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Grigore Călugăreanu was born on the 20th of January 1947, in Cluj-Napoca,

in a family with strong academic traditions and important influences on the scientific

life, as both his father and grandfather were members of the Romanian Academy of

Sciences. He graduated from high-school in 1964 and the same year he became a stu-

dent at the Faculty of Mathematics and Mechanics of the “Babeş-Bolyai” University

in Cluj-Napoca. In 1969 he graduated with a dissertation on “Embedding Theorems

in Categories” and he began to work at the Department of Algebra of the same univer-

sity, first as Probation Assistant (September 1969–September 1970), then as Assistant

(September 1970–March 1978). In 1977, he defended his Ph.D. thesis “Contributions

to the theory of enriched modules and to the problem of endomorphisms” under the

supervision of Professor Ionel Bucur and Professor Alexandru Solianu from the Fac-

ulty of Mathematics of the University of Bucharest. From March 1978 until March

1990 he was Lecturer and in 1990 he became Associate Professor in the Department

of Algebra of the “Babeş-Bolyai” University.

It is in that period that we first met Professor Grigore Călugăreanu as stu-

dents in an introductory course in Algebra. This meeting was undoubtedly one of

the most important events in our students life and it convinced us to attend an Al-

gebra course whenever this was possible. Later, we had the opportunity to meet

Professor Călugăreanu again at an optional undergraduate course on the connections

between Lattice Theory and Abelian Group Theory and at a graduate level course on

Abelian Group Theory. As a matter of fact, these two topics are the core of Grigore

Călugăreanu’s research. From February 1998, Grigore Călugăreanu is Professor at
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“Babeş-Bolyai” University, and from 2001, he is also Associate Professor at the De-

partment of Mathematics and Computer Science of the Faculty of Science of Kuwait

University.

Grigore Călugăreanu had an important influence on the mathematical activity

in Cluj-Napoca (and not only). He obtained many valuable and interesting results

concerning Abelian groups and lattices, results published in more that 40 research

papers concerning the structure of an abelian group in connection with some objects

attached to it, such as the endomorphism ring or the subgroup lattice. We mention the

results concerning the structure of some generalizations of extending abelian groups,

obtained in collaboration with L. Fuchs, who can be considered the “father” of Abelian

Group Theory. We also mention a characterization for abelian groups with semilocal

endomorphism ring, a characterization of n-root property using subgroup lattices, and

the results on the structure of abelian groups with continuous subgroup lattice (in

collaboration with K. Benabdallah), and the structure of abelian groups with breaking

point subgroup lattice (in collaboration with M. Deaconescu and S. Breaz). Along the

time, Professor Călugăreanu’s communication abilities lead to numerous cooperations

which are not confined to the field of mathematics. Thus, we can complete the list

of collaborators by adding G. Birkenmeier, B. Charles, P. Goeters, P. Hamburg, R.

Khazal, V. Leoreanu, C. Modoi, A. Orsatti, C. Pelea, D. Vălcan, H. Wiesler.

Last but not least, we should stress that all his mathematical activity was

influenced by his teaching abilities. He is author and coauthor of 10 books for students

or for experts in algebra. All these books are the fruit of his rich and successful

teaching activity. Three of them were published by Kluwer Academic Publisher (now

a part of Springer Verlag): Exercices in Basic Ring Theory (with P. Hamburg), Lattice

Concepts in Module Theory, Exercises in Abelian Group Theory (with S. Breaz, C.

Modoi, C. Pelea, D. Vălcan).

For a complete image on the exceptional work of Grigore Călugăreanu, both

a teacher and a researcher, we present here the most important issues of his mathe-

matical activity.
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Papers

1. On the S. N. Bernstein polynomials. The operator spectrum. (Romanian) Gaz.

Mat., seria A, vol. 71, nr.12, 448-451, 1966.

2. Remarks on triples in enriched categories (with H. Wiesler). Bull. Australl. Math.

Soc., vol. 13, nr. 3, 375-383, 1970.

3. A variety of associative structures with one-sided zero elements in autonomous

categories. Rev. Roum. Math. Pures et Appl., tome 17, 1317-1322, 1972.

4. Conjugation relations in gamma-categories. Studia Univ. Babeş-Bolyai, Series

Math.-Mech., fasc. 2, 5-10, 1974.

5. Categories whose objects are determined by their rings of endomorphisms. Bull.

Australl. Math. Soc., vol. 15, nr. 1, 65-72, 1976.

6. On an enriched theory of modules I. Studia Univ. Babeş-Bolyai, Math., fasc. 3,

nr. 2, 25-38, 1979.

7. On an enriched theory of modules II. Studia Univ. Babeş-Bolyai, Math., fasc. 3,

nr. 2, 3-17, 1980.

8. Some remarks about pseudocomplements in lattices. Mathematica, vol. 22(45),

nr. 2, 237-239, 1980.

9. Note on B-high subgroups of abelian groups. Mathematica, vol. 23(46), nr. 1,

9-10, 1981.

10. Torsion in lattices. Mathematica, vol. 25(48), nr. 2, 127-129, 1983.

11. Restricted socle conditions in lattices. Mathematica, vol. 28(51), nr. 1, 27-30,

1986.

12. Abelian groups with pseudocomplemented lattice of subgroups. Studia Univ.

Babeş-Bolyai, Math., vol. 31, fasc. 3, 39-41, 1986.

13. Abelian groups with continuous lattice of subgroups (with K. Benabdallah).

Studia Univ. Babeş-Bolyai, Math., vol. 32, fasc. 1, 31-32, 1987.

14. Cocompact elements in algebraic lattices. Seminar of Algebra, 41-46, Univ.

“Babeş-Bolyai”, Cluj-Napoca, 1988.

15. Cocompact elements in algebraic lattices. Proceedings of the Braşov Conference,

83-88, 9-10, June 1988.
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16. Torsion-free components in non-splitting mixed abelian groups. Preprint nr. 2,

Univ. Babeş-Bolyai, Cluj-Napoca, 7-8, 1990.

17. Socle and radical as pure subgroups of an abelian group. Mathematica, vol.

33(56), nr. 1-2, 17-20, 1991.

18. Torsion-free components and topology. Proceedings on the Conference on Algebra

(Cluj-Napoca,1991) pp. 7-8, Preprint 92-1, “Babeş-Bolyai” Univ., Cluj-Napoca 1992.

19. La T-topologie d’un groupe abelien. Studia Universitatis Babeş-Bolyai, Mathe-

matica, XL, 4, 3-12, 1995.

20. Note on a module-theoretic exercise. Mathematica 37(60), nr. 1-2, 57-59, 1995.

21. Correction: La T-topologie d’un groupe abelien. 1996, Studia Universitatis

Babeş-Bolyai, Mathematica, XLI, 3, 107-108.

22. Cocompact lattices. Mathematica Panonica, vol. 7, nr. 2, 185-190, 1996.

23. Distributively generated lattices. Analele Ştiintifice ale Universităţii “Al. I. Cuza”

din Iaşi, vol. 42, fasc. 2, 233-238, 1996.

24. Pure subgroups of mixed abelian groups including the torsion part. Mathematica

vol. 39(62), nr. 1, 29-35, 1997.

25. Essential-pure subgroups of abelian groups. Mathematica, vol. 39(62), nr. 2,

195-200, 1997.

26. Coatomic lattices and abelian group topics. Libertas Mathematica, XVII, 125-

131, 1997.

27. On a problem of Prof. A. Orsatti. Abelian groups, Module Theory, and Topol-

ogy (Proceedings in honor of Adalberto Orsatti 60-th birthday, Padova june 1997).

Lecture Notes in Pure and Applied Math., vol. 201, 105-112, Marcel Dekker, 1998.

28. Purity in Γ-lattices. Mathematica, vol. 40(63), nr. 2, 155-158, 1998.

29. Torsion in Γ-lattices. Studia Universitatis Babeş-Bolyai, Mathematica, XLIII, 1,

1-5, 1998.

30. Purity in ideal lattices. Analele Stiintifice ale Universitatii “Al. I. Cuza” din Iasi,

XLV, s.I.a., fasc. 1, 39-44, 1999.

31. A useful category for mixed abelian groups, Theory and Applications of Cate-

gories, vol. 5, no. 4, 81-90, 1999.

31’. Extending Abelian groups. Preprint, 1999.
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PROFESSOR GRIGORE CĂLUGĂREANU AT HIS 60TH ANNIVERSARY

32. Hypergroups associated to lattices. (with V. Leoreanu) Italian Journal of Pure

and Applied Mathematics, No. 9, 165-173, 2001.

33. The fully-invariant-extension property for abelian groups. (with G. Birkenmeier,

L. Fuchs and P. Goeters) Communications in Algebra, 29, 673-685, 2001.

34. Abelian groups with semi-local rings of endomorphisms. Communications in

Algebra, 30 (9), 4105-4111, 2002.

35. Abelian groups have/are near Frattini subgroups. (with S. Breaz) Commenta-

tiones Mathematicae Universitatis Carolinae , 43, 3, 2002, 395-405.

36. Fully-invariant elements in lattices. Mathematica, Tome 45(68), No. 1, 19 - 24,

2003.

37. Breaking points in subgroup lattices. (with M. Deaconescu) Proceedings, Groups

St Andrews 2001 in Oxford (Volume 1), 59 - 62, Cambridge University Press , 2003.

38. Distributivity and IM-lattices. (with R. Khazal) Italian Journal of Pure and

Applied Mathematics, vol. 15, 175-184, 2004.

39. The total number of subgroups of a finite Abelian group. Scientiae Mathematicae

Japonicae, 60, No. 1, 157-167, 2004.

40. Abelian groups whose subgroup lattice is the union of two intervals. (with S.

Breaz) Journal of the Australian Mathematical Society 78, 27-36, 2005.

41. On torsion-free periodic rings. (with S. Breaz and R. Khazal) Int. J. Math. Sci.,

vol. 2005, no. 14, 2321-2327, 2005.

42. Abelian groups determined by subgroup lattices of direct powers, Archiv der

Math., vol. 86, no. 2 (2006), 97-100.

43. Self-c-injective Abelian groups. (with S. Breaz) Rend. Sem. Mat. Padova,

vol.116 (2006), 193-204.

44. Every Abelian group is determined by a subgroup lattice, (with S. Breaz) to

appear in Studia Scientiarum Mathematicarum Hungaricae (2007).

Books

(except for 7, 8, and 9 all are written in Romanian language)

1. Collection of Problems of Algebra, fasc. 3: Rings and Fields. Babeş-Bolyai

University Publishing House, Cluj-Napoca 1978 (58 pages).
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2. Lattice Introduction in the Theory of Abelian Groups. Babeş-Bolyai University

Publishing House, Cluj-Napoca 1983 (109 pages).

3. Exercises and Problems of Rationing, Perspicacity and Ingenuity. Expert Press,

Cluj-Napoca 1992 (64 pages).

4. Solutions of the difficult Problems in the Manuals of Algebra of the 4 (high-school)

terminal classes. Expert Press, Cluj-Napoca 1992 (64 pages).

5. Introduction to the Theory of Abelian Groups. Expert Press, Cluj-Napoca 1994

(303 pages).

6. Lectures of Linear Algebra. Babeş-Bolyai University Publishing House, Cluj-

Napoca 1995 (83 pages).

7. Exercises in Basics of Ring Theory (with P. Hamburg). Kluwer Academic Pub-

lishers, Holland, 1998 (212 pages).

8. Lattice Concepts of Module Theory. Kluwer Academic Publishers, Holland, 2000

(238 pages).

9. Exercises in Abelian Group Theory (with S. Breaz, C. Modoi, C. Pelea and D.

Valcan). Kluwer Academic Publishers, Holland, 2003 (361 pages).

10. Fundamentals of Abelian Group Theory (with S. Breaz). Editura Academiei

Romane, Bucharest, 2005 (374 pages).

Visits Abroad

• 1993 COST - Research with Prof. Bernard Charles, Universit Technique du Langue-

doc, Montpellier 2

• 1995 TEMPUS - Teaching Algebra in University - Universita degli Studi din Padova

• 1997 NATO-CNR - Research with Prof. Adalberto Orsatti, Universita degli Studi

di Padova

• 1999 FULBRIGHT - Research with Prof. Laszlo Fuchs, Tulane University, New

Orleans, LA
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LII, Number 2, June 2007

ON ANALOGS OF THE DUAL BRUNN-MINKOWSKI INEQUALITY
FOR WIDTH-INTEGRALS OF CONVEX BODIES

ZHAO CHANGJIAN, WING-SUM CHEUNG, AND MIHÁLY BENCZE

Abstract. In this paper we prove two new inequalities about width-

integrals of centroid and projection bodies. Two analogs of the dual Brunn-

Minkowski inequality for width-integral of convex bodies are established.

0. Definitions and preliminary results

The setting for this paper is n-dimensional Euclidean space Rn(n > 2). Let

Kn denote the set of convex bodies (compact, convex subsets with non-empty interi-

ors) in Rn. Let ϕn denote the set of star bodies in Rn. The subset of ϕn consisting of

the centred star bodies will be denoted by ϕn
c . We reserve the letter u for unit vectors,

and the letter B is reserved for the unit ball centered at the origin. The surface of

B is Sn−1. For u ∈ Sn−1, let Eu denote the hyperplane, through the origin, that

is orthogonal to u. We will use Ku to denote the image of K under an orthogonal

projection onto the hyperplane Eu.

We use V (K) for the n-dimensional volume of convex body K. Let h(K, ·) :

Sn−1 → R, denote the support function of K ∈ Kn; i.e.

h(K, u) = Max{u · x : x ∈ K}, u ∈ Sn−1, (1)

where u · x denotes the usual inner product u and x in Rn.

Let δ denote the Hausdorff metric on Kn; i.e., for K, L ∈ Kn,

δ(K, L) = |hK − hL|∞,

Received by the editors: 14.02.2006.

2000 Mathematics Subject Classification. 52A40.

Key words and phrases. width-integral, projection body, centroid body, Blaschke linear combination,

harmonic Blaschke linear combination.
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where | · |∞ denotes the sup-norm on the space of continuous functions, C(Sn−1).

For a convex body K and a nonnegative scalar λ, λK, is used to denote

{λx : x ∈ K}. For Ki ∈ Kn, λi ≥ 0, (i = 1, 2, . . . , r) ,the Minkowski linear combination

λ1K1 + · · ·+ λrKr ∈ Kn is defined by

λ1K1 + · · ·+ λrKr = {λ1x1 + · · ·+ λrxr ∈ Kn : xi ∈ Ki}. (2)

It is trivial to verify that

h(λ1K1 + · · ·+ λrKr, ·) = λ1h(K1, ·) + · · ·+ λrh(Kr, ·). (3)

1.1 Mixed volumes

If Ki ∈ Kn(i = 1, 2, . . . , r) and λi(i = 1, 2, . . . , r)are nonnegative real num-

bers, then of fundamental impotence is the fact that the volume of λ1K1 + · · ·+λrKr

is a homogeneous polynomial in λi given by [4,p.275]

V (λ1K1 + · · ·+ λrKr) =
∑

i1,...,in

λi1 . . . λin
Vi1...in

, (4)

where the sum is taken over all n-tuples (i1, . . . , in) of positive integers not exceeding

r. The coefficient Vi1...in
depends only on the bodies Ki1 , . . . ,Kin

, and is uniquely

determined by (8), it is called the mixed volume of Ki, . . . ,Kin
, and is written as

V (Ki1 , . . . ,Kin
). Let K1 = . . . = Kn−i = K and Kn−i+1 = . . . = Kn = L, then the

mixed volume V (K1 . . .Kn) is usually written Vi(K, L). If L = B, then Vi(K, B) is

the ith projection measure(Quermassintegral) of K and is written as Wi(K).

If Ki(i = 1, 2, . . . , n− 1) ∈ Kn, then the mixed volume of the convex figures Ku
i (i =

1, 2, . . . , n−1) in the (n−1)-dimensional space Eu will be denoted by v(Ku
1 , . . . ,Ku

n−1).

It is well known, and easily shown [5,p.45], that for Ki ∈ Kn(i = 1, 2, . . . , n− 1), and

u ∈ Sn−1

v(Ku
1 , . . . ,Ku

n−1) = nV (K1, . . . ,Kn−1, [u]) (5)

where [u] denotes the line segment joining u/2 and −u/2.

1.2 Width-integrals of convex bodies

For u ∈ Sn−1, bK = 1
2 (h(K, u) + h(K,−u)) is called as half the width of K in the

direction u. Two convex bodies K and L are said to have similar width if there exists
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a constant λ > 0 such that bK = λbL for all u ∈ Sn−1. The width-integral of index i

is defined by: For K ∈ Kn, i ∈ R

Bi(K) =
1
n

∫
Sn−1

bn−i
K dS(u), (6)

where dS is the (n− 1)-dimensional volume element on Sn−1.

The width-integral of index i is a map

Bi : Kn → R.

It is positive, continuous, homogeneous of degree n − i and invariant under motion.

In addition, for i ≤ n it is also bounded and monotone under set inclusion.

The following result easy is proved, for Kj ∈ Kn(j = 1, . . . ,m)

bK1+···+Km
= bK1 + · · ·+ bKm

, (7)

1.3 The Blaschke linear combination and the harmonic Blaschke linear combination

A convex body K is said to have a positive continuous curvature function [8],

f(K, ·) : Sn−1 → [0,∞),

if for each L ∈ ϕn, the mixed volume V1(K, L) has the integral representation

V1(K, L) =
1
n

∫
Sn−1

f(K, u)h(L, u)dS(u).

The subset of Kn consisting of bodies which have a positive continuous curvature

function will be denoted by κn. Let κn
c denote the set of centrally symmetric member

of κn.

The following result is true [9], for K ∈ κn∫
Sn−1

uf(K, u)dS(u) = 0.

Suppose K, L ∈ κn and λ, µ ≥ 0(not both zero). From above it follows that the

function λf(K, ·)+µf(L, ·) satisfies the hypothesis of Minkowski’s existence theorem

(see [5]). The solution of the Minkowski problem for this function is denoted by

λ ·K+̈µ · L that is

f(λ ·K+̈µ · L, ·) = λf(K, ·) + µf(L, ·), (8)
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where the linear combination λ ·K+̈µ · L is called a Blaschke linea combination.

The relationship between Blaschke and Minkowski scalar multiplication is

given by

λ ·K = λ1/(n−1)K. (9)

A new addition, harmonic Blaschke addition, be defined by Lutwak [8]. Sup-

pose K, L ∈ ϕn, and λ, µ ≥ 0(not both zero). To define the harmonic Blaschke linear

combination, λK+̂µL, first define ξ > 0 by

ξ1/(n+1) =
1
n

∫
Sn−1

[λV (K)−1ρ(K, u)n+1 + µV (L)−1ρ(L, u)n+1]n/(n+1)dS(u). (10)

The body λK+̂µL ∈ ϕn is defined as the body whose radial function is given by

ξ−1ρ(λK+̂µL, ·)n+1 = λV (K)−1ρ(K, ·)n+1 + µV (L)−1ρ(L, ·)n+1. (11)

It follows immediately that ξ = V (λK+̂µL), and hence

V (λK+̂µL)−1ρ(λK+̂µL, ·)n+1 = λV (K)−1ρ(K, ·)n+1 + µV (L)−1ρ(L, ·)n+1.

Lutwak [10] define a mapping:

Λ : ϕn
c → κn

c

and point out that Λ tansforms harmonic Blaschke linear combination into Blaschke

linear combinations, i.e.

If K, L ∈ ϕn
c and λ, µ ≥ 0, then

Λ(λK+̂µL) = λ · ΛK+̈µ · ΛL.

Further, We obtain that

If Kj ∈ ϕn
c (j = 1, . . . ,m), and λj ≥ 0(j = 1, . . . ,m), then

Λ(λ1K1+̂ · · · +̂λmKm) = λ1 · ΛK1+̈ · · · +̈λm · ΛKm. (12)

and

Λ(λK) = λΛK (13)
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1.4 Projection bodies and Centroid bodies

The projection bodies, ΠK, of the body K ∈ Kn is defined as the convex

figure whose support function is given, for u ∈ Sn−1, by [6]

h(ΠK, u) = v(Ku) (14)

It is easy to see, that a projection body is always centered(symmetric about

the origin), and if K has interior points then ΠK will have interior point as well.

Here, we introduce the following property.

If K, L ∈ Kn and λ, µ ≥ 0, then [7]

Π(λ ·K+̈µ · L) = λΠK + µΠL.

Further, we may prove that

If Kj ∈ Kn(j = 1, . . . ,m) and λj ≥ 0(j = 1, . . . ,m), then

Π(λ1 ·K1+̈ · · · +̈λm ·Km) = λ1ΠK1 + · · ·+ λmΠKm. (15)

The centroid body, ΓK, of K ∈ ϕn, is the convex body whose support func-

tion, at x ∈ Rn, is given by [8]:

h(ΓK, x) =
1

V (K)

∫
K

| x · y | dy. (16)

Here, we give the following property:

If Kj ∈ ϕn(j = 1, . . . ,m), and λj ≥ 0(j = 1, . . . ,m), then

Γ(λ1K1+̂ · · · +̂λmKm) = λ1ΓK1 + · · ·+ λmΓKm. (17)

If K ∈ ϕn, then from (20) it follows that ΓK is centered.

Please see the next section for above interrelated notations, definitions and their

background material.

1. Main results

Width-integrals were first considered by Blaschke [1,p.85] and later by Had-

wiger [2,p.266]. In [3], Lutwak also introduced the width-integral of index i and proved

some important results, one of them is the following Theorem:
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Theorem A. If K, L ∈ Kn and i < n− 1, then

Bi(K + L)1/(n−i) ≤ Bi(K)1/(n−i) + Bi(L)1/(n−i) (18)

with equality if and only if K and L have similar width.

Since inequality (1) is a new result similar to the following Brunn-Minkowski

inequality for the cross-sectional measures [2, p.249].

Theorem B. If K, L ∈ Kn and i < n− 1, then

Wi(K + L)1/(n−i) ≤ Wi(K)1/(n−i) + Wi(L)1/(n−i) (19)

with equality if and only if K and L are homothetic.

Hence, inequality (1) is called as the dual Brunn-Minkowski inequality for

width-integral of convex bodies.

The main purpose of this paper is to establish two analogs of inequality (1),

them can be stated as:

Theorem C. If K1, . . . ,Km ∈ ϕn, λ1, . . . , λm > 0 and i < n− 1, then

Bi(Γ(λ1K1+̂ · · · +̂λmKm))1/(n−i) ≤ λ1Bi(ΓK1))1/(n−i) + · · ·+ λmBi(ΓKm)1/(n−i),

(20)

with equality if and only if ΓKj(j = 1, 2, . . . ,m) have similar width.

Theorem D. If K1, . . . ,Km ∈ ϕn
c , λ1, . . . , λm > 0 and i < n− 1, then

Bi(Π(Λ(λ1K1+̂ . . . +̂λmKm)))1/(n−i)

≤ λ1Bi(Π(ΛK1))1/(n−i) + . . . + λmBi(Π(ΛKm))1/(n−i), (21)

with equality if and only if Π(ΛKj)(j = 1, 2, . . . ,m) have similar width.

2. A dual Brunn-Minkowski inequality about the width-integrals of cen-

troid bodies for the harmonic Blaschke linear combination

The following dual Brunn-Minkowski inequality about the width-integrals of

centroid bodies will be proved.

Theorem C. If K1, . . . ,Km ∈ ϕn, λ1, . . . , λm > 0 and i < n− 1, then

Bi(Γ(λ1K1+̂ · · · +̂λmKm))1/(n−i) ≤ λ1Bi(ΓK1))1/(n−i) + · · ·+ λmBi(ΓKm)1/(n−i),

(22)
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with equality if and only if ΓKj(j = 1, 2, . . . ,m) have similar width.

Proof. From (7),(10),(11),(21) and in view of Minkowski inequality for integral

[11, p.147], we obtain that

Bi(Γ(λ1K1+̂ · · · +̂λmKm))
1

n−i =
(

1
n

∫
Sn−1

bn−i
Γ(λ1K1+̂···+̂λmKm)

dS(u)
) 1

n−i

=
(

1
n

∫
Sn−1

(bλ1ΓK1+···+λmΓKm
)n−i

dS(u)
) 1

n−i

=
(

1
n

∫
Sn−1

(λ1bΓK1 + · · ·+ λmbΓKm
)n−i

dS(u)
) 1

n−i

≤ λ1

(
1
n

∫
Sn−1

bn−i
ΓK1

dS(u)
) 1

n−i

+ · · ·+ λm

(
1
n

∫
Sn−1

bn−i
ΓKm

dS(u)
) 1

n−i

= λ1Bi(ΓK1)
1

n−i + · · ·+ λmBi(ΓKm)
1

n−i ,

with equality if and only if ΓKj(j = 1, . . . ,m) have similar width.

The proof is complete. �

Taking m = 2 to (23), we have

Corollary 1. If K, L ∈ ϕn, λ, µ > 0 and i < n− 1, then

Bi(Γ(λK+̂µL))1/(n−i) ≤ λBi(ΓK)1/(n−i) + µBi(ΓL)1/(n−i), (23)

with equality if and only if ΓK and ΓL have similar width.

Another important consequence is obtained when λ = µ = 1.

Corollary 2. IfK, L ∈ ϕn and i < n− 1, then

Bi(Γ(K+̂L))1/(n−i) ≤ Bi(ΓK)1/(n−i) + Bi(ΓL)1/(n−i), (24)

with equality if and only if ΓK and ΓL have similar width.

3. A dual Brunn-Minkowski inequality about the width-integrals of pro-

jection bodies for the harmonic Blaschke linear combination

The following dual Brunn-Minkowski inequality about the width-integrals of

projection bodies will be proved.

Theorem D. If K1, . . . ,Km ∈ ϕn
c , λ1, . . . , λm > 0 and i < n− 1, then

Bi(Π(Λ(λ1K1+̂ . . . +̂λmKm)))1/(n−i)
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≤ λ1Bi(Π(ΛK1))1/(n−i) + . . . + λmBi(Π(ΛKm))1/(n−i), (25)

with equality if and only if Π(ΛKj)(j = 1, 2, . . . ,m) have similar width.

Proof. From (7),(10),(11),(16),(19) and in view of Minkowski inequality for

integral [11, p.147], we obtain that

Bi(Π(Λ(λ1K1+̂ · · · +̂λmKm)))
1

n−i =
(

1
n

∫
Sn−1

bn−i
Π(Λ(K1+̂···+̂Km))

dS(u)
) 1

n−i

=
(

1
n

∫
Sn−1

bn−i
Π(λ1ΛK1+̈···+̈λmΛKm

)dS(u)
) 1

n−i

=
(

1
n

∫
Sn−1

bn−i∑m
j=1 λjΠ(ΛKj)

dS(u)
) 1

n−i

=

 1
n

∫
Sn−1

 m∑
j=1

λjbΠ(ΛKj)

n−i

dS(u)


1

n−i

≤
m∑

j=1

λj

(
1
n

∫
Sn−1

bn−i
Π(ΛKj)

dS(u)
) 1

n−i

=
m∑

j=1

λjBi(Π(ΛKj))
1

n−i ,

with equality if and only if Π(ΛKj)(j = 1, . . . ,m) have similar width.

The proof is complete. �

Taking m = 2 to (26), we have

Corollary 3. If K, L ∈ ϕn
c , λ, µ > 0 and i < n− 1, then

Bi(Π(Λ(λK+̂µL)))1/(n−i) ≤ λBi(Π(ΛK))1/(n−i) + µBi(Π(ΛL))1/(n−i), (26)

with equality if and only if Π(ΛK) and Π(ΛL) have similar width.

Another remarkable case is obtained for λ = µ = 1.

