
Anul LI 2006

S T U D I A
UNIVERSITATIS BABEŞ-BOLYAI
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LI, Number 3, September 2006

PROFESSOR ŞTEFAN COBZAŞ AT HIS 60TH ANNIVERSARY

WOLFGANG W. BRECKNER

At the western border of Romania, where the Mureş river leaves the Roma-

nian territory and runs into the Tisza, there is a small town called Nădlac. Ştefan

Cobzaş was born there on the 11th of December 1945 as son of the farmers Florea

Cobzaş - father -, and Sofia Cobzaş - mother. At that time Nădlac was a village.

Ştefan Cobzaş attended elementary school (from 1952 to 1959) in his home-

town. Then he studied at the most famous high school in Arad, the capital of the

Mureş river plain. From 1963 to 1968, he was a student at the Faculty of Math-

ematics and Mechanics (nowadays the Faculty of Mathematics and Computer Science)

of Babeş-Bolyai University, Cluj-Napoca, being awarded a diploma in Mathematics,

with Mathematical Analysis as major. After graduation, he was a researcher at the

Institute of Numerical Analysis of the Romanian Academy, the Cluj-Napoca branch,

until 1977. In the same year, he was hired, following a contest, as instructor at the

Department of Analysis (the current Department of Analysis and Optimization) of

the faculty he had graduated nine years before. In this department Ştefan Cobzaş

was successively promoted to the positions of assistant professor (1980), associate

professor (1990) and finally full professor (1998).

In 1970, Ştefan Cobzaş married one of his fellow students, Lucia Maria Bor-

dean. They have two children: Dana, born in 1975, and Alexandru, born in 1976.

Both graduated from the same faculty as their parents (Faculty of Mathematics and

Computer Science, Babeş-Bolyai University), but majored in different fields: Dana in

Computer Science and Alexandru in Mathematics.

Professor Cobzaş is a specialist in analysis, in a broader sense of the term.

Using a more precise language, we have to say that he is a specialist in mathematical
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analysis, functional analysis, real analysis, topology and measure theory. While a

student, Ştefan Cobzaş was attracted to the wide field of analysis, which he has

never abandoned since then. His graduation thesis, written under the guidance of

professor Ioan Muntean (1931-1996), dealt with the non-Archimedean topological

vector spaces. It is under the coordination of professor Tiberiu Popoviciu that he

began to prepare his doctoral thesis in the field of best approximation with constraints.

Unfortunately, the great mathematician died in 1976 and, consequently, Ştefan Cobzaş

completed his doctoral thesis under the coordination of professor Dimitrie D. Stancu.

Ştefan Cobzaş successfully defended his doctoral thesis at Babeş-Bolyai University in

1979. Our colleague had also the opportunity to participate in professional training

sessions abroad, which helped him to further improve his knowledge: in 1972 in Sofia

(Bulgaria); in 1973 in Moscow (USSR); and in 1998 in Perpignan (France). The

direct beneficiaries of professor Cobzaş’s broad culture in the field of analysis are

the students of the Faculty of Mathematics and Computer Science of Babeş-Bolyai

University. His lectures and seminars have a high scientific level and, as a distinctive

note, our colleague has always made subtle observations enriching the course itself and

making it more attractive. This is evidence that Ştefan Cobzaş is not only an excellent

mathematician, but also a very witty professor, his textbook Mathematical Analysis

(Differential Calculus), published in the Romanian language at Cluj University Press

in 1997, offering many examples in this respect.

Professor Cobzaş’s professional qualities are fully emphasized by his 49 schol-

arly articles (see the appendix), which can be grouped into five categories: best ap-

proximation and optimization ([A.1] - [A.25]), finitely additive measures and support

functionals ([B.1] - [B.3]), condensation of singularities ([C.1] - [C.5]), Lipschitz func-

tions ([D.1] - [D.9]), miscellaneous topics ([E.1] - [E.7]). Professor Cobzaş’s works and

papers have been welcomed by the international scholarly community. From among

those who have cited him we mention the following: Amstrong Th. E., Balaganskii

V. S., Borwein J. M., Breckner W. W., Edelstein M., Fonf V. P., Fitzpatrick S., Je-

belean P., Jourani A., Konyagin S. V., Mitrea A. I., Phelps R. R., Precupanu A.-M.,

Precupanu T., Reich S., Smarzewski R., Trif T., Zaslavski A. J. and others.
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PROFESSOR ŞTEFAN COBZAŞ AT HIS 60TH ANNIVERSARY

On behalf of the members of the Department of Analysis and Optimization of

the Faculty of Mathematics and Computer Science of Babeş-Bolyai University, as well

as on behalf of other colleagues and students of our faculty, we warmly congratulate

Professor Ştefan Cobzaş on his 60th birthday wishing him good health and excellent

achievements in his further research work.

List of Scientific Papers by Ştefan Cobzaş

A. Best approximation and optimization

A.1. Strongly nonproximinal sets in c0. (Romanian). Rev. Anal. Numer. Teoria

Aproximaţiei 2 (1973), 137-141

A.2. Antiproximinal sets in some Banach spaces. Math. Balkanica 4 (1974), 79-82

A.3. Convex antiproximinal sets in the spaces c0 and c. (Russian). Mat. Zametki

17 (1975), 449-457

A.4. Antiproximinal sets in Banach spaces of continuous functions. Rev. Anal.

Numér. Théor. Approx. 5 (1976), 127-143

A.5. Antiproximinal sets in Banach spaces of c0-type. Rev. Anal. Numér. Théor.

Approx. 7 (1978), 141-145

A.6. Nonconvex optimization problems on weakly compact subsets of Banach spaces.

Rev. Anal. Numér. Théor. Approx. 9 (1980), 19-25

A.7. Duality relations and characterizations of best approximation for p-convex sets.

Rev. Anal. Numér. Théor. Approx. 16 (1987), 95-108

A.8. On a theorem of V. N. Nikolski on the characterization of best approximation

for convex sets. Rev. Anal. Numér. Théor. Approx. 19 (1990), 7-13

A.9. Some remarks on the characterization of nearest points. Studia Univ. Babeş-

Bolyai, Mathematica 35 (1990), No. 2, 54-56

A.10. Best approximation in spaces of bounded vector-valued sequences. Rev. Anal.

Numér. Théor. Approx. 23 (1994), 63-69

A.11. Selections associated to the metric projection. Rev. Anal. Numér. Théor.

Approx. 24 (1995), 45-52 (with C. Mustăţa)
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A.12. Extension of bilinear operators and best approximation in 2-normed spaces. Rev.

Anal. Numér. Théor. Approx. 25 (1996), 63-75 (with C. Mustăţa)

A.13. Extension of bilinear operators and best approximation in 2-normed spaces. In:

Göpfert A., Seeländer J., Tammer Chr. (eds.), Methods of Multicriteria Decision

Theory, Proceedings of the 6th Workshop of the DGOR-Working Group Multi-

criteria and Decision Theory, Alexisbad 1996. Verlag Dr. Hänsel-Hohenhausen,

Egelsbach, 1997, 19-29 (with C. Mustăţa)

A.14. Antiproximinal sets in the Banach space c(X). Comment. Math. Univ. Carolin.

38 (1997), 247-253

A.15. Extension of bilinear functionals and best approximation in 2-normed spaces.

Studia Univ. Babeş-Bolyai, Mathematica 43 (1998), No. 2, 1-13 (with C.

Mustăţa)

A.16. Antiproximinal sets in the Banach space C(ωk, X). Rev. Anal. Numér. Théor.

Approx. 27 (1998), 47-58

A.17. Antiproximinal sets in Banach spaces. Acta Univ. Carolin., Math. Phys. 40

(1999), 43-52

A.18. Existence results for some optimization problems in Banach spaces. In: Lupşa L.,

Ivan M. (eds.), Analysis, Functional Equations, Approximation and Convexity.

Proceedings of the conference held in honour of Professor Elena Popoviciu on

the occasion of her 75th birthday in Cluj-Napoca, October 15-16, 1999. Editura

Carpatica, Cluj-Napoca, 1999, 39-44

A.19. Generic existence of solutions for some perturbed optimization problems. J.

Math. Anal. Appl. 243 (2000), 344-356

A.20. Antiproximinal sets in Banach spaces of continuous vector-valued functions. J.

Math. Anal. Appl. 261 (2001), 527-542

A.21. Phelps type duality results in best approximation. Rev. Anal. Numér. Théor.

Approx. 31 (2002), 29-43

A.22. Best approximation in random normed spaces. In: Oyibo G. (ed.), Advances in

Mathematics Research. Vol. 5. Nova Sci. Publ., Hauppage, New York, 2003,

1-18
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A.23. Extension of bounded linear functionals and best approximation in spaces with

asymmetric norm. Rev. Anal. Numér. Théor. Approx. 33 (2004), 39-50 (with

C. Mustăţa)

A.24. Separation of convex sets and best approximation in spaces with asymmetric

norm. Quaest. Math. 27 (2004), 275-296

A.25. Geometric properties of Banach spaces and the existence of nearest and farthest

points. Abstr. Appl. Anal. 2005:3 (2005), 259-285

B. Finitely additive measures and support functionals

B.1. Hahn decompositions of finitely additive measures. Arch. Math. (Basel) 27

(1976), 620-621

B.2. Support functionals of the unit ball in Banach spaces of bounded functions.

Babeş-Bolyai University Cluj-Napoca, Seminar on Mathematical Analysis,

1986, 85-90

B.3. Support points and the convexity of sets in topological vector spaces. An. Univ.

Timişoara, Ser. Mat.-Inform. 36 (1998), No. 2, 237-242

C. Condensation of singularities

C.1. Condensation of singularities and divergence results in approximation theory.

J. Approx. Theory 31 (1981), 138-153 (with I. Muntean)

C.2. Double condensation of singularities for Walsh-Fourier series. Rev. Anal.

Numér. Théor. Approx. 21 (1992), 119-129

C.3. A superdensity theorem. Mathematica 39(62) (1997), 37-44 (with I. Muntean)

C.4. Triple condensation of singularities for some interpolation processes. In: Stancu

D. D., Coman G., Breckner W. W., Blaga P. (eds.), Approximation and Op-

timization. Proceedings of ICAOR: International Conference on Approximation

and Optimization, Cluj-Napoca, July 29 - August 1, 1996. Vol. 1. Transilvania

Press, Cluj-Napoca, 1997, 227-232 (with I. Muntean)

C.5. Superdense a.e. unbounded divergence in some approximation processes of ana-

lysis. Real Anal. Exchange 25 (1999/2000), 501-512 (with I. Muntean)
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D. Lipschitz functions

D.1. Continuous and locally Lipschitz convex functions. Mathematica 18(41)

(1976), 41-51 (with I. Muntean)

D.2. Norm-preserving extension of convex Lipschitz functions. J. Approx. Theory

24 (1978), 236-244 (with C. Mustăţa)

D.3. On the Lipschitz properties of continuous convex functions. Mathematica

21(44) (1979), 123-125

D.4. Lipschitz properties of convex functions. Babeş-Bolyai University Cluj-Napoca,

Seminar on Mathematical Analysis, 1985, 77-84

D.5. Extreme points in Banach spaces of Lipschitz functions. Mathematica 31(54)

(1989), 25-33

D.6. Extension of Lipschitz functions and best approximation. In: Popoviciu E. (ed.),

Research on the Theory of Allure, Approximation, Convexity and Optimization.

SRIMA, Cluj-Napoca, 1999, 3-21 (with C. Mustăţa)

D.7. Lipschitz properties for families of convex mappings. In: Cho Y. J., Kim J. K.,

Dragomir S. S. (eds.), Inequality Theory and Applications. Vol. I. Nova Sci.

Publ., Huntington, New York, 2001, 103-112

D.8. Compactness in spaces of Lipschitz functions. Rev. Anal. Numér. Théor.

Approx. 30 (2001), 9-14

D.9. Adjoints of Lipschitz mappings. Studia Univ. Babeş-Bolyai, Mathematica 48

(2003), No. 1, 49-54

E. Miscellaneous topics

E.1. Separation theorems for convex sets in locally convex non-Archimedean spaces.

(Romanian). Rev. Anal. Numer. Teoria Aproximaţiei 3 (1974), 137-141

E.2. On the starlikeness and convexity of holomorphic functions. Babeş-Bolyai Uni-

versity Cluj-Napoca, Seminar on Geometric Function Theory, 1986, 80-90

E.3. On the Schauder’s theorem on the compactness of the conjugate mapping.

Babeş-Bolyai University Cluj-Napoca, Seminar on Mathematical Analysis, 1990,

83-86
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E.4. Note on the paper of I. Muntean “On the method of near equations” Calcolo 32

(1995), no. 1-2, 1-15. Rev. Anal. Numér. Théor. Approx. 26 (1997), 29-32

E.5. Some questions in the theory of Šerstnev random normed spaces. Bull. Şt. Univ.

Baia Mare, Ser. B Fasc. Mat.-Inform. 18 (2002), No. 2, 177-186

E.6. Asymmetric locally convex spaces. Int. J. Math. Math. Sci. 2005:16 (2005),

2585-2608.

E.7. Fixed point theorems in locally convex spaces - The Schauder mapping method.

Fixed Point Theory Appl. 2006, Article ID 57950, 1-13
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EQUICONTINUITY AND SINGULARITIES OF FAMILIES
OF MONOMIAL MAPPINGS

WOLFGANG W. BRECKNER and TIBERIU TRIF

Dedicated to Professor Ştefan Cobzaş at his 60th anniversary

Abstract. The starting-point for the present paper is the principle of

condensation of the singularities of families consisting of continuous linear

mappings that act between normed linear spaces. It is proved that this

basic functional analytical principle can be generalized for families of con-

tinuous monomial mappings of degree n between topological linear spaces.

The obtained principle yields a generalization of the principle of uniform

boundedness published by I. W. Sandberg [IEEE Trans. Circuits and Sys-

tems CAS-32 (1985), 332–336] and recently rediscovered by R. Miculescu

[Math. Reports (Bucharest) 5 (55) (2003), 57–59]. Furthermore, by ap-

plying the new nonlinear principle there are revealed Baire category prop-

erties of certain subsets of the normed linear space C[a, b] involved with

Riemann-Stieltjes integrability.

1. Introduction

One of the most important and most useful results in the theory of real or

complex normed linear spaces is the following theorem, known as the principle of

condensation of the singularities.

Theorem 1.1. Let X and Y be normed linear spaces, and let (Fj)j∈J be a

family of continuous linear mappings from X into Y such that

sup { ‖Fj‖ | j ∈ J } = ∞.

Received by the editors: 06.04.2006.

2000 Mathematics Subject Classification. Primary 47H60, secondary 54E52, 26A42.

Key words and phrases. Topological linear spaces, monomial mappings, equicontinuity, residual sets,

Riemann-Stieltjes integrability.
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Then the set of all x ∈ X satisfying

sup { ‖Fj(x)‖ | j ∈ J } = ∞

is residual, i.e. its complement is a set of the first category.

This theorem immediately provides the next theorem called the principle of

uniform boundedness and considered to represent also a major functional analytical

result.

Theorem 1.2. Let X and Y be normed linear spaces of which X is complete,

and let (Fj)j∈J be a family of continuous linear mappings from X into Y . Then

sup { ‖Fj(x)‖ | j ∈ J } < ∞ for all x ∈ X

if and only if

sup { ‖Fj‖ | j ∈ J } < ∞.

Both these theorems have been extensively investigated and have been gener-

alized in several directions. In some papers more general spaces have been considered

instead of the normed linear spaces X and Y . For instance, Ş. Cobzaş and I. Muntean

[5] dealt with the topological structure of the set of singularities associated with a

nonequicontinuous family of continuous linear mappings from a topological linear

space into another topological linear space and pointed out cases when this set of

singularities is an uncountable infinite Gδ-set. In other papers the linear mappings

Fj (j ∈ J) have been replaced by nonlinear mappings of a certain type. Moreover,

W. W. Breckner [1] has proved a very general principle of condensation of the singu-

larities which does not require any algebraic structure of the considered spaces and

neither assumptions as to the shape of the mappings that are concerned.

For a detailed information on diverse generalizations of the Theorems 1.1 and

1.2 the reader is referred to the surveys by W. W. Breckner [2, 3] as well as to T. Trif

[14, 15].
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EQUICONTINUITY AND SINGULARITIES OF FAMILIES OF MONOMIAL MAPPINGS

In the present paper we deal with the equicontinuity of families of monomial

mappings. Moreover, by following the general line of proving principles of condensa-

tion of the singularities we show that the Theorems 1.1 and 1.2 can be generalized

for families of continuous monomial mappings of degree n acting between topological

linear spaces. Consequently, these generalizations integrate well into the framework

described in [1]. Besides, it should be mentioned that the new principle of uniform

boundedness turns out to be a generalization of the principle of uniform boundedness

proved by I. W. Sandberg [11] and recently rediscovered by R. Miculescu [9]. The

paper ends with an application of the obtained nonlinear principle of condensation of

singularities that directly reveals Baire category properties of certain subsets of the

normed linear space C[a, b] involved with Riemann-Stieltjes integrability.

2. Monomial mappings

All linear spaces as well as all topological linear spaces that will occur in this

paper are over K, where K is either the field R of real numbers or the field C of

complex numbers. If X is a linear space, then its zero-element is denoted by oX . The

set of all positive integers is N.

Throughout this section let X and Y be linear spaces. Furthermore, let n be

a positive integer. A mapping F : Xn → Y is said to be:

(i) symmetric if

F (x1, . . . , xn) = F (xσ(1), . . . , xσ(n))

for each (x1, . . . , xn) ∈ Xn and each bijection σ : {1, . . . , n} → {1, . . . , n};

(ii) n-additive if for each i ∈ { 1, . . . , n } the mapping

∀ x ∈ X 7−→ F (x1, . . . , xi−1, x, xi+1, . . . , xn) ∈ Y

is additive whenever x1, . . . , xi−1, xi+1, . . . , xn ∈ X are fixed.

If F : Xn → Y is an n-additive mapping, then it can be shown that

F (r1x1, . . . , rnxn) = r1 · · · rnF (x1, . . . , xn)
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for all x1, . . . , xn ∈ X and all rational numbers r1, . . . , rn. If in addition X and Y are

topological linear spaces and F is continuous, then we even have

F (a1x1, . . . , anxn) = a1 · · · anF (x1, . . . , xn)

for all x1, . . . , xn ∈ X and all a1, . . . , an ∈ R.

Given a mapping F : Xn → Y , the mapping F ∗ : X → Y , defined by

F ∗(x) := F (x, . . . , x︸ ︷︷ ︸
n times

) for all x ∈ X,

is said to be the diagonalization of F . Any symmetric n-additive mapping can be

expressed by means of its diagonalization as the following proposition points out (see

A. M. McKiernan [8, Lemma 1] or D. Ž. Djoković [6, Lemma 2]).

Proposition 2.1. If F : Xn → Y is a symmetric n-additive mapping, then

F (u1, . . . , un) =
1
n!

(∆u1 · · ·∆unF ∗) (x)

for all u1, . . . , un, x ∈ X, where ∆u : Y X → Y X is defined for each u ∈ X by

(∆uf) (x) := f(x + u)− f(x) for all f ∈ Y X and all x ∈ X.

A mapping Q : X → Y is said to be a monomial mapping of degree n if there

exists a symmetric n-additive mapping F : Xn → Y such that Q = F ∗. In virtue

of Proposition 2.1 there exists for each monomial mapping Q : X → Y of degree n a

single symmetric n-additive mapping F : Xn → Y such that Q = F ∗.

A monomial mapping Q : X → Y of degree n has the homogeneity property

Q(rx) = rnQ(x) for every x ∈ X and every rational number r. If in addition X and

Y are topological linear spaces and Q is continuous, this property implies

Q(ax) = anQ(x) for every x ∈ X and every a ∈ R.

Finally, we mention a useful characterization of the monomial mappings of

degree n (see A. M. McKiernan [8, Corollary 3] or D. Ž. Djoković [6, Corollary 3]).
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Proposition 2.2. A mapping Q : X → Y is a monomial mapping of degree

n if and only if
1
n!

(∆n
uQ) (x) = Q(u) for all u, x ∈ X.

The monomial mappings of degree 1 coincide with the additive mappings,

while the monomial mappings of degree 2 are called quadratic.

3. Equicontinuity of families of monomial mappings

Let X and Y be topological linear spaces, and let F := (Fj)j∈J be a family

of mappings from X into Y . If x is a point in X, then F is said to be equicontinuous

at x if for every neighbourhood V of oY there exists a neighbourhood U of oX such

that

{Fj(x + u)− Fj(x) | j ∈ J } ⊆ V for all u ∈ U.

If F is equicontinuous at each point of X, then F is said to be equicontinuous on X.

For families of symmetric n-additive mappings the following characterization

of the equicontinuity is valid.

Theorem 3.1. Let n be a positive integer, let X and Y be topological linear

spaces, let F := (Fj)j∈J be a family of symmetric n-additive mappings from Xn into

Y , and let F∗ := (F ∗
j )j∈J . Then the following assertions are equivalent:

1◦ F∗ is equicontinuous on X.

2◦ F∗ is equicontinuous at oX .

3◦ F is equicontinuous at oXn .

4◦ F is equicontinuous on Xn.

Proof. Since the implications 1◦ ⇒ 2◦ and 4◦ ⇒ 3◦ are obvious, it remains

to prove that 2◦ ⇒ 3◦, 3◦ ⇒ 1◦ and 1◦ ⇒ 4◦.

We start by proving the implication 2◦ ⇒ 3◦. Let V be any neighbourhood

of oY . Choose a balanced neighbourhood V0 of oY such that

V0 + · · ·+ V0︸ ︷︷ ︸
2n terms

⊆ V. (1)
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The equicontinuity of F∗ at oX ensures the existence of a neighbourhood U0 of oX

such that

{F ∗
j (u) | j ∈ J } ⊆ V0 for all u ∈ U0. (2)

Now select a neighbourhood U of oX such that

U + · · ·+ U︸ ︷︷ ︸
n terms

⊆ U0. (3)

We claim that

{Fj(u1, . . . , un) | j ∈ J } ⊆ V for all (u1, . . . , un) ∈ Un. (4)

Indeed, let j be any index in J and let (u1, . . . , un) be any point in Un. According

to Proposition 2.1 we have

Fj(u1, . . . , un) =
1
n!

(
∆u1 · · ·∆unF ∗

j

)
(oX)

=
1
n!

∑
(a1,...,an)∈A

(−1)n−(a1+···+an)F ∗
j (a1u1 + · · ·+ anun), (5)

where A := {0, 1}n. Since

a1u1 + · · ·+ anun ∈ U + · · ·+ U︸ ︷︷ ︸
n terms

⊆ U0 for all (a1, . . . , an) ∈ A,

we conclude in virtue of (2) that

F ∗
j (a1u1 + · · ·+ anun) ∈ V0 for all (a1, . . . , an) ∈ A.

