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Petru Blaga was born on 7th September 1947 in Oradea, a rich cultural city at

the western border of Romania. He attended elementary school (1954-1958) in Roit

village, secondary school (1958-1961) in Ŝınnicolau Român village and high-school

(1962-1968) in Salonta city.

Between 1966 and 1971 he was student at the Faculty of Mathematics and Me-

chanics (nowadays the Faculty of Mathematics and Computer Science), Babeş-Bolyai

University. During his student years he had the privilege to be under the influence

of three refined masters: Tiberiu Popoviciu (1906-1975), D.V. Ionescu (1901-1985)

and D.D. Stancu (born on 1927). After graduation he was hired at Faculty of Math-

ematics and Mechanics as probation assistant (1971-1975) at the Chair of Numerical

and Statistical Calculus. Holding a continuous academic career at this department,

he successively advanced assistant (1975), lecturer (1990), associate professor (1993)

and, finally, full professor (1995).

Petru Blaga has obtained PhD in 1983, the scientific advisor being professor

D.D. Stancu.

The major coordinates of his private life: he got married in 1971, his wife

Livia is pedagogue and they have two boys, Alin born in 1973 and Daniel born in

1974. The first of them works in computer science field in Toulouse, France, and the

second is economist in Cluj.

His devotion to academic life is certified by the following features. As teacher,

Blaga Petru had given courses on Computer Science, Numerical Analysis, Probability

Theory, Statistics. As member of Babeş-Bolyai community, he was the manager of

Applied Mathematics Department (2002-2004), the head of the Chair of Numerical
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and Statistical Calculus (2002-2004) and starting from 2004 he is in the position of

Dean of our faculty. This way, we found out that the patience is another specific

feature of our colleague. As PhD scientific advisor, so far, five students completed

their doctoral studies: Ban Ioan, Barnabas Bede, Breaz Nicoleta, Crainic Nicolae

Ioan, Otrocol Diana.

Professor Petru Blaga is member of the Editorial Board of the journals: Stu-

dia Universitatis Babeş-Bolyai, Mathematica and Studia Universitatis Babeş-Bolyai,

Informatica. Since 1993 he is reviewer at Mathematical Reviews and member of the

American Mathematical Society. Based on his abilities, he was an active member of

scientific and organizing committees of many international meetings held in Romania.

On behalf of all colleagues of our faculty, we warmly congratulate Professor

Petru Blaga on his 60th birthday wishing him health and achievements in his further

work.
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ternational Conference on Approximation and Optimization (Romania):

ICAOR, Cluj–Napoca, July 29–August 1, 1996, Transilvania Press, Cluj–

Napoca, 1997, 252pp

16. Petru Blaga, Anton S. Mureşan, Alexandru Lupaş, Matematici aplicate.

Vol. I, Promedia Plus, Cluj–Napoca, 1999, 428pp
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Vol. II, Promedia Plus, Cluj–Napoca, 1999, 346pp

18. Petru Blaga, Statistică matematică. Lucrări de laborator , Universitatea

“Babeş-Bolyai”, Cluj–Napoca, 1999, 203pp

19. Petru Blaga, Statistică matematică (Ediţia I), Universitatea “Babeş-

Bolyai”, Cluj–Napoca, Centrul de formare continuă şi ı̂nvăţământ la
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Bolyai”, Mathematica, Tome XXXII, No. 4, 10–20, 1987
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No. 4, 69–78, 1989

16. Petru Blaga, Spline approximation with preserving of moments, Mathe-
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Bolyai”, Mathematica, Tome XXXVII, No. 1, 65–72, 1992
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1997

31. Petru Blaga, Seiyoung Chung, George Micula, A polynomial spline approx-

imation method for solving delay differential equations, in “Aproximation

and Optimization”, Proceedings of International Conference on Approx-

imation and Optimization (Romania), Cluj–Napoca (ICAOR), July 29–
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SOME CUBATURES WITH CHEBYSHEV NODES

MARIUS M. BIROU

Dedicated to Professor Petru Blaga at his 60th anniversary

Abstract. In this article we construct boolean cubature formulas using

univariate Lagrange interpolation projectors with Chebyshev nodes of sec-

ond type. We compute the coefficients of these cubature formulas using

coefficients of corresponding Fejer-Clenshaw-Curtis quadratures. The re-

mainder terms have minim properties in a class of cubature formulas with

the same number of nodes. Some numerical examples are given.

1. Preliminaries

First, we present the construction of Biermann projector and some properties

from [2].

Let be the univariate Lagrange interpolation projectors

P1, . . . , Pr, Q1, . . . , Qr

given by

(Pmf1)(x) =

km∑

i=1

lim(x)f1(xi), 1 ≤ m ≤ r

(Qnf2)(y) =

ln∑

j=1

l̃jn(y)f2(yj), 1 ≤ n ≤ r

(1)

where f1 : [a, b] → R and f2 : [c, d] → R.

Received by the editors: 08.04.2007.

2000 Mathematics Subject Classification. 65D32.

Key words and phrases. cubature formula, Biermann interpolation, Chebyshev nodes of second type,

remainder term.
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The sets of interpolations nodes

{x1, . . . , xkm
} ⊆ [a, b], {y1, . . . , yln} ⊆ [c, d]

satisfy the conditions

1 ≤ k1 < k2 < · · · < kr, 1 ≤ l1 < l2 < · · · < lr. (2)

The cardinal functions of Lagrange interpolation are given by

lim(x) =

km∏

k=1
k 6=i

x − xk

xi − xk

, 1 ≤ i ≤ km

l̃jn(y) =

ln∏

l=1
l 6=j

y − yl

yj − yl

, 1 ≤ j ≤ ln.

If f : [a, b] × [c, d] → R, f ∈ C([a, b] × [c, d]) then we have the parametric

extensions, which are bivariate projectors

(P ′
mf)(x, y) =

km∑

i=1

lim(x)f(xi, y), 1 ≤ m ≤ r

(Q′
nf)(x, y) =

ln∑

j=1

l̃jn(y)f(x, yj), 1 ≤ n ≤ r

From (2) it follows that the parametric extensions

P ′
1, . . . , P

′
r, Q

′′
1 , . . . , Q′′

r

are bivariate interpolation projectors which form the chains

P ′
1 ≤ · · · ≤ P ′

r, Q′′
1 ≤ · · · ≤ Q′′

r . (3)

where relation order ”≤” is defined by: P ≤ Q if and only if PQ = P .

The interpolation projector Br defined by relation

Br = P ′
1Q

′′
r ⊕ · · · ⊕ P ′

rQ
′′
1 , r ∈ N (4)

is called Biermann interpolation projector.

The remainder operator in Bierman interpolation is

Bc
r = P

′c
r + P

′c
r−1Q

′′c
1 + · · · + P

′c
1 Q

′′c
r−1 + Q

′′c
r − P

′c
1 Q

′′c
r − · · · − P

′c
r Q

′′c
1 (5)
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where P c = I − P and I is identity operator.

The Biermann interpolation projector has the representation

Br(f) =
r∑

m=1

r−m∑

n=0

km∑

i=1+km−1

lr+1−m−n∑

j=1+lr−m−n

Φijf(xi, yj). (6)

where the cardinal functions of Biermann interpolations are given by

Φij(x, y) =
m+n∑

s=m

lis(x)l̃j,r+1−s(y) −
m+n−1∑

s=m

lis(x)l̃j,r−s(y) (7)

km−1 < i ≤ km, kr−m−n < j ≤ lr+1−m−n, 0 ≤ n ≤ r − m, 1 ≤ m ≤ r.

If f ∈ Ckr ,lr([a, b] × [c, d]) then for remainder term, we have Cauchy repre-

sentation

f(x, y) − (Brf)(x, y) (8)

= (x − x1) . . . (x − xkr
)
f (kr ,0)(ξr, y)

kr!
+ (y − y1) . . . (y − ylr)

f (0,lr)(x, ηr)

lr!

+

r−1∑

m=1

kr−m∏

i=1

(x − xi)

lm∏

j=1

(y − yj)
f (kr−m,lm)(ξr−m, ηm)

kr−m!lm!

−

r∑

m=1

kr+1−m∏

i=1

(x − xi)

lm∏

j=1

(y − yj)
f (kr+1−m,lm)(σr+1−m, τm)

kr+1−m!lm!
.

where ξi, σi ∈ [a, b], ηi, τi ∈ [c, d], 1 ≤ i ≤ r

Next we obtain cubature formulas by integrating Biermann interpolation for-

mula with Pi and Qj univariate Lagrange interpolation projectors with Chebyshev

nodes of second type.

2. First type cubature

We consider the following univariate Lagrange interpolation projectors

(Pmf1)(x) =

2m−1∑

i=1

lim(x)f1(xim), f1 ∈ C[−1, 1], 1 ≤ m ≤ r

(Qnf2)(y) =

2n−1∑

j=1

l̃jn(y)f2(yjn), f2 ∈ C[−1, 1], 1 ≤ n ≤ r
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with Chebyshev nodes of second type

xim = cos
iπ

2m
, i = 1, 2m − 1, m = 1, r

yjn = cos
jπ

2n
, j = 1, 2n − 1, n = 1, r.

The cardinal functions are given by

lim(x) =

2m−1∏

k=1
k 6=i

x − xkm

xim − xkm

l̃jn(y) =

2n−1∏

l=1
l 6=j

y − yln

yjn − yln

.

We construct the sets of nodes

(uk)k=1,2r−1, uk = cos
2i + 1

2j
π, j = 1, r, i = 0, 2j−1 − 1, k = 2j−1 + i

(vl)l=1,2r−1, vl = ul, l = 1, 2r − 1.

If f ∈ C([−1, 1] × [−1, 1]) we have the Biermann interpolation formula

f = Brf + Rf (9)

where

Br = P ′
1Q

′′
r ⊕ P ′

2Q
′′
r−1 ⊕ · · · ⊕ P ′

rQ
′′
1

and remainder operator

R = P
′c
r + P

′c
r−1Q

′′c
1 + · · · + P

′c
1 Q

′′c
r−1 + Q

′′c
r − P

′c
1 Q

′′c
r − · · · − P

′c
r Q

′′c
1 .

The representation of Biermann interpolation projector is

Brf =

r∑

m=1

r−m∑

n=0

2m−1∑

i=2m−1

2r−m−n+1−1∑

j=2r−m−n

Φijf(ui, vj)

where

Φij(x, y) =

m+n∑

s=m

lis(x)l̃j,r+1−s(y) −

m+n−1∑

s=m

lis(x)l̃j,r−s(y)

2m−1 < i ≤ 2m − 1, 2r−m−n − 1 < j ≤ 2r−m−n+1, 0 ≤ n ≤ r − m, 1 ≤ m ≤ r.
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By integrating Biermann interpolation formula (9) on domain D = [−1, 1]×

[−1, 1] we obtain boolean cubature formula

∫ 1

−1

∫ 1

−1

f(x, y)dxdy =

r∑

m=1

r−m∑

n=0

2m−1∑

i=2m−1

2r−m−n+1−1∑

j=2r−m−n

Cijf(ui, vj) + R(f) (10)

with

Cij =

m+n∑

s=m

AisBj,r+1−s −

m+n−1∑

s=m

AisBj,r−s

2m−1 − 1 < i ≤ 2m − 1, 2r−m−n − 1 < j ≤ 2r−m−n+1 − 1, 0 ≤ n ≤ r−m, 1 ≤ m ≤ r

where the numbers Ais and Bjs are coefficients of some Fejer-Clenshaw-Curtis quadra-

tures

Aσs(i),s =
4 sin

iπ

2s

2s

2s−1−1∑

j=0

sin

(
i(2j + 1)

2s
π

)

2j + 1
, i = 1, 2s − 1, s = 1, r

Bjs = Ajs, j = 1, 2s − 1, s = 1, r.

σs being the permutations of numbers 1, ..., 2s − 1 so that xσs(i),s = ui.

For remainder term of cubature (10), we have the following estimations

|R(f)| ≤
2M2r−1,0f

(2r − 1)!

∫ 1

−1

|ur(x)|dx +
2M0,2r−1f

(2r − 1)!

∫ 1

−1

|vr(y)|dy

+

r−1∑

m=1

M2r−m−1,2m−1f

(2r−m − 1)!(2m − 1)!

∫ 1

−1

|ur−m(x)|dx

∫ 1

−1

|vm(y)|dy

+

r∑

m=1

M2r+1−m−1,2m−1f

(2r+1−m − 1)!(2m − 1)!

∫ 1

−1

|ur+1−m(x)|dx

∫ 1

−1

|vm(y)|dy

where

um(x) = (x − x1m) . . . (x − x2m−1,m)

vn(y) = (y − y1n) . . . (y − y2n−1,n)

Mijf = sup
(x,y)∈[−1,1]×[−1,1]

f (i,j)(x, y)

We notice that
∫ 1

−1

|um(x)|dx = min
c1,...,c2m

−1

∫ 1

−1

|(x − c1) . . . (x − c2m−1)|dx

17
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and ∫ 1

−1

|vn(y)|dy = min
d1,...,d2n

−1

∫ 1

−1

|(y − d1) . . . (y − d2n−1)|dy.

Next, we propose to approximate the double integral

1∫

−1

1∫

−1

e(−x2−y2)dxdy

The approximative value given by Maple is

va := 2.230985141

In table are given the results obtained using cubature formula (10)

r The approximation The absolut error

2 1.901496850 0.329488291

3 2.249623509 0.018638368

4 2.230704125 0.000281016

5 2.230983295 0.000001846

6 2.230985150 0.000000009

3. Second type cubature

Let be the Chebyshev nodes of second type

xim = cos
iπ

Nm
, i = 1, Nm − 1, m = 1, 2

yjn = cos
jπ

Nn
, j = 1, Nn − 1, n = 1, 2

and univariate Lagrange interpolation projectors

(Pmf1)(x) =

Nm−1∑

i=1

lim(x)f1(xim), m = 1, 2, f1 ∈ C[−1, 1]

(Qnf2)(y) =

Nn−1∑

j=1

ljn(y)f2(yjn), n = 1, 2, f2 ∈ C[−1, 1].

18
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Figure 1. The distribution of nodes in cubature formula (10)

The cardinal functions are given by

lim(x) =
Nm−1∏

i=1
i6=k

x − xkm

xim − xkm

l̃jn(y) =

Nn−1∏

l=1
l 6=j

y − yln

yjn − yln

.

We construct the sets of nodes (uk)
k=1,N2−1, (vl)l=1,N2−1

u1 = cos
π

N
, u2 = cos

2π

N
, . . . , uN−1 = cos

N − 1

N
π,

uN = cos
π

N2
, uN+1 = cos

2π

N2
, . . . , u2N−2 = cos

N − 1

N2
π,
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u2N−1 = cos
N + 1

N2
π, u2N = cos

N + 2

N2
π, . . . , u3N−3 = cos

2N − 1

N2
π

. . .

uN2−N+1 = cos
N2 − N + 1

N2
π, . . . , uN2−1 = cos

N2 − 1

N2
π

and

vl = ul, l = 1, N2 − 1

If f ∈ C([−1, 1]×[−1, 1]) then we have discrete blending interpolation formula

f = B2f + Rf (11)

where

B2 = P ′
1Q

′′
2 ⊕ P ′

2Q
′′
1

and remainder operator

R = P
′c
2 + P

′c
1 Q

′′c
1 + Q

′′c
2 − P

′c
1 Q

′′c
2 − P

′c
2 Q

′′c
1 .

The blending discrete interpolant has the representation

B2f =

2∑

m=1

2−m∑

n=0

Nm−1∑

i=Nm−1

N3−m−n−1∑

j=N2−m−n

Φijf(ui, vj)

where

Φij(x, y) =

m+n∑

s=m

lis(x)l̃j,r+1−s(y) −

m+n−1∑

s=m

lis(x)l̃j,r−s(y)

Nm−1 − 1 < i ≤ Nm − 1, N2−m−n − 1 < j ≤ N3−m−n − 1, 0 ≤ n ≤ 2−m, m = 1, 2.

By integrating the interpolation formula (11) on domain D = [−1, 1]× [−1, 1]

we obtain boolean cubature formula

∫ 1

−1

∫ 1

−1

f(x, y)dxdy =

2∑

m=1

2−m∑

n=0

Nm−1∑

i=Nm−1

N3−m−n−1∑

j=N2−m−n

Cijf(ui, xj) + R(f) (12)

with

Cij =
m+n∑

s=m

AisBj,r+1−s −
m+n−1∑

s=m

AisBj,r−s

Nm−1 − 1 < i ≤ Nm − 1, N2−m−n − 1 < j ≤ N3−m−n − 1, 0 ≤ n < 2−m, m = 1, 2
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where the numbers Ais and Bjs are coefficients of some quadratures of Fejer-Clenshaw-

Curtis type

Aσs(i),s =
4 sin

iπ

Ns

Ns

[N
s

2 ]−1∑

j=0

sin
i(2j + 1)π

Ns

2j + 1
, i = 1, Ns − 1, s = 1, 2

Bjs = Ajs, j = 1, Ns − 1, s = 1, 2.

σs being the permutations of the numbers 1, ..., Ns − 1 so that xσs(i),s = ui.

For the remainder term of cubature (12), we have the following estimation

|R(f)| ≤
2MN2−1,0f

(N2 − 1)!

∫ 1

−1

|u2(x)|dx +
2M0,N2−1f

(N2 − 1)!

∫ 1

−1

|v2(y)|dy

+
MN2−1,N−1f

(N2 − 1)!(N − 1)!

∫ 1

−1

|u2(x)|dx

∫ 1

−1

|v1(y)|dy

+
MN−1,N2−1f

(N − 1)!(N2 − 1)!

∫ 1

−1

|u1(x)|dx

∫ 1

−1

|v2(y)|dy

+
MN−1,N−1f

(N − 1)!(N − 1)!

∫ 1

−1

|u1(x)|dx

∫ 1

−1

|v1(y)|dy

where

um(x) = (x − x1m) . . . (x − xNm−1,m)

vn(y) = (y − y1n) . . . (y − yNn−1,n)

Mijf = sup
(x,y)∈[−1,1]×[−1,1]

f (i,j)(x, y).

We notice that

∫ 1

−1

|um(x)|dx = min
c1,...,cNm

−1

∫ 1

−1

|(x − c1) . . . (x − cNm−1)|dx

and ∫ 1

−1

|vn(y)|dy = min
d1,...,dNn

−1

∫ 1

−1

|(y − d1) . . . (y − dNn−1)|dy.

We approximate the same double integral from previous section

1∫

−1

1∫

−1

e(−x2−y2)dxdy
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In table are given the results which are obtained using cubature formula (12)

r The approximation The absolut error

2 1.901496850 0.329488291

3 2.226829679 0.004155462

4 2.230651197 0.000333944

5 2.230936110 0.000049031

6 2.230983949 0.000001192
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Figure 2. Distribution of nodes in cubature formula (12).
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Str. Kogălniceanu Nr. 1, RO-400084 Cluj-Napoca, Romania

23
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SOME INTERPOLATION OPERATORS ON A SIMPLEX DOMAIN

TEODORA CĂTINAŞ AND GHEORGHE COMAN

Dedicated to Professor Petru Blaga at his 60th anniversary

Abstract. This paper studies with certain operators, their product and

boolean sum, which interpolate a given function on the triangle and tetra-

hedron. The interpolation properties and the degree of exactness for these

operators are studied. Also, the remainders of the corresponding interpo-

lation formulas are studied.

Our goal is to study some interpolation formulas for bivariate and trivariate

functions.

Bivariate case. We consider the standard triangle

Th = {(x, y) ∈ R | x ≥ 0, y ≥ 0, x + y ≤ h, h ∈ R+ }

and the function f : Th → R.

Let P1, P2 and P3 be the operators that interpolate the function f at two

edges of the triangle Th, as seen in Figure 1.
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P
2

P
3

P
1

(x,0) (x+y,0)

(0,x+y)

(0,y)

(x,h−x)

(h−y,y)

Triangle Th.

Figure 1.

We have

(P1f)(x, y) =
h − x − y

h − y
f(0, y) +

x

h − y
f(h − y, y),

(P2f)(x, y) =
h − x − y

h − x
f(x, 0) +

y

h − x
f(x, h − x),

(P3f)(x, y) =
x

x + y
f(x + y, 0) +

y

x + y
f(0, x + y).

As seen, these operators have the following interpolation properties:

(P1f)(0, y) = f(0, y), y ∈ [0, h]

(P1f)(h − y, y) = f(h − y, y), y ∈ [0, h]

(P2f)(x, 0) = f(x, 0) x ∈ [0, h]

(P2f)(x, h − x) = f(x, h − x), x ∈ [0, h]

(P3f)(x, 0) = f(x, 0) x ∈ [0, h]

(P3f)(0, y) = f(0, y), y ∈ [0, h]

These properties are illustrated in Figure 2.

Remark 1. In the following figures, we use bold lines and points to indicate the

interpolation domains of the corresponding operators.
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P1 P2 P3

Figure 2.

Remark 2. The degree of exactness of each of the operators P1, P2 and P3 is 1, i.e.,

dex(P1) = 1, dex(P2) = 1, dex(P3) = 1.

Our goal is to study some interpolation formulas generated by the operators

P1, P2 and P3.

1. Let us consider the interpolation formula generated by P1 :

f = P1f + R1f,

where R1f denotes the remainder. Regarding this remainder, we have the following

result.

Theorem 3. If f ∈ B11(0, 0) (B11(0, 0) denotes the Sard space, see e.g., [9]) then

(R1f)(x, y) =
x(x + y − h)

2
f (2,0)(ξ, 0) +

xy(h − x − y)

h − y
[f (1,1)(ξ1, η1) − f (1,1)(ξ2, η2)],

(1)

with ξ ∈ [0, h], (ξ1, η1) ∈ [0, x] × [0, y] and (ξ2, η2) ∈ [x, h − y] × [0, y], and

|(R1f)(x, y)| ≤
h

8

[∥∥∥f (2,0)(·, 0)
∥∥∥

L∞[0,h]
+

∥∥∥f (1,1)
∥∥∥

L∞(Th)

]
, respectively (2)

for all (x, y) ∈ Th.

Proof. We have

dex(P1) = 1,

which implies that

ker(R1) = P
2
1,
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where P
2
1 denotes the set of bivariate polynomials of degree at most 1. Therefore, by

Peano’s Theorem it follows that

(R1f)(x, y) =

∫ h

0

K20(x, y, s)f (2,0)(s, 0)ds +

∫ h

0

K02(x, y, t)f (0,2)(0, t)dt

+

∫∫

Th

K11(x, y, s, t)f (1,1)(s, t)dsdt,

with

K20(x, y, s) = (x − s)+ −
x

h − y
(h − y − s)+

K02(x, y, t) = 0

K11(x, y, s, t) = (y − t)0+[(x − s)0+ −
x

h − y
(h − y − s)0+].

As

K20(x, y, s) ≤ 0, s ∈ [0, h],

K11(x, y, s, t) ≥ 0, (s, t) ∈ [0, x] × [0, y],

K11(x, y, s, t) ≤ 0, (s, t) ∈ [x, h − y] × [0, y],

K11(x, y, s, t) = 0, (s, t) ∈ D1 ∪ D2,

by the mean value theorem one obtains the formula (1). (The domains D1 and D2

are represented in Figure 3.)

Taking into account that

max
(x,y)∈Th

x(h − x − y)

2
=

h2

8
,

max
(x,y)∈Th

xy(h − x − y)

h − y
=

h2

16
,

the inequality (2) follows.

(0,y) (h−y,y)

x h−y

+ − D
1

D
2

The sign of the kernel K11.

Figure 3.

28



SOME INTERPOLATION OPERATORS ON A SIMPLEX DOMAIN

Remark 4. Analogous formulas are generated by P2 and P3.

2. Let PiPj , i, j = 1, 3, i 6= j be the product of two of the operators P1, P2,

P3, previously given. We have

(P12f)(x, y) =
h − x − y

h
f(0, 0) +

y(h − x − y)

h(h − y)
f(0, h) +

x

h − y
f(h − y, y),

(P13f)(x, y) =
h − x − y

h − y
f(0, y) +

x

h
f(h, 0) +

xy

h(h − y)
f(0, h),

(P23f)(x, y) =
h − x − y

h − x
f(x, 0) +

y

h
f(0, h) +

xy

h(h − x)
f(0, h).

It is easy to verify the following properties.

• The interpolation properties:

(P12f)(0, 0) = f(0, 0), (P12f)(h − y, y) = f(h − y, y), y ∈ [0, h]

(P13f)(h, 0) = f(h, 0), (P13f)(0, y) = f(0, y), y ∈ [0, h]

(P23f)(0, h) = f(0, h) (P23f)(x, 0) = f(x, 0) x ∈ [0, h].

• The degree of exactness is

dex(Pij) = 1, i, j = 1, 3, i 6= j.

Remark 5. The operator Pij has the same interpolation properties as the operator

Pji, i, j = 1, 3, i 6= j. These properties are illustrated in Figure 4.

P12 P13 P23

Figure 4.

We consider the interpolation formula generated by P12, namely

f = P12f + R12f.

Similarly with Theorem 3, for the remainder R12f, it is proved the following result.
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Theorem 6. If f ∈ B11(0, 0) then

|(R1f)(x, y)| ≤
h2

8

[∥∥∥f (2,0)(·, 0)
∥∥∥
∞

+
∥∥∥f (0,2)(0, ·)

∥∥∥
∞

+
∥∥∥f (1,1)

∥∥∥
∞

]
,

for all (x, y) ∈ Th.

3. Consider the product operator P = PiPjPk, i, j, k = 1, 3, i 6= j 6= k 6= i,

namely

(Pf)(x, y) =
h − x − y

h
f(0, 0) +

x

h
f(h, 0) +

y

h
f(0, h),

which interpolates the function f at the vertices of the triangle Th (as we can see in

Figure 5), and dex(P ) = 1.

P123

Figure 5.

Trivariate case. As an extension of the previous results we consider the

standard tetrahedron

Th =
{
(x, y, z) ∈ R

3 |x, y, z ≥ 0, x + y + z ≤ h, h > 0
}

,

and f : Th → R. Let πi be the parallel planes to the tetrahedron faces, as we can see

in Figure 6.

π
2

π
4

π
3

π
1

Tetrahedron Th.

Figure 6.
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Denote by Qi, i = 1, 4 the operator that interpolates the function f at the

intersection points of the plane πi with the tetrahedron edges. We have

(Q1f)(x, y, z) =
h − x − y − z

h − y
f(0, y, 0) +

x

h − y
f(h − y, y, 0) +

z

h − y
f(0, y, h− y),

(Q2f)(x, y, z) =
h − x − y − z

h − x
f(x, 0, 0) +

y

h − x
f(x, h − x, 0) +

z

h − x
f(x, 0, h − x),

(Q3f)(x, y, z) =
h − x − y − z

h − z
f(0, 0, z) +

x

h − z
f(h − z, 0, z) +

y

h − z
f(0, h− z, z),

(Q4f)(x, y, z) =
x

x + y + z
f(x + y + z, 0, 0) +

y

x + y + z
f(0, x + y + z, 0)

+
z

x + y + z
f(0, 0, x + y + z).

Theorem 7. Each operator Qi, i = 1, 4 interpolates the function f at three edges of

the tetrahedron (see Figure 7) and it has the degree of exactness equal to 1.

Proof. The proof is a straightforward computation.

Q1 Q2 Q3 Q4

Figure 7.

Next, we shall study the product of two, three and four operators Qi, i = 1, 4.

4. Let us consider the product Qij = QiQj , i, j = 1, 4, i 6= j. We have

(Q12f)(x, y, z) = h−x−y−z

h
f(0, 0, 0) + x

h−y
f(h − y, y, 0) + y(h−x−y)

h(h−y) f(0, h, 0) + z
h
f(0, 0, h),

(Q13f)(x, y, z) = h−x−y−z

h
f(0, 0, 0) + x

h
f(h, 0, 0) + y(h−y−z)

h(h−y) f(0, h, 0) + z
h−y

f(0, y, h− y)

(Q14f)(x, y, z) = h−x−y−z

h−y
f(0, y, 0) + x

h
f(h, 0, 0) + y(x+z)

h(h−y)f(0, h, 0) + z
h
f(0, 0, h),

(Q23f)(x, y, z) = h−x−y−z
h

f(0, 0, 0) + x(h−x−z)
h(h−x) f(h, 0, 0) + y

h
f(0, h, 0) + z

h−x
f(x, 0, h − x),

(Q24f)(x, y, z) = h−x−y−z
h−x

f(x, 0, 0) + x(y+z)
h(h−x)f(h, 0, 0) + y

h
f(0, h, 0) + z

h
f(0, 0, h),

(Q34f)(x, y, z) = h−x−y−z

h−z
f(0, 0, z) + x

h
f(h, 0, 0) + y

h
f(0, h, 0) + z(x+y)

h(h−z)f(0, 0, h).
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The main properties of the operators Qij , i, j = 1, 4 are:

• Qijf, i, j = 1, 4 interpolates the function f at one edge and two vertices

of the tetrahedron Th, as one can see in Figure 8.

• Qijf has the same interpolation properties as Qjif, i, j = 1, 4 .

• dex(Qij) = 1, for i, j = 1, 4, i 6= j.

Q12 Q13 Q14

Q23 Q24 Q34

Figure 8.

5. Let Qijk be the product of Qi, Qj and Qk, i, j, k = 1, 4, i 6= j 6= k 6= i.

We have

(Qijkf)(x, y, z) = h−x−y−z
h

f(0, 0, 0) + x
h
f(h, 0, 0) + y

h
f(0, y, 0) + z

h
f(0, 0, h),

for all i, j, k = 1, 4, i 6= j 6= k 6= i.

We notice that QiQjQkQlf = Qijkf, i, j, k, l = 1, 4, i 6= j 6= k 6= l.

It is easy to verify the following properties.

• Each operator Qijk, i, j, k = 1, 4, i 6= j 6= k 6= i interpolates the function

f at the vertices of the tetrahedron Th. (See Figure 9.)

• The degree of exactness is

dex(Qijk) = 1, i, j, k = 1, 4, i 6= j 6= k 6= i.
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Qijk, i, j, k = 1, 4,

Figure 9.

6. Some useful operators are obtained using the boolean sum of the operators

Qi, i = 1, 4.

