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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LII, Number 1, March 2007

ON THE APPROXIMATION NUMBERS OF CERTAIN VOLTERRA
INTEGRAL OPERATORS BETWEEN LEBESGUE SPACES

MOHAMED ACHACHE

Abstract. The aim of the paper is to study certain Volterra integral op-

erators of the form Tf(x) = v(x)
∫ x

0
u(t)f(t)dt which defines linear maps

between the Lebesgue spaces Lp(R+) and Lq(R+) where 1 ≤ q < p ≤ +∞.

Under some conditions of the integrability on its kernel, we show some im-

portant properties for T such as boundedness, compactness, the measure

of non compactness and estimating, upper and lower bounds for its ap-

proximation numbers. These estimates have an application to the spectral

properties of Sturm-Liouville differential operators.

1. Introduction

In this paper we study certain linear integral operators of the form

Tf(x) = v(x)
∫ x

0

u(t)f(t)dt (x ∈ R+ := [0,+∞[). (1.1)

These operators appear naturally in the theory of differential equations and it is

important to establish when operators of this kind have properties (under some con-

ditions of the integrability on the kernel) such as boundedness, compactness and to

estimate their eigenvalues, or their singular numbers (approximation numbers) if these

exist. Our concern in this paper lies with the problem which arises when integrabil-

ity conditions on the kernel are weakened to local integrability requirements. Here,

we consider in (1) that u and v are functions satisfying the local integrability and

integrability conditions respectively and our objective is to give precise estimates for

the approximation numbers of T. This operator has been studied extensively during
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the last several decades [2, 7, 11] in L2(R+) and Lp (R+) spaces, respectively. Lastly

Edmunds et al [4] generalized their results to the sitting in which T maps Lp (R+)

to Lq (R+) with 1 ≤ p ≤ q ≤ +∞ by considering the lower and upper bounds for

the approximation numbers and hence for the measure of non compactness of T. This

paper extends their results to the case 1 ≤ q < p ≤ +∞. The paper is organized as

follows. In the next section we state our results concerning some properties such that

the boundedness, compactness and of course the measure of non compactness of the

operator T. In section 3 we give precise estimates for the approximation numbers of

T. In section 4 we give an example to illustrate our ideas.

2. Properties of T

Throughout the paper, we use the same notation as in [4], and we shall assume

that p, q ∈ [1,+∞[ , that p
′
=

p

p− 1
, and u and v are prescribed real-valued functions

such that

u ∈ Lp
′

loc

(
R+
)

(2.1)

and

v ∈ Lq
(
R+
)
. (2.2)

Given any measure µ on R+, any µ− measurable subset S of R+ and any function f

in Lp(S, µ), we shall write:

‖f‖p,S,µ =
(∫

S

|f |p dµ

)1
p (1 ≤ p < +∞),

‖f‖∞,S,µ = µ− ess sup |f(t)|

if µ is Lebesgue measure we shall omit the suffix µ and simply write ‖f‖p,S if no

ambiguity will result. For any a ∈ R+ we put

Ja =


∫ +∞

0

(∫ x

a

|u(t)|p
′

dt

)q−1
(∫ +∞

x

|v(z)|q
)

dz


p

p− q

|u(x)|p
′

dx



p− q

pq

(2.3)
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which define a continuous nonnegative function on R+.

2.1. Boundedness.

Theorem 1. Let 1 6 q < p 6 +∞.Then the operator T defined in (1) is a bounded

linear map of Lp (R+) to Lq(R+) if, and only if, J0 < ∞, and in this case,when

1 < q < p ≤ +∞,

(
p− q

p− 1
)

1
q′

q

1
q J0 6 ‖T‖ 6 (p

′
)

1
q′ q

1
q J0 (2.4)

while

‖T‖ = J0 if q = 1 and 1 < p ≤ +∞ (2.5)

‖T‖ = q

1
q J0 for 1 < q < p = +∞ (2.6)

where J0 is defined in (4) with a = 0.

Proof. For all the cases 1 6 q < p 6 +∞, we have

‖Tf(x)‖q
q =

∫ +∞

0

∣∣∣∣v(x)
∫ x

0

u(t)f(t)dt

∣∣∣∣q dx

and so the result follows from Maz’ja [9, theorem 1.3.2/1].

2.2. Compactness and measure of non-compactness. Let Kp,q denotes the set

of all compact linear mappings from Lp(R+) to Lq(R+), and stand by Fp,q for all

those elements of Kp,q which are of finite rank, put Kp,p= Kp, Fp,p= Fp and write

α(T ) = inf {‖T − P‖ ; P ∈ Fp,q} . (2.7)

Since Lq(R+) has the approximation property, it follows that α(T ) is the distance of

T from Kp,q ( [4]).

Theorem 2. Let 1 ≤ q < p ≤ +∞. If J0 < ∞, then

(
p− q

p− 1
)

1
q′

q

1
q lim Ja

a7→+∞
≤ α(T ) ≤ (p

′
)

1
q′

q

1
q lim Ja,

a7→+∞
if q > 1 (2.8)

and

α(T ) = lim Ja
a7→+∞

for q = 1. (2.9)
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To prove theorem 2.2 we use the following lemma (decomposition lemma).

Lemma 3. ([4, theorem 2]). Suppose T is a bounded linear operator from Lp(R+) to

Lq(R+). Then for every X ∈ (0,∞) there exist integral operators PX and TX both

of the same type of T such that:1)PX is a compact linear operator from Lp(R+) to

Lq(R+),

2) TX is a bounded linear operator from Lp(R+) to Lq(R+) with

‖TX‖ 6 q

1
q p

1
q́ JX for q > 1

and

‖TX‖ = JX for q = 1

3) Tf = TXf + PXf for all f ∈ Lp(R+).

Proof. of the theorem 2.2 Choose X ∈ [0,∞) and let T = TX + PX be the decom-

position in the lemma above. By recalling some properties of the measure of the

non-compactness (cf. [3, 12] ) for more details) and theorem 2.1, we see that TX is

bounded linear operator from Lp(R+) to Lq(R+) with

α(T ) = α(TX) 6 ‖TX‖ 6 q

1
q p

1
q́ JX for q > 1.

Hence we have established that since JX < lim
X→∞

JX then

α(T ) 6 ‖TX‖ 6 q

1
q p

1
q́ lim

X 7→+∞
JX for q > 1

and

α(T ) 6 lim
X→∞

JX for q = 1.

To establish the lower bound for α(T ), we use the method employed by Evans and

Harris [5,§2] to prove similar results for embedding maps. Let 1 6 q < p 6 ∞ and

λ > α(T ). Then there exists P ∈ Fp,q(Lp(R+), Lq(R+)) with rankP 6 N, such that

for all f ∈ Lp(R+), ‖Tf − Pf‖ 6 λ ‖f‖p . By the argument of the [5, lemma 2.2 ],

6
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we may and shall suppose that there exists Y ∈ R+ such that for all f ∈ Lp(R+),

SuppPf ⊂ [0, Y ] . Hence∫ +∞

Y

|Tf(x)|q dx =
∫ +∞

Y

∣∣∣∣∣v(x)
∫ X

0

u(t)f(t)dt

∣∣∣∣∣
q

dx. (2.10)

Now observe that∫ +∞

Y

|Tf(x)|q dx =
∫ +∞

Y

∣∣∣∣∣v(x)
∫ X

0

u(t)f(t)dt

∣∣∣∣∣
q

dx

>
∫ +∞

Y

∣∣∣∣∣v(x)
∫ X

Y

u(t)f(t)dt

∣∣∣∣∣
q

dx.

We may assume that uf > 0 and by theorem 2.1 ensure that there exists f in Lp(R+)

such that ∫ +∞

Y

∣∣∣∣∣v(x)
∫ X

Y

u(t)f(t)dt

∣∣∣∣∣
q

dx > (
p− q

p− 1
)

1
q′

q

1
q JY ‖f‖p .

From (11) we have

λ ‖f‖p > (
p− q

p− 1
)

1
q′

q

1
q JY ‖f‖p for 1 6 q < p 6 ∞

and as λ may be chosen arbitrary close to α(T ), we finally obtain:

(
p− q

p− 1
)

1
q′

q

1
q lim

Y→∞
JY 6 α(T ).

This completes the proof.

Corollary 4. The linear integral operator T from Lp(R+) to Lq(R+) is compact if,

and only if, lim Ja
a7−→+∞

= 0.

The proof of the corollary follows immediately from theorem 2.2.

3. Approximation numbers

Our objective in this section is to estimate the approximation numbers

an(T ) of T. This section follows closely the argument developed in [4] for the case

1 ≤ p ≤ q ≤ ∞ and several new features emerge because of the interchange of the

order of p and q. To achieve this goal the following lemmas are crucial. Some notation
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will be useful. Given any interval I with end points (a, b) with (0 6 a 6 b) and any

f in Lp(R+), set

l(I, f) = l(a, b, f) =
∫ b

a

∫ b

a

∣∣∣∣∣∣v(x)u(x)
∫ y

x

u(t)f(t)dt

∣∣∣∣∣∣
q

dxdy (3.1)

and define

L(I) =


[

1
µ(I)

sup
{

l(a, b) : ‖f‖p,I ≤ 1
}]1

q if µ(I) 6= 0

0 otherwise

(3.2)

where I is any interval in R+with end points a and b, and µ is the finite measure

defined by dµ(x) = |v(x)|q dx, so that µ(I) =
∫

I
|v(x)|q dx. In fact the two quantities

satisfy the following lemmas.

Lemma 5. For all bounded intervals I ⊂ R+ with end points a and b, the quantity

sup
{

l(a, b, f) : ‖f‖p,I,µ ≤ 1
}

depends continuously upon a and b.

Lemma 6. The second quantity L(a, b) is monotonic decreasing as a increases and

monotonic increasing as b increases.

Remark 1. To deal with infinite interval we set L(a,∞) = lim
b 7→∞

L(a, b) and it is

possible that L(a,∞) may be infinite.

Another piece of notation will be useful. We shall write

F (x) =
∫ x

0

u(t)f(t)dt ( f in Lp(R+), x ≥ 0) (3.3)

FI(x) =
1

µ(I)

∫
I

F (x)dµ(x) if µ(I) 6= 0. (3.4)

Given any a, b ≥ 0 with b > a and any c in I = ]a, b[ , we put

Ac =


∫ c

a

(∫ c

x

|u(t)|p
′

dt

)q−1
∫ x

a

|v(z)|qdz


p

p− q
|u(x)|p

′

dx


p− q

pq

(3.5)
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and

Bc =


∫ b

c

(∫ x

c

|u(t)|p
′

dt

)q−1
∫ b

x

|v(z)|qdz


p

p− q
|u(x)|p

′

dx


p− q

pq

(3.6)

and we write W (I) = max(Ac, Bc) where c is the minimum point in I such that :∫ c

a

|v(y)|q dy =
1
2

∫ b

a

|v(y)|q dy.

Remark 2. W (I) is a right continuous function of b since Ac and Bc are both right

continuous as functions of b and if for almost all x in I, v(x) 6= 0, then c is unique

and W (I) depends continuously on b.

Finally we write

K(I) =

 sup
{
‖F − FI‖q,I,µ / ‖f‖p,I in Lp(I), f 6= 0

}
if µ(I) 6= 0

0 if µ(I) = 0.
(3.7)

We refer this section to the [4, section 4] for full discussion of the significance of these

definitions and for the proofs of the previous lemmas.

Lemma 7. Let 1 ≤ q < p ≤ +∞. Then given any a , b with a < b,

K(I) ≤


2

1
p′ +

1
q q

1
q (p

′
)

1
q W (I) if q 6= 1 and p < ∞

2

3
2
−

1
p (p

′
)
1
2 W (I) if q = 2 and p < ∞

and

K(I) > (1− 2
−

1
q )(

p− q

p− 1
)

1
q′

q

1
q W (I) if 1 < q < p < ∞.

Proof. First consider the case q 6= 2 and p < +∞. To establish the upper bound for

K(I) , let c be any point in ]a, b[ . We have

‖F − F (c)‖q
q,[a,c],µ =

∫ c

a

|F (x)− F (c)|q dµ(x) in [a, c]

=
∫ c

a

∣∣∣∣∣∣
∫ x

a

u(t)f(t)dt

∣∣∣∣∣∣
q

dµ(x)

= ‖Tf‖q
q,[a,c],µ .

9



MOHAMED ACHACHE

By theorem 2.1 and a simple transformation that for every f in Lp([a, c]), we have

‖F − F (c)‖q
q,[a,c],µ ≤ q

1
q (p

′
)

1
q′

Ac ‖f‖p,[a,c],µ . (3.8)

Similarly in [c, b] we have

‖F − F (c)‖q
q,[c,b],µ = ‖Tf‖q

q,[c,b],µ

and also by theorem 2.1 shows that for every f in Lp([c, b])

‖F − F (c)‖q,[c,b],µ ≤ q

1
q (p

′
)

1
q′

Bc ‖f‖p,[c,b],µ . (3.9)

Hence from (18) and (19) we have

‖F − F (c)‖p
q,[a,b],µ =

{
‖F − F (c)‖q

q,[a,c],µ + ‖F − F (c)‖q
q,[c,b],µ

}p/q

6 q

p

q (p
′
)

p

q′ {
Aq

c ‖f‖
q
p,[a,c],µ + Bq

c ‖f‖
q
p,[c,b],µ

}p/q

6 q

p

q (p
′
)

p

q′


(
‖f‖p

p,[a,c],µ + ‖f‖p
p,[c,b],µ

)
×
(
A

qp/p−q
c + B

qp/p−q
c

)(p−q)/p


p/q

6 q

p

q (p
′
)

p

q′
2(p−q)/q (max(Ac, Bc))

p ‖f‖p,[a,b],µ ,

therefore

‖F − F (c)‖q,[a,b],µ 6 q

1
q (p

′
)

1
q′

2

p− q

pq W (I) ‖f‖p,[a,b],µ ,

since

‖F − FI‖q,I,µ 6 ‖F − F (c)‖q,I,µ + ‖(F − F (c))I‖q,I,µ

= 2 ‖F − F (c)‖q,I,µ

6 q

1
q (p

′
)

1
q′

2

p− q

pq
+1

W (I) ‖f‖p,I,µ ,

which shows the first inequality (upper bound for K(I) in the lemma).
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However, if q = 2, then

‖F − FI‖2,I,µ = inf
{
‖F − F (c)‖2,I,µ : c constant

}
6 ‖F − F (c)‖2,I,µ ,

6 2

3p− 2
2p (p

′
)
1
2 W (I) ‖f‖p,I,µ .

To establish the lower bounds for K(I). First consider the case q 6= 1 and let c be

any point in ]a, b[ . Assume first that x ∈ [a, c] then ‖F1‖q,[a,c],µ = ‖Tf‖q,[a,c],µ since

F1(x) =
∫ x

c
u(t)f1(t)dt, it follows by theorem 2.1, that there exists f1 in Lp [a, c] such

that

‖F1‖q,[a,c],µ >

(
p− q

p− 1

) 1
q′

q

1
q Ac ‖f1‖p,[a,c],µ . (3.10)

Now define

g(x) =

 f1 in [a, c]

0 otherwise
and G(x) =

∫ x

0

u(t)g(t)dt.

We want to estimate ‖G−GI‖q,I,µ > ‖G‖q,I,µ − ‖GI‖q,I,µ with I = [a, b] . Since

G[a,b] =
µ [a, c]
µ [a, b]

F1 [a, c] , by applying Holder’s inequality to the above

∣∣G[a,b]

∣∣ 6 1
µ [a, b]

‖F1‖q,[a,c],µ (µ [a, c])

1
q ,

consequently

‖GI‖ 6

(
µ [a, c]
µ [a, b]

) 1
q′

‖F1‖q,[a,c],µ .

11
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Therefore

‖G−GI‖q,I,µ > ‖G‖q,I,µ − ‖GI‖q,I,µ

>

1−
(

µ [a, c]
µ [a, b]

) 1
q′

 ‖F1‖q,[a,c],µ

>

1−
(

µ [a, c]
µ [a, b]

) 1
q′


(

p− q

p− 1

) 1
q′

q

1
q Ac ‖f1‖p,[a,c],µ

>

1−
(

µ [a, c]
µ [a, b]

) 1
q′


(

p− q

p− 1

) 1
q′

q

1
q Ac ‖g‖p,I . (3.11)

Similarly for x ∈ [c, b]

‖F2‖q,[c,b],µ = ‖Tf‖q,[c,b],µ >

(
p− q

p− 1

) 1
q′

q

1
q Bc ‖f2‖p,[c,b],µ (3.12)

and also by theorem 1 there exists an f2 ∈ LP [c, b] corresponding to c such that (23)

holds. We define also

h(x) =

 0 otherwise

f2 in [c, b]

and

H(x) =
∫ x

0

u(t)h(t)dt,

then

H(x) =

 0 otherwise

F2 in [c, b]
,

12
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therefore

‖H −HI‖q,[c,b],µ > ‖H‖q,[c,b],µ − ‖HI‖q,[c,b],µ

>

1−
(

µ [c, b]
µ [a, b]

) 1
q′

 ‖F2‖q,[c,b],µ (3.13)

>

1−
(

µ [c, b]
µ [a, b]

) 1
q′

(p− q

p− 1

) 1
q′

q

1
q Bc ‖f1‖p,[c,b],µ

>

1−
(

µ [c, b]
µ [a, b]

) 1
q′

(p− q

p− 1

) 1
q′

q

1
q Bc ‖h‖p,I,µ .

If we take

Φ(x) =

 G(x) if Ac < Bc

H(x) if Ac > Bc

and θ(x) =

 g(x) if Ac < Bc

h(x) if Ac > Bc

We get

‖Φ− ΦI‖q,I,µ >

1−
(

µ [a, c]
µ [a, b]

) 1
q′


(

p− q

p− 1

) 1
q′

q

1
q W (I) ‖θ‖p,I,µ .

If c is the minimum point in ]a, b[ for which µ [a, c] = µ [c, b] = 1
2µ [a, b] then

‖Φ− ΦI‖q,I,µ >

1− 2
−

1
q′

(p− q

p− 1

) 1
q′

q

1
q W (I) ‖θ‖p,I,µ

which the last inequality for K(I). The proof of the lemma for 1 < q < p ≤ +∞ is

complete .

Remark 3. Inspection of the proof shows that the lemma holds with W (I) replaced

by inf {max(Aα, Bα) : α ∈ ]a, b[} .

Lemma 8. [4, lemma 6]Let 1 ≤ q < p ≤ +∞and given any a, b with a < b then

K(I) =
1√
2
L(I) if q = 2

13
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and

1
2
L(I) 6 K(I) 6 L(I) if q 6= 2

where I = [a, b] .

Now we are ready to state the result concerning the approximation numbers of T.

Lemma 9. Let 1 ≤ q < p ≤ ∞. Let ε > 0 and suppose that there exists N ∈ N(N

denotes the set of all natural numbers) and numbers ck(k = 0, 1, ..., N + 1) with

0 = c0 < c1 < · · · < cN+1 = ∞ such that L(Ik) ≤ ε for k = 0, 1, ..., N where

Ik = ]ck, ck+1[ . Then with σq = 1 if q 6= 2 and σq = 1√
2

if q = 2, we have

aN+2 6 σqε(N + 1)
p− q

pq
.

Proof. Let f ∈ Lp(R+) be such that ‖f‖p,R+ = 1 and we write Pf =
N∑

k=1

PIk
f where

PI = χI v(x)FI . Then P is a bounded linear map from LP (R+) to Lq(R+) with rank

P 6 N + 1. Also we have

‖Tf − Pf‖q
q,R+ =

N∑
k=1

‖Tf − PIk
f‖q

q,IK

=
N∑

k=1

‖F − FIk
‖q

q,Ik,µ ,

6
N∑

k=1

sup

{
‖F − FIk

‖q
q,Ik,µ

‖f‖p,Ik

}q

‖f‖q
p,Ik

6
N∑

k=1

Kq(Ik) ‖f‖q
p,Ik

.

By the hypothesis of the lemma and the lemma 3.3 we have

K(Ik) 6 L(Ik)σq 6 εσq

14
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then

‖Tf − Pf‖q
q,R+ <

N∑
k=1

εqσq
q ‖f‖

q
p,Ik

= εqσq
N∑

k=1

‖f‖q
q,Ik

.

Applying Holder’s inequality to the
N∑

k=1

‖f‖q
q,Ik

, we have

N∑
k=1

‖f‖q
q,Ik

6

(
N∑

k=1

1

)1−
q

p
(

N∑
k=1

‖f‖q
q,Ik

)q

p

< (N + 1)
1−

q

p

(
N∑

k=1

‖f‖q
q,Ik

)q

p

therefore

‖Tf − Pf‖q
q,R+ < εqσq(N + 1)

1−
q

p

(
N∑

k=1

‖f‖p
p,Ik

)1
p

.

Hence ‖Tf − Pf‖q,R+ 6 εσq(N + 1)
1−

q

p ‖f‖p,Ik
and since

‖f‖p,Ik
6 ‖f‖p,R+ = 1,

then

‖Tf − Pf‖q,R+ 6 εσq(N + 1)
1−

q

p

which shows that

aN+2 ≤ σqε(N + 1)
p− q

pq
.

Lemma 10. Let 1 ≤ q < p ≤ ∞. Let ε > 0 and suppose that there exists N ∈ N (N

denotes the set of all natural numbers) and numbers ck(k = 0, 1, ..., N + 1) with

0 = c0 < c1 < · · · < cN < ∞, such that L(Ik) ≥ ε for k = 0, 1, ..., N − 1 where

Ik = ]ck, ck+1[ . Then

aN (T ) ≥ νqε where ν2 = 1√
2

and νq = 1
4 if q 6= 2.

15
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Proof. Let λ ∈ ]0, 1[ . By lemma 3.3 and the hypothesis that L(Ik) > ε for k =

0, 1, ..., N − 1, there exists θk ∈ Lp(Ik) such that

‖Φk − (Φk)Ik
‖q,I,µ / ‖θk‖p,Ik

> ληqε,

where Φk(x) =
∫
Ik

u(t)θk(t)dt, and ηq = 1/2 if q 6= 2 and η2 = 1/
√

2; set θk(x) = 0 for

all x ∈ R+−Ik. Let P ∈ F(Lp(R+), Lq(R+)) with rank N−1, then there are constants

λ1, λ2, ..., λN−1 not all zero, such that P (
N−1∑
k=0

λkθk) = 0 with
∥∥∥∥N−1∑

k=0

λkθk

∥∥∥∥
p,R+

= 1. Put

θ =
n∑

k=1

λkθk and Φ(x) =
x∫
0

u(t)θ(t)dt (x ∈ R+). For all x ∈ Ik,Φ(x) = λkθk + µk for

some constant µk, for all constant C, we have

‖F − FI‖q,I,µ 6 ‖F − C‖q,I,µ + ‖(C − F )I‖q,I,µ

6 2 ‖F − C‖q,I,µ when q 6= 2,

while for q = 2 we have

‖F − FI‖2,I,µ = inf
{
‖F − C‖2, I, µ : C constant

}
,

where the infinimum is taken over all constant C. Hence

‖F − FI‖q,I,µ 6 δq inf
{
‖F − C‖q, I, µ

}
where δq = 2 if q 6= 2 and δq = 1 if q = 2. Thus

‖Tθ − Pθ‖q
q,R+ = ‖Tθ‖q

q,R+ >
N−1∑
k=0

‖λkΦk + µk‖
q
q,Ik,µ

=
N−1∑
k=0

‖Φ‖q
q,Ik,µ > δ−q

q

N−1∑
k=0

‖λkΦk − (λkΦk)Ik
‖q

q,Ik,µ

= δ−q
q

N−1∑
k=0

‖λkΦk − (λkΦk)Ik
‖q

q,Ik,µ

= δ−q
q

N−1∑
k=0

|λk|q ‖Φk − (Φk)Ik
‖q

q,Ik,µ

> δ−q
q (ληqε)

q
N−1∑
k=0

|λk|q ‖θk‖q
q,Ik,µ

16
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= δ−q
q (ληqε)

q
N−1∑
k=0

‖λkθk‖p
p,Ik,µ .

Since q < p and
N−1∑
k=0

‖λkθk‖p
p,Ik,µ = 1, then

‖λkθk‖q
p,Ik,µ > ‖λkθk‖p

p,Ik,µ .

It follows that

‖Tθ − Pθ‖q
q,R+ > δ−q

q (ληqε)
q ‖θ‖p

p,R+ , and ‖θ‖p
p,R+ = 1.

Therefore

‖Tθ − Pθ‖q,R+ > δ−1
q (ληqε)

which shows that

aN (T ) > (ληqε)δ
−1
q .

Since λ may be chosen arbitrarily close to 1 it follows that aN (T ) > (ηqε)δ
−1
q .

Provided with these lemmas ( lemma 3.5 and lemma 3.6 ) we may produce our main

result concerning the approximation numbers of T. Given any ε > 0, define numbers

ck by the rule that

c0 = 0, ck+1 = inf {t;L(ck, t) > ε} (3.14)

with understanding the inf ∅ = ∞.We shall refer to these numbers as forming the

(ε, L)-sequence for a given ε there are two possibilities :(i) the (ε, L)-sequence is

finite. Then there is an integer N such that c0 < c1 < ... < cN < cN+1 = ∞, and by

the continuity of L we have

{L(ck, ck+1) = ε for k = 0, 1, ..., N − 1 and L(cN , cN+1) 6 ε.

By the length of the (ε, L)-sequence we shall mean the integer N + 1.

(ii) The (ε, L)-sequence is infinite. Then L(ck, ck+1) = ε for all k ∈ N.

If (i) holds, then by lemma 3.5 and lemma 3.6 we see that

aN+2 6 σqε(N + 1)
p− q

pq
and aN+2 > ενq.

17
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If (ii) holds,then by lemma 3.6 shows that for all n ∈ N ;

aN (T ) > ενq;

note also that in this case, ck 7→ ∞ as k 7→ ∞; for if not

ck → c < ∞, |ck − ck+1| → 0

and thus

L(ck, ck+1) = ε

for all k.

Theorem 11. Let 1 ≤ q < p ≤ ∞, νq = 1
4 , σq = 1(q 6= 2) and ν2 = νq = 1√

2
. Then

1) T is bounded if, and only, if L(0,∞) < ∞.

2) Let ε ∈ (σ, L(0,∞)) (where σ = lim
x7→∞

L(x,∞)) and let N + 1 be the length

of the (ε, L)-sequence. Then we have

aN+2 ≤ σqε(N + 1)
p− q

pq

and

aN (T ) ≥ νqε.

Proof. (1) First suppose L(0,∞) < ∞ and take ε = L(0,∞). In view of the mono-

tonicity of L we see that the length of the (ε, L)−sequence is 1 that is N = 0.This is

by lemma 3.5, a2(T ) 6 σqε, that is

inf {‖T − P‖} 6 εσq

where the infinimum is taken over all bounded maps P of rank 1 from Lp(R+) to

Lq(R+). Since each such map is bounded, it follows that is bounded. Conversely,

suppose that is bounded. Then for any interval I,

K(I) 6 2L(I).

Hence by the lemma 3.5 is bounded, uniformly in |I| . Thus L(0,∞) is bounded.

18
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(2) Let ε ∈ (σ, L(R+)) . First, suppose ε > σ and suppose if possible that the

(ε, L)-sequence is infinite, then ck →∞ as k →∞.

We have

ε = L(ck, ck+1) 6 L(ck,∞)

and hence ε 6 σ which contradicts ε > σ. Therefore the sequence is finite and by

lemma 3.5,

aN+2 ≤ (N + 1)
p− q

pq
εσq.

Second, suppose if possible that the sequence is finite of length N + 1.

Then

σ = lim
x→∞

L(x,∞) 6 L(cN ,∞) = L(cN , cN+1) 6 ε

and we have a contradiction. Therefore the sequence is infinite. Then by lemma 3.6,

it follows that

aN (T ) ≥ νqε.

Therefore

α(T ) = lim
N→∞

aN (T ) > ενq.

Since this holds for arbitrary ε < σ, then

α(T ) > Lνq.

This completes the proof.

4. An example

To illustrate the scope of the theorem 3.7 we deal with the situation in which

u(x) = eAx, v(x) = e−Bx (4.1)

for all x ∈ R+ where 0 < A < B. From theorem 2.1 and theorem 2.2

(Boundedness and compactness of T ), we see that:

Ja = (Ap
′
)

−1
p′

(Bq)

−1
q e−(B−A)aβ

[
(p− 1)q
p− q

,
(p− 1)q
p− q

(
B −A

A
)
]p− q

pq (4.2)
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(where β denotes the beta function) which shows that

J0 < ∞ and lim
a7→∞

Ja = 0.

Thus T is a compact linear map from Lp(R+) to Lq(R+) and

(Ap
′
)

−1
p′

(B(
p− 1
p− q

))

−1
q β

[
(p− 1)q
p− q

,
(p− 1)q
p− q

(
B −A

A
)
]p− q

pq 6 ‖T‖ 6

(Ap
′
)

−1
p′

(Bq)

−1
q β

[
(p− 1)q
p− q

,
(p− 1)q
p− q

(
B −A

A
)
]p− q

pq (4.3)

Now, we establish lower and upper bounds for an(T ). For the lower bound, we obtain

it by considering the expression for L(I) directly rather than the expressions of K(I)

or W (I) which are difficult to compute in practice . First, we state the following

lemma which is useful in developing the previous task.

Lemma 12. If 0 6 x < y and α ∈ ]0, 1[ . Then

α 6
xα − yα

(x− y)xα−1
6 1.

Proof. We have

d

dt
(
1− tα

1− t
) =

−αtα−1 + (α− 1)tα + 1
(1− t)2

=
φ(t)

(1− t)2
,

so

1 >
1− tα

1− t
> lim

t→1−0

1− tα

1− t
= α.

The results follow on putting t =
y

x
.

Now we have

l(I, f) >

(∫ b

c2

e−qBydy

)(∫ c2

c1

e−qBxdx

)(∣∣∣∣∫ y

x

eAtf(t)dt

∣∣∣∣q)

>

(∫ b

c1

e−qBydy

)(∫ c1

a

e−qBxdx

)(∫ c2

c1

eAp′tdt

) q

p′

by a suitable choice of f with ‖f‖LP (I) = 1. Take c1, c2 to be such(∫ c1

a

e−qBydy

)
=

(∫ b

c2

e−qBydy

)
=

1
3

(∫ b

a

e−qBydy

)
.
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By holder’s inequality if
1
r

=
1
p′

+
1
q

, we have

(∫ c2

c1

e−r(B−A)tdt

)1
r 6

(∫ c2

c1

e−qBydy

)1
q
(∫ c1

a

e−Ap′tdt

) q

p′
.

Hence

L(I) =

 sup
‖f‖p,I=1

(l(I, f)∫
I
e−qBydy


1
q

>

(∫ c2

c1

e−r(B−A)tdt

)1
r

.

Let now

v1 = e−qBa and v2 = e−qBb,

then

e−qBc1 =
2
3
v1 +

1
3
v2,

e−qBc2 =
2
3
v2 +

1
3
v1.

We have

X =
(∫ c2

c1

e−r(B−A)tdt

)1
r = (r(B −A))

−
1
r (e−r(B−A)c1 − e−r(B−A)c2),

=

r(B −A))
−

1
r (

2
3
v1 +

1
3
v2)

1
q

B −A

B


− (

2
3
v2 +

1
3
v1)

1
q

B −A

B

 .

Then by the above lemma we have

X >

1
q

(
B −A

B

)

(r(B −A))
1
r

3−r (v1 − v2)
1
r

(
2
3
v1 +

1
3
v2

)1
q

B −A

B

−1
r

. (4.4)

Again

Y =

(∫ b

a

e−r(B−A)tdt

)1
r

= (r(B −A))
−

1
r
(
e−r(B−A)a − e−r(B−A)b

)1
r .
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Hence

Y 6 (r(B −A))
−

1
r (v1 − v2)

1
r (v1)

1
q

B −A

B

−1
r

. (4.5)

From (29) and (30) we see that

X >

(
2
3

)1
q

B −A

B

−1
r (r(B −A))

−
1
r Y. (4.6)

Then from (31) we have

L(I) > c

(∫ b

a

e−r(B−A)tdt

)1
r

(4.7)

where c is a constant. Let c0, c1, ..., cN , cN+1 = ∞ be the (ε, L)-sequence defined in

(25). Since L(Ik) = ε for k = 0, 1, ..., N − 1, it follows from (31) that

Nεr =
N−1∑
k=0

Lr(Ik) > c
N−1∑
k=0

∫ ck+1

ck

e−r(B−A)xdx.

We summarize our results as follows

Theorem 13. Let u and v be defined in (26) and let 1 ≤ q < p ≤ ∞.Then as

n −→∞ , an (T ) ≥ cn
−

1
r (c is constant) where

1
r

=
1
p′

+
1
q
.

To derive an upper bound for an(T ) we use the result in [4] that for the case p =

q , an(T ) = 0(
1
n

). Let T1f(x) = e−B1x
∫

eAtf(t)dt where B > B1 > A so that

Tf(x) = e−(B−B1)xT1f(x).

Now the map T1 : Lp(R+) → Lq(R+) has approximation numbers

an(T1) = O(
1
n

).

The map U : Lp(R+) → Lq(R+) defined by

Uf(x) = e−(B−B1)xf(x)

is bounded (by holder’s inequality). It follows from the fact that

an(T ) 6 an(T1) ‖U‖ = O(
1
n

).

22



APPROXIMATION NUMBERS OF VOLTERRA INTEGRAL OPERATORS

We summarize our results as follows.

Theorem 14. Let u and v be defined in (26) and let 1 ≤ q < p ≤ ∞. Then as

n −→∞, an (T ) = O

(
1
n

)
.
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OPTIMAL MULTIVARIATE OSTROWSKI EULER TYPE
INEQUALITIES

GEORGE A. ANASTASSIOU

Abstract. In [8] we derived general tight multivariate high order Os-

trowski type inequalities for the estimate of the error of a multivariate

function f evaluated at a point from its average. The estimates involve only

the single partial derivatives of f and are with respect to ‖·‖p, 1 ≤ p ≤ ∞.