Taking into account that cardA = 2n and that V0 is balanced, we get by (5)

Fj(u1, . . . , un) ∈ V0 + · · ·+ V0︸ ︷︷ ︸
2n terms

⊆ V.

Consequently, (4) is true. From (4) it follows that F is equicontinuous at oXn .

Next we prove that 3◦ ⇒ 1◦. Let x be any point in X, and let V be any

neighbourhood of oY . Choose a balanced neighbourhood V0 of oY such that

V0 + · · ·+ V0︸ ︷︷ ︸
2n − 1 terms

⊆ V.
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The equicontinuity of F at oXn ensures the existence of a balanced neighbourhood

U0 of oX such that

{Fj(u1, . . . , un) | j ∈ J } ⊆ V0 for all (u1, . . . , un) ∈ Un
0 . (6)

Select a rational number r ∈ ]0, 1] such that rx ∈ U0. We assert that

{F ∗
j (x + rn−1u)− F ∗

j (x) | j ∈ J } ⊆ V for all u ∈ U0. (7)

Indeed, let j ∈ J and u ∈ U0 be arbitrarily chosen. Then we have

F ∗
j (x+rn−1u)− F ∗

j (x)

= Fj(x + rn−1u, . . . , x + rn−1u︸ ︷︷ ︸
n times

)− Fj(x, . . . , x︸ ︷︷ ︸
n times

)

=
n∑

k=1

(
n

k

)
Fj( x, . . . , x︸ ︷︷ ︸

n − k times

, rn−1u, . . . , rn−1u︸ ︷︷ ︸
k times

)

=
n∑

k=1

(
n

k

)
Fj( rx, . . . , rx︸ ︷︷ ︸

n − k times

, rk−1u, rn−1u, . . . , rn−1u︸ ︷︷ ︸
k − 1 times

). (8)

Since U0 is balanced and r ∈ ]0, 1], we see that (6) implies

Fj( rx, . . . , rx︸ ︷︷ ︸
n − k times

, rk−1u, rn−1u, . . . , rn−1u︸ ︷︷ ︸
k − 1 times

) ∈ V0

for each k ∈ { 1, . . . , n }. Therefore it follows from (8) that

F ∗
j (x + rn−1u)− F ∗

j (x) ∈ V0 + · · ·+ V0︸ ︷︷ ︸
2n − 1 terms

⊆ V.

Hence (7) is true. If we set U := rn−1U0, then U is a neighbourhood of oX satisfying

{F ∗
j (x + u)− F ∗

j (x) | j ∈ J } ⊆ V for all u ∈ U.

Consequently, F∗ is equicontinuous at x.

Finally, we prove that 1◦ ⇒ 4◦. Let (x1, . . . , xn) be any point in Xn, and

let V be any neighbourhood of oY . Choose a balanced neighbourhood V0 of oY such

17
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that (1) holds. Let A := {0, 1}n. Since F∗ is equicontinuous on X, there exists for

each (a1, . . . , an) ∈ A a neighbourhood Ua of oX such that

{F ∗
j (a1x1 + · · ·+ anxn + u)− F ∗

j (a1x1 + · · ·+ anxn) | j ∈ J } ⊆ V0 (9)

for all u ∈ Ua. Next we choose a neighbourhood U of oX such that

U + · · ·+ U︸ ︷︷ ︸
n terms

⊆
⋂
a∈A

Ua.

Then it results from (9) that

{F ∗
j (a1(x1 + u1) + · · ·+ an(xn + un))− F ∗

j (a1x1 + · · ·+ anxn) | j ∈ J } ⊆ V0 (10)

for all (a1, . . . , an) ∈ A and all (u1, . . . , un) ∈ Un. But, according to Proposition 2.1

we have

Fj(x1 + u1, . . . , xn + un)− Fj(x1, . . . , xn)

=
1
n!

[(
∆x1+u1 · · ·∆xn+un

F ∗
j

)
(oX)−

(
∆x1 · · ·∆xn

F ∗
j

)
(oX)

]
=

1
n!

∑
(a1,...,an)∈A

(−1)n−(a1+···+an)
[
F ∗

j (a1(x1 + u1) + · · ·+ an(xn + un))

−F ∗
j (a1x1 + · · ·+ anxn)

]
for all j ∈ J and all (u1, . . . , un) ∈ Un. By (10) it follows that

{Fj(x1 + u1, . . . , xn + un)− Fj(x1, . . . , xn) | j ∈ J } ⊆ V0 + · · ·+ V0︸ ︷︷ ︸
2n terms

⊆ V

for all (u1, . . . , un) ∈ Un. Consequently, F is equicontinuous at (x1, . . . , xn). �

Corollary 3.2. Let n be a positive integer, let X and Y be topological linear

spaces, and let Q := (Qj)j∈J be a family of monomial mappings of degree n from X

into Y . Then Q is equicontinuous on X if and only if it is equicontinuous at some

point of X.

Proof. Necessity. Obvious.

Sufficiency. Suppose that x ∈ X is a point at which Q is equicontinuous.

Then Q is equicontinuous at oX . Indeed, when x = oX , then this assertion is trivial.

18
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When x 6= oX , then it can be proved as follows. Let V be any neighbourhood of oY .

Choose a balanced neighbourhood V0 of oY such that

V0 + · · ·+ V0︸ ︷︷ ︸
n terms

⊆ V.

The equicontinuity of Q at x ensures the existence of a neighbourhood U0 of oX such

that

{Qj(x + u)−Qj(x) | j ∈ J } ⊆ V0 for all u ∈ U0. (11)

Select a neighbourhood U of oX that satisfies (3). Taking into account that

n∑
k=0

(−1)n−k

(
n

k

)
= 0,

the Proposition 2.2 implies

Qj(u) =
1
n!

(∆n
uQj) (x)

=
1
n!

n∑
k=0

(−1)n−k

(
n

k

)
Qj(x + ku)

=
1
n!

n∑
k=1

(−1)n−k

(
n

k

)
[Qj(x + ku)−Qj(x)] (12)

for all j ∈ J and all u ∈ U . Since

ku ∈ U + · · ·+ U︸ ︷︷ ︸
k terms

⊆ U0

for all k ∈ { 1, . . . , n } and all u ∈ U , it follows from (11) that

{Qj(x + ku)−Qj(x) | j ∈ J } ⊆ V0

for all k ∈ { 1, . . . , n } and all u ∈ U . Since V0 is balanced, (12) implies that

{Qj(u) | j ∈ J } ⊆ V0 + · · ·+ V0︸ ︷︷ ︸
n terms

⊆ V for all u ∈ U.

Consequently, Q is equicontinuous at oX .

By applying now the implication 2◦ ⇒ 1◦ stated in Theorem 3.1, it follows

that Q is equicontinuous on X. �
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Corollary 3.3. Let n be a positive integer, let X and Y be topological linear

spaces, and let Q : X → Y be a monomial mapping of degree n. Then Q is continuous

on X if and only if it is continuous at some point of X.

In the special case when n = 1 this corollary is well-known. When n = 2 it

generalizes a result stated by S. Kurepa [7, Theorem 2] under the assumption that X is

a normed linear space and Y = R. In addition we note that a similar continuity result

involving quadratic set-valued mappings was obtained by W. Smajdor [12, Theorem

4.2].

Proposition 3.4. Let n be a positive integer, let X and Y be normed linear

spaces, and let (Fj)j∈J be a family of symmetric n-additive mappings from Xn into

Y . Then the following assertions are equivalent:

1◦ (F ∗
j )j∈J is equicontinuous at oX .

2◦ sup { ‖Fj(x1, . . . , xn)‖ | j ∈ J, ‖x1‖ ≤ 1, . . . , ‖xn‖ ≤ 1 } < ∞.

3◦ sup { ‖F ∗
j (x)‖ | j ∈ J, ‖x‖ ≤ 1 } < ∞.

Proof. 1◦ ⇒ 2◦ According to the implication 2◦ ⇒ 3◦ in Theorem 3.1, the

family (Fj)j∈J is equicontinuous at oXn . Therefore there exists a neighbourhood U

of oX such that

‖Fj(u1, . . . , un)‖ ≤ 1 for all j ∈ J and all (u1, . . . , un) ∈ Un.

Let r be a positive rational number such that {x ∈ X | ‖x‖ ≤ r } ⊆ U . Then we have

‖Fj(x1, . . . , xn)‖ =
1
rn
‖Fj(rx1, . . . , rxn)‖ ≤ 1

rn

for all j ∈ J and all (x1, . . . , xn) ∈ Xn satisfying ‖x1‖ ≤ 1, . . . , ‖xn‖ ≤ 1. Conse-

quently, assertion 2◦ is true.

2◦ ⇒ 3◦ Obvious.

3◦ ⇒ 1◦ Let V be a neighbourhood of oY . Choose a positive real number a

such that { y ∈ Y | ‖y‖ ≤ a } ⊆ V . In addition, choose a positive rational number r

such that brn ≤ a, where

b := sup { ‖F ∗
j (x)‖ | j ∈ J, ‖x‖ ≤ 1 }.
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Then we have

‖F ∗
j (u)‖ = rn

∥∥∥∥F ∗
j

(
1
r
u

)∥∥∥∥ ≤ brn ≤ a

for all j ∈ J and all u ∈ X with ‖u‖ ≤ r. Consequently, the neighbourhood U :=

{x ∈ X | ‖x‖ ≤ r } of oX satisfies

{F ∗
j (u) | j ∈ J } ⊆ V for all u ∈ U.

Hence (F ∗
j )j∈J is equicontinuous at oX . �

4. Singularities of families of monomial mappings

Let X and Y be topological linear spaces, and let F := (Fj)j∈J be a family

of mappings from X into Y . If x is a point in X, then F is said to be bounded at x if

the set {Fj(x) | j ∈ J } is bounded, i.e. for each neighbourhood V of oY there exists

a positive real number a such that {Fj(x) | j ∈ J } ⊆ aV . If M is a subset of X and

F is bounded at each point of M , then F is said to be pointwise bounded on M .

Any point in X at which F is not bounded is said to be a singularity of F .

The set of all singularities of F is denoted by SF . Clearly, F is pointwise bounded

on X if and only if SF = ∅.

Theorem 4.1. Let n be a positive integer, let X and Y be topological linear

spaces, and let Q := (Qj)j∈J be a family of monomial mappings of degree n from X

into Y which is equicontinuous at oX . Then Q is pointwise bounded on X.

Proof. Let x be any point in X. We prove that Q is bounded at x. Let V be

a neighbourhood of oY . Since Q is equicontinuous at oX , there exists a neighbourhood

U of oX such that

{Qj(u) | j ∈ J } ⊆ V for all u ∈ U.

Choose a rational number r 6= 0 such that rx ∈ U . Then {Qj(rx) | j ∈ J } ⊆ V ,

whence

{Qj(x) | j ∈ J } ⊆ 1
rn

V.

Consequently, Q is bounded at x. �

21



WOLFGANG W. BRECKNER and TIBERIU TRIF

The converse of Theorem 4.1 is not true. The pointwise boundedness of Q

on X does not imply the equicontinuity of Q at oX , not even when n = 1. But,

taking into consideration the next theorem, which is a principle of condensation of

the singularities of families of continuous monomial mappings between topological

linear spaces, we will be able to point out cases when the pointwise boundedness of

Q implies the equicontinuity of Q at oX (and therefore on the whole space X).

Theorem 4.2. Let n be a positive integer, let X and Y be topological linear

spaces, and let Q := (Qj)j∈J be a family of continuous monomial mappings of degree

n from X into Y which is not equicontinuous at oX . Then the following assertions

are true:

1◦ SQ is a residual set.

2◦ If, in addition, X is of the second category, then SQ is of the second

category, dense in X and with cardSQ ≥ ℵ.

Proof. 1◦ Since Q is not equicontinuous at oX , there exists a neighbourhood

V of oY such that for every neighbourhood U of oX there is a u ∈ U satisfying

{Qj(u) | j ∈ J } 6⊆ V.

Choose a closed balanced neighbourhood V0 of oY such that

V0 + · · ·+ V0︸ ︷︷ ︸
n + 1 terms

⊆ V.

For each positive integer m put

Sm :=
⋂
j∈J

{x ∈ X | Qj(x) ∈ mV0 }.

Since V0 is closed and all the mappings Qj (j ∈ J) are continuous, it follows that

all the sets Sm are closed. We claim that all these sets are nowhere dense. Indeed,

otherwise there exists a positive integer m such that intSm 6= ∅. Choose any point

x0 ∈ intSm. Next select a neighbourhood U0 of oX such that x0 +U0 ⊆ Sm and after

that select a neighbourhood U of oX satisfying (3). Fix any j ∈ J and any u ∈ U . In
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virtue of Proposition 2.2 we have

Qj(u) =
1
n!

n∑
k=0

(−1)n−k

(
n

k

)
Qj(x0 + ku). (13)

Since

x0 + ku ∈ x0 + U + · · ·+ U︸ ︷︷ ︸
k terms

⊆ x0 + U0 ⊆ Sm

for all k ∈ { 0, 1, . . . , n }, it follows that

Qj(x0 + ku) ∈ mV0 for all k ∈ { 0, 1, . . . , n }.

Taking into account that V0 is balanced, we obtain from (13) that

Qj(u) ∈ m(V0 + · · ·+ V0︸ ︷︷ ︸
n + 1 terms

) ⊆ mV,

whence

Qj

(
1
m

u

)
=

1
mn

Qj(u) ∈ 1
mn−1

V ⊆ V.

Since j ∈ J and u ∈ U were arbitrarily chosen, we have{
Qj

(
1
m

u

) ∣∣∣∣ j ∈ J

}
⊆ V for all u ∈ U,

which contradicts the choice of V . Consequently, all the sets Sm are nowhere dense,

as claimed.

It is immediately seen that

X \ SQ ⊆
∞⋃

m=1

Sm.

Therefore X \ SQ is a set of the first category, i.e. SQ is a residual set.

2◦ Since X is of the second category, it follows in virtue of a well-known result

in the theory of topological linear spaces that X is a Baire space. Consequently, the

residual set SQ is of the second category and dense. Therefore SQ is not empty. Let

x be any point in SQ. Since Q is bounded at oX , we have x 6= oX . Besides we have

{Qj(ax) | j ∈ J } = an{Qj(x) | j ∈ J } for all a ∈ R.

Since the set {Qj(x) | j ∈ J } is not bounded, it follows that

{ ax | a ∈ R \ {0} } ⊆ SQ,
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whence cardSQ ≥ ℵ. �

Together the Theorems 4.1 and 4.2 yield the following theorem revealing

cases when the equicontinuity at oX of a family Q of continuous monomial mappings

of degree n from a topological linear space X into a topological linear space Y is

equivalent to the pointwise boundedness of Q on X.

Theorem 4.3. Let n be a positive integer, let X and Y be topological linear

spaces, and let Q be a family of continuous monomial mappings of degree n from X

into Y . Then the following assertions are equivalent:

1◦ X is of the second category and Q is pointwise bounded on X.

2◦ There exists a subset M ⊆ X of the second category on which Q is point-

wise bounded.

3◦ X is of the second category and Q is equicontinuous at oX .

Proof. 1◦ ⇒ 2◦ Obvious.

2◦ ⇒ 3◦ Since M ⊆ X, it follows that X is of the second category. Analo-

gously, it follows from M ⊆ X \ SQ that X \ SQ is of the second category. In other

words, SQ is not a residual set. According to assertion 1◦ in Theorem 4.2 the family

Q must be equicontinuous at oX .

3◦ ⇒ 1◦ Results by Theorem 4.1. �

Corollary 4.4. Let n be a positive integer, let X and Y be normed linear

spaces, and let (Fj)j∈J be a family of continuous symmetric n-additive mappings from

Xn into Y . Then the following assertions are equivalent:

1◦ X is of the second category and

sup { ‖F ∗
j (x)‖ | j ∈ J } < ∞ for all x ∈ X.

2◦ There exists a subset M ⊆ X of the second category such that

sup { ‖F ∗
j (x)‖ | j ∈ J } < ∞ for all x ∈ M. (14)

3◦ X is of the second category and

sup { ‖Fj(x1, . . . , xn)‖ | j ∈ J, ‖x1‖ ≤ 1, . . . , ‖xn‖ ≤ 1 } < ∞. (15)
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Proof. 1◦ ⇒ 2◦ Obvious.

2◦ ⇒ 3◦ The inequality (14) expresses that the family (F ∗
j )j∈J is pointwise

bounded on M . By applying the implication 2◦ ⇒ 3◦ from Theorem 4.3 it follows

that X is of the second category and that (F ∗
j )j∈J is equicontinuous at oX . Therefore,

by the implication 1◦ ⇒ 2◦ in Proposition 3.4, the inequality (15) is true.

3◦ ⇒ 1◦ Let x ∈ X be arbitrarily chosen. When x = oX , then

sup { ‖F ∗
j (x)‖ | j ∈ J } = 0.

When x 6= oX , then the number a := 1/‖x‖ satisfies

‖F ∗
j (x)‖ =

1
an
‖Fj(ax, . . . , ax︸ ︷︷ ︸

n times

)‖ ≤ b

an

for all j ∈ J , where

b := sup { ‖Fj(x1, . . . , xn)‖ | j ∈ J, ‖x1‖ ≤ 1, . . . , ‖xn‖ ≤ 1 }.

Consequently, assertion 1◦ is true. �

It should be remarked that Theorem 4.2 is a generalization of Theorem 1.1,

while Theorem 4.3 and Corollary 4.4 are generalizations of Theorem 1.2. Besides,

Corollary 4.4 is also a generalization of the principle of uniform boundedness proved

by I. W. Sandberg [11, Theorem 2], which recently was rediscovered by R. Miculescu

[9, Theorem 2].

5. An application to the theory of the Riemann-Stieltjes integral

Throughout this section a and b are real numbers satisfying the inequality

a < b. Any finite sequence (x0, x1, . . . , xn) of points of the interval [a, b] such that

a = x0 < x1 < · · · < xn = b is called a subdivision of [a, b].

If ∆ := (x0, x1, . . . , xn) is a subdivision of [a, b], then the number

µ(∆) := max {x1 − x0, . . . , xn − xn−1 }
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is called the mesh of ∆ and any finite sequence (c1, . . . , cn) such that cj ∈ [xj−1, xj ]

for all j ∈ { 1, . . . , n } is called a selection assigned to ∆. The set of all selections

assigned to ∆ will be denoted by S∆.

A. Pelczynski and S. Rolewicz [10, Corollary] proved that a function f :

[a, b] → R is Riemann-Stieltjes integrable with respect to itself over [a, b] if and

only if for each ε ∈ ]0,∞[ there exists a δ ∈ ]0,∞[ such that for any subdivision

∆ := (x0, x1, . . . , xn) of [a, b] with µ(∆) < δ the inequality
n∑

j=1

[f(xj)− f(xj−1)]2 < ε

holds. According to this result each function f : [a, b] → R, which is Riemann-

Stieltjes integrable with respect to itself over [a, b], has to be continuous. On the other

hand, the main result established by A. Pelczynski and S. Rolewicz [10, Theorem 3],

concerning the Riemann-Stieltjes integrals of the form∫ b

a

Φ(f(x))df(x),

reveals that not every continuous function f : [a, b] → R is Riemann-Stieltjes inte-

grable with respect to itself over [a, b]. Actually, the set consisting of all continuous

functions f : [a, b] → R having the property that f is not Riemann-Stieltjes integrable

with respect to itself over [a, b] is very large. More precisely, the following theorem

holds.

Theorem 5.1. Let C[a, b] be the linear space of all real-valued continuous

functions defined on [a, b] endowed with the usual uniform norm

‖f‖ = max { |f(x)| | x ∈ [a, b] } (f ∈ C[a, b]),

and let R̃S[a, b] be the set of all functions f : [a, b] → R having the property that f

is Riemann-Stieltjes integrable with respect to itself over [a, b]. Then the following

assertions are true:

1◦ The set C[a, b] \ R̃S[a, b] is residual, whence of the second category, dense

in C[a, b] and with card (C[a, b] \ R̃S[a, b]) ≥ ℵ.

2◦ The set R̃S[a, b] is of the first category and dense in C[a, b].
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Proof. Let ϕ : [0, 1] → [a, b] be defined by ϕ(t) := a + t(b − a). Taking into

account that the mapping

∀ f ∈ C[a, b] 7−→ f ◦ ϕ ∈ C[0, 1]

is an isometric isomorphism as well as that a function f : [a, b] → R is Riemann-

Stieltjes integrable with respect to itself over [a, b] if and only if f ◦ ϕ is Riemann-

Stieltjes integrable with respect to itself over [0, 1], it suffices to prove the theorem in

the special case when a = 0 and b = 1.

Let D be the set consisting of all subdivisions of [0, 1]. Given a subdivision

∆ := (x0, x1, . . . , xn) ∈ D and a selection ξ := (c1, . . . , cn) ∈ S∆, let Q∆,ξ : C[0, 1] →

R be the mapping defined by

Q∆,ξ(f) :=
n∑

j=1

f(cj)[f(xj)− f(xj−1)] for all f ∈ C[0, 1].

It is easily seen that Q∆,ξ is continuous. Besides, we notice that Q∆,ξ is a qua-

dratic mapping, because it is the diagonalization of the symmetric bilinear mapping

F∆,ξ : C[0, 1]× C[0, 1] → R, defined by

F∆,ξ(f, g) :=
1
2

n∑
j=1

f(cj)[g(xj)− g(xj−1)] +
1
2

n∑
j=1

g(cj)[f(xj)− f(xj−1)]

for all f, g ∈ C[0, 1].

1◦ Passing to the proof of the first assertion of the theorem, we consider for

every positive integer n the family

Qn := {Q∆,ξ | ∆ ∈ D, ξ ∈ S∆, µ(∆) ≤ 1/n } .

We claim that for every positive integer n the family Qn is not equicontinuous at the

zero-element of C[0, 1].

Indeed, let n be any positive integer. Define the function f : [0, 1] → R by

f(x) :=


0 if x = 0

√
x

∣∣cos π
x

∣∣ if 0 < x ≤ 1
n

1√
n

if 1
n < x ≤ 1.
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For each positive integer p set

∆p :=
(

0,
1

n + p
,

2
2(n + p)− 1

,
1

n + p− 1
,

2
2(n + p)− 3

,
1

n + p− 2
, . . . ,

1
n + 1

,
2

2n + 1
,

1
n

,
2
n

,
3
n

, . . . ,
n− 1

n
, 1

)
and

ξp :=
(

0,
2

2(n + p)− 1
,

1
n + p− 1

,
2

2(n + p)− 3
,

1
n + p− 2

, . . . ,

2
2n + 1

,
1
n

,
2
n

, . . . ,
n− 1

n
, 1

)
.

Obviously, ∆p is a subdivision of [0, 1] with µ(∆p) ≤ 1/n and ξp is a selection assigned

to ∆p. Since

Q∆p,ξp(f) =
n+p−1∑

j=n

f

(
1
j

) [
f

(
1
j

)
− f

(
2

2j + 1

)]

=
1
n

+
1

n + 1
+ · · ·+ 1

n + p− 1

for every p ∈ N, it follows that

sup {Q∆p,ξp
(f) | p ∈ N } = ∞.

