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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LIII, Number 2, June 2008

A NEW SEQUENCE SPACE DEFINED BY A MODULUS

YAVUZ ALTIN, MAHMUT IŞIK, AND RIFAT ÇOLAK

Abstract. The idea of difference sequence spaces was introduced by

Kızmaz [8] and this concept was generalized by Et and Çolak [6]. In

this paper we define the space �(Δm, f, p, q, s) on a seminormed complex

linear space by using modulus function and we give various properties and

some inclusion relations on this space. Furthermore we study some of its

properties, solidity, symmetricity etc.

1. Introduction

Let w denote the space of all sequences, and let �∞, c and c0 be the linear

spaces of bounded, convergent and null sequences x = (xk) with complex terms,

respectively, normed by ‖x‖∞ = supk |xk| , where k ∈ N = {1, 2, 3, ...} , the set of
positive integers. Kızmaz [8] defined the sequence spaces

X(Δ) = {x = (xk) : (Δxk) ∈ X}

for X = �∞, c and c0, where Δx = (Δxk) = (xk − xk+1).

The sequence spaces �∞(Δm), c(Δm), c0(Δm) have been introduced by Et

and Çolak [6]. These sequence spaces are BK spaces (Banach coordinate spaces) with

norm

‖x‖Δ =
m∑
i=0

|xi|+ ‖Δmx‖∞ ,
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where m ∈ N,Δ0x = (xk), Δx = (xk − xk+1), Δmx = (Δm−1xk −Δm−1xk+1), and

so

Δmxk =
m∑
v=0

(−1)v
(
m

v

)
xk+v.

The operators

Δm,
∑m : w → w

are defined by

(
Δ1x

)
k
= Δ1xk = xk − xk+1,

(∑1
x
)
k
=
k−1∑
j=1

xj , (k = 0, 1, . . .) ,

Δm = Δ1 ◦Δm−1,
∑m =

∑1 ◦∑m−1 (m ≥ 2)

and ∑m ◦Δm = Δm ◦
∑m

= id

the identity on w (see [10]).

It is trivial that the generalized difference operator Δm is a linear operator.

Recently, spectral properties of the difference operator were given by Malafosse [9],

Altay and Başar [1].

Subsequently difference sequence spaces have been studied by various authors:

(Çolak, Et and Malkowsky [4], Et [5], Mursaleen [8]).

The notion of a modulus function was introduced by Nakano [14] in 1953.

We recall that a modulus f is a function from [0,∞) to [0,∞) such that

i) f(x) = 0 if and only if x = 0,

ii) f(x+ y) ≤ f(x) + f(y), for all x ≥ 0, y ≥ 0,

iii) f is increasing,

iv) f is continuous from the right at 0.

It follows that f must be continuous on [0,∞) . A modulus may be bounded

or unbounded. For example, f (x) = xp, (0 < p ≤ 1) is unbounded and f (x) = x
1+x

is bounded. Maddox [12] and Ruckle [16] used a modulus function to construct some

sequence spaces.
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After then some sequence spaces, defined by a modulus function, were intro-

duced and studied by Bilgin [3], Pehlivan and Fisher [15], Waszak [17], Bhardwaj [2]

and many others.

Proposition 1.1. Let f be a modulus and let 0 < δ < 1. Then for each x ≥ δ we have

f (x) ≤ 2f (1) δ−1x, [15].

Let p = (pk) be a sequence of strictly positive real numbers. Let X be a

seminormed space over the field C of complex numbers with the seminorm q. We

introduce the following set of X - valued sequences

�(Δm, f, p, q, s) =

{
x = (xk) : xk ∈ X,

∞∑
k=1

k−s[f(q(Δmxk))]pk <∞ , s ≥ 0

}

where f is a modulus. For different seminormed spaces X we get different sequence

spaces �(Δm, f, p, q, s). Throughout the paper without writing X we use the notation

�(Δm, f, p, q, s) for any but the same seminormed space X, unless otherwise indicated.

The following inequality will be used throughout this paper.

Let p = (pk) be a sequence of strictly positive real numbers with 0 < pk ≤
supk pk = H <∞. Then for ak, bk ∈ C , we have

|ak + bk|pk ≤ C {|ak|pk + |bk|pk} , (1)

where C = max (1, 2H−1) (see for instance [11]).

The set �(Δm, f, p, q, s) is not a subset of �∞ for m ≥ 2, in case X = C or

X = R, the set of real numbers. For this let X = C, s = 0, f (x) = x, q (x) = |x|
and pk = 1 for all k ∈ N. If xk = k for all k ∈ N, then (xk) ∈ �(Δm, f, p, q, s) and

(xk) /∈ �∞.

Definition 1.2. Let X be a sequence space. Then X is called

a) Solid (or normal ) if (αkxk) ∈ X whenever (xk) ∈ X for all sequences (αk)

of scalars with |αk| ≤ 1,

b) Symmetric if (xk) ∈ X implies
(
xπ(k)

) ∈ X, where π (k) is a permutation
of N [7].
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Definition 1.3. Let p, q be seminorms on a vector space X. Then p is said to

be stronger than q if whenever (xn) is a sequence such that p(xn) → 0, then also

q(xn) → 0. If each one stronger then the other one, then p and q are said to be

equivalent [18].

Lemma 1.4. Let p and q be seminorms on a linear space X. Then p is stronger than

q if and only if there exists a constant M ≥ 0 such that q (x) ≤Mp (x) for all x ∈ X
[18].

2. Main results

In this section we will give some results on the sequence space �(Δm, f, p, q, s),

those characterize the structure of the space �(Δm, f, p, q, s).

Theorem 2.1. The sequence space �(Δm, f, p, q, s) is a linear space over C .

Proof. Let x, y ∈ �(Δm, f, p, q, s). For λ, μ ∈ C, there exist positive integers Mλ and

Nμ such that |λ| ≤ Mλ and |μ| ≤ Nμ. Since f is subadditive, q is a seminorm and

Δm is linear
∞∑
k=1

k−s[f(q(Δm(λxk + μyk)))]pk ≤
∞∑
k=1

k−s[f(|λ| q(Δmxk)) + f(|μ| q(Δmyk))]pk

≤ C (Mλ)
H

∞∑
k=1

k−s[f(q(Δmxk)]pk + C (Nμ)
H

∞∑
k=1

k−s[f(q(Δmyk)]pk < ∞.

This proves that �(Δm, f, p, q, s) is a linear space.

Theorem 2.2. �(Δm, f, p, q, s) is a paranormed space (not totally paranormed),

paranormed by

gΔ (x) =

{ ∞∑
k=1

k−s [f (q(Δmxk))]
pk

} 1
M

where H = sup pk <∞ and M = max (1,H) .

Proof. Clearly gΔ (θ) = 0 and gΔ (x) = gΔ (−x) , where θ = (θ, θ, θ, ...) and is the

zero of X.
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It also follows from (1), Minkowski’s inequality and the definition of f that

gΔ is subadditive. Now for a complex number λ, by inequality

|λ|pk ≤ max
(
1, |λ|H

)
and the definition of modulus f, we have

gΔ (λx) =

( ∞∑
k=1

k−s [f (q (λΔmxk))]
pk

) 1
M

≤ (1 + [|λ|]) H
M .gΔ (x)

where [|λ|] denotes the integer part of λ, hence λ→ 0, x→ θ imply λx→ θ and also

x→ θ, λ fixed imply λx→ θ.

Now suppose λn → 0 and x is a fixed point in � (Δm, f, p, q, s) . Given ε > 0,

let K be such that
∞∑

k=K+1

k−s [f (q (Δmxk))]
pk <

(ε
2

)M
.

Hence we have ( ∞∑
k=K+1

k−s [f (q(Δmxk))]
pk

) 1
M

<
ε

2
.

Since f is continuous on [0,∞)

h (t) =
K∑
k=1

k−s [f (q((Δm (txk))))]
pk

is continuous at 0. Therefore, there exists 0 < δ < 1 such that |λn| < δ implies(
K∑
k=1

k−s [f (q(λnΔmxk))]
pk

)
<
ε

2
.

for n > N. Hence ( ∞∑
k=1

k−s [f (q(λnΔmxk))]
pk

) 1
M

< ε

for n > N. Therefore g (λx)→ 0 as λ→ 0.

Theorem 2.3. Let f, f1 and f2 be modulus functions, q, q1 and q2 seminorms and

s, s1, s2 ≥ 0 real numbers.
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i) If s > 1, then � (Δm, f1, p, q, s) ⊆ � (Δm, f ◦ f1, p, q, s) ,
ii) � (Δm, f1, p, q, s) ∩ � (Δm, f2, p, q, s) ⊆ � (Δm, f1 + f2, p, q, s) ,

iii) � (Δm, f, p, q1, s) ∩ � (Δm, f, p, q2, s) ⊆ � (Δm, f, p, q1 + q2, s) ,

iv) If q1 is stronger than q2 then � (Δm, f, p, q1, s) ⊆ � (Δm, f, p, q2, s) ,

v) If s1 ≤ s2, then � (Δm, f, p, q, s1) ⊆ � (Δm, f, p, q, s2) .

Proof. i) Let xk ∈ � (Δm, f1, p, q, s) . Let ε > 0 and choose δ with 0 < δ < 1 such that

f (t) < ε for 0 ≤ t ≤ δ. Write tk = f1(q(Δmxk)) and consider

∞∑
k=1

k−s[f(tk)]pk =
∑
1

k−s[f(tk)]pk +
∑
2

k−s[f(tk)]pk

where the first summation is over tk ≤ δ and the second over tk > δ. Since f is

continuous, we have

∑
1

k−s[f(tk)]pk < max
(
1, εH

) ∞∑
k=1

k−s (2)

and for tk > δ we use the fact that

tk <
tk
δ
< 1 +

[∣∣∣∣ tkδ
∣∣∣∣
]
.

By the definition of f we have for tk > δ,

f(tk) ≤ f(1)[1 +
(
tk
δ

)
] ≤ 2f(1)

tk
δ

∑
2

k−s[f(tk)]pk ≤ max

(
1,

(
2f(1)
δ

)H) ∞∑
k=1

k−s[tk]pk <∞. (3)

By (2) and (3) we have � (Δm, f1, p, q, s) ⊆ � (Δm, f ◦ f1, p, q, s) .
ii) Let x = xk ∈ � (Δm, f1, p, q, s)∩� (Δm, f2, p, q, s) . Then using (1) it can be

shown that xk ∈ � (Δm, f1 + f2, p, q, s). Hence � (Δm, f1, p, q, s) ∩ � (Δm, f2, p, q, s) ⊆
� (Δm, f1 + f2, p, q, s) .

iii) The proof of (iii) is similar to the proof of (ii) by using the inequality

k−s [f(q1 + q2) (Δmxk)]
pk ≤ Ck−s [f (q1 (Δmxk))]

pk + Ck−s [f (q2 (Δmxk))]
pk

where C = max (1, 2H−1).

(iv) and (v) follows easily.
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We get the following sequence spaces from �(Δm, f, p, q, s) by choosing some

of the special p, f, and s :

For f (x) = x we get

�(Δm, p, q, s) =

{
x ∈ w(X) :

∞∑
k=1

k−s[q(Δmxk)]pk <∞ , s ≥ 0

}
;

for pk = 1, for all k, we get

�(Δm, f, q, s) =

{
x ∈ w(X) :

∞∑
k=1

k−s[f (q(Δmxk))] <∞ , s ≥ 0

}
;

for s = 0 we get

�(Δm, f, p, q) =

{
x ∈ w(X) :

∞∑
k=1

[f (q(Δmxk))]pk <∞
}
;

for f(x) = x and s = 0 we get

�(Δm, p, q) =

{
x ∈ w(X) :

∞∑
k=1

[q(Δmxk)]pk <∞
}
;

for pk = 1, for all k, and s = 0 we get

�(Δm, f, q) =

{
x ∈ w(X) :

∞∑
k=1

f (q(Δmxk)) <∞
}
;

for f (x) = x, pk = 1, for all k, and s = 0 we have

�(Δm, q) =

{
x ∈ w(X) :

∞∑
k=1

q(Δmxk) <∞
}
.

Corallary 2.4. i) If s > 1 then for any modulus f we have

�(Δm, p, q, s) ⊆ � (Δm, f, p, q, s) ,

ii) If q1 and q2 are equivalent seminorms then

�(Δm, f, p, q1, s) = � (Δm, f, p, q2, s) ,

iii) �(Δm, f, p, q) ⊆ � (Δm, f, p, q, s) ,

iv) �(Δm, p, q) ⊆ � (Δm, p, q, s) ,

v) �(Δm, f, q) ⊆ � (Δm, f, q, s) .

Proof. i) If f1(t) = t in Theorem 2.3 (i), then the result follows easily.
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ii) It follows from Theorem 2.3 (iv).

iii) If we take s1 = 0 and s2 = s in Theorem 2.3 (vi), then we get �(Δm, f, p, q)

⊆ � (Δm, f, p, q, s) .

iv) If we take s1 = 0, s2 = s, and f(t) = t in Theorem 2.3 (vi), then we get

�(Δm, p, q) ⊆ � (Δm, p, q, s) .

v) If we take s1 = 0 , s2 = s, and pk = 1 for all k, in Theorem 2.3 (vi) then

�(Δm, f, q) ⊆ � (Δm, f, q, s) .

Theorem 2.5. �(Δm−1, f, q, s) ⊂ �(Δm, f, q, s) for m ≥ 1 and the inclusion is strict.

In general �(Δi, f, q, s) ⊂ �(Δm, f, q, s) for all i = 1, 2, 3, ...,m− 1 and the inclusions

are strict.

Proof. Let x ∈ �(Δm−1, f, q, s). Then we have

∞∑
k=1

k−sf
(
q(Δm−1xk)

)
<∞. (4)

Since (k + 1)−s < k−s ≤ 2s(k + 1)−s for all k ∈ N we get the following

inequality

k−sf
(
q(Δm−1xk+1)

) ≤ 2s(k + 1)−sf
(
q(Δm−1xk+1)

)
. (5)

(4) and (5) together imply that

∞∑
k=1

k−sf
(
q(Δm−1xk+1)

)
<∞. (6)

Since f is increasing, f(x + y) ≤ f(x) + f(y) and q is a seminorm, from (4)

and (6) we get

∞∑
k=1

k−sf (q(Δmxk)) =
∞∑
k=1

k−sf
(
q(Δm−1xk −Δm−1xk+1)

)

≤
∞∑
k=1

k−sf
(
q(Δm−1xk)

)
+

∞∑
k=1

k−sf
(
q(Δm−1xk+1)

)
¡ ∞.

Thus �(Δm−1, f, q, s) ⊂ �(Δm, f, q, s).

In general �(Δi, f, q, s) ⊂ �(Δm, f, q, s) for i = 1, 2, 3, ...,m− 1 and the inclu-
sions are strict. For this consider the following example.
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Example 2.1. Let X = C, f(x) = x , q(x) = |x| , s = 0. Consider the sequence

(xk) =
(
km−1

)
. Then (xk) ∈ �(Δm, f, q, s) but (xk) /∈ �(Δm−1, f, q, s), since Δmxk =

0 and Δm−1xk = (−1)m−1 (m− 1)! for all k ∈ N.

Theorem 2.6. The sequence space � (Δm, f, p, q, s) is not solid.

Proof. To show that the space is not solid in general, consider the following example.

Example 2.2. Let X = C, f(x) = x , q(x) = |x| , m = 2, s = 0 and pk = 1 for all

k ∈ N. Then x = (xk) = (k) ∈ � (Δm, f, p, q, s) but αx = (αkxk) /∈ � (Δm, f, p, q, s)

for αk = (−1)k for all k ∈ N. Hence � (Δm, f, p, q, s) is not solid.

Theorem 2.7. i) Let 0 < tk ≤ rk <∞ for each k ∈ N. Then

� (Δm, f, t, q) ⊆ �(Δm, f, r, q),

ii) � (Δm, f, q) ⊆ �(Δm, f, q, s),

iii) � (Δm, f, t, q) ⊆ �(Δm, f, t, q, s).

Proof. i) If x ∈ � (Δm, f, t, q) then, for all sufficiently large k,

[f (q (Δmxk))]
tk ≤ 1

and so

[f (q (Δmxk))]
rk ≤ [f (q (Δmxk))]

tk .

This completes the proof.

The proof of (ii) and (iii) is trivial.

Theorem 2.8. i) If 0 < pk ≤ 1 for each k ∈ N, then � (Δm, f, p, q) ⊆ �(Δm, f, q),

ii) If pk ≥ 1 for all k ∈ N, then �(Δm, f, q) ⊆ � (Δm, f, p, q) .

Proof. i) If we take pk = tk and rk = 1 for all k ∈ N, in Theorem 2.7 (i), then

� (Δm, f, p, q) ⊆ �(Δm, f, q).

ii) If we take pk = rk and tk = 1 for all k ∈ N, in Theorem 2.7 (i), then

�(Δm, f, q) ⊆ � (Δm, f, p, q) .

Theorem 2.9. The sequence space � (Δm, f, p, q, s) is not symmetric.
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Proof. To show that the space is not symmetric, consider the following example.

Example 2.3. Let X = C , f(x) = x, q = |x|, s = 0 and pk = 1 for all k ∈ N. Then

the sequence (xk) = (k) belongs to � (Δm, f, p, q, s) . Let (yk) be a rearrangement of

(xk) , which is defined as follows:

yk = (x1, x2, x4, x3, x9, x5, x16, x6, x25, x7, x36, x8, x49, x10, ...)

then the sequence (yk) does not belong to � (Δm, f, p, q, s) .
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[5] Et, M., On some topological properties of generalized difference sequence spaces, Int. J.

Math. Math. Sci., 24(11)(2000), 785-791.
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A SURROGATE DUAL ALGORITHM
FOR QUASICONVEX QUADRATIC PROBLEMS

ABDESSAMAD AMIR AND ADNAN YASSINE

Abstract. The purpose of this paper is to solve, via a surrogate dual

method, a quadratic program where the objectif function is not explicitly

given. We apply our study to quasiconvex quadratic programs.

1. Introduction

In general a quadratic optimization problem can be formulated as:

min{Q (x) =
1
2
xTHx + cTx : Ax ≤ b, x ≥ 0} (1)

where H is a symmetric n × n matrix, c ∈ R
n, A is a m × n matrix and b ∈ R

m.

The computational cost for solving such a problem depends on the properties of the

matrix H and the dimensions m and n. The convex quadratic problem (i.e. when H

is positive semidefinite) is often not more difficult to solve than a linear problem. The

non convex case is more difficult, stationary points and local minimums which are not

global minimums may exist [15]. In this paper, we are interested in the same quadratic

programs (1) with only quasiconvex objective. Historically, the first criteria on the

quasiconvex and pseudoconvex quadratic functions were given by Martos [11], Cottle

and Ferland [1]. As we will see in the second section, these authors characterize this

class of nonconvex quadratic functions with a finite number of conditions, contrary

to the classical definitions. Furthermore, Ferland [6] and Schaible [12] independently

obtained a characterization of quasiconvex and pseudoconvex quadratic functions on

arbitrary solid convex sets. In mathematical programming, the pseudoconvexity of

Received by the editors: 15.09.2006.
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the objective is more wished than the quasiconvexity owing to the fact that the

conditions of optimality of Karuch-Kuhn-Tucker (K-K-T) are necessary and sufficient

to ensure the global minimum of the problem. But by weakening the pseudoconvexity

assumptions to the quasiconvex case, these conditions become only necessary, and give

only critical points.The third section is devoted to the surrogate duality [3], which is

more adapted to quasiconvex programming than Lagrangian duality [8]. Indeed often

we obtain an non empty duality gap. In the situation when the surrogate dual can be

explicitly computing ( for example Q is strictly convex), this gave rise to interesting

numerical treatment[14]; but in the general case the objective function is expressed

only in implicit form. Our aim is to give a surrogate dual method in this difficult

situation. By taking as a starting point the paper of Dyer [5], we present in the fourth

section, an algorithm based on the cutting planes method, well adapted to solve a

problem of type (1) with quasiconvex objective function. An example is solved via

this algorithm within a small number of iterations.

2. Quasiconvex and pseudoconvex quadratic functions

In this section, we present criteria in terms of eigenvalues and eigenvectors

of the quasi-convex and pseudo-convex quadratic functions defined on a solid convex

set, and especially on the positive orthant R
n
+. We note by intC the interior of the

set C.

2.1. Definitions. We consider the quadratic function

Q (x) =
1
2
xTHx + cTx

H = (hij)i,j=1,..,n , H symmetric, c = (ci)i=1,..,n

and let C ⊂ R
n denote a solid convex set, i.e., intC �= ∅.

Definition 2.1. The quadratic function Q is said to be quasiconvex [2] on C if,

∀x, y ∈ C, ∀λ ∈ ]0, 1[ , Q ((1− λ)x+ λy) ≤ max (Q (x) , Q (y)) . (2)

16
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Equivalently, this means that the lower-level sets

Lα (Q) = {x ∈ C : Q (x) ≤ α}

are convex ∀α ∈ R [2]. in the smooth case, which is the situation here (Q is quadratic),

definition 2.1 becomes

∀x, y ∈ C, Q (y) ≤ Q (x) =⇒ (y − x)T ∇Q (x) ≤ 0. (3)

Definition 2.2. Q is pseudoconvex [10] if,

∀x, y ∈ C, (y − x)T ∇Q (x) ≥ 0 =⇒ Q (y) ≥ Q (x) (4)

Definition 2.3. Q is said to be strictly pseudoconvex if,

∀x, y ∈ C, x �= y, (y − x)T ∇Q (x) ≥ 0 =⇒ Q (y) > Q (x) . (5)

It is easy to show that strict pseudoconvexity implies pseudoconvexity, and

pseudoconvexity implies quasiconvexity. On the other hand the opposite is not always

true. A quasi-convex function (resp. pseudo-convex, strictly quasi-convex) which is

not convex is called merely quasi-convex (resp. pseudo-convex, strictly quasi-convex).

2.2. Finite criteria for a solid convex set. Denote byH† the Moore-Penrose pseu-

doinverse matrix of H, and denote by the triple In (H) = (μ+ (H) , μ− (H) , μ0 (H))

the inertia of the matrix H, where μ+ (H), μ− (H) and μ0 (H) denote respectively the

numbers of positive, negative and null eigenvalues of H. There exist a n×n diagonal
matrix D and n × n matrix P such that H = P tHP , P tP = I and let (di) where

i = 1, ..., n the i-th diagonal entry of D. We denote by U = {y : 〈Dy, y〉 ≤ 0} and by
T the set T = P tU . It is known that the quadratic function is convex if and only if

μ− (H) = 0. we look at the merely quasiconvex and pseudoconvex case. The carac-

terization of generalized convex quadratic functions in terms of spectral properties is

given by the following theorem

Theorem 2.1.[4] A nonconvex quadratic function

Q (x) =
1
2
xTHx + cTx

is quasiconvex (resp. pseudoconvex) on a solid convex C ⊂ R
n if and only if
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(i) H has one and only one negative eigenvalue, i.e., μ− (H) = 1;

(ii) c ∈ H (Rn);

(iii) C−H†c ⊂ T or C−H†c ⊂ −T ( C−H†c ⊂ intT or C−H†c ⊂ −intT ).

It is also seen in [4] that T and −T (resp. intT and -intT ) are the maxi-

mal domains of quasiconvexity (pseudoconvexity) of Q. the algorithm presented in

section 4 is applied to the problem (1) with general quasiconvex objective Q and con-

straint included in the maximal set of quasiconvexity. The fact that the constraints

in Problem (1) below to the posif orthant more attention is given to the case C = R
n
+.

2.3. Finite criteria for nonnegative orthant. We give below criteria for quasi-

convex and pseudoconvex quadratic functions defined on R
n
+ making the definitions

(2), (3), (4) and (5) much more practical, this criteria can be derived by specializing

the general result in theorem (2.1). We note that a quadratic function is quasiconvex

on R
n if and only if it is convex on R

n, and contrary to the convex functions the

quasiconvex functions can be quasiconvex on a convex subset of R
n without being it

on all the space R
n.

Theorem 2.2. [11] and [1] The quadratic function Q is merely quasiconvex (esp.

merely pseudoconvex)on R
n
+ (on intRn+) if and only if

(i) H ≤ 0; i.e. hij ≤ 0 ∀i, j = 1, ..., n.

(ii) c ≤ 0; i.e. ci ≤ 0 ∀i = 1, ...., n.

(iii) H has exactly one and only one eigenvalue, i.e.,μ− (H) = 1;

(iv) cTH†c ≤ 0.

Remark 2.1. We note that the condition (iv) of theorem (2.1) imposes that the

component ck of the vector c is necessarily equal to 0 if the line hk of the matrix H is

null. Furthermore, if H is nonsingular, then Q is strictly pseudo-convex if and only if

(i), (ii), (iii) and (iv) are checked, this last condition can be replaced by the condition

cTH−1c ≤ 0 . With true statement, if the quadratic function Q is quasi-convex on R
n
+,

and if we suppose moreover that c �= 0, then Q is always pseudo-convex on R
n
+−{0}.

This result can be found in [1].
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Exemple 2.1. Consider the function

Q1 (x) = −12 (x1 + x2)
2 − x1 − x2

whereH1 =

⎡
⎣ −1 −1
−1 −1

⎤
⎦, et c1 =

⎡
⎣ −1
−1

⎤
⎦. The two eigenvectors ofH1 are λ1 = −2

et λ2 = 0. Q1is not convex (H1is not positive semidefinite), we can remark that

the vector

⎛
⎝ −1

0

⎞
⎠ satisfies the condition (iv) of theorem (2.2), then Q1 is merely

quasiconvex on R
2
+, and with remark (2.1)Q is also merely pseudo-convex on R

2
+−{0}.

Pseudo-convexity is wished in mathematical programming, since the condi-

tions of optimality of K-K-T become necessary and sufficient. This makes it possible

to solve our problem with the various algorithms using the system of K-K-T (method

of Lemke, methods of interior points. . . ). Problems appear when the function Q is

merely quasiconvex, in such a situation the algorithm of the section 4 can be regis-

tered.