We give here specific applications of these results to the multivariate trape-

zoid and midpoint rules for functions f differentiable up to order 6. We

prove sharpness of these inequalities for differentiation orders m = 1, 2, 4

and with respect to ‖ · ‖∞.

1. Introduction

We mention as inspiration to our work the great Ostrowski inequality, see

[12], [3], [5].

Theorem 1. It holds∣∣∣∣f(x)− 1
b− a

∫ b

a

f(t)dt

∣∣∣∣ ≤
[

1
4

+

(
x− a+b

2

)2
(b− a)2

]
(b− a)‖f ′‖∞, (1)

where f ∈ C1([a, b]), x ∈ [a, b], which is a sharp inequality.

Here Bk(x), k ≥ 0, are the Bernoulli polynomials, Bk = Bk(0), k ≥ 0, the

Bernoulli numbers, and B∗
k(x), k ≥ 0, are periodic functions of period one, related to

the Bernoulli polynomials as

B∗
k(x) = Bk(x), 0 ≤ x < 1, (2)

Received by the editors: 24.10.2006.

2000 Mathematics Subject Classification. 26D10, 26D15.

Key words and phrases. Multivariate Euler identity, multivariate Ostrowski inequality, multivariate

trapezoid and midpoint rules, sharp inequality.
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and

B∗
k(x + 1) = B∗

k(x), x ∈ R. (3)

Some basic properties of Bernoulli polynomials follow (see [1, 23.1]). We have

B0(x) = 1, B1(x) = x− 1
2
, B2(x) = x2 − x +

1
6
,

and

B′
k(x) = kBk−1(x), k ∈ N, (4)

Bk(x + 1)−Bk(x) = kxk−1, k ≥ 0. (5)

Clearly B∗
0 = 1, B∗

1 is a discontinuous function with a jump of −1 at each integer,

and B∗
k, k ≥ 2, is a continuous function. Notice that Bk(0) = Bk(1) = Bk, k ≥ 2.

We make

Assumption 1. Let f and the existing ∂`f
∂x`

j

, all ` = 1, . . . ,m; j = 1, . . . , n,

be continuous real valued functions on
n∏

i=1

[ai, bi]; m,n ∈ N, ai, bi ∈ R.

A general set of suppositions follow

Assumption 2. Here m ∈ N, j = 1, . . . , n. We suppose

1) f :
n∏

i=1

[ai, bi] → R is continuous.

2) ∂`f
∂x`

j

are existing real valued functions for all j = 1, . . . , n; ` = 1, . . . ,m−2.

3) For each j = 1, . . . , n we assume that

∂m−1f

∂xm−1
j

(x1, . . . , xj−1, ·, xj+1, . . . , xn)

is a continuous real valued function.

4) For each j = 1, . . . , n we assume that

gj(·) :=
∂mf

∂xm
j

(x1, . . . , xj−1, ·, xj+1, . . . , xn)

exists and is real valued with the possibility of being infinite only over an

at most countable subset of (aj , bj).

5) Parts #3, #4 are true for all

(x1, . . . , xj−1, xj+1, . . . , xn) ∈
n∏

i=1
i 6=j

[ai, bi].
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6) The functions for j = 2, . . . , n; ` = 1, . . . ,m− 2,

qj

 j−1︷ ︸︸ ︷
·, ·, · · · , ·

 :=
∂`f

∂x`
j

 j−1︷ ︸︸ ︷
·, ·, ·, · · · , ·, xj , xj+1, . . . , xn


are continuous on

j−1∏
i=1

[ai, bi], for each

(xj , xj+1, . . . , xn) ∈
n∏

i=j

[ai, bi].

7) The functions for each j = 1, . . . , n,

ϕj

 j︷ ︸︸ ︷
·, ·, ·, · · · , ·, ·, ·

 :=
∂mf

∂xm
j

 j︷ ︸︸ ︷
·, ·, ·, · · · , ·, xj+1, . . . , xn

∈ L1

(
j∏

i=1

[ai, bi]

)
,

for any (xj+1, . . . , xn) ∈
n∏

i=j+1

[ai, bi].

Some weaker general suppositions follow.

Assumption 3. Here m ∈ N, j = 1, . . . , n, and only the Parts #1, #2, #6,

#7 of Assumption 2 remain the same. We further assume that for each j = 1, . . . , n

and over [aj , bj ], the function

∂m−1

∂xm−1
j

f(x1, . . . , xj−1, ·, xj+1, . . . , xn)

is absolutely continuous, and this is true for all

(x1, . . . , xj−1, xj+1, . . . , xn) ∈
n∏

i=1
i 6=j

[ai, bi].

In [8] we proved the following multivariate Euler type identity.

Theorem 2. All as in Assumption 1 or 2 or 3 for m,n ∈ N, xi ∈ [ai, bi],

i = 1, 2, . . . , n. Then

Ef
m(x1, x2, . . . , xn) := f(x1, x2, . . . , xn) (6)

− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn −
n∑

j=1

Aj =
n∑

j=1

Bj ,
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where for j = 1, . . . , n we have

Aj := Aj(xj , xj+1, . . . , xn) (7)

=
1(j−1∏

i=1

(bi − ai)
)
{

m−1∑
k=1

(bj − aj)k−1

k!
Bk

(
xj − aj

bj − aj

)

×

(∫
j−1∏
i=1

[ai,bi]

(
∂k−1f

∂xk−1
j

(s1, s2, . . . , sj−1, bj , xj+1, . . . , xn)

− ∂k−1f

∂xk−1
j

(s1, s2, . . . , sj−1, aj , xj+1, . . . , xn)
)

ds1 · · · dsj−1

)}
,

and

Bj := Bj(xj , xj+1, . . . , xn) (8)

:=
(bj − aj)m−1

m!
(j−1∏

i=1

(bi − ai)
)
{∫

j∏
i=1

[ai,bi]

((
Bm

(
xj − aj

bj − aj

)

− B∗
m

(
xj − sj

bj − aj

))
∂mf

∂xm
j

(s1, s2, . . . , sj , xj+1, . . . , xn)

)
ds1ds2 · · · dsj

}
.

When m = 1 then Aj = 0, j = 1, . . . , n.

Also in [8] we proved the following tight multivariate Ostrowski type inequal-

ities.

Theorem 3. Suppose Assumptions 1 or 2 or 3. Let Ef
m(x1, x2, . . . , xn) as

in (6) and Aj for j = 1, . . . , n as in (7), m ∈ N. In particular we assume that

∂mf

∂xm
j

( j︷︸︸︷
· · · , xj+1, . . . , xn

)
∈ L∞

(
j∏

i=1

[ai, bi]

)
,

for any (xj+1, . . . , xn) ∈
n∏

i=j+1

[ai, bi], all j = 1, . . . , n. Then

|Ef
m(x1, . . . , xn)| (9)

=
∣∣∣∣f(x1, . . . , xn)− 1

n∏
i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn −
n∑

j=1

Aj

∣∣∣∣
≤ 1

m!

n∑
j=1

[
(bj − aj)m

(√
(m!)2

(2m)!
|B2m|+ B2

m

(
xj − aj

bj − aj

))
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×
∥∥∥∥∂mf

∂xm
j

( j︷︸︸︷
· · · , xj+1, . . . , xn)

∥∥∥∥
∞,

j∏
i=1

[ai,bi]

]
.

Theorem 4. Suppose Assumptions 1 or 2 or 3. Let Ef
m(x1, . . . , xn) as in

(6), m ∈ N. Let pj , qj > 1: 1
pj

+ 1
qj

= 1; j = 1, . . . , n. In particular we assume that

∂mf

∂xm
j

(. . . , xj+1, . . . , xn) ∈ Lqj

(
j∏

i=1

[ai, bi]

)
,

for any (xj+1, . . . , xn) ∈
n∏

i=j+1

[ai, bi], for all j = 1, . . . , n. Then

|Ef
m(x1, . . . , xn)| (10)

≤ 1
m!

n∑
j=1

[
(bj − aj)

m− 1
qj

(j−1∏
i=1

(bi − ai)
)− 1

qj
(∫ 1

0

∣∣∣∣Bm

(
xj − aj

bj − aj

)

−Bm(tj)
∣∣∣∣pj

dtj

)1/pj
∥∥∥∥∂mf

∂xm
j

(. . . , xj+1, . . . , xn)
∥∥∥∥

qj ,
j∏

i=1
[ai,bi]

]
.

When pj = qj = 2, all j = 1, . . . , n, then we get

|Ef
m(x1, . . . , xn)| ≤ 1

m!

n∑
j=1

[
(bj − aj)m− 1

2

(j−1∏
i=1

(bi − ai)
)−1/2

(11)

×

(√
(m!)2

(2m)!
|B2m|+ B2

m

(xj − aj

bj − aj

))

×
∥∥∥∥∂mf

∂xm
j

(. . . , xj+1, . . . , xn)
∥∥∥∥

2,
j∏

i=1
[ai,bi]

]
.

Theorem 5. Suppose Assumptions 1 or 2 or 3. Let Ef
m(x1, . . . , xn) as in

(6), m ∈ N. In particular we assume for j = 1, . . . , n that

∂mf

∂xm
j

(. . . , xj+1, . . . , xn) ∈ L1

(
j∏

i=1

[ai, bi]

)
,

for any (xj+1, . . . , xn) ∈
∏n

i=j+1[ai, bi]. Then

|Ef
m(x1, . . . , xn)| ≤ 1

m!

n∑
j=1

[
(bj − aj)m−1(j−1∏
i=1

(bi − ai)
) (12)
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∂xm
j

(. . . , xj+1, . . . , xn)
∥∥∥∥

1,
j∏

i=1
[ai,bi]

)∥∥∥∥Bm(t)−Bm

(
xj − aj

bj − aj

)∥∥∥∥
∞,[0,1]

]
.

The special cases are calculated and estimated further as follows:

1) When m = 2r, r ∈ N, then

|Ef
2r(x1, . . . , xn)| (13)

≤ 1
(2r)!

n∑
j=1

{
(bj − aj)2r−1(j−1∏
i=1

(bi − ai)
)
(∥∥∥∥∂2rf

∂x2r
j

(. . . , xj+1, . . . , xn)
∥∥∥∥

1,
j∏

i=1
[ai,bi]

)

×
[
(1− 2−2r)|B2r|+

∣∣∣∣2−2rB2r −B2r

(
xj − aj

bj − aj

)∣∣∣∣]
}

.

2) When m = 2r + 1, r ∈ N, then

|Ef
2r+1(x1, . . . , xn)| (14)

≤ 1
(2r + 1)!

n∑
j=1

{
(bj − aj)2r(j−1∏
i=1

(bi − ai)
)
(∥∥∥∥∂2r+1f

∂x2r+1
j

(. . . , xj+1, . . . , xn)
∥∥∥∥

1,
j∏

i=1
[ai,bi]

)

×
[

2(2r + 1)!
(2π)2r+1(1− 2−2r)

+
∣∣∣∣B2r+1

(
xj − aj

bj − aj

)∣∣∣∣]
}

.

And at last

3) When m = 1, then

|Ef
1 (x1, . . . , xn)| (15)

≤
n∑

j=1

{
1(j−1∏

i=1

(bi − ai)
)
[∥∥∥∥ ∂f

∂xj
(. . . , xj+1, . . . , xn)

∥∥∥∥
1,

j∏
i=1

[ai,bi]

]

×
[
1
2

+
∣∣∣∣xj −

(
aj + bj

2

)∣∣∣∣
]}

.

In this article we give lots of specific and important applications of Theo-

rems 3, 4, 5. see Theorems 6–28. There are produced many multivariate Ostrowski

type inequalities for differentiation orders m = 1, . . . , 6, mostly related to multivariate

trapezoid and midpoint rules. When we impose some basic and natural boundary con-

ditions, then inequalities become very simple and elegant, see Theorems 25–28. The

surprising fact there is, that only a very small number of sets of boundary conditions
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is needed comparely to the higher order of differentiation of the involved functions.

At the end we establish sharpness of our inequalities with respect to ‖ · ‖∞ and for

differentiation orders m = 1, 2, 4, see Theorems 30-34.

2. Main Results

Here we apply Theorems 3, 4, 5. We get

Theorem 6. Suppose Assumptions 1 or 2 or 3, case m = 1.

i) Assume

∂f

∂xj
(. . . , xj+1, . . . , xn) ∈ L∞

( j∏
i=1

([ai, bi])
)

,

for any (xj+1, . . . , xn) ∈
n∏

i=j+1

[ai, bi], all j = 1, . . . , n. Then

∣∣∣∣∣∣∣∣f(x1, x2, . . . , xn)− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

∣∣∣∣∣∣∣∣ (16)

≤
n∑

j=1

[
(bj − aj)

(√
1
12

+
(

xj − aj

bj − aj
− 1

2

)2
)
×

×
∥∥∥∥ ∂f

∂xj
(. . . , xj+1, . . . , xn)

∥∥∥∥
∞,

j∏
i=1

[ai,bi]

]
.

ii) Let pj , qj > 1: 1
pj

+ 1
qj

= 1; j = 1, . . . , n. In particular we assume that

∂f

∂xj
(. . . , xj+1, . . . , xn) ∈ Lqj

(
j∏

i=1

[ai, bi]

)
,

for any (xj+1, . . . , xn) ∈
n∏

i=j+1

[ai, bi], for all j = 1, . . . , n. Then

∣∣∣∣∣∣∣∣f(x1, x2, . . . , xn)− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

∣∣∣∣∣∣∣∣ (17)

≤
n∑

j=1

[
(bj − aj)

1− 1
qj

(j−1∏
i=1

(bi − ai)
)− 1

qj
(∫ 1

0

∣∣∣∣(xj − aj

bj − aj

)
− tj

∣∣∣∣pj

dtj

)1/pj
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×
∥∥∥∥ ∂f

∂xj
(. . . , xj+1, . . . , xn)

∥∥∥∥
qj ,

j∏
i=1

[ai,bi]

]
.

When pj = qj = 2, all j = 1, . . . , n, then∣∣∣∣∣∣∣∣f(x1, . . . , xn)− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

∣∣∣∣∣∣∣∣ (18)

≤
n∑

j=1

[(√
(bj − aj)

/√√√√j−1∏
i=1

(bi − ai)

)(√√√√ 1
12

+

(
xj − aj

bj − aj
− 1

2

)2
)

×
∥∥∥∥ ∂f

∂xj
(. . . , xj+1, . . . , xn)

∥∥∥∥
2,

j∏
i=1

[ai,bi]

]
.

iii) Here assume for j = 1, . . . , n that

∂f

∂xj
(. . . , xj+1, . . . , xn) ∈ L1

(
j∏

i=1

[ai, bi]

)
,

for any (xj+1, . . . , xn) ∈
n∏

i=j+1

[ai, bi]. Then

∣∣∣∣∣∣∣∣f(x1, . . . , xn)− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

∣∣∣∣∣∣∣∣ (19)

≤
n∑

j=1

{
1(j−1∏

i=1

(bi − ai)
)
[∥∥∥∥ ∂f

∂xj
(. . . , xj+1, . . . , xn)

∥∥∥∥
1,

j∏
i=1

[ai,bi]

]

×
[
1
2

+
∣∣∣∣xj −

(
aj + bj

2

)∣∣∣∣]
}

.

Notice 1. We have for j = 1, . . . , n:

λj :=
xj − aj

bj − aj
= 0 iff xj = aj ,

λj = 1 iff xj = bj ,

λj =
1
2

iff xj =
aj + bj

2
.

(20)

We continue with
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Theorem 7. Suppose Assumptions 1 or 2 or 3, Case m = 1, all xj = aj,

j = 1, . . . , n.

i) Assume

∂f

∂xj
(. . . , aj+1, . . . , an) ∈ L∞

(
j∏

i=1

[ai, bi]

)
, all j = 1, . . . , n.

Then ∣∣∣∣∣∣∣∣f(a1, a2, . . . , an)− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

∣∣∣∣∣∣∣∣ (21)

≤
√

3
3

{
n∑

j=1

[
(bj − aj)

∥∥∥∥ ∂f

∂xj
(. . . , aj+1, . . . , an)

∥∥∥∥
∞,

j∏
i=1

[ai,bi]

]}
.

ii) Let pj , qj > 1: 1
pj

+ 1
qj

= 1; j = 1, . . . , n. In particular we assume that

∂f

∂xj
(. . . , aj+1, . . . , an) ∈ Lqj

(
j∏

i=1

[ai, bi]

)
,

for all j = 1, . . . , n. Then∣∣∣∣∣∣∣∣f(a1, . . . , an)− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

∣∣∣∣∣∣∣∣ (22)

≤
n∑

j=1

[ (bj − aj)
1− 1

qj
(j−1∏

i=1

(bi − ai)
)−1/qj

(pj + 1)1/pj

×
∥∥∥∥ ∂f

∂xj
(. . . , aj+1, . . . , an)

∥∥∥∥
qj ,

j∏
i=1

[ai,bi]

]
.

When pj = qj = 2, all j = 1, . . . , n, then∣∣∣∣∣∣∣∣f(a1, . . . , an)− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

∣∣∣∣∣∣∣∣ (23)

≤
√

3
3

(
n∑

j=1

[(√
(bj − aj)

/√√√√j−1∏
i=1

(bi − ai)
)
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×
∥∥∥∥ ∂f

∂xj
(. . . , aj+1, . . . , an)

∥∥∥∥
2,

j∏
i=1

[ai,bi]

])
.

iii) Here assume for j = 1, . . . , n, that

∂f

∂xj
(. . . , aj+1, . . . , an) ∈ L1

(
j∏

i=1

[ai, bi]

)
.

Then ∣∣∣∣∣∣∣∣f(a1, . . . , an)− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

∣∣∣∣∣∣∣∣ (24)

≤ 1
2

n∑
j=1

{
(bj − aj + 1)(j−1∏
i=1

(bi − ai)
)
∥∥∥∥ ∂f

∂xj
(. . . , aj+1, . . . , an)

∥∥∥∥
1,

j∏
i=1

[ai,bi]

}
.

Proof. By Theorem 6. �

Theorem 8. Suppose Assumptions 1 or 2 or 3, case m = 1, all xj = bj,

j = 1, . . . , n.

i) Assume

∂f

∂xj
(. . . , bj+1, . . . , bn) ∈ L∞

(
j∏

i=1

[ai, bi]

)
,

for all j = 1, . . . , n. Then∣∣∣∣∣∣∣∣f(b1, . . . , bn)− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

∣∣∣∣∣∣∣∣ (25)

≤
√

3
3

n∑
j=1

[
(bj − aj)

∥∥∥∥ ∂f

∂xj
(. . . , bj+1, . . . , bn)

∥∥∥∥
∞,

j∏
i=1

[ai,bi]

]
.

ii) Let pj , qj > 1: 1
pj

+ 1
qj

= 1; j = 1, . . . , n. In particular we assume that

∂f

∂xj
(. . . , bj+1, . . . , bn) ∈ Lqj

(
j∏

i=1

[ai, bi]

)
,
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for all j = 1, . . . , n. Then∣∣∣∣∣∣∣∣f(b1, . . . , bn)− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

∣∣∣∣∣∣∣∣ (26)

≤
n∑

j=1

[
(pj + 1)−1/pj (bj − aj)

1− 1
qj

(j−1∏
i=1

(bi − ai)
)− 1

qj

×

×
∥∥∥∥ ∂f

∂xj
(. . . , bj+1, . . . , bn)

∥∥∥∥
qj ,

j∏
i=1

[ai,bi]

]
.

When pj = qj = 2, all j = 1, . . . , n, then∣∣∣∣∣∣∣∣f(b1, . . . , bn)− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

∣∣∣∣∣∣∣∣ (27)

≤
√

3
3

n∑
j=1

[(√
bj − aj

/√√√√j−1∏
i=1

(bi − ai)
)∥∥∥∥ ∂f

∂xj
(. . . , bj+1, . . . , bn)

∥∥∥∥
2,

j∏
i=1

[ai,bi]

]
.

iii) Here assume for j = 1, . . . , n that

∂f

∂xj
(. . . , bj+1, . . . , bn) ∈ L1

(
j∏

i=1

[ai, bi]

)
.

Then ∣∣∣∣∣∣∣∣f(b1, . . . , bn)− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

∣∣∣∣∣∣∣∣ (28)

≤ 1
2

n∑
j=1

{
(1 + bj − aj)(j−1∏
i=1

(bi − ai)
)
∥∥∥∥ ∂f

∂xj
(. . . , bj+1, . . . , bn)

∥∥∥∥
1,

j∏
i=1

[ai,bi]

}
.

Proof. By Theorem 6. �

Next come the multivariate midpoint rule inequalities.

Theorem 9. Suppose Assumptions 1 or 2 or 3, case m = 1, all xj = aj+bj

2 ,

j = 1, . . . , n.
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i) Assume

∂f

∂xj

(
. . . ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)
∈ L∞

(
j∏

i=1

[ai, bi]

)
, all j = 1, . . . , n.

Then ∣∣∣∣∣f
(

a1 + b1

2
,
a2 + b2

2
, . . . ,

an + bn

2

)
(29)

− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

∣∣∣∣∣
≤ 1

2
√

3

n∑
j=1

(bj − aj)
∥∥∥∥ ∂f

∂xj

(
. . . ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)∥∥∥∥
∞,

j∏
i=1

[ai,bi]

 .

ii) Let pj , qj > 1: 1
pj

+ 1
qj

= 1; j = 1, . . . , n. In particular we assume that

∂f

∂xj

(
. . . ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)
∈ Lqj

(
j∏

i=1

[ai, bi]

)
,

for all j = 1, . . . , n. Then∣∣∣∣∣∣∣∣f
(

a1 + b1

2
, . . . ,

an + bn

2

)
− 1

n∏
i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

∣∣∣∣∣∣∣∣ (30)

≤ 1
2

n∑
j=1

[
(pj+1)

− 1
pj (bj − aj)

1− 1
qj

(
j−1∏
i=1

(bi − ai)

)− 1
qj

×
∥∥∥∥ ∂f

∂xj

(
. . . ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)∥∥∥∥
qj ,

j∏
i=1

[ai,bi]

]
.

When pj = qj = 2, all j = 1, . . . , n, then∣∣∣∣∣∣∣∣f
(

a1 + b1

2
, . . . ,

an + bn

2

)
− 1

n∏
i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

∣∣∣∣∣∣∣∣ (31)

≤ 1
2
√

3

n∑
j=1

[(√
bj − aj

/√√√√j−1∏
i=1

(bi − ai)
)

36



OPTIMAL MULTIVARIATE OSTROWSKI EULER TYPE INEQUALITIES

×
∥∥∥∥ ∂f

∂xj

(
. . . ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)∥∥∥∥
2,

j∏
i=1

[ai,bi]

]
.

iii) Here assume for j = 1, . . . , n that

∂f

∂xj

(
. . . ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)
∈ L1

(
j∏

i=1

[ai, bi]

)
.

Then∣∣∣∣∣∣∣∣f
(

a1 + b1

2
, . . . ,

an + bn

2

)
− 1

n∏
i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

∣∣∣∣∣∣∣∣ (32)

≤ 1
2

n∑
j=1

{
1(j−1∏

i=1

(bi − ai)
)
∥∥∥∥ ∂f

∂xj

(
. . . ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)∥∥∥∥
1,

j∏
i=1

[ai,bi]

}
.

Proof. By Theorem 6. �

Next we treat the case of m = 2 and only for the norms ‖ · ‖∞, ‖ · ‖2, and

specifically for λj = 0, 1, 1
2 , j = 1, . . . , n. The multivariate trapezoid rule estimates

follow immediately.

Theorem 10. Suppose Assumptions 1 or 2 or 3, case m = 2, all xj = aj,

j = 1, . . . , n.

i) Assume

∂2f

∂x2
j

(. . . , aj+1, . . . , an) ∈ L∞

(
j∏

i=1

[ai, bi]

)
,

all j = 1, . . . , n. Then

K2 :=

∣∣∣∣∣
(

f(a1, a2, . . . , an) + f(b1, a2, . . . , an)
2

)
(33)

− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

+
1
2

{
n∑

j=2

[
1(j−1∏

i=1

(bi − ai)
)
{∫

j−1∏
i=1

[ai,bi]

(
f(s1, s2, . . . , sj−1, bj , aj+1, . . . , an)
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− f(s1, . . . , sj−1, aj , aj+1, . . . , an)
)
ds1 · · · dsj−1

}]}∣∣∣∣∣
≤ 1

2
√

30

{
n∑

j=1

[
(bi − aj)2

∥∥∥∥∂2f

∂x2
j

(. . . , aj+1, . . . , an)
∥∥∥∥
∞,

j∏
i=1

[ai,bi]

]}
.

ii) Assume

∂2f

∂x2
j

(. . . , aj+1, . . . , an) ∈ L2

(
j∏

i=1

[ai, bi]

)
,

all j = 1, . . . , n. Then

K2 ≤
1

2
√

30

{
n∑

j=1

[
(bj − aj)3/2

(j−1∏
i=1

(bi − ai)
)−1/2

× (34)

×
∥∥∥∥∂2f

∂x2
j

(. . . , aj+1, . . . , an)
∥∥∥∥

2,
j∏

i=1
[ai,bi]

]}
.

Proof. By Theorem 6. �

We continue with trapezoid rule estimates.

Theorem 11. Suppose Assumptions 1 or 2 or 3, case m = 2, all xj = bj,

j = 1, . . . , n.

i) Assume

∂2f

∂x2
j

(. . . , bj+1, . . . , bn) ∈ L∞

(
j∏

i=1

[ai, bi]

)
,

all j = 1, . . . , n. Then

Λ2 :=

∣∣∣∣∣f(b1, . . . , bn) + f(a1, b2, . . . , bn)
2

(35)

− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

− 1
2

{
n∑

j=2

[
1(j−1∏

i=1

(bi − ai)
)
{∫

j−1∏
i=1

[ai,bi]

(
f(s1, . . . , sj−1, bj , bj+1, . . . , bn)

− f(s1, . . . , sj−1, aj , bj+1, . . . , bn)
)
ds1 · · · dsj−1

}]}∣∣∣∣∣
38
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≤ 1
2
√

30


n∑

j=1

(bj − aj)2
∥∥∥∥∂2f

∂x2
j

(. . . , bj+1, . . . , bn)
∥∥∥∥
∞,

j∏
i=1

[ai,bi]

 .

ii) Assume

∂2f

∂x2
j

(. . . , bj+1, . . . , bn) ∈ L2

(
j∏

i=1

[ai, bi]

)
,

all j = 1, . . . , n. Then

Λ2 ≤
1

2
√

30

{
n∑

j=1

[
(bj − aj)3/2

(j−1∏
i=1

(bi − ai)
)−1/2

(36)

×

∥∥∥∥∥∂2f

∂x2
j

(. . . , bj+1, . . . , bn

∥∥∥∥∥
2,

j∏
i=1

[ai,bi]

]}
.

Proof. By Theorem 6. �

The multivariate midpoint rule estimates follow.

Theorem 12. Suppose Assumptions 1 or 2 or 3, case m = 2, all xj = aj+bj

2 ,

j = 1, . . . , n.

i) Assume

∂2f

∂x2
j

(
. . . ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)
∈ L∞

(
j∏

i=1

[ai, bi]

)
,

all j = 1, . . . , n. Then

M2 :=

∣∣∣∣∣f
(

a1 + b1

2
, . . . ,

an + bn

2

)
(37)

− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

∣∣∣∣∣
≤ 1

8
√

5

{
n∑

j=1

[
(bj − aj)2

∥∥∥∥∥∂2f

∂x2
j

(
. . . ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)∥∥∥∥∥
∞,

j∏
i=1

[ai,bi]

]}
.

ii) Assume

∂2f

∂x2
j

(
. . . ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)
∈ L2

(
j∏

i=1

[ai, bi]

)
,

39
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all j = 1, . . . , n. Then

M2 ≤
1

8
√

5

{
n∑

j=1

[
(bj − aj)3/2

(j−1∏
i=1

(bi − ai)
)−1/2

× (38)

×
∥∥∥∥∂2f

∂x2
j

(
. . . ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)∥∥∥∥
2,

j∏
i=1

[ai,bi]

]}
.

Proof. By Theorem 6. �

We continue with trapezoid and midpoint rules inequalities for m = 3.

Theorem 13. Suppose Assumptions 1 or 2 or 3, case m = 3, all xj = aj,

j = 1, . . . , n.

i) Assume

∂3f

∂x3
j

(. . . , aj+1, . . . , an) ∈ L∞

(
j∏

i=1

[ai, bi]

)
,

all j = 1, . . . , n. Then

K3 :=

∣∣∣∣∣
(

f(a1, . . . , an) + f(b1, a2, . . . , an)
2

)
(39)

− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

−
n∑

j=1
with j=k 6=1

{
1

j−1∏
i=1

(bi − ai)

{ 2∑
k=1

(bj − aj)k−1

k!
Bk(0)

×

(∫
j−1∏
i=1

[ai,bi]

(
∂k−1f

∂xk−1
j

(s1, . . . , sj−1, bj , aj+1, . . . , an)

−∂k−1f

∂xk−1
j

(s1, . . . , sj−1, aj , aj+1, . . . , an)
)

ds1 · · · dsj−1

)}}

≤ 1
12
√

210


n∑

j=1

[
(bj − aj)3

∥∥∥∥∂3f

∂x3
j

(. . . , an+1, . . . , an)
∥∥∥∥
∞,

j∏
i=1

[ai,bi]

] .

ii) Assume

∂3f

∂x3
j

(. . . , aj+1, . . . , an) ∈ L2

(
j∏

i=1

[ai, bi]

)
,

40
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all j = 1, . . . , n. Then

K3 ≤
1

12
√

210

n∑
j=1

[
(bj − aj)5/2

(j−1∏
i=1

(bi − ai)
)−1/2

× (40)

×
∥∥∥∥∂3f

∂x3
j

(. . . , aj+1, . . . , an)
∥∥∥∥

2,
j∏

i=1
[ai,bi]

]
.

Proof. By Theorem 6. �

Theorem 14. Suppose Assumptions 1 or 2 or 3, case m = 3, all xj = bj,

j = 1, . . . , n.

i) Assume

∂3f

∂x3
j

(. . . , bj+1, . . . , bn) ∈ L∞

(
j∏

i=1

[ai, bi]

)
,

all j = 1, . . . , n. Then

Λ3 :=

∣∣∣∣∣
(

f(b1, . . . , bn) + f(a1, b2, . . . , bn)
2

)
(41)

− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

−
n∑

j=1
with j=k 6=1

{
1

j−1∏
i=1

(bi − ai)

{
2∑

k=1

(bj − aj)k−1

k!
Bk(1)

×

(∫
j−1∏
i=1

[ai,bi]

(
∂k−1f

∂xk−1
j

(s1, s2, . . . , sj−1, bj , bj+1, . . . , bn)

−∂k−1f

∂xk−1
j

(s1, s2, . . . , sj−1, aj , bj+1, . . . , bn)
)

ds1 · · · dsj−1

)}}∣∣∣∣∣
≤ 1

12
√

210

n∑
j=1

(bj − aj)3
∥∥∥∥∂3f

∂x3
j

(. . . , bj+1, . . . , bn)
∥∥∥∥
∞,

j∏
i=1

[ai,bi]

 .

ii) Assume

∂3f

∂x3
j

(. . . , bj+1, . . . , bn) ∈ L2

(
j∏

i=1

[ai, bi]

)
,

41
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all j = 1, . . . , n. Then

Λ3 ≤
1

12
√

210

n∑
j=1

[
(bj − aj)5/2

(j−1∏
i=1

(bi − ai)
)−1/2

× (42)

×
∥∥∥∥∂3f

∂x3
j

(. . . , bj+1, . . . , bn)
∥∥∥∥

2,
j∏

i=1
[ai,bi]

]
.

Proof. By Theorem 6. �

Theorem 15. Suppose Assumptions 1 or 2 or 3, case m = 3, all xj = aj+bj

2 ,

j = 1, . . . , n.

i) Assume

∂3f

∂x3
j

(
. . . ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)
∈ L∞

(
j∏

i=1

[ai, bi]

)
,

all j = 1, . . . , n. Then

M3 :=

∣∣∣∣∣f
(

a1 + b1

2
, . . . ,

an + bn

2

)
(43)

− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

+
1
24

n∑
j=1

{
(bj − aj)(j−1∏

i=1

(bi − ai)
)×

×

(∫
j−1∏
i=1

[ai,bi]

(
∂f

∂xj
(s1, s2, . . . , sj−1, bj ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)

− ∂f

∂xj

(
s1, . . . , sj−1, aj ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

))
ds1 · · · dsj−1

}∣∣∣∣∣
≤ 1

12
√

210

n∑
j=1

[
(bj − aj)3

∥∥∥∥∂3f

∂x3
j

(
. . . ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)∥∥∥∥
∞,

j∏
i=1

[ai,bi]

]
.

ii) Assume

∂3f

∂x3
j

(
. . . ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)
∈ L2

(
j∏

i=1

[ai, bi]

)
,

42
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all j = 1, . . . , n. Then

M3 ≤
1

12
√

210

n∑
j=1

[
(bj − aj)5/2

(j−1∏
i=1

(bi − ai)
)−1/2

(44)

×

∥∥∥∥∥∂3f

∂x3
j

(
. . . ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)∥∥∥∥∥
2,

j∏
i=1

[ai,bi]

]
.

Proof. By Theorem 6. �

Next we present trapezoid and midpoint rules inequalities for m = 4.

Theorem 16. Suppose Assumptions 1 or 2 or 3, case m = 4, all xj = aj,

j = 1, . . . , n.

i) Assume

∂4f

∂x4
j

(. . . , aj+1, . . . , an) ∈ L∞

(
j∏

i=1

[ai, bi]

)
,

all j = 1, . . . , n. Then

K3 =

∣∣∣∣∣
(

f(a1, . . . , an) + f(b1, a2, . . . , an)
2

)
(45)

− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

−
n∑

j=1
(with j=k 6=1)

{
1

j−1∏
i=1

(bi − ai)

{
2∑

k=1

(bj − aj)k−1

k!

