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ON THE BASIC PROPERTIES OF DISCONTINUOUS FLOWS

E. AKALIN AND M. U. AKHMET

Abstract. In this paper, we define discontinuous dynamical systems
which can be used as models of various processes in mechanics, electron-
ics, biology and medicine. We find sufficient conditions to guarantee the

existence of such systems. These conditions are easy to verify.

1. Introduction and preliminaries

A book [1] edited by D.V. Anosov and V.I. Arnold considers two fundamen-
tally different Dynamical Systems (DSs) : flows and cascades. Roughly speaking,
flows are DS's with continuous time and cascades are DSs with discrete time. One
of the most important theoretical problem is to consider Discontinuous Dynamical
Systems (DDS's). That is systems whose trajectories are piecewise continuous curves.
It is well-recognized (for example, see [2]) that the general notion of such systems
was introduced by Th. Pavlidis [3], although particular examples (the mathematical
model of clock [4]-[6] and so on) had been discussed before. Some basic elements of
the theory are given in [7]-[11]. Analysing the behavior of the trajectories we can con-
clude that DDS's combine features of vector fields and maps, they can not be reduced
to flows or cascades, but are close to flows since time is continuous. That is why we
propose to call them also Discontinuous Flows (DF's). Applications of DDS's in me-
chanics, electronics, biology and medicine were considered in [3], [12] - [15]. Chaotic
behavior of discontinuous processes was investigated in [13, 16]. One must emphasize

that DF's are not differential equations with discontinuous right side which often have
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been accepted as DDS's [17]. However, theoretical problems of nonsmooth dynamics
and discontinuous maps [18]-[25] are also very close to the subject of our paper. One
should also agree that monautonomous impulsive differential equations, which were
thoroughly described in [8] and [11], are not DF's.

The paper embodies results that provide sufficient conditions for the existence
of a differentiable DF. Since DF's have specific smoothness of solutions we call these
systems B-differentiable DFs. Apparently, it is the first time when notions of B—
continuous and B— differentiable dependence of solutions on initial values [27] are
applied to described DDS's and sufficient conditions for the continuation of solutions
and the group property are obtained. A central auxiliary result of the paper is the
construction of a new form of the general autonomous impulsive equation (system
(1)). Effective methods of investigation of systems with variable time of impulsive
actions were considered in [8, 11], [27]- [31].

Let Z,N and R be the sets of all integers, natural and real numbers, respec-
tively. Denote by || - || the Euclidean norm in R™, n € N. Consider a set of strictly

ordered real numbers {6;}, where the set A of indices is an interval of Z/{0}.
Definition 1.1. The set {6;} is said to be a sequence of B — type if the product
i0;, 1> 0 for all i and one of the following alternative cases holds:
(a) {6:} =0;
(b) {6:} is a finite and nonempty set;
(¢) {6;} is an infinite set such that |0;] — oo as |i| — oo.
From the definition, it follows immediately that a sequence of 8 — type does

not have a finite accumulation point in R.
Definition 1.2. A function ¢ : R — R" is said to be from a space PC(R) if
1. (t) is left continuous on R;

2. there exists a sequence {0;} of B— type such that p is continuous if t # 0;
and ¢ has discontinuities of the first kind at the points 0;.

Particularly, C(R) Cc PC(R).
Definition 1.3. A function ¢(t) is said to be from a space PC*(R) if ¢’ € PC(R).
4



ON THE BASIC PROPERTIES OF DISCONTINUOUS FLOWS

Let T be an interval in R.

Definition 1.4. We denote by PC(T) and PC*(T) the sets of restrictions of all
functions from PC(R) and PC*(R) on T respectively.

Let G be an open subset of R”, GG,. be an r— neighbourhood of G in R™ for
a fixed r > 0 and G C G, be an open subset of R™. Denote as ® : G — R be a
function from C!(G) and assume that a surface T' = &1 (0) is a subset of G, where
G denotes the closure of the set G in R™. Moreover, define a function J : I, — G ,

where I';. is an r— neighbourhood of I". We shall need the following assumptions.

Cl) V®(x) #0, Va €T}
02) J € CH(T,),det[22®)] £ 0, for all z € T,

One can see that the restriction .J|r is a one-to-one function. Let also T' = J(I'), T C
G.If &(z) = ®(J'(x)), z € T then T = {33 €qG|(z) = 0} . It is easy to verify that
Vo(x) #0,Vzel.

Consider the following impulsive differential equation in the domain D =

[Gurul|\[(Mr)u (T\D)]

2(t) = Fa(t), {a(t) €T AL >0}V {a(t) ¢ DAL <0},
x(t+)‘m(t—)€FAtZO = J((E(t—)),

2(t=)|a(eyerneco = I (@(t4)- (1)

We make the following assumptions which will be needed throughout the

paper.

C3) feCYaG,).
c4) 1AL =0, 0 (M) =0, ()N =0,
C5) (VO(x), f(2)) £0if v €T,

)
)
)
6) < &(x), f(x )>7£Oifxef.
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2. Main results

Definition 2.1. A function x(t) € PC*(T) with a set of discontinuity points {6;} C T
is said to be a solution of (1) on the interval T C R if it satisfies the following
conditions:

(i) equation (1) is satisfied at each point t € T\{6;} and 2'(0;,—) =

f(2((6:))),i € A, where 2'(0;—) is the left-sided derivative;

(i) z(6;+) = J(x((0;)) for all b;.
Theorem 2.1. Assume that conditions C1) — C6) hold. Then for every xg € D there
exists an interval (a,b) C R,a < 0 < b, such that the solution x(t) = x(t,0,20) of (1)

exists on the interval.

Definition 2.2. A solution x(t) : [a,00) — R™,a € R, of (1) is said to be continuable

to oo.

Definition 2.3. 4 solution z(t) : (—oo,b] — R™,b € R, of (1) is said to be continuable
to —oo.

Definition 2.4. A solution x(t) of (1) is said to be continuable on R if it is continu-
able to co and to —oo.

Definition 2.5. A solution x(t) = x(t,0,x0) of (1) is said to be continuable to a
set S C R™ as time decreases (increases) if there exists a moment £ € R, such that

E<0(E>0) and z(§) € S.

Denote by B(zg,§) = {x € R"|||x — z¢]| < &} a ball with centre o € R™ and
radius £ € R.
The following Theorem provides sufficient conditions for the continuation of

solutions of (1).
Theorem 2.2. Assume that

(a) every solution y(t,0,x0),xz0 € D, of

satisfies the following conditions:
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(al) it is continuable either to co or to I' as time increases,

(a2) it is continuable either to —oco or to T as time decreases;
(b) for every x € T there exists a number €, > 0 such that B(x, ;)
br) for every x € T there exists a number €, > 0 such that B(x,é,)

)
)

¢) inf
)

—~

(w,62)EFXR Fupp s, r ran > 0

c! mf

(@6 €T R Supp T > O
Then every solution x(t) = x(t,0,x0), xo € D, of (1) is continuable on R.

Consider a solution z(t) : R — R™ of (1). Let {6;} be the sequence of
discontinuity points of z(t). Fix 6 € R and introduce a function ¢ (t) = z(t + 0).

Lemma 2.1. The set {6; — 0} is a set of all solutions of the equation

®(y(t)) = 0. (3)

The following condition is one of the main assumptions for DF's.

C7) I,T C 9G;
Jde > 0 such that Vo € T'. N G function ®(z) is either positive or negative;

Je > 0 such that Vo € T. N G function ®(x) is either positive or negative.

Lemma 2.2. Assume that C1) — C7) hold. Then z(—t,0,2(¢t,0,20)) = o for all
rg € D,t € R.

Lemma 2.3. If z(t) : T — R"™ is a solution of (1) then z(t +0),0 € R, is also a
solution of (1).

Lemmas 2.1-2.3 imply that the following theorem is valid.

Theorem 2.3. Assume that conditions C1) — C7) are fulfilled. Then

x(ta, x(t1,x0)) = x(t2 + t1, o), (4)

for all t1,t; € R.
Let 2°(t) : [a,b] — R",a < 0 < b, be a solution of (1), 2°(t) =
x(t,0,20),0;,i = —k,...,—1,1,...,m, are the points of discontinuity of 2°(¢), such
7
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that @ < 0_p < -+ <07 <0<6; < -+ <6, <b Denote by z(t) = x(¢t,0,Z)

another solution of (1).

Definition 2.6. The solution z(t) : [a,b] — R™ is said to be in an e-neighbourhood
of 2°(t) if:
1. every point of discontinuity of x(t) lies in an e-neighbourhood of a point
of discontinuity of x°(t);
2. For each t € [a,b] which is outside of e-neighbourhood of points of discon-
tinuity of 2°(t) the inequality ||2°(t) — z(t)|| < € holds.
Definition 2.7. Hausdorff’s topology, which is built on the basis of all e-neighbour-

hoods, 0 < € < 00, of piecewise solutions will be called Big p)-topology.

Theorem 2.4. Assume that conditions C1) — C7) are satisfied. Then the solution
x(t) continuously depends on initial value in B, ) topology .

Moreover, if all 0;,i = —k,...,—1,1,...,m, are interior points of [a,b], then, for
sufficiently small ||xo — Z||, the solution x(t) = x(t,0,Z),z(t) : [a,b] — R™, meets the
surface T' exactly m + k — 1 times.

Without loss of generality, assume that all points of discontinuity of 2°(¢) are
interior. Denote by z,(t),j = 1,n, a solution of (1) such that z;(ty) = zo + {e; =
(29,29, ... 2 1, a)+&a0,,,...,29),& € R, (to, 20 + Eej, po) € Co(d) and let 6/ be
the moments of discontinuity of z,(¢). By Theorem 2.4, for sufficiently small |¢| the

solution x;(t) is defined on [a, b].

Definition 2.8. The solution x°(t) is said to be differentiable in z?,j =1,n, if

A) there exist such constants v;j,i = —k,...,—1,1,...,m, that
6] — 0 = vi€ + o(€]); (5)
B) for allt € [a,b]\ U _, (97;:05], the following equality is satisfied
wj(t) — 2°(t) = u; ()€ + o([€]), (6)

where u;(t) is a piecewise continuous function, with discontinuities of the first kind
at the pointst =0;,1 = —k,...,—1,1,...,m.

8
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The pair {uj, {vij}i} is said to be a B— derivative of 2°(t) in initial value )
on [a,b].
The following theorem is valid.

Theorem 2.5. Assume that conditions C1) — C7) are satisfied. Then the solution

20(t) of (1) has B— derivatives in the initial value on [a, b).

3. The B-smooth discontinuous flow

Let G C R™ be an open set and I,T be disjoint subsets of G. Denote D =
GUTUT.

Definition 3.1. We say that a B— smooth DF is a map ¢ : R x D — D, which
satisfies the following properties:
I) The group property:
(i) ¢(0,z) : D — D is the identity;
(ii) o(t, o(s,x)) = ¢(t + s,x), is valid for all t,s € R and x € D.

IT) If € D is fized then ¢(t,z) € PC*(R), and ¢(#;,z) € T, ¢(0;+,x) € T
for every discontinuity point 0; of ¢(t, ).

I1I) The function ¢(t,x) is B— differentiable in x € D on [a,b] C R for
every {a,b} C R, assuming that all discontinuity points of ¢(t,x) are interior points
of [a,b].

One can see that the system (1) defines a B— smooth DF provided conditions
C1) — C7) and the conditions of the continuation theorem are fulfilled.

Definition 3.2. We say that a DF is a map ¢ : R x D — D, which satisfies the
property I) of Definition 3.1 and the following conditions are valid:

IV) If © € D is fized then ¢(t,z) € PC(R), and ¢(0;,2) € T, ¢(0;+,x) € T
for every discontinuity point 0; of ¢(t, ).

V) The function ¢(t,z) is B— continuous in x € D on [a,b] C R for every
{a,b} C R.

Comparing definitions of the B— differentiability and the B— continuity one
can conclude that every B— smooth DF is a DF.
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Example 3.1. Consider the following model for simple neural nets from [3]. We

have modified its form according to the proposed equation (1).

/

o = a9, 7y = —f*x1, p' = —yp+ 21 + By, if (x(t) T At >0)V (z(t) €T At <0),
x1(t+) = 2o (=), z2(t+) = 22(t—), p(t+) = 0,if z(t) e T AL >0,
z1(t—) = 21 (t4), 2o(t—) = zo(t+), pt—) = r,if z(t) e T At <0,

where 3,By € R are constants, T' = {(x1,22,p)|p = r},f = {(z1,22,p)|p =

O},(I)(Z) =p—-T f(.’ﬂ) (x2752$13 —YpP + a1 + BO),J(:E) = (x1>$27r)7677ar > 07

2
are constants. We assume that G = {(x1,22,p)|0 < p < 7,23 + % < 1}. In the

system the variable p(t) is a scalar input of a neural trigger and x1,x2, are other

variables. The value of v is the threshold. One can verify that the functions and the
sets satisfy C'1) — C'7) and the conditions of Theorem 2.2. That is, the system defines
a DF.

Remark 3.1. The extended version of the paper has been submitted to Mathematical
and Computer Modelling.

References

[1] D. V. Anosov and V. I. Arnold, Dynamical Systems, Springer-Verlag, Berlin, New York,
London (1994).

[2] A. D. Myshkis, On asymptotic stability of the rough stationary points of the discon-
tinuous dynamic systems on plane, Automation and remote control, 62 (9) 1428-1432
(2001).

[3] T. Pavlidis, A new model for simple neural nets and its application in the design of a
neural oscillator, Bull. Math. Biophys., 27, 1965, 215-229.

[4] A. A. Andronov, A. A. Vitt, and C. E. Khaikin, Theory of Oscillators, Pergamon Press,
Oxford, 1966.

[5] N. M. Krylov and N. N. Bogolyubov, Introduction to nonlinear mechanics, Acad. Nauk
Ukrainy, Kiev, 1937.

[6] N. Minorsky, Nonlinear Oscillations, D. Van Nostrand Company, Inc. Princeton, Lon-
don, New York, 1962.

[7] A.Halanay and D. Wexler, Qualitative theory of impulsive systems, Republica Socialista

Romania, Bucuresti, 1968.

10



8]

[9]

ON THE BASIC PROPERTIES OF DISCONTINUOUS FLOWS

V. Lakshmikantham, D. D. Bainov and P. S. Simeonov, Theory of Impulsive Differential
Equations, World Scientific, Singapore, 1989.

S. Nenov and D. Bainov, Impulsive dynamical systems, In The Second Colloquium on
Differential Equations: Plovdiv, Bulgaria, 19-24 August 1991, (Edited by D. Bainov et
al.), 145-166, World Scientific, Singapore, 1992.

V. F. Rozhko, On a class of almost periodic motions in systems with shocks, Differential
Equations (Russian), 11, 1972, 2012-2022.

A. M. Samoilenko and N. A. Perestyuk, Impulsive Differential Equations, World Scien-
tific.

R. Bellman, Mathematical methods in medicine, World Scientific, Singapore, 1983.

J. Guckenheimer and P. Holmes, Nonlinear oscillations, Dynamical systems, and Bifur-
cations of Vector Fields, Springer-Verlag, New York, 1983.

C. S. Hsu, Impulsive parametric exitation: Theory, Trans. ASME, Ser. E. J. Appl.
Mech., 39, 1972, 551-558.

R. F. Nagaev and D. G. Rubisov, Impulse motions in a one-dimensional system in a
gravitational force field, Soviet appl. Mech., 26, 1990, 885-890.

Yan-Wu Wang and Jiang-Wen Xiao, Impulsive control for synchronization of a class
of continuous systems, Chaos: An Interdisciplinary Journal of Nonlinear Science, 14,
2004, 199-203.

A. F. Filippov, Differential equations with discontinuous righthand sides, Kluwer, Dor-
drecht, 1988.

P. Ashwin, M. Nicol and N. Kirkby, Acceleration of one-dimensional mixing by discon-
tinuous mappings, Phys. A, 310, 2002, 347-363.

L. A. Bunimovich, On billiards close to dispersing, Math. of the USSR-Sb., 23, 1974,
45-67.

M. Feckan, Bifurcation of periodic and chaotic solutions in discontinuous systems, Arch.
Math. (Brno) 34, 1998, 73-82.

Fu, Xin-Chu and P. Ashwin, Symbolic analysis for some planar piecewise linear maps,
Discrete Contin. Dyn. Syst., 9, 2003, 1533-1548.

A. Katok, J.-M. Strelcyn, F. Ledrappier and F. Przytycki, Invariant manifolds, entropy
and billiards; smooth maps with singularities, Lecture Notes in Mathematics, 1222,
Springer-Verlag, Berlin, 1986.

M. Kunze, Non-Smooth Dynamical Systems, Lecture Notes in Mathematics, Vol. 1744,
Springer, Berlin-Heidelberg-New York, 2000.

11



[24]

[30]

[31]

[32]

12

E. AKALIN AND M. U. AKHMET

M. Kunze and T. Kiipper, Qualitative bifurcation analysis of a non-smooth friction-
oscillator model, Z. Angew. Math. Phys., 48, 1997, 87-101.

Ya. G. Sinai, What is ... a billiard? Notices Amer. Math. Soc., 51 (4), 2004, 412-413.
M. U. Akhmetov, On motion with impulse actions on a surfaces, Izv.-Acad. Nauk Kaz.
SSR, Ser. Fiz.-Mat., 1, 1988, 111-114.

M. U. Akhmetov and N. A. Perestyuk, Differential properties of solutions and integral
surfaces for nonlinear pulse systems, Differential Equations, 28, 1992, 445-453.

M. U. Akhmet, On the general problem of stability for impulsive differential equations,
J. Math. Anal. Appl., 288, 2003, 182-198.

Devi, J. Vasundara and A. S. Vatsala, Generalized quasilinearization for an impulsive
differential equation with variable moments of impulse, Dynam. Systems Appl., 12,
2003, 369-382.

M. Frigon and D. O’Regan, Impulsive differential equations with variable times, Non-
linear Analysis, 26, 1996, 1913-1922.

V. Lakshmikantham and X. Liu, On quasistability for impulsive differential equations,
Nonlinear analysis, 13, 1989, 819-828.

P. Hartman, Ordinary Differential Equations, Wiley, New York (1964).

DEPARTMENT OF MATHEMATICS, MIDDLE EAST
TECHNICAL UNIVERSITY, 06531 ANKARA, TURKEY

E-mail address: marat@metu.edu.tr, cigdemebru@hotmail.com



STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume XLIX, Number 4, December 2004

TWO- AND THREE-DIMENSIONAL INVERSE PROBLEM
OF DYNAMICS

MIRA-CRISTIANA ANISIU

Abstract. For a given a monoparametric family of curves f(z,y) = ¢, we
present the partial differential equations satisfied by the potentials V' =
V(x,y) under whose action a particle of unit mass can describe the curves
of the family. Szebehely’s equation depends on the total energy of the
particle, while Bozis’ one relates merely the potential and the given family.
Therefore the last one is also adequate for the direct problem of dynamics.
A similar program is accomplished for a two-parametric spatial family of

curves ¢(x,y, z) = c1, Y(x,y,2) = c2 and potentials V = V(z, y, 2).

1. Introduction

The first result concerning the inverse problem of dynamics is due to Newton
[24], who presented the form of the gravitational potential on the basis of Kepler’s
laws. Kepler has had at his disposal the very accurate tables of observations made
by Tycho Brache (whose assistant he was in Prague); these observations allowed him
to discover that the orbit of Mars is an ellipse and to formulate the three laws of
planetary motion.

Later on, Bertrand [7] showed that Kepler’s first law suffices to derive the
Newtonian universal force; Dainelli [18] obtained the expressions of general force

fields producing given planar or spatial families of curves.

Received by the editors: 06.12.2004.

2000 Mathematics Subject Classification. 34L40.

Key words and phrases. Planar and spatial inverse problem of dynamics, energy-free equations.
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The two-dimensional problem, this time for conservative systems, has renewed
the interest in the inverse problem of dynamics by means of Szebehely’s [29] partial
differential equation. This equation relates the potential to the given monoparametric
family of curves and to the total energy. Puel [26] derived a Szebehely-type equation
which is independent of the coordinate system. Another basic result for the two-
dimensional inverse problem is the energy-free partial differential equation obtained
by Bozis [9] from Szebehely’s equation, and later derived directly by Anisiu [3].

The conservative three-dimensional problem was considered by Erdi (19] for
a monoparametric family of orbits, and then for two-parametric families by Varadi
and Erdi [30]. Puel [25] used the least action principle of Maupertuis to obtain the
equations satisfied by the potential in the two- and three-dimensional inverse problem
of dynamics. The existence of such a potential and its relation with the energy in the
three-dimensional case was subject to further papers, as those of Gonzales-Gascon et
al [21], Bozis and Nakhla [15] and Shorokhov [28]. Puel [27] obtained the intrinsic
equations of the three-dimensional inverse problem, using the Frenet reference frame.
A review of the basic results in the inverse problem of dynamics, including the three-

dimensional ones, can be found in [10].