It is significant to also announce that the conditions (i) and (ii) of theo-

rem (2.2) are not restrictive, because if we want to solve a problem of minimiza-

tion with objective Q, (iii) and (iv) are checked but (hij ≥ 0∀i, j = 1, ..., n) and

(ci ≥ 0∀i = 1, ..., n) on a compact polyhedral. Thus we will have to solve the follow-

ing problem:

min
{
Q (x) : Ax− b = 0, x ∈ R

n
+

}
= −max{−Q (x) : Ax− b = 0, x ∈ R

n
+

}
then we have, a maximization problem of a quasiconvex function, where the solution

is characterized by the following proposition:

Proposition 2.2. Let C be a polyhedral compact set of R
n, and f : R

n → R a

continuous quasiconvex function on C. Consider the problem to maximize f on C.

An optimal solution x̃ to the problem then exists, where x̃ is an extreme point of C.

Proof. f attains its maximum at x̃ ∈ C. Let x1, x2, ...., xk the extreme points of C,

assumes that f (x̃) > f (xj) for all j = 1, ..., k. By definition x̃ =
∑k
j=1 λjxj where∑k

j=1 λj = 1 and λj ≥ 0 for j = 1, ..., k.
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Since f (x̃) > f (xj) for every j, then

f (x̃) > max
1≤ j ≤k

f (xj) = α

or f is quasiconvex, then

f (x̃) = f
(∑k

j=1 λjxj

)
≤ max

1≤ j≤ k
f (xj) = α

hence the contradiction, so there exists necessarily j0 ∈ {1, .., k} such that f (x̃) =

f (xj0) . �

3. Surrogate duality for the quasiconvex programming

Return now to our problem (1), for every u belonging to a compact X set in

R
m
+ , we define:

X (u) =
{
x ∈ X : u� (Ax− b) ≤ 0

}
(6)

and the dual function

s (u) = min {Q (x) : x ∈ X (u)} . (7)

then the problem

(SP ) s∗ = sup
{
s (u) : u ∈ R

m
+

}
(8)

is called the surrogate dual problem associated with the primal problem (1). it is

clear that s (tu) = s (u) ∀ u ∈ X et ∀t > 0. This property simplifies the formulation

of the problem (SP) which can be rewritten as:

(SP ) s∗ = sup
{
s (u) : u ∈ R

m
+ , ‖u‖1 = 1

}
where ‖ ‖1, is the norm 1 of R

m, the problem (SP) becomes:

(SP ) s∗ = sup {s (u) : u ∈ �} (9)

where � =
{
u ∈ R

m
+ :

∑m
i=1 ui = 1

}
is the simplex of R

m
+ .

The following result is a deduction of two theorems. The first is due to

Luenberger [9] and the second to Greenberg and Pierskalla [8].

Proposition 3.1. The function s is continuous and quasiconcave (i.e. -s is quasi-

convex) on the simplex �.
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If we note by v (P ) the value of the primal problem, we check the weak duality

easily (s∗ ≤ v (P )). Luemberger [9] has shown that if v (P ) is finite then, there exists

ũ ∈ � such that

v (P ) = s∗ = s (ũ) = max {s (u) : u ∈ �} . (10)

The fundamental reason for choosing the surrogate duality is that it produces a strong

duality (the duality gap v (P ) − s∗=0), this is due of course to the historical result

of Luemberger. In addition, we can always associate the Lagrangian dual problem to

(1)

(LDP ) L∗ = sup{min{Q (x) + λ�(Ax− b) : x ∈ R
n
+} : λ ∈ R

m
+}

It is important to notice that the objective function of our problem is not nec-

essarily pseudo-convex, from where the possibility of having a non nulle Lagrangean

duality gap (v (P ) − L∗ �= 0). In addition, if we manage to calculate by a means or

another a multiplier of Lagrange, this last can be a good point of initialization for the

algorithm to present in the preceding section. In the article of Dyer [5] we find the

proposition quoted below which makes in evidence what we have just said.

Proposition 3.2. If λ is a Lagrange multiplier, and λ = λ

‖λ‖1

. then, we have always

s
(
λ
)
≥ L∗

moreover exactly one of the situations below holds:

(i) s
(
λ
)
≥ L∗.

(ii) s
(
λ
)
= L∗ but every neighbourhood of λ in �, contains a point u such

that s (u) > L∗.

(iii) s
(
λ
)
= L∗ = s∗.

For that follows we consider the set

G (α) = A (Lα (Q))− b =
{
g = Ax− b : Q (x) ≤ α,∀x ∈ R

n
+

}
and it’s polar set

G⊕ (α) =
{
u ∈ � : g�u ≥ 0,∀g ∈ G (α)

}
=

{
u ∈ � : (Ax− b)�u ≥ 0, Q (x) ≤ α,∀x ∈ R

n
+

}
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these two sets will be fundamental for the characterization of the solution u of s (.).

Proposition 3.3. s∗ is the minimum number α such that intG⊕ (α) = ∅.

Proof. If α < s∗, then there exists u such that s (u) > α. Which is equivalent to

X (u) ∩ Lα (Q) = ∅, which is again true if and only if gTu > 0 for all g ∈ G (α),

but this is equivalent to say that u ∈ intG⊕ (α), we conclude that if α < s∗ then

intG⊕ (α) �= ∅. If now α ≥ s∗, we get necessarily for all u ∈ intG⊕ (α), s (u) > α ≥
s∗, which is impossible, hence intG⊕ (α) = ∅. �

4. An algorithm for a quasiconvex quadratic problem

The method of resolution suggested here is a dual method, it is a question

of finding the point ũ which solves the surrogate dual problem, and which will give

the value of the primal problem thus s∗ and a solution x (ũ), if it is feasible it is the

optimal solution of the primal problem. When the quadratic function Q is strictly

convex (i.e., H is positive definite), for the following problem

min{Q (x) =
1
2
x�Hx + c�x : Ax ≤ b, x ∈ R

n}

we can calculate explicitly the dual function s (.), which can be formulated as

s (u) =
1
2

(
u�

(
AH−1c+ b

))2

u�AH−1A�u
− 1
2
cTH−1c

see [14] for more detail. Unfortunately, it is not the case for problem(1) with Q only

quasiconvex.

The algorithm described below gives to each iteration k the point sk the

element of the sequence (sk)k which will have to converge towards the optimal value

s∗, each point sk, is equal to s (uk) if

X
(
uk

) ∩ Lsk−1 (Q) = ∅ (11)

else take the value sk−1.

The formula (11) lead us to the resolution of the problem with a single con-

straint

(NLP )k s(uk) = min
{
Q (x) : (uk)� (Ax− b) ≤ 0, x ∈ R

n
+

}
. (12)
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The point uk ∈ intUk, this set will have the property to contain intG⊕ (uk) at each
iteration k, considering the proposition (3.3) the algorithm will stop at the first k

such that intUk = ∅, and this is true if the radius rk of Uk becomes negative.

The set Uk = Uk−1 ∩
{
u ∈ � : u�(Axk − b) ≥ 0

}
, where xk is the optimal

solution of (NLP )k , if this last admits a solution in this step of the iteration k, and

in this case, like noted above, sk−1 is increased with the value sk = s
(
uk

)
= Q

(
xk

)
.

Otherwise xk is any feasible solution of (NLP )k. In each iteration k we add a cutting

plane, defined by the hyperplane Hk =
{
u ∈ R

n : (u)�A
(
xk − b) = 0

}
.

Let us note by gk the vector Axk − b. The Euclidean distance be-

tween the point u of Uk and its border is equal to rk (u) =
u�gk

γk
, where γk =√

(gk)�gk − 1
m (e

�gk)2 and e� = (1, ...., 1).

The radius of Uk is given by

r∗k = max {rk(u) : u ∈ Uk} ,

we can check that the intUk �= ∅ if and only if r∗k > 0.

It is not difficult to see that

(LP )k r∗k = max
{
r : u�gk − γkr ≥ 0, , u ∈ �}

(13)

the problem (LP )k is linear, it is considered at each iteration k and its resolution

by a classical method such as the simplex method will give the solution
(
uk, r∗k

)
. At

each iteration k the choice of uk+1 depends on a parameter of convergence θ ∈ ]0, 1]
fixed at the beginning, the number αk ∈ ]0, 1] calculated at each iteration k, the point
uksolution of the linear problem (LP )k and the point u

k who should not belong to the

the interior of Uk in the iteration k. The point uk+1 must be sufficiently distant from

the boundary of Uk, then for any boundary point u, uk+1 = θuk + (1− θ)u ∈ intUk
but for uk and uk it is easy to find a boundary point u of Uk, let us choose it as

αku
k + (1− αk)uk (14)
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where α ∈ [0, 1[ is given by

αk =
−(uk)T gk

(uk)gk − (uk)T gk
(15)

we replace (15) in (14), the point uk+1 can be taken as

uk+1 = (1− βk)uk + βku
k whith βk = (1− αk) (1− θ) (16)

and will have the property to belong to the intUk, and if the parameter θ is quite

selected the continuity of the dual function s (.) will give an accepted variation from

the point uk to the point uk+1 which will ensure a growth moderated towards the

optimal value s∗. We give the steps of the algorithm at each iteration k and the

convergence result.

The Algorithm

� step 0:

k = 1, 0 < θ ≤ 1 let ε > 0 the tolerance, and a given u1.

� step 1:

Resolution of the nonlinear problem (NLP )k

(NLP )k : s
(
uk

)
= min

{
Q (x) :

(
uk

)�
(Ax− b) ≤ 0, x ∈ IRn+

}
� If (NLP )k has a solution x

k and if s
(
uk

) ≥ sk−1

sk = s
(
uk

)
= Q(xk)

� else consider any feasible solution xk of (NLP )k and put

sk = sk−1

compute

gk, γk, βk

� step 2:

Resolution of the linear problem (PL)k

(PL)k : r
∗
k = max

{
r :

n∑
i=1

uig
l
i − γkr ≥ 0, l = 1, ..., k,

m∑
i=1

ui = 1, u ≥ 0

}

� if r∗k < ε!then stop.
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� Else consider the solution
(
r∗k, u

k
)
of (PL)k, and compute the vector of

the simplex �

uk+1 = (1− βk)uk + βku
k

� step 3:

k = k + 1 . Go to step 1.

The convergence result is presented in the following proposition

Proposition 4.1. The sequence of points (sk)k generated by the algorithm will become

stationary and take the value s∗ from a certain rank, or limk→∞ sk = s∗.

Proof. By construction the sequence (sk)k is nondecreasing and is majored by s∗

where sk ≤ s∗∀k, thus either it becomes stationary starting from a certain rank, or it

converges towards a limit. The nondecreasing of the sequence (sk)k gives the following

inclusion
{
xl
} ⊆ Lsk

(Q) ∀l ≤ k, this leads us to say that G⊕ (sk) ⊆ Uk ∀k.
If rk ≤ 0 for a certain k then, intUk = ∅ and consequently intG⊕ (sk) = ∅.

But the proposition (3.3) implies that sk ≥ s∗∀k, thus necessarily sk = s∗. Let us

show now that if sk converges to a limit s̃ then necessarily s̃ = s∗. To be done let us

show initially that rk tends inevitably to 0. Let us suppose that rk > 0 ∀k. At the
iteration k, ul /∈ intUk for all l < k, since for all xl we have intUk ⊆

{
u : uT gl > 0

}
and uTl g

k ≤ 0, and hence the Euclidean distance between uk and ul , ‖uk − ul‖ ≥ r∗k

. The sequence
(
uk

)
k
admits a value of adherence since it is contained in the simplex

�, the sequence (rk)k is convergent towards a limit since it is nonincreasing and

lowerbounded by 0, then ∀η > 0 ∃N ∈ N such that for all k > l ≥ N , we have

‖uk − ul‖ < η, from where rk < η, this shows that limk→∞ rk = 0.

Let us suppose now that limk→∞ sk = s̃ < s∗, then sk ≤ s̃ for any k,

we deduce that G⊕ (s̃) ⊆ Uk ∀k, but from the proposition (3.3) we deduced that

intG⊕ (s̃) �= ∅, and hence this set contains a point û of distance r̂ > 0 from the bound-

ary of intG⊕ (s̃), and there will be r∗k ≥ r̂ ∀k, which gives that limk→∞ r∗k ≥ r̂ > 0,

this contradiction show that limk→∞ sk = s∗. �
Example. The algorithm given above can be applied to general quasiconvex pro-

gramming, but for illustration we consider the counterexample of Martos given in
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[11], where some (not all ) primal convex quadratic algorithms fail to solve it.

min{Q2 (x) = 1/2 xTH2x : A2 (x) ≤ b;x = (x1, x2) ≥ 0}

where

H2 =

⎡
⎢⎢⎢⎣
−1 −2 −7
−2 0 0

−7 0 0

⎤
⎥⎥⎥⎦ , A2 =

⎡
⎣ 2 1 1

0 1 2

⎤
⎦ , b2 =

⎡
⎣ 16

12

⎤
⎦

the optimal solution of this problem is (5, 0, 6) , and −222.5 is the optimum value.

The convergence parameter θ is set equal to 0.25, for this example a relatively

small value would not work better, we take for the starting point u1 the center of the

simplex (1/2, 1/2), at each iteration the quantities αk, βk are as defined in (15) and

(16). The implementation is proposed in the Matlab environment, at each iteration

we use the two functions of Matlab quadprog and linprog for the problem (NLP )k
and (LP )k respectively. The following table gives the evolution of the sequence (sk)k
for this example.

iteration k uk sk xk gk rk

1 (1/2,1/2) -256.11 (7.84,0,4.12) (3.79,3.79) 0.71

2 (0.62,0.37) -232.34 (6.29,0,4.82) (1.41,-2.35) 0.53

3 (0.63,0.36) -224.53 (5.52,0,5.41) (0.46,-1.18) 0.19

4 (0.65,0.34) -222.55 (5.08,0,5.89) (0.06,-0.21) 0.08

5 (0.66,0.33) -222.50 (5.01,0,6.02) (0.04,-5.98) 0.00

after five iterations we get s4 � −222.5, the corresponding surrogate multiplier u4 =

(0.66, 0.33) and the solution x4 � (5, 0, 6).

Conclusion. The computing experiences that we have done for several examples with

general quasiconvex programming, shows that if we get at hand a good subroutine to

solve at each iteration the problem (NLP )k with a single constraint this algorithm

converges to the optimal value, it is the case in non linear quadratic programming,

which is explains our choice. The question of how we can compute a global minimum

of a nonlinear program is always very difficult, but in this context we get at least a

tool that lead’s to the optimal value.
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LIII, Number 2, June 2008

ON UNIVALENT FUNCTIONS DEFINED
BY A GENERALIZED SĂLĂGEAN OPERATOR

ADRIANA CĂTAŞ

Abstract. The object of this paper is to obtain some inclusion relations

regarding a new class, denoted by Sm(λ, α), using the generalized Sălăgean

operator.

1. Introduction

We define the class of normalized analytic functions An as

An = {f ∈ H(U) : f(z) = z + an+1z
n+1 + an+2z

n+2 + . . . }, (1.1)

n ∈ N
∗ = {1, 2, . . . }, with A1 = A.
F.M. Al-Oboudi in [1] defined, for a function in An, the following differential

operator:

D0f(z) = f(z) (1.2)

D1
λf(z) = Dλf(z) = (1− λ)f(z) + λzf ′(z) (1.3)

Dm
λ f(z) = Dλ(Dm−1

λ f(z)), λ > 0. (1.4)

When λ = 1, we get the Sălăgean operator [5].

If f and g are analytic functions in U , then we say that f is subordinate to

g, written f ≺ g, or f(z) ≺ g(z), if there is a function w analytic in U with w(0) = 0,

|w(z)| < 1, for all z ∈ U such that f(z) = g[w(z)] for z ∈ U . If g is univalent, then
f ≺ g if and only if f(0) = g(0) and f(U) ⊂ g(U).

To prove the main results we will need the following lemmas.

Received by the editors: 15.11.2006.

2000 Mathematics Subject Classification. 30C45.

Key words and phrases. univalent, Sălăgean operator, differential subordination.
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Lemma 1.1. (Hallenbeck and Ruschweyh [2]) Let h be convex in U with h(0) = a,

γ �= 0 and Re γ ≥ 0. If p ∈ H[a, n] and

p(z) +
zp′(z)
γ

≺ h(z)

then

p(z) ≺ q(z) ≺ h(z)

where

q(z) =
γ

nzγ/n

∫ z

0

h(t)t
γ
n−1dt.

The function q is convex and is the best (a, n)-dominant.

Lemma 1.2. (Miller and Mocanu [3]) Let q be a convex function in U and let

h(z) = q(z) + nαzq′(z)

where α > 0 and n is a positive integer. If p ∈ H(U) with

p(z) = q(0) + pnz
n + . . .

and

p(z) + αzp′(z) ≺ h(z)

then

p(z) ≺ q(z)

and this result is sharp.

2. Main results

Definition 2.1. Let f ∈ A. We say that the function f is in the class Sm(λ, α),

λ > 0, α ∈ [0, 1), m ∈ N, if f satisfies the condition

Re [Dm
λ f(z)]

′ > α, z ∈ U. (2.1)
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Theorem 2.1. If α ∈ [0, 1) and m ∈ N then

Sm+1(λ, α) ⊂ Sm(λ, δ) (2.2)

where

δ = δ(λ, α) = 2α− 1 + 2(1− α) 1
λ
β

(
1
λ

)
(2.3)

β being the Beta function

β(x) =
∫ 1

0

tx−1

t+ 1
dt. (2.4)

Proof. Let f ∈ Sm+1(λ, α). By using the properties of the operator Dm
λ , we have

Dm+1
λ f(z) = (1− λ)Dm

λ f(z) + λz(Dm
λ f(z))

′ (2.5)

If we denote by

p(z) = (Dm
λ f(z))

′ (2.6)

where

p(z) = 1 + p1z
1 + p2z

2 + . . . , p(z) ∈ H[1, 1],

then after a short computation we get

(Dm+1
λ f(z))′ = p(z) + λzp′(z), z ∈ U. (2.7)

Since f ∈ Sm+1(λ, α), from Definition 2.1 we have

Re (Dm+1
λ f(z))′ > α, z ∈ U.

Using (2.7) we get

Re (p(z) + λzp′(z)) > α

which is equivalent to

p(z) + λzp′(z) ≺ 1 + (2α− 1)z
1 + z

≡ h(z). (2.8)

From Lemma 1.1, with γ =
1
λ
, we have

p(z) ≺ q(z) ≺ h(z),
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where

q(z) =
1

λz1/λ

∫ z

0

1 + (2α− 1)t
1 + t

t(1/λ)−1dt.

The function q is convex and is the best (1, 1)-dominant.

Since

(Dm
λ f(z))

′ ≺ 2α− 1 +
2(1− α)

λ
· 1
z1/λ

∫ z

0

t(1/λ)−1

t+ 1
dt

it results that

Re (Dm
λ f(z))

′ > q(1) = δ (2.9)

where

δ = δ(λ, α) = 2α− 1 +
2(1− α)

λ
β

(
1
λ

)
(2.10)

β

(
1
λ

)
=

∫ 1

0

t(1/λ)−1

t+ 1
dt. (2.11)

From (2.9) we deduce that f ∈ Sm(λ, δ) and the proof of the theorem is

complete.

Theorem 2.2. Let q(z) be a convex function, q(0) = 1, and let h be a function such

that

h(z) = q(z) + λzq′(z), λ > 0. (2.12)

If f ∈ A and verifies the differential subordination

(Dm+1
λ f(z))′ ≺ h(z) (2.13)

then

(Dm
λ f(z))

′ ≺ q(z) (2.14)

and the result is sharp.

Proof. From (2.7) and (2.13) we obtain

p(z) + λzp′(z) ≺ q(z) + λzq′(z) ≡ h(z) (2.15)

then, by using Lemma 1.2 we get

p(z) ≺ q(z)
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or

(Dm
λ f(z))

′ ≺ q(z), z ∈ U

and this result is sharp.

Theorem 2.3. Let q be a convex function with q(0) = 1 and let h be a function of

the form

h(z) = q(z) + zq′z(z), λ > 0, z ∈ U. (2.16)

If f ∈ A verifies the differential subordination

(Dm
λ f(z))

′ ≺ h(z), z ∈ U (2.17)

then

Dm
λ f(z)
z

≺ q(z) (2.18)

and this result is sharp.

Proof. If we let

p(z) =
Dm
λ f(z)
z

, z ∈ U

then we obtain

(Dm
λ f(z))

′ = p(z) + zp′(z), z ∈ U.

The subordination (2.17) becomes

p(z) + zp′(z) ≺ q(z) + zq′(z)

and from Lemma 1.2 we have (2.18). The result is sharp.

Remark 2.1. For λ = 1 these results were obtained in [4].
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QUASI-INTERPOLATORY AND INTERPOLATORY SPLINE
OPERATORS: SOME APPLICATIONS

MARIA GABRIELLA CIMORONI

Abstract. In this paper we consider quasi-interpolatory spline operators

that satisfy some interpolation conditions. We give some applications of

these operators constructing approximating integral operators and numer-

ically solving Volterra integral equations of the second kind. We prove

convergence results for the constructed methods and we perform numeri-

cal examples and comparisons with other spline methods.

1. Introduction

It is known that quasi-interpolatory operators play a main role in the approxi-

mation of data and functions, in the numerical solution of integrals or, more in general,

of integral equations. Interpolatory operators also are very important in function ap-

proximation theory and there exists a wide literature on such two class of operators.

In the last years, in [11], a method for constructing a quasi-interpolatory operator

with interpolation properties, has been presented giving a general convergence theo-

rem and in [7] a new class of operators, which are refinable, quasi-interpolatory and

that satisfy some interpolation conditions has been studied. In this paper we con-

sider a quasi-interpolatory spline operator that satisfies some interpolation conditions

(qi-i operator) and we propose some its applications; for example, we construct a

collocation method for solving a second kind linear Volterra integral equation

f(x) = g(x) +
∫ x

0

k(x, s)f(s)ds, x ∈ [0, X] (1.1)

Received by the editors: 04.06.2007.
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with k(x, s) = k(x− s) and k ∈ C(0, X] ∩ L1[0, X]. The integral equation (1.1) has a

unique solution f ∈ C[0, X] if g is a continuous function in [0, X], but the derivatives
of this solution can be unbounded at x = 0; then graded grids used in the partition

of [0, X] reflect the possible singular behaviour of the derivative of the exact solution

near x = 0. For example, in [2] and in [3], a collocation method using graded meshes

and piecewise polynomials, for weakly singular Volterra integral equations, has been

considered. In [6] and in [8] collocation methods based on spline functions have been

studied for numerically solving (1.1). In [8] a method based on projector splines

has been used in a suitable, first subinterval of [0, X] combined with a Simpson’s

rule in the last part of [0, X]. In [6] nodal splines that are quasi-interpolatory and

interpolatory (with the number of interpolation points that increases when the number

knots increases) has been considered for numerically solving (1.1). The collocation

method of this paper, based on qi-i spline operators of order m ≥ 2, has several good

properties as a low computational complexity and good performance when the solution

of (1.1) is a continuous function. The results obtained are comparable with those

obtained by using nodal splines or projector splines. Moreover, with the collocation

method of this paper, we can opportunely choose the interpolation points of the qi-

i spline, that can be different from the partition knots and we can obtain directly

by a linear system, the value of f on such points without a successive evaluation of

the approximation of f (as required, instead, if we use only projector splines). The

approximate solution error obtained will converges to zero at the same rate as the

quasi-interpolatory spline error.

This paper is organized as follows. In Section 2 we give definition and prop-

erties of qi-i spline operators on graded meshes and we give convergence results. In

Section 3 we define an approximating integral operator based on qi-i spline opera-

tors and we analize its main properties and convergence. In Section 4 we describe a

collocation method for Volterra integral equation of second kind based on the approx-

imating integral operator of Section 3 and we give convergence results. In Section 5

we give some numerical results and comparisons with rules based on projector splines

and on nodal splines.

36



QUASI INTERPOLATORY AND INTERPOLATORY SPLINES

2. Qi-i spline operators

We give the definition and the main properties of qi-i spline operators.

Let s≥0 be a given positive integer and consider the partition of [a, b]

Δs := {a = y0 < y1 < . . . < ys < ys+1 = b} (2.1)

in s+ 1 subintervals [yk, yk+1), with hk = yk+1 − yk , k = 0, 1, ..., s. We shall assume

that max
0≤k≤s

hk → 0 as s→∞.
We say that the sequence of partitions {Δs, s = 1, 2, ...} is locally uniform

(l.u.) if there exists a constant R ≥ 1 such that

1
R
≤ yi+1 − yi
yj+1 − yj ≤ R, j = i± 1, ∀i.

We consider the sequence of partitions Δs obtained by using graded meshes

(see for example [2]) of the form

yi =
(

i

s+ 1

)r
· (b− a) + a, 0 ≤ i ≤ s+ 1, r ≥ 1. (2.2)

In [6] has been proved that the sequence {Δs} is l.u.. Letm be a given positive

integer and n = m+ s; we denote by Δe
s the extended partition of Δs defined as

Δe
s := {a = x1 = ... = xm < xm+1 < . . . < xm+s < xn+1 = ... = xn+m = b}

where xi = y0, xn+i = ys+1, i = 1, ...,m, xm+j = yj , j = 1, ..., s.

We denote by IPl the set of polynomials of degree ≤ l. The space of poly-

nomial splines of order m with simple knots y1, y2, ..., ys and Sm(Δs) ⊂ Cm−2[a, b] is

defined by:

Sm(Δs):=

⎧⎨
⎩ s : s(x) = sk(x) ∈ IPm−1, x ∈ [yk, yk+1), k = 0, 1, ..., s;

Djsk−1(yk) = Djsk(yk), j = 0, 1, ...,m− 2, k = 1, 2, ..., s.

⎫⎬
⎭ . (2.3)

The set of normalized B-splines of order m, Bim , i = 1, 2, ..., n , constitutes

a basis for Sm(Δs) [10].

We define the following quasi-interpolatory and interpolatory operator ap-

plied to a function f ∈ C[a, b] ([11], [7]):

Tnf := Qnf + Uf − UQnf (2.4)
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where Qn is the quasi-interpolating operator defined as

Qnf(x) :=
n∑
i=1

(λif)Bim(x) =
n∑
i=1

[
m∑
j=1

vijf(τij)]Bim(x) (2.5)

with x ∈ [a, b],
vij =

m∑
r=j

αir
r∏

s=1,s �=j
(τij − τis)

, r = 2, ...,m

and

αir =
(m− r)!
(m− 1)!

