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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LI, Number 2, June 2006

A STABILITY RESULT OF A PARAMETRIZED
MINIMUM PROBLEM

M. BOGDAN

Abstract. This paper considers variational inequalities with pseudomono-

tone maps depending on a parameter and studies the behaviour of their

solutions. The main result gives sufficient conditions for the stability of

the initial minimum problem under small perturbation of the parameter.

1. Introduction

The parametrization is a welcome concept for almost every minimizing prob-

lem with solution and for the behaviour under perturbation.

The aim of this paper is to apply the result obtained in [5] for a particular

type of parametric variational inequalities.

A lot of problems are reduced to looking for

(M) inf{ I(u) : u ∈ C },

where C is a nonempty subset of a real Banach space X and I : C → R is given.

Some papers deal with the existence of the solution or with their regular-

ity. Other papers study the ”path” of the solution function provided by a family of

parametrized problems, i.e. if it is single-valued, multivalued, continuous or not and

so on.

For our purpose, let Ω ⊂ Rn be a bounded domain and the minimizing

problem in discussion
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M. BOGDAN

(M)0 min { I(u) =
∫

Ω

f
(
t,∇u(t)

)
dt : u ∈ v0 + X },

where X = H1,q
0 (Ω), 1 < q < +∞, v0 ∈ X given with I(v0) < +∞, the integrand

f : Ω× Rn → R is continuous.

For I differentiable it is known that a (local) solution u0 of (M)0 has to satisfy

the equilibrum equation I ′(u) = 0.

For the real Banach space X, X∗ denotes the dual space and < x, u > the

duality pairing between x ∈ X and u ∈ X∗. If the admissible set C is a closed convex

subset of X then u0 has to satisfy the variational inequality

(V I) < I ′(u), v − u >≥ 0, for each v ∈ C.

The parametric form for the problem (V I) requires the following data. Let P

be a topological space - the set of parameters, K : P → 2X and J : P ×X → 2X∗
be

given set-valued maps so that K(p) ⊆ Dom J(p, ·) for each p ∈ P, where DomJ(p, ·)

denotes the domain of the map J(p, ·) : X → 2X∗
, i.e. the set {u ∈ X | J(p, u) 6= ∅ }.

For a given p ∈ P we consider the following problem: find an element up ∈

K(p) and x ∈ J(p, up) so that

(V IP )p < x, v − up > ≥ 0, for each u ∈ K(p).

For a fixed p0 ∈ P suppose that u0 ∈ K(p0) is the unique solution for

(V IP )p0 .

Then, the problem (V IP )p0 is called stable under perturbations if there exist

a neighborhood U0 of p0 and a mapping ū : U0 → X so that:

i) ū(p) is a solution for (V IP )p, for any p ∈ U0;

ii) ū(p0) = u0;

iii) ū is continuous at p0.

Section 3 deals with sufficient conditions for the stability under perturbations

of the initial problem (M)p0 .
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2. Definitions and auxiliary results

Consider α : (0,+∞) → (0,+∞) a nondecreasing function.

The map I : P ×X → R is called uniformly α-pseudoconvex on U ⊆ P , if for

each p ∈ U and u, v ∈ X, u 6= v and 0 ≤ s ≤ 1 one has

< I ′(p, u), v − u > ≥ 0 ⇒ I(p, v) ≤ I(p, v + s(u− v)) + s(1− s)α(‖v − u‖)||v − u||,

where I ′(p, u) denotes the gradient of I(p, ·) at the point u.

The map J : P ×X → 2X∗
is called uniformly α-pseudomonotone on U ⊆ P ,

if for each p ∈ U and u, v ∈ X, u 6= v, x ∈ J(p, u), y ∈ J(p, v) one has

< x, v − u >≥ 0 ⇒ < y, v − u >≥ α(‖v − u‖) · ‖v − u‖.

An important notion for some parametric problems is consistency. For the

sequential case one can consult Grave’s Theorem [2, pg. 95] while for the continuous

case see [1], [5].

Definition 1. Let p0 ∈ P, u0 ∈ K(p0) and γ > 1 be fixed. The map J : P ×X → 2X∗

is called consistent in p at (p0, u0) if for each 0 < r ≤ 1, there exist a neighborhood

Ur of p0 and a function β : Ur → R continuous at p0 with β(p0) = 0 so that, for every

p ∈ Ur, there exist up ∈ K(p) and x ∈ J(p, up) such that

‖up − u0‖ ≤ β(p)

and

< x, v − up > +β(p) · ‖v − up‖ ≥ 0,

for all v ∈ K(p) with r < ‖v − up‖ ≤ γ.

Note that for p = p0, up0 is u0.

The mapping A : X → 2X∗
is said to be upper semicontinuous (usc) at

u0 ∈ X if, for any open set V containing A(u0), there exist a neighborhood ∆ of u0

so that A(∆) ⊂ V.

Theorem 1. ([5]) Let P be a topological space, X be a real Banach space, K : P → 2X

be with values closed convex sets in X and J : P ×X → 2X∗
be a set valued map.

Let p0 ∈ P and u0 ∈ K(p0) be fixed. Suppose that:
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i) u0 is a solution of (V IP )p0 ;

ii) J is consistent in p at (p0, u0);

iii) there exists a neighborhood U of p0 so that the mappings J(p, ·) are uni-

formly α-pseudomonotone and J(p, ·) is usc from the line segments in X

to X∗ for each p ∈ U ;

iv) for each p, u the set J(p, u) is compact.

Then, the problem (V IP )p0 is stable under perturbations.

3. Main Result

In this section we are going to apply Theorem 1 to the solutions of (M)p in

particular

(M)p min{ I(p, u) : u ∈ K(p) },

where the functionals involving the parameter are given by

I(p, u) =
∫

Ω

fp

(
t,∇u(t)

)
dt.

Now, for p0 ∈ P fixed suppose that u0 ∈ K(p0) is the unique solution of

(M)p0 .

In this case, the problem (M)p0 is called stable under perturbations if there

exist a neighborhood U0 of p0 and a mapping ū : U0 → X so that:

i) ū(p) is a solution for (M)p, for any p ∈ U0;

ii) ū(p0) = u0;

iii) ū is continuous at p0.

Let P be a topological space, let X be a reflexive Banach space and Y a

normed space. Let C ⊆ X and D ⊆ Y be nonempty closed convex sets and consider

the mappings a : P → Y, L : P → (X, Y )∗ continuous, where (X, Y )∗ denotes the

space of all linear, continuous mappings defined on X with values in Y.

The admissible set of the problem (M)p is considered the set

K(p) = {u ∈ C | a(p) + L(p)(u) ∈ D}.
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For a p ∈ P the admissible set K(p) is called regular if

0 ∈ int{a(p) + L(p)(u)− y : u ∈ C, y ∈ D}.

Lemma 1. ([7]) Suppose that K(p) is regular and u0 ∈ K(p0). Then, for each d > 0,

there exists a neighborhood Ud of p0 such that K(p) ∩ B(u0; d) 6= ∅ for each p ∈ Ud.

Moreover, there exists a constant cd > 0 such that, for every p1, p2 ∈ Ud one has

dist
(
u, K(p2) ∩B(u0; d)

)
≤ cd[‖L(p1)− L(p2)‖+ ‖a(p1)− a(p2)‖],

for each u ∈ K(p1) ∩B(u0; d).

Now, considering an initial problem and a small displacement of the data we

state the stability under perturbation.

Theorem 2. Suppose that K(p0) is regular and that:

i) u0 is a solution of (M)p0 ;

ii) the map (p, u) 7−→ I ′(p, u) is weakly continuous at (p0, u0);

iii) there exists a neighborhood U of p0 such that for each p ∈ U, t ∈ Ω,
∂fp

∂∇u
(t, ·) is continuous from X = H1,q(Ω) to the weak∗ topology of X∗

and fp(t, ·) are strictly convex on U ;

iv) for each p ∈ U, t ∈ Ω,
∂fp

∂∇u
(t, ·) is locally bounded around u0.

Then, the problem (M)p0 is stable under perturbations.

Proof. Since u0 is a minimum point of the functional I(p0, ·) on the set K(p0) we

have

< I ′(p0, u0), u− u0 >≥ 0, for each u ∈ K(p0).

Define J : P ×X → 2X∗
by J(p, u) = {I ′(p, u)}, for each p ∈ P and u ∈ X.

Let U1 be the neighborhood of p0, provided by Lemma 1. For each p ∈ U1

let up ∈ K(p) ∩B(u0; 1) be the element such that

‖up − u0‖ ≤ c1[‖L(p)− L(p0)‖+ ‖a(p)− a(p0)‖].
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Put x = I ′(p, up) (by Definition 1) and take the neighborhood Uγ and the

constant cγ given also by Lemma 1. Denote c := max{c1, cγ} and U0 := U1 ∩Uγ . For

v ∈ K(p) with r < ‖v − up‖ ≤ γ define the control function

β(p) = max
{
− 2

1
‖v − u0‖+ ‖up − u0‖

· < I ′(p, up)− I ′(p0, u0), v − u0 >,

√
c[‖L(p)− L(p0)‖+ ‖a(p)− a(p0)‖]

}
.

From iv) I ′(p, up) is also locally bounded. Let Cv > 0 for which ‖I ′(p, up)‖ ≤

Cv.

Choose Ur ⊂ U0 a neighborhood of p0 such that the restriction of the control

function to Ur satisfies the following conditions:

β(p) ≤ 1, for each p ∈ Ur;
1
2
‖v − u0‖ − β(p)

(
Cv + 3‖I ′(p0, u0)‖+

3
2
β(p)

)
≥ 0, for each p ∈ Ur.

Observe that

‖up − u0‖ ≤ β2(p) ≤ β(p).

By ii) β is continuous at p0 and β(p0) = 0.

Now, let v ∈ K(p) for which r < ‖v − up‖ ≤ γ. We have

‖v − u0‖ ≤ ‖v − up‖+ ‖up − u0‖ ≤ γ + 1.

Again by Lemma 1 there exists v0 ∈ K(p0) ∩B(u0; γ + 1) such that

‖v − v0‖ ≤ β2(p).

The relationship we must verify is

< I ′(p, up), v − up > +β(p) · ‖v − up‖ ≥ 0.

For simplicity denote by I ′
p := I ′(p, up) and I ′

0 := I ′(p0, u0). We will use

< I ′
0, v0 − u0 >≥ 0,
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due to the fact that v0 ∈ K(p0).

So, we have

< I ′
p, v − up > +β(p) · ‖v − up‖ =

= < I ′
p − I ′

0, v − up > + < I ′
0, v − up > +β(p)‖v − up‖ =

= < I ′
p − I ′

0, v − u0 > + < I ′
p − I ′

0, u0 − up > +

+ < I ′
0, v − v0 > + < I ′

0, v0 − u0 > + < I ′
0, u0 − up > +β(p)‖v − up‖ ≥

≥ −1
2
(‖v − u0‖+ ‖u0 − up‖) · β(p)− ‖u0 − up‖ · ‖I ′

p − I ′
0‖+

+ < I ′
0, v − v0 > + < I ′

0, u0 − up > +β(p)(‖v − u0‖ − ‖u0 − up‖) ≥

≥ 1
2
‖v − u0‖ · β(p)− ‖u0 − up‖ · ‖I ′

p − I ′
0‖ − ‖v − v0‖ · ‖I ′

0‖ −

−‖u0 − up‖ · ‖I ′
0‖ −

3
2
β(p)‖u0 − up‖ =

=
1
2
‖v − u0‖ · β(p)− ‖u0 − up‖

(
‖I ′

p − I ′
0‖+ ‖I ′

0‖+
3
2
β(p)

)
−

−β2(p) · ‖I ′
0‖ ≥

≥ 1
2
‖v − u0‖ · β(p)− β2(p)

(
Cv + 3‖I ′

0‖+
3
2
β(p)

)
=

= β(p)
[
1
2
‖v − u0‖ − β(p)

(
Cv + 3‖I ′

0‖+
3
2
β(p)

)]
≥ 0,

therefore J ≡ I ′ is consistent in p at (p0, u0).

By iii) I(p, ·) is strictly convex for each p ∈ U so that I(p, ·) is uniformly

α-pseudoconvex, thus J(p, ·) = I ′(p, ·) are uniformly α-pseudomonotone (see [5], [3]).

The conclusion follows by Theorem 1.

Let Ω ⊂ Rn be a bounded domain with Lipshitz frontier, and fp(t,∇u(t)) =

g(t, p) · h(t,∇u(t)), for each p ∈ P and each t ∈ Ω.

Proposition 1. If h ∈ C1 and g(t, ·) is continuous at p0 for each t ∈ Ω, then the

mapping (p, u) 7−→ I ′(p, u) is weakly continuous at (p0, u0).

9
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Proof. We estimate
∣∣I ′

p(u)(v)− I ′
0(u0)(v)

∣∣ ≤
≤

∫
Ω

∣∣g(t, p) · ∂h

∂∇u

(
t,∇u(t)

)
− g(t, p0) ·

∂h

∂∇u

(
t,∇u0(t)

)∣∣ · |∇v|dt ≤

≤
∫

Ω

∣∣g(t, p)− g(t, p0)| ·
∣∣ ∂h

∂∇u

(
t,∇u(t)

)∣∣ · |∇v|dt +

+
∫

Ω

|g(t, p0)| ·
∣∣ ∂h

∂∇u

(
t,∇u(t)

)
− ∂h

∂∇u

(
t,∇u0(t)

)∣∣ · |∇v|dt ≤

≤ ‖v‖X ·
( ∫

Ω

∣∣g(t, p)− g(t, p0)|q
′
·
∣∣ ∂h

∂∇u

(
t,∇u0(t)

)∣∣q′dt

)1/q′

+

+‖v‖X ·
( ∫

Ω

|g(t, p0)|q
′
·
∣∣ ∂h

∂∇u

(
t,∇u(t)

)
− ∂h

∂∇u

(
t,∇u0(t)

)∣∣q′dt

)1/q′

→ 0,

once that p → p0 and u → u0, for each v ∈ X. Here q′ is the dual of q, i.e 1
q + 1

q′ = 1.

For the existence and unicity of the solution problem (M)p we refer to [4, pg.

87].

Proposition 2. If g and h satisfy the following conditions:

i) g(t, p) > 0 and h(t, ·) is strictly convex for each t ∈ Ω;

ii) there exists c > 0 such that h(t, ξ) ≥ c(|ξ|q − 1) for each (t, ξ) ∈ Ω× Rn,

then the problem (M)p has a unique solution in H1,q(Ω) for each p ∈ P.

Example 1. Let X = H1(Ω) with Ω = (0, 1), 0 < p0 < 1 fixed, P = [p0, 1) the set of

parameters, and the initial problem

(M)p0 min {I(p0, u) : u ∈ C},

where I(p0, u) =
∫ 1

0

(t + p0) · u′2(t) dt and C = {u ∈ X : u′(p0) = 1, u(1) = 0}. The

solution u0 is given by u0(t) = 2p0 ln(t + p0)/ ln(1 + p0).

The parametrized problem is

(M)p min {I(p, u) : u ∈ K(p)},

where I(p, u) =
∫ 1

0

(t+p) ·u′2(t) dt and K(p) = {u ∈ X : u′(p) = 1, u(1) = 0}. (M)p0

is stable under perturbations and the solution function ū can be obtained explicitly

ū(p)(t) = up(t) = 2p ln(t + p)/ ln(1 + p).

10
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Remark 1. The following problem

min {
∫ 1

0

t · u′2(t) dt : u′(0) = 1, u(1) = 0},

has no solution in X = H1,1(Ω) because h(t, ξ) = t · ξ2 does not satisfy the hypotheses

of Proposition 2 namely the existence of c > 0 ( the proof is similar to [4, pg. 56].
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FRICTIONAL CONTACT PROBLEMS WITH NORMAL
COMPLIANCE AND COULOMB’S LAW FOR NONLINEAR

ELASTIC BODIES

S. BOUTECHEBAK AND B. MEROUANI

Abstract. The subject of this work is the study of a problem modeling the

frictional contact between a non linear elastic body and a rigid foundation

at the presence of rapel forces. First, we present variational formulation

for this problem, after we indicate sufficient conditions in order to have

the existence, the uniqueness and the Lipschitz continuous dependence

of solution with respect to the data. Finally, we prove the dependence

of the solution by the parameter θ. The proofs are based on results of

topological degree theory as well as on convexity, monotonicity and fixed

point arguments see [1].

1. Introduction

In this paper we consider perturbed quasivariational inequalities of the form

u ∈ V, 〈Au, v − u〉V + 〈Bu, v − u〉V + j(u, v)− j(u, u) ≥ 〈f, v − u〉V ∀v ∈ V

where V denotes a real Hilbert space and A : V → V is a strongly monotone and

Lipschitz continuous operator on V .

(h1):

 a)∃m > 0 such that 〈Au−Av, u− v〉V ≥ m |u− v|2V ∀u, v ∈ V

b)∃M > 0 such that |Au−Av|V ≤ M |u− v|V ∀u, v ∈ V

Let B : V → V, satisfies:

(h2): There exists C ≥ 0 such that 〈Bv, v〉V ≥ −C |v|2V ∀v ∈ V

Received by the editors: 15.08.2005.
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Key words and phrases. Elastic body, Coulomb’s friction law , Strongly monotone operator, Lipschitz

operator, Topological degree, Fixed point, Perturbed quasivariational inequality, Normal compliance.

13



S. BOUTECHEBAK AND B. MEROUANI

(h3):


For every sequence {ηn} ⊂ V such that ηn → η ∈ V ,

then there exist a subsequence {ηn′} ⊂ V

Bηn′ → Bη strongly in V.

(h4): 〈Bu−Bv, v − u〉V < (m− α) |u− v|2V ∀u, v ∈ V, u 6= v.

(h5): ∃β, 0 ≤ β ≤ (m− α), 〈Bu−Bv, v − u〉V ≤ β |u− v|2V ∀u, v ∈ V.

The functional j : V × V → R satisfies

(h6): j(η, .) : V → R is a convex functional on V , for all η ∈ V,

It is well known that there exists the directional derivative j
′

2 given by

(h7): j
′

2(η, u; v) = limλ→0 [j(η, u + λv)− j(η, v)] ∀η, u, v ∈ V,

We consider now the following assumptions:

(J1):


For every sequence {un} ⊂ V with |un|V →∞

and every sequence {tn} ⊂ [0, 1] one has

lim infn→∞

[
1

|un|2V
j

′

2(tnun, un;−un)
]

< m− C

(J2):


For every sequence {un} ⊂ V with |un|V →∞

and every bounded sequence {ηn} ⊂ V one has

lim infn→∞

[
1

|un|2V
j

′

2(ηn, un;−un)
]

< m.

(J3):


For every sequence {un} ⊂ V and {ηn} ⊂ V such that

un → u ∈ V, ηn → η ∈ V and for every v ∈ V then one has

lim supn→∞ [j(ηn, vn)− j(ηn, un)] ≤ j(η, v)− j(η, u).

(J4): j(u, v)− j(u, u) + j(v, u)− j(v, v) < m |u− v|2V ∀u, v ∈ V, u 6= v

(J5): j(u, v)− j(u, u) + j(v, u)− j(v, v) ≤ α |u− v|2V ,

∀u, v ∈ V,for some α ∈ R with α < m.

Theorem 1. We consider the following problem :

〈Au, v − u〉V + 〈Bu, v − u〉V + j(u, v)− j(u, u) ≥ 〈f, v − u〉V ∀v ∈ V

Let (h1), (h2) and (h6) hold.

(1) Under the assumptions (J1), (J2), (J3), (J5) and (h3), the problem has at

least a solution.

14
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(2) Under the assumptions (J1), (J2), (J3), (J5), (h3) and (h4),the problem

has a unique solution. .

(3) Under the assumptions (J1), (J2), (J3), (J5), (h3) and (h5), the problem

has a unique solution u = u(f) which depends Lipschitz continuously on f ∈ V with

the Lipschitz constant (m− α− β)−1, i.e.

|u(f1)− u(f2)|V ≤ 1
(m− α− β)

|f1 − f2|V ∀f1, f2 ∈ V

Proof. It is based on results of topological degree theory as well as on convexity,

monotonicity, compactness and fixed point arguments see [1].

Remark 1. The coercivity conditions (J1), (J2) and (h1) (a) are needed in order to

use the weakly sequential compactness property of the closed, bounded convex sets of

V , see [1].

2. The elastic contact problem

2.1. Formulation of the mechanical problem and assumptions. Let us con-

sider an elastic, homogeneous isotrop body whose material particles occupy a bounded

domain Ω ⊂Rn(n = 1, 2, 3) and whose boundary Γ, assumed to be sufficiently

smooth is partitioned into three disjoint measurable parts Γ1,Γ2 and Γ3 such that

meas Γ1 > 0.

We denote by u the displacement vector, σ represents the stress field and

ε(u) is the small strain tensor such that that ε = (εij) : H1 → H

εij(u) =
1
2

(
∂ui

∂uj
+

∂uj

∂ui

)
where the spaces H1 and H are defined below. The elastic constitutive law of the

material is assumed to be

σ = F (ε(u), θ)

In which F is a given nonlinear function, and θ is a parameter.

We assume that the body is clamped on Γ1 and thus the displacement field

vanishes there, that the surface tractions h act on Γ2 and that the body rests on a

15
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rigid foundation on the part Γ3 of the boundary and that the normal stress σν satisfies

the normal compliance condition:

σν = −pν(uν)

where ν = (νi) represents the outward unit normal vector on Γj , (j = 1, 2, 3), uν rep-

resents the normal displacement (uν = u.ν), pν is a prescribed nonnegative function

and uν when it is positive, represents the penetration of the body in the foundation.

The associated friction law on Γ3 is chosen as
|στ | ≤ pτ (uν)

|στ | < pτ (uν) ⇒ uτ = 0

|στ | = pτ (uν) ⇒ στ = −λuτ , λ ≥ 0

here τ is the tangent unit vector in the positive sense on Γj (j = 1, 2, 3), pτ is a non-

negative function, the so-called friction bound, uτ denotes the tangential displacement

(uτ = u− uνν) and στ represents the tangential force on the contact boundary.

For example, we can consider

(1): pν(r) = cν(r+)mν , pτ (r) = cτr+

where mν ∈]0, 1], cν and cτ are positives constants and r+ = max {0, r} .

Also, the friction law can be used with

(2): pν = µpν or pτ = µpν(1− αpν)+

where µ > 0 is a coefficient of friction and α is a small positive coefficient related to

the wear and hardness of the surface.

2.2. Position of the problem. The mechanical problem may be formulated as

follows:

Problem (P): Find a displacement field u : Ω → Rn and a stress field

σ : Ω → Sn such that :

(3): Div σ + f0 = 0 in Ω

(4): σ = F (x, ε(u), θ) in Ω

(5): u = 0 on Γ1

(6): γ(σν + Φ(x, u)) = h on Γ2

16
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and on Γ3,

(7):



σν = −pν(uν)

|στ | ≤ pτ (uν)

|στ | < pτ (uν) ⇒ uτ = 0

|στ | = pτ (uν) ⇒ στ = −λuτ , pour un certain λ ≥ 0

(6) is called rapel forces and it means that the surface tractions are propor-

tional to the displacement. It’s the case of building and matlats, ...).

To provide the variational analysis of the problem (P) we need additional

notations. Let

H =
(
L2(Ω)

)n
, H1 =

(
H1(Ω)

)n
.

H =
(
L2(Ω)

)n×n
, H1 =

(
H1(Ω)

)n×n
.

The spaces H,H1 and H are real Hilbert spaces endowed with the canonical

inner products denoted by 〈., .〉H , 〈., .〉H1
and 〈., .〉H , respectively. The associate norms

on H,H1 and H are denoted by |.|H , |.|H1
and |.|H, respectively.

In the study of the mechanical problem (P ) we assume that the elasticity

operator F : Ω× Sn × RM → Sn satisfies

(H1):



(a) ∃mF > 0 such that ∀ε1, ε2 ∈ Sn,∀θ ∈ RM

(F (x, ε1, θ)− F (x, ε2, θ)) . (ε1 − ε2) ≥ mF |ε1 − ε2|2 a.e.in Ω, .

(b) ∃L1, L2 > 0 such that ∀ε1, ε2 ∈ S2,∀θ1, θ2 ∈ RM

|F (x, ε1, θ1)− F (x, ε2, θ2)| ≤ L1 |ε1 − ε2|+ L2 |θ1 − θ2| a.e.in Ω,

(c)x → F (x, ε, θ) is measurable function with respect to the

Lebesgue measure a.e.in Ω,∀ε ∈ Sn,∀θ ∈ RM

(d) F (x, 0n, 0M ) = 0n.

We assume that the forces and the tractions have the regularity

(H2): f0 ∈ H = L2(Ω)n, h ∈ L2(Γ2)n,

also,

(H3): θ ∈ L2(Ω)M

17
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The function Φ is defined by:

Φ : Γ2 × Rn → Rn

such that

(H4):



(a) ∃mΦ > 0 such that

(Φ(x, u1)− Φ(x, u2)) . (u1 − u2) ≥ mΦ |u1 − u2|2

a.e. in Γ2,∀u1, u2 ∈ Rn

(b) ∃LΦ > 0 such that

|Φ(x, u1)− Φ(x, u2)| ≤ LΦ |u1 − u2| a.e.in Γ2,∀u1, u2 ∈ Rn

(c) x 7→ Φ(x, u) is measurable function with respect to the

Lebesgue measure a.e.in Γ2,∀u ∈ Rn.

(d) Φ(x, 0n) = 0n

We also assume that the normal compliance functions satisfy the following

hypothesis for r = ν, τ :

(H5):



(a) pr : Γ3 × R → R+ such that

pr(., r) is Lebesgue measurable on Γ3, ∀r ∈ R

(b) The mapping pτ (., r) = 0 for r ≤ 0;

(c) There exists an Lr > 0 such that

|pr(x, r1)− pr(x, r2)| ≤ Lr |r1 − r2| ,∀r1, r2 ∈ R, a.e.on Γ3,

(H
′

5): (pν(x, r1)− pν(x, r2)) . (r1 − r2) ≥ 0,∀r1, r2 ∈ R, a.e.on Γ3,

Remark 2. Certainly the functions defined in (1) satisfy the conditions (H5) and

(H
′

5). Also, if pν defined in (2) is Lipschitz then the conditions (H5) is satisfied.

Using the hypothesis (H5)(b) and (c) it follows that:

(8): |pr(x, t)| ≤ Lτ |t| ,∀t ∈ R, a.e.on Γ3.

Remark 3. Using (H1) we find that for all τ ∈ H the function x → F (x, τ(x), θ(x))

belongs to H and hence we may consider F (., θ) as an operator defined on H with

range in H by: F (., θ) : H → H

F (ε, θ)(x) = F (x, ε(x), θ(x)) a.e.in Ω ∀ε ∈ H

Moreover, F (., θ) is a strongly monotone Lipschitz continuous operator:

18
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(9): ∃L1 > 0 : |F (ε1, θ)− F (ε2, θ)|H ≤ L1 |ε1 − ε2|H .

(10): 〈F (ε1, θ)− F (ε2, θ), ε1 − ε2〉H ≥ mF |ε1 − ε2|2H

The inequality (9) is a particular case of

(11): ∃L1, L2 > 0 : |F (ε1, θ1)− F (ε2, θ2)|H ≤ L1 |ε1 − ε2|H +

L2 |θ1 − θ2|L2(Ω)M .

Therefore F (., θ) is invertible and its inverse F−1(., θ) : H → H is also a

strongly Lipschitz continuous operator.

Remark 4. The assumptions (H4) allows us to consider the operator denoted by

Φ : H → L2(Γ2)n

Φ(v)(x) = Φ(x, v(x)) a.e. in Γ2 ∀v ∈ H

Moreover, Φ is a strongly monotone Lipschitz continuous operator and there-

fore Φ is invertible and its inverse Φ−1 : L2(Γ2)n → H is also a strongly Lipschitz

continuous operator.