Corollary 4. If K, L ∈ ϕn
c and i < n− 1, then

Bi(Π(Λ(K+̂L)))1/(n−i) ≤ Bi(Π(ΛK))1/(n−i) + Bi(Π(ΛL))1/(n−i), (27)

with equality if and only if Π(ΛK) and Π(ΛL) have similar width.
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PROJECTORS IN FINITE π-SOLVABLE GROUPS
AND ASSOCIATED PRIMITIVE CLASSES

RODICA COVACI

Dedicated to Professor Grigore Călugăreanu on his 60th birthday

Abstract. In [7], W. Gaschütz introduced the notion of primitive class

and studied its connection with projectors in finite solvable groups. Let π

be a set of primes. Introduced by S.A. Čunihin in [6], the π-solvable groups

are more general than the soluble groups. It is the aim of this paper to give

conditions under which we can establish a connection between projectors

in finite π-solvable groups and their associated primitive classes. The main

results establishing this connection are based on some new properties of

projectors in finite π-solvable groups which are also proved in this paper.

1. Preliminaries

All groups considered in this paper are finite. Let π be a set of primes and

π′ the complement to π in the set of all primes.

We first remind some useful definitions and theorems.

Definition 1.1. a) A positive integer n is said to be a π-number if for any

prime divisor p of n we have p ∈ π.

b) A finite group G is a π-group if the order of G is a π-number.

c) A subgroup H of a group G is said to be a π-subgroup if H is a π-group.

Notation 1.2. Let G be a group. We denote by Oπ′(G) the largest normal

π′-subgroup of G.

Definition 1.3. Let G be a group.

Received by the editors: 25.10.2006.

2000 Mathematics Subject Classification. 20D10.
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a) M is a minimal normal subgroup of G if:

(i) M C G and M 6= 1;

(ii) if M∗ C G, M∗ 6= 1 and M∗ ≤ M then M∗ = M .

b) Let M and N be normal subgroups of G such that N ⊆ M . The factor

M/N is called a chief factor of G if M/N is a minimal normal subgroup of G/N .

c) Let

C : G = G0 > G1 > G2 > · · · > Gr = 1

be a chain of normal subgroups of G. C is called a chief chain of G if Gi/Gi+1 is a

chief factor of G, for any i.

The following theorem given by R. Baer in [1] is of special interest for our

considerations.

Theorem 1.4. ([1]) A solvable minimal normal subgroup of a finite group is

abelian.

Introduced by S.A. Čunihin in [6], the π-solvable groups are more general

than the solvable groups.

Definition 1.5. ([6]) A group G is π-solvable if every chief factor of G is

either a solvable π-group or a π′-group. For π the set of all primes, we obtain the

notion of solvable group.

Remark 1.6. a) A finite group G is π-solvable if and only if G is a chief

chain

C : G = G0 > G1 > G2 > · · · > Gr = 1

such that any factor Gi/Gi+1 is either a solvable π-group or a π′-group. Moreover, if

G is a finite π-solvable group then any chief chain of G has the above property.

b) We use in the paper the following basic properties of π-solvable groups:

(i) If G is a π-solvable group and H is a subgroup of G, then H is also

a π-solvable group.

(ii) If G is a π-solvable group and N is a normal subgroup of G, then

G/N is a π-solvable group.
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We define below the special classes of groups and subgroups which will appear

in the paper.

Definition 1.7. a) A class X of groups is a homomorph if X is epimorphically

closed, i.e. if G ∈ X and N is a normal subgroup of G, then G/N ∈ X.

b) A group G is primitive if G has a stabilizer, i.e. a maximal subgroup H of

G with coreGH = 1, where coreGH = ∩{Hg/g ∈ G}. We remind here that coreGH

is a normal subgroup of G.

c) ([7]) A homomorph X is called a Schunck class if X is primitively closed,

i.e. if any group G, all of whose primitive factor groups are in X, is itself in X.

d) A class X of groups is said to be π-closed if:

G/Oπ′(G) ∈ X ⇒ G ∈ X.

A π-closed homomorph, respectively a π-closed Schunck class will be called

π-homomorph, respectively π-Schunck class.

Definition 1.8. ([7]) Let X be a class of groups, G a group and H a subgroup

of G.

a) H is an X-maximal subgroup of G if:

(i) H ∈ X;

(ii) H ≤ H∗ ≤ G, H∗ ∈ X ⇒ H = H∗.

b) H is an X-projector of G if, for any normal subgroup N of G, HN/N is

X-maximal in G/N .

Remark 1.9. Let X be a class of groups.

a) Any X-projector of a group G is X-maximal in G.

b) If H is an X-maximal subgroup of G and H ≤ K ≤ G, then H is also an

X-maximal subgroup of K.

Theorem 1.10. ([7]) Let X be a class of groups, G a group and H a subgroup

of G. H is an X-projector of G if and only if:

(a) H is an X-maximal subgroup of G;

(b) HM/M is an X-projector of G/M , for all minimal normal subgroups M

of G.
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Theorem 1.11. ([7]) Let X be a homomorph, G a group and H a subgroup

of G. If H is an X-projector of G and N is a normal subgroup of G, then HN/N is

an X-projector of G/N .

In [3], we introduced the P property, which is important for the present paper.

Definition 1.12. Let X be a class of groups and G a π-solvable group. We

say that G has the property (α) with respect to X if the following implication is true:

M minimal normal subgroup of G, M π′ − subgroup ⇒ G/M ∈ X. (α)

Definition 1.13. ([3]) Let X be a class of groups and π a set of primes. We

say that X has the P property with respect to π if any π-solvable group G has the

property (α) with respect to X.

The following two results on properties (α) and P will be used in our consid-

erations.

Theorem 1.14. Let X be a π-homomorph and G a π-solvable group having

property (α) with respect to X and suppose that there is a minimal normal subgroup

M of G such that M is a π′-group. Then G ∈ X.

Proof. From M C G and M π′-group follows that M ≤ Oπ′(G) and so

G/Oπ′(G) ∼= (G/M)/(Oπ′(G)/M). (1)

By property (α), G/M ∈ X. Hence, by (1) and X being a homomorph,

G/Oπ′(G) ∈ X. This implies by the π-closure of X that G ∈ X. �

Theorem 1.15. Let X be a π-homomorph with the P property with respect

to π and G a π-solvable group such that there is a minimal normal subgroup M of G,

M π′-group. Then G ∈ X.

Proof. Since X has the P property with respect to π and G is a π-solvable

group, it follows that G has property (α) with respect to X. Applying now 1.14, we

obtain that G ∈ X. �
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2. Some new properties of projectors in finite π-solvable groups

We first give some sufficient conditions on a subgroup of a π-solvable group

to be an X-projector, where X is a π-Schunck class.

Theorem 2.1. ([5]) Let X be a π-Schunck class, G a finite π-solvable group

such that for any minimal normal subgroup M of G which is a π′-group we have

G/M ∈ X and let B be a normal abelian subgroup of G and S a subgroup of G such

that:

(i) S is X-maximal in BS;

(ii) BS/B is an X-projector of G/B.

Then S is an X-projector of G.

Theorem 2.2. Let X be a π-Schunck class with the P property with respect

to π, G a finite π-solvable group and let B be a normal abelian subgroup of G and S

a subgroup of G such that:

(i) S is X-maximal in BS;

(ii) BS/B is an X-projector of G/B.

Then S is an X-projector of G.

Proof. X having the P property with respect to π and G being a π-solvable

group, we deduce that G has the property (α) with respect to X. Applying now 2.1,

it follows that S is an X-projector of G. �

Theorem 2.3. Let X be a π-Schunck class and G a finite π-solvable group

with Oπ′(G) = 1. If B is a normal abelian subgroup of G and S is a subgroup of G

such that

(i) S is X-maximal in BS;

(ii) BS/B is an X-projector of G/B,

then S is an X-projector of G.

Proof. The proof is similar with that of 2.1 given in [5]. Two cases are

considered:

1) B = 1. From (ii) follows that S is an X-projector of G.

2) B 6= 1. We prove that S is an X-projector of G by using 1.10.
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(a) S is X-maximal in G. This follows like in the proof of 2.1 given in

[5].

(b) Let M be a minimal normal subgroup of G. Since G is π-solvable, it

follows that M is either a solvable π-group or a π′-group. If M is a solvable π-group,

we prove like in the proof of 2.1 given in [5] that SM/M is an X-projector of G/M .

If M is a π′-group, we deduce that M ≤ Oπ′(G) = 1, which leads to the contradiction

M = 1. So this case cannot happen. �

We continue by giving two new characterizations of projectors in finite π-

solvable groups.

Theorem 2.4. Let X be a π-Schunck class with the P property with respect

to π, G a finite π-solvable group and S a subgroup of G. Let

C : G = G0 > G1 > · · · > Gr−1 > Gr = 1

be a chief chain of G. Then S is an X-projector of G if and only if GiS/Gi is

X-maximal in G/Gi, for any i.

Proof. We consider two cases: 1) S = G; 2) S 6= G.

1) S = G. If S is an X-projector of G, then G is an X-projector of G, and

so G ∈ X. But X being a homomorph, we have also G/Gi ∈ X, for any i. It follows

that G/Gi = GiS/Gi is X-maximal in G/Gi, for any i. Conversely, let GiS/Gi be

X-maximal in G/Gi, for any i. Then G/Gi is X-maximal in G/Gi, for any i. In

particular, for i = r we obtain that G is X-maximal in G, hence S = G ∈ X and so

S = G is an X-projector of G.

2) S 6= G. Let S be an X-projector of G. For any i, Gi is normal in G. Hence,

by 1.11, GiS/Gi is an X-projector of G/Gi, for any i. Then, by 1.9.a), GiS/Gi is

X-maximal in G/Gi, for any i. The converse is proved by induction on |G|. Suppose

that GiS/Gi is X-maximal in G/Gi, for any i. In particular, for i = r, we obtain that

S is X-maximal in G. By 1.6.a), Gi/Gi+1 is either a solvable π-group or a π′-group,

for any i. In particular, for i = r − 1, Gr−1
∼= Gr−1/Gr is either a solvable π-group

or a π′-group. We consider the two cases and prove in each of them that S is an

X-projector of G.
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a) Gr−1 is a solvable π-group. Then, by 1.4, Gr−1 is abelian. In this case,

we are in the hypotheses of theorem 2.2, taking Gr−1 as a normal abelian subgroup

of G and S as a subgroup of G. Indeed, we will prove below that (i) and (ii) from 2.2

are true.

(i) S is X-maximal in Gr−1S, since S is X-maximal in G and we apply 1.9.b).

(ii) Gr−1S/Gr−1 is an X-projector of G/Gr−1. Indeed, this can be obtained

if we observe that the group G/Gr−1 is also π-solvable (by (1.6.b)) and apply for

G/Gr−1 the induction. It follows, by Theorem 2.2, that S is an X-projector of G.

b) Gr−1 is a π′-group. In this case, we are in the hypotheses of theorem

1.15, where Gr−1
∼= Gr−1/Gr is the minimal normal subgroup of G ∼= G/Gr which

is a π′-group. By 1.15, G ∈ X. From this and S being X-maximal in G, it follows

that S = G. But G ∈ X implies that G is its own X-projector. So S = G is an

X-projector of G. �

In order to prove the second characterization of projectors in finite π-solvable

groups, we first give a lemma.

Lemma 2.5. ([2]) If X is a π-homomorph, G a π-solvable group, H a

subgroup of G, H 6= G, H X-maximal in G and N is a minimal normal subgroup of

G with HN = G, then N is abelian.

Theorem 2.6. Let X be a π-Schunck class, G a finite π-solvable group with

the property (α) with respect to X and S a subgroup of G. Let

C : G = G0 > G1 > · · · > Gr−1 > Gr = 1

be a chief chain of G such that G/Gr−1 ∈ X. Then S is an X-projector of G if and

only if GiS/Gi is X-maximal in G/Gi, for any i.

Proof. We consider two cases: 1) S = G; 2) S 6= G.

1) S = G. This case has the same proof as the proof of case 1) for theorem

2.4.

2) S 6= G. If S is an X-projector of G, then we prove like in the proof of case

2) for theorem 2.4 that GiS/Gi is X-maximal in G/Gi, for any i. Conversely, suppose

that GiS/Gi is X-maximal in G/Gi, for any i. In particular, for i = r, we obtain that
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S is X-maximal in G. Obviously, Gr−1
∼= Gr−1/Gr is a minimal normal subgroup

of G/Gr
∼= G. Putting i = r − 1 in our hypothesis, we have that Gr−1S/Gr−1 is

X-maximal in G/Gr−1. But G/Gr−1 ∈ X. It follows that Gr−1S/Gr−1 = G/Gr−1,

and so Gr−1S = G. We are now in the hypotheses of lemma 2.5, for H = S and

N = Gr−1. Applying 2.5, we obtain that Gr−1 is abelian. In order to prove that S is

an X-projector of G we use theorem 2.1, in our case the abelian normal subgroup of

G being Gr−1 and S verifying the conditions (i) and (ii) from 2.1. Indeed, we have:

(i) S is X-maximal in Gr−1S, since S is X-maximal in G and we apply 1.9.b).

(ii) Gr−1S/Gr−1 is an X-projector of G/Gr−1, since Gr−1S = G implies that

Gr−1S/Gr−1 = G/Gr−1 ∈ X.

By applying 2.1, it follows that S is an X-projector of G. �

We finally give conditions under which the property of being projector in a

finite π-solvable group is hereditary to subgroups. In preparation for the main result,

we first give a lemma.

Lemma 2.7. Let G be a finite group and let

C : G = G0 > G1 > · · · > Gr−1 > Gr = 1

be a chief chain of G. Let H be a characteristic subgroup of G. We put Hi = H ∩Gi,

for any i. Then

C∗ : H = H0 > H1 > · · · > Hr−1 > Hr = 1

is a chief chain of H.

Proof. We have to prove that Hi/Hi+1 is a minimal normal subgroup of

H/Hi+1, for any i. Obviously Hi/Hi+1 is a normal 6= 1 subgroup of H/Hi+1. Let

N/Hi+1 be a normal 6= 1 subgroup of G/Hi+1 such thar N/Hi+1 ⊆ Hi/Hi+1. We

will prove that N/Hi+1 = Hi/Hi+1. From Hi C H and H characteristic in G follows

that Hi C G, for any i. Furthermore,

Hi/Hi+1 = (H ∩Gi)/(H ∩Gi+1)

= (H ∩Gi)/(H ∩Gi) ∩Gi+1
∼= (H ∩Gi)Gi+1/Gi+1 ≤ Gi/Gi+1.
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This means that Hi/Hi+1 is isomorphic with a normal 6= 1 subgroup of

G/Gi+1 included in Gi/Gi+1. Since Gi/Gi+1 is a minimal normal subgroup of

G/Gi+1, this subgroup coincides with Gi/Gi+1. So, for any i, we have:

Hi/Hi+1
∼= Gi/Gi+1. (2)

Similarly, since

H/Hi+1 = (H ∩G)/(H ∩Gi+1)

= (H ∩G)/(H ∩G) ∩Gi+1
∼= (H ∩G)Gi+1/Gi+1 ≤ G/Gi+1

we deduce that H/Hi+1 is isomorphic with a subgroup G∗/Gi+1 of G/Gi+1. But

from N C H and H characteristic in G follows that N C G. From this and from

N/Hi+1 ⊆ Hi/Hi+1, it follows by (2) that N/Hi+1 is isomorphic with a normal

6= 1 subgroup of G/Gi+1 included in Gi/Gi+1. Since Gi/Gi+1 is a minimal normal

subgroup of G/Gi+1, this subgroup coincides with Gi/Gi+1, which means that

N/Hi+1
∼= Gi/Gi+1. (3)

From (2) and (3) follows that N/Hi+1
∼= Hi/Hi+1. But N/Hi+1 ⊆ Hi/Hi+1.

So N/Hi+1 = Hi/Hi+1. �

Theorem 2.8. Let X be a π-Schunck class with the P property with respect

to π, G a finite π-solvable group and S ≤ H ≤ G such that H is characteristic in G.

If S is an X-projector of G, then S is an X-projector of H.

Proof. By 1.6.a), G has a chief chain

C : G = G0 > G1 > · · · > Gr−1 > Gr = 1

such that Gi/Gi+1 is either a solvable π-group or a π′-group, for any i. Since S is an

X-projector of G, by applying theorem 2.4, we deduce that GiS/Gi is X-maximal in

G/Gi, for any i. We put Hi = H ∩Gi, for any i. Applying lemma 2.7 for the group

G, its chief chain C and its characteristic subgroup H, it follows that

C∗ : H = H0 > H1 > · · · > Hr−1 > Hr = 1
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is a chief chain of H. Since G is π-solvable, by 1.6.b) follows that H is also π-solvable.

In order to prove that S is an X-projector of H we use theorem 2.4 for the π-solvable

group H and its chief chain C∗. It remains only to show that HiS/Hi is X-maximal

in H/Hi, for any i. Indeed, we have that

HiS/Hi
∼= S/S ∩Hi = S/S ∩ (H ∩Gi) = S/(S ∩H) ∩Gi = S/S ∩Gi

∼= GiS/Gi

and so

HiS/Hi
∼= GiS/Gi. (4)

We also have that

H/Hi = H/H ∩Gi
∼= HGi/Gi ≤ G/Gi.

From GiS/Gi X-maximal in G/Gi and GiS/Gi ≤ GiH/Gi ≤ G/Gi follows

by 1.9.b) that

GiS/Gi is X −maximal in HGi/Gi. (5)

We also have

HGi/Gi
∼= H/H ∩Gi = H/Hi (6)

and

HiS/Hi ≤ H/Hi. (7)

(5) becomes by using (4), (6) and (7):

HiS/Hi is X −maximal in H/Hi, for any i.

Finally, applying theorem 2.4, it follows that S is an X-projector of H. �

3. Primitive classes. Their connection with projectors in finite π-solvable

groups

In 1.7.b), we defined the notion of primitive group. If G is a group and N

is a normal subgroup of G, we will call a primitive quotient group G/N simply by a

primitive factor of G.

Proposition 3.1. ([7]) Let G be a finite group.
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a) If N is a normal subgroup of G, then: G/N is primitive if and only if there

is a maximal subgroup W of G such that N = coreGW .

b) If W is a maximal subgroup of G, then G/coreGW is primitive.

Notation 3.2. We put Pr for the class of all finite primitive groups.

Remark 3.3. If G is a primitive group and N is a normal subgroup of

G, it doesn’t generally follow that G/N is primitive. So the class Pr is neither a

homomorph nor a Schunck class.

In [7], W. Gaschütz introduced the notion of primitive class and gave some

theorems which reveal a connection between primitive classes and projectors in the

universe of finite solvable groups. It is the main aim of this paper to give conditions

under which such a connection also holds in the more general case of π-solvable groups.

Definition 3.4. ([7]) A class P of finite groups is said to be a primitive class

if P satisfies the following two conditions:

(i) if G ∈ P , then G is primitive;

(ii) if G ∈ P and G/N is a primitive factor of G, then G/N ∈ P .

In other words, a primitive class P is a class of finite groups such that P ⊂ Pr

and which together with a group G contains all primitive factors of G.

Notation 3.5. ([7]) Let G be a finite group. We put

P (G) = {G/N / G/N is primitive}.

Proposition 3.6. If G is a finite group, then P (G) is a primitive class.

Proof. Obviously P (G) satisfies (i). In order to verify (ii), let G/N ∈ P (G)

and let (G/N)/(M/N) be a primitive factor of G/N . Since

(G/N)/(M/N) ∼= G/M, (8)

we deduce that G/M is a primitive factor of G, and so G/M ∈ P (G). It follows by

(8) that (G/N)/(M/N) ∈ P (G). So (ii) is also satisfied. �

Definition 3.7. Let G be a finite group. We call P (G) given by

P (G) = {G/N / G/N is primitive}
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the primitive class associated to the group G.

Notation 3.8. ([7]) Let X be an arbitrary class of groups. We denote by

P (X) = ∪{P (G)/G ∈ X}

the union of the primitive classes associated to all groups belonging to the class X.

b) Let P be a primitive class. We denote by

X(P ) = {G / G/N ∈ P, for all primitive factors G/N of G},

i.e. X(P ) is the class of those finite groups G whose primitive factors are in P .

Proposition 3.9. ([7]) If X is a Schunck class and P is a primitive class,

then:

a) X = X(P (X));

b) P = P (X(P )).

We give below the main results of this paper.

Theorem 3.10. Let X be a π-Schunck class with the P property with respect

to π, G a finite π-solvable group and S a subgroup of G. If S is an X-projector of G,

then:

(i) P (S) ⊆ X;

(ii) S ≤ W < H ≤ G, with W maximal in H and H characteristic in G

imply that H/coreHW 6∈ X.

Proof. (i) S being an X-projector of G, by 1.9.a) S is X-maximal in G,

hence S ∈ X. Let S/N ∈ P (S). Since S ∈ X and X being a homomorph, we obtain

that S/N ∈ X. So P (S) ⊆ X.

(ii) Let S ≤ W < H ≤ G, with W maximal in H and H characteristic in G.

Suppose that H/coreHW ∈ X. By theorem 2.8, it follows that S is an X-projector of

H. Hence by theorem 1.11 we obtain that S coreHW/coreHW is an X-projector in

H/coreHW , and so by 1.9.a) S coreHW/coreHW is X-maximal in H/coreHW . But

we supposed that H/coreHW ∈ X. Hence S coreHW/coreHW = H/coreHW and so

S coreHW = H. It follows that

H = S coreHW ≤ W,
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in contradiction with the hypothesis that W is a maximal subgroup of H. So we

conclude that H/coreHW 6∈ X. �

Theorem 3.11. Let X be a π-Schunck class with the P property with respect

to π, G a finite π-solvable group and S a subgroup of G. If the following two conditions

are verified:

(i) P (S) ⊆ X;

(ii) S ≤ W < H ≤ G, with W maximal in H ⇒ H/coreHW 6∈ X,

then S is an X-projector of G.

Proof. We prove by induction on |G|.

We first remark that S ∈ X. Indeed, from (i) follows that any primitive

factor S/N of S is in X, which, by the primitive closure of the Schunck class X, leads

to S ∈ X.

Let M be a minimal normal subgroup of G. We put S∗ = SM . Applying

the induction for the π-solvable group G/M (see 1.6.b)) and its subgroup S∗/M , we

deduce that S∗/M is an X-projector of G/M .

We now prove that S is X-maximal in S∗. We saw that S ∈ X. Let S ≤

T ≤ S∗ and T ∈ X. We will prove that S = T . Suppose that S 6= T . Let then

W be a maximal subgroup of T such that S ≤ V < T ≤ S∗ ≤ G. Applying (ii),

we obtain that T/coreT W 6∈ X, in contradiction with T/coreT W ∈ X, which comes

from T ∈ X by applying the hypothesis that X is a homomorph. So S = T .

G being a π-solvable group and M being a minimal normal subgroup of G,

it follows that M is either a solvable π-group or a π′-group. We continue the proof

by considering two cases:

1) M is a solvable π-group. Then, by theorem 1.4, M is abelian. So we are

in the hypotheses of theorem 2.2, where we take M as normal abelian subgroup of G.

Applying theorem 2.2, we obtain that S is an X-projector of G.

2) M is a π′-group. Since X has the P property with respect to π, it follows

that G/M ∈ X. From the fact that S∗/M is an X-projector of G/M we deduce,

by 1.9.a), that S∗/M is X-maximal in G/M , which gives, using G/M ∈ X, that

S∗/M = G/M . So S∗ = G. We saw that S is X-maximal in S∗. It follows that
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S is X-maximal in G. On the other side, by applying theorem 1.15, we obtain that

G ∈ X. This leads to S = G ∈ X. So S = G is its own X-projector. �

In our last considerations, we generalize the definition of the notion of projec-

tor given by W. Gaschütz in [7] and give some connection of projectors with primitive

classes in the universe of finite π-solvable groups.

Definition 3.12. Let G be a finite π-solvable group and S a subgroup of

G. We say that S is a projector of G if there is some π-Schunck class X with the P

property with respect to π, such that S is an X-projector of G.

Theorem 3.13. Let G be a finite π-solvable group and S a subgroup of G.

If S is a projector of G, then the following implication is true: S ≤ W < H ≤ G,

with W maximal in H and H characteristic in G ⇒ H/coreHW 6∈ P (S).

Proof. Let S be a projector of G and let S ≤ W < H ≤ G, with W maximal

in H and H characteristic in G. It follows that there is a π-Schunck class X with

the P property with respect to π, such that S is an X-projector of G. Applying now

theorem 3.10, it follows that P (S) ⊆ X and also that S ≤ W < H ≤ G, with W

maximal in H and H characteristic in G imply H/coreHW 6∈ X. Then obviously

H/coreHW 6∈ P (S). �

Theorem 3.14. Let G be a finite π-solvable group and S a subgroup of G.

If

(i) X = X(P (S)) is a π-Schunck class with the P property with respect to π;

(ii) S ≤ V < H ≤ G, with W maximal in H ⇒ H/coreHW 6∈ P (S),

then S is a projector of G.

Proof. It is easy to see that P (S) ⊆ X(P (S)) = X. Let S ≤ W < H ≤ G,

with W maximal in H. By 3.1.b), H/coreHW is primitive. By (ii), we have that

H/coreHW 6∈ P (S). From this and from P (S) ⊆ X(P (S)) = X and H/coreHW

primitive, we deduce that H/coreHW 6∈ X = X(P (S)). So we proved that conditions

(i) and (ii) from theorem 3.11 are verified. Applying now theorem 3.11, we obtain

that S is an X-projector of G, where X = X(P (S)) is a π-Schunck class with the P

property with respect to π. Hence S is a projector of G. �
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LII, Number 2, June 2007

LEBESGUE TYPE CONVERGENCE THEOREMS

ANCA CROITORU

Abstract. In [9], the author introduced a set-valued integral for multi-

functions with respect to a multimeasure ϕ. If Pk(X) is the family of

nonempty compact subsets of a Hausdorff locally convex algebra X, then

both the multifunctions and the multimeasure take values in a subset X̃

of Pk(X) which satisfies certain conditions. In this paper, we present

Lebesgue type convergence theorems for the integral defined in [9].

1. Terminology and notations

The theory of multifunctions has multiple applications in the theory of math-

ematical economics or in the theory of games. In an earlier article [9], we constructed

an integration theory for multifunctions F : S → X̃ with respect to a multimeasure

ϕ : A → X̃. If Pk(X) is the family of nonempty compact subsets of a Hausdorff

locally convex algebra X, then both the multifunctions and the multimeasure take

values in a subset X̃ of Pk(X), where X̃ satisfies certain conditions. For different

choices of the space X, of the multifunctions F and of the multimeasure ϕ, this set-

valued integral contains, like particular cases, the classical integrals of Dunford [11],

Brooks [5] and Martellotti-Sambucini [14]. In this paper, we obtain Lebesgue and

Vitali type theorems of passing to the limit into the set-valued integral defined in [9].

Let S be a nonempty set and A an algebra of subsets of S. Let X be a

Hausdorff locally convex vector space and Q a filtering family of seminorms which

defines the topology of X.

Received by the editors: 19.06.2006.

2000 Mathematics Subject Classification. 28B20, 28C15.

Key words and phrases. set-valued integral, integrable multifunction, multimeasure, Lebesgue type

convergence theorem.
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We consider (x, y) 7→ xy having the following properties for every x, y, z ∈

X, α, β ∈ R, p ∈ Q:

(i) x(yz) = (xy)z,

(ii) xy = yx,

(iii) x(y + z) = xy + xz,

(iv) (αx)(βy) = (αβ)(xy),

(v) p(xy) ≤ p(x)p(y).

1.1. Examples. (a) X={f | f : T→R} where T is a nonempty set and

Q = {pt|t ∈ T}, pt(f) = |f(t)|, ∀f ∈ X.

(b) X = {f | f : T → R is bounded } where T is a topological space. Let

K = {K ⊂ T |K is compact } and Q = {pk|K ∈ K} where pK(f) = sup
t∈K

|f(t)|,∀f ∈ X.