× Bk(0)

(∫
j−1∏
i=1

[ai,bi]

(
∂k−1f

∂xk−1
j

(s1, . . . , sj−1, bj , aj+1, . . . , an

)

− ∂k−1f

∂xk−1
j

(s1, s2, . . . , sj−1, aj , aj+1, . . . , an)

)
ds1 · · · dsj−1

)}}∣∣∣∣∣
≤ 1

24
√

630

n∑
j=1

[
(bj − aj)4

∥∥∥∥∥∂4f

∂x4
j

(. . . , aj+1, . . . , an)

∥∥∥∥∥
∞,

j∏
i=1

[ai,bi]

]
.

ii) Assume

∂4f

∂x4
j

(. . . , aj+1, . . . , an) ∈ L2

(
j∏

i=1

[ai, bi]

)
,

43
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all j = 1, . . . , n. Then

K3 ≤
1

24
√

630

n∑
j=1

[
(bj − aj)7/2

(j−1∏
i=1

(bi − ai)
)−1/2

× (46)

×
∥∥∥∥∂4f

∂x4
j

(. . . , aj+1, . . . , an)
∥∥∥∥

2,
j∏

i=1
[ai,bi]

]
.

Proof. By Theorem 6. �

Theorem 17. Suppose Assumptions 1 or 2 or 3, case m = 4, all xj = bj,

j = 1, . . . , n.

i) Assume

∂4f

∂x4
j

(. . . , bj+1, . . . , bn) ∈ L∞

(
j∏

i=1

[ai, bi]

)
,

all j = 1, . . . , n. Then

Λ3 =

∣∣∣∣∣
(

f(b1, . . . , bn) + f(a1, b2, . . . , bn)
2

)
(47)

− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

−
n∑

j=1
(with j=k 6=1)

{
1(j−1∏

i=1

(bi − ai)
)
{

2∑
k=1

(bj − aj)k−1

k!

×Bk(1)

(∫
∏j−1

i=1 [ai,bi]

(
∂k−1f

∂xk−1
j

(s1, s2, . . . , sj−1, bj , bj+1, . . . , bn)

−∂k−1f

∂xk−1
j

(s1, s2, . . . , sj−1, aj , bj+1, . . . , bn)
)

ds1 · · · dsj−1

)}}∣∣∣∣∣
≤ 1

24
√

630

{
n∑

j=1

[
(bj − aj)4

∥∥∥∥∂4f

∂x4
j

(. . . , bj+1, . . . , bn)
∥∥∥∥
∞,

j∏
i=1

[ai,bi]

]}
.

ii) Assume

∂4f

∂x4
j

(. . . , bj+1, . . . , bn) ∈ L2

(
j∏

i=1

[ai, bi]

)
,

44
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all j = 1, . . . , n. Then

Λ3 ≤
1

24
√

630

n∑
j=1

[
(bj − aj)7/2

(j−1∏
i=1

(bi − ai)
)−1/2

× (48)

×
∥∥∥∥∂4f

∂x4
j

(. . . , bj+1, . . . , bn)
∥∥∥∥

2,
j∏

i=1
[ai,bi]

]
.

Proof. By Theorem 6. �

Theorem 18. Suppose Assumptions 1 or 2 or 3, case m = 4, all xj = aj+bj

2 ,

j = 1, . . . , n.

i) Assume

∂4f

∂x4
j

(
. . . ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)
∈ L∞

(
j∏

i=1

[ai, bi]

)
,

all j = 1, . . . , n. Then

M3 =

∣∣∣∣∣f
(

a1 + b1

2
, . . . ,

an + bn

2

)
(49)

− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

+
1
24

{
n∑

j=1

{
(bj − aj)(j−1∏

i=1

(bi − ai)
)×

×

(∫
j−1∏
i=1

[ai,bi]

(
∂f

∂xj

(
s1, s2, . . . , sj−1, bj ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)

− ∂f

∂xj

(
s1, s2, . . . , sj−1, aj ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

))
ds1 · · · dsj−1

)}}∣∣∣∣∣
≤ 1

152

√
107

35

{
n∑

j=1

[
(bj − aj)

4

∥∥∥∥∂4f

∂x4
j

(
. . . ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)∥∥∥∥
∞,

j∏
i=1

[ai,bi]

]}
.

ii) Assume

∂4f

∂x4
j

(
. . . ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)
∈ L2

(
j∏

i=1

[ai, bi]

)
,
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all j = 1, . . . , n. Then

M3 ≤
1

1152

√
107
35

{
n∑

j=1

[
(bj − aj)7/2

(
j−1∏
i=1

(bi − ai)

)−1/2

(50)

×

∥∥∥∥∥∂4f

∂x4
j

(
. . . ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)∥∥∥∥∥
2,

j∏
i=1

[ai,bi]

]}
.

Proof. By Theorem 6. �

Also we present trapezoid and midpoint rules inequalities for m = 5.

Theorem 19. Suppose Assumptions 1 or 2 or 3, case m = 5, all xj = aj,

j = 1, . . . , n.

i) Assume

∂5f

∂x5
j

(. . . , aj+1, . . . , an) ∈ L∞

(
j∏

i=1

[ai, bi]

)
,

all j = 1, . . . , n. Then

K5 :=

∣∣∣∣∣
(

f(a1, . . . , an) + f(b1, a2, . . . , an)
2

)
(51)

− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

−
n∑

j=1
(with j=k 6=1)

{
1(j−1∏

i=1

(bi − ai)
)
{ ∑

k∈{1,2,4}

(bj − aj)k−1

k!

× Bk(0)

(∫
j−1∏
i=1

[ai,bi]

(
∂k−1f

∂xk−1
j

(s1, . . . , sj−1, bj , aj+1, . . . , an)

−∂k−1f

∂xk−1
j

(s1, . . . , sj−1, aj , aj+1, . . . , an)

)
ds1 · · · dsj−1

)}}∣∣∣∣∣
≤ 1

720

√
5

462

{
n∑

j=1

[
(bj − aj)5

∥∥∥∥∂5f

∂x5
j

(. . . , aj+1, . . . , an)
∥∥∥∥
∞,

j∏
i=1

[ai,bi]

]}
.

ii) Assume

∂5f

∂x5
j

(. . . , aj+1, . . . , an) ∈ L2

(
j∏

i=1

[ai, bi]

)
,
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all j = 1, . . . , n. Then

K5 ≤
1

720

√
5

462

{
n∑

j=1

[
(bj − aj)9/2

(j−1∏
i=1

(bi − ai)
)−1/2

(52)

×

∥∥∥∥∥∂5f

∂x5
j

(. . . , aj+1, . . . , an)

∥∥∥∥∥
2,

j∏
i=1

[ai,bi]

]}
.

Proof. By Theorem 6. �

Theorem 20. Suppose Assumptions 1 or 2 or 3, case m = 5, all xj = bj,

j = 1, . . . , n.

i) Assume

∂5f

∂x5
j

(. . . , bj+1, . . . , bn) ∈ L∞

(
j∏

i=1

[ai, bi]

)
,

all j = 1, . . . , n. Then

Λ5 :=

∣∣∣∣∣
(

f(b1, . . . , bn) + f(a1, b2, . . . , bn)
2

)
(53)

− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

−
n∑

j=1
(with j=k 6=1)

{
1(j−1∏

i=1

(bi − ai)
)
{ ∑

k∈{1,2,4}

(bj − aj)k−1

k!

×Bk(1)

(∫
j−1∏
i=1

[ai,bi]

(
∂k−1f

∂xk−1
j

(s1, . . . , sj−1, bj , bj+1, . . . , bn)

− ∂k−1f

∂xk−1
j

(s1, . . . , sj−1, aj , bj+1, . . . , bn)

)
ds1 · · · dsj−1

)}}∣∣∣∣∣
≤ 1

720

√
5

462

{
n∑

j=1

[
(bj − aj)5

∥∥∥∥∂5f

∂x5
j

(. . . , bj+1, . . . , bn)
∥∥∥∥
∞,

j∏
i=1

[ai,bi]

]}
.

ii) Assume

∂5f

∂x5
j

(. . . , bj+1, . . . , bn) ∈ L2

(
j∏

i=1

[ai, bi]

)
,
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all j = 1, . . . , n. Then

Λ5 ≤
1

720

√
5

462

{
n∑

j=1

[
(bj − aj)9/2

(j−1∏
i=1

(bi − ai)
)−1/2

(54)

×

∥∥∥∥∥∂5f

∂x5
j

(. . . , bj+1, . . . , bn)

∥∥∥∥∥
2,

j∏
i=1

[ai,bi]

]}
.

Proof. By Theorem 6. �

Theorem 21. Suppose Assumptions 1 or 2 or 3, case m = 5, all xj = aj+bj

2 ,

j = 1, . . . , n.

i) Assume

∂5f

∂x5
j

(
. . . ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)
∈ L∞

(
j∏

i=1

[ai, bi]

)
,

all j = 1, . . . , n. Then

M5 :=

∣∣∣∣∣f
(

a1 + b1

2
, . . . ,

an + bn

2

)
(55)

− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

−
n∑

j=1

{
1(j−1∏

i=1

(bi − ai)
)
{ ∑

k∈{2,4}

(bj − aj)k−1

k!

× Bk

(
1
2

)(∫
j−1∏
i=1

[ai,bi]

(
∂k−1f

∂xk−1
j

(
s1, . . . , sj−1, bj ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)

−∂k−1f

∂xk−1
j

(
s1, . . . , sj−1, aj ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

))
ds1 · · · dsj−1

)}}∣∣∣∣∣
≤ 1

720

√
5

462

{
n∑

j=1

[
(bj − aj)

5

∥∥∥∥∂5f

∂x5
j

(
. . . ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)∥∥∥∥
∞,

j∏
i=1

[ai,bi]

]}
.

ii) Assume

∂5f

∂x5
j

(
. . . ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)
∈ L2

(
j∏

i=1

[ai, bi]

)
,
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all j = 1, . . . , n. Then

M5 ≤
1

720

√
5

462

{
n∑

j=1

[
(bj − aj)9/2

(j−1∏
i=1

(bi − ai)
)−1/2

(56)

×

∥∥∥∥∥∂5f

∂x5
j

(
. . . ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)∥∥∥∥∥
2,

j∏
i=1

[ai,bi]

]}
.

Proof. By Theorem 6. �

Finally we present trapezoid and midpoint rules inequalities for m = 6.

Theorem 22. Suppose Assumptions 1 or 2 or 3, case m = 6, all xj = aj,

j = 1, . . . , n.

i) Assume

∂6f

∂x6
j

(. . . , aj+1, . . . , an) ∈ L∞

(
j∏

i=1

[ai, bi]

)
,

all j = 1, . . . , n. Then

K5 =

∣∣∣∣∣
(

f(a1, . . . , an) + f(b1, a2, . . . , an)
2

)
(57)

− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

−
n∑

j=1
(with j=k 6=1)

{
1(j−1∏

i=1

(bi − ai)
)
{ ∑

k∈{1,2,4}

(bj − aj)k−1

k!

× Bk(0)

(∫
j−1∏
i=1

[ai,bi]

(
∂k−1f

∂xk−1
j

(s1, . . . , sj−1, bj , aj+1, . . . , an)

−∂k−1f

∂xk−1
j

(s1, . . . , sj−1, aj , aj+1, . . . , an)

)
ds1 · · · dsj−1

)}}∣∣∣∣∣
≤ 1

1440

√
101

30030

{
n∑

j=1

[
(bj − aj)6

∥∥∥∥∂6f

∂x6
j

(. . . , aj+1, . . . , an)
∥∥∥∥
∞,

j∏
i=1

[ai,bi]

]}
.

ii) Assume

∂6f

∂x6
j

(. . . , aj+1, . . . , an) ∈ L2

(
j∏

i=1

[ai, bi]

)
,
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all j = 1, . . . , n. Then

K5 ≤
1

1440

√
101

30030

{
n∑

j=1

[
(bj − aj)11/2

(j−1∏
i=1

(bi − ai)
)−1/2

(58)

×

∥∥∥∥∥∂6f

∂x6
j

(. . . , aj+1, . . . , an)

∥∥∥∥∥
2,

j∏
i=1

[ai,bi]

]}
.

Proof. By Theorem 6. �

Theorem 23. Suppose Assumptions 1 or 2 or 3, case m = 6, all xj = bj,

j = 1, . . . , n.

i) Assume

∂6f

∂x6
j

(. . . , bj+1, . . . , bn) ∈ L∞

(
j∏

i=1

[ai, bi]

)
,

all j = 1, . . . , n. Then

Λ5 =

∣∣∣∣∣
(

f(b1, . . . , bn) + f(a1, b2, . . . , bn)
2

)
(59)

− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

−
∑
j=1

(with j=k 6=1)

{
1(j−1∏

i=1

(bi − ai)
)
{ ∑

k∈{1,2,4}

(bj − aj)k−1

k!

×Bk(1)

(∫
j−1∏
i=1

[ai,bi]

(
∂k−1f

∂xk−1
j

(s1, . . . , sj−1, bj , bj+1, . . . , bn)

−∂k−1f

∂xk−1
j

(s1, . . . , sj−1, aj , bj+1, . . . , bn)

)
ds1 · · · dsj−1

)}}∣∣∣∣∣
≤ 1

1440

√
101

30030

{
n∑

j=1

[
(bj − aj)6

∥∥∥∥∂6f

∂x6
j

(. . . , bj+1, . . . , bn)
∥∥∥∥
∞,

j∏
i=1

[ai,bi]

]}
.

ii) Assume

∂6f

∂x6
j

(. . . , bj+1, . . . , bn) ∈ L2

(
j∏

i=1

[ai, bi]

)
,
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all j = 1, . . . , n. Then

Λ5 ≤
1

1440

√
101

30030

{
n∑

j=1

[
(bj − aj)11/2

(j−1∏
i=1

(bi − ai)
)−1/2

(60)

×

∥∥∥∥∥∂6f

∂x6
j

(. . . , bj+1, . . . , bn)

∥∥∥∥∥
2,

j∏
i=1

[ai,bi]

]}
.

Proof. By Theorem 6. �

Theorem 24. Suppose Assumptions 1 or 2 or 3, case m = 6, all xj = aj+bj

2 ,

j = 1, . . . , n.

i) Assume

∂6f

∂x6
j

(
. . . ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)
∈ L∞

(
j∏

i=1

[ai, bi]

)
,

all j = 1, . . . , n. Then

M5 =

∣∣∣∣∣f
(

a1 + b1

2
, . . . ,

an + bn

2

)
(61)

− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

−
n∑

j=1

{
1(j−1∏

i=1

(bi − ai)
)
{ ∑

k∈{2,4}

(bj − aj)k−1

k!

×Bk

(
1
2

)(∫
j−1∏
i=1

[ai,bi]

(
∂k−1f

∂xk−1
j

(
s1, . . . , sj−1, bj ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)

−∂k−1f

∂xk−1
j

(
s1, . . . , sj−1, aj ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

))
ds1 · · · dsj−1

)}}∣∣∣∣∣
≤ 1

46080

√
7081
2145

{
n∑

j=1

[
(bj − aj)6

×
∥∥∥∥∂6f

∂x6
j

(
. . . ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)∥∥∥∥
∞,

j∏
i=1

[ai,bi]

]}
.
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ii) Assume

∂6f

∂x6
j

(
. . . ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)
∈ L2

(
j∏

i=1

[ai, bi]

)
,

all j = 1, . . . , n. Then

M5 ≤
1

46080

√
7081
2145

{
n∑

j=1

[
(bj − aj)11/2

(j−1∏
i=1

(bi − ai)
)−1/2

(62)

×

∥∥∥∥∥∂6f

∂x6
j

(
. . . ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)∥∥∥∥∥
2,

j∏
i=1

[ai,bi]

]}
.

Proof. By Theorem 6. �

At the end we give a simplified special case of Theorems 3 and 4.

Theorem 25. Suppose Assumptions 1 or 2 or 3. We further assume that

∂`f

∂x`
j

(. . . , bj , . . .) =
∂`f

∂x`
j

(. . . , aj , . . .), (63)

for all j = 1, . . . , n and all ` = 0, 1, . . . ,m − 2. Here m,n ∈ N, xi ∈ [ai, bi], i =

1, 2, . . . , n.

i) In particular we assume that

∂mf

∂xm
j

(. . . , xj+1, . . . , xn) ∈ L∞

(
j∏

i=1

[ai, bi]

)
,

for any (xj+1, . . . , xn) ∈
n∏

i=j+1

[ai, bi], all j = 1, . . . , n. Then

∣∣∣∣∣∣∣∣f(x1, . . . , xn)− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

∣∣∣∣∣∣∣∣ (64)

≤ 1
m!

{
n∑

j=1

[
(bj − aj)m

(√
(m!)2

(2m)!
|B2m|+ B2

m

(
xj − aj

bj − aj

))

×

∥∥∥∥∥∂mf

∂xm
j

(. . . , xj+1, . . . , xn)

∥∥∥∥∥
∞,

j∏
i=1

[ai,bi]

]}
,

true ∀(x1, . . . , xn) ∈
n∏

i=1

[ai, bi].
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ii) Assume

∂mf

∂xm
j

(. . . , xj+1, . . . , xn) ∈ L2

(
j∏

i=1

[ai, bi]

)
,

for any (xj+1, . . . , xn) ∈
n∏

i=j+1

[ai, bi], for all j = 1, . . . , n. Then

∣∣∣∣∣∣∣∣f(x1, . . . , xn)− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

∣∣∣∣∣∣∣∣ (65)

≤ 1
m!

{
n∑

j=1

[
(bj − aj)m− 1

2

(j−1∏
i=1

(bi − ai)
)−1/2

(√
(m!)2

(2m)!
|B2m|+B2

m

(
xj − aj

bj − aj

))

×

∥∥∥∥∥∂mf

∂xm
j

(. . . , xj+1, . . . , xn)

∥∥∥∥∥
2,

j∏
i=1

[ai,bi]

]}
,

true ∀(x1, . . . , xn) ∈
n∏

i=1

[ai, bi].

Proof . Clearly here Aj = 0, j = 1, . . . , n. Then proof is obvious. �

Similarly as in Theorem 25 we obtain

Theorem 26. Suppose Assumptions 1 or 2 or 3, case m = 6, all xj = aj,

j = 1, . . . , n. Also assume

∂`f

∂x`
j

(. . . , bj , aj+1, . . . , an) =
∂`f

∂x`
j

(. . . , aj , aj+1, . . . , an), (66)

for all j = 1, . . . , n, and all ` = 0, 1, 3.

i) Assume

∂6f

∂x6
j

(. . . , aj+1, . . . , an) ∈ L∞

(
j∏

i=1

[ai, bi]

)
, all j = 1, . . . , n.

Then ∣∣∣∣∣∣∣∣f(a1, . . . , an)− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

∣∣∣∣∣∣∣∣ (67)

≤ 1
1440

√
101

30030


n∑

j=1

[
(bj − aj)6

∥∥∥∥∂6f

∂x6
j

(. . . , aj+1, . . . , an)
∥∥∥∥
∞,

j∏
i=1

[ai,bi]

] .
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ii) Assume

∂6f

∂x6
j

(. . . , aj+1, . . . , an) ∈ L2

(
j∏

i=1

[ai, bi]

)
, all j = 1, . . . , n.

Then ∣∣∣∣∣∣∣∣f(a1, . . . , an)− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

∣∣∣∣∣∣∣∣ (68)

≤ 1
1440

√
101

30030

{
n∑

j=1

[
(bj − aj)11/2

(j−1∏
i=1

(bi − ai)
)−1/2

×

∥∥∥∥∥∂6f

∂x6
j

(. . . , aj+1, . . . , an)

∥∥∥∥∥
2,

j∏
i=1

[ai,bi]

]}
.

Proof . By Theorem 22. �

Theorem 27. Suppose Assumptions 1 or 2 or 3, case m = 6, all xj = bj,

j = 1, . . . , n. Also assume

∂`f

∂x`
j

(. . . , bj , bj+1, . . . , bn) =
∂`f

∂x`
j

(. . . , aj , bj+1, . . . , bn), (69)

for all j = 1, . . . , n and all ` = 0, 1, 3.

i) Assume

∂6f

∂x6
j

(. . . , bj+1, . . . , bn) ∈ L∞

(
j∏

i=1

[ai, bi]

)
, all j = 1, . . . , n.

Then ∣∣∣∣∣∣∣∣f(b1, . . . , bn)− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

∣∣∣∣∣∣∣∣ (70)

≤ 1
1440

√
101

30030


n∑

j=1

[
(bj − aj)6

∥∥∥∥∂6f

∂x6
j

(. . . , bj+1, . . . , bn)
∥∥∥∥
∞,

j∏
i=1

[ai,bi]

] .

ii) Assume

∂6f

∂x6
j

(. . . , bj+1, . . . , bn) ∈ L2

(
j∏

i=1

[ai, bi]

)
, all j = 1, . . . , n.
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Then ∣∣∣∣∣∣∣∣f(b1, . . . , bn)− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

∣∣∣∣∣∣∣∣ (71)

≤ 1
1440

√
101

30030

{
n∑

j=1

[
(bj − aj)11/2

(j−1∏
i=1

(bi − ai)
)−1/2

×

∥∥∥∥∥∂6f

∂x6
j

(. . . , bj+1, . . . , bn)

∥∥∥∥∥
2,

j∏
i=1

[ai,bi]

]}
.

Proof . By Theorem 23. �

Theorem 28. Suppose Assumptions 1 or 2 or 3, case m = 6, all xj = aj+bj

2 ,

j = 1, . . . , n. Also assume

∂`f

∂x`
j

(
. . . , bj ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)
(72)

=
∂`f

∂x`
j

(
. . . , aj ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)
,

for all j = 1, . . . , n and ` = 1, 3.

i) Assume

∂6f

∂x6
j

(
. . . ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)
∈ L∞

(
j∏

i=1

[ai, bi]

)
,

all j = 1, . . . , n. Then∣∣∣∣∣∣∣∣f
(

a1 + b1

2
, . . . ,

an + bn

2

)
− 1

n∏
i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

∣∣∣∣∣∣∣∣ (73)

≤ 1
46080

√
7081
2145

{
n∑

j=1

[
(bj − aj)6

×

∥∥∥∥∥∂6f

∂x6
j

(
. . . ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)∥∥∥∥∥
∞,

j∏
i=1

[ai,bi]

]}
.

ii) Assume

∂6f

∂x6
j

(
. . . ,

aj+1 + bj+1

2
, . . . ,

an + bn

2

)
∈ L2

(
j∏

i=1

[ai, bi]

)
,
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all j = 1, . . . , n. Then∣∣∣∣∣∣∣∣f
(

a1 + b1

2
, . . . ,

an + bn

2

)
− 1

n∏
i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

∣∣∣∣∣∣∣∣ (74)

≤ 1
46080

√
7081
2145

{
n∑

j=1

[
(bj − aj)11/2

(j−1∏
i=1

(bi − ai)
)−1/2

×

∥∥∥∥∥∂6f

∂x6
j

(
. . . ,

aj+1 + bj+1

2
, . . . ,

aj + bn

2

)∥∥∥∥∥
2,

j∏
i=1

[ai,bi]

]}
.

Proof . By Theorem 24. �

Comment 1. One can apply similar conditions to (63) for the cases of

m = 2, 3, 4, 5 and simplify a lot the results of Theorems 10, 11 and of Theorems

13-21, exactly as we did in Theorems 25-28 for general m ∈ N and m = 6, etc.

3. Sharpness

We need to include

Theorem 29. Suppose Assumptions 1 or 2 or 3. Let Ef
m(x1, . . . , xn) as in

(6), m ∈ N. In particular we assume that

∂mf

∂xm
j

 j︷︸︸︷
· · · , xj+1, . . . , xn

 ∈ L∞

(
j∏

i=1

[ai, bi]

)
,

for any (xj+1, . . . , xn) ∈
n∏

i=j+1

[ai, bi], all j = 1, . . . , n. Then

|Ef
m(x1, . . . , xn)| (75)

≤ 1
m!

n∑
j=1

[
(bj − aj)m

(∫ 1

0

∣∣∣∣Bm

(
xj − aj

bj − aj

)
−Bm(tj)

∣∣∣∣dtj

)

×

∥∥∥∥∥∂mf

∂xm
j

(. . . , xj+1, . . . , xn)

∥∥∥∥∥
∞,

j∏
i=1

[ai,bi]

]
.

Proof . By Remark 4, see there (55) in [8]. �

We give the important
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Theorem 30. Suppose Assumptions 1 or 2 or 3. Let Ef
m(x1, . . . , xn) as in

(6), m ∈ N. In particular we assume that

∂mf

∂xm
j

 j︷︸︸︷
· · · , xj+1, . . . , xn

 ∈ L∞

(
j∏

i=1

[ai, bi]

)
,

for any (xj+1, . . . , xn) ∈
n∏

i=j+1

[ai, bi], all j = 1, . . . , n. And also assume ∂mf
∂xm

j
∈

L∞
( n∏
i=1

[ai, bi]
)
, j = 1, . . . , n− 1. Call

Dm(f) := max
1≤j≤n

{∥∥∥∥∂mf

∂xm
j

∥∥∥∥
∞

}
. (76)

Then

|Ef
m(x1, . . . , xn)| (77)

≤ Dm(f)
m!

n∑
j=1

[
(bj − aj)m

(∫ 1

0

∣∣∣∣Bm

(
xj − aj

bj − aj

)
−Bm(tj)

∣∣∣∣dtj

)]
.

Comment 2. We see that (see also [9])

I1(λj) :=
∫ 1

0

|B1(λj)−B1(tj)|dtj =
1
4

+

(
xj −

(aj+bj

2

))2
(bj − aj)2

, (78)

where λj = xj−aj

bj−aj
, j = 1, . . . , n. Notice that

max
λj∈[0,1]

I1(λj) = I1(0) = I1(1) =
1
2
, (79)

i.e. when xj = aj or bj .

Thus we have

Theorem 31. All here assumed as in Theorem 30 when m = 1. Then∣∣∣∣∣∣∣∣f(x1, . . . , xn)− 1
n∏

i=1

(bi − ai)

∫
n∏

i=1
[ai,bi]

f(s1, . . . , sn)ds1 · · · dsn

∣∣∣∣∣∣∣∣ (80)

≤ D1(f)
2

( n∑
j=1

(bj − aj)
)

.
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Inequality (80) is sharp, that is attained by f1(s1, . . . , sn) :=
n∑

j=1

(sj−aj) when xj = aj,

j = 1, . . . , n, and by f2(s1, . . . , sn) :=
n∑

j=1

(bj − sj) when xj = bj, j = 1, . . . , n.

Proof . i) Case of xj = aj , j = 1, . . . , n. Then ∂f1
∂xj

= 1, j = 1, . . . , n, i.e.∥∥ ∂f1
∂xj

∥∥
∞ = 1 and D1(f1) = 1. Clearly then we have

L.H.S.(80) = R.H.S.(80) =
1
2

n∑
j=1

(bj − aj),

proving sharpness.

ii) Case of xj = bj , j = 1, . . . , n. Then ∂f2
∂xj

= −1, j = 1, . . . , n, i.e.
∥∥ ∂f2

∂xj

∥∥
∞ =

1 and D1(f2) = 1. Clearly we have

L.H.S.(80) = R.H.S.(80) =
1
2

n∑
j=1

(bj − aj),

proving again sharpness. �

Comment 3. We see that ([9])

I2(λj) :=
∫ 1

0

|B2(λj)−B2(tj)|dtj (81)

=
8
3
δ3
j (x)− δ2

j (x) +
1
12

, j = 1, . . . , n,

where

δj(xj) :=

∣∣xj − aj+bj

2

∣∣
bj − aj

, xj ∈ [aj , bj ].

Also from [9] we have that

max
0≤λj≤1

I2(λj) = I2(0) = I2(1) =
1
6

, (82)

i.e. when xj = aj or bj .

We continue with

Theorem 32. All here assumed as in Theorem 30 when m = 2. Then

|Ef
2 (x1, . . . , xn)| ≤ D2(f)

12

n∑
j=1

(bj − aj)2. (83)

Inequality (83) is sharp, that is attained by f1(s1, . . . , sn) :=
n∑

j=1

(sj − aj)2 when xj =

aj, j = 1, . . . , n and by f2(s1, . . . , sn) :=
∑n

j=1(sj − bj)2 when xj = bj, j = 1, . . . , n.
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Proof . i) Case of xj = aj , j = 1, . . . , n. Then ∂f1
∂xj

= 2(sj − aj), ∂2f1
∂x2

j
= 2,

and
∥∥∂2f1

∂x2
j

∥∥
∞ = 2, with D2(f) = 2. Clearly then we have

L.H.S.(83) = R.H.S.(83) =
1
6

n∑
j=1

(bi − aj)2,

proving sharpness.

ii) Case of xj = bj , j = 1, . . . , n. Then ∂f2
∂xj

= 2(sj − bj), ∂2f2
∂x2

j
= 2, and∥∥∂2f2

∂x2
j

∥∥
∞ = 2, with D2(f) = 2. Clearly again we have

L.H.S.(83) = R.H.S.(83) =
1
6

n∑
j=1

(bi − aj)2,

proving again sharpness. �

Comment 4. By [2] we have that

max
0≤λj≤1

I3(λj) = I3

(
3−

√
3

6

)
= I3

(
3 +

√
3

6

)
=
√

3
36

, (84)

where

I3(λj) :=
∫ 1

0

|B3(λj)−B3(tj)|dtj , j = 1, . . . , n. (85)

Consequently we have

Theorem 33. All here assumed as in Theorem 30 when m = 3. Then

|Ef
3 (x1, . . . , xn)| ≤

√
3D3(f)
216

n∑
j=1

(bj − aj)3. (86)

Comment 5. We call

Im(λj) :=
∫ 1

0

|Bm(λj)−Bm(tj)|dtj , (87)

where λj := xj−aj

bj−aj
, j = 1, . . . , n, m ∈ N. In [6] we found that

max
λj∈[0,1]

I4(λj) = I4(0) = I4(1) =
1
30

. (88)

So we give

Theorem 34. All here assumed as in Theorem 30 when m = 4. Then

|Ef
4 (x1, . . . , xn)| ≤ D4(f)

720

 n∑
j=1

(bj − aj)4

 . (89)
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Inequality (89) is sharp, that is attained by f1(s1, . . . , sn) :=
n∑

j=1

(sj − aj)4 when

xj = aj, j = 1, . . . , n and by f2(s1, . . . , sn) :=
n∑

j=1

(sj−bj)4 when xj = bj, j = 1, . . . , n.

Proof . Case of xj = aj , j = 1, . . . , n. Then

∂f1

∂xj
= 4(sj − aj)3,

∂2f1

∂x2
j

= 12(sj − aj)2,
∂3f1

∂x3
j

= 24(sj − aj),
∂4f1

∂x4
j

= 24,

with
∥∥∂4f1

∂x4
j

∥∥
∞ = 24 and D4(f) = 24. Clearly then we have

L.H.S.(89) = R.H.S.(89) =
1
30

 n∑
j=1

(bj − aj)4

 ,

proving sharpness.

ii) Case xj = bj , j = 1, . . . , n. Then

∂f2

∂xj
= 4(sj − bj)3,

∂2f2

∂x2
j

= 12(sj − bj)2,
∂3f2

∂x3
j

= 24(sj − bj),
∂4f2

∂x4
j

= 24,

with D4(f2) = 24. Clearly again we have

L.H.S.(89) = R.H.S.(89) =
1
30

 n∑
j=1

(bj − aj)4

 ,

proving again sharpness. �

Comment 6. Inequality (75) is sharper than (9), however the integral

Im(λj) (see (87)) in its right hand side, is difficult to compute and find its maxi-

mum value for m ≥ 5. That is why (9) is more practical, also less restrictive, and we

used it extensively here in the applications.
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LII, Number 1, March 2007

BOUNDARY VALUE PROBLEMS FOR SYSTEMS OF SECOND
ORDER DIFFERENTIAL EQUATIONS OF MIXED TYPE

RĂZVAN V. GABOR

Abstract. Applying the Perov’s fixed point theorem is approached bound-

ary value problems for systems of second order differential equations of

mixed type.

1. Introduction

The aim of this paper is to present some results about the existence and

uniqueness, subsolutions and suprasolutions, continuity, monotony and data depen-

dence of the solution of (1)+(2). We apply the W.P.O’s technique as in [12].

Consider the problem

−x′′(t) = f(t, x(t), x(g(t)), x(h(t))), t ∈ [a, b] (1) l1(x(t)) = α (t) , for t ∈ [a1, a]

l2(x(t)) = β (t) , for t ∈ [b, b1]
(2)

where α ∈ C([a1, a],Rm), β ∈ C([b, b1],Rm), g, h ∈ C([a, b], [a1, b1]) and a1 ≤ a <

b ≤ b1.

Here,

l1 : C1([a1, a],Rm) −→ C([a1, a],Rm)

and

l2 : C1([b, b1],Rm) −→ C([b, b1],Rm)

Received by the editors: 14.03.2006.

2000 Mathematics Subject Classification. 34K10, 47H10.

Key words and phrases. boundary value problem, mixed type equation, Green’s function, Picard operator,

Perov’s fixed point theorem, Weakly Picard operator, inequalities.

63
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are linear functions.

We suppose that the boundary value problem
−u′′ = χ, t ∈ [a, b]

l1(u(t)) = α (t) , for t ∈ [a1, a]

l2(u(t)) = β (t) , for t ∈ [b, b1]

(3)

has a unique solution u ∈ C([a1, b1],Rm)∩ C2([a, b],Rm),

u (t) =



ϕ(t), t ∈ [a1, a]

w(α, β)(t) +

b∫
a

G(t, s)χ (s) ds, t ∈ [a, b]

ψ(t), t ∈ [b, b1]

and there exist

G ∈ C ([a, b]× [a, b] ,Mm,m (R)) ,

where G is the corresponding Green function and

w(α, β)(t) =
t− a

b− a
ψ (b) +

b− t

b− a
ϕ (a) , t ∈ [a, b].