∑ r−1∏
l=1

(xυl
− τil)

where the sum is extended over all choices of distinct υ1, ..., υr−1 from i+1, ..., i+m−1
and is set equal to 1 when r = 1; the τij are m distinct points opportunely chosen in

[xi,xi+m], i = 1, ..., n [4]. A possible distribution for {τij} is the following

τij = xρi
+ j

xρi+1 − xρi

k
, k =

⎧⎨
⎩ m, if ρi 
= n

m+ 1, if ρi = n
, i = 1, ..., n, j = 1, ...,m

with [xρi,xρi+1] ⊆ [xi,xi+m], m ≤ ρi ≤ n.

The interpolating operator U is defined as:

Uf(x) :=
l∑

k=1

ck(f)Bkm(x) =
l∑

k=1

[
l∑

h=1

b
−1

kh f(th)]Bkm(x) (2.6)

where Bkm(x), k = 1, ..., l are normalized B-splines constituting a basis for the spline

space Sm(Δs), s = l − m; l is a fixed integer and tk, k = 1, ..., l are l distinct

interpolation points with tk ∈ (xk, xk+m) where xk, xk+m belong to the extended

partition Δe
s. The coefficients ck have been obtained by imposing the interpolation

conditions Uf(th) = f(th), h = 1, ..., l and b
−1

kh , h, k = 1, ..., l denote the coefficients

of the inverse matrix B
−1

t of B(t) =

⎡
⎢⎢⎢⎣
B1m(t1) ... Blm(t1)
...

...

B1m(tl) ... Blm(tl)

⎤
⎥⎥⎥⎦ .

Remark 2.1. We observe that the inverse matrix B
−1

t exists because (theorem 4.63

in [10]), choosing the distinct interpolation points tk in (xk, xk+m), k = 1, ..., l, we

obtain B(t) not singular.
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Then we can write

UQnf(x) :=
l∑

k=1

l∑
h=1

b
−1

khQnf(th)Bkm(x). (2.7)

By using (2.5), (2.6) and (2.7), the operator (2.4) can be written in the form:

Tnf(x) :=
n∑
i=1

m∑
j=1

vijf(τij)Bim(x)

+
l∑

k=1

l∑
h=1

b
−1

kh [f(th)−Qnf(th)]Bkm(x).
(2.8)

The operator (2.8) is quasi-interpolatory and interpolatory on the knots tk,

k = 1, ..., l [7]. In fact: Tnf(tk) := Qnf(tk)+Uf(tk)−UQnf(tk) = Qnf(tk)+f(tk)−
Qnf(tk) = f(tk) and Tnp(x) := Qnp(x)+Up(x)−UQnp(x) = p(x)+Up(x)−Up(x) =
p(x), where p(x) is a polynomial of degree less or equal to m− 1.

We observe that we can use a vectorial notation for the operator (2.8) that

will be very useful in the following Sections. We set the following column vectors:

t= [t1, ..., tl]T ∈ Rl,
τ= [τ11, ..., τ1m, ..., τn1, ..., τnm]T ∈ Rn·m and

ξ= [τ ; t] ∈ Rn·m+l.

We will use the notation: f(z) = [f(z1), ..., f(zr)]T , where z= [z1, ..., zr]T is a

column vector with the elements belonging to [a, b] and we will indicate Bim(x) with

Bi(x), Bim(x) with Bi(x), where x ∈ [a, b]. If we denote with:

B(x) =
[
B1(x), ..., Bn(x)

]
, B(x) =

[
B1(x), ..., Bl(x)

]
, (2.9)

B(t) =

⎡
⎢⎢⎢⎣
B1(t1) ... Bn(t1)
...

...

B1(tl) ... Bn(tl)

⎤
⎥⎥⎥⎦ , B(t) =

⎡
⎢⎢⎢⎣
B1(t1) ... Bl(t1)
...

...

B1(tl) ... Bl(tl)

⎤
⎥⎥⎥⎦ , (2.10)

V =

⎡
⎢⎢⎢⎢⎢⎢⎣

v11 . . . v1m 0 . . . 0 . . . 0 . . . 0

0 . . . 0 v21 . . . v2m . . . 0 . . . 0
...

...
...

...
. . .

...
...

0 . . . 0 0 . . . 0 . . . vn1 . . . vnm

⎤
⎥⎥⎥⎥⎥⎥⎦

(2.11)
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then we can write

Qnf(x) = B(x)V f(τ), (2.12)

Uf(x) = B(x)B
−1

t f(t), (2.13)

UQnf(x) = B(x)B
−1

t B(t)V f(τ) (2.14)

and

Tnf(x) =Mn(x)f(ξ) (2.15)

where, considering (2.4), (2.12), (2.13) and (2.14) Mn(x) is the row vector:

Mn(x) =
[ [

B(x)−B(x)B−1

t B(t)
]
V, B(x)B

−1

t

]
∈ Rn·m+l.

By (2.15), we can see that Tn is a linear operator. We recall that the norm

of a bounded operator F : C[0, X]→ C[0, X] can be defined as

‖F‖ = sup
‖h‖≤1

‖Fh‖ .

The following proposition holds:

Proposition 2.1. The operator Tn in (2.15) is a bounded operator for all n in [a, b]

and ∀f ∈ C[a, b].

Proof. Tn is a linear operator and so it suffices to prove that ∀f ∈ C[a, b] and ∀n,
exists a constant α such that

‖Tnf‖∞ ≤ α ‖f‖∞
where ‖g‖∞ = max

x∈[a,b]
|g(x)| , g ∈ C[a, b].

By (2.4) we can write

|Tnf | ≤ |Qnf |+ |Uf |+ |UQnf | ;

in [10] (Theorem 6.22) has been proved that Qnf is bounded; by (2.5), (2.6), (2.7) it

easy also to get

|Qnf(x)| ≤ ‖V ‖∞‖f‖∞ , (2.16)

|Uf(x)| ≤
∥∥∥B−1

t

∥∥∥
∞
‖f‖∞ , (2.17)

|UQnf | ≤ ‖V ‖∞
∥∥∥B−1

t

∥∥∥
∞
‖f‖∞ (2.18)
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with ‖V ‖∞ = max
1≤i≤n

m∑
j=1

|vij | ≤ mD for all n ([4]) and D independent from n,∥∥∥B−1

t

∥∥∥
∞

= max
1≤k≤n

∑l
h=1

∣∣∣b−1

kh

∣∣∣ bounded because B
−1

t is independent from n. The

thesis follows, by setting α = ‖V ‖∞ +
∥∥∥B−1

t

∥∥∥
∞
+ ‖V ‖∞

∥∥∥B−1

t

∥∥∥
∞
.

We can give, now, the following

Theorem 2.1. Let f ∈ C[a, b]. For the qi-i spline operator (2.15), the following

relation holds

‖f − Tnf‖∞ ≤ C1 ‖f −Qnf‖∞ (2.19)

where C1 = 1 +
∥∥∥B−1

t

∥∥∥
∞

and

lim
n→∞ ‖f − Tnf‖∞ = 0. (2.20)

Proof. Considering that we can write Tnf(x) = Qnf(x) + U(f −Qnf)(x) and (2.17)
holds, the proof is similar to the proof of Theorem 4.1 in [7].

By Lemma 3.3 in [4], (2.20) follows.

3. An approximating integral operator

Let [a, b] ≡ [0, X] and K the following integral operator:

Kf(x) :=
∫ x

0

k(x, s)f(s)ds, k ∈ C(0, X] ∩ L1[0, X]; (3.1)

we consider the approximating operator KTn

KTnf(x) :=
∫ x

0

k(x, s)Tnf(s)ds (3.2)

that, by (2.4) and (2.8) we can write

KTnf(x) = KQnf(x) +KUf(x)−KUQnf(x)
=

n∑
i=1

m∑
j=1

vijf(τij)KBi(x)

+
l∑

k=1

l∑
h=1

b
−1

kh [f(th)−Qnf(th)]KBk(x)
(3.3)

where

KBi(x) =
∫ x

0

k(x, s)Bi(s)ds, i = 1, ..., n
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and

KBk(x) =
∫ x

0

k(x, s)Bk(s)ds, k = 1, ..., l.

By using the same vectorial notation used for the Tn operator, we can set:

KB(x) =
[
KB1(x), ..., KBn(x)

]
= (3.4)

=
[ ∫ x

0
k(x, s)B1(s)ds, ...,

∫ x
0
k(x, s)Bn(s)ds

]
,

KB(x) =
[
KB1(x), ..., KBl(x)

]
= (3.5)

=
[ ∫ x

0
k(x, s)B1(s)ds, ...,

∫ x
0
k(x, s)Bl(s)ds

]
;

then ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

KQnf(x) = KB(x)V f(τ)

KUf(x) = KB(x)B
−1

t f(t)

KUQnf(x) = KB(x)B
−1

t B(t)V f(τ)

(3.6)

and

KTnf(x) = An(x)f(ξ) (3.7)

where An(x) is the row vector

An(x) =
[
[KB(x)−KB(x)B−1

t B(t)]V, KB(x)B
−1

t

]
∈ Rn·m+l.

We observe that, by (3.7), the operator KTn is a linear operator. Now we

can define

k̃(x, s) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k(x, s) if 0 ≤ s ≤ x,

0 if s > x;

(3.8)
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if k̃(x, s) satisfies:

1) k̃(x, s) is Riemann integrable in the variable s ∈ [0, X],
2) lim

x′→x
∫X
0

∣∣∣k̃(x′, s)− k̃(x, s)∣∣∣ ds = 0, x′, x ∈ [0, X],
3) max

x∈[0,X]

∫X
0

∣∣∣k̃(x, s)∣∣∣ ds <∞
(3.9)

then we can say that
∫X
0

∣∣∣k̃(x, s)∣∣∣ ds =
∫ x
0
|k(x, s)| ds, is a compact operator on

C[0, X].

Proposition 3.1. Let KTn be the operator (3.7) and the hypoteses (3.9) hold. Then

KTn is a bounded operator for all n, on [0, X].

Proof. KTn is a linear operator and so it suffices to prove that ∀f ∈ C[0, X] and ∀n,
a constant β exists such that

‖KTnf‖∞ ≤ β ‖f‖∞ .

By (3.3), we can write

|KTnf | ≤ |KQnf |+ |KUf |+ |KUQnf | .

max
x∈[0,X]

∫ x
0
|k(x, s)| ds ≤ L because (3.9) holds; recalling that ∀ x ∈ [0, X] and ∀n we

have
n∑
i=1

Bi(x) =
l∑
i=1

Bi(x) = 1, we obtain

|KQnf(x)| =

∣∣∣∣∣∣
n∑
i=1

m∑
j=1

vijf(τij)KBi(x)

∣∣∣∣∣∣ ≤ ‖f‖∞
n∑
i=1

|KBi(x)|
m∑
j=1

|vij |

≤ ‖f‖∞ ‖V ‖∞
∫ x

0

|k(x, s)|
n∑
i=1

|Bi(s)| ds ≤ L ‖V ‖∞‖f‖∞ ,

|KUf(x)| ≤
∣∣∣∣∣
l∑

k=1

l∑
h=1

b
−1

kh f(th)KBk(x)

∣∣∣∣∣ ≤ ‖f‖∞
l∑

k=1

∣∣KBk(x)∣∣ l∑
h=1

∣∣∣b−1

kh

∣∣∣
≤ ‖f‖∞

∥∥∥B−1

t

∥∥∥
∞

∫ x

0

|k(x, s)|
l∑

k=1

∣∣Bk(s)∣∣ ds ≤ L
∥∥∥B−1

t

∥∥∥
∞
‖f‖∞

and

|KUQnf | ≤ L ‖V ‖∞
∥∥∥B−1

t

∥∥∥
∞
‖f‖∞
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with ‖V ‖∞ and
∥∥∥B−1

t

∥∥∥
∞
bounded (see proof of Proposition 2.1). The thesis follows,

by setting β = Lα = L(‖V ‖∞ +
∥∥∥B−1

(t)
∥∥∥
∞
+

∥∥∥B−1
(t)

∥∥∥
∞
‖V ‖∞).

Theorem 3.1. Let f ∈ C[0, X] and k(x, s) such that (3.9) holds. Then

‖K(f − Tnf)‖∞ ≤ C2 ‖f − Tnf‖∞ , ∀ n (3.10)

where C2 = max
x∈[0,X]

∫ x
0
|k(x, s)| ds and

lim
n→∞ ‖K(f − Tnf)‖∞ = 0. (3.11)

Proof. ‖K(f − Tnf)‖∞ = max
x∈[0,X]

∣∣∫ x
0
k(x, s)(f(s)− Tnf(s))ds

∣∣
≤ ‖f − Tnf‖∞ max

x∈[0,X]

∫ x
0
|k(x, s)| ds

and by (3.9) we have max
x∈[0,X]

∫ x
0
|k(x, s)| ds <∞.

By Theorem 2.1 we have that ‖f − Tnf‖∞ → 0 as n → ∞ and by (3.10),

(3.11) follows.

4. A collocation method and convergence results

Consider the equation (1.1); substituting there Tnf for f in the integral, we

obtain

f(x) = g(x) +
∫ x

0

k(x, s)Tnf(s)ds+ rn(x) (4.1)

with

rn(x) =
∫ x

0

k(x, s) (f(s)− Tnf(s)) ds = K(f(x)− Tnf(x)) (4.2)

the residual term obtained approximating f by Tnf in the integral. If we do not

consider the error term, the (4.1) becomes

fn(x) = g(x) +KTnfn(x), (4.3)

or equivalently

fn(x) = g(x) +
n∑
i=1

m∑
j=1

vijfn(τij)KBi(x)

+
l∑

k=1

l∑
h=1

b
−1

kh [fn(th)−Qnfn(th)]KBk(x)
(4.4)
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if we collocate the equation (4.3) in the vector ξ defined in Section 2, considering

(3.7), we obtain the linear system

(Id−An(ξ))fn(ξ) = g(ξ)

where Id is the identity matrix of order nm+ l and An(ξ) = [An(ξ1), ..., An(ξnm+l)]

∈ R(n·m+l)×(n·m+l).

When we have solved the linear system just written, the value fn(x), x ∈
[0, X], can be recovered by (4.4). Substracting (4.3) from (4.1) we obtain

f(x)− fn(x) = KTn(f(x)− fn(x)) + rn(x),

from which, considering also (4.2)

(I −KTn) (f(x)− fn(x)) = K(f(x)− Tnf(x)). (4.5)

We can prove now, the following proposition:

Proposition 4.1. Let I−KTn the operator in (4.5) and k(x, s) such that (3.9) holds.

For all n sufficiently large, n ≥ n0 with n0 an integer > 0, the operator (I −KTn)−1

exists and

sup
n≥n0

∥∥∥(I −KTn)−1
∥∥∥ ≤ L <∞.

Proof. By Proposition 3.1, KTn is a bounded operator. We observe that the operators

K in (3.1) and KTn in (3.2) can be written as

K̃f(x) :=
∫ X

0

k̃(x, s)f(s)ds,

K̃Tnf(x) :=
∫ X

0

k̃(x, s)Tnf(s)ds

with k̃(x, s) defined in (3.8). Then I −KTn = I − K̃Tn. Following the proof of the

Theorem 1. in [6] we can write

I − K̃Tn = (I − K̃)
[
I − (I − K̃)−1(K̃Tn − K̃)

]
.

Considering that Tn and K̃Tn are bounded operators and taking in account

(3.11), the proof is similar to that one in [6] ( theorem 1).
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Theorem 4.1. We consider the equation (1.1) . Let f ∈ C[0, X] and k(x, s) such

that (3.9) holds. Then fn in (4.3) exists and is unique ∀ n ≥ n0 where n0 is an

integer > 0; moreover fn converges uniformly to the solution f that is

lim
n→∞ ‖fn − f‖∞ = 0

and there results

‖fn − f‖∞ ≤ C3 ‖f − Tnf‖∞
where C3 = C2 sup

n≥n0

∥∥∥(I −KTn)−1
∥∥∥ and C2 = max

x∈[0,X]

∫ x
0
|k(x, s)| ds.

Proof. By using (4.5), Proposition 4.1 and Theorem 3.1 the thesis follows.

5. Numerical applications and comparisons

We consider now some numerical results obtained by applying our collocation

method to (1.1). The results have been compared with those obtained by a collocation

method based on projector splines and with those proposed in [6].

We have considered the following equations of type (1.1):⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f(x) =
√
x+ 1

2πx−
∫ x
0
(x− s)− 1

2 f(s)ds, x ∈ [0, 1],

f(x) =
√
x is the solution.

(5.1)

and⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f(x) = 1√
1+x

+ π
8 − 1

4 arcsin
1−x
1+x − 1

4

∫ x
0
(x− s)− 1

2 f(s)ds, x ∈ [0, 1],

f(x) = 1√
1+x

is the solution.

(5.2)

From Table 1 to Table 4 we have indicated with eN , eP and eQI−I , the

absolute error evaluated in x, respectively obtained by the method in [6], by the

collocation method that use the projector splines and by our method that in these

examples takes the value l = 10 for the interpolatory spline. The methods use graded

partitions of the form (2.2) with r = 1 and r = 2.

In Tables 1, 2 and 3 the values of x, of n and of m are chosen as in the

examples in [6] in order to compare the results.
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The results in Table 4 obtained with r = 2 for (5.2) and not shown in [6],

confirm the theorical convergence results of our method.

Table 1

f(x)=
√
x, g(x)=

√
x+ 1

2πx, k=λ(x-s)−1/2, λ=-1

r = 1, m = 3

n = 11 n = 21 n = 41

x eN eP eQI−I eN eP eQI−I eN eP eQI−I

0 - 0 0 - 0 0 - 0 0

0.01 5.8e-2 6.0e-3 5.2e-4 4.3e-2 2.2e-3 3.1e-4 2.4e-2 5.9e-4 2.6e-5

0.51 9.9e-4 1.6e-4 7.1e-5 3.3e-4 5.0e-5 6.3e-6 1.1e-4 1.7e-5 8.7e-6

1 4.2e-4 7.5e-5 3.5e-5 1.4e-4 2.3e-5 3.6e-6 4.9e-5 7.7e-6 3.7e-6

Table 2

f(x)=
√
x, g(x)=

√
x+ 1

2πx, k=λ(x-s)−1/2, λ=-1

r = 2, m = 3

n = 11 n = 21 n = 41

x eN eP eQI−I eN eP eQI−I eN eP eQI−I

0 - 0 0 - 0 0 - 0 0

0.01 1.7e-3 7.1e-5 1.1e-4 2.8e-4 9.9e-5 1.4e-5 3.0e-5 2.3e-5 6.4e-6

0.51 2.3e-5 1.7e-4 7.7e-6 9.4e-6 2.1e-5 4.6e-7 2.2e-6 2.8e-6 1.8e-8

1 1.2e-4 6.0e-5 9.2e-6 1.2e-5 8.4e-6 6.1e-7 2.4e-6 1.2e-6 2.1e-7

Table 3

f(x)= 1√
1+x

, g(x)= 1√
1+x

+π
8 - 1

4 arcsin( 1−x
1+x ),k=λ(x-s)−1/2, λ=- 1

4

r = 1, m = 4

n = 11 n = 21 n = 41

x eN eP eQI−I eN eP eQI−I eN eP eQI−I

0 - 0 0 - 0 0 - 0 0

0.1 1.0e-6 3.9e-7 6.4e-8 3.7e-8 1.5e-8 1.3e-9 1.5e-9 8.3e-10 9.7e-10

0.4 3.0e-7 4.3e-8 2.1e-9 1.4e-8 1.6e-8 5.1e-9 4.7e-10 1.2e-9 4.8e-10

1 2.1e-7 1.0e-7 1.1e-8 8.0e-9 9.2e-9 8.0e-10 9.5e-10 6.5e-10 1.4e-10
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Table 4

f(x)= 1√
1+x

, g(x)= 1√
1+x

+π
8 - 1

4 arcsin( 1−x
1+x ),k=λ(x-s)−1/2, λ=- 1

4

r = 2, m = 4

n = 11 n = 21 n = 41

x eP eQI−I eP eQI−I eP eQI−I

0 0 0 0 0 0 0

0.01 1.9e-9 2.7e-10 2.7e-12 4.7e-12 9.8e-13 3.2e-13

0.1 1.0e-7 2.5e-8 4.0e-9 1.3e-9 1.7e-10 1.4e-11

0.4 9.5e-7 7.4e-8 3.8e-8 5.1e-9 1.8e-9 2.2e-10

0.51 1.4e-6 2.3e-7 5.0e-8 1.0e-8 2.3e-9 3.9e-10

1 1.3e-6 7.7e-8 5.8e-8 8.0e-10 3.2e-9 1.6e-10
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ON RANDOM FIXED POINTS
IN RANDOM CONVEX STRUCTURES

ASHOK GANGULY, RAGHVENDRA SINGH CHANDEL, AND RAVINDRA PARSAI

Abstract. In this paper, we present some random fixed point theorems

in random convex structures.

1. Introduction and preliminaries

Random fixed point theory has received much attention for the last two

decades, since the publication of the paper by Bharucha-Reid [2]. Also ran-

dom best approximation attracted authors after the papers by Sehgal and Singh

[15], Papageorgiou [13], Lin [11], and Beg et al. [1].

On the other hand, in the past years, because of practical necessities, the

attempts of generalizing the notion of convexity introduced by J. Von Neumann and

O. Morgenstern [12], M. Stone [16] were brought up-to-date by S.P. Gudder [5]. Con-

sequently, Gudder (1979) introduced the notion of convex structure and of F-convex

set with applications in quantum mechanics, colour vision and petroleum engineer-

ing. Subsequently, fixed point theorems for nonexpansive mappings using the convex

structures introduced by Gudder was proved by Petrusel [14] and later by Ganguly

and Jadhav [6] for approximation theorems.

Again, away from this, Takahashi [17] also introduced a notion of convexity in

metric spaces and presented fixed point theorems for nonexpansive mappings. This

motivated Guay et al. [7] to discuss the results on convex metric spaces. These

Received by the editors: 29.01.2008.
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works alongwith those on random approximations motivated Beg et al. [3] to present

random fixed point theorems and related results in random convex metric spaces.

It is a need for further research to study a relationship between convex struc-

tures introduced by Takahashi [17] and Gudder [5] respectively. In this vein, we

are presenting random fixed point theorems in random convex structures, following

Gudder [5], Petrusel [14], Beg and Shahzad [3].

Before we present our theorems, we will introduce some basic preliminaries.

Let (Ω,Σ) be a measurable space, (X, d) a metric space, 2X the family of all

subsets of X, K(X) family of all nonempty compact subsets of X and CB(X) family

of all nonempty closed bounded subsets of X.

A mapping T : Ω→ 2X is called measurable if for any open subset C of X,

T−1(C) = {ω ∈ Ω : T (ω) ∩ C �= φ} ∈ Σ.

A mapping ξ : Ω→X is said to be a measurable selector of T if ξ is measurable

and for any ω ∈ Ω, ξ(ω) ∈ T (ω).
A mapping f : Ω×X → X is called a random operator if for any x ∈ X, f(., x)

is measurable.

A measurable mapping ξ : Ω→ X is called a random fixed point of a random

multivalued (single valued) operator T : Ω × X → CB(X)(f : Ω × X → X) if for

every ω ∈ Ω, ξ(ω) ∈ T (ω, ξ(ω)) (ξ(ω) = f(ω, ξ(ω))).

A random operator T : Ω×X → CB(X) is called Lipschitzian if

H(T (ω, x), T (ω, y)) ≤ L(ω) d(x, y)

for any x, y ∈ Xand ω ∈ Ω, where L : Ω → [0,∞) is a measurable map and H is

the Pompeiu-Hausdorff metric on CB(X), induced by the metric d. When L(ω) <

1, (L(ω) = 1) for each ω ∈ Ω, T is called contraction (nonexpansive).

We present, for the convenience of readers, the following definitions which

also appear in Petrusel [14].

Definition 1.1. Let X be a set and F : [0, 1] × X × X → X a mapping. Then the

pair (X, F) forms a convex prestructure.
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Definition 1.2. Let (X, F) be a convex prestructure. If F satisfies the following

conditions:

1. F (λ, x, F (μ, y, z)) = F (λ+(1−λ)μ, F (λ(λ+(1−λ)μ)−1, x, y), z) for every

λ, μ ∈ [0, 1] with λ+ (1− λ)μ �= 0 and x, y, z ∈ X.
2. F (λ, x, x) = x for any x ∈ X and λ ∈ [0, 1], then (X, F) forms a semi-

convex structure.

If (X, F) is a semi-convex structure, then F (1, x, y) = x for any x, y ∈ X.
Definition 1.3. A semi-convex structure (X, F) is said to form a convex structure

if F also satisfies the conditions:

1. F (λ, x, y) = F (1− λ, y, x) for every λ ∈ [0, 1], x, y ∈ X
2. If F (λ, x, y) = F (λ, x, z) for some λ �= 0, x ∈ X, then y = z.

Definition 1.4. Let (X, F) be a semi-convex structure. A subset Y of X is called F

- semi-starshaped if there exists a p ∈ Y , so that for any x ∈ Y and

λ ∈ [0, 1], F (λ, x, p) ∈ Y.

Definition 1.5. Let (X,F) be a convex structure. A subset Y of X is called:

1. F - starshaped if there exists a p ∈ Y, so that for any x ∈ Y and

λ ∈ [0, 1], F (λ, x, p) ∈ Y.

2. F - convex if for any u, v ∈ Y and λ ∈ [0, 1], we have F (λ, u, v) ∈ Y.

For F (λ, u, v) = λu + (1 − λ)v, we obtain the known notions of starshaped

and convexity from linear spaces.

Petruşel [14] noted with an example that a set can be a F - semi convex

structure without being a convex structure. So, it follows that the results on fixed

point theory and on best approximation theory obtained for semi-convex and semi-

starshaped structures will be more general than those on F - convex structure.

Definition 1.6 (Random Semi-Convex Structure). LetF : Ω ×X ×X × [0, 1] → X

be a mapping having the following properties:

1. For each ω ∈ Ω, F (ω, ., ., .) is a semi-convex structure on X,
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2. For each x, y ∈ X, λ ∈ [0, 1], F (., x, y, λ) is measurable.