For example, each of the operators Sij = Qi ⊕ Qj , i, j = 1, 4, i 6= j has the

property that Sijf inetrpolates the function f at five of the tetrahedron edges (see

Figure 10) and

dex(Sij) = 2, i, j = 1, 4.

S12

Figure 10.

7. We also have Sijkf = f, i, j, k = 1, 4, i 6= j 6= k 6= i on all the edges of the

tetrahedron Th and

dex(Sijk) = 2, i, j = 1, 4,

where Sijk = Qi ⊕ Qj ⊕ Qk, i 6= j 6= k 6= i.
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ON SOME IMPLICITE SCHEME IN MATHEMATICAL FINANCE

IOANA CHIOREAN

Dedicated to Professor Petru Blaga at his 60th anniversary

Abstract. The aim of this paper is to give a parallel approach for the

Crank-Nicsloson method applied to the discretized form of the Black-

Scholes equation.

1. Introduction in the value of an option

One of the key problems in Mathematical Finance is the determining the

value of an option.

According to [8] the simplest financial option, a European call option, is a

contract with the following properties:

- at a prescribed time in the future, known as the expiry date or expiration

date (denoted by T ), the holder of the option may

• purchase a prescribed asset, known as the underlying asset (denoted by

S), for a

• prescribed amount of money, known as the exercise price (denoted by E).

Note 1.: The word ”may” in this description implies that for the holder of

an option, this contract is a ”right” and not an ”obligation”.

The other part, who is known as the writer, has a potential obligation: he

”must” sell the asset if the holder chooses to buy it. Since the option confers on its

holder a right with no obligation, it has some value. Moreover, it must be paid for
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at the time of opening the contract. Conversely, the writer of the option must be

compensated for the obligation he has assumed. So the following questions arise:

- How much would one pay for this right, i.e. what is the value of an option?

- How can the writer minimize the risk associated with his obligation?

Note 2.: There are Call Options (which means the options to buy assets)

and Put Options (which means to sell assets). Whereas the holder of a

call option wants the asset prince to rise - the higher the asset price at

expiry, the greater the profit - the holder of a put option wants the asset

price to fall as low as possible.

2. The mathematical model

The problem of determining the value of an option is mathematically modeled

by the well known Black-Scholes equation:

∂V

∂t
+

1
2
σ2 · s2 · ∂2V

∂s2
+ r · s · ∂V

∂s
− r · V = 0 (1)

where the following notations are used:

• V - the value of an option, where Vs = V (S, t), with t-the time and S - the

underlying asset. If we have a call option, V will be replaced by C, and if

we have a put option, it will be replaced by P.

• σ - the volatility of the underlying asset

• r - the interest rate

Note 3.: For a Call option, e.g., the boundary conditions are:

V (S, T ) = max(S − E, 0) (2)

V (0, t) = 0

where we denoted by

• E - the exercise price

• T - the expiry.
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The exact solution of equation (1) with boundary condition (2)

can be determined, but in practice it is difficult to handle. This is the

reason for which a numerical approach is preferred.

3. Solving numericaly the Black-Scholes equation

In order to obtain the numerical solution of equation (1), one has to discretize

it.

The most common way to do this, is by using finite - difference methods.

In the literature, there exist many results in this direction. So, in [6], [7]

and [8] one may find the basic tools for numerical option pricing. In [5], a backward

differentiations formula is used and in [2], some results are obtained by using an

explicit technique.

In what follows, we recall another technique, known as the Crank-Nicolson

method.

3.1. The Crank-Nicolson method. As is presented in [8], the Black-Scholes equa-

tion can be reduced to a diffusion equation, where the numerical solutions are easier to

determine. Then, by a change of variable, these are converted into numerical solutions

of the Black-Scholes equation.

So, let us consider the general form of the transformed Black-Scholes model

for the value of a European option,

∂u

∂τ
=

∂2u

∂x2
(3)

with the boundary conditions

u(x, τ) v u−∞(x, τ), u(x, τ) = u∞(x, τ) as x → ±∞ (4)

u(x, 0) = u0(x)

Using grid points with the x-axis divided into equally spaced nodes at distance δx

apart, and the τ -axis into equally spaced nodes at a distance δτ apart, the grid points
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have the form (nδx, mδτ). We denote by

um
n = u(nδx,mδτ) (5)

the value of u(x, τ) at the grid point (nδx, mδτ). Considering that, on the grid,

N−δx ≤ x ≤ N+δx, 0 ≤ t ≤ Mδτ

where N−, N+ and M are large positive integers, we may write equation (3) with

the boundary conditions (4), in the following manner:

um+1
n − um

n

δτ
+ 0(δτ) =

um
n+1 − 2um

n + um
n−1

(δx)2
+ 0

(
(δx)2

)
(6)

by using an explicit formula and

um+1
n − um

n

δτ
+ 0(δτ) =

um+1
n+1 − 2um+1

n + um+1
n−1

(δx)2
+ 0

(
(δx)2

)
(7)

by using an implicit formula, where the discretized boundary conditions are:

um
N− = u−∞(N−δx,mδτ), 0 < m ≤ M

um
N+ = u∞(N+δx,mδτ), 0 < m ≤ M.

Making the average of (6) and (7), we obtain the Crank-Nicolson formula which,

ignoring the error terms, is the following:

um+1
n − 1

2
α

(
um+1

n−1 − 2um+1
n + um−1

n+1

)
= (8)

um
n +

1
2
α

(
um

n−1 − 2um
n + um

n+1

)
where

α =
δτ

(δx)2
.

In a matriceal form, (8) can be written as follows:

A · um+1 = B · um (9)
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where

A =



1 + α − 1
2α 0 · · · 0

− 1
2α 1 + α − 1

2α · · · 0

0 − 1
2α 1 + α · · ·

...
...

... − 1
2α

0 · · · 0 − 1
2α 1 + α



B =


1− α 1

2α 0 · · · 0
1
2α 1− α 1

2α · · · 0
...

...
...

... 1:
2 α

0 0 · · · 1
2α 1− α


By successive replacing (9) becomes:

um+1 = A−1 ·B · um = (A−1 ·B)2 · um+1 = · · · = (A−1 ·B)m · u0 (10)

where u0 contains the option values at the initial moment.

In (10) we have to compute the mth−power of a matrix product. The com-

plexity of this computation, performed in a usual manner (it means with a serial

computer) is O(n3m), where n is the dimension of the matrix. In order to improve

this complexity, it means to reduce the effort of computation, one way is to use parallel

calculus.

4. Parallel approaches

Parallel calculus implies the execution of the corresponding algorithm by

means of several processors. For more details about parallel computation, in general,

see [4]. Many authors use more than one processor to reduce the execution time, for

different types of algorithms. Connected with the numerical methods for the Black-

Scholes formula, in [1] a parallel approach is proposed which generates an effort of

computation of order O(log n), where n is the dimension of the problem. Also, in [3],

by using another parallel technique, a similar result is given.
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4.1. Using the recursive doubling technique. One possibility to gain speed is

to apply the recursive doubling technique (see [4] ) to evaluate the matriceal product

in (10).

As presented in [4], having enough processors (let’s say p, with p ≥ m) the

matriceal product can be performed on a binary tree network: every leaf processor

memorizes a pair A−1B, and exactly in [log2 m] steps, the final product will be ob-

tained in the root processor. The computation effort at every level is of order O(n3).

So the total computational effort will be of order O
(
n3 · [log2 m]

)
.

4.2. Using a parallel matriceal product. Another possibility to gain speed is to

use the p processors (with p ≥ n3, this time) to compute in parallel one matriceal

product A−1 · B. According with some technique presented in [4], this can be done

exactly in the time needed to perform one single scalar multiplication. So, the total

time involved (the computational effort), will be of order O(m∗ complexity of a scalar

multiplication).

5. Conclusions

The previous parallel approaches presented above reduce the computational

effort and can be used if there are enough processors in the system. Otherwise, the

matrices can be divided into blocks, and then some block parallel techniques may be

applied.

References

[1] Chiorean, I., Parallel Algorithms for Solving the Black-Scholes Equation, Kragujevac

J.Math., 27 (2005), pp.39-48.

[2] Chiorean, I., On some Numerical Methods for Solving the Black-Scholes Formula, Cre-

ative Math. J., vol.13, 2004, pp.31-36.

[3] Chiorean, I., A cyclic odd-ever reduction technique applied to a parallel evaluation of an

explicite scheme in Mathematical Finance, Studia Univ. Babeş-Bolyai, Mathematica,
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COMPLETENESS WITH RESPECT TO THE PROBABILISTIC
POMPEIU-HAUSDORFF METRIC

ŞTEFAN COBZAŞ
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Abstract. The aim of the present paper is to prove that the family of all

closed nonempty subsets of a complete probabilistic metric space L is com-

plete with respect to the probabilistic Pompeiu-Hausdorff metric H. The

same is true for the families of all closed bounded, respectively compact,

nonempty subsets of L. If L is a complete random normed space in the

sense of Šerstnev, then the family of all nonempty closed convex subsets of

L is also complete with respect to H. The probabilistic Pompeiu-Hausdorff

metric was defined and studied by R.J. Egbert, Pacific J. Math. 24 (1968),

437-455, in the case of Menger probabilistic metric spaces, and by R.M.

Tardiff, Pacific J. Math. 65 (1976), 233-251, in general probabilistic metric

spaces. The completeness with respect to probabilistic Pompeiu-Hausdorff

metric of the space of all closed bounded nonempty subsets of some Menger

probabilistic metric spaces was proved by J. Kolumbán and A. Soós, Stu-

dia Univ. Babes-Bolyai, Mathematica, 43 (1998), no. 2, 39-48, and 46

(2001), no. 3, 49-66.

1. Introduction

The study of probabilistic metric spaces (PM spaces for short) was initiated

by K. Menger [17] and A. Wald [28], in connection with some measurements problems

in physics. The positive number expressing the distance between two points p, q of a

metric space is replaced by a distribution function (in the sense of probability theory)
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Fp,q : R → [0, 1], whose value Fp,q(x) at the point x ∈ R can be interpreted as the

probability that the distance between p and q be less than x. Since then the subject

developed in various directions, an important one being that of fixed points in PM

spaces. Important contributions to the subject have been done by A.N. Šerstnev and

the Kazan school of probability theory, see [21, 22, 23, 24] and the bibliography in

[19].

A clear and thorough presentation of the results up to 1983 is given in the

book by B. Schweizer and A. Sklar [19]. Beside this book, at the present there

are several others dealing with various aspects of analysis in probabilistic metric

spaces and in probabilistic normed spaces - V. Istrăţescu [11], I. Istrăţescu and Gh.

Constantin [4, 5], V. Radu [18], S.-S. Chang and Y. J. Cho [3], O. Hadžić [8], O.

Hadžić and E. Pap [9]. In the present paper we shall follow the treatise [19].

The probabilistic Pompeiu-Hausdorff metric on the family of nonempty closed

subsets of a PM space was defined by Egbert [6] in the case of Menger PM spaces,

and by Tardiff [27] in general PM spaces (see also [19, §12.9]), by analogy with the

classical case. Sempi [20] used the probabilistic Pompeiu-Hausdorff metric to prove

the existence of a completion of a PM space. Some results have been obtained also

by Beg and Ali [2].

As it is well known, the family of nonempty closed bounded subsets of a

complete metric space is complete with respect to the Pompeiu-Hausdorff distance

(see, e.g., [10, Chapter 1]). The aim of the present paper is to prove the probabilistic

analog of this result for the family of all nonempty closed subsets of a probabilis-

tic metric space. We shall prove that the families of all nonempty closed bounded,

respectively compact, subsets of a complete probabilistic metric space L are also

complete with respect to the probabilistic Pompeiu-Hausdorff metric. If L is a com-

plete random normed space in the sense of Šerstnev, then the family of all nonempty

closed convex subsets of L is complete with respect to the Pompeiu-Hausdorff met-

ric too. In the case of Menger PM spaces (L, ρ,Min), and (L, ρ,W ), with t-norms

Min(s, t) = min{s, t}, s, t ∈ [0, 1], respectively W (s, t) = max{s + t− 1, 0}, the com-

pleteness of the space of all closed bounded nonempty subsets of L with respect to
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the probabilistic Pompeiu-Hausdorff metric was proved by Kolumbán and Soós in [13]

and [14]. In the case of a Menger PM space (L, ρ,Min), they proved also in [13] the

completeness of the family of all compact nonempty subsets of L. These completeness

results were applied in [13, 14, 15] to prove the existence of invariant sets for finite

families of contractions in PM spaces of random variables (E-spaces in the sense of

Sherwood [25], or [19, Ch. 9, Sect. 1]).

As in Aubin’s book [1], I have adopted the term Pompeiu-Hausdorff metric.

For a short comment on this fact, as well as on the similar case of the Painlevé-

Kuratowski convergence for sequences of sets, see [1, page xiv].

2. Preliminary notions

Denote by ∆ the set of distribution functions, meaning nondecreasing, left

continuous functions F : R → [0, 1] with F (−∞) = 0 and F (∞) = 1. Let D be the

subclass of ∆ formed by all functions F ∈ ∆ such that

lim
x→−∞

F (x) = 0 and lim
x→∞

F (x) = 1.

The weak convergence of a sequence (Fn) in ∆ to F ∈ ∆, denoted by Fn
w−→

F , means that the equality

lim
n→∞

Fn(x) = F (x) (2.1)

holds for every continuity point x of F . Since F is non-decreasing the set of

its discontinuity points is at most countable, so that the set of continuity points of

F is dense in R. In order that Fn
w−→ F it is sufficient that the relation (2.1) holds

for every x in an arbitrary dense subset of R. An important result concerning weak

convergence of distribution functions is Helly’s First Theorem: every sequence in ∆

contains a weakly convergent subsequence (see Loève [16, Sect. 11.2]).

The topology of weak convergence in ∆ is metrizable. The first who realized

this was P. Lévy (see the Appendix to Fréchet’s book [7]), and for this reason the

metrics generating the weak convergence in ∆ are called Lévy metrics. Since the orig-

inal Lévy metric characterizes the weak convergence only in D, Sibley [26] proposed a

modification of Lévy metric that generates the weak convergence in ∆. We shall work
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with a further modification proposed by Schweizer and Sklar [19] and denoted by dL.

The distance dL(F,G) between two functions F,G ∈ ∆ is defined as the infimum of

all numbers h > 0 such that the inequalities

F (x− h)− h ≤ G(x) ≤ F (x + h) + h

and

G(x− h)− h ≤ F (x) ≤ G(x + h) + h

hold for every x ∈ (−h−1;h−1). One shows that dL is a metric on ∆ and, for any

sequence (Fn) in ∆ and F ∈ ∆, we have

Fn
w−→ F ⇐⇒ dL(Fn, F ) → 0.

By Helly’s First Theorem the space (∆, dL) is compact, hence complete (see [19,

§4.2]).

The sets of distance functions are:

∆+ = {F ∈ ∆ : F (0) = 0} and D+ = D ∩∆+.

It follows that for F ∈ ∆+ we have F (x) = 0, ∀x ≤ 0. The set ∆+ is closed

in the metric space ∆, hence compact and complete too.

Two important distance functions are

ε0(x) = 0 for x ≤ 0 and ε∞(x) = 0 for x < ∞

= 1 for x > 0 = 1 for x = ∞

The order in ∆+ is defined as the punctual order: for F,G ∈ ∆+ we put

F ≤ G ⇐⇒ ∀x > 0 F (x) ≤ G(x).

It follows that ε0 is the maximal element of ∆+ and of D+ as well, and ε∞

is the minimal element of ∆+.

In the following we shall define some functions, say F , on R and consider

them automatically extended to R by F (−∞) = 0 and F (∞) = 1.

46



PROBABILISTIC POMPEIU-HAUSDORFF METRIC

If {Fi : i ∈ I} is a family of functions in ∆+ then the function F : R → [0, 1]

defined by

F (x) = sup{Fi(x) : i ∈ I}, x ∈ R,

is the supremum of the family {Fi} in the ordered set (∆+,≤) : F = supi∈I Fi.

To define the infimum of the family {Fi} put

Γ(x) = inf{Fi(x) : i ∈ I}, x ∈ R. (2.2)

Since the function Γ is nondecreasing, but not necessarily left continuous on

R, we have to regularize it by taking the left limit

G(x) = `−Γ(x) := lim
x′↗x

Γ(x′) = sup
x′<x

Γ(x′), x ∈ R. (2.3)

Then G(x) ≤ Γ(x), ∀x ∈ R, the function G belongs to ∆+ and G = infi∈I Fi

- the infimum of the family {Fi} in the ordered set (∆+,≤).

A triangle function is a binary operation τ on ∆+, τ : ∆+×∆+ → ∆+, that

is commutative, associative, non-decreasing in each place (τ(F1, G1) ≤ τ(F2, G2), if

F1 ≤ F2 and G1 ≤ G2), and has ε0 as identity: τ(F, ε0) = F, F ∈ ∆+. The triangle

function τ is called continuous if it is continuous with respect to the dL-topology of

∆+. It follows that τ is, in fact, uniformly continuous, since the metric space (∆+, dL)

is compact.

3. Probabilistic metric spaces

A probabilistic metric space (PM space) is a triple (L, ρ, τ), where L is a set,

ρ is a mapping from L×L to ∆+, and τ is a continuous triangle function. The value

of ρ at (p, q) ∈ L× L is denoted by Fpq, i.e., ρ(p, q) = Fpq.

One supposes that the following conditions are satisfied for all p, q, r ∈ L:

(PM1) Fpp = ε0,

(PM2) Fpq = ε0 ⇒ p = q,

(PM3) Fpq = Fqp,

(PM4) Fpr ≥ τ(Fpq, Fqr).
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The mapping ρ is called the probabilistic metric on L and the condition (PM4)

is the probabilistic analogue of the triangle inequality.

The strong topology on a PM space is defined by the neighborhood system:

Ut(p) = {q ∈ L : Fpq(t) > 1− t}, t > 0. (3.1)

Putting

Ūt(p) = {q ∈ L : Fp(t) ≥ 1− t} (3.2)

we have Ut(p) ⊂ Ūt(p) and Ūt′(p) ⊂ Ut(p) for t′ < t, showing that the family (3.2)

of subsets of L forms also a neighborhood base for the strong topology of L.

Observe that Ut(p) = L, for t > 1, and Ūt(p) = L, for t ≥ 1, so that we

can restrict to t ∈ (0, 1) when working with strong neighborhoods. In fact, we can

suppose that t is as small as we need.

The strong topology on a PM space (L, ρ, τ) is derived from the uniformity

U generated by the vicinities:

Ut = {(p, q) ∈ L× L : Fpq(t) > 1− t}, t > 0. (3.3)

The strong topology is metrizable since {U1/n : n ∈ N} is a countable base for the

uniformity U . The probabilistic metric ρ is uniformly continuous mapping from L×L

with the product topology to (∆+, dL), meaning that

pn → p and qn → q in L ⇒ Fpnqn

w−→ Fpq. (3.4)

The convergence of a sequence (pn) in L to p ∈ L is characterized by

pn → p ⇐⇒ ∀t > 0 ∃n0 ∀n ≥ n0 pn ∈ Ut(p)

⇐⇒ Fpnp
w−→ ε0

⇐⇒ dL(Fpnp, ε0) → 0.

A sequence (pn) in L is called a Cauchy sequence, or fundamental, if

Fpnpm

w−→ ε0 for n, m →∞,
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or, equivalently,

∀t > 0 ∃n0 such that ∀n, m ≥ n0 (pn, pm) ∈ Ut ( ⇐⇒ Fpnpm(t) > 1− t).

A convergent sequence in L is a Cauchy sequence, and the PM space L is

called complete (with respect to the strong topology) if every Cauchy sequence is

convergent.

For these and other questions concerning the strong topology of a PM space,

see [19, Chapter 12].

Throughout this paper all the topological notions concerning a PM space will

be considered with respect to the strong topology.

4. The probabilistic Pompeiu-Hausdorff metric

For a metric space (X, d), two nonempty bounded subsets A,B of X and a

point p ∈ X, one introduces the following notations and notions :

d(p, B) = inf{d(p, q) : q ∈ B} − the distance from p to B,

h∗(A,B) = sup{d(p, B) : p ∈ A} − the excess of A over B,

and let

h(A,B) = max{h∗(A,B), h∗(B,A)}

be the Pompeiu-Hausdorff distance between the sets A,B.

Denoting by Pfb(X) the family of all nonempty closed bounded subset of X

it follows that h is a metric on Pfb(X), and the metric space (Pfb(X), h) is complete

if (X, d) is complete (see, e.g., [10, Chapter 1]).

In the case of a PM space (L, ρ, τ) the definitions are similar but, taking into

account the fact that the probabilistic triangle inequality (PM4) is written in reversed

form with respect to the usual triangle inequality, sup and inf will change their places.

For two nonempty subsets A,B of L and p ∈ L denote by

FpB = sup{Fpq : q ∈ B} ⇐⇒ FpB(x) = sup{Fpq(x) : q ∈ B}, x ∈ R, (4.1)
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the probabilistic distance from p to B, and let

F ∗
AB = inf{FpB : p ∈ A}. (4.2)

Taking into account the formulae (2.2) and (2.3), it follows

F ∗
AB = `−Γ∗AB ,

where

Γ∗AB(x) = inf{FpB(x) : p ∈ A}, x ∈ R.

The probabilistic Pompeiu-Hausdorff distance between the sets A,B is defined

by

H(A,B) = FAB , where

FAB(x) = min{F ∗
AB(x), F ∗

BA(x)}, x ∈ R. (4.3)

The probabilistic Pompeiu-Hausdorff metric was defined and studied by Egbert [6]

in the case of Menger PM spaces and by Tardiff [27] in general PM spaces (see also

[19, §12.9]). The mapping H(A,B) = FAB satisfies the following properties, where cl

denotes the closure with respect to the strong topology:

Proposition 4.1. ([19, Th. 12.9.2])

1. F{p}{q} = Fpq for p, q ∈ L;

2. For nonempty A,B ⊂ L, FAB = FBA, FAB = Fcl(A) cl(B), and

FAB = ε0 if and only if cl(A) = cl(B).

In order that H satisfy the probabilistic triangle inequality (PM4), we have

to impose a supplementary condition on the triangle function τ . The triangle function

τ is called sup-continuous if

τ(sup
i∈I

Fi, G) = sup
i∈I

τ(Fi, G) (4.4)

for any family {Fi : i ∈ I} ⊂ ∆+ of distance functions and any G ∈ ∆+.

Denote by Pf (L) the family of all nonempty closed subsets of a PM space

(L, ρ, τ).
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Theorem 4.2. ([19, Th. 12.9.5]) If the triangle function τ is sup-continuous then the

mapping H(A,B) = FAB , where FAB is defined by (4.3), is a probabilistic metric on

Pf (L).

In the following proposition we collect some properties which will be used in

the proof of the completeness of Pf (L) with respect to the probabilistic Pompeiu-

Hausdorff metric.

Proposition 4.3. Let (L, ρ, τ) be a PM space with sup-continuous triangle function

τ , and let A,B ∈ Pf (L) and p ∈ L. Then

1. FpB ≥ τ (FpA, F ∗
AB);

and

2. FpB ≥ Γ∗AB ≥ F ∗
AB ≥ FAB .

3. If FAB(s) > 1− s for some s, 0 < s < 1, then

∀p ∈ A ∃q ∈ B such that Fpq(s) > 1− s, (4.5)

and

∀q ∈ B ∃p ∈ A such that Fpq(s) > 1− s. (4.6)

Proof. For x ∈ R we have

∀a ∈ A ∀b ∈ B FpB(x) ≥ Fpb(x) ≥ τ(FpaFab)(x).

Taking the supremum with respect to b ∈ B and taking in account that τ is sup

continuous and monotonic in each place, we get

∀a ∈ A FpB(x) ≥ τ(Fpa, FaB)(x) ≥ τ(FpA, F ∗
AB)(x).

Taking now the supremum with respect to a ∈ A one obtains the inequality 1.

The inequalities 2 are immediate from definitions.

To prove 3, observe that

FAB(s) > 1− s ⇐⇒ F ∗
AB(s) > 1− s and F ∗

BA(s) > 1− s.

It follows

inf{Fp′B(s) : p′ ∈ A} = Γ∗(s) ≥ F ∗
AB(s) > 1− s,
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so that

sup{Fpq(s) : q ∈ B} > 1− s,

implying (4.5).

The inequality (4.6) can be proved similarly.

The completeness result will be obtained under a further restriction imposed

to τ . We say that the triangle function τ satisfies the condition (W) if

(W) F (x) > α and G(x) > β ⇒ τ(F,G)(x) > max{α + β − 1, 0},

for all x > 0, where F,G ∈ ∆+, and α, β ∈ R.

Remark. Considering the t-norm

W (x, y) = max{x + y − 1, 0}, (x, y) ∈ [0, 1]2,

(see [19, p. 5]) and the associated triangle function W, defined for F,G ∈ ∆+ by

W(F,G)(x) = W (F (x), G(x)), x ∈ R,

(see [19, p. 97]), the condition (W) essentially means that τ ≥ W.

Now we are ready to state and prove the completeness result.

Theorem 4.4. Let (L, ρ, τ) be a PM space with sup-continuous triangle function τ

satisfying the condition (W).

If the PM space L is complete then the space Pf (L) is complete with respect

to the probabilistic Pompeiu-Hausdorff metric.

Proof. Let (An) be a sequence in Pf (L) that is fundamental with respect to the

probabilistic Pompeiu-Hausdorff metric H.

Put

A =
⋂
n≥1

cl

 ⋃
m≥n

Am

 ,

and show that A ∈ Pf (L) (meaning that A ⊂ L is nonempty closed) and that the

sequence (An) converges to A with respect to the probabilistic Pompeiu-Hausdorff

metric H.
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Observe that

p ∈ A ⇐⇒ ∃ n1 < n2 < ... ∃pk ∈ Ank
: pk → p. (4.7)

For 0 < t < 1/2 fixed, choose n0 ∈ N such that

∀n, m ≥ n0 FAnAm(t) > 1− t.

For m ≥ n0 fixed, put n1 := m and pick an element p1 ∈ An1 .

Let now n2 > n1 be such that

∀n, n′ ≥ n2 FAnAn′ (
t

2
) > 1− t

2
.

The inequalities

F ∗
An1An2

(t) ≥ FAn1An2
(t) > 1− t

and the fact that p1 belongs to An1 imply Fp1An2
(t) > 1 − t, so that there exists

p2 ∈ An2 such that

Fp1p2(t) > 1− t.

Take now n3 > n2 such that

∀n, n′ ≥ n3 FAnAn′ (
t

22
) > 1− t

22
.

Reasoning like above, we can find an element p3 ∈ An3 such that

Fp2p3(
t

2
) > 1− t

2
.

Continuing in this way, we obtain a strictly increasing sequence of indices n1 < n2 < ...

and the elements pk ∈ Ank
, k ∈ N, such that

Fpkpk+1(
t

2k−1
) > 1− t

2k−1
, (4.8)

for all k ∈ N.

Claim I. ∀i ∈ N ∀k ∈ N Fpkpk+i
( t
2k−1 ) > 1− ( 1

2k−1 + 1
2k + ... + 1

2k+i−2 )t.

We proceed by induction on i. For i = 1 the assertion is true by the choice

of the elements pk (see (4.8)).
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Suppose that the assertion is true for i and prove it for i + 1. Appealing to

condition (W) we have

Fpkpk+i+1(
t

2k−1
) ≥ τ

(
Fpkpk+1 , Fpk+1pk+i+1

)
(

t

2k−1
) > 1− (

1
2k−1

+
1
2k

+ ... +
1

2k+i−1
)t,

since Fpkpk+1(
t

2k−1 ) > 1− 1
2k−1 and, by the induction hypothesis,

Fpk+1pk+i+1(
t

2k−1
) ≥ Fpk+1pk+i+1(

t

2k
) > 1− (

1
2k

+ ... +
1

2k+i−1
)t.

Claim II. The sequence (pk) is fundamental in the PM space L.

For 0 < s < 1 choose k0 ∈ N such that 2−k0+1 < s. Then for any k ≥ k0 and

arbitrary i ∈ N we have

Fpkpk+i
(s) ≥ Fpkpk+i

(
t

2k−1
) > 1− (

t

2k−1
+ ... +

t

2k+i−1
) > 1− t

2k
> 1− s.

Since the PM space L is complete, there exists p ∈ L such that pk → p in the strong

topology of L. The choice of the elements pk and (4.7) yield p ∈ A. Since the set A

is obviously closed it follows A ∈ Pf (L).

By Claim I we have

Fp1pk
(t) > 1− (1 +

1
2

+ ... +
1

2k−2
)t > 1− 2t.

Let now t′, t < t′ < 2t, be a continuity point of the distribution function Fp1p. The

continuity of the distance function (see (3.4)) and the inequalities

Fp1pk
(t′) ≥ Fp1pk

(t) > 1− 2t

yield, for k →∞, Fp1p(t′) ≥ 1− 2t, so that

Fp1A(t′) = sup
q∈A

Fp1q(t′) ≥ 1− 2t.

As p1 was arbitrarily chosen in Am, it follows

Γ∗AmA(t′) = inf{Fp′A(t′) : p′ ∈ Am} ≥ 1− 2t.
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But then

F ∗
AmA(2t) = sup

t′
Γ∗AmA(t′) ≥ 1− 2t,

where the supremum is taken over all continuity points t′ of the function Fp1p lying

in the interval (t, 2t). The fact that the set of these points is dense in the interval

(t, 2t) justifies the equality sign in the first of the above relations.

Taking into account that m ≥ n0 was arbitrarily chosen too, we finally obtain

∀m ≥ n0 F ∗
AmA(2t) ≥ 1− 2t, (4.9)

Let now p ∈ A and let n1 < n2 < ... and pk ∈ Ank
be such that pk → p in

the strong topology of the PM space L.

Choose k0 ∈ N such that

∀k ≥ k0 Fpkp(t) > 1− t.

Proposition 4.3, the inequality FpAnk0
≥ Fppk0

, and condition (W) give, for

any t′, t < t′ < 2t,

FpAm
(t′) ≥ FpAm

(t) ≥ τ
(
FpAnk0

, F ∗
Ank0

Am

)
(t) ≥ τ

(
Fppk0

, F ∗
Ank0

Am

)
(t) > 1− 2t.