2. The planar inverse problem of dynamics

We consider the following version of the inverse problem for one material
point of unit mass, moving in the xy inertial Cartesian plane. Given a family of

curves
fzy)=c (1)

with f of C3-class (continuous and with continuous derivatives up to third order on a
domain of the plane), find the potentials V(z,y) under whose action, for appropriate
initial conditions, the particle will describe the curves of that family. The equations

of motion are

r==-Vy y=-V, (2)
14
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where the dots denote derivatives with respect to the time ¢ and the subscripts partial
derivatives. By making use of the energy integral, Szebehely [29] proved that the

potential V' is a solution of the first order partial differential equation

2(V - E(f))

(fxzfg_szyfxfy‘i'fyyfz) :Oa (3)

where E(f) denotes the total energy, which is constant on each curve of the family

(1). Bozis [8] wrote Szebehely’s equation in the simpler form

20 (E(f)=V) _
making use of the functions
— fy d T =
v=7, ad T=1% - (5)

related to the geometry of the family (v representing the slope and I' being propor-
tional to the curvature). By eliminating the energy from (4) (using the fact that
E,/E; = f,/f.) Bozis [9] obtained the energy-free equation of second order

~Vaw + 6V + Vi = AV, + 1V, (6)
where
1 r, —~T, 3T
e P T e (7)
o olx v

The basic equations (4) and (6) of the planar inverse problem of dynamics present
the connection between geometry and dynamics. Their derivation and other related
results are exposed in [10], [2], [1], [3].

Szebehely obtained the first order equation intending to determine the po-
tential of the earth by means of satellite observations, while Bozis used equation (6)
to check if a given family of orbits may be generated in the plane of symmetry outside
a material concentration.

15
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2.1. Basic tools. Let us consider a particle whose motion is described by equations
(2), where V is of C2-class on a domain of the zy plane. We shall use a procedure
exposed by Anisiu [3], related to that followed by Kasner [22] while he has obtained
the differential equation of the trajectories corresponding to a general (not necessarily
conservative) force field. By differentiating (1) with respect to ¢t we get fo&+ fyy =0,

or, using notation (5),

&
’)/ = — . 8
; (8)
By differentiating (8) we get
i — i

Inserting in (9) # and § from (2), and & from (8) we obtain
Ly == (Vo +9V,).

The function T" is related to the curvature K of the family (1) by K =
T/ (v*+ 1)3/2. It follows that I' = 0 if and only if the family (1) contains only

straight lines. In this case, which was studied in [11], we have by necessity
Ve +79V, =0, (10)

which represents Szebehely’s equation for this special case. The straight lines are
traced with arbitrary energy.

Let us consider now a general family (1) with I" # 0. In this case we have

§’ = . (11)

We differentiate (9), divide both members by ¢ and get

g (@Y — §F) — 34 (i — §i)

7 . (12)

Wz —T'y =

We remark that (8), (9) and (12) express the relations between the geometry
of the family of curves (1) and the kinematics derivatives.
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Two additional equations are obtained by differentiating equations (2) with
respect to t, namely
T = — (Vged + Vay ¥
© = et Vayl) (13)
Y = — (Vo + Vi) -
Now we eliminate the derivatives i, 7, &,, @, ¥ between the seven relations in (2),

(8), (11), (12) and (13), and get the partial differential equation
D (=7 Vo + Vay =V Vay +1Vyy) = = (Vo +9V,) (1T = Ty) + 3V, 12 (14)

We divide both members of (14) by 4I" and obtain Bozis’ equation (6), with A and
given in (7).

A straightforward calculation shows that equation (6) can be written as

YW, — W, =0, (15)
where
1+92
WzV—T:Y(Vx+ny). (16)

Equation (15) has the general solution W = E(f), where E denotes an arbitrary

function. It follows that

149

|4
2r

(Ve +9Vy) = E(f)- (17)

In view of relations (2), (8) and (9) we obtain

i+ g

V+ B

E(f), (18)

which means that F(f) represents the total energy, constant on each curve of the
family (1). Therefore equation (17), obtained this time from Bozis’ equation, is in
fact Szebehely’s equation. From (18) we obtain E(f)—V > 0, and from (17) it follows
that only the curves of the family (1) or parts of them which are situated in the plane

region
Ve +7V,
r

can be described by the unit mass particle. Inequality (19) was obtained by Bozis

<0 (19)

and Ichtiaroglou [12].

17
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Remark 1. Bozis [10] arranged equation (6) in a form adequate for the direct problem
of dynamics, namely
VVew = 292y + Yy = B, (20)
where

= =z 0y

Vv Vet (27 = 3%) Vy 4y (Ve = Vi) + (V2 = 1)Viy) . (21)
Yy x

Relations (20)-(21) have been used to find families of curves satisfying auziliary con-

ditions, supposing that a potential is given, in [16], [17], [6].
2.2. Examples.
Example 2. From the class of Hénon-Heiles potentials
V(z,y) = ax? + by* + ca’y + dy® (22)
with a,b,c,d € R, a,b > 0, Anisiu and Pal [5] looked for those compatible with the
family of polytropic curves f(x,y) = ™ Py, where p € Z ~ {0,1}. The potential
Vi(z,y) = a (2 +16y°) + ¢ (2* + (16/3)y) y

was found to generate the family fi(x,y) = x~*y in the region described by y(cx? +
8cy? + 24ay) < 0, with the energy E1(f1) = —c/(24f1). Another potential is

Va(z,y) = a (2° + 4y°) + dy?,

which produces the family fo(z,y) = 2%y in the region dy + 4a < 0, with the energy

Es(f2) = —df2/4.
It was shown in [11] that no potential of the form (22) allows for families of

straight lines.
Example 3. For the family f =y — 1/22, the potential
V(z,y) = 8y + 42y — 28 — 622
was found in [17]. The particle describes the curves of the given family in the region
y < a2t +1/(222) with the energy E(f) = 8f2.

18



TWO- AND THREE-DIMENSIONAL INVERSE PROBLEM OF DYNAMICS
3. The three-dimensional inverse problem

We consider the three-dimensional family of curves
gp(m,y,z) = C1, 1/J(x,y,z) = C2. (23)
with ¢, of C3-class and with

Py Pz
Yy P

£0. (24)

We can suppose that any other determinant (containing derivatives with respect to x
and y, or to x and z) is different from zero, and proceed accordingly.

We deal with the following version of the inverse problem: find the potentials
V (z,y,z) under whose action, for appropriate initial conditions, a material point of

unit mass, whose motion is described by
T = _Vz y = _Vy zZ= _VZ7 (25)

will trace the curves of the family (23). The partial differential equations satisfied by
V will be derived as in [4], where the geometrical methods used by Kasner [23] were

adapted to this problem.

3.1. Basic tools. In order to obtain the equations satisfied by V, we differentiate

both sides of equations (23) with respect to ¢, and get

v_., Z_
S = Z= 3, (26)
where
Oz — Paz mey - @ywr
aq=—7" "> [f=—=T-"" 27
@ywz - @zwy ‘waz - szz/}y ( )

We remark that at least one of the functions o and 3, say «, is not identically null
(otherwise condition (24) fails to be fulfilled).

The notation (27) was introduced by Bozis and Kotoulas [13], where it was
emphasized that the family (23) leads to a unique pair «, 8 and, conversely, the pair
a, 3 determines uniquely the family (23).
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We differentiate both relations in (26) and get

B iy, dE-E2

= ) P B, (28)
where
A:aw‘i‘aay'i‘ﬁaza B:6m+aﬁy+6ﬁz- (29)
Using (26) and equations (25), we obtain from (28)

We have to analyze the special case when A = B = 0. It is obvious that,
in view of relation (28), it follows that also §Z — 2 = 0, hence the curvature K =
|7 x 7|/[F|* of each member of the family (23) vanishes. We have denoted by 7 =
x(t)i+y(t)j+ z(t)k, where 7, j, k are unit vectors along the axes Oz, Oy, Oz.

It follows that we have A = B = 0 if and only if the family (23) consists of
straight lines. This case was analyzed in detail in [13]. Relations (30) give rise to two

linear partial differential equations to be necessarily satisfied by V, namely
Ve —Vy =0, BV,—-V,=0. (31)

These equations will admit of a solution only if o and [ satisfy, besides the two

equations obtained from (29) for A = B = 0, a supplementary equation (see [20])

aﬁx - 604;E = ﬁy — Q. (32)

So, generally, the inverse problem is not expected to have a solution for arbitrary
families of straight lines.

Let us consider now A # 0 and B # 0. By eliminating ©? between the two
relations in (30) we obtain a first necessary condition to be satisfied by V,

av, -V, BV, -V,
A~ B

where «, 5 from (27) and A, B from (29) depend on the derivatives of ¢ and % up to

(33)

the second order. Because of ©? > 0, it follows that the motion is possible only in the
region determined by

aV, =V,

—= >0. 34

> (34)
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Differentiating both members of the equality % = (aV, — V,) /A with respect
to t and replacing & from the first equation in (25), respectively ¢/4 and /& from

(26), we obtain a second differential relation to be satisfied by V

where 3

1

k:——a’p:—’q:—ﬁ
« o

(36)

3A Ay +aAy + BA,

l=— —am, m= .
« aA

Summarizing the above reasoning, we assert that a potential which produces
as orbits the curves of the family (23) satisfies by necessity the two differential relations
(33) and (35), the motion of the particle being possible in the region determined by
inequality (34). We remark that equation (35) is of second order in V and does not
involve the energy (constant on each curve of the family), hence it is the corresponding
for the three-dimensional case of Bozis’ equation (6) satisfied by planar potentials.

In the following we shall derive the equation from which the total energy can
be expressed. Denoting by

aVy —Vy

Y (37)

W= (1+a*+ %)
one can check by direct calculation that (35) is equivalent to
W, +aW, + W, = 0. (38)

The characteristic system for (38) is
dx B dy B dz
(waz - %% Yz — P2, (Pa:wy - pr"/)w
and one obtains easily that ¢.dr + ¢,dy + ¢.dz = 0 and Y.dx + YP,dy +1P.dz = 0.

It follows that ¢ (x,y,2) = ¢; and 9 (x,y,2) = cg are integrals, hence the general
solution of (38) is W = & (p,v) with £ an arbitrary function.
In view of relations (26) and (30), we get from (37) that

E(p, ) = (#2+9° +2%) )2+, (39)



MIRA-CRISTIANA ANISIU

ie. W = E(p,1) is the total energy, constant on each curve of the family (23). It

follows that the equation

aV, =V,

E(p) = (1+a®+ %) i Y (40)

which was derived by Varadi and Erdi [30] using the energy integral (and which
corresponds to Szebehely’s planar equation), can be obtained as a consequence of the
second order partial differential equation (35).

The two equations (33) and (35) for a single unknown function V will not
have always a solution; compatibility conditions are to be checked. The advantage of

this formulation consists in the fact that it is free of energy.

Remark 4. Equations (33) and (35) are suitable for the direct problem of dynamics:
given a three-dimensional potential, find families of curves of the form (23) generated
by it. We can rearrange the mentioned equations and obtain a linear partial differential

equation of first order in « and (8

(Vwﬁ - Vz) (aa: + aay + 60%) - (Vwa - Vy) (ﬁm + aﬁy + ﬁﬁz) =0, (41)
and a nonlinear one of second order

Qg + a2ayy + BP0, + 2000y + 2P0, + 2080y, =

A
m C(BVea, + (2Vea + Vy) oy + 2VeB+Vz) . (42)

+Vaa — Viy (1 = a?) = Vyya = V. 8+ Vezaf3) .

If B =0 and A # 0, we still have inequality (34); instead of (33), the relation
BV, —V, = 0 holds, beside the second order partial differential equation (35).

If A=0and B # 0, the inequality to be satisfied is (8V, — V,) /B > 0, and
(33) is replaced by aV, —V, = 0. Starting with #* = (8V, — V,) /B, we follow the
steps from the case when both A and B were different from zero and obtain instead

of (35)

Vi + kVie + Voo + 9V + Vi = IV, + Vs, (43)
22
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where )
Pel 8 5-% G-
3 B, p 5
(44)
- 3B o B, +aB, + 3B,
l=— —pBm, m= Y
B BB

3.2. Examples.
Example 5. The two-parametric family of straight lines

Yy z
— =C, — =C2
T T

was found in [13] to be compatible with the (central) potential
V(z,y,2) = F(a® +y* + 2°),

where F' is an arbitrary function of its argument.

Shorokhov [28] presented a family of straight lines
x
—=c, ytz=c
Yy
which cannot be described by a particle under the action of any potential. This family
has a = y/x and B = —y/x, hence condition (31) does not hold.
Example 6. The family of curves

z

2 2
— =cC1, x—’—y = C2
x

was considered in [30] and [15]. It can be traced all over the space under the action
of the potential

V(z,y,2) = (2 +y° +2°)/2,
with the energy E(p,v) = ¥(p? + 2)/2. This example illustrates the case A # 0,
B =0.
Example 7. For the family of curves

r- =Y
2 2
r° +y° =, 2 = Co

one has A # 0 and B # 0. The potential

V(z,y,2) = a® +y° +42°
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given in [14] produces the given family with the energy E(p,¥) = 2¢ (2@ + 1/12) J2.

4. Conclusions

The energy-free equations have a basic role in the inverse problem of dy-

namics. When we have no a priori information on the energy of the given family, it

is natural to work with equations (6), respectively (33) and (35) in order to obtain

potentials compatible with the given family. These equations can be used also when

the search of the potentials is restricted to a class of theoretical or practical interest.
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SMOOTH DEPENDENCE OF SOLUTION ON PARAMETERS
FOR THE VOLTERRA-FREDHOLM INTEGRAL EQUATION

CLAUDIA BACOTIU

Abstract. In this paper we will give conditions that ensures the differen-
tiability with respect to parameters of the solution of Volterra-Fredholm

nonlinear integral equation.

1. Introduction

In the present paper consider the nonlinear integral equation of Volterra-

Fredholm type:

u(x,t) = f(:r:,t)—I—/O / K(x,t,y,s,u(y,s))dyds (1)

vt € [0,c], Vz € [a, 8], where [a,b] C [a, §].
Applying fiber Picard operators theory, we will prove the differentiability of the solu-
tion of (1) with respect to a and b.

2. Fiber Picard operators

Let (X,d) be a metric space and A : X — X an operator. In this paper we

will use the following notations:
Fy:={xeX:A(z) =uz};
A% :=1x, A" := Ao A" ¥n € N.

Received by the editors: 01.10.2004.
2000 Mathematics Subject Classification. 45G10, 47TH10.

Key words and phrases. Volterra-Fredholm integral equation, fixed point, fiber Picard operator theorem.
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Definition 2.1. (I. A. Rus [1]) The operator A is said to be:
(i) weakly Picard operator (wPo) if Vag € X A"(xo) — x§, and the limit z§ is a
fized point of A, which may depend on xq.
(ii) Picard operator (Po) if Fy = {z*} and Vxo € X A™(xg) — x*.
In the next section we need the following result:

Theorem 2.1. (Fiber Contraction Principle, I. A. Rus [3]) Let (X,d), (Y, p) be two
metric spaces and B: X — X, C: X XY — Y two operators such that:

(i) (Y, p) is complete;

(ii) B is a Picard operator, Fg = {z*};

(iii) C(-,y) : X =Y is continuous Vy € Y;

(iv) 3a €]0,1[ such that the operator C(x,-) :' Y — Y is an a-contraction for all
x € X; let y* be the unique fized point of C(z*,-).

Then

A: X XY > XxY, A(z,y) :=(B(z),C(z,y))

is a Picard operator and Fa = {(z*,y*)}.

This theorem is very useful for proving solutions of operatorial equations to
be differentiable with respect to parameters. For such results see [6], [3], [2], [4], [5],

etc.

3. Main result

Theorem 3.1. Consider the equation (1) in the next conditions:
(i) f € C([a,b] x [0,¢]) and K € C([a,b] x [0,c] X [a,b] x [0,c] x R);
(i) there exists Lx > 0 such that:

|K(q"7tay587u)_K(x7t7yas’v)| SLKl’U/—U‘ (2)

Y(z,t,y,s) € [a, 0] x [0,¢] X [, B] % [0, ¢], Vu,v € R.

Then:

a) for all a < b € [a, (], the equation (1) has in C([a, B] X [0,¢]) a unique solution
28
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u*('a 5 a, b)
b) for all ug € C([av, B] % [0,¢c]), the sequence (un)n>0 defined by:

t b
un(z,t,a,b) = f(z,t) —|—/ / K(z,t,y,s,un-1(y, s,a,b))dyds
0 a

converges uniformly to u*, V(z,t,a,b) € [o, 8] x [0, ] X [a, 5] X [, O].

¢) The function u*, (x,t,a,b) — u*(z,t,a,b) is continuous: u* € C([o, 8] x [0, ] x
[, B] % [av, B]);

d) If K(z,t,y,s,-) € CYR), V(z,t,y,5) € [a,B] x [0,c] x [o, 3] x [0,¢], then
w (@,t,,) € CH([o, B] x [ev, B]), V(=,1) € [ar, 5] x [0, ].

Proof. Let the space C([a,b] x [0, ¢c],R) be endowed with a suitable norm,
lull pe = sup{[lu(z,t)] e : 2 € [a,b],t € [0,c]}, 7>0 (3)

Let X := C([er, 5] x [0,¢] X [a, 5] x [, B]). We consider the operator B : X — X
defined by:

B(u)(z,t,0,b) i= f(a,t) + //K £y, 5, u(y, 5,0, b))dyds

From (ii), applying the Contraction Principle, it follows that B is a contraction, so
we have a), b) and c).
For all @ < b € [a, (], there is a unique solution u*(+, -, a,b) € C([«, 5] x [0, ¢]), so we

have:

t b
(et a,b) = fat) + / / K(z,t,y,5,u"(y, 5, a,b))dyds (4)
0 a

ou*(z,t,a,b) ou*(z,t,a,b)
and
ob

exists, from (4) we obtain:

Let us prove that exists and they are continuous.

a
ou*(x,t,a,b

1. Supposing that %
ou*(x,t,a,b)

9a /thasu(asab))ds—i—

/ / 0K (z,t,y,s,u*(y,s,a,b)) . ou (y,s,a,b)dyds
ou da
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This relationship suggest us to consider the next operator:

C: X x X — X, defined by:

t
C(u,v)(z,t,a,b) := —/ K(x,t,a,s,u(a,s,a,b))ds+
0

t b
+// aK(x,t,y,sgu(y,S,ayb)) -v(y, s, a,b)dyds
0 Ja @

Let u* be the unique fixed point of B. The operator C(u,-) is a contraction Yu € X

and let v* be the unique fixed point of C'(u*,")).
If we define the operator A: X x X — X x X

A(u,v)(x,t,a,b) ;== (B(u)(z,t,a,b),C(u,v)(z,t,a,b)),

then the conditions of the Theorem 2.1 are fulfilled. It follows that A is a Picard
operator and Fy = {(u*,v*)}.

Consider the sequences (up)n>0 and (vy,)n>o defined by:
Un(x,t,a,b) := B(up—1(z,t,a,b)) =
t b
5@+ [ [ K@ty s a0 dyds 1
0 a
vp(z,t,a,b) == C(up—1(x,t,a,b),v,—1(x,t,a,b)) =

t
= —/ K(z,t,a,s,u,—1(a,s,a,b))ds+
0

cvp-1(y, $,a,b)dyds  ¥n >1

/t /b 8K('/Eat7yasaun—1(y78aa7b))
_l’_
0 a au

We have:

U, 3 u* (n—00), v, V(N — 0) (5)

uniformly for (z,¢,a,b) € [a, 5] x [0,c] X [a, 5] X [a, B].

0
We take ug = vy :=0, so v1 = ﬂ.
da
By induction we can prove that v, = % Vn and from (5) results:
a
Ouy, .
Ta =" (n — o)
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u*
Using a Weierstrass theorem, it follows that 54 exists and
a

ou*(z,t,a,b)

9a =v*(z,t,a,b).

*

u
2. By a similar way, we can prove the existence and the continuity of %.D

Remark 3.1. We can also consider the following integral equation of Volterra-

Fredholm type:

t b
w(at) = f(o,1) + / / K(x.t,y, 5, u(y, s), \)dyds (6)

vt € [0,¢], Vx € [a,b], where A\ € R and we can prove the differentiability of the
solution with respect to the parameter \.

This case will be presented elsewhere.
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PERIODIC AND QUASIPERIODIC MOTION
IN THE PERIODICALLY FORCED RAYLEIGH SYSTEM

PETRE BAZAVAN

Abstract. In this paper we present a numerical study of the periodic and
quasiperiodic motion in the dynamical system associated with the gener-
alized Rayleigh equation. Numerical results describe the system dynamics

changes (in particular bifurcations), when the forcing amplitude is varied.