The mapping F is called a random semi-convex structure on X.

Example 1 [5]. The mapping F : [0, 1]×R∗+ ×R∗+ → R∗+ given by

F (λ, u, v) = uλ.v1−λ

together with the set of strict positive real numbers form a convex structure.

Example 2 [14]. The mapping F : [0, 1]×R×R→ R given by

F (λ, u, v) = [λu2k + (1− λ)v2k]1/2k, k ∈ N∗

together with the set of real numbers form a semi-convex structure without being a

convex structure.

2. Main results

Theorem 2.1. Let X be a separable random Banach space with semi-convex structure

F, where the mapping F : Ω×X ×X × [0, 1]→ X satisfies the following conditions:

1. F is φ - contractive relative to the second argument, i.e., there exists a

mapping φ : [0, 1[→ [0, 1[ so that:

||F (ω, x, p, λ)− F (ω, y, p, λ)|| ≤ φ(λ).||x− y||,

for any x, y, p ∈ X and λ ∈ [0, 1[ and ω ∈ Ω.
2. F is continuous relative to the first argument.

Let Y be a compact and F - semi-starshaped subset of X and the mapping

T : Ω× Y → Y be nonexpansive random operator. Then T has a random fixed point.

Proof. Choose p ∈ Y so that for any u ∈ Y and λ ∈ [0, 1[, we have F (ω, u, p, λ) ∈ Y
for each ω ∈ Ω. Let {Kn} be a sequence of measurable mappings Kn : Ω→ (0, 1) and

Kn(ω)→ 1 as n→∞.
Define the random operator Tn : Ω× Y → Y by

Tn(ω, x) = F (ω, T (ω, x), p,Kn(ω))
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Tn is, because of F - semi-starshaped of Y, well defined. The operator Tn is a con-

traction Indeed

||Tn(ω, x1)− Tn(ω, x2)|| = ||F (ω, T (ω, x1), p,Kn(ω))− F (ω, T (ω, x2), p,Kn(ω))||

≤ φ(Kn(ω))||T (ω, x1)− T (ω, x2)||
for all x, y ∈ Y and ω ∈ Ω. By Hans [8], Tn has a unique random fixed point ξn.

For each n, define Gn : Ω→ K(X) by Gn(w) = Cl{ξi(ω) : i ≥ n}.
Define G : Ω → K(X) by G(ω) =

∞⋂
n=1

Gn(ω). Since G is measurable (see

Himmelberg [9], Theorem 4.1), by Kuratowski and Ryll-Nardzewski theorem in [10]

we have that G has a measurable selector ξ. Because Y is compact, {ξn(ω)} has a
subsequence {ξnj

(ω)} converging to ξ(ω). By the continuity of T and F, T (ω, ξnj
(ω))

converges to T (ω, ξ(ω)). Thus, T (ω, ξ(ω)) = ξ(ω) for each ω ∈ Ω.
Next we have the following:

Theorem 2.2. Let X be a separable random Banach space with a semi-convex struc-

ture F,where the mapping F : Ω×X ×X × [0, 1]→ X satisfies the conditions:

1. F is φ - contractive relative to the second argument.

2. F is continuous relative to the first argument.

Let Y be a weakly compact and F - semi-starshaped subset of X and the

mapping T : Ω × Y → Y be nonexpansive and weakly continuous mapping. In these

conditions the mapping T has a random fixed point.

Proof. As in Theorem 2.1, define {Kn} and the random operator Tn. As before, each

Tn is a contraction mapping on Y. Since the weak topology of X is Hausdorff and Y

is weakly compact,we have that Y is weakly closed and therefore, strongly closed (See

Dotson, Theorem 2 [4]). Hence Y is a complete metric space (with the norm topology

of the Banach space X). By Hans [8], Tn has a unique random fixed point ξn ∈ Y.

By the Eberlein-Smulian [4]theorem, Y is weakly sequentially compact. Thus there

is a subsequence {ξn(ω)} such that ξnj
(ω) ω→ ξ(ω) ∈ Y (denotes weak convergence).

Since T is weakly continuous and F - continuous, we have

T (ω, ξnj (ω))
ω→ T (ω, ξ(ω))
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Thus, T (ω, ξ(ω)) = ξ(ω). for each ω ∈ Ω.
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MONOTONE INTERPOLANT BUILT WITH SLOPES OBTAINED

BY LINEAR COMBINATION

PAUL A. KUPÁN

Abstract. Slopes needed to obtain a monotone piecewise cubic Hermite

interpolant are constructed. These slopes are obtained local as linear com-

bination of the slopes of the line segments joining the data.

The most used methods to construct a monotone interpolant to monotone

data is to insert new points between two adjacent knots, respectively to give the

slopes needed to build the piecewise interpolant. The paper of Fritsch-Carlson [3]

refers to necessary and sufficient condition to obtain a monotone cubic interpolant.

There is also discussed a nonlocal algorithm to built the adequate slopes. We use the

domain given there and we propose a local method to compute the slopes necessary

to built a monotone piecewise cubic interpolant.

Let π : x1 < x2 < ... < xn be a partition of the interval I = [x1, xn].

Let {fi : i = 1, ..., n} be a given set of monotone data values at the partition points

(knots): fi ≤ fi+1 or fi ≥ fi+1, i = 1, ..., n− 1. The goal is to construct a monotone

piecewise cubic function p ∈ C1 (I) that interpolate the given data. In each subin-

terval [xi, xi+1] the function p is the cubic Hermite interpolant that interpolates the

points (xi, fi) , (xi+1, fi+1) and with the endslopes di, di+1 which will be determined

later. Let Δi = (fi+1 − fi) /hi be the slope of the line segment joining the data

(xi, fi) , (xi+1, fi+1) where hi = xi+1 − xi. Let α = di

Δi

, β = di+1
Δi

be the ratios of the

endpoint derivates to the slope of the secant line.
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In [3] it was proved that the piecewise cubic interpolant is monotone on each

[xi, xi+1] if and only if:

(α, β) ∈M (1)

where the monotonicity region M is depicted in Figure 1.

43210

4

3

2

1

0

Figure 1. The region M (dashed) with the square S = [0, 3]× [0, 3] inside

As domain we use a subregion of M bounded by the four lines α = 0, 3 and

β = 0, 3 :

S = [0, 3]× [0, 3] .

We build the slopes di as a linear combination of the adjacent Δi−1, Δi :

di = (1− λi)Δi−1 + λiΔi, i = 2, ..., n− 1. (2)

Such a linear combination was also proposed by Akima in [1] with

λi =
|Δi−1 −Δi−2|

|Δi+1 −Δi|+ |Δi−1 −Δi−2|
, i = 3, ..., n− 2

but this method fails to preserve everywhere the monotonicity. Another local method

proposed in [4] use the harmonic mean of the Δi−1, Δi.

We search the admissible values of the parameter λi according to relation (1),

such that:
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(
di

Δi−1
,

di

Δi

)
∈ [0, c]× [0, c] (3)

with c ∈ [0, 3] . The value c = 0, discussed also in [6], produce a slightly flat inter-

polant.

The condition (3) is equivalent with the following two inequalities:

0 ≤
(1− λi)Δi−1 + λiΔi

Δi−1
≤ c (4)

0 ≤
(1− λi)Δi−1 + λiΔi

Δi

≤ c. (5)

From (4) and (5) we obtain:

−Δi−1 ≤ λi (Δi −Δi−1) ≤ (c− 1)Δi−1 (6)

−Δi−1 ≤ λi (Δi −Δi−1) ≤ cΔi −Δi−1 (7)

If Δi −Δi−1 �= 0 the admissible interval for λi becomes:

−
Δi−1

Δi −Δi−1
≤ λi ≤

(c− 1)Δi−1

Δi −Δi−1
, if Δi −Δi−1 > 0, (8)

cΔi −Δi−1

Δi −Δi−1
≤ λi ≤ −

Δi−1

Δi −Δi−1
, if Δi −Δi−1 < 0. (9)

If Δi −Δi−1 = 0, then λi have no influence on di : di = Δi.

For λi = − Δi−1
Δi−Δi−1

the slope di = 0 and, although this value is admissible,

the interpolant becomes flat. It seems reasonable to impose that the slope di ≥

min{Δi−1, Δi}. That’s mean:

0 ≤ λi, if Δi −Δi−1 > 0,

λi ≤ 1, if Δi −Δi−1 < 0.

So, we restrict the relations (8) and (9) to:

0 ≤ λi ≤
(c− 1)Δi−1

Δi −Δi−1
, if Δi −Δi−1 > 0, (10)

cΔi −Δi−1

Δi −Δi−1
≤ λi ≤ 1, if Δi −Δi−1 < 0. (11)
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The inequalities (10),(11) are consistent if 0 ≤ (c−1)Δi−1
Δi−Δi−1

and cΔi−Δi−1
Δi−Δi−1

≤ 1, which

are equivalent with c ≥ 1. So we impose:

c ∈ [1, 3] .

To fix the value of λi in the admissible interval given in (10),(11) we use a

convex combination between the ends of these intervals:

λi =

⎧⎨
⎩ (1− wi) 0 + wi

(c−1)Δi−1
Δi−Δi−1

, if Δi −Δi−1 > 0,

(1− vi) + vi
cΔi−Δi−1
Δi−Δi−1

, if Δi −Δi−1 < 0

equivalent with

λi =

⎧⎨
⎩

Δi−1
Δi−Δi−1

wi (c− 1) , if Δi −Δi−1 > 0,

1
Δi−Δi−1

((1 + (c− 1) vi)Δi −Δi−1) , if Δi −Δi−1 < 0.

Then from (2) follows for the slopes:

di =

⎧⎨
⎩ (1 + (c− 1)wi)Δi−1, if Δi −Δi−1 ≥ 0,

(1 + (c− 1) vi)Δi , if Δi −Δi−1 < 0,
(12)

We would like that the value di depends not only on the slope of line segment

but also on the relative spacing of xi and fi-values. For this reason we use the length

of the line segments (in ||·||1 norm)

li = |xi+1 − xi|+ |fi+1 − fi|

and we choose the weights wi, vi as follow:

wi =

(
1−

Δi−1

Δi

)
1

1 + li−1
li

∈ [0, 1] , (13)

vi =

(
1−

Δi

Δi−1

)
1

1 + li
li−1

∈ [0, 1] . (14)

The proposed values are based on the following idea:

- if Δi is close to Δi−1 then naturally di must be also close to this value; the

first therm in (13),(14) care about this because
(
1− Δi−1

Δi

)
� 0 (

(
1− Δi

Δi−1

)
� 0) so

di � Δi−1 � Δi.
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- if Δi is not close to Δi−1 (Δi � Δi−1, or Δi � Δi−1) then the slope di

must be close to the value Δi−1 if li−1 > li, respectively close to Δi if li−1 < li. The

second therm in (13),(14) have the function to meet this requirement.

The slopes at end points are computed using a formula for numerical differ-

entiation (the three-point formula), but inside of the admissible values. This values

coresponds to the slopes of the parabola built on three consecutive points.

The rate of convergence of the derivative is in general O (h) , but for c = 2

and uniformly spaced data, the rate becomes O
(
h2

)
.

Theorem 1. Let (xi)
n

i=1 a uniformly spaced data xi+1 − xi = h, i = 1, ..., n− 1, and

let f ∈ C3 [a, b] be a monotone incresing function with:

fi = f (xi) .

Then for c = 2 the values (12) gives O
(
h2

)
approximation to f ′ (xi) :

f ′ (xi)− di = O
(
h2

)
.

Proof. If Δi −Δi−1 ≥ 0, then di = (1 + wi)Δi−1, where Δi−1 = fi−fi−1
xi−xi−1

, so using a

Taylor formula we get:

fi−1 = f (xi − h) = f (xi)− hf ′ (xi) +
h2f ′′ (xi)

2
−

h3f ′′′ (ξi)

6
, ξi ∈ (xi−1, xi)

consequently

di = (1 + wi)
1

h

(
hf ′ (xi)−

h2f ′′ (xi)

2
+

h3f ′′′ (ξi)

6

)
.

To compute wi we use also the expansion:

fi+1 = f (xi + h) = f (xi) + hf ′ (xi) +
h2f ′′ (xi)

2
+

h3f ′′′ (θi)

6
, θi ∈ (xi, xi+1) .

So we obtain for the difference:

f ′ (xi)− di =
E

3
(
12 (f ′i + 1) +

(
f ′′′i + f ′′′i+1

)
h2

)
(6f ′i + 3f ′′i h + f ′′′i h2)

h2 (15)
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with

E = −f ′′′2i f ′′′i+1h
4 + 3f ′′′i f ′′i

(
f ′′′i − 2f ′′′i+1

)
h3+

+ 3
(
f ′′′2i+1 − 3f ′if

′′′

i f ′′′i+1 − 3f ′′′i f ′′′i+1 − f ′if
′′′2
i + 3 f ′′2i

(
2f ′′′i − f ′′′i+1

))
h2+

+ 9 f ′′i
(
3f ′′′i − 5f ′′′i+1 + f ′if

′′′

i − 3f ′if
′′′

i+1 + 3 f ′′2i

)
h−

− 18
(
f ′i (f ′i + 1)

(
f ′′′i + f ′′′i+1

)
− 3 f ′′2i (f ′i + 2)

)
where

f ′i = f ′ (xi) , f ′′i = f ′′ (xi) , f ′′′i = f ′′′ (ξi) , f ′′′i+1 = f ′′′ (θi) .

The case Δi −Δi−1 < 0 can be treated in the same manner and we obtain:

f ′ (xi)− di =
F

3
(
12 (f ′i + 1) +

(
f ′′′i + f ′′′i+1

)
h2

)
(−6f ′i + 3f ′′i h− f ′′′i h2)

h2

with

F = −f ′′′2i f ′′′i+1h
4 + 3f ′′′i f ′′i

(
f ′′′i − 2f ′′′i+1

)
h3 +

+3
(
f ′′′2i+1 − 3f ′if

′′′

i f ′′′i+1 − 3f ′′′i f ′′′i+1 − f ′if
′′′2
i+1 + 3 f ′′2i

(
2f ′′′i − f ′′′i+1

))
h2 +

9 f ′′i
(
3f ′′′i − 5f ′′′i+1 + f ′if

′′′

i − 3f ′if
′′′

i+1 + 3 f ′′2i

)
h +

−18
(
f ′i (f ′i + 1)

(
f ′′′i + f ′′′i+1

)
− 3 f ′′2i (f ′i + 2)

)
.

Corollary 2. If c = 2 the cubic Hermite interpolant with slopes (12) gives an O
(
h3

)
approximation to f for uniformly spaced data.

For the particular value c = 2 the slope di fulfill another (reasonable) prop-

erties, namely it’s value don’t break through the maximum between Δi−1 and Δi.

Proposition 3. If c = 2 the slopes di given in (12) satisfy:

min {Δi−1, Δi} ≤ di ≤ max {Δi−1, Δi} . (16)

Proof. The inequality:

min {Δi−1, Δi} ≤ di

was already used.
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Admit now that Δi −Δi−1 ≥ 0, then we must prove that:

di ≤ Δi

equivalent with:

(1 + wi)Δi−1 ≤ Δi.

Substituting (13) it follows:(
1−

Δi−1

Δi

)
1

1 + li−1
li

≤
Δi

Δi−1
− 1

equivalent with:
1

1 + li−1
li

≤
Δi

Δi−1

which is true because the left side is lower, while the right side is greater than 1.

The case Δi −Δi−1 ≤ 0 can be treated similarly.

Remark 4. The property (16) hold for c ∈ [1, 2] .

As example we use the data from [1]:

xi 0 2 3 5 6 8 9 11 12 14 15

fi 10 10 10 10 10 10 10.5 15 50 60 85

The cubic Hermite interpolant for c = 2 respectively for c = 3 are represented

in Figure 2.
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Figure 2. The monotone interpolant for c = 2 (left) and c = 3 (right)
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Figure 3. The piecewise cubic Hermite interpolating polynomial-pchip

By comparison we have represented in Figure 3 the cubic interpolant using

the MATLAB’s specialized function pchip. Those slopes di are computed using a

weighted average of Δi−1, Δi.
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ON A LIMIT THEOREM FOR FREELY INDEPENDENT

RANDOM VARIABLES

BOGDAN GH. MUNTEANU

Abstract. A direct proof of Voiculescu’s addition theorem for freely in-

dependent real-valued random variables, using resolvents of self-adjoint

operators, is given. The addition theorem leads to a central limit theorem

for freely independent, identically distributed random variables of finite

variance is given.

1. Introduction

The concept of independent random variables lies at the heart of classical

probability. Via independent sequences it leads to the Gauss and Poisson distribution.

Classical, commutative independence of random variables amounts to a factorisation

property of probability spaces.

At the opposite, non-comutative extreme Voiculescu discovered in 1983 the notion of

free independence of random variables, which corresponds to a free product of von

Neumann algebras [3]. He showed that this notion leads naturally to analogues of the

Gauss and Poisson distributions, very different in form from the classical ones [3] and

[5]. For instance the free analoque of the Gauss curve is a semi-ellipse.

In this paper we consider the addition problem: Which is the probability distribution

μ of the sum X1+X2 of two freely independent random varibles, given the distribution

μ1 and μ2 of the summands? This problem was solved by Voiculescu in 1986 for the

case of bounded, not necessarily self-adjoint random variables, relying on the existence

of all the moments of the probability distributions μ1 and μ2 ([4]). Later this problem
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was solve by Hans Massen in 1992 for the case of self-adjoint random variables with

finite variance. The result is an explicit calculation procedure for the free convolution

product of two probability distributions. In this procedure a central role is played by

the Cauchy transform G(z) of a distribution μ, which equals the expectation of the

resolvent of the associated operator X . If we take X self-adjoint, μ is a probability

measure on R and we may write:

G(z) :=

∞∫
−∞

μ dx

z − x
= E

(
(z −X)−1

)

This formula points at a direct way to find the free convolution product of μ1 and μ2.

This article consists of four sections. The first contains some preliminaries on free

independence. In the second we gather some facts about Cauchy transforms. In three

section it is shown that F1 ⊗ F2 = E
(
(z − (X1 + X2))

−1
)−1

, where X1 and X2 are

freely independent random variables with distributions μ1 and μ2 respectively, and

the bar denotes operator closure. The last section contains the central limit theorem.

2. Free independence of random variables

By a random variable we shall mean a self-adjoint operator X on a Hibert

space H in which a particular unit vector ξ has been singled out. Via the functional

calculus of spectral theory such an operator determines an embedding ιX of the com-

mutative C∗-algebra C(R) of continuous functions on the one-point compactification

R = R ∪ {∞} of R to be bounded operators on H:

ιX(f) = f(X)

We shall consider the spectral measure μ of X , which is determined by

< ξ, ιX(f)ξ >=

∞∫
−∞

f(x)μ dx
(
f ∈ C(R)

)

as the probability distribution of X and we shall think of < ξ, ιX(f)ξ > as the ex-

pectation value of the (complex-valued) random variable f(X), which is a bounded

normal operator on H.
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Definition 2.1. The random variables X1 and X2 on (H, ξ) are said to be freely

independent if for all n ∈ N and all alternating sequences i1, i2, ..., in such that i1 �=

i2 �= i3 �= ... �= in and for all fk ∈ C(R), k = 1, n one has

< ξ, fk(Xik
)ξ >= 0 =⇒ < ξ, f1(Xi1)f2(Xi2)...fn(Xin

)ξ >= 0

3. The reciprocal Cauchy transform

We consider the expectation values of functions f ∈ C(R) of the form

f(x) =
1

z − x
, (�(z) > 0)

In particular they play a key role in the addition of freely independent random vari-

ables.

For the complex plane C denote C+ = {z ∈ C : �(z) > 0} the upper half-plane,

C− = {z ∈ C : �(z) < 0} the lower half-plane. If μ is a finite positive measure on

R, then its Cauchy transform

G(z) :=

∞∫
−∞

μ dx

z − x
, (�(z) > 0) ,

is a holomorphic function (G : C+ → C+) with the property

lim sup
y→∞

y |G(iy)| < ∞ (1)

Conversely every holomorphic function C
+ → C

− with this property is the Cauchy

transform of some finite positive measure on R, and the lim sup in (1) equals μ(R).

The inverse correspondence is given by Stieltjes’ inversion formula:

μ(B) = −
1

π
lim
ε↓0

∫
B

�(G(x + iε) dx

valid for all Borel sets B ∈ R for which μ(∂B) = 0 ([1]).

We shall be mainly interested in the reciprocal Cauchy transform

F (z) =
1

G(z)
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The coresponding classes of reciprocal Cauchy transforms of probability measures

with finite variance and zero mean will be denoted by F2
0 .

The next proposition characterises the class F2
0 .

Proposition 3.1. [2] Let F be a holomorphic function G : C+ → C+. Then the

following statements are equivalent:

(a): F is the reciprocal Cauchy transform of a probability measure on R with

finite variance and zero mean:

∞∫
−∞

x2μ dx <∞ and

∞∫
−∞

xμ dx = 0 ;

(b): There exists a finite positive measure ρ on R such that for all z ∈ C+:

F (z) = z +

∞∫
−∞

ρ dx

x− z
;

(c): There exists a positive number C such that for all z ∈ C
+:

|F (z)− z| ≤
C

�(z)

Moreover, the variance σ2 of μ in (a), the total weight ρ(R) of ρ in (b) and the

(smallest possible) constant C in (c) are all equal.

Proof. For the proof it is useful to introduce the function CF : (0,∞)→ C

y �−→ y2

(
1

F (iy)
−

1

iy

)
=

iy

F (iy)
(F (iy)− iy))

In case F is the reciprocal Cauchy transform of some probability measure μ on R, the

limiting behaviour of CF (y) as y → ∞ gives information on the integrals
∫

x2μ dx

and
∫

xμ dx. Indeed one has

CF (y) = y2

∞∫
−∞

(
1

iy − 1
−

1

iy

)
μ dx =

∞∫
−∞

−xy2 + ix2y

x2 + y2
μ dx

The function y �→ �(CF (y)) is nondecreasing and
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sup
y>0

y �(CF (y)) = lim
y→∞

y �(CF (y)) (2)

= lim
y→∞

∞∫
−∞

y2

x2 + y2
x2μ dx =

∞∫
−∞

x2μ dx <∞

On the other side, by the dominated convergence theorem,

∞∫
−∞

xμ dx = lim
y→∞

∞∫
−∞

y2

x2 + y2
xμ dx = − lim

y→∞
�(CF (y)) (3)

(a)⇒(b). If F ∈ F2
0 , then by (2) and (3) both the real and the imaginary part of CF (y)

tends to zero as y → ∞. How CF (y) = iy

F (iy) (F (iy)− iy)), then iCF (y) = iy2

F (iy) − y

and |CF (y)| = y
∣∣∣ iy

F (iy) − 1
∣∣∣. But lim

y→∞
CF (y) = 0, it follows that

lim
y→∞

F (iy)

iy
= 1

Therefore

σ2 = lim
y→∞

y�(CF (y)) = lim
y→∞

y |CF (y)| (4)

= lim
y→∞

y

∣∣∣∣ iy

F (iy)

∣∣∣∣ |F (iy)− iy| = lim
y→∞

y |F (iy)− iy| <∞

This condition says that the function z �→ F (z)− z satisfies (1) and is therefore the

Cauchy transform of some finite positive measure ρ on R with ρ(R) = σ2. This proves

(b).

(b)⇒(c). If F is of the form (b), then

|F (z)− z| =

∣∣∣∣∣∣
∞∫

−∞

ρ dx

x− z

∣∣∣∣∣∣ ≤
∞∫

−∞

ρ dx

|z − x|
≤

ρ(R)

�(z)
(5)

where C it may be equal with ρ(R), whatever is z ∈ C+.

(c)⇒(a). Since F : C+ → C+ is holomorphic, it can written in Nevanlinna’s integral

form [1]:

F (z) = a + bz +

∞∫
−∞

1 + xz

x− z
τ dx (6)
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where a, b ∈ R with b ≥ 0 and τ is a finite positive measure. Putting z = iy, y > 0,

we find that

y �(F (iy)− iy) = y �

⎛
⎝a + iby +

∞∫
−∞

1 + ixy

x− iy
τ dx− iy

⎞
⎠

= y2

⎡
⎣(b− 1) +

∞∫
−∞

x2 + 1

x2 + y2
τ dx

⎤
⎦

As y → ∞, the integral tends to zero. By the assumptiom (c), the whole expression

must remain bounded, which can be the case if b = 1. But then by (6), F must

increase the imaginary part:

�(F (z)) ≤ �(z)

Moreover, (c) implies that F (z) and z can be brought arbitrarily close together, so by

[2], proposition 2.1 F is the reciprocal Cauchy transform of some probability measure

μ on R.

Again by (c) this measure μ must have the properties

∞∫
−∞

x2μ dx ≤ lim
y→∞

sup y |CF (y)| = lim
y→∞

sup y |F (iy)− iy| ≤ y
C

�(iy)
= C

and
∞∫

−∞

xμ dx = − lim
y→∞

�(CF (y)) = 0

The fact that

σ2 ≥ ρ(R) ≥ C ≥ σ2

is clear from the above; this these three numbers must be equal.

We now presents one lemma about invertibility of reciprocal Cauchy trans-

forms of measures and certain related functions, to be called ϕ-functions. The lemma

act in opposite directions; from reciprocal Cauchy transforms of probability measures

to ϕ-functions and vice versa.

72



ON A LIMIT THEOREM FOR FREELY INDEPENDENT RANDOM VARIABLES

Lemma 3.1. [2] Let C > 0 and let ϕ : C+ → C− be analytic with

|ϕ(z)| ≤
C

�(z)

Then the function K : C+ → C+, K(u) = u + ϕ(u) takes every value in C+ precisely

once. The inverse K−1 : C+ → C+ thus defined is of class F2
0 with variance σ2 ≤ C.

4. The addition theorem

We now formulate the main theorem of this section, namely the addition

theorem.

Theorem 4.1. [2] Let X1 and X2 be freely independent random variables on some

Hilbert space H with distinguished vector ξ, cyclic for X1 and X2. Suppose that X1

and X2 have distributions μ1 and μ2 with variances σ2
1 and σ2

2 . Then the closure of

the operator

X = X1 + X2

defined on Dom (X1) ∩ Dom (X2) is self-adjoint and its probability distribution μ on

(H, ξ) is given by

μ = μ1 ⊗ μ2

where ⊗ is the free convolution product.

