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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LIV, Number 1, March 2009

ENCOURAGING THE GRAND COALITION
IN CONVEX COOPERATIVE GAMES

TITU ANDREESCU AND ZORAN ŠUNIĆ

Abstract. A solution function for convex transferable utility games en-

courages the grand coalition if no player prefers (in a precise sense defined

in the text) any coalition to the grand coalition. We show that the Shapley

value encourages the grand coalition in all convex games and the τ -value

encourages the grand coalitions in convex games up to three (but not more

than three) players. Solution functions that encourage the grand coalition

in convex games always produce allocations in the core, but the converse

is not necessarily true.

1. Cooperative games

We begin by recalling the main concepts and their basic properties. The

notation mostly follows [3] and/or [2].

Let N = {1, . . . , n}. The elements of N are called players, its subsets are

called coalitions, and the set N is called the grand coalition. A cooperative transferable

utility game with n-players is a function v : 2N → R such that v(∅) = 0, where 2N is

the set of all subsets of N .

For a given game v, we often denote v ({i}) by v(i) or vi. More generally, for

any function x : N → R and i ∈ N , we denote x(i) = xi. Thus we (sometimes) think

of functions x : N → R as vectors in Rn. For a function x : N → R and a coalition

A ⊆ N , we write x(A) =
∑

j∈A xj .
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TITU ANDREESCU AND ZORAN ŠUNIĆ

A game v : 2N → R is called super-additive if, for all disjoint coalitions

A,B ⊆ N ,

v(A) + v(B) ≤ v(A ∪B)

and is called convex if, for all coalitions A,B ⊆ N ,

v(A) + v(B) ≤ v(A ∪B) + v(A ∩B).

Example 1. Define a 4-player game v on N = {1, 2, 3, 4} by the diagram in Figure 1

(the value of each coalition is provided at the vertex representing the coalition). The
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Figure 1. A convex 4-player game
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ENCOURAGING THE GRAND COALITION

same game is given in a tabular form in Table 1.

A v(A) A v(A) A v(A) A v(A)

{1} 0 {2} 0 {3} 0 {4} 0

{1, 2} 2 {1, 3} 2 {1, 4} 0 {2, 3} 1

{2, 4} 1 {3, 4} 1 {1, 2, 3} 4 {1, 2, 4} 3

{1, 3, 4} 3 {2, 3, 4} 3 N 6 ∅ 0

Table 1. A convex 4-player game

It is straightforward to check that the game v is convex.

A way to interpret cooperative games is as follows. Assume that the players

in the set N can form various coalitions each of which has value prescribed by v (say

v(A) represents the amount the coalition A can earn by cooperating). The super-

additivity condition implies that “the whole is larger than the sum of its parts”, i.e.,

forming larger coalitions positively affects the value. The convexity condition is just

a stronger form of the super-additivity condition. It says that it is more (or at least

equally) beneficial to add a coalition to a larger coalition than to a smaller one.

Assume that i is not a member of some coalition A. The marginal contribution

mi(A) of i to the coalition A is the quantity

mi(A) = v(A ∪ i)− v(A),

where A ∪ i denotes the coalition A ∪ {i}. Therefore, the marginal contribution of i

to A measures the added value obtained by bringing player i into the coalition A.

A game is convex if and only if, for every player i, and all coalitions A ⊆ B

that do not contain i,

mi(A) ≤ mi(B),

i.e., it is more beneficial to add a player to a larger coalition than to a smaller one

(this is a well known fact; see for instance [3, Theorem 1.4.2] or [2, Theorem 4.9]).

Example 2. The marginal contributions in the game from Example 1 are written

on the edges of the lattice of coalitions. For instance, the fact that m2({1, 3}) =

5



TITU ANDREESCU AND ZORAN ŠUNIĆ

v({1, 2, 3}) − v({1, 3}) = 4 − 2 = 2 is indicated by the label 2 on the edge between

{1, 3} and {1, 3} ∪ {2} = {1, 2, 3}.

The top marginal contributions m1(N − {1}), . . . ,mn(N − {n}) are often

denoted by m1, . . . ,mn. Further, we denote

M =
∑
i∈N

mi, T = v(N), V =
∑
i∈N

vi.

Note that, in a convex game, M ≥ T ≥ V .

Example 3. We provide a diagram for a general example of a game on three players.

The marginal contributions are indicated on the edges, Note that, for i, j ∈ N =

{1, 2, 3}, mi(∅) = vi, and whenever i 6= j, we denote mi ({j}) = mij .
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Figure 2. A game on 3 players

Note that, if the triple (i, j, k) is a permutation of N then

vi + mji + mk = T.

The convexity of the game is equivalent to the system of inequalities

vi + vj + mk ≤ T ≤ mi + mj + vk, (1)

where (i, j, k) ranges over the permutations of N (see the appendix for details).
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ENCOURAGING THE GRAND COALITION

An efficient allocation is a function x : N → R such that x(N) = v(N). If in

addition xi ≥ vi, for i ∈ N , the allocation is called individually rational.

An efficient allocation assigns revenue to each player in the game in such a

way that the total revenue shared among the players is exactly the value of the grand

coalition N . The individual rationality of an allocation then just means that each

player should be assigned revenue that is not below the individual value of that player

(otherwise that player would choose not to cooperate).

A convex game is essential if T > V . In an inessential game, mi(A) = vi,

for all coalitions A not containing the player i, and there exists a unique efficient and

individually rational allocation, namely xi = vi, for all i ∈ N .

For a permutation π of N , and a player i in N , denote by Pi(π) the set of

predecessors of i in π. This is the set of players that appear before i (to the left of

i) in the one-line representation of the permutation π. For instance, if n = 6 and

π = 142536, then P3(π) = {1, 4, 2, 5}.

The set of permutations of N , denoted Πn, represents all possible orders

in which the grand coalition can be formed by adding the players one by one to

the coalition. For each such order, the players have different marginal contributions

depending on the set of players that has already joined. The marginal contribution of

the player i to the permutation π, denoted mi(π), is the marginal contribution of the

player i to the coalition Pi(π) consisting of the predecessors of i in π. In a convex game,

for any permutation π ∈ Πn, we have mi(π) ≥ mi(∅) = vi and
∑

i∈N mi(π) = T .

Thus the marginal contribution vector along π represents an efficient and individually

rational allocation for v.

An efficient solution function f is a function that assigns an efficient al-

location fv to every convex game (we emphasize that we are not concerned with

non-convex games).

Recall the definition of a well known efficient solution function introduced by

Shapley [4].

7
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Definition 1. The Shapley value of a convex game v : 2N → R is the allocation s

given by

si =
1
n!

∑
π∈Πn

mi(π).

Thus the Shapley value is the average of all marginal contribution vectors

along all permutations of N .

We also recall the definition of τ -value, introduced by Tijs [6].

Definition 2. The τ -value of an essential convex game v : 2N → R is the allocation

given by

τi =
M − T

M − V
vi +

T − V

M − V
mi.

In the case of an inessential game, the τ value is the unique efficient and

individually rational allocation.

Note that, for an essential game, τi = λvi +(1−λ)mi, where λ = M−T
M−V is the

unique real number in [0, 1] making the allocation efficient. For an inessential game,

vi = mi, for all i, and therefore the formula τi = λvi + (1 − λ)mi gives the correct

τ -value for all λ in the interval [0, 1], i.e., the normalizing coefficient λ is not unique.

Both the Shapley value and the τ -value are efficient solution functions that

assign an individually rational allocation to every convex game.

Example 4. For any convex 2-player game,

s1 = τ1 =
1
2
(T + v1 − v2), s2 = τ2 =

1
2
(T + v2 − v1).

2. Encouraging the grand coalition

We come to our main definition.

Definition 3. An efficient solution function f encourages the grand coalition if for

every convex game v : 2N → R and every coalition A ⊆ N ,

fv
i ≥ fvA

i ,

where vA : 2A → R is the convex sub-game of v obtained by restriction on the coalition

A.

8



ENCOURAGING THE GRAND COALITION

Thus an efficient solution functions encourages the grand coalitions if no

player in any convex game would prefer any coalition (and its associated allocation)

over the grand coalition. If f is an efficient solution that encourages the grand coalition

and if all players were to vote for all coalitions they like (based on maximizing the

revenue they would obtain by applying the proposed solution function f) the grand

coalition would be chosen by each player (even though some players may like some

additional choices).

Note that the property of encouraging the grand coalition is a global property

of solution functions and not of individual allocations (the property requires that we

compare allocations in different games).

Theorem 1. The Shapley value encourages the grand coalition in convex games.

Proof. Without loss of generality, it is sufficient to show that player 1 does

not prefer any coalition M = {1, . . . ,m} to the grand coalition, i.e., it is sufficient to

show that
1
n!

∑
π∈Πn

m1(π) ≥ 1
m!

∑
σ∈Πm

m1(σ),

for 1 ≤ m ≤ n.

Define a map ¯: Πn → Πm by flattening the permutations of N to permu-

tations of M . Namely, for a permutation π ∈ Πn define the permutation π̄ ∈ Πm

by deleting the symbols m + 1, . . . , n from π and keeping the relative order of the

symbols 1, . . . ,m the same as in π (for instance, if n = 6, m = 4 and π = 153462,

then π̄ = 1342). Every permutation in Πm is the image of exactly n!/m! permutations

in Πn under the flattening map.

Note that the set of predecessors P1(π) of 1 in the permutation π contains

the set of predecessors P1(π̄) of 1 in the flattened permutation π̄. Therefore, by the

convexity of the game, m1(π) = m1(P1(π)) ≥ m1(P1(π̄)) = m1(π̄).

It follows that

1
n!

∑
π∈Πn

m1(π) ≥ 1
n!

∑
π∈Πn

m1(π̄) =
1
n!
· n!
m!

∑
σ∈Πn

m1(σ) =
1
m!

∑
σ∈Πn

m1(σ),

which is what we needed to prove. �
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Theorem 2. The τ -value encourages the grand coalition in all convex games of up

to three players.

Proof. Since the τ -value coincides with the Shapley value for 2-player convex

games and Shapley value encourages the grand coalition, it suffices to consider only

3-player games.

Further, the τ -value always produces individually rational allocations. Thus,

it suffices to consider only 3-player games and their 2-player sub-games.

By symmetry, it suffices to show that the convexity of a 3-player game v on

N = {1, 2, 3} implies the inequality

τv
1 ≥ τv′

1 ,

where v′ is the sub-game corresponding to the coalition A = {1, 2}.

If the game v is inessential then so is its sub-game v′ and the τ -values for v

and v′ agree on A.

Thus we may assume that v is essential and we need to show that the con-

vexity of v implies

M − T

M − V
v1 +

T − V

M − V
m1 ≥

1
2
(T ′ + v1 − v2), (2)

where T ′ = v(A) = T −m3 is the value of the coalition A = {1, 2}.

Denote m12 = T ′−v2 = T−m3−v2 (Figure 2 may be useful for visualization;

the marginal contribution vector along the permutation π = 213 is important in our

considerations). Taking into account that M > V (from the fact that v is convex and

essential) the inequality (2) takes the form

(M − T )v1 + (T − V )m1 ≥
1
2
(T ′ + v1 − v2)(M − V ),

which is equivalent to

v1(m1 +m3 +v2−v1−v3−m2)+m12(m2 +m3 +v1−v2−v3−m1) ≤ 2m1(m3−v3),

after substituting V = v1 + v2 + v3, M = m1 + m2 + m3, T = v2 + m12 + m3,

and T ′ = v2 + m12, and performing simple algebraic manipulations. The convexity

10
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implies that v1 ≤ m12 ≤ m1, as well as that m1 + m3 + v2 − v1 − v3 − m2 ≥ 0 and

m2 + m3 + v1 − v2 − v3 −m1 ≥ 0 (see the inequalities in (1)). Thus

v1(m1 + m3 + v2 − v1 − v3 −m2) + m12(m2 + m3 + v1 − v2 − v3 −m1) ≤

≤ m1(m1 +m3 +v2−v1−v3−m2 +m2 +m3 +v1−v2−v3−m1) = 2m1(m3−v3),

which is what we needed to prove. �

Example 5. Consider again the convex game in Example 1. This example shows

that the τ -value does not necessarily encourage the grand coalition for convex 4-player

games.

Indeed, we have T = 6, V = 0, M = 11, which shows that the normalizing

coefficient λ in the formula for the τ -value is λ = (M − T )/(M − V ) = 5/11. Direct

calculation then gives the τ -values for v

τv
1 =

18
11

≈ 1.64, τv
2 =

18
11

≈ 1.64, τv
3 =

18
11

≈ 1.64, τv
4 =

12
11

≈ 1.09 .

On the other hand, for the 3-player sub-game v′ determined by the coalition A =

{1, 2, 3}, we have T ′ = 4, V ′ = 0, M ′ = 7, λ′ = 3/7 and the τ -values for v′ are

τv′

1 =
12
7
≈ 1.71. τv′

2 =
8
7
≈ 1.14, τv′

3 =
8
7
≈ 1.14 .

Thus player 1 would prefer the coalition A to the grand coalition, showing that the

τ -value does not necessarily encourage the grand coalition.

3. Relation to the core

We consider the relation between efficient solution functions that encourage

the grand coalition and the core of a convex game.

Definition 4. The core of a convex game v : 2N → R is the set of all efficient

allocations x : N → R such that, for every coalition A ⊆ N ,

x(A) ≥ v(A).

Note that every allocation in the core is individually rational and we may say

that the core allocations are rational with respect to any coalition.

11
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Proposition 1. Let f be an efficient solution function that encourages the grand

coalition in convex games. Then, for every convex game v, the allocation fv is in the

core of v.

Proof. Let f be an efficient solution function that encourages the grand

coalition in convex games and let v be a convex game. Then, for any coalition A,

fv(A) =
∑
i∈A

fv
i ≥

∑
i∈A

fvA
i = v(A).

Thus fv is in the core of v. �

Since the τ -value does not always produce allocations in the core of a convex

function, we could immediately see that it cannot encourage the grand coalition in

general. However, in Example 5 the τ -value of the game v on N is in the core, as is

the τ -value of all of its sub-games, but this was still not sufficient to encourage the

grand coalition.

The proof of Proposition 1 indicates that, for essential solution functions,

the property of encouraging the grand coalition is a refinement of the property of

producing solutions in the core. Indeed, the core condition requires that, for each

coalition A ⊆ N , the sum fv(A) =
∑

i∈A fv
i is at least as large as the sum

∑
i∈A fvA

i =

v(A). On the other hand, for solution functions that encourage the grand coalition,

each term in the former sum must be at least as large as the corresponding term in

the latter sum. In order to see that this refinement is proper, we provide an example

of an efficient solution function that always produces allocations in the core of convex

games, but nevertheless fails to encourage the grand coalition.

Example 6. For any convex game v and any permutation π of N , the vector of

marginal contributions along π is an efficient solution in the core of v. By convexity

of the core, any convex linear combination of marginal contributions along several

permutations is also in the core. Therefore, we may define an efficient solution function

f as follows. Among all permutations of N select those that give the largest vectors

(in the usual sense in Rn) of marginal contributions and calculate their average. Thus,

12



ENCOURAGING THE GRAND COALITION

if

L =

{
π ∈ Πn |

∑
i∈N

mv
i (π)2 ≥

∑
i∈N

mv
i (σ)2, for all σ ∈ Πn

}
,

define

fv
i =

1
|L|

∑
π∈L

mv
i (π).

To see that f does not encourage the grand coalition in convex games, even

though it always produces allocations in the core, consider the game in Example 1

restricted to N = {1, 2, 3} (completely ignore player 4).

In this game, the largest marginal vectors are the two vectors along π1 = 231

and π2 = 321 giving

fv
1 = 3, fv

2 =
1
2
, fv

3 =
1
2
.

On the other hand, if we restrict to the sub-game v′ defined by the coalition A = {1, 2}

we obtain

fv′

1 = 1, fv′

2 = 1.

Thus player 2 would prefer the coalition A to the grand coalition.

4. Relation to population monotone allocation schemes

The notion of a population monotone allocation scheme was introduced in [5].

Given a game v, a monotone allocation scheme is a set of efficient allocations

{xvA | A ⊆ N} associated to the sub-games of v, in such a way that, for every player

i and all coalitions A and B with i ∈ A ⊆ B ⊆ N ,

xvA
i ≤ xvB

i .

This definition is close in spirit to our definition of solution functions that

encourage the grand coalition. However, the emphasis goes in different direction. We

study efficient solution functions that behave well on convex games, while Sprumont

studies games for which well behaved allocation schemes exist. More precisely, the

main thrust of Sprumont’s work is a characterization of games for which population

monotone allocation schemes exist (this includes all convex games, but not all games

with non-empty core). For us, on the other hand, the important question is which

13
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solution functions always produce (or fail to produce) population monotone allocation

schemes in all convex games.

Sprumont shows that every 3-player game that is totally balanced (see the

appendix for a definition) always has a population monotone allocation scheme. Nev-

ertheless, Theorem 2 does not follow directly from this observation (we still need to

prove that the specific scheme induced by the τ -value solution function provides such

an allocation scheme).

Further, Sprumont shows that the glove game on 4 players fails to have a

population monotonic allocation scheme. Again, this example is not helpful in our

considerations, since the glove game is not convex (the main point of Example 5 is

that the τ -value fails to provide a population monotone allocation scheme on a convex

game; on the other hand this game certainly has a population monotone allocation

scheme, namely the one induced by the Shapley value).

5. On necessity versus desirability

Observe that even if a solution function that does not encourage the grand

coalition is used and, for a concrete game v, there exists a player that prefers some

smaller coalition over the grand one, this does not mean that the grand coalition will

not be formed. For instance, in Example 5 player 1 prefers A = {1, 2, 3} to N , but

will have difficulties convincing player 2 and player 3 to form this coalition, since they

certainly prefer the payout provided to them by the grand coalition. Therefore player

1 would perhaps choose to join the grand coalition (however grudgingly), since it is

still offering a better payoff than going-it-alone (which would bring a payoff of 0 to

player 1). However, even if player 1 joins the grand coalition, it would be unsatisfied

with the situation and may show its discontent by actively and visibly (or covertly

and by using inappropriate means) working to undermine the grand coalition and

exclude player 4.

Thus encouraging the grand coalition is not necessary to coalescence all play-

ers into the grand coalition, but may be desirable in practice.

14
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Appendix A. Remarks on 3-player games

In Example 3 we provided a quick remark on a condition on 3-player games

that is equivalent to convexity and we used this condition in the course of the proof

of Theorem 2. We provide a brief justification.

Proposition 2. A 3-player game v is convex if and only if, for every permutation

(i, j, k) of N ,

vi + vj + mk ≤ T ≤ mi + mj + vk. (3)

Proof. As we already remarked, a game is convex if and only if, for every

player i, and all coalitions A ⊆ B that do not contain i, mi(A) ≤ mi(B).

Therefore, in the context of a 3-player game the convexity is equivalent to

the system of inequalities

vi ≤ mij ≤ mi, (4)

for i, j ∈ N , i 6= j.

The inequality (4) is equivalent to

vi + vj + mk ≤ vj + mij + mk ≤ mi + vj + mk,

where k is the third player (different from i and j). Since T = vj + mij + mk we

obtain

vi + vj + mk ≤ T ≤ mi + vj + mk.

Thus, when looked as systems of inequalities, (3) and (4) are equivalent. �

The games with non-empty core were characterized by Bondareva [1].

Namely, a game has a non-empty core if and only if it is balanced. A game v is

15
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balanced if, for every sequence of non-empty subsets A1, . . . , As of N and every se-

quence of positive real numbers λ1, . . . , λs such that
s∑

`=1

λ`χA`
= χN , (5)

where χA`
and χN denote the characteristic function of the sets A` and N , we have

s∑
`=1

λ`v(A`) ≤ v(N).

A game is totally balanced if all of its sub-games are balanced.

The following modification of the balancing condition is also valid.

Proposition 3. A game v has non-empty core if and only if, for every sequence

of non-empty subsets A1, . . . , As of N and every sequence of positive real numbers

λ1, . . . , λs such that
s∑

`=1

λ`χA`
≤ χN , (6)

where the inequality is considered pointwise, we have
s∑

`=1

λ`v(A`) ≤ v(N). (7)

Proof. Let x be an efficient allocation in the core of v, and let
∑s

`=1 λ`χA`
≤

χN , for some positive real numbers λ1, . . . , λs and a sequence of non-empty subsets

A1, . . . , As of N . We have
s∑

`=1

λ`v(A`) ≤
s∑

`=1

λ`x(A`) =
s∑

`=1

λ`

∑
i∈A`

xi =
s∑

`=1

λ`

n∑
i=1

χA`
(i)xi =

=
n∑

i=1

(
s∑

`=1

λ`χA`
(i)

)
xi ≤

n∑
i=1

xi = v(N).

The other direction follows from the result of Bondareva. Namely, if (7) holds when-

ever (6) does, then (7) also holds whenever (5) does. Therefore the core of v is

non-empty. �

It is easy to see that for a 2-player game, convexity, super-additivity, and the

existence of core allocations are equivalent properties and it is well known that these

properties are not equivalent for more than 2 players.
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Proposition 4. Let v be a 3-player super-additive game. Define M12 = v12−v1−v2,

M13 = v13 − v1 − v3, M23 = v23 − v2 − v3, and S = v(N)− v1 − v2 − v3, where vij is

the value of the coalition {i, j}.

(a) The game v has a non-empty core if and only if

S ≥ 1
2
(M12 + M13 + M23). (8)

(b) The game v is convex if and only if

S ≥ max{M12 + M13, M12 + M23, M13 + M23 }. (9)

Proof. (a) Assume v has a non-empty core. By Proposition 3 (or directly

by the argument used in the proof), since χ12 + χ23 + χ23 = 2χN , we obtain that

v12+v13+v23 ≤ 2v(N). Therefore, M12+M13+M23 = v12+v13+v23−2(v1+v2+v3) ≤

2v(N)− 2(v1 + v2 + v3) = 2S.

Conversely, assume that (8) holds. Instead of trying to use Proposition 3, we

construct explicitly an element in the core.

Assume that the sum of every pair of numbers from {M12,M13,M23} is no

smaller than the third one (triangle-like inequalities hold). Set a1 = M12+M13−M23
2 ,

a2 = M12+M23−M13
2 , a3 = M13+M23−M12

2 , and t = 1
3

(
S − 1

2 (M12 + M13 + M23)
)
.

Then a1, a2, a3, and t are non-negative. Set x1 = v1 + a1 + t, x2 = v2 + a2 + t,

and x3 = v3 + a3 + t. Since x1 + x2 + x3 = v(N), the allocation x is efficient. The

allocation x is individually rational (by the non-negativity of a1, a2, a3, and t). We

also have

x1 + x2 = v1 + v2 + M12 + 2t = v12 + 2t ≥ v12.

Thus the allocation x is rational for the coalition {1, 2}. By symmetry, x is rational

for the other two 2-element coalitions as well. Note that we have not used yet the

super-additivity property.

Assume that the sum of two of the numbers M12,M13,M23 is smaller than

the third, say M12 > M13 +M23 and set t = 1
2 (S−M13−M23). The super-additivity

implies that v(N) ≥ v12+v3. Therefore S = v(N)−v1−v2−v3 ≥ v12+v3−v1−v2−v3 =

M12. Since S ≥ M12 > M13 + M23, we have that t > 0. Set x1 = v1 + M13 + t,
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x2 = v2 + M23 + t, and x3 = v3. Since x1 + x2 + x3 = v(N), the allocation x is

efficient. The allocation x is individually rational by the non-negativity of M12, M13,

M23, and t (for i 6= j, Mij is non-negative by the super-additivity property). Further,

x1 + x3 = v1 + v3 + M13 + t = v13 + t ≥ v13

and, by symmetry,

x2 + x3 ≥ v23.

We also have

x1 + x2 = v1 + M13 + t + v2 + M23 + t = v1 + v2 + S = v12 −M12 + S ≥ v12.

Thus the allocation x is rational for all 2-element coalitions.

(b) Note that the convexity needs to be checked only for coalitions that are not

comparable (the convexity condition is trivially satisfied when one of the coalitions is

included in the other). Therefore, given the super-additivity of the game, v is convex

if and only if, for every permutation (i, j, k) of N

vij + vik ≤ v(N) + vi.

The last inequality is equivalent to

Mij + Mik ≤ S.

�

Therefore, we see that the convexity and the existence of the core are not

equivalent for 3-player games even in the presence of super-additivity. For instance,

if v1 = v2 = v3 = 0, v12 = v13 = v23 = 1 and vN = 3/2, we have a super-additive,

non-convex game with non-empty core.
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LIV, Number 1, March 2009

ON CERTAIN SUBCLASS OF p-VALENTLY BAZILEVIC
FUNCTIONS

MOHAMED KAMAL AOUF

Abstract. A certain subclass B1(p, n, α, β) with p, n ∈ N = {1, 2, . . . },
α > 0 and 0 ≤ β < p, of p-valently Bazilevic functions in the unit disc

U = {z : |z| < 1} is introduced. The object of the present paper is to

derive some properties of the class B1(p, n, α, β).

1. Introduction

Let A(p, n) denote the class of functions of the form

f(z) = zp +
∞∑

k=p+n

akzk(p, n ∈ N = {1, 2, ..}, (1.1)

which are analytic and p-valent in the unit disc U = {z : |z| < 1}. A function

f(z) ∈ A(p, n) is said to be in the class S(p, n, β) of p-valently starlike functions of

order β(0 ≤ β < p) if it satisfies

Re

{
zf

′
(z)

f(z)

}
> β and

2π∫
0

Re

{
zf

′
(z)

f(z)

}
dθ = 2π p . (1.2)

The class S(p, n, β) was studied recently by Owa [8] and Aouf et al. [1]. Also,

we note that S(p, n, 0) = S∗(p, n) and S(p, 1, 0) = S∗(p).

A function f(z) ∈ A(p, n) is said to be in the class B(p, n, α, β) if it satisfies

Re

{
z f

′
(z)

f1−α(z) gα(z)

}
> β (1.3)

Received by the editors: 23.01.2006.
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for some α(α > 0), β(0 ≤ β < p), g(z) ∈ S∗(p, n) and for all z ∈ U . Further, let

B1(p, n, α, β) be the subclass of B(p, n, α, β) for g(z) = zp ∈ S∗(p). Also we say that

f(z) in the class B(p, n, α, β) is a Bazilevic function of order β and type α (see [5]).

Remark 1. (i) The classes B(p, n, α, β) and B1(p, n, α, β) are the subclasses of p-

valently Bazilevic functions in U .

(ii) The classes B(p, 1, α, β) = B(p, α, β) and B1(p, 1, α, β) = B1(p, α, β)

when p = 1 were studied by Owa [10] and the class B(p, α, β) was studied by Nunokawa

et al. [5].

(iii) The class B1(1, n, α, β) was studied by Owa [9].

(iv) The classes B(1, 1, α, β) = B(α, β) and B1(1, 1, α, β) = B1(α, β) when

p = n = 1 were studied by Owa and Obradovic [11].

(v) The classes B(1, 1, α, 0) = B(α) and B1(1, 1, α, 0) = B1(α) when p = n =

1 and β = 0 were studied by Singh [12].

2. Properties of the class B1(p, n, α, β)

In order to establish our main result, we have to recall here the following

lemma due to Miller and Mocanu [4].

