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STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume L, Number 1, March 2005

ON SOME APPLICATIONS OF INTERPOLATION OPERATORS

GH. COMAN AND I. TODEA

Abstract. The goal of this paper is to give applications of interpolation
operators, with a special emphasis on optimal approximation of some linear
functionals and the construction of methods for the solution of equations

on R.

Let B be a linear space of real-valued functions defined on a domain 2 C R™,
AcCBand A={)\| X\, : B—R, i=1,...,N}, aset of linear functionals. For f € B,
is denoted by A(f) = {\(f)| i € A, i = 1,..., N}, the informations on f suitable

to A.
An operator P : B — A, for which

Ai(Pf) = Ai(f), i=1,...,N,

f € B, is an interpolation operator that interpolates the set A, while

f=Pf+Rf

is the interpolation formula generated by P, with R the remainder operator.

The number r € N for which Pf = f, for all f € P’ and there exists

g € Pl |, such that Pg # g, where P} is the set of all polynomial functions of the

total degree at most r, is the degree of exactness of the operator P.
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GH. COMAN AND I. TODEA

The purpose of this paper is to discuss applications of interpolation operators
to the approximation of some linear functionals, the construction of some homoge-
neous cubature formulas, the construction of numerical methods for solving of some

operatorial equations.

1. Optimal approximation in sense of Sard

One suppose here that A := Ap = {\y; : H™?[a,b] =R, k=1,...,n, j€
I}, with I, € {0,1,...,r}, & € N, 7 < m, is a set of Birkhoff-type functionals, i.e.
Mej (F) = fO(xy), zp € [a,b], o # x; for k # j. Let A : H™?[a,b] — R, be a given
linear functional such that the elements of the set A U{A} to be linear independent.
One considers the approximation formula
Z > A fD (@) + By (), (1)
k=1j€I,
where N = |I1| +...|I,] — 1.
Definition 1. Formula (1), with prescribed points zy € [a,b], k = 1,...,n,
for which:
i) RN(e,,) =0,v=0,1,...,m—1
ii) / K2 )dt — minim,

where K is the corresponding Peano kernel:

K(t) = Ry <%>

= g
1 ZZA'” J—l) ’

k=1j€l}

is called optimal in sense of Sard.

In 1964, I. J. Schoenberg [10] has established a relationship between the
optimal approximation of linear operators, in particular, optimality in sense of Sard,
and spline interpolation problems.

So, let S : H™?[a, b] — Sa,n—1(Ap) be a natural spline interpolation operator
of the order 2m — 1, suitable to Ag.
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ON SOME APPLICATIONS OF INTERPOLATION OPERATORS

Remark 2. [3] If Ap contains at least m functionals of Hermite-type then
S exists and is unique.
For f € H™?[a,b], let
f=Sf+Rf
be the natural spline interpolation formula generated by S.

It follows [10], that
Af) = A(SF) + MRS) (2)

is the formula of the form (1) that is optimal in sense of Sard.

For example, if
b
N = [ fla)da

then (2) becomes an optimal, in sense of Sard, quadrature formula.

As an application, let us find the quadrature formula of the form

/01 f(w)dz = Ao f(0) + AroF @ oS G) oty

that is optimal in sense of Sard. Using, for example, the cubic spline interpolation

formula

@) = soa@)£0) + (@) (5) +su@)r (3 ) +smlalf 1) + (RN

2
where
1\° 1\°
soo(x):1—3x+4x3—4<x—) —6(3:—)
2), 2),
13
slo(x)3x4x3+8<x2) — 4z —1)%
+
1 5 1\* 5
sp(r)=—co+22°-6(z— 5| —2@x-1)}
2 2) .
1\* 1\? 5
sp(@)=—4lo—-) +6(xz—z | +4(x-1)3
2/, 2/,
and

1
(Rf)(x) = / o1 () ()
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with

r(avt) = (o= 04— s10(0) (5 - t)+ o (3 - t>0 a1 - B

2 2 n

it follows that the optimal coefficients A;‘j respectively the optimal kernel K7 are

1
A% :/ sij(x)dx
0
and
1
Kf(t):/ p1(z, t)dz.
0
One obtains:

" 5
A10:*

g’ ATI =0, A;O =1

and

We also have

1 ) 1
| sz = g

Hence

]‘ 1
[R(f)] < m\\f ll2-

Remark 2. The gaussian quadratures are optimal in sense of Sard - all the
coefficients and nodes are determined from the condition i). But, the nodes in the

gaussian quadrature formula of the form
1 n
[ f@xde = 3" Aif(w) + Batf) 3)
-1 i=1

are the zeros of the Cebyshev polynomial T,,, i.e.

2k —1
2n

xy, = cos m, k=1,...,n.

It means that the optimal coefficients of the quadrature form (3) are:

1
Afz/ U(z)de, i=1,...,n
-1

where [ are the fundamental Lagrange interpolation polynomials corresponding to
the interpolation nodes 2}, 1 =1,...,n.
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ON SOME APPLICATIONS OF INTERPOLATION OPERATORS
2. Homogeneous cubature formulas

Let D be a domain in R?, f : D — R an integrable function on D and
A(f) = {M(f)] E = 1,...,N} some informations on f. Next, one suppose that
Ae(f), k=1,..., N, are punctual values of f or of certain of its derivatives, i.e. the
values of them at the cubature nodes.

One considers the cubature formula
N
1= [ [ fadedy =37 A0 + B (1) (4)
5 i=1

where A;, i = 1,..., N are of the cubature coefficients and Ry (f) is the remainder
term.

The problem is to find the parameters of such a cubature formula (coefficients
and nodes) and to study the corresponding remainder term. Most solutions for this
problem has been obtained when D is a regular domain in R? (rectangle, triangle,
etc.) and the informations are regularly spaced. For example, the product and the
boolean sum rules belong to this class of cubature procedures.

So, let D C R? be a rectangle, D = [a,b] x [¢,d] and A*(f) = {\*(f)] i =
0,1,...,m}, A(f) = {N(f)] = 0,1,...,n}, m,n € N some given partial informa-
tion on f, with regard to x respectively y.

One considers the quadrature formulas:

b
If = / Fe.y)dz = Q1) (~y) + (L)) (5)
and
d
[f= / fa,y)dy = (QUF) () + (RYf) (2, ) (6)
where

QTHCy) =D AN (f)
=0

n

(QV)(x,-) =D BiNI(f)

=0
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and Ry, R{ the corresponding remainder operators:
By =17t
RY =1V—-QY.
We have the following decompositions of the double integral operator I*¥:
I = QiQ{ + (I"R{ + I"R{ — R{RY) (7)
and
I = Q31"+ I°QY — Q3QY) + Ri R} (8)
The identities (7) and (8) generate so called product cubature formula
I = (QTQY)f + (R{IY + I"RY — R{R{) f
respectively, the boolean-sum cubature formula
I = (QiIY +I"Q] — Q1QY)f + RIR{f.

Now, if p; and ¢; are the approximation orders of QY respectively QY
(ord(Q%) = p1, ord(QY) = q1), it follows that the order of the product cubature
formula is min{p1, ¢; }, while the order of boolean-sum cubature formula is p; +¢; [5].

Hence, the boolean-sum cubature rule has the remarkable property that it has
a high approximation order. Otherwise, the boolean-sum cubature formula contains

the simple integrals I” f and IY f. But, this simple integrals can be approximated, in

a second level of approximation, using new quadrature procedures, i.e.
I°f = Q3f + Rif
respectively
I'f=Q3f + Ry f.
This way, from (8), is obtained
I*Y = Q" 4+ R™ (9)

where

Q" =QiQ; + Q307 - QTQY (10)
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and
R™ = Q{RY + QYR; + RYRY (11)

As can be seen, from (11) follows
ord(Q™) = min{ord(Q7) + ord(QY),ord(Q%) + 1,ord(QY) + 1}

It
ord(Q3) = ord(QY) + ord(Q7) — 1
ord(Q3) = ord(QY) + ord(Q7) — 1
then the cubature formula given by (9) is called a homogeneous cubature formula [5].
One of the main procedure to construct homogeneous cubature formulas is
based on the interpolation formulas. It is well known that each interpolation formula
give rise to a quadrature or cubature formula.
Remark 3. [6] If the multivariate interpolation formula is a homogeneous
one, then the suitable cubature formula is also an homogeneous cubature formula.
To illustrate it, we give some simple examples:
Example 2. Let f : D, — R, with D, = [0,b] x [0,b] be given
and A(f) = {f(0,0), f(h,0), f(0,h), f(h,h)}. For the partial informations on f:
A (f) = {f(0,y), f(h,y)} respectively AY(f) = {f(z,0), f(z,h)}, one considers the
Lagrange’s operators LY and LY:

h—=x

(LD @y) = ——F(O0.9) + 3 £ (h,y),

(L)) = "2, 0) + Y g, )

If Rf =1— L{ and RY =1 — LY, with I the identical operator, then we have
I=LY® LY+ RTRY, (12)
the boolean sum decomposition of the identity operator. Also, we have
f=Li®Lif+RiR{f

or

f= @7+ L] = LTLY)f + R{R{ f
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Now, if LT f and LY f are interpolated, in a second level, by the Hermite’s

operators Hj respectively HY suitable to the information sets

A(f) = {f(,0), fOV(x,0), f(z,h), f OV (z,h)}
and

Ag(f) = {f(oa y)7 f(l)O) (07 y)’ f(h7 y)v f(l’O)(ha y)}a

one obtains
f= (LEHY + HELY - L3I0 S + (L3RY + LYRS + RERD)S,  (13)
where RY = I — Hf and R} = I — HY. Taking into account that
ord(L{LY) = ord(HS) = ord(HY) = 4

(13) is a homogeneous interpolation formula of order 4 [4].

Theorem 4. The cubature formula

| [ swwizay =i + m0p)
Dy,

where
Q= [ [uzimy+ BELY - L 1) ooy
or o
Q= QIQL+ QY + Q1Q!
and

R(P) = [ [(@iRy+ LURS + RERY S (o )dndy
Dh
s a homogeneous cubature formula of order 6.

Proof. Suppose that f € C**(D},). Then

z(x — h)

5 [P0

(BR{f)(z,y) =

(R ) = L 02 )

x%(x — h)?

o[ Ew)

(B3 f)(x,y) =
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2 2
Yy (y—h)
(Rgf)(x,y) = Tf(0’4)(35,772)
with &1, &, 11,12 € [0, h)].
As

h h3
| B D e = 3570 )
0

h h3
/0 (RYF)(ay)dy = = O (2,11)

12

=

[ e = B 70
h s
| ROy = 25 7O )
Wi, 2, v1,v2 € [0,R], it follows that ord(Q}) = ord(QY) = 3 and ord(Q%) =
ord(QY) = 5. Hence, ord(Q%) = ord(QY) = ord(Q7) + ord(QY) — 1.
Example 3. Let 7}, be the standard triangle, T}, = {(z,y) € R?| z > 0, y >

Y ( (XA Y (X3 W

the operator that interpolate the information A(f), i.e.

(Pf)(x’y):h—h2mf(0’l;>+h—2yf<h 0>+2m+2y—hf(f;,;)

h 2’ h
and
f=Pf+Rf (14)
the interpolation formula suitable to P.

Let

/ / fle,y)dedy = Q(F) + R(f) (15)
Ty

be the cubature formula generated by (14), i.e.
h? h h h h
Q(f) = G [f (0»2> +f <2a0> +f (272”

R(H) = [ [(RD)e )iz,

Remark 7. dex(Q) = 2, although dex(P) = 1.

and
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Theorem 8. Formula (15) is a homogeneous cubature formula of interpola-

tions type.
Proof. Suppose that f € B12(0,0) on T},. By Peano’s theorem (dex(Q) = 2),

we have

h h
R(f)Z/O Kgo(x,y78)f(3’°)(s70)d8+/0 Kai(z,y,5)f*(s,0)ds  (16)

h
+ / Koa(e,,6)fOD (0, t)dt + / / Kia(e.y,5.6) f 1) (s, 1) dsdt
0
Th

where
C(h—s)* B (h 2
Kal) =" "% \27%).
(h—s)* h®[(h
Kgl(S) = — — - — S
24 12 \ 2 n
Kos(t) = Kso(t)
e 1\3 2 0
Rty = B0 130
6 6 \ 2 +\2 n
As K3y > 0, K3 > 0 on [0, h] and
h 1. h 1.
K. ds=—h Kos(t)dt = —h
/0 30(s)ds g /0 03(t) 20
respectively

1

orél(?gxh Ko (s)] = 384

1
ht K(s,t)| = —=h?
max K (s, 1) = 55h°,
the proof follows from (16).
Example 4. An interesting homogeneous formula, for f : T, — R, is ob-

tained from the interpolation formula

f=Pf+Rf
when
e = (55)
namely

/ / f(x,y)dady = Q(f) + R(S) (17)
Th

12
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with
an =" (" h)

It is easy to verify that dex(Q) = 1, while dex(P) = 0.
Theorem 9. Formula (17) is a homogeneous cubature formula.

Proof. If f € B11(0,0) on T}, by Peano’s theorem one obtain

(2,0) ©02) (0 [ 2 32 )
RO < 5 [0 01+ 17020, + 3217001

3. Methods for nonlinear equations on R

For f: Q2 — R, Q C R, one considers the equation
flz)=0, ze€qQ. (18)

Let F': D™ — D, D C €, be an iterative method for solutions of the equation

(18), i.e. for given (zg,...,xn—1) € D", F generates the sequence
TQy L1y ey Tye1y Ty - (19)
where
Ii:F(LEi_n7...,$i_1), 7,:71,

If the sequence (19) converges to a solution, say z*, of the equation (18), F
is a convergent method.
The number p with the property that

*

lim Tr — F({Ei,nJrl, e ,xi)

T;—T* (33* — .’Iil)p

=¢, ceR\{0},

is the order of F' (ord(F) = p).

An efficient procedure to construct numerical methods for the solution of the
equation (18), is based on inverse interpolation. Namely, if ¢ is the inverse of f,
g = f~', and z* € D is a solution of the equation (18), f(z*) = 0, then z* = g(0).
Inverse interpolation procedure means that the inverse function g is approximated by
an interpolation operator P and z* = (Pg)(0).

13
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For example [7], using Taylor interpolation is obtained the one step method

S D

Fl(2;) =z — o (f (i) g™ (f (1))

(]

k=1
with ord(FT) =

Also, using Lagrange interpolation is obtained the multistep method

FL P )= = fi—n---fi—n+k—1fi—n+k+1~-~fi
Wi kzzo (Fin— I8 Gintht — ) (Fninrr — fe) - (i — ) "

with ord(FF) = p, the positive solution of the equation
g -1 =0

ie,1<p<2
An interesting class of methods is given by Abel-Goncharov interpolation

operator P, defined by

Zpk )F*) ()

where
po(z) =1
p1(x) =2 — 20
1 k—1
k k—
Pk(x)*ﬁ x ij(x)% N, k=2,...,n
j=0
Applying the operator P to the function g = f~!, for the interpolation nodes
Li_p,...,T;, one obtains

FAC (2 s xy) = Z pnfifk(o)g(n_i_k)(f(xk))

k=i—n
For example,

FlAG(CUifl,.’Eﬂ =T — f‘}glm(zzl))’

is a new modified of Newton-Raphson method.
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PROJECTORS AND HALL m-SUBGROUPS
IN FINITE n-SOLVABLE GROUPS

RODICA COVACI

Abstract. Let m be a set of primes and X be a m-closed Schunck class
with the P property. The paper gives conditions with respect to which an
X-projector H of a finite 7-solvable group G is an Hall w-subgroup of G,
and consequently we have that Ng(Ng(H)) = Ng(H).

1. Preliminaries

All groups considered in the paper are finite. Let 7 be a set of primes, 7’ the
complement to 7 in the set of all primes and O,/(G) the largest normal 7’-subgroup
of a group G.

We first give some useful definitions.

Definition 1.1. ([8], [11]) a) A class X of groups is a homomorph if X is
epimorphically closed, i.e. if G € X and N is a normal subgroup of G, then G/N € X.

b) A group G is primitive if G has a stabilizer, i.e. a maximal subgroup H
with coreqH = {1}, where corecH = N{HY/g € G}.

¢) A homomorph X is a Schunck class if X is primitively closed, i.e. if any
group G, all of whose primitive factor groups are in X, is itself in X.

Definition 1.2. a) A positive integer n is said to be a m-number if for any
prime divisor p of n we have p € .

b) A finite group G is a w-group if |G| is a m-number.

Received by the editors: 15.12.2004.
2000 Mathematics Subject Classification. 20D10.

Key words and phrases. Schunck class, projector, m-solvable group, Hall w-subgroup.
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Definition 1.3. ([6]) A group G is w-solvable if every chief factor of G is
either a solvable m-group or a m’-group. For 7 the set of all primes, we obtain the
notion of solvable group.

Definition 1.4. A class X of groups is said to be w-closed if

GO (G)eX = GeX.

A m-closed homomorph, respectively a w-closed Schunck class is called 7-
homomorph, respectively m-Schunck class.

Definition 1.5. ([7], [8]) Let X be a class of groups, G a group and H a
subgroup of G.

a) H is an X-maximal subgroup of G if: (i) H € X; (ii) H < H* < G,
H* € X imply H = H*.

b) H is an X-projector of G if, for any normal subgroup N of G, HN/N is
X-maximal in G/N.

c) H is an X -covering subgroup of G if: (i) H € X; (ii) H < K <G, Ky <K,
K/Ky € X imply K = HK.

Definition 1.6. ([3], [4]) Let X be a class of groups. We say that X has the
P property if, for any m-solvable group G and for any minimal normal subgroup M
of G such that M is a n’-group, we have G/M € X.

The following results are used in this paper.

Theorem 1.7. ([1]) A solvable minimal normal subgroup of a group is
abelian.

Theorem 1.8. ([1]) Suppose that G has a # {1} normal solvable subgroup
and let S be a mazimal subgroup of G with coreqS = {1}. Then, the existence of
a # {1} normal solvable subgroup of S implies the existence of a normal subgroup
N # {1} of S with (|N|,|G : S|) = 1.

Theorem 1.9. ([2]) a) Let X be a class of groups, G a group and H a
subgroup of G. If H is an X-covering subgroup of G or H is an X-projector of G,
then H is X-maximal in G.

18
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b) If X is a homomorph and G is a group, then a subgroup H of G is an
X -covering subgroup of G if and only if H is an X -projector in any subgroup K of G
with H C K.

Theorem 1.10. Let X be a homomorph.

a) ([7]) If H is an X-covering subgroup of a group G and N is a normal
subgroup of G, then HN/N is an X-covering subgroup of G/N.

b) ([8]) If H is an X -projector of a group G and N is a normal subgroup of
G, then HN/N is an X-projector of G/N.

¢) ([7]) If H is an X-covering subgroup of G and H < K < G, then H is an
X -covering subgroup of K.

Theorem 1.11. ([5]) Let X be a w-homomorph. The following conditions
are equivalent:

(1) X is a Schunck class;

(2) any m-solvable group has X -covering subgroups;

(3) any m-solvable group has X-projectors.

2. Hall wm-subgroups in finite 7m-solvable groups

Of special interest in this paper will be the Hall m-subgroups and some of
their properties. The Hall subgroups were given in [9]. Ph. Hall studied them in
finite solvable groups. In [6], S. A. Cunihin extended this study to finite 7-solvable
groups.

Definition 2.1. Let G be a group and H a subgroup of G.

a) H is a w-subgroup of G if H is a m-group.

b) H is an Hall w-subgroup of G if: (i) H is a w-subgroup of G;

(i) (|H|,|G: H|) =1, i.e. |G: H| is a 7’-number.

We shall use some properties of the Hall m-subgroups given in [10]:

Theorem 2.2. ([10]) (Ph. Hall, S. A. Cunihin) If G is a w-solvable group,
then:

a) G has Hall w-subgroups and G has Hall 7' -subgroups;

19
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b) any two Hall mw-subgroups of G are conjugate in G; any two Hall 7'-
subgroups of G are conjugate in G too.

