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STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume L, Number 3, September 2005

TWO THEOREMS ON KENMOTSU HYPERSURFACES IN A
W3-MANIFOLD

ABU-SALEEM AHMAD MAHMOUD AL-SALEH MIHAIL BANARU

Abstract. A criterion of the minimality of a Kenmotsu hypersurface in
a special Hermitian manifold is established. It is also proved that a Ken-
motsu hypersurface in a special Hermitian manifold is minimal if and only

if its type number is even.

1. Introduction

The theory of almost contact metric structures occupies one of the leading
places in modern differential-geometrical researches. It is due to a number of its
applications in mathematical physics (for example, in classical mechanics [1] and in
theory of geometrical quantization [7]). Furthermore, we mark out the richness of the
internal contents of the theory of almost contact metric structures as well as the close
connection of this theory with other sections of geometry.

We recall that an almost contact metric structure on an odd-dimensional
manifold N is defined by the system of tensor fields {®,£,7n, ¢} on this manifold,
where £ is a vector, 7 is a covector, ® is a tensor of the type (1,1) and g = (-,-) is the

Riemannian metric. Moreover, the following conditions are fulfilled:
n€) =1, € =0, no®=0, ®*=—id+{x,
(@X,®Y) = (X,Y) —n(X)n(Y), XY eR(N),
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where R(N) is the module of smooth vector fields on N. As an example of an al-
most contact metric structure we can consider the cosymplectic structure, that is

characterized by the following condition:
Vn=0, V&=0,

where V is the Levi-Civita connection of the metric. It has been proved that the
manifold, admitting the cosymplectic structure, is locally equivalent to a product
M x R, where M is a Kéhlerian manifold [10].

The almost contact metric structures are closely connected to the almost
Hermitian structures. For instance, if (N, {®,£,7,g}) is an almost contact metric
manifold, then an almost Hermitian structure is induced on N x R [5]. If this almost
Hermitian structure is integrable, then the input almost contact metric structure is
called normal. As it is known, a normal contact metric structure is called Sasakian
[5]. On the other hand, we can characterize the Sasakian struture by the following

condition:
Vx(@)Y = (X, V) —n(Y)X, X,Y eX(N). (1)

For example, Sasakian structures are induced on totally umbilical hypersurfaces in
a Kéahlerian manifold [5]. As it is well known, the Sasakian structures have many
remarkable properties and play a fundamental role in contact geometry.

In 1972 Katsuei Kenmotsu has introduced a new class of almost contact

metric structures [8], defined by the condition
V(@)Y = (@X,Y)E —n(Y)BX, X,Y € R(N). (2)

The Kenmotsu manifolds are normal and integrable, but they are not contact, con-
sequently, they can not be Sasakian. In spite of the fact that the conditions (1) and
(2) are similar, the properties of Kenmotsu manifolds are to some extent antipodal
to the Sasakian manifolds properties [9]. Note that the new investigation [9] in this
field contains a detailed description of Kenmotsu manifolds as well as a collection of
examples of such manifolds.
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In the present paper, Kenmotsu hypersurfaces in Wjs-manifolds are consid-
ered. This note is a continuation of research of the authors (for example, the second
author studied six-dimensional W3-manifolds before [3], [4]). We remark that the class
of W3-manifolds is one of the most important classes of almost Hermitian manifolds
[6]. However, it has been studied not so detailed as other so-called ”small” classes
of almost Hermitian manifolds. Some dozens of significant works are devoted to the
nearly-Kéhlerian, almost K&hlerian and locally conformal K&hlerian manifolds, but

much less of articles are written about Ws-manifolds.

2. Preliminaries

We consider an almost Hermitian manifold M?2", i.e. a 2n-dimensional mani-
fold with a Riemannian metric g = (-, -) and an almost complex structure J. Moreover,

the following condition must hold:
(JX,JY)=(X,Y), X,Y €X(M"),

where R(M?") is the module of smooth vector fields on M?". All considered manifolds,
tensor fields and similar objects are assumed to be of the class C°°. We recall that
the fundamental (or Kéhlerian) form of an almost Hermitian manifold is determined
by

F(X,)Y)=(X,JY), X,Y &R(M").

Let (M?",{J,g={(,-)}) be an arbitrary almost Hermitian manifold. We
fix a point p € M?". As T,(M?") we denote the tangent space at the point p,
{Jps9p = (-,)} is the almost Hermitian structure at the point p induced by the
structure {J, g = (-,-)}. The frames adapted to the structure (or the A-frames) look

as follows:
(paglw",snagfa"'aeﬁ)a

where ¢, are the eigenvectors corresponded to the eigenvalue ¢+ = v/—1, and ¢; are
the eigenvectors corresponded to the eigenvalue —i [2]. Here the index a ranges from

1 to n, and we state @ = a + n.
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The matrix of the operator of the almost complex structure written in an

A-frame looks as follows:

where I,, is the identity matrix; k,5 = 1,...,2n. By direct computing it is easy to
obtain that the matrices of the metric g and of the fundamental form F in an A-frame
look as follows, respectively:

0o | 1, o | i,

(grj) = , (Fry) =
I | 0 il \ 0

An almost Hermitian manifold is called special Hermitian, if
SF =0, Vx(F)(Y,Z)=V,x(F)(JY,Z) =0, X,Y,ZeR(M>"),

where § is the codifferentiation operator. The first group of the Cartan structural

equations of a special Hermitian manifold written in an A-frame looks as follows:

dw® = wy A w® + B® W€ A wy,

dw, = fwg A wp + Bapwe A WP,
and moreover,
B, =0, B’ =0, (3)

where {B.} and {B.°} are components of the Kirichenko tensors of M?" [2],

a,bc=1,... n.

3. The main results

Theorem 3.1. Let N be a Kenmotsu hypersurface in a special Hermitian manifold
M?" and let ¢ be the second fundamental form of the immersion of N into M?3™.
Then N is a minimal submanifold of M?" if and only if o(£,£) = 0.
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Proof. Let us use the Cartan structural equations of an almost contact

metric structure on a hypersurface in a Hermitian manifold [4]:

dw® = wg A w? + B*P_ WY Aws + (V2B 5 + iag)wﬁ A w+

1
+(———=B*, + iao‘ﬁ)wg Aw,

V2
dwa = ~wg Awg + Bag"wy Ao’ + (V2Ban” —i0)ws A w+

1
+(—7Bagn — iaag)wﬂ A w,

V2
dw = (\/iBmg — \/iBnﬂo‘ — 2iag)w5 Awg + (Bpg™ + iong)w A WPt
+(B",, —iof)w A wg.
Here and further the indices «, (3, vy range from 1 to n — 1.

Taking into account that the Cartan structural equations of a Kenmotsu

structure look as follows [9]:
dw® = wj AP 4+ w A w?,
dwg = —wg/\wg—i—w/\wm
dw =0,

we get the conditions, whose simultaneous fulfillment is a criterion for the structure

on N to be Kenmotsu:

« an . (6% 1 « .
1) B*®, =0; 2)Vv2B g tiog =—d5; 3)7%3 B +ioc®? =0;
4) V2B"* 5 — \2B,3* — 20§ = 0; 5)B"7, —iol =0 (4)

and the formulae obtained by the complex conjugation (no need to write them ex-

plicitly). From (4)3 we have:

{
o = ——pB*F,.

V2

Since
7
—B*8,

V2

i

_ BB _ BBa y— _

)
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we get B*?,, =0, and that is why
o8 = .

Similarly, from (4)5 we obtain
ol = 0.
Therefore we can rewrite the conditions (4) as follows:

1) B, =0; 2)0*"=0; 3)o, =0; 4)of=iV2B*";+id5 (5)

and the formulae obtained by the complex conjugation.

Now, let us use a criterion of the minimality of an arbitrary hypersurface [11]:
g%%0ps =0, p,s=1,2,...,2n—1.

Knowing how the matrix of the contravariant metric tensor on N looks [3]:

0
0 I,
0
@)=10...0 1 0...0 |
0
I, 0
0

we obtain:
9" 0ps = 6P 00p + 90,5+ 605 + 90,5+ 00 =
= gaﬁaag + gaBUaB + 9" onn.
By force of (3) and (5) we have
gP30ps = iV2B" +i(n — 1) — iV2Ban® —i(n — 1) + 0pn = Onn.

That is why gP°0ps = 0 & 0y, = 0. The last equality means that

o(§,¢) =0. (6)
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So, a Kenmotsu hypersurface in a W3-manifold is minimal precisely when (6)
holds, Q.E.D.
Since the class of special Hermitian manifolds contains all Kéhlerian manifolds

[6], by force of THEOREM A we come to the following result.

Corollary 3.1. A Kenmotsu hypersurface in a Kéhlerian manifold is minimal if and

only if
o(§,¢) =0.
Now, let N be a totally umbilical Kenmotsu hypersurface in a W3-manifold

M?". Then 0 = Ag, A — const, therefore the matrix of the second fundamental form

looks as follows:

0
0 )\In_1
0
(ops) =] 0...0 A 0...0 |,
0
My 0
0

As it has been proved, the hypersurface will be minimal if and only if A = 0.
Evidently, the matrix (o) vanishes in this case, therefore we conclude that N will
be a totally geodesic hypersurface in M?”. That is why we have such an additional

result.

Corollary 3.2. A totally umbilical Kenmotsu hypersurface in a W3-manifold is min-

imal if and only if it is totally geodesic.

As it is well-known (see, for example, [12] or [13]), when we give a Riemannian
manifold and its submanifold, the rank of the determined second fundamental form

is called the type number. Now, we can state the second main result of this work:
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Theorem 3.2. A Kenmotsu hypersurface in a W3-manifold is minimal if and only if

its type number is even.
Proof. Considering the matrix of the second fundamental form of a Ken-
motsu hypersurface in a special Hermitian manifold, it is easy to see that this hyper-

surface is minimal precisely when the following condition holds:

0
0 Tuj
0
(ops) =1 0...0 0 0...0 |,
0
Oap 0
0

Taking into account that [14] 055 =73, we have:

rank(ops) = 2rank(o ).
On the other hand, if the Kenmotsu hypersurface is not minimal, then
rank(ops) = 2rank(o,5) + 1.

Thus, a Kenmotsu hypersurface in a Ws-manifold is minimal precisely when its type

number is even, Q.E.D.
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PROPERTIES OF SOME NEW SEMINORMED SEQUENCE SPACES
DEFINED BY A MODULUS FUNCTION

YAVUZ ALTIN AYSEGUL GOKHAN HIFSI ALTINOK

Abstract. 1In this paper we introduce the sequence spaces ég(p,f,q,s), é(p,f,q,s) and
m(p,f,q,s) using a modulus function f and defined over a seminormed space (X,q) semi-
normed by g. We study some properties of these sequence spaces and obtain some inclusion

relations.

1. Introduction

Let m, ¢ and ¢y be the Banach spaces of bounded, convergent and null se-

quences x = (xj) with the usual norm ||z|| = sup|zx|. Let D be the shift operator
k>0

on s, that is, Dz = (z)p—,, D?z = (1), and so on. It may be recalled that a
Banach limit (see Banach [1]) L is a nonnegative linear functional on m such that L
is invariant under shift operator (that is, L (Dz) = L (z) for x € m) and L (e) = 1,
where e = (1,1,...). A sequence x € m is almost convergent (see Lorentz [8]) if all
Banach limits of x coincide. Let ¢ denote the space of almost convergent sequences.

It is proved by Lorentz [8] that

m—00

¢ = {x : lim ¢, (z) exists uniformly in n}

where
J
tmm(x):im_’_l;Dxn, (D° =1).

Several authors including Duran [5] , King [7] and Nanda ( [12] ,[13]) have

studied almost convergent sequences.
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The notion of a modulus function was introduced by Nakano [11] in 1953. We
recall that a modulus f is a function from [0, 00) to [0,00) such that (i) f(z) = 0 if
and only if # = 0, (%) f(x+y) < f(x)+ f(y), forall x > 0,y > 0, (i) f is increasing,
(iv) f is continuous from the right at 0.

Since |f (z) — f (v)] < f(Jx —y]), it follows from condition (iv) that f is
continuous on [0,00). Furthermore, we have f (nz) < nf (z) for all n € N, from

condition (ii), and so

hence
1
—f(x) Sf(§> for all n € N.
n n
A modulus may be bounded or unbounded. For example, f(z) = z?,
(0 <p<1) is unbounded and f(z) = {7 is bounded. Maddox [10] and Ruckle

[14] used a modulus function to construct some sequence spaces.
After then some sequence spaces, defined by a modulus function, were intro-

duced and studied by Bhardwaj [2], Bilgin [3], Connor [4], Esi [6], and many others.

Definition 1.1. Let g1, g2 be seminorms on a vector space X. Then g1 is said to
be stronger than qo if whenever (x,) is a sequence such that qi(x,) — 0, then also
q2(xy) — 0. If each is stronger than the other q1 and qo are said to be equivalent (one

may refer to Wilansky [15] ).

Lemma 1.1. Let g1 and g2 be seminorms on a linear space X. Then q; is stronger
than qo if and only if there exists a constant M such that gz (x) < Mgy (z) for all
x € X (see for instance Wilansky [15]).

Let p = (pm) be a sequence of strictly positive real numbers and X be a
seminormed space over the field C of complex numbers with the seminorm g. We

14
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define the sequence spaces as follows:

e (p, frq,8) = {:c € X : Tim m™[(f (¢ (tmn (2))))]’™ = 0 uniformly in n} ,
ép, f,q,8) = {x €X: W%Enoo m™ [(f (q (tmn (x — £€))))]"™ = 0 for some £,

uniformly in n},

m(p,fia8) = {xeX:supms [(f (@ (tmn (D))" <oo}.

m,n
where f is a modulus function.

The following inequalities will be used throughout the paper. Let p = (p.,)
be a bounded sequence of strictly positive real numbers with 0 < p,,, < supp,, = H,

C = max (1,2H_1) , then
|am + b [P < C{am "™ + [bm]"}, (1.1)

where a,,, b,, € C .

2. Main results

Theorem 2.1. Let p = (p,,) be a bounded sequence, then ¢ (p, f,q,5), ¢(p, f,q,5),

m(p, f,q,s) are linear spaces.

Proof. We give the proof for ¢ (p, f, ¢, s) only. The others can be treated
similarly. Let z,y € é (p, f,q,s). For A, u € C, there exist positive integers M) and
N such that [A\| < M) and |u| < N,,. Since f is subadditive and ¢ is a seminorm

M= (£ (q (tmn Az + )P < C (M) 1™ [ (q (b (2)))]7" +
C (N#)H m™* [f (¢ (tm.n (y)))]'™ — O,uniformly in n. This proves that ¢ (p, f,q, s) is

a linear space.

Theorem 2.2. The space ¢y (p, f,q,s) is a paranormed space, paranormed by

g (@) = supm ™ ([ (q (tn (2)))]P™) ™,

m,n
where M = max (1,sup py,) . The spaces ¢(p, f,q,5), m(p, f,q,8) are paranormed by
g, if inf p,,, > 0.

15
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Proof. Omitted.

Theorem 2.3. Let f be modulus function, then
(i) ¢o (p, f,a.8) S (p, f,q.5),
(i) ¢(p. f.q,8) S (p, f.q,5).
Proof. We prove the second inclusion, since the first inclusion is obvious.

Let x € ¢(p, f,q, ), by definition of a modulus function (the inequality (7)), we have

m” [f (q (b (@)™ < Cm™ [ (q (tmn (@ = D)™ + Cm™" [f (g ()] .

Then there exists an integer K, such that ¢ (¢) < K,. Hence, we have

m™ [f (@ (bmn (@) < Cm™° [ (g (tmn (2 = 0))]""+Cm ™ max(1, [(Ke) f (1)),
(1)

sox €m(p,f,q,s).
Theorem 2.4. Let f, f1, fo be modulus functions q, q1, g2 seminorms and s, s1, 52 > 0.
Then

(i) If s > 1 then Z (f1,q4,8) € Z(f o f1,4,9),

(ii) Z (p, f1,4,8) N Z (p, f2,4,8) € Z (p, f1 + f2,4,5),

(iit) Z (p, [, q1,8) N Z (p, f,q2,8) € Z (p, f, 1 + @2, 5),

(i) If q 1is stronger than g2 then Z (p, f,q1,8) C Z (p, f,q2,8),

(v) If sy < s2 then Z (p, f,q,51) € Z (p, [, 4, 52) ,

(vi) If 1 = (equivalent to) qa , then Z (p, f,q1,8) = Z (p, f, 42, ) »

where Z =, ¢ and ¢y.

