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STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume L, Number 4, December 2005

ON BASIC FUZZY KOROVKIN THEORY

GEORGE A. ANASTASSIOU

Abstract. We prove the basic fuzzy Korovkin theorem via a fuzzy Shisha—
Mond inequality given here. This determines the degree of convergence
with rates of a sequence of fuzzy positive linear operators to the fuzzy unit
operator. The surprising fact is that only the real case Korovkin assump-
tions are enough for the validity of the fuzzy Korovkin theorem, along with
a natural realization condition fulfilled by the sequence of fuzzy positive
linear operators. The last condition is fulfilled by almost all operators

defined via fuzzy summation or fuzzy integration.

0. Introduction

Motivation for this work are the references [1], [2], [5], [6]. Our results Theo-
rems 3 and 4 are simple, basic and very general, directly transferring the real case of
the convergence with rates of positive linear operators to the unit, to the fuzzy one.
The same real assumptions are kept here in the fuzzy setting, and they are the only
assumptions we make along with the very natural and general realization condition
(1). Condition (1) is fulfilled by almost all example — fuzzy positive operators, that
is, by most fuzzy summation and fuzzy integration operators. At each step of our
work we provide an example to justify our method. To the best of our knowledge our

theorems are the first general fuzzy Korovkin type results.

1. Background

We start with
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Definition 1 (see [8]). Let u: R — [0, 1] with the following properties:

(i) is normal, i.e., Jxg € R; p(zg) = 1.
(i) pAx + (1 —Ny) > min{u(x), u(y)}, Vz,y € R, VA € [0,1] (u is called a
convex fuzzy subset).
(iii) p is upper semicontinuous on R, i.e., Vxg € R and Ve > 0, 3 neighborhood
V(zo): u(z) < p(xo) +e, Vo € V().
(iv) The set supp(p) is compact in R (where supp(p) := {z € R; u(z) > 0}).

We call v a fuzzy real number. Denote the set of all p with Rz.
E.g., X} € Ry, for any zg € R, where X7,y is the characteristic function
at xg.

For 0 < r <1 and u € Re define [u]" := {z € R: pu(z) > r} and

[1]° :={x € R: u(x) > 0}.

Then it is well known [3] that for each r € [0,1], [1]" is a closed and bounded interval
of R. For u,v € Ry and A € R, we define uniquely the sum u @ v and the product
A©u by

[udv]” =[u"+[v]", Aou]"=Au|", Vr € [0,1],

where [u]” + [v]" means the usual addition of two intervals (as subsets of R) and A\[u]"
means the usual product between a scalar and a subset of R (see, e.g., [4]). Notice
lou=wanditholdsu@®v =v®u, A\Qu=u®A If0<r <ry <1 then
[u]™2 C [u]™. Actually [u]" = [u(j),ug)], where ") < ugf), u”, uE:) eR, Vre[0,1].

We denote u 2 v iff u(f) < v(j) and ugf) < UE:), all r € [0,1]. Define

D:Rr xRr — R,

D(u,v) = sup max{fu” — o], [ul’ — o]},
rel0,1]
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where [v]" = [vg),vg)]; u,v € Rr. We have that D is a metric on Rz. Then (Rgz, D)

is a complete metric space, see 7], with the properties
Dudw,vdw) = D(u,v), Yu,v,wée€Rg,
Dkou,kov) = |k|D(u,v), Yu,veRg, VkeR,
Dudv,wde) < D(u,w)+ D(v,e), Yu,v,w,e€ Rg.

Let f,g: [a,b] — R, [a,b] C R, be fuzzy real number valued functions. The distance
between f, g is defined by
D*(f,9) = sup D(f(z),g(x)).
z€la,b]
Here Y * stands for the fuzzy summation.

We use the following

Definition 2. Let f: [a,b] — Rx be a fuzzy real number valued function. We define

the (first) fuzzy modulus of continuity of f by

W (f,6) == o D(f(e). ),
\ﬂ;—ylaéé

any 0 < § <b—a.

Definition 3. Let f: [a,b] C R — Rz. We say that f is fuzzy continuous at xq € [a, ]
iff whenever x,, — x¢, then D(f(x,), f(xg)) — 0, as n — oo, n € N. We call f fuzzy
continuous iff it is fuzzy continuous Va € [a,b] and we denote the space of fuzzy
continuous functions by Cz([a,d]).

The space C=([a,b]) is only a cone and not a vector space, however any finite
linear combination of its elements with scalars in R belongs there.

Denote [f]" = [fir), Y)] and we mean
[f@)] = [ (@), 7 @)], Vzela,b], alrelo,1].

Let f,g € Cx([a,b]) we say that f is fuzzy larger than g pointwise and we denote
it by f % g iff f(z) £ g(@) if £ (2) 2 g7 (2) and £ (2) 2 ¢ (@), Vo € [a,0],
vre (0,1, iff £ > ¢, £ > g e e [0,1).
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Let L be a map from Cx([a,b]) into itself, we call it a fuzzy linear operator
iff
Lt ® fi®ea® fo) =1 © L(f1) ® c2 © L(f2),
for any ¢1,c2 € R, f1, fo € Cx([a,b]). We say that L is a fuzzy positive linear operator
iff for f,9 € C([a,b]) with f % g we get L(f) X L(g) iff (L(f))" = (L(9))"” and
(L(f))(f) > (L(g))(f) on [a,b] for all r € [0, 1].

Example 1. Let f € Cx([0,1]), we define the fuzzy Bernstein operator
BEON) @)=Y (Z)xk(l —2)" ko f (i) , Vze0,1], neN.

k=0

This is a fuzzy positive linear operator.

We mention the very interesting with rates approximation motivating this

work.

Theorem 1 (see p. 642, [2], S. Gal). If f € C#([0,1]), then

3

1
D*(BS(f), f) < 5“’@ (f, \/ﬁ) . VneN

i.e.

lim D*(B(f), f) =0,

n—oo

that is B,(f)f — f, n— 00 in fuzzy uniform convergence.

The last fact comes by the property that w%f)( f,0) — 0 as 6 — 0, whenever

f € Cx([a,b]).
We need to use

Theorem 2 (Shisha and Mond (1968), [6]). Let [a,b] C R. Let (Ly)nen be a sequence
of positive linear operators from C([a,b]) into itself. Forn =1,2,..., suppose L, (1)
is bounded. Let f € C([a,b]). Then forn=1,2,..., we have

||Enf - f”oo < HfHOOHi’nI - 1”00 + Hf’n(l) + 1H<>Owl(f7 Mn)?

where wy is the standard real modulus of continuity and

i = ||(Zn((t = &) (@)]| 22,
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and || - ||eo stands for the sup-norm over [a,b]. In particular, if L,,(1) =1 then

”-Z/nf - f”oo < 2W1(f7 Mn)-

Note. One can easily see ([6]), for n =1,2,...,
pn < N(Ln () (@) = 22|+ 2¢[| (Lo () (2) = 2| o + E(La(D)(2) =1,

where ¢ := max(|al, |b|).

Assuming that L, (1) == 1, Ly, (id) —= id, L, (id?) — id? (id is the identity
map), n — o0, uniformly, then from Theorem 2’s main inequality we get f/n( f) =% f,
Vf € C(la,b]), that is the famous Korovkin theorem (see [5]) in the real case.

We finally need

Lemma 1. Let f € Cx([a,b]), [a,b] CR. Then it holds
wgf)(f, 5) = Sl[lopl] max{wl(fg),5),w1(f$),(5)},
rel0,

forany 0 <6 <b—a.

Proof. Let x,y € [a,b]: |x —y| <, 0 < < b—a. Then we have

D(f(x), f(y)) = sup max{|(f()" — (Fu)VLIFE@)D ~ FunD1}

ref0,1]

< sup max{wl(fg),5),w1(fg),6)}.
rel0,1]
Thus
WA7(£.0) < sup max{ur(77,8).n (77, 0)}.
rel0,1
For any r € [0,1] and any z,y € [a,b]: |x — y| < J we see that

W (1,8) = D(f(@), f() = |(F@) D = FoN D] | (F)E = (Fu)]-

Therefore
wi(7,8) <wi7(f,9), ¥relo)
Hence
SI%)p1 max{wl(fy),5),w1(f5:),5)} < wg}—)(f, 3),
proving the claim. - g
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Note. For f € Cx([a,b]) we get that f is fuzzy bounded and w%f) (f,0) is finite for
all0 < § <b—a. Also fir) are continuous on [a,b] and wl(fﬂ(tr), d) are finite too, all
r e [0,1].

2. Main Results

We present the fuzzy analog of Shisha—Mond inequality of Theorem 2.

Theorem 3. Let {L,}nen be a sequence of fuzzy positive linear operators from
Cr([a,b]) into itself, [a,b] C R. We assume that there exists a corresponding se-

quence {Ly ynen of positive linear operators from C([a,b)) into itself with the property

(La(1)]) = La(), (1)

respectively, Vr € [0,1], Vf € Cz([a,b]). We assume that {L,(1)}nen is bounded.

Then for n € N we have
D*(Lnf, ) < I Lnd = o D* (£,6) + [ En(1) + oo™ (£, 1), (2)

where
i = (| Lal(t — ) @) )", 3)

Vf € Cx(la,b]), 6 := Xo) the neutral element for &. If L,1=1,n¢eN, then

D*(Lnf, £) < 207 (f, ). (4)

Note. The fuzzy Bernstein operators BY) and the real corresponding ones B,, acting

on Cx([0,1]) and C([0,1]), respectively, fulfill assumption (1).

We present now the Fuzzy Korovkin Theorem.

Theorem 4. Let {L,}nen be a sequence of fuzzy positive linear operators from
Cr([a,b]) into itself, [a,b] C R. We assume that there exists a corresponding se-

quence { Ly }nen of positive linear operators from C([a, b)) into itself with the property

(La()Y = La(£2), (1)
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respectively, Vr € [0,1], Vf € Cx([a,b]). Furthermore assume that

L,(1) =51, Ly(id) = id, Ly (id%) = id?,
as n — oo, uniformly. Then

D*(L,f,f) — 0, as n — oo,

for any f € Cx([a,b]), i.e. Lyf o, f, that is L, — I unit operator in the fuzzy

SENSE, as N — OQO.

Proof. Use of (2), property of (3), etc. O
Example for Theorem 4 the fuzzy Bernstein operators By(f).

Proof of Theorem 3. We would like to estimate

D*(Lnfv f) = sup D((Lnf)($),f($))

z€[a,b]
= sup sup max{|(L,f)"(z) = (N @] 1Luf)T (@) — (HT (@)}
z€la,b] r€[0,1]

= sup sup max{|L,(f(x) = (N (@), |La(f) () — (HT (@)}

z€[a,b] re(0,1]

= sup max{[|Lnf" — F oo, [1n S = £ )00}
r€(0,1]

(by Theorem 2)

< s?p]max{<||f£”||oo||in1—1||oo+Hinm+1\|oow1<f@,un>),

rel0,1

(oo 1 BT = Uloo + 1 En (1) + 1laowr (F7, 1)) }
< Lnl = oo sup max (|| oo, 1757100
rel0,1]
1 Ln(1) + 1] up. maxc{wi (£, mn)y w01 (£, pin) }
re|0,
(by Lemma 1)
~ * - ~ f
= [|Lnl = 1aD*(f,3) + [|Ln(1) + U] oo (£, 1),
proving (2). O
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Application 1. Let f € Cx([0,1]) then by applying (2) we obtain

«(n(F (F) 1
D(B;z )faf)§2wl <f7m>7 Vn € N. (5)
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SOME EXTENSION OF BIVARIATE TENSOR-PRODUCT
FORMULA

MARIUS BIROU

Abstract. In this article we construct bivariate approximation formulas
with scattered data by extensions of bivariate tensor-product Lagrange
formula, using spline univariate operators. The graphs of approximation

functions are given.

Let D C R? be an arbitrary domain, f a real-valued function defined on D,
Z ={z| zi = (zi,yi), i = 1,N} C D and I(f) = {\ef| k =1,...,N} a set of
informations about f (evaluations of f and of certain of its derivatives at z1,...,2zn).
A general interpolation problem is: for a given function f find a function g

that interpolates the data I(f) i.e.
)\kf:)‘kga kZI,N

Starting from bivariate Lagrange formula for the rectangular grid II =

{zo,- .y Tm} X {Y0,. -, Yn}:

m n

_ u(a) o .
Fe0) = 2 2 o agula Gy = i) o)+ e $e)

i—0 j—0
where
(Rmnf)('ray) = u(m)[x;%; s Tmg f(:y)] + Z %[%ym <o Yn; f(mza )]

with u(z) = (x — o) ... (x — zy) and v(y) = (y — yo)---(y — yn), there are two

generalizations.

Received by the editors: 10.10.2005.
2000 Mathematics Subject Classification. 41A05, 41A15, 65D05.
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A first generalization of the formula (1) was given by J.F. Steffensen [7]:

> W) )
,2;] 7 ( i) (y — y;)v ;(yj)f(”"”“yJH(Rm,mf)( ) (2)

where

(Rmﬂh'f)(ma y) :’U,(.CL‘)[.CL’, Loy- s Tm; f(; y)] + Z (mu—(ma.?)slu(’y(l'z)

i=0

[y7y07 v 7ynmf(mza )]

with
vi(y) = (W = yo) - (¥ = Yn,)-
The interpolation grid here is I} = {(z;,y;)| i = 0,m, j =0,n;}.
A second generalization of the Lagrange interpolation formula (1), that is

also an extension of the Steffensen formula (2) was given by D.D. Stancu [5]:

ZZ— 2 Gyl o) Ema D))

where

(B 1)) = @)t 2 S 2y i i 2,
=0 ‘ ‘

with v;(y) = (y — yio) - - - (Y — Yin,) and the interpolation grid

Iy = {(zi,yi;)| i = 0,m, j=0,n;}.

Remark. 1. The Steffensen formula (2) does not solve the general interpolation
problem, Iy is only a particular case of the interpolatory set {z,...,zn}.. Formula
(3) is really a solution of the considered general problem. Indeed, let X\, C Z be the set
of nodes (zi,y;), i = 1, N with the same abscises xy, i.e. Xy = {(zr,yr;)| j = 0,nk}
forall k =0,1,...,m. We have X; # X; fori # j and Z = Xo U --- U X;,,. Thus
I, = Z. The set {xo,...,x,} is obtained by projection of nodes set Z on Oz azis.

If L7 is the Lagrange’s operator for the interpolates nodes xy,..., 2z, and
LY i = 0,m are the Lagrange’s operators for the nodes y;o, ..., yin, respectively,

n;?

then we have
f=Lnf+R.f (4)
12
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with N
(L f)(,y) Z TR ml)f(fcuy)
and -
f(@i, ) = (L3, ) (@i,) + (BY, f)(z,+), 1=0,m (5)
with

S vi(y)
(L, F)(zi,y) = (@i, yij).
]2::0 (v — vij)vi(yij) !

If the remainder terms are written with the divided differences, from (4) and
(5) follows formula (3).

If we make the projection of nodes set Z on Oy axis(see [4],[8]), we consider
the Lagrange’s operator LY which interpolates the nodes yo,...,yn and Lagrange’s
operators Ly, , 1 = 0,n which interpolate the nodes g, ..., Zin,. In the first level of

approximation we use the approximation formula

f=Laf+ Ry f (6)
with
(LY f)(z,y) = f(z,yi
ZZ (y —ya)v'( y) ()
where v(y) = (y —yo) - - - (y — yn)- For every f(z,v;), ¢ = 0,n we use in a second level

of approximation the following formulas

3

with

mi
ui()
L ) =S —@ .
where u;(z) = (x —io) . .. (T — Tim, ). We obtain the following approximation formula

ZZ YW ) + Bl ery) (©)

= i=o Jj’ — a?” 33'2]) (y - yi)vl(yi)

where

n

(Rmi7nf)(ﬂ7;y)zv(y)[y;y0; . 7yna ZT,- +Z

i=

y yz yz) [ma-rz'Ow":mimi;f(';y)]

13
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Then interpolation grid of formula (8) is

I3 = {(zij,:)| i = 0,n, j =0,m;}.

