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STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume LI, Number 4, December 2006

ON A CLASS OF LINEAR POSITIVE BIVARIATE OPERATORS
OF KING TYPE

OCTAVIAN AGRATINI

Dedicated to Professor Gheorghe Coman at his 70th anniversary

Abstract. The concern of this note is to introduce a general class of lin-
ear positive operators of discrete type acting on the space of real valued
functions defined on a plane domain. These operators preserve some test
functions of Bohman-Korovkin theorem. Following our technique, as a
particular class, a modified variant of the bivariate Bernstein-Chlodovsky

operators is presented.

1. Introduction

Let (L,)n>1 be a sequence of positive linear operators defined on the Ba-
nach space C([a,b]). A classical theorem of Bohman-Korovkin asserts: if (L,ex)n>1
converges to e uniformly on [a,b], k € {0,1,2}, for the test functions eg(z) = 1,
e1(z) = z, ez(z) = 22, then (L, f)n>1 converges to f uniformly on [a,b], for each
f € C(la, b))

J.P. King [8] has presented an example of linear and positive operators V,, :

c([0,1]) — ([0, 1]), given as follows

Vo) =3 () ere@rra =@y (5) . reco. e e o,

k=0
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where 7} : [0,1] — [0, 1],

ri(e) = | n .1 (2)
Q(n—1)+\/n—1$ +4(n—1)2’ n=23,...

This sequence preserves two test functions eg, es and (Vy,e1)(x) = () holds.
Based on Bohman-Korovkin criterion, we get nlln;o (Vo f)(x) = f(x) for each f belong-
ing to C([0,1]), = € [0,1]. l

Further results regarding V,, operator have been recently obtained by Gonska
and Pitul [5]. Also, by using A-statistical convergence, an analog of King’s result has
been proved by O. Duman and C. Orhan [4].

In [1] we indicated a general technique to construct sequences of univariate
operators of discrete type with the same property as in King’s example, i.e., their
degree of exactness is null, but they reproduce the third test function of the celebrated
criterion.

The central issue of this paper is to present a sequence of bivariate operators
with similar properties: to reproduce certain monomials of second degree and to form

an approximation process.

2. Preliminaries

Following our announced aim, in this section we recall results regarding the
univariate case. Also, basic results concerning the uniform approximation of functions
by bivariate operators are delivered.

We set Ry := [0, 00) and Ng := {0} UN. Following [1], we consider a sequence
(Ly)n>1 of linear positive operators of discrete type acting on a subspace of C(R)

and defined by
(Lnf)(l') = Zun)k(l')f(x»mk), xz Z 07 f € fﬂ Eou (3)
k=0

where uy, 1, : Ry — Ry is continuous (n € N, k € Ny), (zn1)k>0 := A, is a net on
R, and
F:={f:Ry — Ry : the series in (3) is convergent},

14



ON A CLASS OF LINEAR POSITIVE BIVARIATE OPERATORS OF KING TYPE
Eo:={f€CR,): (1+z%) f(x) is convergent as x — oo},

a > 2 being fixed. We mention that the right-hand side of (3) could be a finite sum.

We assume that the following identities
(Lpeo)(x) =1, (Lper)(z) =z, (Lpea)(x) =anz® +byx+cn, x>0, (4)

are fulfilled for each n € N. At this moment, {eg,e1,es} C F N E, holds. Moreover,

we assume

a, #0, neN, lim a,=1, lim b, = lim ¢, =0.

n=o00 n—oo
Based on Bohman-Korovkin theorem these relations guarantee that (Ly,)n>1
is a positive approximation process, more precisely nlirr;o (Lnf)(z) = f(z) uniformly
for every f € F N E, and every x belonging to any compact K C R,..
Since (Ley)? < (Leg)(Lez) is a common property of any linear positive oper-

ator L of summation type, we get
(an —Da® + bz +¢, >0, >0, neN, (5)

which implies
¢, >0, a,>1foreachneN, (6)

and {n € N: a, =1} C {n € N: b, > 0}. Further on, we are looking for the
functions v,, € RE*, n € N, such that (Lyez)(v,(x)) = 22 for each x > 0 and n € N,
this means

anV2(x) + bpvp(z) + ¢ —2* =0, x>0, n€N. (7)

In what follows, throughout the paper, we take
cn =0, neN, (8)

and

1
vp(z) = g(\/b%+4anx2—bn), x>0, neN 9)

n

For each n € N, v, (z) is well defined and v,, is a continuous positive function.
Also, relation (7) is verified.
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Starting from (3) we define the univariate linear positive operators
(L;ka)(x) :Zun,k(vn(x))f(xn,k), lEZO, femeom neNa (10)
k=0

where v, is given by (9).

The following identities
Lieg=ep, Lyer=wv,, Lles=eo (11)

hold. Consequently, one has nan;O L} f = f uniformly on compact intervals of R, for
every f € F N E,. This result follows from (11) and Korovkin criterion. For each n
with the property b, > 0 we get v,(0) = 0 and, consequently, one has (L% f)(0) =
(Lnf)(0).

Setting e; ;(z,y) = 2'y/, i € No, j € No, i +j < 2, the test functions
corresponding to the bidimensional case, we need a result due to Volkov [10].

Theorem 1. Let I and J compact intervals of the real line. Let Ly, m,,
(m1, ma) € Nx N, be linear positive operators applying the space C'(I x J) into itself.
If

lim Lml,mgei,j = €54, (7".]) S {(070)7 (la 0)7 (07 1)}a

mi,msa

lim Ly, m, (€20 + €0,2) = €20 + €02,
mi,mz

uniformly on I x J, then the sequence (L, m,f) converges to f uniformly on I x J
forany f € C(I xJ).
In a more general frame, Volkov’s theorem says: if X is a compact subset of

)
the Euclidean space R?, then {1, D1y s Pl Z pr?-} is a Korovkin subset in C(X).
=1

Here 1 stands for the constant function on X of constant value 1 and pry,...,pr,
represent the canonical projections on X, this means pr;(z) := z; for every z =
(zi)1<i<p € X, where 1 < j < p. For a thorough documentation the monograph of
Altomare and Campiti [2; page 245] can be consulted.
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ON A CLASS OF LINEAR POSITIVE BIVARIATE OPERATORS OF KING TYPE
3. A class of bivariate operators

Now we are going to present the tensor product extension of L7 to the bidi-
mensional case.

Starting from the specified A, net on Ry, we consider A,,, x A,,,, the
corresponding net on Ry X Ry. Thus, (Tm,.i;Tm,,;), (¢;4) € Ng x No, are its knots.

Having in mind the notations of the previous section we introduce the bivari-

ate linear positive operators acting on D and defined as follows

(L:nl,mgf)(xa y) = Z Z umhi(vml (x))umz,j(’UWQ (y))f(xmhi? xm2-,j)? (12)

i=0 j=0
(z,y) € Ry x Ry. For each index m € N, the functions um, i, ¥ € Ny, enjoy the
properties implied by (4) and v,, is given by (9). In the above D consists of all
continuous functions f : Ry x Ry — R with the properties: the series in (12) is
convergent and (1 + x*)~1f(z,y), (1 + y*2)~1f(z,y) are convergent as x — oo,
y — oo respectively, where a1 > 2, ap > 2 are fixed. Clearly, e¢; ; € D for each
(i,§) € No x No with i +j < 2.
Theorem 2. Let L be defined by (12).

mi,ma2

(i) The following identities

* * *
Ly, my€0,0 = €005 Loy m,€2,0 = €205 Ly, m,€02 = €02, (13)

(Lot m€1,0)(2,Y) = Vmy (2), (L, iy €0,0)(2:Y) = vms (y), (2,9) € Ry X Ry,

hold.

(ii) One has mlllIPn2 Ly, o = [ uniformly on compact subsets of Ra_ for
every f € D.

Proof. (i) Taking into account (11) and (12), by a straightforward calculation
the stated identities follow.

(ii) Based on (13), the result is implied by (9) and Theorem 1. OJ

*

ma.m, ODerators in terms of the

We can explore the rate of convergence of L
first order modulus of smoothness wy of the bivariate function f. It is known that
for any real valued bounded function f, f € B(I x J), where I and J are compact
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intervals of the real line, the associated mapping w;y is defined as follows:
wy(d1,02) = sup{|f(z1, 1) — f@2,92)| : (21,91), (22,92) €I x J,
|21 — 1] < 61, |22 — yo| < d2}, (61,02) € Ry x Ry (14)
Among the properties of wy investigated by A.F. Ipatov [7] we recall
wr(A101, A202) < (1 + A + A2)wys(61,02), A1 >0, Ay > 0. (15)

Let K C R be a compact and let §; > 0, d2 > 0 be fixed. Based on (15) and

knowing that L eo,0 = 1, for each (z,y) € K we can write

mi,ma

|(L:n1 mgf)(xay) - f(xay”

ZZ Umy i Uml quJ(Umz (y))‘f('rml,ivajmmj) - f(a:,y)I

i=0 j=0

< 33 i ()t (om0 ( 5 =l s =

i=0 j=0

< Zuml, vml |1‘m1 i LU| + = Zumz J ’Um2 |$m2,g y|>(,df((517 62)

On the other hand, Cauchy’s inequahty and the identities given by (13) imply

Zuml, Uml ‘xml» _x‘

1/2

< (Z Uy i (Vm, (x))) <Z Uy i (U, (2))(Tmy i — x)2>
i=0 i=0
= (222 — 2zvm, (z))/?,
and respectively
Zumzu Vmy (Y)|Tmas — Yl < (2y* — 2yvpm, (y))1/2-

The above relations enable us to state the following estimate for the pointwise
approximation.

18
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Theorem 3. Let K be a compact subset of Rﬁ_. The operators Ly, m.,,
(m1,m2) € Nx N, defined by (12) verify

1_ 1_
(Eonsna ) = S < (1 500+ 5-0a0) ) s Grde), (10
for every f € D, (x,y) € K, 1 >0, 62 > 0, where
Um () = /22 — 2tv,(t), meN, t >0, (17)

and vy, is given at (9).

Remarks. 1° Based on Cauchy’s inequality (L*e;)? < (L*eq)(L*es) and
relation (11) as well, we get t > v, (¢), for each t > 0. Consequently, in (17) v, is
well defined.

2° Endowing R x R with the metric p, p(z1,22) = |21 — z2| + |y1 — yo| for
zr = (g, yr), k = 1,2, we could have estimated the rate of convergence using another

type of modulus of smoothness given by

wi(f;0) =sup{|f(z1) — f(z2)|: 21 €K, 22 €K, p(z1,22) <},

for every f € B(K) and § > 0. Clearly, (14) implies w(d1,02) < wi(f;01 + d2). An
overview on moduli of smoothness as well as some of their extensions can be found,
e.g., in the monograph [2; Section 5.1].

3° Examining the construction of v, we easily deduce v,,(0) < v, (z) < z

for each x € R;. Moreover, the mapping & — x — v,,(x) is increasing one. For a

compact I = [a, 8] C Ry, we can write

1/2
) < V2 (max(t = on(®) ) = VEIVF— 0 D).

Consequently, if K := 1 x J = [oq, £1] X [a2, B2] C RY then, by choosing in
(16) 5 := \/Bj —vm,;(B;), j € {1,2}, we obtain the following global estimate on the

compact K

| Loy mo f = flleaey < (1 + V261 + /282)wy (\/51 Vmy (1), V/ B2 — U,y 52))

Here [ - [[¢(x) stands for the usual sup-norm of the space C(K).
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4. Example

In order to obtain an approximation process of Lmth—type, we focus our

attention on Bernstein-Chlodovsky operators. Let (hy,),>1 be a sequence of strictly

positive real numbers verifying

lim h, =00 and lim — =0.
n—oo n—oo N

The nth Bernstein-Chlodovsky operator [3], L,, : C(Ry) — C(Ry) is defined

(Lnf)(z) = ,é@ (fi)k(l_fi)nkf(%k) s eshn (18)

f(=), if x> hy,.

It is known that identities (4) are fulfilled and we get

1 hy, .
ap=1——=,b,=—, ¢, =0, if x€]0,hy],
n n (19)
anp =1, b, =¢, =0, if x> h,.
Following (9) we obtain: for n = 1, vy (z) = 22, x > 0; for n > 2,
_1 <\/h,2L +4n(n —1)2z2 — hn) , if oz e [0,hy],
v (x) = 2(n—1) (20)
x, if x> h,.

Returning to (10) via (18), we obtain the modified univariate Bernstein-
Chlodovsky operators LY. Accordingly, based on (12), the bivariate extension for
each (z,y) € [0, hm,| X [0, hm,] and f € D is defined by

mi M2

(Ljnl,mQ f)(mv y) = Z Z Cmq,mo (iaj)vim (m)vgng (y)(hml — Um, (:L’))i(hm,z — Um, (y))j

i=0 j=0
Xf( . hm17 J hm2)> (21)
mq mo

where ¢, m, (4,7) = m1> e h, " h, 2 and vy, is described by (20).
? J

We notice the following aspect. From (19) we get a; = 0 and this should be

in contradiction with (6). In fact nothing is wrong because, this time, relation (5)

20



ON A CLASS OF LINEAR POSITIVE BIVARIATE OPERATORS OF KING TYPE

must hold only for = € [0, h,], not for each € Ry. Consequently, condition a,, > 1
in (6) is not necessary to take place.

Particular case. If we choose h,, = 1 in (18), then L,, becomes the classical
nth Bernstein polynomial for each n € N. In this case relations (19) and (20) imply
vp(x) = ri(x), € [0,1], see (2). The King’s operators (1) are reobtained.

Remarks. a) If we choose in (3) u, k() := e_m(nkil)k and ., 1= k/n, the
well-known Szdsz-Mirakyan-Favard operator is obtained. A .variant of this operator
in two dimensions was defined by Totik [9; p.292] as follows

(Su)a) = o 3oy V0 (£2).

7! j! n’'m
i=0 j=0 J

—-1+k
b) If we choose in (3) up k() = (n P * ):ck(1+:c)"k and g, == k/n,

the classical Baskakov operator is obtained. In [6] the authors have considered the

Baskakov operator for functions of two variables given by

i=0 j=0
— 1+ -1+
where ¢; j(n,m) = (n ) +Z> (m . +‘7).
¢ J

Following our technique, in the same manner we can obtain the modified
variants given by relation (12) of the above two classes. By a short computation,

relation (9) becomes

a)v(@:@ b)v(x):\/m—l

2n ’ 2(n+1) ’

respectively.
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REPRESENTATION THEOREMS
AND ALMOST UNIMODAL SEQUENCES

DORIN ANDRICA AND DANIEL VACARETU

Dedicated to Professor Gheorghe Coman at his 70th anniversary

Abstract. We define the almost unimodal sequences and we show that
under some conditions the polynomial P(X* + n) is almost unimodal

(Theorem 1.7). A nontrivial example of almost unimodality shows that

1
the seauence A (), b =~ ED o, MR

metric and almost unimodal (Theorem 3.1). This result is connected to

is sym-

some representation properties of integers.

1. Almost unimodal sequences and polynomials

A finite sequence of real numbers {dg,ds,...,dy} is said to be unimodal if
there exists an index 0 < m* < m, called the mode of the sequence, such that d;
increases up to 7 = m* and decreases from then on, that is, dy < d; < -+ < dp»
and dp,x > dpq1 > -+ > dy,. A polynomial is said to be unimodal if its sequence of
coefficients is unimodal.

Unimodal polynomials arise often in combinatorics, geometry and algebra.
The reader is referred to [BoMo] and [AlAmBoKaMoRo] for surveys of the diverse
techniques employed to prove that specific families of polynomials are unimodal.

We recall few basic results concerning the unimodality.

Theorem 1.1. If P is a polynomial with positive nondecreasing coefficients, then

P(X + 1) is unimodal.

Received by the editors: 15.05.2006.
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sequence, complete sequence of integers.
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Theorem 1.2. Let by > 0 be a nondecreasing sequence. Then the sequence
. (k
cj = bk<,>, 0<j<m (1.1)

1s unimodal with mode m™* = {mz—lJ .

Theorem 1.3. Let0 < ag < a; <--- < a,, be a sequence of real numbers andn € N,

and consider the polynomial

P=ay+am X+aX?+ - +a,X™. (1.2)

n+1

We can reformulate Theorem 1.3 in terms of the coefficients of polynomial P.

Then the polynomial P(X + n) is unimodal with mode m* = L mn J .

Theorem 1.4. Let 0 < ag < a; < --- < a,, be a sequence of real numbers and n € N.

Then the sequence

Qj:(Ij(mvn):Zak<.>nk_]> 0<j<m (1.3)

n+1

In order to introduce the almost unimodality of a sequence we need the

18 unimodal with mode m* = L m J .

following notion.

Definition 1.5. A finite sequence of real numbers {cg,c1,...,¢,} is called almost

nondecreasing if it is nondecreasing excepting a subsequence which is zero.

It is clear that, if the sequence {cg,c1,...,¢,} is nondecreasing, then it is

almost nondecreasing. The converse is not true, as we can see from the following

example. The sequence {0,1,0,2,0,3,...,0,m} is almost nondecreasing but it is not
nondecreasing.
Definition 1.6. A finite sequence of real numbers {dy,dy,...,d} is called almost

unimodal if there exists an index 0 < m* < m, such that d; almost increases up to
j =m"* and d; almost decreases from then on.
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As in the situation of unimodality, the index m* is called the mode of the se-
quence. Also, a polynomial is said to be almost unimodal, if its sequence of coefficients
is almost unimodal.

For instance, the polynomial

(XF 4+ 1) = (?) + (T)X’“ + (ZL)X?’“ oot (Z)ka

is almost unimodal for k > 2, but it is not unimodal.

The following result is useful in the study of almost unimodality.

Theorem 1.7. Let 0 < ag <a; <--- < an be a sequence of real numbers, let n be a

positive integer and consider the polynomial
P=ay+amX+aX+ - Fa,X™.
Then for any integer k > 2, the polynomial P(X* + n) is almost unimodal.

Proof. We note that if ) is a unimodal polynomial, then for any k£ > 2 the polynomial
Q(X*) is almost unimodal. Applying Theorem 1.3 we get that P(X +n) is unimodal
and now using the remark above it follows that P(X* + n) is almost unimodal with

mode m* =k {mJ O
n—+1

Remark 1.8. If n > m, then m* = 0, hence the sequence of coefficients of P(X* +n)

is almost nonincreasing. For example, the sequence of coefficients of (X* + 3)3 is

97,0,...,0,27,0,...,0,9,0,...,0,1.
N—— —_— =

k—1 k—1 k—1
2. Some representation results for integers

In 1960, P. Erdos and J. Surdnyi ([ErSu], Problem 5, pp.200) have proved

the following result: Any integer k can be written in infinitely many ways in the form
k=+17+£22+ ... £n? (2.1)

for some positive integer n and for some choices of signs + and —.
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In 1979, J. Mitek [Mi] has extended the above result as follows: For any fixed

positive integer s > 2 the result in (2.1) holds in the form
k=4+15+2" 4. £n° (2.2)

The following notion has been introduced in [Dr] by M.O. Drimbe:

Definition 2.1. A sequence (ay)n>1 of positive integers is an Erd6s-Surdanyi se-

quence if any integer k can be represented in infinitely many ways in the form
k=2a1+ay+---+a, (2.3)

for some positive integer n and for some choices of signs + and —.
The main result in [Dr] is contained in

Theorem 2.2. Any sequence (a,)n>1 of positive integers satisfying:
i)a; =1,
it) apne1 < 1+ag + -+ an, for any positive integer n,
i41) (an)n>1 contains infinitely many odd integers,

is an Erdos-Suranyi sequence.

As direct consequences of Theorem 2.1, in the paper [Dr], the following ex-
amples of Erdés-Suranyi sequences are pointed out:

1) The Fibonacci’s sequence (F},)n>0, where Fy = 1, F; = 1 and Fj,4q =
F, + F,_q, forn > 1;

2) The sequence of primes (py,)n>1-

We can see that the sequence (n°),>1 does not satisfy condition ii) in Theorem
2.2 but it is an Erdds Suranyi sequences, according to the result of J. Mitek [Mi]
contained in (2.2). Following the paper [Ba] one can extend Theorem 2.2 in such way
to include sequences (n®),>1. The following notion has been introduced in [KI] by T.

Klove:

Definition 2.3. A sequence (a,),>1 of positive integers is complete if any suffi-
ciently great integer can be expressed as a sum of distinct terms of (an)n>1.
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The above property is equivalent to the fact that for any sufficient great

integer k there exists a positive integer ¢ = ¢(k) such that
k=wuia1 +usas + -+ + uay, (2.4)

where u; € {0,1},i=1,2,...,t.
The main result in [Ba] is contained in
Theorem 2.4. Any complete sequence (an)n>1 of positive integers, containing infin-

itely many odd integers, is an Erdds-Surdnyi sequence.

Proof. Let q can be represented as in (2.4). Let S,, = a1+ - -+a,, n > 1. The sequence
(Sn)n>1 Is increasing and it contains infinitely many odd integers but also infinitely
many even integers. Let k be a fixed positive integer. One can find infinitely many
integers .S, having the same parity as k, such that S, > k + 2¢q. Consider .S;, a such
integer and let m = %(Sn — k). Because ¢ < m, it follows that m can be represented
as in (2.4). Taking into account that m < S,,, we have m = uja; + - - - + upa,, where

u; € {0,1},4=1,2,...,n. Then, we have
k=S,—2m=(1-2u1)a; + -+ (1 — 2uy,)a,.
From u; € {0,1} we get 1 —2u; € {-1,1},i=1,2,...,n. O

Remark 2.5. The result of J. Mitek [Mi] follows from Theorem 2.4 and from the
property that the sequence (n°),>; is complete, for any positive integer s. The

completeness of (n®),>1 is a result of P. Erdés (see [Si], pp.395).

3. Integral formulae and almost unimodality

Consider an Erdés-Suranyi sequence (@, )m>1. If we fix n, then there are 27
integers of the form +a; £ --- + a,. In this section we explore the number of ways
to express an integer k in the form (2.3). Denote Ag(n) to be this value. Using the

method in [AnTo] let us consider the function

Fulz) = (z N ;) (z N Zl) (z N ;) (3.1)
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It is clear that this is the generating function for the sequence Ag(n), i.e. we
may write
S’IL
> Aim), (3.2)
j:_Sn
where S, = a1 + -+ -+ a,. It is interesting to note the symmetry of the coefficients in
(3.2), ie. Aj(n) =A_;(n). If we write z = cost + isint, then by using DeMoivre’s

formula we may rewrite (3.1) as
fn(z) = 2" cosayt - cosast . .. cos a,t (3.3)

By noting that Ay(n) is the constant term in the expansion z7*f,(z), we

obtain

27k f,(2) = 2"(cos kt — isin kt) cos ayt .. .cos ant
) + Z Aj(n)(cos(j — k)t +isin(j — k)t) (3.4)
J#k

27 27
Finally, making use of the fact that / cosmtdt = / sinmtdt = 0, we
0 0
integrate (3.4) on the interval [0, 27] to find an elegant integral formula for Ay (n):

2'I'L

2m
/ cosaqt...cosantcosktdt (3.5)
0

After integrating, we find that the imaginary part of Ax(n) is 0, which implies

the relation

2m
/ cosayt...cosaytsinktdt =0 (3.6)
0

for each k between —S,, and S,,.

Applying formula (3.5) for Erdds-Surdnyi sequence (m?®),,>1, we get

A
—/ cos 1°t cos 2°t ... cosn’t cos ktdt,
™ Jo

A (n) =

where A,(j)(n) denote the integer Ay (n) for this sequence.
The following result gives a nontrivial example of almost unimodality.
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-1
Theorem 3.1. The sequence AS)(n), k=0,1,..., M, is almost nonincreasing
1 1
and consequently, the sequence Ag.l)(n), j= —%, e, —1,0,1,. .. @ 18

symmetric and almost unimodal.

Proof. First of all we show that A,(:)(n) is the number of representations of

L (2t

5 ) - k:) as Zsii, where ¢; € {0,1}. Indeed, we note that if £ € {0, 1},

i=1

then 1 — 2¢ € {—1,1} and we have Z(l — 2¢;)i = k if and only if

i=1
n(n+1) o
— 2 Z git =k,
i=1
hence
" 1 /nn+1)
b= |——"——-k]). .
; gl = 5 ( 5 > (3.7)
1 1

Denote B,(Cl)(n) the number of representations of 3 (n(n;—) — k:) in the

1
form (3.7). It is clear that B,gl)(n) = 0 if and only if £ and % have different
nn+1) << n(n+1)

parities. Also, we have <j< )

for any integer j of the form

1 1 1
3 (n(n;—) —k), k:O,l,...,%. Assume that we can write j as ey -14¢e5 -
24---4¢e,-nand e; = 1. Then, we have j —1 =¢€9-24---4¢&,,-n, where ea, ..., &, €

{0,1}. If we have in this sum three consecutive terms of the form i — 1,0,i + 1,
we can move 1 at the first position and obtain three consecutive terms of the form
i —1,4,0. After another such step for other three consecutive terms s — 1,0, s + 1,
taking into account that a such map is injective it follows that B](-l)(n) < B](-l) (n),

2
hence Ag.l)(n) < AEQQ(n) if both A§122(n) and A§1)(n) are not zero.

Remark 3.2. The conclusion of Theorem 3.1 is not generally true for Al(:)(n), where

s > 2 (see the values of A;CZ)(G) in the table below).
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4. Numerical results

Numerical values for A,(cl) for n up to 9
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Numerical values for A(()l)(n) and AéQ)(n)

Ly (2)

n Ao n Ao n Ao

1 0 51 8346638665718 1 0

2 0 52 16221323177468 2 0

3 2 53 0 3 0

4 2 54 0 4 0

5 0 55 119447839104366 5 0

6 0 56 232615054822964 6 0

7 8 57 0 7 2

8 14 58 0 8 2

9 0 59 1722663727780132 9 0

10 O 60 3360682669655028 10 O

11 70 61 0 11 2

12 124 62 0 12 10

13 0 63 25011714460877474 13 0

14 0 64 48870013251334676 14 0

15 722 65 0 15 86

16 1314 66 0 16 114

17 0 67 365301750223042066 17 0

18 0 68 714733339229024336 18 0

19 8220 69 0 19 478

20 15272 70 0 20 860

21 0 71 5363288299585278800 21 0

22 0 72 10506331021814142340 22 0

23 99820 73 0 23 5808

24 187692 74 0 24 10838

25 0 75 79110709437891746598 25 0

26 0 76 155141342711178904962 26 0

27 1265204 7 0 27 55626

28 2399784 78 0 28 100426

29 0 79 1171806326862876802144 29 0

30 0 80 2300241216389780443900 30 0

31 16547220 81 0 31 696164

32 31592878 82 0 32 1298600
33 0 83 17422684839627191647442 33 0

34 0 84 34230838910489146400266 34 0

35 221653776 85 0 35 7826992
36 425363952 86 0 36 14574366
37 0 87 259932234752908992679732 37 0

38 0 88 511107966282059114105424 38 0

39 3025553180 89 0 39 100061106
40 5830034720 90 0 40 187392994
41 0 91 3890080539905554395312172 41 0

42 0 92 7654746470466776636508150 42 0

43 41931984034 93 0 43 1223587084
44 81072032060 94 0 44 2322159814
45 0 95 58384150201994432824279356 45 0

46 0 96 114963593898159699687805154 46 0

47 588431482334 97 0 47 16019866270
48 1140994231458 98 0 48 30353305134
49 0 99 878552973096352358805720000 49 0

50 O 100 1731024005948725016633786324 50 O
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SOME INFERENCES AND EXPERIMENTS
ON FREE KNOTS SPLINE REGRESSION

PETRU P. BLAGA

Dedicated to Professor Gheorghe Coman at his 70th anniversary

Abstract. Inferences and experiments on the simple spline regression with
free knots are considered. For the first time an iterative procedure given
in [2] to estimate the values of the free knots based on a multiple linear re-
gression is recalled. Point estimators and confidence interval estimators on
the spline regression coefficients and variance of the response, confidence
interval estimators and (Scheffé [7]) simultaneous confidence interval esti-
mators on the mean value response and prediction value are considered.

Inferences are illustrated by some numerical experiments.

1. Introduction

A multiple linear regression model with constant term is given by the func-

tional relation
.
Y =fo +Zﬂka +e¢,
k=1

where Y is the response (dependent) variable, X7,..., X, are the regressor (indepen-
dent) variables, and e represents the error term (random noise).

The multiple linear regression analysis consists in the study of the influence of
the variables X1, ..., X, on the variable Y. This study is realized by the inferences on

regression coefficients 3y, and error term €. In this aim a sample of n data observations

Received by the editors: 01.08.2006.
2000 Mathematics Subject Classification. 65D10, 62J05, 62F10, 65C20.

Key words and phrases. Spline regression, multiple linear regression, confidence intervals.
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are considered

'A% 1 T11 oo T1p

and the sample multiple linear regression can be written in the matrix form
y=Xp+e,

where 8" = (Bo,B1,...,5) € Rt T = (eq1,...,e,) € R™. The classical multi-
ple linear regression model supposes that the random vector e follows the normal
distribution A (0;02In), i.e. the components of € are independent and identically
distributed, each of them following the same normal distribution A (0; 02). A solu-
tion (b,e), with b € R"*1, e € R, of the system of equations y = Xb + e is called a
fitted multiple linear regression, and the solution satisfying the least-squares criterion

n
el’=e'e= e? —s minim,
K3
i=1

is called the fitted least-squares multiple linear regression.

