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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LIII, Number 3, September 2008

INDEX OF THE ELASTICITY OPERATOR WITH CONTACT
WITHOUT FRICTION BOUNDARY CONDITIONS

B. BENABDERRAHMANE, B. NOUIRI, AND Y. BOUKHATEM

Abstract. In this paper, one considers a contact without friction problem

for the elasticity system, using the results given by P. Grisvard and B.

Benabderrahmane respectively in ([1]: Far East J.Appl. Maths., Vol.24,

No.3, p.373-380, (2006) and [2]: C.R. Acad. Sci. Paris, Ser.I Math. 304(3)

(1987), 71-73), one proves that the Laplace operator is injective and with

closed image of codimension N in Hs (Ω)2, and consequently ∆ have an

index which is equal to −N, where N denotes the number of the singular

solutions of the considered problem. Using the above results one proves

that the elasticity operator, denoted by L has an index which is equal to

−2N, by basing on the Fredholm alternative. This enables us to deduce

the explicitly singular solutions and to describe the singular behavior of

the solutions in the polygon.

1. Problem statement

The aim of this statement is to deduce the index results for the contact

without friction problem which is governed by the Lamé system in a polygon. Conse-

quently, it can be given the explicitly singular solutions and to describe the singular

behavior of the solutions in the polygon. Let f ∈ L2(Ω), consider the following

problem

(P ) :


Lu = f in Ω u.ηj = 0(

Σ (u) .ηj
)
.τ j = 0

on Γj , j = 1, ..., J,

Received by the editors: 15.04.2008.
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where Ω is homogeneous, elastic and isotropic medium occupying a bounded domain

in R2, limited by straight polygonal boundary Γ =
J
∪

j=1
Γj , Γi ∩ Γj = ∅,∀i 6=

j, Γj = ]Sj , Sj+1[ , where Sj are the different corners of Ω. ηj =
(
ηj
1, η

j
2

)
, τ j =(

τ j
1 , τ j

2

)
designate the outward unit normal vector, and the tangential unit vector in

Γj respectively. ωj , (0 < ω ≤ 2π) represents the opening of the angle that makes Γj

and Γj+1 toward the interior of Ω.

L is the Lamé operator defined by:

L : λ∆ + (λ + µ)∇div;

where ∆,∇ and div represent respectively the Laplace, Gradient and Divergence .

u, f is the displacement vector, and external forces density respectively. Σ(u) =

(σij(u))ij is the stress tensor given by Hook ′s law using Lamé coefficients λ and µ

which are strictly positive and such that (λ + µ) > 0,

σij(u) = 2µεij(u) + λtr(ε(u))δij ,

where δij is a Kronecker symbol and εij (u) = 1
2

(
∂ui

∂xj
+ ∂uj

∂xi

)
is the linearized tensor

of linear elasticity.

The particular case λ + µ → 0, reduces the problem to

(E) :


∆u = f

λ (= f) in Ω u.ηj = 0(
Σ (u) .ηj

)
.τ j = 0

on Γj , j = 1, ..., J,

with σij (u) = µ (∂iuj + ∂jui) − (∂1u2 + ∂2u1) δij , where ∂ju is used as the partial

derivative of u with respect to xj .

Generally, the problem (E) hasn’t sufficiently regular solution, hence we try

to impose conditions on f in order to obtain desired solutions, i.e., we search for

necessary and sufficient conditions on f allowing variational solution included in the

space V such as

V =
{
u ∈ H1(Ω)2; u.η = 0 on Γ

}
is in Hs+2(Ω)2 ∩ V (s ≥ 0), where Hs+2 denotes (s + 2) order Sobolev space.
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The resolution of this problem is based on the following inequality

‖u‖s+2 ≤ Cs ‖u‖s , u ∈ Hs+2(Ω)2 ∩ V. (1.1)

This inequality is not always true, for example the case when Ω is a polygon.

However, we may prove this a priori inequality is verified all the same, when imposing

a supplementary condition: Dxu + Dyu ∈ Hs
0(Ω) i.e.

u ∈ Ws(Ω) =
{
u ∈ Hs+2(Ω)2 ∩ V ; (Σ(u).η) .τ = 0 on Γ, Dxu + Dyu ∈ Hs

0(Ω)
}

.

By explicit calculations (see [1]), studying the boundary conditions consid-

ered, we prove the following Lemma.

Lemma 1. The problem (P ) amount to the two problems of oblique derivatives bound-

ary conditions without coupling:

(Ek) :


∆uk = fk on Ω

αjDxuk + βjDyuk = 0 in Γj , j = 1, ..., J

α2
j + β2

j 6= 0.

, k = 1, 2

2. A priori inequality

This section is dedicated to demonstration of a priory inequality (1.1). To

simplify the study, in all of this section we will write u instead uk and (E) instead

(Ek), because the (Ek), k = 1, 2 are two similar one-dimensional problems.

The inequality (1.1) follows from the following simple inequality

‖u‖2 ≤ C0 (‖∆u‖0 + ‖u‖1) , ∀u ∈ Kα,β(Ω), (1.2)

with

Kα,β(Ω) =
{

u ∈ H2(Ω);αjDxu + βjDyu = 0 on Γj , α2
j + β2

j 6= 0, j = 1, ..., J
}

.

Remark 1. It is known (in [1]) that there is a constant C0 such as the inequality

(1.2) is verified for all u ∈ Kα,β(Ω).
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Proposition 1. There is a constant C such that the inequality (1.1) takes place for

all u ∈ Ws(Ω).

Proof. The essential idea of the demonstration is to search the boundary conditions

verified by :

v = Dn
xDm

y u, with n + m ≤ s.

For this, we parameterize the segments Γj using the following applications:

[0, 1] −→ R2

λ 7→
(
t1jλ + t

′

1j , t2jλ + t
′

2j

)
.

We have the condition αjDxu + βjDyu = 0 on Γj , j = 1, .., J, therefore

αjDxu
(
t1jλ + t

′

1j , t2jλ + t
′

2j

)
+ βjDyu

(
t1jλ + t

′

1j , t2jλ + t
′

2j

)
= 0,

λ ∈ [0, 1], j = 1, ..., J, hence by derivation, we obtain

αj

s∑
k=0

Ck
s tk1jt

s−k
2j Dk+1

x Ds−k
y u + βj

s∑
k=0

Ck
s tk1jt

s−k
2j Dk

xDs+1−k
y u = 0, (1.3)

on the other hand we have Dxu + Dyu ∈ Hs
0(Ω)2, therefore

Dp
xDq

y(Dxu + Dyu) = 0, on Γj , j = 1, ..., J, for p + q = s(s ≥ 1)

and we obtain consequently:

Dp+1
x Dq

yu = −Dp
xDq+1

y u on Γj (1.4)

from which we deduce that: Dk
xDs+1−k

y u = (−1)kDs+1
y u, k = 0, 1, .....

Dk+1
x Ds−k

y u = (−1)kDxDs
yu, k = 0, 1, .....

on Γj , j = 1, ..., J

from which, we can rewrite the equation (1.3) as follow:

αj

s∑
k=0

Ck
s tk1jt

s−k
2j (−1)kDxDs

yu + βj

s∑
k=0

Ck
s tk1jt

s−k
2j (−1)kDyDs

yu = 0. (1.5)
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Thus we obtain the condition of oblique derivative verified by v = Ds
yu. This condition

is

α
′

jDxv + β
′

jDyv = 0 on Γj , j = 1, ..., J (1.6)

with 
α

′

j =
s∑

k=0

(−1)ααjC
k
s tk1jt

s−k
2j

β
′

j =
s∑

k=0

(−1)αβjC
k
s tk1jt

s−k
2j

(1.7)

According to (1.4) the condition is also verified by D1
xDs−1

y u, D2
xDs−2

y u, ..., we can

apply the previous remark, if
(
α

′

j

)2

+
(
β

′

j

)2

6= 0 is verified. For this we note that

(
α

′

j

)2

+
(
β

′

j

)2

=

[
s∑

k=0

(−1)αCk
s tk1jt

s−k
2j

]2 (
α2

j + β2
j

)
= [(t1j + t2j)

s]2
(

α2
j + β2

j

)
6= 0.

Since the two numbers t1j , t2j can’t vanish simultaneously (because they are the

coefficients of parameterization of Γj). Then we have proved that for n + m ≤ s

(s ≥ 1), there exist α and β such as Dn
xDm

y u ∈ Kα,β for all u ∈ Ws(Ω). In the case

s = 0, the condition of oblique derivative (1.2) is verified by u. Then

s∑
n+m=0

∥∥Dn
xDm

y u
∥∥

2
≤ C0

(
s∑

n+m=0

∥∥Dn
xDm

y ∆u
∥∥

0
+

s∑
n+m=0

∥∥Dn
xDm

y u
∥∥

1

)
from which we deduce the inequality ‖u‖s+2 ≤ CS (‖∆u‖s + ‖u‖1) and we obtain the

inequality (1.1), using the well know inequality ‖u‖1 ≤ C ‖∆u‖0 in V.

3. Fredholm alternative

Let Rs (Ω) be the subspace of Hs (Ω)2 defined by

Rs (Ω) = {f = ∆u;u ∈ Ws(Ω)} .

Remark 2. Using the inequality (1.1), there can be seen that Rs (Ω) is a closed

subspace of Hs (Ω)2 . Let Ns(Ω) be the orthogonal of Rs (Ω) in H−s (Ω)2 , i.e.

Ns(Ω) =
{

v ∈ H−s (Ω)2 , (v, f) = 0 for all f ∈ Rs (Ω)
}

,

where (v, f) represents the duality pairing between Hs (Ω)2 and H−s (Ω)2 .
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Thanks to a generalization of Green formula, it can be proved the following

Lemma:

Lemma 2. The orthogonal of Rs (Ω) in H−s (Ω) is the vector subspace, Ns (Ω) , of

H−s (Ω) defined by :

Ns (Ω) =
{
v ∈ H−s (Ω) ;∆v = 0 in Ω ; γs

(
v.ηj ,

(
Σ (v) .ηj

)
.τ j
)

= 0
}

,

where γs is a generalized operator trace defined by duality.

According to a generalization of Green formula, we will see that the orthog-

onal of Rs in H−s is

Ns(Ω) =
{
v ∈ H−s;∆v = 0, in Ω; γs (u.η, (Σ(u).η) .τ) = 0

}
.

We will have the necessary and sufficiencies conditions on f ∈ Hs(Ω)2, in order to

allow for a variational solution to be in Hs+2 ∩ V. This condition is expressed as

follows:

(f, v) = 0, for all v ∈ Ns(Ω).

3.1. Laplace operator Index. In the case, when Ω doesn’t have any angle ω of the

form
`π

k + 2
; `, k ∈ N, ` 6= (k + 2), k = 1, ..., s

the dimension of Ns (Ω) is exactly equal to N, where

N =
{

k ∈ N; 1 ≤ k ≤
(ω

π

)
s
}

.

The ω are well specified at the end of the last section.

Using the techniques of Grisvard [2], it is shown the following result:

Lemma 3. Suppose Ω is a simply connected, ∆ : Ws (Ω) → Hs (Ω)2 is an operator

with index. More precisely, thanks to inequality (1.1), the Laplace operator ∆ is injec-

tive, has a closed image of codimension equal to N < +∞ in Hs (Ω)2. Consequently

Ind(∆) = dim Ker (∆)− codim (∆) = 0−N = −N.

8



INDEX OF THE ELASTICITY OPERATOR

3.2. Calculation of the operator L index. Now come back to the problem (P ), as

defined above. In the following, and for the problem (P ), essentially we are interested

by the demonstration of the following inequality (1.8) :

‖u‖H2(Ω)2 ≤ C ‖u‖L2(Ω)2 , (1.8)

where C is an independent constant of Lamé coefficients.

Lemma 4. We have

(
D2

xu, D2
yu
)

= ‖DxDyu‖2L2(Ω)2 ,∀u ∈ H2 (Ω)2 ∩ V. (1.9)

The proof of this Lemma is made by a party integration, using the density of

H3 (Ω)2 ∩ V in H2 (Ω)2 ∩ V.

Thus, we recover the restriction on the coefficients of Lamé |λ| <
√

3 |µ| (see

[2]), which is necessary so that the inequality (1.8) is verified. Thanks to inequality

(1.8), the operator of Lamé is injective, has a closed image of H2 (Ω)2 ∩V in L2 (Ω)2.

Therefore, L is semi-Fredholm operator. As the operator L depends continuously of

λ, its index (see [4]) is independent of λ. In the particular case where λ = −µ and

according to the Lemma 1, the problem (P ) amounts to problems (Ek), k = 1, 2,

where Ind(Ek) = N, k = 1, 2, and consequently the index of the operator L is equal

to −2N.

4. Singular solutions

Thanks to the index of the operator L that there exist 2N linearly indepen-

dent functions Sj and S′
j ∈ V , such as

Sj , S
′
j /∈ H2 (Ω)2 and LSj ,LS′

j ∈ L2 (Ω)2

and as L is an isomorphism of

Sp
(
H2 (Ω)2 , Sj , S

′
j

)
∩ V on L2 (Ω)2 , j = 1, ..., J,

where the symbol Sp designates the vector space generated by the elements continued

in the bracket that follow.
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We can calculate these functions explicitly, by searching S such as

S(r, θ) = rαΨα(θ),

solution of LS = 0 in the sector

Σ = {θ; 0 < θ < ω} ,

where

Ψα(θ) = (W1(θ) cos θ −W2(θ) sin θ, W1(θ) sin θ + W2(θ) cos θ)t
,

with  W ′
1(0) = W2(0) = 0

W ′
1(ω) = W2(ω) = 0.

Then, we find that the number α must be a solution of the following transcendent

equation

sin2 αω = sinω (1.10)

and such that

Ψα(θ) =



((ρ0 + ρ1) cos(α− 2)θ − (ρ1 − ρ0) cos αθ) sin(α + 1)ω+

+2ρ1 sin(α− 1)ω cos αθ

(−(ρ0 + ρ1) sin(α− 2)θ − (ρ1 − ρ0) sinαθ) sin(α + 1)ω+

+2ρ1 sin(α− 1)ω sinαθ

with ρ0 = ν0(α − 1) − 2, ρ1 = ν0(α + 1) + 2, ν0 = 1
1−2ν , where ν is the Poisson

coefficient.

It is well clear that the solutions of the transcendent equation (1.10) are real

and explicitly given by

α` =
`π

ω
± 1, ` ∈ Z∗.

Besides, if ω 6= kπ
ω , k ∈ Z∗ then the solutions are simple, else they are double.

In conclusion the transcendent equation (1.10) possesses one simple solution

α in ]0, 1[ , when ω ∈
]

π
2 , π

[
∪
]
3π
2 , 2π

[
and it has only one solution double α′ = 1

3 ,

when ω = 3π
2 . This will permit the demonstration of the following theorem which is

described the singular behavior of the solution of the problem (P ).

10
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Theorem 1. For f ∈ L2 (Ω)2 , if u ∈ V is a variational solution of the problem (P ),

then there are constants Cα and C ′
α such as

u− CαrαΨα(θ)− C ′
α

(
log rΨα(θ) +

∂Ψα(θ)
∂α

)
α= 1

3

∈ H2 (Ω)2 .

The first sum in this expression is extended to all real numbers α simple

solution of the transcendent equation (1.10), whereas the second sum is extended to

all real numbers α double solution of the equation (1.10).
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série I, no. 3, (1987).

[3] Grisvard, P., Alternative de Fredholm relative au problème de Dirichlet dans un polygone
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RADIATION AND VARIABLE VISCOSITY EFFECTS IN FORCED

CONVECTION FROM A HORIZONTAL PLATE EMBEDDED IN A

POROUS MEDIUM

T. GROŞAN, S.R. POP, AND I. POP

Abstract. Radiation and temperature dependent viscosity effects on

forced convection boundary layer flow over a horizontal plate embedded

in a fluid-saturated porous media is studied in this paper. Darcy’s law

model, Rosseland model for radiation and an inverse proportional law for

temperature dependent viscosity have been considered. The transformed

ordinary differential equations are solved numerically, and a very good

agreement between the present results and those reported for particular

situations were found.

1. Introduction

Many technological applications in geophysics and conservation energy sys-

tems, thermal insulations, cooling, water waste disposal, petroleum industry involve

mathematical models related to flows in fluid-saturated porous media. Recent mono-

graphs by Ingham and Pop [1,2,3], Pop and Ingham [4], Bejan et al.[5] and Vafai [6]

give an excellent summary of the work on the subject.

It is well known that viscosity of many fluids depends strongly by temperature

and this change influence also the flow. Water’s viscosity decreases by about 240 per-

cent when temperatures varies form 10oC (µ = 0.0131 g/cm.s) to 50oC (µ = 0.00548

g/cm.s) (see Ling and Dybs [7]), where µ is the dynamic viscosity of water. Thus,

one can make significant errors when such viscosity variations are not considered.

Received by the editors: 01.10.2007.

2000 Mathematics Subject Classification. 76D05, 80A20.
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When technological processes take place at high temperatures (metal and glass cool-

ing) thermal radiation effects start to play an important role and cannot be neglected

(see Modest [8]). Previous works in this area were done by Ling and Dybs [7] who

examined the effect of variable viscosity on forced convection past a horizontal flat

plate embedded in a fluid-saturated porous medium. Postelnicu et al. [9] considered

also in addition to the variable viscosity in this problem the internal heat generation

effects. For viscous fluids, Kafoussias and Williams [10] and Kafoussias et al. [11]

studied the combined free and forced convection on an isothermal vertical flat plate

with temperature dependent viscosity while, Soundalgekar et al. [12] and Ali [13]

considered the same problem for moving surfaces. The combined effects radiation

and variable viscosity were also considered by Elbashbesy and Dimian [14] on the

flow over a wedge.

2. Basic Equations

Consider the steady forced convection flow adjacent to a heated horizontal

flat plate, which is embedded in an opaque fluid-saturated porous medium of ambient

temperature T∞ and velocity U∞ as shown in Figure 1. It is assumed that the

temperature of the plate is constant Tw (Tw > T∞) and there is a radiation heat

transfer effect modeled by the Rosseland approximation. Following Ling and Dybs

[7] we consider the temperature dependent dynamic viscosity, µ, given by:

1

µ
=

1

µ∞

[1 + γ(T − T∞)] (1)

where µ∞ is the dynamic viscosity of the ambient fluid and γ is a constant.

Under the boundary-layer and Boussinesq approximations the governing

boundary layer equations can be written as

∂u

∂x
+
∂v

∂y
= 0 (2)

∂

∂y
(µu) = 0 (3)

u
∂T

∂x
+ v

∂T

∂y
= α

∂2T

∂y2
−

1

ρ∞cp

∂qr

∂y
(4)

14



RADIATION AND VARIABLE VISCOSITY EFFECTS

where x and y are the Cartesian co-ordinate along the plate and normal to it, respec-

tively, u and v are the velocity components along x and y -axes, T is the temperature,

α is the effective thermal diffusivity of the porous medium ρ∞ is the ambient density

and cp is the specific heat at constant pressure. We assume that the radiation heat

flux, qr, is given by, see Modest[8],

qr = −

(

4σ

3χ

)

∂T 4

∂y
(5)

where σ is the Stefan-Boltzman’s constant and χ is the average absorption coefficient

in Rosseland approximation. The boundary conditions of equations (2)-(4) are:

v = 0, T = Tw at y = 0

u = U∞, T → T∞ as y → ∞
(6)

Equation (1) is written, for convenience, as

1

µ
= a(T − Te) (7)

where a = γ/µ∞ is a constant with a > 0 for liquids and a < 0 for gases, see

Soundalgekar et al.[12], and Te = T∞ − (1/γ) is a reference temperature.

Further, introducing the stream function,ψ, defined as usual by u = ∂ψ/∂y

and v = −∂ψ/∂x, and using (7) in (2) equations (2)-(4) become:

T − Te

T∞ − Te
=

1

U∞

∂ψ

∂y
(8)

∂ψ

∂y

∂T

∂x
−
∂ψ

∂x

∂T

∂y
= α

∂2T

∂y2
+

1

ρ∞cp

16σ

3χ

(

T 3
∂T

∂y

)

(9)

These partial differential equations can now be reduced to ordinary differential equa-

tions by introducing the following similarity variables

ψ = (αU∞x)
1/2

f(η), θ(η) =
T − Tw

T∞ − Tw
, η = (U∞x/α)

1/2 y

x
(10)

Using transformations (10) in equations (8) - (10) we get:

f ′ =
θ + θe

1 + θe
(11)

((

1 +
4

3
N (θw + (1 − θw)θ)3

)

θ′
)

′

+
1

2
fθ′ = 0 (12)
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f ′(0) = 0, θ(0) = 0, θ(∞) = 1 (13)

where primes denote differentiation with respect to η and the parameter θe is the

dimensionless reference temperature given by

θe =
Tw − Te

T∞ − Tw
=

1

γ(T∞ − Tw)
(14)

In the energy equation (12) θw and N are the wall temperature and the radiation

parameters defined as:

θw =
Tw

T∞
, N =

4σT 3

∞

kχ
(15)

Using the energetic balance at the plate we deduce the convection heat trans-

fer coefficient, h, defined as:

−k

[

∂T

∂y

]

y=0

+ qr = h(Tw − T∞) (16)

and the local Nusselt number, Nux, which is given by:

Nux

Pe
1/2

x

= θ′(0)

(

1 +
4

3
Nθ3w

)

(17)

where Pex = U∞x/α is the local Pclet number. We mention that for N = 0 (radiation

is absent) equations (11) - (13) reduce to those obtained by Ling and Dybs [7].

3. Results and Discussions

Equations (11) and (12), subject to the boundary conditions (13) have been

solved numerically using a 4th Runge-Kutta method coupled with a shooting tech-

nique for some values of the parameters θe, N and θw. In the particular case N = 0

(i.e. radiation is absent) the results for the dimensionless heat transfer at the plate,

−θ′(0), were compared with those obtained by Ling and Dybs [7], see Table 1. It

is seen that these results are in a very good agreement (see Table 1). The results

obtained in the presence of radiation (N 6= 0) are shown in Table 2 for some values

of the radiation parameter N and temperature parameter θw.

i) Influence of the parameter θe.

The dimensionless temperature and viscosity profiles f(η) and θ(eta) are

shown in Figures 2 and 3 for some values of the parameter θe when N = 1 and 10, and
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θw = 1.5. We can see from these figures that the thickness of the thermal boundary

layer and viscous boundary layer increase with the decreasing of the parameter θe. It

should also be noticed that for θe >> 1, the predicted temperature profiles are close

to those when viscosity is constant. We also notice that for the constant viscosity

(θe → ∞) the value of −θ′(0) = 0.564, agrees with the value reported by Bejan

[15]. When θe → ∞ the velocity profiles f ′(η) are convergent to the constant profile

f ′(η) = 1 corresponding to the constant viscosity case (see Figure 3).

ii) Influence of the parameter N .

Figures 4 and 5 show that increasing of the radiation parameter N leads

to an increasing of the thermal and viscous boundary layers. The influence of the

radiation parameter N is higher for small values of θe (i.e. the radiation effects are

more pregnant if the dependence of the viscosity with the temperature is stronger) .

iii) Influence of the parameter θw

Figures 6 and 7 present temperatures and velocity profiles for different values

of the parameter θw. It is seen that the thermal and viscous boundary layer increase

with the increasing of θw, the effect being more pregnant for small values of θe.

