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THE GLOBAL BEHAVIOR OF THE DIFFERENCE EQUATION

F. BOZKURT, I. OZTURK, AND S. OZEN

Abstract. In this paper, we investigate the global stability and the peri-

odic nature of the positive solutions of the difference equation

yn+1 = α +
yn−1

yn
− yn

yn−1
, n = 0, 1, 2, ...,

where α > 0 and the initial conditions y0, y−1 are arbitrary positive real

numbers.

1. Introduction

Consider the difference equation

yn+1 = α+
yn−1

yn
− yn

yn−1
, n = 0, 1, 2, ... (1.1)

where α > 0 and the initial conditions y0, y−1 are arbitrary positive real numbers.We

investigate the asymptotic stability and the periodic character of the solutions of Eq.

(1.1).

We prove that the positive equilibrium point of Eq. (1.1) is local asymptotic

stable or a saddle point under specified conditions of the parameter and show that the

solution of the subtraction of two difference equations in [1] and [3], which solutions

are globally asymptotically stable, are also asymptotically stable.

The global asymptotic stability, the boundedness character and the periodic

nature of the positive solutions of the following difference equation

xn+1 = α+
xn−1

xn
, n = 0, 1, 2, ... (1.2)
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was investigated in [1], where α ∈ [0,∞) and the initial conditions x−1 and x0 are

arbitrary positive real numbers. H. M. El- Owaidy et al. [2] studied the global

stability and the periodic character of positive solutions of the difference equation

xn+1 = α+
xn−k

xn
, n = 0, 1, 2, ... (1.3)

where α ∈ [1,∞) , k ∈ {1, 2, ...} and the initial conditions x−k, ..., x0, x−1 are arbitrary

positive real numbers.

R. M. Abu-Saris and R. De Vault find conditions for the global asymptotic

stability of the unique positive equilibrium

ȳ = A+ 1

of the equation

xn+1 = A+
yn

yn−k
, n = 0, 1, 2, ... (1.4)

where A,y−k, ..., y0, y−1 ∈ (0,∞) and k ∈ {2, 3, ...} [3].

Here, we recall some definitions and results which will be useful in the sequel.

Let I ⊂ R and let f : I × I → I be a continuous function. Consider the

difference equation

yn+1 = f(yn, yn−1), n = 0, 1, 2, ... (1.5)

where the initial conditions y0, y−1 ∈ I. We say that ȳ is an equilibrium of Eq. (1.5)

if

yn+1 = f(ȳ, ȳ), n = 0, 1, 2, ... (1.6)

Let

s =
∂f

∂u
(ȳ, ȳ) and t =

∂f

∂v
(ȳ, ȳ)

denote the partial derivatives of f (u, v) evaluated at an equilibrium ȳ of Eq. (1.5).

Then the equation

xn+1 = sxn + txn−1

is called the linearized equation associated with Eq. (1.5) about the equilibrium point

ȳ [4].
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The sequence {yn} is said to be periodic with period p if

yn+p = yn

for n = 0, 1, ... [5].

Theorem 1.1. [4] (Linearized Stability)

xn+1 = sxn + txn−1 (1.7)

is the linearized equation associated with the difference equation

yn+1 = f(yn, yn−1), n = 0, 1, 2, ... (1.8)

about the equilibrium point ȳ. The characteristic equation associated with (1.7) is

λ2 − sλ− t = 0. (1.9)

(i) If both roots of the quadratic equation (1.9) lie in the unit disk |λ| < 1, then the

equilibrium ȳ of Eq. (1.8) is locally asymptotically stable.

(ii) If at least one of the roots of Eq. (1.9) has absolute value greater than

one, then the equilibrium of Eq. (1.8) is unstable.

(iii) A necessary and sufficient condition for both roots of Eq. (1.9) to lie in

the open unit disk |λ| < 1, is

|s| < 1− t < 2.

In this case the locally asymptotically stable equilibrium point ȳ is also called a sink.

(iv) A necessary and sufficient condition for both roots of Eq. (1.9) to have

absolute value greater than one is

|t| > 1 and |s| < |1− t| .

In this case ȳ is called a repeller.

(v) A necessary and sufficient condition for one root of Eq. (1.9) to have

absolute value greater than one and for the other to have absolute value less than one

is

s2 + 4t > 0 and |s| > |1− t| .

In this case the unstable equilibrium point is called a saddle point.
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Theorem 1.2 [6] Assume that p,q∈ R and k ∈ {0, 1, ...}. Then

|p|+ |q| < 1

is a sufficient condition for asymptotic stability of the difference equation

xn+1 − pxn + qxn−k = 0. (1.10)

Suppose in addition that one of the following two cases holds:

(i) k odd and q < 0

(ii) k even and pq < 0.

Then (1.10) is also a necessary condition for asymptotic stability of Eq.

(1.10).

Theorem 1.3. [7] Consider the difference equation

yn+1 = f(yn, yn−k), n = 0, 1, 2, ... (1.12)

where k ∈ {1, 2, ...}. Let I=[a,b] be some interval of real numbers, and assume that

f:[a,b]x[a,b]→ [a, b] is a continuous function satisfying the following properties:

(i) f(u,v) is non-increasing in each arguments.

(ii) If (m,M)∈ [a, b]x[a, b] is a solution of the system

M = f(m,m),m = f(M,M) (1.13)

then m=M. From this, Eq. (1.12) has a unique positive equilibrium point and every

solution of Eq. (1.12) converges to ȳ.

2. Linearized stability and period two solutions

In this section, we consider Eq. (1.1) and show that unique positive equilib-

rium point ȳ =α of Eq. (1.1) is asymptotically stable with basin which depends on

certain conditions posed on the coefficient.

The linearized equation associated with Eq. (1.1) about the equilibrium ȳ is

xn+1 +
2
α
xn −

2
α
xn−1 = 0. (2.1)
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Its characteristic equation is

λ2 +
2
α
λ− 2

α
= 0. (2.2)

By Theorem 1.1. and Theorem 1.2. we have the following results.

Theorem 2.1. (i) The equilibrium point ȳ of Eq. (1.1) is locally asymptot-

ically stable iff α > 4.

(ii) The equilibrium point ȳ of Eq. (1.1) is unstable ( and in fact is a saddle

point ) if 0 < α < 4.

Proof. (i) The inequality (1.10) can be written as∣∣∣∣ 2
α

∣∣∣∣ +
∣∣∣∣−2
α

∣∣∣∣ < 1 . (2.3)

This inequality holds if α > 4. By using Theorem 1.2., we can also see that q=−2
α < 0.

These results give us necessary and sufficient conditions for the asymptotic stability

of Eq. (2.1) .

(ii) From Theorem 1.1./(v) we have,(
−2
α

)2

+ 4
(

2
α

)
> 0 and

∣∣∣∣−2
α

∣∣∣∣ > ∣∣∣∣1− 2
α

∣∣∣∣ .
Easy computations give (

−2
α

)2

+ 4
(

2
α

)
=

4
α2

+
8
α
> 0

and ∣∣∣∣−2
α

∣∣∣∣ > ∣∣∣∣1− 2
α

∣∣∣∣ .
Then we have the inequality

2 > |α− 2| .

This implies that by Theorem 1.1./(v), the equilibrium point is unstable (and is a

saddle point).

Theorem 2.2. Suppose that {yn}∞n=−1 6= 2 is a solution of Eq. (1.1). The

following statements are true.

(i) If 0 < α ≤ 4, then Eq. (1.1) has no real period two solutions. Suppose k

is odd.

(ii) If α > 4, then Eq. (1.1) has real period two solutions.
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Proof. Let

..., φ, ψ, φ, ψ, ...

be a period-2 solution of Eq. (1.1). Then,

φ = α+
φ

ψ
− ψ

φ
(2.4)

ψ = α+
ψ

φ
− φ

ψ
. (2.5)

Subtracting above two statements, we get

ψ =
2φ
φ− 2

. (2.6)

From (2.6), we have

φ2 − 2αφ+ 4α = 0. (2.7)

We consider (2.7) under two cases, where ∆ indicates the discriminant of (2.7).

(i) Let ∆ = 0. Under this condition we have α = 0 and α = 4.If Eq. (1.1)

has period 2 solutions then it must be ∆ 6= 0. This implies that if α ∈ (0, 4], then Eq.

(1.1) has no period 2 solutions.

(ii) Let ∆ > 0. In this case we have α > 4. While α > 4, Eq. (1.1) has

period 2 solutions. These solutions are

φ1 = α+
√
α (α− 4) and φ2 = α−

√
α (α− 4)

and they must be of the form

..., α−
√
α (α− 4), α+

√
α (α− 4), ...

Theorem 2.3. Suppose α > 4. Let be {yn}∞n=−1 6= 2 be a solution of Eq.

(1.1). If {yn}∞n=−1 6= 2 is periodic with period-2, then y0 is

y0 =
− (y−1 − α) y−1 ± y−1

√
(y−1 − α)2 + 4

2
. (2.8)

Proof. If the solution of Eq. (1.1) is periodic with period- 2, we can write

Eq.(1.1) as

y−1 = α+
y−1

y0
− y0
y−1

.
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Computations give

y2
0 + y−1y0 (y−1 − α)− y2

−1 = 0,

and we have ∆ = y2
−1

[
(y−1 − α)2 + 4

]
> 0. So, we obtain

y0 = −(y−1−α)y−1±y−1

√
(y−1−α)2+4

2 .

Theorem 2.4. Let {yn}∞n=−1 be a solution of Eq. (1.1). Then the following

statements are true.

1. Let α = 2
√
L− 1 and L > 1.

(i) If lim
n→∞

y2n = L, then lim
n→∞

y2n+1 = L√
L−1

.

(ii) If lim
n→∞

y2n+1 = L, then lim
n→∞

y2n = L√
L−1

.

2. Let α > 2
√
L− 1 and L > 1.

(i) If lim
n→∞

y2n = L, then lim
n→∞

y2n+1 =
L

[
α±
√

α2−4(L−1)
]

2(L−1) .

(ii) If lim
n→∞

y2n+1 = L, then lim
n→∞

y2n =
L

[
α±
√

α2−4(L−1)
]

2(L−1) .

Proof. 1. (i) Let lim
n→∞

y2n = L and lim
n→∞

y2n+1 = x. By Eq (1.1) we have

x = α+
x

L
− L

x

and so we get (
L− 1
L

)
x2 − αx+ L = 0. (2.9)

Since ∆ = α2 − 4 (L− 1), the discriminant is ∆ = 0. So, (2.9) has only one root,

and that is

x = lim
n→∞

y2n+1 =
L√
L− 1

.

(ii) The proof is similar and will be omitted.

2. (i) Let lim
n→∞

y2n = L and lim
n→∞

y2n+1 = x. While α > 2
√
L− 1, then from

(2.9) we have ∆ > 0. So,

x = lim
n→∞

y2n+1 =
L

[
α±

√
α2 − 4 (L− 1)

]
2 (L− 1)

.

(ii) The proof follows in the same way.
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3. Analysis of the semi-cycles of eq.(1.1)

In this section, we give some results about the semi-cycles of Eq. (1.1).

Let {yn}∞n=−1 be a positive solution of Eq. (1.1). A positive semi-cycle of

{yn}∞n=−1 consists of a “string” of terms {yp, yp+1, ..., ym}, all greater than or equal

to ȳ, with p≥ −1 and m≤ ∞ and such that either p=-1 or p > −1 and yp−1 < ȳ and

either m=∞ or m<∞ and ym+1<ȳ.

A negative semi-cycle of consists of {yn}∞n=−1 consists of a “string” of terms

{yq, yq+1, ..., yl}, all less than with and and such that either q=-1 or q>-1 and yq−1 ≥ ȳ

and either l=∞ or l<∞ and yl+1 ≥ ȳ.

A solution {yn}∞n=−1 of Eq. (1.1) is non-oscillatory if there exists N≥ −1

such that either

yn > ȳ for all n≥ N or

yn < ȳ for all n≥ N .

{yn}∞n=−1 is called oscillatory if it is not non-oscillatory.

Theorem 3.1. Let {yn}∞n=−1 be a positive solution of Eq. (1.1) which

consists of a single semi-cycle. Then {yn}∞n=−1converges monotonically to ȳ = α .

Proof. Suppose 0<yn−1 < α for all n≥ 0. Note that for all n≥ 0,

0 < α+
yn−1

yn
− yn

yn−1
< α

and so

0 < yn−1 < yn < α.

From this it is clear that the positive solutions converge monotonically to ȳ.

Theorem 3.2. Let be {yn}∞n=−1a positive solution of Eq. (1.1) which

consists at least two semi-cycles. Then {yn}∞n=−1is oscillatory.

Proof. We consider the following two cases.

Case I. Suppose that y−1 < α ≤ y0. Then

y1 = α+
y−1

y0
− y0
y−1

< α

10
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and

y2 = α+
y0
y1
− y1
y0

> α.

Case II. Suppose that y0 < α ≤ y−1. Then

y1 = α+
y−1

y0
− y0
y−1

> α

and

y2 = α+
y0
y1
− y1
y0

< α.

Hence the proof is complete.

4. Global asymptotically stability of eq. (1.1)

In this section, we find a global asymptotic stability result for Eq. (1.1).

Lemma 4.1. Let α ∈ (0,∞) and f(u, v) = α + v
u −

u
v . If u,v∈ (0,∞), then

f(u,v) is nonincreasing in each arguments.

Proof. The proof is simple and will be omitted.

Theorem 4.1. Let α > 4. Then the unique positive equilibrium ȳ of Eq.

(1.1) is globally asymptotically stable.

Proof. For u,v∈ (0,∞), set f(u, v) = α+ v
u−

u
v . Then f:IxI→ I is a continuous

function and is non-increasing in each arguments. Let (m,M)∈ IxI is a solution of

the system

M = f(m,m)

m = f(M,M),

then

M = α+
m

m
− m

m

and

m = α+
M

M
− M

M
.

Since M-m=0, we get m=M. By using Theorem 1.3, we have which shows

that is globally asymptotically stable equilibrium point of Eq. (1.1).

lim
n→∞

yn = ȳ

11
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which shows that ȳ = α is globally asymptotically stable equilibrium point of Eq.

(1.1).

Acknowledgement. The first-named author would like to thank the Sci-

entific and Technical research Council of Turkey (TUBITAK) for financial helps

(code:2211).
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LIV, Number 2, June 2009

A DIFFERENTIAL SANDWICH THEOREM FOR ANALYTIC
FUNCTIONS DEFINED BY THE INTEGRAL OPERATOR

LUMINIŢA-IOANA COTÎRLĂ

Abstract. Let q1 and q2 be univalent in the unit disk U , with q1(0) =

q2(0) = 1. We give an application of first order differential subordination

to obtain sufficient condition for normalized analytic functions f ∈ A to

satisfy

q1(z) ≺
(

Inf(z)

z

)δ

≺ q2(z),

where In is an integral operator.

1. Introduction

Let H = H(U) denote the class of functions analytic in

U = {z ∈ C : |z| < 1}.

For n a positive integer and a ∈ C, let

H[a, n] = {f ∈ H : f(z) = a+ anz
n + . . . }.

We also consider the class

A = {f ∈ H : f(z) = z + a2z
2 + . . . }.

We denote by Q the set of functions f that are analytic and injective on

U \ E(f), where

E(f) =
{
ζ ∈ ∂U : lim

z→ζ
f(z) = ∞

}
and are such that f ′(ζ) 6= 0 for ζ ∈ ∂U \ E(f).

Received by the editors: 01.10.2008.
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Since we use the terms of subordination and superordination, we review here

those definitions.

Let f, F ∈ H. The function f is said to be subordinate to F or F is said

to be superordinate to f , if there exists a function w analytic in U , with w(0) = 0

and |w(z)| < 1, and such that f(z) = F (w(z)). In such a case we write f ≺ F

or f(z) ≺ F (z). If F is univalent, then f ≺ F if and only if f(0) = F (0) and

f(U) ⊂ F (U).

Since most of the functions considered in this paper and conditions on them

are defined uniformly in the unit disk U , we shall omit the requirement ”z ∈ U”.

Let ψ : C3 × U → C, let h be univalent in U and q ∈ Q. In [3] the authors

considered the problem of determining conditions on admissible function ψ such that

ψ(p(z), zp′(z), z2p′′(z); z) ≺ h(z) (1.1)

implies p(z) ≺ q(z), for all functions p ∈ H[a, n] that satisfy the differential subordi-

nation (1.1).

Moreover, they found conditions so that the function q is the ”smallest”

function with this property, called the best dominant of the subordination (1.1).

Let ϕ : C3 × U → C, let h ∈ H and q ∈ H[a, n]. Recently, in [4] the authors

studied the dual problem and determined conditions on ϕ such that

h(z) ≺ ϕ(p(z), zp′(z), z2p′′(z); z) (1.2)

implies q(z) ≺ p(z), for all functions p ∈ Q that satisfy the above differential super-

ordination.

Moreover, they found conditions so that the function q is the ”largest” func-

tion with this property, called the best subordinant of the superordination (1.2).

For two functions

f(z) = z +
∞∑

n=2

anz
n and g(z) = z +

∞∑
n=2

bnz
n,

14
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the Hadamard product of f and g is defined by

(f ∗ g)(z) := z +
∞∑

n=2

anbnz
n.

The integral operator In of a function f is defined in [6] by

I0f(z) = f(z),

I1f(z) = If(z) =
∫ z

0

f(t)t−1dt,

Inf(z) = I(In−1f(z)), z ∈ U.

In this paper we will determine some properties on admissible functions de-

fined with the integral operator.

2. Preliminaries

Theorem 2.1. [3] Let q be univalent in U and let θ and φ be analytic in a

domain D containing q(U), with φ(w) 6= 0, when w ∈ q(U). Set

Q(z) = zq′(z) · φ[q(z)], h(z) = θ[q(z)] +Q(z)

and suppose that either h is convex or Q is starlike. In addition, assume that

Re
zh′(z)
Q(z)

> 0.

If p is analytic in U , with p(0) = q(0), p(U) ⊂ D and

θ[p(z)] + zp′(z) · φ[p(z)] ≺ θ[q(z)] + zp′(z) · φ[q(z)] = h(z),

then p ≺ q, and q is the best dominant.

By taking θ(w) := w and φ(w) := γ in Theorem 2.1, we get

Corollary 2.2. Let q be univalent in U , γ ∈ C∗ and suppose

Re
[
1 +

zq′′(z)
q′(z)

]
> max

{
0,−Re

1
γ

}
.

If p is analytic in U , with p(0) = q(0) and

p(z) + γzp′(z) ≺ q(z) + γzq′(z),

then p ≺ q, and q is the best dominant.
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Theorem 2.3. ([4]) Let θ and φ be analytic in a domain D and let q be

univalent in U , with q(0) = a, q(U) ⊂ D. Set

Q(z) = zq′(z) · φ[q(z)], h(z) = θ[q(z)] +Q(z)

and suppose that

(i) Re
{
θ′[q(z)]
φ[q(z)]

}
> 0 and

(ii) Q(z) is starlike.

If p ∈ H[a, 1] ∩Q, p(U) ⊂ D and θ[p(z)] + zp′(z) · φ[p(z)] is univalent in U ,

then

θ[q(z)] + zp′(z)φ[q(z)] ≺ θ[p(z)] + zp′(z)φ[p(z)] ⇒ q ≺ p

and q is the best subordinant.

By taking θ(w) := w and φ(w) := γ in Theorem 2.3, we get

Corollary 2.4. ([2]) Let q be convex in U , q(0) = a and γ ∈ C, Re γ > 0.

If p ∈ H[a, 1] ∩Q and p(z) + γzp′(z) is univalent in U , then

q(z) + γzq′(z) ≺ p(z) + γzp′(z) ⇒ q ≺ p

and q is the best subordinant.