Proof. (i) We prove this part for Z = ¢ and the rest of the cases will follow
similarly. Let « € ¢(p, f,q, s), so that

Sm=m"" [f1(q (tmn (x = 0)))] = 0.

Let € > 0 and choose ¢ with 0 < § < 1 such that f (¢) < ¢ for 0 <t < 4. Now
we write

16
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L = {meN: fi(q(tmn(z—1)) <0}
12 = {m eN: f1 (q (tm,n (IE 76))) > 5}

For f1(q (tmn (x —¥£))) >4,

f1(q (tm,n (x—1))) < f1(q (tm,n (x—1))) Sh<14 Hfl (q (tm,n (x—1))) 571|]

where m € I and [|u|] denotes the integer part of u. By the definition of f we have

for f1(q (tmn (x —1£))) > 6,

(1 (tmn (2= 0)) < (L4 [ 1 (@ (tmn (z = 0)) 67 H]) £ (1)

<27 (1) i (¢ (b (2 — £)) 5. (2.1)
For f1(q (tmn (x —¥£))) <4,

f(f1(q(tmn (z = 0)))) <e (2.2)
where m € I;. By (2.1) and (2.2) we have
m=S [ (f1(q(tman (x—0))] < m™%e 4+ [2f(1)671] Sy — 0. as m —
oo,uniformly n.

Hence ¢ (p, f1,4,5) € ¢(p, fo f1.4,5) .
(ii) The proof follows from the following inequality

m [(fr 4 £2) (@ (tmn (@) < Cm* [f1 (g (tmn (2)))]P"+Cm " [f2 (g (b ()] -
(iii), (iv) (v)and (vi) follow easily.

Corollary 2.1. Let f be a modulus function, then we have
(i) If s> 1, Z(p,q,s) € Z(p. f.q5)
(i) Z (p, f.q) € Z (p. f.4,5)
(iii) Z (p,q) € Z (p, 4. 5) ,
(iv) Z(f.q) € Z(f.q5)
17
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where Z = m, ¢ and ¢y.

The proof is straightforward.

Theorem 2.5. For any two sequences p = (p) and r = (ry) of positive real numbers

and for any two seminorms q1 and g on X we have Z (p, f,q1,8) N Z (r, f,q2,5) # 0.

Proof. The proof follows from the fact that the zero element 6 belongs to

each of the classes of sequences involved in the intersection.

Theorem 2.6. For any two sequences p = (pm) andr = (ry,) , we have & (r, f,q,s) C
¢o (p; f,q,) if and only if liminf 2= > 0.

Proof. If we take ¥, = f (¢ (tmn (x))) for all m € N, then using the same
technique of lemma 1 of Maddox [9], it is easy to prove the theorem.
Theorem 2.7. For any two sequences p = (b)) and r = (ry,) , we have &y (r, f,q,8) =
éo (p, f,q,8) if and only if liminf % > 0 and lim inf % > 0.
Theorem 2.8. Let 0 < p, < 1y < 1. Then m(r, f,q,s) is closed subspace of
m(p, f,q,s).

Proof. Let x € i (r, f,q, s) . Then there exists a constant B > 1 such that
k—® [f (tm,n (37)>]Tm/M < B forallm,n

and so
E75[f (b (2))P"/M < B for all m,n.
Thus = € 1 (p, f,q,s). To show that 7 (r, f,q,s) is closed, suppose that z' €

m(r,f,q,8) and 2 — x € 7 (p, f,q,5). Then for every 0 < & < 1, there exists
N such that for all m,n

E= [ (b (27 —2))]""™ < B forall i > N.

Now

T /M

k72 [f (tmn (28 — )] <k [f (tmm (@ —2))]""™ <& foralli> N.

Therefore x € m (r, f,q, s). This completes the proof.

18
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EINSTEIN EQUATIONS IN THE GEOMETRY OF SECOND ORDER

GH. ATANASIU N. VOICU

Abstract. In [7], R. Miron and Gh. Atanasiu wrote the Einstein equa-
tions of a metric structure G on the tangent bundle of order two, T2M
(previously named ”2-osculator bundle” and denoted by Osc?M ), endowed
with a nonlinear connection N and a linear connection D such that the
2-tangent structure J be absolutely parallel to D.

In the present paper, the authors determine the Einstein equa-
tions by making use of the concept of N-linear connection defined by Gh.
Atanasiu, [ 1], this is, a linear connection which is not neccesarily compati-
ble with J, but only preserves the distributions generated by the nonlinear

connection N.

1. The Tangent Bundle T?M

Let M be a real n- dimensional manifold of class C*, (T2M T2, M ) its second
order tangent bundle and let T2M be the space T?M without its null section. For a
point u € T?M, let (z%,y™M?, () be its coordinates in a local chart.

Let N be a nonlinear connection, [3, 8-13], and denote its coefficients by

<J}7§, ];fg), a, b=1,...,n.Then, N determines the direct decomposition

T, T?°M = Ny(u) @ Ny(u) ® Va(u), Yu € T>M. (1)

Received by the editors: 15.09.2005.
2000 Mathematics Subject Classification. 53C60, 58 B20, 70 G45.

Key words and phrases. 2-tangent bundle, nonlinear connection, N-linear connection, Riemannian metric,

Ricci tensor, Einstein equations.

21



GH. ATANASIU N. VOICU

The adapted basis to (1) is (04,014,024) and its dual basis is
(dz®, 5yMe, 5y where

5 o9 .0 .
%= 5z = s e aye ~ Nag,@e
5 9 .0
O1a = 5o0e = gy Nagy@e )
S0
2a — Wv

respectively,
5y(1)a _ dy(l)a 4 ]\ggdxc
(3)
Oy = dy®® + MidyDe + Midat,

where J\14 °, ]\24 ¢ are the dual coefficients of the nonlinear connection N.

Then, a vector field X € X (T2M ) is represented in the local adapted basis

as

X = X(O)a(sa + X(l)aéla + X(Z)a62a7 (4)

with the three right terms (called d-vector fields) belonging to the distributions N,
N7 and V5 respectively.
A l-form w € X* (T?M) will be decomposed as

w = wVdz® + WMy 4 w2 gyPe,

Similarly, a tensor field T € 7" (T?M) can be split with respect to (1) into compo-
nents ,which will be called d-tensor fields.

The F (TQM)—linear mapping J : X (TQM) — X (TZM)given by
J((sa) = 51a7 J((Sla) = 52(1’ J(52a) =0 (5)

is called the 2-tangent structure on T*M,[8-13].

2. N-linear connections. d-tensors of curvature

An N-linear connection D, [1], is a linear connection on T?M, which pre-
serves by parallelism the distributions N, N; and V5. Let us notice that an N-linear
connection, in the sense of the definition above, is not necessarily compatible to the
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2-tangent structure J (an N-linear connection which is also compatible to J is called,
[1], a JN-linear connection).

An N-linear connection is locally given by its coefficients

DI'(N) = (L ;o (6)

&y o oy ber oy b &5y vy b &) e Gy b Gy (g)abc>
where
Ds. 0, = (()Ia)“bcéa, Dy 616 = (116)‘11,051a7 Ds, 02 = (QLO)abc‘s%
Ds, 0y = (g)abcéa’ Ds, 61y = (161')“1,051(1, Ds, 62 = (261')“;)652(1 . (7)

Ds, 0p = C % 64, Ds, 01p = C % 014, Ds, 00p = C % &
0290 (02) bcYas 02.91b (12) bcVlas 02920 (22) bcY2a

In the particular case when D is J-compatible, we have

L4, = L% = L% =1L
(00) be (10) be (20) be bes
C a — a — C a — Ca
(01) be (11 be (21) be & bes
C aC = aC = C aC = CaC'
02" 2" @ @’

For an N-linear connection, let
DYY = DynY™, %)‘)?Y = Dyw, Y, 107ng = DywYH
1ﬁ)§Y = DxnY"s, Q)ng = Dyw Y5, 1ﬁ))VgY = DywYVs,

B=1,2.

DH D1, DYz are called respectively, ha-, v1q- and vse-covariant derivatives, o =
(a7 (a7 «@

0,1, 2. In local coordinates, for a d-tensor field
=15 (x y, y(2)> Sa; ® . ® 030, @ dz? ® ... @ Sy

we have

la)§T — x(Om Ty Gay @ oo ® G20, @ dz” @ ... @ 6y
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where
i, = ST LS T e L T
(e ) (a0)
h ai...ar h a1...an
_(0{6) bim héQ.‘.bs e T (oli))bsmell...bsflh'
and
(8)
Q;ﬁT - X(l)m Tl;lllb(z7 ‘ am 6¢11 .0 521% ® dxbl ®R...Q 5y(2)bs,
where
(8) . v .
Té"ll».é;lr | om — 6ﬂmTl?1 ar+ C a1 T az. ar+ (C[;)hm b11..é) r—1 _
T h a1 A
C ybrm T, = e — C bom Ty o e

The curvature of the N-linear connection D,
R(X,Y)Z = DxDyZ — DyDxZ — Dix y1Z

is completely determined by its components (which are d-tensors) R (d41,9s%) 0a;-

Namely, the 2-forms of curvature of an N- linear connection are, [1],

1
@ — - R,%det ANdat 4+ P %udzt NSy P dat NSy 4 (8
(o) b 2(0a)b d (la)bcd Y (2a)bcd Yy (8)

1 1
= S 20y Ay D4 Q 2,dyMe Ay P~ S e sy e A Gy
2 (1e) (2a) 2 (20)

o =0,1,2, where the coefficients R ,%,, P %, @ %, S ;% are d-tensors, named
(0a)” ™" (Ba)" " () (Be)

the d-tensors of curvature of the N-linear connection D. For a JN- linear connection,
there holds

0% =0%=0%,
() & (2)

this is,
R,% = R,% = R,% = R,%:
(OO)b d (Ol)b d (02)b d (O)b d
P, = P, =P, =P,° 9
(30)" <4 B1° o T (B2t T (gl ©)
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Q bacd = Q b%d = Q bid = Qb%d

(20) 1) (22)

S, = S, =8,%=25,%.8=12
(50)° 4 Bt T (ga)tet T (pbed b

The detailed expressions of the d-tensors of curvature can be found in [1].

3. Metric structures on 72M

A Riemannian metric on T>M is a tensor field G of type (0,2), which is
nondegenerate in each u € T?M and is positively defined on T2M.
In this paper, we shall consider metrics in the form

G = g abdxa & dmb + g abéy(l)a ® 5y(1)b +9 abéy@)a ® 6y(2)ba (10)
(0) (1) (2)

where g op = g ap(z,y™"),y?); this is, such that the distributions N, N; and V;
generat(gc)l by th(g )nonlinear connection N be orthogonal with respect to G.

An N-linear connection D is called a metrical N-linear connection if DxG =
0,VX € X(T?*M).

This means
B
(g)ab\ac = (g)ab |ozc: 0,a=0,1,2, 3 =1,2.

The existence of metrical N—linear connections is proved in [2].

4. The Ricci tensor Ric(D)

Let us notice that, if D is not J- compatible, we could expect that the com-
ponents of the Ricci tensor look in a more complicated way that the ones in the
Miron-Atanasiu theory, [7].

Indeed, if we consider the Ricci tensor Ric (D) ,[14], as the trace of the linear

operator

V= R(V,X)Y, ¥V = Va5, y yMag, 4 v@as, e x (T2M),  (11)
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then we have:

Ric(D)(X,Y) = trace(V—R(V", X)Y +R(V",X)Y +

+R(VV,X)Y).

By a straightforward calculus, we obtain:

Theorem 4.1. The Ricci tensor Ric(d) has the following components:

— c —. .
- a bc —* Rab7

Ric(D) <5y<1>b’ 5y e &

fie D) <5y?2)b’5y?”“ - —(g)g v _é)ab;
Ric (D) (561:577 5y?2)‘1 = (22)2 be =: (21132)ab;

frie D) <5y((51>b’ 5y?2>“ = G T (g)ab’

SC(D) :gabRab+ gabSab+ gabSaln
1 @ (2 @

where ¢g*, g ®, g ® are the coefficients of the inverse matrix of G.

1 @
26
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In the particular case of a JN-linear connection, taking into account (8'),
with the notations in [7], we have

1 1 2

1
P, :Paapa:Paa a:P}z:acc; 14
35 G G = H G &y (= Qale) (14)
2

w = PZ(=Q° ).
(g) b (21)ab ( Qa cb)

5. Einstein equations

The Einstein equations associated to the metrical N-linear connection D are
) 1
Ric(D) — 556 (D)G = KT, (15)
where k is a constant and 7 is the energy-momentum tensor, given by its components

T o = T(65p, 6ua
e (6pb5 0cxar)

(03
Expressing the above relation in the adapted frame (2), we obtain

Theorem 5.1. The Einstein equations associated to the metrical N - linear connection
D are
Rap — 55¢(D) gap = /-@(
1
Puw=rT 4 8=12;
G = o’
2
=—K7T a, 3= 1,2
on

T
Oo)ab

Pab
(80)
S ap — 2S¢ (D

(,B)ab 2 ( ).g

ab =K T qp, 0 =1,2;
B3) (B8)

1

Q ab = K T ab
(22) (21)

2

Q ab = —K T ab-
(21) (12)

In the case when D is a JN-linear connection, one obtains the result in [7].
In order to avoid confusions when raising and lowering indices, because of the
fact that the components g%, g ?, g ® are different, we will denote in the following
by 4,7, ... the indices correspo(rﬁling(zlo the horizontal distribution, by a,b, ... those

corresponding to Ny, and by p,q, ... those corresponding to V5. Thus, if we impose
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the condition that the divergence of the energy- momentum tensor vanish, in the

adapted frame we will obtain

Theorem 5.2. The law of conservation on T>M endowed with the metrical N-linear

connection D is given by

) 1 ) 1 (M 2 (1) 1 (2 2 (2)
(RZ_QSC(D)(S;)L +<ﬁ>aj a _<10)ja |“+(2z)pj ¥ —(5))53 =0
1 2 1 1) 1 () 2 (2
(bl ~ d <<§>%_2SC(D) 5’(’1) G ey 1m0
1 2 1 (2 2 (2 1 (2)
L= bt @0 Ta=@5 Lo+ (51— 3500%) 1,0

In the same way, one can deduce the Maxwell equations associated to the

metrical N-linear connection D.
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ITERATES OF SOME MULTIVARIATE APPROXIMATION
PROCESSES, VIA CONTRACTION PRINCIPLE

CLAUDIA BACOTIU

Abstract. In this paper we study a general class of linear positive opera-
tors, using the theory of weakly Picard operators. The convergence of the

iterates of the defined operators will be proven.

1. Introduction

In [2] and [1] Agratini and Rus applied the theory of weakly Picard operators
to prove the convergence of iterates of a certain class of linear positive operators. In
some particular cases, these operators are well known approximation operators, such
as Bernstein or Stancu operators. In the above mentioned papers, the authors have
considered the univariate, respectivelly the bivariate cases. In the present paper we
give a generalization of these results to a class of linear positive operators defined on

C([0,1]P), p € N.

2. Weakly Picard operators

Let (X,—) be an L-space and A : X — X an operator. In this paper we will

use the following notations:
Fy:={zxeX:A(z) =uz};
I(A)={Y e P(X): AY)CY}
A% :=1x, A" = Ao A" ¥n € N.

Received by the editors: 11.09.2005.
2000 Mathematics Subject Classification. 41A36, 47TH10.

Key words and phrases. Linear positive operators, contraction principle, weakly Picard operators.
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Definition 2.1. (Rus [7]) The operator A is said to be:

(i) weakly Picard operator (WPO) if Vxg € X A™(xo) — x5, and the limit xj is a
fized point of A, which may depend on xq;

(i) Picard operator (PO) if Fa = {z*} and Vaxg € X A™(x9) — z*.

If A is an WPO, we consider the operator A% defined by

A®: X - X, A®(z):= lim A"(x).

n—oo
We have the next characterization theorem of WPOs:

Theorem 2.1. (Rus [7]) The operator A is WPO if and only if there exists a partition

of X, X = |J X\ such that:
AEA
(i) X € I(A), VA € A;

(ZZ) A|XA X — X)) s PO, VA eA.

3. Main results

Let p > 1 be a fixed integer and
D :=10,1] x [0,1] X ... x [0,1] = [0, 1]7.

C(D)={f:D—R : f— continuous}.
We introduce the next notations: (9 := (0,0,...,0) = Ogp is the null vector. For all

k
§ ) . the vector from
1522545k

kel,pandforall 1 <i; <iy<..<ir<p, denote by «
RP defined as follows: on positions i1, s, ..., i the value 1 appears and on all other

positions the value 0 is displayed.

