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QUANTITATIVE APPROXIMATIONS
BY USING SCALING TYPE FUNCTIONS

OCTAVIAN AGRATINI

Abstract. The focus of the paper is to study a class of linear positive
operators constructed by using a quasi-scaling type function. Jackson type

inequalities are established in the framework of different function spaces.

1. Introduction

In Approximation Theory an interesting tool with a rich mathematical con-
tent and great potential for applications, is materialized by sequences of linear positive
operators generated by a scaling type function.

The aim of the present note is to investigate a general class (L )rez of linear
positive operators of wavelet type. Our paper is designed as follows. Following [1], in
Section 2 we recall the construction of Ly, k € Z, operators and we indicate the main
notations and results which will be used in the sequel. Further on, in Section 3 we use
this class to approximate smooth real valued signals, more precisely, functions which
possess derivatives of high order. We establish both pointwise and global estimates
of the rate of convergence of our operators. Under additional assumptions, we prove
that each y~25~'L,, operator has the degree of exactness equal to 1. The last section
is devoted to estimate the approximation of bounded functions by L, with the help
of a Lipschitz-type maximal function.

Clearly, the research along a certain line can be developed by different angles.

We point out that our approach is made by using tools and methods which characterize
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the approximation of functions by linear positive operators. Similar results are quite
familiar in the Littlewood-Paley and wavelets literature. A good illustration of this

can be found in Daubechies’ book [4; Section 6.5] and elsewhere.

2. Background and preliminaries

Setting Ny := NU{0}, we consider a bi-dimensional net (ay, 67), (k,7) € ZXZ,
d €]0, 00[, and
a_p = a,;l, 0 < ay < ag41, for every k € Ny. (1)

Clearly, a_(p41) < a—p for each p € Ny and ap = 1. We point out that the
above net generalizes the couples (2%, j), (k, j) € Z x Z, broad used in the construction
of many wavelet type discrete operators. Operating both on the sequence (ax)ren,
and on the ratio d, we are able to transform the net in accordance with the problem
data and, therefore, it is more flexible then the previous one.

Let Ly j0c(R) be the vector space of the real-valued functions defined on R
and locally integrable, i.e. integrable on any compact interval of the real line. We
make the following informal definition.

Definition 2.1. Let § > 0 be fized. A function ¢ : R — [0, 00| satisfying the following
conditions:

(i) ¢ is a bounded function belonging to L1 j0c(R),

(ii) a positive constant o exists such that supp(p) C [—a, ], (2)

(#ii) a positive constant vy exists with the property

o0

Z oz +07) ==, for every x € R, (3)

j=—oc0

is called a scaling function of (J,7) type.

Using the sequence (ay)rez defined by (1) and a scaling function ¢ of (,7)

type we generate the functions

orj(x) = ag olarr +65), xR, (k,j) €Z x L. (4)

As usual in wavelet transforms, k is named the dilation index and j is named
the translation index. Dilation by larger k compresses the function ¢ on the z-axis.
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Altering j has the effect of sliding the function ¢ along the z-axis. We mention that
condition (3) has nothing to do with the property of an orthogonal scaling function
of a multiresolution analysis (MRA), intensively used in the signals theory.

At this point we are in position to introduce the announced sequence of
operators.

For every k € Z and f € L1 jo.(R) we define the operator Ly, as follows

o

(Lif)@) = Y (f,oni)eni(@), weR, (5)

j=—o00

where the functions ¢y, ; are given by (4) and (f, ¢x,;) = / f(t)ow,;(t)dt.

As usual, we denote by C(R) (B(R), respectively) tRhe space of all continuous
(bounded, respectively) real valued functions on R. The spaces B(R) and B(R)NC(R)
can be equipped with the norm || - || of the uniform convergence (briefly, the sup-
norm). Also L,(R), p > 1, stands for the vector space of all real valued Lebesgue
integrable functions defined on R endowed with the usual norm || - || (). In the
Hilbert space of square integrable functions, the inner product is denoted by (-, -).

Examining Definition 2.1 we deduce that ¢ belongs to the Lebesgue space
L>(R). The same statement is true for ¢y, ;. Also, for each (k, j) € ZxZ the coefficient
(f,¢k,;) exists and is finite. Because of the function ¢ has bounded support, for any
real z the summation in (5) involves only a finite number of terms and, consequently,
(Lif)(z) is well-defined on R.

A more explicit look of L f is the following

L@ = elas +6) [ etwr (52 du (©)

=T supp(¢)

The construction of L f guarantees that Ly is a positive linear operator.

In the particular case a, = 2F this operator becomes the operator A, studied
in [3]. The authors have used a scaling function ¢ of (1,1) type.

As regards Ly, operator, a result presented in [1; Theorem 1] will be read as

follows.
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Proposition 2.1. Let Ly, k € Z, be defined by (5). For every function f € C(R) the

following inequality
|(Lif) (@) = 7*0f (2)] < 7*0w(f;200-k), kELZ, zER,

holds true, where a is given at (2) and w(f;-) represents the modulus of continuity

associated to f.
Further on we collect some direct properties of the functions ¢ and ¢y ;.
Lemma 2.2. If ¢ is a scaling function of (J,7) type then one has

() el = / o(@)de = / (@ + 6j)de = 78, j € Z; (7)
)

i < < dsu z);

()m_ lell.®) <, /v gcegso( )

(iii) [l on.ill Ly )y = Va—x¥0, [n.illLo) = 1l o w)-
Since the proof is based on simple computations, we omit it.
We end this section proving that Lj enjoys the self-adjointness property on

the Hilbert space La(R).
Lemma 2.3. For every f and g belonging to Lo(R), the operator Ly defined by (5)
verifies (Lif, 9) = (f, Lkg)-

Proof. We can write successively

(Lef.9) Z/ /(ij V(¢ )dt)SDk,j(HC)g(x)dx
- Z (/ Pr.j (t )dt> (9, ¢r,5) = (f; Lrg)-

3. Estimates for high order differentiable functions

In most practical problems, the functions possess some degree of smoothness.

Letting C™(R), n € N, the space of n-times continuously differentiable real
valued functions defined on R, we are concerned to give bounds for the approximation
error | Ly f — f|, where f € C"(R).
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At first step we recall the Taylor formula. If f € C™(R) then the following

identity

“~ fO(z , v
i=0 . cJx

holds true for every (z,y) € R x R.

At second step we need a technical result useful in the proof of Theorem 3.2.
Lemma 3.1. Let ¢ be a scaling function of (d,7) type. Let fix (x,a;) € Rx]0,00[
and define

Jio ={j € Z] arx + jd € [—a, o]},

/:/ak(f(n) (u) — £ (2)) (t _ u) o du (9)

ro(frag, x,t):= , f€ C*(R)

ag
For each jo € Ji o and each t € [—a — jod, oo — jod], the following inequalities
hold
2 1 /2a\" 2
<2 @ e < - (2) (0 2). o
ar

t
)| -
ag n \ ag ag

Proof. Since —2a + arx < —a — jod <t < a — jod < 2a + agx, the first relation is
evident. In order to prove the second inequality, we shall analyze 2 cases taking in
view the first inequality of this Lemma.

Case 1. x < t/ay. We have

t/ak

7w) = @) (£ - u) S

ag

ralfiapa,t) < /

x

t/ak t n—1
S/ w(f™;|u — x) (—u) du
T ak

t/ay ¢ n—1 "
[ () )
x ag ag
<1 (t 1:) o <f(”);2a> .
n Q. ag
Case 2. x > t/ay. Following the same line, we get
z ¢ n—1
it < [ 10w - (@l (- L)
t/a ag
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x n—1
t
g/ w<f<”>;|uz|>(u) du
t/ak ag

T n—1 n
< (=) () () ()
t/ak Q. n Q. Qg

In both cases, taking again the advantage of the first inequality we obtain

the desired result. The case x = t/ay is trivial and the proof is complete. O

We present the main result of this section.
Theorem 3.2. Let f € C™(R). For every x € R the operators Ly, k € Z, defined by
(5) verify
[(Lif) (@) = 7?0 (x)]

SfO@)] (20N 1 20\ (. 20
sw(;i! (%) +n,(ak> w(f ak) : (11)

Proof. Let fix z € R and k € Z. Successively based on (5), (3), (4) and (9) we get

(ERF)(@) =726 @)| = | S 0r) 9k (@) = 101 () 3 plane + o)

JEL JEZ

<Var Y |(f,0r5) = 16vakf(@)|e(ae + j5). (12)

J€Jk,x
In the above we also used (1). It is obvious that, in what follows, we are

interested only on the indices j belonging to J ;.

With the help of relations (4) and (7) we can write
|(f, @k,5) —v6/akf(z)|
t . .
= ‘\/ﬂ/ f () o(t+dj)dt — Ja_if(x) / go(t+5j)dt’
R Qg R

@(t + 67)dt. (13)

t
<va (L) - s
R ag
Choosing in (8) y :=t/ag, t € [-a — jd,a — jd], and using both (9) and (10)
we have
i . 1
‘ (n—1)!

D@ 22\ 1 [2a\" ). 20
<N fEe - (2 2
- ; il ag + n! \ ax w S ag

() - = i, 2, t/00)

ag

t
a
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Returning on (13) and further on (12), we obtain the claimed result. O

Letting CP(R) := {f € C*(R)| f@) € B(R), 0 < i < n}, relation (11) leads

us to the following global estimate of the error.
Theorem 3.3. For every f € CJ'(R), the operators Ly, k € Z, defined by (5) verify

n

I1L4f =757 e < % (Z %O + ﬁgw(f“”;ﬁﬁ) , (14)

n!
i=1

where By := 2ca_y,.
In the above, under the hypothesis klim ar = 0o, one has B < 1 for suffi-
— 00

ciently large k. Considering the semi-norm |-|cp (r) of the vector space Cj (R) defined

by |hlop®) = Z [[A)]| oo, relation (14) implies

=1
1 2 2
‘ %ka - fHOO < <a;(j> (|f|cg(R) +w <f(n); aj)) ;

for every f € CJ'(R) and sufficiently large k.

4. On the degree of exactness

In what follows, for any integer s > 0 we denote by es the test function
defined by es(x) = 2*, x € R.

Under an additional assumption, we prove that the operator (1/4%5)Ly re-
produces the affine functions, in other words it has the degree of exactness equal to
1. We assume that the scaling function ¢ of (d,7v) type has the following property

o0

Z jap(x—i—éj):—%:m z eR. (15)

j=—o0

Lemma 4.1. Let ¢ be a scaling function of (8,7) type such that condition (15) is
fulfilled. One has

/ wp(u)du = 0. (16)
R
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Proof. We observe that

6(i+1) )
/Rugo(u)du = Z/é up(u)du = Z/o (x4 6j)p(z + 07)dx

JEL JEL
1 1
:/ x(Zw(m—f—éj))d:c—i—é/ (Zj(p(:ﬁ—&-&j))dm.
0 jez 0 “jez
Taking into account identities (3) and (15), the proof is finished. O

We come now to the main result of the section.

Theorem 4.2. Let Ly, k € Z, be defined by (5) such that (15) is fulfilled. For every

real-valued polynomial p of degree less or equal to 1, one has Lyp = ~v26p.

Proof. Obviously, it is enough to verify the claimed identity only for the monomials
eo and e;. For computations we use the formula given at (6).
Based on (7) and (3) one gets Lreg = v2deg. The same quoted relations

together with (16) guarantee that Lie; = ’)/2561. The conclusion follows. O

At this moment, the idea to present Lies comes out. In order to achieve it,
we introduce the function 6 given by
0(z)= > jelx+d)), zeR (17)
j=—o0
Since (2) takes place, the above sum is finite and 6 is well-defined. Moreover,
6 is non-negative and belongs to L1 joc(R).
Theorem 4.3. Let Ly, k € Z, be defined by (5) such that (15) is fulfilled. If 0 is
given by (17) then the following identities hold true
(i) (Lne2)(@) = 3 (leapllue) + 0°0(ane), 2 € R, (18)

5
ammwhwzy/e@ﬁ_§;
0

Proof. (i) Clearly, ea € L1(R). Resorting to (6) we can write
1 . . 2,2
(Lre2)(2)= — > plarz + 67) <H€2<PHL1(R) — 24 A up(u)du + 67 IIsDIILlam)-
kjez
Taking in view relations (16), (7), (3) and (17) we obtain (18).

10
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5(j+1) 5
(ii) Since |le2¢lL,m) = Z/ up(u)du = Z/ (t+07)%p(t + 5j)dt,
jez i jez”0
with the help of (3), (15) and (17), our statement is proved. O

5. Estimates for bounded functions

Based on (6) and (3) we can remark in passing that
L1 flloo < 4?01l flloc, for every f € B(R) N Lioc(R).

Consequently, for v26 < 1 each operator L; is a contraction.

The aim of this section is to give bounds for error approximation by using a
Lipschitz-type function introduced by Lenze [5; Eq. (1.5)]. We recall this map we will
have to deal with. Let J C R be an interval. Let f € R’ be bounded and p €]0, 1].

The Lipschitz-type maximal function of order p associated to f is defined as

fo(x) = iigw, x e J (19)
teJ

The local behaviour of function f can be measured by f;”. The finiteness of
/. gives a local control for the smoothness of f. Roughly speaking, the boundedness

of f;” is equivalent to f € Lipu on J.

Theorem 5.1. Let Ly, k € Z, be defined by (5) such that (15) is fulfilled. For every
w€]0,1) and f € B(R) N L1 10c(R) the following inequality

a? 52 /2
(Luf) (@) — 125 ()] < M, (sk + o) - w) [Y@), weR

holds true, where M, = 7(2@)“/2”(,0”%([_%&]), p=2/(2—p) and 6 is given at (17).

Proof. Let fix z € R and k € Z. In what follows, for the sake of simplicity, we set

o
o(t + 67)dt,

— -z
a

(o)) = |

R

t— 85
Qg

ck,j(z) ==

supp(¢)

2
—x) dt, (j € Z2),

11
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and

1) =Y enjl@)plans +55).
JEL

In concordance with formula (19) we write

[f(t/ar) = f(@)] < f7(@)[t/ar — x[*.

Taking the advantage of relations (12) and (13), one obtains

(w5 <3 [ |7 () - 1)

JEZL

o(t + 07)dtp(arz + §7)

< [ (@)Y (Tkg0) (@)p(are + 55).

JEZ
By using Holder’s integral inequality with parameters ¢ := 2/u and p :=
2/(2 — ), we deduce
(Ir,50)(x)
(2-p)/2

- [ = o <@ ([ @) e

supp(y) supp(¢)

u—0j "

— T

The last quantity represents [|¢||z, ([—a,q))» Se€ (2)-
Further on, based on Holder’s discrete inequality with the same parameters
q,p, we have

S @) plana +85) = > (en(@)planz + 65))"/ 2"/ (apa + 67)
JEZL JEL

< (S ees@rptae+)" (X plasa + )" =022 @ (22)

JEL JEL
In order to evaluate si(x), we shall use (3), (15), (18) and (2).

1 ) .
sp(r) = = > (=6 — axx)*(ars + 55)dt
CLk =7
supp(p) 7€
1 20y (a® 62 9 9
= 520 - dt < +—0 - . (23
2 /()( v o) - et < 250 (5 Dot -t ) . 2
supp(¥

Collecting (23), (22), (21) and substituting in (20) we finish the proof. O
12
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Remarks. (i) In the particular case v = § = 1, ax = 2%, L;, turns into Anas-
tassiou’s original operator Ay, [2; §6.1]. As far as we know, Theorem 5.1 establishes
a new result for A; which involves Lenze’s function.

(ii) For comparison, it is a standard fact in Littlewood-Paley theory that if f
and ¢ are both Holder continuous of order p > 0 and if ¢ has compact support then
the p-Holder norm of Ly f — f decays like 1/ay.

(iii) Regarding this note, we mention that a similar approach could be made
by considering the following (L,),>0 net of operators, L,f := Z(f7 ©j.a)Pj,a With

JEZ
©j.a(x) = Vap(ax + j6). The estimates would be exactly the same.
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ON THE EXISTENCE OF VIABLE SOLUTIONS FOR A CLASS OF
NONAUTONOMOUS NONCONVEX DIFFERENTIAL INCLUSIONS

AURELIAN CERNEA

Abstract. We prove the existence of viable solutions to the Cauchy
problem z’' € F(t,z),z(0) = zo in M, where F is a multifunction
and M is a convex locally compact set of a Hilbert space that satisfy
F(t,z)N K, MNoV (x) # 0, with KM the contingent cone to M at z and

0V is the subdifferential of a convex function V.

1. Introduction

Consider H a real Hilbert space and F': M C H — P(H) a multifunction
that defines the Cauchy problem

(1.1) 2’ € F(z), z(0)=xo,

In the theory of differential inclusions the viability problem consists in proving the
existence of viable solutions, i.e. V¢, x(t) € M, to the Cauchy problem (1.1).

Under the assumptions that H = R™, F'is an upper semicontinuous nonempty
convex compact valued multifunction and M is locally compact, in [5] Haddad proved
that a necessary and sufficient condition for the existence of viable trajectories starting

from xg € M of problem (1.1) is the tangential condition
(1.2) VeeM F(x)NK,M #0,
where K, M is the contingent cone to M at x € M.

Received by the editors: 19.09.2004.
2000 Mathematics Subject Classification. 34A60.

Key words and phrases. Viable solutions, convex functions, differential inclusions.
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Rossi, in [7], proved the existence of viable solutions to problem (1.1) replacing

the convexity conditions on the images on F' with
(1.3) F(z) CoV(zx) VYreM,

where OV is the subdifferential, in the sense of Convex Analysis, of a proper convex
function V. In [4] condition (1.3) is improved in the sense that instead of (1.2) and

(1.3) we assume that F'(.) verifies
(1.4) Fla)yNK,MNoV(z)#0 Vre M,

with V' as in [7], provided M is convex.
The aim of the present paper is to extend the result in [4] to the case of

nonautonomous problems
(1.5) ' € F(t,z), xz(0)= xo.

We note that in [6] a similar type of result is proved for a function V' that is
assumed to be lower regular, i.e. a locally Lipschitz continuous function whose upper
Dini directional derivative coincides with the Clarke directional derivative.

The idea of the proof of our result is to use the regularizing technique in [6]
and to apply the known result for autonomous problems in [4].

The paper is organized as follows: in Section 2 we recall some preliminary

facts that we need in the sequel and in Section 3 we prove our main result.

2. Preliminaries

Let H be a real separable Hilbert space and Q@ C H a given set. By P(H)
we denote the family of all subsets of H. A multifunction F : Q@ — P(H) is called
(Hausdorff) upper semicontinuous at zo € €, Ve > 0 there exists ¢ > 0 such that
||z — xo|| < 0 implies F(x) C F(zo) + B, where B is the unit ball in H. For ¢ > 0
we put B(z,¢) = {y € H;|ly — z|| < e}

Let V : H — RU {400} be a function with domain D(V) = {z € H;V(z) <
+oo}. If D(V') # 0, then f is called proper. We recall that the subdifferential (in the
16
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sense of Convex Analysis) of the convex function V' is the multifunction oV : H —

P(H) defined by
oV(z)={yeH;, V(z)=V(z)><y,z—x> Vze H}.

In what follows we assume:

Hypothesis 2.1. i) F : [0,00) x M C H — P(H) is a bounded set valued
map, measurable in ¢, upper semicontinuous with respect to x, with nonempty closed
values.

ii) There exists a proper lower semicontinuous convex function V : H —

R U {400} such that
(2.1) F(t,2) N K, M NoV(x) #0 Vax e M, ae.te[0,00),

where K, M = {v € H; liminf,_o4 $d(z + hv, M) = 0} is the contingent cone to
M at xz € M.

3. The main result

Our main result is the following.

Theorem 3.1. Let M C H be a convex and locally compact set and let
F:[0,00) x M C H— P(H) be a set-valued map satisfying Hypothesis 2.1.

Then for every xog € M there exists T > 0 such that problem (1.5) admits a
solution on [0,T] satisfying x(t) € M, Vt € [0,T].

Proof. Let xp € M. Since M C H is locally compact, there exists r > 0
such that Mo := M N B(xo,r) is compact. Consider L := Sup ,)e(o,00)xar |1 £ (£, 2)][s
define 7' := 727 and take n € N such that % <T.