Consequently, f is a singularity of Qn. By applying Theorem 4.1 we conclude that

Qn is not equicontinuous at the zero-element of C[0, 1], as claimed.

By virtue of Theorem 4.2 we deduce that all the sets SQn
(n ∈ N) are residual,

hence the set

S :=
∞⋂

n=1

SQn

is residual, too.

Since S ⊆ C[0, 1]\R̃S[0, 1], it follows that the set C[0, 1]\R̃S[0, 1] is residual,

whence of the second category, dense in C[0, 1] and with

card (C[0, 1] \ R̃S[0, 1]) ≥ ℵ.

2◦ The fact that R̃S[0, 1] is of the first category follows from assertion 1◦. On

the other hand, since R̃S[0, 1] contains the restrictions to [0, 1] of all polynomials, it

follows that R̃S[0, 1] is dense in C[0, 1]. �
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Remark. There is also another way to prove Theorem 5.1. The characteriza-

tion of the functions that are Riemann-Stieltjes integrable with respect to themselves

over [a, b], recalled at the beginning of this section, yields that R̃S[a, b] ⊆ CBV2[a, b],

where CBV2[a, b] denotes the set of all real-valued functions defined on [a, b] that

are continuous and of bounded variation of order 2. Taking into consideration that

CBV2[a, b] is a set of the first category in C[a, b] (see, for instance, [4, Corollary 2.8]),

it follows that R̃S[a, b] is also of the first category in C[a, b]. Apparently this proof

avoids the condensation of singularities, but in reality the property of CBV2[a, b] to

be of the first category in C[a, b] is a consequence of a principle of condensation of

the singularities of a family of nonnegative functions as shown in [4].
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[6] Djoković, D. Ž., A representation theorem for (X1 − 1)(X2 − 1) · · · (Xn − 1) and its

applications. Ann. Polon. Math. 22 (1969/1970), 189 – 198.

[7] Kurepa, S., On the quadratic functional. Publ. Inst. Math. Acad. Serbe Sci. 13 (1959),

57 – 72.

[8] McKiernan, A. M., On vanishing n-th ordered differences and Hamel bases. Ann. Polon.

Math. 19 (1967), 331 – 336.

29



WOLFGANG W. BRECKNER and TIBERIU TRIF

[9] Miculescu, R., A uniform boundedness principle type result. Math. Reports (Bucharest)

5 (55) (2003), 57 – 59.

[10] Pelczynski, A. and Rolewicz, S., Remarks on the existence of the Riemann-Stieltjes

integral. Colloq. Math. 5 (1957), 74–77.

[11] Sandberg, I. W., Multilinear maps and uniform boundedness. IEEE Trans. Circuits and

Systems CAS–32 (1985), 332 – 336.

[12] Smajdor, W., Subadditive and Subquadratic Set-Valued Functions. Katowice: Prace
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HOMOMORPHS WITH RESPECT TO WHICH ANY HALL
π-SUBGROUP OF A FINITE π-SOLVABLE GROUP IS A

PROJECTOR

RODICA COVACI

Dedicated to Professor Ştefan Cobzaş at his 60th anniversary

Abstract. Let π be a set of primes. The paper studies some special

homomorphs of finite π-solvable groups, proving that some of them are

Schunck classes. These homomorphs are used to give conditions on an

arbitrary homomorph X, such that any Hall π-subgroup of a finite π-

solvable group G to be an X-projector of G. Particularly, for π the set of

all primes, one obtain the converse of a result given by W. Gaschütz in [8].

1. Preliminaries

In [4] we gave conditions with respect to which any X-projector H of a finite

π-solvable group G in a Hall π-subgroup of G, where X is a π-closed Schunck class

with the P property. It is the aim of this paper to solve the converse problem: to

give conditions on an arbitrary homomorph X, such that any Hall π-subgroup H of

a finite π-solvable group G to be an X-projector of G. This problem leads us to the

study of some special homomorphs, some of them being Schunck classes.

All groups considered in this paper are finite. Let π be a set of primes, π′ the

complement to π in the set of all primes and Oπ′(G) the largest normal π′-subgroup

of a group G.

We first remind some useful definitions and theorems.

Definition 1.1. ([8], [11]) a) A class X of groups is a homomorph if X is

epimorphically closed, i.e. if G ∈ X and N is a normal subgroup of G, then G/N ∈ X.
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b) A group G is primitive if G has a stabilizer, i.e. a maximal subgroup H of

G with coreGH = {1}, where coreGH = ∩{Hg/g ∈ G}.

c) A homomorph X is a Schunck class if X is primitively closed, i.e. if any

group G, all of whose primitive factor groups are in X, is itself in X.

Definition 1.2. a) A positive integer n is said to be a π-number if for any

prime divisor p of n we have p ∈ π.

b) A finite group G is a p-group if |G| is a π-number.

Definition 1.3. ([6]) A group G is π-solvable if every chief factor of G is

either a solvable π-group or a π′-group. For π the set of all primes, we obtain the

notion of solvable group.

Definition 1.4. A class X of groups is said to be π-closed if

G/Oπ′(G) ∈ X ⇒ G ∈ X.

A π-closed homomorph, respectively a π-closed Schunck class is called π-

homomorph, respectively π-Schunck class.

Definition 1.5. ([7], [8]) Let X be a class of groups, G a group and H a

subgroup of G.

a) H is an X-maximal subgroup of G if:

i) H ∈ X;

ii) H ≤ H∗ ≤ G, H∗ ∈ X imply H = H∗.

b) H is an X-projector of G if, for any normal subgroup N of G, HN/N is

X-maximal in G/N .

c) H is an X-covering subgroup of G if:

i) H ∈ X;

ii) H ≤ K ≤ G, K0 C K, K/K0 ∈ X imply K = HK0.

Definition 1.6. ([3]) Let X be a class of groups. We say that X has the P

property if, for any π-solvable group G and for any minimal normal subgroup M of

G such that M is a π′-group, we have G/M ∈ X.

Theorem 1.7. ([1]) A solvable minimal normal subgroup of a finite group is

abelian.
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Theorem 1.8. ([8]) Let X be a class of groups, G a group and H a subgroup

of G. H is an X-projector of G if and only if:

a) H is an X-maximal subgroup of G;

b) HM/M is an X-projector of G/M , for all minimal normal subgroups M

of G.

Theorem 1.9. ([2]) a) Let X be a class of groups, G a group and H a

subgroup of G. If H is an X-covering subgroup of G or H is an X-projector of G,

then H is X-maximal in G.

b) If X is a homomorph and G is a group, then a subgroup H of G is an

X-covering subgroup of G if and only if H is an X-projector in any subgroup K of G

with H ⊆ K.

Theorem 1.10. Let X be a homomorph.

a) ([7]) If H is an X-covering subgroup of a group G and N is a normal

subgroup of G, then HN/N is an X-covering subgroup of G/N .

b) ([8]) If H is an X-projector of a group G and N is a normal subgroup of

G, then HN/N is an X-projector of G/N .

c) ([7]) If H is an X-covering subgroup of G and H ≤ K ≤ G, then H is an

X-covering subgroup of K.

Theorem 1.11. ([5]) Let X be a π-homomorph. The following conditions

are equivalent:

(1) X is a Schunck class;

(2) any π-solvable group has X-covering subgroups;

(3) any X-solvable group has X-projectors.

2. Some properties of the Hall π-subgroups in finite π-solvable groups

The Hall subgroups were introduced in [9], where Ph. Hall studied them in

finite solvable groups. In [6], S. A. Čunihin extended this study to finite π-solvable

groups.

Definition 2.1. Let G be a group and H a subgroup of G.

a) H is a π-subgroup of G if H is a π-group.

b) H is a Hall π-subgroup of G if:
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i) H is a π-subgroup of G;

ii) (|H|, |G : H|) = 1.

We shall use some properties of the Hall π-subgroups, which we give below.

Theorem 2.2. ([10]) Let G be a group and G a Hall π-subgroup of G.

a) If H ≤ K ≤ G, then H is a Hall π-subgroup of K.

b) If N is a normal subgroup of G, then HN/N is a Hall π-subgroup of G/N .

Theorem 2.3. (Ph. Hall, S. A. Čunihin) ([10]) If G is a π-solvable group,

then:

a) G has Hall π-subgroup and G has Hall π′-subgroups;

b) any two Hall π-subgroups of G are conjugate in G; any two Hall π′-

subgroups of G are conjugate in G too.

We now prove a consequence of theorems 2.2 and 2.3.

Theorem 2.4. Let G be a π-solvable group. If H is a Hall π-subgroup of G

and H∗ is a π-subgroup of G such that H ⊆ H∗, then H = H∗.

Proof. By 2.2.a), H is a Hall π-subgroup of H∗. But H∗ being a π-group

and |H∗| and |H∗ : H∗| = 1 being coprime, it follows that H∗ is a Hall π-subgroup of

H∗. Applying now 2.3.b), we obtain that H and H∗ are conjugate in H∗, i.e. there

is an element x ∈ H∗ such that H = (H∗)x = H∗. �

Finally we give a result proved in [4]:

Theorem 2.5. ([4]) Let G be a π-solvable group, H a subgroup of G and

N a normal subgroup of G. If HN/N is a Hall π-subgroup of G/N and H is a Hall

π-subgroup of HN , then H is a Hall π-subgroup of G.

3. Some useful homomorphs

Let π be an arbitrary set of primes. Of special interest for our considerations

will be the following classes of finite π-solvable groups:

Notations 3.1.

Wπ = {G/G finite π − solvable group};

Gπ = {G ∈ Wπ/Gπ − group};

Gπ′ = {G/Gπ′ − group};

Kπ = {G ∈ Wπ/Oπ′(G) 6= 1};
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Mπ = Wπ \Kπ = {G ∈ Wπ/Oπ′(G) = 1}.

Remark 3.2. Gπ ⊆ Mπ ⊆ Wπ.

We now give some properties of the above classes.

Theorem 3.3. Wπ is a π-Schunck class.

Proof. Wπ is a homomorph. Indeed, if G is a π-solvable group and N is a

normal subgroup of G, then G/N is a π-solvable group.

Wπ is π-closed, since if G/Oπ′ is a π-solvable group, then, observing that

Oπ′(G) is π-solvable, we deduce that G is π-solvable.

In order to prove that the π-homomorph Wπ is a Schunck class, it suffices to

notice that any π-solvable group G is its own Wπ-covering subgroup. Applying 1.11,

we obtain that Wπ is a Schunck class. �

Theorem 3.4. Gπ is a homomorph.

Proof. Let G ∈ Gπ and let N be a normal subgroup of G. Then G/N is

π-solvable and, |G/N | being a divisor of |G|, G/N is a π-group. So G/N ∈ Gπ. �

Theorem 3.5. a) Kπ consists of all π-solvable groups G for which there is

a minimal normal subgroup M of G, such that M is a π′-group.

b) Kπ is a homomorph.

Proof. a) Let G ∈ Kπ. It follows that G is π-solvable and Oπ′(G) 6= 1.

Hence there is a minimal normal subgroup M of G, such that M ⊆ Oπ′(G). So M is

a π′-group.

Conversely, if G is a π-solvable group and there is a minimal normal subgroup

M of G, such that M is a π′-group, then M ⊆ Oπ′(G) and so Oπ′(G) 6= 1.

b) Let G ∈ Kπ and let L be a normal subgroup of G. Then, G being π-

solvable, G/L is also π-solvable. Let us prove that Oπ′(G/L) 6= 1. Indeed, we notice

that Oπ′(G)L is normal in G and so Oπ′(G)L/L is normal in G/L. But Oπ′(G)L/L ∼=
Oπ′(G)/(Oπ′(G) ∩ L) is a π′-group. It follows that Oπ′(G)L/L ⊆ Oπ′(G/L). From

Oπ′(G) 6= 1 we deduce that Oπ′(G)L/L 6= 1 and so Oπ′(G/L) 6= 1. �

Theorem 3.6. Mπ consists of all π-solvable groups G for which any minimal

normal subgroup M of G is a solvable π-group.

Proof. Let G ∈ Mπ. Then G is a π-solvable group and Oπ′(G) = 1. Let

M be a minimal normal subgroup of G. G being π-solvable, M is either a solvable
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π-group or a π′-group. But π′-group implies M ⊆ Oπ′(G) = 1, hence M = 1, which

is a contradiction with the fact that M is a minimal normal subgroup of G. It follows

that M is a solvable π-group.

Conversely, let G be a π-solvable group, such that any minimal normal sub-

group M of G is a solvable π-group. This means that G has not minimal normal

subgroups which are π′-groups. We must prove that Oπ′(G) = 1. Suppose that

Oπ′(G) 6= 1. It follows that there is a minimal normal subgroup M of G, such that

M ⊆ Oπ′(G). So M is a π′-group, in contradiction with the above. �

Theorem 3.7. a) Gπ′ ⊆ Wπ;

b) Gπ′ is a π-Schunck class. Furthermore, for any finite π-solvable group G,

H is an Gπ′-covering subgroup of G if and only if H is a Hall π′-subgroup of G.

Proof. Let G be a π′-group. Then any chief factor M/N of G is a π′-group.

Hence G is π-solvable.

b) We prove that Gπ′ is a Schunck class using theorem 1.11. In [5], we proved

that Gπ′ is a π-homomorph and that a subgroup H of a π-solvable group G is an

Gπ′ -covering subgroup of G if and only if H is a Hall π′-subgroup of G. So, by 1.11,

Gπ′ is a π-Schunck class.

As a new fact, by using the properties given in 2.2 and 2.5, we give here a

new proof of the following result: If G is a π-solvable group and H is an Gπ′ -covering

subgroup of G, then H is a Hall π′-subgroup of G.

Let G be a π-solvable group and H an Gπ′ -covering subgroup of G. We prove,

by induction on |G|, that H is a Hall π′-subgroup of G. Two cases are possible:

1) H = G. Then the result is obvious.

2) H 6= G. Let M be a minimal normal subgroup of G. By 1.10.a), HM/M is

an Gπ′ -covering subgroup of G/M , hence, by induction, HM/M is a Hall π′-subgroup

of G/M . By 1.10.c), H is an Gπ′ -covering subgroup of HM . We now consider two

cases:

a) HM 6= G. By the induction, H is a Hall π′-subgroup of HM . Then, by

2.5, H is a Hall π′-subgroup of HM . Then, by 2.5, H is a Hall π′-subgroup of G.
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b) HM = G. Then HM/M = G/M . But HM/M being a Hall π′-subgroup

of G/M , we obtain that G/M is a π′-group. We prove that |G : H| is a π-number. For

the minimal normal subgroup M of the π-solvable group G we have two possibilities:

b1) M is a solvable π-group. Then |G : H| = |HM : H| = |M : M ∩ H|

divides |M | and so |G : H| is a π-number.

b2) M is a π′-group. Then |G| = |G/M ||M | is a π′-number. So G ∈ Gπ′ .

But H being an Gπ′ -covering subgroup of G, it follows that H is Gπ′ -maximal in G.

Then H = G, in contradiction with our assumption. �

The last results of this section refer to the connection of the classes Kπ and

Mπ to the π-homomorphs with the P property studied in [3].

Theorem 3.8. If X is a π-homomorph with the P property, then Kπ ⊆ X.

Proof. Let G ∈ Kπ. By 3.5.a), G is π-solvable and there is a minimal normal

subgroup M of G, such that M is a π′-group. Then M ⊆ Oπ′(G), hence

G/Oπ′(G) ∼= (G/M)(Oπ′(G)/M). (1)

But X has the P property and so G/M ∈ X and X being a homomorph we

deduce from (1) that G/Oπ′(G) ∈ X. By the π-closure of X, G ∈ X. So Kπ ⊆ X. �

Theorem 3.9. If X is a π-homomorph, such that X ⊆ Mπ, then X has not

the P property.

Proof. Suppose that X has the P property. Then, by 3.8, we have Kπ ⊆ X.

But X ⊆ Mπ. We obtain the contradiction Kπ ⊆ Mπ, where Mπ = Wπ \Kπ. �

4. When are the Hall π-subgroups projectors in finite π-solvable groups

In [4], we gave conditions with respect to which an X-projector H of a finite

π-solvable G is a Hall π-subgroup of G, where X is a π-closed Schunck class with the

P property.

Here we study the converse problem: to find conditions on the Schunck class

X, such that any Hall π-subgroup H of a finite π-solvable group G to be an X-

projector of G.

The main result is the following:

57



RODICA COVACI

Theorem 4.1. Let X be a homomorph, such that Gπ ⊆ X ⊂ Mπ. If G is a

finite π-solvable group and H is a Hall π-subgroup of G, then H is an X-projector of

G.

Proof. By induction on |G|. Let G be a finite π-solvable group and H a Hall

π-subgroup of G (H exists by 2.3.a)). We shall prove that H is an X-projector of G,

by verifying conditions (a) and (b) from theorem 1.8.

a) H is X-maximal in G. Indeed, we shall prove below (i) and (ii) from

1.5.a).

i) H ∈ X, since H being a Hall π-subgroup of G we have H ∈ Gπ ⊆ X.

ii) H ≤ H∗ ≤ G, H∗ ∈ X imply H = H∗. In order to show this, we consider

two cases:

α) H∗ 6= G. In this case, |H∗| < |G| and H being by 2.2.a) a Hall π-subgroup

of H∗, we may apply the induction and obtain that H is an X-projector of H∗, hence,

by 1.9.a), H is X-maximal in H∗. But H∗ ∈ X. So H = H∗.

β) H∗ = G. Then G ∈ X ⊂ Mπ. So we distinguish two cases:

β1) There is a minimal normal subgroup M of G, such that M ⊆ H. By

2.2.b), H/M is a Hall π-subgroup of G/M . We notice that |G/M | < |G|. It follows

by the induction that H/M is an X-projector of G/M , hence, by 1.9.a), H/M is

X-maximal in G/M . But, X being a homomorph, G ∈ X implies G/M ∈ X. So

H/M = G/M , hence H = G = H∗.

β2) For any minimal normal subgroup N of G, we suppose that N is not

included in H. Since G ∈ Mπ, there is a minimal normal subgroup M of G, such

that M is a solvable π-group. Then, by 1.7, M is abelian. We also have that M is

not included in H.

By 2.2.b), HM/M is a Hall π-subgroup of G/M . By the induction, HM/M

is an X-projector of G/M , hence HM/M is X-maximal in G/M . But, X being a

homomorph, G ∈ X implies G/M ∈ X. So HM/M = G/M , hence HM = G.

Let us prove that H ∩M is normal in G. Let g ∈ G and x ∈ H ∩M . Since

HM = G, we have that g = hm, where h ∈ H, m ∈ M . Then

g−1xg = (hm)−1x(hm) = (m−1h−1)x(hm) = m−1(h−1xh)m
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= m−1m(h−1xh) = h−1xh ∈ H ∩M,

where we applied that H ∩M is normal in H and that M is abelian. So H ∩M is

normal in G. Furthermore, since M is not included in H, we have H ∩M 6= M and

M being a minimal normal subgroup of G, it follows that H ∩M = 1.

Finally we have

G/M = HM/M ∼= H/M ∩M = H/1 ∼= H,

which implies that |G/M | = |H| and so G/M is a π-group. But M is a π-group too.

So G is a π-group. But H is a Hall π-subgroup of G. Then, by 2.4, H = G = H∗.

Condition a) is proved.

b) HN/M is an X-projector of G/M , for all minimal normal subgroups M of

G. Indeed, if M is a minimal normal subgroup of G, then by applying the induction

for the π-solvable group G/M , with |G/M | < |G|, and for its Hall π-subgroup HM/M

(see 2.2.b)), we obtain that HM/M is an X-projector of G/M . �

Remark. Particularly, for π the set of all primes, theorem 4.1 represents the

converse of a result given by W. Gaschütz in [8].

From the proof of theorem 4.1 we notice that this theorem can also be given

in the following form:

Theorem 4.2. Let X be a homomorph, such that X ⊂ Mπ. If G is a finite

π-solvable group and H is a Hall π-subgroup of G, such that we have H ∈ X, then H

is an X-projector of G.

Theorem 4.1 has the following important consequence:

Theorem 4.3. Let X be a homomorph, such that Gπ ⊆ X ⊂ Mπ. If G is

a finite π-solvable group and H is a Hall π-subgroup of G, then H is an X-covering

subgroup of G.

Proof. We use theorem 1.9.b). Let K be a subgroup of G, such that H ⊆ K.

We prove that H is an X-projector of K. By 2.2.a), H is a Hall π-subgroup of K.

As a subgroup of the π-solvable group G, K is also a π-solvable group. Applying now

theorem 4.1, H is an X-projector of K. �
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ON CERTAIN PROPERTIES OF THE FRÉCHET
DIFFERENTIAL OF HIGHER ORDER

ADRIAN DIACONU

Dedicated to Professor Ştefan Cobzaş at his 60th anniversary

Abstract. In this paper we propose to give detailed proofs for different

generalizations of the Leibnitz formula for the calculation of the derivative

of the order n, with n ∈ N, of the functions’ product. We will consider the

Fréchet derivative of certain composed functions with the help of certain

multilinear mappings.

1. Introduction

The idea of this paper has its origin the well-known Leibniz’s formula con-

cerning the calculation of the derivative of the product of two real functions with real

variables.

So, given the number n ∈ N, the interval I ⊆ R and the functions f, g : I → R

that have the derivative of the order n, then the product function fg : I → R admits

the derivative of the order n as well, and:

(fg)(n) =
n∑

k=0

(
n

k

)
f (n−k)g(k), where

(
n

k

)
=

n!
k! (n− k)!

,

for any function h : I → R, h(i) : I → R represents the derivative of the order i of the

considered mapping.

A first generalization of this formula appears by considering the case of m

functions with m ∈ N, f1, . . . , fm : I → R. In this way, if these functions have

Received by the editors: 20.03.2006.

2000 Mathematics Subject Classification. 37D06.

Key words and phrases. Fréchet differential, multilinear mapping.
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derivatives of the order n, the same fact is true for the product function f1 . . . fm :

I → R and:

(f1 . . . fm)(n) =
∑

α1+···+αm=n

n!
α1! . . . αm!

f
(α1)
1 . . . f (αm)

m .

We can raise the issue of extending these formulas to the case of using func-

tions defined between linear normed spaces.

Of course in this case it is necessary to find a ”substitute” for the notion of

product, but it will be necessary to specify the definition used for the extension of

the notion of derivative.

To begin with, we have:

Remark 1.1. For the linear normed spaces (X, ‖·‖X) and (Y, ‖·‖Y ) let us denote by

(X, Y )∗ the set of the linear and continuous mappings T : X → Y. The set (X, Y )∗ can

be organized as a linear normed space with the usual operations that are the mappings’

addition and multiplication with a real number, and the norm that for T ∈ (X, Y )∗ is

defined through:

‖T‖ = sup
h∈X,‖h‖X=1

‖T (h)‖Y .