3. Main results

Theorem 3.1. Let q be univalent in U with q(0) = 1, α ∈ C∗, δ > 0 and

suppose

Re
[
1 +

zq′′(z)
q′(z)

]
> max

{
0,−Re

δ

α

}
.

If f ∈ A satisfies the subordination

(1− α)
(
In+1f(z)

z

)δ

+ α

(
In+1f(z)

z

)δ

· Inf(z)
In+1f(z)

(3.1)

≺ q(z) +
α

δ
zq′(z),

then (
In+1f(z)

z

)δ

≺ q(z)

and q is the best dominant.

16
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Proof. We define the function

p(z) :=
(
In+1f(z)

z

)δ

.

By calculating the logarithmic derivative of p, we obtain

zp′(z)
p(z)

= δ

(
z(In+1f(z))′

In+1f(z)
− 1

)
. (3.2)

Because the integral operator In satisfies the identity:

z[In+1f(z)]′ = Inf(z), (3.3)

equation (3.2) becomes
zp′(z)
p(z)

= δ

(
Inf(z)
In+1f(z)

− 1
)

and, therefore,

zp′(z)
δ

=
(
In+1f(z)

z

)δ (
Inf(z)
In+1f(z)

− 1
)
.

The subordination (3.1) from the hypothesis becomes

p(z) +
α

δ
zp′(z) ≺ q(z) +

α

δ
zq′(z).

We apply now Corollary 2.4 with γ =
α

δ
to obtain the conclusion of our

theorem. �

If we consider n = 0 in Theorem 3.1, we obtain the following result.

Corollary 3.2. Let q be univalent in U with q(0) = 1, α ∈ C∗, δ > 0 and

suppose

Re
[
1 +

zq′′(z)
q′(z)

]
> max

{
0,−Re

δ

α

}
.

If f ∈ A satisfies the subordination

(1− α)
(
If(z)
z

)δ

+ α

(
If(z)
z

)δ

· f(z)
If(z)

≺ q(z) +
α

δ
zq′(z) (3.4)

then (
If(z)
z

)δ

≺ q(z)

and q is the best dominant.

17
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We consider a particular convex function

q(z) =
1 +Az

1 +Bz

to give the following application to Theorem 3.1.

Corollary 3.3. Let A,B, α ∈ C, A 6= B be such that |B| ≤ 1, Re α > 0 and

let δ > 0. If f ∈ A satisfies the subordination

(1− α)
(
In+1f(z)

z

)δ

+ α

(
In+1f(z)

z

)δ

· Inf(z)
In+1f(z)

≺ 1 +Az

1 +Bz
+
α

δ
· (A−B)z
(1 +Bz)2

,

then (
In+1f(z)

z

)δ

≺ 1 +Az

1 +Bz

and q(z) =
1 +Az

1 +Bz
is the best dominant.

Theorem 3.4. Let q be convex in U with q(0) = 1, α ∈ C, Re α > 0, δ > 0.

If f ∈ A such that (
In+1f(z)

z

)δ

∈ H[1, 1] ∩Q,

(1− α)
(
In+1f(z)

z

)δ

+ α

(
In+1f(z)

z

)δ

· Inf(z)
In+1f(z)

is univalent in U and satisfies the superordination

q(z) +
α

δ
zq′(z) ≺ (1− α)

(
In+1f(z)

z

)δ

+ α

(
In+1f(z)

z

)δ

· Inf(z)
In+1f(z)

, (3.5)

then

q(z) ≺
(
In+1f(z)

z

)δ

and q is the best subordinant.

Proof. Let

p(z) :=
(
In+1f(z)

z

)δ

.

If we proceed as in the proof of Theorem 3.1, the subordination (3.5) become

q(z) +
α

δ
zq′(z) ≺ p(z) +

α

δ
zp′(z).

The conclusion of this theorem follows by applying the Corollary 2.4. �
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If n = 0, then we obtain

Corollary 3.5. Let q be convex in U , with q(0) = 1, α ∈ C, with Re α > 0

and δ > 0. If f ∈ A such that (
If(z)
z

)δ

∈ H[1, 1] ∩Q

(1− α)
(
If(z)
z

)δ

+ α

(
If(z)
z

)δ

· f(z)
If(z)

is univalent in U and satisfies the superordination

q(z) +
α

δ
zq′(z) ≺ (1− α)

(
If(z)
z

)δ

+ α

(
If(z)
z

)δ

· f(z)
If(z)

,

then q(z) ≺
(
If(z)
z

)δ

and q is the best subordinant.

Corollary 3.6. Let q be convex in U with q(0) = 1, α ∈ C with Re α > 0,

α > 0. If f ∈ A such that (
In+1f(z)

z

)δ

∈ H[1, 1] ∩Q,

(1− α)
(
In+1f(z)

z

)δ

+ α

(
In+1f(z)

z

)δ

· Inf(z)
In+1f(z)

is univalent in U and satisfies the superordination

q(z) +
α

δ
zq′(z) ≺ (1− α)

(
In+1f(z)

z

)δ

+ α

(
In+1f(z)

z

)δ

· Inf(z)
In+1f(z)

,

then

q(z) ≺
(
In+1f(z)

z

)δ

and q is the best subordinant.

Concluding the results of differential subordination and superordination we

state the following sandwich result.

Theorem 3.7. Let q1, q2 be convex in U with q1(0) = q2(0) = 1, α ∈ C,

Re α > 0, δ > 0. If f ∈ A such that(
In+1f(z)

z

)δ

∈ H[1, 1] ∩Q
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(1− α)
(
In+1f(z)

z

)δ

+ α

(
In+1f(z)

z

)δ

· Inf(z)
In+1f(z)

is univalent in U and satisfies

q1(z) +
α

δ
zq′1(z) ≺ (1− α)

(
In+1f(z)

z

)δ

+ α

(
In+1f(z)

z

)δ

· Inf(z)
In+1f(z)

≺ q2(z) +
α

δ
zq′2(z),

then

q1(z) ≺
(
In+1f(z)

z

)δ

≺ q2(z)

and q1, q2 are the best subordinant and the best dominant respectively.

Corollary 3.8. Let q1, q2 be convex in U with q1(0) = q2(0) = 1, α ∈ C with

Re α > 0, δ > 0. If f ∈ A such that(
If(z)
z

)δ

∈ H[1, 1] ∩Q,

(1− α)
(
If(z)
z

)δ

+ α

(
If(z)
z

)δ

· f(z)
If(z)

is univalent in U and satisfies

q1(z) +
α

δ
zq′1(z) ≺ (1− α)

(
If(z)
z

)δ

+ α

(
If(z)
z

)δ

· f(z)
If(z)

≺ q2(z) +
α

δ
zq′2(z),

then

q1(z) ≺
(
If(z)
z

)δ

≺ q2(z)

and q1, q2 are the best subordinant and the best dominant respectively.

Corollary 3.9. Let q1, q2 be convex in U with q1(0) = q2(0) = 1, α ∈ C,

Re α > 0, δ > 0. If f ∈ A such that(
In+1f(z)

z

)δ

∈ H[1, 1] ∩Q,

(1− α)
(
In+1f(z)

z

)δ

+ α

(
In+1f(z)

z

)δ

· Inf(z)
In+1f(z)
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is univalent in U and satisfies

q1(z) +
α

δ
zq′1(z) ≺ (1− α)

(
In+1f(z)

z

)δ

+ α

(
In+1f(z)

z

)δ

· Inf(z)
In+1f(z)

≺ q2(z) +
α

δ
zq′2(z),

then

q1(z) ≺
(
In+1f(z)

z

)δ

≺ q2(z)

and q1, q2 are the best subordinant and the best dominant respectively.

Similar results was obtained by D. Răducanu and V.O. Nechita in [5] for

differential Sălăgean operator defined in [6].
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ASSOCIATED CLASSES OF MODULES

IULIU CRIVEI AND SEPTIMIU CRIVEI

Abstract. Let C be a non-empty class of modules closed under isomorphic

copies. We consider some classes of modules associated to C. Among them,

we study two important classes in the theory of natural and conatural

classes of modules, namely the class consisting of all modules having no

non-zero submodule in C, as well as its dual.

1. Introduction

Throughout R is an associative ring with non-zero identity and all modules

are unitary right R-modules. Also, C is a class of modules, always non-empty and

closed under isomorphic copies. For modules A,B, C, we denote by A ≤ B (respec-

tively A < B, A E B, A << B) the fact that A is a submodule (respectively proper,

essential, superfluous submodule) of B. Also, we denote by A ↪→ B a monomorphism

from A to B and by B � C an epimorphism from B to C.

Consider the following classes associated to C:

F(C) = {A | 0 6= B ≤ A =⇒ B /∈ C},

T (C) = {A | B < A =⇒ A/B /∈ C},

F ′(C) = {B | A submodule of B,M ∈ C, A ↪→ M =⇒ A = 0},

T ′(C) = {B | C homomorphic image of B,M ∈ C,M � C =⇒ C = 0},

H(C) = {A | A /∈ C, but 0 6= B ≤ A =⇒ A/B ∈ C}

S(C) = {A | A /∈ C, but B < A =⇒ B ∈ C}

H′(C) = {A | 0 6= B ≤ A =⇒ A/B ∈ C}
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S ′(C) = {A | B < A =⇒ B ∈ C}

The first four classes are important bricks in the theory of hereditary and

cohereditary classes and, in particular, in the theory of natural and conatural classes

[7]. The last four ones arise naturally and include various examples, such as simple

modules or almost finitely generated modules [9]. We shall establish some properties

of these classes.

2. Classes related to natural and conatural classes

The terminology of natural classes appeared in the beginning of the 1990s,

allowing unification and simplification of some previous results in ring and module

theory. A natural class is defined as a class of modules closed under isomorphic copies,

submodules, direct sums and injective hulls. They have been studied by J. Dauns [5],

S.S. Page and Y. Zhou [8] in the 1990s. In recent years, in a series of articles further

developed in a recent monograph [7], J. Dauns and Y. Zhou have created a powerful

theory of what is thought to be the new generation of ring and module theory.

Note that since projective covers of modules do not exist in general, the

notion of natural class previously defined cannot be always dualized (this is possible

for instance in the case of modules over perfect rings). The class C is called a conatural

class if the condition

(∗) ∀M � N 6= 0, there exist C ∈ C, K 6= 0 and N � K � C

implies M ∈ C [1]. In general one only has that, if C is a conatural class, then C is

closed under homomorphic images and superfluous epimorphisms [1, Theorem 24].

Alternatively, natural classes in Mod-R may be seen as the skeleton of the

class of all hereditary classes (closed under submodules) in Mod-R. This point of view

allows one to introduce conatural classes, as the skeleton of the class of all cohereditary

classes (closed under homomorphic images) in Mod-R. This was the approach of A.

Alvarado Garćıa, H. Rincón and J. Ŕıos Montes [1].

It is known that natural classes and conatural classes form complete Boolean

lattices. If C is a natural class, then its complement is F(C), whereas if C is a conatural
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class, then its complement is T (C) [1]. Moreover, natural classes and conatural classes

are characterized as follows, properties that show the strong relationship between

them and the considered associated classes and motivates the interest in their study.

Theorem 2.1. [8, Proposition 4] A hereditary class C is a natural class if and only

if C = F(F(C)) if and only if F(F(C)) ⊆ C.

Theorem 2.2. [1, Theorem 23] A cohereditary class C is a conatural class if and

only if C = T (T (C)) if and only if T (T (C)) ⊆ C.

Now we establish several properties of our classes, giving proofs only for the

classes T ′(C) and T (C). Note first that if C is hereditary, then F ′(C) = F(C) and, if

C is cohereditary, then T ′(C) = T (C).

Denote C⊥ = {Y | HomR(C, Y ) = 0} and ⊥C = {X | HomR(X, C) = 0}. The

final part of the following result completes [6, Theorem 3.1].

Theorem 2.3. (i) T ′(C) is closed under homomorphic images, extensions and su-

perfluous epimorphisms.

(ii) Let B ∈ T ′(C) and A ≤ B with A ∈ C. Then A << B.

(iii) If C is hereditary, then ⊥C = T (C) and C ⊆ T (C)⊥.

(iv) If C is hereditary, then T (C) is a torsion class. If C is also closed under

essential extensions, then T (C) is a hereditary torsion class.

(v) Let C be a natural class. Then C cogenerates a hereditary torsion theory,

namely (T (C),F(T (C))), and F(T (C)) is a natural class.

Proof. (i) Clearly, T ′(C) is cohereditary.

Let 0 → A → B → C → 0 be a short exact sequence with A,C ∈ T ′(C). We

may assume that A ≤ B. Let D′ be a homomorphic image of B, say B/D, and let M ∈

C and M � D′. Then there exists M � B/D � B/(A + D) ∼= (B/A)/((A + D)/A),

the last one being a homomorphic image of C. Since C ∈ T ′(C), it follows that

B/(A + D) = 0, hence A + D = B. Now D′ ∼= B/D = (A + D)/D ∼= A/(A ∩ D)

is a homomorphic image of A ∈ T ′(C). Then D′ = 0. Thus T ′(C) is closed under

extensions.
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Let 0 → A → B → C → 0 be a short exact sequence with f(A) << B and

C ∈ T ′(C). We may assume that A ≤ B. Let D′ be a homomorphic image of B,

say B/D, M ∈ C and M � D′. As above, it follows that A + D = B. But since

A << B, we get D = B, hence D′ = 0. Thus B ∈ T ′(C). Hence T ′(C) is closed under

superfluous epimorphisms.

(ii) Let D be such that A + D = B. Then A/(A ∩D) ∼= (A + D)/D = B/D,

hence there exists A � B/D. Since A ∈ C and B ∈ T ′(C), it follows that D = B.

Hence A << B.

(iii) Let A ∈ T (C), B ∈ C and 0 6= f ∈ HomR(A,B). Since C is closed under

submodules, Im f ∈ C. But since Ker f 6= A ∈ T (C), we have Im f ∼= A/Ker f /∈ C, a

contradiction. Thus HomR(T (C), C) = 0. Hence we have T (C) ⊆⊥ C and C ⊆ T (C)⊥.

Now let A ∈⊥ C. If A = 0, we are done, so that assume A 6= 0. Let B < A and

suppose that A/B ∈ C. Then HomR(A,A/B) = 0. But the natural homomorphism

p : A → A/B is non-zero, a contradiction. Hence A/B /∈ C, so that A ∈ T (C).

(iv) The first part follows by (iii). In order to show that T (C) is hereditary,

let A ∈ T (C) and B ≤ A. Suppose that B /∈ T (C), hence there exists C ∈ C and a

non-zero homomorphism f : B → C. Taking the injective hull j : C → E of C, it

follows that there is a non-zero homomorphism h : A → E extending jf . But this

contradicts the fact that A ∈ T (C) and E ∈ C.

(v) By (iii) and (iv), T (C) is the torsion class of the torsion theory cogenerated

by C, while F(T (C)) is its torsionfree class. Now F(T (C)) is a natural class. �

In a dual manner one obtains the following result. Note that in case R is right

perfect we have a characterization of conatural classes as follows: C is a conatural class

if and only if C is closed under homomorphic images, projective covers and direct sums

of simple modules [2, Theorem 17].

Theorem 2.4. (i) F ′(C) is closed under submodules, extensions and essential exten-

sions.

(ii) Let B ∈ F ′(C) and A ≤ B be such that B/A ∈ C. Then A E B.

(iii) If C is cohereditary, then C⊥ = F(C) and C ⊆⊥ F(C).
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(iv) If C is cohereditary, then F(C) is a torsionfree class. If R is right perfect

and C is also closed under superfluous epimorphisms, then F(C) is a cohereditary

torsionfree class.

(v) Let R be right perfect and C a conatural class. Then C generates a co-

hereditary torsion theory, namely (T (F(C)),F(C)), and T (F(C)) is a conatural class.

In what follows, let us see other connections between our classes. The second

part of the next result was established for a natural class C in [6, Lemma 3.3].

Theorem 2.5. If either T (C) is hereditary or C is closed under essential extensions,

then

T (C) = {A | B < A =⇒ A/B ∈ F(C)} ⊆ F(C).

Proof. Denote A = {A | B < A =⇒ A/B ∈ F(C)}. Note that the inclusion

A ⊆ T (C) holds for any class C. Indeed, let A ∈ A and B < A. Then A/B ∈ F(C),

hence A/B /∈ C. Thus A ∈ T (C). Now we show the converse inclusion.

(i) Suppose that T (C) is hereditary. Let A ∈ T (C) and B < A. Let us prove

that A/B ∈ F(C). Let 0 6= D/B ≤ A/B. By hypothesis, we have D ∈ T (C). Since

B < D, it follows that D/B /∈ C. Thus A/B ∈ F(C), whence A ∈ A.

(ii) Suppose that C is closed under essential extensions. Let A ∈ T (C) \ A.

Then there exists B < A such that A/B /∈ F(C), whence there exists 0 6= D/B ≤ A/B

such that D/B ∈ C. Let D′/B be a complement of D/B in A/B. Then D/B∩D′/B =

0 and D/B + D′/B E A/B. It follows that (D/B + D′/B)/(D′/B) E (A/B)/(D′/B),

that is, D/B E A/D′. Since D/B ∈ C, we get A/D′ ∈ C by the hypothesis on C.

Having noted that D′ < A, we have A /∈ T (C), a contradiction. Hence T (C) ⊆ A. �

Dually, one has the following result. Note that if the ring is right perfect,

then every submodule of a module has a supplement.

Theorem 2.6. If either F(C) is cohereditary or R is right perfect and C is closed

under superfluous epimorphisms, then

F(C) = {A | 0 6= B ≤ A =⇒ B ∈ T (C)} ⊆ T (C).
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3. Other associated classes

As before, let C be a class of modules. We have considered in the introduction

the classes H(C), S(C), H′(C) and S ′(C). Now we mention some examples covered by

such general associated classes.

Example 3.1. (1) If C = {0}, then H(C) consists of the simple modules.

(2) If C is the torsion class for a hereditary torsion theory τ in Mod-R, then

H(C) consists of the τ -cocritical modules.

(3) If C is the class of commutative perfect rings, then H′(C) consists of the

almost perfect rings [3].

(4) If C = {0}, then S(C) consists of the simple modules.

(5) If C is the class of finitely generated modules, then S(C) consists of the

almost finitely generated (a.f.g.) modules [9].

(6) If C is the class of modules having maximal submodules, then S(C) consists

of the a.m.s. modules [4].

Let us give some properties of these classes. We will give proofs only for the

classes H(C) and H′(C), the other ones being dual.

Theorem 3.2. (i) If 0 ∈ C, then every simple module belongs either to C or to H(C).

(ii) H(C) ⊆ H′(C). If C is closed under extensions, then H(C) ⊆ F(C).

(iii) If C is closed under submodules and extensions, then H(C) is closed under

non-zero submodules and every module in H(C) is uniform.

(iv) If C is hereditary, then H′(C) is closed under non-zero submodules.

Let 0 → A → B → C → 0 be a short exact sequence of modules and assume

that C is closed under extensions.

(v) If A ∈ H′(C), f(A) E B and every homomorphic image of C belongs to

C, then B ∈ H′(C).

Proof. (i) and (ii) Straightforward.

(iii) Let A ∈ H(C) and 0 6= B ≤ A. Suppose that B ∈ C. Since A/B ∈ C and

C is closed under extensions, we have A ∈ C, a contradiction. Hence B /∈ C. Now let

0 6= D ≤ B. Then B/D ≤ A/D ∈ C, hence B/D ∈ C. Therefore B ∈ H(C).
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Let A ∈ H(C) and suppose that it is not uniform. Then there exist non-zero

submodules B and D of A such that B ∩D = 0. Since H(C) is closed under non-zero

submodules, we have B,B + D ∈ H(C). Hence B ∼= (B + D)/D ∈ C, a contradiction.

Therefore A is uniform.

(iv) See (iii).