We denote by V the closed subspace of H1 given by

(12): V = {v ∈ H1/ γv = 0 sur Γ1}

Since meas Γ1 > 0, Korn’s inequality holds:

|ε(v)|H ≥ C |v|H1
∀v ∈ V

C denotes a strictly positive generic constant which may depend on Ω, Γ1, Γ2,Γ3

and F.

We endow V with the inner product defined by

(13): 〈u, v〉V = 〈ε(u), ε(v)〉H ∀u, v ∈ V

and let |.|V the associated norm. It follows from the Korn’s inequality that |.|V and

|.|H1
are equivalent norms on V. Therefore, (V, |.|V ) is a real Hilbert space. Moreover,

by the Sobolev trace theorem, Korn’s inequality and (13) we have a constant C0

depending on Ω,Γ1 et Γ3 such that:

(14): |v|L2(Γ3)n ≤ C0 |v|V ,∀v ∈ V.
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The functional v → 〈f, v〉H + 〈h, γv〉L2(Γ2)n ,∀v ∈ V is linear and continue on

V ; it results, by using the Riesz Fréchet theorem, the existence of an element f ∈ V

such that

(15): 〈f, v〉V = 〈f0, v〉H + 〈h, γv〉L2(Γ2)n ∀v ∈ V.

For all fixed w in V and for all fixed θ in L2(Ω)M , the functional defined on

V by: v → 〈Fε(w), θ), ε(v)〉H + 〈Φ(w), v〉L2(Γ2)n is a continuous linear functional on

V. Then using Riesz-Fréchet’s theorem, there exists an element Aθw ∈ V such that:

(16): 〈Aθw, v〉V = 〈Fε(w), θ), ε(v)〉H + 〈Φ(w), v〉L2(Γ2)n ∀v ∈ V.

Let B : V → V defined by

(17): 〈Bu, v〉V =
∫
Γ3

pν(uν − g)vνds,∀u, v ∈ V.

and let j : V × V → R be the functional

(18): j(u, v) =
∫
Γ3

pτ (uν − g) |vτ | ds,∀u, v ∈ V.

Using the conditions (H5)(b), (c) it follows that for all v ∈ V the functions

(19): x 7−→ pr(x, v(x)), (r = ν, τ),

belong to L2(Γ3) and hence the integrals in (17) and (18) are well defined.

2.3. Variational Formulation.

Theorem 2. If (u, σ) ∈ H1×H1are sufficiently smooth functions satisfying (3)− (7)

then

(20): u ∈ V : 〈σ, ε(v)− ε(u)〉H + 〈Φ(x, u), v − u〉L2(Γ2)n + 〈Bu, v − u〉V

+j(u, v)− j(u, u) � 〈q, v − u〉V ,∀v ∈ V.

Proof. Let u, v ∈ Uad, by using the Green formula we obtain:

〈f0, v − u〉H = −〈Divσ, ε(v)− ε(u)〉H

= 〈σ, ε(v)− ε(u)〉H − 〈σν, γ(v − u)〉H′
Γ×HΓ

but
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〈σν, γ(v − u)〉H′
Γ×HΓ

=
∫
Γ

σν(v − u)ds =
3∑

j=1

∫
Γj

σνj(v − u)ds

=
∫
Γ2

h(v − u)ds−
∫
Γ2

Φ(u)(v − u)ds +
∫
Γ3

σν1(v − u)ds

Let (uν , uτ ), (vν , vτ ) and (σν , στ ) the components of the vectors u, v and σν in the

orthonorm system (ν, τ). From (5) and (7) it results that we obtain on Γ3

σν(v − u) = σν(vν − uν) + στ (vτ − uτ )

= −pν(uν)(vν − uν) + στ (vτ − uτ )

Then

〈f0, v − u〉H + 〈h, γ(v − u)〉L2(Γ2)n = 〈σ, ε(v − u)〉H + 〈Φ(u), v − u〉L2(Γ2)n +

+
∫
Γ3

pν(uν)(vν − uν)ds−
∫
Γ3

στ (vν − uν)ds

So, by (15) we obtain:

〈f, v − u〉H = 〈σ, ε(v)− ε(u)〉H + 〈Φ(u), v − u〉L2(Γ2)n +

+ 〈Bu, v − u〉V −
∫
Γ3

στ (vν − uν)ds

Using (7) it results

−στ (vν − uν) = −στvν + στuν ,

−στvν ≤ pν(uν) |vν |

στuν = −pν(uν) |uν |

It follows that

〈f, v − u〉H ≤ 〈σ, ε(v)− ε(u)〉H + 〈Φ(u), v − u〉L2(Γ2)n +

+ 〈Bu, v − u〉V + j(u, v)− j(u, u)
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it results

〈Aθu, v − u〉V + 〈Bu, v − u〉V + j(u, v)− j(u, u) ≥ 〈f, v − u〉H

and using (4), yields to the following variational formulation of the problem (P ):

Find a displacement field u : Ω → H1, such that

(21): u ∈ V, 〈F (ε(u), θ), ε(v)− ε(u)〉H + 〈Φ(u), v − u〉L2(Γ2)n +

〈Bu, v − u〉V + j(u, v)− j(u, u) ≥ 〈f, v − u〉V ,∀v ∈ V.

Remark 5. If u is a solution (21) then (u, σ) satisfy the mechanical problem (P ),

where σ is given by (4).

2.4. Existence and uniqueness results. Let L0 > 0 a constant such that:

L0 =
mF + mΦ

C2
0

Theorem 3. Assume that (H1)− (H5) and Lτ < L0 hold. Then

1) the variational problem (PV ) has at least a solution u ∈ V

2) in addition to (H
′

5) the problem (PV ) has a unique solution which depends

Lipschitz continuously on f .

Proof. The proof fellows from the abstract result provided by theorem1. It will be

carried out in several steps. We are going to prove that if the hypothesis (H1)− (H5)

hold then the conditions (h1)− (h6), (j2), (j3) and (j5) will be satisfied.

Lemma 4. We suppose that (H1)− (H5) hold, the we obtain that the conditions (h1)

and (h6) are satisfied.

Proof. 1) We see that (16) et (H5)(b), (c) give (h1)(a) with m = mF +mΦ and (h1)(b)

with M = L1 + LΦ.

2) Moreover, from (18) we deduce that j(u, .) is convex ∀u ∈ V .

Using (8) and (18) we obtain that ∀u, v1, v2 ∈ V

|j(u, v1)− j(u, v2)| ≤ Lτ |uν |L2(Γ2)
|v1 − v2|L2(Γ2)d ≤ C(u) |v1 − v2|V

Then j(u, .) is continuous on V for all u ∈ V.
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Lemma 5. Under assumptions (H4), (H5), and Lτ < L0, The functional J satisfies

the conditions (J2), (J3) and (J5).

Proof. 1) Using (18) it results that ,∀ η, u ∈ V,∀λ ∈]0, 1[:

1
λ

[j(η, u− λu)− j(η, u)] =
∫
Γ3

pτ (uν)(− |uτ |)ds ≤ 0

Then j
′

2(η, u;−u) ≤ 0 ∀ η, u ∈ V. It follows that for every sequence {un} and {ηn}

in V , we have

lim inf
n→∞

1
|un|2V

[
j

′

2(ηn, un;−un)
]
≤ 0 < m

and we deduce that J satisfies (J2).

2)Let now {un} ⊂ V, {ηn} ⊂ V be two sequences such that un ⇀ u and

ηn ⇀ η weakly in V .

Using the compactness property of the trace map of H1(Ω) in L2(Γ) it follows

that

(30): un → u in L2(Γ3) strongly for a subsequence,

and

(31): ηn → η in L2(Γ3) strongly for a subsequence,

Using (H5)(c) and (31) we have

(32): pτ (., ηnν − g) → pτ (., ην − g) in L2(Γ3) strongly for a subsequence,

Therefore we deduce that

(33): j(ηn, v) → j(η, v) ∀v ∈ V.

Also, (30) gives

(34): |unτ | → |uτ | in L2(Γ3) strongly for a subsequence,

So, by (18), (32) and (34) we obtain

(35): j(ηn, un) → j(η, v) for a subsequence.

Using (33) and (35) we have for all v ∈ V,

lim sup
n→∞

[j(ηn, v)− j(ηn, un)] = j(η, v)− j(η, u)

The (J3) is satisfied.
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3) Let u, v ∈ V. Using (H5)(c) and (18) we obtain:

j(u, v)− j(u, u) + j(v, u)− j(v, v) ≤
∫
Γ3

|pτ (uν)− pτ (vν)| |vτ − uτ | ds

≤ Lτ |u− v|2L2(Γ3)

Using now (14) in the previous inequality we deduce

j(u, v)− j(u, u) + j(v, u)− j(v, v) ≤ LτC2
0 |u− v|2L2(Γ3)

Then (J5) is satisfied with α = LτC2
0 , Lτ < L0.

Lemma 6. Under assumptions (H4) and (H5) we deduce that (J1), (h2) and (h3) are

satisfied, and under assumptions (H4), (H5) and (H
′

5) we obtain the condition (h5).

Proof. 1) Using (17) we obtain 〈Bu, v〉V =
∫
Γ3

pν(uν)vνds ∀v ∈ V.

Let vν ≥ 0, since pν ≥ 0, it results

〈Bv, v〉V ≥ 0

then (h2) is satisfied with C = 0.

2) By using (18) we have for all η, u ∈ V, j
′

2(η, u;−u) ≤ 0. which results (J1)

with C = 0.

3)Let now ηn → η weakly in V. Using the compactness property of the trace

map of H1(Ω) in L2(Γ) it follows that ηn → η in L2(Γ3) strongly for a subsequence,

It results from (17)

〈Bu1 −Bu2, v〉V = 〈pν(u1ν)− pν(u2ν), vν〉L2(Γ3)
∀u1, u2, v ∈ V

Taking v = Bu1 −Bu2 in the previous equality, we have

|v|2V ≤ |pν(u1ν)− pν(u2ν)|L2(Γ3)
. |v|L2(Γ3)

≤ C |pν(u1ν)− pν(u2ν)|L2(Γ3)
. |v|V .

Then

(36): |Bu1 −Bu2| ≤ C |pν(u1ν)− pν(u2ν)|L2(Γ3)
.

So, by (H5) we obtain
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(37): pν(ηnν − g) → pν(ην − g) in L2(Γ3) strongly for a subsequence.

Finally, (36) and (37) give Bηn → Bη in V strongly for a subsequence.

4)Using (17) and (H
′

5) it follows that (h5) is satisfied for β = 0 : ∀u1, u2 ∈ V :

(38): 〈B, u1 −Bu2, u2 − u1〉V = 〈pν(u1ν)− pν(u2ν), u2ν − u1ν〉L2(Γ3)
≤ 0.

Proof of theorem 3.

The proof is based on the application of the theorem1. It follows by using

the lemma 4, lemma 5 and lemma 6.

3. The dependence of the solution on the parameter

Theorem 7. under the assumptions (H1)−(H5), let (ui, σi), (i = 1, 2) the variational

solution of the problem (P) associée to the parameter θi such that θi ∈ L2(Ω)M is

satisfied. Then there exists a positive constant C > 0 which is depend to Ω, Γ1 and Γ

such that:

|u1 − u2|H1
+ |σ1 − σ2|H1

≤ C |θ1 − θ2|L2(Ω)M

Proof. Let (ui, σi), (i = 1, 2), the variational solutions of the problem (P ).

〈σi, ε(v − ui)〉H + 〈Φ(u1), v − ui〉L2(Γ2)n + 〈Bui, v − ui〉V +

+j(ui, v)− j(ui, ui) ≥ 〈f, v − ui〉H

Where v = u2 for i = 1, and v = u1 for i = 2.

〈σ1, ε(u2 − u1)〉H + 〈Φ(u1), u2 − u1〉L2(Γ2)n + 〈Bu1, u2 − u1〉V +

+j(u1, u2)− j(u1, u1)+ � 〈f, u2 − u1〉V

and

〈σ2, ε(u1 − u2)〉H + 〈Φ(u2), u1 − u2〉L2(Γ2)n + 〈Bu2, u1 − u2〉V +

+j(u2, u1)− j(u2, u2)+ � 〈f, u1 − u2〉V

it follows that

〈σ1 − σ2, ε(u2 − u1)〉H + 〈Φ(u1)− Φ(u2), u2 − u1〉L2(Γ2)n +

+ 〈Bu1 −Bu2, u2 − u1〉V + j(u1, u2)− j(u1, u1) + j(u2, u1)− j(u2, u2) � 0
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Then, using (j5), we deduce that

j(u1, u2)− j(u1, u1) + j(u2, u1)− j(u2, u2) ≤ α |u1 − u2|2V , α < m

by (33), we obtain that:

〈σ1 − σ2, ε(u2 − u1)〉H + 〈Φ(u1)− Φ(u2), u2 − u1〉L2(Γ2)n + α |u1 − u2|2V ≥ 0

it follows that

〈σ1 − F (ε(u2), θ1), ε(u2 − u1)〉H + 〈F (ε(u2), θ1)− σ2, ε(u2 − u1)〉H+

〈Φ(u1)− Φ(u2), u2 − u1〉L2(Γ2)n + α |u1 − u2|2V ≥ 0

Then ∣∣∣〈F (ε(u2), θ1)− σ1, ε(u2 − u1)〉H + 〈Φ(u2)− Φ(u1), u2 − u1〉L2(Γ2)n

∣∣∣
≤ |〈F (ε(u2), θ1)− σ2, ε(u2 − u1)〉H|+ α |u1 − u2|2V

Using the Cauchy-Schwartz inequality and (H1)(b)on the right member of the previous

inequality, and (H1)(a), (H4)(a) and Korn’s inequality on the left member, we obtain

that

m |u1 − u2|2V ≤ cL2 |θ1 − θ2|L2(Ω)M |u1 − u2|V + α |u1 − u2|2V

Then

(m− α) |u1 − u2|V ≤ K |θ1 − θ2|L2(Ω)M , where K is a constant > 0

Since (m− α) > 0, then there exists a constant C > 0 such that

(39): |u1 − u2|H1
≤ C |θ1 − θ2|L2(Ω)M

Other way, we have:

|σ1 − σ2|H1
= |σ1 − σ2|H = |F (ε(u1), θ1)− F (ε(u2), θ2)|H

Using (H1)(b) and (34) we obtain that

(40): |σ1 − σ2|H1
≤ C |θ1 − θ2|L2(Ω)M
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The wanted inequality is now a consequence of (39) and (40)

This theorem prove well the dependence of the solution on the parameter θ

and this result is very important from the mechanical point of view because it prove

that small perturbations on the parameter θ gives small perturbations on the solution

(u, σ) of the problem without frisher.
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PFAFFIAN TRANSFORMATIONS

MARIA TERESA CALAPSO, FILIP DEFEVER, AND RADU ROŞCA

Abstract. Geometrical and structural properties are proved for manifolds

possessing a particular locally conformal almost cosymplectic structure.

1. Introduction

Let M(g,Ω, φ, η, ξ) be an 2m + 1-dimensional Riemannian manifold with

metric tensor g and associated Levi-Civita connection ∇. The quadruple (Ω, φ, ξ, η)

consists of a structure 2-form Ω of rank 2m, an endomorphism φ of the tangent bun-

dle, the Reeb vector field ξ, and its corresponding Reeb covector field η, respectively.

We assume that the 2-form Ω satisfies the relation

dΩ = λ η ∧ Ω , (1)

where λ is constant, and that the 1-form η is given by

η = λdf , (2)

for some scalar function f on M . We may therefore notice that a locally conformal

almost cosymplectic structure [7] [10] is defined on the manifold M .

In addition, we assume that the field φ of endomorphisms of the tangent spaces defines

a quasi-Sasakian structure, thus realizing in particular the identity

φ2 = −Id + η ⊗ ξ .
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Moreover, we will assume the presence on M of a structure vector field X satisfying

the property

∇X = fdp + λ∇ξ . (3)

In the present paper various properties involving the above mentioned objects are

studied. In particular, for the Lie differential of Ω and η with respect to X, one has

LXη = 0 ,

LXΩ = 0 ,

which shows that η and Ω define Pfaffian transformations [3].

2. Preliminaries

Let (M, g) be an n-dimensional Riemannian manifold and let ∇ be the

covariant differential operator defined by the metric tensor. We assume in the sequel

that M is oriented and that the connection ∇ is symmetric.

Let ΓTM = Ξ(M) be the set of sections of the tangent bundle TM , and

[ : TM
[→ T ∗M and ] : TM

]← T ∗M

the classical isomorphisms defined by the metric tensor g (i.e. [ is the index lowering

operator, and ] is the index raising operator).

Following [12], we denote by

Aq(M,TM) = ΓHom(ΛqTM,TM) ,

the set of vector valued q-forms (q < dimM) , and we write for the covariant derivative

operator with respect to ∇

d∇ : Aq(M,TM)→ Aq+1(M,TM) . (4)

It should be noticed that in general d∇
2

= d∇ ◦ d∇ 6= 0, unlike d2 = d ◦ d = 0.
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Furthermore, we denote by dp ∈ A1(M,TM) the canonical vector valued 1-form

of M , which is also called the soldering form of M [3]; since ∇ is assumed to be

symmetric, we recall that the identity d∇(dp) = 0 is valid.

The operator

dω = d + e(ω) ,

acting on ΛM is called the cohomology operator [5]. Here, e(ω) means the exterior

product by the closed 1-form ω, i.e.

dωu = du + ω ∧ u ,

with u ∈ ΛM . A form u ∈ ΛM such that

dωu = 0 ,

is said to be dω-closed, and ω is called the cohomology form.

A vector field X ∈ Ξ(M) which satisfies

d∇(∇X) = ∇2X = π ∧ dp ∈ A2(M,TM) , π ∈ Λ1M , (5)

and where π is conformal to X[, is defined to be an exterior concurrent vector field

[14]. In this case, if R denotes the Ricci tensor field of ∇, one has

R(X, Z) = −2mλ3(κ + η) ∧ dp , Z ∈ Ξ(M)

3. Geometrical properties

In terms of a local field of adapted vectorial frames O = vect{eA|A =

0, · · · 2m} and its associated coframe O∗ = covect{ωA|A = 0, · · · 2m}, the soldering

form dp can be expressed as

dp =
2m∑

A=0

ωA ⊗ eA ;
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and we recall that E. Cartan’s structure equations can be written as

∇eA =
2m∑

B=0

θB
A ⊗ eB , (6)

dωA = −
2m∑

B=0

θA
B ∧ ωB , (7)

dθA
B = −

2m∑
C=0

θC
B ∧ θA

C + ΘA
B . (8)

In the above equations θ (respectively Θ) are the local connection forms in the

tangent bundle TM (respectively the curvature 2-forms on M).

In terms of the frame fields O and O∗ with e0 = ξ and ω0 = η, the structure vector

field X and the 2-form Ω can be expressed as

X =
2m∑
a=1

Xaea , (9)

Ω =
m∑

i=1

ωi ∧ ωi∗ , i∗ = i + m . (10)

Taking the Lie differential of Ω and η with respect to X, one calculates

LXη = 0 , (11)

LXΩ = 0 . (12)

According to [6] the above equations (11) and (12) prove that that η and Ω define a

Pfaffian transformation [3].

Next, by (2) one gets that

θa
0 = λωa . (13)

Since we also assume that

∇X = fdp + λ∇ξ , (14)

we further also derive that

∇ξ = λ(dp− η ⊗ ξ) . (15)
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Since the q-th covariant differential ∇qZ of a vector field Z ∈ Ξ(M) is defined induc-

tively, i.e.

∇qZ = d∇(∇q−1Z) ,

this yields

∇2ξ = λ2η ⊗ dp , (16)

∇3ξ = 0 . (17)

Hence, one may say that the 3-covariant Reeb vector field ξ is vanishing.

Next, by (13), one derives that

∇2X = λ3(df + η) ∧ dp =
1 + λ

λ
η ∧ dp , (18)

and consecutively one gets that

∇3X = 0 . (19)

This shows that both vector fields ξ and X together define a 3-vanishing structure.

Moreover, by reference to [13], it follows from (18) that one may write that

∇2X = − 1
2m

Ric(X)−X[ ∧ dp , (20)

where Ric is the Ricci tensor.

Reminding that by the definition of the operator φ

φei = ei∗ i ∈ {1 , · · ·m} ,

φei∗ = −ei i∗ = i + m ,

one can check that indeed φ2 = −Id. Acting with φ on the vector field X, one obtains

in a first step that

φX =
m∑

i=1

Xiei∗ −Xi∗ei i∗ = i + m . (21)
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Calculating the Lie derivative of φ w.r.t. ξ, one gets

(Lξφ)X = [ξ , φX]− φ[ξ , X] . (22)

Since clearly

[ξ , φX] = 0 , (23)

there follows that

(Lξφ)X = 0 . (24)

Hence, the Jacobi bracket corresponding to the Reeb vector field ξ vanishes.

By reference to the definition of the divergence

div Z =
2m∑

A=0

ωA (∇eA
Z)

one obtains in the case under consideration that

div X = 2m(λ + f2) , (25)

and

div φX = 0 . (26)

Calculating the differential of the dual form X[ of X, one gets

dX[ =
2m∑
a=1

(
dXa +

2m∑
b=1

Xbθa
b

)
∧ ωa . (27)

Since

dXa +
2m∑
b=1

Xbθa
b = λωa , (28)

one has that

dX[ = 0 , (29)

which means that the Pfaffian X[ is closed. This implies that X[ is an eigenfunction

of the Laplacian ∆, and one can write that

∆X[ = f ||X||2X[ .

34



PFAFFIAN TRANSFORMATIONS

If we set

2l = ||X||2 , (30)

one also derives by (28) that

dl = λX[ . (31)

From (31) it follows that dX[ = 0 which is indeed in accordance with (29).

Returning to the operator φ, one calculates that

∇(φX) = λφdp−
m∑

i=1

(
2m∑
a=1

(Xaθi
a)⊗ ei∗ +

2m∑
a=1

(Xaθi∗

a )⊗ ei

)
. (32)

Hence there follows that

[ξ , X] = ρξ − φC , (33)

[ξ , φX] = ((C0)2 + C0(1− λ))ξ , (34)

[X ,φX] = ∇ξφC = C0ξ − C (35)

which shows that the triple {X , ξ , φX} defines a 3-distribution on M .

It is also interesting to draw the attention on the fact that X possesses the following

property. From (14) and (15) one derives that

∇XX = fX , (36)

which means that X is an affine geodesic vector field.

Finally, if we denote by Σ the exterior differential system which defines X, it follows

by Cartan’s test [1] that the characteristic numbers are

r = 3 , s0 = 1 , s1 = 2 .

Since r = s0 + s1, it follows that Σ is in involution and the existence of X depends

on an arbitrary function of 1 argument.

Summarizing, we can organize our results into the following
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Theorem 3.1. Let M be a 2m + 1-dimensional Riemannian manifold and let ∇ be

the Levi-Civita connection and ξ be the Reeb vector field and η the Reeb covector field

on M . On has the following properties:

(i): ξ and X define a 3-vanishing structure;

(ii): the Jacobi bracket corresponding to ξ vanishes;

(iii): the harmonic operator acting on X[ gives

∆X[ = f ||X||2X[ ,

which proves that X[ is an eigenfunction of ∆, having f ||X||2 as eigen-

value;

(iv): the 2-form Ω and the Reeb covector η define a Pfaffian transformation,

i.e.

LXΩ = 0 ,

LXη = 0 ;

(v): the Ricci tensor is determined by ∇2X;

(vi): one has

∇XX = fX , f = scalar ,

which shows that X is an affine geodesic;

(vii): the triple {X, ξ, φX} is a 3-distribution on M and is in involution in

the sense of Cartan.

4. The structure 2-form Ω

In the present section, we derive some properties of the structure 2-form Ω.

First, we recall that one has

dΩ = λη ∧ Ω , λ = constant . (37)

By Lie differentiation with respect to X, one gets

LXΩ = 0 . (38)
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Further, since iξΩ = 0, one calculates that

LξΩ = λΩ ,

d (LξΩ) = λ2η ∧ Ω .

Moreover, by the Lie bracket [ , ] one also has that

i[X,ξ]Ω = 0 . (39)

Next, we consider the vector field φX. By (32), one calculates that

LφXΩ = −2λη ∧X[ , λ = constant . (40)

Since X[ is closed, this yields

d (LφXΩ) = 0 . (41)

This shows that φX defines a relative conformal transformation [15] [8] of Ω. In

addition, one also derives that

L[X,ξ]Ω = LXLξΩ− LξLXΩ = LXLξΩ

and

LfXΩ = fLXΩ + df ∧ iXΩ = df ∧ iXΩ

Theorem 4.1. The structure 2-form Ω satisfies the following relations

(i):

dΩ = λη ∧ Ω

(ii):

LξΩ = λΩ

d (LξΩ) = λ2η ∧ Ω

(iii):

i[X,ξ]Ω = 0

(iv):

d (LφXΩ) = 0

(v):

L[X,ξ]Ω = LXLξΩ

(vi):

LfXΩ = df ∧ iXΩ
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REMARKS ON SOME RECURRENCE RELATIONS
IN LIFE ANNUITY

IOANA CHIOREAN AND CLAUDIA STAN

Abstract. The problem of life annuity is one of the main items in the

insurance theory. That’s why, their computation is very important. The

purpose of this paper is to give a possible parallel implementation for such

a computation, by using some recurrence relations and the double recursive

technique.

1. Introduction

A financial operation connected to the insurance of a person has a random

character, both from the insurance institution part and from the insured person.

A fundamental principle for any kind of life insurance is the one of financial

equilibrium: the mean value of the gain (of the insured person) has to be equal with

the mean value of the gain of the institution which made that life assurance. This

value is called insurance premium.

2. Life payments

According with [1], [3], [4], a life payment takes place only if the insured

person is alive. It can be made both by the insurance institution and by the insured.

In what follows, we want to determine the insurance premium that x aged old person

has to pay, to get a certain amount of money after n years (if he’ll be still alive).

Keeping the ideas of [3], we denote by:

p(x, x + n) the probability that a x aged old person to be alive after n years

Received by the editors: 14.11.2005.
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q(x, x + n) = 1− p(x, x + n) the probability that a x aged person to be dead

after n years

lx the survival function, it means the mean value of the number of people

considered who has the chance to live at the age x.

The formula is:

p(x, x + n) =
lx+n

ln
. (1)

Then, denoting by vn the discounted present value (where v is the discounter

present factor from the compound interest), we get

M(x) =
lx+n

lx
vn +

(
1 − lx+n

lx

)
· 0. (2)

For computation, in order to use some predefined tables, some notations are

also made:

Dx = lx · vx. (3)

Note. Dx are called commutation numbers.

3. Payments in life anuities

In order to determine the amount of money that a x aged old person has to

pay, once, to get one monetary unit per year, during all his life, we denote by

ax the mean value of the posticipated life anuity (payed at the end of every

year).

According with [3], and using the commutation numbers, we get the relation:

ax =
Dx+1

Dx
+

Dx+2

Dx
+ · · · + Dx+n

Dx
+ . . . (4)

If we denote by

Nx = Dx + Dx+1 + · · · + Dω,

where ω is the age when the last person of the considered generation dies, it results

that:

ax =
Dx + · · · + Dω

Dx
=

Nx+1

Dx
. (5)
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4. Recurrence relations in life anuities

Taking into account (5), and replacing x by x + 1, we get

ax+1 =
Nx+2

Dx+1
. (6)

But

Nx = Dx + Dx+1 + · · · + Dω

and

Nx+1 = Dx+1 + Dx+2 + · · · + Dω.

Subtracting (6) from (5), we get

Dx = Nx − Nx+1

Dx+1 = Nx+1 − Nx+2

and replacing in (5), the relation is, successively:

ax =
Dx+1 + Nx+2

Dx

=
Dx+1

Dx

(
1 +

Nx+2

Dx+1

)
=

Dx+1

Dx
(1 + ax+1). (7)

Because

Dx+1

Dx
=

lx+1v
x+1

lxvx
=

lx+1

lx
v = p(x, x + 1)v,

replacing in (7), we get the recurrence relation:

ax = p(x, x + 1) · v · (1 + ax+1). (8)

Or, making some calculation, we can write

ax+1 =
ax − p(x, x + 1)v

p(x, x + 1)v
=

1
p(x, x + 1)

ax − 1. (9)
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5. Parallel computation

The formula (9) can be easily adapted to a parallel computation, using more

than one processor. So, the following theorem holds:

Theorem. The execution time needed to get the amount of money a person

has to pay after n years is O(log n) using the double recursive technique on a binary

tree communication among processors.

