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MATHEMATICA

1
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LI, Number 1, March 2006

ON EDGE-CONNECTIVITY OF INSERTED GRAPHS

M. R. ADHIKARI, AND L. K. PRAMANIK

Abstract. The aim of this paper is to estimate the edge-connectivity of

the inserted graph with the help of the degree of vertices of the inserted

graph and the edge-connectivity of the original graph.

1. Introduction

Throughout the paper we consider ordinary graphs ( finite, undirected, with

no loops or multiple edges) and G denotes a graph with vertex set VG and edge set

EG. Each member of VG ∪ EG will be called an element of G. A graph G is called

trivial graph if it has a vertex set with single vertex and a null edge set. If e be an

edge of a graph G with end vertices x and y, then we denote the edge e, by e = xy.

We introduce the notions of box graph B(G) and inserted graph I(G) of a

non-trivial graph G in [3]. It is an elementary basic fact that the inserted graph I(G)

of a non-trivial connected graph G in connected. The edge-connectivity λ(G) of a

graph G is the least number of edges whose removal disconnects G; and a set of λ(G)

edges satisfying this condition is called a minimal separating edge set of G. Clearly,

G is m-edge-connected if and only if λ(G) ≥ m.

In §2, we recall some definitions and results which will be used in §3 and also

give an example of edge-connectivity of a graph G and its inserted graph I(G).

In [1], we investigate the relations between the connectivity and edge-

connectivity of a graph and its inserted graph. In §3 of this paper we obtain more
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M. R. ADHIKARI, AND L. K. PRAMANIK

results about edge-connectivity and give an alternative proof of some corollaries stated

in [1].

2. Preliminaries

Definition 2.1. [3] A graph can be constructed by inserting a new vertex on each

edge of G, the resulting graph is called Box graph of G, denoted by B(G).

Definition 2.2. [3] Let IG be the set of all inserted vertices in B(G). A graph I(G)

with vertex set IG is called the inserted graph in which any two vertices are adjacent

if they are joined by a path of length two in B(G).

λ(G) = 1
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λ(I(G)) = 2

⊗ ⊗
I(G) : ⊗

⊗ ⊗

Figure 1 : The edge - connectivity of a graph and its inserted graph

These concepts are illustrated for a graph G and its inserted graph I(G) in the Fig.1.

Here
⊗

marked vertices are the newly inserted vertices.

Now we recall the following theorems:

Theorem 2.3. [4] A graph G is m-edge-connected if and only if for every non-empty

proper subset A of the vertex set VG of the graph G, the number of edges joining A

and VG −A is at least m.

The next observation is due to Whitney [5].

Theorem 2.4. For any graph G, λ(G) ≤ min deg G.

The order of a graph is the cardinality of its vertex set. If G
′

is a subgraph

of G and VG′ , VG are the vertex sets of G
′

and G respectively, then the degree of
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ON EDGE-CONNECTIVITY OF INSERTED GRAPHS

G
′

in G is the number of all edges of G joining vertices in VG′ with the vertices in

VG − VG′ .

3. Edge-connectivity of I(G)

To begin with let us prove the following lemma.

Lemma 3.1. If

λ(I(G)) < λ(G)[
λ(G) + 1

2
],

then there exists a connected subgraph of G of order 2 and degree λ(I(G) in G.

Proof: Let Y denote any nonempty proper subset of the edge set EG of G.

Thus Y induces a nonempty proper subset Y of the vertex set VI(G). For each vertex

u in G, denote the number of edges of Y incident with u by δ(u) and the number

of edges of EG − Y incident with u by δ
′
(u); and set W = {u; δ(u) > 0, δ

′
(u) > 0}.

Suppose that each connected subgraph of G with two vertices has degree at least

λ(I(G)) + 1 in G. We shall show that∑
u∈W

δ(u)δ
′
(u) ≥ λ(I(G)) + 1.

First, suppose that no two vertices of W are adjacent. Now from the Theorem

2.4, deg u ≥ λ(G) for every vertex u ∈ W . Thus one of the numbers δ(u) and δ
′
(u)

must be [λ(G)+1
2 ]. Consequently,∑

u∈W

δ(u)δ
′
(u) ≥ [

λ(G) + 1
2

]
∑
u∈W

δu(u),

where δu means δ or δ
′
. From the λ(G)-edge-connectivity of G it follows that∑

u∈W

δu(u) ≥ λ(G),

and hence ∑
u∈W

δ(u)δ
′
(u) ≥ λ(G)[

λ(G) + 1
2

] > λ(I(G)).

Suppose now that two adjacent vertices, say v and w, belonging to W . We

assume that the degree of the subgraph generated by v and w is at least λ(I(G)) + 1
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in G, i.e.

δ(v) + δ
′
(v) + δ(w) + δ

′
(w) ≥ λ(I(G)) + 3.

Since for any natural numbers N1 and N2, N1N2 ≥ N1+ N2 − 1, we may write

∑
u∈W

δ(u)δ
′
(u) ≥ δ(v)δ

′
(v)+δ(w)δ

′
(w)≥ δ(v)+δ

′
(v)−1+δ(w)+δ

′
(w)−1 ≥ λ(I(G))+1.

By application of Theorem 2.3, the inequality

∑
u∈W

δ(u)δ
′
(u) ≥ λ(I(G)) + 1

proved above for a set W derived from an arbitrary proper subset Y of VI(G) shows

that I(G) is (λ(I(G)) + 1)-edge-connected, which is by definition impossible.

Therefore there exist a connected subgraph G
′
of G of order 2 and of degree

at most λ(I(G)); if this degree becomes smaller than λ(I(G)), then the corresponding

vertex of I(G) have degree smaller than λ(I(G)), contradicting the Theorem 2.4.

Hence G
′
has precisely the degree λ(I(G)) in G.

We now show that Corollaries 3.5 and 3.6 of [1] follows from the above Lemma.

Corollary 3.2. [1] λ(I(G)) ≥ 2λ(G)− 2.

Proof: We prove the corollary by the method of contradiction.

Suppose that λ(I(G)) < 2λ(G)− 2. Since

2λ(G)− 2 ≤ λ(G)[
λ(G)) + 1

2
],

Lemma 3.1 implies the existence of a connected subgraph G
′

of G with two vertices

of degree λ(I(G)) in G; since this degree is smaller than 2λ(G)− 2, the degree of one

of the vertices of G
′
is at most λ(G)− 1, contradicting Theorem 2.4.

Corollary 3.3. [1] If λ(G) 6= 2, then λ(I(G)) = 2λ(G)− 2 if and only if there exist

two adjacent vertices in G with degree λ(G).

Proof: For λ(G) 6= 2,

2λ(G)− 2 < λ(G)[
λ(G)) + 1

2
].
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Hence by using Lemma 3.1, it follows that if

λ(I(G)) = 2λ(G)− 2,

then there exist two adjacent vertices v, w in G so that

deg v + deg w = λ(I(G)) + 2.

Since both v and w have degree ≥ λ(G) and

deg v + deg w = 2λ(G),

it follows immediately by Theorem 2.4 that

deg v = deg w = λ(G).

Conversely, if v and w are adjacent vertices of G and

deg v = deg w = λ(G),

then the vertex in I(G) corresponding to the edge joining v and w has degree 2λ(G)−2.

Hence by Theorem 2.4,

λ(I(G)) ≤ 2λ(G)− 2.

Now by Corollary 3.2, it follows that

λ(I(G)) = 2λ(G)− 2.

Corollary 3.4. If λ(G) ≥ 3, then λ(I(G)) = 2λ(G)−1 only if there exist two adjacent

vertices in G, one of degree λ(G) and the other of degree λ(G) + 1 .

Proof: Proof is similar to that of Corollary 3.3

This procedure can be continued finitely as the graph is finite. Now we prove

the following significant theorem.

Theorem 3.5. If

min deg I(G) ≤ λ(G)[
λ(G) + 1

2
],

then λ(I(G)) = min deg I(G). Also if

min deg I(G) ≥ λ(G)[
λ(G) + 1

2
],

7
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then

λ(G)[
λ(G) + 1

2
] ≤ λ(I(G)) ≤ min deg I(G).

Proof: Theorem 2.4 implies λ(I(G)) ≤ min deg I(G). Now for the case

min deg I(G) ≤ λ(G)[
λ(G) + 1

2
]

suppose that λ(I(G)) < min deg I(G). Then Lemma 3.1 asserts that there exists a

connected subgraph of order 2 and degree λ(I(G)) in G; this means that there is a

vertex in I(G) of degree λ(I(G)), violating the assumed inequality. Consequently,

λ(I(G)) = min deg I(G).

For the case

min deg I(G) ≥ λ(G)[
λ(G) + 1

2
],

it remains to be shown that

λ(G)[
λ(G) + 1

2
] ≤ λ(I(G)).

Suppose on the contrary that

λ(G)[
λ(G) + 1

2
] > λ(I(G)).

Then by Lemma 3.1 some vertex in I(G) has degree λ(I(G)). Hence

min deg I(G) ≤ λ(I(G)).

Thus it follows that

λ(G)[
λ(G) + 1

2
] ≤ λ(I(G)),

contradicting the inequality assumed above.

8



ON EDGE-CONNECTIVITY OF INSERTED GRAPHS

References

[1] Adhikari, M.R. and Pramanik, L.K., The Connectivity of Inserted Graphs, J. Chung.

Math. Soc, 18 (1), 2005, 61-68.

[2] Adhikari, M.R., Pramanik, L.K. and Parui, S., On Planar Graphs, Rev. Bull. Cal. Math.

Soc 12, 2004, 119-122.

[3] Adhikari, M.R., Pramanik, L.K. and Parui, S., On Box Graph and its Square, Commu-

nicated.

[4] Ore, O., Theory of graphs, Amer. Math. Soc. Providence, R.I., 1962.

[5] Whitney, H., Congruent graphs and the connectivity of graphs, Amer. J. Math. 54(1932),

150-168.

Department of Pure Mathematics, University of Calcutta,

35, Ballygunge Circular Road, Kolkata-700019

E-mail address: laxmikanta2002@yahoo.co.in, cms@cal2.vsnl.net.in

9
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APPROXIMATE FIXED POINT THEOREMS

MĂDĂLINA BERINDE

Abstract. Two general lemmas are given regarding ε−fixed points of op-

erators on metric spaces. Using these results we prove qualitative and

quantitative theorems for various types of well known generalized contrac-

tions on metric spaces.

1. Introduction

There are plenty of problems in applied mathematics which can be solved

by means of fixed point theory. Still, practice proves that in many real situations

an approximate solution is more than sufficient, so the existence of fixed points is

not strictly required, but that of ”nearly” fixed points. Another type of practical

situations that lead to this approximation is when the conditions that have to be

imposed in order to guarantee the existence of fixed points are far too strong for the

real problem one has to solve.

It is then natural to introduce the concepts of ε−fixed point ( or approximate

fixed point), which is a ”nearly” fixed point, and that of function with the approximate

fixed point property and to formulate a proper theory regarding them.

In this paper, starting from the article of Tijs, Torre and Branzei [10], we

study some well known types of operators on metric spaces, and we give some quali-

tative and quantitative results regarding ε−fixed points of such operators.

We have to mention that we consider operators on metric spaces, not on

complete metric spaces, the usual framework for fixed point problems. Weakening

Received by the editors: 05.10.2005.
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the conditions by giving up the completeness of the space we can still guarantee the

existence of ε−fixed points for various types of operators.

We begin with two lemmas. The first one is the qualitative result that indi-

cates under which conditions the operator f has the approximate fixed point property.

This will be used in order to prove all the results given in the second section. The

second lemma is the quantitative result which will be used in order to prove all the

results given in the third section.

Let (X, d) be a metric space.

Definition 1.1. Let f : X → X, ε > 0, x0 ∈ X. Then x0 is an ε−fixed point

(approximate fixed point) of f if

d(f(x0), x0) < ε.

Remark 1.1. As many authors we prefer the terminology with ε, as being more

suggestive throughout the paper.

Remark 1.2. In this paper we will denote the set of all ε−fixed points of f, for a

given ε, by:

Fε(f) = {x ∈ X | x is an ε− fixed point of f}.

Definition 1.2. Let f : X → X. Then f has the approximate fixed point prop-

erty (a.f.p.p.) if

∀ε > 0, Fε(f) 6= ∅.

The following result guarantees the existence of ε−fixed points for an operator

on a metric space.

Lemma 1.1. Let (X, d) be a metric space, f : X → X such that f is asymptotic

regular, i.e.,

d(fn(x), fn+1(x)) → 0 as n →∞, ∀x ∈ X.

Then f has the approximate fixed point property.

Proof. Let x0 ∈ X. Then:

d(fn(x0), fn+1(x0)) → 0 as n →∞ ⇔

12
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∀ε > 0, ∃n0(ε) ∈ N∗ such that ∀n ≥ n0(ε), d(fn(x0), fn+1(x0)) < ε ⇔

∀ε > 0, ∃n0(ε) ∈ N∗ such that ∀n ≥ n0(ε), d(fn(x0), f(fn(x0))) < ε .

Denoting

y0 = fn(x0),

it follows that:

∀ε > 0, ∃y0 ∈ X such that d(y0, f(y0)) < ε ,

so for each ε > 0 there exists an ε−fixed point of f in X, namely y0.

This means exactly that f has the approximate fixed point property.

Remark 1.3. The following result (see [5]) gives conditions under which the existence

of fixed points for a given mapping is equivalent to that of approximate fixed points.

Proposition.: Let A be a closed subset of a metric space (X, d) and f :

A → X a compact map. Then f has a fixed point if and only if it has the

approximate fixed point property.

In the following, by δ(A) for a set A 6= ∅ we will understand the diameter

of the set A, i.e.,

δ(A) = sup{d(x, y) | x, y ∈ A}.

Lemma 1.2. Let (X, d) be a metric space, f : X → X an operator and ε > 0. We

assume that:

ı): Fε(f) 6= ∅;

ıı): ∀η > 0, ∃ϕ(η) > 0 such that

d(x, y)− d(f(x), f(y)) ≤ η ⇒ d(x, y) ≤ ϕ(η), ∀x, y ∈ Fε(f).

Then:

δ(Fε(f)) ≤ ϕ(2ε).

Proof. Let ε > 0 and x, y ∈ Fε(f). Then:

d(x, f(x)) < ε, d(y, f(y)) < ε.

We can write:

d(x, y) ≤ d(x, f(x)) + d(f(x), f(y)) + d(y, f(y)) ≤ d(f(x), f(y)) + 2ε

13
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⇒ d(x, y)− d(f(x), f(y)) ≤ 2ε.

Now by (ii) it follows that

d(x, y) ≤ ϕ(2ε),

so

δ(Fε(f)) ≤ ϕ(2ε).

Remark 1.4. Condition (i) in Lemma 1.2 can be replaced by the asymptotic regularity

condition, as, by Lemma 1.1, the latter ensures (i). So Lemma 1.2 can be given in

the form:

Lemma 1.3. Let (X, d) be a metric space and f : X → X such that for ε > 0 the

following hold:

ı): d(fn(x), fn+1(x)) → 0 as n →∞, ∀x ∈ X;

ıı): ∀η > 0, ∃ϕ(η) > 0 such that

d(x, y)− d(f(x), f(y)) ≤ η ⇒ d(x, y) ≤ ϕ(η), ∀x, y ∈ Fε(f).

Then:

δ(Fε(f)) ≤ ϕ(2ε).

2. Qualitative results for operators on metric spaces

In this section we will formulate and prove, using Lemma 1.1, qualitative

results for various types of operators on a metric space, results that establish the

conditions under which the mappings considered have the approximate fixed point

property.

Let (X, d) be a metric space. Note that the completeness of the space is not

required, as in fixed point theorems.

Definition 2.1. ([8]) A mapping f : X → X is an a-contraction if

∃a ∈]0, 1[ such that d(f(x), f(y) ≤ ad(x, y), ∀x, y ∈ X.

14
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Theorem 2.1. Let (X, d) be a metric space and f : X → X an a-contraction.

Then:

∀ε > 0, Fε(f) 6= ∅.

Proof. Let ε > 0, x ∈ X.

d(fn(x), fn+1(x)) = d(f(fn−1(x)), f(fn(x))) ≤

≤ ad(fn−1(x), fn(x)) ≤ ... ≤ and(x, f(x))

But a ∈]0, 1[ ⇒

d(fn(x), fn+1(x)) → 0, as n →∞, ∀x ∈ X.

Now by Lemma 1.1 it follows that Fε(f) 6= ∅, ∀ε > 0.

Remark 2.1. Theorem 2.1 is a result presented and proved, by means of a different

method, in [10].

Any operator satisfying the condition in Definition 2.1 is Lipschitz and im-

plicitly continuous, which means a relatively small class of mappings. Still, the theory

of fixed points and consequently ε−fixed points deals also with non-continuous map-

pings. In 1968, Kannan (see [6],[2]) proved a fixed point theorem for operators which

need not be continuous, by considering the following contraction condition.

Definition 2.2. ([6],[8]) A mapping f : X → X is a Kannan operator if

∃a ∈]0,
1
2
[ such that d(f(x), f(y)) ≤ a[d(x, f(x)) + d(y, f(y))],∀x, y ∈ X.

Theorem 2.2. Let (X, d) be a metric space and f : X → X a Kannan operator.

Then:

∀ε > 0, Fε(f) 6= ∅.

Proof. Let ε > 0 and x ∈ X.

d(fn(x), fn+1(x)) = d(f(fn−1(x)), f(fn(x))) ≤

≤ a[d(fn−1(x), f(fn−1(x))) + d(fn(x), f(fn(x)))] =

= ad(fn−1(x), fn(x)) + ad(fn(x), fn+1(x))

15
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⇒ (1− a)d(fn(x), fn+1(x)) ≤ ad(fn−1(x), fn(x)) ⇒

d(fn(x), fn+1(x)) ≤ a

1− a
d(fn−1(x), fn(x)) ≤ ... ≤ a1− and(x, f(x))

But a ∈]0, 1
2 [ ⇒ a

1− a
∈]0, 1[ ⇒

d(fn(x), fn+1(x)) → 0, as n →∞, ∀x ∈ X.

Now by Lemma1.1 it follows that Fε(f) 6= ∅,∀ε > 0.

In 1972, Chatterjea considered another contraction condition, similar to that

of Kannan but independent of this one, and which again does not impose the conti-

nuity of the operator.

Definition 2.3. ([4],[8]) A mapping f : X → X is a Chatterjea operator if

∃a ∈]0,
1
2
[ such that d(f(x), f(y)) ≤ a[d(x, f(y)) + d(y, f(x))],∀x, y ∈ X.

Theorem 2.3. Let (X, d) be a metric space and f : X → X a Chatterjea operator.

Then:

∀ε > 0, Fε(f) 6= ∅.

Proof. Let ε > 0 and x ∈ X.

d(fn(x), fn+1(x)) = d(f(fn−1(x)), f(fn(x))) ≤

≤ a[d(fn−1(x), f(fn(x))) + d(fn(x), f(fn−1(x)))] =

= a[d(fn−1(x), fn+1(x)) + d(fn(x), fn(x))] = ad(fn−1(x), fn+1(x))

On the other hand

d(fn−1(x), fn+1(x)) ≤ d(fn−1(x), fn(x)) + d(fn(x), fn+1(x)) ⇒

(1− a)d(fn(x), fn+1(x)) ≤ ad(fn−1(x), fn(x)) ⇒

d(fn(x), fn+1(x)) ≤ a

1− a
d(fn−1(x), fn(x)) ≤ ... ≤ a1− and(x, f(x)).

But a ∈]0, 1
2 [⇒ a

1− a
∈]0, 1[⇒

d(fn(x), fn+1(x)) → 0, as n →∞, ∀x ∈ X.

Now by Lemma 1.1 it follows that Fε 6= ∅,∀ε > 0.
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In 1972, by combining the three independent (see [7 ]) contraction conditions

above, Zamfirescu (see [11]) obtained another fixed point result for operators which

satisfy the following.

Definition 2.4. ([8],[11]) A mapping f : X → X is a Zamfirescu operator if

∃a, k, c ∈ R, a ∈ [0, 1[, k ∈ [0,
1
2
[, c ∈ [0,

1
2
[ such that

∀x, y ∈ X, at least one of the following is true:

ı): d(f(x), f(y)) ≤ ad(x, y);

ıı): d(f(x), f(y)) ≤ k[d(x, f(x)) + d(y, f(y))];

ııı): d(f(x), f(y)) ≤ c[d(x, f(y)) + d(y, f(x))].

Theorem 2.4. Let (X, d) be a metric space and f : X → X a Zamfirescu operator.

Then:

∀ε > 0, Fε(f) 6= ∅.

Proof. First we will try to concentrate the three independent conditions into a single

one they all imply, see the proof of Zamfirescu’s fixed point theorem given in [3].

Let x, y ∈ X.

Supposing ıı) holds, we have that:

d(f(x), f(y)) ≤ k[d(x, f(x)) + d(y, f(y))] ≤

≤ kd(x, f(x)) + k[d(y, x) + d(x, f(x)) + d(f(x), f(y))] =

= 2kd(x, f(x)) + kd(x, y) + kd(f(x), f(y)) ⇒

d(f(x), f(y)) ≤ 2k

1− k
d(x, f(x)) +

k

1− k
d(x, y). (1)

Supposing ııı) holds, we have that:

d(f(x), f(y)) ≤ c[d(x, f(y)) + d(y, f(x))] ≤

≤ c[d(x, y) + d(y, f(y))] + c[d(y, f(y)) + d(f(y), f(x))] =

= cd(f(x), f(y)) + 2cd(y, f(y)) + cd(x, y) ⇒

d(f(x), f(y)) ≤ 2c

1− c
d(y, f(y)) +

c

1− c
d(x, y). (2a)

17
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Similarly:

d(f(x), f(y)) ≤ c[d(x, f(y)) + d(y, f(x))] ≤

≤ c[d(x, f(x)) + d(f(x), f(y))] + c[d(y, x) + d(x, f(x))] =

= cd(f(x), f(y)) + 2cd(x, f(x)) + cd(x, y) ⇒

d(f(x), f(y)) ≤ 2c

1− c
d(x, f(x)) +

c

1− c
d(x, y). (2b)

Now looking at ı), (1), (2a), (2b) we can denote:

δ = max{a,
k

1− k
,

c

1− c
},

and it is easy to see that δ ∈ [0, 1[.

For f satisfying at least one of the conditions ı), ıı), ııı) we have that

d(f(x), f(y)) ≤ 2δd(x, f(x)) + δd(x, y) (3a)

and d(f(x), f(y)) ≤ 2δd(y, f(y)) + δd(x, y) (3b)

hold.

Using these conditions implied by ı)− ııı) and taking x ∈ X, we have:

d(fn(x), fn+1(x)) = d(f(fn−1(x)), f(fn(x)))
(3a)

≤

≤ 2δd(fn−1(x), f(fn−1(x))) + δd(fn−1(x), fn(x)) = 3δd(fn−1(x), fn(x)) ⇒

d(fn(x), fn+1(x)) ≤ ... ≤ (3δ)nd(x, f(x)) ⇒

d(fn(x), fn+1(x)) → 0, as n →∞, ∀x ∈ X.

Now by Lemma 1.1 it follows that Fε 6= ∅,∀ε > 0.

Remark 2.2. Theorems 2.1, 2.2, 2.3 are actually contained in Theorem 2.4, as any

a-contraction, Kannan operator or Chatterjea operator is also a Zamfirescu operator

(see Definitions 2.1, 2.2, 2.3, 2.4.).

If we go further generalizing, we may consider the contraction condition given

in 2004 by V. Berinde, who also formulated a corresponding fixed point theorem, see

[2], for example.
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Definition 2.5. A mapping f : X → X is a weak contraction if

∃a ∈]0, 1[ and L ≥ 0 such that d(f(x), f(y)) ≤ ad(x, y) + Ld(y, f(x)),∀x, y ∈ X.

Theorem 2.5. Let (X, d) be a metric space and f : X → X a weak contraction.

Then:

∀ε > 0, Fε(f) 6= ∅.