Since p ∈ A was arbitrarily chosen, it follows

∀t′, t < t′ < 2t, Γ∗AAm
(t′) ≥ 1− 2t,

so that

∀m ≥ n0 F ∗
AAm

(2t) ≥ 1− 2t. (4.10)

The inequalities (4.9) and (4.10) yield

∀m ≥ n0 H(Am, A)(2t) = FAmA(2t) ≥ 1− 2t,

i.e., the sequence (Am) converges to A with respect to the probabilistic Pompeiu-

Hausdorff metric H.

The proof of the completeness is complete.
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The diameter of a subset A of a PM space (L, ρ, τ) is defined by

DA(t) = `−ΦA(t)

where

ΦA(t) = inf{Fpp′(t) : p, p′ ∈ A}.

The set A is called bounded if DA ∈ D+, i.e. sup{DA(t) : t > 0} = 1 (see [19, pages

200-201]). This is equivalent to

sup{ΦA(t) : t > 0} = 1. (4.11)

Now we shall show that the families Pfb(L) and Pk(L) of all closed bounded

nonempty subsets of a PM space L, respectively of all nonempty compact subsets of

L, are complete in Pf (L) with respect to the Pompeiu-Hausdorff metric, provided

the PM space L is complete. To prove the assertion concerning the compact sets,

we shall use the characterization of compactness in uniform spaces in terms of total

boundedness (see [12, Ch. 6]). Let (X,U) be a uniform space. For U ∈ U and a

subset A of X put U(A) = {x ∈ X : ∃y ∈ A such that (x, y) ∈ U}. It follows that

U(x) = U({x}) is a neighborhood of x and {U(x) : U ∈ U} forms a neighborhood

base at x. A subset Y of X is called totally bounded if for every U ∈ U there exists a

finite subset Z of X such that Y ⊂ U(Z). Then a subset of a uniform space (X,U) is

compact if and only if it is complete and totally bounded ([12, Ch. 6, Th. 32]). If L

is a PM space then, considering L as a uniform space with respect to the uniformity

generated by the vicinities (3.3), denote by Pftb(L) the family of all nonempty, closed

and totally bounded subsets of L.

Theorem 4.5. If (L, ρ, τ) is a PM space with sup-continuous triangle function τ

satisfying the condition (W), then the subspaces Pfb(L ) and Pftb(L) are closed in

Pf (L).

Consequently, if the PM space L is complete then the subspaces Pfb(L) and

Pk(L) are complete with respect to the probabilistic Pompeiu-Hausdorff metric.
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Proof. Let (An) be a sequence of closed bounded nonempty sets converging to A ∈

Pf (L) with respect to probabilistic Pompeiu-Hausdorff metric H. We have to show

that A is bounded too, i.e. that

sup{ΦA(t) : t > 0} = 1. (4.12)

Let 0 < ε < 1/3 and let m ∈ N be such that

∀n ≥ m FAAn(ε) > 1− ε. (4.13)

Since sup{ΦAm
(t) : t > 0} = 1 there exists t > 0 such that ΦAm

(t) > 1 − ε,

so that

∀q, q′ ∈ Am Fqq′(t) > 1− ε. (4.14)

We can suppose also that t ≥ ε. By (4.13) and (4.5), for any p, p′ ∈ A there exist

q, q′ ∈ Am such that

Fpq(ε) > 1− ε and Fp′q′(ε) > 1− ε. (4.15)

Since t ≥ ε we have Fpq(t) ≥ Fpq(ε) > 1 − ε and Fp′q′(t) ≥ Fp′q′(ε) > 1 − ε, so that,

by (4.14) and condition (W), we have

Fqp′(t) ≥ τ(Fqq′ , Fq′p′)(t) > 1− 2e,

and

Fpp′(t) ≥ τ(Fpq, Fqp′)(t) > 1− 3ε.

We have proved that for any ε, 0 < ε < 1/3, there exists t > 0 such that

Fpp′(t) > 1− ε for all p, p′ ∈ A. It follows ΦA(t) ≥ 1− 3ε, so that (4.12) holds.

Suppose now that (An) is a sequence of nonempty compact subsets of L

converging with respect to the probabilistic Pompeiu-Hausdorff metric H to a set

A ∈ Pf (L). We shall show that A is totally bounded with respect to the uniformity

having as vicinities the sets Ut given by (3.3).

Let 0 < ε < 1/2 and let n ∈ N be such that FAAn(ε) > 1 − ε. By (4.5) it

follows

∀p ∈ A ∃q ∈ An such that Fpq(ε) > 1− ε. (4.16)
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ŞTEFAN COBZAŞ

Now, since the set An is totally bounded, there exits a finite set Z ⊂ L such

that

∀q ∈ An ∃z ∈ Z such that Fqz(ε) > 1− ε. (4.17)

For an arbitrary p ∈ A choose first an element q ∈ An according to (4.16) and

then, for this q select z ∈ Z according to (4.17). Taking into account the condition

(W) we get

Fpq(ε) ≥ τ(Fpq, Fqz)(ε) > max{1− 2ε, 0} = 1− 2ε.

It follows A ⊂ U2ε(Z), i.e. the set A is totally bounded.

Now, if the PM space L is complete and A is closed in L, it follows that A is

complete too, hence compact, as complete and totally bounded.

Remark. As we have yet mentioned, in the case of Menger PM spaces

(L, ρ,Min), and (L, ρ,W ), the completeness of the space of all closed bounded subsets

of L was proved by Kolumbán and Soós in [13] and [14], respectively. Since Min ≥ W,

both of these results are contained in the above completeness result. The completeness

of Pk(L) in the case of a Menger PM space (L, ρ,Min) was proved in [13].

For a subset A of a PM space (L, ρ, τ) and 0 < ε ≤ 1 let

Aε = {q ∈ L : ∃p ∈ A Fpq(ε) > 1− ε} =
⋃
{Uε(p) : p ∈ A}.

As in the case of ordinary metric spaces we have:

Proposition 4.6. (i) cl A =
⋂

ε>0 Aε

If τ satisfies (W) then

(ii) A ⊂ Bε ⇒ cl A ⊂ B2ε.

Proof. Let q ∈ cl A and ε > 0. Choosing p ∈ Uε(q) ∩A it follows

q ∈ Uε(p) ⊂ Aε.

i.e. clA ⊂ ∩εAε. To prove the reverse inclusion we shall show that

∩n≥1A1/n ⊂ cl A.
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If q ∈ ∩n≥1A1/n then

∀n ∃pn ∈ A such that Fppn > 1− 1
n

,

which implies that (pn) converges to p in the strong topology of the PM space L, i.e.

p ∈ cl A.

To prove (ii), let p ∈ cl A. It follows Uε(p) ∩ A 6= ∅, so that Fpq(ε) > 1 − ε,

for some q ∈ A.

Since A ⊂ Bε it follows Fqr(ε) > 1 − ε, for some r ∈ B. But then, taking

into account the condition (W), we have for 0 < ε ≤ 1/2

Fpr(ε) ≥ τ(Fpq, Fqr)(ε) > max{1− 2ε, 0} = 1− 2ε,

showing that p ∈ B2ε. If ε > 1/2 then B2ε = L.

In the following proposition we give two expressions for the probabilistic

Pompeiu-Hausdorff limit of a sequence of sets in Pf (L), inspired by a well known

result for the usual Pompeiu-Hausdorff metric (see [10, Proposition 1.3]).

Proposition 4.7. Let (L, ρ, τ) be a PM space with sup-continuous triangle function

τ satisfying the condition (W). If (An) is sequence in Pf (L) converging to A ∈ Pf (L)

with respect to the probabilistic Pompeiu-Hausdorff metric H then

A =
⋂
n≥1

cl

 ⋃
m≥n

Am

 =
⋂
ε>0

⋃
n≥1

⋂
m≥n

(Am)ε. (4.18)

Proof. Show first that

A ⊂
⋂
n≥1

cl

 ⋃
m≥n

Am

 . (4.19)

Let p ∈ A and let n1 ∈ N be such that

∀m ≥ n1 FAAm(
1
2
) > 1− 1

2
.

By (4.5),

∃p1 ∈ An1 Fpp1(
1
2
) > 1− 1

2
.
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Continuing in this way we obtain a sequence n1 < n2 < ... of indices and the elements

pk ∈ Ank
such that

Fppk
(

1
2k

) > 1− 1
2k

.

It follows pk → p, so that

p ∈
⋂
n≥1

cl

 ⋃
m≥n

Am

 .

Let now 0 < ε < 1/2 and let n0 ∈ N be such that

∀m ≥ n0 FAAm
(ε) > 1− ε.

By (4.6) it follows

∀m ≥ n0 ∀q ∈ Am ∃p ∈ A such that Fpq(ε) > 1− ε,

so that

∀m ≥ n0 Am ⊂ Aε,

or, equivalently, ⋃
m≥n0

Am ⊂ Aε.

But then ⋂
n≥1

cl

 ⋃
m≥n

Am

 ⊂ cl

 ⋃
m≥n0

Am

 ⊂ A2ε.

Since 0 < ε < 1/2 is arbitrary we have

⋂
n≥1

cl

 ⋃
m≥n

Am

 ⊂
⋂

0<ε<1/2

A2ε = clA = A.

It follows

A =
⋂
n≥1

cl

 ⋃
m≥n

Am

 . (4.20)

Let’s prove now that

A ⊂
⋂
ε>0

⋃
n≥1

⋂
m≥n

(Am)ε. (4.21)

For 0 < ε < 1/2 choose n0 ∈ N such that

∀m ≥ n0 FAAm(ε) > 1− ε.
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By (4.5) we have

∀m ≥ n0 ∀p ∈ A ∃q ∈ Am Fpq(ε) > 1− ε,

implying

A ⊂
⋂

m≥n0

(Am)ε ⊂
⋃
n≥1

⋂
m≥n

(Am)ε

Again, since 0 < ε < 1/2 was arbitrarily chosen, we get (4.21).

Finally, prove that

B :=
⋂
ε>0

⋃
n≥1

⋂
m≥n

(Am)ε ⊂
⋂
n≥1

cl

 ⋃
m≥n

Am

 =: C. (4.22)

If p ∈ B then

∀ε, 0 < ε < 1, ∃n0(ε) ∀m ≥ n0(ε) p ∈ (Am)ε.

For n ≥ 1 letting m = max{n, n0(ε)} we have

p ∈ (Am)ε ⊂

 ⋃
m′≥n

Am′


ε

.

We have obtained

∀n ≥ 1 ∀ε > 0 p ∈

 ⋃
m′≥n

Am′


ε

,

implying

∀n ≥ 1 p ∈ cl

 ⋃
m′≥n

Am′

 ,

so that

p ∈
⋂
n≥1

cl

 ⋃
m′≥n

Am′

 .

Combining now (4.20), (4.21) and (4.22) we obtain (4.18).

Now we shall prove that the family Pfc(L) of all nonempty closed convex

subsets of a complete Šerstnev random normed space L is complete with respect to

the probabilistic Pompeiu-Hausdorff metric H.
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A Šerstnev random normed space (RN space) is a triple (L, ν, τ) where L is

a real linear space, τ is a continuous triangle function such that τ(D+ ×D+) ⊂ D+,

and ν is a mapping ν : L → D+ satisfying the following conditions:

(RN1) ν(p) = ε0 ⇐⇒ p = θ;

(RN2) ν(ap)(x) = ν(p)( x
|a| ) for x ≥ 0 and a 6= 0;

(RN3) ν(p + q) ≥ τ(ν(p), ν(q)), p, q ∈ L.

If (L, ν, τ) is a Šerstnev RN space then

ρ(p, q) = ν(p− q), p, q ∈ L, (4.23)

is a random metric on L. The topology of L is the strong topology corresponding to

the random metric (4.23), and L is a metrizable topological vector space with respect

to this topology. Random normed spaces were defined and studied by A. N. Šerstnev

[21, 22, 24] (see also [19, Ch. 15, Sect. 1]).

The following result holds:

Theorem 4.8. Let (L, ν, τ) be a Šestnev random normed space with sup-continuous

triangle function satisfying the condition

τ(F,G)(x) ≥ sup
t∈[0,1]

min{F (tx), G((1− t)x)}, (4.24)

for x ≥ 0 and F,G ∈ D+.

Then the family Pfc(L) of all nonempty closed convex subsets of L is closed in

Pf (L) with respect to the probabilistic Pompeiu-Hausdorff metric H, hence complete

if the random normed space L is complete.

If L is complete then the family Pkc(L) of all nonempty compact convex sub-

sets of L is complete with respect to the probabilistic Pompeiu-Hausdorff metric.

Proof. Observe first that if the set A ⊂ L is convex then the set Aε is convex too.

Indeed, let q1, q2 ∈ Aε and t1, t2 > 0, ; t1 + t2 = 1. If p1, p2 ∈ A are such that

ν(pi − qi)(ε) > 1− ε, i = 1, 2, then t1p1 + t2p2 ∈ A and, by (4.24) and (RN2),
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ν(t1p1 + t2p2 − (t1q1 + t2q2))(ε) ≥

≥ min{ν(t1(p1 − q1))(t1ε), ν(t2(p2 − q2))(t2ε)}

= min{ν(p1 − q1)(ε), ν(p2 − q2)(ε)} > 1− ε,

showing that t1q1 + t2q2 ∈ Aε.

Let now (An) be a sequence of nonempty closed convex subsets of L converg-

ing to A ∈ Pf (L) with respect to H. By Proposition 4.7

A =
⋂
ε>0

⋃
n≥1

⋂
m≥n

(Am)ε.

Since each Am is convex, the same is true for (Am)ε, as well as for

Bn,ε =
⋂

m≥n

(Am)ε, n = 1, 2, ....

The union of the increasing sequence B1,ε ⊂ B2,ε ⊂ ... of convex sets will be convex

too, so that their intersection for all ε > 0 is a convex set.

The assertion concerning the family Pkc(L) of all nonempty compact convex

subsets of L follows from Theorem 4.5 and the first assertion of the theorem.
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Berlin, 1999.

[2] Beg, I. and Ali, R., Some properties of the Hausdorff distance in probabilistic metric

spaces, Demonstratio Math. 29 (1996), no. 2, 243-249.

[3] Chang, Sh.-S., Cho, Y.J. and Kang, S.M., Nonlinear Operators in Probabilistic Metric

Spaces, Nova Science Publishers, Inc, New York, 2001.
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HOMOTOPIC EMBEDDINGS IN n-GROUPS

MONA CRISTESCU AND ADRIAN PETRESCU

Dedicated to Professor Petru Blaga at his 60th anniversary

Abstract. In this paper we prove necessary and sufficient conditions for

homotopic embeddings of an n-groupoid in an n-group. The results ob-

tained are generalization for n > 2 of the Malcev [2], [3] and Rado [4]

results. We prove that an A semirectangular partial groupoid can be ho-

motopic embedded in a group if and only if it is with cancellation and in A

the Malcev conditions are satisfied. Also we proved that a n-groupoid can

be homotopic embedded in a n-group if and only if it is with cancellation

and in it all the Malcev conditions are satisfied.

In this paper we prove necessary and sufficient conditions for homotopic em-

beddings of an n-groupoid in an n-group.

Let An = {Lk
i , L

k

i , Rk
i , R

k

i | k = 1, n − 1, i ∈ N} be the alphabet of the n-ary

Malcev symbols. An n-ary Malcev sequence is a word in the An alphabet which

satisfies the following conditions:

i) each symbols from An appears in a word at the most once;

ii) the Lk
i , Rk

i symbols appear in the natural order of inferior index;

iii) if in a word appears the Lk
i (Rk

i ) symbol, then also the L
k

i , (R
k

i ) appears

and Lk
i (Rk

i ) symbol precedes the L
k

i (R
k

i );

iv) if the L
p
j (R

p
j ) symbol is between the Lk

i and L
k

i (respectively Rk
i and R

k

i ),

then also L
p

j (R
p

j ) is between Lk
i and L

k

i (respectively Rk
i and R

k

i ).

Received by the editors: 18.09.2006.

2000 Mathematics Subject Classification. 20L05.
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Let be A an n-groupoid. To each n-ary Malcev sequence I an equalities

system is attached by the following table as in the binary case σ(I)

Lk L
k

Rn−k R
n−k

α(xk
1 , un

k+1) α(xk
1 , un

k+1) α(vk
1 , yn

k+1) α(vk
1 , yn

k+1)

α(xk
1 , un

k+1) α(xk
1 , un

k+1) α(vk
1 , yn

k+1) α(vk
1 , yn

k+1)

Tabel nr.1

The closing equality to the σ(I) system is formed using the table as in the

binary case.

We will say that in A the Malcev conditions are satisfied if for any I Mal-

cev sequence from the realisation in A of the σ(I) equalities system it results the

realisation in A of the closing equalities of this system.

Let be A an n-groupoid which does not have isotopes with unit.

Lemma 1. Let be A a cancellative n-groupoid. If in A are satisfied the

Malcev conditions, then A can be embedded in a partial n-groupoid having an unit

which belongs to the center.

Proof. Let (an
1 ) ∈ An, e = α(an

1 ) and we consider the translations

Ti, i = 1, n, determined by (an
1 ). On the A set we define the β n-ary partial opera-

tion by D(β) = {(T1(x1), . . . , Tn(xn)) | (xn
1 ) ∈ An} ∪ {(

i−1
e , x,

n−i
e ) | i = 1, n, x ∈ A},

β(T1(x1), . . . , Tn(xn)) = α(xn
1 ), β(

i−1
e , x,

n−i
e ) = x, i = 1, n, x ∈ A.

Because A is cancellative [{T n
1 }, 1A] : A → (A, β) is a monotopy.

Let (yn−1
1 ) ∈ An−1 and (yi−1

1 , e, yn−1
i ), (yj−1

1 , e, yn−1
j ) ∈ D(β) and we sup-

puse that i > j.. From the definition of the β operation it results that there are

x1, . . . , xn−1, xj , . . . , xi−1 ∈ A so that

y1 = T1(x1), . . . , yj−1 = Tj−1(xj−1), yj = Tj(xj) = Tj+1(xj), . . . ,

yi−1 = Ti−1(xi−1) = Ti(xi−1), yi = Ti+1(xi), . . . , yn−1 = Tn(xn−1) (1)

We obtain the equalities system

α(xi−1
1 , ai, x

n−1
i ) = α(xi−2

1 , ai−1, xi−1, x
n−1
i )
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from Ti−1(xi−1) = Ti(xi−1) with Di−1,i

α(xi−2
1 , ai−1, xi−1, x

n−1
i ) = α(xi−3

1 , ai−2, x
i−1
i−2, x

n−1
i )

from Ti−2(xi−2) = Ti−1(xi−2) with Di−2,i−1;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α(xj
1, aj+1, x

i−1
j+1, x

n−1
i ) = α(xj−1

1 , aj, x
i−1
j , xn−1

i )

from Tj(xj) = Tj+1(xj) with Dj,j+1. Therefore

α(xi−2
1 , ai, x

n−1
i ) = α(xj−1

1 , aj , x
i−1
j , xn−1

i ),

that is β(yi−1
1 , e, yn−1

i ) = β(yj−1
i , e, yn−1

j ). �

We consider the (A, γ) extension of (A, β) defined by

D(γ) = D(β) ∪

n⋃

i=1

{
(yi−1

1 , e, yn−1
i ) | ∃j ∈ {1, 2, . . . , n

}

such that (yj−1
1 , e, yn−1

j ) ∈ D(β)}, γ∣∣
D(β)

= β and γ(yi−1
1 , e, yn−1

i ) =

β(yj−1
1 , e, yn−1

j ), i = 1, n. From the lemma 1 it results that the γ operation is well

defined.

Lemma 2. In the partial n-groupoid (A, γ) the Malcev conditions are satis-

fied.

Proof. Let be the table

Lk L
k

γ(uk
1 , u

n
k+1) γ(vk

1 , vn
k+1)

γ(vk
1 , un

k+1) γ(uk
1 , vn

k+1)
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We study only the nontrivial cases. For example:

γ(uk
1 , u

n
k+1) = β(up−1

1 , e, uk
p, u

j−1
k+1, u

n
j+1)

γ(vk
1 , un

k+1) = β(vq−1
1 , vk

q+1, u
r−1
k+1, e, u

n
r )

γ(vk
1 , vn

k+1) = β(vs−1
1 , e, vk

s , vt−1
k+1, v

n
t+1) (2)

γ(uk
1 , v

n
k+1) = β(ui−1

1 , uk
i+1, v

g−1
k+1 , e, v

n
g+1)

We prove from (2) it follow:

β(up−1
1 , e, uk

p,
n−k−1

e ) = β(ui−1
1 , uk

i+1,
n−k+1

e )

β(
k+1
e , u

j−1
k+1, u

n
j+1) = β(

k−1
e , ur−1

k+1, e, u
n
r )

β(vs−1
1 , e, vk

s ,
n−k−1

e ) = β(vq−1
1 , vk

q+1,
n−k+1

e ) (3)

β(
k+1
e , vt−1

k+1, v
n
t+1) = β(

k−1
e , v

g−1
k+1 , e, v

n
g )

Let i < p. From the definition of β operation it results that:

u1 = T1(x1), . . . , ui−1 = Ti−1(xi−1), ui+1 = Ti+1(xi+1) = Ti(xi+1), . . . ,

up−1 = Tp−1(xp−1) = Tp−2(xp−1),

up = Tp+1(xp) = Tp−1(xp), . . . , uk = Tk+1(xk) = Tk−1(xk). (4)

From (4) we get the equalities system:

α(xi−1
1 , ai, x

p−1
i+1 , ap, x

k
p, an

k+2) = α(xi−1
1 , xi+1, ai+1, x

p−1
i+2 , ap, x

k
p, an

k+2)

from Ti+1(xi+1) = Ti(xi+1) with Di,i+1;

α(xi−1
1 , xi+1, ai+1, x

p−1
i+2 , ap, x

k
p, an

k+2) = α(xi−1
1 , xi+2

i+1, ai+2, x
p−1
i+3 , ap, x

k
p, an

k+2)

from Ti+2(xi+2) = Ti+1(xi+2) with Di+1,i+2;

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

α(xi−1
1 , x

p−2
i+1 , ap−2, xp−1, ap, x

k
p, an

k+2) = α(xi−1
1 , x

p−1
i+1 , ap−1, ap, x

k
p, an

k+2)

from Tp−1(xp−1) = Tp−2(xp−1) with Dp−2,p−1;

α(xi−1
1 , x

p−1
i+1 , ap−1, ap, x

k
p, an

k+2) = α(xi−1
1 , x

p
i+1, ap, ap+1, x

k
p+1, a

n
k+2)
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from Tp+1(xp) = Tp−1(xp) with Dp−1,p+1;

. . . . . . . . . . . . . . . . . . . . . . . .

α(xi−1
1 , xk−1

i+1 , ak−1, ak, xk, an
k+2) = α(xi−1

1 , xk
i+1, a

n
k )

from Tk+1(xk) = Tk−1(xk) with Dk−1,k+1. Therefore

α(xi−1
1 , ai, x

p−1
i+1 , ap, x

k
p, an

k+2) = α(xi−1
1 , xk

i+1, a
n
k )

that isβ(up−1
1 , e, uk

p,
n−k−1

e ) = β(ui−1
1 , uk

i+1,
n−k+1

e ).

Similarly we study the other cases. In (A, β) are satisfied the Di,j conditions:

β(yi−1
1 , u

j
i , y

n
j+1) = β(yi−1

1 , v
j
i , y

n
j+1) and

(zi−1
1 , u

j
i , z

n
j+1), (z

i−1
1 , v

j
i , z

n
j+1) ∈ D(β) ⇒

β(zi−1
1 , u

j
i , z

n
j+1) = β(zi−1

1 , v
j
i , z

n
j+1).

Thus from (3) we obtain the equalities system:

β(up−1
1 , e, uk

p, u
j−1
k+1, u

n
j+1) = β(ui−1

1 , uk
i+1,

2
e, u

j+1
k+1)

from (3) with D1,k+1;

β(vs−1
1 , e, vk

s , vt−1
k+1, v

n
t+1) = β(vq−1

1 , vk
q+1,

2
e, vt−1

k+1, v
n
t+1)

from (3) with D1,k+1;

β(vq−1
1 , vk

q+1, u
r−1
k+1, e, u

n
r ) = β(vq−1

1 , vk
q+1,

2
e, u

j−1
k+1, u

n
j+1)

from (3) with Dk−1,n;

β(ui−1
1 , uk

i+1, v
g−1
k+1 , e, v

n
g ) = β(ui−1

1 , uk
i+1,

2
e, vt−1

k+1, v
n
t+1)

from (3) with Dk−1,n.

Therefore the initial table becomes

Lk L
k

β(ui−1
1 , uk

i+1,
2
e, u

j−1
k+1, u

n
j+1) β(vq−1

1 , vk
q+1,

2
e, vt−1

k+1, v
n
t+1)

β(vq−1
1 , vk

q+1,
2
e, u

j−1
k+1, u

n
j+1) β(ui−1

1 , uk
i+1,

2
e, vt−1

k+1, v
n
t+1)
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Similarly it is demonstrated that a
Rk R

k

table in (A, γ) becomes a table

of a similar type
Rk R

k

Ṫhus, to every equalities system σ(I) in (A, γ) it corre-

sponds an equalities system σ̃(I) in (A, β) for the same Malcev sequence I. The closing

equality of σ(I) becomes the closing equality of the σ̃(I) system. Because in A are

satisfied the Malcev conditions it results that also in (A, β) are satisfied the Malcev

conditions, so they are satisfied also in (A, γ).

Lemma 3. i) (un
1 ) ∈ D(γ) ⇒ (un−1

1 , e), (e, un
2 ) ∈ D(γ)

ii) (un
1 ), (vn

1 ) ∈ D(γ) and γ(un−1
1 , e) = v1, γ(e, vn

2 ) = un ⇒ (v1,
n−2
e , un) ∈

D(γ) and γ(un
1 ) = γ(vn

1 ) = γ(v1,
n−2
e , un).

Proof. If v1 = e or un = e, then is obvious that (v1,
n−2
e , un) ∈ D(γ). We

suppose that v1 6= e and un 6= e. Then un 6∈ Tn(A) ⇒ un ∈ Tn−1(A) and v1 6∈

T1(A) ⇒ v1 ∈ T2(A). We suppose that un 6∈ Tn(A). From (un
1 ) ∈ D(γ) ⇒ γ(un

1 ) =

β(ui−1
1 , un

i+1, e), that is un ∈ Tn−1(A). If v1 6∈ T1(A), then from (vn
1 ) ∈ D(γ) ⇒

γ(vn
1 ) = β(e, vj−1

1 , vn
j+1), that is v1 ∈ T2(A). We suppose that (v1,

n−2
e , un) 6∈ D(γ).

Then un ∈ Tn−1(A), v1 ∈ T2(A) and n − 1 = 2. But then γ(u3
1) = β(u1, u3, e) (or

β(u2, u3, e)), so v1 = γ(u2
1, e) = u1 (or u2), that is (v1, e, u3) ∈ D(γ) which is false.

From γ(un−1
1 , e) = v1 = γ(v1,

n−1
e ) with D1,n−1 ⇒ γ(un

1 ) = γ(v1,
n−2
e , un),

and from γ(e, vn
2 ) = un = γ(

n−1
e , un) with D2,n ⇒ γ(vn

1 ) = γ(v1,
n−2
e , un). �

We consider the (A, δ) extension of (A, γ) defined by D(δ) = D(γ)∪D, where

D ⊆ An is defined by (yn
1 ) ∈ D ⇔

i) there are i, j, k ∈ N so that (yn
1 ) = (

i
e, γ(un−1

1 , e),
j
e, un,

k
e) and (un

1 ) ∈ D(γ)

or

ii) there are r, s, t ∈ N so that (yn
1 ) = (

r
e, v1,

s
e, γ(e, vn

2 ),
t
e) and (vn

1 ) ∈ D(γ);

δ/D(γ) = γ and δ(
i
e, γ(un−1

1 , e),
j
e, un,

k
e) = γ(un

1 ), δ(
r
e, v1,

s
e, γ(e, vn

2 ),
t
e) =

γ(vn
1 ).

From the 2 and 3 lemmas it results that the δ operation is well defined. (A, δ)

is a partial n-grupoid with unit e which is in the centre.
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On the set A we define the binary operation ” ◦ ” by (y1, y2) ∈ D(◦) ⇔

(y1,
n−2
e , y2) ∈ D(δ) and y1 ◦ y2 = δ(y1,

n−2
e , y2).

Lemma 4. If (yn
1 ) ∈ D(γ), then γ(yn

1 ) = ((y1 ◦ y2) ◦ · · · ◦ yn−1) ◦ yn.

Proof.

(yn
1 ) ∈ D(γ) ⇒ (yn−1

1 , e) ∈ D(γ),

γ(yn
1 ) = δ(γ(yn−1

1 , e),
n−2
e , yn) = γ(yn−1

1 , e) ◦ yn

(yn−1
1 , e) ∈ D(γ) ⇒ (yn−2

1 , e, yn−1) ∈ D(γ) ⇒

γ(yn−1
1 , e) = γ(yn−2

1 , e, yn−1) = δ(γ(yn−2
1 ,

2
e),

n−2
e , yn−1) =

= γ(yn−2
1 , e2) ◦ yn−1, etc. �

Lemma 5. In the partial groupoid (A, ◦) the Malcev conditions are satisfied.

Proof. We consider the table

L L∗

y1 ◦ y2 y1 ◦ y2

y1 ◦ y2 y1 ◦ y2

Table nr.2

�

We have several possibilities. We will consider only two of them

1. y1 = γ(un−1
1 , e), y2 = un, y1 = γ(vn−1

1 , e), y2 = vn, y1 ◦ y2 = γ(un
1 ),

y1 ◦ y2 = γ(un−1
1 , vn), y1 ◦ y2 = γ(vn

1 ) and y1 ◦ y2 = γ(vn−1
1 , un).

The above table becomes

Ln−1 L
n−1

γ(un−1
1 , un) γ(vn−1

1 , vn)

γ(vn−1
1 , un) γ(un−1

1 , vn)

Table nr.3

2. y1 = γ(un−1
1 , e) = t1, y2 = un = γ(e, vn

2 ), y1 = γ(sn−1
1 , e) = v1, y2 = sn =

γ(e, tn2 ), y1 ◦ y2 = γ(un
1 ), y1 ◦ y2 = γ(vn

1 ), y1 ◦ y2 = γ(sn
1 ), y1 ◦ y2 = γ(tn1 ).