Proof. Relation (9) can be written ax+1

−1

 =

 1
p(x, x + 1)v

1

0 1

 ·

 ax

−1

 (10)

Analogous ax+2 depends on ax+1, etc. Finally, in order to compute ax+n, we

have to compute only the matrices product which, on a binary tree connectivity, can

be made in O(log n) (see [2]). So the theorem is proved.
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CRITERIA FOR UNIT GROUPS
IN COMMUTATIVE GROUP RINGS

PETER DANCHEV

Abstract. Suppose G is an arbitrary abelian group and F is a field of

charF = p 6= 0. In the present paper criteria are found the group of all

units UF [G] in the group ring F [G] and its subgroup V F [G] of normed

units to belong to some central classes of abelian groups under minimal

restrictions on F and G. In many instances these necessary and sufficient

conditions are in a final form and improve or supersede well-known and

documented classical results in this aspect such as due to Karpilovsky

(Arch. Math. Basel, 1983). The criteria obtained by us are a natural

sequel to our recent results published in Glasgow Math. J. (September,

2001) and are generalizations to those stated and argued by us in Math.

Balkanica (June, 2000) as well.

1. Introduction

Throughout the body of the text, let F [G] be the group ring with prime

characteristic p of the abelian group G over the field F of prime characteristic p. As

usual, n ∈ N is a natural number and ζn is a primitive n-th root of unity, that is

ζn
n = 1 while ζk

n 6= 1 ∀ k < n. For an abelian group G, written via the multiplicative

record as is customary when regarding group rings, G∗ is the maximal p-divisible

subgroup of G, G[n] = {g ∈ G|gn = 1} is the n-socle of G and Gt = ∪n<ωG[n] (in

the set-theoretic sense) jointly with Gp are the torsion part and its p-component in

G, respectively. For a field F , F− is the algebraic closure of F , F (ζn) is a cyclotomic

extension of F by inserting ζn, (F (ζn) : F ) is the binomial index of F (ζn) in F, F ∗ is
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the multiplicative group of F and Fd = F pω

is the maximal p-divisible subfield of F .

In what follows, K denotes an algebraically closed field with characteristic p.

All other notions and notations from abelian group rings theory not explicitly

defined herein will follow essentially our recent work [2]. For instance, SF [G] is the

normed Sylow p-subgroup in F [G], |M | is the cardinality of an arbitrary set M ,

mn = |{g ∈ G|order(g) = n}|/(F (ζn) : F ), etc. Apparently mn = 0 ⇔ G[n]\G[k] =

∅ ∀ k < n ⇔ G[n] \ ∪k<nG[k] = ∅, and |mn| = |G[n] \ ∪k<nG[k]| ≥ ℵ0 for some,

hence almost all, n ∈ N whenever |Gt| ≥ ℵ0 since (F (ζn) : F ) < ℵ0 is ever fulfilled.

Concerning various technical terms and the terminology used in the abelian

group theory, they are in agreement with the classical books [10-12]. Nevertheless, for

the sake of completeness and for the convenience of the readers, we include some more

specific details; for example, in all that follows, for any abelian group A, the cardinal

number r0A denotes the torsion-free rank of A, and A1 = ∩nAn = ∩p ∩m Apm

=

∩pA
pω

is the first Ulm subgroup of A. For simplicity of the exposition, we use the

abbreviations Σ-cyclic and Σ-countable for direct sums of cyclic groups, respectively

for direct sums of countable groups, with the exception of the definition of a Σ-group

that is an abelian group whose high subgroups are direct sums of cyclics.

The main goal of this manuscript is to establish as applications to the struc-

tural theorems in [2] necessary and sufficient conditions for the groups UF [G] and

V F [G] of all invertible elements (often called units) and normed invertible elements

(often called normalised units), respectively, to possess some important properties

and to compute explicitly their determinate numerical invariants. The given criteria

and computations expand in some way classical facts in this direction proved in ([3,5];

see [6] too), [13] and [19-22; 23-28].

Conforming with the isomorphic descriptions of UF [G] and V F [G], given in

[2], we have obtained in [4] certain additional algebraic properties for these groups,

which properties are of some importance. Moreover, we indicate also that, a criterion

for V F [G] to be a direct sum of p-mixed countable abelian groups was established in

[9,7], provided F is perfect.
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2. Main results

Some of the main attainments presented here were previously announced in

[1].

And so, we start with

Theorem 1. V F [G] is Σ-cyclic if and only if G is Σ-cyclic and at most one

of the following conditions hold:

1) Gt = Gp

or

2) Gt 6= Gp, F 6= F− and F (ζn)∗ is Σ-cyclic for each n ∈ N0 = N ∪ {0}

which is an order of an element of Gt/Gp.

Proof. Certainly, V F [G] being Σ-cyclic implies by the classical theorem of

L. Kulikov ([10], p.110, Theorem 18.1) that G ⊆ V F [G], being a subgroup, is also

Σ-cyclic.

First of all, suppose F is algebraically closed and V F [G] is Σ-cyclic. Hence

V F [Mt] ⊆ V F [G] is also Σ-cyclic, where M is a group so that G = Gp × M . But

besides V F [Mt] is divisible (see [2], formula (8)), and therefore V F [Mt] = 1, i.e.

Mt = 1. Thus Gt = Gp.

Conversely, take G to be Σ-cyclic and Gt = Gp. Hence G splits and so

G = Gp×M . Owing to Lemma 2.2 of [2], V F [G] = V F [M ]×SG[G] ∼= G/Gt×SF [G]

by using the well-known Higman’s result on trivial units documented in [14]. Finally

V F [G] is Σ-cyclic because G/Gt is free and because Theorem 2.1 from [2] ensures

that SF [G] is Σ-cyclic.

Let now F be not algebraically closed, i.e. F 6= F−. Suppose V F [G] is

Σ-cyclic. Hence 1 6= V F [Mt] is as well, where M is such a group that G = Gp ×M

and Mt 6= 1, whence Gt 6= Gp. Consequently by formulas (3) and (4) of [2], F (ζn)∗

is Σ-cyclic. The reverse inclusion follows applying formulas (17), (18) and Theorem

2.1(ii) in [2]. This ends the proof.

Theorem 2. UF [G] is Σ-cyclic if and only if G is Σ-cyclic and either
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1’) Gt = Gp and F ∗ is Σ-cyclic

or

2’) Gt 6= Gp and F (ζn)∗ is Σ-cyclic for every n that is an order of an element

of Gt/Gp.

Proof. It is analogous to the last theorem, since F is not algebraically closed

provided UF [G] is Σ-cyclic. Indeed, if F = F 0 then F ∗ is divisible Σ-cyclic, i.e.

F ∗ = 1, and thereby F = {0, 1}, a contradiction with the infinite cardinality of F .

Finally, we apply that UF [G] = V F [G]×F ∗ is Σ-cyclic only when so are V F [G] and

F ∗. The proof is completed.

Example. The condition on n that mn 6= 0 (i.e. that there is an element in

G of order n) stated in the previous two theorems is necessary. In fact, inductively,

let Fn be the finite field of order 23n

, and put F = ∪n<ωFn; Fn ⊆ Fn+1 so F is a

countable field of characteristic p = 2. Let G be the direct sum of ℵ0 copies of a cyclic

group of order 7. Thus Gp = 1 and G = Gt 6= 1 with G7 = 1. In order to obtain that

V F [G] is Σ-cyclic, according to Theorems 1 and 2, F (ζn)∗ should be Σ-cyclic only for

n = 7 but not for every n ∈ N0. This is so since F (ζ3)∗ has 3-component isomorphic

to Z(3∞). As for F (ζ3), we observe that (ζ3) is the field of 4-elements, and in the

formula 43n+1 − 1 = (43n − 1)(42·3n

+ 43n

+ 1) the second factor is always divisible by

3.

To justify the example, since F contains a primitive 7-th root of unity, namely

ζ7 ∈ F1 since F ∗
1 is cyclic of power 7, whence F (ζ7) = F , we detect that V F [G] will

be Σ-cyclic if and only if F ∗ is Σ-cyclic. This follows from the formula 23n+1 − 1 =

(23n − 1)(22·3n

+ 23n

+ 1) because any prime dividing the first factor cannot divide

the second one (note that the prime cannot be 3).

We continue in this way with

Theorem 3. UF [G] is bounded if and only if G is bounded and F ∗ is

bounded.

Proof. It is long-known that SF [G] is bounded if and only if Gp is bounded

(see for example [2]). We note that mk = 0 precisely when G is bounded with

exponent exp(G) < k. That the statements G and F ∗ are both bounded, is equivalent

46



CRITERIA FOR UNIT GROUPS IN COMMUTATIVE GROUP RINGS

to G is bounded and, either F (ζn)∗ is bounded for each n dividing |Gt/Gp| < ℵ0, or⋃∞
n=0×mnF (ζn)∗ is bounded when |Gt/Gp| ≥ ℵ0, follows now easily, since F ∗ being

bounded implies that F is a finite algebraic extension of a simple (hence a finite)

field, whence it is finite as well. Appropriate arguments for this are that F (Zn)∗

is bounded ⇔ F ∗ is bounded ∀ n < ω and that
⋃∞

n=0×mnF (ζn)∗ reduces to⋃
n≤exp(G)×mnF (ζn)∗. Therefore we wish only to apply Theorem 2.2 point (e) of [2].

The proof is complete.

Theorem 4. UF [G] is finitely generated if and only if Gp 6= 1, F and G are

finite; or Gp = 1, G and F are finitely generated.

Proof. First assume Gp 6= 1. Let UF [G] be finitely generated. Then it is

elementary that 1 6= SF [G] is finite. But if |F | ≥ ℵ0 or |G| ≥ ℵ0, we derive as in [14]

that |SF [G]| = max(|F |, |G|) ≥ ℵ0, that is false. Thus obviously F and G are both

finite. Conversely, if F and G are finite, then UF [G] is finite, hence finitely generated.

Now let Gp = 1. In that case the proof goes by a standard application of

Theorem 2.2 in [2] in view of the fact that a subgroup of a finitely generated group

has the same property (cf. [10]). The equivalence of the second part half, namely

that Gp = 1, G and F are finitely generated ⇔ Gp = 1 and G along with F (ζn)∗ are

finitely generated for every n dividing |Gt| < ℵ0, holds at once since F ∗ being finitely

generated forces that so do both F (ζn)∗ ∀ n and F = F ∗ ∪ {0}.

The proof is finished in all generality.

Remark. A criterion for UR[G] to be finitely generated was also founded by

Karpilovsky (see [13, Theorem 3]) when R is a finitely generated commutative unitary

ring of arbitrary characteristic and G is an arbitrary abelian group. However, in our

situation, F need not be finitely generated a priory, as this fact follows easily from

the same property for UF [G].

Generally, does it follow that UR[G] being finitely generated forces the same

property for R? If yes, the problem of finding the criterion for UR[G] to be finitely

generated will be completely resolved. However, this question is quite difficult and

its solution seems to be in the distant future.
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In the next statement, we will use the simple but useful fact that G being

Σ-countable yields that both Gt and Gp are Σ-countable groups as well.

Proposition 5. Let G be splitting and F perfect. If G and F (ζn, µq)∗ are

Σ-countable groups then the group UF [G] is Σ-countable when |Gt/Gp| ≥ ℵ0 and

if G and F (ζn)∗ are Σ-countable groups then the group UF [G] is Σ-countable when

|Gt/Gp| < ℵ0.

Proof. This follows by a standard application of (19), (20) and of Claim 2.1,

all from [2]. The proposition is verified.

Remark. By the same statements, as in the situation for Σ-cyclic groups, cri-

teria can be established for V F [G] to be bounded, finitely generated and Σ-countable.

Nevertheless, we omit the reproduction of their explicit form.

The following two group-theoretic observations are well-known and have rou-

tine proofs - they shall be used below without further reference: an isotype subgroup

of a direct product of a divisible and a bounded group inherits this group property;

a pure subgroup of a divisible group is divisible. Moreover, it is not difficult to check

that an outer direct sum of equal algebraically compact groups is also an algebraically

compact group.

After this, we need one more technicality, which is crucial.

Lemma 6. Suppose Gt = Gp. Then G is pure in V F [G].

Proof. We shall use the definition for the property ”purity” by differing two

basic cases:

Case 1. For each natural n so that p|/n we write n = pt1
1 . . . pts

s as the

canonical form of n, where p1, . . . , ps 6= p are distinct primes, s ∈ N, t1, . . . , ts ∈ N0.

Since V F [G] = GSF [G] (see e.g. [21, 22] or [8]), by the usage of the modular law we

conclude that G ∩ V nF [G] = G ∩ (GSF [G])n = G ∩ (GnSF [G]) = Gn(G ∩ SF [G]) =

GnGp = Gn.

Case 2. p/n, whence we write n = pk1qk2
2 . . . qkm

m to be the canonical form of

n, where q2, . . . , qm 6= p are different primes, m ∈ N, k1, . . . , km ∈ N0. As above we de-

duce G∩V nF [G] = G∩(GSF [G])n = G∩(GnSF pk1 [Gpk1 ]) = Gn(G∩SF pk1 [Gpk1 ]) =

GnGpk1

p = Gn. The proof is over.
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Remark. When G is not p-mixed, that is Gt 6= Gp, G need not be a pure

subgroup of V F [G] in general (see the Remark after Corollary 9). Even more Gt is not

pure in VtF [G] = SF [G]V F [Gt] assuming extra that Gp 6= 1. Another argumentation

is when Gp = 1. Henceforth, in this situation, VtF [G] = V F [Gt] and thus VtK[G],

by point (a’) proved below, must be always divisible whereas Gt may not be so.

Now we are ready to attack the following.

Theorem 7. Let 1 6= Gt be p-torsion. Then

(a) V F [G] is divisible if and only if G is divisible and F is perfect.

(b) V F [G] is a direct sum of a divisible group and of a bounded group if and

only if G is a direct sum of a divisible group and of a bounded group and, either Gt

is not reduced, G/Gt is p-divisible and F is perfect, or Gt is reduced.

(c) V F [G] is algebraically compact if and only if G is algebraically compact

and, either Gt is unbounded algebraically compact, G/Gt is p-divisible and FF is

perfect, or Gt is bounded.

(d) V F [G] is coperiodical if and only if G is coperiodical and, either Gt is

unbounded coperiodical, G/Gt is p-divisible and F is perfect, or Gt is bounded.

Proof. (a) Choose V F [G] to be divisible. Hence Gt = Gp is divisible as

it is a pure subgroup. Thus G = Gt × M and by formula (6) of [2], V F [G] =

V F [M ] × SF [G] ∼= G/Gt × SF [G] using again the classical Higman’s result on the

trivial units (cf. [14]). Further G/Gt is divisible, i.e. so is G, and moreover SF [G]

is also divisible. So, SpF [G] = SF p[Gp] = SF [G], equivalently F = F p, and F is

perfect as asserted.

Conversely, assume G divisible and F perfect. Hence Gp is divisible as it

is pure in G, and besides G/Gt is also divisible as it is a factor-group. Thus G ∼=

Gt ×G/Gt and similarly to the above, V F [G] ∼= G/Gt × SF [G]. Finally, SF [G] and

V F [G] are both divisible groups.

(b) Suppose V F [G] is a direct sum of a divisible group and of a bounded

group. Hence Gp as an isotype subgroup is one also. Therefore G = Gp × M (see

[10]) and as above V F [G] ∼= G/Gt ×SF [G]. Thus G/Gt is a direct sum of a divisible

and a bounded group, i.e. the same is G. On the other hand SF [G] belongs to this
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group class, i.e. it is algebraically compact (cf. [10]). But SF [G] ∼= SF [M ][Gp] (see

[0]) because Mp = 1, and thus SF [M ] = 1. That is why, following [0], if Gp is not

reduced, then SF [G] algebraically compact yields FM is perfect since FM is without

nilpotent elements (notice that F has a trivial nil-radical and M has no p-elements).

Hence, F is perfect and G/Gp is p-divisible.

Oppositely, if the conditions from the text hold, then Gp is algebraically

compact as an isotype subgroup in G. So, G = Gp × M (cf. [10]) and by equality

(6) from [2], V F [G] ∼= G/Gt × SF [G] ∼= G/GtθSF [M ][Gp] (see [0]). We only need to

apply [0] and the result follows immediately.

(c) If G is p-primary, the point follows directly from [0]. So, we may presume

that G 6= Gp. Referring to Lemma 6 and ([10], p.190, Exercise 3), V F [G]/G ∼=

SF [G]/Gp is algebraically compact provided that so is V F [G]. Therefore SF [G]/Gp

is a direct sum of a divisible and a bounded group (cf. [10]). But (SF [G]/Gp)d =

(SFd[G∗])Gp/Gp via [8], hence the quotient-group SF [G]/SFd[G∗]Gp is bounded, i.e.

there is k ∈ N such that SF pk

[Gpk

] ⊆ SFd[G∗]Gp. The last reduces to F pk

= Fd and

Gpk

= G∗ when Gp is not reduced. Indeed, consider the element 1+ rg(1− gp) where

r ∈ F pk

, g ∈ Gpk \Gpk

p and gp ∈ Gpk

p \{1}. Thus 1+rg(1−gp) = (f1a1 + · · ·+ftat)cp,

where fi ∈ Fd, ai ∈ G∗, cp ∈ Gp; 1 ≤ i ≤ t ∈ N. Henceforth, the canonical forms

imply that r ∈ Fd and g ∈ G∗, gp ∈ (G∗)p. Furthermore (Gpk

)p = (G∗)p, i.e.

Gpk

p is divisible, which is equivalent to Gp being algebraically compact by [10]. But

Gpk

/Gpk

p
∼= (G/Gp)pk

is p-divisible, i.e. so is G/Gp. Finally, it is a plain exercise to

verify that Gpk

is p-divisible, i.e. Gpk

= G∗. On the other hand, as we have already

seen, F pk

= F pk+1
whence F is perfect. Next, if Gp is reduced, we have (G∗)p = 1

hence SFd[G∗] = 1 and so the foregoing inclusion takes the form SF pk

[Gpk

] ⊆ Gp or

equivalently Gpk+1

p = 1. So, in both cases, Gp, being a pure subgroup, is a direct factor

of SF [G], hence G is a direct factor of V F [G] = GSF [G]. Then G is algebraically

compact exploiting [10]. This verifies the first half.

For the converse implication, we observe that Gp is a direct factor of G, i.e.

in other words G is p-splitting, whence G/Gt is algebraically compact. Thus by what
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we have shown above, V F [G] ∼= G/Gt×SF [G] ∼= G/Gt×SF [G/Gp][Gp]. By making

use of [0] and [10], the point is exhausted.

(d) Since V F [G] is coperiodical, we refer to [10] to infer that V F [G]/G ∼=

SF [G]/Gp is coperiodical too. Therefore, again by using of [10], the proof goes on

the same arguments and conclusions as in (c).

This proves the theorem.

After this, we proceed by proving the following.

Theorem 8.

(a’) V K[G] is divisible if and only if G/Gt and Gp are divisible.

(b’) V K[G] is a direct sum of a divisible and a bounded group if and only

if G/Gt and Gp are a direct sum of a divisible and a bounded group, and G/Gp is

p-divisible provided Gp is not reduced.

(c’) V K[G] is reduced algebraically compact if and only if G/Gt and Gp are

reduced algebraically compact.

(d’) V K[G] is reduced coperiodical if and only if G/Gt and Gp are reduced

coperiodical.

(e’) Let G be p-splitting. V K[G] is Σ-countable if and only if G/Gt and Gp

are Σ-countable.

Proof. (a’) V K[G] divisible insures that Gp is divisible as its pure subgroup,

whence G is p-splitting. Further the proof follows immediately from the description

of V K[G] in ([2], section 2, formulas (11)-(12)) and from the group-theoretic facts

given in [10]. The reverse implication is similar.

(b’) We firstly deal with the necessity. Certainly, the fact that Gp is isotype

in V K[G] yields that Gp is a direct sum of a divisible and a bounded group, so G

is p-splitting. Further, the proof follows directly by virtue of formulae (11)-(12) in

[2] and utilizing the criterion in [0] for SK[G] to be algebraically compact combined

with some group-theoretic facts obtained in [10]. The sufficiency is analogical.

(c’) Foremost, assume that V K[G] is reduced algebraically compact. Ev-

idently Gp is reduced being a subgroup. Assume also that B is an unbounded

basic subgroup of Gp. Therefore we write B =
⋃∞

n=1 Bn, where all subgroups
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Bn are homogeneous of order pn. We now construct the infinite sequence gn =∏n
i=1(1+bpi−1

i −bi+1p
i), where bi ∈ Bi; n ∈ N. Clearly gp

n = 1, and for each k ∈ N we

have gn+lg
−1
n =

∏n+l
i=n+1(1+bpi−1

i −bi+1p
i) ∈ Spk

K[G] ⊆ SkK[G] ⊆ V kK[G] for every

n ≥ k and arbitrary positive integer L. We note that the first inclusion holds since

if p|/k we have SkK[G] = SK[G], while if p/k we have k = psm for some s,m ∈ N

with (m, p) = 1 and so SkK[G] = Sps

K[G] ⊇ Spk

K[G] by observing that s < k.

That is why (gn) is a Cauchy sequence in V K[G] and consequently we can apply the

well-known Kaplansky theorem ([10], p.191, Theorem 39.1) which guarantees that

(gn) must be convergent to an element of V K[G] in its Z-adic topology. And so, let

g =
∑t

j=1 αjgj ∈ V K[G] be the boundary of (gn). Furthermore, for all k ≥ 1 and

n ≥ k, we derive

t∑
j=1

αjgj =

[
n∏

i=1

(1 + bpi−1

i − bpi

i+1)

]
(r1n(k)a1n(k)pk + · · ·+ rsnn(k)asnn(k)pk),

where r1n(k), . . . , rsnn(k) ∈ K; a1n(k), . . . , asnn(k) ∈ G; sn ∈ N. It is easily seen that

the left hand-side of the last equality is constant about n, while the right hand-side

depends on n and contains a number of elements in the canonical form that is ≥ n > t.

In fact, it is easy to see that there is k ∈ N so that all products of bip
i−1’s for different

various indices i running N are not in Gk
p. If the reverse holds, these products belong

to B∩Gpω

= 1, which is demonstrably false because in that case bpi−1

i = 1 ∀ 1 ≤ i ≤ n

whereas order(bi) = pi. Moreover, because of the direct decomposition of B, these

products of bpi−1

i ’s are independent and their number depend on n. By taking n > t,

the claim really sustained. Finally, we deduce that (gn) is not a convergent, i.e. it is a

divergent, sequence in V K[G] when B is unbounded. Thereby B is bounded, i.e. Gp

must be so by referring to ([10, 12]). Henceforth, appealing to [10], G is p-splitting and

the proof follows by means of formulas (11)-(12) from [2] and the simple observations

stated before Lemma 6. The treatment of the converse question is similar.

(d’) V K[G] being coperiodical implies that V K[G]/V 1K[G] is algebraically

compact (see e.g. [10]), where V 1K[G] is the first Ulm subgroup of V K[G]. Now

we consider the sequence (hn) = (gnV 1K[G]) where (gn) is constructed as in the
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previous point. Clearly gn 6∈ V 1K[G], otherwise gn ∈ V pω

K[G] = V K[Gpω

] and so

bpi−1

i ∈ B ∩ Gpω

= Bpω

= 1, a contradiction. Besides, it is a routine technical work

to check that (hn) is a Cauchy sequence since (gn) is. Further the proof goes by the

same arguments as in the preceding statement. The sufficiency is analogous.

(e’) Since a direct factor of a Σ-countable group is Σ-countable (see [10], a

theorem of Kaplansky - C. Walker) and any divisible group is Σ-countable, then owing

to the isomorphism (11) from [2], it is enough to show only that SK[G] is Σ-countable

if and only if Gp is Σ-countable. In fact, this is precisely Claim 2.1 of [2] and thus we

are done. This deduces the theorem.

Corollary 9. Let G be divisible. Then G is a direct factor of V K[G] with

divisible complementary factor. Thus V K[G] is divisible.

Remark. We can restate point (a’) like this: V K[G] is divisible if and only if

G/Gt is divisible and G is p-divisible. From this, it follows that if V K[G] is divisible,

G need not be so. Consequently, a principal question is whether or not the divisibility

of V F [G] does imply that G is splitting. If yes, one can employ formulas (16) (and

eventually (19) and (20)) from [2] to find a criterion for V F [G] to be divisible.

If X is an arbitrary abelian group, as emphasized in the introduction, we

shall say that r0(X) is the torsion-free rank of X. Mollov [24,25] has calculated the

torsion-free rank of UE[G] for semisimple EG whose G is torsion (see also [14]). Later

on, Mollov and Nachev [26,27] have computed the torsion-free rank r0UEt[G] of the

group of units in a commutative semisimple twisted group algebra Et[G] in terms

of E and of G, when G is torsion or torsion-free. Specifically, they calculated in a

more general aspect this rank for semisimple abelian Et[G] when G is arbitrary, but

in terms of E,G and Et[Gt]. So, the result is incomplete, since a characterization of

Et[Gt] that depends only of E,Gt and the system of factors of Et[G] was not given

here.

Nevertheless, contrasting with their result, we compute r0UE[G] for a mod-

ular or a semisimple group ring E[G] over a splitting or a torsion group G as well as

over a p-splitting group G but over an algebraically closed field E, both in the two

cases only in terms of E and G. That is, of course, more precise.
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Before doing this, we require one more result.

Theorem 10. The group V F [G] is torsion if and only if G is p-torsion, or

G and F ∗ are torsion provided G 6= Gp.

Proof. If G = Gp, it is a simple matter to check that V F [G] is a p-group.

That is why we deal only with G 6= Gp. First assume V F [G] is torsion. Hence G is

torsion and so G = Gp×M . Thus V F [M ] is torsion, and consequently by [25] or [14]

we conclude that F is an algebraic extension of a finite field, i.e. F ∗ is torsion.

To treat the converse, write G = Gp × M . Therefore, in accordance with

Lemma 2.2 of [2], we obtain V F [G] = V F [M ] × SF [G]. But M and F ∗ are both

torsion. By virtue of ([25], [14]), V F [M ] is torsion, i.e. so does V F [G]. This finishes

the proof.

Our aims here are the following.

Theorem 11. Let G be torsion. Then r0V F [G] = 0 if F is an algebraic

extension of a finite field or if G = Gp, and r0V F [G] = max(|F |, |G/Gp|) otherwise.

Proof. First take G to be p-primary or F to be an algebraic extension

of a finite field. Consequently Theorem 10 assures that V F [G] is torsion, and so

r0V F [G] = 0. In the remaining cases we write G ∼= Gp × G/Gp. Therefore formula

(6) in [2] implies V F [G] ∼= V F [G/Gp]×SF [G]. Hence, r0V F [G] = r0V F [G/Gp] (see

[10]), whence we use [24,25] to conclude that r0V F [G] = max(|F |, |G/Gp|), as stated.

The theorem is proved.

Theorem 12. Suppose G splits and E is a field. Then if char(E) = 0,

(1) r0UE[G] = max(|E|, |Gt|, r0(G));

and if char(E) = p 6= 0;

(2) r0UE[G] =

 |Gt/Gp|r0(G), |Gt/Gp| ≥ ℵ0∑
d/|Gt/Gp| mdr0(G), |Gt/Gp| < ℵ0

provided E is an algebraic extension of a finite field, or

(3) r0UE[G] = max(|E|, |Gt/Gp|, r0(G))

otherwise.
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Proof. Given char(E) = 0. In virtue of the isomorphism (15) from [2] to-

gether with [10], we have r0UE[G] = r0UE[Gt]+Σαr0(G/Gt), where α is computed as

in [2]. But r0(G/Gt) = r0(G) and thus [24,25] lead us to r0UE[Gt] = max(|E|, |Gt|),

because E is infinite. Consequently by virtue of ([15], p.206, Theorem 7), r0UE[G] =

max(|E|, Gt|)+(αr0(G) = max(|E|, |Gt|)+max(|Gt|, r0(G)) = max(|E|, |Gt|, r0(G)).