Consider the following conditions:

(C1) g, h ∈ C([a, b], [a1, b1]); α ∈ C([a1, a],Rm), β ∈ C([b, b1],Rm);

(C2) f = (f1, f2, ..., fm) ∈ C([a, b]× R3m,Rm);

(C3) There exist a matrix Lf ∈Mm,m (R+) such that

∥∥f(t, u1, u2, u3)− f(t, v1, v2, v3)
∥∥

Rm ≤ Lf (
∥∥u1 − v1

∥∥
Rm+

∥∥u2 − v2
∥∥

Rm
+

∥∥u3 − v3
∥∥

Rm
)

∀t ∈ [a, b], ui, vi ∈ Rm, i = 1, 3,

where

‖u‖Rm :=


|u1|
...

|um|


is the vectorial norm on Rm.
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In this study we will use the Weakly Picard Operator’s technique and the

Perov’s fixed point theorem(see [1] and [8]). A variant of this theorem on vector

valued normed spaces and the above vectorial norm is used in [1].

We need the following notions and notations:

Let (X, d) be a generalized metric space, d(x, y) ∈ Rm and A : X → X an

operator.

We shall use:

FA := {x ∈ X | A(x) = x}-the fixed point set of the operator A;

I(A) := {Y ⊂ X | A(Y ) ⊂ Y, Y 6= ∅}-the family of the nonempty invariant sub-

sets of A;

An+1 := A ◦An; A0 = 1X ; A1 = A; n ∈ N.

Definition 1. ([10]) An operator A is Weakly Picard Operator(W.P.O.) if the se-

quence (An(x))n∈N converges , for all x ∈ X and the limit (which may depend on x)

is a fixed point of A.

Definition 2. ([10]) If the operator A is W.P.O. and FA = {x∗} , then by definition,

the operator A is Picard Operator(P.O.).

Definition 3. ([10]) If A is W.P.O., then we consider the operator A∞ defined by

A∞ : X → X, A∞(x) := lim
n→∞

An(x).

2. Existence and uniqueness

The problem (1)+(2) is equivalent in C([a1, b1],Rm)∩ C2([a, b],Rm) with

the fixed point equation

x(t) =



ϕ(t), t ∈ [a1, a]

w(α, β)(t) +

b∫
a

G(t, s)f(s, x(s), x(g(s)), x(h(s)))ds, t ∈ [a, b]

ψ(t), t ∈ [b, b1]

(4)

where

w(α, β)(t) =
t− a

b− a
ψ (b) +

b− t

b− a
ϕ (a) , t ∈ [a, b].
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Then, in C([a1, b1],Rm)∩ C2([a, b],Rm), the equation (1) is equivalent with

x(t) =



x(t), t ∈ [a1, a]

w(x |[a1,a], x |[b,b1])(t) +

b∫
a

G(t, s)f(s, x(s), x(g(s)), x(h(s)))ds, t ∈ [a, b]

x(t), t ∈ [b, b1]
(5)

Consider the following operators:

Bf , Ef : C([a1, b1],Rm) −→ C([a1, b1],Rm)

where

Bf (x)(t) := second part of (4)

Ef (x)(t) := second part of (5).

Consider the functional spaces

X := C([a1, b1],Rm),

Xϕ,ψ := {x ∈ X : x |[a1,a]= ϕ, x |[b,b1]= ψ}.

Then

X = ∪
ϕ∈C([a1,a],Rm)
ψ∈C([b,b1],Rm)

Xϕ,ψ is a partition of X.

Lemma 4. (see [12]) We suppose that the conditions (C1), (C2), (C3) are satisfied.

Then:

(a) Bf (X) ⊂ Xϕ,ψ and Bf (Xϕ,ψ) ⊂ Xϕ,ψ;

(b) Bf |Xϕ,ψ= Ef |Xϕ,ψ .

Proof. Is similar as in [12] taking X = C([a1, b1],Rm).

Let

MG = (‖Gij‖)i,j=1,m ∈Mm,m (R+) ,

where ‖Gij‖ = max {|Gij (x, s)| : (x, s) ∈ [a, b]× [a, b]} , ∀i, j = 1,m.

and

Q = 3 (b− a)MG · Lf ∈Mm,m (R+) .
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We have the following existence and uniqueness theorem:

Theorem 5. We suppose that:

(i) the conditions (C1)− (C3) are satisfied;

(ii) Qn −→ 0 as n −→∞.

Then the problem (1)+(2) has a unique solution

x∗f = (x∗
1

f , ..., x
∗m
f ) ∈ C([a1, b1],Rm) ∩ C2([a, b],Rm).

Proof. Consider the Banach space X =C([a1, b1],Rm) with generalized Chebyshev’s

norm

‖u‖C :=


‖u1‖C

...

‖um‖C

 , where ‖ui‖C := max
a1≤t≤b1

|ui (t)| , ∀i = 1,m.

The problem (1) + (2) is equivalent on X with the fixed point equation:

Bf (x) = x.

We prove now that the operator Bf = (Bf1 , ..., Bfm) is Picard Operator. For

y, z ∈ X we have:

‖Bf (y) (t)−Bf (z) (t)‖Rm ≤

≤
b∫
a

‖G(t, s) [f (s, y (s) , y (g (s)) , y (h (s)))− f (s, z (s) , z (g (s)) , z (h (s)))]‖
Rm
ds ≤

≤
b∫
a

MG · Lf · [‖y (s)− z (s)‖Rm + ‖y (g (s))− z (g (s))‖Rm +

+ ‖y (h (s))− z (h (s))‖Rm ] ds ≤

≤ 3 (b− a)MGLf · ‖y − z‖C = Q · ‖y − z‖C , ∀t ∈ [a, b].

Then,

‖Bf (y)−Bf (z)‖C ≤ Q ‖y − z‖C
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and by (ii), the operator Bf is Q−contraction. From the Perov’s fixed point theorem

we infer that the operator Bf is P.O. and has a unique fixed point

x∗f = (x∗
1

f , ..., x
∗m
f ) ∈ X.

Since f is continuous, deriving (4) two times by t, we infer that

x∗f ∈ C2([a, b],Rm)

is the unique solution of (1)+(2).

Remark 6. Since from Theorem 5 we have that the operator Bf is P.O. and

because

Bf |Xϕ,ψ= Ef |Xϕ,ψ ,

X := C([a1, b1],Rm) = ∪
ϕ,ψ

Xϕ,ψ, Xϕ,ψ ∈ I(Ef )

we infer that the operator Ef is W.P.O. and

FEf ∩Xϕ,ψ = {x∗ϕ,ψ}, ∀ϕ ∈ C([a1, a],Rm), ∀ψ ∈ C([b, b1],Rm)

where x∗ϕ,ψ is the unique solution of the problem (1) + (2).

3. Data dependence

In this paragraph we shall study the subsolutions and suprasolutions of

equation (1).

For the problem (1) + (2) we have:

Theorem 7. We suppose that:

(a) the conditions (C1)− (C3) are satisfied;

(b) Qn −→ 0 as n −→∞;

(c) the operator f(t, •, •, •):R3m −→ Rm is increasing,where on Rm we have the

order relation:

x ≤ y ⇐⇒ xi ≤ yi,∀i = 1,m.
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Let x∗ = (x∗
1
, ..., x∗

m

) be a solution of (1) and

y∗ = (y∗1 , ..., y
∗
m) a solution of the inequality:

−y′′(t) ≤ f(t, y(t), y(g(t)), y(h(t))), ∀t ∈ [a, b].

Then

y∗(t) ≤ x∗(t), ∀t ∈ [a1, a] ∪ [b, b1] =⇒ y
∗ ≤ x∗. (∗∗)

Proof. In terms of the operator Ef we have

x = Ef (x), y ≤ Ef (y)

and

w(y |[a1,a], y |[b,b1]) ≤ w(x |[a1,a], x |[b,b1]).

From (c) we have that the operator E∞f is increasing and

y ≤ E∞f (y) = E∞f (w̃(y)) ≤ E∞f (w̃(x)) = x =⇒ y ≤ x,

where

w̃(z)(t) :=


z(t), t ∈ [a1, a]

w(z |[a1,a], z |[b,b1])(t), t ∈ [a, b]

z(t), t ∈ [b, b1].

,

for z ∈ C([a1, b1],Rm). According to Theorem 5 this lead to the inequality (∗∗) .

Now we shall study the monotony of the solution of the problem (1) + (2)

with respect to ϕ, ψ and f. In this aim we need the following abstract result:

Lemma 8. (see [10]) Let (X, d,≤) be an ordered generalized metric space with

d (x, y) ∈ Rm and A,B,C : X −→ X be such that:

(i) A ≤ B ≤ C;

(ii) the operators A,B,C are W.P.O.’ s;

(iii) the operator B is increasing.

Then x ≤ y ≤ z =⇒ A∞(x) ≤ B∞(y) ≤ C∞(z).
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Theorem 9. Let f i ∈ C([a, b]×R3m,Rm), i = 1, 3, g and h as in the Theorem 5.

We suppose that:

(a) f2(t, •, •, •) : R3m −→ Rm is increasing;

(b) f1 ≤ f2 ≤ f3.

Let xi be a solution of the system:(
−xi

)′′
(t) = f i(t, x(t), x(g(t)), x(h(t))), t ∈ [a, b], i = 1, 3.

If x1(t) ≤ x2(t) ≤ x3(t), ∀t ∈ [a1, a] ∪ [b, b1] then x1 ≤ x2 ≤ x3.

Proof. From Remark 6 we have that the operators Ef1 , Ef2 , Ef3 are W.P.O.’ s.

From condition (a) we infer that the operator Ef2 is increasing.

From (b) it follows that Ef1 ≤ Ef2 ≤ Ef3 .

But x1 = E∞f1(w̃(x1)), x2 = E∞f2(w̃(x2)), x3 = E∞f3(w̃(x3)).

Using Lemma 9 we have that

x1 ≤ x2 ≤ x3.

Now, let f1, f2 ∈ C([a, b]×R3m,Rm) and Lf1 , Lf2 ∈Mm,m (R+) as in the condition

(C3). Consider Lf ∈Mm,m (R+) with

Lf (i, j) = max
(
Lf1 (i, j) , Lf2 (i, j)

)
, ∀i, j = 1,m.

According to the result of Theorem 5, let x(•;ϕ,ψ, f) the notation for the unique

solution of (4). We investigate now, the dependence of x(•;ϕ,ψ, f) by ϕ, ψ, f .

Let Q1 = 3 (b− a)MG · Lf1, Q2 = 3 (b− a)MG · Lf2 and Q = 3 (b− a)MG · Lf
being in Mm,m (R+) . We will denote Q = max {Q1, Q2} (only formally).

Theorem 10. Let α1, α2 ∈ C([a1, a],Rm), β1, β2 ∈ C([b, b1],Rm), ϕi, ψi, i = 1, 2,

and f1, f2 as in the Theorem 5. We suppose that:

(i) there exists η1 ∈ Rm+ such that∥∥ϕ1(t)− ϕ2(t)
∥∥

Rm ≤ η1, ∀t ∈ [a1, a]

and ∥∥ψ1(t)− ψ2(t)
∥∥

Rm ≤ η1, ∀t ∈ [b, b1],
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(ii) there exists η2 ∈ Rm+ such that∥∥f1(t, u1, u2, u3)− f2(t, u1, u2, u3)
∥∥

Rm ≤ η2, ∀t ∈ [a, b], ∀u1, u2, u3 ∈ Rm.

Then∥∥x(•;ϕ1, ψ1, f1)− x(•;ϕ2, ψ2, f2)
∥∥
C
≤ (Im −Q)−1 · (2η1 +MG (b− a) · η2) .

Proof. Consider the operators Bϕ1,ψ1,f1 and Bϕ2,ψ2,f2 as in the Theorem 5. It

follows that∥∥Bϕi,ψi,fi(x)−Bϕi,ψi,fi(y)
∥∥
C
≤ Q ‖x− y‖C , ∀x, y, i = 1, 2.

Moreover, we have∥∥Bϕ1,ψ1,f1(x)(t)−Bϕ2,ψ2,f2(x)(t)
∥∥

Rm ≤
∥∥ϕ1(a)− ϕ2(a)

∥∥
Rm +

∥∥ψ1(b)− ψ2(b)
∥∥

Rm +

+

b∫
a

∥∥G(t, s)·
[
f1(s, x(s), x(g(s)), x(h(s)))− f2(s, x(s), x(g(s)), x(h(s)))

]
ds

∥∥
Rm

≤

≤ 2η1 +MG (b− a) · η2, ∀t ∈ [a, b].

Since ∥∥x∗(•;ϕ1, ψ1, f1)− x∗(•;ϕ2, ψ2, f2)
∥∥
C

=

=
∥∥Bϕ1,ψ1,f1(x∗(•;ϕ1, ψ1, f1))−Bϕ2,ψ2,f2(x∗(•;ϕ2, ψ2, f2))

∥∥
C
≤

≤
∥∥Bϕ1,ψ1,f1(x∗(•;ϕ1, ψ1, f1))−Bϕ1,ψ1,f1(x∗(•;ϕ2, ψ2, f2))

∥∥
C

+

+
∥∥Bϕ1,ψ1,f1(x∗(•;ϕ2, ψ2, f2))−Bϕ2,ψ2,f2(x∗(•;ϕ2, ψ2, f2))

∥∥
C
≤

≤ Q ·
∥∥x∗(•;ϕ1, ψ1, f1)− x∗(•;ϕ2, ψ2, f2)

∥∥
C

+ 2η1 +MG (b− a) · η2,

and because Qn −→ 0 as n −→∞ imply that

(Im −Q)−1 ∈Mm,m (R+) ,

we obtain,∥∥x(•;ϕ1, ψ1, f1)− x(•;ϕ2, ψ2, f2)
∥∥
C
≤ (Im −Q)−1 · (2η1 +MG (b− a) · η2) .
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Corollary 11. Let ϕi, ψi, f i, i ∈ N and ϕ, ψ, f be such in the Theorem 10. Let

Q,Qi ∈ Mm,m (R+) , i ∈ N as above such that exist Qi = max {Q,Qi} , ∀i ∈ N. We

suppose that:

Q
n

i −→ 0 as n −→∞, ∀i ∈ N and

ϕi
unif−→ ϕ as i −→∞;

ψi
unif−→ ψ as i −→∞;

f i
unif−→ f as i −→∞.

Then x(•;ϕi, ψi, f i) unif−→ x(•;ϕ,ψ, f) as i −→∞.

4. Smooth dependence by parameter

In this section we present the dependence by parameter λ of the solution of

problem (6) + (7).

Consider the following boundary value problem with parameter:

−x′′(t;λ) = f(t, x(t;λ), x(g(t);λ), x(h(t);λ);λ), t ∈ [a, b], λ ∈ [c, d] ⊂ R (6) l1(x(t)) = α (t) , for t ∈ [a1, a]

l2(x(t)) = β (t) , for t ∈ [b, b1]
(7)

We suppose that:

(D1) g, h ∈ C([a, b], [a1, b1]);

(D2) f = (f1, f2, ..., fm) ∈ C1([a, b]× R3m × [c, d] ,Rm);

(D3) There exist Lf ∈Mm,m (R+)such that:[(∣∣∣∣∂fi(t, u, v, w;λ)
∂uj

∣∣∣∣)
i,j=1,m.

]
Mmm(R)

≤ Lf ,

[(∣∣∣∣∂fi(t, u, v, w;λ)
∂vj

∣∣∣∣)
i,j=1,m.

]
Mmm(R)

≤ Lf ,

[(∣∣∣∣∂fi(t, u, v, w;λ)
∂wj

∣∣∣∣)
i,j=1,m.

]
Mmm(R)

≤ Lf ,

∀t ∈ [a, b], ∀u, v, w ∈ Rm, i = 1,m, j = 1,m, and λ ∈ [c, d] , in respect by the

componentwise order on Mm,m (R+) .

(D4) α ∈ C([a1, a],Rm), β ∈ C([b, b1],Rm).
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(D5) For Q = 3 (b− a)MG · Lf ∈Mm,m (R+) we have Qn −→ 0 as n −→∞.

In the above conditions, from Theorem 5 we have that the problem (6) + (7) has a

unique solution x∗(•;λ), for any λ ∈ [c, d] .

Now we prove that x∗(t; •) ∈ C1([c, d] ; Rm), for all t ∈ [a, b].

For this we consider the equation

−x′′(t;λ) = f(t, x(t;λ), x(g(t);λ), x(h(t);λ);λ), t ∈ [a, b], λ ∈ [c, d] (8)

The equation (8) is equivalent with the following system:

x(t;λ) =



x(t), t ∈ [a1, a]

w(ϕ,ψ)(t) +

b∫
a

G(t, s)f(s, x(s;λ), x(g(s);λ), x(h(s);λ);λ)ds,

t ∈ [a, b], λ ∈ [c, d]

x(t), t ∈ [b, b1]

(9)

where

w(α, β)(t) =
t− a

b− a
ψ (b) +

b− t

b− a
ϕ (a) , t ∈ [a, b].

Let X := C([a1, b1]× [c, d] ,Rm) with the Chebyshev norm

‖x‖C :=


‖x1‖C

...

‖xm‖C

 ∈ Rm+ .

Now we consider the operator

B :C([a1, b1]× [c, d] ,Rm) −→ C([a1, b1]× [c, d] ,Rm)

where

B(x)(t;λ) :=second part of (9)

Analogous as in Theorem 5 it probes that in the conditions (D1)−(D5) the operator

B is P.O., since

‖B(y)−B(z)‖C ≤ Q · ‖y − z‖C .
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This implies that B has a unique fixed point x∗.

We suppose that there exists ∂x∗

∂λ .

From relation (9) and condition (D3) we have:

∂x∗(t; λ)

∂λ
=



0, for t ∈ [a1, a]
b∫

a

G(t, s)·
(

∂fi(s, x
∗(s; λ), x∗(g(s); λ), x∗(h(s); λ); λ)

∂uj

)
i,j

· ∂x∗(s; λ)

∂λ
ds

+

b∫
a

G(t, s)·
(

∂fi(s, x
∗(s; λ), x∗(g(s); λ), x∗(h(s); λ); λ)

∂vj

)
i,j

· ∂x∗(g(s); λ)

∂λ
ds

+

b∫
a

G(t, s)·
(

∂fi(s, x
∗(s; λ), x∗(g(s); λ), x∗(h(s); λ); λ)

∂wj

)
i,j

· ∂x∗(h(s); λ)

∂λ
ds

+

b∫
a

G(t, s)·
(

∂fi(s, x
∗(s; λ), x∗(g(s); λ), x∗(h(s); λ); λ)

∂λ

)
i,j

ds, for t ∈ [a, b],

λ ∈ [c, d]

0, for t ∈ [b, b1]

This relation suggest us to consider the following operator

C :X ×X −→ X

C(x, y)(t;λ) :=

b∫
a

G(t, s)·
(
∂fi(s, x(s;λ), x(g(s);λ), x(h(s);λ);λ)

∂uj

)
i,j

· y(s;λ)ds+

+

b∫
a

G(t, s)·
(
∂fi(s, x(s;λ), x(g(s);λ), x(h(s);λ);λ)

∂vj

)
i,j

· y(g(s);λ)ds+

+

b∫
a

G(t, s)·
(
∂fi(s, x(s;λ), x(g(s);λ), x(h(s);λ);λ)

∂wj

)
i,j

· y(h(s);λ)ds+

+

b∫
a

G(t, s)·
(
∂fi(s, x(s;λ), x(g(s);λ), x(h(s);λ);λ)

∂λ

)
i,j

ds

∀t ∈ [a, b], λ ∈ [c, d] .
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C(x, y)(t;λ) = 0 for t ∈ [a1, a] ∪ [b, b1], λ ∈ [c, d] .

In this way we have the triangular operator

A: X ×X −→ X ×X,

A(x, y) = (B(x),C(x, y))

where B is a Picard operator and

C(x∗, •) : X −→ X

is Q− contraction.

Indeed, we have

∥∥C(x∗, u)(t;λ)−C(x∗, v)(t;λ)
∥∥

Rm ≤ Q · ‖u− v‖C , ∀t ∈ [a, b],∀λ ∈ [c, d] ,

which implies that

∥∥C(x∗, u)−C(x∗, v)
∥∥
C
≤ Q · ‖u− v‖C , ∀u, v ∈ X.

Since Qn −→ 0 as n −→ ∞, applying the Fiber Generalized Contraction Theorem

(see [16]), follows that A is P.O. and has a unique fixed point (x∗, y∗) ∈ X ×X.

So the sequences (
xn+1, yn+1

)
= (B(xn),C(xn, yn)) , n ∈N

converges uniformly (with respect to t ∈ [a1, b1], λ ∈ [c, d]) to (x∗, y∗)

for any x0, y0 ∈ C([a1, b1]× [c, d] ,Rm).

If we take x0 = 0 and y0 = ∂x0

∂λ = 0 then y1 = ∂x1

∂λ .

By induction we prove that

yn = ∂xn

∂λ ,∀n ∈ N.

Thus xn
unif−→ x∗, as n −→∞

and ∂xn

∂λ

unif−→ y∗, as n −→∞.

These imply that there exists ∂x∗

∂λ and ∂x∗

∂λ = y∗.
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Theorem 12. We consider the problem (6) + (7) in the conditions (D1)− (D5).

Then:

(i) the problem (6) + (7) has a unique solution

x∗ = (x∗1, ..., x
∗
m) ∈ C([a1, b1]× [c, d] ,Rm);

(ii) x∗(t, •) ∈ C1([c, d] ,Rm), ∀t ∈ [a1, b1].

Remark 13. If we consider l1 (x) = x, l2 (x) = x, α = ϕ and β = ψ, we obtain the

vectorial variant of the boundary value problem from [12]. In this case,

G =


g 0 0 · · · 0 0

0 g 0 · · · 0 0

· · · · · · · · · · · · · · · · · ·

0 0 0 0 · · · g

 ∈Mm,m (R+) ,

where g is the Green function of the problem −x′′ = χ

x (a) = 0, x (b) = 0.

If l1 (x) = α11x + α12x
′, l2 (x) = α21x + α22x

′, α (t) = α ∈ Rm, ∀t ∈ [a1, a] ,

β (t) = β ∈ Rm, ∀t ∈ [b, b1] , we obtain the vectorial variant of the boundary value

problem from [3] and [4]. Here,

G =


g · · · 0

· · · · · · · · ·

0 · · · g

 ,

where

g (t, s) =


α11α21

α11α22−α12α21+(b−a)α11α21

(
t− a− α12

α11

) (
b− s+ α22

α21

)
, a ≤ t < s ≤ b

α11α21
α11α22−α12α21+(b−a)α11α21

(
s− a− α12

α11

) (
b− t+ α22

α21

)
, a ≤ s < t ≤ b.
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[15] Şerban, M.A., Teoria punctului fix pentru operatori definiţi pe produs cartezian, Ed.
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ON SOME NUMERIC METHODS TO DETERMINATE
THE GUARANTEED OPTIMAL VALUES

ILIE MITRAN

Abstract. Let’s take two sets A, B 6= ∅ and f : A×B → R. We consider

the quantities:

a1 = sup
x∈A

inf
y∈B

f(x, y) (1)

a2 = inf
y∈B

sup
x∈A

f(x, y) (2)

between which there always exist the inequality a1 ≤ a2 [1]. We assume

the problem of determination of the conditions in which bounds from (1)

and (2) can be effectively reached as well as methods of determining of

these bounds. The first part of the paper deals with results regarding

the existence and the properties of guaranteed optimal strategies (the case

of simple strategies with no informational exchange, the case of simple

strategies with informational exchange and the case of mixed strategies).

The second part of the paper presents some methods to determine optimal

values. Practically, there are penalty methods which solve the above men-

tioned problem using a more general approach than other methods known

in specialized literature.

1. The existence and the properties of the optimal and guaranteed

strategies

1.1. Simple strategies in the case the exchange of information

is not permitted

We start from the structure of a non-cooperative game J1 = (F,D1, D2) with

two deciders in which:

Received by the editors: 01.07.2006.
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1) D1, D2 represent the sets of the decision of the two deciders;

2) F stands for the function of gain.

Definition 1.1. Quantities:

V1 = sup
d1∈D1

inf
d2∈D2

F (d1, d2) (1.1)

V2 = inf
d2∈D2

sup
d1∈D1

F (d1, d2) (1.2)

represent the optimal guaranteed values of the two deciders.

In the case the bounds from (1.1), (1.2) are reached, then the strategies for

which these bounds are reached are named optimal guaranteed strategies.

Remark 1.1. The significance of the optimal and guaranteed strategies and

values in the context of the theory of non-cooperative games is the following:

1) if (d2
1, d

1
2) is the optimal guaranteed strategy of the first decider, then the

quantity:

V1 = max
d1∈D1

min
d2∈D2

F (d1, d2) = F (d1
1, d

1
2)

represents the maximum sure gain which the first decider can obtain;

2) if (d2
1, d

2
2) is the optimal guaranteed strategy of the second decider, then

the quantity:

V2 = min
d2∈D2

max
d1∈D1

F (d1, d2) = F (d2
1, d

2
2)

represents the maximum loss the second decider could wait for.

If we consider the game J2n = (F1, D1, D2) at which take part 2n coalized

deciders in the coalitions C1 = {1, 3, . . . , 2n − 1}, C2 = {2, 4, . . . , 2n} with opposite

interest in which:

Di represents the set of strategies of the decider i ∈ C1

D1 =
n∏

i=1

Di

Dj represents the set of strategies of decider j ∈ C2

D2 =
n∏

j=1

Dj
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F1 is the functional of gain, then we can define in the same way with the

game J1 the optimal guaranteed values for C1 and C2:

V1 = sup
d1∈D1

inf
d1∈D1

. . . sup
dn∈Dn

inf
dn∈Dn

F (d1, d1, . . . , dn, dn)

not=
[

sup
di∈Di

inf
di∈Di

](n)

F (d1, d1, . . . , dn, dn)

V2 = inf
d1∈D1

sup
d1∈D1

. . . inf
dn∈Dn

sup
dn∈Dn

F (d1, d1, . . . , dn, dn)

not=
[

inf
di∈Di

sup
di∈Di

](n)

F (d1, d1, . . . , dn, dn)

as well as the optimal guaranteed strategies.

We assume the problem of determining conditions in which there exists opti-

mal guaranteed strategies for J1 and J2n (n > 1).

Theorem 1.1. [4] If the conditions hold true:

1) (D1, ρ1), (D2, ρ2) there are compact metrical spaces;

2) F is continue in both arguments

then there exist optimal guaranteed strategies for J1.

Remark 1.2. The theorem 1.1 which applies to J1 can be generalized to Jn,

n > 1.

In case that F1 is continue and the sets Di, Di, i = 1, n, are compact metric

spaces, then for J2n we can prove the existence of the optimal guaranteed strategies.

An extremely important problem which appears in real decisional situations

is that when from any reason the function of efficiency F is replaced by another

function of efficiency F1 (easily expressed analytically or with more properties).

It arises the problem of deviation from the optimal guaranteed value, knowing

that two functions of efficiency verify the requisite |F (d1, d2)− F1(d1, d2)| < ε, ε > 0

small enough.

Theorem 1.2. [3] If |F (d1, d2) − F1(d1, d2)| ≤ ε then the inequality holds

true: ∣∣∣∣ sup
d1∈D1

inf
d2∈D2

F (d1, d2)− sup
d1∈D1

inf
d2∈D2

F1(d1, d2)
∣∣∣∣ ≤ ε.
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1.2. Simple strategies in the case when the informational exchange

is permitted

The study of the decisional processes in which the informational transfer is

allowed represents relatively a recent problem that dealt with the non-cooperative

games with the exchange of information (Fedorov [3], Mitran [4]), differential games

with memory, decisional processes and systems of classification.

In case the informational transfer is admitted the non-cooperative games

present properties connected with the optimal guaranteed solution different from the

properties of the games in which the informational exchange is not permitted.

For the beginning we assume a game with two deciders J1(D1, D2, F ) where

(D1, dD1), (D2, dD2) are metric spaces (D1, D2 represents the sets of strategies of two

deciders).

We construct Haussdorff’s metric:

d : P(D2)× P(D2) → R, d(A,B) = max{ρ(A,B); ρ(B,A)}, ∀ A,B ⊂ D2

where ρ(A,B) = sup
x∈A

inf
y∈B

dD2(x, y).

Let T : D1 → P(D2) be the informational (multivocal) application of the

first decider [3], [4].

Definition 1.2. The set Td1 ⊆ D2 is called the informational set of decider

1 corresponding to the strategy d1 ∈ D1 and it represents the set of the strategies

that decider 2 can take if decider 1 adopted the strategy d1 ∈ D1.

Definition 1.3. The multivocal application T is said:

1) s.c.s. in D0
1 ∈ D1, if lim

d1→d0
1

ρ(Td1, Td0
1) = 0;

2) s.c.i. in d0
1 ∈ D1, if from conditions:

lim
n

dn
1 = d0

1, d0
2 ∈ Td0

1

results that there exists (dn
2 : dn

2 ∈ Tdn
1 )n so that d0

2 = lim
n

d0
2;

3) closed in d0
1 ∈ D1, if from conditions:

lim
n

dn
1 = d0

1, lim
n

dn
2 = d0

2, dn
2 ∈ Tdn

1
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results d0
2 ∈ Td0

1;

4) continue in d0
1 ∈ D1, if lim

d1→d0
1

d(Td1, Td0
1) = 0.

Remark 1.3. The conditions of s.c.i. and s.c.s. according to definition 1.2 in

d0
1 ∈ D1 for the multivocal application T is generally not for assuring the continuity

in d0
1; but if D2 is sufficient compact, it is assured. As it follows through the content

of §1.1 and §1.2 we suppose that D1 and D2 are compact.

Consider the functional:

R : D1 → R, R(d1) = inf
d2∈Td1

F (d1, d2).

Theorem 1.3. If F is s.c.s. on D1 ×D2, T is continuous in d0
1 ∈ D1, then

functional R is s.c.s. in d0
1 ∈ D1.

Proof. Take any ε > 0 and small enough.

As R(d0
1) = inf

d2∈Td0
1

F (d0
1, d2) there exists d0

2 ∈ Td0
1 so that the inequality:

F (d0
1, d

0
2) ≤ R(d0

1) +
ε

2
(1.3)

holds true.

From condition of s.c.s. of F in (d0
1, d

0
2) for the chosen ε > 0 it will exist δ > 0

so that:

F (d0
1, d

0
2) ≥ F (d1, d2)−

ε

2
, ∀ (d1, d2) ∈ D1 ×D2, dD1×D2((d1, d2), (d0

1, d
0
2)) ≤ δ

From continuity condition of T occurs that there is a γ > 0 so that

dD2(Td1, Td0
1) ≤ δ for any d1 ∈ D1 with the property dD1(d1, d

0
1) ≤ γ.

Take Vd0
1

= {d1 ∈ D1 | dD1(d1, d
0
1) ≤ min{δ, γ)}. Regardless d1 ∈ Vd0

1
, there

is a d2 ∈ Td1 so that dD2(d2, d
0
2) ≤ δ.

So for any d1 ∈ Vd0
1

there is a d2 ∈ Td1 so that:

R(d0
1) +

ε

2
≥ F (d0

1, d
0
2) ≥ F (d1, d2)−

ε

2
(1.4)

as

R(d1) ≤ F (d1, d̃2), ∀ d̃2 ∈ Td1 (1.5)
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From (1.4) and (1.5) the inequality occurs:

R(d0
1) ≥ R(d1)− ε, ∀ d1 ∈ Vd0

1

which means that R is s.c.s. in d0
1.

Consequence 1.3.1. If F is s.c.s. on D1×D2, T is continuous on D1 then

there is a d∗1 ∈ D1 so that:

R(d∗1) = max
d1∈D1

inf
d2∈Td1

F (d1, d2).

The proof is evident considering theorem 1.1 and the fact that any functional

s.c.s. on a compact touches its superior bound on that compact.

Remark 1.4. We assume F continue. As the functional of gain of the second

decider is G = −F , if it is defined the functional f̃ : D1 ×D2 → R:

f̃(d1, d2) = G(d1, d2)− max
d2∈D2

G(d1, d2)

then the best guaranteed result of the first decider will be [3], [4], [5]:

sup
d1∈D1

min
d2∈Td1

F (d1, d2)

if

Td1 = {d2 ∈ D2 | f̃(d1, d2) = 0} 6= ∅ (1.6)

The form in which the informational set of the first decider occurs in (1.6)

leads to consider the informational application T to be defined as follows:

Td1 = {d2 ∈ D2 | f(d1, d2) ≥ 0} (1.7)

where f : D1 ×D2 → R is a known functional.

We note T 0d1 = {d2 ∈ D2 | f(d1, d2) > 0}.

Theorem 1.4. [4] The following results occur:

1) if F is continuous and T 0d1 = Td1, ∀ d1 ∈ D1, then T is continuous on

D1;
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2) if in addition to 1) we assume that F is continuous on D1 ×D2 and Td1

is compact ∀ d1 ∈ D1, then R is continuous, so there is a d∗1 ∈ D1 thus:

R(d∗1) = max
d1∈D1

min
d2∈Td1

F (d1, d2).

Remark 1.5. The conditions of continuity of T proved at point 1) acted

essentially only to assure the condition of closeness and the equalities:

F (d0
1, d

0

2) = min
d2∈Td0

1

F (d0
1, d2) = R(d0

1) (1.8)

we have:

lim
n

R(dn
1 ) = lim

n
min

d2∈Tdn
1

F (dn
1 , d2) = lim

n
F (dn

1 , dn
2 ) = F (d0

1, d
0
2) = R(d0

1)

and so the theorem is proved.

Remark 1.6. The condition of compactity of D1, D2 and the continuity

of F does not assure in the case of the games with an informational exchange, the

contingence of the optimal guaranteed value:

V = max
d1∈D1

min
d2∈Td1

F (d1, d2)

(likewise in the case of the games without an informational exchange). But if F, T, f

are continuous, Td1 6= ∅, ∀ d1 ∈ D1, then the contingence of quantity V is realizable

[3].

Let’s notice that in comparison with conditions of theorem 1.4, these condi-

tions are modified (in the sense that have been weaker and others are harder).