1. Introduction

The autonomous second order nonlinear ordinary differential equation (ODE),

.3
'aj+%—i“+m:0, (1)
introduced in 1883 by Lord Rayleigh, is the nonlinear equation which appears to be
the closest to the ODE of the harmonic oscillator with dumping [1]. Some aspects
concerning canard bifurcations are analyzed in [1] and [2] for the periodically forced
generalization of Rayleigh equation,
i
Ex +E_ Z +ax = gsinwt. (2)
From mathematical perspective the nonautonomous system of nonlinear
ODEs associated with (2) is one of a class of periodically forced nonlinear oscilla-
tors, as the Van der Pol and Bonhoeffer Van der Pol systems are.
The behavior of these systems was much numerically investigated in [3], [4]
and [14], due to their applications in electronics and physiology.

Received by the editors: 22.04.2004.
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With system (2) there are associated the two-dimensional nonlinear non-

autonomous system of ODEs

1= T3,

3
[o— —a 1y, %2 i
To= —221 + £22 3 + gsin wt,
and the three-dimensional nonlinear autonomous system

1= T2,
23

To= —Lgy + L (xg - ?) + £sinx3, (4)

3= wmod 2.

A three-dimensional dynamical system with the phase space R? x S! can be
associated with (4).

Periodic solutions and the dynamics of the systems associated with (3) and
(4) are studied in [6] and [7]. The succession of the periodic and chaotic attractors
for the system (4) and then, the transition between the periodic and chaotic motion
are numerically studied in [8].

The dynamical system associated with (4) involves the interaction between
two periodic motions, each with a different frequency. When the ratio of the frequen-
cies is irrational the dynamical system behaves in a manner which is neither periodic
or chaotic. This motion is called quasiperiodic. More precisely, the natural periodic
motion, studied in [6] for the unforced case, i.e. Eq. (1), is modulated by a second
periodic motion given by the sinusoidal term when g > 0. The system behaves in a
manner with the motion never quite repeating any previous motion. This behavior
is generically followed by the system locking into a periodic motion, as the control
parameter for the system is varied [14].

The aim of our numerical analysis is to establish the parameter region where
the system (4) presents a quasiperiodic motion and structural changes which may
lead to any subsequent mode locked region of periodic motion.

The mathematical model used in our numerical study is presented in Sec.
2. Numerical results in Sec. 3 are concerned with the proof of the existence of the
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F1cure 1. Bifurcation diagram for the dynamical system (4).

quasiperiodic motion and the study of the transition from quasiperiodic to periodic

motion in the system (4).

2. The mathematical model

In order to present the mathematical model used in the numerical study from

Sec. 3, we shortly write (4) in the form

z= f(z), (5)

where f is defined on the R? x S! cylinder. We define a Poincaré map as follows. Let

. 2
Z = {(5131,3?2,.173) eR% x St ag = Omodg}
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be a surface of section, which is transversally crossed by the orbits of (5). The Poincaré

map P : ¥ — X is defined by

27 Jw
P (z0) = 7 27/, 79) = / £ ( (8, 20)) dt (6)

where 2y € ¥ and z (¢, 20) is the solution of the Cauchy problem z (0) = z¢ for (5).
We denote by P” the n-times iterated map.

0.500
First Lyapunoy exp.
o ) g
0.1873 0.3750 0.5625 T D/ 7500
-1.730

FIGURE 2. The first Lyapunov exponent for the dynamical system (4).

Let be & (t,z¢) a periodic solution of (5) with period T' = n - 27/w, n > 1,
lying on a closed orbit and consider the map P of the initial point z¢. Then, to this
closed orbit an n-periodic orbit of P corresponds. Numerically, the period T (i.e. n
from the expression of T') can be determined by integrating Eq. (5) with the initial
condition zy and sampling the orbit points z;, = P (zr_1), £ > 1 at discrete times
tr, = k- 27 /w, until P* (9) = z9. Then, n = k.

The stability discussion of the periodic orbit £ (¢, zo) is reduced to the stability
discussion of the fixed point xy of P™ since the stability of the periodic solution & is
determined by the eigenvalues of the matrix DP™, [9], [10], [11]. The linear stability
of the n-periodic orbit of P is determined from the linearized-map matrix DP" of
P". The matrix DP™ can be obtained by integrating the linearized system (5) for a
small perturbation y € R? x S, [9], [10]. We note [9] that one of the eigenvalues of
this matrix always equals 1, and that the remained two eigenvalues, also called the
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Poincaré map multipliers, influence the stability. We denote these eigenvalues by A;
and \s.

The diagnostics used to establish structural changes of the system (4) in-
volve two-dimensional ;1 — z» phase plane diagrams, Poincaré sections at intervals
of forcing period 27 /w, bifurcation diagrams with g — z» coordinates, evaluations of
the eigenvalues of the linearized Poincaré map-matrix, evaluations of the Lyapunov
exponents.

All numerical calculations were carried out through the application of a vari-
able step-size algorithm for Runge-Kutta methods [12], [13]. This algorithm is a
variant of an algorithm [14], [15] which controls the time step with a Richardson
extrapolation method [16]. For the calculation of Lyapunov exponents we used the

method described in [17]. The 3D-representation uses a center projection [18].

3. Periodic and quasiperiodic motion

In our numerical study we investigated a region in the four-dimensional pa-
rameter space (¢,a,g,w) given by 0 < e <1,0<a <1, 1<w<3and0< g <2

By logistic reasons we restrict the presentation to the region space
e = 0.125, a = 0.5, w=2.84, 0<g<0.75. (7

An overview of the numerical results which typify the system is given by the
bifurcation diagram in Fig. 1.

In the first part of the subinterval 0 < g < 0.3 we observe an apparent
regularity of the return points. This region which can indicate a quasiperiodic or
chaotic behavior is followed by a region with clear periodic motion. This last region
is interrupted by short chaotic regions. We prove the existence of the quasiperiodic
behavior in two ways.

The first argument is the first Lyapunov exponent value. Recall that a leading
Lyapunov exponent of zero verifies quasiperiodic behavior [14]. Fig. 2 is a graph of
the control parameter (the forcing amplitude g) against the first Lyapunov exponent
for the same parameter range as the bifurcation diagram of Fig. 1. In the interval
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FIGURE 3. Poincaré sections for the dynamical system (4).

0 < g < 0.3 the exponent was consistently within —0.01 of 0. This is the first
numerical confirmation of the quasiperiodic behavior.

The intersection points of the trajectories of the system (4) with the asso-
ciated Poincaré section represent the second argument. At g; = 0.07 the section is
represented in the Fig. 3a. The drift ring is associated with quasiperiodic motion. In-
tegrating with a large period, the curve does not modify the shape. The fact that the
points are situated on a closed curve and the constant shape related to the integration
time confirm the quasiperiodic behavior [14].

In proportion as g increases in the interval 0 < g < 0.3 the return points
remain on the same curve but the density increases markedly in some locations (Fig.
3b for go = 0.25). At g3 = 0.3 there are only three intersection points in the Poincaré
section (Fig. 3c) and on the bifurcation diagram the quasiperiodic region is replaced
by a periodic window. The motion changes from quasiperiodic to periodic, with the
emergence of a period-3 attractor. This is due to the saddle-node bifurcation of the

Poincaré map P32,

Tnys = P2 (z,), w0 €R’ xS', n>0.
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FIGURE 4. The Poincaré map P? associated with the dynamical sys-

tem (4).

We numerically prove this fact. We use the projection of the graph of P3
on the plane (yn,yn+3), n > 0, where we denote by y the x5 coordinate of the point
r e R xSt

In Fig. 4a for g4 = 0.07, when the motion is quasiperiodic, there are two
intersection points of P? with the diagonal y, = y.43. At the intersection the mag-
nitude of the slope not equals 1. As g increases the curve approaches the diagonal
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in other locations (Fig. 4b for g5 = 0.28). These locations suggest the imminent
tangential intersections. At g = 0.2961 there are three tangential intersections (Fig.
4c¢) and we have a saddle-node bifurcation of the map P?. When g7 = 0.3 (Fig. 4d)
the graph of the map P? is a single point which is situated on the diagonal. This fact

confirms the existence of the period-3 attractor.
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INTEGRAL )\ — 7 BIVARIATE SPLINE OPERATORS
IN COMPUTER GRAPHICS PROBLEMS

F. CALIO, E. MIGLIO, G. MORONI, AND M. RASELLA

Abstract. In the present work we propose and analyze a particular class
of bivariate tensor VDS splines defined by an integral operator and de-
pending on two shape parameters (A and 7). These functions are used
to generate surface models. Precisely we generate and algebrically for-
malize a A — 7 parametric integral spline family and advocate its use in
the field of computer graphics. We apply such models to the problem of
reconstructing, starting from a set of measured points, “smooth” surfaces
(where the optimal value of the shape parameters is obtained minimizing

suitable functionals).

Introduction

It is well known that variation diminishing splines (VDS), introduced in the
approximation theory during the eighties of the last century, have found many im-
portant applications in the field of integral-differential problems (see for example a
survey in [1]).

In [2] Milovanovic and Kocic present an interesting application of the spline
functional class in the field of computer graphics. Precisely, they propose an integral
operator depending on a real parameter and based on variation dimininishing spline:
the underlying properties of this new class of splines are particularly interesting in the
field of free form curve modelling. We recall that a curve or surface is said to have a
free form if it is possible to alter its shape by changing one or a few parameters with

a priori knowledge of how this changing will affect the shape of the curve or surface.
Received by the editors: 08.11.2004.
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Following the idea suggested in [2], in the present paper we propose a particu-
lar class of bivariate tensor splines defined through an integral operator and depending
on two parameters. It is named A — 7 integral VDS spline operator and is applied in
the field of computer graphics, in order to obtain regularly behaving and pleasantly
shaped surfaces, called B-spline integral models, with A — 7 shape parameters.

This paper is organized as follows: first we introduce the problem, going
through the most significant results on univariate splines linked to an integral opera-
tor. In the second section we propose and analyse, as an extension of the univariate
case, the bivariate case of the integral tensor splines operators. The third section is
dedicated to the operator matrix expression which is used for the theoretical anal-
ysis and for the algorithm construction. The parameter optimization procedure is
discussed in section four. An example illustrating the effectiveness of the proposed

algorithm is presented in section five.

1. Generation and properties of univariate integral parametric spline

In this section we recall the basic concepts about VDS splines and the genesis
of univariate integral parametric splines proposed in [2], to acquire the terminology
and the motivations to build and study a new bivariate operator.

Given a set, of vector points (control points) Py, P1,..., Pp, (e.g. in a three-

dimensional space) and a knots vector ¢:
O=t p=..=tg<tr<..<th 1 <tp=..=tpm=1 n=m—k,

the expression

(SmP)(t) = EmjziBf(t) 0<t<1 (1)
i=0

is called a k-order variation diminishing spline operator (VDS operator) and generates
a curve model called B-spline curve.

The basis function B(t) (i =0,1,...m) are recursively defined as:

t—1; t;—t
BTN+

Bk = ——M o v
30 ti1 —ti—g ti — timkt1

BIT (1)
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B(t)

1 6 <t <t

B)(t) = 0 otherwise
In matrix form the VDS operator is:
(SuP)(t) = b (VP 0<t<1 (2)

where:
by = (Bg (), B{ (t), ..., B (1)), P =(Py,Py,...., Py)".

The authors in [2] proposed modifications to this class of splines by introduc-
ing a family of integral spline operators depending on a real parameter. We designate
this new class as Univariate Integral A—Variation Diminishing Splines.

Assuming that t; is the value of the parameter corresponding to the given

control point P; we define:

ti g1+ .oty
g = (3)

These points in the field of approximation are called Schonberg points [3]. We will
call “correspondence points” such fikvalues.

Let mj-, (j = 1,2,3) be the generic component of vector 2; and ¢, (j = 1,2, 3)
the piecewise linear function interpolating points ( Z’“,m;) and whose graphic is the
control polygon.

The S,,, operator on j-th component of P can then be expressed as:

m

(SmP)j = (Sm%') = Z@j(ff)Bf(t)a =123

=0
If we substitute ¢;(£f) by the integral mean:
g
e (t) = TR gkt (4)
it1 — &

we obtain the following operator Ty, (integral VDS operator):

(Sm/li@j) = (TmQDj) = (Tmp)j (j=1,2,3).
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The T, operator can be used to generate a new curve model and in matrix

form it can be written as:
(TuP)() = b, ()(MP)  0<t<1 (5)

Equation (5) shows that the integral spline can be regarded as the VDS
operator produced by a new control points set (), transforming in the global way the

given set P. That is: ) = M P. Where matrix M has the following form:

Bo 7% O .. 0

o B 0

M=]10 a B2 .. 0

0 Ym—1
0 Bm  Ym |

Bi = l—a;—7v,i=1,..,m 62 _ g;i EHZ;
Vi = %,i:l,...,m, m =0 ;+1 1 Zk+1,
L & < & <&

It follows that

(TuP)(t) = (SuQ)(t)  0<t<1

The obtained curve model is characterized by the following properties:

- it is invariant under affine transformations of the coordinate system;

- the whole curve lies inside the convex hull of the control polygon (the
piecewise line whose vertices are the control points);

- it is uniquely determined by its control polygon and no two polygons produce
the same curve;

- it crosses an arbitrary plane no more then does the control polygon ;

- it reproduces points and lines.
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In [2] the authors introduce a shape parameter A in the VDS integral operator.

The integral mean expression in (4) is replaced by:

i, (t) = % (6)
where:

G o= (=N +rgH

mi o= (1= g+ i

with 0<¢<1 and 0 <A <1.

In matrix form this new operator can be written as:

(TaP)(t) = b, () (M*(N)P)  0< A< (7)
where i i
Sy 0 0
at B o . 0
MMN)=|0 & B .. 0 (8)
0 ’77)5—1
0 Bo m
af‘ = A 1=0,....m
Bz)\ = 1_A(a2+72)7 iZO,...,m

(T P) is called integral spline VDS operator, with shape parameter. It can be shown
that the A parameter allows to control the global shape of the curve (whereas with

the conventional spline only a local control can be achieved).

2. The bivariate spline operator

Now we extend the previously seen concepts of integral A-VDS operator to

the field of splines depending on two parameters (¢ and s).
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This gives rise to a technique for describing surfaces in a three-dimensional
space.

Let us organize our control points into p+ 1 sets of m + 1 elements each, i.e.:
Pij1=0,1,...,pand j = 0,1,...,m where P;; is a three-dimensional vector. We
call P the global set of control points.

We express the bivariate tensor VDS as:

(SppP)(t,8) = zp:i Ckh t,s) 9)

where the basis functions are obtained as a product of two univariate basis splines (of

order k for the ¢ parameter and h for the s parameter, respectively):
CH(t,s) = B (1)B] (s).

It can be easily seen from (9) that the bivariate tensor VDS is built on two
classes of univariate VDS: a first one (control curves) controlled by the vector points
P;; and a second one (swept curves) controlled by points evaluated on first function

class.

3. The matrix expression of the bivariate spline operator

We suggest to express the I-th component of bivariate tensor VDS, in matrix

form, as follows:

W
(SmpP)(t, sy =05 | . | @)
pr® ot
ie.:
(Smyp(t,8))1 = b Pi(0")" (10)
where:

b*" = (By' (1), B (1), -, B, (1))

and p;j is the [-th component of vector P;;.
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By exploiting the separability of the tensor product basis functions, it is
possible to extend the formalism introduced in the univariate case to the bivariate
case.

Therefore: the control points for the control spline function are modified by
the same matrix used in the univariate case, then the points on these splines (control
points for swept splines) are modified by another similar matrix.

We get:
(TN, P)i(t,s) = b () M7 (1) PMA (0) (0" (s))” (11)

where M7 (1) is a (m 4 1)-order square matrix, depending on the knots of an h-order
B-spline, having the same expression as for univariate splines.
Similarly, M*()) is a (p+ 1)-order square matrix, depending on the knots of

an h-order B-spline.

Theorem 1. Let us consider the nonlinear operator(11). An algebraic and sin-
tetic expression of it is the following: (1 —7)(1 — X)(Sp7,P)i + 7(1 = A)(Spm,Q7 )i +
A = 7)(SpnQ@N ) + AT(SH,Q )1, where: Q7 = MT(1)P, @* = PM*(1), Q¥ =

M7(1)PMX 1)

Proof. The proof is based on the following relationship: M%(a) = (1 — a)I + aM(1).
Substituing it into (11) we get: b*™((1 — 7)I(™tY) 4+ 7M7(1))P((1 — N)I®P+D) +
MM (1)) (b7 (s))T through some algebraic steps the thesis follows. O

4. Parameters optimization

In this section we will deal with the problem of finding optimal values for A
and 7.

The aim is to obtain the “best” reconstruction of a surface starting from a
cloud of measured points.

The first possibility to find optimal A and 7 parameters is to minimize a
quadratic functional expressing the global (Euclidean) distance of the given data
points from the correspondence points on the reconstructed surface. The functional
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has the following expression:
3 m p
FOut) =303 > 8B (T P)(E €
=1 j=0 i=0
This solution gives the most precise representation of a given set of points, but is very
sensitive to digitizing errors.

A second approach consists in minimizing the energy-functional:

F(\T1) Z/ 8t2 TATP fzafg i+ 8 (T)\TP)(é-Z{c’é-‘?))ldAdT

=17,
The D domain corresponds to the whole variation of the ¢t and s parameters, relevant
to the considered surface.
This algorithm gives satisfactory results as far as the surface smoothness is

involved.

5. Test example

The following example higlights the noise sensitivity of the computed surface.
The saddle surface whose equation is z = 2 — y? (hyperbolic paraboloid) has been
used for testing.

The left part Figure 1 shows the “measured” points on the surface; on the
right of the same figure the surface reconstructed using usual splines function is shown.

The left part of Figure 2 represents the surface reconstructed using the min-
imization of the distance-functional while on the right part the reconstructed surface
by means of minimizing the energy functional is shown. The first surface, which
is satisfactory as algorithm test, furthemore still presents some irregularity, on the

contrary the second one looks very smooth.

6. Conclusion

We have proposed a non linear bivariate operator based on an integral para-
metric spline family. By this operator it is possible to obtain a smooth surface, without
modifying each single control point; such surfaces exhibit interesting properties as far
as engineering applications are involved. The next activities we intend to carry out
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FI1GURE 1. Left: “Measured” points. Right: Reconstructed surface

using conventional splines functions.

FI1GURE 2. Left: Reconstructed surface obtained minimizing the
distance-functional. Right: Reconstructed surface obtained minimiz-

ing the energy-functional.

are: the theoretical investigation of geometrical properties, to acquire a wider record
of application cases and finally to study other functionals to obtain the optimal values

of thye shape parameters.
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ON REVERSE HILBERT TYPE INEQUALITIES

ZHAO CHANGJIAN, WING-SUM CHEUNG, AND MIHALY BENCZE

Abstract. In this paper we establish a new inverse inequality of Hilbert
type for a finite number of positive sequences of real numbers. The integral
analogue of the inequality are also proved. The results of this paper reduce

to that of B. G. Pachpatte.

1. Introduction

In recent years several authors(see [1], [2], [3], [4], [5], [6], [7], [8]) have given
considerable attention to Hilbert’s inequalities and Hilbert type inequalities and their
various generalizations. In particular, in 1988, B. G. Pachpatte) proved two new
inequalities similar to Hilbert’s inequality[®7226]. These two new results can be stated
as follows, respectively:

Theorem A. Let {a,} and {b,} be two nonnegative sequences of real num-
bers defined for m = 1,2,....k and n = 1,2,...,r with ag = bg = 0 and let
{pm} and {q,} be two positive sequences of real numbers defined form = 1,2,... k
and n = 1,2,...,r, where k,r are natural numbers and define P,, = > o', ps and
Qn =11 - Let ¢ and 1 be two real-valued nonnegative, convex and submultiplica-

tive functions defined on Ry = [0,00). Then

S w5 (o )t %))

m=1n=1
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><<zi: (r—n+1) (qnw(v(bn)))2>l/2, (1)

an

where

e =3 (S ) (Eeg)”

and V(am) = am — am-1,V(by) = by — bp_1.

Theorem B. Let f € C'[[0,z), Ry],g € C[[0,y), Ry] with f(0) = g(0) =0
and let p(c) and q(7) be two positive functions defined for o € [0,z) and T € [0,y),
and P(s) = [; p(o)do and Q(t) = fot q(1)dr for s € [0,x) and t € [0,y), where x,y

are positive real numbers. Let ¢ and v be as in Theorem A. Then

/Ow /Oy W dsdt < L(:v,y)< /OI@” =) (p (SM(];/((;)))) st)

where

o3[ CRY) (D)

and ~ denotes the derivative of a function.
The main purpose of this paper is to establish reverse forms of the above two

inequalities.