For char(E) = p > 0 and E an algebraic extension of a simple (i.e. of a

finite) field we derive via [14] that UE[Gt/Gp] is torsion. In view of formula (16) in

[2] and of ([15], p.206, Theorem 7) combined with [10], we deduce that r0UE[G] =∑
(|Gt/Gp|r0(G) = |Gt/Gp|r0(G) for the infinite situation or r0UE[G] =

∑
β r0(G) =

βr0(G) where β =
∑

d/|Gt/Gp|md for the finite one.

In the remaining case, the same formula (16) plus [10], [15] and The-

orem 11 are guarantors that r0UE[G] = max(|E|, |Gt/Gp|) +
∑

|Gt/Gp| r0(G) =

max(|E|, |Gt/Gp|) + |Gt/Gp|r0(G) = max(|E|, |Gt/Gp|, r0(G)), as desired. So, the

theorem is true.

Theorem 13. Let E be a field. Then if char(E) = 0,

(4) r0UE−[G] = max(|E−|, |Gt|, r0(G));

and if char(E) = p > 0 and G is p-splitting,

(5) r0UE−[G] = |Gt/Gp|r0(G)

provided E is an algebraic extension of a finite field, or

(6) r0UE−[G] = max(|E−|, |Gt/Gp|, r0(G))

otherwise.

Proof. The result follows employing formulas (8)-(12) from [2] along with

[10] and [15]. The conclusions are similar to these of the foregoing theorem. The

proof is finished.

Now, we shall begin with other types of results by arguing the following (a

part of the results presented here generalize those obtained by Mollov in [24] and [25];

see [14] and [19] as well).
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Proposition 14. Suppose G is a direct sum of finite cyclic groups. Then

V F [G] is nontrivial free modulo torsion if and only if F (ζn)∗ is free modulo torsion

for each n which is an order of an element of G.

Proof. Clearly G is torsion and G = Gp ×M for some group M . Referring

to ratio (6) from [2], we may write V F [G] = V F [M ]×SF [G]. Thus V F [G]/VtF [G] ∼=

V F [M ]/VtF [M ] and the result follows by application of [25] or [14]. The statement

is shown.

We can extend the last affirmation to the next claim.

Proposition 15. Let G be Σ-cyclic. Then UF [G] is nontrivial free modulo

torsion if and only if F (ζn)∗ is free modulo torsion for every n which is an order of

one element of G.

Proof. It is not difficult to see by application of formulae (17-18) from [2]

that UF [G]/UtF [G] ∼= (×δG/Gt) × (Πn ×mn F (ζn)∗/F (ζn)∗t ), where δ is finite or

infinite defined in the same manner as in [2]. This proves the result.

Proposition 16. Suppose G p-splits. Then UK[G] is nontrivial free modulo

torsion if and only if G is free modulo torsion and K is an algebraic extension of a

finite field.

Proof. The isomorphism (11) of [2] obviously yields that UK[G]/UtK[G] ∼=

(×|Gt/Gp|G/Gt) × (×|Gt/Gp|K
∗/K∗

t ). Thus UK[G] is free modulo torsion precisely

when G/Gt is free and K∗/K∗
t = 1 since the latter quotient is divisible. Finally, K∗

is torsion, as desired. The affirmation is established.

Proposition 17. Let G be torsion. If F (ζn)∗ is divisible modulo torsion for

each n which is an order of an element of G, then V F [G] is divisible modulo torsion.

Proof. Write G = Gp × M . As we have seen, V F [G] = V F [M ] × SF [G].

Hence V F [G]/VtF [G] ∼= V F [M ]/VtF [M ]. Finally either [25] or [14] gives the claim,

thus completing the proof.

Proposition 18. Let G be Σ-cyclic. Then UF [G] is nontrivial divisible

modulo torsion if and only if G is torsion and F (ζn)∗ is divisible modulo torsion for

every n which is an order of an element of G.
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Proof. By what we have already shown above, UF [G]/UtF [G] is divisible

only when G/Gt is divisible free and F (ζn)∗/F (ζn)∗t is divisible. Finally G = Gt and

F (ζn)∗ is divisible modulo torsion, as promised, thus finishing the proof.

Proposition 19. Let G be p-splitting. The group UK[G] is divisible modulo

torsion if and only if the group G is divisible modulo torsion.

Proof. By what we have just given above, UK[G]/UtK[G] is divisible only if

the same is valid for G/Gt, because K∗ is divisible whence divisible modulo torsion.

Thus G is really divisible modulo torsion, as expected. The proof is complete.

The following is our crucial tool for the further investigation (see, for instance,

cf. [24] and [25]).

Definition 20. We recall that the field F belongs to the class P if F (ζn)∗

splits for every primitive n-th root of unity ζn in F−. Denote by PI and PR the

subclasses of P which contain fields F with the following two corresponding proper-

ties: the torsion-free factor of F (ζn)∗, that is, the quotient F (ζn)∗/F (ζn)∗t , is free or

divisible for each ζn.

An example for a field that belongs to PI is the following (e. g. see May

[16] or [17,18]): If L is a field such that the multiplicative group E∗ of every finite

extension E of L is free modulo torsion, then all extensions F of L generated by the

algebraic elements of a bounded degree over L belong to the class PI. Besides, if

K is algebraically closed but K is not an absolute algebraic field (K∗ 6= K∗
t ), then

K ∈ PR ([11], p.298, Theorem 77.1 or [12]).

Proposition 21. Suppose G is a torsion direct sum of cyclic groups such

that G 6= Gp and E is a neat transcedental extension of the field F . Then if F ∈ P,

the group V E[G] splits; and if F ∈ PI, the group V E[G] is splitting of torsion-free

rank max(|E|, |G/Gp|).

Proof. Write G = Gp × M , therefore V E[G] = V E[M ] × SE[G]. Hence,

V E[G] splits if and only if the same holds for V E[M ]. So, we need only subsequently

apply ([25], [14]) and Theorem 11. The proof is completed.
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Proposition 22. Suppose G is Σ-cyclic. Then if F (ζn)∗ splits for each n

which is an order of an element of G (in particular if F ∈ P), the group UF [G] is

splitting.

Proof. It follows obviously from dependencies (17) and (18) of [2] that

UtF [G] is a direct factor of UF [G], as claimed. This concludes the proof.

Proposition 23. If G splits and, either F is an algebraic extension of a

finite field (i.e. it is an absolute algebraic field), or Gt/Gp is Σ-cyclic and F ∈ P,

then UF [G] splits.

Proof. Consulting with formula (16) of [2], we argue UF [G] ∼= UF [Gt/Gp]×

(×δG/Gt)×SF [G], where δ is finite when |Gt/Gp| is finite or is infinite when |Gt/Gp|

is infinite. If now F is an absolute algebraic field, then UF [Gt/Gp] is torsion. Thus,

in this case, UF [G] splits. In the remaining one, when Gt/Gp is Σ-cyclic and F ∈ P,

according to Proposition 22 we conclude that UF [Gt/Gp] splits, therefore UF [G]

splits as well, as wanted. This is the end of the proof.

Corollary 24. If G is Σ-cyclic and F ∈ PI, then UF [G] is splitting.

We close the study with the following.

Proposition 25. Assume G is p-splitting. Then UK[G] splits.

Proof. The group K∗ is divisible, hence splitting. Therefore, the statement

holds by application of formula (11) from [2]. The proof is deduced.

Remarks. The conditions G 6= Gp in Theorems 10, 11 plus the restrictions

mn 6= 0 in Theorems 1 and 2 were omitted from [1] involuntarily. Their formulations

in [1] are in an equivalent record.

Moreover, the condition Gpω

q
∼= 1 in Theorem 2.2 (f) on p.370 of [2] must be

written and read as Gqω

q 6= 1. The sentence on p.371-line 2(+) of [2], namely: ”... E

is an algebraic extension of finite field ...” must be assumed as ”... E− is an algebraic

extension of a finite field ...”, and on line 12(-) of the same page the reference ”[36]”

must be ”[37]”, although both the corrections are clear from the context.
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Besides, the equality A =
⋃

α<λ Bα on p. 223 of [3] should be replaced by

A =
⋃

α<λ Gα. In that aspect, the letter
⋃

α<λ

⋃
µ<α Gµ on p. 224 of [3] must be

replaced by
∏

α<λ

⋃
µ<α Gµ.

Also the identity G =
⋃

β<τ Cβ from [7, p. 258] would be interpreted as

G =
⋃

β<τ Gβ .

We terminate this article with problems of some interest and importance,

which immediately arise, namely:

3. Open questions and conjectures

What are the general criteria for UF [G] to be divisible or algebraically com-

pact or coperiodical or Σ-countable or Warfield or simply presented or a Σ-group?

The finding of such necessary and sufficient conditions for the classes of all quoted

groups will definitely be of some significance. In the present research exploration we

have partially settled some of these problems.

On the other hand, the calculation of the torsion-free rank of UF [G] when F

is not algebraic closed and G is absolute arbitrary is requisite for the description of

the torsion-free part in UF [G], and thus for the isomorphism structure of this group.

In this work we have established only a partial answer.

A final question is does UF [G] being splitting imply that the same holds for

G, i.e., in other words, if UF [G] is splitting is then G splitting? It seems to the author

that this is not the case and even more that G is not p-splitting.
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NONEXISTENCE OF NONTRIVIAL PERIODIC SOLUTIONS FOR
SEMILINEAR WAVE EQUATIONS

CRISTINEL MORTICI

Abstract. The semilinear wave equation
�u + g(t, x, u) = λu, in Ω

u(t, 0) = u(t, π) = 0, t ∈ [0, 2π]

u is 2π-periodic in t

is considered as an eigenvalue problem with parameter λ. The nonexistence

of nontrivial periodic solutions in case λ = 4k + 2 is treated and the other

cases are studied under some uniform boundedness conditions on g.

1. Introduction

A large number of papers are devoted to the study of the nonexistence of

nontrivial solutions (i.e. eigenfunctions) of semilinear eigenvalue problems. The great

importance follows from the fact that these are closed related with the theory of bi-

furcation, in special with finding the bifurcation points and the bifurcation intervals.

Such results for semilinear elliptic equations was established for example by Chiap-

pinelli in [1] using critical point theory of Ljusternik Schnirelmann or by Berger in [2]

in connection with bifurcation theory.

Received by the editors: 22.11.2005.
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We consider here the semilinear wave equation in the form
utt − uxx + g(t, x, u) = λu, in Ω

u(t, 0) = u(t, π) = 0, t ∈ [0, 2π]

u is 2π-periodic in t

, (1.1)

where Ω = (0, 2π)× (0, π) and λ is a real parameter.

Let C̃2 be the space of twice continuously differentiable functions v : Ω → R

such that v(t, 0) = v(t, π) = 0 and v(·, x) is 2π-periodic. By H = L2(Ω) denote the

completion of the space C̃2 endowed with the inner product

(v, w) =
∫

Ω

vw , v, w ∈ C̃2

and the corresponding norm

‖v‖ =
√

(v, v) , v ∈ C̃2.

The set (ψnk)(n,k)∈N×Z forming an orthonormal basis in H and consists of eigenfunc-

tions of the linear operator

� = ∂2
t − ∂2

x

is defined by

ψnk(x, t) =



√
2
π

sinnx sin kt, (n, k) ∈ N×N

1
π

sinnx, n ∈ N, k = 0
√

2
π

sinnx cos kt, n ∈ N, − k ∈ N

.

Obviously,

�ψnk = (n2 − k2)ψnk.

Let L : D(L) ⊂ H → H be given by

Lu =
∞∑

n=1

∞∑
k=−∞

(n2 − k2)(u, ψnk)ψnk ,
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with the domain

D(L) =

{
u ∈ H |

∞∑
n=1

∞∑
k=−∞

(n2 − k2) |(u, ψnk)|2 <∞

}
.

The operator L is densely defined, selfadjoint and with a closed range. Its spectrum

σ(L) =
{
λnk = n2 − k2 | (n, k) ∈ N× Z

}
is unbounded from above and below and any non-zero eigenvalue has a finite algebraic

multiplicity. More precisely,

σ(L) = Z r {4k + 2 | k ∈ Z}

which follows easily.

Assume that g : Ω × R → R is a Carathéodory function and there exists

c > 0 satisfying

|g(t, x, u)| ≤ c |u| , ∀ (t, x) ∈ Ω, u ∈ R.

In consequence,

g(t, x, 0) = 0 , ∀ (t, x) ∈ Ω

so the problem (1.1) has the trivial solution u = 0.

The Nemytskii operator

(Su)(t, x) = g(t, x, u(t, x))

generated by g is bounded and continuous from L2(Ω) into itself. Consequently, the

generalized solution of (1.1) is any function u ∈ L2(Ω) such that

(u, vtt − vxx) + (Su, v) = λ(u, v) , ∀ v ∈ C̃2.

From now, we will write this equation in the operator form

Lu+ S(u) = λu, (1.2)

where L inherets the properties of the generalized d’Alembertian with periodic bound-

ary conditions.
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2. The results

First we give a result in case λ ∈ Z r σ(L), thus λ = 4k + 2, k ∈ Z.

Theorem 2.1. Assume that

|g(t, x, u)| ≤ c |u| , ∀ (t, x) ∈ Ω, u ∈ R

for some c ∈ (0, 1) . Then the problem
utt − uxx + g(t, x, u) = (4k + 2)u, in Ω

u(t, 0) = u(t, π) = 0, t ∈ [0, 2π]

u is 2π-periodic in t

has no nontrivial solutions. Consequently, 4k + 2 are not bifurcation points.

Proof. Denote λk = 4k + 2. The closest eigenvalues from 4k + 2 are 4k + 1

and 4k + 3, so

dist(λk, σ(L)) = 1.

Let us suppose by contrary that there exists a nontrivial solution u of the equation

Lu+ S(u) = λku.

Since L is selfadjoint, then for λ /∈ σ(L), the resolvent (L−λI)−1 of L at λ is bounded,

linear map with norm ∣∣∣∣(L− λI)−1
∣∣∣∣ =

1
dist(λ, σ(L))

,

(Kato [3], pp.272). Therefore,

(L− λkI)u = −S(u)

or

u = −(L− λkI)−1S(u).

By taking the norm, we derive

||u|| =
∣∣∣∣(L− λkI)−1S(u)

∣∣∣∣ ≤
≤

∣∣∣∣(L− λkI)−1
∣∣∣∣ · ||S(u)|| ≤ 1

dist(λk, σ(L))
· c ||u|| .
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Now, if divide by ||u|| 6= 0, we obtain

1 ≤ 1
dist(λk, σ(L))

· c

or

c ≥ dist(λk, σ(L)) = 1,

a contradiction. This shows that u = 0. �

Further we will give a more general result. For each real number λ /∈ σ(L),

λ 6= 4k + 2, we study cases when λ ∈ Ik, where the intervals Ik are given in the next

table. If denote by µk ∈ σ(L) the closest eigenvalue from λ, we have the following

situation:

Ik µk dist(λ, σ(L))

(4k, 4k + 1) 4k or 4k + 1 min {4k + 1− λ, λ− 4k}

(4k + 1, 4k + 2) 4k + 1 λ− 4k − 1

(4k + 2, 4k + 3) 4k + 3 4k + 3− λ

(4k + 3, 4k + 4) 4k + 3 or 4k + 4 min {4k + 4− λ, λ− 4k − 3}

Now we are in position to give the following

Theorem 2.2. Assume that λ ∈ (i, i+ 1), i ∈ Z and

|g(t, x, u)| ≤ c |u| , ∀ (t, x) ∈ Ω, u ∈ R

for some 0 < c < c(λ), where

c(λ) =


λ− i , if i = 4k + 1

i+ 1− λ , if i = 4k + 2

min {i+ 1− λ, λ− i} , if i = 4k or i = 4k + 3

.

Then the problem 
utt − uxx + g(t, x, u) = λu, in Ω

u(t, 0) = u(t, π) = 0, t ∈ [0, 2π]

u is 2π-periodic in t

has no nontrivial solutions. Consequently, these points λ are not bifurcation points.
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Proof. We can easily see that

c(λ) = dist(λ, σ(L)),

so

0 < c < c(λ).

By assuming that there exists a nontrivial solution of the problem (1.2), we obtain as

above that

u = −(L− λI)−1S(u)

and finally

1 ≤ 1
dist(λ, σ(L))

· c⇔ c ≥ dist(λ, σ(L)) = c(λ),

contradiction. Consequently, the problem admits only the solution u = 0. �
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A NONSMOOTH EXTENSION FOR THE
BERNSTEIN-STANCU OPERATORS

AND AN APPLICATION

CRISTINEL MORTICI AND INGRID OANCEA

Abstract. D.D. Stancu defined in [8] a class of approximation opera-

tors which are more general than the well-known Bernstein operators.

We define here a new type of approximation operators which extend the

Bernstein-Stancu operators. These new operators have the advantage that

the points where the given function f : [0, 1] → R is calculated can be

independently chosen in each interval of the equidistant division of the

interval [0, 1] . Moreover, all possible such choices of intermediary points

cover the whole interval [0, 1] . Finally, we consider a particular case as an

application.

1. Introduction

The Bernstein approximations Bmf, m ∈ N associated to a given continuous

function f : [0, 1] → R is the polynomial

(Bmf) (x) =
m∑

k=0

pm,k(x)f
(

k

m

)
,

where

pm,k(x) =
(

m

k

)
xk(1− x)m−k

are called the Bernstein fundamental polynomials of m−th degree (see [2]). Bern-

stein used this approximation to give the first constructive proof of the Weierstrass

theorem. One of the many remarkable properties of Bernstein approximation is that

Received by the editors: 22.11.2005.

2000 Mathematics Subject Classification. 41A20, 41A25, 41A35.

Key words and phrases. Integral operators, uniform convergence, Kantorovich-Stancu operators, delta

operators.

69



CRISTINEL MORTICI AND INGRID OANCEA

each derivative of the polynomial function Bmf of any order converges to the corre-

sponding derivative of f ([6]). Other important properties are shape-preservation and

variation-diminuation [4]. These many properties can be viewed as compensation for

the slow convergence of Bmf to f.

In 1968, D.D. Stancu defined in [8] a linear positive operator depending on two

non-negative parameters α and β satisfying the condition 0 ≤ α ≤ β. Those operators

defined for any non-negative integer m, associate to every function f ∈ C([0, 1]) the

polynomial P
(α,β)
m f,

f ∈ C([0, 1]) 7−→ P (α,β)
m f,

in the following way: (
P (α,β)

m f
)

(x) =
m∑

k=0

pm,k(x)f
(

k + α

m + β

)
.

Note that for α = β = 0 the Bernstein-Stancu operators become the classical Bern-

stein operators Bm. It is known that the Bernstein-Stancu operators verify the fol-

lowing relations (e.g. [1]):

Lemma 1.1 For Bernstein-Stancu operators P
(α,β)
m , m ∈ N, the following

relations hold true:

1)
(
P

(α,β)
m e0

)
(x) = 1

2)
(
P

(α,β)
m e1

)
(x) = x +

α− βx

m + β

3)
(
P

(α,β)
m e2

)
(x) = x2 +

mx(1− x) + (α− βx)(2mx + βx + α)
(m + β)2

,

where

ej(x) = xj , j = 0, 1, 2

are test functions.

For proofs and other comments see [1].

2. The Results

In order to define the new class of operators, for all non-negative integers m

and k = 0, 1, . . . ,m consider the non-negative reals αmk, βmk so that

αmk ≤ βmk.
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Further, let us denote by A, respective B, the infinite dimensional lower triangular

matrices

A =


α00 0 0 0 0 ...

α10 α11 0 0 0 . . .

α20 α21 α22 0 0 . . .

. . . . . . . . . . . . ... . . .


and

B =


β00 0 0 0 0 ...

β10 β11 0 0 0 . . .

β20 β21 β22 0 0 . . .

. . . . . . . . . . . . ... . . .

 .

Under these assumptions, we define an approximation operator denoted by

P (A,B)
m : C([0, 1]) → C([0, 1]),

with the formula(
P (A,B)

m f
)

(x) =
m∑

k=0

pm,k(x)f
(

k + αmk

m + βmk

)
, f ∈ C([0, 1]).

Remark that the Bernstein-Stancu operators is a particular type of operators P
(A,B)
m ,

in case when the matrices A and B are of the form

A =


α 0 0 0 0 ...

α α 0 0 0 . . .

α α α 0 0 . . .

. . . . . . . . . . . . ... . . .


and

B =


β 0 0 0 0 ...

β β 0 0 0 . . .

β β β 0 0 . . .

. . . . . . . . . . . . ... . . .

 ,

or equivalent,

αmk = α , βmk = β,
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for all non-negative integers m and k ≤ m.

The operators P
(A,B)
m have some advantages in comparison with Bernstein-

Stancu operators. The approximations of a given continuous function f are calculated

using some known values of f. In case of Bernstein operators, the m−th approximation

is given in function of the values of f at points

0 <
1
m

<
2
m

< ... <
m− 1

m
< 1,

while in case of Stancu operators, the m−th approximation is given in terms of the

values at points

α

m + β
<

α + 1
m + β

<
α + 2
m + β

< ... <
α + m

m + β
.

This choice of the intermediary points are in some sense strictly, because they depend

each other. In the first case, the intermediary points are in arithmetic progression

and in the second case, the intermediary points are also under some restrictions.

The success of the approximation method appears only if we know the values of the

function f at that particular points. The P
(A,B)
m operators defined here allow a great

liberty for choice of the intermediary points. Indeed, we can independently choose

intermediary points in each interval[
k

m
,
k + 1

m

]
, 0 ≤ k ≤ m− 1.

It is sufficient to have βmk ≤ 1, to imply

k + αmk

m + βmk
≤ k + βmk

m + βmk
≤ k + 1

m + βmk
≤ k + 1

m
.

Thus under similar weak assumptions, we can have

k + αmk

m + βmk
∈

[
k

m
,
k + 1

m

]
, 0 ≤ k ≤ m− 1,

so the possible values of the intermediary points cover the whole interval [0, 1] . The

operators P
(A,B)
m are linear, in the sense that

P (A,B)
m (µf + λg) = µP (A,B)

m f + λP (A,B)
m g,
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for all real numbers λ, µ and f, g ∈ C([0, 1]) and positive defined, i.e.

P (A,B)
m f ≥ 0 , if f ≥ 0.

We will use the following result due to H. Bohman and P.P. Korovkin.

Theorem 2.1 Let Lm : C([a, b]) → C([a, b]), m ∈ N be a sequence of linear,

positive operators such that

(Lme0)(x) = 1 + um(x)

(Lme1)(x) = x + vm(x)

(Lme2)(x) = x2 + wm(x)

with

lim
m→∞

um(x) = lim
m→∞

vm(x) = lim
m→∞

wm(x) = 0,

uniformly on [0, 1] . Then for every continuous function f ∈ C([0, 1]), we have

lim
m→∞

(Lmf) (x) = f (x) ,

uniformly on [0, 1] .

For proofs and other results see [3], [5]. In order to prove that the operators

P
(A,B)
m are approximation operators, we give the following main result:

Theorem 2.2 Given the infinite dimensional lower triangular matrices

A =


α00 0 0 . . . ... ...

α10 α11 0 0 ... . . .

α20 α21 α22 0 0 . . .

. . . . . . . . . . . . ... . . .


and

B =


β00 0 0 . . . ... ...

β10 β11 0 0 ... . . .

β20 β21 β22 0 0 . . .

. . . . . . . . . . . . ... . . .


with the following properties:

a) 0 ≤ αmk ≤ βmk, for every non-negative integers m and k ≤ m
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b) αmk ∈ [a, b], βmk ∈ [c, d] for every non-negative integers m and k ≤ m and for

some non-negative real numbers 0 ≤ a < b and 0 ≤ c < d.

Then for every continuous function f ∈ C([0, 1]), we have

lim
m→∞

P (A,B)
m f = f , uniformly on [0, 1].

Proof. Let us compute the values of the operators P
(A,B)
m on test functions

ej , j = 0, 1, 2. We have(
P (A,B)

m e0

)
(x) =

m∑
k=0

pm,k(x)e0

(
k + αmk

m + βmk

)
=

m∑
k=0

pm,k(x) = 1,

(
P (A,B)

m e1

)
(x) =

m∑
k=0

pm,k(x)e1

(
k + αmk

m + βmk

)
=

m∑
k=0

pm,k(x)
k + αmk

m + βmk
,

respective(
P (A,B)

m e2

)
(x) =

m∑
k=0

pm,k(x)e2

(
k + αmk

m + βmk

)
=

m∑
k=0

pm,k(x)
(

k + αmk

m + βmk

)2

,

Now, from the inequalities

a ≤ αmk ≤ b , c ≤ βmk ≤ d,

we obtain the estimations

k + a

m + d
≤ k + αmk

m + βmk
≤ k + b

m + c
,

for all non-negative integers k ≤ m. By multiplying each member of the inequality by

pm,k(x) and taking the sum with respect to k it follows that

m∑
k=0

pm,k(x)
k + a

m + d
≤

m∑
k=0

pm,k(x)
k + αmk

m + βmk
≤

m∑
k=0

pm,k(x)
k + b

m + c

or (
P (a,d)

m e1

)
(x) ≤

(
P (A,B)

m e1

)
(x) ≤

(
P (b,c)

m e1

)
(x).

Now, by replacing
(
P

(a,d)
m e1

)
(x) and

(
P

(b,c)
m e1

)
(x) with their expressions from

Lemma 1.1, we obtain the estimations

x +
a− dx

m + d
≤

(
P (A,B)

m e1

)
(x) ≤ x +

b− cx

m + c
.

74



A NONSMOOTH EXTENSION FOR THE BERNSTEIN-STANCU OPERATORS

Hence, for all x ∈ [0, 1] , we have∣∣∣(P (A,B)
m e1

)
(x)− x

∣∣∣ ≤ max
{∣∣∣∣a− dx

m + d

∣∣∣∣ ,

∣∣∣∣b− cx

m + c

∣∣∣∣} .

But, for all x ∈ [0, 1] , we also have∣∣∣∣a− dx

m + d

∣∣∣∣ ≤ |a|+ |d|
m + d

≤ |a|+ |d|
m

and ∣∣∣∣b− cx

m + c

∣∣∣∣ ≤ |b|+ |c|
m + c

≤ |b|+ |c|
m

.

Now, with the notation

q = max {|a|+ |d| , |b|+ |c|} ,

we obtain ∣∣∣(P (A,B)
m e1

)
(x)− x

∣∣∣ ≤ q

m
→ 0 , as m →∞,

for all x ∈ [0, 1] , so

lim
m→∞

(
P (A,B)

m e1

)
(x) = x , uniformly on [0, 1].

Moreover, from the inequality(
k + a

m + d

)2

≤
(

k + αmk

m + βmk

)2

≤
(

k + b

m + c

)2

we obtain
m∑

k=0

pm,k(x)
(

k + a

m + d

)2

≤
m∑

k=0

pm,k(x)
(

k + αmk

m + βmk

)2

≤
m∑

k=0

pm,k(x)
(

k + b

m + c

)2

or (
P (a,d)

m e2

)
(x) ≤

(
P (A,B)

m e2

)
(x) ≤

(
P (b,c)

m e2

)
(x).

Now, by replacing
(
P

(a,d)
m e2

)
(x) and

(
P

(b,c)
m e2

)
(x) with their expressions from

Lemma 1.1, we obtain the estimations

x2 +
mx(1− x) + (a− dx)(2mx + dx + a)

(m + d)2
≤

(
P (A,B)

m e2

)
(x) ≤

≤ x2 +
mx(1− x) + (b− cx)(2mx + cx + b)

(m + c)2
.