Let Pk(X) = Pk be the family of all nonempty compact subsets of X. If

A,B ∈ Pk and α ∈ R, then:

A + B = {x + y|x ∈ A, y ∈ B}

αA = {αx|x ∈ A}

A ·B = {xy|x ∈ A, y ∈ B}.

For every p ∈ Q, A,B ∈ Pk, let ep(A,B) = sup
x∈A

inf
y∈B

p(x− y) be the p-excess of A over

B and let hp(A,B) = max{ep(A,B), ep(B,A)} be the Hausdorff-Pompeiu semimetric

defined by p on Pk. We define ‖A‖p = hp(A,O), ∀A ∈ Pk, where O = {0}. Then

{hp}p∈Q is a filtering family of semimetrics on Pk which defines a Hausdorff topology

on Pk.

Let X̃ ⊂ Pk be a subset of Pk, satisfying the conditions:

(1̃) X̃ is complete with respect to {hp}p∈Q;

(2̃) O ∈ X̃;

(3̃) A + B,A ·B ∈ X̃, for all A,B ∈ X̃;

(4̃) A · (B + C) = A ·B + A · C, for all A,B, C ∈ X̃.

1.2. Examples.

(a) X̃ = {{x}|x ∈ X} for X like in the examples 1.1-(a), (b).

(b) X̃ = {A ∈ Pk|A ⊂ [0,+∞)} for X = R.
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(c) For X like in the example 1.1-(a), let X̃ = {[f, g] | f, g ∈ X, 0 ≤ f ≤ g},

where [f, g] = {u ∈ X | f ≤ u ≤ g} and [f, f ] = {f}, for every f, g ∈ X.

1.3. Definition. A multifunction ϕ : A → Pk is said to be a multimeasure

if:

(i) ϕ(∅) = O;

(ii) ϕ(A ∪B) = ϕ(A) + ϕ(B), ∀A,B ∈ A, A ∩B = ∅.

1.4. Definition. Let ϕ : A → Pk. For every p ∈ Q, the p - variation of ϕ is

the non - negative (possibly infinite) set function vp(ϕ, ·) defined on A as follows: for

every A ∈ A,

vp(ϕ, A) = sup

{
n∑

i=1

‖ϕ(Ei)‖p

∣∣∣∣(Ei)n
i=1 ⊂ A is a partition of A

}
.

We denote vp(ϕ, ·) by νp if there is no ambiguity.

If ϕ is a multimeasure, then νp is finitely additive, ∀p ∈ Q.

Throughout this paper, ϕ : A → X̃ will be a multimeasure. We shall work

under a weaker condition than that presumed in Croitoru [9], that is: we shall assume

νp(S) < ∞, for every p ∈ Q.

2. Set-valued integral

We recall in this paragraph some basic definitions introduced in [9].

2.1. Definition. A multifunction F : S → X̃ is said to be a simple mul-

tifunction if F =
n∑

i=1

Ci · XAi , where Ci ∈ X̃, Ai ∈ A, i ∈ {1, . . . , n}, Ai ∩ Aj = ∅

(i 6= j),
n⋃

i=1

Ai = S and XAi
is the characteristic function of Ai.

The integral of F over E ∈ A with respect to ϕ is defined to be:∫
E

Fdϕ =
n∑

i=1

Ci · ϕ(Ai ∩ E) ∈ X̃.

2.2. Definition. A multifunction F : S → X̃ is said to be ϕ - totally

measurable if there is a sequence (Fn)n of simple multifunctions Fn : S → X̃ satisfying

the following condition for every p ∈ Q :
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hp(Fn, F ) converges to 0 in νp- measure (in the sense of Dunford-Schwartz

[11]) (denoted hp(Fn, F )
νp−→ 0).

2.3. Remarks. (a) Every simple multifunction is ϕ-totally measurable.

(b) Let F : S → X̃ be a ϕ-totally measurable multifunction and, by the

previous definition, let (Fn)n∈N be the sequence of simple multifunctions Fn : S → X̃

such that, for every p ∈ Q :

hp(Fn, F )
νp−→ 0.

Then, for every n ∈ N, hp(Fn, F ) and ‖F‖p are νp-measurable in the sense of Dunford-

Schwartz [11].

2.4. Definition. Let F : S → X̃ be a ϕ - totally measurable multifunc-

tion. F is said to be ϕ - integrable (over S) if there is a sequence (Fn)n∈N of simple

multifunctions Fn : S → X̃ satisfying the following conditions for every p ∈ Q:

(i) hp(Fn, F )
νp−→ 0,

(ii) lim
n,m→∞

∫
S

hp(Fn, Fm)dνp = 0.

The sequence (Fn)n is said to be a defining sequence for F. For every E ∈ A, we

define the integral of F over E with respect to ϕ by:

∫
E

Fdϕ = lim
n→∞

∫
E

Fndϕ ∈ X̃.

2.5. Remarks. (a) Every simple multifunction is ϕ-integrable.

(b) If X = R, X̃ = {{x}|x ∈ R}, F = {f}(f is a function), ϕ = {µ}(µ is

finitely additive) and F is ϕ - integrable, then
∫

E
Fdϕ = {

∫
E

fdµ}, E ∈ A, where∫
E

fdµ is the Dunford integral [11].

(c) If X = R, X̃ = {{x}|x ∈ R}, F = {f} (f is a function) and F is ϕ - inte-

grable, then f is Brooks - integrable with respect to ϕ and [B]
∫

E
fdϕ =

∫
E

Fdϕ,E ∈

A, where [B]
∫

E
fdϕ is the Brooks integral [5].

(d) If X = R and ϕ = {µ} (µ is finitely additive), then we get the integral

defined by Martellotti - Sambucini [14] for F with respect to µ.

(e) If X is a real Banach algebra, then we obtain the integral defined in [8].
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2.6. Definition. A multifunction F : S → X̃ is said to be strong ϕ -

integrable if there is a sequence (Fn)n of simple multifunctions such that:

(i) hp(Fn, F )
νp−→ 0,

(ii) lim
n,m→∞

∫
S

hp(Fn, Fm)dνp = 0,

 uniformly in p ∈ Q.

The sequence (Fn)n is said to be a strong defining sequence for F .

2.7. Remarks. (i) Every simple multifunction is strong ϕ-integrable.

(ii) If F : S → X̃ is strong ϕ-integrable, then F is ϕ-integrable.

3. Main results

3.1. Theorem. Let F,G : S → X̃ be ϕ-totally measurable multifunctions

and α ∈ R. Then:

(i) hp(F,G) is νp-measurable for every p ∈ Q,

(ii) F + G and αF are ϕ-totally measurable.

Proof. Since F,G are ϕ-totally measurable, there exist (Fn)n, (Gn)n se-

quences of simple multifunctions such that for every p ∈ Q :

hp(Fn, F )
νp−→ 0, hp(Gn, G)

νp−→ 0. (1)

(i) Since |hp(Fn, Gn)−hp(F,G)| ≤ hp(Fn, F )+hp(Gn, G), ∀n ∈ N, from (1)

it follows:

hp(Fn, Gn)
νp−→ hp(F,G).

But hp(Fn, Gn) are simple functions, so hp(F,G) is νp-measurable.

(ii) Since the relations:

hp(Fn + Gn, F + G) ≤ hp(Fn, F ) + hp(Gn, G) and

hp(αFn, αF ) = |α|hp(Fn, F ),

from (1) it follows:

hp(Fn + Gn, F + G)
νp−→ 0 and hp(αFn, αF )

νp−→ 0

which show that F + G and αF are ϕ-totally measurable. �

3.2. Theorem. Let F,G : S → X̃ be ϕ-integrable (strong ϕ-integrable

respectively) and let α ∈ R. Then:
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(i) hp(F,G) is νp-integrable for every p ∈ Q.

(ii) F +G, αF are ϕ-integrable (strong ϕ-integrable respectively) and we have

for every E ∈ A: ∫
E

(F + G)dϕ =
∫

E

Fdϕ +
∫

E

Gdϕ,∫
E

(αF )dϕ = α

∫
E

Fdϕ.

Proof. Suppose F,G are ϕ-integrable. Then there exist (Fn)n, (Gn)n

defining sequences for F,G respectively. From definition 2.4, it follows that

(hp(Fn, Gn))n, (Fn + Gn)n and (αFn)n are defining sequences for hp(F,G), F + G

and αF respectively. Thus the function hp(F,G) is νp-integrable for every p ∈ Q and

the multifunctions F + G and αF are ϕ-integrable.

Moreover, since

hp

(∫
E

(Fn + Gn)dϕ,

∫
E

Fdϕ +
∫

E

Gdϕ

)
≤

≤ hp

(∫
E

Fndϕ,

∫
E

Fdϕ

)
+ hp

(∫
E

Gndϕ,

∫
E

Gdϕ

)
and

hp

(∫
E

(αFn)dϕ, α

∫
E

Fdϕ

)
= |α|hp

(∫
E

Fndϕ,

∫
E

Fdϕ

)
,

it results:∫
E

(F + G)dϕ =
∫

E

Fdϕ +
∫

E

Gdϕ and
∫

E

(αF )dϕ = α

∫
E

Fdϕ, ∀E ∈ A.

The case of strong ϕ-integrability of F and G is proving analogously. �

3.3. Theorem. Let F : S → X̃ be a strong ϕ-integrable multifunction and

let (Fn)n be a strong defining sequence for F . Then we have the following limits

uniformly in p ∈ Q and E ∈ A:

(i) lim
n→∞

∫
E

hp(Fn, F )dνp = 0,

(ii) lim
n→∞

∫
E
‖Fn‖pdνp =

∫
E
‖F‖pdνp.

Proof. (i) First, from definition of Dunford-Schwartz, p.112-[11], it follows

that hp(Fn, F ) is νp-integrable, ∀n ∈ N, p ∈ Q and:

lim
n→∞

∫
S

hp(Fm, Fn)dνp =
∫

S

hp(Fm, F )dνp, ∀m ∈ N. (2)
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From definition 2.6-(ii) we obtain:

∀ε > 0,∃n0 ∈ N such that
∫

S

hp(Fm, Fn)dνp <
ε

2
, ∀m,n ≥ n0, uniformly in p ∈ Q.

(3)

Since (2), we have:

∃n1 ∈ N such that
∣∣∣∣∫

S

hp(Fm, Fn)dνp −
∫

S

hp(F, Fn)dνp

∣∣∣∣ <
ε

2
, ∀m ≥ n1, (4)

uniformly in p ∈ Q. Finally, from (3) and (4), it results:

lim
n→∞

∫
E

hp(Fn, F )dνp = 0, uniformly in p ∈ Q and E ∈ A.

(ii) Since
∣∣‖Fn‖p − ‖F‖p

∣∣ ≤ hp(Fn, F ) and
∣∣‖Fn‖p − ‖Fm‖p

∣∣ ≤ hp(Fn, Fm),

from definition 2.6 it results the following conditions uniformly in p ∈ Q:

‖Fn‖p
νp−→ ‖F‖p and lim

n,m→∞

∫
S

∣∣‖Fn‖p − ‖Fm‖p

∣∣dνp = 0,

which show that ‖F‖p is νp-integrable and lim
n→∞

∫
E
‖Fn‖pdνp =

∫
E
‖F‖pdνp, uni-

formly in p ∈ Q and E ∈ A. �

3.4. Theorem (Vitali). Suppose there exists α > 0 such that νp(S) < α

for every p ∈ Q. Let F : S → X̃ be a multifunction and let Fn : S → X̃ be a sequence

of strong ϕ-integrable multifunctions satisfying the following conditions uniformly in

p ∈ Q :

(i) hp(Fn, F )
νp−→ 0,

(ii) ∀ε > 0,∃δ(ε) = δ > 0 s.t.
∫

E
‖Fn‖pdνp < ε for every E ∈ A with

νp(E)<δ, ∀n ∈ N. Then F is strong ϕ-integrable and
∫

E
Fdϕ = lim

n→∞

∫
E

Fndϕ,∀E ∈

A.

Proof. Since (i),

lim
n,m→∞

νp({s ∈ S|hp(Fn(s), Fm(s)) > ε}) = 0, ∀ε > 0.

If we denote Anm(ε) = Anm = {s ∈ S|hp(Fn(s), Fm(s)) > ε},∀n, m ∈ N, then from

theorem 3.10 - [9], it follows:∫
E

hp(Fn, Fm)dνp ≤
∫

Anm

‖Fn‖pdνp +
∫

Anm

‖Fm‖dνp + ενp(S). (5)
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Since (i) and (ii), there exists n0 ∈ N such that νp(Anm) < δ,
∫

Anm
‖Fn‖pdνp < ε

and
∫

Anm
‖Fm‖pdνp < ε for every n, m ≥ n0. Thus from (5) and theorem 3.9 - [9], it

results:

hp

(∫
E

Fndϕ,

∫
E

Fmdϕ

)
< (2 + νp(S))ε, ∀n, m ≥ n0, E ∈ A, p ∈ Q,

which shows that the sequence (
∫

E
Fndϕ)n is Cauchy in X̃ and consequently, con-

verges in X̃. Now, we follow the proof of Vitali theorem 3.17 - [9]. So, let (Gn
k )k∈N

be a strong defining sequence for Fn and let Hp
n,k = {s ∈ S|hp(Gn

k (s), Fn(s)) > 1
2n }.

Then,for every n ∈ N, there is k(n) ∈ N such that νp(H
p
n,k) < 1

2n and∫
S

hp(Gn
k , Fn)dνp <

1
2n

, ∀k ≥ k(n), uniformly in p ∈ Q. (6)

If we denote Gn = Gn
k(n)

for every n ∈ N, then we obtain:

hp(Gn, Fn)
νp−→ 0. (7)

From (7) and (i), it results that hp(Gn, F ) is νp-measurable and hp(Gn, F )
νp−→ 0,

uniformly in p ∈ Q. Like in the beginning of the proof, it follows:∫
E

hp(Fn, Fm)dνp < (2 + α)ε, ∀n, m ≥ n0, E ∈ A, p ∈ Q. (8)

Since (6), it results: ∫
S

hp(Gn, Gm)dνp <
1
2n

+ (2 + α)ε +
1

2m
, (9)

for all sufficiently large n, m and for every p ∈ Q. Consequently, we have

lim
n,m→∞

∫
S

hp(Gn, Gm)dνp = 0. So, F is ϕ-integrable and∫
E

Fdϕ = lim
n→∞

∫
E

Gndϕ, ∀E ∈ A. (10)

According to theorem 3.9 - [9] and (6), we obtain:

lim
n→∞

hp

(∫
E

Gndϕ,

∫
E

Fndϕ

)
= 0, ∀p ∈ Q,E ∈ A. (11)

From (10) and (11) it results now that
∫

E
Fdϕ = lim

n→∞

∫
E

Fndϕ,∀E ∈ A.

Since (i) and (9), it follows that (Gn)n is a strong defining sequence for F

and from theorem 3.3-(i), it results that the limit of (10) is uniform. �
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3.5. Theorem (Lebesgue). Let F : S → X̃ be a multifunction such that

‖F‖p is νp-integrable for every p ∈ Q. Suppose there exists a sequence (Fn)n∈N of

ϕ-integrable multifunctions having the following properties:

hp(Fn, F )
νp−→ 0, ∀p ∈ Q, (i)

(ii) there exists α > 0, such that ‖Fn(s)‖p ≤ α, ∀s ∈ S, p ∈ Q, n ∈ N.

Then F is ϕ-integrable and
∫

E

Fdϕ = lim
n→∞

∫
E

Fndϕ, ∀E ∈ A.

Proof. Since Fn is ϕ-integrable for every n ∈ N, there exists (Gn
k )k∈N a

defining sequence for Fn. Let Hn
k (p) = Hn

k = {s ∈ S | hp(Gn
k (s), Fn(s)) > 1

2n }. Then

for every n ∈ N, since proposition 3.7-b) of [9], there exists k(n) ∈ N such that:

νp(Hn
k ) <

1
2n

and
∫

S

hp(Gn
k , Fn)dνp ≤

1
2n

, ∀k ≥ k(n). (12)

Let Gn = Gn
k(n)

, ∀n ∈ N. Then we have

hp(Gn, Fn)
νp−→ 0. (13)

Since hp(Gn, F ) ≤ hp(Gn, Fn) + hp(Fn, F ), ∀n ∈ N, from (13) and (i) we obtain:

hp(Gn, F )
νp−→ 0. (14)

By the definition 2.2, F is ϕ-totally measurable. Since theorem 3.1,it results hp(Gn, F )

is νp-measurable, ∀n ∈ N. Since Fn is ϕ-integrable and F is ϕ-totally measurable, from

theorem 3.1-(i) it follows that hp(Fn, F ) is νp-measurable. Now we have:

hp(Fn, F ) ≤ ‖Fn‖p + ‖F‖p, ∀n ∈ N. (15)

From proposition 3.7-a) of [9], it results ‖Fn‖p is νp-integrable and from hypothesis

we have ‖F‖p is νp-integrable. But hp(Fn, F ) is νp-measurable so, from (15) it follows

that hp(Fn, F ) is νp-integrable, ∀n ∈ N. For every k ∈ N∗, let

Ak(p, n) =
{

s ∈ S | hp(Fn(s), F (s)) >
1

k · νp(S)

}
.

Since (i), for ε = 1
k , there exists nk > k such that νp(Ak(p, n)) > 1

k , ∀n ≥ nk.

Particularly,

νp(Ak(p, nk)) <
1
k

, ∀k ∈ N∗. (16)
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Let us denote Ak(p, nk) = Bk and let ε > 0. Denoting Γ(E) =
∫

E

‖F‖pdνp, ∀E ∈ A,

since Γ � νp, there is δ(p, ε) = δ > 0, such that∫
E

‖F‖pdνp < ε, ∀E ∈ A with νp(E) < δ. (17)

Then, for every k ∈ N∗ with 1
k < min{δ, ε}, from (ii), (16) and (17) we have:∫

S

hp(Fk, F )dνp =
∫

Bk

hp(Fk, F )dνp +
∫

cBk

hp(Fk, F )dνp <

<

∫
Bk

‖Fk‖pdνp +
∫

Bk

‖F‖pdνp +
1
k

<

< ανp(Bk) + 2ε <
α

k
+ 2ε < (α + 2)ε,

that is

lim
k→∞

∫
S

hp(Fk, F )dνp = 0. (18)

Since the inequality:∫
S

hp(Fn, Fm)dνp ≤
∫

S

hp(Fn, F )dνp +
∫

S

hp(F, Fm)dνp

and from (18) it follows

lim
n,m→∞

∫
S

hp(Fn, Fm)dνp = 0. (19)

For all sufficiently large n and m, since (12) and (19) we have:∫
S

hp(Gn, Gm)dνp ≤
∫

S

hp(Gn, Fn)dνp +
∫

S

hp(Fn, Fm)dνp+

+
∫

S

hp(Fm, Gm)dνp <
1
2n

+ ε +
1

2m
, that is

lim
n,m→∞

∫
S

hp(Gn, Gm)dνp = 0. (20)

Finally, from (14) and (20), it results that F is ϕ-integrable.

Now, since theorem 3.9 - [9], we have:

hp

(∫
E

Fndϕ,

∫
E

Fdϕ

)
≤

∫
E

hp(Fn, F )dνp ≤

≤
∫

S

hp(Fn, F )dνp, ∀E ∈ A, n ∈ N

and from (18) it follows that
∫

E
Fdϕ = lim

n→∞

∫
E

Fndϕ, ∀E ∈ A.�
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3.6. Theorem (Lebesgue). Let F : S → X̃ be a ϕ-totally measurable

multifunction such that ‖F‖p is νp-integrable for every p ∈ Q. Suppose there exists a

sequence (Gn)n of simple multifunctions satisfying the conditions:

(i) hp(Gn, F )
νp−→ 0,∀p ∈ Q,

(ii) there is α > 0 such that ‖Gn(s)‖p ≤ α, ∀s ∈ S, p ∈ Q, n ∈ N.

Then F is ϕ-integrable.

Proof. Since ‖F‖p is νp-integrable, from the inequality hp(Gn, F ) ≤ ‖Gn‖p+

‖F‖p, it follows that hp(Gn, F ) is νp-integrable for every p ∈ Q,n ∈ N. For every

k ∈ N∗, let

Ak(p, n) =
{

s ∈ S|hp(Gn(s), F (s)) >
1

kνp(S)

}
.

For now on, acting like in the proof of the previous theorem 3.5, we obtain:

lim
k→∞

∫
S

hp(Gk, F )dνp = 0. (21)

Since the inequality:∫
S

hp(Gn, Gm)dνp ≤
∫

S

hp(Gn, F )dνp +
∫

S

hp(Gm, F )dνp

and from (21), it follows:

lim
n,m→∞

∫
S

hp(Gn, Gm)dνp = 0. (22)

Finally, from (i) and (22), it results that F is ϕ-integrable.
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RESTRICTION TO SUBGROUPS AND SEPARABILITY

ANDREI MARCUS
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Abstract. Let G be a group, R =
⊕

g∈G Rg a strongly G-graded ring,

and let H be a subgroup of G. In this note we prove that the functors

(IndG
H , ResH

G ) form a Frobenius pair if and only if [G; H] ≤ ∞, and that

ResH
G : RH -Mod→ R-Mod is a separable functor if and only if [G; H] ≤ ∞

and the trace map TrG
H : Z(R1)

H → Z(R1)
G is surjective.

1. Introduction and preliminaries

1.1. Let F : A → B be a covariant functor, and G : B → A a right adjoint of F . Recall

that F is separable if the unit η : 1C → G ◦ F of the adjunction splits. Similarly, G is

separable if the counit ε : 1D → F ◦ G of the adjunction cosplits.

The functors F and G are said to form a Frobenius pair if G is also a left

adjoint of F . Frobenius and separability properties have attracted the interest of

many authors, and an excellent account of the subject is given in [1].

1.2. In this note we consider a group G, a strongly G-graded ring R =
⊕

g∈G Rg,

and a subgroup H of G. Denote by R-Mod the category of left R-modules. We are

concerned with the ring extension RH → R. It is easy to see that the induction

functor

IndG
H = R⊗RH

− : R-Mod → RH -Mod

Received by the editors: 13.03.2007.
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is separable, therefore we investigate the separability of its right adjoint

ResG
H : RH -Mod → R-Mod.

This is related to [1, Section 3.2] and [1, Section 3.2], but we give here a direct proof

of a separability criterion for ResG
H in terms of the action of G on the center Z(R1)

of R1, which generalize [4, Proposition 2.1] and [2, Proposition 1.5].

More precisely, we prove in Section 2 that (IndG
H ,ResG

H) is a Frobenius pair

if and only if the index of H in G is finite, and the functor ResG
H is separable if and

only if [G : H] < ∞ and the trace map

TrG
H : Z(R1)H → Z(R1)G

is surjective.

We recall some well-known facts about the ungraded case.

1.3. Let ι : S → R be a ring homomorphism, and let µ : R ⊗S R → R be the mul-

tiplication. Then the restriction of scalars induced by ι is a separable functor if and

only if the ring extension R/S is separable, that is, there is an (R,R)-bimodule map

ζ : R → R⊗S R

such that ζ◦µ = idR. Clearly, the existence of an (R,R)-bimodule map ζ : R → R⊗SR

is equivalent to the existence of an element

x =
∑

x(1) ⊗ x(2) ∈ R⊗S R

such that rx = xr for all r ∈ R, and then ζ splits µ if and only if
∑

x(1)x(2) = 1.

1.4. The restriction of scalars induced by ι and the extension of scalars

R⊗S − : S-Mod → R-Mod

form a Frobenius pair if and only if there is an (S, S)-bimodule map

ν : R → S

and an (R,R)-bimodule map

ζ : R → R⊗S R
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such that the diagram

R⊗S R

ν⊗id

yyssssssssss
id⊗ν

%%KKKKKKKKKK

S ⊗S R

'
%%KKKKKKKKKKK

R⊗S S

'
yysssssssssss

R

is commutative, that is,∑
ν(x(1))x(2) =

∑
x(1)ν(x(2)) = 1.

2. Strongly graded rings and restriction to subgroups

Let G be a group and let R =
⊕

g∈G Rg be a strongly G-graded ring.

2.1. There is an action of G on Z(R1) defined as follows.

For each g ∈ G, we have that RgRg−1 = R1, so there are elements rg,i ∈ Rg

and r′g,i ∈ Rg−1 such that
∑

i rg,ir
′
g,i = 1. By definition, for each c ∈ Z(R1), we have

gc =
∑

i

rg,icr
′
g,i = 1.

This definition does not depend on the choices we have made, and (g, c) 7→ gc is indeed

a (left) action of G on Z(R1). Note also that the element gc ∈ Z(R1) is uniquely

defined by the property

rgc = gcrg

for each rg ∈ Rg.

If [G : H] is finite, we may define the trace map

TrG
H : Z(R1)H → Z(R1)G, a 7→

∑
g∈[G/H]

ga,

where [G/H] denotes a full set of representatives for the left cosets of H in G. The

image of TrG
H is an ideal of Z(R1)G, so TrG

H is surjective if and only if there is

a ∈ Z(R1)H such that TrG
H(a) = 1.
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We may state the main result of this note. We use the notation introduced

in 1.2.

Theorem 2.2. 1) The functors IndG
H and ResG

H form a Frobenius pair if and only if

[G : H] < ∞.

2) The functor ResG
H is separable if and only if [G : H] < ∞ and trace map

TrG
H : Z(R1)H → Z(R1)G is surjective.

Proof. Assume that [G : H] is finite. Then it is well-known (see for instance [3, 3.1] for

details) that IndG
H is both a left and a right adjoint of ResG

H . In fact, let us define an

(RH , RH)-bimodule map ν : R → RH and an (R,R)-bimodule map ζ : R → R⊗RH
R

such that 1.4 holds. First, let

ν : R → RH ,
∑
g∈G

rg 7→
∑
g∈H

rg

be the projection onto RH , which is obviously (RH , RH)-linear. Next, let c ∈ Z(R1)H ,

and let

ζc : R → R⊗RH
R, r 7→ r

∑
σ∈G/H

∑
i

rσ,ic⊗ r′σ,i = rζc(1),

where we choose g ∈ σ and then rσ,i := rg,i and r′σ,i := r′g,i. Observe that ζc(1) does

not depend on the choices made in 2.1. Indeed, let sg,j ∈ Rg and s′g,j ∈ Rg−1 such

that ∑
j

sg,js
′
g,j = 1.

Choose another full set of representatives for the left cosets of H in G, and define

sσ,j and s′σ,j by the above convention, so in particular, r′σ,isσ,j ∈ RH . Then, since

c ∈ Z(RH), we have∑
σ∈G/H

∑
j

sσ,jc⊗ s′σ,j =
∑

σ∈G/H

∑
j

∑
i

rσ,ir
′
σ,isσ,jc⊗ s′σ,j

=
∑

σ∈G/H

∑
j

∑
i

rσ,ic⊗ r′σ,isσ,js
′
σ,j

=
∑

σ∈G/H

∑
i

rσ,ic⊗ r′σ,i.
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Now let h ∈ G and rh ∈ Rh. Then

rhζc(1) =
∑

g∈[G/H]

∑
i

rhrg,ic⊗ r′g,i

=
∑

g∈[G/H]

∑
i

∑
j

shg,js
′
hg,jrhrg,ic⊗ r′g,i

=
∑

g∈[G/H]

∑
i

∑
j

shg,j ⊗ s′hg,jrhrg,icr
′
g,i

=
∑

g∈[G/H]

∑
j

shg,jc⊗ s′hg,jrh = ζc(1)rh.

It follows that ζc is an (R,R)-bimodule map. It is easy to see that

((ν ⊗ id) ◦ ζc)(1) = ((id⊗ ν) ◦ ζc)(1) = c,

hence 1.4 holdy by taking c = 1. Moreover, (µ◦ζc)(r) = r TrG
H(c), hence by 1.3, ResG

H

is a separable functor if there is c ∈ Z(RH)H such that TrG
H(c) = 1.