It is easy to show that if (Y, ‖·‖Y ) is a Banach space, then the space(
(X, Y )∗ , ‖·‖

)
is a Banach space as well.

Let us recall the following definition.

Definition 1.2. Let be given the linear normed spaces (X, ‖·‖X) and (Y, ‖·‖Y ) , the

set D ⊆ X, the function f : D → Y and the point x ∈ int (D) .

The considered function is differentiable in the point x in the Fréchet meaning that

there exists a linear and continuous mapping Tx ∈ (X, Y )∗ and a mapping Rx : X →

Y with:

lim
h→θX

‖Rx (h)‖Y = 0

so that for every h ∈ X the equality:

f (x + h)− f (x) = Tx (h) + ‖h‖X Rx (h)

is true.
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Now we have:

Remark 1.3. For the linear normed spaces (X, ‖·‖X) , (Y, ‖·‖Y ) and a fixed element

x ∈ X let be the set:

Dx (X, Y ) = {f/∃D D ⊆ X, x ∈ int (D) , f : D → Y, f differentiable at x} .

We can easily prove that if f ∈ Dx (X, Y ) the mapping Tx ∈ (X, Y )∗ exists with a

unique determination. We will denote:

f ′ (x) := Tx

and this mapping will be called a Fréchet differential of the mapping f in the point x.

Starting from the definition 1.2 and using the successive differentiation and

mathematical induction, we can introduce differentials of an order n, where n ∈ N.

In order to clarify these questions, for m ∈ N we denote by
(
X(m), Y

)∗
the

set of the m−linear and continuous mappings which are defined from Xm to Y, where

Xm = X × · · · ×X︸ ︷︷ ︸
m times

.

We have:

Remark 1.4. For any m ∈ N, the set
(
X(m), Y

)∗
can also be organized as a linear

normed space using the mapping’s addition and multiplication with a number. The

norm in
(
X(m), Y

)∗
for T ∈

(
X(m), Y

)∗
is defined through:

‖T‖ = sup
h1,...,hn∈X,‖h1‖X=···=‖hn‖X=1

‖T (h1, . . . , hn)‖Y ,

in addition, if (Y, ‖·‖Y ) is a Banach space,
(
X(m), Y

)∗
is a Banach space as well.

Therefore we have:

Definition 1.5. In addition to the facts from the definition 1.2 let us consider a

number n ∈ N, n ≥ 2. If:

a): there exists a neighbourhood V of the points x, so that for every y ∈ V ∩D

it exists the differential of the order n− 1 of the function f at the point y

and f (n−1) (y) ∈
(
X(n−1), Y

)∗
,
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b): the function f (n−1) : V ∩D →
(
X(n−1), Y

)∗
is also differentiable at the

point x,

then
(
f (n−1)

)′
(x) ∈

(
X(n), Y

)∗
, mapping which we will denote by f (n) (x) is

called the differential of the order n of the function f at the point x.

It is necessary to remind one more case. Let us consider the linear normed

spaces: (
X1, ‖·‖X1

)
, . . . ,

(
Xm, ‖·‖Xm

)
, (Y, ‖·‖Y )

and a mapping T : X1 × . . . × Xm → Y. We can say that this mapping is an

m−linear and continuous mapping, if this mapping is linear and continuous after

every argument.

We denote by (X1, . . . , Xm;Y )∗ the set of all mappings that verify the afore-

mentioned properties.

For h = (h1, . . . , hm) ∈ X1 × . . . ×Xm we can define:

‖h‖ = max
{
‖h1‖X1

, . . . , ‖hm‖Xm

}
and so

(
(X1, . . . Xm;Y )∗ , ‖·‖

)
is a linear normed space. In the case if (Y, ‖·‖Y ) is a

Banach space, then
(
(X1, . . . Xm;Y )∗ , ‖·‖

)
is a Banach space as well.

2. A generalization of Leibnitz’s formula of derivation

Let us consider the linear normed spaces:

(X, ‖·‖X) ,
(
Y1, ‖·‖Y1

)
, . . . ,

(
Ym, ‖·‖Ym

)
, (Z, ‖·‖Z) ,

the set D ⊆ X, the nonlinear mappings fi : D → Yi; i = 1,m and the m− linear

mapping L ∈ (Y1, . . . , Ym;Z)∗ .

With the help of these elements we build the function:

F : D → Z, F (x) = L (f1 (x) , . . . , fm (x)) . (1)

Our goal is to conclude, in the hypothesis of the differentiability of the func-

tions fi : D → Yi; i = 1,m, on the differentiability of the function (1) establishing

connections between the differentials.
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To start with, we have the following:

Lemma 2.1. If the non-linear mappings fi : D → Yi; i = 1,m, are differentiable at

the point x ∈ int (D) , then the function (1) is also differentiable at the same point x

and for any h ∈ X we have the relation:

F ′ (x)h =

=
m∑

k=1

L (f1 (x) , . . . , fk−1 (x) , f ′k (x) h, fk+1 (x) , . . . , fm (x)) .
(2)

Proof. From the differentiability of the functions fi : D → Yi; i = 1,m at

the point x ∈ int (D) we deduce the existence, for any i ∈ {1, 2, . . . ,m} , of the linear

mappings f ′i (x) ∈ (X, Yi)
∗ and of the non-linear mappings R

(i)
x : X → Yi, so that for

any h ∈ X we have:

fi (x + h) = fi (x) + f ′i (x) h + ‖h‖X R(i)
x (h) , lim

h→θX

∥∥∥R(i)
x (h)

∥∥∥
Yi

= 0.

So it is clear that:

F (x + h) = L (f1 (x + h) , . . . ., fm (x + h))

is in fact the value of the mapping L ∈ (Y1, . . . , Ym;Z)∗ on the arguments:

f1 (x) + f ′1 (x) h + ‖h‖X R(1)
x (h) , . . . , fm (x) + f ′m (x) h + ‖h‖X R(m)

x (h) .

In this way:

F (x + h) = L (f1 (x) , . . . , fm (x))+

+
m∑

k=1

L (f1 (x) , . . . , fk−1 (x) , f ′k (x) h, fk+1 (x) , . . . , fm (x))+

+ ‖h‖X

m∑
k=1

L
(
f1 (x) , . . . , fk−1 (x) , R

(k)
x (h) , fk+1 (x) , . . . , fm (x)

)
+

+
m∑

k=2

∑
1≤i1<···<ik≤m

E
(k)
i1,...,ik

(f ;x, h) ,
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where E
(k)
i1,...,ik

(f ;x, h) ∈ Z represents the value of the mapping L ∈ (Y1, . . . , Ym;Z)∗

on the arguments f1 (x) , . . . , fm (x) , with the exception of the positions i1, . . . , ik ∈

{1, 2, . . . ,m} for which we have the arguments:

f ′ij
(x) h + ‖h‖X R(ij)

x (h) , j = 1, k; k = 2,m.

It is clear that if we define F ′ (x) ∈ (X, Z)∗ , through the equality (2) , and

the mapping Rx : X → Z through:

Rx (h) =


θZ for h = θX ,

P (x, h) +
1

‖h‖X

Q (x, h) for h 6= θX ,

where we have denoted:

P (x, h) =
m∑

k=1

L
(
f1 (x) , . . . , fk−1 (x) , R(k)

x (h) , fk+1 (x) , . . . , fm (x)
)
∈ Z

and:

Q (x, h) =
m∑

k=2

∑
1≤i1<···<ik≤m

E
(k)
i1,...,ik

(f ;x, h) ∈ Z,

we will have:

F (x + h)− F (x) = F ′ (x)h + ‖h‖X Rx (h) . (3)

It is clear that:

‖P (x, h)‖Z ≤ ‖L‖
m∑

k=1

∥∥∥R(k)
x (h)

∥∥∥
Yk

·
∏

j=1,m;j 6=k

‖fj (x)‖Yj


and from lim

h→θX

∥∥∥R
(k)
x (h)

∥∥∥
Yk

= 0 we deduce:

lim
h→θX

‖P (x, h)‖Z = 0. (4)

Concerning the expression of Q (x, h) we deduce:

‖Q (x, h)‖Z ≤
m∑

k=2

∑
1≤i1<···<ik≤m

∥∥∥E
(k)
i1,...,ik

(f ;x, h)
∥∥∥

Z
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and for any k ∈ {2, 3, . . . ,m} and i1, . . . , ik ∈ {1, 2, . . . ,m} with 1 ≤ i1 < · · · < ik ≤ m

we have: ∥∥∥E
(k)
i1,...,ik

(f ;x, h)
∥∥∥

Z
≤

≤ ‖L‖ ·
∏

j∈{1,...,m}�{i1,...,ik}

‖fj (x)‖Yj
×

k∏
j=1

∥∥∥f ′ij
(x) h + ‖h‖X R

(ij)
x (h)

∥∥∥
Yij

≤

≤ ‖L‖ · ‖h‖k
X ·C(k)

i1,...,ik
(x, h) ,

where:

C(k)
i1,...,ik

(x, h) =
∏

j∈{1,...,m}�{i1,...,ik}

‖fj (x)‖Yj
×

k∏
j=1

(∥∥∥f ′ij
(x)

∥∥∥ +
∥∥∥R(ij)

x (h)
∥∥∥

Yij

)
From the differentiability of the functions f1, . . . , fm we deduce clearly that:

lim
h→θX

C(k)
i1,...,ik

(x, h) =
∏

j∈{1,...,m}�{i1,...,ik}

‖fj (x)‖Yj
×

k∏
j=1

∥∥∥f ′ij
(x)

∥∥∥ . (5)

We have:

‖Q (x, h)‖Z ≤ ‖L‖ · ‖h‖X

m∑
k=2

‖h‖k−1
X

∑
1≤i1<···<ik≤m

C(k)
i1,...,ik

(x, h)

and from this relation we deduce for any h 6= θX the inequalities:

0 ≤ ‖Rx (h)‖Z ≤

≤ ‖P (x, h)‖Z + ‖L‖ · ‖h‖X

m∑
k=2

‖h‖k−1
X

∑
1≤i1<···<ik≤m

C(k)
i1,...,ik

(x, h)
(6)

From the relations (4)− (6) we deduce that:

lim
h→θX

‖Rx (h)‖Z = 0. (7)

The relations (3) and (7) indicate that the function (1) has a differential at

the point x ∈ int (D) and its value is given through the formula (2) .

The lemma is proved. �

In order to pass to the expression of the differential of an order n ∈ N it is

necessary to make certain specifications and to adopt certain notations.
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To begin with, let be the set:

Am,n = {α/ α = (α1, . . . , αm) ∈ (N∪{0})m
, α1 + · · ·+ αm = n} .

In certain cases we can use the notation |α| for α1 + · · ·+ αm.

Considering a finite set K ⊆ N, for a number p ∈ N we can consider the set:

Cp (K) = { i/ i = (i1, . . . , ip) ∈ Kp, i1 < · · · < ip} ,

evidently Cp (K) represents the set of all subsets with p elements of the set K.

Evidently in the case in which the set K has q elements and p ≤ q, then the

set Cp (K) has
(

q
p

)
= q!

p!(q−p)! elements, and if p > q the set Cp (K) is a void set.

In the special case in which K = {1, 2, . . . , n} , we will use the notation Cn,k

for Ck (K) , with k ≤ n and evidently this set has
(
n
k

)
= n!

k!(n−k)! elements.

Let us consider now the finite set K ⊆ N having n elements and we will build

the sets J0, J1, . . . , Jm ⊆ K considering J0 = K. Let us also consider for m ∈ N a

system α = (α1, . . . , αm) ∈ Am,n.

Starting from these elements let us make the following construction.

To start with, we choose a system
(
i
(1)
1 , . . . , i

(1)
α1

)
∈ Cα1 (J0) .

Let be now the set J1 = J0�
{

i
(1)
1 , . . . , i

(1)
α1

}
that has n − α1 elements. We

choose a new system: (
i
(2)
1 , . . . , i(2)α2

)
∈ Cα2 (J1) .

So there exist
(
n−α1

α2

)
= (n−α1)!

α2!(n−α1−α2)!
possibilities for the choice of this new

system.

Further on, for the systems
(
i
(1)
1 , . . . , i

(1)
α1

)
and

(
i
(2)
1 , . . . , i

(2)
α2

)
that are chosen

above and are fixed we consider the set J2 = J1�
{

i
(2)
1 , . . . , i

(2)
α2

}
with n − α1 − α2

elements, then we choose a new system:(
i
(3)
1 , . . . , i(3)α3

)
∈ Cα3 (J2) ,

existing
(
n−α1−α2

α3

)
= (n−α−α2)!

α3!(n−α1−α2−α3)!
possibilities for the choice of this new system.

We continue in this manner using mathematical induction.
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Thus for the systems
(
i
(1)
1 , . . . , i

(1)
α1

)
, . . . ,

(
i
(k−1)
1 , . . . , i

(k−1)
αk−1

)
already cho-

sen and fixed, we consider the set:

Jk−1 = Jk−2�
{

i
(k−1)
1 , . . . , i

(k−1)
αk−1

}
=

= {1, 2, . . . , n}�
{

i
(1)
1 , . . . , i

(1)
α1 , . . . , i

(k−1)
1 , . . . , i

(k−1)
αk−1

}
,

that has n−α1−· · ·−αk−1 elements and we choose the new system
{

i
(k)
1 , . . . , i

(k)
αk

}
∈

Cαk
(Jk−1) existing

(
n−α1−···−αk−1

αk

)
= (n−α1−···−αk−1)!

αk!(n−α1−···−αk−1−αk)! possibilities for the

choice of the new system.

At the end of this process we have already chosen and fixed the systems:(
i
(1)
1 , . . . , i(1)α1

)
, . . . ,

(
i
(m−1)
1 , . . . , i(m−1)

αm−1

)
we consider the set:

Jm−1 = Jm−2�
{

i
(m−1)
1 , . . . , i

(m−1)
αm−1

}
=

= {1, 2, . . . , n}�
{

i
(1)
1 , . . . , i

(1)
α1 , . . . , i

(m−1)
1 , . . . , i

(m−1)
αm−1

}
,

and we choose the new system
(
i
(m)
1 , . . . , i

(m)
αm

)
∈ Cαm

(Jm−1) existing

(
n−α1−···−αm−1

αm

)
=

(n− α1 − · · · − αm−1)!
αm! (n− α1 − · · · − αm−1 − αm)!

possibilities for the choice of the new system.

If we consider:

Jm = Jm−1�
{

i
(m)
1 , . . . , i(m)

αm

}
this set has n − α1 − · · · − αm−1 − αm = 0 elements, therefore Jm = ∅ and so the

process is finished.

We denote by

I =
((

i
(1)
1 , . . . , i(1)α1

)
, . . . ,

(
i
(m)
1 , . . . , i(m)

αm

))
a system composed of systems obtained through the process already presented.

For the numbers m,n ∈ N and α ∈ Am,n fixed, let us denote through

A[α]
m,n (K) the set of all systems built in the manner already indicated.

It is clear that the number of elements of the set A[α]
m,n (K) is n!

α1! ... αm! .
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In the case in which K = {1, 2, . . . , n} , we will use the notation A[α]
m,n for

A[α]
m,n ({1, 2, . . . , n}) .

We can now enunciate the following:

Remark 2.2. With the hypotheses of the lemma 2.1 the relation concerning the

value of F ′ (x) h can be written under the form:

F ′ (x) h =
∑

α∈Am,1

∑
I∈A[α]

m,1

L
(
f

(α1)
1 (x) h

i
(1)
1

. . . h
i
(1)
α1

, . . . , f (αm)
m (x) h

i
(m)
1

. . . h
i
(m)
αm

)

with h1 = h.

Indeed, the fact that α ∈ Am,1 means that α ∈ (α1, . . . , αm) ∈ (N∪{0})m (

therefore αi ∈ N∪{0} for any i = 1,m) with |α| = α1 + · · · + αm = 1, so we deduce

that there exists a number k ∈ {1, 2, . . . ,m} , so that:

αi =


0 for i 6= k,

1 for i = k,

so the only possibility for the choice of

I =
((

i
(1)
1 , . . . , i(1)α1

)
, . . . ,

(
i
(m)
1 , . . . , i(m)

αm

))
=

(
i
(k)
1 , . . . , i(k)

αk

)
= i

(k)
1 ∈ A[α]

m,1

is i
(k)
1 )1 and because h1 = h, it is clear that:

L
(
f

(α1)
1 (x) h

i
(1)
1

. . . h
i
(1)
α1

, . . . , f
(αm)
m (x) h

i
(m)
1

. . . h
i
(m)
αm

)
=

= L (f1 (x) , . . . , fk−1 (x) , f ′k (x) h, fk+1 (x) , . . . , fm (x)) ,

which justifies the proposition from this remark.

Taking into account the remark 2.2 as well, we are now able to establish

the theorem concerning the values of the differential of the order n of the non-linear

mapping (1) .

Thus we have:

Theorem 2.3. If for n ∈ N the non-linear mappings fi : D → Yi, i = 1,m admit a

differential of the order n at the point x ∈ int (D) , then the non-linear mapping (1)
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also admits a differential of the order n at the same point x and:

F (n) (x) h1 . . . hn =

=
∑

α∈Am,n

∑
I∈A[α]

m,n

L
(
f

(α1)
1 (x) h

i
(1)
1

. . . h
i
(1)
α1

, . . . , f
(αm)
m (x) h

i
(m)
1

. . . h
i
(m)
αm

)
.

Proof. We will proceed through mathematical induction after n ∈ N.

For n = 1 the proposition is true on account of the lemma 2.1 and of the

remark 2.2.

We suppose therefore that the property in discussion is true for a number

n ∈ N. We will prove that this property is true for n substituted by n + 1.

Therefore we consider that the non-linear mappings fi : D → Yi, i = 1,m

admit at the point x ∈ int (D) differentials with the order n + 1. On the basis of

the definition there exists a neighbourhood V of the point x, so that the functions

fi : D → Yi, i = 1,m admit differentials of the order n at every point u ∈ V ∩D.

On the basis of the hypothesis of the induction we deduce that the function

F : D → Z defined through (1) also admits a differential of the order n at the point

u ∈ V ∩ D and the equality in the conclusion of the theorem takes place with x

replaced by u.

Choosing therefore h1 ∈ X so that x + h1 ∈ V ∩ D and arbitrarily

h2, . . . , hn, hn+1 ∈ X the equality in the conclusion of the theorem will be true

for h1, . . . , hn replaced by h2, . . . , hn+1 and A[α]
m,n by A[α]

m,n ({2, . . . , n + 1}) and there

will be another similar equality but with x replaced by x + h1.

Subtracting these equalities member by member we obtain:

[
F (n) (x + h1)− F (n) (x)

]
h2 . . . hn+1 =

=
∑

α∈Am,n

∑
I∈A[α]

m,n({2,...,n+1})

L(I)
α (x;h1, h2, . . . , hn+1) ,
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where:

L(I)
α (x;h1, h2, . . . , hn+1) =

= L
(
f

(α1)
1 (x + h1) h

i
(1)
1

. . . h
i
(1)
α1

, . . . , f
(αm)
m (x + h1) h

i
(m)
1

. . . h
i
(m)
αm

)
−

−L
(
f

(α1)
1 (x) h

i
(1)
1

. . . h
i
(1)
α1

, . . . , f
(αm)
m (x) h

i
(m)
1

. . . h
i
(m)
αm

)
,

in the last expression α = (α1, . . . , αm) ∈ Am,n and:

I =
((

i
(1)
1 , . . . , i(1)α1

)
, . . . ,

(
i
(m)
1 , . . . , i(m)

αm

))
∈ A[α]

m,n ({2, . . . , n + 1}) . (8)

Let be the number i ∈ {1, 2, . . . ,m} . From the existence of the Fréchet dif-

ferential of the order n + 1 of the function fi : D → Yi at the point x ∈ int (D) we

deduce the existence of these differentials for every k ≤ n + 1.

From this fact we deduce that for any k ≤ n and h1 ∈ X there exists R
(k,i)
x :

X →
(
X(k), Yi

)∗
with lim

h1→θX

∥∥∥R
(k,i)
x (h1)

∥∥∥ = 0 so that:

f
(k)
i (x + h1) = f

(k)
i (x) + f

(k+1)
i (x)h1 + ‖h1‖X R(k,i)

x (h1) . (9)

From α ∈ Am,n we deduce that α = (α1, . . . , αm) ∈ (N∪{0})m and |α| =

α1 + · · ·+ αm = n, therefore αi ∈ {0, 1, . . . , n} . So the relation (9) is true for k = αi.

Using a similar process with that from the lemma 2.1 and taking into ac-

count the remark 2.2, we obtain for α ∈ Am,n and I ∈ A[α]
m,n the equality:

L(I)
α (x;h1, h2, . . . , hn+1) =

=
∑

β∈Am,1

∑
J∈A[β]

m,1

L
(
T

(α,β;I,J)
1 , . . . , T

(α,β;I,J)
m

)
+

+ ‖h1‖X R(I)
α (x;h1, h2, . . . , hn+1) ,

(10)

with β ∈ Am,1 (therefore β = (β1, . . . , βm) ∈ (N∪{0})m and |β| = β1 + · · ·+βm = 1),

while:

J =
((

j
(1)
1 , . . . , j

(1)
β1

)
, . . . ,

(
j
(m)
1 , . . . , j

(m)
βm

))
∈ A[β]

m,1 = A[β]
m,1 ({1}) , (11)
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where for k = 1,m we have denoted:

T
(α,β;I,J)
k =

(
f

(αk)
k

)(βk)

(x) h
j
(k)
1

. . . h
j
(k)
βk

h
i
(k)
1

. . . h
i
(k)
αk

=

= f
(αk+βk)
k (x) h

j
(k)
1

. . . h
j
(k)
βk

h
i
(k)
1

. . . h
i
(k)
αk

.

The element R(I)
α (x;h1, h2, . . . , hn+1) ∈ Z has the value θZ in the case in

which h1 = θX and the value that is deductible from (10) for h1 6= θX .

So: [
F (n) (x + h1)− F (n) (x)

]
h2 . . . hn+1 =

= E (x;h1, h2, . . . , hn, hn+1) + ‖h1‖X R (x;h1, h2, . . . , hn, hn+1) ,

(12)

where:

E (x;h1, h2, . . . , hn, hn+1) =

=
∑

α∈Am,n

∑
I∈A[α]

m,n({2,...,n+1})

∑
β∈Am,1

∑
J∈A[β]

m,1

L
(
T

(α,β;I,J)
1 , . . . , T

(α,β;I,J)
m

)
,

(13)

while:

R (x;h1, h2, . . . , hn, hn+1) =

=


θZ , for h1 = θX ,[
F (n) (x + h1)− F (n) (x)

]
h2 . . . hn+1 − E (x;h1, . . . , hn+1)
‖h1‖X

for h1 6= θX .