Lemma 1. Let ϕ(u, v) be a complex valued function,

ϕ : D → C, D ⊂ C × C = C2 (C is the complex plane),

and let u = u1 + iu2 , v = v1 + iv2. Suppose that the function ϕ(u, v) satisfies

(i) ϕ(u, v) is continuous in D;

(ii) (1, 0) ∈ D and Re{ϕ(1, 0)} > 0;

(iii) for all (iu2, v1) ∈ D such that v1 ≤ −n
2 (1 + u2

2), Re{ϕ(iu2, v1)} ≤ 0.

Let q(z) = 1 + qn zn + qn+1 zn+1 + ... be regular in the unit disc U such that

(q(z), z q
′
(z)) ∈ D for all z ∈ U . If

Re {ϕ(iu2, v1)} > 0 (z ∈ U),

then

Re{q(z)} > 0 (z ∈ U).

Using the above lemma, we prove the following result.
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Theorem 2. If f(z) ∈ B1(p, n, α, β),with p, n ∈ N,α > 0 and 0 ≤ β < p, then

Re
{

f(z)
zp

}α

>
n + 2αβ

n + 2α p
(z ∈ U). (2.1)

Proof. We define the function q(z) by{
f(z)
zp

}α

= δ + (1− δ) q(z) (2.2)

with

δ =
n + 2αβ

n + 2αp
. (2.3)

Then, we see that q(z) = 1 + qn zn + qn+1 zn+1 + ... is regular in U . It follows from

(2.2) that

f
′
(z) fα−1(z)

zp α−1
− β = [pδ + (p− pδ)q(z)] +

(1− δ) z q
′
(z)

α
, (2.4)

or

Re

{
f

′
(z) fα−1(z)

zp α−1
− β

}

= Re

{
pδ − β + (p− pδ) q(z) +

(1− δ) z q
′
(z)

α

}
> 0 . (2.5)

Now, setting q(z) = u = u1 + iu2 , z q
′
(z) = v = v1 + iv2, and

ϕ(u, v) = pδ − β + (p− pδ)u +
(1− δ)v

α
, (2.6)

it is easily seen that

(i) ϕ(u, v) is continuous in D = C × C

(ii) (1, 0) ∈ D and Re{ϕ(1, 0)} = p− β > 0, and

(iii) for all (iu2, v1) ∈ D such that v1 ≤ −1
2 n(1 + u2

2),

Re{ϕ(iu2, v1)} = pδ − β +
(1− δ) v1

α

≤ pδ − β − n(1− δ)(1 + u2
2)

2α
≤ 0,

for δ given by (2.3). Therefore the function ϕ(u, v) satisfies the condition in Lemma

1. This implies that Re{q(z)} > 0 (z ∈ U), that is, that

Re
{

f(z)
zp

}α

> δ =
n + 2αβ

n + 2αp
(z ∈ U). (2.7)
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This completes the proof of Theorem 1.

Putting β = 0 in Theorem 1, we have

Corollary 3. If f(z) ∈ B1(p, n, α, 0), with p, n ∈ N and α > 0, then

Re
{

f(z)
zp

}α

>
n

n + 2αp
(z ∈ U). (2.8)

Further, making α = 1
p in Corollary 1, we have

Corollary 4. If f(z) ∈ B1(p, n, 1
p , 0), then

Re

{
f

1
p (z)
z

}
>

n

n + 2
(z ∈ U). (2.9)

Putting α = 1
2 in Theorem 1, we have

Corollary 5. If f(z) ∈ B1(p, n, 1
2 , β), with p, n ∈ N and 0 ≤ β < p, then

Re

√
f(z)
zp

>
n + β

n + p
(z ∈ U) . (2.10)

Remark 2. (1) Putting p = 1 in Theorem 1, Corollary 1 and Corollary 2, respec-

tively, we obtain the results obtained by Owa [9, Theorem1, Corollary1 and Corollary2,

respectively].

(2) Putting p = α = 1 and β = 0 in Theorem1, we obtain the result obtained

by Cho [2, Theorem2].

(3)Putting n = 1 in Theorem1, we obtain the result obtained by Owa [10,

Lemma 4]. Owa [10] obtained this result by different method.

(4) Putting n = 1 in Corollary1 and Corollary2, respectively, we obtain the

results obtained by Owa [10, Corollary3 and Corollary4, respectively].

(5) Putting n = p = 1 in Theorem1, we obtain the result obtained by Owa

and Obradovic [11, Theorem4].

(6) Putting n = p = 1 in Corollary1, we obtain the result obtained by Owa

and Obradovic [11 Corollary3] and Obradovic [7, Theorem3].

(7) Putting n = p = 1 and α = 1 in Theorem1, we obtain the result obtained

by Owa and Obradovic [11, Corollary4].
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(8) Putting n = p = α = 1 in Theorem1 and β = 0, we obtain the result

obtained by Obradovic [6, Theorem2].

Theorem 6. If f(z) ∈ B1(p, n, α, β), with p, n ∈ N,α > 0 and 0 ≤ β < p, then

Re
{

f(z)
zp

}α
2

=
n +

√
n2 + 4αβ(n + pα)
2(n + pα)

(z ∈ U). (2.11)

Proof. Defining the function q(z) by{
f(z)
zp

}α
2

= δ + (1− δ) q(z) (2.12)

with

δ =
n +

√
n2 + 4αβ(n + pα)
2(n + pα)

, (2.13)

we easily see that q(z) = 1 + qn zn + qn+1 zn+1 + ... is regular in U . Taking the

differentiations of both sides in (2.12), we obtain that

f
′
(z)fα−1(z)
zp α−1

= p[δ + (1− δ)q(z)]2+

2
α

(1− δ)[δ + (1− δ)q(z)] z q
′
(z), (2.14)

that is, that

Re

{
f

′
(z)fα−1(z)
zp α−1

− β

}
= Re{p[δ + (1− δ)q(z)]2+

2
α

(1− δ)[1 + (1− δ)q(z)] z q
′
(z)− β} > 0 (z ∈ U). (2.15)

Taking q(z) = u = u1 + iu2 and z q
′
(z) = v = v1 + iv2, we define the function

ϕ(u, v) by

ϕ(u, v) = p[δ + (1− δ)u]2 +
2
α

(1− δ)[δ + (1− δ)u]v − β. (2.16)

Then ϕ(u, v) satisfies

(i) ϕ(u, v) is continuous in D = C × C;

(ii) (1, 0) ∈ D and Re{ϕ(1, 0)} = p− β > 0;

(iii) for all (iu2, v1) ∈ D such that v1 ≤ −n
2 (1 + u2

2),

Re{ϕ(iu2, v1)} = p[δ2 − (1− δ)2 u2
2] +

2
α

(1− δ)δ v1 − β

≤ p[δ2 − (1− δ)2 u2
2]− β − n

α
δ(1− δ)(1 + u2

2) ≤ 0 .
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Thus the function ϕ(u, v) satisfies the conditions in Lemma 1. Applying

Lemma 1, we conclude that

Re
{

f(z)
zp

}α
2

> δ =
n +

√
n2 + 4αβ(n + pα)
2(n + pα)

(z ∈ U). (2.17)

This completes the proof of Theorem 2.

Putting β = 0 in Theorem 2, we have

Corollary 7. If f(z) ∈ B1(p, n, α, 0), with p, n ∈ N and α > 0, then

Re
{

f(z)
zp

}α
2

>
n

n + pα
(z ∈ U). (2.18)

Putting α = 1 in Theorem 2, we have

Corollary 8. [3, Theorem 2]. If f(z) ∈ B1(p, n, 1, β), with p, n ∈ N and 0 ≤ β <

p, then

Re

{√
f(z)
zp

}
>

n +
√

n2 + 4β(n + p)
2(n + p)

(z ∈ U). (2.19)

Putting α = 1 and β = 0 in Theorem 2, we have

Corollary 9. [3, Corollary 3]. If f(z) ∈ B1(p, n, 1, 0), with p, n ∈ N , then

Re

{√
f(z)
zp

}
>

n

n + p
(z ∈ U). (2.20)

Remark 3. (i) Putting p = 1 in Theorem 2, we obtain the result obtained by Owa

[9, Theorem 2].

(ii) Putting α = p = 1 in Theorem 2, we obtain the result obtained by Owa

[9, Corollary 3].

(iii) Putting α = 2, p = 1 and β = 0 in Theorem 2, we obtain the result

obtained by Cho [2, Theorem 3].

Theorem 10. If f(z) ∈ B1(p, n, α, β), with p, n ∈ N,α > 0 and 0 ≤ β < p, then the

function G1(z) defined by

Gα+γ
1 (z) = zp γfα(z) (γ ≥ 0) (2.21)
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is in the class B1(p, n, α + γ, δ), where

δ =
1

α + γ
(
p γ(n + 2α β)

n + 2p α
+ α β). (2.22)

Proof. Noting that

(α + γ)G
′

1(z)
1− (α + γ)

= p γ zpγ−1fα(z) + α zpγf
′
(z) fα−1(z),

that is, that

(α + γ)
z G

′

1(z)G
(α+γ)−1
1 (z)

zp(α+γ)
= p γ (

f(z)
zp

)α+

α zf
′
(z)fα−1(z)
zp α

. (2.23)

Therefore, it follows from Theorem 1 that

Re

{
z G

′

1(z)G(α+γ)−1
1 (z)

zp(α+γ)

}
=

1
α + γ

Re
{

p γ(
f(z)
zp

)α +
αzf

′
(z) fα−1(z)
zp α

}

>
1

α + γ

{
p γ(

n + 2α β

n + 2α p
) + α β

}
.

This completes the proof of Theorem 3.

Taking β = 0 in Theorem 3, we have

Corollary 11. If f(z) ∈ B1(p, n, α, 0), with p, n ∈ N and α > 0, then the function

G1(z) defined by (2.21) is in the class B1(p, n, α + γ, δ), where

δ =
p γ

(α + γ)(n + 2p α)
. (2.24)

Taking p = 1 in Theorem 3, we have

Corollary 12. If f(z) ∈ B1(1, n, α, β) with n ∈ N, α > 0 and 0 ≤ β < 1, then the

function G2(z) defined by

Gα+γ
2 (z) = z γfα(z) (γ ≥ 0) (2.25)

is in the class B1(1, n, α + γ, δ), where

δ =
1

α + γ
(
γ(n + 2α β)

n + 2α
+ α β). (2.26)
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Remark 4. Putting n = 1 in Theorem 3, Corollary 7 and Corollary 8, respectively,

we obtain the results obtained by Owa [10, Theorem 2, Corollary 5 and Corollary 6,

respectively].
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ON MIXED NONLINEAR INTEGRAL EQUATIONS OF
VOLTERRA-FREDHOLM TYPE WITH MODIFIED ARGUMENT

CLAUDIA BACOŢIU

Abstract. In the present paper we consider the following mixed Volterra-

Fredholm nonlinear integral equation with modified argument:

u(t, x) = g
(
t, x, u(t, x)

)
+

∫ t

0

H (t, x, s, u(s, x)) ds

+

∫ t

0

∫ b

a

K
(
t, x, s, y, u(s, y), u

(
ϕ1(s, y), ϕ2(s, y)

))
dyds

For this equation, we will study: the existence and the uniqueness of the

solution, the data dependence of the solution and the differentiability of

the solution with respect to parameters.

1. Introduction

Let (X, ‖ · ‖X) be a Banach space.

In this paper we consider the following nonlinear integral equation of Volterra-

Fredholm type:

u(t, x) = g
(
t, x, u(t, x)

)
+

∫ t

0

H (t, x, s, u(s, x)) ds

+
∫ t

0

∫ b

a

K
(
t, x, s, y, u(s, y), u

(
ϕ1(s, y), ϕ2(s, y)

))
dyds (1)

for all (t, x) ∈ [0, T ]× [a, b] := D; u ∈ C(D, Rm), where b > a > 0 and T > 0.

Volterra-Fredholm (VF on short) integral equations often arise from the mathemat-

ical modelling of the spreading, in space and time, of some contagious diseases, in

the theory of nonlinear parabolic boundary value problem and in many physical and

Received by the editors: 01.02.2008.

2000 Mathematics Subject Classification. 45G10, 47H10.

Key words and phrases. Volterra-Fredholm integral equation, fixed point, Picard operator, data

dependence, differentiability of the solution.
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biological models.

Most results for VF equation establish numerical approximation of the solutions; e.g.

[8], [9], [22], [2], [11], [3], [7].

In [21] H. R. Thieme considered a model for the spatial spread of an epidemic consist-

ing of a nonlinear integral equation of Volterra-Fredholm type which has an unique

solution. The author showed that this solution has a temporally asymptotic limit

which describes the final state of the epidemic and is the minimal solution of another

nonlinear integral equation.

In [4] O. Diekmann described, derived and analysed a model of spatio-temporal de-

velopment of an epidemic. The model considered leads (see [13]) to the following

nonlinear integral equation of Volterra-Fredholm type:

u(t, x) = g(t, x) +
∫ t

0

∫
Ω

g(u(t− τ, ξ))S0(ξ)A(τ, x, ξ)dξdτ (2)

for all (t, x) ∈ [0,∞]× Ω, where Ω is a bounded domain in Rn.

In [13] B. G. Pachpatte considered the integral equation

u(t, x) = g(t, x) +
∫ t

0

∫
Ω

g(t, x, s, y, u(s, y))dyds (3)

for all (t, x) ∈ [0, T ]×Ω = D, where Ω is a bounded domain in Rn. Using Contraction

Principle, the author proved that, under appropriate assumptions, (3) has a unique

solution in a subset S of C(D, Rn). The result was then applied to show the existence

and uniqueness of solutions to certain nonlinear parabolic differential equations and

mixed Volterra-Fredholm integral equations occurring in specific physical and biolog-

ical problems (e.g. a reliable treatment of the Diekmann’s model mentioned above is

given).

In [10], D. Mangeron and L. E. Krivos̆ein obtained existence, uniqueness and stability

conditions for the solutions of a class of boundary problems for linear and nonlinear

heat equation with delay. Under certain conditions, this problem is equivalent with

the following nonlinear VF equation:

u(t, x) = n(t, x) +
∫ t

0

∫ a

0

[
G(x, ξ, t− α)g

(
ξ, α, u(ξ, α), u

(
ξ, α− r1(α)

))
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+
∫ a

0

∫ α

0

K(ξ, α, s, y)g
(
s, y, u(s, y), u

(
s, y − r2(s)

))
dyds

]
dξdα

where

n(t, x) =
∫ a

0

[
2
a

∞∑
i=1

e−( πi
a )2t · sinπix

a
· sinπiξ

a
· ϕ0(ξ)

]
dξ

Applying Contraction Principle, an existence and uniqueness theorem is obtained.

In [14], the following problem is considered: ut(t, x) = a2uxx(t, x) + g
(
u(t, x), u(x, [t])

)
u(x, 0) = ϕ(x) t ∈ R

where [t] means the integer part of t. Using integration by parts twice for the equation

above, in appropriate conditions, the problem is equivalent with a VF equation and

the successive approximation method is applied.

The purpose of the present paper is to give results concerning the following problems

related to equation (1): the existence and the uniqueness of the solution, the data

dependence of the solution and the differentiability of the solution with respect to

parameters.

Because the tool used in the present paper is the Picard operators theory, for the

convenient of the reader, we present some basic notions and results concerning this

important class of operators.

2. Picard operators

Let (X, d) be a metric space and A : X → X an operator. In this paper we

will use the following notations:

FA := {x ∈ X : A(x) = x};

A0 := 1X , An+1 := A ◦An for all n ∈ N.

Definition 2.1. (Rus [15]) The operator A is said to be:

(i) weakly Picard operator (wPo) if An(x0) → x∗0 for any x0 ∈ X and the limit

x∗0 is a fixed point of A, which may depend on x0.
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(ii) Picard operator (Po) if FA = {x∗} and An(x0) → x∗ for any x0 ∈ X .

For a weakly Picard operator A, the operator A∞ is defined as follows:

A∞ : X → X, A∞(x) := lim
n→∞

An(x).

Notice that A∞(X) = FA.

If A is Picard operator, then A∞(x) = x∗ for all x ∈ X, where x∗ is the unique fixed

point of A.

Example 2.1. Any α-contraction on a complete metric space (X, d) is a Picard

operator.

The following abstract theorem is needed in the study of data dependence of

the solution:

Theorem 2.1. (Rus [17]) Let (X, d) a complete metric space and A,B : X → X two

operators. Assume that:

(i) there exists α ∈ [0, 1[ such that A is α-contraction; let FA = {x∗A}

(ii) FB 6= ∅; let x∗B ∈ FB;

(iii) there exists η > 0 such that d (A(x), B(x)) ≤ η for all x ∈ X.

Then

d(x∗A, x∗B) ≤ η

1− α
.

In order to study the differentiability of the solution with respect to a pa-

rameter, we need the following theorem, due to I. A. Rus:

Theorem 2.2. (Fiber Contraction Principle, Rus [16]) Let (X, d), (Y, ρ) be two met-

ric spaces and B : X → X, C : X × Y → Y two operators such that:

(i) (Y, ρ) is complete;

(ii) B is a Picard operator, FB = {x∗};

(iii) C(·, y) : X → Y is continuous for all y ∈ Y ;

(iv) there exists α ∈]0, 1[ such that the operator C(x, ·) : Y → Y is α-contraction for

all x ∈ X; let y∗ be the unique fixed point of C(x∗, ·).

Then

A : X × Y → X × Y, A(x, y) := (B(x), C(x, y))
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is a Picard operator and FA = {(x∗, y∗)}.

For Picard operators theory applied in the study of differential or integral

equations see [19], [18], [17], [12], [20], [6], [5].

3. Existence and uniqueness theorem

Consider the equation (1).

Theorem 3.1. If the following conditions are satisfied:

(c1) g ∈ C(D ×X, X), H ∈ C(D × [0, T ]×X, X) K ∈ C(D
2 ×X2, X),

ϕ1 ∈ C(D, [0, T ]) and ϕ2 ∈ C(D, [a, b]);

(c2) there exists Lg > 0 such that:

‖g(t, x, u)− g(t, x, v)‖X ≤ Lg‖u− v‖X (4)

for all (t, x) ∈ D and u, v ∈ X

(c3) there exists LH > 0 such that:

‖H(t, x, s, u)−H(t, x, s, v)‖X ≤ LH‖u− v‖X (5)

for all (t, x, s) ∈ D × [0, T ] and u, v ∈ X

(c4) there exists LK > 0 such that:

‖K(t, x, s, y, u, u)−K(t, x, s, y, v, v)‖X ≤ LK

(
‖u− v‖X + |u− v‖X

)
(6)

for all (t, x, s, y) ∈ D
2

and u, v, u, v ∈ X

(c5) Lg < 1

(c6) there exists τ > 0 such that:

α := Lg +
1
τ

LH +
b− a

τ
LK + max

{∫ t

0

∫ b

a

eτ [ϕ1(s,y)−t]dyds : t ∈ [0, T ]
}

LK < 1 (7)

Then (1) has an unique solution u∗ ∈ C(D,X).

Proof. Let the space C(D,X) be endowed with a Bielecki-Chebysev suitable

norm

‖u‖BC := sup{‖u(t, x)‖X e−τt : t ∈ [0, T ], x ∈ [a, b]}, τ > 0 (8)
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Consider the operator A : C(D,X) → C(D,X) defined by:

A(u)(t, x) := g(t, x) +
∫ t

0

∫ b

a

K
(
t, x, s, y, u

(
ϕ1(s, y), ϕ2(s, y)

))
dyds (9)

for all u ∈ C(D), for all (t, x) ∈ D.

For any u, v ∈ C(D,X) we have (see [1]):

‖A(u)(t, x)−A(v)(t, x)‖X

≤ Lg‖u(t, x)− v(t, x)‖X + LH

∫ t

0

‖u(s, x)− v(s, x)‖Xds + LK
b− a

τ
‖u− v‖BC · eτt

+LK max
{∫ t

0

∫ b

a

eτ [ϕ1(s,y)−t]dyds : t ∈ [0, T ]
}
· ‖u− v‖BC · eτt

so:

‖A(u)−A(v)‖BC ≤ α ‖u− v‖BC .

From (c6) there exists τ > 0 such that A : C(D,X) → C(D,X) is α-contraction

and, by Contraction Principle, A is a Picard operator, i.e. the equation has a unique

solution in C(D,X).

Remark 3.1. Condition (c6) from Theorem 3.1 can be replaced by the next simpler

condition:

(c7) ϕ1(t, x) ≤ t for all (t, x) ∈ D

In this case the operator A given by (9) is α-contraction, with

α = Lg +
LH + 2(b− a)LK

τ
< 1 (10)

for a suitable chosen τ .

4. Data dependence of the solution

In order to prove the dependence of the solution on data, let us consider two

mixed VF equations:

u(t, x) = gi

(
t, x, u(t, x)

)
+

∫ t

0

Hi (t, x, s, u(s, x)) ds

+
∫ t

0

∫ b

a

Ki

(
t, x, s, y, u(s, y), u

(
ϕ1(s, y), ϕ2(s, y)

))
dyds (11)
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for all u ∈ C(D,X) and (t, x) ∈ D, with gi ∈ C(D×X, X), Hi ∈ C(D× [0, T ]×X, X)

and Ki ∈ C(D
2 ×X2, X) for i = 1, 2.

Theorem 4.1. Assume that the first equation from (11) satisfies conditions (c1)-

(c5) and (c7); let u∗ be its unique solution. Assume that the second equation from

(11) has at least one solution; let v∗ be a such solution.

If there exist η1, η2, η3 > 0 such that:

‖g1(t, x, u)− g2(t, x, u)‖X ≤ η1 for all (t, x, u) ∈ D ×X

‖H1(t, x, s, u)−H2(t, x, s, u)‖X ≤ η2 for all (t, x, s, u) ∈ D × [0, T ]×X

‖K1(t, x, s, y, u)−K2(t, x, s, y, u)‖X ≤ η3 for all (t, x, s, y, u) ∈ D
2 ×X

Then:

‖u∗ − v∗‖BC ≤ η1 + Tη2 + T (b− a)η3

1− α

where α = Lg +
LH + 2(b− a)LK

τ
< 1 for suitable chosen τ .

Proof. Consider the operators A1, A2 : C(D,X) → C(D,X) given by:

Ai(u)(t, x) := gi

(
t, x, u(t, x)

)
+

∫ t

0

Hi (t, x, s, u(s, x)) ds

+
∫ t

0

∫ b

a

Ki

(
t, x, s, y, u(s, y), u

(
ϕ1(s, y), ϕ2(s, y)

))
dyds

for all u ∈ C(D) and (t, x) ∈ D, i = 1, 2.

For any u ∈ C(D) we have:

‖A1(u)(t, x)−A2(u)(t, x)‖X ≤ η1 + Tη2 + T (b− a)η3 for all (t, x) ∈ D

Applying sup(t,x)∈D , we obtain:

‖A1(u)−A2(u)‖C ≤ η1 + Tη2 + T (b− a)η3

where ‖ · ‖C is Chebysev norm:

‖u‖C := sup{‖u(t, x)‖X : (t, x) ∈ D}, for all u ∈ C(D,X)

But ‖ · ‖BC ≤ ‖ · ‖C , so:

‖A1(u)−A2(u)‖BC ≤ η1 + Tη2 + T (b− a)η3 (12)
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Consider the operators A1 and A2 defined above, on the space
(
C(D,X), ‖ · ‖BC

)
.

By Theorem 3.1, A1 is α-contraction for suitable chosen τ , so FA1 = {u∗}. Taking

account of (12), we are in the conditions of Theorem 2.1 and the conclusion follows.

5. Differentiability of the solution with respect to parameters

In order to study the differentiability of the solution with respect to param-

eters a and b, let us consider the same equation (1):

u(t, x) = g
(
t, x, u(t, x)

)
+

∫ t

0

H (t, x, s, u(s, x)) ds

+
∫ t

0

∫ b

a

K
(
t, x, s, y, u(s, y), u

(
ϕ1(s, y), ϕ2(s, y)

))
dyds

for all t ∈ [0, T ], for all x ∈ [α, β], where 0 < α < a < b < β.

Theorem 5.1. Assume that:

(i) g ∈ C([0, T ]× [α, β]× R),

H ∈ C([0, T ]× [α, β]× [0, T ]× R), K ∈ C([0, T ]× [α, β]× [0, T ]× [α, β]× R2),

ϕ1 ∈ C([0, T ]× [α, β], [0, T ]) and ϕ2 ∈ C([0, T ]× [α, β], [α, β]);

(ii) g(t, x, ·) ∈ C1(R) for all (t, x) ∈ [0, T ]× [α, β] and there exists Mg > 0 such that:∣∣∣∣∂g(t, x, u)
∂u

∣∣∣∣ ≤ Mg (13)

for all (t, x, u) ∈ [0, T ]× [α, β]× R;

(iii) H(t, x, s, ·) ∈ C1(R) for all (t, x, s) ∈ [0, T ] × [α, β] × [0, T ] and there exists

MH > 0 such that: ∣∣∣∣∂H(t, x, s, u)
∂u

∣∣∣∣ ≤ MH (14)

for all (t, x, s, u) ∈ [0, T ]× [α, β]× [0, T ]× R;

(iv) K(t, x, s, y, ·, ·) ∈ C1(R2) for all (t, x, s, y) ∈ [0, T ] × [α, β] × [0, T ] × [α, β] and

there exists MK > 0 such that:∣∣∣∣∂K(t, x, s, y, u, u)
∂u

∣∣∣∣ ≤ MK and
∣∣∣∣∂K(t, x, s, y, u, u)

∂u

∣∣∣∣ ≤ MK (15)

for all (t, x, s, y, u, u) ∈ [0, T ]× [α, β]× [0, T ]× [α, β]× R2;

(v) Mg < 1;

(vi) ϕ1(t, x) ≤ t for all (t, x) ∈ [0, T ]× [α, β].
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Then:

a) for all a < b ∈ [α, β], the equation (1) has a unique solution

u∗(·, ·, a, b) ∈ C([0, T ]× [α, β]);

b) for all u0 ∈ C([0, T ]× [α, β]), the sequence (un)n≥0 defined by:

un(t, x, a, b) = g(t, x, un−1(t, x, a, b)) +
∫ t

0

H (t, x, s, un−1(s, x)) ds

+
∫ t

0

∫ b

a

K
(
t, x, s, y, un−1(s, y, a, b), un−1

(
ϕ1(s, y), ϕ2(s, y), a, b

))
dyds

converges uniformly to u∗ on [0, T ]× [α, β]× [α, β]× [α, β];

c) u∗ ∈ C([0, T ]× [α, β]× [α, β]× [α, β]);

d) u∗(t, x, ·, ·) ∈ C1([α, β]× [α, β]), for all (t, x) ∈ [0, T ]× [α, β].

Proof. Let X := C([0, T ] × [α, β] × [0, T ] × [α, β]) and B : X → X defined

by:

B(u)(t, x, a, b) := g(t, x, u(t, x, a, b)) +
∫ t

0

H (t, x, s, u(s, x)) ds

+
∫ t

0

∫ b

a

K
(
t, x, s, y, u(s, y, a, b), u

(
ϕ1(s, y), ϕ2(s, y), a, b

))
dyds.