Proof. Let x ∈ X.

d(fn(x), fn+1(x)) = d(f(fn−1(x)), f(fn(x))) ≤

≤ ad(fn−1(x), fn(x)) + Ld(fn(x), fn(x)) =

= ad(fn−1(x), fn(x)) ≤ ... ≤ and(x, f(x))

But a ∈]0, 1[ ⇒

d(fn(x), fn+1(x)) → 0, as n →∞, ∀x ∈ X.

Now by Lemma 1.1 it follows that Fε 6= ∅,∀ε > 0.

Remark 2.3. Theorem 2.5 is even more general than the others above, as any of the

above mentioned mappings is also a weak contraction, see Proposition 1 in [2].

Remark 2.4. An analogous result could be given for quasi-contractions with 0 < h <

1
2 , see again [2].

Similar results concerning the existence of ε−fixed points for other classes of

operators on metric spaces will be the subject of future papers.
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3. Quantitative results for operators on metric spaces

For the same operators we have studied in the previous section, from the

qualitative point of view, we will now use Lemma 1.2 in order to obtain quantitative

results.

Theorem 3.1. Let (X, d) be a metric space and f : X → X an a-contraction.

Then:

δ(Fε(f)) ≤ 2ε

1− a
,∀ε > 0.

Proof. Let ε > 0. Condition ı) in Lemma 1.2 is satisfied, as one can see in the proof

of Theorem 2.1.

We will show now that ıı) also holds for a-contractions.

Let η > 0 and x, y ∈ Fε(f). We also assume that

d(x, y)− d(f(x), f(y)) ≤ η

and aim to show that there exists an ϕ(η) > 0 such that d(x, y) ≤ ϕ(η).

We have that:

d(x, y) ≤ d(f(x), f(y)) + η ≤ ad(x, y) + η

⇒ (1− a)d(x, y) ≤ η,

which implies d(x, y) ≤ η

1− a
.

So ∀η > 0,∃ϕ(η) =
η

1− a
> 0 such that

d(x, y)− d(f(x), f(y)) ≤ η ⇒ d(x, y) ≤ ϕ(η).

Now by Lemma 1.2 it follows that

δ(Fε(f)) ≤ ϕ(2ε),∀ε > 0,

which means exactly that

δ(Fε(f)) ≤ 2ε

1− a
,∀ε > 0.
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Theorem 3.2. Let (X, d) be a metric space and f : X → X a Kannan operator.

Then:

δ(Fε(f)) ≤ 2ε(1 + a),∀ε > 0.

Proof. Let ε > 0. As in the proof of Theorem 3.1 we only verify that condition ıı) in

Lemma 1.2 holds.

Let η > 0 and x, y ∈ Fε(f) and assume that d(x, y)− d(f(x), f(y)) ≤ η.

Then

d(x, y) ≤ a[d(x, f(x)) + d(y, f(y))] + η.

As x, y ∈ Fε(f), we know that d(x, f(x)) < ε and d(y, f(y)) < ε.

⇒ d(x, y) ≤ 2aε + η

So ∀η > 0,∃ϕ(η) = η + 2aε > 0 such that

d(x, y)− d(f(x), f(y)) ≤ η ⇒ d(x, y) ≤ η.

Now by Lemma 1.2 it follows that

δ(Fε(f)) ≤ ϕ(2ε),∀ε > 0,

which means exactly that

δ(Fε(f)) ≤ 2ε(1 + a),∀ε > 0.

Theorem 3.3. Let (X, d) be a metric space and f : X → X a Chatterjea operator.

Then:

δ(Fε(f)) ≤ 2ε(1 + a)
1− 2a

,∀ε > 0.

Proof. Let ε > 0. Again we will only show that condition ıı) in Lemma 1.2 holds.

Let η > 0 and x, y ∈ Fε(f) and assume that

d(x, y)− d(f(x), f(y)) ≤ η.

Then

d(x, y) ≤ a[d(x, f(y)) + d(y, f(x))] + η ≤
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≤ ad(x, f(y)) + ad(y, f(x)) + η ≤

≤ a[d(x, y) + d(y, f(y))] + a[d(y, x) + d(x, f(x))] + η.

As x, y ∈ Fε(f), it follows that

d(x, y) ≤ 2ad(x, y) + 2εa + η.

⇒ (1− 2a)d(x, y) ≤ 2εa + η ⇒

d(x, y) ≤ η + 2εa

1− 2a

So ∀η > 0,∃ϕ(η) =
η + 2εa

1− 2a
> 0 such that

d(x, y)− d(f(x), f(y)) ≤ η ⇒ d(x, y) ≤ ϕ(η).

Now by Lemma 1.2 it follows that

δ(Fε(f)) ≤ ϕ(2ε),∀ε > 0,

which means exactly that

δ(Fε(f)) ≤ 2ε(1 + a)
1− 2a

,∀ε > 0.

Theorem 3.4. Let (X, d) be a metric space and f : X → X a Zamfirescu operator.

Then

δ(Fε(f)) ≤ 2ε
1 + ρ

1− ρ
,∀ε > 0,

where ρ = max{a,
k

1− k
,

c

1− c
} and a, k, c as in Definition 2.4.

Proof. In the proof of Theorem 2.4 we have already shown that if f satisfies at least

one of the conditions ı), ıı) or ııı) from Definition 2.4, then

d(f(x), f(y)) ≤ 2ρd(x, f(x)) + ρd(x, y)

and

d(f(x), f(y)) ≤ 2ρd(y, f(y)) + ρd(x, y)

hold.
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Let ε > 0. Again we will only show that condition ıı) in Lemma 1.2 is satisfied,

as ı) holds, see the Proof of Theorem 2.4.

Let η > 0 and x, y ∈ Fε(f), and assume that

d(x, y)− d(f(x), f(y)) ≤ η.

Then

d(x, y) ≤ d(f(x), f(y)) + η ≤ 2ρd(x, f(x)) + ρd(x, y) + η ⇒

(1− ρ)d(x, y) ≤ 2ρε + η ⇒

d(x, y) ≤ η + 2ρε

1− ρ
.

So ∀η > 0,∃ϕ(η) =
η + 2ρε

1− ρ
> 0 such that

d(x, y)− d(f(x), f(y)) ≤ η ⇒ d(x, y) ≤ η.

Now by Lemma 1.2 it follows that

δ(Fε(f)) ≤ ϕ(2ε),∀ε > 0,

which means exactly that

δ(Fε(f)) ≤ 2ε
1 + ρ

1− ρ
,∀ε > 0.

Remark 3.1. In the case of weak contractions we have to add a condition, namely

a + L < 1, with the same notations as above, in order to get the result.

Theorem 3.5. Let (X, d) be a metric space and f : X → X a weak contraction with

a + L < 1.

Then

δ(Fε(f)) ≤ 2 + L

1− a− L
ε,∀ε > 0.

Proof. Let ε > 0. We show again only that condition (ii) in Lemma 1.2 holds.

Let η > 0 and x, y ∈ Fε(f), and assume that

d(x, y)− d(f(x), f(y)) ≤ η.
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Then

d(x, y) ≤ d(f(x), f(y)) + η ≤ ad(x, y) + Ld(y, f(x)) + η ≤

≤ ad(x, y) + Ld(x, y) + Ld(x, f(x)) + η ≤ (a + L)d(x, y) + Lε + η.

⇒ (1− a− L)d(x, y) ≤ Lε + η ⇒ d(x, y) ≤ Lε + η

1− a− L

So ∀η > 0,∃ϕ(η) =
Lε + η

1− a− L
> 0 such that

d(x, y)− d(f(x), f(y)) ≤ η ⇒ d(x, y) ≤ η.

Now by Lemma 1.2 it follows that

δ(Fε(f)) ≤ ϕ(2ε),∀ε > 0,

which means exactly that

δ(Fε(f)) ≤ 2 + L

1− a− L
ε,∀ε > 0.

4. Conclusions

The theory of ε−fixed points is not less interesting than that of fixed points

and many results formulated in the latter can be adapted to a less restrictive frame-

work in order to guarantee the existence of the ε−fixed points and the fact that the

diameter of the set containing these points goes to zero when ε goes to zero.

We proved results referring to some types of contractive operators on metric

spaces, starting from a result presented in [10] for a−contractions, but the study may

go further to other classes of operators, which will be the subject of future papers.
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ON THE MORITA INVARIANCE OF THE HOCHSCHILD
HOMOLOGY OF SUPERALGEBRAS

PAUL A. BLAGA

Abstract. We provide a direct proof that the Hochschild homology of a

Z2-graded algebra is Morita invariant.

1. Introduction

The goal of this paper is to show that if R is an arbitrary superalgebra (i.e.

Z2-graded algebra) while Mp,q(R) is the (super)algebra of (p, q)-supermatrices over R,

then the two algebras have the same Hochschild homology (in the Z2-graded sense, see

(Kassel, 1986)). This, naturally, suggest the idea of introducing the notion of Morita

equivalence between two superrings and of proving that, in general, the Hochschild

homology for superalgebras should be Morita invariant. We should discuss this issues

at the end of the paper.

2. The Hochschild homology of superalgebras

The Hochschild complex for superalgebras (Kassel, 1986), is very similar to

the analogous complex for ungraded case. Namely, the chain groups are, as in the

classical case, Cm(R) = R⊗m+1, where, of course, the tensor product should be

understood in the graded sense, while the face maps and degeneracies are given by

δm
i (a0 ⊗ · · · ⊗ am) = a0 ⊗ · · · ⊗ aiai+1 ⊗ . . . an, if 0 ≤ i < m, (1)

δm
m(a0 ⊗ · · · ⊗ am) = (−1)|am|(|a0|+···+|am−1)ama + 0⊗ a1 ⊗ · · · ⊗ am−1, (2)

sm
i (a0 ⊗ · · · ⊗ am) = a0 ⊗ · · · ⊗ ai ⊗ 1⊗ ai+1 ⊗ · · · ⊗ am, 0 ≤ i ≤ m. (3)
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Now the differential is defined in the usual way, meaning dm : Cm(R) → Cm−1(R),

dm =
m∑

i=0

(−1)iδm
i . (4)

and the Hochschild homology of the superalgebra is just the homology of the complex

(C(R), d). In particular, it is easy to see that for any superalgebra R we have

H0(R) = R/{R,R}, (5)

where {R,R} is the subspace generated by the supercommutators. of that element.

3. The Morita invariance

We shall simply give the definition of the Morita equivalence here. For a de-

tailed approach, see for, instance, the book of Bass ([1]). The definition is completely

analogous to that from the ungraded case.

Definition 1. If A and B are two unital, associative superalgebras over a graded

commutative superring R, then A and B are said to be Morita equivalent if there

exists an A − B-bimodule P and a B − A-bimodule Q such that P ⊗B Q ' A (as

A − A-bimodules), while Q ⊗A P ' B (as B − B-bimodulea). The tensor products

should be taken in the graded sense.

Theorem 1. Let R be a commutative superring and A and B – two unital R-

superalgebras (not necessarily commutative). Let, also, P be an A−B-bimodule which

is projective over both rings and Q – an arbitrary B −A-bimodule. Then there is an

isomorphism

F∗ : H∗(A,P ⊗B Q) → H∗(B,Q⊗A P ),

which is functorial in the 4-tuple (A,B;P,Q).

Before actually proving the theorem, let us, first, prove a technical lemma.

Lemma 1. Let A be a unital, associative superalgebra over a commutative superring.

If M is an arbitrary left A-module, while Q is a projective right A-module, then

Hn(A,M ⊗Q) =

Q⊗A M if n = 0

0 if n ≥ 1
.
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Dually, if N is a right A-module, while P is a projective left A-module, then

Hn(A,P ⊗N) =

N ⊗A P if n = 0

0 if n ≥ 1
.

Proof. We shall assume, first, that Q = A, which is, clearly, projective, when regarded

as right A-module. Moreover, in this case we have A⊗A M ∼= M , so what we have to

prove is that

Hn(A,M ⊗A) =

M if n = 0

0 if n ≥ 1
.

It is easily seen, however, that the standard complex for computing the Hochschild

homology of A with coefficients in the module M⊗A is, essentially, the (unnormalized)

bar resolution β of the M , which has non-vanishing homology only in degree zero and

the zero degree homology is M .

To prove now the general case, take Q an arbitrary projective right A-module.

Then the functor Q⊗A − is exact and the result follows from the isomorphism (M ⊗

Q)⊗An ∼= Q⊗A (M ⊗A⊗An) established by the maps

f : (M ⊗Q)⊗An → Q⊗A (M ⊗A⊗An),

f((m⊗ q)⊗ (a1 ⊗ · · · ⊗ an)) = (−1)|m||q|q ⊗ (m⊗ 1⊗ a1 ⊗ · · · ⊗ an)

and

g : Q⊗A (M ⊗An+1) → (M ⊗Q)⊗An,

g(q ⊗ (m⊗ a0 ⊗ · · · ⊗ an)) = (−1)|m||q|(m⊗ q)⊗ a0a1 ⊗ a2 ⊗ · · · ⊗ an.

The proof of the second part of the lemma is completely similar.

Proof of the theorem 1. We consider the following family of modules and maps:

(Cp,q, d
′, d′′), where

Cm,n = P ⊗Bn ⊗Q⊗Am,

where

Bn = B ⊗B ⊗ · · · ⊗B︸ ︷︷ ︸
n factors
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and

Am = A⊗A⊗ · · · ⊗A︸ ︷︷ ︸
m factors

,

and all the tensor products are considered over the ground superring R. Before

defining the maps d′ and d′′, several remarks are in order.

First of all, it is very clear that

Cm,n = Cm(A,P ⊗Bn ⊗Q),

i.e. Cm,n is the group of the Hochschild m-chains of the superalgebra A, with the

coefficients in the A-bimodule P ⊗ Bn ⊗ Q. On the other hand, up to a cyclic

permutation of the factors in the tensor product, Cm,n is, also, the group of the

Hochschild n-chains of the superalgebra B with coefficients in a B − B-bimodule.

More specifically, we have

Cm,n = ωm+1,n+1 (Cn(B,Q⊗Am ⊗ P )) ,

where ωm+1,n+1 : Q⊗ Am ⊗ P ⊗ Bn → P ⊗ Bn ⊗Q⊗ Am is the cyclic permutation

of factors given by

ωm+1,n+1(p⊗ b1 ⊗ · · · ⊗ bn ⊗ q ⊗ a1 ⊗ · · · ⊗ am) =

= (−1)
|p|+|q|+

m∑
i=1

|ai|+
n∑

j=1
|bj |

q ⊗ a1 ⊗ · · · ⊗ am ⊗ p⊗ b1 ⊗ · · · ⊗ bn.

Now we can use the Hochschild differentials to build the maps d′ and d′′. Let m,n ∈ N

two given natural numbers. We define now, for any pair of natural numbers, m,n ∈ N,

d′m,n : Cm,n → Cm−1,n to be the Hochschild differential for A, with coefficients in

P ⊗ Bn ⊗ Q. Thus, on the columns we have Hochschild complexes. On the other

hand, also for any pair of natural numbers m,n we define the horizontal differentials

d′′m,n : Cm,n → Cm,n−1,

d′′m,n = (−1)mbm,n ◦ ωm+1,n+1,

where bm,n : Cn(B,Q⊗Am⊗P ) → Cn−1(B,Q⊗Am⊗P ) is the Hochschild differential.

From the construction, it is obvious that both d′ and d′′ are differentials. We will
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prove now that they anticommute. We have

d′′d′(p⊗ b1⊗· · ·⊗ bn⊗ q⊗a1⊗· · ·⊗an) = d′′
(

p⊗ b1⊗· · ·⊗ bn⊗ qa1⊗a2⊗· · ·⊗am+

+
m−1∑
i=1

(−1)ip⊗ b1 ⊗ · · · ⊗ bn ⊗ q ⊗ a1 ⊗ · · · ⊗ aiai+1 ⊗ · · · ⊗ am+

+(−1)
m+|am|

(
|p|+|q|+

m−1∑
j=1

|aj |+
n∑

j=1
|bj |
)

amp⊗ b1 ⊗ · · · ⊗ bn ⊗ q⊗ a + 1⊗ · · · ⊗ am−1

)
=

= (−1)m

[
pb1 ⊗ · · · ⊗ bn ⊗ qa1 ⊗ a2 ⊗ · · · ⊗ am+

+
n−1∑
j=1

p⊗ b1 ⊗ · · · ⊗ bjbj+1 ⊗ · · · ⊗ bn ⊗ qa1 ⊗ a2 ⊗ · · · ⊗ am+

+(−1)
n+|bn|

(
|p|+|q|+

m∑
j=1

|aj |+
n−1∑
j=1

|bj |
)

p⊗ b1 ⊗ · · · ⊗ bn−1 ⊗ bnqa1 ⊗ a2 ⊗ · · · ⊗ am+

+
m−1∑
i=1

(−1)i

(
pb1 ⊗ b2 ⊗ · · · ⊗ bn ⊗ q ⊗ a1 ⊗ . . . aiai+1 ⊗ · · · ⊗ am+

+(−1)
n+|bn|

(
|p|+|q|+

m∑
j=1

|aj |+
n−1∑
j=1

|bj |
)

p⊗b1⊗· · ·⊗bn−1⊗bnq⊗a1⊗· · ·⊗aiai+1⊗· · ·⊗am

)

+(−1)
m+|am|

(
|p|+|q|+

m−1∑
j=1

|aj |+
n∑

j=1
|bj |
)(

ampb1 ⊗ b1 ⊗ · · · ⊗ bn ⊗ q ⊗ a1 ⊗ · · · ⊗ am−1+

+
n−1∑
j=1

(−1)jamp⊗ b1 ⊗ . . . bjbj+1 ⊗ . . . bn ⊗ q ⊗ a1 ⊗ · · · ⊗ am−1+

+(−1)
n+|bn|

(
|p|+|q|+

m∑
j=1

|aj |+
n−1∑
j=1

|bj |
)

amp⊗ b1 ⊗ bn−1 ⊗ bnq ⊗ a1 ⊗ · · · ⊗ am−1

)]
.

On the other hand,

d′d′′(p⊗b1⊗. . . bn⊗q⊗a1⊗· · ·⊗am) = (−1)m−1d′
(

pb1⊗b2⊗· · ·⊗bn⊗q⊗a1⊗· · ·⊗am+

+
n−1∑
i=1

(−1)ip⊗ b1 ⊗ · · · ⊗ bibi+1 ⊗ · · · ⊗ bn ⊗ q ⊗ a1 ⊗ · · · ⊗ am+

+(−1)
n+|bn|

(
|p|+|q|+

m∑
j=1

|aj |+
n−1∑
j=1

|bj |
)

p⊗ b1 ⊗ · · · ⊗ bn−1 ⊗ bnq ⊗ a1 ⊗ · · · ⊗ am

)
=
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= (−1)m−1

[
pb1 ⊗ b2 ⊗ · · · ⊗ bn ⊗ qa1 ⊗ a2 ⊗ · · · ⊗ am+

+
m−1∑
j=1

(−1)jpb1 ⊗ b2 ⊗ · · · ⊗ bn ⊗ a⊗ a1 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ am+

+(−1)
m+|am|

(
|p|+|q|+

m−1∑
k=1

|ak|+
n∑

k=1
|bk|
)

ampb1 ⊗ b2 ⊗ · · · ⊗ bn ⊗ q ⊗ a1 ⊗ · · · ⊗ am+

+
n−1∑
i=1

(−1)i

(
p⊗ b1 ⊗ · · · ⊗ bibi+1 ⊗ · · · ⊗ bn ⊗ q ⊗ a1 ⊗ · · · ⊗ am+

+
∑
j=1

(−1)jp⊗ b1 ⊗ · · · ⊗ bibi+1 ⊗ · · · ⊗ bn ⊗ q ⊗ a1 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ am+

+(−1)
m+|am|

(
|p|+|q|+

m−1∑
j=1

|aj |+
n∑

j=1
|bj |
)
amp⊗b1⊗· · ·⊗bibi+1⊗· · ·⊗bn⊗q⊗a1⊗· · ·⊗am−1

)

+(−1)
n+|bn|

(
|p|+|q|+

m∑
j=1

|aj |+
n−1∑
j=1

|bj |
)(

p⊗ b1 ⊗ . . . bn−1 ⊗ bnqa1 ⊗ a2 ⊗ · · · ⊗ am+

+
m−1∑
j=1

(−1)jp⊗ b1 ⊗ · · · ⊗ bn−1 ⊗ bnq ⊗ a1 ⊗ · · · ⊗ ajaj+1 ⊗ · · · ⊗ am+

+(−1)
m+|am|

(
|p|+|q|+

m−1∑
j=1

|aj |+
n∑

j=1
|bj |
)

amp⊗ b1⊗· · ·⊗ bn−1⊗ bnq⊗a1⊗· · ·⊗am−1

)]
.

An inspection shows immediately that the quantities between the square

brackets in the expressions of d′d′′ and d′′d′ coincide, while the signs in front of

these brackets are opposite, which means that we have

d′d′′ + d′′d′ = 0.

Thus, as we saw previously that d′
2 = d′′

2 = 0, it follows that the family of modules

and morphisms (Cm,n, d′, d′′)m,n∈N is a double complex of modules. We consider now

its total complex, given, for any n ≥ 0, by

Totn =
⊕

p+q=n

Cp,q

and

dn : Totn → Totn−1, , dn =
∑

p+q=n

(d′p,q + d′′p,q).
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As it is well-known (see [3], from where the notations, classical, in fact, are taken),

the total complex has two canonical filtrations (a horizontal and a vertical one) and to

each of this filtration we can associate a spectral sequence. The two spectral sequences

both converge to the homology of the total sequence. We shall show that in our case

both spectral sequences collapse at the second step. In fact, the second order terms

of the two sequences are

IE2
p,q = H ′

pH
′′
p,q(C)

and

IIE2
p,q = H ′′

p H ′
q,p(C).

In our particular case, due to the particular form of the vertical and horizontal com-

plexes, we get

H ′′
p,q(C) = Hq(B,Q⊗Ap ⊗ P ) (6)

and

H ′
q,p(C) = Hq(A,P ⊗Bp ⊗Q). (7)

As P is a bimodule which is projective at both sides, applying the previous lemma,

we can write

H ′′
p,q(C) =

P ⊗B Q⊗Ap for q = 0

0 for q ≥ 1

H ′
q,p(C) =

Bp ⊗A Q⊗ P for q = 0

0 for q ≥ 1

As a consequence, we obtain for the second terms of the two spectral sequences:

IE2
p,q =

Hp(A,P ⊗B Q) for q = 0

0 for q ≥ 1

IIE2
p,q =

Hp(B,Q⊗A P ) for q = 0

0 for q ≥ 1
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Since, as we see, the two spectral sequences collapse, their limits coincide, in fact,

with the second terms. Therefore, as they should converge to the same limit (the

homology of the total complex), we have, in particular, that, for any n ≥ 0, we should

have
IE2

n,0 =II E2
n,0,

i.e.

Hn(A,P ⊗B Q) = Hn(B,Q⊗A P )

which concludes the proof (the functoriality follows from the way we constructed the

double complex).

Corollary. If A and B are Morita equivalent superalgebras, then they have isomorphic

Hochschild homologies.
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OPTIMAL QUADRATURE FORMULAS BASED
ON THE ϕ-FUNCTION METHOD

TEODORA CĂTINAŞ, AND GHEORGHE COMAN

Abstract. In this survey paper it is studied the optimality in sense of

Nikolski for some classes of quadrature formulas, using the method of ϕ-

function. It is presented the one-to-one correspondence between ϕ-func-

tions and the quadrature formulas. Also, there are given some examples

of quadrature formulas which are optimal in sense of Nikolski with regard

to the error.

1. Introduction

Let H be a linear space of real-valued functions, defined and integrable on a

finite interval [a, b] ⊂ R, and S : H → R be the integration operator defined by

S(f) =
∫ b

a

f(x)dx.

Let

Λ = {λi |λi : H → R, i = 1, ..., n}

be a set of linear functionals. For f ∈ H, one considers the quadrature formula

S(f) = Qn(f) +Rn(f), (1)

where

Qn(f) =
n∑

i=1

Aiλi(f)

and Rn(f) denotes the remainder term.
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Remark 1. Usually, λi(f), i = 1, .., n are the values of the function f or of certain

of its derivatives on the quadrature nodes from [a, b].