Theorem 2.3. ([10]) Let G be a group and H an Hall w-subgroup of G.

a) If H< K <G, then H is an Hall 7-subgroup of K.

b) If N is a normal subgroup of G, then HN/N is an Hall w-subgroup of
G/N.

We complete these properties with two new ones, which will be used in the
formation theory considerations in the main section of this paper.

Theorem 2.4. Let G be a w-solvable group, H a subgroup of G and N a
normal subgroup of G. If HN/N is an Hall w-subgroup of G/N and H is an Hall
w-subgroup of HN, then H is an Hall w-subgroup of G.

Proof. (i) H is a m-subgroup of G, since H is a m-subgroup of HN.

(ii) We shall prove that |G : H| is a n’-number. Indeed, we know that
|G: HN| =|G/N : HN/N| is a n’-number. Further, |HN : H| is a 7’-number too.
Then |G : H|=|G: HN||HN : H| is a 7/-number. O

Theorem 2.5. If G is a m-solvable group and H is a Hall w-subgroup of G,
then Ng(Ng(H)) = Ng(H).

Proof. We know that

No(H)={ge G/HS=H} D H

and so we have Ng(H) C Ng(Ng(H)). We now prove that Ng(Ng(H)) C Ng(H).
Let x € Ng(Ng(H)). Tt is known that Ng(H) <Q Ng(Ng(H)). It follows that
Ng(H)® = Ng(H), hence H* C Ng(H)® = Ng(H), which implies by 2.3.a) that
H and H* are Hall 7-subgroups of Ng(H). Applying Hall-Cunihin Theorem 2.2.b),
we obtain that H and H® are conjugate in Ng(H). So there is an element y € Ng(H)
such that (H*)? = H. It follows that H*Y = H, hence zy € Ng(H). But y € Ng(H)
implies y~! € Ng(H) and so z = (zy)y~* € Ng(H). O
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3. Projectors which are Hall n-subgroups in finite m-solvable groups

In [8], W. Gaschiitz gives for finite solvable groups the following result: If X
is a Schunck class, G a solvable group and S an X-projector of G such that S is a
p-group, then S is a Sylow p-subgroup of G.

It is the aim of this paper to study similar properties in the more general case
of finite m-solvable groups.

All groups considered in this section are finite m-solvable.

Theorem 3.1. Let X be a w-Schunck class with the P property. If G is
a m-solvable group, such that there is a minimal normal subgroup M of G which is
a 7' -group, and if H is an X-projector of G which is a w-group, then H is an Hall
w-subgroup of G.

Proof. We will show that |G : H| is a n’-number. Let M be a minimal
normal subgroup of G, such that M is a w'-group. We know that X has the P
property, and so, by 1.6., we have G/M € X.

On the other side, H being an X-projector of G, we have, by 1.10., that
HM/M is an X-projector of G/M. Now 1.9.a) implies that HM /M is X-maximal in
G/M. But G/M € X. It follows that HM/M = G/M, hence HM = G. From this
and from HM/M = H/H N M, we obtain that

|G:H|=|HM :H|=|M:HnM|.

Since |M : H N M| divides | M| which is a n’-number, we obtain that |M :
H N M] is also a 7’-number. Hence |G : H| is a 7’-number. O

In order to renounce to the condition on the group G of having a minimal
normal subgroup M which is a 7’-group, the next theorem contains the assumption
that H is an X-covering subgroup of G. This means, by 1.9.b), that H is a particular
X-projector.

Theorem 3.2. Let X be a w-Schunck class with the P property. If G is a
w-solvable group and H is an X-covering subgroup of G which is a w-group, then H
is an Hall m-subgroup of G.
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Proof. By induction on |G|. We consider two cases:

1) There is a minimal normal subgroup M of G, such that M is a #’-group.
By 1.9.b), H is an X-projector of G. Applying theorem 3.1., it follows that H is an
Hall w-subgroup of G.

2) Any minimal normal subgroup M of G is a solvable m-group. Hence, by
1.7., M is abelian. If H = G, it follows from H 7w-group that H is an Hall m-subgroup
of G = H. Let now H # GG. We distinguish two possibilities:

a) For any minimal normal subgroup M of G we have HM = G.

Let us first prove that H is a maximal subgroup of G. Indeed, we have H < G.
Further, if H < H* < G, we prove that H = H*. Suppose that H < H*, and let
h* € H*\ H. Let M be a minimal normal subgroup of G. By the above, we have
that M is abelian and G = HM. So h* = hm, where h € H, m € M. It follows that
m = h~'h* € MNH*. Let us prove that M NH* = {1}. Suppose that M NH* # {1}.
We have M N H* < H*. Further, MNH* <G, sinceifr €e G=HM =H*M =MH*
and m € M N H*, then x = m1h*, where m; € M, h* € H*, and M being abelian,
we have:

e ma = (myh*) " m(ma k) = (RF) " Pmy tmma bt = (B) T by b b =
= (h*)"'mh* € M N H*".

So MNH*<G, MNH*CM, MnH*# {1}. But M is a minimal normal
subgroup. Hence M N H* = M, which implies that M C H* andso G = H*M = H*,
a contradiction with H* < G. It follows that M N H* = {1}. Hence m = 1 and so
h* = h € H, in contradiction with the choice of h*. We proved that H = H*. So H
is a maximal subgroup of G.

Let us notice that coreqH = {1}. Indeed, if we suppose that coreqH # {1},
it follows since coregH < G that there exists a minimal normal subgroup M of G
such that M C coreqH. We obtain G = HM C HcoreqH = H, in contradiction
with H # G. So coregH = {1}.

We are now in the hypotheses of theorem 1.8.. By 1.8., it follows the existence
of a normal subgroup N # {1} of H, such that (|N|,|G : H|) = 1. But H being a
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m-group, N is also a w-group. Then |G : H| is a 7'-number. It follows that H is an
Hall m-subgroup of G.

b) There is a minimal normal subgroup M of G such that HM # G.

We apply the induction to the w-solvable group HM, with |HM| < |G|. By
1.10.c), H is an X-covering subgroup of HM. Further, H is a m-group. By the
induction, H is an Hall w-subgroup of HM.

We now apply the induction to the m-solvable group G/M, with |G/M| <
|G|. By 1.10.a), HM /M is an X-covering subgroup of G/M. Further, we have that
|[HM /M| = |H/H N M| divides |H|, and so HM/M is a m-group. By the induction,
HM/M is an Hall m-subgroup of G/M.

Finally, theorem 2.4. leads us to the conclusion that H is an Hall m-subgroup
of G. O

Corollary 3.3. Let X be a m-Schunck class with the P property. If G is
a w-solvable group and H is an X-covering subgroup of G which is a m-group, then
Ng(Na(H)) = Ng(H).

Proof. Follows from 3.2. and 2.5.. O
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THE P-LAPLACIAN OPERATOR ON THE SOBOLEV SPACE WLP(Q)
JENICA CRINGANU

Abstract. In this paper p-Laplacian operator is defined on W?(Q) in
connection with the duality mapping of W'?(Q).

1. Introduction and preliminary results

Let © be an open bounded subset in RY, N > 2, with smooth boundary
and 1 < p < oo.
We shall use the standard notations:

Wir(Q) = {u € LP(Q) g“

e LP(Q),i= 1,N},
X4

equipped with the norm

» » N ou ||P
ot = i, + 3 |
where |-, is the usual norm on LP(£2).

It is well known that (Wl’p (Q), H‘||1,p) is separable, reflexive and uniformly
convex Banach space (see e.g. [1], theorem 3.5).

If u € WHP(Q) we can speak about u|gq in the sense of the trace: there is
a unique linear and continuous operator v : WHP(Q) — Wl_%’p(ﬁﬂ) such that v is
surjective and for u € W1P(Q) N C(Q) we have yu = ulsq.

Then the closure of C§° () in the space W1P(Q) is
WEP(Q) = {u € WP(Q) : ulog = 0} = Kern.
The dual space (W ”(€2))* will be denoted by W~1#'(Q), where 1 4 & = 1.

Received by the editors: 17.11.2004.
2000 Mathematics Subject Classification. 46E50, 35J35.
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For each u € W1P(Q) we put

ou Ou Ou ou\’

i=1 v

N

and let us remark that

_9 0 ,
Vu| € LP(Q) , |Vulf Q%GLP (Q), i=1,N.

By the Poincaré inequality

[ullg,, < const (2, N)|[Vullo,p , for all u € WiP(Q)

the functional

WoP(Q) 2 u— |lully, = ||Vl

0,p

is a norm on W, (Q), equivalent with w100

The p-Laplacian operator A,u = div (\Vu|p_2 Vu) may be action (see [2] or
[6]) from W, (Q) into W1 (Q) by

< =Apu,v> = [Vu|P 2 VuVo , for u,v € W) P(Q).
Q

Now we define the p-Laplacian operator on the space W ().

We define a new equivalent norm on the space WP (Q):

N 2\ 2
ou
P _ P P _ P
el = Vel + 19, = [ fu+ | <§<ax)> .

The space (W'P(),]||-||l1,5) is separable, reflexive and uniformly convex
Banach space (see [5]).

The dual norm on (W'?(2), ||| - |||, ,)* is denoted by ||| - ||

.

If w € WHP(Q) and div (|Vu|p_2 Vu) € LP () we can speak about

|VulP~? gul,, and [VulP~? 4]0 € W ¥ (09) is defined (see [5] and [8]) by

< |VuP~? Ou o> = [ [VulP 2 VuVo+ [ div ([VuP7> Vau) v,
0
" laa Q Q

(V) ve WhP(Q).
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If [VulP~2 94|, = 0 it follows that
/ —div (|Vu|p72 Vu) v= / IVulP 2 VuVo, (V) ve WHP(Q).
Q Q

Because the integral [, |Vu|’™> VuVu exists for each u,v € WHP(Q) we

define the operator
=y (W), [ - [ll15) — (W), 1] -[ll1,5)" by

< =Apu,v >= / |Vul"~? VuVo |, for all u,v € WP(Q).
Q

Let us remark that if u € WP(Q) then —Apu € (WHP(Q), || -]l ,)* -
Indeed, if u € WP(Q) the application W1P(Q) 3 v —< —Aju,v > is linear

and, since for all v € WHP(Q):

< —Apu,v >| = / IVulP % VuVo| < / [Vl Vo] <
Q N Q )
< (Lroar) (Lrver) <l ol
it follows that —Ayu € (WH2(Q), ||| - /][, ,)*.

2. Basic results concerning the duality mapping

Let (X,]|| - ||) be a real Banach space and X* its dual.
For a multivalued operator A : X — P(X™*), the range of A is defined by

R(A)= |J Ax,
z€D(A)
where D(A) = {x € X : Az # ¢} is the domain of A.

The operator A is said to be monotone if
<] —xhxy —xe >> 0, for all 1,29 € D(A) and

x] € Axq, x5 € Axs.

A continuous function ¢ : Ry — R is called a normalization function if it
is strictly increasing, ¢ (0) = 0 and ¢ (r) — oo with r — oco.
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By duality mapping corresponding to the normalization function ¢, we mean

the set valued operator J, : X — P(X*) defined by
Jor ={z" € X" <ot a >=p ([l [l«] , [l2"] = ¢ (l2]D}

for z € X.
By the Hahn-Banach theorem one has that D (J,) = X.
We need of the following result:
Theorem 2.1. If ¢ is a normalization function, then:
(i) for each x € X, Jox is a bounded, closed and convex subset of X*;

(i) J, is monotone:
< a1 —zy a1 — 22 >2 (@ ([21ll) = ¢ (lz2]) (]l = flz2l)) = 0,

for each x1,x0 € X and x7 € J,ox1, o5 € Jox2;
(iit) for each x € X, Jox = 0P (x), where @ (x) = OH“THgo(t) dt  and

0D : X — P(X™) is the subdifferential of ® in the sense of convex analysis, i.e.

00 (z) ={z" € X" : ®(y) — P(x) ><zy—ax> , (V) ye X}.

For proof we refer to Browder [3], Lions [7], Cioranescu [4].
Remark 2.1. We recall that a functional f : X — R is said to be Gateaux
differentiable at z € X, if there exists f'(z) € X* such that

o L@ 1) — (@)
t—0 t

=< f'(z),h> ,forall h € X.

If the convex function f : X — R is Gateaux differentiable at € X then
Of (x) = {f'(z)}.

For example, if X = (W, (Q),|-]l1,), 1 < p < 0o and ¢(t) = P~ 1, then (see
e.g. [6] or [7]) the duality mapping J,, on the space Wol’p(Q) is exactly the p-Laplacian
operator —A,,

Jp: Wy () — W™P(Q),

Jou=—Apu , (V) uc WyP(Q).
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The surjectivity of the duality mapping (see [6]) achieves the existence of the
W, P (€2)-solution for the equation —A,u = f, with f € W~12'(Q).
3. The main result

In the sequel, WP(Q) will be endowed with the norm ||| - ||

1,p*

Theorem 3.1. The duality mapping on the space (WP (Q), |||-|l], ), corre-

sponding to the normalization function ¢(t) = t*P~1, 1 < p < oo, is the single-valued

map
T WP, (][ - Il p) — (W), 1] -[l]1,)°
Jou=—-Apu+ luP"*u , for each ue W'P(Q) ,
where —A,, is the p-Laplacian operator on the space (W'2(Q), || - |l,,)-
Proof. By the theorem 2.1. J,u=0® (u), (V) ue€ WhP(Q), where
@ (W@, llhy) = R @) = e de = i, = §lulf, +
+5 [Vullg, and 0@ = (WHP(Q), (] - [Il,) — P (WH(Q), Il - [[11,5)*) is the subdif-
ferential in the sense of convex analysis.
We define the functionals
~ - 1 1
@, : LP(Q)—=R, &(v)=-ulf :f/up
1 (©) 1) = Jlllo, =2 f Tl
1 1
Dy 1 WH(Q) = R, @a(u) = ~ |[Vulf, = 7/ [Vul®
p ' pJa
and ®; : WhP(Q) — R, &) = &1 /WHP(Q)
The functional ®; is Géteaux differentiable (see [9]) and
< @) (u),v >=< |ul’""" sgnu,v >, for all u,v € L? (Q).
By the imbedding (W#(Q), ||| |||,,) — (Lp (), ||-||07p) we have that @, is

Gateaux differentiable on (W (), [[| - /|| ,,)-
Let the operator P : W1P(Q) — LP (Q) be defined by P(u) = |Vu|.
If u e W'2(Q),u =0, then < ®5(0),v >=0, (¥) v € W'P(Q).

If w # 0, a simple computation shows that
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Since the functional Wh?(Q) 3 v —< P’(u),v > is linear and

g/ IVo| < (meas Q)7 (/ |W|P)p <
Q Q

< c|||v|||1,p, Where ¢ = (meas Q)?", it follows that the operator P is Gateaux differ-

Vu- Vv

< P'(u),v>|= _

entiable at u.
Since &5 = éloP one has that the functional ®5 is Gateaux differentiable at

u and

< Dy(u),v >=< &) (Pu), < P'(u),v >>=
1 Vu- Vv

_ p—1 YU VU
= <|Vul"", vl

>= / [VulP ™2 VuVe =< —Ayu,v >, (V) v e WHP(Q).
Q

Consequently, the functional ® = &, 4+ @5 is Gateaux differentiable on the
space W1P(Q) and

< @) (u),v >=< —Apu+ [ulP P w0 >, (V) u,v € WHP(Q).

Using the convexity of the functional ®, by remark 2.1 it follows that
Jou = (u) = —Apu+ lu|P "2 u, for all u € W12(Q). O
Remark 3.1. By the theorem 2.1 we have

-1
I oulll = @ (ulll1p) =l

where ||| - |||« is dual norm of ||| - ||

1p-
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QUASIPOSITIVE STURM-LIOUVILLE PROBLEM

YA. M. DYMARSKII

Abstract. We explain a new approach for investigation of quasilinear

boundary problem by means of Sturm-Liouville problem.

1. The main result

In this paper, we consider the following nonlinear problem: find a classical

solution u € C?[0, 1] of equation
—u"(z) + p(u(z), v'(z), z) - u(z) = f(z), (1)

under Dirichlet condition

We assume that

pe COR xR x [0,1]), feC0,1] (3)
We assume that the function p is non-negative:
p(u,t,z) > 0 for any (u,t,x) € R x R x [0, 1] (4)
and there are such constant C' > 0 and continuous function ¢ : R — R that

plu,t,z) < Cle(u) +17). (5)
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Let u* be a solution of the nonlinear problem (1), (2). Then u* is the solution
of the linear problem
d2
=

Therefore the problem (1), (2) will be named quasipositive. Looking at the solution
of nonlinear problem (1), (2) as a solution of linear problem (6), we shall introduce a
new approach of passage from the boundary problem to a fixed point equation. There
are several methods of passage (see [1-3]). Our approach is analogous to D.Gilbarg
and N.Trudinger one ([2], chapter 11.3). The eigenfunction theory for quasipositive
operators is developed in our papers [4, 5].
We formulate the principal result. Let
(1—z)r, 0<7 <z,

K(z,7) =
zx(l—7), <7 <1.

be the Green function of boundary problem

Theorem 1. The problem (1)-(5) has at least one solution u € C?[0,1]. For any

solution the estimate

/01( (@) dx</ (/ K. (z,7)f )dr>2dx. (7)
s true.

We note that the estimate (7) does not depend on "potential” p = p(u,t,x).
It is a direct consequence of the non-negative condition (4).
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2. The operator equation

Introduce following notations. As usual, we denote L;(0,1) (k = 1,2) the
space of functions on (0,1) which are k integrable. The Sobolev space of functions
u € Ly(0,1) with distributional derivative which are integrable square we denote
by W3 (0,1); I/Ic/)'Q1 (0,1) € W3(0,1) is the closure in W3 (0,1) of subspace of C°-
functions, which are equal to zero outside some segment [, 3] C (0,1). The norm

of u € W4 (0, 1) is Hu||1 = \/fo () + u2(z))dz; the norm of u €Wy (0,1) is

\u||1 = fo x)dz. The norms Hqu and ||ul|{ are equivalent on the space
W2 (0,1) due to the boundary condition (2) (see [1 } chapter 13.7). Moreover, space
W3 (0,1) is Hilbert one with the inner product (u,v) f u'v'dz.

First we are interested in solutions (of problem (1), (2)) from the space W3
(0,1). As usual, multiplying both sides of the equation (1) by v €W3 (0,1) and

integrating by parts, we get

/

/Olu’v/da: +/01 (/01 K(g;,T)p(U(T),U’(T),T)u(r)dT) o'de
([ o) v .

A function u €W (0,1) is called a weak solution of the problem (1), (2) if for every
v €W5 (0,1) the equation (8) is valid. By the inner product, the identity (8) is of the

following form

(1.0)° + (P(w).0)° = (£, 0)" )

where
P (0,1) WL (0,1), / Kz, p(u(r), o (), Pyu(r)dr,  (10)
feﬂo/zl (0,1), f:/O K(z,7)f(r)dr. (11)

Since (9) is valid for every function v €W3 (0, 1), the identity (9) is equivalent to the
operator equation
u+ P(u) =f. (12)
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3. The quasilinear representation of P

Now we investigate the operator P (see (10)) in more detail. By (W2 (0,1))
denote the Banach space of continuous linear maps A which operate in W2 (0,1) and
by Lis(W4 (0,1)) C L(WJ (0,1)) the open subset of linear isomorphisms. As usually,

the norm ||A|| = sup ||Av||] where ||v||; = 1. Consider the map
A W3 (0,1) — L(W, (0,1)), A(u) = A that Yo €Wy (0,1)

1
Av= [ Ko, mptu(r). ol (7). r)o(r)ar,
0
Clearly P(u) = A(u)u. We shall call A the quasilinear representation of the map P
[5]. Now the equation (12) is of the following form

(B + A(u)u = f, (13)

where E is identity mapping. Properties of the map A is in next lemma.

o] [e]
Lemma 1. 1) For every u €W (0,1) the linear operator A(u) € L(W4 (0,1)) is
completely continuous.

