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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LIII, Number 1, March 2008

SOME RESULTS ON TRANSFORMATIONS GROUPS

OF N-LINEAR CONNECTIONS IN THE 2-TANGENT BUNDLE

GHEORGHE ATANASIU AND MONICA PURCARU

Abstract. In the present paper we study the transformations for the co-

efficients of an N-linear connection (definition 1.1) on the tangent bundle

of order two, T 2M, by a transformation of a nonlinear connection in T 2M .

We prove that the set T of these transformations together with compo-

sition of mappings isn’t a group. But we give some groups of T , which

keep invariant a part of components of the local coefficients of an N-linear

connection. We also determine the transformation laws of the torsion and

curvature tensor fields, with respect to the transformations of the group

TN ⊂ T .

1. The N-and JN-linear connections on tangent bundle of order two

Let M be a real C∞-manifold with n dimensions and (T 2M,π,M) its 2-

tangent bundle, [1]. The local coordinates on 3n-dimensional manifold T 2M are

denoted by (xi, y(1)i, y(2)i) = (x, y(1), y(2)) = u, (i = 1, 2, ...n).

Let
(

∂
∂xi ,

∂
∂y(1)i ,

∂
∂y(2)i

)

be the natural basis of the tangent space TT 2M at

the point u ∈ T 2M and let us consider the natural 2-tangent structure on T 2M ,

J : χ(T 2M)→ χ(T 2M) given by

J

(

∂

∂xi

)

=
∂

∂y(1)i
, J

(

∂

∂y(1)i

)

=
∂

∂y(2)i
, J

(

∂

∂y(2)i

)

= 0. (1.1)

We denote with N a nonlinear connection on T 2M with the local coefficients

(N i
j ,

1

N i
j

2

) (i, j = 1, 2, ..., n), [7], [8].
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Hence, the tangent space of T 2M in the point u ∈ T 2M is given by the direct

sum of the linear vector spaces:

TnT 2M = N0(u)⊕N1(u)⊕ V2(u), ∀u ∈ T 2M. (1.2)

An adapted basis to the direct decomposition (1.2) is given by

{

δ

δxi
,

δ

δy(1)i
,

δ

δy(2)i

}

, (1.3)

where:

δ
δxi =

∂
∂xi −N

j
i

1

∂
∂y(1)j −N

j
i

2

∂
∂y(2)j ,

δ
δy(1)i =

∂
∂y(1)i −N

j
i

1

∂
∂y(2)j ,

δ
δy(2)i =

∂
∂y(2)i .

(1.4)

Let us consider the dual basis of (1.3):

{dxi, δy(1)i, δy(2)i}, (1.5)

where

δxi = dxi,

δy(1)i = dy(1)i +N i
j

1

dxj ,

δy(2)i = dy(2)i +N i
j

1

dy(1)j + (N i
j

2

+N i
m

1
Nm

j
1

)dxj .

(1.6)

Definition 1.1. ([1]-[3]) A linear connection D on T 2M , D : χ(T 2M) ×

χ(T 2M) → χ(T 2M) is called an N-linear connection on T 2M if it preserves by par-

allelism the horizontal and vertical distributions N0, N1 and V2 on T 2M .

An N-linear connection D on T 2M is characterized by its coefficients in the

adapted basis (1.3) in the form:

D δ

δxk

δ
δxj = Li

jk

(00)

δ
δxi , D δ

δxk

δ
δy(1)j = Li

jk

(10)

δ
δy(1)i , D δ

δxk

∂
∂y(2)j = Li

jk

(20)

∂
∂y(2)i ,

D δ

δy(1)k

δ
δxj = Ci

jk

(01)

δ
δxi , D δ

δy(1)k

δ
δy(1)j = Ci

jk

(11)

δ
δy(1)i , D δ

δy(1)k

∂
∂y(2)j = Ci

jk

(21)

∂
∂y(2)i ,

D ∂

∂y(2)k

δ
δxj = Ci

jk

(02)

δ
δxi , D ∂

∂y(2)k

δ
δy(1)j = Ci

jk

(12)

δ
δy(1)i , D ∂

∂y(2)k

∂
∂y(2)j = Ci

jk

(22)

∂
∂y(2)i .

(1.7)
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The system of nine functions

DΓ(N) = (Li
jk,

(00)

Li
jk,

(10)

Li
jk,

(20)

Ci
jk,

(01)

Ci
jk,

(11)

Ci
jk,

(21)

Ci
jk,

(02)

Ci
jk,

(12)

Ci
jk

(22)

), (1.8)

are called the coefficients of the N -linear connection D.

Generally, an N-linear connection DΓ(N) on T 2M is not compatible with

the natural 2-tangent structure J given by (1.1).

Definition 1.2. An N -linear connection D on T 2M is called JN -linear

connection if it is absolute parallel with respect to D:

DXJ = 0, ∀X ∈ χ(T 2M). (1.9)

Theorem 1.1. (Gh. Atanasiu, [1]) A JN -linear connection on T 2M is

characterized by the coefficients JDΓ(N) given by (1.8), where

Li
jk

(00)

= Li
jk

(10)

= Li
jk

(20)

(= Li
jk),

Ci
jk

(01)

= Ci
jk

(11)

= Ci
jk

(21)

(= Ci
jk

(1)

),

Ci
jk

(02)

= Ci
jk

(12)

= Ci
jk

(22)

(= Ci
jk

(2)

).

(1.10)

It results that a JDΓ(N)- linear connection on T 2M has three essentially

coefficients:

JDΓ(N) = (Li
jk, Ci

jk

(1)

, Ci
jk

(2)

). (1.11)

Obvious, the geometrical theory on 2-tangent bundle (T 2M,π,M) with the

N- linear connection [1]-[3], [15], generalize on that with the JN-linear connection

(cf.with R. Miron and Gh. Atanasiu [5]-[8]; see, also M. Purcaru [12], [13]).

In the following we use the N-linear connections, only.
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2. The set of transformations of N-linear connections

Let DΓ(N) be an N-linear connection on T 2M with the coefficients given

by (1.8). If N̄ is another nonlinear connection on T 2M with the coefficients

(N̄ i
j

1

, N̄ i
j

2

), (i, j = 1, 2, ..., n), then there exists the uniquely determined tensor fields

Ai
j

β

,∈ τ1
1 (T

2M) such that:

N̄ i
j

β

= N i
j

β

− Ai
j

β

, (β = 1, 2). (2.1)

Conversely, if N i
j

β

and Ai
j

β

, are fixed, then N̄ i
j

β

, (β = 1, 2), given by (2.1) is a

nonlinear connection.

Let us suppose that the mapping N → N̄ is given by (2.1) and we denote:

δ̄

δxi
=

∂

∂xi
− N̄

j
i

1

∂

∂y(1)j
− N̄

j
i

2

∂

∂y(2)j
,

δ̄

δy(1)i
=

∂

∂y(1)i
− N̄

j
i

1

∂

∂y(2)j
,

δ̄

δy(2)i
=

∂

∂y(2)i
.

It follows first of all that the transformations (2.1) preserve the coefficients

Ci
jk

(α2)

, (α = 0, 1, 2).

Taking in account the fact that:

δ̄

δxi
=

δ

δxi
+A

j
i

1

∂

∂y(1)j
+A

j
i

2

∂

∂y(2)j
,

δ̄

δy(1)i
=

δ

δy(1)i
+A

j
i

1

∂

∂y(2)j
,

δ̄

δy(2)i
=

δ

δy(2)i
,

it follows:

D δ̄

δxk

δ̄

δy(2)j
= D δ̄

δxk

∂

∂y(2)j
= L̄i

jk

(20)

∂

∂y(2)i
= D( δ

δxk +Al
k

1

∂

∂y(1)l
+Al

k
2

∂

∂y(2)l
)

∂

∂y(2)j
=

= D δ

δxk

∂

∂y(2)j
+Al

k
1

D( δ

δy(1)l
+Nm

l
1

∂

∂y(2)m
)

∂

∂y(2)j
+Al

k
2

D ∂

∂y(2)l

∂

∂y(2)j
=

= Li
jk

(20)

∂

∂y(2)i
+Al

k
1

Ci
jl

(21)

∂

∂y(2)i
+Al

k
1

Nm
l

1
Ci

jm

(22)

∂

∂y(2)i
+Al

k
2

Ci
jl

(22)

∂

∂y(2)i
=

= ( Li
jk

(20)

+Al
k

1
Ci

jl

(21)

+Al
k

1
Nm

l
1

Ci
jm

(22)

+Al
k

2
Ci

jl

(22)

)
∂

∂y(2)i
.

D δ̄

δy(1)k

δ̄

δy(2)j
= D δ̄

δy(1)k

∂

∂y(2)j
= C̄i

jk

(21)

∂

∂y(2)i
= D( δ

δy(1)k
+Al

k
1

∂

∂y(2)l
)

∂

∂y(2)j
=

= D δ

δy(1)k

∂

∂y(2)j
+Al

k
1

D ∂

∂y(2)l

∂

∂y(2)j
= Ci

jk

(21)

∂

∂y(2)i
+Al

k
1

Ci
jl

(22)

∂

∂y(2)i
=
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SOME RESULTS ON TRANSFORMATIONS GROUPS OF N-LINEAR CONNECTIONS

= ( Ci
jk

(21)

+Al
k

1
Ci

jl

(22)

)
∂

∂y(2)i
.

Therefore the change we are looking for is:



































L̄i
jk

(α0)

= Li
jk

(α0)

+Al
k

1

Ci
jl

(α1)

+Al
k

1

Nm
l

1

Ci
jm

(α2)

+Al
k

2

Ci
jl

(α2)

,

C̄i
jk

(α1)

= Ci
jk

(α1)

+Al
k

1

Ci
jl

(α2)

,

C̄i
jk

(α2)

= Ci
jk

(α2)

, (α = 0, 1, 2).

(2.2)

So, we have proved:

Proposition 2.1. The transformation (2.1) of nonlinear connections imply

the transformations (2.2) for the coefficients DΓ(N) of the N-linear connection D.

Theorem 2.1. Let N and N̄ be two nonlinear connections, with the coeffi-

cients (N i
j

1

, N i
j

2

), (N̄ i
j

1

, N̄ i
j

2

)-respectively. If

DΓ(N) = ( Li
jk,

(00)

Li
jk,

(10)

Li
jk,

(20)

Ci
jk,

(01)

Ci
jk,

(11)

Ci
jk,

(21)

Ci
jk,

(02)

Ci
jk,

(12)

Ci
jk

(22)

)

and

DΓ̄(N̄) = ( L̄i
jk,

(00)

L̄i
jk,

(10)

L̄i
jk,

(20)

C̄i
jk,

(01)

C̄i
jk,

(11)

C̄i
jk,

(21)

C̄i
jk,

(02)

C̄i
jk,

(12)

C̄i
jk

(22)

)

are two N -, respectively N̄ -linear connections on the differentiable manifold T 2M ,

then there exists only one system of tensor fields

(Ai
j

1

, Ai
j

2

, Bi
jk,

(00)

Bi
jk,

(10)

Bi
jk,

(20)

Di
jk,

(01)

Di
jk,

(11)

Di
jk,

(21)

Di
jk,

(02)

Di
jk,

(12)

Di
jk

(22)

),

such that:


















































N̄ i
j

β

= N i
j

β

−Ai
j

β

,

L̄i
jk

(α0)

= Li
jk

(α0)

+Al
k

1

Ci
jl

(α1)

+Al
k

1

Nm
l

1

Ci
jm

(α2)

+Al
k

2

Ci
jl

(α2)

− Bi
jk

(α0)

,

C̄i
jk

(α1)

= Ci
jk

(α1)

+Al
k

1

Ci
jl

(α2)

− Di
jk

(α1)

,

C̄i
jk

(α2)

= Ci
jk

(α2)

− Di
jk

(α2)

, (α = 0, 1, 2; β = 1, 2).

(2.3)
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Proof. The first equality (2.3) determines uniquely the tensor fields Ai
j

β

, (β = 1, 2).

Since Ci
jk,

(01)

Ci
jk,

(11)

Ci
jk,

(21)

Ci
jk,

(02)

Ci
jk and
(12)

Ci
jk

(22)

are tensor fields, the second equation

(2.3) determines uniquely the tensor fields Bi
jk

(00)

, Bi
jk

(10)

and Bi
jk

(20)

. Similarly the third

and the fourth equation (2.3) determine the tensor fields Di
jk

(01)

, Di
jk

(11)

, Di
jk

(21)

and

Di
jk

(02)

, Di
jk

(12)

, Di
jk

(22)

, respectively.

Conversely, we have

Theorem 2.2. If

DΓ(N) = ( Li
jk,

(00)

Li
jk,

(10)

Li
jk,

(20)

Ci
jk,

(01)

Ci
jk,

(11)

Ci
jk,

(21)

Ci
jk,

(02)

Ci
jk,

(12)

Ci
jk

(22)

)

are local coefficients of an N-linear connection D and

(Ai
j

1

, Ai
j

2

, Bi
jk,

(00)

Bi
jk,

(10)

Bi
jk,

(20)

Di
jk,

(01)

Di
jk,

(11)

Di
jk,

(21)

Di
jk,

(02)

Di
jk,

(12)

Di
jk

(22)

)

is a system of tensor fields, then:

DΓ̄(N̄) = ( L̄i
jk,

(00)

L̄i
jk,

(10)

L̄i
jk,

(20)

C̄i
jk,

(01)

C̄i
jk,

(11)

C̄i
jk,

(21)

C̄i
jk,

(02)

C̄i
jk,

(12)

C̄i
jk

(22)

)

given by (2.3) are local coefficients of an N̄ -linear connections D̄.

The system of tensor fields

(Ai
j

1

, Ai
j

2

, Bi
jk,

(00)

Bi
jk,

(10)

Bi
jk,

(20)

Di
jk,

(01)

Di
jk,

(11)

Di
jk,

(21)

Di
jk,

(02)

Di
jk,

(12)

Di
jk

(22)

)

are called the difference tensor fields of DΓ(N) to DΓ̄(N̄) and the mapping DΓ(N)

→ DΓ̄(N̄) given by (2.3) is called the transformation of N-linear connection to

N̄ -linear connection, and it is noted by:

t(Ai
j

1

, Ai
j

2

, Bi
jk,

(00)

Bi
jk,

(10)

Bi
jk,

(20)

Di
jk,

(01)

Di
jk,

(11)

Di
jk,

(21)

Di
jk,

(02)

Di
jk,

(12)

Di
jk

(22)

).

Theorem 2.3. The set T of the transformations of N-linear connections to

N̄ - linear connections, together with the composition of mappings isn’t a group.

Proof. Let

t(Ai
j

1

, Ai
j

2

, Bi
jk,

(00)

Bi
jk,

(10)

Bi
jk,

(20)

Di
jk,

(01)

Di
jk,

(11)

Di
jk,

(21)

Di
jk,

(02)

Di
jk,

(12)

Di
jk

(22)

) : DΓ(N)→ DΓ̄(N̄)

8
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and

t(Āi
j

1

, Āi
j

2

, B̄i
jk,

(00)

B̄i
jk,

(10)

B̄i
jk,

(20)

D̄i
jk,

(01)

D̄i
jk,

(11)

D̄i
jk,

(21)

D̄i
jk,

(02)

D̄i
jk,

(12)

D̄i
jk

(22)

) : DΓ̄(N̄)→ D ¯̄Γ( ¯̄N)

be two transformations from T , given by (2.3).

From (2.3) we have:

¯̄N i
j

β

= N i
j

β

− (Ai
j

β

+ Āi
j

β

), (β = 1, 2).

We obtain:






















































































¯̄Li
jk

(α0)

= Li
jk

(α0)

+ Ci
jl

(α1)

(Al
k

1

+ Āl
k

1

) + Ci
jm

(α2)

Nm
l

1

(Al
k

1

+ Āl
k

1

)+

+ Ci
jl

(α2)

(Al
k

2

+ Āl
k

2

) + ( Ci
jm

(α2)

+ Di
jm

(α2)

)Am
l

1

Āl
k

1

−

− ( Di
jl

(α1)

Āl
k

1

+ Di
jm

(α2)

Nm
l

1

Al
k

1

+ Ci
jm

(α2)

Am
l

(1)

Āl
k

1

+

+ Di
jl

(α2)

Āl
k

(2)

− ( Bi
jk

(α0)

+ B̄i
jk

(α0)

),

¯̄Ci
jk

(α1)

= Ci
jk

(α1)

+ Ci
jl

(α2)

(Al
k

1

+ Āl
k

1

)− ( Di
jl

(α2)

Āl
k

1

+ Di
jk

(α1)

+ D̄i
jk

(α1)

),

¯̄Ci
jk

(α2)

= Ci
jk

(α2)

− ( Di
jk

(α2)

+ D̄i
jk

(α2)

), (α = 0, 1, 2).

(2.4)

So ¯̄Li
jk

(α0)

, (α = 0, 1, 2) hasn’t the form (2.3). Result that the mapping of two

transformations from T , isn’t a transformation from T , so T , together with the

composition of mappings isn’t a group.

Remark 2.1. If we consider Ai
j

β

= 0, (β = 1, 2), in (2.3) we obtain the set

TN of transformations of N-linear connections, having the same nonlinear connection

N :

TN = {t(0, 0, Bi
jk,

(00)

Bi
jk,

(10)

Bi
jk,

(20)

Di
jk,

(01)

Di
jk,

(11)

Di
jk,

(21)

Di
jk,

(02)

Di
jk,

(12)

Di
jk

(22)

) ∈ T }.

We have:

Theorem 2.4. The set TN of the transformations of N-linear connections

to N-linear connections, together with the composition of mappings is a group. This

group, TN , acts effectively and transitivelly on the set of N-linear connections.
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Proof. Let

t(0, 0, Bi
jk,

(00)

Bi
jk,

(10)

Bi
jk,

(20)

Di
jk,

(01)

Di
jk,

(11)

Di
jk,

(21)

Di
jk,

(02)

Di
jk,

(12)

Di
jk

(22)

) : DΓ(N)→ DΓ̄(N)

be a transformation from TN given by (2.5):



















































N̄ i
j

β

= N i
j

β

,

L̄i
jk

(α0)

= Li
jk

(α0)

− Bi
jk

(α0)

,

C̄i
jk

(α1)

= Ci
jk

(α1)

− Di
jk

(α1)

,

C̄i
jk

(α2)

= Ci
jk

(α2)

− Di
jk

(α2)

, (α = 0, 1, 2; β = 1, 2).

(2.5)

The composition of two transformations from TN is a transformation from

TN , given by:

t(0, 0, B̄i
jk,

(00)

B̄i
jk,

(10)

B̄i
jk,

(20)

D̄i
jk,

(01)

D̄i
jk,

(11)

D̄i
jk,

(21)

D̄i
jk,

(02)

D̄i
jk,

(12)

D̄i
jk

(22)

)

◦t(0, 0, Bi
jk,

(00)

Bi
jk,

(10)

Bi
jk,

(20)

Di
jk,

(01)

Di
jk,

(11)

Di
jk,

(21)

Di
jk,

(02)

Di
jk,

(12)

Di
jk

(22)

)

= t(0, 0, Bi
jk

(00)

+ B̄i
jk,

(00)

Bi
jk

(10)

+ B̄i
jk,

(10)

Bi
jk

(20)

+ B̄i
jk,

(20)

Di
jk

(01)

+ D̄i
jk,

(01)

Di
jk

(11)

+ D̄i
jk,

(11)

Di
jk

(21)

+ D̄i
jk,

(21)

Di
jk

(02)

+ D̄i
jk,

(02)

Di
jk

(12)

+ D̄i
jk,

(12)

Di
jk

(22)

+ D̄i
jk

(22)

).

The inverse of a transformation from TN is the transformation:

t(0, 0,−Bi
jk,

(00)

− Bi
jk,

(10)

− Bi
jk,

(20)

− Di
jk,

(01)

− Di
jk,

(11)

− Di
jk,

(21)

− Di
jk,

(02)

− Di
jk,

(12)

− Di
jk

(22)

) :

DΓ(N)→ DΓ̄(N).

The transformation (2.5) preserves all the N-linear connections D if

Bi
jk

(α0)

= Di
jk

(α0)

= 0, (α = 0, 1, 2).

Therefore TN acts effectively on the set of N-linear connections. From the Theorem

2.1. results that TN acts transitively on this set. �

10
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Let us consider:

TNL = {t(0, 0, 0, 0, 0, Di
jk,

(01)

Di
jk,

(11)

Di
jk,

(21)

Di
jk,

(02)

Di
jk,

(12)

Di
jk

(22)

) ∈ TN},

TN C
(1)

= {t(0, 0, Bi
jk,

(00)

Bi
jk,

(10)

Bi
jk,

(20)

0, 0, 0, Di
jk,

(02)

Di
jk,

(12)

Di
jk

(22)

) ∈ TN},

TN C
(2)

= {t(0, 0, Bi
jk,

(00)

Bi
jk,

(10)

Bi
jk,

(20)

Di
jk,

(01)

Di
jk,

(11)

Di
jk,

(21)

0, 0, 0) ∈ TN},

TN C
(1)

C
(2)

= {t(0, 0, Bi
jk,

(00)

Bi
jk,

(10)

Bi
jk,

(20)

0, 0, 0, 0, 0, 0) ∈ TN}.

Proposition 2.2. TNL, TN C
(1)

, TN C
(2)

and TN C
(1)

C
(2)

are abelian subgroups of TN .

Proposition 2.3. The group TN preserves the nonlinear connection N; TNL

preserves the nonlinear connection N and the components L
(α0)

, (α = 0, 1, 2) of the

local coefficients DΓ(N); TN C
(1)

preserves the nonlinear connection N and the com-

ponents C
(α1)

, ( α = 0, 1, 2) of the local coefficients DΓ(N); TN C
(2)

preserves the non-

linear connection N and the components C
(α2)

, ( α = 0, 1, 2) of the local coefficients

DΓ(N) and TN C
(1)

C
(2)

preserves the nonlinear connection N and the components C
(α1)

and C
(α2)

, (α = 0, 1, 2) of the local coefficients DΓ(N).

3. The transformations of the d-tensors of torsion and curvature in TN

In the following, we shall study the Abelian group TN . Its elements are the

transformations t : DΓ(N)→ DΓ̄(N) given by



















































N̄ i
j

β

= N i
j

β

,

L̄i
jk

(α0)

= Li
jk

(α0)

− Bi
jk

(α0)

,

C̄i
jk

(α1)

= Ci
jk

(α1)

− Di
jk

(α1)

,

C̄i
jk

(α2)

= Ci
jk

(α2)

− Di
jk

(α2)

, (α = 0, 1, 2; β = 1, 2).