Hence ∣∣∣(P (A,B)
m e2

)
(x)− x2

∣∣∣ ≤
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≤ max
{∣∣∣mx(1−x)+(a−dx)(2mx+dx+a)

(m+d)2

∣∣∣ ,
∣∣∣mx(1−x)+(b−cx)(2mx+cx+b)

(m+c)2

∣∣∣} .

Using that x ∈ [0, 1] , we obtain∣∣∣∣mx(1− x) + (a− dx)(2mx + dx + a)
(m + d)2

∣∣∣∣ ≤ m + (|a|+ |d|)(2m + |d|+ |a|)
m2

and ∣∣∣∣mx(1− x) + (b− cx)(2mx + cx + b)
(m + c)2

∣∣∣∣ ≤ m + (|b|+ |c|)(2m + |c|+ |b|)
m2

.

Now, with the notation

w = max {(|a|+ |d|)(2m + |d|+ |a|), (|b|+ |c|)(2m + |c|+ |b|)} ,

we obtain that ∣∣∣(P (A,B)
m e2

)
(x)− x2

∣∣∣ ≤ m + w

m2
→ 0 , as m →∞.

According with Bohman-Korovkin theorem,

lim
m→∞

(
P (A,B)

m e2

)
(x) = x2 , uniformly on [0, 1] .

Corollary 2.1 Assume that 0 ≤ αmk ≤ βmk, for all non-negative inte-

gers k ≤ m. For each integer k ≥ 0, assume that the sequences (αmk)m∈N and

(βmk)m∈N are convergent to αk and βk, respectively, such that the sequences (αk)k∈N

and (βk)k∈N are bounded. Then for every continuous function f ∈ C([0, 1]),

lim
m→∞

(
P (A,B)

m f
)

(x) = f(x) , uniformly in [0, 1] .

Proof. We are in the hypotheses of the Theorem 2.1. From the fact that the

sequences (αmk)m∈N and (βmk)m∈N are convergent to αk and βk, respectively, we can

find a positive integer m1 for which

|αmk − αk| < 1,

for all integers m ≥ m1 and we can find m2 for which

|βmk − βk| < 1,
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for all integers m ≥ m2. Now, for every integer m ≥ m1 + m2, we have

αmk < 1 + αk ≤ 1 + M

and

βmk < 1 + βk ≤ 1 + M,

where

M = max
{

sup
k∈N

αk, sup
k∈N

βk

}
.

3. A particular case

An interesting case is when the matrix B has all nonzero entries equal to a

positive constant β,

B =


β 0 0 . . . ... ...

β β 0 0 ... . . .

β β β 0 0 . . .

. . . . . . . . . . . . ... . . .

 .

We also impose the conditions

αmk ≤ β,

for all non-negative integers k ≤ m. Under these assumptions, we define an approxi-

mation operator denoted by

P (A,β)
m : C[0, 1] → C([0, 1],

with the formula(
P (A,β)

m f
)

(x) =
m∑

k=0

pm,k(x)f
(

k + αmk

m + β

)
, f ∈ C [0, 1] .

Lemma 3.1 For every continuous function f ∈ C[0, 1], the following relations

hold true:

a)
(
P

(A,β)
m e0

)
(x) = 1

b)
(
P

(A,β)
m e1

)
(x) = x− βx

m + β
+

1
m + β

·
m∑

k=0

αmkpm,k(x).
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Proof. a) We have(
P (A,β)

m e0

)
(x) =

m∑
k=0

pm,k(x)e0

(
k + αmk

m + β

)
=

m∑
k=0

pm,k(x) = 1.

b) We have(
P (A,β)

m e1

)
(x) =

m∑
k=0

pm,k(x)e1

(
k + αmk

m + β

)
=

m∑
k=0

pm,k(x)
k + αmk

m + β
=

=
m∑

k=0

k

m + β
· pm,k(x) +

1
m + β

·
m∑

k=0

αmkpm,k(x) =

=
(
P (0,β)

m e1

)
(x) +

1
m + β

·
m∑

k=0

αmkpm,k(x) =

= x− βx

m + β
+

1
m + β

·
m∑

k=0

αmkpm,k(x).

Theorem 3.1 Given the infinite dimensional lower triangular matrix

A =


α00 0 0 . . . ... ...

α10 α11 0 0 ... . . .

α20 α21 α22 0 0 . . .

. . . . . . . . . . . . ... . . .


and a positive real number β with the following properties:

a) αmk ≤ β, for every non-negative integers m and k ≤ m

b) αmk ∈ [a, b], for every non-negative integers m and k ≤ m and for some non-

negative real numbers a < b.

Then for every continuous function f ∈ C([0, 1]), we have

lim
m→∞

P (A,β)
m f = f , uniformly on [0, 1].

Proof. Let us compute the values of the operators P
(A,β)
m on test functions

ej , j = 0, 1, 2. We have(
P (A,β)

m e0

)
(x) =

m∑
k=0

pm,k(x)e0

(
k + αmk

m + β

)
=

m∑
k=0

pm,k(x) = 1,

(
P (A,β)

m e1

)
(x) =

m∑
k=0

pm,k(x)e1

(
k + αmk

m + β

)
=

m∑
k=0

pm,k(x)
k + αmk

m + β
,
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respective(
P (A,β)

m e2

)
(x) =

m∑
k=0

pm,k(x)e2

(
k + αmk

m + β

)
=

m∑
k=0

pm,k(x)
(

k + αmk

m + β

)2

,

Now, from the inequalities

a ≤ αmk ≤ b,

we obtain the estimations

k + a

m + β
≤ k + αmk

m + β
≤ k + b

m + β
,

for all non-negative integers k ≤ m. By multiplying each member of the inequality by

pm,k(x) and taking the sum with respect to k it follows that
m∑

k=0

pm,k(x)
k + a

m + β
≤

m∑
k=0

pm,k(x)
k + αmk

m + β
≤

m∑
k=0

pm,k(x)
k + b

m + β

or (
P (a,β)

m e1

)
(x) ≤

(
P (A,β)

m e1

)
(x) ≤

(
P (b,β)

m e1

)
(x)

and using the expressions of
(
P

(a,β)
m e1

)
(x) we obtain

x +
a− βx

m + β
≤

(
P (A,B)

m e1

)
(x) ≤ x +

b− βx

m + β
.

Hence, for all x ∈ [0, 1] , we have∣∣∣(P (A,B)
m e1

)
(x)− x

∣∣∣ ≤ max
{∣∣∣∣a− βx

m + β

∣∣∣∣ ,

∣∣∣∣b− βx

m + β

∣∣∣∣} .

Further, for all x ∈ [0, 1] , we obtain∣∣∣∣a− βx

m + β

∣∣∣∣ ≤ |a|+ |β|
m + β

≤ |a|+ |β|
m

and ∣∣∣∣b− βx

m + β

∣∣∣∣ ≤ |b|+ |β|
m + β

≤ |b|+ |β|
m

.

Now, with the notation

q = max {|a|+ |β| , |b|+ |β|} ,

we obtain ∣∣∣(P (A,β)
m e1

)
(x)− x

∣∣∣ ≤ q

m
,
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for all x ∈ [0, 1] , so

lim
m→∞

(
P (A,β)

m e1

)
(x) = x

uniformly on [0, 1].

Moreover, from the inequality(
k + a

m + β

)2

≤
(

k + αmk

m + β

)2

≤
(

k + b

m + β

)2

we obtain
m∑

k=0

pm,k(x)
(

k + a

m + β

)2

≤
m∑

k=0

pm,k(x)
(

k + αmk

m + β

)2

≤
m∑

k=0

pm,k(x)
(

k + b

m + β

)2

or (
P (a,β)

m e2

)
(x) ≤

(
P (A,β)

m e2

)
(x) ≤

(
P (b,β)

m e2

)
(x).

Now, by replacing
(
P

(a,β)
m e2

)
(x) with its expression we obtain the estimations

x2 +
mx(1− x) + (a− βx)(2mx + βx + a)

(m + β)2
≤

(
P (A,β)

m e2

)
(x) ≤

≤ x2 +
mx(1− x) + (b− βx)(2mx + βx + b)

(m + β)2
.

Hence ∣∣∣(P (A,β)
m e2

)
(x)− x2

∣∣∣ ≤
≤ max

{∣∣∣mx(1−x)+(a−βx)(2mx+βx+a)
(m+β)2

∣∣∣ ,
∣∣∣mx(1−x)+(b−βx)(2mx+βx+b)

(m+β)2

∣∣∣} .

Using that x ∈ [0, 1] , we obtain∣∣∣∣mx(1− x) + (a− βx)(2mx + βx + a)
(m + β)2

∣∣∣∣ ≤ m + (|a|+ |β|)(2m + |β|+ |a|)
m2

and ∣∣∣∣mx(1− x) + (b− βx)(2mx + βx + b)
(m + β)2

∣∣∣∣ ≤ m + (|b|+ |β|)(2m + |β|+ |b|)
m2

.

Now, with the notation

w = max {(|a|+ |β|)(2m + |β|+ |a|), (|b|+ |β|)(2m + |β|+ |b|)} ,

we obtain that ∣∣∣(P (A,β)
m e2

)
(x)− x2

∣∣∣ ≤ m + w

m2
→ 0 , as m →∞.
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According with the Bohman-Korovkin theorem, we have

lim
m→∞

(
P (A,β)

m e2

)
(x) = x2,

uniformly on [0, 1] .
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FUNCTIONAL-DIFFERENTIAL EQUATIONS OF MIXED TYPE,
VIA WEAKLY PICARD OPERATORS

OLARU ION MARIAN

Abstract. In this paper we apply the weakly Picard operators technique

to study the following second order functional differential equations of

mixed type

−x′′(t) = f(t, x(t),

t∫
t−h

x(s)ds,

t+h∫
t

x(s)ds), t ∈ [a, b], h > 0.

1. Introduction

The purpose of this paper is to study,the following boundary value problem:

−x′′(t) = f(t, x(t),

t∫
t−h

x(s)ds,

t+h∫
t

x(s)ds), t ∈ [a, b], h > 0. (1)

 x(t) = ϕ(t) , t ∈ [a− h, a]

x(t) = ψ(t) , t ∈ [b, b+ h]
. (2)

Where:

(H1) f ∈ C([a, b]× R3,R).

(H2) There exists Lf > 0 such that:

|f(t, u1, u2, u3)− f(t, v1, v2, v3)| ≤ Lf

3∑
i=1

|ui − vi|,

Received by the editors: 10.01.2006.
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Key words and phrases. Picard operators, weakly Picard operators, fixed points, equations of mixed type,

data dependence.
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for all t ∈ [a, b], ui, vi ∈ R, i = 1, 3.

(H3) ϕ ∈ C([a− h, a]), ψ ∈ C([b, b+ h]).

Let G be the Green function of the following problem:
−x′′ = λ

x(a) = 0

x(b) = 0

.

From the definition of the Green function we have that,the problem (1)+( 2),

x ∈ C([a− h, b+ h]) ∩ C2([a, b]), is equivalent with the fixed point equation:

x(t) =


ϕ(t), t ∈ [a− h, a]

w(ϕ,ψ)(t) +
b∫
a

G(t, s)f(s, x(s),
s∫

s−h
x(u)du,

s+h∫
s

x(u)du))ds, t ∈ [a, b]

ψ(t), t ∈ [b, b+ h]
(3)

x ∈ C([a− h, b+ h]), where:

w(ϕ,ψ)(t) :=
t− a

b− a
· ψ(b) +

b− t

b− a
· ϕ(a).

The equation (1) is equivalent with:

x(t) =



x(t), t ∈ [a− h, a]

w(x|[a− h, a], x|[b, b+ h])+

+
b∫
a

G(t, s)f(s, x(s),
s∫

s−h
x(u)du,

s+h∫
s

x(u)du)ds, t ∈ [a, b]

x(t), t ∈ [b, b+ h]

. (4)

We consider the following operators:

Bf , Ef : C([a− h, b+ h]) → C([a− h, b+ h])

where:

Bf (x)(t) :=second part of (3)

and
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Ef (x)(t) :=second part of (4).

We denote by X := C([a− h, b+ h]).

Let be

Xϕ,ψ := {x ∈ X | x |[a− h, a]= ϕ, x |[b, b+ h]= ψ}.

Then

X =
⋃

ϕ ∈ C([a− h, a])

ψ ∈ C([b, b+ h])

Xϕ,ψ

is a partition of X.

2. Weakly Picard operators

Led (X, d) be a metric space and A : X −→ X an operator. We shall use the

following notations:

FA := {x ∈ X | A(x) = x}- the fixed point set of A.

I(A) := {Y ⊂ X | A(Y ) ⊂, Y 6= ∅}-the family of the nonempty invariant

subsets of A.

An+1 := A ◦AnA0 = 1X , A1 = A, n ∈ N.

Definition 2.1. [1],[2] An operator A is weakly Picard operator (WPO) if the se-

quence

(An(x))n∈N

converges , for all x ∈ X and the limit (which depend on x ) is a fixed point of A.

Definition 2.2. [1],[2] If the operator A is WPO and FA = {x∗} then by definition

A is Picard operator.

Definition 2.3. [1],[2] If A is WPO, then we consider the operator

A∞ : X → X,A∞(x) = lim
n→∞

An(x).

We remark that A∞(X) = FA.
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Definition 2.4. [1],[2] Let be A an WPO and c > 0.The operator A is c-WPO if

d(x,A∞(x)) ≤ c · d(x,A(x)).

We have the following characterization of the WPOs:

Theorem 2.1. [1],[2]Let (X, d) be a metric space and A : X → X an operator. The

operator A is WPO (c-WPO) if and only if there exists a partition of X,

X =
⋃
λ∈Λ

Xλ

such that

(a) Xλ ∈ I(A)

(b) A | Xλ : Xλ → Xλ is a Picard (c-Picard) operator, for all λ ∈ Λ.

For the class of c-WPOs we have the following data dependence result:

Theorem 2.2. [1],[2] Let (X, d) be a metric space and Ai : X → X, i = 1, 2 an

operator.We suppose that :

(i) the operator Ai is ci −WPO, i = 1, 2.

(ii) there exists η > o such that

d(A1(x), A2(x)) ≤ η, (∀)x ∈ X.

Then

H(FA1 , FA2) ≤ η max{c1, c2}.

Here stands for Hausdorff-Pompeiu functional.

We have:

Lemma 2.1. [1],[2] Let(X, d,≤) be an ordered metric space and A : X → X an

operator such that:

a)A is monotone increasing.

b)A is WPO.

Then the operator A∞ is monotone increasing.
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Lemma 2.2. [1],[2] Let (X, d,≤) be an ordered metric space and A,B,C : X → X

such that:

(i)A ≤ B ≤ C.

(ii) the operators A,B,C are W.P.Os.

(iii) the operator B is monotone increasing.

Then

x ≤ y ≤ z =⇒ A∞(x) ≤ B∞(y) ≤ C∞(z).

Lemma 2.3. [1],[2]Let (X, d,≤) be an ordered metric space, A : X −→ X an operator

and x, y ∈ X such that

x < y, x ≤ A(x), y ≥ A(y).

We suppose that

(i) A is W.P.O;

(ii) A is monotone increasing.

Then

(a) x ≤ A∞(x) ≤ A∞(y) ≤ y;

(b) A∞(x) is the minimal fixed point of A in [x, y] and A∞(y) is the maximal

fixed point of A in [x, y]

3. Boundary value problem

We consider the problem (1)+(2)

Theorem 3.1. We suppose that

(a) The conditions (H1)− (H3) are satisfied.

(b) 1
8Lf (b− a)2(1 + 2h) < 1

Then the problem (1)+(2) has a unique solution in X.

Proof.The problem (1)+(2) is equivalent with the fixed point equation

Bf (x) = x, x ∈ X.
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From the condition (H2) we have

|Bf (x)(t)−Bf (y)(t)| ≤

≤
b∫
a

G(t, s)|f(s, x(s),

s∫
s−h

x(u)du,

s+h∫
s

x(u)du)−f(s, y(s),

s∫
s−h

y(u)du,

s+h∫
s

y(u)du)|ds ≤

≤ Lf

b∫
a

G(t, s)[|x(s)− y(s)|+
s∫

s−h

|x(u)− y(u)|du+

s+h∫
s

|x(u)− y(u)|du]ds ≤

≤ Lf
8

(b− a)2‖x− y‖C(1 + 2h),

for all x, y ∈ Xϕ,ψ.

Then Bf is Picard operator on Xϕ,ψ.

From this we have the conclusion.

Remark 3.1. From the Theorem 3.1,using the Theorem 2.1, we have that the operator

Ef is W.P.O and FEf

⋂
Xϕ,ψ = {x?ϕ,ψ} where x?ϕ,ψ is the unique solution of (1)+(2).

4. Inequalities of Čaplygin type

We have

Theorem 4.1. We suppose that

(a) The conditions (H1)− (H3) are satisfied;

(b) Lf

8 (b− a)2(1 + 2h) < 1;

(c) the operator f(t, ·, ·, ·) : R3 −→ R is monotone increasing for all t ∈ [a, b];

Let x be a solution of the corresponding equation (1) and y a solution of the inequality

−y′′(t) ≤ f(t, y(t),

t∫
t−h

y(s)ds,

t+h∫
t

y(s)ds).

Then

y(t) ≤ x(t), (∀)t ∈ [a− h, a] ∪ [b, b+ h] =⇒ y ≤ x
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Proof. In the terms of the operator Ef we have that

x = Ef (x),

y ≤ Ef (y)

w(y |[a− h, a], y |[b, b+ h]) ≤ w(x |[a− h, h], x |[b, b+ h]).

On the other hand, from the condition (c), using Lemma 2.1 we have that

the operator E∞f is monotone increasing.

From this using Lemma 2.3 we have that

y ≤ E∞f (y) = E∞f (w̃(y)) ≤ E∞f (w̃(x)) = x,

where, for z ∈ X,

w̃(z) =


z(t) , t ∈ [a− h, a]

w(z |[a− h, h], z |[b, b+ h]) , t ∈ [a, b]

z(t) , t ∈ [b, b+ h]

5. Data dependence: Monotony

Now we shall study the monotony of the solutions of the equation (1) with

respect to initial conditions.We have

Theorem 5.1. Let fi ∈ C([a, b]×R3,R),i = 1, 3 be as in the Theorem 3.1.We suppose

that

(a) f2(t, ·, ·, ·) : R3 −→ R is monotone increasing;

(b) f1 ≤ f2 ≤ f3;

Let xi, be a solution of the equation

−x′′(t) = fi(t, x(t),

t∫
t−h

x(s)ds,

t+h∫
t

x(s)ds), i = 1, 3.

If

x1(t) ≤ x2(t) ≤ x3(t), (∀)t ∈ [a− h, a] ∪ [b, b+ h]

then

x1 ≤ x2 ≤ x3.
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Proof. The operators Efi are W.P.O.s. From the condition (a) the operator Ef2

is monotone increasing. From (b) it follows that Ef1 ≤ Ef2 ≤ Ef3 .We remark that

xi = E∞fi
(w̃(xi)), i = 1, 3.

Now the proof follows from Lemma 2.2.

Theorem 5.2. We consider the equation (1) under conditions of the Theorem 3.1.

Let x, y be two solutions of the equations (1).We suppose that f is monotone increas-

ing. If

x(t) ≤ y(t), (∀)t ∈ [a− h, a] ∪ [b, b+ h],

then

x ≤ y,

on [a− h, b+ h].

Proof. The operator Ef is W.P.O. Because f is monotone increasing we obtain that

Ef is monotone increasing. From Lemma 2.1 we have that E∞f is increasing. It

follows that E∞f (w̃(x)) ≤ E∞f (w̃(y)) and x ≤ y.

6. Data dependence: continuity

Next, for i = 1, 2, we consider the equations:

−x′′(t) = fi(t, x(t),

t∫
t−h

x(s)ds,

t+h∫
t

x(s)ds). (5)

Theorem 6.1. Let f1 and f2 be as in the Theorem 3.1.Let Si be the solutions set of

the equation (5) corresponding to fi, i = 1, 2.

If η > 0 is such that

|f1(t, u, v, w)− f2(t, u, v, w)| ≤ η,

for all t ∈ [a, b], u, v, w ∈ R,

then

H(S1, S2) ≤
η(b− a)2

8− L(b− a)2(1 + 2h)
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where L := max{Lf1 , Lf2}.

Proof.In the conditions of the Theorem 3.1 the operators Efi
, i = 1, 2 are ci −

W.P.O.s, with

ci = (1− αi)−1

where,

αi =
1
8
· Lfi

(b− a)2(1 + 2h).

From

|Ef1(x)(t)− Ef2(x)(t)| ≤

≤
b∫
a

G(t, s)|f1(s, x(s),
s∫

s−h

x(u)du,

s+h∫
s

x(u)du)−f2(s, x(s),
s∫

s−h

x(u)du,

s+h∫
s

x(u)du)|ds ≤

≤ η

b∫
a

G(t, s)ds ≤ η
(b− a)2

8
,

using the Theorem 2.2, we have the conclusions.

7. Smooth dependence on parameters

Consider the following boundary value problem with parameter

−x′′(t) = f(t, x(t),

t∫
t−h

x(s)ds,

t+h∫
t

x(s)ds;λ), t ∈ [a, b], λ ∈ J (6)

 x(t) = ϕ(t) , t ∈ [a− h, a]

x(t) = ψ(t) , t ∈ [b, b+ h]
. (7)

We suppose that

(C1) J ⊆ R, a compact interval;

(C2) f ∈ C1([a, b]× R3 × J,R);

(C3) There exists Lf > 0 such that:

| ∂f
∂ui

(t, u1, u2, u3;λ)| ≤ Lf ,

for all t ∈ [a, b], ui ∈ R, i = 1, 3.
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(C4) ϕ ∈ C([a− h, a]), ψ ∈ C([b, b+ h]).

(C5) 1
8Lf (b− a)2 < 1

In the above conditions from Theorem 3.1 we have that the problem (6)+(7)

has a unique solution, x?(·;λ).

Now we prove that x?(t, ·) ∈ C1(J).For this we consider the equation

−x′′(t, λ) = f(t, x(t, λ),

t∫
t−h

x(s, λ)ds,

t+h∫
t

x(s, λ)ds;λ), (8)

for all t ∈ [a, b], λ ∈ J, x ∈ C([a− h, b+ h]× J).

The problem (8)+(7) is equivalent with

x(t, λ) =



ϕ(t), t ∈ [a− h, a], λ ∈ J

w(ϕ,ψ)(t) +
b∫
a

G(t, s)f(s, x(s, λ),

s∫
s−h

x(u, λ)du,
s+h∫
s

x(u, λ)du)ds, t ∈ [a, b], λ ∈ J

x(t), t ∈ [b, b+ h], λ ∈ J

. (9)

We consider the operator

B : C([a− h, b+ h]× J) −→ C([a− h, b+ h]× J),

where

B(x)(t) =second part of (9).

Let X := C([a− h, b+ h]× J) and let, ‖·‖, be the Chebyshev norm on X. It

is clear that in the condition (C1)− (C5) the operator B is Picard operator.

Let x? be the unique fixed point of B.We suppose that there exists
∂x?

∂λ
.Then

for (9) we have that

∂x?

∂λ
(t, λ) =
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0, t ∈ [a− h, a], λ ∈ J
b∫
a

G(t, s) ∂f∂u1
(s, x?(s, λ),

s∫
s−h

x?(u, λ)du,
s+h∫
s

x?(u, λ)du)·

·∂x
?

∂λ (s, λ)ds+

+
b∫
a

G(t, s) ∂f∂u2
(s, x?(s, λ),

s∫
s−h

x?(u, λ)du,
s+h∫
s

x?(u, λ)du)·

·
s∫

s−h

∂x?

∂λ (u, λ)duds+

+
b∫
a

G(t, s) ∂f∂u3
(s, x?(s, λ),

s∫
s−h

x?(u, λ)du,
s+h∫
s

x?(u, λ)du)·

·
s+h∫
s

∂x?

∂λ (u, λ)duds+

+
b∫
a

G(t, s)∂f∂λ (s, x?(s, λ),
s∫

s−h
x?(u, λ)du,

s+h∫
s

x?(u, λ)du)ds, t ∈ [a, b], λ ∈ J

0, t ∈ [b, b+ h]

This relation suggest us to consider the following operator

C : X ×X −→ X

(x, y) −→ C(x, y),

where

C(x, y)(t, λ) =

0, t ∈ [a− h, a], λ ∈ J
b∫
a

G(t, s) ∂f∂u1
(s, x(s, λ),

s∫
s−h

x(u, λ)du,
s+h∫
s

x(u, λ)du)·

·y(s, λ)ds+

+
b∫
a

G(t, s) ∂f∂u2
(s, x(s, λ),

s∫
s−h

x(u, λ)du,
s+h∫
s

x(u, λ)du)·

·
s∫

s−h
y(u, λ)duds+

+
b∫
a

G(t, s) ∂f∂u3
(s, x(s, λ),

s∫
s−h

x(u, λ)du,
s+h∫
s

x(u, λ)du)·

·
s+h∫
s

y(u, λ)duds+

+
b∫
a

G(t, s)∂f∂λ (s, x(s, λ),
s∫

s−h
x(u, λ)du,

s+h∫
s

x(u, λ)du)ds, t ∈ [a, b], λ ∈ J

0, t ∈ [b, b+ h], λ ∈ J
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In this way we have that the operator

A : X ×X −→ X ×X

(x, y) −→ (B(x), C(x, y)),

where B is Picard operator and C(x, ·) : X −→ X is a α− contraction, with

α = Lf (1 + 2h)
(b− a)2

8
.

From the theorem of fibre contraction(see [1],[5]) we have that the operator A is a

Picard operator.So the sequences

xn+1 = B(xn),

yn+1 = C(xn, yn),

converges uniformly (with respect to t ∈ [a− h, b+ h], λ ∈ J) to (x?, y?) ∈ FA, for all

x0, y0 ∈ C([a− h, b+ h]× J).

If we take, x0 = 0, y0 =
∂x0

∂λ
= 0, then, y1 = ∂x1

∂λ .

By induction,we prove that

yn =
∂xn
∂λ

, (∀)n ∈ N

Thus

xn −→ x?, as n −→∞, uniformly,

∂xn
∂λ

−→ y? as n −→∞, uniformly.

These imply that there exists ∂x?

∂λ and, ∂x
?

∂λ = y?.

From the above consideration, we have that

Theorem 7.1. Consider the problem (7)+(8) in the conditions (C1)− (C5).Then

(a) The problem, (7)+(8), has in C([a− h, b+ h]) a unique solution x?.

(b) x?(t, ·) ∈ C1(J), (∀)t ∈ [a− h, b+ h].
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LI, Number 2, June 2006

A NEW MONTE CARLO ESTIMATOR FOR SYSTEMS
OF LINEAR EQUATIONS

NATALIA ROŞCA

Abstract. We propose a new Monte Carlo estimator to solve systems of

linear equations. We formulate and prove some results concerning the

quality and the properties of this estimator. Using this estimator, we give

error bounds and construct confidence intervals for the components of the

solution. We also consider numerical examples. The numerical results

indicate that the proposed estimator converges faster than another two

estimators from the literature.

1. Introduction

Let us consider the system of linear algebraic equations:

x = Tx + c, (1)

where T = (tij)n
i,j=1 ∈ Rn×n, c = (c1, . . . , cn)t ∈ Rn and I−T is an invertible matrix.

The solution x = (x1, . . . , xn)t ∈ Rn of system (1) is unique and admits the Neumann

series representation:

x = c + Tc + T 2c + T 3c + . . .

or, detailed,

xi = ci + (Tc)i + (T 2c)i + . . . , i = 1, . . . , n. (2)

We assume that
∑n

j=1 |tij | < 1, i = 1, . . . , n, which is a sufficient condition for the

convergence of Neumann series to the solution.

Received by the editors: 10.01.2006.