Table 1. Values of −θ′(0) for different values of θe and N = 0

θe Ling and Dybs [7] Present results

0 0.332 0.3320

0.05 0.347 0.3474

0.10 0.361 0.3606

0.25 0.392 0.3916

0.5 0.426 0.4260

1.00 0.465 0.4649

2.00 0.500 0.5004

5.00 0.533 0.5333

10.00 0.548 0.5476

∞ 0.564 0.5641
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Table 2. Values of −θ′(0) for different values of θe, N and θw

θe N θw = 1.1 θw = 1.5 θw = 2

0 1 0.190643 0.114643 0.067368

5 0.099127 0.052877 0.029892

10 0.071675 0.037508 0.021103

0.1 1 0.207738 0.126601 0.075515

5 0.108174 0.058657 0.033674

10 0.078238 0.041640 0.023791

1 1 0.269628 0.168878 0.103644

5 0.140838 0.078948 0.046644

10 0.101924 0.056126 0.032998

10 1 0.318507 0.201712 0.125149

5 0.166585 0.094628 0.056516

10 0.120587 0.067311 0.040002

∞ 1 0.328301 0.208257 0.129416

5 0.171739 0.097749 0.058472

10 0.124323 0.069537 0.041389
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Figure 1. Physical model and co-ordinate system

Figure 2. Variation of dimensionless temperature θ for different

values of the parameter θe

19
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Figure 3. Variation of dimensionless velocity f ′(η) for different val-

ues of the parameter θe

Figure 4. Variation of dimensionless temperature θ(η) for different

values of the parameter N
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Figure 5. Variation of dimensionless velocity f ′(η) for different val-

ues of the parameter N

Figure 6. Variation of dimensionless temperature θ for different

values of the parameter θw
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Figure 7. Variation of dimensionless velocity f ′(η) for different val-

ues of the parameter θw
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NUMERICAL METHOD FOR FREE SURFACE VISCOUS FLOWS

TIBERIU IOANA AND TITUS PETRILA

Abstract. In this paper we present a new algorithm for studying the

flow of viscous fluids with a free surface. This algorithm is based on an

optimization solution strategy. Numerical results are presented in the case

of a particular fluid flow problem.

1. Mathematical model and solution strategy

A viscous incompressible fluid of dynamic viscosity η, pressure p, density ρ

and velocity u flows over a solid boundary Γ . The fluid is up bounded by a free

surface S, the fluid domain being denoted by D. It is assumed that the flow is steady

and the exterior force is represented by gravity.

For this problem we write the system of equations

(u · ∇)u +∇ϕ− Re−1∇ ·
(
∇u + (∇u)T

)
= 0, x ∈ D (1)

∇ · u = 0, x ∈ D (2)

ϕ− Fr−2y = 0, x ∈ S (3)

Re−1t ·
(
∇u + (∇u)T

)
n = 0, x ∈ S (4)

u · n = 0, x ∈ S (5)

u = 0, x ∈ Γ (6)

u = ud, x →∞, (7)

Received by the editors: 15.03.2008.

2000 Mathematics Subject Classification. 76D05, 76D27, 76M30.
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where ϕ is the hydrodynamic component of the fluid pressure, ϕ(x, y) = p(x, y) +

Fr−2y. Here we denote by Re and Fr the Reynolds and Froude numbers respectively,

while t and n are the unit tanget and outward normal vectors respectively.

For solving this problem we use a solution strategy based on an optimization

approach. Let’s denote by S0 the initial position of the free boundary. We assume

that the new position of the free boundary Sε, is related with its original position by

(x0, y0) −→ (xε, yε) = (x0, y0)− εn.

(such a mapping is used for instance in [7])

Now an algorithm is constructed to obtain the shape of the free surface and

the velocity field. Precisely, we have to chose first an initial position of the unknown

free boundary and this position will be updated with −γgradnJ∗, where

J∗(S) =
∫

S

p2dS +
∫

D

v ·
(
(u · ∇)u +∇ϕ− Re−1∇ ·

(
∇u + (∇u)T

))
dD

+
∫

D

w (∇ · u) dD. (8)

Then the procedure restart, with that new free boundary and so on. This procedure

will stop when gradnJ∗ < ε. Folowing [2], [3] we get

gradnJ∗ =
∫

S

{(1− ϕ + Fr−2y)n · ∇ϕ− Fr−2n · j

−v · Re−1
(
(∇ (n · ∇u)) + (∇ (n · ∇u))T

)
n}dS, (9)

where w and v are Lagrange multipilers, v is got from the boundary value problem

(10) - (15), i.e.,
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u · ∇v + (∇u)v +∇w +∇ · Re−1
(
∇v + (∇v)T

)
= 0, x ∈ D (10)

∇ · v = 0, x ∈ D (11)

v · n = −p, x ∈ S (12)

Re−1
(
∇v + (∇v)T

)
n = 0, x ∈ S (13)

v = 0, x ∈ Γ (14)

v = 0, |x| → ∞. (15)

Obviously, this is a linear problem in v and w, while u is the solution of the

boundary value problem (1), (2), (3), (5), (6), (7).

2. Numerical results

Let’s apply the optimization algorithm for a fluid configuration D considered

in the sequel. Precisely let’s consider the fluid flow of parameters ρ = 1kg/m3,

η = 10Pa · s , Fr = 0.7, u10 = 7m/s, u20 = 0m/s where u0 = (u10, u20) is the inflow

velocity. For the output flow we have used some appropriate Neumann boundary

conditions. Let’s define the initial shape of the free boundary by a straight line (1).

To solve the respective boundary value problem and to update successively

the free surface we have used the software packages Comsol and Matlab.

Using a step size γ = 10−2 we get the new shape of the free surface (2), the

fluid flow domain and the velocity field (3), the velocity surface (4), the stream lines

(5), the velocity vector field (6).

We remark that the optimization algorithm proposed in this paper could be

extended for three dimensional flows and this will be the target of a next paper.
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Figure 1. Initial fluid flow domain

Figure 2. Fluid flow domain
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Figure 3. Fluid flow domain and the velocity filed

Figure 4. Velocity surface
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Figure 5. Stream lines

Figure 6. Velocity vector filed
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MULTIPLE SOLUTIONS FOR A DOUBLE EIGENVALUE ELLIPTIC
PROBLEM IN DOUBLE WEIGHTED SOBOLEV SPACES

ILDIKÓ ILONA MEZEI

Abstract. In this paper we study a semilinear double eigenvalue problem

with nonlinear boundary conditions in an unbounded domain Ω ∈ RN .

To obtain existence and multiplicity results for this problem we use the

Mountain Pass Theorem applied to double weighted Sobolev spaces and a

recent result proved by G. Bonanno (Nonlinear Analysis, 54(2003), 651-

665) concerning critical points. This result completes some recent results

obtained in this direction.

1. Main result

Let Ω ⊂ RN , (N ≥ 3) be an unbounded domain with smooth boundary Γ.

For a positive measurable function u and a positive measurable function w defined in

Ω, we define the weighted p-norm (1 ≤ p < ∞)

||u||p,Ω,w =
(∫

Ω

|u(x)|pw(x)dx

) 1
p

and denote by Lq(Ω; w) the space of all measurable functions u such that ||u||q,Ω,w is

finite. The double weighted Sobolev space

W 1,p(Ω; v0, v1)
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is defined as the space of all functions u ∈ Lp(Ω; v0) such that all derivatives ∂u
∂xi

belong to Lp(Ω; v1). The corresponding norm is defined by

||u||p,Ω,v0,v1 =
(∫

Ω

|∇u(x)|pv1(x) + |u(x)|pv0dx

) 1
p

.

The Muckenhoupt class Ap is defined as the set of all positive functions v in

RN , which satisfy

1
|Q|

(∫
Ω

v dx

) 1
p

(∫
Ω

v−
1

p−1 dx

) p−1
p

≤ C̄, if 1 < p < ∞

1
|Q|

∫
Ω

v dx ≤ C̄ ess inf
x∈Q

v(x), if p = 1,

for all cubes Q ∈ RN and some C̄ > 0.

In this paper we always assume that the weight functions v0, v1, w are defined

in Ω, belong to Ap and are choosen such that the embeddings

W 1,2(Ω; v0, v1) ↪→ Lp(Ω;w) (1)

and the trace

W 1,2(Ω; v0, v1) ↪→ Lq(Γ;w) (2)

are compact for 2 < p < 2N/(N − 2), 2 < q < 2(N − 1)/(N − 2) and continuous for

2 ≤ p ≤ 2N/(N − 2), 2 ≤ q ≤ 2(N − 1)/(N − 2) respectively. Such weight functions

there exist, see for example [4], [5]. The best embedding constants are denoted by

Cp,Ω and Cq,Γ, i.e. we have the inequalities

||u||p,Ω,w ≤ Cp,Ω||u||v0,v1 , for all u ∈ W 1,2(Ω; v0, v1) (3)

||u||q,Γ,w ≤ Cq,Γ||u||v0,v1 , for all u ∈ W 1,2(Ω; v0, v1) (4)

where we used the abbreviation ||u||v0,v1 = ||u||2,Ω,v0,v1 .

For λ > 0 and µ ∈ R we consider the following semilinear elliptic double

eigenvalue problem

(Pλ,µ)


Au ≡ −∆u + b(x)u = λf(x, u) in Ω

∂nu = λµg(x, u) on Γ
,
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where b is a positive measurable function, n denotes the unit outward normal on Γ

and ∂n is the outer normal derivative on Γ.

We define a bilinear form associated with A by

〈u, v〉A =
∫

Ω

(∇u∇v + b(x)uv)dx.

A weak solution of the problem (Pλ,µ) is a function u ∈ W 1,2(Ω; v0, v1), such

that for every v ∈ W 1,2(Ω; v0, v1) we have

〈u, v〉A − λ

∫
Ω

f(x, u(x))v(x)dx− λµ

∫
Γ

g(x, u(x))v(x)dΓ = 0.

Furthermore we consider the following assumptions:

(A) we assume that A defines a continuous bilinear form 〈·, ·〉A on

W 1,2(Ω; v0, v1) and satisfies the ellipticity condition

〈u, u〉A ≥ 2K||u||2v0,v1
for every u ∈ W 1,2(Ω; v0, v1), (5)

with some positive constant K > 0;

(F1) f : Ω× R → R is a Carathéodory function with f(·, 0) = 0 and

|f(x, s)| ≤ f0(x) + f1(x)|s|p−1 for x ∈ Ω, s ∈ R,

where 2 < p <
2N

N − 2
, and f0, f1 are positive measurable functions satis-

fying f0 ∈ L
p

p−1 (Ω; w
1

1−p ), f0(x) ≤ Cfw(x) and f1(x) ≤ Cfw(x) for a.e.

x ∈ Ω, with an appropiate constant Cf ;

(F2) lim
s→0

f(x, s)
f0(x)|s|

= 0, uniformly in x ∈ Ω;

(F3) lim
s→∞

F (x, s)
f0(x)|s|2

= 0, uniformly in x ∈ Ω,

max
|s|≤M

F (·, s) ∈ L1(Ω), for all M > 0, where

F (x, u) =
∫ u

0

f(x, s)ds;

(F4) there exist x0 ∈ Ω, s0 ∈ R and R0 > 0 such that min
|x−x0|<R

F (x, s0) > 0.

(G1) Let g : Γ× R → R be a a Carathéodory function with g(·, 0) = 0 and

|g(x, s)| ≤ g0(x) + g1(x)|s|q−1, for x ∈ Γ, s ∈ R
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where 2 < q <
2(N − 1)
N − 2

, and g0, g1 are positive measurable func-

tions satisfying g0 ∈ L
q

q−1 (Γ;w
1

1−q ), g0(x) ≤ Cgw(x) and g1(x) ≤

Cgw(x), a.e. x ∈ Γ, with an appropiate constant Cg;

(G2) lim
s→0

g(x, s)
g0(x)|s|

= 0, uniformly in x ∈ Γ;

(G3) lim
s→+∞

G(x, s)
g0(x)|s|2

= 0, uniformly for x ∈ Γ,

max
|s|≤M

G(·, s) ∈ L1(Γ), for every M > 0, where G(x, s) =∫ u

0

g(x, s)ds.

Next, we introduce the functionals JF , JG, Jµ : W 1,2(Ω; v0, v1) → R, defined

by

JF (u) =
∫

Ω

F (x, u(x))dx, JG(u) =
∫

Γ

G(x, u(x))dΓ,

Jµ(u) = JF (u) + µJG(u)

and the energy functional Eλ,µ(u) : W 1,2(Ω; v0, v1) → R associated to (Pλ,µ), defined

by

Eλ,µ(u) =
1
2
〈u, u〉A − λJµ(u).

The main result of this paper is the following

Theorem 1.1. We suppose that the assumption (A) is satisfied and the functions

f : Ω×R → R and g : Γ×R → R satisfy the conditions (F1)− (F4) and (G1)− (G3)

respectively.

(a) Then there exists λ0 > 0 such that to every λ ∈]λ0,+∞[ it corresponds

a nonempty open interval Iλ ⊂ R such that for every µ ∈ Iλ the problem

(Pλ,µ) has at least two distinct, nontrivial weak solutions uλ,µ and vλ,µ,

with the property

Eλ,µ(uλ,µ) < 0 < Eλ,µ(vλ,µ).

(b) Then there exists µ0 > 0 such that to every µ ∈ [−µ0, µ0] it corresponds

a nonempty open interval Γµ ∈]0,+∞[ and a number σµ > 0 for which

36



MULTIPLE SOLUTIONS FOR A DOUBLE EIGENVALUE ELLIPTIC PROBLEM

(Pλ,µ) has at least two distinct, nontrivial weak solutions: u1
λ,µ and u2

λ,µ,

with the property

max{||u1
λ,µ||v0,v1 , ||u2

λ,µ||v0,v1} ≤ σµ,

whenever λ ∈ Γµ.

2. Preliminaries

In this section we denote by p′ and q′ the conjugates of p respective q, i.e.

p′ = p
p−1 and q′ = q

q−1 .

The following result deals with the Nemytskii operator of a Carathéodory

function h : Ω × R → R, which is the function defined by Nh(u) = h(x, u(x)). Then

we have the following result.

Lemma 2.1. Assume that the conditions (F1), (G1) are satisfied. Then the Ne-

mytskii operators Nf : Lp(Ω;w) → L
p

p−1 (Ω; w
1

1−p ), NF : Lp(Ω;w) → L1(Ω),

Ng : Lq(Γ;w) → L
q

q−1 (Γ;w
1

1−q ) and NF : Lq(Γ;w) → L1(Γ) are bounded and contin-

uous.

Proof. We will use the following result: for all s ∈ (0,∞) there is a constant Cs > 0

such that

(x + y)s ≤ Cs(xs + ys), for any x, y ∈ (0,∞). (6)

To prove that Nf is bounded, we choose an arbitrary set A ⊆ Lp(Ω;w) and

prove that Nf (A) is bounded. For this, let u ∈ A be an arbitrary element and we

claim that Nf (u) is bounded in L
p

p−1 (Ω;w
1

1−p ). Using the (F1) condition, the (6),

the Hölder’s inequalities, we have

||Nf (u)||
1
p′

p
p−1 ,Ω,w

1
1−p

=
∫

Ω

|f(x, u(x))|p
′
w(x)

1
1−p dx ≤

≤
∫

Ω

(
f0(x) + f1(x)|u(x)|p−1

)p′

w(x)
1

1−p dx ≤

≤ Cp′

(∫
Ω

f0(x)p′w(x)
1

1−p dx +
∫

Ω

f1(x)p′ |u(x)|(p−1)p′w(x)
1

1−p dx

)
≤

≤ Cp′

(
C +

∫
Ω

Cp′

f w(x)p′w(x)
1

1−p |u(x)|pdx

)
=
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= Cp′C + Cp′C
p′

f

∫
Ω

|u(x)|pw(x)dx = Cp′C + Cp′C
p′

f ||u||
p
p,Ω,w,

where in the last inequality we used that f0 ∈ L
p

p−1 (Ω;w
1

1−p ) , so there exists C >

0 such that
∫

Ω

f0(x)
p

p−1 w(x)
1

1−p dx ≤ C. Since u ∈ A ⊆ Lp(Ω;w), we have that

||u||pp,Ω,w is finite, therefore Nf is bounded. Then the continuity follows from standard

properties of the Nemytskii operators.

In the same way we obtain for u ∈ Lp(Ω;w)∫
Ω

|F (x, u(x))|dx ≤
∫

Ω

(f0(x)|u(x)|+ f1(x)|u(x)|p) dx =

=
∫

Ω

f0(x)w(x)−
1
p |u(x)|w(x)

1
p dx +

∫
Ω

f1(x)|u(x)|pdx ≤

≤
(∫

Ω

f0(x)p′w(x)
1

1−p dx

) 1
p′

(∫
Ω

|u(x)|pw(x)dx

) 1
p

+ Cf

∫
Ω

|u(x)|pw(x)dx ≤

≤ C
1
p′ ||u||p,Ω,w + Cf ||u||pp,Ω,w,

therefore NF is bounded. For the operators Ng and NG the arguments are identical,

therefore we omit the details here. �

Lemma 2.2. [5] The energy functional Eλ,µ is Fréchet differentiable in W 1,2(Ω; v0, v1)

and its derivative is given by

〈E ′λ,µ(u), v〉 = 〈u, v〉A − λ

∫
Ω

f(x, u(x))v(x)dx− λµ

∫
Γ

g(x, u(x))v(x)dΓ. (7)

for every v ∈ W 1,2(Ω; v0, v1).

Remark 2.1. Due to this result, one can see, that the critical points of Eλ,µ are

exactly the weak solutions of (Pλ,µ).

Lemma 2.3. Suppose that the conditions (F2), (F3), (G2) and (G3) are satisfied.

Then, for every λ > 0 and µ ∈ R the functional Eλ,µ is coercive and bounded from

below on W 1,2(Ω; v0, v1).

Proof. Let us fix λ > 0 and µ ∈ R arbitrarily and a, b > 0 such that

λaCfC2
2,Ω + λ|µ|bCgC

2
2,Γ < K.

38



MULTIPLE SOLUTIONS FOR A DOUBLE EIGENVALUE ELLIPTIC PROBLEM

By the conditions (F2),(F3) and (G2),(G3) there exist the positive functions ka ∈

L1(Ω;w) and kb ∈ L1(Γ;w) such that

|F (x, s)| ≤ af0(x)|s|2 + ka(x)w(x), ∀(x, s) ∈ Ω× R

|G(x, s)| ≤ bg0(x)|s|2 + kb(x)w(x), ∀(x, s) ∈ Ω× R.

Thus, for every u ∈ W 1,2(Ω; v0, v1) we obtain

Eλ,µ(u) =
1
2
〈u, u〉A − λ

∫
Ω

F (x, u(x))dx− λµ

∫
Γ

G(x, u(x)dx) ≥

≥ K||u||2v0,v1
− λ

∫
Ω

af0(x)|u(x)|2dx− λ

∫
Ω

ka(x)w(x)dx−

−λ|µ|
∫

Γ

bg0(x)|u(x)|2dΓ− λ|µ|
∫

Γ

kb(x)w(x)dΓ ≥

≥ K||u||2v0,v1
− λaCf ||u||22,Ω,w − λ||ka||1,Ω,w −

−λ|µ|bCg||u||22,Γ,w − λ|µ|||kb||1,Γ,w ≥

≥
(
K − λaCfC2

2,Ω − λ|µ|bCgC
2
2,Γ

)
||u||2v0,v1

−

−λ||ka||1,Ω,w − λ|µ|||kb||1,Γ,w.

Since ka ∈ L1(Ω;w), kb ∈ L1(Γ;w), we have that ||ka||1,Ω,w, ||kb||1,Γ,w are finite.

Therefore Eλ,µ is bounded from below on W 1,2(Ω; v0, v1) and Eλ,µ(u) →∞, whenever

||u||v0,v1 →∞. Hence Eλ,µ is coercive. �

Lemma 2.4. Eλ,µ : W 1,2(Ω; v0, v1) → R satisfies the Palais-Smale condition on

W 1,2(Ω; v0, v1), for every λ > 0 and µ ∈ R.

Proof. Let {un} ⊂ W 1,2(Ω; v0, v1) be an arbitrary Palais-Smale sequence for Eλ,µ, i.e.

(a) {Eλ,µ(un)} is bounded;

(b) E ′λ,µ(un) → 0.

We have to prove that {un} contains a strongly convergent subsequence. Since

Eλ,µ is coercive, we have that {un} is bounded. W 1,2(Ω; v0, v1) is a reflexive Banach

space, so taking a subsequence if necessary (denoted in the same way), we get an

element u ∈ W 1,2(Ω; v0, v1) such that un → u weakly in W 1,2(Ω; v0, v1). Because the

embeddings (1) and (2) are compact for 2 < p < 2N/(N−2), 2 < q < 2(N−1)/(N−2),

we have that un → u strongly in Lp(Ω; w) and Lq(Γ;w).
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From the condition (b) we have that
∣∣∣〈E ′λ,µ(un), un

||un||v0,v1
〉
∣∣∣ ≤ ε, for every

ε > 0 and large n ∈ N. Then

−〈un, un〉A + λ

∫
Ω

f(x, un(x))un(x)dx + λµ

∫
Γ

g(x, un(x))un(x)dΓ ≤ ε||un||v0,v1 .

Then we have

2K||un − u||2v0,v1
≤ 〈un − u, un − u〉A ≤ |〈un, un − u〉A|+ |〈u, un − u〉A| ≤

≤ 2ε||un − u||v0,v1+

+λ

∣∣∣∣∫
Ω

f(x, un(x))(un(x)− u(x))dx

∣∣∣∣ + λ

∣∣∣∣∫
Ω

f(x, u(x))(un(x)− u(x))dx

∣∣∣∣ +

+λ|µ|
∣∣∣∣∫

Γ

g(x, un(x))(un(x)− u(x))dΓ
∣∣∣∣ + λ|µ|

∣∣∣∣∫
Γ

g(x, u(x))(un(x)− u(x))dΓ
∣∣∣∣ .

Using the Hölder’s inequality we get∣∣∣∣∫
Ω

f(x, un(x))(un(x)− u(x))dx

∣∣∣∣ ≤
≤

∫
Ω

∣∣∣f(x, un(x))w(x)−
1
p

∣∣∣ ∣∣∣(un(x)− u(x))w(x)
1
p

∣∣∣ dx ≤

≤
(∫

Ω

|f(x, un(x))|p
′
w(x)−

p′
p dx

) 1
p′

(∫
Ω

|un(x)− u(x)|pw(x)dx

) 1
p

=

=
(∫

Ω

|f(x, un(x))|p
′
w(x)

1
1−p dx

) 1
p′

||un − u||p,Ω,w

and arguing in the same way for g, we obtain∣∣∣∣∫
Γ

g(x, un(x))(un(x)− u(x))dx

∣∣∣∣ ≤ (∫
Γ

|g(x, un(x))|q
′
w(x)

1
1−q dΓ

) 1
q′

||un − u||q,Γ,w.

Since ε > 0 is arbitrary, ||un − u||p,Ω,w and ||un − u||q,Γ,w tend to zero and∫
Ω

|f(x, un(x))|p
′
w(x)

1
1−p dx,

∫
Γ

|g(x, un(x))|q
′
w(x)

1
1−q dΓ are bounded (by Lemma

2.1, using that {un} is bounded), it follows that ||un − u||v0,v1 tends to zero. �

Lemma 2.5. [3, Lemma 3.2] Assume that (F4) is satisfied. Then there exist an

u0 ∈ W 1,2(Ω; v0, v1) such that JF (u0) > 0.