By regularizing the set valued map F' on the right hand side of the Cauchy
problem (1.5) we reduce the nonautonomous problem to the autonomous case ([6]).
We can find a countable collection of disjoint subintervals (a;,b;) C [0,T], j =1,2, ...
such that their total length is less then % and a set valued map F;, defined on D :=
([0, TN US4 (aj,b5)) x M that is jointly upper semicontinuous and F,(t,z) C F(t,z)

17
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for each (t,z) € D. Moreover, if u(.) and v(.) are measurable functions on [0, 7] such
that u(t) € F(t,v(t)) a.e. t € [0,T] then for a.e. t € ([0,T]\ U2, (a;,b;)) we have
u(t) € F,(t,v(t)) (we refer to [8] for this Scorza Dragoni type theorem). It is obvious
that all trajectories of F' are also trajectories of F,,. We extend F),, to the whole

[0,T] x M. We define

Fu(t, ) it te[0, T\ U2, (a;,b;)
- F,(a;,x if a; <t< il
Fo(t,z) = (2, 2) e

F,(bj, ) if =5~ <t <b;

F.(aj,z) UF,(bj,x) if t= ‘”QLb’

It is easy to see that F,(.,.) still satisfies the tangential condition (2.1). On
the other hand, according to Lemma 4 in [6], F,(.,.) is upper semicontinuous on
[0,T] x M.

By extending the state space from H to R x H we can reduce our problem

to the autonomous case. For every (t,x) € [0,T] x M we define

V(t,z) =t+V(x).

Obviously, f/(, .) is a proper lower semicontinuous convex function and
(1,v) € OV (t, z) if and only if v € OV (z) for all (¢, x) € [0,T] x M. At the same time,
standard arguments show that (1,v) € K ,([0,T] x M) if and only if v € K, M.
Therefore, the tangential condition (2.1) implies that

(3.1) (1, Fy(t,2)) N K0y ([0, T) x M)NoV(t,x) # 0 Y(t,x) € [0,T] x M.

Thus applying Theorem 3.1 in [4] we obtain the existence of an absolutely

continuous function x,(.) : [0,7] — H that satisfies

(1,25,(t) € (1, Fn(t, 2n(£))) N OV (t, 20 (1)) a.e. [0,T], 2 (0) = 20

and

(t,z,(t)) €10, T] x MVt € [0,T].
18
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It follows that x,(.) verifies

(3.2) xl (t) € By (t,xn(t)) N OV (zy(t)) a.e. [0,T], x,(0)=z0
and
(3.3) z,(t) €M Vtel0,T].

Therefore from (3.2) we have

(34) [l ()] < L.

On the other hand, from (3.3) graph(z,(.)) is contained in [0,7] x M and

Zn(.) is also a solution to the inclusion (1.5) except for a set (say) E, of measure

not exceeding % for each n € N. Hence, from (3.4) and Theorem IIL. 27 in [3] there

exists a subsequence (again denoted by z,(.)) and an absolutely continuous function

x(.) : [0,T] — H such that
xn(.) converges uniformly to z(.),

2, (.) converges weakly in L?([0,T], H) to 2'(.).

Since V(.) is lower semicontinuous, it follows that graph(9V) is closed and

thus, by (3.2), one has
(3.5) Z'(t) € OV (z(t)) a.e. [0,T].
We apply Lemma 3.3 in [2] and by (3.5) we obtain
(V(z(®))) =< a'(t),2'(t) >= |l2’(®)II* a.e. [0,T];
and thus, V(2(T)) — V(zo) = [ ||/ (t)[|dt.
On the other hand, from (3.2) we deduce that
T T
|l @lPd = [ o) @t = ViaalT) - Vizo).
0 0

Hence, by the lower semicontinuity of V, we get
T T
lim [ ||z}, (t)||*dt = V(2(T)) — V(z0) =/ |2/ (t)]|dt
0

n—oo 0

and so {z,(.)} converges strongly in L?([0, 7], H).
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Hence, there exists a subsequence (still denoted) z!,(.) which converges point-

wise almost everywhere to 2/(.). From (3.2) and the fact that graph(F) is closed we

have

2'(t) € F(t,z(t)) a.e. [0,T)

and from (3.3) we obtain that V¢t € [0,T], z(t) € M.
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STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume L, Number 2, June 2005

MAXIMUM PRINCIPLES FOR A CLASS OF SECOND ORDER
ELLIPTIC SYSTEMS IN DIVERGENCE FORM

CRISTIAN CHIFU-OROS

Abstract. The purpose of this paper is to prove a maximum principle for
weakly coupled second order elliptic systems in divergence form using an
iterative estimation technique. A similar method was used by A.W. Tursky
in 1992 to prove a maximum principle for elliptic equations in divergence

form.

1. Introduction

Let us consider the following second order elliptic system:

N n
Z(am( )(Up)e;) +Zb p)z, —i—Zcpl(a:)ul—i—fp(x) =0,p=1,n
ij=1 1=1

in Q, where Q € RY is a smooth bounded domain. Assume that:

(1) aij,bj Ecl(ﬁ) ,7=1,N, CplEC( ) p,t=1n,
N
Z (2)&:€; > 0,Vz € Q,VE € RY;
(ii) f, is continuous in Q,p =1, n.
Let
lull = max{lup|| : p = 1,n},
where:

lupll = inf{M : Ju,(x)| < M, a.e.x € Q}.

Received by the editors: 26.04.2005.
2000 Mathematics Subject Classification. 35B50, 35J45, 35J55.
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Denote

M, = Slép 1fpll, M = mI;aXMpv

my = sup |u,(x)|, m = maxm,.
o9 J2

In the proof of the main result we shall need the following Lemma given in [6]:

Lemma 1. If
Golz) =1+ 21 —a(l+2%) " 2],a € Zx >0,

then

Go(x) > =,V > 0. (2)

1
a

In what follows we shall give the main result of the paper. We shall show
that the method which was used by A. W. Turski in [6] for second order elliptic
equations in divergence form works for weakly coupled second order elliptic systems
in divergence form. Our result is similar with other results as in [3],[4] or [5] but the

method of proving is different. On the other hand the technique may be used to study

weak solutions of the second order elliptic systems.

2. Main result

Theorem 1. Assume that there exit two real constants h,3 with 0 < 3 < h such
that:

1o <—h<0,p=1,n;
2. Oécpl < %ap7l:177nvp?£l

Then for each u € C%(Q,R™) N CO(Q,R™) satisfying (1),

le]] < max < m, M .
h—p

Proof: Because the derivatives of u which occurs in system (1) are continuous
just in €2, to be able to use the continuity of these on the boundary, for every ¢ €
{1,2,3,...}, we shall define Q, = {z € Q : d(z,00) > %} Our assumptions still
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hold in Q, . If we multiply system (1) by u2 ~1 and integrate on Q, with ¢ fixed, we

obtain:
N 2k 1 k_q
Z (aij(z)(up)z;) z; Up dx—l—/Zb (up)a;u, dr+
Q, bi=l1
i 2k 1 2k 1
+/Zcpl(x)ulup d:z:+/fp(:c)up dx = 0. (3)
Q‘] =1 Qq
We have
N ok 1 N ok 1
Z(aij(x)(up)xj)ziup dr = / Z aij(z)(up)z;u, — cos(N,z;)ds—
Q, bi=t o, bi=1
N 2k _2
@ =1 [ 3 ay@) ), )y ds
&, b=l
Denote
mp, = sup |uy(z)],
€00,
N
Hy, = Z aij(x)(up)e, cos(N,z;)| ds.
a0, M=l
Because of the assumption (i) we obtain
- 2k - 2k _1
S (s (@) tp)a Jaytrs do < m2VHy,, (4)
G, bi=1
Integrating by parts we have
N pLY
/ij(x)(up)mjup dr =
Q, 7=1
N 2 N 2k
=2k / Z j(z)u, cos(N, x])ds—2_k/Z(bj(x))zJup dx.
oy J=1 Q j=1
Denote
N
Hy, = / ij(x)cos(N xj)|ds
a0, 17=1
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Because b; € C1(€, ), there exists B, > 0 such that

N
> i@, | < By

In this way

N . .
[ St e 2t 2 [
Q, =1

Qq
N 2k 4 k. ok L ok
S b @) up)ayuy, i < 2w Ha, + 27 B, 5)

On the other hand

/Zcpl ulu Z /cpl ulu d$+/cpp( )u dx
Q,

I=1lpg

Using Hélder inequality with the exponents 2%

we’ll obtain

2k 1-27F
2k 1 15 - 2k 2k 2k
Zcpl uU dr < o u; u, —h Uy, dx
Lizp 2 g Qg
In this way
n 2k‘,71 6 n 2k_1 2k,

/Zcpz(x)wup dr <~ o Nl lupll® = =Bl * (6)

g, =t 1=1,l#p
Also

1—27%

2

2k _1 k 2k

/fp(x)up dr < /fg /up
Qq Qq

q

Let |Q4] be the Lebesque measure of ,. Because of the assumption for f,,

ok _q —k k —k
/nm% dz < My, 192,%" (flup |22 (7)

From (4),(5),(6) and (7), (3) becomes

n
- —k, 2k —k ok f 2k 1
mp, T H, 27 mp Hy + (275 By — h) [l [* 4= Y T+
I=1,l#p
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2~k 2k 1-27"
My, 19, (lul”) =0

If we take the maximum after p = 1, n then

. . k
m2 " Hiy + 27 "m2 Ha, + (27" By + 6 — h) |u|* +

—k

2=k ok 172
+ M, 127 () 0.
Denoting
219
y = llull™
we have
k k -k 40—k
m2 “UHy, + 27" m2 Hy, + (27B, + B — h)ye + My 1y >0, (8)
Let
g ::h—ﬁ—Z_kBq>O,
for k large enough,
—k
B = M, Q"
— gk, 2" —1pr 2% 17
Tk = 2T My 1, Tmy Ho .
With these notations (8) becomes

K
27 y — gy + Bry 2 >0,

— 7k —
anyk — By 2 <27 Py 9)
Let
—k
Fy) =ony — Boy' % .

k

2
We observe that if y > (%) , then F'(y) > 0, which means that on I :=

[

2k
[(’6:) ,oo) the function F is increasing. On the other hand we have

Fly) < 27 %3 (10)

Let
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We shall prove that F(y*) > 27%v, which, because of (10) and the monotonicity of

F, will imply that y < y*.

k k 1—27%

By By,

F(y*) = LBy = BL3
(") ak<2k+ak Bre e ,

o i k
2" 3 2k 2"
k k k
Fy™) = < 1 T 1) === 5= < -1 T 1)
Q. Tk 277 Vi ®p Tk
2k
If we denote by ® := Hfji,ﬁz_k then 02" = 2551 and in this way we obtain

X Vi A Tk

Fy") = 7 (1 + <1>2k) [1 — 31+ q>2k)—2’k} = 7uGor (D).

From Lemma 1 we have

F(y*) > 27 . (11)

From (10) and (11) it follows that F (yx) < F (y*) and hence y; < y*.

ﬁ ok . ﬁ ok 27k . ﬁ o=k
yké(’“) + 2k oy S[(’“) ERNL % mam{k7(%> }
ay ay ay ay ap’ \ o

2—1«
lull < 22" maz {5 (”) } .
(677 (677

o=k
[ Smax{ fim 2% lim (W) }
k—oo (), k—oo \ O

—k
Be _ _ My|Ql* M,
a h—p—2"FB, " h-p’

For k — oo we obtain

Q—k

—k
<%)2 N s Qkqu + qugq m
o T\ [2%(h = B) — Bylmy v

lu|| < max mq,ﬂ .
h—p

For ¢ — oo we obtain (see [7])

”uH < max<{m M
—— _\.
"h— J6]
Remark 1. If n =1 and 0 = 0 then we obtain the result given in [6]

Hence
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Theorem 2. Under the assumptions of Theorem 1, if u € C? (Q,R") N C° (ﬁ, R")
satisfies (1), with f =0, then

[Jul| < sup |u (z)].
o9

3. Application

Let us consider the following boundary value problem:

n
—Auy, — Y cpuy = fp, inQ
=1

up =0, on 09

,p=1,n. (12)

Assume that © C RY is a smooth bounded domain and f, is continuous in Q.

Theorem 3. Under the assumptions of Theorem 1, the boundary value problem (12)
has at most one solution in C?(Q,R™) N C°(Q,R").

Proof: Suppose that problem (12) has two solutions uy,us € C?(2,R™) N
CO(Q,R™),u1 # ug. Then u = uy —uy € C*(Q,R") N C°(Q,R") is a solution of the

following boundary value problem

Au, + > epuy =0, inQ
=1

,p=1,n. (13)
up, = 0, on 00

Because of the assumptions of the theorem we have

M
[ul < max {ma h—ﬁ} .

In this case m = 0, M = 0, hence

[[ull < 0.

This will imply that u = 0 which is a contradiction. In conclusion problem (12) has

at most one solution.
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MIXED FUNCTIONAL DIFFERENTIAL EQUATION
WITH PARAMETER

VERONICA ANA DARZU ILEA

Abstract. In this paper we study some special functional differential
equation of mixed type. First we take an equation with some initial con-
dition:

=Az/(t,\) = f(t,x(t, N),z(t — h1,A),z(t + h2,N\)),t € R (1)

z(t,\) = o(t, N), t € [to— hi,to+ ha], (2)
where hi, ha >0, ¢ € Cl[to — h1,to + h2], A € R parameter.

The problem that we are interested in is the convergence of the
solution of the problem (1)+(2) in the case A # 0 to the solution of the
same problem in case A = 0. As an example of this problem we give the
linear case of functional differential equation of mixed type. At the end of
the article we discuss some inequalities between the solution of equation

(1), inequalities that depend on .

1. Introduction

In this section we’ll discuss the linear case of the mixed functional differential

equation (MFDE) with parameter .

Let us consider the problem:
=Azl(t, A) = ax(t,\) + Bx(t — h1, \) +yx(t + he,A), tE€R (3)
x(t,)\) = (p(t,A), te [to — hy,to + hg}, @ € Cl[to — hy,to + hz] (4)
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2000 Mathematics Subject Classification. 34KO07.
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where hy # ho, 5,7 # 0, A € R.

By a solution of equation (3) we mean a function z € C'(R?) which satisfy
the relation (4) for any t € R, A € R.

Remark. If A = 0, the equation becomes a difference equation. Both the
differential equation case A # 0 and the difference equation case A = 0, will be of
interest.

In the first part of this section we assume that A # 0. By the method of steps
we'll find the solution for problem (3) + (4).

Let t € [tg,to + h2]. We have

=X (t, A) = ap(t, N) + Bo(t — hi, N) +ya(t + ha, \) (5)
It follows that
2(t) o= o (f) = %[w(t ChaaA) 4 Beplt — by — ha A £ A — ha N, (6)

t e [to + ho,tg + 2h2]
Let ¢ € [to + ha,to + 2hs]. We have

=Xz (t, A) = axq(t, A) + Byr (t — hi, X) + vz (t + ha, A) (7)
where
Qﬁ(t—hl,/\), hl > hQ
yi(t—h1,A):=4q ot —h1,N), hi <hg, t€[to+ ha,to+hy + ha] (8)

.Tl(t — hq, /\), hi < hg, t€ [to + h1 4+ ho,to + th]
It follows that
1
x(t) ;== xa(t) = —;[aajl(t — ho, \) + By1(t — hy — ha, \) + Az (t — ha, V)], (9)

te [to + 2hs, to + 3h2]

The same way, it follows that

1
Tp(t) = —;[Ofﬂﬂn—l(t —ho, A) + Byn—1(t — h1 — ho, \) + Axy,_(t — ho, N)],  (10)
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t € [to + nha,to + (n + 1)hs], where

Yn—1(t —h1 — ho, A) ==

ot — hy — ha, ), hi > (n—1)hy
x1(t — hy — ha, A), (n—1)hg > hy > (n — 2)ha,
(11)
Tn_o(t — 1 — ha, A), 2hy > hy > hy,
Tp—o(t —hy — ha, \), hi < hg, t € [to + nha,to +nhe + h1),
Tn_1(t—hy —ha, ), hy < hg, t € [tg+nhy + hi,to + (n+ 1)hy)

We apply the same method on the left of ¢y, and it follows
1
T_pn(t) = _B[O‘xf(nfl)(t"’_hlv/\)+7y7(n71)(t+h1+h27)\)+)‘xlf(n71)<t+hla/\)]? (12)
te [to — (TL + 1)h1,t0 — ﬂhl], where

Y—(n-1) (t + hl + h27 )\) =

@(t + h1 + ha, ), hy > (n—1)hy
x_1(t+ hy + ho, \), (n—1hy > hy > (n—2)hy
(13)
x_(n_g)(t + h1 4+ ho, )\), 2h1 > ho > hy
x,(n,g)(t + h1 + ho, )\), ho < hy, t € [to —nhy,tg —nhy + hg)
T_(n_1)(t+h1+ha,X), hy < hy, t € [to—nhy + hy,to+ (n— 1)hq]

Next we have to find a condition for unique of the solution.
Let o € C*®[tg — hi,to + ha).

Let € C*°(R) a solution of the problem (3)+(4).

We have

Az® D (@A) = az® (t, \) + B (t—hy, \)+72B (t4+ho, N), k€ 0,1, 0. (14)
For t = to we have

—)\<P(k+1) (ta )‘) = a@(k)(t(h )‘) + ﬁQD(k) (tO - h/la )‘) + ’W)O(k) (t + h2a A)’ ke 07 1a e,
(15)
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Theorem 1.1. The problem (3)+(4) have a unique solution if the relation (15) is

done and the solution have the form

,T,k(t,)\), t e [t() — (k + 1)h1,t0 — khﬂ, k=1,2,---,n, n— o0
z(t,\) = o(t, N), t € [to — hi,to + ho]
zp(t, \), t € [to + kha,to + (k + 1)hs]

where
1
R(t,\) = _;[Oéxkfl(t — ha, A) + Byk—1(t — hy — ho, N) + Axj_ 1 (t — ho, N)],  (17)
te [to + kho, to + (k + 1)h2]

Yp—1(t — h1 — ha, A) :=

ot — hy — ha, N, hy > (k—1)hy
21 (t — hi — ha, M), (k= 1)hy > hy > (k — 2)ha,
(18)
2p_o(t — hy — ha, N), 2hy > hy > ho,
Thoa(t—hi — ha, N),  hy < ha, t € [to + kha, to + kha + hy),
Tho1(t—h1 —ha, N), hy < ho,t € [to+ kha + hy,to + (k + 1)ho)

1
LL',]C(t7 )\) = ——[ax_(k_l)(t + hq, )\) +VY—(k-1) (t + h1 4+ ho, )\) + )\xl(kil) (t + hq, )\)],

B
(19)
te [to — (k + 1)h1,t0 — khl],
Y—(k—1)(t + h1 4 ha, A) ==
gﬁ(t+h1+h27)\), hy > (k*l)hl
‘T,l(t+h1+h27>\), (n—l)h1 > ho > (n—2)h1
(20)
T_(p—2)(t + h1 + h2, A), 2h1 > ho > hy
T_(p—2)(t + h1 + h2, A), hay < hy, t € [to — khy,to — khy + ha)
x_(k_l)(t + hy + h27>\), hy < hy, t€ [to — khy + ha,to + (k — l)hl]
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Let now A = 0. The problem becomes:
0 = ax(t,0) + Bx(t — h1,0) + va(t + he,0), t € R (21)
x(t,0) = ¢(t,0), t € [to — h1,to + ha] (22)
If we apply in the same way the method of steps it follows
r_k(¢,0) = —%[cwc_(k_l)(t + h1,0) +yy—k—1)(t + h1 + ho,0)], (23)
tefto— (k+1)hi,to — khil,

Y—(k—1)(t + h1 + h2,0) :=

@(t + h1 + h2,0), hy > (k —1)hy
x_1(t + h1 + hs,0), (n—=1)hy > ha > (n—2)y
(24)
T (k—2) (t + hi + hQ,O), 2h1 > ho > hy
T_(k—2) (t + hy + ho, 0), ho < hy, t€ [to — khy,tg — kh1 + hg)
337(]@71)@ + hi+he,0), he <hy, te [to — khy + ho,to + (k — 1)h1]

1
z,(t,0) = _;[axkfl(t_h%0)+/8yk71(t_h1_h270)]7 t € [to+kha, to+(k+1)ha] (25)

Yp—1(t —h1 — h2,0) :=

©(t — hy — ha,0), hi > (k—1)hs
x1(t — h1 — ha,0), (k—1)hg > hy > (k — 2)ha,
(26)
Zp—2(t — h1 — he,0), 2hg > hy > ho,
Zp—2(t — h1 — he,0), hi < ha, t € [to + kha,to + kha + h1),
T 1(t — hy — hg,0), hy < hg, t € [to + kha + hy,to + (k4 1)hs]

and
QL'_k(t,O), te [to — (k+ ].)hl,t() — khl], k=1,2,---,n, n — 00
z(t,0) = ©(t,0), t € [to — hi,to + hol

xk(t,0), te [to + kho,to + (k + 1)h2]
(27)
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Theorem 1.2. The problem (21) + (22) has a unique solution if and only if we have
0= aw(k)(th 0) + ﬂ@(k)(to - hlvo) + Vgo(k) (to + h’270)7 ke 07 1a IR (28)