(v) We may assume that A is a submodule of B. Let D be a non-zero proper

submodule of B. Then A∩D 6= 0, hence (A + D)/D ∼= A/(A∩D) ∈ C. Consider the

exact sequence of modules 0 → (A + D)/D → B/D → B/(A + D) → 0. Since C is

closed under extensions, it follows that B/D ∈ C. Therefore B ∈ H′(C). �

Theorem 3.3. (i) If 0 ∈ C, then every simple module belongs either to C or to S(C).

(ii) S(C) ⊆ S ′(C). If C is closed under extensions, then S(C) ⊆ T (C).

(iii) If C is closed under homomorphic images and extensions, then S(C) is

closed under proper homomorphic images and every module in S(C) is hollow.

(iv) If C is cohereditary, then S ′(C) is closed under proper homomorphic im-

ages.

Let 0 → A → B → C → 0 be a short exact sequence of modules and assume

that C is closed under extensions.

(v) If C ∈ S ′(C), f(A) << B and every submodule of A belongs to C, then

B ∈ S ′(C).

Theorem 3.4. (i) Let A ∈ H′(C), B ∈ F ′(C) and let f : A → B be a non-zero

homomorphism. Then f is a monomorphism.

(ii) Let M ∈ H′(C), let N ∈ F(C) be quasi-injective and let S = EndR(N).

Then HomR(M,N) is a simple left S-module.

Proof. (i) We have Ker f 6= A. Suppose that Ker f 6= 0. Then Im f ∼= A/Ker f ∈ C,

because A ∈ H′(C). Since Im f ↪→ A/Ker f ∈ C and B ∈ F ′(C), it follows that

Im f = 0, a contradiction. Hence f is a monomorphism.

(ii) Let 0 6= f ∈ HomR(M,N). By (i), f is a monomorphism. Let g ∈

HomR(M,N). Since N is quasi-injective, there exists h ∈ S such that hf = g. Hence

29



IULIU CRIVEI AND SEPTIMIU CRIVEI

g ∈ Sf , so that HomR(M,N) = Sf . Thus HomR(M,N) is a simple left S-module.

�

Theorem 3.5. (i) Let A ∈ T ′(C), B ∈ S ′(C) and let f : A → B be a non-zero

homomorphism. Then f is an epimorphism.

(ii) Let M ∈ S ′(C), let N ∈ T (C) be quasi-projective and let S = EndR(N).

Then HomR(N,M) is a simple left S-module.

In the sequel, let us see some other properties of the class H(C), when C is

closed under submodules and extensions.

Theorem 3.6. Let C be closed under submodules and extensions. Let A be a non-

zero uniform module that has a submodule B ∈ H(C). Then A has a unique maximal

submodule that belongs to H(C).

Proof. Denote by Di the submodules of A that belong to H(C), where 1 ≤ i ≤ ω and

ω is some ordinal. We show that D =
∑

i≤ω Di ∈ H(C) by transfinite induction on ω.

For ω = 1, the result is trivial. Suppose that ω > 1 and that E =
∑

i<ω Di ∈ H(C).

If Dω ⊆ E, then D = E ∈ H(C). Now suppose that Dω * E. By Theorem 3.2, we

have A ∈ F(C), hence D /∈ C. Let 0 6= F ≤ D. Then (E + F )/F ∼= E/(F ∩ E) ∈ C,

because F ∩ E 6= 0. We also have

D/(E + F ) = (E + F + Dω)/(E + F ) ∼= Dω/((E + F ) ∩Dω) ∈ C ,

because (E + F ) ∩ Dω 6= 0. By the exactness of the sequence 0 → (E + F )/F →

D/F → D/(E + F ) → 0 and the fact that the class C is closed under extensions, it

follows that D/F ∈ C. Hence D ∈ H(C). Clearly, D is the unique maximal submodule

of A that belongs to H(C). �

A module satisfying the hypothesis of the above theorem does exist by the

following result.

Proposition 3.7. Let C be closed under submodules and extensions. Let A be a

noetherian module such that A /∈ C. Then there exists a proper submodule D of A

such that A/D ∈ H(C).
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Proof. Let M be the family of all submodules B of A such that A/B /∈ C. Clearly

M 6= ∅ since 0 ∈ M. Since A is noetherian, M has a maximal element, say D,

that is a proper submodule of A. Hence A/D /∈ C. Now let D < F ≤ A. Then

(A/D)/(F/D) ∼= A/F ∈ C by the maximality of D. Therefore A/D ∈ H(C). �

Lemma 3.8. Let C be closed under submodules and extensions. Let B be a uniform

module that contains a submodule A ∈ H(C) such that B/A ∈ F(C). Then A is the

maximal submodule of B that belongs to H(C).

Proof. Suppose the contrary. Then there exists A < D ≤ B such that D ∈ H(C).

Hence D/A ∈ C, therefore B/A /∈ F(C), a contradiction. �

With the same assumption on C to be closed under submodules and exten-

sions, for A ∈ H(C), let us denote by MC(A) the maximal submodule of the injective

hull E(A) of A that belongs to H(C). Also, denote by MC the class consisting of all

modules MC(A) for A ∈ H(C).

Theorem 3.9. Let C be closed under submodules and extensions. Let A,B ∈ MC

and let f : A → B be a non-zero homomorphism. Then f is an isomorphism.

Proof. By Theorem 3.4, f is a monomorphism. There exists a homomorphism g :

E(A) → E(B) that extends jf , where j : B → E(B) is the inclusion homomorphism.

Since A E E(A), g is a monomorphism. But E(B) is indecomposable, hence g is an

isomorphism. Clearly g(A) ⊆ j(B), whence A ⊆ g−1(B). We also have g−1(B) ∈

H(C) and by the maximality of A it follows that A = g−1(B). Thus g(A) = B,

whence f(A) = B. Therefore f is an isomorphism. �

Theorem 3.10. Let C be closed under submodules and extensions. Let D ∈MC and

let 0 → A
f→ B

g→ C → 0 be an exact sequence of modules with B ∈ H(C). Then D

is injective with respect to the above sequence.

Proof. Let u : A → D be a homomorphism. We may assume that u 6= 0. By

Theorem 3.4, u is a monomorphism, because A ∈ H(C). Let v : D → E(D) be the

inclusion homomorphism. Then there exists a homomorphism w : B → E(D) such

that wf = vu. Since f(A) E B, w is a monomorphism. But w(B) ∈ H(C). By the

maximality of D, it follows that w(B) ⊆ D. Now let h : B → D be the homomorphism
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defined by h(b) = w(b) for every b ∈ B. Then hf = u, showing that D is injective

with respect to the above sequence. �

Corollary 3.11. Let C be closed under submodules and extensions. Then every mod-

ule in H(C) is quasi-injective.
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VARIATIONAL ANALYSIS OF A ELASTIC-VISCOPLASTIC
CONTACT PROBLEM WITH FRICTION AND ADHESION

SALAH DRABLA AND ZHOR LERGUET

Abstract. The aim of this paper is to study the process of frictional con-

tact with adhesion between a body and an obstacle. The material’s be-

havior is assumed to be elastic-viscoplastic, the process is quasistatic, the

contact is modeled by the Signorini condition and the friction is described

by a non local Coulomb law coupled with adhesion. The adhesion process

is modelled by a bonding field on the contact surface. We derive a varia-

tional formulation of the problem, then, under a smallness assumption on

the coefficient of friction, we prove an existence and uniqueness result of

a weak solution for the model. The proof is based on arguments of time-

dependent variational inequalities, differential equations and Banach fixed

point theorem.

1. Introduction

The adhesive contact between deformable bodies, when a glue is added to

prevent relative motion of the surfaces, has received recently increased attention in

the mathematical literature. Basic modelling can be found in [10], [12], [14] and [6].

Analysis of models for adhesive contact can be found in [2]-[4], [13] and in the recent

monographs [17],[18]. An application of the theory of adhesive contact in the medical

field of prosthetic limbs was considered in [15], [16]; there, the importance of the

bonding between the bone-implant and the tissue was outlined, since debonding may

lead to decrease in the persons ability to use the artificial limb or joint.

Received by the editors: 15.05.2008.

2000 Mathematics Subject Classification. 74H10, 74H10, 74M15, 74F25, 49J40.
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Contact problems for elastic and elastic-viscoelastic bodies with adhesion

and friction appear in many applications of solids mechanics such as the fiber-matrix

interface of composite materials. A consistent model coupling unilateral contact,

adhesion and friction is proposed by Raous, Cangémi and Cocu in [14]. Adhesive

problems have been the subject of some recent publications (see for instance [14],

[9], [1], [3], [6]). The novelty in all the above papers is the introduction of a surface

internal variable, the bonding field, denoted in this paper by β; it describes the

pointwise fractional density of active bonds on the contact surface, and sometimes

referred to as the intensity of adhesion. Following [10], [11], the bonding field satisfies

the restrictions 0 ≤ β ≤ 1; when β = 1 at a point of the contact surface, the adhesion

is complete and all the bonds are active; when β = 0 all the bonds are inactive,

severed, and there is no adhesion; when 0 < β < 1 the adhesion is partial and only

a fraction β of the bonds is active. We refer the reader to the extensive bibliography

on the subject in [12], [14], [15]. Such models contain a new internal variable β which

represents the adhesion intensity over the contact surface, it takes values between 0

and 1, and describes the fractional density of active bonds on the contact surface.

Elastic quasistatic contact problems with Signorini conditions and local

Coulomb friction law were recently studied by Cocu and Rocca in [5]. Other elastic-

viscoplastic contact models with Signorini conditions and non local

Coulomb friction law were variationally analyzed in [7], [8] There exists at least one

solution to such problems if the friction coefficient is sufficiently small.

The aims of this paper is to extend the result when non local Coulomb friction

law coupled with adhesion are taken into account at the interface and the material

behavior is assumed to be elastic-viscoplastic.

The paper is structured as follows. In Section 2 we present the elastic-

viscoplastic contact model with fiction and adhesion and provide comments on the

contact boundary conditions. In Section 3 we list the assumptions on the data, derive

the variational formulation. In Sections 4, we present our main existence and unique-

ness results, Theorems 4.1, which state the unique weak solvability of the Signorini

adhesive contact problem with non local Coulomb friction law conditions.
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2. Problem statement

We consider an elastic-viscoplastic body, which occupies a bounded domain

Ω ⊂ Rd (d = 2, 3), with a smooth boundary ∂Ω = Γ divided into three disjoint

measurable parts Γ1,Γ2 and Γ3 such that meas(Γ1) > 0. Let [0, T ] be the time

interval of interest, where T > 0. The body is clamped on Γ1 × (0, T ) and therefore

the displacement field vanishes there, it is also submitted to the action of volume

forces of density f0 in Ω× (0, T ) and surface tractions of density f2 on Γ2× (0, T ). On

Γ3×(0, T ), the body is in adhesive contact with friction with an obstacle the so-called

foundation. The friction is modelled by a non local Coulomb law. We denote by ν

the outward normal unit vector on Γ.

With these assumptions, the classical formulation of the elastic-viscoplastic

contact problem with friction and adhesion is the following.

Problem P. Find a displacement field u : Ω × [0, T ] → Rd, a stress field σ :

Ω× [0, T ] → Sd, and a bonding field β : Ω× [0, T ] → R such that

σ̇ = Eε (u̇) + G(σ, ε (u)) in Ω× (0, T ), (2.1)

Divσ + f0 = 0 in Ω× (0, T ), (2.2)

u = 0 on Γ1 × (0, T ), (2.3)

σν = f2 on Γ2 × (0, T ), (2.4)

uν ≤ 0, σν − γνβ2Rν(uν) ≤ 0, uν(σν − γνβ2Rν(uν)) = 0 on Γ3 × (0, T ), (2.5)

|στ + γτβ2Rτ (uτ )| ≤ µp(|R(σν)− γνβ2Rν(uν)|),

|στ + γτβ2Rτ (uτ )| < µp(|R(σν)− γνβ2Rν(uν)|) ⇒ uτ = 0,

|στ + γτβ2Rτ (uτ ) = µp(|R(σν)− γνβ2Rν(uν)|) ⇒ ∃λ ≥ 0,

such that στ + γτβ2Rτ (uτ ) = −λuτ .

on Γ3 × (0, T ),

(2.6)

β̇ = −(β(γνRν(uν)2 + γτ‖Rτ (uτ )‖2)− εa)+ on Γ3 × (0, T ), (2.7)

u (0) = u0, σ (0) = σ0 in Ω, β(0) = β0 on Γ3 (2.8)
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We now provide some comments on equations and conditions (2.1)-(2.8). The material

is assumed to be elastic-viscoplastic with a constitutive law of the form (2.1), where

E and G are constitutive functions which will be described below. We denote by ε(u)

the linearized strain tensor. The equilibrium equation is given by (2.2), where “Div”

denotes the divergence operator for tensor valued functions. Equations (2.3) and (2.4)

represent the displacement and traction boundary conditions.

Conditions (2.5) represent he Signorini contact condition with adhesion where

uν is the normal displacement σνrepresents the normal stress, γν denote a given

adhesion coefficient and Rν is the truncation operator define by

Rν(s) =


L if s < −L,

−s if − L ≤ s ≤ 0,

0 if s > 0,

where L > 0 is the characteristic length of the bond, beyond which it does not offer

any additional traction. The introduction of operator Rν , together with the operator

Rτ defined below , is motivated by the mathematical arguments but it is not restrictive

for physical point of view, since no restriction on the size of the parameter L is made

in what follows. Thus, by choosing L very large, we can assume that Rν(uν) = uν

and, therefore, from (2.5) we recover the contact conditions

uν ≤ 0, σν − γνβ2uν ≤ 0, uν(σν − γνβ2uν) = 0 on Γ3 × (0, T ),

It follows from (2.5) that there is no penetration between the body and the foundation,

since uν ≤ 0 during the process.

Conditions (2.6) are a non local Coulomb friction law conditions coupled

with adhesion, where uτ , στ denote tangential components of vector u and tensor σ

respectively. Rτ is the truncation operator given by

Rτ (v) =


v if ‖v‖ ≤ L,

L v
‖v‖ if ‖v‖ > L.
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This condition shows that the magnitude of the shear on the contact surface depends

on the bonding field and on the tangential displacement, but as long as it does not

exceed the bond length L.

R will represent a normal regularization operator that is , linear and continues

operator R : H− 1
2 (Γ) −→ L2(Γ). We shall need it to regularize the normal trace of

the stress witch is too rough on Γ. p is a non-negative function, the so-called friction

bound, µ ≥ 0 is the coefficient of friction. The friction law was used with p (r) = r+.

A new version of Coulomb law consists to take

p(r) = r(1− αr)+,

where α is a small positive coefficient related to the hardness and the wear of the

contact surface and r+ = max{0, r}.

Also, note that when the bonding field vanishes, then the contact conditions

(2.5) and (2.6) become the classic Signorini contact with a non local Coulomb friction

law conditions were used in ([8]), that is

uν ≤ 0, σν ≤ 0, uνσν = 0 on Γ3 × (0, T ),



|στ | ≤ µp(|R(σν)|),

|στ | < µp(|R(σν)|) ⇒ uτ = 0,

|στ | = µp(|R(σν)|) ⇒ ∃λ ≥ 0, such that στ = −λuτ .

on Γ3 × (0, T ),

The evolution of the bonding field is governed by the differential equation (2.7) with

given positive parameters γν , γτ and εa, where r+ = max{0, r}. Here and below

in this paper, a dot above a function represents the derivative with respect to the

time variable. We note that the adhesive process is irreversible and, indeed, once

debonding occurs bonding cannot be reestablished, since β̇ ≤ 0. Finally, (2.8) is the

initial condition in which β0 is a given bonding field.
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3. Variational formulation and preliminaries

In this section, we list the assumptions on the data and derive a variational

formulation for the contact problem. To this end we need to introduce some notation

and preliminary material.

Here and below Sd represents the space of second order symmetric tensors on Rd. We

recall that the inner products and the corresponding norms on Rd and Sd are given

by

u · v = uivi , ‖v‖ = (v · v)
1
2 ∀u, v ∈ Rd,

σ · τ = σijτij , ‖τ‖ = (τ · τ)
1
2 ∀σ, τ ∈ Sd.

Here and everywhere in this paper, i, j, k, l run from 1 to d, summation over repeated

indices is applied and the index that follows a comma represents the partial derivative

with respect to the corresponding component of the spatial variable, e.g. ui,j = ∂ui

∂xj
.

Everywhere below, we use the classical notation for Lp and Sobolev spaces associated

to Ω and Γ. Moreover, we use the notation L2(Ω)d, H1(Ω)d and H and H1 for the

following spaces :

L2(Ω)d = { v = (vi) | vi ∈ L2(Ω) }, H1(Ω)d = { v = (vi) | vi ∈ H1(Ω) },

H = { τ = (τij) | τij = τji ∈ L2(Ω) }, H1 = { τ ∈ H | τij,j ∈ L2(Ω) }.

The spaces L2(Ω)d, H1(Ω)d, H and H1 are real Hilbert spaces endowed with the

canonical inner products given by

(u, v)L2(Ω)d =
∫

Ω

u · v dx, (u, v)H1(Ω)d =
∫

Ω

u · v dx +
∫

Ω

∇u · ∇v dx,

(σ, τ)H =
∫

Ω

σ · τ dx, (σ, τ)H1 =
∫

Ω

σ · τ dx +
∫

Ω

Div σ ·Div τ dx,

and the associated norms ‖ · ‖L2(Ω)d , ‖ · ‖H1(Ω)d , ‖ · ‖H and ‖ · ‖H1 , respectively. Here

and below we use the notation

ε(v) = (εij(v)), εij(v) =
1
2
(vi,j + vj,i) ∀ v ∈ H1(Ω)d,

Div τ = (τij,j) ∀ τ ∈ H1.
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For every element v ∈ H1(Ω)d we also write v for the trace of v on Γ and we denote

by vν and vτ the normal and tangential components of v on Γ given by vν = v · ν,

vτ = v − vνν.

Let now consider the closed subspace of H1(Ω)d defined by

V = { v ∈ H1(Ω)d | v = 0 on Γ1 }.

Since meas (Γ1) > 0, the following Korn’s inequality holds:

‖ε(v)‖H ≥ cK ‖v‖H1(Ω)d ∀ v ∈ V, (3.1)

where cK > 0 is a constant which depends only on Ω and Γ1. Over the space V we

consider the inner product given by

(u, v)V = (ε(u), ε(v))H (3.2)

and let ‖ · ‖V be the associated norm. It follows from Korn’s inequality (3.1) that

‖ · ‖H1(Ω)d and ‖ · ‖V are equivalent norms on V and, therefore, (V, ‖ · ‖V ) is a real

Hilbert space. Moreover, by the Sobolev trace theorem, (3.1) and (3.2), there exists

a constant c0 depending only on the domain Ω, Γ1 and Γ3 such that

‖v‖L2(Γ3)d ≤ c0‖v‖V ∀v ∈ V. (3.3)

For every real Hilbert space X we use the classical notation for the spaces Lp(0, T ;X)

and W k,p(0, T ;X), 1 ≤ p ≤ ∞, k ≥ 1 and we also introduce the set

Q = { θ ∈ L∞(0, T ;L2(Γ3)) | 0 ≤ θ(t) ≤ 1 ∀ t ∈ [0, T ], a.e. on Γ3 }.

Finally, if X1 and X2 are two Hilbert spaces endowed with the inner products (·, ·)X1

and (·, ·)X2 and the associated norms ‖ · ‖X1 and ‖ · ‖X2 , respectively, we denote by

X1×X2 the product space together with the canonical inner product (·, ·)X1×X2 and

the associated norm ‖ · ‖X1×X2 .

39



SALAH DRABLA AND ZHOR LERGUET

In the study of the problem P, we consider the following assumptions on the

problem data.

