

functions, while the last two sections are devoted to the theory of weak slopes, in

the sense of Degiovanni-Marzocchi (for continuous functionals), and Frigon (for mul-

tivalued functionals). In all the cases, deformation and minimax results are obtained

(with Palais-Smale, or Cerami compactness conditions).

The rest of the book deals with applications. Chapter 3 is devoted to the

study of nonlinear boundary value problems for ordinary differential equations. Sev-

eral kind of problems are treated: Dirichlet problems, periodic problems, Hamiltonian
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inclusions, problems with nonlinear boundary conditions. A great variety of meth-

ods and techniques are used, as upper-lower solutions, fixed-point and degree theory

arguments, nonsmooth analysis, set-valued analysis.

The biggest part of this book is Chapter 4 (more than 250 pages), which is

devoted to the study of nonlinear elliptic equations. The theoretical material, pre-

sented in the second chapter, is consistently applied in order to establish existence and

multiplicity results for several type of resonance problems (like semilinear, nonlinear,

variational-hemivariational inequalities and strongly resonant problems); Neumann

problems (homogeneous and non-homogeneous type); problems with an area-type

term; problems which involve discontinuous nonlinearities.

In my opinion, the book is very readable, and it can serve as a start point for

researchers and students in order to carry out further investigations in the nonsmooth

critical point theory as well as in its applications in mechanics, mathematical physics

and engineering.

A. Kristály

E. I. Gordon, A. G. Kusraev and S. S. Kutateladze, Infinitesimal Analysis,

Mathematics and Its Applications, Vol. 544, Kluwer A. P. , Dordrecht-Boston-

London, 2002, xiii + 422 pp, ISBN: 1-4020-0738-8.

Infinitesimals or infinitely small quantities, and infinitely large quantities were

used for two millennia by scientists and philosophers, starting with Archimedes. The

infinitesimals were basic tools in the foundation of mathematical analysis by Leibniz

and Newton, and were used by their followers as well, e.g. Euler, until the 19th

century when Bolzano, Cauchy and Weierstrass founded the analysis on the notion

of limit and ε − δ technique. After that the use of infinitesimals was considered

as lacking of rigor, until the sixties of the 20th century when A. Robinson created

nonstandard analysis and put firm basis for the use of infinitely small and infinitely

large quantities in mathematics. A brief survey on the historical evolution of ideas in
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mathematical analysis is presented in the first chapter of the book Excursus in the

history of calculus.

The term infinitesim al analysis is used to designate a technique of studying

general mathematical objects by discriminating between standard and nonstandard

ones. The present book is the third in the series ”Nonstandard Methods of Analysis”

published at Novosibirsk by Sobolev Institute Press under the guidance of Professor

Kutateladze. The previous two books were Boolean Valued Analysis, Kluwer 1999,

by the same authors, and a collection of papers Nonstandard Analysis and Vector

Lattices, Kluwer 2000. All these books were written in Russian and then translated

(in a revised form) into English and published by Kluwer, as well as another book of

the authors Nonstandard Methods of Analsyis, Kluwer 1994, which gave the name to

the series.

The purpose of the present book is to make the methods of nonstandard

analysis more accessible to a larger audience. To this end the second chapter, Naive

foundation of infinitesimal analysis, contains an intuitive and illustrative introduction

to the subject, but sufficient for effective applications, without appealing to any logical

formalism.

The cantorian set theory is presented in Ch. 3, Set-theoretic formalisms of

infinitesimal analysis. Beside the Zermelo-Frenkel system, Nelson internal set theory

and the external set theories of Hrbaçek and Kawai are included.

The rest of the book is dedicated to applications of nonstandard analysis

to various branches of mathematics – topology in Ch. 4, Monads in general topol-

ogy, and subdifferential calculus and non-smooth analysis in Ch. 5, Infinitesimals

and subdifferentials. Remark that another book of the authors on the same topic

Subdifferentials: Theory and Applications, Kluwer 1995, makes extensive use of non-

standard methods. Ch. 6, Technique of hyperaproximation deals with nonstandard

hulls of normed spaces defined by Luxemburg, and Loeb measures. The technique of

hyperapproximation for the Fourier transform on a locally compact abelian group is

considered in Ch. 7, Infinitesimals in harmonic analysis.
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The last chapter of the book, Ch. 8, Exercises and problems, contains some

exercises along with some open problems of varying difficulty.

