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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LIII, Number 4, December 2008

OPTIMAL DYNAMIC PORTFOLIOS UNDER A TAIL

CONDITIONAL EXPECTATION CONSTRAINT

DANIEL AKUME
∗

AND GUY MERLIN MBAKOP

Abstract. We consider a portfolio problem when a tail conditional ex-

pectation constraint is imposed. The financial market is composed of n

risky assets driven by geometric Brownian motion and one risk-free asset.

The tail conditional expectation is derived, re-calculated at short intervals

of time and imposed continuously. The method of Lagrange multipliers is

combined with the Hamilton-Jacobi-Bellman equation to insert the con-

straint into the resolution framework. A numerical method is applied to

obtain an approximate solution to the problem. We find that the imposi-

tion of the tail conditional expectation constraint when risky assets evolve

following a log-normal distribution, curbs investment in the risky assets

and increases consumption.

1. Introduction

In recent years particular stress has been laid on the substitution of vari-

ance as a risk measure in the standard Markowitz [11] (1952) mean-variance problem.

Since it makes no distinction between positive and negative deviations from the mean,

variance is a good measure of risk only for distributions that are (approximately) sym-

metric around the mean such as the normal distribution or more generally, elliptical

distributions (see e.g., McNeil, Frey and Embrechts [12] (2004)). However, in most

cases such as in portfolios containing options, we are dealing with wealth distributions
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that are highly skewed. It is thus more reasonable to consider asymmetric risk mea-

sures since individuals are typically loss averse. In this regard, Value-at-Risk (VaR)

has emerged as the industry standard as regulatory authorities enforced the use of

VaR which is a downside risk measure (see, e.g., Jorion [9] (1997)).

Despite its widespread acceptance, VaR is known to possess unappealing fea-

tures. Artzner et al. [3] (1999) proposed an axiomatic foundation for risk measures,

by identifying four properties that a reasonable risk measure should satisfy and pro-

viding a characterization of the risk measures satisfying these properties, which they

called coherent risk measures. Tail conditional expectation (TCE) is one of such so-

called coherent risk measures (see Rockafellar and Uryasev [14] (2002)). Going by

these axioms, VaR is not coherent.

Our focus in this paper is the dynamic portfolio and consumption choice of a

trader subject to a risk limit specified in terms of TCE. Yiu [15] (2004) has successfully

controlled risky investment by imposing VaR as a dynamic constraint, with a model

that applies the VaR constraint over time and emphasizes the repeated re-calculations

of the VaR like in practice. He expresses the belief that other risk measures imposed

in the same way will achieve similar results. We close that gap here by experimenting

with the TCE constraint and extending the utility maximization to cover consumption

and terminal wealth. This problem has not yet received adequate attention in the

existing literature. We show through numerical simulations by applying an algorithm

similar to that in Yiu [15] (2004) that the introduction of a TCE constraint reduces

investment in risky assets and increases consumption.

The rest of this paper is structured as follows. In section 2, we model the

financial market and describe the portfolio dynamic. Section 3 derives the Value-at-

Risk and tail conditional expectation constraints, while section 4 makes precise the

optimal control problem to be solved. Section 5 develops the solution of the problem

by using the Lagrange technique to combine the Hamilton-Jacobi-Bellman (HJB)

equation and the TCE constraint. In section 6, a numerical algorithm is presented to

obtain an approximate solution to the TCE-constrained problem. Section 7 presents

simulations and section 8 concludes the paper.
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2. The model

We consider a standard Black-Scholes type market (see, e.g., Korn [10] (1997)

for relevant definitions) consisting of one riskless bond and n risky stocks. The finan-

cial market is continuous-time with a finite time horizon [0,T].

Uncertainty in the financial market is modeled by a probability space

(Ω,F ,P), equipped with a filtration that is a non-decreasing family F = (Ft)t∈[0,T ]

of sub-σ-fields of F

Fs ⊆ Ft ⊆ F ∀ 0 ≤ s < t < ∞.

It is assumed throughout this paper that all inequalities as well as equalities hold

P- almost surely. Moreover, it is assumed that all stated processes are well defined

without giving any regularity conditions ensuring this. The riskfree rate r = rt of the

riskless asset (bond) S0 is supposed to evolve according to

dS0
t = rS0

t dt, S0
0 = s. (1)

For the risky assets (stocks), for which the prices will be denoted by St =

(S1
t , . . . , Sn

t ) for some n ∈ N, the basic evolution model is that of a log-normal diffusion

process.

dSi
t

Si
t

= µidt +

k∑

j=1

σijdW
j
t (2)

Si
0 = si, i = 1, . . . , n ∀ t ∈ [0, T ],

where, for some k ∈ N, Wt = [W 1
t , . . . , W k

t ]′, with the symbol (′) standing

for transpose, is a k-dimensional Wiener process, i.e., a vector of k independent one-

dimensional Wiener processes.

The n-vector µ = µt = (µ1
t , . . . , µ

n
t )′, contains the expected instantaneous

rates of return and the n×k-matrix σ = σt = σ
ij
t , (i = 1, . . . , n, j = 1, . . . , k) measures

the instantaneous sensitivities of the risky asset prices with respect to exogenous

shocks so that the (n × n)-matrix σσ′ contains the variance and covariance rates of

instantaneous rates of return. µ and σ must be adapted to the information filtration

F = (Ft).
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An agent invests according to an investment strategy that can be described

by the (n + 1)-dimensional, Ft-predictable process

xt = (x0
t , x

1
t , . . . , x

n
t ), (3)

where xi
t, (i = 1, . . . , n) denotes the number of shares of asset i held in the portfolio

at time t (i = 0 refers to the bond). The process x describes an investor’s portfolio

as carried forward through time. The value of the investor’s wealth at time t is then

V x
t = x0

t S
0
t +

n∑

i=1

xi
tS

i
t, (4)

where xi
tS

i
t represents the amount invested in asset i at time t.

Equivalently, one may consider the vector

θt = (θ1
t , . . . , θn

t ),

where

θi
t =

xi
tS

i
t

V x
t

, (i = 1, . . . , n)

denotes the fraction of wealth invested in the risky asset i at time t.

Let therefore θi
t be the proportion of the investor’s wealth in the risky se-

curity i at time t, for i = 1 . . . n, with the remainder 1 −∑n
j=1 θi

t invested in the

risk-free asset. Let also ct be the instantaneous consumption rate. It is assumed

that θ1
t , . . . , θ

n
t and ct are admissible and Ft- adapted control processes. That is,

θi
t and ct are non-anticipative functions that satisfy the condition of bounded varia-

tion
∫ T

0

∑n
1=1(θ

i
t)

2 < ∞ and
∫ T

0
c2
t < ∞ respectively, for an investment time horizon

T < ∞. The corresponding portfolio value process reads

dV θ
t = V θ

t

[(
1 −

n∑

i=1

θi
t

)
dS0

t

S0
t

+

n∑

i=1

θi
t

dSi
t

Si
t

]
− ctdt, V θ

t = v

= V θ
t




(

r +

n∑

i=1

θi
t(µ

i − r)

)
dt +

n∑

i=1

k∑

j=1

θi
tσ

i,jdW
j
t



− ctdt, V θ
t = v. (5)

To have a better exposition, we adopt a matrix expression: denote σ = [σi,j ],

θt = [θ1
t . . . θn

t ]′, µ − r = [µ1 − r . . . µn − r]′ and Wt = [W 1
t . . . W k

t ]′, so that σ is an
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n×k matrix, µ−r and θt are n-dimensional column vectors and Wt is a k-dimensional

column vector. Hence equation (5) can be rewritten as

dV θ
t = V θ

t [(rt + θ′t(µt − r)) dt + θ′tσtdWt] − ctdt, V θ
t = v. (6)

Thus,

V θ
t =

(
1 −

n∑

i=1

θi
t

)
V θ

t +

n∑

i=1

θi
tV

θ
t . (7)

We have adopted an incomplete market asset pricing setting of He and Pear-

son [7] (1991). To eliminate redundant assets, we assume that σ is of full row rank-

that is, σσ′ is an invertible matrix.

3. The tail conditional expectation (TCE) constraint

Here we start by defining Value-at-risk since the subsequent definition of tail

conditional expectation will depend on it.

Definition 1. (Value-at-Risk)

Given some probability level α ∈ (0, 1), the time t wealth benchmark Υt and horizon

∆t, the Value-at-Risk of time t wealth Vt at the confidence level (1−α), denoted V aRα
t ,

is given by the smallest number L such that the probability that the loss Gt+∆t :=

Υt+∆t − Vt+∆t exceeds L is no larger than α.

V aRα
t = inf {L ≥ 0 : P(Gt+∆t ≥ L|Ft) ≤ α} := (Qα

t )−, (8)

where

Qα
t = sup

{
L ∈ R : P((V θ

t+∆t − Υt+∆t) ≤ L|Ft) ≤ α
}

(9)

is the quantile of the projected wealth surplus at the horizon t + ∆t and x− =

max[0,−x].

Thus V aRα
t = 0 for Qα

t > 0. V aRα
t is therefore the loss of wealth with

respect to a benchmark Υt+∆t at the horizon ∆t which could be exceeded only with

a small conditional probability α if the current portfolio θt were kept unchanged.

Typical values for the probability level α are α = 0.05 or α = 0.01. In market risk

management the time horizon ∆t is usually one or ten days.

7
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Proposition 1. (Computation of Value-at-Risk)

We have

V aRα
t = (Qα

t )− =
(
V θ

t exp
[
Φ−1(α)‖θ′tσ‖

√
∆t

+

(
θ′t(µ − r) + r − ct

V θ
t

− 1

2
‖θ′tσ‖2

)
∆t

]
− Υt+∆t

)−

, (10)

where Φ(·) and Φ−1(·) denote the normal distribution and the inverse distribution

functions respectively, and ‖ · ‖. stands for norm.

Proof. The distribution of wealth at time t + ∆t is approached by

V θ
t+∆t = V θ

t exp

[
(θ′t(µ − r) + r − ct

V θ
t

− 1

2
‖θ′tσ‖2)∆t + θ′tσ(Wt+∆t − Wt)

]
, (11)

This follows immediately from (6) and Itô’s Lemma (see Korn [10] (1997)),

if we consider that given a portfolio {θt, ct} and the associated portfolio value Vt at

time t, the random variable Vt+∆t(Vt, t) would be the future value of the portfolio at

time t + ∆t with the portfolio weights being kept constant between time t and time

t + ∆t.

In accordance with expression (9) on the definition of V aRα
t , we have

P
(
(V θ

t+∆t − Υt+∆t) ≤ L|Ft

)

= P

(
V θ

t exp

[
(θ′t(µ − r) + r − ct

V θ
t

− 1

2
‖θ′tσ‖2)∆t + θ′tσ(Wt+∆t − Wt)

]

−Υt+∆t ≤ L|Ft)

= P

(
exp

[
(θ′t(µ − r) + r − ct

V θ
t

− 1

2
‖θ′tσ‖2)∆t + θ′tσ(Wt+∆t − Wt)

]

≤ L + Υt+∆t

V θ
t

|Ft

)

8
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= P

(
θ′tσ(Wt+∆t − Wt)

‖θ′tσ‖
√

∆t

≤
ln
(

L+Υt+∆t

V θ
t

)
−
(
θ′t(µ − r) + r − ct

V θ
t

− 1
2‖θ′tσ‖2

)
∆t

‖θ′tσ‖
√

∆t
|Ft





= Φ




ln
(

L+Υt+∆t

V θ
t

)
−
(
θ′t(µ − r) + r − ct

V θ
t

− 1
2‖θ′tσ‖2

)
∆t

‖θ′tσ‖
√

∆t



 ,

where Φ(·) is the cumulative distribution function of a standard normal random vari-

able, given that the random variable θ′tσ(Wt+∆t − Wt) is conditionally normally dis-

tributed with zero mean and variance ‖θ′tσ‖2∆t. Thus,

P
(
(V θ

t+∆t − Υt+∆t) ≤ L|Ft

)
≤ α

⇐⇒ Φ




ln
(

L+Υt+∆t

V θ
t

)
−
(
θ′t(µ − r) + r − ct

V θ
t

− 1
2‖θ′tσ‖2

)
∆t

‖θ′tσ‖
√

∆t



 ≤ α

⇐⇒ ln

(
L + Υt+∆t

V θ
t

)
≤ Φ−1(α)‖θ′tσ‖

√
∆t +

(
θ′t(µ − r) + r − ct

V θ
t

− 1

2
‖θ′tσ‖2

)
∆t

⇐⇒ L ≤ V θ
t exp

[
Φ−1(α)‖θ′tσ‖

√
∆t +

(
θ′t(µ − r) + r − ct

V θ
t

− 1

2
‖θ′tσ‖2

)
∆t

]

− Υt+∆t,

which implies

Qα
t = V θ

t exp

[
Φ−1(α)‖θ′tσ‖

√
∆t +

(
θ′t(µ − r) + r − ct

V θ
t

− 1

2
‖θ′tσ‖2

)
∆t

]
− Υt+∆t.

Therefore,

V aRα
t = (Qα

t )− = −V θ
t exp

[
Φ−1(α)‖θ′tσ‖

√
∆t

+

(
θ′t(µ − r) + r − ct

V θ
t

− 1

2
‖θ′tσ‖2

)
∆t

]
+ Υt+∆t.

�

Tail conditional expectation is closely related to the Value-at-Risk concept,

but overcomes some of the conceptual deficiencies of Value-at-Risk (cf. Rockafellar

9
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and Uryasev [14] (2002)). In particular, it is a coherent risk measure (see Artzner et

al. [2] (1997)).

Definition 2. (Tail conditional expectation)

Consider distribution of the loss Gt+∆t := Υt+∆t−Vt+∆t represented by a continuous

distribution function FGt+∆t
with

∫
R
|Gt+∆t|dF (Gt+∆t) < ∞. Then the TCEα

t at

confidence level (1 − α) is defined as

TCEα
t = Et

{
(Υt+∆t − V θ

t+∆t) ≥ V aRα
t |Ft

}
.

TCEα
t =

Et

{
(Υt+∆t − V θ

t+∆t)I((Υt+∆t − Vt+∆t) ≥ −Qα
t )|Ft

}+

α
,

where I(A) is the indicator function of the set A and x+ = max[0, x].

In other words, the tail conditional expectation of wealth Vt at time t is the

conditional expected value of the loss exceeding (Qα
t )−. Again, given the log-normal

distribution of asset returns, the TCEα
t can be explicitly computed as can be seen in

the following proposition.

Proposition 2. (Computation of tail conditional expectation)

We have

TCEα
t =

αΥt+∆t − Vt

[
exp

(
(θ′t(µ − r) + r − ct

V θ
t

)∆t
)

Φ
(
Φ−1(α) − ‖θ′tσ‖

√
∆t
)]

α
.

where Φ(·) and Φ−1(·) denote the normal distribution and the inverse distribution

functions.

Proof.

E
{
(Υt+∆t − V θ

t+∆t)I(Υt+∆t − Vt+∆t ≥ −Qα
t )|Ft

}

= E

{(
Υt+∆t − V θ

t exp

[
(θ′t(µ − r) + r − ct

V θ
t

− 1

2
‖θ′tσ‖2)∆t

+θ′tσ(Wt+∆t − Wt)]) I(Υt+∆t − Vt+∆t ≥ −Qα
t )|Ft} (12)

10
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The argument of the indicator function is evaluated as follows

Υt+∆t − V θ
t exp

[
(θ′t(µ − r) + r − ct

V θ
t

− 1

2
‖θ′tσ‖2)∆t + θ′tσ(Wt+∆t − Wt)

]

≥ −V θ
t exp

[
Φ−1(α)‖θ′tσ‖

√
∆t +

(
θ′t(µ − r) + r − ct

V θ
t

− 1

2
‖θ′tσ‖2

)
∆t

]

+ Υt+∆t

⇒ −V θ
t exp [θ′tσ(Wt+∆t − Wt)] ≥ −V θ

t exp
[
Φ−1(α)‖θ′tσ‖

√
∆t
]

=
θ′tσ(Wt+∆t − Wt)

‖θ′tσ‖
√

∆t
≤ Φ−1(α).

Therefore (12) becomes

E

{(
Υt+∆t − Vt exp

[
(θ′t(µ − r) + r − ct

Vt

− 1

2
‖θ′tσ‖2)∆t

+θ′tσ(Wt+∆t − Wt)]) I

(
θ′tσ(Wt+∆t − Wt)

‖θ′tσ‖
√

∆t
≤ Φ−1(α)

)
|Ft

}

=
1√
2π

∫ Φ−1(α)

−∞

(
Υt+∆t − V θ

t exp

[
(θ′t(µ − r) + r − ct

V θ
t

−1

2
‖θ′tσ‖2)∆t + θ′tσx

√
∆t

])
exp

−x

2
dx

= αΥt+∆t − V θ
t

[
exp((θ′t(µ − r) + r − ct

V θ
t

)∆t)

·
∫ Φ−1(α)

−∞

1√
2π

exp

(
− (x − ‖θ′tσ‖

√
∆t)2

2

)
dx

]

We calculate the integral by change of variables and obtain

= αΥt+∆t − V θ
t

[
exp

(
(θ′t(µ − r) + r − ct

V θ
t

)∆t

)
Φ
(
Φ−1(α) − ‖θ′tσ‖

√
∆t
)]

.

Dividing by α, we obtain the Tail Conditional Expectation as

TCEα
t =

αΥt+∆t − V θ
t

[
exp

(
(θ′t(µ − r) + r − ct

V θ
t

)∆t
)

Φ
(
Φ−1(α) − ‖θ′tσ‖

√
∆t
)]

α
.

�
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4. Problem statement

We seek the optimal asset and consumption allocation that maximizes (over

all allowable {θt, ct}) the expected utility of discounted terminal wealth at time T

and consumption over the entire horizon [0, T ], for a risk averse investor who limits

his risk by imposing an upper bound on the TCE.

In mathematical terms the final optimal control problem with TCE constraint

is

max
{θ, c}∈A(v)

E0,V0

{∫ T

0

e−ρsU1(cs, s)ds + e−ρT U2(VT , T )

}
, (13)

subject to the wealth dynamics

dV θ
t =

[
V θ

t (θ′t(µ − r) + r)
]
dt − ctdt + V θ

t θ′tσdWt, V θ
0 = v

and the TCE constraint

1

α

(
αΥt+∆t − V θ

t

[
exp

(
(θ′t(µ − r) + r − ct

V θ
t

)∆t

)

·Φ
(
Φ−1(α) − ‖θ′tσ‖

√
∆t
)])

≤ ε, ∀ t ∈ [0, T ), (14)

where E denotes the expectation operator, given V θ
t = v (and given the chosen con-

sumption and investment strategies), U1 and U2 are twice differentiable, increasing,

concave utility functions (CRRA), ε is an upper bound on TCE and ρ > 0 is the rate

at which consumption and terminal wealth are discounted. Furthermore, we let

U(x) = U1(x) = U2(x) =
x1−γ

1 − γ
,

where γ ∈ (0,∞)\{1}.

5. Optimality conditions

In applying the dynamic programming approach we solve the HJB equation

associated with the utility maximization problem (13). From Fleming and Rishel [6]

12
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(1975) we have that the corresponding HJB equation is given by

ρJ(v, t) = sup
ct≥0, θt∈Rn

{U(ct) + Jt(v, t) + Jv(v, t) (v[θ′t(µ − r) + r] − ct)

+
1

2
Jvv(v, t)v2θ′tσσ′θt

}
, (15)

subject to the terminal condition

J(v, T ) = U(v),

where J , the value function is given by

J(v, t) = max
{θ, c}∈A(v)

Et,Vt

{∫ T

t

e−ρsU(cs, s)ds + e−ρT U(VT , T )

}
, (16)

where subscripts on J denote partial derivatives and V θ
t = v, the wealth realization

at time t.

In solving the HJB equation (15), the static optimization problem

max
ct≥0, θt∈Rn

{
U(ct) + Jv(v, t) (v[θ′t(µ − r) + r] − ct) +

1

2
Jvv(v, t)v2θ′tσσ′θt

}
, (17)

subject to the TCE constraint (14) can be tackled separately to reduce the HJB

equation (15) to a nonlinear partial differential equation of J only.

Introducing the Lagrange function L(·) as

L (θ(v, t), c(v, t), λ(v, t)) = Jv(v, t) (v [θ′t(µ − r) + r − ct])

+
1

2
v2‖θ′tσ‖2Jvv(v, t) + U(ct) − λ(v, t) (αΥt+∆t

−v
[
exp

(
(θ′t(µ − r) + r − ct

v
)∆t
)
· Φ
(
Φ−1(α) − ‖θ′

tσ‖
√

∆t
)]

− ε1

)
, (18)

where λ is the Lagrange multiplier and ε1 = ε ·α and the first-order necessary condi-

tions with respect to θ, c and λ respectively of the static optimization problem (18)

13
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are given by

vJv(µ − r) +
1

2
Jvvv2σσ′θt + λ(v, t)v

[
(µ − r)∆t exp

(
(θ′t(µ − r) + r − ct

v
)∆t
)

·Φ
(
Φ−1(α) − ‖θ′tσ‖

√
∆t
)
− exp

(
(θ′t(µ − r) + r − ct

v
)∆t
)
·
√

∆t

2

σσ′θt

‖θ′tσ‖

· 1√
2π

exp

[
−1

2
(Φ−1(α) − ‖θ′tσ‖

√
∆t)2

]]
= 0, (19)

whereby π ≈ 3.14159 and we have applied the product law of differentiation and the

fundamental theorem of calculus in deriving the latter first-order derivative.

Uc(ct) + λ(v, t)∆t · Φ
(
Φ−1(α) − ‖θ′

tσ‖
√

∆t
)

·
[
exp

(
(θ′t(µ − r) + r − ct

v
)∆t
)
· Φ
(
Φ−1(α) − ‖θ′

tσ‖
√

∆t
)]

= Jv(v, t), (20)

where Uc is the first-order derivative of U with respect to c and

H(v, t) = αΥt+∆t + v
[
exp

(
(θ′t(µ − r) + r − ct

v
)∆t
)

·Φ
(
Φ−1(α) − ‖θ′tσ‖

√
∆t
)]

+ ε1 = 0, (21)

while the complimentary slackness condition is given as

λ(v, t)H(v, t) = 0, (22)

λ(v, t) ≥ 0.

Simultaneous resolution of these first-order conditions yields the optimal solutions

θopt, copt and λopt. Substituting these into (15) gives the partial differential equation

− ρJ(v, t) +
(copt(v, t))1−γ

1 − γ
+ Jt(v, t) + Jv(v, t)

(
v[(θopt(v, t))′(µ − r) + r]

−copt(v, t)
)

+
1

2
Jvv(v, t)v2(θopt(v, t))′σσ′(θopt(v, t)) = 0, (23)

with terminal condition

J(v, T ) =
v1−γ

1 − γ
,

which can then be solved for the optimal value function Jopt(v, t). Because of the non-

linearity in θopt and copt, the first-order conditions together with the HJB equation

14
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are a non-linear system so the stochastic differential equation (23) has no analytic

solution and numerical methods such as Newton’s method or Sequential Quadratic

Programming (SQP)(see, e.g., Nocedal and Wright [13] (1999)) are required to solve

for θopt(v, t), copt(v, t), λopt(v, t) and Jopt(v, t) iteratively.

6. Numerical method

We use an iterative algorithm similar to that of Yiu [15] (2004) which yields

a C2,1 approximation Ĵ of the exact solution J . {θ̂t, ĉt} is the investment strategy

related to Ĵ .

When the optimal solution strictly satisfies the TCE constraint (14), the

Lagrange multiplier λ(v, t) is zero. If the constraint is active, the multiplier is positive.

First, we divide the domain of resolution into a grid of nv × nt mesh points.

Iterations are indexed by k.

1. For each point (t, v), with t ∈ [0, ∆t, . . . , nt∆t] and v ∈ [0, ∆v, . . . , nv∆v],

we compute the value function Ĵk=0 = J(v, t) and the optimal strategy

{θopt
t , c

opt
t } of the unconstrained problem. All Lagrange multipliers are set

to zero, λk=0
t,v = 0. This solution is the starting point of the algorithm.

2. For all points of the grid, the constraint is checked. If the constraint is

not active (TCEα
t < ε), the multiplier is zero λk+1

t,v = 0 and {θk+1
t , ck+1

t }
is the solution of a similar equation to that of the unconstrained case.

λk+1
t,v = 0,

θk+1
t = − Ĵv

vĴvv

(µ − r)(σT σ)−1,

Ûc(c
k+1
t ) = Ĵv.

If the V aRα
t constraint is active, (V aRα

t ≥ ε), we solve a nonlin-

ear system in λk+1
t,v , θ̂

j+1
t and ĉ

j+1
t . This nonlinear system is composed

of the first-order necessary conditions of the static optimization problem

15
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(18). That system is numerically solved by the sequential quadratic pro-

gramming method (see Nocedal and Wright [13] (1999)).

3. The last stage consists in the calculation of the value function Ĵk+1 ac-

cording to the investment/consumption strategy {θ̂k+1
t , ĉk+1

t } as detailed

below this algorithm.

4. Return to step 2 with k = k + 1 until the error at time t from wealth level

v, ǫt,v, satisfies |ǫt,v| < 1 · e−5, where

ǫt,v = Ĵt − ρĴ(v, t) + Ĵv

(
v[(θ̂opt

t )′(µ − r) + r] − c
opt
t

)

+
1

2
v2‖(θ̂t

opt
)′σ‖2Ĵvv + U(copt

t ).

For the numerical solution of the partial differential equation (23) to obtain

the value function we use the trial function

J(v, t) = f(t)
v1−γ

1 − γ
, f(T ) = 1,

such that

Jt = f ′(t)
1

1 − γ
v1−γ

Jv = f(t)v−γ

Jvv = −γf(t)v−(γ+1).

Substituting these partials in (23) and dividing by v1−γ , after some tedious compu-

tation, we obtain the ordinary differential equation

f ′(t) = −κ(θopt(v, t), copt(v, t), v)f(t) − B(copt(v, t), v), (24)

whereby

κ(θopt(v, t), copt(v, t), v) = (1 − γ)

( −ρ

1 − γ
+ (θopt(v, t))′(µ − r)

−copt(v, t)v−1 − 1

2
v2(θopt(v, t))′σσ′(θopt(v, t))

)

and

B(copt(v, t), v) = (copt(v, t))1−γvγ−1,

16
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with terminal condition

f(T ) = 1.