E : Ω× Sd −→ Sd is a symmetric and positive definite tensor :

(a) Eijkl ∈ L∞ (Ω) for every i, j, k, l = 1, d;

(b) Eσ · τ = σ · Eτ for every σ, τ ∈ Sd;

(c) there exists α > 0 such that Eσ · σ ≥ α |σ|2 ∀σ ∈ Sd, a.e. in Ω

(3.4)



G : Ω× Sd × Sd −→ Sd and

(a) there exists LG > 0 such that :

|G (·, σ1, ε1)− G (·, σ2, ε2)| ≤ LG(|σ1 − σ2|+ |ε1 − ε2|)

for every σ1, σ2, ε1, ε2 ∈ Sd a.e. in Ω;

(b) G (·, σ, ε) is a measurable function with respect to the Lebesgue

measure on Ω for every ε, σ ∈ Sd;

(c) G (·, 0, 0) ∈ H.

(3.5)



The friction function p : Γ3 × R+ −→ R+ verifies

(a) there exists M > 0 such that :

|p (x, r1)− p (x, r2)| ≤ M |r1−r2|

for every r1, r2 ∈ R+, a.e. x ∈ Γ3;

(b) x 7→ p (x, r) is measurable on Γ3, for every r ∈ R+;

(c) p (x, 0) = 0, a.e. x ∈ Γ3.

(3.6)

We also suppose that the body forces and surface tractions have the regularity

f0 ∈ W 1,∞(0, T ;L2(Ω)d), f2 ∈ W 1,∞(0, T ;L2(Γ2)d), (3.7)

and we define the function f : [0, T ] → V by

(f(t), v)V =
∫

Ω

f0(t) · v dx +
∫

Γ2

f2(t) · v da, (3.8)
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for all u, v ∈ V and t ∈ [0, T ], and we note that the condition (3.7) implies that

f ∈ W 1,∞(0, T ;V ). (3.9)

For the Signorini problem we use the convex subset of admissible displacements given

by

Uad = {v ∈ H1 | v = 0 on Γ1 , vν ≤ 0 on Γ3} (3.10)

The adhesion coefficients γν , γτ and the limit bound εa satisfy the conditions

γν , γτ ∈ L∞(Γ3), εa ∈ L2(Γ3), γν , γτ , εa ≥ 0 a.e. on Γ3 (3.11)

while the friction coefficient µ is such that

µ ∈ L∞(Γ3), µ(x) ≥ 0 a.e. on Γ3. (3.12)

Finally, we assume that the initial data verifies

β0 ∈ L2(Γ3), 0 ≤ β0 ≤ 1 a.e. on Γ3. (3.13)

We define the adhesion functional jad : L∞(Γ3)× V × V → R by

jad(β, u, v) =
∫

Γ3

(
− γνβ2Rν(uν)vν + γτβ2Rτ (uτ ) · vτ

)
da, (3.14)

and the friction functional jfr : L∞(Γ3)×H1 × V × V → R by

jfr(β, σ, u, v) =
∫

Γ3

µp(|R(σν)− γνβ2Rν(uν)|) · |vτ | da, (3.15)

The initial conditions u0, σ0 and β0 satisfy

u0 ∈ Uad, σ0 ∈ H1, β0 ∈ L2(Γ3) ∩Q, (3.16)

and

(σ0, ε(v)− ε(u0))H + jad(β0, σ0, v − u0) + jfr(β0, σ0, ξ0, v)− jfr(β0, σ0, ξ0, u0) ≥

≥ (f0, v − u0)V + (f2, v − u0)L2(Γ2)d ∀ v ∈ Uad. (3.17)

Let us remark that assumption (3.16) and (3.17) involve regularity conditions of the

initial data u0, σ0 and β0 and a compatibility condition between u0, σ0, β0, f0 and

f2.
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By a standard procedure based on Green’s formula combined with (2.2)-(2.4)

and (3.8), we can derive the following variational formulation of problem P, in terms

of displacement, stress and bonding fields.

Proof.[Problem PV ] Find a displacement field u : [0, T ] → V, a stress field σ :

[0, T ] → H1 and a bonding field β : [0, T ] → L2(Γ3) such that

σ̇ = Eε (u̇) + G(σ, ε (u)) in Ω× (0, T ), (3.18)

u(t) ∈ Uad, (σ(t), ε(v)− ε(u(t)))H + jad(β(t), u(t), v − u(t))+

jfr(β(t), σ(t), u(t), v)− jfr(β(t), σ(t), u(t), u(t)) ≥ (f(t), v − u(t))V

∀ v ∈ Uad, t ∈ [0, T ], (3.19)

β̇(t) = −
(
β(t)

(
γνRν(uν(t))2 + γτ‖Rτ (uτ (t))‖2

)
− εa

)
+

a.e. on t ∈ (0, T ),

u(0) = u0, σ(0) = σ0, β(0) = β0. (3.20)

�

In the rest of this section, we derive some inequalities involving the functionals

jad, and jfr which will be used in the following sections. Below in this section β, β1,

β2 denote elements of L2(Γ3) such that 0 ≤ β, β1, β2 ≤ 1 a.e. on Γ3, u1, u2, v1, v2,

u and v represent elements of V ; σ, σ1, σ2 denote elements of H1 and c is a generic

positive constants which may depend on Ω, Γ1, Γ3, p, γν , γτ and L, whose value may

change from place to place. For the sake of simplicity, we suppress in what follows

the explicit dependence on various functions on x ∈ Ω ∪ Γ3.

First, we remark that the jad is linear with respect to the last argument and therefore

jad(β, u,−v) = −jad(β, u, v). (3.21)

Next, using (3.14) and the inequalities |Rν(u1ν)| ≤ L, ‖Rτ (uτ )‖ ≤ L, |β1| ≤ 1,

|β2| ≤ 1, for the previous inequality, we deduce that

jad(β1, u1, u2 − u1) + jad(β2, u2, u1 − u2) ≤ c

∫
Γ3

|β1 − β2| ‖u1 − u2‖ da,
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then, we combine this inequality with (3.3), to obtain

jad(β1, u1, u2 − u1) + jad(β2, u2, u1 − u2) ≤ c ‖β1 − β2‖L2(Γ3)‖u1 − u2‖V . (3.22)

Next, we choose β1 = β2 = β in (3.22) to find

jad(β, u1, u2 − u1) + jad(β, u2, u1 − u2) ≤ 0. (3.23)

Similar manipulations, based on the Lipschitz continuity of operators Rν , Rτ show

that

|jad(β, u1, v)− jad(β, u2, v)| ≤ c ‖u1 − u2‖V ‖v‖V . (3.24)

Also, we take u1 = v and u2 = 0 in (3.23), then we use the equalities Rν(0) = 0,

Rτ (0) = 0 and (3.22) to obtain

jad(β, v, v) ≥ 0. (3.25)

Next, we use (3.15), (3.6)(a), keeping in mind (3.3), propriety of R and the inequalities

|Rν(u1ν)| ≤ L, ‖Rτ (uτ )‖ ≤ L, |β1| ≤ 1, |β2| ≤ 1 we obtain

jfr(β1, σ1, u1, u2)− jfr(β1, σ1, u1, u1) + jfr(β2, σ2, u2, u1)− jfr(β2, σ2, u2, u2) ≤

≤ c2
0M ‖µ‖

L∞(Γ3)(‖β2 − β1‖L2(Γ3) + ‖σ2−σ1||H1)||u2 − u1‖V . (3.26)

Now, by using (3.6)(a) and (3.12), it follows that the integral in (3.15) is well defined.

Moreover, we have

jfr(β, σ, u, v) ≤ c2
0M‖µ‖L∞(Γ3)‖(‖σ||H1 + ‖β‖L2(Γ3))||u‖V ‖v‖V . (3.27)

The inequalities (3.22)-(3.27) combined with equalities (3.21) will be used in various

places in the rest of the paper.

4. Existence and uniqueness result

Our main result which states the unique solvability of Problem PV , is the

following.
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Theorem 4.1. Assume that assumptions (3.4)-(3.7) and (3.11)-(3.13) hold. Then,

there exists µ0 > 0 depending only on Ω, Γ1, Γ3, E and p such that, if ‖µ‖L∞(Γ3) < µ0,

then Problem PV has a unique solution (u, σ, β). Moreover, the solution satisfies

u ∈ W 1,∞(0, T ;V ), (4.1)

σ ∈ W 1,∞(0, T ;H1), (4.2)

β ∈ W 1,∞(0, T ;L2(Γ3)) ∩Q. (4.3)

A triple of functions (u, σ, β) which satisfies (2.1), and (3.19)-(3.20) is called

a weak solution of the frictional adhesive contact Problem P. We conclude by Theorem

4.1. that, under the assumptions (3.4)-(3.7) and (3.11)-(3.13), if ‖µ‖L∞(Γ3) < µ0, then

there exists a unique weak solution of Problem P which verifies (4.1)-(4.3), that we

present in what follows.

The proof of the Theorem 4.1 will be carried out in several steps. It based

on fixed-point arguments. To this end, we assume in the following that (3.4)-(3.7)and

(3.11)-(3.13) hold; below, c is a generic positive constants which may depend on Ω,

Γ1, Γ3, E and p, γν , γτ and L, whose value may change from place to place. For

the sake of simplicity, we suppress in what follows the explicit dependence on various

functions on x ∈ Ω ∪ Γ3.

For each η = (η1, η2) ∈ L∞(0, T ;H×L2(Γ3)) we introduce the function zη = (z1
η, z2

η) ∈

W 1,∞(0, T ;H× L2(Γ3)) defined by

zη(t) =

t∫
0

η(s)ds + z0 ∀t ∈ [0, T ], (4.4)

where

z0 = (σ0 − Eε (u0) , β0). (4.5)

In the first step, we consider the following variational problem.

Proof.[Problem Pη] Find a displacement field uη : [0, T ]→ V , a stress field ση :

[0, T ] → H1 such that

ση (t) = Eε(uη (t)) + z1
η (t) (4.6)
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uη(t) ∈ Uad, (ση (t) , ε(v)− ε(uη(t)))H + jad(z2
η(t), uη(t), v − uη(t))+

+jfr(z2
η(t), ση, uη(t), v)− jfr(z2

η(t), ση, uη(t), uη(t)) ≥ (4.7)

≥ (f(t), v − uη(t))V ∀ v ∈ Uad.

�

We have the following result.

Lemma 4.2. There exists µ0 > 0 which depends on Ω, Γ1, Γ3, E and p such that,

if ‖µ‖L∞(Γ3) < µ0, then, Problem Pη has a unique solution having the regularity

uη ∈ W 1,∞(0, T, V ), ση (t) ∈ W 1,∞(0, T ;H1). Moreover,

uη(0) = u0, ση(0) = σ0 (4.8)

Proof. Using Riez’s representation theorem we may define the operator Aη(t) : V →

V and the element fη(t) ∈ V by

(Aη(t)uη(t), v)V = (Eε(uη(t)), ε(v))H + jad(z2
η (t) , uη(t), v)

∀ t ∈ [0, T ], ∀ w, v ∈ Uad, (4.9)

(fη(t), v)V = (f(t), v)V − (z1
η (t) , ε(v))H

∀ t ∈ [0, T ], ∀v ∈ Uad, (4.10)

Let t ∈ [0, T ]. We use the assumption (3.4), the equalities ( 3.21) and the inequalities

(3.23) and (3.24) to prove that Aη(t) is a strongly monotone Lipschitz continuous

operator on V. Moreover,by (3.10) we have that Uad is a closed convex non-empty set

of V . Using (3.15), we can easily check that jfr(z2
η(t), ση, uη(t), .) is a continuous

seminorm on V and moreover, it satisfies (3.26) and(3.27). Then by an existence

and uniqueness result on elliptic quasivariational inequalities, drabla it follows that

there exists a unique solution uη(t) such that

uη(t) ∈ Uad.
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(Aη(t)uη(t), v)V + jfr(, z2
η(t), ση, uη(t), v)− jfr(z2

η(t), ση, uη(t), uη(t)) ≥

≥ (fη(t), v − uη(t))V ∀ v ∈ Uad.

Taking ση (t)), defined by (4.6) and using (4.4), we deduce that ση ∈ W 1,∞(0, T ;H)

and (4.7). Let us remark, that for v = ugη (t)∓ ϕ ∀ϕ ∈ D (Ω)d
, it comes from (4.6)

and Green’s formula

Divση(t) + f0(t) = 0. (4.11)

Keeping in mind that f0 ∈ W 1,∞(0, T ;L2 (Ω)d) it follows that ση ∈ W 1,∞(0, T ;H1).

Therefore, the existence and uniqueness of (uη(t), ση (t)) ∈ V× H1 solution of problem

Pη is established under smallness assumption. The initial conditions (4.8) follows

from (3.17), (4.4) and (4.5) and the uniqueness of the problem for t = 0.

Let now t1, t2 ∈ [0, T ], Using (3.4), (3.1) and (4.4)we obtain

‖uη(t1)− uη(t2)‖V ≤ c(‖f(t1)− f(t2)‖V + ||zη(t1)− zη(t2)‖H×L2(Γ3)+

+‖ση(t1)− ση(t2)‖), (4.12)

and from (4.6), (4.11) and (4.12), it result that

‖ση(t1)− ση(t2)‖V ≤ c(‖f(t1)− f(t2)‖V + ||z1
η(t1)− z1

η(t2)‖H). (4.13)

Recall that f ∈ W 1,∞(0, T ;V ), zη = (z1
η, z2

η) ∈ W 1,∞(0, T ;H × L2(Γ3)), it follows

from (4.12) and (4.13) that uη ∈ W 1,∞(0, T ;V ) and ση ∈ W 1,∞(0, T ;H1). �

We denote by βη ∈ W 1,∞(0, T ;L2(Γ3)) the function defined by

βη = z2
η, (4.14)

and consider the mapping F : [0, T ]× L2(Γ3) → L2(Γ3) defined by

F (t, βη) = −(βη(t)(γνRν((uη)γ(t))2 + γτ‖Rτ ((uη)τ (t))‖2)− εa)+, (4.15)

for all t ∈ [0, T ] and βη ∈ W 1,∞(0, T ;L2(Γ3))

Using the assumptions (3.4), (3.5), (4.4), and (4.5), we may consider the

operator

Λη : L∞(0, T ;H× L2(Γ3))−→L∞(0, T ;H× L2(Γ3))
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define by

Λη = (G(ση, ε (uη)), F (t, βη)) ∀η ∈ L∞(0, T ;H× L2(Γ3)) (4.16)

where (ση, uη) is the solution of the variational problem Pη.

In the last step, we will prove the following result.

Lemma 4.3. There exists a unique element η∗ = (η∗1 , η∗2) such that Λη∗ =η∗ and

η∗ ∈ L∞(0, T ;H× L2(Γ3))

Proof. Let η1 = (η1
1 , η2

1) and η2 = (η1
2 , η2

2) ∈ L∞(0, T ;H× L2(Γ3)) and let t ∈ [0, T ].

We use similar arguments to those used in the proof of (4.10) to deduce that

‖uη1 − uη2‖V ≤ c(||zη1 − zη2‖H×L2(Γ3) + ‖ση1 − ση2‖H), (4.17)

and from (3.4), (3.5) and (4.6), we obtain that

‖ση1 − ση2‖H ≤ c(‖uη1 − uη2‖V + ||zη1 − zη2‖H×L2(Γ3)), (4.18)

from (4.17) and (4.18), it results that

‖uη1 − uη2‖V ≤ c||zη1 − zη2‖H×L2(Γ3). (4.19)

On the other hand, it follows from (4.15) that

||Fη2(t, βη2)− Fη1(t, βη1)||L2(Γ3) ≤

≤ c ‖βη1(t)Rν(uη1ν(t))2 − βη2(t)Rν(uη2ν(t))2‖L2(Γ3)+

+‖βη1(t)‖Rτ (uη1τ (t))‖2 − βη2(t)‖Rτ (uη2τ (t))‖2‖L2(Γ3).

Using the definition of Rν and Rτ and writing βη1 = βη1 − βη2 + βη2 , we get

||F (t, βη2)− F (t, βη1)||L2(Γ3) ≤ c ‖βη1(t)− βη2(t)‖L2(Γ3) + c‖uη1(t)− uη2(t)‖L2(Γ3).

We now use (4.17), (4.18), (4.14) and (4.5) to deduce

‖Λη2(t)− Λη1(t)‖H×L2(Γ3) ≤ c‖zη2(t)− zη1(t)‖H×L2(Γ3).

From (3.5), (4.4), (4.16) and the last inequalities, it result that

‖Λη2(t)− Λη1(t)‖H×L2(Γ3) ≤ c

∫ t

0

‖η2(t)− η1(t)‖H×L2(Γ3)ds. (4.20)
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Denoting now by Λp the power of the operator Λ, (4.20) implies by recurrence that

‖Λη2(t)− Λη1(t)‖H×L2(Γ3) ≤ c

∫ t

0

∫ s

0

∫ q

0

‖η2(t)− η1(t)‖H×L2(Γ3)dr ds,

for all t ∈ [0, T ] and p ∈ N . Hence, it follows that

‖Λpη2 − Λpη1‖L∞(0,T,H×L2(Γ3)) ≤
cnTn

n!
‖η2 − η1‖L∞(0,T,H×L2(Γ3)), ∀p ∈ N. (4.21)

and since lim
p→∞

cpT p

p!
= 0, inequality (4.21) shows that for p sufficiently large

Λp : L∞(0, T ;H × L2(Γ3))→L∞(0, T ;H × L2(Γ3)) is a contraction. Then, we con-

clude by using the Banach fixed point theorem that Λ has a unique fixed point

η∗ ∈ L∞(0, T ;H × L2(Γ3)) such that Λη∗ = η∗. Hence, from (4.16) it results for

all t ∈ [0, T ],

η∗(t) = (η∗1(t), η∗2(t)) = (G(ση∗(t), ε (uη∗(t))), (F (t, βη∗(t)))) (4.22)

�

Now, we have all the ingredients to provide the proof of Theorem 4.1.

Proof.[Proof of Theorem 4.1.] Existence. Let η∗ ∈ L∞(0, T ;H×L2(Γ3)) be the fixed

point of Λ and let (uη∗, ση∗) ∈ W 1,∞(0, T ;H1 × V ) be the solution of Problem Pη∗ .

Let also βη∗ ∈ W 1,∞(0, T ;L2(Γ3)) be the solution of Problem Pη for η = η∗. We shall

prove that (uη∗ , ση∗ , βη∗) is a unique solution of Problem PV .

The regularity expressed in (4.1) follow from Lemma 4.1, Lemma 4.3 and the

fixed point of operators Λ.

The initial conditions (3.20) follow from (4.5), (4.14) and (4.8) for η = η∗.

Moreover, the equalities (3.18) and (3.20) follow from (4.4), (4.6), Lemma 4.4, (4.12)

and (4.16) for η = η∗ since

σ̇η∗ (t) = Eε(uη∗ (t)) + ż1
η∗ (t) a.e. t ∈ (0, T )

z1
η∗ (t) = η∗1(t) = G(ση∗(t), ε (uη∗(t))) a.e. t ∈ (0, T )

β̇η∗(t) = ż2
η∗ (t) = η∗2(t) = F (t, βη∗(t)) a.e. t ∈ (0, T )
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Uniqueness. The uniqueness of the solution is a consequence of the uniqueness of the

fixed point of operators Λ defined by (4.16). Indeed, let (u, σ, β) ∈ W 1,∞(0, T ;V ×

H1 × L2(Γ3)) be another solution of Problem PV .