2) The map A is completely continuous.

3) For every u €Wy (0,1) the map E + A(u) € Lis(W4 (0,1)) and
(B + Auw) ' < 1. (14)

Proof. Since for any u,v €W (0,1)

((A( / K (z,7)p(u(r),u (1), 7)v(T)dt
and the function r(§) = p(u(&), v (£),§)v(§) € L1(0,1) is mtegrable one (see (5)), the
function (A(u)v)’ € C°[0,1]. Thus the map A = A(u) : VV2 (0,1) — {C*0,1]N(2)} is
continuous. Embedding im : {C1[0,1]N(2)} CI/I(}21 (0, 1) is completely continuous ([1],
chapter 26.24). Hence the linear operator A(u) = im - A(u) is completely continuous
as the composition of continuous and completely continuous maps [6].

To prove the second statement, we represent the map A in the form

Alu)v = —x/ol </OT </0€ p(u(l/),u/(l/),l/)dl/) v'(f)df) dr+
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/Oz </OT (/ng(u(u),u’(y),y)d,,> v’(§)d§> dr.

Write map A as the composition of four maps: A =6 -~ -3 «, where

o WE(0,1) = Ly(0,1), afu) = p(u(€), w/(€).€) = ¢

3
55 Li01) = 0.1, Bla) = [ al)dv = s
0
v :C°0,1] C L(0,1), ~(s):=sis the natural embedding;

§: Ly(0,1) — L(Wy (0,1)), d(s) = A that Vv €Wy (0,1)

AW == [ 1 ( | 8(€)v’(§)d£> ar+ [ ' ( | s(&)v%s)dg) dr.

These maps are continuous and the map -y is completely continuous. This completes
the proof of the second statement.

For any u,v €W (0,1) we have

(1B + A(u))v[[§)* = (v,0)° + 2(A(w)v,v)° + (A(u)v, A(u)v)® =

(I10]19)* + 2(A(u)v, v)°.

Since (see (4))

then
(I(E + Aw)ol$)* = (|[v]]7)*

Whence we obtain the third statement. O
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4. Proof of Theorem

Next step is the passage from the non-homogeneous equation (13) to a fixed

point equation.

Lemma 2. 1) The equation (13) is equivalent to the operator equation
u=(E+ A(u))"'f. (15)
2) For any weak solution u the following a priori estimate is valid:
[lully < [I£]]7- (16)

3) The map
B :V(o/21 (0,1) HV(C}; (0,1), B(u):= (E+ A(u))"'f

is completely continuous.

Proof. The first statement follows from the third statement of Lemma 1.
The second statement follows from the first one and third statement of Lemma 1 (see
(14)).

The map B is the composition:
u— A(u) = E+ A(u) — (E+ A(u)) ™" — (E + A(u)) " *f.

The first map is completely continuous (see the second statement of Lemma 1) and
the others maps are continuous. This completes the proof [6]. O

Note that the map B = (E+ A(u))~'f depends on the u in the operator part
only. Thus properties of equation (15) follow from properties of map A.

To proof Theorem, we apply Leray-Schauder degree. Let the ball T =
{u 61/1321 (0,1) : ||u]|f < R}, where the constant R > [|f||S. Let the sphere Sg =
{u GVI;QI (0,1) : ||u|]]y = R}. By (14) and (15), for any u € Sg we obtain ||u||; >
[|B(u)||;. Therefore on Sk the completely continuous vector field « — B(u) # 0 and
degree of B is equal to one [6]. Consequently there is a solution u € T of equation

(15). The existence of a weak solution is proved.
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By (16) and (11) we obtain

2

The estimate (7) is proved.

o
Actually, the weak solution u €W3 (0,1) is the classical solution, i.e. u €

C?[0,1]. This follows from well known theorem about regularity of weak solution (see

[1], §17). Theorem is proved. O
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STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume L, Number 1, March 2005

ON THE INVARIANCE PROPERTY
OF THE FISHER INFORMATION (II)

CRISTINA-IOANA FATU

Abstract. The objective of this paper is to give some properties for the
Fisher’s information measure when X,.., represents a bilateral truncated
random variable that corresponds to a normal random variable X with the
probability density function f(x;8), where 8 = (m,o?), € Dy, Dy C R?,

m € R, m—known parameter, 6> € R, 0 —unknown parameter.

1. Bilateral truncation effect of a normal distribution on Fisher’s

information

The Fisher’s invariance property will be studied in the case of a truncated
normal distribution.

Let X be a normal distribution with probability density function

9 1 1 /z—m\?2
f(xym,0%) = 27mexp —2< . ) ,r €R, (1)

where the parameters m and o have their usual significance, namely: m = E(X),

o2 =Var(X),meR, o> 0.

Definition 1. [2] We say that the random variable X has a normal distribution
truncated to the left at X = a,a € R and to the right at X = b,b € R, denoted by
Xacp, if its probability density function, denoted by fa—p(x;m,0?), has the form

k(a,b) N _1(x—m>2 ' o
flh—)b(x;m,(fz): 27TO’€ p{ 2 o Zfa_x_ ) (2)

0 if x <aorzxz>hb,
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where

and

<)r/ exp (<) n

is the standard normal distribution function.

Theorem 1. If the random variable X, has a bilateral truncated normal distribu-
tion, that is its probability distribution has the form (2), then the Fisher’s information
measure about the unknown parameter o2, then the parameter m is known, has the fol-

lowing form

(@ —m)3f(a;m,c?) — (b—m)?f(b;m,o?) 3

Lxoe (@) = = 406 A
_3{[(b_m)f(b;m702)_(a’_m)f(a;maUQ)]_A}_
404 A
1 b—m)f(b;m,o? a—m)fla;m,o? AY?
- {[( ) ( ) (A ) )] } , (5)
where
fla;m,a®), f(b;m,0”) € RT (6)

Proof. We have

IXaHb( ) =1Ix,., (6) =

b 2
ol f,_,(x;m,o?) ' , -
/( 0o ) focw(@ym, 0% )dr =

b
/(8lnftwb x;m, 9)) ., (x;m, 0)dz.

42
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Using (2) and (3), we obtain

Inf,_, (z;m,0%) = —ln\/27r—%lnaz—lnA—%(z;m)2:
b—m a—m
= ln\/27rlln91n[<1>(>®< >}
? Vo Vo
_ 1lemm)®
27 0

and, it follows

onswme) 1 g2 (F)] - ()] @—m)?

o0 Y A T o

Using the relations

a

Bl ()] g [t

a—m 1
= _Tﬁf(aﬂmae%

it results

dlnf,_, (z;m,0) Olnf, _, (z;m,0?) 1 (x —m)?
00 - Oo? = 202 { o2 +
[(b—m)f(b;m,a*) — (a —m)f(a;m,0?)]
+ < - 1}
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and Fisher’s information will be written

b

ol f,_, (z;m,0?) 2 1
Ix,_,(0%) = / ( 502 focw(wsm, 0?)de = o5 A {h+

a

+dﬂ@—mﬁ@mﬂﬂ—@—mﬁwmm%_qzﬁ

A

+%ﬂw—mﬁwmm%;w—mvwmna_qk}

where

b 2
I = 1 /exp ! (x —m) dx
? Voo 2 o ’

1 / 1 /x—m 2
Ii= ——— —m)? —= d
3 R /(x m)< exp 2( . ) } z,

a

I = \/21?0_ /b(x—m)4exp{—; (x;m>2}dx.

a

By making the change of variables

and, if we consider the formula for integration by parts

B B

/udv:uv |2 —/vdu,

[0} [e3

it results

12A<1><bm><1><am>,
g g

Iy =~ {[(b—m) f(b:m,0%) — (a— m) f(asm, 0%)] ~ A},

L = =0 [(b—m)*f(b;m,0°) — (a — m)® f(a;m,0%)] —
— 30? [(b —m)f(b;m, 02) — (a—m)f(a;m, 02)] +30%A.

Using the final values of the integrals I, Is and I;, we obtain (8).
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2. Invariance of the Fisher information
Corollary 1. Ifa=m — o0, b=m+ o, then
Cm—o,m+o) 1<acm>2
exp ——
2mo 2 o

2
Comio(Tym, o) = 7
fm m+(a ) ) ifm—a§x§m+o, ()

Oif x<m—oorz>m+o,
where

Cm—o,m+o) = ~~ 2,93 (8)

1
20(1) — 1

and the Fisher’s information measure, relative to the unknown parameter o2, has the

value

Xy giimia(07) 2 0,03Lx (0?). (9)
Proof. Using (8), we obtain
-2
I %) = —
Xumormse (7 = G 81 = 1]
do* | V2me[2®(1) — 1]

—&{m‘l}z

1
= g 3 V2me[®(1) — 0, 5]

_|_

_|_

(vt o3 1)}

1 0,03
= a3 +2.86+0,08) =

b
204"
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Corollary 2. (Invariance of the Fisher information - the first form) If a = m,
b=m+4o orifa=m—o, b=m, then
C(m,m+ o) 1 (x—m>2
S T expl —=
V2mo 2 o

2
mem+o\L; T, 0 ) = . 10
fmemaa( ) ifm<e<mio (10)

0if x <morax>m+o,

and
C(m —o,m) 1 (J;—m)2
0 Y expl —=
, V2mo 2 o
m—o—m\L; 1, = . 11
/ (z5m, o) ifm—o<x<m, (11)
Oif z<m—oorxz>m,
where
Clmm+40)= —— — —Clm—o,m)= ———_~203  (12)
T T m e TP T e T

and the Fisher’s information measures relative to the unknown parameter o has the

same value, namely

0,03
I pomin(07) =1Ix,, .. (0%) = Yl b a— (o). (13)

Remark 1. If we consider the normal variable
Y=X—-m, (14)

then E(Y) =0, Var(Y) = Var(X) = 0% and the probability density function has the
form

y2
fy(y;0?) = e 22,y €R. (15)

2ro
In this case, the random variable Y, has a bilateral truncated normal distribution:

Me*fiz ifa<y<b

o 7y <

fa<—>b(y;02) = mo (16)
0 ify<aory>b,

where

(17)
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ON THE INVARIANCE PROPERTY OF THE FISHER INFORMATION (II)

Using (8), the Fisher’s information measure, Iy, _,(c?) relative to the unknown pa-
2

rameter o“, can be written like
a® a;o?) — b b; o2
IYG,H5(0-2): fY( )6 fY( )_
40 O()
3 [bfy(b;0*) —afy(a;0® 1 -
40’4 CO
1 C2) L2 2
L [bfvbie®) —afv(@e® ] )
40’4 C()
Corollary 3. (Invariance of the Fisher information - the second form)
Ix , (0%) = I yiyn (08 = Ixpy (0%) = Ix,, ., (07%) =
0,03 9
~ 5o =0,03Ix(c”). (19)

Theorem 2. (Invariance of the Fisher information - the third form) If a = m — ko,
b=m+ ko, or a = —ko, b = ko, then the probability density function, denoted by
facn(zym, 0?), in(2), has the form
C(m — ko,m + ko) 1 /z—m\>
V2o P {_2 ( g > }
Tk ometo (@371, 0°) = if m—ko <z <m+ ko, (20)

0if e <m—ko or x >m+ ko,

or the form

_ 2
Wexp{—l(m) } if —ko<ux< ko,
o)

f*koe»ka(x;m,0'2) = \/%0' 2 (21)
0if v < —ko or x > ko,
where
1 *
C(m—ka,m—l—ka)—C(—ko,ka)_m,kej\] . (22)

The Fisher’s information measures, relative to the unknown parameter o2, have the

same values

404

1 k3 + 3k
Ier—km—»mHm (02) = IX—kcn—rkcr (02) =——29-3+ (kz )
2mez [®(k) — 0, 5]

2
+< - i —1) ke N*. (23)
2me’s [®(k) — 0, 5]
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Proof. Indeed, using the relations (2), (3) as well as the Theorem 1 and the Corollary

3, we obtain just the above value. O

Corollary 4. (Invariance of the Fisher information - extended form)

IXm,Hm,+ka (02) = IXm—mem (02) = IXm—ka<—»m+ka (02) = IX—lccH—»lccr (02) =

2
1 k* + 3k k
=—— Q-3+ (kQ ) + = 1) p,keN.
do ome'r [®(k) — 0,5 ome’s [®(k) — 0, 5]
(24)
Remark 2. Using Theorem 2 we obtain :
a) for k=1, from (23) it results (19).
b) for k =2, from (23) it results
IXm72U<—>m+2o (02) =Ix 5, 4, (02) =
g {3+ - ;
4ot V2me2[®(2) — 0, 5]
3 2
+ -1 ~ 25
(sze2[¢><z> 0.5 ) } (2)
~ =L (C341,640,60) =
~ 40_4 ’ ’ -
0,40 9
= 5 = 0.40Ix (o). (26)
¢) for k =3 we obtain
IXTn73a'<—>m+30' (02) =Ix 4, 4, (02) =
{3+ % "
404 V2reet[®(3) — 0, 5]
2
2
+ ( — 1) e (27)
V2meed[®(3) — 0, 5)
1 0,86 )
~ - (-340,3340,05) = 5 = 0,86Ix (o). (28)
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Conclusion 1. The invariance properties of the Fisher information, relative to the

unknown parameter o2, take place then when the normal variable X is truncated on

intervals of the forms:

[m — ko, m + ko], [m,m + ko], [m — ko, m], [—ko, ko], k € N*. (29)
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STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume L, Number 1, March 2005

ON THE NUMERICAL SIMULATION
OF A LOW-MACH NUMBER FLOW

I. GASSER, J. STRUCKMEIER, AND IOAN TELEAGA

Abstract. In the present work we investigate numerically a flow model
used to simulate convection problems such as tunnel fires. This model is
based on an asymptotic approach for Navier-Stokes equations first derived
in [2]. We will show that this model is capable to combine the low-Mach
number limit with large temperature gradients. Two sets of calculations
are included in this work to show the capabilities of the proposed model

and also the usefulness of the standard Boussinesq approximation.

1. Introduction

Because of many fire accidents in tunnels, the interest in the description,
modeling and the simulation of such events has been increased in the last years. In
practice, to simulate a complete fire accident is not possible due to many parameters
involved: the tunnel geometry, the number of cars inside, the intensity and position
of the fire, ventilation rules etc. In time two main features of fire events have been
observed, namely characteristic velocities in the tunnel of the order of 1m/s and
characteristic temperature differences which are quite large [1].

In [2], [3] and [4] a mathematical model which combines these two features has been
developed and numerically tested. The modeling starts with the description of the air

flow using the compressible Navier-Stokes equations. Then, using appropriate scales

Received by the editors: 08.11.2004.
2000 Mathematics Subject Classification. 76V05,80A25.

Key words and phrases. Navier-Stokes equations, non-Boussinesq approximation, low-Mach number limit.
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(see [2]), the two-dimensional compressible system is written as:

(p)t + div(pu) = 0 (1)
us + (u-V)u + (7M2)71%Vp = % <RelAu + fe’ ! V(dz’v(u))) +f
(pT)¢ + div(upT) + (v — Vpdiv(u) = ~yPr 'Re™'AT +q

where p,u,p, and T represent the density, the velocity field, the pressure and the
temperature, respectively. The functions f, g are the external force (e.g gravity) and
the heat source due to the fire which acts as a volume indicator function over the fire.
The dimensionless constants v, M, Re, Pr and Fr are the adiabatic exponent, the
Mach number, the Reynolds number and the Prandtl number, respectively. All these
quantities and reference values are detalied in [2].

Since M <« 1, a compressible flow solver will suffer severe deficiencies, both in effi-
ciency and accuracy. Two distinct techniques have been proposed to capture solution
convergence for low-Mach number flows: preconditioning and asymptotic expansion
methods. In fact these techniques rescale the condition number of the system. The
first one is to multiply time derivatives by suitable preconditioning matrix, in the
sense that they scale the eigenvalues of the system to similar orders of magnitude and
remove the disparity in wave speeds, leading to a well-conditioned system [5].

In this work, we will follow the second technique, the asymptotic or perturbation
method. This approach consists in a Taylor series expansion of variables (in our case
the pressure) in power terms of the Mach number. The basic philosophy behind this
technique is to decrease the numerical representation of the speed of sound artificially,

by substracting a constant pressure py across the entire domain:
p=po+ (YM*)p1 + O((vM?)?),

where pg is the ground pressure and p; is the fluctuation pressure part. It turns out
that the ground pressure can be only a function of time, i.e py = po(t), but since the
tunnel is a open domain this ground pressure will also not change in time. Therefore,
considering po = constant and that in leading order we have T' = py/p, the system
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(1) can be rewritten as [2]

(p)t + div(pu)

I @

1 . Re ' _
wt e Vus i = 3 (retsus Bov@wn)+r @
. _ N q
div(u) = ~yPr " Re A(p) + - (4)

This system represents a density-dependent flow with a non-vanishing divergence of
the velocity field.
The system (2)-(4) is solved numerically by a modified first order projection method

described in [3]. For the numerical scheme we prescribe the following boundary con-

ditions

ou

a—m(:c,t) = 0, zel1uly
u(z,t) = 0, xzelyUly
plx,t) = po, ifu(xz,t)>0, xzel,y
plx,t) = p1, ifu(x,t)<0, xzely
p(x,t) = po, el
p(x,t) = p, xel;

R 1 1 Re™! . . .

Vp-ii = p Re™"Au + V(div(u)) | - i+ f- @, elyUTly

where I'y, I's denote the entrance and the exit of the tunnel and I'y, I’y the lower and

upper fixed walls, respectively.

2. The validity of the Boussinesq approximation in the case of large

temperature differences

The Boussinesq approximation starts by considering the compressible Navier-

Stokes equations for fluid flow. At this stage all fluid properties are assumed to be

53



I. GASSER, J. STRUCKMEIER, AND IOAN TELEAGA
functions of temperature 7" and presssure P, i.e.
p=pT,P), CPZCP(TJP)
w=u(T,P), a=a(T,P)
k=k(T,P)

Because these functions are not known completely, one assumes that each function

may be approximated by a first order Taylor expansion, i.e.

p = (1= ap(T—T,) +B,(P - P))
¢ = ¢p(+a (T ~T,)+b(P~P)
po= @ +e(T-T)+d (P - P))
a = a(l+e(T—T,)+f(P-P))
ko= k(l+m(T ~T,) +n, (P~ P)) (5)

with &, = (py, ¢p,., tor, r, k) where w, = (o, ay, ¢y, €r,m;) represents the reference
states of (1/x,)0x,/0T and y, = (B;,by,dy, fr,n,) represents the reference states of
(1/z,)0x, /0P, respectively.

According to [6] the following criteria must be checked in order to ensure the validity

of the Boussinesq approximation:

a =la0 <01, ¢ =|BrprgL| <0.1 (6)

cs = |er 8| <0.1, ¢y = |dyprgL] <0.1 (7)

cs = la.0] <0.1, ¢ = |bprgL| <0.1 (8)

cr =m0 <0.1, cs = In.prgL] <0.1 9)

co = |epd] <0.1, c10 = |frprgL| < 0.1 (10)

en =295 <01 ey = |29 g (11)
Po Cpo
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L A A
I \(PrRaVY? < 0.1(PrRa)"Y/? (12)

C13 = |

Po
where 6, g, L are the maximal temperature variations around 7)., the gravitational
force and the reference length, respectively. In the case of air at T, = 15°C and

P, = 10°Pa the following values for the criteria ¢; — ¢1; are given in [6]:

C1 C2 Cc3 C4 Cs Cé

3.5-107%0 | 1.2-10°5L [ 2.8-1073%0 | 0 | 4.5-107°0 | 2.3-10"°L

Cr Cg Co C10 C11

24-107%0 | 0| -3.6-10720 | 0 |3.6-10""L

If the maximal temperature difference 6 is very large (e.g. 1000°C) then it is quite
easy to check that the criteria c¢i, c3, ¢y, cg are not fullfiled, hence the Boussinesq

approximation does not apply.