(3.1)

Firstly, we shall study the transformations of the d-tensors of torsion of

DΓ(N) (see, (7.2) and (7.5), [1]). We obtain:

11
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Proposition 3.1. The transformations of the Abelian group TN , given by

(3.1) lead to the transformations of the d-tensors of torsion in the following way:

R̄i
jk

(0β)

= Ri
jk

(0β)

, (3.2)

α

T̄ i
jk

(0)

=
α

T i
jk

(0)

+( Bi
kj

(α0)

− Bi
jk

(α0)

), (3.3)

α

S̄ i
jk

(β)

=
α

S i
jk

(β)

+( Di
kj

(αβ)

− Di
jk

(αβ)

), (3.4)

Q̄i
jk

(21)

= Qi
jk

(21)

− Di
jk

(12)

, (3.5)

α

Q̄ i
jk

(22)

=
α

Q i
jk

(22)

+ Di
kj

(α1)

, (3.6)

S̄i
jk

(12)

= Si
jk

(12)

, (3.7)

α

P̄ i
jk

(ββ)

=
α

P i
jk

(ββ)

+ Bi
kj

(α0)

, (3.8)

P̄ i
jk

(β0)

= P i
jk

(β0)

− Di
jk

(0β)

, (3.9)

P̄ i
jk

(12)

= P i
jk

(12)

, (3.10)

P̄ i
jk

(21)

= P i
jk

(21)

, (α = 0, 1, 2; β = 1, 2). (3.11)

Now, we shall study the transformations of the d-tensors of curvature of

DΓ(N) (see, (7.11),[1]). We get:

Proposition 3.2. The transformations of the Abelian group TN , given by

(3.1) lead to the transformations of the d-tensors of curvature in the following way:

R̄ i
h jk

(0α)

= R i
h jk

(0α)

− Di
hs

(α1)

Rs
jk

(01)

− Di
hs

(α2)

Rs
jk

(02)

− Bi
hs

(α0)

α

T s
jk

(0)

+ (3.12)

+Ajk{−Bi
hj|αk

(α0)

+ Bs
hj

(α0)

Bi
sk

(α0)

},

P̄ i
h jk

(1α)

= P i
h jk

(1α)

− Di
hs

(α1)

α

P s
jk

(11)

− Di
hs

(α2)

P s
jk

(12)

− Bi
hs

(α0)

Cs
jk

(α1)

+ (3.13)

12



SOME RESULTS ON TRANSFORMATIONS GROUPS OF N-LINEAR CONNECTIONS

+ Ls
kj

(α0)

Di
hs

(α1)

− Bi
hj

(1)

| αk
(α0)

+Di
hk|αj

(α1)

+ Bs
hj

(α0)

Di
sk

(α1)

−

− Ds
hk

(α1)

Bi
sj

(α0)

+ Ci
hs

(α1)

Bs
kj

(α0)

− Di
hs

(α1)

Bs
kj

(α0)

,

P̄ i
h jk

(2α)

= P i
h jk

(2α)

− Di
hs

(α1)

P s
jk

(21)

− Di
hs

(α2)

α

P s
jk

(22)

− Bi
hs

(α0)

Cs
jk

(α2)

+ (3.14)

+ Ls
kj

(α0)

Di
hs

(α2)

− Bi
hj

(2)

| αk
(α0)

+Di
hk|αj

(α2)

+ Bs
hj

(α0)

Di
sk

(α2)

−

− Ds
hk

(α2)

Bi
sj

(α0)

+ Ci
hs

(α2)

Bs
kj

(α0)

− Di
hs

(α2)

Bs
kj

(α0)

,

Q̄ i
h jk

(2α)

= Q i
h jk

(2α)

− Cs
jk

(α2)

Di
hs

(α1)

+ Cs
kj

(α1)

Di
hs

(α2)

− Di
hj

(2)

| αk
(α1)

+ (3.15)

+ Di
hk

(1)

| αj

(α2)

+ Ds
hj

(α1)

Di
sk

(α2)

− Ds
hk

(α2)

Di
sj

(α1)

− Di
hs

(α2)

P s
jk

(21)

,

S̄ i
h jk

(βα)

= S i
h jk

(βα)

− Di
hs

(αβ)

α

S s
jk

(β)

+Ajk{− Di
hj

(β)

| αk
(αβ)

+ (3.16)

+ Ds
hj

(αβ)

Di
sk

(αβ)

} − Di
hs

(α2)

Rs
jk

(β2)

, (α = 0, 1, 2; β = 1, 2),

where Aij denotes the alternate summation.

We shall consider the tensor fields:

K i
h jk

(0α)

= R i
h jk

(0α)

− Ci
hs

(α1)

Rs
jk

(01)

− Ci
hs

(α2)

Rs
jk

(02)

, (3.17)

P i
h jk

(1α)

= Ajk { P i
h jk

(1α)

− Ci
hs

(α1)

δNs
j

1

δy(1)k
− Ci

hs
(α2)

(Ns
m

1

δNm
j

1

δy(1)k
+ (3.18)

+

δNs
j

2

δy(1)k
−

δNs
k

2

δy(1)j
)},

P i
h jk

(2α)

= Ajk { P i
h jk

(2α)

− Ci
hs

(α1)

∂Ns
j

1

δy(2)k
− Ci

hs
(α2)

(Ns
m

1

∂Nm
j

1

δy(2)k
++

∂Ns
j

2

δy(2)k
)}, (3.19)

Q i
h jk

(2α)

= Ajk { Q i
h jk

(2α)

+ Ci
hs

(α2)

∂Ns
j

1

δy(2)k
}, (3.20)

S i
h jk

(βα)

= S i
h jk

(βα)

− Ci
hs

(α2)

Rs
jk

(β2)

, (α = 0, 1, 2; β = 1, 2). (3.21)

13
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Proposition 3.3. By a transformation of the Abelian group TN , given

by (3.1), the tensor fields: K i
h jk

(0α)

, P i
h jk

(1α)

, P i
h jk

(2α)

, Q i
h jk

(2α)

and S i
h jk

(βα)

, (α =

0, 1, 2; β = 1, 2) are transformed according to the following laws:

K̄ i
h jk

(0α)

= K i
h jk

(0α)

− Bi
hs

(α0)

α

T s
jk

(0)

+Ajk {−Bi
hj|αk

(α0)

+ Bs
kj

(α0)

Bi
sk

(α0)

}, (3.22)

P̄ i
h jk

(βα)

= P i
h jk

(βα)

− 2 Di
hs

(αβ)

α

T s
jk

(0)

− Bi
hs

(α0)

α

S s
jk

(β)

+Ajk {− Bi
hj

(β)

| αk
(α0)

− (3.23)

−Di
hj|αk

(αβ)

+ Bs
hj

(α0)

Di
sk

(αβ)

+ Ds
hj

(αβ)

Bi
sk

(α0)

+ Di
hs

(αβ)

Bs
jk

(α0)

− Ci
hs

(αβ)

Bs
jk

(α0)

},

Q̄ i
h jk

(2α)

= Q i
h jk

(2α)

+
α

S s
jk

(2)

Di
hs

(α1)

−
α

S s
jk

(1)

Di
hs

(α2)

(3.24)

+Ajk {Di
hj

(2)

| αk
(α1)

+Di
hk

(1)

| αj +
(α2)

+ Ds
hj

(α1)

Di
sk

(α2)

− Ds
hk

(α2)

Di
sj

(α1)

},

S̄ i
h jk

(βα)

= S i
h jk

(βα)

− Di
hs

(αβ)

α

S s
jk

(β)

+Ajk {− Di
hj

(β)

| αk
(αβ)

+ Ds
hj

(αβ)

Di
sk

(αβ)

}, (3.25)

(α = 0, 1, 2; β = 1, 2).

The transformations for the coefficients of an N-linear connection on the

tangent bundle of order two, T 2M , by a transformation of a nonlinear connection

in T 2M , together with the transformation laws of the torsion and curvature tensor

fields, with respect to the transformations of the group TN , given in the present paper

are necessary for the study of a important subgroup of the group TN : the group of

transformations of the metric semi-symmetric N-linear connections in T 2M ,
ms

T N .

This study is in our attention.
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La géométrie du fibré k-osculateur; Le prolongement des structures Riemanniennes,

Finsleriennes et Lagrangiennes; Les espaces Lagrange L(k)n, Sem. de Mecanică, Univ.
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EXPONENTIAL INSTABILITY OF SKEW-EVOLUTION

SEMIFLOWS IN BANACH SPACES

MIHAIL MEGAN AND CODRUŢA STOICA

Abstract. This paper emphasizes a couple of characterizations for the

exponential instability property of skew-evolution semiflows in Banach

spaces, defined by means of evolution semiflows and evolution cocycles.

Some Datko type results for this asymptotic behavior are proved. There

is provided a unified treatment for the uniform case.

1. Introduction

The study of the asymptotic behaviors of skew-product semiflows, that has

witnessed lately an impressive development, has been used in the theory of evolu-

tion equations in infinite dimensional spaces. It was essential that the theory was

approached from point of view of asymptotic properties for the evolution semigroup

associated to the skew-product semiflows. Some results on the instability of skew-

product flows can be found in [2].

A particular concept of skew-evolution semiflow introduced by us in [3] is

considered to be more interesting for the study of evolution equations connected to

the theory of evolution operators. Some asymptotic behaviors for skew-evolution

semiflows have been presented in [4].

In this paper we emphasize the property of exponential instability for skew-

evolution semiflows defined by means of evolution semiflows and evolution cocycles.

Received by the editors: 01.10.2007.

2000 Mathematics Subject Classification. 93D20.

Key words and phrases. evolution semiflow, evolution cocycle, skew-evolution semiflow, instability,

exponential instability, integral instability.
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We remark that Theorem 3.1 and Theorem 3.2 of this paper are approaches for the

uniform exponential instability property, extending Theorem 11 from [1] concerning

the case of the property of uniform exponential stability. The skew-evolution semiflows

considered in this paper are not necessary strongly continuous.

2. Notations and definitions. Preliminary results

Let us consider X a metric space, V a Banach space, B(V ) the space of

all bounded operators from V into itself. We denote T =
{

(t, t0) ∈ R2
+ : t ≥ t0

}

,

respectively Y = X × V and the norm of vectors on V and operators on B(V ) is

denoted by ‖·‖. Let I be the identity operator on V .

Definition 2.1. A mapping ϕ : T ×X → X is called evolution semiflow on X if it

satisfies the following properties

(s1) ϕ(t, t, x) = x, ∀(t, x) ∈ R+ ×X

(s2) ϕ(t, s, ϕ(s, t0, x)) = ϕ(t, t0, x), ∀(t, s), (s, t0) ∈ T , ∀x ∈ X.

Definition 2.2. A mapping Φ : T ×X → B(V ) that satisfies the following properties

(c1) Φ(t, t, x) = I, ∀t ≥ 0, ∀x ∈ X

(c2) Φ(t, s, ϕ(s, t0, x))Φ(s, t0, x) = Φ(t, t0, x), ∀(t, s), (s, t0) ∈ T , ∀x ∈ X

(c3) there exists a nondecreasing function f : R+ → R∗+ such that

‖Φ(t, t0, x)‖ ≤ f(t− t0), ∀t ≥ t0 ≥ 0, ∀x ∈ X (2.1)

is called evolution cocycle over the evolution semiflow ϕ.

Definition 2.3. A function ξ : T × Y → Y defined by

ξ(t, s, x, v) = (ϕ(t, s, x), Φ(t, s, x)v), ∀(t, s, x, v) ∈ T × Y (2.2)

where Φ is an evolution cocycle over the evolution semiflow ϕ, is called skew-evolution

semiflow on Y .

Example 2.1. Let f : R → R+ be a function which is nondecreasing on (−∞, 0) and

decreasing on (0,∞) such that there exist

lim
t→±∞

f(t) = l > 0.

18
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We consider the metric space

C(R, R) = {h : R → R | h continuous},

with the topology of uniform convergence on compact subsets of R.

Let X be the closure in C(R, R) of the set of all functions ft, t ∈ R, where

ft(τ) = f(t + τ), ∀τ ∈ R. Then X is a metric space and the mapping

ϕ : T ×X → X, ϕ(t, s, x) = xt−s

is an evolution semiflow on X.

Let V = R2 be a Banach space with the norm ‖(v1, v2)‖ = |v1| + |v2|. The

mapping Φ : T ×X → B(V ) given by

Φ(t, s, x)(v1, v2) =
(

eα1

∫

t

s
x(τ−s)dτv1, e

α2

∫

t

s
x(τ−s)dτv2

)

where (α1, α2) ∈ R2 is fixed, is an evolution cocycle and ξ = (ϕ, Φ) is a skew-evolution

semiflow on Y .

We introduce a particular class of skew-evolution semiflows in the next

Definition 2.4. A skew-evolution semiflow ξ = (ϕ, Φ) has uniform exponential decay

if there exist N > 1 and ω > 0 such that

‖Φ(s, t0, x)v‖ ≤ Neω(t−s) ‖Φ(t, t0, x)v‖ , ∀t ≥ s ≥ t0 ≥ 0, ∀(x, v) ∈ Y. (2.3)

A characterization of the uniform exponential decay is given by

Proposition 2.1. The skew-evolution semiflow ξ = (ϕ, Φ) has uniform exponential

decay if and only if there exists a decreasing function g : [0,∞) → (0,∞) with the

properties lim
t→∞

g(t) = 0 and

‖Φ(t, t0, x)v‖ ≥ g(t− t0) ‖v‖ , ∀t ≥ t0 ≥ 0, ∀(x, v) ∈ Y.

Proof. Necessity. It is a simple verification.

Sufficiency. According to the property of function g, there exists a constant

λ > 0 such that g(λ) < 1. For all t ≥ t0 ≥ 0, there exist n ∈ N and r ∈ [0, λ) such

that

t− t0 = nλ + r.
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Following inequalities

‖Φ(t, t0, x)v‖ ≥ g(r) ‖Φ(t0 + nλ, t0, x)v‖ ≥ ... ≥ g(λ)n+1 ‖v‖ ≥ N1e
−ω(t−t0) ‖v‖

hold for all (x, v) ∈ Y , where we have denoted

N1 = g(λ) and ω = −λ−1 ln g(λ).

The property of uniform exponential decay for ξ is thus obvious.

Definition 2.5. A skew-evolution semiflow ξ = (ϕ, Φ) is said to be uniformly instable

if there exists N > 1 such that

‖Φ(s, t0, x)v‖ ≤ N ‖Φ(t, t0, x)v‖ , ∀t ≥ s ≥ t0 ≥ 0, ∀(x, v) ∈ Y.

We can obtain a characterization of the former property as in the next

Proposition 2.2. A skew-evolution semiflow ξ = (ϕ, Φ) with uniform exponential

decay is uniformly instable if there exists M > 1 such that

M ‖Φ(t, t0, x)v‖ ≥ ‖Φ(s, t0, x)v‖ , ∀t ≥ s + 1 > s ≥ t0 ≥ 0, ∀(x, v) ∈ Y.

Proof. Let us consider a function g is given as in Proposition 2.1. Then there exists

λ > 1 such that g(λ) < 1.

Let s ≥ 0. For all t ∈ [s, s + 1), by the same result, we obtain following

inequalities

‖Φ(t, t0, x)v‖ ≥ g(t− s) ‖Φ(s, t0, x)v‖ ≥ g(λ) ‖Φ(s, t0, x)v‖ .

Hence, if we denote

N = max
{

M, g(λ)−1
}

> 1,

the property of uniform instability for ξ has been proved.

Definition 2.6. A skew-evolution semiflow ξ = (ϕ, Φ) is called uniformly exponen-

tially instable if there exist N > 1 and ν > 0 with the property

‖Φ(s, t0, x)v‖ ≤ Ne−ν(t−s) ‖Φ(t, t0, x)v‖ , ∀t ≥ s ≥ t0 ≥ 0, ∀(x, v) ∈ Y. (2.4)
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Example 2.2. We consider the metric space X and an evolution semiflow on X

defined as in Example 2.1.

Let V = R. We consider Φ : T ×X → B(V ) given by

Φ(t, t0, x)v = e
∫

t

t0
x(τ−t0)dτ

v

which is an evolution cocycle. Then the skew-evolution semiflow ξ = (ϕ, Φ) is uni-

formly exponentially instable with N = 1 and ν = l > 0.

The following result are characterizations for the property of uniform expo-

nential instability, by means of other asymptotic properties and, also, of a special

class of skew-evolution semiflow.

Proposition 2.3. A skew-evolution semiflow ξ = (ϕ, Φ) with uniform exponential de-

cay is uniformly exponentially instable if and only if there exists a decreasing function

h : [0,∞) → (0,∞) with property lim
t→∞

h(t) = 0 such that

‖v‖ ≤ h(t− t0) ‖Φ(t, t0, x)v‖ , ∀t ≥ t0 ≥ 0, ∀(x, v) ∈ Y.

Proof. It is similar with the proof of Proposition 2.1.

Proposition 2.4. A skew-evolution semiflow ξ = (ϕ, Φ) has uniform exponential

decay if and only if there exists a constant α > 0 such that the a skew-evolution

semiflow ξ−α = (ϕ, Φ−α), where Φ−α(t, t0, x) = eα(t−t0)Φ(t, t0, x), (t, t0) ∈ T , x ∈ X,

is uniformly exponentially instable.

Proof. Necessity. If ξ has uniform exponential decay then there exist M ≥ 1 and

ω > 0 such that

e−ω(t−s) ‖Φ(s, t0, x)v‖ ≤M ‖Φ(t, t0, x)v‖ , ∀t ≥ s ≥ t0 ≥ 0, ∀(x, v) ∈ Y.

We consider α = 2ω > 0 and we obtain

eω(t−s) ‖Φ−α(s, t0, x)v‖ ≤M ‖Φ−α(t, t0, x)v‖

for all t ≥ s ≥ t0 ≥ 0 and all (x, v) ∈ Y, which shows that ξ−α is uniformly exponen-

tially instable.
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Suficiency. If there exists α > 0 such that ξ−α is uniformly exponentially

instable, then there exist N > 1 and β > 0 such that

N ‖Φ−α(t, t0, x)v‖ = Neα(t−t0) ‖Φ(t, t0, x)v‖ ≥

≥ eβ(t−s)eα(s−t0) ‖Φ(s, t0, x)v‖ = eβ(t−s) ‖Φ−α(s, t0, x)v‖ .

It follows that

N ‖Φ(t, t0, x)v‖ ≥ e(β−α)(t−s) ‖Φ(s, t0, x)v‖ ≥ e−ν(t−s) ‖Φ(s, t0, x)v‖

for all t ≥ s ≥ t0 ≥ 0 and all (x, v) ∈ Y, where we have denoted

ν =







α− β, if α > β

1, if α ≤ β

Hence, the uniform exponential decay for ξ is proven.

A connection between the asymptotic behaviors of skew-evolution semiflows

presented in Definition 2.4, Definition 2.6 and Definition 2.5 is given by

Remark 2.1. The property of uniform exponential instability of a skew-evolution

semiflow implies the uniform instability and, further, the uniform exponential decay.

3. The main results

In this section we will give two characterizations for the property of uniform

exponential instability in the case of a particular class of skew-evolution semiflows

introduced by the following

Definition 3.1. A skew-evolution semiflow ξ = (ϕ, Φ) is called strongly measurable

if the mapping t 7→ ‖Φ(t, t0, x)v‖ is measurable on [t0,∞), for all (t0, x, v) ∈ R+ × Y .

Theorem 3.1. A strongly measurable skew-evolution semiflow ξ = (ϕ, Φ) is uniformly

exponentially instable if and only if it is uniformly instable and there exists M ≥ 1

such that
∫ t

t0

‖Φ(s, t0, x)v‖ ds ≤M ‖Φ(t, t0, x)v‖ , ∀t ≥ t0 ≥ 0, ∀(x, v) ∈ Y. (3.1)
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Proof. Necessity. Let ξ be uniformly exponentially instable. According to Remark

2.1, as ξ is also uniformly instable, there exist N > 1 and ν > 0 such that
∫ t

t0

‖Φ(s, t0, x)v‖ ds ≤ N ‖Φ(t, t0, x)v‖

∫ t

t0

e−ν(t−s)ds ≤M ‖Φ(t, t0, x)v‖

for all t ≥ t0 ≥ 0 and all (x, v) ∈ Y , where we have denoted M = Nν−1.

Sufficiency. As ξ is uniformly instable, there exists N > 1 such that following

inequality holds

‖v‖ ≤ N ‖Φ(τ, t0, x)v‖ ,∀τ ≥ t0 ≥ 0

and, further, by hypothesis, there exists M ≥ 1 such that

(t− s) ‖Φ(s, t0, x)v‖ ≤ N

∫ t

s

‖Φ(τ, t0, x)v‖ dτ ≤MN ‖Φ(t, t0, x)v‖

for all t ≥ s ≥ t0 ≥ 0 and all (x, v) ∈ Y.

It follows that

‖v‖ ≤
MN

(t− t0 + 1)
‖Φ(t, t0, x)v‖ , ∀t ≥ t0 ≥ 0, ∀(x, v) ∈ Y.

As by Remark 2.1 ξ has also exponential decay, then, according to Proposition 2.3,

the property of uniformly exponentially instability for ξ is obtained.

Theorem 3.2. A strongly measurable skew-evolution semiflow ξ = (ϕ, Φ) is uniformly

exponentially instable if and only if it has uniform exponential decay and there exists

M ≥ 1 such that relation (3.1) hold.

Proof. Let function g be given as in Proposition 2.1.

Following relations hold for all t ≥ s + 1 > s ≥ t0 ≥ 0 and all (x, v) ∈ Y

‖Φ(s, t0, x)v‖

∫ 1

0

g(τ)dτ =

∫ s+1

s

g(u− s) ‖Φ(s, t0, x)v‖ du ≤

≤

∫ s+1

s

‖Φ(u, t0, x)v‖ du ≤

∫ t

t0

‖Φ(u, t0, x)v‖ du ≤M ‖Φ(t, t0, x)v‖ .

The property of uniform instability for ξ is obtained by Proposition 2.2, where

we have considered

N =

∫ 1

0

g(τ)dτ,

Further, by Theorem 3.1 the proof is concluded.
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As a conclusion we obtain the next

Corollary 3.1. Let ξ be a skew-evolution semiflow for which there exists M ≥ 1 such

that relation (3.1) hold. Following properties are equivalent:

(i) ξ has uniform exponential decay;

(ii) ξ is uniformly instable;

(iii) ξ is uniformly exponentially instable.