The performances obtained in the case of game J1 can be extended to a game

Jn =

(
n∏

i=1

Di ×Di, F1

)

in which the deciders are coalized into two coalitions C1 = {1, 3, . . . , 2n − 1}, C2 =

{2, 4, . . . , 2n} with opposite interests (we marked with F1 the functional of gain and

Di, Di the set of the strategies of decider i, i = 1, n).
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In this case the best guaranteed result of the first decider is given by the

quantity:

sup
d1∈D1

inf
d1∈D1

. . . sup
dn∈Dn

inf
dn∈Dn

F (d1, d1, . . . , dn, dn)

=
[

sup
di∈Di

inf
di∈Di

](n)

F (d1, d1, . . . , dn, dn)

Let’s assume that in game Jn the informational exchange is permitted; the

informational sets of those 2n deciders are Ai, i = 1, n for the deciders from C1 and

Bi, i = 1, n for the deciders from C2, being constructed by means of the informational

applications Ti (for the deciders from C1), T i (from the deciders from C2), i = 1, n:

Ai = Ti(d1, d1, . . . , di−1, di−1)

= {di ∈ Di | fi(d1, d1, . . . , di−1, di−1, di) ≥ 0}, i = 2, n, A1 = D1

Bi = T i(d1, d1, . . . , di−1, di−1, di) = {di ∈ Di | f i(d1, d1, . . . , di, di) ≥ 0}, i = 1, n

fi :
i=1∏
j=1

(Dj ×Dj)×Di → R, i = 2, n, f i :
i∏

j=1

Dj ×Dj → R, i = 1, n

being known.

The best guaranteed result of the decider 1 in this case is given by the quan-

tity:

Vn = sup
di∈Ai

inf
di∈Bi

F (d1, d1, . . . , dn, dn) (1.9)

Let’s notice that in the case which Di, Di, i = 1, n, are compact metric

spaces, F, Ti, T i, fi, f i, i = 1, n are continuous, Ai 6= ∅, i = 2, n, Bi 6= ∅, i = 1, n, then

the superior and inferior bounds from (1.9) can be reached (remark 1.6). That’s why

there naturally arises the problem of establishing of some methods for determining of

the optimal guaranteed values of the first decider in games Jn and J1.

1.3. Mixed Strategies

The aim of this paragraph is that of presenting the generalization of the

notion of simple strategy through introduction of the notion of mixed strategy.

Besides the definitions, the interpretations and the immediate properties

there will occur properties connected to the existence of the non-null components.
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For the beginning we assume the game J1 = (F,D1, D2) introduced in 1.1 in

which the sets of strategies D1 and D2 are finite:

D1 = {d1
1, d

2
1, . . . , d

m
1 }, D2 = {d1

2, d
2
2, . . . , d

n
2}

Definition 1.4. The distribution of probabilities p = (p1, p2, . . . , pm), p1 ≥

0, i = 1,m.
m∑

i=1

pi = 1, is called a mixed strategy for the decider 1, if he uses the

strategy di
1 with the probability pi, i = 1,m.

The distribution of the probabilities q = (q1, q2, . . . , qn), qj ≥ 0, j = 1, n,
n∑

j=1

qj = 1, is named mixed strategy for the decider 2, if he uses the strategy dj
2 with

the probability qj , j = 1, n.

We mark D1, D2 the sets of mixed strategies of the two deciders.

If aij = F (dj
1, d

j
2), i = 1,m, j = 1, n, the following quantities are defined:

V 1 = max
p∈D1

min
q∈D2

m∑
i=1

n∑
j=1

aijpiqj (1.10)

V 2 = min
q∈D2

max
p∈D1

m∑
i=1

n∑
j=1

aijpiqj (1.11)

between which we can easily show that there always exists the relationship V 1 ≤ V 2.

Definition 1.5. Quantities V 1, V 2 are called the inferior value, respectively,

the superior value of the game J1.

If V 1 = V 2, then the common value V of these quantities is value of the

game.

The resolution of a matrixed game with the matrix of paying (aij) i=1,n
j=1,m

is

equivalent to the resolution of the couple of the dual problems of linear optimization:

1)


min

∑
i

xi

xi ≥ 0,
∑

i

aijxi ≥ 1, j = 1,m

2)


max

∑
j

yj

yj ≥ 0,
∑

j

aijyj ≤ 1, i = 1, n
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The value V of the game is

V =
1∑

i

x0
i

=
1∑

j

y0
j

and the optimal strategies p0
i , q

0
j are given by p0

i = V x0
i , q0

j = V Y 0
j .

Remark 1.6. The use of the mixed strategies is justified in the case if

the decisional process is repeatable. In the case of the repetition of the decisional

process, by ntimes, then, according to a version of the law of the large numbers with

a probability next to 1, the gain which will be obtained is approximate nV .

Remark 1.8. If decider 1 has got the possibility of getting information about

decider 2, and this information doesn’t lead to the restriction of the set of strategies

D1, then it isn’t favorable (for decider 1) the use of the mixed strategies [4].

The notion of mixed strategy for the finite games can be extended to the

infinite games, as well.

Let D1, D2 be compact sets in the Euclidean spaces En, respectively Em.

We call mixed strategies for the two deciders any measures of probability ν

and µ defined on D1, respectively D2.

The optimal guaranteed values of the two deciders are:

V1 = sup
ν

inf
µ

∫
D1

∫
D2

f(d1, d2)dµdν

V2 = inf
µ

sup
ν

∫
D1

∫
D2

f(d1, d2)dµdν

Between these two quantities there always exists the relationship V1 ≤ V2. In

the case of achieving the equality we shall say that the game has got a saddle point

and that the value V = V1 = V2 is called the value of the game [2], [3].

2. Determination of the guaranteed optimum solution

2.1. Simple strategies in the case when the exchange of information

is not permitted
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ON THE APPROXIMATION BY ASSOCIATED GBS OPERATORS
OF EXPONENTIAL TYPE

OVIDIU T. POP

Abstract. The sequence of GBS operators of exponential type is con-

structed and some approximation properties of this sequence are estab-

lished. By particularization, we obtain statements verified by the GBS op-

erators of Bernstein, Mirakjan-Favard-Szász, Baskakov, Ismail-May, Post-

Widder and Gauss-Weierstrass.

1. Introduction

The aim of the present note is to demonstrate a general formula for the

approximation of a bivariate function by associated GBS operators of exponential

type.

In Section 1 we recall some notions and results which we will use in this

paper. In Section 2 we recall the definition of exponential operators. The last section

is devoted to estimating the approximation of bivariate functions by associated GBS

operators of exponential type.

The term of ”GBS operator” (Generalized Boolean Sum Operator) was in-

troduced by C. Badea and C. Cottin (see [5]).

In the end, by particularization in Theorem 3.2 and Theorem 3.3 for some

known operators, we give some applications.

In the following, let X and Y be real intervals.

Received by the editors: 28.11.2005.
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A function f : X × Y → R is called B-continuous in (x0, y0) ∈ X × Y iff

lim
(x,y)→(x0,y0)

∆f [(x, y), (x0, y0)] = 0, where ∆f [(x, y)(x0, y0)] = f(x, y) − f(x0, y) −

f(x, y0) + f(x0, y0) denotes a so-called mixed difference of f .

A function f : X×Y → R is called B-continuous on X×Y iff is B-continuous

in any point of X × Y .

A function f : X × Y → R is called B-differentiable in (x0, y0) ∈ X × Y iff it

exists and if the limit is finite lim
(x,y)→(x0,y0)

∆f [(x, y), (x0, y0)]

(x− x0)(y − y0)
.

This limit is named the B-differential of f in the point (x0, y0) and is denoted by

DBf(x0, y0).

A function f : X × Y → R is called B-differentiable on X × Y iff is B-

differentiable in any point of X × Y .

The definition of B-continuity and B-differentiability was introduced by K.

Bögel in the papers [7] and [8].

The function f : X × Y → R is B-bounded on X × Y iff there exists k > 0

such that |∆f [(x, y), (s, t)]| ≤ k for any (x, y), (s, t) ∈ X × Y .

We shall use the following function sets: B(X × Y ) = {f |f : X × Y → R, f

bounded on X×Y } with the usual sup-norm ‖ · ‖∞, Bb(X×Y ) = {f |f : X×Y → R,

f B-bounded on X×Y }, Cb(X×Y ) = {f |f : X×Y → R, f B-continuous on X×Y }

and Db(X × Y ) = {f |f : X × Y → R, f B-differentiable on X × Y }.

Let f ∈ Bb(X × Y ). The function ωmixed(f ; · , ·) : [0,∞) × [0,∞) → R

defined by ωmixed(f ; δ1, δ2) = sup{|∆f [(x, y), (s, t)]| : |x−s| ≤ δ1, |y− t| ≤ δ2} for any

(δ1, δ2) ∈ [0,∞)× [0,∞) is called the mixed modulus of smoothness.

Theorem 1.1. Let X and Y be compact real intervals and f ∈ Bb(X × Y ). Then

lim
δ1,δ2→0

ωmixed(f ; δ1, δ2) = 0 iff f ∈ Cb(X × Y ).

For other information, see the following papers: [2] and [4].

Theorem 1.2. Let L : Cb(X × Y ) → B(X × Y ) be a linear positive operator and

UL : Cb(X × Y ) → B(X × Y ) the associated GBS operator defined for any function

100



ON THE APPROXIMATION BY ASSOCIATED GBS OPERATORS OF EXPONENTIAL TYPE

f ∈ Cb(X × Y ) and any (x, y) ∈ X × Y by

(ULf)(x, y) = (L(f(·, y) + f(x, ∗)− f(·, ∗))) (x, y), (1.1)

where ”·” and ”∗” stand for the first and second variable. Assuming that the operator

L has the property

(
L(· − x)2i(∗ − y)2j

)
(x, y) =

(
L(· − x)2i

)
(x, y)

(
L(∗ − y)2j

)
(x, y) (1.2)

for any (x, y) ∈ X × Y and any i, j ∈ {1, 2}. The following statements are true.

(i) For any function f ∈ Cb(X × Y ), any (x, y) ∈ X × Y and any δ1, δ2 > 0,

we have

|f(x, y)− (ULf)(x, y)| ≤ |f(x, y)||1− (Le00)(x, y)|+
[
(Le00)(x, y)+ (1.3)

+ δ−1
1

√
(L(· − x)2)(x, y) + δ−1

2

√
(L(∗ − y)2)(x, y)+

+ δ−1
1 δ−1

2

√
(L(· − x)2)(x, y)(L(∗ − y)2)(x, y)

]
ωmixed(f ; δ1, δ2).

(ii) For any f ∈ Db(X × Y ) with DBf ∈ B(X × Y ), any (x, y) ∈ X × Y and

any δ1, δ2 > 0, we have

|f(x, y)− (ULf)(x, y)| ≤ |f(x, y)||1− (Le00)(x, y)|+ (1.4)

+ 3‖DBf‖∞
√

(L(· − x)2)(x, y)(L(∗ − y)2)(x, y)+

+
[√

(L(· − x)2)(x, y)(L(∗ − y)2)(x, y)+

+ δ−1
1

√
(L(· − x)4)(x, y)(L(∗ − y)2)(x, y)+

+ δ−1
2

√
(L(· − x)2)(x, y)(L(∗ − y)4)(x, y)+

+ δ−1
1 δ−1

2 (L(·−x)2)(x, y)(L(∗−y)2)(x, y)
]
ωmixed(DBf ; δ1, δ2).

The inequality of Corollary 5 from [5], in the condition of (1.2), becomes the

(1.3) inequality. The (1.4) inequality is demonstrated in [17].
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2. Preliminaries

We set N = {1, 2, . . . }. Let a and b such that −∞ ≤ a < b ≤ ∞. In this

paper we consider the notations

I(a, b) =



[a, b], if a, b ∈ R

(−∞, b], if a = −∞, b ∈ R

[a,∞) , if a ∈ R, b = ∞

(−∞,∞) = R, if a = −∞, b = ∞ .

(2.1)

Let m ∈ N. The kernel Wm :I(a, b)×I(a, b)→ R satisfies

Wm(x, t) ≥ 0 (2.2)

for any (x, t) ∈ I(a, b)× (a, b),

b∫
a

Wm(x, t)dt = 1 (2.3)

for any x ∈ I(a, b),
∂

∂x
Wm(x, t) =

m(t− x)
p(x)

Wm(x, t) (2.4)

for any (x, t) ∈ I(a, b) × I(a, b), where p(x) is polynomial in x and p(x) is strictly

positive for any x ∈ I(a, b).

We define the operators Sm : F(I(a, b)) → C(I(a, b)), for any function f ∈

F(I(a, b)) by

(Smf)(x) =

b∫
a

Wm(x, t)f(t)dt (2.5)

for any x ∈ I(a, b), m ∈ N, where F(I(a, b)) = {f |f : I(a, b) → R,

b∫
a

Wm(x, t)f(t) <

∞ for any x ∈ I(a, b), any m ∈ N}.

The operators Sm, m ≥ 1 are introduced and are studied by C. P. May in

the paper [12]. These operators are referred to us like exponential operators.

The following results contained in the Lemma 2.1 are known (see [18]).
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Lemma 2.1. The operators Sm, m ≥ 1 verify

(Sme0)(x) = 1, (2.6)

(Sme1)(x) = x, (2.7)

(Sme2)(x) = x2 +
p(x)
m

(2.8)

for any x ∈ I(a, b) and m ∈ N.

3. Main results

Lemma 3.1. The operators Sm, m ≥ 1 verify(
Smϕ2

x

)
(x) =

p(x)
m

, (3.1)

(
Smϕ4

x

)
(x) =

3p2(x)
m2

+
p(x)

[
p′′(x)p(x) + (p′(x))2

]
m3

(3.2)

and (
Smϕ4

x

)
(x) ≤

p(x)
[
3p(x) + |p′′(x)p(x) + (p′(x))2|

]
m2

(3.3)

for any x ∈ I(a, b), any m ∈ N.

Proof. Differentiating the relation (2.8) with respect to x, we have

b∫
a

t2
∂

∂x
Wm(x, t)dt = 2x +

p′(x)

m

and taking (2.4) into account we obtain

m

p(x)

b∫
a

t2(t− x)Wm(x, t)dt = 2x +
p′(x)
m

.

Thus

(Sme3)(x) = x3 +
3xp(x)

m
+

p′(x)p(x)
m2

. (3.4)

Similarly, differentiating the relation (3.4), we have

(Sme4)(x) = x4 +
6x2p(x)

m
+

4xp′(x)p(x) + 3p2(x)
m2

+ (3.5)

+
p′′(x)p2(x) + (p′(x))2p(x)

m3
.
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Because (
Smϕ2

x

)
(x) = (Sme2)(x)− 2x(Sme1)(x) + x2(Sme0)(x),(

Smϕ4
x

)
(x) = (Sme4)(x)− 4x(Sme3)(x) + 6x2(Sme2)(x)−

− 4x3(Sme1)(x) + x4(Sme0)(x),

taking (2.6) - (2.8) and (3.4), (3.5) into account, we obtain (3.1) and (3.2). From

(3.2), the inequality (3.3) results immediately.

Definition 3.1. Let (m,n) ∈ N × N. The operator Sm,n : F(I(a, b) × I(a, b)) →

C(I(a, b)× I(a, b)) defined for any function f ∈ F(I(a, b)× I(a, b)) =
{

f |f : I(a, b)×

I(a, b) → R,
b∫

a

Wm(x, s)Wn(y, t)f(s, t)dsdt < ∞ for any (x, y) ∈ I(a, b)×I(a, b) and

any (m,n)∈N×N}, any (x, y) ∈ I(a, b)× I(a, b) by

(Sm,nf)(x, y) =

b∫
a

b∫
a

Wm(x, s)Wn(y, t)f(s, t)dsdt (3.6)

is called a bivariate exponential operator.

Lemma 3.2. The operators Sm,n, (m,n) ∈ N × N are linear and positive on

F(I(a, b)× I(a, b)).

Proof. The assertion follows from the definition of the operators Sm,n, (m,n) ∈ N×

N.

Lemma 3.3. We have(
Sm,n(· − x)2i(∗ − y)2j

)
(x, y) =

(
Sm(· − x)2i

)
(x)
(
Sn(∗ − y)2j

)
(y) (3.7)

for any (x, y) ∈ I(a, b)× I(a, b), any i, j ∈ {1, 2} and any (m,n) ∈ N× N.

The proof is immediate, so we omit it.

Lemma 3.4. The operators Sm,n, (m,n) ∈ N× N, verify

(Sm,ne00)(x, y) = 1 (3.8)

for any (x, y) ∈ I(a, b)× I(a, b) and any (m,n) ∈ N× N.
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The proof is immediate, taking into account the definition of Sm,n, (m,n) ∈

N× N operators.

Definition 3.2. Let (m,n) ∈ N × N. The operator USm,n : F(I(a, b) × I(a, b)) →

C(I(a, b) × I(a, b)) defined for any function f ∈ F(I(a, b) × I(a, b)), any (x, y) ∈

I(a, b)× I(a, b) by

(USm,nf)(x, y) = (Sm,n(f(·, y) + f(x, ∗)− f(·, ∗)) (x, y) = (3.9)

=

b∫
a

b∫
a

Wm(x, s)Wn(y, t) (f(s, y) + f(x, t)− f(s, t)) dsdt

is called the GBS operator of exponential type.

In the following, we note p∗(x)=
√

3p(x)+|p′′(x)p(x)+(p′(x))2|, x∈I(a, b).

Theorem 3.1. (i) For any function f ∈ Cb(I(a, b) × I(a, b)) ∩ F(I(a, b) × I(a, b)),

any (x, y) ∈ I(a, b)× I(a, b), any (m,n) ∈ N× N, we have

|f(x, y)− (USm,nf)(x, y)| ≤

(
1 + δ−1

1

√
p(x)
m

+ (3.10)

+ δ−1
2

√
p(y)
n

+ δ−1
1 δ−1

2

√
p(x)p(y)

mn

)
ωmixed(f ; δ1, δ2)

for any δ1, δ2 > 0 and

|f(x, y)− (USm,nf)(x, y)| ≤ (3.11)

≤
(
1 +

√
p(x)

)(
1 +

√
p(y)

)
ωmixed

(
f ;

1√
m

,
1√
n

)
.

(ii) For any function f ∈ Db(I(a, b) × I(a, b)) ∩ F(I(a, b) × I(a, b)) with

DBf ∈ B(I(a, b)× I(a, b)), any (x, y) ∈ I(a, b)× I(a, b), any (m,n) ∈ N×N, we have

|f(x, y)− (USm,nf)(x, y)| ≤

{
3‖DBf‖∞+ (3.12)

+

[
1 + δ−1

1

p∗(x)√
m

+ δ−1
2

p∗(y)√
n

+ δ−1
1 δ−1

2

√
p(x)p(y)√

mn

]
·

· ωmixed(DBf ; δ1, δ2)

}√
p(x)p(y)√

mn

105



OVIDIU T. POP

for any δ1, δ2 > 0 and

|f(x, y)− (USm,nf)(x, y)| ≤

[
3‖DBf‖∞ +

(
1 + p∗(x)+ (3.13)

+ p∗(y) +
√

p(x)p(y)
)
ωmixed

(
DBf ;

1√
m

,
1√
n

)]√
p(x)p(y)√

mn
.

Proof. Taking Lemma 3.1 - Lemma 3.4 and Theorem 1.2 into account, we obtain the

relations (3.10) and (3.12). If we choose δ1 =
1
√

m
, δ2 =

1
√

n
in (3.10) and (3.12), we

obtain (3.11) and (3.13).

In the following, let the real numbers α, β, γ, δ with α < β and γ < δ, such

that [α, β], [γ, δ] ⊂ I(a, b). We note by Aγ,δ
α,β a constant dependent on α, β, γ, δ such

that (
1 +

√
p(x)

)(
1 +

√
p(y)

)
≤ Aγ,δ

α,β (3.14)

for any (x, y) ∈ [α, β] × [γ, δ], and if f : X × Y → R is a function, f ∈

Db (I(a, b)×I(a, b)) ∩ F (I(a, b)×I(a, b)) with DBf ∈ B (I(a, b)×I(a, b)), we note

by Bγ,δ
α,β(f,m, n) a constant dependent on α, β, γ, δ on the function f and m,n ∈ N,

such that[
3‖DBf‖∞+

(
1+p∗(x)+p∗(y)+

√
p(x)p(y)

)
ωmixed

(
DB ;

1√
m

,
1√
n

)]
· (3.15)

·
√

p(x)p(y) ≤ Bγ,δ
α,β(f,m, n)

for any (x, y) ∈ [α, β]× [γ, δ].

Theorem 3.1 implies the next theorem.

Theorem 3.2. The following statements are true.

(i) For any function f ∈ Cb(I(a, b)×I(a, b))∩F(I(a, b)×I(a, b)), any (x, y) ∈

[α, β]× [γ, δ] and any (m,n) ∈ N× N, we have

|f(x, y)− (USm,nf)(x, y)| ≤ Aγ,δ
α,βωmixed

(
f ;

1√
m

,
1√
n

)
. (3.16)

(ii) For any function f ∈ Db(I(a, b) × I(a, b)) ∩ F(I(a, b) × I(a, b)) with

DBf ∈ B(I(a, b) × I(a, b)), any (x, y) ∈ [α, β] × [γ, δ] and any (m,n) ∈ N × N, we
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have

|f(x, y)− (USm,nf)(x, y)| ≤ Bγ,δ
α,β(f,m, n)

1√
mn

. (3.17)

From Theorem 1.1 and Theorem 3.2 the following theorem results.

Theorem 3.3. If f ∈ Cb(I(a, b)× I(a, b)) ∩ F(I(a, b)× I(a, b)), then

lim
m,n→∞

(USm,nf)(x, y) = f(x, y) (3.18)

and the convergence is uniform on any compact [α, β]× [γ, δ] ⊂ I(a, b)× I(a, b).

In the following, by particularization and applying both Theorem 3.2 and

Theorem 3.3, we give some approximations and convergence theorems for some known

operators.

Application 3.1. If a = 0, b = 1 and p(x) = x(1 − x), x ∈ [0, 1], we obtain the

Bernstein operators. Because C([0, 1]) ⊂ F([0, 1]), Theorem 3.2 and Theorem 3.3 hold

for any function f ∈ C([0, 1]× [0, 1]) and taking into account that x(1−x) ≤
1

4
for any

x ∈ [0, 1], we have that A0,1
0,1 =

9

4
. If f ∈ Db([0, 1]×[0, 1]) with DBf ∈ B([0, 1]×[0, 1]),

then we can take B0,1
0,1(f,m, n) =

1

4

[
3‖DBf‖∞ +

5 + 4
√

7

4
ωmixed

(
DBf ;

1
√

m
,

1
√

n

)]
,

where (m,n) ∈ N× N.

Application 3.2. If a = 0, b = ∞ and p(x) = x, x ∈ [0,∞), we obtain the

Mirakjan-Favard-Szász operators. If α, β, γ, δ ∈ [0,∞), then Theorem 3.2 and

Theorem 3.3 hold for any function f ∈ C2([0,∞) × [0,∞)) ∩ F([0,∞) × [0,∞)),

Aγ,δ
α,β =

(
1 +

√
β
) (

1 +
√

δ
)

and if f ∈ Db([α, β]× [γ, δ]) with DBf ∈ B([α, β]× [γ, δ]),

then

Bγ,δ
α,β(f,m, n) =

[
3‖DBf‖∞ +

(
1 +

√
3β + 1 +

√
3δ + 1+

+
√

βδ
)
ωmixed

(
DBf ;

1√
m

,
1√
n

)]√
βδ,

for (m,n) ∈ N× N.
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Application 3.3. If a = 0, b = ∞ and p(x) = x(1 + x), x ∈ [0,∞), we ob-

tain the Baskakov operators. If α, β, γ, δ ∈ [0,∞), then the Theorem 3.2 and

Theorem 3.3 hold for any function f ∈ C([0,∞) × [0,∞)) ∩ F([0,∞) × [0,∞)),

Aγ,δ
α,β =

(
1 +

√
β(1 + β)

)(
1 +

√
δ(1 + δ)

)
and if f ∈ Db([α, β] × [γ, δ]) with Dbf ∈

B([α, β]× [γ, δ]), then

Bγ,δ
α,β(f,m, n) =

[
3‖DBf‖∞ +

(
1 +

√
9β2 + 9β + 1 +

√
9δ2 + 9δ + 1+

+
√

βδ(1 + β)(1 + δ)
)
ωmixed

(
DBf ;

1√
m

,
1√
n

)]√
βδ(1 + β)(1 + δ),

for (m,n) ∈ N× N.

Application 3.4. If a = 0, b = ∞ and p(x) = x(1 + x)2, x ∈ [0,∞) we obtain

the Ismail-May operators (see [11]). For α, β, γ, δ ∈ [0,∞), the Theorem 3.2 and

Theorem 3.3 hold for any function f ∈ C([0,∞)× [0,∞))∩F([0,∞)× [0,∞)), Aγ,δ
α,β =(

1 + (1 + β)
√

β
) (

1 + (1 + δ)
√

δ
)

and if f ∈ Db([α, β]× [γ, δ]) with DBf ∈ B([α, β]×

[γ, δ]), then

Bγ,δ
α,β(f,m, n) =

[
3‖DBf‖∞+

+
(
1 + (1 + β)

√
1 + 13β + 15β2 + (1 + δ)

√
1 + 13δ + 15δ2+

+ (1 + β)(1 + δ)
√

βδ
)
ωmixed

(
DBf ;

1√
m

,
1√
n

)]
(1 + β)(1 + δ)

√
βδ ,

(m,n) ∈ N× N.

Application 3.5. If a = 0, b = ∞ and p(x) = x2, x ∈ [0,∞), we obtain the Post-

Widder operators. If α, β, γ, δ ∈ [0,∞), then the Theorem 3.2 and Theorem 3.3 hold

for any function f ∈ C([0,∞) × [0,∞)) ∩ F([0,∞) × [0,∞)), Aγ,δ
α,β = (1 + β)(1 + δ)

and if f ∈ Db([α, β]× [γ, δ]) with DBf ∈ B([α, β]× [γ, δ]), then

Bγ,δ
α,β(f,m, n)=

[
3‖DBf‖∞+(1+3β+3δ+βδ)ωmixed

(
DBf ;

1√
m

,
1√
n

)]
βδ,

(m,n) ∈ N× N.

Application 3.6. If a = −∞, b = ∞ and p(x) = 1, x ∈ R, we obtain the Gauss-

Weierstrass operators. If α, β, γ, δ ∈ R, then the Theorem 3.2 and Theorem 3.3 hold
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for any function f ∈ C(R × R) ∩ F(R × R), Aγ,δ
α,β = 4 and if f ∈ Db([α, β] × [γ, δ])

with DBf ∈ B([α, β]× [γ, δ]), then

Bγ,δ
α,β(f,m, n) = 3‖DBf‖∞ +

(
2 + 2

√
3
)

ωmixed

(
DBf ;

1√
m

,
1√
n

)
,

where (m,n) ∈ N× N.
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[13] Miheşan, V., On Ismail and May probabilistic positive linear operator, ACAM 13 (2004),

no. 1, 129-131.

109



OVIDIU T. POP

[14] Mirakjan, G. M., Approximation of continuous functions with the aid of polynomials,

(Russian), Dokl. Acad. Nauk SSSR, 31 (1941), 201-205.
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ON THE TRANSFORMATIONS OF N-LINEAR CONNECTIONS
IN THE k-OSCULATOR BUNDLE

MONICA PURCARU AND MIRELA TARNOVEANU

Abstract. In the present paper we determine the transformations for

the coefficients of an N-linear connection on Osc2M , Osc3M, Osc4M, ...,

OsckM, (k ≥ 2, k ∈ N) by a transformation of nonlinear connections. We

prove that the set T of the transformations of N-linear connections on

OsckM, (k ≥ 2, k ∈ N) , together with the composition of mappings isn’t a

group, but we give some groups which keep invariant a part of components

of the local coefficients of an N-linear connection.

1. Preliminaries

The geometry of Jk
0 M , k ∈ N∗, the k-jet bundle, discovered by Ch. Ehres-

mann [4], was largely investigated by many scholars: P. Liebermann [9], M. Crampin

[3], A. Kawaguchi [6], I. Kolar [7], D. Krupka [8], M. de Léon [10], W. Sarlet [3], F.

Cantrjin [3], W.M. Tulczyew [19], D. Grigore [5], R. Miron [4] et al. [12, 13, 14, 15, 16].

Generally, the geometries of higher order defined as the study of the category

of bundles of jet (Jk
0 M , πk, M) are based on a direct approach of the properties of

objects and morphisms in this category, without local coordinates.

But, many mathematical models from Lagrangian Mechanics, Theoretical

Physics and Variational Calculus used multivariate Lagrangians of higher order ac-

celeration, L(x,
dx

dt
(t), ... , 1

k!

dkx

dtk
(t) ), (see E. Cartan, [2], for k=2, etc.).

Received by the editors: 22.11.2005.

2000 Mathematics Subject Classification. 53C05, 53C20, 53C60, 53B40, 58B20.

Key words and phrases. tangent bundle, metrical structure, almost symplectic structure, integrability,

invariants, semi-symmetric metrical d-linear connection, transformations group.

111



MONICA PURCARU AND MIRELA TARNOVEANU

From here one can see the reason of construction of the geometry of the total

space of the bundle of higher order accelerations (or the oscuator bundle of higher

order) in local coordinates.

Recently, this construction was achived by R. Miron and Gh. Atanasiu in

their joint papers [13, 14].

Let M be a real C∞ manifold with n-dimensions, and
(
OsckM,πk,M

)
(k ≥ 2, k ∈ N) its k-osculator bundle. The local coordinates on the (k + 1) n-

dimensional manifold OsckM, (k ≥ 2, k ∈ N) are denoted by
(
xi, y(1)i, y(2)i, ..., y(k)i

)
.

Let N be a nonlinear connection on OsckM, (k ≥ 2, k ∈ N) with the coeffi-

cients (
N i

j
(1)

, N i
j

(2)

, ..., N i
j

(k)

)
, (k ≥ 2, k ∈ N) ,

(
i, j = 1, n

)
.

Hence, the tangent space of OsckM, (k ≥ 2, k ∈ N) in the point

u =
(
x, y(1), y(2), ..., y(k)

)
∈ OsckM, (k ≥ 2, k ∈ N) is given by the direct sum

of the vector spaces:

TuOsckM, (k ≥ 2, k ∈ N) = N0 (u)⊕N1 (u)⊕ ...⊕Nk−1 (u)⊕ Vk (u) ,

∀u ∈ OsckM, (k ≥ 2, k ∈ N) . (1.1)

An adapted basis to (1.1) is given by:

{
δ

δxi
,

δ

δy(1)i
,

δ

δy(2)i
, ...,

δ

δy(k)i

}
(k ≥ 2, k ∈ N) ,

(
i = 1, n

)
, (1.2)

where



δ
δxi = ∂

∂xi − N
(1)

j

i

∂
∂y(1)j − N

(2)

j

i

∂
∂y(2)j − ...− N

(k)

j

i

∂
∂y(k)j ,

δ
δy(1)i = ∂

∂y(1)i − N
(1)

j

i

∂
∂y(2)j − N

(2)

j

i

∂
∂y(3)j − ...− N

(k−1)

j

i

∂
∂y(k)j ,

..........................................................

δ
δy(k−1)i = ∂

∂y(k−1)i − N
(1)

j

i

∂
∂y(k)j ,

δ
δy(k)i = ∂

∂y(k)i , (k ≥ 2, k ∈ N) ,
(
i, j = 1, n

)
.

(1.3)
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Let us consider the dual basis of (1.2) :

{
dxi, δy(1)i, δy(2)i, ..., δy(k)i

}
, (k ≥ 2, k ∈ N) ,

(
i = 1, n

)
, (1.4)

where:



δxi = dxi,

δy(1)i = dy(1)i + M
(1)

i

j

dxj ,

δy(2)i = dy(2)i + M
(1)

i

j

dy(1)j + M
(2)

i

j

dxj ,

..........................................................

δy(k)i = dy(k)i + M
(1)

i

j

dy(k−1)j + ... + M
(k−1)

i

j

dy(1)j + M
(k)

i

j

dxj ,

(1.5)

where


M
(1)

i

j

= N
(1)

i

j

,M
(2)

i

j

= N
(2)

i

j

+ N
(1)

i

m

M
(1)

m

j

,

...........................................................

M
(k)

i

j

= N
(k)

i

j

+ N
(k−1)

i

m

M
(1)

m

j

+ ... + N
(2)

i

m

M
(k−2)

m

j

+ N
(1)

i

m

M
(k−1)

m

j

.

(1.6)

Let D be an N-linear connection on OsckM, (k ≥ 2, k ∈ N) with the local

coefficients in the adapted basis: DΓ (N) =
(

Li
jk, C

(α)

i

jk

)
, (k ≥ 2, k ∈ N) .

The terminology and notations are usually retained, which are essentially

based on the R. Miron’s book: [12].

2. The set of the transformations of N-linear connections

Let N be another nonlinear connection on OsckM, (k ≥ 2, k ∈ N) with the

coefficients
(

N
(1)

i

j

, N
(2)

i

j

, ..., N
(k)

i

j

)
.Then there exists the uniquely determined tensor fields

A
(α)

i

j

∈ τ1
1

(
OsckM, (k ≥ 2, k ∈ N)

)
,
(
α = 1, k

)
on OsckM, (k ≥ 2, k ∈ N) such that:

N
(α)

i

j

= N
(α)

i

j

− A
(α)

i

j

,
(
α = 1, k

)
(k ≥ 2, k ∈ N) . (2.1)

Conversely, if N
(α)

i

j

and A
(α)

i

j

(
α = 1, k

)
(k ≥ 2, k ∈ N) are given, then N

(α)

i

j

,(
α = 1, k

)
(k ≥ 2, k ∈ N) , given by (2.1) is a nonlinear connection.
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Let us suppose that the mapping N → N is given by (2.1)

Let D be an N -linear connection on OsckM, (k ≥ 2, k ∈ N) with the local

coefficients in the adapted basis: DΓ
(
N
)

=
(

L
i

jk, C
(α)

i

jk

)
, (k ≥ 2, k ∈ N) .