Remark. 2. Formula (8) is also a solution of the considered general problem. Indeed,
let Y, C Z be the set of nodes (z;,y;), i = 1,N with the same ordinates yy, i.e.
Vi = {(zkj,uk)| j = 0,mi} for all k = 0,1,....,n. We have Y; # Y} fori # j and
Z =YpU---UY,,.Thus II3 = Z. The set {yo,...,yn} is obtained by projection of nodes

set Z on Oy axis.

We denote

j=0 (z — i)' (z;) (y — yz‘j)’l}l(yij)f(mz’yzﬂ)‘ (9)

(P Dy =Y

=0 j
and _
py _ - u;(z) v(y) s 10
) == @ zig)ui(zig) (y — yz’)vl(yi)f(m 5 v (10)
The interpolation formula generated by the mean of operators P* and PV is
fla,y) = (PY f)(z,y) + (RM f)(z,y) (11)
where
and

(B nf)(@,y) + (B, f)(2,9)
2

(RM f)(z,y) =
The interpolation set of PM is also Z.

Remark. 3. Usually the degree m of the operator LT is more greater than the
largest degree of LY i.e. m > max{nog,...,nm} and degree n of the operator LY is
more greater than the largest degree of L, i.e. n > max{my,...,m,}, which imply
a large computational complexity of the polynomials interpolation (P* f)(x,y) and
(PYf)(z,y). From this reason and the another ones, in [1],[2] instead of Lagrange
polynomial operator LY, is used a spline interpolation operator. In this article, in
formula (6), instead of Lagrange polynomial operator LY is used a spline interpolation
operator.

14
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Let S%,Qr—l be the spline interpolation operator of the degree 2r — 1, that

interpolates the function f with regard to the variable y at the nodes (z,yx), k = 0,n

i.e.
r—1 n
(SY opa D)(my) =D afy' + > b3y —y)T ™ (13)
i=0 j=0
for which

(5%721-71]0)(377]”6) :f('rayk)a k:()a_n

o (14)
(5%727"71-](‘)(071)) (J]', Oé) =0, p=r2r—1, a> Un

The spline function of Lagrange type can also be written in the form
(S7 201 f)(@,y) Zsk f(z,yr)

where sy are the corresponding cardinal splines i.e., they are of the same form (13),

but with the interpolatory conditions

Sk(yj) :6kj, k,] :O,H.
This way, formula (8) becomes

f(x,y) = (P{f)(x,y) + (RLf)(x,y) (15)

where
n m;
x
Z Z si(y #))(m”)f(mij; Yi)
i=0 j= % v
and (R%f)(z,y) is the remainder term.
Taking into account that for f(z,-) € C"[yo, yn]
Yn

(RY 01 F)(a,y) = / or (1) O (a, 1)t
Y

0

with

er(y,t) = W= Zsz 7):

(r— 1
it follows

15
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Theorem. 4. If f € C°"(D) then

() w) = [ " or 1) FO (2, 1)t (16)
+ ' Sz(y)uz(m)[mamw;7mzm1;f(mza)]

and if f € CPTLT(D) with p = max{my, ..., m,} we have
Ym
BN @0) = [ oy O )+ a7
Yo

n

1=0 Zi0

im

s (2, 8) F O (5, ) s

with

- T wle) (w9
¢ i (aja S) = - .
If the projection of nodes set is on Ox axis, we have from [1], [2] the interpo-

lation formula

f(z,y) = (P f)(@,y) + (RS f)(z,y) (18)
where
e m o n o v;(y) -
(PSf)( 7y) _;Jz:% Z( )(y_y”)v;(yw)f( ZayZJ)

and (R% f)(x,y) is the remainder term.

Theorem. 5. ([1], [2]) If f € C™PT(D) with p = max{ng,...,n,} we have

) = | " a5, 9) ) (5, y)ds (19)

m Yin;

+_silz) / o (4, ) fOMFD (3 1)

i=0 Yio
with

wi(y,t):(y_w—i( vlv) (i 17

= W =yi)vilyy) il

16
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Fi1GURE 1. The grid I is projected on Ox and respective Oy axis

We obtain the following interpolation formula

f@,y) = (P§" f)(z,y) + (R f)(z,y) (20)
where
(P 1o, ) = PN+ (e ) o
and

(BSf)(z,y) + (RS f)(x,y)
2

(RS f)(w,y) =

Example 6. . Let
f : [_171] X [_171] - ]Raf(ajay) = exp(—m2 - y2)

The sets of nodes are

-grid I

P (—1,-0.5), P,(—1,0.5), P;s(—0.5, 1), P4(—0.5,0), P;(—0.5,1), Ps(0, —1),
P;(0,—-0.5), P3(0,0), Py(0,0.5), Pio(0, 1), Py1 (0.5, —1), P15(0.5,0), P;3(0.5, 1),
Py4(1,-0.5), Py5(1,0.5)

-grid IT

P (—1,-1),P(-1,0), Ps(—1,1), P4(—0.5,-0.5), P5s(—0.5,0), Ps(—0.5,0.5),
P;(0,—1), P5(0,-0.5), Py(0,0), P10(0,0.5), P11 (0, 1), P12(0.5,—0.5), P13(0.5, 0),
P14(0.5,0.5), P5(1,—1), P1(1,0), Pi7(1,1)

We plot the graph of functions f and the graphs of P%f, PYf, PM. For a

matriz Z we define

If = Pfllo,z = IR(f = PH)(@i,y;)|(2i,y;) € Z} ],
17
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F1GURE 2. The grid II is projected on Ox and respective Oy axis

If we take Z =[—1:0.1:1] x [-1:0.1: 1] we obtain

P f=Pflyz
I | Pg |0.9469

PY | 0.8685
PM | 0.7326
1| PE | 1.0244
PY | 1.0244

PM | 0.5004
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F1GURE 3. The graph of function f and the graphs of PZf, PYf,
PM f for grid
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FIGURE 4. The graph of function f and the graphs of PZf, Pf,
PM f for grid 11
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AN APPLICATION OF MACKEY’S SELECTION LEMMA

MADALINA ROXANA BUNECI

Abstract. Let G be a locally compact second countable groupoid. Let F
be a subset of G(¥) meeting each orbit exactly once. Let us denote by dr
the restriction of the domain map to G¥ and by 7’ the restriction of the
range map to the isotropy group bundle of G. We shall prove that if dr is
open, then r’ is open and dr has a regular Borel cross section. Conversely,
we shall prove that if 7’ is open and dr admits a regular cross section (a
right inverse which carries each compact subset of G into a relatively
compact subset of G'), then dr is open. We shall also prove that, if dr
is open, then F is a closed subset of G, and the orbit space G(O)/G is
a proper space. If F'is closed and regular (the intersection of F' with the
saturated of any compact subset of G is relatively compact) and G(0>/G

is proper, then dr is open.

1. Introduction

We shall consider a locally compact groupoid G and a set F' containing exactly
one element from each orbit of G. We shall study the connection between the openness
of dp, the restriction of the domain map to G¥', and the existence of a regular cross
section of dy (a right inverse which carries each compact subset of G(°) into a relatively
compact subset of G'). The motivation for studying the map dr comes from the fact
that if F is closed and dp is open, then G and Gk are (Morita) equivalent locally
compact groupoids (in the sense of Definition 2.1/p. 6 [4]). A result of Paul Muhly,
Jean Renault and Dana Williams states that the C*-algebras associated to (Morita)
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equivalent locally compact second countable groupoids are strongly Morita equivalent
(Theorem 2.8/p. 10 [4]). Also the notion of topological amenability is invariant under
the equivalence of groupoids (Theorem 2.2.7/p. 50 [1]). Consequently, if F' is closed
and d is open, then G and the bundle group G% have strongly Morita equivalent
C*-algebras. Also, the equivalence of G and GL implies that G is amenable if and
only if each isotropy group G is amenable.

For establishing notation, we include some definitions that can be found in
several places (e.g. [5]). A groupoid is a set G, together with a distinguished subset
G® c G x G (called the set of composable pairs), and two maps:

(z,y) — =y {1 G® — G} (product map)

r — z' [G — G] (inverse map)

such that the following relations are satisfied:
(1) If (z,y) € GP and (y,2) € G?), then (zy,2) € GP), (z,y2) € G? and

(zy) 2 = = (y2).

(2) (x_l)_l =g foral z € G.

(3) Forallz € G, (z,271) € G?, and if (z,2) € G?), then (zz) 27! = 2.

(4) Forallz € G, (271, 2) € G?, and if (z,y) € G?, then 27! (zy) = y.

The maps r and d on G, defined by the formulae r (r) = zx~! and d (z) =
x~ 1z, are called the range and the source maps. It follows easily from the definition
that they have a common image called the unit space of G, which is denoted G(®).
Its elements are units in the sense that xd (z) = r (z) x = z. It is useful to note that
a pair (z,y) lies in G? precisely when d (x) = r (y), and that the cancellation laws
hold (e.g. zy = zz iff y = 2). The fibers of the range and the source maps are denoted
G* = r~1 ({u}) and G, = d~! ({v}), respectively. More generally, given the subsets
A, B € GO we define GA = r~1(A), Ggp = d~'(B) and G4 = r~' (A)Nd~* (B).
Gﬁ becomes a groupoid (called the reduction of G to A) with the unit space A, if we
define (Gﬁ)@) =G@n (Gﬁ X G‘g). For each unit u, G}, is a group, called isotropy
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group at u. The group bundle
{reG:r(x)=d(x)}

is denoted G’, and is called the isotropy group bundle of G. The relation v v iff
GY # ¢ is an equivalence relation on GO, Tts equivalence classes are called orbits

and the orbit of a unit u is denoted [u]. Let
R=(r,d)(G) = {(r(2),d(2)), = € G}

be the graph of the equivalence relation induced on G(?). The quotient space for this
equivalence relation is called the orbit space of G and denoted G(© /G.

A topological groupoid consists of a groupoid G and a topology compatible
with the groupoid structure. We are exclusively concerned with topological groupoids
which are locally compact Hausdorff. The Borel sets of a topological space are taken

to be the o-algebra generated by the open sets.

2. Necessary and sufficient conditions for the openness of dg.

Definition 1. Let X,Y be two topological spaces. A cross section of amap f: X —Y
is a function o :' Y — X such that f (o (y)) =y for ally € Y. We shall say that the
cross section o is reqular if o (K) has compact closure in X for each compact set K
nY.

We shall need the following lemma proved by Mackey (Lemma 1.1/p. 102
[3]):
Lemma 1. If X and Y are second countable, locally compact spaces, and f: X —Y

18 a continuous open function onto Y, then f has a Borel reqular cross section.

Proposition 1. Let G be a locally compact groupoid. Let F be a subset of GO

meeting each orbit exactly once. Let us define the function e : GO — G©) py
e(uw)=FNu),ueG¥

If the map dp : GF — GO, dp (x) = d(z), is open, then the function e is continuous

and F is a closed subset of G(0).
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Proof. Let (u;); be a net converging to u in G(*). Let € G be such that r (z) = e (u)
and d(x) = u. Since (u;); converges to dr (z) and dp is an open map, we may pass
to a subnet and assume that there is a net (;), converging to x in G¥ such that
dr (z;) = u;. It is easy to see that v (z;) = e (w;) ( 7 (x;) € F and r (z;) € [d(x;)] =
[u;]). Thus e (u;) = r (x;) converges to r (z) = e (u). Since G is Hausdorff, F is

closed in G(©), being the image of the map e whose square is itself. O

Proposition 2. Let G be a locally compact groupoid. Let F be a subset of G
meeting each orbit exactly once. If the map dp : G¥ — GO, dp (x) = d(x), is open,
then graph

R={(r(z),d(z)), z € G}

of the equivalence relation induced on GO is closed in GO x GO, and the map
(r,d): G — R, (r,d) (z) = (r (z),d(x)) is open, where R is endowed with the product
topology induced from G©) x G0,

Proof. Let us define the function e : G(® — G(©) by
e(w)=Fnul,ueGO.

By Proposition 1, the function e is continuous. Let ((u;,v;)); be a net in R which
converges to (u,v) in G x G (with respect to with the product topology ). Then

(u;); converges to u, (v;); converges to v, and u; ~ v; for all i. We have

lilme(ul-) = e(u)

lizme (v;)) = e(v)

because e is continuous. On the other hand, the fact that u; ~ v; for all 7 implies that
e (u;) = e (v;) for all i. Hence e (u) = e (v), or equivalently, u”v. Therefore (u,v) € R.

Let us prove that the map (r,d) : G — R, (r,d) (z) = (r (x),d (z)) is open,
where R is endowed with the product topology induced from G x GO, Let z € G,
and let ((u;,v;)); be a net in R converging to (r,d) (x). Then (u;); converges to r (x),
(v;); converges to d (x), and u; ~ v; for all i. Let s € G be such that 7 (s) = e (r (z))
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and d (s) =7 (z) and let t = sz. Obviously, s,t € G and

lilmui = r(z)=d(s)

1izmvi = d(zx)=d(sz)=d(t).

Since dp is an open map, we may pass to subnets and assume that there is a
net (s;); converging to s in G and there is a net (¢;); converging to ¢ in G such that
dp (s;) = u; and dp (t;) = v;. The fact that e (u;) is the only element of F', which is

equivalent to u;~ v;, implies that r (s;) = e (u;) = e (v;) = 7 (¢;). We have

limsi_lti = slt=uz
K2

r (Si_lti) d(Sl) = U4, d (8-_1751‘) = d(tz) = V;

K2

Therefore the map (r,d) is open O

Corollary 1. Let G be a locally compact groupoid having open range map. Let F be a
subset of G meeting each orbit exactly once. If the map dp : G¥ — GO, dp () =

d(z), is open, then the orbit space G0 /G is proper.

Proof. The fact that G(°) /G is a proper space means that G(©) /G is Hausdorff and
the map (r,d) : G — R, (r,d) (z) = (r(x),d(x)) is open, where R is endowed with
the product topology induced from G x G, Let us note that the quotient map
7: G — G0 /G is open (because the range map of G is open). Since the graph R of
the equivalence relation is closed in G(©) x G it follows that G(©) /G is Hausdorff. O

Lemma 2. Let G be a locally compact groupoid having open range map. Let F be a
subset of G(©) meeting each orbit exactly once. If the map dp : G¥ — GO, dp () =

d(z), is open, then F and G°)/G are homeomorphic spaces.

Proof. Let m : GO — G /G be the quotient map. We prove that the map 7 :
F — GO /G, mp (z) = m(x) is a homeomorphism. It suffices to prove that 7 is an
open map (because 7p is one-to-one from F onto G(»)/G). Let u € F and (1), be
a net converging to 7 (u) in G(®)/G. Since 7 o dp is open, we may pass to a subnet
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and assume that there is a net (z;); converging to u in G¥ such that 7 (dr (z;)) = .

Then (r (x;)), is a net in F' which converges to w. O

Remark 1. Let G be a locally compact groupoid. If the map (r,d) : G — R is open
(where R = {(r (z),d (x)) ,x € G}is endowed with the product topology induced from
GO x GO), then the map r' : G' — GO ' (x) = r (z), is open, where

G={reG:r@)=dx)},

1s the isotropy group bundle of G.

Proposition 3. Let G be a locally compact second countable groupoid. Let F be a
subset of G(O) meeting each orbit exactly once. If the map dp : G¥ — GO, dp () =

d(z), is open, then dp has Borel regular cross section.

Proof. If dp is open, then according to Proposition 1, F is a closed subset of G(©).

Therefore G¥' is a locally compact space, and we may apply Lemma 1. O

We shall need a system of measures

{85, (u,v) € (r,d) (G)}
satisfying the following conditions:

1. supp (BY) = G for all u~ v.
2. sup ¥ (K) < oo for all compact K C G.

3. [fy) ag™ (y) =[f(xy) dBY™) (y) for all z € G and v~ 7 ().

In Section 1 of [6] Jean Renault constructs a Borel Haar system for G’. One
way to do this is to choose a function Fy continuous with conditionally support,
which is nonnegative and equal to 1 at each u € G(9). Then for each u € G(* choose
a left Haar measure 3 on G, so the integral of F{ with respect to 3} is 1. Renault
defines 8% = xf3Y if x € GY (where z6Y (f) = [ f(xzy)dBY (y) as usual). If z is

another element in G%, then 71z € GY

v

and since 3, is a left Haar measure on G7,
it follows that (¢ is independent of the choice of x. If K is a compact subset of G,
then sup B¥ (K) < oo. We obtain another construction of a system a measures with
the algé)vve properties if in the proof of Theorem 8/p. 331[2] we replace the regular
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cross section of G* % G(©) (in the transitive case) with a regular cross section of
GF 4 G where F is a subset of G(°) meeting each orbit exactly once.