My, == {(i1,i2, i) : 1<i1 <ig<..<ip<plCN' Vkelp

k — . .
Vp 1= {a<0>} U {az{l?i%“_,ik : ke l,p and (41,42, ...,7) € Mk}.
Denote by e, o € vp the test functions
p
ea D —Ry; eq(x1,22,..0,2p) 1= H zpt Y(xy, 22, ...,2p) € D,
k=1
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with the convention that, if in a component, ay, is null, then z}* will be replaced by

1.
We notice that
p [ p
Card(My) = ,Vk=1,p and Card(vp)= Z =27 :=N.
k —o \ k

Remark 3.1. Any o € vp is &' or there exist k € 1,p and (i1, 12, ..., 1) € My such

that o = agf?iz’_“’ik.

Remark 3.2. Because Card(vp) = Card{1,2,..., N}, it follows that there exists a
bijective function

w:vp —{1,2,..,N}.
More precisely:

- for k = 0 there exists a unique j € 1, N such that w(a®)) = j and

- for any k € 1,p and for any (i1, iz, ...,i) € My, there exists a unique j € 1, N

such that w(agf,>i2,...,ik) = 7.

For all (mq,ma,...,mp) € NP consider the next p-dimensional net

A,’;k = (0= 2k,mp0 < Thymp1 < oo < Thomy,me =1) Vk=1,p.

We also consider the next systems of real positive functions

0 < ¥km,,i € C[0,1], Vi=0,m, Vk=1,p.

Let the next assumptions be satisfied:

mg
> Ykmil@) =1, Vre[0,1], Vk=TIp; (1)
1=0
mp
> Tk itmei(r) =2, Yre0,1], Vk=Tp; 2)
=0
T/Jk,mk,o(o) = wk,mk,mk(l) =1, Vk=1,p. (3)

We also introduce the next notation:

K :={0,1,....,m} x{0,1,...,ma} x ... x {0,1,...,mp}.
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Clearly,
0K ={(0,0,...,0), (m1,0,...,0),...,(0,0, ..., mp), ..., (M1, Mo, ...,mp) } C RP.
Notice that Card0K = N and
(T1my ity s Tpmyiy) € VD, V(i1,...,ip) € OK. (4)

Let U, ....m, : D — R be the function given by
1 2 p

Umy,...,my (1'1, ceey ajp) = Z djl,mhil (xl)'~'wp,7rzp,ip (xp) (5)
(11500yip) EOK
and
Omy,...;m, = inf {umlw,mp(xl, s @p) 1 (X1, ey mp) € D} . (6)

We define now the operators:
L, ma,...m, : C(D) — C(D)

by
(Lml,mz,.wmpf)(xl, 1‘2) ceey xp) =
my my Mp
=3 D i (@) ki (k) i, () (7)
i1=0 ig=0 ip,=0
'f($17m1,i1 y o Lheymigs oo $p,mp,ip)
for all f € C(D), ¥(x1,x2,...,xp) € D.
Proposition 3.1. The operators Ly, ms,,....m, have the next properties:
(Z) Lml,mg,...,mp(ea) = €q, for all a € vp;

(11) (Lmy mo,...,m, f) (@) = f(a), for all f € C(D), Va € vp;

(i) Ly ym,....m, are linear and positive.

Proof: The first statement follows from (1) and (2). The second follows from
(1) and (3). The last statement is obvious.O
For all A = (A1, A2, ..., \y) € RY | consider the sets

Xp = {fEC'(D) s fla) = Aua), VaEVD} (8)
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Lemma 3.1. (i) For all A € RY | the sets X, are closed in C(D);
(Z’L) Xp € I(Lml,mz,..‘,mp>;

(i) C(D) = |J Xa is a partition of the space C(D).
A€ERN
The main result is given by the next theorem.

Theorem 3.1. If Trmy,...,m, JIWEN by (6) is non-zero, then the operators Ly yma,...omyp

defined by (7) are WPOs and for all (m1,ma, ...,mp) € NP, we have:

Ly meemy (F) = 93, V€ C(D).

.....

The function ¢} is defined by

03 (1,2, 00y Tp) = Cd+ Z C}lxil + Z C? . w4 Ty + ot

11,02
i1 €My (i1,i2)EM>

+ Z ck xilxiz...xik—|—...—|—Cf727__.7

11,8250, 0k
(i1,02,...,ix ) E My

where C§ and CF

11,8250k 7

pT1T2..1p  Vf € C(D)V(z1,22,....,xp) € D

Vk € 1,p, V(i1,ia,...,ix) € My are real numbers which

depend of f, given by
Gy = fa®);

k
Choiprin = (CDF @) + (1S fal) + (D)2 ST fel )+

s1=1 1<s1<s2<k

Ho (1) 3 F@ ) (Dl

i517i521-< i17i27~--1ik)7
1<51<52<...<5:1<k
for all k € 1,p, Y(i1,42,...,75) € My.
Proof: By virtue of Lemma 3.1, the sets X, are closed, X, €
I(Lmhm?,_“,mp), and C(D) = |J X, is a partition of the space C(D).

AERN
Denote by || - [|¢(p) the Cebysev norm in C(D), i.e.

lvllepy == sup  |v(z1,...,2p)|, Vv e (D).
(117"'7$1@)€D

For all A € C(D) and for all f,g € XA we have:

|(Lm1,m2,m,mpf)(x17$2ﬂ 3 x;n) - (Lml,m2,m,mpg)(x1ﬂ L2, "'7xp)| =

= ’ Z Z Z w17ml;il (a:l)...wkmk,ik (xk)“'wp,mp,ip(xp)'

i1=0 ix=0 ip=0
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(.f - g)(x17m17i1’ vy Theomp i s "'axpﬂnp,ip) =

<

= ) V1 in (T1) - Vpmy iy, (Tp)  (f = 9) (@ 1m1 005 -0 Tpmg i)
(il ..... ip)GK

< ’ Z /ll)l’mlgil (‘Tl)"'d]p,mp,ip (xp> : (f - g)(xl,ml,iw "'7xp7mp7ip)

(41,...,ip) EK—OK

_|_

(€]

+’ Z wl,mhh (xl)"'wp7mp7ip ('xp) ' (f - g)(z17m17i1’ ey :Ep,mp,’ip)

(i1,..yip)EOK

- ‘ Z V1,my iy (xl)-"'(/)p,mp,ip (xp) : (f - g)(xl,mhin ey xp,mp,ip) <

(’L‘l,“.,ip)GK*(')K

< Z wl,ml,h ($1>"'wpympwip(xp) : ”f - gHC(D) =

(i1,00yip)EK—OK

= Z 1/)1,m1,z'1($1)~~-1/1p,mp,z'p($p) - Z Ufl,ml,il(xl)--ﬂ/fp,m,,,i,, (l’p)

(i150enyip) €K (i1,.-,0p) EOK

) ®)
Nf=gllow) = 1= D Grmui @) bpmyin (@) | - 1f = gllow) =

(215000,p)EOK
(6)
= [1 - Uml,..-,mp(zlv ...,zp)} If = 9||C(D) <(1- U77L17-<~7mp) |lf = QHC(D)-
Because o4y, ,....m, in non-zero, the restrictions Lml,mz,...,mp|XA are contractions with
the same constant 1 — Omy,...m, € [0,1]. Consequently, they are POs.
It can be proven that for all A € RY, ¢} € Xp Vf € Xp. For any A € RY,

the restriction Ly, ,m,,...,m,|x, has a unique fixed point which is ¢} (it follows from

.....

Proposition 3.1).
From Theorem 2.1 it follows that L., m,,...m, : C(D) — C(D) are WPOs. Besides,
for all f € C(D), the limit operator is ¢p. O

Remark 3.3. In the case p =2 we have D = [0,1] x [0,1], N =4,
o =(0,0), ol =(1,0), a3” =(0,1), o) =(1,1)

and

Vp = {(07 O)a (170)’ (Oa 1)7 (1’ 1)}
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There exists a bijective function w : vp — {1,2,3,4}.

For all A := (A1, A2, A3, \q) € R* consider the sets:

Xp = {f € C(D) : f(O,O) = >\w(0,0)a f(lvo) = >‘w(1,0)a f(O» 1) = >\w(0,1)a f(la 1) = >\w(1,1)}

For all m; :=m € N, mg :=n € N, the operators L, , are WPOs and

Lyn(f) = ¢ Ve (D)

where

n (f<a<°>> CFe) 1 fad)] + f(af;)) 2y

2
Cio

So, we reobtain [1; Remark 1 - Theorem 9] in the particular case a; = as = 0 and

by =by=1.
4. Applications

4.1. Bernstein operators of (mq,...,m,) order. For all (mq,...,m,) € NP consider

the next system of points:

0 1
A’;@k_ = <0—<<...<mk— ) vk =1,p.
mg my my

Let the functions 9k m, ; be the fundamental polynomials of Bernstein

my , .
Yk ,i () = b, i(x) = . (1 —ax)™ " Vxe[0,]1]
i
for all i = 0,my, k =1, p.
Then the polynomials Ly, m.,,....m, : C(D) — C(D) from (7) are the Bernstein poly-

nomials of (my, ..., m,) order, given by

(Lm17m2,...7mpf)<xlax25 "'7331)) =

JL & i i
=" b (@1)e by i, () - f (mll nf) .
P

i1=0 i,=0
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The next theorem states the convergence of the iterates of the generalized Bernstein

operator.

Theorem 4.1. The Bernstein operators Ly, m,,...m, aTe WPOQOs and

.....

Loy, marm, (f) = ¢}, VfeC(D)

with % as in Theorem 3.1.

Remark 4.1. In the particular case p = 2, m1 := m, mo = n we reobtain the

estimation
1

Am,n = 2m+n72

(see [1; §4.1.])

4.2. Stancu modified operators of (m1,...,m,) order. For all (mg,...,m,) € NP
k

vork =1,p as in the previous application.

consider the systems of points: A

The functions v, , ; are the fundamental polynomials of Stancu:

M x[iﬁak](l _ x)[mk*i,*ak}
7
Uiompi (L) 7= Winy g0 () = Yz € [0,1]

1[me,—o]

for all t = 0,mg, k = 1,p. ay, are real positive numbers.
Then Ly, ms,...,m, from (7) are the Stancu modified polynomials of (my, ..., m,) order,

given by

(Liny ymay.comy, (@1, T2, 0y 1) 1= (Sé,?ll,;%;::::%pp>f)(x1,fEQa oy Tp) =

AN i
p
= Z Z Wmyy iy 00 (Il)...wmp7ip,ap(1'p) . f <7’nl’ veey m>
P

i1=0  ip=0
The next theorem states the convergence of the iterates of the generalized Stancu

operators:

Theorem 4.2. The Stancu operators S’fﬁfﬁi;j:j:%’i are WPOs and
(%?f,ﬁi:::::%’;}) (f) =g} VfeC(D)

*

where ©* is as in Theorem 3.1.
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Remark 4.2. In the particular case p =2, my :=m, mo := n we obtain:

1

>
m,n — om+n—2 . 1[m,7041] . 1[77«,*042]

A

which is the estimation given in [1; §4.2.].
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BIERMANN INTERPOLATION
WITH HERMITE INFORMATION

MARIUS BIROU

Abstract. If Py, Ps, ..., P, and Q1, @2, ..., @, are Lagrange univariate pro-

jectors which form the chains i.e.
P<P<--<P, Q1<@<--<Qr
then the Biermann operator is defined by
B, =PIQ/ & PQ;_1 & & PQY

where P[,...,P.,QY,..., Q) are the parametric extension (see [5])

In this paper, we construct projectors of Hermite type which form
the chains. The representation of Biermann interpolation projector of
Hermite type and the corresponding remainder term are given. Using
Hermite information we increase the approximation order. We give some

examples.

1. Preliminaries

LetX,Y be the liniar spaces on R or C.

The liniar operator P defined on space X is called projector if and only if
pP2=p.

The operator P° = I — P, where [ is identity operator, is called the remainder

projector of P.

Received by the editors: 22.09.2005.
2000 Mathematics Subject Classification. 41A63, 41A05, 41A80.

Key words and phrases. Biermann interpolation, Hermite interpolation, chains of projectors, triangular

elements, approximation order.
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If P is projector on space X then the range space of projector P is denoted
by
R(P) ={Pf| f € X} (1)
The set of interpolation points of projector P is denoted by P(P).

Proposition 1.1. If P,Q are comutative projectors

1) R(P&Q)=R(P)+R(Q)

2) P(PeQ)=PP)UPQ).
If P, and P, are projectors on space X, we define relation ” <”
P<P&PP=P

Let be f € C(X xY) and z € X. We define f* € C(Y) by

o) = f(z,t), teY

For y € Y we define ¥f € C(X) by

Yf(s)=f(s,9), se€X
Let P be a liniar and bounded operator on C'(X). The parametric extension P’ of P
is defined by

(P'f)(z,y) = (PYf)(x) (3)
If P is a liniar and bounded operator on C(Y) then the parametric extension Q" of
Q is defined by

Q") (w,y) = (Qf)(y) (4)

Proposition 1.2. Let r € N, Py,...,P. be univariate interpolation projec-

tors on C(X) and Q,...,Q, univariate interpolation projectors on C(Y). Let

Pl,...,P.LQY,...,Q" be the corresponding parametric extension. We assume that
PA<P<--- <P, Q1 <@Q2<--<Q, (5)
Then
B, = PQ; ® PQ; & - ®PQY (6)

42



BIERMANN INTERPOLATION WITH HERMITE INFORMATION
is projector and it has representation
T r—1
Br=3 PhQly = PrQl ., (7)
m=1 m=1
Moreover, we have

By =P+ PLQ1 + -+ PQE + QU - (FQ + -+ F°QT) (8)

T T
where P¢ =1 — P, I the identity operator.
2. Biermann interpolation

In this section we present the Biermann interpolation operator and some of
this properties from [5].

Let be the univariate projectors of polynomial interpolation

Pl)"‘)‘P’I‘)Ql)"‘)QT

given by the folowing relations

km
(P f)(z) = Z £ (@) $im ()

In
(@u9) W) =D 9Wi)in®)
j=1
The sets of interpolation points ;re
{z1,...,21,,} Cla,b], {v1,-.--,u,} Cled]
with
1<k <ky<--<ky 1<li<la<---<l, 9)

The cardinal functions are given by
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Then we have

(10)
R(Qn) = <1,y, v 7yl"71> =1L, 1
From (9) and (10) we have that parametric extensions
Pl Pl II Q”
- 1y @
are bivariate interpolation projectors which form chains.
Pl<--<Pl, Q< <Q! (11)

Moreover we have

P Q! =Q"P! 1<m,n<r

n- mo

P! Q! is the tensor product projector of bivariate polynomial interpolation.

We have the representation
o In
(PLQnf)(@,y) Z Z (i, ;) i (2) 0.0 ()
1 i=1
P! Q" has the interpolation properties
The range space defined by P! Q" is
R(P,,Qn) =y, 1 @I, 1.

The projectors
P/ Pl I/ Q/I
A Q)
generate a distributive lattice & of interpolation projectors on C([a,b] X [c,d]). The

interpolation projector B, is defined by relation

By = PiQy & PQ & & QY
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where r € N. The projectors By, ..., B, form a finit chain
B <By<---<B,
Proposition 2.1. The range space of Biermann interpolation projector is
R(By) =g 1 @I, 1+ -+, 1 @10, 1 (12)

Proposition 2.2. The Biermann interpolation projector satisfies the interpolation

properties
(Brf)(miayj):f(miayj)a 1Si§km; 1Sjglr+1fm; ]-SmST (13)

The set of interpolation points possesses a disjoint representation

T r—m

P(Br) = U U {(aji:yj) Dk <U< Ky lromen <J < lr—i—l—m—n} (14)

m=1 n=0
with kg := 0, lp := 0.

Using disjoint representation (14) of interpolation set P(B,) of Biermann
interpolation projector we obtain Lagrange representation of Biermann interpolant

r+1mn

B.f=> Z Z > flaiy)® (15)

m=1 n=0 i=14kpm_1 j=14+lr—m-n

Proposition 2.3. The cardinal function of Biermann interpolation is given by

m—+n m+n—1

®; (z,y) Z@S 2)Yjrt1—s(y Z Gi.s (@) s(y), (16)

km—1<2.§km: lr—m—n<j§lr+1—m—na 0<n<r—-m,1<m<r

Proposition 2.4. The Cauchy form of remainder formula in bivariate Biermann

interpolation is

fEO(g y) FO) (@, m,)

kr' +(y_y1)(y_ylr) l’r'

=(z—m)...(x —xy,)

r—1 kr—m lm

A (S
+2. I @—ed [ - ) —F—57
m=1 [=1 j=1 rometme

1
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k. m
- 41 kr+17m*lm)(0r+1fm;7'm)

_ lm f(
I @—=)][[w-v)
j=1

—1 kr+1—m!lm!