We denote by η ∈ L∞(0, T ;H× L2(Γ3)) the function defined by

η(t) = (G(σ, ε (u)), F (t, β)), ∀t ∈ [0, T ], (4.23)

and let zη ∈ W 1,∞(0, T ;H × L2(Γ3)) be the function given by (4.4) and (4.5). It

results that (u, σ) is a solution to Problem Pη and since by Lemma 4.1, this problem

has a unique solution denoted (uη, ση), we obtain

u = uη and σ = ση. (4.24)

Then, we replace (u, σ) = (uη, ση) = (uη∗, ση∗) in (3.20) and use the initial condition

(3.20) to see that β is a solution to Problem Pη. Since by Lemma 4.2, this last

problem has a unique solution denoted βη, we find

β = βη. (4.25)

We use now (4.16) and (4.25) to obtain that η = (G(ση, ε (uη)), Fη(t, βη)), i.e. η is a

fixed point of the operator Λ. It follows now from Lemma 4.3 that

η = η∗. (4.26)

The uniqueness part of the theorem is now a consequence of (4.24), (4.25) and (4.26).

�
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Paris, Série II, 295(1982), 913-916.
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A CONSTRUCTION OF ADMISSIBLE STRATEGIES FOR
AMERICAN OPTIONS ASSOCIATED WITH PIECEWISE

CONTINUOUS PROCESSES

BOGDAN IFTIMIE AND MARINELA MARINESCU

Abstract. We provide the construction of some admissible strategies in a

“feedback shape” for American Options, and where the contingent claim

depends on a nontrivial solution of some possibly degenerate elliptic in-

equation.

1. Setting of the problem

Let W (t) be a standard m-dimensional Wiener process over a complete prob-

ability space {Ω,F , {Ft}t≥0, IP}, {λ(t); t ≥ 0} and {y(t); t ≥ 0} piecewise constant

adapted processes of dimension n, respectively d defined on the same probability

space. λ(t) takes values in some subset S of Rn.

We denote µ(t) = (y(t), λ(t)), for t ≥ 0 and

µ(t, ω) = µk(ω) = (yk(ω), λk(ω)), t ∈ [tk(ω), tk+1(ω)),

where the sequence {tk; k ≥ 0} is increasing and it’s elements are positive random

variables with t0 = 0, tk → ∞, IPa.s., as k → ∞ and (yk, λk) are multidimensional

Ftk
-measurable random variables. Then we may assume S = {λk; k ≥ 1}.

We make the assumption that the process W (t) and the sequence

{(tk, µk); k ≥ 1} are mutually independent.
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Consider a small investor acting in a financial market on which is given a

riskless asset (for instance a bond) whose price evolves in time as

dS0(t) = rS0(t)dt; S0(0) = 1, t ≥ 0, (1)

implying that S0(t) = ert and d risky assets (that we call stocks), for which the vector

S(t, x) collecting the prices of the assets satisfies the SDE
dS(t) = g0(S(t);λ(t))dt+

m∑
j=1

gj(S(t);λ(t))dWj(t), t ∈ [tk, tk+1),

S(tk) = S (tk) + yk, for any k ≥ 1,

S(0) = x.

(2)

where the vector fields

gi(y;λ) = ai(λ) +Ai(λ)y, i = 1, . . . ,m, λ ∈ S, y ∈ Rd, (3)

are assumed continuous and bounded with respect to λ. We denoted S (tk) = lim
t↑tk

S(t).

x = (x1, x2, . . . , xd) and xi represents the amount of money invested at the initial

time t = 0 in the stock i, for i = 1, . . . , d. xi may be negative and this happens if the

quantity −xi is borrowed at the interest rate r.

The unique solution of the system (2) is a piecewise continuous and {Ft}-

adapted process {S(t, x); t ≥ 0}, such that at each jump time tk, the jump S(tk, x)−

S (tk, x) = yk occurs. The linear shape of g0(y;λ) is not required and we assume that

g0(y;λ) is global Lipschitz continuous with respect to y ∈ Rd.

A portofolio problem for an American Option with maturity T and its ad-

missible strategies can be described by a value function of the following form

V (t, x) = ertθ0(t, x) + θ(t, x) · S(t, x), t ∈ [0, T ], x ∈ Rd, (4)

where θ0(t, x) ∈ R, θ(t, x) ∈ Rd are some F1
t -adapted processes, for each fixed x ∈ Rd

representing the amount of assets form the bond, respectively the quantities of stocks

possessed by the investor.
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We accept only self-financing portfolios, i.e. portfolios for which the differen-

tial of the value function is given by

dV (t, x) = θ0(t, x)dert + θ(t, x) · dS(t, x), t ∈ [0, T ],

and this formula is understood in the integral sense, i.e.

V (t, x) = V (tk, x) + r

∫ t

tk

θ0(s, x)ersds+
∫ t

tk

θ(s, x) · dS(s, x)

= θ0(tk, x)ertk + θ(0, x) · x+ r

∫ t

tk

θ0(s, x)ersds

+
∫ t

tk

θ(s, x) · g0(S(s, x);λk)ds

+
m∑

j=1

∫ t

tk

θ(s, x) · gj(S(s, x);λk)dWj(s), t ∈ [tk ∧ T, tk+1 ∧ T ).

(5)

Instead of [tk ∧ T, tk+1 ∧ T ), we shall simply write [tk, tk+1).

American options, in contrast with European options may be exercised at

any moment of time between 0 and T , and thus the value function for an admissible

strategy has to satisfy the constraint

V (t, x) ≥ hγ(t, x), 0 ≤ t ≤ T, (6)

where hγ(t, x) is a positive Ft-measurable random variable which stands for the value

of the option at the moment t, i.e. the amount of money that the investor has to be

able to provide at time t.

We consider here only functionals of the form

hγ(t, x) := eγtϕγ(S(t, x), λ(t)), (7)

where γ is a negative constant and ϕγ(y, λ) ∈ P2(y;λ), the set consisting of second

degree polynomials with respect to the variables (y1, . . . , yd) = y, whose coefficients

are continuous and bounded functions of λ.

P2(y) ⊆ P2(y;λ) stands for the set of constant coefficients polynomials.

We consider functions ϕγ of a particular form, which we shall make precise

later on.
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In order to find such strategies, we need to emphasize those conditions which

allow to get them in a “feedback shape”

θ(t, x) = eγt∇yϕγ(S(t, x);λ(t)), t ∈ [0, T ], x ∈ Rd (8)

and

θ0(tk, x) = e(γ−r)tkϕγ(0, λk). (9)

Remark 1. For the sake of simplicity, when computing admissible strategies we shall

include the “feedback shape” (8) and (9) in the definition of such strategies and we

look for appropriate (γ, ϕγ), ϕγ ∈ P2(y;λ), such that the equations (5) and (6)

are fulfilled. We emphasize that this approach will lead us to an admissible couple

(θ0(t, x), θ(t, x)) ∈ Rd+1, provided

(a) ϕγ ∈ P2(y;λ) is a convex function with respect to y ∈ Rd;

(b) (γ, ϕγ) is a nontrivial solution of the following elliptic inequality

γϕγ(y;λ) +
m∑

j=1

1
2

〈
∂2

yϕγ(y;λ) gj(y;λ), gj(y;λ)
〉
≤ 0, (y, λ) ∈ Rd × S. (10)

The “feedback shape” (8) agrees with the constraints (5) and (6), without

involving the convexity property (a) and the analysis can be reduced to the elliptic

inequality (10).

2. Auxiliary results

Set L : P2(y;λ) → P2(y;λ) the second order linear operator defined as

L(ψ)(y;λ) :=
m∑

j=1

1
2
〈∂2

yψ(y;λ)gj(y;λ), gj(y;λ)〉, for ψ ∈ P2(y;λ), (11)

where we denoted ∂2
yψ(y;λ) the Hessian matrix of ψ with respect to y.

Notice that L is a possibly degenerate elliptic operator.

Lemma 1. Let f ∈ P2(y) such that f(y) ≥ 0, ∀y ∈ Rd and γ a nonzero constant

such that the elliptic equation

L(ψ)(y;λ) + γψ(y;λ) + f(y) = 0, for any y ∈ Rd, λ ∈ S (12)

has a nontrivial solution ϕγ ∈ P2(y;λ).
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Then the following estimate holds true

hγ(t, x) ≤ exp(γtk)ϕγ(S(tk, x);λk) +
∫ t

tk

exp(γs)∇yϕγ(S(s, x);λk) · dS(s, x), (13)

for any t ∈ [tk, tk+1).

Proof. Apply the Itô formula for the process hγ(t, x) = eγtϕγ(S(t, x), λ(t)) on the

interval [tk, tk+1) and get

hγ(t, x) := exp(γtk)ϕγ(S(tk, x);λk) +
∫ t

tk

exp(γs)∇yϕγ(S(s, x);λk) · g0(S(s, x);λk)ds

+
∫ t

tk

exp(γs) [γϕγ + f + L(ϕγ)(S(s, x);λk)] ds

+
m∑

j=1

∫ t

tk

exp(γs)∇yϕγ(S(s, x);λk) · gj(S(s, x);λk)dWj(s)

−
∫ t

tk

exp(γs)f(S(s, x))ds = exp(γtk)ϕγ(S(tk, x);λk)

+
∫ t

tk

exp(γs)∇yϕγ(S(s, x);λk) · g0(S(s, x);λk)ds

+
m∑

j=1

∫ t

tk

exp(γs)∇yϕγ(S(s, x);λk) · gj(S(s, x);λk)dWj(s)

−
∫ t

tk

exp(γs)f(S(s, x))ds

= exp(γtk)ϕγ(S(tk, x);λk) +
∫ t

tk

exp(γs)∇yϕγ(S(s, x);λk) · dS(s, x)

−
∫ t

tk

exp(γs)f(S(s, x))ds,

(14)

for any t ∈ [tk, tk+1), by virtue of our assumptions.

This leads us to the conclusion of the lemma, since f takes positive values.

Lemma 2. Let the assumptions of the Lemma 1 be in force and, in addition, we make

the hypothesis that a nontrivial solution ϕγ of the elliptic equation (12) is a convex

function. Define

θ(t, x) := eγt∇yϕγ(S(t, x);λ(t)), 0 ≤ t ≤ T, x ∈ Rd (15)
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and let {θ0(t, x); t ∈ [0, T ]} be the piecewise continuous process satisfying the integral

equation (5), with

θ0(tk, x) := e(γ−r)tkϕγ(0;λk). (16)

Moreover, we assume that

θ0(t, x) ≥ 0, ∀t ∈ [0, T ], x ∈ Rn. (17)

Then (θ0(t, x), θ(t, x)) ∈ Rd+1 is an admissible strategy (see the formulas (5) and (6))

satisfying the “feedback shape” (8) and (9).

Proof. The value function V considered at the time tk may be written as

V (tk, x) = θ0(tk, x)ertk + eγtk∇yϕγ(S(tk, x);λk) · S(tk, x)

and we require that

V (tk, x) ≥ exp(γtk)ϕγ(S(tk, x);λk), (18)

where we used the choice (15) for θ(t, x).

The equation (18) is equivalent with

θ0(tk, x)ertk + eγtk∇yϕγ(S(tk, x);λk) · S(tk, x) ≥ eγtkϕγ(S(tk, x), λk). (19)

Since ϕγ is a convex function, its gradient ∂yϕγ(y;λ) satisfies

〈∇yϕγ(y2;λ)−∇yϕγ(y1;λ), y2 − y1〉 ≥ 0, for any y1, y2 ∈ Rd and λ ∈ S. (20)

and thus, if θ0(tk, x) is defined as in (16), we easily get the estimate (19) fulfilled, via

the Lagrange Mean Value Theorem.

θ0(t, x) is finally obtained as the unique solution of the integral equation

V (t, x) = ertθ0(t, x) + eγt∇yϕγ(S(t, x);λ(t)) · S(t, x)

= V (tk, x) + r

∫ t

tk

θ0(s, x)ersds+
∫ t

tk

eγt∇yϕγ(S(t, x);λ(t)) · dS(s, x),
(21)

for t ∈ [tk, tk+1).
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Let t be arbitrary chosen in some interval [tk, tk+1). Then

V (t, x) = eγtkϕγ(0;λk) + eγtk∇yϕγ(S(tk, x);λk) · S(tk, x) + r

∫ t

tk

θ0(s, x)ersds

+
∫ t

tk

eγs∇yϕγ(S(s, x);λ(s)) · dS(s, x)

≥ eγtkϕγ(0;λk) + eγtk∇yϕγ(S(tk, x);λk) · S(tk, x)

+
∫ t

tk

eγs∇yϕγ(S(s, x);λ(s)) · dS(s, x)

≥ eγtkϕγ(S(tk, x);λk) +
∫ t

tk

eγs∇yϕγ(S(s, x);λ(s)) · dS(s, x)

≥ hγ(t, x),

(22)

where we used the self-financing equation (5), the asumption (17), the convexity

property of ϕγ with respect to y and the Lemma 1. The conclusion of the lemma is

now straightforward.

Remark 2. For a fixed f ∈ P2(y), a solution (γ, ϕγ) of the elliptic equation (12) is

constructed using the following series

ϕγ(y;λ) =
1
|γ|

[ ∞∑
k=0

Lk
|γ|(f)(y;λ)

]
, for γ < 0, (23)

where L|γ| =
1
|γ|
L and L : P2(y;λ) → P2(y;λ) stands for the linear operator defined

in the formula (11).

As far as the linear operator L|γ| is acting on P2(y;λ), for the sake of sim-

plicity we shall assume that f(y) = (〈q, y〉)2, where q 6= 0 is a common eigen vector

of the matrices Aj(λ), such that A∗j (λ)q = µj(λ)q and µj : S → R is continuous and

bounded, for any 1 ≤ j ≤ m.

Lemma 3. Let f ∈ P2(y) and gj(y;λ) = Aj(λ)y + aj(λ), j = 1, . . . ,m, be given

as above. Let γ < 0 such that ‖µ‖
|γ| ≤ 1, where µ(λ) =

∑m
j=1 µ

2
j (λ) and ‖µ‖ =
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supλ∈S µ(λ). Then the function

ϕγ(y;λ) =
1
|γ|

[ ∞∑
k=0

Lk
|γ|(f)(y;λ)

]
(24)

=
1

|γ| − µ(λ)

[
f(y) +

b(λ)
|γ|

〈q, y〉+
a(λ)
|γ|

]
, y ∈ Rd, λ ∈ S (25)

is a solution of the elliptic equation (12), where b(λ) = 2
∑m

j=1 µj(λ)〈q, aj(λ)〉 and

a(λ) =
∑m

j=1(〈q, aj(λ)〉)2.

Proof. By hypothesis, we easily see that

L(f)(y;λ) =
m∑

j=1

[Aj(λ)y + aj(λ)]∗ q q∗ [Aj(λ)y + aj(λ)] (26)

=
m∑

j=1

(〈q, Aj(λ)y + aj(λ)〉)2 = µ(λ)f(y) + b(λ)〈q, y〉+ a(λ).

Hence

L|γ|(f)(y;λ) =
µ(λ)
|γ|

f(y) +
b(λ)
|γ|

〈q, y〉+
a(λ)
|γ|

. (27)

An induction argument leads us to

Lk
|γ|(f)(y;λ) =

(
µ(λ)
|γ|

)k

f(y) +
(
µ(λ)
|γ|

)k−1 [
b(λ)
|γ|

〈q, y〉
]

(28)

+
(
µ(λ)
|γ|

)k−1 [
a(λ)
|γ|

]
, for any k ≥ 1.

Denote ργ(λ) = µ(λ)
|γ| and

T (λ) =
∞∑

k=0

[ργ(λ)]k =
|γ|

|γ| − µ(λ)
,

where ργ(λ) < 1, for any λ ∈ S (see ‖µ‖
|γ| ≤ 1). Inserting the formula (28) in (24), we

obtain

ϕγ(y;λ) =
1
|γ|
T (λ)f(y) +

1
|γ|
T (λ)

b(λ)
|γ|

〈q, y〉+
1
|γ|
T (λ)

a(λ)
|γ|

and substituting T (λ) we get the conclusion fulfilled.

Remark 3. Notice that

θ0(tk, x) = e(γ−r)tkϕγ(0;λk) = e(γ−r)tk
a(λ)

|γ|(|γ| − µ(λ))
≥ 0.
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Therefore, the assumption that θ0(t, x) ≥ 0, for all t ∈ [0, T ], x ∈ Rn is very reason-

able.

Remark 4. The solution of the function ϕγ makes use of a special convex function

f(y) = (〈q, y〉)2, with q ∈ Rd as a common eigen vector of the matrices Aj(λ),

j = 1, . . . ,m.

Assuming that there exist several eigen vectors Q = (q1, . . . , qs), s ≤ d, such

that

Q∗Aj(λ) = µj(λ)Q∗, µj(λ) ∈ R, j = 1, . . . ,m, (29)

then f(y) = 〈Q∗y,Q∗y〉 agrees with the conclusion of the Lemma 3 and the computa-

tion of the convex function ϕγ ∈ P2(y) follows the same procedure.

In addition, for an arbitrarily fixed y0 ∈ Rd, we may consider a convex func-

tion

f(y) = 〈Q∗(y − y0), Q∗(y − y0)〉, (30)

where S̃(t, x) = S(t, x)− y0, t ≥ 0, satisfies the following linear system
dz(t) = h0(z(t);λ)dt+

m∑
j=1

hj(z(t);λ)dWj(t), t ≥ 0

z(0) = x− y0.

(31)

Here hi(z;λ) = Ai(λ)z + di(λ), di(λ) = ai(λ) + Ai(λ)y0, i = 0, 1, . . . ,m replaces the

original vector fields gi(y;λ of the system (2) and the function f(z) = 〈Q∗z,Q∗z〉

satisfies (29).

3. Main results

We conclude the above given analysis by the following

Theorem 1. Let gj(y;λ) = Aj(λ)y + aj(λ) be given such that the (d × d) matrix

Aj(λ) and the vector aj(λ) ∈ Rd are continuous and bounded with respect to λ ∈ S,

for any j = 1, . . . ,m and d ≤ n. Consider a continuous vector field g0(y;λ) ∈ Rd

which is globally Lipschitz continuous with respect to y ∈ Rd, uniformly in λ ∈ S.

Define a convex function f ∈ P2(y) by

f(y) = 〈Q∗(y − y0), Q∗(y − y0)〉, (32)
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where y0 ∈ Rd is arbitrarily fixed and Q = (q1, . . . , qs), qi ∈ Rd, s ≤ d stand for some

common eigen vectors satisfying

Q∗Aj(λ) = µj(λ)Q∗, µj(λ) ∈ R, j = 1, . . . ,m. (33)

Let γ < 0 be such that ‖µ̃‖
|γ| < 1, where µ(λ) =

∑m
j=1 µ

2
j (λ) and ‖µ̃‖ = supk≥0 µ(λ̃k).

Then

ϕγ(y;λ) =
1
|γ|

[ ∞∑
k=0

Lk
|γ|(f)(y;λ)

]
=

1
|γ| − µ(λ)

(34)

×
[
f(y) + 〈b(λ)

|γ|
, Q∗(y − y0)〉+

a(λ)
|γ|

]
, y ∈ Rd, λ ∈ S,

is a solution of the elliptic equation (12), where b(λ) = 2
∑m

j=1 µj(λ)Q∗dj(λ), a(λ) =∑m
j=1 ‖Q∗dj(λ)‖2, dj(λ) = aj(λ) +Aj(λ)y0, j = 1, . . . ,m.

Proof. Using the linear mapping z = y − y0, we rewrite

f(y) = f̃(z) = 〈Q∗z,Q∗z〉

and the solution {S(t, x); t ≥ 0} satisfying (2) is shifted into S̃(t, x) = S(t, x) − y0,

which satisfies the system (31). Here hj(z;λ) = Aj(z;λ)z + dj(λ), j = 1, . . . ,m and

h0(z;λ) = g0(z + y0;λ).

The procedure employed in the proof of the Lemma 3 is applicable here and

the convex function ϕγ ∈ P2(y;λ) given in (34) satisfies the equation (12).