Lemma 3. Let G be a locally compact groupoid. Let F be a subset of G°) meeting
each orbit exactly once and let us denote e (u) the unique element of F equivalent to

w. If the map
we [ 1wz ) [ 60— ]
s continuous for any continuous function with compact support, f : G — C, then

the map
dp: GF - GO, dp (z) =d(z).

1S open.

Proof. Let g € G¥ and let U be a nonempty compact neighborhood of zy. Choose
a nonnegative continuous function, f on G , with f(z¢) > 0 and supp (f) C U. Let
W be the set of units u with the property that ﬂe(u)(f) > 0. Then W is an open
neighborhood of uy = d(z¢) contained in dp (U). O

Proposition 4. Let G be a locally compact second countable groupoid. Let F be
a subset of GO containing exactly one element from each orbit of G, and let us
denote e (u) the unique element of F equivalent to u. Let us assume that the map
G — GO ! (z) = r(z) is open, where G’ is the isotropy group bundle of G. If
the map dp : G — GO, dp (z) = d (), has a regular cross section o, then for each

continuous with compact support function f: G — C, the map

ue [ 1wz )

18 continuous on G.

Proof. By Lemma 1.3/p. 6 [6], for each f : G — C continuous with compact sup-
port, the function u — [ f(y)dB% (y) [ G® — C] is continuous. Let (u;); be a
sequence in G(© converging to u. Let z; = o (ui)fl. Since o is regular, it follows
that (z;), has a convergent subsequence in GF. Let x be the limit of this subse-
quence. Let f: G — C be a continuous function with compact support and let g be
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a continuous extension on G of y — f (xy) [: G — C]. Let K be the compact set

(o @ii = 1,2, supp (f) Usupp () ) N7t ({d (), d (@) i = 1,2, ..}). We have

[ s o)~ [ £ w)

- |[ren sz [ rem s ol

= |[oasi )~ [ 1w asi) w)

[owasi o - [swaii)w]+

| [awasizyw - [ 1@ asizs w)
[awasw - [swas )+

+ sup |g(y) — f(z:9)| Byl (K)
yeG

IN

A compactness argument shows that sup, ¢

g (y) — f (z;y)| converges to
0. Also ‘fg dﬁd L,) () = [ f(z:y) dﬁj((fl)) (y)’ converges to 0, because the function

u — )dB is continuous on G(©. Hence
[ £ () dse (y)

‘/f@ﬂ%@ - [ 1wz ﬁ

converges to 0. O

Corollary 2. Let G be a locally compact second countable groupoid. Let F be a subset
of GO meeting each orbit exactly once. If the restriction ' of the range map to the
isotropy group bundle G’ of G is open, and if the map dp : G — GO dp (z) = d (z),
has a reqular cross section, then dr is an open map.

Theorem 1. Let G be a locally compact second countable groupoid. Let F be a subset
of GO meeting each orbit exactly once, and let dp : GF — G©) be the map defined
by dr (z) = d (x) for all v € GF. If dr is open then dr admits a Borel reqular cross
section. If the restriction 1’ of the range map to the isotropy group bundle G' of G

18 open and if dp admits a reqular cross section, then dp is an open map.
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Proof. If dp is an open map, then, according Proposition 3, dr has a regular cross
section. Conversely, if dr admits a regular cross section, then applying Proposition 4

and Lemma 3, it follows that dz is open. O

Remark 2. Let us assume that G(O)/G is proper. There is a regular Borel cross sec-
tion g of the quotient map 7 : GO — GO /G. Let us assume that F = o (G(O)/G) is
closed in G(O). Then the function e : G — GO defined by e (u) = F N [u] is con-
tinuous. If o1 : R — G is regular Borel cross section of (r,d), then o : GO — GF,
o (u) = o1 (e (u),u) is a Borel reqular cross section of dp. Therefore is that case dp

1S open.
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PARTIAL SUMS OF CERTAIN MEROMORPHIC P-VALENT
FUNCTIONS

B.A. FRASIN AND G. MURUGUSUNDARAMOORTHY

Abstract. In this paper, we study the ratio of meromorphic p-valent

functions in the punctured disk D = {z : 0 < |z| < 1} of the form

o0
fz) = 5+ % apir_12PTF71 to its sequence of partial sums of the
k=1
n
form fu(z) = & + 2 aprr_12PTF71. Also, we will determine sharp
k=1

lower bounds for Re {f(2)/fn(2)}, Re {fn(2)/f(2)}, Re{f'(2)/fr.(2)} and
Re {f(2)/f' (=)}

1. Introduction and definitions

Let X, denotes the class of functions of the form:

oo

FE) = =+ Y g (pen), (1)

k=1

which are analytic and p-valent in the punctured unit disk D ={z:0 < |z] < 1}. A
function f € ¥, is said to be in the class ¥*(p, &) of meromorphic p-valently starlike

functions of order « in D if and only if

_zf’(z) o z ; e} ;
Re{ B }> (z€D; 0<a<p; peN). (2)

Furthermore, a function f € X, is said to be in the class Yx(p, ) of meromorphic

p-valently convex functions of order « in D if and only if

2"(2) e
Re{—l— f’(z)}>a (ze€D;0<a<p; peN). (3)

Received by the editors: 10.05.2005.
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The class £*(p, «) and various other subclasses of £, have been studied rather
extensively by Aouf et.al. [1-3], Joshi and Srivastava [6], Kulkarni et. al. [7], Mogra
[8], Owa et. al. [9], Srivastava and Owa [11], Uralegaddi and Somantha [12], and
Yang [13].

Let Q,(c) be the subclass of 3, consisting of functions f(z) which satisfy the

inequality

() a z ; 1) :
Re{ B }< (z€D; 0<a<p; peN). (4)

And let A,(a) be the subclass of ¥, consisting of functions f(z) which satisfy the

inequality

1
Re{lzf,(z)}<a (zeD;0<a<p; peN). (5)
f'(2)
The classes Q,(«) and A,(a) were introduced and studied by the authors [5].
In [5] the authors obtained the following sufficient conditions for a function

of the form (1.1) to be in the classes Q,(a) and Ap(c).
Lemma 1. If f(z) € £, satisfies

p+k+d—-1+p+k+20—05—1))aprr—1 < 2(p — ). (6)

gl

IN

for some a(0 < a < p) and some 6(a < § < p), then f(z) € Qp(a).

Lemma 2. If f(z) € £, satisfies
D p+k—Dp+k+5—1+p+k+20—06—1)app1 <2(p—a) (7)
k=1

for some a(0 < a < p) and some 6(a < § < p), then f(z) € Ap(a).

In view of Lemma 1 and Lemma 2, we now define the subclasses {2 (a) C
Qp(a) and Aj(a) C Ap(a), which consist of functions f(z) € X, satisfying the condi-
tions (1.6) and (1.7), respectively.(see [5]).

In the present paper, and by following the earlier work of Silverman [10] (see
also [4]), we will investigate the ratio of a function of the form (1.1) to its sequence
of partial sums of the form

i) = 2+ Yt (pen) 0
k=1
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when the coefficients of f(z) are satisfy the condition (1.6) or (1.7). More pre-
cisely, we will determine sharp lower bounds for Re {f(2)/fn(2)}, Re{fn(2)/f(2)},
Re{/'(2)/f4(2)} and Re { f1,(2)/f (2) }.
For the notational convenience we shall henceforth denote
or(p,6,0) =p+k+d—1+|p+k+2a—5§—1| 9)

2. Main results

Theorem 1. If f(z) of the form (1.1) satisfies the condition (1.6), then
f(2) } Int1(p,6,0) = 2(p — @)
e { fn(z) S 0n+1(pa 57 a)

The results (2.1) is sharp for every n, with extermal function

(zel) (1)

_ 1 2(]9 - Oé) Zp n n
f(Z) - z + 0n+1(p7 (5, Oé) * ( Z O) (2)

Proof. Define the function w(z) by
L+w(z)  ongi(p,d, ) [ flz) (Un+1<p, 5, a) —2(p— a))}

L-w(z)  20p—a) [ful2) on+1(p, 6, @)
- On 0, =
H kz_:1 Ayt 2T 2+(;(fa) ) k_z apr—12FtP
= =n+1

= D (3)
I+ > ap+k—1zk+p
k=1

It suffices to show that |w(z)| < 1. Now, from (2.3) we can write

Tni1(P8,0) o k
n+1 10,
+ Z Apik—12 +p

2(p—
B =) | L=
Int1(pdia
2423 apyp—12P + ;&;77(1) > aprr—12FtP
k=1 k=n+1
to find that
o0
ok41(p,0,)
2(p—a) > laprk-]
< k=n-+1
()| £ —— = -
Ik+1\P,0,x
2-2 3% apyp—12MtT - 20p—a) > apir—12FT
k=1 k=n-+1

Now |w(z)| < 1if

Un+1(p757a) - .
2| —————= <2-2 _
(52a”) 32, o <223 el

k=n-+1 k=1
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which is equivalent to
Ont1(p, 0,
Z‘G’PJF’V 1]+ Z ( o ) )) |apyr—1] < 1.
k=n+1

From the condition (1.6), it is sufficient to show that

n o0 o0

Un+1(p7 (5,@)) Uk(pa(sva)
Aptk—1] + ( apik—1] <Y =" aptr—1 4
;|P | k:;Ll 2(p_a) ‘P ‘ ;2([)—0[) |P | ()

which is equivalent to

S Jk(pa 9, a) — 2(]9 - a) N Uk(pv 9, a) - O’n+1(p, 9, a)
Z 2(p — ) lap+r—1] + Z 2(p — a)

|aptr—1] = 0.

k=1 k=n-+1

To see that the function given by (2.2) gives the sharp result, we observe that

for z = re™/(ntptl)

f(z) 2p= ) _pipt 2(p— )
T e N Bl
fn(Z) 0n+1(pa 6,&) Un-‘rl(pa 57 Ol)
_ Un+l(p7 67 Oé) - 2(p - Oé) When r—1".
Un+1(p> 67 Ot)

Therefore we complete the proof of Theorem 1.

Theorem 2. If f(z) of the form (1.1) satisfies the condition (1.7), then

f(Z) } (p + n)o'n-‘rl(pa 67 Oé) — 2(p — Oé)
Re{ = (e ©)
The results (2.5) is sharp for every n, with extremal function
o=ty 2D (), )

2 (p+n)oni(p 6 @)

Proof. We write

1+w@):@+nWMﬂn&®[f®)_(@+anﬂn&®2@@)}
[—w(z) 2p—a)  |fal®) (b + N)Tnr1(p.6. )

n oo
k p+n)ont1(p,d,o k
L+ 3 appp12P + % > apip12"?
k=1 k=n-+1

n
I+ > ap+k—1zk+p
k=1
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where
n)oy 0, il
ptn)onii(p.d) )g(pila()p ) > |ap+k—1|
w(z) = h=ntl p = .
2+2 Z laptr—1] + —(p+n)?;+;()p’ S a1
k=n+1
Now
+n)on 0,0 &,
% 72 |api—1]
[w(z)] < - AR <1
2-23 laptr-1| — —(Hn)g?;iz()pﬁ’a) > laptr—1l
k=1 k=n+1
if
- = +n)o, ,0,Q
Mg+ Y EEIInPO0), oy ™

k=n+1 2(p - Oé)

The left hand side of (2.7) is bounded above by
kE [(p+k —Dok(p,d,0)/(2(p — a))] laprx—1] if
=1

Z (p+k —1)ok(p,8,0) —2(p — )] |apsr_1]
k:l

+ Z [(p + k — 1)0k(p7 67 Oé) - (p + n)an+1(p7 67 CY)] |ap+k—1|
k=n-+1

= 0,

and the proof is complete.
We next determine bounds for f,(z)/f(2).
Theorem 3. (a) If f(z) of the form (1.1) satisfies the condition (1.6), then

fn(Z) Un+1(p, 67 Oé)
Re{ f(z) } = nt1(p, 6, 0) +2(p — ) (z€). (8)

(b) If f(=) of the form (1.1) satisfies the condition (1.7), then

fn<z) (p+ n>0n+1(p, (5,0&)
fe { f(z) } = (p+n)ont1(p,d,a) +2(p — @)

The results (2.8) and(2.9) are sharp for the functions given by (2.2) and

(zel). (9)

(2.6), respectively.
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Proof. We prove (a). The proof of (b) is similar to (a) and will be omitted.

We write
1+ U)(Z) — U7L+1(p7 5a Oé) + 2(p N Oé) |:fn(z) _ ( U7l+1(p? 67 Oé) ):l
1- 'lU(Z) 2(p - a) f(Z) Un+1(pa 53 a) + 2(p - a)
n ) 00
1+ > aerk—leer + % > ap+k,1z’€+p
- k=1 k=n+1
L+ > aprp—12+tP
k=1
where
on ,0,)+2(p—a &,
+1(p2(p—)a) — k—%zrl |api—1]
lw(z)] < o — = <1.
2(p—a)—on ,0,a
2223 Jappoa] - (Hha 2o} S5 o,
k=1 k=n+1
This last inequality is equivalent to
" = on ,0,Q
S laprral+ 30 ZBOO (10)

k=1 k=n+1 2(p—a)

The left hand side of (2.10) is bounded above by io: [ok(p,d,0)/(2(p — )] lapti—1l,
the proof is completed. =

We next turn to ratios involving derivatives

Theorem 4.If f(z) of the form (1.1) satisfies the condition (1.6), then for
z€U,

(a) Re{f"(2)/fn(2)} = [ons1(p,6,2) = 2(n + 1)(p — @)]/ont1(p, b, ).

(b) Re {£4()/1'(2)} 2 01 (28, 0)/ 01 (p,8, ) + 2(n + 1)(p — ).

The results in (a) and in (b) are sharp with the function given by (2.2)

Proof. We prove only (a), which is similar to the proof of Theorem 1. The

proof of (b) follows the pattern of that in Theorem 3(a). We write

1—|—w(z) _ 0n+1(p,5,a) [fl(z) _ <0n+1(p,5,04) —2(n+1)(p—a)>}
T—w(z) 2+ Vp—a) [ fo() Gur1(p:0,0)

where

(anmp,a,a)) § ka ktp
2n+D(p=a) ) | Lo FlPHRoL

w(z) = =

242 3 bapei12t + (Fape) 3 Kappashts
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Now |w(z)| < 1if

. 0n+1(10,5,05) -
Y klapiaot] + 5B NN fay ] < 1.
2 TRy Py et (apk]

From the condition (1.6), it is sufficient to show that

- Un+1(p7 57 a) - - Uk(pa 5,0&)
Blapppo| + om0 ™ S 2R
1;2 ’ 2n+1)(p—o) k:znﬂ ’ kZ:Z 2(p—a) 7

which is equivalent to

“~ (01(p, 5, ) o0 or(p, o, @) Ons1(p, 0, )
kX::Q (2(;0—&) - k) |ap+k—1|+k§n;1 ( o) At o a) k) lapsr_1] >0,

and the proof is complete.

Theorem 5.If f(z) of the form (1.1) satisfies the condition (1.7), then for
zelU,

(a) Re{f'(2)/fn(2)} = [(p + n)onyi(p,6,0) — 2(p — a)(n + 1)]/[(p +
n)on41(p; 0, a)].

(b) Re{f5(2)/f"(2)} = [(p + n)on4+1(p,6,0)]/[(p + n)ont1(p,d,a) + 2(p —
a)(n+1)].

The results in (a) and in (b) are sharp with the function given by (2.6).

Proof. Tt is well known that f € Ay(a) & zf € Q,(a). In particular, f
satisfies condition (1.7) if and only if zf satisfies condition (1.6). Thus, (a) is an

immediate consequence of Theorem 1 and (b) follows directly from Theorem 3(a).
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STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume L, Number 4, December 2005

BIFURCATIONS OF THE LOGISTIC MAP PERTURBED
BY ADDITIVE NOISE

MARCHIS IULIANA

Abstract. In the paper we analyze, mainly numerically, the bifurcations
of the logistic map perturbed by different type of additive noise: uniformly
and normally distributed random variables. We prove the existence of the
stationary density in both cases using some tools from [6], and study the
bifurcations. In [4] there are numerical results for the uniform noise case.
We extend the simulations for the logistic map perturbed by normally
distributed random variables. In this case we get a different bifurcation
scenario as in the case of perturbation by uniformly distributed random

variables.