The boundedness conditions (13) and (15) implies that f and K are Lipschitz, with

Lipschitz constants Mg and MK . B satisfies (c1)-(c5) and (c7), so a), b) and c)

result. Let u∗ ∈ C(X) be the unique fixed point of B.

Obviously we have:

u∗(t, x, a, b) = g(t, x, u∗(t, x, a, b)) +
∫ t

0

H (t, x, s, u∗(s, x, a, b)) ds

+
∫ t

0

∫ b

a

K
(
t, x, s, y, u∗

(
s, y, a, b

)
, u∗

(
ϕ1(s, y), ϕ2(s, y), a, b

))
dyds. (16)

Let us prove that
∂u∗(t, x, a, b)

∂a
and

∂u∗(t, x, a, b)
∂b

exist and are continuous.

1. Assume that
∂u∗(t, x, a, b)

∂a
exists. Differentiate (16) with respect to a we have:

∂u∗(t, x, a, b)
∂a

=
∂g

(
t, x, u∗(t, x, a, b)

)
∂u

· ∂u∗(t, x, a, b)
∂a

+
∫ t

0

∂H
(
t, x, s, u∗(s, x, a, b)

)
∂u

· ∂u∗(s, x, a, b)
∂a

ds
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−
∫ t

0

K(t, x, s, a, u∗(s, a, a, b), u∗
(
ϕ1(s, a), ϕ2(s, a), a, b

)
)ds

+
∫ t

0

∫ b

a

∂K
(
t, x, s, y, u∗

(
s, y, a, b

)
, u∗

(
ϕ1(s, y), ϕ2(s, y), a, b

))
∂u

· ∂u∗(s, y, a, b)
∂a

dyds

+
∫ t

0

∫ b

a

∂K
(
t, x, s, y, u∗

(
s, y, a, b

)
, u∗

(
ϕ1(s, y), ϕ2(s, y), a, b

))
∂u

·
∂u∗((ϕ1(s, y), ϕ2(s, y), a, b)

)
∂a

dyds.

This last relationship suggests us to consider the operator C : X × X → X defined

by:

C(u, v)(t, x, a, b) :=
∂g

(
t, x, u(t, x, a, b)

)
∂u

· v(t, x, a, b)

+
∫ t

0

∂H
(
t, x, s, u(s, x, a, b)

)
∂u

· v(s, x, a, b)ds

−
∫ t

0

K
(
t, x, s, a, u(s, a, a, b), u

(
ϕ1(s, a), ϕ2(s, a), a, b

))
ds

+
∫ t

0

∫ b

a

∂K
(
t, x, s, y, u(s, y, a, b), u

(
ϕ1(s, y), ϕ2(s, y), a, b

))
∂u

· v(s, y, a, b)dyds

+
∫ t

0

∫ b

a

∂K
(
t, x, s, y, u(s, y, a, b), u

(
ϕ1(s, y), ϕ2(s, y), a, b

))
∂u

· v
(
ϕ1(s, y), ϕ2(s, y), a, b

)
dyds.

From the hypotheses, the operator C(u, ·) is a contraction, for any u ∈ X. Let v∗ be

the unique fixed point of C(u∗, ·).

Now consider the operator A : X ×X → X ×X defined by

A(u, v)(t, x, a, b) := (B(u)(t, x, a, b), C(u, v)(t, x, a, b)) ,

which is in the hypotheses of Theorem 2.2. So A is a Picard operator and FA =

{(u∗, v∗)}.

Consider the sequences (un)n≥0 and (vn)n≥0 defined by:

un(t, x, a, b) := B(un−1(t, x, a, b))
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= g(t, x, un−1(t, x, a, b)) +
∫ t

0

H (t, x, s, un−1(s, x)) ds

+
∫ t

0

∫ b

a

K
(
t, x, s, y, un−1(s, y, a, b), un−1

(
ϕ1(s, y), ϕ2(s, y), a, b

))
dyds

for all n ≥ 1 and

vn(t, x, a, b) := C(un−1(t, x, a, b), vn−1(t, x, a, b))

=
∂g

(
t, x, un−1(t, x, a, b)

)
∂u

· vn−1(t, x, a, b)

+
∫ t

0

∂H
(
t, x, s, un−1(s, x, a, b)

)
∂u

· vn−1(s, x, a, b)ds

−
∫ t

0

K
(
t, x, s, a, un−1(s, a, a, b), un−1

(
ϕ1(s, a), ϕ2(s, a), a, b

))
ds

+
∫ t

0

∫ b

a

∂K
(
t, x, s, y, un−1(s, y, a, b), un−1

(
ϕ1(s, y), ϕ2(s, y), a, b

))
∂u

vn−1(s, y, a, b)dyds

+
∫ t

0

∫ b

a

∂K
(
t, x, s, y, un−1(s, y, a, b), un−1

(
ϕ1(s, y), ϕ2(s, y), a, b

))
∂u

· vn−1

(
ϕ1(s, y), ϕ2(s, y), a, b

)
dyds,

for all n ≥ 1.

Obviously, we have:

un → u∗ for n →∞ and vn → v∗ for n →∞

uniformly with respect to (t, x, a, b) ∈ [0, T ]× [α, β]× [α, β]× [α, β], for any u0, v0 ∈

C([0, T ]× [α, β]× [α, β]× [α, β]).

Choosing u0 = v0 := 0 we have v1 =
∂u1

∂a
.

By induction we can prove that vn =
∂un

∂a
for any positive integer n, so

∂un

∂ a
→ v∗ for n →∞

From Weierstrass theorem, it follows that
∂u∗

∂ a
exists and

∂u∗(t, x, a, b)
∂a

= v∗(t, x, a, b).
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2. The differentiability with respect to b can be proved in the same way.
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A FRICTIONLESS ELASTIC-VISCOPLASTIC CONTACT PROBLEM
WITH NORMAL COMPLIANCE, ADHESION AND DAMAGE

LAMIA CHOUCHANE AND LYNDA SELMANI

Abstract. We study a quasistatic frictionless contact problem with nor-

mal compliance, adhesion and damage for elastic-viscoplastic material.The

adhesion of the contact surfaces is modeled with a surface variable, the

bonding field, whose evolution is described by a first order differential equa-

tion. The mechanical damage of the material, caused by excessive stess or

strains, is described by a damage function whose evolution is modeled by

an inclusion of parabolic type. We provide a variational formulation of the

problem and prove the existence and uniqueness of a weak solution. The

proofs are based on time-dependent variational equalities, classical results

on elliptic and parabolic variational inequalities, differential equations and

fixed point arguments.

1. Introduction

We consider a mathematical model for a quasistatic process of frictionless

contact between an elastic-viscoplastic body and an obstacle, within the framework

of small deformation theory. The contact is modeled with normal compliance. The

effect of damage due to the mechanical stress or strain is included in the model. Such

situation is common in many engeneering applications where the forces acting on

the system very periodically leading to the appearence and growth of microcracks

which may deteriorate the mechanism of the system. Because of the safety issue

Received by the editors: 12.06.2007.

2000 Mathematics Subject Classification. 74M15, 74R99, 74C10.

Key words and phrases. quasistatic process, elastic-viscoplastic material, damage, normal compliance,

adhesion, weak solution, variational equality, ordinary differential equation, fixed point.
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of mechanical equipments, considerable efforts were been devoted to modeling and

numerically simulating damage.

Early models for mechanical damage derived from the termodyamical consid-

erations appeared in [9, 10], where numerical simulations were included. Mathemat-

ical analysis of one-dimensional problems can be found in [11]. In all these papers

the damage of the material is described with a damage function α, restricted to have

values between zero and one. When α = 1 there is no damage in the material, when

α = 0, the material is completely damaged, when 0 < α < 1 there is partial damage

and the system has a reduced load carrying capacity. Quasistatic contact problems

with damage have been investigated in [13, 14, 17]. In this paper, the inclusion used

for the evolution of the damage field is

.
α− k4 α + ∂ϕK (α) 3 Φ (σ, ε (u) , α) ,

where K denotes the set of admissible damage functions defined by

K =
{
ξ ∈ H1 (Ω) / 0 ≤ ξ ≤ 1 a.e. in Ω

}
,

k is a positive coefficient, ∂ϕK represents the subdifferential of the indicator function

of the set K and Φ is a given constitutive function which describes the sources of the

damage in the system. In the present paper we consider a rate type elastic-viscoplastic

material with constitutive relation

.
σ = Eε

( .
u
)

+ G (σ, ε (u) , α) ,

where E is a fourth order tensor, G is a nonlinear constitutive function and α is

the damage field and the adhesion between the body and the obstacle is taken into

account during the conact. The adhesive contact between bodies, when a glue is

added to keep surfaces from relative motion, is receiving increased attention in the

mathematical literature. Analysis of models for adhesive contact can be found in

[2, 3, 4, 6, 12, 15, 20]. The novelty in all the above papers is the introduction of a

surface internal variable, the bonding field, denoted in the paper by β; it describes

the pointwise fractional density of active bonds on the contact surface, and sometimes
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referred to as the intensity of adhesion. Following [7, 8], the bonding field satisfies the

restrictions 0 ≤ β ≤ 1; when β = 1 at a point of the contact surface, the adhesion is

complete and all the bonds are active, when β = 0 all the bonds are inactive, severed,

and there is no adhesion; when 0 < β < 1 the adhesion is partial and only a fraction

β of the bonds is active. We refer the reader to the extensive bibliography on the

subject in [16,18,19].

The paper is structured as follows. In section 2 we present the notation

and some preliminaries. In section 3 we present the mechanical problem, we list the

assumptions and in section 4 we give and prove our main existence and uniqueness

result, Theorem 4.1. The proof is based on monotone operator theory, classical results

on parabolic inequalities and Banach fixed point arguments.

2. Notation and preliminaries

In this short section, we present the notation we shall use and some prelimi-

nary material. For more details, we refer the reader to [5]. We denote by Sd the space

of second order symmetric tensors on Rd,( d = 2, 3), while (.) and |.| represent the

inner product and the Euclidean norm on Sd and Rd, respectively. Let Ω ⊂ Rd be a

bounded domain with a regular boundary Γ and let ν denote the unit outer normal

on Γ. we shall use the notation

H = L2(Ω)d = {u = (ui) / ui ∈ L2(Ω)},

H = {σ = (σij) / σij = σji ∈ L2(Ω)},

H1 = {u = (ui) ∈ H / ε(u) ∈ H},

H1 = {σ ∈ H / Div σ ∈ H},

where ε : H1 → H and Div : H1 → H are the deformation and divergence operators,

respectively, defined by

ε(u) = (εij(u)), εij(u) =
1
2
(ui,j + uj,i), Div σ = (σij,j).

Here and below, the indices i and j run between 1 to d, the summation

convention over repeated indices is used and the index that follows a comma indicates
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a partial derivative with respect to the corresponding component of the independent

variable. The spaces H,H,H1 and H1 are real Hilbert spaces endowed with the

canonical inner products given by

(u,v)H =
∫

Ω

uividx ∀u,v ∈H,

(σ, τ )H =
∫

Ω

σij τ ijdx ∀σ, τ ∈H,

(u,v)H1
= (u,v)H + (ε (u) , ε (v))H ∀u,v ∈H1,

(σ, τ )H1
= (σ, τ )H + (Div σ, Div τ )H ∀σ, τ ∈H1.

The associated norms on the spaces H,H,H1 and H1 are denoted by | |H , | |H ,

| |H1
and | |H1

, respectively. Let HΓ = H1/2 (Γ)d and let γ : H1 → HΓ be the

trace map. For every element v ∈ H1 we also use the notation v to denote the trace

γv of v on Γ and we denote by vν and vτ the normal and tangential components of

v on the boundary Γ given by

vν = v.ν, vτ = v−vνν. (2.1)

Similarly, for a regular (say C1) tensor field σ : Ω → Sd, we define its normal and

tangential components by

σν = (σν) .ν, στ = σν − σνν, (2.2)

and we recall that the following Green’s formula holds

(σ, ε (v))H + (Div σ,v)H =
∫

Γ

σν.v da ∀v ∈ H1. (2.3)

Finally, for any real Hilbert space X, we use the classical notation for the spaces

Lp (0, T ;X) and W k,p (0, T ;X) , where 1 ≤ p ≤ +∞, and k ≥ 1. We denote by

C (0, T ;X) and C1 (0, T ;X) the space of continuous and continuously differentiable

functions from [0, T ] to X, respectively, with the norms

|f |C(0,T ;X) = max
t∈[0,T ]

|f (t)|X ,

|f |C1(0,T ;X) = max
t∈[0,T ]

|f (t)|X + max
t∈[0,T ]

∣∣∣ .

f (t)
∣∣∣
X

,
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respectively. Moreover, we use the dot above to indicate the derivative with respect

to the time variable and, for a real number r, we use r+ to present its positive part,

that is r+ = max {0, r}. Finally, for the convenience of the reader, we recall the

following version of the classical theorem of Cauchy-Lipschitz (see, e.g., [21, p. 60]).

Theorem 1. Assume that (X, |.|X) is a real Banach space and T > 0. Let F (t, .) :

X → X be an operator defined a.e. on (0, T ) satisfying the following conditions: 1- ∃

LF > 0 such that |F (t, x)− F (t, y)|X ≤ LF |x− y|X ∀x, y ∈ X, a.e. t ∈ (0, T ). 2-

∃ p ≥ 1 such that t 7−→ F (t, x) ∈ Lp (0, T ;X) ∀x ∈ X. Then for any x0 ∈ X, there

exists a unique function x ∈ W 1,p (0, T ;X) such that

.
x (t) = F (t, x (t)) a.e. t ∈ (0, T ) ,

x (0) = x0.

Theorem 2.1 will be used in section 4 to prove the unique solvability of the

intermediate problem involving the bonding field.

Moreover, if X1 and X2 are real Hilbert spaces, then X1 × X2 denotes the

product Hilbert space endowed with the canonical inner product (., .)X1×X2
.

3. Problem statement

A viscoplastic body occupies the domain Ω ⊂ Rd with the boundary Γ di-

vided into three disjoint measurable parts Γ1,Γ2 and Γ3 such that meas (Γ1) > 0.

The time interval of interest is [0, T ] where T > 0. The body is clamped on Γ1 and so

the displacement field vanishes there. A volume force of density f0 acts in Ω× (0, T )

and surface tractions of density f2 act on Γ2 × (0, T ). We assume that the body is

in adhesive frictionless contact with an obstacle, the so called foundation, over the

potential contact surface Γ3. Moreover, the process is quasistatic, i.e. the inertial

terms are neglected in the equation of motion. We use an elasto-viscoplastic consti-

tutive law with damage to model the material’s behavior and an ordinary differential

equation to describe the evolution of the bonding field. The mechanical formulation

of the frictionless problem with normal compliance is as follows.
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Problem P. Find a displacement field u : Ω × [0, T ] → Rd, a stress field

σ : Ω × [0, T ] → Sd, a damage field α : Ω × [0, T ] → R and a bonding field β :

Γ3 × [0, T ] → [0, 1] such that

.
σ = Eε

( .
u
)

+ G (σ, ε (u) , α) , (3.1)

.
α− k4 α + ∂ϕK (α) 3 Φ (σ, ε (u) , α) , (3.2)

Div σ + f0 = 0 in Ω× (0, T ), (3.3)

u = 0 on Γ1 × (0, T ), (3.4)

σν = f2 on Γ2 × (0, T ), (3.5)

−σν = pν (uν)− γν β2 (−R (uν))+ on Γ3 × (0, T ), (3.6)

στ = 0 on Γ3 × (0, T ), (3.7)

∂α

∂ν
= 0 on Γ× (0, T ), (3.8)

.

β = −
[
γνβ

[
(−R (uν))+

]2 − εa

]
+

on Γ3 × (0, T ), (3.9)

u(0) = u0,σ(0) = σ0, α(0) = α0 in Ω, (3.10)

β(0) = β0 on Γ3. (3.11)

The relation (3.1) represents the viscoplastic constitutive law with damage, the evo-

lution of the damage field is governed by the inclusion given by the relation (3.2),

k is a constant, ∂ϕK denotes the subdifferential of the indicator function ϕK of K

which represents the set of admissible damage functions satisfying 0 ≤ α ≤ 1 and Φ

is a given constitutive function which describes damage sources in the system. (3.3)

represents the equilibrium equation, (3.4) and (3.5) are the displacement and traction

boundary conditions, respectively. (3.6) represents the normal compliance contact

condition with adhesion in which γν and εa are given adhesion coefficients and R is

the truncation operator defined by

R (s) =


−L if s ≤ −L,

s |s| < L,

L if s ≥ L.

(3.12)
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Here L > 0 is the caracteristic length of the bond, beyonding which it does not offer

any additional traction. The introduction of R is motivated by the mathematical

arguments but it is not restrictive for physical point of view, since no restriction on the

size of the parameter L is made in what follows. Also, pν is a given positive function

which will be decribed below. In this condition the interpenetrability between the

body and the foundation is allowed, that is uν may be positive on Γ3. The contribution

of the adhesive to normal traction is represented by the term γνβ (−R (uν))+, the

adhesive traction is tensile, and is proportional, with proportionality coefficient γν ,

to the square of the intensity of adhesion, and to the normal displacement, but as in

various papers see e.g. [2, 3] and the references threin. Condition (3.7) represents

the frictionless contact condition and shows that the tangential stress vanishes on

the contact surface during the process. (3.8) represents a homogeneous Newmann

boundary condition where ∂α
∂ν represents the normal derivative of α. Next, equation

(3.9) represents the ordinary differential equation which describes the evolution of

the bonding field and it was already used in [2], see also [19] for more details. Here,

γν and εa are given adhesion coefficients which may depend on x ∈ Γ3 and R is the

truncation operator given by (3.12). Notice that in this model once debonding occurs

bonding connot be reestablished since, as it follows from (3.9),
.

β ≤ 0. In (3.10), we

consider the initial conditions where u0 is the initial displacement, σ0 is the initial

stress and α0 is the initial damage. Finally, (3.11) is the initial condition, in which

β0 denotes the initial bonding field. Let Z denote the bonding fields set

Z =
{
β ∈ L2 (Γ3) / 0 ≤ β ≤ 1 a.e. on Γ3

}
,

and for displacement field we need the closed subspace of H1 defined by

V = {v ∈ H1|v = 0 on Γ1}.

Since meas (Γ1) > 0, Korn’s inequality holds and there exists a constant CK > 0,

that depends only on Ω and Γ1 such that

|ε (v)|H ≥ CK |v|H1
∀v ∈V.
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On V we consider the inner product and the associated norm given by

(u,v) = (ε (u) , ε (v))H , |v|V = |ε (v)|H ∀u,v ∈ V.

It follows from Korn’s inequality that |.|H1
and |.|V are equivalent norms on V and

therefore (V, |.|V ) is a real Hilbert space. Moreover, by the Sobolev trace theorem,

there exists a constant C0, depending only on Ω, Γ1 and Γ3 such that

|v|L2(Γ3)
d ≤ C0 |v|V ∀v ∈ V. (3.13)

In the study of the mechanical problem (3.1)-(3.11), we make the following assump-

tions. The operator E : Ω× Sd → Sd satisfies


(a) E = (eijkh) / eijkh ∈ L∞ (Ω) ,

(b) E σ . τ = σ . A . τ ∀σ, τ ∈Sd, a.e. in Ω,

(c) E σ . σ ≥mE |σ|2 ∀σ ∈Sd, for some mE > 0.

(3.14)

The operator G : Ω× Sd × Sd × R → Sd satisfies



(a) There exists a constant LG > 0 such that

|G(x,σ1, ε1, α1)− G (x,σ2, ε2, α2)| ≤ LG (|σ1 − σ2|+ |ε1 − ε2|+ |α1 − α2|)

∀σ1, σ2, ε1, ε2 ∈ Sd, α1, α2 ∈ R, a.e. x ∈ Ω;

(b) x 7−→ G (x,σ, ε, α) is a Lebesgue measurable function on Ω

∀σ, ε ∈ Sd, ∀α ∈ R;

(c) x 7−→ G (x,0,0, 0) ∈ H.

(3.15)

The damage function Φ : Ω× Sd × Sd × R → R satisfies
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(a) There exists a constant L > 0 such that

|Φ(x,σ1, ε1, α1)− Φ (x,σ2, ε2, α2)| ≤ L (|σ1 − σ2|+ |ε1 − ε2|+ |α1 − α2|)

∀σ1, σ2, ε1, ε2 ∈ Sd, α1, α2 ∈ R, a.e. x ∈ Ω;

(b) x 7−→ Φ (x,σ, ε, α) is a Lebesgue measurable function on Ω

∀σ, ε ∈ Sd, ∀α ∈ R;

(c) x 7−→ Φ (x,0,0, 0) ∈ H.

(3.16)

The normal compliance function pν : Γ3 × Rd → R+ satisfies

(a) There exists Lν > 0 such that

|pν (x, r1)− pν (x, r2)| ≤ Lν |r1 − r2| ∀r1, r2 ∈ Rd, a.e. x ∈ Γ3.

(b) (pν (x, r1)− pν (x, r2)). (r1 − r2) ≥ 0 ∀r1, r2 ∈ Rd, a.e. x ∈ Γ3.

(c) r 7→ pν (., r) is Lebesgue measurable on Γ3, ∀r ∈ Rd.

(d) The mapping pν (., r) = 0 for all r ≤ 0.

(3.17)

The adhesion coefficients satisfy

γν ∈ L∞ (Γ3) , γν ≥ 0, εa ∈ L∞ (Γ3) , εa ≥ 0. (3.18)

We also suppose that the body forces and surface traction have the regularity

f0 ∈ C (0, T ;H) , f2 ∈ C(0, T ;L2 (Γ2)
d). (3.19)

Finally we assume that the initial data satisfy the following conditions

u0 ∈ V, σ0 ∈ H1, (3.20)

α0 ∈ K, (3.21)

β0 ∈ Z. (3.22)

We define the bilinear form a : H1 (Ω)×H1 (Ω) → R by

a(ξ, ϕ) = k

∫
Ω

∇ξ . ∇ϕ dx. (3.23)
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Next, we denote f : [0, T ] → V the function defined by

(f (t) ,v)V =
∫
Ω

f0 (t) .v dx +
∫
Γ2

f2 (t) .v da ∀v ∈ V , a.e. t ∈ (0, T ) . (3.24)

The adhesion functional jad : L∞ (Γ3)× V × V → R defined by

jad(β,u,v) =
∫
Γ3

− γν β2 (−R (uν))+ vν da. (3.25)

In addition to the functional (3.25), we need the normal compliance functional jnc :

V × V → R given by

jnc (u,v) =
∫
Γ3

pν (uν) vν da. (3.26)

Keeping in mind (3.17)-(3.18), we observe that the integrals in (3.25) and (3.26) are

well defined and we note that conditions (3.19) imply

f ∈ C (0, T ;V ) . (3.27)

Finally we assume the following condition of compatibility

(σ0, ε (v))H + jad(β0,u0,v) + jnc (u0,v) = (f (0) ,v)V ∀v ∈V. (3.28)

Using standard arguments based on green’s formula (2.3) we can derive the

following variational formulation of the frictionless problem with normal compliance

(3.1)-(3.11) as follows.

Problem PV. Find a displacement field u : [0, T ] → V , a stress field σ :

[0, T ] → H a damage field α : [0, T ] → H1 (Ω) and a bonding field β : [0, T ] → L2 (Γ3)

such that

.
σ (t) = Eε

( .
u (t)

)
+ G (σ (t) , ε (u (t)) , α (t)) , a.e. t ∈ (0, T ) , (3.29)

α (t) ∈ K for all t ∈ [0, T ] , (
.
α (t) , ξ − α (t))L2(Ω) + a(α (t) , ξ − α (t))

≥ (Φ (σ (t) , ε (u (t)) , α (t)) , ξ − α (t))L2(Ω) ∀ξ ∈ K, (3.30)

(σ (t) , ε (v))H + jad(β (t) ,u (t) ,v) + jnc (u (t) ,v)

= (f (t) ,v)V ∀v ∈V, ∀t ∈ [0, T ] , (3.31)
.

β (t) = −
[
γν β (t)

[
(−R (uν (t)))+

]2 − εa

]
+

a.e. t ∈ (0, T ) , (3.32)
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u (0) = u0,σ (0) = σ0, α (0) = α0, β (0) = β0. (3.33)

We notice that the variational problem PV is formulated in terms of displacement,

stress field, damage field and bonding field. The existence of the unique solution of

problem PV is stated and proved in the next section. To this end, we consider the

following remark whose estimates will be used in different places of the paper.

Remark 1. From (3.32) we obtain that β (x, t) ≤ β0 (x) , since β0 (x) ∈ Z then

β (x, t) ≤ 1 for all t ≥ 0, a.e. on Γ3. If β (x, t0) = 0 for all t = t0 it follows from

(3.32) that
.

β (x, t) = 0 for all t ≥ t0, therefore, β (x, t) = 0 for all t ≥ t0. We conclude

that 0 ≤ β (x, t) ≤ 1 ∀t ∈ [0, T ] , a.e. x ∈ Γ3.

In the sequel we consider that C is a generic positive constant which depends

on Ω,Γ1,Γ3, γν , L and may change from place to place. First, we remark that jad and

jnc are linear with respect to the last argument and therefore

jad(β,u,−v) = −jad(β,u,v), jnc (u,−v) = −jnc (u,v) . (3.34)

Next, using (3.25) as well as the properties of the operator R , (3.12), we find

jad(β1,u1,v)− jad(β2,u2,v) =
∫
Γ3

γν β2
1[(−R (u2ν))+ − (−R (u1ν))+] vν da

+
∫
Γ3

γν (β2
2 − β2

1) (−R (u2ν))+ vν da ≤ C

∫
Γ3

|β1 − β2| |v| da,

and from (3.13) we obtain

jad(β1,u1,v)− jad(β2,u2,v) ≤ c |β1 − β2| L2(Γ3)
|v|V . (3.35)

Now, we use (3.26) to see that

|jnc (u1,v)− jnc (u2,v)| ≤
∫
Γ3

|pν (u1ν)− pν (u2ν)| |vν | da,

and therefore (3.17) (a) and (3.13) imply

|jnc (u1,v)− jnc (u2,v)| ≤ C | u1 − u2|V |v|V . (3.36)
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We use again (3.26) to see that

jnc (u1,u2 − u1) + jnc (u2,u1 − u2) =
∫
Γ3

(pν (u1ν)− pν (u2ν)) (u2ν − u1ν) da,

and therefore (3.17) (b) implies

jnc (u1,u2 − u1) + jnc (u2,u1 − u2) ≤ 0. (3.37)

The inequalities (3.35)-(3.37) combined with equalities (3.34) will be used in various

places in the rest of the paper.

4. Well posedness of the problem

The main result in this section is the following existence and uniqueness

result.

Theorem 2. Assume that (3.14)-(3.22) and (3.28) hold. Then, problem PV has a

unique solution {u,σ, β, α} which satisfies

u ∈ C (0, T ;V ) ,

σ ∈ C(0, T ;H1),

β ∈ W 1,∞ (
0, T ;L2 (Γ3)

)
,

α ∈ W 1,2
(
0, T ;L2 (Ω)

)
∩ L2

(
0, T ;H1 (Ω)

)
. (4.1)

A quadruplet (u,σ, β, α) which satisfies (3.29)-(3.33) is called a weak solution

to the compliance contact problem P . We conclude that, under the stated assump-

tions, problem (3.1)-(3.11) has a unique weak solution satisfying (4.1). We turn now

to the proof of Theorem 4.1 which is carried out in several steps. To this end, we

assume in the following that (3.14)-(3.22) and (3.28) hold. Below, C denotes a generic

positive constant which may depend on Ω,Γ1,Γ3, E , γν , L and T but does not depend

on t nor of the rest of input data, and whose value may change from place to place.