It is well-known that the fitted least-squares coefficients are given by
-1
b= (XTX) X'y, (1)

and these are unbiased estimators of 3. Moreover, we have that

n

1 .
2 _ 2
5 _n—r—lkz;ek (2)

is an unbiased estimator for the parameter o2. We remark that the vector of fitted
values y = Xb and the vector of residuals e = y — ¢ can be expressed by the hat
matrix

H=X (XTX)A xT,
namely y = Hy, and e = (I,, — H) y, respectively, where I,, denotes identity matrix
of order n.
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Also, we have the coefficient of determination given by

2. Free knots simple spline regression

The simple spline regression model with distinct free knots 7,...,7,
m p
Y=Y o Xt 4> Bi(r; - X)T +e (4)
k=0 j=1

can be reduced to a multiple linear regression model with constant term, if one intro-

duces the new m + p regressor variables X = X*, k =1, m, and Xmtj = (15 — X)T,

J=1Lp.

The spline technique became a very useful in regression analysis, see, for
example, [4] and [9]. Some remarks on the number and positions of the knots 7; are
presented in [6] following the suggests given by Wold in [11]: (1) there should be as
few knots as possible, with at least four or five data points per segment; (2) there
should be no more than one extrem point and one point of inflexion per segment;
(3) in so far as possible, the extrem points should be centred in the segment and the
point of inflexion should be near the knots.

The transformation on the regressor variables given by Box and Tidwell [3],
recalled in [6], was used in [2] to estimate positions of the knots 7 = (m,...,7p),
T <...<Tp

Let us consider a sample of n pairs of data (z;,v;), ¢ = 1,n. The sample

spline regression is reduced to a sample multiple linear regression

m p
Yi :ao‘f‘zakl’ik +Zﬂjmz,m+] +5i7 1= 17”7 (5)
k=1 j=1

_ .k _ m
where 2 = 2, Tim4j = (15 — mi)+.
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Using matrix notation for observations of response variable, coefficients of

model, error terms

Qo
Y1 €1
o Qm
y = ) 6 = = ) €= )
3 B1
Yn . En
Bp
and design matrix of model
1 T11 cee Tim T1,m+1 oo Tl,m+p
X =
1 Zp1 o0 ZTom Tamtl oo Toomdp
m m
1 I m{” (T1—$1)+ (’7’;0—$1)+
m m
Lo oo oz (m—m)) ... (7p— @)

the regression model (5) has the matrix expression
y=Xd+e. (6)

Taking into account that the knots of the spline regression are unknown, the
following iterative procedure to obtain the knots 7; is proposed.

For the first time an initial appropriate value 7(©) = (7'1(0), .. .,T,SO)) of T is
considered. Thus, we have an initial spline regression model of type (4) with the

attached multiple linear regression model

y = X0 + €o, (7)
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where
1 2 ... i (Tl(")—:cl)f (T,S‘”—:cl)f
Xo = : : )
1z, o (Tl(°>—:cn)f (T,§°>—xn)f

and corresponding vector of errors 9. Based on (1), the least-squares estimators of

the coefficients d of the initial model (7) are given by
-1
do = (a0, . . s am; by, .. b)) T = (XOTXO) Xy

For this multiple linear regression model, we have:

e the vector of fitted values (estimated values)

9" = Xodo= (1, 0n)

e the residual sum of squares

n

leoll* =" et =3 (v = 50)”. ®)

i=1

e the residual mean squares (unbiased estimator of o2)

1

m ||60||2 (Wlth r=m +p) ; (9)

52 =
e the coefficient of determination R2 given by (3).

Then, the expanding of
P
h(X;7)=h(X;71,...,7p) = Zﬂj (5 — X)™
j=1

in Taylor series about the initial value 7(®) and ignoring terms of higher than first
order, we obtain

T Oh(X;T)

h(X;T) :h(X;T(O)) + (T—T(O)) 5

+ 0O (n?)

7=7(0)
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where 7 = max; (|Tj -7 )|) . Taking into account that

J=

Oh (X; 1) m—1 .
aTj :mﬂ] (Tj_X)+ ) ]Zlapa
it results
m—1
h(Xir)=h (X;70) + Zmﬁ (=7 (- X)+ +0 ().
Thus, an extended spline regression model is obtained:
m p o m
V=Y axt+ 35 (17 - x)
k=0 j=1 *
- ©) (O _ x\" ", -
+Zmﬂj (Tj—Tj )(Tj —X)+ + €,
j=1

with a corresponding extended multiple linear regression

m D p

Y =0+ Z o Xy + ZﬁijJrj + Z'Yij+p+j +é,
k=1 j=1 j=1
(0)

where v; = mp; (Tj —; ) , and the additional regressor variables are given by

m—1
Xtptj = (T;O) _X)+ , 7 = 1,p. In this way, we have the sample extended

multiple linear regression

m p p
yi=0a0+ Y axTin + D BiTimij + Y ViTimipts +Ei i =1L,
k=1 j=1 j=1

We denote by

5" = (0, oy @m;Brye e Bpi My ¥p), € =(E1,..46p),

and
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the vector of coefficients, vector of error terms, and design matrix of the sample

extended multiple linear regression. Here, for each i = 1,n, we have

_ .k _ .
Tik = Ty, k_17m7

() m _ (0 melo
Lim+j = \T; ~ — Ti 4’ Lim+p+j = \T; ~ — Li . , J=1,p.

Thus, the sample extended multiple linear regression has the matrix form
y=X0d+Eé. (10)
Because & = ¢ + O (n?), it results that E () = E(e) + O (n?) I, ~ 0, and
Var (&) =Var (e + O (n*) I,) = Var (e) = 6°1,.
The least-squares estimators of the coefficients o are given by

~ ~ ~ T -1 _
d:(do,...,&m;bl,...,bp;él,...,ép) (XTX) X'y

Refering to v; = mf; ( — T(O)) j =1, p, we obtain

Tj = 7'(0) + i

J mﬁj,

and new estimations of coefficients of the linear model (5) can be calculated, consid-

Jj=1p,

ering the new positions of the knots

A0 =0 &

i =T1,p.
; by = TP

Note that the estimations b;, j = 1, p, of the coefficients 3;, j = 1, p, obtained on the
linear model (6), generally differ from the estimations INJJ-, j =1, p, of the coefficients
Bj, j = 1,p, obtained on the linear model (10).

It is remarked in [6] that the procedure of Box and Tidwell [3] converges quite
rapidly, but the round-off error is potentially a problem and successive values of T
may oscillate widly unless enough decimal places are carried. Convergence problems
may be encountered in cases where the error standard deviation of response variable
Y is large or when the range of the regressor variable X is very small compared to its
expectation.
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Table 1 contains the data generated by using the function ([9], p. 45)
fz) =426 (e —4e™* +3e7%%), 1z €0,3.3]. (11)

The values of the dependent variable Y are give by

yl:f(m1)+617 7::17’”‘7

where z; = (i — 1) /30,4 = 1,100, and &;, i = 1, 100, are independent random numbers
following the normal distribution A (0;0.02), i.e. the random vector e " = (g1,...,&,)
has multivariate normal distribution with the mean value E (¢) = 0 and martrix of
covariance is Var (¢) = 0.041,,.

Table 2 contains the knots 7;, estimated coefficients a; and b; of fitted spline
regressions: linear (m = 1) with p = 1,2,3 knots, quadratic (m = 2) with p = 1,2
knots, and cubic (m = 3) with one knot. The corresponding sum of residual squares
(8), residual mean squares (9), and coefficient of determination (3) for each of the
fitted spline regresion are given in the same table.

The procedure to obtain the free knots ends if two successive iterations of
knots differ less than %10_2, else the maximum number of iterations is 500. In
the second case, the free knots correspond to the minumum norm difference of two
successive iterations of the knots of the spline regression no more than 500 iterations.

Figures 1-6 correspond to the six spline regressions and contain for each of
them: plot of fitted spline regression (by continuous line), scatter diagram (by circles),

positions of knots (by squares), and plot of generator function (11) (by dashed line).

3. Confidence intervals

We are interested in giving confidence intervals on the coefficients §; = «;
or f; of the multiple linear regression (7). If one assumes that the error term eq is
normally distributed N (0,07I,), i.e. (7) is a classical multiple linear model, then
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i Yi i Yi i Yi i Yi i Yi
1| —0.087 | 21 | —0.516 || 41 | —0.148 || 61 0.296 81 0.343
2| —0.590 || 22 | —0.789 || 42 0.242 || 62 0.231 82 0.373
3| —-0439 || 23| —0.326 || 43 | —0.005 || 63 0.511 83 0.397
41 —-0.571 1 24 | —0.092 || 44 0.503 || 64 | —0.085 84 0.005
5| —0.986 || 25 | —0.505 || 45 0.072 || 65 0.372 85 0.241
6| —0.614 || 26 | —0.146 || 46 0.350 || 66 0.463 86 0.242
7| —0.683 || 27 | —0.020 | 47 0.298 || 67 0.426 87 | —0.012
8| —0.973 || 28 | —0.545 || 48 0.079 || 68 0.392 88 0.037
91 —0.926 (29| —0.471 || 49 | —0.163 || 69 0.281 89 0.397
10 | —0.965 || 30 | —0.027 || 50 0.265 || 70 0.404 || 90 0.150
11 | —1.032 || 31 | —0.183 || 51 0.081 || 71 0.378 91 0.249
12 | —0.833 || 32 0.072 || 52 0.410 || 72 0.209 92 0.185
13 | —1.069 || 33 0.132 || 53 0.393 || 73 0.180 93 0.036
14 | —0.481 || 34 0.144 || 54 0.633 || 74 0.192 94 0.047
15| —0.905 || 35 0.290 || 55 0.415 || 75 | —0.048 95 0.243
16 | —0.810 || 36 0.194 || 56 0.169 || 76 0.195 96 | —0.040
17 | —0.572 || 37 0.325 || 57 0.375 || 77 0.261 97 0.302
18 | —0.722 || 38 | —0.130 || 58 0.097 || 78 0.295 98 0.256
19 | —0.701 || 39 0.129 || 59 0.294 || 79 0.516 99 | —0.026
20 | —0.795 || 40 0.123 || 60 0.288 || 80 0.153 || 100 0.081

TABLE 1. Values of the dependent variable Y

each of the statistics

a Q;
t; = ‘ L: 1= 07 m,
Sq
bz - Bz .
tnl+i = s , 1= 17p7
m-+1i
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m=1 m=2 m=3
p= p=2 | p= p= p= p=
m 1.715 | 0.061| 0.061 | 0.061| 0.433| 0.649
T 1.506 | 1.360 || 1.749
T3 2.030
ag 0.605 | 0.433| 0.691| —1.119 | —0.216 || —1.951
a; || —0.144 | —0.082 | —0.175 || 1.260 | 0.513 || 2.838
as —0.276 | —0.128 || —1.133
as 0.140
by | —0.888 | 15.996 | 15.967 || 291.236 | 7.912| 6.342
by —0.994 | —0.683 || 0.488
b —0.408
lleoll” || 4.686 | 3.797 | 3.689 | 4.128 | 2.904 | 2.884
52 0.048 | 0.040 | 0.039 | 0.043| 0.031] 0.030
100RZ | 7543 | 80.09| 80.66| 7835 | 84.77| 84.87

TABLE 2. Elements of the fitted spline regressions

is T-distributed with d =n —m —p— 1 =mn —r — 1 degrees of freedom, where
2= s (ngo)i . j=0m¥p
JsJ
—1
and (X 3— X 0) ~denotes the j+1-th entry of the diagonal of inverse matrix of X OT Xo.
J»d
Thus, a 100 (1 — «) % confidence intervals on the regression coefficients «;

and f3; are given by

a; —tgn—e 8 <o < a; ttgi-gsi, =0,m,

bi — tan—gsm+i <Bi <bi+ta1-gSmti, 1 =1,p,

where t4;1— ¢ is the (1 - %)—quantile of the T-distribution with d degrees of freedom.
In the Table 3 are given 95% confidence intervals on the coeflicients of the six spline
regressions having the elements contained in the Table 2.
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Fitted by spline with free knots: m=1, p=1

T
B Free knots
0.6H © Scatter diagram -
= Free knots spline regression ° o o

= = Generator function of data %
o %

Dependent variable: Y

° 1,=1.7154

I o I I I
[o] 0.5 1 1.5 2 2.5 3
Independent variable: X

FIGURE 1. Linear spline (m = 1) with one knot (p = 1)

Fitted by spline with free knots: m=1, p=2

T
B Free knots
0.6H © Scatter diagram -
- Free knots spline regression
= = Generator function of data © %

S )

Dependent variable: Y

1=0.061062° 1,=1.5063
o \ \ - \ \ \
o 0.5 1 15 2 2.5 3

Independent variable: X

FIGURE 2. Linear spline (m = 1) with two knots (p = 2)

We have also for the classical multiple linear model (7) that the statistic

hzzii(yi_gi)2:d_32:w
2 )

o2 o2
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Fitted by spline with free knots: m=1, p=3

T
B Free knots
0.6H © Scatter diagram

= Free knots spline regression
= = Generator function of data

Dependent variable: Y

L °°
1,=0.06128 1,=1.3602 1,=2.0301
o I I P o I I

[o] 0.5 1 1.5 2 2.5 3
Independent variable: X

FIGURE 3. Linear spline (m = 1) with three knots (p = 3)

Fitted by spline with free knots: m=2, p=1

T T T
B Free knots o

0.6H © Scatter diagram i
- Free knots spline regression

= = Generator function of data ° ° % °

Dependent variable: Y

1}=0.061062°

Ly L L L L L L
[o] 0.5 1 1.5 2 25 3

Independent variable: X
FIGURE 4. Quadratic spline (m = 2) with one knot (p = 1)

follows a y2-distribution with d degrees o freedom. Using this result we have a

100 (1 — ) % confidence interval on o

d s* , ds*
—— <0’ < 5,
Xdi1—2 Xd; &
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Dependent variable: Y

Dependent variable: Y

0.6

L o=
(o] 0.5 1 1.5 2 2.5 3

Fitted by spline with free knots: m=2, p=2

T
B Free knots
H © Scatter diagram -
= Free knots spline regression
= = Generator function of data ©

1,=1.7494

Independent variable: X

FIGURE 5. Quadratic spline (m = 2) with two knots (p = 2)

0.6

L
[o] 0.5 1 1.5 2 25 3

Fitted by spline with free knots: m=3, p=1

T
B Free knots
H © Scatter diagram -
- Free knots spline regression
= = Generator function of data

© 1 =0.64918

Independent variable: X

FIGURE 6. Cubic spline (m = 3) with one knot (p = 1)

where Y2 denotes the y-quantile of the y2? distribution with d degrees of freedom.
Xiir 7-q X g

The Table 3 contains also 95% confidence intervals on o2 of the six examples of spline

regressions considered in the previous section.
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m=1

p=1

p=2

p=3

Qo

(0.350,0.861)

(0.238,0.628)

(0.317,1.066)

aq

(—0.251, —0.038)

(—0.165,0.002)

(—0.318, —0.032)

&)

(—1.070, —0.707)

(9.696,22.295)

(9.680,22.253)

Ba

(—1.165, —0.822)

(—1.015, —0.350)

Bs

(—0.745, —0.072)

(0.0371,0.0654)

(0.0304, 0.0536)

(0.0298,0.0528)

m=2

m=3

p=1

p=2

p=1

Qo

(—1.248, —0.990)

(—0.919, 0.486)

(—2.239, —1.663)

aq

(1.083,1.438)

(—0.137,1.164)

(2.212,3.465)

a2

(—0.328,—0.225)

(—0.270,0.014)

(—1.519, —0.747)

as

(0.070,0.211)

A1

(176.042,406.431)

(6.066,9.757)

(4.824,7.860)

Ba

(—0.764, —0.211)

O.Z

(0.0330,0.0583)

(0.0234,0.0415)

(0.0233,0.0412)

TABLE 3. Confidence intervals for coefficients and variation

From the construction and theoretical results on the multiple linear model

(7), it results that an unbiased estimator of the mean response E (Y | ) at a point

x' = (1;x,...,a:m; (n—=z),.
and Var (§) = o’z (XS—XO)i
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x. For the classical multiple linear model, the statistic
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is T-distributed with d degrees of freedom. Using the statistic 5, the following

100 (1 — a) % confidence interval on the mean response E (Y | ) can be obtained

—1 —1
j— td;l%S\/mT (XJXO) e <E(Y |z)<j +td;1%3\/mT (XOTXO) x.

In a similar manner, to construct a confidence interval for a predicted value

y of the response Y, corresponding to a new value x of the regressor X, we have the

statistic
. T
y—-y z dy—y
te = — = —, (13)
S\/1+mT (XJXO) T s:\/l—%:c—r (XJXO) T
where again ¢! = (l;m,...,mm; (—a)f ... (1 — x)i) , and t, is T-distributed

with d degrees of freedom. Thus, a 100 (1 — &) % confidence interval on the predicted

response y is given by

1 —1
i —td;l_%S\/l +xT (XS—XO) r<y< g)+td;1_%3\/1 +xT (XS—XO) x.

We remark that 7 is the last position 7o obtained by iterative procedure and s? is
the corresponding residual sum of square given by (9).

Figures (7), (8) and (9) contain plots of 95% confidence intervals on the
mean response and prediction with respect to z for three of the six considered spline
regressions. Each figure contains scatter diagram (circles), plot of spline regression
function (solid line), plot of confidence interval on mean response (dash-dot line), plot
of confidence interval on prediction (dashed line), and positions of the knots (squares).

The construction of simultaneous confidence intervals on the mean response
and prediction uses the Scheffé’s result. Namely, if C' represents a set of points
x| = (1; Ty nx™ (= x)f (- m)i), and considering W = sup ¢ t2, were
t2 is given by (12) and (13) respectively, then the statistic W/ (m +p+1) is F-
distributed with (m +p+1,n —m —p—1) = (r + 1, d) degrees of freedom.

In this way, we have a 100 (1 — «)) % Scheffé simultaneous confidence interval

on the mean response

jg— KS\/mT (XOTXO)_lm <E(Y |z)< g)+K3\/mT (XOTXO)_lm,
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Fitted by spline with free knots: m=1, p=3

T
Free knots
Scatter diagram

Free knots spline regression
Conf.interval for mean value
Conf.interval for prediction

-~o .
-
-

-

Dependent variable: Y

1211.3602 1,=2.0301

o
1.5 2

Independent variable: X

FIGURE 7. Linear spline (m = 1) with three knots (p = 3)

Fitted by spline with free knots: m=2, p=2

T
Free knots

o - -
0.6H © Scatter diagram - -o Il - |
= Free knots spline regression P ’o o o S~a o
Conf.interval for mean value | » =
0.4 = = Conf.interval for prediction %Oo O%% f o i

Dependent variable: Y

1,=1.7494

I
1.5 2
Independent variable: X

FIGURE 8. Quadratic spline (m = 2) with two knots (p = 2)

and 100 (1 — a) % Scheffé simultaneous confidence interval on the prediction

—1 —1
§—Ks 1+wT(X0TX0) r<y<g+Ks 1+mT(XJX0) x.
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T
B Free knots
© Scatter diagram . -"C
= Free knots spline regression P
Conf.interval for mean value | , o
= = Conf.interval for prediction
p - %o

-————- e
-
~ -

Fitted by spline with free knots: m=3, p=1

~ -
_____

/oO

- 2
~
-
~ -~

-0.2

Dependent variable: Y

I I I I
1.5 2
Independent variable: X

[o] 0.5 1

FIGURE 9. Cubic spline (m = 3) with one knot (p = 1)

Here K = \/(r + 1) fr41,d;1—a, Where fr41 41—a is 1—a-quantile of the F' distribution
with (r + 1,d) degrees of freedom.

Figures (10), (11) and (12) contain plots of 95% simultaneous confidence
intervals on the mean response and prediction with respect to x for three of the
six considered spline regressions. Each figure contains scatter diagram (circles), plot
of spline regression function (solid line), plot of simultaneous confidence interval on
mean response (dash-dot line), plot of simultaneous confidence interval on prediction

(dashed line), and positions of knots (squares).
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A COMBINED METHOD FOR INTERPOLATION
OF SCATTERED DATA BASED ON TRIANGULATION
AND LAGRANGE INTERPOLATION

TEODORA CATINAS

Dedicated to Professor Gheorghe Coman at his 70th anniversary

Abstract. We introduce a combined method for interpolation on scat-
tered data sets in the plane, based on the triangulation method introduced
by R. Franke and G. Nielson in [10].

1. Introduction

A certain method based on triangulation, introduced by R. Franke and G.
Nielson in [10], and the Shepard method, introduced in [15], are superior to other
methods used in interpolation of very large scattered data sets. Both methods have
very comparable fitting capabilities, but there exist situations in which one or the
other may be preferable [10].

We present first the original method based on triangulation, introduced in
[10].

Let f be a real-valued function defined on X C R2?, and V;(z;,v;) € X, i =
1,..., N some distinct points. Denote by 7; (x,y), the distances between a given point
(z,y) € X and the points V; (z;,¥;), i = 1,..., N. The interpolant with regard to the
data V;(z;,v:), i = 1,..., N, is of the form

(Pf)(z,y) ZW:Uy ), (1)

Received by the editors: 28.06.2006.
2000 Mathematics Subject Classification. 41A05, 41A63.
Key words and phrases. Triangulation, scattered data, Lagrange operator.
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where W;, i = 1,..., N are the weight functions and P;, ¢ = 1,..., N are some local

interpolation operators. We have
Wilzj,y;) =05, @, =1,...,N. (2)

The method of defining the weight functions W;, i = 1,..., N given in [10]
requires the triangulation of the data Vi(x;,v;:), ¢ = 1,...,N. Each W; will be a
globally defined C! function with support S; = Ujriem; Tjri, where T} denotes the
triangle with vertices Vj, Vi, Vi and M; = {jkl : Tjy is a triangle with vertex V;}.
For (z,y) € Tj C S;, the weight functions have the form [10]:

Wi(z,y) = (3)

_2aop Bbib sl lenlP=lesl® 1y llesl®+lesl~llexl?
=63 = 2b) + 35 e (D e R — e

where b;, bj, by, are the barycentric coordinates of (x,y) with respect to the triangle
Tji and |ley||, p = i, j, k represent the length of the edge opposite to Vp,, p =i, 7, k.
The barycentric coordinates are given by the equations:

x =bjx; + bjdj’j + brxy,

Y = biyi + bjy; + brys,

1=0b;+ bj + by

For an arbitrary triangle 7j;; the only weights which are nonzero are W;, W; and Wy,

and therefore the interpolant (1) becomes
(P1)(@,y) = Wilz,y)Pi(z,y) + W; (@, y) Pj(, y) + Wi(z,y) Pr(2,y)- (4)
We note that
Wi+ W; + Wy = 1. (5)

As local interpolation operators P;, i = 1,..., N R. Franke and G. Nielson considered
the solution of the inverse distance weighted least squares problem at (z,y) = (z;,y:),
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ie.,
Pi(z,y) =fi + Gia(z — i) + @iz (y — yi) + aua (@ — z)°
+ais(x — 23) (y — vi) + @i (y — v:)°,
where f; = f(x;,y:)- The coefficients a;;, k = 2,...,6 are the solutions of the system

[10]

. 2
min 12\1: fi+ ai(@r — @) + ..+ as(yr — yi)® — fr

@i2;--, 06 f_q pk(mlayl) ’
ki
with p; given by
1_Ri-m)s
pi Riry
with
z, 2>0
24y =
0, =2<0,

and R; is a radius of influence about the node (z;,y;) and it is varying with . The
proper choice of the radius is critical to the success of the method [10]. This is taken
as the distance from node i to the jth closest node to (z;,y;) for j > N, (N, is a
fixed value) and j as small as possible within the constraint that the jth closest node

is significantly more distant than the (j — 1)st closest node (see, e.g. [14]).

2. Main results

In this section we consider a new combined interpolation operator. It is
obtained using the Lagrange interpolation operator as a local interpolation operator.

Let A be the set of Lagrange type information,

Let L; be the bivariate Lagrange operators of degree n (associated to the node
(ziyvi)), i =1,...,N, (see, e.g., [6]), that interpolates the function f, respectively, at

the sets of points

Lmi ::{z,-,z,-+1,...,zi+m_1}, 1=1,...,N, m <N, (7)
57



TEODORA CATINAS

with zy4i = 2z, ¢ = 1,...,m — 1 and m := (n + 1)(n + 2)/2 is the number of the

coefficients of a bivariate polynomial of the degree n, Ziﬂsnaijmiyj.

Remark 1. [6] For given N, it can be considered only operators LT with n such that

(n+1)(n+2)/2< N, i.e., forn e {1,...,v}, where v = integer[(v/8N + 1 — 3)/2].
The existence and the uniqueness of the operators L} are assured by the

following theorem.

Theorem 2. [1] Let z; := (z;,y:), ¢ = 1,...,(n + 1)(n + 2)/2 be different points

in plane that do not lie on the same algebraic curve of n-th degree. Then, for every

function f defined at the points z;, i = 1,...,(n + 1)(n + 2)/2 there exists a unique

polynomial of degree n that interpolates f at z;, i =1,...,(n+ 1)(n + 2)/2.

Hence, if the points zx, k = 4,...,7 +m — 1 of the set (7) do not lie on an
algebraic curve of n-th degree for all i = 1,..., N then L} exists and it is unique for
alli=1,...,N.

In what follows we suppose that the existence and the uniqueness conditions
of the operators L}, i =1,..., N, are satisfied.
We have

i+m—1
(Lnf ﬂ?y Z lkmy xkayk)a i:]-;"'aNa

where [;, are the corresponding cardinal polynomials:
lk(a:j,yj) = 5kj: k,j=1t4,....,04+m— 1.
The operators L} have the following interpolatory properties:

(LY f)(@rsyr) = f@r,yn), k=d,...,i+m—1 (8)

and the degree of exactness is
dex(L}) = n, (9)
foralli=1,...,N.
Next we use these Lagrange polynomials as local interpolation operators P;,
i=1,...,N,in (4). In this way we obtain a new interpolant of the data V;(x;,v;), i =
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1,..., N, with respect to the Lagrange type information, namely:
(Pf)(x,y) = Wilz,y)(Li f)(z,y) + Wj(z,y) (L7 f)(@,y) + Wi(z,y)(Lg f)(2,y), (10)

with WZ', Wj, Wk given by (3)
Remark 3. As the Lagrange operator is linear then the combined operator P is also

linear.

Theorem 4. The combined operator P has the following interpolation properties:

(Pf)(mpayp):f(mpayp)a p=1,...,N. (11)
Proof. We have
(Pf)(@p,yp) =Wilwp, yp) (L ) (2p, yp) + Wi(Tp, yp)(L?f)@pv Yp)
+ Wi(zp, yp) (Li £)(@p, yp)-

Taking into account (2) and the interpolation properties of the Lagrange operators

the conclusion follows. O
Theorem 5. The degree of exactness of the combined operator P is
dex(P) =n (12)

Proof. We have

(Liepg) (@,y) = epq(2,y), p+q <n, h=1i,j,k
where ep,(z,y) = 2Py?. We have

(Pepq)(,y) = Wiz, y)epq(2,y) + W@, y)ep (z,y) + Wi (2,y)epg (2, 9)

= epq(z,y)(Wilz,y) + W;(z,y) + Wi(z,y))

and taking into account (5) it follows that
(Pepq)(2,y) = epy(z,9), p+g<mn,

But dex(L}) = n so it means that there exists a (p,¢q) € N with p+ ¢ = n + 1 such
that L}e,q # epq, which implies that Pep, # ep,. So the conclusion follows. O
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The new obtained operator presents a higher degree of exactness compared
to that of the Shepard operator (introduced in [15]), which is usually used in this kind

of interpolation problems.

Remark 6. For the particular case n = 1 we have

(Li f)(z,y) = Li(z,y) f (@i, ¥5) + liv1 (2, 9) f(@ig1, Yir1) + iz (2,9) f(Tig2, Yire) (13)
fori=1,...,N. We have

li(z,y) = (Yit1—Yit2) e+ (Tito—Tit1)y+Tit1Yiq2—TigayYit1
Ti—Ti4+1 )\Yi+1—Yi+2 Ti+1—Ti42)(Yi—Yit+1
nY ( I )= I )

l (:17 y) (Yito—Yi) T+ (Ti—Ti42)Y+Tiyoyi —TiYiyo
i+l (Zit1—Tit2) (Yit2—vi)—(Tit2—2i) (Yit1—Yit2)

ligo(z,y) = Wi —yit)2H(Tip1—T)y+Tiyit1 —Tit1yi
i+2\T, Y (@it2—2i)(Yi —yit1) — (@i —Tiy1) Wit2—yi)

In this case the new interpolant is of the form:
(Pf)(z,y) = Wiz, y)(L; f)(z,y) + W;(z,y)(L; ) (2, y) + Wi(z,y)(Li. ) (@, y),

with W;, W;, Wy, given by (3).
Remark 7. The ezistence and uniqueness condition of L} is that the points
(i, ¥i)y (Tit1,Yi+1), (Tit2,Vit2) do not lie on a line Ax + By + C = 0.

The steps of the algorithm of computation of the previously obtained inter-

polant (10) are:

1. Form a triangulation of the points V;(z;,y;), i =1, ..., M.

o

Given a point (z,y) determine the triangle Vi, j, 1o, containing (z,y).