In particular in the region
{
z ∈ C | �(z) > 2

√
σ2

1 + σ2
2

}
the ϕ-functions related to μ,

μ1 and μ2 satisfy

ϕ = ϕ1 + ϕ2

The proof of this theorem is given in [2] where show that < ξ, (z −

X)−1ξ >−1= (F1 ⊗ F2)(z) for all z ∈ C+.

5. A free limit theorem

In this section, we prove that sums of large numbers of frelly independent

random variables of finite variance tend to certain distribution different to semiellipse

distribution. The semiellipse distribution was first encountered by Wigner [6] when
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a studying spectra of large random matrices. The distribution obtained by author is

defined by:

bσ(x) =
σ2

π(x2 + σ4)

where the graphics representation is in figure 1 for σi = 1, 4, 10, 25, 50, 100, i = 1, 6.

We remark that bσ(x) is the Cauchy distribution Cau(0, σ2).

Figure 1. The graphics representation of distribution bσ

Lemma 5.1. The distribution bσ has the following ϕ-function:

ϕ(u) = −iσ2 (7)

Proof. We know that the inverse of the function Kσ : C+ → C+, Kσ(u) = u− iσ2 is

the function Fσ ∈ F
2
0 . This is

Fσ : C
+ → C

+, Fσ(z) = z + iσ2
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ON A LIMIT THEOREM FOR FREELY INDEPENDENT RANDOM VARIABLES

But this is the reciprocal Cauchy transform of bσ by Stieltjes’ inversion formula

lim
ε↘0

−
1

π
�

(
1

F (x + iε)

)
= bσ(x)

Indeed:

lim
ε↘0

−
1

π
�

(
1

F (x + iε)

)
= lim

ε↘0
−

1

π
�

(
1

x + i(ε + σ2)

)

= lim
ε↘0

−
1

π
�

(
x− i(ε + σ2)

x2 + (ε + σ2)2

)

=
1

π
·

σ2

x2 + σ4

We now formulate the free central limit theorem. We denote by Dλμ its

dilation by a factor λ for a probability measure μ on R:

Dλμ(A) = μ(λ−1A) , (A ⊂ R measurable)

Theorem 5.1. Let μ be a probability measure on R with mean 0 and variance σ2,

and for n ∈ N∗ let

μn = D1/nμ⊗ ...⊗D1/nμ︸ ︷︷ ︸
n− times

Then

lim
n→∞

μn = bσ

Proof. Let F , F̃n and Fn denote the reciprocal Cauchy transforms of μ, Dnμ and μn

respectively. Denote the associated ϕ-functions by ϕ, ϕ̃n and ϕn. Let as in the proof

of lemma 5.1, Fσ denote the reciprocal Cauchy transform of bσ. By the continuity

theorem 2.5 in [2] it suffices to show that for some M > 0 and all z ∈ C
+
M :

lim
n→∞

Fn(z) = Fσ(z)

or is equivalent with

lim
n→∞

Kσ ◦ Fn(z) = z (8)
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Now, fix z ∈ C
+
M and put un = Fn(z) and zn = F̃−1

n (un). Then z− un = ϕn(un) and

zn − un = ϕ̃n(un). Hence by an n-fold application of the addition theorem 4.1,

z − un = n(zn − un)

Note that also

|z − un| ≤
σ2

M
, �(un) > M

with respect to lemma 3.1.

By the property FDλμ(z) = λF (λ−1z) and the integral reprezentation of F in accord

to proposition 3.1,(b), we have:

z − un = n(zn − un) = n(zn − F̃n(zn))

= n(zn − n−1F (nzn)) = nzn − F (nzn)

=

+∞∫
−∞

ρ dx

nzn − x

Hence

|z −Kσ ◦ Fn(z)| = |z −Kσ(un)| =
∣∣z − un + iσ2

∣∣
=

+∞∫
−∞

∣∣∣∣ 1

nzn − x
+ iσ2

∣∣∣∣ ρ dx

The integrand on the right hand side is uniformly bounded and tends to zero pointwise

as n tends to infinity.

Remark 5.1. First note that every ϕ-function goes like −iσ2 high above the real

line. Indeed we have z = F−1(u) ≈ u and

ϕ(u) = K(u)− u = F−1(u)− u = z − F (z)︸ ︷︷ ︸
ϕ(z)

≈ −iσ2

Now, due to the scaling law ϕDλμ(u) = λϕ(λ−1u) and by proposition 3.1 we

obtain

ϕn(u) = nϕ̃n(u) = nϕD 1
n

μ(u) = n ·
1

n
ϕ(nu)→ −iσ2 , (n →∞)
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In [3], the author to use in place of bσ Cauchy distribution, the distribution

defined by

bσ(x) =

⎧⎪⎨
⎪⎩

1
2
√

2πx

√√
1 + 16x2σ4 − 1 if x > 0

0 if x ≤ 0

where the dilation of probability measure has a factor λ = n.
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THE DIRAC EQUATION AND THE NONCOMMUTATIVE
HARMONIC OSCILATOR

LAURIAN PIŞCORAN

Abstract. In this paper we analyzed the Dirac equation using the non-

commutative harmonic oscillator. Also we analyzed some particular wave

functions cases using this noncommutative operator.

1. Introduction

The wave function ψ(t, x) describes the probability distribution in time and

space of an particle.

In general the Dirac equation (see [1]), is given by :

i�
∂

∂t
ψ(t, x) = H0ψ(t, x) (∗)

Here H0 represents a differential operator, which is for instance, in the two-

dimensional case:

H0 = −i�c
(
σ1

∂

∂x1
+ σ2

∂

∂x2

)
+ σ3mc

2.

Here σ1, σ2, σ3 represent the Pauli matrices, � is the Planck constant and m

is the mass of the particle.

The non-commutative harmonic oscilator Q(x, ∂x) is defined to be the second-

order ordinary differential operator:

Q(x, ∂x) =

⎛
⎝ α 0

0 β

⎞
⎠(

−∂
2
x

2
+
x2

2

)
+

⎛
⎝ 0 −1

1 0

⎞
⎠(

x∂x +
1
2

)
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=

⎛
⎝ −α∂2

x

2 + αx
2

2 −x∂x − 1
2

x∂x + 1
2 −β ∂2

x

2 − β x
2

2

⎞
⎠

where α, β are two constants, α, β > 0.

If we change the operator H0 with Q(x, ∂x) one obtain a new equation:

i�
∂

∂t
ψ(t, x) = Q(x, ∂x)ψ(t, x) (∗∗)

Let’s call this equation the ”noncommutative Dirac equation” . In this paper

we will analyze this new equation.

2. Main result

Theorem 2.1. For a free particle the noncommutative Dirac equation is:

�
∂

∂t
ψ(t, x) = −

(
x∂x +

1
2

)
ψ(t, x)

Proof. We know that the noncommutative harmonic oscilator is:

Q(x, ∂x) =

⎛
⎝ −α∂2

x

2 + αx
2

2 −x∂x − 1
2

x∂x + 1
2 −β ∂2

x

2 − β x
2

2

⎞
⎠ ,

then the noncommutative Dirac equation is:

i�
∂

∂t
ψ(t, x) =

⎛
⎝ −α∂2

x

2 + αx
2

2 −x∂x − 1
2

x∂x + 1
2 −β ∂2

x

2 − β x
2

2

⎞
⎠ψ(t, x).

Using the matricial representation for the complex numbers,

i =

⎛
⎝ 0 1

−1 0

⎞
⎠ ,

one obtains:⎛
⎝ 0 �

∂ψ(t,x)
∂t

−�
∂ψ(t,x)
∂t 0

⎞
⎠ =

⎛
⎝

(
−α∂2

x

2 + αx
2

2

)
ψ(t, x)

(−x∂x − 1
2

)
ψ(t, x)(

x∂x + 1
2

)
ψ(t, x)

(
−β ∂2

x

2 − β x
2

2

)
ψ(t, x)

⎞
⎠

Identifying, one obtains: �
∂
∂tψ(t, x) = −

(
x∂x + 1

2

)
ψ(t, x), so the theorem is

proved. �
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Corollary 2.2. If the wave function is ψ(t, x) = ϕ(x)e−
iEt

� , where E represents the

total energy, using the noncommutative Dirac equation, one obtains the total energy:

E = 1
�

(
xp− i�

2

)
.

Proof.

�
∂

∂t

(
ϕ(x)e−

iEt
�

)
= −

(
x∂x +

1
2

)
ϕ(x)e−

iEt
� ⇒

�ϕ(x)e−
iEt

�

(−iE
�

)
= −

(
x∂x +

1
2

)
ϕ(x)e−

iEt
� ⇒ E =

1
i

(
x∂x +

1
2

)
.

But, using the Schrödinger equation from quantum physics, the impulse is:

p = −i� ∂

∂x
,

so, one obtains:

E =
1
i2�

(
i�x

∂

∂x
+
i�

2

)
=
1
�

(
xp− i�

2

)
. �

Using this expression for total energy, for the wave function, one obtains:

ψ(t, x) = ϕ(x)e−(
it
�

1
� (xp− i�

2 )) = ϕ(x)e−
it
�2 xp− t

2� .

Corollary 2.3. If we consider a plane wave function: ψ(t, x) = ce(−
i
�
px− iEt

� ), using

noncommutative Dirac equation, one obtains the total energy:

E =
1
�
(px+

�

2i
).

Proof.

�
∂

∂t

(
ce(

ipx
�
− iEt

� )
)
= −

(
x∂x +

1
2

)
ce(

ipx
�
− iEt

� ) ⇒

�ce(
ipx

�
− iEt

� )
(
− iE

�

)
= −

(
x∂x +

1
2

)
ce(

ipx
�
− iEt

� ).

So, finally, we obtain:

iE = x∂x +
1
2
⇒ E =

1
i

(
x∂x +

1
2

)
=
1
�

(
− i�
i2
x∂x +

�

2i

)
=
1
�
(px+

�

2i
). �

If we replace this expression of the total energy in the wave function, we get:

ψ(x, t) = ce
i
�
px− it

� ( 1
� (px+ �

2i )) = ce
i
� (px− tpx

�
− t

2i ).
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Every fermion also has an antifermion. An antiparticle was observed for the

first time in 1933, but the idea had been introduced theoretically by Dirac in 1928.

We start from the assumption that a particle in free space is described by the de

Broglie wave function:

ψ(t, x) = N exp[i(px− Et)/�],

with frequency ν = E
�
and wavelenght λ = �

p . Working nonrelativisticaly the rela-

tionship between momentum and energy is : E = p2

2m and substituting operators one

obtains Schrödinger equation:

i�
∂

∂t
ψ(t, x) = − �

2m
�2 ψ(t, x).

Relativistically:

E2 = p2c2 +m2c4,

and again substituting operators, we have:

−�
2 ∂

2

∂t2
ψ(t, x) = −�

2c2 �2 ψ(t, x) +m2c4ψ(t, x).

This equation is called the Klein-Gordon equation. The solutions of this equation are:

ψ(x, t) = N exp[i(px− Et)/�].

Corollary 2.4 If we consider the deBroglie wave function:

ψ(x, t) = N exp[i(px− Et)/�],

using the noncommutative Dirac equation (**), one obtains the total energy:

E =
1
�
(px+

�

2i
).

Proof. From noncommutative Dirac equation (**), one obtains:

�
∂

∂t
(Ne−

i(px−Et)
� ) = −

(
x∂x +

1
2

)
Ne−

i(px−Et)
� ⇒ iE = x∂x +

1
2
,

so, finally, we obtain:

E =
1
i

(
x∂x +

1
2

)
=
1
�

(
px+

�

2i

)
. �
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Then the deBroglie wave function becomes:

ψ(x, t) = N exp[i(px− 1
i

(
x∂x +

1
2

)
t)/�].
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LIII, Number 2, June 2008

THE GENERALIZATION OF VORONOVSKAJA’S THEOREM
FOR A CLASS OF BIVARIATE OPERATORS

OVIDIU T. POP

Abstract. In this paper we generalize Voronovakaja’s theorem and we

give an approximation property for a class of bivariate operators and

then, through particular cases, we obtain statements verified by the bi-

variate operators of Bernstein, Schurer, Durrmeyer, Kantorovich, Stancu

and Bleimann, Butzer and Hahn.

1. Introduction

In this section, we recall some notions and results which we will use in this

article. Let N be the set of positive integers and N0 = N ∪ {0}.
For m ∈ N, let Bm : C([0, 1])→ C([0, 1]) the Bernstein operators, defined for

any function f ∈ C([0, 1]) by

(Bmf)(x) =
n∑
k=0

pm,k(x)f
(
k

m

)
, (1.1)

where pm,k(x) are the fundamental polynomials of Bernstein, defined as follows

pm,k(x) =
(
m

k

)
xk(1− x)m−k, (1.2)

for any x ∈ [0, 1] and any k ∈ {0, 1, . . . ,m}.
Let p ∈ N0. For m ∈ N, F. Schurer (see [15]) introduced and studied in 1962,

the operators B̃m,p : C([0, 1 + p]) → C([0, 1]), named Bernstein-Schurer operators,

Received by the editors: 20.03.2007.
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defined for any function f ∈ C([0, 1 + p]) by

(
B̃m,pf

)
(x) =

m+p∑
k=0

p̃m,k(x)f
(
k

m

)
, (1.3)

where p̃m,k(x) denotes the fundamental Bernstein-Schurer polynomials, defined as

follows

p̃m,k(x) =
(
m+ p

k

)
xk(1− x)m+p−k = pm+p,k(x) (1.4)

for any x ∈ [0, 1] and any k ∈ {0, 1, . . . ,m+ p}.
For m ∈ N let the operators Mn : L1([0, 1]) → C([0, 1]) defined for any

function f ∈ L1([0, 1]) by

(Mmf)(x) = (m+ 1)
m∑
k=0

pm,k(x)

1∫
0

pm,k(t)f(t)dt, (1.5)

for any x ∈ [0, 1].
These operators were introduced in 1967 by J. L. Durrmeyer in [7] and were studied

in 1981 by M. M. Derriennic in [5].

For m ∈ N let the operator Km : L1([0, 1]) → C([0, 1]) defined for any

function f ∈ L1([0, 1]) by

(Kmf)(x) = (m+ 1)
m∑
k=0

pm,k(x)

k+1
m+1∫
k

m+1

f(t)dt, (1.6)

for any x ∈ [0, 1].
The operators Km, where m ∈ N, are named Kantorovich operators, intro-

duced and studied in 1930 by L. V. Kantorovich (see [8]).

For the following construction see [11].

Define the natural number m0 by

m0 =

⎧⎪⎨
⎪⎩

max{1,−[β]}, if β ∈ R\Z

max{1, 1− β}, if β ∈ Z.
(1.7)

For the real number β, we have that

m+ β ≥ γβ (1.8)
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for any natural number m, m ≥ m0, where

γβ = m0 + β =

⎧⎪⎨
⎪⎩

max
{
1 + β, {β}}, if β ∈ R\Z

max{1 + β, 1}, if β ∈ Z.
(1.9)

For the real numbers α, β, α ≥ 0, we note

μ(α,β) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if α ≤ β

1 +
α− β
γβ

, if α > β.

(1.10)

For the real numbers α and β, α ≥ 0, we have that 1 ≤ μ(α,β) and

0 ≤ k + α

m+ β
≤ μ(α,β) (1.11)

for any natural number m, m ≥ m0 and for any k ∈ {0, 1, . . . ,m}.
For the real numbers α and β, α ≥ 0, m0 and μ(α,β) defined by (1.7) -

(1.10), let the operators P (α,β)
m : C

(
[0, μ(α,β)]

) → C
(
[0, 1]

)
, defined for any function

f ∈ C([0, μ(α,β)]
)
by

(
P (α,β)
m f

)
(x) =

m∑
k=0

pm,k(x)f
(
k + α

m+ β

)
, (1.12)

for any natural number m,m ≥ m0 and for any x ∈ [0, 1].
These operators are named Stancu operators, introduced and studied in 1969

by D. D. Stancu in the paper [16]. In [16], the domain of definition of the Stancu

operators is C([0, 1]) and the numbers α and β verify the condition 0 ≤ α ≤ β.

In 1980, G. Bleimann, P. L. Butzer and L. Hahn introduced in [4] a sequence

of linear positive operators (Lm)m≥1, Lm : CB([0,∞))→ CB([0,∞)), defined for any

function f ∈ CB([0,∞)) by

(Lmf)(x) =
1

(1 + x)m

m∑
k=0

(
m

k

)
xkf

(
k

m+ 1− k
)
, (1.13)

for any x ∈ [0,∞) and any m ∈ N, where CB([0,∞)) = {f | f : [0,∞) → R, f

bounded and continuous on [0,∞)}.
Let I1, I2 ⊂ R be given intervals and f : I1 × I2 → R be a bounded function.
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The function ωtotal(f ; · , ∗) : [0,∞) × [0,∞) → R, defined for any (δ1, δ2) ∈
[0,∞)× [0,∞) by

ωtotal(f ; δ1, δ2) = sup
{|f(x, y)− f(x′, y′)| : (x, y), (x′, y′) ∈ I1 × I2, (1.14)

|x− x′| ≤ δ1, |y − y′| ≤ δ2
}

is called the first order modulus of smoothness of function f or total modulus of

continuity of function f (see [18]).

The first order modulus of smoothness for bivariate functions has proper-

ties similar to the properties of the first order modulus of smoothness for univariate

functions. Some of them are contained in Lemma 1.1.

Lemma 1.1. The first order modulus of smoothness for bounded function f : I1×I2 →
R has the following properties:

(i) ωtotal(f ; δ1, δ2) ≤ ωtotal(f ; δ′1, δ
′
2) for any (δ1, δ2), (δ′1, δ

′
2) ∈ [0,∞)× [0,∞)

such that δ1 ≤ δ′1 and δ2 ≤ δ′2;

(ii) ωtotal(f ; |t − x|, |τ − y|) ≤ (
1 + δ−2

1 (t− x)2) (1 + δ−2
2 (τ − y)2)ωtotal

(f ; δ1, δ2) for any (δ1, δ2) ∈ (0,∞)× (0,∞) and any (t, τ), (x, y) ∈ I1 × I2.
For some further informations on this measure of smoothness see for example [18].

2. Preliminaries

Let I, J ⊂ R intervals with I ∩ J �= ∅. For m ∈ N we consider the functions

p∗m,k : J → R with the property that p∗m,k(x) ≥ 0 for any x ∈ J , k ∈ {0, 1, . . . ,m}
and the linear positive functionals Am,k : E(I)→ R, k ∈ {0, 1, . . . ,m}.
Definition 2.1. Let m ∈ N. Define the operator L∗m : E(I)→ F (J) by

(L∗mf) (x) =
m∑
k=0

p∗m,k(x)Am,k(f) (2.1)

for any function f ∈ E(I) and any x ∈ J , where E(I) and F (J) are subsets of the set
of real functions defined on I, respectively on J .

Proposition 2.1. The operators (L∗m)m≥1 are linear and positive on E(I ∩ J).

Proof. The proof follows immediately.
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Definition 2.2. Let m ∈ N. For i ∈ N0 define T ∗m,i by

(
T ∗m,iL

∗
m

)
(x) = mi

(
Lmψ

i
x

)
(x) = mi

m∑
k=0

p∗m,k(x)Am,k
(
ψix
)

(2.2)

for any x ∈ I ∩ J , where for x ∈ I, ψx : I → R, ψx(t) = t− x for any t ∈ I.
In the following, let s ∈ N0, s even. We suppose that the operators (L∗m)m≥1

verify the conditions: there exists the smallest αj ∈ [0,∞) so that

lim
m→∞

(
T ∗m,jL

∗
m

)
(x)

mαj
= Bj(x) ∈ R (2.3)

for any x ∈ I ∩ J , j ∈ {0, 2, 4, . . . , s+ 2} and⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

αs−2l + α2l − αs ≤ 0

αs−2l+2 + α2l − αs − 2 < 0

αs−2l+2 + α2l+2 − αs − 4 < 0

(2.4)

where l ∈
{
0, 1, 2, . . . ,

s

2

}
.

Remark 2.1. From the first relation from (2.4), for l = 0 it results that α0 = 0.

Now, we construct with the (L∗m)m≥1 operators the bivariate operators of

L∗-type.

For m,n ∈ N, let the linear positive functionals Am,n,k,j : E(I × I)→ R with

the property

Am,n,k,j
(
(· − x)i(∗ − y)l) = Am,k

(
(· − x)i)An,j ((∗ − y)l) (2.5)

for any k ∈ {0, 1, . . . ,m}, j ∈ {0, 1, . . . , n}, i, l ∈ {0, 1, . . . , s}, x, y ∈ I, where ” ·” and
” ∗ ” stand for the first and second variable.
Definition 2.3. Let m,n ∈ N. The operator L∗m,n : E(I × I) → F (J × J) defined

for any function f ∈ E(I × I) and any (x, y) ∈ J × J by

(
L∗m,nf

)
(x, y) =

m∑
k=0

n∑
j=0

p∗m,k(x)p
∗
n,j(y)Am,n,k,j(f) (2.6)

is named the bivariate operator of L∗-type.
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Proposition 2.2. The operators
(
L∗m,n

)
m,n≥1

are linear and positive on

E ((I × I) ∩ (J × J)).

Proof. The proof follows immediately.

In the following we consider that

(
T ∗m,0L

∗
m

)
(x) = 1 (2.7)

for any x ∈ I ∩ J , any m ∈ N.

3. Main results

Theorem 3.1. Let I1, I2 ⊂ R be intervals, (a, b) ∈ I1 × I2, n ∈ N0 and the function

f : I1 × I2 → R, f admits partial derivatives of order n continuous in a neighborhood

V of the point (a, b). According to Taylor’s expansion theorem for the function f

around (a, b), for (x, y) ∈ V we have

f(x, y) =
n∑
k=0

1
k!

(
∂

∂x
(x− a) + ∂

∂y
(y − b)

)k
f(a, b)+ (3.1)

+ ρn(x, y)μ(x− a, y − b)

where (
∂

∂x
(x− a) + ∂

∂y
(y − b)

)k
f(a, b) = (3.2)

=
k∑
i=0

(
k

i

)
∂kf

∂xk−i∂yi
(a, b)(x− a)k−i(y − b)i,

k ∈ {0, 1, . . . , n}, μ is a bounded function with lim
(x,y)→(a,b)

μ(x− a, y − b) = 0 and

ρ(x, y) =
√
(x− a)2 + (y − b)2. (3.3)

Then

|μ(x− a, y − b)| ≤ 1
n!

n∑
i=0

(
n

i

)
ωtotal

(
∂nf

∂xn−i∂yi
; |x− a|, |y − b|

)
(3.4)
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and for any δ1, δ2 > 0, we have

|μ(x− a, y − b)| ≤ (3.5)

≤ 1
n!
(
1+δ−2

1 (x−a)2)(1+δ−2
2 (y−b)2) n∑

i=0

(
n

i

)
ωtotal

(
∂nf

∂xn−i∂yi
; δ1, δ2

)
.

Proof. If n = 0, it is verified immediately. Let n ∈ N. According to Taylor’s expansion

theorem with the Lagrange’s remainder, we have

f(x, y) =
n−1∑
k=0

1
k!

(
∂

∂x
(x− a) + ∂

∂y
(y − b)

)k
f(a, b)+ (3.6)

+
1
n!

(
∂

∂x
(x− a) + ∂

∂y
(y − b)

)n
f(ξ, η)

where (ξ, η) ∈ V , (ξ, η) is on the interval determined by the points (a, b) and (x, y)

and

|ξ − a| ≤ |x− a|, |η − b| ≤ |y − b|. (3.7)

From (3.1) and (3.6) it results that

μ(x− a, y − b) = 1
n!

1
ρn(x, y)

[(
∂

∂x
(x− a) + ∂

∂y
(y − b)

)n
f(ξ, η)−

−
(
∂

∂x
(x− a) + ∂

∂y
(y − b)

)n
f(a, b)

]
=

=
1
n!

1
ρn(x, y)

n∑
i=0

(
n

i

)[
∂nf

∂xn−i∂yi
(ξ, η)−

− ∂nf

∂xn−i∂yi
(a, b)

]
(x− a)n−i(y − b)i.

Because |x− a| ≤ ρ(x, y) and |y − b| ≤ ρ(x, y), the relation above becomes

|μ(x− a, y − b)| ≤ 1
n!

n∑
i=0

(
n

i

) ∣∣∣∣ ∂nf

∂xn−i∂yi
(ξ, η)− ∂nf

∂xn−i∂yi
(a, b)

∣∣∣∣ ·
· |x− a|

n−i

ρn−i(x, y)
|y − b|i
ρi(x, y)

,

from where

|μ(x− a, y − b)| ≤ 1
n!

n∑
i=0

(
n

i

) ∣∣∣∣ ∂nf

∂xn−i∂yi
(ξ, η)− ∂nf

∂xn−i∂yi
(a, b)

∣∣∣∣ . (3.8)
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Taking (3.7) into account, from (3.8) we have that

|μ(x− a, y − b)| ≤ 1
n!

n∑
i=0

(
n

i

)
sup

{∣∣∣∣ ∂nf

∂xn−i∂yi
(u, v)− ∂nf

∂xn−i∂yi
(u′, v′)

∣∣∣∣ :
|u− u′| ≤ |x− a|, |v − v′| ≤ |y − b|

}
,

from where we obtain the relation (3.4).

From (3.4) taking Lemma 1.2 into account, we obtain the relation (3.5).

In the following we consider the construction from Preliminaries.

Theorem 3.2. Let f : I × I → R be a bivariate function.

If (x, y) ∈ (I × I) ∩ (J × J) and f admits partial derivatives of order s continuous in

a neighborhood of the point (x, y), then

lim
m→∞m

s−αs

[ (
L∗m,mf

)
(x, y)− (3.9)

−
s∑
i=0

1
mii!

i∑
l=0

(
i

l

)
∂if

∂ti−l∂τ l
(x, y)

(
T ∗m,i−lL

∗
m

)
(x)
(
T ∗m,lL

∗
m

)
(y)
]
= 0.