3. Numerical results

In the following we will compare the numerical results in the case of two
realistic tunnel fire events described in [3] with the Boussinesq approximation [6]. In
both cases the heat source is placed exactly in the middle of the tunnel and it is

distributed over a rectangular area of size 10 m x 4 m.

120
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N

t=5sec
—<— t=100sec
110 || —*— t=110sec 4
L —=— t=6min L
—&— t=16min
100 [ ~

t=5sec
—<— t=100sec
110 [ —*— t=110sec
—=— t=6min
—&— t=16min

100
90 20 -
80 80 [

70+ 70
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60 60 [

50 F 50 -

40 a0

30t 304

20 20
a 6
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140 140
t=5sec L t=5sec L
130L| — t=100sec 3 130|| =< t=100sec 4
—#— t=110sec —k— t=110sec
—=— t=6min —=— t=6min
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110 - 110 B
100 - 100 B
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£ £
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(b)
Figure 1. Vertical temperature profiles (in °C) for a tunnel without slope 100 m left
and right from the heat source at various times: (a) the low-Mach number model
(1), (b) the standard incompressible Navier-Stokes model with Boussinesq

approximation.

3.1. Tunnel without slope. The tunnel configuration data are listed in Table I.
More information about the numerical method and other relevand data are given in
[3]. Figure 1 show the temperature profiles along a vertical axis, which is placed 100
m to the left and right of the middle of the tunnel in the case of the low-Mach number
model (1) (1a), and the standard Boussinesq approximation model (1b). First of all
the results show that the flow field is symmetric with respect to the location of the

heat source.

Table I. Test configuration

Length 1000m
Height 10m
Heat source 1MW
Initial velocity 0.0

Pressure difference(bottom-top) 120Pa
Re number 2500

Simulation time 30 min
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Figure 2. Vertical temperature profiles (in °C) for a tunnel without slope 100 m left
and right from the heat source at various times: (a) the low-Mach number model
(1), (b) the standard incompressible Navier-Stokes model with Boussinesq

approximation.

If we compare the Figure (1a) with the Figure (1b) we see that the temperature fronts
are moving with different velocities, i.e. the velocity coming from the Boussinesq
approximation model is lower than in the low-Mach number model (1). This fact is
clear in the literature where it is claimed that the bouyancies forces are not so strong
when simulated with the Boussinesq approximation model. Indeed because the heat
transfer towards the tunnel ends is not so fast as in the low-Mach number model, the
temparatures in the Boussinesq approximation are higher.
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3.2. Tunnel with slope. As in the previous example the tunnel configuration data
are listed in Table I. The only modification here is that the tunnel has a slope of 3%
upwards from the left to the right end. The same features of both simulations are

seen also in this case (see Figure 2a,b).

4. Conclusions

Mathematical models which describe fire accidents in tunnels should model
low-Mach number flows together with large temperature gradients. In the present
paper we compared the low-Mach number model proposed in [3] with the standard
Boussinesq approach for fluid flow in the case of two fire examples. As written in Table
I we do not use the real Reynolds number, indeed the numerical examples presented
here have not to be seen as a comparison with the real experiment data. This is
a preliminary step in this direction. The effect of turbulence will be the subject of

further investigations.
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ON SPECTRAL PROPERTIES OF SOME CHEBYSHEV-TYPE
METHODS DIMENSION VS. STRUCTURE

CALIN-IOAN GHEORGHIU

Abstract. The aim of the present paper is to analyze the non-normality
of the matrices (finite dimensional operators) which result when some
Chebyshev-type methods are used in order to solve second order differen-
tial two-point boundary value problems. We consider in turn the classical
Chebyshev-tau method as well as two variants of the Chebyshev-Galerkin
method. As measure of non-normality we use the non-normality ratio in-
troduced in a previous paper. The competition between the dimension of
matrices (the order of approximation) and their structure (the numerical
method itself) with respect to normality is the core of our study. It is ob-
served that for quasi normal matrices, i.e., non-normality ratio close to 0,
exhibiting pure real spectrum, this measure remains the unique indicator
of non-normality. In such cases the pseudospectrum tells nothing about

non-normality.

1. Introduction

With the scalar measure of non-normality introduced in our paper [1] we
try to quantify the non-normality of three Chebyshev-type methods corresponding
to differential operators involved in a second order two-point boundary value prob-
lem. To be more specific we work with Chebyshev-tau method (CT for short), a
Chebyshev-Galerkin method suggested by J. Shen (CGS for short) in his paper [7],

Received by the editors: 29.10.2004.
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and a Chebyshev-Galerkin method (CG for short) with different trial and test basis
functions analyzed in our previous papers [5], [4], [2] and [6].

In the most significant cases we also display the corresponding pseudospectra.
We want to point out the fact that, besides the pseudospectra, our scalar measure of
non-normality can be thought of as a fairly reasonable characteristic of non-normality
of square matrices. More, it has an important advantage. By use of this scalar measure

the matrices, and consequently the numerical methods, can be compared.

2. The non-normality of C T, C G S and C G methods

In order to quantify the non-normality of the first three differential opera-
tors when they are discretized using the above mentioned methods we consider the

following two-point boundary value problem:

vt pou—=XNu=f(x), u(-1)=u(l)=0. (1)

It is well known that a matrix is non-normal if it does not commute with its conjugate
transpose, i.e., A*A— AA* # 0 - the null matrix. We recall that for a square (non null)
matrix A of dimension N with complex entries, its non-normality ratio, introduced

in [1], reads as follows
e(A*A — AA¥Y)
e(4) ’

where * stands for the conjugate transpose of A and € (4) means the Frobenius norm

H(A):=

of A. This is indeed a scalar measure (see [1]) and it satisfies the sharp inequality
0< H(A) < V2.

For the classical CT method we refer to the well known monograph Gottlieb
and Orszag [3], pp- 119-120.

For the CGS method we found out the matrices from the paper [7] P. 4.

Eventually, all the technicalities implied by CG method are available in the
report of I. S. Pop [4]. For various values of parameters p and A the non-normality
ratios are displayed in the following three tables.
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N=8 | N=64 | N=128 | N=512 | The variation
CT | 1.0254 | 0.9852 | 0.9847 | 0.9845 —
CG | 0.3958 | 0.2220 | 0.1616 | 0.0825 N
CGS | 0.2926 | 0.1238 | 0.0891 | 0.0452 AV

Table 1: The non-normality ratios for mu=0. and lambda=0.1 in (1).

N=8 | N=64 | N=128 | N=512 | The variation

CT |0.0510 | 0.9713 | 0.9845 | 0.9845 —
CG | 0.3584 | 0.1359 | 0.0986 | 0.0728 ¢
CGS | 0.0076 | 0.0121 | 0.0200 | 0.0538 N

Table 2: The non-normality ratios for mu=0. and lambda=256"2 in (1).

N=8 | N=64 | N=128 | N=512 | The variation
CG | 0.4759 | 0.1972 | 0.1435 | 0.0796 ¢

CGS | 0.1979 | 0.0628 | 0.0538 | 0.0414 N
Table 3: The non-normality ratios for mu=256. and lambda=0.1 in (1).

It is well known that the non-normality of matrices is also investigated using
the notion of pseudospectrum i.e., the spectrum of the randomly perturbed matrix
with an arbitrary small quantity. Up to our knowledge a direct connection between
scalar measures of non-normality and pseudospectra does not exist.

For example, the pseudospectra reported in Figures 1 and 2 look very different
even if they correspond to matrices with close values of non-normality ratios.

While for the CG method the spectrum contains complex eigenvalues, and
the pseudospectrum underlines the spectral instability, in case of CGS method all
eigenvalues are pure real and the spectral instability is almost absent. Thus, in spite
of the fact that a matrix is non-normal, its pseudospectrum does not perceive this
anomaly. In this situation we must resort to a scalar measure in order to observe the
non-normality. We also observe that the complex part of the spectrum is much more
instable than the real counterpart.
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x 10° Pseudospectum — A —~CG method

T T T T T T T

N
e Of i
_2 - -
_4 - -
_6 - -
-6 -4 -2 0 2 4 6
Re z X 105

FiGURE 1. The pseudospectrum corresponding to position 2, 4 in

Table 2

Remark 1. A Matlab code was used in order to work out the entries of Tables 1,2
and 3. The pseudospectra were depicted using a slightly modified code from the paper
of L. N. Trefethen [8].
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x 10° Pseudospectum — A-CGS method

15} . . . . .

05 - . . . . -

Imz
o
T
1

Re z X 106

FiGURE 2. The pseudospectrum corresponding to position 3, 4 in

Table 2

3. Concluding remarks

First of all, it is very clear from Tables 1 and 2 that the CT method is worse
with respect to normality and its non-normality does not vary with the dimension N
of the approximation.

The most normal method seems to be CGS. Anyway, for large NV the CG and
CGS methods become closer and closer. At the same time, it is quite surprising that
in the absence of the first order term (see Table 3) these methods seem to converge to
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the same value of non-normality, CG decreasing and CGS increasing for large values

of cutoff parameter N.

Finally, we have to remark that in spite of the fact that in cases considered in

Figures 1 and 2 the non-normality ratios are quite closed, the pseudospectra are in-

comparable. It seems that in such cases the information furnished by pseudospectrum

could be misleading.
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RADIATION EFFECTS ON FREE CONVECTION
FROM A VERTICAL CONE EMBEDDED
IN A FLUID SATURATED POROUS MEDIUM

TEODOR GROSAN AND IOAN POP

Abstract. The radiation effects on the steady free convection boundary
layer over a vertical cone embedded in a fluid saturated porous medium
are studied. We adopt for the radiative model the well-known Rosseland
model. It has been found that similarity solutions exist and the ordinary
differential equations were solved using a combined Runge-Kutta method

and shooting technique.

1. Introduction

Heat transfer in porous media is involved in many practical applications in
geophysics, energy related problems, environment problems, etc. The monographs:
Ingham and Pop (1998, 2002), Vafai (2002), Pop and Ingham (2001) and Ingham et
al. (2004) give an excellent summary of the work on this subject.

If the heat transfer process take place at high temperature radiative effects
can’t be neglected (Modest, 2003; Siegel and Howell, 1992). The radiative models
used for fluids are not always appropriate for porous media. A synthesis of radiative
models in porous media is given by Kaviany and Singh (1993). Using Rosseland
approximation (see Rosseland, 1936), Hossain and Takhar (1996), Raptis (1998),
Hossain and Pop (2001) and Bakier (2001) studied the free mixed convection from
vertical surfaces placed in porous media. Chamka (1997), Chamka et al. (2001, 2002)
considered the solar radiation case or, in addition, the mass transfer.

Received by the editors: 15.12.2004.
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In this paper we will study the radiation effect in the free convection from
a vertical cone embedded in a fluid saturated porous medium using the Rosseland

radiative model.

2. Basic equations

We consider a vertical cone having a constant surface temperature, T,, while
the cone is placed in an opaque fluid saturated porous medium having the temperature
T (see Fig. 1). Under boundary layer Boussinesq approximations and using the
Rosseland radiative model the governing equations are given by:

d(ru)  9O(rv)

e (1)
u:M(T—TOO) 2)
v
2 T
ua—T+va—T:a 6—T—71 % (3)

gr ~ 9y "0y (pw0)s Oy
where r = zsin~y is the cone’s radius, v is the kinematic viscosity, K is the perme-
ability, «, is the thermal diffusivity, p is the density and c is the specific heat. The
subscripts w and oo are related to the surface and to the ambient medium, respec-
tively. The radiative heat flux, ¢, has the form:
4

== (%)% @
where o is the Stefan-Boltzman’s constant and y is the mean absorption coefficient
in the Rosseland approximation.

The boundary conditions for eqs. (1)-(3) are:

v=0, T'=T, for y=0
(5)

u—0, T—oTyw for y—

In order to obtain similar solutions the following transformations are intro-

duced:
T Ty

T "= Ray/*(y/x) (6)

¥ = amrRa)/>f(n), 6(n) =
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0 0
where v is the stream function, ru = 6—¢, rv = —6—¢, 7 is the similar variable and
€z Y
Ra, is the local Rayleigh number defined as:
gBK cosy(Ty — Two)w

VA

Ra, =

(7)

Using (6) in egs. (1)-(3) and in boundary conditions (5) the governing equa-

tions became:

=0 (8)
{ {1 + %N[l + (0 — 1)0]3} 9'} + gfe' =0 (9)
f0)=0, 6(0)=1, f'(c0)=0 (10)

where the radiative and temperature parameters N and 6,,, respectively, have the

form:
40T3 T,
N = ‘;Xoo, gw:T_w (11)

From the energetic balance on the cone’s surface it is possible to deduce the

convective heat transfer coefficient, h:

oT
_ +q" =h(Ty—T 12
byl T =N ) (12)

and thus the local Nusselt number is given by:
. 4
Nu, = —6'(0)Ra’/? [1 + gNefv} (13)

We must mention that in the absence of the radiation effect (N = 0), egs.

(8)-(10) reduce to those obtained by Cheng et al. (1985).

3. Results and discussions

Egs. (8)-(10) have been solved numerically using a combined Runge-Kutta
and shooting method for the following values of the radiative parameter N =0, 1, 5
and 10 for the temperature parameter 6,, = 1.1, 1.5 and 2. In the case N = 0 (i.e.
radiation effects are negligible), the calculated value for the local Nusselt number,
—0.,, is in very good agreement with that obtained by Cheng et al. (1985). The
values for the Nusselt number are given in Table 1 for different values of parameters
N and 6,,. Figs. 2-4 present the dimensionless temperature’s profiles variation with
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"

F1GURE 1. Geometry of the problem

the variation of the radiation parameter N. It is observed that the thickness of the
boundary layer increase with the increasing of the parameter N. It is also observed
in Figs. 5-7 that the dimensionless temperature increase with the increasing of the
parameter 6,,.
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N —6'(0)

B, =1.1 B =1.5 | 6, = 2.0
0 | 0.768596(*0.769) | 0.768596 | 0.768596
1 0.250263 0.212828 | 0.187691
5 0.107103 0.094502 | 0.085511
10 0.074887 0.066666 | 0.060616

Table 1. Values of the local Nusselt number, 6'(0)
*Result obtained by Cheng et al. (1985)

1& 20

FIGURE 2. Dimensionless temperature profiles for N = 0,1, 5,10 and

0, = 1.1
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ASYMPTOTIC PROPERTIES OF THE DISCRETIZED
PANTOGRAPH EQUATION

PETR KUNDRAT

Abstract. We are going to deal with the asymptotic properties of all

solutions of the delay difference equation
Axn:—aa:n—i—bxlf(t,l)—toJ’ n=0,1,2,...,
Tln)—to

where a > 0, b # 0 are reals. This equation represents the discretization
of the corresponding delay differential equation. Our aim is to show the
resemblance in the asymptotic bounds of solutions of the discrete and
continuous equation and discuss some numerical problems connected with

this investigation.

1. Introduction

We discuss the numerical discretization of the delay differential equation
&(t) = —ax(t) + bx(7(t)), t el = [ty,0) (1)

in the form
Tpt+1 — T = —ahx, + bhx, (2)
where a > 0, b # 0 are reals, 7,, := {WJ, t, :=tg+nh,n=0,1,2,..., h >01is
the stepsize and the symbol | | is an integer part. Then x,, means the approximation
of x(ty).
Equation (2) is a difference equation obtained from (1) via the modified Euler

method. It has been shown in [2] that numerical schema (2) is convergent. Our aim

Received by the editors: 08.11.2004.
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is to describe some asymptotic properties of equation (2) (more precisely, to find
conditions under which asymptotic behaviour of (1) and (2) is similar).

We especially investigate equations with unbounded lag, i.e. such that ¢t —
7(t) — o0 as t — oo. As the prototype of this equation may serve the so called
pantograph equation (i.e. equation (1) with 7(¢) = ¢t, 0 < ¢ < 1). The name of the
equation has its origin in the application on British railways [9], where the motion of
pantograph of electric locomotive along trolley wire has been described.

In the connection with the investigation of asymptotic properties of solutions
of these equations we recall papers dealing with relative problems, e.g., Cermak 1],
Heard [4], Iserles [5], Liu [7], Kato and McLeod [6] and many others in the continuous
case, and Gyori and Pituk [3], Makay and Terjéki [8], Péics[10] and others in the
discrete case.

The paper is organized as follows. In the next section we recall the asymptotic
estimate of all solutions of (1) (valid under certain assumptions). In Section 4 we

derive the analogous asymptotic estimate valid for all solutions of difference equation
(2).
2. Continuous case

In this section we mention the result describing the asymptotics of the inves-

tigated delay differential equation.

Theorem 2.1 (Heard [4]). Let a > 0, b # 0 be scalars, T € C*(I) be such that 7 is
positive and decreasing on I and q = 7(tg) < 1. Then for any solution x of (1) there

exists a continuous periodic function g of period logg~' such that

a(t) = (p(1)" gllog p(t) + O ((0(1))* ™) as t— o,

where  is a solution of

a=log(b/a) /logq™" and o, = R(a).
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Remark 2.2. Particularly, it follows from Theorem 2.1 that for any solution x of

(1) holds
z(t) = O (¥(t)) as t— oo,

where P(t) = (¢(t))*" is a solution of the functional equation

ap(t) = bly(r(t),  tel. (4)

3. Preliminaries

In this section we summarize the assumptions necessary to formulate the result for
discrete case. First, let us denote (H) the assumptions on function 7:

(H): Let 7 be an increasing continuous function on I such that 7(¢) < ¢ for all t € I
(the case T(to) = tg is also possible), 7(t 4+ h) — 7(t) is nonincreasing for arbitrary h

fulfilling 0 < h < h on I and let lim,_o 7(t) = oc.

Further, throughout this paper we denote T_; = 7(to) and T}, = 7 *(t¢),

k = 0,1,2,..., where 7= means the k-th iteration of the inverse 771.

If we set
I, = [Ty-1,Ty] for allm =0,1,2,..., then 7 is mapping I,,+1 onto I,,.
Instead of the above functional equation (4) we consider the functional in-

equality

ap(t) > [blp(to + W)h‘tJ B, tel (5)

Now we can formulate the proposition ensuring some required properties of solutions

of the inequality (5).

Proposition 3.1. Consider the inequality (5), where a > 0, b # 0 are reals and let
(H) be fulfilled.
(1): If |b|/a > 1, then there exists a positive continuous nondecreasing solu-
tion p of inequality (5).
(ii): If |bl/a < 1, then there exists a positive continuous decreasing solution p
of inequality (5) such that p(t+h)—p(t) is nondecreasing on I for arbitrary

real 0 < h < h.
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Proof. Using the step method we can easily verify that there exists a positive contin-
uous solution p(t) of (5) which is nondecreasing or decreasing according to |b|/a > 1
or |b|/a < 1, respectively.

Further, we assume that |b|/a < 1 and show that the function p(t + h) — p(t)
is nondecreasing on I for all 0 < h < h. It is easy to check that any solution of
functional equation

ap(t) = [blp(r(t) — h) (6)
is fulfilling the inequality (5). We choose the decreasing function p defined on the
initial interval Iy such that p(to) = (|b|/a)p(T-1 — h) and let p(t + k) — p(t) be
nondecreasing on Iy. Further let ¢*,¢** € I, t* < t**. If we denote h* := 7(t* + iz) —
T(t*), h** == 7(t** 4+ h) — 7(t**), then h* > h** and we can write

)= p(t7) = B (p(r( + B) = ) = p(r(t") — 1)

)
—~
~
*
+
>

= B (p(r(t) + B = h) = plr(t) — )

< W (p(r () + 0" = 0) = plr () = 1))

< B (p(r(t) + B = h) = p(r(t) = 1))
B (ot

/—\

(7 4 R) = ) = p(r("7) = B)) = p(t™" + B) = p(t™)
by use of the assumptions of proposition. Thus p(t 4+ h) — p(t) is nondecreasing on

IpU I, and repeating this procedure for intervals I, I3, . .. we obtain that the function

p(t + h) — p(t) is nondecreasing on 1. O

4. Main result

Theorem 4.1. Let x,, n =0,1,2,... be a solution of (2), where 0 < ah <1,b#0
are reals. Let (H) be fulfilled, let p be a positive solution of (5) with the properties
guaranteed by Proposition 3.1 and let p, := p(ty,).