An important problem regarding the quadrature formulas is the optimality

problem with respect to the error. In this paper it is studied the optimality in sense of

Nikolski for some classes of quadrature formulas, using the one-to-one corespondence

between ϕ-functions and quadrature formulas.

Definition 2. The quadrature formula (1) is called optimal in the sense of Nikolski,

in the space H, if

Fn(H,A,X) = sup
f∈H

|Rn(f)|,

attains the minimum value with regard to A and X, where A = (A1, ..., An) are the

coefficients and X = (x1, ..., xn) are the quadrature nodes.

2. The method of ϕ− function

Suppose that f ∈ Cr[a, b] and for some given n ∈ N consider the nodes

a = x0 < . . . < xn = b. On each interval [xk−1, xk], k = 1, ..., n, it is considered a

function ϕk, k = 1, ..., n, with the property that

ϕ
(r)
k = 1, k = 1, ..., n. (2)

One defines the function ϕ as follows:

ϕ|[xk−1,xk] = ϕk, k = 1, ..., n, (3)

i.e., the restriction of the function ϕ to the interval [xk−1, xk] is ϕk. Based on the

additivity property of the defined integral and on the relations (2), we have

S(f) :=
∫ b

a

f(x)dx =
n∑

k=1

∫ xk

xk−1

ϕ
(r)
k (x)f(x)dx.
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Using the integration by parts, one obtains

S(f) =
n∑

k=1

{[
ϕ

(r−1)
k (x)f(x)− ϕ

(r−2)
k (x)f ′(x) + ...+ (−1)r−1ϕk(x)f (r−1)(x)

]∣∣∣xk

xk−1

(4)

+ (−1)r

∫ xk

xk−1

ϕk(x)f (r)(x)dx

}
= −ϕ(r−1)

1 (x0)f(x0) +
[
ϕ

(r−1)
1 (x1)− ϕ

(r−1)
2 (x1)

]
f(x1) + ...+

+
[
ϕ

(r−1)
n−1 (xn−1)− ϕ(r−1)

n (xn−1)
]
f(xn−1) + ϕ(r−1)

n (xn)f(xn)−

−
{
−ϕ(r−2)

1 (x0)f ′(x0) +
[
ϕ

(r−2)
1 (x1)− ϕ

(r−2)
2 (x1)

]
f ′(x1) + ...+

+
[
ϕ

(r−2)
n−1 (xn−1)− ϕ(r−2)

n (xn−1)
]
f ′(xn−1) + ϕ(r−2)

n (xn)f ′(xn)
}

+

+ ...+

+ (−1)r−1
{
−ϕ1(x0)f (r−1)(x0) + [ϕ1(x1)− ϕ2(x1)] f (r−1)(x1) + ...+

+ [ϕn−1(xn−1)− ϕn(xn−1)] f (r−1)(xn−1) + ϕn(xn)f (r−1)(xn)
}

+ (−1)r

∫ b

a

ϕ(x)f (r)(x)dx.

For

A0j = (−1)j+1ϕ
(r−j−1)
1 (x0), (5)

Akj = (−1)j(ϕk − ϕk+1)(r−j−1)(xk), k = 1, ..., n− 1,

Anj = (−1)jϕ(r−j−1)
n (xn), j = 0, 1, ..., r − 1,

relation (4) becomes ∫ b

a

f(x)dx =
n∑

k=0

r−1∑
j=0

Akjf
(j)(xk) +Rn(f), (6)

with

Rn(f) = (−1)r

∫ b

a

ϕ(x)f (r)(x)dx. (7)

Remark 3. Knowing the function ϕ, one can find the coefficients Akj , k = 0, ..., n,

j = 0, ..., r − 1, and the nodes xk, k = 1, ..., n − 1, based on the relations (5). This

method of constructing the quadrature formulas is called the ϕ-function method [10].
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TEODORA CĂTINAŞ, AND GHEORGHE COMAN

Remark 4. From (7) it follows that the degree of exactness of the quadrature formula

(6) is at least r − 1.

3. The one-to-one corespondence between ϕ− functions and quadrature

formulas

First of all, one remarks that to a function ϕ, which satisfies (3) and (2),

corresponds the quadrature formula (6).

Conversely, let us consider the quadrature formula (6), which has the degree

of exactness r − 1. By Peano’s theorem it follows that

Rn(f) =
∫ b

a

Rt
n

[
(t−x)r−1

+
(r−1)!

]
f (r)(x)dx,

where

Rt
n

[
(t−x)r−1

+
(r−1)!

]
= (xn−x)r

+
r! −

n∑
k=0

r−1∑
j=0

Akj
(xk−x)r−j−1

+
(r−j−1)! .

So,

(−1)rRt
n

[
(t−x)r−1

+
(r−1)!

]
= (x−xn)r

+
r! + (−1)r+1

n∑
k=0

r−1∑
j=0

Akj
(xk−x)r−j−1

+
(r−j−1)! ,

i.e,

(−1)rRt
n

[
(t−x)r−1

+
(r−1)!

]
= ϕ(x).

If

ϕi = ϕ|[xi−1,xi], i = 1, ..., n,

then

ϕi(x) = (x−xn)r
+

r! + (−1)r+1
n∑

k=i

r−1∑
j=0

Akj
(xk−x)r−j−1

+
(r−j−1)! ,

ϕi+1(x) = (x−xn)r
+

r! + (−1)r+1
n∑

k=i+1

r−1∑
j=0

Akj
(xk−x)r−j−1

+
(r−j−1)! ,

and we get that

(ϕi − ϕi+1)(x) = (−1)r+1
r−1∑
j=0

Aij
(xi−x)r−j−1

+
(r−j−1)! .
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Further,

(ϕi − ϕi+1)(r−ν−1)(x) = (−1)ν
r−1∑
j=0

Aij
(xi−x)

(ν−j)
+

(ν−j)! ,

(ϕi − ϕi+1)(r−ν−1)(xi) = (−1)νAiν .

It follows that

A0ν = (−1)ν+1ϕ
(r−ν−1)
1 (x0),

Aiν = (−1)ν(ϕi − ϕi+1)(r−ν−1)(xi), i = 1, ..., n− 1,

Anν = ϕ(r−ν−1)
n (xn), ν = 0, 1, ..., r − 1.

So, the correspondence is proved.

4. The optimality problem

We consider Hm,2[a, b], m ∈ N, the space of functions f in Cm−1, with the

m−1th derivative absolute continuous on [a, b] and with fm in L2[a, b]. Suppose that

f ∈ Hm,2[a, b], m ∈ N. From (7) one obtains

|Rn(f)| ≤
∥∥∥f (m)

∥∥∥
2

(∫ b

a

ϕ2(x)dx

)1/2

.

So, the optimal quadrature formula of the form (6) is determined by the parameters

A and X for which

F (A,X) =
∫ b

a

ϕ2(x)dx =
n∑

k=1

∫ xk

xk−1

ϕ2
k(x)dx

attains the minimum value.

Remark 5. Taking into account the property of minimal L2
w[a, b]−norm, (w is a

weight function), of the orthogonal polynomials, the function F (A,X) takes the min-

imal value when ϕk is the orthogonal polynomial on [xk−1, xk], k = 1, . . . , n, with

regard to the weight w.
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For example, if w = 1 the corresponding orthogonal polynomial on [a, b] is

the Legendre polynomial

lr(x) =
dr

dxr
[(x− a)r(y − b)r] .

It means that the parameters of the optimal quadrature formula can be obtained by

identifying the functions ϕk = ϕ|[xk−1,xk] with the corresponding orthogonal polyno-

mials on [xk−1, xk], k = 1, ..., n.

Example 6. One considers the quadrature formula∫ 1

0

f(x)dx =
n∑

k=0

Akf(xk) +Rn(f), (8)

obtained from (6) for r = 1, with

Rn(f) =
∫ 1

0

ϕ(x)f ′(x)dx.

Theorem 7. For f ∈ H1,2[0, 1], the quadrature formula of the form (8), optimal with

regard to the error, is∫ 1

0

f(x)dx =
1
2n

[
f(0) + 2

n−1∑
i=1

f(
i

n
) + f(1)

]
+R∗

n(f),

with

|R∗
n(f)| ≤ 1

2n
√

3
‖f ′‖2 .

Proof. Relations (5) become

A0 = −ϕ1(0), (9)

Ak = ϕk(xk)− ϕk+1(xk), k = 1, ..., n− 1,

An = ϕn(1),

and from (2) we get

ϕ′k = 1, k = 1, ..., n. (10)
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From (9) and (10) it follows

ϕ1(x) = x−A0,

ϕ2(x) = x−A0 −A1,

...

ϕk(x) = x−A0 −A1 − ...−Ak−1,

...

ϕn(x) = x−A0 −A1 − ...−An−2 −An−1.

As the quadrature formula (8) has the degree of exactness zero, i.e., Rn(e0) = 0

(e0(x) = 1) we have

A0 + ...+An = 1.

It follows that for ϕn we have

ϕn(x) = x− 1 +An.

Now, the optimal coefficients Ak, k = 0, ..., n and the optimal nodes xk, k = 1, ..., n−1

are obtained by minimizing the functions

F1(A,X) =
∫ 1

0

ϕ2(x)dx =
n∑

k=1

∫ xk

xk−1

ϕ2
k(x)dx.

But,
∫ xk

xk−1
ϕ2

k(x)dx takes its minimum value for ϕk ≡ l1, the Legendre polynomial of

degree one, on the interval [xk−1, xk], i.e.,

ϕk(x) = x− xk−1 + xk

2

and ∫ xk

xk−1

ϕ2
k(x)dx =

(xk − xk−1)3

12
.

It follows that
k−1∑
i=0

Ai =
xk−1 + xk

2
(11)

and ∫ 1

0

ϕ2(x)dx =
1
12

n∑
k=1

(xk − xk−1)3.
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Hence,

F̄1(X) := min
A
F1(A,X) =

1
12

n∑
k=1

(xk − xk−1)3.

As
∂F̄1(X)
∂xk

=
1
4
[
(xk − xk−1)2 − (xk+1 − xk)2

]
,

the optimal nodes constitute the solution of the system

xk − xk−1 = xk+1 − xk, k = 1, ..., n− 1,

with

x0 = 0, xn = 1,

i.e.,

x∗k =
k

n
, k = 0, ..., n (12)

and

F̄1(X∗) =
1

12n2
.

From (11) and (12) one obtains the optimal coefficients

A∗
0 =

1
2n

A∗
1 = ... = A∗

n−1 =
1
n

A∗
n =

1
2n
.

Finally, we have

F1(A∗, X∗) := min
A,X

F1(A,X) =
1

12n2
,

and the proof follows.

Example 8. For f ∈ H2,2[0, 1] one considers the quadrature formula of the form∫ 1

0

f(x)dx =
n∑

k=0

Akf(xk) +Rn(f), (13)

with 0 = x0 < x1 < ... < xn = 1.
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Theorem 9. For f ∈ H2,2[0, 1], the quadrature formula of the form (13), optimal

with regard to the error, is∫ 1

0

f(x)dx =
n∑

k=0

A∗
kf(x∗k) +R∗

n(f),

with

A∗
0 = A∗

n =
3
4
µ,

A∗
1 = A∗

n−1 =
5 + 2

√
6

4
µ,

A∗
k =

√
6µ, k = 2, ..., n− 2,

x∗k = [2 + (k − 1)
√

6]µ, k = 1, ..., n− 1,

and

|R∗
n(f)| ≤ µ2

2
√

5
‖f ′′‖2 ,

where

µ =
1

4 + (n− 2)
√

6
.

Proof. For r = 2 relation (4) becomes∫ 1

0

f(x)dx =− ϕ′1(0)f(0) +
n−1∑
k=1

(ϕ′k − ϕ′k+1)(xk)f(xk) + ϕ′n(1)f(1) (14)

+ ϕ1(0)f ′(0)−
n−1∑
k=1

(ϕk − ϕk+1)(xk)f ′(xk)− ϕn(1)f ′(1)

+
∫ 1

0

ϕ(x)f ′′(x)dx.

Taking into account (13), we have

A0 = −ϕ′1(0),

Ak = (ϕ′k − ϕ′k+1)(xk), k = 1, ...n− 1,

An = ϕ′n(1),
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and

ϕ1(0) = 0, (15)

(ϕk − ϕk+1)(xk) = 0, k = 1, ...n− 1,

ϕn(1) = 0,

respectively,

Rn(f) =
∫ 1

0

ϕ(x)f ′′(x)dx. (16)

Relation (2) becomes

ϕ′′k = 1, k = 1, ..., n. (17)

From (15) and (17) it follows that

ϕ1(x) =
x2

2
−A0x, (18)

ϕk(x) =
x2

2
−

k−1∑
j=0

Ak(x− xk), k = 2, ...n− 1,

ϕn(x) =
(1− x)2

2
−An(1− x).

By (16) one obtains

|Rn(f)| ≤
(∫ 1

0

ϕ2(x)dx
)1/2

‖f ′′‖2 .

Next, the problem is to minimize the function

F2(A,X) =
∫ 1

0

ϕ2(x)dx

=
∫ x1

0

ϕ2
1(x)dx+

n−1∑
k=2

∫ xk

xk−1

ϕ2
k(x)dx+

∫ 1

xn−1

ϕ2
n(x)dx

with regard to the parameters A = (A0, ..., An) and X = (x1, ..., xn−1).

By (18) it follows that the integrals∫ xk

xk−1

ϕ2
k(x)dx, k = 2, ..., n− 1,

attain the minimum values for

ϕk ≡
1
2
l̃2,k, k = 2, ..., n− 1, (19)
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where l̃2,k is the two degree Legendre polynomial on the interval [xk−1, xk],

l̃2,k(x) = x2 − (xk−1 + xk)x+
1
6
(x2

k−1 + 4xk−1xk + x2
k).

We have ∫ xk

xk−1

l̃22,k(x)dx =
4
45

(
xk − xk−1

2

)5

.

From (18) and (19), one obtains

k−1∑
i=0

Ai =
xk + xk−1

2
, k = 2, ..., n− 1, (20)

and, also, from

d

dA0

[∫ x1

0

(
x2

2
−A0x)2dx

]
= 0,

d

dAn

{∫ 1

xn−1

[
(1− x)2

2
−An(1− x)

]2
dx

}
= 0

it follows

A0 =
3
8
x1, An =

3
8
(1− xn−1), (21)

respectively,∫ x1

0

(
x2

2
− 3

8
x1x)2dx =

1
32
x5

1∫ 1

xn−1

[
(1− x)2

2
− 3

8
(1− xn)(1− x)

]2
dx =

1
320

(1− xn−1)5.

So,

F̄2(X) := min
A
F2(A,X) =

1
32
x5

1 +
1

720

n−1∑
k=2

(xk − xk−1)5 +
1

320
(1− xn−1)5. (22)

Now, from

∂

∂xk

n−1∑
i=2

(xi − xi−1)5 = 5[(xk − xk−1)4 − (xk+1 − xk)4] = 0, k = 2, ..., n− 1

one obtains

xk − xk−1 =
xn − x1

n− 2
, k = 2, ..., n− 1. (23)

For

F̃2(x1, xn−1) = min
x2,...,xn−2

F̄2(X)
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we have

F̃2(x1, xn−1) =
1
32
x5

1 +
(xn−1 − x1)5

720(n− 2)4
+

1
320

(1− xn−1)5.

From the following system 
∂F̃2(x1,xn−1)

∂x1
= 0

∂F̃2(x1,xn−1)
∂xn−1

= 0

one obtains

x∗1 = 1− x∗n−1 = 2µ (24)

and

F̃2(x∗1, x
∗
n−1) =

1
20
µ4. (25)

Finally, the proof follows from (20)–(25).

Theorem 10. For a function f ∈ H2,2[0, 1], the quadrature formula of the form∫ 1

0

f(x)dx =
n∑

k=0

Akf(xk) +B0f
′(0) +B1f

′(1) +Rn(f), (26)

is optimal with regard to the error for

A0 = An =
1
2n
,

Ak =
1
n
, k = 1, ..., n− 1,

B0 =
1

12n2
,

B1 = −B0,

x0 = 0, xk =
k

n
, k = 1, ..., n− 1, xn = 1

and

|Rn(f)| ≤ 1
12n2

√
5
‖f ′′‖2 .
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Proof. From (14), we get

A0 = −ϕ′1(0),

Ak = (ϕ′k − ϕ′k+1)(xk), k = 1, ...n− 1,

An = ϕ′n(1),

B0 = ϕ1(0),

B1 = −ϕn(1),

and

(ϕk − ϕk+1)(xk) = 0, k = 1, ...n− 1.

It follows that

ϕk(x) =
x2

2
−

k−1∑
i=0

Ai(x− xi) +B0, k = 1, ..., n.

As the integral ∫ 1

0

ϕ2(x)dx =
n∑

k=1

∫ xk

xk−1

ϕ2
k(x)dx

attains the minimum value for

ϕk ≡
1
2
l̃2,k, k = 1, ..., n,

from these last identities, using the fact that the degree of exactness of the quadrature

formula is one, the proof follows.

Remark 11. In an analogous way, for f ∈ H2,1[0, 1] one can prove that the quadra-

ture formula of the form (26), optimal with regard to the error, has the coefficients:

A∗
0 = A∗

n =
1
2n
,

A∗
k =

1
n
, k = 1, ..., n− 1,

B∗
0 =

3
32n2

,

B∗
1 = −B∗

0 ,
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the nodes

x∗0 = 0,

x∗k =
k

n
, k = 1, ..., n− 1,

x∗n = 1,

and

|R∗
n(f)| ≤ 1

32n2
‖f ′′‖1 .

It is important in the proof that the functions 1
2ϕk, k = 1, ..., n, are identified with the

Cebyshev polynomials of the second kind.

Now, let us consider the general case, i.e., the quadrature formula (6), with

the remainder term given by (7), for r ≥ 1 and for f ∈ Hr,p[0, 1]. The problem is to

find the values of the parameters Akj and xk, k = 0, ..., n, j = 0, ..., r − 1 for which

F (A,X) :=
∫ 1

0

|ϕ(x)|p dx

attains the minimum value. We have

F (A,X) =
n∑

i=1

∫ xi

xi−1

|ϕi(x)|p dx,

where

ϕi(x) =
xr

r!
+

i−1∑
k=0

r−1∑
j=0

Akj
(x− xk)j

j!
, x ∈ [xi−1, xi].

As the polynomials ϕi are independent, the function F (A,X) can be minimized, first

with regard to the coefficients Akj , k = 0, ..., n, j = 0, ..., r− 1, considering the nodes

fixed, and then, with regard to the nodes x1, ..., xn−1.

Using the notation Akj

j! = Bkj

r! one obtains

ϕi =
1
r!
ψi,

with

ψi(x) = xr +
i−1∑
k=0

r−1∑
j=0

Bkj(x− xk)j

and

F (A,X) =
1

(r!)p

n∑
i=1

∫ xi

xi−1

|ψi(x)|p dx.
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Using the minimum norm property of the orthogonal polynomials, the integrals

Ii =
∫ xi

xi−1

|ψi(x)|p dx, i = 1, ..., n,

can be minimized by identifying the polynomials ψi with the corresponding orthogonal

polynomials, say θi, for different values of p. One obtains

F̃ (x1, ..., xn−1) = 1
(r!)p

n∑
i=1

∫ xi

xi−1

|θi(x)|p dx,

that is further minimized with regard to xi, i = 1, ..., n− 1.
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UNBOUNDED SOLUTIONS OF EQUATION
ẏ(t) = β(t)[y(t − δ) − a(t)y(t − τ )]

JOSEF DIBLÍK AND MIROSLAVA RŮŽIČKOVÁ

Abstract. This contribution is devoted to asymptotic behavior

(for t→∞) of solutions of first-order differential equation with two delays

ẏ(t) = β(t)[y(t− δ)− a(t)y(t− τ)].

Representation of solutions in an exponential form is discussed and in-

equalities for such solutions are given. As a consequence, existence of un-

bounded solutions is proved. An overview of known results and illustrative

examples are considered, too.

1. Introduction

1.1. The aim of the contribution. In this contribution we deal with asymptotic

behavior of solutions to a linear homogeneous differential equation with two delayed

terms containing two discrete delays

ẏ(t) = β(t)[y(t− δ)− a(t)y(t− τ)] (1)

for t → ∞. In (1) δ, τ ∈ R+, R+ := (0,+∞), τ > δ, β : I−1 → R+ is a continuous

function, I−1 := [t0 − τ,∞), t0 ∈ R and a : I → [0, 1], where I := [t0,∞), is a

continuous function. The symbol “ ˙ ” denotes (at least) the right-hand derivative.

Similarly, if necessary, the value of a function at a point of I−1 is understood (at least)

as value of the corresponding limit from the right . We show that increasing solutions

of (1) have representation

exp
[∫ t

t0−τ

ε̃(s)β(s) ds

]
(2)

Received by the editors: 16.10.2004.
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Key words and phrases. Discrete delay, two deviating arguments, exponential solution, unbounded

solution.

65
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with a function ε̃ : I−1 → (0, 1). Such representation we call exponential . Represen-

tation (2) is then specified and a criterion connecting it with an integral inequality is

formulated. Since the equation considered is linear, the corresponding statements for-

mulated for increasing solutions are (under obvious modification) valid for decreasing

solutions etc. Let us note that close investigation of asymptotic behaviour of a solu-

tion of delayed functional differential equations is performed e.g. in papers [1]–[24].

The studied Eq. (1) (with a ≡ 1) occurs e.g. in the number theory [23].

The contribution is organized as follows: In Section 2 a basic auxiliary in-

equality is studied and the relationship of its solutions with solutions of Eq. (1) is es-

tablished. Exponential representation of monotone solutions is discussed in Section 3.

Section 4 contains main results of the paper concerning inequalities for solutions of

Eq. (1) and existence of unbounded solutions. An overview of known results and il-

lustrative examples are contained in Section 5. The paper ends with an open problem

formulated in Section 6.

1.2. Some definitions. Let us shortly recall basic definitions. Let C := C([−τ, 0], R)

be Banach space of continuous functions mapping the interval [−τ, 0] into R equipped

with the supremum norm.

A function y(t) is said to be a solution of Eq. (1) on [ν− τ, ν +A) with ν ∈ I

and A > 0, if y ∈ C([ν− τ, ν +A), R)∩C1([ν, ν +A), R), and y(t) satisfies the Eq. (1)

for t ∈ [ν, ν + A).

For given ν ∈ I, ϕ ∈ C, we say that y(ν, ϕ) is a solution of Eq. (1) through

(ν, ϕ) (or that y(ν, ϕ) corresponds to the initial point ν ), if there is an A > 0 such

that y(ν, ϕ) is a solution of Eq. (1) on [ν − τ, ν + A) and y(ν, ϕ)(ν + θ) = ϕ(θ) for

θ ∈ [−τ, 0].

Due to linearity of equation (1), the solution y(ν, ϕ) is unique and is defined

on [ν − τ,∞), i.e. in previous definitions we can put A := ∞.

2. An auxiliary inequality

Auxiliary inequality

ω̇(t) ≤ β(t)[ω(t− δ)− a(t)ω(t− τ)] (3)
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plays a main role in analysis of equation (1). A function ω(t) is said to be a solution

of (3) on [ν − τ, ν + A) with ν ∈ I and A > 0, if ω ∈ C([ν − τ, ν + A), R)∩C1([ν, ν +

A), R), and ω(t) satisfies the inequality (3) for t ∈ [ν, ν + A).

2.1. Inequalities between solutions of inequality (3) and equation (1). Below

we discuss some properties of solutions of inequalities of the type (3) and inequalities

between solutions of (1) and inequality (3).

Theorem 1. Suppose that ω(t) is a solution of inequality (3) on I−1. Then there

exists a solution y(t) of (1) on I−1 such that an inequality

y(t) ≥ ω(t) (4)

holds on I−1. In particular, a solution y(t0, φ) of Eq. (1) with φ ∈ C defined by relation

φ(θ) := ω(t0 + θ), θ ∈ [−τ, 0], (5)

is a such solution.