If f admits partial derivatives of order s continuous on (I × I) ∩ (J × J) and there

exists an interval K ⊂ I ∩ J such that there exist m(s) ∈ N and k2l ∈ R depending

on K, so that for any m ∈ N, m ≥ m(s) and for any x ∈ K we have

(
T ∗m,2lL

∗
m

)
(x)

mα2l
≤ k2l (3.10)
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where l ∈
{
0, 1, . . . ,

s

2
+1
}

, then the convergence given in (3.9) is uniform on K×K
and

ms−αs

∣∣∣∣ (L∗m,mf) (x, y)− (3.11)

−
s∑
i=0

1
mii!

i∑
l=0

(
i

l

)
∂if

∂ti−l∂τ l
(x, y)

(
T ∗m,i−lL

∗
m

)
(x)
(
T ∗m,lL

∗
m

)
(y)
∣∣∣∣ ≤

≤ 1
s!

s
2∑
l=0

( s
2

l

)
(k2l + k2l+2)(ks−2l + ks−2l+2)·

·
s∑
i=0

(
s

i

)
ωtotal

(
∂sf

∂ts−i∂τ i
;

1√
mβs

,
1√
mβs

)

for any (x, y) ∈ (K ×K), any natural number m, m ≥ m(s), where

βs=−max
{
αs−2l+2+α2l−αs−2, 12(αs−2l+2+α2l+2−αs−4) : l∈

{
0, 1, ...,

s

2

}}
.

Proof. Let m,n ∈ N. According to Taylor’s theorem for the function f around (x, y),

we have

f(t, τ) =
s∑
i=0

1
i!

(
∂

∂t
(t− x) + ∂

∂τ
(τ − y)

)i
f(x, y) + ρs(t, τ)μ(t− x, τ − y),

from where

f(t, τ) =
s∑
i=0

1
i!

i∑
l=0

(
i

l

)
∂if

∂ti−l∂τ l
(x, y)(t− x)i−l(τ − y)l+ (3.12)

+ ρs(t, τ)μ(t− x, τ − y),

where μ is a bounded function and lim
(t,τ)→(x,y)

μ(t− x, τ − y) = 0.

Because Am,n,k,j is linear positive functional and verifies (2.5), from (3.12) we have

Am,n,k,j(f) =
s∑
i=0

1
i!

i∑
l=0

(
i

l

)
∂if

∂ti−l∂τ l
(x, y)Am,k

(
(· − x)i−l)An,j ((∗ − y)l)+

+Am,n,k,j (ρs(· , ∗)μxy) ,

where μxy : (I × I) ∩ (J × J) → R, μxy(t, τ) = μ(t − x, τ − y) for any (t, τ) ∈
(I × I) ∩ (J × J).
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Multiplying by p∗m,k(x)p
∗
n,j(y) and summing after k, j, where k ∈ {0, 1, . . . ,m}, j ∈

{0, 1, . . . , n}, we obtain

(
L∗m,nf

)
(x, y) =

=
s∑
i=0

1
i!

i∑
l=0

(
i

l

)
∂if

∂ti−l∂τ l
(x, y)

1
mi−l

1
nl
(
T ∗m,i−lL

∗
m

)
(x)
(
T ∗n,lL

∗
n

)
(y)+

+
m∑
k=0

n∑
j=0

p∗m,k(x)p
∗
n,j(y)Am,n,k,j (ρ

s(· , ∗)μxy) ,

from which

ms−αs

[ (
L∗m,mf

)
(x, y)− (3.13)

−
s∑
i=0

1
mii!

i∑
l=0

(
i

l

)
∂if

∂ti−l∂τ l
(x, y)

(
T ∗m,i−lL

∗
m

)
(x)
(
T ∗m,lL

∗
m

)
(y)
]
=

= (Rm,mf)(x, y),

where

(Rm,mf)(x, y)=ms−αs

m∑
k=0

m∑
j=0

p∗m,k(x)p
∗
m,j(y)Am,m,k,j (ρ

s(· , ∗)μxy) . (3.14)

Then

|(Rm,mf)(x, y)| ≤ms−αs

m∑
k=0

m∑
j=0

p∗m,k(x)p
∗
m,j(y) |Am,m,k,j (ρs(· , ∗)μxy)| ,

from where

|(Rm,mf)(x, y)| ≤ (3.15)

≤ ms−αs

m∑
k=0

m∑
j=0

p∗m,k(x)p
∗
m,j(y)Am,m,k,j (ρ

s(· , ∗)|μxy|) .
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According to the relation (3.5), for any δ1, δ2 > 0 and for any (t, τ) ∈ (I×I)∩ (J×j),
we have that

|μxy(t, τ)| = |μ(t− x, τ − y)| ≤

≤ 1
s!
(
1 + δ−2

1 (t− x)2 + δ−2
2 (τ − y)2 + δ−2

1 δ−2
2 (t− x)2(τ − y)2) ·

·
s∑
i=0

(
s

i

)
ωtotal

(
∂sf

∂ts−i∂τ i
; δ1, δ2

)

and taking ρs(t, τ) =

s
2∑
l=0

( s
2

l

)
(t− x)s−2l(τ − y)2l into account, (3.16) results

Am,m,k,j (ρs(· , ∗)|μxy|) ≤ 1
s!

s
2∑
l=0

( s
2

l

)[
Am,k

(
ψs−2l
x

)
Am,j

(
ψ2l
y

)
+ (3.16)

+ δ−2
1 Am,k

(
ψs−2l+2
x

)
Am,j

(
ψ2l
y

)
+δ−2

2 Am,k
(
ψs−2l
x

)
Am,j

(
ψ2l+2
y

)
+

+ δ−2
1 δ−2

2 Am,k
(
ψs−2l+2
x

)
Am,j

(
ψ2l+2
y

) ]·
·
s∑
i=0

(
s

i

)
ωtotal

(
∂sf

∂ts−i∂τ i
; δ1, δ2

)
.

From (3.15) and (3.16), it results that

|(Rm,mf)(x, y)| ≤

≤ 1
s!
ms−αs

s
2∑
l=0

( s
2

l

) m∑
k=0

m∑
j=0

p∗m,k(x)p
∗
m,j(y)

[
Am,k

(
ψs−2l
x

)
Am,j

(
ψ2l
y

)
+

+ δ−2
1 Am,k

(
ψs−2l+2
x

)
Am,j

(
ψ2l
y

)
+ δ−2

2 Am,k
(
ψs−2l
x

)
Am,j

(
ψ2l+2
y

)
+

+ δ−2
1 δ−2

2 Am,k
(
ψs−2l+2
x

)
Am,j

(
ψ2l+2
y

) ] s∑
i=0

(
s

i

)
ωtotal

(
∂sf

∂ts−i∂τ i
; δ1, δ2

)
,
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or

|(Rm,mf)(x, y)| ≤ 1
s!
ms−αs

s
2∑
l=0

( s
2

l

)[(T ∗m,s−2lL
∗
m

)
(x)

ms−2l

(
T ∗m,2lL

∗
m

)
(y)

m2l
+

+ δ−2
1

(
T ∗m,s−2l+2L

∗
m

)
(x)

ms−2l+2

(
T ∗m,2lL

∗
m

)
(y)

m2l
+

+ δ−2
2

(
T ∗m,s−2lL

∗
m

)
(x)

ms−2l

(
T ∗m,2l+2L

∗
m

)
(y)

m2l+2
+

+ δ−2
1 δ−2

2

(
T ∗m,s−2l+2L

∗
m

)
(x)

ms−2l+2

(
T ∗m,2l+2L

∗
m

)
(y)

m2l+2

]
·

·
s∑
i=0

(
s

i

)
ωtotal

(
∂sf

∂ts−i∂τ i
; δ1, δ2

)
,

so

|(Rm,mf)(x, y)| ≤

≤ 1
s!

s
2∑
l=0

( s
2

l

)[(T ∗m,s−2lL
∗
m

)
(x)

mαs−2l

(
T ∗m,2lL

∗
m

)
(y)

mα2l
mαs−2l+α2l−αs+

+ δ−2
1

(
T ∗m,s−2l+2L

∗
m

)
(x)

mαs−2l+2

(
T ∗m,2lL

∗
m

)
(y)

mα2l
mαs−2l+2+α2l−αs−2+

+ δ−2
2

(
T ∗m,s−2lL

∗
m

)
(x)

mαs−2l

(
T ∗m,2l+2L

∗
m

)
(y)

mα2l+2
mαs−2l+α2l+2−αs−2+

+ δ−2
1 δ−2

2

(
T ∗m,s−2l+2L

∗
m

)
(x)

mαs−2l+2

(
T ∗m,2l+2L

∗
m

)
(y)

mα2l+2
mαs−2l+2+α2l+2−αs−4

]
·

·
s∑
i=0

(
s

i

)
ωtotal

(
∂sf

∂ts−i∂τ i
; δ1, δ2

)
.

We have

βs ≤ −(αs−2l+2 + α2l − αs − 2),

βs ≤ −
1

2
(αs−2l+2 + α2l+2 − αs − 4)

96



THE GENERALIZATION OF VORONOVSKAJA’S THEOREM

for any l ∈
{
0, 1, . . . ,

s

2

}
, from where βs+αs−2l+2+α2l−αs−2 ≤ 0, 2βs+αs−2l+2+

α2l+2 − αs − 4 ≤ 0, for any l ∈
{
0, 1, . . . ,

s

2

}
. Replacing l with l + 1 in the relation

βs + αs−2l+2 + α2l − αs − 2 ≤ 0, we have βs + αs−2l + α2l+2 − αs − 2 ≤ 0. From the

first inequality from (2.4) and from the inequalities above, we have

mαs−2l+α2l−αs ≤ 1, mβs+αs−2l+2+α2l−αs−2 ≤ 1,

mβs+αs−2l+α2l+2−αs−2 ≤ 1, m2βs+αs−2l+2+α2l+2−αs−4 ≤ 1,

where l ∈
{
0, 1, . . . ,

s

2

}
.

Considering δ1 = δ2 =
1

√
mβs

, we have

|(Rm,mf)(x, y)| ≤ 1
s!

s
2∑
l=0

( s
2

l

)[(T ∗m,s−2lL
∗
m

)
(x)

mαs−2l

(
T ∗m,2lL

∗
m

)
(y)

mα2l
+ (3.17)

+

(
T ∗m,s−2l+2L

∗
m

)
(x)

mαs−2l+2

(
T ∗m,2lL

∗
m

)
(y)

mα2l
+

+

(
T ∗m,s−2lL

∗
m

)
(x)

mαs−2l

(
T ∗m,2l+2L

∗
m

)
(y)

mα2l+2
+

+

(
T ∗m,s−2l+2L

∗
m

)
(x)

mαs−2l+2

(
T ∗m,2l+2L

∗
m

)
(y)

mα2l+2

]
·

·
s∑
i=0

(
s

i

)
ωtotal

(
∂sf

∂ts−i∂τ i
;

1√
mβs

,
1√
mβs

)
.

Taking (2.3) into account and considering the fact that

lim
m→∞ωtotal

(
∂sf

∂ts−i∂τ i
;

1√
mβs

,
1√
mβs

)
= ωtotal

(
∂sf

∂ts−i∂τ i
; 0, 0

)
= 0,

i ∈ {0, 1, . . . , s}, from (3.17) we have that

lim
m→∞(Rm,mf)(x, y) = 0. (3.18)

From (3.13) and (3.18), (3.9) follows.
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If in addition (3.10) takes place, then (3.17) becomes

|(Rm,mf)(x, y)| ≤ 1
s!

s
2∑
l=0

( s
2

l

)
(k2l + k2l+2)(ks−2l + ks−2l+2)· (3.19)

·
s∑
i=0

(
s

i

)
ωtotal

(
∂sf

∂ts−i∂τ i
;

1√
mβs

,
1√
mβs

)

for any m ∈ N, m ≥ m(s) and for any (x, y) ∈ K ×K, from which, the convergence

from (3.9) is uniform on K ×K. From (3.13) and (3.19), (3.11) follows.

Corollary 3.1. Let f : I × I → R be a bivariate function.

If (x, y) ∈ (I × I) ∩ (J × J) and f is continuous in (x, y), then

lim
m→∞

(
L∗m,mf

)
(x, y) = f(x, y). (3.20)

If f is continuous on (I× I)∩ (J ×J), and there exists an interval K ⊂ I ∩J
such that there exist m(0) ∈ N and k2 ∈ R depending on K so that for any m ∈ N,

m ≥ m(0) and any x ∈ K we have that(
T ∗m,2L

∗
m

)
(x)

mα2
≤ k2, (3.21)

then the convergence given in (3.20) is uniform on K ×K and

∣∣(L∗m,mf) (x, y)−f(x, y)∣∣≤(1+k2)2ωtotal

(
f ;

1√
m2−α2

,
1√

m2−α2

)
, (3.22)

for any (x, y) ∈ K ×K, any m ∈ N, m ≥ m(0).

Proof. It results from Theorem 3.2 for s = 0 and one verifies immediately that β0 =

2− α2, k0 = 1.

In the Application 3.1 - 3.4, we consider that p∗m,k = pm,k, m ∈ N and

k ∈ {0, 1, . . . ,m}. By particularization and applying Theorem 3.2 and Corollary 3.1,

we give convergence and approximation theorem for some bivariate operators. In

all applications we give the convergence theorem for s = 2 and the approximation

theorem for s = 0. In every application we have α2 = 1 and k0 = 1.
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Application 3.1. We consider I = J = K = [0, 1] and for any m ∈ N, let the

functionals Am,k : C([0, 1]) → R, Am,k(f) = f

( k
m

)
, for any f ∈ C([0, 1]), k ∈

{0, 1, . . . ,m}. In this application, we obtain the Bernstein operators.
We have that

(
T ∗m,iBm

)
(x) = mi

m∑
k=0

pm,k(x)
(
k

m
− x
)i

= Tm,i(x), (3.23)

x ∈ [0, 1], m ∈ N, i ∈ N0,

Bj(x) = [x(1− x)][ j
2 ](ajx+ bj), (3.24)

αj =
[
j

2

]
, (3.25)

j ∈ N0, x ∈ [0, 1],

aj =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, if j is even or j = 1

−(j − 1)!!
[ j
2 ]∑

k=1

(2k − 1)!!

(2k − 2)!!
, if j is odd, j ≥ 3,

(3.26)

bj =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1, if j = 0

0, if j = 1

(j − 1)!!, if j is even, j ≥ 2

1

2
(j − 1)!!

[ j
2 ]∑

k=1

(2k − 1)!!

(2k − 2)!!
, if j is odd, j ≥ 3,

(3.27)

and

k2l =
(
1
4

)l
b2l + 1, (3.28)

l ∈ N0 (see [9] and [12]).

Let m,n ∈ N. The operator Bm,n : C([0, 1]× [0, 1])→ C([0, 1]× [0, 1]) defined
for any function f ∈ C([0, 1]× [0, 1]) and any (x, y) ∈ [0, 1]× [0, 1] by

(Bm,nf)(x, y) =
m∑
k=0

n∑
j=0

pm,k(x)pn,j(y)f
(
k

m
,
j

n

)
(3.29)

is named the bivariate operator of Bernstein type.

On verify immediately that the condition (2.4), (3.10) and (3.22) take place

and then Theorem 3.2 holds for the bivariate operators of Bernstein type.
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We have that Tm,0(x) = 1, Tm,1(x) = 0, Tm,2(x) = mx(1 − x), m ∈ N,

x ∈ [0, 1] and then k2 =
1

4
and k4 =

19

16
.

Theorem 3.3. Let f : [0, 1]× [0, 1]→ R be a bivariate function.

(i) If (x, y) ∈ [0, 1] × [0, 1] and f admits partial derivatives of second order

continuous in a neighborhood of the point (x, y), then

lim
m→∞m [(Bm,mf)(x, y)− f(x, y)] = (3.30)

=
x(1− x)

2
f ′′x2(x, y) +

y(1− y)
2

f ′′y2(x, y).

If f admits partial derivatives of second order continuous on [0, 1] × [0, 1],

then the convergence given in (3.30) is uniform on [0, 1]× [0, 1].

(ii) If f is continuous on [0, 1]× [0, 1], then

|(Bm,mf)(x, y)− f(x, y)| ≤ 25
16
ωtotal

(
f ;

1√
m
,
1√
m

)
(3.31)

for any (x, y) ∈ [0, 1]× [0, 1], any m ∈ N.

Application 3.2. We consider I = J = K = [0, 1]. For anym ∈ N, let the functionals

Am,k : L1([0, 1]) → R, Am,k(f) = (m + 1)

1∫
0

pm,k(t)f(t)dt, for any f ∈ L1([0, 1]),

k ∈ {0, 1, . . . ,m}. In this case, we obtain the Durrmeyer operators.
We have that

(
T ∗m,iMm

)
(x) = (−1)imi(m+ 1)

m∑
k=0

pm,k(x)

1∫
0

pm,k(t)(x− t)idt, (3.32)

x ∈ [0, 1], m ∈ N, i ∈ N0,

αj =
[
j

2

]
, (3.33)

Bj(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

j!(
j
2

)
!
[x(1− x)] j

2 , if j is even

−
(j + 1)!

2
(
j−1
2

)
!
(1− 2x)[x(1− x)] j−1

2 , if j is odd

(3.34)
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j ∈ N0, x ∈ [0, 1], and in the same way from Application 3.1

k2l =
(
1
4

)l (2l)!
l!

+ 1, (3.35)

l ∈ N0 (see [5] and [12]).

Let m,n ∈ N. The operator Mm,n : L1([0, 1] × [0, 1]) → C([0, 1] × [0, 1])

defined for any function f ∈ L1([0, 1]× [0, 1]) and any (x, y) ∈ [0, 1]× [0, 1] by

(Mm,nf)(x, y) = (3.36)

= (m+ 1)(n+ 1)
m∑
k=0

n∑
j=0

pm,k(x)pn,j(y)

1∫
0

pm,k(t)pn,j(s)f(t, s)dtds

is named the bivariate operator of Durrmeyer type.

The Theorem 3.2 holds for these operators.

We have (
T ∗m,0Mm

)
(x) = 1,

(
T ∗m,1Mm

)
(x) =

m(1− 2x)

m+ 2
,

(
T ∗m,2Mm

)
(x) = m2

2(m− 3)x(1− x) + 2

(m+ 2)(m+ 3)
, m ∈ N,

B0(x) = 1, B1(x) = 1− 2x, B2(x) = 2x(1− x), x ∈ [0, 1],

k2 =
3

2
and k4 =

7

4
(see [12]).

Theorem 3.4. Let f : [0, 1]× [0, 1]→ R be a bivariate function.

(i) If (x, y) ∈ [0, 1] × [0, 1] and f admits partial derivatives of second order

continuous in a neighborhood of the point (x, y), then

lim
m→∞m [(Mm,mf)(x, y)− f(x, y)] = (1− 2x)f ′x(x, y)+ (3.37)

+ (1− 2y)f ′y(x, y) + x(1− x)f ′′x2(x, y) + y(1− y)f ′′y2(x, y).

If f admits partial derivatives of second order continuous on [0, 1] × [0, 1],

then the convergence given in (3.37) is uniform on [0, 1]× [0, 1].
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(ii) If f is continuous on [0, 1]× [0, 1], then

|(Mm,mf)(x, y)− f(x, y)| ≤ 25
4
ωtotal

(
f ;

1√
m
,
1√
m

)
, (3.38)

for any (x, y) ∈ [0, 1]× [0, 1], any natural number m, m ≥ 3.

Application 3.3. We consider I = J = K = [0, 1]. For anym ∈ N, let the functionals

Am,k : L1([0, 1])→ R,

Am,k(f) = (m+ 1)

k+1
m+1∫
k

m+1

f(t)dt,

for any f ∈ L1([0, 1]), k ∈ {0, 1, . . . ,m}. In this case, we obtain the Kantorovich

operators.

We have (
T ∗m,0Km

)
(x) = 1,

(
T ∗m,1Km

)
=

m

2(m+ 1)
(1− 2x),

(
T ∗m,2Km

)
(x) =

( m

m+ 1

)2 (1− x)3 + x3 + 3mx(1− x)
3

, m ∈ N, x ∈ [0, 1],

B0(x) = 1, B1(x) =
1− 2x

2
, B2(x) = x(1− x), x ∈ [0, 1],

k2 = 1 and k4 =
3

2
(see [12]).

Let m,n ∈ N. The operator Km,n : L1([0, 1] × [0, 1]) → C([0, 1] × [0, 1])

defined for any function f ∈ L1([0, 1]× [0, 1]) and any (x, y) ∈ [0, 1]× [0, 1] by

(Km,nf)(x, y) = (3.39)

= (m+ 1)(n+ 1)
n∑
k=0

n∑
j=0

pm,k(x)pn,j(y)

k+1
m+1∫
k

m+1

j+1
n+1∫
j

n+1

f(t, s)dtds

is named the bivariate operator of Kantorovich type.
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Theorem 3.5. Let f : [0, 1]× [0, 1]→ R be a bivariate function.

(i) If (x, y) ∈ [0, 1] × [0, 1] and f admits partial derivatives of second order

continuous in a neighborhood of the point (x, y), then

lim
m→∞m [(Km,mf)(x, y)− f(x, y)] = 1− 2x

2
f ′x(x, y)+ (3.40)

+
1− 2y
2

f ′y(x, y) +
x(1− x)

2
f ′′x2(x, y) +

y(1− y)
2

f ′′y2(x, y).

If f admits partial derivatives of second order continuous on [0, 1] × [0, 1], then the

convergence in (3.40) is uniform on [0, 1]× [0, 1].

(ii) If f is continuous on [0, 1]× [0, 1], then

|(Km,mf)(x, y)− f(x, y)| ≤ 4ωtotal

(
f ;

1√
m
,
1√
m

)
, (3.41)

for any (x, y) ∈ [0, 1]× [0, 1], any natural number m, m ≥ 3.

Application 3.4. Let I = [0, μ(α,β)], J = K = [0, 1] (see (1.7)-(1.10)).

For any m ∈ N, m ≥ m0, let the functionals Am,k : C([0, μ(α,β)])→ R,

Am,k(f) = f

( k + α

m+ β

)
,

for any f ∈ C([0, μ(α,β)]), k ∈ {0, 1, . . . ,m}. In this case, we obtain the Stancu

operators.

We have that (
T ∗m,0P

(α,β)
m

)
(x) = 1,

(
T ∗m,1P

(α,β)
m

)
(x) =

m(α− βx)
m+ β

,

(
T ∗m,2P

(α,β)
m

)
(x) =

m2[mx(1− x) + (α− βx)2]
(m+ β)2

, m ∈ N, m ≥ m0,

B0(x) = 1, B1(x) = α− βx, B2(x) = x(1− x), x ∈ [0, 1].

There exists a natural number m(0) such that

(
T ∗m,2P

(α,β)
)
(x)

m
≤

5

4
= k2 for any

natural number m, m ≥ m(0), any x ∈ [0, 1] and k4 = 1 (see [13]).
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For the real numbers α1, α2, β1, β2 with α1 ≥ 0 and α2 ≥ 0, m1, m2, μ(α1,β1)

and μ(α2,β2) are defined through

mi =

⎧⎪⎨
⎪⎩

max{1,−[βi]}, if βi ∈ R\Z

max{1, 1− βi}, if βi ∈ Z

, (3.42)

γβi
= mi + βi =

⎧⎪⎨
⎪⎩

max
{
1 + βi, {βi}

}
, if βi ∈ R\Z

max{1 + βi, 1}, if βi ∈ Z

, (3.43)

μ(αi,βi) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1, if αi ≤ βi

1 +
αi − βi
γβi

, if αi > βi

, (3.44)

where i ∈ {1, 2}.
Let the bivariate operators P (α1,β1)(α2,β2)

m,n : C([0, μ(α1,β1)] × [0, μ(α2,β2)]) →
C([0, 1]× [0, 1]) defined for any function f ∈ C([0, μ(α1,β1)]× [0, μ(α2,β2)]) by

(
P (α1,β1)(α2,β2)
m,n f

)
(x, y)=

m∑
k=0

n∑
j=0

pm,k(x)pn,j(y)f
(
k+α1

m+β1
,
j+α2

n+β2

)
, (3.45)

for any (x, y) ∈ [0, 1]× [0, 1] and any natural numbers m,n, m ≥ m1 and n ≥ m2.

These operators are named the bivariate operators of Stancu type.

Theorem 3.6. Let f : [0, μ(α1,β1)]× [0, μ(α2,β2)]→ R be a bivariate function.

(i) If (x, y) ∈ [0, 1] × [0, 1] and f admits partial derivatives of second order

continuous in a neighborhood of the point (x, y), then

lim
m→∞m

[(
P (α1,β1)(α2,β2)
m,m f

)
(x, y)− f(x, y)

]
= (3.46)

= (α1 − β1x)f ′x(x, y) + (α2 − β2y)f ′y(x, y)+

+
x(1− x)

2
f ′′x2(x, y) +

y(1− y)
2

f ′′y2(x, y).

If f admits partial derivatives of second order continuous on [0, 1] × [0, 1], then the

convergence given in (3.46) is uniform on [0, 1]× [0, 1].

(ii) If f is continuous on [0, 1]× [0, 1], then∣∣∣(P (α1,β1)(α2,β2)
m,m f

)
(x, y)− f(x, y)

∣∣∣ ≤ 81
16
ωtotal

(
f ;

1√
m
,
1√
m

)
, (3.47)
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for any (x, y) ∈ [0, 1]× [0, 1], any natural number m, m ≥ m(0).

For the particular case from this applications (see [13]), we obtain the

Voronovskaja’s type theorem and approximation theorem for the bivariate operator

of Bernstein, Schurer and Schurer-Stancu.

Application 3.5. In this application, I = J = [0,∞) and for anym ∈ N, we consider

p∗m,k(x) =
(
m

k

) xk

(1 + x)m
for any x ∈ [0,∞), k ∈ {0, 1, . . . ,m}, the functionals

Am,k : CB([0,∞))→ R, Am,k(f)=f

⎛
⎝ k

m+1−k

⎞
⎠ defined for any f ∈CB([0,∞)) and

k∈{0, 1, . . . ,m}. We obtain the Bleimann, Butzer and Hahn operators.