It is clear that for h1 6= θX we have:

R (x;h1, h2, . . . , hn, hn+1) =

=
∑

α∈Am,n

∑
I∈A[α]

m,n({2,...,n+1})

R(I)
α (x;h1, h2, . . . , hn, hn+1) .

(14)

Now let be:

γ = (γ1, . . . , γm) = α + β = (α1 + β1, . . . , αm + βm) ∈ (N∪{0})m
.

Because |α| = n and |β| = 1 we deduce that:

|γ| = γ1 + · · ·+ γm = (α1 + · · ·+ αm) + (β1 + · · ·+ βm) = |α|+ |β| = n + 1,
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therefore γ ∈ Am,n+1.

For the system I which verifies (8) and the system J which verifies (11) , let

us introduce:(
s
(k)
1 , . . . , s(k)

γk

)
=

(
j
(k)
1 , . . . , j

(k)
βk

, i
(k)
1 , . . . , i(k)

αk

)
; k = 1,m

and:

S =
((

s
(1)
1 , . . . , s(1)

γ1

)
, . . . ,

(
s
(m)
1 , . . . , s(m)

γm

))
. (15)

Because β ∈ Am,1 we deduce that there exists a number r ∈ {1, . . . ,m} so

that:

βi =

 0 for i 6= r,

1 for i = r,

so the only possibility for the choosing of the index system:

J =
((

j
(1)
1 , . . . , j

(1)
β1

)
, . . . ,

(
j
(m)
1 , . . . , j

(m)
βm

))
=

(
j
(r)
1 , . . . , j

(r)
βr

)
=

=
(
j
(r)
1

)
∈ A[β]

m,1 ({1}) ,

is j
(k)
1 = 1.

Form here we deduce that the systems from S are identical with a system

I ∈ A[α]
m,n ({2, . . . , n + 1}) ( having the form (11)) except the subsystem situated on

the position r. To this subsystem we add the element 1 on its first position. This

indicates that S ∈ A[γ]
m,n+1.

Through the aforementioned process starting with the elements α ∈ Am,n,

β ∈ Am,1, I ∈ A[α]
m,n ({2, . . . , n + 1}) and J ∈ A[β]

m,1 ({1}) we obtain a γ ∈ Am,n+1

together with S ∈ A[γ]
m,n+1.

The inverted process starting from γ ∈ Am,n+1 together with S ∈ A[γ]
m,n+1 ex-

ists with a unique determination, a α ∈ Am,n together with I ∈ A[α]
m,n ({2, . . . , n + 1})

and J ∈ A[β]
m,1 ({1}) , so that we obtain the systems from S through (15) , the systems

I and J having the forms (8) and (11) respectively.

So it is clear that for any k = 1,m we have:

T
(α,β;I,J)
k = f

(γk)
k (x) h

s
(k)
1

. . . h
s
(k)
γk
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and from (13) we deduce that:

E (x;h1, h2, . . . , hn, hn+1) =
∑

γ∈Am,n+1

∑
S∈A[γ]

m,n+1

L(S)
γ , (16)

where:

L(S)
γ = L

(
f

(γ1)
1 (x) h

s
(1)
1

. . . h
s
(1)
γ1

, . . . , f (γm)
m (x) h

s
(m)
1

. . . h
s
(m)
γm

)
. (17)

Let us denote:

Hn,X = {h/ h = (h1, . . . , hn) ∈ Xn, ‖h1‖X = · · · = ‖hn‖X = 1}

and let us now evaluate ‖R (x;h1, h2, . . . , hn, hn+1)‖Z supposing that (h2, . . . , hn+1) ∈

Hn,X which means that ‖h2‖X = · · · = ‖hn+1‖X = 1.

First we notice that for any h1 6= θX , α ∈ Am,n and I ∈ A[α]
m,n we have:

R(I)
α (x;h1, h2, . . . , hn+1) =

=
m∑

j=1

G(I)
j,α (x;h1, h2, . . . , hn+1) +

+
1

‖h1‖X

m∑
k=2

∑
1≤r1<···<rk≤m

E(k,α,I)
r1,...,rk (x;h1, h2, . . . , hn+1) .

(18)

In (18) G(I)
j,α (x;h1, h2, . . . , hn+1) ∈ Z for j ∈ {1, 2, . . . ,m} represents the

value of the mapping L ∈ (Y1, . . . , Ym;Z)∗ with the arguments:

f (αq)
q (x)h

i
(q)
1

. . . h
i
(q)
αq
∈ Yq; q = 1,m,

except the argument of the rank j, this argument being:

R(αj ,j)
x (h1)h

i
(j)
1

. . . h
i
(j)
αj

.

So:∥∥∥G(I)
j,α (x;h1, h2, . . . , hn+1)

∥∥∥
Z
≤ ‖L‖ ·

∥∥∥R(αj ,j)
x (h1)

∥∥∥ ∏
q=1,m q 6=k

∥∥∥f (αq)
q (x)

∥∥∥ ,

here we take into account that I ∈ A[α]
m,n ({2, . . . , n + 1}) , therefore:

m∏
q=1

(∥∥∥h
i
(q)
1

∥∥∥
X

. . .
∥∥∥h

i
(q)
αq

∥∥∥
X

)
= ‖h2‖X . . . ‖hn+1‖X = 1.
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In the same relation (18) for k ∈ {2, . . . , n + 1} and r1, . . . , rk ∈ N with

1 ≤ r1 < · · · < rk ≤ m the expression E(k,α,I)
r1,...,rk (x;h1, h2, . . . , hn+1) is the value

of the mapping L ∈ (Y1, . . . , Ym;Z)∗ with the arguments f
(αq)
q (x) h

i
(q)
1

. . . h
i
(q)
αq

∈

∈ Yq; q = 1,m except the arguments situated in the position r1, . . . , rk where the

arguments:[
f (αp+1)

p (x) h1 + ‖h1‖X R(αp,p)
x (h1)

]
h

i
(p)
1

. . . h
i
(p)
αp

; p ∈ {r1, . . . , rk}

appear.

So: ∥∥∥E(k,α,I)
r1,...,rk (x;h1, h2, . . . , hn+1)

∥∥∥ ≤ ‖h1‖k
X × ‖L‖×

×
k∏

q=1

(∥∥∥∥f
(αrq +1)
rq (x)

∥∥∥∥ +
∥∥∥∥R

(αrq ,rq)
x (h1)

∥∥∥∥)
×

∏
q∈{1,...,m}�{r1,...,rk}

∥∥∥f
(αq)
q (x)

∥∥∥ .

Therefore we can write that:∥∥∥R(I)
α (x;h1, h2, . . . , hn+1)

∥∥∥
Z
≤ ‖L‖C(I)

α (x, h1) (19)

where:

C(I)
α (x, h1) =

m∑
k=1

∥∥∥∥R
(αrk

,rk)
x (h1)

∥∥∥∥× ∏
q=1,m q 6=k

∥∥∥f
(αq)
q (x)

∥∥∥
 +

+
m∑

k=2

‖h1‖k−1
X ×

∑
1≤r1<···<rk≤m

D(k,α,I)
r1,...,rk (x, h1) ,

while for k ∈ {2, . . . ,m} and r1, . . . , rk ∈ N with 1 ≤ r1 < · · · < rk ≤ m we have:

D(k,α,I)
r1,...,rk (x, h1) =

=
k∏

q=1

(∥∥∥∥f
(αrq +1)
rq (x)

∥∥∥∥ +
∥∥∥∥R

(αrq ,rq)
x (h1)

∥∥∥∥)
×

∏
q∈{1,...,m}�{r1,...,rk}

∥∥∥f
(αq)
q (x)

∥∥∥ .

Thus, it is clear from the hypotheses on account of which for the specified

values of k and of r1, . . . , rk we have:

lim
h1→θX

D(k,α,I)
r1,...,rk

(x, h1) =
k∏

q=1

∥∥∥∥f
(αrq +1)
rq (x)

∥∥∥∥ · ∏
q∈{1,...,m}�{r1,...,rk}

∥∥∥f (αq)
q (x)

∥∥∥ ,

76
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that for any α ∈ Am,n and I ∈ A[α]
m,n we have:

lim
h→θX

C(I)
α (x, h1) = 0

and so, in the same situation as in (19) we deduce that:

lim
h1→θX

sup
(h2,...,hn+1)∈Hn,X

‖R (x;h1, h2, . . . , hn+1)‖Z = 0. (20)

We define the mapping:

F (n+1) (x) ∈
(
X(n+1), Z

)∗
,

F (n+1) (x) h1h2 . . . hn+1 = E (x;h1, h2, . . . , hn+1) ,

(21)

and it is clear that if we define Rx (h1) ∈
(
X(n), Z

)∗
through:

Rx (h1) =


Θn ; h1 = θX

F (n) (x + h1)− F (n) (x)− F (n+1) (x)h1

‖h1‖X

; h1 6= θX

we have in
(
X(n), Z

)∗
the equality:

F (n) (x + h1)− F (n) (x) = F (n+1) (x) h1 + ‖h1‖X Rx (h1) . (22)

In the same time for h1 6= θX we have:

‖Rx (h1) h2 . . . hn+1‖Z ≤

≤
∥∥[

F (n) (x + h1)− F (n) (x)
]
h2 . . . hn+1 − F (n+1) (x) h1h2 . . . hn+1

∥∥
Z

‖h1‖X

=

=

∥∥[
F (n) (x + h1)− F (n) (x)

]
h2 . . . hn+1 − E (x;h1, h2, . . . , hn+1)

∥∥
Z

‖h1‖X

=

= ‖R (x;h1, h2, . . . , hn+1)‖Z ,

therefore:

0 ≤ ‖Rx (h1)‖ = sup
(h2,...,hn+1)∈Hn,X

‖Rx (h1) h2 . . . hn+1‖Z ≤

≤ sup
(h2,...,hn+1)∈Hn,X

‖R (x;h1, h2, . . . , hn+1)‖Z .
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From here, also using the relation (20) , we deduce that:

lim
h→θX

‖Rx (h1)‖ = 0. (23)

From the relations (22) and (23) we deduce that the mapping F : D → Z

has a Fréchet differential of the order n + 1 at the point x ∈ int (D) , the expression

of the mapping F (n+1) (x) ∈
(
X(n+1), Z

)∗
being specified through (21) , therefore on

account of the obtained expression (16) for E (x;h1, h2, . . . , hn+1) we have:

F (n+1) (x)h1 . . . hn+1 =

=
∑

γ∈Am,n+1

∑
S∈A[γ]

m,n+1

L
(
f

(γ1)
1 (x) h

s
(1)
1

. . . h
s
(1)
γ1

, . . . , f
(γm)
m (x) h

s
(m)
1

. . . h
s
(m)
γm

)
.

The aforementioned assertion together with its corresponding equality indi-

cates that the property expressed through this theorem is true for any n ∈ N replaced

by n + 1.

On account of the principle of mathematical induction this property is true

for any n ∈ N.

The theorem is proved. �

Remark 2.4. In the case of m = 2, case in which L ∈ (L1, L2;Z)∗ , f : D → Y1,

g : D → Y2 where D ⊆ X and x ∈ int (D) , in the hypothesis of the existence of the

differentials with the order n of the considered functions at the point x, it results the

existence of the differential with the order n of the function F : D → Z, F (x) =

L (f (x) , g (x)) together with the equality:

F (n) (x) h1 . . . hn =
n∑

k=0

∑
i∈Cm,k

L
(
f (k) (x) hi1 . . . hik

, g(n−k) (x) hj1 . . . hjn−k

)
(24)

where we have denoted i = (i1, . . . , ik) ∈ Cm,k and:

{j1, . . . , jn−k} ∈ {1, 2, . . . , n}� {i1, . . . , ik}

with j1 < · · · < jn−k.
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Indeed, in this case:

A2,1 =
{

α/ α = (α1, α2) ∈ (N∪{0})2 , α1 + α2 = n
}

=

=
{

(k, n− k)/ k = 0, n
}

and the set A[α]
2,n = A(k,n−k)

2,n is made of a pair of disjunct systems, the first system

has k elements and the second n− k elements. If we put together the elements from

these systems we obtain the set {1, 2, . . . , n} .

If we denote this pair of systems from A(k,n−k)
2,n by:

(i, j) = ((i1, . . . , ik) , (j1, . . . , jn−k))

because 1 ≤ i1 < · · · < ik ≤ n and the system (j1, . . . , jn−k) is obtained in the

aforementioned manner, then i ∈ Cn,k and we also obtain the equality (24) .

Remark 2.5. In the case when h1 = · · · = hn = h ∈ X we have for the equality from

the conclusion of the theorem 2.3 the form:

F (n) (x) hn =
∑

α∈Am,n

n!
α1! . . . αm!

L
(
f

(α1)
1 (x) hα1 , . . . , f (αm)

m (x) hαm

)
(25)

and for the equality (24) we have the form:

F (n) (x)hn =
n∑

k=0

(
n

k

)
L

(
f (k) (x) hk, g(n−k) (x) hn−k

)
. (26)

These relations are evident because the number of elements of the set A[α]
m,n

is n!
α1!...αm! , while the number of elements of the set Cn,k is n!

k!(n−k)! =
(
n
k

)
.

In the aforementioned writings it is clear that f (k) (x) hk means:

f (k) (x) (h, . . . , h︸ ︷︷ ︸
k times

).

3. An application to the differential of certain composed functions

Let us consider the number m ∈ N, the linear normed spaces:

(X, ‖·‖X) ,
(
Y1, ‖·‖Y1

)
, . . . ,

(
Ym, ‖·‖Ym

)
, (Z, ‖·‖Z) ,
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the set D ⊆ X and the mappings:

Ui : D → Yi, i = 1,m; W : D → (Y1, . . . , Ym;Z)∗ .

Using the aforemationed mappings we consider the composed mapping:

G : D → Z, G (x) = [W (x)] (U1 (x) , . . . , Um (x)) . (27)

Concerning the mapping (27) , we have the following proposition:

Proposition 3.1. If for an n ∈ N the mappings W : D → (Y1, . . . , Ym;Z)∗ and

Ui : D → Yi; i = 1,m admit Fréchet differentials with the order n at the point

x ∈ int (D) , then the mapping G : D → Z defined through (27) also admits a Fréchet

differential of the order n at the same point x, and for any h1, . . . , hn ∈ X we have

the equality:

G(n) (x) h1 . . . hn =

=
n∑

k=0

∑
α∈Am,n−k

∑
S∈Cn,k

∑
I∈A[α]

m,n−k(Mn,k(S))

E
(S,I)
k,α (W,U ;x;h1, . . . , hn)

(28)

where U = (U1, . . . , Um) and E
(S,I)
k,α (W,U ;x;h1, . . . , hn) is[

W (k) (x) hs1 . . . hsk

] (
U

(α1)
1 (x) h

i
(1)
1

. . . h
i
(1)
α1

, . . . , U (αm)
m (x) h

i
(m)
1

. . . h
i
(m)
αm

)
(29)

where for S = (s1, . . . , sk) ∈ Cn,k we have denoted:

Mn,k (S) = {1, . . . , n}� {s1, . . . , sk} .

Proof. We will consider the mapping:

L : (Y1, . . . , Ym;Z)∗ × Y1 × · · · × Ym → Z, L (T ; y1, . . . , ym) = T (y1, . . . , ym)

where yi ∈ Yi with i = 1,m while T ∈ (Y1, . . . , Ym;Z)∗ .

From the definition of the operations in the set of mappings we deduce the

linearity of the mapping L after the first argument, while from the linearity of the

mapping T : Y1 × · · · × Ym → Z we deduce the linearity of the mapping L after the

last m arguments.
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It is also clear that:

‖L (T ; y1, . . . , ym)‖Z = ‖T (y1, . . . , ym)‖Z ≤ ‖T‖ · ‖y1‖Y1
· · · · · ‖ym‖Ym

,

therefore:

L ∈
(
(Y1, . . . , Ym;Z)∗ , Y1, . . . , Ym;Z

)∗
and:

G (x) = L (W (x) , U1 (x) , . . . , Um (x))

as well.

In this way for the existence and the calculation of the differential with the

order n of the non-linear mapping defined by (27) it is possible to use the theorem

2.3, therefore as the mappings Ui : D → Yi; i = 1,m and W : D → (Y1, . . . , Ym;Z)∗

have the Fréchet differentials with the order n, at the point x ∈ int (D) , the same

fact can be said about the mapping G : X → Z, and for any h1, . . . , hn ∈ X we have:

G(n) (x) h1 . . . hn =
∑

γ∈Am+1,n

∑
J∈A[γ]

m+1,n

Gγ,J (x;h1, . . . , hn) ,

where Gγ,J (x;h1, . . . , hn) has the value:

L

(
W (γ1) (x) h

j
(1)
1

. . . h
j
(1)
γ1

, U
(γ2)
1 (x) h

j
(2)
1

. . . h
j
(2)
γ2

, . . . , U (γm+1)
m (x) h

j
(m+1)
1

. . . h
j
(m+1)
γm+1

)
for γ = (γ1, γ2, . . . , γm̄+1) ∈ Am+1,n and

J =
((

j
(1)
1 , . . . , j(1)

γ1

)
,
(
j
(2)
1 , . . . , j(2)

γ2

)
, . . . ,

(
j
(m+1)
1 , . . . , j(m+1)

γm+1

))
∈ A[γ]

m+1,n.

The fact that γ ∈ Am+1,n means that γ = (γ1, γ2, . . . , γm+1) ∈ (N∪{0})m+1

with |γ| = γ1 + γ2 + · · ·+ γm+1 = n.

We place:

k = γ1, α1 = γ2, . . . , αm = γm+1

and we deduce that in fact k ∈ {0, 1, . . . , n} and α = (α1, . . . , αm) ∈ (N∪{0})m with

|α| = α1 + · · ·+ αm = n− γ1 = n− k, therefore α ∈ Am,n−k.

We then place:

S = (s1, . . . , sk) =
(
j
(1)
1 , . . . , j

(1)
k

)
=

(
j
(1)
1 , . . . , j(1)

γ1

)
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and:

I =
((

j
(2)
1 , . . . , j(2)

γ2

)
,
(
j
(3)
1 , . . . , j(3)

γ3

)
, . . . ,

(
j
(m+1)
1 , . . . , j(m+1)

γm+1

))
.

Thus it is evident that J = (S, I) ∈ A[k]
m+1,n if and only if S ∈ Cn,k and:

I ∈ A[α]
m,n−k ({1, 2, . . . , n}� {s1, . . . , sk}) = A[α]

m,n−k (Mn,k (S)) ,

this fact results from the manner in which we have obtained the systems J ∈ A[γ]
m+1,n.

Thus the relations (28) and (29) are clear.

The proposition is proved. �

We have the following:

Remark 3.2. In the case where h1 = · · · = hn = h ∈ X in the hypotheses of the

proposition 3.1 we have the equality:

G(n) (x) hn =

=
n∑

k=0

n!
k!

∑
α∈Am,n−k

[
W (k) (x)hk

] (
U

(α1)
1 (x) hα1 , . . . , U

(αm)
m (x) hm

)
α1! . . . αm!

.

(30)

For n = 1 we have:

Remark 3.3. If the mappings W : D → (Y1, . . . , Ym;Z)∗ and Ui : D → Yi; i = 1,m

are Fréchet differentiable at the point x ∈ int (D) , then the mapping G : D → Z

defined through (27) is also differentiable at the same point x, and for any

h1, . . . , hn ∈ X we have the equality:

G′ (x) h = [W ′ (x) h] (U1 (x) , . . . , Um (x))+

+
m∑

j=1

[W (x)]
(
U1 (x) , . . . , Uj−1 (x) , U ′

j (x) h, Uj+1 (x) , . . . , Um (x)
)
.

(31)

For n ∈ N arbitrary and m = 1 we have:

Remark 3.4. If the linear normed spaces (X, ‖·‖X) , (Y, ‖·‖Y ) , (Z, ‖·‖Z) and the

functions f : D → (Y, Z)∗ , g : D → Y, that admit Fréchet differentials with the order

n at a point x ∈ int (D) are given, then the function:

G : D → Z; G (x) = [f (x)] g (x)
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also admits a Fréchet differential with the order n at the same point x, and for any

h1, h2, . . . , hn ∈ X we have:

([f (x)] g (x))(n)
h1 . . . hn =

=
n∑

k=0

∑
i∈Cn,k

[
f (k) (x) hi1 . . . hik

]
g(n−k) (x) hj1 . . . hjn−k

(32)

where i = (i1, . . . , ik) ∈ Cn,k and {j1, . . . , jn−k} = {1, 2, . . . , n}� {i1, . . . , ik} with

j1 < · · · < jn−k.

The remarks 3.2-3.4 are evident.
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Babeş-Bolyai University,

Faculty of Mathematics and Computer Science,
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LI, Number 3, September 2006

TWO EXISTENCE RESULTS FOR VARIATIONAL INEQUALITIES

D. INOAN and J. KOLUMBÁN

Dedicated to Professor Ştefan Cobzaş at his 60th anniversary

Abstract. In this paper we prove the existence of solutions for some varia-

tional inequalities, governed by two-variables set-valued mappings, in both

stationary and evolution cases.

1. Introduction

Operators with two variables, having monotonicity properties with respect

to one of the variables and continuity properties with respect to the other one, have

been studied since more than 40 years (see [6], [13]). Such kind of operators appear

in the theory of nonlinear elliptic operators in divergence form, which are monotone

only in the highest order terms, and satisfy a compactness condition for the lower

order terms (see [14]).

Existence results for variational inequalities governed by such operators were

established in papers like [3], [5].

In this paper we continue some ideas from [5] for a more general class of

variational problems, which includes, as a particular case, hemivariational inequalities.

The mathematical theory of hemivariational inequalities was introduced by

P.D. Panagiatopoulos (see [11]) and studied by many authors (see for instance [9],

[10]).

The main result of this paper is stated in Section 2 (Theorem 5). It gives

sufficient conditions for the existence of solutions for a variational inequality governed
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Key words and phrases. Variational inequality, monotone set-valued mapping.
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by set-valued mappings of two variables, using the classical Ky Fan intersection the-

orem. Then, in Section 3, we use this result to study a class of evolution variational

inequalities.

The same method that we applied can be used, when Φ = 0, to prove a similar

result, where (H1) is replaced by a condition of Karamardian pseudomontonicity (see

[5]).

If A is a mapping of one variable, Brézis pseudomonotone, similar results on

evolution hemivariational inequalities were established in [7] and [8].

2. An existence result for a stationary variational inequality

In what follows, V is a real Banach space, V ∗ is its dual and 〈·, ·〉 is the usual

duality pairing.

Let C ⊂ V be a nonempty, closed, convex set and let A : C × C → 2V ∗
be a

set-valued mapping. Let Φ : C × V → R∪ {+∞} be a weakly upper semi-continuous

function, sublinear in the second variable. We suppose that for each u ∈ C and for

each v ∈ TC(u)+u we have (u, v−u) ∈ D(Φ), where by TC(u) we denote the tangent

cone of C at u.