We can give the following theorem
Theorem 1.3. Let the problem (8) + (4) with the solution given by (16). If we put
a limit on (16) when A — 0 we obtain the relation (27), which is the unique solution
of the problem (21) + (22).
2. Main results

In this section we consider the problem

—Xxt(t, ) = f(t,z(t, N),x(t — hi, A),z(t + ha, X)), t € R (29)
z(t,\) = o(t,\), t € [to — h1,to + ha], © € C[tg — hy,to + ho] (30)
where
% 7é Oa J = 273a u = (Ul,'LLQ,’ng), f € COO(R4) (31)
J

We first suppose that A # 0.
Let the following conditions:
(C1) For any uy, us, ug4, us € R, there exist a unique uz € R,
uz = fi(ur,uz, us,us), fr € C(RY), so that us = f(u1, us, us, ua).
(C2) For any w1, ug, ug, us € R, there exist a unique uy € R,
ug = fa(ur, uz, us, us), fo € C(R?Y), so that us = f(u, uz, us, us).
Remark. If f € C®°(R*) and = € C*(R?) is a solution of the equation (29),
then x € C>(R?).
Theorem 2.1. Let f € C®(R*) satisfy the conditions (C1), (C2).
If o € C®[tog—h1,to+ha] then the problem (29) + (30) has a unique solution
if and only if the following relation takes place:

X EFD (20, X) = [£(t, 9(t, A), 9t — h1, A), ot + ho, N, k=0,1,--- . (32)
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Proof. By the method of steps we built the solution of the problem (29) +
(30) as follows:
Let t € [to,to + hg},

=A@t \) = f(t, d(t, N), d(t — hi, N), x(t + ha, ). (33)
From (C2) we have
w(t,A) = w1(t, A) = fa(t = ha, o(t — ha, A), o(t = ha = ha, N), A (t = ha, V), (34)

te [to + ha, to +2h2]

By the same way we have:
zi(t,A) = fa(t — ho,xp—1(t — ha, N), yk—1(t — by — ho, A), Azj_ (t — ha, N)),  (35)
te [to + kho,tg + (k + 1)h2], where

Yp—1(t — h1 — ha, A) :=

o(t —hy — ha, \), hi > (k —1)hy
21(t — hy — ha, N, (k—1)hg > hy > (k — 2)hs,
(36)
Tp—o(t — hy — ha, N, 2hg > hy > ha,
Tp—2(t — h1 — ha, N), hi < hg, t € [to + kha,to + kho + h1),
Tp_1(t —hy —hg,N), hy < ha, t € [to + khy + h1,to + (k+ 1)ho]

On the left of ty we obtain:

CU—k(t7 )\) = fl (t + h17 L (k—1) (t + h17 )‘)7 Y—(k—1) (t +h1 + h2a )‘)’ )‘ml(kfl) (t + h1> )‘))7
(37)
te [to — (k + 1)h1,t0 — khl], where

Y—(k—1)(t + h1 + ho, N) :=
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(p(t+h1+h2,)\), ho > (k— 1)h1
x_l(t—l—hl—i-hg,)\), (n—l)h1 > hy > (n—2)h1
(38)
ZL’_(k_Q)(t + hy + hQ, )\), 2h1 > ho > hy
{L‘,(kfg)(t + h1 + ho, )\), ho < hy, t€ [to —khy,to — kh1 + hg)
J},(k,l)(t + h1 + ho, )\), ho < hy, t€ [to — khy + ho,to + (k‘ — 1)h1}
For the regularity of the solution we have the conditions:
(p(to + hs, )\) = :Cl(to + ha, )\)
zp(to + (p+ 1)h2, A) = zpra(to + (p+1Dha, A), p>1 (30)

o(to — h1,A) = z_1(to — h1, A)
z_p(to— (p+1)h1,A) = 2_(pp1)(to — (p+ 1)h1, A), p> 1

So the solution is

x_(t,N), t€[to— (E+1)h1,to—khi], k=1,2,--- ;n, n —> 0
x(t,\) = o(t, \), t € [to — hi,to + ho

xp(t, A), t € [to + kha,to + (k + 1)ho]
(40)

We have to prove the necessity of the (42). Let z € C*(R) solution of the
problem (29)+(30). Then z € C*°(R) is a solution. We have

Ae®FD (@ N) = [f(t, 2 (t, N), 2(t—hy, N), z(t+he, )P t € R k=0,1,--- ,n (41)
For t = tq it follows
_)‘QP(kJrl)(tO, )‘) = [f(t, ‘P(tv >‘)7 Qo(t - hlv >‘)’ Sa(t + h2’ )‘))]gi)tov k= Oa 1a N2 (42)

Let now A =0

The problem becomes

0= f(t,z(t,0),z(t — h1,0),z(t + he,0)), t € R (43)

x(t,0) = @(t,0), t € [to — h1,to + ha], @ € Clty — hy,to + ho] (44)
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Theorem 2.2. Let f € C(R*) satisfy the conditions (C1), (C2).
If ¢ € C*®[to— h1,to+ha] then the problem (43) + (44) has a unique solution
if and only if the following relation takes place:

_)‘Qo(k+1)(t07 0) = [f(t, ‘P(tv 0), Qo(t - hla 0)’ gp(t + he, 0))}75250’ k= 0,1,---,n. (45)

Proof. The proof is similar with the proof of the last theorem. We find by
the method of steps that the unique solution of the problem (43) + (44) has the form

{E,k(t,O), te [t() — (/f-’- 1)h1,t() — khl], k= ].,27' e ,n, N— 00
x(t,0) = ©(t,0), t € [to — h1,to + he]

Z‘k(t, 0), te [to + kho,tg + (ki + 1)h2]
(46)

where

x1(t,0) = fot —ho,wp—1(t — h2,0), yp—1(t — h1 — h2,0)),t € [to + kha,to + (k + 1)ha],

(47)
yk—l(t - hl - hg, 0) =
Lp(t—hl —hz,O), hy > (k‘—l)hg
l'l(t—hl —hQ,O), (k—l)hg > hy > (k—2)h2,
(48)
l‘k,Q(t —hy — hQ,O), 2hg > hy > hg,
a?k_g(t —hy — hQ,O), hy < hQ, te [to + kjhg,to + kho + hl),
mk_l(t — hl — hQ, 0), hl < hz, t e [to =+ khg =+ hl,to + (k —+ 1)h2]
r_,(t,0) = fi(t +hi,2__1)(t + h1,0), y_—1)(t + k1 + h2,0)), (49)

te [tO - (k? + 1)h1,t0 — k/’hl],

Y—(k—1)(t + h1 + ho,0) :=
37



VERONICA ANA DARZU ILEA

@(t + h1 + h2,0), hy > (k —1)hy
x_1(t + h1 + hs,0), (n—=1)hy > ha > (n—2)hy
(50)
T_(g—2)(t + h1 + h2,0), 2h1 > ho > hq
T (b_oy(t+h1+h2,0),  hy < hi, t€[to—khi,to— khi + ho)
T_(p—1y(t + h1 4+ h2,0), ho < hy, t € [to — khy + ho,to + (k — 1)h4]

It is natural that the solution of problem (29) + (30) converge, when A — 0,
to the solution of the problem (43) + (44).

So we can give the following theorem:
Theorem 2.3. Let f € C(R*),\ parameter. Let x(t,\) given by (40) the solution
of the problem (29) + (30). If we put A — 0 then x(t,\) given by (40) converge
punctually to x(t,0) given by (46).

3. The comparing of the solutions

Let the equation

Azl (t,A) = f(t,z(t, A), z(t — h1, A), z(t + ha, A)), t€R (51)

where

(i) h1 # ho;
(i1) f: R* — R, f(t,u) - continuous, local Lipschitz on u, u = (uy, us, us);

(¢i7) for any t € R: %ﬁ;‘u) >0,u€ R j=2,3 u=(u1,uz, uz).
Lemma 3.1. Assume that (i) and (iii) above hold. Let x; : R — R, for j =1,2, be

two solutions of equation (51) at some nonzero parameter value A\ € R*. Assume that
x1(t,A) > xa(t,N), t € R. (52)

Then if x1(1,\) = z2(7, \) at some T € R, we have that
21(&, ) = 22(&, \) for all € > 7, in case A > 0, and that
21(E,A) = 22(&, N) for all £ < 7, in case A < 0.
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Proof. Let y(t, \) := x1(¢t, A\) —x2(¢, A) > 0, and we assume that the inequal-
ity (52) is an equality at some 7 € R.

It means that y(7, \) = 0, so that z1(7, \) = z2(7, A).

We prove for ¢ > 0; the proof when ¢ < 0 being similar.

Let the function

H(&vu) = —A_l[G(f,u + $2(£,>\)7£B1(§ - h17)\)71'1(£ + h27)‘))

—G(&22(& A), w2(§ = h, A), w2 (§ + hay A (53)

We observe that u = y(&, \) satisfies v’ = H (&, u).

From (52) and (#i¢) we have that H(£,0) <0, for every £ € R.

It follows that y(£,A) < 0 for all £ > 7 by a standard differential inequality.
So that y(&,A) =0 for all £ > 7.

Thus 21 (€, A) = x2(&,A) for all € > 7, in case A > 0 and x1(&,\) = z2(&, A)
for all £ < 7, in case A < 0.
Lemma 3.2. Assume that the conditions of lemma (3.1) hold, except that solutions
x1, x2 satisfy equation (51) at different values of \, with A1 > Ao, and where either
A1 = 0 or Ay = 0 are permitted. Suppose that x1(7, 1) = x2(7, A2) at some T € R.
Then if

x2(&, A2) is monotone increasing in £ € R

and A1 > 0 we have that x1(&, A1) = x2(&, A2) is constant for all £ > 7 + hy; while if
x1(&, A1) is monotone increasing in £ € R

and Ay > 0 we have that x1(&, A1) = x2(&, \2) is constant for all § <7 — ha;

Proof. The proof is very similar to that of Lemma (3.1) except for the choice
of the function H. Several cases must be considered, based on the signs of A; and As.

First, we suppose that (3.2) holds and Ay # 0.

Let

H(f,u) = 7>‘1_1G(§7u + Ig(f, )‘)7501(5 - hla A)vxl(f + hQa /\))

A3 G (€, 22 (EN), 22 (€ — ha, N), 22(€ + ha, A). (54)
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Then u = x1(&, A1) — 22(&, A1) satisfy v’ = H(&,u).

By replacing 27 with zo in the formula of H and using the inequality (52)
and (i4i), form (3.2) follows that

H(E,0) < (AA]! = 1)a5(€,h0) <0

Thus z1(&, A1) — 22(§, A2) <0 for all £ > 7.

So that z1(&, A1) = x2(&, \2), £ > 7.

From (51) we have

Az (§, A1) = Aaxh(€, o) for all € > 7+ hy.

If A1 # A2 we have 2 (€, A1) = 25(§,X2) =0, > 7 + hy;
50 21(&, A1) = x2(&, N2) = const, & > 7+ hy.

Now suppose that (3.2) holds and Ay = 0.

Let

H(&u) == =M\ "G uyz1(€ — hay A1), m1(€ + hay M)

(. u) = H(& w2(€,A2)), u = x2(8, A2) (55)
H(& ), u<zo(E M)

H can be easily checks that H (&, z2(€, X)) < 0, so that H(&,u) < 0. From
inequality, form the fact that x, is monotone increasing and that H satisfies the
standard Caratheodory and Lipschitz conditions, we have that the unique solution
u = x3(&, \2) satisfies v’ = H(&, u), for any & > 7.

But u = z1(&, \) satisfies v’ = H(&,u) and z3(7) = x2(7) = 21(7).

So that x1(&, A1) < x2(&, A2) for any & > 7.

Thus 21 (&, A1) = x2(&, \2) for any £ > 7.

So z} (&) = x4(§) = 0 for any € > 7 + hy.

It follows that x1(£, A1) = 22(§, A2) = const for any &€ > 7 + hy.
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ON SOME DISTRIBUTION PROBLEM OF THE TEMPERATURE
IN A METALLIC PLATE

CATALIN MITRAN

Abstract. Many problems of technical, industrial, economical type have
can be simulated using the differential equations or the partial equations
derivatives. But many times the determining of an analytical solution
is a difficult, even impossible problem. This is the reason for which the
numerical approximation, generally, and in this case the finite differences

are a good solution for solving the mentioned problems.

We shall consider a plate made uniformly which has a thickness of ¢ and who
contain an element of measure dz x dy. We shall take u the independent variable
who represent the temperature into the element. The location of the element is in
(z,y), situated in the left position of the plate. We shall consider that the high tide
cross the element on the positive z axis direction and also cross the element in the y

direction too as it can be seen in the next figure:

dy

(z,y)

(07 0) T 4L
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The ratio in which the heat divides the element in the x direction is given by

ou ou

and, similar, in the y direction is given by

Oou Ou

where k is the conductivity and A is the area.

(1)

We have that the ratio of the high tide who cross in must be equal with the
ratio of the high tide who cross out. The high tide who cross in is given by

ou ou Ju ou
—kA— —kA— =— —— —
k o k 3y k(tdy) o k(tdx) 3y (3)
and the high tide who cross out is given by
ou  0*u ou  0*u
We shall obtain that
Pu  0%u
kt <@ + a—y2> (dzdy) = Q(dzdy) (5)
or
u  u  Q

wmt o T m (6)

where () is the heat.
If the object is considered as being in the space the relation (6) will become
Pu Pu Pu Q

2 T aE T o T ")

that means
Q
Au=-<. 8
u= (8)
If the thickness of the plate is variable with z and y the relation (7) become
ot (0Ou ot (0Ou Q
tA? — | = — =) == 9
u+8m <8m>+6y <6y> k )

If the thickness and the thermic conductivity of the plate are variable the

relation (8) will become

ot 0k\ [Ou ot Ok\ [ Ou
2 - - - - - — | =
RA Ut (kaﬂf +t8w> <8w> * <k8y +t6y> <8y> @ (10)
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We shall have the next approximation:

O*u  up —2ug+ug

ox2 ~  (Ax)?

8%y uy —2ug+up

dy? (Ay)?
where ur, and ug are the temperatures at the left and right and uy and up are the
temperatures up and down of the considered knot.

Usual, we have that Az = Ay = h and from this we shall obtain that

. —4
AZUZUL-i-uR-i-Uh(é-i-uD UQ (12)

We shall present an example who will show how can be applied the presented
formulas with finite differences. Let us consider the next problem where the dates are

presented in the next figure:

u = 0°
0 — o ° o ° ° ° °
1 2 3 4 5 6 7
1——>e ° ) ° ) ) ° ) ®
8 9 10 11 12 13 14
° ° ° ° ° ° ° e u =100°

u=0° 2—o

—_—-
N — @
wW—>0
=0
Tt —> @
SHS—0
~I—0

So, we have a plate of dimensions 20 cm X 10 cm and the space between the
knots is about 2.5 cm. We have 21 interior knots. On three sides of the plate the
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value of u is 0°. On the last side the value of u is 100°. If we suppose that () = 0 the
equation (6) will be

ou , ot

ox2 = 0y?

If we take care of (10) and (11) we shall have

=0.

O*u  up —2ug+ug

oz 2.52
O*u  uy —2ug +ug
oy? 2.52
respectively
ur +ur + uy + up — 4ug —0
2.52 -
We shall write the expression (12) in the case of a lot of knots. We shall have:
1) for the knot no. 1: —4u; + us + ug = 0;
2) for the knot no. 7: ug — 4duz + u;4 = —100;
3) for the knot no. 9: uy + ug — 4ug + w10 + u1 = 0;
4) for the knot no. 19: u1g + w12 — 4u19 + uze = 0;

5) for the knot no. 21: usg + u14 — 4usy = —100.
Finally, we shall obtain a system of 21 equations with a number of 21 un-

knowns with the solution given by the next table:

Line | Column | Column | Column | Column | Column | Column | Column
No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7
1 0.3530 | 0.9132 | 2.0103 | 4.2957 | 9.1531 | 19.6631 | 43.2101
1 0.4988 | 1.2894 | 2.8323 | 7.0193 | 12.6537 | 27.2893 | 53.1774
3 0.3530 | 0.9132 | 2.0103 | 4.2957 | 9.1531 | 19.6631 | 43.2101

Many other techniques of solving the above mentioned equations use iterative
methods in which a knot is written depending of other knots. For example we shall

have the relations:

o timy R Uiy U1 F Ui
Ui,j = 4
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or
w s = Bimli=t +4dui o1+ wigr,; +4Auii—1 — 20w + 4w + i1 —1 + 41+ it 41
i, 6 .
Definition 1. An equation of type:
Au=R

where R = R(z,y) is a function defined on the same domain with u will be named
just a Poisson equation.

For example, if we have to solve the next equation:
A%y = -2

we shall use the next approximation

Wi+ Ui Ui Ui 12
Uj 5 = 1 .

Definition 2. An equation of type Au = 0 and which satisfies a condition
of the next type:

Au+ B =Cu' (13)
where A, B, C are constants will be named an equation of Neumann type.
Remark 1.

—ku' = H(u — us) (14)
is also a condition of Neumann type if we take care of (12) and take A = H, B =
—Hug, C = —k.

We shall present a new model with a plate having the dimensions 5 cm x 9
cm and a thickness of 0.5 cm. We will take the next values:

1) h=1 cm;
2) @ = 0.6cal/s/cm?;
3) k
4) H

= 0.16 is the thermic conductivity;
= 0.073 is the coefficient of the heat transfer.

The frontier conditions are given by the next figure:
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-— —0.16= 5% =0.073(u —25) -

@ © © © @ o @ (@

=

ou
oy

Solving the problem using the mentioned approximations we shall obtain the

next values included in the next table:

20.000 73.510 107.915 128.859 138.826 138.826 128.859 107.915 73.510 20.000
20.000 99.195 137.476 167.733 180.743 180.743 167.733 137.476 99.195 20.000
20.000 99.793 155.061 189.855 207.669 | 207.669 189.855 155.061 99.793 20.000
20.000 103.918 163.119 | 200.956 | 219.410 | 219.410 | 200.956 163.119 103.918 | 20.000
20.000 102.762 162.539 | 201.442 220.604 | 220.604 | 201.442 162.539 102.762 20.000
20.000 94.589 152.834 191.669 | 210.959 | 210.959 191.669 152.834 94.589 20.000

If we have a circular domain or, generally, an irregular domain it is recom-

mended to use the polar coordinates:

8u 10u 1 0%
AMu=om et (13)

and, from here, the approximation formula

9 _uL—2uo+uR 1 UR — U, l uy — 2ug + up
Alu= (Ar)? + (r) ( 2ATr ) + r2 (AG)? (16)

Using (16) we shall solve the problem whose dates are given in the next figure:
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oo o ev
— w
o= o> @

o ox 0~ O~
-
(13

o
®

[ I
o5

We shall obtain the results presented in the next table:

Knot | Calculated value | Analytical value
1 86.053 85.906
2 87.548 87.417
3 92.124 92.094
4 69.116 68.807
5 70.733 70.482
6 75.994 765.772
7 85.471 85.405
8 48.864 48.448
9 50.436 50.000
10 55.606 55.151
11 65.891 65.593
12 84.189 84.195
13 25.466 25.133
14 27.501 27.109
15 30.102 29.527
16 38.300 37.436
17 57.206 57.006
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COMPARISON BETWEEN DIFFERENT HARVESTING MODELS
FOR NON-LINEAR AGE STRUCTURED FISH POPULATIONS

MOSTAFA K. S. MOHAMED AND S. M. KHALED

Abstract. The role of harvesting in discrete nonlinear age-structured fish
population models has been studied. The overcompensatory Ricker re-
cruitment function is considered in our model. We show numerically that
the maximum sustainable yield (MSY) in harvesting with nets is differ-
ent very little from (MSY) in selective harvesting. Our models contain
a large number of parameters such as mortality, Von Bertalanffy growth
parameter and recruitment parameters. The influence of mortality has
been studied. The age structured matrix model (general Leslie model) for
description of harvesting population dynamics has been used because most
marine fish exhibit a clear yearly cycle of spawning, recruitment, migration

and growth.

1. Introduction

Our basic model is a nonlinear discrete age-structured population model:

T 0 afyr(P) afmr(P) x
I T1 0 0 o
= (1)
T 0 Tm—1 0 T
t+1 t

The model is based on general biological principles and contains a large num-
ber of parameters and functions. Concrete data and further informations will be used

to reduce the number of parameters and functions and determine the range of critical

Received by the editors: 01.02.2005.
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parameters. Properties of this model class will be investigated and compared with
observations. All models are deterministic. The ultimate goal of these models is to
obtain precise informations about the state of the species. These informations can
then be used to generate recommendations on catches, quotas and equipments.