1. Basic Notions

Let (X, d) be a metric space and S : X — X be a discrete dynamical system.
Let o € X. Then zg, 1 = S(x0), 2 = S(x1),..., T, = S(Tp—_1),... is the orbit of zo.
In the deterministic case we usually study the orbit of different zq € X to find the
dynamics of the system.

Now let &, &1,...&n,-.- be independent random variables and we use formula
Tpy1 = S(xp) +&n,n €N (1)

to find the orbit of a point from X. In this case the orbit of a point z¢ is different for
different realization of the noise. Thus is more adequate to study the change of the
initial density function.

Received by the editors: 28.09.2005.

2000 Mathematics Subject Classification. 58F30, 60G10.
Key words and phrases. deterministic logistic map, perturbed logistic map, stationary density, Liapunov

exponent, (P)-bifurcation, (D)-bifurcation.
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Let X = R, g be the density function of the random variables &y, &1,.-.€n,---
and f,, the density function of x,,. Then we have to find a relation between f, and
fnt1. For this we take an arbitrary bounded, measurable function A : R — R and

calculate the expected value of h(z,+1) in two different ways. Firstly,

B(h(@, ) = [ 1(e)fun (@) 2)
Secondly,
E(h(z,1)) = E(W(S(2,) + €0)
// )+ 2) fu(y)g(z)dydz
-/ /R h(@) £ ()g(z — S(y))dady, 3)

using the change of variables S(y) + z = «.

From (2) and (3) we get

Faia (o / Fulw)g(z — S(w))dy. (4)

We review some notions which we need to study the existence of a stationary
density for a random dynamical system. In the followings let (X, .4, u) be a measure
space.

A linear operator P : L' — L' is called Markov operator if
(a) Pf>0,forall f >0, feL!

(b) [IPFIl = I£1l, for all £ >0, f € L.

A measurable function K : X x X — R is called stochastic kernel if
(a) K(x, y) >0, for all z,y € X;

(b) [\ K pu(dz) =1, for ally € X.

Let G C R? be a measurable, unbounded set, K : G x G — R a stochastic
kernel. A measurable, nonnegative function V : G — R, for which

lwlliglooV(m) = o0,
is called Liapunov function.
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Returning to formula (4) we observe that

Pf@) = [ Swate = SG)dy 9
is a Markov operator and
K(z,y) = g(z — S(y))

is a stochastic kernel. We can write formula (4) in the form f,41 = Pf,, which is
equivalent with f,.1 = P"*!f;, thus we have to study the sequence {P"}.

Let P be a Markov operator. A density function f is a stationary density
if Pf=f.

{P"™} is asymptotically stable if there exists a unique stationary density
f+ such that

lim ||P" — f.|| =0, for every density f.
n— 00

The proof of the following theorem can be found in [6]. The theorem gives a

sufficient condition for the asymptotic stability of {P™}.

Theorem 1.1. ([6], Theorem 5.7.1, pg 115) Let K : G x G — R be a stochastic
kernel, P the Markov operator given by (5). If K satisfies

/ inf K(z,y)dz >0, forall r>0, (6)
G lyl<r

and there exists a Liapunov function V : G — R such that
| KepV@ds <av)+5, 0<a <1, 520 @
G

for every density f, then {P™} is asymptotically stable.

Consider a dynamical system which depends on a parameter r. A value rg
of the parameter is a bifurcation point, if the system changes its dynamics for
this value. There are two approaches in studying bifurcation: the phenomenological
((P)-bifurcation) and the dynamical ((D)-bifurcation) approach.

The (P)-bifurcation approach studies the qualitative changes of stationary
densities. In the simulations we study the changes of the shape of the histogram
for different values of the parameter. To draw the histogram we start with K initial
points X}, X2, ..., X (K a big natural number) and we calculate the (N + 1)th point
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of the orbit of every initial point getting X%, X%,...,X5, N € N. Then we plot the
histogram of the values X3, X%.,....X%: we divide the interval [0,1] into 100 parts
and count how many points are in each small interval. We are looking for parameter
values r¢, for which the shape of the histogram changes.

The (D)-bifurcation approach focuses on the loss of stability of invariant
measures. For this we study the Liapunov exponent which is calculated using the
formula

dp(n, x)

ox

where ¢(n,z) = x,. We are looking for parameter values for which the Liapunov

Ar(z) = lim llog

n—oo N

)

exponent changes its sign.

It is also helpful to draw the bifurcation diagram. For this for every value r of
the parameter we start with an arbitrary initial point xy and we calculate the points
Z1, T2,...,xn of the orbit, for N big natural number. Then we calculate xny1,..., s,

M > N + 1, and plot the points (r,zn11), (T, ZN42)5e (T, Zar).

2. The Deterministic Logistic Map

The deterministic case have been intensively studied. In this case the orbit

of a point xg € R can be calculated by the recursive formula
Tpt1 = rx,(l —x,),n € N

In the followings we consider z € [0,1]. The bifurcation scenario in this case is well
known, see for example [2], [1] or [5]. We summarize this scenario for better compar-
ison of the deterministic and stochastic case. In Figure 1 is plotted the bifurcation
diagram and the Liapunov exponent. In simulations we approximate the Liapunov

exponent, by
N—1

Mla) = 5 3 logIr(1 ~ 2p(k, )],
k=0

where N is a big natural number. If 0 < r < 1, there are two fixed points: a stable
1

fixed point 0 and an unstable fixed point 1 — —, so the orbit of each point from [0,1]
T

converges to 0. For 1 < r < 3 the fixed point 0 becomes unstable and the orbit of
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08r

0.6

02+

0 0.5 1 1.5 2 25 3 35 4

FIGURE 1. Bifurcation diagram and Liapunov exponent in the deter-

ministic case

each point converges to 1 — % Thus r = 1 is a bifurcation point. Another bifurcation
point is r = 3, where the orbit becomes an attractive period-2 orbit. In r = 3.46
the period-2 orbit becomes unstable and is replaced by a stable period-4 orbit. We
can observe this behavior on the bifurcation diagram. As r increases this period
doubling continues. This scenario is illustrated by Figure 2 too, where the shape of
the histogram changes from a two-peaked to a four-peaked, then to an eight-peaked
form. For r = 3.57 the dynamics becomes chaotic. For r > 3.57 the chaotic and
period doubling behavior alternates. For r = 3.83 there is a stable period-3 orbit. If
we study the Lyapunov exponent, this becomes zero for r = 1, r = 3, r = 3, 46, etc.,
so these points are bifurcation points with this approach too.
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FIGURE 2. Histogram in the neighborhood of r = 3.5 in deterministic case

3. Perturbation with Uniformly Distributed Random Variables

Consider now the logistic map perturbed by uniformly distributed indepen-
dent random variables &, £1,...,6n,... taking values in some interval [a,b]. The orbit

of a point zg € [0, 1] can be calculated with the formula
Tpt1 =121 —x,) +&p,m €N,

We study the bifurcation points with two different approaches: the (P)-bifurcation

and the (D)-bifurcation approach. In [4] there are some numerical results for this

case. We extend them studying the changes of the histogram for different values of r.
Firstly using Theorem 1.1 we prove that for every r € (0,4) there exists a

stationary density function.

Theorem 3.1. In case of the logistic map perturbed by uniformly distributed random

variables, for every r € (0,4) there ezists a stationary density function.
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06
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20 il

4 il
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F1GURE 3. Bifurcation diagram and Liapunov exponent for a = 0

and b= 0.01

Proof. Let V(z) = |z| be a Liapunov function. Then

| Ko = [ felgta = ride = [ Js+rylgis

r a+b
< [ Islg(s)ds + IS < [V + 57 41,
R
r a+b . .
SO a0 = 1 and g = — +1,and a < 1, if r < 4. So by Theorem 1.1 there exists a
stationary density. O

In Figure 3 we plotted the bifurcation diagram for a = 0 and b = 0.01. The
Liapunov exponent is not 0 in 7 = 1, so this point is not a (D)-bifurcation point.
Studying the histogram in neighborhood of r = 1 leads to the conclusion, that this is
not a (P)-bifurcation point, too (see Figure 4). So the dynamics of the system in r =1
is different as in the deterministic case, where this point was a bifurcation point. In
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FIGURE 4. Histogram in the neighborhood of r =1 for a =0, b = 0.01

r = 3 the Liapunov exponent is also not 0, but this point is a (P)-bifurcation point, as
the histogram changes its shape from a one-peaked to a two-peaked form (see Figure
5). Another (P)-bifurcation occurs between r = 3.4 and r = 3.5, where we observe
a transition from a two-peaked histogram to a four-peaked histogram (see Figure 6).
But the Liapunov exponent remains negative in this case, too.

Even if the Liapunov exponent for the deterministic case and for the small
noise case is close to each other, the behavior of single trajectories can be very differ-
ent, as the Liapunov exponent measures only the exponential of convergence (diver-
gence) of two neighboring trajectories.

It is interesting that for b > 0.05 the period doubling behavior disappears
(see Figure 7). Studying the histogram for values between 3.4 and 3.6 we observe
that the shape doesn’t become four-peaked as in the case of b = 0.01 (see Figure 8).
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FIGURE 5. Histogram in the neighborhood of r = 3 for a =0, b = 0.01

4. Perturbation with Normally Distributed Random Variables

Now consider &, &1,...,&n,... to be normally distributed independent random
variables with mean m and variance o2.
Using Theorem 1.1 we prove that for every r € (0,4) there exists a stationary

density function.

Theorem 4.1. In case of the logistic map perturbed by normally distributed random

variables, for every r € (0,4) there exists a stationary density function.
Proof. Let V(z) = |z| be a Liapunov function. Then
[ K@Vi@ds = [ jalae - ropds = [ |5+ rylgs)ds
R R R

< [ Blads +150)] < [V ) +m+ 1.
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FIGURE 6. Histogram in the neighborhood of r = 3.5 for a =0, b = 0.01

SO a = % and f =m + 1 in Theorem 1.1. We have to have @ < 1, so r < 4. O

In Figure 9 we see the bifurcation diagram and Liapunov exponent for m = 0
and o = 0.0001. Comparing with Figure 1 we see that for small noise the bifurcation
scenario is similar with the scenario in deterministic case. Here r = 1 is a bifurcation
point as in the deterministic case (see Figure 10).

If the noise is bigger (¢ = 0.001) the phenomena in r = 1 is interesting.
Observe in Figure 11 that in neighborhood of » = 1 seems to be a chaotic region. The
Lyapunov exponent becomes positive in r = 1.

In case of 0 = 0.01 this region becomes larger (see Figure 12). The histogram
in neighborhood of r = 1 (Figure 13) also tells this, see the histograms for r = 0.9,
r = 1 and r = 1.1, where the values are spread to a large interval. Note that for
r = 1 the scale of the 0z axis is multiplied by 103°7! r = 3 is a (P)-bifurcation
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F1GURE 7. Bifurcation diagram and Liapunov exponent for a = 0
and b = 0.05

point, because the histogram changes its shape from one-peaked to two-peaked form,
but this is not a (D)-bifurcation, because the Liapunov exponent stays negative. It is
interesting that between 3.5 and 3.6 the Liapunov exponent changes its sign several
times (see the zoomed in part of Figure 12 in Figure 15), so these point are (D)-
bifurcation points, but the histogram doesn’t changes its shape (Figure 16), so they
are not (P)-bifurcation points.

We don’t observe the period doubling behavior in this case (Figure 17) sim-
ilarly with the case of the perturbation with uniformly distributed random variables
on the interval [a, b] for b > 0.05. So if the noise becomes bigger the period doubling
behavior disappears. It is also interesting that for » < 1.2 the points of the orbit can
have negative values too (as the random variables added can be negative), but for
r > 1.2 the points are positive.
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mean becomes positive the chaotic region around r = 1 disappears (see Figure 18 for
m = 0.01 and ¢ = 0.01). If the mean becomes negative the length of the interval of
the values of r for which we get a chaotic behavior increases as the mean decreases.

In Figure 19 we observe, that for m = —0.01 the chaotic region is larger than in the
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; ; 4000 ; ;
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FI1GURE 8. Histogram in the neighborhood of r = 3.5 for a = 0 and
b=0.05

Now change the mean of the normally distributed random variables. If the

case of m = 0.
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FIGURE 9. Bifurcation diagram and Liapunov exponent for m = 0

and o = 0.0001
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ON SOME INTEGRAL EQUATIONS WITH DEVIATING
ARGUMENT

OLARU ION MARIAN

Abstract. The purpose of this paper is to study the following functional

equation with modified argument:

2(t) = g(t, ha(t), (), 2(0)) + / K(t, s, 2(s))ds,
where 6 € (0,1),t € [-T,T],T > 0. o

1. Introduction

Let (X,d) be a metric space and A : X — X an operator.We shall use the
following notations:
Fy:={z € X | Az = z} the fixed points set of A.
I(A):={Y € P(X) | A(Y) C Y} the family of the nonempty invariant subsets of A.
Al = Ao A" A" =1x, Al = AneN.

Definition 1.1. [4] An operator A is weakly Picard operator(WPO)if the sequence
(Anx)nGN

converges, for all x € X and the limit(which depend on x ) is a fized point of A.

Definition 1.2. [4],[1] If the operator A is WPO and Fs = {z*}then by definition

A is Picard operator.

Received by the editors: 15.09.2005.
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Definition 1.3. [4] If A is WPO, then we consider the operator

A® X — X, A®(z) = lim A"z

n—oo
We remark that A®(X) = Fau.
Definition 1.4. [1] Let be A an WPO and ¢ > 0.The operator A is c-WPO if
d(z, A®z) < d(z, Azx).
We have the following characterization of the WPOs

Theorem 1.1. [4]Let (X,d) be a metric space and A : X — X an operator. The
operator A is WPO (c-WPO) if and only if there exists a partition of X,

X:UXA

AEA

such that
(a)X € I(A)
(b)A |: X\ — Xxis a Picard(c-Picard) operator,for all A € A.

For the class of c-WPOs we have the following data dependence result.

Theorem 1.2. [4] Let (X,d) be a metric space and A; : X — X,i = 1,2 an opera-
tor. We suppose that :

(i)the operator A; is ¢; — WPOi=1,2.

(i )there exists n > o such that

d(Ajz, Asx) <n,(V)z € X.

Then

H(Fy,,Fa,) <nmaz{ci,ca}.

Here stands for Hausdorff-Pompeiu functional

We have
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Lemma 1.1. [4],[1] Let(X,d, <) be an ordered metric space and A : X — X an
operator such that:

a)A is monotone increasing.

b)A is WPO.

Then the operator A is monotone increasing.

2. Main results

Data dependence for functional-integral equations was study in [2],[3],[4],[1].
Let(X, | - ||) a Banach space and the space C([-T,T],X) endowed with the
Bieleski norm || - ||; defined by

lzllr = max fla(t)lle™".

te[-T,T]

In[1] Viorica Muresan was study the following functional integral equation:
t
(1) = g(t, h(x) (1), a +/K (t,5,2(08))ds, t € [0,8],0 € [0, 1]
0

by the weakly Picard operators technique.

We consider the following functional-integral equations with modified argu-

ment:
ot
z(t) = g(t, hx(t),z(t), z(0)) + / K(t,s,xz(s))ds, (1)
ot
where:

itel[-T,T],,T > 0.

ii)h : C([-T,T),X) — C(-T,T),X),g € C([-T,T] x X3,X),K € C([-T,T] x
[-T,T] x X2, X).

We suppose that the following conditions are satisfied:

(c1) there exists [ > 0 such that

[ha(t) — hy(8)]] < Ul (t) —y(B)]),
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for all x,y € C([-T,T],X),t € [-T,T].
(c2) There exists I; > 0,1l > 0 such that

llg(t, ur,vi,w) — g(t, ug, v2, w)|| < lyfluy —ual| + Iz [|vr — val| .

forall t € [-T,T),u;s, v, w € X, =1,2.
(cs) There exists I3 > 0 such that

||K(ta S,U) - K(t7 57“1)” S l3Hu - ul”,

for all t,s € [-T,T),u,u; € X.