Moreover, for the sake of simplicity, we supress, in what follows, the explicit depen-

dence of various functions on x ∈ Ω∪Γ. The proof of Theorem 4.1 will be carried out

in several steps. In the first step we solve the differential equation in (3.32) for the
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adhesion field, where u is given, and study the continuous dependence of the adhesion

solution with respect to u.

Lemma 3. For every u ∈C (0, T ;V ), there exists a unique solution

βu ∈ W 1,∞ (
0, T ;L2 (Γ3)

)
satisfying

.

βu (t) = −
[
γν βu (t)

[
(−R (uν (t)))+

]2 − εa

]
+

a.e. t ∈ (0, T ) ,

βu (0) = β0.

Moreover, βu (t) ∈ Z for t ∈ [0, T ], a.e. on Γ3, and there exists a constant C > 0,

such that, for all u1, u2 ∈ C (0, T ;V ) ,∣∣βu1
(t)− βu2

(t)
∣∣2
L2(Γ3)

≤ C

∫ t

0

|u1 (s)− u2 (s)|2V ds ∀t ∈ [0, T ] .

Proof. Consider the mapping F : [0, T ]× L2 (Γ3) → L2 (Γ3) defined by

F (t, β) = −
[
γνβ (t)

[
(−R (uν))+

]2 − εa

]
+

,

∀t ∈ [0, T ] and β ∈ L2 (Γ3) . It follows from the properties of the truncation op-

erator R that F is Lipschitz continuous with respect to the second argument, uni-

formly in time. Moreover, for any β ∈ L2 (Γ3), the mapping t 7−→ F (t, β) belongs to

L∞
(
0, T, L2 (Γ3)

)
. Thus, the existence and the uniqueness of the solution βu follows

from the classical theorem of Cauchy-Lipschitz given in Theorem 2.1. Notice also

that the argument used in Remark 3.1 shows that 0 ≤ βu (t) ≤ 1 for all t ∈ [0, T ],

a.e. on Γ3. Therefore, from the definition of the set Z, we find that βu (t) ∈ Z for all

t ∈ [0, T ], which concludes the proof of the Lemma. Now let u1, u2 ∈ C (0, T ;V ) and

let t ∈ [0, T ] . We have, for i = 1, 2,

βui
(t) = β0 −

∫ t

0

[
γν βui

(t)
[
(−R (uiν (t)))+

]2 − εa

]
+

ds,

and then ∣∣βu1
(t)− βu2

(t)
∣∣
L2(Γ3)
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≤ C

∫ t

0

∣∣∣βu1
(s)

[
(−R (u1ν (s)))+

]2 − βu2
(s)

[
(−R (u2ν (s)))+

]2∣∣∣
L2(Γ3)

ds.

Using the definition of the truncation operator R given by (3.12) and considering

βu1
= βu1

− βu2
+ βu2

we find∣∣βu1
(t)− βu2

(t)
∣∣
L2(Γ3)

≤ C

∫ t

0

∣∣βu1
(s)− βu2

(s)
∣∣
L2(Γ3)

ds +
∫ t

0

|u1 (s)− u2 (s)|L2(Γ3)
d ds

 .

Applying Gronwall’s inequality, it follows that∣∣βu1
(t)− βu2

(t)
∣∣2
L2(Γ3)

≤ C

∫ t

0

|u1 (s)− u2 (s)|2L2(Γ3)
d ds,

and using (3.13) we obtain the second part of Lemma 4.2. �

Now we consider the following viscoplastic problem and we prove an existence

and uniqueness result for (3.29), (3.31) and (3.33) with the corresponding initial

condition.

Problem QV . Find a displacement field u : [0, T ] → V , a damage field

α : [0, T ] → H1 (Ω) and a stress field σ : [0, T ] → H satisfying ( 3.29) and

(σ (t) , ε (v))H + jad(βu (t) ,u (t) ,v) + jnc (u (t) ,v)

= (f (t) ,v)V ∀v ∈V, ∀t ∈ [0, T ] , (4.2)

u (0) = u0,σ (0) = σ0, α (0) = α0. (4.3)

Let (η,ω) ∈ C(0, T ;H × L2 (Ω)) and let Zη (t) =
∫ t

0

η (s) ds + σ0 − Eε (u0),

then

Zη ∈ C1(0, T ;H),

and consider the following variational problem.

Problem QVη. Find a displacement field u
η

: [0, T ] → V and a stress field

ση : [0, T ] → H such that

ση (t) = Eε(uη (t)) + Zη (t) , ∀t ∈ [0, T ] , (4.4)

(ση (t) , ε (v))H + jad(βuη
(t) ,uη (t) ,v) + jnc(uη (t) ,v)
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= (f (t) ,v)V ∀v ∈V, ∀t ∈ [0, T ] , (4.5)

uη (0) = u0,ση (0) = σ0. (4.6)

To solve problem QVη we consider θ ∈ C (0, T ;V ) and we construct the following

intermediate problem.

Problem QVηθ. Find a displacement field u
ηθ

: [0, T ] → V and a stress field

σ
ηθ

: [0, T ] → H such that

σηθ (t) = Eε(uηθ (t)) + Zη (t) , (4.7)

(σηθ (t) , ε (v))H + (θ (t) ,v)V = (f (t) ,v)V ∀v ∈V, ∀t ∈ [0, T ] , (4.8)

uηθ (0) = u0,σηθ (0) = σ0. (4.9)

Lemma 4. There exists a unique solution (uηθ,σηθ) of the problem QVηθ which sat-

isfies uηθ ∈ C (0, T ;V ), σηθ ∈ C(0, T ;H1).

Proof. We define the operator A : V → V by

(A u,v)V = (Eε (u) , ε (v))H, ∀u, v ∈V. (4.10)

Using (3.14), it follows that A is a strongly monotone Lipschitz operator, thus A is

invertible and A−1 : V → V is also a strongly monotone Lipschitz operator. It follows

that there exists a unique function uηθ which satisfies

uηθ ∈ C (0, T ;V ) , (4.11)

A uηθ (t) = hηθ (t) , (4.12)

where hηθ ∈ C (0, T ;V ) is such that

(hηθ (t) ,v)V = (f (t) ,v)V −(Zη (t) , ε (v))H−(θ (t) ,v)V ∀v ∈V, ∀t ∈ [0, T ] . (4.13)

It follows from, (4.12) that uηθ ∈ C (0, T ;V ). Consider σηθ defined in (4.7), since,

Zη ∈ C1(0, T ;H), uηθ ∈ C (0, T ;V ) we deduce that σηθ ∈ C(0, T ;H). Since Divσηθ =

−f0 ∈ C (0, T ;H), we further have σηθ ∈ C(0, T ;H1). This concludes the existence

part of Lemma 4.3. The uniqueness of the solution follows from the unique solvability

of the time-dependent equation (4.12). Finally (uηθ,σηθ) is the unique solution of

problem QVηθ obtained in Lemma 4.3, which concludes the proof. �
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Let Λθ (t) denote the element of V defined by

(Λθ (t) ,v)V = jad(βuηθ
(t) ,uηθ (t) ,v)+jnc(uηθ (t) ,v) ∀v ∈V, ∀t ∈ [0, T ] . (4.14)

We have the following result.

Lemma 5. For each θ ∈ C (0, T ;V ) the function Λθ : [0, T ] → V belongs to

C (0, T ;V ). Moreover, there exists a unique element θ∗ ∈ C (0, T ;V ) such that

Λθ∗ = θ∗.

Proof. Let θ ∈ C (0, T ;V ) and let t1, t2 ∈ [0, T ]. Using (3.35), (3.36) and

(4.14) we obtain

|Λθ (t1)− Λθ (t2)|V ≤ C

(∣∣∣βuηθ
(t1)− βuηθ

(t2)
∣∣∣
L2(Γ3)

+ |uηθ (t1)− uηθ (t2)|V

)
.

(4.15)

By Lemma 4.3, uηθ ∈ C (0, T ;V ) and, by Lemma 4.2, βuηθ
∈ W 1,∞ (

0, T ;L2 (Γ3)
)
,

then we deduce from inequality (4.15) that Λθ ∈ C (0, T ;V ). Let now θ1,θ2 ∈

C (0, T ;V ) and denote uηθi
= ui and βuηθi

= βui
for i = 1, 2. Using again the

relations (3.35), (3.36) and (4.14) we find

|Λθ1 (t)− Λθ2 (t)|2V ≤ C
(∣∣βu1

(t)− βu2
(t)

∣∣2
L2(Γ3)

+ |u1 (t)− u2 (t)|2V
)

. (4.16)

Then by Lemma 4.2, we have∣∣βu1
(t)− βu2

(t)
∣∣2
L2(Γ3)

≤ C

∫ t

0

|u1 (s)− u2 (s)|2L2(Γ3)
ds,

and by (3.13) we get∣∣βu1
(t)− βu2

(t)
∣∣2
L2(Γ3)

≤ C

∫ t

0

|u1 (s)− u2 (s)|2V ds.

Use the previous inequality in (4.16) to obtain

|Λθ1 (t)− Λθ2 (t)|2V ≤ C

|u1 (t)− u2 (t)|2V +
∫ t

0

|u1 (s)− u2 (s)|2V ds

 . (4.17)

Moreover, from (4.8) it follows that

(Eε (u1)− Eε (u2) , ε (u1)− ε (u2))H + (θ1 − θ2,u1 − u2)V = 0 on (0, T ) . (4.18)
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Hence

|u1 (t)− u2 (t)|V ≤ C |θ1 (t)− θ2 (t)|V ∀t ∈ [0, T ] . (4.19)

Now from the inequalities (4.17) and (4.19) we have

|Λθ1 (t)− Λθ2 (t)|2V ≤ C

|θ1 (t)− θ2 (t)|2V +
∫ t

0

|θ1 (s)− θ2 (s)|2V ds

 ∀t ∈ [0, T ] .

Applying Gronwall’s inequality we obtain

|Λθ1 (t)− Λθ2 (t)|2V ≤ C

∫ t

0

|θ1 (s)− θ2 (s)|2V ds ∀t ∈ [0, T ] .

Reiterating this inequality n times yields

|Λnθ1 − Λnθ2|2C(0,T ;V ) ≤
(CT )n

n!
|θ1 − θ2|2C(0,T ;V ) ,

which implies that for n sufficiently large a power Λn of Λ is a contraction in the

Hilbert space C (0, T ;V ). Then, there exists a unique θ∗ ∈ C (0, T ;V ) such that

Λnθ∗ = θ∗ and θ∗ is also the unique fixed point of Λ. �

Lemma 6. There exists a unique solution of problem QVη satisfying uη ∈ C (0, T ;V ),

ση ∈ C(0, T ;H1).

Proof. Let θ∗ ∈ C (0, T ;V ) be the fixed point of Λ, Lemma 4.3 implies that

(uηθ∗ ,σηθ∗) ∈ C (0, T ;V ) × C(0, T ;H1) is the unique solution of QVηθ for θ = θ∗.

since Λθ∗ = θ∗ and from the relations (4.14), (4.7), (4.8) and (4.9), we obtain that

(uη,ση) = (uηθ∗ ,σηθ∗) is the unique solution of QVη. The uniqueness of the solution

is a consequence of the uniqueness of the fixed point of the operator Λ given in (4.14).

�

Now for (η,ω)∈C(0, T ;H×L2 (Ω)), we suppose that the assumptions of The-

orem 4.1 hold and we consider the following intermediate problem for the damage

field.

Probem PVω. Find a a damage field αω : [0, T ] → H1 (Ω) such that αω (t) ∈

K, for all t ∈ [0, T ] and

(
.

αω (t) , ξ − αω (t))L2(Ω) + a(αω (t) , ξ − αω (t))
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≥ (ω (t) , ξ − αω (t))L2(Ω) ∀ξ ∈ K, a.e. t ∈ (0, T ) (4.20)

αω (0) = α0 (4.21)

Lemma 7. Problem PVω has a unique soltion αω such that

αω ∈ W 1,2
(
0, T ;L2 (Ω)

)
∩ L2

(
0, T ;H1 (Ω)

)
. (4.22)

Proof. We use (3.21), (3.23) and a classical existence and uniqueness result

on parabolic inequalities (see for instance [1 p. 124]). �

As a consequence of the problems QVη and PVω, we may define the operator

L : C(0, T ;H× L2 (Ω)) → C(0, T ;H× L2 (Ω)) by

L(η,ω) = (G(ση, ε(uη), αω),Φ(ση, ε(uη), αω)), (4.23)

for all (η,ω) ∈ C(0, T ;H× L2 (Ω)). Then we have.

Lemma 8. The operator L has a unique fixed point

(η∗,ω∗) ∈ C(0, T ;H× L2 (Ω)).

Proof. Let (η1,ω1), (η2,ω2) ∈ C(0, T ;H×L2 (Ω)), let t ∈ [0, T ] and use the

notation uηi = ui, σηi = σi, Zηi = Zi and αωi
= αi for i = 1, 2. Taking into account

the relations (3.15), (3.16) and (4.23), we deduce that

|L(η1,ω1)− L(η2,ω2)|H×L2(Ω)

≤ C
(
|u1 (t)− u2 (t)|V + |α1 (t)− α2 (t)|L2(Ω) + |σ1 (t)− σ2 (t)|H

)
. (4.24)

Using (4.5) we obtain

(Eε (u1)− Eε (u2) , ε (u1)− ε (u2))H = jad(βu2
,u2,u1 − u2)− jad(βu1

,u1,u1 − u2)

+jnc(u2,u1 − u2)− jnc(u1,u1 − u2) + (Z2 − Z1, ε (u1)− ε (u2))H a.e. t ∈ (0, T ) .

(4.25)

Keeping in mind (3.35), (3.37) and (3.14) we find

|u1 (t)− u2 (t)|V ≤ C
(∣∣βu1

(t)− βu2
(t)

∣∣
L2(Γ3)

+ |Z1 (t)− Z2 (t)|H
)

, (4.26)
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and

|u1 (t)− u2 (t)|2V ≤ C
(∣∣βu1

(t)− βu2
(t)

∣∣2
L2(Γ3)

+ |Z1 (t)− Z2 (t)|2H
)

.

By Lemma 4.2, we obtain

|u1 (t)− u2 (t)|2V ≤ C

|Z1 (t)− Z2 (t)|2H +
∫ t

0

|u1 (s)− u2 (s)|2V ds


≤ C(

∫ t

0

|η1 (s)− η2 (s)|2H ds +
∫ t

0

|u1 (s)− u2 (s)|2V ds). (4.27)

Applying Gronwall’s inequality yields

|u1 (t)− u2 (t)|2V ≤ C

∫ t

0

|η1 (s)− η2 (s)|2H ds, (4.28)

which implies

|u1 (t)− u2 (t)|V ≤ C

∫ t

0

|η1 (s)− η2 (s)|H ds. (4.29)

Moreover, by (4.4) we find

|σ1 (t)− σ2 (t)|H ≤ C (|u1 (t)− u2 (t)|V + |Z1 (t)− Z2 (t)|H) .

Substituting (4.29) in the previous inequality we obtain

|σ1 (t)− σ2 (t)|H ≤ C

∫ t

0

|η1 (s)− η2 (s)|H ds. (4.30)

From (4.20) we deduce that( .
α1, α2 − α1

)
L2(Ω)

+ a (α1, α2 − α1)

≥ (ω1, α2 − α1)L2(Ω) a.e. t ∈ (0, T ) ,

and ( .
α2, α1 − α2

)
L2(Ω)

+ a (α2, α1 − α2)

≥ (ω2, α1 − α2)L2(Ω) a.e. t ∈ (0, T ) .

Adding the previous inequalities we obtain( .
α1 −

.
α2, α1 − α2

)
L2(Ω)

+ a (α1 − α2, α1 − α2)

≤ |ω1 − ω2|L2(Ω) |α1 − α2|L2(Ω) a.e. t ∈ (0, T ) .

61



LAMIA CHOUCHANE AND LYNDA SELMANI

Integrating the previous inequality on [0, t], after some manipulations we obtain

1
2
|α1 (t)− α2 (t)|2L2(Ω) ≤ C

∫ t

0

|ω1 (s)− ω2 (s)|L2(Ω) |α1 (s)− α2 (s)|L2(Ω) ds

+C

∫ t

0

|α1 (s)− α2 (s)|2L2(Ω) ds.

Applying Gronwall’s inequality to the previous inequality yields

|α1 (t)− α2 (t)|L2(Ω) ≤ C

∫ t

0

|ω1 (s)− ω2 (s)|L2(Ω) ds. (4.31)

Substituting (4.29), (4.30) and (4.31) in (4.24), we obtain

|L(η1,ω1)− L(η2,ω2)|H×L2(Ω)

≤ C

∫ t

0

|(η1,ω1) (s)− (η2,ω2) (s)|H×L2(Ω) ds. (4.32)

Lemma 4.7 is a consequence of the result (4.32) and Banach’s fixed point Theorem.

�

Now, we have all ingredients to solve QV.

Lemma 9. There exists a unique solution (u,σ, α) of problem PV satisfying u ∈

C (0, T ;V ), σ ∈ C(0, T ;H1), α ∈ W 1,2
(
0, T ;L2 (Ω)

)
∩ L2

(
0, T ;H1 (Ω)

)
.

Proof. Let (η∗,ω∗) ∈ L2(0, T ;H × L2 (Ω)) be the fixed point of L given

by (4.24), by Lemma 4.5, we deduce that (uη,ση) = (uηθ∗ ,σηθ∗) ∈ C (0, T ;V ) ×

C(0, T ;H1) is the unique solution of QVη. Since L(η∗,ω∗) = (η∗,ω∗), from the rela-

tions (4.4), (4.5), (4.6) and Lemma 4.6 we obtain that (u,σ, α) = (uη∗θ∗ ,ση∗θ∗ , αω∗)

is the unique solution of QV . The regularity of the solution follows from Lemma 4.6.

The uniqueness of the solution results from the uniqueness of the fixed point of the

operator L. �

Theorem 4.1 is now a consequence of Lemma 4.2 and Lemma 4.8.
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HARMONIC MULTIVALENT FUNCTIONS DEFINED BY
INTEGRAL OPERATOR

LUMINIŢA-IOANA COTÎRLĂ

Abstract. We define and investigate a new class of harmonic multivalent

functions defined by integral operator. We obtain coefficient inequalities,

extreme points and distortion bounds for the functions in our classes.

1. Introduction

A continuous complex-valued function f = u+iv defined in a complex domain

D is said to be harmonic in D if both u and v are real harmonic in D. In any simply

connected domain we can write f = h + g, where h and g are analytic in D. A

necessary and sufficient condition for f to be locally univalent and sense preserving

in D is that |h′(z)| > |g′(z)|, z ∈ D. (See Clunie and Sheil-Small [2]).

Denote by H the class of functions f = h+g that are harmonic univalent and

sense preserving in the unit disc U = {z : |z| < 1} so that f = h + g is normalized

by f(0) = h(0) = f ′z(0)− 1 = 0.

Recently, Ahuja and Jahangiri [5] defined the class Hp(n) (p, n ∈ N), consist-

ing of all p-valent harmonic functions f = h+ g that are sense preserving in U and h

and g are of the form

h(z) = zp +
∞∑

k=2

ak+p−1z
k+p−1, g(z) =

∞∑
k=1

bk+p−1z
k+p−1, |bp| < 1. (1.1)

The integral operator In is defined (see [4], for p = 1) by:

(i) I0f(z) = f(z);

(ii) I1f(z) = If(z) = p

∫ z

0

f(t)t−1dt;

Received by the editors: 01.10.2008.
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(iii) Inf(z) = I(In−1f(z)), n ∈ N, f ∈ A,

where A = {f ∈ H : f(z) = z + a2z
2 + . . . } and H = H(U).

For f = h+ g given by (1.1) the integral operator of f is defined as

Inf(z) = Inh(z) + (−1)nIng(z), p > n (1.2)

where

Inh(z) = zp +
∞∑

k=2

(
p

k + p− 1

)n

ak+p−1z
k+p−1

and

Ing(z) =
∞∑

k=1

(
p

k + p− 1

)n

bk+p−1z
k+p−1.

For 0 ≤ α < 1, n ∈ N, z ∈ U , let Hp(n, α) denote the family of harmonic

functions f of the form (1.1) such that

Re
(

Inf(z)
In+1f(z)

)
> α, (1.3)

where In is defined by (1.2).

The families Hp(m,n, α) and H−
p (m,n, α) include a variety of well-known

classes of harmonic functions as well as many new ones. For example HS(α) =

H1(1, 0, α) is the class of sense-preserving,harmonic univalent functions f which

are starlike of order α ∈ U , and HK(α) = H1(2, 1, α) is the class of sense-

preserving,harmonic univalent functions f which are convex of order α in U , and

H1(n+ 1, n, α) = H(n, α) is the class of Sălăgean-type harmonic univalent functions.

Let we denote the subclass H−
p (n, α) consists of harmonic functions fn =

h+ gn in H−
p (n, α) so that h and gn are of the form

h(z) = zp −
∞∑

k=2

ak+p−1z
k+p−1 and gn(z) = (−1)n−1

∞∑
k=1

bk+p−1z
k+p−1 (1.4)

where ak+p−1, bk+p−1 ≥ 0, |bp| < 1.

For the harmonic functions f of the form (1.1) with b1 = 0, Avei and

Zlotkiewich in [1] show that if

∞∑
k=2

k(|ak|+ |bk|) ≤ 1,
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then f ∈ SH(0), where HS(0) = H1(1, 0, 0) and if

∞∑
k=2

k2(|ak|+ |bk|) ≤ 1

then f ∈ HK(0), where HK(0) = H1(2, 1, 0).

For the harmonic functions f of the form (1.4) with n = 0, Jahongiri in [3]

showed that f ∈ HS(α) if and only if

∞∑
k=2

(k − α)|ak|+
∞∑

k=1

(k + α)|bk| ≤ 1− α

and f ∈ H1(2, 1, α) if and only if

∞∑
k=2

k(k − α)|ak|+
∞∑

k=1

k(k + α)|bk| ≤ 1− α.

2. Main results

In our first theorem, we deduce a sufficient coefficient bound for harmonic

functions in Hp(n, α).

Theorem 2.1. Let f = h+ g be given by (1.1). If

∞∑
k=1

{ψ(n, p, k, α)|ak+p−1|+ θ(n, p, k, α)|bk+p−1|} ≤ 2 (2.1)

where

ψ(n, p, k, α) =

(
p

k + p− 1

)n

− α

(
p

k + p− 1

)n+1

1− α

θ(n, p, k, α) =

(
p

k + p− 1

)n

+ α

(
p

k + p− 1

)n+1

1− α
,

ap = 1, 0 ≤ α < 1, n ∈ N.

Then f is sense preserving in U and f ∈ Hp(n, α).

Proof. According to (1.2) and (1.3) we only need to show that

Re
(
Inf(z)− αIn+1f(z)

In+1f(z)

)
≥ 0.

The case r = 0 is obvious.
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For 0 < r < 1, it follows that

Re
(
Inf(z)− αIn+1f(z)

In+1f(z)

)

=Re


zp(1− α) +

∞∑
k=2

[(
p

k + p− 1

)n

− α

(
p

k + p− 1

)n+1
]

ak+p−1z
k+p−1

zp+

∞∑
k=2

(
p

k + p− 1

)n+1

ak+p−1z
k+p−1+(−1)n+1

∞∑
k=1

(
p

k + p− 1

)n+1

bk+p−1z
k+p−1

+

(−1)n
∞∑

k=1

[(
p

k + p− 1

)n

+ α

(
p

k + p− 1

)n+1
]

bk+p−1z
k+p−1

zp +

∞∑
k=2

(
p

k + p− 1

)n+1

ak+p−1z
k+p−1 + (−1)n+1

∞∑
k=1

(
p

k + p− 1

)n+1

bk+p−1z
k+p−1



=Re


(1− α) +

∞∑
k=2

[(
p

k + p− 1

)n

− α

(
p

k + p− 1

)n+1
]

ak+p−1z
k−1

1+

∞∑
k=2

(
p

k + p− 1

)n+1

ak+p−1z
k−1+(−1)n+1

∞∑
k=1

(
p

k + p− 1

)n+1

bk+p−1z
k+p−1z−p

+

(−1)n
∞∑

k=1

[(
p

k + p− 1

)n

+ α

(
p

k + p− 1

)n+1
]

bk+p−1z
k+p−1z−p

1 +

∞∑
k=2

(
p

k + p− 1

)n+1

ak+p−1z
k−1 + (−1)n+1

∞∑
k=1

(
p

k + p− 1

)n+1

bk+p−1z
k+p−1z−p


= Re

[
(1− α) +A(z)

1 +B(z)

]
.

For z = reiθ we have

A(reiθ) =
∞∑

k=2

[(
p

k + p− 1

)n

− α

(
p

k + p− 1

)n+1
]
ak+p−1r

k−1e(k−1)θi

+(−1)n
∞∑

k=1

[(
p

k + p− 1

)n

+ α

(
p

k + p− 1

)n+1
]
bk+p−1r

k−1e−(k+2p−1)θi;

B(reiθ) =
∞∑

k=2

(
p

k + p− 1

)n+1

ak+p−1r
k−1e(k−1)θi

+(−1)n+1
∞∑

k=1

(
p

k + p− 1

)n+1

bk+p−1r
k−1e−(k+2p−1)θi.