Similarly to the prove of lemma 3 we obtain:

(t1,
n−2
e , un), (v1,

n−2
e , un), (v1,

n−2
e , sn), (t1,

n−2
e , sn) ∈ D(γ).
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So

γ(un−1
1 , e) = γ(t1,

n−1
e ) cu D1,n−1 ⇒ γ(un

1 ) = γ(t1,
n−2
e , un),

γ(sn−1
1 , e) = γ(v1,

n−1
e ) cu D1,n−1 ⇒ γ(sn

1 ) = γ(v1,
n−2
e , sn),

γ(e, vn
2 ) = γ(

n−1
e , un) cu D2,n ⇒ γ(vn

1 ) = γ(v1,
n−2
e , un),

γ(e, tn2 ) = γ(
n−1
e , sn) cu D2,n ⇒ γ(tn1 ) = γ(t1,

n−2
e , sn),

Therefore the table 3 becomes:

Ln−1 L
n−1

γ(t1,
n−2
e , un) γ(v1,

n−2
e , sn)

γ(v1,
n−2
e , un) γ(t1,

n−2
e , sn)

Table nr.4

The other cases are studied in a similar way.

By a similar reasoning it is demonstrated that a
R R∗

table in (A, ◦)

becomes a
Rn−1 R

n−1

table in (A, γ).

In accordance with lemma 2 we obtain that in the partial groupoid (A, ◦) the

Malcev conditions are satisfied.

Definition 1. A binary groupoid (A, ·) is called semirectangular if the fol-

lowing conditions are satisfied.

i) (x1, y1), (x1, y2), (x2, y2), (x3, y1) ∈ D(·) ⇒ (x2, y1) ∈ D(·) or (x3, y2) ∈

D(·);

ii) (x1, y1), (x1, y2), (x2, y2), (x2, y3) ∈ D(·) ⇒ (x1, y3) ∈ D(·) or (x2, y1) ∈

D(·).

Lemma 6. The partial groupoid (A, ◦) is semirectangular.

Proof. i) Let x1 = γ(un−1
1 , e) = v1, y1 = un = γ(e, vn

2 ), x2 = γ(tn−1
1 , e) = s1,

y2 = tn = γ(e, sn
2 ), x3 = w1 = γ(rn−1

1 , e) and x1 ◦ y1 = γ(un
1 ), x1 ◦ y2 = γ(v1, s

n
2 ), x2 ◦

y2 = γ(tn1 ), x3 ◦ y1 = γ(w1, v
n
2 ).

For n > 3 using the prove of lemma 3 ii) we obtain that (w1,
n−2
e , tn) ∈ D(◦),

that is(x3, y2) ∈ D(◦). We suppose that n = 3 and (w1,
n−2
e , tn) 6∈ D(◦). Then

t3 ∈ T2(A) ⇒ γ(t31) = β(t2, t3, e) (that is t1 = e) or γ(t31) = β(t1, t3, e) (that is t2 = e).
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From s1 = γ(t21, e) ⇒ s1 = t2 or s1 = t1, so s1 ∈ T1(A); w1 ∈ T2(A) ⇒ γ(w1, v
3
2) =

β(e, w1, v3), that is v2 = e, so u3 = γ(e, v3
2) = v3 ∈ T3(A) or γ(w1, v

3
2) = β(e, w1, v2),

that is v3 = e, so u3 = γ(e, v3
2) = v2 ∈ T3(A). In conclusion, s1 ∈ T1(A) and

u3 ∈ T3(A) ⇒ (s1, e, u3) ∈ D(◦), that is (x2, y1) ∈ D(◦).

The other cases are studied similarly. �

Lemma 7. The groupoid (A, ◦) can be homomorphic embedded in a group.

Proof. The groupoid (A, ◦) can be homomorphic embedded in a group if

and only if R((A, ◦)) can be embedded in a g-regular classic net, that is a classic net

in which the Reidemeister closure condition is satisfied [1]. We use Radó’s results [4]

for defined nets associated to n-groupoids: a 2-seminet ρ can be embedded in a 2

g-regular classic net if and only if it is quasiregular and all M -configurations of ρ are

closed.

In accordance with [4] the Malcev conditions are exactly M�
3 closing condi-

tions. From the lemmas 5 and 6 it results that in R((A, ◦)) all Mi closing conditions

are satisfied (i = 1, 2, 3) (cf. [4]).

We prove that in R((A, ◦)) all M3 closing conditions are satisfied. Let be a

M3-condition of which M -model is given in fig. 1.

Applying the lemma 6 it results the existence in R((A, ◦)) of at least one of q

or r points. We suppose that point q exists. We consider the M model from fig. 2, for

the pairs of the nods (p′2, p2), respectively (p′1, p1), (p
′
3, p3) and (q′, q) corresponding

respectively the same points in R((A, ◦)).

Repeating this procedure after a finite number of steps (in our case 3) we

obtain a M -model to which correspond an equalities system in (A, ◦) associated to

a Malcev sequence. By applying this procedure the closing equality is kept. As a

consequence of lemma 5 in R((A, ◦)) all M3-closing conditions are satisfied.

Let be now a M1 - condition of which M -model is given in fig. 3.

We consider the polygonal line from fig. 4

In accordance with the lemma 6 in R((A, ◦)) there is at least one of the q or

r points.
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q2 q3

p5

p4
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q1

q4 q5

q6

p2

p1

p6

Figure 3

p4q p5

p1 r p6

Figure 4
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If q exists applying the lemma 6 to the polygonal line it results the existence

in R((A, ◦)) of at least one of the t or s points. If r exists, applying the lemma 6 to

the polygonal line it results the existence in

p3p2 t

p4

rp1 v

Figure 6

R((A, ◦)) of at least one of the t or v points.

If v exists, applying the lemma 6 to the polygonal line from fig. 7 results the

existence in R((A, ◦)) of at least one of the t or u points.

tp3

u p4

v r

Figure 7

Thus we can always consider one of the M -models from fig. 8 and fig. 9. �

To each model corresponds a M3-condition. From the above results R((A, ◦))

all M3-conditions are satisfied. If p3(x
′
1, y1), q3(x2, y2), p4(x1, y3), then in the first case

t(x1, y1), so x1 ◦ y1 = x2 ◦ y2 and x′
1 ◦ y1 = x2 ◦ y2 ⇒ x′

1 = x1 (because (A, ◦) has a

unit from the lemma 5 it result that (A, ◦) is cancellative).

Therefore the M1 considerated condition is satisfied.
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q2 q3

p5

p4

t

q1

q4 q5

q6

p2

p1

p6

Figure 8

In a similar way the second case is proved. Similarly in R((A, ◦)) the M2

closing condition are satisfied.

From the above proof we obtain, in particular, the following generalization

of a result from [4].

Corollary 1. An A semirectangular partial groupoid can be homotopic em-

bedded in a group if and only if it is cancellative and in A the Malcev conditions are

satisfied.

Theorem 1. An n-grupoid can be homotopic embedded in an n-group if and

only if it is cancellative and in it the Malcev conditions are satisfied.

Proof. Let be a A a cancellative n-groupoid in which the Malcev conditions

are satisfied. From the lemma 1 it results that [{T n
1 }, 1A] : A → (A, γ) is a homotopic

embedding. In accordance with the lemma 7, (A, ◦) can be homomorphic embedded in

(G, ·); f : (A, ◦) → (G, ·). From the 4 results that f(γ(yn
1 )) = f(y1) · f(y2) · . . . · f(yn),
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q2 q3

p5

u

p3

q1

q4 q5

q6

p2

p1

p6

Figure 9

that is (A, γ) is homomorphic embedded in n-derivate G = (G, γ) of group: (G, ·)

γ(gn
1 ) = g1 · g2 · . . . · gn.

In conclusion f [{T n
1 }, 1A] : A → G is a homomorphic embedding of A in an

n-group. �
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AN INTEGRAL EQUATION ARISING FROM INFECTIOUS
DISEASES, VIA PICARD OPERATOR

M. DOBRIŢOIU, I.A. RUS, AND M.A. ŞERBAN

Dedicated to Professor Petru Blaga at his 60th anniversary

Abstract. In this paper we use the Picard operators technique to study

the following integral equation arising from infectious diseases

x(t) =

∫ t

t−τ

f(s, x(s))ds, t ∈ R ,

regarding the existence and uniqueness of the solutions and periodic so-

lutions, lower and upper subsolutions of the integral equation, the data

dependence of the solution, the differentiability of the solutions with re-

spect to a parameter.

1. Introduction

We consider the nonlinear integral equation

x(t) =
∫ t

t−τ

f(s, x(s))ds, t ∈ R , (1.1)

when τ > 0 is a parameter.

This equation can be interpreted as a model for the spread of certain infectious

diseases with periodic contact rate that varies seasonally and has been studied in [2],

[3], [9], [10], [13] [16], [17], [25].

We will study the solutions of this nonlinear integral equation.

Let X be a nonempty set, d a metric on X and A : X → X an operator. In

this paper we shall use the following notations:

Received by the editors: 05.02.2007.
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Key words and phrases. nonlinear integral equation, Picard operator, subsolution, data dependence,

differentiability of the solution.
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P (X) : = {Y ⊂ X| Y 6= ∅}

FA : = {x ∈ X| A(x) = x} - the fixed point set of A

(UF )A : = {x ∈ X| A(x) ≤ x}

(LF )A : = {x ∈ X| A(x) ≥ x}

I(A) : = {Y ∈ P (X)| A(Y ) ⊂ Y } - the family of invariant and nonempty sets of A

δ(Y ) : = sup{d(x, y)| x ∈ Y, y ∈ Y }

Ib(A) : = {Y ∈ I(A)| δ(Y ) < +∞}

Icl(A) : = {Y ∈ I(A)| Y = Y }

Ib,cl(A) : = {Y ∈ Ib(A)| Y = Y } .

Definition 1.1. (Rus [17] or [18]) Let (X, d) be a metric space. An operator A :

X → X is a Picard operator (PO) if there exists x∗ ∈ X such that:

(a) FA = {x∗};

(b) the sequence (An(x0))n∈N converges to x∗, for all x0 ∈ X.

Definition 1.2. (Rus [17] or [18]) Let (X, d) be a metric space. An operator A :

X → X is a weakly Picard operator (WPO) if the sequence (An(x0))n∈N converges

for all x0 ∈ X and the limit (which may depend on x0) is a fixed point of A.

If A is a WPO, then we consider the following operator

A∞ : X → X, A∞(x) = lim
n→∞

An(x)

It is clear that A∞(X) = FA.

In section 3 we need the following results (see [14], [15], [19]).

Lemma 1.1. (Rus [19]) Let (X, d,≤) be an ordered metric space and A : X → X an

operator, such that:

(i) the operator A is increasing ;

(ii) A is WPO.
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Then, the operator A∞ is increasing.

Lemma 1.2. (Comparison abstract lemma) Let (X, d,≤) be an ordered metric space

and A,B,C : X → X three operators, such that:

(i) A ≤ B ≤ C;

(ii) A,B, C are WPOs;

(iii) the operator B is increasing.

Then

x ≤ y ≤ z ⇒ A∞(x) ≤ B∞(y) ≤ C∞(z).

Lemma 1.3. (Abstract Gronwall lemma) (Rus [15]) Let (X, d,≤) be an ordered met-

ric space and A : X → X an operator. We suppose that:

(i) A is Picard operator;

(ii) the operator A is increasing.

If we denote with x∗A the unique fixed point of A, then

(a) x ≤ A(x) ⇒ x ≤ x∗A;

(b) x ≥ A(x) ⇒ x ≥ x∗A.

Lemma 1.4. (Rus [19]) Let (X, d,≤) be an ordered metric space and A : X → X an

increasing operator. If A|(UF )A∪(LF )A
is Picard operator, then

x ≤ x∗A ≤ y ,

for every x ∈ (LF )A and y ∈ (UF )A.

In section 4 we need the general data dependence theorem (see [12], [16] and

[20]).

Theorem 1.1. (General data dependence theorem). Let (X, d) be a complete metric

space and A,B : X → X two operators. We suppose that:

(i) A is an α-contraction (α < 1) and FA = {x∗};

(ii) x∗B ∈ FB;

(iii) there exists η > 0 such that

d(A(x), B(x)) < η

83
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for all x ∈ X.

In these conditions we have

d(x∗A, x∗B) ≤ η

1− α
.

In section 5 we need the fiber Picard operators theorem (see [13], [15]).

Theorem 1.2. (Fiber Picard operators theorem). Let (X, d) and (Y, ρ) be two metric

spaces, B : X → X, C : X × Y → Y and A = (B,C) : X × Y → X × Y a triangular

operator. We suppose that:

(i) (Y, ρ) is a complete metric space;

(ii) the operator B : X → X is WPO;

(iii) there exists α ∈ [0, 1), such that C(x, ·) is an α-contraction, for all

x ∈ X;

(iv) if (x∗, y∗) ∈ FA, then C(·, y∗) is continuous in x∗ .

Then the operator A is WPO.

If B is a PO then A is a PO.

The existence and uniqueness and the data dependence on data of the solu-

tions for some nonlinear integral equations have been studied in [1], [4], [5], [6], [7],

[8], [9], [10], [11], [18], [21], [22], [23], [24]. In what follows we shall study the equation

(1.1)

2. Existence and uniqueness in a subset of C(R, I)

We consider the equation (1.1) in the following conditions:

(c1) I, J ⊂ R two compact intervals and f ∈ C(R× I, J);

(c2) f (t, ·) : I → J is Lf - Lipschitz for all t ∈ R;

(c3) Lf · τ < 1;

(c4) there exists U ⊂ C(R, I) such that U ∈ Icl (A).

We have:

Theorem 2.1. Under the conditions (c1) − (c4) the equation (1.1) has a unique

solution in U .
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Proof. We consider the Banach space (C(R, I), ‖·‖C) with supremum norm

‖x‖C = sup
t∈R

|x (t)|

and the operator defined by

A(x)(t) :=
∫ t

t−τ

f(s, x(s))ds, t ∈ R . (2.1)

From condition (c4) it results that A(U) ⊂ U , and we take the operator A : U → U ,

defined by (2.1). The set of the solutions of the integral equation (1.1) coincides with

the set of fixed points of the operator A.

From (c2) we have:

|A(x1)(t)−A(x2)(t)| =
∣∣∣∣∫ t

t−τ

[f(s, x1(s))− f(s, x2(s))] ds

∣∣∣∣ ≤
≤

∣∣∣∣∫ t

t−τ

|f(s, x1(s))− f(s, x2(s))| ds

∣∣∣∣ ≤ ∣∣∣∣∫ t

t−τ

Lf |x1(s)− x2(s)| ds

∣∣∣∣
and using the supremum norm, we obtain

‖A(x1)−A(x2)‖C ≤ Lf · τ ‖x1 − x2‖C .

Therefore, by (c3) it results that the operator A is an α-contraction with the coefficient

α = Lf ·τ . Now, the conclusion of the theorem results from the Contraction Principle.

Remark 2.1. Under the conditions (c1) − (c4) the operator A : (U, d‖·‖C
) →

(U, d‖·‖C
) is a PO.

Let 0 < m < M , 0 < α < β, I = [α, β], J = [m,M ] .

Corollary 2.1. We suppose that:

(i) the conditions (c1)− (c3) are satisfied;

(ii) α ≤ mτ , β ≥ Mτ .

Then the equation (1.1) has a unique solution in C(R, I).
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Proof. We take U := C(R, I), where I = [α, β] and we consider the operator A defined

by (2.1).

By the definition of the function f it results that

f(t, x(t)) ∈ [m,M ], for all t ∈ R , x ∈ U

and we have ∫ t

t−τ

f(s, x(s))ds ∈ [mτ,Mτ ], for all t ∈ R , x ∈ U,

i.e.

A(x)(t) ∈ [mτ,Mτ ], for all t ∈ R , x ∈ U.

Condition (ii) implies that

A(x)(t) ∈ [α, β], for all t ∈ R , x ∈ U.

Therefore, U is an invariant set for the operator A. Now the proof is obtained applying

Theorem 2.1

Corollary 2.2. We suppose that the conditions of the Corollary 2.1 hold. Moreover,

we suppose that there exists ω > 0 such that:

f(t + ω, u) = f(t, u), for all t ∈ R, u ∈ I.

Then, the equation (1.1) has a unique ω-periodic solution.

Proof. We take

U := Xω := {x ∈ C(R, I) : x(t + ω) = x(t), for all t ∈ R}

and we consider the operator A defined by (2.1).

Since the function f is ω-periodic with respect to t and from (c1) and the

condition (ii) of the Corollary 2.1, we have A(U) ⊂ U , i.e. U ∈ I(A). Thus all the

conditions of Theorem 2.1 are satisfied and therefore we obtain the conclusion.
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3. Lower and upper subsolutions

We consider the integral equation (1.1) under the conditions (c1)− (c4) and

we denote by x∗A ∈ U the unique fixed point of the operator A. In addition, we

suppose that:

(c5) f (t, ·) : I → J is increasing, for every t ∈ R.

We have:

Theorem 3.1. We suppose that the conditions (c1)− (c5) are satisfied.

If

x ∈ U, x(t) ≤
∫ t

t−τ

f(s, x(s))ds ,

then

x ≤ x∗A .

Proof. We consider A : U → U , defined by (2.1). Under the conditions (c1)− (c4) the

operator A is a PO and by (c5) we have that the operator A is increasing. Since all

the conditions of the Abstract Gronwall lemma (Lemma1.3) are satisfied, we obtain

x ≤ x∗A

and the proof is complete.

Let 0 < m < M , 0 < α < β, I = [α, β], J = [m,M ] . We have the

following theorem:

Theorem 3.2. Let fi , i = 1, 2, 3 be three functions and suppose that:

(i) fi ∈ C(R× I, J), i = 1, 2, 3, where I, J ⊂ R two compact intervals;

(ii) f2(t, ·) is increasing for every t ∈ R;

(iii) f1 ≤ f2 ≤ f3;

(iv) fi (t, ·) : I → J is Lfi
- Lipschitz for all t ∈ R , i = 1, 2, 3;

(v) Lfi · τ < 1, i = 1, 2, 3;

(vi) α ≤ mτ, β ≥ Mτ .
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Let x∗i , i = 1, 2, 3 be the unique solution of the integral equation (1.1) corre-

spondent to each of fi , i = 1, 2, 3 . Then

x∗1 ≤ x∗2 ≤ x∗3 .

Proof. We consider the operators Ai : C(R, I) → C(R, I), defined by

Ai(x)(t) :=
∫ t

t−τ

fi(s, x(s))ds, t ∈ R , i = 1, 2, 3 . (1)

From condition (ii) we get that the operator A2 is increasing and from the condition

(iii) we have

A1 ≤ A2 ≤ A3 .

Using conditions (i), (iv), (v) we obtain that the operators Ai are αi-contractions

with the constants αi = Lfi
· τ, i = 1, 2, 3, therefore Ai, i = 1, 2, 3 are POs.

By Comparison abstract lemma (Lemma1.2), it results that

x1 ≤ x2 ≤ x3 ⇒ A∞1 (x1) ≤ A∞2 (x2) ≤ A∞3 (x3) ,

but Ai, i = 1, 2, 3 are POs and therefore, we obtain

x∗1 ≤ x∗2 ≤ x∗3 .

This completes the proof.

Theorem 3.3. We suppose that the conditions (c1)−(c3) and (c5) are satisfied. Then

x ≤ x∗A ≤ y ,

for all x ∈ (LF )A and y ∈ (UF )A.

Proof. We take U := (LF )A ∪ (UF )A. Now we consider the operator A defined by

the relation (2.1)

A(x)(t) :=
∫ t

t−τ

f(s, x(s))ds, t ∈ R .

By the condition (c5) the operator A is increasing and therefore, we have (LF )A ∈

I(A) and (UF )A ∈ I(A), so (LF )A ∪ (UF )A is an invariant set for A.

From conditions (c1)− (c3) and the above condition we have that A : U → U

is a PO. Theorem 2.1 implies that the operator A has a unique fixed point in U ,

88



AN INTEGRAL EQUATION ARISING FROM INFECTIOUS DISEASES, VIA PICARD OPERATOR

which we denote by x∗A. Since the conditions of Lemma 1.4 are satisfied, we obtain

the conclusion of the theorem.

4. Data dependence

In what follows we will study the dependence of the solution of the integral

equation (1.1), with respect to f .

Now we consider the perturbed integral equation

y(t) =
∫ t

t−τ

g(s, y(s))ds, t ∈ R , (4.1)

where g ∈ C(R× I, J), with I, J ⊂ R two compact intervals.

We have:

Theorem 4.1. We suppose:

(i) the conditions of the Theorem 2.1 are satisfied and we denote by x∗ the

unique solution of the integral equation (1.1);

(ii) there exists η > 0 such that

|f(t, u)− g(t, u)| ≤ η , for all t ∈ R , u ∈ I .

In these conditions, if y∗ is a solution of the integral equation (4.1), then

we have

‖x∗ − y∗‖C ≤ ητ

1− Lf · τ
.

Proof. We consider the operator A : U → U defined by the relation (2.1).

Let B : U → U be the operator defined by

B(y)(t) :=
∫ t

t−τ

g(s, y(s))ds , t ∈ R . (4.2)

From the condition (ii) we have

|A(x)(t)−B(x)(t)| =
∣∣∣∣∫ t

t−τ

[f(s, x(s))− g(s, x(s))] ds

∣∣∣∣ ≤
≤

∣∣∣∣∫ t

t−τ

|f(s, x(s))− g(s, x(s))| ds

∣∣∣∣ ≤ ∣∣∣∣∫ t

t−τ

ηds

∣∣∣∣ ≤ η τ
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and using the supremum norm, we obtain

‖A(x)−B(x)‖C ≤ ητ.

The proof of the theorem follows from the General data dependence theorem, Theorem

1.2.

Also, we have the following data dependence theorem of the periodic solution

of the integral equation (1.1):

Theorem 4.2. We suppose that:

(i) the conditions of the Corollary 2.2 are satisfied and we denote by x∗ the

unique ω-periodic solution of the integral equation (1.1);

(ii) g(t + ω, u) = g(t, u), for all t ∈ R, u ∈ I;

(iii) there exists η > 0 such that

|f(t, u)− g(t, u)| ≤ η , for all t ∈ R , u ∈ I .

In these conditions, if y∗ is a ω-periodic solution of the integral equation

(4.1), then we have

‖x∗ − y∗‖C ≤ ητ

1− Lf · τ
.

Proof. The proof of this theorem is similar to the proof of the Theorem 4.1.

5. Differentiability with respect to a parameter

In this section we will study the differentiability of the solution of the integral

equation (1.1) (see [9], [10], [19]) with respect to parameter λ

x(t, λ) =
∫ t

t−τ

f(s, x(s);λ)ds , t ∈ R, λ ∈ K , (5.1)

where f ∈ C(R×I×K, J), with I = [α, β], 0 < α < β, J = [m,M ], 0 < m < M and

K ⊂ R a compact interval.

Let

Xω := {x ∈ C(R×K, I) : x(t + ω, λ) = x(t, λ), for all t ∈ R, λ ∈ K} ,
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where ω > 0 .

Theorem 5.1. We suppose that:

(i) α ≤ mτ , β ≥ Mτ ;

(ii) f(t, u;λ) ∈ [m,M ], for all t ∈ R, u ∈ I, λ ∈ K;

(iii) f(t + ω, u;λ) = f(t, u;λ), for all t ∈ R, u ∈ I, λ ∈ K;

(iv) f (t, ·;λ) : I → J is Lf - Lipschitz for all t ∈ R, λ ∈ K;

(v) Lf · τ < 1.

Then:

(a) the equation (1.1) has a unique solution x∗ in Xω ;

(b) for all x0 ∈ Xω , the sequence (xn)n∈N, defined by

xn+1 (t, λ) =
∫ t

t−τ

f (s, xn (s, λ)) ds

converges uniformly to x∗;

(c) if f (t, ·, ·) ∈ C1 (I ×K) then x∗ (t, ·) ∈ C1 (K).

Proof. (a) + (b). We consider the operator B : Xω → C(R×K) defined by

B(x)(t, λ) :=
∫ t

t−τ

f(s, x(s;λ))ds .

From (i) and (iii) we have that Xω ∈ I(B). From (iv) and (v) it follows that B is an

α-contraction with the constant α = Lf · τ . By the Contraction Principle we have

that B is a PO.

(c). We prove that there exists
∂x∗

∂λ
and

∂x∗

∂λ
∈ C(R×K).

If we suppose that there exists
∂x∗

∂λ
, then from

x(t;λ) =
∫ t

t−τ

f(s, x(s;λ);λ)ds

we have

∂x(t;λ)
∂t

=
∫ t

t−τ

∂f(s, x(s;λ);λ)
∂x

· ∂x(s;λ)
∂λ

ds +
∫ t

t−τ

∂f(s, x(s;λ);λ)
∂λ

ds.

This relation suggests to us to consider the following operator

T : Xω ×Xω → Xω ×Xω ,
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defined by

T = (B,C) , T (x, y) = (B(x), C(x, y)) ,

where

C(x, y)(t, λ) :=
∫ t

t−τ

∂f(s, x(s;λ);λ)
∂x

· y(s, λ)ds +
∫ t

t−τ

∂f(s, x(s;λ);λ)
∂λ

ds.

We have:

|C (x, y) (t, λ)− C (x, z) (t, λ)| ≤
∫ t

t−τ

∣∣∣∣∂f(s, x(s;λ);λ)
∂x

∣∣∣∣ · |y(s, λ)− z(s, λ)| ds ≤

≤ Lf · ‖y − z‖C

∫ t

t−τ

ds = Lf · τ · ‖y − z‖C ,

for all x, y, z ∈ Xω. Now, the conditions of the fiber Picard operators theorem are

satisfied. From this theorem we obtain that the operator T is a PO and the sequences

xn+1 = B(xn)

and

yn+1 = C(xn, yn)

converge uniformly to (x∗, y∗) ∈ FT , for all x0, y0 ∈ Xω.

If we take x0, y0 ∈ Xω such that

y0 =
∂x0

∂λ
,

then we have that

yn =
∂xn

∂λ
, for all n ∈ N.

So

xn
unif.−→ x∗ as n →∞,

∂xn

∂λ

unif.−→ y∗ as n →∞.

Using a Weierstrass argument we conclude that x∗ is differentiable, i.e. there exists
∂x∗

∂λ
, and y∗ =

∂x∗

∂λ
.
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Univ. Babeş-Bolyai, Mathematica, 2(1978), 26-32.
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ON A CLASS OF ORTHOGONAL POLYNOMIALS

I. GAVREA

Dedicated to Professor Petru Blaga at his 60th anniversary

Abstract. In this note we study a system of polynomials {P̂k} orthogonal

with respect to the modified measure

dλ̂(t) =
t− d

t− c
w(t)dt, t ∈ [0, 1]

where d, c < 0 and w is a weight function, using orthogonal polynomials

{Pk} with respect to the measure dw(t).

1. Introduction

In [3] G.V. Milovanovic, A.S. Cvetković and M.M. Matejic investigated poly-

nomials orthogonal with respect to the moment functional

L(P ) =
∫ 1

−1

P (t)
t +

1
2
c +

1
c

t +
1
2
c +

1
2c

√
1− t2dt, P ∈ Π

where c ∈ R \ {0}.

Similar measures, e.g. with the weight function (1− t2)(1−k2t2)−1/2, k2 < 1

were studied in [4]. For the Chebyshev measure of the first kind the same modification

has been studied in [2].

In this note we investigate polynomials orthogonal with respect to the mo-

ment functional

A(P ) =
∫ 1

0

P (t)
t− d

t− c
w(t)dt, P ∈ Π (1.1)

Received by the editors: 08.04.2007.
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where dw(t) is a positive measure on [0, 1] having finite moments of all orders, d, c be-

ing fixed negative numbers. We will denote by {Pk} the set of orthogonal polynomials

with respect to the measure dw(t) and by {P̂k} the system of orthogonal polynomials

with respect to the measure

dw1(t) =
t− d

t− c
w(t)dt.

The existence of {P̂k} is guaranteed, since dw1(t) is a positive measure on

[0, 1] having finite moments of all orders

A(tk) =
∫ 1

0

tk
t− d

t− c
w(t)dt.

We will solve the problem in two steps as well as in [3]. First, we consider

modification of dw(t) measure by linear factor t − d computing the coefficients of

the three-term recurrence relation and then we consider the modification of dw(t)

measure by the linear divisor.

In the following we will suppose that∫ 1

0

w(t)dt = 1. (1.2)

2. Linear factors

We denote by w̃ the weight function defined by

w̃(t) = (t− d)w(t). (2.1)

It is well known (see [5]) that the orthogonal polynomial of degree n relative

to the weight function w̃(t) is given by

P̃n(t) =
n∑

k=0

Pk(t)Pk(d). (2.2)

It is known ([5]) that there exists a relation of the form

P̃n(t) = (Ant + Bn)P̃n−1(t)− cnP̃n−2(t), n = 2, 3, . . . (2.3)

Theorem 2.1. The coefficients An, Bn, Cn are given by:

An =
Pn,n(d)

Pn−1,n−1(d)
(2.4)
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Bn = 1 +
an−1,n−1

an,n
·

P 2
n,n(d)

P 2
n−1,n−1(d)

− dPn,n(d)
Pn−1,n−1(d)

(2.5)

Cn =
an−1,n−1

an,n
·

P 2
n,n(d)

P 2
n−1,n−1(d)

(2.6)

where Pn,n is the polynomial of degree n orthogonal with respect to w(t) normalized

by ∫ 1

0

xnPn,n(x)w(x)dx = 1

and an,n, n = 0, 1, . . . is the coefficient of xn of the polynomial Pn,n.

Proof. For k ∈ {0, 1, . . . , n} we denote by Pn,k the polynomial of degree n

defined by the equalities:∫ 1

0

w(t)tiPn,k(t) = δk,i, i = 0, n. (2.7)

Pn,k is well defined by the relations (2.7).

If P is a polynomial of degree n then P can be written in the following form:

P (t) =
n∑

k=0

MkPn,k(t) (2.8)

where

Mk =
∫ 1

0

tkP (t)w(t)dt.