2. Main results

Theorem 1. Let {a;m,}(i = 1,2,...,n) be n positive sequences of real
numbers defined for m; = 1,2,...,k; with a;0 = 0@ = 1,2,...,n), where k;(i =
1,...,n) are the natural numbers. Let {p; m, } be n positive sequences of real numbers
defined for m; = 1,2,... k(i = 1,2,...,n). Set P, = >0 pis, (i = 1,2,...,n).
Let ¢;(i = 1,2,...,n) be n real-valued nonnegative concave, supermultiplicative and
non-decreasing functions defined on Ry = [0,+00). Let ai + ﬁi =1,0< 6, <1
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and Y0 | L =1 Sut Az(pm), = V(aim,) - al’’ =, where the operator V is defined by

Zm’

V(aim;) = Gim; — Gim—1(i=1,2,...,n) and 0 < p; <1 are real numbers. Then

N G
D T
mip=1 my=1 (a Z?:l ai,mz>

n k; A(pl) Bi d

i=1 \m;=1 Pim;

where

M (ky, ko, ... K ﬁ(Z ( Z(Pi’mi)>ai>1/ai.

i=1 \m;=1 b

Proof. By using the following inequality(see Hardy et al. [9,P.39])

bty v (Tioms = Yiom:) < @0 = Y, < P, (Time — Yima)s

where z; ,;, > 0 and y;m, >0and 0 < h; <1(i =1,2,...,n), we obtain that

at o —alt > pi@im, 1) (@im, 1 — im,) = Pi(@im, 1) V(@ 11)-

Consequently
ki—1 ki—1
> Al —al, =l =0 D V(@ime) -l = Z AR
m;=0 m;=0 m;=1
Hence

Gims Z AP, (4)

s;=1

On the other hand, from the following theorem of the Arithmetic and Geo-

Dlie1 G
H qu < i=1 qzbz> B )
Zz 19

where g; > 0,b; > 0, we easy get the following result

metric means®?-17]

where «; < 0.
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From (4), (5) and in view of Jensen’s inequality and inverse Hoélder’s

inequality('?!, we obtain that
(py)

n Pi,mi Zgjl:l pi,si (p::l )
H¢ KETDS H¢ =
' 2 a Piss

Ay
n Doy Dis; <p )

1_1 Di,s;

-
Il
-

n pi)
ZHd)Z lel szs (ybz(pZSI)

i=1 Z’m'i si=1
N\ 1/Bi
t mi CONNG
d)z(PZ,ml) 1/ Az 50
=z H ﬁmz Z Di, 97¢z }9@75
=1 e si=1 »Si
n 1/ n mi (pl) Bi 1/51
> |« —my T B ) P (i L8 . 6
R ( Zz::l i ) g Pimi ; (p ’ (pivsi ( )

1/a
Dividing both sides of (6) by (a S ; ml) and then taking the sum over m;

from 1 to k;(i =1,2,...,n) and in view of inverse Holder’s inequality, we have

o z (bl( )
>y 1 7
m1=1 my=1 ( Z’L 1 o%ml)
n ki mg (pz) Bi 1/ﬁ7
QSZ- Pi,mi Ai,si
=1 \ m;=1 L] s;=1 »Si
k; a\ Vai v AP Bi\ 1/Bi
¢1(P1,m1) ¢ 1,84
ZH(Z(%) ) ZZ(@MM( ))
=1 \m;= ’ m;=1s;=1
n ki my (pL) Bi 1/B:
:M(k17k27~~~7kn)H Z Z(pzs(bz( ; ))
3 m;=1s;=1 Pis;
1/B:

(ki —m; +1) <pi,mi¢i <pl7m7>>

I

=

-

g

o

N

ol

3

3
§Mw i
| N [
[}
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The proof is complete.

Remark 1. Taking for 3; = 2=1(i =1,...,n) in (3), (3) changes to

(n=1)/n\ ™/ (=1

where
n ki P —(n-1) —1/(n-1)
M (ky,kay ... k) — pn/(n=1) H Z < 153 mm)) ) .
i=1 \m;=1 &M
Taking for n =2 and p; = 1(¢ = 1,2) in (7), (7) becomes
i Z ¢1 a1m1 ¢2 a2m2) >
mi=1mo=1 ml +m2) 2 B
> M(ky, k 3 k 1 Vlanm) )2
> M(kq, 2)(7—”;1( 1—my + )(pl’mlgbl(m,iml)) )
ko V(CLQ ) 1/2 2
ko — 1 m S \7ema) , 8
x(m;1( 2 — Mg + ><p2, 202 - )) ) (8)
where
k1 1k -1
_ ¢1(Prm, )\ 1 b2 (Pamy)\ 1
Ml ha) — 4 ( > (2fed) > (2=l )
mi1= mo=
and

V(a1,m:) = @1,my — @1,mi—1, V(@2.ms) = G2,my — G2.my—1-
Inequality (8) is just an reverse form of inequality (1) which was stated in
the introduction.
Theorem 2. Let fi(o;) € CY[0,x;),[0,00)],i = 1,...,n, with f;(0) = 0,
Let pi(0;) be n positive functions defined for o; € [0,2;)(i = 1,2,--- ,n) and define
Pi(s;) = Os'i pi(0;)do;, for s; € [0,x;), where x; are positive real numbers and set
(pi)

F = F1(a:) fP " o:), where p; are real numbers. Let ¢;(i = 1,2,...,n) be n
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real-valued nonnegative concave and supermultiplicative functions defined on Ry =

[0,4+00). Let aj, B; and « be as in Theorem 1. Then

(81
En z 1 ¢1 i )
/ / Ta dsy---dsy,
0 0 s )

1
af )

1/8i

n i F(]%) Bi
> Loy, o) [] / - >< (500 (f))> dsi| . )
i=1 Si
where
L T </ (@ (Pi(sl)))‘”d )”‘”
L1, 3y Tp) = —_— S; .
i1 \Jo Pi(s:)
Proof. From the hypotheses, we have
I (si) :pi/ Fi(ﬁ)dffi,si € [0, z;).
0
By using Jensen integral inequality and inverse Holder integral inequality
and notice that ¢;(i = 1,2, -+ ,n) are n real-valued supermultiplicative functions, it

is easy to observe that

F(pz)

Pi(sq) [y pi(o'i)p(o_:)daz

H@( ") H¢’ T oo

F(I’z)
n fO Di O'z) ( - dO’i n P S; F(Pz)
2[00 | = 2% 1:I e l) / plo)oc oz ) ao

(G P e [ o (P .
21;[1( i) ) /0 (pz( )¢ (m(m—))) do;| . (10)

In view of inequality (5) and integrating two sides of (10) over s; from 0 to z;(i =

1,2,...,n) and noticing reverse Holder integral inequality, we observe that
H’L 1 ¢1 i ) d
1/a e Sn
1 1 «; Si)
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1/8i

n T . (84 Sq i(?‘) Bi
0L CRD L (ron () ) o
n x; (Pi(s; 1/ay i({’;") 3,
TR ) (£ (o () )

- L(xl,...@n)H (/0 (2 — 5;) < i(si)@(pi(’sz))) dsi)

i=1

1/B:

This completes the proof of Theorem 2.
Remark 2. Taking for 3; = 2=1(i =1,...,n) in (9), (9) changes to

/ / 31+Z 1@( Sn) bn/()n 1)d $1 -+ dsp

where

. o P\ 0

L(zy, -+ ,2n)=n H </ ( Pi(s:) ) d8i>

Taking n = 2 and p; = 1 to (11), (11) changes to

w2 ¢ f (s f2(s2)
[l
1/2 2
> L(m,m)(/@ 1(331 - 51)<p1(81)¢1 (gig:;)) / d81>
- /(59 1/2 2
x(/o (xz—52)<p2(82)¢2<£z§52§)> d52> : (12)

where

I =4 @1 /1 <P1(51)) _1d A (P2(32)> _1d -

T1,T2) = _— s _— s

n /0 ( Py(s1) ) ' /0 ( Pa(s2) ) ’
Inequality (12) is just an reverse form of inequality (2) which was stated in

the introduction.

59



ZHAO CHANGJIAN, WING-SUM CHEUNG, AND MIHALY BENCZE

References

1]

2]

7]

8]

[10]

60

B. G. Pachpatte, A note on Hilbert type inequality, Tamkang J. Math., 29(1998), 293-
298.

G. D. Handley, J. J. Koliha and J. E. Pec¢ari¢, New Hilbert-Pachpatte Type Integral
Inequalities, J. Math. Anal. Appl., 257(2001), 238-250.

Gao Minzhe and Yang Bicheng, On the extended Hilbert’s inequality, Proc. Amer. Math.
Soc., 126(1998), 751-759.

Kuang Jichang, On new extensions of Hilbert’s integral inequality, J. Math. Anal. Appl.,
235(1999), 608-614.

Yang Bicheng, On new generalizations of Hilbert’s inequality, J. Math. Anal. Appl.,
248(2000), 29-40.

Zhao Changjian, On Inverses of disperse and continuous Pachpatte’s inequalities, Acta
Math. Sin., 46(2003), 1111-1116.

Zhao Changjian, Generalizations on two new Hilbert type inequalities, J. Math.,
20(2000), 413-416.

Zhao Changjian and L. Debnath, Some New Inverse Type Hilbert Integral Inequalities,
J. Math. Anal. Appl., 262(2001), 411-418.

G. H. Hardy, J. E. Littlewood and Pdlya, Inequalities, Cambridge Univ. Press, Cam-
bridge, U. K. 1934.

E. F. Beckenbach and R. Bellman, Inequalities, Springer-Verlag, Berlin-Gottingen, Hei-
delberg, 1961.

DEPARTMENT OF MATHEMATICS, SHANGHAI UNIVERSITY
SHANGHAI 200436, P. R. CHINA

DEPARTMENT OF MATHEMATICS, BINZHOU COLLEGE
SHANDONG 256600, P.R.CHINA

E-mail address: chjzhao@163.com

DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF HoNG KoNG
PokrurLaM RoaDp, HoNG KoNG

E-mail address: wscheung@hku.hk

STrR. HARMANULUI 6, RO-2212 SACELE, JUD. BRASOV, ROMANIA



STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume XLIX, Number 4, December 2004

UNIQUENESS ALGEBRAIC CONDITIONS IN THE STUDY
OF SECOND ORDER DIFFERENTIAL SYSTEMS

CRISTIAN CHIFU-OROS

Abstract. The purpose of this paper is to give some algebraic conditions
for the coefficients of an second order differential system in order to obtain

some uniqueness and comparison results.

1. Introduction
Let us consider the following second order differential system:

d*u du
E+B(m)—+0(z)u:075>0, (1)

Lu = 61,
v ) dx

where B,C € C ([a,b], M,, (R)), and the following statement:

u € C?([a,b] ,R")
Lu =0, in ]a,b] = u=01in [a,b] (2)
u(a) =u(b) =0

It is well known the fact that if u satisfies a maximum principle, then the statement
(2) automatically take place. The aim of this paper is to determine effective algebraic
conditions for B, C such that the statement (2) to take place, without using a maxi-
mum principle. Let A € M, (R), J the Jordan normal form of A. We know that there

exist a nonsingular matrix T such that A = TJT 1.

Received by the editors: 26.10.2004.
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We will denote:

s
% Z nk)\k,)\k ceR
a — k?I
% Z ng Relp, A\p € (C\R
k=1
v = Tl |77,
mp = ||[J—all|p

where Ay are the eigenvalues of A, nj is the number of A; which appears in Jordan

blocks (generated by ) and ||-||z is the euclidean norm of a matrix (see [2]).

We shall use the following result given in [2]:

Theorem 1. Let o) : R — R, ¢y (a) = [|[A — al,||, ||| being one of the following

norms: ||| g5 |I-ll1s IIllgs |lloo- In these conditions:

@1 (@) < Vnypmp.

Remark 1. In case of euclidean norm |-||p and spectral norm ||-||, we have that

o|(@) < vpmp (see [2]). Because n > 2, if mp # 0, then:

@1 (@) < Vnypmep.

Conditions determined here will be very useful to obtain comparison results

(see Section 3 of the paper).

2. Establishing the conditions in which the statement (2) take place

Let u € C? ([a,b] ,R™), u # 0, a solution of the system (1) with the property
that v (a) = u (b) = 0. We have:

2
w* Ly = 62u*% +u*B () % +u*C (z)u
d du du du* du
2 7 * — o * ok Dbl 20% =%
) o <u dx) uw*Lu — u* B (x) 25 U C(x)u+d T o
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THE STUDY OF SECOND ORDER DIFFERENTIAL SYSTEMS
If we integrate on [a, b], we obtain:

b

du* du du

2 o ok _
/((5 o dn uB(ac)dx uC’(m)u)dm—O.

a

Let us denote

du* du . du .
E::dzaﬁ—u B(a:)%—u C (z) u.

We shall show that under some assumptions for the coefficients B and C' this expres-

sion is positive which will imply the fact that the integral can not be zero on [a,b],
N 1

only if E=0. Let u= R - e, where R = |Ju|| = (Z uf) ,
i=1

€1

e € C?([a,b] ,R"),e=| . ve* = (er,..,en), el = (Z e%) =1

en
A simple computation shows us that

E=6%(R)’ + ¢ B(z)eRR — (e*Le) R? (3)

where
e*Le = —8%||¢/|> + e*B (z) € +e*C (x)e.

The quadric form (3) is positive if and only if

[e*B () €]® + 46%¢*Le < 0. (4)
It is simple to see that:
1 - 2
e"Le < 52 HB () =B (z)I,|| +€*C(x)e

From Theorem 1 we know that for every = € |a, b[ there exist 3 () € R such that

|B @) - B @) L|| < vpmr.
If we suppose that mpg # 0, than we have:
HB (x) — 5(96) L,|| < ypmp.
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Under assumption that

1

&°C (@) < —n (yemp)? Yo € o 5)
we obtain:
cres gz |[B@ - F@ L[ -nteme?| = 2@ <0 @
Supposing that
¢*B(z)e < 25p (), (7)

we observe that the relation (4) take place. In conclusion if (5) and (7) take place,
then the quadric form (3) is positive and that means that the integral can not be

identically null, only if £ = 0. But, if £ = 0, then

d Ldu 0
St =
dx dx ’
meaning that ||u]|® is constant. Because u(a) = u (b) = 0, we obtain that u = 0. In

this way, if mpg # 0, we obtain the following result:
Theorem 2. Suppose that:

1. e*C (z)e < —ﬁn(’ylwmr:)2 Vo € la, b[;
2. e*B(z)e < 20p(x);

IN
N

Ve € C?([a,b] ,R"™),|le|] = (2:1 e?) =1, with p as in (6). In these condi-

tions the statement (2) take place.

a; a
Example 1. If we consider system (1), in the case n = 2, with B = b ,
az aj

az,az >0, a3 < a% + dasag + a2, we have an ezample of matriz B which verifies (7),

with p* = ﬁ (3(1% + 8agasz + 3a§) .

Remark 2. If mp =0, then the statement (2) still take place if

e'C(z)e <

< _F; (5(%))2 Vo € la,b|.

64



THE STUDY OF SECOND ORDER DIFFERENTIAL SYSTEMS

3. A comparison result

Let us consider the following second order differential systems:

&u d
Lu42ﬁ+3()d—“+c() =0 8)
5 d*u
Muv:=p @—i—Q(x)v:O, 9)

with B € C! ([a,b], M, (R)),C,Q € C ([a,b], M, (R)),\ > u > 0. Using the same
method as in section 2 of this paper we obtain the following result (in case mg # 0):
Theorem 3. Suppose:

1. @ is symmetric;

2. There ezist a solution matriz S of system (9) such that det S (z) # 0 in

[a,b] and the matriz %28~ is symmetric..

If:
(i): ¢ (C(2) —~ Q@) e < — ghen (ypme)? ¥ € Ja, b
(i: B (e < 269 (2) Vo <ot
Ve € C2 ([a, ], R") e = (g ) = L 2 =32,
P (z) = g [n (yvemp)? = ||B (z) — B (2) I, ] > 0, then the system (8) is non-

oscillatory.

Remark 3. If mp =0, conditions (i) and (i) from Theorem & are reduced to:

(O - Q) e <~ (B) vaelad].

Remark 4. Theorem 3 improve a result given by I.A. Rus in [5].
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ON THE INVARIANCE PROPERTY
OF THE FISHER INFORMATION (I)

CRISTINA-IOANA FATU

Abstract. The objective of this paper is to give some properties for the
Fisher’s information measure when X,.., represents a bilateral truncated
random variable that corresponds to a normal random variable X with the
probability density function f(x;8), where 8 = (m,o?), € Dy, Dy C R?,
m € R, o2 € RT.

The Fisher’s invariance property will be studied in the case of a truncated
normal distribution.

Let X be a normal distribution with probability density function

1 1 /z—m\>
2
r;m,0°) = ———exp —— ,x €R, 1
g ) V27no p{ 2 ( g ) } .
where the parameters m and o have their usual significance, namely: m = E(X),

o2 =Var(X),meR, o> 0.

Definition 1. [1] We say that the random variable X has a normal distribution
truncated to the left at X = a,a € R and to the right at X = b,b € R, denoted by
Xacp, if its probability density function, denoted by f._p(x;m,0?), has the form

k(a,b) N _} (17—m>2 .
faHb(l';m,O'2) = 2no ¢ p{ 2 o Zf aszT< b7 (2)

0 if t<aorx>b,

where
1 1

e () v

Received by the editors: 15.12.2004.
2000 Mathematics Subject Classification. 62B10, 62B05.
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0= i [ () 0

O(—00) =0, ®(0) = %, O(+00) =1, &(—2) =1— d(2), (5)

®(z) is the standard normal distribution function corresponding to the standard nor-

mal random variable

X —-m
o

, BE(Z)=0,Var(Z)=1. (6)

The probability density function of the random variable Z has the form
f(z0,1) = f(2) = iexp <> , 2 € (—00, 400). (7)
Remark 1. A truncated probability distribution can be regarded as a conditional
probability distribution in the sense that if X has an unrestricted distribution with
probability density function f(xz) then fo—p(x), as defined above, is the probability
density function which governs the behavior of X subject to the condition that X is
known to lie in [a,b].
Theorem 1. [2] Let X, be a random variable with a normal distribution truncated
to the left at X = a and to the right at X =b. Then

[f(ba m, 02) - f(a; m, 02)} ) (8)

2
g
E(Xa<—>b) =m— Z

where

flasm, %) = flaim.o?) lomo= e exp (—; (“;’”)2> , (9)

2
Flbim.0?) = flwsm,o?) |os= ﬁ exp (—; (b ;m> ) . (o)

Theorem 2. [2] Let X, be a random variable with a normal distribution truncated

to the left at X = a and to the right at X =b. Then

2

E(X2_ ;) =m’+0° - % ((m+0)f(b;m,0”) — (m +a) f(b;m,0?)) . (11)
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Corollary 1. [2] If X, is a random variable with a normal distribution truncated

to the left at X = a and to the right at X = b, then

(02)* 2
Var(Xgop) = o’ + e (f(b;m, 02) — f(a;m,o2)) + (12)
o2
+ 2 (= D) fbim,o?) — (m—a)f(am,o®) . (13)

Corollary 2. [1] For the random variables X, X_;, and X we have

lim facv(@;m, 0?) = fop(x;m,0?) = (14)
;. flzym,o?) if x<b
o b—m
e () e
0 if x>b,
bhr—zl faHb(x;m70-2) = fm_(ﬂf;m,O'Q) = (16)
1
fam,o?) if x> a
Y L
_ (=57) )
0 if x <a,
and
lim facp(x3m,0?) = f(z;m,0?) = (18)
b—)+oo,

- — —1($_m)2 fzecR,  (19)
= 27TUexp 5 - if x ,

where f_y(x;m,0?) is the probability density function when X _y has a normal distri-
bution truncated to the right at X = b; fo (x;m,0?) is the probability density function
when X, has a normal distribution truncated to the left at X = a and f(x;m,o?)