Proof. It is obtained according to Theorem 3.1, Theorem 3.2 and Remark 2.1.
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A MONOTONY METHOD IN QUASISTATIC PROCESSES

FOR VISCOPLASTIC MATERIALS

ABDELBAKI MEROUANI AND SEDIK DJABI

Abstract. In this paper, we study a quasistatic problem for semi-linear

rate-type viscoplastic models with two parameters χ, θ; χ may be inter-

preted as the absolute temperature or an internal state variable. The exis-

tence and uniqueness of the solution is proved using monotony arguments

followed by a Cauchy-Lipschitz technique.

1. Introduction

Throughout the paper, Ω is a bounded in IRN (N = 1, 2, 3) with a smooth

boundary ∂Ω = Γ and Γ1 is an open subset of Γ such that measΓ1 > 0. We denote

Γ2 = Γ −Γ1. Let ν be the outward unit normal vector on Γ and SN the set of second

order symmetric tensors on IRN . Let T be a real positive constant.LET us the mixed

problem.

σ̇ = E(ε(u̇), θ, χ) + F (σ, ε(u), θ) in Ω× (0, T ) (1)

Div σ + f = 0 in Ω× (0, T ) (2)

u = g on onΓ1 × (0, T ) (3)

σν = h on Γ2 × (0, T ) (4)

u(0) = u0, σ(0) = σ0 in Ω (5)

in which the unknowns are the displacement function u : Ω × [0, T ] → RN , the

stress function σ : Ω × [0, T ] → SN This problem represents a quasistatic problem

for rate-type models of the form (1) in with ε is a nonlinear function depending on

Received by the editors: 22.01.2006.

2000 Mathematics Subject Classification. 74M10, 74M15, 49J40, 74M99.

Key words and phrases. viscoplastic, existence and uniqueness, monotone operator, fixed point,

Cauchy-Lipschitz, parameters, weak solution.
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ε(u̇) , θ and χ ,are parameters and ε(u) : Ω × [0, T ] → SN is the small strain tensor

(i.e. ε(u) = 1
2∇u+∇tu). In (1) E and F are given constitutive function .

In (2) Div σ represent the divergence of vector valued function σ and f

represents the given body force, g and h are the given bounded data and, finally,

u0, σ0 are the initial data.

In the case when ε depends only on χ, existence and uniqueness results for

problems of the form (1)-(5) was obtained by Sofonea (1991) reducing the studied

problem to an ordinary differential equation in a Hilbert space. In the case when

E is a nonlinear function depending only on ε(u̇) and χ existence and uniqueness

results for problems of the form (1)-(5) was obtained by Djabi (1993) using monotony

arguments followed by a Cauchy-Lipschitz technique.

The purpose of this paper is to give a now proof for the existence and unique-

ness of the solution for the problem (1)-(5) there based only on monotony arguments

followed by a Cauchy-Lipschitz technique (theorem 3.1).

2. Notations and preliminaries

Everywhere in this paper we utilize the following notations: ”.“ the inner

product on the spaces RN , RM and SN and | · | are the Euclidean norms on these

spaces.

H = { v = (vi) | vi ∈ L2(Ω), i = 1, N },

H1 = { v = (vi) | vi ∈ H1(Ω), i = 1, N },

H = { τ = (τij) | τij = τji ∈ L2(Ω), i, j = 1, N },

H1 = { τ = (τij) | Div τ ∈ H },

Y = { κ = (κi) | κi ∈ L2(Ω), i = 1,M }.

The spaces H, H1, H, H1 and Y are real Hilbert spaces endowed with the canonical

inner products denoted by < ·, · >H , < ·, · >H1 , < ·, · >H, < ·, · >H1 and < ·, · >Y

respectively.
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Let HΓ = [H
1
2 (Γ)]N and γ : H1 → HΓ be the trace map. We denote by

V = { u ∈ H1 | γu = 0 on Γ1 }

and let E be the subspace of HΓ defined by

E = γ(V ) = { ξ ∈ HΓ | ξ = 0 on Γ1}. (6)

Let H ′
Γ = [H− 1

2 (Γ)]N be the strong dual of the space HΓ and let < ·, · > denote the

duality between H ′
Γ and HΓ. If τ ∈ H1 there exists an element γντ ∈ H ′

Γ such that

< γντ, γv >=< τ, ε(v) >H + < Div τ, v >H for all v ∈ H1. (7)

By τν we shall understand the element of E′ (the strong dual of E) that is

the projection of γντ on E.

Let us now denote by V the following subspace of H1.

V = { τ ∈ H1 | Div τ = 0 in Ω, τν = 0 on Γ2 }

Using (7), it may be proved that ε(V ) is the orthogonal complement of V in H, hence

< τ, ε(v) >H= 0, for all v ∈ V, τ ∈ V. (8)

Finally, for every real Hilbert space X we denote by | · |X the norm on X and

by Cj(0, T, X)(j = 0, 1) the spaces defined as follows:

C0(0, T,X) = {z : [0, T ]→ X | z is continuous }.

Let us recall that if Cj(0, T, X) are real Banach spaces endowed with the norms

C1(0, T, X) = {z : [0, T ]→ X | there exists ż the derivate of z and ż ∈ C0(0, T,X)}.

|z|0,T,X = max
t∈[0,T ]

|z(t)|X (9)

and

|z|1,T,X = |z|0,T,X + |ż|0,T,X

respectively.
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Let us recall that if K is a convex closed non empty set of X and P : X → K

is the projector map on K, we have

y = Px if only if y ∈ K and < y − x, z − x >X≥ 0 for all z ∈ K. (10)

3. An existence and uniqueness result

In the study of the problem (1)-(5), we consider the following assumptions:






































































































E : Ω× SN × L2(Ω)p×L2(Ω)M→ SN and

(a) there exists m > 0 such that

< E(ε1, θ, χ)− E(ε2, θ, χ), ε1 − ε2 >≥

≥ m|ε1 − ε2|
2 for all ε1, ε2 ∈ SN , , θ ∈ L2(Ω)p, χ ∈ L2(Ω)Ma.e. inΩ,

(b) there exists L′ > 0 such that

|E(ε1, θ1, χ1)− E(ε2, θ2, χ2)| ≤ L′|ε1 − ε2|+ |θ1 − θ2|+ |χ1 − χ2|

for all ε1, ε2 ∈ SN , a.e. inΩ,

(c) x→ E(x, ε, θ, χ) is a measurable function with respect to

the lebesgue measure in Ω for all ε ∈ SN ,

(d) x→ E(x, 0, 0, 0) ∈ H

(11)



































































F : Ω× SN × SN × L2(Ω)p×L2(Ω)M → SN and

a) there existsL > 0such that

|F (x, σ1,ε1,θ1, χ1)− F (x, σ2,ε2,θ2, χ2)| ≤

≤ L (|σ1 − σ2|+ |ε1 − ε2|+ |θ1 − θ2|+ |χ1 − χ2|)

(b)x→F (x, σ, ε, θ, χ) is a measurable function with respect to

the Lebesguemeasure onΩ, for allσ, ε ∈ SN , κ ∈ RM , θ ∈ RP ,

(c)x→ F (x, 0, 0, 0, 0) ∈ H.

(12)

f ∈ C1 (0, T, H) , g ∈ (0, T, HΓ) , h ∈ C1 (0, T, E′) (13)

u0 ∈ H1, σ0 ∈ H1 (14)

Div σ0 + f (0) = 0 in Ω, u0 = g (0) on Γ1, σ0ν = h (0) on Γ2. (15)

θ ∈ C0
(

0, T, L2 (Ω)
P

)

.χ ∈ C0
(

0, T, L2 (Ω)
M

)

(16)

The main result of this section is as follows.
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Theorem 3.1. Let (11)-(16) hold. Then there exists a unique solution

u ∈ C1 (0, T, H1) , σ ∈ C1 (0, T,H1) of the problem (1)-(5). In order to prove theorem

3.1, we need some preliminaries.

Let ũ ∈ C1 (0, T, H1) , σ̃ ∈ C1 (0, T,H1)be two functions such that

Div σ̃ + f = 0 in Ω× (0, T ) (17)

ũ = g on Γ1 × (0, T ) (18)

σ̃ν = h on Γ2 × (0, T ) (19)

(the existence of this couple follows from (13) and the properties of the trace maps).

Considering the functions defined by

ū = u− ũ, σ̄ = σ − σ̃, (20)

ū0 = u0 − ũ0, σ̄0 = σ0 − σ̃0, (21)

it easy to see that the triplet (u, σ) ∈ C1 (0, T, H ×H1)is a solution of the problem

(1)-(5) if and only if

(ū, σ̄) ∈ C1 (0, T, V × V) (22)

σ̇ = E(ε(u̇) + ε(
.

ũ), θ, χ) + F (σ̄ + σ̃, ε(ū) + ε(ũ), θ, χ)−
.

σ̃ in Ω× (0, T ) (23)

ū(0) = ū0, σ̄(0) = σ̄0 in Ω (24)

hence we may write (22)-(24) in the form

ẏ(t) = G(θ(t), χ(t), x(t), y(t), ẋ(t)) (25)

x(0) = x0, y(0) = y0 (26)

In which the unknowns are the function x : [0.T ] → X and y : [0.T ] →

Y G:L2(Ω)p×L2(Ω)M × X × Y × H→ H is a nonlinear operator, and X : [0.T ] →

L2(Ω)M , θ : [0.T ] → L2(Ω)p are parameters, where H is a real Hilbert space, X, Y ,

are two orthogonal subspaces of H such that H = X ⊕ Y and L2(Ω)M , L2(Ω)p, are

real normed space.

Hence (22)-(24) may be written in the form (25)-(26) where

y = σ̄, x = ε (ū) , ẋ = ε
(

.
ū
)
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and replacing the spaces ε (V ) ,V,H, by X, Y,H respectively.

For resolving the problem (22)-(24), we consider the product Hilbert

space Z = ε (V )× V which H=ε (V )⊕ V,and the problem G defined by

G : L2(Ω)p×L2(Ω)M × ε (V )× v × H→H

G(θ, χ, x, y, q) = E
(

q + ε(
.

ũ), θ̇(t), χ(t))
)

+F (y+ σ̃(t), x+ε(ũ), θ(t), χ(t))−
.

σ̃(t) (27)

We have the following result.

Lemma 3.1. Let θ(t) ∈ L2 (Ω)
P

, χ(t) ∈ L2(Ω)M x ∈ X, y ∈ Y and t ∈ [0.T ].

Then there exists a unique element z = (ε (v) , τ) ∈ Z such that

τ = G (θ, χ, x, y, ε(v)) (28)

Proof. The uniqueness part is a consequence of (11); indeed, if

z1 = (ε (v1) , τ1), z2 = (ε (v2) , τ2) ∈ Z

are such that

τ1 = G (θ, χ, x, y, ε(v1))

τ2 = G (θ, χ, x, y, ε(v2)) ,

using (11-a) we have

〈τ1 − τ2, ε(v1)− ε(v2)〉H =

〈

E(ε(v1) + ε(
.

ũ(t)), θ(t), χ(t)))− E(ε(v2) + ε(
.

ũ(t)), θ(t), χ(t)), ε(v1)− ε(v2)
〉

H

≥ m |ε(v1)− ε(v2)|H

Using now the orthogonality in H of (τ1 − τ2) ∈ V and (ε(v1)− ε(v2)) ∈

ε (V ) ,we deduce that ε(v1) = ε(v2), which implies τ1 = τ2.

For the existence part,let us consider the operator S : ε (V )→ ε (V ) given by

S = P ◦ G, where P is the projector map ε (V ) .
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Using now the hypothesis E , F and the properties of the projectors, we can

prove for θ, χ, x, y fixed, the following inequalities:


















〈S (θ, χ, x, y, q1)− S (θ, χ, x, y, q2) , q1 − q2〉H ≥

≥ 〈G (θ, χ, x, y, q1)− G (θ, χ, x, y, q2) , q1 − q2〉H ≥

≥ m |q1 − q2|
2
H .

(29)

Moreover, from (11), (12), and the properties of the projectors, we get


















|S (θ, χ, x, y, q1)− S (θ, χ, x, y, q2)|H ≤

≤ |G (θ, χ, x, y, q1)− G (θ, χ, x, y, q2)|H ≤

≤ L
′

|q1 − q2|
2
H .

(30)

Hence S (θ, x, y, .) : ε (V )→ ε (V ) is a strongly monotone Lipschitz operator.

Using now Browder’s surjectivity theorem we get that there exists ε(v) ∈ ε(V )such

that S(θ, χ, x, y, ε(v)) = 0ε(V ). It results that the element G(θ, χ, x, y, ε(v)) belongs

to V and we finish the proof using z = (ε(v), τ) where

τ = G(θ, χ, x, y, ε(v)).

The previous lemma allows to consider the operator B : L2(Ω)P ×L2(Ω)M ×

Z → Z defined as follows:


















B(θ, χ, ω) = z

ω = (x, y), z = (ε(v), τ)

τ = G(θ, χ, x, y, ε(v)).

(31)

Moreover we have

Lemma 3.2. For all θ ∈ L2(Ω)P and χ ∈ L2(Ω)M ω1, ω2 ∈ Z, the operator

L2(Ω)P × L2(Ω)M × Z → Z is continuous and there exists C > 0 such that

|B(θ, χ, ω1)−B(θ, χ, ω2)|Z ≤ C|ω1 − ω2|Z (32)

for all θ ∈ L2(Ω)P and χ ∈ L2(Ω)Mω1, ω2 ∈ Z.

Proof. Let θi ∈ L2(Ω)P , ωi = (xi, yi) ∈ Z and

zi = (ε(vi), τi) = B(θi, χi, ωi) , i = 1, 2.
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Using (32)

τi = G(θi, χi, xi, yi, ε (vi))), i = 1, 2 (33)

which implies

S(θi, χi, xi, yi, ε(vi)) = 0ε(V ) , i = 1, 2. (34)

Using the hypothesis on E , F , and the properties of the projectors, we get:

m|ε (v1)− ε (v1)2 |
2
H ≤< S(θ1, χ1, x1, y1, ε(v1))

−S(θ1, χ1, x1, y1, ε(v2)), ε(v1)− ε(v2) >H

=< S(θ2, χ2, x2, y2, ε(v2))− S(θ1, χ1, x1, y1, ε(v2)), ε(v1)− ε(v2) >2
H≤

≤ |G(θ2, χ2, x2, y2, ε(v2))− G(θ1, χ1, x1, y1, ε(v2))|H × |ε(v1)− ε(v2)|
2
H

which implies

|ε(v1)− ε(v2)|H ≤
1

m
× |G(θ2, χ2, x2, y2, ε(v2))− G(θ1, χ1, x1, y1, ε(v2))|H . (35)

Using now (12), (34) we get






|τ1 − τ2|H ≤ L′|ε(v1)− ε(v2|H+

|G(θ1, χ1, x1, y1, ε(v2))− G(θ2, χ2, x2, y2, ε(v2)|H
(36)

Hence by (36) it result






|τ1 − τ2|H ≤

≤ (L′

m
+ 1)|G(θ1, χ1, x1, y1, ε(v2))− G(θ2, χ2, x2, y2, ε(v2)|H

(37)

Using now (11)-(12)(27) and the fact that σ̄,
.

σ̃ are continuous, we get that

|G(θ1, χ1, x1, y1, ε(v2))− G(θ2, χ2, x2, y2, ε(v2)|H → 0

When θ1 → θ2, in L2(Ω)
P

x1 → x2 in X, y1 → y2 in Y it follows that B is

continuous operator. Taking θ1 = θ2 and X1=X2 from (37) we get (33).

Proof of theorem 3.1. Let A : [0.T ]× Z → Z and z0 be defined by:

{A(t, z) = B(θ(t), χ(t), z) for all t ∈ [0.T ] and z ∈ Z (38)

z0 = (x0, y0) = ε ((u0) , σ̄0) .

32



A MONOTONY METHOD IN QUASISTATIC PROCESSES FOR VISCOPLASTIC MATERIALS

Using the definition of operator B, we get that

x = ε(
.
ū) ∈ C1(0, T, ε (V )) ∈ C1(0, T, Z ′), y = σ̄ ∈ C1(0, T,V)

is solution to (22)-(24), if and only

ż = (ẋ, ẏ) = A(θ, z(t)) for all t ∈ [0.T ] (39)

z(0) = z0 (40)

In order to study the problem (39)-(40), let us remark that, by lemma 3.2,A

is a continuous operator and

|A(t, z1)−A(t, z2)|Z ≤ C|z1 − z2|Z , for all t ∈ [0.T ] and z1, z2 ∈ Z.

Moreover, by (14), (38), ũ ∈ C1(0, T, H1) and σ̃ ∈ C1(0, T,H1)

We get z0 belongs to Z and by lemma 3.2 and the classical Cauchy-Lipschitz

theorem wehave that z ∈ C1(0, T, Z) and the proof of theorem 3.1 is complete.

References

[1] Ionescu, I.R., Sofonea, M., Quasistatic processes for elastic-visco-plastic materials,

Quart. App. Math., 2(1998), 229-243.

[2] Sofonea, M., Some remarks concerning a class of nonlinear evolution equation in Hilbert

spaces, Ann. Sci. Univ. Blaise Pascal (Clermont II) Serie Math. 1991.

[3] Djabi, S., Sofonea, M., A fixed point method in quasi-static rate-type viscoplasticity,

Appl. Math. and Comp. Sci. 3, 2(1993), 269-279.

[4] Djabi, S., Sofonea, M., A monotony method in quasi-static rate-type viscoplasticity,

Theoretical and Applied Mechanics, 19(1993), 39-46.

[5] Djabi, S., A monotony method in quasi-static rate-type viscoplasticity with internal state

variable, Rev. Roumaine. Math. Pures. Appl., 42, 5-6(1997), 401-408.

[6] Djabi, S., A monotony method in quasi-static process viscoplastic materials with

E = E(ε(u̇), κ) Mathematical Reports, Vol.2 (52), 1(2000), 9-20.

University of Sétif, Algeria

E-mail address: badri merouani@yahoo.fr

33
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RADIAL SOLUTIONS FOR SOME CLASSES OF ELLIPTIC

BOUNDARY VALUE PROBLEMS

TOUFIK MOUSSAOUI AND RADU PRECUP

Abstract. The aim of this paper is to present some existence and local-

ization results of radial solutions for elliptic equations and systems on an

annulus Ω of RN (N ≥ 1) of radii a and b with 0 < a < b. The main tool

is Schauder’s fixed point theorem.

1. Introduction

In this paper, we are concerned with the existence of radial solutions and

their localization in a ball, for the elliptic boundary value problem






−∆u = f (|x|, u) in Ω

u = 0 on ∂Ω
(1.1)

and the elliptic system


















−∆u = g (|x|, u, v) in Ω

−∆v = h (|x|, u, v) in Ω

u = v = 0 on ∂Ω.

(1.2)

Here Ω is an annulus of RN (N ≥ 1) of radii a and b with 0 < a < b, |x| is the Euclidean

norm in RN , and f : [a, b] × R −→ R and g, h : [a, b] × R2 −→ R are continuous

functions. By a solution of problem (1.1) we mean a function u ∈ C1
(

Ω, R
)

which

satisfies (1.1) in the sense of distributions. A solution to problem (1.2) is a vector-

valued function (u, v) ∈ C1
(

Ω, R2
)

:= C1
(

Ω, R
)

× C1
(

Ω, R
)

satisfying (1.2) in the

sense of distributions.
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Radial solutions for elliptic boundary value problems has been discussed ex-

tensively in the literature; see [1], [2], [3], [5], [6] and the references therein.

In [2], using fixed point theorems of cone expansion/compression type, the

lower and upper solution method and degree arguments, the authors study existence,

non-existence and multiplicity of positive radial solutions.

The same authors in [3] deal with a class of second-order elliptic problems

on a ball with non-homogeneous boundary condition. They obtain via a fixed point

theorem the existence of at least three positive radial solutions.

The study of existence of positive radial solutions to a singular semilinear

elliptic equation was investigated in [5]. Throughout, their nonlinearity is allowed to

change sign and the singularity may occur.

In this paper, some existence and localization results of radial solutions for

elliptic equations and systems on an annulus are presented. Our main tool in proving

the existence of solutions to problems (1.1) and (1.2) is Schauder’s fixed point theorem

[4], [7].

2. Existence result for Problem (1.1)

Theorem 2.1. Assume that for some R > 0, one of the following hypotheses is

satisfied:

(H1)

|f(t, y)| ≤ α(t)F (y), for all t ∈ [a, b] and y ∈ R,

where the functions α ∈ L1([a, b], R+) and F ∈ C(R, R+) satisfy

|α|L1 max
|y|≤R

F (y) ≤
R

b− a

(a

b

)N−1

;

(H2)

|f(t, y)| ≤ F (t, |y|), for all t ∈ [a, b] and y ∈ R,

for some F ∈ C([a, b] × R+, R+) nondecreasing with respect to its last variable, and

with
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∫ b

a

F (s,R) ds ≤
R

b− a

(a

b

)N−1

.

Then the boundary value problem (1.1) has at least one radial solution with

‖u‖0 = sup
a≤|x|≤b

|u(x)| ≤ R.

Proof. For v ∈ C([a, b], R), let u = Tv be the solution of






−(rN−1u′)′ = rN−1f (r, v(r)) , a < r < b

u(a) = u(b) = 0

where we have replaced |x| by r. Then T : C([a, b], R) −→ C([a, b], R) is completely

continuous and the fixed points of T are solutions of problem (1.1). One can write

the expression of T as

Tu(r) =

∫ r

a

[

1

sN−1

∫ θ

s

τN−1f (τ, u(τ)) dτ

]

ds

where θ is such that ‖u‖0 = |u(θ)|.

Consider the closed ball:

B = {u ∈ C([a, b], R) : ‖u‖0 ≤ R}

where R is as in Assumptions (H1), (H2) and check that T (B) ⊂ B.

(a) Assume (H1). For any u ∈ B and r ∈ [a, b], we have

|Tu(r)| ≤

∫ b

a

[

1

sN−1

∫ b

a

τN−1|f (τ, u(τ)) | dτ

]

ds

≤

(

b

a

)N−1

(b− a)

∫ b

a

|f (s, u(s)) | ds

≤

(

b

a

)N−1

(b− a)

∫ b

a

α(s)F (u(s)) ds

≤

(

b

a

)N−1

(b− a)|α|L1 max
|y|≤R

F (y)

≤ R.

Passing to the supremum, we obtain

‖Tu‖0 ≤ R.
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(b) When (H2) holds, then

|Tu(r)| ≤

∫ b

a

[

1

sN−1

∫ b

a

τN−1|f (τ, u(τ)) | dτ

]

ds

≤

(

b

a

)N−1

(b− a)

∫ b

a

|f (s, u(s)) | ds

≤

(

b

a

)N−1

(b− a)

∫ b

a

F (s, |u(s)|) ds

≤

(

b

a

)N−1

(b− a)

∫ b

a

F (s,R) ds

≤ R.