Setting
(1− α) +A(z)

1 +B(z)
= (1− α)

1 + w(z)
1− w(z)

,
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the proof will be complete if we can show that |w(z)| ≤ 1. This is the case since, by

the condition (2.1), we can write

|w(z)| =
∣∣∣∣ A(z)− (1− α)B(z)
A(z) + (1− α)B(z) + 2(1− α)

∣∣∣∣
=

∣∣∣∣∣∣∣∣∣∣

∞∑
k=2

[(
p

k + p− 1

)n

−
(

p

k + p− 1

)n+1
]

ak+p−1r
k−1e(k−1)θi

2(1−α)+

∞∑
k=2

C(n, p, k, α)ak+p−1r
k−1e(k−1)θi+ (−1)n

∞∑
k=1

D(n, p, k, α)bk+p−1r
k−1e−(k+2p−1)θi

+

(−1)n
∞∑

k=1

[(
p

k + p− 1

)n

+

(
p

k + p− 1

)n+1
]

bk+p−1r
k−1e−(k+2p−1)θi

2(1−α)+

∞∑
k=2

C(n, p, k, α)ak+p−1r
k−1e(k−1)θi + (−1)n

∞∑
k=1

D(n, p, k, α)bk+p−1r
k−1e−(k+2p−1)θi

∣∣∣∣∣∣∣∣∣∣

≤

∞∑
k=2

[(
p

k + p− 1

)n

−
(

p

k + p− 1

)n+1
]
|ak+p−1|rk−1

2(1− α)−
∞∑

k=2

C(n, p, k, α)|ak+p−1|rk−1 −
∞∑

k=1

D(n, p, k, α)|bk+p−1|rk−1

+

∞∑
k=1

[(
p

k + p− 1

)n

+
(

p

k + p− 1

)n+1
]
|bk+p−1|rk−1

2(1− α)−
∞∑

k=2

C(n, p, k, α)|ak+p−1|rk−1 −
∞∑

k=1

D(n, p, k, α)|bk+p−1|rk−1

=

∞∑
k=1

[(
p

k + p− 1

)n

−
(

p

k + p− 1

)n+1
]
|ak+p−1|rk−1

4(1− α)−
∞∑

k=1

{C(n, p, k, α)|ak+p−1|+D(n, p, k, α)|bk+p−1|}rk−1

+

∞∑
k=1

[(
p

k + p− 1

)n

+
(

p

k + p− 1

)n+1
]
|bk+p−1|rk−1

4(1− α)−
∞∑

k=1

{C(n, p, k, α)|ak+p−1|+D(n, p, k, α)|bk+p−1|}rk−1

<

∞∑
k=1

[(
p

k + p− 1

)n

−
(

p

k + p− 1

)n+1
]
|ak+p−1|

4(1− α)−
∞∑

k=1

{C(n, p, k, α)|ak+p−1|+D(n, p, k, α)|bk+p−1|}

69



LUMINIŢA-IOANA COTÎRLĂ

+

∞∑
k=1

[(
p

k + p− 1

)n

+
(

p

k + p− 1

)n+1
]
|bk+p−1|

4(1− α)−
∞∑

k=1

{C(n, p, k, α)|ak+p−1|+D(n, p, k, α)|bk+p−1|}
≤ 1.

where

C(n, p, k, α) =
(

p

k + p− 1

)n

+ (1− 2α)
(

p

k + p− 1

)n+1

and

D(n, p, k, α) =
(

p

k + p− 1

)n

+ (−1)(1− 2α)
(

p

k + p− 1

)n+1

The harmonic univalent functions

f(z) = zp +
∞∑

k=2

1
ψ(n, p, k, α)

xkz
k+p−1 +

∞∑
k=1

1
θ(n, p, k, α)

ykzk+p−1, (2.2)

where n ∈ N and
∞∑

k=2

|xk| +
∞∑

k=1

|yk| = 1, show that the coefficient bound given by

(2.1) is sharp. The functions of the form (2.2) are in Hp(n, α) because

∞∑
k=1

{ψ(n, p, k, α)|ak+p−1|+ θ(n, p, k, α)|bk+p−1|} = 1 +
∞∑

k=2

|xk|+
∞∑

k=1

|yk| = 2.

In the following theorem it is show that the condition (2.1) is also necessary

for functions fn = h+ gn, where h and gn are of the form (1.4).

Theorem 2.2. Let fn = h + gn be given by (1.4). Then fn ∈ H−
p (n, α) if

and only if
∞∑

k=1

{ψ(n, p, k, α)ak+p−1 + θ(n, p, k, α)bk+p−1} ≤ 2, (2.3)

where ap = 1, 0 ≤ α < 1, n ∈ N.

Proof. Since H−
p (n, α) ⊂ Hp(n, α), we only need to prove the ”only if” part

of the theorem. For functions fn of the form (1.4), we note that the condition

Re
{

Infn(z)
In+1fn(z)

}
> α
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is equivalent to

Re


(1− α)zp −

∞∑
k=2

[(
p

k + p− 1

)n

− α

(
p

k + p− 1

)n+1
]

ak+p−1z
k+p−1

zp −
∞∑

k=2

(
p

k + p− 1

)n+1

ak+p−1z
k+p−1 + (−1)2n

∞∑
k=1

(
p

k + p− 1

)n+1

bk+pzk+p−1

(2.4)

+

(−1)2n−1
∞∑

k=1

[(
p

k + p− 1

)n

+ α

(
p

k + p− 1

)n+1
]

bk+p−1z
k+p−1

zp−
∞∑

k=2

(
p

k + p− 1

)n+1

ak+p−1z
k+p−1+ (−1)2n

∞∑
k=1

(
p

k + p− 1

)n+1

bk+p−1z
k+p−1

≥0.

The above required condition (2.4) must hold for all values of z in U . Upon

choosing the values of z on the positive real axis where 0 ≤ z = r < 1, we must have

(1− α)−
∞∑

k=2

[(
p

k + p− 1

)n

− α

(
p

k + p− 1

)n+1
]
ak+p−1r

k−1

1−
∞∑

k=2

(
p

k + p− 1

)n+1

ak+p−1r
k−1 +

∞∑
k=1

(
p

k + p− 1

)n+1

bk+p−1r
k−1

+

−
∞∑

k=1

[(
p

k + p− 1

)n

+ α

(
p

k + p− 1

)n+1
]
bk+p−1r

k−1

1−
∞∑

k=2

(
p

k + p− 1

)n+1

ak+p−1r
k−1 +

∞∑
k=1

(
p

k + p− 1

)n+1

bk+p−1r
k−1

≥ 0.

(2.5)

If the condition (2.3) does not hold, then the expression in (2.5) is negative

for r sufficiently close to 1. Hence there exist z0 = r0 in (0, 1) for which the quotient

in (2.5) is negative.

This contradicts the required condition for fn ∈ H−
p (n, α). So the proof is

complete.

Next we determine the extreme points of the closed convex hull of H−
p (n, α),

denoted by clcoH−
p (n, α).

Theorem 2.3. Let fn be given by (1.4). Then fn ∈ H−
p (n, α) if and only if

fn(z) =
∞∑

k=1

[xk+p−1hk+p−1(z) + yk+p−1gnk+p−1(z)],
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where

hp(z) = zp, hk+p−1(z) = zp − 1
ψ(n, p, k, α)

zk+p−1, k = 2, 3, . . .

and

gnk+p−1(z) = zp + (−1)n−1 · 1
θ(n, p, k, α)

zk+p−1, k = 1, 2, 3, . . .

xk+p−1 ≥ 0, yk+p−1 ≥ 0, xp = 1−
∞∑

k=2

xk+p−1 −
∞∑

k=1

yk+p−1.

In particular, the extreme points of H−
p (n, α) are {hk+p−1} and {gnk+p−1}.

Proof. For functions fn of the form (2.1),

fn(z) =
∞∑

k=1

[xk+p−1hk+p−1(z) + yk+p−1gnk+p−1(z)]

=
∞∑

k=1

(xk+p−1 + yk+p−1)zp −
∞∑

k=2

1
ψ(n, p, k, α)

xk+p−1z
k+p−1

+(−1)n−1
∞∑

k=1

1
θ(n, p, k, α)

yk+p−1z
k+p−1.

Then
∞∑

k=2

ψ(n, p, k, α)
(

1
ψ(n, p, k, α)

xk+p−1

)
+

∞∑
k=1

θ(n, p, k, α)
(

1
θ(n, p, k, α)

yk+p−1

)

=
∞∑

k=2

xk+p−1 +
∞∑

k=1

yk+p−1 = 1− xp ≤ 1,

and so fn(z) ∈ clcoH−
p (n, α).

Conversely, suppose fn(z) ∈ clcoH−
p (n, α, β). Letting

xp = 1−
∞∑

k=2

xk+p−1 −
∞∑

k=1

yk+p−1,

let

xk+p−1 = ψ(n, p, k, α)ak+p−1

and

yk+p−1 = θ(n, p, k, α)bk+p−1, k = 2, 3, . . .
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We obtain the required representation, since

fn(z) = zp −
∞∑

k=2

ak+p−1z
k+p−1 + (−1)n−1

∞∑
k=1

bk+p−1z
k+p−1

= zp −
∞∑

k=2

1
ψ(n, p, k, α)

xk+p−1z
k+p−1 + (−1)n−1

∞∑
k=1

1
θ(n, p, k, α)

yk+p−1z
k+p−1

= zp −
∞∑

k=2

[zp − hk+p−1(z)]xk+p−1 −
∞∑

k=1

[zp − gnk+p−1(z)]yk+p−1

=

[
1−

∞∑
k=2

xk+p−1 −
∞∑

k=1

yk+p−1

]
zp +

∞∑
k=2

xk+p−1hk+p−1(z)

+
∞∑

k=1

yk+p−1gnk+p−1(z) =
∞∑

k=1

[xk+p−1hk+p−1(z) + yk+p−1gnk+p−1(z)].

The following theorem gives the distortion bounds for functions in H−
p (n, α)

which yields a covering results for this class.

Theorem 2.4. Let fn ∈ H−
p (n, α). Then for |z| = r < 1 we have

|fn(z)| ≤ (1 + bp)rp + {φ(n, p, k, α)− Ω(n, p, k, α)bp}rp+1

and

|fn(z)| ≥ (1− bp)rp − {φ(n, p, k, α)− Ω(n, p, k, α)bp}rp+1,

where

φ(n, p, k, α) =
1− α(

p

p+ 1

)n

− α

(
p

p+ 1

)n+1 ,

Ω(n, p, k, α) =
1 + α(

p

p+ 1

)n

− α

(
p

p+ 1

)n+1 .

Proof. We prove the right hand side inequality for |fn|. The proof for the

left hand inequality can be done using similar arguments. Let fn ∈ H−
p (n, α). Taking

the absolute value of fn then by Theorem 2.2, we obtain:

|fn(z)| =

∣∣∣∣∣zp −
∞∑

k=2

ak+p−1z
k+p−1 + (−1)n−1

∞∑
k=1

bk+p−1z
k+p−1

∣∣∣∣∣
≤ rp +

∞∑
k=2

ak+p−1r
k+p−1 +

∞∑
k=1

bk+p−1r
k+p−1
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LUMINIŢA-IOANA COTÎRLĂ

= rp + bpr
p +

∞∑
k=2

(ak+p−1 + bk+p−1)rk+p−1

≤ rp + bpr
p +

∞∑
k=2

(ak+p−1 + bk+p−1)rp+1

= (1 + bp)rp + φ(n, p, k, α)
∞∑

k=2

1
φ(n, p, k, α)

(ak+p−1 + bk+p−1)rp+1

≤ (1 + bp)rp + φ(n, p, k, α)rp+1

[ ∞∑
k=2

ψ(n, p, k, α)ak+p−1 + θ(n, p, k, α)bk+p−1

]
≤ (1 + bp)rp + {φ(n, p, k, α)− Ω(n, p, k, α)bp}rp−1.

The following covering result follows from the left hand inequality in Theorem 2.4.

Corollary 2.1. Let fn ∈ H−
p (n, α), the for |z| = r < 1 we have

{w : |w| < 1− bp − [φ(n, p, k, α)− Ω(n, p, k, α)bp] ⊂ fb(U)}.

Similar results was obtained in [6] by Bilal Şekel and Sevtap Sümer Eker for

the differential operator of Sălăgean defined in [4].
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ANALYSIS OF A ELECTRO-ELASTIC CONTACT PROBLEM
WITH FRICTION AND ADHESION

SALAH DRABLA AND ZILOUKHA ZELLAGUI

Abstract. We consider a mathematical model which describes the qua-

sistatic frictional contact between a piezoelectric body and an obstacle, the

so-called foundation. A nonlinear electro-elastic constitutive law is used to

model the piezoelectric material. The contact is modelled with Signorini’s

conditions and the associated with a regularized Coulomb’s law of dry fric-

tion in witch the adhesion of contact surfaces is taken into account. The

evolution of the bonding field is described by a first order differential equa-

tion. We derive a variational formulation for the model, in the form of a

coupled system for the displacements, the electric potential and the adhe-

sion. Under a smallness assumption on the coefficient of friction, we prove

the existence of a unique weak solution of the model. The proof is based

on arguments of time-dependent quasi-variational inequalities, differential

equations and Banach’s fixed point theorem.

1. Introduction

The piezoelectric effect is characterized by the coupling between the mechani-

cal and electrical properties of the materials. Indeed, the apparition of electric charges

on some crystals submitted to the action of body forces and surface tractions was ob-

served and their dependence on the deformation process was underlined. Conversely,

it was proved experimentally that the action of electric field on the crystals may gen-

erate strain and stress. A deformable material which presents such a behavior is called

a piezoelectric material. Piezoelectric materials are used extensively as switches and
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actuary in many engineering systems, in radioelectronics, electroacoustics, and mea-

suring equipments. General models for electro-elastic materials can be found in [3], [5]

and in [17]. A static frictional contact problem for electro-elastic materials was consid-

ered in [4] and in [20]. A slip-dependent frictional contact problem for electro-elastic

materials was studied in [26] and a frictional problem with normal compliance for

electroviscoelastic materials was considered in [27], [19] and in [18]. In the last two

references the variational formulations of the corresponding problems were derived

and existence and uniqueness results for the weak solutions were obtained.

The adhesive contact between deformable bodies, when a glue is added to

prevent relative motion of the surfaces, has received recently increased attention in

the mathematical literature. Basic modelling can be found in [13], [15] and in [9].

Analysis of models for adhesive contact can be found in [2]-[7], [16] and in the recent

monographs [24] and [25]. An application of the theory of adhesive contact in the

medical field of prosthetic limbs was considered in [22] and in [23]; there, the impor-

tance of the bonding between the bone-implant and the tissue was outlined, since

debonding may lead to decrease in the persons ability to use the artificial limb or

joint.

Contact problems for elastic and elastic-viscoelastic bodies with adhesion

and friction appear in many applications of solids mechanics such as the fiber-matrix

interface of composite materials. A consistent model coupling unilateral contact,

adhesion and friction is proposed by Raous, Cangémi and Cocu in [21]. Adhesive

problems have been the subject of some recent publications (see for instance [12],

[1], [6] and [9]). The novelty in all the above papers is the introduction of a surface

internal variable, the bonding field, denoted in this paper by β; it describes the

pointwise fractional density of active bonds on the contact surface, and sometimes

referred to as the intensity of adhesion. Following [13], [14], the bonding field satisfies

the restrictions 0 ≤ β ≤ 1; when β = 1 at a point of the contact surface, the adhesion

is complete and all the bonds are active; when β = 0 all the bonds are inactive,

severed, and there is no adhesion; when 0 < β < 1 the adhesion is partial and only a

fraction β of the bonds is active. We refer the reader to the extensive bibliography on
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the subject in [15] and in [22]. Such models contain a new internal variable β which

represents the adhesion intensity over the contact surface, it takes values between 0

and 1, and describes the fractional density of active bonds on the contact surface.

The aim of this paper is to continue the study of problems begun in [19], [27]

and in [18]. The novelty of the present paper is to extend the result when the contact

and friction are modelled by Signorini’s conditions and a non local Coulomb’s friction

law, respectively. Moreover, the adhesion is taken into account at the interface and

the material behavior is assumed to be electro-elastic.

The paper is structured as follows. In Section 2 we present the electro-

elastic contact model with friction and adhesion and provide comments on the con-

tact boundary conditions. In Section 3 we list the assumptions on the data and

derive the variational formulation. In Sections 4, we present our main existence and

uniqueness results, Theorems 4.1, which states the unique weak solvability of the

Signorini’s adhesive contact electro-elastic problem with non local Coulomb’s friction

law conditions.

2. Problem statement

We consider the following physical setting. An electro-elastic body occupies

a bounded domain Ω ⊂ Rd (d = 2, 3) with a smooth boundary ∂Ω = Γ. The body

is submitted to the action of body forces of density f0 and volume electric charges of

density q0. It is also submitted to mechanical and electric constraints on the boundary.

To describe them, we consider a partition of Γ into three measurable parts Γ1, Γ2,

Γ3 on one hand, and a partition of Γ1 ∪ Γ2 into two open parts Γa and Γb, on the

other hand., such that meas(Γ1) > 0, meas(Γa) > 0. We assume that the body is

clamped on Γ1 and surface tractions of density f2 act on Γ2. On Γ3 the body is in

adhesive contact with an insulator obstacle, the so-called foundation. We also assume

that the electrical potential vanishes on Γa and a surface electric charge of density q2

is prescribed on Γb. We denote by Sd the space of second order symmetric tensors on

Rd and we use · and ||·|| for the inner product and the Euclidean norm on Rd and

Sd, respectively. Also, below ν represents the unit outward normal on Γ. With these
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assumptions, the classical formulation of the electro-elastic contact problem coupling

friction and adhesion is the following.

Problem 2.1 (P). Find a displacement field u : Ω × [0, T ] → Rd, a stress field

σ : Ω× [0, T ] → Sd, an electric potential ϕ : Ω× [0, T ] → R, an electric displacement

field D : Ω× [0, T ] → Rd and a bonding field β : Ω× [0, T ] → R such that

σ = Fε(u)− E∗E(ϕ) in Ω× (0, T ), (2.1)

D = BE(ϕ) + Eε(u) in Ω× (0, T ), (2.2)

Divσ + f0 = 0 in Ω× (0, T ), (2.3)

div D = q0 on Ω× (0, T ), (2.4)

u = 0 on Γ1 × (0, T ), (2.5)

σν = f2 on Γ2 × (0, T ), (2.6)

uν ≤ 0, σν − γνβ
2Rν(uν) ≤ 0, uν(σν − γνβ

2Rν(uν)) = 0 on Γ3 × (0, T ), (2.7)



|στ + γτβ
2Rτ (uτ )| ≤ µp(|R(σν)− γνβ

2Rν(uν)|),

|στ + γτβ
2Rτ (uτ )| < µp(|R(σν)− γνβ

2Rν(uν)|) ⇒ uτ = 0,

|στ + γτβ
2Rτ (uτ ) = µp(|R(σν)− γνβ

2Rν(uν)|) ⇒ ∃λ ≥ 0,

such that στ + γτβ
2Rτ (uτ ) = −λuτ ,

on Γ3 × (0, T ),

(2.8)

β̇ = −(β(γνRν(uν)2 + γτ‖Rτ (uτ )‖2)− εa) on Γ3 × (0, T ), (2.9)

ϕ = 0 on Γa × (0, T ), (2.10)

D · ν = q2 on Γb × (0, T ), (2.11)

D · ν = 0 on Γ3 × (0, T ), (2.12)

β(0) = β0 on Γ3. (2.13)

We now provide some comments on equations and conditions (2.1)-(2.13).
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Equations (2.1) and (2.2) represent the electro-elastic constitutive law in

which ε(u) denotes the linearized strain tensor, E(ϕ) = −∇ϕ is the electric field,

where ϕ is the electric potential, F is a given nonlinear function, E represents the

piezoelectric operator, E∗ is its transposed, B denotes the electric permittivity op-

erator, and D = (D1, . . . , Dd) is the electric displacement vector. Details on the

constitutive equations of the form (2.1) and (2.2) can be find, for instance, in [3] and

in [4]. Next, equations (2.3) and (2.4) are the equilibrium equations for the stress and

electric-displacement fields, respectively, in which “Div” and “div” denote the diver-

gence operator for tensor and vector valued functions, respectively. Equations (2.5)

and (2.6) represent the displacement and traction boundary conditions Conditions

(2.10) and (2.11) represent the electric boundary conditions.

Conditions (2.7) represent he Signorini’s contact condition with adhesion

where uν is the normal displacement σν represents the normal stress, γν denote

a given adhesion coefficient and Rν is the truncation operator define by

Rν(s) =


L if s < −L,

−s if − L ≤ s ≤ 0,

0 if s > 0,

where L > 0 is the characteristic length of the bond, beyond which it does not offer

any additional traction. The introduction of operator Rν , together with the operator

Rτ defined below , is motivated by the mathematical arguments but it is not restrictive

for physical point of view, since no restriction on the size of the parameter L is made

in what follows. Thus, by choosing L very large, we can assume that Rν(uν) = uν

and, therefore, from (2.7) we recover the contact conditions

uν ≤ 0, σν − γνβ
2uν ≤ 0, uν(σν − γνβ

2uν) = 0 on Γ3 × (0, T ),

It follows from (2.7) that there is no penetration between the body and the foundation,

since uν ≤ 0 during the process.

Conditions (2.8) are a non local Coulomb’s friction law conditions coupled

with adhesion, where uτ and στ denote tangential components of vector u and tensor
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σ respectively. Rτ is the truncation operator given by

Rτ (v) =


v if ‖v‖ ≤ L,

L
v

‖v‖
if ‖v‖ > L.

This condition shows that the magnitude of the shear on the contact surface depends

on the bonding field and on the tangential displacement, but as long as it does not

exceed the bond length L.

R will represent a normal regularization operator that is , linear and continues

operator R : H−
1
2 (Γ) → L2(Γ). We shall need it to regularize the normal trace of

the stress witch is too rough on Γ. p is a non-negative function, the so-called friction

bound, µ ≥ 0 is the coefficient of friction. The friction law was used in some studies

with p (r) = r+ where r+ = max{0, r}. Recently, from thermodynamic considerations,

a new version of Coulomb’s law is proposed; its consists to take

p(r) = r(1− αr)+, (2.14)

where α is a small positive coefficient related to the hardness and the wear of the

contact surface.

Also, note that when the bonding field vanishes, then the contact conditions

(2.7) and (2.8) become the classic Signorini’s contact with a non local Coulomb’s

friction law conditions were used in ([11]), that is

uν ≤ 0, σν ≤ 0, uνσν = 0 on Γ3 × (0, T ),
|στ | ≤ µp(|R(σν)|),

|στ | < µp(|R(σν)|) ⇒ uτ = 0,

|στ | = µp(|R(σν)|) ⇒ ∃λ ≥ 0, such that στ = −λuτ .

on Γ3 × (0, T ),

The evolution of the bonding field is governed by the differential equation (2.9) with

given positive parameters γν , γτ and εa, where r+ = max{0, r}. Here and below

in this paper, a dot above a function represents the derivative with respect to the

time variable. We note that the adhesive process is irreversible and, indeed, once
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debonding occurs bonding cannot be reestablished, since β̇ ≤ 0. Finally, (2.13) is the

initial condition in which β0 is a given bonding field.

3. Variational formulation and preliminaries

In this section, we list the assumptions on the data and derive a variational

formulation for the contact problem. To this end we need to introduce some notation

and preliminary material.

Here and below Sd represents the space of second order symmetric tensors on Rd. We

recall that the inner products and the corresponding norms on Rd and Sd are given

by

u · v = uivi , ‖v‖ = (v · v)
1
2 ∀u,v ∈ Rd,

σ · τ = σijτij , ‖τ‖ = (τ · τ) 1
2 ∀σ, τ ∈ Sd.

Here and everywhere in this paper, i, j, k, l run from 1 to d, summation over repeated

indices is applied and the index that follows a comma represents the partial derivative

with respect to the corresponding component of the spatial variable, e.g. ui,j = ∂ui

∂xj
.

Everywhere below, we use the classical notation for Lp and Sobolev spaces associated

to Ω and Γ. Moreover, we use the notation L2(Ω)d, H1(Ω)d and H and H1 for the

following spaces :

L2(Ω)d = { v = (vi) | vi ∈ L2(Ω) }, H1(Ω)d = { v = (vi) | vi ∈ H1(Ω) },

H = { τ = (τij) | τij = τji ∈ L2(Ω) }, H1 = { τ ∈ H | τij,j ∈ L2(Ω) }.

The spaces L2(Ω)d, H1(Ω)d, H and H1 are real Hilbert spaces endowed with the

canonical inner products given by

(u,v)L2(Ω)d =
∫

Ω

u · v dx, (u,v)H1(Ω)d =
∫

Ω

u · v dx+
∫

Ω

∇u · ∇v dx,

(σ, τ)H =
∫

Ω

σ · τ dx, (σ, τ)H1 =
∫

Ω

σ · τ dx+
∫

Ω

Div σ ·Div τ dx,

and the associated norms ‖ · ‖L2(Ω)d , ‖ · ‖H1(Ω)d , ‖ · ‖H and ‖ · ‖H1 , respectively. Here

and below we use the notation

∇v = (vi,j), ε(v) = (εij(v)), εij(v) =
1
2
(vi,j + vj,i) ∀v ∈ H1(Ω)d,
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Div τ = (τij,j) ∀ τ ∈ H1.

For every element v ∈ H1(Ω)d we also write v for the trace of v on Γ and we denote

by vν and vτ the normal and tangential components of v on Γ given by vν = v · ν,

vτ = v − vνν.

Let now consider the closed subspace of H1(Ω)d defined by

V = { v ∈ H1(Ω)d | v = 0 on Γ1 }.

Since meas (Γ1) > 0, the following Korn’s inequality holds:

‖ε(v)‖H ≥ cK ‖v‖H1(Ω)d ∀v ∈ V, (3.1)

where cK > 0 is a constant which depends only on Ω and Γ1. Over the space V we

consider the inner product given by

(u,v)V = (ε(u), ε(v))H (3.2)

and let ‖ · ‖V be the associated norm. It follows from Korn’s inequality (3.1) that

‖ · ‖H1(Ω)d and ‖ · ‖V are equivalent norms on V and, therefore, (V, ‖ · ‖V ) is a real

Hilbert space. Moreover, by the Sobolev trace theorem, (3.1) and (3.2), there exists

a constant c0 depending only on the domain Ω, Γ1 and Γ3 such that

‖v‖L2(Γ3)d ≤ c0‖v‖V ∀v ∈ V. (3.3)

We also introduce the following spaces.

W = { ψ ∈ H1(Ω) | ψ = 0 on Γa }, W1 = { D = (Di) | Di ∈ L2(Ω), Di,i ∈ L2(Ω) }.

Since meas (Γa) > 0, the following Friedrichs-Poincaré inequality holds:

‖∇ψ‖L2(Ω)d ≥ cF ‖ψ‖H1(Ω) ∀ψ ∈W, (3.4)

where cF > 0 is a constant which depends only on Ω and Γa and ∇ψ = (ψ,i ).

Over the space W , we consider the inner product given by

(ϕ,ψ)W =
∫

Ω

∇ϕ · ∇ψ dx
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and let ‖ · ‖W be the associated norm. It follows from (3.4) that ‖ · ‖H1(Ω) and ‖ · ‖W

are equivalent norms on W and therefore (W, ‖·‖W ) is a real Hilbert space. Moreover,

by the Sobolev trace theorem, there exists a constant c0, depending only on Ω, Γa

and ΓC , such that

‖ζ‖L2(ΓC) ≤ c̃0‖ζ‖W ∀ ζ ∈W. (3.5)

The space W1 is real Hilbert space with the inner product

(D,E)W1 =
∫

Ω

D ·E dx+
∫

Ω

divD · div E dx,

where div = (Di,i), and the associated norm ‖ · ‖W1 .

For every real Hilbert space X we use the classical notation for the spaces

Lp(0, T ;X) and W k,p(0, T ;X), 1 ≤ p ≤ ∞, k ≥ 1 and we also introduce the set

Q = { θ ∈ L∞(0, T ;L2(Γ3)) | 0 ≤ θ(t) ≤ 1 ∀ t ∈ [0, T ], a.e. on Γ3 }.

Finally, if X1 and X2 are two Hilbert spaces endowed with the inner products (·, ·)X1

and (·, ·)X2 and the associated norms ‖ · ‖X1 and ‖ · ‖X2 , respectively, we denote by

X1×X2 the product space together with the canonical inner product (·, ·)X1×X2 and

the associated norm ‖ · ‖X1×X2 .