Consider the following variational problem:

(V I) Find u ∈ C such that sup
f∈A(u,u)

〈v − u, f〉+ Φ(u, v − u) ≥ 0, ∀ v ∈ C.

In what follows the set-valued mapping A will have the following properties:

(H1) sup
f∈A(v,v)

〈u− v, f〉+ Φ(v, u− v) ≥ 0 implies that

sup
f∈A(u,v)

〈u− v, f〉+ Φ(v, u− v) ≥ 0, for each u, v ∈ C,

(H2) For each v ∈ C, A(·, v) : C → 2V ∗
is upper semi-continuous from the line

segments of C to V ∗,

(H3) For each u ∈ C, A(u, ·) : C → 2V ∗
is weakly upper semi-continuous (from V

with the weak topology, to V ∗ with the norm topology),

(H4) A(u, v) is compact, for each u, v ∈ C.

Remark 1. The hypothesis (H1) is true, for example, when it takes place
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(H1’) sup
f∈A(u,v)

〈u− v, f〉 ≥ sup
f∈A(v,v)

〈u− v, f〉, for each u, v ∈ C,

in particular, when A is monotone with respect to the first variable, as it was consid-

ered in [3].

Remark 2. Several particular cases of (VI) are:

I) Suppose V is a reflexive Banach space, densely and compactly embedded

into a separable Hilbert space H (then V ⊂ H ⊂ V ∗ is an evolution triple). Let

J : H → R be a locally Lipschitz function, and by J0(u; v) denote the generalized

Clarke derivative of J , at the point u, in the direction v:

J0(u; v) = lim sup
w→u, ε→0+

J(w + εv)− J(w)
ε

.

It is well known (see [4]) that J0(·; ·) is sublinear in the second variable and globally

upper semi-continuous. This means we can take Φ = J |0V .

II) Consider the same evolution triple as above. Let Ω be a bounded and open

subset of RN , let T : H → L2(Ω, Rk) be a linear and continuous operator, and let

j : Ω×Rk → R be a Caratheodory function, locally Lipschitz with respect to the second

variable. Denote by j0(x, y)(h) the partial generalized Clarke derivative,

j0(x, y)(h) = lim sup
y′→y,t→0+

j(x, y′ + th)− j(x, y′)
t

.

Suppose that there exist h1 ∈ L2(Ω) and h2 ∈ L∞(Ω) such that

‖z‖ ≤ h1(x) + h2(x)‖y‖ , a.e. x ∈ Ω, for all y ∈ Rk, z ∈ ∂j(x, y), where

∂j(x, y) = {z ∈ Rk, 〈z, h〉 ≤ j0(x, y)(h), ∀h ∈ Rk}.

It is proved in [12], that the mapping

(u, w) ∈ V × V 7→
∫

Ω

j0(x, Tu(x))(Tw(x))dx is weakly upper semi-continuous.

Then we can take Φ(u, w) =
∫

Ω

j0(x, Tu(x))(Tw(x))dx.

III) An example of a single-valued mapping that satisfies (H1’), (H2)-(H4) is

the following (see [14]): A : H1
0 (Ω) → (H1

0 (Ω))∗, defined by

〈A(u, v), w〉 =
∫

Ω

G(x, v(x),∇u(x))∇w(x)dx +
∫

Ω

g0(x, v(x),∇v(x))w(x)dx,
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where Ω is a bounded domain in RN and the functions gj : Ω × R × RN → R,

G = (g1, . . . , gN ) have the properties:

(P1) gj(x, η, ξ) is measurable in x ∈ Ω and continuous in (η, ξ) ∈ R × RN , for

j = 0, . . . , N ,

(P2) |gj(x, η, ξ)| ≤ c(k(x) + |η|+ ‖ξ‖), with k ∈ L2(Ω), a.e. x ∈ Ω, for every η ∈ R,

ξ ∈ RN ,

(P3)
N∑

j=1

(gj(x, η, ξ)−gj(x, η, ξ̃))(ξj−ξ̃j) > 0, a.e. x ∈ Ω, for every η ∈ R, ξ 6= ξ̃ ∈ RN .

We formulate also a coercivity condition:

(H5) There exists K ⊂ C, weakly compact, and u0 ∈ C such that

sup
f∈A(u,u)

〈u0 − u, f〉+ Φ(u, u0 − u) < 0,

for each u ∈ C \K.

In the study of existence of a solution for the problem (V I), the following

lemmas will be needed.

Lemma 3. (marginal function lemma)[1] Let X and Y be two topological spaces,

G : X → 2Y a set-valued mapping and g : X × Y → R. Denote h : X → R,

h(x) = sup
y∈G(x)

g(x, y) the marginal function. If the following conditions

(a) g is u.s.c. on X × Y ,

(b) G(x0) is compact for some x0 ∈ X,

(c) G is u.s.c. at x0,

are satisfied, then h is u.s.c. at x0.

Lemma 4. [KyFan](see [2]) Let X be a topological vector space, H a subset of X and

F : H → 2X a set-valued mapping with F (x) closed for every x ∈ H, such that:

(a) F (x0) is compact for some x0 ∈ H,

(b) for every x1, x2, . . . , xn ∈ H, co{x1, x2, . . . , xn} ⊂
n⋃

i=1

F (xi).

Then
⋂

x∈X

F (x) 6= ∅.

Theorem 5. In the hypotheses (H1)-(H5), the problem (V I) has at least one solution.

Proof. Following the idea from [5], we divide the proof in several steps:
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a) For each w ∈ C we denote:

A1(w) = {u ∈ C | sup
f∈A(u,u)

〈w − u, f〉+ Φ(u, w − u) ≥ 0}

It is obvious that
⋂

w∈C

A1(w) is the set of solutions of the problem (V I).

We verify the conditions of Ky Fan’s Lemma for F (w) = w-clA1(w) (the

weak closure). Consider u0 ∈ C, the element from the coercivity condition (H5). This

condition implies that A1(u0) ⊂ K. But K is weakly compact and so w-clA1(u0) is

also weakly compact.

b) Let w1, . . . , wn ∈ C.

We want to prove that co{w1, . . . , wn} ⊂
n⋃

i=1

A1(wi) ⊂
n⋃

i=1

w-clA1(wi).

Suppose that this is not true, that is there exist λ1, . . . , λn ≥ 0, with∑n
j=1 λj = 1 such that w̄ =

n∑
j=1

λjwj /∈ A1(wi), for every i = 1, n, which implies

〈wi − w̄, f〉+ Φ(w̄, wi − w̄) < 0,

for each f ∈ A(w̄, w̄) and i = 1, n.

For a fixed f ∈ A(w̄, w̄), we have, using the previous inequality and the

sublinearity of Φ,

0 ≤〈w̄ − w̄, f〉+ Φ(w̄, w̄ − w̄)

= 〈
n∑

j=1

λjwj −
n∑

j=1

λjw̄, f〉+ Φ(w̄,
n∑

j=1

λjwj −
n∑

j=1

λjw̄)

≤
n∑

j=1

(λj〈wj − w̄, f〉+ λjΦ(w̄, wj − w̄) < 0,

which is a contradiction. This gives us that co{w1, . . . , wn} ⊂
n⋃

i=1

w-clA1(wi). We

obtain, by Lemma 4, ⋂
w∈C

w-clA1(w) 6= ∅. (1)

c) Denote, for w ∈ C

A2(w) = {u ∈ K | sup
f∈A(w,u)

〈w − u, f〉+ Φ(u;w − u) ≥ 0}
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We will prove that ⋂
w∈C

A2(w) ⊂
⋂

w∈C

A1(w). (2)

Let u ∈ C, u ∈ A2(w), for every w ∈ C. Fix v ∈ C and consider vt = tv+(1−t)u ∈ C,

for each t ∈ [0, 1]. From u ∈ A2(vt) we get:

sup
f∈A(vt,u)

〈vt − u, f〉+ Φ(u, vt − u) ≥ 0, ∀t ∈ [0, 1]

and further, using the fact that Φ(u, ·) is positively homogeneous and dividing by t

sup
f∈A(vt,u)

〈v − u, f〉+ Φ(u, v − u) ≥ 0, ∀t ∈ (0, 1]. (3)

Define G : [0, 1] → 2V ∗
, G(t) = A(vt, u). According to (H2), this is upper semi-

continuous and according to (H4), G(0) = A(u, u) is compact. The mapping (f, v) ∈

V ∗ × V 7→ 〈v − u, f〉 is continuous for V with the weak topology and V ∗ with the

norm topology. Applying Lemma 3 we have that h(t) = sup
f∈G(t)

〈v − u, f〉 is upper

semi-continuous at 0, that is

lim sup
t→0

sup
f∈A(vt,u)

〈v − u, f〉 ≤ sup
f∈A(u,u)

〈v − u, f〉.

From this and from (3) it follows that u is a solution for (V I), that is

u ∈
⋂

w∈C

A1(w).

d) At the final step we prove that⋂
w∈C

w-clA1(w) ⊂
⋂

w∈C

A2(w). (4)

From step (a) we have that
⋂

w∈C

w-clA1(w) ⊂ K.

Let u ∈ C, arbitrarily fixed and let v ∈ w-clA1(u). We will prove that

v ∈ A2(u). From v ∈ w-clA1(u), there exists a net {vj} in A1(u) such that vj ⇀ v.

The fact that vj ∈ A1(u) means that

sup
f∈A(vj ,vj)

〈u− vj , f〉+ Φ(vj , u− vj) ≥ 0, ∀ j ∈ I,
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and using hypothesis (H1),

sup
f∈A(u,vj)

〈u− vj , f〉+ Φ(vj , u− vj) ≥ 0, ∀ j ∈ I,

In order to use Lemma 3 we notice that the mapping (f, z) ∈ V ∗ × V 7→ 〈u− z, f〉 is

continuous, A(u, ·) is weakly upper semi-continuous and A(u, v) is compact. It follows

that h(z) = sup
f∈A(u,z)

〈u− z, f〉 is weakly upper semi-continuous at v, that implies

lim sup
vj⇀v

sup
f∈A(u,vj)

〈u− vj , f〉 ≤ sup
f∈A(u,v)

〈u− v, f〉.

On the other side, lim sup
vj⇀v

Φ(vj , u− vj) ≤ Φ(v, u− v). Further on, we have

0 ≤ lim sup
vj⇀v

{ sup
f∈A(u,vj)

〈u− vj , f〉+ Φ(vj , u− vj)}

≤ lim sup
vj⇀v

sup
f∈A(u,vj)

〈u− vj , f〉+ lim sup
vj⇀v

Φ(vj , u− vj)

≤ sup
f∈A(u,v)

〈u− v, f〉+ Φ(v, u− v),

which means that v ∈ A2(u), for every u ∈ C. This proves (4). From (2), (1) and (4)

we get
⋂

w∈C

A1(w) 6= ∅, which concludes the proof.

Remark 6. (see [5]) If in addition to the previous hypotheses, A(u, u) is a convex

set, then u is also a solution of the following problem:

Find u ∈ C and f ∈ A(u, u) such that 〈v − u, f〉+ Φ(u, v − u) ≥ 0, ∀ v ∈ C.

Remark 7. From step (d) of the proof, it is clear that hypothesis (H1) can be re-

placed with the supposition that the ”diagonal” mapping A(·, ·) is weakly upper semi-

continuous (from V with the weak topology to V ∗ with the norm topology).

Remark 8. A similar result can be obtained, for variational inequalities, by consid-

ering C ⊂ V ∗, A : C × C → V , where V ∗ is equipped with the weak* topology and V

with the norm topology (see [5]).
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3. An evolution variational inequality

Consider the following evolution variational inequality:

(EV I) u ∈ C 〈v − u, Lu〉+ sup
f∈A(u,u)

〈v − u, f〉+ Φ(u, v − u) ≥ 0, ∀ v ∈ C,

where C ⊂ V is nonempty, convex, closed,

A : V × V → 2V ∗
satisfies the hypotheses (H1’), (H2)-(H4) and L : D(L) ⊂

V → V ∗ is a closed densely linear maximal monotone operator.

It is known that, in these conditions, W = D(L), endowed with the graph

norm ‖u‖W = ‖u‖V + ‖Lu‖V ∗ , is a reflexive Banach space. Denote C̃ = C ∩D(L); it

is a convex, closed, nonempty set.

Hypothesis (H5) will be replaced by

(H5’) There exists K ⊂ C̃, weak compact, and u0 ∈ C̃ such that

〈u0 − u, Lu〉+ sup
f∈A(u,u)

〈u0 − u, f〉+ Φ(u, u0 − u) < 0,

for each u ∈ C̃ \K.

Theorem 9. In the hypotheses (H1’), (H2)-(H4) and (H5’), the problem (EV I) has

at least one solution.

Proof. We have that W is densely embedded in V . Denoting i : W → V the

natural embedding of W in V and i∗ : V ∗ → W ∗ its adjoint, we define the operator

B : C̃ × C̃ → 2W∗
by

B(u, v) = L̃(u) + Ã(u, v), ∀ u, v ∈ C̃,

where L̃ : W → W ∗, L̃ = i∗ ◦ L ◦ i, that is

〈v, L̃(u)〉W×W∗ = 〈v, i∗(L(iu))〉W×W∗ = 〈iv, L(iu)〉V×V ∗ , ∀ u, v ∈ W.

The same, f̃ ∈ Ã(u, v) means that f̃ = i∗f , with f ∈ A(iu, iv) ⊂ V ∗, that is

〈w, f̃〉W×W∗ = 〈w, i∗f〉W×W∗ = 〈iw, f〉V×V ∗ .

With these notations, problem (EV I) can be written:

u ∈ C̃ = C ∩D(L) such that sup
g∈B(u,u)

〈v − u, g〉+ Φ|W (u, v − u) ≥ 0, ∀ v ∈ C̃
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We will prove that the operator B defined above satisfies the hypotheses (H1’)-(H4),

in the space W with the weak topology and W ∗ with the norm topology.

(H1’) Let u, v ∈ C̃, fixed. If g ∈ B(u, v) then g = L̃(u) + f , with f ∈ Ã(u, v)

that is f = i∗h, h ∈ A(iu, iv). We have, taking account of the monotonicity of L and

of (H1):

sup
g∈B(u,v)

〈u− v, g〉W×W∗ = 〈iu− iv, L(iu)〉V×V ∗ + sup
h∈A(iu,iv)

〈iu− iv, h〉V×V ∗

≥ 〈iu− iv, L(iv)〉V×V ∗ + sup
h∈A(iv,iv)

〈iu− iv, h〉V×V ∗ = sup
g∈B(v,v)

〈u− v, g〉W×W∗ .

(H2) For each v ∈ W fixed, B(·, v) : C̃ → 2W∗
is upper semi-continuous from

the line segments in C̃ to W ∗.

Indeed, let u1, u2 ∈ C̃ arbitrarily fixed, ut = tu1 + (1− t)u2, for t ∈ [0, 1] and

define G̃ : [0, 1] → W ∗ by G̃(t) = B(ut, v) = L̃(ut) + Ã(ut, v).

The upper semi-continuity of G̃ at t = 0 follows from the upper semi-

continuity of A(·, iv) and from the continuity of L̃ from W to W ∗.

(H3) The weak upper semi-continuity of B(u, ·) : C̃ → 2W∗
, for u ∈ C̃ fixed,

is a consequence of the fact that L̃(u) does not depend on v and of the weak upper

semi-continuity of Ã(u, ·) at an arbitrary point of W .

(H4) We want to prove that, for each u, v ∈ C̃, B(u, v) is compact. Consider

a sequence {fn} in B(u, v) ⊂ W ∗, fn = L̃(u) + gn, with gn = i∗hn, hn ∈ A(iu, iv).

Since A(iu, iv) is compact, there exists a subsequence (denoted in the same way),

hn → h ∈ A(iu, iv), in V ∗. Then fn → L̃(u) + i∗h ∈ B(u, v).

The fact that Φ is weakly upper semi-continuous in the topology of V implies

directly that it is also upper semi-continuous in the topology of W , because uj ⇀ u

in W means uj ⇀ u in V and L(uj) ⇀ L(u) in V ∗.

All the hypotheses (H1’), (H2)-(H4) being satisfied and having also (H5’), we

can apply Theorem 5 and conclude the proof.

Remark 10. The following particular case is frequently used: Let U be a real reflexive

Banach space, densely and compactly imbedded into a separable Hilbert space H, U ⊂

H ⊂ U∗, i.e. an evolution triple. (For example H1
0 (Ω) ⊂ L2(Ω) ⊂ H−1(Ω), where Ω
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is a bounded domain in RN , H1
0 (Ω) is the well known Sobolev space and H−1(Ω) is

its dual). Let V = L2(0, τ ;U) and V ∗ = L2(0, τ ;U∗) the dual of V . In this case, L

can be the differentiation operator
d2·
dt2

.
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linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. France 93 (1965), 97-

107.

[7] Liu, Z.H., Existence Results for Evolution Noncoercive Hemivariational Inequalities, J.

Optimization Theory and Applications, vol. 120, no.2, pag. 417-427 (2004).

[8] Liu, Z.H., A class of evolution hemivariational inequalities, Nonlinear Analysis 36

(1999), 91-100.

[9] Motreanu, D., Panagiotopoulos, P.D., Minimax Theorems and Qualitative Properties of

the Solutions of Hemivariational Inequalities, Kluwer Academic Publishers, 1999.

[10] Naniewicz, Z., Panagiotopoulos, P.D., Mathematical Theory of Hemivariational Inequal-

ities and Applications, Marcel Dekker, New-York, 1995.

[11] Panagiotopoulos, P.D., Hemivariational Inequalities. Applications in Mechanics and En-

gineering, Springer-Verlag, Berlin, 1993.
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ON THE CONVERSES OF THE REDUCTION PRINCIPLE
IN INNER PRODUCT SPACES

COSTICĂ MUSTĂŢA

Dedicated to Professor Ştefan Cobzaş at his 60th anniversary

Abstract. Let H be an inner product space, X a complete subspace of H,

and Y a closed subspace of X. The main result of this Note is the following

converse of the Reduction Principle: if x0 ∈ X, h ∈ H \X and y0 ∈ Y is

the element of best approximation of both x0 and h, (x0 − h, x0 − y0) = 0

and codimXY = 1, then x0 is the element of best approximation of h in

X.

1. Introduction

Let H be an inner product space, with real inner product (·, ·) and the norm

‖h‖ =
√

(h, h), h ∈ H. For a subset M of H and h ∈ H, the distance of h to M is

defined by

d(x, M) = inf{‖h−m‖ : m ∈ M}.

The set M is called proximinal if for every h ∈ H there exists m0 ∈ M such

that

‖h−m0‖ = d(h, M).

The set

PM (h) := {m ∈ M : ‖h−m‖ = d(h, M)}, h ∈ H

is called the set of best approximation elements of h by elements in M , and the

application PM : H → 2M is called the metric projection of H on M .
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If cardPM (h) = 1 for every h ∈ H, then the set M is called a Chebyshevian

set in H ([2], p.35).

The existence and the uniqueness of best approximation elements are

treated in Chapter 3 of [2]: every complete convex set in an inner product space

is a Chebyshev set ([2], Th.3.4).

Two elements u, v ∈ H are called orthogonal if (u, v) = 0. The cosinus of

the angle between the u, v ∈ H \ {0} is defined by the formula

cos û, v =
(u, v)

‖u‖ · ‖v‖
.

Concerning the characterization of best approximation elements, the fol-

lowing result holds ([2], Th.4.9):

Let M be a subspace of H, h ∈ H and m0 ∈ M . Then m0 = PM (h) iff

(h−m0,m) = 0,

for all m ∈ M .

The geometric interpretation of this characterization result is that the element

h−PM (h) is orthogonal to each element of M . This is the reason why PM (h) is often

called the orthogonal projection of h on M .

The following result appears in [2], p.80 under the name ”the Reduction

Principle”:

Let K be a convex subset of the inner product space H and let M be any

Chebyshev subspace of H that contains K. Then

a) PK(PM (h)) = PK(h) = PM (PK(h)), h ∈ H;

b) d(h, K)2 = d(h, M)2 + d(PM (h),K)2,

for every h ∈ H.

Obviously, if K is a closed and convex subset of a complete subspace M of

the inner product space H, the properties a) and b) are also fulfilled (see Th.4.1 in

[2], and Th. 2.2.6 in [3]).
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2. Results

From now on, we consider the following particular case of the Reduction

Principle:

Theorem 1. Let H be an inner product space, X a complete subspace of H,

and Y a closed subspace of X. Then

a’) PY (h) = PY (PX(h)) = PX(PY (h)), h ∈ H;

b’) d(h, Y )2 = d(h, X)2 + d(PX(h), Y )2,

for every h ∈ H.

The proof of Theorem 1 is an immediate consequence of the characterization

result ([2], Th.4.9) and the Pythagorean Law (see e.g. [1], Th.1, p.70).

A generalization of Theorem 1 is:

Theorem 2. Let H be an inner product space and M1,M2, . . . ,Mn (n ≥ 2)

be subspaces of H with the following properties:

1) M1 is complete;

2) Mi, i = 2, 3, . . . , n are closed;

3) M1 ⊃ M2 ⊃ · · · ⊃ Mn.

a) For every h ∈ H the following equalities hold

PMn(h) = PMnPMn−1 . . . PM1(h) = PM1PM2 . . . PMn(h).

b) Let PM1(h) = m1, PMk
PMk−1(h) = mk, k = 2, 3, . . . , n.

The following equality holds:

d(h, Mn)2 = ‖h−m1‖2 +
h∑

k=2

‖mk −mk−1‖2.

Proof. For every y ∈ Mn we have

(h− PMnPMn−1 . . . PM1(P1), y)

= (h− PM1(h) + PM1(h)− PM2PM1(h) + . . .

+PMn−1PMn−2 . . . PM1(h)− PMnPMn−1 . . . PM1(h), y)
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= (h− PM1(h), y) +
n∑

k=2

(PMk−1 . . . PM1(h)− PMk
. . . PM1(h), y) = 0.

Using the characterization result ([2], Th.4.9) it follows that the element

PMnPMn−1 . . . PM1(h) is the orthogonal projection of h on Mn.

On the other hand, (h− PMn
(h), y) = 0 for every y ∈ Mn. Consequently

PMn(h) = PMnPMn−1 . . . PM1(h).

The equality PMn
(h) = PM1PM2 . . . PMn

(h) is immediate.

For b) observe that

d(h, Mn)2 = ‖mn −mn−1‖2 + ‖h−mn−1‖2

= ‖mn −mn−1‖2 + ‖mn−1 −mn−2‖2 + ‖h−mn−2‖2 = . . .

= ‖mn −mn−1‖2 + · · ·+ ‖m2 −m1‖2 + ‖h−m1‖2. �

Remark. Obviously, Theorem 1 is also valid if H is a Hilbert space and X, Y

are closed subspace of H, with Y ⊂ X. Also, Theorem 2 is valid if H is a Hilbert

space and M1 ⊃ M2 ⊃ · · · ⊃ Mn are closed subspaces of H.