(i): If |b]/a > 1, then x,, = O (pn) as n — oc.

(ii): If |b|/a < 1 and moreover

Z p(Ti—1) — p(Ty—1 + h)
Tk+1)

< 00,

then x, = O (pn) as n — oo.
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Proof. First we rewrite the difference equation (2) as
Tnal :&hfanrhben, n=123,..., (7)

where @ is a (unique) positive real such that a" = 1 — ah.

We introduce the substitution y, = x,/p, in (7) to obtain

Pn+1Yn+1 = dhpnyn + bhanyT", n = 1, 27 3, e (8)

and show that every solution y,, of (8) is bounded as n — oo. Multiplying the previous

equality by 1/a‘»*" we get

Pn+1Yn+1  PnlYn bh

atnth T gtn Ginth PrnYrns
ie.,
NEOE %pmym- 9)
Now we take any ¢ € I,,11, m = 1,2,.... We define nonnegative integers k,, (t) :=

|(t—T,)/h|. Denote t,, := 1 — ky,({)h — h. Summing the equation (9) from %, to
t — h, we get

bh
y(t) = Ytm) +—= D =Py

81



PETR KUNDRAT

and summing by parts we finally have

7 Vat at I 7 t—h +h
W@ < M, At @ (@) pn) 1)3 N
= UM e e \ @ oae - = \a .
~1 t—h s+h
1
p(t) a

The common part of the proof ends here and we continue for the cases (i)
and (ii) separately.

ad (i): If |b|/a > 1, then in accordance with Proposition 3.1 we choose a non-
decreasing function p(t) on I. Then Ap(t) is nonnegative on I, hence |y(t)| < M,,.
Since t € I,,,11 was arbitrary, we have M, 1 < M,,, i.e., M,, is bounded as m — oo.
Hence the function y(¢) is bounded and the statement (i) is proved.

ad (ii): If |b|/a < 1, then in accordance with Proposition 3.1 we choose
a decreasing function p(t) on I such that Ap(t) is nondecreasing on I. Then from

(10) we have

. p(En) = p(m + 1) & [
|y(t)| < Mypql+ p(f) = (&H—h)
p(im) - p(im + h) _Ap(Tm - h)
RS (e e B (o

where & :=1/(1 — a"). The repeated application of this procedure yields

NG || (1 +sW> ,

ie.,

i —Ap(T; = h)
M1 < My <1+fj .
j[[l p(Tjt1)
By our assumption, the product converges as m — oo, hence M,, is bounded as

m — 0o. The theorem is proved. O

Remark 4.2. The assumption on the stepsize h (h < 1/a) enables us to preserve the

correlation of asymptotic estimates of discrete and continuous case. In other words,
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the estimates of solutions in the discrete case and the continuous case are expressed

via the same function, resp. sequence (provided the stepsize h is sufficiently small).

Remark 4.3. In the estimate concerning the case |b|/a < 1 it is also possible to take
a solution ¢ of functional equation (4) instead of a function p (which is a solution of
(5)). Using the fact that the term p(7(t)) — p(7(t) — h) is a positive nonincreasing
function it could be shown that there exists a solution ¢ of (4) such that ¥(t) > p(t)

for all ¢ > tg. In some cases the utilizing of 1 instead of p can be more applicable.

5. Examples
Corollary 5.1. Consider the scalar pantograph equation
&(t) = —az(t) + bx(qt), (11)

where a > 0, b # 0, 0 < ¢ < 1 are reals. The qualitative theory yields the estimate

, log !
z(t) = O(t"), r= og g1’ as t— 0o (12)

for every solution z of the equation (11). The corresponding difference equation is
Tpil = (1 — ah)xn + bhl’\_qtn—tOJ, t>ty >0, (13)
h

where the above assumptions on a, b, ¢ are fulfilled and 0 < ah < 1. Then the following

estimate
i
log *
T =
logg—!

is valid for all solutions {z,},-, of difference equation (13).

xn, = O(t]),

as n — oo (14)

Example 5.2. Consider the initial problem:
z(t) = —2z(t) + z(t/2), z(0)=1, t€][0,00). (15)
In accordance with (12) we get the asymptotic estimate
z(t) = O(1/t) as t— oo.
In the corresponding discrete case we consider formula (13) in the form

Tpy1 = (1 = 2h)xy, + ha |4, jon), to =0, zo = 1. (16)
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Then x, = O(1/t,) as t — oo provided h < 1/a. If we violate the condition on

stepsize, this asymptotic formula is not valid. Indeed, if h = 1 > 1/a, then the

corresponding discrete equation x,11 = —x, + 2|, /2 admits solutions not tending

to zero as n — oo.

It is obvious, that the assumption 0 < ah < 1 has its relevance in the choice

of suitable stepsize h to preserve the same behaviour of difference case as in the

continuous case.
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STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume L, Number 1, March 2005

CLASSIFICATION OF NEAR EARTH ASTEROIDS
WITH ARTIFICIAL NEURAL NETWORK

ZOLTAN MAKO, FERENC SZENKOVITS, EDIT GARDA-MATYAS, AND IHARKA CSILLIK

Abstract. Asteroids that can pass inside the orbit of Mars are said to be
Near-Earth Asteroids (NEAs) or Earth-Approaching asteroids. The NEAs
are subdivided into several groups based on their orbital characteristics.
There are three important groups: Amor, Apollo and Aten. In this paper
we show that fundamental characteristics of this classification, for which
these groups are linear separable, are the focal distance and the semimajor
axis. Starting from this property we construct a perceptron-type artificial
neural network to classify automatically these objects into groups Amor,

Apollo or Aten.

1. Introduction

Asteroids are rocky and metallic objects that orbit the Sun but are too small
to be considered planets. They are also known as minor planets. Asteroids are
divided into groups and families based on their orbital characteristics. Usually a
group of asteroids is named after the first discovered member of the group. These
groups are relatively loose dynamical associations.

Asteroids that can pass inside the orbit of Mars are known as Near-Earth
Asteroids (NEAs) or Earth-Approaching asteroids. Rigorously NEAs are the asteroids
with the perihelion distance ¢ < 1.3 AU and the aphelion distance ) > 0.983 AU
(see [2]). These asteroids probably came from the main asteroid belt, but were jolted
from the belt by collisions or by interactions with the gravitational fields of other

objects (primarily Jupiter). According to astronomers there are at least 1,000 NEAs

Received by the editors: 15.03.2005.
2000 Mathematics Subject Classification. 70F05, 85-08.

Key words and phrases. NEAs, classification, artificial neural network.
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whose diameter is greater than 1 kilometer and which could do catastrophic damage
to the Earth (see for example [6], [1]). Even smaller NEAs could cause substantial
destruction if they were to collide with the Earth.
From the point of view of the geometry of the orbit, there are four types of
NEAs ([5], [4]):
1. The group of Aten asteroids (Atens) was named after 2062 Aten (discov-
ered by E. F. Helin in 1976, with semimajor axis a = 0.967 AU, eccentricity e = 0.183
and inclination ¢ = 18°.9) . They have semimajor axes less than 1 AU and aphelion
distance greater than or equal to 0.983 AU (the present perihelion distance of the
Earth), namely
a(l+e)>0.983 AU and a < 1 AU, (1)

placing them inside the Earth’s orbit.

2. The Apollos, named after 1862 Apollo (K. Reinmuth, 1932, a = 1.471
AU, e = 0.560, i = 6°.4), have semimajor axes greater than or equal to 1 AU and
perihelion distances less than or equal to 1.017 AU (the present aphelion distance of
the Earth), namely

a>1AUand a(l —e) <1.017 AU. (2)

Some Apollos have eccentric orbits that cross the orbit of the Earth, making them a
potential threat to our planet.

3. The Amors, named after the asteroid 1221 Amor (E.J. Delporte, 1932,
a =1.920 AU, e = 0.435 and i = 11°.9), have perihelion distances between 1.017 AU
and 1.3 AU (the present perihelion distance of the Mars), namely

1.017 AU < a(1 —e) < 1.3 AU. (3)

Amors often cross the orbit of Mars (if the orbit is eccentric enough), but they do not
cross the orbit of Earth.

4. Inside of the orbit of the Earth, with perihelion distances less then 0.983
AU, orbit the Apoheles, for which

a(l+e) < 0.983 AU. (4)
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“Apohele” is Hawaiian for ”orbit”. Other proposed names for this group are Inner-
Earth Objects (IEOs) and Anons (as in ”Anonymous”). Until May 2004 there are
only two known Apoheles: 2003 CP20 and 2004 JG6.

In the presented classification (1-4) the semimajor axis (a) and the eccen-
tricity (e) are used as fundamental parameters. In the plane of these parameters
the separatrices between the different groups are mainly hyperbolas (see Figure 1).
Generally is more convenient, if the separatrices of the groups are linear. Linear sepa-
ratrices make possible for example the use of linear statistical methods in the different
studies, and simple classification with a parallel computing artificial neural network.

In this paper we point out that if the semimajor axis and the focal distance,
¢ = ea are used as fundamental parameters, then the separatrices between the pre-
sented classical groups are all linear. Using this property we constructed a parallel

computing artificial neural network to classify the NEAs.

2. Linear separation of the NEA groups

The different groups of asteroids (Atens, Apollos, Amos, Apoheles and other
asteroids), defined in the above presented classification (1-4), are separated — in the

plane of parameters (a, e) —, by curves of equation (see Figure 1)
fila,e) =0, 1=1,2,3,4, (5)
where functions f; : (0,00) x [0,1) = R are

fi(a,e) = a+ae—0.983, fo(a,e)=a—1,

fa(a,e) = —a+ae+1.017, f4(a,e)=a—ae—1.3.

The presence of the focal distance ¢ = ea in the hyperbolas f; = 0, fo = 0

and f, = 0 suggests us to transform the plane of parameters (a, e) in the plane (a,c).

The corresponding function of transformation is 7" : (0, 00) x [0,1) — (0, 00) % [0, 00),
given by

T (a,e) = (a,ea) . (6)
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2
8
2
5}
The others
2 25 3 a5 4 a5 s
semimagjor axis (AU)
FIGURE 1. Distribution of NEAs in the (a,e) plane.
The four separatrices f; = 0 are transformed by T in linear separatrices

g9 =0,i=1,2,3,4, where functions g; : (0,00) x [0,00) — R are

g1 (a,c) = a+c—0.983, g2 (a,c) =a—1,

gs(a,c) = —a+c+1.017, g4(a,c)=a—c—1.3.

The distribution of the above defined groups of NEAs, in the plane of param-
eters (a, ), is illustrated in Figure 2.

In this plane the separatrices are all linear. The characterization of different
groups by using the sign of the g; separator functions is presented in Table 1 (here

“4+” means positive value or zero and “—“ means negative value).

3. Classification of NEAs with artificial neural network

Artificial neural networks are composed of simple elements (neurons) oper-

ating in parallel. These elements are inspired by biological nervous systems. As in
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FIGURE 2. Distribution of NEAs in the (a,c) plane.

TABLE 1. The signs of the NEA groups in the plane (a,c).

Group g1 g2 g3 g4

Apoheles | — —
Atens
Apollos

Amors

+ + + +
+ o+ o+
!
!

others

nature, the network function is determined largely by the connections between ele-
ments. We can train a neural network to perform a classification by adjusting the
values of the connections (weights) between elements ([3]).
A neuron with an input vector (a;,as) and with bias scalar b appears on the
Figure 3.
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FiGure 3. The neuron.

This neuron, denoted by a, transmits the input vector (ai,a2) to output

scalar o, by using:
o= f(wiay +wsas +b), (7)

where f: R — R is the transfer function, (wy,w2) is the weights vector and b is the
bias scalar. Here f is a hardlim or a linear transfer function. Note that w and b are
both adjustable parameters of the neuron.

The perceptron-type neural network, developed to classify exactly the NEAs
in the above defined five groups is presented in Figure 4.

The transfer functions of our network is the hardlim function

1, ifx >0,
H:R—{-1,1}, H(z)=
-1, if x <0,

in the neurons a1, as, az and a4, and the identity function

I:R—-R I(z)=1x

in the neuron a; (Figure 4).
The input values of our network are the semimajor axis a € (0,00), and the
focal distance ¢ = ea € [0,00). The output value of this network is computed by

formula

o=

[H (91 (a,¢)) + H (92 (a,¢)) — H (g3 (a, ) + H (94 (a, ¢))] + 3. (8)

N | =
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FIGURE 4. The neural network.

This value is: 1 for Apoheles, 2 for Atens, 3 for Apollos, 4 for Amors, and 5 for other

asteroids.

4. Conclusions

In this study we proved that in the classification of the NEAs is more conve-
nient to use as parameters the semimajor axis and the focal distance instead of the
semimajor axis and eccentricity, because in this plane of parameters (a,c) the separa-
trices between different NEA groups are linear. This parameters make also possible
the development of an artificial neural network to perform a parallel computing clas-
sification of NEAs. Another advantage of our linear classification is that it can be

easily compared with other linear classifications.
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AN APPLICATION OF BRIOT-BOUQUET DIFFERENTIAL
SUPERORDINATIONS AND SANDWICH THEOREM

GEORGIA IRINA OROS

Abstract. Let f € A. We consider the following integral operator
2 z
P =2 [ rwa (1)
By using this integral operator we obtain a Briot-Bouquet differential su-

perordination and sandwich theorem.

1. Introduction

Let H(U) denote the class of functions analytic in the unit disc
U={z€C,|z| <1}

For n a positive integer and a € C, let

Hla,n] ={f € HU): f(z2)=a+anz" +an 12" +..., 2€ U},

and A, = {f e H(U), f(z) =2+ ant12" ™ +..., z€ U} with 4; = A.

A function f € H[a,n] is convex in U if it is univalent and f(U) is convex. It
is well known that f is convex if and only if f/(0) # 0 and
2f"(2)
f'(2)
Let @ denote the set of functions f that are analytic and injective on the set

U\ E(f), where

Re +1>0, zeUl.

5(1) = {c € 00, 1 1) -

Received by the editors: 03.12.2004.
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convex.
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and are such that f/(¢) # 0 for ¢ € U \ E(f). The subclass of @ for which f(0) =
is denoted by Q(a).

Many of the inclusion results that follow can be written very easily in terms
of subordination and superordination. We recall these definitions. Let f, F € H(U)
and let F' be univalent in U. The function F' is said to be superordinate to f, or f is
subordinate to F, written f < F, if f(0) = F(0) and f(U) C F(U).

Let 8 and v be complex numbers. Let Q5 and As be sets in the complex
plane, and let p be analytic in the unit disc U. In a series of articles the authors and

many others [1, p. 80-119] have determined conditions so that

{p( )+ ﬂpz(p')( ?) |zeU} CQ = pU)C As. 2)

The differential operator on the left is known as the Briot-Bouquet differential
operator. The main concern in this subject is to find the smallest set Ay in C for
which (2) holds.

In [2] the authors consider the dual problem of determining conditions so that

2p'(2)
Qlc{p() g |zeU} = A, Cp(U). 3)

In particular we are interested in determining the largest set A; in C for
which (3) holds.

If the sets Q and A in (2) and (3) are simply connected domains not equal
to C, then it is possible to rephrase these expressions very neatly in terms of subor-

dination and superordination in the forms:

p(z) + 5;(1);522’7 < ha(z) = p(2) < q2(2) (2"
h(z) < p(2) + m = q(2) < pl2). (3)

The left side of (2') is called a Briot-Bouquet differential subordination, and
the function ¢ is called a dominant of the differential subordination. The best dom-
inant which provides a sharp result, is the dominant that is subordinate to all other
dominants.
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In a recent paper [3] the authors introduced the dual concept of a differential
superordination. In light of those results we call the left side of (3') a Briot-Bouquet
differential superordination, and the function ¢, is called a subordinant of the differ-
ential superordination. The best subordinant, which provides a sharp result is the
subordinant which is superordinate to all other subordinants.

In [3] the authors combine (2') and (3') and obtain a condition so that the

Briot-Bouquet sandwich

zp'(2)

hi(z) < p(2) + B(2) +

< ha(2) (4)

implies that ¢1(z) < p(2) < q2(2).
In order to prove the new results we shall use the following lemma:
Lemma A. [3, Corollary 1.1] Let 8,7 € C and let h be convez in U, with

h(0) = a. Suppose that the differential equation

AN
q(z) + B+ h(z)

has a univalent solution q that satisfies q(0) = a and q(z) < h(z). If p € H[a,1]NQ

zp'(2)
and p(z) + Bp(z) +~

1s univalent in U, then

h(z) < p(z) +
mmplies
q(z) < p(2).
The function q is the best subordinant.

Lemma B. [1, Th. 3.2.b, p. 83] Let h be a convexr function in U, with
h(0) = a and let n be a positive integer. Suppose that the Briot-Bouquet differential

equation
nag(2)
=h
o) + T = h(e)
has a univalent solution q that satisfies q(z) < h(z).

If p € Hla, n] satisfies
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then p(z) < q(z) and q is the best (a,n) dominant.

2. Main results

Theorem 1. Let R € (0,1] and let h be convez in U, with h(0) = 1, defined

by
h(z):1+Rz+2i7RRZ, zeU.
IffeAand Z}CQS) is univalent, Z}fgg) e H[1,1]NQ and
h(z) < Z}f(z) , zeU (5)
then
q(z)=1+Rz<Z§£S), zeU,

where F is given by (1).
The function q is the best subordinant.

Proof. In [4] the authors have showed that

zR

is convex, and ¢(z) = 1 + Rz is a univalent solution of (3) which satisfies ¢(0) = 1
and ¢(z) < h(z), z€ U.

From (1) we have

SF(2) = 2/02 fO)dt, zeU.

By using the derivative of this equality, with respect to z, after a short cal-
culation, we obtain

2F'(2) + F(2) = 2f(2).

This equality is equivalent to

Fo) |1+ 2| =2, zev ™
If we let
2F'(z)
o) =2, ®)

96



AN APPLICATION OF BRIOT-BOUQUET DIFFERENTIAL SUPERORDINATIONS

then (7) becomes
P +p(z)] =2f(2), z€U (9)

By using the derivative of (9) with respect to z, after a short calculation, we

obtain
2F'(z) zp'(2) zf'(2)

F(z)  1+4p(z)  f(2)

which, using (8), is equivalent to

ooy s ) )

L+p(z)  f(2)

Using (5) we have

1+ Rz+

Rz =
z
2+ Rz T
By using Lemma A we deduce that

2F'(2)

q(z) < p(2) = o) 1+ Rz =< ()

Theorem 2. Let h be convex in U, with h(0) =1, defined by

h(z) =1+z+zi+2, 2 eU.
IffeA and
Z]f(g) <h(z), zeU (10)
then
Z?ES) <1+

where F is given by (1). The function q(z) =1+ z is best dominant.
Proof. In [4] the authors have showed that

z
h(z) =1 =
(&) =1+z2+——

is convex.

From (1) we have

zF(z) = 2/02 f®)dt, =zeU.
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Following the steps from the proof of Theorem 1 we obtain:

S of ()
PO ThE ~ )

Using (10) we have

p(z) + M =< h(z).

1+p(z)
By applying Lemma B we obtain
Fl
p(z) = ZF(S) q(z)=1+2 z€eU.