According to [12] we have:


D δ

δxj

δ
δxi = Lm

ij
δ

δxm , D δ

δxj

δ
δy(α)i = Lm

ij
δ

δy(α)m ,
(
α = 1, k

)
(k ≥ 2, k ∈ N) ,

D δ

δy(β)j

δ
δxi = C

(β)

m

ij

δ
δxm , D δ

δy(β)j

δ
δy(α)i = C

(β)

m

ij

δ
δy(α)m ,

(
α, β = 1, k

)
(k ≥ 2, k ∈ N) ,

(2.2)

The adapted basis corresponding to the nonlinear connection N is:



δ
δxi = ∂

∂xi − N
(1)

j

i

∂
∂y(1)j − N

(2)

j

i

∂
∂y(2)j − ...− N

(k)

j

i

∂
∂y(k)j ,

δ
δy(1)i = ∂

∂y(1)i − N
(1)

j

i

∂
∂y(2)j − N

(2)

j

i

∂
∂y(3)j − ...− N

(k−1)

j

i

∂
∂y(k)j ,

...............................................................

δ
δy(k−1)i = ∂

∂y(k−1)i − N
(1)

j

i

∂
∂y(k)j ,

δ
δy(k)i = ∂

∂y(k)i .

(2.3)

It follows first of all that the transformations (2.1) preserve the coefficients C
(k)

i

jk

.

From (1.3) , (2.3) and (2.1) we obtain:

δ
δxi = δ

δxi + A
(1)

j

i

∂
∂y(1)j + A

(2)

j

i

∂
∂y(2)j + ... + A

(k)

j

i

∂
∂y(k)j ,

δ
δy(1)i = δ

δy(1)i + A
(1)

j

i

∂
∂y(2)j + A

(2)

j

i

∂
∂y(3)j + ... + A

(k−1)

j

i

∂
∂y(k)j ,

.............................................................

δ
δy(k−1)i = δ

δy(k−1)i + A
(1)

j

i

∂
∂y(k)j ,

δ
δy(k)i = δ

δy(k)i .

(2.4)

Using (2.2) , (2.4)and (1.3) we have:

D δ

δxj

δ

δy(k)i
= L

m

ij

δ

δy(k)m
= L

m

ij

δ

δy(k)m
,

D δ

δxj

δ

δy(k)i
= D(

δ

δxj + A
(1)

l

j

∂

∂y(1)l
+ A

(2)
l

j

∂

∂y(2)l
+...+ A

(k)
l

j

∂

∂y(k)l

) δ

δy(k)i
=

114



ON THE TRANSFORMATIONS OF N-LINEAR CONNECTIONS IN THE k-OSCULATOR BUNDLE

= D δ

δxj

δ

δy(k)i
+ A

(1)

l

j

D ∂

∂y(1)l

δ

δy(k)i
+ A

(2)

l

j

D ∂

∂y(2)l

δ

δy(k)i
+ ... + A

(k)

l

j

D ∂

∂y(k)l

δ

δy(k)i
=

= Lm
ij

δ

δy(k)m
+ A

(1)

l

j

D δ

δy(1)l
+N

(1)
r

l

∂

∂y(2)r
+N

(2)
r

l

∂

∂y(3)r
+...+ N

(k−1)
r

l

∂

∂y(k)r

δ

δy(k)i
+

+A
(2)

l

j

D δ

δy(2)l
+N

(1)
r

l

∂

∂y(3)r
+N

(2)
r

l

∂

∂y(4)r
+...+ N

(k−2)
r

l

∂

∂y(k)r

δ

δy(k)i
+ ... + A

(k)

l

j

D δ

δy(k)l

δ

δy(k)i
=

= Lm
ij

δ

δy(k)m
+
(

A
(1)

l

j

D δ

δy(1)l

δ

δy(k)i
+ A

(1)

l

j

N
(1)

r

l

D ∂

∂y(2)r

δ

δy(k)i
+ A

(1)

l

j

N
(2)

r

l

D ∂

∂y(3)r

δ

δy(k)i
+ ...

+ A
(1)

l

j

N
(k−1)

r

l

D δ

δy(k)r

δ

δy(k)i

)
+
(

A
(2)

l

j

D δ

δy(2)l

δ

δy(k)i
+ A

(2)

l

j

N
(1)

r

l

D ∂

∂y(3)r

δ

δy(k)i
+

+ A
(2)

l

j

N
(2)

r

l

D ∂

∂y(4)r

δ

δy(k)i
+ ... + A

(2)

l

j

N
(k−2)

r

l

D δ

δy(k)r

δ

δy(k)i

)
+ ... + A

(k)

l

j

C
(k)

m

il

δ

δy(k)m
=

= Lm
ij

δ

δy(k)m
+ A

(1)

l

j

C
(1)

m

il

δ

δy(k)m
+ A

(2)

l

j

C
(2)

m

il

δ

δy(k)m
+ ... + A

(k)

l

j

C
(k)

m

il

δ

δy(k)m
+

+A
(1)

l

j

N
(1)

r

l

D(
δ

δy(2)r
+N

(1)
s

r

∂

∂y(3)s
+N

(2)
s

r

∂

∂y(4)s
+...+ N

(k−2)
s

r

∂

∂y(k)s

) δ

δy(k)i
+

+A
(1)

l

j

N
(2)

r

l

D(
δ

δy(3)r
+N

(1)
s

r

∂

∂y(4)s
+N

(2)
s

r

∂

∂y(5)s
+...+ N

(k−3)
s

r

∂

∂y(k)s

) δ

δy(k)i
+ ...+

+A
(1)

l

j

N
(k−1)

r

l

C
(k)

m

ir

δ

δy(k)m
+ ...

D δ

δy(1)j

δ

δy(k)i
= C

(1)

m

ij

δ

δy(k)m
, D δ

δy(1)j

δ

δy(k)i
= D(

δ

δy(1)j
+ A

(1)
l

j

∂

∂y(2)l
+...+ A

(k−1)
l

j

∂

∂y(k)l

) δ

δy(k)i

= C
(1)

m

ij

δ

δy(k)m
+ A

(1)

l

j

D ∂

∂y(2)l

δ

δy(k)i
+ ... + A

(k−2)

l

j

D ∂

∂y(k−1)l

δ

δy(k)i
+ A

(k−1)

l

j

C
(k)

m

il

δ

δy(k)m
.

..............................................................

D δ

δy(k−1)j

δ

δy(k)i
= C

(k−1)

m

ij

δ

δy(k)m
, D δ

δy(k−1)j

δ

δy(k)i
= D(

δ

δy(k−1)j
+ A

(1)
l

j

∂

∂y(k)l

) δ

δy(k)i
=

C
(k−1)

m

ij

δ

δy(k)m
+ A

(1)

l

j

C
(k)

m

il

δ

δy(k)m
.
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Therefore the change we are looking for is:



L
m

ij = Lm
ij + A

(1)

l

j

[
C
(1)

m

il

+ N
(1)

r

l

C
(2)

m

ir

+ ... + N
(k−1)

r

l

C
(k)

m

ir

+ N
(1)

r

l

N
(1)

s

r

C
(3)

m

is

+

... +
(

N
(1)

r

l

N
(k−2)

s

r

+ N
(2)

r

l

N
(k−3)

s

r

+ ... + N
(k−2)

r

l

N
(2)

s

r

+ N
(k−1)

r

l

N
(1)

s

r

)
C
(k)

m

is

+

... + N
(1)

r

l

N
(1)

s

r

...N
(1)︸ ︷︷ ︸

(k−1)

C
k

+ A
(2)

l

j

[
C
(2)

m

il

+ N
(1)

r

l

C
(3)

m

ir

+ ...+

+ N
(k−2)

r

l

C
(k)

m

ir

+ ... + N
(1)

r

l

· ... · N
(1)︸ ︷︷ ︸

(k−2)

C
(k)

+ ...+

+ A
(k−1)

l

j

[
C

(k−1)

m

il

+ N
(1)

r

l

C
(k)

m

ir

]
+ A

(k)

l

j

C
(k)

m

il

, (k ≥ 2, k ∈ N) ,

C
(1)

m

ij

= C
(1)

m

ij

+ A
(1)

l

j

[
C
(2)

m

il

+ N
(1)

r

l

C
(3)

m

ir

+ ... + N
(k−2)

r

l

C
(k)

m

ir

+ ...+

+ N
(1)

r

l

· ... · N
(1)︸ ︷︷ ︸

(k−2)

C
(k)

+ ... + A
(k−2)

l

j

[
C

(k−1)

m

il

+ N
(1)

r

l

C
(k)

m

ir

]
+ A

(k−1)

l

j

C
(k)

m

il

, (k ≥ 2, k ∈ N) ,

...................................................................................

C
(k−1)

m

ij

= C
(k−1)

m

ij

+ A
(1)

l

j

C
(k)

m

il

, (k ≥ 2, k ∈ N) ,

C
(k)

m

ij

= C
(k)

m

ij

, (k ≥ 2, k ∈ N) .

(2.5)

So, we have proved:

Proposition 1. The transformation (2.1) of nonlinear connections imply the trans-

formations (2.5)for the coefficients

DΓ (N) =
(

Li
jk, C

(α)

i

jk

)
,
(
α = 1, k

)
, (k ≥ 2, k ∈ N) .

Particular cases:

1. If we take k = 2 in (2.5) then we obtain a result given in [17]:
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
L

m

ij = Lm
ij + A

(1)

l

j

(
C
(1)

m

il

+ N
(1)

r

l

C
(2)

m

ir

)
+ A

(2)

l

j

C
(2)

m

il

,

C
(1)

m

ij

= C
(1)

m

ij

+ A
(1)

l

j

C
(2)

m

il

,

C
(2)

m

ij

= C
(2)

m

ij

.

(2.6)

2.If we take k = 3 in (2.5), then we obtain the transformations for the

coefficients of an N-linear connection on Osc3M by a transformation of nonlinear

connections, result given in [18]:



L
m

ij = Lm
ij + A

(1)

l

j

(
C
(1)

m

il

+ N
(1)

r

l

C
(2)

m

ir

+ N
(1)

r

l

N
(1)

s

r

C
(3)

m

is

+ N
(2)

r

l

)
C
(3)

m

ir

+

+A
(2)

l

j

(
C
(2)

m

il

+ N
(1)

r

l

C
(3)

m

ir

)
+ A

(3)

l

j

C
(3)

m

il

,

C
(1)

m

ij

= C
(1)

m

ij

+ A
(1)

l

j

(
C
(2)

m

il

+ N
(1)

r

l

C
(3)

m

ir

)
+ A

(2)

l

j

C
(3)

m

il

,

C
(2)

m

ij

= C
(2)

m

ij

+ A
(1)

l

j

C
(3)

m

il

,

C
(3)

m

ij

= C
(3)

m

ij

.

(2.7)

3. If we consider k = 4 in (2.5), then we obtain the transformations for

the coefficients of an N-linear connection on Osc4M by a transformation of nonlinear

connections.
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

L
m

ij = Lm
ij + A

(1)

l

j

(
C
(1)

m

il

+ N
(1)

r

l

C
(2)

m

ir

+ N
(2)

r

l

C
(3)

m

ir

+ N
(3)

r

l

C
(4)

m

ir

+

+N
(1)

r

l

N
(1)

s

r

C
(3)

m

is

+ N
(1)

r

l

N
(2)

s

r

C
(4)

m

is

+ N
(2)

r

l

N
(1)

s

r

C
(4)

m

is

+

+ N
(1)

r

l

N
(1)

s

r

N
(1)

t

s

C
(4)

m

it

)
+ A

(2)

l

j

(
C
(2)

m

il

+ C
(3)

m

ir

+ N
(2)

r

l

C
(4)

m

ir

+

+ N
(1)

r

l

N
(1)

s

r

C
(4)

m

is

)
+ A

(3)

l

j

(
C
(3)

m

il

+ N
(1)

r

l

C
(4)

m

ir

)
+ A

(4)

l

j

C
(4)

m

il

,

C
(1)

m

ij

= C
(1)

m

ij

+ A
(1)

l

j

(
C
(2)

m

il

+ N
(1)

r

l

C
(3)

m

ir

+ N
(2)

r

l

C
(4)

m

ir

+ N
(1)

r

l

N
(1)

s

r

C
(4)

m

is

)
+

+A
(2)

l

j

(
C
(3)

m

il

+ N
(1)

r

l

C
(4)

m

ir

)
+ A

(3)

l

j

C
(4)

m

il

,

C
(2)

m

ij

= C
(2)

m

ij

+ A
(1)

l

j

(
C
(3)

m

il

+ N
(1)

r

l

C
(4)

m

ir

)
+ A

(2)

l

j

C
(4)

m

il

,

C
(3)

m

ij

= C
(3)

m

ij

+ A
(1)

l

j

C
(4)

m

il

,

C
(4)

m

ij

= C
(4)

m

ij

.

(2.8)

etc.

Now, we can prove:

Theorem 1. Let N and N be two nonlinear connections on OsckM , (k ≥ 2,

k ∈ N) with coefficients(
N
(1)

i

j

, N
(2)

i

j

, ..., N
(k)

i

j

)
,

(
N
(1)

i

j

, N
(2)

i

j

, ..., N
(k)

i

j

)
,
(
α = 1, k

)
, (k ≥ 2, k ∈ N)

respectively. If

DΓ (N) =
(

Lm
ij , C

(α)

m

ij

)
and

DΓ
(
N
)

=
(

L
m

ij , C
(α)

m

ij

)
,
(
α = 1, k

)
, (k ≥ 2, k ∈ N)

are the local coefficients of two N-, respectively N−linear connections, D, respectively

D on the differentiable manifold OsckM, (k ≥ 2, k ∈ N) , then there exists only one

system of tensor fields
(

A
(1)

i

j

, A
(2)

i

j

, ..., A
(k)

i

j

, Bm
ij , D

(1)

m

ij

, D
(2)

m

ij

, ..., D
(k)

m

ij

)
such that:
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

N
(α)

i

j

= N
(α)

i

j

− A
(α)

i

j

,
(
α = 1, k

)
, (k ≥ 2, k ∈ N) ,

L
m

ij = Lm
ij + A

(1)

l

j

[
C
(1)

m

il

+ N
(1)

r

l

C
(2)

m

ir

+ ... + N
(k−1)

r

l

C
(k)

m

ir

+ N
(1)

r

l

N
(1)

s

r

C
(3)

m

is

+

... +
(

N
(1)

r

l

N
(k−2)

s

r

+ N
(2)

r

l

N
(k−3)

s

r

+ ... + N
(k−2)

r

l

N
(2)

s

r

+ N
(k−1)

r

l

N
(1)

s

r

)
C
(k)

m

is

+

... + N
(1)

r

l

N
(1)

s

r

...N
(1)︸ ︷︷ ︸

(k−1)

C
(k)

+ A
(2)

l

j

[
C
(2)

m

il

+ N
(1)

r

l

C
(3)

m

ir

+ ...+

+ N
(k−2)

r

l

C
(k)

m

ir

+ ... + N
(1)

r

l

· ... · N
(1)︸ ︷︷ ︸

(k−2)

C
(k)

+ ...+

+ A
(k−1)

l

j

[
C

(k−1)

m

il

+ N
(1)

r

l

C
(k)

m

ir

]
+ A

(k)

l

j

C
(k)

m

il

−Bm
ij , (k ≥ 2, k ∈ N) ,

C
(1)

m

ij

= C
(1)

m

ij

+ A
(1)

l

j

[
C
(2)

m

il

+ N
(1)

r

l

C
(3)

m

ir

+ ... + N
(k−2)

r

l

C
(k)

m

ir

+ ...+ + N
(1)

r

l

· ... · N
(1)︸ ︷︷ ︸

(k−2)

C
(k)


+ · · ·+ A

(k−2)

l

j

[
C

(k−1)

m

il

+ N
(1)

r

l

C
(k)

m

ir

]
+ A

(k−1)

l

j

C
(k)

m

il

− D
(1)

m

ij

, (k ≥ 2, k ∈ N) ,

...................................................................................

C
(k−1)

m

ij

= C
(k−1)

m

ij

+ A
(1)

l

j

C
(k)

m

il

− D
(k−1)

m

ij

, (k ≥ 2, k ∈ N) ,

C
(k)

m

ij

= C
(k)

m

ij

− D
(k)

m

ij

, (k ≥ 2, k ∈ N) .

(2.9)

Proof. The first equality (2.9) determines uniquely the tensor fields

A
(α)

i

j

,
(
α = 1, k

)
, (k ≥ 2, k ∈ N) . Since C

(α)

m

ij

,
(
α = 1, k

)
, (k ≥ 2, k ∈ N) are ten-

sor fields, the second equation (2.9) determines uniquely the tensor field Bm
ij . Sim-

ilarly the third, the fourth,...and the last equation (2.9)determine the tensor fields

D
(1)

m

ij

, D
(2)

m

ij

, ... and D
(k)

m

ij

, (k ≥ 2, k ∈ N) respectively.

We have immediately:
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Theorem 2. If DΓ (N) =
(

Lm
ij , C

(α)

m

ij

)
,
(
α = 1, k

)
, (k ≥ 2, k ∈ N) are the

local coefficients on an N-linear connection D on OsckM (k ≥ 2, k ∈ N) and(
A
(1)

i

j

, A
(2)

i

j

, ..., A
(k)

i

j

, Bm
ij , D

(1)

m

ij

, D
(2)

m

ij

, ..., D
(k)

m

ij

)
, (k ≥ 2, k ∈ N)

is a system of tensor fields on OsckM (k ≥ 2, k ∈ N) then

DΓ
(
N
)

=
(

L
m

ij , C
(α)

m

ij

)
,
(
α = 1, k

)
, (k ≥ 2, k ∈ N)

given by (2.9) are the local coefficients of an N−linear connection, D, on OsckM ;

(k ≥ 2, k ∈ N).

The system of tensor fields(
A
(1)

i

j

, A
(2)

i

j

, ..., A
(k)

i

j

, Bm
ij , D

(1)

m

ij

, D
(2)

m

ij

, ..., D
(k)

m

ij

)
, (k ≥ 2, k ∈ N)

is called the difference tensor fields of DΓ (N) to DΓ
(
N
)

and the mapping DΓ (N) →

DΓ
(
N
)

given by (2.9) is called a transformation of N -linear connection to N−linear

connection on OsckM (k ≥ 2, k ∈ N) and is noted by:

t

(
A
(1)

i

j

, A
(2)

i

j

, ..., A
(k)

i

j

, Bm
ij , D

(1)

m

ij

, D
(2)

m

ij

, ..., D
(k)

m

ij

)
, (k ≥ 2, k ∈ N) .

Theorem 3.The set T of the transformations of N-linear connections to

N−linear connection on OsckM (k ≥ 2, k ∈ N) together with the composition of map-

pings ist’t a group.

Proof. Let

t

(
A
(1)

i

j

, A
(2)

i

j

, ..., A
(k)

i

j

, Bm
ij , D

(1)

m

ij

, D
(2)

m

ij

, ..., D
(k)

m

ij

)
: DΓ (N) → DΓ

(
N
)

and

t

(
A
(1)

i

j

, A
(2)

i

j

, ..., A
(k)

i

j

, Bm
ij , D

(1)

m

ij

, D
(2)

m

ij

, ..., D
(k)

m

ij

)
: DΓ

(
N
)
→ DΓ

(
N
)

, (k ≥ 2, k ∈ N)

be two transformations from T , given by (2.9) .

From (2.9) we have:

N
(α)

i

j

= N
(α)

i

j

−
(

A
(α)

i

j

+ A
(α)

i

j

)
,
(
α = 1, k

)
, (k ≥ 2, k ∈ N) .
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We obtain for example:

C
(k−1)

m

ij

= C
(k−1)

m

ij

+ C
(k)

m

il

(
A
(1)

l

j

+ A
(1)

l

j

)(
D
(k)

m

il

A
(1)

l

j

+ D
(k−1)

m

ij

+ D
(k−1)

m

ij

)
,

So, C
(k−1)

m

ij

hasn’t the form (2.9) . Result that the composition of two transfor-

mations from T , isn’t a transformation from T , so T together with the composition

of mappings isn’t a group.

Remark 1. If we consider A
(α)

i

j

,
(
α = 1, k

)
, (k ≥ 2, k ∈ N) in (2.9) we obtain

the set TN of transformations of N-linear connections corresponding to the same

nonlinear connection N :

TN =

t

0, 0, ..., 0︸ ︷︷ ︸
(k)

, Bm
ij , D

(1)

m

ij

, D
(2)

m

ij

, ..., D
(k)

m

ij

 ∈ T (k ≥ 2, k ∈ N)

 .

We have:

Theorem 4.The set TN of the transformations of N-linear connections to N-

linear connections on OsckM (k ≥ 2, k ∈ N) together with the composition of map-

pings ist’t a group. This group TN acts effectively and transitivelly on the set of

N-linear connections.

Proof. Let t

0, 0, ..., 0︸ ︷︷ ︸
(k)

, Bm
ij , D

(1)

m

ij

, D
(2)

m

ij

, ..., D
(k)

m

ij

 : DΓ (N) → DΓ (N) , (k ≥ 2, k ∈ N)

be a transformation from TN given by (2.10) :

Proof. 
N
(α)

i

j

= N
(α)

i

j

,
(
α = 1, k

)
, (k ≥ 2, k ∈ N) ,

L
(α)

m

ij

= Lm
ij −Bm

ij ,

C
(α)

m

ij

= C
(α)

m

ij

− N
(α)

m

ij

,
(
α = 1, k

)
, (k ≥ 2, k ∈ N) .

(2.10)

The composition of two transformations from TN is a transformation from

TN , given by:

t

0, 0, ..., 0︸ ︷︷ ︸
(k)

, B
m

ij , D
(1)

m

ij

, D
(2)

m

ij

, ..., D
(k)

m

ij

 ◦ t

0, 0, ..., 0︸ ︷︷ ︸
(k)

, Bm
ij , D

(1)

m

ij

, D
(2)

m

ij

, ..., D
(k)

m

ij

 =
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t

0, 0, ..., 0︸ ︷︷ ︸
(k)

, Bm
ij + B

m

ij , D
(1)

m

ij

+ D
(1)

m

ij

, D
(2)

m

ij

+ D
(2)

m

ij

, ..., D
(k)

m

ij

+ D
(k)

m

ij

 .

The inverse of a transformation from TN is the transformation:

t

0, 0, ..., 0︸ ︷︷ ︸
(k)

,−Bm
ij ,−D

(1)

m

ij

,−D
(2)

m

ij

, ...,−D
(k)

m

ij

 : DΓ (N) → DΓ (N) .

The transformation (2.10) preserves all the N-linear connections D if Bm
ij =

D
(α)

m

ij

= 0,
(
α = 1, k

)
, (k ≥ 2, k ∈ N) . Therefore TN acts effectively on the set of N-

linear connections. From the theorem 1. results that TN acts transitively on this

set.

Let be:

TNL =

t

0, 0, ..., 0︸ ︷︷ ︸
(k)

, D
(1)

m

ij

, D
(2)

m

ij

, ..., D
(k)

m

ij

 ∈ TN , (k ≥ 2, k ∈ N)

 ,

TN C
(1)

=

t

0, 0, ..., 0︸ ︷︷ ︸
(k)

, Bm
ij , 0, D

(2)

m

ij

, ..., D
(k)

m

ij

 ∈ TN , (k ≥ 2, k ∈ N)

 ,

TN C
(2)

=

t

0, 0, ..., 0︸ ︷︷ ︸
(k)

, Bm
ij , D

(1)

m

ij

, 0, D
(3)

m

ij

, ..., D
(k)

m

ij

 ∈ TN , (k ≥ 2, k ∈ N)

 ,

......................................................................

TN C
(k)

=

t

0, 0, ..., 0︸ ︷︷ ︸
(k)

, Bm
ij , D

(1)

m

ij

, D
(2)

m

ij

, ..., D
(k−1)

m

ij

, 0

 ∈ TN , (k ≥ 2, k ∈ N)

 ,

TN C
(1)

C
(2)

=

t

0, 0, ..., 0︸ ︷︷ ︸
(k)

, Bm
ij , 0, 0, ..., 0︸ ︷︷ ︸

(k)

 ∈ TN , (k ≥ 2, k ∈ N)

 .

Proposition 2. TNL, TN C
(1)

, TN C
(2)

, ..., TN C
(k)

and TN C
(1)

C
(2)

... C
(k)

are Abelian sub-

groups of TN .

Proposition 3.The group TN preserves the nonlinear connection N,TNL

preserves the nonlinear connection N and the component L of the local coefficients

DΓ (N) , TN C
(1)

preserves the nonlinear connection N and the component C
(1)

of local
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coefficients DΓ (N) , ..., TN C
(k)

preserves the nonlinear connection N and the component

C
(k)

of the local coefficients DΓ (N) and TN C
(1)

C
(2)

... C
(k)

preserves the nonlinear connection

N and the components C
(1)

C
(2)

, ..., C
(k)

of the local coefficients DΓ (N) .
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A COMBINED MONTE CARLO AND QUASI-MONTE CARLO
METHOD FOR ESTIMATING MULTIDIMENSIONAL INTEGRALS

NATALIA ROŞCA

Abstract. In this paper, we propose a method to estimate a multidimen-

sional integral I. The method combines the ideas of the Monte Carlo

(MC) and Quasi-Monte Carlo (QMC) methods. We call our method ran-

dom sampling from non-uniform low-discrepancy sequences. The method

is based on a new estimator for the integral I, for which some theoretical

properties are given. A statistical as well as a deterministic analysis of the

error are performed. In the statistical analysis, the accuracy is measured

by constructing confidence intervals for I. In the deterministic analysis,

deterministic upper bounds for the error of approximation are given. The

method is applied to a numerical example. The numerical results indicate

that our method performs better than the MC and QMC methods.

1. Introduction

We consider the problem of approximating the integral of a real valued func-

tion f defined over the unit hypercube [0, 1]s, given by

I =
∫

[0,1]s
f(x)dx.

Two frequently used approaches are the Monte Carlo (MC) and the Quasi-Monte

Carlo (QMC) methods.

In the MC method, we generate N independent sample variables X1, . . . , XN ,

from the uniform distribution on [0, 1]s. The integral I is estimated by the sample

Received by the editors: 23.02.2006.

2000 Mathematics Subject Classification. 65C05, 11K45, 11K36, 11K38.

Key words and phrases. Monte Carlo integration, Quasi-Monte Carlo integration, discrepancy,

non-uniform low-discrepancy sequences.
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mean

ÎN =
1
N

N∑
k=1

f(Xk).

The estimator ÎN is an unbiased estimator of the integral I. The strong law

of large numbers tells us that

P
(

lim
N→∞

ÎN = I
)

= 1.

In other words, the MC estimator converges almost surely to I, as N →∞.

The practical advantage of the MC method is that we can easily measure the

accuracy of the MC estimate, by using the sample variance 1
N−1

∑N
k=1

(
f(Xk)− ÎN

)2.
By constructing confidence intervals for I, we get probabilistic error bounds of order

O
(
1/
√

N
)
.

The QMC method can be defined by analogy with the MC method, by replac-

ing the random samples by a sequence of ”well distributed” deterministic points. In

this approach, the integral I is approximated by sums of the form 1
N

∑N
k=1 f(xk),

where (x1, . . . , xN ) is a sequence of deterministic points, with xk ∈ [0, 1]s, k =

1, . . . , N .

An important advantage of the QMC method is that we get deterministic

upper bounds for the error of approximation, given by the Koksma-Hlawka inequality

([7]) ∣∣∣∣∣
∫

[0,1]s
f(x)dx− 1

N

N∑
k=1

f(xk)

∣∣∣∣∣ ≤ VHK(f)D∗N (x1, . . . , xN ),

where VHK(f) < ∞ is the variation of f in the sense of Hardy and Krause and

D∗N (x1, . . . , xN ) is the discrepancy of sequence (x1, . . . , xN ).

When uniformly distributed low-discrepancy sequences are used, the error of

approximation in QMC method is of order O((log N)s/N), which is better than the

order of MC error. This is due to the fact that, for each dimension s, the inequality

(log N)s/N < 1/
√

N holds for a sufficiently large N .

Nevertheless, the error estimation, given by the Koksma-Hlawka inequality,

while possible in theory, is intractable in practice. This is due to the difficulty of

computing the factors VHK(f) and D∗N (x1, . . . , xN ).
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The goal of our paper is to design a method of estimating the integral I

that combines the theoretical advantages of the QMC method with the practical

advantages of the MC method. We call our method random sampling from non-

uniform low-discrepancy sequences. We perform a statistical as well as a deterministic

analysis of the error. In the statistical analysis, the accuracy can be measured in a

practical way, as in MC methods, by constructing confidence intervals for I. In

the deterministic analysis, we provide deterministic upper bounds for the error of

approximation. The method is applied to a numerical example and compared to the

MC and QMC methods.

2. Basic notions and results

We first recall some useful notions and results.

Definition 1 (discrepancy). Let P = (x1, . . . , xN ) be a sequence of points in [0, 1]s.

The discrepancy of sequence P is defined as

D∗N (P ) = sup
J⊆[0,1]s

∣∣∣∣ 1
N

AN (J, P )− V ol(J)
∣∣∣∣,

where the supremum is calculated over all subintervals J of [0, 1]s of the form∏s
i=1[0, ai]; V ol(J) denotes the volume of J ; AN counts the number of elements of

sequence P , falling into the interval J, i.e.,

AN (J, P ) =
N∑

k=1

1J(xk),

1J is the characteristic function of J .

The sequence P is called uniformly distributed if D∗N (P ) → 0 as N →∞.

The uniformly distributed sequence P is said to be a low-discrepancy sequence

if D∗N (P ) = O
(
(log N)s/N

)
.

Uniformly distributed low-discrepancy sequences are constructed in [4], [5],

[6] and [7]. The definition of discrepancy can be generalized in a straightforward way.

Definition 2 (G-discrepancy). Consider an s-dimensional continuous distribution

on [0, 1]s, with distribution function G. Let λG be the probability measure induced
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by G. Let P = (x1, . . . , xN ) be a sequence of points in [0, 1]s. The G-discrepancy of

sequence P is defined as

D∗N,G(P ) = sup
J⊆[0,1]s

∣∣∣∣ 1
N

AN (J, P )− λG(J)
∣∣∣∣,

where the supremum is calculated over all subintervals J of [0, 1]s of the form∏s
i=1[0, ai].

The sequence P is called G-distributed if D∗N,G(P ) → 0 as N →∞.

The G-distributed sequence P is said to be a low-discrepancy sequence if

D∗N,G(P ) = O
(
(log N)s/N

)
.

The non-uniform Koksma-Hlawka inequality ([2]) gives an upper bound for

the error of approximation in QMC integration, when G-distributed low-discrepancy

sequences are used.

Theorem 3 (non-uniform Koksma-Hlawka inequality). Let f : [0, 1]s → R be

a function of bounded variation in the sense of Hardy and Krause and (x1, . . . , xN )

be a sequence of points in [0, 1]s. Consider an s-dimensional continuous distribution

on [0, 1]s, with distribution function G. Then, for any N > 0∣∣∣∣∣
∫

[0,1]s
f(x)dG(x)− 1

N

N∑
k=1

f(xk)

∣∣∣∣∣ ≤ VHK(f)D∗N,G(x1, . . . , xN ),

where VHK(f) is the variation of f in the sense of Hardy and Krause.

In order to generate G-distributed low-discrepancy sequences in [0, 1]s, we

use the one-dimensional marginal distributions defined below.

Definition 4. Consider an s-dimensional continuous distribution on [0, 1]s, with

density function g. For a point u =
(
u(1), . . . , u(s)

)
∈ [0, 1]s, the marginal density

functions gl, l = 1, . . . , s, are defined by

gl

(
u(l)
)

=
∫

. . .

∫
︸ ︷︷ ︸
[0,1]s−1

g
(
t(1), . . . , t(l−1), u(l), t(l+1), . . . t(s)

)
dt(1) . . . dt(l−1)dt(l+1) . . . dt(s),

and the marginal distribution functions Gl, l = 1, . . . , s, are defined by

Gl

(
u(l)
)

=
∫ u(l)

0

gl(t)dt.
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In this paper, we consider s-dimensional continuous distributions on [0, 1]s,

with independent marginals. Moreover, it is assumed that the functions Gl, l =

1, . . . , s, are invertible on [0, 1] and their inverses are given explicitly in analytical

form.

In this case, G-distributed low-discrepancy sequences in [0, 1]s can be con-

structed as follows. First, we consider a uniformly distributed low-discrepancy se-

quence in [0, 1]s, α = (α1, . . . , αN ), with αk =
(
α

(1)
k , . . . , α

(s)
k

)
, k = 1, . . . , N . Then,

we construct the sequence β = (β1, . . . , βN ) in [0, 1]s, with βk =
(
β

(1)
k , . . . , β

(s)
k

)
,

k = 1, . . . , N , defined by

β
(1)
k = G−1

1

(
α

(1)
k

)
, β

(2)
k = G−1

2

(
α

(2)
k

)
, . . . , β

(s)
k = G−1

s

(
α

(s)
k

)
, sequentially.

Such a transformation preserves the discrepancy, as shown in the following theorem.

Theorem 5. (see [9]) Let α = (α1, . . . , αN ) be a sequence in [0, 1]s. Consider an s-

dimensional continuous distribution on [0, 1]s, with distribution function G. Assume

that G(u) =
∏s

l=1 Gl(u(l)), ∀u =
(
u(1), . . . , u(s)

)
∈ [0, 1]s, and that the functions Gl,

l = 1, . . . , s, are invertible on [0, 1]. Let β = (β1, . . . , βN ) be the sequence constructed

as above. Then

D∗N,G(β1, . . . , βN ) = D∗N (α1, . . . , αN ).

From Theorem 5, it follows that, if α is a uniformly distributed low-

discrepancy sequence in [0, 1]s, then β is a G-distributed low-discrepancy sequence

in [0, 1]s.

For the case when the inverse functions G−1
l , l = 1, . . . , s, are not explicitly

available, modalities to generate G-distributed low-discrepancy sequences in [0, 1]s

are proposed in [11] and [12].