~

m=1

where &;,0; € [a,b], n;i, 7 € [c,d] with 1 <i <.

Proposition 2.5. Let be ¢ = min{k,_p, + 1 : 0 < m < 7} with ko =0, lp = 0.

Then q is the approximation order in bivariate Biermann interpolation, i.e.

f(ﬂ?,y)—(Brf)(iE,y):O(hq), h —0
Example Let be r=3 and triangular elements
ih jh

km =myl, =n,1<mn<3

The cardinal functions are
®13(2,y) = du1(2)¢s3(y)
Do (7,y) = ¢22(7)¥22(y)
®31 (2, y) = ¢33(x)¢11(y)
D12(2,y) = $11(2)Y23(y) + dr2(2)22(y) — P11 ()22 (y)

o1 (2, y) = d22(2)h12(y) + b23(@) Y11 (y) — P22 ()11 (y)

(18)

@11 (2, y) = d11(2)Y13(y) + dr2(2)h12 (y) + P13 (2) 11 (y) — P11 () P12 (y) — d12(x) Y11 (y)

Ys

Y2

Y
T T2 T3

The order of aproximation is 3.
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3. Main result

Our goal is to construct Hermite projectors which form the chains and with

their aid the Biermann operator of Hermite type.

Let be the univariate projectors of Hermite interpolation
Pl:"'a-PT:Ql:"'aQr

given by relations

km Wi,m

(P f)(z) = FP (@)hp(x), 1<m<r
i=1 p=0
ln Vjn _

(Qng)(y) = g Dy)ht(y), 1<n<r
j=1¢=0

Assume that

{z1,..., 21, } Cla,b]

{y17"'7yln} - [C,d]

with
1<k <ky<---<k,
(19)
1<h<lhh<: <l
and
Uim < Wimt1, 0 =1, kp, m=1,r—1
(20)

Vin <Vjpy1, =11, n=1,r—1

The cardinal functions h{j, m = 1,7 and ﬁ;?q, n = 1, r satisfy

B (])(.CL’,,) =0, v#14 j=0,upm

p

B (@) =6, §=0,tim

p

for p =0, u;,m, v,i = 1, k,, and respective
~n (i) . L
hiy '(yp) =0, v#j, i=0,v,p
h?q(l) (yj) = 52'117 i= O;Uj,n
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for ¢ = 0,vjn, v,5 =1,15.

Theorem. 1. The parametric extensions
Pl P.QT,...,Q!
are bivariate interpolation projectors which form the chains
Pi<--<P, Q<< (21)
Proof. Let be 1 < m; <ms <r. Then

kml S kmz I

Ui m, < Ui7m2;i < kml

We have that

kmy Wigmy kmy Uigmo

Pr oy D@ y) =3 S (S0 S £e2 0y, y)hz P (@) | BT () (23)

i1=1 p1=0 i2=1 p2=0
But
hmz (Pl)(ajil) = (52‘12‘2(51)11)2 (24)

i2p2
From (22), (23) and (24) we have

kmy Wigmy

(Ph, Pr, D(@y) =Y Y f00(z;,y)h" (z) = (P}, f)(z,y)

i1=1 p1=0
ie.
Py, < P;w
Thus P{, Py, ..., P! form a chain. Analogous QY,Q%, ..., Q! are projectors which form
a chain. O

Moreover we have

P Q" =Q"P 1<m,n<r

n-m?

The tensor product projector P), Q). of bivariate interpolation has represen-

tation

km Wi,m 1, Vjn

Qi@ y) =5 S STS " £ ) W (22, (9)

i=1 p=0 j=1 ¢g=0
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and it has the interpolation properties
(PLQu )P (s, y;) = P (i, y;)

"

The projectors P{,..., P/, QY,..., Q! generate a distributive lattice ¢ of pro-

jectors on C([a,b] X [c,d]). A special element in this lattice is
B =PlQ] @ PQ & ®PQ{, reN (25)

called Biermann projector of Hermite type

Let be aj = wuy i+ +ug, i + ki, Bi=vii+--+uvi+l, 1<i<r.

Proposition 3.1. The range space of projector B is given by
R(BJ) =Ma, 1 @M, 1 +--+ 1, 1 @I (26)
Proof. Using Proposition 1.1. we have
R(BT) = R(P{Q;) U... UR(PIQY)
Taking into account that
R(Pp) =g, —1,1<m<r
R(Qn) =1g,-1,1<m<r

we get (26).0

Proposition 3.2. Biermann projector B has the interpolation properties
(BE1)®9 (23,y;) = FP9 (24, 9)) (27)
]-Sigkm; 1§j§lr+1fm;]-§mgra

Uim—1 <P < Uim, 0=Lq <0 myt,

where ujm—1 = =1, kyp1 <1 <kp, 1 <m <7, with kg =0
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Proof. Using Proposition 1.1. we have
P(B/') = P(PIQ) U ... UP(PQ])
If we denote

Z(P) = {f P (@iy)|(PF P (wi-y;) = fP (i)}

then
I(B) =Z(P/Q;) U ... UL(P/Q})
We have
I(PllQ;!) _{f(pq (372 yj)| =110, p=0,u;41,q9=0, Vjr }
:{f(lhq (ml )| = = l p_u20+1 Uzl,q—o U,]’f‘}
=C;

with U0 = —1, 1= ko + l,kl

For m = 2,r we have

Z(Prln ;"I—&-l—m) = {f(p7q)(1.2y])|z = 1ka7 .7 = 1alr+1fm7 b= Oauim;q = O;Ujﬂ‘Jrlfm}
= {f(p,q) (mzyj)“ = 1; kmfla .7 = 1; lr+17m7 b= Oaui,mfla q= 07Uj77‘+17m}

U{f®D (z;9))i = Lkm—1,5 = L lrt1—m, P = Win—1 + L, Uim,q = 0,Vj r11—m}
U{f®D (@;.9;)|i = km—1 + Lkm, § = 1, lg1—m, P = 0,Uim, ¢ = 0,0j r51-m}
={fPD(z;y)i =1L km1,5 = Llt1-my D=0, Um 1,4 =0,0jr41-m}
OU{fPD (@s.9;)li = L ks § = Llrs1—m, P = Uim—1 + L, Ui, @ = 0,0j751—m }
=A,UCn,

with %, = =1, 1 =kn_1 + 1, k.

As A, CI(P), Q)15 ), m = 2,r it folows that
(B =17(P/Q")U...uZ(P/Q") = C,U...UC,

q.e.d.O

Remark. 2. The sets C;,i = 1,1 are dizjoncts.
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From (7) we get the folowing representation for the projector B

r kym Yi,m lrdlom Vjir41—m

B )zy) = Y>> Z Z W (@)REEE™ () D (4, ;)

m=1 =1 p=0

YEY Y Y w0 )

Taking into account (27) we obtain

Uim lp—m 41 Vj,r—m+1

(B f)(z,y) = ZZ >y Z FD (25, ;) B0 (2, )

m=1 i=1 p=u; m-1+1 j=1

Proposition 3.3. The cardinal functions ®}; given by

o (z Zh hr mHL(y Zh h’" ™ (y)

mGqu meB”

ISZSkma 1§j§l7‘+1—malgm§r7

Uim—1 <P < Uim, 0=L¢ <0 myt,

where
Al ={me{1,..,r}i € Xp,p < tiim,J € Yet1-m:q < Vjrp1—m}
Bl ={me{l,...,r = 1}[i € Xpp,p < Uiy, J € Vi, @ < Vjir—m }
Xm = {]-7 7km}7Yn = {17 Jl’ﬂ}
Proof. For the function
f(z,y) = hip(z)h},(y)
we have

B’I‘f = (Pqu

(29)
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Taking into accoumt relation (7) we get
r " r—1 -
m=1 m=1

= Z hm r+1 m(h;q) - Z h%@) ;{_m(hgq)

pq
@,

me{l,...,r} mée{l,...,r—1}
1€Xm, P2Ui,m 1EX 1 P2 Ui,m
_ m o pr+l-m _ § : m o pr—m
- Z hip ® hjq hip ® hjq
me{l,...,r} me{l,..,r}
1€ Xm, P2Ui,m 1€Xm, P>Ui,m
JEYrt1-m, 42V, rt1—m JEYr—m; 42V r—m

Proposition 3.4. If f € C*!*([a,b] x [¢,d]) we have Cauchy form of remainder

(ar,0)
— _ uy,r+1 _ Uk, ,rt+1 f (ér;y)
(z — 1) co(z—xp,) ol
(0,3r)
v1,r+1 _ v%,,+1f (mJnT)
+y—y)™ (Y = y=r)” RN
r—1 kr—m lm
f ar_m’ﬁm)(fr—m:nm)
+ZH a:—.r u”m—i-l y y vjm-l-l
| !
m=1 =1 j=1 arfm-ﬂm-
krt1—m I
o T H (x — m<)ui’r+1*m+1 H(y - yl)vj,erl f(ar+17m’ﬁm)(gr+1fm: Tim)
K3
m=1 =1 =1 ! Qri1—m!Bm

éi;gie [a’ab]: Ni, Ti € [Cad]algigr

Proof. We have that

K (am)
(P @) = 1)~ Puf)@) = [[a—r 1 L) ¢ e 0], € o 0,0
s 1957 (1) l
(@Qn9) () = 9(y) — (@nf)y) = H(y — ;)" g € [c,d], g € C"([c,d])
" 1<mn<r

Taking into account relation (8) we get (31).0
Let be h=b—a=d—cand ¢ = min{a,_,; + B, 0 <m < r} with ag =0,
Bo = 0. Then we have

f(a,y) = (B f)(z,y) = O(h?), h— 0. (32)
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Example. We determine the order of approximation of the Biermann inter-
polation projector BH for triangular elements.We choice r=3 and
ih ih .
T = —,Yj :J—,lgl,J Sg,h>0
3 3
km =m,l, =n,1<m,n<3

Let be the Hermite interpolation projectors

xr xr x x x x
P = H* 1  Py= H* 1 X2 P = H® 1 T2 I3
0 1 0 1 0 1
Ql =HY o ; QZ =HY e ; QB =HY v v
1 1 1 1 1 0

i.e.
u; = 0;
ur2 = 15 usa = 0;
u13 = 1; usz = 0; uzz = 1;
vy =1
vi2 = 15 090 = 1
v13 = 1; v23 = 15 v33 = 0;

It folows that parametric extension form the chains
PI<P <P QI<Qy<Qy
and we can define the Biermann operator of Hermite type
Bi' = P{QY © P}Q% @ PQY.

The operator B has the interpolation properties
(B?I,qf)(pﬂ) (mla yl) = f(p,q) (mlayl)a (pa (I) € {(07 0)7 (07 ]-)7 (17 0)7 (17 1)}

(B )P0 (21, 42) = FP9 (21,92), (p,9) € {(0,0),(0,1),(1,0), (1,1)}
(B )P0 (21, y3) = fPD(21,y3), (p,q) = (0,0)

(B )P0 (2, 91) = fP9 (x2,1), (p,q) € {(0,0),(0,1)}

(B )9 (22,2) = fP9) (22,12), (p,q) € {(0,0),(0,1)}

(B /)P0 (x3,91) = FPD(25,41), (p,9) € {(0,0),(0,1),(1,0),(1,1)}
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The cardinal functions of B are
oY (x,y) = b, (@)hi, (v) + B3, (@)hi, (y) + Wi, ()
~hiy(@)h, (), (r.9) € {(0,0), (0, 1)}
= h? h? +h3 (a:)h1 (y) — h%p(m)
)

(@, y) = Ry, (2)hi,(y)
®1 (2. y) = b, ()3, (y) + b3, (2)h3, (y) — bl (x
®1i(x,y) = Wi, (2)h3,(v), (,q) € {(1,0), (1, 1)}
®1i(2,y) = b, (2)h3,(¥), (p.q) = (0,0)
®5 (2. y) = 3, ()3, (y) + b3, (2)hl, (y) — B3, (2)hl, (v), (@) € {(0,0), (0, 1)}
®51(x,y) = h3,(x)h3,(v), (p,q) € {(0,0), (0, 1)}
o

o (x,y) = h3, (2)ht, (), (b, 9) € {(0,0),(0,1),(1,0),(1,1)}
We compute the approximation order

o =upp +1=1;

Qo = Ui + Uz + 2 = 3;

a3 = Uu13 + U3 +uzz +3 = 5;
fr=vi1+1=2

B2 = vi2 +v22 +2 =4

f3 = vi3 + va3 + v33 + 3 = 5;

q = min {az, az + f1, a1 + P2, B3} = 5;

The order of approximation in this case is 5.
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TREE WAYS OF DEFINING THE BIVARIATE SHEPARD
OPERATOR OF LIDSTONE TYPE

TEODORA CATINAS

Abstract. In this paper they are given three possible definitions of the
bivariate Shepard operator of Lidstone type. Also, they are given error

estimations for the corresponding interpolation formulas.

1. First variant of the Shepard operator of Lidstone type

Let f be a real-valued function defined on X C R?, (z;,5;) € X, i =0,...,N
some distinct points and 7; (,y), the distances between a given point (z,y) € X and
the points (x;,y;), ¢ =0,1,...,N.

First, we consider the original bivariate operator introduced by Shepard in

1968. This operator is defined by:

N
(SN,uf)(may) = ZAi(-’L',y)f(l'i,yi)7 (1)
1=0

where
N
[174 (z,9)
i
Al (x7 y) = J\‘[] N ) (2)
> 7y (zy)
k=05=0
J#k

The functions A;, i =1,..., N have the cardinality properties:
Ai(zy,yv) = 6, d,v=1,...,N,

Received by the editors: 20.09.2005.
2000 Mathematics Subject Classification. 41A05, 41A80, 41A25.

Key words and phrases. Shepard operator, Lidstone operator, interpolation, error estimation.

57



TEODORA CATINAS

and

The main properties of Sy, are:

1. the interpolation property:
(Snuf) (xiyyi) = f(ziyy:), i=0,1,...,N
2. the degree of exactness is:
dex (Swn,) = 0.

Consider a,b,c,d € R, a < b and ¢ < d and let
Arta=xg<z1 <...<zxpyp1=band A" :c=yg <y < ... < yny1 =d
denote uniform partitions of [a,b] and [c, d] with stepsizes h = (b —a)/(M + 1) and
I =(d—¢)/(N +1), respectively. Further, let p = A x A’ be a rectangular partition
of [a,b] x [e,d].

In [4] it was introduced the bivariate Shepard operator of Lidstone type, using
the classical definition of the Shepard operator (1).

For a function f € C?™~2[a, b], according to [1], the Lidstone interpolant uni-

quely exists and it is of the form

A M+1m—1 )
(Lin ) (@) = > >0 (@) f5 (2), (4)

i=0 p=0

where 7,55, 0 <1 < M4+ 1,0 < j <m — 1 are satisfying
D1y i i(x,) = 8ipd20 i, 0<p<N+1,0<v<m-—1. (5)

On the subinterval [z;,2;11], 0 < i < M, the polynomial L2 f can be explicitly

expressed as

(L 1) (@) = (Lo o) (2) = (6)
m—1
=5 T (52) 79 ) A (555 79 ) 0%
k=0
where Ay is the Lidstone polynomial of degree 2k + 1, k € N. In analogous way it is
obtained the expression of LTA,L"" f, corresponding to A’.
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For a function f € C?m=22m=2([q b] x [c,d]), the bivariate Lidstone
interpolant L? f uniquely exists and can be explicitly expressed as

M+1m—1N+1m—1

(Lo f)(2,y) = ;) 2230 ;0 VXZ:OTm,w(w)rm,j,u(y)f@“’z”)(xzvyj), (7)

with ry, 5, 0<i<M+1,0<j<m—1 given by (5).
Lemma 1.1. [1] If f € C?™=22m=2([q,b] x [c,d]) then
(Lo ) (@,y) = (L Ly f)(@,y) = (Lo Ly ) (@, )-

Corollary 1.1. [1] For a function f € C?*™=22m=2([a,b] X [¢,d]), from Lemma 1.1,

we have that
Lo f=(f—Laf)+Lo(f - Lo f) (8)
=(f—LAH) +LAF — LY ) = (f = LAY A+ (f = LY f).

We recall that the k—th modulus of smoothness of f € L,a,b], 0 < p < oo,
or of f € Cla,b], if p = oo, is defined by (see, e.g., [11]):

wlFitly = swp [[ALF@)]

0<h<t
where
k .
Afw) =3 (=0 () fw + ih).
i=0
In what follows ||| detones the uniform norm over the corresponding interval.