1s the probability density function when X has an ordinary normal distribution.
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Corollary 3. [1] For the random variables X,—, X_p and X we have

E(Xm—) = thJP E(Xm—»b) = (20)
2
= 70 a,m 0'2
— et gy Sl ), 21
E(Xab) = aEI_HOOE(XaHb) = (22)
e T fbmo?), (23)

and

E(X)= lim E(X,up) = (24)
btoo
=m (25)

Corollary 4. [1] For the random variables X,.—, X_, and X we have

Var(Xq—) = , ligl Var(Xeos) = (26)
_ (02)2f2(a,m,02) B o%(m — a)f(a;m,o0?) o7
o (1-®(2m))” L—d(egm) 0
Var(X_p) = aEIEloo Var(Xqep) = (28)

e (02)2 f2(b;m,0?)  o?(m —b)f(b;m, o?)
IR T B 1O R

and
Var(X) = ali{noo Var(Xgep) =0 (30)
b—+o00

Let consider the case: m—an unknown parameter, o —a known parameter.
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Theorem 3. [2] If the random variable X ., has a bilateral truncated normal dis-
tribution, that is, its probability distribution has the form (2), then the Fisher’s in-
formation measure, about the unknown parameter m, has the following form

b

. 2
xpea(m) = [ (alnfm(x’m"’Q)) foo (@i, 0%z = (31)

om

a

1 [f(bsm,0?) = fa;m,o?)]?

T o2 V2ro A2
n (m —b)f(b;m,0?) — (m —a)f(a;m,o?)
02A ’

where f(a;m,o?) and f(b;m,c?) are given in (9) and (10).
Corollary 5. If a = m—o, b = m+o, then the Fisher’s information measure, relative

to the unknown parameter m, has the following value

1 1
; =—(1-—— 53
Xm—oom+to (m) 0—2 < 0,341\/%) ’ ( )

moreover, we obtain the inequality

Imem—»era (m) <Ix (m) (34)

Corollary 6. (Invariance of the Fisher information - the first form) If we consider
values a = m, b =m+o ora = m—ao, b =m, then the Fisher’s information measures,

relative to the unknown parameter m, has the same value, namely

- L, (a-ve !
Ix,ie(m)=1Ix, . (m)= e {1 <(\/%.0’341)2 + \/%.0,341> } ’
(35)

moreover, we have the following inequality

Ix o (m) =Ix,, ., (m) < Ix(m). (36)
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Corollary 7. If a = m — ko, b = m + ko, k € N*, then the Fisher’s information

measure, relative to the unknown parameter m, can be written like

1 2k
Ix, oirrro(m)=—=4¢1— , ke N, 37
Xm—k +k ( ) o2 { W(2¢(k)1)} ( )
moreover, we obtain the inequality
1 *
IXrn—ka<—>m+ka (m) < 72 = IX(m)7 k G N . (38)

g

Remark 2. In the particular case k = 3 we obtain a bilateral truncated random
variable X, —koom+ko and the Fisher’s information measure, relative to the unknown

parameter m, can be written like

my— =1t (39)

I )
X o2 V2meet.0,166

m—secmtso

moreover, we obtain the inequality

1

IX771730<—>171+3U (m) < ; =Ix (m) (40)

Corollary 8. For the random variables X,._, X_, and X the Fisher’s information

measures have the following forms

I (m) = i Ix,._,(m) = (41)

:%7 (m—a)f(a;ib,j) B ~f2(a;m7,02) N (42)
(=0 (557) (e ()

Ix_,(m)= lim_Iy,_,(m)= (43)

1 + (m _ b)f(b;m702) - f2(b;m702)

= , (44)

2 _ —

o 020 (b m) o2 (a m)
o o
and
. 1
Ix(m)= ailinw Ix, ,(m)= pot (45)
b—>—‘,—<>o7
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ON THE INVARIANCE PROPERTY OF THE FISHER INFORMATION (I)

Corollary 9. If b = m, then from (5) we obtain ® (0) = % and from (44) it results

the inequality

Ie  (m)= > (1 - 2) < % — Ix(m). (46)

o2 T

Corollary 10. Ifb=m — o, then from (5) we obtain
O(—1) =1— (1) = 0,159, (47)

and from (44), the following relations

1 1 1
IX_,m_a(m) - ; <1 + \/%@ (71) - (\/%CI) (_1))2> ) (48)

moreover, the inequalities

Ix_. (m) < Ix(m) < Ix_. _.(m). (49)

—m

Corollary 11. If b =m + o, we have the following relations

1 1 !
Ix o (m) = — {1 - (m@(l) * (V2red <1))2> } "

moreover, the inequalities

Ix_.m_'_g (m) < Ix_”n (m) < Ix(m) < Ix_,m_g(m). (51)

Proof. From (44), it results the equality (50) which imply the inequality

1 1 1 1
Ix_pio(m)=—{1- + < — =1Ix(m). (52)
* o2 { (\/27re<1> (1) (‘/gweq)(l))Q)} o?
Then, from (49) and (52) it results the inequalities
Ix_ i, (m) <Ix(m) <Ix_,_,(m). (53)
Now, from (46), the inequality (51) is reduced to the following inequality

I .. (m) < Im(m). (54)
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Using the relations (46) and (50), we observe that this last inequality is equivalent to

the inequalities

1 1 2 2
VI () (Varew (1) VEmeR(l)

or to the inequality
T < V2me® (1).

This last inequality results using the approximations: 7 &~ 3,14, e = 2,72, (1) =

0,841. O

Corollary 12. If a =m, then from (5) we obtain ® (0) = 3 and from (42) it results

the inequality

e m) = 25 (12 2) < 5 = rx(m) (53)

o2 T o2

Corollary 13. Ifa =m — o, then from (5) we obtain
1— ®(—1) = &(1) = 0,841, (56)

and from (42) it results the equality

1 1 1
- (e mar) )
moreover, the inequality
Ix, _._(m)<Ix(m). (58)

Corollary 14. If a = m+ o, then from (5) we obtain ®(—1) = 0,159, and from (42)

it results the equality

I (m) = 1+ 1 - 1 i
Xmto V) =75 Vome® (-1)  (Vared (-1))°) |

moreover, the inequalities

Ix (m) < Ime(m) < Ix(m) <Ix, .. _(m) (60)

m—o«——
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Proof. From the relation (42), we obtain the equality (59) which imply the inequality

1 1 1 1
P ) = 52 {1 ! <¢%I><—1> ) (mm—nf)} 7 gr ~ im0

From (58) and (61) it results the inequalities

Ix, _._(m)<Ix(m)<Ix,,. _(m). (62)

Now, regarding the inequalities (55) and (62), we observe that the inequality (60) is
reduced to the inequality

Ix (m) < IXm_ (m) (63)

m—o«—

By the relations (55) and (57), we observe that this last inequality is equivalent to
the inequality

1 1 1 1 2
02{1_ (WM ' (mcbmf)} < (-3)

or to the inequalities

L 1 _ 2 _2
21e® (1) (varmed (1))°  V2me® (1) T

The last inequality is equivalent to the inequality v/2me® (1) < (\/ 2med (1))2 which

imply the inequality
T < V2me® (1). (64)

Using the approximations: m &~ 3,14, e ~ 2,72 and ®(1) = 0, 841, the last inequality

is true, because
V2me®d (1) & /2 x 3,14 x 2,72.0,841 ~ 4,13.0,841 =~ 3,475.
O

The invariance of Fisher’s information is ilustrated in the following corollaries.
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Corollary 15. (the second form)

IXﬁm+o (m) = IXfom—»ero (m) =

1 1 1
(e )

=Ix, .. (m)=Ix, ,cts(m).
Proof. Using the relations (50) and (57), the proof is obviously.

Corollary 16. (the third form)

1 1 1
o? (1 T Varee (1) (yamed (1)

Proof. Using the relations (48) and (59), the proof is obviously.

Corollary 17. (the fourth form)

() = Ix_m) = 25 (12 2) = D) = D

Proof. Using the relations (46) and (55), the proof is obviously.
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STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume XLIX, Number 4, December 2004

ON SOME INTERPOLATION PROBLEM ON TRIANGLE

CATALIN MITRAN

Abstract. Many of the theoretical and practical problems of numerical
analysis consist in approximating of some types of functions on some kinds
of domains like the triangular or rectangular domains. On the triangular
domains the most of the approximations are made on some interior points
of the triangle or on some derivatives values of the mentioned points. But
also there it exists some types of functions which approximate the values of
an entire side of the triangle or an entire interior line of this. The purpose

of this paper is to present a this type of above mentioned function.

We shall suppose that we have given an interior point M (z*,y*) on the tri-
angle. Using an appropriate coordinates transform we shall suppose that the origin of

the Ozy coordinates system and the triangle are situated as shows the next picture:

A(anl)
Ml (a;*’ (ml—zﬂi*)yl)
zo(y1—y™ * 0, * z1(y1—y" *
) O (405
T,y
B(z2,0)  0(0,0) My(z",0) C(z1,0)

Received by the editors: 01.10.2004.
2000 Mathematics Subject Classification. 41A05.

Key words and phrases. Interpolation, multivariate approximation.
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Building from M the parallels to AO and BC and denoting by My, M> and
M3, My, respectively, the obtained intersections. In other words, the coordinates of
the M; will be given by the solution of the system:

AC: xy1 +z1y — 2191 =0

z=z"

So we shall find M; <M
T

,m*). Similar, we shall find the coor-
1

z1(y1 —y*
Qll)

dinates of the others above mentioned points: Ma(z*,0), M; <
Y1

M, $2(y1 -y )
Y

and AC, and AB.

,y*) as being the intersections between z = z* and OC, y = y*

Let us consider the Lagrange operator LY who interpolate the f function with

Ty —a*

M) Also let us consider the
Ea

operators LY, LY who interpolate the function with respect to  in the points (0, y*),

respect to y in the points (z*,0) and [ z*,

_ *
(z*,y*) and (%,y*) respectively. The expressions of these operators will

be given by:
(x — z*) <m _nly=y) y*)>
(Lif)(ay) = T A R
=
o (o B =y
+ S f@ Y+
(& —0) (m* _ zi(y —y )>
Y1
(z —0)(z —z") i(y —y*) .
- (fm(y -y") _0> (wl(y -y") _m*> / < w7 ) “
U1 U1
. (=) (r — 1y + 119") o Ty — oy + 11Y") I
(Lif)(@,y) = Py Fp—s f(0,y )+x*(m*y1 — +m1y*)f( Y )+
yie(r —z*) iy —y*) .
xl(y—y*)(wly—wly*—w*yl)f( T )
respective
z _ yia(z —z7) (i —y*) .
(L2)(@y) = Ta(y1 — y*) (@2y1 — T2y* — T*Y1) < w0 > *
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T — T2y + T2y*)(z — 2 Y1T — Ty + T297)T
bz — 73 =2 4,7y + W2 )
z*z2(y1 — y*) (x*y1 — T2y1 + T2Y*)

yri — Ty + 2y 1Y (z1 — 2"y
LYf)(a.y) = 2,0)+ — 1Y <m7>
( 1f)( y) (33* —$1)y1 f( ) (ml —ﬂ?*)y1f T
We denote by T the ABC triangle, by T} the AOC triangle and by T5 the
ABO triangle. We define the operators:

+

G4 ZTl—)R, Glf:LTEBL?lJf,

respective

Gy : Ty — R, G2f = Lﬁ ©® L?ff

Remark 1. We can easily verify that G; interpolate the f function on the
frontier of 77 and on the interior of AM; and G- interpolate the function on the
frontier of T5 and on the interior of AM,, that means:

1) Gif = f on 0Ty U AM>;

2) Gof = f on 0To U AM,.

Remark 2. We can also verify that dex(G1) = 3 and dex(G2) = 3.

We shall build the F' function who will interpolate the f function on the

frontier of the 7' triangle, on the height AO and on the interior line AM> as follows:

Gl(may)a (may) € Tl
GQ(may)v (ajay) €T \ [AO]

F:T— R, F(z,y)=

We shall consider that, starting from the expression of G1, we can give the

next approximation formula:
f=Gif+ R, [

Regarding the remainder of the above mentioned approximation formula,
the next theorem show us how can be expressed this using the well known Peano’s
theorem.

Theorem 1. If G; € B> 2(0,0) then:

Y1

(Re, f)(@,y) = / " poae g DOV (0, )t + / ors (2, ) F D (0, )i+
0 0
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+// @22(377:%Svt)f(gg)(sat)d‘gdt
T

where

(y —1)%
6

(1022(377y7 S,t) = ngl [(117 - 8)+(y - t)+]

o ey [ W13
(1004(37,y,t) = RG1 ) (1013(37,y,t) - RG1 T 2

?

We can also give, starting from G2, the next approximation formula:

f = GZf + Rsz

and if we take care of Theorem 1 we have that for Go € Bs 2(0,0) the remainder has

the next approximation formula:

a8

(Row f) () = / " poae v, FOV (0, )t + / ors (2, ) D0, £)dt+
0 0

+// (,022(117,y,S,t)f(2’2)(8,t)d8dt
1>

where @o4(z,y,t), p13(x,y,t), p22(x,y, s,t) have the same mentioned expressions.

Let us consider the approximation formula on T":
f=Tf+Rrf
Regarding the remainder Rrf we can define it as follows:

RT1f7 ('Tvy) SNA
RT2f7 (Jl',y) Sb \ [AO]

Rr(f) =
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A NEW DIFFERENTIAL INEQUALITY II

GHEORGHE OROS, GEORGIA IRINA OROS, ADRIANA CATAS

Abstract. We find conditions on the complex-valued functions A and B,
in the unit disc U such that the differential inequality

Re[A(2)p*(2) + B(2)p(2) — alzp' ()" + B(zp' ()" =

(20 (2))% 72 + 8(2p' (2))** 2 + 0] > 0

2k 2k—1 2k—2
implies Rep(z) > 0, where o, 8,7,6 >0, n < O‘;k + ﬁ;kfl + 7221%2 +

6n2k73
W, pE H[l,’l’b} and k € N,k > 2

1. Introduction and preliminaries
We let H[U] denote the class of holomorphic functions in the unit disc
U={ze€C: |z|<1}.
For a € C and n € N* we let

Hla,n] = {f € HU], f(z)=a+anz"+apns 12" + ..., z€ U}

and
A ={f €H[U], f(2)=2+an12" ™ +apn02" 2+ ..., 2€ U}
with A4; = A.
In order to prove the new results we shall use the following lemma, which is

a particular form of Theorem 2.3.i[1,p.35].
Lemma A. [1,p.35] Let 1 : C?> x U — C a function which satisfies

Re y(pi,o;z) <0,

Received by the editors: 26.07.2004.
2000 Mathematics Subject Classification. 30C80.
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where p,0 € R, a§—%(1+p2) zeU and n>1.
If p € H[1,n] and

Re ¢ (p(2),2p'(2);2) > 0

then

Rep(z) > 0.

2. Main results

2k 2k—1 2k—2 2k—3
Theorem 1. Let o, 3,7, >0, n < 0‘275,6 + 527;]071 + fznzk,Q + 5211%73 and

let n, k be positive integers, k > 2. Suppose that the functions A, B : U — C satisfy

. 2k 2k—1
(i)Re A(2) > — =2k — B o1 — 1)

2k—2 2k—3
~ Loz 2k —2) - B (2 - 3)

(1) (ImB(z))? < 4 (Ogéik 2k + 527,5:—11 2k — D)+ (1)

2k—2 2k—3
+ S (2k = 2) + 752”%73 (2k — 3) + ReA(z)) :

2% 2k 1 n2k=2  5o2k-3
'(Og%k +622k—1 +722k—2 + 27%1@—3 -1

If pe H[1,n] and
Re[A(2)p?(2) + B(2)p(2) — a(2p/(2))™ + B(zp' ()=
=20 (2))* 72 + 8 (2 (2))" 7 4] > 0 (2)
then
Rep(z) > 0.

Proof. We let ¢ : C2 x U — C be defined by

D(p(2), 20 (2);:2) = A(2)p*(2) + B(2)p(2) — alzp' (2))* +

+HB(2p (2))*F 7 = (20 (2))*7 72 + 8(2p' ()7 4 (3)
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From (2) we have
Re(p(2), 2p'(2); 2) > 0 for z € U.

For p,o € R satisfying o < ,%(1 + p?), hence

2% n 2\2k. 2k—1 n?k-1 2\2k—1
—0 S—W(l—i—p) e <—W(1+p)

2k—2 2k—3

_ n . _ n —
_O.Zk 2 < _221@72 <1+p2)2k 2; 0_2k 3 < _22k73 <1+p2)2k 3

and z € U, by using (1) we obtain
Rep(pi,o;z) = Re [A(2)(pi)® + B(2)pi — ac?* +

N

= —p?Re A(z) — pIm B(z) — ac® + fo?* =1 — 4o?k =2 4 56283 1y <

an?k ﬁan—l ~
< —p’Re A(z) — pIm B(z) — 7 (1+ p?)% — o (14 p%)2F1

2k—2 2k—3

n _ on .
7W(1+p2)2k 2 22}973 (1+p2)2k 3+77:

an 2k-1 B2kl oy _
= —W(Pz)% ( o2k Cax 2%7_1021(4 (Pz)% t—

an®* _ox o /371 2k—2 k=2 ko _
- <C2k + 92k Czk 1+ C2k—2> (P*)F 2 - =

22k72

aan Ban_l n
- [( S 2k g (2h = 1) + gy (2 - 2)+

5n2k 3
+ Eo=y (2k —3)+ Re A(z )> p* + pIm B(2)+

+ <0.

an?*  fp2el p2k-2 g5p2k-3
o2k + 92k~ 1 + 92k—2 + ozk—3 '

By using Lemma A we have that Rep(z) > 0. O

If « =0 and B = 0, then Theorem 1 can be rewritten as follows:
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Corollary 1. Let v,§ > 0,17 < 72% > —|— 52712,6 = and let n, k be positive

integers, k > 2. Suppose that the functions A, B : U — C satisfy

2k—
()Re A(z) > ~ o (2% — 2) — S0 ok — 3)

(id) (ImB(z))? <4(%(2k 2) + %(% 3)+ReA()) (5)

n2k—2 Sn2k—3
'<,Y22k2 + 2@1@—3 -n

If p e H[1,n] and

Re[A(2)p*(2) + B(2)p(2) — (29 (2)* 72 + 8(2p(2))*" > + 1] > 0 (6)
then
Rep(z) > 0.
Remarks. 1. This result from Corollary 1 was obtained in Theorem 1 from
[2].

2. For a =0, k =2 we obtain Theorem 1 from [3].

If & = 0, then Theorem 1 can be rewritten as follows:
ﬂ 2k—1 ,.Yn2k—2 5n2k,3
Corollary 2. Let 8,7, >0, n < 2% T + 92F—2 + 92F—3 and let n, k

be positive integers, k > 2. Suppose that the functions A, B : U — C satisfy

(Re A(z) > ~ 205 ok — 1) - 0 (o — )

2k—3
—%(2’@ 3)

(i) (ImB(2))? < (ﬁgk —(2k—1)+ +%(2k ~2)

n2k71 n2k72 2k—3
‘*‘527121@ 3 (2k—3)+ReA(z ))(%21@1 + 7221#2 + 5271214—3 _77>
If pe H[1,n] and

Re[A(2)p*(2) + B(2)p(2) + B(2p'(2))* '~
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=20 (2))?7% + 820 (2))* 72 4] > 0 (8)
then
Rep(z) > 0.
If 8 =0, then Theorem 1 can be rewritten as follows.
Corollary 3. Let o,v,0 >0, n < 2% + 72;;6 22 + 6277;: = and letn, k be

positive integers, k > 2. Suppose that the functz’ons A, B:U — C satisfy

. 2k n2k—
()Re A(z) > ~C8 o - M0 (01— 2) - S 2 of 3

(i) (ImB()? < 4 (S ok + By 2k - 2+ )

2k—3 2k 2k—2 2k—3
+52T§W(2k —3)+ Re A(Z))< Ogék + 7;k—z + 6271%—3 - 77>
If pe H[1,n] and

Re[A(2)p*(2) + B(2)p(2) — al(zp/(2))"" ~

== (2))* 72 + 8 (20 (2))* 7 + 0] > 0 (10)
then
Rep(z) > 0.

If v = 0, then Theorem 1 can be rewritten as follows.