Let us define m =
∫

Γ

|G(x, u0(x))|dΓ, λ0 =
1
2 〈u0, u0〉A
JF (u0)

> 0 and µ∗λ = 1
λ(1+m) ·

(λ− λ0)JF (u0) > 0.
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Lemma 2.6. For λ > λ0 and |µ| ∈]0, µ∗λ] we have

inf
u∈W 1,2(Ω;v0,v1)

Eλ,µ(u) < 0.

Proof. It is sufficient to prove, that for λ > λ0 and |µ| ∈]0, µ∗λ] we have Eλ,µ(u0) < 0.

Indeed,

Eλ,µ(u0) =
1
2
〈u0, u0〉A − λJF (u0)− λµJG(u0) ≤

≤ λ0JF (u0)− λJF (u0) + λ|µ|m =

= (λ0 − λ)JF (u0) + λ|µ|m =

= (λ0 − λ)
λ(1 + m)µ∗λ

λ− λ0
+ λ|µ|m =

= −(1 + m)λµ∗λ + λ|µ|m =

= −λµ∗λ −mλ(µ∗λ − |µ|) < 0.

for all λ > λ0 and |µ| ∈]0, µ∗λ]. �

Lemma 2.7. For every λ > λ0 and µ ∈]0, µ∗λ], the functional Eλ,µ satisfies the

Mountain Pass geometry.

Proof. From the assumptions (F1), (F2), (G1) and (G2) results the existence of ĉ1(ε),

ĉ2(ε) > 0 such that, for every ε̂ > 0 we have

|f(x, s)| ≤ ε̂f0(x)|s|+ ĉ1(ε)f1(x)|s|p−1, for 2 < p <
2N

N − 2
, (8)

|g(x, s)| ≤ ε̂g0(x)|s|+ ĉ2(ε)g1(x)|s|q−1, for 2 < q <
2(N − 1)
N − 2

. (9)

Then integrating with respect to the second variable, from 0 to u(x), we get the

existence of c1(ε), c2(ε) > 0 such that, for every ε > 0 we have

|F (x, u(x))| ≤ εf0(x)|u(x)|2 + c1(ε)f1(x)|u(x)|p, for 2 < p <
2N

N − 2
, (10)

|G(x, u(x))| ≤ εg0(x)|u(x)|2 + c2(ε)g1(x)|u(x)|q, for 2 < q <
2(N − 1)
N − 2

. (11)
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ILDIKÓ ILONA MEZEI

Fix λ > λ0 and µ ∈]0, µ∗λ[, then using the (10)and (11) inequalities for every u ∈

W 1,2(Ω; v0, v1) we have

Eλ,µ(u) =
1
2
〈u, u〉A − λJµ(u) ≥

≥ K||u||2v0,v1
− λ

∫
Ω

|F (x, u(x))|dx− λ|µ|
∫

Γ

|G(x, u(x))|dΓ ≥

= K||u||2v0,v1
− λεCf ||u||22,Ω,w − λc1(ε)Cf ||u||pp,Ω,w −

−λ|µ|εCg||u||22,Γ,w − λ|µ|c2(ε)Cg||u||qq,Ω,w ≥

≥
(
K − λεCfC2

2,Ω − λ|µ|εCgC
2
2,Γ

)
||u||2v0,v1

−

− λc1(ε)CfCp
p,Ω||u||

p
v0,v1

− λ|µ|c2(ε)CgC
q
q,Γ||u||

q
v0,v1

.

Using the notations A =
(
K − λεCfC2

2,Ω − λ|µ|εCgC
2
2,Γ

)
, B = λc1(ε)CfCp

p,Ω, C =

λ|µ|c2(ε)CgC
q
q,Γ, we get

Eλ,µ(u) ≥ (A−B||u||p−2
v0,v1

− C||u||q−2
v0,v1

)||u||2v0,v1
.

We choose ε ∈
]
0, K

2
1

λ(Cf C2
2,Ω+|µ|CgC2

2,Γ)

[
, so A > 0. Now, let l : R+ → R be

the function defined by l(t) = A−Btp−2 −Ctq−2. We can see, that l(0) = A > 0, so

because l is continuous, there exists an ε∗ > 0 such that l(t) > 0, for every t ∈]0, ε∗[.

Then for every u ∈ W 1,2(Ω; v0, v1), with ||u||v0,v1 = ε∗∗ < min{ε∗, ||u0||v0,v1}, we

have Eλ,µ(u) ≥ η(λ, µ, ε∗) > 0. From Lemma 2.6 we have Eλ,µ(u0) < 0.

Therefore the functional Eλ,µ satisfies the Mountain Pass geometry, meaning

that Eλ,µ satisfies the conditions of the Mountain Pass Theorem (see Theorem 3.1).

�

Lemma 2.8. For every µ ∈ R+, we have

lim
ρ→0

sup{Jµ(u) : 1
2 〈u, u〉A < ρ}
ρ

= 0.
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Proof. Fix arbitrarily ε > 0 and p ∈
]
2,

2N

N − p

[
, q ∈

]
2,

2(N − 1)
N − 2

[
, then from (10)

and (11) and the ellipticity condition (A), it follows that

Jµ(u) = JF (u) + µJG(u) ≤

≤ ε
(
CfC2

2,Ω + |µ|CgC
2
2,Γ

)
||u||2v0,v1

+ c1(ε)CfCp
p,Ω||u||

p
v0,v1

+

+ |µ|c2(ε)CgC
q
q,Γ||u||

q
v0,v1

≤

≤ ε
(
CfC2

2,Ω + |µ|CgC
2
2,Γ

) 〈u, u〉A
2K

+ c1(ε)CfCp
p,Ω

(
〈u, u〉A

2K

) p
2

+

+ |µ|c2(ε)CgC
q
q,Γ

(
〈u, u〉A

2K

) q
2

.

Therefore, we have

sup{Jµ(u) :
1
2
〈u, u〉A < ρ} ≤

≤ ε

(
CfC2

2,Ω + |µ|CgC
2
2,Γ

)
K

ρ +
c1(ε)CfCp

p,Ω

K
p
2

ρ
p
2 + |µ|

c2(ε)CgC
q
q,Γ

K
q
2

ρ
q
2 .

Since p > 2, q > 2, dividing this last inequality with ρ and taking the limit whenever

ρ → 0, we have the required equality.

Lemma 2.9. We assume that the conditions (F1)-(F3) and (G1)-(G3) are satisfied.

Then the functional Jµ = JF + µJG is sequentially weakly continuous.

Proof. We argue by contradiction. Let un be a sequence from W 1,2(Ω; v0, v1) weakly

convergent to some u ∈ W 1,2(Ω; v0, v1) and d > 0 such that

|Jµ(un)− Jµ(u)| ≥ d, for all n ∈ N.

At the same time we have

|Jµ(un)− Jµ(u)| ≤
∫

Ω

|F (x, un(x))− F (x, u(x))|dx +

+ |µ|
∫

Γ

|G(x, un(x))−G(x, u(x))|dΓ.

In the sequel, we will estimate the previous two integrals. For this end, first we use

the Mean Value Theorem for the function F on the interval (un(x), u(x)), then we
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make use of the (3), (8) and the Hölder inequalities. So, there exists a θ ∈]0, 1[ such

that ∫
Ω

|F (x, un(x))− F (x, u(x))|dx =

=
∫

Ω

|f(x, (1− θ)un(x) + θu(x))||un(x)− u(x)|dx ≤

≤ ε̂

∫
Ω

f0(x)|(1− θ)un(x) + θu(x)||un(x)− u(x)|dx +

+ ĉ1(ε)
∫

Ω

f1(x)|(1− θ)un(x) + θu(x)|p−1|un(x)− u(x)|dx ≤

≤ ε̂

∫
Ω

f0(x)(|un(x)|+ |u(x)|)|un(x)− u(x)|dx +

+ĉ1(ε)
∫

Ω

f1(x)(|un(x)|p−1 + |u(x)|p−1)|un(x)− u(x)|dx ≤

≤ ε̂Cf

∫
Ω

|un(x)− u(x)|w(x)
1
2 w(x)

1
2 (|un(x)|+ |u(x)|)dx +

+ĉ1(ε)Cf

∫
Ω

|un(x)− u(x)|w(x)
1
p w(x)

1
p′

(
|un(x)|p−1 + |u(x)|p−1

)
dx ≤

≤ ε̂Cf

(∫
Ω

|un(x)− u(x)|2w(x)dx

) 1
2

·

·

[(∫
Ω

|un(x)|2w(x)dx

) 1
2

+
(∫

Ω

|u(x)|2w(x)dx

) 1
2
]

+

+ĉ1(ε)Cf

(∫
Ω

|un(x)− u(x)|pw(x)dx

) 1
p

·

·

[(∫
Ω

|un(x)|(p−1)p′w(x)dx

) 1
p′

+
(∫

Ω

|u(x)|(p−1)p′w(x)dx

) 1
p′

]
≤

≤ ε̂Cf ||un − u||2,Ω,w(||un||2,Ω,w + ||un||2,Ω,w) +

+ĉ1(ε)Cf ||un − u||p,Ω,w

(
||un||

p
p′

p,Ω,w + ||u||
p
p′

p,Ω,w

)
≤

≤ ε̂CfC2
2,Ω||un − u||v0,v1(||un||v0,v1 + ||u||v0,v1) +

+ĉ1(ε)CfCp−1
p,Ω ||un − u||p,Ω,w

(
||un||p−1

v0,v1
+ ||u||p−1

v0,v1

)
.

Since un is weakly convergent to u ∈ W 1,2(Ω; v0, v1), we can assume without loss of

generality that there exist a constant M > 0 such that

44



MULTIPLE SOLUTIONS FOR A DOUBLE EIGENVALUE ELLIPTIC PROBLEM

||un||v0,v1 ≤ M and ||un − u||v0,v1 ≤ M, for all n ∈ N.

Then we have

|F (x, un(x))− F (x, u(x))| ≤ 2ε̂CfC2
2,ΩM2 + 2ĉ1(ε)CfCp−1

p,Ω Mp−1||un − u||p,Ω,w.

Arguing as above for the function G, we obtain

|G(x, un(x))−G(x, u(x))| ≤ 2ε̂CgC
2
2,ΓM2 + 2ĉ2(ε)CgC

q−1
q,Γ Mq−1||un − u||q,Γ,w.

Therefore

d ≤ |Jµ(un)− Jµ(u)| ≤ 2ε̂M2(CfC2
2,Ω + CgC

2
2,Γ)+

+2ĉ1(ε)CfCp−1
p,Ω Mp−1||un − u||p,Ω,w + 2ĉ2(ε)CgC

q−1
q,Γ Mq−1||un − u||q,Γ,w.

Because the embeddings (1) and (2) are compact for 2 < p < 2N/(N − 2), 2 < q <

2(N−1)/(N−2), it follows that ||un−u||p,Ω,w → 0 and ||un−u||q,Γ,w → 0. Therefore,

if ε̂ > 0 is sufficiently small and n ∈ N is large enough, we have

d ≤ |Jµ(un)− Jµ(u)| < d,

which is a contradiction.

3. Proof of Theorem 1.1

For the reader’s convenience we recall here the Mountain Pass Theorem used

in the proof of Theorem 1.1 (a).

Theorem 3.1. [6, Theorem 2.2] Let E be a Banach space and I ∈ C1(E, R) a

functional, satisfying the Palais-Smale condition. Suppose I(0) = 0 and

(a) there are constants α > 0 and ρ > 0 such that I(u) ≥ α, for every

||u|| = ρ;

(b) there is an e ∈ E with ||e|| > ρ and I(e) ≤ 0.

Then the number

c = inf
g∈Γ

max
v∈g([0,1])

I(v),

where

Γ = {g ∈ C([0, 1], E) : g(0) = 0, g(1) = e},
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is a critical value of I, with c ≥ α.

The main tool in the proof of Theorem 1.1 (b) is the following refinement of

a B. Ricceri-type critical point theorem ([7], [8]) established by G. Bonanno in [1].

Theorem 3.2. Let X be a separable and reflexive real Banach space and let Φ, J :

X → R be two continuously Gâteaux differentiable functionals. Assume that there

exists x0 ∈ X such that Φ(x0) = J(x0) = 0 and Φ(x) ≥ 0 for every x ∈ X, and there

exists x1 ∈ X, ρ > 0 such that

(i) ρ < Φ(x1) and sup
Φ(x)<ρ

J(x) < ρ
J(x1)
Φ(x1)

. Further put

ā =
ζρ

ρ
J(x1)
Φ(x1)

− sup
Φ(x)<ρ

J(x)
,

with ζ > 1, assume that the functional Φ − λJ is sequentially weakly lower semicon-

tinuous, satisfies the Palais-Smale condition and

(ii) lim
||x||→+∞

[Φ(x)− λJ(x)] = +∞, for every λ ∈ [0, ā].

Then there is an open interval Λ ⊂ [0, ā] and a number σ > 0 such that for

each λ ∈ Λ, the equation Φ′(x) − λJ ′(x) = 0 admits at least three distinct solutions

in X, having norm less than σ.

Proof of Theorem 1.1 (a). Fix λ > λ0 and µ ∈]0, µ∗λ[= Iλ. From the Lemma

2.3 and Lemma 2.4 we have that the functional Eλ,µ is bounded from below and

satisfies the (PS)-condition. Then Eλ,µ achieves its infimum, i.e. there exists an

element uλ,µ ∈ W 1,2(Ω; v0, v1) such that Eλ,µ(uλ,µ) = inf
v∈W 1,2(Ω;v0,v1)

Eλ,µ(v) (see[6,

Theorem 2.7]). So E ′λ,µ(uλ,µ) = 0 and by Lemma 2.6, we have Eλ,µ(uλ,µ) < 0.

On the other hand, there exists an element vλ,µ ∈ W 1,2(Ω; v0, v1) such that

E ′λ,µ(vλ,µ) = 0 and Eλ,µ(vλ,µ) ≥ η(λ, µ, ε∗) > 0 (by Lemma 2.7 and Theorem 3.1),

which completes the proof. �

Proof of Theorem 1.1 (b). Let u0 ∈ W 1,2(Ω; v0, v1) be the function from Lemma 2.5

and fix

µ0 =
JF (u0)

1 + |JG(u0)|
.
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Then for every µ ∈ [−µ0, µ0] we have

Jµ(u0) = JF (u0) + µJG(u0) ≥
JF (u0)

1 + |JG(u0)|
> 0.

Now, we apply the Theorem 3.2 of Bonanno, by choosing X = W 1,2(Ω; v0, v1),

Φ(u) =
1
2
〈u, u〉A and J = Jµ, for µ ∈ [−µ0, µ0].

Taking account the lema 2.8 and the inequalities Jµ(u0) > 0, Φ(u0) > 0, we

can choose for every µ ∈ [−µ0, µ0] a ρµ > 0 so small that

ρµ <
1
2
〈u0, u0〉A = Φ(u0) (12)

sup{Jµ(u) : 1
2 〈u, u〉A < ρµ}
ρµ

<
Jµ(u0)
Φ(u0)

(13)

Now, choosing x1 = u0, x0 = 0, ζ = 1 + ρµ and

a = āµ =
1 + ρµ

Jµ(u0)
Φ(u0)

− sup{Jµ(u): 12 〈u,u〉A<ρµ}
ρµ

,

all the assumptions of the Theorem 3.2 are verified. Then, there is an open interval

Λµ ⊂ [0, āµ] and a number σµ > 0 such that for any λ ∈ Λµ, the functional Eλ,µ =

Φ − λJµ admits at least three distinct critical points: ui
λ,µ ∈ W 1,2(Ω; v0, v1), (i ∈

{1, 2, 3}), having norms less than σµ.

We can see, that u = 0 is a solution of the problem (Pλ,µ). So if we are looking

for nontrivial solutions, we can affirm that (Pλ,µ) has at least two distinct, nontrivial

solutions in W 1,2(Ω; v0, v1), having norms less than σµ, concluding the proof of the

Theorem 1.1.

Remark. As an example, we consider the weight functions (see [5])

v0(x) = w(x) =

 ||x||−2, if x ∈ RN \B1

1, if x ∈ B1

,

v1(x) = 1,∀x ∈ RN ,

where B1 = {x ∈ RN : ||x|| ≤ 1}. For these functions the embeddings

W 1,2(Ω; v0, 1) ↪→ Lp(Ω;w) and W 1,2(Ω; v0, 1) ↪→ Lq(Γ;w) are compact, if 2 < p <

2N/(N −2), 2 < q < 2(N −1)/(N −2). Assuming that f and g satisfy the conditions
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(F1)-(F4), (G1)-(G3) respectively and A defines a bilinear form with (A), we can

apply the Theorem 1.1.
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[2] Lisei, H., Varga, Cs., Horváth, A., Multiplicity results for a class of quasilinear eigen-

value problems on unbounded domains, Arch. der Math., (2007), in press.

[3] Mezei, I.I., Varga, Cs., Multiplicity result for a double eigenvalue quasilinear problem on

unbounded domain, Nonlinear Analysis TMA, (2007), doi:10.1016/j.na.2007.10.040
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APPROXIMATION PROCEDURES IN CONNECTION
WITH A PROBLEM OF STURM-LIOUVILLE TYPE

ALEXANDRU I. MITREA

Abstract. Some results concerning the superdense unbounded divergence

or the convergence of a family of interpolating operators and point-

interpolatory functionals, associated to a problem of Sturm-Liouville type,

are established.

1. Introduction

Let consider the Sturm-Liouville problem u′′(x) + [λ2 −B(x)]u(x) = 0; 0 ≤ x ≤ π

u′(0) = au(0); u′(π) = Au(π),
(1.1)

where B(x) is a continuous function with bounded variation and a,A ∈ R, with the

convention u(0) = 0, if |a| = ∞ and u(π) = 0, if |A| = ∞, [4].

It is known that there exists an orthonormal system of eigenfunctions un ∈

C2[0, π], n ≥ 1, with respect to the problem (1.1), [5]. Moreover, each eigenfunction

un has n distinct roots xk
n, 1 ≤ k ≤ n, in the interval (0, π), [4], i.e. 0 < x1

n < x2
n <

x3
n < · · · < xn

n < π; in this paper, we shall put x0
n = 0, xn+1

n = π.

Introduce the natural numbers m0,mn as

m0 =

 1, if a ∈ R

0, if |a| = ∞
; mn =

 n, if A ∈ R

n + 1, if |A| = ∞
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and define, analogously to Lagrange interpolation, the ”fundamental interpolating”

functions sk
n ∈ C[0, π], m0 ≤ k ≤ mn, by

sk
n(x) =


un(x)

(x− xk
n)u′n(xk

n)
, if x 6= xk

n

1, if x = xk
n

The linear operators
Sn : C[0, π] → C[0, π]; f 7→ Snf ; n ≥ 1

(Snf)(x) =
mn∑

k=m0

f(xk
n)sk

n(x)
(1.2)

are said to be the ”interpolating” operators associated to the Sturm-Liouville node

matrix

MSL = {xk
n : n ≥ 1; m0 ≤ k ≤ mn}.

Further, if x0 is a given point of [0, π], the linear functionals

S0
n : C[0, π] → R, S0

nf = (Snf)(x0), n ≥ 1 (1.3)

are named the ”interpolatory” functionals associated to x0 or ”point-interpolatory”

functionals at x0.

Now, denote by ω(f ; ·) the modulus of continuity of a function f ∈ C[0, π]

and let ‖ · ‖ be the uniform norm of f . G.I. Natanson, [3] and L.I. Tuchinskĭı, [4]

established the following estimation concerning the ”interpolating” operators Sn:

The relation

|f(x)− (Snf)(x)| =
[
ω

(
f ;

1
n

)
+

1
n
‖f‖

]
O(lnn), f ∈ C[0, π] (1.4)

holds uniformly on each interval [a, π − a], for any given a ∈
(
0,

π

2

)
.

Based on this result, they proved the following convergence theorem:

If f ∈ C[0, π] satisfies a Dini-Lipschitz condition

lim
δ↘0

ω(f ; δ) ln δ = 0, (1.5)

then the sequence (Snf)n≥1 is uniformly convergent to f on each segment [a, π − a],

0 < a <
π

2
.
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The main aim of this paper is to establish the superdense unbounded diver-

gence of the family of interpolating operators {Sn : n ≥ 1}. (Recall that a subset of

a topological space T is said to be superdense in T if it is residual, i.e. its complement

is of first Baire category, uncountable and dense in T ). To this end, we shall define,

in the next section, the functions and the constants of Lebesgue with respect to the

node matrix MSL.

2. The functions and the constants of Lebesgue associated to the Sturm-

Liouville node matrix

The functions Ln : [0, π] → R, Ln(x) =
mn∑

l=m0

|sk
n(x)|, 0 ≤ x ≤ π and the

positive numbers Λn = ‖Ln‖, n ≥ 1, are said to be the Lebesgue functions, respectively

the Lebesgue constants associated to the node matrix MSL.

Standard arguments show that Sn, n ≥ 1, are linear continuous operators

and

‖Sn‖ = Λn, n ≥ 1. (2.1)

Indeed, using (1.2) we obtain:

|(Snf)(x)| ≤ Ln(x)‖f‖ ≤ Λn‖f‖, for all x ∈ [0, π],

so

‖Snf‖ ≤ Λn‖f‖, i.e. ‖Sn‖ ≤ Λn.

Conversely, for an arbitrary t ∈ [0, π] let us define the function ft by:

ft(x) =

 sign sk
n(t), if x ∈ {xk

n : m0 ≤ k ≤ mn}

linear, otherwise;

we have ft ∈ C[0, π], ‖ft‖ = 1 and

‖Sn‖ = sup{‖Snf‖ : f ∈ C[0, π], ‖f‖ ≤ 1} ≥ ‖Snft‖

≥ |(Snft)(t)| =

∣∣∣∣∣
mn∑

k=m0

ft(xk
n)sk

n(t)

∣∣∣∣∣ = Ln(t), ∀ t ∈ [0, π],

which leads to ‖Sn‖ ≥ Λn.
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Similarly, concerning the functionals S0
n of (1.3), we get:

‖S0
n‖ = Ln(x0) (2.2)

for every x0 ∈ [0, π].

In what follows, we shall use the following estimation regarding the Lebesgue

functions Ln, [4]:

Ln(x0) = 1 +
1√
2π
|un(x0)|[lnn + ln(n sinx0 + 1) + O(1)], (2.3)

where x0 ∈ [0, π] and

un(x0) =

√
2
π

cos(αnx0 + επ) + O

(
1
n

)
(2.4)

where

ε = ε(a) =

 0, if a ∈ R

1/2, if |a| = ∞
(2.5)

αn = αn(a,A) =


n, if a ∈ R, A ∈ R

n + 1/2, if a ∈ R, |A| = ∞ or |a| = ∞, A ∈ R

n + 1, if |a| = |A| = ∞

(2.6)

for every x0 ∈ [0, π].

3. Superdense unbounded divergence of the family of ”interpolating” op-

erators

The main result of this paper is the following

Theorem 3.1. The set of unbounded divergence of the family of ”interpolat-

ing” operators {Sn : n ≥ 1}, i.e.{
f ∈ C[0, π] : lim sup

n→∞
‖Snf‖ = ∞

}
,

is superdense in the Banach space (C[0, π], ‖ · ‖).