We have some error bound for the bivariate Lidstone interpolation, that is

useful in what follows. It is obtained based on some results from [5].

Theorem 1.2. If f € C?™=22m=2([q,b] x [c,d]) then

17 = L (0 20 War s e (7 52) Y

y€le,d]

+ (14 || LA[) Wanm mae wom ((f = Lim 1) 9); 5:2)

+ (1 + ||L$1,H)W2m xrél[%)i] Wam, (f(.’E, ) dfc) 7

where Wy, is Whitney’s constant.

59



TEODORA CATINAS

The bivariate Shepard operator of Lidstone type is given by:
Li N .
(8™ N)(@,y) = > Ailz,y) (L3 f)(z,y), (10)

=0

where LA f is the restriction of L?, f, given by (7), to the subrectangle [z;,z;11] X
[Yisyit1], 0 <i < N.

We have the bivariate Shepard-Lidstone interpolation formula,
f=8"f+R"Y, (11)

where R f is the remainder term.
Estimations of the remainder of this interpolation formula were obtained by

us in [4] and [5].

2. Second variant of the Shepard operator of Lidstone type

For a function f : [0, 1]x[0, 1] — R we consider the bivariate Shepard operator

as a tensor product [13]:

(SJVINf x y Zzsz/\ S]u f(ﬁvjﬁ)v (12)

1=0 j=0
where A\, © > 1 and
o — 5
sia(z) = o
2 |2 = 7
k=0
_a|H
85.u(Y) H
X ly-~"
k=0

If we denote as in [13], by Saa(f, ) the univariate Shepard operator regarding a

univariate function f we have that

(SM,Nf)(‘Ta y) = SM,)\(fv x)SN,/L(fv y)
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For a function f € C?™~22m=2(D) m € N, the Shepard operator of Lidstone

type corresponding to (12), is defined by
(SI[\//; ZZSM )5, (y) (L9 ’]f) (in %) (13)
=0 j=0

where L£;J f is the restriction of L?, f, given by (7), to the subrectangle [z, z;41] X
[vj,yj41], 0< i< M, 0<j<N.

The corresponding interpolation formula is
f=Sinf+ Ry,

where Rﬁ/}" nf denotes the remainder.
Further we give some error bounds for this interpolation procedure. First,

we recall some known results.

Theorem 2.1. [5] If f € C?*™~2[a,b] then

1f = Sua(fr2)| < A+ || Lo [N Wamwam (f; 5:2) - (14)

Theorem 2.2. For any f € C?*™~22m=2(D) and u > 2 we have
|f = Suinfl < U+ ||Lal]) Wam max wam (FC9) 2m) (15)
=+ (1 + ||L7AnH )W2m max WQm((f - Lﬁlf)(ay)a %m)
y€[0,1]

Proof. By Corollary 1.1 and taking into account (13) it follows that

Hf - S%\?,Nf”c[(),l] = ||f - SM,)\fHC[OJ]

o= n = swatr 22|,

c[o,1]

+11f - SN,uch[o,l] :

and from (14) we obtain (15).
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3. Third variant of the Shepard operator of Lidstone type

In [13] was introduce another type of the bivariate Shepard operator which has
good approximation properties and better global smoothness preservation properties
then that defined by (1). It is defined by

T 3T,
S (fiw,y) = Tealfien),

with 4 >0, f: D - R, DCR?, D=10,1] x [0,1], 2, =i/M, i =0, ..., M; y; = j/N,
7 =0,...,N and

f($i7yj)
[(z —2:)? + (y —y;)?]"

M N
Tarn (frzy) =322 30
1=05=0

For a function f € C?m=22m=2(D), m € N, the corresponding Shepard

operator of Lidstone type is given by

i Tt n (fiz,
(SKi o f)(,y) = Tentfizw) (16)

TN (Liz,y)

with

i L7 ) (i,
Tiin(fi0,9) = 2 3 Gy
i=0j=

where L£;J f is the restriction of L?, f, given by (7), to the subrectangle [z, z;41] X

Wi, ¥j41], 0 <i < M,0<j<N.

Theorem 3.1. [13] For any f € C(D) and p > 3/2 we have

); (17)

z|=

If = San () < cw(f; 57,
where
w(f;6,m) =sup{|f(z+h,y+k)— f(z,y)|: 0<h<0,0<k <n}.

Using Theorem 3.1 we can give some error bounds.
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Theorem 3.2. For any f € C?*™=22m=2(D) and pu > 3/2 we have

1 = Stin Sl SewLinfi g 2) + L+ L] ) Wanm Joax wom (£(9); 277)

U 2D Won o o (£ = L2 1) 0): 37)
yE[O,l]

Proof. We have
1f = Siinfll < I = Lol + | Zouf = Siin ]
and by (16) and (17) we obtain
1 = ST NF S Nf = Lo fI + cw(Lh fi 350 F)-

By (9) it follows (18).
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STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume L, Number 3, September 2005

CONTINUATION METHODS FOR INTEGRAL EQUATIONS IN
LOCALLY CONVEX SPACES

A. CHIS

Abstract. The continuation method is used to investigate the existence

of solutions to integral equations in locally convex spaces.

1. Introduction

In this article we study the problem of the existence of solutions for the

Fredholm integral equation

x(t) :/0 K(t,s,z(s))ds, t € [0,1]. (1.1)

and the Volterra integral equation

x(t):/o K(t,s,2(s))ds,  t€0,1] (1.2)

where the functions x, K have values in a locally convex space.
In paper [2] the above equations are studied using fixed point theorems for
self-maps. Our approach is based on the continuation method.
The results presented in this paper extend and complement those in [2]-[5].
We finish this section by stating the main result from [1] which will be used

in the next section.

Received by the editors: 8.09.2005.
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For a map H : D x [0,1] — X, where D C X, we will use the following
notations:
Y={(z,\) € Dx[0,1] : H(z,\) =z},
S={ze€D:H(z,\) =z for some X € [0,1]}, (1.3)
A={Xe€[0,1]: H(z,\) = z for some z € D}.
Theorem 1.1. Let X be a set endowed with the separating gauge structures P =
{pataca and Q* = {q}}pen for X € [0,1]. Let D C X be P-sequentially closed,
H:Dx[0,1] = X a map, and assume that the following conditions are satisfies:
(i) for each \ € [0,1], there exists a function ¢y : B — B and a* € [0,1)B,

at = {ag}geg such that

qé(H(fL’, A), H(y,A)) < agqéx(ﬁ)(x,y), (1.4)

AX A A A
D a3 (3033 ()T () Dy () () < 00 (1.5)
n=1
for every B € B and z,y € D;
(ii) there exists p > 0 such that for each (x,\) € 3, there is a 3 € B with

inf{g;(z,y) : y € X\D} > p; (1.6)
(iii) for each X\ € [0,1], there is a function ¢ : A — B and ¢ € (0,00)4,

¢ ={cataca such that
Palz,y) < caqu‘}(a)(sc, Y) foralla € A and x,y € X; (1.7)

(iv) (X, P) is a sequentially complete gauge space;

(v)if A €[0,1], 0 € D,z = H(xp_1,A) forn=1,2, ..., and P-lim,,_, o0 T, =
x, then H(xz,\) = x;

(vi) for every e > 0, there exists 6 = d(¢) > 0 with

qig(m(%H(fc,A)) <({1- afpw))f

for (z,p) € X, |A—u| <4, all B € B, and n € N.
In addition, assume that Hy := H(.,0) has a fized point. Then, for each
A €10,1], the map Hy := H(.,\) has a unique fized point.
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Remark 1.2. Notice that, by condition (ii) we have: for each (x,\) € X, there is a
B € B such that the set

B(‘ra)‘vﬁ):{yeXqgt{(ﬁ)(xay)gpv VTLGN}CD (18)

The proof of Theorem 1.1, in [1], shows that the contraction condition (1.4)
given on D, can be asked only on sets of the form (1.8), more exactely for (x,\) € &
and y € B(z, A, 3).

2. Existence Results

This section contains existence results for the equations (1.1) and (1.2).
Theorem 2.1. Let E be a locally convex space, Hausdorff separated, complete by
sequences, with the topology defined by the saturated and sufficient set of semi-norms
{l.|p @ € A} and let 6 > 0 be a fized number. Assume that the following conditions
are satisfied:

(1) K : [0,1]> x E — E is continuous;

(2) there exists r = {ro}aca such that, any solution = of the equation

1
x(t) = )\/0 K(t,s,z(s))ds, t € 0,1], (2.9)

for some X € [0,1] satisfies |x(t)|, < ro, for allt €0,1] and o € A;
(3) there exists {La}aca € [0,1)? such that

|K(t,s,@) — K(t,8,9)|o < La |z —ylp (2.10)

whenever a € A,for all t,s € [0,1] and z,y € E, where E, = {x € E : there exists
a € A such that |x|, < 1o +0};

(4)

> LaLfa)-Lnia) < (2.11)

n=0

for every a € A,
(5) for every a € A and for each continuous function g : [0,1] — E one has
sup{[g(t)] fn(a) 1t €[0,1], n=10,1,2,..} < oo;
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1= Ln(a
(6) there exists C' with 0 < C < Mif() for alla € A and n € N, where
fr(a)
M,:= sup |K(t,s,2),.
t,s€[0,1],
|x‘f(a)§7”f(a)

Then problem (1.1) has a solution.

Notice that M, < co. Indeed, from (2.10) we have

|K(t,s,x)|a < |K(t,$,(£) - K(t7sa0)|a + |K(tvs70)|a

< LoTay + K(t,s,0)| <
< Larypo) + max [K(t5,0)], <00

for all ¢,s € [0,1] and = € E with |z],) < 7f(a)-

Proof. We shall apply Theorem 1.1. Let X = C([0,1], E'). For each o € A we define
the map do, : X x X — Ry, by

do(z,y) = Jnax, lz(t) —y(t)l, -

It is easy to show that d, is a pseudo-metric on X and the family {d,}qca defines
on X a gauge structure, separated and complete by sequences.

Here P = Q* = {da}aea for every X € [0,1]. Let D be the closure in X of
the set

{r € X: do(z,0) <r,+ 6 for some a € A}.

We define H : D x [0,1] — X, by H(z,\) = AA(x), where

Alz)(t) = /O K(t, 5, a(s))ds.

In what follows we shall check conditions (i)-(vi) in Theorem 1.1. We shall
start with condition (ii) by technical reason.
Condition (ii) becomes: there exists p > 0 such that for each solution (x,\) €

D x [0,1], of x = H(x, A), there is an o € A with

inf{d,(z,y) : y € X\D} > p.
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To prove this, let us note that if y € X\ D, one has d,(y,0) > r, +0 for every

a € A. Consequently, for at least one ¢ € [0, 1],
l2(t) =yl = [y, — [2(@)]y >71a +6 =10 =4

Then d,(z,y) > 6. Hence (ii) holds for any p € (0, ).
Condition (i) becomes: for each a € A there exists f(a) € Aand L, € [0,1)

such that
do(H(z, ), H(y,\)) < Lad o (2, y), (2.12)
Z LaLf(a)...Lfn—l(a)dfn(a) (:c,y) < 00, (213)
n=1

for all x,y € D.

According to Remark 1.2, it suffices to have (2.12) on sets of the form (1.8).
Let (x,\) € D x [0,1], such that H(xz,\) = z, and let 8 € A. The set B(z,\, ) :=
{y € X s dgn(p)(x,y) < p, Vn € N} is included in D. From the fact that H(z,\) =z
it follows that |z(t)|, < 74, for every ¢t € [0,1] and o € A; from y € B(x,\, () it
follows that [y(t)|5 < 7 + 4, for every t € [0,1].

Then for x with H(z,A\) =z and y € B(x, A, 3) we have

[H (2, A)(8) = H(y, M) (8], = A /0 (K(t,s,2(s)) — K(t,5,y(s))) ds

[0

<o [ 1K s (6) = Kt sy(s)], ds

1
< [ Lale(s) = 55)| oy ds
0

< ALq -
< ALa max |2(s) = ¥(8)| ()

= ALadf(a)(za y)
< Ladf(a)(xa y)
Then maxyejo,1) [ H (2, A)(t) — H(y, \)(t)], < Ladyf)(x,y), that is (2.12).
Now (2.13) follows from (4) and (5).
Condition (iii) is trivial since P = Q.
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Condition (iv): (X,{ds}aca) is a sequentially complete gauge space since E
is complete by sequences.

Condition (v): Let A € [0,1], mo € D, x,, = H(zp_1,A) for n =1,2,... and
assume P- lim z,, = x. We wish to obtain that H(z,A) = x.

n—oo

We have

[H (2, A)(8) = 2(t)|o = [H (2, A) () = 2n(t) + 2a(t) — 2(D)],

< H (2, A) (1) = 2 () + |2n(t) — 2(2)]

(03

@A) — H@a1, O, + loalt) - 2(0)],
< [ o) = @m0 g s+ lea0) = (0,
< Lo max [z(s) — zp-1(5)| (o) + sup |za(t) — z(t)],

s€[0,1] tefo,1]

= Ladf(a)(Tn-1,2) + do(2n, T).
Passing to the supremum we obtain
do(H(2,A),2) < Ladfa)(Zn—1, %) + do(zn, x).

Letting n — oo, we deduce d,(H (z, A), z) = 0.Since this equality is true for all « € A
and {ds }aca is separated, we have H(z,\) = x as we wished.

Condition (vi) becomes: for every ¢ > 0, there exists § = d(¢) > 0 such that
dpn(ay(x, H(z,\)) < (1 = Lna))e

whenever (z,u) € D x [0,1], H(z,pu) =z, [N —p] <6, a € Aand n € N.
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Indeed, using (2) and (6) we obtain

z(t) = H(z, \) ()] pr (o) = [H (@, 1) (8) = H (2, \)(£)] n (o)

/01 K(t,s,x(s))ds

= |u— Al

(@)
1
< |u— M/O (Kt 5,2(5))] g (o) ds

<= A Myn (o)

1 - Lfn(a) .

<lp=Al—7F

So condition (vi) is true with d(¢) = Ce.

In addition H(.,0) =0- A(.) = 0. Hence H(.,0) has a fixed point.

Thus all the assumptions of Theorem 1.1 are satisfied and the proof is com-

pleted.

O

In Banach space, Theorem 2.1 becomes the following well-known result.

Corollary 2.2. Let (E,|.|) be a Banach space. Assume that the following conditions

are satisfied:
(1) K : [0,1]*> x E — E is continuous;

(2) there exists v > 0 such that, any solution x of the equation

x(t):)\/o K(t,s,2(s))ds,  te0,1],

for some A € [0,1] satisfies |x(t)| <, for allt € [0,1] and any X € [0,1];
(3) there exists L € [0,1) such that

|K(t,s,x)7K(t,s,y)| §L|£L'7y|

forallt,s €10,1] and z,y € E with |z|, |y| <.
Then problem (1.1) has a solution.

(2.14)

(2.15)

Notice that an analogue result is true for Volterra integral equation (1.2).
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In particular, we obtain an existence principle for the initial value problem

2(t) = K(t,z(t))  tel0,1]

(2.16)
z(0)=0
is equivalent to the integral equation
t
() = / K(s,z(s))ds,  tc[0,1] (2.17)
0

for which the following result holds.

Theorem 2.3. Let E be a locally convex space, Hausdorff separated, complete by the
sequences, with the topology defined by the saturated and sufficient set of semi-norms
{l.l, ;o € A} and let 6 > 0 be a fired number. Assume that the following conditions
are satisfied:

(1) K :[0,1] x E — E is continuous;

(2) there exists 1 = {ro }aca such that, any solution x of the equation

x(t) = )\/O K(s,x(s))ds t€10,1]

for some X € [0,1] satisfies |x(t)|, < 7a, for allt € [0,1] and o € A;
(3) there exists {La}aca € [0,1)? such that

|K(t,z) — K(t,y)|, < Lalz— y|f(a)

whenever o € A, for allt € [0,1] and x,y € Ey;
(4) >omo LaLga)--Ln(a) < 00, for every a € A;

(5)for every a € A and for each continuous function g : [0,1] — E, one has

sup{[g(t)] fn(a) 1t €[0,1], n=10,1,2,...} < oo;

1 - L n o
(6) there exists C with 0 < C' < Mif(), for alla € A and n € N, where
A )
M, = sup  |K(t, )|, -
t€fo,1],
|x‘f(a)§7“f(a)

Then, the problem (2.17) has a solution.