Bn2k—1 5 2k—3
Corollary 4. Let a, (3,0 >0, n < 2% + 9Zh T + 97F—3 and let n, k be

positive integers, k > 2.  Suppose that the functions A, B : U — C satisfy

' 2%k 2k—1
(i) Re A(z) > ~ B2k — Do ok - 1) - P 2k - 3)

(i) (ImB()? < 4 2ok B k- 1)+ (1)

2k—1 2k—3
“‘%(% 3) + ReA(z ))(Ogék + 627;k T+ 52gk—3 - 77)
If p e H[1,n] and

Re[A(2)p(2) + B(2)p(2) — a(=p/(2))™" + B(2p/ ()1 =
89



GHEORGHE OROS, GEORGIA IRINA OROS, ADRIANA CATAS

+6(2p(2))** 2+ >0 (12)
then
Rep(z) > 0.
If § =0, then Theorem 1 can be rewritten as follows:

2k 2k—1 2k—2
an n n
o2F + 62%_1 + 722k_2 and let n, k

Corollary 5. Let o, (8,7 > 0, n <
be positive integers, k > 2. Suppose that the functions A, B : U — C satisfy

) 2k 2k—1 2k—2
(i)Re A(z) >~ ok — Do ok — 1) - W (20— 2)

(id)(ImB(2))? < 4 (og;ik % + ﬁ;il:l (2k — 1)+ (13)

2k—2 2% 2k—1 n2k—2
+722ﬁ(2k_2) + ReA(2) Og;k + %21@—1 + 7221@_2 -1

If pe H[L,n] and
Re [A(2)p*(2) + B(2)p(2) — a(zp'(2))** + B(zp' ()1~

(20’ (2))"* 2 4] > 0 (14)
then
Rep(z) > 0.
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HOLDER ESTIMATES OF HIGHER ORDER DERIVATIVES
FOR EVOLUTIONARY MONGE-AMPERE EQUATION
ON A RIEMANNIAN MANIFOLD

N. RATINER

Abstract. Let (V,g) be a compact Riemannian manifold. For u € C?(V)
we consider the form g;; + Vi;u. If the form is positive definite, it gives
a new metric on V. The Monge-Ampére operator on V is the quotient of
determinants: M (u) = |gi; + Vijul|/|gi;|. The paper deals with the Cauchy
problem for the evolutionary Monge-Ampére type equation:

_%: +InM(u) = f(t,z,u), (t,z)€[0,T]xV,

u(0,z) = uo(x).
Holder estimates for higher order derivatives u; and V;;u of a solution u

are proved.

1. Introduction

The paper deals with the apriory estimates of solutions of the Cauchy prob-
lem for the evolutionary Monge-Ampére type equation on Riemannian manifolds and
continues [1],[2].

Let (V,g) be a smooth compact Riemannian manifold, dimV = m. We
consider the Levi-Civita connection on V, it defines the covariant differentiation on
V. The Levi-Civita connection is the unique symmetric connection with vanishing
torsion tensor, for which the covariant derivative of the metric tensor is zero. Let

z',...,2™ be a local coordinate system on V, and 01,...,0,,, where 0}, = %, be
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the corresponding basic vector fields. Suppose u(x) is a function on V' at least twice
continuously differentiable. By V,u = Vjs,u we denote the covariant derivative, and
Viju = V;(V;u) second order covariant derivative. Let (g;;(x)) be the matrix of the
metric g in a local coordinates. We consider the form g,, with matrix g;;(x) + V;ju(x)
in the local coordinate system. A function u(x) is said to be admissible provided
the form g, is positive definite. An admissible function gives a new metric on V.

By |g:;] and |g;| we denote determinants of metrics. The quotient M (u)(z) =
935 ()|/19:(x)| is a positive function on V. We call u — M (u) the Monge-Ampere
type operator by analogy with the classical Monge-Ampére operator. The distinc-
tion between M (u) and the classical operator is the following. The classical operator
is the Hesse matrix of a function u, but M (u) contains sum of the matrix (g;;) and
Hesse matrix. The classical operator is defined on the convex set of symmetric positive
definite matrix, for M (u) we shall consider a bundle with convex fibres.

We consider the product [0,7] x V with the same metric g and connection V
for each t € [0,t]. Let u(t, z) be at least twice continuously differentiable function on
[0,T]x V with respect to spatial variables. The function u(t, ) is said to be admissible
provided the form gi%(t) = gi; + Viju(t,-) is positive definite for all ¢ € [0,1]. An
admissible function u(¢, ) defines the family of metrics g*(t), t € [0,1] on V. Applying
M to u(t,z), we obtain the function M (u)(t,z) depending on two variables.

We consider the evolutionary equation

S M) = fa), ()€ 0.7 xV, o

with initial condition:
(0, z) = uo(x). (2)
The stationary equation with M (u) arises in some geometrical problem. For
example, the condition that describes Einstein-Kéhler manifolds is proportionality of
the Ricci tensor and the metric tensor, it was first proposed by Einstein as the equation
of the gravity field in vacuum. The question of existence of Einstein-Kéhler metric
leads to the stationary Monge-Ampére type equation. The proof of the famous Calabi
conjecture, which asserts that every form representing the first Chern class is the Ricci
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form of some Kéhler metric, proved in 1976 by S.T.Yau and T.Aubin independently,
is based on the existence theorem for stationary Monge-Ampére equation (see [3], [4],
[5],[6] for more details).

Evolutionary equations with classical Monge-Ampére operator on a bounded
domain in the n-dimensional space arise in the problem of deformation of a hyper-
surface with rapid controlled by the mean curvature. Papers of many authors are de-
voted to the last problem, e.g. papers of N.Uraltseva, V.Oliker, N.Ivochkina, K.Tso,
G.Huisken and others.

The aim of the paper is the Holder constant estimates for the higher order
derivatives for solutions of (1-2). In the proof we use the following estimates obtained
in [1],[2].

Theorem 1. ([1], th.1) Let u(t,z) be an admissible function and belong to
C ([0,T],C*(V)). By D denote the diameter of V. Then we have

max |Vyu| <2D.
[0,t]xV

Theorem 2. ([1], th.2) Suppose u(t,x) is an admissible solution of (1)-(2) and be-
longs C ([0,T],C*(V))NC* ([0,T],C*(V)) N C?([0,T),C(V)). Let the right hand
side f(t,x,u)of equation (1) be bounded and have bounded first order partial deriva-
tives, fu(t,m,u) >8>0 on[0,T] x V x R, Then

Jue(a, £)] < My,

where My depends on the diameter D, metric g, ||uollcr vy, | fllcr vy, and .

As usual we denote by (g;;) elements of matrix g in a local coordinates, (%)
elements of inverse matrix, also we denote by (gi;) elements of matrix g, and (gi/)
elements of corresponding inverse matrix.

Theorem 3. Let u(t,z) be an admissible solution of (1)-(2) and belong

C ([0,T],c4(V))NC* ([0, T],C*(V)) N C? ([0, T],C(V)). Suppose the right

hand side f(t,z,u) is bounded and has bounded partial derivatives up to the second
order, fu(t,z,u) > & > 0 on [0,T] x V x R. Then all metrics generated by the
solution u(t,z) of (1)-(2) are uniformly equivalent, i.e. there are positive constants
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c1, ¢z, depending on the diameter D, metric tensor g, curvature tensor of V, || fllc2 vy,

9, luollc2(vy, and independent on (t,x) such that

19:;6°€ < g€ < 094,67 (3)
1/c29"6&5 < gl €65 < 1/cr1g” €& (4)

forallé = (&,...,&m) € R™.
Theorem 4. Let u(t,x) be a solution of (1-2) and belong to C ([0, T],C*(V)) N
C* ([0,7],C*(V)) N C?([0,T],C(V)). Under the assumptions of theorem 3 we have

0<m—Au<K,
where K depends on the same values as c1,co in theorem 3.

2. Some properties of the operator M (u)

Let us consider the set of all square matrix of order m, we identify it with
R™. Denote by S € R™ the subset of symmetric positive definite matrix. .S is open
and convex. Write a = (a;;) for elements of S.
Let us cover V' by finite number of local charts (Q, ¢x){_; and choose open
sets Q, Q) C €y, such that ¢ () convex in R™ and quJ Q) = V. Fix an index &,
=1

we shall proceed throughout Q) in the local coordinates of chart (Qx, ¢r).

Fix z € Qf, then g(z) € S. Denote by S, the following subset in R™:
Se ={a € B™ | g(x) +a = (gy(z) + ai;) € S}.

We consider the fibre bundle 7: S — Qf with fibre 7=%(z) = S, and total space
S= U S,

zeQ),
Fibres of the bundle 7 are open convex subset in R™ and every fibre is

homeomorphic to S. The bundle 7 is trivializable, i.e. there is a homeomorphism

©: S — Q) x S such that the following diagram is commutative:

S 2, Q, xS
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where p; : Q;C xS — Q;c is the projection on the first factor, p;(x, a) = .

Indeed, we put ¢(x,a) = (z,a + g(x)). The map ¢ is one-to-one:

1. if (1,01 + g(z1)) = (22,a2 + g(x2)), then 1 = x5 and a3 + g(z1) =

az +g(z1) = a1=ao.

2. if (x,b) € Q) x S, then p(z,b— g(z)) = (z,b — g(x) + g(x)) = (z,b).
The map ¢ is continuous due to continuity of g, the inverse map ¢~*(z,b) = (z,b —
g(z)) is also continuous .

Together with m: S — ) we consider the bundle 7: [0,7] x S — [0, T] x €},
whose fibre over (¢, ) coincides with the fibre S, of m over z: 7= 1(¢t,z) = 7~ 1(x) = S,.
By S =[0,7] x S we denote the total space of the bundle 7.

On the bundle S we consider the following function F': S — R:

1y 9@ +al
l9(x)]

We extend F identically to S: F(t,z,a) = F(z,a). It is easily seen that the restric-

F(z,a) =

tion F to a fibre S, of the bundles S and S is a convex function of m?2 variables.

Indeed = g% where g% is an element of the inverse matrix (g(z)+a)~t. Then

’ O(a
2 . .
W gflkgff ([1], lemma 1). Thus %@j&kl —gt*glig, i€k is a negative
definite form, i.e. the function F|g, is a convex function of m? variables.
Let A: [0,T] x Q) — S, A(t,z) = (t,2,\(t,2)), AM(t,z) € S., be a continuous
section of the bundle 7. Assume that there are exist positive constants ci,cs such

that
c1l€? < (gi(2) 4+ Aij (8, 2))E'€7 < ea€? (5)
for all (t,x) € [0,T] x .
We consider the superposition

lg(a) + At )|

F(z,\(t,z)) =In el

Denote by
p(z1,22) = |t =7V + |z — y| (6)

the parabolic distance between points z1 = (¢,z), 22 = (1,y) € [0,T] x Q.
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Lemma 1. Suppose the metric g and section A;j are C*T. Let Mg be the mazimal

Holder constant for \ij. Then
|F(2,A(21)) = F(y, A(22))| < N1p®(21, 22) + Na|z — y|%,

for all z1 = (t,x),22 = (r,y) € [0,T] x Q) with constant Ny depending on

c1,m, ||gllc2+a, MY and constant Ny depending on m, ||g||c2+a -

Proof.

F(x,\(t,x)) — F(y,\(1,y)) = |g(r|)g+(2>(|”)| In |g(y|);(;§|w)\ — .

= [Infg(z) + A(t, 2)| —Inlg(y) + A(m,y)[] + [In|g(y)| — In|g(z)]].
We start with the first term. For all 6 € [0, 1] the form gy = 0[g(x) + A(t,z)] + (1 —
N[g(y) + A(7,y)] is positive definite. Let us consider the function ¢(8) = In|gg|. We
have

1

¢'(0) = o]

— 5190l 70 (90) = 97195 () — 955 (y) + Nij (t, ) — Nij (T, 9)],

where (gg);; are elements of matrix gg, g;j are elements of the inverse matrix. Then

In|g(z) + A(t, z)[ —Infg(y) + A7, )| = (1) — ¢(0) = Oflw’(G) b =

g (8)
=2_dYgij(x) = gi;(y) + Aij(t,2) — Aij (T,9)],
where
dv = [ g7 do. (9)
0/ ;

Since matrices g(x) + A(t, z) satisfy condition (5), then the matrix gy satisfies (5) as

well, and for elements of the inverse matrix we have

*IEIQ < gi'tig; < *I&\Q

Integrating the above inequality with respect to 6 from 0 to 1 we get

—\5|2 dig;€; < —|§|2 (10)
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Then
In|g(z) + A(t, )| — In[g(y) + M7,y)| <
< Z 1d](1gij () = gi ()| + [Nij (£, 2) = Aij(T,9)]) < (11)

< LS (Mg lr —y|* + Mgp(z1,22)*) < (Mg + Mg)p® (21, 22),

=
)

where M is the maximal Holder constant for g;;.

To obtain estimate for the second term we denote for a while g(z) = a,

g(y) = b and consider In |s| as a function of m? variables s = (s;;) € S.

OISl (4 (1 — )by — ).

1] Sij

Inlal —Inb]| < S
|Infa| —In [b] | ZO

61n\|

Since for any matrix s = (s;;) we have =5 5% then

[In]a] —Ind|| < Z sup (ta + (1 —t)b)7|bi; — ayjl.
i te[0,1]

Put G = {g(z),z € Q,} and let TG be its convex hull. Let M, be the bound for

elements of matrices that are inverse to matrices from ¢o GG. Then
[In|g(2)| = In|g(y)l| < MyMgm?|z —y|*. (12)
Combining (11) - (12) we obtain the estimate that we need. O

We shall use equality (8) ones more to obtain the following:

Lemma 2. Under the assumptions of lemma 1 we have
Z d7\ij(t,2) = Xij ()] = Flz, Mt 2)) = F(y, M7,y)) + Fi(2,y),
where dV are given by (9) and Fy(z,y) satisfies Holder condition
|Fi(z,y)] < Mylz —y|*

with My = M&(1/c1 + Mg)m?
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Proof. From (8) and(7) we have:

> d7 [Nt x) = Nij(1,y)] =
In|g(z) + A(t,2)| = In|g(y) + N7, y)| + 3 d7[g:5(y) — gij(2)] =
Fz, At x)) = F(y, A(m,y)) + [In|g(2)| = Ing(y)[] +

> d7gij(y) — gij(2)].

(13)

Consider Fy(z,y) = [In|g(x)| —In|g(y)[]+ 3> d”[g:;(y) — gij(2)]. Inequalities (10) and
ij
(12) give
|Fi(w,y)] < Mg (1/e1 + Mg)m®|z — y|* (14)

3. Holder Estimate for u;

Theorem 5. Let u(t,z) be a solution of (1-2) from the space C ([0,T],C*(V)) N
C' ([0, T],C*(V)) N C2([0,T],C(V)). Assume that the right hand side f(t,z,u)
bounded and has bounded derivatives up to the second order, f,(t,z,u) > § > 0
on [0,T] x V x R. Let ug be an admissible function from C***(V'). Then

ug(z1) — we(22)| < NpP(21,22) (15)

with some power § € (0,a] depending on dimension m and constants c1, ca from
theorem 8. The constant N depends on 3, m, ¢1 ca, D, g, ||uol|c2+e, ||fllcz, and on

J.

Proof. Fix a number pg, 0 < pp < 1/2, we begin with estimate for u; on the cylinder
[po, T] x V.

Suppose that the manifold V' is covered by charts (4, ¢x) whose images coin-
cide with B;(0), where B,.(0) is the ball in the Euclidean space R"™ of radius r centered
at the origin, and preimages € of balls B;/5(0) cover V as well. Differentiating (1)
in ¢ within local coordinates of chart €, we have:

ou o
_87; + guﬁvaﬁut = ft + fuut
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Write v = u;. We have got a linear equation with respect to v:
Lv = f, (16)

where
L=—-0/0t+ g2Vas — fu

is a uniformly parabolic operator due to theorem 3.

By @ and @, we denote cylinders Q = (0,T") x B1(0), Q, = (p,T) x By 2(0)
in R™t!. By 0’Q denote the parabolic boundary of the cylinder Q: 9'Q =
({0} x B1(0)) U ((0,T) x 8B1(0)). Let p(z, 2’) be the parabolic distance (6) between

points z = (t,x), 2/ = (', 2'), for a point z € Q we write
p(e) = inf{p(z, &), o' = (¢,a') € 0Q, ¢ < 1}, (7)

p(z) is said to be the parabolic distance from z to the boundary of Q.

Note that inf{p(z),z € Q,,} = po.

For a solution v = w; of uniformly parabolic equation (16) there is the fol-
lowing Holder estimate ([7],theorem IV.2.7, p.120): for z; = (x1,t1), 22 = (22,t2),

Z1,%22 € ona
|u(21) — wi(22)| < N(Sgp Jus] + 1 Luel| L, 0 @))P7 (215 22)

with some power v € (0, 1), depending on m and constants ci, ¢ from theorem 3.
The constant N depends on m, ¢1 ¢z as well, and extra on sup |f,| and distance pg
from the parabolic boundary.

Using the estimate of |u| (theorem 2) and the equality Lu; = f;, we get
lui(21) — wi(z2)] < Nip”(z1, 22) (18)

with N; depending on m, ¢y, ¢, 6, pg, D, metric tensor g, initial function wug, right
hand side f, and their derivatives up to the second order.

Before getting an estimate of v = u; for small ¢ € (0, pg), let us consider the
case t = 0.
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If ¢t = 0, then from equation (1) and initial condition (2) we have
us(0,2) = In M (u)(0,2) — £(0, 2, ug). (19)

The initial function ug € C?**(V) defines the continuous section Ag: ) — S
of the bundle 7: S — €} as follows: Ag(x) = (@, Vijue(x)). For the section Ag we
have constants ¢; and ¢y in (5) are equal to the minimal and maximal eigenvalues
of matrices (g;;(x) + Vijuo(x)) and depend on the initial metric g and second order
derivatives of the initial function.

Application of lemma 1 gives
[ In M (uo) () — In M (uo)(y)| < (N1 + N2z —y|*,

where N = Nj + Ny depends on m, ||g||c2+«, ||uo]| g2tea-
On the other hand,

(0,2, u0(2)) = F(0,, w0 ()] =
[0 250,600+ (1= 0)y, Buo(x) + (1 — O)uo (1) (&' — y')+

fu(O Oxq1 + (1 — 9)%2, 9’(1,0(1‘1) + (1 — G)uo(xg))(uo(xl) — uO(l‘g))| <

of
ozt

dug

x — y| +sup | fu|sup | 52

sup

x —yl.
Thus from (19) we have

|Ut(0,1’) - ut(oay)| S N0|(Z? - y‘a’

where « is the Holder power of ug and Ny depends on m, ||g||c2+«, [|uo]|c2+«, and first
order derivatives of f.

To estimate u; on the cylinder (0,p9) x V' we use another theorem ([7],th.
IV.4.5, p.142). Choose a covering (2, ¢x) of V such that images of 2 in the space
R™ coincide with balls of radius r = 3v/2 centered at (3,0,...,0) € R™ and preimages
Q of sets {(z1,...,2m) 1 1/2 <1 <2,|z;] <1,i=2,--- ,m} cover V as well. Then
we apply the theorem mentioned above to uniformly parabolic equation (16). It claims
existence of a constant 7y € (0, 1), 49 < «, depending on m, ¢; ¢ such that for every

4 € (0, %] we have the following estimate

fu(z1) — u(z)] < 7 (21, 22) (M + My + Mig™ )N (20
100



HOLDER ESTIMATES FOR MONGE-AMPERE EQUATION

with constant N depending on «, m, ¢1, c2, sup | f,|, where Mj is the Holder constant
for u(0,2) on the lower base t = 0, which corresponds to the power 4, Mj is the
bound for the right hand side f; of equation (16), M; is a constant from theorem 2,
and ¢ = 1/2 due to the choice of charts.

Then inequalities (18) and (20) give the estimate that we need on the hole
cylinder [0,T] x V with power § = min{~, ¥}. O

4. Holder Estimates for V;;u

Theorem 6. Let u(t,z) be a solution of (1-2) from the space C ([0,T],C*(V))
N C* ([0,7],C*V)) N C*([0,T],C(V)). Assume that the right hand side
f(t,z,u) is bounded and has bounded derivatives up to the second order, f,(t,x,u) >

§ >0 on[0,T] x V x R'. Suppose that ug is an admissible function and belongs to
C?*T(V). Then

Viju(z1) = Viju(z2)| < Np’(z1, 22) (21)
with some power 3 € (0, a] depending on m and constants c1, co from theorem 3. The

constant N depends on 3, m, ¢1 ca, diameter D, metric g, ||uo|lcz+e, ||fllcz, and é.

Proof. Suppose that V is covered by local charts in the same way as in the proof of
theorem 5. Let z = (¢,2) be a fixed point in (0,7] X ¢r(Q). Let v be an arbitrary

direction in the model space. Differentiating (1) with respect to 7, we have:

0 N
— 5 Vot 9PV gt = £ + fuVou.

Differentiating once more, we get

—%VWU +V7(935)ngu + ggﬁvwaﬁu =
- V'y(f’y) + v’y(fu)vryu + quwy—Yu.

Write w = V., u, then

—wy — g3 gV uV yapu + 93P Vapw + E

(22)
= foy + 2fur Vou + fuu(Vou)? + fuw,
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where E = g% (Vyapt — Vapyyu). Commutation formulas for forth order covari-
ant derivatives, which contain coefficients of the curvature tensor and second order

covariant derivatives, imply the following estimate ([5], lemma 2):
B < a(m = Au) + gz gr + ¢, (23)

where a, b, c are positive constants, depending on diameter and curvature tensor of
V. Using the estimate of (m — Au) (theorem 2) and uniformly equivalence of metrics

gu (theorem 3), we obtain

1 1 e
|E| < C—(aK +b)gM g, +c= C—(aK +bm+c “ .
1 1

Let u(t, z) be a solution of (1-2). Denote by L the linear differential operator Lw =
—w + gV opw — fuw. Coefficients g@@ at higher order derivatives continuous if the
solution u(t, z) has continuous derivatives with respect to spatial variables up to the
second order. The second term in (22) nonnegative since F' is convex. Therefore we

get the following linear differential inequality :
Lw > —E+ foy + 2fur Vo + fuu(Vyu)?.