3. The method of random sampling from non-uniform low-discrepancy se-

quences

In the following, we propose a method to estimate the integral I. The method

combines the ideas of the MC and QMC methods. Our method uses an s-dimensional

continuous distribution on [0, 1]s, with distribution function G and density function
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g (g is nonnegative and
∫
[0,1]s

g(u)du = 1). It is assumed that G(u) =
∏s

l=1 Gl(u(l)),

∀u =
(
u(1), . . . , u(s)

)
∈ [0, 1]s. Moreover, it is assumed that the functions Gl, l =

1, . . . , s, are invertible on [0, 1], and G−1
l , l = 1, . . . , s, are given explicitly in analytical

form.

In our method, we consider Ω to be a set of G-distributed low-discrepancy se-

quences in [0, 1]s, Ω = {β1, . . . , βr}, where sequence βi, i = 1, . . . , r, has the following

form:

βi = (β1,i, . . . , βN,i),

with βk,i = (β(1)
k,i , . . . , β

(s)
k,i ) ∈ [0, 1]s, k = 1, . . . , N .

An arbitrary sequence βi is obtained from a uniformly distributed low-

discrepancy sequence αi in [0, 1]s, αi = (α1,i, . . . , αN,i), with αk,i =
(
α

(1)
k,i , . . . , α

(s)
k,i

)
,

k = 1, . . . , N , as follows:

β
(1)
k,i = G−1

1

(
α

(1)
k,i

)
, β

(2)
k,i = G−1

2

(
α

(2)
k,i

)
, . . . , β

(s)
k,i = G−1

s

(
α

(s)
k,i

)
, sequentially.

(1)

For instance, the sequences αi, i = 1, . . . , r, may be Halton sequences in

prime bases p1,i, . . . , ps,i ([6]) or SQRT sequences ([10]).

According to Theorem 5, the G-discrepancies of the constructed sequences

βi = (β1,i, . . . , βN,i) are given by

D∗N,G(β1,i, . . . , βN,i) = D∗N (α1,i, . . . , αN,i), i = 1, . . . , r.

We rewrite the integral in the following form:

I =
∫

[0,1]s
f(x)dx =

∫
[0,1]s

f(x)
g(x)

g(x)dx =
∫

[0,1]s

f(x)
g(x)

dG(x).

The integral I =
∫
[0,1]s

f(x)/g(x)dG(x) can be approximated by sums of the

form 1
N

∑N
k=1

f(βk,i)
g(βk,i)

, which represent QMC approximations. An upper bound for the

error of the approximation, when the G-distributed low-discrepancy sequence βi is

used, is given by the following theorem.
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Theorem 6. If f/g is a function of bounded variation in the sense of Hardy and

Krause, then, for any N > 0 and for all i = 1, . . . , r, we have∣∣∣∣∣I − 1
N

N∑
k=1

f(βk,i)
g(βk,i)

∣∣∣∣∣ ≤ VHK

(
f

g

)
D∗N,G(β1,i, . . . , βN,i).

The above theorem is derived from Theorem 3.

Corollary 7. For any G-distributed low-discrepancy sequence βi ∈ Ω, βi =

(β1,i, . . . , βN,i), i = 1, . . . , r, we have

1
N

N∑
k=1

f(βk,i)
g(βk,i)

→ I, N →∞.

We define the random variable XN on the space Ω as follows.

Definition 8. For an arbitrary sequence βi = (β1,i, . . . , βN,i) ∈ Ω, the value of the

random variable XN is defined as

XN (βi) =
1
N

N∑
k=1

f(βk,i)
g(βk,i)

,

and is taken with probability 1/r.

Remark 9. The distribution of the random variable XN is

XN :

 1
N

∑N
k=1

f(βk,i)
g(βk,i)

1/r


βi=(β1,i,...,βN,i)
i=1,...,r

.

Next, we give some properties of the random variable XN . These properties

will be used later, in the statistical analysis.

Theorem 10. The random variable XN has the following properties:

lim
N→∞

E(XN ) = I, (2)

lim
N→∞

V ar(XN ) = 0. (3)
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Proof. 1) We have

lim
N→∞

E(XN ) = lim
N→∞

r∑
i=1

1
r

1
N

N∑
k=1

f(βk,i)
g(βk,i)

=
1
r

r∑
i=1

lim
N→∞

(
1
N

N∑
k=1

f(βk,i)
g(βk,i)

)

=
1
r

r∑
i=1

I = I.

For one of the previous identities, we used Corollary 7.

2) We know that V ar(XN ) = E(X2
N )−(E(XN ))2. We first calculate E(X2

N ).

E(X2
N ) =

r∑
i=1

1
r

1
N2

( N∑
k=1

f(βk,i)
g(βk,i)

)2

.

It follows that

V ar(XN ) =
r∑

i=1

1
r

(∑N
k=1

f(βk,i)
g(βk,i)

N

)2

−

(
r∑

i=1

1
r

1
N

N∑
k=1

f(βk,i)
g(βk,i)

)2

.

By letting N →∞, and using Corollary 7, we obtain

lim
N→∞

V ar(XN ) =
(

1
r

r∑
i=1

I2

)
− I2 = 0.

Once we have defined the random variable XN , we select the integers

i1, . . . , iM at random from the uniform distribution on {1, . . . , r}, and consider the

corresponding sequences βi1 , . . . , βiM
. For each sequence, we compute the value of

the random variable XN . The values XN (βil
), l = 1, . . . ,M , are values of the sam-

ple variables XN,i1 , . . . , XN,iM
that are independent identically distributed random

variables and have the same distribution as XN .
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We use the notation XN,M for the sample mean of the random variables

XN,i1 , . . . , XN,iM
, and xN,M for its value, i.e.,

XN,M =
XN,i1 + . . . + XN,iM

M
,

xN,M =
∑M

l=1 XN,il
(βil

)
M

=

∑M
l=1

(
1
N

∑N
k=1

f(βk,il
)

g(βk,il
)

)
M

.

We formulate some properties of the estimator XN,M .

Proposition 11. For a fixed N , the estimator XN,M has the following properties:

E(XN,M ) = E(XN ), (unbiased estimator of E(XN )), (4)

lim
M→∞

V ar(XN,M ) = 0, (5)

P
(

lim
M→∞

XN,M = E(XN )
)

= 1, (XN,M converges almost surely to E(XN )).(6)

Proof. Properties (4) and (5) can be proved using known properties of the mean and

variance. For property (6), we apply the Kolmogorov theorem ([1]) to the sequence

of random variables (XN,i)i≥1, that are independent identically distributed and have

finite means E(XN,i) = E(XN ) < ∞. Under these conditions, the Kolmogorov

theorem asserts that relation (6) is satisfied.

Proposition 12. For a fixed M , we have the following properties of the estimator

XN,M :

lim
N→∞

E(XN,M ) = I,

lim
N→∞

V ar(XN,M ) = 0.

Proof. The proof is immediately, by using property (4) and Theorem 10.

Taking into account these properties, in our method the integral I is approx-

imated by

I ∼= xN,M =
∑M

l=1 XN,il
(βil

)
M

=

∑M
l=1

(
1
N

∑N
k=1

f(βk,il
)

g(βk,il
)

)
M

. (7)

133



NATALIA ROŞCA

We call our method random sampling from non-uniform low-discrepancy se-

quences (RSNU method). The method is based on the estimator XN,M , which shall

be referred as an RSNU estimator. We call the value xN,M an RSNU estimate.

Our method is described in the Algorithm 13.

Algorithm 13. The method of random sampling from non-uniform low-discrepancy

sequences

Input data:

• the function f , the density function g;

• the marginal distribution functions Gl, l = 1, . . . , s, and their inverses;

• the integers N , M , r;

• the uniformly distributed low-discrepancy sequences αi = (α1,i, . . . , αN,i),

i = 1, . . . , r;

Step 1. Construct the G-distributed low-discrepancy sequences βi = (β1,i, . . . , βN,i),

i = 1, . . . , r, using formula (1).

Step 2. Select the integers i1, . . . , iM at random from the uniform distribution on

{1, . . . , r} and consider the corresponding sequences βi1 , . . . , βiM
.

Step 3. For each sequence βil
, l = 1, . . . ,M , compute the value of the sample variable

XN,il
:

xN,il
=

1
N

N∑
k=1

f(βk,il
)

g(βk,il
)
.

Step 4. Compute the sample mean

xN,M =
∑M

l=1 xN,il

M
.

Output data: The value xN,M , which approximates the integral I.
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4. Confidence intervals

We first construct confidence intervals for E(XN ) and then give an important

remark concerning the confidence intervals for the integral I.

We consider the confidence level α ∈ (0, 1). We use the sample standard

deviation

σXN
=

√√√√ 1
M − 1

M∑
l=1

(
XN,il

−XN,M

)2
.

Proposition 14. A (1− α)% confidence interval for E(XN ) is(
XN,M − tM−1,1−α

2

σXN√
M

, XN,M + tM−1,1−α
2

σXN√
M

)
. (8)

where tM−1,1−α
2

is the (1 − α
2 )-th percentile of the Student distribution with M − 1

degrees of freedom.

Proof. We consider the statistics

T =
XN,M − E(XN )

σXN√
M

,

that has the t (Student) distribution with M−1 degrees of freedom. Thus, a (1−α)%

confidence interval for E(XN ) is given by (8).

Remark 15. We proved that E(XN ) → I, as N →∞ (property (2)). Therefore, for

N sufficiently large, we consider E(XN ) ∼= I. Consequently, for large enough values

of N , the confidence interval for I is well approximated by the confidence interval for

E(XN ), given by (8).

5. Deterministic error bounds

In what follows, we give deterministic upper bounds for the error of approx-

imation in formula (7). We have the following main result.

Theorem 16. The error of approximation in RSNU method is bounded by

∣∣I − xN,M

∣∣ ≤ 1
M

VHK

(
f

g

) M∑
l=1

D∗N,G(βil
).
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Proof. We can write

∣∣I − xN,M

∣∣ =

∣∣∣∣∣I −
∑M

l=1 XN,il
(βil

)
M

∣∣∣∣∣
≤ 1

M

M∑
l=1

∣∣∣I −XN,il
(βil

)
∣∣∣

≤ 1
M

VHK

(
f

g

) M∑
l=1

D∗N,G(βil
).

For the last inequality, we used Theorem 6.

Corollary 17. For a fixed M , the RSNU estimate satisfies the following property:

lim
N→∞

xN,M = I.

Next, we compare, from the error point of view, the RSNU method with the

QMC method. As αil
= (α1,il

, . . . , αN,il
), l = 1, . . . M , are uniformly distributed

low-discrepancy sequences in [0, 1]s, there exists the explicitly computable constants

Cil
such that

D∗N (αil
) ≤ Cil

(log N)s

N
.

We define C
′
= minl=1,M Cil

.

Theorem 18. A necessary condition for the error bound in RSNU method to be

smaller than each error bound in QMC method, obtained when the sequence αil
, l =

1, . . . M , is used, is

VHK

(
f

g

)
< VHK(f)

MC
′∑M

l=1 Cil

.

Proof. The error bound in QMC method, when the sequence αil
is used, is given by∣∣∣∣∣I − 1

N

N∑
k=1

f(αk,il
)

∣∣∣∣∣ ≤ VHK(f)D∗N (α1,il
, . . . , αN,il

)

≤ VHK(f)Cil

(log N)s

N
, l = 1, . . . ,M.
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The error bound for the RSNU method is given by

∣∣I − xN,M

∣∣ ≤ 1
M

VHK

(
f

g

) M∑
l=1

D∗N,G(βil
) =

1
M

VHK

(
f

g

) M∑
l=1

D∗N (αil
)

≤ 1
M

VHK

(
f

g

) M∑
l=1

Cil

(log N)s

N
.

We impose the following conditions:

1
M

VHK

(
f

g

) M∑
l=1

Cil

(log N)s

N
< VHK(f)Cij

(log N)s

N
, ∀j = 1, . . . ,M.

We obtain

VHK

(
f

g

)∑M
l=1 Cil

M
< VHK(f)Cij , ∀j = 1, . . . ,M,

which is equivalent to

VHK

(
f

g

)
< VHK(f)

MC
′∑M

l=1 Cil

.

6. Numerical example

We consider a numerical example to illustrate our method and to compare it

with the MC and QMC methods. We want to estimate the integral

I =
∫ 1

0

∫ 1

0

∫ 1

0

16xy3z2exzdxdydz,

whose exact value is 4(3−e) ≈ 1.1268726. We choose the density function g(x, y, z) =

12xy2z. We determine the marginal distribution functions

G1(x) = x2, G2(y) = y3, G3(z) = z2,

and the inverses of these functions

G−1
1 (x) =

√
x, G−1

2 (y) = 3
√

y, G−1
3 (z) =

√
z.

To apply the RSNU method, we need to populate the space Ω. For this, we

first generate a set A that contains the first 30 prime numbers

A = {2, 3, 5, 7, . . . , 113}.
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Next, we construct all the subsets with 3 elements of the set A. There are

r = C3
30 = 4060 such subsets of A. For each subset Ai = {pi,1, pi,2, pi,3}, we define

the SQRT sequence αi = (α1,i, . . . , αN,i), by

αk,i = ({k√pi,1}, {k
√

pi,2}, {k
√

pi,3}), k = 1, . . . , N.

The defined SQRT sequences αi, i = 1, . . . , r, are uniformly distributed low-

discrepancy sequences in [0, 1]3.

Then, we construct the space Ω of G-distributed low-discrepancy sequences,

Ω = {β1, . . . , βr}, where βi, i = 1, . . . , r, has the following form:

βi = (β1,i, . . . , βN,i),

with βk,i =
(
β

(1)
k,i , β

(2)
k,i , β

(3)
k,i

)
∈ [0, 1]3. An arbitrary sequence βi is obtained from the

sequence αi, as follows:

β
(1)
k,i =

√
α

(1)
k,i , β

(2)
k,i = 3

√
α

(2)
k,i , β

(3)
k,i =

√
α

(3)
k,i , sequentially.

Next, we select the integers i1, . . . , iM at random from the uniform distri-

bution on {1, . . . , r} and consider the corresponding G-distributed low-discrepancy

sequences βi1 , . . . , βiM
.

We calculate the following estimates:

RSNU estimate ÎRSNU =

∑M
l=1

(
1
N

∑N
k=1

f(βk,il
)

g(βk,il
)

)
M

,

MC estimate ÎMC =
1

NM

NM∑
k=1

f(xk), (9)

QMC estimate ÎQMC =
1

NM

NM∑
k=1

f(xk). (10)

In (9), xk are random numbers uniformly distributed in [0, 1]3. In (10),

(x1, . . . , xNM ) is the SQRT sequence in [0, 1]3

xk = ({k
√

2}, {k
√

3}, {k
√

5}), k = 1, . . . , NM.
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After performing several experiments, we give the results for the case M = 20.

The following table contains: the value of N , the estimates ÎMC , ÎQMC , ÎRSNU and

the absolute values of the errors |I − ÎMC |, |I − ÎQMC |, |I − ÎRSNU |.

N ÎMC ÎQMC ÎRSNU |I − ÎMC | |I − ÎQMC | |I − ÎRSNU |

1000 1.1606 1.1301 1.1267 0.0338 0.0032 0.00021

1200 1.1562 1.1299 1.1261 0.0294 0.0031 0.00072

1400 1.1440 1.1313 1.1266 0.0171 0.0045 0.00024

1600 1.1535 1.1315 1.1265 0.0266 0.0047 0.00036

1800 1.1553 1.1300 1.1272 0.0285 0.0031 0.00036

2000 1.1554 1.1291 1.1266 0.0286 0.0022 0.00026

Table 1: Case M=20.

The numerical results indicate that the proposed RSNU estimate converges

much faster than the MC and QMC estimates. The error in RSNU method is smaller

than the error in QMC method by approximately a factor of 10. The error in RSNU

method gives approximately a factor of 100 improvement over the error in MC method.
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BOOK REVIEWS

Joseph A. Cima, Alec L. Matheson and William T. Ross, The Cauchy
Transform, Mathematical Surveys and Monographs , Vol. 125, American Mathe-
matical Society 2006, ix + 272 pp., ISBN 0-8218-3871-7.

Denote by M the space of all finite, complex Borel measures on the unit
circle T = ∂D, where D is the open unit disk in C. The Cauchy transform of a
measure µ ∈ M is defined by (Kµ)(z) :=

∫
T(1 − ζ̄z)−1dµ(ζ), z ∈ D. It turns out

that Kµ is analytic in D, its power extension being (Kµ)(z) =
∑∞

n=0 µ̂(n)zn, where
µ̂(n) =

∫
ζ̄dµ(ζ), n ∈ Z are the Fourier coefficients of the measure µ. One denotes by

K the space of all analytic function representable by the Cauchy transforms.
The monograph is dedicated to a thorough study of many aspects of the

Cauchy transform: function theoretic properties, properties of the operator µ 7→ Kµ,
functional analytic properties of the space K, characterizations of analytic functions
representable by the Cauchy transform, multipliers (functions φ such that φK ⊂ K),
some classical operators on K (shifts, composition operators), and the properties of
the distribution function y 7→ m(|Kµ| > y), where m is the normalized Lebesgue
measure on T.

Some background material from functional analysis, complex analysis, Hardy
spaces, interpolation, is outlined in the first chapter of the book.

The matter starts in the second chapter, The Cauchy transform as function,
dealing with growth estimates, boundary behavior for the Cauchy transform, Plemelj’s
formula, and others. In Chapter 3, The Cauchy transform as an operator, one studies
operator theoretic properties of the Cauchy transform and contains results of Privalov,
Riesz, Kolmogorov, the spaces BMO and BMOA, and an introduction to Hilbert
transform.

The functional analysis of the Banach space K is developed in Chapter 4,
Topologies on the space of Cauchy transforms. Since the dual of the space L1/H̄1

0 is
isometrically isomorphic to H∞, the dual of K can also be identified with H∞, so
that K is not reflexive. This chapter also comprises a study of the weak∗ topology of
the space K.

Chapter 5, Which functions are Cauchy integrals ? addresses the problem
of characterization of analytic functions representable by the Cauchy transform and
contains important results of Havin, Tumarkin and Hruščev. Multipliers are studied
in Chapter 6, Multipliers and divisors, establishing some interesting connections with
Toeplitz operators and inner functions. Some recent results of Goluzina, Hruščev
and Vinogradov are included. The distribution function is studied in Chapter 7, The
distribution function for the Cauchy transform. As a curiosity, a result of G. Boole
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from 1857 (rediscovered several times later) on the distribution function is used to
prove a theorem of Hruščev and Vinogradov (1981).

The rest of the book, Chapters 8. The backward shift on H2, 9. Clark
measures , 10. The normalized Cauchy transform, and 11. Other operators on the
Cauchy transforms, is devoted to recent advances of Aleksandrov and Poltoratski
based on a seminal paper by D. Clark (1972) relating the Cauchy transform and
perturbation theory.

Combining both classical and recent result, the book presents a great interest
for students, teachers and researchers interested mainly in functional analysis methods
in complex analysis. The topics are presented in an elegant manner, with many
comments, detours and historical references. The result is a fine book that deserves
to be on the bookshelf of each analyst.

S. Cobzaş

Jorge Ize, Alfonso Vignoli, Equivariant Degree Theory , Walter de Gruyter,
Berlin - New York, 2003, 361 pages, ISBN 3110175509.

In the last two decades many paper were dedicated to the study of the symme-
try breaking for differential equations, Hopf bifurcation problems, periodic solutions
of Hamiltonians systems. A very useful tool in the study of these problems is the
equivariant degree theory. There are many equivalent methods to construct the de-
gree theory, depending on the possible applications or on the particular taste of the
user.

In this book the authors present in a very elegant way a new degree theory for
maps which commute with a group of symmetries. The book contains four chapters.
The first chapter is devoted to the presentation of the basic tools - representation
theory, equivariant homotopy theory and differential equations - needed in the text.

The second chapter is devoted to the definition and the study of the ba-
sic properties of the equivariant degree. The construction is done first in the finite
dimensional case, and then the notion of degree is extended to infinite dimensions
using approximations by finite dimensional maps, as in the case of Leray-Schauder
degree. The orthogonal degree is also defined and studied. At the end of this chap-
ter one defines the usual operators of the degree: symmetry breaking, product and
composition.

Chapter 3, Equivariant Homotopy Groups of Spheres, is divided into seven
sections. The first section is concerned with the extension problem, which will be
used in the next two sections to calculate the homotopy groups of Γ-maps and of
Γ-classes. The following three sections are dealing with Borsuk-Ulam type results
and orthogonal maps. In the last section of this chapter it is shown how the Γ-
homotopy groups of spheres behave under different operation: suspension, reduction
of the group, products and composition.

The last chapter, Chapter 4. Equivariant Degree and Applications, is devoted
to various applications of the equivariant degree defined in the second chapter. Here
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we mention: differential equations with fixed period and with first integral, symmetry
breaking for differential equations, periodic solutions of Hamiltonian systems, spring-
pendulum equations and Hopf bifurcations.

Due to the included results and examples and to the self-contained and uni-
fying approach, this book can be helpful to researchers and postgraduate students
working in nonlinear analysis, differential equations, topology, and in quantitative
aspects of applied mathematics.

Csaba Varga

Jan Brinkhuis & Vladimir Tikhomirov, Optimization: Insights and Ap-
plications, Princeton Series in Applied Mathematics, Princeton University Press,
Princeton and Oxford 2005, xxiv + 658 pp., ISBN 0-691-10287-2.

This is a self contained informal book on optimization presented by means of
numerous examples and applications at various level of sophistication, depending on
the mathematical background of the reader. The authors call metaphorically these
levels lunch, dinner and dessert, nicely illustrated by the painting of Floris van Dijk,
”Still life with cheeses”, reproduced on the front cover of the book.

One supposes that the reader has already had the breakfast, meaning a first
course on vectors, matrices, continuity, differentiation. For his/her convenience, some
snacks are supplied in the appendices A (on vectors and matrices), B (on differentia-
tion), C (on continuity) - three refreshment courses - and in the introductory chapter
Necessary Conditions: What is the point?

The lunch is a light, simple and enjoyable meal, devoted to those interested
mainly in applications. This part is formed by the chapters 1. Fermat: One vari-
able without constraints ; 2. Fermat: Two or more variables without constraints ; 3.
Lagrange: Equality constraints ; 4. Inequality constraints and convexity ; 6. Basic
algorithms. In this part proofs are optional as well as the related Chapter 5. Second
order conditions, and Appendix D. Crash course on problem solving.

The base meal is the dinner, a substantial, refined and tasty meal requiring
more effort for preparation and for its appreciation as well. This refers to chapters 5.
Second order conditions ; 7. Advanced algorithms ; 10. Mixed smooth-convex problems ;
12. Dynamic optimization in continuous time, and the appendices E. Crash course on
optimization: Geometrical style ; F. Crash course on optimization: Analytical style,
and G. Conditions of extremum: From Fermat to Pontryagin. This part contains also
full proofs of the results from the ”lunch sections”, where they are only sketched.

The dessert is delicious and without special motivation, at the choice of the
reader, just for fun and pleasure, and concerns applications of optimization methods.
Some of these are gathered in the chapters 8. Economic applications ; 9. Mathematical
applications, and in the chapters on numerical methods: 6. Basic algorithms, and 7.
Advanced algorithms. Other applications are contained in the numerous problems and
exercises scattered throughout the book.
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In many places in the book there are indications for a shortcut to applications
(the dessert) under the heading royal road, showing that, in spite to the famous Euclid
answer to the pharaoh of Egypt: ”There is no royal road to geometry”, there are
such roads. ”Insights” in the title reflects one of the overarching points of the book,
namely that most problems can be solved by the direct application of the theorems of
Fermat, Lagrange and Weierstrass. All the proofs are preceded by simple explanatory
geometric figures, which make the writing of the rigorous analytic proofs a routine
task, a principle nicely motivated by a quotation from Plato: ”Geometry draws the
soul to the truth”.

Beside those mentioned above, the book contains a lot of quotations from
scholars - mathematicians, physicists, economists, philosophers, historical comments
and some anecdotes as, for instance, that with the trace of tzar’s finger on the Moscow-
Sankt Petersburg rail road line. The very interesting and witty examples and puzzles
from economics, physics, mechanics, economics and everyday life, rise the quality of
the book and make its reading a pleasant and instructive enterprise.

Written in a live and informal style, containing a lot of examples treated
first at an elementary, heuristical level, and solved rigorously later, the book appeals
to a large audience including economists, engineers, physicists, mathematicians or
people interested to learn something about some famous problems and puzzles from
the humanity spiritual thesaurus. The book is also of interest for the experts who
can find some simpler and ingenious proofs of some results, culminating with that of
the Pontryagin extremum principle, presented in appendix G.

S. Cobzaş

Andrzej Ruszczyński, Nonlinear Optimization, Princeton University Press,
Princeton and Oxford 2006, xii + 448 pp., ISBN 13: 978-0-691-11915-1 and 10:
0-691-11915-5.

The book is based on a course on optimization theory taught by the au-
thor for a period of 25 years at Warsaw University, Princeton University, University
of Wisconsin-Madison, and Rutgers University, for students of engineering, applied
mathematics, and management sciences. It is organized in two parts, 1. Theory and
2. Methods, allowing the treatment of applications of optimization theory on a rigor-
ous mathematical foundation. The applications, contained in the numerous examples
and exercises spread throughout the book, concern approximation theory, probability
theory, structure design, chemical process control, routing in telecommunication net-
works, image reconstruction, experiment design, radiation therapy, asset valuation,
portfolio management, supply chain management, facility location. In Chapter 1. In-
troduction, the author briefly explains on some examples how the optimization theory
can help in solving some practical problems.

The theory, which is the matter of the first part of the book, is covered in the
chapters 2. Elements of convex analysis, 3. Optimality conditions, and 4. Lagrangian
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duality. One works within the framework of the space Rn with emphasis on differ-
entiability, subdifferentiability and conjugation properties of convex functions, with
applications to necessary and sufficient conditions and duality for minimization and
maximization problems. These problems are considered with respect to various order-
ings on Rn generated by cones. Some important cones in optimization, such as those
of feasible directions, normal, polar and recession cones, and their relevance to differ-
entiability and subdifferentiability properties of convex functions and to optimization
problems are studied in detail.

The second part of the book, dedicated to applications, contains the presenta-
tion of the main algorithms and iterative methods for solving optimization problems,
along with a careful study of the convergence and error evaluations. This is done in
Chapters 5. Unconstrained optimization of differentiable functions, 6. Unconstrained
optimization of nondifferentiable functions, and 7. Nondifferentiable optimization,
where algorithms and methods such as the steepest descent method, Newton-type
methods, the conjugate gradient method, feasible point methods, proximal point
methods, subgradient methods, are presented, analyzed and exemplified within the
corresponding context.

The book is clearly written, with numerous practical examples and figures,
illustrating and clarifying the theoretical notions and results, and providing the reader
with a solid background in the area of optimization theory and its applications. The
prerequisites are linear algebra and multivariate calculus. It (or parts of it) can be used
for one year (or one-semester) graduate courses for students in engineering, applied
mathematics, or management science, with no prior knowledge of optimization theory.
The part on nondifferentiable optimization can be used as supplementary material for
students who have already had a first course in optimization.

Nicolae Popovici

B. S. Mordukhovich, Variational Analysis and Generalized Differentia-
tion, Vol. I: Basic Theory, Vol. II: Applications, Springer, Berlin-Heidelberg-
New York, 2006, Grundlehren der mathematischen Wissenschaften, Volumes 300,
301, ISBN 3-540-25437-4 and ISBN 3-540-25438-2.

Prof. Mordukhovich starts his book with the well-known sentence of Euler
that ”... nothing in all of the world will occur in which no maximum or minimum
rule is somehow shining forth.” Paraphrasing Euler’s sentence we can doubtless state
that the book under review is a maximum in the topic of variational analysis and
applications. Moreover, two times the word ”perfection” appears into the preface of
the book. Certainly this was the desire of the author, namely to achieve the perfection
by this book. He indeed attained the perfection!

Two fundamental books on variational analysis are corner stones on this topic.
The finite dimensional case has been addressed in the book ”Variational Analysis”
by R. T. Rockafellar and R. J.-B. Wets (Springer, Berlin, 1998), while some funda-
mental techniques of modern variational analysis for the infinite dimensional case are
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discussed in ”Techniques of Variational Analysis” by J. M. Borwein and Q. J. Zhu,
Springer, New York, 2005.

Modern variational analysis is an outgrowth of the calculus of variations and
mathematical programming. The focus is on optimization of functions relative to
various constraints and on sensitivity and stability of optimization-related problems
with respect to perturbations. Many problems of optimal control and mathematical
programming have nonsmooth intrinsic nature (the value function to simple prob-
lems is discontinuous). Therefore since the nonsmoothness is a usual ingredient into
this topic, many fundamental objects frequently appearing have to be redesign. One
of them is the (generalized) differential of a function not differentiable in the usual
sense. Generalized differentiation lies at the heart of variational analysis and its appli-
cations. It is systematically developed a geometric dual-space approach to generalized
differential theory around the extremal principle. The extremal principle is a local
variational counterpart of the classical convex separation in nonconvex settings. It
allows to deal with nonconvex derivative-like constructions for sets (normal cones),
set-valued mappings (coderivatives), and extended-real-valued functions (subdifferen-
tials).

The first volume (Basic Theory) is structured on four chapters, while the sec-
ond volume (Applications) also contains four chapters, lists of references, statements,
a glossary of notation, and a subject index.

In the first chapter, Generalized differentiation in Banach spaces, there are
introduced the fundamental notions of basic normals, subgradients, and coderivatives,
one studies their properties (Lipschitz stability, metric regularity) and one elaborates
first-order and second-order calculus rules.

The second chapter, Extremal principle in variational analysis, is dedicated
to the study of this important notion (a term coined by Mordukhovich, J. Math.
Anal. Appl. 183 (1994), 250-288, a preliminary version being published in Dokl.
Akad. Nauk BSSR 24 (1980), 684-687, jointly with A. Y. Kruger), which is the main
tool of the book. The extremal principle is proved first in finite-dimensional spaces
based on a smoothing penalization principle, while in infinite-dimensional case the
setting is that of Asplund spaces, based on the method of metric approximation.

The third chapter, Full calculus in Banach spaces, contains the basic theory
of the generalized differential theory, namely the calculus rules for basic normals,
subgradients, and coderivatives in the framework of Asplund spaces. For the infinite-
dimensional case it is necessary to add sufficient amount of compactness expressed
by the so-called sequential normal compactness, introduced in the first chapter of the
book.

The fourth chapter, Characterizations of well-posedness and sensitivity anal-
ysis, is devoted to the study of Lipschitzian, metric regularity, and linear openness
properties of set-valued mappings, and to their applications to sensitivity analysis of
parametric constraint and variational systems.

Volume II, Applications, is mostly devoted to applications of basic principles
in variational analysis and generalized differential calculus to topics in constrained
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optimization and equilibria, optimal control of ordinary and distributed-parameter
models, and models of welfare economics.

In the fifth chapter, Constrained optimization and equilibria, the use of vari-
ational methods based on extremal principles and generalized differentiation allows
the treatment of a large variety of problems, including even problems with smooth
data.

In the sixth chapter, Optimal control of evolution systems in Banach spaces,
by using methods of discrete approximations one obtains necessary optimality con-
ditions in the extended Euler-Lagrange form for nonconvex differential inclusions in
infinite dimension. Constraint optimal control systems governed by ordinary evolu-
tion equations of smooth dynamics in arbitrary Banach spaces are also studied.

The seventh chapter, Optimal control of distributed systems, contains a fur-
ther development of the study of optimal control problems by applications of modern
methods of variational analysis. One establishes a strong variational convergence of
discrete approximations and derived extended optimality conditions for continuous-
time systems in both Euler-Lagrange and Hamiltonian forms.

The eighth chapter, Applications to economics, is devoted to the applications
of variational analysis to economic modelling. The focus is on the welfare economics
in the nonconvex setting with infinite-dimensional commodity spaces. The extremal
principle is a proper tool to study Pareto optimal allocations and associated price
equilibria for such models.

Each chapter ends with a section of commentaries,where the author exhibits
connections of the results just introduced with other results. The commentaries are
deep and pertinent. We just mention that one can find such a section having more
than 30 pages.

The book ends with references, a list of statements, a glossary of notation,
and a subject index. The list of references containing 1379 titles, most of them very
recent. This references reflect, on one side, the author’s contribution to this topic
and, on the other side, the contributions of many other researchers all over the world.

At the end of this short review, we can state doubtless that in front of us there
is a masterpiece on the topic of variational analysis and generalized differentiation.
Certainly this wonderful work will be included in many libraries all over the world.

Marian Mureşan

Proceedings of the International Workshop on Small Sets in Analysis,
(Held at the Technion - Israel Institute of Technology, June 25-30, 2003). Edited
by Eva Matoušková, Simeon Reich and Alexander Zaslavski, Hindawi
Publishing Corporation, New York and Cairo, 2005, ISBN: 977-5945-23-2.

The smallness of a set can be understood in a topological (sets of first Baire
category) or measure-theoretical (sets of Lebesgue measure zero) sense, or even by
its cardinality (finite, at most countable). The complement of a small set is called a
big set. A well known classical result asserts that the real line can be written as the
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union of a set of first Baire category and of a set of Lebesgue measure zero, showing
that these two notions are strongly unrelated. In spite of this, by the duality principle
of Siepiński and Erdös, there exists a bijection f : R → R such that f = f−1 and
E ⊂ R is of first Baire category iff E is of Lebesgue measure zero. A stronger notion
is that of porosity - a porous subset of a finite dimensional normed space being of first
Baire category and, at the same time, of Lebesgue measure zero, but not vice versa.
In analysis there are a lot of classical results asserting that some sets of functions
are big (topologically) or that some properties hold excepting a small set. From
the first category we mention the Banach-Steinhaus principle of the condensation
of singularities, and Banach’s result that the set of nowhere differentiable continuous
functions is topologically big in the space of continuous functions. Two famous results
from the second category are Rademacher’s theorem on the generic (i.e., excepting a
set of first Baire category) differentiability of Lipschitz functions, and Alexandroff’s
theorem on the twice almost everywhere differentiability of convex functions. In the
attempt to extend these results to infinite dimensions, new notions of null sets were
introduced - Gauss (Aronszajn) null sets, Haar null sets, Christensen null sets, Γ-null
sets - that led to a revitalization of research in this area, and to new concepts in the
geometry of Banach spaces as well.