The polynomial P̃n can be written as

P̃n(t) =
n∑

k=0

dkPn,k(t) =
n∑

k=0

tkPn,k(d). (2.9)

We note that ∫ 1

0

Pn(t)w(t)dt = 1. (2.10)

From (2.9) and (2.10) the equality (2.3) is equivalent with

n∑
k=0

dkPn,k(t) = (Ant + Bn)
n−1∑
k=0

dkPn−1,k(t)− Cn

n−1∑
k=0

dkPn−2,k(t), n ≥ 2. (2.11)

From (2.10) and (2.11) we get:

1 = Bn − Cn + dAn. (2.12)
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On the other hand (2.11) can be written as:

n∑
k=0

tkPn,k(d) = (Ant + Bn)
n−1∑
k=0

tkPn−1,k(d)− Cn

n−2∑
k=0

tkPn−2,k(d). (2.13)

From (2.13) we get

An =
Pn,n(d)

Pn−1,n−1(d)
(2.14)

and

Pn,n−1(d) = AnPn−1,n−2(d) + BnPn−1,n−1(d). (2.15)

Pn,n−1 can be written as:

Pn,n−1(x) = Pn−1,n−1(x) + aPn,n(x) (2.16)

where

a = −
∫ 1

0

tnPn−1,n−1(t)dt.

By (2.15), (2.14) and (2.16) we obtain

Bn =
P 2

n−1,n−1(d)− Pn,n(d)Pn−2,n−2(d)
P 2

n−1,n−1(d)

+

∫ 1

0

tn−1(Pn−2,n−2(t)− tPn−1,n−1(d))w(t)dt · Pn−1,n−1(d)Pn,n(d)

P 2
n−1,n−1(d)

. (2.17)

There is the constants αn, βn, γn such that

Pn,n(t) = (αnt + βn)Pn−1,n−1(t)− γnPn−2,n−2(t) (2.18)

and we have

αn = γn =
an,n

an−1,n−1
(2.19)

and

βn =
an,n

an−1,n−1

∫ 1

0

tn−1(Pn−2,n−2(t)− tPn−1,n−1(t))w(t)dt. (2.20)

From (2.17), (2.18), (2.19) and (2.20) we get

Bn = 1 +
an−1,n−1

an,n
·

P 2
n,n(d)

P 2
n−1,n−1(d)

− d
Pn,n(d)

Pn−1,n−1(d)
. (2.21)
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By (2.12) and (2.21) we obtain

Cn =
an−1,n−1

an,n
·

P 2
n,n(d)

P 2
n−1,n−1(d)

and the theorem is proved.

3. Linear divisors

Let us consider the weight function

w2(t) =
w̃(t)
t− c

.

The orthogonal polynomials {P̂n}, n = 0, 1, . . . are orthogonal polynomials

relative to the weight function w2(t).

Theorem 3.1. The polynomial P̂n is given by

P̂n(t) = P̃n−1,n−1(t)− P̃n,n(t)

∫ 1

0

P̃n−1,n−1(t)
t− c

w(t)dt∫ 1

0

P̃n,n(t)
t− c

w(t)dt

(3.1)

where P̃n,n is orthogonal polynomial of degree n relative to the weight function w̃

normalized by ∫ 1

0

xnP̃n,n(x)w̃(x)dx = 1.

P̂n is normalized by ∫ 1

0

xnP̂n(x)w(x)dx = 1.

Proof. By the conditions∫ 1

0

xkP̂n(x)w2(x) = 0 for k = 0, 1, . . . , n− 1

we get

0 =
∫ 1

0

xk

x− c
P̂n(x)w̃(x)dx =

∫ 1

0

xk − ck

x− c
P̃n(x)w̃(x)dx

+ck

∫ 1

0

P̃n(x)w̃(x)
x− c

dx =
∫ 1

0

xk − ck

x− c
P̃n(x)w̃(x)dx
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or

0 =
k−1∑
i=0

ci

∫ 1

0

tk−i−1P̂n(t)w̃(t)dt, k = 1, 2, . . . , n− 1. (3.2)

If we denote by

Mi =
∫ 1

0

tiw̃(t)P̂n(t)dt

from (3.2) we get

M0 = M1 = · · · = Mn−2 = 0

and so, the polynomial P̂n can be written

P̂n(t) = Mn−1P̃n,n−1(t) + MnP̃n,n(t). (3.3)

By the condition ∫ 1

0

tnP̂n(t)w̃(t)
t− c

dt = 1

we get Mn−1 = 1.

From the condition ∫ 1

0

P̂n(t)
t− c

w̃(t)dt = 0

we obtain

Mn = −

∫ 1

0

P̃n,n−1(t)w̃(t)
t− c

dt∫ 1

0

Pn,n(t)w̃(t)
t− c

dt

. (3.4)

The polynomial P̃n,n−1 can be written as

P̃n,n−1(t) = P̃n−1,n−1(t) + unP̃n,n(t) (3.5)

where

un = −
∫ 1

0

tnP̃n−1,n−1(t)w̃(t)dt. (3.6)

From (3.6), (3.5), (3.4) and (3.3) we get

P̂n(t) = P̃n−1,n−1(t)− P̃n,n(t)

∫ 1

0

P̃n−1,n−1(t)
t− c

w̃(t)dt∫ 1

0

P̃n,n(t)
t− c

w̃(t)dt

.

The last relation proves the theorem.
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ON THE DEGREE OF APPROXIMATION
IN VORONOVSKAJA’S THEOREM

HEINER GONSKA

Dedicated to Professor Petru Blaga at his 60th anniversary

Abstract. The present article continues earlier research by P. Piţul,

I. Raşa and the author on quantitative versions of E.V. Voronovskaja’s

1932 result concerning the asymptotic behavior of Bernstein polynomials.

1. Introduction and historical remarks

In two recent notes P. Piţul, I. Raşa and the author discussed E.V.

Voronovskaja’s [20] classical theorem on the asymptotic behavior of Bernstein polyno-

mials Bn(f ; ·) for twice continuously differentiable functions given on [0, 1]. We recall

that for f ∈ R[0,1], n ≥ 1 and x ∈ [0, 1] one puts

Bn(f ;x) :=
∑n

k=0 f
(

k
n

)
· pn,k(x)

:=
∑n

k=0 f
(

k
n

) (
n
k

)
xk(1− x)n−k.

Normally Voronovskaja’s result is given today in its local version as follows.

Theorem 1.1. (see R.A. DeVore & G.G. Lorentz [3])

If f is bounded on [0, 1], differentiable in some neighborhood of x and has

second derivative f ′′(x) for some x ∈ [0, 1], then

n · [Bn(f ;x)− f(x)]− x(1− x)
2

· f ′′(x) → 0, n →∞.

If f ∈ C2[0, 1], the convergence is uniform.

Received by the editors: 16.04.2007.
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In an article following directly that of Voronovskaja S.N. Bernstein [1] gen-

eralized the uniform version as given below.

Theorem 1.2. If q ∈ N is even, f ∈ Cq[0, 1], then, uniformly in x ∈ [0, 1],

n
q
2 ·

{
Bn(f ;x)− f(x)−

q∑
r=1

Bn((e1 − x)r;x) · f (r)(x)
r!

}
→ 0, n →∞.

Before we continue here is a word of warning:

”Voronovskaja” ist just one possible way to spell the Russian

ÂÎÐÎÍÎÂÑÊÀß in Latin characters. Other possibilities to be observed in

the literature are Voronovskaya, Woronowskaja, Woronowskaya and even Voronovsky

(as given on the original 1932 article).

It is the aim of this note to present new quantitative results which also

cover Bernstein’s above case, among others. Before going into details we give three

examples of quantitative Voronovskaja theorems. Some authors call them ”strong

Voronovskaja-type theorems” because, in addition to the convergence of n · [Bng− g]

towards Ag, they also express a degree of approximation depending on smoothness

properties of the function g.

Example 1.3. Write A(f ;x) := x(1−x)
2 · f ′′(x), ϕ(x) :=

√
x(1− x). Then for

• g ∈ C4[0, 1] : ‖n · [Bng − g]−Ag‖∞ ≤ 24
n (‖g′′′‖+ ‖g(4)‖) (see [8]);

• g ∈ C3[0, 1] : ‖n · [Bng − g]−Ag‖∞ ≤ C√
n
· ‖ϕ3 · g′′′‖ (see [4]).

A full quantitative pointwise version of Voronovskaja’s uniform result reads

• f ∈ C2[0, 1] : |n · [Bn(f ;x) − f(x)] − A(f ;x)| ≤ x(1−x)
2 · ω̃(f ′′; 1

3·
√

n
) (see

[6]).

All the proofs are based on Taylor’s formula; the last one uses the ”Peano

remainder without Landau” as recalled in the next section. During the writing of

this note it was brought to the author’s attention that already in 1985 V.S. Videnskij

published in [19] (see Theorem 15.2 on p. 49) the following:

• f ∈ C2[0.1] : |n · [Bn(f ;x)− f(x)]−A(f ;x)| ≤ x(1− x) · ω(f ′′;
√

2
n ).

Videnskij’s inequality follows from ours given in [6]; later in this note an even

more precise pointwise estimate will be given.
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2. An auxiliary result

Here we recall an estimate of the remainder in Taylor’s formula which (strange

enough!) we were unable to locate in the literature.

Theorem 2.1. (see [6]) Let ω(f ; ε) denote the classical first order modulus of conti-

nuity of f ∈ C[a, b], ε > 0. The least concave majorant ω̃(f ; ε) is given by

ω̃(f ; ε) =


sup

0≤x≤ε≤y≤b−a
x6=y

(ε−x)ω(f ;y)+(y−ε)ω(f ;x)
y−x , 0 ≤ ε ≤ b− a;

ω(f ; b− a), ε > b− a.

Suppose that f ∈ Cq[a, b], q ≥ 0. Then for the remainder in Taylor’s formula

we have

|Rq(f ;x, t)| ≤ |t− x|q

q!
ω̃

(
f (q);

|t− x|
q + 1

)
.

Here x ∈ [a, b] is fixed, and t ∈ [a, b].

Remark 2.2. Since ω̃(f (q); |t−x|
q+1 ) = o(1), t → x, this is a more explicit form of

Peano’s remainder in Taylor’s formula.

3. A general quantitative Voronovskaja-type theorem

As mentioned before, Bernstein’s generalization can be turned into a quanti-

tative statement. However, we intend to be more general. For historical reasons we

recall the following

Theorem 3.1. (R.G. Mamedov [13])

Let q ∈ N be even, f ∈ Cq[0, 1], and Ln : C[0, 1] → C[0, 1] be a sequence of positive

linear operators such that

Ln(e0;x) = 1, x ∈ [0, 1];

lim
n→∞

Ln((e1 − x)q+2j ;x)
Ln((e1 − x)q;x)

= 0 for at least one j ∈ {1, 2, . . .}.

Then

1
Ln((e1 − x)q;x)

{Ln(f ;x)− f(x)−
q∑

r=1

Ln((e1 − x)r;x) · f (r)(x)
r!

} → 0, n →∞.

The quantitative version of the above result will be based upon
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Theorem 3.2. Let q ∈ N0, f ∈ Cq[0, 1] and L : C[0, 1] → C[0, 1] be a positive linear

operator. Then

|L(f ;x)−
q∑

r=0

L((e1−x)r;x)·f
(r)(x)
r!

| ≤ L(|e1 − x|q;x)
q!

·ω̃(f (q);
1

q + 1
·L(|e1 − x|q+1;x)

L(|e1 − x|q;x)
.

Sketch of proof. For x fixed and t ∈ [0, 1] write Taylor’s formula as

f(t) =
q∑

r=0

f (r)(x)
r!

(t− x)r + Rq(f ;x, t), i.e.,

f(t)−
q∑

r=0

f (r)(x)
r!

(t− x)r = Rq(f ;x, t).

Applying L to both sides (as functions of t) yields

|L(f ;x)−
∑q

r=0
f(r)(x)

r! · L((e1 − x)r;x)|

≤ L(|Rq(f ;x, ·)|;x)

≤ L( |e1−x|q
q! · ω̃(f (q); |e1−x|

q+1 ;x)

≤ L(|e1−x|q ;x
q! · ω̃(f (q); 1

q+1 ·
L(|e1−x|q+1;x)
L(|e1−x|q ;x) ).

For further details (such as the intermediate use of a K-functional) see [6].�

Corollary 3.3. (Mamedov’s situation) Suppose that we consider a sequence (Ln) of

positive linear operators, q is even, Ln(e0;x) = 1 and that for at least one j ∈ N one

has

lim
n→∞

Ln((e1 − x)q+2j ;x)
Ln((e1 − x)q;x)

= 0.

In this case Ln(|e1 − x|q;x) = Ln((e1 − x)q;x).

Using the Cauchy-Schwarz inequality for positive linear functionals (possibly

repeatedly) we obtain

Ln(|e1 − x|q+1;x)
Ln(|e1 − x|q;x)

=
Ln(|e1 − x|

q
2 · |e1 − x|

q
2+1;x)

Ln((e1 − x)q;x)

≤ 2

√
Ln((e1 − x)q+2;x)
Ln((e1 − x)q;x)

· · · ≤ 2j

√
Ln((e1 − x)q+2j ;x)

Ln((e1 − x)q;x)
.

And from here Mamedov’s statement follows, since according to his assump-

tion the latter quantity tends to 0 as n goes to ∞. �
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4. Some special cases

Here we briefly discuss the cases q = 0, q = 1 and q = 2.

Example 4.1. In case q = 0 we may assume that L(e0;x) > 0. Since otherwise, for

f ∈ C[0, 1] arbitrary, we would have

|L(f ;x)| ≤ L(|f |;x) ≤ ‖f‖ · L(e0;x) = 0,

leading to a trivial inequality. Making the above assumption we get

|L(f ;x)− L(e0;x) · f(x)| ≤ L(e0;x) · ω̃
(

f ;
L(|e1 − x|;x)

L(e0;x)

)
;

thus

|L(f ;x)− f(x) + f(x)− L(e0;x) · f(x)| ≤ L(e0;x) · ω̃
(

f ;
L(|e1 − x|;x)

L(e0;x)

)
,

or

|L(f ;x)− f(x)| ≤ |L(e0;x)− 1| · |f(x)|+ L(e0;x) · ω̃
(

f ;
L(|e1 − x|;x)

L(e0;x)

)
,

or, for L(e0;x) = 1,

|L(f ;x)− f(x)| ≤ ω̃(f ;L(|e1 − x|;x).

This is an inequality which can already be found in [5], Theorem 3.1.

Example 4.2. For q = 1, i.e., f ∈ C1[0, 1] we arrive at

|L(f ;x)−L(e0;x)·f(x)−L(e1−x;x)·f ′(x)| ≤ L(|e1−x|;x)·ω̃
(

f ′;
1
2
· L((e1 − x)2;x)

L(|e1 − x|;x)

)
.

Proceeding as in the previous case we find

|L(f ;x)− f(x)| ≤ |(L(e0;x)− 1) · f(x) + L(e1 − x;x) · f ′(x)|

+L(|e1 − x|;x) · ω̃(f ′; 1
2

L((e1−x)2;x)
L(|e1−x|;x) )

≤ |L(e0;x)− 1| · |f(x)|+ |L(e1 − x;x)| · |f ′(x)|

+L(|e1 − x|;x) · ω̃(f ′; 1
2

L((e1−x)2;x)
L(|e1−x|;x) ).
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If L reproduces linear functions this simplifies to

|L(f ;x)− f(x)| ≤ L(|e1 − x|;x) · ω̃(f ′;
1
2
· L((e1 − x)2;x)

L(|e1 − x|;x)
).

A similar inequality was given in [5], Section 4.

Example 4.3. For q = 2 we get

|L(f ;x)− L(e0;x) · f(x)− L((e1 − x);x) · f ′(x)− 1
2 · L((e1 − x)2;x) · f ′′(x)|

≤ 1
2 · L((e1 − x)2;x) · ω̃(f ′′; 1

3 ·
L(|e1−x|3;x)
L((e1−x)2;x) ).

If L(e0;x) = 1 and L((e1 − x);x) = 0, then this turns into

|L(f ;x)− f(x)− 1
2 · L((e1 − x)2;x) · f ′′(x)|

≤ 1
2 · L((e1 − x)2;x) · ω̃(f ′′; 1

3 ·
L(|e1−x|3;x)
L((e1−x)2;x) )

(see [6], proof of Theorem 6.2).

For Bernstein operators Bn we arrive at

|Bn(f ;x)− f(x)− x(1− x)
2n

· f ′′(x)| ≤ x(1− x)
2n

· ω̃(f ′′;
n

3
Bn(|e1 − x|3;x)

x(1− x)
)

≤ x(1− x)
2n

· ω̃(f ′′;
1

3
√

n
)

(see [6], Proposition 7.2). This is the example mentioned earlier. But we can do

better as is shown in the next section.

5. Application to Bernstein-type operators

Theorem 5.1. For f ∈ C2[0, 1], x ∈ [0, 1] and n ∈ N one has

|n · [Bn(f ;x)− f(x)]− x(1− x)
2

· f ′′(x)| ≤ x(1− x)
2

· ω̃(f ′′;

√
1
n2

+
x(1− x)

n
).

Proof. We discriminate two cases.

(i) x ∈ [ 1
n , 1− 1

n ]. In this situation we showed in Remark 9.4 of [6] that, using

the Cauchy-Schwarz inequality,

Bn(|e1 − x|3;x)
Bn((e1 − x)2;x)

≤

√
Bn((e1 − x)4;x
Bn((e1 − x)2;x)

≤ 2 ·
√

x(1− x)
n

.
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(ii) x ∈ [0, 1
n ]∪ [1− 1

n , 1]. In Remark 7.3 of [6] it was proved that in this case

Bn(|e1 − x|3;x)
Bn((e1 − x)2;x)

≤ 3
n

.

Thus for all x ∈ [0, 1] we get

Bn(|e1 − x|3;x)
Bn((e1 − x)2;x)

≤ 3 ·
√

1
n2

+
x(1− x)

n

which, using also

Bn((e1 − x)2;x) =
x(1− x)

n
,

gives the inequality in the theorem. �

Remark 5.2. The above inequality can also be written as

Bn(|e1 − x|3;x) ≤ 3 ·
√

1
n2

+
x(1− x)

n
·Bn((e1 − x)2;x).

This shows that - in this particular case - the absolute moment of ”high”

order 3 may be estimated by the product of a function vanishing uniformly of order

o( 1√
n
) and the moment of ”low” order 2. It would be interesting to know if this can

be proved for more general positive linear operators. �

A similar improvement close to the endpoints 0 and 1 is also possible for the

so-called ”genuine Bernstein-Durrmeyer operators” defined by

Un(f ;x) = f(0) · pn,0(x) + f(1) · pn,n(x) +
n−1∑
k=1

pn,k(x) ·
∫ 1

0

pn−2,k−1(t) · f(t)dt.

A survey on these and related operators was recently prepared by D. Kacsó

[9]. For our purposes the information given about them in [6] and [7] will suffice. We

obtain

Theorem 5.3. For f ∈ C2[0, 1], x ∈ [0, 1] and n ∈ N, n ≥ 2, the following inequality

holds

|(n+1)[Un(f ;x)−f(x)]−x(1−x)f ′′(x)| ≤ x(1− x)
n + 1

·ω̃(f ′′; 4 ·

√
1

(n + 1)2
+

x(1− x)
n + 1

).
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Proof. Again we consider two cases.

(i) x ∈ [ 1
n , 1− 1

n ]. In Section 7 of [6] we noted that

Un((e1 − x)2;x) =
2x(1− x)

n + 1
,

Un((e1 − x)4;x) =
12x2(1− x)2(n− 7) + 24x(1− x)

(n + 1)(n + 2)(n + 3)
.

From this we get

Un(|e1 − x|3;x)
Un((e1 − x)2;x)

≤

√
Un((e1 − x)4;x)
Un((e1 − x)2;x)

=

√
6x(1− x)(n− 7) + 12

(n + 2)(n + 3)
.

For n ≥ 2 and x ∈ [ 1
n , 1− 1

n ]

6x(1− x)(n− 7) + 12
(n + 2)(n + 3)

≤ 18x(1− x)
n + 1

, so that

Un(|e1 − x|3;x)
Un((e1 − x)2;x)

≤
√

18x(1− x)
n + 1

.

(ii) x ∈ [0, 1
n ] ∪ [1 − 1

n , 1]. We only consider the left interval, the second one

can be treated analogously. In this case we write

Un(|e1 − x|3;x) = Un(|e1 − x|3;x)− Un((e1 − x)3;x) + Un((e1 − x)3;x)

= Un(|e1 − x|3 − (e1 − x)3;x) + Un((e1 − x)3;x)

= Un(2 · (e1 − x)2(x− e1)+;x) + Un((e1 − x)3;x).

Here (x− e1)+ := max{0, x− e1}.

From the definition of Un it follows that

Un(|e1 − x|3;x)

= 2x3 · pn,0(x) + 2
n−1∑
k=1

pn,k(x) ·
∫ x

0

pn−2,k−1(t) · (x− t)3dt + Un((e1 − x)3;x)

≤ 2x3 · (1− x)n +
2
n2

x(1− x) ·
n−1∑
k=1

pn,k(x) +
6x(1− x)(1− 2x)

(n + 1)(n + 2)
.

The representation of Un((e1 − x)3;x) can be found in [7].
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The latter expression is bounded from above by

2
n2

x(1− x) · [(1− x)n−1 + 1 + 3(1− 2x)]

≤ 10
n2

x(1− x) ≤ 45
2
· x(1− x)

(n + 1)2
for n ≥ 2.

Thus in this case we get

Un(|e1 − x|3;x)
Un((e1 − x)2;x)

≤ 45
2
· x(1− x)

(n + 1)2
· n + 1
2x(1− x)

≤ 12
n + 1

.

Combining the two cases entails, for x ∈ [0, 1] and n ≥ 2,

Un(|e1 − x|3;x)
Un(e1 − x)2;x)

≤ 12 ·

√
1

(n + 1)2
+

x(1− x)
n + 1

,

and from this the theorem follows. �

6. Concluding remarks

Remark 6.1. Here we make some further remarks concerning the case when q ≥ 3

is odd. In this case the right hand side in the inequality of Theorem 3.1 is

L(|e1 − x|q;x)
q!

· ω̃(f (q);
1

q + 1
· L((e1 − x)q+1;x)

L(|e1 − x|q;x)
.

Furthermore we assume that L(e0;x) = 1. A Hölder-type inequality for pos-

itive linear operators (see [6], Theorem 5.1) then implies for 1 ≤ s < r:

L(|e1 − x|s;x)
1
s ≤ L(|e1 − x|r;x)

1
r .

Taking s = q − 1 ≥ 2 and r = q gives

L((e1 − x)q−1;x)
1

q−1 ≤ L(|e1 − x|q;x)
1
q

or

L((e1 − x)q−1;x)
q

q−1 ≤ L(|e1 − x|q;x).

Thus the left side in Theorem 3.1 is bounded from above by

L(|e1 − x|q;x)
q!

· ω̃

(
f (q);

1
q + 1

· L((e1 − x)q+1;x)

L((e1 − x)q−1;x)
q

q−1

)
.
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Now the moments inside ω̃(f (q); ·) are both of even order and can more easily

be evaluated. The absolute moment in front of ω̃(f (q); ·) can also be estimated using

Hölder’s inequality.

Our quantitative Voronovskaja-type theorem is not only applicable to poly-

nomial operators as can be seen from the following

Example 6.2. (see [7]) For variation-diminishing spline operators S∆n giving piece-

wise linear interpolators at equidistant knots in [0, 1] the quantitative Voronovskaja

theorem in case q = 2 reads

| n2

zn(x)(1− zn(x))
[S∆n

(f ;x)− f(x)]− 1
2
· f ′′(x)| ≤ 1

2
· ω̃(f ′′;

1
3n

).

This is (again) obtained via representations of the second and fourth central

moments as given, for example, in Lupaş’ Romanian Ph. D. thesis [11] on p. 46:

S∆n
((e1 − x)2;x) =

1
n2

zn(x) · (1− zn(x)),

S∆n((e1 − x)4;x) =
1
n2

zn(x)(1− zn(x)) · [1− 3zn(x)(1− zn(x))].

Here zn(x) = {nx} := nx− [nx] is the fractional part of nx.

Voronovskaja-type results are also known for other cases of Schoenberg’s

variation-diminishing spline operators. See the cited articles by Marsden, Riemen-

schneider and Schoenberg for non-quantitative versions. It would be of interest to

find quantitative statements also for cases other than S∆n .

Remark 6.3. We noted before (see Theorem 1.1) that Voronovskaja’s theorem is

pointwise in nature, i.e., it does not only hold for functions f ∈ C2[0, 1]. One example

is the negative ”entropy function”

f(x) = x log x + (1− x) log(1− x), x ∈ (0, 1), f(0) := 0, f(1) := 0.

Here f ′′(x) = [x(1 − x)]−1, x ∈ (0, 1), so that the local version of

Voronovskaja’s theorem gives

lim
n→∞

n · [Bn(f ;x)− f(x)] =
1
2
, x ∈ (0, 1),

while Bn(f ; 0)− f(0) = 0 = Bn(f ; 1)− f(1), n ∈ N.
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In [2] several interesting phenomena concerning the approximation of the en-

tropy function f by Bnf are discussed.

Moreover, Lupaş showed in [12] that for this function one has

x(1− x)
2

≤ n[Bn(f ;x)− f(x)] ≤
√

2nx(1− x);

see also the related question in [18].

Remark 6.4. It was not easy to find out details about the life of Elizaveta

Vladimirovna Voronovskaja who was born in 1898 or 1899 in Sankt Peterburg (Rus-

sia) and died in 1972, most likely in Leningrad (Soviet Union). Voronovskaja held

university degrees in mathematics and history and was influenced in her mathemati-

cal work by S.N. Bernstein and V.I. Smirnov . Her main scientific achievement is -

besides the famous 1932 paper on the asymptotic behavior of Bernstein polynomials -

the monography ”The functional method and its applications” which was published in

Russian in 1963 and in English in 1970. Since 1946 she was the chairperson of the

department of higher mathematics in the Leningrad Institute of Aerospace Instrumen-

tation (now St. Petersburg State University of Aerospace Instrumentation). The last

years of her life she also worked as a chairperson, now in the department of higher

mathematics in the Leningrad Institute of Telecommunications (now St. Petersburg

State University of Telecommunications).

This and more information on E.V. Voronovskaja including a photograph can

be found at the following Russian internet pages (operative on April 20, 2007):

http: // www. spbstu. ru/ public/ m_ v/ N_ 002/ Yarv/ Voronovskaya. html

http: // www. spbstu. ru/ phmech/ math/ persons/ HISTORY/ Voronovskaia_ E_ V. html

We are grateful to Vitalii Arestov (Ekaterinburg), Elena Berdysheva

(Stuttgart-Hohenheim) and Andriy Bondarenko (Kiev) for helping us to locate these

pages.
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Abstract. The goal of this paper is to prove some basic properties of in-

variant set list and invariant list of measures defined by Mauldin-Williams

graphs. The main result of this article is the so called oscillation lemma for

graph self-similar sets, similar to that used in the homogenization theory

of partial differential equations.

1. Introduction

A theory of self-similar fractal sets and measures was developed by Hutchin-

son. Construction mapping methods for showing the existence and uniqueness of

self-similar fractal sets and measures were first used in [3]. There is a generalization

of self-similarity that provides a way to study a larger class of sets. A definitive for-

mulation is due to Mauldin and Williams [6]. In this case there is a list of nonempty

compact sets to be constructed simultaneously. Each of them is decomposed into

parts obtained from this list using certain similarities. For each such construction

corresponds a directed multigraph: there is one node for each set in the list and the

edges from a node correspond to the subsets into which the corresponding set is de-

composed. A well know example of graph self-similar fractal is the golden rectangle

fractal [1]. Another important examples are sets constructed for number systems with

complex base. For example for the number system with base −i + 1 and digit set
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2000 Mathematics Subject Classification. 28A80.

Key words and phrases. graph self-similar set, graph-invariant set, graph-invariant measure.

This work was partially supported by MEdC-CNCSIS, research project TD 376/11, 2006.

117



IULIANA MARCHIŞ

{0, 1} we get the so called twindragon, which has a graph-similar fractal boundary

[1].

The goal of this paper is to prove some basic properties of invariant set

list and invariant list of measures defined by Mauldin-Williams graphs. The graph-

similar measures are the generalizations of the self-similar measures introduced by

Hutchinson [3]. We prove also a so called oscillation lemma, similar to that used

in the homogenization theory of partial differential equations. For self-similar sets

an oscillation lemma was given in [4]. This result was used in homogenization with

multiple scale expansion on self-similar structures in [5].

2. Preliminaries

Let (V,E, i, t) be a strongly connected directed multigraph, where V is the

set of the vertices, E the set of the edges of the graph, and i : E → V , t : E → V two

functions such that, for each edge e ∈ E, i(e) is the initial vertex of e and t(e) is the

terminal vertex of e. Denote by Euv the set of all edges from u to v, where u, v ∈ V .

Each edge from E belongs exactly to one of these subsets Euv. Denote by Eu the set

of all edges leaving the vertex u.

A finite path in the graph is a finite string α = e1e2...eq of edges, where the

terminal vertex of each edge ei is the initial vertex of the next edge ei+1. The length

of a path is the number of the edges contained by it, so the length of α is |α| = q.

Denote by E
(q)
u the set of all paths of length q with the initial vertex u, and by E

(q)
uv

the set of all paths of length q from vertex u to v. For each u ∈ V the set E
(0)
uu has

one element, the empty path from u to itself, denoted by Λu. Denote by E
(∗)
u the set

of all finite paths with initial vertex u, E(∗) the set of all finite paths.

σ = e1e2...eq... is an infinite path. Denote by E
(ω)
u the set of all infinite

paths with initial vertex u, E(ω) the set of all infinite paths.

Because (V,E, i, t) is a strongly connected multigraph, there is a path from

any vertex to any other, along the edges of the graph, taken in the proper direction.
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Let α ∈ E(∗). Then

[α] = {σ ∈ E(ω) : α ≤ σ}

is the set of all infinite paths that begin with the finite path α.

Let (Sv, d)v∈V be a family of nonempty complete metric spaces, (fe)e∈E a

family of Lipschitz functions, fe : Sv → Su such that

d(fe(x), fe(y)) ≤ red(x, y),

for x, y ∈ Sv, e ∈ Euv.