Second order derivatives of the right hand side f are bounded, and we have

the estimate |V,u| < 2D, thus we obtain the inequality
Lw > —Kj, (24)

with a constant K; > 0 depends on diameter and curvature tensor of V, and on
1 £llcs.

We are going to use Holder estimates for solutions of a system of uniformly
parabolic inequalities ([7]), but we need one more inequality. It will be obtained
separately for interior points and for points near the base {0} x V of cylinder. Fix a
number py, 0 < pg < 1/2, and choose cylinders @ and @, as in theorem 5.

Each solution u(t,x) of (1) is an admissible function and determine the con-

tinuous solution A, of the bundle S:

Ayt z) = (¢, 2, A\ (E, 2)) = (t, 2, Viju(t, x)).
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The above section satisfies condition (5) (theorem 3) with ¢;, c2 depending on diameter

of V, metric g, curvature tensor, ||f||c2, d, and ||ug||c2. Lemma 2 implies

> d7Vigult,x) = Vigu(r,y)] = F(z, Au(t, @) = F(y, M(7,9)) + Fi(,),  (25)

ij
where F(z,y) satisfies Holder’s condition with power o and Holder’s constant M, =
Mg (1/c1 4+ My)m?. In (25) we have

F(I7 Au(tv LE)) = F(:Ca viju(ta I)) = IHM(U)(t, I)v (26)
Let us write equation (1) at points z = (t,z),2 = (7,y) € Qp,:
—ug(t,x) + In M(u)(t,x) = f(t, z,u(t, x)),

—ui(7,y) + I M(u)(7,y) = f(1,y,u(7,y))-
Subtracting yields:
In M(u)(t,x) — In M (u)(1,y) =
[ue(t, 2) = ue(T, 9)] + [f (£, 2, u(t, ) — f(7, 9, u(T,y)].
Then using the Holder estimate for u; (theorem 5), mean value theorem for f(¢,x,u)
regarded as a function of three variables, and estimates from theorems 1, 2, we get
|In M (u)(t, 2) — In M (u)(7,y)| < [ur(t, ©) — w7, y)[+
|f(t.z,u(t,z) — f(1,y,u(r,y)] < NpP(21, 22)+
sup [ fi|[t — 7| +sup | Vo fllz — y[ + sup | fullu(t, z) — u(7,y)| <
N1p?(z1, 22),

(27)

with 3 is Holder’s power for uy; Ny depends on 3, m, ¢ ¢, D, g, ||uollcz+e, || fllc2,
and 6.
Therefore from (25), (26), and (27) we have

> d7 (Vigult,z) = Viju(r,y)) <
ij (28)

N1pP (21, 22) + Mgz — y|* < Nap®(21, 22).
where N» depends on the same values as N7y and Holder’s constant of coefficients of
g.
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Now we use lemma from [7]( p.212, lemma V.5.4)(see also [8], lemma 5.2, for
another wording). It claims that for all positive definite matrices (a;;) satisfying the

condition
d1€]? < a6 < dolé?, (29)

there exists a natural number n, unit vectors v, -+ ,n, and d € (0,1), depending on

m, dy, ds, such that the following inequality holds

n

AjjUij = dZ(u"/i"ﬁ)-i' — 3dy Z(u’n"/i)—’ (30)

i=1 i=1

where u., denotes the derivative in the direction of vector 7; and ¢y = max{0,c},
c_ = max{0, —c}.

The above claim contains partial derivatives, but it is true for covariant

derivatives due to linearity of the covariant derivative with respect to subscript vec-

tor field. Indeed, inequality (30) is based on presentation of a matrix A = (a;;)

n
in the form A = > B;(A)v; ® ~;, which implies presentation of a linear oper-
i=1

ator: Lu = tr(A - D%*u) = f:ﬁi(A)'yf'ykalu. Here 7f4!Viu = V,u. In-
deed, let v be a direction, 71:21 YOk, where 7, are constant coefficients. Then
Vot = Va4t = 27 Viw and Voyu = Vo (3 yeue) = 207k Vy(Viu) =
%’Yk’ﬂvl(vku) = kz%’YWsz:U = ];vakz’w ' '
7 Applying (2,8) to dijviju(t,, z) and d¥V;;(—u(r,y)), and note that (—c); =

c—, (—c)- = ¢4 we get:

2 d9(Vijult,z) = Viju(r,y)) >

ij

43 (Vrqult7) = Vo ulr. ) = 2

-

((v"/i’wu(tv x) - V’)’i’Yiu(T’ y)))—

i=1

Write w; = V,,,u. The above inequality together with (28) imply:

a1 pB (21, 29) >

3% (it ) — wi(r )+ - X (il ) — wilru) -

3

(31)

Therefore, for every point z = (¢, ) in the fixed local chart we have uniformly
parabolic inequality (24) and for all z = (¢, ), 2" = (7,y) € Q,, inequality (31). Put
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Ky = max{Kj, Nac1/3}, then we shall consider the same constant K in the right
hand sides of both inequalities (24), (31).

Now we are ready to use theorem [7](. IV.3.1, .122), which gives Holder
estimates for solutions of system of linear parabolic inequalities. In this theorem we
take fi(r) = r and v = a = 3, where [ is the Hélder power for wu; (theorem 5).
The theorem mentioned above claims existence of power 5y € (0, 1), depending on
n,d,m,c1,cz, such that for all 4/ < min{f, 3} and all 21,22 € Q,, the following

inequality holds

m
Z wi(z1) = wi(22)] < 577 p7 (21, 22) N (Ko + ngp jwil), (32)
i=1
where p = min{p(21), p(22), 1} and p(z) is the parabolic distance from z to the bound-
ary Q,, (evidently p > pg). The constant N depends on the same values as Gy and
extra on sup | fy|, 8.
Thus substituting pp for p in denominator and 1 for p in numerator we get

the estimate on [pg, 7] x V:
Z|wz 21) = wi(z2)] < po =% p” (21, 22) N1, (33)

with N; depending on diameter, ||g|/co+a, curvature tensor, || f|lcz, 6, ||uol/c2+e and
3, where (3 is the Holder power for ;.

To obtain the estimate on [0, pg) x V we use ([7], theorem IV.5.1, p.147).
Proceeding in the same way as in theorem 5 we cover V with charts (2, ) such
that images of Q, in the space R™ coincide with balls of radius r» = 31/2 centered

t (3,0,...,0) € R™ and preimages ), of sets {(21,...,2m) 1 1/2 < 21 < 2,]z;] <
1,4 = 2,--- ,m} cover V as well. Then the theorem mentioned above claims that
inequalities (24) and (31) imply existence of a constant 79 € (0,1), depending on

n,m,ci, ca,d, such that for every 4 € (0, min{?p, 5}] the following inequality holds

Z\wl z1) —wi(z2)] < p (zl,zg)(M + Ko+ Mq~ )N (34)
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with N depending on n, m, ci, c2, sup|ful|, 7, B, where Mj is the largest Hélder

constant of V,,,uo with power 4, M = sup V.,,,u, and ¢ = 1/2 due to the choice of

charts. 0
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STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume XLIX, Number 4, December 2004

FRACTIONAL BROWNIAN MOTION USING CONTRACTION
METHOD IN PROBABILISTIC METRIC SPACES

A. SOOs

Abstract. In this paper we show how the random scaling law can be
generalized such that the fractional Brownian motion satisfies it. Using
the contraction method in probabilistic metric spaces, we give existence

and uniqueness conditions for fractional Brownian motion.

The fractional Brownian motion (fBm) has been introduced in 1968 by Man-
delbrot and Van Ness. For any H in [0, 1] we denote by {Bf : ¢ € [0,1]} the fractional
Brownian motion of index H (Hurst parameter), and it is the centered Gaussian pro-
cess whose covariance kernel is given by

Vi
Ry(s,t) = E(BEBH) .= TH (s2H +12H _ |t — 52H) |
where
(2 —2H)cos(mH)
7H(1—2H)

The theoretical study of the fractional Brownian motion was originally motivated by

Vg =

new problems in mathematical finance and telecommunication networks. In engineer-
ing applications of stochastic processes it is often used to model the input of system.
These real inputs exhibit long-range dependence: the behavior of a real process after
a given time t does not only depend on the situation at time ¢ but also on the whole
history of the process up to time ¢.

Another property of the fBm encountered in applications is the self similarity:

the behavior of fBm is stochastically the same, up to a space-scaling, i.e. the process

Received by the editors: 15.01.2005.
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Key words and phrases. Fractal, invariant set, scaling law, probabilistic metric space, fractional Brownian

motion.
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{Xat,t € [0,1]} has the same law as the process {a X;,t € [0,1]}, where H €]0,1]
and a > 0.

Since Ry is a positive definite operator, the Bochner-Milos theorem en-
sures that, for any value of H € [0,1], there exists a unique probability measure
on Cy([0,1];R) such that the canonical process is a fBm.

Using fractal theory methods Hutchinson and Riischendorf [2] have obtained
the classical Brownian motion (H = 1) as the invariant set for an iterated function
system.

A first theory of selfsimilar fractal sets and measures was developed in
Hutchinson [1]. Falconer, Graf, Mouldin and Williams, and Arbeiter randomized
each step in the approximation process to obtain self-similar random fractal sets and
measures. Recently Hutchinson and Riischendorf [3] gave a simple proof for the ex-
istence and uniqueness of random fractal sets, measures and fractal functions using
probability metrics defined by expectation.

In this paper we use probabilistic metric spaces techniques in order to prove

that the fBm can be characterized as the fixed point of a scaling law.

1. Invariant sets in E-spaces

Let X be a nonempty set. We denote by AT denote the set of all distribution
functions F' with F'(0) = 0. A Menger space is a triplet (X, F,T), where F : X x X —
AT is a mapping with the following properties:

19 F, y(t) = F, 4(t) for all z,y € X and t € R;

20, F,,(t) =1, for every t > 0, if and only if z = y;

30, Fpy(s+1) > T(Fy.(s), Foy(t)) for all z,y,2 € X and s,t € Ry,

and T is a t-norm.

A mapping T : [0,1] x [0, 1] — [0,1] is called a t-norm if the following condi-
tions are satisfied:

4% T(a,1) = a for every a € [0, 1];

5%, T'(a,b) = T(b,a) for every a,b € [0,1]

6°. if a > c and b > d then T'(a,b) > T(c,d);
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7°. T(a,T(b,c)) = T(T(a,b),c) for every a,b,c € [0,1].

The mapping f : X — X is said to be a contraction if there exists r €]0, 1]
such that

Fr(2), 1) (1) 2 Fay ()

for every z,y € X and t € R,.

A sequence (z,,)nen from X is said to be Cauchy if

lim F, . (t)=1forallt > 0.

The element x € X is called limit of the sequence (2, )nen if limy, oo Fyp, (8) = 1
for all ¢ > 0. A probabilistic metric (Menger) space is said to be complete if every
Cauchy sequence in this space is convergent.

The notion of E-space was introduced by Sherwood [7] in 1969. Let (2, K, P)
be a probability space and let (Y] p) be a metric space. The ordered pair (£, F) is an
E-space over the metric space (Y, p) if the elements of £ are random variables from 2

into Y and F: € x £ — AT defined by F(z,y) = F,

z,y, Where

Foy(t) = P({w € Q] d(z(w), y(w)) < t})

for every t € R. The E-space (£,F) is said to be complete if the Menger space
(€, F,T,,) is complete, where T}, (x,y) = max{x +y — 1,0}.

In the sequel we will use the following result proved in [4]:

Theorem 1.1. Let (£, F) be a complete E- space, N € N*, and let f1,...,fn :E = &
be contractions with ratio r1,...rn, respectively. Suppose that there exists an element

z € £ and a real number v such that

P({w € Qp(2(w), fil2(w)) > ) < 7, (1)

for all i € {1,.,N} and for all t > 0. Then there exists a unique nonempty closed
bounded and compact subset K of €& such that

AK)U...Ufn(K) = K.
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Corollary 1.1. Let (£, F) be a complete E- space, and let f : £ — & be a contraction

with ratio r. Suppose that there exists z € £ and a real number vy such that
P({w € Q| p(2(w), f(2) (@) 2 t}) < 7 for allt > 0.

Then there exists a unique xg € € such that f(xg) = xo.

2. Scaling law and Brownian motion

Denote by (X,d) a complete separable metric space. Let g : I — X, where
I C Ris a closed bounded interval, N € N and let I = I[; Ul,U---U Iy be a partition
of I into disjoint subintervals. Let ®; : I — I, be increasing Lipschitz maps with

pi = Lip®;. If g; : I; — X, for i € {1,..., N} define U;g; : [ — X by
(Uigi) (z) = gj(x) for m € I;.

A scaling law S is an N-tuple (Si,....,Sn), N > 2, of Lipschitz maps S; : X — X.
Denote r; = LipS;.

A random scaling law S = (S, S2, ..., Sy) is a random variable whose values
are scaling laws. We write S = distS for the probability distribution determined by
S and £ for the equality in distribution.

Let S = (51,...,Sn) be a random scaling law and let G = (Gi)icr be a
stochastic process or a random function with state space X. The trajectory of the
process G is the function g : I — X. The trajectory of the random function Sg is

defined up to probability distribution by
Sg £ U;S; 099 0 o,

(N)

where S, g™, ..., g™) are pairwise independent and g(*) 4 g, fori e {1,...,N}. We say

that g or G satisfies the scaling law S, or is a random fractal function, if

d
Sg =g,

The fBm can be characterized as the fixed point of a scaling law. Next we
will contruct this scaling law.

110



FRACTIONAL BROWNIAN MOTION

Let (2, K, P) be a probability space. The fBm with Hurst exponent H is a
stochastic process B® = (B{)ier characterised by B! (w) = 0 a.s. and

Ht 4+ h) — BE@#)EN(0,h7), for ¢t>0andh >0,

where N (0, h') denotes the normal distribution with mean 0 and variance h2H .

For each H > 0, let B¥ : [0,1] — R denote the constrained fBm given by
B”(0)=0a.s. and BY(1)=1a.s.

For a fixed p € R consider the fBm BH BH(1)=p Constrained by BA(L) =p.

Let 51,52 : R — R be the unique affine transformations characterized by
S51(0) =0, S1(1) = S2(0) = p, So(1) = 1. If ry = LipSy = |p|, re = LipSs = |1 — p|,
then

= 1
B |gu(1y,(t) £ S10 B¥(21), teo, 5k
Similarly
1

H =
B |BH(%):p() SQOB2 (21571) t e [5,1]

Let I = [0, 1], and define

1 1 1
b1 — [0, 5], ‘1>1(S) = %a and®y : I — [571]7 (I)l(s) = G :

It follows that

_H_
BT |y () £ 18,0 BZT 0 @M (1), te[0,1].

K2

Now let p/ be a random variable with distribution N(0,Z). For each H > 0 let us
define the random scaling law S¥ = (Sf, S) in the same manner that (57, S2) was

previously defined from the point p.

Let v = LipH for i = 1,2 and let 7® = max{rf rif}. It follows for each
H > 0 that
BY 1,58 02 ot
1 _H_
where S is first chosen as above, and then after conditioning on S, B”Z( i B
2
and B2 23® 4 B2T2 are chosen independently of one another.
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Thus the family of constrained Brownian motion {B¥|H > 0} satisfies the

family of scaling laws S = {S|H > 0}.

3. Generalized scaling law

In this section we generelize the notion of random scaling law. Let p be a
random variable in R with distribution N (0, £) and denote I = [a,b]. Let Sf, Si :
R — R be the unique affine transformations characterized by S (a) = a, SH(b) =
SH(a) = p", SoH(b) = b. Let ®; : I — I;, i = 1,2 be increasing Lipschitz maps,
such that I; U Iy = I and ;1 N ;2: 0.

The generalized random scaling law is a family of scaling laws
S = {S|H > 0}.

If f«H(t) = f“(H,t) :J0,00[xI — R is a stochastic process, then the stochastic
process (Sf)* is defined up to probability distribution by

5 (9)

SHTL ST o 27 ot

(1) -

where S is first chosen as before, and then after conditioning on S, 27" = 21 and
_H_(2 _H_
f ”5( )4 f23 are chosen independently of one another.

The family of stochastic processes or random functions f¥ satisfies the gen-

eralized scaling law S or is a fractal stochastic process if
(sH™ £ 7.

Theorem 3.1. Denote by EX the set of random functions gt : Q x I — R with the

following property: there exist K € E7 and a positive number y such that

P({w e st [ @)lde > 1) <

|-

for allt > 0.

Then there exists a family of stochastic processes gx € EX satisfying S.

Proof. Let f: Y — £% defined by

o (1)
K

fg™) = (Sg) =S 0 g>? 0@,
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where S is first chosen as in the previous section, and then after conditioning on S,

() d . .
ri " =g, i=1,2 are chosen independently of one another.

We first claim that, if g € £F then f(g') € £H as well. For this, choose
_H_(; _H_
2z® 4 g%, i =1,2, independently of one another and S¥ = (S{, S¥). Then, for
t >0,

P({w e Qlsup / |(Sh)H (2)]da > 1)) <

2
1 —2 (4 2
<PweizspH Y :riH/I 57 (2)|de > 1)) < V*Tf
=1 i

To establish the contraction property let us consider g, gf € €. Since

t
Ff(giq)vf(gf)(t) 2 Fgf,gf(ﬁ)

for all t > 0, f is a contraction. Then we can apply Corollary 1.1 and existence and

uniqueness follows. O
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SPECTRAL RADIUS OF QUOTIENT BOUNDED OPERATOR

SORIN MIREL STOIAN

Abstract. We introduce the spectral radius r»(T") for a quotient bounded

operator on a locally convex space X. Similarly to the case of bounded
el n

operator on a Banach space we prove that the Neumann series Z U=

n=0
converges to R(A,T), whenever |A| > rp(T), and |0(Qp,T)| = rp(T).

1. Introduction

The spectral theory for a linear operator on Banach space X is well developed
and we have useful tools for use this theory. For example, the spectral radius of such
operator T is defined by the Gelfand formula r(T") = nlgr;o YT and |0(Q,T)| =
r(T).

Further it is known that the rezolvent R(\, T') is given by the Neumann series
n

)
Z PUESE whenever |A| > r(T).

" If we want to generalize this theory on locally convex space X one major
difficulty is that is not clear which class of operators we can use, because there are
several non-equivalent ways of defining bounded operators on X. The concept of
bounded element of a locally convex algebra was introduced by Allan [1]. An element
is said to be bounded if some scalar multiple of it generates a bounded semigroup.

Definition 1.1. Let X be a locally convex algebra. The radius of boundness

of an element x € X is the number
B(z) = inf{a > 0| the set {(ax)"},>1 is bounded}.

Received by the editors: 01.06.2004.
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In this paper we consider the class of quotient bounded operators, which was
introduced in Appendix A by A. Michael [8], and later was studied by T. Moore [9]
and A. Chilana [2].

Throught this paper all locally convex spaces will be assumed Hausdorff, over
complex field C, and all operators will be linear. If X and Y are topological vector
spaces we denote by L(X,Y) (L£(X,Y)) the algebra of linear operators (continuous
operators) from X to Y.

Any family P of seminorms who generate the topology of locally convex
space X (in the sense that the topology of X is the coarsest with respect to which
all seminorms of P are continuous) will be called a calibration on X. A calibration
is characterized by the property, that for every seminorms p € P and every constant

e > 0 the sets
S(p,e) ={z € X| p(z) <e},

constitute a neighbourhoods sub-base at 0. A calibration on X will be principal if it
is directed. The set of calibration for X is denoted by C(X).
Any family of seminorms on a linear space is partially ordered by relation

<7 where
p<q & plx)<gx), VeeX.

A family of seminorms is preordered by relation ”<”, where
p<gq < there exists some r > 0 such that p(z) < rq(z), Vz € X.

If p < ¢ and g < p, we write p = q.

Definition 1.2. T'wo families P; and Ps of seminorms on a linear space are
called @Q-equivalent (denoted P; & Py) provided:

a) for each p; € P; there exists pa € Py such that p; & po;

b) for each ps € Py there exists p; € Py such that py ~ p;.