The function f in equation (24) is computed numerically by the Euler-Cauchy method

(See Isaacson and Keller [8] (1994)).

We have implemented the above algorithm to illustrate the optimal portfolio

of the preceding section with examples. To this end, we have written a program in

MATLAB 7.0 to carry out the procedure and run it on a personal computer with an

Intel Pentium IV processor. We assume that n = 2. That is, the market is composed

of two risky stocks and a risk-free bond. Table 1 shows the parameters for the portfolio

optimization problem and the underlying Black-Scholes model of the financial market.

We achieve convergence in 300 seconds after three iterations.

Parameter Value

Stock (S1) µ = 4%, σ11 = 5%, σ12 = 5%

Stock (S2) µ = 6%, σ21 = 5%, σ22 = 20%

Bond (S0) r = 3%

Investment horizon t ∈ [0, 1]

State of wealth v ∈ [0, 20]

Shortfall probability α = 1%

Value-at-Risk horizon ∆t = 1
48 ≈ 7 days

No. of wealth mesh points Nv = 81

Mesh size for wealth ∆v = 20
80 = 0.25

Utility function U(x) = x1−γ

1−γ
,

γ = 0.9

Table 1. Parameters for the consumption and investment portfolio

optimization problem.
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Wealth benchmark, Υt Bound, ε

conditional expectation 0.3

Money market 1.0

Table 2. Bounds and benchmarks for the TCE-constrained problem.

7. Simulations

We consider the tail conditional expectation of the wealth surplus Vt−Υt+∆t

with respect to the benchmark Υt+∆t such that it satisfies

TCEα
t (Vt+∆t − Υt+∆t) ≤ ε,

where ε comes from table 2. That is, the TCE is re-evaluated at each discrete time step

(TCE horizon) ∆t and kept below the upper bound ε, by making use of conditioning

information. Figures 1 and 2 show in the right panel the amount of wealth invested

in the risky assets with and without the TCE constraint, plotted against the possible

wealth realization at different times. The left panel shows the value function.
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Figure 1. TCE when benchmark is the conditional expected wealth

plotted against wealth at various times of the investment horizon. In

red, TCE ≤ ε = 0.3.
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In Figure 1 the shortfall benchmark is taken to be the conditional expected

wealth Υt+∆t = Et{Vt+∆t}, given as

Υt+∆t = Et{Vt+∆t} = Vt exp

[(
θ′t(µ − r) + r − ct

Vt

)
∆t

]
, (25)

while in Figure 2 it is the investment in the risk-free bond Υt+∆t = Vte
r∆t.
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Figure 2. Effect of the TCE constraint when benchmark is invest-

ment in the bond.

As can be observed from the images, as the wealth level increases, so does

the investment in risky assets. This results from the property of constant relative

risk aversion of the utility function. A good control over the investment in the risky

assets has been achieved and the proportions invested in the risky assets are reduced in

order to fulfil the TCE constraint. In particular, when the constraint is not active, the

optimal portfolio follows the unconstrained solution; as the portfolio value increases,

the TCE constraint becomes active and allocates less to the risky assets. Figure 3

reveals to us that the local minimum (around wealth level 10) observed in the left

panel of Figure 2 comes as a result of a sudden increase in the consumption rate once

the constraint becomes active. The left panel of Figure 1 suggests that this increase

in consumption is more subtle when we take as wealth benchmark, the conditional

expected wealth.
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Figure 3. Effect of the TCE constraint on consumption when

benchmark is investment in the bond.

The value function of the constrained problem is identical to that of the

unconstrained one when the Lagrange multipliers are null, whereas it is inferior when

the constraint is active.

8. Concluding remarks

Using a CRRA utility function, we have investigated how a bound imposed

on TCE affects the optimal portfolio choice and consumption. In so doing, we have

used dynamic wealth benchmarks - conditional expected wealth and investment in

riskless stocks, whereby the TCE was re-evaluated at short intervals along the in-

vestment horizon. We deduce from our observations that the constraint reduces risky

investment. Moreover, part of the wealth hitherto invested in risky assets is diverted

to consumption when the constraint is tight.
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DIFFERENT TYPES OF PARALLEL APPROACHES FOR SOLVING
NONLINEAR EQUATIONS BY NUMERICAL METHODS

IOANA CHIOREAN, DIANA BÂGIU, AND SEVER GROZE

Abstract. The purpose of this paper is to give and to compare differ-

ent parallel approaches to some numerical methods for solving nonlinear

equations on R, such as the secant method and the Dekker’s method.

1. Introduction

The solving of a nonlinear equation is a main part of Numerical Analysis. Lots

of methods are known and many papers dealing with them were written. E.g., see [6]

for the secant method, [1] for Dekker’s method, [7] for Steffensen’s method, all these

methods are considered classical ones. In order to improve the rate of convergence,

several other methods have been constructed, e.g. Brent’s method (see [2]), Halley’s

method (see [8]), and so on.

All these methods have many serial implementations, used by different soft-

ware packages.

Due to the requirement of improving the speed-up of execution, several par-

allel approaches of these methods were also developed. For instance, for the secant

method, in [3], [4], for Steffensen’s method, in [5], where the technique of nonlinear

multisplitting is used.

In this paper we compare some possible parallel approaches for these methods,

by using parallelism at the data level, or at the execution level.

Received by the editors: 01.07.2008.
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2. A parallel approach for the secant method

Assuming that f ∈ C2[a, b] and that there exists a number x∗ ∈ [a, b] with

f(x∗) = 0, and f ′(x∗) 6= 0, the well known secant formula for approximating the root

x∗ can be written as follows:

xk+1 = xk − xk − xk−1

f(xk) − f(xk−1)
f(xk) (1)

for k = 1, 2, . . . , with x0 and x1 two initial approximations.

Remark 1. The proof of the corresponding theorem can be found in [6].

Remark 2. The chord method is derived from (1), if we keep all the time

one fixed initial approximation.

In order to make (1) appropriate for parallel calculus, and observing that it is

a nonlinear recurrence relation, we have to linearize it. The technique is the following

(see [4]): at every step k = 1, 2, . . . we denote by

yk =
f(x1) − f(x0)

f(x1)
· f(x2) − f(x1)

f(x2)
· . . . · f(xk) − f(xk−1)

f(xk)
(2)

and consider y0 = 1.

Then, multiplying (1) by (2), at every step k = 1, 2, . . . , we get the following

relation:

xk+1 · yk = xk · yk − (xk − xk−1) · yk−1 (3)

which is a linear recurrence relation with two terms.

Rearranging the terms, (3) becomes:

xk+1 = xk

(
1 − yk−1

yk

)
+ xk−1 ·

yk−1

yk
(4)

which can be written in matricial form as: xk+1

xk

 =

 1 − yk−1

yk

yk−1

yk

1 0

 xk

xk−1

 (5)

or, denoting by zk =

 xk+1

xk

 and by Mk the above matrix, we have

zk = Mk · zk−1, k = 1, 2, . . . (6)
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In order to get the best approximation, xn, according with a given error, we

have to compute the matrices product

M1 · M2 · . . . · Mn

which can be performed in log2 n steps on a binary tree connectivity. So, the execution

time is not of order O(n), but of order O(log2 n).

Remark. In the case of the secant method, we gave a parallel approach at

the data level.

3. Dekker’s method

By combining the secant method with the bisection method (see [1]), Dekker’s

method is obtained.

Supposing the same hypothesis for the function f and the existence of a real

solution, x∗, of the equation f(x) = 0 in the interval [a, b], by Dekker’s method,

two provisional approximated values of the solution are computed, at every step

k = 1, 2, . . . :

• the first is given by the secant method:

s = bk − bk − bk−1

f(bk) − f(bk−1)
· f(bk),

where bk and bk−1 are the current guesses

• the second one is given by the bisection method:

m =
ak + bk

2
,

where ak is a point such as f(ak) and f(bk) have opposite signs, so the

interval [ak, bk] contains the solution. Furthermore, |f(bk)| should be less

than or equal to |f(ak)|, so that bk is a better guess for the unknown than

ak.

Remark 1. b−1 = a0.

Remark 2. If the result of the secant method, s, lies between bk and m,

then it becomes the next iterate (bk+1 = s), else the midpoint is used (bk+1 = m).
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Then, the value of ak+1 is chosen such that f(ak+1) and f(bk+1) have opposite

signs. If f(ak) and f(bk+1) have opposite signs, then ak+1 = ak, otherwise ak+1 = bk.

Finally, if |f(ak+1)| < |f(bk+1)|, then ak+1 is a better guess for the solution

than bk+1, and hence the values of ak+1 and bk+1 are exchanged.

3.1. A parallel approach

In this case, due to the fact that at every step k = 1, 2, . . . , the current

approximation is used in computing two values (s and m), another parallel approach

may be more appropriate. If we consider two processors ”slaves” and one processor

”master”, we have the following ”master-slave” type of execution at every step k:

{Processor Master}

Repeat

Send Message-to-Slave (k, ak, bk, ind);

Get Message-from-Slave (s,m);

Makes-Comparison;

Until End-Condition;

{Processor-Slave}

Get Message-from-Master (k, ak, bk, ind);

If ind = 1 then Compute (s);

Send Message-to-Master (s);

else Compute (m);

Send Message-to-Master (m);

End

Remark 1. The variable ”ind” stands for the identification number of each

slave processor.

Remark 2. In the case of Dekker’s method, we gave a parallel approach at

the execution level.
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Conclusions

In this paper we have presented different types of parallel approaches for

two numerical methods for solving nonlinear equations. These methods were chosen

because their expressions are appropriate for our purpose. Of course, other methods

may be considered, with the same remarks. E.g., the bisection method requires an

execution type of parallelism, Steffensen’s method can be parallelized at the data

level, and so on.
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LACUNARY STRONGLY ALMOST SUMMABLE SEQUENCES

MIKAIL ET AND AYSEGÜL GÖKHAN

Abstract. The purpose of this paper is to introduce the concepts of q− la-

cunary strongly almost convergence with respect to a modulus function and

q−lacunary almost statistical convergence. We establish some connections

between q− lacunary strongly almost convergence and q− lacunary almost

statistical convergence. It is also shown that if a sequence is q−lacunary

strongly almost convergent with respect to a modulus function then it is

q−lacunary almost statistically convergent.

1. Introduction

Let w denote the set of all real sequences x = (xn) . By `∞ and c, we de-

note respectively the Banach space of bounded and the Banach space of convergent

sequences x = (xn) , both normed by ‖x‖ = supn |xn|. A linear functional L on `∞ is

said to be a Banach limit [1] if it has the properties

i) L (x) ≥ 0 if x ≥ 0 (i.e. xn ≥ 0 for all n),

ii) L (e) = 1, where e = (1, 1, . . .) ,

iii) L (Dx) = L (x) ,

where the shift operator D is defined by (Dxn) = (xn+1) .

Let B be the set of all Banach limits on `∞. A sequence x is said to be almost

convergent to a number L if L(x) = L for all L ∈ B. Lorentz [11] has shown that x

is almost convergent to L if and only if

tkm = tkm (x) =
xm + xm+1 + . . . + xm+k

k + 1
→ L as k →∞, uniformly in m.
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Let ĉ denote the set of all almost convergent sequences. Maddox [12] and

(independently) Freedman et al. [8] have defined x to be strongly almost convergent

to a number L if

1
k + 1

k∑
i=0

|xi+m − L| → 0 as k →∞, uniformly in m.

Let [ĉ] denote the set of all strongly almost convergent sequences. It is easy

to see that [ĉ] ⊂ ĉ ⊂ `∞. Das and Sahoo [5] defined the sequence space

[w (p)] =

{
x ∈ w :

1
n + 1

n∑
k=0

|tkm (x− L)|pk → 0 as n →∞, uniformly in m

}
and investigated some of its properties.

The notion of statistical convergence was introduced by Fast [7] and Schoen-

berg [24] independently. Later on it was further investigated from sequence space

point of view and linked with summability theory by Başarır [2], Fridy [9], Maddox

[15], Nuray and Savaş [18], Tripathy ([20],[21]) and Salat [23]. Recently, statistical

convergence has been studied by various authors (cf. [3], [16], [17]).

The statistical convergence is depended on the density of subsets of N, the

set of natural numbers. A subset E of N is said to have density δ (E) if

δ (E) = lim
n→∞

1
n

n∑
k=1

χE (k) exists,

where χE is the characteristic function of E.

A sequence x ∈ w is said to be statistically convergent to L if for every ε > 0,

δ ({k ∈ N : |xk − L| ≥ ε}) = 0. In this case we write stat-lim xk = L.

Let θ = (kr) be the sequence of positive integers such that k0 = 0, 0 < kr <

kr+1 and hr = kr − kr−1 →∞ as r →∞. Then θ is called a lacunary sequence. The

intervals determined by θ will be denoted by Ir = (kr−1, kr] and the ratio kr/kr−1

will be denoted by ηr.

Lacunary sequences have been studied in [4], [8], [10], [19].

We recall that a modulus f is a function from [0,∞) to [0,∞) such that

i) f(x) = 0 if and only if x = 0,

ii) f(x + y) ≤ f(x) + f(y) for x, y ≥ 0,
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iii) f is increasing,

iv) f is continuous from the right at 0.

It follows that f must be continuous everywhere on [0,∞). A modulus may be

unbounded or bounded. Ruckle [22] and Maddox [13] used a modulus f to construct

some sequence spaces.

A sequence space E is said to be solid ( or normal ) if (αkxk) ∈ E whenever

(xk) ∈ E for all sequences (αk) of scalars with |αk| ≤ 1 for all k ∈ N.

2. Definitions and Preliminaries

Let f be a modulus function, p = (pk) be a sequence of positive real numbers

and X be a seminormed space over the field C of complex numbers with the seminorm

q. w(X) denotes the space of all sequences x = (xk), where xk ∈ X . We define the

following sequence spaces:

(w, θ, f, p, q) = {x ∈ w (X) : lim
r

1
hr

∑
k∈Ir

[f (q (tkm (x− L)))]pk = 0,

uniformly in m, for some L},

(w, θ, f, p, q)0 = {x ∈ w (X) : lim
r

1
hr

∑
k∈Ir

[f (q (tkm (x)))]pk = 0, uniformly in m},

(w, θ, f, p, q)∞ = {x ∈ w (X) : sup
r,m

1
hr

∑
k∈Ir

[f (q (tkm (x)))]pk < ∞}.

Throughout the paper Z denotes 0, 1 or ∞. We get the following sequence

spaces from the above sequence spaces on giving particular values to θ, f and p.

i) If pk = 1 for all k ∈ N, then we shall write (w, θ, f, q)Z instead of

(w, θ, f, p, q)Z .

If x ∈ (w, θ, f, q) we say that x is q−lacunary almost strongly convergent with

respect to the modulus function f .

ii) Taking pk = 1 for all k ∈ N and f (x) = x, we denote the above sequence

spaces by (w, θ, q)Z .

iii) In the case θ = (2r), then we shall denote the above sequence spaces by

(w, f, p, q)Z .
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Theorem 2.1 Let f be a modulus function, then (w, θ, f, p, q)0 ⊂ (w, θ, f, p, q) ⊂

(w, θ, f, p, q)∞ .

Proof. The first inclusion is obvious. We establish the second inclusion. Let x ∈

(w, θ, f, p, q) . By definition of f we have

1
hr

∑
k∈Ir

[f (q (tkm (x)))]pk =
1
hr

∑
k∈Ir

[f (q (tkm (x− L + L)))]pk

≤ C
1
hr

∑
k∈Ir

[f (q (tkm (x− L)))]pk + C
1
hr

∑
k∈Ir

[f (q (L))]pk .

There exists a positive integer KL such that q (L) ≤ KL. Hence we have

1
hr

∑
k∈Ir

[f (q (tkm (x)))]pk ≤ C
1
hr

∑
k∈Ir

[f (q (tkm (x− L)))]pk +
C

hr
[KLf(1)]H hr,

where supk pk = H and C = max(1, 2H−1). Since x ∈ (w, θ, f, p, q) , we have x ∈

(w, θ, f, p, q)∞ and this completes the proof.

The following theorem can be proved using the same technique of Theorem

2.1 of Et [6], therefore we give without proof.

Theorem 2.2 Let the sequence (pk) be bounded, then (w, θ, f, p, q)Z are linear spaces

over the set of complex numbers.

The proof of the following results are easy and thus omitted.

Theorem 2.3 Let f, f1, f2 be modulus function. For any two sequences p = (pk)

and t = (tk) of strictly positive real numbers and any two seminorms q1 , q2 we have

i) (w, θ, f1, q)Z ⊂ (w, θ, f ◦ f1, q)Z ,

ii) (w, θ, f1, p, q)Z ∩ (w, θ, f2, p, q)Z ⊂ (w, θ, f1 + f2, p, q)Z ,

iii) (w, θ, f, p, q1)Z ∩ (w, θ, f, p, q2) ⊂ (w, θ, f, p, q1 + q2) ,

iv) If q1 is stronger than q2 then (w, θ, f, p, q1)Z ⊂ (w, θ, f, p, q2)Z ,

v) If q1 equivalent to q2 then (w, θ, f, p, q1)Z = (w, θ, f, p, q2)Z ,

vi) (w, θ, f, p, q)Z ∩ (w, θ, f, t, q)Z 6= ∅.

The following result is a consequence of Theorem 2.3 (i).
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Proposition 2.4 Let f be a modulus function. Then (w, θ, q)Z ⊂ (w, θ, f, q)Z .

Theorem 2.5 Let f be a modulus function, if lim f(t)
t = β > 0, then (w, θ, q) =

(w, θ, f, q) .

Proof. By Proposition 2.4, we need only show that (w, θ, f, q) ⊂ (w, θ, q) . Let β > 0

and

x ∈ (w, θ, f, q) . Since β > 0, we have f(t) ≥ βt for all t ≥ 0. Hence we have

1
hr

∑
k∈Ir

f (q (tkm (x− L))) ≥ β

hr

∑
k∈Ir

q (tkm (x− L)) .

Therefore we have x ∈ (w, θ, q) .

Theorem 2.6 Let 0 < pk ≤ tk and
(

tk

pk

)
be bounded, then (w, θ, f, t, q)Z ⊂

(w, θ, f, p, q)Z .

Proof. If we take wkm = [f (q (tkm (x)))]tk for all k,m and using the same technique

of Theorem 5 of Maddox [14], it is easy to prove this Theorem.

Theorem 2.7 The sequence spaces (w, θ, f, p, q)0 and (w, θ, f, p, q)∞ are not solid.

Proof. We give the proof only for (w, θ, f, p, q)0. For this let pk = 1 for all k ∈ N,

θ = (2r) , f (x) = x and q (x) = |x| . Consider the sequence xk = (−1)k for all k ∈ N

and (αk) be defined as αk = (−1)k for all k ∈ N. Then (xk) ∈ (w, θ, f, p, q)0 but

(αkxk) /∈ (w, θ, f, p, q)0 . Hence (w, θ, f, p, q)0 is not solid.

Theorem 2.8 Let θ = (kr) be a lacunary sequence. If 1 < lim infr ηr ≤ lim supr

ηr < ∞ then for any modulus function f , we have (w, f, p, q)0 = (w, θ, f, p, q)0 .

Proof. Suppose lim infr ηr > 1 then there exist δ > 0 such that ηr =
(

kr

kr−1

)
≥ 1 + δ

for all r ≥ 1. Then for x ∈ (w, f, p, q)0, we write

1
hr

∑
k∈Ir

[f (q (tkm (x)))]pk =
1
hr

kr∑
k=1

[f (q (tkm (x)))]pk − 1
hr

kr−1∑
k=1

[f (q (tkm (x)))]pk
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=
kr

hr

(
k−1

r

kr∑
k=1

[f (q (tkm (x)))]pk

)
− kr−1

hr

k−1
r−1

kr−1∑
k=1

[f (q (tkm (x)))]pk

 .

Since hr = kr − kr−1, we have
kr

hr
≤ 1 + δ

δ

and
kr−1

hr
≤ 1

δ
.

The terms k−1
r

∑kr

k=1 [f (q (tkm (x)))]pk and k−1
r−1

∑kr−1
k=1 [f (q (tkm (x)))]pk both con-

verge to zero, uniformly in m and it follows that

1
hr

∑
k∈Ir

[f (q (tkm (x)))]pk → 0,

as r →∞ uniformly in m, that is, x ∈ (w, θ, f, p, q)0 .

If lim supr ηr < ∞, there exists B > 0 such that ηr < B for all r ≥ 1. Let

x ∈ (w, θ, f, p, q)0 and ε > 0 be given. Then there exits R > 0 such that for every

j ≥ R and all m

Aj =
1
hj

∑
k∈Ij

[f (q (tkm (x)))]pk < ε.

We can also find K > 0 such that Aj < K for all j = 1, 2, ... . Now let t be any

integer with kr−1 < t ≤ kr, where r > R. Then

t−1
t∑

k=1

[f (q (tkm (x)))]pk ≤ k−1
r−1

kr∑
k=1

[f (q (tkm (x)))]pk

= k−1
r−1

∑
k∈I1

[f (q (tkm (x)))]pk + k−1
r−1

∑
k∈I2

[f (q (tkm (x)))]pk +

. . . + k−1
r−1

∑
k∈Ir

[f (q (tkm (x)))]pk

=
k1

kr−1
k−1
1

∑
k∈I1

[f (q (tkm (x)))]pk +
k2 − k1

kr−1
(k2 − k1)

−1
∑
k∈I2

[f (q (tkm (x)))]pk

+... +
kR − kR−1

kr−1
(kR − kR−1)

−1
∑
k∈IR

[f (q (tkm (x)))]pk +

. . . +
kr − kr−1

kr−1
(kr − kr−1)

−1
∑
k∈Ir

[f (q (tkm (x)))]pk
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=
k1

kr−1
A1 +

k2 − k1

kr−1
A2 + . . . +

kR − kR−1

kr−1
AR +

kR+1 − kR

kr−1
AR+1 + ... +

kr − kr−1

kr−1
Ar

≤
(

sup
j≥1

Aj

)
kR

kr−1
+
(

sup
j≥R

Aj

)
kr − kR

kr−1
≤ K

kR

kr−1
+ εB.

Since kr−1 →∞ as t →∞, it follows that t−1
∑t

k=1 [f (q (tkm (x)))]pk → 0 uniformly

in m and consequently x ∈ (w, f, p, q)0 .

3. q− lacunary almost statistical convergence

In this section we give some relations between q−lacunary almost statistical

convergence and q−lacunary strongly almost convergence with respect to the modulus

functions f .

Definition 3.1 ([3]) Let θ be a lacunary sequence, then the sequence x = (xk) is said

to be q−lacunary almost statistically convergent to the number L provided that for

every ε > 0,

lim
r

1
hr

|{k ∈ Ir : q (tkm (x− L)) ≥ ε}| = 0, uniformly in m.

In this case we write [Sθ]q − limx = L or xk → L
(
[Sθ]q

)
and we define

[Sθ]q =
{

x ∈ w (X) : [Sθ]q − lim x = L, for some L
}

.

In the case θ = (2r) , we shall write [S]q instead of [Sθ]q .

Theorem 3.2 Let f be a modulus function and 0 < h = infk pk ≤ pk ≤ supk pk =

H < ∞. Then (w, θ, f, p, q) ⊂ [Sθ]q .

Proof. Let x ∈ (w, θ, f, p, q) and ε > 0 be given. Then

1
hr

∑
k∈Ir

[f (q (tkm (x− L)))]pk ≥ 1
hr

∑
k∈Ir

q(tkm(x−L))≥ε

[f (q (tkm (x− L)))]pk
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≥ 1
hr

∑
k∈Ir

q(tkm(x−L))≥ε

[f (ε)]pk

≥ 1
hr

∑
k∈Ir

q(tkm(x−L))≥ε

min
(
[f (ε)]h , [f (ε)]H

)

≥ 1
hr

|{k ∈ Ir : q (tkm (x− L)) ≥ ε}| min
(
[f (ε)]h , [f (ε)]H

)
.

Hence x ∈ [Sθ]q .

Theorem 3.3 Let f be bounded and 0 < h = infk pk ≤ pk ≤ supk pk = H < ∞.

Then [Sθ]q ⊂ (w, θ, f, p, q) .

Proof. Suppose that f is bounded. Then there exists an integer K such that f (t) < K,

for all t ≥ 0. Then

1
hr

∑
k∈Ir

[f (q (tkm (x− L)))]pk =
1
hr

∑
k∈Ir

q(tkm(x−L))≥ε

[f (q (tkm (x− L)))]pk

+
1
hr

∑
k∈Ir

q(tkm(x−L))<ε

[f (q (tkm (x− L)))]pk

≤ 1
hr

∑
k∈Ir

q(tkm(x−L))≥ε

max
(
Kh,KH

)
+

1
hr

∑
k∈Ir

q(tkm(x−L))<ε

[f (ε)]pk

≤ max
(
Kh,KH

) 1
hr

|{k ∈ Ir : q (tkm (x− L)) ≥ ε}|+ max
(
[f (ε)]h , [f (ε)]H

)
.

Hence x ∈ (w, θ, f, p, q) .

Theorem 3.4 [Sθ]q = (w, θ, f, p, q) if and only if f is bounded.

Proof. Let f be bounded. By the Theorem 3.2 and Theorem 3.3, we have [Sθ]q =

(w, θ, f, p, q) .
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Conversely, suppose that f is unbounded. Then there exists a positive se-

quence (tn) with f(tn) = n2, n = 1, 2, · · · . If we choose

xk =

 tn, k = n2, n = 1, 2, . . .

0, otherwise

then we have
1
n
|{k ≤ n : |xk| ≥ ε}| ≤

√
n

n
→ 0, n →∞.

Hence xk → 0([Sθ]q) for t0m (x) = xm, θ = (2r) and q(x) = |x|, but x /∈ (w, θ, f, q) .