To prove the converses, assume that ζ : R → R⊗RH
R is an (R,R)-bimodule

map, and let ζ(1) =
∑

x(1) ⊗ x(2) ∈ R ⊗RH
R. If (IndG

H ,ResG
H) is a Frobenius pair,

there is an (RH , RH)-bimodule map ν : R → RH such that for all r ∈ RH

r = ν(rx(1))x(2) = x(1)ν(x(2)r).

It follows that the family {x(2), ν((−)x(1))} is a dual basis for R as a left RH -module,

hence in particular, R is a finitely generated left RH -module. Since R is strongly

graded, it follows that [G : H] is finite.

We have that R =
⊕

g∈[G/H] RgH as (R1, RH)-bimodules. We denote by α

the isomorphism

R → R⊗RH
R '

⊕
g∈[G/H]

RgH ⊗RH
R

'
⊕

g∈[G/H]

Rg ⊗R1 R

'
⊕

g∈[G/H]

⊕
h∈G

Rg ⊗Rh
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of (R1, R1)-bimodules. Denote also ζ ′ := α ◦ ζ and µ′ := µ ◦ α−1. Then ζ ′(1) is a

finite sum of monomials of the form ag ⊗ bh, where g ∈ [G/H], h ∈ G, ag ∈ Rg and

bh ∈ Rh.

Assume that ResG
H is separable, so µ′(ζ ′(1) = 1 ∈ R1. By looking at the

homogeneous components, we deduce that ζ ′(1) is of the form

ζ ′(1) =
∑

g∈[G/H]

∑′
ag ⊗ b−1

g .

Denote cg,g−1 = µ′(
∑′

ag⊗b−1
g ) ∈ R1, so we have that

∑
g∈[G/H] cg,g−1 = 1. We claim

that cg,g−1 = gc1,1 for all g ∈ [G/H]. Indeed, we know that rgζ
′(1) = ζ ′(1)rg for all

g ∈ G and rg ∈ Rg. By taking homogeneous components, we deduce

∑′
rga1 ⊗ b1 =

∑′
ag ⊗ bg−1rg.

By applying µ, we get rgc1,1 = cg,g−1rg, so by 2.1, the claim is proved. It follows that

∑
g∈[G/H]

gc1,1 =
∑

g∈[G/H]

cg,g−1 = 1.

This also implies that [G : H] is finite, since otherwise there would exist g ∈ [G/H]

such that cg,g−1 = 0; then c1,1 = g−1
cg,g−1 = 0, which is a contradiction.

Finally, it remains to show that we may take c1,1 ∈ Z(R1)H , that is rhc1,1 =

c1,1rh for all h ∈ H and rh ∈ Rh. Indeed, the representation of ζ ′(1) can be chosen

such that 1 ∈ [G/H] and
∑′

a1 ⊗ b1 = 1 ⊗ b1, and then c1,1 = b1. The claim follows

from the fact that rhζ ′(1) = ζ ′(1)rh for all h ∈ H and rh ∈ Rh.

Remark 2.3. Assume that [G : H] is finite and let M,M ′ ∈ R-Mod. Then we have

a trace map

TrG
H : HomRH

(M,M ′) → HomR(M,M ′), TrG
H(f)(m) =

∑
g∈[G/H]

∑
i

rg,if(r′g,im).

If moreover c ∈ Z(R1)H satisfies TrG
H(c) = 1, then for any f ∈ HomR(M,M ′), we

have that TrG
H(cf) = f .
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Abstract. We will determine the complete hypergroupoids, semihyper-

groups or hypergroups determined by binary relations (more exacly, by

monounary multialgebras) an we will study some closure properties of

their classes with respect to the products of some categories where they

are contained.

1. Introduction

On the basis of [1, 7], in [4, 5] C. Pelea and I. Purdea started an investiga-

tion on some constructions of hypergroupoids associated to binary relations. This

paper continues the investigation of C. Pelea and I. Purdea from the point of view

of the completeness of the multialgebras involved in this discussion, which is another

problem studied by Pelea and Purdea (for general multialgebras) in [3]. So, we will

give a characterization for the complete hypergroupoids, complete semihypergroups

and complete hypergroups associated to monounary multialgebras (hence with binary

relations). Even if the subcategory of the hypergroupoids determined by monounary

multialgebras is not closed under direct product (i.e. under the product from the cat-

egory of hypergroupoids) the completeness condition seems to fix this problem. This

is not surprising since we will see that the completeness condition on a hypergroupoid

determined by a monounary multialgebra is very restrictive. We will see that the
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complete hypergroupoids determined by monounary multialgebras coincide with the

complete semihypergroups determined by monounary multialgebras, so, we deal most

of the time with semihypergroups determined by monounary multialgebras. We will

also be able to adapt the results we obtain to hypergroups determined by monounary

multialgebras. We mention that the categorical notions are not complicated and they

can be found in [6].

2. Preliminaries

Let H be a set and let R be a binary relation on H. Denote the inverse of

the relation R by
−1

R . For x1, . . . , xn ∈ H, X ⊆ H we denote

R(X) = {y ∈ H | ∃x ∈ X : xRy} and R(x1, . . . , xn) = R({x1, . . . , xn}).

As in [7], one can associate to R the partial hypergroupoid HR = (H, ◦) defined by

x ◦ y = R(x, y).

It is obvious that x2 = x ◦ x = R(x) = {y ∈ H | xRy} and

(1) x ◦ y = x2 ∪ y2, ∀x, y ∈ H.

Lemma 1. [7, Lemma 1] Let H be a set and let R be a binary relation on H. The

partial hypergroupoid HR = (H, ◦) is a hypergroupoid if and only if
−1

R (H) = H.

An element x ∈ H is an outer element of (the relation) R if there exists h ∈ H

such that (h, x) /∈ R2.

Proposition 1. [7, Proposition 2] If H be a set and R is a binary relation on H with
−1

R (H) = H then HR is a semihypergroup if and only if R ⊆ R2 and

(a, x) ∈ R2 ⇒ (a, x) ∈ R

whenever x is an outer element of R.

Proposition 2. [7] Let H 6= ∅ and let R be a binary relation on H. The hypergroupoid

HR is a hypergroup if and only if the following conditions hold:

1)
−1

R (H) = H;
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2) R(H) = H;

3) R ⊆ R2;

4) whenever x is an outer element of R we have

(a, x) ∈ R2 ⇒ (a, x) ∈ R.

Let (H,R), (H ′, R′) be relational systems with binary relations and h : H →

H ′. One says that h is a homomorphism of relational systems if

xRy ⇒ h(x)R′h(y).

Let (H, ◦), (H ′, ◦′) be hypergroupoids. A mapping h : H → H ′ is called homomor-

phism (of hypergroupoids) if

h(x ◦ y) ⊆ h(x) ◦′ h(y), ∀x, y ∈ H.

Remark 1. If R is a binary relation on H with
−1

R (H) = H, we can see (H,R) as the

multialgebra (H, f) with one unary multioperation f : H → P ∗(H) defined by

(2) xRy ⇔ y ∈ f(x).

An element x ∈ H is outer element (of (H, f)) if there exists h ∈ H such that

x /∈ f(f(h)). An element x ∈ H is an inner element if it is not an outer element.

Remark 2. If (H ′, R′) is also a relational system for which
−1

R′(H ′) = H ′ and (H ′, f ′)

is the corresponding monounary multialgebra then h is a relational homomorphism

between (H,R) and (H ′, R′) if and only if h is a homomorphism between the multialge-

bras (H, f) and (H ′, f ′). If R2 denotes the category of the relational systems with one

binary relation (having as morphisms the homomorphisms of relational systems and

as product the usual composition of homomorphisms) and R′
2 its (full) subcategory

consisting in the relational systems (H,R) for which
−1

R (H) = H. The identification

we made in the previous remark gives a categorical isomorphism between R′
2 and

the category Malg(1) of the monounary multialgebras (i.e. the multialgebras of type

(1)), where the morphisms are the multialgebra homomorphisms and the product of

two morphisms is the usual composition of homomorphisms.
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The hypergroupoids (or semihypergroups, or hypergroups) associated to bi-

nary relations can be seen as hypergroupoids (or semihypergroups, or hypergroups)

associated to monounary multialgebras (H, f) using the translation of (1) in the terms

of the unary multioperation f . Thus we have

f(X) =
⋃

x∈X

f(x) and x ◦ y = f({x, y}) = f(x) ∪ f(y)(= x2 ∪ y2)

for any X ⊆ H, X 6= ∅, x, y ∈ H and Lema 1 can be rewritten as below:

Lemma 2. For any multialgebra (H, f) with one unary multioperation, the equality

x ◦ y = f({x, y})

defines a hypergroupoid Hf = (H, ◦).

Propositions 1 and 2 can be restated as follows:

Proposition 3. Let (H, f) be a multialgebra with one unary multioperation. The

hypergroupoid Hf is a semihypergroup if and only if

f(x) ⊆ f(f(x)), ∀x ∈ H

and for any outer element x ∈ H,

x ∈ f(f(a)) ⇒ x ∈ f(a).

Proposition 4. Let H 6= ∅ and let (H, f) be a multialgebra with one unary multiop-

eration. The hypergroupoid Hf is a hypergroup if and only if the following conditions

hold:

i) f(H) = H;

ii) f(x) ⊆ f(f(x)), ∀x ∈ H;

iii) whenever x is an outer element we have

x ∈ f(f(a)) ⇒ x ∈ f(a).

In [7, Proposition 3], Rosenberg determines the semihypergroups which can

be obtained from a binary relations using (1). We restated the result of Rosenberg as

follows:
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Proposition 5. Let (H, ∗) be a hypergroupoid. There exists a binary relation R on H

such that (H, ∗) = HR if and only if (1) holds. A hypergroupoid (H, ∗) which satisfies

the condition (1) is a semihypergroup if and only if it verifies the conditions:

(3) x2 ⊆ (x2)2 and (x2)2 ∩ (H \ (y2)2) ⊆ x2, ∀x, y ∈ H.

A hypergroupoid (H, ∗) which satisfies the conditions (1) and (3) is a hypergroup if

and only if
⋃

x∈H x2 = H.

The binary relation R ⊆ H ×H from Rosenberg’s proof is defined by

xRy ⇔ y ∈ x ∗ x,

−1

R (H) = H and the corresponding unary multioperation is

f∗ : H → P ∗(H), f∗(x) = x ∗ x.

Remark 3. The conditions (3) are the (equivalent) translation of the conditions 3)

and 4) from Proposition 2 in the terms of the hyperoperation ∗. So, a hypergroupoid

(or semihypergroup, or hypergroup) (H, ∗) is determined by a unary multioperation

f on H if and only if (H, ∗) satisfies the condition (1).

In the category Malg(2) of hypergroupoids – the morphisms are the hyper-

groupoid homomorphisms and the product of two morphisms is the usual composi-

tion of homomorphisms – we consider the following subcatgories: the subcategory

Malg′(2) of the hypergroupoids satisfying (1), the subcategory SHG′ whose objects

are the semihypergroups which satisfy (1) and the subcategory HG′ whose objects

are the hypergroups which satisfy (1). We also denote by Malg′(1) the full subcate-

gory of Malg(1) whose objects are the monounary multialgebras (H, f) which satisfy

the conditions ii),iii) from Proposition 4 and by Malg′′(1) the full subcategory of

Malg(1) whose objects are the monounary multialgebras (H, f), with H 6= ∅, which

satisfy the conditions i), ii), iii) from Proposition 4.

Remark 4. [4, Corollaries 3, 4] The correspondences

(H, f) 7→ Hf , h 7→ h
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define three covariant functors

F : Malg(1) → Malg′(2), F ′ : Malg′(1) → SHG′, and F ′′ : Malg′′(1) → HG′.

These functors are isomorphisms of categories and their inverses are the functors

G : Malg′(2) → Malg(1), G′ : SHG′ → Malg′(1), and G′′ : HG′ → Malg′′(1),

respectively, given by

(H, ∗) 7→ (H, f∗), h 7→ h.

3. Complete semihypergroups associated to monounary multialgebras

In this section we will determine those monounary multialgebras which de-

termine complete semihypergroups and complete hypergroups.

First, remember that a multialgebra A = (A, (fγ)γ<o(τ)) of type τ is complete

if for any m,n ∈ N, any

q ∈ P (m)(τ) \ {xi | i ∈ {0, . . . ,m− 1}}, r ∈ P (n)(τ) \ {xi | i ∈ {0, . . . , n− 1}},

and any a0, . . . , am−1, b0, . . . , bn−1 ∈ A,

(4) q(a0, . . . , am−1) ∩ r(b0, . . . , bn−1) 6= ∅ ⇒ q(a0, . . . , am−1) = r(b0, . . . , bn−1).

Remark 5. For a monounary multialgebra (H, f), the images of the term functions

involved in (4) are the nonempty subsets

fn(x) = f(f(. . . (f︸ ︷︷ ︸
n

(x)) . . .)),

with n ∈ N∗ and x ∈ H, hence the monounary multialgebra (H, f) is complete if and

only if for any m,n ∈ N, and any x, y ∈ H,

fm(x) ∩ fn(y) 6= ∅ ⇒ fm(x) = fn(y).

Lemma 3. Let (H, ◦) be a semihypergroup which satisfy (1). The semihypergroup

(H, ◦) is complete only if the multialgebra (H, f◦) satisfies the identity

(5) f(f(x)) = f(x)
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(f denotes the symbol of the multioperation corresponding to the monounary multial-

gebra type).

Proof. According to Proposition 5, in the semihypergroup (H, ◦) = Hf◦ we have

x2 ⊆ (x2)2, ∀x ∈ H,

and the completeness of (H, ◦) leads us to the equalities

x2 = (x2)2, ∀x ∈ H.

Let us remember that x2 = f◦(x) and

(x2)2 = (x ◦ x) ◦ (x ◦ x) =
⋃
{y ◦ z | y, z ∈ x ◦ x} =

⋃
{y2 ∪ z2 | y, z ∈ f◦(x)}

=
⋃
{y2 | y ∈ f◦(x)} =

⋃
{f◦(y) | y ∈ f◦(x)} = f◦(f◦(x)).

Thus we have

f◦(f◦(x)) = f◦(x), ∀x ∈ H,

hence the identity (5) is satisfied on the multialgebra (H, f◦).

Remark 6. From Remark 5 one deduce easily that a monounary multialgebra (H, f)

satisfying (5) is complete if and only if {f(x) | x ∈ H} is a partition of f(H). In the

terms of binary relations, if R is the binary relation from (2), this happens when the

restriction of R to R(H) is an equivalence relation on R(H).

The condition that the monounary multialgebra (H, f) satisfies the identity

(5) is stronger than the conditions from Proposition 3, but it is not sufficient for

obtaining a complete semihypergroup Hf .

Example 1. Let H = {1, 2, 3} and f : H → P ∗(H), f(x) = x. Clearly, (H, f) satisfies

(5). Yet, the corresponding hypergroupoid Hf = (H, ◦) is a hypergroup which is not

complete since

1 ◦ 2 = {1, 2} 6= {2, 3} = 2 ◦ 3, even if (1 ◦ 2) ∩ (2 ◦ 3) = {2} 6= ∅.

Lemma 4. Let (H, ◦) be a hypergroupoid determined by a monounary multialgebra

(H, f). If the hypergroupoid (H, ◦) is complete then:
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a) x ◦ x = x ◦ y, ∀x, y ∈ H;

b) f(x) = f(H), ∀x ∈ H;

c) (H, f) is a complete multialgebra;

d) (H, ◦) is a commutative (complete) semihypergroup.

Proof. a) Since (H, ◦) is a complete hypergroupoid and

(x ◦ x) ∩ (x ◦ y) = f(x) ∩ (f(x) ∪ f(y)) = f(x) 6= ∅,

for all x, y ∈ H, we have

x ◦ x = x ◦ y, ∀x, y ∈ H.

b) From a) follows that f(x) = f({x, y}) for all x, y ∈ H, thus for each x ∈ H,

f(x) =
⋃

y∈H

f({x, y}) = f

⋃
y∈H

{x, y}

 = f(H).

c) We apply Remark 5 and from b) follows that

fn(x) = f(H), ∀n ∈ N∗, ∀x ∈ H.

d) It is clear that any hypergroupoid determined by a monounary multialgebra is

commutative. For any x, y, z ∈ H, using b) we have

(x ◦ y) ◦ z = f({x, y}) ◦ z = f(H) ◦ z = f(H).

Analogously, x ◦ (y ◦ z) = f(H).

Lemma 5. Any commutative hypergroupoid (H, ◦) which satisfies the identity

(6) x ◦ x = x ◦ y

is a complete semihypergroup determined by a monounary multialgebra.

Proof. If a commutative hypergroupoid (H, ◦) satisfies the identity (6) then

x ◦ y = x ◦ x = y ◦ y = x2 ∪ y2, ∀x, y ∈ H,

so (H, ◦) satisfies (1). This means that (H, ◦) is determined by (H, f), where

f : H → P ∗(H), f(x) = x ◦ x.
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Under these circumstances, (6) leads us, as in the proof of the previous lemma, to

x ◦ y = f({x, y}) = f(x) = f(H), ∀x, y ∈ H

and to the fact that the hypergroupoid (H, ◦) is a semihypergroup. The completeness

of this semihypergroup follows from the form of its hyperproducts: it is easy to prove

by induction on n ∈ N∗, n ≥ 2 that

x1 ◦ · · · ◦ xn = f(H),

for any x1, . . . , xn ∈ H.

Theorem 1. Let (H, ◦) be a hypergroupoid determined by a monounary multialgebra

(H, f). The following conditions are equivalent:

1) (H, ◦) is a complete hypergroupoid;

2) (H, ◦) satisfies the identity (6);

3) f(x) = f(H), ∀x ∈ H;

4) (H, ◦) is a complete semihypergroup.

Proof. 1) ⇒ 2) ⇒ 3) follows as in the proof of Lemma 4.

3) ⇒ 4) follows as in the final part of the proof of Lemma 5.

4) ⇒ 1) is obvious.

Corollary 1. A hypergroupoid (H, ◦) determined by a nonempty monounary multi-

algebra (H, f) is a complete hypergroup if and only if

f(x) = H, ∀x ∈ H

and this happens exactly when the (H, ◦) is the total hypergroup on H.

Indeed, if (H, ◦) is a hypergroup then f(H) = H, hence its completeness

implies f(x) = f(H) = H for each x ∈ H. Conversely, if f(x) = H for each x ∈ H

then f(H) = H, thus (H, ◦) is a complete semihypergroup which is a hypergroup.

The hyperproduct of this hypergroup is defined by

x ◦ y = f({x, y}) = f(H) = H, ∀x, y ∈ H
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(i.e. (H, ◦) is the total hypergroup on H).

Remark 7. The condition on (H, f) to be complete is not equivalent with the con-

ditions from the Theorem 1. For instance, the monounary multialgebra (H, f) from

Example 1 is complete and determines a (semi)hypergroup which is not complete

since (H, f) does not satisfy the condition 3) from Theorem 1.

The following corollary is the translation of the above results in the terms of

binary relations.

Corollary 2. Let HR = (H, ◦) be the hypergroupoid determined by the binary relation

R. Then HR is a complete semihypergroup if and only if

R(x) = R(H), ∀x ∈ H.

If H 6= ∅ then HR is a complete hypergroup if and only if

R(x) = H, ∀x ∈ H.

4. Products of complete semihypergroups associated to monounary mul-

tialgebras

Let ((Hi, fi) | i ∈ I) be a family of monounary multialgebras. The direct

product of the multialgebras (Hi, fi) is the multialgebra
(∏

i∈I Hi, f
)

with

f((xi)i∈I) =
∏
i∈I

fi(xi).

This multialgebra, with the projections eI
i :
∏

j∈I Hj → Hi, eI
i ((xj)j∈I) = xi (i ∈ I)

is the product of the multialgebras (Hi, fi) in the category Malg(1).

Proposition 6. [2, Proposition 4] If n ∈ N, q, r ∈ P(n)(τ), and (Ai | i ∈ I) is a

family of multialgebras of type τ such that q = r is satisfied on each multialgebra Ai

then q = r is also satisfied on the multialgebra
∏

i∈I Ai.

Corollary 3. If ((Hi, fi) | i ∈ I) is a family of monounary multialgebras satisfying

the identity (5) then the direct product
(∏

i∈I Hi, f
)

also satisfies (5).

Remark 8. [5, Remark 9] If K ′
2 is the subclass of Malg(1) which consists in multialge-

bras which satisfies (5) then K ′
2 is a subclass of Malg′(1) closed under the formation
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of the direct products. The subclass K ′′
2 of Malg(1) which consists in nonempty mul-

tialgebras (H, f) which satisfy (5) and f(H) = H is a subclass of Malg′′(1) closed

under the formation of the direct products.

Theorem 2. The monounary multialgebras which determine complete hypergroupoids

form a subclass of K ′
2 closed under the formation of direct products. Also, the mo-

nounary multialgebras which determine complete hypergroups form a subclass of K ′′
2

closed under the formation of direct products.

Proof. From Lemma 3 it follows that a monounary multialgebra (H, f) which deter-

mines a complete hypergroupoid Hf satisfies (5), hence (H, f) is in K ′
2. According

to Theorem 1, the complete hypergroupoid Hf is a semihypergroup. It is immediate

that if Hf is a hypergroup then (H, f) is in K ′′
2 . Let I be a set and for each i ∈ I, let

(Hi, fi) be a monounary multialgebra for which

fi(xi) = fi(Hi), ∀xi ∈ Hi.

If
(∏

i∈I Hi, f
)

is the direct product of the multialgebras (Hi, fi) then

f((xi)i∈I) =
∏
i∈I

fi(xi) =
∏
i∈I

fi(Hi) = f

(∏
i∈I

Hi

)
,

for any (xi)i∈I ∈
∏

i∈I Hi, hence
(∏

i∈I Hi, f
)

determines a complete semihypergroup.

If, in addition, for any i ∈ I we have Hi 6= ∅ and fi(Hi) = Hi then

f((xi)i∈I) =
∏
i∈I

fi(Hi) =
∏
i∈I

Hi,

for any (xi)i∈I ∈
∏

i∈I Hi, so the multialgebra
(∏

i∈I Hi, f
)

determines a complete

hypergroup.

Let us denote by SHGc
′ the subcategory of SHG′ whose objects are the

complete semihypergroups determined by monounary multialgebras and by HGc
′

the subcategory of HG′ whose objects are the complete hypergroups determined by

monounary multialgebras. Since the direct product of monounary multialgebras is

their product in Malg(1) from the above theorem, using Remark 4 and Remark 8 we

obtain:
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Corollary 4. The subcategory SHGc
′ of SHG′ is closed under products. More-

over, if I is a set and for each i ∈ I, (Hi, fi) is a monounary multialgebra

which determines a complete semihypergroup (Hi)fi
= (Hi, ◦i) then the product of

((Hi, ◦i) | i ∈ I) in SHGc
′ is the (complete) semihypergroup determined by the direct

product
(∏

i∈I Hi, f
)
.

Corollary 5. The subcategory HGc
′ of HG′ is closed under products. Moreover, if

I is a set and for each i ∈ I, (Hi, fi) is a monounary multialgebra which determines

a complete hypergroup (Hi)fi
= (Hi, ◦i) then the product of ((Hi, ◦i) | i ∈ I) in HGc

′

is the (complete semi)hypergroup determined by the direct product
(∏

i∈I Hi, f
)
.

If ((Hi, fi) | i ∈ I) is a family of monounary multialgebras which determine

the complete semihypergroups (hypergroups) ((Hi)fi = (Hi, ◦i) | i ∈ I) then

xi ◦ yi = fi(xi) = fi(yi) = fi(Hi), ∀xi, yi ∈ Hi,∀i ∈ I.

The product of ((Hi)fi
| i ∈ I) in SHGc

′ (HGc
′) is the (complete) semihypergroup

(hypergroup)
(∏

i∈I Hi, ◦
)

determined by the direct product
(∏

i∈I Hi, f
)
. The hy-

perproduct ◦ is defined as follows: if (xi)i∈I , (yi)i∈I ∈
∏

i∈I Hi then

(xi)i∈I ◦ (yi)i∈I = f((xi)i∈I) ∪ f((yi)i∈I) =
∏
i∈I

fi(xi) ∪
∏
i∈I

fi(yi)

=
∏
i∈I

fi(Hi) =
∏
i∈I

(xi ◦ yi),

hence
(∏

i∈I Hi, ◦
)

is the direct product of ((Hi, ◦i) | i ∈ I), i.e. the product of

((Hi, ◦i) | i ∈ I) in Malg(2). Thus we have proved the following result:

Corollary 6. The categories SHGc
′ and HGc

′ are subcategories of Malg(2) which

are closed under products.
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LII, Number 2, June 2007

ON THE INTEGRABILITY OF A SYMPLECTIC STRUCTURE
ON TANGENT BUNDLE

MONICA PURCARU

Abstract. In this paper we determine the set of all semi-symmetric met-

rical d-linear connections for a fixed nonlinear connection. We consider the

group:
ms

T N of transformations of semi-symmetric metrical d-linear connec-

tions on TM, having the same nonlinear connection N and we give some

important invariants. We study the 2-forms on TM and we define the in-

tegrability of a 2-form. We study the integrability of an almost symplectic

d-structure on TM.

1. Preliminaries

The geometry of the tangent bundle (TM, π, M) has been studied by

M.Matsumoto in [4], by R.Miron and M.Anastasiei in [5], [6], by R.Miron and

M.Hashiguchi in [7], by V.Oproiu in [8], by Gh.Atanasiu and I.Ghinea in [1], by

R.Bowman in [2], by K.Yano and S.Ishihara in [10],etc. Concerning the terminology

and notations, we use those from [6].

Let M be a real n-dimensional C∞-differentiable manifold and (TM, π, M)

its tangent bundle.

If (xi) is a local coordinates system on a domain U of a chart on M, the

induced system of coordinates on π−1(U) is (xi, yi), (i = 1, ..., n).

Let N be a nonlinear connection on TM , with the coefficients N i
j(x, y),

(i, j = 1, ..., n).

Received by the editors: 10.04.2006.

2000 Mathematics Subject Classification. 53C05, 53C20, 53C60, 53B40, 58B20.

Key words and phrases. tangent bundle, metrical structure, almost symplectic structure, integrability,

invariants, semi-symmetric metrical d-linear connection, transformations group.
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We consider on TM a metrical structure G defined by:

(1.1) G(x, y) = 1
2gij(x, y)dxi ⊗ dxj + 1

2 g̃ij(x, y)δyi ⊗ δyj ,

where (dxi, δyi), (i = 1, ..., n) is the dual basis of
(

δ
δxi ,

∂
∂yi

)
, and (gij(x, y), g̃ij(x, y))

is a pair of given d-tensor fields on TM , of the type (0,2), each of them symmetric

and nondegenerate.

We asociate to the lift G the Obata’s operators:

(1.2)

 Ωir
sj = 1

2 (δi
sδ

r
j − gsjg

ir), Ω∗irsj = 1
2 (δi

sδ
r
j + gsjg

ir),

Ω̃ir
sj = 1

2 (δi
sδ

r
j − g̃sj g̃

ir), Ω̃∗irsj = 1
2 (δi

sδ
r
j + g̃sj g̃

ir).
Obata’s operators have the same properties as the ones associated with a

Finsler space [7].

2. Semi-symmetric metrical d-linear connections on TM

Let N and
0

N be two nonlinear connections on TM with the coefficients

N i
j(x, y) and

0

N i
j (x, y) respectively, (i,j=1,...,n).

Definition 2.1. A d-linear connection, D, on TM , with local coefficients

DΓ(N) = (Li
jk, L̃i

jk, C̃i
jk, Ci

jk), is called metrical d-linear connection on TM if:

(2.1) gij|k = 0, gij |k = 0, g̃ij|k = 0, g̃ij |k = 0,

where , denote the h-and v-covariant derivatives respectively, with respect to D.