©w

Compute the Lagrange interpolation polynomials, L}, i = ig, jo, ko, given

i+m—1

(Lnf € y Z lk a: y xk:yk): 72:2’07.7’07]{:0-

4. Compute the weights functlons.

5. Compute the interpolant given by (10).
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3. Test results

We consider several of the generally used test functions, [13], [14], [9]:

Gentle fi(z,y) =exp [ — 5 ((x —0.5)% + (y — 0.5)?)] /3,
Saddle fo(z,y) = [1.25 + cos(5.4y)]/[6 + 6(3z — 1)?],
Steep  f3(z,y) =exp [ - Z((z — 0.5)% + (y — 0.5)?)]/3,
Chff  fi(z,y) = [tanh(9y — 9z) + 1]/9.

The following table contains mean errors for interpolation by

(Pfo)(x,y) = Wiz, y)(Lj fir)(x,y) + Wz, y) (L} fi) (€, y) + Wi (z,y) (L fi) (2,),

for I = 1,...,4, with W;, W;, Wy, given by (3), Lj, L}, Ly of the form (13) and
considering the consecutive interpolation nodes as the vertices of the triangle. We
took 100 random generated nodes in the square [—1,1] x [—1,1]. In Figures 1-4 we

plot the graphics of f; and Pf;, i =1,...4.

Function Interpolation error

f 0.0210
o 0.0340
s 0.0073
£ 0.0498

///I, “}\\\\\
//' g" ‘W\

FI1GURE 1. Function f; and interpolant P f.
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FiGURE 4. Function f; and interpolant P fy.
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A CYCLIC ODD-EVEN REDUCTION TECHNIQUE APPLIED
TO A PARALLEL EVALUATION OF AN EXPLICITE SCHEME
IN MATHEMATICAL FINANCE

IOANA CHIOREAN

Dedicated to Professor Gheorghe Coman at his 70th anniversary

Abstract. The purpose of this paper is to give a possibility of reducing
the execution time involved in evaluating a financial option by means of

an explicite scheme, using a cyclic odd-even reduction technique.

1. Introduction

The concept of arbitrage is largely used in the domain of mathematical fi-
nance. It allows us to establish precise relationships between prices and thence to
determine them. Connected with it, the strategies of an option is very important. In
the literature, the celebrated Black-Scholes differential equation for the price of the
so-called European vanilla option is the best known and used.

Many papers study this equation and indicate different numerical methods
in order to get the approximate solution. E.g., in [3], the finite difference method is
presented. In [4], the method of radial basis is used, to avoid the mesh of discretized
points.

In this paper, considering the idea given by the cyclic odd-even reduction
(see [1]), we start from an explicit scheme obtained by means of finite differences, and
give an alternative of evaluating of the approximate values, using a cyclic odd-even

reduction type technique, which generates a logarithmic time of execution.

Received by the editors: 20.04.2006.
2000 Mathematics Subject Classification. 65H05, 65N06, 91B28.

Key words and phrases. parallel calculus, finite difference, Black-Scholes equation.
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2. Recalling the Black-Scholes equation
As in [3], denoting by:
e V/, the value of an option
e S, the current value of the underlying asset
e t, the time
e o, the volatility of the underlying asset
e T the expiry
e 1, the interest rate

e [/ the exercise price,
We get the Black-Scholes equation:

o1,
ot 2

oV oV
2 2 - — . - — . P—
0s2 tres Os r V=0 1)

with the boundary conditions:

C(0,t) =0

C(S,T) = max(S — FE,0).

3. The finite difference methods

Finite difference methods (see [2]) are a means of obtaining numerical solu-
tions to partial differential equations (see [2], [3]). They constitute a very powerful
and flexible technique and, if applied correctly, are capable of generating accurate nu-
merical solutions to all of the mathematical finance models, also for the Black-Scholes
equation (1).

So, considering a mesh of equal S-steps of size 45 and equal time-steps of size
8t, with (N +1)2 points, central differences for S derivatives and backward differences

for time derivatives, we get the explicit discretization of the Black-Scholes equation:
ByV,r + CoVim = Vg
(2)
Anv7:21+BnV7:n+ n 7:11:V7:n+1, n:1,2,...,N
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where m indicates the moment of time,

1
A, = —5(02712 — (r —so)n)ot

B, =1+ (o*n* 4+ 1)t

1
C, = —5(02712 + (r — s0)n)dt

4. A technique of the cyclic odd-even reduction type

Relation (2) generates a system of equations of the following form:

[ B, Cy 0 o | [ v T i g T
A B Gy 0 v vt
0 A 0 (3)
Cn 75 [fdan
L0 0 Av By | | W LV

which involves a time of execution of O(N?). Then the following theorem holds:
Theorem 1. Using a cyclic odd-even reduction type technique, equation (2)
can be computed in a time O(N[logy, m]) time.

Proof. Rewriting (2),

A Vi + BV 4 CR Vit = vt

n

for one single value n, and replacing V)" using the same connection among values, we
get:

AV 4 Bu(An VI + BV 4+ CuV ) + GV, = Vit

or, making some computations:

A (VI + BVt + B2V 4 C (B Vgt + Vi) = VL

n—1

So, for n given, value V;™*! can be computed by means of values from two

previous moments of time. Repeating the same substitution, we finally get:
An(am V") + a1 VT 4ot aoVy)l ) + BV,

+Cn(ap, Vi +ah, Vi 4 agV) ) = Vit (4)
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where we denoted by a; and a;, i = 0,m the final coefficients.

Using the double recursive technique (see [1]), in [logy m] parallel steps, the

values in parenthesis are computed.

Finally, for n = 1,2,..., N, the total execution time is O(N{log, m]). O
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COMPACT OPERATORS ON SPACES
WITH ASYMMETRIC NORM

S. COBZAS

Dedicated to Professor Gheorghe Coman at his 70th anniversary

Abstract. The aim of the present paper is to define compact operators on
asymmetric normed spaces and to study some of their properties. The dual
of a bounded linear operator is defined and a Schauder type theorem is
proved within this framework. The paper contains also a short discussion
on various completeness notions for quasi-metric and for quasi-uniform

spaces.

1. Introduction

An asymmetric norm on a real vector space X is a functional p : X — [0, c0)

satisfying the conditions
(AN1) p(z) =p(—2) =0=2=0; (AN2) p(az) = ap(z);

(AN3) p(z +y) < p(x) + p(y),

for all z,y € X and @ > 0. A quasi-metric on a set X is a mapping p : X x X — [0, c0)

satisfying the conditions

(QM1) p(z,y) = p(y,z) =0 <= x=y; (QM2) p(z,2) < p(z,y) + p(y, 2),

for all ,y, z € X. If the mapping p satisfies only the conditions p(z,z) =0, z € X,
and (QM2), then it is called a quasi-pseudometric. If p is an asymmetric norm on a

vector space X, then the pair (X, p) is called an asymmetric normed space. Similarly,

Received by the editors: 28.04.2006.
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(X, p) is called a quasi-metric space. If p is an asymmetric norm on a vector space
X, then p(z,y) = p(y — z), x,y € X, is a quasi-metric on X. A closed, respectively

open, ball in a quasi-metric space is defined by

By(z,r) ={y € X : p(x,y) <r}, By(z,r)={yc X :plx,y) <r},
for x € X and r > 0. In the case of an asymmetric norm p one denotes by
By(x,7), By(x,7) the corresponding balls and by B, = B,(0,1), B, = B,(0,1), the
unit balls. In this case the following equalities hold

By(z,r) =x+rB, and By(z,7)=x+7B,.

The family of sets By, (x,7), r > 0, is a base of neighborhoods of the point x €
X for the topology 7, on X generated by the quasi-metric p. The family B,(z,r), r >
0, of closed balls is also a neighborhood base at x for 7,.

A quasi-uniformity on a set X is a filter U such that
(QU1) A(X) C U, VU € U;
(QU1) YU eU, 3V € U, such that VoV C U,

where A(X) = {(z,z) : * € X} denotes the diagonal of X and, for M, N C X x X,
MoN={(z,2) e XxX:3yeX, (z,y) € M and (y,2) € N}.
If the filter U satisfies also the condition
(U3) VYU, UclU = U 'eu,

where
Ut ={(y,x) € X x X : (z,y) € U},

then U is called a uniformity on X. The sets in U are called entourages (or vicinities).

ForUelU,x € X and Z C X put
Ulx)={ye X:(z,y) €U} and U[Z]=U{U(z):z€ Z}.
A quasi-uniformity U generates a topology 7(U) on X for which the family of sets

{U(z): U elU}
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is a base of neighborhoods of the point € X. A mapping f between two quasi-uniform
spaces (X,U), (Y, W) is called quasi-uniformly continuous if for every W € W there
exists U € U such that (f(z), f(y)) € W for all (z,y) € U. By the definition of the
topology generated by a quasi-uniformity, it is clear that a quasi-uniformly continuous
mapping is continuous with respect to the topologies 7(U), 7(W).

If (X, p) is a quasi-metric space, then

Bl = {(z,y) € X x X : pla,y) < ¢}, € >0,

is a basis for a quasi-uniformity &, on X. The family

Be ={(z,y) € X x X : p(x,y) < €}, € >0,

generates the same quasi-uniformity. The topologies generated by the quasi-metric p
and by the quasi-uniformity U, agree, i.e., 7, = 7(U,).

The lack of the symmetry, i.e., the omission of the axiom (U3), makes the
theory of quasi-uniform spaces to differ drastically from that of uniform spaces. An
account of the theory up to 1982 is given in the book by Fletcher and Lindgren
[21]. The survey papers by Kiinzi [32, 33, 34, 35] are good guides for subsequent
developments. Another book on quasi-uniform spaces is [38].

On the other hand, the theory of asymmetric normed spaces has been de-
veloped in a series of papers [6], [8], [22], [23], [24], [25], [25], [26], following ideas
from the theory of (symmetric) normed spaces and emphasizing similarities as well
as differences between the symmetric and the asymmetric case.

Let (X,p) be an asymmetric normed space. The functional p(x) =
p(—z), z € X, is also an asymmetric norm on X, called the conjugate of p, ps(z) =
max{p(z),p(z)}, = € X, is a (symmetric) norm on X and the following inequalities

hold

Ip(z) —p(y)| <ps(z —y) and [p(x) —p(y)| < ps(z —y), Yo,y € X.
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For a quasi-metric space one defines similarly the conjugate of p by p(z,y) =
p(y, ) and the associated (symmetric) metric by ps(x,y) = max{p(x,y), p(y, z)}, for
z,y € X.

Let (X,p), (Y,q) be two asymmetric normed space. A linear mapping A :
X — Y is called bounded, ((p,q)-bounded if more precision is needed), or semi-

Lipschitz, if there exists a number 8 > 0 such that

q(Az) < fp(x), (1.1)

for all z € X. The number [ is called a semi-Lipschitz constant for A. For properties of
semi-Lipschitz functions and of spaces of semi-Lipschitz functions see [39, 40, 44, 45].

The operator A is continuous with respect to the topologies 7,7, ((7p, Tq)-
continuous) if and only if it is bounded and if and only if it is quasi-uniformly con-
tinuous with respect to the quasi-uniformities U, and U, (see [20] and [24]). Denote
by (X, Y);z,q’ or simply by (X, Y)b when there is no danger of confusion, the set of all
(p, q)-bounded linear operators. The set (X,Y )’ need not be a linear subspace but
merely a convex cone in the space (X,Y)# of all linear operators from X to Y i.e.,
A+B € (X,Y) and oA € (X,Y)’, for any A, B € (X,Y)" and a > 0. Following [24],

we shall call (X,Y)" a semilinear space. The functional
[A] = [[Alp.q = sup{g(Az) : x € By} (1.2)

is an asymmetric norm on the semilinear space (X,Y)’, and ||A] is the smallest semi-
Lipschitz constant for A, i.e., the smallest number for which the inequality (1.1) holds.
Denote by (X,Y)* the space of all continuous linear operators from (X, ps)

to (Y, ¢s), normed by

[A[l = [A

poqe =sup{gs(Az) :z € X, ps(xz) <1}, Ae (X,Y):. (1.3)

It was shown in [24] that (X,Y);q C (X,Y)%, and ||A4]| < ||A]|| for any A €
(X,Y).

Consider on R the asymmetric norm «(«) = max{«, 0}, a € R. Its conjugate
is a(o) = max{—a, 0} and us(a) = |a] is the absolute value norm on R. The topology
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7. on R generated by u, called the upper topology of R, has as neighborhood basis of
a point @ € R the family of intervals (—oo,a + €), € > 0.

The space of all linear bounded functionals from an asymmetric normed space
(X,p) to (R, u) is denoted by X; . Notice that, due to the fact that p is non-negative,
we have

Ve € X, u(p(z)) < Bp(x) <= ¢(x) < Bp(z),
for any linear functional ¢ : X — R, so the asymmetric norm of a functional ¢ € Xf)
is given by
el = llelp = sup{e(z) : 2 € X, p(z) <1}

Also, the continuity of ¢ from (X, 7,) to (R, 7,) is equivalent to its upper
semi-continuity from (X, 7,) to (R,|]), (see [1, 2, 20]).

In [24] it was defined the analog of the w*-topology on the space Xg, which
we denote by w’, having as a base of w’-neighborhoods of an element ¢, € X; the

sets
Vxlr“vl’n;E(gpo) = {90 € X; : 90(1‘11) - @O(xi) <€ 1= a"'an}7 (14)
forneN, z1,...,2, € X, and € > 0.

Since

Vs e(00) N Vegse(0) = {0 € X} : o(x) — po(z)| < €},

it follows that the topology w” is the restriction to X of the w*-topology of X: =
(X, ps)™.
Some results on w’-topology were proved in [24] as, for instance, the analog

of the Alaoglu-Bourbaki theorem: the polar
B; ={pe X" :p(x) <1, V€ B,} (1.5)

of the unit ball B, of (X,p) is w’-compact. Other results on asymmetric normed
spaces, including separation of convex sets by closed hyperplanes and a Krein-Milman
type theorem, were obtained in [6]. Asymmetric locally convex spaces were considered
in [7]. Best approximation problems in asymmetric normed spaces were studied in [6]
and [8].
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The topology w” is derived from a quasi-uniformity WZ on Xzb) with a basis

formed of the sets

Viyoownse = {(p1,902) € Xf) X Xzb: spa(xy) —p1(m) <€ i=1,..,n}, (1.6)

forn € N, z1,...,2, € X and ¢ > 0. Note that, for fixed p; = ¢g, one obtains the
neighborhoods from (1.4).

On the space (X,Y)? we shall consider several quasi-uniformities. Namely,
for p € {p,p,ps} and v € {q,q, ¢s} let U,, ., be the quasi-uniformity generated by the

basis
Upvie ={(A,B);A,B € (X,Y):, v(Bx — Az) <€, Yz € B,,}, €>0, (1.7)

where B, = {z € X : p(x) < 1} denotes the unit ball of (X, ;). The induced quasi-
uniformity on the semilinear subspace (X, Y)'L)V of (X,Y)} is denoted also by U, ,
and the corresponding topologies by 7(y,v). The uniformity U,, 4, and the topology
7(ps, gs) are those corresponding to the norm (1.3) on the space (X,Y)%.

In the case of the dual space XZ we shall use the notation Z/IZ for the quasi-

uniformity 44, ,, .

2. Completeness and compactness in quasi-metric and in quasi-uniform

spaces

The lack of symmetry in the definition of quasi-metric and quasi-uniform
spaces causes a lot of troubles, mainly concerning completeness, compactness and total
boundedness in such spaces. There are a lot of completeness notions in quasi-metric
and in quasi-uniform spaces, all agreeing with the usual notion of completeness in the
case of metric or uniform spaces, each of them having its advantages and weaknesses.

We shall describe briefly some of these notions along with some of their
properties.

The first one is that of bicompleteness. A quasi-metric space (X, p) is called
bicomplete if the associated symmetric metric space (X, ps) is complete. A bicomplete
asymmetric normed space (X, p) is called also a biBanach space. The existence of a
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bicompletion of an asymmetric normed space was proved in [22]. The notion can be
considered also for an extended (i.e. taking values in [0, 00]) quasi-metric, or for an
extended asymmetric norm on a semilinear space.

In [24] it was defined an extended asymmetric norm on (X,Y)* by
|Al; , =sup{q(Az) 1z € By}, A€ (X,Y);. (2.1)

The identity mapping idg is continuous from (R, u) to (R,u), but for —idg

we have
| —idg [}, = sup{—a: u(a) <1} > sup{—a:a <0} = +oo,

because u(a) = 0 < 1 for a < 0. It follows that [|A[}; , can take effectively the value
+00.

If the asymmetric normed space (Y, p) is bicomplete, then the space (X,Y)*
is complete with respect to the symmetric extended norm (|| [} ,)s and (X, Y);yq is a
([ 1,4)s-closed semilinear subspace of (X,Y)s, so it is || [, 4-bicomplete (see [24]).

In the case of a quasi-metric space (X, p) there are also other completeness
notions. We present them following [42], starting with the definitions of Cauchy
sequences.

A sequence (z,,) in (X, p) is called

(a) left (right) p-Cauchy if for every e > 0 there exist x € X and ng € N
such that

Yn > ng, p(x,x,) < € (respectively p(zn,x) < €);

(b) p-Cauchy if for every € > 0 there exists ng € N such that
i,k > ng, p(Tn,xr) < €;

(c) left (right)-K-Cauchy if for every € > 0 there exists ng € N such that
Vn,k, n >k >ng = p(xk,x,) < € (respectively p(zn,xr) < €);

(d) weakly left(right) K-Cauchy if for every e > 0 there exists ny € N such
that

Yn > ng, p(@n,, Tn) < € (respectively p(xyn, Tn,) < €).
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These notions are related in the following way:

left(right) K-Cauchy = weakly left(right) K-Cauchy = left(right) p-
Cauchy,

and no one of the above implications is reversible (see [42]).

Furthermore, each p-convergent sequence is p-Cauchy, but for each of the
other notions there are examples of p-convergent sequences that are not Cauchy,
which is a major inconvenience of the theory. Another one is that closed subspaces
of a complete (in some sense) quasi-metric spaces need not be complete. If each
convergent sequence in a regular quasi-metric space (X, p) admits a left K-Cauchy
subsequence, then X is metrizable ([36]. This result shows that putting too many
conditions on a quasi-metric, or on a quasi-uniform space, in order to obtain results
similar to those in the symmetric case, there is the danger to force the quasi-metric to
be a metric and the quasi-uniformity a uniformity. In fact, this is a general problem
when dealing with generalizations.

For each of these notions of Cauchy sequence one obtains a notion of sequen-
tial completeness, by asking that each corresponding Cauchy sequence be convergent

in (X, p). These notions of completeness are related in the following way:

left (right) p-sequentially complete = weakly left (right) K-sequentially
complete =

= p-sequentially complete.

In spite of the obvious fact that left p-Cauchy is equivalent to right p-Cauchy,
left p- and right p-completeness do not agree, due to the fact that right p-completeness
means that every left p-Cauchy sequence converges in (X, p), while left p-completeness
means the convergence of such sequences in the space (X, p). For concrete examples,

see [42].
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A subset Y of a quasi-metric space (X, p) is called precompact if for every

€ > 0 there exists a finite subset Z of X such that
Y CU{B,(z,¢) : z € Z}.

The set Y is called totally bounded if for every ¢ > 0, Y can be covered by
a finite family of sets of diameter less that €, where the diameter of a subset A of X
is defined by
diam(A) = sup{p(z,y) : z,y € A}.

As it is known, in metric spaces the precompactness and the total bounded-
ness are equivalent notions, a result that is not longer true in quasi-metric spaces,
where precompactness is strictly weaker than total boundedness, see [37] or [38].

In spite of these peculiarities there are some positive results concerning Baire
theorem and compactness. For instance, any compact quasi-metric space is left K-
sequentially complete and precompact. If (X, p) is precompact and left p-sequentially
complete, then it is sequentially compact (see [19, 42]). Hicks [28] proved some fixed
point theorems in quasi-metric spaces (see also [5, 29])

Notice also that in quasi-metric spaces compactness, countable compactness
and sequential compactness are different notions (see [18] and [31]).

The considered completeness notions can be extended to quasi-uniform spaces
by replacing sequences by filters or nets (for nets, see [52, 53]). Let (X,U) be a quasi-
uniform space, U~1 = {U~! : U € U} the conjugate quasi-uniformity on X, and
Us = UV U the coarsest uniformity finer than ¢/ and U/~'. The quasi-uniform
space (X,U) is called bicomplete if (X,U;) is a complete uniform space. This notion
is useful and easy to handle, because one can appeal to results from the theory of
uniform spaces which is satisfactorily accomplished.

A subset Y of a quasi-uniform space (X,U) is called precompact if for every
U € U there exists a finite subset Z of X such that Y C U[Z]. The set Y is called
totally bounded if for every U there exists a finite family A4, ..., A, of subsets of X such
that A; x A; CU,i=1,...,n, and Y C U, A,. In uniform spaces total boundedness
and precompactness agree, and a set is compact if and only if it is totally bounded
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and complete. A subset Y of quasi-uniform space (X,U) is totally bounded if and
only if it is totally bounded as a subset of the uniform space (X,U;).

Another notion of completeness is that considered by Sieber and Pervin [49].
A filter F in a quasi-uniform space (X,U) is called U-Cauchy if for every U € U
there exists © € X such that U(z) € F. In terms of nets, a net (z,,a € D) is called
U-Cauchy if for every U € U there exists © € X and oy € D such that (z,2,) € U for
all @« > «ap. The quasi-uniform space (X,U) is called U-complete if every U-Cauchy
filter (equivalently, every U-Cauchy net) has a cluster point. If every such filter (net)
is convergent, then the quasi-uniform space (X,U) is called U-convergence complete.
Obviously that convergence complete implies complete, but the converse is not true.
It is clear that this notion corresponds to that of p-completeness of a quasi-metric
space. It is worth to notify that the U,-completeness of the associated quasi-uniform
space (X,U,) implies the p-sequential completeness of the quasi-metric space (X, p),
but the converse is not true (see [36]). The equivalence holds for the notion of left
K-completeness (which will be defined immediately): a quasi-metric space is left K-
sequentially complete if and only if its induced quasi-uniformity ¢, is left K-complete
(143).

A filter F in a quasi-uniform space (X,U) is called left K-Cauchy provided
for every U € U there exists ' € F such that U(z) € F for all z € F. A net
(o, € D) in X is called left K-Cauchy provided for every U € U there exists
ap € D such that (z4,x3) € U for all 8 > a > ag. The quasi-uniform space (X, i) is
called left K-complete if every left K-Cauchy filter (equivalently, every left K-Cauchy
net) converges. If every left K-Cauchy filter converges with respect to the uniformity
Us, then the quasi-uniform space (X,U) is called Smyth complete (see [33] and [51]).
This notion of completeness has applications to computer science, see [50]. In fact,
there are a lot of applications of quasi-metric spaces, asymmetric normed spaces and
quasi-uniform spaces to computer science, abstract languages, complexity, see, for

instance, [23, 27, 41, 46, 47, 48].

78



COMPACT OPERATORS ON SPACES WITH ASYMMETRIC NORM

Kiinzi et al [36] proved that a quasi-metric space is compact if and only if it is
precompact and left K-sequentially complete, and studied the relations between com-
pleteness, compactness, precompactness, total boundedness and other related notions
in quasi-uniform spaces.

Another useful notion of completeness was considered by Doitchinov [13, 14,
15, 16, 17]. A filter F in a quasi-uniform space (X,U) is called D-Cauchy provided
there exists a co-filter G in X such that for every U € U there are G € G and F € F
such that F' x G C U. The quasi-uniform space (X,U) is called D-complete provided
every D-Cauchy filter converges. A related notion of completeness was considered by
Andrikopoulos [3]. For a comparative study of the completeness notions defined by
pairs of filters see [10] and [4].

Notice also that these notions of completeness can be considered within the
framework of bitopological spaces in the sense of Kelly [30], since a quasi-metric space
is a bitopological space with respect to the topologies 7(p) and 7(p). For this approach
see the papers by Deak [11, 12]. It seems that the letter K in the definition of left

K-completeness comes from Kelly (see [9]).

3. Compact operators

Recall that a subset Z of an asymmetric normed space (X,p) is called p-

precompact if for every € > 0 there exist z1, ..., 2, € Z such that
Vze Z, die{l,...,n}, plz—2z)<e (3.1)
or, equivalently,
Z CU{z1, . 2n}],
where U, is the entourage
Ue={(z,2') € X x X : p(a’ —z) < ¢}

in the quasi-uniformity 4, .
One obtains an equivalent notion taking the points z; in X or/and < € in
(3.1).
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Let (X, p), (Y, q) be asymmetric normed spaces and, as before, let

€ {p,p,ps} and v € {q,q,qs} (3.2)

A linear operator A : X — Y is called (u, v)-compact if the set A(B,,) is v-precompact
inY.

Some properties of compact operators are collected in the following propo-
sition. We shall denote by (X 7Y)fj,l, the set of all linear (u,r)-compact operators
from X to Y. Notice that, for u = ps and v = ¢s, the space (X7Y)I;757QS agrees
with (X,Y)*, the (ps,qs)-compact operators are the usual linear compact operators

between the normed spaces (X, p;) and (Y, ¢s), so the proposition contains some well

known results for compact operators on normed spaces.

Proposition 3.1. Let (X,p),(Y,q) be asymmetric normed spaces. The following

assertions hold.
koo, g b
(X,Y);, is a semilinear subspace of (X,Y)], .

1.
2. (X,Y)} , is 7(p,q)-closed in (X,Y))} .

Proof. (1) We give the proof in the case 4 = p and v = ¢. The other cases can be
treated similarly.

If A: X —Y is (p, q)-compact, then there exists z1,...,z, € B, such that
Ve e B, Jie{l,...,n}, q(Az— Az;) <L (3.3)
If for x € By, i € {1,...,n} is chosen according to (3.3), then
q(Az) < q(Az — Ax;) + q(Az;) <1+ max{q(Az;): 1 <j <n},

showing that the operator A is (p, ¢)-bounded.
Suppose that A;, As : X — Y are (p, gq)-compact and let € > 0. By the (p, q)-
compactness of the operators A;, As, there exist z1, ..., 2y, and yi,...,y, in B, such

that

Ve € By, die{l,..m}, 3j €{1,....,n}, q(Aiz—A1z;) <e and g(Asx—Asz;) <e.
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It follows that for every @ € B, there exists a pair (¢,7) with 1 <¢ <m and

1 < 7 < n such that
q(Arx + Agx — Ayxy — Agy;) < q(Are — Arz) + q(Asz — Agy;) < 2,

showing that {Ayz;+Asy; : 1 <i <m, 1 < j < n}isafinite 2e-net for (A;4+As2)(Bp).
The proof of the compactness of oA, for a > 0 and A compact, is immediate

and we omit it.
= k
(2) The 7(p, q)-closedness of (X,Y); -

Let (A,) be a sequence in (X,Y);ﬁ_’q which is 7(p, §)-convergent to A €
(X,Y);

p,q

For € > 0 choose ng € N such that
Vn > ng, Vo € By, (Anz— Az) <e (<= q(Az — A,z) <e). (3.4)

Let z1,...,&m € By such that A, x;, 1 < i < m, is an e-net for A, (B,).

Then for every x € B), there exists i € {1,...,m} such that
q(Apyr — Angx;) < e,
so that, by (3.4),
q(Ax — Az;) < q(Az — Apyz) + q(Ang — Apyzi) + q(Angxi — Az;) < 3e.
Consequently, Az;, 1 <1i <m, is a 3e-net for A(B,), showing that A € (X, Y)’;yq . O

Remark 3.2. The assertion (2) of Proposition 3.1 holds for other types of compact-

k

v With v as in (3.2), with similar proofs.

ness too, i.e. for the spaces (X,Y)

4. The dual of a bounded linear operator

Let (X,p), (Y,q) be asymmetric normed spaces and p,v as in (3.2). For
A€ (X,)Y),, define A : Y} — X, by

Ap=9oA, peY? (4.1)
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Obviously that A® is properly defined, additive and positively homogeneous.

Concerning the continuity we have.

Proposition 4.1. 1. The operator A® is quasi-uniformly continuous with respect to

the quasi-uniformities Z/lk and Z/{Z on Y,f and X" | respectively.

7

2. The operator A® is also quasi-uniformly continuous with respect to the

w’ -quasi-uniformities on Y, and XZ .
Proof. (1) Take again = p and v = ¢. For € > 0 let
Ue ={(¢1,92) € X) x X} : pa(x) — ¢1(x) <€, Vo € By}
If ||Alpq = 0, then A = 0, so we can suppose ||A| = ||A|pq > 0. Let
Ve = {(¥1,02) € Yy x Y7 1 pa(z) — th1(z) < €/|| A, Va € By}
Taking into account that
Vo € By, pa(z) —p1(z) < efr = Va' €rB,, pa(z') — p1(2) <,

and

Vo € By, q(Ax) < [|Alp(z) < [|A],
it follows
o) = Ay (2) = Yo(Az) — 1 (Ax) <€,
for all z € B, proving the quasi-uniform continuity of A.
(2) For z1,...,2, € X and € > 0 let
V ={(p1,92) € Xf, X XZ spa(xy) —p1(x;) <e i=1,..,n}
be a w’-entourage in X;. Then
U={(1,92) € Y] x Y} : thg(Ax;) — 1 (Az;) < €, i = 1,...,n},

is a w’-entourage in Yqb and (A%, A%4py) € V for every (11,19) € U, proving the

quasi-uniform continuity of A® with respect to the w’-quasi-uniformities on Yqb and
b

X, . O
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Now we can prove the analog of the Schauder theorem for the asymmetric

dual.