This contradicts to [Sθ]q = (w, θ, f, p, q) .
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[13] Maddox, I.J., Sequence spaces defined by a modulus, Math. Proc. Camb. Phil. Soc.,

100(1986), 345-350.

[14] Maddox, I.J., Spaces of strongly summable sequences, Quart. J. Math., 18(1967), 345-

355.

[15] Maddox, I.J., Statistical convergence in a locally convex space, Math. Proc. Camb. Phil.

Soc., 104(1988), 141-145.

[16] Malkowsky, E. and Savas, E., Some λ−sequence spaces defined by a modulus, Archivum

Mathematicum, 36(2000), 219-228.

[17] Mursaleen, λ-statistical convergence, Math. Slovaca, 50(1)(2000), 111-115.

[18] Nuray, F. and Savaş, E., Invariant statistical convergence and A-invariant statistical

convergence, Indian J. Pure Appl. Math., 25(3)(1994), 267-274.

[19] Savas, E. and Rhoades B. E., On some new sequence spaces of invariant means defined

by Orlicz functions, Mathematical Inequalities and Applications, 5(2)(2002), 271-281.

[20] Tripathy, B.C., Matrix transformation between some classes of sequences, J. Math. Anal.

Appl., 206(2)(1997), 448-450.

[21] Tripathy, B.C., On statistically convergent and statistically bounded sequences, Bull.

Malays. Math. Soc., 20(1)(1997), 31-33.

[22] Ruckle, W.H., FK spaces in which the sequence of coordinate vectors is bounded, Canad.

J. Math., 25(1973), 973-978.
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A STOCHASTIC MODEL FOR THE GROWTH
OF CANCER TUMORS

HANNELORE LISEI∗ AND DAVID JULITZ

Abstract. In this paper we study a stochastic model for the behavior of

cancer tumors, described by a stochastic differential equation with multi-

plicative noise term. We consider that the number of tumor cells is influ-

enced by the drug therapy and by random perturbations. We study the

existence of the solution process, as well as its behavior in the framework

of stochastic inclusion problems and random dynamical systems (long time

behavior). Computer simulations are also given.

1. Introduction

Different types of mathematical models of cancer progression and treatment

have already been constructed. They simulate important elements of the complex

process of tumor growth and response to the therapy, the effects and interactions

between tumor cells and immune cells. For example, there are many papers written

on the subject of optimal control for mathematical models in cancer chemotherapy,

such as J.M. Murray [17], K.R. Fister and J.C. Panetta [11], L.G. de Pillis and A.E.

Radunskaya [8], [9], L. G. Hanin, S. T. Rachev and A. Yu. Yakovlev [13] etc. In

the last years, stochastic growth models for cancer cells were developed, we mention

the papers of W.Y. Tan and C.W. Chen [20], N. Komarova [15], G. Albano and V.

Giorno [1], L. Ferrante, S. Bompadre, L. Possati and L. Leone [10], A. Boondirek,
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Y. Lenbury, J. Wong-Ekkabut, W. Triampo, I.M. Tang, P. Picha [3]. Also stochastic

optimal control problems in chemotherapy were investigated by A.J. Coldman and

J.M. Murray [6].

Following the models developed by G. W. Swan [19] and continued by W. Krabs

[16] we complete their results by studying a growth model for tumor cells under the

influence of random perturbations. We especially study a growth model with multi-

plicative noise term for which we investigate the existence of the solution (Section 2).

We consider that the size of the tumor is controlled by the function which is the drug

dose and rewrite our control problem as a differential inclusion problem (Section 3).

Furthermore we investigate the long time behavior of our model in the framework

of random dynamical systems (Section 4). At the end we also give some computer

simulations of the solutions and the solution-tube for different possible functions for

the drug exposure (Section 5). This article is the starting point for further research

on stochastic control problems in cancer growth models.

2. The stochastic model

We denote by p(t) the number of cancerous tumor cells at time t > 0. In

the book of G.W. Swan [19] the following model for the number of tumor cells in the

absence of drugs is studied: dp(t) = λ ln
(

µ

p(t)

)
p(t)dt, p(0) = p0 > 0, where λ, µ > 0

are parameters. In [19] the following controlled cancer tumor growth model under

influence of drugs is given

dp(t) =
(

λ ln
(

µ

p(t)

)
−G(v(t))

)
p(t)dt, p(0) = p0 > 0, (1)

where v(t) > 0 is the dose of the drug at time t, G(v(t)) is the destroying rate per

tumor cell and time unit. W. Krabs uses in [16] the following monotone increasing

and bounded function for G:

G(v) =
k1v

k2 + v
, (2)
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where k1, k2 > 0 are constants. The optimal control problem of finding the control

function v > 0 for which the drug exposure on the body is minimal is studied in [16]

T∫
0

v(t) → min

p is a solution of (1) for t ∈ [0, T ]

p(T ) = pT ,

where the values T > 0 and pT ∈ (0, µ) are given. It is showed that the optimal

control v has the form v(t) =

√
k1k2

D
eλt − k2, t ∈ [0, T ], where D is a parameter. If

k1 > D k2, then it is assured that v(t) > 0 for all [0, T ].

The aim of our paper is to generalize the model (1) to the stochastic case:

Let
(
Ω,F , (Ft)t≥0, P

)
be a filtered probability space and let (W (t))t≥0 be a standard

Wiener process adapted to the filtration (Ft)t≥0. We perturb (1) by a multiplicative

noise term and consider the following stochastic differential equation with stochastic

Itô integral

p(t) = p0 +

t∫
0

(
λ ln

(
µ

p(s)

)
−G(v(s))

)
p(s)ds + σ

t∫
0

p(s)dW (s), t ≥ 0, (3)

where p0 > 0 and σ ∈ R is a parameter. We assume that G, v : R+ × Ω → R+ are

processes that are measurable, adapted to the filtration (Ft)t≥0 and are a.s. locally

bounded.

Theorem 1. Equation (3) has a unique solution which has the following explicit form

p(t) = (p0)e−λt

µ1−e−λt

exp

−
t∫

0

eλ(s−t)G(v(s))ds + σ

t∫
0

eλ(s−t)dW (s)

 (4)

for a.e. ω ∈ Ω and all t ≥ 0.

Proof. We consider two geometric Brownian motions (see [14, pg. 349]) starting at

x0 = 1 given by B(t) = exp {σW (t)} and β(t) = exp {−σW (t)}, t ≥ 0, which are the
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solutions of the following linear equations

B(t) = 1 +
σ2

2

t∫
0

B(s)ds + σ

t∫
0

B(s)dW (s), t ≥ 0, (5)

β(t) = 1 +
σ2

2

t∫
0

β(s)ds− σ

t∫
0

β(s)dW (s), t ≥ 0. (6)

First, we prove that the solution of (3) is unique: Let (p(t))t≥0 be a solution of (3).

Applying the Itô formula for Z := p · β (see [14, Theorem 3.6]) we obtain from (3)

and (6) that

Z(t) = p0 +

t∫
0

(
λ ln

(
µ

Z(s)

)
−G(v(s)− λσW (s))

)
Z(s)ds, t ≥ 0. (7)

We denote Y := lnZ, then (Y (t))t≥0 satisfies the equation

Y (t) = ln(p0) +

t∫
0

(λ ln(µ)−G(v(s))− λσW (s)− λY (s)) ds, t ≥ 0. (8)

Obviously, the solution of (8) is unique (it is linear in Y ), hence the solution of (3)

must also be unique. Now, we prove the existence of the solution of (3). Note, that

the solution of (8) has the explicit form

Y (t) = e−λt ln(p0) +

t∫
0

eλ(s−t) (λ ln(µ)−G(v(s))− λσW (s)) ds, t ≥ 0.

Then, Z(t) = exp{Y (t)} satisfies equation (7). By using the Itô formula for Z ·B (see

[14, Theorem 3.6]) we obtain from (7) and (5) that Z · B is a solution of (3). From

the uniqueness of the solution of (3) it follows that

p(t) = Z(t)B(t) = exp {Y (t) + σW (t)}

= exp

e−λt ln(p0) +

t∫
0

eλ(s−t) (λ ln(µ)−G(v(s))− λσW (s)) ds + σW (t)

 .

By calculations we get that the explicit form for p is given in (4).
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Remark 1. We introduce the set Ω∗ ⊂ Ω with P (Ω∗) = 1 such that for all ω ∈ Ω∗

it hold:

• eλtW (t) =

t∫
0

eλsdW (s) + λ

t∫
0

eλsW (s)ds for all t ≥ 0 ;

• W has sublinear growth at ±∞, i.e. lim
t→±∞

W (t)
t

= 0 for all ω ∈ Ω∗;

• the Ornstein-Uhlenbeck process

O(t) = σ

t∫
0

eλ(s−t)dW (s) for all t ≥ 0, (9)

is well defined. ♦

Remark 2. Without loss of generality, we can say that (4) holds for all ω ∈ Ω∗.

Since in the expression (4) appears the Ornstein-Uhlenbeck process
(
O(t)

)
t≥0

which

is a zero-mean Gaussian process with variance ν(t) = Var(O(t)) =
σ2

2λ
(1− e−2λt), we

can compute the expected number of tumor cells at time t > 0 by

E(p(t)) = (p0)e−λt

µ1−e−λt

E

exp

−
t∫

0

eλ(s−t)G(v(s))ds + O(t)


 .

If, G and v are independent of the process W , then

E(p(t)) = (p0)e−λt

µ1−e−λt

E

exp

−
t∫

0

eλ(s−t)G(v(s))ds


 E(exp{O(t)}).

But, E(exp{O(t)}) = exp
{

ν(t)
2

}
, then in this case we obtain

E(p(t)) = (p0)e−λt

µ1−e−λt

exp
{

σ2

4λ
(1− e−2λt)

}
E

exp

−
t∫

0

eλ(s−t)G(v(s))ds


 .

Moreover, if G and v do not depend on ω, then

E(p(t)) = (p0)e−λt

µ1−e−λt

exp

−
t∫

0

eλ(s−t)G(v(s))ds +
σ2

4λ
(1− e−2λt)

 ,
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while the variance is given by

Var(p(t)) = (p0)2e−λt

µ2(1−e−λt) exp

−2

t∫
0

eλ(s−t)G(v(s))ds + ν(t)

 (exp {ν(t)} − 1).

♦

3. Random and stochastic differential inclusions

We want to investigate (3) in the framework of differential inclusions (DIs),

which are roughly speaking given by corresponding set valued differential equations.

Notations: Let (X, d) be a complete metric space.

• We denote by K(X) the set of all nonempty compact and convex subsets of X.

• In the set valued setting we use an appropriate concept for distance, namely the

Hausdorff semi metric d∗H(·, ·) and the Hausdorff metric dH(·, ·). The Hausdorff semi

metric for A, B ⊂ X is given by d∗H(A,B) = sup
a∈A

inf
b∈B

d(a, b). Note, that d∗H(·, ·) is

only a semi metric, because in general d∗H(A,B) 6= d∗H(B,A). We obtain the full

metric by dH(A,B) := max{d∗H(A,B), d∗H(B,A)}.

• For A, B ⊂ X and α ∈ R we define A + αB := {a + αb | a ∈ A, b ∈ B}.

• For x ∈ X and ε > 0 we denote by Bε(x) := {y ∈ X|d(x, y) < ε}, the ε-ball for x.

Such as sets are characterized by their elements, set valued mappings are

characterized by selections.

Definition 1. Let F : R+ × R 7→ K(R). A selection is a scalar valued mapping

f : R+ ×X → X with f(t, ·) ∈ F (t, ·) for a.e. t ∈ [0, T ].

Let (Ω,F , P) be a probability space. If we introduce DIs driven by random

or stochastic processes over (Ω,F , P), then we obtain random differential inclusions

(RDI) and also stochastic differential inclusions (SDI) of Itô type having the form

dϕ(t)
dt

∈ F (θtω, ϕ(t)), t ≥ 0, ϕ(0) = x0 ∈ R (RDI) (10)
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where θ is a metric dynamical system (see Definition 2 in Section 4) and

dϕ(t) ∈ F (t, ϕ(t))dt + g(ϕ(t))dW, t ≥ 0, ϕ(0) = x0 ∈ R (SDI) (11)

respectively. Equation (11) is the symbolic notation for

ϕ(t) ∈ x0 +

t∫
0

F (ϕ(s)) ds +

t∫
0

g(ϕ(s))dW (s), (12)

where the first integral is the so-called Aumann integral, defined as the set of the form

t∫
0

F (s, ·) ds =


t∫

0

f(s, ·) ds | f ∈ I(F ) for t ∈ [0, T ]


with the space of selectors

I(F ) :=
{

f : [0, T ]× R 7→ R | f(·, x) ∈ L1[0, T ]∀x ∈ R,

f(t, ·) ∈ F (t, ·) for a. e. t ∈ [0, T ]
}

and the second integral in (12) is a stochastic integral of Itô type.

We can interpret (3) as a SDI by writing, for example,

dϕ(t) ∈ F (ϕ(t))dt + g(ϕ(t))dW (t), t ≥ 0, ϕ(0) = x0 > 0, (13)

where F : R 7→ K(R) is the set valued mapping given by

F (ϕ(t)) :=
(

λ ln
(

µ

ϕ(t)

)
− [0, ρ]

)
ϕ(t) (14)

g(ϕ(t)) := σϕ(t) and ρ > 0 is a parameter.

We replaced G(v) by the set [0, ρ]. In our model v(t) > 0 denotes the dose of the

drug at time t, while G(v) > 0 denotes the destroying rate of the cancer cells. It

seems reasonable that G has to be a monotone increasing and bounded function (see

[16]). In the special case mentioned in (2) we have lim
v→∞

G(v) = lim
v→∞

k1 v

k2 + v
= k1.

Therefore, we can take, for example, ρ := k1.

Real therapy protocols are somehow periodic, drugs are given in periodic time inter-

vals, and then a while no drugs are given, in order to allow the physical body of the
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patient to recover after the drug exposure. The following type of control for the set

valued mapping for the SDI (13) takes this fact better into account:

F (ϕ(t)) :=
(

λ ln
(

µ

ϕ(t)

)
− [0, ρ]

(
1 + sgn(sin(αt + β))

2

))
ϕ(t) (15)

with α, β ∈ R are the parameter for the velocity and shifting of the protocol and

sgn(x) = −1, if x < 0 and sgn(x) = 1, if x ≥ 0.

Another further generalization is to consider the parameter ρ (i.e. the maximal de-

stroy rate) as a stationary stochastic process (ω, t) → ρ(θtω).

4. Random dynamical systems

We give now a brief introduction into the theory of random dynamical sys-

tems. A complete survey can be found in [2]. Random dynamical systems are dynam-

ical systems under random influences. Formally, they are given by two ingredients:

a model for the underlying noise (the metric dynamical system) and a model, which

describes the dynamics under the influence of that noise (the cocycle).

Definition 2. Let (Ω,F , P) be a probability space. A metric dynamical system (MDS)

θ : R × Ω 7→ Ω is a (B(R)⊗F ,F)-measurable flow that fulfills the group property

θ0 = id , θt+s = θt ◦ θs for all s, t ∈ R. Moreover, we suppose that (θt)t∈R is

continuous, i.e. (t, ω) 7→ θtω is continuous, and it is measure preserving, i.e. θtP = P,

for all t ∈ R.

Example 1. A well-known example of a MDS, which appears if we deal with sto-

chastic differential equations, is the following: Let (Wt)t∈R be a 1-dimensional two-

sided standard Wiener process over the canonical Wiener space (Ω̃, F̃ , P̃), where

Ω̃ = {ω ∈ C(R, R) : ω(0) = 0}, F̃ is the Borel σ-algebra of Ω̃ and P̃ is the Wiener

measure. Then, the Wiener shift θtω(·) = ω(·+ t)− ω(t) defines a MDS. ♦

From now on let θ be an MDS over the probability space (Ω,F , P). Let (X, d) be a

complete metric space.

Definition 3. We call (φ, θ) a random dynamical system (RDS) if

φ : R+ × Ω × X 7→ X is a (B(R+)⊗F ⊗ B(X),B(X))-measurable mapping
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and satisfies for all s, t ∈ R+, ω ∈ Ω and x ∈ X the perfect cocycle property

φ(0, ω, x) = x, φ(t + s, ω, x) = φ
(
t, θsω, φ(s, ω, x)

)
.

An RDS can be generated for example by random differential equations or

stochastic differential equations. An overview of typical generators of RDSs can be

found in [2] and [5].

Definition 4. A random variable x∗ is called a random fixed point for a random

dynamical system (φ, θ), if φ(t, ω, x∗(ω)) = x∗(θtω) for all ω ∈ Ω and t ∈ R+. We

say that a random fixed point x∗ is stable, if it satisfies the pullback convergence

relation lim
t→∞

φ(t, θ−tω, x) = x∗(ω) for all x ∈ X and all ω ∈ Ω.

The concept of pullback convergence was introduced in the 1990s by Crauel

and Flandoli [7], Flandoli and Schmalfuß [12], and Schmalfuß [18].

We study now the long time behavior of the solution p of equation (3) for

different types of control functions v:

I. We consider the probability space (Ω,F , P) to be the Wiener space (Ω̃, F̃ , P̃)

and the MDS θ the Wiener shift given in Example 1. Let X = R+ be the phase space.

We define for all x ∈ R+ and all t ≥ 0 the function

φ(t, ω, x) = xe−λt

µ1−e−λt

exp

−
t∫

0

eλ(s−t)G(v(s))ds + σ

t∫
0

eλ(s−t)dW (s)

 , ∀ω ∈ Ω∗

(16)

φ(t, ω, x) = x, ∀ω ∈ Ω \ Ω∗,

where Ω∗ ⊂ Ω is the set of measure 1 that satisfies the properties from Remark 1.

Assume that G ◦ v is a strictly stationary process, i.e. G ◦ v(s, θtω) =

G◦v(s+ t, ω) for all s, t ∈ R, ω ∈ Ω, which is also bounded G◦v(t, ω) < M for all t ≥

0 and a.e. ω ∈ Ω.

One can check by calculations that in our case (φ, θ) is a RDS over (Ω,F , P) (the
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Wiener space). In these calculations it is essential that the MDS θ is measure pre-

serving with respect to P .

Example 2. Stationary processes G ◦ v are obtained for example when G is a non-

random continuous function G : R → R+ which is continuous and v(t, ω) := z(θtω)

t ∈ R, ω ∈ Ω̃, where z is a positive random variable. In our simulations we take

v(t, ω) := exp{−z∗(θtω)}, where z∗(ω) = −σλ

∫ 0

−∞
eλsW (s)ds is the random fixed

point of the Ornstein-Uhlenbeck equation dO(t) = λO(t)dt + σdW (t), t ≥ 0. For G

we take the function given in (2). ♦

Theorem 2. The solution of equation (3) has the following long time behavior: for

each x ≥ 0 it holds

lim
t→∞

φ(t, θ−tω, x) = µ exp
{
−

∫ 0

−∞
eλs

(
G(v(s)) + σλW (s)

)
ds

}
(17)

for all ω ∈ Ω∗.

Proof. For ω ∈ Ω∗ we take ω 7→ θ−tω in (16) and analyze the expressions occurring

in the formula. We have

lim
t→∞

∫ t

0

eλ(s−t)G(v(s, θ−tω))ds = lim
t→∞

∫ 0

−t

eλsG(v(s + t, θ−tω))

=
∫ 0

−∞
eλsG(v(s, ω))ds.

For the expression containing the Ornstein-Uhlenbeck process we compute as follows:

Using the notation introduced in (9) and the Wiener shift operator θ given in Exam-

ple 1, we obtain e−λtW (−t) =
1
σ

O(t, θ−tω) + λ

0∫
−t

eλsW (s)ds for all t ≥ 0, ω ∈ Ω∗.

We take into consideration that the process W has sublinear growth (see Remark 1),

therefore,

lim
t→∞

O(t, θ−tω) = −σλ

0∫
−∞

eλsW (s)ds, for all ω ∈ Ω∗. (18)

The integral from the right-hand side of the above relation exists. Finally, we take

ω 7→ θ−tω in (16), then t →∞ and use (18) to get (17).
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By calculations it is easy to prove that by the above result we obtained the stable

random fixed point for (φ, θ)

x∗(ω) =


µ exp

{
−

∫ 0

−∞
eλs

(
G(v(s)) + σλW (s)

)
ds

}
for ω ∈ Ω∗

µ for ω ∈ Ω \ Ω∗

which acts as a random attractor for our RDS. This means that other solutions are

attracted by this random fixed point. Moreover, any ε-neighborhood Bε(x∗), ε > 0

absorbs any other solution and any bounded solution set in finite time. Note, for

every time t we have a finite well defined random variable.

Theorem 3. The solutions of the SDI (13) satisfies the following property

φρ(t, ω, x) ≤ ϕ(t, ω, x) ≤ φ0(t, ω, x) for all x > 0, ω ∈ Ω∗, where φ0 and φρ are

the cocycles corresponding to G ◦ v ≡ 0 and G ◦ v ≡ ρ, respectively.

Proof. The solution ϕ of (13) exists, since for each selection f of F (defined in (14))

the corresponding stochastic differential equation admits a solution ϕ(t, ω, x) given in

(16) by φ(t, ω, x), for which G(v(·)) ∈ [0, ρ]. The stated inequalities follow from the

fact that for each selection for the SDI we have in fact G(v(·)) ∈ [0, ρ].

Remark 3. We see from this theorem that the solution tube for the SDI (13) is

delimited by the two ”extreme” solutions, namely φρ and φ0. Analogously we get

that the set of random fixed points corresponding to the SDI (13) is delimited by the

two random fixed points x∗0 and x∗ρ, corresponding to G ◦ v ≡ 0 and G ◦ v ≡ ρ.

II. Now we consider that our equation is driven not only by the underlying

noise term ω(t) = W (t) ω ∈ Ω̃ but also by nonrandom control functions v ∈ C(R, R+)

(note, that v is the dose drug in the cancer growth model). In this case, the theory

of RDS is embedded into the theory of non-autonomous dynamical systems.

Let Ω̂ be a nonempty set of elements. For each t ∈ R we consider θ̂t : R × Ω̂ 7→ Ω̂

satisfying the group property θ̂0 = id , θ̂t+s = θ̂t ◦ θ̂s for all s, t ∈ R.
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Definition 5. We call (φ̂, θ̂) a non-autonomous dynamical system (NDS), if

φ̂ : R+ × Ω̂ × X 7→ X satisfies for all s, t ∈ R+, ω̂ ∈ Ω̂ and x ∈ X the cocycle

property φ̂(0, ω̂, x) = x, φ̂(t + s, ω̂, x) = φ̂
(
t, θ̂sω̂, φ̂(s, ω̂, x)

)
.

Let (Ω̃, F̃ , P̃) be the Wiener space and θ the Wiener shift MDS given in

Example 1. Let Ω̃∗ be the set of measure 1 which satisfies the properties from Remark

1.

For our problem (3) we consider the NDS: Ω̂ := Ω̃× C(R, R+)

θ̂t(ω, v)(·) = (θtω(·), v(·+ t)) for all (ω, v) ∈ Ω̃× C(R, R+),

and for x ∈ R+ the cocycle is given for each (ω, v) ∈ Ω̃∗ × C(R, R+) by

φ̂(t, (ω, v), x) = xe−λt

µ1−e−λt

exp

−
t∫

0

eλ(s−t)G(v(s))ds + σ

t∫
0

eλ(s−t)dW (s)

 , (19)

while for (ω, v) ∈ (Ω̃ \ Ω̃∗)× C(R, R+) by φ̂(t, (ω, v), x) = x.

One can check by calculations that in our case (φ̂, θ̂) is a NDS over Ω̂. In these

calculations it is essential that the MDS θ is measure preserving with respect to P̃ .

Theorem 4. If G, v ∈ C(R, R+) and G is bounded, then the solution of equation (3)

has the following long time behavior: for each x ≥ 0 it holds

lim
t→∞

φ̂(t, θ̂−t(ω, v), p0) = µ exp
{
−

∫ 0

−∞
eλs

(
G(v(s)) + σλW (s)

)
ds

}
for all (ω, v) ∈ Ω̃∗ × C(R, R+).

The proof is similar to the proof of Theorem 2.

This result shows, that there exists a stable random fixed point for the NDS (φ̂, θ̂)

x∗((ω, v)) =



µ exp
{
−

∫ 0

−∞
eλs (G(v(s)) + σλW (s)) ds

}
for (ω, v) ∈ Ω̃∗ × C(R, R+)

µ for (ω, v) ∈ (Ω̃ \ Ω̃∗)× C(R, R+).

There is a strong relation between a large set of DIs and set valued dynamical systems.

Like differential equations often generate dynamical systems, DIs generate set valued
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dynamical systems. That is, we can use the numerical methods for the approximation

of dynamical systems also for DIs by taking the set valued nature of the inclusions

into account. We can interpret (13) also as a set valued random dynamical system. If

we replace the cocycle mapping φ with a set valued nonempty compact and convex

cocycle mapping Φ (see [4]) we can define set valued random dynamical systems.

Definition 6. We call (Φ, θ) a set valued random dynamical system (SVRDS) if

Φ : R+ × Ω × X 7→ K(X) is measurable and satisfies for all s, t ∈ R+, ω ∈ Ω and

x ∈ X the perfect set valued cocycle property Φ(0, ω, x) = {x}, Φ(t + s, ω, x) =

Φ(t, θsω, Φ(s, ω, x)) ∀s, t ∈ R+.

In addition, we make also the following assumptions on Φ: We assume the

continuity in time i.e. limt→s dH(Φ(t, ω, x),Φ(s, ω, x)) = 0 ∀ ω ∈ Ω and upper semi-

continuity in parameter and initial value i.e. for x, y ∈ R we have

lim
x→y,ω1→ω2

d∗H(Φ(t, ω1, x),Φ(t, ω2, y)) = 0

uniformly in t, where t belongs to any compact interval from [0,∞) and for all ω ∈ Ω.

A trajectory of a SVRDS is a single valued mapping φ : R+ 7→ R which for all ω ∈ Ω

satisfies φ(ω, t) ∈ Φ(t− s, θsω, φ(ω, s)), where 0 ≤ s ≤ t.

As mentioned before SVRDS are generated for example by RDI (10) or SDI (11).