Passing to the supremum, we obtain

‖Tu‖0 ≤ R.

Therefore, in both cases, the operator T maps the ball B into itself, ending

the proof of our claim. Since T is completely continuous, the conclusion of Theorem

2.1 follows from Schauder’s fixed point theorem.

3. Existence results for Problem (1.2)

In this section, we are concerned with the existence and localization of radial

solutions to the Dirichlet problem (1.2) for elliptic systems.

Theorem 3.1. Assume that for some R > 0 one of the following hypotheses is

satisfied:

(H3)

|g(t, y, z)| ≤ β(t)G(y, z), for all t ∈ [a, b] and y, z ∈ R

and

|h(t, y, z)| ≤ γ(t)H(y, z), for all t ∈ [a, b] and y, z ∈ R

for some functions β, γ ∈ L1([a, b], R+) and G, H ∈ C(R2, R+) with

|β|L1 max
|y|,|z|≤R

G(y, z) ≤
R

b− a

(a

b

)N−1
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and

|γ|L1 max
|y|,|z|≤R

H(y, z) ≤
R

b− a

(a

b

)N−1

;

(H4)

|g(t, y, z)| ≤ G(t, |y|, |z|), for all t ∈ [a, b] and y, z ∈ R

and

|h(t, y, z)| ≤ H(t, |y|, |z|), for all t ∈ [a, b] and y, z ∈ R

for some functions G, H ∈ C([a, b] × R2
+, R+) nondecreasing with respect to the last

two arguments, and with
∫ b

a

G(s,R, R) ds ≤
R

b− a

(a

b

)N−1

∫ b

a

H(s,R, R) ds ≤
R

b− a

(a

b

)N−1

.

Then the boundary value problem (1.2) has at least one radial solution (u, v) with

‖u‖0 ≤ R and ‖v‖0 ≤ R.

Proof. We shall apply Schauder’s fixed point theorem in the space C([a, b], R2) en-

dowed with the norm ‖(., .)‖0 given by

‖(u, v)‖0 = ‖u‖0 + ‖v‖0.

For (u, v) ∈ C([a, b], R2), let (u, v) = T (u, v) be the solution of


















−(rN−1u′)′ = rN−1g (r, (u(r), v(r))) , a < r < b

−(rN−1v′)′ = rN−1h (r, (u(r), v(r))) , a < r < b

u(a) = u(b) = v(a) = v(b) = 0.

Then T : C([a, b], R2) −→ C([a, b], R2) is completely continuous and the fixed points

of T are solutions of problem (1.2). One can write the expression of T as T = (T1, T1),

where

T1(u, v)(r) =

∫ r

a

[

1

sN−1

∫ θ1

s

τN−1g (τ, u(τ), v(τ)) dτ

]

ds,

T2(u, v)(r) =

∫ r

a

[

1

sN−1

∫ θ2

s

τN−1h (τ, u(τ), v(τ)) dτ

]

ds

and θ1, θ2 are such that ‖u‖0 = |u(θ1)| and ‖v‖0 = |v(θ2)|.
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Consider the closed, bounded and convex subset of C([a, b], R2) :

B =
{

(u, v) ∈ C([a, b], R2) : ‖u‖0 ≤ R, ‖v‖0 ≤ R
}

,

where R is as in Assumptions (H3), (H4), and check that T (B) ⊂ B.

(a) Assume (H3). For any (u, v) ∈ B and r ∈ [a, b], we have

|T1(u, v)(r)| ≤

∫ b

a

[

1

sN−1

∫ b

a

τN−1|g (τ, u(τ), v(τ)) | dτ

]

ds

≤

(

b

a

)N−1

(b− a)

∫ b

a

|g (τ, u(τ), v(τ)) | ds

≤

(

b

a

)N−1

(b− a)

∫ b

a

β(s)G(u(s), v(s)) ds

≤

(

b

a

)N−1

(b− a)|β|L1 max
|y|,|z|≤R

G(y, z)

≤ R.

Passing to the supremum, we obtain

‖T1(u, v)‖0 ≤ R.

Also

|T2(u, v)(r)| ≤

∫ b

a

[

1

sN−1

∫ b

a

τN−1|h (τ, u(τ), v(τ)) | dτ

]

ds

≤

(

b

a

)N−1

(b− a)

∫ b

a

|h (τ, u(τ), v(τ)) | ds

≤

(

b

a

)N−1

(b− a)

∫ b

a

γ(s)H(u(s), v(s)) ds

≤

(

b

a

)N−1

(b− a)|γ|L1 max
|y|,|z|≤R

H(y, z)

≤ R.

Hence

‖T2(u, v)‖0 ≤ R.

Therefore, the operator T maps the ball B into itself.
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(b) Assume (H4). Then

|T1(u, v)(r)| ≤

∫ b

a

[

1

sN−1

∫ b

a

τN−1|g (τ, u(τ), v(τ)) | dτ

]

ds

≤

(

b

a

)N−1

(b− a)

∫ b

a

|g (s, u(s), v(τ)) | ds

≤

(

b

a

)N−1

(b− a)

∫ b

a

G(s, |u(s)| , |v(s)|) ds

≤

(

b

a

)N−1

(b− a)

∫ b

a

G(s,R, R) ds

≤ R.

Hence

‖T1(u, v)‖0 ≤ R.

Also

|T2(u, v)(r)| ≤

∫ b

a

[

1

sN−1

∫ b

a

τN−1|h (τ, u(τ), v(τ)) | dτ

]

ds

≤

(

b

a

)N−1

(b− a)

∫ b

a

|h (s, u(s), v(s)) | ds

≤

(

b

a

)N−1

(b− a)

∫ b

a

H(s, |u(s)| , |v(s)|) ds

≤

(

b

a

)N−1

(b− a)

∫ b

a

H(s,R, R) ds

≤ R.

Then

‖T2(u, v)‖0 ≤ R.

Therefore, in both cases, the operator T maps the set B into itself, ending

the proof of our claim. Since T is completely continuous, the conclusion of Theorem

3.1 follows from Schauder’s fixed point theorem.
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HOMOMORPHISMS BETWEEN JC∗-ALGEBRAS

CHUN-GIL PARK AND THEMISTOCLES M. RASSIAS

Abstract. It is shown that every almost linear mapping h : A → B of a

JC∗-algebra A into a JC∗-algebra B is a homomorphism when h(2nu◦y) =

h(2nu) ◦ h(y) for all unitaries u ∈ A, all y ∈ A and all n ∈ Z, and that

every almost linear continuous mapping h : A → B of a JC∗-algebra A of

real rank zero to a JC∗-algebra B is a homomorphism when h(2nu ◦ y) =

h(2nu) ◦ h(y) for all u ∈ {v ∈ A | v = v∗, ||v|| = 1, v is invertible}, all

y ∈ A and all n ∈ Z. We moreover prove the Hyers-Ulam stability of

homomorphisms in JC∗-algebras. This concept of stability of mappings

was introduced for the first time by Th.M. Rassias in his paper [On the

stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc.

72 (1978), 297-300].

1. Introduction

Let X and Y be Banach spaces with norms || · || and ‖ · ‖, respectively.

Consider f : X → Y to be a mapping such that f(tx) is continuous in t ∈ R for each

fixed x ∈ X. Th.M. Rassias [26] introduced the following inequality, that is known

as Cauchy-Rassias inequality : Assume that there exist constants ǫ ≥ 0 and p ∈ [0, 1)

such that

‖f(x + y)− f(x)− f(y)‖ ≤ ǫ(||x||p + ||y||p)

for all x, y ∈ X. Th.M. Rassias [26] showed that there exists a unique R-linear

mapping T : X → Y such that

‖f(x)− T (x)‖ ≤
2ǫ

2− 2p
||x||p

Received by the editors: 08.08.2006.
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for all x ∈ X. This inequality has provided a lot of influence in the development

of what is called generalized Hyers-Ulam stability of functional equations. Beginning

around the year 1980 the topic of approximate homomorphisms, or the stability of the

equation of homomorphism, was studied by a number of mathematicians. Găvruta

[7] generalized the Rassias’ result in the following form: Let G be an abelian group

and Y a Banach space. Denote by ϕ : G×G → [0,∞) a function such that

ϕ̃(x, y) =
∞
∑

k=0

1

2k
ϕ(2kx, 2ky) <∞

for all x, y ∈ G. Suppose that f : G → Y is a mapping satisfying

‖f(x + y)− f(x)− f(y)‖ ≤ ϕ(x, y)

for all x, y ∈ G. Then there exists a unique additive mapping T : G → Y such that

‖f(x)− T (x)‖ ≤
1

2
ϕ̃(x, x)

for all x ∈ G. C. Park [15] applied the Găvruta’s result to linear functional equa-

tions in Banach modules over a C∗-algebra. Various functional equations have been

investigated by several authors ([1], [3]-[6], [8]-[12], [16]-[25], [27]-[32]).

Throughout this paper, let A be a JC∗-algebra with norm ||·|| and unit e, and

B a JC∗-algebra with norm ‖ · ‖ and unit e′. Let U(A) = {u ∈ A | uu∗ = u∗u = e},

Asa = {x ∈ A | x = x∗}, and I1(Asa) = {v ∈ Asa | ||v|| = 1, v is invertible}.

Using the stability methods of linear mappings, we prove that every almost

linear mapping h : A → B is a homomorphism when h(2nu ◦ y) = h(2nu) ◦ h(y) for

all u ∈ U(A), all y ∈ A and all n ∈ Z, and that for a JC∗-algebra A of real rank

zero (see [2]), every almost linear continuous mapping h : A → B is a homomorphism

when h(2nu ◦ y) = h(2nu) ◦ h(y) for all u ∈ I1(Asa), all y ∈ A and all n ∈ Z. We

moreover prove the Hyers-Ulam stability of homomorphisms in JC∗-algebras.

2. Homomorphisms between JC∗-algebras

The original motivation to introduce the class of nonassociative algebras

known as Jordan algebras came from quantum mechanics (see [33]). Let H be a
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complex Hilbert space, regarded as the “state space” of a quantum mechanical sys-

tem. Let L(H) be the real vector space of all bounded self-adjoint linear opera-

tors on H, interpreted as the (bounded) observables of the system. In 1932, Jordan

observed that L(H) is a (nonassociative) algebra via the anticommutator product

x ◦ y := xy+yx
2 . A commutative algebra X with product x ◦ y is called a Jordan

algebra if x2 ◦ (x ◦ y) = x ◦ (x2 ◦ y) holds.

A complex Jordan algebra C with product x◦y and involution x 7→ x∗ is called

a JB∗-algebra if C carries a Banach space norm ‖ · ‖ satisfying ‖x ◦ y‖ ≤ ‖x‖ · ‖y‖

and ‖{xx∗x}|| = ‖x‖3. Here {xy∗z} := x ◦ (y∗ ◦ z) − y∗ ◦ (z ◦ x) + z ◦ (x ◦ y∗)

denotes the Jordan triple product of x, y, z ∈ C. A unital Jordan C∗-subalgebra of a

C∗-algebra, endowed with the anticommutator product, is called a JC∗-algebra (see

[23]-[25], [33]).

We investigate homomorphisms between JC∗-algebras.

Theorem 1. Let h : A → B be a mapping satisfying h(0) = 0 and h(2nu ◦

y) = h(2nu) ◦ h(y) for all u ∈ U(A), all y ∈ A and all n ∈ Z, for which there exists a

function ϕ : A×A → [0,∞) such that

ϕ̃(x, y) :=

∞
∑

j=0

1

2j
ϕ(2jx, 2jy) < ∞, (2.1)

‖h(µx + µy)− µh(x)− µh(y)‖ ≤ ϕ(x, y) (2.2)

for all µ ∈ T1 := {λ ∈ C | |λ| = 1} and all x, y ∈ A. Assume that

lim
n→∞

h(2ne)

2n
= e′. (2.3)

Then the mapping h : A → B is a homomorphism.

Proof. Put µ = 1 ∈ T1. It follows from Găvruta Theorem [7] that there exists a

unique additive mapping H : A → B such that

‖h(x)−H(x)‖ ≤
1

2
ϕ̃(x, x) (2.4)

for all x ∈ A. The additive mapping H : A → B is given by

H(x) = lim
n→∞

1

2n
h(2nx)
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for all x ∈ A.

By the assumption, for each µ ∈ T1,

‖h(2nµx)− 2µh(2n−1x)‖ ≤ ϕ(2n−1x, 2n−1x)

for all x ∈ A. One can show that

‖µh(2nx)− 2µh(2n−1x)‖ ≤ |µ| · ‖h(2nx)− 2h(2n−1x)‖ ≤ ϕ(2n−1x, 2n−1x)

for all µ ∈ T1 and all x ∈ A. So

‖h(2nµx)− µh(2nx)‖ ≤‖h(2nµx)− 2µh(2n−1x)‖+ ‖2µh(2n−1x)− µh(2nx)‖

≤ϕ(2n−1x, 2n−1x) + ϕ(2n−1x, 2n−1x)

for all µ ∈ T1 and all x ∈ A. Thus 2−n‖h(2nµx) − µh(2nx)‖ → 0 as n → ∞ for all

µ ∈ T1 and all x ∈ A. Hence

H(µx) = lim
n→∞

h(2nµx)

2n
= lim

n→∞

µh(2nx)

2n
= µH(x) (2.5)

for all µ ∈ T1 and all x ∈ A.

Now let λ ∈ C (λ 6= 0) and M an integer greater than 4|λ|. Then | λ
M
| < 1

4 <

1 − 2
3 = 1

3 . By [13], Theorem 1, there exist three elements µ1, µ2, µ3 ∈ T1 such that

3 λ
M

= µ1 + µ2 + µ3. So by (2.5)

H(λx) = H(
M

3
· 3

λ

M
x) = M ·H(

1

3
· 3

λ

M
x) =

M

3
H(3

λ

M
x)

=
M

3
H(µ1x + µ2x + µ3x) =

M

3
(H(µ1x) + H(µ2x) + H(µ3x))

=
M

3
(µ1 + µ2 + µ3)H(x) =

M

3
· 3

λ

M
H(x)

= λH(x)

for all x ∈ A. Hence

H(ζx + ηy) = H(ζx) + H(ηy) = ζH(x) + ηH(y)

for all ζ, η ∈ C(ζ, η 6= 0) and all x, y ∈ A. We have that H(0x) = 0 = 0H(x) for all

x ∈ A. So the unique additive mapping H : A → B is a C-linear mapping.
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Since h(2nu ◦ y) = h(2nu) ◦ h(y) for all u ∈ U(A), all y ∈ A and all n ∈ Z,

H(u ◦ y) = lim
n→∞

1

2n
h(2nu ◦ y) = lim

n→∞

1

2n
h(2nu) ◦ h(y) = H(u) ◦ h(y) (2.6)

for all u ∈ U(A) and all y ∈ A. By the additivity of H and (2.6),

2nH(u ◦ y) = H(2nu ◦ y) = H(u ◦ (2ny)) = H(u) ◦ h(2ny)

for all u ∈ U(A) and all y ∈ A. Hence

H(u ◦ y) =
1

2n
H(u) ◦ h(2ny) = H(u) ◦

1

2n
h(2ny) (2.7)

for all u ∈ U(A) and all y ∈ A. Taking the limit in (2.7) as n →∞, we obtain

H(u ◦ y) = H(u) ◦H(y) (2.8)

for all u ∈ U(A) and all y ∈ A. Since H is C-linear and each x ∈ A is a finite linear

combination of unitary elements (see [14], Theorem 4.1.7), i.e., x =
∑m

j=1 λjuj (λj ∈

C, uj ∈ U(A)), it follows from (2.8) that

H(x ◦ y) = H(
m

∑

j=1

λjuj ◦ y) =
m

∑

j=1

λjH(uj ◦ y)

=
m

∑

j=1

λjH(uj) ◦H(y) = H(

m
∑

j=1

λjuj) ◦H(y)

= H(x) ◦H(y)

for all x, y ∈ A.

By (2.3) and (2.6),

H(y) = H(e ◦ y) = H(e) ◦ h(y) = e′ ◦ h(y) = h(y)

for all y ∈ A.

Therefore, the mapping h : A → B is a homomorphism, as desired. �

Corollary 2. Let h : A → B be a mapping satisfying h(0) = 0 and h(2nu ◦

y) = h(2nu) ◦ h(y) for all u ∈ U(A), all y ∈ A and all n ∈ Z, for which there exist

constants θ ≥ 0 and p ∈ [0, 1) such that

‖h(µx + µy)− µh(x)− µh(y)‖ ≤ θ(||x||p + ||y||p)
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for all µ ∈ T1 and all x, y ∈ A. Assume that limn→∞
h(2ne)

2n = e′. Then the mapping

h : A → B is a homomorphism.

Proof. Define ϕ(x, y) = θ(||x||p + ||y||p) and apply Theorem 1. �

Theorem 3. Let h : A → B be a mapping satisfying h(0) = 0 and h(2nu ◦

y) = h(2nu) ◦ h(y) for all u ∈ U(A), all y ∈ A and all n ∈ Z, for which there exists a

function ϕ : A×A → [0,∞) satisfying (2.1) and (2.3) such that

‖h(µx + µy)− µh(x)− µh(y)‖ ≤ ϕ(x, y) (2.9)

for µ = 1, i and all x, y ∈ A. If h(tx) is continuous in t ∈ R for each fixed x ∈ A,

then the mapping h : A → B is a homomorphism.

Proof. Put µ = 1 in (2.9). By the same reasoning as in the proof of Theorem 1, there

exists a unique additive mapping H : A → B satisfying (2.4).

By the same reasoning as in the proof of [26], Theorem, the additive mapping

H : A → B is R-linear.

Put µ = i in (2.9). By the same method as in the proof of Theorem 1, one

can obtain that

H(ix) = lim
n→∞

h(2nix)

2n
= lim

n→∞

ih(2nx)

2n
= iH(x)

for all x ∈ A.

For each element λ ∈ C, λ = s + it, where s, t ∈ R. So

H(λx) = H(sx + itx) = sH(x) + tH(ix) = sH(x) + itH(x) = (s + it)H(x)

= λH(x)

for all λ ∈ C and all x ∈ A. Thus

H(ζx + ηy) = H(ζx) + H(ηy) = ζH(x) + ηH(y)

for all ζ, η ∈ C, and all x, y ∈ A. Hence the additive mapping H : A → B is C-linear.

The rest of the proof is the same as in the proof of Theorem 1. �
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From now on, assume that A is a JC∗-algebra of real rank zero, where “real

rank zero” means that the set of invertible self-adjoint elements is dense in the set of

self-adjoint elements (see [2]).

Now we investigate continuous homomorphisms between JC∗-algebras.

Theorem 4. Let h : A → B be a continuous mapping satisfying h(0) = 0

and h(2nu ◦ y) = h(2nu) ◦h(y) for all u ∈ I1(Asa), all y ∈ A and all n ∈ Z, for which

there exists a function ϕ : A×A → [0,∞) satisfying (2.1), (2.2) and (2.3). Then the

mapping h : A → B is a homomorphism.

Proof. By the same reasoning as in the proof of Theorem 1, there exists a unique

C-linear mapping H : A → B satisfying (2.4).

Since h(2nu ◦ y) = h(2nu) ◦ h(y) for all u ∈ I1(Asa), all y ∈ A and all n ∈ Z,

H(u ◦ y) = lim
n→∞

1

2n
h(2nu ◦ y) = lim

n→∞

1

2n
h(2nu) ◦ h(y) = H(u) ◦ h(y) (2.10)

for all u ∈ I1(Asa) and all y ∈ A. By the additivity of H and (2.10),

2nH(u ◦ y) = H(2nu ◦ y) = H(u ◦ (2ny)) = H(u) ◦ h(2ny)

for all u ∈ I1(Asa) and all y ∈ A. Hence

H(u ◦ y) =
1

2n
H(u) ◦ h(2ny) = H(u) ◦

1

2n
h(2ny) (2.11)

for all u ∈ I1(Asa) and all y ∈ A. Taking the limit in (2.11) as n →∞, we obtain

H(u ◦ y) = H(u) ◦H(y) (2.12)

for all u ∈ I1(Asa) and all y ∈ A.

By (2.3) and (2.10),

H(y) = H(e ◦ y) = H(e) ◦ h(y) = e′ ◦ h(y) = h(y)

for all y ∈ A. So H : A → B is continuous. But by the assumption that A has real

rank zero, it is easy to show that I1(Asa) is dense in {x ∈ Asa | ||x|| = 1}. So for

each w ∈ {z ∈ Asa | ||z|| = 1}, there is a sequence {κj} such that κj → w as j →∞
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and κj ∈ I1(Asa). Since H : A → B is continuous, it follows from (2.12) that

H(w ◦ y) = H( lim
j→∞

κj ◦ y) = lim
j→∞

H(κj ◦ y) (2.13)

= lim
j→∞

H(κj) ◦H(y) = H( lim
j→∞

κj) ◦H(y)

= H(w) ◦H(y)

for all w ∈ {z ∈ Asa | ||z|| = 1} and all y ∈ A.

For each x ∈ A, x = x+x∗

2 + ix−x∗

2i
, where x1 := x+x∗

2 and x2 := x−x∗

2i
are

self-adjoint.

First, consider the case that x1 6= 0, x2 6= 0. Since H : A → B is C-linear, it

follows from (2.13) that

H(x ◦ y) = H(x1 ◦ y + ix2 ◦ y) = H(||x1||
x1

||x1||
◦ y + i||x2||

x2

||x2||
◦ y)

= ||x1||H(
x1

||x1||
◦ y) + i||x2||H(

x2

||x2||
◦ y)

= ||x1||H(
x1

||x1||
) ◦H(y) + i||x2||H(

x2

||x2||
) ◦H(y)

= {H(||x1||
x1

||x1||
) + iH(||x2||

x2

||x2||
)} ◦H(y) = H(x1 + ix2) ◦H(y)

= H(x) ◦H(y)

for all y ∈ A.