Theorem 4.2. Let (X,p), (Y,q) be asymmetric normed spaces. If the linear operator
A: X =Y is (p,q)-compact, then Ab(Bg) s precompact with respect to the quasi-

uniformity Z/lf, on Xf,.
Proof. For € > 0 let
Ue = {(¢1,02) € X x X} : a(2) — p1(x) <€, Vo € By},

be an entourage in Xf, for the quasi-uniformity L{; .

Since A is (p, ¢)-compact, there exist z1, ..., x,, € B, such that
Ve e By, die{l,...,n}, q(Az— Ax;)<e. (4.2)

By the Alaoglu-Bourbaki theorem, [24, Theorem 4] the set BZ is w’-compact,

so by the (w”,w”)-continuity of the operator A” (Proposition 4.1), the set Ab(BZ) is

wP-compact in Xg. Consequently, the w’-open cover

Vo ={pe€ Xf, cp(x) — A(x) <€, i=1,..,n}, P € BZ,
contains a finite subcover Vi, , 1 <k < m, i.e,
A(B)) | JVy, : 1<k <m}. (4.3)
Now let ¢ € BZ. By (4.3) there exists k € {1, ...,m} such that
A(x;) — AYp(xi) <€, i=1,....n.
If « € B, then, by (4.2), there exists ¢ € {1, ...,n}, such that
q(Az — Az;) <e.

It follows
(Ax) — Yp(Az) =
= p(Az) — P(Azi) + P(Azi) — Y (Azi) + r(Azi) — p(Az;)
< 2q(Az — Az;) + € < 3e.
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Consequently,
Vo € By, (AP — Ay (z) < 3e,

proving that
A(By) C Use[{ A%, ooy A4},
O

Comments. As a measure of precaution, we have defined the compactness
of an operator A in terms of the precompactness of the image of the unit ball B,
by A, rather than by the relative compactness of A(B,), as in the case of compact
operators on usual normed spaces. As can be seen from Section 2, the relations
between precompactness, total boundedness and completeness are considerably more
complicated in the asymmetric case than in the symmetric one. To obtain some
compactness properties of the set A(B,), one needs a study of the completeness of
the space (X, Y)EU, with respect to various quasi-uniformities and various notions of

completeness, which could be the topic of a further investigation.
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LAPLACIAN DECOMPOSITION METHOD
FOR INVERSE STOKES PROBLEMS

A.E. CURTEANU, L. ELLIOTT, D.B. INGHAM AND D. LESNIC

Dedicated to Professor Gheorghe Coman at his 70th anniversary

Abstract. This paper considers an inverse boundary value problem as-
sociated to the Stokes equations which govern the motion of slow viscous
incompressible fluid flows. The solution of these equations is analyzed
using a novel technique based on a Laplacian decomposition instead of
the more traditional approaches based on the biharmonic streamfunction
formulation or the velocity-pressure formulation. The determination of
the under-specified boundary values of the normal fluid velocity is made
possible by utilizing within the analysis additional pressure measurements
which are available from elsewhere on the boundary. Results both on the
boundary and inside the solution domain are presented and discussed for a
simple benchmark test example and an application in a square geometry in
order to illustrate that the Laplacian decomposition in combination with
BEM provides an efficient technique, in terms of accuracy, convergence

and stability to investigate numerically an inverse Stokes flow.

1. Introduction

Due to the mathematical complexity of the Navier-Stokes equations, it is
well known that the general solution of these equations is not possible. Therefore
in order to construct tractable mathematical models of the fluid flow systems, it is
necessary to resort to a number of simplifications. One of these simplifications occurs

when viscous forces are of a higher-order in magnitude as compared to the inertial
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forces. Consequently, one may drop the inertia terms from the steady Navier-Stokes

equations to obtain:
uV g=vV P (1)

where ¢ is the fluid velocity vector, P the pressure, p the density and p the fluid
viscosity. Equation (1) is called the steady Stokes equation and may be regarded as
the fundamental equation for the very slow motion of viscous fluids, known as creeping
flows or Stokes flows. Non-dimensionalising equation (1), using typical velocity and
length scales Uy and L, respectively, and defining 7 = Lr, § = Upq and P = “LEP,

results in

V2 q¢=V P. (2)

Since the fluid flow is assumed to be incompressible, we also have the continuity

equation
V-qg=0. (3)

If exact data for v and v are specified at all the points on the boundary 0f)
then the velocity and the pressure can be determined everywhere inside the solution
domain 2. However, in many practical situations it is not always possible to specify
both components of the velocity at all the points on the boundary. Consequently,
a part of the boundary remains under-specified and in order to compensate for this
under-specification extra information is used on another part of the boundary, which
gives rise to a portion of the boundary being over-specified. Such problems are called
inverse problems and as Hadamard [4] pointed out their solution may not depend
continuously on the input data.

In practical problems the additional information has to come from measure-
ments and frequently it is easier to measure the pressure, in addition to the fluid
velocity, rather than the vorticity. Therefore, in this paper we introduce extra infor-
mation on pressure and, clearly, in this case it is more appropriate to work with the
Stokes equations rather than the biharmonic equation. Nevertheless, the initial step
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in obtaining a numerical solution of such an inverse and ill-posed problem is to develop
a method of solution for the corresponding direct problem. The velocity-pressure for-
mulation for direct Stokes problems, based on the Laplacian decomposition and BEM,
has been described elsewhere, for example, in Curteanu et al. [3].

In the underlying inverse Stokes problem, we investigate the numerical solu-

tion in a domain 2 enclosed by a non-smooth boundary 0, such that
dN=TUT, (4)

where I’y is the under-specified boundary section and I' = 02 — T'y. Both the normal
and the tangential components of the fluid velocity, namely u and v are specified on
the section of the boundary I', whilst only the tangential component is given on I'y.
However, this under-specification of the boundary conditions on I'y is compensated by
the additional pressure measurements over I'* C I'. This problem has been previously
solved by Zeb et al. [8] where they used the BEM on the full Stokes equations.
Furthermore, the system of algebraic equations that results from an applica-
tion of the BEM, in conjunction with the boundary conditions, is solved using the
zeroth-order Tikhonov regularization method. The numerical solutions are obtained
for the unspecified values of both the normal component of the fluid velocity and of
the boundary pressure. Due to the ill-posed nature of the inverse Stokes problems
described above, it is important to consider the stability of the numerical solution.
Therefore we investigate the effect of noise on the numerical solution for the unknown
values of the normal fluid velocity and the boundary pressure by adding a random
error to the input data. Perturbation in the tangential component has not been con-
sidered, because, in general, this information is physically available from the no-slip

condition on the solid boundary and is unlikely to contain any noise.

2. Mathematical formulation

For what follows, it is not restrictive to assume two-dimensional flows in a
bounded domain 2 C R?. Differentiating the x and y components of equation (2)
with respect to x and y, respectively, then adding together and using the continuity
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equation, results in
VP =0. (5)

In order to simplify equations (2) and (3), the following formulation for the velocity

q = (u,v) components are introduced:

u = f+§P, (6)
v o= g+%P. (7)

From (2) and (5) this results in f and g being solutions of the Laplace equation,

namely
Vi =0, (8)
Vig = 0. (9)

The above substitutions have reduced the Stokes problem to the solution of three
Laplace’s equations, (5), (8) and (9), interconnected through some boundary condi-
tions involving also the continuity equation (3).

It is well known that the harmonic function P in equations (6) and (7) is
unique up to an arbitrary constant, a. Moreover, if fo, go and Py are harmonic
functions subject to the prescribed boundary conditions on w and v, then so are
fo— 5%, 9o — % and Py + a. However, this non-uniqueness can be easily avoided by
prescribing the value of the pressure at one arbitrary spatial point and this holds

for the inverse problem considered - the pressure being prescribed on a part of the

boundary.

BEM - Integral equation

In this paper, the development of the BEM for discretising the Laplace equation is
the classical approach, see Brebbia et al. [1], and it is based on using the fundamental
solution for the Laplace equation and Green’s identities. Thus, for example, equation

V2f = 0 may be recast as follows:

n(X)f(X) = /F{f'(Y)G(X,Y) — (V)G (X,Y)}dly (10)
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where

(i) X €e QUT and Y € 90 and 99 is the boundary of the domain Q,
(ii) dT'y denotes the differential increment of 92 at Y,
(iii) n(X) =11if X € Q, and n(X) = the internal angle between the tangents
to 0N on either side of X divided by 27 if X € 919,
(iv) G is the fundamental solution for the Laplace equation which in two-

dimensions is given by
1
GX,)Y)=——In|X -Y| (11)
27

(v) G, f'" are the outward normal derivatives of G and f, respectively.

We note that, as with the classical constant BEM, nodal points are situated
only at the segment mid-points and therefore f’ has precisely one value at each of
these nodal points. However, with the linear BEM formulations, nodes are situated
at segment end-points and therefore, if the domain has corners, at those points f' has
two components, one related to each of the sides adjacent to the corner. Therefore, in
order to deal with corners and singularities, discontinuous linear boundary elements
are introduced in this section.

In practice, the integral equation (10) can rarely be solved analytically and
thus some form of numerical approximation is necessary. Based on the BEM, we sub-
divide the boundary 9 into a series of N elements 9, j = 1, N, and approximate
the functions f and f’ at the collocation points of each boundary element I';. In the
discontinuous linear elements method (DLBEM) it is assumed that the variables in
the integral equation (10) have a linear evolution along the elements. These boundary
elements are segments of a straight line and the linear evolution is expressed through

the values of the functions at two internal points given by

X, =(1-1)X; 1 +7X; (12)
X;Q =7X; 1 +(1-7)X; (13)
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where 7 € (0, %) Correspondingly, the boundary integral equation (10) becomes

PO = 5B

N 1—-71
WS = 3 fs [0 0)

N
! |5 B0 - TG0
J:

-
N

= 3 foet [ D) - 2 B
j=1

N
1 T
— i | ———F;(X) — —D;(X 14
j;fw[l_% ()~ T2 D) (1)
where Cj, D;, E; and Fj have the same meaning as in Mera et al. [6] and may be
evaluated analytically. In the DLBEM, the discretised boundary integral equation
(14) is applied on the boundary at each of the points XZ71, Xj’z, 7 =1, N, leading to

T

a system of 2N equations

2N

Z (Aijfj — Bijf; =0) for i=1,

j=1

[\

N (15)

where the matrices A;; and B;; are given by

1—-7 1 .
Aipj-1 = 75-0i) — 75 Eilz) for i=12N, j=1,N
1 T . .
Ai72j = 1— 27’Ej(§i) — ECJ(gz) for = 1,2N, ] = 1,N
1—-7 1 . . .
Binj-1 = 7-5-Dila) - 75 Fi(z) for i=12N, j=1LN i#2j-1
1 T : . .
Bigj = 7= QTFJ(Q) - EDJ(Q) for i=1,2N, j=1N i#2j
and the collocation points z;, ¢ = 1,2N are given by
22i—1 = Xi,1 Z2; = Xi,? i=1,N (16)

Similar equations are obtained for the harmonic functions g and P.
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Now the equations (8), (9) and (5) reduce to a system of 6N equations in

12N unknowns, i.e.

Af' —Bf =0
AP’ —-BP =0

In the inverse formulation of the Stokes problem considered in this paper, both com-
ponents of the fluid velocity, u and v, are specified on the section of the boundary
I' = 002 — I'g, whilst only the tangential component, e.g. u is given on I'g. However,
this under-specification of the boundary conditions on I'g is compensated by the ad-
ditional pressure measurements over ['*. Clearly, if the velocity vector is known on
00 then u' and v’ can be obtained analytically by using equatlons =5 8“ =F& ay
and g—fb = ig” = Fu 5. respectively. Solving the direct problem with u and v known
on 02, we obtain the pressure P everywhere and, in particular, over I'*. This numer-
ically calculated pressure, denoted by P(™ is used in the inverse problem (17) and
(18).

Suppose that the number of boundary elements N on 0f) is such that Ny
belongs to I'g and N* to I'*. Dividing the boundary such that 9Q = 'y Ul UT'3 ULy,
where Iy = {(z,y)| = 3 <o < Ly = =1}, Iy = {(@,g)lr = L,—1 <y < 1},
Ty = {(e,y)| -4 <o < Ly =1} T = {(e.9)le = -1, ~1 < y < L}, the problem

can be described mathematically by (17) and the following boundary conditions:

f+2P=u —2pm on HQ
g+LipP=vM— %P(") onT
FHnP+iP =w'™ 1y P™  onDUT,
g +vP+iP =™ P onl,UT;

where the N* vector P(™ is the given pressure on the over-specified part of the

boundary I'* C T and £ 0(z/2) o(y/2)

= 4%/2) — 2¥/2) 3 I C) R YR I€))
vy = —55=, va = =5 are the matrices d;; —~, d;;

30 % 20
(Sz‘jlll () and 6ijy2(j)7 respectlvely .
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In a generic form, the system of equations (17) and (18) can be rewritten as

Ax =b (19)

where A is a known (12N — 2Ny) x (12N — 2N*) matrix which includes the matrices
A and B, x is a vector of 12N — 2N* unknowns which includes the 2NN vectors
floa, f'loa, gloa, 9’|lea and P’|sq, and the 2N — 2N* vector Plgg_r+ and b is
a vector of 12N — 2Ny knowns which includes u|sq, v|r, P|r« and the derivatives
of velocity. Then, using the calculated boundary data, interior solutions for the
harmonic functions and the velocity can be determined explicitly using the integral

equation, i.e. equation (10) for f, see Brebbia et al. [1].

Regularization method

The Tikhonov regularization method is an efficient method for solving inverse and ill-
posed problems which arise in science and engineering. It modifies the least-squares
approach and finds an approximate numerical solution which, in the case of the zero-th

order regularization procedure, is given by, see Tikhonov and Arsenin [7],

x = (A'A 4+ AI)'A%D (20)

where I is the identity matrix, the superscript ¢ denotes the transpose of a matrix and
A is the regularization parameter, which controls the degree of smoothing applied to
the solution and whose choice may be based on the L-curve method, see Hansen [5].
For the zero-th order regularization procedure we plot on a log-log scale the variation
of ||z || against the fitness measure, namely the residual norm ||Az 5 — b|| for a wide
range of values of A > 0. In many applications this graph results in a L-shaped curve
and the choice of the optimal regularization parameter A > 0 is based on selecting
approximately the corner of this L-curve.
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3. Numerical results
We investigate the solution of Stokes problem given by equations (2) and (3)
in a simple two-dimensional non-smooth geometry, such as the square

1 1 1 1
Q:{(%y)|—§<m<§;—§<y<§}.

In order to investigate the convergence and the stability of the solution we consider
first the following test example, namely the analytical expressions for the three har-

monic functions f,g and P are given by:

flen = 236+ 422+ zy + 2?2 — 22/2 (21)
g = —y?/2 - 3a%y/2 + 222+ 47 /2 — 2y/2 (22)
pln) = g2 24y (23)

with the corresponding fluid velocity given by:

@ = 233497242y (24)

o = 2/ — 22y 4 2%/2 (25)

For presenting the numerical results, we choose I'* = I'y. In order to study the effects
of various locations for the under-specified boundary region we choose I'y = I'y and
g =T3. If '( =15 and 'y = I'y are to be chosen then the velocity v has to be
specified on T’y instead of u, since on this parts of the boundary v is the tangential
component.

Whilst in the direct Stokes problem we observed that the difference between
the analytical solution and the numerical results for P using N = 80 was less than
1%, in the inverse problem, we found N = 40 was sufficiently large for the numerical
solution to agree graphically with the corresponding numerical solution from the direct
problem.

Figure 1(a) shows the numerical solution for the unspecified values of the
normal component of the fluid velocity v over I'y = I'; for A = 10~ 1, together with
its analytical value specified in the direct problem. From this figure, it is observed
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that the agreement between the numerical solution and the one given in equation (25),
which is specified analytically over I'y in the direct problem, is excellent. In Figure
1(b), we present the numerical solution for the boundary pressure P over 02 — I'™*
and the boundary pressure obtained from the direct problem. It can be seen in this
figure that the numerical solution generated by the inverse problem agrees very well

with the corresponding numerical solution obtained from the direct problem.

0.2 0.8
0.15 064
0.1
0.4
0.05
02+
v 0.0+ P
0.0-{
-0.05
0.2
0.1
0.154 -0.4-{
02 T T T T 1 06 T T T T 1

00 02 04 06 08 10 00 02 04 06 08 10
f (a) f (b)
FIGURE 1. The numerical solution (:--) for (a) the normal component
of the fluid velocity v|r,, together with the values of v analytically
specified over 02, and (b) the boundary pressure P|sq_r+, together
with the corresponding numerical solution for P obtained in the di-
rect problem when A\ = 10! using the BEM with 40 discontinuous

linear boundary elements.

For various locations of the over-specified boundary region, i.e. I'* = I's
or I'* = I'y, we observed that the numerical results are similar with those obtained
for I'* = T'y. Without presenting the results graphically, we mention that when a
different location of the under-specified boundary is chosen, namely 'y = I's the
agreement of the numerical results was found to be equivalent to that observed in
Figure 1. Moreover, when we double or more the over-specified part of the boundary,
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ie. " =TyUTl3 or I'" =Ty UTl'3UTYy, then an even better accuracy is obtained.

Effect of noise

As mentioned in the introduction, the inverse Stokes problem is ill-posed and the
system of equations (19) that results is ill-conditioned, and hence the solution may
not continuously depend upon the boundary data. Therefore the stability of the
regularized boundary element technique is investigated by adding small amounts of
noise into the input boundary data in order to simulate measurement errors which
are inherently present in the data set of any practical problem. Hence, we perturb the
boundary data i.e. data obtained from the direct problem, by adding random noisy

perturbations € to the boundary pressure P namely
P=pPM ¢ (26)

The random error € is generated by using the NAG routine GO5DDF, see Brent [2],
and it represents a Gaussian random variable with mean zero and standard deviation

o, which is taken to be some percentage a of the maximum value of P(" | i.e.

(07

= Py
0 = max| X 100

(27)

For a particular location of I'g, say I'g = I'y, Figure 2 shows the L-curve for the inverse
problem as a log-log plot of the solution norm ||xy||, against the residual norm ||Az ) —

b||, for various amounts of noise a = {3,6,10} introduced in P(™|p. and for the

various values of the regularization parameter X taken from the range [107%,107].
We choose the optimal value of the regularization parameter A\, corresponding to the
corner of the L-curve, as Aop: = O(107?) if @ = 3 and A,px = O(1078) if @ = {6, 10}.

It was found that the numerical solution for the retrieved normal velocity v|r,
and pressure P|gr_r», obtained using both the exact and noisy data, for A,p; remains
stable and agrees with the analytical values and the values specified in the direct
problem, respectively, reasonably well according to the amount of noise introduced
in the input data for pressure P|p-. Therefore omitting the boundary results, we
present in Figure 3 (a) and (b) the lines of constant pressure and constant velocity
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Residual norm

FIGURE 2. The L-curve plot of the solution norm || , || as a function
of the residual norm || Az — b || in the inverse Stokes for N = 40,
A = [107'3,107"], when various levels of noise a = {3,6,10} are

added.

component inside the domain 2 and it can be observed that as the amount of noise
decreases then the numerical solutions approximate better the solution obtained in
the direct problem (for P) or analytically (for v) whilst at the same time remaining

stable.

4. Application - driven cavity

Now we investigate an inverse problem in a square cavity filled with incom-
pressible viscous fluid and the top lid moving with a constant velocity of unity, for
which no analytical solution is available. Now, the tangential component of the fluid
velocity is specified on the whole boundary, while the normal component of the fluid
velocity v is unknown on e.g. the bottom side of the cavity, namely on I'g = I'; and
this under-specification of the boundary conditions is compensated for by the addi-
tional pressure measurements on another part of the boundary or over the remaining
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I
N
a

-0.25

0.5

FIGURE 3. The lines of constant (a) pressure P, and (b) velocity
v, inside the cavity 2 obtained with N = 40 discontinuous linear
boundary elements when various levels of noise are introduced in
P|p«=r,, namely, (a) direct and (b) analytical solution (

O(eee), a=3(— — —),a=6(—+—-—- ), and a = 10(- - ).

), a =

part of the boundary. The boundary conditions for the problem are as follows:

'u:v’zo on I'g=1I,
u=v=u" =0 on I’y
u=—-1lv=2v =0 on I's (28)
u=v=u =0 on Iy
| P =P on I*
When random noise, o = {3,6,10} is introduced in the pressure P|p-

the values of the regularization parameter A given by the L-curve plots, are
{10719/1079,107} when I'* = Ty and {107%,1077,10 7} when I'* = T2 UT3 U T4.
The boundary results were found accurate in comparison with the analytical or direct
values and convergent to the exact solutions when the amount of noise decreases.
Figure 4 shows the numerical results obtained for pressure inside the driven cavity

when different amount of noise are introduced in P|r« for two different locations of

the over-specified part of the boundary. Also shown in this figure is the corresponding
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solution obtained in the direct problem and it is observed that the errors between the
numerical solution of the problem (17) and (28) and the values obtained in the direct
problem (u and v specified on 0f2) are comparable with the amount of noise included
and the numerical solution approaches the exact solution with decreasing the amount
of noise. Moreover, it can bee seen that the larger is the length of the over-specified

part of the boundary, the better is the accuracy.

FiGURE 4. The lines of constant pressure P inside the cavity 2

using the BEM with N = 40 discontinuous linear boundary ele-
ments when various levels of noise are introduced in (a) P|p«=r,
and (b) P|p+=r,ursur,, namely, direct solution ( ), a=0(eoe),

a=3- - —),a=6(—-—-— ), and @ = 10(- - -) for the driven

cavity problem.

In order to visualise the overall flow pattern inside the domain 2 we present
in Figure 5 the velocity field at some selected interior points. The lengths of the
vectors and of the arrows are proportional to the magnitude of the fluid velocity.
Although not illustrated graphically, we wish to report that both the magnitude and
the direction of the fluid vectors were observed to be similar to those obtained when
solving both the direct and the inverse problem.
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FiGURE 5. The velocity vectors at selected points inside the driven
cavity obtained by solving the inverse problem with « = 0 for 'y = I'y

and I'* =T'5.

It is important to note that for the driven cavity problem with singularities,
the solution is more sensitive to the location of the under-specified and over-specified
boundaries, becoming less accurate at some points, especially on the under-specified
boundary. Also these boundary errors propagate into the solution domain. However,

the accuracy of the results improves by increasing the over-specified boundary.

5. Conclusions

In this paper the Stokes equations, subject to under-specified boundary con-
ditions on the normal component of the fluid velocity v, but with additional pressure
measurements available on another part of the boundary, have been studied. A bound-
ary element discretisation has been applied to the resulting Laplace equations and the
Tikhonov regularization method has been used to solve the resulting ill-conditioned
system of linear algebraic equations. The technique has been validated for a typical
benchmark test example and in a situation where no analytical solution is available in
a square cavity. It has been shown that this regularized boundary element technique
retrieves an accurate and stable numerical solution, both on the boundary and inside
the solution domain, with respect to decreasing the amount of noise in the input
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boundary data. Moreover, the numerical solutions converge for a reasonable number

of boundary elements, about half the number of boundary elements used when solving

the corresponding direct problem.
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PIECEWISE LINEAR INTERPOLATION REVISITED:
BLAC-WAVELETS

H. GONSKA, D. KACSO, O. NEMITZ, AND P. PITUL

Dedicated to Professor Gheorghe Coman at his 70th anniversary

Abstract. The central issue of the present note is the BLaC operator,
a ”Blending of Linear and Constant” approach. Several properties are
proved, e.g., its positivity and the reproduction of constant functions.
Starting from these results, error estimates in terms of w; and w» are
given. Furthermore, we present the degree of approximation in the bivari-

ate tensor product case. This is applicable to image compression.

1. Definitions and properties

BLaC-wavelets (”Blending of Linear and Constant wavelets”) were intro-
duced by G. P. Bonneau, S. Hahmann and G. Nielson around 1996 and constitute
a tool to compromise between the perfect locality of Haar! wavelets and the better
regularity of linear wavelets. This compromise is realized by means of a parameter
0 < A <1 that will appear in the sequel. First we introduce some notations. For the

real parameter 0 < A <1 consider the scaling function pa : R — [0, 1] given by

Received by the editors: 15.06.2006.

2000 Mathematics Subject Classification. 41A15, 41A25, 41A36, 41A63.
Key words and phrases. positive linear operators, ”blending of linear and constant” operator, degree

of approximation, moduli of continuity, partial and total moduli of smoothness, tensor product.
1 Alfréd Haar was born in 1885 in Budapest and died 1933 in Szeged. Until after World War I he had

also a chair at the University of Cluj (then Kolozsvar). More about his biography can be found on

the following site: http://www-history.mecs.st-andrews.ac.uk/Mathematicians.
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0<z <A,
A<z <1,

pal@)=q
—x(z-1-4), 1<z<1+A,
0, else.
Remark 1.1. The two extreme situations are obtained for A = 1 and A — 0,
when @A reduces to B-spline functions of first order, also called hat-functions, and
to piecewise constant functions, respectively. The gap in between can be smoothly
covered by letting A be in the interval (0, 1].
Furthermore, for i = —1,...,2" — 1, n € N, we define by dilatation and

translation of ¢ the following family of (fundamental) functions:
of(x) = a2z —1), z €[0,1]. (1)

In Figure 1 the functions ¢, i = —1,...,2" —1, with a parameter 0 < A < 1
are depicted. Notice that the support of ¢f, ..., 5 _, is fully inside [0, 1], whereas

¢, and ¢5._; can be viewed as "incomplete”.

| [

08 |

0.6 |

04 |

02 |

7 T TR S I U N R
0 A A+1 L i+1A+i+1 2" -1 1

2n on 2n n 2n
FIGURE 1
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Also of great relevance are the midpoints 7}* of the support line of each .

Thus, for i =0,...,2" — 2, we have

no_ i 1 1+A
T on Ty e

and for ¢ € {—1,2" — 1} we set
nZy :==0and ny._; := L.

Equipped with these notations we can introduce the following operator.
Definition 1.2. For f € C[0,1] and z € [0, 1] the BLaC operator is given by

2" —1

= fp) - e (2)

i=—1
(The abbreviation BLaC refers to ”Blending of Linear and Constant”.)
We first list some elementary facts.

Proposition 1.3.

(i) BL, : C[0,1] — C[0,1] is positive and linear;
(ii) BL,, interpolates f at the points nl*, i = —1,...,2" — 1 (thus also at the
endpoints 0 and 1);
(iii) 2"2—1 ¢M(z) =1, i.e., BL, reproduces constant functions.

i=—1
Hence |BL,|| = 1.

Proof. (i) This is obvious from the definition and the positivity of 7.

(ii) One can easily observe that ¢j'(n}') = d;; (the Kronecker symbol) for
i,j = —1,....,2"=1. Thus BL,(f;n}) = f(n})-¢}(n}) = f(n}), for j = —-1,...,2"—
1.

2" —1

(iii) For z = 1 we have Z e (1) =5 _41(1) = 1.

Let v € [£ 5} ke {0 — 1}. We discuss separately:
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Case 1: For z € [£, ££8) we have

ony “9n
2m 1
> oiz) = ¢f (@) + o) =ea@z — (k- 1)) + pa(2"z — k)
i=—1
1 2"y — k
= —R2"t—-k-A =1
A2 )+ —x
2m 1
Case 2: For z € [EEA Erl) we get '_Zlgag(x) = ¢P(z) = 1, due to the
definition of pa.
2m—1
Hence Y ¢P(z)=1forall z € [0,1]. O
i=—1

2. Degree of approximation by the BL, operator

In the present section we investigate the degree of approximation by the
BLaC-operator BL,,. The estimates are given in terms of the first and second order
modulus of continuity. We use the following results given by the first author. Here
and in the sequel we put e (t) :=t for t € [a, b].

Theorem 2.1. For a positive linear operator L : Cla,b] — B(Y), Y C [a,b] that

reproduces constant functions the following inequality holds:

L(fi0) = £@) < max {1, - Ler = alia) | -6 (5:0)

for all f € Cla,b], z €Y and § > 0.
Here &1(f;-) denotes the least concave majorant of the (classical) first order

modulus of continuity of f € Cla,b).

The above theorem can be formulated for general compact spaces, this version
can be found in [5] (see also [6]).

We also have

Corollary 2.2. Under the assumptions of Theorem 2.1 there holds

L(ler :c|;m>} o (f59),

| =

IL(f;2) — /()] < 2 max {1,

where f € Cla,b], ¢ €Y and § > 0.
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We recall here also a general quantitative result involving ws; such estimates
were first established by H. Gonska (see [6]) and later refined by R. Paltdnea (see [8]
or [9]). Paltanea’s result reads as follows.
Theorem 2.3. If Y is a subset of [a,b], and if L : Cla,b] — B(Y) is a positive
linear operator satisfying L(eg;z) = 1 for all x € Y, then for f € Cla,b], z € Y and
0<d< I’*Ta one has

L(fi0) = @) < |Eleria) = al- 5 -n(F30) + (145

1 1 2, .
3 e —ai2) ) -ca(f:0).

We establish next two quantitative statements, one in terms of wy, the second

one involving both w; and ws.

Proposition 2.4. For any f € C[0,1] — C|0,1] and z € [0, 1] there holds

1
BLo(fi0) - 1@ <201 (fi35 ) (3)
Proof. First we prove that

1
|BL,(le1 — z|; )| < TE for all z € [0,1].

2m—1

We have BL,(|le; —x|;z) = ‘21 Init —z| - (z). We suppose that z € [, EtL) k€
—

{0,...,2™ —1}. This excludes only = 1 in which case we have BL,(]e; — 1|;1) = 0.