A converse of the Reduction Principle is given in [3], Th.2.2.6:

Let H be an inner product space, X a complete subspace of H and K a closed

and convex subset of X. If x is the orthogonal projection of h 6∈ X on X, m is the

metric projection of h on K, then m is the metric projection of x on K.

A first converse of Theorem 1 is:

Theorem 3. Let H be an inner product space, X a complete subspace of

H, and Y a closed subspace of X. Let h ∈ H \ X and let PX(h) and PY (h) be the

orthogonal projections of h on X, respectively on Y . Then PY (h) is the orthogonal

projection of PX(h) on Y .

Proof. Indeed, by hypothesis it follows:

(h− PX(h), x) = 0, ∀ x ∈ X,

(h− PY (h), y) = 0, ∀ y ∈ Y,
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so that for every y ∈ Y one has:

(PX(h)− PY (h), y) = (h− PY (h)− h + PX(h), y)

= (h− PY (h), y)− (h− PX(h), y) = 0.

It follows that PY (h) is the orthogonal projection of PX(h) on Y . �

A second converse of Theorem 1 is:

Theorem 4. Let H be an inner product space, X a complete subspace of H,

and Y a closed subspace of X with codimXY = 1. Let x0 ∈ X \ Y and PY (x0) be the

orthogonal projection of x0 on Y . If h ∈ H \X, PY (h) = PY (x0) and (h − x0, x0 −

PY (x0)) = 0, then PY (h) = x0.

Proof. If the equality (h − x0, x) = 0 is fulfilled for every x ∈ X, then

PX(h) = x0, i.e. the conclusion of the theorem.

For every y ∈ Y we have

(h− x0, y) = (h− PY (x0)− (x0 − PY (x0)), y)

= (h− PY (x0), y)− (x0 − PY (x0), y) = 0.

It follows that h− x0 is orthogonal to Y .

Because, by hypothesis, (h−x0, x0−PY (x0)) = 0 it follows that (h−x0, u) = 0

for every u ∈ span{x0−PY (x0)}. Because x0−PY (x0) is orthogonal to Y and Y is a

closed subspace of the Hilbert space X, it follows that X = span{x0 − PY (x0)} ⊕ Y ,

i.e. X is the direct sum of the subspaces span{x0 − PY (x0)} and Y (see [2], Th.5.9

p.77 and [1], Th.4, p.65). Consequently (h− x0, x) = 0 for every x ∈ X. �

Remark. The condition codimXY = 1 in Theorem 4 is essential. Indeed,

let {e1, e2, e3} be the orthonormal basis of the Hilbert space R3, X = span{e1, e2},

Y = span{0} and h = 3e1 + e2 + 5e3. Let x0 = e1 + 2e2. Then PY (x0) = 0 and

PY (h) = 3e1 + e2, PY (h) = 0. The conditions PY (x0) = PY (h) and (h − x0, x0 −

PY (x0)) = (2e1−e2, e1 +2e2) = 0 are fulfilled, but PX(h) = 3e1 +e2 6= x0 = e1 +2e2.

Observe that codimXY = 2.
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Examples. 1◦ Let l2 = l2(N) be the space of all sequences x = (x(i))

of real numbers such that
∞∑

i=1

x2(i) < ∞. It is known that l2 is a Hilbert space

with respect to the inner product (x, y) =
∞∑

i=1

x(i)y(i) and the norm ‖x‖ =( ∞∑
i=1

x2(i)

)1/2

. Let {e1, e2, . . . } be the canonical basis of l2. The closed sub-

space X = span{e2n−1 | n = 1, 2, 3, . . . } is Chebyshevian in l2 and the orthogonal

projection of h = (h(1), h(2), . . . ) ∈ l2 is PX(h) =
∞∑

i=1

h(2i − 1)e2i−1, because

h− PX(h) =
∞∑

j=1

h(2j)e2j is orthogonal on X.

Let Y = span{e1, e3 + e5}. Then Y is a Chebyshevian subspace of l2 (and of

X) and

PY (h) = h(1)e1 +
1
2
[h(3) + h(5)](e3 + e5).

By Theorem 1 one obtains

PY (h) = PY PX(h) = PXPY (h).

By Theorem 3, the orthogonal projection of the element

x =
∞∑

n=1

h(2n− 1)e2n−1

on Y is

y0 = h(1)e1 +
1
2
[h(3) + h(5)](e3 + e5).

Indeed,

x− y0 =
1
2
[h(3)− h(5)]e3 +

1
2
[h(5)− h(3)]e5 +

∞∑
n=4

h(2n− 1)e2n−1

is orthogonal to Y , so y0 = PY (x).

2◦ Let l2(4) = span{e1, e2, e3, e4} where ei(j) = δij , i, j = 1, 2, 3, 4 (see 1◦),

and X = span{e1, e2, e3}, Y = span{e1, e2} and Z = span{e1}.

If x0 = 2e1 + e2 + 2e3, then PY (x0) = 2e1 + e2. For α, β ∈ R let h =

2e1 +e2 +αe3 +βe4. Then PY (h) = 2e1 +e2 and (h−x0, x0−PY (x0)) = 2(α−2) = 0

implies α = 2.
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Every element h = 2e1 + e2 + 2e3 + βe4, β ∈ R has as orthogonal projection

on X

PX(h) = 2e1 + e2 + 2e3 = x0.

Observe that codimXY = 1.

Consider now the orthogonal projections on Z (codimXZ = 2). Then

PZ(x0) = 2e1, PZ(h) = 2e1 and (h − x0, x0 − PZ(x0)) = α + β − 3 = 0 implies

α + β = 3.

Choosing the element h = 2e1 + 2e2 + e3 + 2e4 one obtains

PX(h) = 2e1 + 2e2 + e3 6= 2e1 + e2 + 2e3 = x0.

3◦ Let L2[−1, 1] be the Hilbert space of all (Lebesgue) measurable real-

valued functions on [−1, 1] with the property that
∫ 1

−1

h2(t)dt < ∞. The in-

ner product on L2[−1, 1] is (x, y) =
∫ 1

−1

x(t)y(t)dt and the associated norm is

‖h‖ =
(∫ 1

−1

h2(t)dt

)1/2

. Consider also the Legendre polynomials (see [2])

p0(t) =
1√
2
, p1(t) =

√
6

2
t, p2(t) =

√
10
4

(3t2 − 1), p3(t) =
√

14
4

(5t3 − 3t)

and in general

pn(t) =
(−1)n

√
2n + 1

2n ·
√

2 · n!
· dn

dtn
[(1− t2)n],

for n ≥ 0.

The set {p0, p1, . . . , pn}, n ≥ 0 is orthonormal in L2[−1, 1]. Consider the

following subspaces of L2[−1, 1]:

X = span{p0, p1, p2, p3}, Y = span{p0, p1, p2} and

Z = span{p0, p1}.

For every h ∈ L2[−1, 1] one obtains ([2], Th.4.14)

PX(h) = (h, p0)p0 + (h, p1)p1 + (h, p2)p2 + (h, p3)p3,

PY (h) = (h, p0)p0 + (h, p1)p1 + (h, p2)p2 and
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PZ(h) = (h, p0)p0 + (h, p1)p1.

Obviously, Z ⊂ Y ⊂ X ⊂ L2[−1, 1] and PZ(h) = PZPY PX(h).

Let x0 = p0 + 2p1 + 2p2 + p3. If h ∈ L2[−1, 1] \X then PY (h) = PY (x0) iff

(h, p0) = 1, (h, p1) = 2 and (h, p2) = 2. The condition (x0−PY (x0), h−x0) = 0 implies

(p3, h − x0) = 0 and, consequently, (p3, h) = (p3, x0) = 1. It follows PX(h) = x0.

Observe that codimXY = 1.

Now PZ(x0) = p0 + 2p1 and PZ(h) = PZ(x0) implies (h, p0) = 1, (h, p1) = 2.

The condition (x0 − PZ(x0), h− x0) = 0 implies

(2p2 + p3, h− x0) = 2(p2, h) + (p3, h)− 5 = 0.

Let h1 = p0 + 2p1 + p2 + 3p3 + p4 and h2 = p0 + 2p1 +
1
2
p2 + 4p3 + p4.

Then PZ(hi) = PZ(x0), i = 1, 2 and (x0 − PZ(x0), hi − x0) = 0, i = 1, 2, but

PX(h1) 6= PX(h2) 6= x0. Observe that codimXZ = 2.
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BILATERAL APPROXIMATIONS OF SOLUTIONS OF EQUATIONS
BY ORDER THREE STEFFENSEN-TYPE METHODS

ION PĂVĂLOIU

Dedicated to Professor Ştefan Cobzaş at his 60th anniversary

Abstract. The convergence of method of Steffensen-type which is ob-

tained from the Lagrange polynomial of inverse interpolation with con-

trolled nodes - is studied in this paper. Conditions are given sequences

which bilaterally approximates the solution of an equation.

1. Introduction

In order to approximate the solutions of scalar equations it is suitable to use

iteration methods which lead to monotone sequences. Suppose that such a method

generates two such sequences, i.e., an increasing sequence (un)n≥0 and a decreasing

sequence (vn)n≥0. If both converge to the solution x̄ of a given equation, then at each

step one obtains the following error control:

max{x̄− un, vn − x̄} ≤ vn − un

Such methods can be generated, for example, by combining simultaneously

both Newton and chord methods [1], [2], [3], [10].

Conditions for Steffensen and Aitken-Steffensen methods which lead to mono-

tone sequences which bilaterally approximate the root of a given equation, were stud-

ied in [6], [10].
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It is known that both the Steffensen and Aitken-Steffensen methods are ob-

tained from the chord method in which the interpolation nodes are controlled.

In this paper we shall consider a Steffensen-type method, obtained from the

inverse interpolation polynomial of second degree, using three controlled interpolation

nodes.

More exactly, consider the following equation

f(x) = 0, (1)

where f : [a, b] −→ R, a, b ∈ R, a < b.

Denote by F = f([a, b]) the range of f for x ∈ [a, b].

Suppose that f : [a, b] −→ F is a bijection, that is, there exists f−1 : F −→

[a, b]

Let a1, a2, a3 ∈ [a, b], ai 6= aj , for i 6= j, i; j = 1, 3, three distinct interpolation

nodes and let b1 = f(a1), b2 = f(a2), b3 = f(a3). The inverse interpolation Lagrange

polynomial for f−1 on the nodes b1, b2, b3 ∈ F is given by the following relation:

L(b1, b2, b3; f−1 | y) =a1 + [b1, b2; f−1](y − b1) (2)

+ [b1, b2, b3; f−1](y − b1)(y − b2)

with the remainder given by:

f−1(y)− L(b1, b2, b3; f−1 | y) = [y, b1, b2, b3; f−1](y − b1)(y − b2)(y − b3). (3)

It is known that (2) is symmetric with respect to nodes order. Thus, if

(i1, i2, i3) is a permutation of (1, 2, 3), then the following relations are satisfied:

L(b1, b2, b3; f−1 | y) = ai1+[bi1 , bi2 ; f
−1](y−bi1,

)+[bi1,bi2,
bi3 ; f

−1](y−bi1)(y−bi2) (4)

Apart from (2), these relations lead to five more representations for La-

grange’s polynomial.

In order to obtain a Steffensen-type method, and to approximate the solutions

of equations (1), we shall consider one additional equation:

x− g(x) = 0, g : [a, b] −→ [a, b],
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which we shall assume is equivalent with (1).

If equation (1) has one root x̄ ∈ [a, b], then obviously x̄ = f−1(0), and from

(3) one obtains

x̄ = L(b1, b2, b3; f−1 | 0)− [0, b1, b2, b3; f−1]b1b2b3,

and if we neglect the remainder, we obtain:

x̄ ' L(b1, b2, b3; f−1 | 0). (5)

For divided differences of first and second order of f−1, one knows that [5],

[7], [8], [10]:

[b1, b2; f−1] =
1

[a1, a2; f ]
(6)

and

[b1, b2; b3; f−1] = − [a1, a2, a3; f ]
[a1, a2; f ][a1, a3; f ][a2, a3; f ]

. (7)

Relations (2), (5), (6) and (7) lead to the following approximation of x̄:

x̄ ' a1 −
f(a1)

[a1, a2; f ]
− [a1, a2, a3; f ]f(a1)f(a2)

[a1, a2; f ][a2, a3; f ][a1, a3; f ]
(8)

or the equivalent formal representations from (4). Supposing that f has third degree

derivatives at each point from [a, b], then function f−1 has third degree derivatives at

each point of F.

The following relation is satisfied for the third order derivative of f−1 [4],

[10], [11], [12]:

[f−1(y)]′′′ =
3[f ′′(x)]2 − f ′(x)f ′′′(x)

[f ′(x)]5
(9)

where y = f (x) .

Denote xn ∈ [a, b] an approximation to the root x̄ of (1).

We consider the following nodes in (8):

a1 = xn, a2 = g(xn), a3 = g(g(xn)).
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Taking into account all six approximative representations of x̄, obtained

by permutations of set (1, 2, 3) one obtains the following representations for the

Steffensen-type method.

If

D(xn) =
[xn, g(xn), g(g(xn)); f ]

[xn, g(xn); f ][xn, g(g(xn)); f ][g(xn), g(g(xn)); f ]

then the above considerations lead us to the following:

xn+1 = xn −
f(xn)

[xn, g(xn); f ]
−D(xn)f(xn) · f(g(xn)); (10)

xn+1 = xn −
f(xn)

[xn, g(g(xn)); f ]
−D(xn)f(xn) · f(g(g(xn))); (11)

xn+1 = g(xn)− f(g(xn))
[xn, g(xn); f ]

−D(xn)f(xn)f(g(xn)); (12)

xn+1 = g(xn)− f(g(xn))
[g(xn), g(g(xn)); f ]

−D(xn)f(g(xn))f(g(g(xn))); (13)

xn+1 = g(g(xn))− f(g(g(xn)))
[xn, g(g(xn)); f ]

−D(xn)f(xn)f(g(g(xn))); (14)

xn+1 = g(g(xn))− f(g(g(xn)))
[g(xn), g(g(xn)); f ]

−D(xn)f(g(xn))f(g(g(xn))). (15)

From Newton’s identity (3) one obtains the error representation:

x̄− xn+1 = −[0, f(xn), f(g(xn)), f(g(g(xn))); f−1]f(xn)f(g(xn))f(g(g(xn))). (16)

From the mean value formulas for divided differences one obtains for a fixed

x ∈ [a, b] the existence of η ∈ F such that:

[0, f(x), f(g(x)), f(g(g(x))); f−1] =
[f−1(η)]

3!
.

Since η ∈ F and f is a bijection, using (9) there results the existence of

ξ ∈ [a, b] such that

[0, f (x) , f(g(x)), f(g(g(x))); f−1] =
3[f ′′(ξ)]2 − f ′(ξ)f ′′′(ξ)

6[f ′(ξ)]5
.
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Denote

E(x) = 3[f ′′(x)]2 − f ′(x)f ′′′(x) (17)

so that we obtain from (16)

x̄− xn+1 = − E(ξn)
6[f ′(ξn)]5

f(xn)f(g(xn))f(g(g(xn))). (18)

where ξn ∈ [a, b] is assigned to x = xn.The xn+1 term is given by each of the relations

(10)-(15).

2. The convergence of Steffensen-type method

In this section we shall see that conditions for the Steffensen-type method

of third order given by any relations (10)-(15), lead to sequences which bilaterally

approximate the root of (1).

We suppose that g satisfies the following conditions:

a) there exists l ∈ R, 0 < l < 1 such that for all x ∈ [a, b]:

|g(x)− g(x̄)| ≤ l |x− x̄| , (19)

where x̄ is the common root of (1) and x = g(x);

b) the function g is decreasing on [a, b];

c) the equations (1) and x = g(x) ar equivalent.

The following result holds:

Theorem 1. If functions f, g and element x0 ∈ [a, b] satisfy the conditions:

i1. if x0 ∈ [a, b], then g(x0) ∈ [a, b];

ii2. f has third order derivatives on [a, b];

iii3. f ′(x) > 0, f ′′(x) ≥ 0, for all x ∈ [a, b];

iv1. E(x) ≤ 0 for all x ∈ [a, b], where E is given by (17);

v1. function g satisfies a)-c);

vi1. equation (1) has a root x̄ ∈ [a, b].

Then the following properties are true:
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j1. The elements of sequence (xn)n≥0 generated by (10), where x0 satisfies

i1, remain in [a, b] and for each n = 0, 1, . . ., the following relations are

satisfied:

xn ≤ xn+1 ≤ x̄ ≤ g(xn+1) ≤ g(xn) (20)

if f(x0) < 0, or

xn ≥ xn+1 ≥ x̄ ≥ g(xn+1) ≥ g(xn) (21)

if f(x0) > 0.

jj1. lim xn = lim g(xn) = x̄;

jjj1. max{|xn+1 − x̄| , |g(xn)− x̄|} ≤ |xn+1 − g(xn)| , for each n = 0, 1, . . . .

Proof. Let xn ∈ [a, b], n ≥ 0 for which g(xn) ∈ [a, b].

We consider first: f(xn) < 0, that is, xn < x̄. Since g is decreasing and using

g(x̄) = x̄ one obtains:

g(xn) > x̄

and g(g(xn)) < x̄.

Relation (19) implies:

|g(g(xn))− x̄| ≤ l |g(xn)− x̄| ≤ l2 |xn − x̄|

from which one obtains:

a ≤ xn < g(g(xn)) < x̄ < g(xn) ≤ b. (22)

By use of iii1, (22) and (10) one gets

xn+1 ≥ xn. (23)

The assumptions ii1-iv1and from (22) and (18) we get

x̄− xn+1 > 0,

i.e., x̄ > xn+1, that is f(xn+1) < 0.

Using (23) and assumption c) on g one obtains g(xn+1) ≤ g(xn) and

g(xn+1) > g(x̄) = x̄. Hence we have shown (20).
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We consider now the case f(xn) > 0, that is xn > x̄.

Taking in consideration (11) instead of (10) and by use of

g(xn) < x̄

and g(g(xn)) > x̄, one gets:

f(g(xn)) < 0, f(g(g(xn))) > 0.

It is obvious to note relations (21).

Eventually, (20) and (21) show that sequences (xn)n≥0 and (g(xn))n≥0

converge. Denote lim xn = a, then,we obtain lim g(xn) = g(a). Using (10) or (11) as

n → ∞, it results that f(a) = 0 and therefore a = x̄, the unique solution of (1) on

[a, b].

Remark 2. Suppose the assumptions from Theorem 1 are satisfied and excepting iii1,

the following assumption holds.

f ′(x) < 0 and f ′′ (x) < 0 for each x ∈ [a, b] and consider instead of (1) the

following equation:

h(x) = 0, (24)

where h is given by h(x) = −f(x).

Note that Theorem 1 holds for (24).

The proof is obvious, since h′(x) > 0 and h′′(x) > 0, for all x ∈ [a, b] and

E(x) = 3[h′′(x)]2 − h′(x)h′′(x) < 0, that is E remains invariant.

A result similar to Theorem 1 holds, for the case in which f is decreasing and

convex.

Theorem 3. If functions f, g and element x0 ∈ [a, b] satisfy the following conditions:

i2. if x0 ∈ [a, b], then g(x0) ∈ [a, b];

ii2. f has third order derivative on [a, b];

iii2. f ′(x) < 0 and f ′′(x) > 0, for all x ∈ [a, b];

iv2. E(x) ≤ 0, for all x ∈ [a, b];

v2. function g satisfies a)-c);
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vi2. equation (1) has one root x̄ ∈ [a, b].

Then (xn)n≥0 generated by (10) or (11), remains in [a, b], and relation j1−

jjj1 from Theorem 1 are satisfied, when x0 satisfies i2.

Proof. The assumption iii1 leads to D(x) < 0 for all x ∈ [a, b]. Let xn ∈ [a, b], n ≥ 0,

an element for which g(xn) ∈ [a, b].

If xn > x̄, then f(xn) < 0 and g(xn) < x̄, g(g(xn)) > x̄.

From (19) one gets

|g(g(xn))− x̄| ≤ l2 |xn − x̄| ,

that is the following relations hold:

a ≤ g(xn) < x̄ < g(g(xn)) < xn ≤ b.

From iii2, f(x2) < 0 and using D(xn) < 0, (10) one obtains

xn+1 < xn.

The assumptions ii2-iv2 and relations (22), and (18) imply

x̄− xn+1 < 0,

that is, xn+1 > x̄, f(xn+1) < 0. Obviously relations (21) hold.

Relations (20) and consequences jj1 and jjj1 are proven analogously to The-

orem 1.

Remark 4. If f is increasing and concave, that is, f ′(x) > 0 and f ′(x) < 0, then

obviously h = −f is decreasing and convex.

If we replace in Theorem 3: function f by function h, and if we take into

account that function E remains invariant by this replacement, then we note that the

statements of Theorem 3 remain true.
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3. Determination of the auxiliary function

In the following, by use of function f, we give a method to determine auxiliary

function g, which could assure the control of interpolatory nodes.

If f is a convex function, i.e. f ′′(x) > 0, then for function g we consider

g (x) = x− f(x)
f ′ (x)

. (25)

If f is a concave function, then we can set

g (x) = x− f(x)
f ′(b)

. (26)

Obviously in both cases we have g′(x) < 0 and thus function g satisfies

assumption b).

It is clear that function g given by either (25) or (26), assures the equivalence

of (1) and x = g(x), i.e., g satisfies assumption c).

In order that g also satisfies assumption a), it is enough that the following

relations hold: ∣∣∣∣1− f ′(x)
f(a)

∣∣∣∣ < 1,

for all x ∈ [a, b], if f is convex function, or∣∣∣∣1− f ′(x)
f(b)

∣∣∣∣ < 1,

for all x ∈ [a, b], if f is a concave function.
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METRIC SPACE WITH FIXED POINT PROPERTY
WITH RESPECT TO CONTRACTIONS
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Dedicated to Professor Ştefan Cobzaş at his 60th anniversary

Abstract. In this paper we present some equivalent statements with the

fixed point property of a metric space with respect to contractions. These

statements are in terms of completeness, Picard operators, fractal opera-

tors, minimal displacement, well posedness of fixed point problem and the

limit shadowing property.

1. Introduction

Let X be a nonempty set and (X, S(X),M) a fixed point structure on X ([18]

and [19]). Let S1(X) ⊂ P (X) such that S(X) ⊂ S1(X). By definition (X, S(X),M)

is maximal in S1(X) if we have

S(X) = {A ∈ S1(X) | f ∈ M(A) ⇒ Ff 6= ∅}.

Is an open problem to establish if a given fixed point structure is maximal

or not. For example in some concrete structured sets this problem take the following

forms:

• Characterize the ordered sets with fixed point property with respect to

increasing operators ([3], [5], [10], [11], [18], [19], [22]-[24]).