Proof. Let ω(t) be a solution of inequality (3) on I−1. Let us show that the solution

y(t) := y(t0, φ)(t) of (1) satisfies inequality (4) i.e.

y(t0, φ)(t) ≥ ω(t) (6)

on I−1. Due to definition of y(t) we have y(t) ≡ ω(t), t ∈ [t0 − τ, t0] and (4) holds on

initial interval [t0 − τ, t0]. Define on I−1 a continuous function

W (t) := y(t)− ω(t).

Function W is continuously differentiable on I. Then (taking into account inequal-

ity (3)) the estimation

Ẇ (t) = ẏ(t)− ω̇(t) ≥ Z(t)

with

Z(t) := β(t)[y(t− δ)− a(t)y(t− τ)]− β(t)[ω(t− δ)− a(t)ω(t− τ)] =

β(t)[W (t− δ)− a(t)W (t− τ)]
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is valid on I . Let t ∈ (t0, t0 + δ]. In view of (5) W (t− δ) ≡ W (t− τ) ≡ 0, Z(t) ≡ 0

and Ẇ (t) ≥ 0, i.e. (4) holds on (t0, t0 + δ]. Let t ∈ (t0 + δ, t0 + τ ]. In this case

W (t− τ) ≡ 0 and

Z(t) ≡ β(t)[y(t− δ)− ω(t− δ)] = β(t)W (t− δ) ≥ 0.

Consequently, Ẇ (t) ≥ 0, i.e. (4) holds on (t0 + δ, t0 + τ ], too. Let us show that

inequality Ẇ (t) ≥ 0 holds on the whole interval I. For it suppose the contrary, i.e.

suppose existence of a point t1 > t0 + τ such that

Ẇ (t) ≥ 0, t ∈ [t0, t1),

Ẇ (t1) = 0,

Ẇ (t) < 0, t ∈ (t1, t1 + ε), (7)

where ε < δ is a small positive number. Due to continuity of W (t) on I−1, our

construction and suppositions, such point t1 exists. Let t2 ∈ (t1, t1 + ε). Taking into

account that W (t) is nondecreasing on [t0, t1] we conclude W (t2−δ) ≥ W (t2−τ) ≥ 0.

Then

Ẇ (t2) = ẏ(t2)− ω̇(t2) ≥ Z(t2) = β(t2)[W (t2 − δ)− a(t2)W (t2 − τ)] ≥

β(t2)(1− a(t2))W (t2 − τ) ≥ 0.

The resulting inequality Ẇ (t2) ≥ 0 contradicts (7). 2

Remark 1. Let us note that an affirmation, opposite in a sense with the statement

of Theorem 1 is obvious. Namely, if a solution y(t) of (1) on I−1 is given, then there

exists a solution ω(t) of inequality (3) on I−1 such that inequality

ω(t) ≥ y(t) (8)

holds on I−1, since it can be put ω(t) ≡ y(t).
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2.2. A comparison lemma. Let us consider an inequality of the type (3)

ω̇∗(t) ≤ β1(t)[ω∗(t− δ)− a1(t)ω∗(t− τ)] (9)

where β1 : I−1 → R+ and a1 : I → [0, 1] are continuous functions satisfying inequali-

ties β1(t) ≤ β(t), a1(t) ≥ a(t) on I−1. The following comparison lemma will be used

below.

Lemma 1. Let the inequality (9) have a nondecreasing positive solution on I−1. Then

this solution is a solution of the inequality (3) on I−1, too.

Proof. Let ω∗ be a nondecreasing solution of inequality (9) on I−1. Then

ω̇∗ ≤ β1(t)[ω∗(t− δ)− a1(t)ω∗(t− τ)] ≤ β(t)[ω∗(t− δ)− a1(t)ω∗(t− τ)]

≤ β(t)[ω∗(t− δ)− a(t)ω∗(t− τ)].

Consequently, the function ω := ω∗ solves the inequality (3), too. 2

2.3. A solution of the inequality (3). It is easy to get a solution of inequality (3)

in an exponential form.

Lemma 2. Suppose that there exists a function ε : I−1 → R, continuous on I−1 \{t0}

with at most first order discontinuity at the point t = t0 and satisfying on I the

inequality

exp
[
−

∫ t

t−δ

ε(s)β(s) ds

]
≥ ε(t) + a(t) exp

[
−

∫ t

t−τ

ε(s)β(s) ds

]
. (10)

Then on I−1, there exists a solution ω(t) = ωe(t) of inequality (3) having the form

ωe(t) := exp
[∫ t

t0−τ

ε(s)β(s) ds

]
. (11)

Proof. Inequality (10) follows immediately from inequality (3) if a possible

solution ω(t) is taken in the form (11). 2

3. Properties of solutions of equation (1)

In this part we prove auxiliary results concerning solutions of equation (1).

Lemma 3. Let ϕ ∈ C is increasing and positive on [−τ, 0]. Then the corresponding

solution y(t∗, ϕ)(t) of (1) with t∗ ∈ I is increasing in [t∗ − τ,∞), too.
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Proof. Immediately, from the form of (1), we get sign ẏ(t∗, ϕ)(t∗) = +1 in the case

when the function ϕ increases on [−τ, 0]. The case ẏ(t∗, ϕ)(t∗∗) = 0 for a t∗∗ ∈ (t∗,∞)

and simultaneously sign ẏ(t∗, ϕ)(t) 6= 0 on interval t ∈ (t∗, t∗∗) is impossible because,

as it follows from (1) and from the properties of function ϕ, the inequality y(t∗∗−δ) >

y(t∗∗ − τ) holds and, consequently,

y(t∗∗ − δ)− a(t∗∗)y(t∗∗ − τ) 6= 0.

I.e. ẏ(t∗, ϕ)(t∗∗) 6= 0. 2

3.1. Exponential representation of solutions of equation (1).

Theorem 2. Every continuously increasing on I−1 and continuously differentiable on

I−1\{t0} solution y(t) of (1) with y(t0−τ) = 1 is on I−1 representable in exponential

form:

y(t) = exp
[∫ t

t0−τ

ε̃(s)β(s) ds

]
(12)

where ε̃ : I−1 → R+ := [0,∞) is a continuous function on I−1 \{t0} with at most first

order discontinuity at t0 and 0 < ε̃(t) < 1 on I.

Proof Let ϕ ∈ C, ϕ(t0 − τ) = 1 be increasing and continuously differentiable initial

function generating solution y(t) = y(t0, ϕ)(t). By Lemma 3 is y(t) increasing in I−1.

Define

ε̃(t) :=


ϕ′(t)

β(t)ϕ(t)
on [t0 − τ, t0),

ẏ(t)
β(t)y(t)

on I.

Then on I−1 representation (12) holds. Really, for t ∈ [t0 − τ, t0) we have

exp
[∫ t

t0−τ

ε̃(s)β(s) ds

]
= exp

[
ln

ϕ(t)
ϕ(t0 − τ)

]
= ϕ(t)

and for t ∈ I

exp
[∫ t

t0−τ

ε̃(s)β(s) ds

]
= exp

[∫ t0

t0−τ

ε̃(s)β(s) ds +
∫ t

t0

ε̃(s)β(s) ds

]
=

exp
[
ln

ϕ(t0)
ϕ(t0 − τ)

+ ln
y(t)
y(t0)

]
= y(t).
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Function ε̃ is on [t0 − τ, t0) nonnegative, since obviously ϕ > 0, ϕ′ ≥ 0 and β > 0.

Positivity of ε̃ on I is obvious, too since

ε̃(t) =
ẏ(t)

β(t)y(t)
=

y(t− δ)− a(t)y(t− τ)
y(t)

>
(1− a(t))y(t− τ)

y(t)
≥ 0,

i.e. ε̃(t) > 0. Moreover, on I,

ε̃(t) =
ẏ(t)

β(t)y(t)
=

y(t− δ)− a(t)y(t− τ)
y(t)

≤ y(t− δ)
y(t)

<
y(t)
y(t)

= 1,

i.e. ε̃(t) < 1. 2

Below is given a modification of previous result.

Corollary 1. There exists continuously increasing on I−1 and continuously differen-

tiable on I−1\{t0} solution y(t) of (1) with y(t0−τ) = 1, representable in exponential

form (12), where

ε̃ : I−1 → (0, 1)

is a continuous function on I−1 \ {t0} with at most first order discontinuity at t0.

The proof remains exactly the same if the initial function ϕ ∈ C is defined as

ϕ(θ) := exp

[∫ t0+θ

t0−τ

ε∗(s)β(s) ds

]
, θ ∈ [−τ, 0],

where ε∗ : [t0 − τ, t0] → (0, 1) is a continuous function. Then we can define corre-

sponding function ε̃ e.g. in the following way:

ε̃(t) :=


ε∗(t) on [t0 − τ, t0),

y(t− δ)− a(t)y(t− τ)
y(t)

on [t0,∞).

Remark 2. From the statement of Theorem 2 it follows that every continuously

increasing on I−1 and continuously differentiable on I−1 \ {t0} solution y(t) of (1)

with y(t0 − τ) = 1 satisfies on I the inequality

y(t) < exp
[∫ t

t0−τ

β(s) ds

]
. (13)

Moreover (as it follows from Corollary 1) there exists continuously increasing on I−1

and continuously differentiable on I−1 \ {t0} solution y(t) of (1) with y(t0 − τ) = 1,

such that inequality (13) holds on I−1 \ {t0 − τ}.
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4. Main results

The purpose of this part is to give an equivalence between existence of a

certain type of exponential behavior of solutions of (1) and existence of a solution of

inequality (3). The following result can be useful in the case when we need a concrete

inequality for indicated solution y = y(t) of (1).

4.1. Two equivalent statements.

Theorem 3. Let q : I−1 → (0, 1) be a given function such that the integral∫ t

t0−τ

q(s)β(s) ds exists for any t ∈ I−1. Then the following two statements are equiv-

alent:

a) There exists a continuously increasing on I−1 and continuously differen-

tiable on I−1 \ {t0} solution y = y(t) of (1) representable in the form

y(t) = exp
[∫ t

t0−τ

ε̃(s)β(s) ds

]
(14)

on I−1, where ε̃ : I−1 → (0, 1) is a continuous function on I−1 \ {t0} with

at most first order discontinuity at the point t = t0, such that

y(t) ≥ exp
[∫ t

t0−τ

q(s)β(s) ds

]
(15)

on I−1.

b) There exists a function ε : I−1 → (0, 1) continuous on I−1 \ {t0} with at

most first order discontinuity at the point t = t0 such that∫ t

t0−τ

ε(s)β(s)ds ≥
∫ t

t0−τ

q(s)β(s)ds (16)

on I−1, and satisfying the integral inequality (10) on I.

Proof

Part b) =⇒ a). In this case there exists (by Lemma 2) a solution ω(t) ≡ ωe(t) of

inequality (10) given by formula (14). Define

ϕ(θ) := ωe(t0 + θ), θ ∈ [−τ, 0].
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Since ϕ ∈ C is increasing and positive on [−τ, 0], then (by Lemma 3) solution y(t) =

y(t0, ϕ)(t) is increasing in I−1 and, by Theorem 1, satisfies on I−1 inequality (4), i.e.

y(t) ≥ exp
[∫ t

t0−τ

ε(s)β(s) ds

]
, t ∈ I−1.

Now is the inequality (15) a straightforward consequence of inequality (16). The

part b) =⇒ a) is proved.

Part a) =⇒ b). Let y(t) be a solution of (1) on I−1, having form (14), with

properties indicated in the part a). Then on I−1 \ {t0}:

ẏ(t) = ε̃(t)β(t) · exp
[∫ t

t0−τ

ε̃(s)β(s) ds

]
.

Let us put y(t) into (1). Then on I:

ε̃(t) = exp
[
−

∫ t

t−δ

ε̃(s)β(s) ds

]
− a(t) exp

[
−

∫ t

t−τ

ε̃(s)β(s) ds

]
.

Define function ε : I−1 \ {t0} → (0, 1) as ε := ε̃, and rewrite the last equality. For

t ∈ I we get

exp
[
−

∫ t

t−δ

ε(s)β(s) ds

]
= ε(t) + a(t) exp

[
−

∫ t

t−τ

ε(s)β(s) ds

]
,

i.e. the integral inequality (10) holds on I. Moreover, due to (15) we have

y(t) = exp
[∫ t

t0−τ

ε(s)β(s) ds

]
≥ exp

[∫ t

t0−τ

q(s)β(s) ds

]
,

i.e. the inequality (16) holds, too. This ends the proof. 2

Remark 3. Note that Theorem 3 remains valid if, instead of the supposition q :

I−1 → (0, 1), a more general supposition q : I−1 → R is used. But for some specifi-

cations of the function q the equivalence between statements a) and b) can lose sense

since the existence of solution y = y(t) satisfying inequality (15) can follows directly

from the statements of Theorem 2 or Corollary 1. E.g. the choice q(t) := 0 gives

no new information as well as the choice q(t) := ε̃(t). Theorem 3 generalizes and

improves Theorem 2 from [14], where the equation (1) with a(t) ≡ 1 was investigated.

The authors are grateful to R. Hakl for corresponding remark during discussions on
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International Conference on Nonlinear Operators, Differential Equations and Appli-

cations in Cluj-Napoca, Romania, August 2004, indicating a gap in formulation of

this result.

Remark 4. Let us underline that Theorem 3 together with Remark 2 give for solution

y(t) on I−1 estimation

exp
[∫ t

t0−τ

q(s)β(s) ds

]
≤ y(t) ≤ exp

[∫ t

t0−τ

β(s) ds

]
.

4.2. Sufficient conditions for divergence. Conditions guarantee existence of un-

bounded solution can be derived easily from previous results. Let us formulate some

of them. From Theorem 1 we get

Theorem 4. Suppose that ω(t) is a solution of inequality (3) on I−1 such that

lim sup
t→∞

ω(t) = +∞.

Then there exists unbounded solution y(t) of (1) on I−1.

From Lemma 2, Theorem 1 and Theorem 3 (putting q(t) := ε(t)) we get

Theorem 5. Suppose there exists a function ε : I−1 → R, continuous on I−1 \ {t0}

with at most first order discontinuity at the point t = t0 satisfying
∫ ∞

ε(s)β(s)ds =

∞, and on I the inequality (10). Then there exists unbounded solution y(t) of (1) on

I−1 satisfying inequality

y(t) ≥ exp
[∫ t

t0−τ

ε(s)β(s) ds

]
(17)

on I−1. If, moreover ε is on [t0−τ, t0] positive then there exists increasing unbounded

solution y(t) of (1) on I−1, satisfying inequality (17).

5. Summary of known results and examples

5.1. Known results relative to equation (1). Let us recall some known par-

tial results concerning equation (1). In paper [12] conditions for convergence of all

solutions of equation (1) with a(t) ≡ 1 and δ = 1, i.e. the equation

ẏ(t) = β(t)[y(t)− y(t− τ)]. (18)
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are given. We reproduce one result as the first statement of following theorem. The

second part concerns of equation (1) with a(t) ≡ 1, i.e. the equation

ẏ(t) = β(t)[y(t− δ)− y(t− τ)]. (19)

and follows from results given in [3, 6].

Theorem 6. Let for all t ∈ I−1 and a constant p > 1 :

β(t) ≤ 1
τ
− p

2t
. (20)

Then each solution of (18) corresponding to the initial point t0 converges.

Let for all t ∈ I−1 exists a constant ρ such that

β(t) ≤ ρ <
1

τ − δ
. (21)

Then each solution of (19) corresponding to the initial point t0 converges.

In the paper [14] is proved following result concerning existence of unbounded

increasing solutions of (19).

Theorem 7. Let for all t ∈ I−1 with sufficiently large t0 and for a constant p ∈ (0, 1) :

β(t) ≥ 1
τ − δ

− p

2t
. (22)

Then there exists an increasing and unbounded solution of (19) as t →∞.

5.2. Examples. In this part we give two examples to demonstrate the influence of

the coefficient a to appearance of unbounded solutions.

Example 1. The first remark is obvious - the presence of coefficient a in Eq. (1)

enlarges, in the case a(t) 6≡ 1, the range for coefficient β. Consider the following

result to illustrate this phenomenon.

Theorem 8. Let for all t ∈ I−1 inequalities

β(t) ≥ 1
τ − δ

+
p

t
, 0 ≤ a(t) ≤ 1− b

t2
(23)

with constants p ∈ R, b ∈ R+ hold. Then there exists increasing and unbounded

solution y(t) of (1) as t →∞.
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JOSEF DIBLÍK AND MIROSLAVA RŮŽIČKOVÁ

Proof. Let us verify that the integral inequality (10) have (for sufficiently large values

t) a solution of the form ε(t) := α/t with α ∈ R+. Put in (10)

β(t) :=
1

τ − δ
+

p

t
, a(t) := 1− b

t2
, ε(t) :=

α

t
.

Then the left-hand side L(t) of (10) equals

L(t) ≡ exp
[
−

∫ t

t−δ

ε(s)β(s) ds

]
= exp

[
−

∫ t

t−δ

α

s

[
1

τ − δ
+

p

s

]
ds

]
=

(
t− δ

t

) α

τ − δ · exp
[
−αδp

t(t− δ)

]
.

Now we asymptotically decompose L(t) for t →∞ with sufficient accuracy for further

application. We get:

L(t)=
[
1− αδ

(τ − δ)t
+

αδ2

2(τ − δ)
·
(

α

τ − δ
− 1

)
1
t2

+ O

(
1
t3

)]
×

[
1− αδp

t2
+ O

(
1
t3

)]

= 1− αδ

(τ − δ)t
+

[
αδ2

2(τ − δ)
·
(

α

τ − δ
− 1

)
− αδp

]
1
t2

+ O

(
1
t3

)
where O is the Landau order symbol. Decomposition of the right-hand side R(t)

of (10) leads to

R(t) ≡ ε(t) + a(t) exp
[
−

∫ t

t−τ

ε(s)β(s) ds

]

=
α

t
+

(
1− b

t2

)
· exp

[
−

∫ t

t−τ

α

s

[
1

τ − δ
+

p

s

]
ds

]

=
α

t
+

(
1− b

t2

)
·
(

t− τ

t

) α

τ − δ · exp
[
−ατp

t(t− τ)

]

=
α

t
+

(
1− b

t2

)
·
[
1− ατ

(τ − δ)t
+

ατ2

2(τ − δ)
·
(

α

τ − δ
− 1

)
1
t2

+ O

(
1
t3

)]
×

[
1− ατp

t2
+ O

(
1
t3

)]

= 1 +
α

t
− ατ

τ − δ
· 1

t
+

[
ατ2

2(τ − δ)
·
(

α

τ − δ
− 1

)
− ατp− b

]
1
t2

+ O

(
1
t3

)
.
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Comparing L(t) and R(t), we see that for L(t) ≥ R(t) it is necessary to compare

coefficients of the terms t−2 because coefficients of the terms t0 and t−1 are equal. It

means we need the inequality

αδ2

2(τ − δ)
·
(

α

τ − δ
− 1

)
− αδp >

ατ2

2(τ − δ)
·
(

α

τ − δ
− 1

)
− ατp− b.

We see that for sufficiently small positive α this inequality holds since taking limit for

α → 0+, the limiting inequality 0 > −b is valid due to positivity of b. Consequently,

a function

ωe(t) := exp
[∫ t

t0−τ

ε(s)β(s)ds

]
= exp

[∫ t

t0−τ

α

s

(
1

τ − δ
+

p

s

)
ds

]
is (under supposition that t0 is sufficiently large) a positive solution of the integral

inequality (3) and, moreover, it is easy to verify that ωe(∞) = +∞. Let us show

that this solution solves every inequality of the type (10) (perhaps starting with a

different value t0) if the above fixed functions β and a (defined at beginning of the

proof) are changed by any functions β and a specifying in formulation of theorem by

inequalities (23). This statement is a straightforward consequence of Lemma 1 if in

its formulation

β1(t) :=
1

τ − δ
+

p

t
, a1(t) := 1− b

t2
.

Finally, by Theorem 4 with ω := ωe, there exists increasing and unbounded solution

y(t) of (1) as t →∞. 2

Remark 5. The discussed above influence of the coefficient a can be now treated as

follows. Slight perturbation of the coefficient a(t) := 1, in situation when Theorem 8

holds, leads to substantial enlargement or the range of the coefficient β (compare

inequalities (22) and (23)) such that the property of existence of increasing unbounded

solutions remains preserved.

Example 2. Let us show that unbounded increasing solution of (1) as t → ∞ can

exists even in the case when the inequality (20) holds. This can be caused due to

smallness of a.
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Theorem 9. Put β(t) := 1/
√

t on I−1 with t0 > τ . Let there exists a constant

q ∈ (0, 1) such that a : I → [0, q]. Then there exists increasing and unbounded

solution y(t) of (1) as t →∞.

Proof. Let us verify that the integral inequality (10) have a solution given by formula

ε(t) := 1/
√

t. We proceed similarly as in the proof of Theorem 8. The left-hand side

L(t) of (10) equals

L(t) ≡ exp
[
−

∫ t

t−δ

ε(s)β(s) ds

]
= exp

[
−

∫ t

t−δ

1
s

ds

]
= exp

[
− ln

t

t− δ

]
= 1− δ

t

Computation of the right-hand side R(t) of (3) leads to

R(t) ≡ ε(t) + a(t) exp
[
−

∫ t

t−τ

ε(s)β(s) ds

]
=

1√
t

+ a(t) exp
[
−

∫ t

t−τ

1
s

ds

]
=

1√
t

+ a(t) exp
[
− ln

t

t− τ

]
=

1√
t

+ a(t)
(
1− τ

t

)
<

1√
t

+ q
(
1− τ

t

)
.

Inequality L(t) ≥ R(t) will be valid if

1− δ

t
>

1√
t

+ q
(
1− τ

t

)
.

This inequality obviously holds for sufficiently large t since, by supposition, q < 1. So,

function

ωe(t) := exp
[∫ t

t0−τ

ε(s)β(s) ds

]
= exp

[∫ t

t0−τ

1
s

ds

]
=

t

t0 − τ

is (under supposition that t0 is sufficiently large) a solution of the integral inequal-

ity (3) and ωe(∞) = +∞. By Theorem 5, there exists increasing and unbounded

solution y(t) of (1) as t →∞ satisfying inequality y(t) ≥ t/(t0 − τ). 2

6. Open problem

Problem 1. Comparing inequalities (22), (23) the following open question arises.

Can be the affirmation of Theorem 8 improved in the following sense? Exists a func-

tion b∗ satisfying on I−1 inequalities

1− b

t2
< b∗(t) < 1
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such that formulated statement remains valid if for the function a inequalities

0 ≤ a(t) ≤ b∗(t)

on I−1 hold?
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LI, Number 1, March 2006

ANALYSIS OF AN INTEGRAL EQUATION
WITH MODIFIED ARGUMENT

MARIA DOBRIŢOIU

Abstract. This paper contains a study of the Fredholm integral equation

with modified argument

(1) x(t) =

∫ b

a

K(t, s, x(s), x(g(s)), x(a), x(b))ds + f(t), t ∈ [a, b],

concerning:

- the existence and uniqueness of the solution using Schauder’s

theorem and Contractions Principle;

- continuous dependence on data of the solution using data de-

pendence general theorem;

- approximation of the solution using successive approximations

method with two quadrature formula: the trapezoidal rule and the rectan-

gle quadrature formula.

1. Notations and preliminaries

Let X be a nonempty set, A : X → X an operator and we shall use the

following notation:

FA := {x ∈ X| A(x) = x} - the fixed point set of A.

We consider the Banach space X = C [a, b] endowed with the Chebyshev

norm ‖ · ‖ .

In the section 2 we need the following results (see [2], [8], [9], [10] and [12]).
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Theorem 1.1. (Schauder). Let X be a Banach space and Y ⊂ X a

nonempty, bounded, convex and closed set. If A : Y → Y is a completely continuous

operator, then A has at least one fixed point.

Theorem 1.2. (Contractions Principle). Let (X, d) be a complete metric

space and A : X → X an α-contraction (α < 1). In these conditions we have:

(i) FA = {x∗};

(ii) An(x0) → x∗, as n →∞;

(iii) d(x∗, An(x0)) ≤
αn

1− α
d(x0, A(x0)) .