We have (
T ∗m,0Lm

)
(x) = 1,

(
T ∗m,1Lm

)
(x) = −mx

( x

1 + x

)m
, m ∈ N,

B0(x) = 1, B1(x) = 0, B2(x) = x(1 + x)2, x ∈ [0,∞),

k2 = 4b(1 + b)2,

where K = [0, b], b > 0 and m(0) = 24(1 + b) (see [14]).

Letm,n ∈ N. The operator Lm,n : CB([0,∞)×[0,∞))→ CB([0,∞)×[0,∞))

defined for any function f ∈ CB([0,∞)× [0,∞)) and any (x, y) ∈ [0,∞)× [0,∞) by

(Lm,nf)(x, y) = (3.48)

=
1

(1 + x)m(1 + y)n

m∑
k=0

n∑
j=0

(
m

k

)(
n

j

)
f

(
k

m+ 1− k ,
j

n+ 1− j
)

is named the bivariate operator of Bleimann-Butzer-Hahn type.

Theorem 3.7. Let f : [0,∞)× [0,∞)→ R be a bivariate function.

(i) If (x, y) ∈ [0,∞)× [0,∞) and f admits partial derivatives of second order

continuous in a neighborhood of the point (x, y), then

lim
m→∞m [(Lm,mf)(x, y)− f(x, y)] = (3.49)

=
x(1 + x)2

2
f ′′x2(x, y) +

y(1 + y)2

2
f ′′y2(x, y).
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(ii) If f is continuous on [0,∞)× [0,∞) and b > 0, then

|(Lm,mf)(x, y)− f(x, y)| ≤ (3.50)

≤ [1 + 8b(1 + b)2 + 16b2(1 + b)4
]
ωtotal

(
f ;

1√
m
,
1√
m

)
,

for any (x, y) ∈ [0, b], any natural number m, m ≥ 24(1 + b).

Remark 3.1. From the Theorem 3.2 - 3.7, for (ii) results the uniform convergence

of the bivariate operators.
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[3] Bernstein, S.N., Démonstration du théoreme de Weierstrass fondée sur le calcul de

probabilités, Commun. Soc. Math. Kharkow (2), 13(1912-1913), 1-2.

[4] Bleimann, G., Butzer, P. L., Hahn, L., A Bernstein-type operator approximating con-

tinuous functions on the semi-axis, Indag. Math. 42(1980), 255-262.

[5] Derriennic, M.M., Sur l’approximation des fonctions intégrables sur [0, 1] par des

polynômes de Bernstein modifiés, J. Approx. Theory, 31(1981), 325-343.

[6] DeVore, R. A., Lorentz, G. G., Constructive Approximation, Springer Verlag, Berlin,

Heidelberg, New York, 1993.

[7] Durrmeyer, J.L., Une formule d’inversion de la transformée de Laplace: Applications à
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ON α-CONVEX ANALYTIC FUNCTIONS DEFINED BY
GENERALIZED RUSCHEWEYH DERIVATIVES OPERATOR

DORINA RĂDUCANU AND VERONICA OANA NECHITA

Abstract. In this paper we introduce a class of alpha-convex functions by

using the generalised Ruscheweyh derivative operator. We study properties

of this class and give a theorem about the image of a function from this

class through the Bernardi integral operator.

1. Introduction

LetH = H (U) denote the class of functions analytic in U = {z ∈ C : |z| < 1}.
For n a positive integer and a ∈ C, let

H [a, n] = {f ∈ H : f (z) = a+ anz
n + ...} .

We also consider the class

A =
{
f ∈ H : f (z) = z + a2z

2 + ...
}
.

We denote by Q the set of functions f that are analytic and injective on

U \ E (f), where

E (f) =
{
ζ ∈ ∂U : lim

z→ζ
f (z) =∞

}
,

and are such that f ′ (ζ) �= 0 for ζ ∈ ∂U \ E (f).

Since the functions considered in this paper and conditions on them are de-

fined uniformly in the unit disk U, we shall omit the requirement ”z ∈ U”.
We use the terms of subordination and superordination, so we review here

those definitions. Let f, F ∈ H. The function f is said to be subordinate to F, or

Received by the editors: 10.09.2007.

2000 Mathematics Subject Classification. 30C80.

Key words and phrases. Differential subordination, differential superordinations, α-convex analytic

functions, generalized Ruscheweyh derivatives operator.
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F is said to be superordinate to f , if there exists a function w analytic in U , with

w (0) = 0 and |w (z)| < 1, and such that f (z) = F (w (z)). In such a case we write

f ≺ F or f (z) ≺ F (z). If F is univalent, then f ≺ F if and only if f (0) = F (0) and

f (U) ⊂ F (U).

Let ψ : C
3×U → C, let h be a univalent function in U and q ∈ Q. In [7], the

authors considered the problem of determining conditions on admissible functions ψ

such that

ψ
(
p (z) , zp′ (z) , z2p′′ (z) ; z

) ≺ h (z) (1)

implies p (z) ≺ q (z), for all functions p ∈ H [a, n] that satisfy the differential subordi-

nation (1). Moreover, they found conditions such that the function q is the ”smallest”

function with this property, called the best dominant of the subordination (1).

Let ϕ : C
3 × U → C, let h ∈ H and q ∈ H [a, n]. Recently, in [8], the authors

studied the dual problem and determined conditions on ϕ such that

h (z) ≺ ϕ
(
p (z) , zp′ (z) , z2p′′ (z) ; z

)
(2)

implies q (z) ≺ p (z), for all functions p ∈ Q that satisfy the above differential super-

ordination. Moreover, they found conditions such that the function q is the ”largest”

function with this property, called the best subordinant of the superodination (2).

In the present paper we shall also need a recent generalization of the

Ruscheweyh derivatives. This was introduced in the paper [3].

Let f ∈ A, λ ≥ 0 and m ∈ R, m > −1, then we consider

Dmλ f (z) =
z

(1− z)m+1 ∗ Dλf (z) , z ∈ U ,

where Dλf (z) = (1− λ) f (z) + λzf ′ (z), z ∈ U .
If f ∈ A, f (z) = z +

∞∑
n=2

anz
n, z ∈ U , we obtain the power series expansion

of the form

Dmλ f (z) = z +
∞∑
n=2

[1 + (n− 1)λ]
(m+ 1)n−1

(1)n−1

anz
n, z ∈ U ,

where (a)n is the Pochhammer symbol, given by

(a)n :=
Γ (a+ n)
Γ (a)

=

⎧⎨
⎩ 1, for n = 0

a (a+ 1) (a+ 2) . . . (a+ n− 1) , for n ∈ N
∗.
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In the case m ∈ N, we have

Dmλ f (z) =
z
(
zm−1Dλf (z)

)(m)

m!
, z ∈ U ,

and for λ = 0 we obtain the m-th Ruscheweyh derivative introduced in [12], Dm0 =

Dm.
We next introduce the two classes of α-convex functions by using the gener-

alized Ruscheweyh derivatives.

Definition 1.1. Let q be a univalent function in U , with q (0) = 1 and such that

D = q (U) is a convex domain from the right half-plane. We consider α ∈ [0, 1],

λ ≥ 0 and m ∈ N
∗. The function f ∈ A is said to be in the class

(i) Mα (m,λ, q), if

J (α,m, λ, f ; z) = (1− α) z (D
m
λ f (z))

′

Dmλ f (z)
+ α

(
z (Dmλ f (z))′

)′
(Dmλ f (z))′

≺ q (z) ,

for z ∈ U , or, equivalently,

J (α,m, λ, f ; z) = (1− α) z (D
m
λ f (z))

′

Dmλ f (z)
+ α

(
1 +

z (Dmλ f (z))′′
(Dmλ f (z))′

)
≺ q (z) .

(ii) Mα (m,λ, q), if

q (z) ≺ J (α,m, λ, f ; z) .

Subclasses of Mα (m,λ, q) were studied by several authors, out of which we

mention

M0 (0, 0, q) = S∗ (q) ,

Mα (0, 0, q) =Mα (q) ,

M0 (0, 0, qγ) = S∗ (γ) , where qγ (z) =
1 + (1− 2γ) z

1− z , 0 ≤ γ < 1,

Mα (0, 0, ϕ) =Mα, for ϕ (z) =
1 + z

1− z ,

M0 (m, 0, ϕ) = Rn,

M0 (m, 0, qγ) = Rn (γ) .
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The class S∗ (q) was introduced by W. Ma and D. Minda in [5], the class

Mα (q) was studied by V. Ravichandran and M. Darus in [11], Mα is the class of

α-convex functions introduced by P.T. Mocanu in [10], Rn is the class defined by R.

Singh and S. Singh in [13], and Rn (γ) makes the object of the papers of O.P. Ahuja,

[1] and [2].

We shall use the following notations

S∗m,λ (q) =
{
f ∈ A :

z (Dmλ f (z))′
Dmλ f (z)

≺ q (z) , z ∈ U
}

and

S
∗
m,λ (q) =

{
f ∈ A : q (z) ≺ z (Dmλ f (z))′

Dmλ f (z)
, z ∈ U

}
.

2. Preliminaries

In our present investigation we shall need the folllowing results concerning

Briot-Bouquet differential subordinations, and generalizations of Briot-Bouquet dif-

ferential subordinations and superordinations.

Theorem 2.1 ([4]). Let β, γ ∈ C, β �= 0 and consider the convex function h, such

that

Re [βh (z) + γ] > 0, z ∈ U .

If p ∈ H [h (0) , n], then

p(z) +
zp′ (z)

βp (z) + γ
≺ h (z)⇒ p (z) ≺ h (z) .

Theorem 2.2 ([6]). Let q be a univalent function in U and consider θ and ϕ to be

analytic functions in a domain D ⊃ q (U), such that ϕ (w) �= 0, for all w ∈ q (U).

We denote by Q (z) = zq′ (z) · ϕ [q (z)], h (z) = θ [q (z)] +Q (z) and assume that

(i) h is convex, or

(ii) Q is starlike.

We further suppose that

(iii) Re
zh′ (z)
Q (z)

= Re
[
θ′ [q (z)]
ϕ [q (z)]

+
zQ′ (z)
Q (z)

]
> 0.
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If p is an analytic function in U , with p (0) = q (0), p (U) ⊆ D and such that

θ [p (z)] + zp′ (z)ϕ [p (z)] ≺ θ [q (z)] + zq′ (z)ϕ [q (z)] = h (z)

then

p (z) ≺ q (z)

and q is the best dominant.

Theorem 2.3 ([9]). Let θ, ϕ be analytic functions in a domain D and consider q

a univalent function in U , such that q (0) = a, q (U) ⊂ D. We define Q (z) =

zq′ (z) · ϕ [q (z)], h (z) = θ [q (z)] +Q (z) and suppose that

(i) Re
[
θ′ [q (z)]
ϕ [q (z)]

]
> 0 and

(ii) Q is starlike.

If p ∈ H [a, 1] ∩ Q, p (U) ⊂ D and θ [p (z)] + zp′ (z) · ϕ [p (z)] is univalent in

U , then

θ [q (z)] + zq′ (z) · ϕ [q (z)] ≺ θ [p (z)] + zp′ (z) · ϕ [p (z)]⇒ q (z) ≺ p (z)

and q is the best subordinant.

3. Main results

Theorem 3.1. Let α ∈ [0, 1]. Then f ∈ Mα (m,λ, q) if and only if the function g

defined by

g (z) = Dmλ f (z)
[
z (Dmλ f (z))′
Dmλ f (z)

]α
, z ∈ U

belongs to S∗m,λ (q). The branch of the power function is chosen such that

[
z (Dmλ f (z))′
Dmλ f (z)

]α∣∣∣∣∣
z=0

= 1.

Proof. We calculate the logarithmic derivative of g and obtain

zg′ (z)
g (z)

=
z (Dmλ f (z))′
Dmλ f (z)

+ α

[
1 +

z (Dmλ f (z))′′
(Dmλ f (z))′

− z (Dmλ f (z))′
Dmλ f (z)

]
,

or
zg′ (z)
g (z)

= J (α,m, λ, f ; z) .

The equivalence from the hypothesis is immediately verified. �
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Theorem 3.2. If the function f belongs to the class Mα (m,λ, q), for a given α ∈
(0, 1], then f ∈ S∗m,λ (q).
Proof. We define the function p to be given by

p (z) =
z (Dmλ f (z))′
Dmλ f (z)

.

The logarithmic derivative of p is

zp′ (z)
p (z)

= 1 +
z (Dmλ f (z))′′
(Dmλ f (z))′

− z (Dmλ f (z))′
Dmλ f (z)

,

thus

p (z) + α
zp′ (z)
p (z)

= J (α,m, λ, f ; z) .

Because f ∈Mα (m,λ, q), we get

p (z) + α
zp′ (z)
p (z)

≺ q (z) .

The function q was supposed to be convex and we also assumed that the

image q (U) is in the right half-plane. We have α ∈ (0, 1], and therefore

Re
[
1
α
q (z)

]
> 0, z ∈ U.

By applying Theorem 2.1 for β =
1
α
and γ = 0 we conclude that p (z) ≺ q (z),

and thus f ∈ S∗m,λ (q). �
Let a be a complex number such that Re a > 0 and f ∈ A. We also consider

the Bernardi integral operator given by

F (f) (z) =
1 + a

za

∫ z

0

f (t) ta−1dt. (3)

Theorem 3.3. If f ∈Mα (m,λ, q), then F ∈ S∗m,λ (q).
Proof. We calculate the derivative of F from the relation (3) and obtain

(1 + a) f (z) = aF (z) + zF ′ (z) . (4)

Then we apply the generalized Ruscheweyh derivatives operator to both terms in (4),

and we get

(1 + a)Dmλ f (z) = aDmλ F (z) +Dmλ (zF ′ (z)) . (5)
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If the analytic function f has a Taylor series expansion of the form

f (z) = z +
n∑
n=2

anz
n,

then

F (z) = z +
n∑
n=2

bnz
n,

where bn =
1 + a

a+ n
an, for all n ≥ 2. We have

Dmλ (zF ′ (z)) = z +
∞∑
n=2

[1 + λ (n− 1)]C (m,n)nbnzn.

By applying the generalized Ruscheweyh derivatives operator to F , we obtain

Dmλ F (z) = z +
∞∑
n=2

[1 + λ (n− 1)]C (m,n) bnzn,

and from here we conclude that

z (Dmλ F (z))′ = z +
∞∑
n=2

[1 + λ (n− 1)]C (m,n)nbnzn.

Therefore the following equality

Dmλ (zF ′ (z)) = z (Dmλ F (z))′

is satisfied. The equation (5) becomes

(1 + a)Dmλ f (z) = aDmλ F (z) + z (Dmλ F (z))′ . (6)

We calculate the derivative of both terms in (6), we multiply with z and

obtain

(1 + a) z (Dmλ f (z))′ = (a+ 1) z (Dmλ F (z))′ + z2 (Dmλ F (z))′′ . (7)

We divide the identity (7) to the relation (6) and have

z (Dmλ f (z))′
Dmλ f (z)

=
z (Dmλ F (z))′

Dmλ F (z)

a+ 1 +
z (Dmλ F (z))′′

(Dmλ F (z))′

a+
z (Dmλ F (z))′

Dmλ F (z)

,

or, by using the notation

P (z) :=
z (Dmλ F (z))′

Dmλ F (z)
and p (z) :=

z (Dmλ f (z))′
Dmλ f (z)

,
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p (z) = P (z)
a+

zP ′ (z)
P (z)

+ P (z)

a+ P (z)
= P (z) +

zP ′ (z)
a+ P (z)

,

Because f ∈Mα (m,λ, q), by applying Theorem cat o fi, we get f ∈ S∗m,λ (q),
or

p (z) =
z (Dmλ f (z))′
Dmλ f (z)

≺ q (z) .

The subordination

P (z) +
zP ′ (z)
a+ P (z)

≺ q (z)

holds. Because q is a convex function and Re [a+ q (z)] > 0, from Theorem 2.1 with

β = 1 and γ = a we can conclude that

P (z) ≺ q (z) ,

or
z (Dmλ F (z))′

Dmλ F (z)
≺ q (z) ,

and thus F ∈ S∗m,λ (q). �

Theorem 3.4. Let q be a convex function inU , with q (0) = 1 and Re q (z) > 0. We

consider Q (z) = α
zq′ (z)
q (z)

and h (z) = q (z) +Q (z), z ∈ U . If Q is a convex function

in U and f ∈Mα (m,λ, h) for an α ∈ (0, 1], then f ∈ S∗m,λ (q).
Proof. We choose the functions θ and ϕ to be θ (w) = w, ϕ (w) =

α

w
and notice that

the hypothesis of Theorem 2.2 are satisfied. It follows that
z (Dmλ f (z))′
Dmλ f (z)

≺ q (z) and

q is the best dominant. Therefore f ∈ S∗m,λ (q). �

Theorem 3.5. Let q be a convex function in U , with q (0) = 1 and Re q (z) > 0. We

consider Q (z) = α
zq′ (z)
q (z)

and h (z) = q (z) + Q (z), z ∈ U . If Q is convex in U , f

belongs to the class Mα (m,λ, h) for an α ∈ (0, 1],
z (Dmλ f (z))′
Dmλ f (z)

∈ H [1, 1] ∩ Q and

J (α,m, λ, f ; z) is univalent in U , then f ∈ S∗m,λ (q).
Proof. We choose θ (w) = w, ϕ (w) =

α

w
and notice that the conditions of theorem

2.3 are satisfied. It follows that q (z) ≺ z (Dmλ f (z))′
Dmλ f (z)

and q is the best subordinant.

Therefore f ∈ S∗m,λ (q). �
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Corollary 3.6. For k = 1, 2, let qk be two convex functions in U , with qk (0) = 1

and Re qk (z) > 0. We consider Qk (z) = α
zq′k (z)
qk (z)

and hk (z) = qk (z) + Qk (z),

z ∈ U . If Qk are convex in U , f ∈ Mα (m,λ, h1) ∩Mα (m,λ, h2) for an α ∈ (0, 1],
z (Dmλ f (z))′
Dmλ f (z)

∈ H [1, 1]∩Q and J (α,m, λ, f ; z) is univalent in U , then f ∈ S∗m,λ (q1)∩
S∗m,λ (q2).

We will give an example by taking q1 (z) = 1 + βz, β ∈ C
∗, |β| ≤ 1 and

q2 (z) = 1 + z, z ∈ U . The functions Q1 (z) =
βz

1 + βz
, Q2 (z) =

z

1 + z
, z ∈ U are

convex in this case, and h1 (z) = 1 + βz +
βz

1 + βz
, h2 (z) = 1 + z +

z

1 + z
, z ∈ U are

also convex and have positive real part.

Example 3.7. Let β ∈ C
∗, |β| ≤ 1, and f ∈ A such that

1 + βz +
βz

1 + βz
≺ J (α,m, λ, f ; z) ≺ 1 + z +

z

1 + z
, z ∈ U .

Then

1 + βz ≺ z (Dmλ f (z))′
Dmλ f (z)

≺ 1 + z, z ∈ U .
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matics, Vol. 64 Birkhäuser Verlag, Basel (1983), 339-348.

[5] Ma, W., Minda, D., A unified treatment of some special classes of univalent functions,

Proceedings of the conference on complex analysis, Tianjin, China, Int. Press. Conf.

Proc. Lect. Notes Anal. 1(1994), 157-169.

[6] Miller, S.S., Mocanu, P.T., On some classes of first-order differential subordinations,

Michig. Math. J., 32(1985), 185-195.

[7] Miller, S.S., Mocanu, P.T., Differential subordinations. Theory and applications, Marcel

Dekker, Inc., New York, Basel, 1999.

117
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HEAT TRANSFER IN AXISYMMETRIC STAGNATION FLOW

ON A THIN CYLINDER

CORNELIA REVNIC, TEODOR GROŞAN, AND IOAN POP

Abstract. The steady axisymetric stagnation flow and heat transfer on

a thin infinite cylinder of radius a is studied in this paper. Both cases

of constant wall temperature and constant wall heat flux are considered.

Using similarity variables the governing partial differential equations are

transformed into ordinary differential equations. The resulting set of

two equations is solved numerically using Runge-Kutta method combined

with a shooting technique. For the special case of the Reynolds number

Re >> 1 (boundary layer approximation), we obtained an asymptotic solu-

tion which include the Hiemenz solution. The present results are compared

in some particular cases with existing results from the open literature and

with the asymptotic approximation, and we found a very good agreement.

It is shown that the Nusselt number and the skin friction increase and the

boundary layer thickness decreases with the increase of the Reynolds num-

ber. Some graphs for the velocity and temperature profiles are presented.

Also, tables with values related to the skin friction and Nusselt number

are given.

1. Introduction

The two-dimensional orthogonal stagnation-point flow of a viscous fluid im-

pinging on a flat wall is a very interesting problem in the history of fluid mechan-

ics. This flow appears in virtually all flow fields of engineering and scientific interest.

Hiemenz [1] was the first who derived an exact solution of the Navier-Stokes equations
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which describes the steady forced convection flow directed perpendicular (orthogonal)

to an infinite flat plate. Homann [2] studied the axisymmetric stagnation flow, also

against a plate, and Howarth [3] and Davey [4] extended the results to unsymmet-

ric cases. Later, Wang [5] presented an exact solution for the steady axisymmetric

stagnation-point flow on an infinite thin circular cylinder. Gorla [6] has then con-

sidered the steady boundary layer heat transfer in an axisymmetric stagnation-point

flow on an infinite thin circular cylinder. Both the cases of constant wall temperature

and constant wall heat flux at the surface of the cylinder were considered. Numer-

ical results for the velocity and temperature profiles as well as for the local Nusselt

number were obtained when the Reynolds number is relatively small. Further, Gorla

[7] has investigated the unsteady fluid dynamic characteristics of an axisymmetric

stagnation point flow on a circular cylinder performing an harmonic motion in its

own plane. Also, Gorla [8] has investigated the final approach to steady state in an

axisymmetric stagnation-point flow on a thin circular cylinder.

The aim of this paper is to extend the paper by Gorla [6] on heat transfer

in axisymmetric stagnation point flow on a thin infinite circular cylinder to the case

when the Reynolds number is large.

2. Basic equations

Consider the steady-state flow and heat transfer at an axisymmetric stagna-

tion point on a thin circular cylinder of radius a placed in a viscous and incompressible

fluid of ambient uniform temperature T∞, as shown in Fig. 1. The flow is axisym-

metric about z- axis and also symmetric to the z = 0 plane. It is assumed that both

the temperature of the surface of the cylinder Tw or the heat flux from the surface

of the cylinder qw are constants. Under these assumptions, the basic equations in

cylindrical co-ordinates (r, z) are:

Continuity
1

r

∂(ru)

∂r
+

∂w

∂z
= 0 (1)
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Navier Stokes

u
∂u

∂r
+ w

∂u

∂z
= −

1

ρ

∂p

∂r
+ υ

(
∂2u

∂r2
+

1

r

∂u

∂r
+

∂2u

∂z2
−

u

r2

)
(2)

u
∂w

∂r
+ w

∂w

∂z
= −

1

ρ

∂p

∂z
+ ν

(
∂2w

∂r2
+

1

r

∂w

∂r
+

∂2w

∂z2

)
(3)

Energy

u
∂T

∂r
+ w

∂T

∂z
= α

(
∂2T

∂r2
+

1

r

∂T

∂r
+

∂2T

∂z2

)
(4)

subject to the boundary conditions of these equations

r = a : u = w = 0 (5)

T = Tw(CWT) or
∂T

∂r
= −

qw

k
(CWHF)

r −→∞ : u = −A

(
r −

a2

r

)
, w = 2Az

T = T∞

Here u and v are the velocity components along r− and z− axes, T is the

fluid temperature, p is the pressure, ρ is the density, α is the thermal expansion

coefficient, ν is the kinematic viscosity and A is a given constant.

In order to solve Eqs. (1) - (4), we introduce the following similarity variables

u = −Aaη−1/2f(η), w = 2Af ’(η)z, η =
( r

a

)2

, (6)

θ(η) =
T − T∞
Tw − T∞

(CWT), θ(η) =
2(T − T

∞
)

(aqw/k)
(CWHF)
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Figure 1. The coordinate axis

Substituting (6) into Eqs. (2) and (4), we get the following ordinary differ-

ential equations

ηf ′′′ + f ′′ + Re(1 + ff ′′ − f ′2) = 0 (7)

(ηθ′)′ + PrRe f θ′ = 0 (8)

subject to the boundary conditions (5) which become

f(1) = 0, f ′(1) = 0, f ′(∞) = 1 (9)

θ(1) = 1, θ(∞) = 0 (CWT)

θ′(1) = −1, θ(∞) = 0 (CWHF)

where Re is the Reynolds number and Pr is the Prandtl number which are defined

Re =
Aa2

2ν
, Pr =

ν

α
(10)

The physical quantities of interest in this problem are the skin friction coef-

ficient Cf , the Nusselt numbers for the wall constant temperature case Nu and for

the constant wall heat flux case Nu∗. It is easily to show that these quantities can

be expressed as
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Re Cf = −f ′′(1), Nu = −2θ′(1) (CWT), Nu∗ =
2

θ(1)
(CHF) (11)

Case Re >> 1

We consider now the boundary layer approximation (Re >> 1 ) of the prob-

lem under consideration. In this respect, we introduce the following new variables:

ξ = Re1/2(η − 1), f(η) = Re−1/2 F (ξ), (12)

θ(η) = Θ(ξ) (CWT ), θ(η) = Re−1/2 Θ(ξ) (CHF)

Substituting (12) into Eqs. (7) and (8), we obtain:

(
1 + Re−1/2 ξ

)
F ′′′ + 1 + FF ′′ − F ′2 + Re−1/2 F ′′ = 0 (13)

(
1 + Re−1/2 ξ

)
Θ′′ + PrFΘ′ + Re−1/2 Θ′ = 0 (14)

along with the boundary conditions

F (0) = 0, F ′(0) = 0, F ′(∞) = 1 (15)

Θ(0) = 1, Θ(∞) = 0(CWT )

Θ′(0) = −1, Θ0(∞) = 0(CWHF )

We notice that for Re −→ ∞, that corresponds to the boundary layer approx-

imation, Eq. (13) - (15) reduce to the Hiemenz equations that describe the stagnation

point flow on a plate, see Hiemenz [1]. Equations (13) - (15) were solved analytically

using the following series expansions:

F = F0 + Re−1/2 F1 + Re−1 F2 + ... (16)

Θ = Θ0 + Re−1/2 Θ1 + Re−1 Θ2 + ...