Next, consider the case that x1 6= 0, x2 = 0. Since H : A → B is C-linear, it

follows from (2.13) that

H(x ◦ y) = H(x1 ◦ y) = H(||x1||
x1

||x1||
◦ y) = ||x1||H(

x1

||x1||
◦ y)

= ||x1||H(
x1

||x1||
) ◦H(y) = H(||x1||

x1

||x1||
) ◦H(y) = H(x1) ◦H(y)

= H(x) ◦H(y)

for all y ∈ A.
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Finally, consider the case that x1 = 0, x2 6= 0. Since H : A → B is C-linear,

it follows from (2.13) that

H(x ◦ y) = H(ix2 ◦ y) = H(i||x2||
x2

||x2||
◦ y) = i||x2||H(

x2

||x2||
◦ y)

= i||x2||H(
x2

||x2||
) ◦H(y) = H(i||x2||

x2

||x2||
) ◦H(y) = H(ix2) ◦H(y)

= H(x) ◦H(y)

for all y ∈ A. Hence

H(x ◦ y) = H(x) ◦H(y)

for all x, y ∈ A.

Therefore, the mapping h : A → B is a homomorphism, as desired. �

Corollary 5. Let h : A → B be a continuous mapping satisfying h(0) = 0

and h(2nu ◦ y) = h(2nu) ◦h(y) for all u ∈ I1(Asa), all y ∈ A and all n ∈ Z, for which

there exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖h(µx + µy)− µh(x)− µh(y)‖ ≤ θ(||x||p + ||y||p)

for all µ ∈ T1 and all x, y ∈ A. Assume that limn→∞
h(2ne)

2n = e′. Then the mapping

h : A → B is a homomorphism.

Proof. Define ϕ(x, y) = θ(||x||p + ||y||p) and apply Theorem 4. �

Theorem 6. Let h : A → B be a continuous mapping satisfying h(0) = 0

and h(2nu ◦ y) = h(2nu) ◦h(y) for all u ∈ I1(Asa), all y ∈ A and all n ∈ Z, for which

there exists a function ϕ : A×A → [0,∞) satisfying (2.1), (2.3) and (2.9). Then the

mapping h : A → B is a homomorphism.

Proof. By the same reasoning as in the proof of Theorem 3, there exists a unique

C-linear mapping H : A → B satisfying (2.4).

The rest of the proof is the same as in the proofs of Theorems 1 and 4. �

3. Stability of homomorphisms in JC∗-algebras

In this section, we prove the generalized Hyers-Ulam stability of homomor-

phisms in JC∗-algebras.
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Theorem 7. Let h : A → B be a mapping with h(0) = 0 for which there

exists a function ϕ : A4 → [0,∞) such that

ϕ̃(x, y, z, w) :=
∞
∑

j=0

2−jϕ(2jx, 2jy, 2jz, 2jw) <∞, (3.1)

‖h(µx + µy + z ◦ w)− µh(x)− µh(y)− h(z) ◦ h(w)‖ ≤ ϕ(x, y, z, w) (3.2)

for all µ ∈ T1 and all x, y, z, w ∈ A. Then there exists a unique homomorphism

H : A → B such that

‖h(x)−H(x)‖ ≤
1

2
ϕ̃(x, x, 0, 0) (3.3)

for all x ∈ A.

Proof. Put z = w = 0 in (3.2). By the same reasoning as in the proof of Theorem

1, there exists a unique C-linear mapping H : A → B satisfying (3.3). The C-linear

mapping H : A → B is given by

H(x) = lim
n→∞

1

2n
h(2nx) (3.4)

for all x ∈ A.

Let x = y = 0 in (3.2). Then we get

‖h(z ◦ w)− h(z) ◦ h(w)‖ ≤ ϕ(0, 0, z, w)

for all z, w ∈ A. Since

1

22n
ϕ(0, 0, 2nz, 2nw) ≤

1

2n
ϕ(0, 0, 2nz, 2nw),

1

22n
‖h(2nz ◦ 2nw)− h(2nz) ◦ h(2nw)‖ ≤

1

22n
ϕ(0, 0, 2nz, 2nw)

≤
1

2n
ϕ(0, 0, 2nz, 2nw)

for all z, w ∈ A. By (3.1) and (3.5),

H(z ◦ w) = lim
n→∞

h(22nz ◦ w)

22n
= lim

n→∞

h(2nz ◦ 2nw)

2n · 2n

= lim
n→∞

(
h(2nz)

2n
◦

h(2nw)

2n
) = lim

n→∞

h(2nz)

2n
◦ lim

n→∞

h(2nw)

2n

= H(z) ◦H(w)
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for all z, w ∈ A. Hence the C-linear mapping H : A → B is a homomorphism

satisfying (3.3), as desired. �

Corollary 8. Let h : A → B be a mapping with h(0) = 0 for which there

exist constants θ ≥ 0 and p ∈ [0, 1) such that

‖h(µx + µy + z ◦ w)− µh(x)− µh(y)− h(z) ◦ h(w)‖

≤ θ(‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p)

for all µ ∈ T1 and all x, y, z, w ∈ A. Then there exists a unique homomorphism

H : A → B such that

‖h(x)−H(x)‖ ≤
2θ

2− 2p
||x||p

for all x ∈ A.

Proof. Define ϕ(x, y, z, w) = θ(‖x‖p + ‖y‖p + ‖z‖p + ‖w‖p) and apply Theorem 7. �

Theorem 9. Let h : A → B be a mapping with h(0) = 0 for which there

exists a function ϕ : A4 → [0,∞) satisfying (3.1) such that

‖h(µx + µy + z ◦ w)− µh(x)− µh(y)− h(z) ◦ h(w)‖ ≤ ϕ(x, y, z, w)

for µ = 1, i and all x, y, z, w ∈ A. If h(tx) is continuous in t ∈ R for each fixed x ∈ A,

then there exists a unique homomorphism H : A → B satisfying (3.3).

Proof. By the same reasoning as in the proof of Theorem 3, there exists a unique

C-linear mapping H : A → B satisfying (3.3).

The rest of the proof is the same as in the proofs of Theorems 1 and 7. �
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LIII, Number 1, March 2008

ON SOME INTEGRAL OPERATORS

WHICH PRESERVE THE UNIVALENCE

VIRGIL PESCAR

Abstract. We study some integral operators and determine conditions for

the univalence of these integral operators.

1. Introduction

Let A be the class of the functions f(z) which are analytic in the open unit

disc U = {z ∈ C : |z| < 1} and f(0) = f ′(0)− 1 = 0.

We denote by S the subclass of A consisting of functions f(z) ∈ A which are

univalent in U.

In this paper, we consider the integral operators

Hβ(z) =

{

β

∫ z

0

[h(u)]
β−1

du

}
1
β

(1)

and

Gβ(z) =

{

β

∫ z

0

u [g(u)]
β−2

du

}
1
β

(2)

for h(z) ∈ S, g(z) ∈ S and β ∈ C.

2. Preliminary results

To discuss our integral operators, we need the following theorem.

Theorem 2.1 [1]. Let α be a complex number, Re α > 0 and f ∈ A. If

1− |z|2Re α

Re α

∣

∣

∣

∣

zf ′′(z)

f ′(z)

∣

∣

∣

∣

≤ 1, (3)
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for all z ∈ U , then for any complex number β, Re β ≥ Re α the function

Fβ(z) =

[

β

∫ z

0

uβ−1 f ′(u)du

]
1
β

(4)

is in the class S.

3. Main results

Theorem 3.1. Let α, β be complex numbers and the function h ∈ S,

h(z) = z + a2z
2 + . . . .

If

Re β ≥ Re α > 0 (j1)

|β − 1| ≤
Re α

4
for Re α ∈ (0, 1) (j2)

or

|β − 1| ≤
1

4
for Re α ∈ [1,∞) (j3)

then the function

Hβ(z) =

{

β

∫ z

0

[h(u)]
β−1

du

}
1
β

(5)

belongs to the class S.

Proof. From (5) we have

Hβ(z) =

{

β

∫ z

0

uβ−1

[

h(u)

u

]β−1

du

}
1
β

(6)

The function h(z) is regular and univalent, hence h(z)
z
6= 0 for all z ∈ U. We

can choose the regular brach of the function
[

h(z)
z

]β−1

, which is equal to 1 at the

origin.

Let us consider the regular function in U , given by

f(z) =

∫ z

0

[

h(u)

u

]β−1

du. (7)

Because h ∈ S, we obtain
∣

∣

∣

∣

z h′(z)

h(z)

∣

∣

∣

∣

≤
1 + |z|

1− |z|
(8)
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for all z ∈ U.

We have
∣

∣

∣

∣

z f ′′(z)

f ′(z)

∣

∣

∣

∣

= |β − 1|

∣

∣

∣

∣

z h′(z)

h(z)
− 1

∣

∣

∣

∣

≤ |β − 1|
2

1− |z|
. (9)

Now, we consider the cases

i1) Re α ≥ 1.

We observe that the function p : [1,∞) → R,

p(x) =
1− a2x

x
(0 < a < 1) (10)

is a decreasing function, and that, if we take a = |z|, z ∈ U, then

1− |z|2Re α

Re α
≤ 1− |z|2 (11)

for all z ∈ U.

From (11) and (9) we obtain

1− |z|2Re α

Re α

∣

∣

∣

∣

zf ′′(z)

f ′(z)

∣

∣

∣

∣

≤ 4 |β − 1|. (12)

From (12) and (j3), we have

1− |z|2Re α

Re α

∣

∣

∣

∣

zf ′′(z)

f ′(z)

∣

∣

∣

∣

≤ 1 (13)

for all z ∈ U.

i2) 0 < Re α < 1.

The function v : (0, 1) → R,

v(x) = 1− a2x (0 < a < 1) (14)

is a increasing function and for a = |z|, z ∈ U, we obtain

1− |z|2 Re α ≤ 1− |z|2, z ∈ U (15)

for all z ∈ U.

From (9) and (15), we have

1− |z|2Re α

Re α

∣

∣

∣

∣

zf ′′(z)

f ′(z)

∣

∣

∣

∣

≤
4 |β − 1|

Re α
(16)

for all z ∈ U.
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Using the condition (j2) and (16) we get

1− |z|2Re α

Re α

∣

∣

∣

∣

zf ′′(z)

f ′(z)

∣

∣

∣

∣

≤ 1 (17)

for all z ∈ U.

Because f ′(z) =
[

h(z)
z

]β−1

, from Theorem 2.1 it results that the function

Hβ(z) is regular and univalent in U .

Theorem 3.2. Let α, β be complex numbers and the function g ∈ S, g(z) =

z + a2z
2 + . . . .

If

Re β ≥ Re α > 0 (p1)

and

|β − 2| ≤
Re α

4
for Re α ∈ (0, 1) (p2)

or

|β − 2| ≤
1

4
for Re α ∈ [1,∞) (p3)

then the function

Gβ(z) =

{

β

∫ z

0

u [g(u)]
β−2

du

}
1
β

(18)

is in the class S.

Proof. We observe that

Gβ(z) =

{

β

∫ z

0

uβ−1

[

g(u)

u

]β−2

du

}
1
β

(19)

We consider the regular function in U

[

f(z) =

∫ z

0

g(u)

u

]β−2

du

and by the same reasoning with a view to the Theorem 3.1. we conclude that the

function Gβ(z) is in the class S in the conditions (p1), ( p2) and (p3).
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A CUTTING PLANE APPROACH TO SOLVE THE RAILWAY

TRAVELING SALESMAN PROBLEM

PETRICĂ C. POP, CHRISTOS D. ZAROLIAGIS, AND GEORGIA HADJICHARALAMBOUS

Abstract. We consider the Railway Traveling Salesman Problem. We

show that this problem can be reduced to a variant of the generalized

traveling salesman problem, defined on an undirected graph G = (V, E)

with the nodes partitioned into clusters, which consists in finding a mini-

mum cost cycle spanning a subset of nodes with the property that exactly

two nodes are chosen from each cluster. We describe an exact exponen-

tial time algorithm for the problem, as well we present two mixed integer

programming models of the problem. Based on one of this models pro-

posed, we present an efficient solution procedure based on a cutting plane

algorithm. Extensive computational results for instances taken from the

railroad company of the Netherlands Nederlandse Spoorwegen and involv-

ing graphs with up to 2182 nodes and 38650 edges are reported.

1. Introduction

Assume that a salesman traveling with railways wishes to visit a certain

number of cities. The salesman has a limited budget and the goal is to establish a

schedule that allows him to visit all the cities and returning to the starting city at the

total minimum cost, taking into consideration that when arrived at a station he/she

has to spend some time for his affairs and then to continue his journey to another city

with the first available train. We shall refer to this problem as the Railway Traveling

Salesman problem, denoted (RTSP).

Received by the editors: 06.01.2007.

2000 Mathematics Subject Classification. 90C11, 90C27, 05C05.

Key words and phrases. generalized traveling salesman problem, integer programming, cutting planes.

63
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The salesman is aware of the time schedule and is therefore able to construct

the corresponding time-expanded graph G = (V, E), see [1]. In that graph, every event

(arrival or departure of a train) at a station corresponds to a node and edges between

nodes represent either elementary connections between two events (i.e. served by a

train that does not stop in-between), or waiting within a station. Nodes representing

time events belonging to the same station (city) will be referred to as nodes within the

same cluster, and the total number of clusters equals the total number of stations p

that the salesman has to visit. There are two types of edges: inter-cluster edges (cor-

responding to elementary connections between the stations) and intra-cluster edges

(corresponding to waiting in a station for some later connection). With this graph

at hand the salesman can associate costs to its edges according to the cost measure

he/she wants to minimize. Consequently, the RTSP reduces in finding a Hamiltonian

tour H of the minimum cost in the subgraph of G induced by S, where S ⊆ V such

that S contains exactly two nodes from every cluster. This leads to a variant of the

so-called generalized traveling salesman problem (GTSP).

The generalized traveling salesman problem, introduced by Laporte and

Nobert [5] and by Noon and Bean [6] is defined on a complete undirected graph

G whose nodes are partitioned into a number of subsets (clusters) and whose edges

have a nonnegative cost. The GTSP asks for finding a minimum-cost Hamiltonian

tour H in the subgraph of G induced by S, where S ⊆ V such that S contains at least

one node from each cluster.

A different version of the problem called E-GTSP arises when imposing the

additional constraint that exactly one node from each cluster must be visited.

Both problems GTSP and E-GTSP are NP -hard, as they reduce to traveling

salesman problem when each cluster consists of exactly one node.

The GTSP has several applications to location and telecommunication prob-

lems. More information on these problems and their applications can be found in

Fischetti, Salazar and Toth [1, 2], Laporte, Asef-Vaziri and Sriskandarajah [3], La-

porte, Mercure and Nobert [4]. It is worth to mention that Fischetti, Salazar and

64



A CUTTING PLANE APPROACH TO SOLVE THE RAILWAY TRAVELING SALESMAN PROBLEM

Toth [2] solved the GMST problem to optimality for graphs with up to 442 nodes

using a branch-and-cut algorithm.

In this paper, we introduce the (above mentioned) variant of the GTSP, called

the 2-GTSP, which, given a graph G with non-negative edge costs, asks for finding

a minimum cost Hamiltonian tour H of G spanning a subset of nodes that includes

exactly two nodes from each cluster and exactly one edge from each cluster. Clearly,

a solution to 2-GTSP is a solution to the railway traveling salesman problem.

The aim of this paper is to provide an exact algorithm for the 2-GTSP as

well as two integer programming formulations of the problem and an efficient cutting

plane algorithm.

2. Definition and Complexity of the 2-GTSP

Let G = (V, E) be an n-node undirected graph whose edges are associated

with non-negative costs. We will assume w.l.o.g. that G is a complete graph (if there

is no edge between two nodes, we can add it with an infinite cost). Let V1, ..., Vp be a

partition of V into p subsets called clusters (i.e. V = V1 ∪V2 ∪ ...∪Vp and Vl ∩Vk = ∅

for all l, k ∈ {1, ..., p}). We denote the cost of an edge e = {i, j} ∈ E by cij or by

c(i, j). Let e = {i, j} be an edge with i ∈ Vl and j ∈ Vk. If l 6= k the e is called an

inter-cluster edge; otherwise e is called an intra-cluster edge.

The 2-generalized traveling salesman problem (2-GTSP) asks for finding a

minimum-cost tour H spanning a subset of nodes such that H contains exactly two

nodes from each cluster Vi, i ∈ {1, ..., p}. The problem involved two related decisions:

• choosing a node subset S ⊆ V , such that |S ∩ Vk| = 2, for all k = 1, ..., p.

• finding a minimum cost Hamiltonian cycle in the subgraph of G induced

by S.

We will call such a cycle a 2-Hamiltonian tour. An example of a 2-

Hamiltonian tour for a graph with the nodes partitioned into 6 clusters is presented

in the next figure.

65
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Figure 1. Example of a 2-Hamiltonian tour

As we already mentioned, both problems GTSP and E-GTSP are NP -hard,

as they reduce to traveling salesman problem when each cluster consists of exactly

one node. Consequently, the 2-GSTP is also an NP-hard problem.

3. An Exact Algorithm for the 2-GTSP

In this section, we present an algorithm that finds an exact solution to the

2-GTSP.

Given a sequence (Vk1 , ..., Vkp
) in which the clusters are visited, we want to

find the best feasible 2-Hamiltonian tour H∗ (w.r.t cost minimization), visiting the

clusters according to the given sequence. This can be done in polynomial time, by

solving |Vk1 | shortest path problems as we will describe below.

We construct a layered network, denoted by LN, having p + 1 layers corre-

sponding to the clusters Vk1 , ..., Vkp
and in addition we duplicate the cluster Vk1 . The

layered network contains all the nodes of G plus some extra nodes v′ for each v ∈ Vk1 .

There is an arc (i, j) for each i ∈ Vkl
and j ∈ Vkl+1

(l = 1, ..., p− 1), having the cost

cij and an arc (i, h), i, h ∈ Vkl
, (l = 2, ..., p) having cost cih. Moreover, there is an

arc (i, j′) for each i ∈ Vkp
and j′ ∈ Vk1 having cost cij′ .
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Vk1
Vk2 Vkp

Vk1

w

v

Figure 2. Example showing a 2-Hamiltonian tour in the constructed

layered network LN

For any given v ∈ Vk1 , we consider paths from v to w′, w′ ∈ Vk1 , that visits

exactly two nodes from each cluster Vk2 , ..., Vkp
, hence it gives a feasible 2-Hamiltonian

tour.

Conversely, every 2-Hamiltonian tour visiting the clusters according to the

sequence (Vk1 , ..., Vkp
) corresponds to a path in the layered network from a certain

node v ∈ Vk1 to w′ ∈ Vk1 .

Therefore, it follows that the best (w.r.t cost minimization) 2-Hamiltonian

tour H∗ visiting the clusters in a given sequence can be found by determining all

the shortest paths from each v ∈ Vk1 to each w′ ∈ Vk1 with the property that visits

exactly two nodes and one edge each from clusters (Vk2 , ..., Vkp
).

The overall time complexity is then |Vk1 |O(m + n logn), i.e. O(nm + nlogn)

in the worst case. We can reduce the time by choosing |Vk1 | as the cluster with

minimum cardinality.

Notice that the above procedure leads to an O((p − 1)!(nm + nlogn)) time

exact algorithm for the 2-GTSP, obtained by trying all the (p − 1)! possible cluster

sequences. So, we have established the following result:
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Theorem 1. The above procedure provides an exact solution to the 2-GSTP in O((p−

1)!(nm+nlogn)) time, where n is the number of nodes, m is the number of edges and

p is the number of clusters in the input graph.

Clearly, the algorithm presented, is an exponential time algorithm unless the

number of clusters p is fixed.

4. Integer Programming Formulations of the 2-GTSP

In this section, we present two different integer programming formulations of

the 2-GTSP.

In order to formulate the 2-GTSP as an integer program, we introduce the

binary variables:

xe = xij =































1 if the edge e = {i, j} ∈ E

is included in the selected subgraph

0 otherwise,

zi =



















1 if the node i is included in the selected subgraph

0 otherwise.

A feasible solution to the 2-GTSP can be seen as a cycle free subgraph with

2p− 1 edges connecting all the clusters such that exactly two nodes are selected from

each cluster.

For F ⊆ E and S ⊆ V , let E(S) = {e = {i, j} ∈ E | i, j ∈ S}, x(F ) =
∑

e∈F

xe

and z(S) =
∑

i∈S

zi. Also, let x(Vk, Vk) =
∑

i,j ∈Vk,i<j

xij , where k ∈ {1, ..., p}.
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The 2-GTSP can be formulated as the following 0-1 integer programming

problem:

min
∑

e∈E

cexe

s.t. z(Vk) = 2, ∀ k ∈ {1, ..., p} (1)

x(δ(i)) = 2zi, ∀ i ∈ V \ V1 (2)

x(E) = 2p− 1 (3)

x(Vk, Vk) = 1, ∀ k ∈ {2, ..., p} (4)

x(E(S)) ≤ 2r − 1, ∀ S = ∪r
i=1Vli , 2 ≤ r ≤ p− 1 (5)

xe ∈ {0, 1}, ∀ e ∈ E (6)

zi ∈ {0, 1}, ∀ i ∈ V. (7)

where for i ∈ V \ V1, the set, denoted by δ(i), is defined as

δ(i) = {e = {i, j} ∈ E | j ∈ V }.

In the above formulation, constraint (1) guarantee that from every cluster we

select exactly two nodes, constraints (2) require that the number of edges incident with

a node i to be either 2 (if node i is visited) or 0 otherwise, constraint (3) guarantees

that the selected subgraph has 2p−1 edges, constraints (4) guarantee that from every

cluster we select (except the starting cluster) we select one edge and finally constraints

(5) eliminate all the cycles connecting at most p− 1 clusters.

Replacing the subtour elimination constraints (5) by connectivity constraints,

we result in the so-called generalized cut-set formulation:

min
∑

e∈E

cexe

s.t. (1), (3)− (5) and

x(δ(S)) ≥ 2(zi + zj − 1), ∀ S ⊂ V, with 2 ≤ |S| ≤ p− 1

and ∀ i ∈ S, j ∈ V \ S. (8)
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where for S ⊆ V , the cut-set, denoted by δ(S), is defined as

δ(S) = {e = {i, j} ∈ E | i ∈ S, j /∈ S}.

In the above formulation, constraints (8) are the connectivity constraints

saying that each cut separating two visited nodes (i and j) must be crossed at least

twice.

In the addition to the constraints that appear in the previous formulations,

we consider also the following constraints specific to the railway traveling salesman

problem:

tdzd − taza ≥ tk, ∀ a, d ∈ Vk, 2 ≤ k ≤ p. (9)

The above constraints are saying that the difference between the departure

and arrival times has to be at least a specified time period th (depending on the city),

this means that the traveling salesman has to stay in each city for some time to finish

his business. If the difference is too small, the salesman may fail to solve his business,

on the other hand, if the difference is too large, the waiting time at the station will

be inconvenient.