The authors have included in the book a lot of philosophical and historical

comments. The bibliography at the end of the book contains 542 items.

The book is aimed first to researchers in various branches of mathematics

desiring to be acquainted with the powerful tools of nonstandard analysis. Teachers

will find in the book a lot of interesting things: – methodological, historical and

philosophical.

S. Cobzaş

Martin Väth, Integration Theory , World Scientific, New Jersey - Singapore -

London, 2002, viii + 27 pp, ISBN: 981-238-115-5.

This book on measure and integration proposes a very general approach to

the subject, allowing the simultaneous treatment of both scalar and vector cases. The

framework is that of a measure space (S, Σ, µ) and of functions on S taking values

in a space Y = [0,∞, [−∞,∞], or a Banach space with an ideal element ∞. This

approach, presented in the first chapter of the book, Ch. 1, Abstract Integration, is

based on some results such as the exhaustion theorem, the covering theorem and a

theorem on approximation of measurable functions, appearing for the first time in

this general form. The Carathéodori method of constructing a measure from an outer

measure along with some extension theorems are also included, with applications to

Tonelli and Fubini theorems.

Radon measures are treated in the second chapter which contains also some

basic results from topology, including Urysohn and Tychonov theorems. Luzin mea-

surability theorem is proved. The highlight of the chapter is Riesz representation

theorem for positive linear functionals on the space of continuous functions with com-

pact support defined on a locally compact Hausdorff space.
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The existence, uniqueness and basic properties of Haar invariant measure on

a locally compact group are considered in the third chapter.

These first three chapters form Part 1, Basic Integration Theory, of the book.

The first chapter of Part 2, Advanced Topics, is concerned with Lebesgue-Bochner

function spaces Lp(S, Σ, µ) and their duals, treated as particular cases of ideal spaces.

Orlicz spaces are discussed in exercises.

The fundamental properties of convolutions, a basic tool in harmonic analysis

and in approximation theory, are discussed in the fifth chapter. As application one

proves an extension of a famous result of H. Steinhaus: if M is a subset of positive

measure of a Hausdorff locally compact group S with a left invariant Haar measure,

then M−1M is a neighborhood of e. H. Steinhaus (1920) proved the result for S = Rn.

Chapter 6 contains a fine discussion on the connections of some results in

measure theory with mathematical logic and set theory. Some famous paradoxes,

such as Hausdorff’s and Banach-Tarski, are presented along with their consequences

for the problem of the existence of finitely additive measures on Rn.

The fundamental results on Lebesgue integration on Rn – absolutely contin-

uous functions, a.e. differentiability, change of variable formula – are presented in

Chapter 7. The last chapter of the book, Chapter 8, is concerned with some useful

formulas in Lebesgue integration theory, as ,e.g., the differentiation under integral

sign, the change of the order of integration, the Cavalieri principle.

All the notions and results presented in the book are accompanied by com-

ments and examples warning the reader about some delicate points of the subject, or

on errors that could be done (or were done). The exercises at the end of each chapter

complete the main text with related results and examples.

The result is a fine book on measure theory and integration, based on a

general approach to the subject and discussing many difficult topics in the area. It

can be recommended for advanced courses in measure theory, but it is suitable also

for self-study by graduate students.

V. Anisiu
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Vladimir A. Zorich, Mathematical Analysis, Springer Verlag, Berlin-Heidelberg

2004, Vol. I: xviii + 574 pages, ISBN: 3-540-40386-8; Vol. II: xv + 681 pages, ISBN:

3-540-40633-6.