• Characterize the metric space with fixed point property with respect to

continuous operators ([1], [2], [6], [10]).
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• Characterize the metric space with fixed point property with respect to

contractions ([4], [21], [6]-[10]).

• Characterize the Banach space X with the following property ([10], [19],

[20]):

Y ∈ Pb,cl,cv(X), f : Y → Y nonexpansive ⇒ Ff 6= ∅.

• Characterize the Banach space with the following property ([10], [19], [20]):

Y ∈ Pwcp,cv(X), f : Y → Y nonexpansive ⇒ Ff 6= ∅.

The aim of this paper is to present some equivalent statements with the fixed

point property of a metric space with respect to contractions.

2. Notations and notions

Let (X, d) be a metric space and (Pcp(X),Hd,⊂) the corresponding ordered

metric space of fractals. In what follow we shall use the following notations. We

denote

CT (X, X) := {f : X → X | f is a contraction}.

If f ∈ CT (X, X) then we denote by f̂ : Pcp(X) → Pcp(X), A 7→ f(A) :=⋃
a∈A

f(a), the corresponding fractal operator.

(UF )f̂ := {A ∈ Pcp(X) | f̂(A) ⊂ A},

(LF )f̂ := {A ∈ Pcp(X) | f̂(A) ⊃ A}.

For an operator f : X → X we denote by d(f) := inf{d(x, f(x)) | x ∈ X} the

minimal displacement of f (K. Goebel (1973) ([10], 586)).

To present our results we need the following notions:

Definition 2.1. (F.S. De Blasi and J. Myjak (1989) ([17])). Let (X, d) be

a metric space and f : X → X an operator. The fixed point problem for f is well

posed iff

(a) Ff = {x∗};
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(b) if xn ∈ X, n ∈ N and d(xn, f(xn)) → 0 as n →∞, then d(xn, x∗) → 0 as

n →∞.

Definition 2.2. ([13]) An operator f : X → X has the limit shadowing

property iff xn ∈ X, n ∈ N, d(xn+1, f(xn)) → 0 as n → ∞ imply that there exists

x ∈ X such that d(xn, fn(x)) → 0 as n →∞.

Definition 2.3. A metric space is complete with respect to CT (X, X) iff

f ∈ CT (X, X) implies that (fn(x))n∈N converges for all x ∈ X.

Remark 2.1. If f ∈ CT (X, X) then (fn(x))n∈N is a Cauchy sequence for

all x ∈ X.

3. Equivalent statements

The main result of this paper is the following

Theorem 3.1. Let (X, d) be a metric space. The following statements are

equivalent:

(i) (X, d) has the fixed point property with respect to CT (X, X).

(ii) f ∈ CT (X, X) implies that f is Picard operator.

(iii) (X, d) is complete with respect to CT (X, X).

(iv) f ∈ CT (X, X) implies that there exists x∗f ∈ X such that d(f) =

d(x∗f , f(x∗f )).

(v) f ∈ CT (X, X) implies that the fixed point problem for f is well posed.

(vi) f ∈ CT (X, X) implies that Ff̂ 6= ∅.

(vii) f ∈ CT (X, X) implies that (UF )f̂ 6= ∅.

(viii) f ∈ CT (X, X) implies that (LF )f̂ 6= ∅.

(ix) f ∈ CT (X, X) implies that there exists x ∈ X such that (fn(x))n∈N

converges.

Proof. (i) ⇒ (ii). Let f be an α-contraction with Ff = {x∗}. Then

d(fn(x), x∗) = d(fn(x), fn(x∗)) ≤ αnd(x, x∗) → 0 as n →∞, for all x ∈ X. So, f is

Picard operator.

(ii) ⇒ (iii). Follows from the definition of Picard operators.

117



IOAN A. RUS

(iii) ⇒ (iv). Let f ∈ CT (X, X). It is clear that (iii) implies (ii). So, x∗f is

the fixed point of f .

(iv) ⇒ (v). Let f be an α-contraction and d(f) = d(x∗f , f(x∗f )). If x∗f 6=

f(x∗f ), then we have

d(f(x∗f ), f2(x∗f )) ≤ αd(x∗f , f(x∗f )) < d(x∗f , f(x∗f )).

This implies that Ff = {x∗f}. Let xn ∈ X, n ∈ N, be such that d(xn, f(xn)) →

0 as n →∞. We have

d(xn, x∗f ) ≤ d(xn, f(xn)) + d(f(xn), x∗f )

≤ d(xn, f(xn)) + αd(xn, x∗f ).

Hence,

d(xn, x∗) ≤ 1
1− α

d(xn, f(xn)) → 0 as n →∞.

(v) ⇒ (vi). By a theorem of Nadler f contraction implies that f̂ is contrac-

tion. Let f ∈ CT (X, X) with Ff = {x∗}. Then by definition of f̂ , {x∗} ∈ Ff̂ . But,

f̂ contraction implies Ff̂ = {{x∗}}.

(vi) ⇒ (vii). Let f ∈ CT (X, X). The condition (vi) implies Ff̂ = {A∗}.

But δ(f̂(A∗)) = δ(A∗) ≤ αδ(A∗). This implies A∗ = {a∗}. We remark that A∗ ∈

(UF )f̂ 6= ∅.

(vii) ⇒ (viii). Let f ∈ CT (X, X) and A∗ ∈ (UF )f̂ . These imply A∗ = {a∗}.

So, A∗ ∈ (LF )f̂ .

(viii) ⇒ (ix). f ∈ CT (X, X) and A∗ ∈ (LF )f̂ imply A∗ = {a∗}. So,

Ff = {x∗} and fn(x) → x∗ as n →∞, for all x ∈ X.

(ix) ⇒ (i). Let f ∈ CT (X, X), and x ∈ X such that fn(x) → y∗. From the

continuity of f we have that y∗ ∈ Ff . So, Ff = {y∗}.

Remark 3.1. It is well known that there exist incomplete metric spaces with

fixed point property with respect to contraction (see [4], [21]). On the other hand

there exists some equivalent statements with completeness ([1], [5], [7]-[9], [12],...).
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Remark 3.2. Condition (ii) implies that each f ∈ CT (X, X) has the limit

shadowing property.

Indeed, let f be an α-contraction with Ff = {x∗} and xn ∈ X, n ∈ N, such

that

d(xn+1, f(xn)) → 0 as n →∞.

We have

d(xn, x∗) ≤ d(xn, f(xn−1)) + d(f(xn−1), x∗)

≤ d(xn, f(xn−1)) + αd(xn−1, x
∗) ≤ . . .

≤ d(xn, f(xn−1)) + αd(xn−1, f(xn−2)) + . . .

+ αn−1d(x1, f(x0)) + αnd(x0, x
∗).

From the Cauchy’s lemma we have that

d(xn, x∗) → 0 as n →∞.

So, d(xn, fn(x0)) ≤ d(xn, x∗) + d(x∗, fn(x0)) → 0 as n →∞.

Remark 3.3. Let X be a nonempty and f : X → X an operator. We

suppose that there exists A ∈ P (X) such that

A ⊂ f(A).

For the fixed point theory for such operators see J. Andres [2] and the refer-

ences therein.

The above considerations give rise to

Open problem 3.1. Extend the results of this paper to generalized metric

spaces.

Open problem 3.2. Extend the results of this paper to generalized con-

tractions.

Open problem 3.3. Extend the results of this paper to the case of multi-

valued generalized contractions.
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BOOK REVIEWS

Antonio Ambrosetti and Andrea Malchiodi, Perturbation Methods and

Semilinear Elliptic Problems on Rn, Progress in Mathematics (series editors:

H. Bass, J. Oesterlé and A. Weinstein), vol. 240, Birkhäuser Verlag, Basel-Boston-

Berlin, 2006, xii+183 pp; ISBN-10:3-7643-7321-0, ISBN-13:978-3-7643-7321-4,

e-ISBN 3-7643-7396-2.

The monograph is based on the authors’ own papers carried out in the last

years, some of them in collaboration with other people like D. Arcoya, M. Badiale,

M. Berti, S. Cingolani, V. Coti Zelati, J.L. Gamez, J. Garcia Azorero, V. Felli, Y.Y.

Li, W.M. Ni, I. Peral and S. Secchi.

The book is concerning with perturbation methods in critical point theory

together with their applications to semilinear elliptic equations on Rn having a vari-

ational structure.

The contents are as follows: Foreword; Notation; 1 Examples and motiva-

tions (giving an account of the main nonlinear variational problems studied by the

monograph); 2 Perturbation in critical point theory (where some abstract results on

the existence of critical points of perturbed functionals are presented); 3 Bifurcation

from the essential spectrum; 4 Elliptic problems on Rn; 5 Elliptic problems with

critical exponent; 6 The Yamabe problem; 7 Other problems in conformal geometry;

8 Nonlinear Schrödinger equations; 9 Singularly perturbed Neumann problems; 10

Concentration at spheres for radial problems; Bibliography (147 titles) and Index.

The topics are presented in a systematic and unified way and the large range of

applications talks about the power of the critical point methods in nonlinear analysis.

122



BOOK REVIEWS

I recommend the book to researchers in topological methods for partial dif-

ferential equations, especially to those interested in critical point theory and its ap-

plications.

Radu Precup

Jonathan M. Borwein and Qiji J. Zhu, Techniques of Variational Analysis,

Canadian Mathematical Society (CMS) Books in Mathematics, Vol. 20, Springer

2005, vi+362 pp, ISBN 3-387-24298-8.

The term variational analysis concerns methods of proofs based on the fact

that an appropriate auxiliary function attains a minimum, and has its roots in the

physical principle of the least action. Probably that the first illustration of this

method is Johann Bernoulli’s solution to the Brachistocrone problem which led to

the development of variational calculus.

A significant impact on variational analysis was done by the development

of nonsmooth analysis, making possible the use of calculus of nonsmooth functions

and enlarging substantially the area of applications. Other powerful tools are the

decoupling method (a nonconvex substitute for Fenchel conjugacy and Hahn-Banach

theorem from convex analysis), alongside with variational principles.

As it is well known, a lower semi-continuous (lsc) function attains its min-

imum on a compact set, a property that is not longer true in the absence of the

compactness, even for bounded from below lsc functions. This drawback can be

compensated by adding a small perturbation to the original function such that the

perturbed function attains its minimum. The properties of the perturbation function

depend on the geometric properties of the underlying space: the better these prop-

erties (smoothness) the nicer the perturbation function. This fact is well illustrated

in the second chapter, Variational Principles - Ekeland variational principle holds in

complete metric spaces, while the smooth Borwein-Preiss variational principle holds in

Banach spaces with smooth norm. Another one, Stegall variational principle (proved
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in Chapter 6), holds in Banach spaces with the Radon-Nikodym property and ensures

a continuous linear perturbation.

The aim of the book is to emphasize the strength of the variational techniques

in various domains of analysis, optimization and approximation, dynamic systems,

mathematical economics. These applications are arranged by chapters which are

relatively independent and can be used for graduate topics courses.

The chapters are: 3. Variational techniques in subdifferential theory (Fréchet

subdifferential and normal cone, sum rules, chain rules for Lyapunov functions, mean

value theorems and inequalities, extremal principles); 4. Variational techniques in

convex analysis (Fenchel conjugate, duality, entropy maximization); 5. Variational

techniques and multifunctions (multifunctions, subdifferentials as multifunctions, dis-

tance functions, coderivatives of multifunctions, implicit multifunction theorems);

6. Variational principles in nonlinear functional analysis (subdifferential and As-

plund spaces, nonconvex separation, Stegall variational principle, mountain pass the-

orem); 7. Variational techniques in the presence of symmetry (nonsmooth functions

on smooth manifolds, manifolds of matrices and spectral functions, convex spectral

functions).

The book contains a lot of exercises completing the main text, some of them,

which are more difficult, being guided exercises with references.

Based mainly on developments and applications from the past several

decades, the book is directed to graduate students in the field of variational analy-

sis. The prerequisites for its reading are undergraduate analysis and basic functional

analysis. Researchers who use variational techniques, or intend to do, will find the

book very useful too.

S. Cobzaş
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Dorin Bucur, Giuseppe Buttazzo, Variational Methods in Shape Opti-

mization Problems, Progress in Nonlinear Differential Equations and their

Applications, Birkhäuser, 2005, ISBN 0-8176-4359-1.

Usually, problems of the calculus of variations concern optimization among

an admissible class of functions. What is special about shape optimization problems

is that the ”competing objects” are shapes (domains of Rn). Because of this, the

existence of a solution is ensured only in certain cases, due to some geometrical

restrictions on the admissible domains (shapes) or to a particular form of the cost

function. In general, relaxed formulations of the problems have to be formulated.

The development of the field of shape optimization is due especially to the

great number of applications in physics and engineering.

Several examples of shape optimization problems are presented in the first

chapter of the book, in a detailed and clear manner: the isoperimetric problem, the

Newton problem of minimal aerodynamical resistance, the optimal distribution of two

different media in a fixed region, the optimal shape of a thin insulating layer.

The second chapter is about optimization problems over classes of convex

domains and it deals with the case where an additional convexity constraint on the

domains ensures the existence of an optimal shape (by providing some extra compact-

ness). Some necessary conditions of optimality are given for the Newton problem.

Some shape optimization problems can be considered optimal control prob-

lems: the shape plays the role of the control and the state equation is usually a partial

differential equation on the control domain. In Chapter 3, a topological framework for

general optimization problems is given, together with the theory of relaxed controls

and some examples of relaxed shape optimization problems.

Shape optimization problems with Dirichlet (Neumann) condition on the free

boundary are treated in Chapters 4 (7, respectively). In both cases, is important to

understand the stability of the solution to a PDE for nonsmooth perturbations of the

geometric domain. This stability is related to the convergence in Mosco sense of the

corresponding variational spaces. The relaxed form of a Dirichlet problem is given (in
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a case where the existence of an optimal solution does not occur), to understand the

behavior of minimizing sequences. For Neumann boundary conditions, the problem

of optimal cutting is treated completely.

Chapter 5 contains other particular cases where an unrelaxed optimal solution

exists, in the family of classical admissible domains. The existence of solutions is

ensured by some monotonicity properties of the cost functional or by some geometrical

constraints on the domains.

Optimization problems for functions of eigenvalues are presented in Chapter

6. The case of the first two eigenvalues of the Laplace operator is studied, using the

continuous Steiner symmetrization.

The book is addressed mainly to graduate students, applied mathematicians,

engineers; it requires standard knowledge in the calculus of variations, differential

equations and functional analysis.

The problems are treated from both the classical and modern perspectives,

each chapter contains examples and illustrations and also several open problems for

further research. A substantial bibliography is given, emphasizing the rapid develop-

ment of the field.

Daniela Inoan

Stefaan Caenepeel and Freddy van Oystaeyen Editors, Hopf Algebras in

Noncommutative Geometry and Physics, Pure and Applied Mathematics, Vol.

239, Marcel Dekker, New York, 2005, 320 pp., ISBN 0-8247-5759-9.

The study of Hopf algebras and quantum groups has seen a great development

during the last two decades. The present volume is devoted to these topics, and

consists of high quality articles related to the lectures given at the meeting on “Hopf

algebras and quantum groups” held at the Royal Academy in Brussels from May 28 to

June 1, 2002. This volume contains refereed papers and surveys on different aspects

of the subject, such as:
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The list of contributors and their papers is as follows. J. Abuhlail, Morita

contexts for corings and equivalences; F. Aly and F. van Oystaeyen, Hopf order mod-

ule algebra orders; G. Böhm, An alternative notion of Hopf algebroid; Ph. Bon-

neau and D. Sternheimer, Topological Hopf algebras, quantum groups and defor-

mation quantization; T. Brzeziński, L. Kadison and R. Wisbauer, On coseparable

and biseparable corings; D. Bulacu, S. Caenepeel and F. Panaite, More properties of

Yetter-Drinfeld modules over quasi-Hopf algebras; S. Caenepeel, J. Vercruysse and

S.H. Wang, Rationality properties for Morita contexts associated to Corings; L. El

Kaoutit and J. Gómez-Torrecillas, Morita duality for corings over quasi-Frobenius

rings; K.R. Goodearl and T.H. Lenagan, Quantized coinvariants at transcendental q;

S. Majid, Classification of differentials on quantum doubles and finite noncommuta-

tive geometry; S. Majid, Noncommutative differentials and Yang-Mills on permuta-

tion groups Sn; C. Menini and G. Militaru, The afineness criterion for Doi-Koppinen

modules; S. Montgomery, Algebra properties invariant under twisting; C. Ohn, Quan-

tum SL(3, C)’s: the missing case; A Paolucci, Cuntz algebras and dynamical quantum

group SU(2); B. Pareigis, On symbolic computations in braided monomial categories;

P. Schauenburg, Quotients of finite quasi-Hopf algebras; K. Szlachányi; Adjointable

monoidal functors and quantum groupoids; R. Wisbauer, On Galois corings.

The book is highly recommended to researchers in algebraic geometry, num-

ber theory and mathematical physics, who will find here an excellent overview of

the most significant areas of research in this field. Some of the new results are pre-

sented here for the first time. It is a valuable addition to the literature, and I warmly

recommend it to algebraists and theoretical physicists.

Andrei Marcus
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Farid M.L. Amirouche, Fundamentals of Multibody Dynamics: Theory

and Applications, Birkhäuser, Boston-Basel-Berlin, 2006, XVIII+684 pp, ISBN

0-8176-4236-6.

Multibody dynamics has grown in the past two decades to be an important

tool for designing, prototyping, and simulating complex articulated mechanical sys-

tems. This is mainly due to its versatility in analyzing a broad range of applications.

This textbook – a result of the author’s many years of research and teaching – brings

together diverse concepts of dynamics, combining the efforts of many researchers

in the field of mechanics. Bridging the gap between dynamics and engineering ap-

plications such as microrobotics, virtual reality simulation of interactive mechanical

systems, nanomechanics, flexible biosystems, crash simulation, and biomechanics, the

book puts into perspective the importance of modelling in the dynamic simulation

and solution of problems in these fields.

To help engineering students and practicing engineers understand the rigid-

body dynamics concepts needed for the book, the author presents a compiled overview

of particle dynamics and Newton’s second law of motion in the first chapter. A

particular strength of the work is its use of matrices to generate kinematic coefficients

associated with the formulation of the governing equations of motion, facilitating the

computational investigation of the presented problems. Additional features of the

book include:

• numerous worked examples at the end of each section;

• introduction of boundary-element methods (BEM) in the description of

flexible systems;

• up-to-date solution techniques for rigid and flexible multibody dynamics

using finite-element methods (FEM);

• inclusion of MATLAB-based simulations and graphical solutions;

• in-depth presentation of constrained systems;

• presentation of the general form of equations of motion ready for computer

implementation;
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• two unique chapters on stability and linearization of the equations of mo-

tion;

• numerous illustrations facilitating the understanding of the used models

and methods;

• specific references at the end of each chapter and a comprehensive list of

reference at the end of the book;

• supplementary material and solutions manual available upon request.

Junior/senior undergraduates and first-year graduate engineering students

taking a course in dynamics, physics, control, robotics, or biomechanics will find this

a useful book with a strong computer orientation towards the subject. The work

may also be used as a self-study resource or research reference for practitioners in the

above-mentioned fields.

Ferenc Szenkovits

Leszek Gasiński and Nikolaos S. Papageorgiou, Nonlinear Analysis, Series

in mathematical Analysis and Applications, Vol. 9, Chapman & Hall/CRC, Taylor

& Francis Group, Boca Raton, London, New York, Singapore, 2006, xi +971 pp.,

ISBN 1-58488-484-3.

The aim of the present volume is to provide the reader with a solid back-

ground in several areas related to some modern topics in nonlinear analysis as critical

point theory, nonlinear differential operators and related regularity and comparison

principles.

The first chapter, Hausdorff measures and capacity, is concerned with topics

as Vitali and Besicovitch covering theorems, Hausdorff measure and dimension, differ-

entiability of Hausdorff measures and of Lipschitz functions (Rademacher theorem),

the area, coarea and change of variables formulae for Lipschitz transforms.

The second chapter, Lebesgue-Bochner and Sobolev spaces, contains a brief

introduction to integration of vector-functions (weak and strong measurability, Pettis,
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Gelfand and Bochner integrals), a treatment of Banach spaces of continuous vector-

functions, of Lebesgue-Bochner spaces (completeness, duality, compactness), and of

Sobolev spaces of vector-functions.

Chapter 3, Nonlinear operators and Young measures, discusses some classes of

nonlinear operators (monotone, accretive) and semigroups of operators, exemplified

on the case of Nemytskii composition operator. Some results on compact and on

Fredholm linear operators on Banach and Hilbert spaces are also included, in order

to emphasize the similarities and the differences between the linear and nonlinear

case. The chapter ends with an introduction to Young measures.

The fourth chapter, Smooth and nonsmooth variational principles, contains

an introduction to differential calculus on Banach spaces (Gâteaux and Fréchet deriva-

tives) with applications to the differentiability of convex functions - Mazur and As-

plund generic differentiability theorems. Christensen theorem on almost everywhere

differentiability of locally Lipschitz functions on Banach spaces (the extension of

Rademacher theorem) with respect to Haar null sets is also proved. Subdifferential

calculus for convex functions, as well as Clarke generalized subdifferential calculus for

locally Lipschitz functions are considered too. The chapter ends with the proof of

Ekeland and Borwein-Preiss variational principles with applications.

Chapter 5, Critical point theory, is concerned with applications of the criti-

cal point theory to minimax, saddle point and mountain pass theorems. Lusternik-

Schnirelman theory with applications to eigenvalue problems is the topic of the last

section of this chapter.

In Chapter 6, Eigenvalue problems and maximum principles, the techniques

and methods developed so far are applied to the study of linear and nonlinear elliptic

PDEs.

Fixed point theorems (FPT) constitute the basic tool in the proofs of the

existence of solutions to various kinds of equations and inclusions. The last chapter of

the book, Chapter 7, Fixed point theorems, is devoted to the proofs of the main FPT

of metrical nature (Banach contraction principle with extensions and applications,

normal structure in Banach spaces and FPT for nonexpansive mappings), and of
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topological nature as well – the fixed point theorems of Brouwer, Schauder, Borsuk,

and Sadovskii. A special attention is paid to FPT in ordered structure (Tarski,

Bourbaki-Kneser, Amann) and in ordered Banach spaces – Krasnoselskii FPT with

applications to positive eigenvalues and to fixed point index.

An appendix collects the essential results from topology, measure theory,

functional analysis, calculus and nonlinear analysis, used throughout the book.

Together with the books Nonsmooth Critical Point Theory and Nonlinear

Boundary Value Problems, CRC 2005, by the same authors, and An Introduction

to Nonlinear Analysis, Vol. I. Theory, Vol. II, Applications, by Z. Denkowski, S.

Migorski & N. Papageorgiou, the present one provides a comprehensive and fairly

self-contained presentation of some important results in nonlinear analysis and appli-

cations.

It (or parts of it) can be used for graduate or post-graduate course, but also

as reference text by specialists.

S. Cobzaş
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