Of course in this cases the trajectories of the SVRDS correspond to selections of the

inclusion. The SDI (13) with (14) generates a SVRDS, while the SDI (13) with (15)

generates set valued non-autonomous dynamical system.

5. Simulations

In this section we want to give some numerical results for (3). Note that

our model is qualitative and not quantitative, the values given on the axes are not

realistic. However it is possible to scale the model to any desired situation.

In our simulations we will use the parameters k1 = 1, k2 = 1, λ = 1, µ = 1.

In Figure 1 we can see the stochastic model without control functions. We used three

different initial conditions. The existence of the random fixed point x∗0, which is the
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Figure 1. Simulation of three initial conditions for the control free

system (G ◦ v = 0).
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Figure 2. Simulations with different controls.

bound for the maximal tumor size is well visible.

In Figure 2 we have simulated our stochastic model for different control functions.

We used v(t) = 1 + cos(t) (nonrandom case) and v(t) = e−z∗(t) (stationary process).

Also in these cases the random fixed point exists. However such controls are only of

theoretical interest but they support the results of the theory given in Section 2.

From the theoretical results it is clear that we have to use drugs with a high enough

destroying rate for the cancer cells. Our simulations support this assertion. Let us

interpret our model as an SDI (13) with (14). The approximations in Figure 3 show

the reachable set of the inclusion for different maximal destroying rates with the same

selection strategy. Of course the simulation takes into account that we can use the

maximal destroy rate for all t, which is obviously not possible because this destroy
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Figure 3. Simulations for different maximal destroy rates for the

SDI (13) with (14).

Figure 4. Simulations for different maximal destroy rates for the

SDI (13) with (15).

rate damages also good cells. However the inclusion for (14) includes this very opti-

mistic but unrealistic case.
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It is clear from real world examples that realistic controls have to be some kind of pe-

riodic functions, because the drugs are given in intervals. It is not possible to control

the concentration of the drugs for every time t and it is surely not possible to shorten

the interval arbitrary.

We get a more appropriate model, if we use (15) in the SDI (13). Note, we have

made the assumption that v has to be some kind of periodic function, where the time

span for the therapy and the time span for rest has the same size. Also in this case

we need a high enough destroying rate to get a successful procedure. In the time

span, where we do not use drugs the tumor is again growing but the patient has the

chance to improve his health for the new therapy session. The simulations are shown

in Figure 4.

We point out that we are not experts in the topic of real healing procedures. The

mathematical strategies used here are probably not realistic. But it is easily possible

to extend these ideas to other more appropriate strategies.

However, the numerical results imply that it seems not possible to use a gentle pro-

cedure for the drug disposal. To get a successful procedure it seems to be necessary

to use an aggressive strategy depending of the strength and health of the patient.
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A MIXED MONTE CARLO AND QUASI-MONTE CARLO METHOD
WITH APPLICATIONS TO MATHEMATICAL FINANCE

ALIN V. ROŞCA

Abstract. In this paper, we apply a mixed Monte Carlo and Quasi-Monte

Carlo method, which we proposed in a previous paper, to problems from

mathematical finance. We estimate the value of an European Call option

and of an Asian option using our mixed method, under different horizont

times. We assume that the stock price of the underlaying asset S = S(t)

is driven by a Lévy process L(t). We compare our estimates with the esti-

mates obtained by using the Monte Carlo and Quasi-Monte Carlo methods.

Numerical results show that a considerable improvement can be achieved

by using the mixed method.

1. Introduction

The valuation of financial derivatives is one of the most important problems

from mathematical finance. The risk-neutral price of such a derivative can be ex-

pressed in terms of a risk-neutral expectation of a random payoff. In some cases, the

expectation is explicitly computable, such as the Black & Scholes formula for pricing

call options on assets modelled by a geometric Brownian motion. However, if we

consider an Asian option, there exists no longer closed form expressions for the price,

and therefore numerical methods are involved. This is the case, even if we consider

call options written on assets with non-normal returns. Among these methods, Monte

Carlo (MC) and Quasi-Monte Carlo (QMC) methods play an increasingly important

role.

Received by the editors: 10.09.2007.
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One of the first applications of the MC method in this field appeared in

Boyle [2], who used simulation to estimate the value of a standard European option.

Applications of the QMC method to option pricing problems can be found in [15] and

[12].

Barndorff-Nielsen [1] proposed to model the log returns of asset prices by

using the normal inverse Gaussian (NIG) distribution. This family of non-normal

distributions has proven to fit the semi-heavily tails observed in financial time series

of various kinds extremely well (see Rydberg [21] or Eberlein and Keller [7]). The time

dynamics of the asset prices are modelled by an exponential Lévy process. To price

such derivatives, even simple call and put options, we need to consider the numerical

evaluation of the expectation. Raible [18] has considered a Fourier method to evaluate

call and put options. Alternatives to this method are the MC method or the QMC

method. The QMC method has been applied with succes in financial applications by

many authors (see [8]), and has strong convergence properties. Majority of the work

done on applying these simulation techniques to financial problems was in direction

where one needs to simulate from the normal distribution. One exception is Kainhofer

(see [13]), who proposes a QMC algorithm for NIG variables, based on a technique

proposed by Hlawka and Mück (see [11]) to generate low-discrepancy sequences for

general distributions.

In a recent paper [19], we proposed a mixed MC and QMC method for es-

timating an s-dimensional integral I and we defined a new hybrid sequence that we

called the H-mixed sequence. Other authors who combine the ideas from MC and

QMC methods in estimating multidimensional integrals are G. Ökten (see [16]) and

N. Roşca (see [20]). Using these sequences, we defined a new estimator and proved a

central limit theorem for this estimator. In this paper, we apply our mixed method

to practical problems from financial mathematics. First, we remember the theoreti-

cal background of our method and give some important results. Then, we apply the

H-mixed sequence to valuation of an European Call option and compare the effec-

tiveness of it with that of pseudorandom and low-discrepancy sequences. At the end,

we apply the mixed method to a more difficult problem from finance, namely the
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valuation of Asian options. We also compare numerically our method with the MC

and QMC methods.

2. H-mixed sequences

Let us consider the problem of estimating integrals of the form

I =
∫

[0,1]s
f(x)dH(x), (1)

where f : [0, 1]s → R is the function we want to integrate and H : Rs → [0, 1] is a

distribution function on [0, 1]s. In the continuous case, the integral I can be rewritten

as

I =
∫

[0,1]s
f(x)h(x)dx,

where h is the density function corresponding to the distribution function H.

In the MC method (see [22]), the integral I is estimated by sums of the form

ÎN =
1
N

N∑
k=1

f(xk),

where xk = (x(1)
k , . . . , x

(s)
k ), k ≥ 1, are independent identically distributed random

points on [0, 1]s, with the common density function h.

In the QMC method (see [22]), the integral I is approximated by sums of the

form 1
N

∑N
k=1 f(xk), where (xk)k≥1 is a H-distributed low-discrepancy sequence on

[0, 1]s.

Next, the notions of discrepancy and marginal distributions are introduced.

Definition 1 (H-discrepancy). Consider an s-dimensional continuous distribution

on [0, 1]s, with distribution function H. Let λH be the probability measure induced

by H. Let P = (x1, . . . , xN ) be a sequence of points in [0, 1]s. The H-discrepancy of

sequence P is defined as

DN,H(P ) = sup
J⊆[0,1]s

∣∣∣∣ 1
N

AN (J, P )− λH(J)
∣∣∣∣,

59



ALIN V. ROŞCA

where the supremum is calculated over all subintervals J =
∏s

i=1[ai, bi] ⊆ [0, 1]s;

AN (J, P ) counts the number of elements of the set (x1, . . . , xN ), falling into the in-

terval J, i.e.

AN (J, P ) =
N∑

k=1

1J(xk).

1J is the characteristic function of J .

The sequence P is called H-distributed if DN,H(P ) → 0 as N →∞.

The H-distributed sequence P is said to be a low-discrepancy sequence if

DN,H(P ) = O
(
(log N)s/N

)
.

The non-uniform Koksma-Hlawka inequality ([3]) gives an upper bound for

the approximation error in QMC integration, when H-distributed low-discrepancy

sequences are used.

Theorem 2 (non-uniform Koksma-Hlawka inequality). Let f : [0, 1]s → R be a

function of bounded variation in the sense of Hardy and Krause and (x1, . . . , xN ) be

a sequence of points in [0, 1]s. Consider an s-dimensional continuous distribution on

[0, 1]s, with distribution function H. Then, for any N > 0∣∣∣∣∣
∫

[0,1]s
f(x)dH(x)− 1

N

N∑
k=1

f(xk)

∣∣∣∣∣ ≤ VHK(f)DN,H(x1, . . . , xN ), (2)

where VHK(f) is the variation of f in the sense of Hardy and Krause.

Definition 3. Consider an s-dimensional continuous distribution on [0, 1]s, with den-

sity function h and distribution function H. For a point u =
(
u(1), . . . , u(s)

)
∈ [0, 1]s,

the marginal density functions hl, l = 1, . . . , s, are defined by

hl

(
u(l)
)

=
∫

. . .

∫
︸ ︷︷ ︸
[0,1]s−1

h
(
t(1), . . . , t(l−1), u(l), t(l+1), . . . t(s)

)
dt(1) . . . dt(l−1)dt(l+1) . . . dt(s),

and the marginal distribution functions Hl, l = 1, . . . , s, are defined by

Hl

(
u(l)
)

=
∫ u(l)

0

hl(t)dt.
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We consider s-dimensional continuous distributions on [0, 1]s, with indepen-

dent marginals, i.e.,

H(u) =
s∏

l=1

Hl(u(l)), ∀u = (u(1), . . . , u(s)) ∈ [0, 1]s.

This can be expressed, using the marginal density functions, as follows:

h(u) =
s∏

l=1

hl(u(l)), ∀u = (u(1), . . . , u(s)) ∈ [0, 1]s.

Consider an integer 0 < d < s. Using the marginal density functions, we

construct the following density functions on [0, 1]d and [0, 1]s−d, respectively:

hq(u) =
d∏

l=1

hl(u(l)), ∀u = (u(1), . . . , u(d)) ∈ [0, 1]d,

and

hX(u) =
s∏

l=d+1

hl(u(l)), ∀u = (u(d+1), . . . , u(s)) ∈ [0, 1]s−d.

The corresponding distribution functions are

Hq(u) =
∫ u(1)

0

. . .

∫ u(d)

0

hq

(
t(1), . . . , t(d)

)
dt(1) . . . dt(d),

u = (u(1), . . . , u(d)) ∈ [0, 1]d, (3)

and

HX(u) =
∫ u(d+1)

0

. . .

∫ u(s)

0

hX

(
t(d+1), . . . , t(s)

)
dt(d+1) . . . dt(s),

u = (u(d+1), . . . , u(s)) ∈ [0, 1]s−d. (4)

Next, we introduce the new notion of a H-mixed sequence.

Definition 4 (H-mixed sequence). ([19])

Consider an s-dimensional continuous distribution on [0, 1]s, with distribution

function H and independent marginals Hl, l = 1, . . . , s. Let Hq and HX be the

distribution functions defined in (3) and (4), respectively.

Let (qk)k≥1 be a Hq-distributed low-discrepancy sequence on [0, 1]d, with qk =

(q(1)
k , . . . , q

(d)
k ), and Xk, k ≥ 1, be independent and identically distributed random

vectors on [0, 1]s−d, with distribution function HX , where Xk = (X(d+1)
k , . . . , X

(s)
k ).
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A sequence (mk)k≥1, with the general term given by

mk = (qk, Xk), k ≥ 1, (5)

is called a H-mixed sequence on [0, 1]s.

Remark 5. For an interval J =
∏s

l=1[al, bl] ⊆ [0, 1]s, we define the subintervals

J ′ =
∏d

l=1[al, bl] ⊆ [0, 1]d and J ′′ =
∏s

l=d+1[al, bl] ⊆ [0, 1]s−d (i.e. J = J ′ × J ′′).

Let (mk)k≥1 be a H-mixed sequence on [0, 1]s, with the general term given

by (5).

Based on definitions (1) and (4), the H-discrepancy of the sequence (m1, . . . ,mN )

can be expressed as

DN,H(m1, . . . ,mN ) = sup
J⊆[0,1]s

∣∣∣∣ 1
N

N∑
k=1

1J(mk)−
s∏

l=1

[Hl(bl)−Hl(al)]
∣∣∣∣,

and the Hq-discrepancy of the sequence (q1, . . . , qN ) is given by

DN,Hq
(q1, . . . , qN ) = sup

J′⊆[0,1]d

∣∣∣∣ 1
N

N∑
k=1

1J′(qk)−
d∏

l=1

[Hl(bl)−Hl(al)]
∣∣∣∣.

The following result gives a probabilistic error bound for the H-mixed se-

quences.

Theorem 6. ([19]) If (mk)k≥1 = (qk, Xk)k≥1 is a H-mixed sequence, then ∀ε > 0 we

have

P
(
DN,H(m1, . . . ,mN ) ≤ ε+DN,Hq (q1, . . . , qN )

)
≥ 1− 1

ε2

1
4N

(
DN,Hq (q1, . . . , qN )+1

)
.

(6)

In order to estimate general integrals of the form (1), we introduce the fol-

lowing estimator.

Definition 7. ([19]) Let (mk)k≥1 = (qk, Xk)k≥1 be an s-dimensional H-mixed se-

quence, introduced by us in Definition 4, with qk = (q(1)
k , . . . , q

(d)
k ) and Xk =

(X(d+1)
k , . . . , X

(s)
k ). We define the following estimator for the integral I:

θm =
1
N

N∑
k=1

f(mk). (7)
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We consider the independent random variables:

Yk = f(mk) = f(q(1)
k , . . . , q

(d)
k , X

(d+1)
k , . . . , X

(s)
k ), k ≥ 1. (8)

We denote the expectation of Yk by

E(Yk) = µk, (9)

and the variance of Yk by

V ar(Yk) = σ2
k. (10)

We assume that

0 < σ2
k < ∞, (11)

and we denote

0 < σ2
(N) = σ2

1 + . . . + σ2
N < ∞. (12)

In what follows, we give and prove an important result, concerning the esti-

mator (7) introduced previously by us.

Theorem 8. Let (mk)k≥1 = (qk, Xk)k≥1 be an s-dimensional H-mixed sequence,

defined in (5). We assume that the integrant f is bounded on [0, 1]s and that the

function

g(x(1), . . . , x(d)) =
∫

[0,1]s−d

f(x(1), . . . , x(s))
( s∏

l=d+1

hl(x(l))
)
dx(d+1) · . . . · dx(s),

is of bounded variation in the sense of Hardy and Krause. Then, the estimator θm,

defined in relation (7), is asymptotically unbiased i.e.,

E(θm) → I, as N →∞.

Proof. As (qk)k≥1, with qk = (q(1)
k , . . . , q

(d)
k ), is a Hq-distributed low-discrepancy

sequence on [0, 1]d, it follows that

DN,Hq
(q1, . . . , qN ) → 0, as N →∞. (13)

63



ALIN V. ROŞCA

Using this and the fact that function g is of bounded variation in the sense of Hardy

and Krause, it follows from Koksma-Hlawka inequality (2) that

1
N

N∑
k=1

g(q(1)
k , . . . , q

(d)
k ) −→

∫
[0,1]d

g(x(1), . . . , x(d))
( d∏

l=1

hl(x(l))
)
dx(1) . . . dx(d)

=
∫

[0,1]d

[ ∫
[0,1]s−d

f(x(1), . . . , x(s))
( s∏

l=d+1

hl(x(l))
)
dx(d+1) · . . . · dx(s)

]

·
( d∏

l=1

hl(x(l))
)
dx(1) . . . dx(d)

=
∫

[0,1]s
f(x(1), . . . , x(s))

( s∏
l=1

hl(x(l))
)
dx(1) · . . . · dx(s) = I, as N →∞.

The expectation of our estimator is

E(θm) = E

(
1
N

N∑
k=1

f(mk)

)
=

1
N

N∑
k=1

E(f(q(1)
k , . . . , q

(d)
k , X

(d+1)
k , . . . , X

(s)
k ))

=
1
N

N∑
k=1

∫
[0,1]s−d

f(q(1)
k , . . . , q

(d)
k , x(d+1), . . . , x(s))

( s∏
l=d+1

hl(x(l))
)
dx(d+1) · . . . · dx(s)

=
1
N

N∑
k=1

g(q(1)
k , . . . , q

(d)
k ).

Hence, we get in the end that

lim
N→∞

E(θm) = I.

We call the method of estimating the integral I, based on the estimator θm,

defined in (7), the mixed method.

Proposition 9. ([19]) Let (mk)k≥1 = (qk, Xk)k≥1 be an s-dimensional H-mixed se-

quence. We assume that f is bounded on [0, 1]s and that the functions

f1(x(1), . . . , x(d)) =
∫

[0,1]s−d

(f(x(1), . . . , x(s)))2
( s∏

l=d+1

hl(x(l))
)
dx(d+1) · . . . · dx(s),

f2(x(1), . . . , x(d)) =
[ ∫

[0,1]s−d

f(x(1), . . . , x(s))
( s∏

l=d+1

hl(x(l))
)
dx(d+1) · . . . · dx(s)

]2
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are of bounded variation in the sense of Hardy and Krause. Then, we have

σ2
(N)

N
−→ L, as N −→∞,

where

L =
∫

[0,1]s
(f(x(1), . . . , x(s)))2

( s∏
l=1

hl(x(l))
)
dx(1) . . . dx(s)−

−
∫

[0,1]d

[ ∫
[0,1]s−d

f(x(1), . . . , x(s))
( s∏

l=d+1

hl(x(l))
)
dx(d+1) · . . . · dx(s)

]2

·
( d∏

l=1

hl(x(l))
)
dx(1) . . . dx(d).

Another important result regarding the estimator defined before is recalled

next.

Theorem 10. ([19]) In the same hypothesis as in Proposition 9 and, in addition,

assuming that L 6= 0, we have

a)

Y(N) =
∑N

k=1 Yk −
∑N

k=1 µk

σ(N)
−→ Y, as N →∞, (14)

where the random variable Y has the standard normal distribution.

b) If we denote the crude Monte Carlo estimator for the integral (1) by θMC ,

then

V ar(θm) ≤ V ar(θMC), (15)

meaning that, by using our estimator, we obtain asymptotically a smaller

variance than by using the classical Monte Carlo method.

3. Application to finance: European options

In this section, we apply our mixed method to a problem from mathematical

finance. The general setting of the problem is presented next. We consider the

situation where the stock price of the underlaying asset S = S(t) is driven by a Lévy

process L(t),

S(t) = S(0)eL(t). (16)
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Lévy processes can be characterized by the distribution of the random variable L(1).

This distribution can be hyperbolic (see [7]), normal inverse gaussian (NIG), variance-

gamma (see [14]), or Meixner distribution.

According to the fundamental theory of asset pricing (see [5] ), the risk-

neutral price of an option, C(0), is given by

C(0) = e−rT EQ(CT (S)), (17)

where CT (S) is the so-called payoff of the derivative, which coincides with its value

at expiration or exercise time T , and Q is an equivalent martingale measure. In this

paper, we are mostly concerned with exponential NIG-Lévy processes, meaning that

L(t) has independent increments, distributed according to a NIG distribution. For

a detailed discussion of the NIG distribution and the corresponding Lévy process,

we refer to Barndorff-Nielsen [1] and Rydberg [21]. In the situation of exponential

NIG-Lévy models, we have an incomplete market, leading to a continuum of equiv-

alent martingale measures Q, which can be used for risk-neutral pricing. Here, we

choose the approach of Raible [18] and consider the measure obtained by Esscher

transform method. This approach is so-called structure preserving, in the sense that

the distribution of L(1) remains in the class of NIG distributions.

In the following, we consider the evaluation of so-called European Call op-

tions, which have to be valued by simulation. The risk-neutral price of such an option

is

C(0) = e−rT EQ(max{S(T )−K, 0}) = e−rT EQ((S(T )−K)+), (18)

where the constant K is called the strike price. If we replace the stock price by (16),

we obtain

C(0) = e−rT EQ((S(0)eL(T ) −K)+). (19)

From practice, we know that the evaluation of the stock price S(t) is made at discrete

times 0 = t0 < t1 < t2 < . . . < ts = T . For simplicity, we focus on regular time

intervals, ∆t = ti − ti−1. We note that

Xi = L(ti)− L(ti−1) = L(ti−1 + ∆t)− L(ti−1) ∼ L(∆t), i = 1, . . . , s,
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are independent and identically distributed NIG random variables with the same dis-

tribution as L(t1). Dropping the discounted factor from the risk-neutral option price,

we get the expected payoff under the Esscher transform measure of the European Call

option

EQ((S(0)eL(T ) −K)+) = E((S(0)e
∑s

i=1 Xi −K)+), (20)

Our purpose is to evaluate the expected payoff (20). For this, we rewrite the

expectation (20) as a multidimensional integral on Rs

I =
∫

Rs

(
S(0)e

∑s
i=1 x(i)

−K
)

+︸ ︷︷ ︸
E(x)

dG(x) =
∫

Rs

E(x)dG(x), (21)

where G(x) =
∏s

i=1 Gi(x(i)), ∀x = (x(1), . . . , x(s)) ∈ Rs, and Gi(x(i)) denotes the

distribution function of the so-called log returns induced by L(t1), with the corre-

sponding density function gi(x(i)). These log increments are independent and NIG

distributed, having a common probability density

fNIG(x;µ, β, α, δ) =
α

π
exp

(
δ
√

α2 − β2 + β(x− µ)
)δK1(α

√
δ2 + (x− µ)2)√

δ2 + (x− µ)2
(22)

where K1(x) denotes the modified Bessel function of third type of order 1 (see [17]).

In order to approximate the integral (21), we have to transform it to an

integral on [0, 1]s. We can do this using an integral transformation, as follows.

We first consider the family of independent double-exponential distributions

with the same parameter λ > 0, having the cumulative distribution functions Gλ,i :

R → [0, 1], i = 1, . . . , s,

Gλ,i(x) =

 1
2eλx , x < 0

1− 1
2e−λx , x ≥ 0,

(23)

and the inverses G−1
λ,i : [0, 1] → R, i = 1, . . . , s, given by

G−1
λ,i(x) =

 1
λ log (2x) , x ≤ 1

2

− 1
λ log (2− 2x) , x > 1

2 .
(24)

Next, we consider the substitutions x(i) = G−1
λ,i(1 − y(i)), i = 1, . . . , s, and

then take y(i) = 1− z(i), i = 1, . . . , s.
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The integral (21) becomes

I =
∫

[0,1]s

(
S(0)e

∑s
i=1 G−1

λ,i(z
(i)) −K

)
+︸ ︷︷ ︸

f(z)

dH(z) =
∫

[0,1]s
f(z)dH(z), (25)

where H : [0, 1]s → [0, 1], defined by

H(z) =
s∏

i=1

(Gi ◦G−1
λ,i)(z

(i)), ∀z = (z(1), . . . , z(s)) ∈ [0, 1]s, (26)

is a distribution function on [0, 1]s, with independent marginals Hi = Gi ◦ G−1
λ,i,

i = 1, . . . , s.

In the following, we compare numerically our mixed method with the MC

and QMC methods. As a measure of comparison, we will use the absolute errors

produced by these three methods in the approximation of the integral (25).

The MC estimate is defined as follows:

θMC =
1
N

N∑
k=1

f(x(1)
k , . . . , x

(s)
k ), (27)

where xk = (x(1)
k , . . . , x

(s)
k ), k ≥ 1, are independent identically distributed random

points on [0, 1]s, with the common distribution function H defined in (26).

In order to generate such a point xk, we proceed as follows. We first generate

a random point ωk = (ω(1)
k , . . . , ω

(s)
k ), where ω

(i)
k is a point uniformly distributed on

[0, 1], for each i = 1, . . . , s. Then, for each component ω
(i)
k , i = 1, . . . , s, we apply the

inversion method (see [4] and [6]), and obtain that H−1
i (ω(i)

k ) = (Gλ,i ◦ G−1
i )(ω(i)

k )

is a point with the distribution function Hi. As the s-dimensional distribution with

the distribution function H has independent marginals, it follows that xk = ((Gλ,1 ◦

G−1
1 )(ω(1)

k ), . . . , (Gλ,s ◦G−1
s )(ω(s)

k )) is a point on [0, 1]s, with the distribution function

H. As we can see, in order to generate non-uniform random points on [0, 1]s, with

distribution function H, we need to know the inverse of the distribution function

of a NIG distributed random variable or, at least an approximation of it. As the

inverse function is not explicitly known, an approximation of it is needed in our

simulations. In order to obtain an approximation of the inverse, we use the Matlab
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function ”niginv” as implemented by R. Werner, based on a method proposed by K.

Prause in his Ph.D. dissertation [17].

The QMC estimate is defined as follows:

θQMC =
1
N

N∑
k=1

f(x(1)
k , . . . , x

(s)
k ), (28)

where x = (xk)k≥1 is a H-distributed low-discrepancy sequence on [0, 1]s, with

xk = (x(1)
k , . . . , x

(s)
k ), k ≥ 1.

In order to generate such a sequence, we apply a method proposed by Hlawka

and Mück in [11]. In their method, they create directly H-distributed low-discrepancy

sequences, where H can be any distribution function on [0, 1]s, with density function

h, which can be factored into a product of independent, one-dimensional densities.

The method is based on the following theoretical result.

Theorem 11. ([10]) Consider an s-dimensional continuous distribution on [0, 1]s,

with distribution function H and density function h(u) =
∏s

j=1 hj(u(j)), ∀u =(
u(1), . . . , u(s)

)
∈ [0, 1]s. Assume that hj(t) 6= 0, for almost every t ∈ [0, 1] and

for all j = 1, . . . , s. Furthermore, assume that hj, j = 1, . . . , s, are continuous on

[0, 1]. Denote by Mf = supu∈[0,1]s f(u). Let ω = (ω1, . . . , ωN ) be a sequence in [0, 1]s.