Substituting (16) into (13) - (15), we get the following three sets of equations:
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first order approximation:

F ′′′0 + F0F
′′

0 − F ′20 + 1 = 0 (17)

Θ′′0 + PrF0Θ
′

0 = 0

F0(0) = 0, F ′0(0) = 0, F ′0(∞) = 1

Θ0(0) = 1, Θ0(∞) = 0 (CWT)

Θ′0(0) = −1, Θ0(∞) = 0 (CWHF)

second order approximation:

F ′′′1 + F0F
′′

1 − 2F ′0F
′

1 + F ′′0 F1 + F ′′0 + ξF ′′′0 = 0 (18)

Θ′′1 + Pr(F0Θ
′

1 + F1Θ
′

0) + Θ′0 + ξΘ′′0 = 0

F1(0) = 0, F ′1(0) = 0, F ′1(∞) = 0

Θ1(0) = 0, Θ1(∞) = 0 (CWT)

Θ′1(0) = 0, Θ1(∞) = 0 (CWHF)

third order approximation:

F ′′′2 + F0F
′′

2 − 2F ′0F
′

2 + F ′′0 F2 + F ′′1 + F ′′1 F1 − F ′21 + ξF ′′′1 = 0 (19)

Θ′′2 + Pr(F0Θ
′

2 + F1Θ
′

1 + F2Θ
′

0) + Θ′1 + ξΘ′′1 = 0

F2(0) = 0, F ′2(0) = 0, F ′2(∞) = 0

Θ2(0) = 0, Θ2(∞) = 0 (CWT)

Θ′2(0) = 0, Θ2(∞) = 0 (CWHF)

3. Results and discussions

Equations (7) - (8) subject to boundary conditions (9) were solved numerically

for different values of the Prandtl number (Pr = 0.01, 0.1, 1, 10, 100) and some

values of Reynolds number, Re = 0.01, 0.1, 0.2, 1, 10, 20, 50, 100 using Runge-

Kutta method combined with a shooting technique. Some values related to the Nusselt

numbers and skin friction are given in Table 1 for Pr = 7. Results reported by Wang
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[5] are also included in this table. It is seen that there is a very good agreement

between the present results and those reported by Wang [5]. We are, therefore,

confident that our results are very accurate. The validity of the results are also

illustrated in Figs. 2 to 4.

Figures 5 to 9 show the dimensionless velocity and temperature profiles for

different values of the Reynolds and Prandtl numbers. Thus, it is seen that for a fixed

value of the Parndtl number, the velocity profiles increase with the increase of the

Reynolds number. However, the temperature profiles decrease with increase of the

Reynolds number in the both cases of constant wall temperature and constant heat

flux from the plate, respectively, see Figs. 5 to 7. Further, Figs. 8 and 9 show that

for the both cases of constant wall temperature and constant heat flux from the plate,

temperature profiles decreases with the Parndtl number when the Reynolds number

is fixed. As expected the thickness of the temperature boundary layer decreases when

the Parndtl number increases.

Finally, Figs. 10 and 11 show the variation of the Nusselt number with the

Parndtl number in both cases of constant wall temperature and constant heat flux

from the surface for a fixed value of the Reynolds number. The increase of the Nusselt

number with the Reynolds number is in agreement with the results given in Table 1.
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η∞ Re f”(1) θ′(1) θ(1)

320 0.01 0.313605 -0.320451 3.120599

80 0.1 0.615487 -0.615504 1.624684

35 0.2 0.786053 - 0.780247 1.281645

0.78605*

11 1 1.484185 - 1.450720 0.689313

1.484185*

3.5 10 4.162922 - 4.013979 0.249129

4.16292*

2 20 5.779734 - 5.560052 0.179855

1.75 50 8.985168 - 8.624974 0.115942

1.5 100 12.596429 -12.077699 0.082797

Wang[5]

Table 1. Values of the skin friction, f ′′(1), Nusselt numbers, (θ′(1) for constant

temperature case and θ(1) for the constant wall heat flux case), and boundary layer

thickness, η∞, for Prandtl number, Pr = 7 and different values of the Reynolds

number, Re.
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Figure 2. Validity range of the asymptotic approximation for ve-
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Figure 4. Validity range of the asymptotic approximation for tem-
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Figure 5. Dimensionless velocity profiles for Pr = 7 and Re = 0.2, 1, 10, 100.
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Figure 6. Dimensionless temperature profiles for Pr = 7 and

Re = 0.2, 1, 10, 100 in the constant wall temperature case.
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Figure 7. Dimensionless temperature profiles for Pr = 7 and

Re = 0.2, 1, 10, 100 in the constant wall heat flux case.
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Figure 8. Dimensionless temperature profiles for Pr = 0.01, 0.1, 1,

10, 100 and Re = 10 for the constant wall temperature case.
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Figure 9. Dimensionless temperature profiles for Pr = 0.01, 0.1, 1,

10, 100 and Re = 10 for the constant wall heat flux case.
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Figure 10. Variation of the Nusselt number with Prandtl number

for Re = 0.1, 1, 10, 100 in the case of constant wall temperature.
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Figure 11. Variation of Nusselt number with Prandtl number for

Re = 0.1, 1, 10, 100 in the constant wall heat flux case.
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BOOK REVIEWS

S.V. Emelyanov, S.K. Korovin, N.A. Bobylev, A.V. Bulatov, Homotopy
of Extremal Problems, Walter de Gruyter, Berlin - New York, 2007, 303 pp, ISBN
978-1-11-018942-1

The idea of homotopy appears in many branches of mathematics such as al-
gebraic topology, differential topology, nonlinear analysis, variational calculus etc. Its
importance comes from the invariance of some powerful tools, such as the induced
homomorphism at the level of various homology/cohomology groups, the degree, the
Conley index etc., on corresponding homotopy classes of maps or homotopically de-
formed spaces.

This book deals with the homotopy method applied in variational calculus
and is structured in five chapters as follows:

The first chapter presents some classical facts on certain spaces of functions
and their various topologies as well as on some special operators/functionals such
as linear, nonlinear, monotone and potential operators as well as Lipschitzian and
convex functionals. Among these facts we mention the presence of some necessary
and sufficient conditions on a functional in order that either one of its critical points is
a local minimizer or the functional itself is convex, strictly convex or strongly convex.

The second chapter starts with a sufficient condition, in finite dimensional
context on a continuously differentiable deformation in order for a local minimizer
of the initial function to be deformed into a local minimizer of the final one. This
type of results are called deformation principles for minimizers and they are present
all along the book. As a consequence one gets a sufficient condition, in terms of
gradients, on two continuously differentiable functions of finitely many variables in
order for a local minimizer of one of them to be a local minimizer of the other one.
These type of results are then extended to the class of lipschitzian functions, in which
case the role of the gradients is played by the generalized gradients, and even to the
class of continuous functions. The chapter ends with a proof of the Hopf theorem on
self maps of the N -sphere of zero degree, which are proved to be homotopic to each
other, and with the Parusinski theorem. The last one concerns the gradient vector
fields on the N -ball which are nondegenerate on the (N − 1)-sphere and homotopic
in the class of continuous vector fields, which are proved to be gradient homotopic.

The third chapter deals with problems similar to those treated in the second
chapter, but in infinite dimensional setting.

The fourth chapter starts with some elementary facts on flows and then de-
fines the Conley index of a set which is invariant with respect to a flow. The Conley
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index is proved to be invariant under a deformation of the flow and the initial in-
variant set. The isolated critical points of a differentiable function of finitely many
variables are proved to be invariant sets with respect to the gradient flow and the
Conley index of such a point is explicitly computed. Eventually, the Conley index is
defined and studied in infinite dimensional context as well.

The fifth chapter is devoted to applications of the homotopy invariance of
minimizers and of the Conley index. Among them we mention some deformation the-
orems and invariance of the global minimizers for the classical nonlinear programming
problems, multicriteria problems, week minimizers problems, optimal control prob-
lems and bifurcation points problems. Stability of solutions of ordinary differential
equations, focused on stability of gradient systems, stability of Hamiltonian systems
and stability of dynamical systems, are also treated in this chapter.

The book is very well written and combines the power of homotopy methods
with results coming from functional analysis, differential equations, variational cal-
culus and other mathematical fields, either to prove some well known facts or to get
relatively recent results.

It is useful for researchers in variational calculus and/or optimization desiring
to be acquainted with the powerful tools of homotopy theory as well as for those
working in homotopy theory, looking for applications.

Cornel Pintea

Beata Randrianatoanina and Narcisse Randrianatoanina (Editors) Ba-
nach Spaces and their Applications in Analysis - In Honor of Nigel Kalton’s
60th Birhday, Walter de Gruyter • Berlin • New York, 2007, ix + 453 pp, ISBN:
978-3-11-019449-4

In recent years a lot of problems in analysis, apparently far from the theory of
Banach spaces, were solved using Banach space methods. The aim of this conference
was to bring together specialists who have been involved in these developments to
honor the 60th birthday of Nigel Kalton. An excellent survey on Kalton’s influential
work in functional analysis and its applications is given in the introductory paper by
Gilles Godefroy. It deals with quasi-Banach spaces and p-normed spaces (called The
Kalton zone: 0 < p < 1), non-linear geometry (mainly Lipschitz), isometric theory,
interpolation and twisted sums, multipliers in spaces of vector functions. Although
impressive, this survey covers only a part of the fundamental contributions Professor
Kalton made in various areas of analysis.

The topics of the conference were:
1. Nonlinear theory (Lipschitz classification of Banach and metric spaces);
2. Isomorphism theory of Banach spaces (including connections with combi-

natorics and set theory);
3. Algebraic and homological methods in Banach spaces;
4. Approximation theory and algorithms in Banach spaces (greedy approxi-

mation, interpolation, abstract approximation theory);
5. Functional calculus and applications to partial differential equations.
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The Conference was attended by over 160 mathematicians from around the
world who delivered 15 plenary talk and 105 talks in specialized sessions. The present
Proceedings reflect this situation - they contain 11 papers by plenary speakers and
18 specialized papers. In the following we shall mention some of them.

Concerning the first topic there are a survey paper by J. Lindenstrauss, D.
Preis anf J. Tǐser on the differentiability of Lipschitz functions on Banach spaces (a
book dedicated to this topic is announced), J. Duda and O. Maleva (metric differ-
entiability), A. Kaminska and A. M. Parrish (q-concavity and q-convexity in Lorentz
spaces), R. Ni (fixed points of Φ-contractive mappings), T. Oikhberg (the Daugavet
property), O. Brezhneva and A. Tretyakov (implicit function theorem for nonregular
mappings in Banach spaces). Some papers dealing with the second theme , isompor-
phic theory of Banach spaces, are those by V. Ferenczi and C. Rosendal (complexity
and homogeneity in Banach spaces), E. Odell, Th. Schlumprecht, A. Zsák (a new
infinite game in Banach spaces), G. Androulakis and F. Sanacory (equivalent norms
on Hilbert space), M. Gonzales and M. Wójtowicz (quotients of �1(Γ)), J. Talponen
(asymptotically transitive Banach spaces).

Some approximation problems in Banach space setting are treated in the
papers of Y. Brudnyi (multivariate functions of bounded variation), V. Temlyakov
(greedy approximation in Banach spaces), P. Bandyopadhyay, B.-L. Lin and T. S. S.
R. K. Rao (ball proximity in Banach spaces), R. Vershynin (numerical algorithms in
asymptotic convex geometry).

There are some papers dealing with analysis of vector functions as, for in-
stance, J. van Neerven, M. Veraar and Lutz Weis (stochastic integrability in UMD
Banach spaces), M. D. Acosta, L. A. Morales (boundaries of spaces of holomorphic
functions), T. Hytönen (a probabilistic Littlewood-Paley theory in Banach spaces).

Emphasizing connections between seemingly distant areas of analysis and
illustrating the power and versatility of applications of Banach space theory, the
volume will be of great interest to researchers in various domains of mathematics,
especially to those interested in Banach space methods.

I. V. Şerb

Cédric Villani, Topics in Optimal Transportation , American Mathematical
Society, Graduate Studies in Mathematics, Volume 58, Providence, Rhode Island
2003, ISBN:0-8218-3312-X

The mass transportation problem (MTP) as posed initially in 1871 by Gas-
pard Monge in his paper Mémoire sur la théorie des déblais et des remblais, consists
in finding an optimal volume-preserving map between two sets X,Y of equal vol-
ume. The optimality is evaluated by a cost function c(x, y) representing the cost
per unit mass for transporting from x ∈ X to y ∈ Y, and one asks to minimize
I[T ] =

∫
X
c(x, T (x))dμ(x) over all transportation plans T. The functional I[T ] is non-

linear in the transportation plan T and the set of admissible transportation plans
is a nonconvex set, explaining the difficulty of this problem. A solution in the case
c(x, y) = |x − y| considered by Monge for - the Euclidean distance, was given only
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in 1979 by Sudakov in a 178 pages paper published as a volume of Trudy of the
Steklov Institute. Recently some inaccuracies in Sudakov’s paper were fixed by Al-
berti, Kircheim and Preis.

In 1942 L. V. Kantorovich proposed a new approach to the problem asking
for the minimization of the functional I[π] =

∫
X×Y c(x, y)dπ(x, y) for π ∈ Π(μ, ν).

Here X,Y are Polish spaces (i.e., complete metrizable topological spaces), μ, ν reg-
ular probability measures on X and Y respectively, and Π(μ, ν) denotes the set of
all probability measures on X × Y with marginals μ, ν. In this way the nonlinear
original Monge problem becomes a linear optimization problem over a convex sets of
probability measures, allowing the use of the tools of linear programming and leading
to the famous Kantorovich-Rubinshtein duality theorem. For this reason Kantorovich
MTP is easy to solve that the original Monge MTP. At the same time it can be con-
sidered as a relaxation of Monge problems. It is worth to mention that Kantorovich
contributions to the related problem of optimal allocation of resources earned him,
jointly with Koopmans, the 1975 Nobel prize in economy.

It turned out that the MTP is a prototype for a class of problems arising in
various fields as functional analysis, probability and statistics, linear and stochastic
programming, differential geometry, with numerous applications to fluid mechanics,
quantum physics and other domains. At the same time the solution of MTP requires
tools, methods and results from these domains, explaining its beauty and the great
appeal of MTP for mathematicians of various specialties.

The present book, based on a graduate course taught by the author at the
Georgia Tech in the fall of 1999, is a carefully written introduction to various aspects
of MTP.

The basic theory is developed in Chapters 1. The Kantorovich duality, 2. Ge-
ometry of optimal transportation, 4. The Monge-Ampère equation, and 7. The metric
side of the optimal transportation. This part must be read by every graduate students
to be acquainted with the basic results and tools of the theory. Here the proofs are
given in detail, excepting Chapter 4 where the waste and difficult subject of regular-
ity for fully nonlinear elliptic equations is only sketched. Chapter 3. Brenier’s polar
factorization theorem, present some of the motivations from fluid mechanics which
led Brebier to his polar factorization theorem proved in 1987. As the author mention
in the Preface, this give rise to a revival in the study of MTP ”paving the way to
a beautiful interplay between differential equations, fluid mechanics, geometry, prob-
ability theory and functional analysis”. Chapter 5. Displacement interpolation and
displacement convexity, is concerned with these two important notions, introduced by
MvCann in 1994 and some applications.

In Chapter 6. Geometric and Gaussian inequalities, the author explains how
mass transportation provides powerful tools to study some functional inequalities
with geometric content, having as prototype the isoperimetric inequality - the Brunn-
Minkowski inequality, the inequality of Prékopa-Leindler, Gaussian inequalities.

Chapters 8. A differential point of view on optimal transportation, and 9. En-
tropy production and transportation, are more advanced requiring some basic notions
in partial differential equations and functional analysis.
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There are a lot of exercises disseminated over the text and the last chapter,
10. Problems, gathers longer problems taken from recent research papers.

The book is clearly written and well organized and can be warmly recom-
mended as an introductory text to this multidisciplinary area of research, both pure
and applied - the mass transportation problem.

S. Cobzaş

György Darvas, Symmetry , Cultural-Historical and Ontological Aspects of
Science-Arts Relations; the Natural and Man-made World in an Interdisciplinary
Approach, translated from the Hungarian by David Robert Evans 2007, XI, 508 pp.
420 illus., 66 in color., Softcover ISBN: 978-3-7643-7554-6, Birkhäuser 2007

As its subtitle shows (”Cultural-historical and ontological aspects of science-
arts relations. The natural and man-made world in an interdisciplinary approach”),
the book ”Symmetry” by Darvas György is a wonderful voyage through different
sciences and arts all connected by the universal concept of symmetry.

Symmetry (and the lack of it) is a fundamental phenomenon in physics, chem-
istry, mathematics, biology, psychology, architecture and all kind of arts, creating
interesting interferences between these seemingly different subjects.

The book contains 15 chapters the first 4 introducing the basic notions and
definitions related to symmetry and outlining its historical evolution. The rest of the
chapters present the most typical applications of different appearances of symmetries
in the sciences and the humanities. It is important to note the ontological ordering of
these chapters: starting from the self-organization of the matter and the inanimate
nature, through the formation of organic matter we end up investigating the human
creativity. We also emphasize the huge number (350) of pictures and illustration
making things much more accessible.

The book avoids difficult mathematical formalisms, however exceeds the lim-
its of popular science being formulated at a university level. In this way it is highly
recommended for every student and scientist interested in interdisciplinary interac-
tions.

Cs. Szántó

A. Bensoussan, G. Da Prato, M. C. Delfour, S. K. Mitter, Representation
and Control of Infinite Dimensional Systems, Birkhäuser, Boston, 2007, 2nd
ed., XXVI + 575 p. 5 illus., Series: Systems & Control: Foundations & Applications,
ISBN 978-0-8176-4461-1

This reorganized, revised, and expanded edition is originated in a two-volume
set: Representation and Control of Infinite Dimensional Systems (vol. I), Birkhäuser,
Basel, 1992, 315 p., Series: Systems & Control: Foundations & Applications, ISBN
3-7643-3641-2 and Representation and Control of Infinite Dimensional Systems (vol.
II), Birkhäuser, Boston, 1993, 372 p., Series: Systems & Control: Foundations &
Applications, ISBN 978-0-8176-3642-5.
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Since the publications of the two volumes in 1992-93 more sophisticated math-
ematical tools and approaches have been introduced in the field and a whole range
of challenging applications appeared from new phenomenological, technological, and
design developments. The two volumes have been recognized as key references in the
field, hence a revised and corrected edition became desirable.

As the authors state in the Introduction to the book ”the primary concern of
this book is the control of linear infinite dimensional systems”, systems whose state
space is infinite dimensional and its evolution is typically described a linear differential
equation, linear functional equation or linear integral equation.

Now we introduce the main parts of this impressive book.
Introduction. Part I. Finite dimensional linear control of dynamical sys-

tems. Control of linear differential systems. Controllability, observability, duality,
stabilizability and detectability. Optimal control. Finite time horizon and infinite
time horizon. Dissipative systems. Linear quadratic two-person zero-sum differential
games.

Part II. Representation of infinite dimensional linear control dynamical sys-
tems. Semi-groups of operators and interpolation. Variational theory of parabolic
systems. Semigroup methods for systems with unbounded control and observation
operators. State space theory of differential systems with delays.

Part III. Qualitative properties of linear control dynamical systems. Control-
lability and observability for a class of infinite dimensional systems.

Part IV. Quadratic optimal control: finite time horizon. Bounded control op-
erators: control inside the domain. Unbounded control operators: parabolic equations
with control on the boundary. Unbounded control operators: hyperbolic equations
with control on the boundary.

Part V. Quadratic optimal control: infinite time horizon. Bounded con-
trol operators: control inside the domain. Unbounded control operators: parabolic
equations with control on the boundary. Unbounded control operators: hyperbolic
equations with control on the boundary.

An isomorphism result is given in the Appendix A. Each part of the book is
completed by important comments and/or references.

We mention some new material and original features of the second edition:
• Part I on finite dimensional controlled dynamical systems contains new

material: an expanded chapter on the control of linear systems including a glimpse
into H-infinity theory and dissipative systems, and a new chapter on linear quadratic
two-person zero-sum differential games.

• A unique chapter on semigroup theory and interpolation of linear operators
brings together advanced concepts and techniques that are usually treated indepen-
dently.

• The material on delay systems and structural operators is not available
elsewhere in book form.

Control of infinite dimensional systems has a wide range and growing num-
ber of challenging applications. This book is a key reference for anyone working
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on these applications, which arise from new phenomenological studies, new techno-
logical developments, and more stringent design requirements. It will be useful for
mathematicians, graduate students, and engineers interested in the field and in the
underlying conceptual ideas of systems and control.

This book represents a remarkable contribution to the development of this
scientific field very useful for mathematicians, theoretical engineers, and, in general,
for all the scientists interested in control of infinite dimensional systems.

The book ends with an extensively list of references and a useful index of
notions and symbols.

We can state doubtless that in front of us there is a masterpiece on the topic
of representation and control of infinite dimensional systems. Certainly this book will
be included in many libraries all over the world.

Marian Mureşan

Dorothee D. Haroshke and Hans Trienbel, Distributions, Sobolev Spaces,
Elliptic Equations, EMS Textbooks in Mathematics, European Mathematical
Society, Zürich 2008, ix+294 pp, ISBN: 978-3-03719-042-5.

The book is based on two-semester courses taught several times over a period
of ten years by the authors to graduate students and PhD students at the Friedrich
Schiller University in Jena. Its aim is to give a gentle introduction to the basic results
and techniques of the L2 theory of elliptic differential operators of second order on
bounded domains in R

n. The prerequisites are calculus, measure theory and basic
elements of functional analysis.

The book starts with the classical Laplace-Poisson equations and harmonic
functions. The basic properties of distributions, including Fourier transform, are
treated in the second chapter.

Chapters 3. Sobolev spaces on R
n and R

n
+, and 4. Sobolev spaces on domains,

constitute a self-contained introduction to the basic properties of Sobolev spaces -
embeddings, extensions, traces.

The fifth chapter, Elliptic operators in L2, is concerned with the L2 theory of
general elliptic operators on bounded domains Ω in R

n, having as leading model the
Laplacian studied in the first chapter. This study concerns: a priori estimates, ho-
mogeneous boundary problems, inhomogeneous boundary problems, smoothness the-
ory, Green functions and Sobolev embeddings, degenerate elliptic operators. Chap-
ter 6. Spectral theory in Hilbert spaces and Banach spaces, is a short introduction
to spectral theory of self-adjoint operators in Hilbert space, approximation num-
bers, entropy numbers. This machinery is applied in the seventh chapter, Com-
pact embeddings, spectral theory of elliptic operators, to the study of distribution
of the eigenvalues and of the associated eigenelements of the self-adjoint operator
Au = −∑n

j,k=1
∂
∂xj

(
aj,k(x) ∂u∂xk

)− a(x)u, domA =W 2
2,0(Ω).

The book ends with six appendices: A. Domains, basic spaces, and integral
formulae, B. Orthonormal bases of trigonometric functions, C. Operator theory,
D. Some integral inequalities, E. Function spaces, collecting the basic notions and
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results used in the main text, or presenting more general function spaces (Appendix
E), references to which were made in the Notes from the end of the chapters. A
thorough and detailed presentation of these spaces is given in the recent books of the
second-named author: Theory of Function Spaces II, Birkhäuser 1992, and Theory of
Function Spaces III, Birkhäuser 2006.

Written by two leading experts in the area and including their teaching ex-
perience, the book is of great use for students and mathematicians looking for an
accessible introduction to function spaces and partial differential equations. After
its reading, more advanced and difficult texts on similar topics can be successfully
approached with less effort.

S. Cobzaş

William Byers, How Mathematicians Think Using Ambiguity, Contradic-
tion, and Paradox to Create Mathematics, Princeton University Press, 415
pages, ISBN-13:978-0-691-12738-5.

There are very much number of paper on the nature of mathematical thinking,
on how mathematicians create mathematics. Here are some basic books on this
direction:

• J. Hadamard, The Psychology of Invention in the Mathematical Field,
Princeton University Press, 1949.

• H. Poincaré, Science and Hypothesis, Dover, New York, 1952.
• H. Weyl, Philosophy of Mathematics and Natural Science, Princeton Uni-
versity Press, 1949.

• P. Sergescu, Gândirea matematică (The mathematical thinking), Ed.
Ardealul, Cluj, 1928 (Romanian).

• A. Froda, Eroare şi paradox ı̂n matematică, (Error and paradox in math-
ematics) Ed. Enciclopedică Română, Bucureşti, 1971 (Romanian).

• M. Kline, Mathematical Thought from Ancient to Modern Times, Oxford
University Press, 1972.

• J. Dieudonné, Mathématique vides et mathématique significatives, Lux-
emburg, 1976.

• I. Lakatos, Proofs of Refutations, Cambridge University Press, 1976.
• R.L. Wilder, Mathematics as a Cultural System, Pergamon Press, New
York, 1981.

• S. Mac Lane, Mathematics: Form and Function, Springer, New York, 1986.
• R. Penrose, The Emperor’s New Mind, Oxford University Press, 1989
(Romanian translation: Ed. Tehnică, 1996).

• B. Heinz, Die Innenwelt der Mathematik, Springer, 2000.
• R. Hersch (Ed.), 18 Unconventional Essays on the Nature of Mathematics,
Springer, 2005.

Byers’s book provides a novel approach to many questions such as:

• Is mathematics objectively true?
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• Is mathematics discovered and/or invented?
• Where does mathematical creativity come from?
• Is mathematical thought algorithmic in nature?
The book is divided into three sections: The light of ambiguity (Ambiguity in

Mathematics, The Contradictory in Mathematics, Paradoxes and Mathematics: In-
finity and the Real Numbers), The light as idea (The Idea as an Organizing Principle,
Ideas, Logic and Paradox, Great Ideas) and The light and the eye of the beholder
(The Truth of Mathematics, Conclusion: Is Mathematics Algorithmic or Creative?).

Well-organized and carefully written the present book is very useful to all
who are interested in ”How Mathematicians Think”! A related question could be:
”Do mathematicians really think?”

Ioan A. Rus
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