Taking into account the growing interest of the mathematical community in
these topics, the idea of a conference emerged and it took place at The Technion - Is-
rael Institute of Technology, Haifa, from 25 to 30 of June, 2003, under the name ”The
International Workshop on Small Sets in Analysis”. The workshop was very success-
ful, being attended by researchers from thirteen countries, prominent specialists in
various areas of analysis.

The present volume contains the refereed proceedings of this workshop, many
of the papers being revised and extended versions of the lectures delivered at the
workshop. The papers have been previously published in three issues of the journal
Abstract and Applied Analysis (Hindawi), and this volume brings them together.

The included papers cover a wide spectrum pertaining to small sets of various
kinds and their relations to other notions such as, for instance, the descriptive theory
of sets. On this line we mention the contributions of L. Zajiček and M. Zelený (σ-
porous and Suslin sets), the survey paper by Zajiček on σ-porous sets, the paper by
S. Solecki on analytic P -ideals and that by J. Myjak on dimension and measure. Very
well are represented the applications of small sets to various domains of analysis.
Among these topics we mention those on generic results in optimization and the
geometry of Banach spaces (papers by S. Cobzaş, P. G. Howlett, A. Ioffe, R. Lucchetti,
A. M. Rubinov, T. Zamfirescu, A. J. Zaslavski), infinite dimensional holomorphy
(M. Budzyńska and S. Reich), Markov operators ( T. Szarek), differentiability (M.
Csörnyei, D. Preiss, J. Tǐser, R. Deville), convex geometry (M. Kojman, F. S. de Blasi
and N. V. Zhivkov), weak Asplund spaces (W. Moors), generic existence in optimal
control (A. J. Zaslavski) Lipschitz functions (O. Maleva), and dynamics of random
Ramanujan fractions (J. M. Borwein and D. R. Luke).
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By surveying and discussing various topics connected by the unifying idea
of a small set, posing open questions and assessing possible future directions of in-
vestigation, the present volume appeals to a large audience, researchers and scholars
interested in the areas mentioned above or, generally speaking, in analysis understood
in a broad (i.e., complementary to a small) sense.

Ioan V. Şerb

Simeon Reich and David Shoikhet, Nonlinear Semigroups, Fixed Points,
and Geometry of Domanins in Banach Spaces, Imperial College Press, World
Scientific, London and Singapore, 2005, xv+354 pp, ISBN: 1-86094-575-9.

The main concern of the book is the theory of semigroups of holomorphic
mappings defined on a domain D in a complex Banach space X and with values
in X. Beside their intrinsic mathematical interest, the study of these semigroups is
also motivated by the applications to Markov stochastic processes and branching
processes, to the geometry of complex Banach spaces, to control and optimization
and to complex analysis.

As it is well known an important question in the theory of nonlinear semi-
groups of operators is whether they are generated by one operator. M. Abate proved
in 1992 that, in the finite dimensional case, any continuous semigroup of holomorphic
mappings is everywhere differentiable with respect to the parameter or, equivalently
it is generated by one operator, a result that is no longer true in infinite dimensions.
E. Vesentini considered in 1987 semigroups of fractional-linear transformations of the
unit ball B of a Hilbert space H which are isometries with respect to the hyperbolic
metric on B. His approach, based on a correspondence between the holomorphic semi-
groups and some semigroups of nonlinear operators on a Pontryagin space, revealed
that these semigroups are not everywhere differentiable. It seems that Vesentini was
the first who considered semigroups of holomorphic mappings in infinite dimensional
setting.

In order to make the book self-contained, the first two chapters, 1. Mappings
in metric and normed spaces, and 2. Differentiable and holomorphic mappings in
Banach spaces, collect some results from topology, functional analysis, and differen-
tiability and holomorphy in infinite dimensional setting.

Of crucial importance for the book is Chapter 3. Hyperbolic metrics on
domains in complex Banach spaces, where one introduces the Poincaré metric, the
Carathéodory and Kobayashi pseudometrics and Finsler infinitesimal pseudometrics.

Chapter 4. Some fixed point principles, is concerned with the classical fixed
point theorems of Banach, Brouwer and Schauder (the last two without proofs), along
with some fixed point theorems for holomorphic mappings, from which the Earle-
Hamilton theorem is basic for the book.

A classical result of Denjoy and Wolff asserts that if F ∈ Hol(∆) (∆ = the
unit disk in C) is not the identity nor an automorphism with exactly one fixed point in
∆, then there is a point a ∈ ∆̄ such that the sequence {Fn} of iterates of F converges
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to h(z) ≡ a, uniformly on compact subsets of ∆. This result and some of its extensions
to infinite dimensional setting (Hilbert and Banach spaces) are presented in Chapter
5. The Denjoy-Wolff fixed point theory.

The study of nonlinear semigroups is carried out in the chapters: 6. Genera-
tion theory for one-parameter semigroups, 7. Flow-invariance conditions, 8. Station-
ary points of continuous semigroups, and 9. Asymptotic behavior of continuous flows.
The framework is that of nonlinear semigroups of mappings which are nonexpansive
with respect to some special metrics on domains in Banach spaces, with emphasis on
nonlinear semigroups of holomorphic mappings, in which case the description is more
complete.

The last chapter of the book, 10. Geometry of domains in Banach spaces, is
devoted to the geometric theory of functions in infinite dimensions - starlike, convex
and spirallike mappings - a topic less developed in the literature. The approach is
based on the unifying idea of a dynamical system, and uses in an essential way the
results on asymptotic behavior of semigroups of holomorphic mappings, developed in
Chapter 9.

Written by two experts in the area and incorporating their original contribu-
tions, the book contains a lot of interesting results, most of them appearing for the
first time in book form. The excellent typographical layout of the book must also be
mentioned.

The book appeals to a large audience, including specialists in functional anal-
ysis, complex analysis, dynamical systems, abstract differential equations, and can be
used for advanced graduate or post-graduate courses, or as a reference by experts.

S. Cobzaş

Štefan Schwabik and Ye Guoju, Topics in Banach Space Integration,
Series in Real Analysis - Volume 10, World Scientific, London and Singapore, 2005,
xiii+298 pp, ISBN: 981-256-428-4.

An extension of Riemann method of integration was discovered around 1960
by Jaroslav Kurzweil and, independently, by Ralph Henstock. This theory, which
covers Lebesgue integration and, at a same time, nonabsolutely convergent improper
integrals, is based only on Riemann type sums which are fine with respect to some
gauge functions. The avoidance of any measure theoretical considerations makes it
appropriate for teaching advanced topics in integration theory at an elementary level.
There are several books on integration based on Riemann type sums for real-valued
functions of one or several variables.

The first who considered the case of vector-valued functions was Russel A.
Gordon around 1990. The aim of the present book is to present these integration the-
ories for functions defined on compact intervals I ⊂ Rm and with values in a Banach
space X. Possible extensions to noncompact intervals are briefly discussed in Section
3.7. Since the authors treat the relations of these integrals with other integrals for
vector-valued functions, the first two chapters, 1. Bochner integral, and 2. Dunford
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and Pettis integrals, present shortly the main properties of these integrals. The study
of the integrals of vector-valued functions based on Riemann type sums starts in Chap-
ters 3. McShane and Henstock-Kurzweil integrals, and 4. More on McShane integral.
These chapters contain the basic results, including convergence theorems for these
integrals, a hard topic in the Lebesgue integration. The relations with other types of
integrals for vector functions are studied in Chapters 5. Comparison of the Bochner
and McShane integrals, and 6. Comparison of the Pettis and McShane integrals. It
turns out that the class of Bochner integrable functions is strictly contained in the
class of McShane integrable functions, and these two classes agree if the space X is
finite dimensional. In its turn, the class of McShane integrable functions is contained
in the class of Pettis integrable functions, and the two classes agree if the Banach
space X is separable.

As it is well known, one of the most delicate question in the case of Lebsesgue
integration is the relation between differentiability, absolute continuity and the prop-
erties of the primitive function. These problems, within the framework of generalized
Riemann type integrals are examined in Chapter 7. Primitive of the McShane and
Henstock-Kurzweil integrals. The last chapter of the book 8. Generalizations of some
integrals, is concerned with possible extensions of Bochner and Pettis integrals, fol-
lowing Denjoy and Henstock-Kurzweil approaches. An appendix contains a summary
of some results from functional analysis used in the book.

The authors have done substantial contributions to the field, which are in-
corporated in the book. The book is clearly written and can be recommended for
graduate courses on integration or as a companion book for a course in functional
analysis.

Valer Anisiu

Antonio Ambrosetti and Andrea Malchiodi, Perturbation Methods and
Semilinear Elliptic Problems on Rn, Progress in Mathematics (series editors:
H. Bass, J. Oesterlé and A. Weinstein), vol. 240, Birkhäuser Verlag, Basel-Boston-
Berlin, 2006, xii+183 pp; ISBN-10:3-7643-7321-0, ISBN-13:978-3-7643-7321-4,
e-ISBN: 3-7643-7396-2.

The monograph is based on the authors’ own papers carried out in the last
years, some of them in collaboration with other people like D. Arcoya, M. Badiale,
M. Berti, S. Cingolani, V. Coti Zelati, J.L. Gamez, J. Garcia Azorero, V. Felli, Y.Y.
Li, W.M. Ni, I. Peral and S. Secchi.

The book is concerning with perturbation methods in critical point theory
together with their applications to semilinear elliptic equations on Rn having a vari-
ational structure.

The contents are as follows: Foreword; Notation; 1 Examples and motiva-
tions (giving an account of the main nonlinear variational problems studied by the
monograph); 2 Perturbation in critical point theory (where some abstract results on
the existence of critical points of perturbed functionals are presented); 3 Bifurcation
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from the essential spectrum; 4 Elliptic problems on Rn; 5 Elliptic problems with
critical exponent; 6 The Yamabe problem; 7 Other problems in conformal geometry;
8 Nonlinear Schrödinger equations; 9 Singularly perturbed Neumann problems; 10
Concentration at spheres for radial problems; Bibliography (147 titles) and Index.

The topics are presented in a systematic and unified way and the large range of
applications talks about the power of the critical point methods in nonlinear analysis.

I recommend the book to researchers in topological methods for partial dif-
ferential equations, especially to those interested in critical point theory and its ap-
plications.

Radu Precup

Spiros A. Argyros, Stevo Todorcevic, Ramsey Methods in Analysis,
Advanced Courses in Mathematics CRM Barcelona, Birkhäuser Verlag, Basel,
Boston, Berlin, 2005.

This excellent book contains two sets of notes presented by the authors for
the Advanced Course on Ramsey Methods in Analysis given at the Centre de Recerca
Mathematica, Barcelona in 2004. The modern area of the research lying on the
borderline between functional analysis and combinatorics is at this moment a very
active area of research. An important part of this area is presented in this book.

The first example of W.T. Gowers and B. Maurey of a reflexive Banach space
with no unconditional basis is also an example of hereditarily indecomposable (HI)
space. This means that no infinite dimensional closed subspace is the topological
direct sum of two infinite dimensional closed subspaces of it. As a consequence, no HI
space is isomorphic to any proper subspace answering in negative the long standing
hyperplane problem. On the other hand the Gowers’ famous dichotomy: every Banach
space either is unconditionally saturated or contains an HI space provides a positive
solution of the homogeneous problem. Finally, W.T. Gowers and B. Maurey have
shown that every bounded linear operator on a complex HI space is of the form λI +S
with S strictly singular.This means that HI spaces are spaces with few operators.

The goal of the first set of notes written by S.A. Argyros is to describe a
general method of building norms with desired properties in order to obtain examples
and general geometric properties of infinite dimensional Banach spaces. Here are
constructed Tsirelson and Mixed Tsirelson spaces, HI extensions with a Schauder
basis and are presented examples of HI extensions. For instance, quasi-reflexive and
non separable HI spaces are described. General properties of HI spaces and the space
of operators acting on a HI space are also presented.

The goal of the second set of notes written by S. Todorcevic is to present
combinatorial theoretic methods, especially Ramsey methods, relevant for the de-
scription of the rough structure of infinite dimensional Banach spaces. For instance,
finite dimensional Ramsey Theorem, spreading models of Banach spaces, finite rep-
resentability of Banach spaces, Ramsey theory of finite and infinite sequences or
block sequences, approximate and strategic Ramsey theory of Banach spaces, Gowers
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dichotomy, an application to Rough classification of Banach spaces are samples of
subjects in the second part.

The book is a valuable, concise, and systematic text for mathematicians who
wish to understand and to work in a fascinating area of mathematics.

Ioan Şerb

Klaus Gürlebeck, Klaus Habetha, Wolfgang Sprössig, Funktionentheorie
in der Ebene und in Raum , Grundstudium Mathematik Birkhäuser Verlag,
Basel-Boston-Berlin, 2006, ISBN 10: 3-7643-7369-6, xiii+406 pp., (CD included).

The theory of complex holomorphic functions of one complex variable is a
200 years old and well established field of mathematics. In the 1930s the Romanian
mathematicians G. C. Moisil and N. Teodorescu and the Swiss mathematician R.
Fueter started to develop the function theory in quaternion fields and Clifford alge-
bras. This study was systematically continued and developed in the 1960s in the
works of a group of Belgian mathematicians headed by R. Delanghe, followed by a lot
of other ones all around the world, so that the authors succeeded to count over than
9000 entries in the area.

The aim of the present monograph is to give a systematic account on basic
facts in this relatively recent and rapidly growing domain of research. The first chapter
of the book I. Zahlen, is concerned with the basic properties of the fields R of real
numbers, C of complex numbers and the quaternions H. All these can be treated
within the more general notion of Clifford algebra C`(n) in Rn+1.

The treatment of function theory starts in Chapter II. Funktionen, with some
continuity questions and then with the differentiability, holomorphy, power functions
and Möbius transforms in C and in higher dimensions. The holomorphy for functions
f : G → H, where G ⊂ H is nonempty open, is defined by the generalized Cauchy-
Riemann (CR) conditions, and similarly in C`(n).

In Chapter III, Integration und Integral Sätze, besides the extension of integral
theorems of Morera and Cauchy to the C`(n) setting, a special attention is paid to
the integral formula of Borel-Pompeiu and its applications, as, e.g., to the Teodorescu
transform.

Chapter IV, Reihenentwicklungen und lokales Verhalten, is concerned with
series in C`(n), Taylor series, Laurent series, and their applications to the study of
holomorphic functions in C`(n). Elementary and special functions are introduced and
the theory of residues is applied to the calculation of integrals.

An Appendix contains some results on integration of differential forms on
differentiable manifolds, on spherical functions and on function spaces.

The book is clearly written, in a pleasant and informal style. A lot of historical
notes along with pictures and short biographies of the main contributors to the domain
are included.

The prerequisites are minimal and concern only the basic notions in algebra,
calculus and analytic functions.
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The book can be recommended as material for complementary courses on
algebra, geometry and function theory.

P. T. Mocanu

George Grätzer, The Congruences of a Finite Lattice. A Proof-by-
Picture Approach , Birkhäuser, Boston-Basel-Berlin, 2006, ISBN 0-8176-3224-7,
xxii+282 p., 110 illus.

The study of the lattices formed by the congruence relations of a lattice
(called congruence lattices) has been an important field in the algebra of the past
half-century. The problems concerning the congruence lattices drew the attention of
many valuable algebraists. Consequently, there exist a lot of interesting results in this
area of lattice theory, and some of them are presented in this book.

The monograph under review is an exceptional work in lattice theory, like all
the others contributions by this author. This work points out, once again, the rich
experience of George Grätzer in the study of lattices. The way this book is written
makes it extremely interesting for the specialists in the field but also for the students
in lattice theory. Moreover, the author provides a series of companion lectures which
help the reader to approach the Proof-by-Picture sections. These can be found on his
homepage

http://www.math.umanitoba.ca/homepages/gratzer.html
(in the directory /MathBooks/lectures.html). Each chapter from 4 to 18 (from 19
chapters) has at least one Proof-by-Picture section. As mentioned by George Grätzer,
his proof-by-picture “is not a proof” but “an attempt to convey the idea of proof”.

The book contains a Glossary of Notation, a Picture Gallery, an abundant
Bibliography, and an Index (of names and subjects). The chapters of the book are:
Part I. A Brief Introduction to Lattices: 1. Basic Concepts; 2. Special Concepts; 3.
Congruences; Part II. Basic Techniques: 4. Chopped Lattices; 5. Boolean Triples;
6. Cubic Extensions; Part III. Representation Theorems: 7. The Dilworth Theorem;
8. Minimal Representations; 9. Semimodular Lattices; 10. Modular Lattices; 11.
Uniform Lattices; Part IV. Extensions: 12. Sectionally Complemented Lattices; 13.
Semimodular Lattices; 14. Isoform Lattices; 15. Independence Theorems; 16. Magic
Wands;Part V. Two Lattices: 17. Sublattices; 18. Ideals; 19. Tensor Extensions.

Cosmin Pelea

Vladimir A. Marchenko and Evgueni Ya. Khruslov, Homogenization of
Partial Differential Equations, Progress in Mathematical Physics, Vol. 46,
Birkhäuser, Boston-Basel-Berlin, 2006, xii+398 pp., ISBN - 10 0-8176-4351-6.

The aim of homogenization theory is to establish the macroscopic behaviour
of a microinhomogeneous system, in order to describe some characteristics of the given
heterogeneus medium. From mathematical point of view, this signifies mainly that
the solutions of a boundary value problem, depending on a small parameter, converge
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to the solution of a (homogenized) limit boundary value problem which is explicitly
described. In this case, the main problem is to determine the effective parameters of
the homogenized equation.

The aim of this book is to present some basic results on microinhomogeneous
media leading to nonstandard mathematical models. For such media, homogenized
models of physical processes may have various forms differing substantially from the
microscopic model, and the macroscopic description cannot be reduced to the de-
termination of the effective characteristics only. The homogenized models can have
nonlocal character (integro-differential equations) or can appear as models with mem-
ory.

The book is divided into eight chapters. The first chapter contains some
typical examples of nonstationary heat conduction processes in microinhomogeneous
media of various types. In the next chapters necessary and sufficient conditions for
the convergence of solutions of the original (microscopic) problems to solutions of the
corresponding homogenized equations are given. This part of the book is devoted
to the following topics: the Dirichlet boundary value problem in strongly perforated
domains with fine-grained boundary, the Dirichlet value problem in strongly perfo-
rated domains with complex boundary, strongly connected domains, the Neumann
boundary value problems in strongly perforated domains, nonstationary problems
and spectral problems, differential equations with rapidly oscillating coefficients, and
homogenized conjugation conditions.

The book is an excellent, practice oriented, and well written introduction to
homogenization theory bringing the reader to the frontier of current research in the
area. It is highly recommended to graduate students in applied mathematics as well
as to researchers interested in mathematical modelling and asymptotical analysis.

J. Kolumbán

Steven G. Krantz, Geometric Function Theory. Explorations in Complex
Analysis, Birkhäuser-Basel-Berlin, 2006; 314 pp. ISBN -10 0-8176-4339-7; ISBN
-13 978-0-8176-4339-3; ISBN 0-8176-4440-7.

This book provides a very good and deep point of view of modern and ad-
vanced topics in complex analysis.

The book is divided into three parts. The first part consists of six chapters
devoted to classical function theory. The first chapter begins with special topics of
invariant geometry, like conformality and invariance, the Bergman metric and the
Bergman kernel function and its properties. Also there are presented some appli-
cations of invariant metrics on planar domains. The second chapter explores the
Schwarz lemma and its variants. To this end, it is presented a geometric view of the
Schwarz lemma, which leads to the study of the Poincaré metric on the unit disk.
This chapter also contains the Ahlfors version of the Schwarz lemma as well as the
geometric approaches of the Liouville and Picard theorems. This chapter concludes
with the presentation of the Schwarz lemma at the boundary. In the third chapter
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the author is concerned with the concept of ”normal family” and its applications to
questions in complex analysis. There are various applications of normal families of
holomorphic functions. They are used in the modern proof of the famous Riemann
mapping theorem as well as in the proof of Picard’s theorems. This chapter also
contains advanced results on normal families such as Robinson’s principle concerning
the relationship between normal families and entire functions. Chapter five is devoted
to boundary regularity of conformal maps. This chapter also offers certain practical
applications. The Riemnann mapping theorem asserts that if Ω is a simply connected
domain in the complex plane, not all of C, then there exists a conformal mapping
f of Ω onto the unit disk D. Note that this result has no analogue in the case of
several complex variables. A deeper understanding of the Riemann mapping theorem
naturally raises the question of whether the mapping f extends in a nice way to the
boundary. But this is not always possible, and it is necessary to require certain con-
ditions in order to obtain a positive result. One of the deep results in this direction
is the Carathéodory theorem presented in Section 5.1. Chapter six deals with the
boundary behavior of holomorphic functions. Basic tools in this subject are repro-
ducing kernels (the Poisson and Cauchy kernels), harmonic measure and conformal
mapping.

The second part of the book contains many ideas and results in real and com-
plex analysis, based on he Cauchy-Riemann equations and the Laplacian, harmonic
analysis, singular integral operators and Banach algebras. Chapter seven deals with
solution of the inhomogeneous Cauchy-Riemann equations, and development and ap-
plication of the ∂ equation. Chapter eight is concerned with several problems related
to the Laplacian and its fundamental solution, the Green function, Poisson kernel.

Chapter nine is devoted to the idea of harmonic measure which is a device for
estimating harmonic functions on a domain. It is also a key tool in potential theory
and in the study of the corona theorem. Chapter ten deals with special topics related
to conjugate functions and the Hilbert transform. The next chapter is devoted to the
Wolff proof of the very deep ”corona theorem”.

The last part of the book is concerned with certain algebraic topics, which
illustrate the symbiosis with other parts of mathematics that complex analysis has
enjoyed. Algebra is encountered in various guises throughout the book. It plays a
role in the group-theoretic aspects of automorphisms and in the treatment of Banach
algebra techniques. It plays a main role in the study of sheaves. Chapter 12 contains
various results related to automorphism groups of domains in the plane, while the
last chapter is devoted to Cousin problems, cohomology and sheaves.

Each chapter contains a rich collection of exercises of different level, examples
and illustrations.

The book ends with an extensive list of monographs and research papers.
The book is very clearly written, with rigorous proofs, in a pleasant and

accessible style. It is warmly recommended to advanced undergraduate and graduate
students with a basic background in complex analysis, as well as to all researchers
that are interested in modern and advanced topics in complex analysis.

Gabriela Kohr
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Paul F. X. Müller, Isomorphisms between H1 Spaces, Monografie Matematy-
czne (New Series), Vol. 66, Birkhäuser Verlag, Boston-Basel-Berlin, 2005, xiv+453
pp, ISBN-10:3-7643-2431-7 and 13:978-3-7643-2431-5.

H1 spaces form one of the most important classes of Banach spaces in func-
tional analysis, complex analysis, harmonic analysis and probability theory. H1 spaces
appear in several variants. The first one is the classical Hardy space H1(T) of inte-
grable functions on the unit circle T for which the harmonic extension to the unit disk
is analytic. Its foundation has been laid by several deep theorems of G. H. Hardy
(1915), F. and M. Riesz (1916), Hardy and Littlewood (1930), R. E. A. C. Paley
(1933). Beside this space, by 1977 there were known also two other classes of H1

spaces: the atomic H1
at spaces linked to analytic functions via Fefferman’s duality

theorem, and the martingale H1 spaces consisting of martingales for which Doob’s
maximal function is integrable. Many results from atomic H1 spaces have direct ana-
logues results in martingale class, and their study has put in evidence a remarkable
object - the dyadic H1 spaces.

The book is concerned with dyadic H1 spaces, their invariants and their po-
sition within the two classes of atomic and martingale H1 spaces. A key tool in this
study is formed by the Haar function orthogonal system, allowing to reach directly
the straight point of some difficult results as, for instance, Johnson’s factorization
theorem, the uniform approximation property of H1 – namely the combinatorial diffi-
culty which is inherent to the problem. The Haar system is studied in the first chapter
which contains the proofs of classical inequalities of Khintchin, Burkholder, Feffer-
man, and Hardy-Littlewood. Walsh expansions and Figiel’s representation of singular
integral operators are also presented. The basic combinatorial tools are elaborated in
Chapter 3, Combinatorics of colored dyadic intervals.

The second chapter, Projections, isomorphisms, interpolation, contains a re-
view of basic concepts of functional analysis, with emphasis on complemented sub-
spaces of H1 and analytic families of operators on Hp spaces.

A remarkable conjecture of A. Pelczynski asked whether dyadic H1 and H1(T)
spaces are isomorphic as Banach spaces. In Chapter 4 of the book one gives a com-
plete detailed proof of Maurey’s isomorphism theorem between the martingale space
H1[(Fn)] and a special space X[E ]. This isomorphism opened the way to the proof
given by L. Carleson that H1(T) has an unconditional basis.

In Chapter 5, Isomorphic invariants for H1, one establishes dichotomies for
complemented subspaces of H1, one proves that H1 and H1(`2) are not isomorphic,
and that H1 has the uniform approximation property. Chapter 6, Atomic H1 spaces,
contains a careful presentation of Carleson’s biorthogonal system, with the proof that
it is an unconditional basis for H1

at, yielding another isomorphism result of Maurey,
namely that H1 and H1

at are isomorphic.
The book contains deep results combining methods from functional analysis,

real analysis, complex analysis and probability theory, exposed in an accessible way
- the prerequisites are standard courses in functional analysis, complex function and
probability. The proofs, often long, technical and difficult, are presented in detail.

165



BOOK REVIEWS

The book is of great interest to researchers in functional analysis and its
applications, complex analysis and probability. It can be also used for post-graduate
and doctoral courses.

I. V. Şerb

Tomáš Roubiček, Nonlinear Partial Differential Equations with Applica-
tions, International Series in Numerical Mathematics - ISNM, Vol. 153, Birkhäuser
Verlag, Basel-Boston-Berlin 2005, ISBN 10: 3-7643-7293-1 and 13: 978-3-7643-7293-4.

The present book focuses on partial differential equations (PDE) involv-
ing various nonlinearities, related to concrete applications in engineering, physics,
(thermo)mechanics, biology, medicine, chemistry, etc. The exposition combines the
rigorous abstract presentation with applications to concrete real-world problems,
when a part of rigor is sacrificed to reach the scope in a reasonable fashion. As
the author points out in the Preface, although the abstract approach has its own
interest and beauty, usually it does not fit with a concrete problem involving PDEs
and whose solution requires many specific technicalities not supplied by the abstract
theory.

The book is concerned mainly with boundary-value problems for semilinear
and quasilinear PDEs, and with variational inequalities. The book is divided into
two parts: I. Steady-State Problems, containing the chapters 2. Pseudomono-
tone or weakly continuous mappings, 3. Accretive mappings, 4. Potential problems:
smooth case, 5. Nonsmooth problems: variational inequalities, 6. Systems of equa-
tions: particular examples, and II. Evolution Problems, containing the chapters
7. Special auxiliary tools, 8. Evolution by pseudomonotone or weakly continuous map-
pings, 9. Evolution governed by accretive mappings, 10. Evolution governed by certain
set-valued mappings, 11. Doubly-nonlinear problems, 12. Systems of equations: par-
ticular examples.

The first chapter has an introductory character, presenting some results from
functional analysis and function spaces needed in the rest of the book.

The numerous exercises (with solutions sketched in footnotes) and concrete
real-world examples illustrate and complete the main text.

Combining the abstract approach with numerous worked examples, the book
reflects the research interests of the author as well as his teaching experience at
Charles University in Prague, where he taught between the years 1996 and 2005 a
course on mathematical modelling. The choice of some examples is motivated also by
the electrical-engineering background of the author.

The book, or parts of it (a scheme in the preface suggests possible selections of
the chapters), can be used for one year graduate courses for students in mathematics,
physics or chemistry, interested in applications of partial differential equations and in
mathematical modelling.

Damian Trif
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Volker Scheidemann, Introduction to Complex Analysis in Several Vari-
ables, Birkhäuser Verlag, Basel-Boston-Berlin, 2005; 171 pp. ISBN 3-7643-7490-X.

The present book gives a very good and comprehensive introduction to com-
plex analysis in several variables. It consists of eight chapters as follows. In the first
chapter there are presented certain elementary results in the theory of several complex
variables, such as the geometry of Cn, the definition of a holomorphic function, the
compact-open topology on the space O(U) of holomorphic functions on an open set
U in Cn etc.

The second chapter deals with extension phenomena for holomorphic func-
tions based on the geometry of their domain of definition. The next chapter is devoted
to the study of biholomorphic maps of domains in Cn and it is proved the biholomor-
phic inequivalence of the unit ball and the unit polydisc in Cn, n ≥ 2. In the chapter
four it is given an introduction to analytic sets. To this end, there are presented
elementary properties of analytic sets and the Riemann removable singularity theo-
rems. The aim of the fifth chapter is to state and prove the well known ”Kugelsatz”
result due to Hartogs. To this end, this chapter begins with a brief introduction to
holomorphic differential forms in Cn, followed by the study of the inhomogeneous
Cauchy-Riemann differential equations and Dolbeaut’s lemma. Chapter six is de-
voted to the proof of a continuation theorem due to Bochner, which states that any
holomorphic function on a tubular domain D can be holomorphically extended to
the convex hull of D. Chapter seven deals with the Cartan-Thullen theory. There
are presented the notions of holomorphically convex sets, domains of holomorphy,
holomorphically convex Reinhardt domains. The last chapter is concerned with local
properties of holomorphic functions. To this end, it is not taken into account the do-
main of definition of a holomorphic function, but only its local representation. This
leads to the concept of germ of a holomorphic function.

Each chapter contains a useful collection of examples and exercises of different
level, that help the reader to become acquainted with the theory of several complex
variables.

The book is clearly written, with rigorous proofs, in an accessible style. It is
warmly recommended to students that start to work in the field of complex analysis
in several variables, as well as to all researchers that are interested in modern and
advanced topics in the theory of several complex variables.

Gabriela Kohr
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Hans Triebel, Theory of Function Spaces, Birkhäuser Verlag, Boston – Basel –
Berlin.
Volume II - Monographs in Mathematics, Vol. 84, 1992, viii+370 pp, ISBN:
3-7643-2639-5 and 0-8176-2639-5;
Volume III - Monographs in Mathematics, Vol. 100, 2006, xii+426 pp, ISBN-10:
3-7643-7581-7 and 13: 978-3-7643-7581-2.

The first volume of this treatise was published by Birkhäuser Verlag in 1983,
the second one in 1992 and the third one in 2006, all dealing with function spaces
of type Bs

pq and F s
pq and reflecting the situation approximatively up to the year of

their publication. These two scales of function spaces cover many well-known spaces of
functions and distributions such as Hölder-Zygmund spaces, Sobolev spaces, fractional
Sobolev spaces, Besov spaces, inhomogeneous Hardy spaces, spaces of BMO-type and
local approximation spaces which are closely related to Morrey-Campanato spaces.
Although these three volumes can be considered as parts of a unitary treatise on
function spaces, the author made the second and the third volume essentially self-
contained. Each new volume reflects the developments made since the publication
of the previous one - simpler proofs to old results, new results and new applications.
Each of these two volumes starts with a consistent chapter entitled How to measure
smoothness - 86 pages in the second volume and 125 pages in the third one. As devices
to measure smoothness one can mention: derivatives, differences of functions, bound-
ary values of harmonic and thermic functions, local approximations, sharp maximal
functions, interpolation methods, Fourier-analytical representations, atomic decom-
positions, etc. The main point is that all these devices when put together yield the
same classes of function spaces, giving a high degree of flexibility, unknown and even
unexpected at the time when the first volume was written. This is one of the aims of
this introductory chapters - to show that all these apparently unrelated devices are,
in fact, only different ways to characterize the same function spaces. The second one
is to provide the non-specialists which are not interested in the technical details, with
a readable survey on recent trends in function spaces from a historical perspective.
Some of the topics surveyed in these parts are treated in detail in the subsequent
chapters.

The main feature in the second volume is the use of local means and lo-
cal methods with applications to pseudo-differential operators. The headings of the
chapter give a general idea about its content: 2. The spaces Bs

pq and F s
pq ; 3. Atoms,

oscillations, and distinguished representations ; 4. Key theorems (containing new sim-
ple proofs for some crucial theorems for the spaces Bs

pq and F s
pq - invariance under

diffeomorphic maps of Rn, pointwise multipliers, traces, extensions from Rn
+ to Rn);

5. Spaces on domains (dealing mainly with intrinsic characterizations); 6. Mapping
properties of pseudo-differential operators ; 7. Spaces on Riemannian manifolds and
Lie groups.

The third volume exposes the theory of Bs
pq and F s

pq spaces as it stands at
the beginning of this century and focusses on applications of function spaces to some
neighboring areas such as numerics, signal processing, and fractal analysis. The fractal
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quantities of measures and spectral properties of fractal elliptic operators are treated
by the author in other two books published with Birkhäuser Verlag too: Fractals and
Spectra (1992) and The Structure of Functions (2001). The topics covered in the
third volume are quite well illustrated by the headings of the chapters: 2. Atoms
and pointwise multipliers ; 3. Wavelets ; 4. Spaces on domains, wavelets, sampling
numbers ; 5. Anisotropic function spaces ; 6. Weighted function spaces ; 7. Fractal
analysis ; 8. Function spaces on quasi-metric spaces ; 9. Function spaces on sets.

The author is a leading expert in the area with outstanding contribution to
function spaces and their applications, contained in the 9 books written by him (one
in cooperation), and in the numerous research or survey papers he published. The
present books will be an indispensable tool for all working in function spaces, partial
differential equations, fractal analysis and wavelets, or in their applications as well.

S. Cobzaş
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