Case 1: For x € [2%, k;ﬁlA), we get

n

BLy(le1 — z|; w) (@ = ni—1) - Pr_1(x) + (i — ) - i ()

= (@ =m1) - pra (@) + (g — ) - (L= i, (7))

el

< max{ny —z,x—np_ 1} < — T+ T —nmE_1) =0F — M1

Thus, for k = 0 we have BLy(ley — zf;2) < 7§ —n", = . 328 < L For

k>0 we get BL,(le; —z|;2) <nit —np | = & — AL = L.

%~ om 2n
Case 2: x € [k;'nA, k;;l). Then

1-A 1
BLu(le - also) = | — |- ¢ (@) = I — ] < 5 < o

Thus BL,(ley — z|;z) < 2%, for all z € [0,1]. Applying Corollary 2.2 with ¢ = 2%
yields the estimate (3). O
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Proposition 2.5. For any f € C[0,1] — C[0,1], all z € [0,1] and 0 < § < % the
following inequality holds:
BLo(fi0) = J@)| < r 5l + |14 i g3 | alfid) @)
Proof. In order to apply Theorem 2.3 we have to find suitable upper bounds
for BL,(e; — z;x) and for BL,((e; — x)%;z). In both cases the approach is the same
as for BL,(|e; — z|;z). First note that BL,(e; —1;1) = 0 and BL,((e; —1)%;1) = 0.
We consider again two cases:

Case 1: z € [£, H2) ke {0,...,2" —1}.

First we deal with the case k = 0. Here we have

BLn(er —w;x) = (02 — ) - 924 (2) + (ng'(2) — x) - g ()

and after some elementary computations we obtain in this case

2(1-4) _ A 1-A 1-4

BLales —miz) = =5 — <50 58 = i

For 1 < k < 2™ — 1 we write successively:

BLyp(ey —w;x) = (1 —a) - ¢p_1(@) + (i — ) - i (2)
_ 2n1+1 % [k — 1+ A — 27Hg) (2" + k + A)
+ (k+1+A-2""g). (2"z — k)]
= 27%-%[(2%—/«)~(2—2A)+A(—1+A)]
= 27%-%[2(2%—@—&

IN

1 1-A .kt 1-A

We proceed in a similar way for the second moments. Hence we get
BLn((er — 2)*2) = (x = ng_1)” - iy () + (0 — 2)” - ¢} (2)

< max{(z - nf_,)% (nf — 2)°} < (max{(e - nj_,), (f — )})

(7) ==
< (=] ==
— an 22n

2
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Case 2: z € [E£58 EEL) k€ {0,...,2" — 1}. For the first moment we arrive
at
1-A
|BLy(ex — z;z)| < BL,(ler — z|;2) < ETR

and for the second moment we have
1-A\? 1
BLy((e1 —2)*;2) = (z = nf)” - g (2) = (x —nf)* - 1 < <W> < on

Thus, we proved that for all z € [0, 1]

1-A 1
|BL,(e; — z;2)| < ETse and BL,((e1 — z)%;z) < ——.

An application of Theorem 2.3 gives the statement (4). O

Proposition 2.6. For the particular choice § = QL", n > 1, the estimate (4) becomes

pLn -l < S (fn) + 2w (rg). o

Remark 2.7. BL, is an approximation operator, i.e., BL, f converges uniformly
towards f, f € C[0,1] as n — oo, see (5). For A = 1, i.e., for piecewise linear
interpolation at 0, 3, 2,..., %52, 1 the first term in (5) vanishes and we obtain
a well-known inequality for polygonal line interpolation at the knots listed above.
In fact, it was our aim to obtain for the first moments of the operator an upper

bound involving the term 1 — A, in order to have it vanish for the piecewise linear

interpolators.

3. Multivariate approximation

In the sequel we present statements on the degrees of approximation in the
bivariate case. Only the tensor product case of the BL,, operators will be discussed
here, but similar results can be given for Boolean sums as well. A general background
on tensor products of univariate operators is provided by [2], [3] and the references
cited therein. For our purposes we employ a convenient inheritance theorem that can
be found in [1].
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The quantitative results will be given in terms of partial and total moduli
of smoothness of order r, r € {1,2}, defined on compact intervals I,J C R, for

feC( xJ)and § > 0. We recall here their definitions.

r

Sy () - fatomg)

v=0

Wr(f; J, 0) ‘= sup {

(z,y), (x+rhyy) € I><J,|h|§5}

and
,

S () - St

v=0

wr(£50,8):= sup {

: (2,y), (z,y + rh)€Ix J, |h] g(s} ,
The total moduli of smoothness are

S (-1 (Z) F(z 4 vhy,y + vhy)| -

v=0

wr(f;01,00) = sup{

(.I’,y), (m + Thl,y + ’I“h2) el x J, |h1| < 51, |h2| < 62}
Remark 3.1. The following relation holds between the two types of moduli

{wr(f;01,0), wp(f30,02)} < wr(f;501,02). (6)

The inheritance principle mentioned involves discretely defined operators L :
C(I)—-C{'")and M : C(J) — C(J"), where I' C I, J' C J are non-trivial compact
intervals of the real axis R, and their parametric extensions to C(I x J). L and M
are defined on finitely many, mutually distinct points ., e € E, and yy, f € F, (with
suitable index sets E and F'), and have the form

Ligiz) = Y g(xe) - Ac(w),

eclE

M(hiy) = Y hlys) - Bs(y)

fer
with A. € C(I') and By € C(J') as fundamental functions. Consequently, their

parametric extensions to C(I x J) are given by

L(f;m,y) = fya ny -Te : e ):Zf(meay)'Ae(m)a
ecE eclE

M(fiz,y) = M(fasy) =Y f(yr) - Brw) = > f(@,y5) - Bs(y),
fEF fEF
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with f € C(I x J) and (x,y) € I x J.

For discretely defined operators we have the following representation of the

tensor product of L and M

(LO M famy Zmeeayf () Bf(y),fGC(IXJ) (7)

c€E fEF
(and similarly for ,M o ,L).

We use the following general quantitative result regarding tensor products.
Theorem 3.2. (see [Th. 37, 1]) Let L and M be defined as above and such that for
fized r;s € Ny

r

er,L(m) cwo(g;Apn(z)), z€I',g € C(I) and

p=0

IN

|L(g;z) — g(x)]

|M(h;y) = h(y)] < ZFVM ~wy(hi Ay (), y € T, h € C(J).

Here, T and A are bounded functions.

(i) Then for (x,y) € I' x J' and f € C(I x J) the following hold:

(e Loy M)f(z,y) - fou ~wp(f5 Ap,(2),0)

+ Ll ZFvM cwy (30, Ay M ()
(i) A symmetric upper bound is given by
ZF’YM ) - wy(f50, A, m(y +ZFpL ) wp(fiAp,L(2),0).

From (7) we immediately get the explicit representation of the tensor product
of two BLaC operators

2" —12" -1

(zBLn OyBL faa: y Z Z f 772 7771 ?(.Z’) : @T(y)a

i=—1 j=-—1
and can state
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Theorem 3.3. For n,m € N we have

|(eBLnoyBLw)f = fIl < (1—A)w <f;2in,0>+gw <f;2in,0>

(1—A)w; (f;O, 2%) + gwg (f;O, 2%)

1 1 1 1
21 - A)wn (f;27;2—m> + 3w2 <f52—n;2—m>~

_+_

IN

Proof. The proof is immediate. Take in Theorem 3.2 r = s = 2, I'g(z) =
0,I'1(z) =1—A,I'(z) = 2 and Ay(z) = A2 (2) = 5=, make an analogous choice with

respect to the variable y and use the relation in Proposition 2.6 twice. For the last

inequality use (6). O

Remark 3.4. Similar results can be also achieved for Boolean sums of two BLaC
operators, using, for example, Th. 31 from [1].

A practical application of the bivariate case is image compression. In the
diploma thesis [7] of the third author a method is implemented that enables us to
choose in an appropriate way the parameter A for a given picture (part of it). Ex-
amples are given to illustrate the fact that in most cases it is better to choose A not

equal to 0 or 1, in order to obtain a more satisfying picture.
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THERMAL RADIATION EFFECT ON FULLY DEVELOPED
FREE CONVECTION IN A VERTICAL RECTANGULAR DUCT

T. GROSAN, T. MAHMOOD, AND I. POP

Dedicated to Professor Gheorghe Coman at his 70th anniversary

Abstract. The effect of radiation on the steady free convection flow, i.e.
the case of purely buoyancy-driven flow, in a vertical rectangular duct is in-
vestigated for laminar and fully developed regime. The Rosseland approxi-
mation is considered and temperatures of the walls are assumed constants.
The governing equations are expressed in non-dimensional form and are
solved both analytically and numerically. It was found that the govern-
ing parameters have a significant effect on the velocity and temperature

profiles.

1. Introduction

Heat transfer in free and mixed convection in vertical channels occurs in
many industrial processes and natural phenomena. It has therefore been the subject
of many detailed, mostly numerical studies for different flow configurations. The fluid
flow and heat transfer has been the subject of many recent books, such as, for example
Bejan [1], Pop and Ingham [2], Kohr and Pop [3], etc. Most of the interest in this
subject is due to its applications, for instance, in the design of cooling systems for
electronic devices and in the field of solar energy collection. Some of the published
papers on this topic, such as Aung [4], Aung et al.[5], Aung and Worku [6,7], Barletta
[8,9], and Boulama and Galanis [10], deal with the evaluation of the temperature
and velocity profiles for the vertical parallel-flow fully developed regime. As is well

Received by the editors: 25.04.2006.
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known, heat exchangers technology involves convective flows in vertical channels. In
most cases, these flows imply conditions of uniform heating of a channel, which can
be modelled either by uniform wall temperature (UWT) or uniform heat flux (UHF)
thermal boundary conditions.

All the above quoted analyses of free and mixed convection flow in verti-
cal channels are based on the hypothesis that the thermal radiation effect within
the fluid is negligible. However, effects of conduction-radiation on convective flows
are very important in the context of space technology and processes involving high
temperatures. The inclusion of conduction-radiation effects in the energy equation
however leads to a highly nonlinear partial or ordinary differential equations. The
aim of the present paper is therefore to analyse the effects of thermal radiation on
the steady fully developed free convection in a vertical channel such that the walls of
the channels are subjected to uniform but different wall temperatures (UWT) using
the Rosseland approximation model which leads to ordinary differential equations for
the free convection flow of an optically dense viscous incompressible fluid that flows
through the channel. The ordinary differential equations are solved both analytically
and numerically using the Runge-Kutta method. Flow and heat transfer results for a
range of values of the pertinent parameters have been reported. Effects of pertinent
parameters, such as the radiation parameter, Rd , and the thermal parameter 6z

velocity and temperature profiles are shown graphically.

2. Basic equations

Consider a viscous and incompressible fluid, which steadily flows between
two infinite vertical and parallel plane walls. The distance between the walls, i.e., the
channel width, is L . A coordinate system is chosen such that the z— axis is parallel
to the gravitational acceleration vector g , but with the opposite direction. The y—
axis is orthogonal to the channel walls, and the origin of the axes is such that the
positions of the channel walls are —L/2 and L/2, respectively. A sketch of the system
and of the coordinate axes is reported in Figure 1. The wall at y = —L/2 is at the
given uniform temperature 77, while the wall at y = L/2 is subjected to a uniform
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temperature Ts, where T» > T;. The fluid velocity v(u, v) is assumed to be parallel to
the z— axis, so that only the x— component u of the velocity vector does not vanish.
The Boussinesq and Rosseland approximations are employed. Fluid rises in the duct
driven by buoyancy forces. Hence the flow is due to difference in temperature and the
convection sets in instantaneously. Moreover the gradient of T, — T is perpendicular
to the gravity which we call it as Oberbeck convection and therefore there will be
no pressure gradient in the basic equation. All the fluid properties except density in
the buoyancy term are considered as constant. The flow being fully developed the

following relations apply here

ov dp Op
=0, =0, =2 =0 1
v Jay ’81‘ 6:[/ ( )
where p is the fluid pressure. Therefore, the continuity equation gives du/dz = 0.
One can thus conclude that u does not depend on z, i.e. u = u(y). Under these

assumptions the momentum and energy equations for the flow and heat transfer are

0%u
Ha + pogB (T —Tp) =0 (2)
0*T  Oq"
W oy ®)

where T is the fluid temperature, g is the acceleration due to gravity, k is the thermal
conductivity, §# is the thermal expansion coefficient, p is the dynamic viscosity, po
is the characteristic density, ¢" is the radiative heat flux and Tj is the characteristic

temperature. We assume that ¢" under the Rosseland approximation has the form

40\ OT*
¢ =-(5) 5 @)
3x/ Oy
where ¢ is the Stefan-Boltzman’s constant and y is the mean absorption coefficient.
We also assume that . Equations (2) and (3) have to be solved subject to the boundary
conditions
w(FL/2) =0,T (—L/2) =Ty, T (L)2) = Ts (5)
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In order to solve Egs. (2) and (3), we introduce the following non-dimensional vari-

ables

T-To

_y _u _
Y=L UW) =560 = g

L Uo

(6)

where Uy = gf (T2 — T1) is the characteristic velocity. Substituting (6) into Eq. (2)

and (3), we get the following ordinary differential equations

%w—o (1)
d‘; {[1+ 2RA(1 +6,6) ] jf/} 0 (8)

subject to the boundary conditions (5) which become

(el Dpel-r

where the radiation parameter Rd and the temperature parameter g are given by

40’T3 Tg—Tl
Rd=—"Y ¢, =
kx f Ty + T

(10)

We notice that in the case when the radiation effect is absent (Rd = 0), Egs. (7) and
(8) reduce to those obtained by Aung [4]. The analytical solution of Eq. (7) and (8)

can be expressed as

Y s
U= —/ / 9d8dY+61Y+CQ (11)
0 0
Rd
0+ — (140r0)" =CsY +C,4 (12)
46

where C1, C3, C3 and C4 are constants of integration. When Rd = 0 (radiation effect

is absent), we get
0:Y,U:%<——Y> (13)
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3. Results and discussion

Equations (7) and (8), subject to the boundary conditions (9) were solved
numerically using the finite-difference method for different values of the parameters
Rd =0,0.1,1,5,10 and 6z = 1.1,1.5,2.0.The velocity U and temperature 6 profiles
are shown on Figures 2 to 9. When the radiation is absent(Rd = 0) one can see
from Figures 4 to 9 that the numerical results are in very good agreement with the
analytical solution. It means that we are confident that the present results are correct.

We notice that a reversed flow exist for small values of the radiation and
temperature parameters, which is similar with the case studied by Aung [4] when
the radiation is absent. The reversed flow dissapears for large values of the radiation
and temperature parameters(see Figures 2, 4, 6 and 8). Further, we can see that the
velocity profiles increase with the increasing of the temperature parameter 6 (see
Figure 2) and also with the increasing of the radiation parameter Rd(see Figures 4,
6 and 8).

The temperature profiles are shown in Figures 3, 5, 7 and 9. We can seen
that the temperature profiles increase with the increasing of the parameters 8 and
Rd. The effect of the temperature parameter is more significant for larger values of
the parameter Rd. We also notice that the radiation effects modify the simmetry of
the temperature profiles, the temperature gradients are larger near the cold wall(left

wall of the channel).
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F1GURE 1. Phisycal model and co-ordinate system
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FiGURE 2. Dimensionless velocity profiles U for Rd = 0.1 and 10
and g = 1.1,1.5,2.0
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FiGURE 3. Dimensionless temperature profiles 6§ for Rd = 0.1 and
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FiGURE 4. Dimensionless velocity profiles U for Rd = 0,0.1,1,10
and g = 1.1
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FIGURE 5. Dimensionless temperature profiles 8 for Rd = 0,1,5,10
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FIGURE 7. Dimensionless temperature profiles 8 for Rd = 0,1,5,10
and GR =15
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FiGURE 8. Dimensionless velocity profiles U for Rd = 0,0.1,1,10
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FIGURE 9. Dimensionless temperature profiles 8 for Rd = 0,1, 5,10
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Gheorghe Coman was born on January 24th 1936, in Grindeni, Mures. He
attended elementary school (1944-1948) in his home-village, secondary school (1948-
1951) in the town of Ludug and high-school (1951-1956) in Cluj, a rich cultural and
historical city located on the Somes river banks. From 1956 to 1961 he was a student
at the Faculty of Mathematics and Mechanics (nowadays the Faculty of Mathematics
and Computer Science), Babes-Bolyai University, Cluj. After graduation, he worked
as an assistant professor in the Department of Numerical and Statistical Calculus.
In this department, Gheorghe Coman has held a continuous academic career, being
successively promoted to the positions of lecturer (1970), associate professor (1977)
and full professor (1990).

In 1966 Gheorghe Coman married Mioara, a chemistry professor at the
Medicine and Pharmacy University in Cluj-Napoca. They have two children: Dan,
born in 1967, and Horia, born in 1970. Dan followed in his father’s footsteps, becom-
ing also a mathematician, while Horia is a medical doctor.

Under the guidance of the famous mathematician D.V. Tonescu (1901-1985),
in 1970 Gheorghe Coman completed his doctoral thesis Optimal quadrature and cu-
bature formulas. He also had the opportunity to participate in professional training
modules abroad in Moskow (1968) and in the USA, University of Wisconsin, Madison
(1973-1974).

In what follows, we briefly certify the outstanding scientific activity and teach-
ing career of Ghitza, name under which professor Coman is known to those close
to him. So far, twenty doctoral students have worked under his guidance: Calin

Enachescu, Sorin Pop (also supervised by professor W. Jaeger, Heidelberg), Daniela
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Kacso (also supervised by professor H. Gonska, Duisburg), Andras Peter, Ioan Lazar,
Milena Solomon, Virginia Niculescu, Monica Vancea, Codruta Vancea, Daniela Rosca,
Toana Pop, Ion Cozac, Iulia Costin, Catalin Mitran, Teodora Gulea, Cristina Mihoc,
Toan Todea, Marius Birou, Ildiko Kovacs, Alexandra Oprigan.

Professor Coman is editor-in-chief at the Romanian journals: Seminar on Nu-
merical and Statistical Calculus and Studia Universitatis Babes-Bolyai, Mathematica.
He is also included in the editorial board of the following journals edited by the Ro-
manian Academy: Mathematica and Revue d’Analyse Numerique et de Theorie de
UApprozimation. Since 1974 he has been member of the American Mathematical
Society and reviewer for Mathematical Reviews.

Professor Coman has been invited to deliver talks at universities in France
(Paris, 1994), Germany (Heidelberg, 1995; Duisburg, 1998), Hungary (Debrecen,
1991).

For many years, our colleague, a good organizer and honest judge, served the
academic community of the Babes-Bolyai University from the position of vicedean
(1986-1989) and dean (1989-1996). A constant proof of his remarkable character is
given by the fact that he was elected and re-elected dean, before and after 1989, the
year of the Romanian Revolution.

A gifted teacher with a good understanding of students, a challenging partner
for his colleagues, he succeeded in fascinating us with his spiritual youth, honesty in
its purest form and, above all, his personal charm.

Coman’s teaching and research activity is materialized in more than one hun-
dred published papers and nine books (textbooks and monographs). The scientific
work of professor Gheorghe Coman aims at Numerical Analysis and Approximation
Theory. Regarding these contributions, we mention the following research directions:
numerical integration of functions, approximation of uni and multivariate functions,
optimizations of numerical methods with respect to the error, complexity and effi-
ciency of calculus.

At the end we list the most relevant works of professor Coman.
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HOMOGENIZATION WITH MULTIPLE SCALE EXPANSION
ON SELFSIMILAR STRUCTURES

J. KOLUMBAN AND A. SOOS

Dedicated to Professor Gheorghe Coman at his 70th anniversary

Abstract. The homogenization theory is devoted to analysis of partial
differential equations with rapidly oscillating coefficients. Let A* be a
given partial differential operator and we consider the equation A*u* = f,
together with the appropriate boundary initial conditions. Here k € N and
f € H (R™). We are interested in studying the solutions of this system in

the limit as k — oo.

The homogenization theory is devoted to analysis of partial differential equa-
tions with rapidly oscillating coefficients. Let A€ be a given partial differential oper-

ator and we consider the equation
Acut = f,
together with the appropriate boundary initial conditions. Here € is a small parameter
€ << 1, associated with the oscillations. We are interested in studying the solutions
of this system in the limit as ¢ — 0. The homogenization theory study the following
issues:
e Convergence to a limit.

e Characterization of the limiting process.
Au = f

e Explicit analytical construction of A.
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e Properties of the limiting equation.

This type of equation models various physical problems. As examples we
mention composite materials, flow in porous media, atmospheric turbulence. A com-
mon feature of all these problems is that phenomena occur at various length and times
scales. In the classical homogenization theory the structure are periodic. This implies
that the coefficients of the corresponding PDE which model the physical phenomenon
under investigation are periodic.

In this article we will quit the periodicity assumption. The coefficients are
generated by an iterated function system. We will give a generalization of classical
homogenization theory. We will use some basic notions from the fractal geometry as
the invariant set and the Hutchinson’s invariant measure regarding iterating function

systems. Usually the solutions of the limiting equations live on selfsimilar fractals.

1. Setting of the problem

Consider the similarities ¢1,...,0mm @ R®™ — R"™ with the scale factors
r1,...,7n €]0, 1], respectively. Suppose there exists an open, bounded set O C R"
such that ¢;(0O) C O and ¢;(0) N ¢;(0) =0 (i # j). For iy, ...,43 € {1,...,m} denote
o the word i1...i,, and let |o| = k be the lenght of 0. Let ¢, = ¢;, o ... 0 ¢;, and
To = Tiy.Tip -

For A C R"™ put
F(A) :=p1(A)U...Upn(A),

F':=F F*:= FoF* ! (k€ N),and K := N> F*(0).

Then we have

F(K)=KCO
and
Jim F*(A) =K,

for every compact subset A C R"™, where the limit is understood in sense of the
Hausdorff metric. K is the unique nonempty compact set which is invariant under F'.
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Moreover, the Hausdorff dimension of K is the solution of

If H*(K) denotes the s-dimensional Hausdorff measure of K, then 0 < H*(K) < +o0.
Define M to be the set of positive, Borel regular measures 1 on R™ having
bounded support and finite mass. Put ”spt” for support.

Define
M= {pe M: p(R") = 1}.
Let
C(R™) :={f:R" > R: f is continuous}.

For p e M, ¢ € C(R"™), define

w(@) == | dp.

Rr
If ¢ : R® — R" is continuous, then we define the push forward measure 4 : M — M
by

pun(A) = p(p~'(4)), ACR",
equivalently

ppu() =¥ op), ¥ € CR").
We define the weak topology on M by taking as a sub-basis all sets of the form
{p: a < u(p) < b}, for arbitrary real a < b and arbitrary ¢ € C(R™). We have
u; — p in the weak topology iff p;(¢) — u(p) for all ¢ € C(R™).

For p,v € M let

L(p,v) :=sup{u(p) —v(p) : ¢ € C(R"), Lipp < 1}.

Then L is a metric on M! and the metric topology coincide with the weak topology
on M!. Moreover, the metric space (M?, L) is complete (see [6]).

If v € MY, let
Gv) = ergpi#y.
i=1
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Thus

m

Gw)(¥) =Y _riv(hop), ¥ € C(R"),

i=1
and G : M' — M! is a contraction map. Consequently, there exists a unique measure

i € M, the invariant measure on K, such that
Gm)=n and spin=K.
For v € M! put
G'(v) :=G(), G*(v)=GoG*(v), keN.

It is easy to see that

G'wv)= > r5ponv),

|lo|=k

and

7= lim G*(v)

k—o0
in the sense of L metric.

Moreover,
7= (1 ()™ 7

For all these properties we refer to Hutchinson [6].

Let 2 C R™ be a nonempty bounded open domain with smooth boundary.
Let v be the Lebesgue measure on 2 divided by the Lebesque measure of (2.

Let us suppose that the functions ¢; are composed by homotheties and trans-

lations, and € C O. For the word o consider the set
Q= s (Q).

In this paper we will develop the method of homogenization through multiple
scales for the Dirichlet problem
n k
Z 9 <aij (o5 () M) = f(x), for x € Q,, for all o with |o| =(k.1)
e o0x; Oz
uf(z) =0, for x € 0Q20. (1.2)

132



HOMOGENIZATION WITH MULTIPLE SCALE EXPANSION ON SELFSIMILAR STRUCTURES

We are interested in studying the solutions u* of (1.1) in the limit as & — oo. In
particular, we would like to understand if the limit exists and what kind of properties
does the limit u satisfy.

We will assume that the coefficients a;; : R” — R are smooth and uniformly

elliptic on €2, i.e. there exists a > 0 such that

n

3 i > algP, Yy eR", € €R™. (1.3)

ij=1
It is to accentuate, that the coefficients a;; have not to be periodic. We will also

assume that the function f is smooth and independent of k.

Example 1.1. (Homogenization for periodic structures) Let Y = [0,1]™ be the unit

cell and suppose that the coefficients a;; are 1-periodic, i.e.
aij(y + ek) = aij(y)v iv.jvk = 13 Ny Y € Y.

Define 1(x) = §. For m = 2" and i € {2.,,,.m} we define the functions p;(x)
as translations of p1 by sumes of unit vectors such that Y = U ,;(Y). We can
choose O = [0,1]". In this case, for |o| = k and € = 35, we have a;j(¢, ' (z)) =
a;j(£). Therefore, in this case, problem (1.1) redeces to the homogenization problem
for periodic structures (see [4]). Insteed of 10,1[™ we can choose O as an open cub
containing . In this case the functions p; will be translated by a corresponding

constant vector.

Example 1.2. (Homogenization on Sierpinski gasket) Letn = 2, m = 3, and q1, g2, g3

be the vertices of an equilateral triangle. The functions p; are defined by
1 .
pi(z) = 5(95 —qi)+qi,i=1,2,3.
The Sierpinski gasket is the unique nonempty compact set K C R? such that
K = ¢1(K) Upa(K) Ups(K).

The set K is one of the simplest examples of a self-similar fractal. Its Hausdorff

log 3

dimension is 1o -
og 2

In this case ry =r9 =13 = % and O can be choosen as the interior
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of the triangle q1q2qs. If we take Q = O, then the problem of homogenization reduces
to the study of the limit of u* on the Sierpinsku gasket.

2. The multiple scales expansion

By the iterated functions system properties, for o # o', |o| = |o’| we have:

Q. NQy = 0.

The idea behind the method of multiple scales is to assume that the solution u* is of

the form
uk(x) = ug(x, ;1 (2)) 4+ rous(z, o, 1 (2)) + r2us(z, o (x)) + ..., for z € Q, (2.4)

Using the two-scale convergence method, the validity of this expansion will be justi-
fied later. Anyway, since lim|,|_ 7, = 0, from physical point of view it is reasonable
to expect that the solution of (1.1) is of the (2.4) form, since there are different lenght
scales in our problem and the above expansion takes this fact explicitly into account.
The variables z and y = ¢, !(z) represent the ”slow” (macroscopic) and ”fast” (mi-
croscopic) scales of the problem respectively. For big |o| the variable y changes much
more rapidly then z. We can think of x as being a constant, when looking at the
problem at the microscopic scale. So we can treat x and y as independent variables.

The fact that y = ! (x) implies that the partial derivatives with respect to
x; become:

9 9 19

—— — 4+ — ,7=1,..,n.
63')]' 6:cj To 5‘yj J

Using this we can write the differential operator

e N0 (0
in the form
A7 =12 Ao+ AL+ A, (2.6)
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where

A= =Y A (ayps). (27)

=1 Yi
" 0 0 0 0
A = —igl En (a”(y)axj> + o, (a”(y)ayj>:| ) (2.8)

AQZ

) 0
Z o (aij(y)axj>' (2.9)
3,7=1
Now, equation (1.1), on account of (2.6), becomes
(r;2 Ao +r; AL+ Az) uF(z) = f(x), for z € Qo and |o| = k. (2.10)

If we substitute (2.4) into (2.10) we obtain the following sequence of problems:

Aouo = 0 (211)
A0u1 = *AluO (212)
Aogus = —Aju; — Asug. (2.13)

These equations are of the form:
Aou = h (2.14)

Here u = u(x,y) and h = h(z,y). However = enters merely as a parameter since 4
is a uniformly elliptic partial differential operator with respect to y. This equation

admits a unique, smooth solution if and only if the right hand side averages to 0 on

Q:
/ h(z,y)dv(y) =0, (2.15)
Q

This solvability condition is a consequence of the Fredholm alternative (see [5]).

By (1.3) the only solutions of the homogenous equation Apug = 0 are con-
stants in y: wo(x,y) = u(z). This means that the first term in the multiple scales
expansion is independent of the fast scales represented by y. Consequently, we can
derive a homogenized equation for u(x) which is independent of the microscopic scales.
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In view of relation ug(z,y) = u(z) the equation (2.12) becomes:

da;; Ou
Aouy = Z ay: . (2.16)

4,j=1

Suppose

8a”
Z/ ay, =0, forallj=1,. (2.17)

In this case, the solvability condition is satisfied, and equation (2.16) is well
posed: it admits a unique solution, up to constants in y. To solve this equation we
will use the separation of variable tehnique. To this end, we look for a solution of the

form:
n

=2 X axj ) ). (2.18)

Substituting (2.18) into (2.16) we obtam:

A () = - aaai;(.y), for j =1,....n. (2.19)

i=1 ¢
This is called the cell problem and x’(y) is the first order corrector field. Condition
(2.17) implies that the problem is well posed. We remark that at this moment @; is
undetermined.
Now we consider equation (2.13). The function f being independent of y,

then the solvability condition implies:

/Q run(2,y) + Avu(@)] dv(y) = f(z). (2.20)
We hayve:
/Q s (2, y) + Asu(e)] dv(y)

136



HOMOGENIZATION WITH MULTIPLE SCALE EXPANSION ON SELFSIMILAR STRUCTURES

+30 T8 [ a2 Z 8%8% 2 [ asivt)

7,7,l=1

" 0%u(x - ! s l
=y o / Z[aij@)ax (,y)+><l<y>a (;;5”+aﬁ<y>6§yf’)]—aﬂ<y> dv(y)

ox!(z Oaji(z
Ty = —/Q Z [(aij(z) + a;i(2)) gz(] ) + Xl(z)@yi)] —a;(z) p dv(z).