The next theorem is concerning with the ”a priori” boundedness condition
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Theorem 2.4. Assume K : [0,1] x E — E is continuous. In addition assume that
for each a € A, there exists B, € C([0,1],R4) and ¢, : Ry — (0,00) nondecreasing
with - € Li,.(Ry) such that

(Kt 2)|, < Ba()allz]y), forz e Bt €[0,1] (2.18)

and

- dT / Bals (2.19)

Then condition (2) in Theorem 2.3 s satzsﬁed..

Proof. Let x be any solution of the problem

2'(t) = AK(t,z(t)), t€10,1]

for some A € [0,1], and let & € A by arbitrary. Then

(t):)\/o K(s,2(s))ds,  te€[0,1]

o0y <A [ Kt ds = [ a0, as

Let wq (t fo |z’ (s)],, ds. Then |z(t)|, < wa(t) on [0,1]. Using (2.18) we obtain

and so

wy,(t) = 12" ()] = MKt 2(8))] < ABa(t)ha(lz(t)],) < ABa(t)tha(wa(t))

on [0,1]. Next
wi(t)
Ya(wa(t))

/tmdsg/tga(s)dsgfﬁa(sws

Make the following change of variable w,(s) = 7 and use (2.19) to derive

/Owa(t / BOt dS = OOO ¢:eiz-7')

The last inequality implies that there exists r, < 0o such that we(t) < r, for every

t € [0,1]. Hence |z(t)|,, < 7, for every t € [0, 1]. Therefore (2) holds. O

< ABa(t) < Balt)

and
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A better existence result is true for the Volterra integral equation

x(t):/o K(ts,2(s))ds,  te0,1] (2.20)

Theorem 2.5. Let E be a locally convex space, Hausdorff separated, complete by the
sequences, with the topology defined by the saturated and sufficient set of semi-norms
{l.I, -« € A} and let 6 > 0 a fized number. Assume that the following conditions are
satisfied:

(1) K : [0,1]2 x E — E is continuous;

(2) there exists 1 = {rq }aca such that each solution x of the equation

x(t):/\/o K(t,s,2(s))ds,  te0,1]

for some X € [0,1] satisfies |x(t)|, < ra, for allt € [0,1] and o € A;
(3) there ewists {Lo}aca € (0,00)? such that

K(t,s,2) = K(t,5,)ly < La |z —yly5)  for every f € Oa

whenever a € A; t,s € [0,1] and x,y € E,; here O, := {a, f(a), f3(a),...};

(4) for every a € A and for each continuos function g : [0,1] — E one has

sup{|g(t) y1t€[0,1], n=0,1,2,..} <oo;

f”(()&

(5) sup Mgn(q) < 00, for every a € A.
Then problem (2.20) has a solution.

Proof. We also apply Theorem 1.1. Let X = C([0, 1], E). We define the applications
Il X — Ry by

lz]l, = max (|z(t)|, ")

te[0,1] «

where 6, > 0 will we precised in what follows. This applications are semi-norms on
the linear space X, and the family {J|.||,}aca defines on X a structure of a locally
convex space, separated, complete by sequences.
Let a < 1. For each a € A and 6, > 0, we define the pseudo-metric d,, :
X x X =Ry, by
do(z,y) = llz =yl -
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Here again P = Q* = {dy }aca for all X € [0,1]. Let D be the closure of
{z € X : there is a € A with d,(z,0) <74+ d}.

We define H : D x [0,1] — X, by H(z,\) = AA(x), where

A()(t) = /0 K(t, 5, 2(s))ds.

Now we check conditions (i)-(vi) from Theorem 1.1.
First we check condition (ii): For any y € X\D one has d,(y,0) > r, + ¢ for

every a € A. Then for at least one ¢ € [0, 1], we have

() = y(®)] e > (Jy(O), — l2(B)],)e %
= ly(B)l, e — Jz(t)], e
2 da(y7 0) - da(l', 0)

>rq+0—1y4 =0.

Then dy(x,y) > 6 for all y € X\D. So inf{d,(z,y) : y € X\D} > p for any
p € (0,9).

Condition (i): Using the statements made in Remark 1.2,we will check the
condition (1.4) on sets of the form (1.8). Let (x,A) € D x|[0, 1], such that H(z,\) = =,
and let 8 € A. The set B(x, A\, () := {y € X : dpn)(z,y) < p, Vn € N}is
included in D. From the fact that H(z,\) = x it follows that |z(t)|, e %! < r,,
for every t € [0,1], every « € A and 6, > 0; from y € B(x, A, ) it follows that
ly()ls e~9t < rg+ 6, for every t € [0,1] and 65 > 0.
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Let z with H(xz,\) =z and y € B(x, A\, 8). Then for v € O we have

[H (2, A)(t) = H(y, A ()], = A /0 (K(t,s,2(s)) — K(t,5,y(s))) ds

¥
t
< )\/0 |K(t,s,2(s)) — K(t,5,y(s))], ds
t
< )\/0 Lglz(s) = y(s)ls e 995005
0 "o
< ALg tren[éaﬁ] (|x(s) —y($)lpyy e ) /0 e?85ds
t
= ALgdyg(+) (x,y)/ 5 ds
0
Lg
< G, b @
So we have
—0st Lﬁ
Consequently

o (B, X), H (V) < g ..

We choose 0, > 0 large enough that

& <a
9. =
and
Lo +sup Myn(q) < 0, (2.21)
n
for all a € A.

For each a € A series (1.5) is dominated by the convergent series io: a”
which obviously is convergent. This together with condition (4) guarantees conrzi:igion
(i) from Theorem 1.1.

For condition (i) and condition (iv) see the proff of Theorem 2.1.
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Condition (v): We have

[H (2, \)(t) — ()| = [H(z, \)(1) = 2n(t) + 20 (t) — (1)

(03 [e%

< H (2, A)(t) = 2 (), + |2n(t) — 2(1)]

[0}

= [H(z, A)(t) = H(zn—1, ) (O], + |z (t) — 2(t)]

@

t
g/ Lo 13(5) = Tn1(5) sy €205 ds + an(t) — 2(2)],
0

t
—0us Ons
< Lo max (Ja(s) = 201 (9)] gy ) / Pasdst

(03

L
[ (8) = 2(t)]y £ 75 dp(a) (@n—1,2)e%" + (1) — z(t)], -

O
Hence

B N0 = 2(0)l, < % dpiey (wn1,2)e" + [ (0) = o(0)],.

fal we obtain

If we multiply by e~
|H (2, \)(t) — z(t)],, e % < df(a)(Tn_1,2) + |20 (t) — 2(1)], e~ bat,
Taking the supremum into the above inequality, we obtain

do(H(z, M), 2) < dfa)(Tn-1,7) + do(2n, ).

Letting n — oo, we deduce that dn(H(z,\),z) = 0 and so H(z,\) = x.
Condition (vi) From

|2(t) = H(@, ) ()] g (o) = [H (@, 1) (8) = H (@, A) ()] ()

PP \ / K (s ()ds

()
¢
<|p—=2Al / |K(t, 8,2(5))] fn(a) e fasebas s
0
¢
<|p—Al an(a)/ elasds.
0
we obtain

an «
[o(6) — H (5, \)(0) gy < 1= N Z2 20,
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and using (2.21) we deduce

0 f La
priay € <= A =5 < |<1—9a>«

So condition(vi) is true for § = e.

In addition H(.,0) = 0- A(.) = 0. Hence H(.,0) has a fixed point. Thus

|lz(t) — H(z, A)(t)

Theorem (1.1), applies. O

In case that f : A — A is the identity map, Theorem 2.5 reduces to the

following result.

Theorem 2.6. Let E be a locally convex space, Hausdorff separated ,complete by the
sequences, with the topology defined by the saturated and sufficient set of semi-norms
{l.|p @ € A} and 6 > 0 a fized number. Assume that the following conditions are
satisfied:

(1) K : [0,1]?> x E — E is continuous;

(2) there exists 1 = {rq }aca such that, each solution x of the problems

*)\/Ktsx ))ds

has the property |x(t)|, < Ta, for allt € [0,1],a € A and every X € [0,1];
(3)there exists L, > 0 such that

|K(t,s,x) — K(tvsvy)‘a < La |$_y|fa

whenever o € A, for all t,s € [0,1], and x,y € E,;
Then, the problem (2.20) has a solution.

References

[1] A. Chis and R. Precup, Continuation theory for general contractions in gauge spaces,
Fixed Point Theory and Applications 2004:3 (2004), 173-185.

[2] N. Gheorghiu and M. Turinici , Equation intégrales dans les espaces localment convezes,
Rev. Roumaine Math Pures Appl. 23 (1978), no. 1, 33-40 (French).

[3] M. Frigon, Fized point results for generalized contractions in gauge space and applications,

Proc. Amer. Math. Soc. 128 (2000), 2957-2965.

78



CONTINUATION METHODS FOR INTEGRAL EQUATIONS IN LOCALLY CONVEX SPACES

[4] M. Frigon et A. Granas, Resultats du type de Leray-Schauder pour des contractions mul-
tivoques, Topological Methods Nonlinear Anal. 4 (1994), 197-208.

[5] D. O’'Regan and R. Precup, Theorems of Leray-Schauder Type and Applications, Gordon
and Breach Science Publishers, Amsterdam, 2001.

DEPARTMENT OF MATHEMATICS
TECHNICAL UNIVERSITY
CLuJ-NAPOCA, ROMANIA

E-mail address: Adela.Chis@math.utcluj.ro

79



STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume L, Number 3, September 2005

MULTI-CLASS INFERENCE WITH GAUSSIAN PROCESSES

BOTOND CSEKE LEHEL CSATO

Abstract. A Bayesian probabilistic framework for multi-class classifica-
tion is presented. We employ Gaussian processes as latent variable models
for each of the classes and present a Bayesian inference scheme. The prob-
lem is not analytically tractable and we present approximation schemes

and assess the approximation on different problems.

1. Introduction

The problem of “recognizing” patterns mathematically is formulated as the
assignment of labels to specific inputs x. The set of labels has finite cardinality,
therefore the problem of label assignment is one of classification where the number of
classes equals the cardinality of labels.

Binary classification is thoroughly studied and well understood for several
problem domains [?]. It is easier to model the binary classification since it reduces
to assigning the sign of a function to either of the classes. For the multi-class case
it is a more difficult problem: more than two classes require to have an indicator
for each class. To avoid the multiplication of these indicators, several alternative
models have been proposed, all of them transform the single multi-class classification
into several binary classification problems and then combine the results of the binary
classifications into a single “output” [?, ?]. In this article we model the multi-class
classification. We use a probabilistic modelling and latent variables to model the class-
conditional densities. A flexible modelling strategy is the use of random functions,

namely the stochastic Gaussian processes as latent variables associated to each class.
Received by the editors: 15.09.2005.

2000 Mathematics Subject Classification. 68T05,68T10.

Key words and phrases. machine learning, pattern recognition, graphical models, Gaussian processes.
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We present the general framework of modelling with latent variables (section
1), the models using Gaussian processes (sections 2,3) and the modelling of the multi-
class classification (section 4). The article ends with the discussion of further research

points worth to be carried out.

1.1. The Classification Problem. Let be given a set of data D = {(x;,¥;) : x; €
X,y € {1,...,C},i=1,...,n}sampled independently from an unknown distribution
P(x,y) our task is to build a classifier — a function x — y where y € {1,...,C} -
which produces a reasonably small generalization error i.e. for a given new input x,,
it gives a relatively good approximation for P(y.|x., D) where y, isin {1,...,C}.

The set D is usually called training set, the process of finding the model is
called training or learning process. In most cases there is also a set S called test
set on which we measure the performance of the model. We point out that x, may
be any point of the input space and the train—test method described above is just
a common technique and we attempt to solve a supervised learning problem — to
provide prediction for arbitrary input points x,— not a transductive one — to provide
predictions for a fixed set of input points.

It is desirable to build a classifier which produces low errors both on training
and test sets. A too low error on training set usually leads to weak prediction — high
error on the test set — performance since the model is fitted “too tight” to the training
data. This effect is known as over-fitting. Usually we expect that inputs close to each
other belong to the same class — the modelled classifier is smooth in some sense — so
it is plausible to penalize overly complex candidates which usually produce low errors

on the training set.

1.2. Probabilistic models and Bayesian inference. When building model for
data one usually postulates some structure for the hidden mechanism that supposedly
produced it — depending on the nature of the problem at hand. This assumption leads
to the introduction of hidden or latent variables — u from now on — and the assumption
that the outputs y and the inputs x are conditionally independent given u. There
may be various practical motivations for modelling with hidden variables like: it is
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easier to introduce smoothness criteria and it is easier to model P(y|u) and P(u|x)
independently than modelling the relation P(y|x) — the relation between x and y —

directly. This assumption can be written in the form:

Plylx) = / P(y]u) P(ulx)du.

One postulates the model by specifying the distributions P(y|u) and P(u|x).

The distribution P(y|u) is usually called noise distribution/model or random
component and it expresses our belief about how the hidden variables produce the
output y. There are two ways of defining the prior distribution P(u|x) of the hidden
variables: (1) in a parametric manner: u(x;w) is a parametric function and we place
some prior distribution P(w) on parameters w which usually have a low dimensionality
not depending on the cardinality of the data sets (2) in a non-parametric manner: we
place a prior P(u|x) directly on u(x). If u(-) is a Gaussian Process then it is specified
by its mean value and covariance function.

In some cases P(y|u) and P(u|x) depend on further parameters 6 called
hyperparameters, they control characteristics like parameters of the distribution P(w)
or parameters of functions which define u(-). Smoothness criteria — mentioned a few
paragraph earlier — may be expressed by the priors placed on u(-) or u(-;w) (a prior
on w) assigning low probability to models leading to overly complex functions. We
shall see later — sections 2.1 and 3.1 — how these probabilities control the smoothness
of the model.

In this text we are concerned with non-parametric models and in the following
we shall present how the Bayesian machinery — repeated application of Bayes’ rule
(see for example Sods [?]) in a hierarchy — can be put in work in such cases.

In order to make predictions one has to calculate the posterior probability of

the hidden variables at training input locations. Denoting them by u(Xp) we have:

P(u(Xp)|D) o< P(D|u(Xp))P(u(Xp))
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and using the assumption that y and = are conditionally independent w.r.t  one gets:
P(uJx., D) = / P(u,Ju(Xp)) P(u(Xp) | D)du(Xp). 1)

and
P(yelx.. D) = [ Plylu)Plufx.. D).

where we have denoted by x, the input location where the prediction needs to be
done, u, = u(x,) the value of the latent variable at this location and by y. the
predicted output variable.

When hyperparameters are involved, one uses a second level inference. One
has to weight the prediction distributions P(y.|x.,D,#) with the suitability of the
model with parameter 6. This suitability is usually measured by the posterior distri-

butions of 6:

P(0|D) o P(6)P(D|6) (2)

x p(e)/P(D|u(XD),e)P(u(XD)w)du(XD).

When the cardinality of the training data is sufficiently large, then P(6|D) is
highly peaked around its mode 6 .This means that the posterior is unimodal, therefore
it is a common practice to substitute it by 6“. This method is called mazimum
likelihood II and the prediction we obtain using this method is called mazimum a-
posteriori (MAP) approximation. Using the Bayesian approach one has to sum over

all possible parameters and gets:

PGl D) = [ Pl.lo.,0)POID®.
The process of learning is realized trough Bayesian estimations i.e. it means the
updating of model parameters from the priors P(8) to posteriors P(6]|D).

2. Modelling with Gaussian Processes

When modelling with Gaussian Processes (GPs) we place a Gaussian process
prior on the random function w, thus the hidden variable/function has the property
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that for any collection of possible different inputs X = {x},...,x],} C X the ran-

!

' )1 is a Gaussian random vector. The process

dom variable u(X) = (u(x}),...,u(x
is determined by its mean value function m(x) = E[u(x)] and covariance function
K(x.x") = E[(u(x) — m(x))(u(x') — m(x"))] which is a positive definite symmetric
function, thus ”producing” valid covariance matrices for any finite dimensional dis-
tribution.

Gaussian processes have long been studied in probability and statistics and
used for various problems in nonparametric estimation but they have been “rediscov-
ered” by the ML community only a decade ago when Neal [?], Williams and Ras-
mussen [?] showed that the output distribution of a simple two layer Bayesian Neural
Network with increasing number of hidden units converges to a Gaussian process.
Their nonparametric nature makes them relatively insensible to data dimensionality
and reasonably complex models can be built with a few number of hyperparameters
only. Being a nonparametric method smoothness conditions can be imposed by the
choice of covariance function as it was pointed out by Parzen [?] then later on by
Kimeldorf and Wahba [?], therefore Gaussian Processes are a tempting device for
attacking ML problems.