In the study of the problem P, we consider the following assumptions on the

problem data.
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The elasticity operator F , the piezoelectric operator E and the electric per-

mittivity operator B satisfy

(a) F : Ω× Sd → Sd,

(b) there exists LF > 0 such that

‖F(x, ε1)−F(x, ε2)‖ ≤ LF‖ε1 − ε2‖ ∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω,

(c) there exists m > 0 such that

(F(x, ε1)−F(x, ε2), ε1 − ε2) ≥ mF‖ε1 − ε2‖2 ∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω,

(d) the mapping x 7→ F(x, ε) is Lebesgue measurable in Ω, for all ε ∈ Sd,

(e) the mapping x 7→ F(x, 0) ∈ H
(3.6)

(a) E : Ω× Sd → Rd.

(b) E(x, τ ) = (eijk(x)τjk) ∀τ = (τ ij) ∈ Sd, a.e. x ∈ Ω.

(c) eijk = eikj ∈ L∞(Ω).

(3.7)



(a) B : Ω× Rd → Rd.

(b) B(x,E) = (bij(x)Ej) ∀E = (Ei) ∈ Rd, a.e. x ∈ Ω.

(c) bij = bji ∈ L∞(Ω).

(d) There exists mB > 0 such that bij(x)EiEj ≥ mB‖E‖2

∀E = (Ei) ∈ Rd, a.e. x ∈ Ω.

(3.8)

From the assumptions (3.7) and (3.8), we deduce that the piezoelectric operator E and

the electric permittivity operator B are linear, have measurable bounded components

denoted eijk and bij , respectively, and moreover, B is symmetric and positive definite.

Recall also that the transposed operator E∗ is given by E∗ = (e∗ijk) where

e∗ijk = ekij , and the following equality holds :

Eσ · v = σ · E∗v ∀σ ∈ Sd, v ∈ Rd. (3.9)
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The friction function satisfies :

p : Γ3 × R → R+ verifies

(a) there exists M > 0 such that :

|p (x, r1)− p (x, r2)| ≤M |r1−r2|

for every r1, r2 ∈ R, a.e. x ∈ Γ3;

(b) x 7→ p (x, r) is measurable on Γ3, for every r ∈ R;

(c) p (x, 0) = 0, a.e. x ∈ Γ3.

(3.10)

We note that (3.10) is satisfied in the case of function p given by (2.14).

We also suppose that the body forces and surface tractions have the regularity

f0 ∈W 1,∞(0, T ;L2(Ω)d), f2 ∈W 1,∞(0, T ;L2(Γ2)d), (3.11)

and the densities of electric charges satisfy

q0 ∈W 1,∞(0, T ;L2(Ω)), q2 ∈W 1,∞(0, T ;L2(Γb)), (3.12)

Note that we need to impose assumption (3.12) for physical reasons; indeed, the

foundation is supposed to be insulator and therefore the electric boundary conditions

on Γ3 do not have to change in function of the status of the contact, are the same on

the contact and on the separation zone, and are included in the boundary condition

(2.11).

We define the function f : [0, T ] → V and q : [0, T ] →W by

(f(t),v)V =
∫

Ω

f0(t) · v dx+
∫

Γ2

f2(t) · v da, (3.13)

(q(t), ψ)W =
∫

Ω

q0(t)ψ dx−
∫

Γb

q2(t)ψ da,

for all u,v ∈ V, ψ ∈ W and t ∈ [0, T ], and note that conditions (3.11) and (3.12)

imply that

f ∈W 1,∞(0, T ;V ), q ∈W 1,∞(0, T ;W ). (3.14)

The adhesion coefficients γν , γτ and the limit bound εa satisfy the conditions

γν , γτ ∈ L∞(Γ3), εa ∈ L2(Γ3), γν , γτ , εa ≥ 0 a.e. on Γ3 (3.15)
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while the friction coefficient µ is such that

µ ∈ L∞(Γ3), µ(x) ≥ 0 a.e. on Γ3 (3.16)

and finally, the initial condition β0 satisfies

β0 ∈ L2(Γ3), 0 ≤ β0 ≤ 1 a.e. on Γ3. (3.17)

We denote by Uad the convex subset of admissible displacements fields given by

Uad = {v ∈ H1 | v = 0 on Γ1 , vν ≤ 0 on Γ3} . (3.18)

We define the adhesion functional jad : L2(Γ3)× V × V → R by

jad(β,u,v) =
∫

Γ3

(
− γνβ

2Rν(uν)vν + γτβ
2Rτ (uτ ) · vτ

)
da, (3.19)

and the friction functional jfr : L2(Γ3)×H1 × V × V → R by

jfr(β,σ,u,v) =
∫

Γ3

µp(|R(σν)− γνβ
2Rν(uν)|) · |vτ | da. (3.20)

By a standard procedure based on Green’s formula we can derive the following vari-

ational formulation of the contact problem (2.1)-(2.13).

Problem 3.1 (PV ). Find a displacement field u : [0, T ] −→ V , an electric potential

field ϕ : [0, T ] →W and a bonding field β : [0, T ] → L2(Γ3) such that

u(t) ∈ Uad (Fε(u(t)), ε(v − u(t)))H + (E∗∇ϕ(t), ε(v − u(t))H+

+jad(β(t),u(t),v − u(t)) + jfr(β(t),Fε(u(t)) + E∗∇ϕ(t),u(t),v)−

−jfr(β(t),Fε(u(t)) + E∗∇ϕ(t),u(t),u(t)) ≥ (f(t), y − u(t))V ∀v ∈ Uad, t ∈ [0, T ],

(3.21)

(B∇ϕ(t),∇ψ)L2(Ω)d − (Eε(u(t)),∇ψ)L2(Ω)d = (q(t), ψ)W , ∀ψ ∈W,∀t ∈ [0, T ],

(3.22)

β̇(t) = −(β(t) (γνRν(uν(t))2 + γτ‖Rτ (uτ (t))‖2)− εa)+ a.e. t ∈ (0, T ), (3.23)

β(0) = β0. (3.24)
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In the rest of this section, we derive some inequalities involving the functionals

jad, and jfr which will be used in the following sections. Below in this section β, β1,

β2 denote elements of L2(Γ3) such that 0 ≤ β, β1, β2 ≤ 1 a.e. on Γ3, u1, u2,v1,v2,

u and v represent elements of V ; σ, σ1, σ2 denote elements of H1 and c is a generic

positive constants which may depend on Ω, Γ1, Γ3, p, γν , γτ and L, whose value may

change from place to place. For the sake of simplicity, we suppress in what follows

the explicit dependence on various functions on x ∈ Ω ∪ Γ3.

First, we remark that the jad is linear with respect to the last argument and

therefore

jad(β,u,−v) = −jad(β,u,v). (3.25)

Next, using (3.19) and the inequalities |Rν(u1ν)| ≤ L, ‖Rτ (uτ )‖ ≤ L,

|β1| ≤ 1, |β2| ≤ 1, for the previous inequality, we deduce that

jad(β1,u1,u2 − u1) + jad(β2,u2,u1 − u2) ≤ c

∫
Γ3

|β1 − β2| ‖u1 − u2‖ da,

then, we combine this inequality with (3.3), to obtain

jad(β1,u1,u2 − u1) + jad(β2,u2,u1 − u2) ≤ c ‖β1 − β2‖L2(Γ3)‖u1 − u2‖V . (3.26)

Next, we choose β1 = β2 = β in (3.26) to find

jad(β,u1,u2 − u1) + jad(β,u2,u1 − u2) ≤ 0. (3.27)

Similar manipulations, based on the Lipschitz continuity of operators Rν , Rτ show

that

|jad(β,u1,v)− jad(β,u2,v)| ≤ c ‖u1 − u2‖V ‖v‖V . (3.28)

Also, we take u1 = v and u2 = 0 in (3.27), then we use the equalities Rν(0) = 0,

Rτ (0) = 0 and (3.26) to obtain

jad(β,v,v) ≥ 0. (3.29)

Next, we use (3.20), (3.10)(a), keeping in mind (3.3), propriety of a normal regu-

larization operator and the inequalities |Rν(uν)| ≤ L, |β1| ≤ 1, |β2| ≤ 1 and the
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regularity of the operator R we obtain

jfr(β1,σ1,u1,v2)− jfr(β1,σ1,u1,v1) + jfr(β2,σ2,u2,v1)− jfr(β2,σ2,u2,v2) ≤

≤ c20M‖µ‖
L∞(Γ3)(||u2 − u1‖V + c(‖β2 − β1‖L2(Γ3) + ‖σ2−σ1||H1))||v2 − v1‖V .

(3.30)

now, by using (3.10)(a) and (3.16), it follows that the integral in (3.20) is well defined.

Moreover, we have

jfr(β,σ,u,v) ≤ c20M‖µ‖L∞(Γ3)‖(||u‖V ‖+ c(‖σ||H1 + ‖β‖L2(Γ3)))v‖V . (3.31)

The inequalities (3.26)-(3.31) combined with equalities (3.25) will be used in various

places in the rest of the paper.

4. Existence and uniqueness result

Our main result which states the unique solvability of Problem PV , is the

following.

Theorem 4.1. Assume that (3.6)-(3.8), (3.10) and (3.15)-(3.17) hold. Then, there

exists µ0 > 0 depending only on Ω,Γ1,Γ3, F, B and p such that, if ‖µ‖L∞(Γ3) < µ0,

then Problem PV has a unique solution (u, ϕ, β). Moreover, the solution satisfies

u ∈W 1,∞(0, T ;V ), (4.1)

ϕ ∈W 1,∞(0, T ;W ). (4.2)

β ∈W 1,∞(0, T ;L2(Γ3)) ∩Q. (4.3)

A “quintuple” of functions (u, σ, ϕ, D, β) which satisfy (2.1), (2.2), (3.21)-

(3.24) is called a weak solution of the contact problem P. We conclude by Theorem

4.1 that, under the stated assumptions, Problem P has a unique weak solution. To

precise the regularity of the weak solution we note that the constitutive relations

(2.1) and (2.2), the assumptions (3.6), (3.8) and the regularities (4.1), (4.2) show that

σ∈ W 1,∞([0, T ];H), D ∈ W 1,∞([0, T ];L2(Ω)d); moreover, (3.21), (3.22) combined

with the definitions of f q and functionals jad and jfr yield

Divσ(t) + f0(t) = 0, div D(t) = q0(t) ∀ t ∈ [0, T ].
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It follows now from the regularities (3.11), (3.9) that Divσ ∈W 1,∞(0, T ;L2(Ω)d) and

div D ∈W 1,∞(0, T ;L2(Ω)), which shows that

σ ∈ W 1,∞(0, T ;H1), (4.4)

D ∈ W 1,∞(0, T ;W1). (4.5)

We conclude that the weak solution (u,σ, ϕ,D, β) of the piezoelectric contact problem

P has the regularity (4.1), (4.2), (4.3), (4.4) and (4.5).

The proof of Theorem 4.1 is carried out in several steps and is based on the

following abstract result for variational inequalities.

Let X be a real Hilbert space with the inner product (·, ·)X and the associated

norm ‖ · ‖X , and consider the problem of finding u ∈ X such that

(Au, v − u)X + j(u, v)− j(u, u) > (f, v − u) ∀v ∈ X. (4.6)

To study problem (4.6) we need the following assumptions: The operator A : X → X

is strongly monotone and Lipschitz continuous, i.e.,

(a) There exists mA > 0 such that

(Au1 −Au2, u1 − u2)X ≥ mA‖u1 − u2‖2X ∀u1, u2 ∈ X.

(b) There exists LA > 0 such that

‖Au1 −Au2‖X ≤ LA‖u1 − u2‖X ∀u1, u2 ∈ X.

(4.7)

The functional j : X ×X → R satisfies:

(a) j(u, ·) is convex and l.s.c. on X for all u ∈ X.

(b) There exists m > 0 such that

j(u1, v2)− j(u1, v1) + j(u2, v1)− j(u2, v2)

≤ m ‖u1 − u2‖X ‖v1 − v2‖X ∀u1, u2, v1, v2 ∈ X.

(4.8)

Finally, we assume that

f ∈ X (4.9)

The following existence, uniqueness was proved in [28].

Theorem 4.2. Assume that (4.7), (4.8) and (4.9) hold. Then, if m < mA, for all

f ∈ X, there exists a unique solution u ∈ Y of Problem 4.6.
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We return now to proof of theorem 4.1. To this end, we assume in the

following that (3.6)-(3.8), (3.10)-(3.12) and (3.15)-(3.17) hold; below, c is a generic

positive constants which may depend on Ω, Γ1, Γ3, F , p, γν , γτ and L, whose value

may change from place to place. For the sake of simplicity, we suppress in what

follows the explicit dependence on various functions on x ∈ Ω ∪ Γ3.

Let L denotes the closed set of the space C([0, T ];L2(Γ3)) defined by

L =
{
β ∈ C([0, T ];L2(Γ3)) ∩Q | β(0) = β0

}
(4.10)

and let β ∈ L and g ∈ W 1,∞(0, T ;H1) are given. In the first step, we consider the

following variational problem.

Problem 4.3 (Pβg). Find a displacement field u : [0, T ] → V , an electric potential

field ϕ : [0, T ] →W such that

uβg(t) ∈ Uad, (F(ε(uβg(t))), ε(v)− uβg(t))H + (E∗∇ϕβg(t), ε(v − uβg(t)))H+

+jad(β(t),uβg(t),v − uβg(t)) + jfr(β(t), g(t),uβg(t),v)−

−jfr(β(t), g(t),uβg(t),uβg(t)) ≥ (f(t),v − uβg(t))V ∀v ∈ Uad, (4.11)

(B∇ϕβg(t),∇ψ)L2(Ω)d − (Eε(uβg(t)),∇ψ)L2(Ω)d = (q(t), ψ)W ∀ψ ∈W. (4.12)

In order to solve Problem Pβg we consider the product space X = V ×W

endowed with the inner product

(x, y)X = (u,v)V + (ϕ,ψ)W ∀x = (u, ϕ), y = (v, ψ) ∈ X (4.13)

and the associated norm ||.||X . We also introduce the set K ⊂ X and the function

Aβg : [0, T ]×X → X, f [0, T ] → X, defined by

K = Uad ×W, (4.14)
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(Aβg(t)x, y)X = (F(ε(u(t))), ε(v))H + (B∇ϕ(t),∇ψ)L2(Ω)d+ (4.15)

(E∗∇ϕ(t), ε(v))H − (Eε(u(t)),∇ψ)L2(Ω)d (4.16)

+jad(β(t),u(t),v) ∀x = (u, ϕ)V , y = (v, ψ)W ∈ X, t ∈ [0, T ],

jβg(x, y) = jfr(β(t), g(t),u(t),u(t)) ∀x = (u, ϕ), y = (v, ψ) ∈ X (4.17)

f=(f(t), q(t)) ∀t ∈ [0, T ]. (4.18)

We start with the following equivalence result.

Lemma 4.4. The couple (xβg, ϕβg) : [0, T ] → V ×W is a solution to Problem Pβg

if and only if xβg : [0, T ] → X satisfies

xβg ∈ K, (Aβg(t)xβ(t), y − xβg(t))X + jβg(xβg(t), y(t))− (4.19)

−jβg(xβg(t), xβg(t)) > (f(t), y − xβg(t))X ∀y ∈ K, for all t ∈ [0, T ].

Proof. Let xβg = (uβg, ϕβg) : [0, T ] → V ×W be a solution to Problem

Pβg. Let y = (v, ψ) ∈ K and let t ∈ [0, T ]. We use the test function ψ − ϕβg(t)

in (4.12), add the corresponding inequality to (4.11), and use (4.13)-(4.18) to obtain

(4.19). Conversely, assume that xβg = (uβg, ϕβg) : [0, T ] → X satisfies (4.19) and let

t ∈ [0, T ]. For any v ∈ Uad, we take y = (v, ϕβg(t)) in (4.19) to obtain (4.11). Then,

for any ψ ∈W , we take successively y = (uβg, ϕβg(t) + ψ) and y = (uβg, ϕβg(t)− ψ)

in (4.19) to obtain (4.12). �

We use now Lemma 4.4 to obtain the following existence and uniqueness

result.

Lemma 4.5. There exists µ0 > 0 depending only on Ω,Γ1,Γ3,F , B and p such that,

if ‖µ‖L∞(Γ3) < µ0, Problem Pβg has a unique solution (uβg, ϕβg) ∈ C([0, T ];V ×W ).

Proof. We apply Theorem 4.2 where X = V ×W and Y = K = Uad ×W.

Let t ∈ [0, T ].We use (3.6)-(3.9), (3.28), and (3.29) to see that Aβg(t) is a strongly

monotone Lipschitz continuous operator on X and it satisfies

(Aβg(t)x1(t)−Aβg(t)x2(t), x1(t)− x2(t))X > min(mF ,mB)||x1(t)− x2(t)||X . (4.20)

91



SALAH DRABLA AND ZILOUKHA ZELLAGUI

Using (3.20), we can easily check that jβg(x, .) is a continuous seminorm on X and

moreover, it satisfies (3.30) and(3.31) which shows that the functional jβg satisfies

condition (4.8) on .X. By (3.14) and (4.18) it is easy to see that the function f

defined by (4.18) satisfies f(t) ∈ X.

Let

µ0 =
min(mF ,mB)

c20M
,

where µ, mF , mB, c0 and M are given in (2.8), (3.6), (3.8), (3.3) and (3.10),

respectively. We note that µ0 depends on Ω,Γ1,Γ3,F , B and p. Assume that

‖µ‖L∞(Γ3) < µ0, then

c20M‖µ‖L∞(Γ3) < min(mF ,mB), (4.21)

and note that this smallness assumption involves only the geometry and the electrical

part, and does not depend on the mechanical data of problem.

Using (3.30), (3.31), 4.20, the existence and uniqueness part in Lemma 4.5 is

now a consequence of Lemma 4.4 and theorem 4.2.

For t1, t2 ∈ [0, T ], an argument based on (3.6), (3.28) and (3.30) shows that

||xβg(t2)− xβg(t1)||X ≤ c

min(mF ,mB)− c20‖µ‖L∞(Γ3)M
(||β(t2)− β(t1)||L2(Γ3)+

+||g(t2)− g(t1)||H1 + ||f(t2)− f(t1)||X). (4.22)

The last inequality implies that

||u(t2)− u(t1)||V ≤ c

mF − c20‖µ‖L∞(Γ3)M
(||β(t2)− β(t1)||L2(Γ3) +

+||g(t2)− g(t1)||H1 + ||f(t2)− f(t1)||X). (4.23)

Keeping in mind that f ∈ W 1,∞(0, T ;X) and recall that β ∈ C([0, T ];X), g ∈

W 1,∞(0, T ;H1), it follows now from (4.22) that the mapping t→ xβg = (uβg, ϕβg) :

[0, T ] → X is continuous. �

We assume in what follows that ‖µ‖L∞(Γ3) < µ0 and therefore (4.21) is valid.

In the next step, we use the displacement field uβg obtained in Lemma 4.5, denote

by uβgν , uβgτ its normal and tangential components, and we consider the following

initial value problem.

92



A ELECTRO-ELASTIC CONTACT PROBLEM

Problem 4.6 (Pθ
βg). Find a bonding field θβg: [0, T ] → L2(Γ3) such that

θ̇βg(t) = −
(
θβg(t)

(
γνRν(uβgν(t))2 + γτ‖Rτ (uβgτ (t))‖2

)
− εa

)
+

a.e. t ∈ (0, T ), (4.24)

θβg(0) = β0. (4.25)

We obtain the following result.

Lemma 4.7. There exists a unique solution to Problem Pθ
βg and it satisfies θβg∈

W 1,∞(0, T, L2(Γ3)) ∩Q

Proof. Consider the mapping Fβg : [0, T ]× L2(Γ3) → L2(Γ3) defined by

Fβg(t, θ) = −(θ(t)(γνRν((uβg)γ(t))2 + γτ‖Rτ ((uβg)τ (t))‖2)− εa)+, (4.26)

for all t ∈ [0, T ] and θ ∈ L2(Γ3). It follows from the properties of the truncation oper-

ators Rν and Rτ that Fβ is Lipschitz continuous with respect to the second argument,

uniformly in time. Moreover, for any θ ∈ L2(Γ3), the mapping t 7→ Fβg(t, θ) belongs

to L∞(0, T ;L2(Γ3)). Using now a version of Cauchy-Lipschitz theorem, we obtain the

existence of a unique function θβg ∈ W 1,∞(0, T, L2(Γ3)) which solves (4.24), 4.25).

We note that the restriction 0 ≤ β ≤ 1 is implicitly included in the variational problem

PV. Indeed, (3.23) and (3.24) guarantee that β(t) ≤ β0 and, therefore, assumption

(3.17) shows that β(t) ≤ 1 for t ≥ 0, a.e. on Γ3. On the other hand, if β(t0) = 0 at

t = t0, then it follows from (3.23) and (3.24) that β̇(t) = 0 for all t ≥ t0 and therefore,

β(t) = 0 for all t ≥ 0, a.e. on Γ3. We conclude that 0 ≤ β(t) ≤ 1 for all t ∈ [0, T ],

a.e. on Γ3. Therefore, from the definition of the set Q, we find that θβg ∈ Q, which

concludes the proof of Lemma. �

It follows from Lemma 4.7 that for all β ∈ L and g ∈ W 1,∞(0, T,H1) the

solution θβg of Problem Pθ
βg belongs to L ×W 1,∞(0, T, L2(Γ3)), see (4.10).

We denote now by σβg the tensor given by

σβg = Fε(uβg) + E∗∇(ϕβg). (4.27)

From see (3.6), (3.6) and Lemma 4.5, its follows that σβg ∈ C(0, T,H1). Therefore,

we may consider the operator Λ : L×C(0, T, L2(Γ3)×H1) → L×C(0, T, L2(Γ3)×H1)
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given by

Λ(β, g) = (θβg, σβg). (4.28)

The third step consists in the following result.

Lemma 4.8. There exists a unique element (β∗, g∗) ∈ L×C(0, T, L2(Γ3)×H1) such

that Λ(β∗, g∗) = (β∗, g∗).

Proof. Suppose that (βi, gi) are two couples of functions in

L × W 1,∞(0, T, L2(Γ3) × H1) and denote by (ui, ϕi), θi the functions obtained in

Lemmas 4.5 and 4.7, respectively, for (β, g)=(βi, gi), i = 1, 2. Let t ∈ [0, T ]. We use

arguments similar to those used in the proof of (4.22) to deduce that

||xβ1g1(t2)− xβ2g2(t1)||X ≤

≤ c

min(mF ,mB)− c20‖µ‖L∞(Γ3)M
(||β2(t)− β1(t)||L2(Γ3) + ||g2(t)− g1(t)||H1),

(4.29)

which implies

||u2(t)−u1(t))||V ≤ c

mF − c20‖µ‖L∞(Γ3)M
(||β2(t)−β1(t)||L2(Γ3) + ||g2(t)−g1(t)||H1).

(4.30)

On the other hand, it follows from (4.24) and (4.25) that

θi(t) = β0 −
∫ t

0

(θi(s)(γνRν(uiν(s))2 + γτ‖Rτ (uiτ (s))‖2)− εa)+ds (4.31)

and then

||θ2(t)− θ1(t)||L2(Γ3) ≤ c(
∫ t

0

||θ2(s)Rν(u2ν(s))2 − θ1(s)Rν(u1ν(s))2||L2(Γ3)ds+

+
∫ t

0

||θ2(s)||Rτ (u2τ (s))||2 − θ1(s)||Rτ (u1τ (s))||2||L2(Γ3)ds). (4.32)

Using the definition of Rν and Rτ and writing , θ1 = θ1 − θ2 + θ2 we get

||θ2(t)− θ1(t)||L2(Γ3) ≤ c(
∫ t

0

||θ2(s)− θ1(s)||L2(Γ3)ds+
∫ t

0

||u2(s))−u1(s))||L2(Γ3)ds).

(4.33)

By Gronwall’s inequality, it follows that

||θ2(t)− θ1(t)||L2(Γ3) ≤ c

∫ t

0

||u2(s))− u1(s))||L2(Γ3)ds (4.34)
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and, using (3.3), we obtain

||θ2(t)− θ1(t)||L2(Γ3) ≤ c

∫ t

0

||u2(s))− u1(s))||V ds. (4.35)

We now combine (4.30) and (4.35) to see that

||θ2(t)− θ1(t)||L2(Γ3) ≤

≤ c

min(mF ,mB)− c20‖µ‖L∞(Γ3)M

∫ t

0

(||β2(t)− β1(t)||L2(Γ3) + ||g2(t)− g1(t)||H1)ds.

(4.36)

Using now (3.6), (3.7) and (4.27) (4.29) it is easy to see that

‖σβ1g1(t)−σβ2g2(t)||≤
c

min(mF ,mB)−c20‖µ‖L∞(Γ3)M
(||β2(t)−β1(t)‖+‖g2(t)−g1(t)‖).

(4.37)

From (4.28), (4.30) and the last inequality, it results that

||Λ(β1, g1)(t)− Λ(β2, g2)(t)||L2(Γ3)×H1 ≤ N ||(β1, g1)(t)− (β2, g2)(t)||L2(Γ3)×H1+

+c
∫ t

0

||(β1, g1)(t)− (β2, g2)(t)||L2(Γ3)×H1ds. (4.38)

such that :

N =
c

min(mF ,mB)− c20‖µ‖L∞(Γ3)M
. (4.39)

Using the following notations

I0(t) = ||(β1, g1)(t)− (β2, g2)(t)||L2(Γ3)×H1 , (4.40)

I1(t) =
∫ t

0

||(β1, g1)(t)− (β2, g2)(t)||L2(Γ3)×H1ds,

Ik(t) =
∫ t

0

∫ sk−1

0

...

∫ s1

0

||(β1, g1)(t)− (β2, g2)(t)||L2(Γ3)×H1drds1...dsk−1, ∀k > 2,

and denoting now by Λp the powers of operator Λ, (4.38) and (4.40) imply by re-

currence that

‖Λp(β1, g1)(t)− Λp(β2, g2)(t)‖ ≤ (
p∑

k=0

Ck
p

Np−kMpT p

p!
)) ‖(β1, g1)(t)− (β2, g2)(t)‖

≤ (Np+MT )p

p!
‖(β1, g1)(t)− (β2, g2)(t)‖L2(Γ3)×H1

. (4.41)

95



SALAH DRABLA AND ZILOUKHA ZELLAGUI

Using the Stirling’s formula, we obtain under the condition N ≤ 1
e

that

lim
p→∞

(Np+MT )p

p!
= 0,

which shows that for p sufficiently large Λp : L × C(0, T,H1)→ L× C(0, T,H1) is a

contraction. Then, we conclude by using the Banach fixed point theorem that Λ has

a unique fixed point (β∗, g∗) ∈ L×C(0, T,H1) such that Λ(β∗, g∗) = (β∗, g∗). Hence,

from (4.28) it results for all t ∈ [0, T ],

(β∗, g∗)(t) = (θβ∗g∗(t), σβ∗g∗(t)). (4.42)

�

Now, we have all the ingredients to provide the proof of Theorem 4.1.