Proof. In what follows Mk, k ≥ 1, will be positive constants which do not depend on

n. We deduce from (2.3) and (2.4):

|un(x0)| ≤ M1; |Ln(x0)| ≤ M2 lnn, ∀ x0 ∈ [0, π],

52



APPROXIMATION PROCEDURES

so that, according to (2.1), we get:

Sn = Λn ≤ M2 lnn, for sufficiently large n. (3.1)

Let us establish the converse of (3.1). According to (2.5) and (2.6), there are

four possibilities.

1◦. If a ∈ R and A ∈ R, then αn = n and ε = 0, so we deduce from (2.3) and

(2.4):

Ln(0) = 1 +
(

1
π

+ O

(
1
n

))
(lnn + O(1))

and ‖Sn‖ = Λn ≥ Ln(0) ≥ M3 lnn.

2◦. If a ∈ R and |A| = ∞, then ε = 0 and αn = n + 1/2, so (2.3), (2.4) give:

Ln

(π

2

)
= 1 +

(
1

π
√

2
+ O

(
1
n

))
(ln(n2 + n) + O(1)),

therefore

‖Sn‖ = Λn ≥ Ln

(π

2

)
≥ M4 lnn.

3◦. If |a| = ∞ and A ∈ R, then ε = 1/2 and αn = n +
1
2
, so:

‖Sn‖ = Λn ≥ Ln(π) ≥ M5 lnn.

4◦. If |a| = |A| = ∞, then ε = 1/2 and αn = n + 1, so we get from (2.3) and

(2.4):

L2n

(π

2

)
= 1 +

1√
2π

∣∣∣∣∣
√

2
π

(−1)n+1 + O

(
1
n

)∣∣∣∣∣ (ln(4n2 + 2n) + O(1)),

so:

‖S2n‖ ≥ L2n(π) ≥ M6 lnn (3.2)

L2n+1

(π

4

)
= 1 +

1√
2π

∣∣∣∣cos
(

nπ

2
+

3π

4

)
+ O

(
1
n

)∣∣∣∣ (2 lnn + O(1)),

so:

‖S2n+1‖ ≥ L2n+1

(π

4

)
≥ M7 lnn. (3.3)

Now, (3.2) and (3.3) give:

‖Sn‖ = Λn ≥ M8 lnn.
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It follows from 1◦, 2◦, 3◦ and 4◦:

‖Sn‖ = Λn ≥ M9 lnn, for sufficiently large n. (3.4)

The relations (3.1) and (3.4) lead to the estimation:

‖Sn‖ = Λn ∼ lnn, (3.5)

i.e.

M9 lnn ≤ ‖Sn‖ = Λn ≤ M2 lnn, for sufficiently large n.

To prove the conclusion of this theorem, we shall apply the following principle

of condensation of the singularities, [1]:

If X is a Banach space, Y is a normed space and (An)n≥1 is a sequence of

continuous linear operators from X into Y so that the set of norms {‖An‖ : n ≥ 1}

is unbounded, then the set of singularities of the family {An : n ≥ 1}, i.e.{
x ∈ X : lim sup

n→∞
‖Anx‖ = ∞

}
,

is superdense in X.

Now, choose X = Y = (C[0, π], ‖ · ‖) and take into account the estimation

(3.5), which completes the proof.

4. On the convergence of the point-interpolatory functionals

Let consider the point-interpolatory functionals S0
n, n ≥ 1, given by (1.3) and

suppose x0 ∈ (0, π).

According to (2.2), we have ‖S0
n‖ = Ln(x0); moreover, if

x0

π
∈ Q, then the set

of values of Lebesgue functions at x0 is unbounded, [2], so that the following result,

similar to that of Theorem 3.1, holds:

If
x0

π
∈ Q ∩ (0, 1), then the set of unbounded divergence of the family of

point-interpolatory functionals {S0
n : n ≥ 1}, i.e.{

f ∈ C[0, π] : lim sup
n→∞

|S0
nf | = ∞

}
,

is superdense in the Banach space (C[0, π], ‖ · ‖).
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On the other hand, let a ∈
(
0,

π

2

)
and x0 ∈ [a, π − a]. It follows from (1.4):

|S0
nf − f(x0)| ≤ M10

[
ω

(
f ;

1
n

)
+

1
n
‖f‖

]
lnn, ∀ f ∈ C[0, π],

which leads to the following statement:

Theorem 4.1. If x0 ∈ (0, π), then the family of point-interpolatory func-

tionals {S0
n : n ≥ 1} is convergent on the set DLC[0, π] of all functions f ∈ C[0, π]

satisfying the Dini-Lipschitz condition (1.5), namely

lim
n→∞

S0
nf = f(x0), ∀ f ∈ DLC[0, π].
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SOME NOTES ON (σ, τ)-AMENABILITY OF BANACH ALGEBRAS

MOHAMMAD SAL MOSLEHIAN AND ABOLFAZL NIAZI MOTLAGH

Abstract. Let A be a Banach algebra and σ, τ be continuous homomor-

phisms on A. Suppose that X be a Banach A-bimodule. A linear mapping

d : A −→ X is a (σ, τ)-derivation if

d(ab) = d(a)σ(b) + τ(a)d(b) (a, b ∈ A),

and is a (σ, τ)-inner derivation if there exists x ∈ X such that

d(a) = xσ(a)− τ(a)x (a ∈ A).

The Banach algebra A is called (σ, τ)-amenable if every (σ, τ)-derivation is

(σ, τ)-inner. In this paper, we investigate the relation between amenabil-

ity and (σ, τ)-amenability of Banach algebras and also hereditary prop-

erties of (σ, τ)-amenability. We give the notion σ-virtual diagonal and

σ-approximate diagonal and apply them in study of σ-amenability.

1. Introduction and preliminaries

The notion of amenable Banach algebra was introduced by B.E. Johnson in

his monograph [4]. This class of Banach algebras arises naturally out of the coho-

mology theory for Banach algebras, the algebraic version of which was developed by

Hochschild [3]. For a comprehensive account on amenability the reader is referred to

the books [2, 10, 11].

Throughout the paper, A is a Banach algebra and X is a Banach A-bimodule. We

denote by AX and XA the closed linear span of {ax : a ∈ A, x ∈ X} and {xa : a ∈

A, x ∈ X}, respectively. A Banach A-bimodule X is pseudo-unital if AXA = X ,
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where AXA is the closed linear span of {axb : a, b ∈ A, x ∈ X}. The space X ∗ is a

Banach A-bimodule via the following module actions:

(a · f)(x) = f(xa),

(f · a)(x) = f(ax),

a ∈ A, x ∈ X , f ∈ X ∗.

We also denote weak∗-limits with w∗− lim. For a closed subspace M of X , we denote

by M⊥ the set {f ∈ X ∗ : f |M = 0}.

Let σ, τ be continuous homomorphisms from A to A. A linear mapping d : A −→ X

is a (σ, τ)-derivation if

d(ab) = d(a)σ(b) + τ(a)d(b),

for all a, b ∈ A. A linear map d : A −→ X is a (σ, τ)-inner derivation if there exists

x ∈ X such that d(a) = xσ(a)− τ(a)x for all a ∈ A.

A wide range of examples are as follows (see [5, 6]):

(i) Every ordinary derivation of an algebra A into an A-bimodule X is an

idA-derivation, where idA is the identity map on the algebra A.

(ii) Every endomorphism α on A is an α
2 -derivation.

(iii) Given a character θ onA, a θ-derivation is nothing than a point derivation

d : A → C at the character θ.

We use notations Z1
(σ,τ)(A,X ) for the space of all continuous (σ, τ)-derivations

d : A −→ X , B1
(σ,τ)(A,X ) for those which are inner (σ, τ)-derivations, and

H1
(σ,τ)(A,X ) for the quotient space Z1

(σ,τ)(A,X )/B1
(σ,τ)(A,X ) which we call the first

(σ, τ)-cohomology group of X .

A Banach algebra A is said to be (σ, τ)-amenable(resp. (σ, τ)-contractible) if

H1
(σ,τ)(A,X ∗) = 0 (resp. H1

(σ,τ)(A,X ) = 0) for all A-bimodules X . See [8, 7].

If σ = τ we simply use the terminologies σ-derivation, σ-amenability, etc. For defini-

tions and elementary properties of Banach algebras we refer the reader to [1, 2, 9].
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Modifying some known definition and techniques in the theory of amenability

of Banach algebras and using some ideas and terminology of [11], we investigate the re-

lation between amenability and (σ, τ)-amenability of Banach algebras and also hered-

itary properties of (σ, τ)-amenability. We give σ-virtual diagonal and σ-approximate

diagonal and apply them in study of σ-amenability.

2. General properties of (σ, τ)-amenability

In this section we study general properties of (σ, τ)-amenable Banach alge-

bras. Our first result reads as follows.

Proposition 2.1. Let σ, τ be two continuous homomorphisms on Banach algebra

A. If A is (σ, τ)-amenable then it is (λ ◦ σ, µ ◦ τ)-amenable too, for any continuous

homomorphisms λ, µ on A.

Proof. Let X be a Banach A-bimodule and D : A −→ X ∗ be a continuous (λ◦σ, µ◦τ)-

derivation. We define another A-module product on X by

a�x = λ(a)x

x�a = xµ(a)

for all a ∈ A and x ∈ X . Then X with this product is a Banach A-bimodule, and

D(ab) = D(a)(λ ◦ σ)(b) + (µ ◦ τ)(a)D(b) = D(a)�σ(b) + τ(a)�D(b). Therefore D is

a (σ, τ)-derivation, and so, by (σ, τ)-amenability of A, there exists f ∈ X ∗ such that

D(a) = f�σ(a)− τ(a)�f = f(λ ◦ σ)(a)− (µ ◦ τ)(a)f .

Corollary 2.2. If A is amenable, then A is (σ, τ)-amenable for every two homomor-

phisms σ and τ .

The following proposition provides a converse for Proposition 2.1 in a special

case.

Proposition 2.3. Let σ : A −→ A be an epimorphism. If A is σ-amenable, then A

is amenable.
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Proof. Suppose X is an A-bimodule and d : A −→ X ∗ is a derivation. Then D = d◦σ

is a σ-derivation, since

D(ab) = d ◦ σ(ab)

= d(σ(a)σ(b))

= d(σ(a))σ(b) + σ(a)d(σ(b))

= D(a)σ(b) + σ(a)D(b).

By σ-amenability of A, there exists f ∈ X ∗ such that D(a) = f · σ(a) − σ(a) · f

for each a ∈ A. Let b ∈ A. Then there exists a ∈ A such that σ(a) = b and so

d(b) = d ◦ σ(a) = D(a) = f · σ(a)− σ(a) · f = f · b− b · f . Therefore d is inner.

The proof of next result is clear and we omit it.

Proposition 2.4. Let A be a Banach algebra with a left identity e. Let σ be a

homomorphism on A and τ = 0. Then A is (σ, τ)-contractible.

3. Hereditary properties of (σ, τ)-amenability

This section is devoted to study hereditary properties of (σ, τ)-amenable Ba-

nach algebras. The results of this section are extensions of the known theorems in

the classical setting; cf. [11, Subsection 2.3]. Suppose that τ, σ : A −→ A are two

endomorphisms, and I is a closed ideal of A such that σ(I) ⊆ I, τ(I) ⊆ I. Then one

can define the map τ̂ , σ̂ : AI −→
A
I by σ̂(a + I) = σ(a) + I, τ̂(a + I) = τ(a) + I.

Let M be a closed subspace of X . We identify M⊥ with ( XM )∗ via f 7→ f̃ ,

f̃(x +M) = f(x).

Proposition 3.1. Let I, σ, τ be as above. If A is (σ, τ)-amenable then A
I is (σ̂, τ̂)-

amenable.

Proof. Let X be a A
I -bimodule, and d : A

I −→ X ∗ is a (σ̂, τ̂)-derivation. X is a

A-bimodule via, a · x = (a + I)x, x · a = x(a + I). Define D = d ◦ π : A −→ X ∗,

where π : A −→ A
I is the natural homomorphism. Clearly D is a (σ, τ)-derivation

on A. Since A is (σ, τ)-amenable, D is (σ, τ)-inner. Hence there exists f ∈ X ∗ such
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that D = df . So that, D(a) = d ◦ π(a) = σ(a) · f − f · τ(a) for all a ∈ A. Hence

d(a + I) = (σ(a) + I)f − f(τ(a) + I) = σ̂(a + I)f − f τ̂(a + I) for all a ∈ A.

Proposition 3.2. Let I, σ, τ be as above and let σ, τ be idempotent homomorphisms.

If I is (σ, τ)-amenable and A
I is (σ̂, τ̂)-amenable, then A is (σ, τ)-amenable.

Proof. Let X be a Banach A-bimodule and D′ : A −→ X ∗ is an arbitrary (σ, τ)-

derivation. Then D′|I : I −→ X ∗is a (σ, τ)-derivation. Then there exists f ∈ X ∗

such that D′|I = df , and so (D′ − df )(I) = 0. Define D := D′ − df . Then D(I) =

0. We have 0 = D(ab)(x) = D(a)(σ(b)(x)) + τ(a)D(b)(x) = D(a)(σ(b)(x)) for all

a ∈ A, b ∈ I, x ∈ X . Also 0 = D(ba)(x) = D(b)(σ(a)x) + τ(b)D(a)(x). Hence

τ(b)D(a)(x) = 0 and so D(a)(xτ(b)) = 0 for all a ∈ A, b ∈ I, x ∈ X . Let XI be the

closed submodule generated by σ(I)X ∪X τ(I). Then D(A) ⊆ X⊥I = ( XXI )∗. But X
XI

is a Banach A
I -bimodule via

(a + I)(x + XI) = σ(a)x + XI

(x + XI)(a + I) = xτ(a) + XI

for all a ∈ A, x ∈ X . Since D(I) = 0, we can define D̃ : AI −→ X⊥I by D̃(a + I) =

D̃(a), D̃(a)(x + XI) = D(a)(x) (a ∈ A, x ∈ X ) which is a (σ̂, τ̂)-derivation, since

D̃(ab + I)(x + XI) = D̃(ab)(x + XI)

= D(ab)(x)

= D(a)σ(b)(x) + τ(a)D(b)(x)

= D(a)(σ(b)x) + D(b)(xτ(b))

= D̃(a + I)(σ(b)x + XI) + D̃(b + I)(xτ(a) + XI)

= D̃(a + I)(σ(b) + I)(x + XI) + D̃(b + I)(x + XI)(τ(a) + I)

= [D̃(a + I)σ̂(b + I) + τ̂(a + I)D̃(b + I)](x + XI).

Hence D̃ is (σ̂, τ̂)-inner, so there exists g̃ ∈ (XX I)
∗ such that D̃ = dg̃. There-

fore D′ = df+g.
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Proposition 3.3. Let A,B be Banach algebras and σ, τ be continuous endomorphisms

of A and B, respectively. If there is a continuous homomorphism ϕ : A −→ B such

that ϕ(A) is a dense subalgebra of B and τϕ = ϕσ, then σ-amenability of A implies

τ -amenability of B.

Proof. Let X be a Banach B-module. Then X can be considered as a Banach A-

module, via a ◦ x = ϕ(a)x, x ◦ a = xϕ(a). Let d : B −→ X ∗ be a τ -derivation, then

D = d ◦ϕ : A −→ X ∗ is a σ-derivation. It follows from σ-amenability of A that there

exist f ∈ X ∗ such that D = df . Therefore

d(ϕ(a)) = D(a) = σ(a) ◦ f − f ◦ σ(a)

= ϕ(σ(a))f − fϕ(σ(a))

= τ(ϕ(a))f − fτ(ϕ(a))

Hence d(c) = τ(c)f − fτ(c)(c ∈ B).

4. Approximate identity and σ-amenability

We start our work with following extension of [11, Proposition 2.2.1] to show

the existence of a bounded approximate identity.

Proposition 4.1. If σ, τ are two idempotent endomorphisms on A such that σ(A)

and τ(A) are dense subalgebras of A and A is (σ, τ)-amenable Banach algebra,then

it has a bounded approximate identity.

Proof. Suppose that A is (σ, τ)-amenable. Note that X = A is a Banach A-bimodule

under the actions a • x = τ(a)x and x ◦ a = 0. Then A∗∗, as a Banach A-bimodule,

has the property A∗∗ ·A = {0}. The linear map d : A −→ A∗∗ defined by d(a) = τ̂(a)

is a bounded (σ, τ)-derivation, wherêdenotes the Gelfand transform. In fact,

d(ab)(f) = τ̂(ab)(f) = f(τ(ab))

= f(τ(a)τ(b)) = f(τ2(a)τ(b))

= (τ(a) • f)(τ(b)) = τ̂(b)(τ(a) • f)

=
(
τ(a) • τ̂(b)

)
(f) =

(
τ(a) • d(b)

)
f).
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Therefore d(ab) = τ(a) • d(b) = d(a) ◦ σ(b) + τ(a) • d(b). Also ‖d(a)‖ =

‖τ̂(a)‖ = ‖τ(a)‖ ≤ ‖τ‖‖a‖. By (σ, τ)-amenability of A there exists E ∈ A∗∗ such

that d(a) = τ̂(a) = −E ◦σ(a) + τ(a) •E for all a ∈ A. Therefore τ̂(a) = τ(a) •E. By

the Goldstine theorem, let {eα} be a bounded net in A such that w∗ − lim êα = E.

Then w∗ − lim τ(a) • êα = τ(a) • E = τ̂(a). Hence

f(τ(a)) = τ̂(a)(f) = lim
α

(τ(a) • êα)(f)

= lim
α

êα(τ(a) • f) = lim
α

(τ(a) • f)(eα)

= lim
α

f(τ(a) • eα) = lim
α

f(τ(a)eα).

It follows from τ(A) = A, boundedness of f and boundedness of {eα} that f(aeα) −→

f(a) for all a ∈ A, f ∈ A∗. Hence {eα} is a weakly right approximate identity for A.

It induces a right approximate identity for A say {dα}. With similar argument we

can find a left approximate identity {cβ}. Thus by [1, Proposition 11.1.5] dα�cβ =

dα + cβ − dαcβ give us an approximate identity for A.

Let A be a Banach algebra. Recall that A⊗̂A is a Banach A-bimodule under

the module actions a(b⊗c) = ab⊗c and (b⊗c)a = b⊗ca. Moreover, let π : A⊗̂A −→ A

be the canonical linear mapping defined by π(a ⊗ b) = ab. We denote the first and

the second conjugates of π by π∗ : A∗ −→ (A⊗̂A)∗ and π∗∗ : (A⊗̂A)∗∗ −→ A∗∗,

respectively.

A net {mα} ⊆ A⊗̂A is said to be an σ-approximate diagonal for A if

limα mασ(a)− σ(a)mα = 0 and limα π(mα).σ(a) = σ(a) for all a ∈ A.

An element M ∈ (A⊗̂A)∗∗ is said to be a σ-virtual diagonal for A, if

σ(a).M = M.σ(a), π∗∗(M).σ(a) = σ(a) for all a ∈ A.

The following theorem is an extension of [11, Theorem 2.2.4]

Theorem 4.2. Let σ be a continuous idempotent homomorphism on a Banach algebra

A with a bounded approximate identity {eα}. If A is σ-amenable then it has a σ-virtual

diagonal.

Proof. Let A be σ-amenable. The bounded net {eα ⊗ eα} has a w∗-cluster point in

(A⊗̂A)∗∗; say E. We can assume that w∗ − lim eα ⊗ eα = E. Consider the inner
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σ-derivation dE : A −→ (A⊗̂A)∗∗ defined by dE(a) = E.σ(a)− σ(a).E. We have

π∗∗(dE(a)) = π∗∗(E.σ(a)− σ(a).E)

= w∗ − limπ(eα ⊗ eασ(a)− σ(a)eα ⊗ eα)

= lim
α

(e2
ασ(a)− σ(a)e2

α)

= σ(a)− σ(a)

= 0.

Therefore dE(A) ⊆ ker(π∗∗). It is Known that ker(π∗∗) = (kerπ)∗∗ [11, Page 45].

Thus dE ∈ Z(σ,σ)(A, (kerπ)∗∗). By σ-amenability of A, there exists N ∈ (kerπ)∗∗

such that dE = dN . Put M = E−N . Then M ∈ (A⊗̂A)∗∗ and for all a ∈ A we have

σ(a) ·M −M · σ(a) = dM (a) = dE(a)− dN (a) = 0 and

π∗∗(M) · σ(a) = π∗∗(E) · σ(a)− π∗∗(N) · σ(a)

= π∗∗(E) · σ(a)

= w∗ − lim
α

(π(eα ⊗ eα)σ(a))

= lim
α

e2
ασ(a)

= σ(a).

The following result is a generalization of [1, Lemma 8].

Proposition 4.3. Let σ be a continuous idempotent homomorphism on a Banach

algebra A with a bounded approximate identity {eα}. If A has a σ-virtual diagonal

then it has a σ-approximate diagonal.

Proof. Let M be a σ-virtual diagonal for A. Since M ∈ (A⊗̂A)∗∗ there exists a

bounded net {pα} in A⊗̂A such that w∗ − limα pα = M . Then w∗ − limα(σ(a).pα −

pα.σ(a)) = σ(a)M −Mσ(a) = 0 and so w∗− limα(σ(a).pα − pα.σ(a)) = 0. Moreover,

w∗ − limα π(pα).σ(a) = π∗∗(M).σ(a) and so w∗ − limα π(pα)σ(a) = σ(a). By passing
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to a convex combination, we conclude the existence of a net {mα} in A⊗̂A such that

σ(a) ·mα −mα · σ(a) −→ 0 and σ(a) · π(mα) −→ σ(a).

Proposition 4.4. Let X be a Banach A-bimodule and A has a bounded approximate

identity. If AX = {0} (or XA = {0}) then any (σ, τ)-derivation d : A −→ X ∗ is

inner.

Proof. Let {eα} be a bounded approximate identity for A. AX = {0} implies that

X ∗A = {0}. Without lose of generality we can assume that w∗ − lim d(eα) = −f for

some f ∈ X ∗. Then

d(a) = w∗ − lim d(aeα)

= w∗ − lim(d(a)σ(eα) + τ(a)d(eα))

= −τ(a)f

= fσ(a)− τ(a)f

= df (a).

The next proposition is an extension of [10, Proposition 0.3]

Proposition 4.5. Let σ, τ be two homomorphisms on a Banach algebra A having

a bounded approximate identity. Then H1
(σ,τ)(A,X ∗) = H1

(σ,τ)(A, (AXA)∗) for each

Banach A-bimodule X .

The following proposition is an extension of [11, Theorem 2.2.4].

Proposition 4.6. Let σ be a continuous idempotent epimorphism on a Banach alge-

bra A which has a σ-approximate diagonal. Then A is σ-amenable.

Proof. Let {mα} be a σ-approximate diagonal for A. For each α there are two

sequences {aα
n}, {bα

n} such that mα =
∑∞

n=1 aα
n ⊗ bα

n and
∑∞

n=1 ||aα
n||||bα

n|| < ∞.