The models are of the Leslie type and the only nonlinearity is the recruitment
function, which we choose to be of Ricker type. Actual date give little support for
the precise form of the recruitment function. Otherwise the parameters and functions
used are chosen as to reflect concrete marine fish species. In the classical paper by
Levin and Goodyear [2], model (1) was used in order to investigate the dynamics of the
striped bass in the Hudson river. Such models have been described in many articles,
cf. Cushing [1], Getz and Haight [3] and a classical paper by Leslie [4]. In such a
model, time is considered as a discrete variable, measured in years. It is most sensible
to identify the beginning of the year with spawning. Since selective harvesting is an
unrealistic idealization, we concentrate on net harvesting and study in particular the
role of the mesh width of fishing nets.

The goal of this paper is to compare between selective harvesting and har-
vesting with nets. Also the influence mortality on our models is investigated. The
plane of the paper is as follows: In Section 2 we present the selective harvesting model
while harvesting with nets is presented in Section 3. In Section 4 we give the results
of our investigations by using haddock as a numerical example and finally in Section

5, we state the conclusions.

2. The selective harvesting model

Let x;(t), be the i-th age class of a fish population at time ¢. Denote the
corresponding fecundity by f; . Next, we let each age class ¢ be exposed to harvesting
with constant harvest rate h;,i= 2,3,...,m, i.e., there is no harvesting in the first class,
where m is the maximum age class. So, the model after harvesting has the matrix
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form:

I 1 0 0

I 0 1- hQ 0
0 0

Tm 0 Tm—1 1-— hm

t+1
0 afer(P) afmr(P) x1
T 0 0 To
(2)

0 . Tm—1 0 Tm

t
or in vector form, z(t+1) = (I — H)Az(t), where P(t) is the number of recruits (new

borns) of fish from all age classes at time ¢ i.e.,
P(t) =Y fixi(t)
=2

7; = 1 — p; is the density independent probability of survival from age class i to age
class i + 1, where p; is the mortality rate of age class i. Finally r(P) describes the
recruitment process. r(P) is is a non-negative monotonically decreasing function and
« is the productivity parameter, representing the probability of survival of eggs at
low densities.

Under the assumptions above, the components of equilibrium vector of (2)

T ) T2 n(hy)

are:

and generally,

T

LiHg— (n L )
r = W) =12, .m 3)
n(h;)
where
i
L; = []7j—1 is the survival probability from age class 1 to age class 1,
=1

J
(Ll :1),H1 ZI,HZZ(I—hZ)(l—hg)(l—hz), 222,3, ,m
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and
m

n(h;) =Y afiliH;

i=2
is called ”the net reproductive number” because biologically it gives the expected
number of offspring per individual over its life time, cf., Cushing and Yicang [5].

Finally the yield is defined by:

Ui w,h,m:

where w; is the growth weight of adult fish and it is described by Von Bertalanffy
growth equation [8].

w(t) = woo (1 — e~ K (=
where K is the rate at which growth weight tends towards its asymptotic value and

t is the age at which growth weight starts.

So from equation (3), we get that the yield in selective harvesting is:

L) §
n(hs
Y (hi) = TZ)Z ;wihiLz‘Hiﬂa (4)
The maximum sustainable yield is now

max Y (h) = Ymax-

Reed [6] showed that for selective harvesting, the optimal policy is of the
"two-age” type. This means that if we define j(t) recursively by:

L
Jj(1) = arg max 71:;7]
! > fiL

i=j

and

' w;iL; — wiy Ly
t+1) = I IO 9.,
J( + ) a§g max j(t)—1 ’ ]
l:] (] (]
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There is a partial harvest at age j(t+ 1) and a total harvest at age j(t) where
Jj(t) > j(t +1). If we consider that the fecundity is proportional to the weight and

assume the mortality is constant, one gets:
](t) :m—(t—l),t: 1727"'

If fecundity is proportional to the weight and the mortality is increasing with
age, then j(1) = m and j(t + 1),t = 1,2,--- are generally smaller than j(¢ + 1) in
constant mortality, c.f. Mostafa K. S. Mohamed [7].

The maximum sustainable yield for selective harvesting is:

(i) o2
N j(t+1
n(hjiin) )’

Y (h; - o
( y(t+1)) n(hj(t+1)) ]1;[1 Tj—1
i)
wi(I=hies) [ 5o +wiesnbies (5)
J=i(t+1)+1

where r~!(z) is given from the stock-recruitment relationships and hj;41) is partial
harvesting intensity. It can not determined analytically.

We will use the Ricker recruitment relationship as an example. Thus
1 > _ Ln(n(h))
(h) B

Note that in this case, we use a normalized formula for r(P) i.e.,, r(0) = 1.

— Bz —1
r(z) =e "%, r <n

3. Harvesting with nets

If we want to model fishing with nets, we have to translate the width of
fishing nets into this model. This will be done as follows. We write H = h
diag(0,0,--- ,v,1,---,1) to describe the situation where all fish from class k + 1
or more are caught, while all fish of class k — 1,k — 2,--- can escape and fish of class
k only a fraction 0 < v < 1 is retained. By this we mean that the mesh width is too
small for fish from class k£ + 1. With the term ~, we can model the fact that the mesh
width is a continuous variable.
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Now we can use the formulae from selective harvesting with
0, 1<i<k-1
hi =% ~h, i=k (6)
h, k<i<m

The components of equilibrium vector are:

— Li(h) —1 1 .
i(h) = . ) = ]-7 27 T
wih) =Sy (mmJ ' "
where
n(h) =Y afi.Li(h)
i=1
and
[I7-1 1<i<k-1
=
Ll(h,) = H 7'1717']9,1(]. — ’yh) 1=k
I=1
k—1 i
Tt (L=~h) TI 711 —h)7F, k<i<m.
\ =1 J=k+1
The yield in net harvesting is then
1
onr () d :
Y(h‘) = (h) W ’7+ Z W;j (1 - h) H Tj—1 (1 — h)jikil
n i=k+1 j=k+1
(7)
where

k-1
C == H Tl
=1
We will consider for simplicity that v = 0 only for all numerical computations,

so equation (7) will be:

hrt L m
n(h) ko1
() = —— " e+ > w1 h)
n(h i=k+2
where,
k m
n(h) =3 afili+ Y afily(1-h)="

i=1 i=k+1
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and '
li+1:HTj; ll :7'0:].
j=0

One can show that the function Y has a unique maximum by deriving:
d?Y

— < 0.

dh?

4. A numerical example

Now, we will study the optimal harvesting for haddock using the Leslie model
with v = 0. The aim is to find a relation between optimal harvesting and beginning
class of harvesting ” k ” for those fish species, k is a discrete parameter measuring
the width of the meshes. Large k corresponding to large width. Also we will compare
between selective harvesting and harvesting with nets. We showed in section (2) that
partial harvesting hj11) can’t be determined analytically, so we will determine it
numerically.

From Beverton-Holt [8], the maximum age of haddock is m = 20 years and
it has a constant natural mortality of about 0.2 per year. In order to study the
influence of the mortality on our models, we assume that the mortality is increasing

as an example in the form

' 0.2, i < %
w@) =19 04xi . m
. P> —

m 2

The weight of haddock is determined from the formula
w(t) = 1.34 x (1 — e 02600753 g
and the fecundity which proportional to the weight, is determined from
f(t) = w(t) - 10°
Ricker stock-recruitment parameters for haddock are
1

_ _ -8
= e=183x10
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4.1. Influence of mortality.

4.1.1. Selective harvesting. The influence of parameters in selective and net harvesting

are determined from equations (5)and (7) respectively

Sefective hanesting

4440
4420 4
4400 +
4330 -
4360 4
4340
4320 ~
4300 T T .

a 0.2 0.4 0.6 0.3 1

Fartiai harnvesting h

Wigld V(R

FIGURE 1. Maximum harvesting hj;41) = 0.7 when constant mor-

tality=0.2, j(t + 1) = 7 years and MSY= 4407 gm

4.1.2. Net harvesting. mortality: MSY= 4562.81 gm, variable mortality: MSY=
4562.81 gm

4.2. Influence of Von Bertlanffy parameter K.

4.2.1. Selective harvesting.

4.2.2. Net harvesting. when K = 0.2, optimal mesh width £ = 9 and MSY = 1874
gm,

when K = 0.3, optimal mesh width k£ = 6 and MSY = 4447 gm,

when K = 0.4, optimal mesh width k¥ =5 and MSY = 6809 gm
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Selective hanesting

4440 +
4420
4400
4380
4360 +
4340 +
4320 +
4300 T T

0 0z 0.4 0B 0.s 1
FPattial-haniesting h

Wialdd YR

FIGURE 2. Maximum harvesting h;; 1) = 0.7 , variable mortality,

j(t+1) =7 years and MSY= 4407 gm

Influence of mortalins

4000 -
= S _‘_.' ------- constapt
= rmortait:
% 20T I arighie
* 1000 - rmorality
0 ————

0 010203040506070809 1

Harvasting b

FiGUuRE 3. Optimal mesh width k& = 6, hpax = 0.9, constant mor-

tality: MSY= 4562.81 gm, variable mortality: MSY= 4562.81 gm
5. Conclusion and results

The purpose of this paper is to compare between two cases of harvesting
from a discrete nonlinear age-structured fish population with Ricker stock recruitment

function (cf. the classical paper by Ricker [10] and Ricker [9]) and the influence
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Influence af K

7000 4
5000 4
. 5000 — — — = K= 2 it 1)=10, MEY=1881
R W N
E 40004 e K=0.3 b+ 1)=7, MSY¥=d454
&
= 3000 A K=0.4, it 1)=6,M5Y=56515
e
1000 . . : ; r . . . ; ,
o o1 02 03 04 05 06 07 08 03 A
Harvesting b
m
Inflnence of K
f:; e 3 k=02
ommese | gl e K=0.3
& ——— k=04
I:I T T T T T T T T T 1
0 01 0203 04 05 06 07 08 08 1
Hareesting b
m

of paremetrs in our model. In our models, there are many parameters acting on
the results such as mortality p and von-Bertalanffy parameter K. The influence of
mortality is that, in general, increasing mortality means the numbers of individual
at high age classes are decreasing and MSY in this case is decreasing because the
probability of dying is increasing. In our particular example, Figures 1 and 2 indicate
that the influence of mortality in selective harvesting is ignored because j(t + 1) is
less than m/2 and mortality is constant in this case. In Figure 3, the influence of
mortality in net harvesting is that the values of MSY in variable mortality is slightly
smaller than in constant mortality because when mortality is increasing, the survival
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probability L; is decreasing i.e., the number of fish which arrive to fishable age is
also decreasing. So the influence of mortality parameter on our models is small and
we can use a constant mortality as a simplification of models. The influence of the
Von-Bertalanffy growth parameter K is that when K increases, the growth function
arises to its asymptotic value more quickly, this means that weight is increasing more
quickly too and since the heavier fish are more catchable, so the values of j(¢ + 1)and
optimal mesh width k are decreasing and the value of MSY is increasing as shown in
Figures 4 and 5.

The main conclusion is that the MSY in net harvesting is slightly smaller than
the MSY in selective harvesting. This is because in selective harvesting, the MSY is
over a cube with m — 1 dimension ( the values of h;, h1 = 0 ) but in harvesting with
nets, the MSY is over a subsets of that cube. These subsets are lines of diagonal of

that cube.
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NOTE ON A TWO-POINT BOUNDARY VALUE PROBLEM
UNDER NONRESONANCE CONDITION

DEZIDERIU MUZSI

Abstract. The nonresonance method of Mawhin and Ward Jr. is used to
discuss the existence of solutions to two point boundary value problems

for second order functional-differential equations.

1. Introduction

In this paper we present existence results for the two point boundary value
problem
—u’(t) = cu(t) + F(u)(t), te(0,1)
u(0) =u(l) =0

(1)

under the assumption that the constant ¢ is not an eigenvalue of the operator —u”
(nonresonance condition) and the growth of F'(u) on w is at most linear. More exactly,
we will apply the fixed point theorems of Banach, Schauder and the Leray-Schauder

principle in order to obtain weak solutions to (1), that is a function v € H}(0, 1) with

/ (0 (£)dt = / leult) 4+ P(u)(0)o(t)dt. for all v € HI(0,1).
0 0

The method we use was introduced by J. Mawhin and J. Ward Jr. in [2]. See
also [3], [4], [5] for its applications to differential equations. This paper was inspired
by [7] and [6], chapter 6. The novelty in this note is that the term F'(u) is given
by a general operator F from L2(0,1) to L?(0,1). In particular, F' can be the usual
superposition operator f(¢,u(t)) as in[6] and [7], or a delay operator f(t,u(t — 7)).

Received by the editors: 10.05.2005.

2000 Mathematics Subject Classification. 34L30.
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1.1. Fixed point formulation of problem (1). We consider F : L2?(0,1) —
L?(0,1) to be a continuous operator and we define

L:H*0,1)NH}0,1) — L*0,1), Lu=—u"—cu

Let L' : L?(0,1) — H?(0,1) C L?(0,1) be the inverse of L. If we look a priori for
a solution u of the form u = L~'v with v € L?(0,1), then we have to solve the fixed

point problem on L?(0,1) :
(FoL )(w)=v )

Throughout this paper we denote:

wohse = [ e Nl = () g = ([ 007a)

1.2. An auxiliarly result. We present first an auxiliarly result given in [7]. Let

1/2 1/2

(Ak)k>1 be the sequence of all eigenvalues of —u” with respect to the boundary con-
dition w(0) = u(1) = 0, and let (¢x)r>1 be the corresponding eigenfunctions, with
Pkllp2 = 1.

Lemma 1. Let ¢ be any constant with ¢ # \i, for k =1,2,.... For each v € L*(0,1),

there exists a unique weak solution u € H(0,1) to the problem

—u" —cu=wv, on(0,1)
w(0) =u(1)=0

denoted by L~ v, and the following eigenfunction expansion holds
Z (M — )7 (v, dr) 2 (3)
k=1
where the series converges in H(0,1). In addition,
HL_1v||L2 < pic||v|| 2 for allv € L*(0,1) 4)

where

e = max{|)\k. —c|_1 ik = 1,2,...}.
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2. Existence results

We first show how the fixed point theorems of Banach and Schauder can be

used to obtain existence results for problem (1).

Theorem 2. Suppose
Aj <c<Ajg1 forsomejeNj>10or0<c< )y (5)
Also assume that
[F(v1) = F(v2)l 2 < allvr — val| (6)

for all vi,vo € L*(0,1), where a is a nonnegative constant such that
apte < 1. (7)
Then (1) has a unique solution u € HZ(0,1) N H?(0,1). In addition
(FoL H"(vy) — v in L?(0,1) as n — oo

for any vo € L?(0,1), where v = Lu.

Proof. We will show that F o L~ is a contraction on L?(0,1). For this, let
v1,v9 € L?(0,1). Using (6) and (4) we have

|F(L™ (v1)) = F(L™ (v2))]| 12 < af|[L71 (01 = v2) || 12 < apte [Jor — vl 12 -

This together with (7) shows that F'o L™! is a contraction. The conclusion follows

from Banach’s fixed point theorem.[]
Theorem 3. Suppose that (5) holds, F is continuous and satisfies the growth condi-
tion
[E ()2 < allullp +h (8)
for allu € L*(0,1), where h € Ry and a € Ry is as in (7). Then (1) has at least one
solution uw € H*(0,1) N H}(0,1).
65



DEZIDERIU MUZSI
Proof. We have FoL™! = FoJoLy"' where

Lyt : L%(0,1) — H?(0,1), Ly'u = L™ u and

J: H0,1) — L?(0,1), Ju = u.

Recall that F' is continuous and by (8) is bounded. Next, by Rellich-Kondrachov
theorem (see [1]), the imbedding of H}(0,1) into L?(0,1) is completely continuous.
Thus, F o L1 is a completely continuous operator. On the other hand, from (8) and

(4) we have
1ELT )| 2 < @[ L7 )| 2 + b < ape ol 2 + B

Now (7) guarantees that F o L™! is a self-map of a sufficiently large closed ball of
L?(0,1). Thus we may apply Schauder’s fixed point theorem.(]

Better results can be obtained if we use the Leray-Schauder principle (see
[6]).

Theorem 4. Suppose that F is continuous and has the decomposition
F(u) = G(u)u + Fo(u) + F1(u)

Also assume that

[Fo(u)ll> < allull g2 + ho (9)
[EL ()l 2 < bllullps +ha (10)
(u, Fi(u)) 2 <0 (11)
-M<Gu)(t)+c<B <\ (12)

for all u € L?(0,1), where a, b, ho, h1, M, 3 € Ry. In addition assume that 0 < ¢ < 3

and
a/l <1—08/\. (13)

Then (1) has at least one solution u € H?(0,1) N HJ (0,1).
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Proof. We look for a fixed point v € L?(0,1) of Fo L=!. As above, FoL™!

is a completely continuous operator. We will show that the set of all solutions to
= AF oL H@) (14)

when A € [0,1] is bounded in L?(0,1). Let v € L?(0,1) be any solution of (14). Let

w= L~ v. It is clear that u solves

—u’(t) — cu(t) = AF(u)(t), te€(0,1)

(15)
u(0) = u(l) =0.
Since u is a weak solution of (15), we have
lullFgy = (cu+ AF (), u) 2
It is easy to check that
(cu+ AG(u)uu, )2 < B [ul2. (16)
We define
R(u) := [[ullyy — Blulls (17)
and using (11), (16) and ¢ < (3, we obtain
R(u) < [lully — (cu+ AG(w)u,u) e < [(Folu), u) s
On the other hand, if we denote ¢, = (u, ¢) ;2 = (u, ¢k>Hg / Ak, we see that
R(u) =3 (A= B)ck = 3 Ml = B/Ai)eq
k=1 k=1 (18)
> (1= B/M) [l -

Recall that
M = inf { i/ lul s € B30, {0} }

and using (18), (17), (9) and Holder’s inequality we obtain

2 2
(L= 5/2) lullgy < [{Fo(w),w) 2| < [ Fo(w)ll gz [ull 2 < allullzz + ho llull L2

a 2
< 3 el +C g
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for some constant C' > 0. Thus (13) guarantees that there is a constant r > 0 inde-
pendent of A with ||u||Hé < r. Finally, a bound for ||v||,. can be immediately derived

from v = L~ 'v. The colnclusion now follows from the Leray-Schauder principle. O

3. Particular cases

Particular case 1. Let F(u) be the usual superposition operator, F(u)(t) =

f(t,u(t)). Then for the problem

—u'’(t) = cu(t) + f(t,u(t)), t € (0,1)

(19)
w(0) =u(l) =0
we have the following existence result given in [7]:

Theorem 5. Assume that f : (0,1) x R — R is a Caratheodory function, f(-,0) €
L?(0,1) and that f satisfies the Lipschitz condition

|f(t,v1) — f(t,v2)| < alvr —v2 (20)

for every vi,vs € R, t € (0,1) and some a > 0. Also assume that the conditions (5)
and (7) from Thorem 2 are satisfied.
Then (19) has a unique solution u € Hg(0,1) N H?(0,1).

Proof. Using (20) we deduce
[f(t )] < 1f(Ew) = £ 0)] + [f(80)] < aful +[£(20)]

for every u € R and ¢t € (0,1). Moreover, f beeing a Caratheodory function, we have

that the Nemitskii operator

wr— f(u(")
is well defined, bounded and continuous from L?(0,1) into L?(0,1). Using again (20)
we obtain
/Iftv1 F(t v dt < a? / or(t) — v ()] dt
S0

[F(v1) = F(va)l[ 2 < allor —vaf 2 -
The conclusion follows now by applying Theorem 2. [J
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Particular case 2. Let 0 < 7 < 1 and let F' be defined by

Flu)(t) = fult—1)), T<t<l1 (21)
g(t), O<t<T.

Theorem 6. Assume that f : (1,1) x R — R is a Caratheodory function, f(-,0) €
L?(1,1) and that f satisfies the Lipschitz condition

|f(t,v1) = f(t,v2)| < alvr — v2 (22)

for all vi,v2 € R, t € (1,1) and some a > 0. Also assume that g € L*(0,7) and that
the conditions (5) and (7) from Theorem 2 are satisfied.

Then (1) with F defined by (21) has a unique solution v € Hg(0,1)NH?(0,1).

Proof. Let u € L?(0,1). Then u(- — 7) € L?(r,1). Hence, f(-,u(- — 7)) €
L?(7,1). Moreover, since g € L?(0,7) we have F(u) € L?(0,1) is well defined as
operator from L?(0,1) into L?(0,1).