The disadvantage of the described integer programming formulations is their

exponential number of constraints (we have to choose subsets of V , constraints (5)

and (8)). These constraints can be omitted and then can be generated as needed by a

separation algorithm: one can start without constraints (5), solve the corresponding

relaxation, then generate subtour inequalities that are violated by the current solution.

The separation algorithm for subtour constraints is based on network flow techniques,

for further details see [2].

5. Solution procedure and computational results

We used the following cutting plane algorithm in order to solve the 2-GTSP:

1. Let the integer programming (IP) formulation consists of the constraints

(1)-(4),(6),(7) and (9).
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2. Solve the IP and assume that the optimal solution consists of r subtours:

S1, ..., Sr.

3. If r = 1, then STOP; the solution is optimal to the 2-GTSP. Otherwise,

add to the IP formulation the corresponding constraints that eliminate the

cycles S1, ..., Sr and go to Step 2.

The algorithm was written in C and for each instance we have created the

corresponding integer program, which we solved it with CPLEX 6.5.

Test data for our algorithm are real networks from the Dutch railroad com-

pany Nederlandse Spoorwegen.

The first three data sets contains the Intercity train connections among the

larger cities in the Netherlands, stopping only at the main train stations, and thus

are considered faster than the normal trains. These trains operate at least every

half an hour. The second real-world data set, contains the schedules of the Intercity

trains and regional trains. The regional trains connect the cities in only one region,

including some main stations, while trains stop at each intermediate station between

two main ones.

Some characteristics of the graphs that were used for the real-world data

sets and the computational results obtained using the cutting plane algorithm are

displayed in the next table:

Table: Computational results for solving the RTSP

Pb. name No. stations No. nodes No. edges LB/OPT Sol. time

NS1 (IC) 5 394 4240 100 14.08 s

NS2 (IC) 7 674 9754 100 64.57 s

NS3 (IC) 9 926 16271 100 206.52 s

NS4 (IC+IR) 12 1470 23850 100 39.30 min

NS5 (IC+IR) 12 1586 27383 100 72.28 min

NS6 (IC+IR) 15 1722 28200 100 1.05 h

NS7 (IC+IR) 15 1946 34450 100 5.45 h

NS8 (IC+IR) 18 2182 38650 100 4.52 h
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The first four columns in the table give the name of the problem and the

size of the problem: the number of stations, the number of nodes and the number of

edges. The next two columns describe the cutting plane procedure and contain: the

lower bounds obtained as a percentage of the optimal value of the RTSP (LB/OPT)

and the computational times (CPU) for solving the RTSP to optimality.

6. Conclusions

We considered the Railway Traveling Salesman Problem (RTSP), which con-

sists in finding a minimum cost tour for a salesman traveling with railways and wishing

to visit a certain number of cities. We showed that the RTSP can be reduced to a

variant of the Generalized Traveling Salesman problem.

Based on one of the integer programming formulations that we proposed, we

present an efficient solution procedure based on a cutting plane algorithm. Com-

putational results for real networks from the Dutch railroad company Nederlandse

Spoorwegen and involving graphs with up to 2182 nodes and 38650 edges are reported.
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TRANSIENT LAMINAR FREE CONVECTION FROM A VERTICAL

CONE WITH NON-UNIFORM SURFACE HEAT FLUX

BAPUJI PULLEPUL, J. EKAMBAVANAN, AND I. POP

Abstract. In this paper, transient laminar free convection from an incom-

pressible viscous fluid past a vertical cone with non-uniform surface heat

flux qw(x) = xm varying as a power function of the distance from the apex

of the cone (x = 0) is presented. Here m is the exponent in power law

variation of the surface heat flux. The dimensionless governing equations

of the flow that are unsteady, coupled and non-linear partial differential

equations are solved by an efficient, accurate and unconditionally stable

finite difference scheme of Crank-Nicolson type. The velocity and tem-

perature fields have been studied for various parameters such as Prandtl

number Pr and the exponent m. The local as well as average skin fric-

tion and Nusselt number are also presented graphically and discussed in

details. The present results are compared with available results from the

open literature and are found to be in very good agreement.

1. Introduction

Natural convection flows under the influence of gravitational force have been

investigated most extensively because they occur frequently in nature as well as in

science and engineering applications. When a heated surface is in contact with the

fluid, the result of temperature difference causes buoyancy force, which induces the

natural convection. Recently heat flux applications are widely using in industries,

engineering and science fields. Heat flux sensors can be used in industrial measure-

ment and control systems. Examples of few applications are detection fouling (Boiler
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Fouling Sensor), monitoring of furnaces (Blast Furnace Monitoring/General Furnace

Monitoring) and flare monitoring. Use of heat flux sensors can lead to improvements

in efficiency, system safety and modeling.

Several authors have developed similarity solutions for two-dimensional axi-

symmetrical problems for natural convection laminar flow over vertical cone in steady

state. Merk and Prins [14, 15] developed the general relation for similar solutions

on iso-thermal axi-symmetric forms and they showed that the vertical cone has such

a solution in steady state. Further, Hossain et al. [10] have discussed the effects of

transpiration velocity on laminar free convection boundary layer flow from a vertical

non-isothermal cone and concluded, increase in temperature gradient the velocity

as well as the surface temperature decreases. Ramanaiah et al. [25] discussed free

convection about a permeable cone and a cylinder subjected to radiation boundary

condition. Alamgir [1] has investigated the overall heat transfer in laminar natural

convection from vertical cones using the integral method. Pop et al. [20] have studied

the compressibility effects in laminar free convection from a vertical cone. Recently,

Pop et al. [22] analyzed the steady laminar mixed convection boundary-layer flow over

a vertical isothermal cone for fluids of any Pr for the both cases of buoyancy assisting

and buoyancy opposing flow conditions. The resulting non-similarity boundary-layer

equations are solved numerically using the Keller-box scheme for fluids of any Pr

from very small to extremely large values (0.001 ≤ Pr ≤ 10000). Takhar et al. [27]

discussed the effect of thermo physical quantities on the free convection flow of gases

over an isothermal vertical cone in steady-state flow, in which thermal conductivity,

dynamic viscosity and specific heat at constant pressure were to be assumed a power

law variation with absolute temperature. They concluded that the heat transfer

increases with suction and decreases with injection.

Recently theoretical studies on laminar free convection flow over an axisym-

metric body have received wide attention especially in case of uniform and non-

uniform surface heat flux distributions. Similarity solutions for the laminar free con-

vection from a right circular cone with prescribed uniform heat flux conditions for

Pr = 0.72, 1, 2, 4, 6, 8, 10 and 100 and were reported by Lin [13] and expressions for
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both wall skin friction and wall temperature distributions at Pr →∞ were presented.

Na et al. [17, 18] studied the non-similar solutions of the problems for transverse cur-

vature effects of the natural convection flow over a slender frustum of a cone. Later,

Na et al. [19] investigated the laminar natural convection flow over a frustum of a

cone without transverse curvature effects. In the above investigations the constant

wall temperature as well as the constant wall heat flux was considered. The effects of

the amplitude of the wavy surfaces associated with natural convection over a vertical

frustum of a cone with constant wall temperature or constant wall heat flux was stud-

ied by Pop et al. [21]. Gorla et al. [24] presented numerical solution for laminar free

convection of power-law fluids past a vertical frustum of a cone without transverse

curvature effect (i.e. large cone angles when the boundary layer thickness is small

compared with the local radius of the cone).

Further, Pop et al. [23] focused the theoretical study on the effects of suction

or injection on steady free convection from a vertical cone with uniform surface heat

flux condition. Kumari et al. [12] studied free convection from vertical rotating cone

with uniform wall heat flux. Hasan et al. [8] analyzed double diffusion effects in free

convection under flux condition along a vertical cone. Hossain et al. [9, 11] studied the

non-similarity solutions for the free convection from a vertical permeable cone with

non-uniform surface heat flux and the problem of laminar natural convective flow and

heat transfer from a vertical circular cone immersed in a thermally stratified medium

with either a uniform surface temperature or a uniform surface heat flux. Using a

finite difference method, a series solution method and asymptotic solution method,

the solutions have been obtained for the non-similarity boundary layer equations.

Many investigations have been done for free convection past a vertical

cone/frustum of cone in porous media. Yih [29, 30] studied in saturated porous media

combined heat and mass transfer effects over a full cone with uniform wall tempera-

ture/concentration or heat/mass flux and for truncated cone with non-uniform wall

temperature/variable wall concentration or variable heat/variable mass flux. Recently

Chamkha et al. [3] studied the problem of combined heat and mass transfer by natural
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convection over a permeable cone embedded in a uniform porous medium in the pres-

ence of an external magnetic field and internal heat generation or absorption effects

with the cone surface is maintained at either constant temperature or concentration or

uniform heat and mass fluxes. Groşan et al. [7] considering the boundary conditions

either for a variable wall temperature or variable heat flux studied the similarity solu-

tions for the problem of steady free convection over a heated vertical cone embedded

in a porous medium saturated with a non-Newtonian power-law fluid driven by inter-

nal heat generation. Wang et al. [28] studied the steady laminar forced convection

of micropolar fluids past two-dimensional or axisymmetric bodies with porous walls

and different thermal boundary conditions (i.e. constant wall temperature/constant

wall heat flux). Further, solutions of the transient free convection flow problems over

moving vertical plates and cylinders as well as inclined plates have been obtained by

Soundalgekar et al. [26], Muthucumaraswamy et al. [16] and Ganesan et al. [6, 4, 5]

using finite difference method.

The present investigation, namely, the transient free convection from a ver-

tical cone with non-uniform surface heat flux has not received any attention. Hence,

the present work is considered to deal with transient free convection over a vertical

cone with non-uniform surface heat flux. The governing boundary layer equations

are solved by an implicit finite-difference scheme of Crank-Nicolson type with various

parameters Pr and m. In order to check the accuracy of our numerical results, the

present results are compared with the available results of Hossain and Paul [9] for

non-uniform surface heat flux and Lin [13] for uniform heat flux and are found to be

in excellent agreement.

2. Mathematical analysis

We consider the axisymmetric transient laminar free convection of a viscous

and incompressible fluid of uniform ambient temperature T ′∞ past a vertical cone with

non-uniform surface heat flux. It is assumed that the viscous dissipation effects are

negligible. It is assumed that initially (t′ ≤ 0), the cone surface and the surrounding

fluid that are at rest. Then at time t′ > 0, it is assumed that heat is supplied from
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cone surface to the fluid at the rate qw(x) = xm and it is maintained at this value

with m being a constant. The co-ordinate system is chosen (as shown in Fig.1) such

that x measures the distance along the surface of the cone from the apex (x = 0)

and y measures the distance normally outward, respectively. Here, φ is the semi

vertical angle of the cone and r is the local radius of the cone. The fluid properties

are assumed to be constant except for density variations, which induce buoyancy

force term in the momentum equation. The governing boundary layer equations of

continuity, momentum and energy under Boussinesq approximation with the viscous

dissipation effect neglected are as follows:

• continuity

∂

∂x
(ru) +

∂

∂y
(ru) = 0, (1)

• momentum

∂u

∂t′
+ u

∂u

∂x
+ v

∂u

∂y
= gβ(T ′ − T ′∞) cosφ + ν

∂2u

∂y2
, (2)

• energy

∂T ′

∂t′
+ u

∂T ′

∂x
+ v

∂T ′

∂y
= α

∂2T ′

∂y2
. (3)

The initial and boundary conditions are

t′ ≤ 0 : u = 0, v = 0, T ′ = T ′∞ for all x and y,

t′ > 0 : u = 0, v = 0,
∂T ′

∂y
=
−qw(x)

k
at y = 0,

u = 0, T ′ = T ′∞ at x = 0,

u→ 0, T ′ → T ′∞ as y →∞

(4)

where u and v are the velocity components along x− and y− axes, T ′ is the fluid

temperature, t′ is the time, g is the acceleration due to gravity, r is the local radius

of the cone, k is the thermal conductivity of the fluid, α is the thermal diffusivity,

β is the thermal expansion coefficient, semi-vertical angle of the cone and ν is the

kinematic viscosity.
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The physical quantities of interest are the local skin friction τx and the local

Nusselt number Nux which are given, respectively, by

τx = µ

(

∂u

∂y

)

y=0

, Nux =
x

(T ′w − T ′∞)

(

−
∂T ′

∂y

)

y=0

(5)

where µ is the dynamic viscosity. Also, the average skin friction τL and the average

heat transfer coefficient h over the cone surface are given by

τL =
2µ

L2

∫ L

0

x

(

∂u

∂y

)

y=0

dx, h =
2k

L2

∫ L

0

x

(T ′w − T ′∞)

(

−
∂T ′

∂y

)

y=0

dx (6)

The average Nusselt number is then given by

NuL =
Lh

k
=

2

L

∫ L

0

x

(T ′w − T ′∞)

(

−
∂T ′

∂y

)

y=0

dx (7)

Further, we introduce the following non-dimensional variables:

X =
x

L
, Y =

y

L
Gr1/5, t =

( ν

L2
Gr2/5

)

t′, R =
r

L
,

U =

(

L

ν
Gr−2/5

)

u, V =

(

L

ν
Gr−1/5

)

v, T =
(T ′ − T ′∞)

(qw(L)L/k)
Gr

1/5
L ,

(8)

where GrL = gβ(qwL/k)L4 cosφ/ν2 is the Grashof number based on the reference

length L, Pr = ν/α is the Prandtl number and r = x sin φ. Equations (1), (2) and

(3) can then be written in the following non-dimensional form:

∂

∂X
(RU) +

∂

∂Y
(RV ) = 0, (9)

∂U

∂t
+ U

∂U

∂X
+ V

∂U

∂Y
= T +

∂2U

∂Y 2
, (10)

∂T

∂t
+ U

∂T

∂X
+ V

∂T

∂Y
=

1

Pr

∂2T

∂Y 2
, (11)

where Pr is the Prandtl number and R is the dimensionless radius of the cone. The

corresponding non-dimensional initial and boundary conditions (4) become

t ≤ 0 : U = 0, V = 0, T = 0 for all X and Y

t > 0 : U = 0, V = 0,
∂T

∂Y
= −Xm at Y = 0

U = 0, T = 0 at X = 0

U → 0, T → 0 as Y →∞

(12)
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The local non-dimensional skin friction τX and the local Nusselt number NuX

given by (5) become

τX = Gr
3/5
L

(

∂U

∂Y

)

Y =0

, NuX =
Gr

1/5
L

TY =0
Xm+1 (13)

Also, the non-dimensional average skin-friction τ and the average Nusselt

number Nu are reduced to

τ = 2Gr
3/5
L

∫ 1

0

X

(

∂U

∂Y

)

Y =0

dX, Nu = 2Gr
1/5
L

∫ 1

0

Xm+1

(T )Y =0
dX. (14)

3. Solution procedure

The unsteady, non-linear, coupled and partial differential Equations (9), (10)

and (11) with the initial and boundary conditions (12) are solved by employing a

finite-difference scheme of Crank-Nicolson type. The finite-difference scheme of di-

mensionless governing equations is reduced to tri-diagonal system of equations and

is solved by Thomas algorithm as discussed in Carnahan et al. [2]. The region of

integration is considered as a rectangle with Xmax = 1 and Ymax = 26 where Ymax

corresponds to Y∞, which lies very well out side both the momentum and thermal

boundary layers. The maximum of Y was chosen as 26, after some preliminary in-

vestigation so that the last two boundary conditions of (12) are satisfied within the

tolerance limit 10−5. After experimenting with a few sets of mesh sizes, the mesh sizes

have been fixed as ∆X = 0.05, ∆Y = 0.05 with time step ∆t = 0.01. The scheme

is unconditionally stable. The local truncation error is O(∆t2 + ∆Y 2 + ∆X) and it

tends to zero as ∆t, ∆Y and ∆X tend to zero. Hence, the scheme is compatible.

Stability and compatibility ensure the convergence.

4. Results and discussion

In order to prove the accuracy of our numerical results, the present results in

steady state at X = 1.0 are compared with available similarity solutions in literature.

The velocity and temperature profiles of cone with uniform surface heat flux when

Pr = 0.72 are displayed in Fig.2 and the numerical values of local skin-friction τX

and local Nusselt number NuX , for different values of Prandtl number shown in Table
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1 are compared with similarity solutions of Lin [13] in steady state using a suitable

transformation (i.e. Y = (20/9)1/5η, T = (20/9)1/5[−θ(0)], U = (20/9)1/5f ′(η),

τX = (20/9)f ′′(0)), where η is the similarity variable, f ′(η) is the velocity profile and

f ′′(0) is the reduced skin friction, which are defined in [13]. In addition, the local

skin-friction τX and the local Nusselt number NuX for different values of Prandtl

number when heat flux gradient m = 0.5 at X = 1.0 in steady state are compared

with the non-similarity results of Hossain and Paul [9] in Table 2 given as F ′′0 (0). It

is observed that the results are in good agreement with each other. We also noticed

that the present results agree well with those of Pop and Watanabe [23] (see Table 1)

In Figs.3-6, transient velocity and temperature profiles are shown at X = 1.0,

with various parameters Pr and m. The value of t with star (∗) symbol denotes the

time taken to reach the steady-state flow. In Figs.3 and 4, transient velocity and

temperature profiles are plotted for various values of Pr and m = 0.25. Increasing Pr

means that the viscous force increases and thermal diffusivity reduces, which causes

a reduction in the velocity and temperature, as expected. It is also noticed that the

time taken to reach steady-state flow increases and thermal boundary layer thickness

reduces with increasing Pr. Further, it is clear seen from Fig.3 that the momentum

boundary layer thickness increases with the increase of Pr from unity. In Figs.5 and

6, transient velocity and temperature profiles are shown for various values of m with

Pr = 1.0. Impulsive forces are reduced along the surface of the cone near the apex

for increasing values of m (i.e. the gradient of heat flux along the cone near the

apex reduces with the increasing values of m). Due to this, the difference between

temporal maximum values and steady-state values reduces with increasing m. It is

also observed that increasing in m reduces the velocity as well as temperature and

takes more time to reach steady-state.

The study of the effects of the parameters on local as well as the average skin-

friction, and the rate of heat transfer is more important in heat transfer problems. The

derivatives involved in Eqs. (13) and (14) are obtained using five-points approximation

formula and then the integrals are evaluated using Newton-Cotes closed integration

formula. The variation of the local skin-friction τX and the local Nusselt number
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NuX in the transient period at various positions on the surface of the cone (X = 0.25

and 1.0) for different values of m, are shown in Figs.7 and 8. It is observed from Fig.7

that the local skin-friction decreases with increasing m and the effect of m over the

local skin-friction τX is more near the apex of the cone and reduces gradually with

increasing the distance along the surface of the cone from the apex. From Fig.8, it is

noticed that near the apex, local Nusselt number NuX reduces with increasing m, but

that trend is slowly changed and reversed as distance increases along the surface from

apex. The variation of the local skin-friction τX and the local Nusselt number NuX

in the transient regime is displayed in Figs.9 and 10 for different values of Pr and at

various positions on the surface of the cone (X = 0.25 and 1.0). It is clear from these

figures that the local skin frictions τX reduces and the local Nusselt number increases

with the increasing Pr, these effects gradually increase in the transient period with

increasing the distance along the cone surface from the apex. The influence of m

on average skin-friction τ is more when m is reduced as it can be seen in Fig.11.

Finally, Fig.12 displays the influence of Pr and m on the average Nusselt number Nu

in the transient period. This shows that there is no significant influence of m over the

average Nusselt number. Average Nusselt number Nu increases with increasing Pr.

5. Conclusions

A numerical study has been carried out for the transient laminar free convec-

tion from a vertical cone subjected to a non-uniform surface heat flux. The dimen-

sionless governing boundary layer equations are solved numerically using an implicit

finite-difference method of Crank-Nicolson type. Present results are compared with

available results from the literature and are found to be in good agreement. The

following conclusions are made:

1. The time taken to reach steady-state increases with increasing Pr or m.

2. The difference between temporal maximum values and steady state values

(for both velocity and temperature) becomes less when Pr or m increases.

3. The influence of m over the local skin friction τX is large near the apex of

the cone and that reduces slowly with increasing distance from it.
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4. In transient period, the local Nusselt number reduces with increasing m

near the apex but that trend is changed and reversed as the distance

increases from it.

5. The influence of Pr on the local skin-friction τX and the local Nusselt

number NuX increases along the surface from the apex.

6. The average skin-friction τ decreases with increasing m and the effect of

m on average Nusselt number Nu is almost negligible.

Table 1. Comparison of steady state local skin-friction and temperature values at

X = 1.0 with those of Lin [13] for uniform surface heat flux

Temperature Local skin friction

Lin [13] Present Lin [13] Present

results results

Pr −θ(0) −

(

20

9

)1/5

θ(0) T f ′′(0)

(

20

9

)2/5

f ′′(0) τX

0.72 1.522781 1.7864 1.7714 0.229301 1.224 1.2105

1 1.39174 1.6327 1.6182 0.78446 1.0797 1.0669

2 1.16209 1.3633 1.3499 0.60252 0.8293 0.8182

4 0.98095 1.1508 1.1385 0.46307 0.6373 0.6275

6 0.89195 1.0464 1.0344 0.39688 0.5462 0.5371

8 0.83497 0.9796 0.9677 0.35563 0.4895 0.4808

10 0.79388 0.9314 0.9196 0.32655 0.4494 0.4411

100 0.48372 0.5675 0.5531 0.13371 0.184 0.1778

1 Values taken from Pop and Watanabe [23] when suction/injection is zero.
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Table 2. Comparison of steady state local skin-friction and local Nusselt number

values at X = 1.0 with those of Hossain and Paul [9] for different values of Pr when

m = 0.5

Local skin-friction Local Nusselt number

Results [9] Present results Results [9] Present results

Pr F ′′0 (0) τX/Gr
3/5
L 1/φ0(0) NuX/Gr

1/5
L

0.01 5.13457 5.1388 0.14633 0.1463

0.05 2.93993 2.9352 0.26212 0.2634

0.1 2.29051 2.2853 0.33174 0.3332

Figure 1. Physical model and co-ordinate system
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Figure 2. Comparison of steady state temperature and velocity pro-

files at X = 1.0

86



TRANSIENT LAMINAR FREE CONVECTION FROM A VERTICAL CONE

Figure 3. Transient velocity profiles at X = 1.0 for different values

of Pr
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Figure 4. Transient temperature profiles at X = 1.0 for different

values of Pr
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Figure 5. Transient velocity profiles at X = 1.0 for different values

of m

89



BAPUJI PULLEPUL, J. EKAMBAVANAN, AND I. POP

Figure 6. Transient temperature profiles at X = 1.0 for different

values of m
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Figure 7. Local skin friction at X = 0.25 and 1.0 for different values

of m in transient period
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Figure 8. Local Nusselt number at X = 0.25 and 1.0 for different

values of m in transient period
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Figure 9. Local skin friction at X = 0.25 for different values of Pr

in transient period

93



BAPUJI PULLEPUL, J. EKAMBAVANAN, AND I. POP

Figure 10. Local Nusselt number at X = 0.25 and 1.0 for different

values of Pr in transient period

94



TRANSIENT LAMINAR FREE CONVECTION FROM A VERTICAL CONE

Figure 11. Average skin friction for different values of Pr and m

in transient period
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Figure 12. Average Nusselt number for different values of Pr and

m in transient period
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ON THE LIPSCHITZ EXTENSION CONSTANT

FOR A COMPLEX-VALUED LIPSCHITZ FUNCTION

ALEXANDRU ROŞOIU AND DRAGOŞ FRĂŢILĂ

Abstract. In order to show that the Lipschitz constant for the extension

of a complex-valued Lipschitz function cannot generally be 1, one can

use the following example (see Lipschitz Algebras, by N. Weaver, World

Scientific, Singapore, 1999, p. 18, Example 1.5.7): Let X = {e, p1, p2, p3}

be a metric space such that d(pi, pj) = 1, for all distinct i, j ∈ {1, 2, 3} and

d(e, pi) = 1
2
, for all i ∈ {1, 2, 3} and let X0 = {p1, p2, p3} be a subset of

X. An isometric map of X0 into C can be extended to X with an increase

in the Lipschitz constant of at least 2
√

3
, this constant being attained for

the function that takes e to the circumcenter of the triangle formed by

the points f(pi), for all i ∈ {1, 2, 3}. The purpose of this article is to

show that we can loosen somewhat the conditions imposed on d, namely

we show that considering a metric space X = {e, p1, p2, p3} such that

d(e, pi) + d(e, pj) = d(pi, pj), for all distinct i, j ∈ {1, 2, 3}, the above

increase in the Lipschitz constant for the extended Lipschitz function is

preserved.