A directed multigraph (V,E, i, t) together with a positive number re for each

edge e ∈ E, is a Mualdin-Williams graph. A definitive formulation is due to

Mauldin and Williams [6].

3. Invariant set list

An invariant set list for the iterated function system (fe)e∈E is a list of

nonempty sets (Kv)v∈V , Kv ⊆ Sv, such that

Ku =
⋃

v∈V

⋃
e∈Euv

fe(Kv),

for all u ∈ V .

Theorem 3.1 (Theorem 4.3.5. in [1]). There exists a unique invariant set list

(Kv)v∈V of nonempty compact sets.

Let (fe)e∈E be an iterated function system. Denote by fe1...eq
= fe1 ◦ ...◦feq

,

and K
e1...eq
u = fe1...eq (Kvq ), for u, vq ∈ V , vq = t(eq) and e1, ..., eq ∈ E.

The following results are the adaptation of the results for self-similar sets

from [3] to graph self-similar sets.

Theorem 3.2. Let σ ∈ E
(ω)
u , σ = e1e2...eq.... Then

Ku ⊃ Ke1
u ⊃ Ke1e2

u ⊃ ... ⊃ Ke1...eq
u ⊃ ...

and
∞⋂

q=1

Ke1...eq...
u
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is a singleton, whose unique member we denote by k
e1...eq...
u .

Proof. We have Ki(e) ⊃ fe(Kt(e)), for every e ∈ E.

So, Ku ⊃ fe1(Kt(e1)) = Ke1
u .

Also Ki(e2) ⊃ fe2(Kt(e2)), from where fe1(Ki(e2)) ⊃ fe1(fe2(Kt(e2))). But

fe1(Ki(e2)) = Ke1
u and fe1(fe2(Kt(e2))) = fe1(K

e2
i(e2)

) = Ke1e2
u , so Ke1

u ⊃ Ke1e2
u .

Therefore

Ku ⊃ Ke1
u ⊃ Ke1e2

u ⊃ ... ⊃ Ke1...eq
u ⊃ ...

But diam(Ke1...eq
u ) → 0, as q → ∞, so

⋂∞
q=1 K

e1...eq...
u is a singleton. We denote the

element of this singleton by k
e1...eq...
u .

Theorem 3.3. Let α ∈ E
(∗)
u , β ∈ E

(∗)
t(α), σ ∈ E

(ω)
t(α). The following relations hold:

i) fα(Kβ
t(α)) = Kαβ

u ,

ii) fα(kσ
t(α)) = kασ

u .

Proof. i) fα(Kβ
t(α)) = fα(fβ(Kt(β))) = fαβ(Kt(β)) = Kαβ

u

ii) fα(kσ
t(α)) ∈ fα

(⋂∞
q=1 Kσ

t(α)

)
=
⋂∞

q=1 Kασ
u = {kασ

u }.

Let u ∈ V and Au ⊂ Su. We denote by A
e1...eq
u = fe1...eq

(At(eq)).

Proposition 3.4. If Au is a non-empty bounded set, then

d(Ae1...eq
u , ke1...eq...

u ) → 0 uniformly as q →∞.

Proof.

d(Ae1...eq
u , ke1...eq...

u ) = d(fe1...eq
(At(eq)), fe1...eq

(keq+1...

t(eq) ))

≤ re1...eq
d(At(eq), k

eq+1...
u )

≤ re1...eq
sup{d(a, b) : a ∈ At(eq), b ∈ Kt(eq)}

≤ C

(
max

1≤i≤|E|
rei

)q

→ 0, as q →∞,

where C is a constant, re1e2...eq
= re1re2 ...req

, and we denote by |E| the number of

the edges of the graph.
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Define the following map:

πu : E(ω)
u → Ku, πu(σ) = kσ

u , σ ∈ E(ω)
u .

Proposition 3.5. πu is a continuous map onto Ku.

Proof. Let σ ∈ E
(ω)
u and ε > 0. Then πu(σ) = kσ

u and there exists q such that

K
σ1...σq
u ⊂ {x ∈ Ku : d(x, πu(σ)) < ε

2}. Let σ′ ∈ E
(ω)
u such that σ1...σq is the longest

common prefix of σ and σ′ . Then

d(kσ
u , kσ′

u ) < d(x, kσ
u) + d(x, kσ′

u ) < ε,

so πu is continuous.

4. Invariant list of measures

We assign weights pe > 0 to each edge e ∈ E such that∑
v∈V

∑
e∈Euv

pe = 1, for all u ∈ V,

so the weight on edges leaving a node must sum to 1.

For an S metric space we denote by B(S) the set of all tight Borel probability

measures.

Let ν = (νu)u∈V , µ = (µu)u∈V , where νu, µu ∈ B(Su), for all u ∈ V .

Define

ρ(µ, ν) = max
u∈V

sup{µu(Φ)− νu(Φ) : Φ : X → R, Lip Φ ≤ 1},

which is a metric.

Let ν = (νu)u∈V and f ∈ C(Rn). We define the push-forward measure by

f#νu(φ) = νu(φ ◦ f), for φ ∈ C(Rn), for every u ∈ V.

For every u ∈ V define

Gu(ν) =
∑
v∈V

∑
e∈Euv

pefe#νv, (1)

and G(ν) = (Gu(ν))u∈V .

Theorem 4.1. G is a contraction map in metric ρ.
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Proof. Let Φ : X → R, Lip Φ ≤ 1 and µ, ν ∈ B. Then we have

Gu(µ)(Φ)−Gu(ν)(Φ) =
∑
v∈V

∑
e∈Euv

pe(fe#µv(Φ)− fe#νv(Φ))

=
∑
v∈V

∑
e∈Euv

pe(µv(Φ ◦ fe)− νv(Φ ◦ fe))

=
∑
v∈V

∑
e∈Euv

per(µv(r−1Φ ◦ fe)− νv(r−1Φ ◦ fe)),

where r = max
e∈E

re < 1. Then ρ(G(µ), G(ν)) ≤ rρ(µ, ν), so G is a contraction.

The result of the following theorem follows from Theorem 4.1 (it is given in

[2] without proof).

Theorem 4.2. There exists a unique invariant list of measures (µv)v∈V , µv ∈ B(Sv),

for all v ∈ V , such that

µu =
∑
v∈V

∑
e∈Euv

pefe#µv,

for all u ∈ V .

We call this invariant list of measures graph-invariant measure. The

graph-similar measures are the generalization of the self-similar measures introduced

by Hutchinson [3].

Define Gk(ν) recursively. Denote G1(ν) = G(ν). Define Gk(ν) := G ◦

Gk−1(ν). Then Gk can be written in the following form:

Gk
u(ν) =

∑
v∈V

∑
σ∈E

(k)
uv

pσfσ#µv,

where pσ = pσ1 · pσ2 · ... · pσk
. and

lim
k→∞

ρ(Gk(ν), µ) = 0.

Let e ∈ Euv. Define

θe : E(ω)
v → E(ω)

u , θe(σ) = eσ, for all σ ∈ E(ω)
v ,

which is called right-shift map.
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For σ, τ ∈ E
(ω)
v define the metric ρ1 by

ρ1(σ, γ) = rα,

where α is the longest common prefix of σ and γ, and rα = re1re2 ...req
, where α =

e1e2...eq.

The following two results are stated in [1] without proof. As we did not find

the proofs in the literature, for completeness, we give it here.

Lemma 4.3. With the metric ρ1 the right-shift θe is a similarity with ratio re.

Proof. ρ1(eσ, eγ) = reα = rerα = reρ1(σ, γ), where α is the longest common prefix of

σ and γ.

Fix a vertex v ∈ V . Suppose nonnegative numbers wα are given, one for each

α ∈ E
(∗)
v such that

wα =
∑
e∈E

i(e)=t(α)

wαe.

Theorem 4.4. The method I outer measure defined by the set function C([α]) = wα

is a metric outer measure τv on E
(ω)
v with τv([α]) = wα.

Proof. Let Av = {[α] : α ∈ E
(∗)
v } and Aε

v = {D ∈ A : diam D ≤ ε}.

Let νε
v be the method I measure defined by the set function C restricted to

Aε
v. If D ∈ Aε

v, then τv(D) ≤ C(D), so by the method I theorem (Theorem 5.2.2. in

[1])

νε
v(A) ≥ τv(A), for all A.

Therefore the method II measure νv defined by

νv(A) = lim
ε→0

νε
v(A)

satisfies νv ≥ τv.

For any α ∈ E
(∗)
v we have
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C([α]) = wα =
∑
e∈E

i(e)=t(α)

wαe =
∑
e∈E

i(e)=t(α)

C([αe]).

Applying this repeatedly, knowing that

lim
k→∞

( sup {diam [α] : α ∈ E(k)
v }) = 0,

we have that for any ε > 0, any set D ∈ A is finite union of sets from Aε
v, i.e.

D =
n⋃

i=1

Di, Di ∈ Aε
v with C(D) =

n∑
i=1

C(Di).

From this follows that

νε
v(D) = νε

v(
n⋃

i=1

Di) ≤
n∑

i=1

νε
v(Di) ≤

n∑
i=1

C(Di) = C(D),

so by method I theorem

νε
v(A) ≤ τv(A), for all A,

from where

νv(A) ≥ τv(A), for all A.

Therefore τv = νv is a method II outer measure, so it is a metric outer

measure.

Let τ = (τv)v∈V .

Lemma 4.5. The measure (τu)u∈V is (θe, pe)e∈E invariant. i.e. for all u ∈ V∑
v∈V

∑
e∈Euv

peθe#τv = τu.

Proof. Let α ∈ E
(∗)
v . Then∑
v∈V

∑
e∈Euv

peθe#τv([α]) =
∑
v∈V

∑
e∈Euv

peτvθ−1
e ([α])

=
∑
v∈V

∑
e∈Euv

peτv([e−1α])

=
∑
v∈V

∑
e∈Euv

pewe−1α = wα,

124



ON GRAPH-INVARIANT MEASURES

where we denote by e−1α the following path: we remove the edge e from the beginning

of the path α.

On the other side of the equation τu([α]) = wα. Therefore the equality

holds.

Theorem 4.6. The following two relations hold:

i) µu = πu#τu

ii) sptµu = Ku.

Proof. i) First we prove that fe ◦ πv = πu ◦ θe. For σ ∈ E
(ω)
u

fe(πv(σ)) = fe(kσ
v ) = keσ

u ,

using Theorem 3.3 and

πu(θe(σ)) = πu(eσ) = keσ
u ,

so the above relation is true.

Now ∑
v∈V

∑
e∈Euv

pefe#(πv#τv) =
∑
v∈V

∑
e∈Euv

peπu#(θe#τv)

= πu#

(∑
v∈V

∑
e∈Euv

peθe#τv

)

= πu#τu

ii) Let A be an open set such that A ∩ Ku = ∅. Then πu#(τu(A)) =

τu(π−1
u (A)) = ∅, thus sptµu = Ku.

5. Oscillation lemma

Theorem 5.1 (Oscillation lemma). Let K = (Ku)u∈V be the list of invariant sets,

µ = (µu)u∈V the list of invariant measures, ν = (νu)u∈V a list of probabilistic Borel

measures with compact support, sptνu = Ωu. If φu ∈ L2(Ωu, Cb(Rn)), u ∈ V then

lim
k→∞

∑
σ∈E

(k)
u

pσ

∫
Ωu

φu(fσ(z), z)dνu(z) =
∫

Ku

[∫
Ωu

φu(x, y)dνu(y)
]

dµu(x), (2)

for every u ∈ V , where pσ = pσ1 · pσ2 · ... · pσk
.

125



IULIANA MARCHIŞ

Proof. Take first φu ∈ C(Ωu, Cb(Rn)), u ∈ V . Let h be the Hausdorff metric in the

space of all nonempty compact sets in Rn. Since

lim
k→∞

ρ(Gk(ν), µ) = 0,

we have

lim
k→∞

h(spt ((Gk(ν))u),Ku) = 0.

Then

lim
k→∞

h(Ωσ
u,Kσ

u ) = 0

and

lim
k→∞

diam (Ωσ
u) = 0.

Let ε > 0. Then there exists k0 ∈ N such that

max{|φ(x, y)− φ(t, y)| : y ∈ Ωu} < ε,

for all x ∈ Kσ
u , t ∈ Ωσ

u, k ≥ k0.

Choose z ∈ Ωu such that t = fσ(z).

Then ∣∣∣∣∫
Ωu

φu(x, z)dνu(z)−
∫

Ωu

φu(fσ(z), z)dνu(z)
∣∣∣∣ < ε.

Multiplying this equality by pσ and summing, using that∑
σ∈E

(k)
u

pσ = 1,

we get

−ε <

∫
Ωu

φu(x, y)dνu(y)−
∑

σ∈E
(k)
u

pσ

∫
Ωu

φu(fσ(z), z)dνu(z) < ε.

Integrating on fσ(Ku) and summing

−ε <

∫
Ku

∫
Ωu

φu(x, y)dνu(y)dµu(x)−
∑

σ∈E
(k)
u

pσ

∫
Ωu

φu(fσ(z), z)dνu(z) < ε.

As C(Ω, Cb(Rn)) is dense in L2(Ωu, Cb(Rn)), we get the result.
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For self-similar sets formula like (2) was given in [4]. This result was used in

homogenization with multiple scale expansion on self-similar structures in [5].

Remark 5.2. If φ depends only on its first variable, the convergence (2) has the

following form:

lim
k→∞

∑
σ∈E

(k)
u

pσ

∫
Ωu

φu(fσ(z))dνu(z) =
∫

Ku

φu(x)dµu(x),

for every u ∈ V , which means the weak convergence of the sequence Gk(ν) to the

invariant vector measure µ.

Remark 5.3. A well know example of graph self-similar fractal is the golden rectangle

fractal. For the construction of this fractal see for example [1].

Another important examples are sets constructed for number systems with

complex base. For example for the number system with base −i+1 and digit set {0, 1}

we get the so called twindragon. The twindragon has a graph-similar fractal boundary

(see [1]).
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Abstract. In this paper we study some properties of the kernel of the

radiosity equation. The geometric term G(P, Q) from the kernel is of

great importance in the study of solvability and regularity of the radiosity

equation. We state some of its properties and give a complete proof of the

main one, namely the fact that∣∣∣Di
QG(P, Q)

∣∣∣ ≤ c

|P −Q|i , P 6= Q.

1. The radiosity equation

Radiosity, an important quantity in image synthesis, is defined as being the

energy per unit solid angle that leaves a surface. The photometric equivalent is lumi-

nosity. Radiosity is a method of describing illumination based on a detailed analysis

of light reflections off diffuse surfaces. It is typically used to render images of the in-

terior of buildings, and it can achieve extremely photo-realistic results for scenes that

are comprised of diffuse reflecting surfaces. In computer graphics, the computation

of lighting can be done via radiosity. The radiosity equation is a mathematical model

for the brightness of a collection of one or more surfaces. The equation is

u(P )− ρ(P )
π

∫
S

u(Q)G(P,Q)V (P,Q)dSQ = E(P ), P ∈ S, (1)
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where u(P ) is the radiosity, or the brightness, at P ∈ S. E(P ) is the emissivity at

P ∈ S, the energy per unit area emitted by the surface.

The function ρ(P ) gives the reflectivity at P ∈ S, i. e. the bidirectional

reflection distribution function. We have that 0 ≤ ρ(P ) < 1, with ρ(P ) being 0

where there is no reflection at all at P . The radiosity equation is derived from the

rendering equation under the radiosity assumption: all surfaces in the environment are

Lambertian diffuse reflectors (see [1], [3], [4]). What this means is that the reflectivity

ρ(P ) is independent of the incoming and outgoing directions and, hence, of the angle

at which the reflection takes place. Thus, ρ(P ) can be taken out from under the

integral of a more general formulation (the rendering equation, see [4]), leading to

(1).

The function V (P,Q) is a visibility function. It is 1 if the points P and Q are

”mutually visible” (meaning they can ”see each other” along a straight line segment

which does not intersect S at any other point), and 0 otherwise. Surfaces S for which

V ≡ 1 on S are called unoccluded. More about the radiosity equation can be found

in [4].

The function G, a geometric term, is given by

G(P,Q) =
[(Q− P ) · nP ] [(P −Q) · nQ]

|P −Q|4

=
cos θP · cos θQ

|P −Q|2
, (2)

where nP is the inner unit normal to S at P , θP is the angle between nP and Q−P ,

and nQ and θQ are defined analogously.

We can write (1) in the form

u(P )−
∫
S

K(P,Q)u(Q)dSQ = E(P ), P ∈ S, (3)

with

K(P,Q) =
ρ(P )

π
G(P,Q)V (P,Q), P,Q ∈ S, (4)

or, in operator form

(I −K)u = E. (5)
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The function G(P,Q) given in (2) has a singularity at P = Q and is smooth

otherwise. The study of the solvability and regularity of equation (1) (see [2], [3], [7],

[8], [9]) relies heavily on special properties of this function, which is why we want to

focus on some of these properties.

2. Properties of the function G(P,Q)

Lemma 1. Let S be a smooth surface to which the Divergence Theorem can be applied.

Let P ∈ S. Then

a) |G(P,Q)| ≤ c, P, Q ∈ S, P 6= Q (c independent of P and Q);

b) G(P,Q) ≥ 0, for Q ∈ S;

c)
∫
S

G(P,Q) dSQ = π;

d) if S is the unit sphere, then G(P,Q) ≡ 1
4
.

The proofs of these properties are straight forward computations and can be

found in [5], [6], [10]. �

Next, let us make some simplifying notations. First, by
∂F (P )

∂P
we denote

generically the derivatives
∂F (P )

∂x
,

∂F (P )
∂y

, where P = P (x, y). Denote by

FP (P,Q) =
cos θP

|P −Q|
,

FQ(P,Q) =
cos θQ

|P −Q|
. (6)

Then we can write

G(P,Q) = FP (P,Q) · FQ(P,Q). (7)

Now we can state the main property of the function G.

Theorem 2. Let i ≥ 0 be an integer and let S be a smooth Ci+1 surface to which the

Divergence Theorem can be applied. Then∣∣Di
QG(P,Q)

∣∣ ≤ c

|P −Q|i
, P 6= Q, (8)

for the function G(P,Q) of (2), with c a generic constant independent of P and Q.
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Proof. Since

|cos θP | ≤ c |P −Q| , |cos θQ| ≤ c |P −Q| , (9)

we have

|FP |, |FQ| ≤ c. (10)

For n ≥ 0 we can write

Dn
QG =

n∑
k=0

(
n

k

)
Dn−k

Q (FP )(P,Q) ·Dk
Q(FQ)(P,Q). (11)

Claim. ∣∣Di
QFP

∣∣ , ∣∣Di
QFQ

∣∣ ≤ c

|P −Q|i
. (12)

Proof of claim. Fix P ∈ S. The proof of (12) is very delicate. We will use

both a local parametrization of the surface as well as formal reasoning. For a better

understanding, one could see [9], [10], [11]. Assume the surface S can be represented

locally by

z = f(x, y), (13)

with f ∈ Ci+2. We consider P to be the origin of a coordinate system and Q an

arbitrary point in S. Then we have

P = (0, 0, 0),

Q = (x, y, f(x, y)),

nP = (0, 0, 1), (14)

nQ = (−fx(x, y),−fy(x, y), 1).

(Implicitly, we then also have that f(0, 0) = fx(0, 0) = fy(0, 0) = 0).

We can write

cos θP =
(Q− P ) · nP

|P −Q| · |nP |
=

Q

|Q|
·NP ,

cos θQ =
(Q− P ) · nQ

|P −Q| · |nQ|
=

Q

|Q|
·NQ, (15)
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where we denoted by NP = nP and by NQ =
nQ

|nQ|
. Note that by (14), NP is

independent of Q (and, hence, of x and y), while NQ is a function of Q, i.e. of x and

y. The inequalities (10) can now be written∣∣∣∣ Q

|Q|2
·NP

∣∣∣∣ ≤ c,∣∣∣∣ Q

|Q|2
·NQ

∣∣∣∣ ≤ c. (16)

Let us proceed first with the derivative of FP . In what follows we will use

the notation gx, rather than
∂g

∂x
, for the derivative of a function g with respect to x.

We have

|P −Q|∂FP

∂x
= |Q|

(
Q

|Q|2
·NP

)
x

= |Q|

(
Qx ·NP

|Q|2
− 2

(
Q ·NP

)
(Q ·Qx)

|Q|4

)
(17)

=
Qx ·NP

|Q|
− 2

(
Q ·NP

)
(Q ·Qx)

|Q|3
.

For the first term on the right of (17), we have

Qx ·NP

|Q|
=

(1, 0, fx) · (0, 0, 1)√
x2 + y2 + (f(x, y))2

=
fx√

x2 + y2 + (f(x, y))2
(18)

= O

(
|x|+ |y|√
x2 + y2

)
,

which is bounded. The second term on the right of (17) can be rewritten as

2
(

Q

|Q|2
·NP

)(
Q

|Q|
·Qx

)
. (19)

The first term in (19) is clearly bounded because of (16). For the second

term in (19), note that by (14), Qx = (1, 0, fx). Then by our assumption on the

smoothness of f , |fx| is bounded, and hence, so is
∣∣∣∣ Q

|Q|
·Qx

∣∣∣∣.
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We have just proved that
∣∣∣∣∂FP

∂x

∣∣∣∣ ≤ c

|P −Q|
. An identical argument will lead

to the result
∣∣∣∣∂FP

∂y

∣∣∣∣ ≤ c

|P −Q|
. So we have that

∣∣DQFP
∣∣ ≤ c

|P −Q|
. (20)

In a similar way we prove that the claim is also true for FQ. We have

|P −Q|∂FQ

∂x
= |Q|

(
Q

|Q|2
·NQ

)
x

= |Q|
(

Qx ·NQ

|Q|2
+

Q ·NQ
x

|Q|2

− 2

(
Q ·NQ

)
(Q ·Qx)

|Q|4

)
(21)

=
Qx ·NQ

|Q|
+

Q ·NQ
x

|Q|
− 2

(
Q ·NQ

)
(Q ·Qx)

|Q|3
.

The first term on the right of (21) is obviously 0. The second term on the

right of (21) is bounded because
Q

|Q|
is a unit vector (so bounded) and

NQ
x =

1
|nQ|

(−fxx,−fyx, 0) +
fxfxx + fyfyx

|nQ|3
(fx, fy,−1) ,

and we assumed f ∈ Ci+2. The third term on the right of (21) can be rewritten

(similarly with (19)) as

2
(

Q

|Q|
·Qx

)(
Q

|Q|2
·NQ

)
, (22)

which is bounded by (16) and by our earlier discussion following (19).

The same argument (with x replacing y ) proves that
∣∣∣∣∂FQ

∂y

∣∣∣∣ ≤ c

|P −Q|
and

so ∣∣DQFQ
∣∣ ≤ c

|P −Q|
. (23)

The computations for higher order derivatives get more complicated, but the

idea of the proof is the same. Use the inequalities (16) and the fact that the norm of

a vector of the form
Q

|Q|
· A is bounded if the components of A involve f and/or its

derivatives (e.g.
Q

|Q|
·Qx,

Q

|Q|
·NQ,

Q

|Q|
·NQ

x , etc.)

This concludes the proof of the claim.
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For the derivatives of G, we have

∣∣Di
QG
∣∣ |P −Q|i =

i∑
k=0

(
i

k

) ∣∣∣Di−k
Q FP (P −Q)i−k

∣∣∣ ∣∣Dk
QFQ(P −Q)k

∣∣ ≤ c,

which proves (8). �
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A NOTE ON THREE-STEP ITERATIVE METHODS
FOR NONLINEAR EQUATIONS

GRADIMIR V. MILOVANOVIĆ AND ALEKSANDAR S. CVETKOVIĆ

Dedicated to Professor Petru Blaga at his 60th anniversary

Abstract. In this short note we give certain comments and improvements

of some three-step iterative methods recently considered by N.A. Mir and

T. Zaman (Appl. Math. Comput. (2007) doi: 10.1016/j.amc.2007.03.071).

1. Introduction

Very recently, N.A. Mir and T. Zaman [1] have considered three-step quad-

rature based iterative methods for finding a single zero x = α of a nonlinear equation

f(x) = 0. (1.1)

All variants of their methods include the formula

xn+1 = xn −
f(xn)f ′(xn)

f ′(xn)2 − λf(xn)f ′′(xn)
, (1.2)

obtained from the rectangular quadrature formula. It is clear that (1.2) reduces to

Newton and Halley method for λ = 0 and λ = 1/2, respectively.
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GRADIMIR V. MILOVANOVIĆ AND ALEKSANDAR S. CVETKOVIĆ

As a variant with maximal order of convergence they have proposed the

following three-step method

yn = xn −
f(xn)
f ′(xn)

,

zn = yn −
f(yn)f ′(yn)

f ′(yn)2 − λf(yn)f ′′(yn)
,

xn+1 = zn −
(yn − zn)f(zn)
f(yn)− 2f(zn)

,


(1.3)

proving that for a sufficiently smooth function f and a starting point x0 sufficiently

close to the single zero x = α, this method has eighth order convergence for λ = 1/2,

i.e.,

en+1 = (−c3c
5
2 + c7

2)e
8
n + O(e9

n),

where en = xn − α and

ck =
1
k!

f (k)(α)
f ′(α)

, k = 2, 3, . . . . (1.4)

As we can see this three-step method need six function evaluations per it-

eration: f(xn), f(yn), f(zn), f ′(xn), f ′(yn), and f ′′(yn). Without new function

evaluations, in this note we show that the formula

xn+1 = S(yn, zn) = zn −
f(zn)

f ′(yn) + (zn − yn)f ′′(yn)
(1.5)

is a much better choice than the third formula in (1.3). In that case the correspond-

ing three-step method has tenth order convergence. Moreover, the formula (1.5) is

numerically stable in comparing with the previous one.

The paper is organized as follows. In Section 2 we give certain auxiliary

formulae, which can be used also in other investigations in convergence analysis. The

main results and a numerical example are given in Section 3.

2. Some auxiliary formulae

We suppose that the equation (1.1) has a single zero x = α in certain neigh-

borhood Uε(α) := (α − ε, α + ε), ε > 0, and that the function f is sufficiently

differentiable in Uε(α). Evidently, f ′(α) 6= 0.
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Let xn ∈ Uε(α) and

en := xn − α, ẽn := yn − α, ên := zn − α.

Using (1.4) it is easy to get the following formula

f(xn)
f ′(xn)

= en − c2e
2
n + 2(c2

2 − c3)e3
n − (4c3

2 − 7c3c2 + 3c4)e4
n

+(8c4
2 − 20c3c

2
2 + 10c4c2 + 6c2

3 − 4c5)e5
n

−[16c5
2 − 52c3c

3
2 + 28c4c

2
2 + (33c2

3 − 13c5)c2 − 17c3c4 + 5c6]e6
n

+O(e7
n). (2.1)

This formula is an inverse of the well-known Schröder formula (cf. [2, pp. 352–354]).

Therefore, in the case of the Newton method

ΦN (xn) = xn −
f(xn)
f ′(xn)

(2.2)

we have

ẽn = ΦN (xn)− α

= c2e
2
n − 2(c2

2 − c3)e3
n + (4c3

2 − 7c3c2 + 3c4)e4
n

−(8c4
2 − 20c3c

2
2 + 10c4c2 + 6c2

3 − 4c5)e5
n

+[16c5
2 − 52c3c

3
2 + 28c4c

2
2 + (33c2

3 − 13c5)c2 − 17c3c4 + 5c6]e6
n

+O(e7
n). (2.3)

Also, we need the corresponding expression for

C̃2(yn) :=
f ′′(yn)
2f ′(yn)

=
1
2

f ′′(α) +
f ′′′(α)

1!
ẽn +

f iv(α)
2!

ẽ2
n + · · ·

f ′(α) +
f ′′(α)

1!
ẽn +

f ′′′(α)
2!

ẽ2
n + · · ·

,

i.e.,

C̃2(yn) =
1
2
· 1·2 c2 + 2·3 c3 ẽn + 3·4 c4 ẽ2

n + · · ·
1 + 2c2 ẽn + 3c3 ẽ2

n + · · ·
,

139
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where ck are defined by (1.4). It gives

C̃2(yn) = A0 + A1ẽn + A2ẽ
2
n + A3ẽ

3
n + · · · , (2.4)

where

A0 = c2, A1 = 3c3 − 2c2
2, A2 = 4c3

2 − 9c3c2 + 6c4,

A3 = −8c4
2 + 24c3c

2
2 − 16c4c2 − 9c2

3 + 10c5,

A4 = 16c5
2 − 60c3c

3
2 + 40c4c

2
2 + 5(9c2

3 − 5c5)c2 + 15(c6 − 2c3c4),

A5 = −32c6
2 + 144c3c

4
2 − 96c4c

3
2 + (60c5 − 162c2

3)c
2
2 + 36(4c3c4 − c6)c2

+3(9c3
3 − 15c5c3 − 8c2

4 + 7c7),

A6 = 64c7
2 − 336c3c

5
2 + 224c4c

4
2 + 28(18c2

3 − 5c5)c3
2 − 84(6c3c4 − c6)c2

2

−7(27c3
3 − 30c5c3 − 16c2

4 + 7c7)c2 + 7(18c4c
2
3 − 9c6c3 − 10c4c5 + 4c8),

etc.

Now, for the Halley method

ΦH(yn) = yn −
f(yn)/f ′(yn)

1− C̃2(yn)(f(yn)/f ′(yn))
(2.5)

we have

ên = ΦH(yn)− α = ẽn − gn

(
1 + C̃2(yn)gn + [C̃2(yn)gn]2 + · · ·

)
, gn =

f(yn)
f ′(yn)

.

Using (2.1), in this case, we get

ên = (c2
2 − c3)ẽ3

n − 3(c3
2 − 2c3c2 + c4)ẽ4

n + 6(c4
2 − 3c3c

2
2 + 2c4c2 + c2

3 − c5)ẽ5
n

−[9c5
2 − 37c3c

3
2 + 29c4c

2
2 + 4(7c2

3 − 5c5)c2 − 19c3c4 + 10c6]ẽ6
n + O(ẽ7

n).