Let X be a pseudo-unital A-bimodule and D ∈ Z(σ,σ)(A,X ∗). The bounded net

{
∑∞

n=1 σ(aα
n)D(bα

n)} in X ∗ has a w∗-cluster point, say φ ∈ X ∗. Then by passing to a
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subnet, if necessary, we have

σ(a)φ = σ(a) lim
α

∞∑
n=1

σ(aα
n)D(bα

n)

= lim
α

∞∑
n=1

σ(a)σ(aα
n)D(bα

n)

= lim
α

F (σ(a)mα)

= lim
α

F (mασ(a))

= lim
α

∞∑
n=1

σ(aα
n)D(bα

nσ(a))

= lim
α

∞∑
n=1

σ(aα
n)

(
σ(bα

n)D(σ(a)) + D(bα
n)σ(a)

)
= lim

α

( ∞∑
n=1

σ(aα
n)σ(bα

n)D(σ(a)) +
∞∑

n=1

σ(aα
n)D(bα

n)σ(a)
)

= lim
α

σ(π(mα))D(σ(a)) + φσ(a) (a ∈ A),

where F : A⊗A → X ∗ is defined by F (a⊗ b) = σ(a)D(b). Therefore for each b ∈ A

is implied that σ(b)(σ(a)φ − φσ(a) −D(σ(a))) = 0. Since σ is an epimorphism and

limα π(mα)b = b for all b ∈ A, we conclude that D(a) = σ(a)φ− φσ(a).

5. An example

We use a Banach algebra introduced by Yong Zhang [12] to introduce a

Banach algebra that is (σ, τ)-weak amenable for all homomorphisms σ, τ but for some

homomorphisms σ and τ it is not (σ, τ)-amenable.

It is easy to see that `1 is a Banach algebra equipped with the following

product

a · b = a(1)b (a, b ∈ `1).

and `1 has a left identity e1 defined by

e1(n) =

 1 if n = 1

0 if n 6= 1.
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The dual space (`1)∗ = `∞ is a `1-bimodule via the ordinary actions as follows

a · f = f(a)e1, f · a = a(1)f (a ∈ `1, f ∈ `∞)

where e1 is regarded as an element of `∞.

Next let σ : `1 −→ `1 be a bounded homomorphism. We have a(1)σ(b) =

σ(a · b) = σ(a) · σ(b) = σ(a)(1)σ(b) and so (a(1) − σ(a)(1))σ(b) = 0 for all a, b ∈ N.

Since σ 6= 0, we have

σ(a)(1) = a(1) (a ∈ `1). (5.1)

Now let σ, τ be homomorphisms and let D : `1 −→ `∞ be a bounded (σ, τ)-

derivation. Then for all a, b ∈ `1 we have

D(a · b) = D(a) · σ(b) + τ(a) ·D(b) (5.2)

a(1)D(b) = σ(b)(1)D(a) + τ(a) ·D(b). (5.3)

By taking b = a in (5.2) and using (5.1), we get τ(a) · D(a) = 0 for all a ∈ `1.

Therefore we have τ(a + b) · D(a + b) = 0 and so τ(a) · D(b) = −τ(b) · D(a) for all

a, b ∈ `1.

Then

D(a) = D(e1 · a) = D(e1) · σ(a) + τ(e1) ·D(a)

= D(e1) · σ(a)− τ(a) ·D(e1)

for all a ∈ `1. Therefore D is (σ, τ)-inner. Thus `1 is (σ, τ)-weakly amenable for all

homomorphisms σ and τ on `1.

Remark 5.1. The Banach algebra `1 is not amenable since it clearly has no bounded

right approximate identity. Then, by Corollary 2.2, there exist homomorphisms σ1

and τ1 that `1 is not (σ1, τ1)-amenable. By Proposition 2.4, it is however (σ, 0)-

amenable for all homomorphisms σ on `1.
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LIII, Number 3, September 2008

ON SOME CLASSES OF ANALYTIC FUNCTIONS DEFINED BY A
MULTIPLIER TRANSFORMATION

VERONICA OANA NECHITA

Abstract. We introduce two new classes of analytic functions defined by

applying a multiplier transformation to functions f ∈ A (p) and study

some containment properties of this classes.

1. Preliminaries

LetH = H (U) denote the class of functions analytic in U = {z ∈ C : |z| < 1}.

For n a positive integer and a ∈ C, let

H [a, n] = {f ∈ H : f (z) = a + anzn + ...} .

For p ∈ N∗, we consider A (p) to be the class of functions of the form

f (z) = zp +
∞∑

n=p+1

anzn,

which are analytic in the unit disk U .

We denote by Q the set of functions f that are analytic and injective on

U \ E (f), where

E (f) =
{

ζ ∈ ∂U : lim
z→ζ

f (z) = ∞
}

,

and are such that f ′ (ζ) 6= 0 for ζ ∈ ∂U \ E (f).

Since we use the terms of subordination and superordination, we review here

those definitions. Let f, F ∈ H. The function f is said to be subordinate to F, or

F is said to be superordinate to f , if there exists a function w analytic in U , with
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Key words and phrases. multiplier transformation, differential subordinations and superordinations,

classes of p-valent functions.
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w (0) = 0 and |w (z)| < 1, and such that f (z) = F (w (z)). In such a case we write

f ≺ F or f (z) ≺ F (z). If F is univalent, then f ≺ F if and only if f (0) = F (0) and

f (U) ⊂ F (U).

The functions considered in this paper and conditions on them are defined

uniformly in the unit disk U, so we shall omit the requirement ”z ∈ U”.

For c > −p, δ ∈ R and for a given function f ∈ A (p), we consider the

multiplier transformation of functions f ∈ A (p), introduced in [5] by

Kδ
pf (z) = zp +

∞∑
n=p+1

(
c + p

c + n

)δ

anzn.

For δ ≥ 0 we find that Kδ
p is the Komatu linear operator, defined in [2] by

Kδ
pf (z) =

(c + p)δ

Γ (δ)
1
zc

∫ z

0

tc−1
(
log

z

t

)δ−1

f (t) dt.

We introduce and study some properties of the following classes of functions.

Definition 1.1. Let φ be an analytic functions in the unit disk, with φ (0) = 1 and

λ ≥ 0. A function f ∈ A (p) is said to be in the class Ωδ
p (φ, λ) if it satisfies the

following subordination:

λ

p

Kδ−1
p f (z)

zp
+

p− λ

p

Kδ
pf (z)
zp

≺ φ (z) ,

and is said to be in the class Ω
δ

p (φ, λ) if it satisfies the superordination

φ (z) ≺ λ

p

Kδ−1
p f (z)

zp
+

p− λ

p

Kδ
pf (z)
zp

.

In our investigation we shall need the following results.

Theorem 1.2 ([1]). Let h be a convex function in U , with h (0) = a, γ 6= 0 and

Reγ ≥ 0. If p ∈ H [a, 1] and

p (z) +
zp′ (z)

γ
≺ h (z) ,

then

p (z) ≺ q (z) ≺ h (z) ,
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where

q (z) =
γ

zγ

∫ z

0

h (t) tγ−1dt.

The function q is convex and is the best dominant.

Theorem 1.3 ([3]). Let h be a convex function in U , with h (0) = a, γ 6= 0 and

Reγ ≥ 0. If p ∈ H [a, 1] ∩Q, p (z) +
zp′ (z)

γ
is univalent in U and

h (z) ≺ p (z) +
zp′ (z)

γ
,

then

q (z) ≺ p (z) ,

where

q (z) =
γ

zγ

∫ z

0

h (t) tγ−1dt.

The function q is convex and is the best subordinant.

2. Main results

Theorem 2.1. Let φ be a convex function in the unit disk, with φ (0) = 1 and λ > 0.

If f ∈ Ωδ
p (φ, λ), then there exists a convex function q, such that q (z) ≺ φ (z) and

f ∈ Ωδ
p (q, 0).

Proof. We set

p (z) =
Kδ

pf (z)
zp

= 1 +
∞∑

n=1

(
c + p

c + p + n

)δ

ap+nzn

and observe that p ∈ H [1, 1].

A short calculation leads us to

z
{
Kδ

pf (z)
}′

pzp
= p (z) +

zp′ (z)
p

and, by using the identity

z
{
Kδ

pf (z)
}′

= (c + p)Kδ−1
p f (z)− cKδ

pf (z) ,

we get
Kδ−1

p f (z)
zp

= p (z) +
zp′ (z)
c + p

.
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Therefore, since f ∈ Ωδ
p (φ, λ), we can conclude that

p (z) +
λ

p (c + p)
zp′ (z) ≺ φ (z) .

By Theorem 1.2 for γ =
p (c + p)

λ
it follows now that

Kδ
pf (z)
zp

≺ q (z) ≺ φ (z) ,

where

q (z) =
p (c + p)

λ
z−p(c+p)/λ

∫ z

0

φ (t) tp(c+p)/λ−1dt

is convex and the best dominant.

Thus, f ∈ Ωδ
p (q, 0) and f ∈ Ωδ

p (q̃, 0) for all convex functions q̃ that satisfy

q ≺ q̃. �

For suitable choises of the function φ, we can obtain some corollaries. Let us

first consider the function φ (z) =
1 + Az

1 + Bz
, for −1 ≤ B < A ≤ 1. The class Ωδ

p (φ, λ)

becomes in this case the class Ωδ
p (A,B, λ) from [4].

Corollary 2.2 ([4]). Let λ > 0 and f ∈ Ωδ
p (A,B, λ). Then f ∈ Ωδ

p (A,B, 0).

We take now φ to be the function given by φ (z) =
1 + βz

1− αβz
, with 0 < α ≤ 1

and 0 < β < 1. In this case let us denote the class Ωδ
p (φ, λ) by Ωδ

p (α, β, λ).

Corollary 2.3. Let λ > 0 and f ∈ Ωδ
p (α, β, λ). Then f ∈ Ωδ

p (α, β, 0).

Theorem 2.4. Let φ be a convex function in the unit disk, with φ (0) = 1 and λ > 0.

If f ∈ Ω
δ

p (φ, λ),
Kδ

pf (z)
zp

∈ H [a, 1]∩Q and
λ

p

Kδ−1
p f (z)

zp
+

p− λ

p

Kδ
pf (z)
zp

is univalent

in U , then there exists a convex function q such that f ∈ Ω
δ

p (q, 0).

Proof. We set

p (z) =
Kδ

pf (z)
zp

= 1 +
∞∑

n=1

(
c + p

c + p + n

)δ

ap+nzn

and observe that p ∈ H [1, 1] ∩Q.

After a short calculation and considering that f ∈ Ω
δ

p (φ, λ), we can conclude

that

φ (z) ≺ p (z) +
λ

p (c + p)
zp′ (z)
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and p (z) +
λ

p (c + p)
zp′ (z) is univalent in U . We can apply now Theorem 1.3 for

γ =
p (c + p)

λ
and it follows that

q (z) ≺
Kδ

pf (z)
zp

,

where

q (z) =
p (c + p)

λ
z−p(c+p)/λ

∫ z

0

φ (t) tp(c+p)/λ−1dt

is convex and the best subordinant.

Thus, f ∈ Ω
δ

p (q, 0) and f ∈ Ω
δ

p (q̃, 0), for all convex functions q̃ that satisfy

q̃ ≺ q. �

If we combine the results of Theorem 2.1 and Theorem 2.4, we obtain the

following differential ”sandwich theorem”.

Corollary 2.5. Let φ1, φ2 be convex functions in the unit disk, with φ1 (0) = φ2 (0) =

1 and λ > 0. If f ∈ Ωδ
p (φ1, λ)∩Ω

δ

p (φ2, λ),
Kδ

pf (z)
zp

∈ H [a, 1]∩Q and
λ

p

Kδ−1
p f (z)

zp
+

p− λ

p

Kδ
pf (z)
zp

is univalent in U , then

f ∈ Ωδ
p (q1, 0) ∩ Ω

δ

p (q2, 0)

where

q1 (z) =
p (c + p)

λ
z−p(c+p)/λ

∫ z

0

φ1 (t) tp(c+p)/λ−1dt

and

q2 (z) =
p (c + p)

λ
z−p(c+p)/λ

∫ z

0

φ2 (t) tp(c+p)/λ−1dt.

The functions q1 and q2 are convex.
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FILTERING FOR STOCHASTIC VOLATILITY FROM POINT
PROCESS OBSERVATION

TIDARUT PLIENPANICH

Abstract. In this note we consider the filtering problem for financial

volatility that is an Ornstein-Uhlenbeck process from point process obser-

vation. This problem is investigated for a Markov-Feller process of which

the Ornstein-Uhlenbeck process is a particular case.

Introduction

Stochastic volatility is one of main objective to study of financial mathemat-

ics. It reflects qualitively random effects on change of financial derivatives, interest

rates and other financial product prices.

Many results have been received recently for volatility estimation by filtering

approach. Rüdiger Frey and W. J. Runggaldier [3] studied the case of high frequency

data. Frederi G. Viens [10] considered the problem of portfolio optimization under

partially observed stochastic volatility. Wolfgang J. Runggaldier [7] used filtering

methods to specify coefficients of financial market models.

A filtering approach was introduced by J. Cvitanic, R. Liptser and B. Ro-

zovskii [2] to tracking volatility from prices observed at random times. A filter-

ing problem for Ornstein-Uhlenbeck signal from discrete noises was investigated by

Y.Zeng and L.C.Scott [11] and applied to the micro-movement of stock prices. Also a

practical method of filtering for stochastic volatility models was given by J. R. Stroud,

N. G. Polson and P. Müller [8].

Received by the editors: 01.06.2006.
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These authors introduced also a sequential parameter estimation in stochastic

volatility models with jumps [4]. And other contributions were given recently by A.

Bhatt, B. Rajput and Jie Xiong, R. Elliott, R. Mikulecivius and B. Rozovskii, etc.

Filtered multi-factor models are studied by E. Platen and W. J. Runggaldier

[6] by a so-called benchmark approach to filtering.

1. Filtering from point process observation

Let (Ω,F , P ) be a complete probability space on which all processes are

defined and adapted to a filtration (Ft, t ≥ 0) that is supposed to satisfy the ”usual

conditions”.

For the sake of simplicity, all stochastic processes considered here are sup-

posed to be 1-dimensional real processes.

We consider a filtering problem where the signal processes is a semimartingale

Xt = X0 +
∫ t

0

Hsds + Zt, (1)

where Zt is a square integrable Ft- martingale, Ht is bounded Ft-progressive process

and E[sups≤t |Xs|] < ∞ for every t ≥ 0, X0 is a random variable such that E|X0|2 <

∞; the observation is given by a point process Ft- semimartingale of the form

Yt =
∫ t

0

hsds + Mt, (2)

where Mt is a square integrable Ft-martingale with mean 0, M0 = 0 such that the

future σ- field σ(Mu − Mt;u ≥ t) is independent of the past one σ(Yu, hu;u ≤ t),

ht = h(Xt) is a positive bounded Ft- progressive process such that E

∫ t

0

h2
sds < ∞

for every t.

Denote by FY
t the σ-algebra generated by all random variables Ys, s ≤ t.

Thus FY
t records all information about the observation up to the time t.

Suppose that the process us =
d

ds
< Z,M >s is Fs- predictable (s ≤ t)

where <,> stands for the quadratic variation of Zt and Mt. Denote also by ûs the

FY
t - predictable projection of us. By assumptions imposed on Z and M we see that

< Z, M >= 0, so us = 0.

76



FILTERING FOR STOCHASTIC VOLATILITY FROM POINT PROCESS OBSERVATION

The filter of (Xt) based on information given by (Yt) is defined as the condi-

tional expectation

π(Xt) := E(Xt|FY
t ), (3)

or more general

πt(f) := E[f(Xt)|FY
t ], (4)

where f is a bounded continuous function f ∈ Cb(R).

Denote by π(ht) the filtering process corresponding to the process ht in (2).

Let mt be the process defined by

mt = Yt −
∫ t

0

π(hs)ds. (5)

The process mt is called the innovation from the observation process Yt.

Lemma 1.1. mt is a point process FY
t -martingale and for any t, the future σ-field

σ(mt −ms ; t ≥ s) is independent of FY
s .

Proof. We have by definitions (2) and (5):

mt −ms = Yt − Ys −
∫ t

s

π(hu)du

= Mt −Ms +
∫ t

s

[hu − π(hu)]du. (6)

It follows from the assumption on Mt that

E[(Mt −Ms)|FY
s ] = 0. (7)

On the other hand, since for u ≥ s

E(hu|FY
s ) = E[E(hu|FY

u )|FY
s ] = E[π(hu)|FY

s ],

or

E[
∫ t

s

[hu − π(hu)]du|FY
s ] = 0, (8)

and then

E[mt −ms|FY
s ] = 0 , t ≥ s. (9)

Now for any s, t such that 0 ≤ s ≤ t we consider two families Ct and Dt of sets of

random variables defined as follows:

77



TIDARUT PLIENPANICH

Cs,t = {sets Ca , s ≤ a ≤ t} where Ca = {mt −mα ; a ≤ α ≤ t}

Ds = {sets Db , 0 ≤ b ≤ t} where Db = {Yβ ; b ≤ β ≤ s}.

It is easy to check that Cs,t and Ds are π-systems, i.e. they are closed with respect

to finite intersection. Also they are independent each of other by (9). It follows that

(refer to [5]) the σ-algebra σ(Cs,t) = σ(mt−ms, s ≤ t) generated by Cs,t is independent

of σ-algebra σ(Ds) = FY
s generated by Ds. The second assertion of Lemma 1.1 as

thus established.

We state here an important result by P. Bremaud (refer to [1]) on an integral

representation for FY
t -martingale:

Lemma 1.2. Let Rt be a FY
t -martingale. Then there exists a FY

t -predictable process

Kt such that for all t ≥ 0, ∫ t

0

Ksπ(hs)ds < ∞ P.a.s, (10)

and such that Rt has the following representation:

Rt = R0 +
∫ t

0

Ksdms. (11)

Remark. Since the innovation process mt is a FY
t - martingale so it can represented

by

mt = m0 +
∫ t

0

Ksdms, (12)

where Kt is some FY
t - predictable process satisfying (10). It is known from [9] that

Kt is of the form

Kt = π(ht)−1[π(Xt−ht)− π(Xt−)π(ht) + ût],

and since ût = 0 we have

Theorem 1.1. The filtering equation for the filtering problem (1)- (2) is given by:

π(Xt) = π(X0) +
∫ t

0

π(Hs)ds +
∫ t

0

π−1(hs)[π(Xs−hs)− π(Xs−)π(hs)]dms. (13)

provided π(ht) 6= 0 a.s., and Ht and ht are processes indicated in (1) and (2).
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Remark. If the observation is given by a standard Poisson process Yt then the

filtering equation takes the following form

π(Xt) = π(X0) +
∫ t

0

π(Hs)ds +
∫ t

0

π−1(hs)Xs− [π(hs)− 1]dms, (14)

where mt = Yt − t.

Quasi-filtering

There is some inconvenience in the application of (13) because the appear-

ance of the factor[π(hs)]−1. To avoid this difficulty we introduce the unnormalized

conditional filtering or quasi-filtering in the other term.

As we know in the method of reference probability, the probability P actually

governing the statistics of the observation Yt is obtained from a probability Q by an

absolutely continuous change Q → P . We assume that Q is the reference probability

such that Y is a (Q,Ft)- Poisson process of intensity 1, where Ft = FY
t ∨ FX

∞.

Denoting for every t ≥ 0 by Pt and Qt the restrictions of P and Q respectively

to (Ω,Ft) we have Pt << Qt. It is known that the corresponding Radon-Nikodym

derivative is the unique solution of the Doleans-Dade equation:

Lt = 1 +
∫ t

0

Ls−(hs − 1)dMs, (15)

where ht and Mt are given in (2).

The explicit solution of (15) is

Lt =
dPt

dQt
= u0≤s≤ths∆Ys exp

∫ t

0

(1− hs)ds. (16)

Let Zt be a real valued and bounded process adapted to Ft, then for every

history Gt such that Gt ⊆ Ft, t ≥ 0 we have the Bayes formula

EP (Zt|Gt) =
EQ(ZtLt|Gt)
EQ(Lt|Gt)

, (17)

where EP (.|Gt) and EQ(.|Gt) are conditional expectations under probabilities P and

Q respectively.
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Definition. The process σ(Xt) defined by

σ(Xt) = EQ(LtXt|Ft) (18)

is call the optimal quasi-filter (or quasi-filter) of Xt based on data Ft. It is in fact an

unnormalized filter of Xt.

Remarks.

(i) If under the probability Q, Yt is a standard Poisson process ( i.e of intensity

1) and the process µt ≡ Yt − t is then a (Ft, Q)-martingale.

(ii) We have by consequence of the definition

π(Xt) =
σ(Xt)
σ(1t)

, (19)

where 1 stands for function identified to 1 for every t: 1(t) ≡ 1.

Replacing π(.) by its expression given by (19) we can rewrite the filtering

equation (14) as an equation for quasi-filtering σ(.):

Theorem 1.2. The assumptions are those prevailing in Theorem 1.1. Moreover,

assume that Zt and Mt have no common jumps. Then the quasi-filter σ(Xt) satisfies

the following equation

σ(Xt) = σ(X0) +
∫ t

0

σ(Hs)ds +
∫ t

0

[σ(Xs−hs)− σ(Xs−)]dss, (20)

where

nt = Yt − t . (21)

Proof. Suppose we have (13) already:

π(Xt) = π(X0) +
∫ t

0
H(Xs)ds +

∫ t

0
π−1(hs)γsdms (1.13)’

where γs = π(Xs− hs)− π(Xs−)π(hs) and ms = Ys −
∫ t

0
π(hs)ds.

By definition σ(Xt) = π(Lt)π(Xt). Applying a formula of integration by part

we get

π(Lt)π(Xt) = π(X0) +
∫ t

0

π(Xs)π(Hs)ds +
∫ t

0

π(Ls−)γsdms

+
∫ t

0

π(Xs−)π(Ls−)[π(hs)− 1]dns + [π(L), π(X)]t (22)
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where nt = Yt − t and [., .] stands for the quadratic variation.

Because π(X0) = σ(X0) and there are at most countably many points where

π(Lt−) 6= π(Lt) so∫ t

0

π(Ls−)π(Hs)ds =
∫ t

0

π(Ls)π(Hs)ds =
∫ t

0

σ(Hs)ds.

On the other hand we have

[π(L), π(X)]t =
∑

0≤s≤t

∆π(Ls)∆π(Xs) =
∫ t

0

γsπ(hs−)[π(hs)− 1]dYs. (23)

Then

π(Lt)π(Xt) = σ(Xt) = σ(X0) +
∫ t

0

σ(Hs)ds+

+
∫ t

0

π(Ls−)
[
π(Xs−hs)− π(Xs)π(hs)

]
dns

+
∫ t

0

π(Ls−)π(Xs−)
[
π(hs)− 1

]
dns

= σ(X0) +
∫ t

0

σ(Hs)ds +
∫ t

0

[
σ(Xs−hs)− σ(Xs−)

]
dns . (24)

The proof of Theorem 1.2 is thus completed.

2. Filtering for a Fellerian system

Suppose that Xt is a Markov process taking values in a compact separable

Hausdorff space S and that the semigroup (Pt , t ≥ 0) associated with the transition

probability Pt(x,E) with x ∈ S and E ⊂ S is a Feller semigroup, that is

Ptf(x) =
∫ t

0

Pt(x, dy)f(y), (1)

maps C(S) into itself for all t ≥ 0 satisfies

lim
t↓0

Ptf(x) = f(x), (2)

uniformly in S for all f ∈ C(S), where C(S) is the space of all real continuous

function over S. Assume that the observation Yt is a Poisson process of intensity

ht = h(Xt) ∈ C(S).
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As before the filter πt is defined as:

πt(f) = π(f(Xt)) := E[f(Xt)|FY
t ]. (3)

Also we have

σt(f) := σ(f(Xt)) = EQ[Ltf(Xt)|FY
t ], (4)

where the probability Q and the likelihood ratio are defined as in subsection I.2.