Let (ux) be a sequence wich converges to u in L(0,1). Let vg(t) = ug(t — 7)

and v(t) = u(t — 7). Then

[Hon(t) —o(®)2dt = [ (up(t —7) —u(t —7))%dt

= [} (u(t) — u(t))?dt — 0, as k — oo,

so vy — v in L?(7,1) as k — oo. Consequently, f(-,vx(-)) — f(-,v(-)) in L?(7,1)
and by the definition of F' it follows that F(uy) — F(u) in L?(0,1). Using (22) we

deduce

Jo (F(o)(t) = F(uo)(0)2dt < [1(f(tor(t — 7)) — F(tva(t — 7)))2dt
<a® [Hui(t —T) —va(t — 7))%dt

< a? [T (vi(s) — va(s))?ds
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and finally

[F(v1) = F(v2)ll 2 < allor —vall 2

The conclusion follows now by applying Theorem 2. [J
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ON A FIRST-ORDER NONLINEAR DIFFERENTIAL
SUBORDINATION II

GH. OROS AND GEORGIA IRINA OROS

Abstract. We find conditions on the complex-valued functions A, B, C, D

defined in the unit disc U and the positive constants M and N such that
A(z)2p () + B)p?(2) + C(2)p(z) + D(2)| < M

implies |p(z)| < N, where p is analytic in U, with p(0) = 0.

1. Introduction and preliminaries

In [1] chapter IV, the authors have analyzed a first-order linear differential

subordination
B(2)2p'(2) + C(2)p(z) + D(2) < h(z), (1)

where B, C, D and h are complex-valued functions.

A more general version of (1) is given by
B(2)2p'(2) + C(2)p(z) + D(z) € Q, (2)

where €) C C.
In this paper we shall extend this problem by considering a first-order non-

linear differential subordination given by
A(2)2p/ (2) + B(2)p*(2) + C(2)p(2) + D(2) < h(2). (3)
A more general version of (3) is given by:
A(2)2p' () + B(2)p*(2) + C(2)p(2) + D(2) € Q, (4)
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where ) C C.

The general problem is to find conditions on the complex-valued functions
A, B,C, D and h such that the differential subordination given by (3) or (4) will have
dominants and even best dominant.

We let U denote the class of holomorphic functions in the unit disc
U={2€C; |z| <1}, U={z€C; |2|] <1}
For a € C and n € N* we let
Hla,n] = {f €U, f(2) =a+apnz" +an12" +..., 2€ U}

and
Ap={f€eU, f(z)=z+an1z" +..., €U}

and A; = A.
We let @ denote the class of functions ¢ that are holomorphic and injective

in U\ E(q), where
E(q) = {C € oU : lirréq(z) = oo}
and furthermore ¢'(¢) # 0 for ¢ € OU \ E(q), where E(q) is called exception set.

In order to prove the new results we shall use the following:

Lemma A. [1] (Lemma 2.2.d p.24) Let g € Q, with ¢(0) = a, and let
p(z) =a+a,z" + 12"+

be analytic in U with p(z) # a, and n > 1.

If p is not subordinate to q, then there exist points zg = roe’® € U, ro < 1
and ¢ € OU \ E(q), and an m > n > 1 for which p(U,,) C q(U)

(1) p(z0) = 4(¢)

(i) ZOP/(ZZ&)}/@SCQ/(CL and 'O

(iii) Re m—l—lZmRe { 70 —&—1}

In this paper we consider the first-order nonlinear differential subordination

(4) in which Q = {w; |w| < M}. Given the functions A, B,C, D and the constant
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M, our problem is to find a constant N such that, for p € H[0,n], the differential
inequality
| A(2)2p/ (2) + B(2)p*(2) + C(2)p(2) + D(2)| < M
implies
Ip(2)| < N.
If D(0) = 0, then this result can be written in terms of the differential
subordination as

A(2)zp'(2) + B(2)p*(2) + C(2)p(2) + D(2) < Mz

implies p(z) < Nz.

2. Main results

In this paper we improve the results obtained in [2].
Theorem 1. Let M > 0, N > 0 and let n be a positive integer. Suppose that
the functions A, B,C, D : U — C satisfy

_ M+ N?BG)| +|D(2)]

n|A(z)| - 1C(2)] = N : (5)
If p € H[0,n] and
|A(2)2p'(2) + B(2)p*(2) + C(2)p(2) + D(2)] < M (6)
then
p(z)] <N, zeU.
Proof. If we let
w(z) = A(2)2p(2) + B(2)p*(2) + C(2)p(2) + D(2),
then from (6) we obtain
w(2)| = |A(2)2p' () + B(2)p* (2) + C(2)p(2) + D(2)]. (7)
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From (7) and (6) we have
|lw(z)| < M, zel. (8)

Assume that |p(z)| £ N, which is equivalent with p(z) £ Nz = ¢(2).

According to Lemma A, with g(z) = Nz, there exist zg € U, 29 = roe'®,

ro < 1, 8y € [0,27), ¢ € OU, |¢] = 1 and m > n, such that p(zg) = N¢ and

zop'(20) = mN(.

Using these conditions in (3) we obtain for z = 2o
[w(z0)| = |A(20)200' (20) + B(20)p*(20) + C(20)p(20) + D(20)| (9)
= |A(20)mN¢ + B(20)N?¢? 4+ C(20)N¢ + D(20)|
> |A(20)mN + B(20)N?¢ + C(20)N| — | D(zp)|
> NJA(z0)m + C(z0)| = N?|B(20)| — |D(20)|
> mn| A(z0)| — N|C(20)| — N?|B(20)| — |D(20)]
> [n|A(20)| = |C(20)IN = N?|B(20)| = |D(20)| > M.

Since (9) contradicts (8) we obtain the desired results |p(z)| < N. O

Instead of prescribing the constant N in Theorem 1, in some cases we can
use in (5) to determine an appropriate N = N(M,n, A, B,C, D) so that (6) implies
|p(2)] < N. This can be accomplished by solving (5) for N and by taking the supre-

mum of the resulting function over U. The condition (5) is equivalent to
N?|B(2)| = Nn|A(2)] = |C(2)] + |D(2)| + M < 0. (10)
Suppose B(z) # 0, the inequality (10) holds if
[n]A(2)] = |C(2)|]* 2 4]B(2)[[|D(2)] + M]. (11)

The roots of the trinomial in (10) are

n|A(2)] - |C(2)| £ VInlA(2) - [C(2)]2 — 4IB()[[[D(2)] + M]
2|B(2)| '

Nig =
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Let

N sup AR = €)= VIIAGT = ICEIE = ABE)IDE + M
[z]<1 2|B(z)]

- 2 D(2)] + M) |
1< 1lA()| - )+ VAR - [CEIP — ABEIDE) + M)

If this supremum is finite, we have the following version of the Theorem 1:

Theorem 2. Let M > 0, N > 0 and n be a positive integer. Suppose that
p € H[0,n] and the functions A, B,C, D : U — C, with B(z) # 0, satisfy:

[n]A(2)] = [C(2)|]* = 41B(2)[[| D(2)] + M].

. 2|D ()| + M]
= sup
1<t nfA(2)]| = [C(2)] + VInlA(2)| = [C(2)[]2 = 4| B(2)[[|D(2)] + M]
then
|A(2)2p'(2) + B(2)p*(2) + C(2)p(2) + D(2)| < M
implies

p(z)] < N, zeUl.

If D(z) = 0, the Theorem 1 can be rewritten as the following:
Corollary 1. Let M > 0, N > 0 and n be a positive integer. Suppose that
the functions A, B,C : U — C satisfy

M + N?|C(z)|

nlAG)| - |0()] = =

If p € H[0,n] and
|A(2)2p/ (2) + B(2)p*(2) + C(2)p(z) + D(2)| < M

then

[p(z)] < N, zeU.
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GENERATION OF NON-UNIFORM LOW-DISCREPANCY
SEQUENCES IN QUASI-MONTE CARLO INTEGRATION

NATALIA ROSCA

Abstract. We propose an inversion type method that can be used in
Quasi-Monte Carlo integration to generate low-discrepancy sequences with
an arbitrary distribution function G. The method is based on the approx-
imation of the inverse of the distribution function by linear Lagrange in-
terpolation or cubic Hermite interpolation. We also give bounds for the

G-discrepancy of the generated sequences.

1. Discrepancy and error bounds

In quasi-Monte Carlo integration one approximates f[OJF f(z)dz by sums of
the form - chvzl f(zr), where f : [0,1]°* — R and (z1,...,zn) is a sequence of
deterministic points, with zj, = (z\"),...,2\") € [0,1]*, k=1,..., N. A well-known
measure of the distribution properties of the sequences used in quasi-Monte Carlo

integration is the discrepancy.

Definition 1 (discrepancy). Let P = (z1,...,zy5) be a sequence of points in [0, 1]°.

The discrepancy of sequence P is defined as

1
DN(P) = sup |=An(J,P)—A(J)|,
Jclo.1)®

where An counts the number of elements of sequence P, falling into the interval J,

1.€.,

Received by the editors: 04.04.2005.
2000 Mathematics Subject Classification. 65C05, 65C10, 11K38.

Key words and phrases. Quasi-Monte Carlo integration, low-discrepancy sequences, inversion method.

7



NATALIA ROSCA

N
AN(T, P) = 1(ap).-
k=1

15 is the characteristic function of J and X\ is the s-dimensional Lebesgue measure.

The sequence P is called uniformly distributed if Dy (P) — 0 when N — oo.

For s = 1, we may arrange the points x1,...,xn of a given point set in

nondecreasing order. The following result is due to Niederreiter [10].

Theorem 2. Ifzyg :=0< 23 <25 < ... <2zny <1 = zN41, then we have the

following expression for the discrepancy of sequence (x1,...,TN)
D )= =4 i in (= ot
= —+ max | —-— — min [ —=-— = max |—-+4r;—r;
NATL b @N) = T B AN ) T idnen \ N odien |N T
1<j<N+1

(1)
where r, = & —x, for 0 <n <N +1.

The monograph by Niederreiter [10] provides a comprehensive overview on
discrepancy, low-discrepancy sequences and their properties. Halton [5], Faure [3],
[4], Niederreiter [10] and others constructed famous low-discrepancy sequences.

A similar concept of discrepancy can be defined for non-uniformly distributed
sequences.

Definition 3 (non-uniform discrepancy). Consider an s-dimensional distribution
on [0,1]%, with distribution function G. Let Ag be the probability measure correspond-
ing to G. Let P = (z1,...,xN) be a sequence of points in [0,1]°. The G-discrepancy

of sequence P = (x1,...,xN) is defined as

1
Dn(P) = sup |=ANn(J,P)—Aa(J)|
Jcfo,1)e

The sequence P is called G-distributed, if Dy ¢(P) — 0 when N — oo.

If f is a function with finite variation in the sense of Hardy and Krause,
Vi (f) < +oo (see eg. Owen [12]), then an upper bound for the error of the approxi-
mation in quasi-Monte Carlo integration is given by the non-uniform Koksma-Hlawka
inequality (see Chelson [1]).
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Theorem 4 (non-uniform Koksma-Hlawka inequality). Let f : [0,1]* —» R
be of bounded variation in the sense of Hardy and Krause. Moreover, let G be a
distribution function with continuous density on [0,1]° and (z1,...,zN) @ sequence

on [0,1]°. Then, for any N >0

1 N

NS - [ @6

k=1 [071]5

<Vuk(f)Dng(z1,...,7N),

where Vg (f) is the variation of f in the sense of Hardy and Krause.

2. Inversion method

The inversion method produces a random variable with desired distribution
function by making use of the inverse of the distribution function.

Consider a distribution on [0, 1] with continuous density function g and dis-
tribution function G(z) = [ g(t)dt. Assume that there exists the inverse function
G~!. The inversion method is based on the following principle.

Theorem 5. Let U be a random variable uniformly distributed on [0,1]. Then the

distribution function of the random variable G=1(U) is G.

Proof. We denote by Fg-1( the distribution function of G=!(U). We have

Fg-1u)(z) = P(GT'(U) <z) = P(U < G(2)) = G(x).
Thus, the distribution function of the random variable G~1(U) is G. O

Such a transformation preserves the discrepancy in one dimension, as showed
in the following theorem (see Okten [11]).
Theorem 6. Let P = (z1,...,zN) be a sequence in [0,1] and G a distribution func-
tion on [0, 1].

Construct the sequence (y1,...,yn) = (G 1 (z1),...,G Y(zn)). Then the

G-discrepancy of the constructed sequence is given by

DN7g(y1, ‘e ,yN) = DN('Tla ‘e ,.Z’N).
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In other words,

Dn.g(GTH(P)) = Dn(P).

As a consequence, for generating low-discrepancy sequences with an arbitrary
distribution function G, we can transform uniformly distributed low-discrepancy se-
quences using the inverse function G~'. In most cases, however, the inverse G~!
cannot be given analytically. In such cases, we may use the inversion technique with

an approximation of the inverse function G~1.

3. Existing inversion type methods

The inversion type transformations presented in this paper are designed for
the one-dimensional case. They all propose different modalities of approximating the

inverse G—1.

3.1. Hlawka-Miick method. Hlawka [7] defines a transformation and bounds the
G-discrepancy of the transformed sequence as follows.

Theorem 7. Consider a continuous type distribution on [0,1], with density g and
distribution function G. Assume that the distribution function G is invertible and
M = sup,¢p,179(z) < oo. Furthermore, let (z1,22,...,2N) be a sequence in [0,1].

Generate the point set (y1,y2,...,Yyn) with

1 N 1 N
- NZ [+ 2k —Glar)] = Nanaur», (2)

where [a] denotes the integer part of a. Then the generated sequence has a G-

discrepancy of

DN7g(y1,...,yN) (2+6M)DN($1,...,$N). (3)

This method is known in the literature as the Hlawka-Miich method and it
is a generalization of an earlier version proposed by Hlawka and Miick in [8], [9]. The
main disadvantage of the Hlawka-Miich method is that all the points of the sequence
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(y1,92,--.,yn) are of the form i/N, (i = 0,...,N). This implies that, when adding

some points, all the other points have to be regenerated.

3.2. Method proposed by Hartinger and Kainhofer. They propose (see [6])
an inversion type transformation that is also shown to generate G-distributed low-

discrepancy sequences.

Theorem 8. (see [6]) Let P = (x1,%a,...,2N) be a sequence in [0,1]. Consider
a continuous type distribution on [0,1], with density g and distribution function G.
Assume that the distribution function G is invertible and M = sup,cr 1) 9(z) < oo.

Define fork=1,...,N

T, = max T;
A={z;€P|G(z;)<zp}

mz = min z;.
B={z:€P|z,<G(zi)}

Setxz, =0if A=0andz{ =1if B=0.
Then the G-discrepancy of any transformed sequence (y1,ys,...,yn) with the property
that yy, € (z; 2] for all 1 < k < N is bounded by

DN,G(yly .. .,yN) S (1 + 2M)DN(£E1, e ,mN).

In the method proposed by Hartinger and Kainhofer, any value in the in-
terval (z,, ;] can be considered as G~'(zy). They do not analyze the possibility
of approximating G—! using interpolation methods. Thus, in their method, the kind
of interpolation is not relevant for the discrepancy bound and the smoothness of the

interpolation is not taken into account.

4. Inversion method using linear Lagrange interpolation

Next, we propose an inversion type method that can be used to generate
one-dimensional low-discrepancy sequences with an arbitrary distribution function
G. The method is based on the approximation of the inverse of the distribution
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function by linear Lagrange interpolation. We also give bounds for the G-discrepancy
of the generated sequence. Our method is based on the following idea:

Let 0 < zy < ... < zxy <1 be a one-dimensional sequence. Let G be an
invertible distribution function. We define 9 = 0 and xny4+1 = 1. To approximate
G~ Y(zy), we proceed as follows. First, we determine the interval (z;,7;11], with

i €{0,1,...,N} such that G~1(zy) € (z;,2;+1], based on the following equivalence:

Gil(ﬂfk) € (i, xiy1], Ml G(z;) <z < G(Tig1).

Then, we approximate G~ *(xy) with a value y, in the interval (x;,x;11], which is
calculated using linear Lagrange interpolation of G~!.

Before describing our method, we recall a lemma from Niederreiter [10].

Lemma 9. Let P, = (uy,...,uyn) and Py = (vy,...,vn) be two sequences in [0,1].

If, for all 1 <n < N, the following condition takes place

|y —vp| <€
then

|DN(U1,...,UN)—DN(Ul,...,UN)| §2E. (4)

To prove the main theorems of this paper, we formulate and prove the fol-

lowing results.

Proposition 10. Let (x1,22,...,2N) be a one-dimensional sequence in [0,1], with
29 =0<z1 <22 <...<zxny <1=:zn41. The following inequality takes place

|$n_$n+1|SDN($17~-~7$N)a HZO,...,N. (5)
Proof. We note that

1 n n+1 1
|mn_mn+1|: N‘*‘ N_mn - N — Tn+1 = N‘*‘Tn_Tn—H

where 7, = & —7p,n=0,...,N +1.

It follows that
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1
|Zp — Ty ] < Jmax, N +7r;—rj| = Dn(21,...,2N).
1<Gj<N+1
In the last equality, we used the result from Theorem 2. O

Lemma 11. Consider a continuous type distribution on [0,1], with density g and
distribution function G. Assume that the distribution function G is invertible and
g(t) £0, Vte[0,1]. If G € C*([0,1]) then G~' € C*([0,1]) and the derivatives of

G~ have the following expressions:

1
-1y
! G~ 1)
G—l "o g(
= @y
GH® = _g"(G Ng(GTh = 3(g"(GTH))?
(9(G=1))?
G- = _g"(GTH)g(G7H) = 10g"(G7 g (G~ Hg(G™T) +15(¢'(G71)*
(9(G—)T
Their norms are given by:
_ g'
Il ||
_ glll 2 1ogllglg+15913
16l = | 7 «
Proof. The proof is immediately. O

Theorem 12 (Lagrange interpolated inversion method). Let 0 < z; < ... <
N < 1 be a one-dimensional sequence. We consider a continuous type distribution
on [0, 1], with density g and distribution function G. We assume that the distribution
function G is invertible, sup,c(o1]9(t) < M < oo and g(t) #0, Vt € [0,1]. For each

point xy, k =1,..., N, we determine the interval (x;,x;y1] such that
G(zi) <z < G(wig1)-

We denote by () ,z;] the determined interval (z;, ;41] .

83



NATALIA ROSCA

We set z;; =0 if op < G(21) and 27 =1 if G(zn) < zp.-

We generate the sequence (y1,...,yn) with

zp —G(z)  _ vy —Gxy)

G- oeh ™ Faah a0

Yk =

If G € C?0,1] and < L, then the G-discrepancy of the sequence

9_
3

(Y1,92,---,yn) is bounded by

DN,G(yla : 7yN) (1+M3L)DN(m17"'7mN)' (7)
1 G
G(x)
Xy

Glx,)

- +
0 Xy Vo ox 1
Fi1GURE 1. Inversion method.

Proof. First, we illustrate how we obtained the values y; given by (6).

We consider a linear Lagrange interpolation of G~', with nodes Gz}, ) and
G(zf). The values of G ! at the nodes are G~ (G(z})) = z;, and G 1 (G(z})) =

The interpolation formula is:

G l'=LG '+ RGH,
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where L;G~! is the Lagrange interpolation polynomial of degree 1 and R;G™! is the

remainder. Using the expression of the Lagrange interpolation polynomial, we get

zp —G(z)  _ z,—Gxy)

L&) = G —6En™ * el —aw)

= Yk-

Next, we prove inequality (7). For this, we use the result from Theorem 6

and we obtain

DN7G(y1;~-'7yN)
= Dn(G(y),....Gyn))-

It follows that

|DN7g(y1, . ,yN) — DN(arl,. . .,.Z’N)| = |DN(G(y1),. .. ,G(yN)) — DN(

Dna(GH(G(y)),-.-,GHG(yn)))

Our intention is to apply Lemma 9 with P, = (z1,...,zy) and P, =

(G(y1),-..,G(yn)). For this, we first estimate |G(yr) — x|, for 1 < k < N, as

follows

|G<yk>—xk|=|a<yk>—G<G1<:ck>>|=‘ | ykl( )g(t)dt‘SM|G1<:ck>—yk|. (9)

We use the bound for the interpolation error (see [2])

67 @) ] = [Ru(@ ] < 8oy (10)
where
lu(zr)| = |(zx — G(zy)) (z1 — G(ay))]- (11)
Considering the fact that G(z},) < zx < G(x]), we get
o~ G| <6t~ G| = | [ atoe] < vfaf ], 12
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Since [a:,;,mj] is an interval of type [z;,x;+1], we apply Proposition 10 and

we get

|31?Zr -z, | = |zig1 — 2] < Dn(21,...,2N).