By this notation the homogenized equation will be the following:

= 0?u(x)
-3 @ - £ Q, 2.21
P a - f(z), for x € (2.21)
u(z) = 0, for x € 99Q,, (2.22)

and for all o.

3. Two scale convergence

In this section we will recall the homogenization procedure given by [7]. The
notion of two-scale convergence introduced by Nguetseng [8],[9] and developed futher
by Allaire [1],[2] was modified by Kolumbén for iterating function system inthe fol-
lowing way:

Denote Cp(R™) the set of bounded and continuous real functions defined on
R™. We will also use the space LZ(Q,Cy(R™)), which is the set of all measurable
functions u : Q — C,(R™) such that || u ||€ L?(2). The norm of this space is

3
lulimeny=| [ s uanPas)
yeRn
Theorem 3.1. (Oscillations lemma, [7]) Let v be the Lebesque measure restricted to
Q and let ® € L*(O,C,(R™)). Then the following convergence result holds:

fm 3 [ oo = [ | [ awpiw)| @, @)
where K is the invariant set and [ is the invariant measure of the iterated function
system {1, ..., pm }-
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Let u* be a sequence in L?(0O). We say that u* two-scale converges weakly
to ug € L?(K x Q) and write u” 2 g if for every function ® € L2(O, Cy(R™)) we

have
Jim_ Z / (¢o(x du—/ /uo z,y)®(x,y)dv(y)da(z). (3.24)

Two-scale convergence implies a kind of weak convergence in L?(9). In fact

we have the following lemma:

Lemma 3.1. ([7]) Let u* be in L? (U, =4 ) which two-scale converges weakly to ug.

Then, for all ® € L?(2),

fin 3 52 [ enanier i) = [ ([ uwann)) ewda)
lol=k
(3.25)
The first result over the two scale expansion is the following lema:

Lemma 3.2. Let u* € L%(Q) be a function which admits the two-scale expansion

uf (2) = uo(z, ;1 () 4+ rour (z, 0,1 (2) + ..., forz € Qy,
where uj € L?(Q, Co(R™)), j € {0,1}. Then u* 2 wp.
Proof. For ® € L*(Q, C,(R™)) we have:
s [ )t o7 (@) (@) =

lo|=k

= Z 7"(3,/Quk(@a(x))q)((pg(x),gj)dy(x) —

lo|=k

= 32 [ waln(@).a) Bl o), )dvla) +

lo|=k

s Y [ o)) o) )i ) +

lo|=Fk

The first term converges to [, [, uo(x,y)dv(y)da(x).
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Using Cauchy-Schwartz inequality, we obtain:

|3 05 [ n(nta).0)(en(a).0)iv(a)] <

lo|=k
< Y T ue(), ) @) ) e @xey <
lo|=k
<l llzeaxo)ll @ lzz@xo) Z rgtt =0
lo|=k
So
[t @ @ = [ [ wote)®epivtdate).
K
Hence u* two-scale converges weakly to ug. O

We will use the following compactness result as a criteria which enable to

conclude that a given sequence is weakly two-scale convergent.

Theorem 3.2. ([7]) Let uF € L*(U},=x), k €N, and let

2

P o /Q [t o oo (a)]dv(x)

lo|=k
If the sequence (ay,) is bounded then there exists a subsequence of (u*) which two-scale

converges weakly to a function ug € L#®V(K x Q).

The weakly two-scale convergence defined is still a weak type of convergence,
since it is defined in terms of the product of a sequence u* with an appropriate test
function. We also define a notion of strong two-scale convergence.

Let u* be a sequence in L%(2). We say that u* two-scale converges strongly
to ug € L2, o and write u” 2w if

Jm 30 [ e @)Pare) = [ [ popPamde 620

= o=k

Although every strongly two-scale convergent sequence is also weakly two-
scale convergent, the converse is not true.

As it is always the case with weak convergence, the limit of the product of
two-scale convergent sequences is not in general the product of the limits. However, we
can pass to the limit when we one of the two sequence is strongly two-scale convergent.
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The next theorem can be proved as the similar result in the classical homog-

enization theory (see [2]).

2 2 2
k= ug and v* S vg. Then ukv* = ugup.

Theorem 3.3. Suppose u

For simplicity in the following we suppose n = 1 and O = Q =|a, b[, [a,b] C R.
Let 11 be an atomless finite Borel measure on [a, b]. Further let K := sptu with a,b € K
and Lo := Li (K) be the separable Hilbert space with scalar product (f, g) = fab fodpu.

We define

Dy :={f € Ly :3f € Ly with f(z) = f(a) +/ ' (y)du(y), = € sptu}.
Proposition 3.1. D} C C(K), i.e. every function in DY is continuous on K, and
the function f’ defined above is unique in L.

So we can introduce the u— derivative of f. The p-derivative of f on D} is

V“f:%.

In the case u = v, where v denotes Lebesgue measure on R, D}’ coincides with the
Sobolev space W3. As in the classical Lebesgue case the u—Dirichlet form on D} is

defined as
EX(frg) = (V. V")
Denote
Dy :={feD: V*feDl}.
The p—Laplace operator from Dj is given by
AVf = VH(VIf) = [,
Remark 3.1.

Dy = {f € Lys 37 f" € Ly with f(a) = (@) + | [W)duty). s € K.

f'(y) = f'(a) + /J f"(2)du(z), y € K} )

Using Fubini’s theorem we have the following representation of f € D :

@) = @)+ V(o) + "y DA T ()dpy), @ € K
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Proposition 3.2. For any ¢,d € K with ¢ < d and f,g € D} we have
d d
| g = gt~ [ £ g)a
Proof. By definition of V# and Fubini theorem it follows that

d
/ (V" F)(@)g(x)du(z)

/Cd(wf)(a:) [g(c) n /Cm(v“g)(y)du(y)} du()

d
— (&) — F(O) + / (V¥ 9)(w)

d
= g(o) [f(d)—f(C)H/ (V*9)(y) [f(d) = f ()] duly)

= g(c) [f(d) = f(e)] + f(d)[g(d) — g(c)] — / FW)(V*g)(y)du(y)

= F(@)g(d) - F(e)gle) - / ) (V9) (9)duly).

In the similar way we can prove the following proposition:

Proposition 3.3. For any ¢,d € K with ¢ < d and f,g € Db we have

d d
[ @4 Dt =@ 1glt - [ (75 g)du

d
/ (A f)g — F(ARg) du = (V¥ f)g — F(Tg)[*

These are analogues of the classical Gauss Green formulae.

Now we introduce the Dirichlet boundary condition
Dyp={f€Dy: fla) = f(b) =0}

From the last proposition we obtain the following

Corollary 3.1. —A* is a positive symmetric operator on D;D.

d
/ (V“f)(ar)du(x)] d(y)

(3.27)

O
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Theorem 3.4. Let u* € H}(Ujy=1Q0). If

ay = s [ [uf o g (x)]2dy(x)
o emersel

Nl

and

by = Z rs [ [Vub o apg(m)]2dl/(a:)]
£

are bounded then there exist a subsequence of (u*) and functions uo(-),u(-) € L2(K)

with VFu € L2(K), such that

lim Zri/ (VuP) (z)p(x)dv,(z) = /Kvﬁu(a:)@(x)dﬁ(x):

k—o0 o=k Qo
- /Kuo(x)vq>(x)dﬁ(:c), ¥o € H)(O).

Proof. By Theorem 3.2 we can choose a subsequence denoted by u* too, a function
up € L2(K x Q) and a function v € L2(K x Q) such that u* 2 uy and Vu* 2 v.
First we prove the independence of ug of the second variable y. To this end

let ® € C1(O x O). We have

S /Q (V) (00 (2)) B0 (2), 2)dr(z) =

lo|=k

= - > ri/ uF (95 (2))[re Va®(00(2), 2) + Vy®(00(2), 2))ldv(2)
loj=k 7€

Since u*(¢,(2))V.®(¢s(2), 2) is bounded in L2(Q) it follows that
R (00 (2)) Ve ®(9o (2), 2)dv(z) — 0.
l;k /Q ¢ ¢
This implies
re uF) (o (2 o(2),2)dv(z) — — ug(z, 4+ P(z, x)dv(y).
S 15 [ (T )Rl (e 2)ine) = = [ [ o)V, 0 g)ana)av(y)

lo|=k
(3.28)
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On the other hand
V(g0 ()20 (2),2)
is bounded in L?(2) which implies the convergence to 0. Consequently

- / / wo(, )V B, y)dpi()dv(y) = 0
K JQ

for all ®. Hence the two scale limit is a.e. independent of y, i.e. ug(z,y) = ug(x).

Let us now suppose ® is independent of y. We compute

S /Q (V) (00 (2))® (00 (2))du(2) =

lo|=k

- Y s / (90 (2)) V(5 (2))di(2) —

lol=Fk

= = [ [ @ ve@dnwine) = - [ @)
K JQ K

According to the two-scale convergence of Vu*, we have

S / (V) (90 (2)) B2 (=) (2) —

lo|=k
= /K /Q o(,y)(@)dv(y)dA(z).
The last two relations implies that
- [ w@veEie) = [ [ vepe@ie (3.29)
for all ® € C*(2). Denote
V(@) = [ owdvty) and (o) = [ Vi),

Then

By a density argument on ® the assertion follows. O
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ON SUPERCONVERGENT SPLINE COLLOCATION METHODS
FOR THE RADIOSITY EQUATION

SANDA MICULA

Dedicated to Professor Gheorghe Coman at his 70th anniversary

Abstract. In this paper we study collocation methods based on piecewise
polynomial interpolation for the radiosity equation. We give a brief outline
of this equation and its properties. With a special choice of interior nodes,
we show that interpolation of degree r of the solution leads to an error
in the collocation method of O (hrﬂ), where h is the mesh size of the
triangulation. We conclude the paper by giving superconvergence results,

considering separately the case where r is odd and the case where 7 is even.

1. The radiosity equation

Radiosity is a method of describing illumination based on a detailed analysis
of light reflections off diffuse surfaces. It is typically used to render images of the
interior of buildings. In computer graphics, the computation of lighting can be done
via radiosity.

1.1. Definition. Properties

Radiosity is defined as being the energy per unit solid angle that leaves a sur-

face. The radiosity equation is a mathematical model for the brightness of a collection

of one or more surfaces. The equation is

uP) -2 [uQer.QvrQise - (), Pes )

S
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where u(P) is the radiosity, or the brightness, at P € S. E(P) is the emissivity at
P € S, the energy per unit area emitted by the surface.

The function p(P) gives the reflectivity at P € S, i. e. the bidirectional
reflection distribution function. We have that 0 < p(P) < 1, with p(P) being 0
where there is no reflection at all at P. The radiosity equation is derived from the
rendering equation under the radiosity assumption: all surfaces in the environment
are Lambertian diffuse reflectors. What this means is that the reflectivity p(P) is
independent of the incoming and outgoing directions and, hence, of the angle at
which the reflection takes place. Thus, p(P) can be taken out from under the integral
of a more general formulation (the rendering equation, see Cohen and Wallace [5]),
leading to (1).

The function G, a geometric term, is given by

[(Q—=P) - np][(P ~Q)-ng]
P -Q*
cosfp - cosbg

= TP_qP @)

where np is the inner unit normal to S at P, 0p is the angle between np and @ — P,

G(PQ) =

and ng and g are defined analogously.

The function V(P, Q) is a visibility function. It is 1 if the points P and @ are
“mutually visible” (meaning they can “see each other” along a straight line segment
which does not intersect S at any other point), and 0 otherwise. Surfaces S for which
V =1 on S are called unoccluded, and this is the case that we will consider here.
More about the radiosity equation can be found in Cohen and Wallace [5].

We can write (1) in the form

u(P) — / K(P,Q)u(Q)dSo = E(P), PeS (3)
S
with
kP ="Pawporra. roes (@)

or, in operator form
(I-Ku=F (5)
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Let S be a smooth surface, although not necessarily connected. Later on,
more assumptions on the surface S will be made.

The function G(P, Q) given in (2) has a singularity at P = @) and is smooth
otherwise. Since this function plays an important role in the study of the solvability

of equation (1), we give in the next lemma some of its properties.

Lemma 1. Let S be a smooth C*t! surface to which the Divergence Theorem can be

applied. Let P € S. Then
a) |G(P,Q)| <ec1, PQeS, P#Q;
b) G(P,Q) >0, for Q € S;
¢) / G(P,Q) dSq = m;
S

d) if S is the unit sphere, then G(P,Q) =

7

= =

e) |DégG(P,Q)‘ < \PiiQQV’ P # Q, co independent of P and Q.

For the proof, see [10].

Since the surface S is smooth and by Lemma 1, it is relatively easy to prove
that the integral operator K of (5) is compact as an operator on either C'(S) or L?(S)
into itself (see Mikhlin [13] pp. 160-162).
1.2. Solvability and Regularity of the Radiosity Equation

The solvability theory for the radiosity equation (1) is relatively straightfor-
ward, being based on the Geometric Series Theorem.

Let S be a smooth unoccluded surface (not necessarily connected). Thus
the normal np is to be a continuous function of P € S. In addition to the radiosity
assumption (discussed in Section 1.1., we will also assume that the reflectivity function

p(P) € C(S) and that it satisfies

ol <1 (6)
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From the physical point of view, what (6) means is that the surface does not reflect
100% of all the light that it receives, which is a reasonable assumption.

For the regularity of the solution of (1), we have

Lemma 2. Let m > 0 be an integer, S a smooth unoccluded surface. Assume the

reflectivity function p € C™+1(S) and it satisfies (6). Then
u € C™(S) = Kue C™TH(S) (7)

Theorem 3. Let m > 0 be an integer. Let S be the boundary of a convex open
set , and assume S is a surface to which the Divergence Theorem can be applied.
Assume S is a smooth (possibly disconnected) unoccluded surface S C S. Also, assume

p, E € C™(S). Then
(a) The equation (1) is uniquely solvable for each E, with the solution u(P)
satisfying
[ Elloo
ulloo £ T— 5 (8)
1=Kl
(b) The solution u € C™(S).

For the proof, see [10].

2. Preliminaries for Collocation Methods
Let S be a smooth unoccluded surface in IR?, which can be written as
S=5USU..US; (9)
with each S; the continuous image of a polygonal region in the plane
Fj;Rj(%)Sj, j=1,..,J (10)

Generally, we will need to assume that the mappings F}; are several times continuously
differentiable.

To create triangulations for .S, we first triangulate each R; and then map this
triangulation onto S;. Let {E;k | k =1,...,n;} be a triangulation of R;, and then
define
Ai,k = FJ(A?nk)
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This yields a triangulation of S, which we refer to collectively as 7, = {Aq, ..., A, }.
Let

h=h, = max max diameter (Ai k) (11)
1<j<J 1<k<n; :

be the mesh size of this triangulation. (The number of triangles n is to be understood
implicitly; from now on, we dispense with it.)
We make the following assumptions concerning this triangulation:
T1. The set of all vertices of the surface S is a subset of the set of all vertices
of the triangulation 7,.
T2. The union of all edges of S is contained in the union of all edges of all
triangles in 7,,.
T3. If two triangles in 7, have a nonempty intersection, then that intersection

consists either of (i) a single common vertex, or (ii) all of a common edge.

We call triangulations satisfying T1 - T3 conforming triangulations.

Let Aj be some element from 7,,, and let it correspond to some ﬁk, say
ﬁk C Rj and Ay, = Fj(ﬁk). Let {O1,0k,2,0k,3} denote the vertices of ﬁk. Define
my: o 11 Ay by

onto
my(s,t) = Fj(udg1 + tok2 + stk 3), (s,t) €0, u=1—s—t (12)
(an affine mapping), where ¢ is the unit simplex o = {(s,%)[0 < s,¢,s +¢ < 1}.
Now we can define interpolation and numerical integration over a triangular surface

element A by means of a similar formula over o.

1
Let « be a given constant with 0 < a < 3 Define the interpolation nodes by

i+ (r—3i)a j+(r—3ja
ij = r ’ r

>7 1,720, i+j<r (13)

These f, = % nodes form a uniform grid over o. If @ = 0, some of these
points are on the edges of 0. If @ > 0, then they are symmetrically placed points in
the interior of o. To avoid problems with the unit normal and with the nonsmoothness
of the kernel, throughout this paper we want to consider only nodes that are interior

1
to the triangular elements, so we will work with 0 < a < 3
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Denote by I; j(s,t) the corresponding Lagrange interpolation basis functions.
Then for a given g € C(0), the formula
pe(sit) = glaij)lij(s,t) (14)
0<it+j<r
is the unique polynomial of degree r that interpolates g¢g(s,t) at the nodes
{gij 11,520, i+j<r}
Denote the nodes and the basis functions collectively by {q1, ..., ¢y, } and {l1,....1;, }.

So, now we have the interpolation formula
Zg g;)lj(s,), g€ C(S) (15)

Integrating (15) over o, we obtain the quadrature formula
ff
[ ots.t0do =3~ wigtas) (16)
o J=1

where w; = / l;(s,t)do. Since the formula (15) is exact for all polynomials of degree

[ed
< r, formula (16) has degree of precision at least r.

Let
Prg(mi(s,t)) Zg mi(g;))i(s,t), P =my(s,t) € Ay (17)

Define a collocation method using (17) (the collocation nodes coincide with the in-

terpolation nodes). Substitute

Un (P) Zun v )li(s,t), P € mi(s,t) € Ay
vk,j = mk(Q])v k = 1a ey N (18)

into (1). This leads to the linear system

n TLf,
U (V) ZZU" Uk, j /G (vi, mi(s,t)) 1;(s,t)
k=1 j=1
[(Dsmy x Dymy) (s, t)|do = E(v;), i=1,..,nf, (19)
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This can be written abstractly as
(Z - P.K)u, =P, E (20)
Also, introduce the iterated collocation solution
u, = FE + Ku, (21)
We will give an error analysis based on standard projection operator theory

(e. g. see Atkinson [2] Section 4.2). We have

Theorem 4. Assume S is a smooth unoccluded surface in IR®, and assume S C 5',
with S the type of surface required in Lemma 1. Assume S satisfies (9) and (10) with
each F; € C™2. Then for all sufficiently large n, say n > ng, the operators T — P, K
are invertible on C(S) and have uniformly bounded inverses. Moreover, for the true

solution u of (1) and the solution w, of (20)

[u— tnlloo < H(I_PnIC)_IH [(w = Pru)ll s, m > mno (22)
Furthermore, if the emissivity E € CT™1(S), then
lu —tnlloo < O™, n>ng (23)

3. Superconvergent Collocation Methods

So we know that under suitable assumptions, interpolation of degree r leads
to an error of order O(h"*!) in the collocation method associated with it. Sometimes
at the collocation node points, the collocation method converges more rapidly than
over all S, in which case

max |u(v;) — U (v;
s [u(v3) — i ()

lim =0 (24)

n—00 lu — noo

Such methods are superconvergent at the collocation node points.

Let us examine more carefully the terms in (24). For simplicity, we work
with the solution 4, of the iterated collocation equation (21). This should cause no
problems, since we know that the convergence of i, to u is at least as rapid as that
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of the solution of the collocation equation (20) to u. Moreover, @(v;) = u,(v;) at all
collocation nodes.

By looking at the linear system associated with

(Z—-KPp)(u—1,)=K(u—"Pyu) (25)
we have
1§I£1§217>§fr [u(v;) — i (v)| < cl<nzla%<fr IK(Z — Py)u(v;)] (26)

(see Atkinson [2] p. 449). So, to find superconvergent methods, now we focus on
finding errors for (I — P, )u(v;).
Let 7 ¢ IR? be a planar triangle with vertices {v1,v2,v3} and define the

mapping m, : ¢ — 7 as in (12). For g € C(7), define

Lrg(z,y) Zg (m7(q;))l;(s,1) (27)

which is a polynomial of degree r in the parametrization variables s and ¢, interpo-
lating g at the nodes {m,(q1),...,m-(gs,)}.
Define a numerical integration formula over 7 by

/g(x,y)dT% /ETg(m:y)dT (28)

T

which has degree of precision at least r. In what follows, for differentiable functions

g, we will use the notation

O g(x,y)

k
(D g y)| = oo, |50

(29)

0<1<k

In investigating superconvergent collocation methods based on interpolation
r, we have to distinguish two cases: where r is odd and where r is even.
3.1. Interpolation of Odd Degree

Consider the quadrature formula (28), based on interpolation of degree r,
an odd number. It has degree of precision at least r. Suppose we can find a value
0<ay< % , such that for o = a, formula (28) has degree of precision r + 1. Then,
if we extend it to a rectangle, it will have degree of precision r + 2. We have the
following result.
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Lemma 5. Let 7 and 1 be planar right triangles that form a square R of length h
on a side. Let g € C"3(R). Let ® € L'(R) two times differentiable with derivatives
of order 1 and 2 in L'(R). Assume o = ag. Then

[ vt - Lt var| <crt?| [(o)+ Dol + Daar| wax {1D'g]}

” ” i=r+41,7r4+2,743

(30)
with L-g(w,y) = L7, 9(z,y), where (v,y) € 7, i =1,2.
If integrating over a single triangle, the bound is given by

Lemma 6. Let 7 be a planar right triangle and assume the two sides which form the
right angle have length h. Assume o = ag. Let g € C"2(7),® € L'(7) differentiable
with first derivatives in L'(7). Then

[ #@n)@ -~ Logte,pdr| < i | [l + |Do)dr | -max (1D |, 1" 2]}

T T

(31)
where ¢ denotes a generic constant.
For the proofs, see [10].
Remark. These results can be extended to general triangles, but then the derivatives
of g and ® will involve the mapping m., from (12). Let h(7) denote the diameter of

7 and h*(7) the radius of the circle inscribed in 7 and tangent to its sides. Define

h(r)

) =k (32)

Assume that for our triangulations 7,, = {A, x}, n > 1, we have
A, 33
S%p Lﬂ&é{n 7( k)} < 00 (33)

Condition (33) prevents the triangles A, ; from having angles which approach 0 as
n — oo.

Now, we want to apply these results to the individual subintegrals in

Kutw) = P25 [ G Gonma(s, ) wm(s.1)
k=1",

[(Dsmy x Dymy) (s,t)|do, i=1,...,6n (34)
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with

g(s,t) = wu(mg(s,t)) [(Dsmg x Dymy) (s,t)]

D(s,t) = G (vi,mp(s,t)) (35)

Theorem 7. Assume the hypotheses of Theorem 4, with each F; € CT™ 2. Assume
u € C™T2(S). Assume the triangulation T,, of S satisfies (33) and that it is symmetric.
For those integrals in (34) for which v; € Ay, assume that all such integrals are

evaluated with an error of O(h™+3). Assume o = og. Then

N 4 N < eh"t3
| Jnax [u(v;) — dn(v;)] < ch" " logh (36)

Proof. We bound

max |K(1 = P, u(v,)

By our assumption, the error in evaluating the integral of (34) over A* will
be O(h™3).

Partition 7, into parallelograms to the maximum extent possible. Denote by
’];L(l) the set of all triangles making up such parallelograms and let Tn@) contain the

remaining triangles. Then
T = 7O LT

It is easy to show that the number of triangles in T s O(n) = O(h™2), and the
number of triangles in 7.? is O(y/n) = O(h™1).

It can be shown that all but a finite number of the triangles in 7;,(2), bounded
independent of n, will be at a minimum distance from v;. That means that the
triangles in ’2;(2) are “far enough” from v;, so that the function G(v;, Q) is uniformly
bounded for @) being in a triangle in Tn(z).

By Lemma 6, the contribution to the error coming from the triangles in 7,

will be O (A3 || D™+ 2| ).
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Using Lemma 5 we have that the contribution to the error coming from

triangles in ’Z;L(l) is of order

2
. 1
st [ 3 gmase (37)

S—_A* j=0
Using a local representation of the surface and then using polar coordinates,

the expression in (37) is of order
cht (h* + h +1logh) = O(h" " log h)

Combining the errors arising from the integrals over A*, ’Tn(l), and 7;1(2), we have (36).
3.2. Interpolation of Even Degree

Analogously, consider the quadrature formula (28), based on interpolation of
degree r, an even number, which has degree of precision at least . Considered over
a rectangle formed by two symmetric triangles, it has degree of precision r + 1, since

r is an even number. Define a collocation method with it as before. We have:
Lemma 8. Let 7y and 7 be planar right triangles that form a square R of length h

on a side. Let g € C™2(R). Let ® € L'(R) differentiable with first order derivatives
in L*(R). Then

[ vt - gt iar| < et | [(al+1Do)dr| - max (D)} (39)

" a s R
with L-g(x,y) = Ly, 9(z,y), where (z,y) € 73, 1 = 1,2.

For integration over one triangle only, the term in A in (38) is only h"™*1. We use
these results to prove the following superconvergence result.

Theorem 9. Assume the hypotheses of Theorem 4, with each F; € C™ 2. Assume
u € C"2(8S). Assume the triangulation T,, of S satisfies (33) and that it is symmetric.

For those integrals in (34) for which v; € Ay, assume that all such integrals are

evaluated with an error of O(h™+2). Then

1§r?gi<fr [u(vs) — T (v;)] < ch™ 2 (39)

The proof of Theorem 9 is similar to that of Theorem 7.
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ON POSITIVE DEFINITENESS OF SOME LINEAR FUNCTIONALS

G.V. MILOVANOVIC, A.S. CVETKOVIC AND M.M. MATEJIC

Dedicated to Professor Gheorghe Coman at his 70th anniversary

Abstract. In this paper we investigate the positive definiteness of linear

functionals £ defined on the space of all algebraic polynomials P by
L(p) = Z wrp(zr), pEP.

keN

1. Introduction

Let P be the space of all algebraic polynomials. In this paper we investigate

linear functionals £ defined by
L(p) = Z wkp(z), pEP. (1)
keN

In general, we investigate functionals for which wy, z;, € C\{0}, but with the following
restrictions. First, we assume that wy # 0, £ € N. This condition is rather natural,
since, assuming wy = 0, for some k& € N, simply produces a linear functional where
summation is performed over N\{k}. Additionally, we will not loose any generality if
we assume that z; # z;, ¢,7 € N, since, for example, we may skip summation over j
and use w; = w; + w; at point z;.

For the set of nodes z;, i € N, we introduce the notation Z = {z; | k € N}.

Second we are going to assume that

lim z; =0 (2)

k—-+o00
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and, in order to have absolute integrability of all polynomials p € P, we assume that

Z |lwi| < M < 400. (3)
keN

We assume in the sequel that the sequence zx, k € N, is ordered in such a way that
|zkt+1] < |2x], k € N.

Note that the linear functional £ can be interpreted as the linear functional
acting on the space of all bounded complex sequences {,. Namely, according to the
condition (3) we have that the sequence wy, k € N, belongs to the space 1, the space
of all absolutely summable complex sequences (see [3, p. 30], [2, p. 39]). As is known
ly C ., where £/ denotes dual of /.

Create now a linear mapping 7 : P +— f in the following way

Z(p) = (p(z1),p(22), .-, p(zn), .- .).

The linear space P can be normed as

[p|| = sup p(zx)|, pe€P.
keN

Lemma 1.1. The linear mapping L : P — Lo is an bounded embedding of P into
loo-

Proof. Given £, any polynomial p € P achieves its maximum on the compact
set Z, hence any sequence p(zx), k € N, p € P, is uniformly bounded in k and belongs
t0 £

Norm preserving property is easily established. We note that if two poly-
nomials satisfy Z(p; — p2) = 0, we have that p; = po, since those are two analytic
functions equal on the set Z which has one accumulation point. Hence, Z(P) C {x
is an embedding.

It is easily seen that ||Z|| = 1. a

Now, define the linear functional £ : £, — C in the following way

L' (u) = Zwkuk, u=(u1,ug,...) € l.
keN
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Obviously £’ is bounded, since

£/ (w) < wilfur] < [lull Y lwrl, u € bo,

keN keN

and £ o7 = £ on P. Hence, for the certain extent we can identify £ and £ and we
may consider £’ as a bounded linear extension of £ to the whole of ..

Define P, to be the set of all polynomials p € P\{0} which are nonnegative
on the real line and denote by Pr the set of all real algebraic polynomials.

We recall that linear functional £ : P +— C is called positive definite provided
for every polynomial p € P, we have L(p) > 0 (see [1, p. 13]). As a direct consequence

of positive definiteness we have:

Lemma 1.2. If the linear functional L : P +— C is positive definite, then
L(z*") >0, L") eR, L(p)eR, pePr, neN. (4)

Proof. Since 22" € P, , we have directly £(2?") > 0. For the odd powers

we have
2n m
Llx—1)"=>" ( . > (=) kL (zk) >0,
k=0
and using induction over n € 2N, we have
SR n
2n—1 k k
L) < o > (k)(—l) L(zh).
k=0,k#2n—1
Finally, we have according to linearity of £ the last statement. ]

The question we answer is summarized in the following theorem.

Theorem 1.1. A linear functional L given by (1) is positive definite if and only if

wi >0 and 2z € R, k € N.