Using a well known method given by R.Miron in [7] for the case of Finsler

connections we obtain:

Theorem 2.1. Let
0

D be a given d-linear connection on TM , with local coefficients
0

DΓ(
0

N) = (
0

Li
jk,

0

L̃i
jk,

0

C̃i
jk,

0

Ci
jk). The set of all metrical d-linear connections on TM,

with local coefficients DΓ(N) = (Li
jk, L̃i

jk, C̃i
jk, Ci

jk) is given by:
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(2.2)



N i
j =

0

N i
j −Xi

j ,

Li
jk =

0

Li
jk +

0

C̃i
jm Xm

k + 1
2gis(g

sj
0
|k

+ gsj

0

|m Xm
k) + Ωir

hjX
h
rk,

L̃i
jk =

0

L̃i
jk +

0

Ci
jm Xm

k + 1
2 g̃is(g̃

sj
0
|k

+ g̃sj

0

|m Xm
k) + Ω̃ir

hjX̃
h
rk,

C̃i
jk =

0

C̃i
jk + 1

2gisgsj

0

|k +Ωir
hj Ỹ

h
rk,

Ci
jk =

0

Ci
jk + 1

2 g̃isg̃sj

0

|k +Ω̃ir
hjY

h
rk, Xi

j
0
|k

= 0,

where Xi
j , Xi

jk, X̃i
jk, Ỹ i

jk, Y i
jk are arbitrary tensor fields on TM ,

0

,
0

denote the

h-and v-covariant derivatives respectively, with respect to
0

D.

If we take Xi
j = 0 in theorem 2.1, we obtain a theorem given by R.Miron

and M. Anastasiei in their papers [5], [6]:

Theorem 2.2. [5], [6] Let
0

D be a given metrical d-linear connection on TM , with

local coefficients:
0

DΓ(
0

N) = (
0

Li
jk,

0

L̃i
jk,

0

C̃i
jk,

0

Ci
jk). The set of all metrical d-linear

connections on TM , corresponding to the same nonlinear connection
0

N , with local

coefficients DΓ(
0

N) = (Li
jk, L̃i

jk, C̃i
jk, Ci

jk) is given by:

(2.3)



Li
jk =

0

Li
jk +Ωir

hjX
h
rk,

L̃i
jk =

0

L̃i
jk +Ω̃ir

hjX̃
h
rk,

C̃i
jk =

0

C̃i
jk +Ωir

hj Ỹ
h
rk,

Ci
jk =

0

Ci
jk +Ω̃ir

hjY
h

rk,

where Xi
j , Xi

jk, X̃i
jk, Ỹ i

jk, Y i
jk are arbitrary tensor fields on TM .

If we shall try to replace the arbitrary tensor fields Xi
jk, Y i

jk in theorem 2.2

by the torsion tensor fields T i
(0) jk, Si

jk, and if we put:

(2.4)


T ∗ i

jk = 1
2gir(grhT h

(0) jk − gjhT h
(0) rk + gkhT h

(0) jr),

S∗ijk = 1
2 g̃ir(g̃rhSh

jk − g̃jhSh
rk + g̃khSh

jr),
we find a result obtained by R.Miron and M.Anastasiei in [5], [6]:
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Theorem 2.3. [5], [6] Let T i
(0) jk and Si

jk be two given alternate tensor fields. Then

there exists a unique metrical d-linear connection with local coefficients: DΓ(N) =

(Li
jk, L̃i

jk, C̃i
jk, Ci

jk), having T i
(0) jk and Si

jk as the torsion tensor fields. It is given

by:

(2.5)



Li
jk =

c

Li
jk +T ∗ijk,

L̃i
jk =

c

L̃i
jk,

C̃i
jk =

c

C̃i
jk,

Ci
jk =

c

Ci
jk +S∗ijk,

where CΓ(N) = (
c

Li
jk,

c

L̃i
jk,

c

C̃i
jk,

c

Ci
jk) are the local coefficients of the canonical d-

linear connection of G.

Definition 2.2. A d-linear connection, D, on TM, with local coefficients DΓ(N) =

(Li
jk, L̃i

jk, C̃i
jk, Ci

jk), is called semi-symmetric d-linear connection if the torsion ten-

sor fields T i
(0) jk and Si

jk have the form:

(2.6)


T i

(0) jk = 1
n−1 (Tjδ

i
k − Tkδi

j) = σjδ
i
k − σkδi

j ,

Si
jk = 1

n−1 (Sjδ
i
k − Skδi

j) = τjδ
i
k − τkδi

j ,

where Tj = T i
(0) ji, Sj = Si

ji and σj = Tj

n−1 , τj = Sj

n−1 .

Then (2.4) become:

(2.7) T ∗ i
jk = 2Ωmi

jk σm, S∗ i
jk = 2Ω̃mi

jk τm,

Using the theorem 2.3 and the relations (2.7) we have:

Theorem 2.4. The set of all semi-symmetric metrical d-linear connections cor-

responding to the same nonlinear connection N, with local coefficients: DΓ(N) =

(Li
jk, L̃i

jk, C̃i
jk, Ci

jk), is given by:
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(2.8)



Li
jk =

c

Li
jk +σjδ

i
k − gjkgimσm,

L̃i
jk =

c

L̃i
jk,

C̃i
jk =

c

C̃i
jk,

Ci
jk =

c

Ci
jk +τjδ

i
k − g̃jkg̃imτm,

where CΓ(N) = (
c

Li
jk,

c

L̃i
jk,

c

C̃i
jk,

c

Ci
jk) are the local coefficients of the canonical d-

linear connection of G.

3. The group of transformations of semi-symmetric metrical d-linear con-

nections

Let N be a given nonlinear connection. Then any semi-symmetric metrical

d-linear connection with local coefficients D̄Γ(N) = (L̄i
jk, ¯̃Li

jk, ¯̃Ci
jk, C̄i

jk) is given

by (2.5) with (2.7).

From theorem 2.4 we have:

Theorem 3.1. Two semi-symmetric metrical d-linear connections: D and D̄, with

local coefficients DΓ(N) = (Li
jk, L̃i

jk, C̃i
jk, Ci

jk) and D̄Γ(N) = (L̄i
jk, ¯̃Li

jk,

¯̃Ci
jk, C̄i

jk) are related as follows:

(3.1)



L̄i
jk = Li

jk + σjδ
i
k − gjkgimσm,

¯̃Li
jk = L̃i

jk,

¯̃Ci
jk = C̃i

jk,

C̄i
jk = Ci

jk + τjδ
i
k − g̃jkg̃imτm,

or :



L̄i
jk = Li

jk + 2Ωim
kj σm,

¯̃Li
jk = L̃i

jk,

¯̃Ci
jk = C̃i

jk,

C̄i
jk = Ci

jk + 2Ω̃im
kj τm.

Conversely, given σj ∈ X ∗(M), τj ∈ X ∗(M) the above (3.1) is thought to

be a transformation of a semi-symmetric metrical d-linear connection D, with local

coefficients DΓ(N) = (Li
jk, L̃i

jk, C̃i
jk, Ci

jk) to a semi-symmetric metrical d-linear

connection D̄, with local coefficients D̄Γ(N) = (L̄i
jk, ¯̃Li

jk, ¯̃Ci
jk, C̄i

jk).

We shall denote this transformation by: t(σj , τj).

Thus we have:
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Theorem 3.2. The set:
m

T
s

N of all transformations t(σj , τj) : DΓ(N) → D̄Γ(N)

of semi-symmetric metrical d-linear connections given by (3.1) is an abelian group,

together with the mapping product:

t(σ̄j , τ̄j) ◦ t(σj , τj) = t(σj + σ̄j , τj + τ̄j).

This group acts on the set of all semi-symmetric metrical d-linear connec-

tions, corresponding to the same nonlinear connection N, transitively.

In order to find invariants of the group
m

T
s

N , let us consider the transformation

formulas of the torsion tensor fields by a transformation t(σj , τj) : DΓ(N) → D̄Γ(N)

of semi-symmetric metrical d-linear connections on TM, with respect to G, given by

(3.2)-(3.3):

(3.2)



L̄i
jk = Li

jk −Bi
jk,

¯̃Li
jk = L̃i

jk − B̃i
jk,

¯̃Ci
jk = C̃i

jk − D̃i
jk,

C̄i
jk = Ci

jk −Di
jk,

where:

(3.3)


Bi

jk = gjkgimσm − σjδ
i
k,

B̃i
jk = 0, D̃i

jk = 0,

Di
jk = g̃jkg̃imτm − τjδ

i
k.

Proposition 3.1. By the transformations (3.2)-(3.3) of semi-symmetric metrical d-

linear connections, corresponding to the same nonlinear connection N: DΓ(N) →

D̄Γ(N), the torsion tensor fields, T i
(0) jk, T i

(1) jk, P i
(1) jk, P i

(2) jk, Si
jk are transformed

as follows:

(3.4)



T̄ i
(0) jk = T i

(0) jk + (σjδ
i
k − σkδi

j),

T̄ i
(1) jk = T i

(1) jk,

P̄ i
(1) jk = P i

(1) jk,

P̄ i
(2) jk = P i

(2) jk,

S̄i
jk = Si

jk + (τjδ
i
k − τkδi

j).

We denote with:
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(3.5) tijk = Ajk{
δNi

j

δyk },
where Ajk{...} denotes the alternate summation: Ajk{Bi

jk} =Bi
jk −Bi

kj

and with:

(3.6)



t∗ijk =
∑

ijk{g̃imtmjk},

T ∗
(0) ijk =

∑
ijk{gimT m

(0) jk},

R∗
ijk =

∑
ijk{g̃imRm

jk},

S∗ijk =
∑

ijk{g̃imSm
jk},

C̃∗
ijk =

∑
ijk{gimC̃m

jk},

L̃∗ijk =
∑

ijk{g̃imL̃m
jk},

P ∗
(1) ijk =

∑
ijk{gimP m

(1) jk},

P ∗
(2) ijk =

∑
ijk{g̃imP m

(2) jk},
where

∑
ijk{...} denotes the cyclic summation:

∑
ijk{Aijk} =Aijk+Ajki+Akij and

with:

(3.7)



1

Kijk= −gkmT m
(0) ij +Aij{g̃imP m

(2) jk},
2

Kijk= g̃imSm
jk −Ajk{g̃kmCm

ij},
3

Kijk= Ajk{g̃kmP m
(2) ij},

4

Kijk= g̃mjC
m
ik + g̃imCm

jk,
5

Kijk= gmjC̃
m
ik + gimC̃m

jk.

Remark 3.1 It is noted that: t∗ijk, T ∗
(0) ijk, R∗

ijk, S∗ijk are alternate,
1

Kijk is

alternate with respect to: i,j and
2

Kijk,
3

Kijk are alternate with respect to: j,k.

By direct calculation from (3.1) and (3.4) and using the notations (3.5), (3.6)

and (3.7) we have:

Theorem 3.3. The tensor fields: tijk, Ri
jk, P i

(1) jk, P i
(2) jk, t∗ijk, T ∗

(0) ijk,R∗
ijk,

S∗ijk,P ∗
(1) ijk, P ∗

(2) ijk,
1

Kijk,
2

Kijk,
3

Kijk,
4

Kijk,
5

Kijk, are invariants of the group
ms

TN .

Theorem 3.4. Between the invariants in theorem 3.3 there exists the following rela-

tions:
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(3.8)


∑

ijk{
1

Kijk} = −T ∗
(0) ijk + t∗ijk +

∑
ijk{g̃imAjk{L̃m

jk}},∑
ijk{

2

Kijk} = 0,∑
ijk{

3

Kijk} = t∗ijk +
∑

ijk{g̃imAjk{L̃m
jk}}.

4. About the integrability of a symplectic structure on tangent bundle

Let Λk(TM) be the F-module of all k-forms on the tangent bundle

(TM, π, M) where F is the ring of all differentiable functions on TM. If N is a given

nonlinear connection, then {dxi, δyi} is a local basis of Λ1(TM), which is dual to

{ δ
δxi ,

∂
∂yi }.

If f ∈ F , then the 1-form df is written as:

(4.1) df = δf
δxi dxi + ∂f

∂yi δy
i,

and the exterior differential of δyi is given by:

(4.2) d(δyi) = 1
2Rj

ikdxk ∧ dxi + ∂Nj
i

∂yk δyk ∧ dxi.

In general, ω ∈ Λ2(TM) is written in the form:

(4.3) ω = 1
2aijdxi ∧ dxj + bijdxi ∧ δyj + 1

2 cijδy
i ∧ δyj ,

where aij = −aji, cij = −cji.

The exterior differential dω is given by:

(4.4)

dω = 1
6

1
ωijk dxi ∧ dxj ∧ dxk + 1

2

2
ωijk dxi ∧ dxj ∧ δyk+

+ 1
2

3
ωijk dxi ∧ δyj ∧ δyk + 1

6

4
ωijk δyi ∧ δyj ∧ δyk,

where:

(4.5)



1
ωijk=

∑
ijk{

δaij

δxk + bimRm
jk},

2
ωijk= ∂aij

∂yk + ckmRm
ij +Aij{ δbjk

δxi + bim
∂Nm

j

∂yk },
3
ωijk= δcjk

δxi +Ajk{∂bij

δyk + ckm
∂Nm

i

∂yj },
4
ωijk=

∑
ijk{

∂cij

∂yk }.

Proposition 4.1. If a d-linear connection D is given on TM , with local coefficients:

DΓ(N) = (Li
jk, L̃i

jk, C̃i
jk, Ci

jk), then the coefficients
1
ωijk,

2
ωijk,

3
ωijk,

4
ωijk, of (4.5) have the following expressions:
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(4.6)



1
ωijk=

∑
ijk{aij|k + aimTm

(0)jk + bimRm
jk},

2
ωijk= aij |k + bmkTm

(0)ji + ckmRm
ij +Aij{bjk|i + aimC̃m

jk + bimPm
(2)jk},

3
ωijk= cjk|i + bimSm

jk +Ajk{bij |k + bmjC̃
m
ik + cmjP

m
(2)ik},

4
ωijk=

∑
ijk{cij |k + cimSm

jk}.

Definition 4.1. A 2-form ω ∈ Λ2(TM) written in the form (4.3), for which the

matrix B=

 aij bij

−bji cij

 is nondegenerate is called integrable if: dω=0.

Theorem 4.1. A 2-form ω ∈ Λ2(TM), for which the matrix B is nondegenerate,

is integrable, if and only if the tensor fields
1
ωijk= 0,

2
ωijk= 0,

3
ωijk= 0 and

4
ωijk= 0,

where
1
ωijk,

2
ωijk,

3
ωijk and

4
ωijk are given in (4.6).

Let (gij(x, y)) be a GL-metric and (N i
j(x, y)) the local coefficients of a non-

linear connection ([6]).

The 2-form ω above considerated doesn’t define a metrical structure on TM,

because the coefficients aij and cij are alternate and bij cannot be the coefficients

of the metrical structure G from (1.1). Therefore it isn’t possible to consider the

problem of the integrability of a metrical structure on TM.

On the other hand, ω is in fact an almost symplectic structure on TM. It

defines a symplectic structure if it is closed (i.e. dω = 0).

In the remainder of this section we shall present the integrability problem of

the symplectic structure defined by the 2-form ω on TM, ([9]).

Assume that a nonlinear connection N on TM is given, then an almost sym-

plectic structure on the base manifold M (A(x, y) = 1
2aij(x, y)dxi ∧ dxj +

1
2 ãij(x, y)δyi ∧ δyj , where (dxi, δyi), (i = 1, ..., n) is the dual basis of

(
δ

δxi ,
∂

∂yi

)
, and

(aij(x, y), ãij(x, y)) is a pair of given d-tensor fields on TM , of the type (0,2), each

of them alternate and nondegenerate) is lifted to a 2-form ω on TM in the following

way: we consider the 2-forms ω of two single types I, II and one combined type εI+II,

ε ∈ R :

I: ω = 1
2aijdxi ∧ dxj ; II: ω = 1

2 ãijδy
i∧δyj ,

εI+II: ω = 1
2εaijdxi ∧ dxj + 1

2 ãijδy
i ∧ δyj .
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Proposition 4.2. Each 2-form ω of the type εI + II is nondegenerate and defines

an almost symplectic structure on TM .

Proposition 4.3. The coefficients
1
ωijk,

2
ωijk,

3
ωijk,

4
ωijk, of the exterior differential

of the 2-form εI+II given in Proposition 4.2 are invariants of the transformation

group of the set of all almost symplectic d-linear connections with the same nonlinear

connection N: Gas, and are given in the following form:

εI+II:
1

ωijk= εT̃ ∗(0)ijk,
2
ωijk= α

4̃

Kijk + ãkmRm
ij ,

3
ωijk=

3̃

Kijk,
4
ωijk= S̃∗ijk.

where:

(4.7)

 T̃ ∗(0)ijk = Sijk{aimTm
(0)jk}, S̃∗ijk = Sijk{ãimSm

jk},

t̃∗ijk = Sijk{aimtmjk}, R̃∗
ijk = Sijk{ãimRm

jk},

(4.8)



1̃

Kijk = akmTm
(0)ij +Aij{ãimPm

(2)jk},
2̃

Kijk = ãimSm
jk +Ajk{ãkmCm

ij},
3̃

Kijk = Ajk{ãkmPm
(2)ij},

4̃

Kijk = Aij{aimPm
(1)jk} = Aij{aimC̃m

jk}.

Definition 4.2. An almost symplectic structure A on a differentiable manifold M

is called integrable of the types I, II or εI + II, if there exists an almost symplectic

d-linear connection D on TM such that the corresponding lifted 2-forms on TM are

integrable.

Theorem 4.2. An almost symplectic structure A on a differentiable manifold M

is integrable of the type εI + II if and only if there exists an almost symplectic d-

linear connection D on TM with local coefficients DΓ(N) = (Li
jk, L̃i

jk, C̃i
jk, Ci

jk),

satisfying the following conditions:

εI+II: T i
(0)jk = Si

jk = 0, ε
4̃

Kijk + ãkmRm
ij = 0,

3̃

Kijk = 0.

Theorem 4.3. An almost symplectic structure A on a differentiable manifold M ,

integrable of the type εI + II, ε ∈ R∗, does not depend on y if and only if Rk
ij = 0.
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ALMOST OPTIMAL CUBATURE FORMULAS
WITH REGARD TO THE EFFICIENCY

SOMOGYI ILDIKO

Abstract. We introduce the definition of the almost optimal efficiency of

the cubature formulas obtained with the tensor product and boolean-sum

of the numerical quadrature operators, and we also give some applications

and examples for such formulas.

The purpose of this note is to study the cubature formulas from efficiency

point of view. We will consider the case when we have a rectangular domain and

the cubature formula is constructed with the boolean-sum and tensor product of the

one dimensional approximation operators. We will give the definition of the almost

optimal formulas with regard to the efficiency and also some examples.

Let be f a function defined and integrable on the rectangular domain Dn = [a1, b1]×

[a2, b2]× ...× [an, bn] and
∏

n a rectangular partition of the domain Dn :
∏

n = ∆x1×

∆x2 × ...×∆xn, where ∆xk = {xk,1, ..., xk,mk
} with ak ≤ xk,1 < ... < xk,mk

≤ bk.

First of all we will consider the tensor product cubature formula∫
D

f(x1, ..., xn)dx1...dxn =
∫ b1

a1

...

∫ bn

an

f(x1, ..., xn)dx1...dxn =

= Q1
1...Q

n
1f + R1

1I
2,...,n + ... + Rn

1 I1,..,n−1−

−R1
1R

2
1I

3,...,n − ...(−1)n−1R1
1...R

n
1 (1)

where we use the following partial quadrature formulas

Ikf = Qk
1f + Rk

1f, (2)

Received by the editors: 11.01.2002.
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for k=1,2,...,n

Ikf =
∫ bk

ak

f(x1, ..., xk, ..., xn)dxk

Qk
1f =

mk∑
ik=1

Ak
ik

f(x1, ..., xk−1, xk,ik
, xk+1, ..., xn)

and Rk
1f is the corresponding remainder term. The formula (1) is a numerical ap-

proximation formula because

Q1
1...Q

n
1f =

m1∑
i1=1

...

mn∑
in=1

A1
i1 ...A

n
in

f(x1,i1 , ..., xn,in
).

Definition 1. The cubature formula (1) is almost optimal with regard to the effi-

ciency, if all the quadrature formulas (2) are optimal with respect to the efficiency.

In bidimensional case we have the following almost optimal efficient cubature

formula :

Theorem 1. Let D = [a, b] × [c, d] ⊂ R2 and f : D → R an integrable function on

D. If f (2,0), f (0,2), f (2,2) ∈ C(D) then the cubature formula∫ b

a

∫ d

c

f(x, y)dxdy =
(b− a)(d− c)

4
[f(a, c) + f(a, d) + f(b, c) + f(b, d)]−

− (b− a)3

12

∫ d

c

f (2,0)(ξ1, y)dy − (d− c)3

12

∫ b

a

f (0,2)(x, η1)dx−

− (b− a)3(d− c)3

144
f (2,2)(ξ, η) (3)

is almost optimal with regard to the efficiency.

Proof. From (1), in the bidimensional case we have:∫
D

f(x, y)dxdy = Qx
1Qy

1f + (Rx
1Iy + Ry

1Ix −Rx
1Ry

1)f (4)

Let Qx
1 , Qy

1 be the trapezes quadrature rules

(Qx
1f)(·, y) =

b− a

2
[f(a, y) + f(b, y)] (5)

(Qy
1f)(x, ·) =

d− c

2
[f(x, c) + f(x, d)] (6)
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then, if we use this rules in (4) with being Rx
1 , Ry

1 the corresponding remainder terms,

we obtain the formula (3). But from [1] we know that in the class of Newton-Cotes

quadratures AN−C(Q; f), we have

E(Q1; f) = max
Q∈AN−C(Q;f)

E(Q; f)

i.e. the trapezium quadrature is the optimal formula regard to the efficiency.

Theorem 2. Let f : D → R, if f ∈ C2(D) then∫ b

a

∫ d

c

f(x, y)dxdy = (b− a)(d− c)[f(
a + b

2
, c) + f(

a + b

2
, d)+

+ f(a,
c + d

2
) + f(b,

c + d

2
)] +

(b− a)3

24

∫ d

c

f (2,0)(ξ1, y)dy+

+
(d− c)3

24

∫ b

a

f (0,2)(x, η1)dx− (b− a)3(d− c)3

576
f (2,2)(ξ, η) (7)

is a cubature formula which is almost optimal from efficiency point of view.

Proof. In the formula (4) we will choose Qx
1 , Qy

1 to be the rectangular quadrature,

and we will use the relation proved in [1]

E(QD; f) = max
Q∈AG(Q;f)

E(Q; f),

in the class of Gauss quadrature rules the optimal quadrature with respect to the

efficiency is the rectangular quadrature.

We will consider now the boolean-sum cubature formula:

I = Qs + Rp (8)

where

Qs = Q1
1I

2,...,n + ... + Qn
1 I1,..,n−1 −Q1

1Q
2
1I

3,...,n − ...

+ (−1)n−1Q1
1...Q

n
1 , (9)

respectively

Rp = R1
1...R

n
1
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with

Iν1,...,νpf =

bν1∫
aν1

...

bνp∫
aνp

f(x1, ..., xn)dxν1 ...dxνp
.

It follows that Qsf in formula (9) contains (n-1),...,2 multiple integrals, thus (8) is not

a numerical integration formula. In order to obtain a numerical integration formula

we have to use n-1 levels of approximation.

If we want to reduce the approximation levels we can combine the two methods. In

this case

-if n = 2k, k ≥ 1, we have the following decomposition of the integral operator:

I =

n−2
2⊕

j=0

Q2j+1Q2j+2 +

n−2
2∏

j=0

(R2j+1 ⊕R2j+2); (10)

-if n = 2k + 1,

I =

n−3
2⊕

j=0

Q2j+1Q2j+2

 Qn +

n−3
2∏

j=0

R2j+1R2j+2

⊕Rn. (11)

The identities (10) and (11) lead us to the following product-boolean sum

cubature formulas :

If = Q1Q2 ⊕Q3Q4 ⊕ ...⊕Qn−1Qnf + (R1 ⊕R2)...(Rn−1 ⊕Rn)f, if n=2k (12)

and

If = (Q1Q2 ⊕ ...⊕Qn−2Qn−1)Qnf + (R1 ⊕R2)...(Rn−2 ⊕Rn−1)⊕Rnf (13)

if n = 2k + 1.

Definition 2. The boolean-sum respectively the product-boolean sum formula are al-

most optimal with regard to the efficiency, if the quadrature formulas used in each

level of approximation are optimal with regard to the efficiency.

Now, we will give some examples for such a formulas.
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Theorem 3. Let Dh ⊂ R2 be the standard domain Dh = [0, h] × [0, h]. If

f (4,0), f (0,4), f (2,2) ∈ C(Dh) then the homogeneous cubature formula

∫ ∫
Dh

f(x, y)dxdy = −h2

12
[f(0, 0) + f(0, h) + f(h, 0) + f(h, h)]+

+
4h2

12

[
f(0,

h

2
) + f(h,

h

2
) + f(

h

2
, 0) + f(

h

2
, h)

]
+ R(f), (14)

where

R(f) = − h6

144

[
1
20

f (4,0)(ξ1, η1) +
1
20

f (0,4)(ξ2, η2) + f (2,2)(ξ3, η3)
]

.

is almost optimal with regard to the efficiency.

Proof. From (8) in bidimensional case we have the following boolean-sum cubature

formula:

Ixyf = (Qx
1Iy + Qy

1I
x −Qx

1Qy
1)f + Rx

1Ry
1f. (15)

Let Qx
1 , Qy

1 be the trapezoidal rules (5), (6), then the formula (15) become:

∫ ∫
Dh

f(x, y)dxdy =
h

2

∫ h

0

[f(0, y) + f(h, y)]dy +
h

2

∫ h

0

[f(x, 0) + f(x, h)]dx

− h2

4
[f(0, 0) + f(h, 0) + f(0, h) + f(h, h)] + RS(f) (16)

where

RS(f) = − h6

144
f (2,2)(ξ, η).

The formula (16) is not a numerical integration formula, so we have to use a next

level of approximation. If in the second level of approximation we use the Simpson’s

quadrature, we obtain the formula (14).

But, from [1], the two quadrature formulas which we use in booth levels are optimal

with regard to the efficiency in the corresponding class of quadrature formulas.
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Theorem 4. Let D ⊂ R3 , D = [a1, b1]× [a2, b2]× [a3, b3], f : D → R an integrable

function on D. On some differentiability condition of the function f the product-

boolean sum cubature formula:

b1∫
a1

b2∫
a2

b3∫
a3

f(x, y, z)dxdydz = Qxyzf + Rxyzf, (17)

where

Qxyzf =
(b1 − a1)(b2 − a2)(b3 − a3)

8
[f(a1, a2, a3) + f(b1, a2, a3)+

+f(b1, b2, a3) + f(a1, a2, b3) + f(b1, a2, b3) + f(a1, b2, b3)+

+f(a1, b2, a3) + f(b1, b2, b3)]

and

Rxyzf =
(b1 − a1)3(b2 − a2)3

144

b3∫
a3

f (2,2,0)(ξ1, η1, z)dz −

− (b3 − a3)3

12

b1∫
a1

b2∫
a2

f (0,0,2)(x, y, ρ1)dxdy +

+
(b1 − a1)3(b2 − a2)3(b3 − a3)3

1728
f (2,2,2)(ξ2,η2, ρ2)−

− (b1 − a1)(b2 − a2)3(b3 − a3)
48

[
f (0,2,0)(a1, γ1, a3)+

+f (0,2,0)(a1, γ2, b3) + f (0,2,0)(b1, γ3, a3) + f (0,2,0)(b1, γ4, b3)
]
−

− (b1 − a1)3(b2 − a2)(b3 − a3)
48

[
f (2,0,0)(δ1, a2, a3)+

+f (2,0,0)(δ2, a2, b3) + f (2,0,0)(δ3, b2, a3) + f (2,0,0)(δ4, b2, b3)
]

is an almost optimal formula with regard to the efficiency.