Relation (12) becomes

|z — G(zy, )| < MDn(21,. .., 2N). (13)

In a similar way, we obtain

|mk—G(mf)| < MDn(z1,...,zN). (14)

From (11), (13), (14), it follows that

u(ae)| = | (26 - Glap)) (ox — Gaf))| < M2Dd(a,.yon). (15)

Using (15) and the result from Lemma 11, relation (10) becomes

M?*D? e M2 DX e
|G71(mk) _ yk| < n(@1, . N 9 n(@, .. TN L. (16)
2 93l 2
Replacing (16) into (9) we obtain
M3D?
|G (yk) — ax| < (@ 2n) k=1,...,N

2 )

Applying Lemma 9 with P, = (x1,...,zn), P» = (G(y1),...,G(yn)), € =

3 2
ML and using D% < Dy, as Dy < 1, we get

|Dn(G(1),--.,G(yn)) — DN (21, ... 2n)| < 26 < MPLDN(z1,...,2N).  (17)

From (8) and (17), we obtain

|DN7g(y1,...,yN) —DN(,Z'l,...,.Z'N)| S M3LDN($1,...,$N).
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The final result is

DN7g(y1,...,yN) < (1 +M3L)DN($1,...,$N).

5. Inversion method using cubic Hermite interpolation

Next, we propose a transformation where the inverse of the distribution func-
tion G is approximated using cubic Hermite interpolation. We also give bounds for
the G-discrepancy of the generated sequence.

Theorem 13 (Hermite interpolated inversion method). On the same condi-

tions as in Theorem 12, we consider the sequence (y1,...,yn) generated by

_ 1
Yk = hoo(zk)z), + hio(zr)z{ + hoy(zr) —— + b1 (z)

g9(zy)

@y 9

where

hoo(zr) = (z1 — G(=)) (1_2M>

(G(zp) - G(a}))’ G(ay) — Gy

oy - _m=G@))? (|, m-Gaf)
hio(zk) (G(zh) - Gla}))’ <1 QG(mZ)—G(%J

2

(a:k — G(.Z’,;)) (mk — G(a:Z))
(Gay) - Gla))”

hoi(xr) =

(21 = Gla)) (o0 = G(ai))”
(Ga}) - Glap)*

hii(zr) =

forallk=1,... N.

If G € C*0,1] and ‘ g"9"=10g" g’ 94154

g

< L, then the G-discrepancy of the se-

HOO

quence (y1,...,yn) is bounded by

MSL
12

Do, yn) < (1+ )DN<m1,...,mN). (19)
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Proof. First, we explain how we generated the values y; given by (18).
We consider a cubic Hermite interpolation of G~ with double nodes G(z};)

and G(z]). The values of G and (G~!)" at the nodes are G~ (G(z})) = z;,
GG () = 21, (GT) (G(x})) = so=y and (G (G()) = o=
T Tr

The Hermite interpolation formula is:

-

G ' = H3G_1 + R3G_1,

where H3G ™! is the Hermite interpolation polynomial of degree 3 and R3G ! is the
remainder. Using the expression of the Hermite polynomial with double nodes (see

[2]), it can be proved, after some calculus, that

(HsG™") () = yi-

Next, we follow the same steps as in Theorem 12. We point out only the

differences. The bound for the interpolation error (see [2]) is given by

|R3(G71)($k)| _ |G71(1’k) _yk| < |U(Zk)| ||(G71)(4)||

o

where

lu(zr)| = ‘(-Tk — G(ay))” (zx — G(ﬂfz)y‘ < M*Dy(21,...,2N).

We use the result from Lemma 11

||(G—1)(4) | |OO _ ‘ 9"g" — 10?’;9'9 + 159" <L
Relation (20) becomes N
|G () — yi| < M4D§V(mi|’ - ’mN)L.
Similar to Theorem 12, we obtain
|G (yx) — zk| < MQ—ZLD?V(JUL Ce TN
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Applying Lemma 9 with € = MTZLD?V(ml, ...,zy) and using Dy < Dy, as

Dy <1, we get

5

M°L
IDN(G (), -+ Gun)) = Dav(@n, . on)| < 26 < = EDy(a,.oan). (21)

Similar to Theorem 12, this implies that

M5L
|DN7g(y1,...,yN) —DN(,Z'l,...,.Z'N)| S 12 DN(arl,...,a:N). (22)
The final result is
M>3L
|DN7g(y1,...,yN)| < (14 9 DN(arl,...,a:N). (23)

The inversion method using linear Lagrange interpolation or cubic Hermite
interpolation can be used to G-distributed low discrepancy sequences. The generation
of low-discrepancy sequences with an arbitrary distribution function G is described

in the Algorithm 14.
Algorithm 14. Inversion method using interpolation

Input data: the uniformly distributed low-discrepancy sequence (z1, ..., ZnN);
for k=1,...,N do

Find the values z; and mz';

Calculate the point yy;
end for

Output data: the G-distributed low-discrepancy sequence (y,...,Yn).

The method that we proposed uses some values of G, g and derivatives of g
to approximate G~'. This is an advantage, as for some distributions the expression
of G7! is not known. Note that, in our method, adding one point to the generated
sequence would not change the other elements of the sequence, which is another

advantage.
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THE UNITARY TOTIENT MINIMUM AND MAXIMUM
FUNCTIONS

JOZSEF SANDOR

Abstract. The unitary totient function has been introduced by E. Cohen
[1]. The Euler minimum function has been first studied by P. Moree and
H. Roskam [2], and independently by the author [4], who introduced more
general concepts (and duals). A particular case is obtained for the unitary
totient. Basic properties for this minimum, as well as maximum functions
are pointed out. These include inequalities, divisibility properties, and
values taken at special arguments. The necessary exponential diophantine

equations are treated by elementary arguments.

1. Introduction

A divisor d of n is called unitary if (d, g) = 1. Let (k,n). denote the
greatest divisor of k which is a unitary divisor of n. The arithmetical functions asso-
ciated with unitary divisors have been introduced by E. Cohen [1]. The multiplicative

function
p(n) = (=1)*,

where w(n) denotes the number of distinct prime factors of n, is the unitary analogue

of the Mdbius function u(n) and we have

1, n=1

> p(d) =

d||n 0, n>1

Received by the editors: 01.07.2004.
2000 Mathematics Subject Classification. 11A25, 11D61, 26D15.

Key words and phrases. Euler totient, unitary divisor, unitary totient, Euler minimum and maximum

functions, inequalities, diophantine equations.
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where d||n denotes that d is a unitary divisor of n. Let ¢*(n) denote the unitary
analogue of the Euler totient function, that is ¢*(n) represents the number of positive

integers k < n with (k,n),. = 1. Then, it is easy to see that
* * n
©*(n) = du (3),
d|n

so ¢*(n) is multiplicative, being the unitary convolution of two multiplicative func-

tions (see [1]), and for n = pi* ...p& > 1 (prime factorization of n) we have

e (n) =@ —1)...(py" = 1) (1)

Put ¢*(1) = 1.

Let A € N* = {1,2,...} be a given set, and f,g : N* — N* two given
functions. In [4] and [5] we have introduced the functions F’ J‘f‘ (n), G?(n) by (if these
are well-defined)

Ff(n) =min{k € A: n|f(k)}, (2)
and its "dual” by
Afpy — .
Gy (n) =max{k € A: g(k)|n} (3)

For A = N*, f(k) = g(k) = ¢(n), one obtains the ”Euler minimum” and

”Euler maximum” functions, given by
E(n) = min{k € N* : n|p(k)}, (4)

E.(n) = max{k € N*: ¢(k)|n} (5)

For properties of E(n) given by (4) see [2] and [6], while function (5) appears
for the first time in [4] and [6].

The author has considered also other particular cases of (2) and (3) for
f(k) = g(k) = o(k) (sum of divisors of k), f(k) = d(k) (number of divisors of k) [7],
f(k) = g(k) = T(k) (product of divisors of k) [9], f(k) = g(k) = S(k) (Smarandache
function) [8], f(k) = g(k) = Z(k) (pseudo-Smarandache function) [11], f(k) = @e(n)
(exponential totient function) [10]. It is interesting to note that, for g(k) = d(k) or
g(k) = @e(n) the analogues functions to (5) are not well-defined.
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The aim of this paper is the introduction and the initial study of the particular

cases f(k) = g(k) = ¢*(k), the unitary totient function. In analogy with (4) and (5)
define

E*(n) =min{k > 1: n|p*(k)}, (6)

El(n) = max{k > 1: " (k)n} (7)

First note that the functions E*(n) and E}(n) are well-defined. Indeed, by
Dirichlet’s theorem on arithmetic progressions, for each n > 1 there exists a > 1 so
that K = an + 1 is a prime (see e.g. [3]). Then, since by (1) ¢*(k) = k — 1 = an,
which is a multiple of n, (6) is well-defined. On the other hand, remark that

p(n) < ¢"(n), (8)

with equality only for n = 1 and n = squarefree (i.e. product of distinct primes).

Since ¢ and ¢* are multiplicative, (8) follows from

(p prime, « > 1), where for a = 1 there is equality.
Now, since @(k) > vk for k > 6 (see e.g. [3]) and from ¢*(k)|n it follows
©*(k) < n, so Vk < n, implying k < n?. Thus E*(n) < max{6,n%} < 400, so this

function is well-defined, too.

2. Main results

Lemma 1. For alln > 2 one has
P(n) 1< ¢"(n) <n— 1, (9)

where P(n) denotes the greatest prime factor of n.
Proof. The left side inequality follows by (p7* —1)...(p¢ —1) > pir —1>
pr — 1, where p; < ps < -+ < p, are the distinct prime factors of n. Then by (1),
¢*(n) Zp, —1=P(n) - L
For the right side of (9), apply the obvious relation (1 + y1)...(1 + y,)

Y

1+yi...yr (yi >0fori=1,2,...,7) toy; = p;" —1> 0. Then we get p* ...p% >
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1+ (@ —1)...(p% —1), so by (1), the required result follows. Since here there is
equality only for r = 1, the equality sign in right-side of (9) is attained only for n =
prime power. Clearly, for the left side of (9) there is equality for n = prime.

Lemma 2. Let r = w(n) be the number of distinct prime factors of n. Then

©*(n) < (n% —1)" for allm > 2 (10)

Proof. Apply the Huyggens inequality

JA+y) . (T+y) > 1+ -y (i >0)

to y; = pi"" — 1. Then by (1), inequality (10) follows.

Theorem 1.

" (B2 (n)Inlo" (B*(n) for alln > 1. (11)
Particularly,
o (EX(n) <, (12)
" (E*(n)) > n. (13)

Proof. Let E*(n) = ko. By Definition (6), n|¢*(ko). This gives the right
side of (11). If EX(n) = ky, then by (7), ¢*(k1)|n, so the left side of (11) follows.
Relations (12) and (13) are direct consequences of (11).

Corollary 1.

E*(n) > (n% +1)">n+1, forn>2, (14)

where r = w(E*(n)).
Proof. By (10), ¢*(E*(n)) < (E*(n)* —1)", so by (13) we get n < (E*(n)+ —
1)". This gives the first relation of (14). The second one is a trivial consequence of
(a+b)">a"+b" (a,b>0,r>1), which follows e.g. by the binomial theorem.
Corollary 2.
P(E;(n) <n+1, n>2, (15)
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where P(m) denotes the greatest prime factor of m.

Proof. This is similar to the proof of (14), by applying (12) and the left side
of (9).

Remark 1. The weaker inequality of (14), i.e. E*(n) > n+1 for n > 2
follows also by (13) and the right side of (9). This inequality becomes an equality for
many values of n, e.g. for n = 2,3,4,6,7,8,10,12,15,16,18,22,.... Particularly, we
prove:

Theorem 2. Ifp > 3 is a prime, then

E*(p—1)=p (16)

Proof. Since (p — 1)|p*(p) (because of ¢*(p) = p — 1), by definition (6) it
follows E*(p — 1) < p. On the other hand, applying E*(n) >n+1forn=p—1>2
one gets E*(p — 1) > p, so (16) is proved.

Clearly, since ¢*(p)|(p — 1), too, by (7) and (15) we get

Theorem 3. For all primes p,
Ei(p-1) =p, (17)

and

P(E{(p—1)) <p forp>3 (18)

Remark 2. The exact calculation of E}(p— 1) seems difficult. However, the
determination of E¥(p) is given by the following

Theorem 4.

6, if p=2
Ei(p) =< 2, if p>3isnota Mersenne prime, (19)

2" qf p=2"—1 1is a Mersenne prime

First we prove the following auxiliary result:
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Lemma 3. Let p be a prime. Then the equation
¢ (z) =p

is solvable if and only if p =2 or p is a Mersenne prime (with a single solution).

Proof. If z is composite, z = p{* ...p%", with w(z) = r > 2, then ¢*(z) =
(pi* = 1)...(p2 — 1) is always composite, so # p. If r = 1, i.e. = ¢%, then
e (x)=q¢*—1=piff ¢* =p+ 1. Now, if p > 3, then p+ 1 is even, so we must have
qg=2,ie p=2%—1= Mersenne prime (see [3]). f p=2, weget =3, a=1s0ox
is not composite.

If x = ¢ is a prime, then ¢*(z) = ¢—1=p & ¢ =p+1, and this is solvable
only if p = 2, since for p > 3, p + 1 being even, cannot be a prime.

Now, for the proof of (19), let ¢*(k)|p. Then ¢*(k) =1 (i.e. k=1 or 2),
or o*(k) = p. Since p > 2, always, the result follows from Lemma 3, by taking into
account the form of the solution, when p is a Mersenne prime.

We now prove:

Lemma 4. Let k > 1 be an integer. Then the equation
" (x) =2°

is always solvable, and its solutions are of the form x = F, or x = 2F, where F = 9;
a Fermat prime; or the product of distinct Fermat primes.

Proof. Let z = p{'...p%, when ¢*(z) = (p{* —1)...(p% — 1) = 2k
s pit—1=2m .., pir —1=2% with a; +--- 4+ a, = k. Thus p* = 2% +
1,...,p% =2% 4+ 1, soeach p; (i =1,2,...,r) is odd, so  must be odd. Since we
can have also the case 2! — 1 = 29, z could be also of the form = = 2F, where F is

odd. Therefore we must study an equation of type
p*=24+1 (a>1) (20)

1) If @« = 2m is even, then (p™ —1)(p™+1) = 2% gives p™—1 = 2% p™+1 = 2Y
(u+v=a),so2"—2%=2 ie 2°=2(1+2%"1), which is possible only if u = 1,
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v =2 Then p" —1=2,p"+1=4,givingp=3, m=1, a=2;s0a =3 and
r=p*=09.

) Ifa=2m+1(m >0), form =0 we get « =1, s0p =2%+1is
a prime, so it is a Fermat prime (see [3]). Let m > 1. Then since p*™™t — 1 =
(p—1)(P*™ +p?~ L +...+p+1) and p is odd, the second term contains a number
of 2m + 1 odd terms, so it is odd. Thus (20) is impossible.

This finishes the proof of Lemma 4.

Theorem 5. E7(2') = 2m, where m is the greatest of the products (241 +
1)...(2% 4+ 1) of Fermat primes, where a1 + -+ a, < t.

Proof. Let ¢*(k)|2". Then *(k) = 2, where 0 < a < t. By Lemma 3, the
greatest such k is k = 2m, where m = (2** +1)...(2% +1), withay +---+a, =a <t
and r is maximal (i.e. m is maximal if a1 + -+ + a, < ).

Example. E(8) = 30.

Indeed, 8 =23, a1+ - 4+a, <3 & r=2since2'+1=3,22+1=5 are
Fermat primes and 1+2=3. So2m =2-3-5 = 30.

Lemma 5. Let p be a prime. Then

(@) =p

is solvable iff p = 2. The solutions are x = 5, 10.

Proof. 1) Let z = p{* ...p%" be odd. Then (p{* —1)...(p2" — 1) = p? iff

a) p* —1=p%

b) p{* —1=1, p§? — 1 = p?;

c)pit —1=1,p3%* —1=1, p3* — 1 =p%

d) pi* =1, p3* " =p, p3* —1=p.

Remark that cases b), c¢), d) are impossible, since then p; = 2 always, and
this contradicts ¢ = odd. In case a), since p; is odd we must have p = even, so p = 2.
But in this case, p1 =5, a1 =1, so z = 5.

2) If x is even, then p; = 2. In case a) we can write 2** = p? + 1. For

p = 2,3,5 this is impossible. If p > 5, then it is known (see e.g. [3]) that p must have

97



JOZSEF SANDOR

the forms p = 6M £ 1, so p*> = 36k? £ 12k +1 = 12k(3k £ 1) + 1 = 24M + 1, so
p?+1=2(12M + 1) # 2.
Incaseb) a; =1, p3? =5 (pa = 5, ag = 1) is possible, implying « = 2-5 = 10.
Cases ¢), d) cannot hold, since then e.g. in case ¢) a1 =1, ag = 1, ps = p3
and this is a contradiction to ps > po. Similarly, in case d).

Theorem 6.

10, if p=2
E:(I’Z) = 2, if p>3is not a Mersenne prime

2k if p=2F —1 is a Mersenne prime

Proof. »*(k)[p* & ¢*(k) € {1,p,p?}. Now, apply Lemmas 3, 5, and
definition (7).

Lemma 6. Let p be a prime, k > 1 an integer. Then the equation
e (x) =p

1s solvable only for p = 2.
Proof. First we prove an auxiliary result:

Lemma 6’. If k> 1 and p is a prime, a > 1, then the equation
pF=2v—-1 (21)

s not solvable.

Proof. First remark that p must be odd. If k¥ = 2m + 1 (m > 1) is odd,
then p*™ 1 +1 = (p+1)(p*™ — --- + p+ 1), where the second term contains an odd
number of odd terms, and the signs + or —, so it is odd. Thus (21) is impossible. If
k = 2m is even, and p > 5, then by p = 6s + 1 (as in the proof of case 2) of Lemma
5) p? = 24M + 1, s0 p?™ = M24 + 1, p>™ + 1 = 2(M12 + 1) # 2°.

For p = 3,5 we must consider separately equation (21) in case k = 2m.
So 32 = 9™ = (8 4+ 1)™ = M8+ 1, so M8 +2 = 2(M4 + 1) # 2% Similarly,
52m = 25™ = (2n 4+ 1)™ = M24 + 1, i.e. 5™ +1 = M24 +2 = 2(M12 + 1) # 2%
This finishes the proof of Lemma 6.

98



THE UNITARY TOTIENT MINIMUM AND MAXIMUM FUNCTIONS

The proof of Lemma 6 is similar to that of Lemma 5.

When 7 is odd, then p{ — 1 = p* in case a) so p = 2, so by (20). This is

possible only when p; = 3, so k = 3.

The other cases, when p{™ — 1 = 1, etc. are impossible, since p; = 2, contra-

diction to = odd. Similarly the case pi* —1=p,...,p% —1=p, k = 2, since then

p1 = -+ = p, impossible.

When z is even, i.e. p; = 2, in case a) we get 2%+ — 1 = p¥, and by (21) this

is not solvable.

Theorem 7.

2m, if p=2, where m is given by Theorem 5,
E; (Pk> =4 2, if p>5is not a Mersenne prime,

2k if p=2F—1 is a Mersenne prime.

Proof. This is similar to the proof of Theorem 6 (case k = 2), but remarking

that for p = 2 we must use Theorem 5.
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POLYNOMIAL REPRODUCIBILITY OF A CLASS OF REFINABLE
FUNCTIONS: COEFFICIENTS PROPERTIES

E. SANTI AND E. PELLEGRINO

Abstract. In this paper we investigate some properties of the coefficients
of the formulas defining the polynomial reproducibility of a class of refin-

able functions.

1. Introduction

It is well known that constructing refinable approximation operators for real
valued functions, it is desiderable to obtain operators approximating smooth functions
f with an order of accuracy comparable to the best refinable function approximation.

The key for obtaining operators with such property is to require that they
reproduce appropriate classes of polynomials.