()il +12 < 1.

(c5)g(0, h(x)(0),z(0),2(0)) = 2(0) for any x € C([-T,T], X).
Let A: C([-T,T),X) — C(]-T,T], X) be defined by

ot
Az (t) = g(t, hz(t), z(t), z(0)) + / K(t,s,z(s))ds (2)
“ot
Let A € X and X = {z € C([-T,T],X) | z(0) = A}. Then C([-T,T],X) =
J X\ is a partition of C'([-T,T],X).From c5 we have that X, € I(A).

rEX
For studding of data dependence we consider the following equations

ot
x(t) = g1(t, hx(t), z(t),z(0)) + / Ki(t,s,z(s))ds (3)
ot

ot
o(t) = galt, ha(t) 2(0), 20)) + [ Kalt.s,a(5)ds @
—0t

Theorem 2.1. We consider the equation (1) under following conditions:
(i)The conditions c1 — ¢ are satisfied.
(i) The operators h(-),g(t,-, -, ), K(t,s,-,-) are monotone increasing.

(#ii) There exists ny,m2 > 0 such that
||gl (tu u, v, w) - gQ(tu u, v, w)” < m,

HKl(taSau) - KQ(taSa )” < 12
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forallt € [-T,T),u,v,w € X.Then:
(a)For all z,y solutions of (1) with £(0) < y(0) we have z(t) < y(t), for allt € [-T,T).

m + 2nT
b) H(S1,5,) <
(b) H(S: 2)—(17111427%)

Proof We denote with Ay the restriction of the operator A at X,.First we show that

, where Sy, Sy is the solutions set of(3),(4).

A,is a contraction map onX,.Frome; — ¢; we have that

ot
[Axz(t) — Ay < (Wl + L) [lz(8) — y(@)] + / K (t,5,2(s)) — K(t,5,y(s))| dsleq

—0t
ot
Sﬂd+bHM—ML€“”LHMM—ML/?“”ﬂw.
—0t
So A is c-WPO with
1
c= —M—.

I

L=l =1 — 2

.

Using the theorem 1.2 we obtain (b).
For proof of (a) let be x,y solutions for(1) with z(0) < y(0).Then z €
X20), Y € Xy(0)-We define

#(t) = 2(0),t € [0,0]

y(t) = y(0),t €[0,0]
We have
#(0) € Xa(0), 5(0) € X, 0),5(0) < G(0).

From lemma 1.1 we obtain that the operator A is increasing.It follows that
A= (2(0)) = A= (2(0))

iex <y

Next we define ¢ -contraction notion and use this for estimate distance be-
tween two weakly Picard operators.

Let p: Ry — R,
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Definition 2.1. [5] ¢ is a strict comparison function if ¢ satisfies the following:
i) p 1s continuous.
it)p 1is monotone increasing.
iii) "(t) — 0, for all t > 0.
i) t-p(t) — oo,for t — oo.
Let (X,d) be a metric space and f : X — X an operator.
Definition 2.2. [5] The operator f is called a strict p-contraction if:
(i) ¢ is a strict comparison function.
(i@)d(f(x), f(y)) < e(d(x,y)), for all z,y € X.
Theorem 2.2. [5] Let (X,d) be a complete metric space,p : Ry — Ry a strict
comparison and f,g: X — X two orbitally continuous operators. We suppose that:
(i) d(f (@), 2(2)) < (d(z, {(x))) for any z € X and
d(g(x), g*(2)) < @(d(z,g(x))) for any x € X.
(ii)there exists n > 0 such that d(f(x), g(x)) <n, for any x € X
Then:
(a) f,g are weakly Picard operators.
(b)H(Fy, Fy) < mywhere 7, = sup{t | t — p(t) < n}.
Theorem 2.3. We suppose that condition (cs) is verified and the following conditions
are satisfied:

(Hy) there exists ¢ a strict comparison function such that

(@O)[h(t) = hy @) < [l=(t) = y(@)II;

forallx,y € C([-T,T),X),t € [-T,T).
(i3)g(t, ur, v1, w) — g(t, uz, va, w)|| < ap(|lur — uz||) + bp(|[vr — val]).

fOT’ allt € [7T7T]7ui7vivw € XaZ = 1a2

(i12) [| K (¢, s, u) — K(t, 5, u1)|| < U(E, 5)@([lu —ua])),
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for allt,s € [=T,T),u,u, € X,where l(t,-) € L*[-T,T).

(Hz) There exists n1,m2 > 0 such that
||gl <t7 u,v, ’U}) - 92<t7 u,v, w)” S m,

HKl(taSau) - KQ(taSa )” < 12

forallt e [-T,T],u,v,w € X.

(Hs)
T
a+b+ max /l(t,s)ds <1
te[—T,T]
=7
Then:

(i)the equation (1) has at least solution.
(11)H (S1,S2) < 1, where n = + 2T, S1, 52 is the solutions set of(3),(4).
ProofLet beAy, Ay : C([-T,T),X) — C([-T,T], X),

ot
Arz(t) = g1(t, hx(t), z(t), z(0)) + / Ki(t,s,2(s))ds
ot

ot
Axx(t) = ga(t, ha(t), z(t), z(0)) + / Ks(t,s,z(s))ds.
—ot
From

[Aix(t) = AZx(®)|| < lgi(t, ha(t), z(t), (0)) — gi(t, Az (t), As(t), Asw(0))]| +

ot
n / 1Kt 5,2(s)) — Kilt, 5, Asa(s)) | ds
—0t
< ap([ha(t) — hAx(D)]) + bo(lz(t) — Asr(t)])+
ot

+ / 1t s)p([lz(s) — Ai(s))] ds < ap([l2(t) — Asx(@)]) + bp([lx(t) — Aiz(t)])+
—ot

ot T
[ 1t sellats) = Asao)lds < (@ b+ max [ 1t s)ds)elle — Aiale) <
—0t =T
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< o(lle — Aszlle)
we have that
Az — A%a, < (e - Al )i = T2
Here ||-||~is the Chebyshev norm on C([-T,T], X).
We note that ||Ajx — Azx||o < m1 + 2172. From this, using the theorem 2.2

we have the conclusions.
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COST OF TRACKING FOR DIFFERENTIAL STOCHASTIC
EQUATIONS IN HILBERT SPACES

VIORICA MARIELA UNGUREANU

Abstract. We consider the tracking problem for differential stochastic
equations diffusions dependent on both state and control variables. The
Riccati equation associated with this problem is in general different from
the conventional Riccati equation. We establish that under stabilizability
and uniform observability conditions this equation has a unique positive
and bounded on R4 solution. Using this result we find the optimal control

(and the optimal cost) for tracking problem (see also [11]).

Notations and statement of the problem

Let H,U,V be separable real Hilbert spaces. Let J C Ry = [0,00) be an
interval. If E is a Banach space we denote by C(J, E) the space of all mappings
G(t) : J — FE that are continuous. We also denote by Cs(J, L(H)) the space of all
strongly continuous mappings G(t) : J — L(H) and by Cy(J, L(H)) the subspace of
Cs(J,L(H)), which consist of all mappings G(t) such that tSlel% IG(®)|l < oo. Given a

signal r € Cp(R4, H) we want to minimize the cost

— 1
J(s,u) = lim

t—o0 t—S

E/ IC(0) (x(e) = ()| + (K (0)u(0), u(0)) do

Received by the editors: 19.10.2005.
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in a suitable class of control u subject to the equation (denoted {A : B;G; : H;})
da(t) = A(t)z(t)dt + B(t)u(t)dt + Z H;(t)u(t)) dw;(t) (1)

x(s) =z € H.

We assume that the coefficients satisfy the following hypothesis:

Pi: A/G; € Cy(R4,L(H)),i=1,2,..m;m € N*, B,H, € Cy,(Ry+,L(U, H)),
B*, Hf € Cy(R4+,L(H,U)), C € Cy(Ry, L(H,V)),C*C,G;,Gr € Cp(Ry,L(H)), K €
Cy(Ry, L(U)) and there exist dp > 0 such that for all t € Ry, K(t) > dol. If Z €

Cy(Ry, L(H,V)), we will denote Z = sup ||Z(r)|| < .
0< r<oo

1. Stabilizability, detectability and uniform observability

It is known (see Proposition 5 in [13] and Definition 5.3 in [4]) that if A €
Cs(Ry,L(H)) then the family A(t),t > 0 generates an evolution operator U (¢, s)
which has the following properties: 1. (t,s) — U(t,s) is continuous in the uniform
operator topology on {(t,s)/0 < s <t <T}; 2. M = L(t)U(t,s)x and W =
—U(t,s)L(s)x forall x € H and 0 < s <t <T.

In the sequel we will assume that P; holds if we don’t specify other conditions.

Let (9, F, F;,t € [0,00), P) be a stochastic basis. We consider the equation
dy(t) = dt+ZG (t)dw;(t), y(s) =z € H, (2)

denoted by {A4; G;}, where w;’s are independent real Wiener processes relative to F.
It is known (see [5] and the notations therein) that (2) has a unique mild solution in

C([s,T); L*(2; H)) that is adapted to Fy; namely the solution of

y(t) = tsx+2/ (t,7)Gi(r)y(r)duwg(r). 3)

This solution is also a strong solution, that is y(¢) satisfies the integral equa-
tion

y(t) =z + / dr+Z/G r)dwi(r).

S

74



COST OF TRACKING FOR DIFFERENTIAL STOCHASTIC EQUATIONS IN HILBERT SPACES

Definition 1. Let y(t,s;x) be the mild solution of {A;G;}. We say that (2) is
uniformly exponentially stable if there exist constants M > 1,w > 0 such that
Elly(t,s;z)||> < Me ) ||z||* for allt > s >0 and z € H.

If C € Cs(]0,00), L(H,V)) we consider the system formed by the equation
(2) and the observation relation z(t) = C(t)y(t, s, z) denoted by {A,G;; C}.
Definition 2. (see [12]) We say that the system {A, C;G;} is uniformly observable

S+T
if there exist 7 > 0 and v > 0 such that E [ IC@)y(t, s;2)||>dt > ||| for all
se€Ry andz € H. ’

Definition 3. (see [5]) We say that the system {A, C; G;} is detectable if there exists
L € Cp([0,00), L(V, H)) such that {A+ LC;G;} is uniformly exponentially stable.

Definition 4. We say that {A : B;G; : H;} is stabilizable if there exists F €
Cy([0,00), L(H,U)) such that {A + BF;G; + H;F} is uniformly exponentially sta-
ble.

In the deterministic case it is known (see [7] for the autonomous case) that
uniform observability implies detectability. We proved in [12] that this assertion is

not true in the stochastic case.

2. Bounded solutions of Riccati equation of stochastic control

Let us consider the linear and bounded operator

B: Cu(Rer, L(H)) — Co(Bep, LH.U)). B(P)(s) = B*(5)P(s) + 3= H; (5 P()Gi(s)

and the function K : Cs(Ry, L(H)) — Cs(Ry, L(U)), K(P)(s) = K(s) + iH’*(S)

P(s)H;(s). Since K is uniformly positive, then it is easy to see that IC(P) is uniformly
positive. We consider the following Riccati equation in Cs([0,00), LT (H))

P+ AP+ PA+ zm: GEPG; +C*C — [B(P)" [K(P) ' B(P) =0,  (4)

i=1

where the weak differentiability is considered. If P € C4([0,00), LT (H)) we put

S(s) = = [K(P)(s)] " B(P)(s),s > 0. (5)
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and we denote A = A — BS, (A?Z = G; — H;S. Then (4) can be written as it follows
P’+E*P+PE+ZM:@;*P@+C*C+S*KS:0. (6)
i=1

Arguing as in the proof of Proposition 4.64 [3] and using Dini’s theorem we
can prove the following lemma.
Lemma 1. If (P,)nen+ is an increasing sequence in Cy([0,T], LT (H)) such as
P,(t) < I, for all t € [0,T] (I 1is the identity operator on H ), then there exists
P e Cy([0,T], LT (H)) such as P, (t)x T P(t)x,x € H, uniformly for t € [0,T].
Theorem 1. The Riccati equation (4) with the final condition P(T) = R €
LT(H),T € R%. has a unique solution in Cs([0,T], Lt (H)) denoted P(T, s; R), which
also belongs to C([0,T), LT (H)) and has the following properties:

a) It is the unique solution of the integral equation

T m
P(s)z = U*(T,s)P(T)U(T, s)x + / U*(r,s)[Y_ G;(r)P(r)Gs(r) (7)
i=1

S

+C*(r)C(r) = [B(P)(n)]" [K(P)(r)] ™" B(P)(r)]U (r, s)xdr.
b) It is monotone in the sense that P(T,s; R1) < P(T,s; Ra), if R1 < Ro.

Proof. The existence of the solution. The proof is similar to that given in [1] for
the finite dimensional case. We consider the following iterative scheme to con-
struct the solution of (6). Let Py = I (I is the identity operator on H), Sy =
— [IC(PO)T1 B(Py), 21\0 = A — BS), CAT'O,Z» =G; — H;Sy,i=1,..,m. Using Lemma 1 in
[7] we deduce that the following differential equation
P+ A Pog1 + Poyi Ay + i é;yipnﬁ»lénﬂ; +C*C+ S,KS, =0, (8)
i=1

Pn+1(T) = Rv

where S, = —[K(P,)] ' B(P,),A, = A — BS,, Gn; = G; — H;S,,i = 1,..,m,
n =0,1,2,... has a unique solution which belongs to Cs([0,T], L*(H)). As in [1] we
can establish that {P,(.)} is a decreasing sequence. Using the above lemma for the
increasing sequence {I — P,(.)}, it follows that there exists P € C4([0,T], LT (H))
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such that, for all z € H, P, (t)z T P(t)z, uniformly for t € [0,T]. As n — oo in (8)
we deduce that P is weakly differentiable and satisfies (6). Thus (4) with the final
condition P(T) = R € L™ (H), has a solution in Cs(Ry, LT (H)). Differentiating the
function f, : [0,7] — R fz(0) = (P(0)U(o,s)z,U(0, s)x) we get

Ofz(o)
Jdo

= (P'(0)U(0,8)x,U(0,s)x) + 2 (P(c)A(c)U (o, s)z,U(o, s)z) .

Now, we integrate from s to T, s € [0, T] the above relation and we obtain (7). Using
the Gronwall’s lemma we deduce that (7) has a unique solution in Cs(R4, L*(H)),
and consequently (4) has a unique solution in Cs(Ry, L1 (H)). It is not difficult to
see that a solution of (7) belongs to C'(R.y, LT (H)). Thus (4) has a unique solution
in C(Ry, LT (H)) and a) holds.

Now we prove b).Let R,R; € L*(H),R; < R and let P(s) = P(T,s;R),
Py(s) = P(T,s;R1) be the corresponding solutions of (4). We use the notations
A=P-P, S =—[K(P) ' B(P), A = A-BS;, G1; = G;—H;S;. Then, A is the
solution of the following Lyapunov equation with the final condition A(T) = R — R,

AN+ AN+ AL+ GAG; + (81— 8) K(P) (S — 8) =0. (9)

i=1

Thus it follows that A > 0 and P — P; > 0 and we obtain the conclusion. O

Remark 1. The function F : [0,T] — R,F(t,z) = (P(t)z,z), where P(t) =
P(T,t; R) and the strong solution of (2) satisfy the conditions required by Ito’s formula

in infinite dimensions (see T. 3.8 in [2]).

Moreover, if P € Cs(R4, L1 (H)) is a solution of (4) and sup ||P(s)| < oo,
seER
then P is said to be a bounded solution. Assume that (4) has a bounded solution P(s)

and let S(s) be given by (5). It is not difficult to see that S, S* € Cy([0,00), L(H,U)).

Definition 5. A bounded solution of (4) is called stabilizing for {A;G;} if {A+
BS; G; + H;S} is uniformly exponentially stable, where S(t) is given by (5).