The function ¢(z) = 1 + z is the best dominant.
Using the conditions from Theorem 1 and Theorem 2 we can write the fol-
lowing

Corollary. If f € A and

zR zf'(z) z
1+ R 1 — U
+ Z+2—|—Rz< 02) =< +z+2+z, z €
then
2F'(z)
1 1 .
+ Rz < Fl2) <142z =ze€U
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A NUMERICAL METHOD FOR APPROXIMATING THE SOLUTION
OF A LOTKA-VOLTERRA SYSTEM WITH TWO DELAYS

DIANA OTROCOL

Abstract. In this paper, using the step method, we established the exis-
tence and uniqueness of solution for the system (1.2) with initial condition
(1.3). The aim of this paper is to present a numerical method for this

system.

1. The statement of the problem

Consider the following Lotka-Volterra type delay differential system:

3

2() = 2o (D)ra(f) {ci —agmi(t) — é

I'Z(t) = ¢z(t) > 0, t <t and ¢z(t0) > 0, 1<i:<n

p Oai-ng(n-’;-(t))}, t>tg, 1<i<n

There have been many studies on this subject (see [2], [5], [7]). In particular, for

n =2, Ti(t) =1, a; = 0 and Ti]}(t) =1- Ti];'v

1 <47 <2 0<k<m, the fact
that time delays are harmless for the uniform persistence of solutions, is established
by Wang and Ma for a predator-prey system, by Lu and Takeuchi and Takeuchi for
competitive systems.

Recently, Saito, Hara and Ma [7] have derived necessary and sufficient condi-
tions for the permanence (uniform persistence) and global stability of a symmetrical
Lotka-Volterra-type predator-prey system with a; > 0, ¢ = 1,2 and two delays.

For a nonautonomous competitive Lotka-Volterra system with no delays, re-

cently Ahmad and Lazer have established the average conditions for the persistence,

Received by the editors: 19.07.2004.
2000 Mathematics Subject Classification. 34L05, 47TH10.
Key words and phrases. Differential equation, delay, the step method.
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which are weaker than those of Gopalsamy and Tineo and Alvarez for periodic or
almost-periodic cases.
In this paper, using the step method [6], we established the existence and

uniqueness of solution for the following system

, t € [to,b], to <b (2)

with initial condition
x(t) = p(t), t € [to — 71, to]
y(t) = ¥(t), t € [to — 2, o]

Here 7 and 7 are constants with 7 > 0, 75 > 0, 71 < 75 and ¢, are continuous

(3)

functions.
On the basis of these results, the aim of this paper is to present a numerical

method for obtaining the solutions of system (2) with initial condition (3).

2. The existence and uniqueness of solution

We consider the system (2) with initial condition (3) and we established the
existence and uniqueness of the solution for the problem (2) + (3).
We have
xr € C[to — Tl,b] N Cl[to,b]
Yy € C[to — To, b] N Cl[to, b]
If we suppose that
(i) f, S C([to,b] X R4), 1=1,2

(ii)|fi(t7u17v17u7v) - fi(tau%v?au?v” < L1 |'LL1 - u2| +L2 |’l)1 — V2|,
Yy, ug, v1,v2,u,v € RVt € [to, b]
(ii7)|fi(t,U1,U2,U37U4) —fi(t7U1,U2,U3,'U4)| S L(|U1 _U1| + ‘UQ _U2| +

uz — v3| + [ug — v4|)

Vui,vi € R,’L = m, Vit € [to,b]
then the following result is given.
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Theorem 1. We consider the system (2) with initial condition (3). If the conditions
(i) and (ii) are satisfied, then the problem (2)+(8) has a unique solution.

Proof. We use the step method.
te [to,to + 7’1]

a'(t) = fut, z(t), y(t), p(t — 1), P (t — 72))
y'(t) = fat, z(t), y(t), p(t — 71), 9 (t — 72))
(to) = ¢(to)
y(to) = ¥(to)

So we have the Cauchy problem with f; continuous functions, i = 1,2. But

fi(t,+,-,u,v) : R — R are Lipschitz. Then it results from the Cauchy theorem that:

Nz € Cl[to,to—‘rTﬂ

3! Y1 € Cl[to,to-‘r’rﬂ

solution of the problem (2) + (3).
te [to + 71, %0 +2’7’1]

2(0) = Fulty2(t), y(0), 21 (6 — 7). (¢ — 72))
y'(t) = fo(t,z(t), y(t), x1(t — 1), y1(t — 72))
x(to +711) = x1(tg + 71)
y(to + 1) = y1(to + 1)

= dlzg € C[to +T1,t0+27'1]

= 3'y2 S C[to + 71,%0 +2T1]

solution of the problem (2) + (3).
te [to + nTy,to -I-’TQ]

a'(t) = fi(t, x(t), y(t), on(t — 1), yn(t — 72))
y'(t) = fat,z(t),y(t), 2n(t = 71), yn(t — 72))
x(to + nm) = xp(to + nr1)
y(to + n11) = yn(to + nm1)
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= z,q1 € Clto + nmy, to + 7]

=  Aly,11 € Clto + nr1, to + 72

So we obtained:

(@1(8),91(8), ¢ € [to,to + 7]

(2(t), y(t)) = (z2(t),y2(t)), t € [to+T1,t0 +271]
(Tnt1(t), ynt1(t)), t € [to +n71,t0 + T2

solution of the problem (2) + (3). O

Remark 1. We consider the system (2) with initial condition (3). If the conditions

(i) si (i1°) are satisfied, then the problem (2)+(3) has a unique solution which can be

obtained by the method of successive approximations.

3. The approximation of the solution

We consider the system (2) with initial condition (3)

This problem is equivalent with the delayed integral Volterra equations:

gj(t) _ (p(t), t S [to — Tl,to}
plto) + [1 fi(s,2(s), y(s),a(s —71),y(s —72))ds, t € [to, b
y(t) _ ’(/J(t), t e [t() — Tg,to]

¢(to) + ftifZ(Sa CU(S),y(S),.’E(S - Tl)’y(s - 7—2))dsv te [t07 b]

where f; € C([to,b] x RY), i =1,2.
We suppose that the hypotheses of Remark 1 are satisfied. Then the problem
(2) + (3) has a unique solution

xr € C[to—’Tl,to]mCl[to,b]

Yy € C[to*Tg,to]ﬂCl[to,b].
102



A NUMERICAL METHOD

Let («, 8) be the solution, which, by virtue of Remark 1, can be obtained by successive

approximation method. So, we have
a(t) = o(t), t € [to— 71,10
B(t) = (t), t € [to — 7o, to]

For t € [to, ] we have:

aq (t) +ft0 fi

{adﬂzw@ "
=t (s,
(8) = ¥(to) + f, folss

&

3) (3)7 ao(s — 1), Bo(s — 72))ds

am(t) = @(to) + [, F1 (8, 0m-1(5), Brn1(8); Q1 (s = 71), Bn—1(s — 72))ds
B (t) = 1(to) + ftto f2(s, am—1(8), Bn-1(8), am—1(s — 1), Bn—1(s — 72))ds
To obtain the sequence of successive approximations (4), it is necessary to
calculate the integrals which appear in the right-hand side. In general, this problem
is difficult. We shall use the trapezoidal rule.
Let an interval [a,b] C R be given, and the function f € C?[a,b].

Divide the interval [a, b] by points

a=xg<r1<T9<...<xTp=0>

h—
into n equal parts of length Ax = ¢

Then we have the trapezoidal formula:

Lﬂmm=

where 7, (f) is the remainder of the formula.

n—1

fla)+ f(b +2Zf372 +7ra(f) (5)

To evaluate the approximation error of the trapezoidal formula there exists

the following result.

Theorem 2. For every function f € C?[a,b], the remainder r,,(f) from the trape-
zoidal formula (5), satisfies the ineguality:
(b—a)®

Irn(£) < = max |f"(z)] (6)

12n2 z€[a,b]
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3.1. The calculation of the integrals which appear in the successive approx-
imations methods. Now we suppose that f; € C([tg,b] x R*), i = 1,2, and in order
to calculate the integral ., and (3, from (4), we apply the formula (5). Then we
divide the interval [tg, b] by the points:

O=tg<t1 <...<tp, =0 (7)

t—to

b
5o U= 0,1,2,..., i =1,n, n = [] ([[] is integer

where: ti = ti,1 + h, h = h

part). Thus we have
tr
am(tk) = / fl(sa Oém_l(S), 677L—1(5)7 O‘m—l(s - 7-1)7 Bm—l(s - 72))d5 =
to

t—to
2n
J1(trs am—1(tk), Bm—1(tr), Cm—1(tx — 71)s Br—1(te, — 72))+

[f1(to, tm—1(t0), Bm—-1(to), m—1(to — 71), Bm—1(to — 72))+

n—1
2 Z Ji(ts, aom—1(ti), Bm—1(ti), m—1(ti = 71), B—1(ti — 72))]+
i=1

o(to) + rmx(f1) (8)

where, for the remainder r,, 1 (f1), we have the estimation:

rma(f] < Ut mas {1 oo (s), Bnoa(s), 0moa(s = 1), fmoals = m))]]

)

k=0,n,méeN

We denote by an—1(8) = u, Bm—1(8) =0, am-1(s—71) = w, Bm-1(s—12) =
z. Taking into account the fact that:

[fl (37 am,1(8)7 5m71(3)» Oémfl(S - 7_1)7 5m*1(8 - 7—2))}2 =
a2f1 82f1 / anl / a2fl ! 62f1 /
0s2 + asﬁuu + 8887}0 asaww + Bsazz +

82]01 / 82fl N2 82fl /0 82fl /o 82fl 1!
asau“ + ou? )"+ 8u81}uv 8u8wuw + 8u82u S
82f1 / 82f1 i 32f1 "2 anl /ol anl 1!
358vv + 8u8vuv + ov? ) 6v8wvw 81}6sz +

anl / 82f1 ' anl U/’w/—i- aZfl (w/)2 azfl ’ol

858ww + Oudw Ovow Ow? Gwﬁzw at
82f1 / 82fl /i 82f1 1! 62f1 /! 82fl AV
68822 8uazu “t 81}82” “t 8w82w =t 022 ()"
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o 23852 + 2§§§L '+ 2555; o+t
%(u')Q + %(v')Q + %(w’)2 + B;J;l( N2+ 2(9 gl u'v'+
RSt )
2
2;0? 2+ % "y %v” + %w” + %z"
and
) = plio) + [ 10550 -2(5) B-a(6)sm-2(5 — 1), G5 — )

o (t) _ /t af1($,047n—2(3),ﬂm_2(5), am—Q(S — Tl),ﬂm_Q(S _ 72))d5

m—1 88
o) = /tt d* f1(s, Oémfz(s),ﬁmfz(s)biv;fz(t? —71), Brn—2(s — 7’2))d8

and denoting by

Mo — ax 8|a‘f1(s,u,v,w,z)
0 o] < 2 0591 Qu2 Quvs Qw4 0z |’
al <

S € [to,b}
lul , [v], Jw[,[2| < R

we obtain

|otm—1 ()] < (t = to)Mos [a, ()] < (t — to) Mo; |

a1 (8)] < (t —to) Mo.
Again from here we have:

[f1(8, 0tm—1(5), Brm-1(5), tm—1(s — 1), Bm—1(s — 72))] < My

where My = Mo + 12(t — to) Mg + 16(t — to) M3 and Mjdoes not depend on m and k.

For the remainder 7y, 1 (f1), from the formula (8) we have:

(t —tg)?
12n2

|rm,k(f1)| S Ml, m:O,l,Q,..., k:O,TL (9)

In this way we have obtained a formula for the approximative calculation of the
integrals from (4).
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3.2. The approximate calculation of the terms of the successive approxima-
tions sequence. Using the approximation (4) and the formula (8) with the remain-
der estimation (9), we shall present further down an algorithm for the approximate
solution of system (2) with initial condition (3).

So, we have:
tr

ai(ty) = J1(s,a0(s), Bo(s), ao(s — 1), Bo(s — T2))ds =

to

L=ty [f1(to, ao(to), Bo(to), ao(to — 71), Bo(to — 72))+

2n

n—1
23 filti, a0(ti), Bo(ti), ao(ts — 1), Bo(ti — 7))+
i=1

Fultie @o(t), Bota), ao(t — ), Bolty — 7))+
o(to) +r1x(f1) =
aq(ty) +rie(fi), k=0,n
aalty) = / Fu(5,00(5), 51 (5), an (5 — ), Bu (s — ) =

t ;nto [f1(to, @1 (to) + r1.0(f1), B1(te) + r1.0(f1),

ay(to — 1) + T1,0(f1),§1(t0 —72) +rio(f1)+

n—1
23 fults, @ (ts) +ria(f), Bu(t) + roi(fr),
i=1

&1(t: — 1)+ ria(fu), Ba(ts — 72) + ra(f)+
Fu(t, @1 (t) + 110 (f1), Bu(te) + 71n (1),
&1 (te — 71) + 11n(f1), Br(ts — 72) + 11 (1)) +
p(to) +r2k(f1) =

Ll [f1(to, @1 (to), Br(to), G (to — 71), Bi(to — 7))+

2n

n—1
2 Z Filts, @1(t), Bu(t), @t — 1), Bu(ti — 72))+
i=1

Filti, &1 (te), Bu (t), G (tr — 11), Ba(t — 72))]+
o(to) + ok (f1) =
ao(t) + 725 (f1)
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Observe that

r1k(f1) = aa(tr) — a1 (ty) and 72, (f1) = aa(ts) — aa(ts)-

and we pass from

Filta, aa(ts) +r1i(f1), Bi(ts) +r1i(fi), @t — 1) + ri(fr), Bu(ts — 1) + ri(f)
to
filts, @y (ts), Bu(ts), ar(t; — 11), Bu(ti — 7)) + same remainder
so that the remainders cumulated after ¢ it gives us 72 1 (f1).

We use the Taylor formula with respect to the last four variables from f;

around aj (¢;).

n—1
Far(fi)l < 5oL [m,o(fl) £ 3 )+ real)l |+ raa(f)] <

i=1

(t —tg)?
12n2

(t —t)?
12n2

(t —t)?
12n2

M1+(’I’L—1) M1—|—

2n 12n2

(t —to)? t—to  (t —to)®
=Y < L~—Y pMi(14+n—1+1

oz M= 5 L s M =1 D+

(t—to)? (n+1)(t —to) (t—to)?

L+1| <% Al(t—to)L+1

12n2 m S Ty 1[(t=to) L +1]

We continue in this manner, for m = 3,4, ..., by induction, and obtain:

t—mL<@—¢@3 Aﬁ>+

M, <

ul

t—to
2n

am(tr) = [f1(to, am—1(to) + Tm—1,0(f1), Bum—1(to) + Tm—1,0(f1),

Gm—1(to — 71) + Tm—1,0(f1), 5m71(t0 —T2) + Tm-1,0(f1))+
n—1

2 Z fi(ti, am—1(ts) + Tm—1,:(f1), B (t:) + Tm—1,:(f1),
i=1

Om—1(t; — T1) + Tm—1,:(f1), B (t; —72) + Tm—1,i(f1))+
fi(tn, Cm—1(t) + 'mel,n(fl)a/’émfl(tk) + P10 (f1),
Gm—1(te = 1) + P10 (f1), Bt (i — T2) + Frm1.0 (f1))]+

o(to) + rmi(f1) =
t—tg
2n

[fl(t07am—l(to)ygm—l(to)a Gm—1(to = T1), Bn1(to — 72))+
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2Zf1 ti, Gm—1(t:), Bm—1(t:), Gm—1(t; — 71), Bru—1(t; — 72))+

F1(thy @1 (t),s Bt (81 @1 (ke — T1), Brn—1 (b — )]+

o(to) +Tmk(f1) = Qm(tr) + rmk(f1), k= 0,n.

where

B N t—tg)3 e
i) = lon(t) — n(ti)] < gy (1) L 4 1] k=T
or

- t—10)3 1—(t—ty)™L™ t—19)3 M

Tm,k\J1)| > 1 =0,n, me

| 7 (f )‘ < ( 0) ( 0) < ( 0) 1 k N*

12n2 1—(t—to)L — 12n2[1—(t —to)L]’

In this way we got the sequence

(am(tk))mel\h k= 07”

which approximates the sequence of successive approximation (4) on the knots (7),

with the error

_ (t —to)3 M,
m tk) — m t S 10

By Picard’s theorem [1], we have the following estimation
(1) = 0t < 27 oo = g (11)

Analogously we calculate for (3,,.

In this way there was obtained the main result of our paper:

Theorem 3. Consider the system (2) with initial condition (3) under the condi-
tions of Remark 1. If the exact solution («,3) is approzimated by the sequence
((&m(tk)), (gm(tk)))mEN, k = 0,n, m < n on the knots (7), by the successive ap-
proximations method (4) combined with the trapezoidal rule (5), then the following

error estimation holds:

~ (t_t0)3 m—371m Ml
— < — — —
o) ) < G2 [0 08 el )
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B(te) - Bn(t)| < L= 10)

— 9 M,
- 1—(t—t0)L (

—" oo~ anllen + gy

Proof. We have
la(te) — am(te)] = la(ts) — am(te) + am(te) — dm(te)] <
< alte) — am (E6)| + o (k) — G (T1)]

which, by virtue of formula (10) and (11), can also be written

(t —to)* M (t —to)™L™
< _
‘ — 12n2 [1 — (t — tO)L] 1— (t _ to)L ||a0 al”c[to,b]

and, from here, it results immediately (12) and analogue (13). The theorem is proved.

O

lau(t) — am (tr)

Remark 2. For L < the errors from Theorem 3 converges.

t—to

4. Example

Consider the following Lotka-Volterra-type predator-prey system with two

delays 7 and 7o:

,t>0
y'(t) =y) +(t —2) —y(t —5)
with initial condition
xz(t) =1, t € [-2,0]
y(t) = 0) te [_570]
We apply the step method for this system:
te€0,2]
"t)==2(t)+1
PO =241
z(0) =1
y(t)=y(t)+1
) =9 = y1(t)
y(0)=0
t€[2,4)
'(t) = a(t) + z (¢ — 2
O =a0) tn =)
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y'(t) = y(t) + 1t = 2)

= Y2 (t)
y(2) = 11(2)
t € [4,5)
2/ (t) = x(t) + z2(t — 2) S (1)
z(4) = z2(4)
VO =y =)
y(4) = y2(4)
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EXTREMAL PROBLEMS OF TURAN TYPE

IOAN POPA

Abstract. We give estimations of certain weighted L?-norms of the k-
th derivative of polynomials which have a curved majorant. They are

obtained as applications of special quadrature formulae.

1. Introduction

The following problem was raised by P. Turan.
Let ¢ (x) > 0 for —1 < x <1 and consider the class P, , of all polynomials

of degree n such that |p,(x)| < ¢ (z) for =1 <z <1.

(k)

How large can max|_y 1) |pn (a:)‘ be if p, is arbitrary in P, ?

The aim of this paper is to consider the solution in the weighted L?—norm
for the majorant

w(m)=%,0§ﬂ§a.

Let us denote by

21 —1
(227)71-,2' =1,2,...,n, the zeros of T;, (z) = cosnd,x = cos b, (1.1)
n

x; = COS
the Chebyshev polynomial of the first kind,
ygk) the zeros of U,(lli)l () ,Up—1 () =sinnd/sin b,z = cosb, (1.2)
the Chebyshev polynomial of the second kind and

Gno1(x) =aUp—1 () — BUp—2 (2),0 < B < a. (1.3)
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Let 11, g be the class of all polynomials p,_1, of degree < n — 1 such that

a— fBx; .
|pn—1(x7,)| S 77'2’22 g &g eee
V91—

where the x;’s are given by (1.1) and 0 < 8 < a.