(2.6)

In our analysis we also need an expansion of f(zn)/f ′(yn) in terms of ẽn (=

yn − α), where zn − α = ên is given by (2.6). Thus, we have

vn =
f(zn)
f ′(yn)

=
ên + c2 ê2

n + c3 ê3
n + · · ·

1 + 2c2 ẽn + 3c3 ẽ2
n + · · ·

,

140



A NOTE ON THREE-STEP ITERATIVE METHODS FOR NONLINEAR EQUATIONS

i.e.,

vn = (c2
2 − c3)ẽ3

n − (5c3
2 − 8c3c2 + 3c4)ẽ4

n

+(16c4
2 − 37c3c

2
2 + 18c4c2 + 9c2

3 − 6c5)ẽ5
n

−(40c5
2 − 124c3c

3
2 + 69c4c

2
2 − (32c5 − 69c2

3)c2 − 32c3c4 + 10c6)ẽ6
n

+O(ẽ7
n). (2.7)

In the case when yn = ΦN (xn) and

zn = yn −
(xn − yn)f(yn)
f(xn)− 2f(yn)

, (2.8)

we are interested in

un =
f(xn)
f(yn)

, tn =
f(xn)
f ′(zn)

, sn =
f ′(xn)
f ′(zn)

, (2.9)

i.e.,

un =
en + c2 e2

n + c3 e3
n + · · ·

ẽn + c2 ẽ2
n + c3 ẽ3

n + · · ·
, (2.10)

tn =
en + c2 e2

n + c3 e3
n + · · ·

1 + 2c2 ēn + 3c3 ē2
n + · · ·

, and sn =
1 + 2c2 en + 3c3 e2

n + · · ·
1 + 2c2 ēn + 3c3 ē2

n + · · ·
,

where en = xn − α, ẽn = yn − α, and ēn = zn − α.

Here, ēn = ẽn − (en − ẽn)/(un − 2). According to (2.3) and (2.10) we get

ēn = c2(c2
2 − c3)e4

n − 2(2c4
2 − 4c3c

2
2 + c4c2 + c2

3)e
5
n

+[10c5
2 − 30c3c

3
2 + 12c4c

2
2 + 3c2(6c2

3 − c5)− 7c3c4]e6
n

+O(e7
n). (2.11)

For tn and sn we obtain

tn = en + c2e
2
n + c3e

3
n + c4e

4
n − (2c4

2 − 2c3c
2
2 − c5)e5

n

+(6c5
2 − 14c3c

3
2 + 4c4c

2
2 + 4c2

3c2 + c6)e6
n + O(e7

n) (2.12)
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and

sn = 1 + 2c2en + 3c3e
2
n + 4c4e

3
n − (2c4

2 − 2c3c
2
2 − 5c5)e4

n

+(4c5
2 − 12c3c

3
2 + 4c4c

2
2 + 4c2

3c2 + 6c6)e5
n

−[4c6
2 − 22c3c

4
2 + 16c4c

3
2 − (6c5 − 22c2

3)c
2
2 − 14c3c4c2 − 7c7]e6

n

+O(e7
n), (2.13)

respectively.

3. Main results

We consider now the third-step iterative formula given by (2.2), (2.5), and

(1.5), i.e.,

yn = ΦN (xn), zn = ΦH(yn), en+1 = S(yn, zn), n = 0, 1, . . . , (3.1)

for finding a simple zero x = α of the equation (1.1).

Theorem 3.1. For a sufficiently differentiable function f in Uε(α) and x0 sufficiently

close to α, the third-step method (3.1) has tenth order of convergence, i.e.,

en+1 = 3c5
2c3(c3 − c2

2)e
10
n + 30c4

2(c
2
2 − c3)2c3e

11
n + O(e12

n ) (3.2)

where en = xn − α and ck are given in (1.4).

Proof. According to (3.1) (and (1.5)) we have

en+1 = xn+1 − α = S(yn, zn)− α = ên −
f(zn)/f ′(yn)

1 + 2(ên − ẽn)C̃2(yn)
,

where ẽn = yn − α, ên = zn − α, and C̃2(yn) = f ′′(yn)/(2f ′(yn)). Replacing C̃2(yn)

and vn = f(zn)/f ′(yn) by the corresponding expressions (2.4) and (2.7), we obtain

en+1 = 3c3(c3 − c2
2)ẽ

5
n + (c5

2 + 7c3c
3
2 − 8c4c

2
2 − 17c2

3c2 + 17c3c4)ẽ6
n + O(ẽ7

n).

Finally, using (2.3) we get (3.2). �
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In [1] the authors also considered the following three-step method

yn = xn −
f(xn)
f ′(xn)

,

zn = yn −
(xn − yn)f(yn)
f(xn)− 2f(yn)

,

xn+1 = zn −
f(zn)f ′(zn)

f ′(zn)2 − λ f(zn)
{

2(f(zn)− f(xn))
(zn − xn)2

− 2f ′(xn)
zn − xn

} ,


(3.3)

with five function evaluations per iteration: f(xn), f(yn), f(zn), f ′(xn), and f ′(zn).

Their Theorem 3 states that this method has seventh order of convergence for any

value of λ. However, the order of convergence is bigger than seven. Namely, we have

the following result:

Theorem 3.2. For a sufficiently differentiable function f in Uε(α) and x0 sufficiently

close to α, the third-step method (3.3) has eighth order of convergence for any λ 6= 1/2,

except for λ = 1/2 when the convergence is of the order nine. Then,

en+1 = −2c3c
2
2(c

2
2 − c3)2e9

n

+c2(c2
2 − c3)(16c3c

4
2 − 3c4c

3
2 − 32c2

3c
2
2 + 11c2c3c4 + 8c3

3)e
10
n

+O(e11
n ), (3.4)

where en = xn − α and ck are given in (1.4).

Proof. Using the expansion (2.1) for the Newton correction f(xn)/f ′(xn) =:

h(en), we have f(zn)/f ′(zn) = h(ēn), where ēn is given by (2.11). According to (2.9),

for the third formula in (3.3) we get

en+1 = ēn −
h(ēn)

1− 2λ

{
h(ēn)− tn
(ēn − en)2

− sn

ēn − en

} , (3.5)

where the expansions for tn and sn are given by (2.12) and (2.13), respectively. This

gives

en+1 = (1− 2λ)c3
2(c

2
2 − c3)2e8

n + 4c2
2(c

2
2 − c3)

[
2(2λ− 1)c4

2 + (4− 9λ)c3c
2
2

+(2λ− 1)c4c2 + (3λ− 1)c2
3

]
e9
n + · · ·
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For λ = 1/2 it reduces to (3.4). �

Thus, the computational efficiency of the method (3.3), for λ = 1/2, is EFF=

91/5 ≈ 1.55185. With the same function evaluations we can get a slightly simpler

method of order nine with the same efficiency.

Theorem 3.3. For a sufficiently differentiable function f in Uε(α) and x0 sufficiently

close to α, the third-step method

yn = xn −
f(xn)
f ′(xn)

,

zn = yn −
(xn − yn)f(yn)
f(xn)− 2f(yn)

,

xn+1 = zn −
f(zn)f ′(zn)

f ′(zn)2 − 1
2

f(zn)
f ′(zn)− f ′(xn)

zn − xn

,


(3.6)

has ninth order of convergence, i.e.,

en+1 = −3
2
c3c

2
2(c

2
2 − c3)2e9

n

+2c2(c2
2 − c3)(6c4

2c3 − 12c2
2c

2
3 + 3c3

3 − c3
2c4 + 4c2c3c4)e10

n

+O(e11
n ), (3.7)

where en = xn − α and ck are given in (1.4).

Proof. Similarly as in the proof of the previous theorem, we have now

en+1 = ēn −
h(ēn)

1− 1
2

h(ēn)
1− sn

ēn − en

instead of (3.5). This gives (3.7). �

The number of function evaluations in (3.6) can be reduced to four if we take

an approximation of f ′(zn) in the form

f ′(zn) ≈ f̃ ′(zn) = pnf(xn) + qnf(yn) + rnf(zn) + wnf ′(xn),
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obtained by the Hermite interpolation (cf. [3, pp. 51–58]), where

pn =
(yn − zn)(zn + 2yn − 3xn)

(xn − yn)2(xn − zn)
, qn =

(xn − zn)2

(xn − yn)2(yn − zn)
,

rn =
3zn − 2yn − xn

(xn − zn)(yn − zn)
, wn =

yn − zn

xn − yn
.

For a such modified three-step method, in notation (3.6M ), the following result holds:

Theorem 3.4. For a sufficiently differentiable function f in Uε(α) and x0 sufficiently

close to α, the third-step method (3.6M ) has eight order of convergence, i.e.,

en+1 = (c2
2 − c3)c2

2c4e
8
n −

1
2

[
3c5

2(c2c3 + 4c4)− 2c4
2(3c2

3 + 2c5)

+c2
2(3c3

3 + 4c3c5 + 4c2
4) + 8c2c3c4(c3 − 3c2

2)
]
e9
n + O(e10

n ),

where en = xn − α and ck are given in (1.4).

The corresponding computational efficiency is now much better, EFF=

81/4 ≈ 1.68179.

Example 3.1. Consider the equation

f(x) = xex2
− sin2 x + 3 cos x + 5 = 0,

with a simple zero

α = −1.20764782713091892700941675835608409776023581894953881520592 . . .

In order to show the behavior of three-step methods (1.3), (3.1), (3.3), (3.6)

and (3.6M ) we need a multi-precision arithmetics. Starting with x0 = −1, we use

Mathematica with 10000 significant digits. The errors en = xn−α are given in Ta-

ble 3.1. Numbers in parentheses indicate decimal exponents. Besides the convergence

order (r) we give also the corresponding computational efficiency (EFF).
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Table 3.1. The errors en = xn − α, n = 0, 1, 2, 3, 4, in three-step methods

method (1.3) (3.1) (3.3) (3.6) (3.6M )

order r = 8 r = 10 r = 9 r = 9 r = 8

EFF 1.41421 1.46780 1.55185 1.55185 1.68179

n = 0 2.08(−1) 2.08(−1) 2.08(−1) 2.08(−1) 2.08(−1)

n = 1 −1.05(−5) 3.70(−6) −1.19(−7) −9.24(−8) −2.25(−6)

n = 2 −2.87(−40) 5.66(−54) 2.74(−63) 2.15(−64) −8.57(−46)

n = 3 −8.87(−317) 3.93(−532) −5.05(−564) −4.26(−574) −3.77(−361)

n = 4 −7.48(−2529) 1.02(−5313) 1.26(−5070) 2.204(−5161) −5.32(−2884)
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Dedicated to Professor Petru Blaga at his 60th anniversary

Abstract. In this paper we study the following problems:

• For which Picard operators the fixed point problem is well-posed?

• For which operators from those which appear in continuation principles,

with a unique fixed point, the fixed point problem is well-posed?

1. Introduction

The notion of well-posedness of fixed point problem for an operator was in-

troduced in [3] and studied by S. Reich and A.J. Zaslavski [8] and E. Matouškova, S.

Reich and A.J. Zaslavski [6]. In this paper we shall study the following problems:

Question 1.1. For which Picard operators the fixed point problem is well-

posed?

Question 1.2. For which operators from those which appear in continuation

principles, with a unique fixed point, the fixed point problem is well-posed?

Throughout this paper we follow the terminologies and the notations in [11]

and [12]. For the convenience of the reader we shall recall some of them.

2. Picard operators

Let (X, d) a metric space and A : X → X an operator. We shall use the

following notations and definitions:
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P (X) := {Y ⊂ X| Y 6= ∅};

FA := {x ∈ X| A(x) = x};

I(A) := {Y ∈ P (X)| A(Y ) ⊂ Y };

A0 := 1X , A
1 := A, An+1 := A ◦An, n ∈ N.

Definition 2.1. ([11], [12]). An operator A : X → X is weakly Picard

operator (WPO) if the sequence (An(x))n∈N converges, for all x ∈ X, and the limit

(which may depend on x) is a fixed point of A.

Definition 2.2. ([11], [12]). If an operator A is WPO and FA = {x∗}, then

by definition the operator A is Picard operator (PO).

Definition 2.3. ([11], [12]). If A : X → X is WPO, then we define the

operator

A∞ : X → X, A∞(x) := lim
n→∞

An(x).

Definition 2.4. ([11], [12]). Let c > 0. An WPO A : X → X is by definition

a c-WPO iff

d(x,A∞(x)) ≤ cd(x,A(x)), ∀ x ∈ X.

For some examples and properties of POs and WPOs see [11] and [12]. See

also [10] and [13].

3. Well-posedness of fixed point problems

Let (X, d) be a metric space and A : X → X an operator. Let (X, d) be a

metric space and A : X → X an operator.

Definition 3.1. ([7]) The fixed point problem for an operator A is well posed

iff

(a) FA = {x∗};

(b) if xn ∈ X, n ∈ N and d(xn, A(xn)) → 0 as n→∞, then d(xn, x
∗) → 0 as

n→∞.

This paper is motivated by a recent result of S. Reich and A.J. Zaslavski

[8] who proved that if the iterates of a uniformly continuous self-operator A of X
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converge to its unique fixed point uniformly on X (a bounded and complete metric

space), then the fixed point problem for A is well posed.

We begin our considerations with some remarks and examples.

Lemma 3.1. Let X be a nonempty set and d, ρ two metrics on X, metrically

equivalent. Let A : x → X be an operator. If the fixed point problem for A is well

posed w.r.t. the metric d then it is well posed also w.r.t. the metric ρ.

Proof. Let c1 > 0, c2 > 0 such that

d(x, y) ≤ c1ρ(x, y) and ρ(x, y) ≤ c2d(x, y), ∀ x, y ∈ X.

We denote by x∗ the unique fixed point of A. Let xn ∈ X, n ∈ N, be such

that ρ(xn, A(xn)) → 0 as n→∞. We have

d(xn, A(xn)) ≤ c1ρ(xn, A(xn)) → 0 as n→∞.

From this it follows that xn
d→ x∗ as n→∞. But ρ(xn, x

∗) ≤ c2d(xn, x
∗) → 0

as n→∞.

In a similar way we prove

Lemma 3.2. Let X be a nonempty set, d, ρ two metric on X and A : X → X

an operator. We suppose that:

(i) d and ρ are topologically equivalent;

(ii) there exists c > 0: d ≤ cρ;

(iii) the fixed point problem is well posed for S w.r.t. the metric d.

Then the fixed point problem is well posed for A w.r.t. the metric ρ.

Lemma 3.3. Let (X, d) be a metric space and A : X → X a uniformly

continuous operator. If there exists k ∈ N∗ such that the fixed point problem is well

posed for Ak, then the fixed point problem is well posed for the operator A.

Proof. Let xn ∈ X, n ∈ N, such that d(xn, A(xn)) → 0 as n → ∞. Then

from the uniform continuity of A it follows that d(As(xn), As+1(xn)) → 0 as n→∞,

for s = 1, 2, . . . , k − 1. We have

d(xn, A
k(xn)) ≤ d(xn, A(xn)) + d(A(xn), A2(xn)) + · · ·+
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+d(Ak−1(xn), Ak(xn)).

Hence

d(xn, A
k(xn)) → 0 as n→∞.

So, xn → x∗ as n→∞.

Example 3.1. Let (X, d) be a complete metric space and A : X → X an

α-contraction. Then the fixed point problem is well posed for the operator A.

Indeed, FA = {x∗} and let xn ∈ X, n ∈ N, be such that d(xn, A(xn)) → 0 as

n→∞. We have

d(xn, x
∗) ≤ d(xn, A(xn)) + d(A(xn), x∗)

≤ d(xn, A(xn)) + αd(xn, x
∗).

So,

d(xn, x
∗) ≤ 1

1− α
d(xn, A(xn)) → 0 as n→∞.

Example 3.2. Let (X, d) be a compact metric space and A : X → X a

continuous operator such that FA = {x∗}. Then the fixed point problem for A is well

posed.

Indeed, let xn ∈ X, n ∈ N, be such that d(xn, A(xn)) → 0 as n → ∞.

Let (xni
)i∈N be a convergent subsequence of (xn)n∈N. If xni

→ y∗ as i → ∞, then

A(xni
) → A(y∗) as i → ∞. From d(xni

, A(xni
)) → 0 as i → ∞, it follows that

y∗ = x∗.

From this property and from the compactness of x it follows that xn → x∗

as n→∞.

Example 3.3. Let (X, d) a compact metric space and A : X → X a contrac-

tive operator, i.e., d(A(x), A(y)) < d(x, y), ∀ x, y ∈ X, x 6= y. Then the fixed point

problem is well posed for the operator A.

This follows from the Example 3.2.

Example 3.4. Let X be a nonempty set and A : X → X a Bessaga operator

([9]), i.e.,

FA = FAn = {x∗}, ∀ n ∈ N.
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Then there exists a metric d on X such that the fixed point problem is well

posed for the operator A w.r.t. the metric d.

Indeed, from the Bessaga theorem (see [9], p.31) there exists a complete

metric d on X such that A : (X, d) → (X, d) is a contraction.

Now we are in the conditions of Example 3.1.

Remark 3.1. There exists an operator which isn’t a Bessaga operator but

for which the fixed point problem is well posed. For example,

A : [−1, 1] → [−1, 1], A(x) = −x.

For this function the fixed point problem is well posed but FA2 = [−1, 1].

The above considerations give rise to the following problem.

Question 3.1. For which generalized contractions the fixed point problem

is well posed?

For some results for this problem see [6] and [8]. Other results shall be given

in the following sections.

For the generalized contractions see B.E. Rhoades [9], I.A. Rus [10] E. De

Pascale and P.P. Zabreiko [4].

4. ψ-Picard operators

Let (X, d) be a metric space, A : X → X a WPO and ψ : R+ → R+ an

increasing function which is continuous in 0 and ψ(0) = 0.

Definition 4.1. The operator A is ψ-WPO iff d(x,A∞(x)) ≤

ψ(d(x,A(x))),∀ x ∈ X.

If ψ(t) = ct, with c > 0, then we say that A is c −WPO. For c − Pos and

c−WPOs see [12].

Example 4.1. ([12]) Let (X, d) be a complete metric space, A : X → X an

operator. We suppose that

(i) A is continuous;

(ii) there exists α ∈ (0, 1) such that

d(A2(x), A(x)) ≤ αd(x,A(x)), ∀ x ∈ X.
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Then S is
1

1− α
−WPO.

Example 4.2. Let (X, d) be a complete metric space and A : X → X a

Ciric-Reich-Rus operator, i.e., there exist a, b, c ∈ R+, a+ b+ c, 1, such that

d(A(x), A(y)) ≤ ad(x, y) + bd(x,A(x)) + cd(y,A(y)), ∀ x, y ∈ X.

Then A is
1− c

1− a− b− c
− PO.

Indeed, from a theorem by Ciric-Reich-Rus (see [1], [2]) the operator A is PO

and

d(A2(x), A(x)) ≤ a+ b

1− c
d(x,A(x)), ∀ x ∈ X.

Example 4.3. Let ϕ : R+ → R+ a strict comparison function (see [10],

pp.41-42, 69), i.e.,

(a) ϕ is increasing;

(b) ϕn(t) → 0 as n→∞, for all t ∈ R+;

(c) t− ϕ(t) → +∞ as t→ +∞.

Let ψϕ : R+ → R+ be defined by

ψϕ(η) := sup{t ∈ R+| t− ϕ(t) ≤ η}.

Let (X, d) be a complete metric space and A : X → X a strict ϕ-contraction

(see [10], p. 50), i.e., ϕ is a strict comparison function and

d(f(x), f(y)) ≤ ϕ(d(x, y)), ∀ x, y ∈ X.

Then A is a ψϕ − PO.

Indeed, by Theorem 4.3.1 in [10], the operator A is PO. Let FA = {x∗}.

Then

d(x, x∗) ≤ d(x,A(x)) + d(A(x), x∗) ≤ d(x,A(x)) + ϕ(d(x, x∗)).

Hence

d(x, x∗)− ϕ(d(x, x∗)) ≤ d(x,A(x)), ∀ x ∈ X.

So,

d(x, x∗) ≤ ψϕ(d(x,A(x))), ∀ x ∈ X,

i.e., the operator A is ψϕ − PO.
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We have

Theorem 4.1. Let (X, d) be a metric space and A : X → X a ψ-Picard

operator. Then the fixed point problem is well posed for A.

Proof. Let x∗ be the unique fixed point of A. Let xn ∈ X, n ∈ N, be such

that d(xn, A(xn)) → 0 as n→∞. We have

d(xn, x
∗) ≤ ψ(d(xn, A(xn))) → 0 as n→∞.

Theorem 4.2. Let X be a nonempty set and A : X → X an operator such

that

FA = FAn 6= ∅, ∀ n ∈ N∗.

Then there exists a partition of X, X =
⋃
i∈I

Xi such that

(i) A(Xi) ⊂ Xi, ∀ i ∈ I;

(ii) for each i ∈ I there exists a complete metric di on Xi such that the fixed

point problem for A|Xi
: Xi → Xi is well posed for all i ∈ I.

Proof. By the Theorem 4.1 in [11], there exists a partition of X, X =
⋃
i∈I

Xi,

such that A(Xi) ⊂ Xi, ∀ i ∈ I and for each i ∈ I there exists a complete metric di

on Xi such that the operator A|Xi
: Xi → Xi is a contraction. So, the fixed point

problem is well posed for A|Xi
, for all i ∈ I.

5. Asymptotically regular operators

Let (X, d) be a metric space. By definition an operator A : X → X is

asymptotically regular iff

d(An(x), An+1(x)) → 0 as n→∞, ∀ x ∈ X.

We have

Theorem 5.1. Let (X, d) be a metric space and A : X → X an operator.

We suppose that:

(i) A is asymptotically regular;

(ii) the fixed point problem for the operator A is well posed.

Then the operator A is a PO.
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Proof. From (ii) we have that FA = {x∗}.

Let x ∈ X and xn := An(x). From (i), d(xn, A(xn)) → 0 as n → ∞. From

(ii), it follows that An(x) → x∗ as n→∞, for all x ∈ X. So, A is PO.

Theorem 5.2. Let X be a Banach space, Y ⊂ X a bounded closed convex

subset and A : Y → Y an affine nonexpansive operator. Let λ ∈ (0, 1) and Aλ :=

λ1Y + (1− λ)A. If the fixed point problem for A is well posed, then the operator Aλ

is PO, for all λ ∈ (0, 1).

Proof. We have that

‖x−Aλ(x)‖ = (1− λ)‖x−A(x)‖, ∀ x ∈ Y.

This implies that the fixed point problem is well posed for A if and only if is

well posed for Aλ.

On the other hand by Ishikawa’s theorem (see [9], p.105) the operator Aλ is

asymptotically regular.

Now the proof follows from Theorem 5.1.

6. Non self-operators

In this section we shall make some remarks on Question 1.2.

Let (X, d) be a metric space and Y ⊂ X a nonempty subset.

Definition 6.1. The fixed point problem is well posed for an operator A :

Y → X iff:

(i) FA = {x∗};

and

(ii) if xn ∈ Y , n ∈ N, and d(xn, A(xn)) → 0 as n → ∞, then xn → x∗ as

n→∞.

As in the case of self-operators (see section 3) we have

Lemma 6.1. Let X be a nonempty set and d, ρ two metrics on X, metrically

equivalent. Let Y ⊂ X and A : Y → X be an operator. If the fixed point problem for

A is well posed w.r.t. the metric d, then it is well posed, also, w.r.t. the metric ρ.
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Lemma 6.2. Let d, ρ be two metrics on X,Y ⊂ X and A : Y → X an

operator. We suppose that:

(i) d and ρ are topologically equivalent;

(ii) there exists c > 0: ρ ≤ cd;

(iii) the fixed point problem is well posed for A w.r.t. the metric ρ.

Then the fixed point problem is well posed for A w.r.t. the metric d.

Let ψ : R+ → R+ an increasing function which is continuous in 0 and ψ(0) =

0. The corresponding result of the Theorem 4.1 is the following

Theorem 6.1. Let (X, d) be a metric space, Y ⊂ X and A : Y → X an

operator. We suppose that:

(i) FA = {x∗};

(ii) d(x, x∗) ≤ ψ(d(x,A(x))), ∀ x ∈ X.

Then the fixed point problem is well posed for A.

Proof. Let xn ∈ X, n ∈ N, such that

d(xn, A(xn)) → 0 as n→∞.

From (ii), we have

d(xn, x
∗) ≤ ψ(d(xn, A(xn))) → 0 as n→∞.

From the Theorem 6.1 we have

Theorem 6.2. Let (X, d) a metric space, Y ∈ P (X) and A : Y → X. We

suppose that

(i) FA = {x∗};

(ii) the operator A is a strict ϕ-contraction.

Then the fixed point problem is well posed for A.

Theorem 6.3. The fixed point problem for the strict ϕ-contractions which

appear in continuation principles ([5], [7],...) is well posed.

Proof. From the continuation principle we have that FA = {x∗}. So, we are

in the conditions of the Theorem 6.2.
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STATISTICAL APPROXIMATION BY AN INTEGRAL TYPE
OF POSITIVE LINEAR OPERATORS

RODICA SOBOLU

Dedicated to Professor Petru Blaga at his 60th anniversary

Abstract. In this paper we will construct an integral type generalization

of operators defined and investigated by M.A. Ozarslan, O. Duman, O.

Dogru in [7]. We also present a statistical approximation result for these

operators.

1. Introduction

In [7] the following positive linear operators defined on C[0, b], 0 < b < 1,

(1.1) Tn(f ;x) =
un

Fn(x, t)

∞∑
v=0

f

(
v

an(v)

)
C(n)

v (t)xv, f ∈ [0, b],

have been introduced, where un ≥ 0, x ∈ [0, b], t ∈ (−∞, 0]. In the above {Fn(x, t)}

is the set of generating functions for the sequence of functions {C(n)
v (t)}v∈N0 in the

form

(1.2) Fn(x, t) =
∞∑

v=0

C(n)
v (t)xv

and C
(n)
v (t) ≥ 0 for t ∈ (−∞, 0]. This general sequence includes many well-known

operators in approximation theory.

In the present paper we construct an integral type generalization of oper-

ators defined by (1.1) and we present a Korovkin type approximation theorem via

A-statistical convergence.

At first we recall some notation on A-statistical convergence.

Received by the editors: 01.09.2007.
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Let A := (ajn), j, n = 1, 2, . . . , be an infinite summability matrix. For a given

sequence x = (xn), the A-transform of x, denoted by Ax := ((Ax)j), is given by

(Ax)j =
∞∑

n=1

ajnxn,

provided that the series converges for each j ∈ N.

We say that A is regular if lim
j

(Ax)j = L whenever lim
j

xj = L. Assume

that A is a non-negative regular summability matrix. A sequence x = (xn) is called

A-statistically convergent to L if for every ε > 0,

lim
j

∑
n:|xn−L|≥ε

ajn = 0.

We denote this limit by stA − lim x = L (see [2]).

Observe that, if A is the identity matrix, then I-statistical convergence reduces

to ordinary convergence.

It is not hard to see that every convergent sequence is A-statistically conver-

gent. E. Kolk [2] proved that A-statistical convergence is stronger than convergence

when A = (ajn) is a regular summability matrix such that

lim
j

lim
n
|ajn| = 0.

2. Auxiliary results

In this section we define an integral type generalization of operators defined

by (1.1) and present a statistical approximation result for these operators.

We introduce the sequence of operators {T ∗n} as follows

(2.1) (T ∗nf)(x) =
un

Fn(x, t)

∞∑
v=0

C(n)
v (t)xv

∫ v+cn,v

v

f

(
ξ

an(v)

)
dξ, n ∈ N,

x ∈ [0, b], where f is an integrable function on the interval (0, 1) and (cn,v) is a

sequence such that

(2.2) 0 < cn,v ≤ 1, (n, v) ∈ N× N,
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un ≥ 0 for any n ∈ N and

(2.3) stA − lim
n

un = 1.

The set {Fn(x, t)}, t ∈ (−∞, 0], is described as in (1.2).

Assume that the next conditions hold

(i) Fn+1(x, t) = p(x)Fn(x, t), p(x) < M < ∞, x ∈ (0, 1),

(ii) BtC
(n+1)
v−1 (t) = an(v)C(n)

v−1(t) − vC
(n)
v (t), B ∈ [0, a], C

(n)
v (t) = 0 for v ∈

Z− := {. . . ,−3,−2,−1},

(iii) max{v, n} ≤ an(v) ≤ an(v + 1).

In what follows we prove inequalities for the operators T ∗n given by (2.1).

We set ej , ej(x) = xj , j ≥ 0.

Lemma 2.1. Let T ∗n be the positive linear operator given by (2.1). Then, for

each x ∈ [0, b], t ∈ (−∞, 0] and n ∈ N we have

‖Tne1 − e1‖C[0,b] ≤
un

2n
+ abM |t|un

n
+ b|un − 1|,

where e1(x) = x and M , a are given as in (i) and (ii) respectively.

Proof. Using (2.1), (2.2), (2.3), (2.4), (i), (ii) and (iii) respectively we get

(T ∗ne1)(x) =
un

Fn(x, t)

∞∑
v=0

C(n)
v (t)xv

∫ v+cn,v

v

ξ

an(v)
dξ

=
un

Fn(x, t)

∞∑
v=0

C(n)
v (t)xv 1

an(v)
· ξ2

2

∣∣∣v+cn,v

v

=
un

Fn(x, t)

∞∑
v=0

C
(n)
v (t)

an(v)
· xv · 1

2
(c2

n,v + 2vcn,v)

≤ un

2Fn(x, t)

∞∑
v=0

C
(n)
v (t)

an(v)
xv +

un

Fn(x, t)

∞∑
v=0

C(n)
v (t)

v

an(v)
xv

≤ un

2Fn(x, t)n

∞∑
v=0

C(n)
v (t)xv +

un

Fn(x, t)

∞∑
v=1

[
C

(n)
v−1(t)−

Bt

an(v)
C

(n+1)
v−1 (t)

]
xv

It follows that

(T ∗ne1)(x)− x ≤ un

2n
+ unx− x +

∣∣∣∣∣ un

Fn(x, t)

∞∑
v=1

Bt

an(v)
C

(n+1)
v−1 (t)xv

∣∣∣∣∣
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≤ un

2n
+ unx− x +

∣∣∣∣∣ Btxun

Fn(x, t)n

∞∑
v=1

C
(n+1)
v−1 (t)xv−1

∣∣∣∣∣
=

un

2n
+ x(un − 1) +

∣∣∣∣∣ Btxun

nFn(x, t)

∞∑
v=0

C(n+1)
v (t)xv

∣∣∣∣∣
=

un

2n
+ x(un − 1) +

∣∣∣∣Btxun

n
· Fn+1(x, t)

Fn(x, t)

∣∣∣∣
=

un

2n
+ x(un − 1) +

∣∣∣∣Btxun

n
p(x)

∣∣∣∣ .
Consequently, we have

(T ∗ne1)(x)− x ≤ un

2n
+ x(un − 1) +

∣∣∣∣Btxun

n
p(x)

∣∣∣∣ .
Hence, by taking the supremum over x ∈ [0, b] on both sides of the above inequality,

the proof is completed.