It is obvious that two @-equivalent and separating families of seminorms on
a linear space generate the same locally convex topology.
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Similar to the norm of an operator on a normed space we define the mixed
operator seminorm of an operator between locally convex spaces. If (X, P), (Y, Q) are
locally convex spaces, then for each p, ¢ € P the application m,,, : L(X,Y) — RU{co},
defined by

q(Tx)
Myq(1T) = sup ,
- ( ) p(x)#0 p(ﬂ?)

is called the mixed operator seminorm of 1" associated with p and q. When X =Y
and p = ¢ we use notation p = Mypp-

Lemma 1.3. (V. Troistky [10]) If (X, P), (Y, Q) are locally convex spaces
and T € L(X,Y), then

1) mpe(T) = sup ¢q(Txz)= sup ¢(Tx), VpeP, Vqge Q;

p(w)=1 p(=)<1

2) q(Tz) < mpy(T)p(x), ¥V = € X, whenever mpy(T) < 0.

Corollary 1.4. If (X,P),(Y, Q) are locally convex spaces and T € L(X,Y),
then

Mypg(T) = inf{M > 0| ¢(Tz) < Mp(x), Vz € X},

whenever myy(T) < 0.

Proof. If p,q € P then from previous lemma we have
q(Tx) < mpg(T)p(x), V7 € X.
If M > 0 such that
q(Tz) < Mp(z), Vz € X,
then using lemma 1.3.(1) we obtain

Mpq(T) = sup ¢(Tx) < M.
p(z)=1
Definition 1.5. An operator T on a locally convex space X is quotient

bounded with respect to a calibration P € C(X) if for every seminorm p € P there

exists some ¢, > 0 such that

p(Tz) < epp(x), Vx € X.
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The class of all quotient bounded operators with respect to a calibration
P € C(X) is denoted by Qp(X).

Lemma 1.6. If X is a locally convex space and P € C(X), then for every
p € P the application p: Qp(X) — R defined by

p(T) ={r >0 p(Tx) <rp(z), Vze X},

is a submultiplicative seminorm on Qp(X), satisfying p(I) = 1.

We denote by P the family {plp € P}.

Proposition 1.7. (G. Joseph [7]) Let X be a locally convex space and P €
C(X).

1) Qp(X) is a unital subalgebra of the algebra of continuous linear operators
on X;

2) Qp(X) is a unital locally multiplicative convex algebra (I.m.c.-algebra) with
respect to the topology determined by 73;

3) If P € C(X) such that P ~ P', then Qp/(X) = Qp(X) and P =P';

4) The topology generated by P on Qp(X) is finer than the topology of uni-
form convergence on bounded subsets of X.

Lemma 1.8. If X is a sequentially complete convex space, then Qp(X) is a
sequentially complete m-convez algebra for all P € C(X).

Proof. Let P € C(X) and (T3,), C Qp(X) be a Cauchy sequence. Then, for

cach & > 0 and each p € P there exists some index np.e € N such that
|ﬁ(Tn) _ﬁ(Tm)‘ < ﬁ(Tn - Tm) <e Vn,m> Npe- (1)

From the previous relation it follows that (p(T},)), is convergent sequence of

real numbers, for each p € P.Ifz e X, then
p(Thx — Trx) < p(T, — Trn)p(x), Vp P, (2)

so (T, (z)), C X is a Cauchy sequence. But, since X is sequentially complete and

Hausdorff, there exists an unique element y € X such that

lim Th,x =y.

n—oo
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Therefore, the operator T': X — X defined by

T(z) = lim T,z, Vz e X,

n—oo

is well defined. It is obvious that T is linear operator. Using the continuity of

seminorms p € P we have

p(Tz)=p ( lim Tn:lc) = lim p(Tyz) < lim p(T,)p(x) = ¢pp(2),

n—oo n—oo n—oo

for all x € X and for each p € P (where ¢, = lim p(7},)).
This implies that T € Qp(X). Now we prove that T, — T in Qp(X).
From relations (1) and (2) it follows that for each & > 0 and each p € P there

exists np . € N such that
p(Thar — Trx) <ep(z), Yn,m>n,.

SO

p(Thx — Txy <ep(x), YV n>n,..

This implies that
ﬁ(Tn - T) S g, v n Z np,€7

which prove that T,, — T in Qp(X) and Qp(X) is a sequentially complete m-convex
algebra. [
Given (X, P), for each p € P let NP denote the null space {z| p(z) = 0} and

X, the quotient space X/NP. For each p € P consider the natural mapping
r— xp =2+ NP (from X to Xp).

It is obvious that X, is normed space, for each p € P, with norm defined by
lzpllp = p(z). Consider the algebra homomorphism 7" — T% of Qp(X) into £(X,)
defined by

T?(zp) = (Tx)p, Vo € X.
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This operator are well defined because T'(NP) C NP. Moreover, for each

p € P, L(X,) is a unital normed algebra and we have
[Tl = sup{l|Tpzpllp| lzpllp <1 for z, € Xp} =

= sup{p(Tz)| p(x) <1 for x € X}.

For p € P consider the normed space ()Z'p, I-1lp) the completion of (X, ||-|p)-
If T € Qp(X), then the operator TP has a unique continuous linear extension T? on
E- -

Definition 1.9. Let (X,P) be a locally convex space and T € Qp(X). We
say that A € p(Qp,T) if the inverse of A\ — T exists and (A —T)~1 € Qp(X).

Spectral sets o(QpT) are defined to be complements of rezolvent sets
p(Qp,T).

For each p € P we denote by o(X,,T?) (U(Xp,fp)) the spectral set of the
operator TP in £(X,) (respectively the rezolvent set of TP in ﬁ()?p)). The rezolvent
set of the operator T? in L£(X,) (respectively the spectral set of T? in £(X,)) is
denoted by p(X,,T?) (p(X,,T?)).

Lemma 1.10. (J. R. Gilles, G. Joseph, B. Sims [6]) Let (X,P) be a sequen-
tially complete convex space and T € Qp(X). Then T is invertible in Qp(X) if and
only if TP is invertible in E()?p) for allp e P.

Corollary 1.11. (J. R. Gilles, G. Joseph, B. Sims [6]) If (X, P) is a sequen-
tially complete convex space and T € Qp(X), then

o(Qp,T) = W{o(X,, TP)| p € P} = U{o(X,,, T7)| p € P}.

2. Spectral radius of quotient bounded operators

Let (X,P) be a locally convex space and T € Qp(X). We said that T is
bounded element of the algebra Qp(X) if it is a bounded element of Qp(X) in the
sense of G. R. Allan [1]. The class of bounded elements of Qp(X) is denoted by
(@r (X))o
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Definition 2.1. If (X,P) is a locally convex space and T € Qp(X) we
denote by rp(T) the radius of boundness of operator T in Qp(X), i.e.

rp(T) = inf{a > 0] a™'T generates a bounded semigroup in Qp(X)}.

We said that rp(T) is the P-spectral radius of the operator T
Proposition 1.7(3) implies that for each P’ € C(X), P ~ P’, we have
Qr (X) = Qp(X), soif H is a Q-equivalence class in C(X), then

rp(T) =rp/(T), ¥V P,P/ eH.

Since Qp(X) is a m-convex algebra, for each P € C(X), the propositions
2.2-2.5 follows from the results proved by G. A. Allan [1] and I. Colojoara [3].

Proposition 2.2. If X is a locally convex algebra and P € C(X), then for
each T € Qp(X) we have:

1) rp(T) >0 and

rp(AT) = [A|rp(T), ¥ A € C,

where by convention 0oo = oo,
2) rp(T) < 400 if and only if T € (Qp(X))o;
3) rp(T) = inf {A >0 lim % - 0}.
Proposition 2.3. If X is a locally convex algebra and P € C(X), then for
each T € Qp(X) we have:
rp(T) = sup {limsup(ﬁ(T”))l/”| pE 77} =

n—oo

—sup { Jim (")) p € P} = sup { i ()" p € P

Proposition 2.4. Let X be a locally convex algebra and P € C(X).
1) If T € (Qp(X)), then

n

T
lim — =0, V |A] > rp(T);

n—oo \"
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T’!l
2)If T € (Qp(X))o and 0 < |A| < rp(T), then the set {)\n} is un-
n>1
bounded;
3) For each T € Qp(X) and every n > 0 we have

rp (Tn) =Trp (T)n

Proposition 2.5. Let X be a locally convex algebra and P € C(X). Then:
Drp(T+8) <rp(T)+rp(S), VT,S € Qp(X) which have property T'S =
ST;
2) rp(TS) < rp(T)rp(S), VT,S € Qp(X) which have property TS = ST.
From real analysis we have the following lemma.
Lemma 2.6. (V. Troistky [10]) If (t,)n s a sequence in R* U {cco} then
limsup {/t,, = inf {v > 0] lim t—’; = 0} .

n—oo n—oo U

This lemma implies that for a bounded operator on Banach space we have
mn

r(T) = lim {/||T"| = inf {v > 0| sequence (v”) converge to zero
n

n—oo

in operator norm topology}.

If we consider this relation as an alternative definition of the spectral radius,
then proposition 2.2(3) implies that P-spectral radius of an quotient bounded operator
can be considered to be natural generalization of the spectral radius of bounded
operator on Banach space.

Proposition 2.7. Let X be a sequentially complete locally conver algebra and

PelC(X) If T € (Qp(X))o and |A| > rp(T), then the Neumann series Z

n=0

mn

)\n+1
converges to R(A\,T) (in Qp(X)) and R(A\,T) € Qp(X).

Proof. If |A| > rp(T), then there exists 8 € C such that 0 < |8] < 1 and
rp(T) < BA. From proposition 2.4(1) we obtain that for each € > 0 and every p € P,
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there exists some index n, . € N, with property

Tn
Dl —— > .
() < vz

Therefore, using corollary 1.4 we obtain

D (&x) < ﬁ((g;\n)n> p(x) <ep(x), Yn>n,., VrelX.

Since 0 < |3 < 1, there exists ng € N, such that

m

Z\ﬁ|k<1, Y m >n > ny.
k=n

From a previous relation result that for each ¢ > 0 and every p € P there

exists an index my . = max{n, ., no} € N, for which we have

m k m
p (Z ffk) <e (Z mk) pl) < ep(e), 3)
k=n

k=n

for every m > n > m, . and every z € X.
—
k+1
k=0 A
But X is sequentially complete, so for every x € X there exists an unique

Therefore, for each x € X, ( ) is a Cauchy sequence.
m>0

element y € X such that
m
. T*
y=Jm > S
k=0
We consider the operator S : X — X given by
k

T
k=0

m—00

It is obvious that S is linear operator. Moreover, from equality

Tm+1

kz)\k+1()\x—Tx):m—Wm, VoelX,
=0

result that if m — oo then

S —Tzx)==x, VzelX.
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Hence S(M — T) = I, we prove (AI —T)S = I. From continuity of the
operator T result that

) m Tk
STxn}gllmZAk+lTx7r}£an< Wm) =
k=0

(n'}g»nooz N1 ) =TSz,

for all z € X, therefore

SN —T)=(\-T)S=1.

The definition of P-spectral radius implies that family < is bounded

),

in Qp(X), therefore for every p € P there exists a constant &, > 0 with property

(T
p<w><5p,Vn21.

Using again corollary 1.4 we have

T7l
()\n )<5p|5| "p(z), Vn>1, VzeX.

Therefore, for every p € P there exists some €, > 0 with property
L Tk ep [N ok g 1
—_— —_ < B —
k=0 k=0
for every m > 1 and every x € X, which implies that S = R(A\,T) € Qp(X).

If we write relation (3) under the form

p( et Z)\kJrl > —|p(x),

k=0
then for m — oo result that for every € > 0 and every p € P there exists some index

npe € N, such that

Sz — . T—kx <i(w) Vn>npe, VeeX
P g ) S P V= e M€ X

TTL

This implies that the Neumann series Z ST converges to R(\,T) in
n=0

Qp(X). O
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Proposition 2.8. Let X be a sequentially complete locally convex algebra

and P € C(X). If T € Qp(X), then

lo(Qp, T)| =rp(T).

Proof. Inequality |o(Qp,T)| < rp(T) is implied by previous proposition.

We prove now the reverse inequality. From corollary 1.11 we have
0(Qp.T) = U{o(X,,T7)| p € P} = U{o(X,, T7) | p € P}
So, if |\| > |o(Qp,T)|, then
Al > |o(X,, T7)|, ¥V p € P.
But, )Z'p is Banach space for each p € P, therefore
|0(Sp, TP)| = (X, T?)

where r()?p, Tvp) is spectral radius of bounded operator T? in )N(p.

n

T -
This observation implies that for each p € P we have SR 0in £(X,).

This means that for any ¢ > 0 we must have | 7", < (¢ + |o(Qp,T)|)" for large n.

Hence, by proposition 2.3 we have rp(T') < |o(Qp,T)|.
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BOOK REVIEWS

Free Boundary Value Problems — Theory and Applications, Pierluigi Colli,
Claudio Verdi, Augusto Visintin, Editors, Birkhduser Verlag, ISNM Vol. 147,
2004, ISBN 3-7643-2193-8.

The volume collects the proceedings of the conference on free boundary prob-
lems, Trento (Italy), June 2002. The contributions concern problems which are either
directly related to free boundaries, or may be so in perspective. Special emphasis
was put on interdisciplinarity and on issues of applicative relevance. Talks included
twenty plenary addresses, and seven sessions were devoted to selected topics: free
boundary problems in polymer science, image processing, grain boundary motion,
numerical aspects of free boundary problems, free boundary problems in biomathe-
matics, modelling in crystal growth and transition in anisotropic materials. I remark
some contributions about numerical aspects:

Structural Optimization by the Level-Set Method by G. Allaire et al. describes
a new numerical method based on a combination of the classical shape derivative and
of the level-set method for front propagation.

Finite Element Methods for Surface Diffusion by E. Bnsch et al. presents a
novel variational formulation for the parametric case of this 4th order highly nonlin-
ear geometric driven motion of a surface. The authors also develop a finite element
method and propose a Schur complement approach to solve the resulting linear sys-
tem.

Upscaling of Well Singularities in the Flow Transport through Heterogeneous
Porous Media by Z. Chen and X. Yue presents a method based on the recently in-
troduced over-sampling multiscale finite element method and on the introduction of

new base functions that locally resolve the well singularities.
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On Plasma Ezxpansion in Vacuum by P. Degond et al. formally and numer-
ically justifies why electron emission produces a reaction pressure which slows down
the plasma expansion .

A Posteriori Error Control of Free Boundary Problems by R. H. Nochetto
assesses the derivation of a posteriori error estimators (including interface error es-
timators): computable quantities depending on the discrete solutions and the data,
which provide upper and lower bounds for the error.

Shape Deformations and Analytic Continuation in Free Boundary Problems
by F. Reitich presents an analysis of stability and bifurcation of steady states and
travelling waves for a class of free boundary problems. These results lead to an under-
standing of the mechanisms behind the observed performance of a class of numerical
algorithms based on shape-perturbation theory.

A Multi-mesh Finite Element Method for 3D Phase Field Simulations by A.
Schmidt presents a general framework for the adaptive solution of coupled systems
and its application to phase field simulations, making 3D simulations possible even
on desktop computers.

Of course, all the 26 contributions included, which reflect and study the free
boundary problems with applications in industry, make this volume interesting for a
large spectrum of readers and offer opportunities of collaboration among mathemati-

cians, physicists, engineers, material scientists, biologists and other researchers.

Damian Trif

George Gritzer, General Lattice Theory, Second Edition, Birkhduser Verlag,
2003, ISBN 3-7643-6996-5.

From its first edition George Grétzer’s General Lattice Theory was a funda-
mental work in the lattice theory. It can be used as a course of lattice theory for
students as well as a source of research problems for specialists. The last edition is
enriched by 8 appendices and a new (and updated) bibliography. In this form, the
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book covers so well the study of lattices that it is almost impossible for someone who
works in this field not to find here something useful for his research. Besides the
rich valuable information concerning the developments of the last two decades, the
first appendix (Retrospective) is the history of the last 20years of lattice theory.
The other 7 appendices are surveys on various topics of lattice theory. They are
recommended by the value of their authors.The original chapters of the book are:
I. First Concepts;1I. Distributive Lattices; III. Congruences and Ideals;
IV.Modular and Semimodular Lattices; V. Varieties of Lattices; VI.Free
Products; Concluding Remarks, and the appendices are A. Retrospective; B.
Distributive Lattices and Duality by B.Davey and H. Priestley; C. Congru-
ence Lattice by G.Grétzer and E. T. Schmidt; D. Continuous Geometry by
F.Wehrung; E. Projective Lattice Geometries by M. Greferathand S. Schmidt;
F. Varieties of Lattices by P. Jipsen and H. Rose; G. Free Latices by R. Freese;
H. Formal Concept Analysis by B. Ganter and R. Wille. The book ends with the
new bibliography which contains 530 title.

C. Pelea

Alfred Gopfert, Hassan Riahi, Christiane Tammer, and Constantin
Zalinescu, Variational Methods in Partially Ordered Spaces, Springer-
Verlag, New York, 2003 (CMS Books in Mathematics/Ouvrages de Mathématiques
de la SMC, 17), xiv+350 pp, ISBN 0-387-00452-1.

This book is intended to provide a systematic and self-contained presenta-
tion of recent significant developments in vector optimization and adjacent fields,
in connection with the own research of the four authors. The targeted audience in-
cludes researchers and graduate students in pure and applied mathematics, economics,
engineering, geography, and town planning, who want to study modern variational
methods in general partially ordered linear spaces and their concrete applications.
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Since vector optimization is nowadays an attractive and quickly growing field,
it is understood that authors have not intended to present an exhaustive treatment,
and coercive choices were imposed in order to pack all of the topics surveyed into the
following format:

Chapter 1. Examples: Section 1.1 (Gopfert-Tammer-Zalinescu): Cones
in vector spaces; Sections 1.2-1.6 (Gopfert-Tammer): Equilibrium problems, Location
problems in town planning, Multicriteria control problems, Multicriteria fractional
programming problems, Stochastic efficiency in a set;

Chapter 2. Functional analysis over cones: Sections 2.1-2.3 (Gopfert-
Tammer-Zalinescu): Order structures, Functional analysis and convezxity, Separation
theorems for not necessarily conver sets; Sections 2.4-2.7 (Zalinescu): Convezity no-
tions for sets and multifunctions, Continuity notions for multifunctions, Continuity
properties of multifunctions under convezity assumptions, Tangent cones and differ-
entiability of multifunctions.

Chapter 3. Optimization in partially ordered spaces: Sections 3.1
(Gopfert-Tammer-Zalinescu): Solution concepts; Sections 3.2-3.6 (Zilinescu): Euwis-
tence results for efficient points, Continuity properties with respect to a scalarization
parameter, Well-posedness of vector optimization problems, Continuity properties,
Sensitivity of vector optimization problems; Section 3.7 (Gopfert-Tammer): Duality;
Sections 3.8-3.9 (Riahi): Vector equilibrium problems and related topics, Applications
to vector variational inequalities; Section 3.10 (Gopfert-Tammer-Zalinescu): Minimal-
point theorems in product spaces and corresponding variational principles; Section 3.11
(Gopfert-Tammer): Optimality conditions

Chapter 4. Applications: Section 4.1 (Gopfert-Tammer): Approxima-
tion problems; Section 4.2: Solution Procedures; Subsections 4.2.1-4.2.3 (Gopfert-
Tammer): A prozimal-point algorithm for real-valued control approzimation problems,

Computer programs for the application of the proximal-point algorithm, An interactive
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algorithm for the vector control approxzimation problem; Subsections 4.2.4-4.2.5 (Ri-
ahi): Prozimal algorithms for vector equilibrium problems, Relazation and penaliza-
tion; Sections 4.3-4.6 (Gopfert-Tammer): Location problems, Multicriteria fractional
programming, Multicriteria control problems, Stochastic efficiency in a set.

The bibliography counts almost four hundreds items and allows the reader
to easily find up-to-date literature on the field. The book also contains two lists
providing an overview of illustrative figures, abbreviations and notations, and an
index of selective terminology used throughout. In contrast to the wide spectrum of
surveyed topics, the book reads easily, an unifying approach being visible throughout
the whole text.

On one hand, specialists will certainly enjoy this monograph, especially be-
cause of the following features: many important results from functional analysis and
partially ordered space theory are stated in a very general setting without undue
abstraction; a large variety of relevant notions currently used in the literature are
presented in a systematic way, the relationship between them being illustrated by
diagrams; the authors use advanced techniques from different modern fields.

On the other hand, since the book is written in an rigorous, understandable,
and teachable way, it may certainly serve to support courses on vector optimization,
applied functional analysis, set-valued analysis, etc., targeted at the graduate level.
For designing accompanying exercises, instructors will find in the text a good number
of qualitative examples, which can be used to illustrate the results or to justify the
stated assumptions. In particular, the emphasis on location theory applications will
be especially appealing to graduate students of geography and researchers dealing
with town planning. The final part of the book could also serve as a know-how
support for practitioners who need to design multiple criteria decision software.

As a whole, this book can be strongly recommended as an excellent reference

of general interest in vector optimization.

Nicolae Popovici
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