2. Results

Theorem 2.1. Ifp,_1 €1l, 3 then we have

1

1 , 2
_/1\/@ [pnfl (3”)} dx (2.1)

_2mn=1)[(e®+ %) (n = 2) (n? — 2n+2) + 5% (n? —n +1)]
= 15

with equality for pp—1 = Gp—1.

Two cases are of special interest:

1. Casea:ﬁzl,sﬁ(w):\/%v

n— %) arccos CL‘]

G (2) = Voo (2) = <l

cos [% arccos x]

Note that Pn—l,tp C Hl,ly Vi1 ¢ Pn—l,gm Va1 € H171.

Corollary 2.2. Ifp,_1 €Il11 then we have

1

1 , 2 2rn(n—1) (2n —1) (n? —n+3)
— dr < 2.2
/ V-2 [pnfl (ac)} T > 15 (22)
S
with equality for pp_1 = Vy_1.
II. Case a=1,38=0, p(x) = ﬁ , Guo1 =Up_1.
Note that Pn—l,ap C H1,07 U,_1 € P’n.—l,gaa U,_1 € H1,0~
Corollary 2.3. Ifp,_1 €Il1¢ then we have
1
1 p 2 2mn (n* — 1)
/ﬁ [Pr1 (@)] do < ——— (2.3)

-1
with equality for pp—1 = Up_1.
In this second case we have a more general result:
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Theorem 2.4. Ifp,—1 €Il10 and 0 <b < a then we have

1
_ 2
/ a—bx)® x2)k 1/2 [pgtkjll) (l’)i| dx (2.4)
1

_ma(n+k+1)! 2(n2 = (k+2)%) (+3)  9(11)a + 312
S T—k=2) | (kD) (2k43)(2k+5) | k+1)(2k+3)

k=0,....,n—2 , with equality for p,_1 = Up_1.
Setting a = 1,b = 1 one obtains the following

Corollary 2.5. If p,_1 € II11 then we have

/ - o) 2 )2 [ ()] (2.5)
21

rt k1) (= (k+2)7)+ (2k+5)
(n—k—2) * (2k+1)(2k +3) (2k + 5)

k=0,....,n—2 , with equality for p,_1 = Up_1.
Setting a = 1,b = 0 one obtains the following

Corollary 2.6. If p,—1 € Il o then we have

/1 k 1z [ Elkjll) (I)rdx (2.6)

27T(n+k+1)!>< n?+k*+3k+1
(n—k—2) " (2k+1) (2k + 3) (2k + 5)

k=0,...,n—2, with equality for p,_1 = Up_1.

3. Lemmas

Here we state some lemmas which help us in proving our theorems.

Lemma 3.1. Let p,_1 be such that |pp—1(z;)| < a—fri ;= 1,2, ...,n, where the ;s

— m?
are given by (1.1). Then we have
|p{n—1(y])’ S |G{rl—1(y.7)} ) k= 07 17 sy T — 17 and (31)
’p;hl ’ ’Gn 1 1 , p{nfl(_l)’ < |G%71(_1)’ . (3-2)
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Proof. By the Lagrange interpolation formula based on the zeros of T, and us-

. ’ (= 1)1+1n _
ing T/ (x;) = -— /5 , We can represent any polynomial p,_1 by pp_1(z) =

(1-2?)
T (x i 1/2
Ly Tl () (1 a2) Py ()
From Gp_1 (z;) = (1) a;f—% we have G,,_1 (z) = ; . f (o — p;) .

Differentiating with respect to x we obtain

n z)(z—z;)—Th(x i 1/2
P (@) = 3 BEEEEE ()™ (1= a2) P ().
On the roots of

T (x )—nUn 1 (z) and using (14) we find
[Pt () |_%; = (a = fa;) = Fed z ;jfj;“ |Gl ()] -
)

or taking into account that [; > 0 (see it follows
For ; ; taki hat 1 (1) > 0 foll

P )!s%é (1) (@ =Br) = |Gy ().
(-1

Similarly ’pn ’ ’Gn 1 ( 1)’ O

Lemma 3.2. (Duf fin — Schaef fer)[2] If q(z) =c ﬁ (x — ;) is a polynomial of
i=1

degree n with n distinct real zeros and if p € P, is such that
P/ (i) <1¢' (i)l (i=1,2,...,m),
then for k=1,2,...,n—1,

[P (@) < [0 (@)] whenever ¢®(a) = 0

Lemma 3.3. Let p,—1 be such that |pp—1(x;)| <

where the x;’s are given by (1.1). Then we have

(k+1)( (k))‘
Y;

D1 < U,(llil)(yj(»k))’ , whenever Uék;)l (y§k)) =0, (3.3)

k=0,1,....,n—1,and

k k
) < Uit o)

Gl ESUARRICE N (3.4)

b

Proof. For a =1, =0, Gn—1 = U,—1 and (3.1) give |p},_; (y;)| < |U}_1(y))|
and (3.2) [p/,_1(1)] < U7, _1 (1)

P (D] < UL (=D
Now the proof ends by applying Duffin-Schaeffer Lemma. O

We need the following quadrature formulae:

Lemma 3.4. For any givenn and k, 0 <k <n—1, lety(k) i=1,...,n—k—1,
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k
be the zeros of Ursjl

Then the quadrature formulae

I n—k—1
Ja=a P p@de=aalr 0 r@1+ 3 s (1Y),
—1

i=1

(3.5)

2261 (2k + 1) T (k +1/2) (n — k — 1)!
Ao = (n+ k) >0

and

/ (1= 22)" "2 f (2)dw = By [ (~1) + £ (1)) (3.6)
n—k—2
FCo[f (1) = £ W]+ Y wif (1)
=1

o 22k (2k + 3)T (k4 3/2)° (n — k — 2)!
0 (n+k+1)! ’

2(n2—(k+2)2) (2k +3) +4(k + 1) (2k + 5)
By =Cy

(2k+1)(2k +5)
have algebraic degree of precision 2n — 2k — 1.

Forr(z) = (a—bx)*, 0 < b < a the formulae

1
/r(x) (1— 22" Y2 f (@) de = Auf (—1) + By f (1) (3.7)

n 1

3 ) 1)

i=1

9261 (2k + 1) T (k +1/2)* (n — k — 1)! (a + b)*
Al - 9
(n+k)

22k=1 2k + )T (k+1/2)* (n— k — 1)! (a — b)®
(n+k)!

By
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and

/r(m) (1- 2?2 f (@) de = Cof (~1) + Dif (1) (3.8)

+Cof (<) = Daf )+ D war (55 £ ()

n—k—2
—1

Cy = By (a+b)* —3Cob(a+b)*, Dy = By (a —b)* +3Cob (a — b)?,
Cy=Co(a+b)*,Dy=Co(a—0b)°,
have algebraic degree of precision 2n — 2k — 4.

Proof. The first quadrature formula (3.5) is the Bouzitat quadrature formula of the
1pat

second kind [3, formula (4.8.1)], for the zeros of Ugi)l = cPrgljgf’lkJrQ).

Settinga = =k—1/2,m=n—k—11n [3, formula (4.8.5)] we find Ag and s; >0

(cf. [3, formula (4.8.4)]).

~
—
&
Il
N
I
&
—
—
Jr
5
SN—
o
S
ol
>~ +
| wleo
I
"
N—

we obtain Cj, and for

@)=+ PN ()

we find By.
If in formula (3.5) we replace f (x) with r (z) f () we get (3.7) and
if in formula (3.6) we replace f (x) with r (z) f (z) we get (3.8). O

4. Proof of the Theorems

Proof of Theorem 2.1
Setting k£ = 0 in (3.5) we find the formula

1
fl®)  om o TR
/1 e = g D+ £+ 3 ) (4.1)
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According to this quadrature formula and using (3.1) and (3.2) we have

J ot B @ do = £ Gy ()4 5 (s )42 (s )’

2 2

_ 1
s i T 2
<E (Gt (D) + £ Gy (1) +52( —1 () =f1¢11_?[%71(x)] dz.
Using the following formula ( &k = 0 in (3.6))
(z 37(3n2—2 n-2

f V1= ) d - 107(L(n2—1§ [f (_1) ( )] 4n(n2 1) [f/( ) /(1)} + Z:l vif (y;)

Ul _i(z) 2 27rn n —1 I 2(.L) 27rn(n—1)(n—2) n?—2n+42
we find f [\/1—:p2] = f ol = 15( )

z n(n— « n n _582(n2—n
and f %(;]dx: 2on(n D[ (0" %) (et 1) (n241) =56 (o2 -4 1)]

Proof of Theorem 2.4

According to the quadrature formula (3.7), positivitiness of s;’s, and using (3.3) and
(3.4) we have

1 _ 2

[ (a— bx)® (1- x2)k 1/2 [p(k—H) (9:)} dx

n—1
-1

= [0 0] B D @] T s () [ ()]

A [ 0] e [0 ]+ s (0) [ (40)

=1

IN

H%H

(a—bx)® (1— x2)k71/2 [U,(ijil) (x)} dx

2
In order to complete the proof we apply formula (3.8) to f = [ flkﬁl) (J;)] .

(k+1) (y(k+1))

Having in mind U, "} = 0 and the following relations deduced from [1]

k+1 n n”—(k+1) k+2 n®—(k k+1
U (1) = ) gl (1) — ety ),

Ut (ot (—1) = —u* () uP (),

n—1
we find
1

Jla=ba? (1=a) 2 (B0 @] o = €3 U157 (0] 0y [V 1)

+202U k)+1 ( )U(k+2) ( ) 2D U(k+l) ( )U(kﬁz) (1)
_ 7ra(n+k+1). [ [ —(k+2)%](a®+3b*) | 2(k+1)a +3b2}

= k=2 | @RI RT3 @RE5) T @R1)(2R+3)
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STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume L, Number 1, March 2005

ON GENERALIZED DIFFERENCE LACUNARY
STATISTICAL CONVERGENCE

BINOD CHANDRA TRIPATHY AND MIKAIL ET

Abstract. A lacunary sequence is an increasing integer sequence 0 = (k)
such that ko =0, kr —kr—1 — 00 as r — 00. A sequence z is called So(A™)—
convergent to L provided that for each ¢ > 0, lim,(k, — krfl)fl {the
number of kr—1 < k < kr : |AMxp—L| > e} = 0, where A"z, = A"y —
A™ 1z, The purpose of this paper is to introduce the concept of A™—
lacunary statistical convergence and A™-lacunary strongly convergence
and examine some properties of these sequence spaces. We establish some
connections between A™-lacunary strongly convergence and A™-lacunary
statistical convergence. It is shown that if a sequence is A™-lacunary
strongly convergent then it is A™-lacunary statistically convergent. We
also show that the space Sp(A™) may be represented as a [f,p, 0](A™)

space.

1. Introduction

Throughout the article w, £, ¢, ¢y, ¢, and ¢, denote the spaces of all,
bounded, convergent, null, statistically convergent and statistically null complex se-
quences. The notion of statistical convergence was introduced by Fast [6] and Schoen-

berg [19] independently. Subsequently statistical convergence have been discussed in

(51 [71, [8], [12], [16], [18]).

Received by the editors: 15.11.2004.
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The notion depends on the density of subsets of the set N of natural numbers.

A subset E of N is said to have density ¢ (F), if
0 (F)= lim ! En (k) exists
= 11 —_ X1
0o 1) — XE )

where xp is the characteristic function of E.
A sequence (x,,) is said to be statistically convergent to L if for every £ > 0,
d({k eN:|xp — L| > ¢e}) =0. In this case we write S —limx, = L or 2, — L(95).
The notion of difference sequence spaces was introduced by Kizmaz [10].
Later on the notion was generalized by Et and Colak [3] and was studied by Et and
Basarir [4], Malkowsky and Parashar [14], Et and Nuray [5], Colak [2] and many
others.

Let m be a non-negative integer, then
X (A™) ={z = (zx) : (A™ay) € X}

for X = fly, ¢ and c¢g, where m € N, APz = (x;) and A™z = (A™xy) =
(Amill’k — Amilzk_;,_l) .

The generalized difference has the following binomial representation:

Az, = zn:: (—1) (’Z‘) Toro-

The sequence spaces £o, (A™), ¢ (A™) and ¢y (A™) are BK-spaces, normed by

lzlla =D el + 1Al -

i=0
We call these sequence spaces A™—bounded, A™—convergent and A" —null se-
quences, respectively. The classes & (A™) and ¢y (A™) was studied by Et and Nuray
[5].

Let 8 = (k,) be the sequence of positive integers such that kg =0, 0 < k, <
ky41 and h,. =k, — k.1 — 00 as r — oo. Then @ is called a lacunary sequence. The
intervals determined by 6 will be denoted by I, = (k._1, k.| and the ratio k,/k,_1
will be denoted by g,..
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Let E, F C w. Then we shall write

M (E,F) = mExfl*F:{aew:axeFfor all z € E} [20].
xre

The set E* = M (E, ;) is called Kothe-Toeplitz dual space or a—dual of E.

A sequence space F is said to be solid (or normal) if (axzy) € E whenever
(zx) € E for all sequences (ay) of scalars with |ag| <1 for all k € N,

A sequence space F is said to be symmetric if (z3) € E implies (mﬁ(k)) ek,
where 7 (k) is a permutation of N,

A sequence space E is said to be convergence free when, if x is in E and if
yr = 0 whenever x; = 0, then y is in F,

A sequence space F is said to be monotone if it contains the canonical preim-
ages of its step spaces,

A sequence space E is said to be sequence algebra if z.y ¢ E whenever
z,y € F,

A sequence space E is said to be perfect if E = E* [9].

It is well known that if E is perfect = E is normal.

The following inequality will be used throughout this paper.

|ag + 0| < C{lar™ + [bx]™ } (1)

where ay, b, € C, 0 < p, < supypp = H, C = max (1,2771) .

The notion of modulus function was introduced by Nakano [15]. We recall
that a modulus f is a function from [0,00) to [0,00) such taht

i) f(z) =0if and only if x =0, ii) f(z +y) < f(x) + f(y) for x,y > 0, iii)
f is increasing, iv) f is continuous from the right at 0.

It follows that f must be continuous everwhwre on [0,00). A modulus may be
unbounded or bounded. Ruckle [17] and Maddox [12] used a modulus f to construct
sequence spaces.
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2. Definitions and Preliminaries

The notion of almost convergence of sequences was introduced by Lorentz
[11]. The notion was generalized by Et and Bagarir [4].
Definition 2.1 [4] The sequence (z;,) is said to be A™—almost convergent

to L if

k+n
lim ~ A™z; — L) = 0, uniformly in k.
nergonZ;l( x ) uniformly in

We denote the class of all A”™—almost convergent sequences by AC (A™).
Definition 2.2 [4] The sequence (z,,) is said to be A™— strongly almost

convergent to L if

k+n
lim — Z |A™z; — L| = 0, uniformly in k.
e e

We denote the class of all A™—strongly almost convergent sequences by |AC| (A™).
Definition 2.3 [8] The sequence (z) is said to be lacunary statistically

convergent to L if for each € > 0,

1
lim —card{k €I, : |z, — L| > e} =0.

T—00 r
The class of all lacunary statistically convergent sequences is denoted by Spy.

Definition 2.4 A sequence (x,,) is said to be A™—Cesaro summable to L if

n

1
lim — E (A™zxp — L) =0.
n—oo n
k=1

The class of all A™—Cesaro summable sequences is denoted by o1 (A™).
Definition 2.5 A sequence (z,,) is said to be A™—strongly Cesaro summable
to L if )
lim_ % > Ay — L =0.
k=1

The class of all A™—strongly Cesaro summable sequences is denoted by |o1]| (A™).

Now we introduce the definitions of A" —lacunary statistically convergence,
A™— lacunary strongly convergence and A™—lacunary strongly convergence with
respect to a modulus f.
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ON GENERALIZED DIFFERENCE LACUNARY STATISTICAL CONVERGENCE

Definition 2.6 Let # be a lacunary sequence, the number sequence z is

A™—lacunary statistically convergent to the number L provided that for every € > 0,

1
lim h—card {kel :|A™x, —L| >} =0.

™ —00 r

In this case we write Sp(A™) — limay, = L or xp — L(Sp(A™)). We denote
A™—lacunary statistically convergent sequence by Sy (A™).
Definition 2.7 Let 6 be a lacunary sequence. Then a sequence (zy) is said
to be Cy (A™) —summable to L if
Jim k; M~ L) =0.
We denote the class of all Cy (A™) —summable sequences by Cy (A™).
A sequence (xy) is said to be A™— lacunary strongly summable to L if
lim x Z |A™xy, — L| = 0.
=00 hy kel,
We denote the class of all A™— lacunary strongly summable sequences by Ny (A™).
In the case L = 0 we shall write NJ (A™) instead of Ny (A™). It can be shown that

the sequence space Ny (A™) is a Banach space with norm by

m

Izl pp = D lail +sup o Z |A™ |

i=1 ke,

If we take m = 0 then we obtain the sequence space Ny which were introduced
by Freedman et al.[1].

Definition 2.8 Let f be a modulus function and p = (pi) be any sequence

of strictly positive real numbers. We define the following sequence set

[f,p,0] (A™) = {x = (zx) : hmhi Z [f (JA™x — L|)]"* =0, for some L} ,

kel,

Ifx € [f,p, 0] (A™), then we will write x, — L [f, p, 0] (A™) and will be called
A™—lacunary strongly summable with respect to a modulus f. In the case pi, = 1 for
all k € N, we shall write [f, 0] (A™) instead of [f,p,0] (A™). It may be noted here
that the space [f, 0] (A™) was discussed by Colak [2].
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3. Main Results

In this section we prove the results of this article. The proof of the following
results is a routine work.

Proposition 3.1 Let 6 be a lacunary sequence, then Sy (Am’l) C Sp (A™).
In general Sy (A?) C Sp(A™), for all i =1,2,..., m — 1. Hence Sy C Sp (A™) and
the inclusions are strict.

Theorem 3.2 If a A™—bounded sequence is A™—statistically convergent to
L then it is A™—Cesaro summable to L.

Proof. Without loss of generality we may assume that L = 0. Then,

— E ATzl < — E |[A" x| = — E [AM x| + — E |A™ x|
n n n n
k=1 k=1 1<k<n 1<k<n
NG ATz | <e

1
< —Kecard{k <n:|ATzy| > e} + D
n n

Thus z € o1 (A™) . Converse of Theorem 3.2 does not holds, for example, the sequence
xz=(0,-1,—-1,-2,-2,-3,—-3,—4, —4, ...) belongs to o1 (A) and does not belong to
S(A).

Theorem 3.3 Let 6 be a lacunary sequence, then
i) If a sequence is A™—lacunary strongly convergent to L, then it is A™—lacunary
statistically convergent to L and the inclusion is strict.
ii) If a A™—bounded sequence is A™—lacunary statistically convergent to L then it
is A™—lacunary strongly convergent to L.
iii) loo (A™) N S (A™) = Lo (A™) N Ny (A™).

Proof. We give the proof of (i) only. If ¢ > 0 and x — L (Np (A™)) we can

write

djAma — LI > > |AMa— L > e |{k €L : |AMz), — L] > €}

kel,. kel,.
[A™z—L|>e

Hence xp — L (Sy (A™)). The inclusion is strict. In order to establish this, let
0 be given and define A™zy to be 1,2, ..., [\/hr at the first [\/hr integers in I,
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and A™z, = 0 otherwise. Then z is not A™—bounded, x — 0(Sg(A™)) and
xg = 0 (Ng (A™)).

Note that any A™—bounded Sy (A™)—summable sequence is
Cy (A™) —summable.

Theorem 3.4 Let 6 be a lacunary sequence, then S (A™) = Sy (A™) if and
only if 1 < lim, inf ¢, < lim, sup ¢, < oo.

The proof of Theorem 3.4, we need the following lemmas.

Lemma 3.5 For any lacunary sequence 0, S (A™) C Sy (A™) if and only if
lim, inf ¢, > 1.