Proposition 1. (see [5])The Riccati equation (4) has at most a bounded solution,

which is stabilizing for {A; G;}.
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Proof. If P and P, are two bounded solutions of (4) and P, is stabilizing for {A; G;}
then A = P — Pj is a solution of (9). As in the proof of the above theorem, we get

T m
A(s)z = U%l(T, S)AT)UZ (T, s)x + / U}l(r, s)[z G (r)A(r)Gi(r)+
i=1

S

[(S1—8)" K(P)(S1 — S)](T)Ugl (r, s)xdr,

where U i (t, s) is the evolution operator generated by fAll. From the uniform exponen-
tial stability of {A+BS; G;+ H;S} it follows that Uz (%, s) is uniformly exponentially
stable. Since it exists m; € Ry such that |[(S1 — S) (r)|| < mq1 ||A ()], we use Gron-
wall’s inequality to deduce that there exists M, a > 0, such that |A(s)|| < Me=2(T=9),

As T — oo we obtain ||A(s)|| =0, for all s € [0,00). The conclusion follows. O

Reasoning as in [5], see Theorem 3.1 and stochasticize the proof we obtain

the following result.

Proposition 2. If {A;G;} is stabilizable then there exists a nonnegative boun- ded

solution of the Riccati equation (4).

Arguing as in [12] we can prove the following result:

Theorem 2. Assume that {A, G;; C} is uniformly observable. If P(t) is a nonnegative
bounded solution of (4) then

a) there exists § > 0 such that P(t) > 61 for allt € Ry (P is uniformly
positive on R, );

b) P is a stabilizing solution (for {A4;G;}).

The next theorem is a consequence of the above theorem and of Proposition 2.
Theorem 3. Assume {A,G;; B} is stabilizable and {A,G;; C} is uniformly observ-
able. Then the Riccati equation (4) has a unique nonnegative bounded on Ry solution
P(t), which is a stabilizing solution and there exists § > 0 such that P(t) > 61 for all
t €0, 00).

Proposition 3. Assume that the hypotheses of the above theorem hod. If P is the
unique and bounded on Ry solution of the Riccati equation (4) and S is the operator
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given by (5), then the equation
g'(t)=—(A"+8"B")g(t) + C*(t)C(t)r(¢) (10)

has a unique solution in Cy([0,00), H), where we consider the weak differentiability.

Moreover, the function (t,x) — (¢'(t),x) is continuous on [0,00) x H.

Proof. Since A + BS is the generator of an evolution operator Uy p(t,s), it is not
difficult to see that the integral g(s f Uj g(o,5)C*(0)C(0)r(0)do is convergent in
H and g(s) is bounded on R. leferentlatmg the function t — (g(t),y),y € H, we
see that % (g(t),y) = (— (A* + S*B*) g(t) + C*(t)C(t)r(t), y) and g(t) is a solution of
(10). If h is an other bounded solution then (h — g) (t) = — (A* + S*B*) (h — g) (t).
The unique solution of the last equation with the final condition (h —g) () =
h(t) — g(t) is (h —g) (s) = U} g(t,s) [h(t) — g(t)]. Ast — oo and since Uy p(t,s)
is exponentially stable and the functions g and h are bounded on Ry, we deduce
that (h—g)(s) = 0, for all s > 0. Thus h = g, and (10) has a unique solu-
tion. The last statement follows from the hypothesis, if we see that (¢'(t),z) =

—(9(8), (A(t) + B(£)S()) ) + (C*()C(t)r(t), z) - 0

We take the set of admissible controls U,y = {u is an U- valued random
L t
variable, Fs— measurable such as tlim ~=FE[ u(0)||* do < oo and supE ||z(t)|
— 00 s tZS

00, where z is the solution of (1)}.

Theorem 4. Assume that the hypotheses of the Theorem 3 hold. If P is the unique
and bounded on Ry solution of the Riccati equation and g(t) is the unique solution

of (10) then the optimal control is

and the optimal cost is

J(s) = inf J(s,u) =

u€Uqq
mfs[/na o) da—/u )72 B(0)g(0)|Pdo].
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Proof. We consider the function F(t,z) = (P(t)x,z) + 2 (g(t), x), which is continuous

together its partial derivatives Fy, F,, F,, on [0,00) x H, according the Remark 1

and the above proposition. Let u € U,q and x be its response. Using Ito’s formula

for F(t,z) and the strong solution of (1) we get

E <tP(t)ff(t), z(t)) +2(g(t), 2(t)) = E(P(s)z,x) = 2(g(s),x) =
= [IC(©@) [#(o) = r(@)]II* + (K (0)u(0), u(o)) do+
!

+j||0(0)r(0)\|2d0 - j I K(P)(0)) ™" B*(0)g(0)|[*do. Since P(t) and g(1)

K(P)(0)!/2 [ulo) + IC(P)(@)] ! [BP)(0)a(o) + B* (2)o(o)]|

are bounded on R} we multiply the last relation with i and passing to the limit

as t — oo and, then, to the infimum we get the conclusion. O
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THE EXPONENTIAL MAP ON THE SECOND ORDER TANGENT
BUNDLE

NICOLETA BRINZEI-VOICU

Abstract. On the 2-tangent (or 2-jet) bundle 72 M of a Riemannian man-

ifold endowed with geometrical objects as in [1] and [2], the first variation
1
of the energy E = [ (¢,¢) is computed and the conditions such that its

0
extremal curves should be invariant to the group of homotheties are de-
termined. In these conditions, by using homotheties, we define the expo-

nential map on T2M.

1. Introduction

The geometry of the second order tangent bundle T?M (called as well ”2-
osculator bundle” and denoted by Osc?M), constructed by R. Miron and Gh. Atana-
siu, ([12]-[17]) represents the geometry of the jet-space JZM, endowed with charac-
teristic geometrical objects as: 2-tangent structure, nonlinear connections and N-
linear connections. This construction allows the prolongation to T?M of Riemannian
and Finslerian structures of M. Within this geometrical framework, V. Balan and
P.Stavrinos ([3], [4], [18]), defined geodesics of T?M as stationary curves of the dis-
tance Lagrangian L(c) = \/@ and deduced their equations. In these papers, the
authors use linear connections D with the property that the 2-tangent structure J is
absolutely parallel with respect to D.

A notion which plays a major role in our considerations is that of homogeneity
of a function given on T2?M (respectively, of a vector field on T?M), defined and

studied by M. de Leon and E. Vasquez, [5], R. Miron, [7], Gh. Atanasiu, [2].

Received by the editors: 28.09.2005.
2000 Mathematics Subject Classification. 53C60, 7T0G75, TOH50.

Key words and phrases. 2-tangent bundle, nonlinear connection, N-linear connection, Riemannian metric,

geodesic.
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In this paper, we define geodesics as extremal curves of the energy Lagrangian
E = (¢,¢) (not of the distance Lagrangian, as in [3], [4], [18]), deduce their equations
(Theorem 5), study the conditions that an exponential map could be defined on T2 M
(Theorem 7) and construct this application. It is worth mentioning the following
facts:

1. for Lagrangians defined on T2M, the integral of action I(c) essentially
depends on the parametrization of the curve c; this is why the classical technique of
defining the exponential map (which relies on re-parametrizations) is here replaced
by a technique which uses the group of homotheties;

2. throughout the paper, by N- linear connection we shall mean (as in Gh.
Atanasiu, [1]) a linear connection which preserves by parallelism the distributions

generated by a nonlinear connection IV, but is not necessarily compatible with J.

2. The 2-tangent bundle T?M

Let M be a real differentiable manifold of dimension n and class C°°; the
coordinates of a point € M in a local chart (U, ¢) will be denoted by ¢ (z) = (%),
i =1,..,n. Let (Osc®M, % M) be its 2-osculator bundle ([12]-[17]), which will be
called in the following, 2-tangent bundle and denoted by (T?M, =% M), ([1], [2]. A
point of T2M will have in a local chart the coordinates (z*,y(1)?,y()7%).

Let N be a nonlinear connection on T2M, given by its coefficients (N%, N%),

W’ @’
[1], [7], [8]- Then, the adapted basis to N is
o ) 5 )
B = {52 = @ = Wa 14 = 5y(1)7752l = 6;1](2)1}7
where
6‘ _ 0 i 0 N 0
dzt Azt () y(Mi (2)" Oy
] ; 0
Sy~ By oy @ (1)
0 0

5y(2)i 8y(2)1 ’
The dual basis of B is B* = {dmi7 sy, 5y(2)i}, given by
oyt = dat, sy = dyWt 4 Mida? | 5y = dy@t 4 Midy™I 4+ Mida?.  (2)
@’ @’ @’
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The bases above correspond to the direct-sum decomposition

T, (T*M)

T; (T°M) = N;®Ni, ® Vs, YueT*M.

Then, a vector field X € X (T2M ) is represented in the local adapted basis

as
X = xXOig; 4 xWig, 4 x@igy, (4)

with the three right terms (called d-vector fields) belonging to the distributions N,
N; and V5 respectively.
A l-form w € X* (T?M) will be decomposed as

w= wz(o)da;i + wi(l)dy(l)i + wgz)éy(z)i. (5)

Similarly, a tensor field T' € 7. (T2M ) can be split with respect to (3) into compo-
nents , named d-tensor fields.

The F (T%M )-linear mapping J : X (T?M) — X (T*M) given by
J (6;) = 014, J (614) = 024, J (d2:) =0 (6)

is called the 2-tangent structure on T*M.,[7], [8].
Let
H={h|h:R—R, teR:}
be the group of homotheties, ([1], [5], [7]), of the real numbers set. Then, H acts on

T2M as a one-parameter group of transformations, as follows:
(hy,u) — hy (u) : Hx T?°M — T%M, where
hy (x . y<2)) _ (x’tyu)’tzy(z)) . (7)

A function f: T?M — R, which is differentiable on T2M and continuous on
the null-section 0 : M — T?M is called homogeneous of degree r (r € Z) (or, shortly,
r-homogeneous) on the fibres of T2M, if

fohy =t"f, VteRY, (8)
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9 ) )
2 — (0)i (1)i (2)7
A vector field X € X (T?M) , X = X 50 T X 5y + X Gy

is r-homogeneous , [1], if and only if X% are (r — 1)-homogeneous, X )¢ are r-

2)i

homogeneous and X (?* are (r + 1)-homogeneous functions.

3. N- linear connections

An N-linear connection D, [1], is a linear connection on T2 M, which preserves
by parallelism the distributions N, N; and V5. An N- linear connection, in the sense of
the definition above, is not necessarily compatible to the 2-tangent structure J (an N-
linear connection which is also compatible to J is called, [1], a JN-linear connection).

An N- linear connection is locally given by its coefficients

DI (N) = Li_ Li_ L7, i i i i i i
) <(oo> k> 10y %7 20y 77 ((% k2 <g> Ik <g) ik ((% ik? <g> Ik <2C;) J’“) O
where
Ds0j = L Doy = L t5p01i, D2y = L5102
D, 65 = (Oq)ijkfsiv Ds, 615 = (lcl’)ijkaliv Ds, .62 = (g)ijk@i : (10)

Dy, 05 = (g/;)ijkfsiv Dy, 015 = (g)ijkaliv Dy, 025 = (g)ijk@i

In the particular case when D is J-compatible, we have

i = L[t = L%, =L
00) 7k oy 7k T 20y IF ke
ct, = (Ct,=0Ct',=0C"%
(01) 7* an?* et @
o2y F T (gﬂ’“:(g)j’“:(%j’“'

The torsion tensor of an N- linear connection D, T'(X,Y) = DxY — Dy X —

[X,Y], is well determined by the following components, which are d-tensors of (1,2)-

type ([1], [7], [8]:
0,
’U’YT((Sﬁ]méaj) = ((;Z;)jkdyi, Oé,ﬁ,’}/ = 1727

()
the detailed expressions of (1; )lj  can be found in [1].
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The curvature of the N- linear connection D, namely, R(X,Y)Z =
DxDyZ — Dy DxZ — Dix y)Z, is completely determined by its components (which
are d-tensors):

R(041,66r) 0aj = R J1i0air o, B,y =0,1,2.
(aBv)

4. Metric structures and geodesics on T?M

A Riemannian metric on T?M is a tensor field G of type (0,2), which is
non-degenerate at each point p € T?2M and is positively defined on T2M.

If G is a Riemannian metric on T?M, we denote
(X,Y):=G(X,Y),VX,Y € X(T°M). (11)
In this paper, we shall only consider metrics in the form
G = gyde' @da? + g ;09" @0y + g0y @ 6y P, (12)
(0) (1) (2)
this is, so that the distributions N, N; and V5 generated by the nonlinear connection
N are orthogonal in pairs with respect to G.

An N- linear connection D is called metrical if DxG = 0, VX € X(T?M).

This means
X(Y,Z)=(DxY,Z)+(Y,DxZ), VX,Y,ZEX(TQM). (13)

In the following, we shall consider throughout the paper T2M endowed with:

e a nonlinear connection IV;

e a Riemannian metric G;

e a metrical N- linear connection D with coefficients 9.

Let c¢: [0,1] — T2M, c(t) = (2% (t) ,yV (¢) ,y@ (¢)) be a piecewise smooth
curve and 0 = tg < t; < ... < tp = 1 a division of [0,1] so that c|p,_, ¢+, be of class
C> on each interval [t;_1,t;]. Let us denote ¢ (0) = p, ¢(1) = q.

A wariation of ¢ (with fixed endpoints) is a mapping « : (—¢,¢) x [0,1] —
T%M, (where ¢ > 0), with the properties

1. «(0,t) = c(t), Vt € [0, 1];

2. « is continuous on each (—e,¢) X [ti—1,8;], Vi=1,..., k.
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Let @ the mapping defined on (—¢,¢) by
a(u)(t) = au,t).
If a is a variation with fixed endpoints of ¢, then the vector field W €
X (T?M) along c, given by
W(t) = % (0,t) (14)
is called the deviation vector field , [3], [4], [18], attached to o. We obviously have
W (0)=W(1)=0.
Let us denote, as in [3], [4], [18], V = ¢. Then, V locally writes

e=V=vW®is,

with i )i
) d:ci ) 5@/ 1) . 5y (2)2
0y _ 2% @i - 29 7 (@)
v dt’ v dt ’ v dt
Let also
DV ; ; ;
A= — = AOig 4 AWig 4 A(2)252i, (15)
be the covariant acceleration, where, for X € X (T M ) , we denoted
DX
_— = l)c)(7
dt
and
AX=X(ty)—X(t_),te0,1], X € X (T*M), (16)

the jump of X € X (T?M) in t.

The energy of the curve c is

1
/ VOO 4 g Wiy gyl igy (17)
(1) )
0

1
this is, E (¢) = [(V, V) dt.

0
Definition 1. We call a geodesic of T?>M, a critical path ¢ : [0,1] — T?M of the

energy E, which is C*-smooth on the whole [0,1].

By a direct computation, taking into account the metricity of the N- linear

connection D, we obtain
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Theorem 2. (The first variation of the energy): If ¢ : [0,1] — T?>M is a
piecewise smooth path and o : (—e, €)x[0,1] — T?M is a variation with fized endpoints

of ¢, then

_ k-1 1
;WJU_():—; W)+ [@wy) vy - WAy ()

Remark 3. If the curve ¢ is C*®-smooth on the whole [0,1], then

1dE (a(
27 o :/ (W, V), V) — (W, A) dt.

In order to deduce the equations of the geodesics of T?M, in (18), we write

the term (T (W, V), V) in the form (F, W); in local coordinates, one obtains

2
Theorem 4. 1. F= 3 F®i§,,; given by
a=0
@i _ i Dk @i
F = (g) (g)k;b(g)jlv Voor a=0,1,2 (19)
a o @

18 a vector field, globally defined along c.
2. There holds the equality

(T(W,V),V) = (W, F). (20)

3. The vector field F' does not depend on the variation o of c.

Taking into account the previous theorem, we get

_ k—1 !
LG T DTG - [ovr - Ay
= 0

We have proved this way

Theorem 5. The C®-smooth curve ¢ : [0,1] — T2M, t — (2% (t),y(M? (t), P (t))

is a geodesic of T>M if and only if
D dc
2 _F 21
dt dt ’ 21)
89



NICOLETA BRINZEI-VOICU

or, in local coordinates,

0)e
D{C/l'() .
t b)
A (22)
2)¢
DV -
dt
It will be useful to write the last equalities in the following form
VO Ok i RO i @Ry o)
dt 00) 7% ©1)7* 02)7% ’
VO Ok oy Ry Wi oy @Ey W i (23)
dt (lO)Jk (ll)Jk (12)]16 5
VO k@i oy Ry @i o @Ry )i
dt 00) 7% ©01)7* 02)7* '

5. Invariance to homotheties of the equations of geodesics

We consider the homotheties hy in (7).
Definition 6. Let ¢ : [0,1] — T?M, t — c(t) = (z (t),y™ (¢),y@ (t)) be an arbi-

trary curve and A > 0 a real number. We call the homothetic of ¢ the curve

: [0, i] —T?M, ¢ (/1\15) = hy(c(t)), (24)

ol

and we denote

Let us remark that hy (c) # hy o c.