2000 Mathematics Subject Classification. 65C05.
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Monte Carlo methods estimate the solution of system (1), by constructing

unbiased estimators for the components of the solution (see [4], [5], [10]). Let P =

(pij)n+1
i,j=1 ∈ R(n+1)×(n+1) be a matrix, whose elements satisfy the conditions:

1. pij ≥ 0 such that tji 6= 0 =⇒ pij 6= 0,

2.
∑n

j=1 pij ≤ 1, i = 1, . . . , n,

3. pi,n+1 = 1−
∑n

j=1 pij , i = 1, . . . , n,

4. pn+1,j = 0, j < n + 1 ,

5. pn+1,n+1 = 1.

The notation pi is also used to denote pi,n+1. The matrix P describes a Markov

chain with the set of states {1, . . . , n + 1}, where n + 1 is an absorbing state and pij ,

i, j = 1, . . . , n + 1, is the one step transition probability from state i to state j.

Define the weights:

wij =


tji

pij
if pij 6= 0

0 if pij = 0
, i, j = 1, . . . , n.

Denote by γ = (i0, i1, . . . , ik, n+1) a trajectory that starts at the initial state

i0 < n+1 and passes successfully through the sequence of states (i1, . . . , ik), to finally

get into the absorbing state ik+1 = n + 1.

Consider a vector α = (α1, . . . , αn), where αi, i = 1, . . . , n, is the probability

that a trajectory starts in state i, i.e.,

P (i0 = i) = αi, αi ≥ 0, i = 1, . . . , n,
n∑

i=1

αi = 1.

The probability to follow trajectory γ is P (γ) = αi0pi0i1 . . . pik−1ik
pik

.

Define the estimators θi, i = 1, . . . , n, and λi, i = 1, . . . , n, on the space of

trajectories as follows. For a trajectory γ = (i0, i1, . . . , ik, n + 1), the values of these

estimators are defined as:

θi(γ) = Wk(γ)
δiki

pik

, λi(γ) =
k∑

m=0

Wm(γ)δimi, i = 1, . . . , n,
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where Wm, m = 0, . . . , k, are random variables whose values are:

W0(γ) =
ci0

αi0

,

Wm(γ) = Wm−1(γ)wim−1im

=
ci0

αi0

wi0i1wi1i2 . . . wim−1im
, m = 1, . . . , k.

These values are taken with probability P (γ) (δij is the Kronecker symbol, i.e., δij = 1

if i = j and 0 otherwise).

It is proved in [8] that θi and λi are unbiased estimators of xi, i.e., E(θi) =

E(λi) = xi, i = 1, . . . , n.

For some particular systems, the variances of the estimators θi and λi are

analytically compared in [6]. In [7], the complexity of the Monte Carlo method is

calculated, when certain techniques to generate the trajectories of the Markov chain

are used.

2. A new estimator

Definition 1. We define the estimator Ui, i = 1, . . . , n, on the space of trajectories

as follows. For an arbitrary trajectory γ = (i0, i1, . . . , ik, n + 1), the value of Ui is

defined as:

Ui(γ) = ci + Wk(γ)
tiik

pik

, i = 1, . . . , n,

and is taken with probability P (γ) = αi0pi0i1 . . . pik−1ik
pik

.

Remark 2. The distribution of the estimator Ui, i = 1, . . . , n, is:

Ui :

 ci + Wk(γ) tiik

pik

αi0pi0i1 . . . pik−1ik
pik


γ=(i0,i1,...,ik,n+1)
i0,i1,...,ik=1,...,n

.

Next, we formulate and prove some main results concerning the quality and the

properties of the estimator Ui.

Theorem 3. The expectation of Ui is equal to the component xi of the solution of

system (1), i.e.,

E(Ui) = xi, i = 1, . . . , n. (3)
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In other words, Ui is an unbiased estimator of xi, i = 1, . . . , n.

Proof. We can write:

E(Ui) =
∑

γ=(i0,...,ik,n+1)

Ui(γ)P (γ)

=
∑

γ=(i0,...,ik,n+1)

(
ci + Wk(γ)

tiik

pik

)
P (γ)

=
∑

γ=(i0,...,ik,n+1)

ciP (γ) +
∑

γ=(i0,...,ik,n+1)

Wk(γ)
tiik

pik

P (γ)

= ci +
∑

γ=(i0,...,ik,n+1)

ci0

αi0

wi0i1 . . . wik−1ik

tiik

pik

αi0pi0i1 . . . pik−1ik
pik

= ci +
∑

γ=(i0,...,ik,n+1)

ci0

ti1i0

pi0i1

. . .
tikik−1

pik−1ik

tiik
pi0i1 . . . pik−1ik

= ci +
∞∑

k=0

n∑
i0=1

. . .
n∑

ik=1

tiik
tikik−1 . . . ti1i0ci0

= ci + (Tc)i + (T 2c)i + . . .

= xi.

In the last equality, we used relation (2).

Proposition 4. The following relationship between the estimators Ui and θi holds:

Ui = ci +
n∑

j=1

θjtij , i = 1, . . . , n.

Proof. For any trajectory γ, we can write:

Ui(γ) = ci + Wk(γ)
tiik

pik

= ci +
n∑

j=1

Wk(γ)
δikj

pik

tij

= ci +
n∑

j=1

θj(γ)tij , i = 1, . . . , n.
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Theorem 5. The following relationship between the variance of Ui and the variance

of θi holds:

V ar(Ui) =
n∑

j=1

t2ijV ar(θj) +
∑
j<l

2tijtilCov(θj , θl). (4)

Proof. Using the result from Proposition 4 and some known properties of the variance,

we can write:

V ar(Ui) = V ar
(
ci +

n∑
j=1

θjtij

)

=
n∑

j=1

V ar
(
tijθj

)
+

∑
j<l

2Cov(tijθj , tilθl)

=
n∑

j=1

t2ijV ar(θj) +
∑
j<l

2tijtilCov(θj , θl).

Practically, to solve system (1), we generate N independent trajectories

γ1, . . . , γN and for each trajectory we compute the value of the estimator Ui. The

values Ui(γj), j = 1, . . . , N , are values of the sample variables Ui1, . . . , UiN that are

independent identically distributed random variables and have the same distribution

as Ui.

We use the notation U i,N for the sample mean of the random variables Uij ,

j = 1, . . . , N , and ui,N for its value, i.e.:

U i,N =

∑N
j=1 Uij

N
, ui,N =

∑N
j=1 Ui(γj)

N
. (5)

Proposition 6. The estimator U i,N , i = 1, . . . , n, has the following properties:

E(U i,N ) = xi, (unbiased estimator of xi), (6)

lim
N→∞

V ar(U i,N ) = 0, (7)

P ( lim
N→∞

U i,N = xi) = 1, (U i,N converges almost surely to xi). (8)

Proof. Properties (6) and (7) can be proved using known properties of the mean and

variance. For property (8), we apply the Kolmogorov theorem ([1]) to the sequence
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of random variables (UiN )N≥1 that are independent identically distributed and have

finite means E(UiN ) = xi < ∞. Under these conditions, the Kolmogorov theorem

asserts that relation (8) is satisfied.

Taking into account these properties, the component xi is approximated by:

xi ≈ ui,N =
1
N

N∑
j=1

Ui(γj), i = 1, . . . , n. (9)

The estimate of the solution is:

xU =

[
1
N

N∑
j=1

U1(γj), . . . ,
1
N

N∑
j=1

Un(γj)

]t

. (10)

Similar estimates xθ and xλ can be obtained by replacing the estimator Ui,

i = 1, . . . , n, by θi and λi respectively, i.e.,

xθ =

[
1
N

N∑
j=1

θ1(γj), . . . ,
1
N

N∑
j=1

θn(γj)

]t

, (11)

xλ =

[
1
N

N∑
j=1

λ1(γj), . . . ,
1
N

N∑
j=1

λn(γj)

]t

. (12)

Remark 7. The variance V ar(Ui) is in general unknown. It can be estimated using

an unbiased estimation of it, given by the sample variance:

σ2
U,i =

1
N − 1

N∑
j=1

(Uij − U i,N )2. (13)

Remark 8. Comparing the variances of estimators Ui and θi can be done either

analytically (using, eventually, the result from Theorem 5) or experimentally. Ex-

perimentally, we can use the same N generated trajectories γj, j = 1, . . . , N , and

compute the values θi(γj), j = 1, . . . , N . Let θi1, . . . , θiN be the corresponding sample

variables. We use the same notation θi,N for the sample mean of the random variables

θij, j = 1, . . . , N , and respectively for its value, i.e.,

θi,N =

∑N
j=1 θij

N
, θi,N =

∑N
j=1 θi(γj)

N
.
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We estimate V ar(θi) by the following unbiased estimator:

σ2
θ,i =

1
N − 1

N∑
j=1

(θij − θi,N )2.

Comparing the variances V ar(Ui) and V ar(θi) reduces to comparing their estimations

σ2
U,i and σ2

θ,i.

3. Error estimation

We evaluate (estimate) the error in formula (9). One way of doing this is by

using the Chebyshev inequality ([1]). We have the following main result concerning

the error:

Proposition 9. The following estimation of the error of approximation of xi holds:

P

(∣∣U i,N − xi

∣∣ <
σ(Ui)√

Nγ

)
≥ 1− γ, γ ∈ (0, 1),

where σ(Ui) is the standard deviation of Ui, i.e. σ2(Ui) = V ar(Ui).

Proof. The proof is immediately, by applying the Chebyshev inequality for the esti-

mator U i,N and choosing ε = σ(Ui)√
Nγ

.

Another modality of estimating the error is based on the Lindeberg’s limit

theorem ([1]). In this case, we have the following main result:

Proposition 10. The following estimation of the error of approximation of xi holds:

P

(∣∣U i,N − xi

∣∣ < λ
σ(Ui)√

N

)
≈ 2φ(λ)− 1, λ > 0,

where

φ(λ) =
1√
2π

∫ λ

−∞
e−

t2
2 dt,

is the Laplace function.

Proof. The proof is immediately, by applying the Lindeberg’s limit theorem to the se-

quence of random variables (UiN )N≥1 that are independent and identically distributed

and have the same distribution as Ui.
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4. Confidence intervals

We construct confidence intervals for xi, i = 1, . . . , n. We consider the confi-

dence level α ∈ (0, 1).

Proposition 11. A (1− α)% confidence interval for xi is:(
U i,N − tN−1,1−α

2

σU,i√
N

, U i,N + tN−1,1−α
2

σU,i√
N

)
. (14)

where U i,N is defined in (5), tN−1,1−α
2

is the (1 − α
2 )-th percentile of the Student

distribution with N − 1 degrees of freedom, and σU,i is the sample standard deviation

(σ2
U,i is defined in (13)).

Proof. We consider the statistics:

T =
U i,N − xi

σU,i√
N

,

that has the t (Student) distribution with N − 1 degrees of freedom. We take t2 =

tN−1,1−α
2
, t1 = −t2, i.e.,

FN−1(t2) = 1− α

2
, FN−1(t1) =

α

2
,

where FN−1 is the distribution function of the t distribution with N − 1 degrees of

freedom. We have P (t1 < T < t2) = 1− α, which is equivalent to:

P

(
U i,N − tN−1,1−α

2

σU,i√
N

< xi < U i,N + tN−1,1−α
2

σU,i√
N

)
= 1− α.

Thus, a (1− α)% confidence interval for xi is given by (14).

5. Numerical example

We consider the system: x1 = 0.1x1 + 0.5x2 + 0.4

x2 = 0.3x1 + 0.1x2 + 0.6

with the exact solution x = (1, 1).
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We choose the matrix P of the following form:

P =


0.1 0.3 0.6

0.5 0.1 0.4

0 0 1

 .

The matrix P describes a Markov chain with the set of states {1, 2, 3}, where state

3 is the absorbing one. As pij = tji, i, j = 1, 2, we have wij = 1, i, j = 1, 2. Since

c1, c2 ≥ 0 and c1 + c2 = 1, we take the vector α = ct = (0.4, 0.6).

In order to get the initial state i0 ∈ {1, 2} of an arbitrary trajectory, we

sample from the following discrete distribution:

Yα :

 1 2

α1 α2

 .

Once the trajectory is in state im = i ∈ {1, 2}, we sample from the distribution:

Yi :

 1 2 3

pi1 pi2 pi

 ,

described by the i-th line of matrix P , in order to determine the next state im+1.

We repeat this procedure till absorbtion takes place. The sampling method is the

inversion method ([2], [3]).

We generate N trajectories and we calculate the estimates xθ, xλ, xU using

formulas (11), (12) and (10), respectively. The following table contains: the number

N of trajectories generated, the estimates xθ, xλ, xU and the euclidian norm of the

errors ‖x− xθ‖, ‖x− xλ‖, ‖x− xU‖.
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N xθ xλ xU ‖x− xθ‖ ‖x− xλ‖ ‖x− xU‖

5000 (0.9853 , (0.9768, (1.0095, 0.0264 0.0234 0.0098

1.0220) 0.9968) 0.9978)

10000 (0.9897, (0.9859, (1.0067, 0.0186 0.0150 0.0069

1.0155) 0.9948) 0.9985)

15000 (0.9939 , (0.9875, (1.0040, 0.0110 0.0144 0.0041

1.0092) 0.9930) 0.9991)

50000 (0.9945, (0.9942, (1.0036, 0.0100 0.0061 0.0037

1.0083) 0.9979) 0.9992)

100000 (0.9987 , (0.9977, (1.0009, 0.0024 0.0023 0.0009

1.0020) 0.9994) 0.9998)

The numerical results indicate that the proposed estimate xU converges faster than

the estimations xθ and xλ.
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BOUNDARY VALUE PROBLEMS FOR ITERATIVE
FUNCTIONAL-DIFFERENTIAL EQUATIONS

IOAN A. RUS AND EDITH EGRI

Abstract. We consider the following boundary value problem

−x′′(t) = f(t, x(t), x(x(t))), t ∈ [a, b];

x(t) = α(t), a1 ≤ t ≤ a,

x(t) = β(t), b ≤ t ≤ b1.

Using the weakly Picard operators technique we establish an existence and

uniqueness theorem and some data dependence results.

1. Introduction

By an iterative functional-differential equation we understand an equation of

the following type (see [1]–[5], [7], [9], [12]–[14])

x′(t) = f(t, x(t), . . . , xm(t)), t ∈ J ⊂ R

or (see [6], [8])

x′′(t) = f(t, x(t), . . . , xm(t)), t ∈ J ⊂ R

where xk(t) := (x ◦ x ◦ · · · ◦ x)(t), k ∈ N.

The purpose of this paper is to study the following boundary value problem

−x′′(t) = f(t, x(t), x(x(t))), t ∈ [a, b]; (1.1)x(t) = α(t) t ∈ [a1, a],

x(t) = β(t) t ∈ [b, b1],
(1.2)

Received by the editors: 23.01.2006.
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Key words and phrases. iterative functional-differential equation, boundary value problem, weakly Picard

operator, fibre Picard operator, data dependence.
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where

(C1) a1 ≤ a < b ≤ b1;

(C2) f ∈ C([a, b]× [a1, b1]2);

(C3) α ∈ C([a1, a], [a1, b1]) and β ∈ C([b, b1], [a1, b1]);

(C4) there exists Lf > 0 such that:

|f(t, u1, u2)− f(t, v1, v2)| ≤ Lf (|u1 − v1|+ |u2 − v2|) ,

for all t ∈ [a, b], ui, vi ∈ [a1, b1], i = 1, 2.

By a solution of the problem (1.1)–(1.2) we understand a function x ∈

C2([a, b], [a1, b1]) ∩ C([a1, b1], [a1, b1]) which satisfies (1.1)–(1.2).

The problem (1.1)–(1.2) is equivalent with the following fixed point equation

x(t) =


α(t), t ∈ [a1, a],

w(α, β)(t) +
∫ b

a
G(t, s)f(s, x(s), x(x(s))) ds, t ∈ [a, b],

β(t), t ∈ [b, b1],

(1.3)

and x ∈ C([a1, b1], [a1, b1]), where

w(α, β)(t) :=
t− a

b− a
β(b) +

b− t

b− a
α(a),

and G is the Green function of the problem

−x′′ = χ, x ∈ C[a, b] x(a) = 0, x(b) = 0.

On the other hand, the equation (1.1) is equivalent with

x(t) =


x(t), t ∈ [a1, a],

w(x|[a1,a], x|[b,b1])(t) +
∫ b

a
G(t, s)f(s, x(s), x(x(s))) ds, t ∈ [a, b],

x(t), t ∈ [b, b1],

(1.4)

and x ∈ C([a1, b1], [a1, b1]).

In this paper we apply the weakly Picard operators technique to study the

equations (1.3) and (1.4).
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2. Weakly Picard operators

In this paper we need some notions and results from the weakly Picard op-

erator theory (for more details see I. A. Rus [10] and [11]).

Let (X, d) be a metric space and A : X → X an operator. We shall use the

following notations:

FA := {x ∈ X |A(x) = x}- the fixed point set of A;

I(A) := {Y ⊂ X |A(Y ) ⊂ Y, Y 6= ∅}- the family of the nonempty invariant

subsets of A;

An+1 := A ◦An, A1 = A, A0 = 1X , n ∈ N;

P (X) := {Y ⊂ X|Y 6= ∅};
H(Y, Z) := max

{
sup
y∈Y

inf
z∈Z

d(y, z), sup
z∈Z

inf
y∈Y

d(y, z)
}

-the Pompeiu–Hausdorff

functional on P (X)× P (X).

Definition 2.1. Let (X, d) be a metric space. An operator A : X → X is a Picard

operator (PO) if there exists x∗ ∈ X such that:

(i) FA = {x∗};

(ii) the sequence (An(x0))n∈N converges to x∗ for all x0 ∈ X.

Theorem 2.1 (Contraction principle). Let (X, d) be a complete metric space and

A : X → X a γ-contraction. Then

(i) FA = {x∗},

(ii) (An(x0))n∈N converges to x∗ for all x0 ∈ X,

(iii) d(x∗, An(x0)) ≤
γn

1− γ
d(x0, A(x0)), for all n ∈ N.

Remark 2.1. Accordingly to the definition, the contraction principle insures that, if

A : X → X is a γ-contraction on the complet metric space X, then it is a Picard

operator.

Theorem 2.2. Let (X, d) be a complete metric space and A,B : X → X two opera-

tors. We suppose that

(i) the operator A is a γ-contraction;

(ii) FB 6= ∅;
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(iii) there exists η > 0 such that

d(A(x), B(x)) ≤ η, ∀ x ∈ X.

Then if FA = {x∗A} and x∗B ∈ FB , we have

d(x∗A, x∗B) ≤ η

1− γ
.

Definition 2.2. Let (X, d) be a metric space. An operator A is a weakly Picard

operator (WPO) if the sequence (An(x))n∈N converges for all x ∈ X, and its limit

(which may depend on x) is a fixed point of A.

Theorem 2.3. Let (X, d) be a metric space and A : X → X an operator. The

operator A is weakly Picard operator if and only if there exists a partition of X,

X =
⋃
λ∈Λ

Xλ,

where Λ is the indices’ set of partition, such that

(a) Xλ ∈ I(A), for all λ ∈ Λ;

(b) A|Xλ
: Xλ → Xλ is a Picard operator for all λ ∈ Λ.

Definition 2.3. If A is weakly Picard operator then we consider the operator A∞

defined by

A∞ : X → X, A∞(x) := lim
n→∞

An(x).

It is clear that

A∞(X) = FA and ωA(x) = {A∞(x)},

where ωA(x) is the ω-limit point set of A.

Definition 2.4. Let A be a weakly Picard operator and c > 0. The operator A is

c–weakly Picard operator if

d(x,A∞(x)) ≤ c d(x, A(x)), ∀ x ∈ X.

Example 2.1. Let (X, d) be a complete metric space and A : X → X a continuous

operator. We suppose that there exists γ ∈ [0, 1) such that

d(A2(x), A(x)) ≤ γ d(x,A(x)), ∀ x ∈ X.
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Then A is c–weakly Picard operator with c =
1

1− γ
.

Theorem 2.4. Let (X, d) be a metric space and Ai : X → X, i = 1, 2. Suppose that

(i) the operator Ai is ci–weakly Picard operator, i = 1, 2;

(ii) there exists η > 0 such that

d(A1(x), A2(x)) ≤ η, ∀ x ∈ X.

Then

H(FA1 , FA2) ≤ η max(c1, c2).

Theorem 2.5 (Fibre contraction principle). Let (X, d) and (Y, ρ) be two metric

spaces and A : X × X → X × Y, A = (B,C), (B : X → X, C : X × Y → Y ) a

triangular operator. We suppose that

(i) (Y, ρ) is a complete metric space;

(ii) the operator B is PO;

(iii) there exists l ∈ [0, 1) such that C(x, ·) : Y → Y is l-contraction, for all

x ∈ X;

(iv) if (x∗, y∗) ∈ FA, then C(·, y∗) is continuous in x∗.

Then the operator A is PO.

3. Boundary value problem

In what follows we consider the fixed point equation (1.3). Let

Bf : C([a1, b1], [a1, b1]) → C([a1, b1], R),

where Bf (x)(t) := the right hand side of (1.3). Let L > 0 and

CL([a1, b1], [a1, b1]) := {x ∈ C([a1, b1], [a1, b1])||x(t1)− x(t2)| ≤ L|t1 − t2|,

∀ t1, t2 ∈ [a1, b1]}.

It is clear that CL([a1, b1], [a1, b1]) is a complete metric space with respect to

the metric,

d(x1, x2) := max
a1≤t≤b1

|x1(t)− x2(t)|.

We have
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Theorem 3.1. We suppose that

(i) the conditions (C1)− (C4) are satisfied;

(ii) α ∈ CL([a1, a], [a1, b1]), β ∈ CL([b, b1], [a1, b1]);

(iii) mf and Mf ∈ R are such that mf ≤ f(t, u1, u2) ≤ Mf , ∀ t ∈ [a, b], ui ∈

[a1, b1], i = 1, 2, and moreover,

a1 ≤min(α(a), β(b)) + mf
(b− a)2

8
, for mf < 0,

a1 ≤min(α(a), β(b)), for mf ≥ 0,

b1 ≥max(α(a), β(b)), for Mf ≤ 0,

b1 ≥max(α(a), β(b)) + Mf
(b− a)2

8
, for Mf > 0,

and
|β(b)− α(a)|

b− a
+ |Mf |

a2 + b2 − 6ab

2(b− a)
≤ L;

(iv)
(b− a)2

8
Lf (L + 2) < 1.

Then the boundary value problem (1.1)–(1.2) has, in CL([a1, b1], [a1, b1]), a unique

solution. Moreover, the operator

Bf : CL([a1, b1], [a1, b1]) → CL([a1, b1], CL([a1, b1], [a1, b1]))

is a c–Picard operator with c =
8

8− (b− a)2Lf (L + 2)
.

Proof. First of all we remark that the condition (iii) implies that CL([a1, b1], [a1, b1])

is an invariant subset for Bf . Indeed, we have a1 ≤ Bf (x)(t) ≤ b1, x(t) ∈ [a1, b1] for

all t ∈ [a, b]. Actually, using the positivity of the Green function, for mf and Mf ∈ R

such that

mf ≤ f(t, u1, u2) ≤ Mf , ∀ t ∈ [a, b], ui ∈ [a1, b1], i = 1, 2,

we have

G(t, s)mf ≤ G(t, s)f(s, x(s), x(x(s))) ≤ G(t, s)Mf , ∀ t ∈ [a, b].

114



BOUNDARY VALUE PROBLEMS FOR ITERATIVE FUNCTIONAL-DIFFERENTIAL EQUATIONS

This implies that∫ b

a

G(t, s)mf ds ≤
∫ b

a

G(t, s)f(s, x(s), x(x(s))) ds ≤
∫ b

a

G(t, s)Mf ds, ∀ t ∈ [a, b],

that is,

w(α, β)(t)+mf

∫ b

a

G(t, s) ds ≤ Bf (x)(t) ≤ w(α, β)(t)+Mf

∫ b

a

G(t, s) ds, ∀ t ∈ [a, b].

It is easy to see that,

min
t∈[a,b]

∫ b

a

G(t, s) ds = min
t∈[a,b]

(t− a)(b− t)
2

= 0

and

max
t∈[a,b]

∫ b

a

G(t, s) ds = max
t∈[a,b]

(t− a)(b− t)
2

=
(b− a)2

8
.

Therefore, if condition (iii) holds, we have satisfied the invariance property

for the operator Bf in C([a1, b1], [a1, b1]).

Now, consider t1, t2 ∈ [a1, a]. Then,

|Bf (x)(t1)−Bf (x)(t2)| = |α(t1)− α(t2)| ≤ L|t1 − t2|,

because of α ∈ CL([a1, a], [a1, b1]).

Similarly, for t1, t2 ∈ [b, b1]

|Bf (x)(t1)−Bf (x)(t2)| = |β(t1)− β(t2)| ≤ L|t1 − t2|,

that follows from (ii), too.

On the other hand, if t1, t2 ∈ [a, b], we have,

|Bf (x)(t1)−Bf (x)(t2)| =

=

∣∣∣∣∣w(α, β)(t1)− w(α, β)(t2) +
∫ b

a

[G(t1, s)−G(t2, s)]f(s, x(s), x(x(s)))ds

∣∣∣∣∣ =

=

∣∣∣∣∣ t1 − t2
b− a

(β(b)− α(a)) +
∫ b

a

[G(t1, s)−G(t2, s)]f(s, x(s), x(x(s)))ds

∣∣∣∣∣ ≤
≤

∣∣∣∣β(b)− α(a)
b− a

(t1 − t2)
∣∣∣∣ +

∣∣∣∣∣
∫ b

a

[G(t1, s)−G(t2, s)]f(s, x(s), x(x(s)))ds

∣∣∣∣∣ ≤
≤

∣∣∣∣β(b)− α(a)
b− a

∣∣∣∣ |t1 − t2|+ |Mf |

∣∣∣∣∣
∫ b

a

[G(t1, s)−G(t2, s)]ds

∣∣∣∣∣ .
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But,

∫ b

a

[G(t1, s)−G(t2, s)]ds =
∫ t1

a

[
(s− a)(b− t1)

b− a
− (s− a)(b− t2)

b− a

]
ds+

+
∫ t2

t1

[
(t1 − a)(b− s)

b− a
− (s− a)(b− t2)

b− a

]
ds+

+
∫ b

t2

[
(t1 − a)(b− s)

b− a
− (t2 − a)(b− s)

b− a

]
ds.

After some calculation we obtain,

∫ b

a

[G(t1, s)−G(t2, s)]ds =
[
(a− b)(t1 + t2)− a2 − 4ab + b2

] t1 − t2
2(b− a)

.

Thus,

∣∣∣∣∣
∫ b

a

[G(t1, s)−G(t2, s)]ds

∣∣∣∣∣ ≤ a2 + b2 − 6ab

2(b− a)
|t1 − t2|.

So, we can affirm that

|Bf (x)(t1)−Bf (x)(t2)| ≤
[
|β(b)− α(a)|

b− a
+ |Mf |

a2 + b2 − 6ab

2(b− a)

]
|t1 − t2|,

∀ t1, t2 ∈ [a, b], t1 ≤ t2, and due to (iii), Bf (x) is L–Lipschitz.

Thus, according to the above, we have CL([a1, b1], [a1, b1]) ∈ I(Bf ).

From the condition (iv) it follows that, Bf is an LBf
–contraction, with

LBf
:=

(b− a)2

8
Lf (L + 2).

Indeed, for all t ∈ [a1, a] ∪ [b, b1], we have |Bf (x1)(t)−Bf (x2)(t)| = 0.
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Otherwise, for t ∈ [a, b]

|Bf (x1)(t)−Bf (x2)(t)| =

=

∣∣∣∣∣
∫ b

a

G(t, s) [f(s, x1(s), x1(x1(s)))− f(s, x2(s), x2(x2(s)))] ds

∣∣∣∣∣ ≤
≤ max

x∈[a,b]

∣∣∣∣∣
∫ b

a

G(t, s)ds

∣∣∣∣∣ Lf (|x1(s)− x2(s)|+ |x1(x1(s))− x2(x2(s))|) ≤

≤ (b− a)2

8
Lf (‖x1 − x2‖C + |x1(x1(s))− x1(x2(s))|+ |x1(x2(s))− x2(x2(s))|) ≤

≤ (b− a)2

8
Lf (‖x1 − x2‖C + L|x1(s)− x2(s)|+ ‖x1 − x2‖C) ≤

≤ (b− a)2

8
Lf (L + 2) ‖x1 − x2‖C .

So, Bf is a c–Picard operator, with c =
1

1− LBf

.