Proof. In 3-dimensional case we have the following product-boolean sum cubature

formula:

If = (Q1
x ⊕Q1

y)Q1
zf + (R1

xR1
y ⊕R1

z)f. (18)
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In order to obtain a numerical approximation formula we have to use two level of

approximation, and the formula (18) become:

If = Qxyzf + Rxyzf (19)

where

Qxyz = Q1
xQ2

yQ1
z + Q2

xQ1
yQ1

z −Q1
xQ1

yQ1
z (20)

and

Rxyz = R1
xR1

yIz + IxIyR1
z + R1

xR1
yR1

z + Q1
xR2

yQ1
z + R2

xQ1
yQ1

z. (21)

Let Q1
x, Q1

y and Q1
z be the trapezes approximation operators:

(Q1
xf)(·, y, z) =

b1 − a1

2
[f(a1, y, z) + f(b1, y, z)]

(Q1
yf)(x, ·, z) =

b2 − a2

2
[f(x, a2, z) + f(x, b2, z)]

(Q1
zf)(x, y, ·) =

b3 − a3

2
[f(x, y, a3) + f(x, y, b3)]

then we have

Qxyzf =
(b1 − a1)(b3 − a3)

4

b2∫
a2

[f(a1, y, a3) + f(a1, y, b3) + f(b1, y, a3)+

+ f(b1, y, b3)] dy +
(b2 − a2)(b3 − a3)

4

b1∫
a1

[f(x, a2, a3)+

+f(x, a2, b3) + f(x, b2, a3) + f(x, b2, b3)] dx−
(b1 − a1)(b2 − a2)(b3 − a3)

8
[f(a1, a2, a3)+

+f(a1, a2, b3) + f(a1, b2, a3) + f(a1, b2, b3)+

+f(b1, a2, a3) + f(b1, a2, b3) + f(b1, b2, a3) + f(b1, b2, b3)] ,

where for the representation of the error we assume that f (2,0,0), f (0,2,0), f (0,0,2) ∈

C(D).

If in the second level we also use the trapezoidal rules where f (2,2,0), f (2,2,2,) ∈

C(D) we get the formula (17). The quadrature rules used in each level are optimal

with regard to the efficiency, so the proof follows.
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Theorem 5. Let Dh ⊂ R2 be the standard domain Dh = [0, h]×[0, h] and f : Dh → R

a derivable function on Dh. If CP (f ′) < CP (f)− 3 and f (2,0), f (0,2), f (2,2) ∈ C(Dh)

then the cubature formula∫ ∫
Dh

f(x, y)dxdy = Q2f + RQ2f =

=
h2

4
[3f(0, 0) + f(0, h) + f(h, 0)− f(h, h)]+

+
h2

4

[
f (0,1)(0, h) + f (0,1)(h, h) + f (1,0)(h, 0)+

+f (1,0)(h, h)
]

+ RQ2(f) (22)

where

RQ2(f) =
h6

144
f (2,2)(ξ, η)− h4

6

[
f (0,2)(0, η1) + f (0,2)(h, η2)+

+f (2,0)(ξ1, 0) + f (2,0)(ξ2, h)
]
.

is almost optimal with regard to the efficiency.

Proof. First of all we will consider the boolean-sum cubature formula in bidimensional

case, when Qx
1 , Qy

1 are the trapezes approximation operators. In this case we obtain

the formula (16). In the second level of approximation we will consider the following

interpolation quadrature formula:∫ h

0

f(x)dx = h[f(0) +
h

2
f ′(h)]− h3

3
f”(θ), θ ∈ (0, h). (23)

We got this formula from an Abel-Gonciarov interpolation formula corresponding to

the linear functionals Lif = f (i)(xi), i = 0, 1, x0 = 0, x1 = h. The efficiency of this

quadrature formula is

E(Q2, f) =
log2 3

CP (f) + CP (f ′) + 9
.

If CP (f) − CP (f ′) > 3 then the efficiency of the formula (23) is better than the

trapezoidal quadrature formula.
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8, 1963, 681-695.

[6] Traub, J.F., Theory of optimal algoritms, in Software for numerical mathematics (e. by

D.F. Evans) Acad. Press, London/ New York 1974, 1-13.

[7] Traub, J.F., Wozniakowski, H., A general theory of optimal algorithms, Acad. Press,

1980.
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FUNCTIONAL-DIFFERENTIAL EQUATION
WITH RETARDED ARGUMENT

ALEXANDRINA ALINA TARŢA

Dedicated to Professor Grigore Călugăreanu on his 60th birthday

Abstract. Sufficient conditions are obtained for all positive solutions of

dx(t)

dt
= [f(x(t), x(t− τ))]x(t)

to converges as t→∞ to a positive equilibrium solution.

1. Introduction

Trade cycles, business cycles, and fluctuations in the price and supply of

various commodities have attracted the attention of economists for well over 100

years and possible more than thousands of years. Early authors often attribute these

fluctuations to random factors, e.g. the weather for agricultural commodities, see for

instance Slutzky [17] and Kalecki [11].

Other workers speculated that economic cycling of fluctuations might be an

inherent endogenous dynamical behavior characteristic of instable economic systems,

(Ezekiel [3] and the references therein). A number of business cycle models postulat-

ing the existence of nonlinearities to account for limit cycle behavior have played a

fundamental role in sharpening the debate between the proponent of the exogenous

versus endogenous (or stochastic versus deterministic) school (cf. Zarnowitz [19]).

The development of modern dynamical system theory (Guckenheimer and

Holmes [10], Lasota and Mackey [12], Glass and Mackey [6]) have shed new light

on this debate. The possibility that economic fluctuations may reflect underlying

Received by the editors: 07.09.2006.
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periodic or chaotic dynamics in nonlinear economics systems have been explored in

various context, se for instance Goodwin at all [7] , Grandomnd and Malgrange [9],

Gabisch and Lorenz [5] and references therein.

Mackey [13] developed a price adjustment model for a single commodity mar-

ket with state dependent production and storage delays. Conditions for the equilib-

rium price to be stable are derived in terms of a variety of economic parameters.

Also Blaire and Mackey [2] developed a model for the dynamics of price adjustment

model in a single commodity market where nonlinearities in both supply and demand

functions are considered explicitly. Farahani and Grove [4] have studied a special case

of a general model studied of Blaire and Mackey [2] which it calls the case of naive

consumer.

Our purpose here is to study the following model.

x′(t) = [f(x(t), x(t− τ))]x(t), t ∈ R+ (1)

x(t) = ϕ(t), t ∈ [−τ, 0] (2)

where τ > 0, f, g ∈ C(R+, R+) and ϕ ∈ C([−τ, 0], R∗+). Sufficient conditions are ob-

tained for all positive solutions of (1) to converges as t →∞ to a positive equilibrium

solution. We say that the function x∗(t) oscillate about r∗ if x∗(t)−r∗ has arbitrarily

large zeros. If is not the case that x∗(t) oscillate about r∗, then we say that x∗(t) is

nonoscillatory about r∗.

2. The main result

Consider the problem (1)+(2). The following theorem establish sufficient

conditions that x∗(t) oscillate about r∗ where x∗ is the unique positive solution of

problem (1)+(2) and r∗ is the unique positive equilibrium solution of (1).

Theorem 1. Suppose that

(i) f ∈ C1(R+ × R+, R+), ϕ ∈ C([−τ, 0], R∗+),

(ii) f( · , y) is locally Lipschitz,

(iii) There exists Mf > 0 such that |f(u, v)| ≤ Mf for all u, v ∈ R+,
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(iv)

∂f(u, v)
∂x

M + Mf ≤ 0,
∂f(u, v)

∂y
≤ 0 for all (u, v) ∈ R+ × R+

and M > 0 such that x∗(t) ≤ M for all t ∈ R+,

(v) 1 + λ
∂f(u, u)

∂x
+ λ

∂f(u, u)
∂y

≤ M1 < 1 for all u ∈ R+.

Then

(a) Problem (1)+(2) has an unique positive solution x∗(t).

(b) There exists m,M ∈ R+, 0 < m < M such that m ≤ x∗(t) ≤ M for all

t ∈ R+.

(c) Equation (1) has a unique positive equilibrium solution r∗.

(d) if x∗ is r∗ -nonoscillatory then

lim
t→∞

x∗(t) = r∗.

Proof:

(a) Let x∗ ∈ C([−τ, t+), R+) ∩ C1([0, t+), R+) be a maximal solution of

(1)+(2). We can rewrite the equation (1) in the form

x′(t)
x(t)

= f(x(t), x(t− τ)). (3)

Integrating the equation (3) from 0 to t we obtain

lnx(t)− lnx(0) =
∫ t

0

f(x(s), x(s− τ))ds.

From (2) we have

ln
x(t)
ϕ(0)

=
∫ t

0

f(x(s), x(s− τ))ds,

and

x(t) = ϕ(0) exp
∫ t

0

f(x(s), x(s− τ))ds.

From (iii) we have that

x(t) ≤ ϕ(0)eMf t, for all t ∈ [0, t+).

From steps method and the Theorem of the maximal solution (see [1] and

[16]) we have that there exists a unique x∗ and t+ = +∞
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(b) Follows from (a).

(c) Let F : R2
+ → R2

+, F (x, y) = (F1(x), F1(y))

where

F1(x) = x + λf(x, x)

||F (x, y)− F (u, v)||R2

≤
(

1 + λ
∂f

∂x
(u, u) + λ

∂f

∂y
(u, u) 001 + λ

∂f

∂x
(v, v) + λ

∂f

∂y
(v, v)

)
||(x, y)− (u, v)|| ,

where (R2
+, ||◦||), and ||x, y|| =

 |x|

|y|

 .

From (v) we have that

||F (x, y)− F (u, v)||R2 ≤

 M1 0

0 M1

 ||(x, y)− (u, v)|| ,

and

Sn → O2, as n →∞,

where

S =

 M1 0

0 M1

 .

It follows that F is a contraction and from Contraction Principle of Perov we

have that F has a unique fixed point, i.e.

x = x + λf(x, x).

This implies that the equation

f(x, x) = 0

has a unique solution and consequently that equation (1) has a positive equilibrium

solution r∗.

(d) We rewrite equation (1) in the form

dy

dt
= G(y(t), y(t− τ))−G(0, 0), (4)

where

G(y(t), y(t− τ)) = [f(y(t + r∗, y(t− τ + r∗)](y(t) + r∗),
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and

y(t) = x(t)− r∗.

It is now sufficient to show that y(t) → 0 as t →∞. An application of the mean-value

Theorem to (4) leads to

dy

dt
= −a(t)y(t)− b(t)y(t− τ), (5)

where

−a(t) =
∂G

∂y
(u(t), v(t)),

−b(t) =
∂G

∂y
(u(t), v(t)),

and (u(t), v(t)) lies on the line segment joining (0, 0) and (y(t), y(t− τ)). It is found

that

−a(t) =
∂f(u, v)

∂y
· (y(t) + r∗) + f(y(t) + r∗, y(t− τ) + r∗),

and

−b(t) =
∂f(u, v)

∂y
· (y(t) + r∗).

Note that a(t), and b(t) are positive and bounded away from zero. The

existence of solution of (5) for all t ≥ 0 is a consequence of boundedness of x(t) for

all t ≥ 0. If y is nonoscillatory then |y(t)| > 0, for all t > 0.

If y(t) > 0 for all t > T then we have from (5) that y′(t) < 0 and so

limt→∞ limy(t) exists.

Since y(t) > 0 eventually, limt→∞ limy(t) = l ≥ 0. We claim that l = 0;

suppose that l > 0. Then there exists t0 > 0 such that

y(t) ≥ l

2
, for t ≥ t0.

We have directly from (5) that

dy(t)
dt

≤ −a(t)
l

2

leading to

y(t)− y(t0) ≤ − l

2

∫ t

t0

a(s)ds,
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which implies that

y(t) → −∞ as t →∞.

But this contradicts the eventual positivity of y.

Thus

lim
t→∞

y(t) = l = 0.

If y(t) < 0 for t > T, the arguments are similar.

Thus the result follows from

lim
t→∞

y(t) = 0.
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ON THE HOMOGENIZATION OF A CLIMATIZATION PROBLEM

CLAUDIA TIMOFTE

Abstract. This paper deals with the homogenization of a nonlinear model

for heat conduction through the exterior of a domain containing period-

ically distributed conductive grains. We assume that on the walls of the

grains we have climatizators governing the heat flux through the boundary.

The effective behavior of this nonlinear flow is described by a new elliptic

boundary-value problem containing an extra zero-order term which cap-

tures the effect of the boundary climatization.

1. Introduction

The aim of this paper is to study the homogenization of some nonlinear ther-

mal flows through periodically perforated domains. We will focus our attention on a

nonlinear problem which describes the heat conduction through the exterior of a do-

main containing periodically distributed conductive grains (or conductive obstacles).

We suppose that on the walls of the grains we have climatizators governing the heat

flux through the boundary.

Let Ω be an open bounded set in Rn and let us perforate it by holes. As

a result, we obtain an open set Ωε which will be referred to as being the perforated

domain; ε represents a small parameter related to the characteristic size of the per-

forations.

The nonlinear problem studied in this paper concerns the stationary flow of

a fluid confined in Ωε, of temperature uε, with a given heat flux on the boundary of

Received by the editors: 01.11.2004.
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the grains: 
−Df∆uε = f in Ωε,

−Df
∂uε

∂ν
= aεg(uε) on Sε,

uε = 0 on ∂Ω.

(1)

Here, ν is the exterior unit normal to Ωε, a > 0, f ∈ L2(Ω) and Sε is the boundary

of our porous medium Ω \Ωε. Moreover, the fluid is assumed to be homogeneous and

isotropic, with a constant diffusion coefficient Df > 0.

In the semilinear boundary condition on Sε in problem (1) the function g

is assumed to be given. We shall address here the case of a single-valued maximal

monotone graph with g(0) = 0, i.e. the case in which g is the derivative of a convex

lower semicontinuous function G. This situation is well illustrated by the following

example, which is of practical importance in climatization problems:

g(r) =


1 r ≥ 1

k
,

kr | r |< 1
k
,

−1 r ≤ −1
k
,

for a given k > 0.

The existence and uniqueness of a weak solution of (1) can be settled by using

the classical theory of semilinear monotone problems (see [1]). As a result, we know

that there exists a unique weak solution uε ∈ V ε
⋂
H2(Ωε), where

V ε = {v ∈ H1(Ωε) | v = 0 on ∂Ω}.

If with Ωε we associate the following nonempty convex subset of V ε:

Kε = {v ∈ V ε | G(v)|
Sε

∈ L1(Sε)}, (2)

then uε is also known to be the unique solution of the following variational problem:
Find uε ∈ Kε such that

Df

∫
Ωε

DuεD(vε − uε)dx−
∫
Ωε

f(vε − uε)dx+ a 〈µε, G(vε)−G(uε)〉 ≥ 0,

∀vε ∈ Kε,

(3)
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where µε is the linear form on W 1,1
0 (Ω) defined by

〈µε, ϕ〉 = ε

∫
Sε

ϕdσ ∀ϕ ∈W 1,1
0 (Ω).

From a geometrical point of view, we shall just consider periodic structures

obtained by removing periodically from Ω, with period εY (where Y is a given hyper-

rectangle in Rn), an elementary hole T which has been appropriated rescaled and

which is strictly included in Y , i.e. T ⊂ Y .

We shall prove that the solution uε, properly extended to the whole of Ω,

converges to the unique solution of the following variational inequality:
u ∈ H1

0 (Ω)∫
Ω

QDuD(v − u)dx ≥
∫
Ω

f(v − u)dx− a
|∂T |∣∣Y \ T

∣∣
∫
Ω

(G(v)−G(u))dx,

∀v ∈ H1
0 (Ω).

(4)

Here, Q = ((qij)) is the homogenized matrix (symmetric and positive-definite):

qij = Df

δij +
1∣∣Y \ T

∣∣
∫

Y \T

∂χj

∂yi
dy

 , (5)

defined in terms of the functions χ
i

, i = 1, ..., n, solutions of the cell problems


−∆χ

i

= 0 in Y \ T ,

∂(χi + yi)
∂ν

= 0 on ∂T,

χi Y − periodic.

(6)

We can treat in a similar manner the case of a multi-valued maximal mono-

tone graph, which includes various semilinear boundary-value problems, such as

Dirichlet or Neumann problems, Robin boundary conditions, Signorini’s unilateral

conditions, problems arising in chemistry (see [2], [4] and [5]).

The structure of the paper is as follows: first, let us mention that we shall just

focus on the case n ≥ 3. The case n = 2 is much more simpler and we shall omit to

treat it. Section 2 is devoted to the setting of our problem and to the formulation of
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the main result of this paper. Section 3 contains some necessary preliminary results.

In the last section we give the proof of our main result.

2. Setting of the problem and the main result

Let Ω be a smooth bounded connected open subset of Rn (n ≥ 3) and let Y

= [0, l1[×...[0, ln[ be the representative cell in Rn. Denote by T an open subset of Y

with smooth boundary ∂T such that T ⊂ Y .

Let ε be a real parameter taking values in a sequence of positive numbers

converging to zero. For each ε and for any integer vector k ∈ Zn, set T ε
k = ε(kl + T )

the translated image of εT by the vector kl = (k1l1, ..., knln) and denote by T ε the set

of all the holes contained in Ω, i.e. T ε =
⋃ {

T ε
k | T ε

k⊂Ω, k ∈ Zn
}
. Set Ωε = Ω \ T ε

and Sε = ∪{∂T ε
k | T ε

k⊂Ω, k ∈ Zn}. Also, let Y ∗ = Y \T and ρ =
|Y ∗|
|Y |

. Moreover, for

an arbitrary function ψ ∈ L2(Ωε), we shall denote by ψ̃ its extension by zero inside

the holes.

As already mentioned, we are interested in studying the asymptotic behavior

of the solution of problem (1). We shall treat the case in which the function g

appearing in (1) has a single-valued maximal monotone graph in R×R, with g(0) = 0.

Also, if we denote by D(g) the domain of g, i.e. D(g) = {ξ ∈ R | g(ξ) 6= ∅}, then we

suppose that D(g) = R. Moreover, we assume that g is continuous and there exist

C ≥ 0 and an exponent q, with 0 ≤ q < n/(n− 2), such that

|g(v)| ≤ C(1 + |v|q). (7)

We know that in this case there exists a lower semicontinuous convex function G

from R to ] −∞,+∞], G proper, i.e. G 6≡ +∞ such that g is the subdifferential of

G, g = ∂G (G is an indefinite ”integral“ of g). Let G(v) =
v∫
0

g(s)ds.

If the convex set Kε is defined by (2), then, for a given function f ∈ L2(Ω), the weak

solution of the problem (1) is also the unique solution of the variational inequality

120



ON THE HOMOGENIZATION OF A CLIMATIZATION PROBLEM

(3). Also, notice that uε is the unique solution of the minimization problem: uε ∈ Kε,

Jε(uε) = inf
v∈Kε

Jε(v),

where

Jε(v) =
1
2
Df

∫
Ωε

|Dv|2 dx+ a 〈µε, G(v)〉 −
∫
Ωε

fvdx.

Let us introduce the following functional defined on H1
0 (Ω):

J0(v) =
1
2

∫
Ω

QDvDvdx+ a
|∂T |
|Y ∗|

∫
Ω

G(v)dx−
∫
Ω

fvdx.

The main result of this paper is the following one:

Theorem 2.1. One can construct an extension P εuε of the solution uε of the vari-

ational inequality (3) such that

P εuε ⇀ u weakly in H1
0 (Ω),

where u is the unique solution of the minimization problem
Find u ∈ H1

0 (Ω) such that

J0(u) = inf
v∈H1

0 (Ω)
J0(v).

(8)

Moreover, G(u) ∈ L1(Ω). Here, Q = ((qij)) is the classical homogenized matrix,

whose entries were defined by (5)-(6).

3. Preliminary results

In order to extend the solution uε of problem (1) to the whole of Ω, let us

recall the following well-known result (see [3]):

Lemma 3.1. There exists a linear continuous extension operator P ε ∈ L(L2(Ωε);

L2(Ω)) ∩ L(V ε;H1
0 (Ω)) and a positive constant C, independent of ε, such that, for

any v ∈ V ε,

‖P εv‖L2(Ω) ≤ C ‖v‖L2(Ωε)

and

‖∇P εv‖L2(Ω) ≤ C ‖∇v‖L2(Ωε) .
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For getting the effective behavior of our solution uε, we have to pass to the

limit in (3). In order to do this, let us introduce, for any h ∈ Ls′(∂T ), 1 ≤ s′ ≤ ∞,

the linear form µε
h on W 1,s

0 (Ω) defined by

〈µε
h, ϕ〉 = ε

∫
Sε

h(
x

ε
)ϕdσ ∀ϕ ∈W 1,s

0 (Ω),

with 1/s+ 1/s′ = 1. It is proved in [2] that

µε
h → µh strongly in (W 1,s

0 (Ω))′, (9)

where 〈µh, ϕ〉 = µh

∫
Ω

ϕdx, with µh =
1
|Y |

∫
∂T

h(y)dσ.

In the particular case in which h ∈ L∞(∂T ) or even h is constant, we have

µε
h → µh strongly in W−1,∞(Ω). (10)

We shall denote by µε the above introduced measure in the case in which h = 1.

Let F be a continuously differentiable function, monotonously non-decreasing

and such that F (v) = 0 iff v = 0. We shall suppose that there exist a positive constant

C and an exponent q, with 0 ≤ q < n/(n − 2), such that
∣∣∣∣∂F∂v

∣∣∣∣ ≤ C(1 + |v|q). It is

not difficult to prove (see [4]) that for any ϕ ∈ D(Ω) = C∞0 (Ω) and for any zε ⇀ z

weakly in H1
0 (Ω), we get

ϕF (zε) ⇀ ϕF (z) weakly in W 1,q
0 (Ω), (11)

where q =
2n

q(n− 2) + n
.

4. Proof of the main result

Proof of Theorem 2.1. Let uε be the solution of the variational inequality (3) and

let P εuε be the extension of uε given by Lemma 3.1. It is not difficult to see that

P εuε is bounded in H1
0 (Ω). So by extracting a subsequence, one has

P εuε ⇀ u weakly in H1
0 (Ω).
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Let ϕ ∈ D(Ω). By classical regularity results χi ∈ L∞. Using the boundedness of χi

and ϕ, there exists M ≥ 0 such that
∥∥∥∥ ∂ϕ∂xi

∥∥∥∥
L∞

∥∥∥∥∥∥χi

∥∥∥∥∥∥
L∞

< M . Let

vε = ϕ+
∑

i

ε
∂ϕ

∂xi
(x)χ

i

(
x

ε
).

Then, vε ∈ Kε, which will allow us to take it as a test function in (3). Moreover,

vε → ϕ strongly in L2(Ω). If we compute Dvε, we get:

Dvε =
∑

i

∂ϕ

∂xi
(x)(ei +Dχ

i

(
x

ε
)) + ε

∑
i

D
∂ϕ

∂xi
(x)χ

i

(
x

ε
),

where ei, 1 ≤ i ≤ n, are the elements of the canonical basis in Rn.

Using vε as a test function in (3), we can write

Df

∫
Ω

DP εuε(̃Dvε)dx ≥
∫
Ωε

f(vε − uε)dx+

+Df

∫
Ωε

DuεDuεdx− a 〈µε, G(vε)−G(uε)〉 . (12)

Denote

ρQej =
1

|Y ∗|
Df

∫
Y ∗

(Dχ
j

+ ej)dy, (13)

where ρ = |Y ∗| / |Y |. Neglecting the term ε
∑
i

D ∂ϕ
∂xi

(x)χ
i

(x
ε ) which actually tends

strongly to zero, we can pass easily to the limit in the left-hand side of (12). Hence

Df

∫
Ω

DP εuεD̃vεdx→
∫
Ω

ρQDuDϕdx. (14)

For the first term of the right-hand side of (12) we get∫
Ωε

f(vε − uε)dx =
∫
Ω

fχΩε (vε − P εuε)dx→
∫
Ω

fρ(ϕ− u)dx. (15)

For the third term of the right-hand side of (12), assuming (7) for the maximal

monotone graph g and using (11) written for G and for zε = P εuε, we get

G(P εuε) ⇀ G(u) weakly in W 1,q
0 (Ω).
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Combining this with the convergence (10) written for h = 1, we have

〈µε, G(P εuε)〉 → |∂T |
|Y |

∫
Ω

G(u)dx.

Using a similar technique for the convergence of 〈µε, G(vε)〉, we obtain

a 〈µε, G(vε)−G(P εuε)〉 → a
|∂T |
|Y |

∫
Ω

(G(ϕ)−G(u))dx. (16)

For passing to the limit in the second term of the right-hand side of (12) let us write

down the subdifferential inequality

Df

∫
Ωε

DuεDuεdx ≥ Df

∫
Ωε

DwεDwεdx+ 2Df

∫
Ωε

Dwε(Duε −Dwε)dx, (17)

for any wε ∈ H1
0 (Ω). Reasoning as before and choosing wε = ϕ +

∑
iε
∂ϕ

∂xi
(x)χ

i

(
x

ε
),

where ϕ enjoys similar properties as the corresponding ϕ, the right-hand side of the

inequality (17) passes to the limit and one has

lim inf
ε→0

Df

∫
Ωε

DuεDuεdx ≥
∫
Ω

ρQDϕDϕdx+ 2
∫
Ω

ρQDϕ(Du−Dϕ)dx,

for any ϕ ∈ D(Ω) and, by density, for any ϕ ∈ H1
0 (Ω). So, for u ∈ H1

0 (Ω), we have

lim inf
ε→0

Df

∫
Ωε

DuεDuεdx ≥
∫
Ω

ρQDuDudx. (18)

Putting together (14)-(16) and (18), we get∫
Ω

ρQDuDϕdx ≥
∫
Ω

fρ(ϕ− u)dx+
∫
Ω

ρQDuDudx− a
|∂T |
|Y |

∫
Ω

(G(ϕ)−G(u))dx,

for any ϕ ∈ D(Ω) and hence, by density, for any v ∈ H1
0 (Ω). So, finally, we obtain∫

Ω

QDuD(v − u)dx ≥
∫
Ω

f(v − u)dx− a
|∂T |
|Y ∗|

∫
Ω

(G(v)−G(u))dx,

which gives exactly the limit problem (4). This ends the proof of Theorem 2.1. �
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LII, Number 2, June 2007

NEW UNIVALENCE CRITERIA

HORIANA TUDOR

Abstract. In this paper we obtain sufficient conditions for univalence,

which generalize some well known univalence criteria for analytic functions

in the unit disk of the complex plane.

1. Introduction

Let A be the class of analytic functions f in the unit disk

U = {z ∈ C : |z| < 1}

of the form

f(z) = z + a2z
2 + . . . , z ∈ U. (1)

In order to prove our results a brief summary of Loewner parametric method

is needed.

A family of functions L(z, t), z ∈ U, t ∈ [0,∞) is a Loewner chain if L(z, t)

is analytic and univalent in U and L(z, t) is subordinate to L(z, s) for all 0 ≤ s < t.

Theorem 1. [4] Let r be a real number such that r ∈ (0, 1] and let L(z, t) = a1(t)z+. . .

be an analytic function in Ur = {z ∈ C : |z| < r}, for all t ≥ 0. If

i) L(z, t) is locally absolutely continuous in [0,∞), locally uniformly with

respect to Ur;

ii) a1 6= 0, limt→∞ |a1(t)| = ∞ and {L(z, t)/a1(t)}forms a normal family in

Ur;
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iii) z ∂L(z,t)
∂z = p(z, t)∂L(z,t)

∂t , z ∈ Ur, a.e. t ∈ [0,∞) where p(z, t) is analytic

in U and satisfies Re p(z, t) > 0, for all z ∈ U , t ∈ [0,∞),

then L(z, t) has an analytic and univalent extension to the whole unit disk U .