Finally, we introduce the following notation
en=1(0,...,0,1,0,...) €ls, mEN,

where number 1 occupies n-th position with zeros on all other positions.

159



G.V. MILOVANOVIC, A.S. CVETKOVIC AND M.M. MATEJIC
2. Auxiliary results

We give first, the following auxiliary lemmas.

Lemma 2.1. Choose z, € Z and assume that Z,, ¢ Z. Then there exists p” € C,
|p"| = 1, such that for every r™ € Pg we have p"r™(z,)e, € Z(Pr). If z, € R\{0}
then p™ = 1.

Proof. We are going to construct the sequence p} € Py, kK € N, n € N, such
that kEToo Z(py) = ane, for some complex number a,, € C\{0}.

Choose some fixed z, € Z and assume that Z, ¢ Z. Then choose some

polynomial ™ € Pg. We define

N ) [Cht)
pi(z) =r"(2) H #, k€N,
i=1,i#n 4

where we denote
AP =zn — zil|lzn — Zil, @ #n.

Obviously we have p; € P,, k,n € N.
Since r™ is an algebraic polynomial it is uniformly bounded on the compact
set Z. Hence, for some M > 0 we have |r"(z,)| < M, v € N.

According to the property (2), we can choose some i9; € N such that
|2nl/2 < 2o — zil,  |2nl/2 <|zv —Zi|, @>i01, v=1,...,n.
Fix some ¢ € (0,1). We can choose some ig2 € N such that
|zi| < lznlg/4, @ > ioa.

Now, define iy = max{ig1,ig2}. For k > ip and v > k, we have

i0 k

2y — Zi||2v — %4 2, — z:llz, — %
S I | e | R
i=1,i#n { i=ig+1 Zn T Zil||An T 24
_ k
< M H ZZHZV—ZH 11 |2nlg/2|2n|a/2
- i=1,i#n i=ig+1 |Zn|/2|zn|/2
2i9—2
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where m = ) min . {lzn — 2|, |2n — Zi|} > 0. We note that pj(z,) = 0 for v < k,
i=1,...,10, 1#n
v # n. From here it can be easily seen that we have uniform convergence in v # n of
PR (2,) to zero for k — 400, i.e., given € > 0, for
2i0—2
1 3 m 0
k>kopp=ig+—1log— | =— ,
o1 =0 F 2logq ] <2zl|)
we have |p](z,) — 0] <e, v € N\{n}.

Now, we consider p}(zy,), we have

Pk ()| = [7" (2],

according to the definition of A?. This means that p}(z,) has constant norm as
k — +o0.
The product

k

[[ s oy
i=1,i#n i

is just product of the complex numbers having modulus 1, hence, represent the se-
quence on the unit circle in the complex plane. According to the compactness of the
unit circle in C, we easily conclude that there exists some subsequence of the products
which converge to some p™ which norm is one.

Denote set of indices for convergent subsequence as N;. Then according to
the convergence, given € > 0, we can choose some kg2 € N7, such that for k£ > kg2,

k € Ny, we have
Pk (zn) — 7" (2n)p"| <e.

Now consider the vector 7" (z,)p™e,, we have
IZi) = 1" (zn)p"enll = sup[pi(20) = " (zn)p"en] <,
ve

for k > max{k'm, kog}, k € N;.
Hence, if we enumerate, again the sequence p;} using only indexes k € N1, we

have the sequence p} € Pg, such that

lim Z(pp) = p"en
Jm Z(pi) =pen
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Finally, if z,, € R\{0} we see that since " € Pg, we have r"(z,) € R and

f[|un—§&%—@neR
i=1,i%#n i
and also the terms of the product are simply equal to 1, hence, p™ = 1.
We can repeat construction for every n € N, i.e., every point z, € Z for
which z,, ¢ Z. |

In the case r™ € P, we easily see that the sequence pj also belongs to P,

so that we have the following result.

Lemma 2.2. Assume that Z,, ¢ Z. Then there exists p™ € C, |p™| = 1, such that for

every r™ € Py we have p"r"™(zy)en € Z(Py). If z, € R\{0} we have p" = 1.

Next we consider the case when z,, € Z. Without loss of generality we may
assume that z,11 = Z,, since this can be achieved by the simple renumeration of the

sequence z,, n € N.

Lemma 2.3. Let z,,41 = Z,, for somen € N. Then there exist some p" € C, |p"| =1,

such that for every r"™ € Pr we have

p"r(zn)en + pPr(zn)ens1 € Z(Pr).

Proof. We consider the sequence of the polynomials

b (2 — 2)(z — %)
) =) [
i=1,i#n,n+1 i

where all notation is from the proof of Lemma 2.1. The only problem is definition of

the sequence A}, but luckily we have
|2 — 2ill2n — Zil = |2n41 — zillZnt1 — Zil,

since z,4+1 = Z,. Hence, we can apply safely the same definition.

It can proved using the same arguments that

Pk (z,) =0 <e

162



ON POSITIVE DEFINITENESS OF SOME LINEAR FUNCTIONALS

provided

1 € m Zio—4
k>kor=1 — log — .
=0 Slogg "gM(m)

Also we have p}(z,) = m7 which gives the convergence for some sequence of
k € N; to mutually conjugated values. O

It is clear that we may choose "™ € P, to get the following immediate con-
sequence.
Lemma 2.4. Let z,41 = Z,, for somen € N. Then there exist some p™ € C, |p"| =1,

such that for every r™ € P, we have

pnrn(zn)en + pnT"(Zn)€n+1 S I(P-i-)
3. Proof of the main result

Now we are ready to prove the main result.
Proof of Theorem 1.1. It can be easily seen that if w, > 0 and z, € R,
n € N, for some p € P4, we have

L(p) =Y wip(zk) >0,

keN

according to the simple fact that p(zx) >0, k € N.
Now, assume that L is positive definite. Choose some n € N and suppose

that z,, ¢ Z. Then, according to Lemma (2.1), we have

lim L(pg) = lim (£ oT)(p) = L'(p"r" (zn)en),

k—+4o00 k—-4o0

where we have used the fact that £’ is continuous on f»,. But then

V3

L' (p"r™(zn)en) = wnr™ (za)p"
Choose r(z) =1, ™ € P4, and r™(z) = z, ™ € Pg, to get
L' (pTen) =wpp™ >0 and L'(p"znen) = wpz,p" € R.

Since z, # 0 and according to the construction p™ # 0, we have that L'(p"e™) =

wy,p™ > 0. Then we have
El(pnznen)
n=———"€R
z £/(pnen)
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and also wy, > 0, according to the fact that p” =1 for z, € R\{0}.

Now let Z,, = z,4+1. Note that in this case we cannot have z, € R, since in
that case we would have z,, = 2,41, which is impossible according to the conditions
imposed on the set Z. Then, according to Lemma (2.3) and positive definiteness of

L for r™(z) = 1 and r™(z) = z, we have
El(pnen +F€n+1) = wnpn + wn+1ﬁ =a>0

and
£/(pnzn€7L + pnzn€n+1) = wnznpn + Wnt12n = B eR.

We can rewrite these equations as the linear system in p” and p”, which has the

unique solution
n azZ, — B —_ azp, — 0
p = p i ——
wn(zn - zn) wnJrl(Zn - Zn)
Using these expressions we readily get w,4+1 = W, and also we see that we cannot
have a? + (32 = 0, since it would imply p™ = 0, which is impossible.
Now, choose r"(z) = 2%, v € N. We have

L (p" 22 en 4 prz2en 1) = w22V p" 4 wnz2'pn = Re(w,22p™) >0, v € N.

If we denote «,, = arg(wy,), B, = arg(p") and ¢, = arg(z,), where ¢, # 0 and
on # T, We get

w22 p" | cos(an + B + 2vpn) >0, v € No.
We want to show that there exist some v € Ny such that cos function is negative

which will produce a contradiction.

The cos-function is negative provided 2v is an element of some interval

Jk:<(4k+1)w—2(an+ﬁn) (4k+3)7r—2(an+5n)>7 ke

205 ’ 2¢n
The interval Ji has length 7/|@,| > 1, hence, there is at least one integer inside every
interval Ji. If /|, | > 2 then there are at least two consecutive integers inside every
Jir and at least one of them is even. Choosing 2v to be equal to such an integer
produces a contradiction. So, we assume 7/|@,| < 2.
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The intervals

(4k 4+ 3)m — 2(ap, + Br) (4k +5)7m — 2(, + Bn)

Gy =
2¢p ’ 2pn

. kez,

we are going to call gaps, obviously R = Ugez(Jx U Gi).
If 7/|pn| = 2, we have ¢, = £7/2, which means that if

cos(ay + 3, £2-0-7/2) >0
we have
cos(ap + B £2-1-7/2) = —cos(a + G,,) <0,
which produces a contradiction. If cos(a, + B, £2-0-7/2) = 0, then we have
Re(w,22"p") = |w, 22" p"| cos(a, + Bn £vm) =0, v EN,

v+l € Ny, we have

and, choosing r"(z) = z
Re(w,z2Tp") = |w, 22T p"| cos(an + Bn £+ (2v 4+ 1)7/2)
= (1) |w, 22 p"|sin(av, + Bn) #0, v € Np.
According to the fact cos(ay, + 8,) = 0, we have sin(a,, + 8,) = %1, therefore, the
expression cannot be equal zero. Consider now polynomials r"(z) = 2z2"(z — 1)?,

v € Ny. Obviously " € P4, so that it must be

lim L(p}) = lim (£ oI)(p}) = wnz2" (2, — 1)?p" + w,22¥ (2, — 1)2p

k— 400 k— 400

= Re(wpz 2”(zn - 1)2p") > 0.
According to linearity we must have
Re(wpz 2”(zn fl)zp") = Re(—2w 22”+1p")
= F2(—=1)"|wp 22 p"|sin(ay, + Bn) >0, v <N

This is, of course, a contradiction.
Finally, it must be 1 < 7/|p,| < 2. Assume that in some interval Jj, we have
an integer 2m + 1. Then we can always choose some v € N; such that

LI 2v—-2m—1 -1
lon| = 2v—2m —2 ’
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Then counting from 2m + 1 and finishing with 2v there are exactly 2v — 2m integers
and those are covered with
2v—-2m—1

w—2m—24+1>"" """ 41
/| en|

intervals and gaps. Since we are starting and ending with an interval there are v—m—1
gaps and v—m intervals. According to pigeon-hole principle there is at least one either
interval or gap which contains at least two consecutive integers. If some interval
contains two consecutive integers we are done. So assume that it is some gap. If gap
contains even and odd integer, then next interval holds an even integer and we are
done. If gap holds odd and even integer, then interval in front of it holds an even
integer, and we are done.

We conclude that it cannot be z,,z, € Z. We have seen also that if z, € Z,

then z, € R and w,, > 0, which finishes the proof. Il
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NUMERICAL SOLUTIONS OF LOTKA-VOLTERRA SYSTEM
WITH DELAY BY SPLINE FUNCTIONS OF EVEN DEGREE

DIANA OTROCOL

Dedicated to Professor Gheorghe Coman at his 70th anniversary

Abstract. This paper presents a numerical method for the approximate
solution of a Lotka-Volterra system with delay. This method is essentially
based on the natural spline functions of even degree introduced by using

the derivative-interpolating conditions on simple knots.

1. Introduction

In recent years many papers were devoted to the problem of approximate
integration of system of differential equation by spline functions. The theory of spline
functions presents a special interest and advantage in obtaining numerical solutions
of differential equations.

The splines functions of even degree are defined in a similar manner with
that for odd degree spline functions, but using the derivative-interpolating condi-
tions. These spline functions preserve all the remarkable extremal and convergence
properties of the odd degree splines, and are very suitable for the numerical solutions
of the differential equation problems, especially for the delay differential equations
with initial conditions.

In this paper we consider a spline approximation method for the numerical
solution of a Lotka-Volterra system with delay. The purpose of the present study is to
extend the results of [1], [2], [3], [5] from the delay differential equations to the delay
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differential system. In the same manner we shall develop some theory and algorithms

for the numerical solutions of a class of delay Lotka-Volterra system.

2. Basic definitions and properties of even degree splines

Let A, be the following partition of the real axis
An:—OO:t0<CL:t1<...<tn:b<tn+1:+00

and let m, n be two given natural numbers, satisfying the conditionsn > 1, m < n+1.

One denotes by I}, the following subintervals

Iy = [ty thral, k= 1,n, Iy :=Jto, ta].

Definition 1. [3] For the couple (m,A,) a function s : R — R is called a natural
spline function of even degree 2m if the following conditions are satisfied:

195 € C?m~L(R),

20 5|1, € Pom, k=1,n,

3% 511,€ Py 511, € Prms

where Py, represents the set of algebraic polynomials of degree < k.

We denote by Sa,, (A,,) the linear space of natural polynomial splines of even
degree 2m with the simple knots t1, ..., .

We now show that S, (4A,,) is a finite dimensional linear space of functions

and we give a basis of it.

Theorem 1. [3] Any element s € Sa,(Ay,) has the following representation
m ) n
s(t) =D At + > ap(t — t)3m,
i=0 k=1

where the real coefficients (A;)§" are arbitrary, and the coefficients (ax)} satisfy the

conditions

> aty, =0, i=0,m— 1.
k=1

Remark 1. [3] If n+1=m, thena, =0, k =1,n.
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Theorem 2. [3] Suppose that n+1 > m, and let f : [t1,t,] = R be a given function
such that f'(ty) =y, k = 1,n, and f(t1) = y1, where y,, k =1,n, and y1 are given
real numbers. Then there exists a unique spline function sy € Sam(Ay), such that the

following derivative-interpolating conditions

hold.

Corollary 1. [3] There ezists a unique set of n + 1 fundamental natural polynomial

spline functions Sy € Som(Ay), k= T1,n, and so € Sam(Ay) satisfying the conditions:

so(t1) =1, sp(te) =0, k=1,n,
Sk(tl) =0, S,’C(tl) =ik, U,k=1n.

It is clear that the functions {sg, Sk, k = 1,n}, form a basis of the linear

space Sz (Ay,), and for sy we obtain the representation
sp(t) = so(t) f(t1) + Z Sk(t) f'(tr).
k=1
But because so(t) = 1, it follows that

sp(t) = f(t1) + Zsk(t)fl(tk)'
k=1

Let us introduce the following sets of functions

Wyt (A,) == {g: [a,b] = R | g!™abs.cont.on I, and g(™+V) € Ly[a,b]},
Wit a,b) == {g : [a,b] = R | '™ abs.cont.on [a, b] and g™+ € Ly[a,b]},

W;”;“(An) = {g € W (An) | g'(te) = f'(tr), k=T,n},

W (An) = {g € Wi (A | g(to) = f(to)}.
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Theorem 3. [3] (Minimal norm property). If s € Som(A,) NW™(A,,), then
2,f

o], < o] v o,
2 2 2.f

holds, ||-||, being the usual Ly-norm.
For any function f € W,""!(A,), we have the following corollaries.

2 2
Corollary 2. [3] ||f(m+1)H§ = Hs}””l) ‘ + Hf(m'H) — S(ferl)H .
2 2

(m+1) m
Corollary 3. [3] Hsfm Hz < ||f( +1)H2_
Corollary 4. [3] Hf(m“) - s;m—i_l)H <[ fem, -
2
Remark 2. [3] If §:= s; + ppm, where py,, € Pr,, it follows Hg(m“)H2 < Hf(m“)HQ.
Theorem 4. [3] (Best approzimation property). If f € Wi*t'(A,) and sp €

Som(Ay) is the derivative-interpolating spline function of even degree, then, for any

s € Som (Ay) the relation

=t o <)
2 2

holds.
Remark 3. [3] If sy — s € Py, then

H8<m+1> _ f<m+1>H

f - e,
2

2

3. The numerical solutions of Lotka-Volterra system with delay by spline

functions of even degree

Let us consider the following delay differential system with a constant delay
w>0

dg_t“ = fUty @),y (1),y' (t —w),y*(t—w), a<t<b u=12  (3.1)

with initial conditions
yu(t) = ¢ (1), t € [a—w,a], u=1,2 (3.2)

and we suppose that f* : D C R* — R, satisfies all the conditions assuring the
existence and uniqueness of the solutions y* : [a,b] — R of the problem (3.1)+(3.2).
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We propose an algorithm to approximate the solutions y* of the problem
(3.1)+(3.2) by spline functions of even degree s* € S, (Ay), where A, is a partition
of [a,b] and m,n are two integers satisfying the conditions n > 1 and m < n + 1.

For t € [a,a 4+ w], the problem (3.1)4+(3.2) reduces to the following usual
initial value problems:

dy*

W = fu(tayl(t)ay2(t)7y1(t —w),yQ(t—w)), a<t<a+tw

y'(t) = ¢*(a) =yi', u=1,2

Theorem 5. If y* are the exact solutions of the problem (3.1)+(3.2), then, there

exists some unique spline functions syu € Som(A,,) such that:

sy« (t1) =y (t1) = ¢"(t1),
dsyu _dyt _ _
dt (tk) - dt (tk)a k_lana U_172

(3.3)

The assertion of this theorem is a direct consequence of Theorem 2 by sub-

stituting ¢; by a and f by y*.

Denoting yj! := y“(tx), Tj = y"(tx —w), k= 1,n, u = 1,2, we have

syu(t1) =yt

dsu 1
d‘i (tr) = f(te, vb- ¥3. T35, 72), k=T,n, u=1,2.

Corollary 5. If the functions {so, Sk, k = 1,n} are the fundamental spline functions

in Som(Ay), then we can write

n
sy (t) = 0" (@) + Y Sk() (ks vb, Ui Ui Ui)» w = 1,2, (3.4)
k=1

where yi, yi, k = 2,n, are unknown, and

YUty —w), ifty <a+w, are known,

YUty —w), if ty > a+w, are unknown.
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We shall call the function s, (), the approximating solution of the problem

(3.1)+(3.2) and it can be written as follows

+ Z Sk(t)fu(tkayiayiagpl(tk —(U),(p2(tk —(U)) (35)

tr<atw

+
™

Sk ()" (s Yhs Ui T Ur)-
tr>a+w

For simplicity, in writing (3.5), let us use the following index sets:
Ji={jeN|t;>a+w,Ti:t; —w="t;} = {1,742, Jg}
Jor={ieN|TjeJi  t; —w=1t}=:{i1,12,...,0q},
I'={jeN|t;j>a+w, Bi:tj—w=1t}=:{d1,ds,...,dp}.

Thus, we can write (3.5) in the form

sp(®) =)+
+ X Sk (b, Y Vi ' (b — w), 0% (tr — w))
tr<atw
S u 1,2 .1 .2 (36)
+kzlsjk(t)f (tjkiyjk7yjk7yik7yik)
5 1 2 =1 =2
+k2 Sdk (t)fu(tdkﬂydkaydkaydkaydk)v
=1

where the values y¥, k =2,n, and g}, k =1,p, u = 1,2 are unknown.
Before giving an algorithm to determine these values, we shall give the fol-

lowing estimation error and convergence theorem.

Theorem 6. [3]If y* € W2 [a,b], u = 1,2 are the ezact solutions of the prob-
lem (3.1)+(3.2) and sy is the spline approzimating solution for y*, the following

estimations hold:

for k=1,2,...,m, where ||A,|| := max{t; —t;—1}, v =1,2.
i=2,n

1=2,

Corollary 6. [3]If y* € W2 [a,b], we have

yuk) s?(ﬁ) H <vm(m —1)(m — 2)...kAT_k+%

e

)

2

ly* = syell < (0= a)mlm = |y | a5 w=1,2,
2
Corollary 7. [3] lim ‘y“(k) — s(ﬁ)H =0, k=1,m, u=1,2.
1A, ||—0 ¥ lleo
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4. Effective development of the algorithm

For any t € [a, b], we suppose that y*(t) ~ syu(t), u=1,2.
If we denote, as usual, e*(t) := y“(t) — sy=(t), t € [a, b],
we have

e < Vim(m = DA™ lyee ]

2

or

()] = O(|An]™™2), Vi € [a,b].

If we denote

W= s(t), el i=en(t) =y (t) — s,u(ts),i = Ln

Wy = syu(t; —w), & =e"(t; —w) =y"(ti —w) — syu(ti —w),i =1,n,

then we have y* = w} + €}, ¥’ = W + €j', where

I
—

_yl +ZSL tkaykaykaykﬂyk) = 17”7 u

W;J = yit + Zsk(tz - W)fu(tk,y}“y]%,y}“yi), i = 17”7 U= ]-72
k=1

In what follows, we suppose that in (3.1)+(3.2) the functions
fY:DCR = R(DClab] xR,

8fu(t7u17u27u37u4) afu(t7u17u27u3au4)

8U1 ’ 811,2 ’
8fu(t7u17u27u37u4) afu(t7u17u27u3au4)
8U3 ’ 811,4

are continuous. Thus

; Thus,
u 1.2 -1 -2y _ ru 1, .1 2, 2 1,21 —2 , =2
T Qs Yr Yier Un> k) = f (tk, wi + e, w, + e, Wy, + €, Wy, + €)

1 Of4(t
:f (tkawkvwkamka_g)-*_ k f (k’gg’gk’nlwnk)
Ui

zafu(tkaéiaéianllwni) —1 afu(tkaékaékankank)

€
+ k 811,2 te €k 811,3
-2 8fu(tk7§]1m§]%anllcani)
+ek
8’11,4
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where
min(wy, wy + ef) < & < max(wy, wi + ef),
min(wy,, Wg +€;) < np < max(W,, Wy +€), u=1,2.

We can write the system (4.1) in the form

—yl +Zsk tkawkawkawkawk)_{—Ezua i=1n,u=1,2
T =y + Zsk(t,- — W) [ty wh, wi, W W) + By, i =1,n, u=1,2
k=1
where
Eq-J:zn:sk(t')el8fu<tk7£i7£z7n}“nk +ZS tk;ék;ékankank)
¢ p— e 8U1 811,2
(tk fk fk 77k 77L ) (9f“(tk fl 52 771~ 772)
S ) ) ) ) S (t: Y Sk SEY ks Tk
+Z 8”3 +Z: k( I)ek 6U4
= O(|A,]™ %),
T - 8 ut‘7 1»7 27 1»7 2
E; = X:Sk(ti—w)e;lC I %Ufk T nk)+
Of " (ths Es &8 M i)
Si( 2 Sk Sk s Tk
+Z k( Ouis +
Afu(ty, EL 2.t 02
+25k(ti —w)ey 't %uﬁk i nk)+
n « «
o OF (ks &4 s s MR)
S, (t: — 2 1Sk Sk e ")
+; k(ti —w)eg o
= 0(|An|™"2), i =T, u=1,2,
supposing that
Of"(t,uy,us,u3,uy) <M Of"(t,uy,us,u3,uq) <M
8U1 >~ 1, (911/2 ~ 2,
(9f“(t,u1,uQ,U3,U4) < M (9f“(t,u1,ug,U3,u4) < M
6U3 - » 8’U,4 - b

on D. Obviously, E¥ — 0 and E; — 0 for ||A,|| = 0, u=1,2.
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Now, we have to solve the following nonlinear system:

n
w =y + > Sk(ti)fu(tk;w}c;wﬁ;wkvwi); i1=1,n,
k=1 4.3)
_ - j 102 nl 72y (*
wi =y + 2 Sk(ti —w) f7 (b, wi, w, Wy, W), i =1,n.
k=1
Let us denote:
w* = (wy, ..., wy), W= (WY, ..., w,), W= (w*,0"),

n
HE (w,@) =y + 3 Silts) f (b, wh, wd, w0, @2), i = T,
k=1

n

—u _ 1 .

H, (waw) =y + Zsk(tz - w)fu(tkawllmwi:w}cawi)a i=1,n,
k=1

HY(WY) = H"(w", 7"

,_ WUl U U Wi, U =—u\ IJ U —u Tl u —u
= (H}(w",@w"), .., H}(w*, w"), H, (w*,@w"), ..., H, (w",@"))
and
OH! (w* w") OH! (w* w") 8H} (w",w") OH! (w" w")
(9’u)1m ow 8@71‘ owd
OH (w",w") BH::j (w" w") OH, (w",w") OH (w",w")
AY = ow} owy owy owy
OH (w* w") OH (w* w™) OHY (w*,w") OH (w* w")
owy dw?r owy owe
OH » (w™ w™) 9H » (w™,w™) dH . (w™,w™) OH . (w™,w™)
ow} owy owy owy
Shortly, we write the system (4.3) by
W = HY(W") (4.4)

In order to investigate the solvability of the nonlinear system (4.4) we shall use a

classical theorem.
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Theorem 7. [6] Let Q C R?"*2 be a bounded domain and let H" :Q — Q be a vector
function defined by

u

If the functions H*, and ETh
point WY of HY, j.e. W** = H“(W™"*), which can be found by iterations. W** =
lim W) wek) = gewet-0) g = 1,2,.., WO € Q (arbitrary). If in

n— o0

addition ||A|| < L < 1, for any iteration W**) | the following estimation holds:

are continuous in ), then there exists in Q) a fized

Llc
< -

HWU B WU(k)H =1-L

‘Wuu) _ o) H ,

Taking in consideration the expression of H", the matrix A" is A = SF",

where
S1(t1) e Sy (t1) S1(t1) e Sy (t1)
| osit—w) o St —w) Sit—w) o St —w)
Si(tn —w) -+ Sp(th —w) Si(th —w) -+ Sp(th —w)

and F' is the diagonal matrix with the following elements:

8fu(tk7wllgawiamkaw%) 8fu(tk7wllgawiawk7w%)

u ’ T
owy! owy;

Jk=1,n, u=12.
Theorem 8. Suppose that there exists the constants M, N such that (4.2) holds and
|f(t, u1, u2,us,us)| < Ny, V(E ur,uz,u3,uq) € D, u=1,2.

If M, < ||S||™", then the system (4.8) has a solution which can be found by iterations.
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5. Numerical example

Example 1. Consider the following Lotka-Volterra delay differential system

d 1

Yo YLyt —1) + 2t — 1)+ 1— et — 2]

ddtQ ,t € [07 b];
—dyt =y? [y2(t—1) +2—e¥7?]

with initial conditions

y'(t) =o' (t) =€, t € [-1,0]
y*(t) = p*(t) = e*, t € [-1,0]

and the corresponding exact solutions

(' (1), 5°(8) = (e', ™).

In the below table are given the actual errors for the considered examples.

The table list

max{|wzy_yu(ti)|7 i= ].,TL; |Eg_yu(tj _w)|7 jGI;
|5y« (@ + 0.1i) — y(a + 0.13)], i = 1,10(b— a)},

for m = 1,2, 3 and the interval [a, ] is [0, 2].

[a b] [0,2]
n\m 1 2 3
6 65.6521 5.4291 6.4198
9 12.2874 | 0.75975 0.25095
11 7.0645 0.39634 | 0.072303

Fora=0,b=2 w=1 m=1, n =6 we obtain r = 3 (the number of
the nodes at the left of a + w), p = 3, ¢ = 0. The approximating solution % and
the exact solution y* , w = 1,2, in this case,are plotted in FIGURE 1 and FIGURE
2. Fora=0,b=2 w=1 m=2,n=9 weobtainr =5 p=0, g =4.
The approximating solution s* and the exact solution y* , u = 1,2, in this case, are
plotted in FIGURE 3 and FIGURE 4.
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FIGURE 1. Comparison between the approximation solution s' and

the exact solution y' in the first case.
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FIGURE 2. Comparison between the approximation solution 32 and

the exact solution y? in the first case.
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FIGURE 3. Comparison between the approximation solution s' and

the exact solution y' in the second case.
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FIGURE 4. Comparison between the approximation solution 32 and

the exact solution y? in the second case.
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A NOTE ON MULTIVALUED MEIR-KEELER TYPE OPERATORS

ADRIAN PETRUSEL AND GABRIELA PETRUSEL

Dedicated to Professor Gheorghe Coman at his 70th anniversary

Abstract. The purpose of this work is to present some fixed point results

for multivalued generalized Meir-Keeler type operators.

1. Introduction

Throughout this paper, the standard notations and terminologies in nonlinear
analysis (see [12], [13], [8]) are used. For the convenience of the reader we recall some
of them.

Let (X, d) be a metric space. By B(zo;7) we denote the closed ball centered
in z¢g € X with radius » > 0.

Also, we will use the following symbols:

P(X):={Y C X| Y is nonempty}, Py(X) :={Y € P(X)| Y is closed},

Py(X):={Y € P(X)| Y is bounded }, Py o(X) := Puy(X) (N Po(X).

Let A and B be nonempty subsets of the metric space (X,d). The gap

between these sets is
D(A, B) = inf{d(a,b)| a € A, b € B}.

In particular, D(zo, B) = D({z0}, B) (where zy € X) is called the distance from the
point x( to the set B.
Also, if A, B € Py(X), then one denote

d(A, B) :=sup{d(a,b)| a € A, b € B}.
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2000 Mathematics Subject Classification. 4TH10, 54H25.
Key words and phrases. metric space, fixed point, multivalued operator, Meir-Keeler operator, generalized

contraction.

181



ADRIAN PETRUSEL AND GABRIELA PETRUSEL

The Pompeiu-Hausdorff generalized distance between the nonempty closed

subsets A and B of the metric space (X, d) is defined by the following formula:
H(A,B) := max{igg big_; d(a,b),igg 51612 d(a,b)}.

The symbol T : X — Y means T : X — P(Y), i. e. T is a set-valued
operator from X to Y. We will denote by Graf(T) := {(z,y) € X xY|y € T(z)} the
graph of T'.