In the section 3 we need the following result (see [2], [8], [9], [10] and [12]).

Theorem 1.3. (Dependence on data). Let (X, d) be a complete metric space

and A,B : X → X two operators. We suppose that:

(i) A is an α-contraction (α < 1) and FA = {x∗};

(ii) x∗B ∈ FB;

(iii) there exist η > 0 such that d(A(x), B(x)) < η for all x ∈ X.

In these conditions we have

d(x∗A, x∗B) ≤ η

1− α
.

In the section 4 we need the following results (see [2], [7], [8], [9] and [12]).

We will use for the calculus of the integrals of the succesive approximations

sequence, two quadrature formulae:

1) The trapezoidal rule

∫ b

a

f(x)dx =
b− a

2n

[
f(a) + 2

n−1∑
i=1

f(xi) + f(b)

]
+ RT (f) , (1)

with a very sharp division of the interval [a, b] through the points a = x0 < x1 <

. . . < xn = b and f ∈ C2[a, b]. We use for the rest of the formula RT (f) =
n∑

i=1

RT
i (f)

the following estimation: ∣∣RT (f)
∣∣ ≤ MT (b− a)3

12n2
. (2)

2) The rectangle quadrature formula
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(a) If we consider the intermediary points of the division of the interval [a, b]

at the left terminal point of the partial intervals [xi, xi+1], ξi = xi , we will have the

following formula:∫ b

a

f(x)dx =
b− a

n

[
f(a) +

n−1∑
i=1

f(xi)

]
+ RD(f) , (3)

or

(b) If we consider the intermediary points of the division of the interval [a, b]

at the right terminal point of the partial intervals [xi, xi+1], ξi = xi+1 , we will have

the following formula:∫ b

a

f(x)dx =
b− a

n

[
n−1∑
i=1

f(xi) + f(b)

]
+ RD(f) , (4)

with a very sharp division of the interval [a, b] through the points a = x0 < x1 < . . . <

xn = b and f ∈ C1[a, b]. We use for the rest of the formula RD(f) =
n∑

i=1

RD
i (f)

the following estimation: ∣∣RD(f)
∣∣ ≤ MD (b− a)2

n
. (5)

2. Existence of the solution

Theorems of existence of the solution for several type of integral equations

with modified argument have been presented in the papers [1], [2], [5], [9], [10], [11],

[12] .

In what follows we will establish theorems of existence of the solution of the

integral equation (1) in C[a, b] and in the B(f ;R) sphere.

A. Existence of the solution in C[a, b]

Let us consider the Fredholm integral equation with modified argument (1)

and assume that the following conditions are satisfied:

(a1) K ∈ C([a, b]× [a, b]× R4);

(a2) f ∈ C[a, b];

(a3) g ∈ C ([a, b], [a, b]).

Theorem 2.1. Suppose (a1)-(a3) are satisfied. In addition suppose
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(a4) there exist MK > 0 such that

|K(t, s, u1, u2, u3, u4)| ≤ MK , for all t ∈ [a, b], u1, u2, u3, u4 ∈ R .

Then the integral equation (1) has at least one solution x∗ ∈ C[a, b].

Proof. We attach to the integral equation (1), the operator A : C[a, b] →

C[a, b], defined by

A(x)(t) :=
∫ b

a

K(t, s, x(s), x(g(s)), x(a), x(b))ds + f(t), (6)

for all t ∈ [a, b].

We have

‖A(x)‖C[a,b] ≤ ‖f‖C[a,b] + MK(b− a) , for all x ∈ C[a, b] .

Let Y ⊂ C[a, b] be a nonempty, bounded subset. Then A(Y ) is also a bounded

subset. From the uniform continuity of K with respect to t, it follows that the operator

A is continuous and that the subset A(Y ) is equicontinuous. Therefore A(Y ) is a

compact subset.

Let be Y = convA(C[a, b]) and now Y is a nonempty, bounded, convex and

closed subset. We consider the operator A : Y → Y also noted with A and defined

by same relation (7). Y is an invariant subset by A.

On the other hand, by Arzela-Ascoli theorem, A is completely continuous.

The conditions of the Schauder’s theorem are satisfied. �

We have the following theorem of existence and uniqueness of the solution of

the integral equation (1) in C[a, b]:

Theorem 2.2. Suppose (a1)-(a3) are satisfied. In addition suppose

(a5) there exist L > 0 such that

|K(t, s, u1, u2, u3, u4)−K(t, s, v1, v2, v3, v4)| ≤

≤ L (|u1 − v1|+ |u2 − v2|+ |u3 − v3|+ |u4 − v4|) ,

for all t, s ∈ [a, b], ui, vi ∈ R , i = 1, 4;

(a6) 4L(b− a) < 1 .

84



ANALYSIS OF AN INTEGRAL EQUATION WITH MODIFIED ARGUMENT

Then the integral equation (1) has a unique solution x∗ ∈ C[a, b] .

Proof. We attach to the integral equation (1), the operator A : C[a, b] →

C[a, b], defined by the relation (7). The set of the solutions of the integral equation

(1) coincide with the set of fixed points of the operator A. By (a5) and using the

Chebyshev norm, we have

‖A(x1)−A(x2)‖C[a,b] ≤ 4L (b− a) ‖x1 − x2‖C[a,b]

and therefore, by (a6) it result that the operator A is an α-contraction with the

coefficient α = 4L (b− a). The conclusion result from the Contractions Principle. �

B. Existence of the solution in the B(f ;R) sphere

We suppose the following conditions are satisfied:

(a′1) K ∈ C([a, b]× [a, b]× J4), J ⊂ R closed interval;

and (a2), (a3).

In addition, we denote MK a positive constant such that, for the restriction

K|[a,b]×[a,b]×J4 , J ⊂ R compact, we have

|K(t, s, u1, u2, u3, u4)| ≤ MK , for all t ∈ [a, b], u1, u2, u3, u4 ∈ J . (7)

We have the following theorem of existence of the solution of the integral

equation (1) in B(f ;R)⊂ C[a, b] :

Theorem 2.3. Suppose (a′1), (a2), (a3) are satisfied. In addition suppose

(b1)MK(b− a) ≤ R (the invariability condition of the B(f ;R) sphere).

Then the integral equation (1) has at least one solution x∗ ∈ B(f ;R) ⊂

C[a, b].

Proof. We attach to the integral equation (1), the operator A : B(f ;R) →

C[a, b], defined by the relation (7), where R is a real positive number which satisfies

the condition below: [
x ∈ B(f ;R)

]
=⇒ [x(t) ∈ J ⊂ R]

and we suppose that there exist at least one number R with this property.
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We establish under what conditions, the B (f ;R) sphere is an invariant set

for the operator A . We have

|A(x)(t)− f(t)| =

∣∣∣∣∣
∫ b

a

K(t, s, x(s), x(g(s)), x(a), x(b))ds

∣∣∣∣∣ ≤
≤

∫ b

a

|K(t, s, x(s), x(g(s)), x(a), x(b))| ds

and by (8) we have

|A(x)(t)− f(t)| ≤ MK(b− a), for all t ∈ [a, b] ,

and then by (b1) it result that the B(f ;R) sphere is an invariant set for the operator

A. Now we have the operator A : B(f ;R) → B(f ;R), also noted with A, defined by

same relation, where B(f ;R) is a closed subset of the Banach space C[a, b].

Next we assure the conditions of the Schauder’s theorem.

We have

‖A(x)‖C[a,b] ≤ ‖f‖C[a,b] + R , for all x ∈ B(f ;R)

and it follows that the subset A(B(f ;R)) is bounded. From the uniform continuity

of K with respect to t, it follows that the subset A(B(f ;R)) is equicontinuous. Now

it result that A(B(f ;R)) is a compact subset.

Also, from the uniform continuity of K with respect to t, it follows that

the operator A is continuous. On the other hand, by Arzela-Ascoli theorem, A is

completely continuous. The proof follows the Schauder’s theorem. �

Theorem 2.4. Suppose the conditions (a′1), (a2), (a3), (b1) and (a6) are

satisfied. In addition suppose

(b2) there exist L > 0 such that

|K(t, s, u1, u2, u3, u4)−K(t, s, v1, v2, v3, v4)| ≤

≤ L (|u1 − v1|+ |u2 − v2|+ |u3 − v3|+ |u4 − v4|) ,

for all t, s ∈ [a, b], ui, vi ∈ J , i = 1, 4;

Then the integral equation (1) has a unique solution x∗ ∈ B(f ;R) ⊂ C[a, b].
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Proof. We attach to the integral equation (1), the operator A : B(f ;R) →

C[a, b], defined by the relation (7), where R is a real positive number which satisfies

the condition below: [
x ∈ B(f ;R)

]
=⇒ [x(t) ∈ J ⊂ R]

and we suppose that there exist at least one number R with this property.

If we use a reasoning as the one used in the proof of theorem 2.3, we will obtain

that the B(f ;R) sphere is an invariant set for the operator A, and the invariability

condition (b1), of the B(f ;R) sphere is hold.

Now we have the operator A : B(f ;R) → B(f ;R), also noted with A, defined

by same relation, where B(f ;R) is a closed subset of the Banach space C[a, b]. The

set of the solutions of the integral equation (1) coincide with the set of fixed points

of the operator A.

By a similar reasoning as in the proof of theorem 2.2 and using the condition

(b2) it result that the operator A is an α-contraction with the coefficient α = 4L (b− a)

.

Now the proof result from the Contractions Principle. �

3. Dependence on data

Theorems of dependence on data for several type of integral equations with

modified argument have been presented in the papers [5], [6], [9], [12].

In what follows we consider the integral equation (1) and we will study the

dependence of the solution of the integral equation (1) with respect to K and f .

Now we consider the perturbed integral equation

y(t) =
∫ b

a

H(t, s, y(s), y(g(s)), y(a), y(b))ds + h(t) , t ∈ [a, b] (8)

and we have the following theorem of dependence on data of the solution of the

integral equation (1):

Theorem 3.1. Suppose

(i) the conditions of the theorem 2.2 are satisfied and denote x∗ the unique

solution of the integral equation (1).
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(ii) H ∈ C([a, b]× [a, b]× R4) and h ∈ C[a, b] ;

(iii) there exist η1, η2 > 0 such that

|K(t, s, u1, u2, u3, u4)−H(t, s, u1, u2, u3, u4)| ≤ η1 ,

for all t, s ∈ [a, b], u1, u2, u3, u4 ∈ R and

|f(t)− h(t)| ≤ η2 for all t ∈ [a, b] .

In these conditions, if y∗ is a solution of the integral equation (9), then we

have:

‖x∗ − y∗‖ ≤ η1(b− a) + η2

1− 4L(b− a)
.

Proof. We consider the operator A which appear in the proof of the theorem

2.2.

Let B : C[a, b] → C[a, b] be an operator defined by

B(y)(t) =
∫ b

a

H(t, s, y(s), y(g(s)), y(a), y(b))ds + h(t) , t ∈ [a, b] .

By the condition (iii) we have

‖A(x)−B(x)‖ ≤ η1(b− a) + η2 .

The proof result from data dependence general theorem. �

4. Approximation of the solution

Approximative methods for various type of integral equations with modified

argument have been presented in the papers [1], [2], [3], [4], [7], [8], [9] .

We will determine as follows, a method for the approximation of the solution

of the integral equation (1).

We suppose that the conditions of one of the two existence and uniqueness

theorems from section 2 are satisfied. In order to lay down the ideas we consider the

case of the integral equation (1) with a unique solution in the sphere B(f ;R) ⊂ C[a, b]
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(theorem 2.4), called x∗ and established using the successive approximation method.

We have the sequence of the successive approximations:

x0(t) = f(t)

x1(t) =
∫ b

a

K(t, s, x0(s), x0(g(s)), x0(a), x0(b))ds + f(t)

. . . . . . . . . . . . . . . . . . . . . . . . . . .

xm(t) =
∫ b

a

K(t, s, xm−1(s), xm−1(g(s)), xm−1(a), xm−1(b))ds + f(t)

. . . . . . . . . . . . . . . . . . . . . . . . . . .

and we consider a division of the interval [a, b] through the points a = x0 < x1 <

. . . < xn = b .

A. Approximation of the solution using the trapezoidal rule

We suppose that:

(h11) K ∈ C2([a, b]× [a, b]× J4), J ⊂ R closed interval ;

(h12) f ∈ C2[a, b] ;

(h13) g ∈ C2([a, b], [a, b])

and we will approximate the terms of the successive approximations sequence

using the trapezoidal rule (2) with the rest from (3). Generally, for the term xm(tk)

we have

xm(tk) =
b− a

2n
[K(tk, a, xm−1(a), xm−1(g(a)), xm−1(a), xm−1(b))+ (9)

+2
n−1∑
i=1

K(tk, ti, xm−1(ti), xm−1(g(ti)), xm−1(a), xm−1(b))+

+K(tk, b, xm−1(b), xm−1(g(b)), xm−1(a), xm−1(b))] + f(tk) + RT
m,k ,

k = 0, n , m ∈ N , with the estimation of the rest

∣∣RT
m,k

∣∣ ≤ (b− a)3

12n2
· max

s∈[a,b]

∣∣∣[K(tk, s, xm−1(s), xm−1(g(s)), xm−1(a), xm−1(b))]
′′

s

∣∣∣ .
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According to (h11) it result that the derivative of the function K from the

expression of the rest RT
m,k exist and has the following form:

[K(tk, s, xm−1(s), xm−1(g(s)), xm−1(a), xm−1(b))]
′′

s =
∂2K

∂s2
+

+2
∂2K

∂s∂xm−1
· x

′

m−1(s) + 2
∂2K

∂s∂xm−1
· ∂xm−1

∂g
· g

′
(s)+

+
∂2K

∂x2
m−1

(
x

′

m−1(s)
)2

+ 2
∂2K

∂x2
m−1

· ∂xm−1

∂g
· x

′

m−1(s) · g
′
(s)+

+
∂K

∂xm−1
· x

′′

m−1(s) +
∂2K

∂x2
m−1

·
(

∂xm−1

∂g

)2

·
(
g

′
(s)

)2

+

+
∂K

∂xm−1
· ∂2xm−1

∂g∂s
· x

′

m−1(s) · g
′
(s) +

∂K

∂xm−1
· ∂xm−1

∂g
· g

′′

(s) ,

where

x
(α)
m−1(t) =

∫ b

a

∂(α)K(t, s, xm−2(s), xm−2(g(s)), xm−2(a), xm−2(b))
∂t(α)

ds + f (α)(t) ,

α = 1, 2 .

If we denote

MT
1 = max

|α|≤2,t,s∈[a,b]

∣∣∣∣ ∂|α|K

∂tα1∂sα2∂uα3
1 ∂uα4

2 ∂uα5
3 ∂uα6

4

∣∣∣∣ ,

MT
2 = max

α≤2,t∈[a,b]

∣∣∣f (α)(t)
∣∣∣ , MT

3 = max
α≤2,t∈[a,b]

∣∣∣g(α)(t)
∣∣∣ ,

then we obtain for xm−1(t) and its derivative, the following estimations:∣∣∣x(α)
m−1(t)

∣∣∣ ≤ MT
1 (b− a) + MT

2 , α = 0, 2

while for the derivative of function K, we have

[K(tk, s, xm−1(s), xm−1(g(s)), xm−1(a), xm−1(b))]
′′

s ≤ MT
1

{
1 + 3

[
MT

1 (b− a)+

+MT
2

] (
1 + MT

3

)
+

[
MT

1 (b− a) + MT
2

]2 [
1 + 3MT

3 +
(
MT

3

)2
]}

= MT
0 .

It is obvious that MT
0 doesn’t depend on m and k, so the estimation of the

rest is ∣∣RT
m,k

∣∣ ≤ MT
0 · (b− a)3

12n2
, (10)
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where MT
0 = MT

0

(
K, D(α)K, f, D(α)f, g,D(α)g

)
, |α| ≤ 2 , and we obtain a formula

for the approximative calculus of the integrals of the successive approximations se-

quence. Using the method of successive approximations and the formula (10) with

the estimation of the rest resulted from (11), we suggest further on an algorithm in

order to solve the integral equation (1) approximately. To this end, we will calcu-

late approximately the terms of the successive approximations sequence and through

induction we obtain

xm(tk) =
b− a

2n
[K(tk, a, x̃m−1(a), x̃m−1(g(a)), x̃m−1(a), x̃m−1(b))+

+2
n−1∑
i=1

K(tk, ti, x̃m−1(ti), x̃m−1(g(ti)), x̃m−1(a), x̃m−1(b))+

+K(tk, b, x̃m−1(b), x̃m−1(g(b)), x̃m−1(a), x̃m−1(b))]+

+f(tk) + R̃T
m,k = x̃m(tk) + R̃T

m,k , k = 0, n

where ∣∣∣R̃T
m,k

∣∣∣ ≤ (b− a)3

12n2
MT

0

[
4m−1Lm−1(b− a)m−1 + . . . + 1

]
, k = 0, n .

Since the conditions of theorem 2.4 are satisfied we have 4L(b − a) < 1, and

it result the estimation: ∣∣∣R̃T
m,k

∣∣∣ ≤ (b− a)3

12n2 [1− 4L(b− a)]
MT

0 .

We have thus obtained the sequence (x̃m(tk))m∈N , k = 0, n , that estimates

the successive approximations sequence (xm)m∈N using a division of the interval [a, b],

a = x0 < x1 < . . . < xn = b , with the following error in calculus:

|xm(tk)− x̃m(tk)| ≤ (b− a)3

12n2 [1− 4L(b− a)]
MT

0 .

B. Approximation of the solution using the rectangle quadrature

formula

We suppose that:

(h21) K ∈ C1([a, b]× [a, b]× J4), J ⊂ R closed interval ;
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(h22) f ∈ C1[a, b] ;

(h23) g ∈ C1([a, b], [a, b])

and we will approximate the terms of the successive approximations sequence using

the rectangle quadrature formula (4) with the rest from (5). Generally, for the term

xm(tk) we have

xm(tk) =
b− a

2n
[K(tk, a, xm−1(a), xm−1(g(a)), xm−1(a), xm−1(b))+ (11)

+
n−1∑
i=1

K(tk, ti, xm−1(ti), xm−1(g(ti)), xm−1(a), xm−1(b))

]
+

+f(tk) + RD
m,k , k = 0, n, m ∈ N

with the estimation of the rest∣∣RD
m,k

∣∣ ≤ (b− a)2

n
· max

s∈[a,b]

∣∣∣[K(tk, s, xm−1(s), xm−1(g(s)), xm−1(a), xm−1(b))]
′

s

∣∣∣ .

According to (h21) it result that the derivative of the function K from the

expression of the rest RD
m,k exist and has the following form:

[K(tk, s, xm−1(s), xm−1(g(s)), xm−1(a), xm−1(b))]
′

s =
∂K

∂s
+

+
∂K

∂xm−1
· x

′

m−1(s) +
∂K

∂xm−1
· ∂xm−1

∂g
· g

′
(s) ,

where

x
′

m−1(t) =
∫ b

a

∂K(t, s, xm−2(s), xm−2(g(s)), xm−2(a), xm−2(b))
∂t

ds + f
′
(t) .

If we denote

MD
1 = max

|α|≤1,t,s∈[a,b]

∣∣∣∣ ∂|α|K

∂tα1∂sα2∂uα3
1 ∂uα4

2 ∂uα5
3 ∂uα6

4

∣∣∣∣ ,

MD
2 = max

α≤1,t∈[a,b]

∣∣∣f (α)(t)
∣∣∣ , MD

3 = max
α≤1,t∈[a,b]

∣∣∣g(α)(t)
∣∣∣

then we obtain for x
′

m−1(t) the following estimation:∣∣∣x′

m−1(t)
∣∣∣ ≤ MD

1 (b− a) + MD
2 ,

while for the derivative of function K, we have

[K(tk, s, xm−1(s), xm−1(g(s)), xm−1(a), xm−1(b))]
′

s ≤
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≤ MD
1

{
1 +

[
MD

1 (b− a) + MD
2

] (
1 + MD

3

)}
= MD

0 .

It is obvious that MD
0 doesn’t depend on m and k, so the estimation of the

rest is ∣∣RD
m,k

∣∣ ≤ MD
0 · (b− a)2

n
, (12)

where MD
0 = MD

0

(
K, D(α)K, f, D(α)f, g,D(α)g

)
, α = 1, and we obtain a formula

for the approximative calculus of the integrals of the successive approximations se-

quence. Using the method of successive approximations and the formula (12) with

the estimation of the rest resulted from (13), we suggest further on an algorithm in

order to solve the integral equation (1) approximately. To this end, we will calcu-

late approximately the terms of the successive approximations sequence and through

induction we obtain

xm(tk) =
b− a

n
[K(tk, a, x̃m−1(a), x̃m−1(g(a)), x̃m−1(a), x̃m−1(b))+

+
n−1∑
i=1

K(tk, ti, x̃m−1(ti), x̃m−1(g(ti)), x̃m−1(a), x̃m−1(b))

]
+

+f(tk) + R̃D
m,k = x̃m(tk) + R̃D

m,k , k = 0, n ,

where ∣∣∣R̃D
m,k

∣∣∣ ≤ (b− a)2

n
MD

0

[
4m−1Lm−1(b− a)m−1 + . . . + 1

]
, k = 0, n .

Since the conditions of theorem 2.4 are satisfied we have 4L(b− a) < 1, and

it result the estimation: ∣∣∣R̃D
m,k

∣∣∣ ≤ (b− a)2

n [1− 4L(b− a)]
MD

0 ,

and we have thus obtained the sequence (x̃m(tk))m∈N , k = 0, n , that estimates the

successive approximations sequence (xm)m∈N using a division of the interval [a, b],

a = x0 < x1 < . . . < xn = b , with the following error in calculus:

|xm(tk)− x̃m(tk)| ≤ (b− a)2

n [1− 4L(b− a)]
MD

0 .
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NEW INVERSE INTERPOLATION METHODS

ALEXANDRA OPRIŞAN

Abstract. The goal of this paper is to give some numerical methods for

the solution of nonlinear equations, generated by inverse interpolation of

Abel Goncharov type and a particular case of Lidstone inverse interpola-

tion.

1. Preliminars

Let Ω ⊂ R and f : Ω → R. Consider the equation

f (x) = 0, x ∈ Ω, (1)

and attach to it a mapping

F : D → D, D ⊂ Ωn.

Let x0, ...., xn−1 ∈ D. Using the mapping F and the numbers x0, ..., xn−1 we

construct iteratively the sequence

x0, x1, ..., xn−1, xn, ... (2)

where

xi = F (xi−n, ..., xi−1) , i = n, ... (3)

The problem is to choose F and the numbers x0, ..., xn−1 ∈ D such that

sequence (2) converges to a solution of equation (1).

Received by the editors: 19.10.2005.
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Definition 1. The method of approximating a solution of equation (1) by the elements

of sequence (2), computed as in (3) is called F - method attached to equation (1) and

to the values x0, ..., xn−1. Numbers x0, ..., xn−1 are called starting values, and the pth

element of sequence (2) is called pth order approximation of the solution. If the set

of the starting values consists of a single element, the corresponding F - method is

called one step method, otherwise it is called multi-step method.

Definition 2. If sequence (2) converges to a solution of equation (1), F - method is

said to be convergent, otherwise is divergent.

Definition 3. Let x∗ ∈ Ω be a solution of equation (1) and let x0, ..., xn, ... be a

sequence generated by a given F - method. Number p = p (F ) having the property

lim
xi→x∗

x∗ − F (xi−n+1, ..., xi)
(x∗ − xi)

p = C 6= 0, (4)

is called order of the F - method, and constant C is the asymptotical error.

Let x∗ ∈ Ω be a solution of the equation (1) and V (x∗) a neighborhood of

x∗. Assume that f has inverse on V (x∗) and denote q = f−1. Since f (x∗) = 0, it

follows that x∗ = g (0) . This way, the approximation of the solution x∗ is reduced

to the approximation of the g (0) . The approximation of the inverse g by means of

a certain interpolating method, and x∗ by the value of the interpolating element at

point zero is called inverse interpolation procedure. This approach generates a large

number of approximation methods for the solution of an equation (thus for the zeros

of a function), according to the employed interpolation method.