2. Main results

Theorem 2. Let α be a complex number such that Re α > 1
2 and let f ∈ A. Let g

and h be two analytic functions in U , g(z) = 1 + b1z + . . ., h(z) = c0 + c1z + . . .. If

the following inequalities are satisfied∣∣∣∣ 1
α
· f ′(z)

g(z)
− 1

∣∣∣∣ < 1, z ∈ U (2)∣∣∣∣( 1
α
· f ′(z)

g(z)
− 1

)
|z|4+ (3)

(1− |z|2)|z|2z
[(

1
α
− 1

)
f ′(z)
f(z)

+
2
α
· f ′(z)h(z)

g(z)
+

g′(z)
g(z)

]
+ (1− |z|2)2z2·[(

1
α
− 1

)
f ′(z)h(z)

f(z)
+

1
α
· f ′(z)h2(z)

g(z)
+

g′(z)h(z)
g(z)

− h′(z)
]∣∣∣∣ ≤ |z|2

for all z ∈ U , then the function f is univalent in U .

Proof. We define

L(z, t) = f1−α(e−tz)
[
f(e−tz) +

(et − e−t)zg(e−tz)
1 + (et − e−t)zh(e−tz)

]α

and we will prove that L(z, t) satisfies theorem 1.

From the analyticity of the functions f , g and h it follows that L(z, t) is

analytic in a neighborhood Ur, r ∈ (0, 1] of z = 0.

Elementary calculation shows that

L(z, t) = a1(t)z + . . . where a1(t) = e(2α−1)t.

We have a1(t) 6= 0 and limt→∞ |a1(t)| = ∞.

Since L(z, t) is an analytic function in Ur, for all t ∈ (0,∞) we obtain that

there exist a number 0 < r1 < r and a constant k = k(r1) such that∣∣∣∣L(z, t)
a1(t)

∣∣∣∣ < k, z ∈ Ur1 , t ∈ (0,∞)

and hence {L(z, t)/a1(t)} forms a normal family in Ur1 .
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It can be easy see that ∂L(z,t)
∂t is an analytic function in Ur1 and hence we

obtain the absolute continuity requirements of theorem 1.

We define

p(z, t) = z
∂L(z, t)

∂z

/ ∂L(z, t)
∂t

and we will prove that the function p(z, t) has an analytic extension with positive real

part in U , for all t ≥ 0.

Let W (z, t) be the function defined by

W (z, t) =
p(z, t)− 1
p(z, t) + 1

.

Elementary calculation shows that

W (z, t) =
[

1
α

f ′(e−tz)
g(e−tz)

− 1
]

e−2t+ (4)

(1−e−2t)e−tz ·
[(

1
α
− 1

)
f ′(e−tz)
f(e−tz)

+
2
α

f ′(e−tz)h(e−tz)
g(e−tz)

+
g′(e−tz)
g(e−tz)

]
+(1−e−2t)2z2·

[(
1
α
− 1

)
f ′(e−tz)h(e−tz)

f(e−tz)
+

1
α

f ′(e−tz)h2(e−tz)
g(e−tz)

+
g′(e−tz)h(e−tz)

g(e−tz)
− h′(e−tz)

]
We have

|W (z, 0)| =
∣∣∣∣ 1
α
· f ′(z)

g(z)
− 1

∣∣∣∣
and

|W (0, t)| =
∣∣∣∣( 1

α
· f ′(0)

g(0)
− 1

)
e−2t +

(
1
α
− 1

)
(1− e−2t)

∣∣∣∣ =
∣∣∣∣ 1
α
− 1

∣∣∣∣
From (2) and since Re α > 1

2 we obtain that

|W (z, 0)| < 1 and also |W (0, t)| < 1. (5)

Let t be a fixed positive number. Since |e−tz| ≤ e−t < 1 for all z ∈ Ū =

{z ∈ C : |z| ≤ 1} it results that the function W (z, t) is analytic in Ū . By using the

maximum principle we obtain

|W (z, t)| < max
|ξ|=1

|W (ξ, t)| = |W (eiθ,t)|, (6)

where θ = θ(t) ∈ R.
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We denote u = e−t · eiθ. Then |u| = e−t < 1 and from (4) it results

|W (eiθ, t)| =
∣∣∣∣( 1

α
· f ′(u)

g(u)
− 1

)
|u|2+

(1− |u|2)u
[(

1
α
− 1

)
f ′(u)
f(u)

+
2
α
· f ′(u)h(u)

g(u)
+

g′(u)
g(u)

]
+

(1− |u|2)2

|u|2
u2

[(
1
α
− 1

)
f ′(u)h(u)

f(u)
+

1
α
· f ′(u)h2(u)

g(u)
+

g′(u)h(u)
g(u)

− h′(u)
]∣∣∣∣

The inequality (3) implies |W (eiθ, t)| ≤ 1 and by using (6) we obtain

|W (z, t)| < 1 for all z ∈ U and t > 0. From (5) it follows that |W (z, t)| < 1 for

all z ∈ U and t ≥ 0. Hence the requirements for the function p(z, t) are satisfied.

Finally, from Theorem 1 we obtain that the function L(z, t) has an analytic

and univalent extension to the whole unit disk U . For t = 0 we have L(z, t) = f(z),

z ∈ U and thus the function f is univalent in U .

Remark 1. The univalence criterion which results from Theorem 2 when

α = 1 is due to H. Ovesea-Tudor [2].

Specific choices for the functions g and h in Theorem 2 gives us various

univalence criteria, between them being the very well known Nehari’s criterion [1]

and also Ozaki’s criterion [3].

Corollary 1. Let α be a complex number, with Re α > 1
2 and let f ∈ A. Suppose

there exists an analytic function h in U , h(z) = c0 + c1z + . . . such as∣∣∣∣( 1
α
− 1

)
|z|4 + (1− |z|2)|z|2z

[(
1
α
− 1

)
f ′(z)
f(z)

+
2
α
· h(z) +

f ′′(z)
f ′(z)

]
+

+(1− |z|2)2z2

[(
1
α
− 1

)
f ′(z)h(z)

f(z)
+

1
α
· h2(z) +

f ′′(z)h(z)
f ′(z)

− h′(z)
]∣∣∣∣

≤ |z|2, z ∈ U (7)

then the function f is univalent in U .

Proof. It results from Theorem 2 with g = f ′.

If we choose g = f ′ and h = − 1
2 ·

f ′′

f ′ in Theorem 2 we obtain the following

univalence criterion.
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Corollary 2. [5]Let α be a complex number with Re α > 1
2 and let f ∈ A. Suppose∣∣∣∣( 1

α
− 1

)
|z|4 + (1− |z|2)|z|2

(
1
α
− 1

) (
zf ′(z)
f(z)

− zf ′′(z)
f ′(z)

)
+

+(1− |z|2)2
{

1
2
z2{f ; z}+

1
2

(
1
α
− 1

) [
1
2

(
zf ′′(z)
f ′(z)

)2

− z2f ′′(z)
f(z)

]}∣∣∣∣∣
≤ |z|2, z ∈ U (8)

then f is univalent in the unit disk U .

Remark 2. If we consider α = 1 in Corollary 2 we obtain the univalence

criterion due to Nehari [1].

Corollary 3. Let α be a complex number with Re α > 1
2 and let f ∈ A. If there

exists a function h : U → C h(z) = b0 + b1z + . . . such as∣∣∣∣ 1
α
· z2f ′(z)

f2(z)
− 1

∣∣∣∣ < 1, z ∈ U (9)

∣∣∣∣( 1
α
· z2f ′(z)

f2(z)
− 1

)
|z|4+ (10)

(1− |z|2)|z|2z
[
α + 1

α
· f ′(z)

f(z)
+

2
α
· z2f ′(z)h(z)

f2(z)
− 2

z

]
+

+(1− |z|2)z2

[
α + 1

α
· f ′(z)h(z)

f(z)
+

1
α
· z2f ′(z)h2(z)

f2(z)
− 2h(z)

z
− h′(z)

]∣∣∣∣ ≤ |z|2,

for all z ∈ U , then f is univalent in U .

Proof. It results from Theorem 2 with g(z) =
(

f(z)
z

)2

.

Finally, if we choose g(z) =
(

f(z)
z

)2

and h(z) = 1
z −

f(z)
z2 in Theorem 2 we

obtain the following corollary.

Corollary 4. [6]Let α be a complex number with Re α > 1
2 and let f ∈ A. Suppose∣∣∣∣ 1

α
· z2f ′(z)

f2(z)
− 1

∣∣∣∣ < 1, z ∈ U (11)

∣∣∣∣ 1
α
· z2f ′(z)

f2(z)
− 1 +

α− 1
α

(1− |z|2)zf ′(z)
f(z)

∣∣∣∣ < |z|2, z ∈ U (12)

then the function f is univalent in the unit disk.
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Remark 3. If we consider α = 1 in Corollary 4 we obtain the univalence

criterion due to Ozaki [3].

References

[1] Nehari, C., The Schwartzian derivative and Schlicht functions, Bull. Amer. Math. Soc.

55(1949), 545-551.

[2] Ovesea-Tudor, H., Owa, S., An extension of the univalence criteria of Nehari and Ozaki,

Hokkaido Math. J (to appear).

[3] Ozaki, S., Nokawa, M., The Schwartzian derivative and univalent functions, Proc. Amer.

Math. Soc. 33(2), 1972, 392-394.

[4] Pommerenke, Ch., Univalent function, Vandenhoech Ruprecht in Göttingen, 1975.

[5] Răducanu, D., On a univalence criterion, Mathematica 37(60), 1-2, 1995, 227-231.
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INDECOMPOSABLE SUBGROUPS
OF TORSION-FREE ABELIAN GROUPS

DUMITRU VĂLCAN

Dedicated to Professor Grigore Călugăreanu on his 60th birthday

Abstract. The present work gives descriptions of some classes of torsion-

free abelian groups which have indecomposable subgroups, and for such a

group we will present the structure of these subgroups.

All through this paper by group we mean abelian group in additive notation,

and we will mark with P the set of all prime numbers, with r(A) - the rank of

the group A and with t(A) - the type of A. According to [2,27.4], if a group A is

indecomposable, then it is either torsion-free or cocyclic. Since the case of cocyclic

groups (so of torsion groups) is well-known, in this paper we will present certain

classes of torsion-free abelian groups which have indecomposable subgroups, properly

constructing these subgroups.

Let G be a group of rank r and let L = {xi}i∈I be a maximal independent

system in G; I is a index set with |I| = r. Then, according to [2,16.1], 〈L〉 =
⊕
i∈I

〈xi〉.

For every i ∈ I, we mark with Xi the pure subgroup of G, generated by {xi}. Then,

for every i ∈ I, the subgroup Xi is (homogeneous) of rank one and t(Xi) = t(xi) = ti.

Therefore any group of rank r has a completely decomposable subgroup of the same

rank. This motivates the study of our problem for completely decomposable groups.

For the beginning we have:
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Theorem 1. Let G =
⊕
i∈I

Gi be a torsion-free group with the following

properties:

1) I is at most countable index set;

2) For every i ∈ I, Gi is a reduced group and r(Gi) = 1;

3) There is at most countable set P0 = {p1, p2, . . . , pn, . . . } of distinct prime

numbers, with the following properties:

i) for every pk ∈ P0, Gk is pk-divisible,

ii) there is plk ∈ P0 \ {pk} such that Gk is not plk -divisible.

Then G has an indecomposable subgroup A with r(A) = |P0|.

Proof. Let G be a group as in the statement. For every pk ∈ P0, we consider

the groups Epk
= 〈p−∞k gk〉 and Hpk

= 〈p−∞k gk, p−1
lk

gk〉, where plk ∈ P0 \ {pk} and

gk ∈ Gk \ {0}. Then, for every pk ∈ P0, Epk
is a subgroup in Hpk

and r(Epk
) = 1.

Let be A = 〈
⊕

pk∈P0

Epk
, p−1

l1
g1 + p−1

l2
g2, p

−1
l1

g1 + p−1
l3

g3, . . . , p
−1
l1

g1 + p−1
ln

gn, . . .〉. Then

A ≤
⊕

pk∈P0

Hpk
≤

⊕
i∈I

Gi and, for every pk ∈ P0, neither gk nor gk is divisible by

plk ∈ P0 \ {pk} in A. (1)

Since, for every pk ∈ P0, all elements of Epk
are divisible by every power of

pk, and, for every ps ∈ P0\{pk}, Eps
does not contain any such except for 0, it follows

that, for every pk ∈ P0, Epk
is fully invariant in A. On the other hand, since, for

every pk ∈ P0, Hpk
/Epk

is torsion, it follows that (
⊕

pk∈P0

Hpk
)/(

⊕
pk∈P0

Epk
) is torsion

too. According to [1,1.6.12], it follows that
⊕

pk∈P0

Epk
is an essential subgroup of A.

(2)

We are going to show that A is indecomposable. In this way we suppose that

A = B⊕C. Then, according to [2,9.3], for every pk ∈ P0, Epk
= (Epk

∩B)⊕(Epk
∩C).

Since each Epk
is indecomposable, it follows that, for every pk ∈ P0, either Epk

∩B = 0

or Epk
∩ C = 0. So, for every pk ∈ P0, either Epk

⊆ B or Epk
⊆ C. We suppose

that there is k 6= 1 such that Ep1 ⊆ B and Epk
⊆ C. In this case we consider the

element p−1
l1

g1 + p−1
lk

gk = b + c, with b ∈ B and c ∈ C. It follows that plkg1 + pl1gk =

pl1plk(b+ c), that is plk(g1−pl1b) = pl1(gk−plkc) = 0, which is impossible, according
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to the statement (1). Therefore, for every pk ∈ P0, either Epk
⊆ B in which case

C = 0, or Epk
⊆ C in which case B = 0, according to the statement (2). It follows

that A is indecomposable and since r(A) = |P0|, the theorem is completely proved.

Corollary 2. If G =
⊕
i∈I

Gi is a group which satisfies the conditions from

Theorem 1 and the sets I and P0 are equipotent, then G has indecomposable subgroups

of every rank m ≤ r(G).

Now we obtain the example 2 from [3,p.123]:

Corollary 3. Let G =
⊕
i∈I

Gi be a group which satisfies the conditions from

Theorem 1. If there is q ∈ P \P0 such that in the condition 3) of Theorem 1, for every

pk ∈ P0, plk may be replaced by q, then G has indecomposable subgroups of every rank

m ≤ |P0|.

Proof. Keeping the notations from Theorem 1, for every cardinal m ≤ |P0|,

we consider the indecomposable subgroup Am = 〈
⊕

pk∈P
(m)
0

Epk
, q−1(g1 + g2), q

−1(g1 +

g3), . . . , q
−1(g1 + gm)〉, where P

(m)
0 is a subset of cardinal m of P0.

Other consequences of Theorem 1:

Corollary 4. Let G =
⊕
p∈P

Gp be a torsion-free group with the following

properties:

1) For every p ∈ P , Gp is p-divisible and r(Gp) = 1;

2) For every p ∈ P , there is a qp ∈ P \ {p} for which Gp is not qp-divisible.

Then G has indecomposable subgroups of every rank m ≤ r(G).

Proof. Let G be a group as in the statement. According to the condition 1),

for every p ∈ P , there is a gp ∈ Gp such that h
Gp
p (gp) = ∞. From the condition 2) it

follows that, for every p ∈ P , there is a qp ∈ P \ {p} for which there is a gp ∈ Gp such

that h
Gp
qp (gp) = 1. Since r(Gp) = 1, it follows that gp and gp are linear dependent;

so h
Gp
p (gp) = ∞. Now, for every pk ∈ P , we consider the groups Epk

= 〈p−∞k , gpk
〉

and Hpk
= 〈p−∞k gpk

, q−1
pk

gpk
〉. Then, for every pk ∈ P , Epk

is a subgroup of index

qpk
in Hpk

and r(Epk
) = 1. For any cardinal m ≤ r(G), we consider the subgroup

Am = 〈
⊕

pk∈P (m)

Epk
, q−1

p1
gp1 + q−1

p2
gp2 , q

−1
p1

gp1 + q−1
p3

gp3 , . . . , q
−1
p1

gp1 + q−1
pm

qpm
〉, where
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P (m) is a subset of cardinal m of P . Following the same reasoning as in Theorem 1,

we obtain that Am is indecomposable.

Corollary 5. For every p ∈ P , we consider the group Q(p) of all rational

numbers whose denominators are powers of p. Then the group G =
⊕
p∈P

Q(p) has

indecomposable subgroups of every rank m ≤ r(G).

Proof. For every p ∈ P , t(Q(p)) = (0, . . . , 0,∞, 0, . . . ), where ∞ stands at

the proper place of the p-height hp. So the group G satisfies the conditions from

Corollary 4.

Corollary 6. If I is a index set with |I| ≤ |P |, then the group Q∗ = ⊕IQ

has indecomposable subgroups of every rank m ≤ |I|.

From Corollary 3 it follows:

Corollary 7. We consider G a reduced, torsion-free of rank one group,

I at most countable index set and let be G∗ = ⊕IG. If there is a set P0 =

{p1, p2, . . . , pn, . . . } of distinct prime numbers with the property that, for every pk ∈ P0

there is gk ∈ G (not necessarily distinct) such that hG
pk

(gk) = ∞, and there is

q ∈ P \ P0, for which there is gk ∈ Gk such that hG
q (gk) = 1, then G has inde-

composable subgroups of every rank m ≤ |P0|.

One can notice that there is a basic condition in all the cases we have men-

tioned above: the direct summands of group G have elements of infinite p-height,

for certain prime numbers p. Afterwards this condition is replaced by another: the

existence of a rigid system in group G. For the beginning we generalize [3,88.3].

Theorem 8. Let be {Hi|i ∈ I} a family of torsion-free groups such that, for

every i ∈ I, there is Gi ≤ Hi, where {Gi|i ∈ I} is a rigid system of groups, with the

property that there is a set P0 = {pi|i ∈ I} of prime numbers (not necessarily distinct)

such that, for every pi ∈ P0, there is a gi ∈ Gi with hHi
pi

(gi) = 1 and which is not

divisible by pi in Gi. Then the group H =
⊕
i∈I

Hi has indecomposable subgroups of

every rank m ≤ |I|.

Proof. Let m be any cardinal, m ≤ |I| and let I(m) be a subset of cardinal

m of I. According to the hypothesis, for every i ∈ I, there is a pi ∈ P0 for which
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there is a gi ∈ Gi which is not divisible by pi in Gi. Now we consider the subgroup

Am = 〈
⊕

ij∈I(m)

Gij
, p−1

i1
gi1 + p−1

i2
gi2 , p

−1
i1

gi1 + p−1
i3

gi3 , . . . , p
−1
i1

gi1 + p−1
im

gim
〉 of H. Then,

for every pi ∈ P0, gi is not divisible by pi in A. Since {Gi|i ∈ I} is a rigid system

of groups, for every i ∈ I, Gi is fully invariant in H; so, for every i ∈ I, Gi is fully

invariant in Am. We suppose that Am = Bm ⊕ Cm. Then, for every ij ∈ I(m),

Gij = (Gij ∩ Bm) ⊕ Gij ∩ Cm). Since each Gij is indecomposable, it follows that,

for every ij ∈ I(m), either Gij ∩ Bm = 0 or Gij ∩ Cm = 0. So, for every ij ∈ I(m),

either Gij
⊆ Bm or Gij

⊆ Cm. We suppose that there is j 6= 1 such that Gi1 ⊆ Bm

and Gij
⊆ Cm. In this case we consider the element p−1

i1
gi1 + p−1

ij
gij

= bm + cm, with

bm ∈ Bm and cm ∈ Cm. It follows that pi1 |gi1 and pij |gij in Am, which is impossible,

according to the hypothesis. Therefore, for every ij ∈ I(m), either Gij ⊆ Bm in which

case Cm = 0 or Gij
⊆ Cm in which case Bm = 0, because

⊕
ij∈I(m)

Gij
is essential in Am

(in this way it is straightforward to verify that Am/(
⊕

ij∈I(m)

Gij
) is torsion). It follows

that Am is indecomposable and since r(Am) = |I(m)|, the theorem is completely

proved.

An immediate consequence of Theorem 8 is:

Corollary 9. Let {Hi|i ∈ I} be a family of torsion-free groups such that,

for every i ∈ I, there is Gi ≤ Hi, where {Gi|i ∈ I} is a family of reduced of rank

one groups, with the property that, for every i1, i2 ∈ I, i1 6= i2, t(Gi1) and t(Gi2)

are incomparable. Then the group H =
⊕
i∈I

Hi has indecomposable subgroups of every

rank m ≤ |I|.

Proof. According to the hypothesis, {Gi|i ∈ I} is a rigid system of groups

and there is a set P0 = {pi|i ∈ I} of prime numbers (not necessarily distinct) such

that, for every pi ∈ P0, there is a gi ∈ Gi with hHi
pi

(gi) = 1 and which is not divisible

by pi in Gi. Since |I| = r(G), the statement follows from Theorem 8.

Let G = B ⊕ C be any group and A a subgroup of G. According to [2,p.44],

there are subgroups B2, B1 of B and there are subgroups C2, C1 of C such that

B2 ≤ B1, C2 ≤ C1, B1 ⊕ C1 is the minimal direct sum containing A, and B2 ⊕ C2 is
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the maximal direct sum contained in A, with components in B, respectively C. So

B2 ⊕C2 ≤ A ≤ B1 ⊕C1 and it is straightforward to verify that A is a subdirect sum

of B1 and C1 with kernels B2, respectively C2. Then, according to [2,p.43,44] the

following relationships hold:

A/(B2 ⊕ C2) ∼= B1/B2
∼= C1/C2 (3)

(B1 ⊕ C1)/A ∼= A/(B2 ⊕ C2) (4)

A/B2
∼= C1 (5)

A/C3
∼= B1. (6)

Remark 10. Let G = B ⊕ C be any group and A a subgroup of G. If C is

free and A is indecomposable, then either r(A) = I or A ⊆ B.

Proof. According to the hypothesis, keeping the above notation, C1 is free.

In this case, the relationship (4) and [2,14.4] show that B2 is a direct summand in A

- which is in contradiction to the hypothesis.

Now, we suppose that G = B⊕C is a torsion-free group, with r(B) = r(C) =

1. Then, according to the relationships (3), B2 = 0 if and only if C2 = 0; in this

case, according to the condition (4), (B1 ⊕C1)/A ∼= A - which is impossible, because

(B1 ⊕ C1)/A is torsion and A is torsion-free. Therefore B2 6= 0 and C2 6= 0. On the

other hand, if B1 = B2 then C1 = C2 (see (3)) and in this case A = B2 ⊕ C2.

Of course B2 ⊕ C2 is essential in A (A/(B2 ⊕ C2) is torsion), B2 = B ∩ A,

and C2 = C ∩ A. It follows that if B2 is a proper subgroup of B1, then also C2 is a

proper subgroup of C1 and

A = 〈B2 ⊕ C2, a1, a2, . . .〉 (7)

where, for every i = 1, 2, . . . , there is a bi
1 ∈ B1 \ {0} and there is a ci

1 ∈ C1 \ {0} such

that ai = bi
1 + ci

1.

Now we can present the structure of indecomposable subgroups of completely

decomposable groups of rank 2.
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Theorem 11. Let G = B ⊕C be a torsion-free group with r(B) = r(C) = 1

and let A be any subgroup, of the form (7), of G. Then the following statements are

equivalent:

a) A is indecomposable;

b) i) for every ai ∈ A\(B2⊕C2), there are bi
2 ∈ B2 \{0} and ci

2 ∈ C2 \{0} for

which there are the prime numbers pi
2 and qi

2 (not necessarily distinct) such that bi
2 is

not divisible by pi
2 in B2, ci

2 is not divisible by qi
2 in C2 and ai = (pi

2)
−1bi

2 +(qi
2)
−1ci

2;

ii) the subgroups B2 and C2 are fully invariant in A.

Proof. In view of Theorem 8, suffice it to show that a) implies b). Let

A = 〈B2 ⊕ C2, b1 + c1, b2 + c2, . . .〉 be a subgroup, of the form (7), of G, where

b1, b2, · · · ∈ B \ B2 and c1, c2, · · · ∈ C \ C2. According to the hypothesis, B2 and C2

are reduced and not pure in B and C respectively. Let p be a prime number and let

b + c + (B2 ⊕C2) be an element of order p from A/(B2 ⊕C2). Then pb = x ∈ B2 and

pc = y ∈ C2. If x is divisible by p in B2, then b ∈ B2, what is in contradiction to the

hypothesis. It follows that x is not divisible by p in B2 and b = p−1x. Analogously it

follows that c = p−1y and the statement i) from point b) is completely proved.

If b + c + (B2 ⊕C2) is an element of order pr, with r ≥ 2, then we follow the

same reasoning.

For the proof of the second statement from point b) we distinguish two cases:

Case 1. t(B2) and t(C2) are incomparable. Then this gives the required

result.

Case 2. t(B2) ≤ t(C2). In this case there is a monomorphism f : B2 → C2;

so B2
∼= f(B2) = B∗2 ≤ C2. We consider the group A∗ = 〈B∗2 ⊕C2, a

∗
1, a

∗
2, . . .〉, where,

for every i = 1, 2, . . . a∗i = (pi
2)
−1(bi

2)
∗ + (qi

2)
−1ci

2, and (bi
2)
∗ = f(bi

2) ∈ B∗2 ; also we

consider the subgroup C3 = 〈C2, a
∗
1, a

∗
2, . . .〉 of A∗. Then, for every i = 1, 2, . . . there

is ni ∈ N∗ such that nia
∗
i ∈ C2. We are going to show that A∗ = B∗2 ⊕C3. Of course

A∗ = B∗2 +C3. Let a∗ be any element from A∗. We suppose that there are x∗, y∗ ∈ B2

and there are u, v ∈ C2, such that a∗ = x∗ + u + a∗i = y∗ + v + a∗j . Let be n ∈ N∗

such that n(a∗j − a∗i ) ∈ C2. Then n(x∗ − y∗) = n(v − u) + n(a∗j − a∗i ) = 0. Since G is

torsion-free, it follows that x∗ = y∗ and u + a∗i = v + a∗j , that is a∗ may be written in
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a unique way of the form b∗ + c, with b∗ ∈ B∗2 and c ∈ C3. Since A ∼= A∗, it follows

that A is completely decomposable, what is in contradiction to the hypothesis.

From Remark 10 or Theorem 11 we obtain:

Corollary 12. If B is a torsion-free of rank one group, then the group

G = B ⊕ Z has no indecomposable subgroups of rank 2.

Proof. If G is a group as in the statement, then there is no direct sum in G

which is not made up of fully invariant direct summands. Now the statement follows

from Theorem 11.
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Babeş-Bolyai University,

Faculty of Mathematics and Computer Science,
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Dedicated to Professor Grigore Călugăreanu on his 60th birthday

Abstract. The present work gives descriptions of some classes of torsion-

free abelian groups which have indecomposable subgroups, and for such a

group we will present the structure of these subgroups.

All through this paper by group we mean abelian group in additive notation,

and we will mark with P the set of all prime numbers, with r(A) - the rank of

the group A and with t(A) - the type of A. According to [2,27.4], if a group A is

indecomposable, then it is either torsion-free or cocyclic. Since the case of cocyclic

groups (so of torsion groups) is well-known, in this paper we will present certain

classes of torsion-free abelian groups which have indecomposable subgroups, properly

constructing these subgroups.

Let G be a group of rank r and let L = {xi}i∈I be a maximal independent

system in G; I is a index set with |I| = r. Then, according to [2,16.1], 〈L〉 =
⊕
i∈I

〈xi〉.