Theorem 2. Assume that the assumptions of the previous theorem and also the

estimate (17) stand in force. Define

θ(t, x) = ∇yϕγ(ŷ(t, x); λ̂(t)), t ∈ [0, T ], x ∈ Rd (35)

and let {θ0(t, x); t ≥ 0} be the piecewise continuous process satisfying the integral

equation (5), where

θ0(tk, x) = exp(γtk)∇yϕγ(y0;λk), k ≥ 0, x ∈ Rd. (36)

Then (θ0(t, x), θ(t, x)) ∈ Rd+1 is an admissible strategy corresponding to the value

function

V (t, x) = θ0(t, x)ert + θ(t, x) · (S(t, x)− y0).
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Proof. By hypothesis, the nontrivial solution (f, γ, ϕγ) of the equation (12) con-

structed in the Theorem 1 fulfills the conditions assumed in the Lemma 2. The

“feedback shape” recommended by the equations (16) and (15) uses the deterministic

values θ0(tk, x) = exp(γtk)ϕγ(0;λk), for k ≥ 0, which are not correlated with the

special form that we obtain here for the convex functions f ∈ P2(y), ϕγ ∈ P2(y;λ).

According to the expression of ϕγ given in the formula (34), the simplest

values are obtained for y = y0 ∈ Rd, i.e.

ϕγ(y0, λk) =
1

|γ| − µ(λk)
a(λk)
|γ|

, k ≥ 0.

This is a slight changing in the definition of the “feedback shape” (see the formulas

(8) and (9)) and it agrees with the linear mapping z = y − y0 used in the proof of

the Theorem 1, for which z = 0 corresponds to the special “feedback shape” given in

(16) and (15).

As a consequence, (θ0(t, x), θ(t, x)) ∈ Rd+1 defined in (35) and (36) is an

admissible strategy corresponding to the value function

V (t, x) = θ0(t, x)ert + θ(t, x) · (S(t, x)− y0), t ≥ 0, x ∈ Rd

and S̃(t, x) = S(t, x)− y0, t ≥ 0, is the solution of the system (31).
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ON SUBCLASSES OF PRESTARLIKE FUNCTIONS
WITH NEGATIVE COEFFICIENTS

SANTOSH B. JOSHI

Abstract. The present paper is aim at defining new subclasses of prestar-

like functions with negative coefficients in unit disc U and study there

basic properties such as coefficient estimates, closure properties. Further

distortion theorem involving generalized fractional calculus operator for

functions f(z) belonging to these subclasses are also established.

1. Introduction

Let A denote the class of analytic functions of the form

f(z) = z +
∞∑

n=2

anz
n (1.1)

in the unit disc U = {z : |z| < 1} and let S denote the subclass of A, consisting

functions of the type (1.1) which are normalized and univalent in U. A function f ∈ S,

is said to be starlike of order µ(0 ≤ µ < 1) in U if and only if

Re

(
zf ′(z)
f(z)

)
≥ µ. (1.2)

We denote by S∗(µ), the class of all functions in S, which are starlike of order µ in U.

It is well-known that

S∗(µ) ⊆ S∗(0) ≡ S∗.

The class S∗(µ) was first introduced by Robertson [7] and further it was

rather extensively studied by Schild [8], MacGregor [2].
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Also

Sµ(z) =
z

(1− z)2(1−µ)
(1.3)

is the familiar extremal function for class S∗(µ). Setting

C(µ, n) =
∏n

k=2(k − 2µ)
(n− 1)!

, n ∈ N\{1},N = {1, 2, 3, ...}. (1.4)

The function Sµ(z) can be written in the form

Sµ(z) = z +
∞∑

n=2

C(µ, n) zn. (1.5)

We note that C(µ, n) is decreasing function in µ and that

lim
n→∞

C(µ, n) =


∞, µ< 1/2

1, µ= 1

0, µ> 1.

(1.6)

We say that f ∈ S, is in the class S∗(α, β, γ) if and only if it satisfies the following

condition ∣∣∣∣∣∣∣∣∣∣∣

zf ′(z)

f(z)
− 1

γ
zf ′(z)

f(z)
+ 1− (1 + γ)α

∣∣∣∣∣∣∣∣∣∣∣
< β, (1.7)

where 0 ≤ α < 1, 0 < β ≤ 1, 0 ≤ γ ≤ 1.

Furthermore, a function f is said to be in the class K(α, β, γ) if and only if

zf ′(z) ∈ S∗(α, β, γ).

Let f(z) be given by (1.1) and g(z) be given by

g(z) = z +
∞∑

n=2

bnz
n, (1.8)

then the Hadamard product(or convolution) of (1.1) and (1.8) is given by

(f ∗ g)(z) = z +
∞∑

n=2

anbnz
n. (1.9)
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Let Rµ(α, β, γ) be the subclass of A consisting functions f(z) such that∣∣∣∣∣∣∣∣∣∣∣

zh′(z)

h(z)
− 1

γ
zh′(z)

h(z)
+ 1− (1 + γ)α

∣∣∣∣∣∣∣∣∣∣∣
< β (1.10)

where,

h(z) = (f ∗ Sµ(z)), 0 ≤ µ < 1. (1.11)

Also, let Cµ(α, β, γ) be the subclass of A consisting functions f(z), which

satisfy the condition

zf ′(z) ∈ Rµ(α, β, γ).

We note that Rµ(α, 1, 1) = Rµ(α) is the class functions introduced by Sheil-

Small et al [9]and such type of classes were studied by Ahuja and Silverman[1].

Finally, let T denote the subclass of S consisting of functions of the form

f(z) = z −
∞∑

n=2

anz
n, an ≥ 0. (1.12)

We denote by T ∗(α, β, γ), C∗(α, β, γ), Rµ[α, β, γ] and Cµ[α, β, γ] the

classes obtained by taking the intersection of the classes S∗(α, β, γ), K(α, β, γ),

Rµ(α, β, γ) and Cµ(α, β, γ) with the class T. In the present paper we aim at finding

various interesting properties and characterization of aforementioned general classes

Rµ[α, β, γ] and Cµ[α, β, γ]. Further we note that such classes were studied by Owa

and Uralegaddi [6], Silverman and Silvia [10] and Owa and Ahuja [4].

2. Basic Characterization

Theorem 1. A function f(z) defined by (1.12) is in the class Rµ[α, β, γ] if and only

if
∞∑

n=2

C(µ , n) {(n− 1) + β[γn+ 1− (1 + γ)α]} an ≤ β(1 + γ)(1− α). (2.1)

The result (2.1) is sharp and is given by
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f(z) = z − β(1 + γ)(1− α)
C(µ, n) {(n− 1) + β[γn+ 1− (1 + γ)α]}

zn, n ∈ N\{1}. (2.2)

Proof. The proof of Theorem 1 is straightforward and hence details are omitted. �

Theorem 2. Let f(z) ∈ T, then f(z) is in the class Cµ[α, β, γ] if and only if

∞∑
n=2

C(µ , n)n {(n− 1) + β[γn+ 1− (1 + γ)α]} an ≤ β(1 + γ)(1− α). (2.3)

The result (2.3) is sharp for the function f(z) given by

f(z) = z − β(1 + γ)(1− α)
C(µ, n)n {(n− 1) + β[γn+ 1− (1 + γ)α]}

zn, n ∈ N\{1}. (2.4)

Proof. Since f(z) ∈ Cµ[α, β, γ] if and only if zf ′(z) ∈ Rµ[α, β, γ], we have Theorem

2, by replacing an by nan in Theorem 1. �

Corollary 1. Let f(z) ∈ T, be in the class Rµ[α, β, γ] then

an ≤
β(1 + γ)(1− α)

C(µ, n) {(n− 1) + β[γn+ 1− (1 + γ)α]}
, n ∈ N\{1}. (2.5)

Equality holds true for the function f(z) given by (2.2).

Corollary 2. Let f(z) ∈ T, be in the class Cµ[α, β, γ] then

an ≤
β(1 + γ)(1− α)

C(µ, n)n {(n− 1) + β[γn+ 1− (1 + γ)α]}
, n ∈ N\{1}. (2.6)

Equality in (2.6) holds true for the function f(z) given by (2.4).

3. Closure Properties

Theorem 3. The class Rµ[α, β, γ] is closed under convex linear combination.

Proof. Let, each of the functions f1(z) and f2(z) be given by

fj(z) = z −
∞∑

n=2

an,jz
n, an,j ≥ 0, j = 1, 2 (3.1)

be in the class Rµ[α, β, γ] .It is sufficient to show that the function h(z) defined by

h(z) = λf1(z) + (1− λ)f2(z), 0 ≤ λ ≤ 1 (3.2)
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is also in the class Rµ[α, β, γ]. Since, for 0 ≤ λ ≤ 1,

h(z) = z −
∞∑

n=2

[λan,1 + (1− λ)an,2]zn (3.3)

by using Theorem 1,we have
∞∑

n=2

C(µ , n) {(n− 1) + β[γn+ 1− (1 + γ)α]} [λan,1 + (1− λ)an,2] ≤ β(1 + γ)(1− α)

(3.4)

which proves that h(z) ∈ Rµ[α, β, γ] .

Similarly we have �

Theorem 4. The class Cµ[α, β, γ] is closed under convex linear combination.

Theorem 5. Let,

f1(z) = z (3.5)

and,

fn(z) = z − β(1− α)(1 + γ)
C(µ, n) {(n− 1) + β[γn+ 1− (1 + γ)α]}

zn. (3.6)

Then f(z) is in the class Rµ[α, β, γ] if and only if it can be expressed as

f(z) =
∞∑

n=1

λnfn(z) (3.7)

where, λn ≥ 0 and
∑∞

n=1 λn = 1.

Proof. Let,

f(z) =
∞∑

n=2

λnfn(z)

= z −
∞∑

n=2

β(1− α)(1 + γ)
C(µ, n) {(n− 1) + β[γn+ 1− (1 + γ)α]}

λnz
n. (3.8)

Then it follows that
∞∑

n=2

β(1− α)(1 + γ)

C(µ, n) {(n− 1) + β[γn + 1− (1 + γ)α]}λn
C(µ, n) {(n− 1) + β[γn + 1− (1 + γ)α]}

β(1− α)(1 + γ)

=
∞∑

n=2

λn = 1− λ1 < 1. (3.9)

Therefore by Theorem 1, f(z) ∈ Rµ[α, β, γ] .
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Conversely, assume that the function f(z) defined by (1.12) belongs to the

class Rµ[α, β, γ], and then we have

an ≤
β(1 + γ)(1− α)

C(µ, n) {(n− 1) + β[γn+ 1− (1 + γ)α]}
, n ∈ N\{1}. (3.10)

Setting

λn = an
C(µ, n) {(n− 1) + β[γn+ 1− (1 + γ)α}

β(1− α)(1 + γ)
, n ∈ N\{1}, (3.11)

and

λ1 = 1−
∞∑

n=2

λn, (3.12)

we see that f(z) can be expressed in the form(3.7).This completes the proof of The-

orem 5.

In the same manner we can prove, �

Theorem 6. Let,

f1(z) = z (3.13)

and

fn(z) = z − β(1− α)(1 + γ)
C(µ, n)n {(n− 1) + β[γn+ 1− (1 + γ)α]}

zn, n ∈ N\ {1} . (3.14)

Then f(z) is in the class Cµ[α, β, γ] if and only it can be expressed as

f(z) =
∞∑

n=1

λnfn(z) (3.15)

where, λn ≥ 0 and
∞∑

n=1

λn = 1.

4. Generalized Fractional Integral Operator

Various operators of fractional calculus, that is fractional derivative operator,

fractional integral operator have been studied in the literature rather extensively for

e.g. [3, 5, 11, 12]. In the present section we shall make use of generalized fractional

integral operator Iλ,δ,η
0,z given by Srivastava et al [13].
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Definition. For real numbers λ > 0, δ and η the generalized fractional integral

operator Iλ,δ,η
0,z is defined as

Iλ,δ,η
0,z f(z) =

z−λ−δ

Γ(λ)

∫ z

0

(z − t)λ−1
2F1(λ+ δ,−η, 1− t/z)f(t)dt (4.1)

where f(z) is an analytic function in a simply connected region of the z-plane con-

taining origin with order

f(z) = 0(|z|)ε, (z → 0, ε > max[0,δ−η]− 1) (4.2)

2F1(a, b, c; z) =
∞∑

n=0

(a)n (b)n

(c)n

zn

n
(4.3)

and (ν)n is the Pochhammer symbol defined by

(ν)n =
Γ(ν + n)

Γ(ν)
=

 1

ν(ν + 1)...(ν + n+ 1), ν ∈ N
(4.4)

an the multiplicity of (z − t)λ−1 is removed by requiring log(z − t) to be real when

(z − t) > 0.

In order to prove the results for generalized fractional integral operator Iλ,δ,η
0,z ,

we recall here the following lemma due to Srivastava et al [13].

Lemma 1 (Srivastava et al [13]). If λ > 0 and k > δ−η−1 then

Iλ,δ,η
0,z zk =

Γ(k + 1)Γ(k − δ + η + 1)
Γ(k − δ + 1)Γ(k + λ+ η + 1)

zk−δ. (4.5)

Theorem 7. Let λ > 0, δ < 2, λ+ η > −2, δ − η < 2 and δ(λ+ η) ≤ 3λ. If f(z) ∈ T

is in the class Rµ[α, β, γ] with 0 ≤ µ ≤ 1/2, 0 < β ≤ 1, 0 ≤ α < 1 and 0 ≤ γ ≤ 1 then

Γ(2− δ + η) |z|1−δ

Γ(2− δ)Γ(2 + λ+ η)

{
1− (2− δ + η)β(1− α)(1 + γ)

1 + β{γ(2− α) + 1− α}(1− µ)(2− δ)(2 + λ+ η)
|z|

}
≤

∣∣∣Iλ,δ,η
0,z f(z)

∣∣∣ ≤
Γ(2− δ + η) |z|1−δ

Γ(2− δ)Γ(2 + λ+ η)

{
1 +

(2− δ + η)β(1− α)(1 + γ)
1 + β{γ(2− α) + 1− α}(1− µ)(2− δ)(2 + λ+ η)

|z|
}
,

(4.6)

when

U0 =

 U, δ ≤ 1

U\{1}, δ > 1.
(4.7)
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Equality in (4.6) is attended for the function given by

f(z) = z − β(1− α)(1 + γ)
2 {1 + β[γ(2− α) + 1− α]}

z2. (4.8)

Proof. By making use of Lemma 1, we have

Iλ,δ,η
0,z f(z) =

Γ(2− δ + η)
Γ(2− δ)Γ(2 + λ+ η)

z1−δ −
∞∑

n=2

Γ(n+ 1)Γ(n− δ + η + 1)
Γ(n− δ + 1)Γ(n+ λ+ η + 1)

anz
n−δ.

(4.9)

Letting,

H(z) =
Γ(2− δ)Γ(2 + λ+ η)

Γ(2− δ + η)
zδIλ,δ,η

0,z

= z −
∞∑

n=2

ψ(n)anz
n (4.10)

where,

ψ(n) =
(2− δ + η) (1)n

(2− δ)n−1(2 + λ+ η)
, n ∈ N\{1}. (4.11)

We can see that ψ(n) is non -increasing for integers n, n ∈ N\{1}, and we

have

0 < ψ(n) ≤ ψ(2) =
2(2− δ + η)

(2− δ)(2 + λ+ η)
, n ∈ N\{1}. (4.12)

Now in view of Theorem 1 and (4.12), we have

|H(z)| ≥ |z| − ψ(2) |z|2
∞∑

n=2

an

≥ |z| − (2− δ + η)β(1− α)(1 + γ)
1 + β[γ(2− α) + 1− α](1− µ)(2− δ)(2 + λ+ η)

|z|2 (4.13)

and

|H(z)| ≤ |z|+ ψ(2)|z|2
∞∑

n=2

an

≥ |z|+ (2− δ + η)β(1− α)(1 + γ)
1 + β[γ(2− α) + 1− α](1− µ)(2− δ)(2 + λ+ η)

|z|2 . (4.14)

This completes the proof of Theorem 7.

Now, by applying Theorem 2 to the functions f(z) belonging to the class

Cµ[α, β, γ], we can derive �
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Theorem 8. Let λ > 0, δ < 2, λ+ η > −2, δ − η < 2 and δ(λ+ η) ≤ 3λ .If f(z) ∈ T

is in the class Cµ[α, β, γ] with 0 ≤ µ ≤ 1/2 , 0 < β ≤ 1, 0 ≤ α < 1 and 0 ≤ γ ≤ 1

then

Γ(2− δ + η) |z|1−δ

Γ(2− δ)Γ(2 + λ+ η)

{
1− (2− δ + η)β(1− α)(1 + γ)

2[1 + β{γ(2− α) + 1− α}](1− µ)(2− δ)(2 + λ+ η)
|z|

}
(4.15)

≤
∣∣∣Iλ,δ,η

0,z f(z)
∣∣∣ ≤

Γ(2− δ + η) |z|1−δ

Γ(2− δ)Γ(2 + λ+ η)

{
1 +

(2− δ + η)β(1− α)(1 + γ)
2[1 + β{γ(2− α) + 1− α}](1− µ)(2− δ)(2 + λ+ η)

|z|
}

(4.16)

where U0 is defined by (4.7). Equality in (4.6) is attended for the function given by

f(z) = z − β(1− α)(1 + γ)
2 {1 + β[γ(2− α) + 1− α]}

z2.
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FUGLEDE-PUTNAM THEOREM FOR log-HYPONORMAL
OR CLASS Y OPERATORS

SALAH MECHERI AND AISSA NASLI BAKIR

Abstract. The equation AX = XB implies A∗X = XB∗ when A and

B are normal is known as the familiar Fuglede-Putnam’s theorem. In

this paper we will extend Fuglede-Putnam’s theorem to a more general

class of operators. We show that if A is log-hyponormal and B∗ is a class

Y operator, then A, B satisfy Fuglede-Putnam’s theorem. Other related

results are also given.

1. Introduction

Let H,K be complex Hilbert spaces and B(H), B(K) the algebras of all

bounded linear operators on H,K. The familiar Fuglede-Putnam’s theorem is as

follows:

Theorem 1.1. (Fuglede-Putnam) Let A ∈ B(H), B ∈ B(K) be normal operators. If

AX = XB for some X ∈ B(K,H), then A∗X = XB∗.

Many authors have extented this theorem for several classes of operators, for

example (see [7, 10, 11, 22, 24]). We say that A,B satisfy Fuglede-Putnam’s theorem

if AX = XB implies A∗X = XB∗. In [22] A. Uchiyama proved that if A,B∗ are

class Y operators, then A,B satisfy Fuglede-Putnam’s theorem. In [10] the authors

showed that Fuglede-Putnam’s theorem holds when A is p-hyponormal and B∗ is a

class A operator. The aim of this paper is to show that if A is log-hyponormal and

B∗ is a class Y operator, then A,B satisfy Fuglede-Putnam’s theorem.

Received by the editors: 28.03.2008.

2000 Mathematics Subject Classification. Primary 47B47, 47A30, 47B20, Secondary 47B10.

Key words and phrases. Fuglede-Putnam’s theorem, log-hyponormal operator, class Y operator.
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For any operator A ∈ B(H) set, as usual, |A| = (A∗A) and [A∗, A] = A∗A−

AA∗ = |A|2 − |A∗|2 (the self commutator of A), and consider the following standard

definitions: A is normal if A∗A = AA∗, hyponormal if A∗A− AA∗ ≥ 0. A is said to

be a class Yα operator for α ≥ 1 (or A ∈ Yα) if there exists a positive number kα

such that

|AA∗ −A∗A|α ≤ k2
α(A− λ)∗(A− λ) for allλ ∈ C.

It is known that Yα ⊂ Yβ if 1 ≤ α ≤ β. Let Y =
⊔

1≤α Yα. We remark that a class

Y1 operator A is M -hyponormal, i.e., there exists a positive number M such that

(A− λI)(A− λI)∗ ≤ M2(A− λI)∗(A− λI) for allλ ∈ C,

and M -hyponormal operators are class Y2 operators (see [22]). A is said to be domi-

nant if for any λ ∈ C there exists a positive number Mλ such that

(A− λI)(A− λI)∗ ≤ M2
λ(A− λI)∗(A− λI).