Denote by mt the innovation process of Yt:

mt := Yt −
∫ t

0

πs(h)ds = Yt −
∫ t

0

σs(h)
σs(1)

ds. (5)

The following results are given in [9]:

Theorem 2.1 (Filtering equation for Feller process with point process observation).

If A is infinitesimal generator of the semigroup Pt of the signal process, then the

optimal filter πt(f) = π(f(Xt)) satisfies the following two equations provided πs(h) 6=

0 a.s.

a)

πt(f) = π0(f) +
∫ t

0

πs(Af)ds +

+
∫ t

0

π−1
s (h)[πs−(fh)− πs−(f)πs(h)]dms , f ∈ Cb(S), (6)

b)

πt(f) = π0(Ptf) +
∫ t

0

π−1
s (h)[πs−(hPt−sf)

−πs−(Pt−sf)πs(h)]dms , f ∈ Cb(S). (7)

Theorem 2.2 (Quasi-filtering equation for Feller process with point process obser-

vation.). The quasi-filter σt satisfies the following two equations:

a)

σt(f) = σ0(f) +
∫ t

0

σs(Af)ds +
∫ t

0

[σs−(hf)− σs−(f)]dms , f ∈ Cb(S), (8)
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b)

σt(f) = σ0(Ptf) +
∫ t

0

[σs−(hPt−sf)− σs−(Pt−sf)]dms f ∈ Cb(S). (9)

3. Ornstein-Uhlenbeck process and financial filtering

We recall in this Section some facts on Ornstein- Uhlenbeck and show how

to use it to our filtering problems. This process is of importance in studies in finance.

It has various ’good properties’ to describe many elements in financial models as that

of interest rate ( Vasicek, Ho-Lee, Hull-White, etc.) or stochastic volatility of asset

pricing.

Let X = (Xt, t ≥ 0) be a stochastic process with initial value X0 which is

standard normal distributed: X0 ∈ N (0, 1).

Definition. If (Xt) is a Gaussian process with

a) mean EXt = 0 , ∀t ≥ 0

b) covariance function

R(s, t) = E(XsXt) = γ exp(−α|t− s|) , s, t ≥ 0; α, γ ∈ R+, (1)

then Xt is called an Ornstein-Ulhenbeck.

It follows from this definition that (Xt) is a stationary process in wide-sense.

It is also a stationary process in strict sense since its density of the transition proba-

bility is given by

p(s, x; t, y) =
1√

γπ(1− e−2α(t−s))
exp

{
− (y − xe−2α(t−s))2

γ(1− 2e−2α(t−s))

}
, (2)

that depends only on (t− s), where γ is some positive constant.

3.1. Stochastic Langevin equation. An Ornstein-Uhlenbeck process (Xt) can be

defined also as the unique solution of the form

dXt = −αXtdt + γdWt , X0 ∼ N (0, 1), (3)

where α > 0 and γ are constants.
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The explicit form of this solution is

Xt = X0e
−αt + γ

∫ t

0

e−α(t−s)dWs,

and its expectation, variance and covariance are given by

EXt = e−αt ,

Vt := V ar(Xt) =
γ2

2α
,

R(s, t) =
γ2

2α
e−α|t−s|,

where
γ2

2α
is denoted by β in (1)

3.2. Ornstein - Uhlenbeck process as a Feller process. Consider a standard

Gaussian measure on R

µ(dx) =
1√
2π

exp
(
− x2

2

)
dx.

It is known that an Orntein - Uhlenbeck process (Xt) is a Markov process and

its semigroup is defined by a family (Pt , t ≥ 0) of operations on bounded Borelian

functions f :

(Ptf)(x) =
∫

R

f(e−αtx +
γ2

2α

√
1− e−2αty)µ(dy). (4)

It is obvious that

lim
t↓0

(Ptf)(x) = f(x), (5)

then Xt is really a Feller process and the family (Pt, t ≥ 0) is called an Ornstein-

Uhlenbeck semigroup.

3.3. Filtering for Ornstein-Uhlenbeck process from point process observa-

tion. We will apply the results of Section II to the following filtering problem:

• Signal process: An Ornstein-Ulhenbeck process Xt that is the solution of

the equation (3).

• Observation process: A point process Nt of intensity λt > 0.

So the signal and observation processes (Xt, Nt) can be expressed in the form

dXt = −αXtdt + γdWt , X0 ∼ N (0, 1), (6)
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dNt = λtdt + Mt, (7)

where α, γ > 0 , λt is a Ft-adapted process, Mt is a point process martingale inde-

pendent of Wt.

Denote by FN
t the σ-algebra of observation that is generated by (Ns, s ≤ t)

The filter of (Xt) based on data given by (FN
t ) is denoted now by X̂t:

X̂t = πt(X) = E(Xt|FY
t )

and also πt(f) = ˆf(Xt) = E(f(Xt)|FY
t ) , f ∈ Cb(R).

The innovation process mt is given by

mt = Yt −
∫ t

0

λ̂tds, (8)

and dmt = dYt − λ̂tdt.

Since the semigroup (Pt , t ≥ 0) for Xt is defined by (4), the infinitesimal

operator At is given by

Atf = lim
t→0

1
t
(Ptf − f) = −αxf ′(x) +

1
2α

γ2f ′′(x). (9)

On the other hand, Ptf can be expressed under the form:

(Ptf)(x) = E[f(e−αtx +
γ2

2α

√
1− e−2αtY )], (10)

where Y is a standard Gaussian variable, Y ∼ N (0, 1).

Then from Theorem 2.1 we can get:

Theorem 3.1. a)

πt(f) = π0(f) +
∫ t

0

πs[−αXf ′(X) +
γ2

2α
f ′′(X)]ds

+
∫ t

0

π−1
s (λ)[πs−(λf)− πs−(f)πs(λ)](dYs − πs(λ)ds), (11)

b)

πt(f) = π0(Ptf) +
∫ t

0

π−1
s (λ)[πs−(λPt−sf)− πs−(Pt−sf)πs(λ)][dYs− πs(λ)ds], (12)

where Pt is given by (10).
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Theorem 3.2. The quasi-filter σt(f) for the filtering (6)- (7) is given by one of

following two equations:

a)

σt(f) = σ0(f) +
∫ t

0

σs[−αXf ′(X) +
γ2

2α
f ′′(X)]ds

+
∫ t

0

[σs−(λf)− σs−(f)][dYs − πs(λ)ds], (13)

b) σt(f) = σ0(Ptf) +
∫ t

0

[σs−(λPt−sf)− σs−(Pt−sf)][dYs − πs(λ)ds].

Remarks.

(i) The above results can be applied also to term structure models for interest

rates, where the rate is expressed as an Orstein-Ulhenbeck process and the observation

is given by a point process of the form

Nt =
∫ t

0

h(Ss)ds + Mt , 0 ≤ t ≤ T,

where St is the a process observed stock prices the models for Vasicek, Ho-Lee, Hull-

White,..., can be included in this context.

(ii) The assumption that the volatility of asset pricing is of form of an

Ornstein-Ulhenbeck process is quite frequently met in various financial models. So,

the above results can give another approach to estimate this volatility.
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APPROXIMATION OF SOLUTION OF SECOND ORDER

DIFFERENTIAL EQUATIONS WITH CONDITIONS INSIDE THE

INTERVAL (0, 1) USING CUBIC B-SPLINE FUNCTIONS

DANIEL POP

Abstract. In this paper, we present a numerical algorithm, based on cu-

bic B-splines collocation method for solving the second order differential

equations with condition inside the (0,1) interval. The scheme is shown

to be accurate and only a few terms are required to obtain approximate

solution.

1. Introduction

The purpose of this paper is to approximate the solution of the following

problem:



















Ly(x) = r(x), 0 ≤ x ≤ 1,

y(a) = A, y(b) = B

0 < a < b < 1, a, b, A, B ∈ R,

(1.1)

where:

Ly(x) := −
d

dx
(
dy

dx
) + q(x) · y(x), 0 ≤ x ≤ 1 (1.2)

and q(x), r(x) ∈ C(0, 1), q(x) < 0, y(x) ∈ C2(0, 1), using cubic B-splines collocation

method.

In fall-back we assume that the functions q(x), r(x) are such that the problem

(1.1) has a unique solution.

Received by the editors: 19.02.2008.

2000 Mathematics Subject Classification. 34B24, 65D07, 65L60.
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2. Preliminaries

To describe the basic method in this and later sections we choose a uniform

mesh of the given interval (0, 1)

∆ :=0 =x0 < x1 <. . .< xn+1 = 1, xj = j · h, j = 0, 1,. . . , n + 1, h= 1

n+1
. (2.1)

We introduce the domain of definition of the operator L, defined by (1.2), as

DB(L) := {u ∈ C2(0, 1)| Lu ∈ C2(0, 1) and u(a) = A, u(b) = B},

and suppose that DB(L) is dense in C2(0, 1) such that:

L : DB(L) ⊆ C2(0, 1) → C2(0, 1).

We also define

U := {u ∈ DB(L) : u|[xi,xi+1]
∈ Π3, u

′ ∈ C[xj , xj+1]},

where Π3 is the set of polynomials of degree at most three. We use the following

notations: qj := q(xj), rj := r(xj).

Obviously, dim U = n + 2. Because U ⊂ C2(0, 1) (see [3]) there exists in U

a basis consisting of cubic B-splines functions:

{s0, s1, ...sn+1}

and moreover (see [4, page 555], [5, page 69]):

si(x) = S(
x

h
− i), i = 0, 1, 2, ..., n + 1 (2.2)

s′′i (x) =
1

h2
· S′′(

x

h
− i), i = 0, 1, ..., n + 1 (2.3)
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where:

S(x) =
1

4!











































0 if x ∈ R\[−2, 2]

(2 − x)3 − 4(1 − x)3 − 6x3 + 4(1 + x)3 if x ∈ [−2,−1]

(2 − x)
3
− 4(1 − x)3 − 6x3 if x ∈ [−1, 0]

(2 − x)3 − 4(1 − x)3 if x ∈ [0, 1]

(2 − x)
3

if x ∈ [1, 2]

The graph of S is shown in Figure 1.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

–2 –1 1 2

x

Figure 1. The graph of basic function S.

We observe that:

S(0) =
1

6
; S(1) = S(−1) =

1

24
; S(1) = S(−1) =

1

4
S(0) (2.4)

S
′′

(x) =
1

4











































0 if x ∈ R − ( − 2, 2)

x + 2 if − 2 ≤ x ≤ −1

−3x − 2 if − 1 < x ≤ 0

3x − 2 if 0 < x ≤ 1

2 − x if 1 < x ≤ 2

The graph of S′′ is shown in Figure 2.
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–0.5

–0.4

–0.3

–0.2

–0.1

0

0.1

0.2

–2 –1 1 2
x

Figure 2. The graph of S′′.

We also see:

S′′(0) = −
1

2
; S′′(−1) = S′′(1) =

1

4
; S′′(1) = S′′(−1) = −

1

2
· S′′(0) (2.5)

Using Orthogonal Spline Collocation Methods (see [2, pp. 2-5]) an approximate so-

lution sy(x) ∈ U has the form:

sy(x) =

n+1
∑

i=0

ci · si(x), ci ∈ R, i = 0, 1, ..., n + 1.

Moreover, from (2.2):

sy(x) =

n+1
∑

i=0

ci · S(
x

h
− i), ci ∈ R, i = 0, 1, ..., n + 1.

3. Main Result

Lemma 3.1. For any i = 0, 1, 2, ..., n, n+1, j = 1, 2, ...n the following relations hold:

si(xj) =



















1

24
, if i = j − 1, i = j + 1

1

6
, if i = j

0, otherwise

(3.1)
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s′′i (xj) = −
1

2 · h2



















− 1

2
, if i = j − 1, i = j + 1

1, if i = j

0, otherwise.

(3.2)

Proof. Because si(xj) 6= 0, only for i = j − 1, j, j + 1 (see Figure 3), using (2.2) we

obtain:

if i = j − 1 => si(xj) = S(j − i) = S(1) = 1

24

if i = j => si(xj) = S(j − i) = S(0) = 1

6

if i = j + 1 => si(xj) = S(j − i) = S(−1) = 1

24
.

Also s′′i (xj) 6= 0, only for i = j − 1, j, j + 1 using (2.3) we obtain:

if i = j − 1 => s′′i (xj) = 1

h2 · S′′(j − i) = 1

h2 · S′′(1) = 1

4·h2

if i = j => s′′i (xj) = 1

h2 · S′′(j − i) = 1

h2 · S′′(0) = − 1

2·h2

if i = j + 1 => s′′i (xj) = 1

h2 · S′′(j − i) = 1

h2 · S′′(−1) = 1

4·h2

1/6

1/24

xj xj+1 xj+2 xj+3xj−1xj−2xj−3

Figure 3. Non-zero B-splines on interval [xj−3, xj+3].
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Lemma 3.2. For any x0 ∈ [xj , xj+1], j = 1, 2, ..., n − 1 the following inequalities

hold:

0 < lim
h−>0

sj+2(x0) = lim
h−>0

sj−1(x0) <
1

24
, (3.3)

1

24
< lim

h−>0

sj+1(x0) = lim
h−>0

sj(x0) <
1

8
. (3.4)

Proof. Let λ(h) := sj+2(x0); η(h) := sj+1(x0); ρ(h) := sj(x0); ϕ(h) := sj−1(x0). In

([5, page 72]) one shows that:

sj+2(x) = S(
x

h
− j − 2) =

1

24
·



























































































[(j+4)h − x]3−4[(j+3)h−x]3+6[(j+2)h−x]3−4[(j+1)h−x]3

if h ≤ x ≤ (j+1)h

[(j+4)h−x]3−4[(j+3)h−x]3+6[(j+2)h− x]3

if (j + 1)h ≤ x ≤ (j + 2)h

[(j+4)h − x]3−4[(j+3)h−x]3;

if (j + 2)h ≤ x ≤ (j + 3)h

[(j + 4)h − x]3

if (j + 3)h ≤ x ≤ (j + 4)h

0, otherwise.

Because x0 ∈ [xj , xj+1] and xj = jh it follows x0 ∈ [jh, (j + 1)h]. Then

0 < lim
h−>0

λ(h) =

=
1

24
lim

h−>0

{[(j + 4)h − x0]
3 − 4[(j + 3)h − x0]

3+

+ 6[(j + 2)h − x0]
3 − 4[(j + 1)h − x0]

3} =
x3

0

24
.

Since 0 < x0 < 1, we obtain the following relations on λ, ϕ, η, ρ:

0 < lim
h−>0

λ(h) <
1

24
,
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0 < lim
h−>0

ϕ(h) =
1

24
lim

h−>0

{[(j + 1)h − x0]
3 − 4[jh − x0]

3+

6[(j − 1)h − x0]
3} =

x3

0

24
,

0 < lim
h−>0

ϕ(h) <
1

24
,

0 < lim
h−>0

η(h) =
1

24
lim

h−>0

{[(j + 3)h − x0]
3 − 4 · [j · h − x0]

3} =
x3

0

8
,

1

24
< lim

h−>0

η(h) <
1

8
,

and

0 < lim
h−>0

ρ(h) =
1

24
lim

h−>0

{[(j + 2)h − x0]
3 − 4 · [(j + 1) · h − x0]

3} =
x3

0

8
.

Finally, 0 < x0 < 1, implies

1

24
< lim

h−>0

ρ(h) <
1

8
.

1/8

1/6

1/24

xj xj+1 xj+2 xj+3 xj+4xj−1xj−2xj−3

x0

Figure 4. Behaviour of B-splines within the interval [xj , xj+1].

95



DANIEL POP

Lemma 3.3. For h → 0, it holds

0 < ϕ(h) < η(h) <
1

8
,

0 < λ(h) < η(h) <
1

8
,

0 < ϕ(h) < ρ(h) <
1

8
,

0 < λ(h) < ρ(h) <
1

8
,

(3.5)

1

12
< ϕ(h) + η(h) + λ(h) + ρ(h) <

1

3
. (3.6)

Proof. The relations (3.5) and (3.6) are immediate consequences of the previous

lemma.

We show that

sy(x) =

n+1
∑

i=0

ci · S(
x

h
− i) (3.7)

can be determinate to be an approximate solution of problem (1.1). We impose the

conditions:

Lsy(x) = r(x), 0 < x < 1 (3.8)

sy(a) = A, sy(b) = B, 0 < a < b < 1. (3.9)

Theorem 3.4. If the problem (1.1) has a unique solution, then there exists and it is

unique a function sy(x) which verifies (3.9) and (3.8) on mesh points

xj = jh; j = 1, 2, 3, ..., n.

Proof. We suppose that a ∈ [xj , xj+1]. Because si(x) 6= 0, only for xj−2 < x < xj+2

then

S(
a

h
− i) 6= 0, only for i = j − 1, j, j + 1, j + 2,

and

A = cj−1 · S(
a

h
− j + 1) + cj · S(

a

h
− j) + cj+1 · S(

a

h
− j − 1) + cj+2 · S(

a

h
− j − 2).

Let α := S(a
h − j + 1); β := S(a

h − j); γ := S(a
h − j − 1); δ := S(a

h − j − 2) then:

cj−1 · α + cj · β + cj+1 · γ + cj+2 · δ = A (3.10)
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Since a < b, then b ∈ [xj+m, xj+m+1], j = 1, 2, ..., n, m = 1, 2, ..., n− j and

S(
b

h
− i) 6= 0, only for i = j + m − 1, j + m, j + m + 1, j + m + 2.

Also,

B = sy(b) =

= cj+m−1 · S(
b

h
− j − m + 1) + cj+m · S(

b

h
− j − m)+

+ cj+m+1 · S(
b

h
− j − m − 1) + cj+m+2 · S(

b

h
− j − m − 2).

Let µ := S( b
h − j − m + 1); ε := S( b

h − j − m); τ := S( b
h − j − m − 1); ξ :=

S( b
h − j − m − 2) then:

cj+m−1 · µ + cj+m · ε + cj+m+1 · τ + cj+m+2 · ξ = B. (3.11)

We impose the conditions:

Lsy(xj) = rj ; j = 1, 2, ..., n.

Using (2.2) and (2.3) we have

Lsy(xj) = −

n+1
∑

i=0

ci · [
1

h2
· S′′(j − i) − qj · S(j − i)] = rj ; j = 1, 2, ..., n.

Because si(xj) 6= 0 and s′′i (xj) 6= 0 only for i = j − 1, j, j + 1, using Lemma

3.1 we obtain:

Lsy(xj) = −
1

h2
S′′(0)[−

1

2
cj−1 + cj −

1

2
cj+1]+

qjS(0)[
1

4
cj−1 + cj +

1

4
cj+1] = rj ; j = 1, 2, ..., n.

Relations (2.5) and (2.4) yield

Lsy(xj) =
1

4
cj−1(

qj

6
−

1

h2
) +

1

2
cj(

qj

3
+

1

h2
) + cj+1(

qj

6
−

1

h2
)

= rj , j = 1, 2, ..., n.

(3.12)

Because q(x) < 0, for any 0 < x < 1, then

1

4
· (

qj

6
−

1

h2
) < 0, j = 0, 1, ..., n + 1
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we may divide the relation(3.12) by 1

4
· (

qj

6
− 1

h2 ) and let:

pj :=
24 · h2

h2 · qj − 6
· rj ; tj :=

4(h2 · qj + 3)

h2 · qj − 6
;

then the relation(3.12) has the form:

cj−1 + tj · cj + cj+1 = pj. (3.13)

We also observe that:

lim
h−>0

tj = −2. (3.14)

The relations (3.10), (3.11), and (3.13) form a linear system of (n + 2) equa-

tions with (n + 2) unknowns c0, c1, ..., cn+1.:



































































































































c0 + t1c1 + c2 = p0

c1 + t2c2 + c3 = p1

...

cj−1 + tjcj + cj+1 = pj

αcj−1 + βcj + γcj+1 + δcj+2 = A

cj + tj+1cj+1 + cj+2 = pj+1

...

cj+m−1 + tj+mcj+m + cj+m+1 = pj+m

µcj+m−1 + εcj+m + τcj+m+1 + ξcj+m+2 = B

cj+m + tj+m+1cj+m+1 + cj+m+2 = pj+m+1

...
...

cn−1 + tncn + cn+1 = pn

(3.15)

The system matrix is a band matrix with at most four nonzero diagonals.

We note this matrix with C and his determinant with detC. If we develop detC after
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the columns 0, 1, 2, ..., j − 2, j + m + 3, ..., n, n + 1 we obtain:

detC =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 tj 1 0 0 ... 0 0 0 0

α β γ δ 0 ... 0 0 0 0

0 1 tj+1 1 0 ... 0 0 0 0

.. ... ... ... ... ... ... ... ... ...

... ... ... ... ... ... 1 tj+m 1 0

... ... ... ... ... ... µ ε τ ξ

... ... ... ... ... ... 0 1 tj+m+1 1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(3.16)

If in Lemma 3.2 we set x0 := a; x0 := b then applying Lemma 3.3, it follows α, ξ, δ, µ

are nonzero. In detC from (3.16) using the properties of determinants, we obtain the

following determinant:

detC =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

c d 0 0 . . . 0 0 0 0

1 tj+1 1 0 . . . 0 0 0 0

0 1 tj+2 1 . . . 0 0 0 0

. . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . 1 tj+m−1 1 0

. . . . . . . . . . . . . . . 0 1 tj+m 1

. . . . . . . . . . . . . . . 0 0 e f

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

, (3.17)

where

c := β − αtj − δ;

d := γ − α − δtj+1;

e := ε − ξ − µtj+m;

f := τ − ξtj+m+1 − µ.
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From (3.14) and Lemma 3.2 we have:

lim
h−>0

c = lim
h−>0

(γ − α − δtj+1) =
a3

6
, ∀a ∈ (0, 1),

lim
h−>0

d = lim
h−>0

(β − αtj − δ) =
a3

6
, ∀a ∈ (0, 1),

lim
h−>0

e = lim
h−>0

(ε − ξ − µtj+m) =
b3

6
; ∀b ∈ (0, 1),

lim
h−>0

f = lim
h−>0

(τ − ξtj+m+1 − µ) =
b3

6
; ∀b ∈ (0, 1).

Let x :=
β−αtj−δ

γ−α−δtj+1
, z :=

τ−ξtj+m+1−µ
ε−ξ−µtj+m

, then from (3.17),

detC = ce

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x 1 0 0 0 ... 0 0 0 0

1 tj+1 1 0 0 ... 0 0 0 0

0 1 tj+2 1 0 ... 0 0 0 0

.. ... ... ... ... ... ... ... ... ...

... ... ... ... ... ... 1 tj+m−1 1 0

... ... ... ... ... ... 0 1 tj+m 1

... ... ... ... ... ... 0 0 1 z

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

But, limh−>0 x(h) = limh−>0 z(h) = 1 and from (3.14), we have

lim
h−>0

|tj(h)| = 2.