Let X with XsNXp = 0 be a set of test “locations” where estimations needs
to be done and let us denote Xp = {x1,...,x,} the set of training input locations
and u = u(Xp) = (u(x1),...,u(x,))’ the hidden variable vector at the training
input points.

Applying the Bayesian model presented above one gets:
P(u(Xs)|Xs, D) = /P(u(X5)|u)P(u|D)du.

For notational simplicity we shall use from now on the notation P(u.|D) for
P(u(Xs)|Xs, D), — whenever it is unambiguous — expressing that Xg is arbitrary
and that we do not consider modelling P(x). The process resulting form the finite
dimensional distributions P(u(Xs)|Xs, D) is called posterior predictive process and

we shall sometimes call it simply: posterior process.
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1. Gaussian process regression with Gaussian noise. The simplest proba-
bilistic model using Gaussian process as hidden function is the regression problem
with zero-mean Gaussian noise P(y|u) ~ N (y;u,0?), which has an analytically easily
tractable formalism. We assume that the “hidden function” is a Gaussian random
function having a priori zero mean and a covariance K. For notational simplicity
let us denote u; = u(x;), y = (v:)i, k(x) = (K(%,%;))si, ke = K(X4«,%4) and the
covariance matrix at training input locations K = (K(x;,x;)); ;. Employing again

the Bayesian formalism presented above one gets the posterior distribution
P(u|D) « H P(y;|u;) P
= N(K(’I+K) 'y, 0’0’1+ K) 'K)
and thus obtaining the predictive distribution:

P(u.|D) = /P(u*|u)P(u|D)du (3)

N (us k" () (K + 0”1 7y, ke — k7 () (K + 0?17 'k(x.)) . (4)

leading to a Gaussian predictive process u(-)|D with
Eu(lD] = K(x)(*1+K) "y
Cov[u(x),u(x)|D] = K(x,x') -k (x)(c*T+K) 'k(x').
We remark that denoting w = (02I+ K) ™'y — which is independent of x, — we have:

E[u(x)|D] = Zw, (x,%;).

Analyzing equation (5) we notice that the point-wise predictive variance is smaller
than the prior variance.

Using an arbitrary noise model — changing the noise distribution P(y;|u(x;))
— we might generalize this Gaussian process regression model but P(u(-)|D) is not
Gaussian anymore, not is the point-wise predictive distribution and posterior predic-
tive process. Using a fixed covariance function is not generally useful for practical
purposes, because it’s nature affects the “quality” of the approximation and predic-
tion we obtain. Since the posterior mean value is a linear combination of functions
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K (x,x;), choosing fast or slow decaying covariances may lead to poor approximations.
With parameterized covariance function we may get better control over the flexibility
of the functions/processes in issue. Due to ease in identifying its parameters role the

square exponential
1 ) )
K(s,t) = b+aexp(—§zi:v,-(s’ —t9)?%) (5)

is one of the most often used covariance functions in machine learning GP models.
Figure 2.1 shows how the choice of the so called scale parameters v; control the pos-
terior mean value. (We may use 6y = (log(b),log(a), (logv;);) as covariance function
parameter.)

Because P(6|D) is not a Gaussian, the predictive distribution given in equa-
tion (2) is not analytically tractable and instead, finding a M LII value or sampling
methods (ex. Markov Chain Monte Carlo, Hybrid Monte Carlo) — from P(6|D) -
must be employed for carrying out the integration numerically. Both of these may be

done by using the log-likelihood:
n n 2 L or 27— 1
log P(D|6) = -5 log(2m) — B log |[K + o°I| — 4 K+ D) y. (6)

The key of the relative ease in formalism of the regression problems is the
closeness property of the Gaussian distributions function regarding multiplication
and division. Gaussian likelihoods are able to model only a small proportion of real
word problems but Gaussian processes can model a large variety of functions — for
example the class of posterior mean value functions when a parametrized exponential
covariance is used — therefore it worths to keep the function class and develop methods

for a wider or arbitrary class of likelihoods, see Csato [?].

3. Approximate inference

As we have pointed out in the previous section non-Gaussian noise distribu-
tions are the ones which “break” the analytical tractability of the Bayesian model
for GPs. Taking account that in cases when the log-likelihood log P(D|u) is concave
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F1GURE 1. An illustration of overfitting and smooth fitting on noisy

data generated by the sinc function (left) as well as the GP regression

posterior mean and variance (right).

the posterior is unimodal it seems a good solution to approximate non-Gaussian pos-
teriors with Gaussian ones. In the followings we shall present a few variants of this

approach.

3.1. Binary classification using Laplace approximation. The main idea is to
transform the classification problem into a regression one and the interpret the ob-
tained results. Let y; € {0,1} and assume that if x; belongs to class Cy then y; = 0.
We model the problem in the following way: we shall transform the output i.e. the
process u to the interval [0, 1] with a suitable function o and we shall interpret o(u(x))
as P(x € C}) - the probability of x belonging to the class C; denoted by the 1 val-
ues of y;-s. We use the function o(z) = e*/(1 + e®), thus our goal is to approximate
P(o(u(x))|D) at a fixed point x. For notational simplicity we demote 7 (x) = o(u(x)).
To apply the Bayesian treatment presented in the previous section one must postulate
the corresponding conditional densities P(y;|u(x;)). Assuming m(x)-s are probability
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of success for the Bernoulli random variables y and the samples (x;,y;) are indepen-

dent:

P(DIw) = [T wlxi)" (1= wx) .

Since in this case the posterior process is not a Gaussian, Williams and Barber [?]
propose a Gaussian approximation for the posterior process. Using Laplace’s method
they approximate P(u(x4),u|D) by a Gaussian at it’s mode, then they marginalize
and obtain P(u(x.)|D) and so the last step remains the calculation of P(w(x.)|D).
Applying Bayes’ rule one gets:

log P(us,u|D) = logP(y|u;) + log P(uy) —log P(D).

n
= ylu- glog(l +e) — %quTK_T_lqu — %log K|+ ¢

where K is the extended — with k(x.) and K (x.,X.) — covariance matrix and u; is
the extended hidden variable at inputs xi,...,X,,X.. One may easily verify that at
the maximum — Vy, log P(uy|D) = 0 — we have (uy)maz = k? (x4) K™ tynqs where
U, = argmax, P(u|D).

Denoting by @|D the approximating Gaussian process of the posterior process
where approximation is understood in the sense presented above: Laplace’s method

— one gets:
u(x)|D ~ N (k" () K™ g0, K((x), (%)) = K (x) (I + WK) ™' Wk(x))

and we have used the notation W = —(VV7T),log P(D|u)|u=u,,.,
When parameterized covariance function is used we obtain the likelihood

approximation
1
log P(D|#) ~ log P(umaz|D) — 3 log | K™ + W (umnaz)| + c.

This can be used for sampling from P(6|D) to carry out the Bayesian averaging or
hyperparameter optimization.
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3.2. Expectation—propagation. When using non-Gaussian likelihoods the poste-
rior process is not Gaussian which makes the estimation of predictions analytically
intractable. The finite dimensional distributions of the posterior process may be writ-
ten similarly to equation (1), meaning that, in order to get a Gaussian posterior we
should approximate the non-Gaussian P(u|D) with a Gaussian @(u) and define the
Gaussian approximation of the posterior process defined by the finite dimensional

distributions
Qlu,) = / P (. u)Q(u)du

In section 3.1 Laplace approximation has been applied to approximate the posterior

process for the binary classification problem. Another plausible way to approximate

the posterior is to find the Gaussian which minimizes the K L distance (see for example

Cover and Thomas [?]) defined by

P(u|D)
Q(u)

pIP(iD) Q] = [ 1n | T PuiD)da

Because
D[P (ux, u|D)||Q(us, u)] = D[P(u|D)[|Q(u)]

and the minimization boils down to second and first order matching between P(u|D)
and Q(u), see Opper [?].

The Expectation Propagation (EP) method developed by Minka [?] proves
to be an efficient method for doing KL-type approximate inference in probabilistic
models using factorizing likelihoods, because the properties of KL distance endow EP
with a particularly important local property in cases when the factors depend only on
a few components of the hidden variable vector (a few number of hidden variables).

We shall present this method in the context of GP models. A complete
and general exposition is found in Minka [?]. The main idea of EP consists in a
novel interpretation of the Assumed Density Filtering (ADF) method. Supposing a
factorizing likelihood P(D|u) = [], ti(u) - t;(u) standing for P(y;/u) — and a prior
P(u), EP approximates the posterior P(u|D) by a distribution Q(u) = P(u) [, #;(u),
thus approximating each “component” of the likelihood — also called sites — by an
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“easy to handle” distributions — in our case low dimensional Gaussians. It does this
in the following way:
(1) the algorithm usually starts assuming Q(u) := P(u) thus setting #; := 1
(2) at each step a chosen — arbitrary or by other way — ¢;(u) is removed from
Q(u) resulting:
QV(w) ~ P(u) [T#(w)
J#i
(3) it infers P(u) ~ Q\'(u)t;(u) and
(4) approximates P(u) by Q"¢ (u) such that #;(u) ~ Q™ (u)/Q\(u) belongs
to the assumed family.
Following steps (2-4), EP updates the influence of site ¢;(u).The repetitions of these
steps lead to good approximations although convergence is not guaranteed.

Taking in consideration the closeness properties of the Gaussian family EP
seems a well suited method for approximating P(u|D) because we only have to choose
t;(u) and Q™" (u) as Gaussians densities to “make” this method “work”.

Now suppose t;—s depends only on a subset of parameters say I; C {1,...,n}
and let R; = {1,...,n}\I; — both ordered — then t;(u) = ¢;(ur,). When updating #;

one has

Plu) o QVi(uti(ur)
o8 Q\i(uRi|uIi)Q\i(uIi)ti(uIi)
o8 Q\i(uRi|uIi)p(uIi)

and has to minimize

N

D[P (uz)[|Q"" (ur,)]

By, piug) |DIQV (wn [ur)|Q"" (up, uy, )]

DIP(u)[|Q"" (w)]

As the minimum of the positive second term of the left hand side is 0 when
Q\'(ug,|us,) = Q" (ug,|uy,) and this puts no constraint criteria on the first term
the minimizations means finding the moments up to second order of P(uj) o
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Q\i(UIi)tu(UIi) leading to Q™% (u) = Q\i(uRi

proximation #;(u) = #;(uz,) o< Q" (uy,)/Q\ (uy,) depends on the same set of hidden

ur,)Q""(ur,) and so the site ap-

variables as its corresponding site. Now its is easy to show that Q™" (ug,|uy,) =

Q (uRi

uy,) and thus the update step has a local nature.

Assuming that Q(u) = N(u;h, A) the a approximation if the first two mo-
ments of ¢;(uz,)Q\!(uy,) cannot be done analytically and we employed Gauss-Hermite
quadrature method — see for example Coman [?]. Applying change of variables one can
factorize the weight function N (ur,;[h\{],,[A\]s.) in order to get a tractable quad-
rature formula. Let x and w be the d-th order Gauss-Hermite nodes and weights of
N(-;0,1) and ¢ an element of the Descartes product {1,...,d}’sl. Using a Cholesky
decomposition [A\]];, = LL”, and denoting m = [h\!];,, the approximation formula

for the normalization constant of ¢;(ur, )N (ur,;[h\];,,[A\],) is given by:
Zi o~ Z H w? t;(Lx, + m)
T j

and thus the approximation of first and second moments is straightforward. Unfor-
tunately this quadrature method scales exponentially in |I;| which makes is practical
only for very small values only.

Although we have used the minimization of the KL distance as approximation
method, in order to avoid calculation of moments we can use a “hybrid” method: to
do the last step of local approximation with a Laplace-type approximation which is

plausible if ¢;(uy,)Q\!(uy,) is strictly log-concave in uy,:

1
m ~ argmax, {log(ti(uji)) - 5(“& —m)fvi(uy, - m)}

<
1

(W + V‘l)f1

1 1 .
log Z; ~ log(t;(n)) — 5(ﬁa —m)'V (- m) - 5 log I+ WV|

where W = —(VV ), ti(ur;)uy,=m. The approximation can be done with a
Newton-Raphson method and it takes roughly O(]1;|?) time.
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4. An approach to multi-class problem

In the followings we present the extension of binary classification problem to
multiple classes. We use the representation of Barber and Williams [?] to build the
model.

In order to avoid dealing with a great number of data resulting from a multi-
output Gausssian process one can model the C-class case by choosing C' independent
priors and taking account only their posterior cross-correlations which is realized
trough the coupling(s) in the likelihood terms. In order to avoid confusions we settle
first some notational conventions: the subscript indexing is used for referring to input
locations while the upper indexing is be used for referring to class type indexing —
w; = (u},u?, ... uf) and ul® = (u§c),uéc), ... ,usf)), we use u = (u u®, ... ul®)
and the corresponding prior covariance matrix K = diag(K(®))..

As we have seen the two-class case, finding a likelihood term for finite number
of outputs is not an easy task and one of the easiest ways to solve the problem is
to turn it into a regression-like one. A multi-dimensional extension of the logistic
function, the softmax function 7(u) = exp(u)/17 exp(u) is used to model the class

probabilities. Modelling y; belonging to class ¢ by y; = e. one defines the likelihood:

P(ylu) =y (u).

The likelihood log P(y|u) is not strictly log-concave — due to 177 (u) = 1 it is strictly
log-concave only on {1}*. This could constitute a risk to the approximation in cases
when the local marginals of the likelihood approximations collapse or are close to it
since both of the approximations processes presented above — minimization of KL
distance and Laplace method — rely on this property.

In order to apply the EP procedure presented earlier we set the (site) likeli-
hood:

ti(w;) = P(yilwi) = (m(w;)).
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where ¢ is the nonzero element of y; and the use site approximations #;(u;) ~
N(u;;m;, V;). Using the notation V. = (diag(Vgs’t))i)t,s:me the Gaussian ap-
proximation of the posterior P(u|D) has the covariance K — K(K + V) 'K and

mean value (I + VK1)~ (m(9)),, thus the the prediction u, is normal with:

E[u,|D] KI(V+K) " (m!).

Cov|u.|D] diag (K(C) (X, x*)) “KT(V+K)K,

where we used the notation K. = diag (k' (x.))_. In order to calculate the in-

tractable P(y. = c|x., D) one has to apply once again numerical quadrature formulas.

5. Experiments

We implemented the two local approximation methods described in section 3.
We built upon the OGP toolboz developed by Csaté (see, [?]) which was implemented
based on Csaté and Opper [?] and is publicly available with full documentation. The
OGP toolboz provides a sparse approximation method for a variety of likelihoods —
user defined ones as well. This makes the toolbox easily applicable for artificial or real
world problems that employ Gaussian Process models. The Gauss-Hermite Quadra-
ture rule was ran using 7 nodes. Increasing its order did not lead to a significant
change in accuracy. In fact fewer nodes proved to be suitable, the reason for it might
be the good convergence properties of the Taylor expansion of the likelihood function.
Heuristics like employing the symmetry property of nodes and weights when using
Gauss-Hermite quadrature formulas — as it was pointed out by Seeger and Jordan [?]
— can be used but significant improvement in time-performance cannot be achieved
without further making use of the likelihood structure. However, factorizing likeli-
hood sites, or likelihoods that speed up the Gaussian quadrature routine might lead
to worse performance because of weak couplings in the variables of the likelihood.

The “local” Laplace method was implemented using Newton-Raphson

method for a = V~1(s — m) with the update equation

a™¥ = (I+ WV) " (WVa + 7(s) — e,)
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where we have used the notations from section 3. In each step we have used BiCG
(implemented in Matlab) to solve the linear system. The method takes around
O(nbicgnmcz) time where ny;cy and n,, are denoting the number of BiCG resp.
Newton-Raphson steps.

The plots on figure 5 show the error rates we achieved on a 3-class data set
using a spherical (the scaling parameters v; are equal) square exponential kernel from
equation 5. We implemented hard classification rules i.e. an item belongs to the class
which has the greatest probability — this was done in order to compare our results with
the benchmark 5NN classifier. For real world problems however, one could exploit the
multi-output probabilistic outputs returned by the system — the freedom of choice is
significantly more.

The basis for comparison was the 5NN rule. The data was generated in the
following way: we generated from 9 Gaussians with mean values chosen randomly
from [0, ...,10]* and labelled these randomly. The resulting data were preprocessed:
we whitened the data. We used 1000 samples splitting them in 1/2 train/test ratio.

Figure 5 shows hard-classification boundaries on a data set of 250 examples.