It is obvious that dominant operators are M -hyponormal. But it is known that there

exists a dominant operator which is not a class Y operator, and also there exists a class

Y operator which is not dominant. In this paper we will extend Fuglede-Putnam’s

theorem for log-hyponormal operators and class Y operators.

A is said to be log-hyponormal if A is invertible and satisfies the following

equality

log(A∗A) ≥ log(AA∗).

It is known that invertible p-hyponormal operators are log-hyponormal operators

but the converse is not true [18]. However it is very interesting that we may re-

gard log-hyponormal operators are 0-hyponormal operators [18, 19]. The idea of log-

hyponormal operator is due to Ando [3] and the first paper in which log-hyponormality

appeared is [6].

2. Results

We will recall some known results which will be used in the sequel.
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Lemma 2.1. [16] Let A ∈ B(H) and B ∈ B(K). Then the following assertions are

equivalent

(i) The pair (A,B) satisfies Fuglede-Putnam’s theorem;

(ii) if AC = CB for some C ∈ B(K,H), then ran(C) reduces A, (ker C)⊥

reduces B and A|
ran(C)

and B|(ker C)⊥ are normal operators.

Lemma 2.2. (Stampfli and Wadhwa[15]) Let A ∈ B(H) be a dominant operator and

M⊂ H invariant under A. If A|M is normal, then M reduces A.

Lemma 2.3. [22] Let A ∈ B(H) be a class Y operator and M⊂ H invariant under

A. If A|M is normal, then M reduces A.

Lemma 2.4. (Stampfli and Wadhwa[15]) Let A ∈ B(H) be dominant. Let δ ⊂ C be

closed. If there exists a bounded function f : C\δ 7→ H such that (A−λ)f(λ) = x 6= 0

for some x ∈ H, then there exists an analytic function g : C \ δ 7→ H such that

(A− λ)g(λ) = x.

Lemma 2.5. [22] Let A ∈ B(H) be a class Y operator and M⊂ H invariant under

A. Then A|M is a class Y operator.

Lemma 2.6. [20] Let A ∈ B(H) be log-hyponormal and M⊂ H invariant under A.

Then A|M is log-hyponormal.

Theorem 2.1. Let A ∈ B(H) be log-hyponormal and B∗ ∈ B(K) be class Y. If

AC = CB for some operator C ∈ B(K,H), then A∗C = CB∗. Moreover the closure

ranC of the range of C reduces A, (ker C)⊥ reduces B and A|ranC , B|(ker C)⊥ are

unitary equivalent normal operators.

Proof. Since B∗ is class Y, there exist positive numbers α and kα such that

|BB∗ −B∗B|α ≤ k2
α(B − λ)(B − λ)∗, for all λ ∈ C.

Hence for x ∈ |BB∗ −B∗B|α
2K there exists a bounded function f : C 7→ K such that

(B − λ)f(λ) = x, for all λ ∈ C

by [4]. Let A = U |A| be the polar decomposition of A and define its Aluthge transform

by Ã = |A| 12 U |A| 12 . Let Ã = V |Ã|, and define the second Aluthge transform of A by
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Â = |Ã| 12 V |Ã| 12 . Then Â is hyponormal [7]. Therefore

(Â− λI)f(λ) = |Ã| 12 (Ã− λI)Cf(λ)

= |Ã| 12 C(B − λ)f(λ) = |Ã| 12 Cx, for all λ ∈ C.

We claim that |Ã| 12 Cx = 0. Because if |Ã| 12 Cx 6= 0, there exists a bounded entire

analytic function g : C 7→ H such that (Â− λ)g(λ) = |Ã| 12 Cx by Lemma 2.4. Since

g(λ) = (Â− λ)−1|Ã| 12 Cx → 0 as λ →∞,

we have g(λ) = 0 by Liouville’s theorem, and hence |Ã| 12 Cx = 0. This is a contradic-

tion. Thus |Ã| 12 C|BB∗ −B∗B|2n−1K = {0} and hence

C|BB∗ −B∗B|2K = {0}. (1)

It follows from AC = CB that ranC and (ker C)⊥ are invariant subspaces of A and

B∗ respectively. Then A and B can be written

A =

 A1 S

0 A2

 on H = ranC ⊕ ranC
⊥

B =

 B1 0

S B2

 on K = (kerC)⊥ ⊕ ker C

C =

 C1 0

0 0

 : (kerC)⊥ ⊕ ker C 7→ ranC ⊕ ranC
⊥

.

Hence C1 is injective, with dense range and

A1C1 = C1A1. (2)

We have

BB∗ −B∗B =

 B1 0

S B2

 B∗
1 S∗

0 B∗
2

−
 B∗

1 S∗

0 B∗
2

 B1 0

S B2



=

 B1B
∗
1 −B∗

1B1 − S∗S B1S
∗ − S∗B2

(B1S
∗ − S∗B2)∗ SS∗ + B2B

∗
2 −B∗

2B2
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∗
1 −B∗

1B1 − S∗S E1

E∗
1 F1

 .

Thus

|BB∗ −B∗B|2 =

 (B1B
∗
1 −B∗

1B1 − S∗S)2 + E1E
∗
1 E2

E∗
2 F2

 .

Since C|BB∗ −B∗B|2(ker C)⊥ = {0} by (1), we have

C[B1B
∗
1 −B∗

1B1 − S∗S)2 + E1E
∗
1 ] = 0

and since C1 is injective, (B1B
∗
1 −B∗

1B1−S∗S)2 +E1E
∗
1 = 0. Hence B1B

∗
1 −B∗

1B1−

S∗S = 0, that is, B∗
1 is hyponormal. Multiply the two members of (2) by |Ã| 12 and

since the polar decomposition of Ã = V |Ã|, we get

Â1(|Ã1|
1
2 C1) = (|Ã1|

1
2 C1)B1.

Since the second Aluthge transform Â = |Ã| 12 V |Ã| 12 is hyponormal and B∗
1 is hy-

ponormal, we have Â1, B1 satisfy Fuglede-Putnam’s theorem. Thus

Â1
∗
(|Ã1|

1
2 C1) = (|Ã1|

1
2 C1)B∗

1 .

Hence Â1|ran(|Ã|
1
2 )C1

and B1|
ker(|Ã|

1
2 C1)⊥

are normal operators by Lemma 2.1. Since

|Ã1|
1
2 and C1 are injective, |Ã1|

1
2 C1 is also injective. Hence

[ker(|Ã| 12 C1)]⊥ = 0⊥ = (kerC1)⊥ = (kerC)⊥.

By the same arguments as above, we have

ran(|Ã| 12 )C1 = C∗
1ker(|Ã| 12 )⊥ = 0⊥ = ranC1 = ranC.

Hence Â1 is normal. This implies that A1 is normal by [20]. Hence ranC reduces A1 by

Lemma 2.5 and (kerC1)⊥ reduces B∗
1 by [24]. Since A1 is normal, B∗

1 is hyponormal

and A1C1 = C1B1, we obtain A∗
1C1 = C1B

∗
1 by the Fuglede-Putnam’s theorem, and

so A∗C = CB∗. The rest follows from Lemma 2.1. �
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Corollary 2.1. Let A ∈ B(H) be log-hyponormal and B∗ ∈ B(K) be class Y. If

AC = CB for some operator C ∈ B(K,H), then A∗C = CB∗. Moreover the closure

ranC of the range of C reduces A, (ker C)⊥ reduces B and A|ranC , B|(ker C)⊥ are

unitary equivalent normal operators.

Proof. Since AC = CB, we have B∗C∗ = C∗A∗. Hence BC∗ = B∗∗C∗ = C∗A∗∗ =

C∗A by the previous theorem. Hence A∗C = CB∗. The rest follows from Lemma

2.1. �

Corollary 2.2. Let A ∈ B(H). Then A is normal if and only if A is log-hyponormal

and A∗ is class Y.

The following version of the Fuglede-Putnam’s theorem for log-hyponormal

operators is immediate from Theorem 2.1 and [9, Theorem 4].

Corollary 2.3. Let A ∈ B(H) be log-hyponormal and B∗ ∈ B(K) be class Y. If

AXn−XnB → 0 for a bounded sequence {Xn}, Xn : K 7→ H, then A∗Xn−XnB∗ → 0.

Corollary 2.4. Let A ∈ B(H) and B∗ ∈ B(K) be such that AX = XB. If either

A is pure log-hyponormal and B∗ is class Y, or A is log-hyponormal and B∗ is pure

class Y, then X = 0.

Proof. The hypotheses imply that AX = XB and A∗X = XB∗ similtaneously

by Theorem 2.1. Therefore A|ranX and B|(ker X)⊥ are unitarily equivalent normal

operators, which contradicts the hypotheses that A or B∗ is pure. Hence we must

have X = 0. �
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DIFFERENTIAL SUBORDINATIONS AND SUPERORDINATIONS
FOR ANALYTIC FUNCTIONS DEFINED BY CONVOLUTION

STRUCTURE

G. MURUGUSUNDARAMOORTHY AND N. MAGESH

Abstract. In the present investigation, we obtain some subordination and

superordination results involving Hadamard product for certain normalized

analytic functions in the open unit disk. Relevant connections of the re-

sults, which are presented in this paper, with various other known results

also pointed out.

1. Introduction

Let H be the class of analytic functions in U := {z : |z| < 1} and H(a, n) be

the subclass of H consisting of functions of the form

f(z) = a+ anz
n + an+1z

n+1 + . . . .

Let A be the subclass of H consisting of functions of the form

f(z) = z + a2z
2 + . . . .

Let p, h ∈ H and let φ(r, s, t; z) : C3 × U → C.

If p and φ(p(z), zp′(z), z2p′′(z); z) are univalent and if p satisfies the second

order superordination

h(z) ≺ φ(p(z), zp′(z), z2p′′(z); z), (1.1)

Received by the editors: 15.01.2009.

2000 Mathematics Subject Classification. Primary 30C45, Secondary 30C80.

Key words and phrases. Univalent functions, starlike functions, convex functions, differential

subordination, differential superordination, Hadamard product (convolution), Dziok-Srivastava linear

operator.
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then p is a solution of the differential superordination (1.1). (If f is subordinate to

F , then F is superordinate to f .) An analytic function q is called a subordinant if

q ≺ p for all p satisfying (1.1). A univalent subordinant q̃ that satisfies q ≺ q̃ for

all subordinants q of (1.1) is said to be the best subordinant. Recently Miller and

Mocanu [12] obtained conditions on h, q and φ for which the following implication

holds:

h(z) ≺ φ(p(z), zp′(z), z2p′′(z); z) ⇒ q(z) ≺ p(z).

For two functions f(z) = z +
∑∞
n=2 anz

n and g(z) = z +
∑∞
n=2 bnz

n, the

Hadamard product (or convolution) of f and g is defined by

(f ∗ g)(z) := z +
∞∑
n=2

anbnz
n =: (g ∗ f)(z).

For αj ∈ C (j = 1, 2, . . . , l) and βj ∈ C \ {0,−1,−2, . . .} (j = 1, 2, . . .m), the

generalized hypergeometric function lFm(α1, . . . , αl;β1, . . . , βm; z) is defined by the

infinite series

lFm(α1, . . . , αl;β1, . . . , βm; z) :=
∞∑
n=0

(α1)n . . . (αl)n
(β1)n . . . (βm)n

zn

n!

(l ≤ m+ 1; l,m ∈ N0 := {0, 1, 2, . . .}),

where (a)n is the Pochhammer symbol defined by

(a)n :=
Γ(a+ n)

Γ(a)
=

 1, (n = 0);

a(a+ 1)(a+ 2) . . . (a+ n− 1), (n ∈ N := {1, 2, 3 . . .}).

Corresponding to the function

h(α1, . . . , αl;β1, . . . , βm; z) := z lFm(α1, . . . , αl;β1, . . . , βm; z),

the Dziok-Srivastava operator [6] (see also [7, 22]) H l
m(α1, . . . , αl;β1, . . . , βm) is de-

fined by the Hadamard product

H l
m(α1, . . . , αl;β1, . . . , βm)f(z) := h(α1, . . . , αl;β1, . . . , βm; z) ∗ f(z)

= z +
∞∑
n=2

(α1)n−1 . . . (αl)n−1

(β1)n−1 . . . (βm)n−1

anz
n

(n− 1)!
. (1.2)
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For brevity, we write

H l
m[α1]f(z) := H l

m(α1, . . . , αl;β1, . . . , βm)f(z).

It is easy to verify from (1.2) that

z(H l
m[α1]f(z))′ = α1H

l
m[α1 + 1]f(z)− (α1 − 1)H l

m[α1]f(z). (1.3)

Special cases of the Dziok-Srivastava linear operator includes the Hohlov lin-

ear operator [8], the Carlson-Shaffer linear operator L(a, c) [5], the Ruscheweyh de-

rivative operator Dn [17], the generalized Bernardi-Libera-Livingston linear integral

operator (cf. [2], [9], [10]) and the Srivastava-Owa fractional derivative operators (cf.

[15], [16]).

Using the results of Miller and Mocanu [12], Bulboacă [4] considered certain

classes of first order differential superordinations as well as superordination-preserving

integral operators (see [3]). Further, using the results of Mocanu [12] and Bulboacă [4]

many researchers [1, 18, 19, 20, 21] have obtained sufficient conditions on normalized

analytic functions f by means of differential subordinations and superordinations.

Recently, Murugusundaramoorthy and Magesh [13, 14] obtained sufficient

conditions for a normalized analytic functions f to satisfy

q1(z) ≺
(
H l
m[α1]f(z)

(z)

)δ
≺ q2(z), q1(z) ≺

(f ∗ Φ)(z)
f ∗Ψ)(z)

≺ q2(z)

and

q1(z) ≺
H l
m[α1 + 1](f ∗ Φ)(z)
H l
m[α1](f ∗Ψ)(z)

≺ q2(z)

where q1, q2 are given univalent functions in U with q1(0) = 1 and q2(0) = 1.

The main object of the present paper is to find sufficient condition for certain

normalized analytic functions f(z) in U such that (f ∗Ψ)(z) 6= 0 and f to satisfy

q1(z) ≺
H l
m[α1](f ∗ Φ)(z)

H l
m[α1 + 1](f ∗Ψ)(z)

≺ q2(z),

where q1, q2 are given univalent functions in U and Φ(z) = z +
∞∑
n=2

λnz
n, Ψ(z) =

z +
∞∑
n=2

µnz
n are analytic functions in U with λn ≥ 0, µn ≥ 0 and λn ≥ µn. Also, we

obtain the number of known results as their special cases.
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2. Subordination and Superordination results

For our present investigation, we shall need the following:

Definition 2.1. [12] Denote by Q, the set of all functions f that are analytic and

injective on U − E(f), where

E(f) = {ζ ∈ ∂U : lim
z→ζ

f(z) = ∞}

and are such that f ′(ζ) 6= 0 for ζ ∈ ∂U − E(f).

Lemma 2.2. [11] Let q be univalent in the unit disk U and θ and φ be analytic in a

domain D containing q(U) with φ(w) 6= 0 when w ∈ q(U). Set

ψ(z) := zq′(z)φ(q(z)) and h(z) := θ(q(z)) + ψ(z).

Suppose that

1. ψ(z) is starlike univalent in U and

2. Re
{
zh′(z)
ψ(z)

}
> 0 for z ∈ U .

If p is analytic with p(0) = q(0), p(U) ⊆ D and

θ(p(z)) + zp′(z)φ(p(z)) ≺ θ(q(z)) + zq′(z)φ(q(z)), (2.1)

then

p(z) ≺ q(z)

and q is the best dominant.

Lemma 2.3. [4] Let q be convex univalent in the unit disk U and ϑ and ϕ be analytic

in a domain D containing q(U). Suppose that

1. Re {ϑ′(q(z))/ϕ(q(z))} > 0 for z ∈ U and

2. ψ(z) = zq′(z)ϕ(q(z)) is starlike univalent in U .

If p(z) ∈ H[q(0), 1] ∩ Q, with p(U) ⊆ D, and ϑ(p(z)) + zp′(z)ϕ(p(z)) is univalent in

U and

ϑ(q(z)) + zq′(z)ϕ(q(z)) ≺ ϑ(p(z)) + zp′(z)ϕ(p(z)), (2.2)

then q(z) ≺ p(z) and q is the best subordinant.

Using Lemma 2.2, we first prove the following theorem.
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Theorem 2.4. Let Φ,Ψ ∈ A, γ4 6= 0, γ1, γ2, γ3 be the complex numbers and q be

convex univalent in U with q(0) = 1. Further assume that

Re
{
γ3

γ4
+

2γ2

γ4
q(z) +

(
1 +

zq′′(z)
q′(z)

)}
> 0 (z ∈ U). (2.3)

If f ∈ A satisfies

Υ(f, Φ,Ψ, γ1, γ2, γ3, γ4) ≺ γ1 + γ2q
2(z) + γ3q(z) + γ4zq

′(z), (2.4)

where

Υ(f, Φ,Ψ, γ1, γ2, γ3, γ4)

:=



γ1 + γ2

(
Hl

m[α1](f∗Φ)(z)
Hl

m[α1+1](f∗Ψ)(z)

)2

+ γ3
Hl

m[α1](f∗Φ)(z)
Hl

m[α1+1](f∗Ψ)(z)

+γ4

(
α1

Hl
m[α1+1](f∗Φ)(z)
Hl

m[α1](f∗Φ)(z)
− (α1 + 1)H

l
m[α1+2](f∗Ψ)(z)

Hl
m[α1+1](f∗Ψ)(z)

+ 1
)

×
(

Hl
m[α1](f∗Φ)(z)

Hl
m[α1+1](f∗Ψ)(z)

)
,

(2.5)

then
H l
m[α1](f ∗ Φ)(z)

H l
m[α1 + 1](f ∗Ψ)(z)

≺ q(z)

and q is the best dominant.

Proof. Define the function p by

p(z) :=
H l
m[α1](f ∗ Φ)(z)

H l
m[α1 + 1](f ∗Ψ)(z)

(z ∈ U). (2.6)

Then the function p is analytic in U and p(0) = 1. Therefore, by making use of (2.6),

we obtain

γ1 + γ2

(
H l
m[α1](f ∗ Φ)(z)

H l
m[α1 + 1](f ∗Ψ)(z)

)2

+ γ3
H l
m[α1](f ∗ Φ)(z)

H l
m[α1 + 1](f ∗Ψ)(z)

+γ4

(
α1
H l
m[α1 + 1](f ∗ Φ)(z)
H l
m[α1](f ∗ Φ)(z)

− (α1 + 1)
H l
m[α1 + 2](f ∗Ψ)(z)

H l
m[α1 + 1](f ∗Ψ)(z)

+ 1
)

×
(

H l
m[α1](f ∗ Φ)(z)

H l
m[α1 + 1](f ∗Ψ)(z)

)
= γ1 + γ2p

2(z) + γ3p(z) + γ4zp
′(z). (2.7)

By using (2.7) in (2.4), we have

γ1 + γ2p
2(z) + γ3p(z) + γ4zp

′(z) ≺ γ1 + γ2q
2(z) + γ3q(z) + γ4zq

′(z). (2.8)
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By setting

θ(w) := γ1 + γ2ω
2(z) + γ3ω and φ(ω) := γ4,

it can be easily observed that θ(w) and φ(w) are analytic in C−{0} and that φ(w) 6= 0.

Hence the result now follows by an application of Lemma 2.2. �

When l = 2, m = 1, α1 = a, α2 = 1 and β1 = c in Theorem 2.4, we state the

following corollary.