Generate the sequence x = (x1, . . . , xN ), with

x
(j)
k =

1
N

N∑
r=1

[
1 + ω

(j)
k −Hj

(
ω(j)

r

)]
=

1
N

N∑
r=1

1
[0,ω

(j)
k ]

(
Hj

(
ω(j)

r

))
, (29)

for all k = 1, . . . , N and all j = 1, . . . , s, where [a] denotes the integer part of a. Then

the generated sequence x has a H-discrepancy of

DN,H(x1, . . . , xN ) ≤ (2 + 6sMf )DN (ω1, . . . , ωN ).

As our distribution function H can be factored into independent marginals,

and has the support on [0, 1]s, we can apply directly the above theorem, to generate

H-distributed low-discrepancy sequences. During our experiments, we employed as

low-discrepancy sequences ω = (ωk)k≥1 on [0, 1]s, the Halton sequences (see [9]).

All points constructed by the Hlawka-Mück method are of the form i/N ,

i = 0, . . . , N , in particular some elements of the sequence x = (x1, . . . , xN ) might
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assume a value of 0 or 1. A value of 1 is a singularity of the function f(x), due to

the logarithm from the definition of G−1
λ,i(x), which becomes unbounded if x = 1.

Hence, the sequence constructed with Hlawka-Mück method is not directly suited

for unbounded problems. To overcome this problem, Kainhofer (see [13]) suggests

to define a new sequence, in which the value 1 is replaced by 1/N , where N is the

number of points in the set. This slight modification of the sequence is shown to have

a minor influence, as the transformed set does not loose its low-discrepancy and can

be used for QMC integration.

The estimate proposed by us earlier is:

θm =
1
N

N∑
k=1

f(q(1)
k , . . . , q

(d)
k , X

(d+1)
k , . . . , X

(s)
k ), (30)

where (qk, Xk)k≥1 is an s-dimensional H-mixed sequence on [0, 1]s.

In order to obtain such a H-mixed sequence, we first construct the Hq-

distributed low-discrepancy sequence (qk)k≥1 on [0, 1]d, using the Hlawka-Mück

method (the distribution function Hq was defined in (3)). Next, we generate the

independent and identically distributed random points xk, k ≥ 1 on [0, 1]s−d, with

the common distribution function HX , using the inversion method (the distribution

function HX was defined in (4)). Finally, we concatenate qk and xk for each k ≥ 1,

and get our H-mixed sequence on [0, 1]s.

In our experiments, we used as low-discrepancy sequences on [0, 1]d, for the

generation of H-mixed sequences, the Halton sequences (see [9]).

We suppose that the parameters of the NIG-distributed log-returns under the

equivalent martingale measure given by the Esscher transform are given by

µ = 0.00079 ∗ 5, β = −15.1977, α = 136.29, δ = 0.0059 ∗ 5, (31)

and they are the same as in Kainhofer (see [13]). We observe that these parameters

are relevant for daily observed stock price log-returns (see [21]). As the class of NIG

distributions is closed under convolution, we can derive weekly stock prices by using

a factor of 5 for the parameters µ and δ. We suppose further that the initial stock

price is S(0) = 100 and the risk-free annual interest rate is r = 3.75%.
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The option is sampled at weekly time intervals. We also let the option to

have maturities of 12 and 20 weeks. Hence, our problem is a 12 and 20-dimensional

integral, respectively, over the payoff function.

We are going to compare the three estimates in terms of their absolute error,

where the ”exact” option price is obtained as the average of 10 MC simulations, with

N = 100000 for the initial integral (21).

In our tests we have considered the following dimensions of the transformed

integral (25) on [0, 1]s: s = 12, 20. The MC and H-mixed estimates are the mean

values of 10 independent runs, while the QMC estimate is the result of a single run.

The results are presented in two tables, each table containing the number of samples

N , which varies from 5000 to 8500 with a step of 500, and the absolute error of the

three estimates.

N Absolute error MC Absolute error QMC Absolute error Mixed Method

5000 0.014731 0.012385 0.007676

5500 0.004485 0.016085 0.003780

6000 0.009268 0.011866 0.001892

6500 0.020887 0.014721 0.002547

7000 0.027395 0.014732 0.008411

7500 0.006316 0.012404 0.017385

8000 0.015027 0.010519 0.012538

8500 0.009207 0.010140 0.007248

Table 1: European Call Option. Case d = 4 and s = 12.

The numerical results for s = 12 and d = 4 are presented in Table 1. The

results produced by our H-mixed sequence are much better than the ones obtained

by using pseudorandom or low-discrepancy sequences, in almost all situations.
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N Absolute error MC Absolute error QMC Absolute error Mixed Method

5000 0.006381 0.049304 0.004311

5500 0.030035 0.039222 0.008018

6000 0.017018 0.042674 0.019373

6500 0.004735 0.041674 0.012044

7000 0.023534 0.038581 0.013131

7500 0.020561 0.030509 0.001833

8000 0.028440 0.027873 0.008792

8500 0.012737 0.032972 0.007264

Table 2: European Call Option. Case d = 7 and s = 20.

To increase the difficulty of the problem, we increase the dimension of the

integral to s = 20. Table 2 displays the results we get for s = 20 and d = 7.

From this simulations, we see again that the H-mixed sequence outperforms both the

pseudorandom and low-discrepancy sequences, for almost all sample sizes N . The

absolute error produced by our H-mixed sequence is smaller than the one produced

by the low-discrepancy sequence, in all situations.

As a general conclusion for this option pricing problem, we can say that by the

use of H-mixed sequences, we obtain increasing advantages over the classical pseudo-

random and low-discrepancy sequences, for relatively high dimensions and moderate

sample sizes.

4. Application to finance: Asian options

In this section, we consider an Asian option pricing problem. We compare

numerically our mixed method with the MC and QMC methods, when they are

applied to so-called (discrete sampled) Asian options driven by the asset dynamics

S(t), as defined in (16). The general setting remains the same as in the previous

section, but the payoff function is changed. The payoff of an Asian call option is

defined as

CT (S) =
(1

s

s∑
i=1

S(ti)−K
)

+
= max

{1
s

s∑
i=1

S(ti)−K, 0
}

, (32)
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with 0 = t0 < t1 < t2 < . . . < ts = T . The constant K ≥ 0 is called the strike price.

Hence, we get the following integration problem:

I =
∫

Rs

( S(0)
s

s∑
i=1

e
∑i

j=1 x(j)
−K

)
+︸ ︷︷ ︸

A(x)

dG(x) =
∫

Rs

A(x)dG(x), (33)

where G(x) =
∏s

i=1 Gi(x(i)), ∀x = (x(1), . . . , x(s)) ∈ Rs, and Gi(x(i)) denotes the

distribution function of the so-called log returns induced by L(t1), with the corre-

sponding density function gi(x(i)). These log increments are independent and NIG

distributed, having the common density function defined in (22).

In order to approximate the integral (33), we have to transform it to an

integral on [0, 1]s. We can do this in a similar way as we did for European Call

options, in the previous section. In the end, we get the following integration problem

on [0, 1]s:

I =
∫

[0,1]s

(S(0)
s

s∑
i=1

e
∑i

j=1 G−1
λ,i(z

(j)) −K
)

+︸ ︷︷ ︸
f(z)

dH(z) =
∫

[0,1]s
f(z)dH(z), (34)

where H : [0, 1]s → [0, 1], defined by

H(z) =
s∏

i=1

(Gi ◦G−1
λ,i)(z

(i)), ∀z = (z(1), . . . , z(s)) ∈ [0, 1]s, (35)

is a distribution function on [0, 1]s, with independent marginals Hi = Gi ◦ G−1
λ,i,

i = 1, . . . , s.

Next, we compare numerically our estimator θm, with the estimators obtained

using the MC and QMC methods. All three estimators θm, θMC and θQMC , and the

corresponding sequences are defined in the previous section. The function f(z) is

defined in relation (34). As a measure of comparison, we will use the absolute errors

produced by these three methods, in the approximation of the integral (34).

We suppose that the parameters of the NIG-distributed log-returns under

the equivalent martingale measure given by the Esscher transform are the same as in

(31). We assume that the initial stock price is S(0) = 100, and the risk-free annual

interest rate is r = 3.75%.
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For our mixed method and QMC estimate, we use a Halton sequence as low-

discrepancy sequence on [0, 1]s. The Asian call option is sampled weekly. We also let

the option to have maturities of 12 and 20 weeks. Hence, our problem is a 12 and

20-dimensional integral, respectively, over the payoff function.

We are going to compare the three estimates in terms of their absolute error,

where the ”true” price is obtained as the average of 10 MC simulations, with N =

100000. The MC and H-mixed estimates are the mean values of 10 independent runs,

while the QMC estimate is the result of a single run. The results are presented in

two tables, each table containing the number of samples N , which varies from 4000

to 7000 with a step size of 500, and the absolute error of the three estimates.

N Absolute error MC Absolute error QMC Absolute error Mixed Method

4000 0.004833 0.000723 0.000690

4500 0.003060 0.001083 0.000977

5000 0.001095 0.000380 0.001653

5500 0.000293 0.000618 0.000599

6000 0.011389 0.001482 0.000898

6500 0.001733 0.003187 0.000218

7000 0.008720 0.001582 0.000047

Table 3: Asian Option. Case d = 4 and s = 12.

In Table 3 we present the results obtained for s = 12 and d = 4. The H-

mixed sequence gives excellent estimates for almost all N , clearly dominating both

the pseudorandom and low-discrepancy sequences.
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N Absolute error MC Absolute error QMC Absolute error Mixed Method

4000 0.036868 0.014541 0.004318

4500 0.007101 0.011003 0.016654

5000 0.002396 0.009723 0.012004

5500 0.016070 0.008897 0.000818

6000 0.004666 0.008920 0.000003

6500 0.017100 0.009541 0.003007

7000 0.010705 0.009437 0.002776

Table 4: Asian Option. Case d = 7 and s = 20.

The estimates presented in Table 4 are the results of the simulations for a

higher dimensional problem, with s = 20 and d = 7. Again, the H-mixed method

outperforms the conventional MC and QMC methods, in almost all situations.

We can conclude that our mixed method can give considerable improvements

over the MC and QMC methods, in estimating high dimensional integrals, which we

encounter in problems from financial mathematics, such as valuation of Asian options

and European options.
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ON THE TIME-DEPENDENT MOTION OF A VISCOUS
INCOMPRESSIBLE FLUID THROUGH A TUBE WITH

COMPLIANT WALLS

C. SURULESCU

Abstract. In this note we study the flow of a viscous, incompressible

fluid through an elastic cylinder which is very long when compared to its

diameter. The fluid flows due to a given small time-dependent pressure

drop between the inflow and the outflow boundary. This creeping flow is

modeled by the Stokes equations for a viscous, incompressible flow, while

Navier’s equations for an elastic membrane describe the behavior of the

flexible tube. We show existence and uniqueness of the solution for the

system consisting of these equations and the corresponding boundary con-

ditions.

1. Introduction

Fluid-structure interaction problems arise in many practical applications, like

in aerospace, naval engineering, biomechanics and biomedical engineering (see e.g.,

[8], [4], [5]). A main issue in this context is haemodynamics.

The cardiovascular system is a very complex system, having a great variety of

blood vessels, from large arteries through medium caliber vessels to capillaries. The

blood flow is thus a very complicated phenomenon and blood itself is a fluid not easy

to describe mathematically. Unless for the very tiny capillaries, it may be regarded

as a continuum [2]) and (although Nonnewtonian) as Newtonian and incompressible,

excepting some pathological situations [10], [12], [15].

Received by the editors: 01.08.2008.
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The problem we study is the following: a viscous incompressible fluid flows

through an elastic tube which is very long when compared to its radius. The flow

is driven by the difference of the pressures at both ends of the tube. The stress on

the fluid depends on the displacement of the flexible wall; this in turn depends on

the stresses exerted by the fluid on the interface between the two media. The only

stress acting on the structure is supposed to come from the fluid. Fluid and solid

mechanics are coupled through the wall position and the traction exerted by the fluid

on the tube wall. This scenario can be seen as describing e.g., the blood flow through

a segment of a smaller artery.

Our aim is to prove the existence of a unique solution of the above coupled

problem. In [13] this has been done in the stationary case for the three-dimensional

problem of a fluid flow through an elastic cylindrical tube with thickness and periodic

conditions at the ends of the cylinder and in [14] for the full Navier-Stokes equations

for the fluid and the nonlinear Navier-Lamé equations for the elastic structure with

more general boundary conditions. For the two-dimensional case, when the equations

of the fluid were coupled with the ones of an elastic beam we refer to [6]. Another

model for a steady-state slow flow in a collapsible tube is studied numerically in [7],

where geometrically nonlinear shell theory is used to accurately model the behavior of

the tube wall, however by further simplifying the equations for the fluid. Instationary

fluid-structure interaction problems (when the fluid domain has moving boundaries

depending on time) are considered for instance in [11] and [9] for the two-dimensional

case, where the flexible wall is modeled by the equations of an elastic beam or in [3]

for the three-dimensional case of a fluid interacting with a structure having a finite

number of elastic modes.

2. The mathematical model

The fluid is considered viscous, incompressible, unsteady and axisymmetric.

We suppose that the pressure drop between the inflow and the outflow ends of the

tube is small and that the viscous effects of blood are strongly predominant when
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compared to the inertial ones. The flexible structure is a thin, long cylinder with very

small thickness (an elastic cylindrical membrane). We thus model the fluid by the

Stokes equations without time derivatives (a creeping flow) and the flexible tube by

Navier’s equations for a cylindrical elastic membrane. This seems to be a good model

for blood flow in small arteries [5].

We denote by Ω the following domain:

Ω := {x ∈ R3 : x = (r cos θ, r sin θ, z), 0 ≤ r ≤ R, 0 ≤ z ≤ L}, (1)

where R and L are the radius, respectively the length of the cylinder.

We denote by S the lateral surface (elastic wall) of the cylinder and suppose

its evolution is described by Navier’s equations [12]:

ρwh
∂2ur

∂t2
= kGh

∂2ur

∂z2
− Eh

1− ζ2

(
ζ

R

∂uz

∂z
+
ur

R2

)
+ Φr in S × (0, T ) (2)

ρwh
∂2uz

∂t2
=

Eh

1− ζ2

(
ζ

R

∂ur

∂z
+
∂2uz

∂z2

)
+ Φz in S × (0, T ). (3)

The unknown variables ur and uz represent the radial, respectively longitu-

dinal displacement in the local frame of reference (cylindrical coordinates) (r, θ, z), h

is the wall thickness, R is the arterial reference radius at rest, k is the Timoshenko

shear correction factor, G is the shear modulus, E the Young modulus of elasticity, ζ

the Poisson ratio (ζ = 1
2 for an incompressible material), ρw is the arterial wall vol-

umetric mass. Φ = (Φr,Φz)t is the forcing term due to the external forces, included

the stress coming from the fluid (Φ depends on the velocity v and the pressure p of

the fluid, that is of the blood).

Note that this model is based on a Lagrangian description of the motion of

the elastic wall. It is referred to a material domain Ω(0), corresponding to the rest

position where ur = uz = 0.

We also need initial and boundary conditions for the system (2), (3). For the

former we consider the rest position and assume that initially there is no deformation

of the elastic membrane. Since (2) and (3) are of second order in time, we also need
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a condition at rest for the time derivatives of the displacements:

ur(0) = uz(0) = 0,
∂ur

∂t
(0) =

∂uz

∂t
(0) = 0 on S := {r = R} × (0, L). (4)

We further consider the ends of the elastic membrane fixed and take as corresponding

boundary conditions the following:

ur = uz = 0 for z = 0 and ur = uz = 0 for z = L, ∀t ∈ R+. (5)

We come now to the equations modeling the fluid flow. Initially, the elastic

tube is filled with fluid and the whole system is in equilibrium. This is the reference

state. The pressure drop between the inflow and the outflow gives rise to a deviation

from the reference state. If we assume that the acceleration of the fluid is small

relatively to the predominant viscous effects (creeping flow), we can write for the

fluid the following Stokes equations in cylindrical coordinates (we assume rotational

symmetry and thus neglect the circumferential component of the velocity):

−ν

(
∂2vr

∂r2
+

1
r

∂vr

∂r
− 1
r2
vr +

∂2vr

∂z2

)
+
∂p

∂r
= 0 in Ω× (0, T ) (6)

−ν

(
∂2vz

∂r2
+

1
r

∂vz

∂r
+
∂2vz

∂z2

)
+
∂p

∂z
= 0 in Ω× (0, T ) (7)

vr

r
+
∂vr

∂r
+
∂vz

∂z
= 0 in Ω× (0, T ). (8)

Here vr, vz are the radial, respectively the longitudinal component of the fluid

velocity, ν is the viscosity of the fluid and p is the pressure. Equation (8) represents

the incompressibility condition div v = 0, written in cylindrical coordinates.

We also need initial and boundary conditions for this system. We assume the

initial velocity zero:

v = 0 in Ω× {0} (9)

and take the following boundary conditions at the inflow and outflow:

vr = 0, p = 0 on (∂Ω ∩ {z = 0})× (0, T ) (10)

vr = 0, p = P (t) on (∂Ω ∩ {z = L})× (0, T ), (11)

where P (t) is the pressure drop driving the fluid.
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The following condition, imposed on the rest of the fluid boundary, is a cou-

pling condition and it ensures the continuity of the velocity field:

v =
∂u
∂t

on S × (0, T ). (12)

There is one more coupling condition to be satisfied, namely the continuity

of stresses. This means that the forcing term on the elastic structure is due to the

stresses exerted by the fluid (and possibly by external terms due, for instance, to

surrounding organs or muscle tissue, which, however, we neglect here). Thus, the

forcing term Φ in (2), (3) takes the form:

Φ = −(pI− 2νe(v)) · er on S × (0, T ). (13)

Here e(v) := 1
2 (∇v + (∇v)t) is the strain tensor (the symmetrized gradient of the

velocity).

Remark 2.1.

• The boundary conditions for the structure considered in (5) have been

taken homogeneous just for the sake of simplicity. More natural boundary

conditions at the outflow should not be zero, since the ends of the elastic

structure (z = 0 and z = L) are tipically ”artificial boundaries” (just like

the inflow and outflow ends of the fluid) and one should choose them in

order not to perturb the numerics.

• We take the pressure drop P (t) in (11) as being as regular as we need in

all our further considerations.

• Here we consider the case of a fixed fluid-structure interface. It is known

in general that the movement of a solid body implies rigid body motions

and displacements caused by the stresses and strains induced in the solid

body by the loads coming from the fluid which interacts with the structure.

If these displacements are small enough, then one may assume that the

interface is stationary, i.e. it does not move in time (unlikely for large

displacements). However, even if the displacements are small, the velocity
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of deformation is not, therefore we have to take condition (12) instead of

a homogeneous Dirichlet type condition for the velocity at the interface.

Thus, the problem can be stated as follows:

Problem 2.2. Determine a solution (u,v) of the system (2), (3), (6)-(8) in S × Ω,

with the initial conditions (4) and (9) and the boundary conditions (5), (10), (11)

and (12), where the force Φ in the equations for the elastic structure is given by the

fluid stresses as in (13).

Our aim is to prove the existence of a unique solution to the coupled problem.

This will be done with the aid of Galerkin approximations.

3. Weak formulation and main result

In this section we give the weak formulation of the coupled problem and state

the main result.

Let us define the space of test functions by:

Ψ := {ψ ∈ H1(Ω) : ψr, ψz ∈ H1(0, L), div ψ = 0 in Ω and

ψr(r, 0) = ψr(r, L) = ψz(R,L) = ψz(R, 0) = 0 for r ∈ [0, R]} (14)

Definition 3.1. (v,u) ∈ H1(0, T ;H1(Ω))× L2(0, T ;H1(0, L)) with u′ ∈ L2(0, T ;

L2(0, L)) and u′′ ∈ L2(0, T ;H−1(0, L)) is called a weak solution of Problem 2.2 if for

all ψ ∈ Ψ the following variational formulation is satisfied in the sense of distributions

(in D′(0, T )):

Rρwh
d2

dt2

L∫
0

(urψr + uzψz)dz +R

L∫
0

[
kGh

∂ur

∂z

∂ψr

∂z

+
Eh

1− ζ2

(
ζ

R

∂uz

∂z
ψr +

ur

R2
ψr +

∂uz

∂z

∂ψz

∂z
− ζ

R

∂ur

∂z
ψz

)]
dz (15)

+2ν
∫

Ω

e(v) : e(ψ)rdrdz = −
R∫

0

P (t)ψzrdr
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and

u =
∂u
∂t

= 0 on S × {0} and v = 0 in Ω× {0}. (16)

(15) has been obtained by testing in (2) and (3) with ψr, respectively ψz and in (6),

(7) with ψ, integrating by parts on the corresponding domains, using equation (8)

and conditions (5), (10), (11), (13) and summing up the equations resulted after the

testing.

We now can state the main result.

Theorem 3.1. There exists a unique weak solution of Problem 2.2.

4. Proof of the existence

4.1. Galerkin Approximations. The proof is based on the method of Galerkin,

that is we build a weak solution of the problem by first constructing solutions of

certain finite dimensional approximations and then passing to limits. We therefore

take the functions wk = wk(r, z) (k = 1, 2, ...) such that

{wk}k=1,...,∞ is a basis of Ψ. (17)

In particular, we take {wk}k to be the complete set of eigenfunctions of the eigenvalue

problem

w ∈ Ψ, (∇w,∇ψ)(0,L) + (e(w), e(ψ))Ω = λ[(w,ψ)(0,L) + (w,ψ)Ω], ψ ∈ Ψ;

we also assume that {wk}k is orthonormalized w.r.t. the H1
0,ends(Ω ∪ S)-inner prod-

uct1 (∇·,∇·)(0,L) + (e(·), e(·))Ω. Also observe that {wk}k is orthogonal w.r.t. the

L2-inner product in the right hand side of the equation above.

Fix a positive integer m and write

vm(t) :=
m∑

k=1

ckm(t)wk, (18)

where the coefficients ckm(t), k = 1, ...,m, 0 ≤ t ≤ T are intended to satisfy

ckm(0) = 0, k = 1, ...,m. (19)

1We have denoted by H1
0,ends the functions which are in H1 and vanish at the ends of the cylinder.
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This would be the approximation of the fluid’s velocity. By

um,r(t) :=
m∑

k=1

αkm(t)wk,r and um,z(t) :=
m∑

k=1

αkm(t)wk,z (20)

we construct (with the same basis {wk}k=1,...) an approximation of the displacement

of the elastic membrane. The coefficients of these approximations should satisfy (by

the continuity of velocities on S × (0, T )) the equation

αkm(t) =

t∫
0

ckm(s)ds. (21)

Observe that in virtue of (18), (20) and (21) we may write

∂um,r

∂t
=

m∑
k=1

ckm(t)wk,r in S × (0, T ) (22)

∂um,z

∂t
=

m∑
k=1

ckm(t)wk,z in S × (0, T ). (23)

By (19), the coefficients αkm(t), k = 1, ...,m, 0 ≤ t ≤ T satisfy

αkm(0) = 0 and α′km(0) = 0, k = 1, ...,m. (24)

The Galerkin approximation corresponding to (15) writes (0 ≤ t ≤ T, k =

1, ...,m):

Rρwh(u′′m(t),wk)(0,L) + C[um,r,wk; t] +D[um,z,wk; t]

+B[vm,wk; t] = −
R∫

0

P (t)wk,zrdr, (25)

where

B[v,w; t] := 2ν
∫

Ω

e(v) : e(w)rdrdz,

C[ur,w; t] := R

L∫
0

[
kGh

∂ur

∂z

∂wr

∂z
+

Eh

1− ζ2

(
ur

R2
wr −

ζ

R

∂ur

∂z
wz

)]
dz

and

D[uz,w; t] := R

L∫
0

Eh

1− ζ2

(
ζ

R

∂uz

∂z
wr +

∂uz

∂z

∂wz

∂z

)
dz.
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Further (use (17)),

B[vm,wk; t] + C[um,r,wk; t] +D[um,z,wk; t] =
m∑

l=1

βklαlm(t),

where

βkl := B[wl,wk] + C[wl,r,wk] +D[wl,z,wk], k, l = 1, ...,m.

Consequently, (25) becomes the following linear system of ODEs:

α′′km(t) +
m∑

l=1

βklαlm(t) = P k(t) (0 ≤ t ≤ T, k = 1, ...,m), (26)

where P k(t) := −
R∫
0

P (t)wk,zrdr.

The system is subject to the initial conditions (24). By the standard theory

for ordinary differential equations (remember that P (t) is regular enough, see Remark

2.1), there exists a unique function αm(t) = (α1m(t), ..., αmm(t)) in C2, satisfying (24)

and solving (26) for 0 ≤ t ≤ T.

4.2. Energy Estimates. We intend to pass to the limit with m → ∞ and for this

we need some estimates that should be uniform in m.

Theorem 4.1. There exists a constant C > 0 such that

sup
0≤t≤T

(
||u′m(t)||2L2(0,L) + ||um||2H1(0,L)

)
+ ||u′′m(t)||2L2(0,T ;H−1(0,L))

+||vm||2L2(0,T ;H1(Ω)) ≤ C(1 + ||P ||2L2(0,T )) (27)

The constant C depends only on Ω, T , R, G, h, k, ζ, ν and ρw.

Proof. Multiply (25) by ckm(t). By summing up after k = 1, ...,m and taking into

account (18), (22), (23), we get:

Rρwh

L∫
0

∂2um(t)
∂t2

∂um(t)
∂t

dz +R

L∫
0

kGh
∂um,r(t)
∂z

∂2um,r(t)
∂t∂z

dz

+R

L∫
0

Eh

1− ζ2

(
(
ζ

R

∂um,z(t)
∂z

+
um,r(t)
R2

)
∂um,r(t)

∂t
+
∂um,z(t)

∂z

∂2um,z(t)
∂t∂z
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− ζ

R

∂um,r(t)
∂z

∂um,z(t)
∂t

)
dz + 2ν

∫
Ω

e(vm(t)) : e(vm(t))rdrdz

= −
R∫

0

P (t)vm,z(t, r, L)rdr.

Let us have a closer look at the term whose coefficient is R Eh
1−ζ2 . If we perform a

partial integration on the last term of it, use (5) to get rid of the boundary terms and

rearrange what we get, it takes the form:

R
Eh

1− ζ2
· 1
2
d

dt

L∫
0

[
(1− ζ)

((∂um,z

∂z

)2

+
(um,r

R

)2
)

+ ζ
(um,r

R
+
∂um,z

∂z

)2
]
dz.