Such examples of methods, based on Taylor, Lagrange and Hermite inverse

interpolation are:

Let x∗ be a solution of f(x) = 0, V (x∗) a neighbourhood of x∗, f ∈

Cm[V (x∗)], f ′(x) 6= 0 for x ∈ V (x∗) and xi ∈ V (x∗). Using Taylor polynomial of

the degree m − 1, that interpolates the function g = f−1, one obtains the one step
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method [2]:

FT
m(xi) = xi +

m−1∑
k=1

(−1)k

k!
[f(xi)]kg(k)(f(xi)). (5)

Also, if g(m)(0) 6= 0, we have ord(FT
m) = m.

Based on Lagrange interpolation, it follows the multistep method [2]

FL
m(x0, ..., xm) =

m∑
k=0

f0...fk−1fk+1...fm

(f0 − fk).../...(fm − fk)
xk (6)

where fk = f(xk), is a multistep method based on inverse Lagrange interpo-

lation.

The order of this method is the solution of equation:

tm+1 − tm − ...− t− 1 = 0.

More general methods are generated by Hermite and Birkhoff interpolation

[2], [5]. Such, let x∗ be a solution of the equation (1), V (x∗) a neighbourhood of x∗

and x0, x1..., xm ∈ V (x∗).For n = r0+...+rm+m, where rk represents the multiplicity

order of the point xk, k = 0, ...,m, if f ∈ Cn+1(V (x∗)) and f ′(x) 6= 0 for x ∈ V (x∗),

we have the following Hermite approximation method:

FH
n (x0, ..., xm) =

m∑
k=0

rk∑
j=0

rk−j∑
υ=0

(−1)j+υ

j!υ!
f j+υ

k vk(0)(
1

vk(y)
)(υ)
y=fk

g(j)(fk) (7)

where fk = f(xk), k = 0, ...,m, g = f−1, and

vk(y) = (y − f0)r0+1...(y − fk−1)rk−1+1(y − fk+1)rk+1+1...(y − fm)rm+1

The order of FH
n , is [5] the unique real positive root of the equation:

tm+1 − rmtm − rm−1t
m−1 − ....− r1t− r0 = 0. (8)

where r0, ..., rm are permutation of the multiplicity orders of the nodes xk, k = 0, ...,m

satisfying the conditions:

(1) r0 + r1 + ... + rm > 1

(2) rm ≥ rm−1 ≥ ... ≥ r1 ≥ r0,

97



ALEXANDRA OPRIŞAN

respectively of the equation:

tm+1 − (r + 1)
m∑

j=0

tj = 0. (9)

if r0 = ... = rm.

2. Abel-Goncharov inverse interpolation method

On the base of Abel-Goncharov interpolation, we have the following method

for the solution of equation f (x) = 0 :

Theorem 4. Let n ∈ N ; a, b ∈ R; a < b; f : [a, b] → R be a function having

n derivatives f (i), i = 1, 2, ..., n. The values xi ∈ [a, b], i = 0, ..., n and f (i) (xi) ,

i = 0, ..., n, with xi 6= xj for i 6= j are given. Let x∗ be the solution of the equation

f (x) = 0 and V (x∗) a neighborhood of x∗. If f ∈ Cn+1 (V (x∗)) and f (i) (xi) 6= 0,

i = 0, ..., n then we have the following method of Abel-Gonciarov type:

FAG
n (x0, ..., xn) = q (y0)− y0.q

′ (y1)−
n∑

k=2

q(k) (yk)
k!

k−1∑
j=0

gj (0)
(
k
j

)
yk−1

j

 (10)

Proof. Suppose that ∃ q = f−1. Then

q = Pnq + Rnq

with

(Pnq) (y) =
n∑

k=0

gk (y) q(k) (yk)

and

g0 (y) = 1

g1 (y) = y − y0

gk (y) =
1
k!

yk −
k−1∑
j=0

gj (y)
(
k
j

)
yk−1

j


Because x∗ = q (0) , q ' Pnq =⇒ x∗ ' (Pnq) (0)

(Pnq) (0) =
n∑

k=0

gk (0) q(k) (yk)
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(Pnq) (0) = q (y0)− y0.q
′ (y1)−

n∑
k=2

q(k) (yk)
k!

k−1∑
j=0

gj (0)
(
k
j

)
yk−1

j


=⇒ x∗ ' q (y0)− y0.q

′ (y1)−
n∑

k=2

q(k) (yk)
k!

k−1∑
j=0

gj (0)
(
k
j

)
yk−1

j

 :=

:= FAG
n (x0, ..., xn) .

Particular cases.

1). n = 1 (nodes x0, x1 and f (x0) , f ′ (x1) given)

FAG
1 (x0, x1) = q (y0)− y0.q

′ (y1)

FAG
1 (x0, x1) = q (y0)− y0

1
f ′ (x1)

=⇒ FAG
1 (x0, x1) = x0 −

f (x0)
f ′ (x1)

(11)

=⇒ FAG
1 (x0, x1) = FB

1 (x0, x1) and the method FAG
1 coincide with the

method FB
1 generated by the Birkhoff inverse interpolation.

Remark 5. If x0 = x1 := xi (the nodes coincide), then:

FAG
1 (xi) = xi −

f (xi)
f ′ (xi)

=⇒

FAG
1 (xi) = FT

2 (xi) and the method coincide with the method FT
2 generated

by inverse interpolation Taylor for two nodes.

The order of this method is the solution of the equation:

t2 − t− 1 = 0

so

ord(FAG
1 ) =

1 +
√

5
2

2). n = 2. (x0, f (x0) , x1, f
′ (x1) , x2, f

′′ (x2) given)

g0 (0) = 1

g1 (0) = −y0
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g2 (0) =
1
2
[2y0y1 − y2

0 ]

=⇒ (P2q) (0) = q (y0)− y0.q
′ (y1)− 1

2 [2y0y1 − y2
0 ].q′′ (y2) =

= x0 −
f (x0)
f ′ (x1)

− 1
2

f ′′ (x2)
[f ′ (x2)]

3 [2f (x0) f (x1)− f (x0)
2] =⇒

FAG
2 (x0, x1, x2) = x0 −

f (x0)
f ′ (x1)

− 1
2

f ′′ (x2)
[f ′ (x2)]

3 [2f (x0) f (x1)− f (x0)
2]. (12)

Remark 6. For x0 = x1 = x2 := xi, the method coincide with the method generated

by Taylor inverse interpolation, for n = 3.

FT
3 (xi) = xi −

f (xi)
f ′ (xi)

− 1
2

[
f (xi)
f ′ (xi)

]2
f ′′ (xi)
f ′ (xi)

.

The order of this method is the solution of the equation:

t3 − t2 − t− 1 = 0

so

ord(FAG
2 ) = 1.839

3. Lidstone inverse interpolation method

For the particular case of Lidstone interpolation, on [x0, x1], x0 6= x1, i =

0, 1,m = 2, and  L2i+1f = f (2i) (x0)

L2i+2f = f (2i) (x1)

it follows that(
L∆

2 f
) ∣∣

[x0,x1] (x) =
1∑

k=0

[
Λk

(
x1 − x

h

)
f (2k) (x0) + Λk

(
x− x0

h

)
f (2k) (x1) h2k

]
where 

Λ0 (x) = x

Λ
′′

1 (x) = Λ0 (x) = x

Λ1 (0) = Λ1 (1) = 0

The interpolation polynomial is:

(
LΛ

2 f
)
(x) =

1∑
i=0

1∑
j=0

rm,i,j (x) f (2j) (xi)
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=⇒
(
LΛ

2 f
)
(x) = r2,0,0 (x) f (x0) + r2,0,1 (x) f ′′ (x0) + r2,1,0 (x) f (x1) +

r2,1,1 (x) f ′′ (x1) where

r2,0,j (x) = Λj

(
x1 − x

h

)
h2j , 0 ≤ x ≤ x1; i = 0

r2,1,j (x) = Λj

(
x− x0

h

)
h2j , x0 ≤ x ≤ x1; i = 1

r2,0,0 (x) = Λ0

(
x1−x

h

)
h = x1 − x

r2,0,1 (x) = Λ1

(
x1−x

h

)
h2

r2,1,0 (x) = Λ0

(
x−x0

h

)
h = x− x0

r2,1,1 (x) = Λ1

(
x−x0

h

)
h2 but

Λ1 (x) =
∫ 1

0

g1 (x, s) sds =
∫ x

0

(x− 1) s2sds +
∫ 1

x

(s− 1) xssds =
x3 − x

6
+ c

Λ1 (0) = Λ1 (1) = 0 =⇒ c = 0

and

r2,0,1 (x) = Λ1

(
x1 − x

h

)
h2 =

1
6h

(x1 − x) (x1 − x− h) (x1 − x + h)

r2,1,1 (x) = Λ1

(
x− x0

h

)
h2 =

1
6h

(x− x0) (x− x0 − h) (x− x0 + h)

We know that for g = f−1,

g = LΛ
2 g + RΛ

2 g

and x∗ = g (0) , g ' LΛ
2 g =⇒ x∗ ' LΛ

2 g (0) .

LΛ
2 g (0) = x1g (x0) +

x1

6h

(
x2

1 − h2
)
g′′ (x0)− x0g (x1) +

x0

6h

(
h2 − x2

0

)
g′′ (x1)

=⇒ x∗ = x1g (x0) +
x1

6h

(
x2

1 − h2
)
g′′ (x0)− x0g (x1) +

x0

6h

(
h2 − x2

0

)
g′′ (x1)

and so we have the following method:

FΛ
2 (x0, x1) = x1g (x0) +

x1

6h

(
x2

1 − h2
)
g′′ (x0)− x0g (x1) +

x0

6h

(
h2 − x2

0

)
g′′ (x1)
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MONTE CARLO METHODS FOR SYSTEMS
OF LINEAR EQUATIONS

NATALIA ROŞCA

Abstract. We study Monte Carlo methods for solving systems of linear

equations. We propose three methods to generate the trajectories of the

Markov chain associated to the system. We calculate the average complex-

ity of generating the trajectories using these methods. From the complex-

ity point of view, the proposed methods are better than other methods

reported in the literature.

1. Introduction

We consider the system of linear algebraic equations:

Ax = b, (1)

where A = (aij)n
i,j=1 ∈ Rn×n is a given invertible matrix and b ∈ Rn is a given vector,

b = (b1, . . . , bn)t. We are interested in estimating the solution x = (x1, . . . , xn)t ∈ Rn

of system (1), using Monte Carlo methods. For this, we write the system in the

following form:

x = Tx + c, (2)

where T = (tij)n
i,j=1 ∈ Rn×n, c = (c1, . . . , cn)t ∈ Rn and I−T is an invertible matrix.

The solution x admits the Neumann series representation:

x = c + Tc + T 2c + T 3c + . . . (3)

It is assumed that
∑n

j=1 |tij | < 1, i = 1, . . . , n, which is a sufficient condition for the

convergence of Neumann series to the solution.

Received by the editors: 09.11.2005.

2000 Mathematics Subject Classification. 65C05, 65C10.

Key words and phrases. Monte Carlo method, random number generation, linear systems, algorithm

complexity.

103



NATALIA ROŞCA

The first Monte Carlo method for solving systems of linear equations was

proposed by von Neumann and Ulam, and extended by Forsythe and Leibler [5]. For

further details, see [6] and [9]. The method is efficient when we are interested in

estimating one component of the solution.

2. Monte Carlo methods to estimate the solution of the system

There is also a Monte Carlo method for solving systems of linear equations,

which allows to estimate the entire solution, by constructing unbiased estimators for

the components of the solution.

To solve system (2), let P = (pij)n+1
i,j=1 ∈ R(n+1)×(n+1) be a matrix, whose

elements satisfy the conditions:

1. pij ≥ 0 such that tji 6= 0 =⇒ pij 6= 0,

2.
∑n

j=1 pij ≤ 1, i = 1, . . . , n,

3. pi,n+1 = 1−
∑n

j=1 pij , i = 1, . . . , n,

4. pn+1,j = 0, j < n + 1 ,

5. pn+1,n+1 = 1.

We also use the notation pi for pi,n+1. Furthermore, define the weights:

wij =


tji

pij
if pij 6= 0

0 if pij = 0
, i, j = 1, . . . , n. (4)

The matrix P describes a Markov chain with states {1, . . . , n + 1}, where n + 1 is

an absorbing state and pij , i, j = 1, . . . , n + 1 is the one step transition probability

from state i to state j. Such a Markov chain is also called a random walk, as it is

homogeneous and finite.

Denote by γ = (i0, i1, . . . , ik, n+1) a trajectory that starts at the initial state

i0 < n+1 and passes successfully through the sequence of states (i1, . . . , ik), to finally

get into the absorbing state ik+1 = n + 1. Consider a vector α = (α1, . . . , αn), where

αi, i = 1, . . . , n is the probability that a trajectory starts in state i, in other words,

P (i0 = i) = αi, αi ≥ 0, i = 1, . . . , n,
n∑

i=1

αi = 1.

The probability to follow trajectory γ is P (γ) = αi0pi0i1 . . . pik−1ik
pik

.
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Define the estimators θi, i = 1, . . . , n and λi, i = 1, . . . , n on the space of

trajectories as follows. For a trajectory γ = (i0, i1, . . . , ik, n + 1), the values of these

estimators are defined as:

θi(γ) = Wk(γ)
δiki

pik

, λi(γ) =
k∑

m=0

Wm(γ)δimi, i = 1, . . . , n,

where Wm, m = 0, . . . , k are random variables whose values are:

W0(γ) =
ci0

αi0

,

Wm(γ) = Wm−1(γ)wim−1im

=
ci0

αi0

wi0i1wi1i2 . . . wim−1im , m = 1, . . . , k.

The above values are taken with probability P (γ) (δij is the Kronecker symbol, i.e.,

δij = 1 if i = j and 0 otherwise).

It can be proved that θi and λi are unbiased estimators of xi, i.e.: E(θi) =

E(λi) = xi, i = 1, . . . , n.

The Monte Carlo Algorithm to estimate the solution of system (2) is the

following:

Algorithm 1. Monte Carlo Algorithm to estimate the solution x

1. Input data: the matrix Tand P , the vectors c and α, the integer n.

2. Generate N trajectories γ1, . . . , γN .

3. Compute the Monte Carlo estimate of the solution:

x̂ =

[
θ1(γ1) + . . . + θ1(γN )

N
, . . . ,

θn(γ1) + . . . + θn(γN )
N

]t

. (5)

or, the estimate:

x̃ =

[
λ1(γ1) + . . . + λ1(γN )

N
, . . . ,

λn(γ1) + . . . + λn(γN )
N

]t

. (6)

3. Complexity of the Monte Carlo Algorithm

To compute the complexity of Algorithm 1, we assume that:

1. The costs of all arithmetical operations are equal, i.e., CP (+) = CP (−) =

CP (∗) = CP (:) = 1.
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2. The cost of testing any of the inequalities x < y, x > y, x ≤ y or x ≥ y or

the equality x = y is d arithmetical operations.

3. The cost of generating one random number uniformly distributed on [0, 1)

is 3 arithmetical operations, as we use the linear congruential generator to generate

random numbers.

Next, we analyse the complexity of each step of Algorithm 1.

3.1. Complexity of generating the trajectories. To start a trajectory, we sample

from the following discrete distribution:

Yα :

 1 2 . . . n

α1 α2 . . . αn


described by the probability vector α, in order to get the initial state i0 ∈ {1, 2, . . . , n}.

Once the trajectory is in state im = i, i ∈ {1, 2, . . . , n}, we sample from the discrete

distribution:

Yi :

 1 2 . . . n n + 1

pi1 pi2 . . . pin pi


described by the i-th line of matrix P , in order to determine the next state im+1. We

repeat this procedure till absorbtion takes place.

The total number of steps before absorption is
∑n

i=1 Ci, where Ci denotes

the number of times a trajectory visits the non-absorbing state i. Let z = (z1, . . . , zn)

be the solution of system z = P̄ z + α, where P̄ is the transpose of matrix (pij)n
i,j=1.

The expectation of the random variable Ci is E(Ci) = zi, i = 1, . . . , n ([7]).

Denote by CP the (computational) complexity of generating a trajectory, de-

fined as the number of arithmetical operations needed to generate it. For a trajectory,

we sample from Yα once, at the beginning of the generation process. The number of

times we sample from Yi is Ci. Let CPYα
and CPYi

denote the number of operations

needed to generate a sample from Yα and Yi, respectively. It follows that the average

complexity of generating a trajectory is given by:

E(CP ) = E(CPYα) +
n∑

i=1

ziE(CPYi). (7)
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There are several methods for sampling from discrete distributions (see [3] or

[4]). In [7] three such methods are used: the inversion, the acceptance-rejection and

the alias method. The following results for the average complexities of generating a

trajectory were obtained:

E(CPinv) ≤ (d + 1)(‖z‖1 + 1)n, (8)

E(CPrej) ≤ (d + 9)(‖z‖1 + 1)n, (9)

E(CPalias) = (d + 9)(‖z‖1 + 1). (10)

In the following, we use three methods: the decomposition, the economical

and the table look-up method to sample from Yα and Yi, i = 1, . . . , n. We calculate

the average complexity of generating a trajectory and compare our results with the

results (8)-(10).

3.2. Generating trajectories using decomposition method. We describe how

we can generate a trajectory using the decomposition method to sample from Yα and

Yi, i = 1, . . . , n. Decomposition method is based on the following result (see [3]):

Theorem 1. Any discrete distribution Y with m possible values can be written as

the weighted sum of m distributions ξ1, ξ2, . . . , ξm, each taking two possible values and

having weight 1/m.

Next, we consider Y = Yα and we describe how we can construct the distribu-

tions ξ1, . . . , ξn (in this case m = n). For the sake of simplicity, we denote the values

1, 2, . . . , n of distribution Yα by y1, . . . , yn, respectively. Thus, Yα has the following

form:

Yα =

 y1 y2 . . . yn

α1 α2 . . . αn

 .

We assume that α1 ≤ 1/n and α2 ≥ 1/n, otherwise we look for two such

probabilities in distribution Yα and re-index them to 1 and 2, respectively. First, we

decompose the distribution Yα into the two-point distribution ξ1 and the n− 1 point

distribution η1 with weights 1/n and (n− 1)/n respectively, i.e.,

Yα =
1
n

ξ1 +
n− 1

n
η1. (11)
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It can be shown that these distributions have the following form:

ξ1 =

 y1 y2

q1 q2

 η1 =

 y2 y3 . . . yn

α
′

2 α
′

3 . . . α
′

n

 ,

where q1 = nα1 and q2 = 1− nα1 and

α
′

2 =
n(α1 + α2)− 1

n− 1
, α

′

j =
n

n− 1
αj , j = 3, . . . , n.

Distribution η1 is further decomposed into the two-point distribution ξ2 with

weight 1/(n − 1) and the (n − 2)-point distribution η2 with weight (n − 2)/(n − 1),

i.e.,

η1 =
1

n− 1
ξ2 +

n− 2
n− 1

η2. (12)

These distributions can be constructed as described above. Substituting (12)

into (11), one obtains that the weight of ξ2 in the decomposition of Yα is 1/n as

well. In a similar way distributions ξ3, . . . , ξn are constructed. Their weights are 1/n.

Thus, Yα can be written as:

Yα =
1
n

ξ1 +
1
n

ξ2 + . . . +
1
n

ξn, (13)

where the distributions ξi, i = 1, . . . , n have the following form :

ξi =

 yi1 yi2

qi1 qi2


with yi1, yi2 ∈ {y1, . . . , yn} (i.e. yi1, yi2 ∈ {1, . . . , n}) , i = 1, . . . , n.

Now, we give the procedure that generates a sample from Yα.

Algorithm 2. Decomposition Algorithm

1. [Set-up step] Construct distributions ξ1, . . . , ξn.

2. [Selecting the distribution ξi] Generate u uniformly distributed on [0, 1) and set

i = [nu] + 1 (i is uniformly distributed over {1, 2, . . . , n}).

3. [Generating a sample from the distribution ξi] Generate v uniformly distributed

on [0, 1), if v < qi1 then return yi1, otherwise return yi2.

A similar algorithm can be written for sampling from Yi, i = 1, . . . , n.

Concerning the complexity, we obtain the following main result.
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Theorem 2. The average complexity of generating a trajectory using the decomposi-

tion method is:

E(CPdec) = (d + 8)(‖z‖1 + 1). (14)

Proof. Algorithm 2 requires the generation of 2 random numbers, 1 comparison, 1

multiplication and 1 addition. We omitted the integer part operation and the com-

plexity of the set-up step. From formula (7), we obtain that the average complexity

of generating a trajectory with decomposition method is given by:

E(CPdec) = E(CPYα) +
n∑

i=1

ziE(CPYi) = (d + 8) +
n∑

i=1

zi(d + 8)

= (d + 8)(‖z‖1 + 1).

Corollary 3. The average complexity of generating N trajectories using the decom-

position method is equal to (d + 8)(‖z‖1 + 1)N .

Remark. From (14) and (10), we obtain E(CPdec) < E(CPalias), which is an im-

provement from the complexity point of view.

3.3. Generating trajectories using economical method. We describe how to

generate a trajectory using the economical method to sample from Yα and Yi, i =

1, . . . , n. The economical method is a variant of the acceptance-rejection method,

where no generated value is rejected. This will lead to a decrease in the complexity

of generating a trajectory.

As previously illustrated, distribution Yα can be written as:

Yα =
1
n

ξ1 +
1
n

ξ2 + . . . +
1
n

ξn,

where the distributions ξi have the following form:

ξi =

 yi1 yi2

qi1 qi2

 , i = 1, . . . , n.

Recall that yi1, yi2, i = 1, . . . , n are among the values of distribution Yα.
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We assume that qi1 ≤ qi2, i = 1, . . . , n, otherwise qi1 and qi2 are inverted. In

the economical method, degenerated distributions with P (ξi = yi2) = 1 have to be

transformed into P (ξi = yi1) = 1/2, P (ξi = yi2) = 1/2, where yi1 = yi2.

The probabilities qi1, qi2, i = 1, . . . , n will be arranged into a vector r =

(r1, . . . , r2n), and correspondingly the values yi1, yi2, i = 1, . . . , n will be placed into

a vector v = (v1, . . . , v2n) as described below.

Algorithm 3. Set-up Step for Economical Algorithm

Initialize j = 1, m = 1, i = 1.

WHILE i ≤ n DO

IF qi1 < qi2 THEN [case of a non-degenerated distribution ξi]

Set rj ← qi1, r2n−j+1 ← qi2, vj ← yi1, v2n−j+1 ← yi2,

Increase j ← j + 1.

ELSE [case of a degenerated distribution ξi]

Set rn−m+1 ← qi1, rn+m ← qi2, vn−m+1 ← yi1, vn+m ← yi2,

Increase m← m + 1.

END IF

Increase i← i + 1.

END WHILE

Save n1 ← j, n2 ← n + m.

Note that the probabilities qi1 = qi2 = 1/2 occupy the positions rs, s =

n1, n1 + 1, . . . , n2 − 1, which are central positions of vector r. The probabilities

qi1 < qi2 occupy symmetrical positions in vector r.

The procedure that generates a sample from Yα is the following:

Algorithm 4. Economical Algorithm

Generate u1 uniformly distributed on [0, 1).

Compute j ← [2nu1] + 1 (j is uniformly distributed over {1, . . . , 2n}).

IF j ≥ n1 THEN RETURN vj

ELSE Generate u2 uniformly distributed on [0, 1).

IF u2
2 < rj THEN RETURN vj

ELSE RETURN v2n−j+1
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END IF

END IF.

A similar algorithm can be written for sampling from Yi, i = 1, . . . , n.

Concerning the complexity, we obtain the following main result.

Theorem 4. The average complexity of generating a trajectory using the economical

method is bounded by:

E(Cecon) ≤ (2d + 12)(‖z‖1 + 1). (15)

Proof. In Algorithm 4, the worst case scenario is the situation when both ELSE

instructions are executed. In this case, we have 2 random numbers generated, 2 mul-

tiplications (we count the multiplication 2n only once), 2 additions, 1 substraction,

1 division and 2 comparisons. We omitted the integer part operation and the com-

plexity of the set-up step. From formula (7), we get that the average complexity of

generating a trajectory with the economical method is:

E(CPecon) = E(CPYα
) +

n∑
i=1

ziE(CPYi
)

≤ (2d + 12) +
n∑

i=1

zi(2d + 12) = (2d + 12)(‖z‖1 + 1).