Considering the G.P. refinable B-basison I = [0,n + 1], W; = {wj; () fijfn ,
constructed by starting from the class of refinable function defined in [2], it has been

proved in [6] that the quasi-interpolatory refinable operators of the form

N;

Qif (@) =Y Njif)wji (x) zel=1[0,n+1] (L.1)

i=—n
where N; = 2/ (n+1) — 1, and {Aj,-}f:f_n is a set of linear functionals, reproduce
polynomials € IP;, the class of polynomials of degree | — 1, with 1 <1 <n — 1, if and
only if
Noaht=qpl®) k=11 i=-— N; 1.2
i = =1,...,01 i=-n,...,N; (1.2)
Received by the editors: 12.01.2005.
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(k)

where 7;;" are such that

N;
bl = Z nj(.f)wji (x) =zel. (1.3)

i=—n

l
Considering the operators Aj; defined as Aj; := Y @jixAjix it has been proved
k=1

in [6], that assuming

k—1
k—
Oéjik :Z(—l)y ](z ")symm,, (Tjﬂ,Tjig,...,Tjikfl) k: ].,...,l (14)
v=0
where symm,, (Tjin, Tji2, - - ., Tjik—1) is the symmetric function on the distinct points
Tjil, Tji2,s - - -, Tjik—1 € I, the approximating refinable operator:
Nj l
Q;f(z) = Z Zajik [Tjit, Tjizs - - -, Tjik] [ wji () (1.5)
i=—n k=1
where [7ji1,Tji2,...,Tjie) f is the k& — 1 divided difference of f on the points
Tjil, Tji2, - - - » Tjik reproduces the polinomials in P, 1 <1 <n — 1.

](-f) and their local-

The aim of this paper is to investigate the properties of 5
ization in the interval I.

We shall make use of such results for proving the convergence of refinable
operators (1.1), [7].

The paper is organized as follows. In section 2 we shall give some definitions
and the main properties of a wide class of refinable functions ®; defined in [2] and we
define the B-bases, W}, constructed starting from @;.

In section 3 we shall consider the evaluation of nj(.]»c) and prove some useful
properties.

Section 4 is devoted to prove the relation between the values n(k) and Zg’:)

i
that are defined by:
N
k=1 = Z Z;i)Bji (), Vazel (1.6)
i=—n
where Bj; (z) are the normalized B-splines of order n + 1.
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2. Preliminaries

In this section we report for later use some definitions and notations.
It is well known that a scaling function is the solution of a scaling equation
= aip (2 —i) (2.1)
i€Z
The class ® of scaling functions, here considered, consists of the functions
©n () solving the scaling equation

n+1

x) =Y apnpn (22 — k) (2.2)
k=0

where h is a real parameter h > n > 2, and

1 n+1 hen n—1
wa= () rae o0 (7] kmonennn as

Such scaling functions, called G.P. refinable functions, are characterized by

the following properties [2]:

(i) supp ¢n = [0,n + 1];
(i) pn € C" 2 (IR);
(iii) @p(z) >0 Vze (0,n+1);
(iv) ¢y, is centrally symmetrlc that is pp () = pp (n+1—2);
(v) its symbol P, (z) = Lzoakhz is left-half plane stable;
)

(vi

Y ek =1

keZ
For the above properties, for any admissible &, the system of linearly inde-

pendent functions
q)O,h:{QOh(aj_k): kEZ}, thZQa (24)

provides a normalized totally positive (NTP) basis in JR. Moreover, y}, generates a
multiresolution analysis (MRA) in L? (R) , whose approximating space V; are defined

by
Vi = closis {22, (Yo~ k), ke Z}, jez*.
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Considering a bounded interval .J = [a, b], the system
Q= {gojhk (z) = 212y (272 — k), 2a-n<k<2b-1, z€ [a,b]} (2.5)

with j > jo, where jo is the first integer such that 2/° (b —a) > n + 1, constitutes a
NTP basis. For the sake of short notation we shall eliminate the explicit dependence

on h of ®; 5, we write ¢ ; for ¢;p, and we shall set
N;=2a-n N;=2b-1;

therefore, ®; is a NTP basis for the space ‘N/] generated on J.
In [3], it has been proved that there exist N; — N ; + 1 real numbers Ej(i) such
that,

N;
o= N o (@) wed I=1,..n-1 (2.6)
k=N

We remark that for the property (vi) of refinable functions ¢, , there results
&) =1vk=N,... N,

We recall that a TP system of linearly independent functions W; =
(wjo ... wjm) defined on the bounded interval J is said to be a B-basis (or opti-
mal basis) if each TP basis U; = (ujo - . - u;m) of the space generated by W; satisfies
the relation

U; =W;A; (2.7)

where A; is a non singular TP and stochastic matrix.

In [1] an algorithm for the construction of W; starting from any U; is given.
This algorithm can be applied, in particular, when the TP system U; under consider-
ation is constituted by suitable integer shifts of TP refinable functions as considered
in (2.5).

Therefore, let W; = {wj; () ZN:JEJ be the B-basis associated to ®;, W; gen-
erates a MRA on J [3]. Moreover, this MRA reproduces polynomials up to the order
d=n —1, that is, there exist N;j — N; + 1 real numbers nJ(Q such that

2|

= Y ) wed 1=Tne, 29

=
Il
&
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with
) _ (1)
0 = 4;¢0, (2.9)

and A; is the matrix in (2.7).

By exploiting some properties of the system of functions W}, we shall establish

some properties of the values 77;2 that can be very profitable in proving convergence

properties of approximating (in particular quasi-interpolatory) refinable operators.

We assume J = I = [0,n + 1] an assumption by no means restrictive, and in

such a case there results N; =—n, N;=2/(n+1)—1=N; and

k . (k+n+1
supp wjr = {max <0, —> ,min <L,n + 1>} (2.10)
27 927
In Fig.1 we show an example of B-basis constructed on I = [0, 6] starting
from ®,, NTP basis with support [0,6] and h = 10.
12 T T T T
1k -
0.8
- ~ ; ~ |
ol // B ¥4 \\ M \,,\ £ |
¥ dj a,f‘ﬂ_\‘:'\,‘ ,ff \;"'/ 3 ,.-'/ y f—
[ / ‘_,H\ . ,
0.4H / ril .
\»{ \’-,' / AR \ }
\ VARVAR /Y
0.2 Y \f i \ s .'\
W Pl 5 /
e Wl B %,
0 o b o e
_02 1 1 1 1 L
0 1 2 3 4 5 B

FIGURE 1. The normalized B-bases (solid line) in the interval [0, 6].
The dashed line represents the starting NTP basis ®, with n = 5
and h =10
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TABLE 1
L= L= L=3 The table 1 shows the
i err err err relative error, valued in
knots x;, given by the
0.000 | 5.4 (-17) | 7.1 (-16) | 5.4 (-15

difference between first
1.000 | 1.1 (—16

and second member of
2.000 | 1.1 (—16

(2.8), for several val-

ues of L, confirming the
4.000 | 0.0 (00

olynomial reproducibil-
5.000 | 1.8 (-16 POLY P

ity.

) ) (-15)
) ) (-15)
) ) (-16)
3.000 | 0.0 (00) | 0.0 (00) | 1.3 (-16)
) ) (-16)
) ) (-16)
) ) )

6.000 | 1.5 (-16

O]

3. Evaluation and localization of U

In [3] has been proved that for the values 5(()2, at level j = 0, the following

relations

l -1y
& = Z( . )k’”Cr (3.1)

r=0

CO = 1, Cl = U1, Cr = Z (—1)5_1 (Z) /‘scrfs (32)
s=1

hold, where p; := [}, ' («) dz denotes the i-th moment of ¢q (z) = ¢ ().

By rearranging (3.1), we estabilish a formula that allows the evaluation in I
of EJ(Q for any j > 0, only using the values of f;? =277 (k + "T'H) s k=-n,...,N;
and the coefficients C; i = 0,...,1 — 1 in (3.2). This procedure permits to avoid, for
each 7, the evaluation of unnecessary values of EJ(.Q, that should be used for the level
Jj+1

Proposition 1. For j > 0, there results

-1 e (1—1
&) = (g](i)) + 2101)2( ] )k“s (Cs—C3). (3.3)
s=2
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Proof. From (3.1), it is straightforward to verify that for j = 0
O _ 1) e fl—2
l -1 - 1—2—r
=k kE k Cr+C_ k=-n,...,N 3.4
Sok S T r=1<T_1> r+ Cr1, n,...,No (3.4)

and in particular, being féi) = k + C1, there results

S = k& +ECL+ Oy = (K +2kCy + CF) + G = CF (3.5)

2
((()i)) +(C-C}), k=-n,...,No.

By applying iteratively (3.4) and rearranging the terms, we obtain

-1 -1
s = (&%) +Z( ] )k“s(Cs—Cf), k=-n,....,No.  (36)
s=2

Now considering that

Wji = 2j/ (2jm)i ¢ (272) do = / tio (t) dt = po; (3.7
R R
and
> (e —k) g (@) = pis (3.8)
keZ
we obtain, for [ =1,2,...,n—1
7= 3 2 Dello (2) (3.9)
kez
and we get (3.3) by assuming 5](? = 2*1'(!*1)5(()2. O
Therefore the procedure for evaluating for any fixed integer [, 1 <[ <mn—1,
EJ(Q, k= —n,...,N;, consists in the following steps:

e evaluation of C;, i =0,1,...,l — 1 using (3.2);

e evaluation of fj(.i) =277 (k + "T“) k=-n,...,Nj;

e evaluation of f(l) by means of (3.3).

n _ O] :

Once determined £; [{ ion--§N ] we determine by means of (2.9) the
vector 77 =A; f

We are interested now, in investigate the properties of vector le) and the
localization of its components, useful for proving the convergence of operators (1.5)

as j — 0.
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Starting again from (3.1) and considering that the values of féljc, k =
—n, ..., Np are obtained evaluating a polynomial of I — 1 degree with coefficients

Co, C1,...,Ci—1 at the point k, and the first derivative of such polynomial evaluated

at k coincides with (I — 1) é{;l) we can write
(O (1-1)
DEW = (1 - 1)€Y, (3.10)

Therefore we can prove the following
O]

Proposition 2. All the nodes g, k = —n,...,n,l =1,...,n—1 are non decreasing

and they satisfy, for 1 > 1:

0= U(()l),n < Ué{ln+1 <...< n((){)—n-‘rl <...< nél)n (n+ 1) o (3.11)

Proof. We know that for I = 1 there results

mepr=1 k=-n,...,Ng=n. (3.12)

Using (2.8) with j = 0, and taking into account that wog (0) = dg,—, and

wok, (N + 1) = d0p, one has, for 1 <1 <n—1,

0= Z U((){)lcw% 0) = ﬁ(glln; Z 770 Yok (n+1) = ﬁ((Jl)n (3.13)

k=—n k=—n

Finally by (2.9) and (3.10)
Dyl = AgDEY = (1 —1) Ap€l Y = (1= 1) {7, (3.14)

In [4] has been proved that
0=n5", <08 iy <o <) =n+1, (3.15)

that can be also deduced considering (3.12) - (3.14).
Therefore, for [ = 3 the sequence n(()i.) i = —n,...,n, using (3.14), is non
decreasing and bounded by 0 and (n + 1)>. By induction we prove (3.11) for each

1<li<n-1. O
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Remark 1. We remark that being 17( ) = =0, when |l = 3 one has for (3.13) n(()?)_n =0
and using (3.14) 17(3) nt1 = 0. Then for 1 > 2, there results

! ! !
16, =10 1 = =y 1 = 0.

The following proposition gives the precise localization of 77(()) for any i =
-n,...,nandl > 2.
Proposition 3. There results:
77((){)1‘ € [0,(i+n+ 1)171] fori=—-n,...,0
(3.16)
77((){)1‘ € [ilil, (n + 1)171] fori=1,...,n

We recall that [0,i + n + 1] are the supports of wo; for i = —n,...,0 and [i,n + 1]

are that ones of wo; fori=1,....n
Proof. Let us demonstrate (3.16) just fori = —n+1,...,—landfori=1,...,n—1,
since for ¢ = —n,n and ¢ = 0 it is obvious.

Recalling that Wy is TP and normalized, for s = —n 4+ 1,..., —1 using (2.8)

and (3.11) with j = 0, we obtain

n n n
=3 bl woi (@) > D b wos (z) =il > wo; ()
i=8 i=8

i=—n
n s—1 n
Since 1 = > wo; () = Y woi (x) + Y wo; (), one has
i=—n i=—n i=s

Zwm =1- Z wo; (

i=—n

Ifltweren() > (s+n+1)"" forz e€[n+s—1,n+s] we had
7> (s+n+ 1) (1= wos—y (2)) (3.17)

since wor, () =0, k= -n,...,s—2forz >n+s—1.
But wgs—1 (n +s) =0, thus in [n + s — 1,n + s] there are points x for which
1- (z)) > LAl
Wos—1 \ T (S+n+1)z—1;
(s +n)'™", a contradiction.

and for the same points, (3.17) would give 2!~ >

109



E. SANTI AND E. PELLEGRINO

Consider now s = 1,...,n — 1; for each fixed s, supp wos = [s,n + 1]. We

had to prove that n(()ls) > s!=1. For = € [s, s + 1], there results

S

Z 770, sz Z 770@ wOZ 77((Jls) Z Woj ('T) < 77((Jls)

i=—n i=—n+s i=—n-+s

If we were to take i) < s'~!, we would have /! < s'~! a contradiction. [

For extending the results to the level j we recall relation (2.10) and, by

denoting y;,i, ¥j,i+n+1 the bounds of supp wj;, we can write:

- 1
y;ﬁ = nj(l) = yj z+n+1 (3.18)

Remark 2. In the supports [y; i, Yj.i+n+1] there are, for any i, n+2 uniformly spaced

(norm Aj =279 ) points, also partially coinciding with 0 or n + 1.

4. Relation between 77](? and EJ(Q

In the following Proposition 4 we determine a relation between the values nJ(Q

and E;lk) that are such that:

N;
= ZEE'?Bji(w) rel, 1<1<n,

i=—n
where Bj; (z) are the normalized B-splines of order n+ 1 and uniformly spaced knots,

that, as we know, have the same supports of wj; ().

Proposition 4. For any integer 1, 1 <1 <n —1, and j > 0, there results
(l)
ni =0 (0 (4.1)
where 0 < C; (i,1) <[2(n + 1)]l_1 .

Proof. Let suppBji = [Yj,i; Yj,i+nt1] We know [8] that

—=(1) symmi—i \Yj,i+1,---,Yj4,i+n .
£ = 1 Z"H) jitn) —n,...,Nj, (4.2)
-1

where the symmetric function is defined by:
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POLYNOMIAL REPRODUCIBILITY OF A CLASS OF REFINABLE FUNCTIONS

symmy, (ty,ta, ... t,) = > titiy .. ti, (4.3)
1<i;1 <2 <...<ir <p

and the sum is over (2’) terms.

For | =1 there results: Zgl = 17](1) =1,Vi= by Nj.

Therefore we consider 2< [ < n — 1 and recall that for each [, Z;lln =
g(” ppl = oo = Ejf)_n+l_2 —oandq®, =g, = ... = n](fZHH , =0, and
En, =1, =+ 1)

Then, we can consider the cases: a)i = —n+l—1,...,—-1;b) i =0,...,N;—n;

c)i:Nj—n+1,...,Nj—1.

a) Since yYj,—nt1 = ... = yj0 = 0, symmi_1 (Yj,i41,- .. ,Yj,i+n) reduces to the

z+n)

sum of ( terms, and

Therefore

n -1 -1, .,
0 = (171) Yji 77](@) Yjitn+1 (171) _ 44
() \Yiitn § Yin (1)

nn—1)...(n—1+2) _
( +n)Gi+n—1)...(i+n—1+2)
1—2

= (n+1) H< — >§[2(n+1)]l_1

= (n+1)

b) In such case
-1 ) -1
Yj.i < i o [ Yiitnt
Yjitn ) T\ Y

-1 ()
0< <1 -z ) < %’) <+ <2m+1)])". (4.5)

and then
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c) Finally when i = N; —n+1,..., N; —1, taking into account that y; n;41 =

e =YjN;+n+1 = n + 1, there results:

-1 ) ; -1
(Nj—n+1> <T’jj <<21(n+1)> :

27 (n+1) —z® = \Nj—n+2
ji
therefore recalling the definition of IV;,

0
0< 5 <[2(n+ 't (4.6)

ji

0]

By denoting ;_7(—) = C; (i,1), from (4.4), (4.5), (4.6) we get the thesis. O

Now we show, in Fig. 2, the behaviour of the operator Q; f(z), given by (1.5),
for some values j, for the functions f(z) = sin(2nz), and f(x) = 2* + |z| * 2. The

operator (; f(z) has been constructed by starting from {®¢} with n =5 and h = 6.

ZTIN
0Er / \\\
0Er // \\\
j \
/ \

1
08
06
04
02
0
02
04

0B

-08

oo N/

L L L L L L s E n L L L L L h 1 L .
0 01 02 03 04 05 06 07 08 08 1 o 01 0.2 03 04 05 08 07 0B 08 1

FIGURE 2. The operator Q;f(z) (dashed line), for some j, for the
functions f(z) = sin(27rz) (left), and f(z) = z* + |z| * = (right).

In the following table 2 we report the infinite norm of the error |Q;f — f| in
[0,1] where f(z) = sin(2nz) and Q;f is constructed by using refinable functions or
B-splines of order n+1 in err@Qf and err@ f_b respectively.

The table 3 is relative to the function f(z) = z* + |z| xz = € [-1,1].
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TABLE 2 TABLE 3
f(z) = sin(2nx) f(@) =2+ |z|* 2
Jj errQf errQfb Jj errQf err@Qfb
3 958 (-2) 990 (-2) | |3 1.17(-2) 1.22(-2)
4 125(-2) 134(2) | |4 231(-3) 2.36(-3)
5 8.32(4) 8.97(4) | |5 537(-4) 5.48(-4)
6 528 (-5) 570 (-5) | |6 1.32(-4) 1.34(-4)
7 332 (-6) 3.58 (6) | |7 3.28(-5) 3.34(-5)
8 2.07(-7) 224(-7) | |8 8.20(-6) 8.35(-6)
9 1.30 (-8) 1.40 (-8) | |9 2.05(-6) 2.09(-6)
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THE FINITE-VOLUME PARTICLE METHOD
ON A MOVING DOMAIN

J. STRUCKMEIER AND DELIA TELEAGA

Abstract. In the present work we apply the Finite-Volume particle
method (FVPM) to a test problem posed on a moving geometry. The
FVPM is a relatively new meshless method for discretizing conservation
laws, which combines the generic features of a Finite-Volume scheme and
a particle method. After a brief derivation of the method, a special Ansatz
for the movement of the particles is proposed. Finally we present numerical

results obtained for the test problem using FVPM.

1. Introduction

The Finite-Volume Particle Method (FVPM) is a relatively new meshless
method for solving hyperbolic systems of conservation laws. The motivation for devel-
oping a new scheme was to unify advantages of particles methods and Finite-Volume
methods (FVM) in one scheme. The FVPM combines the generic features of a Finite-
Volume scheme and a particle method, namely the concept of a numerical flux function
and the flow description using moving particles. This method was studied in detail
in [1-9].

Here we shortly present the application of the FVPM to a test problem posed on a

moving domain, a problem which was discussed in detail in [8].
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2000 Mathematics Subject Classification. 65M99, 7T6M12, 7T6M25, 7T6M28, 7T6N99.

Key words and phrases. Finite-Volume methods, non-Lagrangian particles, moving domain.
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2. Derivation of the method
We consider conservation laws written in the form
Ou+V-Fu)=0, VxeQit)CR* t>0 (1)

with initial conditions u(x,0) = ug(x), Y& € Q(¢), and suitable boundary conditions,
where Q(t) is a moving, bounded domain in R?, u(x,t) € R™, m > 0 denotes the
vector of conservative quantities, and F(u(x,t)) denotes the flux function of the
conservation law.

A natural approach to discretize conservation laws is to evaluate the weak formulation
of (1) with a discrete set of test functions ¢;, i = 1,..., N. In classical FVM, the test
functions are taken as the characteristic functions I, (x) of the control volumes §;
on a spatial grid. The discrete quantities are obtained from cell averages. Note that
characteristic functions form a partition of unity, i.e. Ziil Io,(z) =1,V € Q.

A similar approach is used in the following, but we introduce a different set of test
functions. Since we want to derive a mesh-free method, we should not make use of a
mesh. Therefore the conservative variables are approximated at each time step by a
finite set of particles located in the spatial domain (¢). From this point of view, the
FVPM is a particle method with particle positions x;(t), which may be irregularly
spaced and moving. To each position x;(¢t) we associate a function ;(x,t) - the
particle. As in the Finite-Volume approach, let {¢; : i = 1,..., N} be a partition of
unity, but the supports of the functions should overlap. More exactly, we assume that
the particles are smooth functions localized around the particle positions x;(t) and

satisfy

N
> (e, t) =1,V € Q(t), £ > 0. (2)

i=1
We construct this partition of unity in the following way:
Taking a Lipschitz continuous function W : R — Ry with compact support (otherwise
one has to consider long-range interactions between particles), we define

Wi(w, t)

@Di(ili,t) = o(w,t) )

3)
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where o(x,t) = Y, Wi(z,t), W(a,t) = W(z—i(t), i = 1,..., N. Such a partition
of unity used in FVPM is shown in Figure 1.