6. Conclusions/Further research

The presented methods outperformed 5NN in cases when the scaling param-
eters did not have extreme values. We aim to further develop and implement hyper-
parameter optimization methods, as well as approximations for posterior probabilities
to be used with Markov Chain Monte Carlo, Hybrid Monte Carlo type methods for a
“complete” Bayesian inference like in section 1 to integrate out the posterior process
and the hyperparameters from the model. Our interest in developing further local

approximation methods is still active.
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F1GURE 2. Hard classification discriminant curves for a 3-class case
with 250 samples.
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F1GURE 3. Performance of a multi-class GP methods with spherical

square exponential kernel on data set with 3 classes.
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DATA DEPENDENCE FOR SOME INTEGRAL EQUATIONS VIA
WEAKLY PICARD OPERATORS

ION MARIAN OLARU

Abstract. In this paper we study data dependence for the following inte-

gral equation:

x1

u(z) = h(z,u(0)) + / oo | K(z,8,u(0181, - ,0msm))ds,

x € ITI[O7 bi],0; € (0,1), (V)i=1,m

i=1

by using ¢c-WPOs.

1. Introduction

Let (X, d) be a metric space and A : X — X an operator. We shall use the
following notations:
Fy:={z € X | A(x) = z} the fixed points set of A.
I(A) :={Y € P(X) | A(Y) C Y} the family of the nonempty invariant subsets of A.
Al = Ao A" A" =1x, Al = A neN.

Definition 1.1. [1] An operator A is weakly Picard operator (WPO) if the sequence
(A™(2))nen

converges, for all x € X and the limit (which depend on z ) is a fized point of A.

Definition 1.2. [1] If the operator A is WPO and Fa = {x*} then by definition A
18 Picard operator.
Received by the editors: 10.09.2005.
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Definition 1.3. [1] If A is WPO, then we consider the operator

A® X — X, A%®(x) = lim A"(x).

We remark that A®(X) = Fjy.

Definition 1.4. [1] Let be A an WPO and ¢ > 0. The operator A is c-WPO if
d(z, A®(z)) < c-d(z, A(x)).

We have the following characterization of the WPOs:

Theorem 1.1. [1]Let (X,d) be a metric space and A : X — X an operator. The
operator A is WPO (c-WPO) if and only if there exists a partition of X,

X = U X,
A€eA

such that

(a) Xy €I(4)
(b) A| Xy : Xx— X is a Picard (c-Picard) operator, for all A € A.

For the class of c-WPOs we have the following data dependence result:

Theorem 1.2. [1] Let (X,d) be a metric space and A; : X — X,i = 1,2 operators.
We suppose that:

(i) the operator A; is ¢; — WPO, i =1,2.
(i) there exists n > 0 such that

d(Ai(z), A2(z)) < n, (V)z € X.
Then
H(Fy,,Fa,) <nmazx{c,ca}.

Here stands for Hausdorff-Pompeiu functional.

We have:
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Lemma 1.1. [1], [3] Let (X,d, <) be an ordered metric space and A : X — X an
operator such that:

a) A is monotone increasing.

b) A is WPO.

Then the operator A is monotone increasing.

Lemma 1.2. [1], [3] Let (X,d, <) be an ordered metric space and A,B,C : X — X
such that :

(i) A<B<C.

(i) the operators A,B,C are WPOs.

(iii) the operator B is monotone increasing.

Then

x<y<z= A¥(z) < B*¥(y) < C*®(z2).

2. Main results

Data dependence for functional integral equations was studied [1], [2], [3]. In

what follows we consider the integral equation

T

u(:E) = h(x,u(O)) +/ K(xa87u(9137"' 79ms))ds7 (1)
0 0

where

m

e [J0.b:],6; € (0,1), (V)i = T,m.

=1

We denote D = [][0,b,] .
i=1
Theorem 2.1. We suppose that:
(i) he C(D x R) and K € C(D x D x R).
(ii) h(0,a) = o, (V) € R.
(i) there exists Ly > 0 such that

m

| K (z,s,u1) — K(x,s,u2)| < Li|u; — usl,
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forallz,s € D and wuy,us € R.

In these conditions the equation (1) has in C(D) an infinity of solutions.
Moreover if

(iv) h(zx,-) and K(z,s,-) are monotone increasing for all x,s € D

then if u and v are solutions of the equation (1) such that u(0) < v(0) we have u < v.

Proof. Consider the operator

A (CD), [-g) = (D), -l )

A(u)(z) := h(z,u(0)) + / . / K(x,s,u(f18, -+ ,0ms))ds.
0 0

H e
— i=1
ere ||u|| g I;leal))(\u(xﬂe .

Let A € Rand Xy = {u € C(D) | u(0) = A}. Then
C(D) = U X,.
AER
is a partition of C(D) and X € I(A), for all A € R.

For all u,v € X, we have have

A@w) (@) - Aw)(@)] < — KT A"

= 7m0y O,

u—1p.

So the restriction of the operator A on X is a c-Picard operator with ¢ = (1 —
Lk Lk
Ty O Ty O

If u € R then we denote by u the constant operator

)=, for a suitable choices of 7 such that <L

i:C(D) — C(D)

defined by

u(t) = u.

If u,v € C(D) are the solutions of ( 1) with u(0) < v(0) then u/(\d) €

Xu(0),v(0) € Xy(0)-
102



DATA DEPENDENCE FOR SOME INTEGRAL EQUATIONS VIA WEAKLY PICARD OPERATORS

By lema 1.1 we have that

u(0) < v(0) = A®(u(0)) < A°(v(0)).

But
u=A%(u(0)), v = A (0(0)).
So, u < v.
Theorem 2.2. Let h; € C(D x R) and K; € C(D x D x R), i = 1,3 satisfy the
conditions (i), (i), (iii) from the Theorem 2.1. We suppose that
(a) hao(z,-) and Ka(z,s,-) are monotone increasing, for all x,s € D.
(b) hi < hs < hg and K; < Ky < K3.

Let u; be a solution of the equation (1) corresponding to h; and K.
Then

u1(0) < ug(0) < wug(0) imply uy < up < us.
Proof. The proof follows from Lemma 1.2.

For studding of data dependence we consider the following equations:

Tm,

u(x) = hq(z,u(0)) + / e / Ki(x,s,u(0151, ,0msm))ds (2)
0

o

T

u(x) = ho(z,u(0)) + / e / Ko(x,s,u(0151, ,0msm))ds (3)
0 0

Theorem 2.3. We consider (2), (3) under the following conditions:
(i) hi € C(D x R) and K; € C(D x D x R), i =1, 2.

(i1) hi(0,a) = a,(V)ae R ,i=1,2.

(i) there exists Ly, >0 ,i=1,2 such that

‘Ki(‘rﬂsvul) - Ki(xa57u2)| < LKi‘ul — U2|, 1= 1572
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for all x,s € D and uy,us € R.
() (I)m1,m2 > 0 such that

|h1($,u> - hZ(xau)l S m,

|K1(3}7$,U) - KQ(J:? Sau)| < 12,

(V)x,s € D,u € R.
If S1, S are the solutions sets of the equations (2), (3), then we have:

i 1
H(51,52)§(771+772Hbi)max{LK }7
1 bxi

i—1 1=1,2

Lk,
fO?"T>IHaX{m K}
61 -

i=1,2 <O,
Proof. We consider the following operators:

A (CD), |- lB) = (C(D), |- 18)),

Awu(o) = a0 + [+ [ Kilos,ulOus, o 0,9)ds. i = T2
0 0

From:

| Ax(u)(x) = Az(u)(2)] < b1 (2, u(0)) — ha(z,u(0))[+

Tl Tm
/~~/||K1(x,s,u(915~9ms))fKg(z,s,u(915,~~9ms))||ds§
0 0

m
<nm+n H b;.
i=1

m

we have that ||[A(u) — A@)|lg <m +n2 ] bi

i=1
Like in the proof of Theorem 1.2 we obtain that the operators A;,7 = 1,2 are
L, -1 T

From this and by Theorem 1.2. we have conclusion.
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CYCLIC REPRESENTATIONS AND PERIODIC POINTS

GABRIELA PETRUSEL

Abstract. The purpose of this note is to give some existence results of
periodic points for some classes of single-valued operators. The fixed point
structures technique and an abstract periodic point lemma given by I. A.

Rus are used.

1. Introduction

Throughout this paper, we will use the notations and terminologies in [4], [5].

Let (X,d) be a metric space and f : X — X an operator. By Fy := {z €
X| x = f(x)} we will denote the fixed point set of the operator f.

We will also use the following symbols:

P(X) :={Y C X|Y # 0}, Py(X) :={Y € P(X)| Y is closed}, P.,(X) :=
{Y € P(X)| Y is compact} and P,(X) :={Y € P(X)| Y is bounded }.

Let X,Y be nonempty sets. We will denote by M(X,Y") the set of all single-
valued operators from f: X — Y. If X =Y then M(Y) := M(Y,Y).

Definition 1.1. Let X be a nonempty set. By definition (see [4]), the triple
(X,S5(X), M) is a fixed point structure (briefly f. p. s.) if:
(i) S(X) c P(X),S(X) #0

(i) M : P(X) — U M(Y) is a selection operator, such that if Z C
YeP(X)
Y,Z # 0 then M(Z) > {f,|f € M(Y),Z € I(f)}

(iii) for each Y € S(X) and f € M(Y) we have that Fy # 0.

Received by the editors: 12.09.2005.
2000 Mathematics Subject Classification. 47H10, 54H25.
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Definition 1.2. (I. A. Rus [5]) Let X be a nonempty set and f : X — X

an operator. By definition, X = U X; (where X; C X, for each i € {1,2,--- ,m})
i=1
is a cyclic representation of X with respect to f if f(X1) C X, -+, f(Xm-1) C

X, [(Xm) C X1.

In [3], W. A. Kirk, P. S. Srinivasan, P. Veeramani proved some fixed point
theorems for single-valued operators satisfying some cyclical contractive assumptions.
Then, I. A. Rus generalize these results in terms of the fixed point structures (see [5]).

Also, in Rus [5], the following periodic points lemma is given:

Lemma 1.3. Let (X,S(X),M) be a fizred point structure, where X is a
nonempty set. Let A; € P(X), for each i € {1,2,--- ,m}. Denote Y := 6 A; and
consider f:Y — Y.mSuppose that: =

(1) Y := U A; is a cyclic representation of Y with respect to f;
(i) A; GZEEX) for some i € {1,2,--- ,m};
(1) g1,92 € M(Y) implies g1 0 g3 € M(Y').

Then Fym # 0.

The purpose of this paper is to give some applications of the previous lemma.

2. Periodic points for Knaster-Tarski type operators

Let (X, <) be an ordered set,
S(X) :={Y € P(X)|(Y, <) is a complete latice} and
M) :={f:Y — Y| {isincreasing }. Then (X,S(X),M) is a f. p. s. (Knaster-
Tarski, see [1]).

Then, by applying Lemma 1.3., one obtains:

Theorem 2.1. Let (X,<) be an ordered set, A; € P(X), for i €
{1,2,--- ,m}, such that there isig € {1,2,--- ,m} with A;, a complete lattice. Denote

Y = U A; and consider f:Y — Y. Suppose that:
i=1

m
(1) Y := U A; is a cyclic representation of Y with respect to f;
i=1
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(i) f(z1) < f(z2), for each 1 € A; and each zo € Aj41, (i €
{1,2,--+ ,m}) with 1 < zo (where Apy1 = A1).
Then Fgm # 0.
Proof. Let us remark that the fixed point structure of Knaster-Tarski satis-

fies the conditions (i)-(iii) in Lemma 1.3. O

3. Periodic points for generalized contractions

Let (X,d) be a complete metric space. Then the operator f : X — X is
called a ¢-contraction if there exists a comparison function ¢ (i. e. ¢ : Ry — Ry is

non-decreasing and (¢"(t))nen — 0, as n — 400, for each ¢ > 0) such that
d(f(z1), f(z2)) < w(d(z1,z2)), for all 1,29 € X.

If we consider S(X) := P, (X) and one define
M) :={f:Y — Y|exists a comparison function ¢ such that f is a p-contraction},
then (X,S(X), M) is a f. p. s. (see Rus [4])).

The following result follow now from Lemma 1. 3.

Theorem 3.1. Let (X,d) be a complete metric space, A; € P(X), fori €
{771172, -+ ,m}, such that there is ig € {1,2,--- ,m} with A;, € P;(X). Denote Y :=

U A; and consider f:Y — Y. Suppose that:
i=1
m
(1) Y := U A; is a cyclic representation of Y with respect to f;

i=1
(ii) there exists a comparison function ¢ such that

d(f(z1), f(z2)) < @(d(x1,72)), for all xy € Aj, and vy € Ajyq,i € {1,2,--- ,m},

where Ap41 = Aj.

Then Fym # 0.

Proof. Let g1,92 € M(Y). It follows that there exist the comparison func-
tions 1, w2 such that g; is a p;-contraction, for ¢ € {1,2}. Since the composition of
two comparison functions is a comparison function, it follows immediately that the
condition (iii) in Lemma 1.3. holds. OJ
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4. Periodic points for contractive operators

Let (X,d) be a metric space. Then the operator f : X — X is called
contractive if d(f(z1), f(x2)) < d(z1,22), for all 1,20 € X, 21 # xo. If S(X) :=
Py(X)and M(Y) :={f : Y — Y| {is contractive }. If (X,d) is a compact metric
space, then (X, S(X), M) is a f. p. s. (Nemytzki-Edelstein, see [4])).

From Lemma 1.3. we have:

Theorem 3.1. Let (X,d) be a compact metric space, A; € P(X), fori €
{nll,Q, -+ ,m}, such that there is ig € {1,2,--- ,m} with A;, € Py(X). Denote Y :=

U A; and consider f:Y — Y. Suppose that:
i=1

(i)Y = 6 A; is a cyclic representation of Y with respect to f;
(i) d(f(;:?)l,f(a:g)) < d(x1,2), for each x1 € A;, and x93 € Ajt1,
with 1 # xo, fori € {1,2,--- ,;m}, where A1 = Aj.
Then Fym # 0.
Proof. Let g,h be contractive operators. Then, for any two elements 1, zo
from X, with x; # x2, we have: d((g o h)(z1),(g o h)(z2)) < d(h(z1),h(x2)) <

d(x1,22). hence all the conditions of Lemma 1.3. are satisfy. O

5. Periodic points for nonexpansive operators

Let (X, d) be an uniformly convex Banach space. Then the operator f : X —
X is called nonexpansive if d(f (1), f(z2)) < d(x1,z2), for all 1,25 € X. If S(X) :=
Py ciev(X) and M(Y) := {f : Y — Y| { is nonexpansive }. Then (X, S(X),M) is a
f. p. s.(Browder - Ghéde - Kirk, see [1], [2]).

For nonexpansive operators we have:

Theorem 4.1. Let X be an uniformly convex Banach space, A; € P(X), for
i €{L,2,---,m}, such that there is ig € {1,2,--- ,m} with A,y € Py c1,c0(X). Denote

Y = U A; and consider f:Y — Y. Suppose that:
i=1

m
(1) Y := U A; is a cyclic representation of Y with respect to f;
i=1
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(i) d(f(z1), f(x2)) < d(z1,22), for each x1 € A;, and o € Aiqq, fori €
{1,2,--- ,m}, where Api1 = A;.
Then Fpm # 0.
Proof. Since the composition of two nonexpansive operators is a nonexpan-
sive operator, we remark that the condition (iii) in Lemma 1.3 holds. The conclusion

follows now by Lemma 1.3. [J

6. Periodic points for Perov type operators

Let (X,d) be a generalized metric space, in the sense that d(z,y) € RF.
The operator f : X — X is called a Perov type contraction (or S-contraction)
it S € Mpp(R), with S® — 0, as n — 400, such that d(f(z1), f(z2)) <
S - d(z1,x2)), for all 1,22 € X. If S(X) := Py(X) and M(Y) = {f : ¥ —
Y| fis a Perov contraction }. Then (X, S(X),M) is a f. p. s. (Perov, see [4])).

In the setting of the Perov’s f. p. s., Lemma 1. 3. gives us:

Theorem 5. 1. Let (X,d) be a complete generalized metric space, A; €
P(X), fori En{ll,27~-~ ,m}, such that there is ig € {1,2,--- ,m} with A;, € Py(X).

Denote Y := U A; and consider f:Y — Y. Suppose that:
i=1

m
(1) Y := U A; is a cyclic representation of Y with respect to f;
i=1
(i) There exists a matriv S € Mpp(R), with S™ — 0, as n — 400

such that d(f(x1), f(z2)) < S -d(xz1,x2), for each v1 € A;, and xo € A;jyq, fori €
{1,2,--+,m}, where Api1 = A;.
Then Fym # 0.
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