Thus, the above identity becomes:

R

2
d

dt

[
ρwh||u′m(t)||2L2(0,L) + kGh||um,r(t)||2H1(0,L)

+
Eh

1− ζ2

(
ζ||um,r(t)

R
+
∂um,z(t)

∂z
||2L2(0,L) + (1− ζ)

(
||um,r(t)

R
||2L2(0,L)

+||um,z(t)||2H1(0,L)

))]
+ 2ν|e(vm)|2L2(Ω) = −

R∫
0

P (t)vm,z(t, r, L)rdr.

The right hand side above may be majorized as follows:

−
R∫

0

P (t)vm,z(t, r, L)rdr ≤ |
R∫

0

P (t)vm,z(t, r)rdr| ≤
1
L
|P (t)|

∫
Ω

|vm,z(t)|

≤ δ

L2
|P (t)|2 +

1
δ
|vm(t)|2L2(Ω) ≤

δ

L2
|P (t)|2 +

1
δ
||vm(t)||2H1(Ω).

We use this estimation and Korn’s inequality (see, for instance, [1]) in the

identity above to obtain:

R

2
d

dt

[
ρwh||u′m(t)||2L2(0,L) + kGh||um,r(t)||2H1(0,L)

+
Eh

1− ζ2

(
ζ||um,r(t)

R
+
∂um,z(t)

∂z
||2L2(0,L) + (1− ζ)

(
||um,r(t)

R
||2L2(0,L)

+||um,z(t)||2H1(0,L)

))]
+ C1||vm||2H1(Ω) ≤

δ

L2
|P (t)|2. (28)

Here C1 > 0 is a constant depending on ν, δ and the constant in Korn’s inequality.
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We now integrate (28) from 0 to t (t > 0) and use the initial conditions (4),

in order to get the following:

R

2

[
ρwh||u′m(t)||2L2(0,L) + kGh||um,r(t)||2H1(0,L)

+
Eh

1− ζ2

(
ζ||um,r(t)

R
+
∂um,z(t)

∂z
||2L2(0,L) + (1− ζ)

(
||um,r(t)

R
||2L2(0,L)

+||um,z(t)||2H1(0,L)

))]
+ C1

t∫
0

||vm(s)||2H1(Ω)ds ≤
δ

L2
||P ||2L2(0,T ). (29)

From (29) it follows that:

sup 0≤t≤T

(
||u′m(t)||2L2(0,L) + ||um||2H1(0,L)

)
≤ C2||P ||2L2(0,T ), (30)

where 0 < C2 := δ
L2

2
R · (min{ρwh, kGh,

Eh
1+ζ })

−1.

Now integrate (28) from 0 to T , use again (4) and obtain:

T∫
0

||vm(t)||2H1(Ω)dt ≤ C3||P ||2L2(0,T ), (31)

where 0 < C3 := δ
L2C1

.

In order to obtain (27), we still need some estimate for the second derivative

in time of um. In order to do that, let us fix any ξ ∈ Ψ with ||ξ||H1 ≤ 1 and write

ξ = ξ1 + ξ2, where ξ1 ∈ span {wk}k=1,...,m and (ξ2,wk) = 0 (k = 1, ...,m).

Notice that

||ξ1||H1 = ||ξ − ξ2||H1 ≤ ||ξ||H1 + ||ξ2||H1 ≤ 1.

We also consider that the only nonzero component of ξ is the radial one:

ξ = ξ1 + ξ2 = (ξ1,r + ξ2,r)er + (ξ1,z + ξ2,z)ez = (ξ1,r + ξ2,r)er.

Now we test in (25) with ξ subject to the above conditions and obtain (re-

member (20):

Rρwh(u′′m,r(t), ξ1,r)(0,L) + C[um,r, ξ1; t] +D[um,z, ξ1; t] +B[vm, ξ1; t] = 0. (32)

87



C. SURULESCU

Here

B[vm, ξ1; t] = 2ν
∫

Ω

e(vm) : e(ξ1)rdrdz,

thus

|B[vm, ξ1; t]| ≤ const ||vm||H1(Ω)||ξ1||H1(Ω) ≤ const ||vm||H1(Ω).

Further,

|C[um,r, ξ1; t]| ≤ const (1 + ||um,r||L2(0,L))

and

|D[um,z, ξ1; t]| ≤ const ||um||H1(0,L).

By using these estimates, (32), (30) and (31), it follows:

|(u′′m,r, ξ1,r)| ≤ const (||vm||H1(Ω) + 1 + ||um,r||L2(0,L)).

Thus,
T∫

0

||u′′m,r(t)||2H−1(0,L)dt ≤ C4, (33)

where the constant C4 > 0 depends on C2 and C3.

Now we consider that the only nonzero component of ξ is the longitudinal

one. Testing under the above conditions in (25) with ξ leads to:

Rρwh(u′′m,z(t), ξ1,z)(0,L) + C[um,r, ξ1; t] +D[um,z, ξ1; t] +B[vm, ξ1; t] = 0. (34)

Analogously as above, it follows that

T∫
0

||u′′m,z(t)||2H−1(0,L)dt ≤ C5(1 + ||P ||2L∞(0,T )), (35)

where, again, the constant C5 > 0 depends on C2 and C3.

(27) follows now from (30), (31), (33) and (35), where the constant C may

be taken as
5∑

i=2

Ci. �
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4.3. Existence of a Weak Solution. We now pass to limits (for m → ∞) in our

Galerkin approximations.

The estimate (27) implies that:

(um)m is bounded in L2(0, T ;H1(0, L)) (36)

(u′m)m is bounded in L2(0, T ;L2(0, L)) (37)

(u′′m)m is bounded in L2(0, T ;H−1(0, L)) (38)

and

(vm)m is bounded in L2(0, T ;H1(Ω)). (39)

Consequently, there exist some sequences (umk
)k ⊂ (um)m and (vmk

)k ⊂

(vm)m and the functions u ∈ L2(0, T ;H1(0, L)) with u′ ∈ L2(0, T ;L2(0, L)), u′′ ∈

L2(0, T ;

H−1(0, L)), v ∈ L2(0, T ;H1(Ω)) such that

umk

k→∞
⇀ u in L2(0, T ;H1(0, L)) (40)

u′mk

k→∞
⇀ u′ in L2(0, T ;L2(0, L)) (41)

u′′mk

k→∞
⇀ u′′ in L2(0, T ;H−1(0, L)) (42)

and

vmk

k→∞
⇀ v in L2(0, T ;H1(Ω)). (43)

We now fix an integer N and choose a function ϕ ∈ C1(0, T ;Ψ) of the form

ϕ(t) :=
N∑

k=1

αk(t)wk, (44)

where {αk}k=1,N are smooth functions. We choose N such that N ≤ m, multiply

(25) by αk(t), sum after k = 1, ..., N and integrate by parts to obtain:

Rρwh

T∫
0

(u′′m(t), ϕ(t))(0,L)dt+

T∫
0

{C[um,r, ϕ; t] +D[um,z, ϕ; t]

+B[vm, ϕ; t]}dt = −
T∫

0

R∫
0

P (t)ϕzrdrdt. (45)
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We may now pass to the limit in the above identity, in virtue of (40), (41), (42) and

(43) (set m = mk) and obtain:

Rρwh

T∫
0

(u′′(t), ϕ(t))(0,L)dt+

T∫
0

{C[ur, ϕ; t] +D[uz, ϕ; t]

+B[v, ϕ; t]}dt = −
T∫

0

R∫
0

P (t)ϕzrdrdt. (46)

Note that (46) holds for all functions ϕ ∈ L2(0, T ;Ψ), since functions of the

form (44) are dense in this space. It also follows from (46) that

Rρwh(u′′, ϕ)(0,L) + C[ur, ϕ; t] +D[uz, ϕ; t] +B[v, ϕ; t] = −
R∫

0

P (t)ϕzrdr

for all ϕ ∈ Ψ and a.e. 0 ≤ t ≤ T.

Also notice that u ∈ C([0, T ];L2(0, L)) and u′ ∈ C([0, T ];H−1(0, L)).

We still have to verify that

u(0) = 0, u′(0) = 0 in S (47)

and

v(0) = 0 in Ω. (48)

We therefore choose any function ϕ ∈ C2([0, T ];Ψ), with ϕ(T ) = ϕ′(T ) = 0.

We then integrate by parts twice in time in (46) to obtain

Rρwh

T∫
0

(u(t), ϕ′′(t))(0,L)dt+

T∫
0

{C[ur, ϕ; t] +D[uz, ϕ; t] +B[v, ϕ; t]}dt

= −
T∫

0

R∫
0

P (t)ϕzrdrdt− (u(0), ϕ′(0))(0,L) + (u′(0), ϕ(0))(0,L). (49)

Analogously, we deduce from (45) that

Rρwh

T∫
0

(um, ϕ
′′)(0,L)dt+

T∫
0

{C[um,r, ϕ; t] +D[um,z, ϕ; t] +B[vm, ϕ; t]}dt
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= −
T∫

0

R∫
0

P (t)ϕzrdrdt− (um(0), ϕ′(0))(0,L) + (u′m(0), ϕ(0))(0,L).

We set again m = mk and deduce from (24), (40), (41), (42) and (43) that

Rρwh

T∫
0

(um(t), ϕ′′(t))(0,L)dt+

T∫
0

{C[um,r, ϕ; t] +D[um,z, ϕ; t]

+B[vm, ϕ; t]}dt = −
T∫

0

R∫
0

P (t)ϕzrdrdt. (50)

Compare now the identities (49) and (50) to deduce (47), since ϕ(0), ϕ′(0) are arbi-

trary.

We now intend to verify (48). For this we need some estimate on v′m. We

therefore differentiate in (25) with respect to time and get:

Rρwh(v′′m(t),wk)(0,L) + C[vm,r(t),wk; t] +D[vm,z(t),wk; t]

+B[v′m(t),wk; t] = −
R∫

0

P ′(t)wk,zrdr. (51)

Multiply (51) with c′km(t) and sum after k = 1, ...,m. It follows:

Rρwh
1
2
d

dt
|vm(t)|2L2(0,L) + C[vm,r,v′m; t] +D[vm,z,v′m; t]

+2ν|e(v′m(t))|2L2(Ω) = −
R∫

0

P ′(t)v′m,zrdr. (52)

The right hand side in (52) can be majorized in the following way:

−
R∫

0

P ′(t)v′m,zrdr ≤ γ|P ′(t)|2 +
1
γ
|v′m|2L2(Ω),

where γ is a positive constant.

Applying again Korn’s inequality and using Gronwall’s inequality it follows

from (52) that

v′m is bounded in L2(0, T ;L2(Ω)).

91



C. SURULESCU

Integrate in (52) from 0 to T and using the boundedness of v′m in L2(0, T ;L2(Ω)), we

obtain that

v′m is bounded in L2(0, T ;H1(Ω)).

Consequently, there exists a subsequence (vmk
)k of (vm)m and v′ ∈ L2(0, T ;H1(Ω))

with

v′mk

k→∞
⇀ v′ in L2(0, T ;H1(Ω)). (53)

Multiply (25) by α′k(t), sum after k = 1, ...,m, use the assumptions on ϕ and

integrate by parts with respect to time the term with B[., .; t] to get:

Rρwh

T∫
0

(u′′m(t), ϕ′(t))(0,L)dt+

T∫
0

[C[um,r, ϕ
′; t] +D[um,z, ϕ

′; t]]dt

−
T∫

0

B[v′m, ϕ; t]dt = −
T∫

0

R∫
0

P (t)ϕ′zrdrdt. (54)

We may now pass to the limit (take mk = m) in (54), in virtue of the weak

convergences obtained so far. It follows that:

Rρwh

T∫
0

(u′′(t), ϕ′(t))(0,L)dt+

T∫
0

[C[ur, ϕ
′; t] +D[uz, ϕ

′; t]]dt

−
T∫

0

B[v′, ϕ; t]dt = −
T∫

0

R∫
0

P (t)ϕ′zrdrdt. (55)

If we pass to the limit in (54) before integrating by parts the term with

B[., .; t], we obtain (doing the integration by parts afterwards):

Rρwh

T∫
0

(u′′(t), ϕ′(t))(0,L)dt+

T∫
0

[C[ur, ϕ
′; t] +D[uz, ϕ

′; t]]dt

−
T∫

0

B[v′, ϕ; t]dt−B[v(0), ϕ(0); 0] = −
T∫

0

R∫
0

P (t)ϕ′zrdrdt. (56)

Now, by comparing (55) and (56), since ϕ(0) is arbitrary, we obtain (48).

Consequently, (u,v) is a weak solution of Problem 2.2, corresponding to the weak

formulation (15), (16). �
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4.4. Proof of the uniqueness. In this section we prove the uniqueness of the weak

solution found in the previous section. For this it suffices to show that the only weak

solution of Problem 2.2 with P (t) ≡ 0 is

(u,v) ≡ 0. (57)

Fix 0 ≤ s ≤ T and take

ζ(t) :=


s∫
t

v(τ)dτ if 0 ≤ t ≤ s

0 if s ≤ t ≤ T

. (58)

Observe that

ζ′(t) = −v(t),

thus on S × (0, T ) also ζ(t) = −u(t).

Then from the regularity properties of v and u it follows that ζ(t) ∈ H1(Ω),

∀ 0 ≤ t ≤ T with ζr(t), ζz(t) ∈ H1(0, L), ζr(R,L) = ζr(R, 0) = 0, ζz(R,L) =

ζz(R, 0) = 0 and thus we can write (see (25)):

Rρwh

s∫
0

(u′′(t), ζ(t))(0,L)dt+

s∫
0

{C[ur, ζ; t] +D[uz, ζ; t] +B[v, ζ; t]}dt = 0.

Integrate by parts with respect to time and use (4) and (58) to write:

−Rρwh

s∫
0

(u′(t), ζ′(t))(0,L)dt+

s∫
0

B[v, ζ; t]dt

= −
s∫

0

{C[ur, ζ; t] +D[uz, ζ; t]}dt.

We have

Rρwh

s∫
0

|u′(t)|2(0,L)dt− ν
d

dt

s∫
0

|e(ζ(t))|2L2(Ω) ≤ C

s∫
0

||ζ(t)||2H1(Ω)dt,

thus (use again Korn’s inequality)

ν|ζ(0)|2H1(Ω) ≤ C

s∫
0

||ζ(t)||2H1(Ω)dt. (59)
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We now define g(t) :=
t∫
0

v(τ)dτ , 0 ≤ t ≤ T. Then note that ζ(0) = g(s) and

ζ(t) = g(s)− g(t). Consequently, we deduce from (59) that

(1− C(ν)s)||g(s)||2H1(Ω) ≤ C(ν)

s∫
0

||g(t)||2H1(Ω)dt

and we choose 0 < T1 small enough (0 ≤ T1 ≤ 1
2C(ν) ).

Then for 0 ≤ s ≤ T1 we have

||g(s)||2H1(Ω) ≤ C(ν, T1)

s∫
0

||g(t)||2H1(Ω)dt.

Applying the integral form of Gronwall’s inequality, it follows that g ≡ 0, thus ζ ≡ 0

and so v ≡ 0 on Ω× [0, T1] and u ≡ 0 on S × [0, T1].

We apply the same argument on the intervals [T1, 2T1], [2T1, 3T1], etc. to

eventually obtain that (u,v) ≡ 0. �
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LIII, Number 4, December 2008

ON THE FRACTIONAL STOCHASTIC FILTERING

TRAN HUNG THAO, PAIROTE SATTAYATHAM, AND TIDARUT PLIENPANICH

Abstract. The aim of this note is to introduce an approximate approach

to fractional filtering problems, where either the signal process or obser-

vation process, or both are perturbed by a fractional noise. Approximate

filtering equations are established and the true filtering is considered as

the limit case of approximate filterings.

1. Introduction

It is known that fractional Brownian motion (fBm) was introduced firstly by

B. Mandelbrot and Van Nees. This is a centered Gaussian process BH = {BH
t , t ≥ 0}

with covariance

E(BH
s B

H
t ) =

1
2
(
s2H + t2H − |t− s|2H

)
(1.1)

where H is called the Hurst parameter, 0 < H < 1

In the case where H = 1
2 , E(B1/2

s B
1/2
t ) = 1

2 (s+t−|t−s|) we have an ordinary

standard Brownian motion. The fractional Brownian motion is in general neither a

martingale nor a Markov process. In contrary, it exhibits a long-range dependence.

Some approaches to fractional stochastic calculus have been introduced by L. Coutin,

L. Decreusefond, W. Dai, C. Heyde, Lin, A.S. Üstünel, D. Feyel, de La Pradelle, T.

Duncan, B. Duncan (refer for example to [1, 2, 3])

A fractional Brownian motion has been considered also by C. Ciesielski and

al. as a special sequence of random functions in some Orlicz-Besov space [4].

Received by the editors: 02.02.2007.

2000 Mathematics Subject Classification. 78M35, 60K40.

Key words and phrases. Liouville fractional Brownian motion, approximation by semimartingales,

filtering.
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Stochastic filtering problems in fractional stochastic framework were studied

by some authors. The main obstacle in the study of these problems is the fact that the

signal process or the observation process is not driven by a martingale and powerful

tools of martingale theory can not be applied as in traditional stochastic filtering

theory. Some attempts have been made by L. Decreusefond, A.A. Üstünel to overcome

this difficulty by using the Malliavin Calculus [3].

In a fractional filtering problem, the state (or signal) process is some sto-

chastic process Xt, while the observation Yt is given by a fractional process of the

form:

Yt =
∫ t

0

hsds+BH
t (1.2)

where BH
t is a fractional Brownian motion with a Hurst parameter H such that

0 < H < 1
2 and ht = h(Xt) is some process of finite energy, i.e.

E

∫ ∞

0

h2
sds <∞.

As shown in [6], the fBm BH = (BH
t , t ≥ 0) has the following representation

BH
t =

1
Γ(1− α)

{
Zt +

∫ t

0

(t− s)αdWs

}
, (1.3)

where {Ws, s ∈ R} is a standard Brownian motion, α = H − 1
2 ∈

(
− 1

2 ,
1
2

)
and

Zt =
∫ 0

−∞
[
(t − s)α − (−s)α

]
dWs. Since the process Zt has absolutely continuous

trajectories, it suffices to consider the term

Bt =
∫ t

0

(t− s)αdWs. (1.4)

In fact, Bt is a fractional Brownian motion of the Liouville form.

In our filtering problems, we consider the observation process Yt of the form

Yt =
∫ t

0

hsds+Bt , (1.5)

with Bt defined by (1.4), where ht is some continuous process, ht = h(Xt).

Since Bt =
∫ t

0
(t − s)αdWs can be approximated by a semimartingale Bε

t as

shown below, our filtering problem can be considered as the limit case of following
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filtering problems when ε→ 0:

Signal process: Xt ,

Observation process: Y ε
t =

∫ t

0

hsds+Bε
t ,

(1.6)

where Bε
t is some semimartingale for every ε > 0 .

2. L2-approximation for Bt

Let BH
t be the fractional noise in the observation process Yt in (1.5) and

Wt the corresponding Brownian motion in its representation (1.3). Suppose that

0 < α < 1
2 , where α = H − 1

2 .

Define

Bt =
∫ t

0

(t− s)αdWs , (2.1)

and

Bε
t =

∫ t

0

(t− s+ ε)αdWs , (2.2)

for every ε > 0.

The Ito stochastic differential of Bε
t is then:

dBε
t =

( ∫ t

0

α(t− s+ ε)α−1dWs

)
dt+ εαdWt . (2.3)

Indeed by applying of the stochastic theorem of Fubini, we have∫ t

0

∫ s

0

(s− u+ ε)α−1dWsds =
∫ t

0

[
∫ s

u

(s− u+ ε)α−1ds]dWu

=
1
α

[
∫ t

0

(t− u+ ε)αdWu − εαWt]

=
1
α

[Bε
t − εαWt].

Therefore

Bε
t = α

∫ t

0

[
∫ s

0

(s− u+ ε)α−1dWs]dt+ εαWt ,

or

Bε
t =

∫ t

0

αϕε
sds+ εαWt , (2.4)

or equivalently,

dBε
t = αϕε

tds+ εαdWt , (2.5)
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where

ϕε
t =

∫ t

0

(s− u+ ε)α−1dWs ,

so Bε
t is a semimartingale.

We would like to recall here a fundamental result [8] on the L2- convergence

of semimartingales Bε
t to the fractional process Bt as ε→ 0. Basing on this result we

introduce an approximate approach to fractional filtering problems.

Theorem 2.1. Bε
t converges to Bt in L2(Ω) when ε tends to 0. This convergence is

uniform with respect to t ∈ [0, T ].

3. Fractional filtering for a general signal process

We consider first a filtering problem where the signal process is a general

stochastic process (Xt, t ≥ 0) with E|Xt| < ∞ for every t > 0 and the observation

process Yt is given by

Yt =
∫ t

0

hsds+Bt , 0 ≤ t ≤ T, (3.1)

where Bt is the fractional process given by (1.4) and ht = h(Xt) is a continuous

process with

E

∫ t

0

h2
sds <∞ . (3.2)

Now for every ε > 0 we establish a new filtering problem (an ’approximate’

one), where the signal process is (Xt, 0 ≤ t ≤ T ), E|Xt|2 < ∞ and the observation

process is

Y ε
t =

∫ t

0

hsds+Bε
t , 0 ≤ t ≤ T (3.3)

where Bε
t is given by (2.2), and T is some positive real number.

From now on, we take ε = 1
n and put

Ft = FY
t : σ-algebra generated by (Ys, s ≤ t)

F (n)
t = FY 1/n

t : σ-algebra generated by (Y 1/n
s , s ≤ t).

Define the filter πt of (Xt) based on observations (Yt) as the following condi-

tional expectation

πt(X) = E(X|Ft), or more general
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πt(f) = E(f(X)|Ft), f is any continuous and bounded function on R : f ∈

Cb(R).

Denote also by π(n)
t the filter of X based on observation Y 1/n

t :

π
(n)
t (X) = E(X|FY 1/n

t )

and

π
(n)
t (f) = E(f(X)|FY 1/n

t ), f ∈ Cb(R).

Theorem 3.1. The filter π(n)
t converges to πt in L2(Ω,F , P ) as n→∞.

Proof. Consider two observations

Y
1/n
t =

t∫
0

hsds+B
1/n
t (3.4)

and

Z
1/n
t =

t∫
0

hsds+Bt+ 1
n
, (3.5)

where B1/n
t =

t∫
0

(t+ 1
n − s)αdWs and Bt+ 1

n
=

t+ 1
n∫

0

(t+ 1
n − s)αdWs.

We observe that

E|Y 1/n
t − Z

1/n
t |2 = E|B1/n

t −Bt+ 1
n
|2 = E|

t+ 1
n∫

t

(t+
1
n
− s)αdWs|2

=

t+ 1
n∫

t

(t+
1
n
− s)2αds =

1
2α+ 1

1
n2α+1

→ 0 (n→∞) (3.6)

where the last equality of (3.6) holds by virtue of the Itô isometry.

Now it follows from the convergence

‖Y 1/n
t − Z

1/n
t ‖L2 → 0 as n→∞

that

‖E(Xt|Y 1/n
t )− E(Xt|Z1/n

t )‖L2 → 0 as n→∞ (refer to [5])

or more general
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‖E(Xt|FY 1/n

t )− E(Xt|FZ1/n

t )‖L2 → 0 as n→∞ ,

and for f ∈ Cb(R) :

‖E
(
f(Xt)|FY 1/n

t

)
− E

(
f(Xt)|FZ1/n

t

)
‖L2 → 0 as n→∞ . (3.7)

Since the family of σ-algebras FZ1/n

t is non-increasing such that
⋂
n
FZ1/n

t =

FY
t then it follows from a Levy theorem on the convergence of conditional expectations

that (refer to [5] or to [7]):

E
(
f(Xt)|FZ1/n

t

) L2

−−→ E
(
f(Xt)|FY

t

)
→ 0 as n→∞ . (3.8)

By combining (3.7) and (3.8) and using the Minkowski inequality we have

E
(
f(Xt)|FY 1/n

t

) L2

−−→ E
(
f(Xt)|FY

t

)
→ 0 as n→∞ , (3.9)

or π(n)
t → πt in L2 as n→∞ by notation of filters. �

4. Fractional filtering for a semimartingale

In this section we consider a filtering problem where the signal process is a

semimartingale

Xt = X0 +
∫ t

0

Hsds+ Vt , (4.1)

where Vt is a Brownian motion and Ht is a stochastic process such that

E

∫ t

0

H2
sds <∞ , (4.2)

and the observation is the fractional process

Yt =
∫ t

0

h(Xs)ds+Bt , (4.3)

where Bt is a fractional Brownian motion defined as in (1.4) such that the correspond-

ing Brownian motion Wt in this expression is independent of Vt, and that

E

∫ t

0

h2(Xs)ds <∞ . (4.4)

As in Section II we can consider the ’approximate’ filtering problem:
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Signal process:

Xt = X0 +
∫ t

0

Hsds+ Vt . (4.5)

Observation process:

Y
1/n
t =

∫ t

0

hsds+B
1/n
t , (4.6)

where B1/n
t is given by (2.2), and ht = h(Xt).

Replacing Bε
t in (4.6) for ε = 1

n by its expression in (2.4) we have:

Y
1/n
t =

∫ t

0

hsds+ α

∫ t

0

ϕ1/n
s ds+

1
nα
Wt, 0 ≤ t ≤ T , (4.7)

where ϕ1/n
t =

∫ t

0

(t− s+
1
n

)α−1dWs .

Put h̄s = hs + αϕ
1/n
s , then (4.7) becomes:

Y
1/n
t =

∫ t

0

h̄sds+
1
nα
Wt , 0 ≤ t ≤ T , (4.8)

So Y 1/n
t is a FW

t - semimartingale. Notice that

h̄2
s ≤ 2(h2

s + α2(ϕ1/n
s )2) ,

Eh̄2
s ≤ 2Eh2

s + α2E(ϕ1/n
s )2 ,

But by the Ito isometry, we see that

E(ϕ1/n
s )2 = E[(

∫ t

0

(t− s+
1
n

)α−1dWs)2]

=
∫ t

0

(t− s+
1
n

)2α−2ds ≤
∫ T

0

(t− s+
1
n

)2α−2ds <∞.