Let:

D :=



































x 1 0 0 0 ... 0 0 0 0

1 tj+1 1 0 0 ... 0 0 0 0

0 1 tj+2 1 0 ... 0 0 0 0

.. ... ... ... ... ... ... ... ... ...

... ... ... ... ... ... 1 tj+m−1 1 0

... ... ... ... ... ... 0 1 tj+m 1

... ... ... ... ... ... 0 0 1 z



































The matrix D is symmetrical, and for h → 0, is diagonal dominant, therefore is

nonsingular. Then detD 6= 0, detC 6= 0 and the system (3.15) has a unique solution.
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4. Numerical Results

We shall approximate the solution of following boundary value problem:

−Z ′′(t) − 243Z(t) = t; 0 ≤ t ≤ 1 (4.1)

Z(0) = Z(1) = 0

with conditions:

Z
(π

6

)

=
sin

(

3
√

3

2
π
)

− 1

6
π sin

(

9
√

3
)

243 sin
(

9
√

3
)

Z
(π

4

)

=
sin

(

9
√

3

4
π
)

− 1

4
π sin

(

9
√

3
)

243 sin
(

9
√

3
) .

The problem (4.1) has a unique solution:

Z(t) =
sin

(

9
√

3t
)

− t sin
(

9
√

3
)

243 sin
(

9
√

3
) .

We used Maple 8 to solve the problem exactly and to approximate the solu-

tion. The mesh considered was uniform, with h = 1

52
.

Figure 5(a) illustrates the graph of the exact solution. Figure 5(b) shows the

graph of the approximate solution. Both solution are represented on the same graph

in Figure 6. The graph of error in a semilogarithmic scale is given in Figure 7.

Approximate solution

–0.03

–0.02

–0.01

0

0.01

0.02

0.03

0.2 0.4 0.6 0.8 1
t

(a) The exact solution

Exact solution

–0.03

–0.02

–0.01

0

0.01

0.02

0.03

0.2 0.4 0.6 0.8 1
t

(b) The approximate solution

Figure 5. Exact (left) and approximate solution

Table 1 gives the coefficients of approximation.
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Exact and approximate solution

–0.03

–0.02

–0.01

0

0.01

0.02

0.03

0.2 0.4 0.6 0.8 1
t

Figure 6. The exact and approximate solution on the same graph

Approximation error

5e–05

.1e–3

.5e–3

.1e–2

0.2 0.4 0.6 0.8

t

Figure 7. Error, plotted in semilogarithmic scale
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0.00001264126797 0.01478815919 0.02952783767 0.04419585544

0.05875642949 0.07317381026 0.08741229213 0.1014362548

0.1152101532 0.1286985421 0.1418660874 0.1546775626

0.1670978974 0.1790921693 0.1906256025 0.2016636227

0.2121718270 0.2221160295 0.2314622429 0.2314622429

0.2401767329 0.2482259974 0.2555767791 0.2621961090

0.2680512859 0.2731099106 0.2773398850 0.2807094234

0.2831870848 0.2847417600 0.2853427074 0.2849595322

0.2835622375 0.2811212005 0.2776072155 0.2729914830

0.2672456113 0.2603416764 0.2522521606 0.2429500325

0.2324087120 0.2206021009 0.2075045846 0.1930910568

0.1773368827 0.1602179832 0.1417107936 0.1217922539

0.1004398914 0.07763175011 0.05334645858 0.02756317540

0.0002616852659

Table 1. Coefficients of approximation.
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NUMERICAL GENERATION OF SYMMETRIC α-STABLE

RANDOM VARIABLES

S. POPA, D. STANESCU, AND S.S. WULFF

Abstract. The paper discusses two extensions to higher order of the fast,

accurate algorithm due to Mantegna [9] for the numerical generation of

symmetric α-stable random variables. These extensions result in improved

computing time over the most usual range of the index of stability, α > 1,

for which expectations exist.

1. Introduction

Lévy processes are a class of stochastic processes which enjoy a rich mathe-

matical structure and are increasingly used in applications ranging from finance [3]

to the study of non-Fickian diffusion in physical systems [8]. Since exact solutions to

stochastic differential equations (SDEs) driven by Lévy noise are not usually available,

the numerical approximation of such SDEs is often needed. When the path of the Lévy

process has to be constructed explicitly, i.e. in the case of strong approximation, the

numerical generation of a large number of random variables with the corresponding

Lévy distribution is necessary. Even more so, in numerical approximations of some

integro-differential nonlinear partial equations of evolution based on the interacting

particles approximation [14], the position of each particle is governed by a SDE driven

by Lévy noise, hence a system of SDEs of size equal to the number of particles must

be integrated numerically. In such a case, the use of a fast and accurate algorithm for

the generation of these random variables (which represent discrete approximations to

the time increments of the stochastic process) is crucial if reliable numerical results

are to be obtained in a convenient time frame.

Received by the editors: 10.01.2008.

2000 Mathematics Subject Classification. 65C10,60H35.

Key words and phrases. symmetrically stable random variables, numerical generation, Levy processes,

stable distributions.
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A first numerical algorithm for the generation of random variables with a gen-

eral Lévy distribution, including those with skewness, has been presented by Cham-

bers, Mallows and Stuck [4]. More recently, Mantegna [9] devised a different numerical

method for the class of symmetric α-stable Lévy distributions based on the asymptotic

expansion of the integral expression of their probability density function. Mantegna’s

algorithm makes use of the generalized version of the central limit theorem together

with a nonlinear transformation to achieve an accurate approximation of the prob-

ability density function. However, the use of the generalized central limit theorem

by this latter algorithm implies summation of several independent realizations of a

random variable with a probability distribution close to the targeted distribution.

Although the number of these samples is reduced by a nonlinear transformation, the

generation of several independent samples reduces the efficiency of the algorithm.

In this paper, we propose a new algorithm for the numerical generation of α-

stable random variables. It is based, as Mantegna’s algorithm [9], on the asymptotic

expansion of the probability density function, but to the next higher order. The use

of the higher-order term introduces some complications in the evaluation of the as-

sociated probabilities, which could not be surmounted analytically so that numerical

approximations were needed. The paper is organized as follows. The next two sec-

tions briefly recall the basic properties of symmetrical Lévy α-stable random variables

that we need and the algorithm due to Mantegna. Section 4 develops our proposed

algorithm, while the last section presents pertinent numerical results comparing the

algorithms. A brief conclusion section ends the paper.

2. Symmetric α−stable distributions

We recall that a univariate random variable Z has a (strictly) stable distri-

bution if for any a, b > 0 there exists c > 0 such that aZ1 + bZ2

d
= cZ, where Z1 and

Z2 are independent copies of Z, and
d
= denotes equality in distribution. For given

α, the distribution of Z is called symmetric α-stable if it equals the distribution of

−Z, and in this case its probability density function (PDF) can be expressed as the

improper integral
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fα,γ
Z (z) =

1

π

∞
∫

0

exp(−γqα) cos (qz) dq, 0 < α ≤ 2 (1)

The parameter α is known as the index of stability, or characteristic exponent, of the

distribution, while γ is a scale factor (γ > 0). For α = 2, α = 1 and α = 1/2, the

Gauss, Cauchy and Lévy distributions are obtained, respectively.

Humbert [5] discusses the problem of representing the derivative of e−qα

as

a Laplace integral. His result leads to the following expression for fα,γ
Z (z):

fα,γ
Z (z) = −

1

π

N
∑

k=1

(−1)
k

k!

Γ (αk + 1)

zαk+1
sin

(

kπα

2

)

+ R(z) (2)

where Γ(z) is the gamma function and R(z) = O
(

z−α(N+1)−1
)

. From (2), one can

obtain the two-term asymptotic approximation of a symmetric stable PDF for large

z as a function of the parameter α,

fα,γ
Z (z) ≈

Γ (1 + α) sin(πα/2)

πz1+α
−

Γ (1 + 2α) sin(πα)

πz1+2α
(3)

For more details about stable distributions we refer to [6, 13].

3. Computer generation of symmetric α-stable random variables

While the work of Chambers et al. [4] describes a method for generation of

α-stable random variables with general distributions that may include skewness, a

different approach valid for the symmetric α-stable case was taken by Mantegna [9].

The latter results in an algorithm allowing the generation of a random variable Z

whose probability density is arbitrarily close to the PDF (1) for 0.3 ≤ α ≤ 1.99. The

main idea stems from the generalized central limit theorem: the sum of independent

random variables having the same symmetric α-stable distribution will eventually

converge to a random variable characterized by the same law. Given α, consider the

random variable

V =
X

|Y |
1/α

, (4)

where X and Y are two normal random variables with standard deviation σx and

σy, respectively. One can then choose these values such that the probability density

function of V , fV (v) matches the exact PDF fα,1
Z (z) in the origin and for large values
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of z. To obtain better results, one can then generate a number of independent copies

of V , say V1, V2, . . . , Vn, and use the central limit theorem to construct

Z̃ =
1

n1/α

n
∑

k=1

Vk. (5)

The random variable Z̃ may be expected to converge to a symmetric α-stable random

variable. Because the convergence is quite slow, i.e. one needs a relatively large

n in equation (5), Mantegna introduced a nonlinear transformation which gives an

exponential tilt to the distribution of the random variable V by defining a new random

variable,

W = {[K (α) − 1] [exp (− |V | /C (α))] + 1}V, (6)

with parameters K (α) and C (α) determined by requiring

P (W = 0) = fα,1
Z (0) (7)

and respectively

P [W = W (C(α))] = fα,1
Z [W (C(α))] . (8)

A fast convergence toward a stable random variable is then obtained by constructing

Z̃ =
1

n1/α

n
∑

k=1

Wk, (9)

instead of (5). Note that the cost of Mantegna’s algorithm depends on the number n

of samples of the random variable W used in equation (9). Larger values of n make

the algorithm more accurate at the price of generating many copies of W , each of

which requires two samples from a normal distribution.

4. High-Order Algorithm Using Independent Samples

In the following, we propose a new algorithm for the numerical generation of a

symmetric α-stable random variable which has the same starting point as Mantegna’s

algorithm [9], but is much faster for comparable accuracy. Note that one can set γ = 1

for simplicity, since rescaling of the generated random variable is straightforward.

First, consider equation (2) with N = 2 and γ = 1 and let us compute

V1 =
X1

|Y1|
1/α

and V2 =
X2

|Y2|
1/2α

, (10)
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where X1, X2, Y1, Y2 are four independent normal random variables with standard

deviation σx1
, σx2

, σy1
, σy

2
respectively. Using the method of transformations for the

bivariate case, see e.g. [12], the probability densities of the continuous variables V1

and V2 can be found to be

fV1
(v1) = 1

πσx1
σy1

∞
∫

0

y1/α exp
[

− y2

2σ2
y1

−
v2
1y2/α

2σ2
x1

]

dy,

fV2
(v2) = 1

πσx2
σy2

∞
∫

0

y1/2α exp
[

− y2

2σ2
y2

−
v2
2y1/α

2σ2
x2

]

dy,

(11)

For large arguments, the above probability densities are very well described

by the asymptotic approximation

fV1
(v1 ≫ 0) ≈

α2
(α−1)/2σα

x1
Γ((α+1)/2)

πσy1
vα+1

1

,

fV2
(v2 ≫ 0) ≈

α2
(2α+1)/2σ2α

x2
Γ((2α+1)/2)

πσy2
v2α+1

2

(12)

and in the origin

fV1
(0) =

2
(1−α)/2ασ

1/α

y1
Γ((α+1)/2α)

πσx1

,

fV2
(0) =

2
(1−2α)/4ασ1/2α

y2
Γ((2α+1)/4α)

πσx2

.

(13)

The second step in our algorithm is to compute another random variable V

given by

V = V1 + V2. (14)

The density of the sum of two independent continuous random variables is the con-

volution of their individual densities. Considering, without loss of generality, the

particular case where σy1
= σy

2
= 1, it follows then [12] that the probability density

of the random variable V is given by

fV (v) ≈
∞
∫

−∞

[

∞
∫

0

1

πσx1

s
1
α exp

(

− s2

2
− t2

2σx1

s
2
α

)

ds

]

·

·

[

∞
∫

0

1

πσx2

s
1
2α exp

(

− s2

2
−

(v−t)2

2σx2

s
1
α

)

ds

]

dt

(15)
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hence its value at the origin is

fV (0) =
∞
∫

−∞

[

∞
∫

0

1

πσx1

s
1
α exp

(

− s2

2
− t2

2σx1

s
2
α

)

ds

]

·

·

[

∞
∫

0

1

πσx2

s
1
2α exp

(

− s2

2
− t2

2σx2

s
1
α

)

ds

]

dt

(16)

We now obtain values for σx1
and σx2

such that the following conditions are

satisfied simultaneously for a given value of α:

• The approximate PDF matches the exact one in the origin,

fα,1
Z (0) = fV (0) (17)

• The least-squares error in the approximate PDF is minimized over a

bounded interval [−L, L]:

F (σx1
, σx2

) =

L
∫

−L

[fα,1
Z (z) − fV (z)]2dz = min . (18)

From these conditions one obtains a system of equations that can be solved numeri-

cally for the values of σx1
, σx2

once α and a value for L are specified.

5. High-Order Algorithm Using Dependency

Another approach which is less computationally expensive but involves some

tedious, albeit straightforward algebraic manipulation, is to reduce the number of

independent normal variables generated in the high-order algorithm. This can be

done as follows. Note that in (10) four independent normal random variables are used,

although there are only two free unknowns. To further reduce the computational cost,

let (10) hold for X1 = X2 = X and Y1 = Y2 = Y , where X, Y are two independent

normal random variables with standard deviation σx, σy respectively. Hence (10) is

equivalent to

V1 =
X

|Y |
1/α

and V2 =
X

|Y |
1/2α

. (19)

With this choice, the random variables V1 and V2 are dependent, and the joint density

of V1 and V2 becomes more difficult to evaluate. The method of transformations [12]

for the bivariate case will be used again to compute the probability density function
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fV1,V2
(v1, v2) of (V1, V2).

Let g(x, y) =
(

x
|y|1/α , x

|y|1/2α

)

= (v1, v2). Note that

g−1(v1, v2) =

(

v2

2

v1

,

(

v2

v1

)2α
)

=

(

x2

|y|1/α
·
|y|1/α

x
,
x2α

|y|
·
|y|2

x2α

)

= (x, |y|).

Therefore, g−1(v1, v2) =

(

v2
2

v1
,
(

v2

v1

)2α
)

. The absolute value of the determinant of the

Jacobian Jg−1 is given by

|Jg−1 (v1, v2)| = abs

∣

∣

∣

∣

∣

∣

∂x
∂v1

∂x
∂v2

∂y
∂v1

∂y
∂v2

∣

∣

∣

∣

∣

∣

= abs

∣

∣

∣

∣

∣

∣

−
v2
2

v2
1

2 v2

v1

v2α
2 (−2αv−2α−1

1
) 2αv2α−1

2
v−2α
1

∣

∣

∣

∣

∣

∣

= |(−2αv2α+1

2
v−2α−2

1
+ 4αv2α+1

2
v−2α−2

1
| = 2α|(v2α+1

2
v−2α−2

1
)|.

Hence, the probability density function fV1,V2
(v1, v2) of (V1, V2) is given by

fV1,V2
(v1, v2) = 2α|v2α+1

2
v−2α−2

1
|[fX(

v2

2

v1

)fY ((
v2

v1

)2α) + fX(
v2

2

v1

)fY (−(
v2

v1

)2α)].

Next, let {V } to be another random variable given by

V = V1 + V2. (20)

The probability density function of the random variable V is given by (see [12])

fV (v) =
∞
∫

−∞

fV1,V2
(w, v − w)dw

= 4α 1

2πσxσy

∞
∫

−∞

|(v − w)2α+1w−2α−2| exp
(

− 1

2σ2
x

(v−w)
4

w2 − 1

2σ2
y

(v−w)
4α

w4α

)

dw.

(21)

In order to obtain values for σx and σy for a given value of α, one can again impose

conditions similar to those stated in equations (17) and (18). Lastly, let us note

that this use of dependent variables reduces the cost of the algorithm in the previous

section by a factor of two.

6. Numerical tests

Table 1 gives a sample set of values obtained for the two parameters σx1
and

σx2
(independent case) as a function of α, with the choice L = 10.
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α σx1
(α) σx2

(α)

0.7 0.880 0.002

0.8 0.930 0.001

0.9 0.971 0.000

1 1 0.027

1.1 0.951 0.215

1.2 0.855 0.410

1.3 0.800 0.523

1.4 0.729 0.645

1.5 0.610 0.800

1.6 0.396 1.008

1.7 0.280 1.100

1.8 0.110 1.200

1.9 0.001 1.231

Table 1. Values obtained for the parameters σx1
and σx2

as a func-

tion of α.

Probability density functions obtained numerically by the proposed algo-

rithms, as well as by the algorithm due to Mantegna for both n = 1 and n = 10

in equation (9) are compared with the exact density in figures 1 and 2 for α = 1.7

and α = 1.3, respectively. For completeness, we also include results obtained with

the corrected version of the algorithm due to Chambers et al. [4, 13]. In these figures

the dashed lines are the result of the simulation (histograms based on 106 samples),

while the continuous line is the exact Lévy stable distribution, computed from the

integral form evaluated with 20 decimal digits in the symbolic computation package

Maple, see http://www.maplesoft.com. The L2 error in the numerically generated

probability distributions as a function of α, again based on 106 samples, is given in

figure 3, with the actual CPU time needed shown in figure 4. As can be seen, under

this measure, our algorithm offers an accuracy comparable to Mantegna’s method

with n = 10 for a much smaller computational cost.
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Figure 1. Exact and approximate Lévy density with

N = 1, 000, 000 samples for α = 1.7.

(a) Mantegna (n = 1)

(b) Mantegna (n = 10)

(c) Chambers et al. (d) Present
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Figure 2. Exact and approximate Lévy density with

N = 1, 000, 000 samples for α = 1.3.

(a) Mantegna (n = 1)

(b) Mantegna (n = 10)

(c) Chambers et al.

(d) Present
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Figure 3. L2 error as a function of α for Mantegna

(n = 1 and n = 10), Chambers, and the proposed algorithm.
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Figure 4. CPU time required for 106 samples using Mantegna’s

method (n = 1 and n = 10), Chambers, and the proposed algorithm.

116



GENERATION OF STABLE RANDOM VARIABLES

References

[1] Bergström, H., On some expansions of stable distribution functions, Arkiv För Matem-

atik, Band 2, nr. 18, (1952), pp. 375-378.

[2] Brown, G.W., Tukey, J.W., emphSome distribution of Sample Means, The Annals of

Mathematical Statistics, Vol. 17, No. 1 (1946), pp. 1-12.

[3] Brown, R.J., Private Real Estate Investment: Data Analysis and Decision Making,

Academic Press/Elsevier (2004).

[4] Chambers, J.M., Mallows, C.L., Stuck, B.W., A method for Simulating Stable Random

Variables, Journal of the American Statistical Association, Vol. 71, No. 354 (1976), pp.

340-344.

[5] Humbert, P., Nouvelles correspondances symboliques, Bull. Soc. Math. France, Vol. 69,

(1945), pp. 121-129.

[6] Janicki, A., Numerical and statistical approximation of stochastic differential equations

with non-Gaussian measures, Wroclaw, 1996.
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COMPARATIVE STUDY BETWEEN LEMKE’S METHOD AND THE
INTERIOR POINT METHOD FOR THE MONOTONE LINEAR

COMPLEMENTARY PROBLEM

ADNAN YASSINE

Abstract. In this paper, we present two different methods in order to

solve a monotone linear complementarity problem (LCP ): a simplicial

method (Lemke’s method) related to the Jordan’s pivot and the interior

point method based on the central path. We demonstrate that a quadratic

convex program (QCP ) can be written as a (LCP ) form and, thus, be

solved by means of one of these two methods. We provide numerical sim-

ulations as well as experimental and comparative results regarding these

two methods.

1. Introduction

The introduction of the polynomial-time interior point algorithm in linear

programs by Karmarkar in 1984, has led many authors to generalise this algorithm

in order to solve non-linear optimization problems. Successive works were devoted to

solving the (LCP ) by means of interior point methods (Kojima, Mizuno and Yoshise

[5,6], Gonzaga [4], Bonnans, Gilbert and Lemarechal [2],...). Apparently, these authors

were unaware of a long-time existing tool able to solve the problem (LCP ): the

Lemke’s method, which is based on the principle of the simplex method introduced

by Dantzig in 1951. This method converges with a finite number of iterations when the

problem admits a solution. In the literature, we know that the interior point methods

are very fast and more effective than the methods based on the pivot and especially if

Received by the editors: 15.01.2007.
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the problem is of big dimension. This result is completely true if we know the starting

point x0, but in the opposite case (that is if we do not know the initial point x0),

the determination of x0 by the interior point methods represents an inconvenience

for these methods and makes them slow with regard to other algorithms. As it is

well-known, though the interior point methods are robust and rapid, their major

disadvantage is the determination of the initial point. Nevertheless, when a starting

point is given, these methods prove to be the best, with a very fast convergence.

In this paper, we show that, in the particular cases of unknown starting

points, their determination delays significantly the interior point methods and some-

times turns them slower than other classical approaches, when solving a convex qua-

dratic problem. Our study also rivals that the evaluation of the starting point with

Kojima’s approach is expensive, and has been found to slower than Lemke’s swivel-

ling method, which is a simplicial method as pointed out in the literature (e.g. [1],

[7]). We still underline that the interior point method is the best, faster than Lemk’s

method when the starting point is known.

This paper presents the two methods and well as comparative numerical

simulations in order to show the importance (from theoretical and practical points of

view) of the Lemke’s method stability, efficiency and the longevity regarding interior

points algorithms.

In the present paper, we are concerned by solving two important problems of

non-linear optimisation:

1. The monotone linear complementarity problem (LCP )

(LCP ) consists in finding two vectors (x, z) ∈ Rn ×Rn such that

z = Mx + q (1)

x > 0, z > 0 (2)

< x, z >= 0 (3)

where M ∈ Rn×n and < x, z > denotes the scalar product of two vectors

x and z.
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2. The Quadratic Convex Program (QCP )

(QCP ) : Min

{
f(x) =

1
2

< Cx, x > + < d, x >: Ax 6 b

}

where C ∈ Rn×n is symmetric, positive semidefinite matrix, d ∈ Rn, A ∈

Rm×n and b ∈ Rm.

In Section 2, we present Lemke’s method, a simplicial method known in the

literature for solving (LCP ) (Bazaraa, Sherali and Shetty [1], Yassine [7]). We pro-

vide the corresponding algorithm and his convergence theorem. The interior point

algorithm based on the central path and its convergence properties for solving (LCP )

are provided in Section 3. In Section 4, we give the transforming techniques for a qua-

dratic convex program into (LCP ) using the optimality conditions of Kuhn Tucker.

Section 5 is dedicated to high-dimension numerical simulations and comparisons be-

tween numerical predictions of the two methods.

2. Lemke’s method

2.1. Preliminaries. Let xi (resp. zi) be the component number i of vector x (resp.

z). The component xi (resp. zi) is said basic variable if xi > 0 (resp. zi > 0). If xi

(resp zi) is out of base (non-basic variable), then inevitably xi = 0 (resp. zi = 0).

Definition 2.1. A solution (x, z) of (LCP ) is said feasible-complementarity solution,

if it verifies the two following conditions:

• (x, z) is a feasible solution of (1) and (2)

• one and only one component of (xi, zi) is a basic variable for i = 1, ..., n.