Corollary 5. The average complexity of generating N trajectories using the econom-

ical method is bounded by (2d + 12)(‖z‖1 + 1)N .

Remark. In the economical method the size n of matrix T is not included in the upper

bound, whereas in the acceptance-rejection method, the complexity is proportional to

n. As a consequence, the computing time is substantially reduced in the economical

method, comparing to the acceptance-rejection method.

3.4. Generating trajectories using table look-up method. The table look-up

method is a fast method to sample from Yα, in the particular case when the proba-

bilities αi are rational numbers with common denominator M , i.e., αi = mi/M , with

αi > 0, i = 1, . . . , n and
∑n

i=1 mi = M .
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First, we construct a vector D of size M with m1 entries 1, m2 entries 2, . . .,

mn entries n. Then, one element of this vector is picked up randomly (uniformly).

Obviously, this element is a sample from distribution Yα. The algorithm that gener-

ates a sample from Yα is:

Algorithm 5. Table Look-up Algorithm

1. [Set-up step] Construct a vector D = (D(1), . . . , D(M)), where mi entries are i,

i = 1, . . . , n.

2. Generate u uniformly distributed on [0, 1) and set j = [Mu] + 1 (j is uniformly

distributed over {1, . . . ,M}).

3. Return D(j).

If the transition probabilities are rational numbers with common denominator, a

similar algorithm can be written to sample from Yi, i = 1, . . . , n.

Concerning the complexity, we get the following theorem.

Theorem 6. The average complexity of generating a trajectory using the table look-up

method is:

E(CPtab) = 5 +
n∑

i=1

5zi = 5(‖z‖1 + 1). (16)

Proof. Algorithm 5 requires the generation of 1 random number, 1 multiplication and

1 addition. We omitted the integer part operation and the complexity of the set-up

step. From formula (7), we obtain the average complexity of generating a trajectory

with the table look-up method:

E(CPtab) = E(CPYα
) +

n∑
i=1

ziE(CPYi
) = 5 +

n∑
i=1

5zi

= 5(‖z‖1 + 1).

Corollary 7. The average complexity of generating N trajectories using the table

look-up method is equal to 5(‖z‖1 + 1)N .
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3.5. Complexity of evaluating the estimators. The average complexity of com-

puting (5) is equal to (2‖z‖1 + 1)N + n ([7]). The average complexity of computing

(6) is bounded by
(
d(‖z‖1 − 1) + 3

)
‖z‖1N + n .

3.6. Total Complexity. The average complexity of the Monte Carlo Algorithm 1

is the sum of the average complexity of generating N trajectories and the average

complexity of evaluating the estimator.

The following table contains bounds for the average complexity of the Monte

Carlo Algorithm 1, when the decomposition (DEC), the economical (ECON) and the

table-look up (TAB) methods are used to generate the trajectories.

Method Est. Upper bound for the average complexity

DEC θi (d + 8)(‖z‖1 + 1)N + (2‖z‖1 + 1)N + n

ECON θi (2d + 12)(‖z‖1 + 1)N + (2‖z‖1 + 1)N + n

TAB θi 5(‖z‖1 + 1)N + (2‖z‖1 + 1)N + n

DEC λi (d + 8)(‖z‖1 + 1)N +
(
d(‖z‖1 − 1) + 3

)
‖z‖1N + n

ECON λi (2d + 12)(‖z‖1 + 1)N +
(
d(‖z‖1 − 1) + 3

)
‖z‖1N + n

TAB λi 5(‖z‖1 + 1)N +
(
d(‖z‖1 − 1) + 3

)
‖z‖1N + n

Thus, the total average complexity of Algorithm 1 is O(N) + n.

4. Concluding remarks

1. We described how to generate the trajectories using decomposition method

and calculated the average complexity of this procedure. We found this is less then the

average complexity for the alias method, which is an improvement from the complexity

point of view.

2. We used the economical method to generate the trajectories. This leads

to a substantial decrease in the average complexity of generating the trajectories,

comparing to the acceptance-rejection method.

3. We used the table look-up method to generate the trajectory, in the case

when the initial and transition probabilities are rational numbers with a common

denominator. This leads to the smallest complexity.
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LI, Number 1, March 2006

ON THE ASYMPTOTIC BEHAVIOUR OF THE SOLUTIONS
OF A CERTAIN FOURTH-ORDER DIFFERENTIAL EQUATION

ERCAN TUNÇ

Abstract. The main purpose of this paper is to establish sufficient con-

ditions under which any solution of (1.1) is uniformly bounded and tend

to zero as t→∞.

1. Introduction and Statement of the Result

As we know from the relevant literature, up to now, many results have been

obtained on the asymptotic behaviour of solutions of certain non-linear differential

equations of the fourth- order (see, e.g., Hara [2-4], Abou-el-Ela, A.M.A and Sadek,

A.I. [1] , Sadek and Elaiw [7] and Tunç, C. and Tunç, E. [5], Tunç [9-10].

In this paper we investigate the asymptotic behaviour of solutions of the real

non-linear ordinary differential equation of fourth order:

x(4) + a(t)f1(x,
.
x,

..
x,

...
x) + b(t)f2(x,

.
x,

..
x) + c(t)f3(x,

.
x) + d(t)f4(x)

= p(t, x,
.
x,

..
x,

...
x),

(1.1)

in which the functions a, b, c, d, f1, f2, f3, f4, and p are continuous for all values of

their respective arguments. We assume that the functions a, b, c, d are positive definite

and differentiable in R+ = [0,∞), and that the derivatives ∂
∂y f2(x, y, z), ∂

∂xf3(x, y),
∂
∂y f3(x, y), ∂

∂xf2(x, y, z) and f ′4(x) exist and are continuous for all x, y, z and w. The

dots indicate differentiation with respect to t.

Received by the editors: 25.10.2005.
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Key words and phrases. Ordinary differential equations, asymptotic behaviour, uniformly boundedness,

Lyapunov function.
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The main purpose of this work is to prove the following

Theorem. In addition to the basic assumptions on the functions a, b, c, d,

f1, f2, f3, f4, and p, suppose that

(i) A ≥ a(t) ≥ a0 > 0, B ≥ b(t) ≥ b0 > 0, C ≥ c(t) ≥ c0 > 0, D ≥ d(t) ≥ d0 >

0 for t ∈ R+;

(ii) 0 <
[

f1(x,y,z,w)
w − α1

]
≤ min

{
c0α3

2
√

3α4DA

√
(ε− ε0)c0α3εa0α1,

√
6

3A

√
δ0ε

c0α3

}
for all x, y, z, w; α1 > 0, α2 > 0, α3 > 0, α4 > 0;

(iii) f3(x, 0) = 0 and ∂
∂y f3(x, y) ≥ α3 > 0 for all x and y;

(iv) There is a finite constant δ0 > 0 such that

a0b0c0α1α2α3 − C2α3
∂

∂y
f3(x, y)−A2Dα2

1α4 ≥ δ0

for all x, y and z;

(v) 0 ≤ ∂
∂y f3(x, y)− f3(x,y)

y ≤ δ1 < 2Dδ0α4
Ca0α1c2

0α2
3

for all x and y 6= 0,

(vi) yz ∂
∂xf2(x, y, z) ≤ 0 for all x, y and z

(vii) f2(x, y, 0) = 0, ∂
∂y f2(x, y, z) ≤ 0 and 0 ≤ f2(x,y,z)

z −α2 ≤ ε0c3
0α3

3
BD2α2

4
(z 6= 0),

where ε0 is a positive constant such that

ε0 < ε = min
{

1
a0α1

,
Dα4

c0α3
,

δ0

4a0c0α1α3∆0
,

Cc0α3

4Dα4∆0

(
2Dδ0α4

Ca0α1c2
0α

2
3

− δ1

)}
(1.2)

with ∆0 = a0b0c0α1α2
C + a0b0c0α2α3

ADα4
;

(viii) 1
y

y∫
0

∂
∂xf3(x, ζ)dζ ≤ c0α3(ε−ε0)

4C for all x and y 6= 0, and
{

∂
∂xf3(x, y)

}2 ≤
a0δ0α1(ε−ε0)

16C2 for all x and y;

(ix) f4(0) = 0, f4(x)sgnx > 0 (x 6= 0), F4(x) ≡
x∫
0

f4(ζ)dζ → ∞ as |x| → ∞

and

0 ≤ α4− f ′4(x) ≤ ε∆0a2
0α2

1
D for all x;

(x)
∞∫
0

γ0(t)dt < ∞, d′(t) → 0 as t → ∞, where γ0(t) := |a′(t)| + b′+(t) +

|c′(t)|+ |d′(t)| ,

b′+(t) = max {b′(t), 0} ;

(xi) |p(t, x, y, z, w)| ≤ p1(t)+p2(t)[F4(x)+y2+z2+w2]δ/2+∆(y2+z2+w2)1/2,
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where δ and ∆ are constants such that 0 ≤ δ ≤ 1,∆ ≥ 0 and p1(t), p2(t) are nonneg-

ative continuous functions satisfying

∞∫
0

pi(t)dt < ∞ (i = 1, 2). (1.3)

If ∆ is sufficiently small, then every solution x(t) of (1.1) is uniformly bounded and

satisfies

x(t) → 0,
.
x (t) → 0,

..
x (t) → 0,

...
x (t) → 0, as t →∞. (1.4)

Remark.Our result includes those of Abou-el-Ela and Sadek [1], Sadek and

AL-Elaiw [7].

2. The function V0(t, x, y, z, w)

In what follows it will be convenient to use the equivalent differential system

.
x= y,

.
y= z,

.
z= w,

.
w= −a(t)f1(x, y, z, w)− b(t)f2(x, y, z)− c(t)f3(x, y)− d(t)f4(x) + p(t, x, y, z, w),

(2.1)

which is obtained from (1.1) by setting
.
x= y,

..
x= z and

...
x= w.

For the proof of the theorem our main tool is the function V0 = V0(t, x, y, z, w)

defined as follows:

2V0 = 2∆2d(t)
x∫
0

f4(ζ)dζ + 2c(t)
y∫
0

f3(x, ζ)dζ

+[∆2α2b(t)−∆1α4d(t)]y2 + a(t)α1z
2 + 2∆1b(t)

z∫
0

f2(x, y, ζ)dζ

−∆2z
2 + ∆1w

2 + 2d(t)yf4(x) + 2∆1d(t)zf4(x)

+2∆2a(t)α1yz + 2∆1c(t)zf3(x, y) + 2∆2yw + 2zw + k,

(2.2)
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where

∆1 =
1

a0α1
+ ε, ∆2 =

α4D

c0α3
+ ε (2.3)

and k is a positive constant to be determined later in the proof.

Now we will obtain some basic inequalities which will be used in the proof of

the result.

By noting (2.3), (i) and (iii) we obtain

∆1 −
1

a(t)α1
≥ ε, for all x, y, z and all t ∈ R+, (2.4)

∆2 −
Dα4y

c(t)f3(x, y)
≥ ε, for all x, y 6= 0 and all t ∈ R+. (2.5)

In view of (2.3), (i) and (iv) it follows that

α2b(t)−∆1c(t) ∂
∂y f3(x, y)−∆2a(t)α1

≥ 1
a0c0α1α3

[
a0b0c0α1α2α3 − C2α3

∂
∂y f3(x, y)−A2Dα2

1α4

]

−
[
c(t) ∂

∂y f3(x, y) + a(t)α1

]
ε

≥ δ0
a0c0α1α3

−
[
c(t) ∂

∂y f3(x, y) + a(t)α1

]
ε.

Also (iv) implies that

∂

∂y
f3(x, y) <

a0b0c0α1α2

C2
, α1 <

a0b0c0α2α3

A2Dα4
. (2.6)

Hence

α2b(t)−∆1c(t)
∂

∂y
f3(x, y)−∆2a(t)α1 ≥

δ0

a0c0α1α3
− ε∆0, (2.7)

for all x, y, z and all t ∈ R+.

Let Φ3 be the function defined by

Φ3(x, y) =


f3(x,y)

y , y 6= 0

∂
∂y f3(x, 0), y = 0.

(2.8)
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Then from (iii) and (v) we have

Φ3(x, y) ≥ α3 for all x and y, (2.9)

0 ≤ ∂

∂y
f3(x, y)− Φ3(x, y) ≤ δ1 for all x and y. (2.10)

From (2.9), (i) and (2.3) we get

∆2 −
Dα4

c(t)Φ3(x, y)
≥ ε, for all x, y and all t ∈ R+. (2.11)

To prove the present theorem we need the following two lemmas:

Lemma 1. Subject to the conditions (i)-(ix) of the theorem, there are positive

constants D1 and D2 such that

D1[F4(x) + y2 + z2 + w2 + k] ≤ V0 ≤ D2[F4(x) + y2 + z2 + w2 + k] (2.12)

for all x, y, z and w.

Proof. Since f2(x, y, 0) = 0 and f2(x,y,z)
z ≥ α2 (z 6= 0), it is clear that

2∆1b(t)

z∫
0

f2(x, y, ζ)dζ ≥ ∆1b(t)α2z
2.

Therefore it follows from (2.2) that

2V0 ≥ 2∆2d(t)
x∫
0

f4(ζ)dζ + 2c(t)
y∫
0

f3(x, ζ)dζ + [∆2α2b(t)−∆1α4d(t)]y2

+a(t)α1z
2 + ∆1b(t)α2z

2 −∆2z
2 + ∆1w

2 + 2d(t)yf4(x) + 2∆1d(t)zf4(x)

+2∆2a(t)α1yz + +2∆1c(t)zf3(x, y) + 2∆2yw + 2zw + k.

Rewrite above inequality as follows:

2V0 ≥
c(t)

Φ3(x, y)

[
d(t)
c(t)

f4(x) + yΦ3(x, y) + ∆1zΦ3(x, y)
]2

+
a(t)
α1

[
w

a(t)
+ α1z + ∆2α1y

]2

+

2∆2d(t)

x∫
0

f4(ζ)dζ − d2(t)f2
4 (x)

c(t)Φ3(x, y)
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+[∆2b(t)α2 −∆1d(t)α4 −∆2
2a(t)α1]y2 + 2c(t)

y∫
0

f3(x, ζ)dζ − c(t)Φ3(x, y)y2

+[∆1α2b(t)−∆2 −∆2
1c(t)Φ3(x, y)]z2 +

[
∆1 −

1
a(t)α1

]
w2 + k.

From (2.4) we get [
∆1 −

1
a(t)α1

]
w2 ≥ εw2.

Then

2V0 ≥ V1 + V2 + V3 + εw2 + k, (2.13)

where

V1 := 2∆2d(t)

x∫
0

f4(ζ)dζ − d2(t)f2
4 (x)

c(t)Φ3(x, y)
,

V2 := [∆2α2b(t)−∆1α4d(t)−∆2
2a(t)α1]y2 + 2c(t)

y∫
0

f3(x, ζ)dζ − c(t)Φ3(x, y)y2,

V3 := [∆1α2b(t)−∆2 −∆2
1c(t)Φ3(x, y)]z2.

From (2.3), (2.9) and (i) we find

V1 ≥ 2εd(t)
x∫
0

f4(ζ)dζ + Dd(t)
c0α3

[
2α4

x∫
0

f4(ζ)dζ − f2
4 (x)

]

≥ 2εd(t)
x∫
0

f4(ζ)dζ + 2Dd(t)
c0α3

x∫
0

[α4 − f ′4(ζ)]f4(ζ)dζ.

Since the second integral on the right hand side is non-negative by (ix), it clear that

2α4

x∫
0

f4(ζ)dζ − f2
4 (x) ≥ 0. (2.14)
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So V1 ≥ 2εd0

x∫
0

f4(ζ)dζ. Also from (2.3), (iii), (i) and (2.7) we obtain

∆2α2b(t)−∆1α4d(t)−∆2
2a(t)α1

= ∆2

[
α2b(t)−∆1c(t) ∂

∂y f3(x, y)−∆2a(t)α1

]

+∆1

[
∆2c(t) ∂

∂y f3(x, y)− α4d(t)
]

> ∆2

[
α2b(t)−∆1c(t) ∂

∂y f3(x, y)−∆2a(t)α1

]

> Dα4
c0α3

(
δ0

a0c0α1α3
− ε∆0

)
.

Since

y∫
0

ζ ∂
∂ζ f3(x, ζ)dζ ≡ yf3(x, y)−

y∫
0

f3(x, ζ)dζ

= y2Φ3(x, y)−
y∫
0

f3(x, ζ)dζ,

then

2c(t)
y∫
0

f3(x, ζ)dζ − c(t)Φ3(x, y)y2 = c(t)
[

y∫
0

f3(x, ζ)dζ −
y∫
0

ζ ∂
∂ζ f3(x, ζ)dζ

]

= c(t)
y∫
0

[
Φ3(x, y)− ∂

∂ζ f3(x, ζ)
]
ζdζ

≥ −Cδ1
2 y2, by (2.10).

Therefore we have

V2 ≥
[
Dα4

c0α3

(
δ0

a0c0α1α3
− ε∆0

)
− Cδ1

2

]
y2 ≥ C

4

(
2α4Dδ0

Ca0α1c2
0α

2
3

− δ1

)
y2, by (1.2).
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Similarly, from (2.3), (i), (2.10) and (2.7) we obtain

∆1α2b(t)−∆2 −∆2
1c(t)Φ3(x, y)

= ∆1[α2b(t)−∆1c(t)Φ3(x, y)−∆2a(t)α1] + ∆2[∆1a(t)α1 − 1]

> ∆1[α2b(t)−∆1c(t) ∂
∂y f3(x, y)−∆2a(t)α1]

> 1
a0α1

(
δ0

a0c0α1α3
− ε∆0

)
.

Therefore we obtain

V3 ≥
1

a0α1

(
δ0

a0c0α1α3
− ε∆0

)
z2, by (1.2).

Combining the estimates for V1, V2 and V3 with (2.13) we find

2V0 ≥ 2εd0F4(x) +
C

4

(
2α4Dδ0

Ca0α1c2
0α

2
3

− δ1

)
y2 +

(
3δ0

4a2
0c0α2

1α3

)
z2 + εw2 + k.

Then there exists a positive constant D1 such that

V0 ≥ D1[F4(x) + y2 + z2 + w2 + k].

Easily,by noting the hypothesis of the theorem, it can be followed that there exists a

positive constant D2 such that

V0 ≤ D2[F4(x) + y2 + z2 + w2 + k].

Therefore (2.12) is verified.

Lemma 2. Under the conditions of the theorem there exist positive constants

D4, D5 and D6 such that

.

V0≤ −D5(y2 + z2 + w2) +
√

3D6(y2 + z2 + w2)1/2[p1(t) + p2(t)]

+
√

3D6p2(t)[F4(x) + y2 + z2 + w2] + D4γ0V0.

(2.15)
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Proof. An easy calculation from (2.2) and (2.1) yields that

d

dt
V0 =

∂V0

∂w

.
w +

∂V0

∂z
w +

∂V0

∂y
z +

∂V0

∂x
y +

∂V0

∂t

= −∆1a(t)wf1(x, y, z, w)−∆2b(t)yf2(x, y, z)−∆2c(t)yf3(x, y)− b(t)zf2(x, y, z)

+w2 + c(t)y

y∫
0

∂

∂x
f3(x, ζ)dζ +∆1b(t)z

z∫
0

∂

∂y
f2(x, y, ζ)dζ +∆1b(t)y

z∫
0

∂

∂x
f2(x, y, ζ)dζ

+∆2a(t)α1z
2 + [∆2α2b(t)−∆1α4d(t)]yz + ∆1c(t)z2 ∂

∂y
f3(x, y)

+∆1c(t)yz
∂

∂x
f3(x, y) + d(t)y2f ′4(x) + ∆1d(t)yzf ′4(x)

−∆2a(t)yf1(x, y, z, w) + ∆2a(t)α1yw

−a(t)zf1(x, y, z, w) + a(t)α1zw + (∆2y + z + ∆1w)p(t, x, y, z, w) +
∂V0

∂t
.

Since

z

z∫
0

∂

∂y
f2(x, y, ζ)dζ ≤ 0, by (vii) and y

z∫
0

∂

∂x
f2(x, y, ζ)dζ, by (vi).

Then we find that

d
dtV0 = −(V4 + V5 + V6 + V7 + V8)−∆2a(t)yf1(x, y, z, w) + ∆2a(t)α1yw

−a(t)zf1(x, y, z, w) + a(t)α1zw + (∆2y + z + ∆1w)p(t, x, y, z, w) + ∂V0
∂t ,

(2.16)

where

V4 := ∆2c(t)yf3(x, y)− α4d(t)y2 − c(t)y

y∫
0

∂

∂x
f3(x, ζ)dζ −∆1c(t)yz

∂

∂x
f3(x, y),

V5 :=
[
α2b(t)−∆1c(t)

∂

∂y
f3(x, y)−∆2a(t)α1

]
z2,

V6 := [∆1a(t)
f1(x, y, z, w)

w
− 1]w2,

V7 := zb(t)f2(x, y, z)− α2b(t)z2 + ∆2b(t)yf2(x, y, z)−∆2α2b(t)yz,

V8 := α4d(t)y2 − d(t)f ′4(x)y2 + ∆1α4d(t)yz −∆1d(t)f ′4(x)yz.
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But

V4 = c(t)Φ3(x, y)
[
∆2 −

Dα4

c(t)Φ3(x, y)

]
y2−c(t)y

y∫
0

∂

∂x
f3(x, ζ)dζ−∆1c(t)yz

∂

∂x
f3(x, y)

≥ εc0α3y
2 − Cy

y∫
0

∂

∂x
f3(x, ζ)dζ −∆1Cyz

∂

∂x
f3(x, y), (2.17)

by (i), (2.9) and (2.11).

V5 =
[
α2b(t)−∆1c(t) ∂

∂y f3(x, y)−∆2a(t)α1

]
z2

≥
(

δ0
a0c0α1α3

− ε∆0

)
z2, by (2.7),

(2.18)

V6 = [∆1a(t)
f1(x, y, z, w)

w
− 1]w2 ≥ εα0α1w

2, (2.19)

by (i), (ii) and (2.3).

V7 = b(t)
[

f2(x,y,z)
z − α2

]
(z2 + ∆2yz), for z 6= 0

≥ −∆2
2

4 b(t)
[

f2(x,y,z)
z − α2

]
y2, by (vii).

By using (vii) and (2.3) we get for z 6= 0

∆2
2

4
b(t)

[
f2(x, y, z)

z
− α2

]
≤ 1

4
b(t)

(
Dα4

c0α3
+ ε

)2
ε0c

3
0α

3
3

BD2α2
4

=
1
4
b(t)

(
1 +

c0α3

Dα4
ε

)2
ε0c0α3

B
≤ ε0c0α3,

since ε < Dα4
c0α3

by (1.2). Then

V7 ≥ −ε0c0α3y
2 for all x, y and z 6= 0,

but V7 = 0 when z = 0, so

V7 ≥ −ε0c0α3y
2 for all x, y and z. (2.20)

By (ix)

V8 = d(t)[α4 − f ′4(x)](y2 + ∆1yz) ≥ −∆2
1

4
d(t)[α4 − f ′4(x)]z2.
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From (ix) and (2.3) we find

∆2
1

4
d(t)[α4 − f ′4(x)] ≤ 1

4
d(t)

(
1

a0α1
+ ε

)2
ε∆0a

2
0α

2
1

D

=
1
4
d(t) (1 + a0α1ε)

2 ε0∆0

D
≤ ε∆0,

since ε < 1
a0α1

by (1.2). Thus it follows that

V8 ≥ −ε∆0z
2. (2.21)

From (2.17) and (2.20) we have, for y 6= 0,

V4 + V7 ≥
[
(ε− ε0)c0α3 − C

y

y∫
0

∂
∂xf3(x, ζ)dζ

]
y2 −∆1Cyz ∂

∂xf3(x, y)

≥ 3
4 (ε− ε0)c0α3y

2 −∆1Cyz ∂
∂xf3(x, y), by(viii)

= 1
2 (ε− ε0)c0α3y

2 + 1
4 (ε− ε0)c0α3

[
y2 − 4∆1C

(ε−ε0)c0α3
yz ∂

∂xf3(x, y)
]

≥ 1
2 (ε− ε0)c0α3y

2 − ∆2
1C2

(ε−ε0)c0α3

[
∂
∂xf3(x, y)

]2
z2

≥ 1
2 (ε− ε0)c0α3y

2 − δ0
4a0α1c0α3

z2,

by using (vii), (2.3) and (1.2). But V4 + V7 = 0, when y = 0,by (2.17) and (2.20);

therefore we have

V4 + V7 ≥
1
2
(ε− ε0)c0α3y

2 − δ0

4a0α1c0α3
z2, for all y and z. (2.22)

From the estimates given by (2.18), (2.19), (2.21) and (2.22) we get

.