Proof of Theorem 4.1. Existence. Let (β∗, g∗) ∈ L × C(0, T,H1) be

the fixed point of Λ and let (u∗, ϕ∗) be the solution of Problem PβgV for (β, g) =

(β∗, g∗), that is, u∗ = uβ∗g∗ and ϕ∗ = ϕβ∗g∗ . Since θβ∗g∗ = β∗, we conclude by

(4.11)), (4.12), (4.24) and (4.25) that (u∗, ϕ∗, β∗) is a solution of Problem PV and,

moreover, β∗ satisfies the regularity (4.3). Also, since β∗ = θβ∗ ∈W 1,∞(0, T ;L2(Γ3)),

σβ∗g∗ ∈ W 1,∞(0, T,H1) and f ∈W 1,∞(0, T ;X), inequality (4.22) implies that the

function x∗ = (u∗, ϕ∗) : [0, T ] → X is Lipschitz continuous; therefore, x∗ belongs

to W 1,∞(0, T ;X), which shows that the functions x∗ and ϕ∗ have the regularity

expressed in (4.1), (4.2).

Uniqueness. The uniqueness of the solution is a consequence of the uniqueness

of the fixed point of operator Λ defined by (4.28). Indeed, let (u, ϕ, β) be a another

solution of Problem PV which satisfies (4.1)-(4.3).

We denote by (β, g) ∈W 1,∞(0, T, L2(Γ3)×H1) the couple of function defined by

β̇(t) = −(β(t) (γνRν(uν(t))2 + γτ‖Rτ (uτ (t))‖2)− εa)+ a.e. t ∈ (0, T ), (4.43)

β(0) = β0, (4.44)

g(t) = Fε(u(t)) + E∗∇(ϕ(t)). (4.45)
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It follows from (4.11), (4.12) that (u, ϕ) is a solution to Problem Pβg and, since by

Lemma 4.5 this problem has a unique solution denoted by (uβg, ϕβg), we obtain

u = uβg, (4.46)

ϕ = ϕβg. (4.47)

Then, we replace u = uβg in (3.23) and use the initial condition (3.24) to see that β

is a solution to Problem Pθ
βg. Since by Lemma 4.7 this last problem has a unique

solution denoted by θβg, we find

β = θβg. (4.48)

We use now (4.28), (4.48) and Lemma 4.8, it follows that

β = β∗. (4.49)

On a other hand, it follows from (4.46), (4.45), (4.46), (4.46) and Lemma 4.8 that

g = g∗ (4.50)

The uniqueness part of the theorem is now a consequence of (4.46), (4.47), (4.49) and

the last inequality. �
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INTEGRAL PROPERTIES OF SOME FAMILIES
OF MULTIVALENT FUNCTIONS WITH COMPLEX ORDER

H. ÖZLEM GÜNEY AND DANIEL BREAZ

Abstract. In the present paper, we study integral properties of two fam-

ilies of p-valently analytic functions of complex order defined of the deriv-

ative operator of order m. The obtained results improve known results.

1. Introduction

Let Ap(n) denote the class of functions of the form

f (z) = zp −
∞∑

k=n+p

akzk (ak ≥ 0;n, p ∈ N := {1, 2, 3, · · · }), (1)

which are analytic and p-valent in the open unit disk U = {z ∈ C : |z| < 1} . Upon

differentiating both sides (1) m-times with respect to z, we have

f (m) (z) =
p!

(p−m)!
zp−m −

∞∑
k=n+p

k!
(k −m)!

akzk−m (2)

where n, p ∈ N;m ∈ N0 := N ∪ {0}; p > m.

Making use of the function f (m) (z) given by (2), Srivastava and Orhan [1]in-

troduced the subclasses Rp
n,m(λ, b) and Lp

n,m(λ, b) of the p-valently analytic function

class Ap(n), which consist of functions f(z) satisfying the following inequality, respec-

tively: ∣∣∣∣1b
(

zf (1+m)(z) + λz2f (2+m)(z)
λzf (1+m)(z) + (1− λ)f (m)(z)

− (p−m)
)∣∣∣∣ < 1 (3)

and ∣∣∣∣1b (
f (1+m)(z) + λzf (2+m)(z)− (p−m)

)∣∣∣∣ < p−m, (4)

Received by the editors: 03.10.2008.

2000 Mathematics Subject Classification. 30C45, 33C20.

Key words and phrases. analytic function, p-valent function, integral operator.

101
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where z ∈ U; p ∈ N;m ∈ N0; p > m; 0 ≤ λ ≤ 1; b ∈ C \ {0}.

Also, in [1], Srivastava and Orhan proved the following characterization the-

orems of these subclasses.

Theorem A. Let f(z) ∈ Ap(n) be given by (1). Then f(z) ∈ Rp
n,m(λ, b) if

and only if
∞∑

k=n+p

(k + |b| − p)k![λ(k −m− 1) + 1]
(k −m)!

ak ≤
|b|p![λ(p−m− 1) + 1]

(p−m)!
. (5)

Theorem B. Let f(z) ∈ Ap(n) be given by (1). Then f(z) ∈ Lp
n,m(λ, b) if

and only if
∞∑

k=n+p

(
k

m

)
(k−m)[λ(k−m−1)+1]ak ≤ (p−m)

[
|b| − 1

m!
+

(
p

m

)
[λ(p−m− 1) + 1]

]
.

(6)

Also, let Ic : Ap(n) → Ap(n) be an integral operator defined by g = Ic(f),

where c ∈ (−p,∞), f ∈ Ap(n) and

g(z) =
c + p

zc

∫ z

0

tc−1f(t)dt. (7)

We note that if f ∈ Ap(n) is a function of the form (1), then

g(z) = Ic(f)(z) = zp −
∞∑

k=n+p

c + p

c + k
akzk. (8)

The main object of the present work is to investigate the integral properties

of p-valently functions belonging to the subclasses Rp
n,m(λ, b) and Lp

n,m(λ, b).

Our properties of the function classesRp
n,m(λ, b) and Lp

n,m(λ, b) are motivated

essentially by several earlier investigations including in [2].

2. Integral properties of the class Rp
n,m(λ, b)

Theorem 1. Let p ∈ N;m ∈ N0; p > m; b ∈ C \ {0} and c ∈ (−p,∞). If

f ∈ Rp
n,m(λ, b) and g = Ic(f), then g ∈ Rp

n,m(λ, γ) where

|γ| = (c + p)|b|
(c + p + n + |b|)

(9)

and |γ| < |b|. The result is sharp.
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Proof. From Theorem A and from (8), we have g ∈ Rp
n,m(λ, γ) if and only

if
∞∑

k=n+p

(k + |γ| − p)k!(p−m)![λ(k −m− 1) + 1](c + p)
(k −m)!|γ|p![λ(p−m− 1) + 1](c + k)

ak ≤ 1. (10)

We note that for k ≥ n + p the inequalities

(k + |γ| − p)k!(p−m)![λ(k −m− 1) + 1](c + p)
(k −m)!|γ|p![λ(p−m− 1) + 1](c + k)

≤ (k + |b| − p)k!(p−m)![λ(k −m− 1) + 1]
(k −m)!|b|p![λ(p−m− 1) + 1]

(11)

imply (10), because f ∈ Rp
n,m(λ, b) and it is satisfies (5). This inequality is equivalent

to
(k + |γ| − p)(c + p)

|γ|(c + k)
≤ (k + |b| − p)

|b|
and we obtain

|γ| ≥ (k − p)(c + p)|b|
(k + |b| − p)(c + k)− |b|(c + p)

; k ≥ n + p ; γ = γ(p, k, c, b). (12)

And now, we show that |γ| is a decreasing function of k, k ≥ n + p. Indeed, let

h(x) =
(x− p)(c + p)|b|

(x + |b| − p)(c + x)− |b|(c + p)
;x ∈ [n + p,∞) ⊂ [n,∞). (13)

We have

h′(x) =
−(x− p)2(c + p)|b|

((x + |b| − p)(c + x)− |b|(c + p))2
< 0. (14)

This implies

|γ(p, k, c, b)| ≤ |γ| = |γ(p, n + p, c, b)| ; k ≥ n + p. (15)

The result is sharp, because

Ic(fb) = fγ (16)

where

fb(z) = zp − |b|p!(n + p−m)![λ(p−m− 1) + 1]
(p−m)!(n + p)![n + |b|][λ(n + p−m− 1) + 1]

zn+p (17)

and

fγ(z) = zp − |γ|p!(n + p−m)![λ(p−m− 1) + 1]
(p−m)!(n + p)![n + |γ|][λ(n + p−m− 1) + 1]

zn+p (18)
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are extremal functions of Rp
n,m(λ, b) and Rp

n,m(λ, γ), respectively. Indeed we have

Ic(fb)(z) = zp − |b|p!(n + p−m)![λ(p−m− 1) + 1](c + p)
(p−m)!(n + p)![n + |b|][λ(n + p−m− 1) + 1](c + p + n)

zn+p

(19)

Thus we deduce
|γ|

n + |γ|
=

|b|(c + p)
[n + |b|](c + p + n)

(20)

and this implies (16). From |γ|
n+|γ| = |b|(c+p)

[n+|b|](c+p+n) , we obtain |γ| > 0. Also, we have

|γ| < |b|. Indeed,

|γ| − |b| = − [n + |b|]|b|
|b|+ (c + p + n)

< 0. (21)

Remark 1. In Theorem 1, if we take p = 1,m = 0, b = 1−α and γ = 1− β,

we obtain

β = 1− (c + 1)(1− α)
2− α + c + n

(22)

which was proved by Salagean [2].

3. Integral properties of the class Lp
n,m(λ, b)

Theorem 2. Let p ∈ N;m ∈ N0; p > m; b ∈ C \ {0} and c ∈ (−p,∞). If

f ∈ Lp
n,m(λ, b) and g = Ic(f), then g ∈ Lp

n,m(λ, β) where

|β| =
(c + p)|b|+ n(1− p!

(p−m)! [λ(p−m− 1) + 1])

c + p + n
(23)

and |β| < |b|. The result is sharp.

Proof. Using similar arguments as given by Theorem 1, we can get the

result.

Remark 2. In (7), for p = n = 1, we obtain the integral operator of Bernardi

[3],

Ic : A1(1) → A1(1)

defined by h = Ic(f), where c > −1, f ∈ A1(1),

h(z) =
c + 1
zc

z∫
0

tc−1f(t)dt.
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Also, for p = c = n = 1, we obtain the integral operator of Libera [4],

I1 : A1(1) → A1(1)

defined by h1 = I1(f), where f ∈ A1(1),

h1(z) =
2
z

z∫
0

f(t)dt.

Corollary 1.Let b ∈ C − {0}, c ∈ (−1,∞). If f ∈ L1
1,0(λ, b) and h = Ic(f)

is the Bernardi operator, then h ∈ L1
1,0(λ, β), where

|β| = c + 1
c + 2

|b| .

Proof. In Theorem 2, we consider p = n = 1 and m = 0.

Corollary 2.Let b ∈ C− {0}. If f ∈ L1
1,0(λ, b) and h1 = I1(f) is the Libera

operator, then h ∈ L1
1,0(λ, β), where

|β| = 2
3
|b| .

Proof. In Theorem 2, we consider p = n = 1, m = 0 and c = 1.
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APPROXIMATION OF CONTINUOUS FUNCTIONS
ON V.K. DZJADYK CURVES

SADULLA Z. JAFAROV

Abstract. In the given paper rational approximation is studied on closed

curves of a complex plane for continuous functions in terms of the k-th

modulus of continuity, k ≥ 1. Here a rational function interpolates a

continuous function at definite points.

1. Introduction and main result

Let Γ be an arbitrary restricted Jordan curve with two -component com-

plements Ω = CΓ = Ω1

⋃
Ω2, (0 ∈ Ω1,∞ ∈ Ω2). Let’s consider the functions

w = Φi(z), (i = 1, 2), that conformally and univalently maps respectively Ωi onto

Ω
′

i, (Ω
′

1 = {w : |w| < 1} , Ω
′

2 = {w : |w| > 1}), with norm Φ1(0) = 0, Φ
′

1(0) >

0, Φ2(∞) = ∞, lim
z→∞

1
z Φ2(z) > 0. Let’s extend each Φi(z), (i = 1, 2) continuously

up to the bound Γ = ∂Ω1 = ∂Ω2 (generally speaking Φ1(z) 6= Φ2(z) for z ∈ Γ). We

preserve the notation Φi, (i = 1.2) for the extension.Let z = Ψi(w) be the inverse

mapping of w = Φi(z), (i = 1, 2).

For A > 0 and B > 0, we use the expression A � B (order inequality) if

A ≤ CB. The expression A � B means that A � B and B � A hold simultaneously.

By C (Γ) we denote a class of functions continuous on Γ. For δ > 0 and fixed

uo ∈ (0, 1) we assume

U (z, δ)) = {ζ : |ζ − z| < δ} , d (ζ, Γ) = inf
z∈Γ

|ζ − z|,

Received by the editors: 01.08.2008.
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Γδ =
⋃
z∈Γ

U (z, δ) = {ζ : d (ζ, Γ) < δ} ,

Γ1+u0 = {ζ : ζ ∈ Ω2; |Φ2(ζ)| = 1 + u0} ,

Γ1−u0 = {ζ : ζ ∈ Ω1; |Φ1(ζ)| = 1− uo} ,

D1
uo

= intΓ1+u0 , D
2
uo

= extΓ1−uo
,

Duo
= D1

u0

⋂
D2

u0
,

δ∗n = sup
ζ∈intΓ1+ 1

n
∩ extΓ1− 1

n

d (ζ, Γ) , n = 1, 2, · · · ,

where under int Γ we understand a finite domain whose boundary coincides with

Γ, under ext Γ we understand a finite domain whose domain coincides with Γ. Let

Rn, n = 0, 1, 2, ... be a set of all complex rational functions of power no higher than

n. For f ∈ C(Γ) we define

En(f,Γ) := inf
rn∈Rn

sup
z∈Γ

|f(z)− rn(z)| = inf
rn∈Rn

‖f − rn‖Γ.

In connection with ”simultaneous approximation and interpolation” the fol-

lowing claims are suggested in the paper [14, p.310]. Let z1, z2, ..., zp ∈ Γ be definite

points and f ∈ C(Γ). In this case for ∀n ∈ N,n ≥ p − 1, there exists a rational

function rn ∈ Rn, for which

‖f − rn‖Γ ≤ cEn(f,Γ),

rn(zj) = f(zj), (j = 1, 2, ..., p),

where c > 0 is independent n and f . The appropriate rational function is written in

the following form

rn(z) = r∗n(z) +
p∑

j=1

q(z)
q′(zj)(z − zj)

(f(zj)− r∗n(zj)),

where

q(z) =
p∏

j=1

(z − zj)

and r∗n ∈ Rn satisfies the following condition

‖f − r∗n‖Γ = En(f,Γ).
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Definition 1.[11] Let Γ be a rectifiable Jordan curve. By θ(z, δ), z ∈ Γ, 0 <

δ < +∞ we denote the length of a part of Γ getting into the U(z, δ) = ζ : |ζ − z| < δ.

We attribute the curve Γ to the class S if it is fulfilled the condition

θΓ(δ)
df
= sup

z∈Γ
θ(z, δ) � δ.

Let’s give the definition of a class of V.K. Dzjadyk curves B∗
k in a briefly and

slightly modified form. (see [7, p.439-440]).

Definition 2. We’ll say that a rectifiable Jordan curve Γ belongs to the class B∗
k for

some natural k if Γ ∈ S and satisfies the following conditions

(i) |z̃ − z| � ρ1+ 1
n
(z),

where ∀z ∈ Γ, z̃ = Ψ2((1 + 1
n )Φ2(z)), ρ1+ 1

n
(z) = inf

ζ∈Γ1+ 1
n

|ζ − z|,

(ii) |ζ̃ − ζ|k ≤ |ζ̃ − z|k−1|z̃ − z|,∀z, ζ ∈ Γ.

We’ll study the functions for which the k-th modulus of continuity (k ∈ N)

have been defined. There are some different definitions of such continuity modulus

(see [6], [8], [13], [15]). The most convenient for our aim is the definition given by

E.M. Dynkin [8].

Definition 3. The k-th local modulus of continuity we’ll call the quantity

ωf,k,z,Γ(δ) = Ek−1(f,Γ ∩ U(z, δ)),

where f ∈ C(Γ), k ∈ N, z ∈ Γ, δ > 0.

Definition 4.The k-th global modulus of continuity we’ll call the quantity

ωf,k,Γ(δ) = sup
z∈Γ

ωf,k,z,Γ(δ).

In particular,

ωf,k,Γ(tδ) ≤ c1t
kωf,k,Γ(δ) (t > 1, δ > 0). (1)

If 0 < δ < 1, there exists a constant c2, that

δ∫
0

ωf,k,Γ(t)
dt

t
≤ c2ωf,k,Γ(δ). (2)

The following theorems is the main result of the report.
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Theorem 1. Let Γ ∈ B∗
k , f ∈ C(Γ), k ∈ N and z1, z2, ..., zp ∈ Γ be distinct points.

Then for each n ∈ N,n ≥ p+k there exists a rational function rn ∈ Rn for which the

following conditions are fulfilled

|f(z)− rn(z)| ≤ c1ωf,k,Γ(δ∗n) (z ∈ Γ), (3)

rn(zj) = f(zj) (j = 1, 2, ..., p), (4)

where the constant c1 is independent of n.

The rational functions play an important role in many areas of applied math-

ematics and mechanics. It is actually the approximation of continuous functions by

rational functions or some other functions, which can be found easily. The Theorem

1 studies rational approximations (in terms of the k-th modulus of continuity, k ≥ 1)

for continuous functions defined on closed curves Γ in the complex plane, which si-

multaneously interpolate at given points of Γ. The similar results for the analytic

functions in different continua were obtained in the papers [5], [15], [1].

2. Subsidiary facts

By obtaining the main result we use an approximation of Cauchy kernel

(s− z)−1 by rational functions of the form

Kn(ζ, z) =
n∑

j=−n

aj(ζ)zj .

To construct rational functions a rational kernel suggested by V.K. Dzjadyk

(see [7, ch.9] or [3, ch.3]) is used.

Lemma 1. Let Γ be an arbitrary Jordan curve, 0 < u0 < 1 be an arbitrary fixed

number, c = 2(1 + u0)e2π. Then for all natural n = 1.2, ... and ζ ∈ Du0\Γδ∗( c
n )

there exists the function Πn(ζ, z) =
n∑

j=−n

aj(ζ)zj with continuous with respect to ζ

coefficients aj , j = −n, n, that for z ∈ Γ and p = 0, 1 satisfies the inequalities

| ∂p

∂zp
[

1
ζ − z

−Πn(ζ, z)]| � δ∗
2
(
1
n

)|ζ − z|−p−3 (5)

| ∂p

∂zp
Πn(ζ, z)| � |ζ − z|−p−1. (6)
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The lemma is proved similarly to Corollary 4 of the paper [2]. It should be

only noted that Πn(ζ, z) is a polynomial kernel for ζ ∈
{

D1
uo
\Γδ∗( c

n )
}
∩ Ω2. In the

case ζ ∈
{

D2
uo
\Γδ∗( c

n )
}
∩ Ω1 as it is shown in the paper [4] it gives us a rational

function.

Lemma 2. Let Γ ∈ B∗
k , 0 < u0 < 1 be an arbitrary number. Then for any n = 1, 2...

and ζ ∈ Duo there exists a rational function Kn (ζ, z) with respect to the variable z

with summable with respect to s coefficients for which for z ∈ Γ and p = 0, 1 the

inequalities ∣∣∣∣ ∂p

∂zp

[
1

ζ − z
−Kn (ζ, z)

]∣∣∣∣ � 1
|ζ − z|p+1

[
δ∗n

|ζ − z|+ δ∗n

]2
, (7)∣∣∣∣ ∂p

∂zp
Kn (ζ, z)

∣∣∣∣ � [|ζ − z|+ δ∗n]−p−1
. (8)

are fulfilled.

Proof. Let n be sufficiently large. Assume c = 2 (1 + u0) e2π. By compactness of

Γδ∗( c
n ) we can distinguish a finite number of points ζ1, ζ2, ..., ζm ∈ Γδ∗( c

n ), for which

Γδ∗( c
n ) ⊂

m⋃
k=1

U (ζk, δ∗n) .

Since Γ ∈ B∗
k , at each point ζk, k = 1,m we can construct the point

ζ
′

k ∈ Du0\Γδ∗( c
n ) with the following condition∣∣∣ζk − ζ

′

k

∣∣∣ � δ∗n. (9)

We can easily see that∣∣∣ζ ′k − z
∣∣∣ � |ζ − z|+ δ∗n, z ∈ Γ, ζ ∈ U (ζk, δ∗n) . (10)

By the identity

1
ζ − z

=
1

ζ
′
k − z

+
ζ
′

k − ζ(
ζ
′
k − z

)2 +

(
ζ
′

k − ζ

ζ
′
k − z

)2
1

ζ − z

consider for ζ ∈ U (ζk, δ∗n) , k = 1,m the function

λ(k)
n (ζ, z) = Πn

(
ζ
′

k, z
)

+
(
ζ
′

k − ζ
)(

Π[n
2 ]
(
ζ
′

k, z
))2

,
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where Πn

(
ζ
′

k, z
)
) is the function from Lemma 1. We construct the required function

Kn (ζ, z) as follows:

1) If ζ ∈ U (ζ1, δ
∗
n) we assume

Kn (ζ, z) = λ(1)
n (ζ, z)

2) If ζ ∈ U (ζk, δ∗n) \
k−1⋃
j=1

U (ζj , δ
∗
n) , k = 2,m we assume

Kn (ζ, z) = λ(k)
n (ζ, z) .

3) If ζ ∈ Du0\

{
m⋃

j=1

U (ζj , δ
∗
n)

}
, we take the appropriate function from

Lemma 1. Now the affirmation of Lemma 2 follows from the above mentioned con-

structions, Lemma 1, estimates of the following easily verifiable relations

1
ζ − z

− λ(k)
n (ζ, z) =

(
ζ
′

k − ζ

ζ
′
k − z

)2
1

ζ − z
+
(

1
ζ
′
k − z

−Πn

(
ζ
′

k, z
))

+

+
(
ζ
′

k − ζ
)[ 1(

ζ
′
k − z

)2 − (Π[n
2 ]
(
ζ
′

k, z
))2

]
,

∣∣∣∣ ∂p

∂zp

[
1

ζ − z
− λ(k)

n (ζ, z)
]∣∣∣∣ � 1

|ζ − z|p+1

(
δ∗n

|ζ − z|+ δ∗n

)2

,∣∣∣∣ ∂p

∂zp
λ(k)

n (ζ, z)
∣∣∣∣ � (|ζ − z|+ δ∗n)−p−1

,

where ζ ∈ U (ζk, δ∗n) , z ∈ Γ, p = 0, 1.

Let’s give a result in slightly modified form cited in the papers [8], [9], [12],

[13, p.13-15].

Lemma 3. Let Γ ∈ B∗
k and F ∈ C (Γ) . Then we can continue the function F (z)

on the complex plane C so that the following relations be fulfilled (we keep denotation

F (z)): (i) for z ∈ C\Γ ∣∣∣∣∂F (z)
∂z̄

∣∣∣∣ ≤ c1
ωF,k,z,Γ (c2d (z,Γ))

d (z,Γ)
,

where c1 = c1 (k, diamΓ).

(ii) if ζ ∈ Γ, z ∈ C, |z − ζ| < δ, 0 < δ < 1
2diamΓ, then

|F (z)−RF,k,ζ,Γ,δ (z)| ≤ c3ωF,k,ζ,Γ (c4δ) ,
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where RF,k,ζ,Γ,δ (z) ∈ Rk−1 is such a rational function that

‖F −RF,k,ζ,Γ,δ‖Γ∩D(ζ,δ) = ωF,k,ζ,Γ (δ) ,

and c3 = c3 (k).

(iii) If F satisfies the Lipschitz condition on Γ, i.e.

|F (z)− F (ζ)| ≤ c |z − ζ| , z, ζ ∈ Γ,

then the continued function for z, ζ ∈ C satisfies the same condition. Here, instead

of c there will be the constant c4 = c4 (c, diamΓ, k) .

3. The proof of the main result (Theorem 1)

Let’s fix a point z0 ∈ Γ and assume for ζ ∈ Γ

F (ζ) =
∫

γ(z0,ζ)

f (ξ) dξ,

where γ (z0, ζ) ⊂ Γ is an arc connecting the points z0 and ζ.

We extend the function F (ζ) continuously on the complex plane C. Let z

and ζ ∈ Γ, |ζ − z| ≤ δ, the arc γ (z, ζ) ⊂ intΓ connects these points, mesγ (z, ζ) ≤

c |z − ζ| , c = c (Γ) ≥ 1. We’ll have

F (ζ) = F (z) +
∫

γ(z,ζ)

f (ξ) dξ = νδ (ζ, z) + +
∫

γ(z,ζ)

(f (ξ)−Rf,k,z,Γ,cδ (ξ)) dξ,

ωF,k+1,z,Γ (δ) ≤ ‖F − νδ (., z) ‖Γ∩D(z,δ) � δω (δ) ,

where ω (δ) := ωf,k,Γ (δ) .

Using Lemma 3 for ζ ∈ G := intΓ1+ 1
2
∩ extΓ 1

2
we have∣∣∣∣∂F (ζ)

∂ζ̄

∣∣∣∣ � ω (d (ζ, Γ)) . (11)

Besides, for z ∈ Γ, ζ ∈ C, |z − ζ) | ≤ δ < diamΓ we have

|F (ζ)− νδ (ζ, z)| � δω (δ) . (12)

Indeed, for ζ ∈ Γ ∩D (z, δ) the following inequality is valid

|νδ (ζ, z)−RF,k+1,z,Γ,δ (ζ)| ≤ |F (ζ)− νδ (ζ, z)|+ |F (ζ)−RF,k+1,z,Γ,δ (ζ)| � δω (δ) .
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By Bernstein-Walsh lemma (see [14, p.77]) we have

‖νδ (., z)−RF,k+1,z,Γ,δ‖D(z,δ) � δω (δ) (13)

We introduce a rational kernel Qn
2

(ζ, z) := K[n
2 ] (ζ, z) , where Kn (ζ, z) is a rational

kernel from Lemma 2. By virtue of (3) and (4) ζ ∈ intΓ1+ 1
2
∩ extΓ 1

2
, z ∈ Γ we have∣∣∣∣ 1

ζ − z
−Qn

2
(ζ, z)

∣∣∣∣ � 1
|ζ − z|

(
δ∗n

|ζ − z|+ δ∗n

)2

, (14)

∣∣Qn
2

(ζ, z)
∣∣ � 1

[|ζ − z|+ δ∗n]
(15)

For z ∈ Γ we give the approximate rational function by the formula

Rn (z) = − 1
π

∫
G

∂F (ζ)
∂ζ̄

Q2
n
2

(ζ, z) dm (ζ) ,

where dm (ζ) means integration with respect to the two-dimensional Lebesgue mea-

sure (area).

Let z ∈ Γ and assume Un := U (z, δ∗n) , γn := ∂Un. By lemma (iii) of the

Lemma 3 F ∈ ACL in C (absolutely continuous on all horizontal and verticals in C).

Then we apply the Green formula (see [10]) and have

f (z)−Rn (z) = 1
π

∫
G\Un

∂F (ζ)

∂ζ̄

(
Q2

n
2

(ζ, z)− 1
(ζ−z)2

)
dm (ζ)

+ 1
π

∫
Un

∂F (ζ)

∂ζ̄
Q2

n
2

(ζ, z) dm (ζ) +

+f (z)− 1
2πi

∫
γn

F (ζ)

(ζ−z)2
dζ = U1 (z) + U2 (z) + U3 (z) .