¢ = hy (c) locally writes

Zi (}\t) = 2'(t),
Rk C\t) = Ny ().
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If we suppose that

(N) “are 1-homogeneous, (N) “are 2-homogencous, (26)

1 2

(which implies that 5\4) ’] are 1-homogeneous and, g\/{ 1] are 2-homogeneous), then, d;
1 2

are 1-homogeneous, d1; are 0-homogeneous and dy; are —1-homogeneous; consequently,

the tangent vectors of ¢ are given by

—()i t 1
v (x) = AV (1) 0 =0,1,2. (27)

— [t
or'V ()\) = A3V (¢).
If we claim that, for any geodesic ¢ of T2M, the homothetic ¢ should be a

geodesic, too, we obtain:

Theorem 7. Let EN)ZJ be 1-homogeneous , (N)@be 2-homogeneous. If:
1 2

1. L)"j,c are homogeneous of degree 0;

Lt L%
00)7* 10)7* 20

2. - homogeneous of degree —1;

cit.,Ct., Ct

on7* 1) 7*’ 21 7¥

.Cch. o Cct. Ch o -h d —2;
Sy Gy w0 Gy v omogeneous of degree

4. g i; - homogeneous of degree —o, o =0,1,2,

then the equations of the geodesics of T?>M are invariant to the homotheties

(24)-

Proof. 1., 2. and 3. can be obtained by a direct computation.

In order to prove 4., we must take into account that:
e V(@ are (a + 1)-homogeneous;
) Q0] )
e in the expression of F(®? the term (BT)’;lV(ﬁ)JV(V)h is homogeneous of

degree vy —f—a+0+1+v+1=2y—a+2;

e if ¢, are homogeneous of degree —v, then ¢ *" are homogeneous of
() Q0]
degree +7.
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6. The exponential map of T?M

It is known, [7], that for regular Lagrangians defined on T?M, the integral
of action I(c) essentially depends on the parametrization of the curve ¢ (the Zermelo
conditions); consequently, the equations of geodesics (22) are generally not invariant
to re-parametrizations of the form ¢ — %, A > 0. This is why, instead of the classical
technique of defining the exponential map (which relies on such re-parametrizations),
we shall use the homotheties ¢ — ¢ as defined above.

Let us remark, for the beginning, that the equations of geodesics (22) con-
stitute a system of 6n ODE system with the unknown (real) functions 2?, y(1?, (2,
V(i y (Wi Y ()i This allows us to state an existence and uniqueness result.

For p € T?M, let us denote in the following, p := (2, y(V? y(?) its coordi-
nates in a local chart and, for X € X(T2M), X := (X xMi x@)1),

Let py = (2,5, 42 € T2M and Vi .= (VO vV v® e T, (T2M)
be arbitrary. There holds
Theorem 8. There exists a neighbourhood W of (p1,V1) € R and a real number

e > 0 so that, for any (po, Vo) € W, the system (22) has a unique solution

t=(p(t),V (1)

defined for t € (—e,e) and which satisfies the initial conditions
p(0) =po, V(0)=". (28)

Furthermore, the solution depends smoothly on the initial conditions (28).

In the conditions of Theorem 7, if ¢ is a geodesic of T?M, then ¢ = hy (c) is

also a geodesic. We are now able to state

Theorem 9. In the conditions of Theorem 7, for any po € T?>M there is ane > 0 so
that, for any tangent vector V € T,, (T>M), with ||V|| < e, there exists the geodesic

c:(=2,2) — T2M, t (x (t),y Vi (), y@i (t))

with the initial conditions
dc

= (0)

c(0) = po,
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Definition 10. The point ¢ (1) := (2 (1),yMi (1),y@? (1)) is called the exponential
of V€T, (T?M) in po and will be denoted by
c(1) =exp,, (V). (29)
Let us prove Theorem 9:
Let po € T?°M, ¢ > 0 and V € T,, (T?M) with ||V| < e be arbitrary.
Then, according to Theorem 8, for any p, € T>M and for any V € T3, (T2M)7 there

uniquely exists the geodesic ¢y : (—2¢2,2e2) — T?M with

dCV —

¢y (0) = Do, e 0)=V. (30)
We set
Do : = h% (Po)
— 1
V. o =—h" (V)eT;, (T°M) (31)
£9 =2 »Po
e < €1€9.

(V is the tangent vector field of h1 (c)).
c2

Because ||V|| < € and according to (31), we have
— 1
VI ==Vl <e;
€9

consequently, there uniquely exists the geodesic ¢y with the initial conditions (30).

Furthermore, if || < 2, then |eat] < 2e9, which allows us to define
c(t) = he, (cy (1) : (=2,2) — T?M,

then c¢ is obviously a geodesic and is uniquely defined by the above equality. Further-

more,

¢(0) = hey (e (0)) = hey (o) = (hey 0 bz ) (o) = P,

=
Let Z be the tangent vector field of ¢y then, Z (0) =V = éhl o (V); taking into
g9’
~1
account that hl = (hﬁ) , we get

€2

dc

R
& O = etz (D) = e g, (W0, () =V,

which completes the proof.
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It is worth mentioning that:

1. The exponential map in p € T?M is generally defined only for small values
of |[V||. If it exists, the value exp,, (V) is unique.
2. If ¢ is a geodesic of T?M with py = c¢(0), V = ¢(0), then

c(t) = exp, (tV). (32)

7. Example

Let (M, g) be a Riemannian manifold, (T2 M, 72, M), its second order tangent
bundle and T2M = T?M\{0}, i.e., T>?M without its null section. We consider the

following geometric objects on T2M:

e the canonical nonlinear connection N, [8], given by its dual coefficients

. 1 .
MY =y W8, MY —2{C(%¢ﬂw)+ﬂﬂﬂf

7 @’ )’
i i : (1yi 9 @i 9
where 73, = v}, (z) are the Christoffel symbols of g and C =y pre + 2y (‘3 EwENE
e the homogeneous N-lift of the metric g, defined by prof. Gh. Atanasiu,

2],

o . . 2
G = g;jdz’ @ da? + 7” o] 5 9ij 0y @ syW7 4 H o H

where [y = v/a5a Ty

o
e the canonical N-linear connection, DI" (N), [2], given by the coefficients

T 9ij (51/(2)Z ® 5y(2)1

:Ll:L’L:Z 7CY’L‘,:O
(OO)]k (10)]k (20)]k: ’y]k (.’E) 7k ’

(on

. 1 .
ci 774447(5 )4 giy® <1) CiL =200
(11)jk Hy(1)||2 ]yk kyl giky )jk} (11)]k:
Ci = Ci, = Ci_ =0.
©02)7F T azydk T 22y 9k

By a direct calculus, one proves that the conditions of Theorem 7 are accom-
plished; consequently, if T2M is endowed with these structures, the exponential map

can be defined on m
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BOOK REVIEWS

Nonlinear Evolution Equations and Related Topics —Dedicated to Philippe
Bénilan, W. Arendt, H. Brezis and M. Pierre Eds., Birkhduser, Basel-Boston-
Berlin, 2004, ISBN 3-7643-7107-2.

The volume is dedicated to Philippe Bénilan (October 6, 1940 - February 17,
2001), one of the most significant contributors to the theory of nonlinear evolution
equations. It contains research papers related to Bénilan’s work which cover a wide
range of nonlinear and linear equations and appeared in regular issues of the Journal of
Evolution Equations, Volumes 3 (2003) and 4 (2004). The main topics are Hamilton-
Jacobi equations, the porous medium equation, reaction diffusion systems, integro-
differential equations and viscoelasticity, maximal regularity for elliptic and parabolic
equations and the Ornstein-Uhlenbeck operator. Thus new developments of nonlinear
analysis are presented with applications to physics, mechanics, chemistry, biology and
others.

The volume starts with an Introduction presenting Bénilan’s main contribu-
tions to nonlinear analysis, a list of publications and a list of Ph.D.-Students of P.
Bénilan. Furthermore the contains are as follows: F. Hirsch, intrinsic metrics and Lip-
schitz functions; S. Benachour and P. Laurengot, Decay estimates for “anisotropic”
viscous Hamilton-Jacobi equations in R™; F. Andreu, V. Caselles and J.M. Mazén,
The Cauchy problem for linear growth functionals; J.L. Vazquez, Asymptotic be-
haviour for the porous medium equation posed in the whole space; W. Arendt and M.
Warma, Dirichlet and Neumann boundary conditions: what is in between?; S.B. An-
genent and D.G. Aronson, The focusing problem for the Eikonal equation; M. Pierre,

Weak solutions and supersolutions in L' for reaction-diffusion systems; S.-O. Londen,
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H. Petzeltova and J. Priiss, Global well-posedness and stability of a partial integro-
differential equation with applications to viscoelasticity; P. Bénilan, L.C. Evans and
R.F. Gariepy, On some singular limits of homogeneous semigroups; P. Bénilan and N.
Igbida, Singular limit of changing sign solutions of the porous medium equation; L.
Boccardo, On the regularizing effect of strongly increasing lower order terms; E. Bazh-
lekova and P. Clément, Global smooth solutions for a quasilinear fractional evolution
equation; H. Gajewski and I.V. Skrypnik, On the uniqueness of solutions for nonlin-
ear elliptic-parabolic equations; J. Carrillo, Conservation laws with discontinuous flux
functions and boundary condition; V.G. Jakubowski and P. Wittbold, Regularity of
solutions of nonlinear Volterra equations; J. Liang, R. Nagel and T.-J. Xiao, Nonau-
tonomous heat equation with generalized Wentzell boundary conditions; H. Heck and
M. Hieber, Maximal LP-regularity for elliptic operators with VMO-coefficients; W.M.
Ruess, Linearized stability for nonlinear evolution equations; D. Bothe, Nonlinear
evolutions with Carathéodory forcing; H. Amann, Linear parabolic equations with
singular potentials; L.. Boccardo, L. Orsina and A. Porretta, Some noncoercive para-
bolic equations with lower order terms in divergence form; E. Feireisl, On the motion
of rigid bodies in a viscous incompressible fluid; A. Henrot, Minimization problems for
eigenvalues of the Laplacian; A. Haraux, M.A. Jendoubi and O. Kavian, Rate of decay
to equilibrium in some semilinear parabolic equations; G. Da Prato, A new regularity
result for Ornstein-Uhlenbeck generators and applications; J. Droniou, T. Gallouét
and J. Vovelle, Global solution and smoothing effect for a non-local regularization of
a hyperbolic equation; M. Gokieli and F. Simondon, Convergence to equilibrium for
a parabolic problem with mixed boundary conditions in one space dimension; J. Es-
cher and G. Simonett, Analyticity of solutions to fully nonlinear parabolic evolution
equations on symmetric spaces; P. Bénilan and J.I. Diaz, Pointwise gradient esti-
mates of solutions to onedimensional nonlinear parabolic equations; M. Maliki and H.
Touré, Uniqueness of entropy solutions for nonlinear degenerate parabolic problems;
C.G. Gal, G. Ruiz Goldstein and J.A. Goldstein, Oscillatory boundary conditions
for acoustic wave equations; M. Marcus and L. Véron, Existence and uniqueness re-
sults for large solutions of general nonlinear elliptic equations; M.G. Crandall and
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P.-Y. Wang, Another way to say caloric; P. Bénilan and H. Brezis, Nonlinear prob-
lems related to the Thomas-Fermi equation; P. Bénilan and H. Labani, Existence of
attractors in L™ () for a class of reaction-diffusion systems; B.P. Andreianov and
F. Bouhsiss, Uniqueness for an elliptic-parabolic problem with Neumann boundary
condition.

The volume will interest all mathematicians working in nonlinear analysis
and its applications. It is a nice tribute to one of the most original mathematicians

with a deep and decisive impact on the theory of Evolution Equations.

Radu Precup

William Arveson, A Short Course on Spectral Theory, Graduate Texts in
Mathematics, Vol. 209, Springer, New York, Berlin, Heidelberg, 2002, x+135 pp.,
ISBN 0-387-95300-0.

The fundamental problem of operator theory is the calculation of spectra of
operators on infinite dimensional spaces, especially on Hilbert spaces. The theory
has deep applications to partial differential and integral operators, to mathematical
foundation of quantum mechanics, noncommutative K-theory and the classification
of simple C*-algebras.

The aim of the present book, based on a fifteen-week course taught for several
times by the author at the University of Berkeley, is to make the reader acquainted
with the basic results in spectral theory, needed for the study of more advanced topics
listed above. The prerequisites are elementary functional analysis and measure theory.

In the first chapter, Spectral theory and Banach algebras, the theory is de-
veloped in the natural framework of Banach algebras and includes spectral radius,
regular representation, the spectral permanence theorem, and an introduction to an-
alytic functional calculus. The abstract notions are illustrated on concrete examples
of operators.
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Ch. 2, Operators on Hilbert space, is concerned with spectral theory for op-
erators on Hilbert space and their C*-algebras, normal operators, compact operators,
spectral measures. For the sake of clarity the treatment is restricted to separable
Hilbert spaces. A good companion in reading this part could be another book by the
same author: An invitation to C*-algebras, Springer Verlag 1998.

Ch. 3, Asymptotics: Compact perturbations and Fredholm theory, contains
the Calkin algebra, Riesz theory for compact operators, Fredholm operators and Fred-
holm index.

In the last chapter, Ch. 4, Methods and applications, a variety of operator
theoretic methods are applied to determine the spectra of Toeplitz operators, the
results being definitive only for Toeplitz operators with continuous symbol. An ele-
mentary theory of Hardy spaces H? is also developed. The book ends with the study
of states on C*-algebras and a proof of Gelfand-Naimark representation theorem.

The book is a clear, short and thorough introduction to spectral theory,
accessible to first or second year graduate students. As the author points out in the
Preface: ”this material is the essential beginning for any serious student in modern
analysis”.

S. Cobzas

Frangois Bouchut, Nonlinear Stability of Finite Volume Methods for
Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources,

Birkhauser Verlag, Basel-Boston-Berlin, 2004, 135 pp., ISBN 3-7643-6665-6.

This very good monograph is devoted to finite volume methods for hyperbolic
systems of conservation laws. All examples included in the book are of gas dynamics
type. The author presents systematically sufficient conditions for a scheme to preserve
an invariant domain or to satisfy discrete entropy inequalities.

The book consists of two parts. The first part is concerned with the notion of
approximate Riemann solver and the relaxation method. Certain practical formulas
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are obtained in a new variant of HLLC solver for the gas dynamics system, taking
into account contact discontinuities, entropy conditions, and including vacuum.

The second part of the book is devoted to the numerical treatment of source
terms that can appear additionally in hyperbolic conservation laws, with the extension
of the notions of invariant domains, entropy inequalities, and approximate Riemann
solvers. The author compares several methods that have been developed in the lit-
erature especially for the Saint Venant problem, concerning the positivity and the
ability to treat resonant data. In particular, the hydrostatic reconstruction method
is presented in details.

The book is clearly written, with rigorous proofs, in a pleasant and accessible
style. It is warmly recommended as a useful guide for all engineers and researchers
interested in the nonlinear stability of finite volume methods for hyperbolic systems

of conservation laws.

Mirela Kohr

Calin, O., Chang, D.-C., Geometric Mechanics on Riemannian Mani-
folds. Applications to Partial Differential Equations, Birkhduser (Applied
and Numerical Harmonic Analysis), 2004, Hardback, 278 pp., ISBN 0-8176-4354-0.