We notice that if q > 0, then (x, z) = (0, q) is a solution of (LCP ). On the

opposite, (∃i ∈ {1, ..., n} such that qi < 0), we introduce the column vector e the

components of which are equal to 1, and an artificial variable z0 initialized as:

z0 = max{−qi : 1 6 i 6 n}.
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We consider the new system defined by: Find (x, z, z0) ∈ Rn × Rn × R such

that

(P ′) :


z −Mx− ez0 = 0 (4)

x > 0, z > 0, z0 > 0 (5)

< x, z >= 0. (6)

We notice that x = 0 and z = q + ez0 is a feasible-complementarity solution

of (P ′).

Definition 2.2. (x, z, z0) is said feasible-almost-complementarity of (P ′) if it verifies

the three following conditions:

• (x, z, z0) is a feasible solution of (4) and (5)

• ∃s ∈ {1, ..., n} such that xs and zs are out of basis (xs = zs = 0)

• z0 is a basic variable, and ∀i 6= s, xi or zi is a basic variable.

Remark 2.1. In entering xs or zs in the base, we obtain an adjacent feasible-almost-

complementarity solution. Then, each feasible-almost-complementarity solution ad-

mits two adjacent solutions, one when entering as xs in the basis and the other when

entering as zs.

2.2. Lemke’s algorithm (ALGI). Initialisation stage. If q > 0, we stop:

(x, z) = (0, q) is a solution of (LCP ). Else, we introduce the artificial variable z0, we

represent the problem (P ′) through a table and then, we choose

qs = min{qi : 1 6 i 6 n}.

We update the table by pivoting the line s and the column of z0, zs leaves

the base and z0 enters it, then z0 and zi (for i=1,...,n and i 6= s) are positive (basic

variables). Let us put ys = xs and go to the main stage.

Main stage: This stage is divided into three phases:

Phase 1: Let ds the column which corresponds to the variable ys in the

current table. If ds = 0, we stop: (LCP ) admits no solution. Else, we

determine an index r such that:

q∗r
ds

r

= Min

{
q∗i
ds

i

: ds
i > 0 ∀i = 1, ..., n

}
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(the vector q∗ designates the second member column).

If the basic variable of the line r is z0, then go to Phase 3, else go

to Phase 2.

Phase 2: The basic variable of the line r is, either xk, or zk for some k 6= s.

The variable ys enters the base and the table will define itself

through the pivot of the line r and the column of ys. If the variable, which

has left the base, is zk (resp. xk), we put ys = xk (resp. zk) and return to

Phase 1.

Phase 3: We pivot between the column of ys and the line of z0. Then, z0

leaves the base and ys enters it. We obtain a solution of (LCP ).

2.3. Convergence of Lemke’s method. Let M ∈ Rn×n be a n × n symmetric

matrix and x ∈ Rn be a n-dimensional real vector.

Definition 2.3. 1. M is said copositive if and only if ∀x > 0, xtMx > 0

2. M is said strictly copositive if and only if ∀x > 0, x 6= 0 =⇒ xtMx > 0

3. M is said copositive plus if and only if it verifies the two following condi-

tions:

(i): M is copositive

(ii): x > 0 and xtMx = 0 =⇒ (M + M t)x = 0.

If M is symmetric, the property (ii) becomes:

(ii) x > 0 and xtMx = 0 =⇒Mx = 0.

Theorem 2.1. ([1]) We suppose that each feasible-almost-complementarity solution

of (P ′), is non-degenerated (each basic variable is strictly positive) and that the matrix

M is copositive plus, then the algorithm (ALG1) stops after a finite number of itera-

tions. If the system defined by (1) and (2) is consistent, then the algorithm (ALGI)

stops with an optimal solution of (LCP ), else, we notice that the problem (LCP )

admits no solution.
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Corollary 2.1. If the matrix M admits positive elements and if the diagonal elements

are strictly positive, then the algorithm stops with a feasible complementary basic

solution.

3. Interior point algorithm

3.1. Introduction. We consider the monotone linear complementarity problem as a

standard given by (1), (2) and (3). The set of all the feasible solutions is defined by:

S = {(x, z) ∈ R2n : z = Mx + q, x > 0, z > 0}

and its relative interior

Sint = {(x, z) ∈ S : x > 0, z > 0}.

Then, we suppose that the two following hypotheses are satisfied:

(H1): M is positive semidefinite

(H2): Sint 6= Ø.

The size of problem (LCP ) is defined by ([5]):

L = E

 n∑
i=1

n+1∑
j=1

log(|Mij |+ 1) + log(n2)

+ 1

where M = [M q] and E(u) is the largest integer, not greater than u ∈ R+.

Let H : R+ × R2n
+ → Rn × Rn

(µ, x, z) → H(µ, x, z) = (xz − µe, z −Mx− q)

for every µ > 0 and (x, z) ∈ R2n
+ , we consider the following system of equations:

H(µ, x, z) = 0. (7)

It is obvious that (x, z) is a solution of (LCP ) if and only if it is a solution

of the system (7) for µ = 0. The Newton direction at (x, z) is defined as a solution

(dx, dz) of the system of linear equations: Zdx + Xdz = −xz + µe

dz = Mdx

(8)
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where X = diag(x1, x2, ..., xn) and Z = diag(z1, z2, ..., zn).

By a simple calculation, we obtain: (M + X−1Z)dx = Ze + µX−1e

dz = Mdx.
(9)

Then the new point (x, z) will be given by:

(x, z) = (x + dx, z + dz). (10)

We can easily verify that:

z = Mx + q for any (x, z) ∈ S and any µ > 0. (11)

3.2. Centralisation measures. Note that Scen is the central trajectory of (LCP ):

Scen = {(x, z) ∈ R2n
+ : H(µ, x, z) = 0 for µ > 0}

= {(x, z) ∈ Sint : xz = µe for µ > 0}.

Proposition 3.1. ([5]) If Sint 6= ∅, the system (7) admits a unique solution called

associated center to µ, for every µ > 0.

The algorithms of central trajectory generate a sequence of points (xµ, zµ)

verifying the following system:
z = Mx + q

xz = µe

x > 0 and z > 0.

(12)

In tending µ to 0, (xµ, zµ) tends to a solution (x∗, z∗) of (LCP ) which is

located at the extremity of the central trajectory.

To control the non-linearity of xz, successive points are imposed to stay in

the central trajectory neighbourhood. To evaluate deviation (x, z) ∈ Sint of each

point for the central trajectory, we define a centralisation measure:

δ(x, z) = Min{‖H(µ, x, z)‖ : µ ≥ 0} = Min{‖xz − µe‖ : µ ≥ 0}

= Min

{
xz − (

xtz

n
)e : µ ≥ 0

}
.
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For every point (x, z) ∈ Sint, we get: (x, z) ∈ Sint ⇐⇒ δ(x, z) = 0.

Definition 3.1. Let α > 0. We call α-center neighbourhood, the set

Sα = {(x, z) ∈ Sint : δ(x, z) ≤ xtz

n
α}.

Theorem 3.1. ([5]) Let 0 < α < 0.1 and δ = α
1−α . We assume that (x, z) ∈ Sα and

µ = (1− δ√
(n)

)xtz
n then (x, z), given by (10), verifies:

(x, z) ∈ Sα (13)

(xtz) ≤

(
1− δ

6
√

(n)

)
xtz. (14)

3.3. Interior point algorithm (ALG2).

Initialisation: (see Appendix 1): Let 0 < α < 0.1 and δ = α
1−α .

We suppose that the initial point (x1, z1) ∈ Sint are known, such that

δ(x1, z1) ≤ (x1)tz1

n
α and (x1)tz1 ≤ 20(L), k = 1.

Stage 1: If (xk)tzk ≤ 2−2L, we stop: (x∗, z∗) = (xk, zk) is a solution of

(LCP )

Stage 2: µ = (1− δ√
(n)

) (xk)tzk

n and (x, z) = (xk, zk).

Stage 3: We determine the Newton’s direction (dx, dz) defined by (9) and

(xk+1, zk+1) = (x, z) defined by (10).k ←− k + 1 and return to Stage 1.

Theorem 3.2. ([5,6]) The algorithm (ALG2) generates a sequence (xk, zk) verifying:

(xk, zk) ∈ Sα and (xk+1, zk+1) ≤ (1 − δ

6
√

(n)
)(xk)tzk for k = 1, ..., The

sequence (xk, zk) converges to (x∗, z∗) solution of (LCP ) after, at the most, O(n0.5L)

iterations.

4. Transformation of a convex quadratic program into a monotone linear

complementarity problem

In this paragraph, we firstly present the transformation of convex quadratic

program (based on the optimality conditions of Kuhn Tucker) into a complementarity

linear problem. We distinguish the two following cases, may there be or not positivity

constraints of the variable x components. We also provide the conditions ensuring
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the convergence of Lemke’s algorithm for the solving of these monotone linear com-

plementarity problems.

4.1. Transformation with positivity constraints. Let us consider the following

problem:

(QCP1) : Min{f(x) =
1
2

< x,Cx > + < d, x > : Ax ≤ b, x ≥ 0}

where C ∈ Rn×n is symmetric, positive definite; A ∈ Rm×n; x, d ∈ Rn and b ∈ Rm.

The conditions of Kuhn Tucker’s related to the problem (QCP1) are written

as follows:

x is a solution of (QCP1) if and only if there exists u ∈ Rm and v ∈ Rn such that

(∗) :


Cx + d + Atu− v = 0

< u, b−Ax >=< v, x >= 0

Ax ≤ b, x ≥ 0, u ≥ 0, v ≥ 0.

Let

q =

 b

d

 ∈ Rn+m, z =

 u

x

 ∈ Rn+m and M =

 0 −A

At C

 ∈ R(n+m)×(n+m).

It is readily verified that the quadratic program solving (QCP1) is equivalent

for solving the following linear complementarity problem:

(LCP1) : Find z ∈ R(n+m) such that : z ≥ 0,Mz + q ≥ 0 and zt(Mz + q) = 0.

Theorem 4.1. If C is symmetric, positive definite, then M is copositive plus and

Lemke’s algorithm converges to a solution of (LCP ).

Proof. Let z =

 x

y

 ≥ 0 where x ∈ Rm and y ∈ Rn, then zt = [xt yt] ≥ 0.

ztMz = [xt yt].

 0 −A

At C

 .

 x

y

 = ytCy.

z ≥ 0 =⇒ y ≥ 0 =⇒ yt.C.y ≥ 0 (by assumption, C is symmetric, positive

definite) =⇒ zt.M.z ≥ 0 =⇒M is copositive.
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We have, moreover, M + M t =

 0 0

0 2C

 =⇒ (M + M t)z = 2Cy, then,

zt.M.z = 0 =⇒ yt.C.y = 0 =⇒ C.y = 0 =⇒ (M + M t).z = 0 =⇒ M is copositive

plus.

According to Theorem 2.1, ALG1 converges to a solution of (LCP ). �

4.2. No-constraint transformation of positivity. Considering the following

problem:

(QCP2) : Min{f(x) =
1
2

< x,Cx > + < d, x > : Ax ≤ b

where C ∈ Rn×n symmetric, positive definite; A ∈ Rm×n; x, d ∈ Rn and b ∈ Rm.

Kuhn Tucker’s optimality conditions related to the problem (QCP2) are writ-

ten:

x is a solution of (QCP2) if and only if there exists u ∈ Rm such that

(∗∗) :


Cx + d + Atu = 0

< u, b−Ax >= 0

Ax ≤ b, u ≥ 0

which are equivalent in solving the following LCP :

(LCP2) : Find u ∈ Rm such that : u ≥ 0,Mu + q ≥ 0 and < u,Mu + q >= 0

where M = AC−1At and q = AC−1d + b.

Remark 4.1. • u∗ is a solution of the problem LCP2 if and only if x∗ =

(−C−1Atu∗ − C−1d) is a solution of the problem (QCP2).

• Given that M = M t = AC−1At is positive definite, Lemke’s algorithm

leads to a solution of (LCP2) (then of (QCP2)) or concludes on the vacuity

of the solution set of (LCP2) (consequently that of (QCP2)).

• In case 4.2., the transformation requires that C is positive definite. More-

over, applying Lemke’s algorithm needs to calculate C−1. These are the

drawbacks when solving (QCP2) through Lemke’s algorithm.
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• In case 4.1., such drawbacks do not exist. On the opposite, we have to

work in Rn+m (instead of Rm in 4.2.). Lemke’s algorithm would be more

expensive when n is quite big.

5. Numerical experiments

In this section, we present the comparative numerical results between the two

methods for the (LCP ) problem. The numerical simulations are applied to quadratic

problems. In our numerical applications, the matrix C is always definite positive

(chosen in a random way) to ensure the convergence of Lemke’s method. In the Table

I, the first column represents the problem dimension (M ∈ Rn×n and q ∈ Rn), the

second provides (resp. the third) the CPU calculation time in seconds for the Lemke’s

method to be carried out (resp. interior point algorithm).

N Lemke Interior Point

10 5 23

20 8 34

50 14 56

100 32 148

200 74 289

400 126 518

500 159 665

1000 334 875
Table I. Calculation time of two methods (in seconds).

According to the numerical results, the following remarks can be make:

• Lemke’s method efficiency, stability and robustness compared with the

interior point method, should be underlined.

• The interior point method becomes low for too small values of α (see

Section 3.3.) (lower than 0.01) or too big (upper than 0.08).

• Interior point method difficulty lies in the determination of the initial point

x0 (initial stage).
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• In some cases, and for a fixed value of α, the interior point method diverges

leading to change the α value in order to obtain convergence on an optimal

solution. This numerical instability does not exist in Lemke’s method.

N Interior Point method by knowing the initial point x0

10 1

20 2

50 4

100 9

200 16

400 31

500 42

1000 78
Table II. Calculation time (in second) of the Interior Point Method by Knowing x0.

The result of the table (Table II.) show clearly that if we know x0 then the

interior point method is much faster and more effective than the Lemkes’ method.

Appendix 1

Initialisation. Let

M ′ =

 0 −et

e M

 ∈ R(n+1)×(n+1) and q′ = [q0 q] ∈ R(n+1)

where

q0 =
2L∗.(n + 1)

n2
, L∗ =

n∑
i=1

n+1∑
j=1

log(|Mij |+ 1) + log(n2)) and M = [M q].

We consider the following LCP :

(LCP ′) :


z′ = M ′x′ + q′

x′z′ = 0

(x′, z′) ≥ 0

where (x′, z′) = (x0, x, z0, z) ∈ R2(n+1)
+ .
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Assumptions (H1) and (H2), its size is:

L′ = E(
n+1∑
i=1

n+2∑
j=1

log(|M̃ij |+ 1) + log((n + 1)2)) + 1

where M̃ = [M ′ q′]. Putting

x1
0 = 22L∗, x1 = (

2L∗
n2

).e, z1
0 = x1

0.e + Mx1 + q = 22L∗.e + (
2L∗
n2

).Me + q

x′1 = (x1
0, x

1) and z′1 = (z1
0 , z1)

We denote by S′, S′int, S
′
cen, S′α, the solutions set of (LCP ′), its relative inte-

rior, its central trajectory and its α-center neighbourhood, respectively.

Lemme 5.1. ([5])

1.

0 < (
15
16

.22L∗.e) ≤ 22L∗.(1− 1
n4

).e ≤ z1 ≤ 22L∗.(1 +
1
n4

)e ≤ (
17
16

.22L∗).e

2.

(x′1, z′1) ∈ S′int.

Lemme 5.2. ([5])

1.

(x′1)tz′1 ≤ 22L ≤ 22L′

2.

(x′1, z′1) ∈ S′0.1.

Theorem 5.1. ([5]) Suppose that the (LCP ) has a solution. Then x0 = 0 for any

solution (x0, x, z0, z) of the (LCP ′).

According to Theorem 5.1, (x′1, z′1) can be useful as an initial point to the

algorithm (ALG2). We calculate the solution (x0, x, z0, z) of (LCP ′) such that xtz <

2−2L′
.

If x0 = 0 then (x, z) is a solution of (LCP ), else the above-mentioned theorem

ensures that (LCP ) admits no solution.
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BOOK REVIEWS

C. E. Silva, Invitation to ergodic theory , Student Mathematical Library, Vol.
42, American Mathematical Society, Providence, Rhode Island 2008, ix+262 pp,
ISBN: 978-0-8218-4420-5

The ergodic theory, started in 1931 by John von Neumann and G. D. Birkhoff,
has its origins in the statistical physics of Boltzmann. The present book is intended
to be an introduction to ergodic theory and covers topics as recurrence, ergodicity,
the ergodic theorems and mixing. In order to make the book as self-contained as pos-
sible, measure theory is developed as needed in Chapters 2, Lebesgue measure, and 4,
The Lebesgue integral, including an introduction to measure spaces, Carathéodori ex-
tension theorem, Lebesgue dominated convergence theorem and the Lebesgue spaces
Lp.

The study of ergodic theory begins in Chapter 3, Recurrence and ergodic-
ity, with the classical example of baker’s transformation, doubling maps, measure-
preserving transformations, ergodic transformations.

Chapter 5, The ergodic theorem, is devoted to the proof of Birkhoff’s ergodic
theorem (in fact, two proofs of this important result are given) and of the maximal
ergodic theorem in L1 and in Lp.

Chapter 6, Mixing notions, is concerned with the important notion of mixing,
meaning that limn→∞ µ(T−n(A)∩B) = µ(A)µ(B), for all A,B ∈ S, where (X,S, µ) is
a probability measure space and T : X → X is a measure-preserving transformation.
The notion of weak-mixing, meaning that

lim
n→∞

1
n

n−1∑
i=0

|µ(T−i(A) ∩B)− µ(A)µ(B)| = 0,

is also studied.
A word must be said about the numerous examples from physics, biology, and

mathematics included in the book. I do mention the nice treatment of Weyl’s result
on the equidistribution of numbers, with references to some results of Furstenberg on
the Szemeredi theorem and the recent solution by Green and Tao of the 300-year old
problem on the existence of arithmetic progressions of arbitrary length in the primes.

There are also problems and exercises completing the main text and some
open questions, suggesting possible topics for further research by the reader, are
included.

The book is well written and can be used for an introductory course in mea-
sure theory or in ergodic theory, or for self-study.

S. Cobzaş
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BOOK REVIEWS

Massimiliano Berti, Nonlinear oscillations of Hamiltonian PDEs, Progress
in Nonlinear Differential Equations and Their Applications, Vol. 74, Series Editor:
Haim Brezis, Birkhäuser Verlag, Basel-Boston-Berlin, 2007, x+235 pp; ISBN- 13:
978-0-8176-4680-6, e-ISBN-13: 978-0-8176-4681-3.

In the study of complex dynamical systems, the simplest invariant manifolds
are the equilibria and, next, the periodic orbits. The relevance of periodic solu-
tions for understanding the dynamics of a finite-dimensional Hamiltonian system was
highlighted at the end of the 19th century by H. Poincaré in his famous treatise on
Celestial Mechanics. In spite of the fact that the set of periodic orbits has measure
zero, their study is important due to the possibility, conjectured by Poincaré, of ap-
proximating arbitrarily well in long time any solution of a Hamiltonian equation by
periodic solutions (with very long periods). This conjecture motivated the systematic
study of periodic orbits, initiated by Poincaré and continued by the work of Lya-
punov, Birkhoff, Moser, Weinstein, and others. Great progress in the understanding
the complex orbit structure of Hamiltonian systems was made by Kolmogorov (1954),
Arnold (1963) and Moser (1962), leading to the so called KAM theory and to small
divisor theory as well.

The present book is concerned with bifurcation results of nonlinear oscilla-
tions of Hamiltonian PDEs of the form

(1) utt − uxx + a1(x)u = a2(x)u2 + a3(x)u3 + . . .

Previous results about this equations referred to the ”nonresonant” PDEs,
that is equation (1) with non identically null term a1(x). The term a1(x) allows to
verify suitable nonresonance conditions on the linear eigenfrequencies of the small
oscillations, and, further, the bifurcation equation is finite-dimensional.

The main concern of the present book is to present recent bifurcation results
for the completely nonresonant wave equation (1) with a1(x) ≡ 0. In this case infinite-
dimensional bifurcation phenomena appear jointly with small-divisor difficulties.

A good idea on the content is given by the headings of the chapters: 1. Finite
dimension; 2. Infinite dimension; 3. A tutorial in Nash-Moser theory; 4. Application
to the nonlinear wave equation; 5. Forced vibrations. There are also four appendices:
A. Hamiltonian PDEs; B. Critical point theory; C. Free vibrations of nonlinear wave
equations: A global result; D. Approximation of irrationals by rationals; E. The
Banach algebra property of Xσ,s.

The book is a good introduction to this fascinating and rapidly growing field
of investigation, closely related to fundamental problems in mechanics and physics. It
can be warmly recommended to graduate students and researchers desiring to work
in nonlinear Hamiltonian PDEs or in related domains (variational techniques, critical
point theory, small divisors).
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BOOK REVIEWS

Patrizia Pucci and James Serrin, The maximum principle , Progress in Non-
linear Differential Equations and Their Applications, Vol. 73, Series Editor: Haim
Brezis, Birkhäuser Verlag, Basel-Boston-Berlin, 2007, x+235 pp; ISBN: 978-3-7643-
8144-8, e-ISBN: 978-3-7643-8145-5.

The maximum principle gives information about solutions of differential equa-
tions and inequalities without their explicit knowledge, being valuable tools not only
for mathematicians but also for physicists, chemists, engineers, economists.

The maximum principle for elliptic partial differential equations has its origins
in the maximum principle for harmonic functions proved by Gauss in 1839 on the basis
of the mean value theorem. Extensions to elliptic equations and inequalities were
done only at the beginning of the 20th century by Bernstein (1904), Picard (1905)
and Lichtenstein (1912, 1924), with difficult proofs involving hard analysis tools as
well as regularity conditions for the coefficients in the highest order term. It was
Eberhard Hopf in 1927 who realized that the maximum principle can be obtained on
an elementary basis. The comparison technique he invented for this purpose generated
important applications in many directions. The remarkable simple proof given by
Hopf to the maximum principle is given as an Appendix to Chapter 2 of the book.

The aim of the present monograph is to give a clear and thorough presentation
of various maximum principles for second-order elliptic equations from their beginning
in linear theory to recent work on nonlinear equations.

The maximum principles are exposed in 6 chapters of the book: 2. Tan-
gency and comparison theorems for elliptic inequalities; 3. Maximum principles for
divergence structure elliptic differential inequalities; 4. Boundary value problems for
nonlinear ordinary differential equations; 5. The Strong Maximum Principle and the
Compact Support Principle; 6. Non-homogeneous divergence structure inequalities;
7. The Harnack inequality. The first chapter, Introduction and preliminaries, beside
some preliminary material and notation, contains the enounce of the Strong Maxi-
mum Principle and of the Compact Support Principle whose proofs are postponed to
Chapter 5.

The book is clearly written, with proofs given in detail, which, although
difficult, by the direct approach proposed by the authors are available to students
with a basic knowledge in real analysis (including Sobolev spaces), but avoiding more
advanced topics as linear operator theory, monotone operator theory, Orlicz-Sobolev
spaces, or viscosity solutions, used in other treatments of the subject.

The book can be used as a good introduction to recent results in this im-
portant area of research, with the possibility for the reader to attack open problems
waiting for solution.
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