In what follows, consider the following operator

Ef : CL([a1, b1], [a1, b1]) → CL([a1, b1], [a1, b1]),

where

Ef (x)(t) := the right hand side of (1.4).

Theorem 3.2. In the conditions of the Theorem 3.1, the operator

Ef : CL([a1, b1], [a1, b1]) → CL([a1, b1], [a1, b1])

is WPO.

Proof. The operator Ef is a continuous operator but it is not a contraction operator.

Let take the following notation:

Xα,β := {x ∈ C([a1, b1], [a1, b1]) |x|[a1,a] = α, x|[b,b1] = β}.

Then we can write

CL([a1, b1], [a1, b1]) =
⋃

α∈CL([a1,a],[a1,b1])

β∈CL([b,b1],[a1,b1])

Xα,β . (3.5)
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We have that Xα,β ∈ I(Ef ) and Ef |Xα,β
is a Picard operator, because it is

the operator which appears in the proof of the Theorem 3.1.

By applying the Theorem 2.3, we obtain that Ef is WPO.

4. Increasing solutions of (1.1)

4.1. Inequalities of Čaplygin type. We have

Theorem 4.1. We suppose that

(a) the conditions of the Theorem 3.1 are satisfied;

(b) ui, vi ∈ [a1, b1], ui ≤ vi, i = 1, 2, imply that

f(t, u1, u2) ≤ f(t, v1, v2),

for all t ∈ [a, b].

Let x be a increasing solution of the equation (1.1) and y an increasing solu-

tion of the inequality

−y′′(t) ≤ f(t, y(t), y(y(t))), t ∈ [a, b].

Then

y(t) ≤ x(t), ∀ t ∈ [a1, a] ∪ [b, b1] ⇒ y ≤ x.

Proof. In the terms of the operator Ef , we have

x = Ef (x) and y ≤ Ef (y),

and

w(y|[a1,a], y|[b,b1]) ≤ w(x|[a1,a], x|[b,b1]).

However, from the condition (b), we have that the operator E∞
f is increasing

(see Lemma 7.1 in [11]), we have

y ≤ E∞
f (y) = E∞

f (w̃(y)) ≤ E∞
f (w̃(x)) = x,
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thus y ≤ x. Here, for z ∈ C[a, b], we used the notation

w̃(z)(t) :=


z(z), t ∈ [a1, a],

w(z|[a1,a], z|[b,b1])(t) t ∈ [a, b],

z(b), t ∈ [b, b1].

4.2. Comparison theorem. In what follows we want to study the monotony of the

solution of the problem (1.1)–(1.2), with respect to α, β and f. We will use the result

below:

Lemma 4.1 (Abstract comparison lemma). Let (X, d,≤) be an ordered metric

space and A,B,C : X → X be such that:

(i) A ≤ B ≤ C;

(ii) the operators A,B,C are weakly Picard operators;

(iii) the operator B is increasing.

Then

x ≤ y ≤ z ⇒ A∞(x) ≤ B∞(y) ≤ C∞(z).

In this case we can establish the theorem

Theorem 4.2. Let fi ∈ C([a, b]× [a1, b1]2), i = 1, 2, 3. We suppose that

(a) f2(t, ·, ·) : [a1, b1]2 → [a1, b1]2 is increasing;

(b) f1 ≤ f2 ≤ f3.

Let xi be a increasing solution of the equation

−x′′ = fi(t, x(t), x(x(t))), t ∈ [a, b].

If

x1(t) ≤ x2(t) ≤ x3(t), ∀ t ∈ [a1, a] ∩ [b, b1],

then

x1 ≤ x2 ≤ x3.
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Proof. The operators Efi , i = 1, 2 are weakly Picard operators. Taking into consid-

eration the condition (a) the operator Ef2 is increasing. From (b) we have that

Ef1 ≤ Ef2 ≤ Ef3 .

We note that xi = E∞
fi

(w̃(xi)), i = 1, 2. Now, using the Abstract comparison lemma,

the proof is complete.

5. Data dependence: continuity

Consider the boundary value problem (1.1)–(1.2) and suppose the conditions

of the Theorem 3.1 are satisfied. Denote by x(·;α, β, f) the solution of this problem.

We can state the following result:

Theorem 5.1. Let αi, βi, fi, i = 1, 2, be as in the Theorem 3.1. Furthermore, we

suppose that

(i) there exists η1 > 0, such that

|α1(t)− α2(t)| ≤ η1, ∀ t ∈ [a1, a],

and

|β1(t)− β2(t)| ≤ η1, ∀ t ∈ [b, b1];

(ii) there exists η2 > 0 such that

|f1(t, u1, u2)− f2(t, u1, u2)| ≤ η2, ∀ t ∈ [a, b], ∀ ui ∈ [a1, b1], i = 1, 2.

Then

|x(t;α1, β1, f1)− x(t;α2, β2, f2)| ≤
8η1 + η2(b− a)2

8− Lf (L + 2)(b− a)2

where Lf = max(Lf1 , Lf2).

Proof. Consider the operators Bαi,βi,fi
, i = 1, 2. From Theorem 3.1 these operators

are contractions. Additionally,

||Bα1,β1,f1(x)−Bα2,β2,f2(x)||C =

=

∣∣∣∣[w(α1, β1)(t)− w(α2, β2)(t)] +

∫ b

a

G(t, s) [f1(s, x(s), x(x(s)))− f2(s, x(s), x(x(s)))] ds

∣∣∣∣ ≤
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≤
∣∣∣∣ t− a

b− a
[β1(b)− β2(b)] +

b− t

b− a
[α1(a)− α2(a)]

∣∣∣∣ + max
t∈[a,b]

∣∣∣∣∣
∫ b

a

G(t, s)ds

∣∣∣∣∣ η2

≤ η1 + η2
(b− a)2

8
,

∀ x ∈ CL([a1, b1], [a1, b1]).

Now, the proof follows from the Theorem 2.2, with

A := Bα1,β1,f1 , B := Bα2,β2,f2 , η := η1 + η2
(b− a)2

8

and

γ := LA =
(b− a)2

8
Lf (L + 2).

From the theorem above we have

Theorem 5.2. Let αi, βi, fi, i ∈ N and α, β, f be as in the Theorem 3.1. We suppose

that

αi
univ.−→ α as i →∞,

βi
univ.−→ β as i →∞,

fi
univ.→ f as i →∞.

Then

x(·, αi, βi, fi)
univ.−→ x(·, α, β, f), as i →∞.

Theorem 5.3. Let f1 and f2 be as in the Theorem 3.1. Let FEfi
be the solution set

of equation (1.1) corresponding to fi, i = 1, 2. Suppose that there exists η > 0 such

that

|f1(t, u1, u2)− f2(t, u1, u2)| ≤ η, (5.6)

for all t ∈ [a, b], ui ∈ [a1, b1], i = 1, 2. Then

H||·||C (FEf1
, FEf2

) ≤ η(b− a)2

8− Lf (L + 2)(b− a)2

where Lf := max(Lf1 , Lf2) and H||·||C denotes the Pompeiu–Hausdorff functional

with respect to || · ||C on CL([a1, b1], [a1, b1]).
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Proof. We will look for those ci, for which in condition of the Theorem 3.1 the

operators Efi
, i = 1, 2, are ci− weakly Picard operators.

Let Xα,β := {x ∈ CL([a1, b1], [a1, b1]) |x|[a1,a] = α, x|[b,b1] = β}

It is clear that Efi
|Xα,β

= Bfi
. So, from Theorem 2.3 and Theorem 3.1 we

have

||E2
fi

(x)− Efi
(x)||C ≤ Lfi

(L + 2)
(b− a)2

8
||Efi

(x)− x||C

for all x ∈ CL([a1, b1], [a1, b1]), i = 1, 2.

Now, choosing λi =
(b− a)2

8
Lfi

(L+2), we get that Efi
are ci− weakly Picard

operators, with ci = (1− λi)−1.

From (5.6) we obtain that

||Ef1(x)− Ef2(x)||C ≤ η
(b− a)2

8
, for all x ∈ CL([a1, b1], [a1, b1]).

Applying Theorem 2.4 we have that

H||·||C (FEf1
, FEf2

) ≤ η(b− a)2

8− Lf (L + 2)(b− a)2
.

6. Data dependence: differentiability

Consider the following boundary value problem with parameter

−x′′(t) = f(t, x(t), x(x(t));λ), t ∈ [a, b]; (6.7)x(t) = α(t) t ∈ [a1, a],

x(t) = β(t) t ∈ [b, b1].
(6.8)

Suppose that we have satisfied the following conditions:

(P1) a1 ≤ a < b ≤ b1; J ⊂ R, a compact interval;

(P2) α ∈ C1
L([a1, a], [a1, b1]) and β ∈ C1

L([b, b1], [a1, b1]);

(P3) f ∈ C1([a, b]× [a1, b1]2 × J);

(P4) there exists Lf > 0 such that∣∣∣∣∂f(t, u1, u2;λ)
∂ui

∣∣∣∣ ≤ Lf ,

for all t ∈ [a, b], ui ∈ [a1, b1], i = 1, 2, λ ∈ J ;
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(P5) mf and Mf ∈ R are such that mf ≤ f(t, u1, u2) ≤ Mf , ∀ t ∈ [a, b], ui ∈

[a1, b1], i = 1, 2, moreover we have

a1 ≤min(α(a), β(b)) + mf
(b− a)2

8
, for mf < 0,

a1 ≤min(α(a), β(b)), for mf ≥ 0,

b1 ≥max(α(a), β(b)), for Mf ≤ 0,

b1 ≥max(α(a), β(b)) + Mf
(b− a)2

8
, for Mf > 0,

and
|β(b)− α(a)|

b− a
+ |Mf |

a2 + b2 − 6ab

2(b− a)
≤ L;

(P6)
(b− a)2

8
Lf (L + 2) < 1.

Then, from the Theorem 3.1, we have that the problem (6.7)–(6.8) has a

unique solution, x∗(·, λ).

We will prove that x∗(t, ·) ∈ C1(J), for all t ∈ [a1, b1].

For this, we consider the equation

−x′′(t;λ) =f(t, x(t;λ), x(x(t;λ);λ);λ), t ∈ [a, b], λ ∈ J,

x ∈ C([a1, b1]× J, [a1, b1]× J) ∩ C2([a, b]× J, [a1, b1]× J).
(6.9)

The problem (6.9)–(6.8) is equivalent with the following functional-integral

equation

x(t;λ) =


α(t), t ∈ [a1, a], λ ∈ J,

w(α, β)(t) +
∫ b

a
G(t, s)f(s, x(s;λ), x(x(s;λ);λ);λ) ds, t ∈ [a, b], λ ∈ J

β(t), t ∈ [b, b1], λ ∈ J.

(6.10)

Now, let take the operator

B : CL([a1, b1]× J, [a1, b1]× J) → CL([a1, b1]× J, [a1, b1]× J),

where B(x)(t;λ) := the right hand side of (6.10).

Let X := CL([a1, b1] × J, [a1, b1]). It is clear from the proof of the Theorem

3.1 that in the conditions (P1) − (P6), the operator B : (X, ‖ · ‖C) → (X, ‖ · ‖C)
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is a PO. Let x∗ be the unique fixed point of B. We consider the subset X1 ⊂ X,

X1 :=
{

x ∈ X| ∂x

∂t
∈ C[a1, b1]

}
. We remark that x∗ ∈ X1, B(X1) ⊂ X1 and B :

(X1, ‖ · ‖C) → (X1, ‖ · ‖C) is PO. Let Y := C([a1, b1]× J).

Supposing that there exists
∂x∗

∂λ
, from (6.10) we have that

∂x∗(t;λ)
∂λ

=
∫ b

a

G(t, s)
∂f(s, x∗(s;λ), x∗(x∗(s;λ);λ);λ)

∂u1
· ∂x∗(s;λ)

∂λ
ds+

+
∫ b

a

G(t, s)
∂f(s, x∗(s;λ), x∗(x∗(s;λ);λ);λ)

∂u2
·

·
[
∂x∗(x∗(s;λ);λ)

∂u1
· ∂x∗(s;λ)

∂λ
+

∂x∗(x∗(s;λ);λ)
∂λ

]
ds+

+
∫ b

a

G(t, s)
∂f(s, x∗(s;λ), x∗(x∗(s;λ);λ);λ)

∂λ
ds, t ∈ [a, b], λ ∈ J.

This relation suggest us to consider the following operator

C : X1 × Y → Y

(x, y) 7→ C(x, y)

with

C(x, y)(t;λ) :=
∫ b

a

G(t, s)
∂f(s, x(s;λ), x(x(s;λ);λ);λ)

∂u1
· y(s;λ) ds+

+
∫ b

a

G(t, s)
∂f(s, x(s;λ), x(x(s;λ);λ);λ)

∂u2
·

·
[
∂x(x(s;λ);λ)

∂u1
· y(s;λ) +

∂x(x(s;λ);λ)
∂λ

]
ds+

+
∫ b

a

G(t, s)
∂f(s, x(s;λ), x(x(s;λ);λ);λ)

∂λ
ds, t ∈ [a, b], λ ∈ J

and

C(x, y)(t, λ) := 0, for t ∈ [a1, a] ∪ [b, b1], λ ∈ J.

In this way we have the triangular operator

A : X1 × Y → X1 × Y

(x, y) 7→ (B(x), C(x, y)),
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where B is a Picard operator and C(x, ·) : Y → Y is an LC− contraction, with

LC =
(b− a)2

8
L̃f (L + 2), where L̃f = max(Lf , L·Lf ).

From the fibre contraction theorem we have that the operator A is Picard

operator, i.e. the sequences

xn+1 := B(xn),

yn+1 := C(xn, yn), n ∈ N

converges uniformly, with respect to t ∈ [a1, b1], λ ∈ J, to (x∗, y∗) ∈ FA, for all

x0 ∈ X1, y0 ∈ Y .

If we take x0 = 0, y0 =
∂x0

∂λ
= 0, then y1 =

∂x1

∂λ
.

By induction we prove that yn =
∂xn

∂λ
, ∀ n ∈ N.

So,

xn
unif.−→ x∗ as n →∞,

∂xn

∂λ
→ y∗ as n →∞.

From these we have that there exists
∂x∗

∂λ
and

∂x∗

∂λ
= y∗.

Taking into consideration the above, we can formulate the theorem

Theorem 6.1. Consider the problem (6.9)–(6.8), and suppose the conditions (P1)−

(P6) holds. Then,

(i) (6.9)–(6.8) has a unique solution, x∗, in C([a1, b1]× J, [a1, b1]),

(ii) x∗(t, ·) ∈ C1(J), ∀ t ∈ [a1, b1].

Remark 6.1. By the same arguments we have that, if f(t, ·, ·) ∈ Ck, then x∗(t, ·) ∈

Ck(J), ∀ t ∈ [a1, b1].
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LI, Number 2, June 2006

SOME INTEGRAL OPERATORS DEFINED ON p-VALENT
FUNCTION BY USING HYPERGEOMETRIC FUNCTIONS

A. TEHRANCHI AND S. R. KULKARNI

Abstract. In the present paper we introduce some integral operators and

verify the effect of these operators on p-valent functions and find radii

of starlikeness and convexity for these operators, finally we introduce the

concept of neighborhood.

1. Introduction and Definitions

Let A denote the family of functions analytic in unit disc ∆ = {z ∈ C : |z| <
1} with positive coefficient and let Ap be subclass of a consisting functions f(z) of

the form

f(z) = mzp +
2p−1∑

n=p−1

tn−p+1z
n−p+1 − 2F1(a, b; c; z), |z| < 1 (1.1)

where 2F1(a, b; c; z) =
∞∑

n=0

(a, n)(b, n)
(c, n)n!

zn

(a, n) =
Γ(a + n)

Γ(a)
= a(a + 1, n− 1), c > b > 0, c > a + b, m > 0

and tn−p+1 =
(a, n− p + 1)(b, n− p + 1)
(c, n− p + 1)(n− p + 1)!

.

These functions are analytic in the punctured unit disk. For more details on hyper-

geometric functions 2F1(a, b; c; z) see [4] and [7].

Let f ∈ A, then we denote by UCV p the class of uniformly convex p-valent

function in ∆ and α−ST the class of α - starlike functions also denote by α−UCV p

Received by the editors: 11.01.2002.

2000 Mathematics Subject Classification. 30C45, 30C50.

Key words and phrases. Uniformly convex functions, fractional derivative, starlike and convex p-valent,

hypergeometric, neighborhood.
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the class of α-uniformly convex p-valent function in ∆ which are introduced and

investigated by Kanas, Wísniwoska [6] and Silverman [10].

Definition 1. Let f ∈ AP and 0 ≤ α < ∞. Then f ∈ α− UCV p if and only if

Re

{
p +

zf ′′

f ′

}
> α

∣∣∣∣zf ′′

f ′

∣∣∣∣ z ∈ ∆.

Definition 2. Let f ∈ Ap. The class α - uniformly starlike functions α − UST p is

defined as

α− UST p =
{

f ∈ A : Re

(
zf ′

f

)
> α

∣∣∣∣zf ′

f
− p

∣∣∣∣ , α ≥ 0, z ∈ ∆
}

Definition 3. (cf. [7]; see also [11] and [12]). Let the function f be of the form

f(z) = zp −
∞∑

n=2
anzn and be analytic in ∆. The fractional derivative of f of order δ

is defined by

Dδ
zf(z) =

1
Γ(1− δ)

d

dz

∫ z

0

f(ξ)
(z − ξ)δ

dξ (0 ≤ δ < 1) (1.2)

where the multiplicity of (z − ξ)δ is removed by requiring log(z − ξ) to be real when

z − ξ > 0 and so we have

Dδ
zf(z) =

m

Γ(2− δ)
zp−δ −

∞∑
n=2

Γ(n + p)
Γ(n + p− δ)

anzn−δ. (1.3)

Making use of (1.2) and its known extensions involving fractional derivatives

and fractional integrals, Owa and Srivastava [11] introduced the operator

Ωδ
zf(z) := Γ(2− δ)zδDδ

zf(z), 0 ≤ δ < 1 (1.4)

and for δ = 0 we have Ω0
zf(z) = f(z).

Definition 4. Let f(z) ∈ Ap is said to be a member of the α − UCV p
δ (η, φ) if f(z)

satisfies the inequality

Re

(
z(Ωδ

zf(z))′ + ηz2(Ωδ
zf(z))′′

(1− η)(Ωδ
zf) + ηz(Ωδ

zf(z))′

)
≥ α

∣∣∣∣ z(Ωδ
zf(z))′ + z2(Ωδ

zf)′′

(1− η)Ωδ
zf(z) + ηz(Ωδ

zf(z))′
− 1
∣∣∣∣+ tanφ (1.5)

where 0 ≤ η ≤ 1, 0 ≤ tanφ < p, p ∈ N, α ≥ 0 and 0 ≤ δ < 1.

We note that by specializing the parameters α, φ, η, δ we obtain the following

subclasses studied by various authors (by putting tanφ = β).
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(I) If α = 0, δ = 0 and p = 1 ⇒ α− UCV (η, 0) ≡ p1(1, λ, β) was studied by Altintas

[1].

(II) If η = 1, δ = 0, α = 0, p = 1 ⇒ α− UCV (1, φ) ≡ C(β) was studied by Silverman

[10].

(III) If η = 0, δ =, 0, p = 1 ⇒ α−UCV (0, φ) ≡ UCT (k, β) was studied by R. Bharati,

R. Parvatham and A. Swaminathan [5].

(IV) If p = 1, η = 0 and β = 0 and δ = 0, that is k − ST introduced by Kanas and

Wísniowsak [6].

2. Main Results

In the first theorem we will obtain coefficient bounds, before it we need the

following lemmas.

Lemma 1. Let w = u + iv then

Re(w) ≥ α ⇔ |w − (1 + α)| ≤ |w + (1− α)|.

Lemma 2. Let w = u + iv and α, β be real numbers. Then

Re(w) > α|w − 1|+ β ⇔ Re{w(1 + αeiθ)− αeiθ} > β.

Theorem 1. The function f(z) defined by (1.1) is in the class

α− UCV p
δ (η, φ) if and only if

∞∑
n=p+1

γp(n, δ)[(1− η + nη)(n(1 + α)− (α + tanφ))]kn

≤ m(1 + ηp− η)(p− tanφ + α(p− 1)) (2.1)

where γp(n, δ) = Γ(2−δ)Γ(n+p)
Γ(n+p−δ) and 0 ≤ tanφ < p, α ≥ 0, 0 ≤ η ≤ 1, p ∈ N and

0 ≤ δ < 1.

Proof. The function f(z) in Ap can be expressed in the form

f(z) = mzp −
∞∑

n=p+1

knzn, p ∈ N (2.2)
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such that kn = Γ(a+n)Γ(b+n)Γ(c)
Γ(a)Γ(b)Γ(c+n)Γ(n+1) n ≥ p + 1. Also

Ωδ
zf(z) = Γ(2− δ)zδDδ

zf(z) = mzp −
∞∑

n=p+1

Γ(n + p)
Γ(n + p− δ)

knzn

= mzp −
∞∑

n=p+1

γp(n, δ)knzn (2.3)

Now, let f(z) ∈ α− UCV p
δ (η, φ) that is

Re

{
z(Ωδ

zf(z))′ + ηz2(Ωδ
zf(z))′′

(1− η)(Ωδ
zf(z)) + ηz(Ωδ

zf(z))′

}
≥ α

∣∣∣∣ z(Ωδ
zf(z))′ + ηz2(Ωδ

zf(z))′′

(1− η)(Ωδ
zf(z)) + ηz(Ωδ

zf(z))′
− 1
∣∣∣∣+ tanφ

Using Lemma 2 we have

Re

{
z(Ωδ

zf(z))′ + ηz2(Ωδ
zf(z))′′

(1− η)(Ωδ
zf(z)) + ηz(Ωδ

zf(z))′
(1 + αeiθ)− αeiθ

}
≥ tanφ, (0 ≤ tanφ < p)

or equivalently

Re{([z(Ωδ
zf(z))′ + ηz2(Ω2

zf(z))′′](1 + αeiθ)− (αeiθ + tanφ)

[(1− η)Ωδ
zf(z) + ηz(Ωδ

zf(z))′])/((1− η)Ωδ
zf(z) + ηz(Ωδ

zf(z))′)} ≥ 0

Then, we can write

Re{[m(1 + ηp− η)(p− tanφ)−
∞∑

n=p+1

γp(n, δ)((n + nη(n− 1)

− tanφ(1− η + nη))knzn−p − αeiθ(m(1− η + pη)(p− 1))

−αeiθ
∞∑

n=p+1

γp(n, δ)(n + nη(n− 1)− (1− η + nη))knzn−p]

/[m(1− η + pη)−
∞∑

n=p+1

γp(n, δ)(1− η + nη)knzn−p]} > 0
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The above inequality must hold for all z in ∆. Letting z → 1− yields

Re{[m(1 + ηp− η)(p− tanφ)−
∞∑

p+1

γp(n, δ)(1− η + ηn)(n− tanφ)kn

−αeiθ(m(1− η + pη)(p− 1))− αeiθ
∞∑

n=p+1

γp(n, δ)(1− η + nη)(n− 1)]

/[m(1− η + pη)−
∞∑

n=p+1

γp(n, δ)(1− η + nη)kn]} > 0

and so by the mean value theorem we have

Re{m(1 + ηp− η)(p− tanφ)−
∞∑

p+1

γp(n, δ)(1− η + ηn)(n− tanφ)kn

+αeiθ[m(1− η + pη)(p− 1)]− αeiθ
∞∑

p+1

γp(n, δ)(1− η + nη)(n− 1)kn} > 0

Therefore we obtain

∞∑
n=p+1

γp(n, δ)(1−η+nη)(n−tanφ+α(n−1))kn < m(1+ηp−η)(p−tanφ+α(p−1))

Conversely, let (2.1) hold true. We will show that (1.5) gets satisfied and

then f(z) ∈ α− UCV p
δ (η, φ). Using the Lemma 1 it is enough to show that

E =
∣∣∣∣ z(Ωδ

zf(z))′ + ηz2(δδ
zf(z))′′

(1− η)(Ωδ
zf(z)) + ηz(Ωδ

zf(z)))′

−
(

1 + α

∣∣∣∣ z(Ωδ
zf(z))′ + ηz2(Ωδ

zf(z))′′

(1− η)(Ωδ
zf(z)) + ηz(Ωδ

zf(z))′
− 1
∣∣∣∣+ tanφ

)∣∣∣∣
<

∣∣∣∣ z(Ωδ
zf(z))′ + ηz2(Ωδ

zf(z))′′

(1− η)(Ωδ
zf(z)) + ηz(Ωδ

zf(z))′

+
(

1− α

∣∣∣∣ z(Ωδ
zf(z))′ + ηz2(Ωδ

zf(z))′′

(1− η)(Ωδ
zf(z)) + ηz(Ωδ

zf(z))′
− 1
∣∣∣∣− tanφ

)
= F

131



A. TEHRANCHI AND S. R. KULKARNI

We must show E < F or F−E > 0. For letting eiθ = B
|B| where B = (1−η)(Ωδ

zf(z))+

ηz(Ωδ
zf(z))′, we may write

E =
1
|B|
|z(Ωδ

zf(z))′ + ηz2(Ωδ
zf(z))′′ − (1 + tanφ)[(1− η)(Ωδ

zf(z))

+ηz(Ωδ
zf(z))′]| − αeiθ|(1− η)z(Ωδ

zf(z))′ + ηz2(Ωδ
zf(z))′′

−(1− η)(Ωδ
zf(z))||

<
|z|p

|B|
(m(1 + ηp− η)(p− 1− tanφ + α(p− 1))

+
∞∑

n=p+1

γp(n, δ)(1 + ηn− η)[(n− 1− tanφ) + α(n + 1)]kn

Also, we have

F =
1
|B|
|z(Ωδ

zf(z))′ + ηz2(Ωδ
zf(z))′′ + (1− tanφ)((1− η)(Ωδ

zf(z))

−ηz(Ωδ
zf(z))′)− αeiθ|(1− η)z(Ωδ

zf(z))′ + ηz2(Ωδ
zf(z))′′ − (1− η)(Ωδ

zf(z))||

>
|z|p

|B|
(m(1 + ηp− η)(p + 1− tanφ + α(p− 1))

−
∞∑

n=p+1

γp(n, δ)(1− η + ηn)(n + 1− tanφ + α(n + 1))kn.

It is easy to verify that F − E > 0, if (2.1) holds and so the proof is complete.

Corollary 1. If f(z) ∈ α− UCV p
δ (η, φ), then

kn ≤
m(α(p− 1) + p− tanφ)(1− η + ηp)

γp(n, δ)[(1 + nη − η)(n(1 + α)− (α + tanφ)]
, n ≥ p + 1

where 0 ≤ tanφ < p, α ≥ 0, 0 ≤ η ≤ 1, p ∈ N and γp(n, δ) = Γ(2−δ)Γ(n+p)
Γ(n+p−δ) .

Corollary 2. f(z) ∈ α− UCV 1
0 (η, φ) if and only if

∞∑
n=p+1

(1− η + nη)(n(1 + α)− (α + tanφ))kn ≤ m(1− tanφ), 0 ≤ tanφ < 1

that is a class introduced by E. Aqlan and S. R. Kulkarni [3].

Corollary 3. f(z) ∈ 0− UCV 1
0 (η, φ) if and only if

∞∑
n=p+1

(1− η + nη)(n− tanφ)kn ≤ m(1− tanφ), 0 ≤ tanφ < 1

that is a class studied by Altintas [1].
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Corollary 4. f(z) ∈ α− UCV 1
0 (0, φ) if and only if

∞∑
n=p+1

(n(1 + α)− (α + tanφ))kn ≤ m(1− tanφ), 0 ≤ tanφ < 1.