Unlike other parts of mathematics, in the theory of partial differential equa-
tions it is quite difficult to find results which apply to any equation or, at least, to
a large class of equations. Instead, in this theory one studies individual equations,
such as, for instance, the heat equation, the Laplace or the Poisson equations. It
turns out that many equations are related, in a way or another, to mechanics and,
as such, the geometrical approaches to mechanics can be used to investigate them, as
alternative to the classical methods, such that that of the integral transformations.
It is the aim of this monograph to give an introduction to this geometric approach to
some important partial differential equations.
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The book starts with an outline of the fundamentals of differential geometry,
examines the Laplace operators on Riemannian manifolds and proceeds to discuss the
main approaches to mechanics on Riemannian manifolds (Lagrangian, Hamiltonian
and Hamilton-Jacobi). As important examples, there are discussed the harmonic
maps and, in particular, the minimal hypersurfaces. It follows a analysis of radially
symmetric spaces and a discussion of the fundamental solutions for heat operators
with potentials and of elliptic operators on this kind of spaces.

The book ends with a chapter devoted to special classes of curves that the
authors call “mechanical curves” and which appear as solution to different mechanical
problems (for instance curves that minimize a potential, cycloids, astroids a.o.).

The differential operators which are treated in the book are among the most
important, not only in the theory of partial differential equation, but they appear
naturally in geometry, mechanics or theoretical physics (especially quantum mechan-
ics). Thus, the book should be of interest for anyone working in these fields, from
advanced undergraduate students to experts.

The book is written in a very pedagogical manner and does not assume many
prerequisites, therefore it is quite appropriate to be used for special courses or for self-
study. I have to mention that all chapter ends with a number of well-chosen exercises
that will improve the understanding of the material and, also, that there are a lot of

worked examples that will serve the same purpose.

Paul Blaga

Andrew J. Kurdila, Michael Zabarankin, Convex Functional Analysis,
Systems & Control: Foundations & Applications, Birkhduser Verlag, Boston-Basel-
Berlin 2005, xiv+228 pp, ISBN-10:3-7643-2198-9.

The aim of the present book is to make the students in applied mathemat-
ics and engineering acquainted with the basic principles and tools of functional and
convex analysis, as required by modern treatments of some problems in variational
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calculus, mechanics and control. The emphasis is not on foundation and proofs, but
rather on examples and applications. For this reason some results are given with full
proofs, while for others one gives only references for detailed presentation. A good
idea on the content of the book is done by the headings of its chapters: 1. Classical
abstract spaces in functional analysis; 2. Linear functionals and linear operators
(including a complete proof of the open mapping theorem and of Riesz’s representa-
tion theorem for the dual of C[a,b]); 3. Common function spaces in applications (LP
and Sobolev spaces of scalar or Banach-valued functions); 4. Differential calculus
in normed vector spaces (containing many examples of differential operators); 5.
Minimization of functionals (including the Lagrange multipliers rule in constrained
differential optimization, deduced via Ljusternik’s theorem); 6. Convez function-
als (including a section on ordered vector spaces and convex programming in such
spaces); 7. Lower semi-continuous functionals.

The bibliography contains a list of basic textbooks and monographs covering
the topics the book is dealing with.

The book is useful for students in engineering interested in a quick and ac-
cessible presentation of basic tools of functional analysis needed for applications, as
well as for students in applied mathematics interested in possible applications of these

disciplines.

S. Cobzag

Jon P. Davis, Methods of Applied Mathematics with a MATLAB Overview,
Birkh&user Verlag, Boston-Basel-Berlin 2004, ISBN 0-8176-4331-1.

This book is devoted to the application of Fourier Analysis. The author
mixed in a remarkable way theoretical results and applications illustrating the results.
Flexibility of presentation (increasing and decreasing level of rigor, accessibility) is a
key feature.

The first chapter is an introductory one.
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An introduction to Fourier series based mainly on inner product spaces is
given in Chapter 2.

The third chapter treats elementary boundary value problems. Besides ap-
plications of the Fourier series, it presents standard boundary value problem models
and their discrete analogous problems.

Higher-dimensional, non rectangular problems is the topic of the fourth chap-
ter. These includes Sturm-Liouville Theory, series solutions, Bessel equations and
nonhomogeneous boundary value problems.

Chapter 5 is an introduction to functions of complex variable. Here ones
discuss basic results and their applications to problems of fluid flow and transform
inversion.

The sixth chapter introduces Laplace transform and their applications to
ordinary differential equations, circuit analysis and input-output analysis of linear
systems.

Continuous Fourier transform is the topic of seventh chapter. Also applica-
tions of Fourier transform to ordinary differential equations, integral equations, partial
differential equations are included here.

Chapter 8 is on discrete variable transforms. It treats discrete variable mod-
els, z-transform, discrete and fast Fourier transform and their properties. Computa-
tional aspects of fast Fourier transform are also pointed.

The last chapter ” Additional Topics” introduces methods that are special-
ization of those treated previously such as two-sided and Walsh transform, wavelets
analysis and integral transform.

The book contains extensive examples, presented in an intuitive way with high
quality figure (some of them quite spectacular), useful MATLAB codes. MATLAB
exercises and routines are well integrated within the text, and a concise introduction
into MATLAB is given in an appendix. The emphasis is on program’s numerical
and graphical capabilities and its applications, not on its syntax. A large variety of
problems graded from difficulty point of view. Applications are modern and up to
date. Reach and comprehensive references are attached to each chapter.
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Intended audience: especially students in pure and applied mathematics,
physics and computer science, but also useful to applied mathematicians, engineers

and computer scientists interested in applications of Fourier analysis.

Radu Trimbitas

Cabral, Hildeberto, Diacu, Florin Classical and Celestial Mechanics (The
Recife Lectures), Princeton University Press, 2002, Hardcover, 385 pages, ISBN
0-691-05022-8.

The University of Pernambuco (Brazil) invited, between 1991 and 1999, sev-
eral international experts to lecture in Recife (Brazil) on different topics in classical or
celestial mechanics. The editors managed to convince some of the lecturer to prepare
an elaborate version of their lecture and gathered everything into a book: this one.

Due to the nature of the book, it doesn’t have a unitary character (and it is not
suppose to have!). The subjects treated include: “classical” celestial mechanics (the
motion of the Moon (Dieter Schmidt) and the two-body problem (Alain Albouy)), the
theory of equilibria and applications to celestial mechanics (central configurations and
relative equilibria for the N-body problem (Dieter Schmidt), normal forms of Hamil-
tonian systems and stability of equilibria (Hildeberto Cabral)), geometrical methods
in classical mechanics (Mark Levi, and Jair Koiller et al.), topological methods in
celestial mechanics (Poincaré’s compactification (Ernesto Pérez-Chavela)), singulari-
ties of the N-body problem (Florin Diacu) and bifurcations from families of periodic
solutions (Jack Hale and Plécido Téboas).

Modern classical and celestial mechanics (and, especially, their mathematical
tools) represent a vast field which is impossible to be described completely in a single
monograph or textbook, not to mention the fact that there is no individual researcher
who can call himself an expert in all the particular subjects. The summer schools
are ideal opportunities for the discussion of the latest developments from a field or to
describe a classical field from anew perspective. Unfortunately, the lectures from the
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summer schools are only rarely published and, besides, it is only very rarely possible
to gather in the same place a large number of very good experts in a field. The editors
of this book did a far better job. They managed to gather the lectures (most of them
enlarged and polished) from several “schools” (or series of lectures, if you prefer) and,
as such, they give the reader the possibility to interact with the science of some of
the worldwide best experts in classical and celestial mechanics. This unique book
(which, as argued above, is more a collection of graduate “minitextbooks” than a
proceedings of a particular school) would be extremely useful especially for graduate
students interested in the field, but, due to the wealth of the subjects treated, the
researchers will also find, I am absolutely sure, many new results or new perspective
on the classical material.

I would like to say, to finish, that the book benefits of a foreword written by

Donald Saari.

Cristina Blaga

Bolsinov, A.V., Integrable Hamiltonian Systems: Geometry, Topology,
Classification, Chapman and Hall/CRC, 2004, 730 pp., Hardback, ISBN 0-415-
29805-9.

The field of integrable systems is a very rich field that gave rise to several im-
portant developments in mathematics in the last decades. It has strong relations with
domain as: symplectic and Poisson geometry, quantum groups, algebraic geometry
and even quantum field theory.

This new book on the subject approaches a fundamental problem: that of
the classification of integrable systems. Many dynamical systems (integrable or not)
are described by means of a system of differential equations. Even if these systems
are different from one dynamical system to another, their solutions do have, some-
times, similarities, they “behave” analogously, in a certain sense. It is the aim of the
classification theory to spot such similarities and to exploit them.
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In this book three kind of equivalence relations between dynamical systems

are examined:

- conjugacy, which, loosely, means that the systems can be transformed on
into the other through a change of variables;

- orbital equivalence, which means that between the manifolds on which the
dynamical systems are defined there is a diffeomorphism that turns the
trajectories of a systems into the the trajectories of the other (although
the parameters along the trajectories are not necessarily preserved);

- Liouwville equivalence (only for integrable systems): two integrable systems
are said to be equivalent in the sense of Liouville if their phase spaces are

foliated in the same manner into Liouville tori.

Certainly, it is hardly possible to solve the classifications problem for arbitrary
Hamiltonian dynamical systems, even if they are integrable. Therefore, this book
focuses on a particular, but very important class of systems: nondegenerate integrable
Hamiltonian systems with two degrees of freedom. The first half of the book (the
first 9 chapters) are devoted to foundational material on symplectic and Poisson
geometry, followed by a discussion of the three equivalence relation and the solution
of the Liouville and orbital classification problem for the aforementioned class of
dynamical systems. The solution is based on a new approach to the qualitative
theory of dynamical systems invented by A.T. Fomenko and developed by him and
its collaborators in a series of papers.

The remaining of the book is devoted to applications of the classification the-
ory to specific integrable Hamiltonian systems coming from mechanics and geometry.
Two systems are considered more important and are treated in details: the integrable
cases of the equation of motion for rigid bodies and the integrable geodesic flows of
Riemannian metrics on two-dimensional surfaces.

The book is largely based on the works of the two authors (two well-known
experts in the field) and of their collaborators and it is addressed, mainly, to re-
searchers in dynamical systems, geometry and mechanics, managing, successfully, to
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fill a gap in the existing literature (in fact much of the material was never published
into a book). However, the exposition is cursive and understandable, there is enough
foundational material and there are enough worked examples, which makes it appro-
priate also for graduate students, both for self-study or as a textbook for an advanced

course.

Paul Blaga

Giovanni P. Galdi, John G. Heywood, Rolf Rannacher (Editors), Con-
tributions to Current Challenges in Mathematical Fluid Mechanics,

Birkhauser Verlag, Basel-Boston-Berlin, 2004, 151 pp., ISBN 3-7643-7104-8.

This volume consists of five very good research articles, each of them being
dedicated to an important topic in the mathematical theory of the Navier-Stokes
equations, for compressible and incompressible fluids. The results presented in this
volume are all new and represent a key contribution to this topic, with particular
interest to turbulence modelling, regularity of solutions to the initial-value problem,
flow in region with an unbounded boundary and compressible flow.

The first article of this volume, due to Andrei Biryuk, deals with the Cauchy
problem for a multidimensional Burgers type equation with periodic boundary con-
ditions. The author obtains upper and lower bounds for derivatives of solutions for
this equation, which are expressed in terms of powers of the viscosity. In addition,
it is discussed how these bounds relate to the Kolmogorov-Obukhov spectral law.
Moreover, these estimates are used to obtain bounds for derivatives of solutions to
the Navier-Stokes system.

The second article, due to Dongho Chae and Jihoon Lee, is concerned with
the problem of global well-posedness stability in the scale invariant Besov spaces for
the modified 3D Navier-Stokes equations with the dissipation term, —Awu replaced by
(=A)*u for 0 < oo < 5/4. The authors prove the unique existence of a global-in -time
solution in B;/lz_ga for initial data having small B;/f_ga norm for o € [1/2,5/4).
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In the next article the authors A. Dunca, V. John and W.J. Layton deal with
the space averaged Navier-Stokes equations, which are the basic equations for the
large eddy simulation of turbulent flows. In deriving these equations it is understood
that differentiation and averaging operations can be interchanged. This procedure
introduces a commutation error term that is typically ignored. However, in this
paper the authors furnish a characterization of this term to be neglected. In fact, the
authors show that the commutation error is asymptotically negligible in LP(R?) if and
only if the fluid and the boundary exert exactly zero force on each other. In addition,
the authors study the influence of the commutation error on the energy balance of
the filtered equations.

The forth article of Toshiaki Hishida deals with the nonstationary Stokes
and Navier-Stokes flows in aperture domains Q@ C R™, n > 3. The authors proves
L2—L" estimates of the Stokes semigroup. Then the author applies these estimates to
the Navier-Stokes initial value problem, and obtains the global existence of a unique
strong solution, which satisfies the vanishing flux condition through the aperture and
some sharp decay properties as t — 0o, when the initial velocity is sufficiently small
in the space L".

The last article of T. Leonavicicene and K. Pileckas is concerned with steady
compressible Navier-Stokes equations with zero velocity conditions at infinity in a
three dimensional exterior domain. They consider the case of small perturbations of
large potential forces. To solve this problem the authors apply a decomposition scheme
and decompose the nonlinear problem into three linear problems of the following types:
Neumann-type, modified Stokes problem and transport equation. Then they solve
the resulted linear problems in weighted function spaces with detached asymptotics.
Finally they prove certain results related to existence, uniqueness and asymptotics
for the linearized problem and for the nonlinear problem.

Each paper from this volume is clearly written, with rigorous proofs, in a
pleasant and accessible style. This voume is warmly recommended to all researchers
interested in modern topics of the mathematical theory of fluid mechanics.

Mirela Kohr
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Ram P. Kanwal, Generalized functions. Theory and applications, 3rd

revised ed. Boston, MA: Birkh&user, 2004, xvii+476 pp., ISBN 0-8176-4343-5.

This book on generalized functions is suitable for physicist, engineers and
applied mathematicians. The author presents the notion of generalized functions ,
their properties and their applications for solving ordinary differential equations and
partial differential equations.

Chapters 1 to 8 contain a concise definition of distributions and their standard
properties are proved. Chapters 9 to 15 deal with applications to ordinary differential
equations, partial differential equations, boundary value problems, wave propagation,
linear systems, probability and random processes, economics, microlocal theory.

The author demonstrate through various examples that familiarity with the
generalizes functions is very helpful for students in mathematics, physical sciences
and technology. The proposed exercises are very good for better understanding of
notions and properties presented in the chapters. The book contains new topics and

important features:

e Examination of the Poisson Summation Formula and the concepts of dif-
ferential forms and the delta distribution on wave fronts.

e Enhaced presentation of the Schrédinger, Klein-Gordon, Helmholtz, heat
and wave equations.

e Exposition driven by additional examples and exercises.

Marcel-Adrian Serban

Stephen Lynch, Dynamical Systems with Applications Using MATLAB,
Birkhauser Verlag, Boston-Basel-Berlin 2004, xviii+462 pp, ISBN 0-8176-4321-4.

The book is a good introduction to dynamical systems theory. In the first
part real and complex discrete dynamical systems are considered, with examples taken
from population dynamics, economics, biology, nonlinear optics, neural networks and

110



BOOK REVIEWS

electromagnetic waves. In the second part of the text, differential equations are used
to model examples taken from mechanical systems, chemical kinetics, electric circuits,
interacting species and economics. The theory and applications are presented with
the aid of the MATLAB package. Throughout the book, MATLAB is viewed as a
tool for solving systems or producing exciting graphics. The author suggests that
the reader should save the relevant example programs. These programs can then
be edited accordingly when attempting the exercises at the end of each chapter.
The text is aimed at graduate students and working scientists in various branches of
applied mathematics, natural sciences and engineering. The material is intelligible
to readers with a general mathematical background. Fine details and theorems with
proof are kept at a minimum. This book is informed by the research interests of
the author which are nonlinear ordinary differential equations, nonlinear optics and
fractals. Some chapters include recently published research articles and provide a
useful resource for open problems in nonlinear dynamical systems. An efficient tutorial
guide to MATLAB is included. The knowledge of a computer language would be
beneficial but not essential. The MATLAB programs are kept as simple as possible
and the author’s experience has shown that this method of teaching using MATLAB
works well with computer laboratory class of small sizes.

I recommend ”Dynamical Systems with Applications using MATLAB” as a
good handbook for a diverse readership, for graduates and professionals in mathe-
matics, physics, science and engineering.

Damian Trif
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