For every i ∈ I, we mark with Xi the pure subgroup of G, generated by {xi}. Then,

for every i ∈ I, the subgroup Xi is (homogeneous) of rank one and t(Xi) = t(xi) = ti.

Therefore any group of rank r has a completely decomposable subgroup of the same

rank. This motivates the study of our problem for completely decomposable groups.

For the beginning we have:
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Theorem 1. Let G =
⊕
i∈I

Gi be a torsion-free group with the following

properties:

1) I is at most countable index set;

2) For every i ∈ I, Gi is a reduced group and r(Gi) = 1;

3) There is at most countable set P0 = {p1, p2, . . . , pn, . . . } of distinct prime

numbers, with the following properties:

i) for every pk ∈ P0, Gk is pk-divisible,

ii) there is plk ∈ P0 \ {pk} such that Gk is not plk -divisible.

Then G has an indecomposable subgroup A with r(A) = |P0|.

Proof. Let G be a group as in the statement. For every pk ∈ P0, we consider

the groups Epk
= 〈p−∞k gk〉 and Hpk

= 〈p−∞k gk, p−1
lk

gk〉, where plk ∈ P0 \ {pk} and

gk ∈ Gk \ {0}. Then, for every pk ∈ P0, Epk
is a subgroup in Hpk

and r(Epk
) = 1.

Let be A = 〈
⊕

pk∈P0

Epk
, p−1

l1
g1 + p−1

l2
g2, p

−1
l1

g1 + p−1
l3

g3, . . . , p
−1
l1

g1 + p−1
ln

gn, . . .〉. Then

A ≤
⊕

pk∈P0

Hpk
≤

⊕
i∈I

Gi and, for every pk ∈ P0, neither gk nor gk is divisible by

plk ∈ P0 \ {pk} in A. (1)

Since, for every pk ∈ P0, all elements of Epk
are divisible by every power of

pk, and, for every ps ∈ P0\{pk}, Eps
does not contain any such except for 0, it follows

that, for every pk ∈ P0, Epk
is fully invariant in A. On the other hand, since, for

every pk ∈ P0, Hpk
/Epk

is torsion, it follows that (
⊕

pk∈P0

Hpk
)/(

⊕
pk∈P0

Epk
) is torsion

too. According to [1,1.6.12], it follows that
⊕

pk∈P0

Epk
is an essential subgroup of A.

(2)

We are going to show that A is indecomposable. In this way we suppose that

A = B⊕C. Then, according to [2,9.3], for every pk ∈ P0, Epk
= (Epk

∩B)⊕(Epk
∩C).

Since each Epk
is indecomposable, it follows that, for every pk ∈ P0, either Epk

∩B = 0

or Epk
∩ C = 0. So, for every pk ∈ P0, either Epk

⊆ B or Epk
⊆ C. We suppose

that there is k 6= 1 such that Ep1 ⊆ B and Epk
⊆ C. In this case we consider the

element p−1
l1

g1 + p−1
lk

gk = b + c, with b ∈ B and c ∈ C. It follows that plkg1 + pl1gk =

pl1plk(b+ c), that is plk(g1−pl1b) = pl1(gk−plkc) = 0, which is impossible, according
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to the statement (1). Therefore, for every pk ∈ P0, either Epk
⊆ B in which case

C = 0, or Epk
⊆ C in which case B = 0, according to the statement (2). It follows

that A is indecomposable and since r(A) = |P0|, the theorem is completely proved.

Corollary 2. If G =
⊕
i∈I

Gi is a group which satisfies the conditions from

Theorem 1 and the sets I and P0 are equipotent, then G has indecomposable subgroups

of every rank m ≤ r(G).

Now we obtain the example 2 from [3,p.123]:

Corollary 3. Let G =
⊕
i∈I

Gi be a group which satisfies the conditions from

Theorem 1. If there is q ∈ P \P0 such that in the condition 3) of Theorem 1, for every

pk ∈ P0, plk may be replaced by q, then G has indecomposable subgroups of every rank

m ≤ |P0|.

Proof. Keeping the notations from Theorem 1, for every cardinal m ≤ |P0|,

we consider the indecomposable subgroup Am = 〈
⊕

pk∈P
(m)
0

Epk
, q−1(g1 + g2), q

−1(g1 +

g3), . . . , q
−1(g1 + gm)〉, where P

(m)
0 is a subset of cardinal m of P0.

Other consequences of Theorem 1:

Corollary 4. Let G =
⊕
p∈P

Gp be a torsion-free group with the following

properties:

1) For every p ∈ P , Gp is p-divisible and r(Gp) = 1;

2) For every p ∈ P , there is a qp ∈ P \ {p} for which Gp is not qp-divisible.

Then G has indecomposable subgroups of every rank m ≤ r(G).

Proof. Let G be a group as in the statement. According to the condition 1),

for every p ∈ P , there is a gp ∈ Gp such that h
Gp
p (gp) = ∞. From the condition 2) it

follows that, for every p ∈ P , there is a qp ∈ P \ {p} for which there is a gp ∈ Gp such

that h
Gp
qp (gp) = 1. Since r(Gp) = 1, it follows that gp and gp are linear dependent;

so h
Gp
p (gp) = ∞. Now, for every pk ∈ P , we consider the groups Epk

= 〈p−∞k , gpk
〉

and Hpk
= 〈p−∞k gpk

, q−1
pk

gpk
〉. Then, for every pk ∈ P , Epk

is a subgroup of index

qpk
in Hpk

and r(Epk
) = 1. For any cardinal m ≤ r(G), we consider the subgroup

Am = 〈
⊕

pk∈P (m)

Epk
, q−1

p1
gp1 + q−1

p2
gp2 , q

−1
p1

gp1 + q−1
p3

gp3 , . . . , q
−1
p1

gp1 + q−1
pm

qpm
〉, where
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P (m) is a subset of cardinal m of P . Following the same reasoning as in Theorem 1,

we obtain that Am is indecomposable.

Corollary 5. For every p ∈ P , we consider the group Q(p) of all rational

numbers whose denominators are powers of p. Then the group G =
⊕
p∈P

Q(p) has

indecomposable subgroups of every rank m ≤ r(G).

Proof. For every p ∈ P , t(Q(p)) = (0, . . . , 0,∞, 0, . . . ), where ∞ stands at

the proper place of the p-height hp. So the group G satisfies the conditions from

Corollary 4.

Corollary 6. If I is a index set with |I| ≤ |P |, then the group Q∗ = ⊕IQ

has indecomposable subgroups of every rank m ≤ |I|.

From Corollary 3 it follows:

Corollary 7. We consider G a reduced, torsion-free of rank one group,

I at most countable index set and let be G∗ = ⊕IG. If there is a set P0 =

{p1, p2, . . . , pn, . . . } of distinct prime numbers with the property that, for every pk ∈ P0

there is gk ∈ G (not necessarily distinct) such that hG
pk

(gk) = ∞, and there is

q ∈ P \ P0, for which there is gk ∈ Gk such that hG
q (gk) = 1, then G has inde-

composable subgroups of every rank m ≤ |P0|.

One can notice that there is a basic condition in all the cases we have men-

tioned above: the direct summands of group G have elements of infinite p-height,

for certain prime numbers p. Afterwards this condition is replaced by another: the

existence of a rigid system in group G. For the beginning we generalize [3,88.3].

Theorem 8. Let be {Hi|i ∈ I} a family of torsion-free groups such that, for

every i ∈ I, there is Gi ≤ Hi, where {Gi|i ∈ I} is a rigid system of groups, with the

property that there is a set P0 = {pi|i ∈ I} of prime numbers (not necessarily distinct)

such that, for every pi ∈ P0, there is a gi ∈ Gi with hHi
pi

(gi) = 1 and which is not

divisible by pi in Gi. Then the group H =
⊕
i∈I

Hi has indecomposable subgroups of

every rank m ≤ |I|.

Proof. Let m be any cardinal, m ≤ |I| and let I(m) be a subset of cardinal

m of I. According to the hypothesis, for every i ∈ I, there is a pi ∈ P0 for which
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there is a gi ∈ Gi which is not divisible by pi in Gi. Now we consider the subgroup

Am = 〈
⊕

ij∈I(m)

Gij
, p−1

i1
gi1 + p−1

i2
gi2 , p

−1
i1

gi1 + p−1
i3

gi3 , . . . , p
−1
i1

gi1 + p−1
im

gim
〉 of H. Then,

for every pi ∈ P0, gi is not divisible by pi in A. Since {Gi|i ∈ I} is a rigid system

of groups, for every i ∈ I, Gi is fully invariant in H; so, for every i ∈ I, Gi is fully

invariant in Am. We suppose that Am = Bm ⊕ Cm. Then, for every ij ∈ I(m),

Gij = (Gij ∩ Bm) ⊕ Gij ∩ Cm). Since each Gij is indecomposable, it follows that,

for every ij ∈ I(m), either Gij ∩ Bm = 0 or Gij ∩ Cm = 0. So, for every ij ∈ I(m),

either Gij
⊆ Bm or Gij

⊆ Cm. We suppose that there is j 6= 1 such that Gi1 ⊆ Bm

and Gij
⊆ Cm. In this case we consider the element p−1

i1
gi1 + p−1

ij
gij

= bm + cm, with

bm ∈ Bm and cm ∈ Cm. It follows that pi1 |gi1 and pij |gij in Am, which is impossible,

according to the hypothesis. Therefore, for every ij ∈ I(m), either Gij ⊆ Bm in which

case Cm = 0 or Gij
⊆ Cm in which case Bm = 0, because

⊕
ij∈I(m)

Gij
is essential in Am

(in this way it is straightforward to verify that Am/(
⊕

ij∈I(m)

Gij
) is torsion). It follows

that Am is indecomposable and since r(Am) = |I(m)|, the theorem is completely

proved.

An immediate consequence of Theorem 8 is:

Corollary 9. Let {Hi|i ∈ I} be a family of torsion-free groups such that,

for every i ∈ I, there is Gi ≤ Hi, where {Gi|i ∈ I} is a family of reduced of rank

one groups, with the property that, for every i1, i2 ∈ I, i1 6= i2, t(Gi1) and t(Gi2)

are incomparable. Then the group H =
⊕
i∈I

Hi has indecomposable subgroups of every

rank m ≤ |I|.

Proof. According to the hypothesis, {Gi|i ∈ I} is a rigid system of groups

and there is a set P0 = {pi|i ∈ I} of prime numbers (not necessarily distinct) such

that, for every pi ∈ P0, there is a gi ∈ Gi with hHi
pi

(gi) = 1 and which is not divisible

by pi in Gi. Since |I| = r(G), the statement follows from Theorem 8.

Let G = B ⊕ C be any group and A a subgroup of G. According to [2,p.44],

there are subgroups B2, B1 of B and there are subgroups C2, C1 of C such that

B2 ≤ B1, C2 ≤ C1, B1 ⊕ C1 is the minimal direct sum containing A, and B2 ⊕ C2 is
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the maximal direct sum contained in A, with components in B, respectively C. So

B2 ⊕C2 ≤ A ≤ B1 ⊕C1 and it is straightforward to verify that A is a subdirect sum

of B1 and C1 with kernels B2, respectively C2. Then, according to [2,p.43,44] the

following relationships hold:

A/(B2 ⊕ C2) ∼= B1/B2
∼= C1/C2 (3)

(B1 ⊕ C1)/A ∼= A/(B2 ⊕ C2) (4)

A/B2
∼= C1 (5)

A/C3
∼= B1. (6)

Remark 10. Let G = B ⊕ C be any group and A a subgroup of G. If C is

free and A is indecomposable, then either r(A) = I or A ⊆ B.

Proof. According to the hypothesis, keeping the above notation, C1 is free.

In this case, the relationship (4) and [2,14.4] show that B2 is a direct summand in A

- which is in contradiction to the hypothesis.

Now, we suppose that G = B⊕C is a torsion-free group, with r(B) = r(C) =

1. Then, according to the relationships (3), B2 = 0 if and only if C2 = 0; in this

case, according to the condition (4), (B1 ⊕C1)/A ∼= A - which is impossible, because

(B1 ⊕ C1)/A is torsion and A is torsion-free. Therefore B2 6= 0 and C2 6= 0. On the

other hand, if B1 = B2 then C1 = C2 (see (3)) and in this case A = B2 ⊕ C2.

Of course B2 ⊕ C2 is essential in A (A/(B2 ⊕ C2) is torsion), B2 = B ∩ A,

and C2 = C ∩ A. It follows that if B2 is a proper subgroup of B1, then also C2 is a

proper subgroup of C1 and

A = 〈B2 ⊕ C2, a1, a2, . . .〉 (7)

where, for every i = 1, 2, . . . , there is a bi
1 ∈ B1 \ {0} and there is a ci

1 ∈ C1 \ {0} such

that ai = bi
1 + ci

1.

Now we can present the structure of indecomposable subgroups of completely

decomposable groups of rank 2.
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Theorem 11. Let G = B ⊕C be a torsion-free group with r(B) = r(C) = 1

and let A be any subgroup, of the form (7), of G. Then the following statements are

equivalent:

a) A is indecomposable;

b) i) for every ai ∈ A\(B2⊕C2), there are bi
2 ∈ B2 \{0} and ci

2 ∈ C2 \{0} for

which there are the prime numbers pi
2 and qi

2 (not necessarily distinct) such that bi
2 is

not divisible by pi
2 in B2, ci

2 is not divisible by qi
2 in C2 and ai = (pi

2)
−1bi

2 +(qi
2)
−1ci

2;

ii) the subgroups B2 and C2 are fully invariant in A.

Proof. In view of Theorem 8, suffice it to show that a) implies b). Let

A = 〈B2 ⊕ C2, b1 + c1, b2 + c2, . . .〉 be a subgroup, of the form (7), of G, where

b1, b2, · · · ∈ B \ B2 and c1, c2, · · · ∈ C \ C2. According to the hypothesis, B2 and C2

are reduced and not pure in B and C respectively. Let p be a prime number and let

b + c + (B2 ⊕C2) be an element of order p from A/(B2 ⊕C2). Then pb = x ∈ B2 and

pc = y ∈ C2. If x is divisible by p in B2, then b ∈ B2, what is in contradiction to the

hypothesis. It follows that x is not divisible by p in B2 and b = p−1x. Analogously it

follows that c = p−1y and the statement i) from point b) is completely proved.

If b + c + (B2 ⊕C2) is an element of order pr, with r ≥ 2, then we follow the

same reasoning.

For the proof of the second statement from point b) we distinguish two cases:

Case 1. t(B2) and t(C2) are incomparable. Then this gives the required

result.

Case 2. t(B2) ≤ t(C2). In this case there is a monomorphism f : B2 → C2;

so B2
∼= f(B2) = B∗2 ≤ C2. We consider the group A∗ = 〈B∗2 ⊕C2, a

∗
1, a

∗
2, . . .〉, where,

for every i = 1, 2, . . . a∗i = (pi
2)
−1(bi

2)
∗ + (qi

2)
−1ci

2, and (bi
2)
∗ = f(bi

2) ∈ B∗2 ; also we

consider the subgroup C3 = 〈C2, a
∗
1, a

∗
2, . . .〉 of A∗. Then, for every i = 1, 2, . . . there

is ni ∈ N∗ such that nia
∗
i ∈ C2. We are going to show that A∗ = B∗2 ⊕C3. Of course

A∗ = B∗2 +C3. Let a∗ be any element from A∗. We suppose that there are x∗, y∗ ∈ B2

and there are u, v ∈ C2, such that a∗ = x∗ + u + a∗i = y∗ + v + a∗j . Let be n ∈ N∗

such that n(a∗j − a∗i ) ∈ C2. Then n(x∗ − y∗) = n(v − u) + n(a∗j − a∗i ) = 0. Since G is

torsion-free, it follows that x∗ = y∗ and u + a∗i = v + a∗j , that is a∗ may be written in
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a unique way of the form b∗ + c, with b∗ ∈ B∗2 and c ∈ C3. Since A ∼= A∗, it follows

that A is completely decomposable, what is in contradiction to the hypothesis.

From Remark 10 or Theorem 11 we obtain:

Corollary 12. If B is a torsion-free of rank one group, then the group

G = B ⊕ Z has no indecomposable subgroups of rank 2.

Proof. If G is a group as in the statement, then there is no direct sum in G

which is not made up of fully invariant direct summands. Now the statement follows

from Theorem 11.
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BOOK REVIEWS

K. Burns and M. Gidea, Differential Geometry and Topology With a

View to Dynamical Systems, Chapman & Hall/CRC (Studies in Advanced
Mathematics), 2005, ISBN 1-58488-253-0, 978-1-58488-253-4, Hardcover, IX+389 pp.

This is a graduate course on the topology and differential geometry of smooth
manifolds, introducing, in parallel, the basic notions of smooth dynamical systems.

The first two chapters of the book introduce the basics of differential topol-
ogy (manifolds and maps, the tangent bundle, immersions, submersions, embeddings,
submanifolds, critical points, the Sard’s theorem) and vector fields and the associated
dynamical systems. The following three chapters make up a concise introduction
to Riemannian geometry, covering most of the standard material (Riemannian met-
rics, connections, geodesics, the exponential map, minimal geodesics, the Riemannian
distance, Riemannian curvature, Riemannian submanifolds, sectional and Ricci cur-
vature, Jacobi fields and conjugate points,manifolds of constant curvature). Chapter
6, Tensors and Differential Forms, is devoted, essentially, to integration theory of
manifolds, as well to the de Rham cohomology. It is also, introduced the singular
homology and it is given a proof of the de Rham theorem. Chapter 7 is concerned
with some global results in the theory of smooth manifolds and Riemannian geome-
try (the Brouwer degree, the intersection number, the fixed point index, the Lefschetz
number, the Euler characteristic and the Gauss-Bonnet theorem), while the chapter
8 covers the basic notions and results of Morse theory. Finally, the chapter 9 provides
a short introduction to the theory of hyperbolic dynamical systems.

There are plenty of worked examples in the book and each chapter ends with
a comprehensive list of exercises. Another feature that has to be remarked is the
presence of a great number of very suggestive and well realized graphical illustration.

The book is very well written, in a very pedagogical manner and it covers a
lot of material in a very clear way. I think this is an ideal introduction to differential
geometry and topology for beginning graduate students or advanced undergraduate
students in mathematics, but it will be, also, useful to physicists or other scientists
with an interests in differential geometry and dynamical systems.

Paul Blaga
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Donal O’Regan, Yeol Je Cho and Yu-Qing Chen, Topological Degree

Theory and Applications, Series in Mathematical Analysis and Applications (R.P.
Agarwal and D. O’Regan eds.), Vol. 10, Chapman & Hall/CRC, Taylor & Francis
Group, Boca Raton, 2006, 221 pp, ISBN 1-58488-648-X.

The degree theory for continuous maps on finite dimensional spaces was cre-
ated by Brouwer in 1910-1912, and later, for compact maps on infinite dimensional
spaces, by Leray and Schauder in 1934, and it has become one of the most useful
tool in nonlinear analysis. Since the 1960s, several extensions have been done for
various classes of non-compact type maps. The present book focuses on topological
degree theory in normed spaces and its applications to integral, ordinary differential
and partial differential equations.

The Contents are as follows: Chapter 1: Brouwer degree theory, presents the
construction of Brouwer degree, the degree for vanishing mean oscillation functions,
and in particular for Sobolev maps, of Brezis and Nirenberg (1995), and applications
to periodic and anti-periodic problems for ordinary differential equations in Rn.

Chapter 2: Leray-Schauder degree theory, starts with the basic result on the
approximation of a compact map by finite dimensional maps and presents the Leray-
Schauder extension of Brouwer degree to compact maps in Banach spaces. Then a
degree theory is described for upper semicontinuous compact maps with closed convex
values. Applications are given to bifurcations and to the existence of solutions of the
Cauchy problem, the Dirichlet problem for a second order partial differential equation,
and anti-periodic problems in Hilbert spaces.

Chapter 3: Degree theory for set contractive maps, presents the degree theory
for k-set contraction maps and condensing maps and some applications to the initial
value problem and anti-periodic problems for ordinary differential equations in Banach
spaces.

Chapter 4: Generalized degree theory for A-proper maps, is devoted to
Petryshyn’s generalized degree theory and some typical applications to periodic prob-
lem for second order differential equations and semilinear wave equation.

Chapter 5: Coincidence degree theory, introduces Mawhin’s degree for L-
compact maps and gives application to periodic ordinary differential equations.

Chapter 6: Degree theory for monotone-type maps, presents basic contribu-
tions of Skrypnik, Browder, Berkovitz, Mustonen, Kartsatos and others, to the con-
struction of the degree for monotone-type maps. Applications to evolution equations
are included.

Chapter 7: Fixed point index theory, is in connection with the problem of
the existence of non-negative solutions (in a cone) to operator equations. After
defining the fixed point index, the authors present a variety of fixed point theorems

142



BOOK REVIEWS

of compression-expansion type in cones of Banach spaces and give applications to
integral and differential equations.

The book is very well written, presents essential ideas and results with typical
applications, being extremely useful to the beginners in nonlinear analysis. Each
chapter of the book is concluded by a section of exercises and the bibliography contains
314 titles.

This is really a valuable text for self-study and special courses in nonlinear
analysis and also a good reference for anyone applying topological methods to integral,
ordinary and partial differential equations.

Radu Precup

Rajendra Bhatia, Positive Definite matrices, Princeton Series in Applied
Mathematics, Princeton University Press, Princeton and Oxford 2007, ix + 254 pp.,
ISBN 0-691-12918-5.

Denote byH be the n-dimensional Hilbert space Cn with inner product 〈x, y〉.
Let L(H) be the space of all linear operators on H and Mn = Mn(C) the space of
n×n-matrices over C. An operator A ∈ L(H) is identified with the associated matrix,
denoted also by A, with respect to the standard basis {ej} of Cn. A matrix A in Mn is
called positive if 〈x, Ax〉 ≥ 0 for all x ∈ Cn, and positive definite (or strictly positive)
if 〈x,Ax〉 > 0 for all x 6= 0.

The present book is devoted to the study of positive matrices, positive linear
maps, and positive definite functions. This is a rich field with numerous interesting
results and with deep and far reaching applications. One of the domains of appli-
cation, of great interest in the last time, is quantum information theory, where the
quantum communication channels are thought as completely positive trace preserving
linear maps. The author presents in the fourth chapter two fundamental results in
quantum entropy - the inequalities of Lieb-Ruskai and Furuta’s inequality. Recall
that the quantum entropy of a positive definite matrix A was defined in 1927 by J.
von Neumann by the formula S(A) = −tr(Alog A).

The first chapter of the book, 1. Positive matrices, presents the basic notions
and results: characterizations of positivity, the Schur product, block matrices. Note
that, as it was shown by T. Ando and M.-D. Choi in 1986, the 2× 2-block matrices
play a crucial role in the proofs of many results on positive matrices, a point made
very clear by the author of the book too.

Although many results in Chapters 2. Positive linear maps, and 3. Com-
pletely positive maps, hold in the more general framework of C∗-algebras, the pre-
sentation is restricted to their finite dimensional versions (called ”toy versions” by
the author), which are sufficient for matrix theory and for the applications as well.
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As we did mention, in Chapter 4. Matrix means, some spectacular applica-
tions of various means for matrices to convex matrices and to quantum information
theory are presented.

Chpater 5. Positive definite functions, is devoted to the study of positive
definite functions from R to C. There are proved the fundamental theorems of Herglotz
and Bochner and applications to various matrix inequalities and to the study of
Loewner matrices are given.

In the last chapter of the book, 6. Geometry of positive matrices, the set
of positive matrices is studied as a Riemannian manifold of nonpositive curvature, a
domain of very active current research, mainly due to the results of M. Gromov. This
is a promising area of investigation, of great interest to analysts and geometers as
well.

Written by an expert in the area, the book presents in an accessible manner a
lot of important results from the realm of positive matrices and of their applications.
Although, in some places, references to the author’s book, Matrix Analysis (MA),
Springer 1997, are made, the present one is practically self-contained and can be read
independently of MA.

The book can be used for graduate courses in linear algebra, or as supple-
mentary material for courses in operator theory, and as a reference book by engineers
and researchers working in the applied field of quantum information.

S. Cobzaş

M. de Gosson, Symplectic Geometry and Quantum Mechanics, Birkhäuser
(Operator Theory and Applications, vol. 166), 2006, Hardback, 367 pp., ISBN-10:
3-7643-7574-4, ISBN-13: 978-3-7643-7574-4.

Hamiltonian formalism lies at the very heart of quantum mechanics. In the
recent decades, Hamiltonian mechanics “happily married” differential geometry, giv-
ing birth to one of the most beautiful parts of geometry, symplectic geometry. This
kind of geometry was quite successfully applied to quantum mechanics in the so-called
geometric quantization approach. Several monographs on geometric quantization are
available by now, but the focus mainly on the geometrical formalism without doing
justice to quantum mechanics. It is the aim of this book to correct this deficiency.

The book has three parts. The first one is a detailed exposition of the basic
notions of symplectic geometry, as well as of those of an extension of it, the so-called
multiply-oriented symplectic geometry, or q-symplectic geometry. In particular, there
are studied a series of indices, essential in this field (e.g. the Arnold-Leray-Maslov
and the Conley-Zehnder indices).
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The second part is dedicated to the Heisenberg group, the Weyl calculus and
metaplectic group, while the final part is more physically-oriented. It begins with
a geometrical approach to the uncertainty principle from quantum mechanics and
its connections to the symplectic capacity. It follows a rigorous treatment of the
density matrix, by using the Hilbert-Schmidt and trace-class operators and, finally,
the Weyl pseudo-differential calculus is extended to the phase space, via the Stone-
von Neumann theorem on the irreducible representation of the Heisenberg group.
Several appendices review some standard mathematical material (classical Lie groups,
covering spaces, pseudo-differential operators, elementary probability theory).

The book is very clearly written, by one of the most active researchers in the
field, and, in my opinion, it successfully manages to fill a gap in the mathematical
physics literature. It will be very useful for graduate students and researchers both
in theoretical physics and geometry.

Paul A. Blaga

A. Mallios, Modern Differential Geometry in Gauge Theories, Maxwell

Fields, volume I, Birkhäuser, 2006, 293 pp., Paperback, ISBN-10: 0-8176-4378-8,
ISBN-13: 978-0-8176-4378-2.

Much of the differential geometry of a smooth manifold X can be built staring
from a small number of objects: the sheaf of smooth functions C∞X , the sheaf of
differential forms and the differential associating to functions 1-forms. For instance,
vector bundles are just projective, locally free C∞X -modules, the connections can also
be constructed easily out of the three mentioned objects.

This book starts with a more general framework: a space X (which is not
necessarily a manifold), two sheaves A and E on X and a sheaf morphism ∂A → E ,
having similar properties to those of the ordinary differential of functions (linearity
and a kind of Leibniz property). Such a triple is called a triad on the space X. There
are introduced, then, some generalizations of vector bundles, through the so-called
vector sheaves, which are just locally-free sheaves of A-modules.

All the constructions from differential geometry (connections, metrics, curva-
ture and torsion tensors) can be carried out in this generalized context. The theory
obtained is called abstract differential geometry (ADG).

The book under review is the first volume of a two-volume work dedicated
to the applications of ADG to gauge theories. This first volume focuses only on
electromagnetic fields (Maxwell theory). It first gives a review of ADG, then it recasts
the classification of elementary particles by the spin structure in terms of sheaves.
The next two chapters are devoted to electromagnetic fields and their classification

145



BOOK REVIEWS

in terms of sheaf cohomology. The final chapter is dedicated to the reformulation of
geometric quantization in the language of abstract differential geometry.

Many of the results from this monographs belong to the author or to his
collaborators. He, is, in fact, one of the founders of ADG. The book is very well
written and it brings a fresh approach to gauge theories, that will probably be of a
great help both to theoretical physicists and geometers.

Paul Blaga
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