Proof. If liminf, ¢, > 1 there exists a § > 0 such that 1 + 6 < ¢, for
sufficiently large r. Since h, = k. — k,_1, we have fT: < %. Let x, — L (Sp (A™)).

Then for every € > 0,

1 1

— Wk <k :|AMz— L >¢e}| > —[{kel :|AMxp— L| > e}

k. k.
> L Litherjama, -1z e}
= 1+ hr ro- Tk Z €7

Hence S (A™) C Sp (A™).
Conversely suppose that liminf, ¢, = 1. If we consider the sequence defined

by,

1, ifiel,, forsomej=1,23,..
Aml'i = ’
0, otherwise

then x € ly (A™) but © ¢ Ny (A™). However, x € |o1] (A™). Theorem 3.3 (ii)
implies that = ¢ Sy (A™). On the other hand if a sequence is strongly A™—strongly
Cesaro summable to L then it is A™—statistically convergent to L (Theorem 4.2, Et
and Nuray [5]). Hence S (A™) ¢ Sp (A™) and the proof is complete.

Lemma 3.6 For any lacunary sequence 6, Sp (A™) C S (A™) if and only if
lim sup,. ¢, < oco.
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Proof. Sufficiency can be proved using the same technique of Lemma 3 of

[8]. Now suppose that lim sup,. ¢. = co. Consider the sequence defined by

1, if k1 <i<2k,; 1 forsomej=1,23,..

Aml‘i =
0, otherwise

Then x € Ny (A™) but = ¢ |o1| (A™). Clearly we have x € Sy (A™), but Theorem
4.2 of Et and Nuray [5] ¢ S (A™). Hence Sg (A™) € S (A™). This completes the
proof.

Lemma 3.7 If £ denotes the set of all lacunary sequences, then
[AC| (A™) = Lo (A™) N (Nge£So (A™)) .

Proof. Omitted.

Lemma 3.8 Let E be any of the spaces o1, |o1], Cy, Ny, NJ, AC, |AC| and
Sp. Then the sequence spaces E (A™) are neither solid nor symmetric nor sequence
algebra nor convergence free nor perfect.

Proof. Proof follows from the following examples.

Example 1. Let § = (2"). Then z = (k) € N§ (A?), but ax = (apzi) ¢
N9 (A?), for aj, = (—1)* for all k € N. Hence NJ (A™) is not solid.

Example 2. Let 6 = (27). Then = = (k) € (Ng)(A). Let (yx) be a

rearrangement of (), which is defined as follows:
(yr) = {21, T2, ¥4, T3, T9, T5, T16, T, T25, 7, T36, T8, 49, T105 -+ } -

Then (yx) ¢ (No) (A).

Example 3. Let § = (2"). Then z = (k) € Ny (A?). Let (yx) be a re-
arrangement of (z,), which is defined as above, then (y;) ¢ NJ (A?).

Example 4. Let § = (2"). Consider the sequences z = (k), y = (k™ !),
then z,y € N§ (A™) but x.y ¢ NJ (A™). For the others spaces consider the sequences
p= (k) y = (B7).

Example 5. Let 6 = (2"). Then (x;) = (1) is in N§ (A). The sequence
(yx) defined as yx, = k for all k € N does not belong to N§ (A). Hence NJ (A) is not
convergence free.
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Note. Similarly different examples can be constructed for the other spaces.

Now we will give some relations between A" —lacunary statistically conver-
gent sequences and A™— lacunary strongly summable sequences with respect to a
modulus function.

Theorem 3.9 The inclusion [f,p,0] (A™™1) C [f,p,0] (A™) is strict. In
general [f,p,0] (AY) C [f,p,0] (A™) for all i = 1,2,...,m — 1 and the inclusion is
strict.

Proof. Straight forward and hence omitted.

Theorem 3.10 Let f, f1, fo be modulus functions. Then we have

i) [£,01(A™) € [f o f1.0] (&™),

ii) [f1,p, 0] (A™) N [f2,p,0] (A™) C [f1 + f2,p, 0] (A™).

Proof. i) Let ¢ > 0 and choose § with 0 < § < 1 such that f(t) < ¢ for
0 <t <4. Write yp, = f1 (|JA™xx — L|) and consider

Z fyk) = Zf(yk) +Zf(yk)
kel 1 2
where the first summation is over gy, < § and second summation is over y; > J. Since

f is continuous, we have
S F) < hee 2)
1
and for yi > §, we use the fact that

Yk
<= <14 =
Yk <5 +5

By the definition of f we have for y, > 9,

fl) <2/ (05

Hence
Zf ye) < 2f(1 lzyk (3)
From(2) and (3), we obtain [f, 0] (A™) C [f o f1, ]( ™y,

ii) The proof of (ii) follows from the following inequality

[(f1 + f2) (1A 2k — L™ < C[fy (A2 = L™ + C [f2 (|A™ 2z — L™
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The following result is a consequence of Theorem 3.10 (i).

Proposition 3.11 ([2]) Let f be a modulus function. Then Ny (A™) C
1,01 (A™).

Theorem 3.12 Let 0 < pi < g and (gx/px) be bounded. Then [f, ¢, 8] (A™)
C [f,p,01(A™).

Proof: If we take wy, = [f (|A™x), — L|)]?* for all k. Following the technique
applied for establishing Theorem 5 of Maddox [13], we can easily prove the theorem.

Theorem 3.13 The sequence space [f,p, 0] (A™) is neither solid nor sym-
metric nor sequence algebra nor convergence free nor perfect for m > 1.

To show these, consider the examples cited in Lemma 3.8.

Theorem 3.14 Let f be modulus function and sup,pr = H. Then
[F,,6(A™) © Sy (A™).

Proof. Let z € [f,p, 0] (A™) and € > 0 be given. Then

D DTSN 7)) RS SN 1) &

" kel, r kel,
|A™z),—L|>e

b Y (AT L

" ker,|AMzy, — Ll <e

S D DS T ST

ke kel,
|[A™ gy, —L|>e
S o (CIRENTICILY
kelr

> ok € 0o [A7ay — | = e min ([f (][ ().
Hence x € Sp (A™).
Theorem 3.15 Let f be bounded and 0 < h = infypr < pr < sup,pr =
H < 0o. Then Sy (A™) C [f,p, 0] (A™).
Proof. Suppose that f is bounded and let € > 0 be given. Then

1
S AT I =S (AT L)
" kel ' kel |A™x — L] > €
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1 m
- > [f (JA™ 2y — L|)]*
kel |AMz — L] <e
1 1
< oy max (K K)o [f ()™
" kelyp r kel,

1
< max (Kh,KH) 7 Hk €I, :|A™x — L| > €}

+max (£()", (")
Hence = € [f,p, 0] (A™).
Theorem 3.16 Let f be bounded and 0 < h = infypr < pr < sup,pr =
H < co. Then Sy (A™) = [f,p, 0] (A™) if and only if f is bounded.
Proof. Let f be bounded. By Theorem 3.14 and Theorem 3.15 we have
So (A™) = [f,p, 0] (A™).
Conversely suppose that f is unbounded. Then there exists a sequence ()

of positive numbers with f (t;) = k2, for k = 1,2, ... . If we choose

te, i=k2,i=1,2,...
ATYin:

0, otherwise

then we have

Ltk <n:jamay > ey < V0

n n

for all n and so = € Sy (A™), but = ¢ [f,p,0] (A™) for 6§ = (2") and py = 1 for all
k € N. This contradicts to Sg (A™) = [f, p, 0] (A™).
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BOOK REVIEWS

Jirgen Appel, Espedito De Pascale and Alfonso Vignoli, Nonlinear
Spectral Theory, De Gruyter Series in Nonlinear Analysis and Applications, Vol.
10, Walter de Gruyter, Berlin - New York 2004, xi + 408 pages, ISBN: 3-11-018143-6.

The spectral theory of bounded linear operators on Banach spaces is one of
the most important branches of functional analysis and operator theory, with deep and
far reaching applications to spectral theory of differential operators and to classical
quantum mechanics.

It is expected that a reasonable definition of the spectrum of a continuous
nonlinear operator F' acting on a Banach space X should agree with the usual one
when F' is linear and, at a same time, to retain some of its essential properties,
as nonemptiness, compactness, to contain the eigenvalues, etc. By a sequence of 8
simple examples given in the introduction the authors show some of the drawbacks
of various natural definitions of the spectrum of a nonlinear operator, leading them
to the conclusion that the main matter is not the intrinsic structure of the spectrum,
but rather its usefulness in the study of nonlinear operator equations.

The book contains a systematic presentation of various spectra for nonlinear
operators, along with some applications. Numerous examples and tables illustrate
the relations between these spectra, as well as some shortcomings arising for each of
them.

The first chapter contains an overview of the spectral theory of bounded linear
operators, the second one is concerned with various metric and topological properties
of nonlinear operators (the Lipschitz property, a-contractibility, etc), while the third

one presents some results on the invertibility of nonlinear operators, a question closely
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related to the solvability of nonlinear equations - the main target of the nonlinear
spectral theory.

Various kinds of spectra for nonlinear operators are presented in Chapters 4
through 9: 4. The Rhodius and Neuberger spectra, 5. The Kachurovskij and Dérfner
spectra, 6. The Furi-Martelli- Vignoli spectrum, 7. The Feng spectrum, 8. The Vith
phantom, 9. Other spectra.

Chapter 10 is concerned with the quite subtle notion of eigenvalue of a non-
linear operator. Again, a direct transpose of the definition to the nonlinear case does
not fit best the needs of the theory, this being done by other equivalent definitions,
apparently different from the familiar one. Chapter 11 emphasizes through an appro-
priate definition of the numerical range of a nonlinear operator, the influence of the
geometry of the underlying Banach space in the study of nonlinear spectra. The last
chapter of the book, Chapter 12, is devoted to applications to general solvability of
nonlinear equations and to bifurcation theory. A nonlinear Fredholm theory is applied
existence and perturbation results for p-Laplacian.

Each chapter ends with a section of bibliographical and historical notes and
remarks. The book is fairly self-contained, the prerequisites being a modes back-
ground in nonlinear functional analysis and spectral theory.

As the authors point out in the introduction, the theory is far from being
complete - in fact there is no a satisfactory definition of the spectrum in the non-
linear case. The book can be considered as a systematic introduction to this area,
emphasizing the diversity of directions in which current research in nonlinear spectral
is developing.

S. Cobzasg
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Jon P. Davis, Methods of Applied Mathematics with a MATLAB overview,
Birkhauser Verlag, 2004, XII, 721 p., ISBN: 0-8176-4331-1.

This book is devoted to the application of Fourier Analysis. The author
mixed in a remarkable way theoretical results and application illustrating the results.
Flexibility of presentation (increasing and decreasing level of rigor, accessibility) is a
key feature.

The first chapter is an introductory one.

An introduction to Fourier series based mainly on inner product spaces is
given in chapter 2.

The third chapter treats elementary boundary value problems. Besides ap-
plications of the Fourier series, it presents standard boundary value problem models
and their discrete analogous problems.

Higher-dimensional, non rectangular problems is the topic of the fourth chap-
ter. These includes Sturm-Liouville Theory, series solutions, Bessel equations and
nonhomogeneous boundary value problems.

Chapter 5 is an introduction to functions of complex variable. Here ones
discuss basic results and their applications to problems of fluid flow and transform
inversion.

The sixth chapter introduces Laplace transform and their applications to
ordinary differential equations, circuit analysis and input-output analysis of linear
systems.

Continuous Fourier transform is the topic of seventh chapter. Also applica-
tions of Fourier transform to ordinary differential equations, integral equations, partial
differential equations are included here.

Chapter eight is on discrete variable transforms. It treats discrete variable
models, z-transform, discrete and fast Fourier transform and their properties. Com-

putational aspects of fast Fourier transform are also pointed.
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The last chapter ” Additional Topics” introduces methods that are special-
ization of those treated previously such as two-sided and Walsh transform, wavelets
analysis and integral transform.

The book contains extensive examples, presented in an intuitive way with high
quality figure (some of them quite spectacular), useful MATLAB codes. MATLAB
exercises and routines are well integrated within the text, and a concise introduction
into MATLAB is given in an appendix. The emphasis is on program’s numerical
and graphical capabilities and its applications, not on its syntax. A large variety of
problems graded from difficulty point of view. Applications are modern and up to
date. Reach and comprehensive references are attached to each chapter.

Intended audience: especially students in pure and applied mathematics,
physics and computer science, but also useful to applied mathematicians, engineers

and computer scientists interested in applications of Fourier analysis.

Radu Trimbitas

Donaldson, S.K., Eliashberg, Y., Gromov, M. (Eds.), Different Faces of
Geometry, Kluwer Academic / Plenum Press (International Mathematical Series),

2004, Hardback, 404 pp., ISBN 0-306-48657-1.

Everybody knows how difficult can be to give a proper definition. This is,
particularly, true when it comes to geometry. I think it’s quite impossible to give
a definition of contemporary geometry. Definitely, the old ethymological definition
doesn’t do the job anymore. In fact, the editors (three of the most influential mathe-
maticians of our times, who don’t need any formal introduction) claim that “there is,
perhaps, no branch of mathematics which cannot be considered a part of geometry,
when approached in the right spirit”. Their idea, therefore is that it is probably better
to think of geometry as being rather a collection of subjects than a single field. To
put it another way, the geometry has many “faces”.
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The aim of the editors of this book is to provide a readable description of
some of these faces, by asking leading specialists to discuss the current state and
prospects of their fields of expertise. These fields include (but are not restricted to):
amoebas and tropical geometry, convex geometry, differential geometry of 4-manifolds,
3-dimensional contact geometry, Lagrangian and Special Lagrangian submanifolds,
Floer homology. It is probably no accident that many of these topics are closely
related to the research interests of the editors themselves.

While I didn’t mentioned all the subjects touched in this book, I would like,
nevertheless, to mention at least the authors of the contributions: G. Mikhalkin,
V.D. Milman, A.A. Giannopoulos, C.LeBrun, Ko Honda, P. Ozsvath, Z. Szabé, C.
Simpson, D. Joyce, P. Seidel and S. Bauer.

The books of this kind, providing a rapid access to reliable information on
different fields of mathematics are of a great help for many people, from graduate
students and researchers. Nowadays is quite difficult to find your way through a field
which is not exactly your own and a hand lent by an expert is always very helpful.
The book under review is no exception. The subjects chosen belong to the most active
fields of research in the last period and the authors manage to describe them in an
accessible way. I would gladly recommend it to anyone with an interest in geometry,
even if he/she has no intention whatsoever to specialize in one of the fields described
in the book. It’s always nice to know what your neighbors are doing.

I'd like to finish this review by mentioning that this book (like any other in
this series, edited by the Russian mathematician Tamara Rozhkovskaya) was simul-

taneously published in Russian.

Paul A. Blaga

135



BOOK REVIEWS

Pei-Kee Lin, Kothe-Bochner Function Spaces, Birkhauser Verlag, Boston-
Basel-Berlin 2004, xii+-370 pp, ISBN: 0-8176-3521-1.

Let (2,%, p) be a complete measure space. A real Banach space E consisting
of equivalence classes (modulo equality a.e.) of locally integrable real-valued functions
is called a Ko6the function space provided:

(i) if h € E and g : Q — R is measurable and g(w)| < |h(w)| a.e. on Q, then
g€ Eand |lg| < [[hll;

(ii) for every A € ¥ with pu(A) < oo the characteristic function 14 of A
belongs to E.

Every Kothe function space is a Banach lattice with respect to the pointwise
order: f <g < f(w) <g(w) a.e. on Q. Kothe function spaces form an important
class of Banach function spaces and Banach lattices as can be seen, for instance, from
the second volume of the treatise J. Lindenstrauss and L. Tzafriri, Classical Banach
spaces, Springer Verlag, Berlin 1979. If X is a Banach space and F is a Kothe function
space over the complete measure space (£, 1), then the Kéthe-Bochner function space
E(X) is formed by all strongly measurable functions f : @ — X such that the function
w || f(w)]|x belongs to E. Equipped with the norm ||||f(*)|| x|z, E(X) is a Banach
space.

The main questions the author of the present book addresses are: if both of
the spaces F and X have a geometric property P, then does the space E(X) have
the same property, and conversely, if E(X) has the property P, then must E and X
have the property P ? For P one takes various rotundity and smoothness conditions
(strict convexity, local uniform convexity, uniform convexity, smoothness, etc) or other
properties of geometric or topological nature as Dunford-Pettis, Radon-Nikodym,
Kadec-Klee properties. Chapters 5.1 and 5.11, both headed Stability properties, are
concerned with the following problem: if f is an extreme (smooth, exposed, etc) point
of the unit ball of E(X) then is f(w)/|| f(+)|| and extreme (smooth, exposed, etc) point

of the unit ball of X for a.e. w € suppf, and, conversely, is this property sufficient
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for f to be an extreme (smooth, exposed, etc) point of the unit ball of F(X) ? These
chapters contain also a discussion of the containment of ¢y and ¢; in F(X).

The basic properties of Kothe and Kothe-Bochner function spaces are treated
in the third chapter Kothe-Bochner function spaces. Chapters 1, Classical theorems
and 2, Convezity and smoothness, contain some basic results (most of them with
complete proofs) on Banach spaces as strict convexity, uniform convexity, smoothness,
Dunford-Pettis property, conditional expectations and martingales, tensor products.
The last chapter of the book, Chapter 6, Continuous function spaces, is concerned
with the Banach space C(K, X).

Each chapter contains a set of exercises completing the main text, open ques-
tions for further study, remarks and historical notes, and bibliography.

The book is clearly written and succeeds to present in an accessible manner
some deep and difficult results in the domain. It can be recommended for advanced
graduate students and for researchers in functional analysis, probability theory, oper-

ator theory and related fields.

S. Cobzas

Ole Christensen and Khadija L. Christensen, Approximation theory -
From Taylor Polynomials to Wavelets, Applied and Numerical Harmonic
Analysis Series, Birkhduser Verlag, Boston-Basel-Berlin 2004, xi+156 pp, ISBN:0-
8176-3600-5.

This book contains an elementary introduction to approximation theory, in
a way which naturally leads to the modern field of wavelets. One of the main goals of
this presentation is to make it clear to the reader that the mathematics is a subject
in a state of continuous evolution. The exposition demonstrates the dynamic nature
of mathematics and how the classical disciplines influence many areas of modern
mathematics and their applications.
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The focus here is on ideas rather than on technical details. The book may be
used in courses on infinite series and Fourier series, where ideas and motivation are
more important than proofs. Some of the material from the two chapters on wavelets
can be used as a guide towards more recent research. The wavelets are presented as
a natural continuation of the material from the previous chapters.

The information is accessible to readers at several levels. Some basic material
is placed at the beginning of each chapter preparing the reader for the more advanced
concepts and topics in the latter part of that chapter. Only selected results are proved,
while more technical proofs are included in an appendix.

The first chapter, dedicated to approximation by polynomials, contains ele-
mentary results. It also gives an idea about the content of the entire book. The next
chapter presents the infinite series. It contains several classical entertaining examples
and constructions. The Fourier analysis is treated in Chapter 3.

Wavelet analysis can be considered a modern supplement to classical Fourier
analysis. Therefore, the chapters 4 and 5 are dedicated to this subject. Chapter
4 describes wavelets more in words rather than in symbols, but it gives the reader
an understanding of the fundamental questions and concepts involved. It also tells
the story of how the wavelets era began and discusses the applications in the signal
processing.

In Chapter 5, which is slightly more technical, the multiscale representation
associated to wavelets in the special case of the Haar wavelets is explained. It also
presents the Gabor system. In this chapter the role of wavelets in digital signal
processing and data compression is discussed, along with the FBI’s manner of using
wavelets to store fingerprints.

Each of the chapters contains more examples and ends with a few exercises.
The book can be used as a good textbook or for self-study reference for students.
Readers find the motivation and the background material pointing towards advanced

literature and research topics in pure and applied harmonic analysis and related areas.

Radu Lupsa
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