It follows from Fubini’s theorem that

E

∫ t

0

h̄2
sds <∞ (4.9)

Now define the innovation process:

ν
1/n
t = Y

1/n
t −

∫ t

0

π(n)
s (h̄)ds (4.10)

then ν1/n
t is a FY 1/n

t - martingale.
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Now we are in the position to write down the FKK ( Fujisaki - Kallianpur -

Kunita) equation for the filtering problem (4.1)- (4.3):

π
(n)
t (f) = π

(n)
0 (f) +

∫ t

0

π(n)
s (f(H))ds+

∫ t

0

[π(n)
s (f(X)h̄)− π(n)

s (f(X))π(n)
s (h̄)]dν1/n

s ,

(4.11)

where f ∈ Cb(R) and π(n)
0 (f) = E(f(X0)|FY 1/n

0 ).

Notice that from (4.5) we have

E|Xt| ≤ E|X0|+ E|
∫ t

0

Hsds|+ E|Vt|

≤ E|X0|+ T.E

∫ t

0

H2
sds <∞.

then by the Levy theorem we can see that L2- lim
n→∞

π
(n)
t exists as in proof of Theorem

3.1. Now we can state:

Theorem 4.1. The filter πt(f(X)) = E(f(Xt)|FY
t ) = L2- lim

n→∞
π

(n)
t (f) exists, where

π
(n)
t (f) satisfies the equation (4.11).

5. General fractional filtering

Suppose now that the signal process (Xt, 0 ≤ t ≤ T ) and the observation

process (Yt, 0 ≤ t ≤ T ) are fractional processes given by

Xt = X0 +
∫ t

0

Hsds+B
(1)
t , E|Xt| <∞, (5.1)

Yt =
∫ t

0

hsds+B
(2)
t , (5.2)

where

B
(1)
t =

∫ t

0

(t− s)βdUs , (5.3)

B
(2)
t =

∫ t

0

(t− s)αdWs , (5.4)

Us and Wt are two independent standard Brownian motions, β = H1− 1
2 , α = H2− 1

2 ,

H1 and H2 are two Hurst parameters and 0 < α, β < 1
2 .
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Ht and ht are Ft-adapted process, ht = h(Xt) with continuous function h(.),

such that

E

∫ t

0

H2
sds <∞ , (5.5)

E

∫ t

0

h2
sds <∞ , (5.6)

As before we consider an ”approximate model” for the filtering problem (5.1)-

(5.6) as follows:

Signal:

X
1/n
t = X0 +

∫ t

0

Hsds+B
(1)1/n
t , 0 ≤ t ≤ T , (5.7)

Observation:

Y
1/n
t =

∫ t

0

hsds+B
(2)1/n
t , 0 ≤ t ≤ T , (5.8)

where ht = h(X1/n
t ) and

B
(1)1/n
t =

∫ t

0

(t− s+
1
n

)βdUs

and

B
(2)1/n
t =

∫ t

0

(t− s+
1
n

)αdWs . (5.9)

The filter π(n)
t for the problem (5.7)-(5.8) is defined as

π
(n)
t (f) = E[f(X1/n

t )|FY
1/n

t
t ], f ∈ Cb(R) (5.10)

and we will verify if the filter πt for the original problem (5.1)-(5.6) can be defined as

a L2-limit of π(n)
t as n→∞.

We need the following lemma (refer to [7]).

Lemma 5.1. Let (Xn) be a sequence of random variables such that for every n,

|Xn| ≤ Y , where Y is integrable. If (Fn) is an increasing (resp. decreasing) sequence

of σ-algebras, then E[Xn|Fn] converges a.s to E[X|F ], where F = σ(∪Fn) (resp.

F = ∩Fn)
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Proof. Take ε > 0 and put

A = inf
k≥m

Xn, B = sup
k≥m

Xn (5.11)

where m is chosen such that

E[B −A] < ε . (5.12)

Then for n ≥ m we have

E[A|Fn] ≤ E[Xn|Fn] ≤ E[B|Fn]. (5.13)

The left and right- hand sides of (5.13) are martingales converging a.s. to

E(A|F) and E(B|F) respectively. We have

E(A|F) ≤ lim E(Xn|Fn) ≤ lim E(Xn|Fn) ≤ E(B|F) , (5.14)

and

E(A|F) ≤ E(X|F) ≤ E(B|F) , (5.15)

It follows that

E[lim E(Xn|Fn)− lim E(Xn|Fn)] ≤ ε ,

hence E(Xn|Fn) converges a.s. and the limit is E(X|F).

Remark. The Lemma 5.1 still holds if we replace the a.s. convergence by

the L2- convergence (refer to [5]).

Theorem 5.1. Under the conditions given by (5.1)-(5.8) the filter πt(f) =

E[f(Xt)|FY
t ] is determined by

πt(f) = L2- lim π
(n)
t (f), f ∈ Cb(R)

where π(n)
t satisfies the following filtering equation

π
(n)
t (f) = π

(n)
0 (f) +

∫ t

0

π(n)
s (f(H̄))ds+

∫ t

0

[π(n)
s (f(X)h̄)−π(n)

s (f(X))π(n)
s (h̄)]dν1/n

s ,

(5.16)

and

H̄t = Ht + βψ
1/n
t ,where ψ1/n

t =
∫ t

0

(t− s+
1
n

)βdUt , (5.17)

h̄t = ht + αϕ
1/n
t ,where ϕ

1/n
t =

∫ t

0

(t− s+
1
n

)αdWt , (5.18)
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ν
1/n
t = Y

1/n
t −

∫ t

0

π(n)
s (h̄)ds, (5.19)

Ht and ht satisfy conditions (5.5) and (5.6) and X1/n
t and Y 1/n

t are defined by (5.7),

(5.8) and (5.9) for 0 ≤ t ≤ T .

Proof. It follows from the definition (5.7) for the process X1/n
t and from Theorem 2.1

that X1/n
t → Xt in L2(Ω,F , P ) as n→∞.

As for Y 1/n
t defined by (5.8) we can see that

Y
1/n
t − Yt =

∫ t

0

[h(X1/n
s )− h(Xs)]ds+B

(2)1/n
t −B

(2)
t , (5.20)

where h : R→ R is a continuous function by assumption, then the L2-convergence of

B
(2)1/n
t and X1/n

t respectively to B(2)
t and Xt implies that of Y 1/n

t to Yt.

Now by a calculation as in the proof of Theorem 4.1 we have

X
1/n
t = X0

∫ t

0

H̄sds+
1
nβ
Ut , (5.21)

Y
1/n
t =

∫ t

0

h̄sds+
1
nα
Wt , (5.22)

where

H̄s = Hs + βψ
1/n
t , ψ

1/n
t =

∫ t

0

(t− s+
1
n

)βdUs ,

h̄s = hs + αϕ
1/n
t , ϕ

1/n
t =

∫ t

0

(t− s+
1
n

)αdWs .

By the Ito isometry we can see that:∫ t

0

EH̄2
sds <∞ and

∫ t

0

Eh̄2
sds <∞ . (5.23)

Then we can write the FKK filtering equation for the approximate model

(5.21)-(5.22)-(5.23) as in (5.16), where ν1/n
t is the innovation process

ν
1/n
t = Y

1/n
t −

∫ t

0

π(n)
s (h̄)ds.

Here π(n)
t (f) = E(f(X1/n

t )|FY
1/n

t
t ).

Because X1/n
t → Xt and Y 1/n

t → Yt in L2 and also

‖E
(
f(X1/n

t )|FB(2)1/n

t

)
− E

(
f(X1/n

t )|FZ1/n

t

)
‖L2 → 0 as n→∞ , (5.24)
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where Z1/n =
t∫
0

hsds + B
(2)

t+ 1
n

, so an analogous assertion to the proof of Theorem

3.1 says that πt(f) = L2- lim
n→∞

π
(n)
t (f) exists where π(n)

t satisfies the FKK filtering

equation (5.16). �
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THE WEIGHTED SPLINE QUASI-INTERPOLANT OPERATORS

MAGNOLIA TILCA

Abstract. A new quasi-interpolant operator starting from the operator

described by Sablonnière [1], [7] is presented here. The operator is a linear

combination of some linear functionals and normalized B-spline functions.

If Sablonièr uses the arithmetic mean of the consecutive given points,

the linear functionals presented here use the mesh points chosen as the

weighted arithmetic mean of given points from the interval [a, b]. The

article describes the way of computing the quadratic and cubic weighted

spline quasi-interpolant operators and underlines the good numerical ap-

proximation of these new operators using implemented Matlab functions.

The fact that the cubic weighted spline quasi-intepolant operators are a

completion of the cubic spline quasi-interpolant operators offering a better

approximation, but only among some intervals, is proven in the last section

of the paper.

1. Introduction

The general construction of quasi-interpolants, which were first developed

by Carl de Boor and G. J. Fix [2] and generalized later by Lyche and Schumaker

[4], starts from the following problem. Given a function f , the basic problem of

spline approximation is to determine B-spline coefficients (ci)
n
i=1 such that Pf =

∑n
i=1 ciNi,k is a reasonable approximation to f . Let assume that f is defined on

an interval I = [a, b], and select the space of splines of order k + 1, Sk+1(∆, I),

∆ : a = x1 < x2 < ... < xn = b defined on I (i.e., so that ∆ : x−k+1 = x−k+2 = ... =

x−1 = x0 = a, b = xn+1 = xn+2 = ... = xn+k). To emphasize the dependence on f ,

Received by the editors: 20.01.2008.

2000 Mathematics Subject Classification. 41A15, 65D07, 47D30, 68W25.

Key words and phrases. B-splines, quasi-interpolant operators.
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the coefficient ci is written ci = µif , with µi some linear functionals. Thus, a quasi-

interpolant spline is an approximation operator obtained as a linear combination of

functions with finite support (B-splines Ni,k) Qf =
∑n+1

i=1 µi(f)Ni. There are known

some different types of these linear functionals µi such as: differential type (µi(f) is

a linear combination of values of derivatives of f) or discrete type (combination of

discrete values of f). This paper treats the case of the coefficients of discrete type

where the combination is formed by the weighted mean values of the given points

from ∆ weighted by the values of the function f .

2. The most important features

This section concerns upon the construction of the weighted quasi-interpolant

operators. Two methods of obtaining the new operators are presented here: the first

one involves the non-recurrent expressions of the normalized quadratic and cubic B-

splines and the second one presents the exact formulations of the coefficients of the

weighted spline quasi-interpolant.

2.1. The construction of the weighted spline quasi-interpolant operators

using the normalized B-spline expressions. Let n, k > 0 with n ≥ k + 3 be

known integers and let f ∈ Ck(I) be a function with the known values f(xi), xi ∈ ∆

such as f(xi) + f(xi−1) 6= 0. We choose n + 1 weighted values points

ts :=
xs−1f(xs−1) + xsf(xs)

f(xs−1) + f(xs)
, s = 1, ..., n + 1. (2.1)

It is obvious that t1 = a and tn+1 = b.

Definition 1. Let x ∈ [xl, xl+1] ⊂ [a, b], for l = 1, ..., n − 1, a, b ∈ R. We define the

spline quasi-interpolant of degree k and order k + 1

Qkf(x) =

k+1∑

i=1

µ
{l}
i (f) · N−k−1+i+l(x), (2.2)

Ni := Ni,k+1, with the functionals µ
{l}
i ,

µ
{l}
i (f) =

k+1∑

j=1

a
{l}
i,j · f(ti+j−1), i = 1, ..., k + 1 (2.3)
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where the mid points ts are defined in (2.1) and a
{l}
i,j are coefficients which depend on

l, ∀l = 1, ..., , n− 1.

We denote the quasi-interpolant operator with weighted values by QIw.

Problem 1. Construct an algorithm for weighted spline quasi-interpolant operator

and implemet a corespondent routine using the Matlab application.

Step I. Find the coefficients ci,l−r, i, r = 0, ..., k of the normalized B-spline

functions Nl−r,k+1, r = 0, ..., k from the expression Nl−r,k+1(x) = ck,l−rx
k + ck−1,l−r

xk−1 +... + c0,l−r. These coefficients are obtained from the well known recurrence

formula (see, for example, [6])

Nj,1 =





1, x ∈ [xj , xj+1);

0, else

Nj,k+1 =
(x − xj)Nj,k(x)

xj+k − xj

+
(xj+k+1 − x)Nj+1,k(x)

xj+1+k − xj+1
, j = −k + 1, ..., n − 1. (2.4)

It is known from [8] that for any x ∈ [xl, xl+1), l ∈ {1, ..., n− 1}, there are only k + 1

nonzero B-splines Nj,k+1, j = l − k, ..., l. Thus, an explicit non-recurrent expression

for the spline coefficients can be deduced from the relations (2.4) in the cases of

quadratic (k = 2) [11] and cubic (k = 3) [10] B-splines.

Nl,k+1 =

∑k
i=0(−1)i

(
k
i

)
xi

l∏k
j=2(xl+j − xl)

Ml,1 · xk−i, k ≥ 2,

Nl−1,k+1 =

k∑

p=1

∑k
s=0(−1)s+1(xl+pPs,p + Ps+1,p)Ml,1 · xk−s

∏k−1
j=1,p+j≤k(xl+k−j − xl−1)

∏k−1
j=1,p+j>k(xl+k−j+1 − xl)

, k ≥ 2,

Nl−2,k+1 =

k∑

p=1

∑k
s=0(−1)s(xl+p−kRs,p + Rs+1,p)Ml,1 · xk−s

∏k−1
j=1,p+j≤k(xl+1 − xl−k+j+p)

∏k−1
j=1,p+j>k(xl+2 − xl+1−j)

, k = 3,

and finally

Nl−k,k+1 =

∑k
i=0(−1)i+k

(
k
i

)
xi

l+1∏k
j=2(xl+1 − xl−j+1)

Ml,1 · xk−i, k ≥ 2,

where Ps,p =
∑s

j=0

(
p−1
s−j−1

)(
k−p
j

)
x

s−j−1
l x

j
l−1 and Rs,p =

∑s
j=0

(
p−1
s−j−1

) (
k−p
j

)
·

x
s−j−1
l+2 x

j
l+1. We take P0,p = Pk+1,p := 0, ∀p = 1, ..., k and

(
k
i

)
:= 0 if i < 0 or i > k

and we observe that P1,p = R1,p = 1, ∀p = 1, ..., k.
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Step II. Find the coefficients a
{l}
i,j of the linear functionals (2.3) as the so-

lution of the system obtained by applying the conditions of exactness of the quasi-

interpolant operator in the space of polynomial of degree at most k. So, the condi-

tions of the exactness of Qk operator in the set of polynomials of degree at most k,

Qkp = p, p ∈ Pk, leads to the identities Qk(ei) = ei where ei(x) = xi, i = 0, ..., k.

Rearranging after the powers of x and equalizing both sides we obtain a system with

(k + 1)(k + 1) equations and (k + 1)2 unknowns, A ·C = B, where A is the matrix of

the unknown coefficients a
{l}
i,j , i = 1, ..., k + 1, j = 1, ..., k + 1, C is the matrix of the

coefficients of the normalized B-spline functions and the values ξj , and B is the line

matrix of the unity vector ui, i = 1, ..., k + 1 as presented below. The matrix C is of

the form

C =





cl−k cl−kX1 ... cl−kXk
1

cl−k+1 cl−k+1X2 ... cl−k+1X
k
2

...

cl clXk+1 ... clX
k
k+1





, (2.5)

where cl−k is the square bloc of the coefficients of the B-spline Nl−k,k+1

cl−k =

ck,l−k ck−1,l−k ... c0,l−k

...

ck,l−k ck−1,l−k ... c0,l−k

.

The Xi, i = 1, ..., k + 1 vectors are defined as X
j
i = [tji , t

j
i+1, ..., t

j
i+k]t, i = 1, ..., k + 1

for j = 0, ..., k. Maintaining the above notations, vector B is defined as B = [uk+1 uk

... u1] where ui is a vector with 1 on the position of i, i = 1, ..., k+1, and the rest of k

elements are zero. We can observe that for every value of x ∈ [xl, xl+1], l = 1, ..., n−1,

it is necessary to solve n − 1 systems with (k + 1)2 equations. In order to obtain the

compatibility of the systems and the uniqueness of the solution, we impose the knots

condition

n ≥ (k + 1) + 2.

Step III. Compute the values of the linear functionals µ
{l}
i , ∀x ∈ [xl, xl+1).
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Step IV. Compute the values of the weighted spline quasi-interpolant oper-

ator Qk(f), ∀x ∈ [xl, xl+1).

In order to solve this system, we have implemented an algorithm and by using

the Matlab application we will obtain these practical results.

Problem 2. Implement a routine which calculates

1. the joint values tj , j = 1, ..., n + 1;

2. the coefficients of the normalized B-spline functions Nj , j = −k + l, ..., l, l =

1, ..., n − 1;

3. the values of the functionals µ
{l}
i (f), i = 1, ..., k + 1 for some given functions f

4. Qk(f)(x), k ∈ {2, 3}, the value of the quasi-interpolant operator Qk for a given

number x ∈ (a, b)

5. the values of the quasi-interpolant operator Qk for all the equidistant numbers

x ∈ [a, b] with step 0.1.

The algorithm calculates the coefficients and the values of the quadratic and

cubic weighted spline quasi-interpolant Qk for any partition X of the interval I = [a, b]

and any x ∈ (a, b).

Input:

a) X , the vector of the extended partition ∆;

b) x ∈ (a, b);

c) f , a function which may be chosen from the set of functions

{ax2 + bx + c, a/(b + cx), a · (sin(bx))c, a · (cos(bx))c, (aeb·x)c, (ax2 + 1)/(bx + c)}.
Output:

i) CC, the vector of the coefficients of the quasi-interpolant Qk;

ii) Qk(f)(x), the value of the quasi-interpolant operator Qk for a given number x ∈
(a, b);

iii) q, the vector values of the quasi-interpolant operator Qk for all the equidistant

numbers x ∈ [a, b] with the step 0.1.

Step 1: The computation of the matrix denoted with n of order k+1 of the B-spline

Nj , j = l−k, ..., l coefficients ck−s,l−r , s = 0, ..., k, r = 0, ..., k, l = 1, ..., n−1, k ∈ {2, 3}
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using the non-recurrent expressions of the coefficients from the equalities mentioned

above.

Step 2: The elements of the vector T of the tj , j = 1, ..., n + 1 from (2.1) ;

Step 3: The construction of the matrix C of the form (2.5);

Step 4: The construction of the vector B of the form B = [uk+1 uk ... u1];

Step 5: The computation of the solution of the matrix equation A · C = B, A as

A = B · C−1;

Step 6: The computation of the values of the functionals µ
{l}
i , i = l, ..., k + 1. (It

is not necessary to compute all the values µ
{l}
i , i = 1, ...n − 1, n ≥ k, because only

Nl−k, ..., Nl are nonzero).

In what follows, we will exemplify our results on the non polynomial case.

Example 1. (Numerical results)

Let I = [0, 1.25], ∆ : 0 < 0.25 < 0.5 < 0.75 < 1 < 1.25 and 0.1 := x ∈ [x1, x2] :=

[0, 0.25]. For a given function, say f(x) = (x2 +1)/(x+1), find the value of the cubic

quasi-interpolant operator Q.

Solution: Applying the Matlab function

[Q]=coef w cubic(X,x,a,b,c,functia),

the vector of the extended partition of the cubic (order=4, degree=3) B-spline function

is X = [0 0 0 0 0.25 0.5 0.75 1 1.25 1.25 1.25 1.25] and the coefficients of the function

are a = 1, b = 1, c = 1. The Matlab function

coef w cubic(X,0.1,1,1,1,’(a*x.2̂+1)/(b*x+c)’)

generates the following results:

1. the joint values tj , j = 1, ..., 7 are

T = 0 0.1149 0.3738 0.6293 0.8821 1.1331 1.2500;

2. the coefficients of the normalized B-spline functions Nj , j = −2, ..., 1 are contained

in the following matrix

n =
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N1 10.6667 0 0 0

N0 -58.6667 24.0000 0 0

N−1 112.0000 -72.0000 12.0000 0

N−2 -64.0000 48.0000 -12.0000 1.0000

,

from where we can construct the expressions of the B-spline functions:

N1,4 = 10.(6)x3

N0,4 = −58.(6)x3 + 24x2

N−1,4 = 112x3 − 72x2 + 12x

N−2,4 = −64x3 + 48x2 − 12x + 1;

3. the values of the functionals µ
{1}
i (f), i = 1, ..., 4 are the elements of the vector

CC = 1.0000 0.9193 0.8302 0.8216;

4. the value of the quasi-interpolant operator Q3 is

Q = 0.9195

Remark 1. The value of the function f for x = 0.1 is 0.9182 which means that the

weighted spline quasi-interpolant operator offers a good approximation.

Furthermore, for computing the values of the quasi-interpolant operator Q3

for all the equidistant numbers x ∈ [a, b] with the step 0.1, we implemented another

Matlab function

[q] = table val Q cubic(T, X, a, b, c, functia).

Thus, for T = [0 1.25],

q = 1.0000 0.9195 0.8679 0.8400 0.8400 0.8313 0.8484 0.8753 0.9128 0.9539

1.0000 1.0525.

Remark 2. We have also implemented a function

[tabel] = final(X, T, a, b, c, functia)

to compare the values of the given function with the values of the weighted cubic spline

quasi interpolant operator and the values of the cubic spline quasi-interpolant operator

described by Sablonière. Thus, applying

final(X, [0 1.25], 1, 1, 1,′ (a ∗ x.2 + 1)/(b ∗ x + c)′)
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we get
tabel =

x 0 0.1 0.2 0.3 0.4 0.5 0.6

f 1.000 0.9182 0.8667 0.8385 0.8286 0.8333 0.8500

Q3(f) 1.0000 0.9203 0.8675 0.8378 0.8275 0.8325 0.8494

Qw3(f) 1.0000 0.9195 0.8679 0.8400 0.8298 0.8313 0.8484

Q − f 0.0000 0.0022 0.0008 -0.0006 -0.0011 -0.0008 -0.0006

Qw − f 0.0000 0.0013 0.0012 0.0016 0.0012 -0.0020 -0.0016

x 0.7 0.8 0.9 1 1.1

f 0.8765 0.9111 0.9526 1.0000 1.0524

Q3(f) 0.8760 0.9108 0.9524 1.0000 1.0526

Qw3(f) 0.8753 0.9128 0.9539 1.0000 1.0525

Q − f -0.0004 -0.0003 -0.0002 -0.0000 0.0002

Qw − f -0.0012 0.0017 0.0012 0.0000 0.0001

Analyzing the errors expressed in the last two rows of the table, we can notice

that the operators described by Sablonière are better approximations than the operators

presented in this paper, with the exception of the edged values. Making further inves-

tigations, the weighted cubic quasi-interpolant operators are more convenient for ap-

proximation of this function in values contained on the interval [0; 0.17]∪[1; 1.24]. This

better approximation can be visualized in the graphical error representation, Fig.1,

where the errors generated by quasi-interpolated operators with mean values are larger

than the errors generated by quasi-interpolated operators with weighted values.

2.2. The construction of the weighted cubic spline quasi-interpolant oper-

ators which does not require the normalized B-spline expressions. As we

could see, the construction of the weighted spline quasi-interpolant operators requires

the solution of linear systems. To avoid this volume of computation, following the

idea presented in [7], we can generate the exact expressions of the coefficients a
{l}
i,j ,

∀i, j = 1, ...k + 1 and ∀l = 1, ..., n − 1.

Let ∆ be the extended partition of the interval [a, b]. We recall the definition

of Greville’s points (mentioned in [5] and [9])

ξj =
xj+1 + xj+2 + ... + xj+k

k
, j = −k + 1, ..., n− 1,

ξ
(2)
j =

xj+1xj+2 + xj+1xj+3 + ... + xj+k−1xj+k(
k
2

) , j = −k + 1, ..., n− 1,
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Figure 1. The graphical error representation

ξ
(3)
j =

xj+1xj+2xj+3 + xj+1xj+2xj+4 + ... + xj+k−2xj+k−1xj+k(
k
3

) , j = −k+1, ..., n−1.

Theorem 1. For k = 3, the exact expressions of the coefficients a
{l}
i,j of the linear

functionals µ
{l}
i from (2.3) are given by the formula

a
{l}
i,j = (−1)j+1

Pi,j − ξ−4+i+l · (SP )i,j + ξ
(2)
−4+i+l · Si,j − ξ

(3)
−4+i+l∏(s=i+j−1)∨(p=i+j−1)

i≤s<p≤i+k (tp − ts)
(2.6)

where P, SP and S are respectively the product of all the elements t where ti+j−1 is

omitted, SP denotes the sum of all combinations of the products of two elements t

from P and, finally, S is the sum of all elements from P :

Pi,j :=

∏i+k
s=i ts

ti+j−1
,

(SP )i,j :=
∑

i≤s<p≤i+k

tstp −
(s=i+j−1)∨(p=i+j−1)∑

i≤s<p≤i+k

tstp,

Si,j :=

i+k∑

s=i

ts − ti+j−1.

Proof. We begin by imposing the conditions of exactness for the quasi-interpolant

operators Qk in the set of polynomials of degree at most k, Qkp = p, p ∈ Pk which
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lead to the identities Qk(ei) = ei where ei(x) = xi, i = 0, ..., k. The ei functions can

be rewrites using Marsden’s equalities [5]

xj =

k+1∑

i=1

ξ
(j)
−4+i+lN−4+i+l(x), j = 0, ..., k,

with ξ
(0)
i := 1 and ξ

(1)
i := ξi. Equalizing the coefficients a

{l}
i,j from the equations

(Qkei)(x) = ei(x), i = 0, ..., k we obtain a system with (k +1)2 equations and (k+1)2

unknows for every l ∈ {1, ..., n−1}. The system being a separable variables one, we can

rearrange the equations obtaining (k + 1) systems with (k + 1) equations by the form
∑k+1

j=1 a
{l}
i,j tsj = ξ

(s)
−4+i+l, for fixed i ∈ {1, ..., k + 1} and s = 0, ..., k with ξ

(0)
i := 1 and

ξ
(1)
i := ξi. The determinant of these systems is Vandermonde determinant, thus the

computation is quite simple and each solution ai,j of the systems can be generalized

by the (2.6).