1
o.9
o.8
0.7
o.6
o.s
0.4
o.3
0.2

0.1

o
=2 —1.5 ey —o.5 o 0.5 E 1.5 2

F1GURE 1. A partition of unity used in FVPM

In the FVPM, the particles generically move through the domain, following a pre-
scribed velocity field a(z,t) € C°(C*(R?), R, ), i.e. we have &; = a(z;,t). Fora = 0,
one obtains fixed particles, and for a being, for example, the fluid velocity in the case
of Euler’s equations, one obtains a Lagrangian scheme.

To each particle, one associates a volume V;(t) and a discrete quantity w;(¢) which is

the integral mean value with respect to the test function

u; (t) =

1
0] /Qu(w,t)ibi(w,t)dm, where Vé(t):/Qwi(w,t)dm. (4)

Testing the conservation law (1) against the new set of test functions ;(x,t) and
using the quantities defined above, one ends up with a system of ordinary differential

equations (see [8] for details)

d Vuz = Z|ﬂz]|gz] / Yi(F(u) — u-b)-ndo, (5)
with the initial condition
u;(0) = ! /u (z)i(z,0)dx (6)
2 — V;(O) a 0 ) ) .

Note that the boundary term appears only for particles i which are near the boundary,
i.e. supp; N 0N # 0, and consists of a term containing the flux of the given conser-
vation law, as well of a contribution due to the moving boundary with the velocity b.
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The coefficients 3;; and g,; are defined as

'Bij(t) = ’Yij(t)_’sz‘(t)a ’Yij(t)z o ;VWjdm (7)

g;;(t) = g(t,xiui,zj,uj,ny), n;=
where g is a numerical flux function consistent with the modified flux G(¢, &, u):
g(t,m,u):}'(u)—uw, (9)

where & is the particle movement given by &(t) = a(x,t). The numerical flux function
g can be any numerical flux function used in FVM, but it has to be consistent with
the modified flux function G, not with F.

Using an explicit Euler discretization of the time derivative, one obtains

Vit = vl - At Y |BY gl — B, (10)
JEN(9)
with u? = o [, wo(@)ys(x, 0)da, where B; is a discretization of the boundary term
explained in [8].

A natural reconstruction of a function from the discrete values is given by

N
a(a,t) =Y ufi(@, ), 0,01, ®€Q te[0,T] (11)

i=1
3. Special Ansatz for the particles movement

We concentrate on simulating a flow around an oscillating circle in a spatial
two-dimensional geometry. The computational domain is given by Q(¢) = [0, 1] x
[0,1] \ Bg(t), where Bgr(t) = {(z,y) € R : ||z — z.(t),y — y.(t)]| < R} is the
circle of center (z.(t),y.(t)) and radius R. Let us denote the domain’s boundary by
00(t) := Ty UTR(t), where T'g is the exterior boundary and T'g(t) is the boundary of
the moving circle.

We consider a simple, rigid movement of the circle, although one may consider another
types of movements. In our example the circle is oscillating up and down, for example
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with respect to the following equations:

i.(t) = 0, z.(0) =2 (12)

gc(t) = Awcos(wt), w.(0)=y?, (13)

where A is the amplitude of the motion and w is the frequency.

For the fluid-structure interaction problem which is considered here the effects due
to viscosity can be neglected. Hence, the fluid is modeled by Euler’s equations for
compressible inviscid flow.

In formula (5) there are incorporated two movements: a, the movement of the particles
(through the numerical flux function g), and b, the movement of the boundary. Now
we have to answer the question: being given the velocity field b, how should the
particles move?

One may observe that it is not suitable to move the particles with the flow velocity
if a smoothly varying particle distribution is desired. Therefore we consider that
the movement of the particles a is given by the solution of a Laplace equation with
corresponding boundary conditions, namely zero velocity at the exterior boundaries

and velocity of the circle at the interior boundary:

Aa(x,t) = 0, Q(t)
a(x,t) = 0, Lo (t) (14)
a(:c,t) = (ic(t)ﬂyc(t))ﬂ FR(t)

In this way the particles follow the domain geometry. In this example, since the
movement of the boundary is restricted to a rigid body movement of an isolated
object, the whole distribution of particles may be moved with the boundary. In this
way the particles remain rigid, i.e. there is no relative motion between the particles.
The advantage of this rigid movement is clear, we do not have to recompute every
time the coefficients 3,;; for example. However, the rigid movement approach is less
general than the one proposed here.

In [8] we also investigated under which conditions on the motion of the circle and the
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smoothing length of the particles no 'holes’ are developed in the domain. By a ’hole’

we understand a space which is not covered by the support of any particle.

4. Numerical results

Here we present numerical results concerning the test problem defined in the
previous section.
If the circle moves periodically up and down, like specified in (12), (13), there exists a
periodic solution, i.e. after a few oscillations up and down the flow becomes periodic,
with the same period as the circle’s movement. To see this, we compute the difference
between the solution every time when the circle attains its initial position, moving

upwards, i.e. exactly after a complete period:

ev =Y _|pFVE = pfPVET Lk =0,1,. 0 ks
ieEN
where k0, = [T/P)], P = 2w /w is the period of the movement, T" is the final time, ¢,
is the time when the circle starts to move, p¥ = p;(to + kP) and V¥ = V;(to + kP).
For this computation we choose N = 50 x 50 uniform distributed particles, o = 0,
w=10m, A =0.1, P =27 /w = 0.2, and T = 4.05. Hence, ks, = 20. As can be seen
in Figure 2, after around 10 complete oscillations, the differences ey, are so small that

the flow can be considered to be periodic.

S SR S R R S
12 3 4 5 6 7 8 9 10 11 12 13 1415 16 17 18 19 20

3

FI1GURE 2. Differences e; versus k
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Now we choose N = 100x 100 quasi-random distributed and moving particles. The
movement of the circle is as before, i.e. A = 0.1 and w = 107. The solution at
time 7" = 0.55 is presented in Figure 3 and 4. In Figure 3(left) one may see the
irregular particle positions together with their corresponding density. The solution
reconstructed on a uniform grid is shown in Figure 3(right) (isolines of the density)
and Figure 4 (isolines of the velocity components).

These results show that the method works also in the case of a time-dependent domain

and using irregular distributed and moving particles.

F1GURE 4 “Tsolines of u - (left) and v - Velocity component (right} in

the same case as in Figure 3
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5. Conclusions

We presented here an application of the FVPM to a spatial two-dimensional

problem posed on a moving domain, where the meshless character of the method is

fully exploited. The particles are irregularly distributed in the domain and they are

moving in a non-Lagrangian way such that they smoothly follow the time-dependent

computational domain.

Numerical results indicate that the method is well-suited for such problems. Also the

discretization of the boundary conditions works very satisfactory.

Thus, a first step to applying the FVPM to real fluid-structure interaction problems,

which in general limit the use of grid-based methods, is done.
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BOOK REVIEWS

Titu Andreescu and Bogdan Enescu, Mathematical Olympiad Treasures,

Birkhéuser Verlag, Boston-Basel-Berlin, 2004, 234 pp., ISBN 0-8176-4305-2.

This excellent book deals with some important topics of elementary math-
ematics necessarily in the process of training students for various contests and
olympiads. One of the main intention of the authors is to build a bridge between
ordinary high school exercises and more sophisticated, intricate and abstract concepts
and problems in undergraduate mathematics. Mathematical Olympiad Treasures re-
flects the depth of experience of two seasoned professors and coaches from the USA
and Romanian Olympiad teams. The book is organized into three chapters each of
them containing eight sections. Each sections contains some suggestive completely
solved problems and some proposed problems which are solved in the second part of
the book. In what follows we will briefly present each of them.

Chapter 1 is entitled Algebra and contains some basic notions and results
concerning the following topics: An algebraic identity, Cauchy-Schwartz revisited,
Easy ways through absolute values, Parameters, Take the conjugate, Inequalities with
convex functions, Induction at work, Roots and coefficients.

Chapter 2, Geometry and Trigonometry, contains eight sections dealing with
Geometric inequalities, An interesting locus, Cyclic quads, Equiangular polygons,
More on equilateral triangles, The carpets theorem, Quadrilaterals with an inscribed
circle, Dr. Trig learns complex numbers.

In Chapter 3, Number Theory and Combinatorics, the authors present some
fundamental ideas and interesting problems concerning Arrays of numbers, Functions
defined on sets of points, Count twice, Sequences of integers, Equations with infinitely

many solutions, Equations with no solutions, Powers of 2, Progressions.
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The book ends with a useful Glossary, an Index of notation and an Index
containing the sources of the problems. The book is written in a very clear and
rigorous manner and it is recommended for students, graduated students and their

teachers and for anyone interested in mathematical contests and olympiads.

Dorin Andrica

Titu Andreescu and Zuming Feng, A Path to Combinatorics for Under-
graduates. Counting Strategies, Birkhauser Verlag, Boston-Basel-Berlin, 2004,
228 pp., ISBN 0-8176-4288-9.

This is a unique approach to combinatorics centered around challenging ex-
amples, fully-worked solutions, and hundreds of problems many from mathematical
contests and olympiads. This excellent book deals with some important topics of
combinatorics which are very useful in the process of training students for various
contests and olympiads and it reflects the depth of experience of two seasoned pro-
fessors and coaches from the USA Olympiad team. The book is organized into nine
chapters containing the basic notions and results in the following topics : Addition or
multiplication, Combinations, Properties of binomial coefficients, Bijections, Recur-
sions, Inclusion and exclusion, Calculating in two ways: Fubinis principle, generating
functions, review exercises. The book ends with a useful Glossary, an Index of no-
tions and a suggestive list of references. The book is written in a very clear and
rigorous manner and it is recommended for students, graduated students and their
teachers and for anyone interested in challenging mathematics. It can be used as a

solid stepping stone for other advanced mathematical readings.

Dorin Andrica
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Titu Andreescu and Zuming Feng, 103 Trigonometry Problems From the
Training of the USA IMO Team, Birkhduser Verlag, Boston-Basel-Berlin, 2005,
214 pp., ISBN 0-8176-4334-6.

This excellent book contains 103 highly selected problems used in the training
and testing of the USA IMO (International Mathematical Olympiad) team. From the
authors preface it follows that "It is not a collection of very difficult, impenetrable
questions. Instead, the book gradually builds students trigonometric skills and tech-
niques”. The book contains five chapters. The first chapter provides a comprehensive
introduction to trigonometric functions, their relations and functional properties, and
their applications into plane and solid geometry. Chapters two and three contain 52
introductory and 51 advanced proposed problems, respectively. In Chapters four and
five the authors present the solutions and some comments to the proposed problems.
The book also contains a Glossary and a rich list of references.

This work aims to broaden students view of mathematics and better prepare
them for possible participation in various mathematical contests and olympiads. The

book further stimulates interest for the future study of mathematics.

Dorin Andrica

Vasile Berinde, Ezxploring, Investigating and Discovering in Mathemat-

2cs, Birkhauser Verlag, Basel-Boston-Berlin, 2004, 246 +xix pp., ISBN 3-7643-7019-x.

This book represent the English version of the Romanian edition (V.Berinde,
Explorare, investigare si descoperire in matematica, Editura Efemeride, Baia Mare,
2001). The author writes in his Preface to the book: ”The book is addressed mainly
to students, young mathematicians, and teachers, involved or/and actively working
in mathematics competitions and training gifted people. It collects many valuable
techniques for solving various classes of difficult problems and, simultaneously, offers
a comprehensive introduction to creating new problems. The book should also be of
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interest to anybody who is in any way connected to mathematics or interested in the
creative process and in mathematics as a art”. Indeed the author has been greatly
successful. The reader can find here ideas and problems which combine a number of
classical topics from various fields of mathematics.

The book is organized into 24 chapters, most of them independent, involving
the following topics: Chase problems, Sequences of integers simultaneously prime, A
geometric construction using ruler and compass, Solving a class of nonlinear systems,
A class of homogeneous inequalities, The first decimal of some irrational numbers,
Polynomial approximation of continuous functions, On an interesting divisibility prob-
lem, Determinants with alternate entries, Solving some cyclic systems, On a property
of recurrent affine sequences, Binomial characterizations of arithmetic progressions,
Using duality in studying homographic recurrences, Exponential equations having ex-
actly two solutions, A class of functional equations, An extension of Leibniz-Newton
formula, A measurement problem, A class of discontinuous functions admitting primi-
tives, On two classes of inequalities, Another problem of geometric construction, How
can we discover new problems by means of the computer, On the convergence of
some sequences of real numbers, An applications of the integral mean, Difference and
differential equations.

Each chapter ends with a suggestive and useful bibliography concerning the
topic. Some basic and general principles regarding creativity in solving problems are
discussed in an Addendum at the end of the book. The book is strongly recommended
to all students and teachers but also to everyone who has a special love for math-
ematical problems that are stated and also solved in a simple and in an ingenious
way.

Dorin Andrica
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Advanced Courses in Mathematical Analysis, 1. A. Aizpuru-Tomas and
F. Leon-Saavedra (Editors), World Scientific Publishers, London-Singapore 2004,
vii+155 pp., ISBN 981-256-060-2.

The volume contains the written versions of the lectures delivered at the
First International Course of Mathematical Analysis in Andalucia, organized by the
University of Cadiz from 23 to 27 September, 2005. The aim of the course was
to bring together different research groups working in mathematical analysis and to
provide the young researchers of these groups with access to the most advanced lines
of research. A second course took place in September 2004 in Granada.

There are included five survey papers: 1. Y. Benyamini, Introduction to
uniform classification of Banach spaces ; 2. M. Gonzdles, An introduction to local
duality for Banach spaces ; 3. V. Miiller, Orbits of operators ; 4. E. Matouskova,
S. Reich and A. J. Zaslavski, Genericity in nonexpansive mapping theory ; 5. A. R.
Palacios, Absolute-valued algebras, and absolute-valuable Banach spaces.

The first paper is the only updated survey on the classification of Banach
spaces under uniformly continuous mappings. Its aim is to introduce the reader to
this area and to present some results and open questions, a complete presentation
of these problems and of other related ones being given in the recent treatise of Y.
Beniaminy and J. Lindenstrauss, Nonlinear Geometric Functional Analysis, 1., AMS,
2000.

The local duality for Banach spaces is a tool recently developed by the author
of the second paper and some co-workers, which turned to be very useful in the study
Banach spaces, mainly in the case when the dual of a Banach space is too large.

V. Miiller emphasizes in the third paper the relevance of the orbit method and
of Scott Brown’s technique in the study of invariant subspaces. A more comprehensive
treatment is given in his recent book 7777.

It is known that nonexpansive mappings could note have fixed points, but,
as it was shown by F. S. De Blasi and J. Myjak in 1976, most of them (in the sense
of Baire category) do have. The fourth paper surveys various category and porosity
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results concerning the well-posedness of the fixed point problem for nonexpansive
mappings, most of them being obtained recently by the authors.

An absolute-valued algebra is a normed algebra A such that ||zy| = ||z]||yll,
for all x,y € A. As it is well-known, if A is associative and commutative then it agrees
with R or C, and with the quaternion field H if A is only associative. Therefore, the
interesting case is that of non-associative absolute-valued algebras, presented in the
last paper of the book. The results are presented from historical perspective to the
frontier of current research in the field.

The book contains surveys of some topics of interest in the current research
in functional analysis, written by leading experts in the area. It can be used as an
introductory material for young researchers, as a guide to more advanced books or

research papers.

S. Cobzag

Michael Ruzicka, Nicthlineare Funktionalanalysis — FEinr FEinfiihrung,

Springer Verlag, Berlin-Heidelberg-New York 2004, xii4+-208 pp., ISBN 3-540-20066-5.

The book is based on a one-semester course (the 6th semester) taught by
the author at the Universities of Bonn (1999) and Freiburg (2002 and 2003). Its
aim is to provide the reader with the basic results and techniques in the field, which
can form a basis for the reading of more advanced books, as, e.g, the monumental
four volume treatise of E. Zeidler, Nonlinear Functional Analysis and Applications,
Springer Verlag, 1985-1990.

The topics covered by the present volume are best illustrated by the headings
of the chapters: 1. Fized point theorems; 2. Integration and differentiation in Banach
spaces; 3. The theory of monotone operators; 4. The topological degree theory.

The first chapter of the book contains the basic fixed point theorems: Ba-
nach’s contraction principle, Brouwer and Schauder fixed point theorems. The proof
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of Brouwer fixed point theorem uses some techniques from variational calculus. Ap-
plications are given to existence results for ordinary differential equations (Picard’s
iterative method).

The second chapter is concerned with Bochner integration, LP-spaces of Ba-
nach valued functions and differential calculus in Banach spaces (Gateaux and Fréchet
derivatives).

The third chapter contains an introduction to monotone operators and in-
cludes results of Browder, Minty and Brezis. Maximal monotone operators, subdiffer-
entials of convex functions, and the duality mapping are also included. Applications
are given to quasilinear parabolic and elliptic partial differential equations.

The last chapter of the book is devoted to a presentation of Brouwer and
Leray-Schauder topological degree theories wit applications to Brouwer fixed point
theorem and to quasilinear elliptic equations.

The prerequisites from topology, measure theory and linear functional anal-
ysis, needed for the reading of the book are included in an Appendix (37 pp.). There
are no problems and exercises in the book.

The book is clearly written, with complete and carefully written proofs and
illuminating examples. It can serve as a base text for introductory courses in nonlinear

functional analysis.

S. Cobzag

Kehe Zhu, Spaces of Holomorphic Functions in the Unit Ball, Graduate
Texts in Mathematics, Vol. 226, Springer, Berlin-Heidelberg-New York, 2005, x+271
pp-, ISBN 0-387-22036-4.

The book is concerned with the basic properties of the most well-known and
widely used spaces of holomorphic functions in the open unit ball B, of C". The
restriction to the unit ball of C™ allows the author to present direct proofs of most
of the results by straightforward formulas. The central idea of these proofs is to use
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integral representations for holomorphic functions and elementary properties of the
Bergman kernel, the Bergman metric, and the automorphism group. In this way,
although few of the results are new, most of the proofs are new and simpler than
the existing ones. On the other hand, this reduces the prerequisites to a minimum:
only familiarity with single variable complex analysis, no prior knowledge of several
complex variables theory being required.

The first chapter of the book, Ch.1, Preliminaries, has an introductory char-
acter and contains some results on holomorphic functions, the authomorphism group
of B,,, Lebesgue spaces, Bergman metric, subharmonic functions, complex interpola-
tion.

Each of the remaining chapters is devoted to a class of spaces of holomorphic
functions in the unit ball: Ch. 2. Bergman spaces; Ch. 3. The Bloch space; Ch. 4.
Hardy spaces; Ch. 5. Functions of bounded mean oscillation (the study of BMOA
spaces); Ch. 6. Besov spaces; Ch. T. Lipschitz spaces. For each class of spaces,
the author discusses integral representations, characterizations in terms of various
derivatives (radial derivatives, holomorphic gradients, fractional derivatives), atomic
decompositions, complex interpolation and duality.

All these spaces are intimately related as it is emphasized in the book: the
Bloch space B can be thought as a limit case of Bergman space A2 as p — oco. In
particular, B can be naturally identified with the dual of the Hardy space H'. The
Besov space B, is the image of the Bergman space AZ under a suitable fractional
integral operator, and By, is just the Bloch space. In their turn Lipschitz spaces A,
are images of Bloch spaces under some fractional integral operator. In fact, as the
author points out in the Preface to the book, all these spaces are special cases of a
more general family of holomorphic Sobolev spaces, but the direct treatment of these
particular cases is far more interesting and appealing than a cumbersome presentation
of an exhaustive class of functions containing all of them.

Each chapter ends with a set of exercises of varying difficulty. For the difficult
results, completing the main text, exact references are given. The Notes sections
contain bibliographical mentions and references to related results.
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Of course that the title of the book automatically directs us to the classic book
of W. Rudin, Function Theory in the Unit Ball of C™ (Springer 1980). Although there
are some inevitable overlaps, they are not substantial and the two books complement
each other.

Professor Zhu is an authoritative personality in the area and the author of the
books: Operator Theory in Function Spaces (M. Dekker 1990), Theory of Bergman
Spaces, with H. Hedenmalm and B. Korenblum (Springer 2000), and An Introduction
to Operator Algebras (CRC Press 1993).

The book is well written and can be used as a textbook for advanced graduate

courses in complex analysis and spaces of holomorphic functions.

Mirela Kohr
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