1. Introduction

The problem of the extension of a Lipschitz function is a central one in the

theory of Lipschitz functions. There are a lot of results in this direction (see for

example [1-17]).

One of the main problems which is not completely answered in Lipschitz

analysis is the following:
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Given two metric spaces X and Y and a subset X0 of X under what conditions

can we extend a Lipschitz function f0 : X0 → Y to a Lipschitz function f : X → Y

with only a multiplicative loss in the Lipschitz constant and such that f/X0 = f0?

The problem is of particular interest especially when we take Y to be R

or C (the so called scalar-valued Lipschitz functions). Under this hypothesis one

fundamental theorem that we will now state works. (See [18] for more details.)

Theorem. If we take X to be a metric space and X0 a subset of X then:

i) For any f0 : X0 → R there exists f : X → R such that f/X0 = f0 and

L(f) = L(f0);

ii) For any f0 : X0 → C there exists f : X → C such that f/X0 = f0 and

L(f) ≤
√

2 · L(f0), where by L(f) we denoted the Lipschitz constant of f .

As one can see, in the real case one can extent the Lipschitz function to the

whole space with no multiplicative loss in the Lipschitz constant whatsoever, whereas

in the complex case we can only say that L(f) ≤
√

2 · L(f0). What is then the best

constant that we can use for this inequality?

One step in this direction was taken by Kirszbraun when he proved the fol-

lowing

Theorem. If X is a subspace of Rn (for some n ∈ N∗) equipped with the

inherited Euclidean metric then the function f0 : X0 → C can be extended to all of

X without increasing its Lipschitz number. (See [7])

Could the constant we search for be 1? As we shall see in the following

example (taken from [18, p. 18]) the answer is no. (The reason for which the constant

is 1 in Kirszbraun’s theorem has to do with the fact that in this particular case the

space X is Euclidean.)

Example. Let X = {e, p1, p2, p3} be a four element set and let d be a distance

on X such that d(pi, pj) = 1, for all distinct i, j ∈ {1, 2, 3} and d(e, pi) = 1
2 , for all

i ∈ {1, 2, 3}. Now let X0 = {p1, p2, p3} and f0 : X0 → C be an isometric map. f0

therefore takes the points p1, p2, p3 to the vertices of an equilateral triangle. The

Lipschitz extension of f0 to the whole of X with the smallest Lipschitz constant will
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be the one taking e to the center of the triangle as one can easily see. In this case the

constant we search for is 2√
3
.

2. Main Result

Could this constant still work for a more general setting? The answer is

yes. As in the above example let X = {r, a, b, c} be a four element set and let d

be a distance on X such that d(r, a) + d(r, b) = d(a, b) and the analogues. Given

an isometric map f0 taking a, b, c to the points A, B, C of the complex plane we

claim that we can extend it to X such that L(f) ≤ 2√
3
. Let us notice that by taking

d(a, b) = d(b, c) = d(c, a) = 1 and d(r, a) = d(r, b) = d(r, c) = 1
2 we get the example

already mentioned.

Let us now restate the problem. For an extension f of f0 to X to exist it

is necessary and sufficient that there exists a value for f(r) and a constant k such

that |f(r)− f(x)| ≤ k · d(r, x), for all x ∈ X0. Or, from another point of view, it is

necessary and sufficient that there exists a constant k such that by expanding the discs

D(f(a), d(r, a)), D(f(b), d(r, b)), D(f(c), d(r, c)) by a factor of k there intersection will

not be empty. From the main theorem we stated before it is clear that such a value

of k exists and k ≤
√

2. It is also quite obvious that the smallest constant for these

circles does exist and is attained when the circles have exactly one point in common.

If one could prove that this happens for a constant of at most 2√
3

then one would get

that this is the smallest possible constant when we pass from X0 to X.

Given that AB = d(a, b) = d(r, a) + d(r, b) we can see that the circles

C(A, d(r, a)) and C(B, d(r, b)) are tangent. The same goes for the other pairs. For

briefness we will take d(r, a) = rA, d(r, b) = rB , d(r, c) = rC . Let A′, B′ and C ′ be

the points where the three tangent circles touch each other. Let also M be the point

of intersection for the lines AA′, BB′, CC ′ and B” be the intersection point of the

segment BM with the circle C(B, rB). If one can prove for example that ‖BM‖
‖BB”‖ ≤

2√
3

then one would get that M belongs to the disc D(B, 2√
3
· rB). By doing the same for

A and C one obtains that the point M belongs to all the three discs D(A, 2√
3
· rA),
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D(B, 2√
3
· rB), D(C, 2√

3
· rC) and therefore the minimum constant we search for will

be less than or equal to 2√
3
.

Let us now prove that indeed ‖BM‖
‖BB”‖ ≤

2√
3
. Consider the origin of the plane

to be B and let the Ox axis be the one containing C. One can easily see that
−−→
BA =

∥

∥

∥

−−→
BA

∥

∥

∥
cos B ·

−→
i +

∥

∥

∥

−−→
BA

∥

∥

∥
sin B ·

−→
j . (Here we denote by

−→
i and

−→
j the unity

vectors of the axes Ox and Oy respectively.)

Given that B′A
B′C

= rA

rC
, we have

−−→
BB′ =

rC

rA + rC

·
−−→
BA +

rA

rA + rC

·
−−→
BC =

= (
rC(rA + rB) cos B

rA + rC

+
rA(rB + rC)

rA + rC

) ·
−→
i +

rC(rA + rB) sinB

rA + rC

·
−→
j .

By applying Menelaos’ Theorem to the triangle CBB′ and the line A−M−A′

we obtain the equality:

A′B

A′C
·

AC

AB′
·
MB′

MB
= 1.

Expressing BM
B′M

from here we get

BM

B′M
=

rB

rC

·
rA + rC

rA

=
rB(rA + rC)

rArC

.

Or equivalently

BM

BB′
=

rB(rA + rC)
∑

rArB

.

Given the expression of
−−→
BB′ above we have

−−→
BM = (

rBrC(rA + rB) cos B
∑

rArB

+
rArB(rB + rC)

∑

rArB

) ·
−→
i +

rBrC(rA + rB) sinB
∑

rArB

·
−→
j .

From here

‖BM‖

‖BB”‖
=

√

[rBrC(rA+rB) cos B+rArB(rB+rC)]2+[rBrC(rA+rB) sin B]2

[
∑

rArB ]2

rB

,

or

‖BM‖

‖BB”‖
=

√

[rBrC(rA + rB) cos B + rArB(rB + rC)]
2

+ [rBrC(rA + rB) sinB]
2

rB

∑

rArB

.
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After simplifying both in the numerator and denominator by rB we get

‖BM‖

‖BB”‖
=

√

[rC(rA + rB) cos B + rA(rB + rC)]
2

+ [rC(rA + rB) sinB]
2

∑

rArB

,

that is, we have to prove the inequality

√

rC
2(rA + rB)2 + rA

2(rB + rC)2 + 2rArC(rA + rB)(rB + rC) cos B
∑

rArB

≤
2
√

3
.

From the cosine theorem in triangle ABC one gets that

2(rA + rB)(rB + rC) cos B = (rA + rB)2 + (rB + rC)2 − (rA + rC)2.

By replacing this in the above expression, the inequality becomes

√

rC
2(rA + rB)2 + rA

2(rB + rC)2 + rArC(rA + rB)2 + rArC(rB + rC)2 − rArC(rA + rC)2
∑

rArB

≤

2
√

3
.

Squaring we get

(rA + rB)2rC(rA + rC) + (rB + rC)2rA(rA + rC)− rArC(rA + rC)2

(
∑

rArB)2
≤

4

3
,

or

(rA + rC)(rB
2(rA + rC) + 4rArBrC)

(
∑

rArB)2
≤

4

3
.

Factoring out we get

3rB
2(rA+rC)2+12rArBrC(rA+rC) ≤ 4rB

2(rA+rC)2+4rA
2rC

2+8rArBrC(rA+rC),

or

4rArBrC(rA + rC) ≤ rB
2(rA + rC)2 + 4rA

2rC
2,

which is nothing more than a trivial case of AM-GM inequality. Notice also that the

equality is attained for

rB =
2rArC

rA + rC

.
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LIII, Number 1, March 2008

HIGHER-ORDER LINEARLY IMPLICIT ONE-STEP METHODS

FOR THREE-DIMENSIONAL INCOMPRESSIBLE

NAVIER-STOKES EQUATIONS

IOAN TELEAGA AND JENS LANG

Abstract. In this work higher-order methods for integrating the three-

dimensional incompressible Navier-Stokes equations are proposed. The

numerical solution is achieved by using linearly implicit one-step meth-

ods up to third order in time coupled with up to third order stable finite

element discretizations in space. These orders of convergence are demon-

strated by comparing the numerical solution with exact Navier-Stokes so-

lutions. Finally, we present benchmark computations for flow around a

cylinder.

1. Introduction

Laminar incompressible flows play an important role in natural and industrial

processes. For this type of flows the governing equations are the well known Navier-

Stokes equations. Let [0, T ] × Ω, Ω ⊂ R3, be the computational domain, then the

incompressible Navier-Stokes equations for viscous flows are

∂tU + (U · ∇)U +∇P −∇ · (2ν S(U)) = f, in (0, T ]× Ω

∇ · U = 0, in (0, T ]× Ω

U = Ub, on (0, T ]× ∂Ω

U = U0, in {0} × Ω
∫

Ω
P dx = 0, in [0, T ]

(1)

Received by the editors: 04.04.2007.

2000 Mathematics Subject Classification. 76D05, 76M10.

Key words and phrases. Navier-Stokes equations, Rosenbrock methods, finite element methods.

109



IOAN TELEAGA AND JENS LANG

where ν is the viscosity of the fluid, and U = (u, v, w)T , P , S = (∇U + ∇UT )/2

represent the velocity field, the pressure, and the stress tensor. The initial data U0

and boundary data Ub have to be chosen such that system (1) describes a well posed

problem.

Over the last years, there has been considerable development of numerical

methods for solving numerically this set of equations [1]. The challenge nowadays

consists in combining accuracy of the numerical solution and efficiency of the whole

numerical algorithm.

This report extends the numerical methods based on linearly implicit one-

step methods coupled with stabilized finite element discretizations in space presented

in [6, 7] to three-dimensional incompressible Navier-Stokes equations. All of these

methods are implemented in the finite element code KARDOS [5]. For this paper

we will select two time integrators ROS2 and ROS3PL already included in the above

mentioned code. ROS2 is an L-stable Rosenbrock solver of order 2 which is second

order consistent for any approximation of the Jacobian matrix, and ROS3PL is an

L-stable stiffly accurate Rosenbrock solver of order 3 which has no order reduction

for PDEs with complex boundary conditions. It improves ROS3P [9] which is only

A-stable. For a comparison of time-discretization and linearization approaches for the

two-dimensional incompressible Navier-Stokes equations we refer to [4].

The basic solution algorithm contained in the KARDOS code also serves as

a good foundation for developing new codes with other capabilities. For example, a

scalar transport equation for the density can be easily added to investigate buoyancy

driven flows. Additionally, these approaches can be improved using adaptive strategies

based on a posteriori error estimates.

An outline of this paper is as follows. In Section 2 we recall the general dis-

cretization of the incompressible Navier-Stokes equations (1) according to our setting.

Section 3 contains convergence studies and numerical results for a benchmark flow

around a cylinder [11]. Finally, conclusions are presented in Section 4.
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2. Discretization of the equations

Firstly, system (1) is discretized in time employing linearly implicit one-step

methods to achieve higher-order temporal discretizations by working the Jacobian

matrix directly into the integration formula [10, 2].

Let τn be a variable time step. Then an s-stage linearly implicit time integrator of

Rosenbrock type applied to (1) reads as follows:

Uni

γτn
+ (Un · ∇)Uni + (Uni · ∇)Un −∇ · (2νS(Uni)) +∇Pni

= f(ti)− (Ui · ∇)Ui +∇ · (2νS(Ui))−∇Pi

−
∑i−1

j=1
cij

τn
Unj + τnγi∂tf(ti),

−∇ · Uni = ∇ · Ui,

(2)

with i = 1, ..., s and the internal values are given by

ti = tn + αiτn, Ui = Un +

i−1
∑

j=1

aijUnj, Pi = Pn +

i−1
∑

j=1

aijPnj .

The new solution (Un+1,Pn+1) at time tn+1 = tn + τn is computed by

Un+1 = Un +

s
∑

j=1

mjUnj , Pn+1 = Pn +

s
∑

j=1

mjPnj , (3)

where the coefficients aij , cij , γi, αi, and mj are chosen such that they satisfy certain

consistency conditions.

To estimate the error in time we make use of an embedding strategy. By replacing

the coefficients mj in (3) with different coefficients m̂j, a new solution (Ûn+1, P̂n+1)

of inferior order, that is, order 1 for ROS2 and order 2 for ROS3PL. The difference

δn+1 := ||(Un+1, Pn+1)− (Ûn+1, P̂n+1)||,

can be used as a step size control. A new step size with respect to a desired user

tolerance TOLt is selected by

τn+1 = C
τn

τn−1

(

δn TOLt

δn+1 δn+1

)1/p

τn, (4)
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where C represents a safety factor and is set to 0.95, and p denotes the order of the

method used. Further details are given in [6, 8].

We describe now the derivation of the discrete equations obtained by a finite

element discretization. Let Th be an unstructured finite element mesh where the

elements are tetrahedra, and S
q
h be the associated finite dimensional space with q =

1, 2 consisting of all continuous functions which are polynomials of order q on each

tetrahedron T ∈ Th. In this way, the finite element approximation Uh
ni ∈ S

q
h of the

intermediate values Uni in (2) has to satisfy the following equations

(

Uh
ni

γτn

, ϕ

)

+
(

(Uh
n · ∇)Uh

ni, ϕ
)

+
(

(Uh
ni · ∇)Uh

n , ϕ
)

+
(

∇P h
ni, ϕ

)

−
(

∇ ·
(

2νS(Uh
ni)

)

, ϕ
)

=
(

Fh(ti, U
h
i , Ph

i ), ϕ
)

,

−(∇ · Uh
ni, ϕ) = (∇ · Uh

i , ϕ), ∀ϕ ∈ S
q
h, i = 1, ..., s, (5)

where Fh(ti, U
h
i , Ph

i ) is the right hand side of the first equation in (2).

Equal-order finite element functions for all unknown components are used.

However, in this case the Babuska-Brezzi conditions is not satisfied, resulting in spu-

rious pressure modes in the discrete solution. A way to get a stable discretization is

to relax the incompressibility constraint in (5) as follows

−

(

δh∇ ·

(

Uh
ni

γτn

+ (Uh
n · ∇)Uh

ni + (Uh
ni · ∇)Uh

n −∇ ·
(

2νS(Uh
ni)

)

+∇P h
ni

)

, ϕ

)

−
(

∇ · Uh
ni, ϕ

)

=
(

∇ · Uh
i , ϕ

)

− (∇ · Fh(ti, U
h
i , Ph

i ), ϕ), ∀ϕ ∈ S
q
h, i = 1, ..., s,

with

δh = c
he

2|ue|

Ree
√

1 + Re2
e

, Ree =
ρ0heue

ν
, c = 0.4,

where ue and he are a global reference velocity and the diameter of the n-dimensional

ball which is area-equivalent to an element T ∈ Th, respectively. Although, the

incompressibility equation looks now rather complicated, to the version in (5) just

the divergence of the discrete equation (2) times a local factor δh has been added.

For each unknown pair (Uh
ni, P

h
ni), i = 1, .., s, a linear system with one and

the same stiffness matrix has to be solved. Then, the new solution is updated using
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(3). ROS2 requires two internal stages for each time step, while ROS3PL requires four

stages. Rosenbrock methods offer several structural advantages. From an efficiency

point of view, the most important advantage is that no nonlinear systems have to

be solved (which can be sometimes cumbersome). Moreover, there is no problem

to construct Rosenbrock methods with optimum linear stability properties and no

order reduction for stiff equations. Because of their one-step nature, they are easy to

implement.

3. Numerical Results

In this section we first present convergence studies of our numerical methods

using academic three-dimensional test problems with known solutions. Two examples

address the temporal and spatial convergence properties of the proposed numerical

methods. It will be shown that ROS2 and ROS3PL have second and third order

accuracy in time, respectively. Next, convergence rates for spatial discretizations are

presented. The last example shows results for the benchmark flow around a cylinder

defined in [11].

3.1. An example to test the time discretization error. The first example allows

us to check the order of the time discretization. On the integration domain [0, T ]×Ω,

T = 1, and Ω = (0, 1)3, we consider (1) with the exact solution

u = y2 exp(−t),

v = z2 exp(−t),

w = x2 exp(−t),

p = (x + y + z) exp(−t).

The right-hand side f , the initial condition U0 and the boundary condition Ub are

chosen accordingly. The viscosity is set to 10−3. The simulations are performed with

quadratic elements on a fixed uniform mesh with 70400 tetrahedra. In this way, for

any time t the temporal error will dominate the spatial error. The computations were
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Figure 1. Time errors for ROS2 and ROS3PL, where n corresponds

to τ = 0.5 × 2−n.

done for fixed time steps τ = 0.5 × 2−n, n = 0, 1, 2, 3.

We study the velocity and pressure errors in the norm L2(0, 1; L2(Ω)), i.e.,

||U − Uh||L2(0,1;L2(Ω)) =

(
∫ 1

0

||(U − Uh)(t)||2L2(Ω)dt

)1/2

,

||P − P h||L2(0,1;L2(Ω)) =

(
∫ 1

0

||(P − P h)(t)||2L2(Ω)dt

)1/2

.

Figure 1 presents convergence results for both velocity (left) and pressure (right)

components. ROS2 shows second order accuracy, while ROS3PL shows third order

accuracy in all components. The best velocity and pressure error in L2(0, 1; L2(Ω))

has been obtained by the ROS3PL scheme. ROS2 induces for large time steps larger

errors in both velocity and pressure components. For long time computations ROS3PL

is more efficient with respect to CPU time.

3.2. An example to test the spatial discretization error. The following exact

three-dimensional test solution to the incompressible Navier-Stokes equations has
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been proposed in [13]:

u = sin(mx)cos(ly)cos(nz)exp(−tν),

v = −
m + n

l
cos(mx)sin(ly)cos(nz)exp(−tν), (6)

w = cos(mx)cos(ly)sin(nz)exp(−tν),

where m, n, l define the wave numbers along all three directions. The pressure is

determined by assuming no force in the y- direction, that is,

p = −
(m + n)ν

l2
cos(mx)cos(ly)cos(nz)exp(−tν)

+
m(m + n)

4l2
sin2(mx)cos(2ly)cos2(nz)exp(−2tν)

+
(m + n)2

4l2
cos2(mx)cos(2ly)cos2(nz)exp(−2tν)

+
m(m + n)

4l2
cos2(mx)cos(2ly)sin2(nz)exp(−2tν). (7)

The other forces are determined such that (6)-(7) form an exact solution to the Navier-

Stokes equations. For the sake of simplicity, the computational domain is the unit

cube, and we set m = n = l = 1, and viscosity ν = 1. To test the convergence error

in space with linear elements we apply the ROS2 time solver. The results for this

combination are presented in Table 1. As expected, this numerical scheme preserves

second-order accuracy in space at the final time T = 1.
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Grid level L2-norm (OOC) Max-norm (OOC)

h = 1/4 u 3.38e-03 7.47e-03

v 5.78e-03 1.52e-02

w 2.78e-03 7.61e-03

h = 1/8 u 8.35e-04 (2.01) 2.05e-03 (1.86)

v 1.44e-03 (2.00) 4.06e-03 (1.90)

w 7.13e-04 (1.96) 1.99e-03 (1.93)

h = 1/16 u 2.06e-04 (2.01) 5.58e-04 (1.87)

v 3.57e-04 (2.01) 1.08e-03 (1.91)

w 1.78e-04 (1.99) 5.54e-04 (1.84)

Table 1. Error-norms and numerically observed order of convergence (OOC) for

ROS2 with linear elements at time T = 1.

Grid level L2-norm (OOC) Max-norm (OOC)

h = 1/4 u 5.85e-05 2.77e-04

v 1.22e-04 5.42e-04

w 6.28e-05 3.09e-04

h = 1/8 u 7.76e-06 (2.91) 3.96e-05 (2.80)

v 1.57e-05 (2.95) 7.95e-05 (2.76)

w 8.18e-06 (2.94) 4.18e-05 (2.88)

h = 1/16 u 1.01e-06 (2.94) 5.37e-06 (2.88)

v 2.04e-06 (2.94) 1.13e-05 (2.81)

w 1.07e-06 (2.93) 5.52e-06 (2.92)

Table 2. Error-norms and numerically observed order of convergence (OOC) for

ROS3PL with quadratic elements at T = 1.