3. The evaluation of the error

In this section a comparison of the norm of the cubic quasi-interpolant opera-

tor with weighted values (QIw) and the norm of the cubic quasi-interpolant operator

with mean values (QI) is presented. In general, it is difficult to minimize the true

norm of the operators. In order to avoid this direct minimization we use the idea of

Sablonniére [1] of the minimization problem:

Let Qf =
∑

i µi(f)Ni be the general form of the spline quasi-interpolant of f, with

µi(f) =
∑

i aif(xi). Find ai ∈ Rn solution of the problem

‖a∗
i ‖1 = min {‖ai‖1 , ai ∈ Rn, Viai = bi}

where ‖Q‖∞ ≤ ∑
i |µi(f) |Ni ≤ maxi|µi(f)| ≤ maxi ‖ai‖1. The notation Vi denotes

the Vandermonde matrix.

Thus, the minimization of the norm ‖Q‖∞ reduces to the operate with the coefficients

ai.

It is known from [1] that the norm of QI is not uniformly bounded indepen-

dent of the partition.
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Theorem 2. [1] For the cubic spline quasi-interpolant operators Q3 let the linear

functionals be µi(f) = aif(xi−1) + bif(xi) + cif(xi+1). If there exists r > 0 such

that the partition satisfies 1
r
≤ hi+1

hi
≤ r, i ∈ Z, where hi = xi − xi−1, than we

obtain the following upper bounds |ai| , |ci| ≤ 1
3

r2

1+r
, |bi| ≤ 1

3 (1 + r)2, from which

‖Q3‖∞ ≤ 1
3

(
(1 + r)2 + 2r2

1+r

)
.

Thus, in the case of uniform partition, r = 1, the upper bound of the norm

is ≈ 1.66.

The next result states that the cubic weighted spline quasi-interpolant oper-

ators QIw for the uniform partition case also have the upper bound less than 1.66.

Theorem 3. Let I = [a, b] be an interval with the uniform partition ∆ and Q3 the

cubic weighted spline quasi-interpolant operator given by

Q3f(x) =

n+3∑

i=1

µi(f)Ni(x)

with linear functionals

µi(f) := aif(ti−1) + bif(ti) + cif(ti+1),

µ1(f) = f(a), µn+3(f) = f(b)

and the points ti defined as in (2.1). For f ∈ C[a, b] smooth enough we have

‖Q3‖∞ ≤ 1.66.

Proof. We define the auxiliary points

ti := (1 − m)xi + mxi−1, (3.1)

i = 1, ..., n + 3, m ∈ [0, 1] which are a generalization of the points ti taken as mean

values of xi ∈ ∆ and taken as weighted values of xi ∈ ∆ and f(xi).

The idea of the proof is to express the coefficients ai, bi, ci depending only on

the parameter m.

To compute these coefficients, we follow the same idea presented in Subsection

2.2. Thus, after imposing the conditions of the exactness Q3(es) = es, s = 0, ..., 3 and
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after using Marsden’s equalities, rearranging after the powers of ti, i = 1, ..., n + 3 we

get a 3 × 3 system for every i, from which the coefficients are

ai =
titi+1 − ξ

(1)
i (ti + ti+1) + ξ

(2)
i

(ti − ti−1)(ti+1 − ti−1)
, (3.2)

bi = − ti+1ti−1 − ξ
(1)
i (ti+1 + ti−1) + ξ

(2)
i

(ti − ti−1)(ti+1 − ti)
,

ci =
ti−1ti − ξ

(1)
i (ti + ti−1) + ξ

(2)
i

(ti+1 − ti)(ti+1 − ti−1)
,

i = 1, ..., n + 2. It is obvious that ai + bi + ci = 1, ∀i = 1, ..., n + 3.

These expressions are easily computable when the relation (3.1) is used, ti =

(1 − m)xi + mxi−1. Thus, we get

ai =
3m2 + 9m + 5

6
, bi = −m2 − 4m − 8

3
, ci =

3m2 + 15m + 17

6

and again ai + bi + ci = 1, ∀i = 1, ..., n + 3. Now from the fact that ‖Q3‖∞ ≤
|ai|+ |bi|+ |ci| [1], ∀i = 1, ..., n + 3 and using the Matlab application to evaluate this

expression for every m ∈ [0, 1], we have that ‖Q3‖∞ ≤ 1.66.

It is well known ([12], chapter 5) that for any subinterval Ii = [xi−1, xi], i =

1, ..., n and for any function f , ‖f − Qkf‖∞,Ii
≤ (1 + ‖Qk‖∞)d∞,Ii

(f, Πk) where the

distance of f to polynomials is defined by d∞,Ii
(f, Πd) = inf{‖f − p‖∞,,Ii

, p ∈ Πk},
‖f − p‖∞,,Ii

= maxx∈Ii
|f(x) − p(x)|. Therefore, for f ∈ C4(I) the error estimated is

‖f − Q3f‖∞,Ii
≤ 2.66 · d∞,Ii

(f, Π3)

for i = 1, ..., n.

From these theoretical arguments and numerical computations, an approach

between these two quasi-interpolant operators QIw and QI can be observed. The QIw

operators complete the QI operators because they can provide better approximations

on some subintervals of I.
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Joe Diestel, Jan H. Fourie and Johan Swart, The metric theory of tensor
products - Grothendieck’s Résumé revisited , American Mathematical Society,
Providence, Rhode Island 2008,x+278 pp, ISBN:978-0-8218-4440-3

More that fifty years ago Alexander Grothendieck published his famous
Résumé de la théorie metriques des produits tensoriels topologiques, in Boll. Soc.
Mat. Sao Paolo 8( 1953/1956), 1–79, revitalizing the interest in Banach space theory
and tracing the way for future investigation. Among the great ideas the genius of
Grothendieck (guided by ”his inborn compass”, as is said in the Preface) isolated,
were: the study of isomorphic invariants of special Banach spaces by comparing them
with other Banach spaces via the bounded linear operators between them, the impor-
tance of the nature and location of finite dimensional subspaces (the local theory of
Banach spaces), the use of diagram chasing to catch the essential isomorphic charac-
teristics of Banach spaces. In spite of the wealth of ideas contained in Grothendieck’s
paper, ”the infamous Résumé” (as it is called called in the Preface) is very hard
to read and to find (practically no proofs are given and the Sao Paolo journal is a
bibliographical rarity), so that its results are not generally known even to experts
in Banach space theory. In a paper published in 1968 in the Polish journal Studia
Mathematica, J. Lindenstrauss and A. Pelczynski demystified the ideas of the Résumé
by getting rid of their tensor product formulations, giving a new proof to the Fun-
damental Grothendieck’s Inequality used in the study of operator ideals and opening
a new fertile and rich period in the study of Banach spaces, lasting in lethargy after
the glorious time of Banach and his school from the thirties.

The present book is devoted to the presentation of the fundamental ideas from
the Résumé by using mathematical tools available at the time of its writing. Some
parts, were subsequent developments might shorten some arguments are presented
in Notes and Remarks. Also, three appendices B. The Blaschke selection principle
and compact convex sets in finite dimensional Banach spaces, C. A short introduction
to Banach lattices, and D. Stonean spaces and injectivity, present, this time in a
modern language, the main tools available to Grothendieck. The first appendix, A.
The problems of the Résumé, discusses the solutions to the open problems from the
Résumé starting with the most famous of them - the approximation problem, solved
negatively by Per Enflo in 1973. An Epilogue contains a brief discussion on some
recent results in the theory of operator space theory (or noncommutative Banach
space theory) as developed by Effros, Ruan, Blecher, Paulsen, Pisier, a.o.
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The basic results of the Résumé are presented in the four chapters of the main
text: 1. Basics of tensor norms, 2. The role of C(K)-spaces and L1-spaces, 3. ⊗-
norms related to Hilbert space, and 4. The fundamental theorem and its consequences
(containing a proof of Grothendieck’s Fundamental Inequality).

Written in an alive and entertaining style, but with detailed and rigorous
proofs, the book makes available to a large audience the treasure of fundamental
ideas contained in the Résumé, a landmark in the development of functional analysis.

The book can be used for advanced courses on Banach spaces, or for self-
study.

S. Cobzaş

Victor G. Zvyagin and Dmitry A. Vorotnikov, Topological approximation
methods for evolutionary problems of nonlinear hydrodynamics, Walter de
Gruyter, Berlin 2008, xii+ 230 pp, ISBN 978-3-11-020222-9, ISSN 0941-813X

There are several methods to solve the evolutionary problems of fluid dynam-
ics as the Faedo-Galerkin method, the iteration method, the method of evolutionary
equations, and others. The authors of the present book propose another approach,
based on the interpretation of the initial-boundary value problem as an operator equa-
tion in some appropriate function space. Usually the maps involved in this equation do
not posses good operator properties, so that one approximates the initial equation by
smoothing the nonlinear terms, or adding terms of higher order with a small param-
eter, allowing the study of this approximating equation in spaces with more suitable
topological properties and the use of various discretization method with guaranteed
convergence. The final step consists in passing to limit in the approximating equation,
by letting the parameters to tend to 0 to find a solution of the original equation (usu-
ally in a topology weaker than that of the spaces where the approximating equation
was studied).

In order to make the book as self-contained as possible, the authors have
included (mostly with full proofs) the basic results on Sobolev function spaces, de-
gree theory and operator equations. This is done in Chapters 2. Basic function
spaces.Embedding and compactness theorems, 3. Operator equations in Banach spaces
(including a section on Leray-Schauder degree), and 4. Attractors for evolutionary
equations in Banach spaces.

The preliminary material from rheology, required for the understanding of the
considered models, is presented (from a mathematician’s point of view) in Chapter 1.
Non-Newtonian flows.

Chapters 5. Strong solutions for equations of motion of viscoelastic medium,
6. Weak solutions for equations of motion of viscoelastic medium, and 7. The regu-
larized Jeffreys model, are dedicated to the application of the developed methods to
the equations describing the motion of viscoelastic media. Since the problem of the
existence of global strong solutions is open in the general case, after presenting some
particular cases of the existence of strong solutions in the fifth chapter, the authors
concentrate on in the rest of the book on the existence of the weak solutions.
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The book is clearly written, in a didactic manner, providing the reader with
a good mathematical introduction to the operator methods for the solution of initial-
boundary value problems for the equations of viscoelastic fluid mechanics.

The book will be useful both for mathematicians interested in nonlinear op-
erator equations as well as for those working in fluid mechanics.

Mirela Kohr

J.W.P. Hirschfeld, G. Korchmáros, F. Torres,Algebraic Curves over a
Finite Field, Princeton University Press (Princeton Series in Applied Mathematics),
2008, Hardback, 696 pp., ISBN: 978-0-691-09679-7.

The theory of algebraic curves over finite fields has become of great impor-
tance, both for its own sake and for the many applications that it has in number
theory, finite geometry, coding theory and cryptography as well. Being given the
enormous progress in this subject, an encyclopedia-like book devoted to it, like the
book published by Professors Hirschfeld, Korchmáros and Torres, is welcome in the
mathematical community.

The book is a self-contained introduction to this subject. It contains a huge
amount of material, consisting of elementary, classical results, but also of current
research topics. The exposition is divided into three parts.

The first part deals with the general theory of algebraic curves over an al-
gebraically closed field of arbitrary characteristic. One defines first a plane algebraic
curve as the zero locus of a (homogeneous) polynomial and then one develops the the-
ory in a classical, geometric way. All the important projective invariants (namely the
degree, inflexion, k-fold point, ordinary singularity, intersection number, bitangents)
are introduced and studied, starting from the very beginning of the book.

Because many problems on curves can be reduced to investigating their inter-
section, the intersection number plays a central role. In Chapter 2, using elimination
theory, its usual definition is extended in such a way that a sort of Bezout’s theorem
could work for intersections of plane curves, not only for the intersection of a plane
curve with a line.

In working with curves their singularity is always important. One could also
look for methods to eliminate some kinds of singularities of a certain curve (unfortu-
nately projective transformations are not enough). This is done in the third chapter,
where, among other useful results concerning singularities of curves, it is proved that
every plane curve can be transformed by locally quadratic transformations to one
with only ordinary singularities. In this sort of analysis the notion of the branch of a
plane curve is essential. Chapter 4 treats the theory of branches, using formal power
series. An idea that turns out to be useful in many contexts is that a plane curve
needs to be considered as the set of its branches rather than the set of its points.

In the fifth chapter there are studied the effects of birational transformations
on plane curves and the birational invariants of such curves, particularly their genus.
Other birational invariants are the order and dimension of linear series, extensively
studied in the next chapter based on the idea of adjoint curves. Here we come across
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to the Riemann-Roch theorem, which, besides giving an alternative definition of the
genus, has several applications in algebraic geometry.

Even if we use birational transformations, an irreducible plane curve cannot
always be transformed into a non-singular plane curve. In order to accomplish this
space curves must be considered (a space curve is the image of an irreducible plane
curve under a birational transformation), which are studied in Chapter 7. In this
chapter the theory of non-classical curves is also presented.

The second part of the book is the central one. It develops extensively the
theory of algebraic curves defined on the algebraic closure of a finite field. In chapter
eight there are laid down the foundations of this particular topic. The important
Stöhr-Voloch theorem is presented, followed by an elementary proof of the Stöhr-
Voloch Bound for non-classical plane curves. The latter provides an accurate estimate
of the number of Fq-rational branches for large families of curves.

In the following chapter it it deduced the famous Hasse-Weil Bound from
the Riemann hypothesis for function fields over finite fields. There are also discussed
some far-reaching consequences of the Hasse-Weil Theorem concerning curves over
finite fields.

The third part contains several advanced results on curves over finite fields
and on automorphism groups of curves. The major result is the finiteness of the K-
automorphism group of the function field of irreducible plane curves of genus greater
than one. It also collects the most important families of curves over finite fields. We
could mention the maximal curves (curves for which the Hasse-Weil upper bound is
attained), which are naturally used in algebraic-geometry codes. In the last chapter
there are presented some applications of curves in coding theory and in the combina-
torics of finite projective spaces.

The book is clearly written. Besides its 13 chapters, it contains an appendix,
presenting the necessary background on field theory and group theory. The book is
very well documented: the bibliography has an impressive number of 520 titles, giving
a rough idea of the breadth of the subject and of the enormous documenting work
done by the authors.

The publishing of this book written by professors Hirschfeld, Korchmáros and
Torres is certainly a welcome and waited event. I am sure that every mathematician
(graduate student, professor or researcher) working in the subject of algebraic curves
over finite fields finds it indispensable.

Daniel Arnold Moldovan

Luca Capogna, Donatella Danielli, Scott D. Pauls and Jeremy T. Tyson,
An Introduction to the Heisenberg Group and the Sub-Riemannian
Isoperimetric Problem, Progress in Mathematics (series editors: H. Bass, J.
Oesterlé, A. Weinstein), vol 259, Birkhäuser Verlag, Basel-Boston-Berlin, 2007, 223
pp; ISBN-13: 978-3-7643-8132-5, e-ISBN-13: 978-3-7643-8133-2.

Sub-Riemannian (also known as Carnot-Carathéodory) spaces are spaces
whose metric structure may be viewed as a constrained geometry, where motion is
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possible only along a given set of directions, changing from point to point. They play
a central role in the general program of analysis on metric spaces, while simultane-
ously continuing to figure prominently in applications from other scientific disciplines
ranging from robotic control and planning problems to MRI function, to new models
of neurobiological visual processing and digital image reconstruction.

The book is divided in nine chapters.
The first chapter, The isoperimetric Problem in Euclidean Space, contains a short
presentation of the isoperimetric problem and its solution in Euclidean space, indi-
cating a few proofs for the sharp isoperimetric inequality in the plane arising from
diverse areas such as complex analysis, differential geometry, geometric measure the-
ory, nonlinear evolution PDEs (curvature flow), and integral geometry.

The second chapter, The Heisenberg group and Sub-Riemannian Geometry is
concerned with the presentation of the Heisenberg group, the sub-Riemannian struc-
ture of it, and the Riemannian approximants to Heisenberg and Carnot groups.

Chapter 3, Applications of Heisenberg group, contains a selection of pure
and applied mathematical models which feature aspects of Heisenberg geometry: CR
geometry, Gromov hyperbolic spaces, jet spaces, path planning for nonholonomic
motion, and the functional structure of the mammalian visual cortex.

The fourth chapter, Horizontal Geometry of Submanifolds, discusses invari-
ance of the Sub-Riemannian metric with respect to Riemannian extension, the second
fundamental form and horizontal geometry of hypersurfaces in HN .

Chapter 5, Sobolev and BV Spaces, contains the sub-Riemannian Green’s
formula and the fundamental solutions of the Heisenberg Laplacian, and embedding
theorems for the Sobolev and BV-spaces, in particular Sobolev-Gagliardo-Nirenberg
inequality, and the compactness of the embedding BV ↪→ L1 on the John domains.

In Chapter 6, Geometric Measure Theory and Geometric Function Theory,
there are presented area and co-area formulas, Pansu-Rademacher theorem, first vari-
ation of the perimeter and the quasiconformal mapping on H.

Chapters 7 and 8 are ample study of isoperimetric inequality in H and isoperi-
metric profile of H. These chapters contain the isoperimetric inequality in Hadamard
manifold, Pansu’s proof of the isoperimetric inequality in H, Pansu’s conjecture, C2

and convex isoperimetric profile in H. Also, here is presented the Riemannian ap-
proximation approach, the horizontal mean curvature, the isoperimetric problem in
the Grushin plane and the classification of symmetric CMC surfaces in Hn.

The last chapter, Chapter 9, Best Constants for other Geometric Inequali-
ties on the Heisenberg group, contains the L2-Sobolev embedding theorem, Moser-
Trudinger and Hardy inequalities.

The book is very well written and it is a nice introduction to the theory of
sub-Riemannian differential geometry and geometric analysis in the Heisenberg group.
I warmly recommend the book to researchers in sub-Riemannian geometry, and to
those interested in PDEs, calculus of variations and its applications.

Csaba Varga
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Vasile Staicu (Editor), Differential Equations, Chaos and Variational
Problems, Progress in Nonlinear Differential Equations and Their Applications Vol.
75, Birkhäuser, Basel, 2007, ISBN 978-3-7643-8481-4.

The book under review is a collection of original papers and state-of-the-art
contributions written by leading mathematicians in honor of Arrigo Cellina and James
A. Yorke on the occasion of their 65th anniversary and introduced at the Conference
Views on ODEs (VODE2006), June 21 - 24, 2006, Aveiro, Portugal. Arrigo Cellina
and James A. Yorke were born in the same day of August, 3rd 1941. Their out-
standing contributions deeply influenced the scientific developments of many younger
mathematicians. A short presentation of their lives and work is contained in the
Editorial Introduction. The volume contains 32 contributed papers by distinguished
mathematicians from all over the world covering topics related to the work of Cellina
and Yorke - differential equations, delay-differential equations, variational problems
, differential inclusions, Young measures, control theory, dynamical systems, chaotic
systems and their relations with physical systems. Among the contributors (some of
them co-workers of the celebrated) we mention: P. Agarwal, Z. Arstein, J.-P. Aubin,
A. Bessan, H. Frankowska, A. Cellina, F. Clarke, C. Corduneanu, J.Mahwin, B. S.
Mordukhovich, J. Myjak, D. O’Reagan, N. S. Papageorgiu, B. Ricceri.

Covering a lot of research areas, both pure and applied, this collection of
wonderful papers will be of interest to a large audience, including mathematicians,
physicists and engineers. No doubtably that it will be included in many libraries all
over the world.

Marian Mureşan

Luigi Ambrosio, Nicola Gigli and Giuseppe Savaré, Gradient Flows
in Metric Spaces and in the Space of Probability Measures, Lectures in
Mathematics, ETH Zürich, 2nd Edition, Birkhäuser Verlag, Basel-Boston-Berlin,
2008, vii+334 pp; ISBN: 978-3-7643-8721-1, e-ISBN3: 978-3-7643-8722-8.

The present book is formed of two parts: I. Gradient flow in metric spaces,
and II. Gradient flow in the space of probability measures. Apparently independent,
the inclusion of them in the same book is motivated by the fact that the space of
probability measures, treated in the second part of the book, is one of the main field
of application of the general theory of analysis in metric spaces. The last years were
marked by an intense research activity in this field, one of the leading schools being
that from the Scuola Normale Superiore di Pisa headed by Luigi Ambrosio, one of
the authors of the present book.

The first part contains four chapters 1. Curves and gradients in metric spaces,
2. Existence of curves of maximal slope, 3. Proofs of the convergence theorems, and
4. Generation of contraction semigroups.
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The main idea used in the first part is that of maximal slope of a curve in a
complete (or at least Polish) metric space (S, d), meaning an absolutely continuous
mapping v : (a, b) → S such that d(v(s), v(t)) ≤

∫ t

s
m(r)dr, ∀s, t, a < s, t < b, for

some m ∈ Lp(a, b), where (a, b) is an interval in R (possibly unbounded). One proves
that there exists a minimal function m = |v′|, called the maximal slope of v, given by
|v′|(t) = lims→t d(v(s), v(t))/|s− t|, L1-a.e. t ∈ (a, b). In the case when S is a Banach
or Hilbert space, this allows to extend some results on Fréchet differentiable curves.
The main result of this part is the convergence of an Euler type discretization method
for finding a curve φ of maximal slope such that u0 ∈ D(φ) and u(0+) = u0. The
convergence theorem is enounced in the second chapter, while Chapter 3 is dedicated
to the long and delicate proof of this theorem.

The second part of the book is concerned with spaces of probability measures
endowed with the Kantorovich-Rubinstein-Wasserstein distnce, called here briefly the
Wasserstein distance, one of the main illustrating realizations of the theory developed
in the first part. This theory is closely related to the optimal transportation problem
presented in Chapter 6. The optimal transportation problem. The first chapter of the
second part, Chapter 5. Preliminary notions on measure theory, contains a survey,
mostly without proofs, on the measure theory on separable metric spaces. The rest
of the chapters of this part are headed as follows: 7. The Wasserstein distance and
its behaviour along geodesics; 8. A. C. curves and the continuity equation; 9. Convex
functionals on Pp(X); 10. Metric slope and subdifferential calculus in Pp(X).

The book is based on a NachDiplom course taught by the first author at
ETH Zürich in the fall of 2001, but the material was substantially enlarged by the
contributions of the second and the third authors, mainly in what concerns the error
estimates in the first part and the generalized convexity properties in the second part.

This second edition of the book generally agrees with the first one, modulo
some corrections and an updated bibliography. By the detailed presentation of the
subject the book can be used as a textbook, but by some results never published
elsewhere it is a research book as well.

Radu Precup

T.V. Panchapagesan, The Bartle-Dunford-Schwartz integral, Monografie
Matematyczne (New Series), Vol. 69, Birkhäuser Verlag, Boston-Basel-Berlin, 2008,
xv+301 pp, ISBN: 978-3-7643-8601-6 and e-ISBN: 978-3-7643-2431-5

The present book is concerned with the integration of scalar functions (real or
complex) with respect to vector measures taking values in a Banach or, more generally,
in a locally convex Hausdorff space (lcHs for short). The author develops a theory of
integration for vector measures defined on more general structures than σ-algebras -
usually δ- or σ-rings. The theory has its origins in a famous paper by Grothendieck
(Canadian Math. Bull. 5 (1953), 129-173) where he showed that there is a bijection
between the weakly compact linear operators u : C(K) → F, K a compact Hausdorff
space and F a complete lcHs, and the σ-additive F -valued vector measures, but he
did not develop any integration theory to represent these operators. This was done in
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1955 by Bartle, Dunford and Schwartz who developed a theory of integration for σ-
additive Banach-valued measures and used it to represent weakly compact operators
u : C(K) → X, K a compact Hausdorff space and X a Banach space. To honor them
the author calls this type of integral the BDS-integral.

About fifteen years later, Lewis developed a Pettis weak type integral of
scalar functions with respect to a σ-additive vector measure m with range in a lcHs
X. Since this kind of integral was considered also by Kluwanek, the author call it the
KL-integral. Lewis proved that if m is defined on a σ-algebra and X is Banach, then
the BDS and KL integrals agree. The author fills in some essential details lacking
from Lewis’ proof.

Other important spaces considered in the book are the space K(T ) of all
continuous functions with compact support defined on a locally compact Hausdorff
space T, equipped with the inductive limit locally convex topology, the space Cc(T )
of all continuous functions with compact support with the supremum norm ‖ · ‖T ,
and its completion (C0(T ), ‖ · ‖T ) of all functions vanishing at infinity. For a lcHs X,
a linear continuous operator u : K(T ) → X is called a Radon operator. If further,
u : Cc(T ) → X is continuous and its extension to (C0(T ), ‖ · ‖T ) is weakly compact,
then u is called a weakly compact bounded Radon operator. A representation theory
for these type of operators, as well as for another class of operators, called prolongable,
in the case of a quasicomplete lcHs X, is developed in Chapters 5 and 6, dedicated
to integration on locally compact Hausdorff spaces.

The first chapter, 1. Preliminaries, has an expository character, while chap-
ters 2. Basic properties of the Bartle-Dunfors-Schwartz integral, and 3. Lp-spaces,
1 ≤ p ≤ ∞, are devoted to integration of Banach-valued measures defined on δ- or
σ-rings.

The main concern of the last chapter of the book, 7. Complements to the
Thomas theory, is to extend the integration and representation results obtained by
E. Thomas, Ann. Inst. Fourier (Grenoble), 20 (1970), 55-191, from the real space
K(T, R) to the complex one K(T ).

The book contains very general results about the integration of scalar func-
tions with respect to measures with values in locally convex spaces with applications
to the representation of weakly compact operators on spaces of continuous functions,
completing the program initiated by A. Grothendieck. The author contributed essen-
tially to this domain and his results are incorporated in the book.

The book is a worthy working tool for researchers in functional analysis,
interested in vector measures and operator theory.

V. Anisiu
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