That is class studied by R. Bharati, R. Parvatham and A. Swaminathan [5].

3. Special Functions and Integral Operators on α− UCV p
δ (η, φ)

Definition 5. Let c be a real number such that c > −p. For f ∈ α− UCV p
δ (η, φ), we

define Fc by

Fc(z) =
c + p

zc

∫ z

0

sc−1f(s)ds (3.1)

Theorem 2. Fc(z) defined by (3.1) belongs to α− UCV p
δ (η, φ).

Proof. Let f(z) = mzp −
∞∑

n=p+1
knzn ∈ α− UCV p

δ (η, φ) then

Fc(z) =
c + p

zc

∫ z

0

(
msc−1+p −

∞∑
n=p+1

knsn+c−1

)
ds = mzp −

∞∑
n=p+1

c + p

n + c
knzn.

Since f(z) ∈ α− UCV p
δ (η, φ) and c+p

c+n < 1, n ≥ p + 1 and by Theorem 1,

Fc(z) ∈ α− UCV p
δ (η, φ) if

∞∑
n=p+1

γp(n, δ)[(1− η + nη)(n(1 + α)− (α + tanφ))]
c + p

c + n
kn

≤
∞∑

n=p+1

γp(n, δ)[(1− η + nη)(n(1 + α)− (α + tanφ))]kn

≤ m(α(p− 1) + p− tanφ)(1− η + ηp) (3.2)

So Fc(z) ∈ α− UCV p
δ (η, φ).

Theorem 3. The function Fc(z) defined in 3.1 is starlike of order λ(0 ≤ λ < p) in

|z| < r1(η, φ, α, δ, n, p, c, λ) where

r1(η, φ, α, δ, n, p, c, λ) = inf
n≥p+1

{
[(1− η+, nη)(n(1 + α)− (α + tanφ)]
m(α(p− 1) + p− tanφ)(1− η + ηp)(

c + n

c + p

)(
m(p− λ)

2p− n− λ

)
γp(n, δ)

} 1
n−p
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The bound for |z| is sharp for each n with extremal function being of the form

Fc,n(z) = mzp − m(α(p− 1) + p− tanφ)(1− η + ηp)
γp(n, δ)[(1− η + nη)(n(1 + α)− (α + tanφ)]

c + n

c + p
zn, n ≥ p + 1.

Proof. We must show that ∣∣∣∣zF ′
c(z)

Fc(z)
− p

∣∣∣∣ < p− λ (3.3)

But we have

∣∣∣∣zF ′
c(z)

Fc(z)
− p

∣∣∣∣ ≤
∞∑

n=p+1

c+p
c+nkn(p− n)|z|n−p

m−
∞∑

n=p+1

c+p
c+nkn|z|n−p

.

Therefore (3.3) holds if

∞∑
n=p+1

(
c + p

c + n

)(
2p− n− λ

m(p− λ)

)
kn|z|n−p < 1.

Now in view of (3.2) the last inequality holds if

|z|n−p <
(1− η + nη)(n(1 + α)− (α + tanφ)]
m(α(p− 1) + p− tanφ)(1− η + ηp)

(
m(p− λ)

2p− n− λ

)(
c + n

c + p

)
γp(n, δ).

This gives the required result.

Corollary 5. The function Fc(z) defined in 3.1 is convex of order λ(0 ≤ λ < p) in

|z| < r2 = r2(η, φ, α, δ, n, p, c, λ) where

r2(η, φ, α, δ, n, p, c, λ) = inf
n≥p+1

{
(1− η + nη)(n(1 + α)− (α + tanφ))
m(α(p− 1) + p− tanφ)(1− η + ηp)(

m(p− λ)
2p− n− λ

)(
c + n

c + p

)
γp(n, δ)

} 1
n−p

Proof. We must show that
∣∣∣ zF ′′

c (z)
F ′

C(z)

∣∣∣ < p− λ for |z| < r2 and c > −p.

But we have

∣∣∣∣zF ′′
c (z)

F ′
c(z)

∣∣∣∣ ≤ mp(p− 1) +
∞∑

n=p+1

c+p
c+nknn(n− 1)|z|n−p

mp−
∞∑

n=p+1

c+p
c+nknn|z|n−p

.
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Therefore
∣∣∣ zF ′′

c (z)
F ′

C(z)

∣∣∣ < p− λ holds if

∞∑
n=p+1

n(n− 1 + p− λ)
mp(λ− 1)

(
c + p

c + n

)
kn|z|n−p < 1.

The last inequality holds if

|z|n−p <
(1− η + nη)(n(1 + α)− (α + tanφ))
m(α(p− 1) + p− tanφ)(1− η + ηp)

(
mp(λ− 1)

n(n− 1 + p− λ

)
(

c + n

c + p

)
γp(n, δ).

This gives the required result.

Definition 6. Let c be a real number such that c > −p and let f ∈ α− UCV p
δ (η, φ),

Komato operator in [8] is defined by

G(z) =
∫ 1

0

(c + 1)ξ

Γ(ξ)
tc(log

1
t
)ξ−1 f(tz)

tp
dt, c > −1, ξ ≥ 0. (3.4)

Theorem 4. G(z) defined in 3.4 belongs to α− UCV p
δ (η, φ).

Proof. Since
∫ 1

0
tc(− log t)ξ−1dt = Γ(ξ)

(c+1)ξ and
∫ 1

0
tn+c−p(− log t)ξ−1dt

= Γ(ξ)
(c+n−p+1)ξ

n ≥ p + 1. Therefore we obtain

G(z) =
(c + 1)ξ

Γ(ξ)

[∫ 1

0

tczp log(
1
t
)ξ−1dt−

∞∑
n=p+1

∫ 1

0

log(
1
t
)ξ−1tn−p+cknzndt

]

= mzp −
∞∑

n=p+1

(
c + 1

c + n− p + 1

)ξ

knzn. (3.5)

Therefore and with use of Theorem 1 and c+1
c+1+n−p < 1 for n ≥ p + 1 we can write

∞∑
n=p+1

γp(n, δ)[(1− η + nη)(n(1 + α)− (α + tanφ))]
(

c + 1
c + n− p + 1

)ξ

kn

≤ m(α(p− 1) + p− sinφ)(1− η + ηp) (3.6)

So G(z) ∈ α− UCV p
δ (η, φ).

Theorem 5. The function G(z) defined in 3.4 is starlike of order λ(0 ≤ λ < 1) in

|z| < r1 = r1(η, φ, α, δ, n, p, c, ξ, λ) where
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r1(η, φ, α, δ, n, p, c, ξ, λ) = inf
n≥p+1

{
(1− η + nη)(n(1 + α)− (α + tanφ)
m(α(p− 1) + p− sinφ)(1− η + ηp)(

m(p− λ)
2p− n− λ

)(
c + n− p + 1

c + 1

)ξ

γp(n, δ)

} 1
n−p

Proof. We must show that
∣∣∣ zG′(t)

G(t) − p
∣∣∣ < p− λ or we must show

∣∣∣∣zG′(t)
G(t)

− p

∣∣∣∣ ≤
∞∑

n=p+1

(
c+1

c+n−p+1

)ξ

(p− n)kn|z|n−p

m−
∞∑

n=p+1

(
c+1

c+n−p+1

)ξ

kn|z|n−p

< p− λ.

The last inequality holds if

∞∑
n=p+1

(
c + 1

c + n− p + 1

)ξ (2p− (n + λ))
m(p− λ)

kn|z|n−p < 1.

Now in view of (3.6), (3.5) the last inequality holds if

|z|n−p ≤ γp(n, δ)(1− η + nη)(n(1 + α)− (α + tanφ))
m(α(p− 1) + p− tanφ)(1− η + ηp)(

m(p− λ)
(2p− (n + λ))

)(
c + n− p + 1

c + 1

)ξ

This gives the required result.

Corollary 6. The function G(z) defined in (3.4) is convex of order λ(0 ≤ λ < p) in

|z| < r2 = r2(η, φ, α, δ, n, p, c, ξ, λ) where

r2(η, φ, α, δ, n, p, c, ξ, λ) = inf
n≥p+1

{
(1− η + nη)(n(1 + α)− (α + tanφ)
m(α(p− 1) + p− sinφ)(1− η + ηp)(

c + n− p + 1
c + 1

)ξ (
p(1− λ)

n(p + n− λ− 1)

)
γp(n, δ)

} 1
n−p

Proof. We must show that
∣∣∣ zG′′(z)

G′(z)

∣∣∣ < p− λ, |z| < r2 or

∣∣∣∣zG′′(z)
G′(z)

∣∣∣∣ =
∣∣∣∣∣∣∣∣
mp(p− 1)zp−1 −

∞∑
n=p+1

(
c+1

c+n−p+1

)ξ

knn(n− 1)zn−1

mpzp−1 −
∞∑

n=p+1

(
c+1

c+n−p+1

)ξ

k
nzn−1

∣∣∣∣∣∣∣∣ < p− λ
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Therefore

∞∑
n=p+1

(
c + 1

c + n− p + 1

)ξ (
n(p− λ + n− 1)

mp(1− λ)

)
kn|z|n−p < 1. (3.7)

Therefore (3.7) holds if

|z|n−p <
γp(n, δ)(1− η + nη)(n(1 + α)− (α + tanφ))

m(α(p− 1) + p− tanφ)(1− η + ηp)(
c + n− p + 1

c + 1

)ξ (
mp(1− λ)

n(p + n− λ− 1)

)

Definition 7. Let f ∈ α− UCV p
δ (η, φ). Function Hµ(z) defined by

Hµ(z) = (1− µ)mzp + µp

∫ z

0

f(t)
t

dt 0 ≤ µ < 1, z ∈ ∆ (3.8)

Theorem 6. The function Hµ(z) defined in (3.8) belongs to α− UCV p
δ (η, φ) if

0 ≤ µ ≤ 1.

Proof. Let f(z) ∈ α− UCV p
δ (η, φ) and is of the form (1.1) so

Hµ(z) = (1− µ)mzp + µp(
∫ z

0

(mtp−1 −
∞∑

n=p+1

kntn−1)dt) = mzp −
∞∑

n=p+1

(
µp

n
kn)zn

(3.9)

By Theorem 1 we must show

∞∑
n=p+1

γp(n, δ)[(1− η + nη)(n(1 + α)− (α + tanφ))]
µp

n
kn

≤
∞∑

n=p+1

γp(n, δ)[(1− η + nη)(n(1 + α)− (α + tanφ))]
µp

p + 1
kn

≤
∞∑

n=p+1

γp(n, δ)[(1− η + nη)(n(1 + α)− (α + tanφ))]kn

≤ m(α(p− 1) + p− tanφ)(1− η + ηp)

So Hµ(z) ∈ α− UCV p
δ (η, φ).
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Theorem 7. By the similar method which we applied for Theorem 5 and Corollary

6, we obtain the radii of starlikeness and convexity of order λ(0 ≤ λ ≤ p) for Hµ(z)

respectively as following

r1(η, φ, α, δ, n, p, µ, λ) = inf
n≥p+1

{
(1− η + nη)(n(1 + α)− (α + tanφ))γp(n, δ)

m(α(p− 1) + p− tanφ)(1− η + ηp)(
m(p− λ)

2p− n− λ

)(
n

µp

)} 1
n−p

r2(η, φ, α, δ, n, p, µ, λ) = inf
n≥p+1

{
(1− η + nη)(n(1 + α)− (α + tanφ))γp(n, δ)

m(α(p− 1) + p− sinφ)(1− η + ηp)(
mp(1− λ)

µ(p + n− λ− 1)

)} 1
n−p

where 0 ≤ µ ≤ 1.

4. (n, λ) - Neighborhood

Definition 8. ([9], [2]) : Let λ ≥ 0 and f(z) ∈ Ap and f defined by (1.1). We define

the

(n, λ) - neighborhood of a function f(z) by

Nn,λ(f) =

{
g ∈ Ap : g(z) = mzp −

∞∑
n=p+1

k′nzn and
∞∑

n=p+1

n|kn − k′n| ≤ λ

}
(4.1)

For the identity function e(z) = z, we have

Nn,λ(e) =

{
g ∈ Ap : g(z) = mzp −

∞∑
n=p+1

k′nzn and
∞∑

n=p+1

n|k′n| ≤ λ

}
(4.2)

Theorem 8. Let

λ =
(p + 1)m(α(p− 1) + p− tanφ)(1− η + ηp)
γp(p + 1, δ)(1 + pη)(p(1 + α) + 1− tanφ)

.

where γp(p + 1, δ) =
Γ(2− δ)Γ(2p + 1)

Γ(2p− δ)
. Then

α− UCV p
δ (η, φ) ⊂ Nn,λ(e).
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Proof. For f ∈ α− UCV p
δ (η, φ) we have from (2.1)

(1 + pη)(p(1 + α) + 1− tanφ)]γp(p + 1, δ)
∞∑

n=p+1

kn

≤
∞∑

n=p+1

[(1− η + nη)(n(1 + α)− α− tanφ)]γp(n, δ)kn

≤ m(α(p− 1) + p− tanφ)(1− η + ηp)

Therefore
∞∑

n=p+1

kn ≤
m(α(p− 1) + p− tanφ)(1− η + ηp)

γp(p + 1, δ)(1 + pη)(p(1 + α) + 1− tanφ)
, (4.3)

and on the other hand we have for |z| < r

|f ′(z)| ≤ mp|z|p−1 + |z|p
∞∑

n=p+1

nkn

≤ mprp−1 + rp
∞∑

n=p+1

nkn

(from (4.3)) ≤ prp−1 + rp (p + 1)m(α(p− 1) + p− tanφ)(1− η + ηp)
γp(p + 1, δ)(1 + pη)(p(1 + α) + 1− tanφ)

.

From above inequalities we conclude

∞∑
n=p+1

nkn ≤
(p + 1)m(α(p− 1) + p− tanφ)(1− η + ηp)
γp(p + 1, δ)(1 + pη)(p(1 + α) + 1− tanφ)

= λ.

Definition 9. The function f(z) defined by (1.1) is said to be a member of the class

α− UCV p,ξ
δ (η, φ) if there exists a function g ∈ α− UCV p

δ (η, φ) such that∣∣∣∣f(z)
g(z)

− 1
∣∣∣∣ ≤ p− ξ, z ∈ ∆, 0 ≤ ξ < p.

Theorem 9. If g ∈ α− UCV p
δ (η, φ) and

ξ = p− λ

p + 1
µ(η, φ, α, δ, p) (4.4)
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such that

µ(η, φ, α, δ, p) = [γp(p + 1, δ)(1 + pη)(p(α + 1) + 1− tanφ)]

/[mγp(p + 1, δ)(1 + pη)(p(α + 1) + 1− tanφ)

−m(α(p− 1) + p− tanφ)(1− η + ηp)]

then Nn,λ(g) ⊂ α− UCV p,ξ
δ (η, φ).

Proof. Let f ∈ Nn,λ(g), then we have from (4.1) that
∞∑

n=p+1
n|kn − k′n| ≤ λ which

readily implies the coefficient inequality
∞∑

n=p+1

|kn − k′n| ≤
λ

p + 1
.

Also since g ∈ α− UCV p
δ (η, φ) we have from (2.1)

∞∑
n=p+1

k′n ≤
m(α(p− 1) + p− tanφ)(1− η + ηp)

γp(p + 1, δ)(1 + pη)(p(α + 1) + 1− tanφ)

so that

∣∣∣∣f(z)
g(z)

− 1
∣∣∣∣ <

∞∑
n=p+1

|kn − k′n|

m−
∞∑

n=p+1
k′n

≤
(

λ

p + 1

)

(γp(p + 1, δ)(1 + pη)(p(α + 1) + 1− tanφ)

/mγp(p + 1, δ)(1 + pη)(p(α + 1) + 1− tanφ)

−m(α(p− 1) + p− tanφ)(1− η + ηp))

=
(

λ

p + 1

)
µ(η, φ, α, δ, p) = p− ξ

Then
∣∣∣ f(z)

g(z) − 1
∣∣∣ < p − ξ. Thus, by definition 9, f ∈ α − UCV p,ξ

δ (η, φ) for ξ given by

(4.4).
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BOOK REVIEWS

Jonathan M. Borwein and Qiji J. Zhu, Techniques of Variational Analysis,

Canadian Mathematical Society (CMS) Books in Mathematics, Vol. 20, Springer

2005, vi+362 pp, ISBN 3-387-24298-8.

The term variational analysis concerns methods of proofs based on the fact

that an appropriate auxiliary function attains a minimum, and has its roots in the

physical principle of the least action. Probably that the first illustration of this

method is Johann Bernoulli’s solution to the Brachistocrone problem which led to

the development of variational calculus.

A significant impact on variational analysis was done by the development

of nonsmooth analysis, making possible the use of calculus of nonsmooth functions

and enlarging substantially the area of applications. Other powerful tools are the

decoupling method (a nonconvex substitute for Fenchel conjugacy and Hahn-Banach

theorem from convex analysis), alongside with variational principles.

As it is well known, a lower semi-continuous (lsc) function attains its min-

imum on a compact set, a property that is not longer true in the absence of the

compactness, even for bounded from below lsc functions. This drawback can be

compensated by adding a small perturbation to the original function such that the

perturbed function attains its minimum. The properties of the perturbation function

depend on the geometric properties of the underlying space: the better these prop-

erties (smoothness) the nicer the perturbation function. This fact is well illustrated

in the second chapter, Variational Principles - Ekeland variational principle holds in

complete metric spaces, while the smooth Borwein-Preiss variational principle holds in

Banach spaces with smooth norm. Another one, Stegall variational principle (proved

in Chapter 6), holds in Banach spaces with the Radon-Nikodym property and ensures

a continuous linear perturbation.
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The aim of the book is to emphasize the strength of the variational techniques

in various domains of analysis, optimization and approximation, dynamic systems,

mathematical economics. These applications are arranged by chapters which are

relatively independent and can be used for graduate topics courses.

The chapters are: 3. Variational techniques in subdifferential theory (Fréchet

subdifferential and normal cone, sum rules, chain rules for Lyapunov functions, mean

value theorems and inequalities, extremal principles); 4. Variational techniques in

convex analysis (Fenchel conjugate, duality, entropy maximization); 5. Variational

techniques and multifunctions (multifunctions, subdifferentials as multifunctions, dis-

tance functions, coderivatives of multifunctions, implicit multifunction theorems);

6. Variational principles in nonlinear functional analysis (subdifferential and As-

plund spaces, nonconvex separation, Stegall variational principle, mountain pass the-

orem); 7. Variational techniques in the presence of symmetry (nonsmooth functions

on smooth manifolds, manifolds of matrices and spectral functions, convex spectral

functions).

The book contains a lot of exercises completing the main text, some of them,

which are more difficult, being guided exercises with references.

Based mainly on developments and applications from the past several

decades, the book is directed to graduate students in the field of variational analy-

sis. The prerequisites for its reading are undergraduate analysis and basic functional

analysis. Researchers who use variational techniques, or intend to do, will find the

book very useful too.

S. Cobzaş

Dorin Bucur, Giuseppe Buttazzo, Variational Methods in Shape Op-

timization Problems, Progress in Nonlinear Differential Equations and their

Applications, Birkhäuser, 2005, ISBN 0-8176-4359-1.

Usually, problems of the calculus of variations concern optimization among

an admissible class of functions. What is special about shape optimization problems

is that the ”competing objects” are shapes (domains of Rn). Because of this, the
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existence of a solution is ensured only in certain cases, due to some geometrical

restrictions on the admissible domains (shapes) or to a particular form of the cost

function. In general, relaxed formulations of the problems have to be formulated.

The development of the field of shape optimization is due especially to the

great number of applications in physics and engineering.

Several examples of shape optimization problems are presented in the first

chapter of the book, in a detailed and clear manner: the isoperimetric problem, the

Newton problem of minimal aerodynamical resistance, the optimal distribution of two

different media in a fixed region, the optimal shape of a thin insulating layer.

The second chapter is about optimization problems over classes of convex

domains and it deals with the case where an additional convexity constraint on the

domains ensures the existence of an optimal shape (by providing some extra compact-

ness). Some necessary conditions of optimality are given for the Newton problem.

Some shape optimization problems can be considered optimal control prob-

lems: the shape plays the role of the control and the state equation is usually a partial

differential equation on the control domain. In Chapter 3, a topological framework for

general optimization problems is given, together with the theory of relaxed controls

and some examples of relaxed shape optimization problems.

Shape optimization problems with Dirichlet (Neumann) condition on the free

boundary are treated in Chapters 4 (7, respectively). In both cases, is important to

understand the stability of the solution to a PDE for nonsmooth perturbations of the

geometric domain. This stability is related to the convergence in Mosco sense of the

corresponding variational spaces. The relaxed form of a Dirichlet problem is given (in

a case where the existence of an optimal solution does not occur), to understand the

behavior of minimizing sequences. For Neumann boundary conditions, the problem

of optimal cutting is treated completely.

Chapter 5 contains other particular cases where an unrelaxed optimal solution

exists, in the family of classical admissible domains. The existence of solutions is

ensured by some monotonicity properties of the cost functional or by some geometrical

constraints on the domains.
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Optimization problems for functions of eigenvalues are presented in Chapter

6. The case of the first two eigenvalues of the Laplace operator is studied, using the

continuous Steiner symmetrization.

The book is addressed mainly to graduate students, applied mathematicians,

engineers; it requires standard knowledge in the calculus of variations, differential

equations and functional analysis.

The problems are treated from both the classical and modern perspectives,

each chapter contains examples and illustrations and also several open problems for

further research. A substantial bibliography is given, emphasizing the rapid develop-

ment of the field.

Daniela Inoan

Stefaan Caenepeel and Freddy van Oystaeyen Editors, Hopf Algebras in

Noncommutative Geometry and Physics, Pure and Applied Mathematics; Vol.

239, Marcel Dekker, New York, 2005, 320 pp., ISBN 0-8247-5759-9.

The study of Hopf algebras and quantum groups has seen a great development

during the last two decades. The present volume is devoted to these topics, and

consists of high quality articles related to the lectures given at the meeting on “Hopf

algebras and quantum groups” held at the Royal Academy in Brussels from May 28 to

June 1, 2002. This volume contains refereed papers and surveys on different aspects

of the subject, such as:

The list of contributors and their papers is as follows. J. Abuhlail, Morita

contexts for corings and equivalences; F. Aly and F. van Oystaeyen, Hopf order mod-

ule algebra orders; G. Böhm, An alternative notion of Hopf algebroid; Ph. Bon-

neau and D. Sternheimer, Topological Hopf algebras, quantum groups and defor-

mation quantization; T. Brzeziński, L. Kadison and R. Wisbauer, On coseparable

and biseparable corings; D. Bulacu, S. Caenepeel and F. Panaite, More properties of

Yetter-Drinfeld modules over quasi-Hopf algebras; S. Caenepeel, J. Vercruysse and

S.H. Wang, Rationality properties for Morita contexts associated to Corings; L. El

Kaoutit and J. Gómez-Torrecillas, Morita duality for corings over quasi-Frobenius
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rings; K.R. Goodearl and T.H. Lenagan, Quantized coinvariants at transcendental q;

S. Majid, Classification of differentials on quantum doubles and finite noncommuta-

tive geometry; S. Majid, Noncommutative differentials and Yang-Mills on permuta-

tion groups Sn; C. Menini and G. Militaru, The afineness criterion for Doi-Koppinen

modules; S. Montgomery, Algebra properties invariant under twisting; C. Ohn, Quan-

tum SL(3, C)’s: the missing case; A Paolucci, Cuntz algebras and dynamical quantum

group SU(2); B. Pareigis, On symbolic computations in braided monomial categories;

P. Schauenburg, Quotients of finite quasi-Hopf algebras; K. Szlachányi; Adjointable

monoidal functors and quantum groupoids; R. Wisbauer, On Galois corings.

The book is highly recommended to researchers in algebraic geometry, num-

ber theory and mathematical physics, who will find here an excellent overview of

the most significant areas of research in this field. Some of the new results are pre-

sented here for the first time. It is a valuable addition to the literature, and I warmly

recommend it to algebraists and theoretical physicists.

Andrei Marcus

Leszek Gasiński and Nikolaos S. Papageorgiou, Nonlinear Analysis, Series

in Mathematical Analysis and Applications, Vol. 9, Chapman & Hall/CRC, Taylor

& Francis Group, Boca Raton, London, New York, Singapore, 2006, xi +971 pp.,

ISBN 1-58488-484-3.

The aim of the present volume is to provide the reader with a solid back-

ground in several areas related to some modern topics in nonlinear analysis as critical

point theory, nonlinear differential operators and related regularity and comparison

principles.

The first chapter, Hausdorff measures and capacity, is concerned with topics

as Vitali and Besicovitch covering theorems, Hausdorff measure and dimension, differ-

entiability of Hausdorff measures and of Lipschitz functions (Rademacher theorem),

the area, coarea and change of variables formulae for Lipschitz transforms.
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The second chapter, Lebesgue-Bochner and Sobolev spaces, contains a brief

introduction to integration of vector-functions (weak and strong measurability, Pettis,

Gelfand and Bochner integrals), a treatment of Banach spaces of continuous vector-

functions, of Lebesgue-Bochner spaces (completeness, duality, compactness), and of

Sobolev spaces of vector-functions.

Chapter 3, Nonlinear operators and Young measures, discusses some classes of

nonlinear operators (monotone, accretive) and semigroups of operators, exemplified

on the case of Nemytskii composition operator. Some results on compact and on

Fredholm linear operators on Banach and Hilbert spaces are also included, in order

to emphasize the similarities and the differences between the linear and nonlinear

case. The chapter ends with an introduction to Young measures.

The fourth chapter, Smooth and nonsmooth variational principles, contains

an introduction to differential calculus on Banach spaces (Gâteaux and Fréchet deriva-

tives) with applications to the differentiability of convex functions - Mazur and As-

plund generic differentiability theorems. Christensen theorem on almost everywhere

differentiability of locally Lipschitz functions on Banach spaces (the extension of

Rademacher theorem) with respect to Haar null sets is also proved. Subdifferential

calculus for convex functions, as well as Clarke generalized subdifferential calculus for

locally Lipschitz functions are considered too. The chapter ends with the proof of

Ekeland and Borwein-Preiss variational principles with applications.

Chapter 5, Critical point theory, is concerned with applications of the criti-

cal point theory to minimax, saddle point and mountain pass theorems. Lusternik-

Schnirelman theory with applications to eigenvalue problems is the topic of the last

section of this chapter.

In Chapter 6, Eigenvalue problems and maximum principles, the techniques

and methods developed so far are applied to the study of linear and nonlinear elliptic

PDEs.

Fixed point theorems (FPT) constitute the basic tool in the proofs of the

existence of solutions to various kinds of equations and inclusions. The last chapter of

the book, Chapter 7, Fixed point theorems, is devoted to the proofs of the main FPT

of metrical nature (Banach contraction principle with extensions and applications,

normal structure in Banach spaces and FPT for nonexpansive mappings), and of
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topological nature as well – the fixed point theorems of Brouwer, Schauder, Borsuk,

and Sadovskii. A special attention is paid to FPT in ordered structure (Tarski,

Bourbaki-Kneser, Amann) and in ordered Banach spaces – Krasnoselskii FPT with

applications to positive eigenvalues and to fixed point index.

An appendix collects the essential results from topology, measure theory,

functional analysis, calculus and nonlinear analysis, used throughout the book.

Together with the books Nonsmooth Critical Point Theory and Nonlinear

Boundary Value Problems, CRC 2005, by the same authors, and An Introduction

to Nonlinear Analysis, Vol. I. Theory, Vol. II, Applications, by Z. Denkowski, S.

Migorski & N. Papageorgiou, the present one provides a comprehensive and fairly

self-contained presentation of some important results in nonlinear analysis and appli-

cations.

It (or parts of it) can be used for graduate or post-graduate course, but also

as reference text by specialists.

S. Cobzaş
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