The simulation was done with a fixed time step τ = 10−2. Indeed, time errors

induced by ROS2 were settled down. For the test with quadratic elements we have
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chosen ROS3PL time solver. Table 2 shows results for this numerical scheme. The

observed order of convergence in space is nearly three. Here the time step used was

τ = 10−1. In engineering computations it is very important to have robust solvers

which allow large time steps. In this sense ROS3PL behaves adequately and will be

used in our further turbulence research.

3.3. Flow around a cylinder. This benchmark problem has been defined within

the DFG high priority research program ”Flow simulation with high-performance

computers”.

Figure 2 shows the considered computational domain where L = 2.25 m,

H = 0.41 m, and the diameter of the cylinder is D = 0.1 m. The purpose of this

benchmark is to numerically evaluate

- the drag force, i.e., CD =
∫

S

(

ρν ∂Ut

∂n
ny − Pnx

)

dS

- the lift force, i.e., CL = −
∫

S

(

ρν ∂Ut

∂n
nx + Pny

)

dS

- the pressure difference ∆P (t) = P (0.45, 0.20, 0.205)− P (0.55, 0.20, 0.205)

where S, n = (nx, ny, 0)T , Ut, t = (ny,−nx, 0) represent the cylinder surface, the

normal vector on S, the tangential velocity on S, and the tangent vector respectively.

Further, the viscosity of the fluid is ν = 0.001 m2/s, and the density is ρ = 1 kg/m3.

Then the drag and lift coefficients are defined to be

cD =
2CD

ρu2DH
, cL =

2CL

ρu2DH
,

where u = 4u(0, H/2, H/2, t) represents the characteristic velocity. Next, for our

computations we take the following two benchmark cases from [11]:

- Case 1 (steady): The inflow boundary condition is

u(0, y, z) = 16umyz(H − y)(H − z)/H4, v = w = 0

with um = 0.45m/s. The corresponding Reynolds number is 20 based on

um, D, and ν.
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Figure 2. The computational geometry.

- Case 2 (unsteady): The inflow boundary condition is

u(0, y, z) = 16umyz(H − y)(H − z)sin(πt/8)/H4, v = w = 0

with um = 2.25m/s. The simulation time is 0 ≤ t ≤ 8 s. The correspond-

ing Reynolds number is 100 based on um, D, and ν.

A complete description of these cases can be found in [11].

The mesh used for these tests consists of 14148 points and is presented in Figure 3.

Using less grid points we were unable to obtain the drag and lift coefficient values even

for the first test case. The discretization near the cylinder has a crucial importance.

Two boundary layers around the cylinder have been used to ensure a proper resolution.

The minimum grid spacing between the cylinder and the first layer was set to 0.005,

while the grid spacing between the second layer and the cylinder was set to 0.01.

Moreover, each cross-section of the cylinder in z- direction has been resolved with 32

points. We will restrict ourselves to linear elements. A comparison of the drag and

lift coefficients and pressure difference at steady state with benchmark results from

[11] and [3] is shown in Table 3. Both ROS2 and ROS3PL time schemes produce good

results.
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Figure 3. The mesh used

ROS2 ROS3PL Ref. [3] Benchmark [11]

cD 6.1199 6.1199 6.1853 6.0500 - 6.2500

cL 0.0195 0.0195 0.009400 0.0080 - 0.0100

∆p 0.1725 0.1725 0.1707 0.1650 - 0.1750

Table 3. Comparison of drag and lift coefficient and pressure difference for Case 1.

ROS2 ROS3PL Benchmark [11]

cD 3.1617 3.1558 3.2000 - 3.3000

cL 0.0120 0.0110 0.0020 - 0.0040

∆p -0.1191 -0.1183 -0.0900 - -0.1100

Table 4. Comparison of drag and lift coefficient and pressure difference for Case 2.

In Table 4 we present results for the second test case. Here, using less grid points

as the authors in [11] we obtain similar coefficients with small variations. For all

these cases the simulation was run with adaptive time steps according to equation

(4). Although the drag coefficient is relatively simple to obtain, the lift coefficient is

very sensitive to the mesh near the cylinder. For more accurate results one need to

construct meshes with a better resolution of the cylinder region.

The linear systems arising from every time-stage are solved with the BiCGStab algo-

rithm [12] with ILU as a preconditioner.
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4. Conclusions

In this paper we have presented numerical methods based on linearly implicit

time schemes of Rosenbrock type and stabilized finite elements in space to numerically

solve laminar flow problems described through the three-dimensional incompressible

Navier-Stokes equations. All these methods have been included in our adaptive fi-

nite element code KARDOS. The numerical examples studied in Section 3 clearly

reveal second and third order of accuracy in space and time for our schemes. More

specifically, applied to laminar flow problems with known smooth solutions, ROS2

and ROS3PL show their theoretical time order two and three, respectively. In these

cases, ROS3PL performs more efficiently with respect to computing time. Our sta-

bilization technique in space allows us to use equal-order finite elements for velocity

and pressure components. We have found that combined with a Rosenbrock solver of

suitable order, linear and quadratic Lagrange elements yield second and third order

of spatial accuracy measured in the L2- and maximum norm. From further practi-

cal experiences, our approach appears to provide a promising starting point for the

development of efficient numerical solvers for more complex, turbulent flows. In our

future work we are extending our code KARDOS to study and validate subgrid-scale

models in the context of large eddy simulations for various physical applications.
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Advanced Courses in Mathematical Analysis, II, Proceedings of the Second
International School, M. V. Velasco and A. Rodŕıguez-Palacios (Editors), World Sci-
entific Publishers, London - Singapore 2007, xi+213 pp, ISBN:13-978-981-256-652-2
and 10-981-256-652-X.

The volume contains the written versions of the talks and lectures delivered at
the Second International Conference on Mathematical Analysis in Andalućıa, which
was held in Granada from 20 to 24 September, 2004. The first conference took place in
Cadiz in September 2003, and its proceeding were published also with World Scientific
in 2004.

The aim of the course was to bring together different research groups working
in mathematical analysis and to provide the young researchers of these groups with
access to the most advanced lines of research.

The present volume contains 11 papers covering a variety of topics from
analysis - survey papers, contributed papers and historical surveys as well.

There are three papers of historical nature: F. Bombal, Alexander
Grothendieck’s work on functional analysis, (presenting not only the outstanding
contributions of Grothendieck to tensor products and their applications to Banach
space theory, but also some aspects of his unusual life and philosophy); L. Narici, On
the Hahn-Banach theorem, B. Rubio Segovia, Tribute to Miguel de Guzmán: Reflec-
tions on mathematical education centered on the mathematical analysis. Miguel de
Guzmán, one of the leading analysts of Spain, was scheduled to deliver a talk at the
conference, but passed away shortly before the holding of the conference.

The paper by R. M. Aron, Linearity in non-linear situations, is concerned
with the question whether some peculiar classes of functions (e.g, continuous and
nowhere differentiable) contain some infinite dimensional linear subspaces - a property
called lineability. The paper of Manuel Valdivia, the dean of the main speakers, On
certain spaces of holomorphic functions, contains some related results (appearing for
the first time in print), but concerning spaces of holomorphic functions.

The following papers survey results in the respective topics and present new
contributions and open problems: J. Duoadiketxea, The Hardy-Littlewood maximal
function and some of its variants, Gilles Godefroy, Linear dynamics (is concerned
with hypercyclic operators, focussing on some recent results obtained by S. Grivaux
and F. Bayart), Nigel J. Kalton, Greedy algorithms and bases from the point of view
of Banach space theory (discusses some recent results about greedy, quasi-greedy and
almost-greedy bases in Banach spaces obtained by the author, Konyagin, Temlyakov,
Wojtaszczyk, a.o.), Michael M. Neumann, Spectral properties of Cesáro-like operators
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(the fine spectrum of Cesàro-like operators on Hardy spaces and on weighted Bergman
space) and Joan Verdera, Classical potential theory and analytic capacity (reports on
the spectacular solutions given in 1998 by G. David to an old problem of Vitushkin
(1967) and by the author in 2003 to a problem by J. Garnett (1972)).

The last paper in the volume, containing mainly previously unpublished re-
sults, F. Zó and H. H. Cuenya, Best approxiamtion ion small regions - A general
approach, proposes a unified approach, via monotone norms and Orlicz spaces, to
some problems in local approximation theory by polynomials of Taylor type.

The volume presents interests for mathematicians desiring to get first-hand
information on some recent results and trends in various domains of mathematical
analysis.

I. V. Şerb

David Bachman, A Geometric Approach to Differential Forms, Birkhäuser,
Boston - Basel - Berlin, 2007, xii+568 pp, ISBN: 978-3-7643-8146-2.

The integration of differential forms and Stokes’ theorem are among the most
difficult parts of the multivariable integral calculus. The main difficulty consists
in understanding the connection between the algebraic and analytic machinery of
differential forms and their geometric support. In concrete applications in R2 and R3

one draws pictures and one thinks geometrically, while in higher dimensions abstract
calculations must be used. In many cases it is hard to realize how the abstract notions
in the calculus of the differential forms look like in our drawings.

The aim of the present book is to reverse the situation - one starts with
intuitive geometrical considerations in the spaces R2 and R3, and extending them
to higher dimensions. As the author mentions in the Preface, the motivation for
writing such a book comes from his experience with the abstract algebraic approach
to differential forms in the book on differential topology by Guillemin and Pollack and
the geometric approach in V. Arnold’s book on mathematical methods of classical
mechanics.

The book starts with a review of basic results in the multivariable calculus
- vectors, functions, multiple integrals partial derivatives and gradients, in the first
chapter, and an introduction to parametrization in the second one. In the third
chapter the integral of the function f(x, y) = y2 on a semicircle is calculated for
two parametrizations with different results. Based on this clever example, the author
explains why the differential forms must enter on the stage, a general theory being
given in Chapter 4, including computations (addition, multiplication).

The core of the book is formed by Chapters 5. Differential forms, 6. Differ-
entiation of forms, and 7. Stokes’ theorem, while Chapter 8 is devoted to applications
- Maxwell’s equations, foliations and contact structures.

Chapter 9. Manifolds, is an introduction to more advanced topics - differ-
ential forms on manifolds, culminating with a short presentation of De Rham coho-
mology.
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Non-linear forms defining surface area and arc length are treated in an ap-
pendix.

Based on some courses taught by the author at Calyfornia Polythechnic State
University, San Luis Obispo and Pitzer College, the book is well written, in a pedes-
trian and pleasant style, with a lot of illuminating pictures. I consider it a good (and
necessary) companion to more advanced books on the subject. In fact, a preliminary
knowledge of algebraic theory of differential forms is an advantage in reading this
book.

It can be used for a third semester course in calculus, or a sophomore level
in Vector Calculus, and parts of it, for advanced undergraduate or graduate courses.

Tiberiu Trif

A. Borel and L. Ji, Compactifications of Symmetric and Locally Symmet-

ric Spaces, Birkhäuser (Mathematics: Theory and Applications), 2006, Hardback,
476 pp., ISBN-10: 0-8176-3247-6, ISBN-13: 978-0-8176-3247-2.

Symmetric and locally symmetric spaces occur, as the authors of this mono-
graph emphasize from the very beginning, in many branches of modern mathematics.
In many situations, they are noncompact. As it usually happens, it is a lot easier to
deal with compact spaces, therefore there were elaborated several ways to compactify
them. This is, to my knowledge, the first serious attempt to present in a unified
manner, the most important compactification methods known so far.

The authors point out that there are, essentially, three types of compactifi-
cations:

1. compact spaces that contain a symmetric space as an open dense subset;
2. compact smooth analytic manifolds containing a disjoint union of finitely

many (but al least two!) symmetric spaces as an open dense subspace and
3. compact spaces containing a locally symmetric space as an open dense

subset.

Clearly, the first and the last compactifications are the usual ones (in the sense of the
point set topology), but the compactifications of type 2 are also important in many
applications.

The book is, roughly, structured according to this classification of compact-
ifications. Thus, after a short introductions, including, also, historical material, the
first part of the book is devoted to compactifications of type 1 (more specifically, the
compactifications of Riemannian symmetric spaces), the second part is concern with
the smooth compactifications of semisimple symmetric spaces, while the last part is
dedicated to compactifications of locally symmetric spaces.

In all the cases, as I’ve already pointed out, there are discussed particular
compactification methods, but there are also made effort to unify different approaches.

This is a highly technical book, addressed only to researchers or advanced
graduate students, as the prerequisite are rather demanding: semisimple Lie groups,
algebraic geometry, algebraic groups, etc. Much of the material is taken from authors
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publications, some of it is here for the first time in a monograph. Both author are
well known experts in the field. Actually, the first author (Armand Borel) who,
unfortunately, passed away before the publication of the book, was one of the finest
mathematician of the twentieth century and this is, in a way, his scientific testament.

The book is, definitely, a very valuable addition to the literature on compact-
ification theory for symmetric and locally symmetric spaces, and it will soon become
an indispensable reference for anyone working in the field.

Paul Blaga

Albrecht Pietsch, History of Banach Spaces and Linear Operators,

Birkhäuser Verlag AG, Boston - Basel - Berlin, 2007, xxiii + 855 pp, ISBN: 10:
0-8176-4367-2 and 13:978-0-8176-4367-6.

This book is a welcome and waited addition to the existent books on the
history of functional analysis. In fact there were two such books - A. F. Monna, Func-
tional analysis in historical perspective, Oetshoek, Utrecht, 1973, and J Dieudonné,
History of functional analysis, North-Holland, Amsterdam, 1981 - both of them cov-
ering the period up to 1950, so that a book dealing with the modern developments
in Banach space theory was strongly required, a difficult task taken and brilliantly
accomplished by the author of the present book. Due to broadening of the subject
and the explosion of results, writing a book about functional analysis is almost im-
possible, so the author restricted to Banach spaces and bounded linear operators
acting on them, fields in which he was actively involved over the last 50 years - he
received his M.Sc. in 1958, exactly when a new era started in Banach space theory.
In fact the author divides the development of Banach spaces in seven periods: 1900-
1920 - the prenatal period (Fredholm, Hilbert, Riesz-Fischer theorem); 1920 -the

birth, marked by Banach’s thesis; 1920 - 1932 - the youth (the principles of uniform
boundedness, closed graph and open mapping, Hahn-Banach theorem); 1932 - the

maturity marked by the publication of Banach’s monograph Théorie des opérations
linéaires; 1932 - 1958 - post-Banach period (interrupted by Holocaust and World
War II); 1958 - classical books (Dunford - Schwartz, vol. I, Hille-Phillips, Taylor),
midlife crisis and big bang (Grothendieck’s resumé, Mazur’s school in Warszawa,
Dvoretzky’s theorem), and the modern period from 1958 on.

A crucial event in the last years was the publication of the Handbook of the
geometry of Banach spaces, edited by W. B. Johnson and J. Lindenstrauss, Elsevier,
Amsterdam, vol. I (2001), vol. II (2003), concerned almost exclusively with the
present-day situation in Banach space theory. The author considers that his book
may be regarded as a historical companion of these volumes.

The exposition is divided into seven chapters: 1. The birth of Banach spaces,
2. Historical roots and basic results, 3. Topological concepts - weak topologies, 4.
Classical Banach spaces, 5. Basic results from the post-Banach period (analysis
in Banach spaces, spectral theory, convexity and extreme points, geometry of the
unit ball, bases, tensor products and approximation properties), 6. Modern Banach
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space theory (geometry of Banach spaces, s-numbers and operator ideals (author’s
specialty), eigenvalue distributions, interpolation theory, function spaces, probability
on Banach spaces), 7. Miscellaneous topics (modern techniques - probabilistic and
combinatorial, counterexamples, Banach spaces and axiomatic set theory).

The last chapter of the book, 8. Mathematics is made by mathematicians,
starts with a tribute to mathematicians victims of the terror - killed in wars or mur-
dered by totalitarian regimes - especially from the former Soviet Union and Poland.
Then one presents some important schools as well as short biographies of some promi-
nent contributors to the development of the Banach space theory or who have written
influential books. As the author mentions in the Preface his main concern is not
Who proved a theorem? nor to rank mathematicians, but rather to answer the ques-
tion Why and how was a theorem proved? For this reason precise definitions and
statements are formulated and, in some cases, even proofs are included.

The book is very well organized - a huge bibliography (approximatively 2600
items and 4600 quotations), an index name, a chronological index, a notion index.

The book is written in a very pleasant style, combining erudition and precision
with anecdotes about mathematicians, witty remarks and pertinent comments by the
author, making the reading instructive and entertaining as well.

Professor Pietsch made a great service to the mathematical community by
writing this book.

S. Cobzaş

S. Dragomir and G. Tomassini, Differential Geometry and Analysis on

CR Manifolds, Birkhäuser (Progress in Mathematics, 246), 2006, Hardback, 487
pages, ISBN-10: 0-8176-4388-5, ISBN-13: 978-0-8176-4388-1.

A CR-manifold Mm is, essentially, a real manifold endowed with a special
rank n complex subbundle of its complexified tangent bundle. n and k = m − 2n

are called, respectively, the CR-dimension and CR-codimension of the CR-manifold
M . A very important class of examples (and the original motivation) is that of real
hypersurfaces of complex manifolds. Obviously, such a hypersurface has an odd real
dimension, therefore it cannot carry a complex structure, but it inherits, neverthe-
less, a CR-structure, of codimension 1, from the ambient complex manifold. More
generally, all the codimension 1 CR-manifolds are called of hypersurface type.

This monograph, written by two of the active researchers in the field and
including much original material, treats some of the moderns aspects of the very
interesting field, lying at the intersection between complex analysis, differential ge-
ometry and partial differential equations.

Much of the book is devoted to CR-manifolds of hypersurface type, which
are most interesting from the geometrical point of view, since they carry significant
geometrical structure (connections and metric). Thus, the first chapter of the book
is devoted to the so-called pseudo-Hermitian geometry, namely the geometry of CR-
manifolds endowed with a canonical connection, introduced by Tanaka and Webster
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in that late seventieth. The second chapter deals with another essential geometric ob-
ject associated to a CR-manifold, the Fefferman metric, a Lorentzian metric (which
doesn’t live on the manifold itself, but it is intimately related to it). The remaining
part of the book investigates different objects and problems that can be formulated
starting from the basic geometric structure, by analogy with the classical Riemann-
ian geometry: the CR Yamabe problem, pseudoharmonic maps, pseudo-Einsteinian
manifolds, psudo-Hermitian immersions, spectral geometry, Yang-Mills fields on CR-
manifolds, quasiconformal mappings.

Much of the material of the book is for the first time present in the mono-
graph literature and, which is, perhaps, even more important, the book has a distinct
geometric flavor, unlike many of the recent books on this topic, which were written
mainly by analysts and treated especially problems from the realm of complex analy-
sis of several variables or partial differential equations. We have, finally, a monograph
trying to do justice to both parts, insisting, however (as I said) more on geometry
than on analysis. Let me also say that the description of the geometrical part is very
technical and can only be done mostly with the tools of the analyst.

The book is very well written and, although this is, clearly, a research mono-
graph, can be read with real benefit also by advanced graduate students and PhD
students with interests in all the three fields mentioned above: differential geometry,
complex functions of several variables and PDE.

I couldn’t help noticing the impressive literature list (449 titles), giving an
idea of the documentation work lying behind this excellent book.

Paul Blaga

Pavel Drábek and Jaroslav Milota, Methods of Nonlinear Analysis - Ap-

plications to Differential Equations, Birkhäuser Advanced Texts, Birkhäuser
Verlag AG, Basel - Boston - Berlin, 2007, xii+568 pp, ISBN: 978-3-7643-8146-2.

This introductory course contains the basic results and methods in nonlinear
analysis, with applications to boundary value problems for ordinary and partial dif-
ferential equations. To avoid technicalities and make the text accessible to beginners,
some of the assertions and examples are not treated in the most general known form,
but rather in typical situations containing the essential features of the problem. In
fact, the book is written at two levels - the basic material contained in the seven
chapters of the book and the appendices, containing more advanced topics. The basic
material can be read independently, while the appendices, following some sections in
the main text and written in a smaller font size, depend on the basic material.

The first chapter 1. Preliminaries, contains some results from linear algebra
and normed linear spaces, including a presentation of basic of Lp- and Sobolev spaces.
Some results are given with proofs. Chapter 2. Properties of linear and nonlinear op-
erators, is concerned with the basic principles of functional analysis in normed spaces
and some properties of linear compact operators (Schauder compactness theorem and
Riesz spectral theory). The part on nonlinear operators deals with Banach contraction
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principle, Browder fixed point theorem for nonexpansive mappings in Hilbert space,
Edelstein fixed point theorem. Chapter 3. Abstract and differential calculus, contains
the basic results on Riemann integral for Banach space valued functions, Bochner
integral and Dunford functional calculus, differential calculus in normed spaces, and
Newton method in an appendix.

The inverse function theorem (local and global), the implicit function the-
orem, local structure of differentiable mappings and bifurcation, the rank theorem,
Morse theorem, are treated in the fourth chapter Local properties of differentiable
mappings. Some more refined results, as differentiable manifolds and vector fields,
differential forms and Poincaré theorem, integration on manifolds and Stokes theo-
rem, Brouwer degree with applications to Borsuk-Ulam antipodal theorem and Jordan
separation theorem, are included in the appendices to this chapter.

Chapter 5. Topological and montonicity methods, presents Brouwer and
Schauder fixed point theorems, topological degree, and some results on monotone
operators. The appendices contain some fixed point theorems (involving measures
of noncompactness) for noncompact operators, Rabinowitz global bifurcation theo-
rem (Izé’s proof), topological degree for generalized monotone operators (following
Browder and Skrypnik), Krein-Rutman theorem.

Chapter 6. Variational methods, is devoted to the basic methods of the vari-
ational calculus - local and global extrema, Lagrange multipliers, the Mountain Pass
and Saddle Point Theorems, Ritz method and, in appendices, Krasnoselski poten-
tial bifurcation theorem, Ekeland variational principle with applications, Lusternik-
Schirelman category method, Rabinowitz linking theorem.

The last chapter, 7. Boundary value problems for partial differential equa-
tions, contains applications of the results and methods developed in the previous
chapters to boundary value problems for partial differential equations - classical and
weak solutions as well.

There are a lot of examples and exercises spread through the book as well as
a lot of explanatory footnotes.

The book ends with some tabular synthesis material - summaries of methods
and of typical applications, a comparison of bifurcation results, a list of symbols, an
index and a bibliography of 137 titles.

The book is well written, in an accessible and clear style and well organized.
It can be used for graduate courses in nonlinear analysis or for self-study.

Damian Trif
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