For T : X — P(X) the symbol Fiz(T) := {z € X| x € T(z)} denotes the
fixed point set of the set-valued operator T. Also, for z € X, we denote F"(z) :=
F(F"Y(z)), n € N*, where F(z) := z.

Definition 1.1. If f: X — X is an single-valued operator, let us consider
the following conditions:

i) a-contraction condition:

(1) a € [0,1] and for x,y € X = d(f(x), f(y)) < ad(z,y);

ii) contractive condition:

(2) mye X, z#y=d(f(x), f(y) < d(z,y);

)

iii) Meir-Keeler type condition:
3)

d(f(x), f(y)) <mn;

iv) e-locally Meir-Keeler type condition (where ¢ > 0)

for each n > 0 there exists 6 > 0 such that z,y € X, n < d(z,y) <n+d =

(4) for each 0 < 1 < e there is § > 0 such that z,y € X, n < d(z,y) <n+d =
a(f (), 1)) < .

Let us observe that, condition (iii) implies (ii), (iii) implies (iv) and each of
these conditions implies the continuity of f.

Definition 1.2. If F': X — P,(X) is a multi-valued operator then F is said
to be:

i) a-contraction if:

(5) a € [0,1] and for x,y € X = H(F(z),F(y)) < ad(z,y);

ii) contractive if:

(6) 2,y € X, o £y = H(F(), F(y)) < dz,y);
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iii) Meir-Keeler type operator if:

(7) for each i > 0 there exists ¢ > 0 such that z,y € X, n < d(z,y) <n+0 =
H(F(z),F(y)) < n;

iv) e-locally Meir-Keeler type operator (where € > 0) if:

(8) for each 0 < n < e thereis § > 0 such that z,y € X, n < d(z,y) <n+d =
H(F(z), F()) < 1.

It is easily to see that condition (iii) implies (ii), (iii) implies (iv) and each of

these conditions implies the upper semi-continuity of F.

The following theorems are fundamental in the theory of Meir-Keeler type
operators.

The first result is known as Meir-Keeler fixed point principle for self single-
valued operators.

Theorem 1.3. (Meir-Keeler [5]) Let (X,d) be a complete metric space and
f an operator from X into itself. If f satisfies the Meir-Keeler type condition (3)

then f has a unique fized point, i.e. Fy = {x*}. Moreover, for any x € X, we have

lim f"(x) = a*.

For the multivalued case, a similar result was proved by S. Reich, as follows.

Theorem 1.4. (Reich [9]) Let (X,d) be a complete metric space and F :
X — P.p(X) be a multivalued operator. If F' satisfies the Meir-Keeler type condition
(7), then F has at least one fixed point.

For the case of a multivalued contractive operator Smithson proved:

Theorem 1.5. (Smithson [14]) Let (X,d) be a compact metric space and
F: X — Py(X) be a multivalued contractive operator. Then F has at least one fized

point.

The purpose of this work is to consider a generalized Meir-Keeler type mul-
tivalued operator and to discuss some connections with the classical one. Some fixed
point results are also given. Two open problems are pointed out. Our results are in
connections with some theorems given in S. Reich [9], R. P. Agarwal, D. O’Regan, N.
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Shahzad [1], S. Leader [4], S. Park, W. K. Kim [7], T. Cardinali, P. Rubbioni [2], I.
A. Rus [10], [11], etc.

2. Main Results
Let (X, d) be a metric space and F': X — P,;(X) be a multivalued operator.

For z,y € X, let us denote

M (z,y) := max{d(z,y), D(z, F(z)), D(y, F(y)), 5 [D(z, F(y)) + D(y, F(x))]}-

|~

Consider the following two Meir-Keeler type conditions on F:

(9) for each n > 0 there exists § > 0 such that z,y € X, n < M(z,y) <
n+6 = H(F(x),F(y)) <mn;

(10) for each n > 0 there exists ¢ > 0 such that z,y € X, M(z,y) <n+d=
H(F(), F(y)) < .

Our first remark is that (9) < (10).

This follows from the following two lemmas.

Lemma 2.1. If (X,d) is a metric space and F : X — P, (X) satisfies (9),
then H(F(x), F(y)) < M(z,y), for each x,y € X.

Proof. We discuss two cases:

1) M(z,y) = 0; Then x = y and we are done.

2) M(z,y) > 0; Let n > 0 and 6 > 0 such that (9) holds. Suppose, by
contradiction, that H(F(z), F(y)) > M(x,y). Then H(F(x),F(y)) > M(z,y) >n, a
contradiction with (9). O

Lemma 2.2. Let (X,d) be a metric space and F : X — P.,(X). Then
(9) < (10).
Proof. (10) = (9) is obviously. For the reverse implication, let us consider
n >0 and z,y € X such that (9) holds. We have the following two situations:
1) M(z,y) <n; Then from Lemma 2.1 we get that H(F(x), F(y)) <.
1) M(z,y) > n; Then from (9) we have H(F(x), F(y)) <n. O.
Also, we have:
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Lemma 2.3. If (X,d) is a metric space and F : X — P, (X) satisfies (10),
then H(F(z),F(y)) < M(z,y), for each z,y € X, with x # y.

Proof. If there exist x # y € X such that H(F(x),F(y)) > M(x,y), then
we contradict (9). O

Lemma 2.4. Let (X,d) be a metric space and F : X — P, (X) be a multi-
valued operator such that (9) (or equivalently (10)) holds. Then:

(11) for eachn > 0O there exists 6 > 0 such that (z,y) € GrafF,n < d(z,y) <
n+6 = H(F(z),F(y)) <n.

Proof. For n > 0let § > 0 be such that (9) holds. Let y € F(z) be arbitrary.
Then M (z,y) = max{d(z,y), D(z, F(z)), D(y, F(y)), %D(m, F(y)}.

Since D(z, F(z)) < d(z,y) and D(z, F(y)) < d(z,y) + D(y, F(y)) it follows
that M(xz,y) = max{d(z,y), D(y, F'(y))}-

If M(x,y) = D(y, F(y)), then from (9) we have the following contradiction:
n < D(y, F(y)) < H(F(x), F(y)) <n. So M(z,y) = d(z,y). O

In a similar way as above, we have:

Lemma 2.5. Let (X,d) be a metric space and F' : X — P, (X) be a multi-
valued operator. Consider the following condition:

(12) for each n > 0 there exists 6 > 0 such that (x,y) € GrafF, d(z,y) <
n+6= H(F(z),F(y) <n.

Then (11) < (12).

The following result is an easy consequence of the above lemmas.

Lemma 2.6. If (X,d) is a metric space and F : X — P, (X) satisfies

(9°) for each n > 0 there exists 6 > 0 such that (z,y) € GrafF, n <

M(z,y) <n+d= H(F(z),F(y)) <n

or

(10°) for each n > 0 there exists 6 > 0 such that (x,y) € GrafF, M(z,y) <

n+d = H(F(z),F(y)) <n,

then H(F(x),F(y)) < d(x,y), for each (x,y) € GrafF, with © # y.
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Open Problem A. Establish fized point results for (generalized) Meir-Keeler
multivalued operators on graphic, i. e. satisfying the condition (9) or (10).

For example, from the above results and Theorem 1.5. we immediately obtain:

Theorem 2.7. Let (X,d) be a compact metric space and F : X — Pe,p(X)
be a multivalued operator, such that it satisfies the contractive condition (6) for each
(x,y) € (X x X)\ GrafF. Suppose that F satisfies the following generalized Meir-
Keeler type condition:

(13) for each n > 0 there exists § > 0 such that (z,y) € GrafF, M(z,y) <
n+0= H(F(x),F(y)) <mn,

then F' has at least one fixed point.

Proof. The assumption (13) implies (12) which is equivalent to (11). From
the above remark, I’ satisfies the contractive condition (6) for each (x,y) € GrafF.

Hence, F is contractive on X. The rest of the proof follows from Theorem 1.5. O

Open Problem B. Establish results of the above type for the case of a locally
(generalized) Meir-Keeler multivalued operator, see also the conditions (4) and (8).

The following theorem is a slight modification of a result established by R.
P. Agarwal, D. O’'Regan, N. Shahzad in [1].

Theorem 2.8. Let (X,d) be a complete metric space, xg € X, r > 0 and
f: E(xo;r) — X an operator. Suppose that:

i) for each n > 0 there exists § > 0 such that =,y € B(xo;r), n < d(z,y) <
n+38= d(f(), f(y) <.

i) d(xo, f™"(x0)) < r, for each n € N*.

Then Fizf = {z*}.

An extension to the multivalued case is the following:

Theorem 2.9. Let (X,d) be a complete metric space, xg € X, r > 0 and
F: B(zg;r) — P.,(X) be a multivalued operator. Suppose that:

i) for each n > 0 there exists § > 0 such that =,y € B(xo;r), n < d(z,y) <
0+ 8= H(F(), F(y) <n.

it) 0(xo, F™(x0)) <, for each n € N*.
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Then FixF # .
Sketch of the proof. Let us consider the operator G : E({mo};r) C

(Pop(X),H) — (Pep(X), H), given by G(Y) := | J F(z). Then G satisfies all the
€Y
hypothesis of Theorem 2.8. Hence, there exists Y* € P.,(X) such that Y* = G(Y™*).

Define h : Y* — Ry, by h(a) := D(a, F(a)). Since F is contractive on B(zo;r)
it follows that F' is upper semicontinuous on E(xo;r). Thus h is lower semicon-
tinuous on Y*. Since Y* is compact, there exists b € Y* and ¢ € F(b) such that

in}f h(a) = d(b,c). If we suppose that d(b,c) > 0 then we get a contradiction:
acY™

h(c) = D(¢,F(c)) < H(F(b),F(c)) < d(b,c). Hence b = ¢ and so the conclusion
follows. [
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FIXED POINT STRUCTURES WITH THE COMMON FIXED POINT
PROPERTY: MULTIVALUED OPERATORS

IOAN A. RUS

Dedicated to Professor Gheorghe Coman at his 70th anniversary

Abstract. The concept of fixed point structure with the common fixed
point property is extended to multivalued operators. In the terms of this

concept some common fixed point theorems are given.

1. Introduction

In this paper we follow the notations and terminologies in I.A. Rus [10] and [12].
Let X be a nonempty set and T, @ : X — P(X) two multivalued operators.
In the present paper we shall consider the following problems:

Problem A. In which conditions we have that:

Fr#0, Fo#0, ToQ=QoT = FrnkFg+#0?
Problem B. In which conditions we have that:
(SF)r #0, (SF)g#0, ToQ=QoT = (SF)rN(SF)q # 0?

The aim of this paper is to study these problems in terms of the fixed point
structures ([10]).

We recall that if T : X — P(X) is a multivalued operator then we shall

denote:

Pr={zeX|zeT(x)}

Received by the editors: 01.07.2006.
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(SF)r={r € X [T(x) = {a}};

I(T) = {AC X | T(A) C A}

2. Fixed point structures with the common fixed point property

Definition 2.1. A fixed point structure (X, S(X), M°) on a set X (see [10])

is with the common fixed point property iff:
YeSX), T,Qe M°(Y), ToQ=QoT = FrnFg#0.

Definition 2.2. A strict fixed point structure (X, S(X), M?) on a set X (see

[10]) is with the common strict fixed point property iff:
YeSX), T,Qe M°(Y), ToQ=QoT = (SF)rn(SF)qg # 0.

Remark 2.1. For the case of singlevalued operators see I.A. Rus [11].

Remark 2.2. For the common fixed point theorems in terms of the fixed
point structures see A. Muntean [8] and A. Sintamaérian [14].

Remark 2.3. For the common fixed point theorems for the general-
ized commuting operators (weakly commuting, R-weakly commuting, compatible,
d-compatible,...) see G.F. Jungck [5], O. Hadzic [3], O. Hadzic and Lj. Gajic [4],
B.E. Rhoades [9], A. Ahmad and M. Imdad [1], M.A. Ahmed [2], T. Kamran [6], H.
Kaneko [7],...

Example 2.1. The trivial fixed point structure is a fixed point structure
with the common fixed point property.

Example 2.2. Let (X,d) be a complete metric space, S(X) := Py (X) and
MO(Y):={T:Y — Py(Y) | T is a multivalued contraction with (SF)r # 0}. The
triple (X, P.(X), M?) is a strict fixed point structure with the common strict fixed
point property.

Indeed, from the Theorem 3.2 in [12] it follows that (X, Pu(X), M) is a strict
fixed point structure. Let Y € Py(X), T,Q € M°(Y) such that ToQ = Qo T. We
have Fp = (SF)r = {z*} and Fg = (SF)g = {y*}. From T o Q = Q o T it follows
that z* = y*.
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Remark 2.4. For other examples see I.A. Rus [11], A. Muntean [8] and A.
Sint&marian [14].

Remark 2.5. To give examples of fixed point structures with the common
fixed point property is one of the basic open problem of the common fixed point

theory.

3. (0, ¢)-contraction pairs

Let X be a nonempty set, Y C X, Z C P(X) and 0 : Z — Ry.

Definition 3.1. A pair of operators T,Q : Y — P(Y) is a (0, ¢)-contraction
pair iff:

(i) ¢ : Ry — Ry is a comparison function;

(ii) A € P(Y) N Z implies that T(A) UQ(A) € Z;

(i) 6(T(4) U Q(A)) < p(0(A)), ¥ A € I(T)NI(Q) N Z.

We have the following general common fixed point principles.

Theorem 3.1. Let (X, S(X), MY) be a fized point structure with the common
fized point property and (6,1) a compatible pair with this fized point structure. Let
Y €n(Z) and T,Q € M°(Y). We suppose that:

(i) 0,2y has the intersection property;

(i) ToQ=QoT;

(iii) the pair (T, Q) is a (0, p)-contraction pair.

Then, Fr N Eg # 0.

Proof. Let Y7 = n(T(Y)UQY)),...,Ynt1 = n(T(Y,) UQ(Y,)), n € N.
First of all we remark that Y,, € I(T) N I(Q), ¥ n € N. From the conditions (ii) and
(iii) we have that

0(Ynt1) = 0(n(T(Yn) UQ(Yn))) = 0(T(Yn) U Q(Yn))
<p(Yy) < < @"THO(Y)) — 0 as n — oo.

From the condition (i) it follows that

m:ﬂmﬂamwmho
neN
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Now, we remark that 1(Ys) = Yoo and Yoo € I(T)NI(Q). From the definition
of the fixed point structure it follows that Yo, € S(X) and from Definition 2.1 the
operators Ty, and Qly,, have a common fixed point. So, Fr N Fg # 0.

In a similar way we have

Theorem 3.2. Let (X,S(X), M°) be a strict fived point structure with the
common fized point property and (6,m) a compatible pair with (X,S(X), M°). Let
Y en(Z) and T,Q € M°(Y). We suppose that:

(i) 0],)(z) has the intersection property;

(i) ToQ=QoT;

(i) the pair (T, Q) is a (0, p)-contraction pair.

Then, (SF)r N (SF)q # 0.

4. f-condensing pairs

Let X be a nonempty set, Y C X, 0: Z — Ry and Z C P(X).

Definition 4.1. A pair T,Q : Y — P(Y) is a f-condensing pair iff:

()AieZicl, (A#0 = ()A€ Z;

(i) Ac PY)N 7 = T(A)UQA) € 7

(iil) O(T(A)UQ(A)) < 0(A), for all A€ I(T)NI(Q)N Z such that 6(A) # 0.

We have

Theorem 4.1. Let (X,S(X), M°) be a f.p.s. with the common fized point
property and (6,71) a compatible pair with this fived point structure. LetY € n(Z) and
T,Q € M°(Y).

We suppose that:

(i))xeY, Ae Z imply AU{x} € Z and 0(AU {x}) = 0(A);

(i) ToQ=QoT;

(iii) the pair (T, Q) is O-condensing pair.
Then, Fr N Eg # 0.

Proof. Let zp € Y. By Lemma 2.3 in [14] there exists Ay C Y such that
xo € Ag, Ag € F, N I(T) N I(Q) and n(T(Ag) U Q(Ao) U {zo}) = A¢. From the
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condition (iii) it follows that 6(Ag) = 0. But n(Ag) = Ao and 6(Ag) = 0 imply that
Ap € S(X). From the Definition 2.1 the operators T'|4, and Q|4, have a common
fixed point. So, Fr N Fg # 0.

In a similar way we have

Theorem 4.2. Let (X,S(X), M°) be a strict fived point structure with the
common strict fized point property and (0,7m) a compatible pair with this fixed point
structure. Let Y € n(Z) and T,Q € M°(Y). We suppose that:

(i)zxeY, AcZ imply AU{z} € Z and (AU {z}) = 0(A);

(i) ToQ=QoT;

(i) the pair (T, Q) is 0-condensing pair.
Then, (SF)r N (SF)q # 0.
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THE STUDY OF AN ADAPTIVE ALGORITHM
FOR SOME CUBATURE FORMULAS ON TRIANGLE

ILDIKO SOMOGYI AND RADU TRIMBITAS

Dedicated to Professor Gheorghe Coman at his 70th anniversary

Abstract. We study two nonproduct quadrature formulas of algebraic
degree 2 and 3, respectively. The second is then turned into an adaptive
quadrature algorithm. A MATLAB implementation and some examples

are given.

1. The formulas

The purpose of this paper is to give some practical cubature formulas when
the integration domain is a triangle and also to study an adaptive algorithm for these

cubature formulas in approximation of the integral

I= I (z,y) dzdy, (1.1)
T

where T}, is a triangular domain, T}, = {(z,y)/xz > 0,y > 0,z +y < h},and f: T, —
R is an integrable function on 7}. We shall consider two cubature formulas from
[8]. One of them is a cubature formula which satisfy the minimal condition of Stroud
regarding the minimal number of knots of a cubature formula [9]. The degree of
exactness of this formula is equal to 2. The other one is a cubature formula which has
more knots, but a greater degree of exactness. We consider the following practical

cubature formula:
h? h h h h
| [ s@ay =5 |50, + 1G04 7G| R 02
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The degree of exactness of this formula is 2, therefore we can use the Peano
theorem for the representation of the error, an we can give the following delimitation
of the approximation error:

Theorem 1. If f39(..0) € C[0,h], fZV(-,0) € C[0,h], f*(0,) € C[0,h] and
f12)(s,t) € C(Ty) than we have

h? h h h®
|R2(f)] < Msof%‘Flef@‘FMmfm—%Mmfﬂ (1.3)

where

Msof = max ‘f(go (s,0)
s€[0,h]

Moy f = ©:3)(0, ¢
0sf = trer%g%]‘f (0,1)

s Mo f = max ‘f@l (s,0)|,
s€[0,h]

, Miz f = max f(l’Q)(S;t)‘ :
Th

Remark 1. The cubature formula (2) has an optimal character, because it satisfies
the condition established by Stroud in [9] regarding the minimal number of knots for a
cubature formula. If the degree of exactness of a cubature formula is equal to 2, then
the minimal number of knots is N = n + 1, where n is the dimension number. The
cubature formula (1.2) with the degree of exactness 2 and three knots, has a minimal

number of knots.

Let us now consider a cubature formula with a higher degree of exactness:
h? h
I= f(a:,y)dmdy: ﬁ 3f(070)+3f(h70)+3f(07h)+8f(§70)+
Th
h h h h
+81(5,3) +810.5) + 217 (1| + Ral) (19
Because the degree of exactness of this formula is equal to 3, we can give the

following theorem for the delimitation of the absolute error:

Theorem 2. If f*%(s,0) € C[0,h], f*V(s,0) € C[0,h], fOY (0,t) € CI0,h],
f&3)(0,t) € C[0,h], and f3?)(s,t) € C(Th) then
h® 7h® 7h® h® h®

YA SO VR LN VA S R Vo S
s610 T MarSqqgp + Misf g + MoaS ggqp + M2/ 555

|R3(f)| < Maof —= 1140
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where

M — (470) M = (3’1)
sf sgl{gi]‘f (3,0)‘, a1 f sgl{gi]‘f (s,0)

)

Mysf = ‘ 3)(0, ¢
13f treﬂ[g%] f (0,t)

)

Mosf = £, ¢
) 04f tren[(zi)f(b} f ( ) )

M22f = ImnaxX
(s,t)ETH

F29(s,1)|.

We shall use an affine transformation to transform these cubature formulas
from the standard triangle T}, to an arbitrary triangle A with the vertices V;(z;,y;),7 =
1,2,3.

Let ¢ : R?> — R? denote the affine transformation from T} to A,

(T, y) =A@, y) +b (1.5)
where
To — I1 I3 — T
_ h h
A= Y2—Y1  Ys— U1 (1.6)
h h
and
I (1.7)
Y1

Let J be the Jacobian matrix of the transformation, in this case J is independent of
(Z,9), det J(T,7y) = det A, and the transformation rule is

£ (2, y)dedy = det A] / F(o(@,7))dzdy.
Th A

2. Implementation

For a detailed description of an adaptive numerical integration algorithm see
[10, 7].

In this section we focus our attention to an adaptive algorithm, based on
formula (1.4). For implementation details on an adaptive algorithm based on formula
(1.2), see [3].
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Now, using the transform given by (1.5), (1.6), and (1.7), we rewrite (1.4) in

the form

I~area <3Zf +82f )+ 27f( )) (2.1)
where
Pi= (P4 P, ik =1{123),

are the midpoints of the edges of A, and G = %(Vl + V5 4+ V3) is the barycenter of A
(see Figure 1).

F1GURE 1. The elementary third degree formula

The intial triangle, A, is decomposed into four triangles, Ay, As, Az, and
Ay, determined by verices and the middle points (see Figure 2).

In the first step we apply the formula given by (2.1) to A. Then we apply the
same formula to each of the triangles A;,; i = 1,...,4. Let I; be the value provided
by (2.1), and I> the value obtained by summing the four valued obtained applying

(2.1) to each of the four triangle of the subdivision. A possible stopping criterion is
|I1 — I2| <eg,

where ¢ is the desired tolerance. If the criterion is not fulfilled, then we apply the
same procedure recursively to each triangle of the subdivision. A detailed description
is given in Algorithm 1.
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FiGURE 2. The initial triangle and the subdivision

Algorithm 1 An adaptive cubature algorithm on triangle; call result :=
adapt(f,A,¢e), where f is the integrand, A is the triangle, and € is the desired toler-

ance; elem_formula implemntes the elementary cubature given by (2.1).

Let Ay, Ay, Az, Ay be the triangles determined by vertices and midpoints;
I1 := elem formula(f, A);
I2 := elem formula(f, A1) + elem_formula(f, As)+
elem_formula(f, Az) + elem_formula(f, A4);

if | — I,| < € then

result ;= I;
else

result ;= adapt(f, A1, €) + adapt(f, Az, e)+

adapt(f, As,e) + adapt(f, A4, €);

end if

The papers [6, 5] give useful guidelines for implementation of adaptive cuba-
tures on triangle. We have implemented this algorithm in MATLAB®. The implemen-
tation follows the description given by Algorithm 1. The optional input parameter
trace, when it is nonzero, allows us to represent graphically the process of computing.

The optional output parameter stat gives us the number of function evaluation and

1MATLAB(@is a trademark of the MathWorks Inc., Natick, MA 01760-2098
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the number of triangles. Some optimizations which save several function evaluations
are possible. Since the value I; is the value of the integral on A, we compute it once
and provide it further as an input parameter. We do the same thing with the values
of function at midpoints and barycenter.

In the sequel we give the MATLAB code.

function [vi,stat]=mpcubatd3mb(f,V,err,trace)
#MPCUBATD3MB - cubature with midpoints and barycenter,
% exact for P_3"2

%call [vi,stat]=mpcubatd3mb(f,V,err,trace,...)

%f function

%V - coordinates of vertices

%err - error

%trace - tracing indicator

global FEN TRIN sfl
if nargin <4, trace=0;
else

if trace

clf

end
end
if nargin < 3, err=le-3; end
sfl=[nargout==2];
if sfl

FEN=0; TRIN=0;
end
P=midpoints(V); G=sum(V,2)/3;
fv=feval(f,V); fp=feval(f,P); fg=feval(f,G);
area = 1/2xabs(det([V’,ones(3,1)]1));
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Il=elform(area,fv,fp,fg);
if trace, tracefun([V,P,G]); hold on; end
vi=quadrg3(f,V,P,G,fv,fp,fg,err,area,Il,trace);
if sfl

FEN = FEN+7;

stat=struct(’nev’,FEN, >ntri’,TRIN);

end

function vi=quadrg3(f,V,P,G,fv,fp,fg,err,area,Il,trace)
%QUADRG3 - cubature with midpoints and barycenter, internal use
%call vi=quadrg3(f,V,P,G,fv,fp,fg,err,area,Il,trace)

%f - function

%V - coordinates of vertices

%P - midpoints coordinates

%G - barycenter coordinates

%fv - values of f at verices

Wfp - values of f at midpoints

%fg - values at barycenter

%err - error

harea - area of triangle

%I1 - the first estimation (elementary formula)

htrace - tracing indicator

global FEN TRIN sfl
area=area/4;
vi=[v(:,1),P(:,[2,31)]; fvi=[fv(1),fp([2,3])];
Pl=midpoints(V1); fpl=feval(f,P1);
Gl=sum(V1,2)/3; fgl=feval(f,Gl);
Ill=elform(area,fvl,fpl,fgl);
v2=[v(:,2),P(:,[1,31)]; fv2=[fv(2),fp([1,31)];
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P2=midpoints(V2); fp2=feval(f,P2);
G2=sum(V2,2)/3; fg2=feval(f,G2);
I12=elform(area,fv2,fp2,fg2);
v3=[V(:,3),P(:,[1,2]1)]; fv3=[fv(3),fp([1,2])];
P3=midpoints(V3); fp3=feval(f,P3);
G3=sum(V3,2)/3; fg3=feval(f,G3);
I13=elform(area,fv3,fp3,fg3);
V4=P; fv4=fp; P4=[P1(:,1),P2(:,1),P3(:,1)];
£pa=[£p1(1),£p2(1),£p3(1)]; G4=G; fga=fg;
I14=elform(area,fvd,fpd,fg4d);
I2=T11+T12+113+114;
if sfl

FEN=FEN+12;

TRIN=TRIN+4;
end
if trace, tracefun([P1,P2,P3,G1,G2,G3]); end
if abs(I2-I1)<err

vi=I2;
else

vi=quadrg3(f,V1,P1,G1,fvl,fpl,fgl,err,area,lll,trace)+...

quadrg3(f,V2,P2,G2,fv2,fp2,fg2,err,area,I12,trace)+. ..

quadrg3(f,V3,P3,G3,fv3,fp3,fg3,err,area,I13,trace)+...

quadrg3(f,V4,P4,G4,fv4,fp4,fgd,err,area,l14,trace);
end %if

function v=elform(area,fv,fp,fg)

v=area/60* (3*sum(fv) +8*sum(fp) +27*fg) ;

function P=midpoints(V);
P(:,1)=(V(:,2)+V(:,3))/2; P(:,2)=(V(:,1)+V(:,3))/2;
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P(:,3)=(V(:,1)+V(:,2))/2;

function tracefun(L)
%TRACEFUN - represents points where function is evaluated

plot(L(1,:),L(2,:),’.k’,’Markersize’,4);
3. Numerical examples

Consider the triangle 71 = {(z,y)/z > 0,y > 0,z + y < 1}, and the function
f:Ty = R, f(z,y) = humps(z)humps(y), where

1 1
(x —0.3)240.01 + (z—0.9)2+0.04

humps(z) = 6.

The graph of f is given in Figure 3 as surface and as contour. First, we approximate

&

~——

F1GURE 3. The graph of f, as surface (left) and as contour

the integral for a tolerance ¢ = 1075 using the adaptive quadrature based on (1.2)
and (2.1), respectively. The trace flag is set.
>> [vib,statb]l=mpcubatd2mb (Chumps2dv,V,1le-5,1)
vib =
5.997039610414015e+002
statb =
nev: 57684
ntri: 25636
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>> [vib3,statb3]=mpcubatd3mb(Chumps2dv,V,le-5,1)
vib3 =

5.997039668483903e+002

statb3 =
nev: 30499
ntri: 10164

The figure 4 shows the points where the MATLAB functions evaluate the integrands.

Now, for a higher accuracy (107%) and a timer included we got the following results

dex=2, e=10"° dex=3, e=10"°

FIGURE 4. Evaluation points for the second order formula (left) and

for the third order formula, for function f, e = 109

>> tic, [vib, statb]l=mpcubatd2mb (@humps2dv,V,1le-9); toc
Elapsed time is 43.444590 seconds.
>> tic, [vib3,statb3]=mpcubatd3mb (@humps2dv,V,1e-9) ;toc
Elapsed time is 19.121086 seconds.
>> vib,statb
vib =
5.997039625857019e+002
statb =
nev: 2219736
ntri: 986548
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>> vib3,statb3
vib3 =
5.997039625817022e+002
statb3 =
nev: 640915
ntri: 213636

Thus, for this function the third degree formula is faster.

For functions that do not exhibit high oscillations and for modest accuracy
requirements, the second degree formula requires fewer function evaluation. Consider
the function f(z,y) = ysinz (implemented by MATLAB function fintegrv) to be

integrated on 7. For ¢ = 10~%, one obtains:

>> tic, [vib,statb]l=mpcubatd2mb(@fintegrv,V,le-4); toc
Elapsed time is 0.001425 seconds.
>> tic, [vib3,statb3]=mpcubatd3mb(@fintegrv,V,le-4); toc
Elapsed time is 0.012022 seconds.
>> vib,statb
vib =

0.04030110314738
statb =

nev: 48

ntri: 20
>> vib3,statb3
vib3 =

0.04030317282902

statb3 =
nev: 67
ntri: 20
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