‖T ∗ne1 − e1‖C[0,b] ≤
un

2n
+ abM |t|un

n
+ b|un − 1|.

Lemma 2.2. For each x ∈ [0, b], t ∈ (−∞, 0] and n ∈ N we have

‖T ∗ne2 − e2‖C[0,b] ≤
un

3n2
+ abM |t|un

n2
+

un

n
b(abM |t|+ aM |t|+ 2) + b2|un − 1|,

where e2(x) = x2 and M are as in Lemma 2.1.

Proof. We have from (2.1) that

(Tne2)(x) =
un

Fn(x, t)

∞∑
v=0

C(n)
v (t)xv

∫ v+cn,v

v

ξ2

(an(v))2
dξ

=
un

Fn(x, t)

∞∑
v=0

C(n)
v (t)xv 1

(an(v))2
· ξ3

3

∣∣∣v+cn,v

v

=
un

Fn(x, t)

∞∑
v=0

C(n)
v (t)xv 1

[an(v)]2
· 1
3
(v3 + 3v2cn,v + 3vc2

n,v + c3
n,v − v3)

=
un

Fn(x, t)

∞∑
v=0

C(n)
v (t)xv v2

[an(v)]2
cn,v +

un

Fn(x, t)

∞∑
v=0

C(n)
v (t)xv v

[an(v)]2
c2
n,v

+
un

Fn(x, t)

∞∑
v=0

C(n)
v (t)xv 1

3[an(v)]2
c3
n,v

≤ un

Fn(x, t)

∞∑
v=0

C(n)
v (t)xv v2

[an(v)]2
+

un

Fn(x, t)

∞∑
v=0

C(n)
v (t)xv v

[an(v)]2
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+
un

3Fn(x, t)

∞∑
v=0

C(n)
v (t)

xv

[an(v)]2

Using the recurrence formula (ii) twice, we may write

(2.5)
v2

[an(v)]2
C(n)

v (t) =
an(v − 1)

an(v)
C

(n)
v−2(t)−

Bt

an(v)
C

(n+1)
v−2 (t)

+
1

an(v)
C

(n)
v−1(t)−

Btv

[an(v)]2
C

(n+1)
v−1 (t).

Taking into account (2.5) we get respectively

(2.6) (T ∗ne2)(x)− e2(x) ≤

(
un

Fn(x, t)

∞∑
v=2

an(v − 1)
an(v)

C
(n)
v−2(t)x

v − x2

)

+

∣∣∣∣∣ Btun

Fn(x, t)

∞∑
v=2

1
an(v)

C
(n+1)
v−2 (t)xv

∣∣∣∣∣+
∣∣∣∣∣ un

Fn(x, t)

∞∑
v=1

1
an(v)

C
(n)
v−1(t)x

v

∣∣∣∣∣
+

∣∣∣∣∣ Btun

Fn(x, t)

∞∑
v=1

v

[an(v)]2
C

(n+1)
v−1 (t)

∣∣∣∣∣+
∣∣∣∣∣ un

nFn(x, t)

∞∑
v=0

C(n)
v (t)xv v

an(v)

∣∣∣∣∣
+

∣∣∣∣∣ un

3Fn(x, t)

∞∑
v=0

C(v)
n (t)xv 1

(an(v))2

∣∣∣∣∣
By using the requirement (iii) we have

v + 1
[an(v + 1)]2

≤ 1
n

,
1

an(v + 2)
≤ 1

n
,

1
an(v + 1)

≤ 1
n

, an(v − 1) ≤ an(v).

Considering (2.2), (i), (ii), (iii) and the above relations results∣∣∣∣∣ Btun

Fn(x, t)

∞∑
v=1

v

[an(v)]2
C

(n+1)
v−1 (t)xv

∣∣∣∣∣ ≤ B|t|xun

Fn(x, t)

∞∑
v=0

v + 1
[an(v + 1)]2

C(n+1)
v (t)xv

≤ a|t|xp(x)
un

n∣∣∣∣∣ Btun

Fn(x, t)

∞∑
v=2

1
an(v)

C
(n+1)
v−2 (t)xv

∣∣∣∣∣ ≤ a|t|x2un

Fn(x, t)

∞∑
v=0

1
an(v + 2)

C(n+1)
v (t)xv

≤ a|t|x2un

nFn(x, t)

∞∑
v=0

C(n+1)
v (t)xv = a|t|p(x)x2 un

n∣∣∣∣∣ un

Fn(x, t)

∞∑
v=1

1
an(v)

C
(n)
v−1(t)x

v

∣∣∣∣∣ ≤ xun

n
,

un

Fn(x, t)

∞∑
v=2

an(v − 1)
an(v)

C
(n)
v−2(t)x

v − x2 ≤ x2(un − 1).
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The above inequalities and (2.6) imply

(T ∗ne2)(x)− x2 ≤ x2(un − 1) + ax2|t|p(x)
un

n
+

xun

n
+ a|t|xp(x)

un

n

+x
un

n
+ a|t|p(x)x

un

n2
+

un

3n2

Consequently, we have

‖T ∗ne2 − e2‖C[0,b] ≤
un

3n2
+ abM |t|un

n2
+

bun

n
(abM |t|+ aM |t|+ 2] + b2|un − 1|.

3. Statistical approximation

In this section, we provide a Korovkin type theorem via A-statistical conver-

gence for the sequence of positive linear operators defined by (2.1).

Lemma 3.1. Let A = (ajn) be a non-negative regular summability matrix.

Then we have

stA − lim
n
‖T ∗ne1 − e1‖C[0,b] = 0,

where T ∗n is defined by (2.1).

Proof. We conclude from Lemma 2.1 that

(2.7) ‖T ∗ne1 − e1‖C[0,b] ≤
un

2n
+ BbM |t|un

n
+ b|un − 1|

=
un

2n
(1 + 2bBM |t|) + b|un − 1| ≤ B1

(un

2n
+ |un − 1|

)
,

where B1 = max{(1 + 2bBM |t|), b}.

We can conclude according to (2.3) that

stA − lim
n

un

2n
= 0.

Now, for a given ε > 0, define

U :=
{

n :
un

2n
+ |un − 1| ≥ ε

B1

}
,

U1 :=
{

n :
un

2n
≥ ε

2B1

}
, U2 :=

{
n : |un − 1| ≥ ε

2B1

}
.

We see that U ⊆ U1 ∪ U2.
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The inequality (2.7) yields∑
n:‖T∗

ne1−e1‖≥ε

ajn ≤
∑
n∈U

ajn,≤
∑

n∈U1

ajn +
∑

n∈U2

ajn,

and taking j →∞ the result follows.

Lemma 3.2. Let A = (ajn) be a non-negative regular summability matrix.

Then we have

stA − lim
n
‖T ∗ne2 − e2‖ = 0,

where T ∗n is defined by (2.1).

Proof. It follows from Lemma 2.2 that

‖T ∗ne2 − e2‖C[0,b] ≤
un

3n2
(1 + 3bBM |t|)

+
un

n
(b2BM |t|+ bBM |t|+ 2) + b2|un − 1|.

Hence, we get

(2.8) ‖T ∗ne2 − e2‖C[0,b] ≤ B2

( un

3n2
+

un

n
+ |un − 1|

)
,

where

B2 = max{(1 + 3bBM |t|), (b2BM |t|+ bBM |t|+ 2), b2}.

By (2.3) we have

stA − lim
n

un = 1, stA − lim
n

un

n
= 0 and stA − lim

n

un

3n2
= 0.

For a given ε > 0 we define

U :=
{

n :
un

3n2
+

un

n
+ |un − 1| ≥ ε

B2

}
,

U1 :=
{

n :
un

3n2
≥ ε

3B2

}
, U2 :=

{
n :

un

n
≥ ε

3B2

}
,

U3 :=
{

n : |un − 1| ≥ ε

3B2

}
.

Then we have U ⊆ U1 ∪ U2 ∪ U3.

By using (2.8) we can write successively∑
n:‖Tne2−e2‖C[0,b]≥ε

ajn ≤
∑
n∈U

ajn ≤
∑

n∈U1

ajn +
∑

n∈U2

ajn +
∑

n∈U3

ajn.
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Taking limit as j →∞ the proof is complete.

We recall the following important result established by A.P. Gadjiev and C.

Orhan.

Theorem 3.1. ([4], Theorem 1) If the sequence of positive linear operators

Ln : CM [a, b] → B[a, b] satisfies the conditions

(1) st− lim ‖Lne0 − e0‖B = 0

(2) st− lim ‖Lne1 − e1‖B = 0

(3) st− lim ‖Lne2 − e2‖B = 0

then for any function f ∈ CM [a, b] we have

(4) st− lim ‖Lnf − f‖B = 0,

where CM [a, b] = {f : R → R, f continuous on [a, b] and bounded on the whole real

axis} and ‖f‖B := sup
a≤x≤b

|f(x)|.

We mention that the above Theorem is given for statistical convergence, but

the proof also works for A-statistical convergence.

Now we provide a Korovkin type approximation theorem for the operators

T ∗n via A-statistical convergence.

Theorem 3.2. Let A = (ajn) be a non-negative regular summability matrix.

Then, for all f ∈ C[0, b], we have

stA − lim
n
‖T ∗nf − f‖C[0,b] = 0.

Proof. By (T ∗ne0)(x) ≤ un, Lemmas 3.1 and 3.2 we get

stA − lim
n
‖T ∗nei − ei‖C[0,b] = 0, i = 0, 1, 2.

The result follows from Theorem 1 in [4].
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A COUNTER-EXAMPLE CONCERNING STARLIKE FUNCTIONS

RÓBERT SZÁSZ

Dedicated to Professor Petru Blaga at his 60th anniversary

Abstract. Let A denote the Alexander integral operator, let C and S∗

denote the class of close-to-convex functions and the class of starlike func-

tions, respectively. In the paper it is proved that the inclusion A(C) ⊂ S∗

does not hold.

1. Introduction

Let A be the class of analytic functions defined in the unit disk

U = {z ∈ C : |z| < 1}

and having the form f(z) = z + a2z
2 + a3z

3 + . . .

The analytic description of the class S∗ and C are given by

S∗ =
{

f ∈ A | Re
zf ′(z)
f(z)

> 0, z ∈ U

}
and

C =
{

f ∈ A | ∃ g ∈ S∗ : Re
zf ′(z)
g(z)

> 0, z ∈ U

}
.

In this article we discuss a relation between these two classes which involve the integral

operator of Alexander defined by

A(f)(z) =
∫ z

0

f(t)
t

dt.

In [2] pp. 310 and [3] pp. 361 the authors have proved the following theorem:

Received by the editors: 09.11.2006.

2000 Mathematics Subject Classification. 30C45.

Key words and phrases. the operator of Alexander, starlike functions, close-to-convex functions.
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Theorem 1. Let g ∈ A be a function which has the property:

Re
zg′(z)
g(z)

≥
∣∣∣∣ Im

(
z(zg′(z))′

g(z)

)∣∣∣∣ , z ∈ U.

If f ∈ A and

Re
zf ′(z)
g(z)

> 0, z ∈ U

or

Re
zf ′(z)
g′(z)

> 0, z ∈ U

then F = A(f) ∈ S∗.

This Theorem rises the question, if the following better results can be valid:

A(C) ⊂ S∗

2. Preliminaries

To prove the main result, we need the Lemma

Lemma 1. [1] pp. 18 (2.8)

The functions

f(z) =
z − 1

2 (x + y)z2

(1− yz)2
, |x| = |y| = 1

belong to class C.

These functions are the extreme points of class C if x 6= y.

3. The Main Result

Theorem 2.

A(C) 6⊂ S∗.

Proof. We shall prove that there are two complex numbers x, y ∈ ∂U, x 6= y so that

A(f) 6∈ S∗

where

f(z) =
z − 1

2 (x + y)z2

(1− yz)2
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and

A(f)(z) =
∫ z

0

f(t)
t

dt.

A(f)(z) =
∫ z

0

1− 1
2 (x + y)t

(1− yt)2
dt =

=
1
2

(
1− x

y

)
z

1− yz
− 1

2

(
1 +

x

y

)
log(1− yz)

y
.

The branch of log(1− yz) is chosen so that Im (log(1− y(z)) ∈ [−π, π].

Let F be the function defined by the equality:

F (z) =
z(A(f))′(z)

A(f)(z)
=

2−
(
1 + x

y

)
yz(

1− x
y

)
(1− yz)−

(
1 + x

y

)
(1− yz)2 log(1−yz)

yz

If A(f) ∈ S∗ then Re F (z) > 0, z ∈ U and from the continuity it follows that

Re F (z) ≥ 0 for every z ∈ ∂U for which F (z) is defined. (1)

We will prove that the assertion (1) is not valid.

If we introduce the notations

x

y
= cos u + i sinu

yz = cos α + i sinα

we get that

F (z) =
1− i tg u

2 − cos α− i sinα

−i tg u
2 (1− cos α− i sinα) + 4 sin2 α

2 log(1− cos α− i sinα)
=

=
1− cos α− i

(
tg u

2 + sinα
)

4 sin2 α
2 ln

(
2 sin α

2

)
− tg u

2 sinα− 2i sin2 α
2

(
π − α + tg u

2

)
Re F (z) =

=
(1− cos α)

(
− tg u

2 sinα + 4 sin2 α
2 ln

(
2 sin α

2

))
+

(
tg u

2 + sinα
)
2 sin2 α

2

(
tg u

2 + π − α
)(

− tg u
2 sinα + 4 sin2 α

2 ln
(
2 sin α

2

))2
+ 4 sin4 α

2

(
tg u

2 + π − α
)2

The numerator of Re F (z) is a polinomial of degree two with respect to tg u
2 .

The discriminant of the polinomial is

∆(α) = 4 sin4 α

2

[
(π − α)2 − 4(π − α) sinα− 16 sin2 α

2
ln

(
2 sin

α

2

)]
.
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Because

lim
α→0

∆(α)
sin4 α

2

= 4π2

there are α ∈ (−π, π), for which ∆(α) > 0.

The inequality ∆(α) > 0 for some α ∈ (−π, π), means that there are two

points x, y ∈ ∂U, x 6= y and z ∈ ∂U so that Re F (z) < 0, which contradicts (1).
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E-mail address: szasz robert@yahoo.com

170
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BOOK REVIEWS

Barry Simon, Orthogonal Polynomials on the Unit Circle ,
Part 1: Classical Theory, xxv+pages 1-466 (ISBN:0-8218-3446-0),
Part 2: Spectral Theory, xxi+pages 467-1044 (ISBN:0-8218-3675-7),
American Mathematical Society, Colloquium Publications, Volume 54, Providence,
Rhode Island 2005, ISBN:0-8218-3757-5 (set).

This monumental two volume treatise contains a comprehensive study of or-
thogonal polynomials on the unit circle (OPUC) corresponding to nontrivial (i.e.,
with infinite support) probability measures on the unit circle ∂D, in the complex
plane, where D = {z ∈ C : |z| < 1} is the unit disk. This is viewed as a counterpart
of the well established theory of orthogonal polynomials on the real line (OPRL) as
presented, for instance, in the classical treatises of G. Szegö (first edition, AMS 1939)
and G. Freud (Pergamon Press 1971). At the same time, OPUC theory supplies the
study of OPRLs with new tools and methods. If µ is a nontrivial probability measure
on ∂D, then 1, z, z2, . . . are linearly independent in the Hilbert space L2(∂D, µ), so
that the Gram-Schmidt orthogonal procedure produces an orthogonal system {Φn}
given by Φn = Pn[zn], where Pn denotes the projection onto {1, z, . . . zn−1}⊥. By
normalization one obtains the orthonormal system ϕn = Φn/‖Φn‖. The orthogo-
nal polynomials Φn satisfy Szegő’s recurrence Φn+1(z) = zΦn(z) − ᾱnΦ∗n(z), where
Φ∗n(z) = znΦn(1/z̄) is the reversed polynomials of Φn. The parameters α0, α1, . . . ,
called Verblunsky coefficients, all belong to D (i.e., |αj | < 1). These were considered
by S. Verblunsky in two remarkable papers published in 1934 and 1935 in Proceed-
ings of the London Mathematical Society, where he proved, among other things, that
there is a bijective correspondence between the nontrivial probability measures on ∂D
and the sequences {αj}∞j=0 in D. The author gives four proofs for this result. The
irony is that the results of Verblunsky were largely overlooked by the mathematical
community, some of them being rediscovered later.

One of the central topic of the book, and of the whole theory of OPUC, is how
the properties of the measure µ correspond to properties of the Verblunsky coefficients,
and viceversa. The major result in this respect is Szegő Theorem asserting that∏∞

j=0(1−|αj |2) = exp
(∫ 2π

0
log(w(θ)) dθ

2π

)
, where w(θ)dθ is the absolutely continuous

part of µ. In particular,
∑

j |αj |2 < ∞ if and only if
∫

log w(θ)dθ > −∞. Four proofs
of this remarkable result are given. An extension of this result is the so called Strong
Szegő Theorem, which can be rephrased as an assertion about the asymptotics of
Toeplitz determinants. Verblunsky coefficients are related also with other important

171



BOOK REVIEWS

quantities in the theory of OPUC as, for instance, with Fourier coefficients µ̂n of the
measure µ:

∑
j |αj | < ∞ if and only if

∑
j |µ̂j | < ∞ (Baxter’s Theorem (1961)).

Another important tools, relating OPUC with the theory of analytic functions
are the Carathéodori functions defined by F (z) =

∫
[eiθ + z][eiθ + z]−1dµ(θ) and the

associated Schur functions f given by the relation F (z) = [1 + zf(z)][1 + zf(z)]−1.
Section 1.3 contains an overview of their properties. Schur proved that Schur functions
admit continued fraction expansion with coefficients |γj | < 1, called Schur parameters.
A remarkable result proved by Ya. L. Geronimus in the fifties of the last century
asserts that Schur parameters agree with Verblunsky coefficients: γj = αj , j ∈ N.
Again five proofs of this result are included in the book. The method of Schur
functions and some real variable methods were used by S. Kruschev in a series of
papers published between 1993 and 2005 to obtain some important results on OPUC.

The book is very well organized and covers a lot of important results. In fact,
the aim of the inclusion of several proofs for some important results is to emphasize
that different approaches shed new light on the subject and, at the same time, allow
to systematize and organize the study of OPUCs. For the convenience of the reader,
beside the section on Carathéodori and Schur functions we did yet mention, a section
containing a survey of principal results and methods from OPRL theory, as well as
one on spectral theory of operators on Hilbert space are included. At the end of
the second volume there are four very useful appendices: A. Reader’s Guide: Topics
and Formulae; B. Perspective (OPRL vs OPUC); C. Twelve Great Theorems; D.
Conjectures and Open Questions. Concerning the ”twelve great theorems”, the author
quote a nice remark of his father who said once that ”to pick ten people from twenty
for some positive reasons, you don’t make ten friends but ten enemies”. Apparently,
the only way to make ten friends from twenty people is to pick ten for some negative
reasons.

The bibliography counts 1119 items with references to the pages where each of
them is quoted. The remarks and the historical notes following each section present
the evolution of the subject, putting in evidence some corner points and seminal
papers.

Undoubtedly that, as Szegő’s book, published first in 1939 as the volume 23
in the same prestigious series, this book will become a standard reference in the field
tracing the way for future investigations on orthogonal polynomials and their appli-
cations. Combining methods from various areas of analysis (calculus, real analysis,
functional analysis, complex analysis) as well as by the importance of the orthogonal
polynomials in applications, the book will have a large audience including researchers
in mathematics, physics, engineering.

S. Cobzaş
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Athanase Papadopoulos, Metric spaces, convexity and nonpositive curva-
ture, IRMA Lectures in Mathematics and Theoretical Physics, Vol. 6, European
Mathematical Society, Zürich 2005, xi+287 pp, ISBN: 3-03719-010-8.

Geodesic metric spaces form a class of metric spaces in which convexity of
subsets can be defined as well as other related analytic concepts. Buseman spaces
are geodesic metric spaces whose length function satisfies a convexity condition. Be-
side their intrinsic geometric interest, geodesic metric spaces are important for their
applications to complex analysis and nonlinear analysis - fixed point theory for nonex-
pansive mappings, generalized differentiability and optimization. Classical examples
of geodesic metrics are the Riemannian metric, the Poincaré metric on the hyper-
bolic ball Hn, the Carathéodori and the Kobayashi distances for complex manifolds,
Thusrston’s metric on complex projective surfaces, the Teichmüller metric and Te-
ichmüller spaces. The book starts with a short historical overview emphasizing some
corner points in its development - the pioneering work of J. Hadamard, the contribu-
tions of K. Menger, A. Wald, H. Busemann and A. D. Alexandrov.

In order to make the book self-contained the author systematically develop
in the first two chapters 1. Lengths of paths in metric spaces, 2. Length spaces
and geodesic spaces, the basic construction and the properties of length spaces and
geodesic spaces, including convexity - geodesic convexity and Menger convexity, this
last being defined through the betweeness relation. Chapter 3. Maps between metric
spaces, is concerned with Lipschitz maps and fixed points for contractive and for
nonexpansive mappings on geodesic spaces. The analog of Hausdorff distance for
subsets of a geodesic metric space, called the Busemann-Hausdorff distance, with
applications to limits of subsets is considered in Chapter 4. Distances.

Chapters 5. Convexity in vector spaces, 6. Convex functions, and 7. Strictly
convex normed spaces, are concerned with convexity in vector and normed spaces,
emphasizing connections with geodesic metric spaces and the geometry of Minkowski
space (finite dimensional normed spaces).

The rest of the book, chapters 8. Busemann spaces, 9. Locally convex spaces
(meaning geodesic metric spaces such that every point has a neighborhood which is a
Busemann space), 10. Asymptotic rays and the visual boundary, 11. Isometries, 12.
Busemann functions, co-rays and horospheres, is devoted to the theory of Busemann
spaces. Again convexity is the main topic and the unifying idea of the development
of Busemann spaces.

Written in a clear and pleasant style, with numerous examples from geometry
and analysis, the book is accessible to graduate students interested in this topic of in-
tense current research due to its intrinsic importance and to its numerous applications
as well.

S. Cobzaş
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The essential of John Nash, Edited by Harold W. Kuhn and Sylvia Nasar,
Princeton University Press, 2007, ISBN-13: 978-0-691-09610-0, ISBN-10: 0-691-
09610-4.

The brilliant mathematician John Forbes Nash was born in 1928 in Bluefield,
West Wirginia. After finishing high school in Bluefield he went to Carnegie Tech in
Pittsburgh with major chemical engineering, but he eventually switched to mathe-
matics. After graduation he was offered fellowship at either Harvard or Princeton,
and he choose the more generous Princeton fellowship, which was also nearer to his
hometown. At Princeton he wrote in 1950 a 27 pages Ph.D. thesis on Non-cooperative
games which initiated a new era in game theory with applications to economics, so-
cial behavior, war questions, etc. The basic idea was that which is called now the
Nash equilibrium, which finally led to a Nobel Prize in Economics attributed to him
in 1994, shared with John Harsanyi and Reinhard Selten. As it is mentioned in the
motivation of the Nobel committee the Nash equilibrium has become ”the analytical
structure for studying all situations of conflict and cooperation”.

Other important contributions of John Nash concern the imbedding of Rie-
mannian manifolds in the Euclidean space, the Nash implicit function theorem, real
algebraic varieties, and parabolic partial differential equations.

But after these astonishing and deep contributions J. Nash suffered at the age
of thirty one of mental illness, being diagnosed as paranoid schizophrenia, so he had
to retire from MIT where he was affiliated. After a long period of absence (30 years)
he recovered himself, due in good part to the recognition of his achievements by the
Nobel prize committee, started to travel and to work again. The illness prevented him
to obtain a Fields medal which he fully deserved for his outstanding results on elliptic
and parabolic partial differential equations. Because in 1958 these results were still
unpublished, the Fields Committee postponed Nash as a virtual winner of the 1962
Medal, but the mental illness destroyed his career for a long period of time.

His situation is known to the general public due to the book A beautiful mind
by Sylvia Nasar (one of the editors of the present volume) and by the movie with the
same name with Russell Crowe starring as John Nash.

While the biography by Sylvia Nasar was concerned mainly with the life of J.
Nash, the present volume deals with his scientific work. It contains contributions by
Harold W. Kuhn (the other editor of the book), a Princeton fellow of J. Nash and a
life friend, an introduction by Sylvia Nasar, the press release of the Swedish Academy
on Nobel prize and an autobiography written by J. Nash with this occasion, a nice
collection of photos, a short note by John Milnor on the Hex game (known also as the
Nash game), the facsimile of the Ph.D. thesis of J. Nash and several of his seminal
papers.

The book is written in a pleasant and informal style, being addressed to a
large audience. It’s nice that Princeton University Press released this cheeper paper-
back version making the book accessible to a large public.

P. T. Mocanu
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J. Baik, T. Kriecherbauer, K.T.-R. McLaughlin, P.D. Miller, Discrete
Orthogonal Polynomials. Asymptotics and Applications, Annals of Math-
ematics Studies, Number 164, Princeton University Press, 2007, 170 pp. ISBN-13:
978-0-691-12734-7, ISBN-10: 0-691-12734-4.

As the title of the book suggests, the main aim of this monograph is to present
asymptotic properties of polynomials that are orthogonal with respect to pure point
measures supported on finite sets of nodes. Further on, the authors use these results to
establish various statistical properties of discrete orthogonal polynomial ensembles. In
particular, the authors apply their results to the problem of computing asymptotic of
statistics for random rhombus tilings of a large hexagon. They also obtain new results
for the continuum limit of the Toda lattice. Working with a general class of weights
that contains Krawtchouk and Hahn weights as special cases, the authors compute
the asymptotic of the associated discrete orthogonal polynomials for all values of the
variable in the complex plane.

The starting point is the following basic interpolation problem: given a natu-
ral number N , a set XN of nodes and a set of corresponding weights {wN,n}, consider
the possibility of finding a 2 × 2 matrix P (z;N, k), k ∈ Z, with certain properties.
After a comprehensive introduction providing the reader with a thorough mathemat-
ical background, the main results for the discrete orthogonal polynomials and for
corresponding applications are presented in Chapter 2 and Chapter 3, respectively.
Chapters 4 and 5 contain the complete asymptotic analysis of the matrix P (z;N, k) in
the limit N tends to infinity. In the last two chapters the authors prove the theorems
stated in Chapters 2 and 3.

The contents of the book is enriched with 3 Appendices. I mention the first of
them summarizes construction of the solution of a limiting Riemann-Hilbert problem
by means of hyperelliptic function theory and the second of them gives a proof of the
determination of the equilibrium measure of the Hahn weight. At the same time good
references are inserted.

The authors’ style is pleasant offering detailed and clear explanations of every
concept and method.

The book includes the authors’ own research results developed over the last
years. Their approach and proofs are straightforward constructive making this mono-
graph accessible and valuable to undergraduate and graduate students, PhD students
and researchers involved in the asymptotic analysis of systems of discrete orthogonal
polynomials.

Octavian Agratini
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David L. Applegate, Robert E. Bixby, Vasek Chvtal and William J.
Cook The Traveling Salesman Problem:A Computational Study, Princeton
University Press, 2007, 606 pp., ISBN13: 978-0-691-12993-8.

The present book contains an exhaustive and interesting presentation of var-
ious questions related to the famous Travelling Salesman Problem (TSP). Its goal is
to set down the techniques that have led to the solution of a number of large instances
of the TSP, including the full set of examples from TSPLIB challenge collection.

The first and the second chapters of the book cover history and applications
of the TSP. This part is very interesting and accessible to a wide audience. A short
definition of the TSP is the following: given a set of cities along with the cost of
travel between each part of them, the travelling salesman problem is to find the way
of visiting all the cities and returning to the start point with minimal cost. The
origins of the study of the TSP as a mathematical problem are somewhat obscure.
M. Flood said that the TSP was posed, in 1934, by Hassler Whitney in a seminar talk
at Princeton University. Therefore as father of the TSP can be considered Hassler
Whitney. The third chapter is dedicated to present the work of Danzig, Fulkerson and
Johnson for solving the 49-city problem and, indirectly, to make a short presentation of
the cutting plane method. The fourth chapter contents a history of TSP computation.
It includes, among other things, the bases of the branch-and-bound method, the
Gomory’s cuts, the TSP’s cuts, the Lin-Kernighan’s heuristic, the Crowder-Padberg’s
code, the dynamic programming etc. It is mentioned that the dynamic programming
algorithm can solve any n-city TSP instance in time that is at most proportional to
n2 · 2n.

Chapters 5 - 10 describe (some) methods for finding cutting planes for the
TSP. In the chapter 11 it is presented a separation method that disdains all under-
standing of the TSP polytope and bashes on regardless of all prescribed templates.

The twelfth chapter presents machinery to handle the flow of cuts and edges
into and out of the linear programming relaxations, as well as methods used for
interacting with a linear programming solver. The actual solution of the linear pro-
gramming problems is described in the chapter 13.

The branch-and-cut algorithm embeds the cutting-plane method within a
branch-and-bound search. Its specialization to TSP is described in the chapter 14.
There is a growing literature devoted to the study of heuristic algorithms for the TSP
and to their various aspects. The fifteenth chapter includes some of them.

The algorithmic components described in this book are brought together in
the Concorde computer code for the TSP. Concorde is described in the chapter 16.
Also, in this chapter a report on computational studies learning to the solution of the
full set of TSPLIB instances is given.

Chapter 17 contents a short survey of recent work dedicated to the TSP by
various research group.

The book includes a bibliography of 561 titles.
Liana Lupşa
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