This is the translation of the fourth edition of a well known course on mathe-

matical analysis, taught for several years by the author at the Moscow State University

(MSU) and at other universities. Together with V.I. Arnold and S.P. Novikov, the

author is one of the organizers of advanced experimental courses at MSU, this ex-

perience being reflected in the book too. Written in the good tradition of Russian

mathematical textbooks, the present one combines intuition and accessibility with

modern mathematical rigor.

The book is divided into two volumes. The main part of the first volume

is concerned with the calculus of functions of one variable, developed in the first

6 chapters: 1. Some logical and mathematical concepts and notation; 2. The real

number system (introduced axiomatically); 3. Limits (including a treatment of limits

with respect to a filter base that are used in several places throughout the book, as e.g.

in integration theory); 4. Continuous functions; 5. Differential calculus (including the

calculus of primitives, complex numbers and power series of complex numbers which

are used to define ez); 6. Integration (meaning Riemann integration and improper

Riemann integrals). Beside the basic theoretical material, these chapters contain

many worked examples of applications of the methods of mathematical analysis to

other branches of mathematics (as, for instance, a proof of the fundamental theorem

of algebra), or from natural and physical sciences (the barometric formula, the motion

of a body with variable mass, the falling of a body in atmosphere, radioactive decay,

etc).

The last two chapters of the first volume deal with functions of several vari-

ables – 7. Functions of several variables (continuity questions), and 8. Differential

calculus in several variables. This last chapter contains some deep results, as the

implicit function and inverse function theorems, the tangent space to a k-dimensional

surface in Rn and constrained extrema.
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The volume ends with some midterm examination problems, as well as some

final examination problems for the first semester (one variable theory) and the second

semester (integration and multivariate calculus).

The second volume contains more advanced topics and basically correspond

to the second year curriculum in the mathematics departments at MSU. It can be read

independently of the first volume, because the first two chapters, 9. Continuous map-

pings - General theory and 10. Differential calculus from a general viewpoint, contain

in a compressed and generalized form the results on continuity and differentiability

from the first volume: basic properties and constructions for metric and topologi-

cal spaces, continuous mappings, differential calculus for mappings between normed

spaces, higher-order differentials, Taylor’s formula, and a general implicit function

theorem. Multiple Riemann integration and improper multiple Riemann integrals are

treated in Chapter 11, Multiple integrals. Chapter 12, Surfaces and differential forms

in Rn, is concerned with surfaces, orientation, area surface and elementary properties

of differential forms, preparing the ground for the next two chapters, 13, Line and

surface integrals, which contains the proofs of the fundamental integral formulas of

Green Ostrogradski-Gauss and Stokes, and 14, Elements of vector analysis. Chap-

ter 15, Integration and differential forms on manifolds, can be viewed as a synthesis

at a higher level of abstractization of the topics treated in chapters 11-14. Uniform

and pointwise convergence of sequences of functions are treated in Chapter 16, which

contains also proofs of the Arzela-Ascoli compactness theorem and of Stone approx-

imation theorem. The integrals depending on a parameter (including improper and

multiple integrals) are treated in Chapter 16, with applications to Euler’s functions

Beta and Gamma. Convolutions and generalized functions are also briefly discussed

in this chapter.

The last two chapters of the book are 18, Fourier series and Fourier transform

and 19, Asymptotic expansions.

As the first one, this volume ends also with some midterm and final exami-

nation questions.
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The bibliography is grouped in four categories: 1. Classical books; 2. Text-

books; 3. Classroom material; 4. Further reading. For the convenience of the readers,

some English titles were added for this edition.

There are a lot of exercises and problems, of varying difficulty, spread through

the book, needed for a better understanding of the subject, as well as historical notes

about the great names who contributed along the centuries to the building of the

edifice of mathematical analysis.

This comprehensive course on mathematical analysis provides the readers,

first of all students specializing in mathematics, with rigorous proofs of the funda-

mental theorems, but also with its applications in mathematics itself and outside it. It

is correlated with subsequent disciplines relying on its methods and results, as differ-

ential equations, differential geometry, functions of a complex variable and functional

analysis.

T. Trif
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