(16)

Now, we estimate each Ui (z) , i = 1, 2. In relation (16) passing to polar

coordinates and using (1), (2), (11), (14) and (15) the first two integrals are estimated

in the following way:

|U1 (z)| =

∣∣∣∣∣∣∣
1
π

∫
G\Un

∂F (ζ)
∂ζ̄

(
Q2

n
2

(ζ, z)− 1
(ζ − z)2

)
dm (ζ)

∣∣∣∣∣∣∣ ≤

≤ 1
π

∫
G\Un

∣∣∣∣∂F (ζ)
∂ζ̄

∣∣∣∣
∣∣∣∣∣Q2

n
2

(ζ, z)− 1
(ζ − z)2

∣∣∣∣∣ dm (ζ) � (17)
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�
c∫

δ∗n

ω (r)
(δ∗n)3

r4
dr � ω (δ∗n) δ∗n

c∫
δ∗n

dr

r2
� ω (δ∗n) ,

|U2 (z)| =

∣∣∣∣∣∣ 1π
∫

Un

∂F (ζ)
∂ζ̄

Q2
n
2

(ζ, z) dm (ζ)

∣∣∣∣∣∣ ≤
≤ 1

π

∫
Un

∣∣∣∣∂F (ζ)
∂ζ̄

∣∣∣∣ ∣∣∣Q2
n
2

(ζ, z)
∣∣∣ dm (ζ) �

δ∗n∫
o

ω (r)
r

dr � ω (δ∗n) . (18)

Now let’s estimate U3 (z). We have

|U3 (z)| =

∣∣∣∣∣∣f (z)− 1
2πi

∫
γn

F (ζ)
(ζ − z)2

dζ

∣∣∣∣∣∣ ≤
∣∣∣f (z)−

(
νδ∗n

)′
ζ
(z, z)

∣∣∣+
+

1
2π

∣∣∣∣∣∣
∫
γn

F (ζ)− νδ∗n (ζ, z)

(ζ − z)2
dζ

∣∣∣∣∣∣ . (19)

The estimate∣∣∣f (z)−
(
νδ∗n

)′
ζ
(z, z)

∣∣∣ = ∣∣f (z)−Rf,k,z,Γ,cδ∗n (z)
∣∣ ≤ ω (cδ∗n) � ω (δ∗n) (20)

is true. By inequalities (19), (20), and (12) we have

|U3 (z)| � ω (δ∗n) (21)

Comparing estimates (16), (17), (18) and (21) we have

|f (z)−Rn (z)| � ω (δ∗n) , z ∈ Γ. (22)

Now, let’s construct rational function for which conditions (3) and (4) are

fulfilled. Let n > 2p. Let’s construct the following functions

V n
2+1

(ζ, z) = 1− (ζ − z) Qn
2

(ζ, z) , ζ, z ∈ Γ,

un (z) =
p∑

j=1

q (z)
q′ (zj) (z − zj)

(f (zj)− tn (zj))V n
2+1

(zj , z) .

By (14) and (22) we have

|un (z)| �
′∑
j

ω (δ∗n)
(

δ∗n
|z − zj |+ δ∗n

)2

, z ∈ Γ,
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where
′∑
j

means the sum in all j with zj ∈ Γ.

Let’s construct the required rational function in the following form

rn (z) = tn (z) + un (z) . (23)

Obviously the rational function of the form (23) satisfies conditions (3) and (4).
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LIV, Number 1, March 2009

THE STABILITY OF THE EQUILIBRIUM STATES
FOR SOME MECHANICAL SYSTEMS

MIRCEA PUTA† AND DORIN WAINBERG

Abstract. In the first part of the paper some theoretical results (including

the Lyapunov-Malkin theorem) are presented, followed in the second part

by some of its applications in geometrical mechanics.

1. Theoretical aspects

To explain the stability concept, we need some basic notions and results from

the theory of dynamical systems.

The lows of Dynamics are usually presented as equations of motion, which

we will write as differential equations:

ẋ = f(x) (1)

where

x =


x1

x2

...

xn

 ∈ Rn

is a variable describing the state of the system. The function

f : Rn → Rn

is smooth of x, and

ẋ =
dx

dt
.
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The set of all allowed x forms the state space of (1). When the time advances,

the system’s state is changed.

Definition 1. An point xe ∈ Rn is called equilibrium point for the system (1) if:

f(xe) = 0.

Remark 1. It is clear that the constant function

x(t) = xe

is a solution for (1) and from the existence and uniqueness theorem it results that

does not exists other solution containing xe. So the unique trajectory starting at xe

is xe itself, i.e. xe does not changes in time.

Definition 2. Let xe be an equilibrium state for (1). We will say that xe is nonlinear

stable (or Lyapunov stable) if for any neighborhood U of xe there exists a neighborhood

V of xe, V ⊂ U such that any solution x(t), initially in V (i.e. x(0) ∈ V ), never

leaves U .

Definition 3. If V in Definition 2 can be chosen such that

lim
t→∞

x(t) = xe,

then xe is called asymptotically stable.

Definition 4. An equilibrium state xe that is not stable is called unstable.

Let us consider the following system of differential equations of order one: ẋ = Ax + X(x, y)

ẏ = By + Y (x, y)
(2)

where x ∈ Rm, y ∈ Rn, A and B are constant matrices such that all eigenvalues of

A are of nonzero real parts and all eigenvalues of B are of zero real parts, and the

functions X, Y satisfy the following conditions:

i) X(0, 0) = 0,

ii) dX(0, 0) = 0,

iii) Y (0, 0) = 0,

iv) dY (0, 0) = 0.

120



THE STABILITY OF THE EQUILIBRIUM STATES FOR SOME MECHANICAL SYSTEMS

We will take now the particular case of (2) in which the matrix B is On. The

equations (2) become:  ẋ = Ax + X(x, y)

ẏ = Y (x, y).
(3)

Theorem 1. (Lyapunov-Malkin) Under the above conditions, if all eigenvalues of

A have negative real parts and X(x, y) and Y (x, y) vanish when x = 0, then the

equilibrium state

x = 0, y = 0

of the system (2) is nonlinear stable with respect to (x, y) and asymptotically stable

with respect to X.

For the proof of this basic result see Zenkov, Bloch and Marsden [5].

2. Two application of Lyapunov-Malkin theorem

In this section we study the stability of the equilibrium points for some con-

crete mechanical systems.

Example 1. (3-dimensional Toda lattice with two controls)

The dynamics of the generalized 3-dimensional Toda lattice with two controls

is described by the following system:

q̇1 = 2p2
1

q̇2 = 2p2
2 − 2p2

1

q̇3 = −2p2
2

ṗ1 = p1q2 − p1q1 + u1

ṗ2 = p2q3 − p2q2 + u2.

(4)

In what follows we shall employ the controls: u1 = αp1

u2 = βp2
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where α, β ∈ R, α, β < 0. Then the system (4) takes the following form:

q̇1 = 2p2
1

q̇2 = 2p2
2 − 2p2

1

q̇3 = −2p2
2

ṗ1 = p1q2 − p1q1 + αp1

ṗ2 = p2q3 − p2q2 + βp2.

(5)

Now we can consider:

x =

 p1

p2

 , y =


q1

q2

q3


X(x, y) =

 p1q2 − p1q1

p2q3 − p2q2



Y (x, y) =


2p2

1

2p2
2 − 2p2

1

−2p2
2

 .

In those conditions the system (5) can be written in the following equivalent form: ẋ = Ax + X(x, y)

ẏ = Y (x, y)

where:

A =

 α 0

0 β

 .

We will verify the conditions in the Lyapunov-Malkin theorem. We have

successively:

i) X(0, 0) =

 p1q2 − p1q1

p2q3 − p2q2


(0,0,0,0,0)

=

 0

0

 ,

Y (0, 0) =


2p2

1

2p2
2 − 2p2

1

−2p2
2


(0,0,0,0,0)

=


0

0

0

 .
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ii) X(0, y) =

 0

0

 , for any y ∈ R3,

Y (0, y) =


0

0

0

 , for any y ∈ R3.

iii) DX
Dx

∣∣
(0,0)

=

 ∂(p1q2−p1q1)
∂p1

∂(p1q2−p1q1)
∂p2

∂(p2q3−p2q2)
∂p1

∂(p2q3−p2q2)
∂p2


(0,0,0,0,0)

=

 q2 − q1 0

0 q3 − q2


(0,0,0,0,0)

=

 0 0

0 0

 ,

DX
Dy

∣∣∣
(0,0)

=

 ∂(p1q2−p1q1)
∂q1

∂(p1q2−p1q1)
∂q2

∂(p1q2−p1q1)
∂q3

∂(p2q3−p2q2)
∂q1

∂(p2q3−p2q2)
∂q2

∂(p2q3−p2q2)
∂q3


(0,0,0,0,0)

=

 −p1 p1 0

0 −p2 p2


(0,0,0,0,0)

=

 0 0 0

0 0 0

 ,

DY
Dx

∣∣
(0,0)

=


∂(2p2

1)
∂p1

∂(2p2
1)

∂p2

∂(2p2
2−2p2

1)
∂p1

∂(2p2
2−2p2

1)
∂p2

∂(−2p2
2)

∂p1

∂(−2p2
2)

∂p1


(0,0,0,0,0)

=


4p1 0

−4p1 4p2

0 −4p2


(0,0,0,0,0)

=


0 0

0 0

0 0

 ,

DY
Dy

∣∣∣
(0,0)

=


∂(2p2

1)
∂q1

∂(2p2
1)

∂q2

∂(2p2
1)

∂q3

∂(2p2
2−2p2

1)
∂q1

∂(2p2
2−2p2

1)
∂q2

∂(2p2
2−2p2

1)
∂q3

∂(−2p2
2)

∂q1

∂(−2p2
2)

∂q1

∂(−2p2
2)

∂q3


(0,0,0,0,0)

=


0 0 0

0 0 0

0 0 0

 .

iv) The characteristic polynomial of matrix A is

PA(x) = det

 α− x 0

0 β − x

 = (α− x)(β − x).
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It has negative roots α and β. Hence the eigenvalues of the matrix A are x1 = α <

0, x2 = β < 0.

We can conclude with:

Remark 2. The equilibrium state (0, 0, 0, 0, 0) for the system (4) is nonlinear stable.

Example 2. (Maxwell-Bloch equations with two controls)

The Maxwell-Bloch equations with two controls on axes Ox1 and Ox2 are

writing in the following form: 
ẋ1 = x2 + u1

ẋ2 = x1x3 + u2

ẋ3 = −x1x2.

(6)

The controls u1 and u2 will be written as:

u1(x1, x2, x3) = αx1

u2(x1, x2, x3) = βx2,

where α, β ∈ R, α, β < 0. Then our dynamics takes the following form:
ẋ1 = x2 + αx1

ẋ2 = x1x3 + βx2

ẋ3 = −x1x2.

(7)

If we take:

x =

 x1

x2

 , y = x3,

X(x, y) =

 0

x1x3

 ,

Y (x, y) = −x1x2

then the system (7) can be written in the following equivalent form: ẋ = Ax + X(x, y)

ẏ = Y (x, y)
(8)

where:

A =

 α 1

0 β

 .
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Now we must verify the conditions from the Lyapunov-Malkin theorem for

system (8). We have successively:

i) X(0, 0) =

 0

x1x3


(0,0,0)

=

 0

0

 ,

Y (0, 0) = [x3](0,0,0) = 0.

ii) X(0, y) =

 0

0

 , (∀) y ∈ R3,

Y (0, y) = 0, (∀) y ∈ R3.

iii) DX
Dx

∣∣
(0,0)

=

 ∂0
∂x1

∂0
∂x2

∂(x1x3)
∂x1

∂(x1x3)
∂x2


(0,0,0)

=

 0 0

x3 0


(0,0,0)

=

 0 0

0 0

 ,

DX
Dy

∣∣∣
(0,0)

=

 ∂0
∂x3

∂(x1x3)
∂x3


(0,0,0)

=

 0

x1


(0,0,0)

=

 0

0

 ,

DY
Dx

∣∣
(0,0)

=
[
−x2 −x1

]
(0,0,0)

=
[

0 0
]
(0,0,0)

,

DY
Dy

∣∣∣
(0,0)

= [0](0,0,0) = [0].

iv) Again the characteristic polynomial of A is

PA(x) = det

 α− x 1

0 β − x

 = (α− x)(β − x),

and it has negative roots. So we have the eigenvalues of the matrix A, x1 = α <

0, x2 = β < 0.

We can conclude, by Lyapunov-Malkin theorem, that:

The equilibrium state (0, 0, 0) for the system (6) is nonlinear stable.
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ABOUT THE UNIVALENCE OF THE BESSEL FUNCTIONS

RÓBERT SZÁSZ AND PÁL AUREL KUPÁN

Abstract. The authors of [1] and [3] deduced univalence criteria concern-

ing Bessel functions. In [3] the author used the theory developed in [2]

to obtain the desired result. In this paper we will extend a few results

obtained in [3] employing elementary methods.

1. Introduction

Let

U(z0, r) = {z ∈ C : |z − z0| < r}

be the disc with center z0 and of the radius r, the particular case U(0, 1) will be

denoted by U. The Bessel function of the first kind is defined by

Jν(z) =
∞∑

n=0

(−1)n

n!Γ(n + ν + 1)

(
z

2

)2n+ν

.

The series, which defines Jν is everywhere convergent and the function defined by the

series is generally not univalent in any disc U(0, r). We will study the univalence of

the following normalized form:

fν(z) = 2νΓ(1 + ν)z−
ν
2 Jν(z

1
2 ), gν(z) = zfν(z). (1)

2. Preliminaries

In order to prove our main result we need the following lemmas.
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Lemma 1 ([3], equality (6)). The function fν satisfies the equality:

f ′ν(z) = −1
2
fν+1(z).

Lemma 2. Let R be the function defined by the equality

R(θ) =
∞∑

n=3

(−1)n(ν + 1)n cos nθ

n!(ν + 1)...(ν + n)
, θ ∈ R, ν ∈ (−1,∞).

The following inequality holds∣∣R(θ)
∣∣ ≤ (ν + 1)2

4(ν + 2)(ν + 3)
, θ ∈ R.

Proof. Since

R(θ) =
ν + 1
ν + 2

∞∑
n=3

(−1)n(ν + 1)n−2 cos nθ

n!(ν + 3)...(ν + n)

it follows that ∣∣R(θ)
∣∣ ≤ ν + 1

ν + 2

∞∑
n=3

∣∣∣∣ (−1)n(ν + 1)n−2 cos nθ

n!(ν + 3)...(ν + n)

∣∣∣∣ ≤
ν + 1
ν + 2

∞∑
n=3

(ν + 1)n−2

n!(ν + 3)...(ν + n)
≤ (ν + 1)2

(ν + 2)(ν + 3)

∞∑
n=3

1
n!
≤ (ν + 1)2

4(ν + 2)(ν + 3)
.

�

Lemma 3. If z ∈ U then

|g′ν(z)− gν(z)
z

| ≤ 2 + ν

(1 + ν)(4ν + 7)
, (2)

|fν(z)| =
∣∣gν(z)

z

∣∣ ≥ 4ν2 + 10ν + 5
(1 + ν)(4ν + 7)

, (3)

∣∣f ′ν(z)
∣∣ ≤ ν + 2

(ν + 1)(4ν + 7)
. (4)

Proof. If z ∈ U then the triangle inequality implies that:

∣∣g′ν(z)− gν(z)
z

∣∣ =
∣∣∣∣ ∞∑

n=1

(−1)nn

4nn!(ν + 1)...(ν + n)
zn

∣∣∣∣ ≤
∞∑

n=1

n

4nn!(ν + 1)...(ν + n)
.
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Since
∞∑

n=1

n

4nn!(ν + 1)...(ν + n)
≤ 1

4(ν + 1)

∞∑
n=0

(
1

4(ν + 2)

)n

=
2 + ν

(1 + ν)(4ν + 7)

we obtain (2).

By using again the triangle inequality, we deduce that

|gν(z)
z

| ≥ 1−
∞∑

n=1

∣∣∣∣ (−1)n

4nn!(ν + 1)...(ν + n)
zn

∣∣∣∣ ≥ 1−
∞∑

n=1

1
4nn!(ν + 1)...(ν + n)

and so the inequality

1−
∞∑

n=1

1
4nn!(ν + 1)...(ν + n)

≥ 1− 1
4(ν + 1)

∞∑
n=1

1
[4(ν + 2)]n−1

=

4ν2 + 10ν + 5
(1 + ν)(4ν + 7)

leads to (3). Using similar ideas we obtain the following inequality chain

∣∣f ′ν(z)
∣∣ ≤ ∞∑

n=1

∣∣∣∣ (−1)nzn

4n(n− 1)!(1 + ν)...(n + ν)

∣∣∣∣ ≤ ∞∑
n=1

1
4n(n− 1)!(1 + ν)...(n + ν)

≤

1
4(1 + ν)

∞∑
n=0

(
1

4(2 + ν)

)n

=
ν + 2

(ν + 1)(4ν + 7)
.

This means that (4) also holds. �

3. The main result

Theorem 4. If ν > −1 then

Refν(z) > 0, for all z ∈ U(0, 4(1 + ν)).

Proof. The minimum principle for harmonic functions implies that

Refν(z) ≥ inf
θ∈R

Refν(rνeiθ), for all z ∈ U(0, 4(1 + ν))

where rν = 4(1 + ν). According to the definition of fν , we have

fν(z) = 1 +
∞∑

n=1

(−1)nzn

4nn!(ν + 1)...(ν + n)
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and

Refν(rνeiθ) = 1 + Re
∞∑

n=1

(−1)n(ν + 1)neinθ

n!(ν + 1)...(ν + n)

= 1− cos θ +
ν + 1

2(ν + 2)
cos 2θ +

∞∑
n=3

(−1)n(ν + 1)n cos nθ

n!(ν + 1)...(ν + n)
.

If we let

P (θ) = 1− cos θ +
ν + 1

2(ν + 2)
cos 2θ and R(θ) =

∞∑
n=3

(−1)n(ν + 1)n cos nθ

n!(ν + 1)...(ν + n)

then

Refν(rνeiθ) = P (θ) + R(θ). (5)

A study of the behaviour of the function

P : R → R, P (θ) = 1− cos θ +
ν + 1

2(ν + 2)
cos 2θ

leads to the inequalities

P (θ) ≥ ν + 1
2(ν + 2)

, θ ∈ R, ν ∈ (−1, 0) and

P (θ) ≥ ν2 + 4ν + 2
4(ν + 1)(ν + 3)

, θ ∈ R, ν ∈ (0,∞). (6)

From (5), Lemma 1 and (6) it follows that

Refν(rνeiθ) ≥ min
θ∈R

P (θ)−max
θ∈R

R(θ) ≥ 0.

�

Now Lemma 1 and Theorem 1 imply the following result:

Theorem 5. If ν > −2 then Ref ′ν(z) < 0 for z ∈ U(0, 4(ν + 2)) and hence fν is

univalent in U(0, 4(ν + 2)).

Remark 6. Theorem 1 and Theorem 2 improves Lemma 1 and Theorem 1 from [3].

Theorem 7. If ν > −17+
√

33
8 then the function fν is convex in U.

Proof. We introduce the notation p1(z) = 1 + zf ′′
ν (z)

f ′
ν(z) . The function fν is

convex if and only if

Rep1(z) > 0, z ∈ U. (7)
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It is simple to prove that if ∣∣p1(z)− 1
∣∣ < 1, z ∈ U (8)

then results (7).

Lemma 1 leads to the equality∣∣p1(z)− 1
∣∣ =

∣∣∣∣zf ′ν+1(z)
fν+1(z)

∣∣∣∣.
In (3) and (4) replacing ν by ν + 1, we deduce that if z ∈ U then∣∣∣∣zf ′ν+1(z)

fν+1(z)

∣∣∣∣ ≤ ν + 3
4ν2 + 18ν + 19

.

Now to prove (7) it is enough to show that ν+3
4ν2+18ν+19 < 1, but this is immediately

using the condition ν > −17+
√

33
8 . �

Theorem 8. If ν >
√

3
2 − 1 then the function gν defined by (1) is starlike of order 1

2

in U .

Proof. Let p be the function defined by the equality p2(z) = 2zg′
ν(z)

gν(z) − 1.

Since gν(z)
z 6= 0, z ∈ U the function p2 is analytic in U and p2(0) = 1. The assertion

of Theorem 2 is equivalent to

Rep2(z) > 0, z ∈ U. (9)

It is simple to prove that if ∣∣p2(z)− 1
∣∣ < 1, z ∈ U (10)

then results (9).

On the other hand inequalities (2) and (3) lead to

∣∣p2(z)− 1
∣∣ = 2

∣∣∣∣g′ν(z)− gν(z)
z

gν(z)
z

∣∣∣∣ <
2(2 + ν)

4ν2 + 10ν + 5
, z ∈ U.

This means that if 2(2+ν)
4ν2+10ν+5 < 1 then (8) holds, but this inequality is a consequence

of the condition ν >
√

3
2 − 1. �

Corollary 9. If ν >
√

3
2 − 1 then the function hν defined by the equality hν(z) =

z1−νJν(z) is starlike in U.
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The proof of this result is based on Theorem 3 and is similar to the proof of

Corollary 2 in [3], hence we do not reproduce it here again.

Remark 10. Theorem 3, Theorem 4 and Corollary 1 improves the results of Theorem

2, Theorem 3 and Corollary 2 in [3].
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BOOK REVIEWS

Advanced Courses in Mathematical Analysis, I, A. Aizpuru-Tomas and F. Leon-
Saavedra (Editors), World Scientific Publishers, London - Singapore 2004, vii+155
pp, ISBN: 981-256-060-2

The volume contains the written versions of the lectures delivered at the
First International Course of Mathematical Analysis in Andalucia, organized by the
University of Cadiz from 23 to 27 September, 2005. The aim of the course was
to bring together different research groups working in mathematical analysis and to
provide the young researchers of these groups with access to the most advanced lines
of research. A second course took place in September 2004 in Granada.

There are included five survey papers: 1. Y. Benyamini, Introduction to
uniform classification of Banach spaces ; 2. M. Gonzáles, An introduction to local
duality for Banach spaces ; 3. V. Müller, Orbits of operators ; 4. E. Matouškova,
S. Reich and A. J. Zaslavski, Genericity in nonexpansive mapping theory ; 5. A. R.
Palacios, Absolute-valued algebras, and absolute-valuable Banach spaces.

The first paper is the only updated survey on the classification of Banach
spaces under uniformly continuous mappings. Its aim is to introduce the reader to
this area and to present some results and open questions, a complete presentation
of these problems and of other related ones being given in the recent treatise of Y.
Beniaminy and J. Lindenstrauss, Nonlinear Geometric Functional Analysis, I., AMS,
2000.

The local duality for Banach spaces is a tool recently developed by the author
of the second paper and some co-workers, which turned to be very useful in the study
Banach spaces, mainly in the case when the dual of a Banach space is too large.

V. Müller emphasizes in the third paper the relevance of the orbit method
and of Scott Brown’s technique in the study of invariant subspaces.

It is known that nonexpansive mappings could note have fixed points, but,
as it was shown by F. S. De Blasi and J. Myjak in 1976, most of them (in the sense
of Baire category) do have. The fourth paper surveys various category and porosity
results concerning the well-posedness of the fixed point problem for nonexpansive
mappings, most of them being obtained recently by the authors.

An absolute-valued algebra is a normed algebra A such that ‖xy‖ = ‖x‖‖y‖,
for all x, y ∈ A. As it is well-known, if A is associative and commutative then it agrees
with R or C, and with the quaternion field H if A is only associative. Therefore, the
interesting case is that of non-associative absolute-valued algebras, presented in the
last paper of the book. The results are presented from historical perspective to the
frontier of current research in the field.
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The book contains surveys of some topics of interest in the current research
in functional analysis, written by leading experts in the area. It can be used as an
introductory material for young researchers, as a guide to more advanced books or
research papers.

S. Cobzaş

I. Kleiner, A History of Abstract Algebra, xvi+168 pp, Birkhäuser, Boston -
Basel - Berlin, 2007, ISBN: 978-0-8176-4684-4

The book gives an original and well–documented account of the history of
abstract algebra. If for the usual history of facts the chronological order seems to
be of a great importance, we could say that for the history of sciences the thematic
order is most significant. The main themes of abstract algebra are groups, rings,
fields and vector spaces. Them are devoted four chapter of the book, namely chapters
2–5, preceded by an introductory chapter, focusing on the roots coming from classical
algebra. The book continues with a presentation of Emmy Noether’s influential work.
The seventh chapter of the book is thought as a Course in Abstract Algebra inspired
by History, and it is devoted to some problems which are rich sources of ideas in this
area. The last chapter contains biographies of some great mathematicians, whose work
is related with crucial developments in algebra: Arthur Cayley, Richard Dedekind,
Evariste Galois, Carl Friedrich Gauss, William Rowan Hamilton and Emmy Noether.

In conclusion the book offers a proof how the knowledge of the history of a
scientific domain, may be useful for understanding, study and research in this area.
It is therefore useful for teachers, students and anyone having interests in (history of)
abstract algebra.

George Ciprian Modoi

Stephen I. Campbell and Richard Haberman, Introduction to differential
equations with dynamical systems, Princeton University Press, 430 pp., Prince-
ton and Oxford 2008, ISBN 13: 978-0-691-12474-2

This is a textbook for undergraduate students which contains the standard
topics for differential equations. The book emphasizes linear constant coefficients
equations and applications. The authors describe applications in populations growth,
mixing problem, mechanical vibrations and electrical circuits.

The book is structured in 6 chapters.
Chapter 1 is concerned with first order differential equations and their ap-

plications and contains 12 sections. Section 1.7 describes the elementary methods to
solve first order differential equations with constant coefficients and constant input.
First order differential equations have many important applications, sections 1.8-1.9
discuss population growth, radioactive decay, Newton’s law of cooling and mixture
problem.
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Chapter 2 covers linear second and higher order differential equations. The
reader can easy follow this chapter since in section 2.1 the authors introduce the idea
of linearity, the general solution is the sum of a particular solution and a linear combi-
nation of homogeneous solutions. The applications of second order linear differential
equations are given in Newton’s law, mechanical vibrations with no dumping, three
cases of damped mechanical vibrations and forced vibrations including a very detailed
oriented discussion of mechanical resonance.

Chapter 3 presents the method of solving differential equations using Laplace
Transforms. More in depth discussion of second order differential equations is possible
in the cases of discontinuous forcing with Heaviside function, periodic forcing and
impulsive forcing using delta function.

Chapter 4-6 contain an introduction to dynamical systems generated by dif-
ferential equations and systems of differential equations. Chapter 4 describes linear
systems of two differential equations, methods to solve linear systems with constant
coefficients and how to construct their phase plane.

Chapter 5 is dedicated to nonlinear autonomous differential equations. There
are presented the notions of equilibrium points, stability and one-dimensional phase
line.

Chapter 6 discusses equilibrium, linear stability and phase plane of nonlinear
planar systems of differential equations.

Marcel-Adrian Şerban
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