V0≤ −
1
2
(ε− ε0)c0α3y

2 −
(

3δ0

4a0c0α1α3
− 2ε∆0

)
z2

−εa0α1w
2 − a(t)zf1(x, y, z, w) + a(t)α1zw

−∆2a(t)yf1(x, y, z, w) + ∆2a(t)α1yw + (∆2y + z + ∆1w)p(t, x, y, z, w) +
∂V0

∂t

≤ −1
2
(ε− ε0)c0α3y

2 − 1
4

δ0

a0c0α1α3
z2 − εa0α1w

2 − a(t)zf1(x, y, z, w) + a(t)α1zw

−∆2a(t)yf1(x, y, z, w)+∆2a(t)α1yw +(∆2y + z +∆1w)p(t, x, y, z, w)+
∂V0

∂t
, (2.23)
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since ε < δ0
4a0c0α1α3∆0

by (1.2).Consider the expressions

W1 = −1
4
(ε− ε0)c0α3y

2 − 1
4
(ε− ε0)c0α3y

2 − 1
3
εa0α1w

2

−∆2a(t)
[
f1(x, y, z, w)

w
− α1

]
yw

and

W2 = −1
2

δ0

a0c0α1α3
z2 − 1

2
δ0

a0c0α1α3
z2 − 1

3
εa0α1w

2 − a(t)
[
f1(x, y, z, w)

w
− α1

]
zw

which is contained in (2.23). Because of the inequalities

−W1 = 1
4 (ε− ε0)c0α3y

2 + 1
4 (ε− ε0)c0α3y

2 + 1
3εa0α1w

2

+∆2a(t)
[

f1(x,y,z,w)
w − α1

]
yw

≥ 1
4 (ε− ε0)c0α3y

2 +
[

1
2

√
(ε− ε0)c0α3 |y| ±

√
1
3εa0α1 |w|

]2

≥ 0, by (ii),

and

−W2 = 1
2

δ0
a0c0α1α3

z2 + 1
2

δ0
a0c0α1α3

z2 + 1
3εa0α1w

2 + a(t)
[

f1(x,y,z,w)
w − α1

]
zw

≥ 1
2

δ0
a0c0α1α3

z2 +
[√

1
2

δ0
a0c0α1α3

|z| ±
√

1
3εa0α1 |w|

]2

≥ 0, by(ii),

it follows that

W1 ≤ −
1
4
(ε− ε0)c0α3y

2,

W2 ≤ −
1
2

δ0

a0c0α1α3
z2.

Hence, a combination of the estimates W1 and W2 with (2.23) yields that
.

V0 ≤ − 1
4 (ε− ε0)c0α3y

2 − 1
2

δ0
a0c0α1α3

z2 − 1
3εa0α1w

2

+(∆2y + z + ∆1w)p(t, x, y, z, w) + ∂V0
∂t
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From (2.2) we obtain

∂V0
∂t = a′(t)

[
1
2α1z

2 + 1
2∆2α1yz

]
+b′(t)

[
∆1

z∫
0

f2(x, y, ζ)dζ + 1
4∆2α2y

2

]
+ c′(t)

[
y∫
0

f3(x, ζ)dζ + ∆1zf3(x, y)
]

+d′(t)
[
∆2

x∫
0

f4(ζ)dζ − 1
2∆1α4y

2 + yf4(x) + ∆1zf4(x)
]

.

From the assumptions in the theorem, (2.6) and (2.14) we have a positive constant

D3 satisfying

∂V0

∂t
≤ D3[|a′(t)|+ b′+(t) + |c′(t)|+ |d′(t)|][F4(x) + y2 + z2 + w2] ≤ D4γ0V0,

by using the inequality (2.12), where D4 = D3
D1

.Therefore one can find a positive

constant D5 such that

.

V0≤ −2D5(y2 + z2 + w2) + (∆2y + z + ∆1w)p(t, x, y, z, w) + D4γ0V0.

Let D6 = max(∆2, 1,∆1), then

.

V0 ≤ −2D5(y2 + z2 + w2) +
√

3D6(y2 + z2 + w2)1/2 |p(t, x, y, z, w)|+ D4γ0V0

≤ −2D5(y2 + z2 + w2) +
√

3D6(y2 + z2 + w2)1/2 {p1(t)

+ p2(t)[F4(x) + y2 + z2 + w2]δ/2 + ∆(y2 + z2 + w2)1/2
}

+ D4γ0V0.

Let ∆ be fixed, in what follows, to satisfy ∆ = D5√
3D6

with this limitation on ∆ we

have
.

V0≤ −D5(y2 + z2 + w2) +
√

3D6(y2 + z2 + w2)1/2 {p1(t)

+ p2(t)[F4(x) + y2 + z2 + w2]δ/2
}

+ D4γ0V0.

(2.24)

Note that

[F4(x) + y2 + z2 + w2]δ/2 ≤ 1 + [F4(x) + y2 + z2 + w2]1/2. (2.25)
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From (2.24) and (2.25) we find
.

V0≤ −D5(y2 + z2 + w2) +
√

3D6(y2 + z2 + w2)1/2[p1(t) + p2(t)]

+
√

3D6p2(t)[F4(x) + y2 + z2 + w2] + D4γ0V0

3. Completion of the Proof

We define

V (t, x, y, z, w) = exp

− t∫
0

γ(τ)dτ

 V0(t, x, y, z, w), (3.1)

where

γ(t) = D4γ0 +
2
√

3D6

D1
[p1(t) + p2(t)]. (3.2)

Then it is easy to see that there exist two functions U1(r), U2(r) satisfying

U1(‖x‖) ≤ V (t, x, y, z, w) ≤ U2(‖x‖), (3.3)

for all x ∈ R4 and t ∈ R+ where U1(r) is a continuous increasing positive definite

function, U1(r) →∞ as r →∞ and U2(r) is a continuous increasing function.

From (3.1), (2.15), (3.2) and (2.12) we have

.

V = exp

− t∫
0

γ(τ)dτ

 [ .

V0 −γ(t)V0

]

≤ exp

− t∫
0

γ(τ)dτ

 {
−D5(y2 + z2 + w2) +

√
3D6(y2 + z2 + w2)1/2[p1(t) + p2(t)]

−
√

3D6[p1(t) + p2(t)][F4(x) + y2 + z2 + w2 + 2k]
}

≤ exp

− t∫
0

γ(τ)dτ

 {
−D5(y2 + z2 + w2)

−
√

3D6[p1(t) + p2(t)]

[(√
y2 + z2 + w2 − 1

2

)2

− 1
4

+ 2k]

]}
.

Setting k ≥ 1
8 , we can find a positive constant D7 such that

.

V≤ −D7(y2 + z2 + w2) = −U(‖x‖). (3.4)
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From inequalities (3.3) and (3.4) it follows that all the solutions (x(t), y(t), z(t), w(t))

of (2.1) are uniformly bounded [12; Theorem 10.2].

Auxiliary Lemma

We consider a system of differential equations

.
x= F (t, x) + G(t, x), (3.5)

where F (t, x) and G(t, x) are continuous vector functions on R+ × Q (Q is an open

set in Rn). We assume

‖G(t, x)‖ ≤ G1(t, x) + G2(x),

where G1(t, x) is non-negative continuous scalar function on R+×Q and
t∫
0

G1(τ, x)dτ

is bounded for all t whenever x belongs to any compact subset of Q and G2(x) is a

non-negative continuous scalar function on Q.

The following lemma is a simple extension of the well-known result obtained

by Yoshizawa [12; Theorem 14.2].

Lemma 3. Suppose that there exists a non-negative continuously differen-

tiable scalar function V (t, x) on R+ × Q such that
.

V (3.5) (t, x) ≤ −U(‖x‖), where

U(‖x‖) is positive definite with respect to a closed set Ω of Q. Moreover, suppose that

F (t, x) of system (3.5) is bounded for all t when x belongs to an arbitrary compact

set in Q and that F (t, x) satisfies the following two conditions with respect to Ω

(1) F (t, x) tends to a function H(x) for x ∈ Ω as t →∞, and on any compact

set in Ω this convergence is uniform;

(2) Corresponding to each ε > 0 and each y ∈ Ω, there exist a δ, δ = δ(ε, y)

and a T = T (ε, y) such that if t ≥ T and ‖x− y‖ δ, we have ‖F (t, x)− F (ε, y)‖ < ε.

And suppose that

(3) G2(x) is positive definite with respect to a closed set Ω of Q.

Then every bounded solution of (3.5) approaches the largest semi-imvariant

set of the system
.
x= H(x) contained in Ω as t →∞.
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Proof. (See [7]) From (2.1) we set F and G in (3.5) as follows

F (t, x) =


y

z

w

−a(t)f1(x, y, z, w)w − b(t)f2(x, y, z)− c(t)f3(x, y)− d(t)f4(x)

 ,

G(t, x) =


0

0

0

p(t, x, y, z, w)

 .

Thus from (xi) we find

‖G(t, x)‖ ≤ p1(t) + p2(t)[F4(x) + y2 + z2 + w2]δ/2 + ∆(y2 + z2 + w2)1/2.

Let

G1(t, x) = p1(t) + p2(t)[F4(x) + y2 + z2 + w2]δ/2 and G2(x) = ∆(y2 + z2 + w2)1/2.

Then F (t, x) and G(t, x) clearly satisfy the conditions of Lemma 3.

Now U(‖x‖) in (3.4) is positive definite with respect to the closed set Ω =

{(x, y, z, w) | x ∈ R+, y = 0, z = 0, w = 0} , it follows that, in Ω,

F (t, x) =


0

0

0

−d(t)f4(x)

 .

From (i) and (x), we have d(t) → d∞ as t →∞ where 0 ≤ d0 < d∞ ≤ D. If we set

H(x) =


0

0

0

−d∞f4(x)

 , (3.6)

then the conditions on H(x) of Lemma 3 are satisfied. Moreover G2(x) is positive

definite with respect to a closed set Ω.
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Since all of the solutions of (2.1) are bounded, it follows from Lemma 3

that every solution of (2.1) approaches the largest semi-imvariant set of the system
.
x= H(x) contained in Ω as t →∞. From (3.6),

.
x= H(x) is the system

.
x= 0,

.
y= 0,

.
z= 0,

.
w= −d∞f4(x),

which has the solutions x = k1, y = k2, z = k3, w = k4−d∞f4(k1)(t−t0). To remain in

Ω; k2 = k3 = 0 and k4−d∞f4(k1)(t− t0) = 0 for all t ≥ t0 which implies k1 = k4 = 0.

Therefore the only solution of
.
x= H(x) remaining in Ω is x = 0, that is, the

largest semi-invariant set of
.
x= H(x) contained in Ω is the point (0, 0, 0, 0). Then it

follows that

x(t) → 0, y(t) → 0, z(t) → 0, w(t) → 0 as t →∞,

which are equivalent to (1.4).

This completes the proof of the theorem.
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Handbook of Computational and Numerical Methods in Finance, Svet-

lozar T. Rachev and George A. Anastassiou (Eds.), Birkhäuser Verlag 2004,

VI+435 p., 15 illus., Hardcover ISBN 0-8176-3219-0.

Svetlozar Todorov Rachev, one of the editors of this book, belongs both to

the Department of Statistics and Applied Probability from University of California

USA and to the Department of Economics and Business Engineering from Universität

Karlsruhe Germany.

The merit of the editors was that they collected twelves articles, each of them

treating a computational or a numerical method applied in finance.

Many years the Nobel prize for economics was awarded to mathematicians

who applied their knowledge of probability theory, numerical analysis, partial deriva-

tives equations, statistics, in one word the mathematics, to find models in economics.

After the establishing of the economical models, some of them become difficult to

solve and, as a consequence, impossible to performed their results.

As in other fields of science, i.e. mechanics, where computational and numer-

ical methods were successfully applied, it is the turn of finance to be the ,,reason”

of research for mathematicians and a field in which those who work with applied

mathematics find a fertile ground to develop them ideas.

In this book are fruitfully putted together themes from financial analysis like:

computation of complex derivatives; market credit and operational risk assessment,

asset liability management, optimal portfolio theory, financial econometrics, as well

as recent studied themes from computational and numerical methods in finance, and
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risk management like: Genetic Algorithms, Neural Networks, Monte-Carlo methods,

Finite Difference Methods, Stochastic Portfolio Optimization and others.

As the editor Svetlozar Rachev mentioned, the subject of computational and

numerical methods in finance has recently emerged as a new discipline at the inter-

section of probability theory, finance and numerical analysis. The methods employed

bridge the gap between financial theory and computational practice and provide solu-

tions for complex problems that are difficult to solve by traditional analytical methods.

The book presents some of the current research collected by the editor and

survey articles focusing on various numerical methods in finance. The articles and

the authors, in order of appearance are:

1. O.J. Blaskowitz, W.K. H Kärdle and P. Schmidt, Skewness and Kurtosis

Trades; 2. D.D’ Souza, K. Amir-Atefi and B. Racheva-Jotova, Valuation of a Credit

Spread Put Option: The Stable Paretian model with Copulas; 3. I. Khindanova, Z.

Atakhanova, and S. Rachev, GARCH - Tupe Processes in Modeling Energy Prices;

4. Kohatsu-Higa and M. Monteri, Malliavin Calculus in Finance ; 5. P. Kokoszka

and A. Parfionovas, Bootsfrap Unit Root Tests for Heavy-Tailed Time Series; 6. S.

Ortobelli, S. Rachev, I. Huber and A. Briglova, Optimal Portfolio Selection and Risk

Management: A Comparison between the Stable Paretian Approach and the Gaussian

One; 7. G. Pages, H. Pham, and J. Printems, Optimal Quantization Methods and

Applications to Numerical Problems in Finance; 8. S. Stoianov and B. Racheva -

Jotova, Numerical Methods for Stable Modeling in Financial Risk Management; 9.

F. Schlotttman and D. Seese, Modern Heuristics for Finance Problems: A Survey

of Selected Methods and Applications; 10. C. E. Testuri and S. Uryasev, On Rela-

tion Between Expected Regret and Conditional Value-at-Risk; 11. S. Trück and E.

Özturkmen, Estimation Adjustment and Application of Transition Matrices in Credit

Risk Models; 12. Z. Zheng, Numerical Analysis of Stochastic Differential Systems and

its Applications in Finance.

Diana Andrada Filip
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Songmu Zheng, Nonlinear Evolution Equations, Monographs and Sur-

veys in Pure and Applied Mathematics, Vol. 133, Chapman & Hall/CRC, Boca

Raton, London, New York, Washington DC, 2004, xiv +287 pp., ISBN 1-58488-452-5.

Nonlinear evolution equations are partial differential equations with time t as

one of the independent variables. Beside their presence in various fields of mathemat-

ics, nonlinear evolution equations are also important for their applications in physics,

mechanics, material science. For instance, the Navier-Stokes and Euler equations

in fluid mechanics, the nonlinear Klein-Gordon equations in quantum mechanics, the

Cahn-Hilliard equations in material science are particular cases of nonlinear evolution

equations.

The first question in the study of nonlinear evolution equations is that of

existence and uniqueness of the solution (at least locally), which is that of the existence

and uniqueness of the solution (at least locally) which is usually solved by fixed point

methods (the contraction principle and Leray-Schauder fixed point theorem). Another

fundamental question, which is vital in applications, is that of global existence and

uniqueness and the long time behavior of a solution as the time goes to infinity.

The aim of the present book is to develop in a detailed and accessible manner

the basic methods and tools for the treatment of nonlinear evolution equations – the

semigroup method, compactness and monotone operators method, monotone iterative

methods. These are developed in the six chapters of the boo: 1. Preliminaries; 2.

Semigroup Method; 3. Compactness method and Monotone Operator Method; 4.

Monotone Iterative Methods and Invariant Regions; 5. Global Solutions and Small

Initial Data; 6. Asymptotic Behavior of Solutions and Global Attractors.

Most of the included material appears for the first time in book form, some

of it being based on the research work of the author.
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The prerequisites for the reading of the book are familiarity with Sobolev

spaces and embedding theorems, distribution theory, elements of functional analy-

sis. The required results are enounced at the beginning of each chapter with exact

references.

The bibliography counts 171 items.

The book is well written and provide the reader with a good introduction to

this area of investigation.

Treating a topic of great importance in nonlinear science, with applications

to mechanics, material science and biological sciences, the book is of interest for

mathematician (graduate students and researchers) working in this area, as well for

people working in the applied domains mentioned above.

Radu Precup

Daniel Li, Hervé Queffelec, Introduction à l’étude des espaces de Banach

– Analyse et probabilités, Cours Spécialisés 12, Société Mathématique de France,

2004, xxiv + 627 pp., ISBN 1-58488-452-5.

The aim of the present book is to show how probabilistic methods can be used

to solve difficult problems in Banach space theory and, at a same time, to emphasize

the interplay between Banach space theory and classical analysis. It is an advanced

course, so the reader is supposed familiar with basic results in functional analysis, real

analysis, measure theory and complex analysis. But modulo these standard results

(taught in the 2nd cycle of French universities) the book is fairly selfcontained, one

of the main targets of the authors being to avoid the use of ”by a well known result”

or references to other places. To this end some special results in classical analysis,

which are not usually taught in general courses as, for instance, Rademacher’s theo-

rem on a.e. differentiability of Lipschitz functions, Riesz-Thorin and Marcinkiewicz
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interpolation theorems, M. Riesz theorem, F. and M. Riesz theorem, and others of

this kind, are included with full proofs. Also, Chapter 0, Notions fondamentales de

probabilités, contains an introduction to classical probability theory, and the Annexe

to the book is concerned with harmonic analysis on compact abelian groups. Some

probabilistic results in Banach spaces, needed in the rest of the book, are developed

in Chapters 3, Variables aléatoires and 10, Processus gaussiens. As the authors point

out in the introduction, the book is not on probability in Banach spaces but rather

on their applications to the study of Banach spaces.

In the following we shall present some highlights of the book. Chapters 1

and 2 are concerned with bases and unconditional bases in Banach spaces, including

Maurey’s proof of Gowers’ dichotomy theorem.

Type and cotype are discussed in the fourth chapter, culminating with the

proof of Kwapien’s result that a Banach space which is both of type and cotype 2

is isomorphic to a Hilbert space. Stegall’s proof of Lindenstrauss-Rosenthal local

reflexivity principle is also included.

Chapter 5 deals with p-summing operators, emphasizing the key role

Grothendieck’s theorem (every linear operator from `1 to `2 is 1-summing) played

in the development of the subject initiated by Pietsch. This chapter contains also a

proof of Dvoretzky-Rogers theorem on unconditionally convergent series and an intro-

duction to Sidon sets. In fact, Sidon sets and, more generally, thin sets in harmonic

analysis and their interplay with Banach space theory form one of the central themes

of the book.

Chapter 6 is concerned with the spaces Lp − Vitali-Hahn-Saks and Dunford-

Pettis theorems in L1, the Haar basis in Lp, and a new proof of the Grothendieck’s

theorem based on a result of Paley. The space `1 is studied in Chapter 7, having as

central result Rosenthal’s theorem on Banach spaces containing `1 and some of its

consequences. The main result of chapter 8, Sections euclidiennes, is the famous the-

orem of Dvoretzky on almost spherical sections of convex bodies in finite dimensional
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spaces. There are included two proofs of this result – one by Gordon (1985) covering

only the real case, and the other one by Pisier (1986), based on the phenomenon of

concentration of measures developed by Maurey and Pisier, and valid in both real

and complex cases.

Chapter 9 is devoted to Davie’s construction of a separable Banach space

without approximation theory and related results.

Chapter 11 is concerned with reflexive subspaces of L1, characterizations in

terms of the convergence in measure, relations to sets closed in measure and other

results. In Chapter 12, Quelques exemples d’utilisations de la méthode des sélaecteurs,

selectors obtained from independent Bernoulli random variables (εn) by the condition

Iω = {n ≥ 1 : ε(ω) = 1} are used to study Sidon sets, the vector Hilbert transform,

and K-convexity. The results of this chapter belong, in essence, to Bourgain.

The last chapter of the book, Chapter 13, Espaces de Pisier des fonctions

presque sûrement continues. Applications, is concerned with Pisier spaces Cps.

Each chapter of the book ends with a section of Exercises with results com-

pleting those from the main text. They are accompanied by hints, meaning that the

proof is decomposed in several steps and the reader has to fill in the details.

By collecting a lot of fundamental results in modern Banach space theory

and exposing them in an accessible way, with full details and auxiliary results, the

authors have done a great service to mathematical community. The book can be used

for advanced graduate or postgraduate course or as a reference text as well.

S. Cobzaş

Elias M. Stein & Rami Shakarchi, Real Analysis – Measure Theory,

Integration and Hilbert Spaces, Princeton Lectures in Analysis III, Princeton

University Press, Princeton and Oxford 2005, xix + 402 pp., ISBN 0-691-11386-6.
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This is a third one of a four-volume treatise on analysis, based on four one-

semester courses taught at the Princeton University, and having as purpose to em-

phasize the organic unity between various parts of the subject and, at a same time, to

illustrate its wide applicability to other fields of mathematics and science. The first

two volumes were concerned with Fourier Analysis (Part I) and Complex Analysis

(Part II). A fourth volume on functional analysis, distribution theory and probability

theory is planned. The emphasis in the presentation is on the historical order in

which the main ideas and results emerged and shaped the field. For this reason some

results are reconsidered and reexamined at various stages, with interconnections and

applications to other areas. A typical example is that of Fourier series considered in

the first volume within the framework of Riemann integration with applications to

the infinitude of prime numbers in arithmetic progression and to X-ray and Radon

transform, and which reappear in the third volume (within Lebesgue integration this

time) with applications to Besicovich sets and Fatou theorem on the boundary values

of bounded holomorphic functions.

Let us pass to a detailed description of the content. Chapters 1, Measure the-

ory, and 2, Integration theory, are concerned with the Lebesgue measure and integral

in RN . As applications, one proves the Brunn-Minkowski inequality and the inversion

formula for the Fourier transform. The third chapter, Differentiation and integration,

is devoted to a presentation of the deep results on the differentiation of functions

with bounded variation and of absolutely continuous functions and the relations with

integrability. After presenting in the fourth chapter, Hilbert spaces: An introduction,

the basic results on Hilbert spaces and Hilbert space operators, the authors study

in Chapter 5, Hilbert spaces: Several examples, the Fourier transform on L2, the

Hardy space on the upper half-plane and some applications to PDEs. The results on

Lebesgue measure and integration from chapters 1 and 2 are reconsidered in Chapter

6, Abstract measure and integration theory, from an abstract point of view, with ap-

plications to ergodic theory and spectral theory of Hilbert space operators. The last
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chapter of the book, Chapter 7, Hausdorf measure and fractals, contains a short

presentation of these topics with applications to space-filling curves and Besicovich

like sets.

Each chapter ends with a set of exercises and problems. The exercises are

accompanied by hints, smoothing the way to their solutions. The ”Problems” sections

contain more challenging problems, some of them, marked by an asterisk, of higher

difficulty.

The result is a fine book, which together with the previous one and the

forthcoming fourth volume, will give a comprehensive and well motivated approach

to a lot of core results of analysis. It can be used for graduate or advanced graduate

courses on analysis and its applications.

S. Cobzaş
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