Corollary 2.5. Let Φ,Ψ ∈ A. Let γ4 6= 0, γ1, γ2, γ3 be the complex numbers and q

be convex univalent in U with q(0) = 1 and (2.3) holds true. If f ∈ A satisfies

Υ1(f, Φ,Ψ, γ1, γ2, γ3, γ4) ≺ γ1 + γ2q
2(z) + γ3q(z) + γ4zq

′(z)

where

Υ1(f, Φ,Ψ, γ1, γ2, γ3, γ4) :=



γ1 + γ2

(
L(a,c)(f∗Φ)(z)
L(a+1,c)(f∗Ψ)(z)

)2

+ γ3
L(a,c)(f∗Φ)(z)
L(a+1,c)(f∗Ψ)(z)

+γ4

(
aL(a+1,c)(f∗Φ)(z)

L(a,c)(f∗Φ)(z) − (a+ 1)L(a+2,c)(f∗Ψ)(z)
L(a+1,c)(f∗Ψ)(z) + 1

)
×

(
L(a,c)(f∗Φ)(z)
L(a+1,c)(f∗Ψ)(z)

)
,

(2.9)

then
L(a, c)(f ∗ Φ)(z)

L(a+ 1, c)(f ∗Ψ)(z)
≺ q(z)

and q is the best dominant.

By fixing Φ(z) = z
1−z and Ψ(z) = z

1−z in Theorem 2.4, we obtain the following

corollary.

Corollary 2.6. Let γ4 6= 0, γ1, γ2, γ3 be the complex numbers and q be convex

univalent in U with q(0) = 1 and (2.3) holds true. If f ∈ A satisfies

γ1 + γ2

(
H l
m[α1]f(z)

H l
m[α1 + 1]f(z)

)2

+ γ3
H l
m[α1]f(z)

H l
m[α1 + 1]f(z)

+γ4

(
α1
H l
m[α1 + 1]f(z)
H l
m[α1]f(z)

− (α1 + 1)
H l
m[α1 + 2]f(z)

H l
m[α1 + 1]f(z)

+ 1
) (

H l
m[α1]f(z)

H l
m[α1 + 1]f(z)

)
≺ γ1 + γ2q

2(z) + γ3q(z) + γ4zq
′(z),
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then
H l
m[α1]f(z)

H l
m[α1 + 1]f(z)

≺ q(z)

and q is the best dominant.

By taking l = 2, m = 1, α1 = 1, α2 = 1 and β1 = 1 in Theorem 2.4, we state

the following corollary.

Corollary 2.7. Let Φ,Ψ ∈ A. Let γ4 6= 0, γ1, γ2, γ3 be the complex numbers and q

be convex univalent in U with q(0) = 1 and (2.3) holds true. If f ∈ A satisfies

γ1+γ2

(
(f ∗ Φ)(z)
z(f ∗Ψ)′(z)

)2

+
(f ∗ Φ)(z)
z(f ∗Ψ)′(z)

[
(γ3 − γ4) + γ4

z(f ∗ Φ)′(z)
(f ∗ Φ)(z)

− γ4
z(f ∗Ψ)′′(z)
(f ∗Ψ)′(z)

]
≺ γ1 + γ2q

2(z) + γ3q(z) + γ4zq
′(z),

then
(f ∗ Φ)(z)
z(f ∗Ψ)′(z)

≺ q(z)

and q is the best dominant.

By fixing Φ(z) = Ψ(z) in Corollary 2.7, we obtain the following corollary.

Corollary 2.8. Let Φ ∈ A. Let γ4 6= 0, γ1, γ2, γ3 be the complex numbers and q be

convex univalent in U with q(0) = 1 and (2.3) holds true. If f ∈ A satisfies

γ1+γ2

(
(f ∗ Φ)(z)
z(f ∗ Φ)′(z)

)2

+
(f ∗ Φ)(z)
z(f ∗ Φ)′(z)

[
(γ3 − γ4) + γ4

z(f ∗ Φ)′(z)
(f ∗ Φ)(z)

− γ4
z(f ∗ Φ)′′(z)
(f ∗ Φ)′(z)

]
≺ γ1 + γ2q

2(z) + γ3q(z) + γ4zq
′(z),

then
(f ∗ Φ)(z)
z(f ∗ Φ)′(z)

≺ q(z)

and q is the best dominant.

By fixing Φ(z) = z
1−z in Corollary 2.8, we obtain the following corollary.

Corollary 2.9. Let γ4 6= 0, γ1, γ2, γ3 be the complex numbers and q be convex

univalent in U with q(0) = 1 and (2.3) holds true. If f ∈ A satisfies

γ1 + γ2

(
f(z)
zf ′(z)

)2

+
f(z)
zf ′(z)

[
(γ3 − γ4) + γ4

zf ′(z)
f(z)

− γ4
zf ′′(z)
f ′(z)

]
≺ γ1 + γ2q

2(z) + γ3q(z) + γ4zq
′(z),
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then
f(z)
zf ′(z)

≺ q(z)

and q is the best dominant.

Remark 2.10. For the choices of γ1 = γ2 = 0 and γ3 = 1 in Corollary 2.9, we get the

result obtained by Shanmugam et.al [19].

By taking q(z) = 1+Az
1+Bz (−1 ≤ B < A ≤ 1) in Theorem 2.4, we have the

following corollary.

Corollary 2.11. Assume that (2.3) holds. If f ∈ A and

Υ(f, Φ,Ψ, γ1, γ2, γ3, γ4) ≺ γ1 + γ2(
1 +Az

1 +Bz
)2 + γ3

1 +Az

1 +Bz
+ γ4

(A−B)z
(1 +Bz)2

,

then
H l
m[α1](f ∗ Φ)(z)

H l
m[α1 + 1](f ∗Ψ)(z)

≺ 1 +Az

1 +Bz

and 1+Az
1+Bz is the best dominant.

Now, by applying Lemma 2.3, we prove the following theorem.

Theorem 2.12. Let Φ,Ψ ∈ A. Let γ1, γ2, γ3 and γ4 6= 0 be the complex numbers.

Let q be convex univalent in U with q(0) = 1. Assume that

Re
{
γ3

γ4
+

2γ2

γ4
q(z)

}
≥ 0. (2.10)

Let f ∈ A, Hl
m[α1](f∗Φ)(z)

Hl
m[α1+1](f∗Ψ)(z)

∈ H[q(0), 1]∩Q. Let Υ(f, Φ,Ψ, γ1, γ2, γ3, γ4) be univalent

in U and

γ1 + γ2q
2(z) + γ3q(z) + γ4zq

′(z) ≺ Υ(f, Φ,Ψ, γ1, γ2, γ3, γ4), (2.11)

where Υ(f, Φ,Ψ, γ1, γ2, γ3, γ4) is given by (2.5), then

q(z) ≺ H l
m[α1](f ∗ Φ)(z)

H l
m[α1 + 1](f ∗Ψ)(z)

and q is the best subordinant.

Proof. Define the function p by

p(z) :=
H l
m[α1](f ∗ Φ)(z)

H l
m[α1 + 1](f ∗Ψ)(z)

. (2.12)
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Simple computation from (2.12), we get,

Υ(f, Φ,Ψ, γ1, γ2, γ3, γ4) = γ1 + γ2p
2(z) + γ3p(z) + γ4zp

′(z),

then

γ1 + γ2q
2(z) + γ3q(z) + γ4zq

′(z) ≺ γ1 + γ2p
2(z) + γ3p(z) + γ4zp

′(z).

By setting ϑ(w) = γ1 + γ2w
2 + γ3w and φ(w) = γ4, it is easily observed that

ϑ(w) is analytic in C. Also, φ(w) is analytic in C− {0} and that φ(w) 6= 0.

Since q(z) is convex univalent function, it follows that

Re
{
ϑ′(q(z))
φ(q(z))

}
= <

{
γ3

γ4
+

2γ2

γ4
q(z)

}
> 0, z ∈ U .

Now Theorem 2.12 follows by applying Lemma 2.3. �

When l = 2, m = 1, α1 = a, α2 = 1 and β1 = c in Theorem 2.12, we state

the following corollary.

Corollary 2.13. Let Φ,Ψ ∈ A. Let γ1, γ2, γ3 and γ4 6= 0 be the complex numbers.

Let q be convex univalent in U with q(0) = 1 and (2.10) holds true. If f ∈ A
L(a,c)(f∗Φ)(z)
L(a+1,c)(f∗Ψ)(z) ∈ H[q(0), 1] ∩Q. Let Υ1(f, Φ,Ψ, γ1, γ2, γ3, γ4) be univalent in U and

γ1 + γ2q
2(z) + γ3q(z) + γ4zq

′(z) ≺ Υ1(f, Φ,Ψ, γ1, γ2, γ3, γ4),

where Υ1(f, Φ,Ψ, γ1, γ2, γ3, γ4) is given by (2.9), then

q(z) ≺ L(a, c)(f ∗ Φ)(z)
L(a+ 1, c)(f ∗Ψ)(z)

and q is the best subordinant.

When l = 2, m = 1, α1 = 1, α2 = 1 and β1 = 1 in Theorem 2.12, we derive

the following corollary.

Corollary 2.14. Let Φ,Ψ ∈ A. Let γ1, γ2, γ3 and γ4 6= 0 be the complex numbers.

Let q be convex univalent in U with q(0) = 1 and (2.10) holds true. If f ∈ A,
(f∗Φ)(z)
z(f∗Ψ)′(z) ∈ H[q(0), 1] ∩Q. Let

γ1+γ2

(
(f ∗ Φ)(z)
z(f ∗Ψ)′(z)

)2

+
(f ∗ Φ)(z)
z(f ∗Ψ)′(z)

[
(γ3 − γ4) + γ4

z(f ∗ Φ)′(z)
(f ∗ Φ)(z)

− γ4
z(f ∗Ψ)′′(z)
(f ∗Ψ)′(z)

]
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be univalent in U and

γ1 + γ2q
2(z) + γ3q(z) + γ4zq

′(z)

≺γ1+γ2

(
(f ∗ Φ)(z)
z(f ∗Ψ)′(z)

)2

+
(f ∗ Φ)(z)
z(f ∗Ψ)′(z)

[
(γ3−γ4) + γ4

z(f ∗ Φ)′(z)
(f ∗ Φ)(z)

− γ4
z(f ∗Ψ)′′(z)
(f ∗Ψ)′(z)

]
,

then

q(z) ≺ (f ∗ Φ)(z)
z(f ∗Ψ)′(z)

and q is the best subordinant.

By fixing Φ(z) = Ψ(z) in Corollary 2.14, we obtain the following corollary.

Corollary 2.15. Let Φ ∈ A. Let γ1, γ2, γ3 and γ4 6= 0 be the complex numbers.

Let q be convex univalent in U with q(0) = 1 and (2.10) holds true. If f ∈ A,
(f∗Φ)(z)
z(f∗Φ)′(z) ∈ H[q(0), 1] ∩Q. Let

γ1+γ2

(
(f ∗ Φ)(z)
z(f ∗ Φ)′(z)

)2

+
(f ∗ Φ)(z)
z(f ∗ Φ)′(z)

[
(γ3 − γ4) + γ4

z(f ∗ Φ)′(z)
(f ∗ Φ)(z)

− γ4
z(f ∗ Φ)′′(z)
(f ∗ Φ)′(z)

]
be univalent in U and

γ1 + γ2q
2(z) + γ3q(z) + γ4zq

′(z)

≺ γ1+γ2

(
(f ∗ Φ)(z)
z(f ∗ Φ)′(z)

)2

+
(f ∗ Φ)(z)
z(f ∗ Φ)′(z)

[
(γ3−γ4) + γ4

z(f ∗ Φ)′(z)
(f ∗ Φ)(z)

− γ4
z(f ∗ Φ)′′(z)
(f ∗ Φ)′(z)

]
,

then

q(z) ≺ (f ∗ Φ)(z)
z(f ∗ Φ)′(z)

and q is the best subordinant.

By fixing Φ(z) = z
1−z in Corollary 2.15, we obtain the following corollary.

Corollary 2.16. Let γ1, γ2, γ3 and γ4 6= 0 be the complex numbers. Let q be convex

univalent in U with q(0) = 1 and (2.10) holds true. If f ∈ A, f(z)
zf ′(z) ∈ H[q(0), 1] ∩Q.

Let γ1 + γ2

(
f(z)
zf ′(z)

)2

+ f(z)
zf ′(z)

[
(γ3 − γ4) + γ4

zf ′(z)
f(z) − γ4

zf ′′(z)
f ′(z)

]
be univalent in U and

γ1 + γ2q
2(z) + γ3q(z) + γ4zq

′(z) ≺

γ1 + γ2

(
f(z)
zf ′(z)

)2

+
f(z)
zf ′(z)

[
(γ3 − γ4) + γ4

zf ′(z)
f(z)

− γ4
zf ′′(z)
f ′(z)

]
,
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then

q(z) ≺ f(z)
zf ′(z)

and q is the best subordinant.

By taking q(z) = (1 +Az)/(1 +Bz) (−1 ≤ B < A ≤ 1) in Theorem 2.12, we

obtain the following corollary.

Corollary 2.17. Assume that (2.10) holds true. If f ∈ A, Hl
m[α1](f∗Φ)(z)

Hl
m[α1+1](f∗Ψ)(z)

∈

H[q(0), 1] ∩Q. Let Υ(f, Φ,Ψ, γ1, γ2, γ3, γ4) be univalent in U and

γ1 + γ2(
1 +Az

1 +Bz
)2 + γ3

1 +Az

1 +Bz
+ γ4

(A−B)z
(1 +Bz)2

≺ Υ(f, Φ,Ψ, γ1, γ2, γ3, γ4),

then

1 +Az

1 +Bz
≺ H l

m[α1](f ∗ Φ)(z)
H l
m[α1 + 1](f ∗Ψ)(z)

and 1+Az
1+Bz is the best subordinant.

3. Sandwich results

We conclude this paper by stating the following sandwich results.

Theorem 3.1. Let q1 and q2 be convex univalent in U , γ1, γ2, γ3 and γ4 6= 0 be

the complex numbers. Suppose q2 satisfies (2.3) and q1 satisfies (2.10). Let Φ,Ψ ∈

A. Moreover suppose Hl
m[α1](f∗Φ)(z)

Hl
m[α1+1](f∗Ψ)(z)

∈ H[1, 1] ∩ Q and Υ(f, Φ,Ψ, γ1, γ2, γ3, γ4) is

univalent in U . If f ∈ A satisfies

γ1 + γ2q
2
1(z) + γ3q1(z) + γ4zq

′
1(z) ≺ Υ(f, Φ,Ψ, γ1, γ2, γ3, γ4)

≺ γ1 + γ2q
2
2(z) + γ3q2(z) + γ4zq

′
2(z),

where Υ(f, Φ,Ψ, γ1, γ2, γ3, γ4) is given by (2.5), then

q1(z) ≺
H l
m[α1](f ∗ Φ)(z)

H l
m[α1 + 1](f ∗Ψ)(z)

≺ q2(z)

and q1, q2 are respectively the best subordinant and best dominant.
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By taking

q1(z) =
1 +A1z

1 +B1z
(−1 ≤ B1 < A1 ≤ 1)

and

q2(z) =
1 +A2z

1 +B2z
(−1 ≤ B2 < A2 ≤ 1)

in Theorem 3.1 we obtain the following result.

Corollary 3.2. Let Φ,Ψ ∈ A. If f ∈ A,

(f ∗ Φ)(z)
z(f ∗Ψ)′(z)

∈ H[1, 1] ∩Q

and Υ(f, Φ,Ψ, γ1, γ2, γ3, γ4) is univalent in U. Further

γ1 + γ2(
1 +A1z

1 +B1z
)2 + γ3

1 +A1z

1 +B1z
+ γ4

(A1 −B1)z
(1 +B1z)2

≺ Υ(f, Φ,Ψ, γ1, γ2, γ3, γ4)

≺ γ1 + γ2(
1 +A2z

1 +B2z
)2 + γ3

1 +A2z

1 +B2z
+ γ4

(A2 −B2)z
(1 +B2z)2

where Υ(f, Φ,Ψ, γ1, γ2, γ3, γ4) is given by (2.5), then

1 +A1z

1 +B1z
≺ (f ∗ Φ)(z)
z(f ∗Ψ)′(z)

≺ 1 +A2z

1 +B2z

and 1+A1z
1+B1z

, 1+A2z
1+B2z

are respectively the best subordinant and best dominant.

We remark that Theorem 3.1 can easily restated, for the different choices of

Φ(z), Ψ(z), l,m, α1, α2, . . . αl, β1, β2, . . . βm and for γ1, γ2, γ3, γ4.
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LIV, Number 2, June 2009

A PIEZOELECTRIC FRICTIONLESS CONTACT PROBLEM
WITH ADHESION

MOHAMED SELMANI

Abstract. We consider a quasistatic frictionless contact problem for a

piezoelectric body. The contact is modelled with normal compliance. The

adhesion of the contact surfaces is taken into account and modelled by a

surface variable, the bonding field. We provide variational formulation for

the mechanical problem and prove the existence of a unique weak solution

to the problem. The proofs are based on arguments of time-dependent

variational inequalities, differential equations and fixed point.

1. Introduction

A deformable material which undergoes piezoelectric effects is called a piezo-

electric material. However, there are very few mathematical results concerning con-

tact problems involving piezoelectric materials and therefore there is a need to extend

the results on models for contact with deformable bodies which include coupling be-

tween mechanical and electrical properties. General models for elastic materials with

piezoelectric effects can be found in [8, 9, 10, 18, 19] and more recently in [1, 17]. The

importance of this paper is to make the coupling of the piezoelectric problem and a

frictionless contact problem with adhesion. The adhesive contact between deformable

bodies, when a glue is added to prevent relative motion of the surfaces, has received

recently increased attention in the mathematical literature. Analysis of models for

adhesive contact can be found in [3, 4, 6, 7, 12, 13, 14] and recently in the monographs

Received by the editors: 12.06.2007.

2000 Mathematics Subject Classification. 74M15, 74F99, 74M99.

Key words and phrases. Quasistatic process, frictionless contact, normal compliance, adhesion,

piezoelectric material, existence and uniqueness, monotone operator, fixed point, weak solution.
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[15, 16] . The novelty in all these papers is the introduction of a surface internal vari-

able, the bonding field, denoted in this paper by α, it describes the pointwise fractional

density of adhesion of active bonds on the contact surface, and sometimes referred to

as the intensity of adhesion. Following [6, 7], the bonding field satisfies the restriction

0 ≤ α ≤ 1, when α = 1 at a point of the contact surface, the adhesion is complete and

all the bonds are active, when α = 0 all the bonds are inactive, severed, and there

is no adhesion, when 0 < α < 1 the adhesion is partial and only a fraction α of the

bonds is active.

In this paper we describe a model of frictionless, adhesive contact between

a piezoelectric body and a foundation. We provide a variational formulation of the

model and, using arguments of evolutionary equations in Banach spaces, we prove

that the model has a unique weak solution.

The paper is structured as follows. In section 2 we present notations and some

preliminaries. The model is described in section 3 where the variational formulation

is given. In section 4, we present our main result stated in Theorem 4.1 and its proof

which is based on the construction of mappings between appropriate Banach spaces

and a fixed point arguments.

2. Notation and preliminaries

In this short section, we present the notation we shall use and some prelimi-

nary material. For more details, we refer the reader to [2, 5, 11] . We denote by Sd the

space of second order symmetric tensors on Rd (d = 2, 3), while ”.” and | . | represent

the inner product and the Euclidean norm on Sd and Rd, respectively. Let Ω ⊂ Rd be

a bounded domain with a regular boundary Γ and let ν denote the unit outer normal

on Γ. We shall use the notation

H = L2(Ω)d =
{
u = (ui) / ui ∈ L2(Ω)

}
,

H1(Ω)d =
{
u = (ui) / ui ∈ H1(Ω)

}
,

H =
{
σ = (σij) / σij = σji ∈ L2(Ω)

}
,

H1 = {σ ∈ H / Div σ ∈ H} ,
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where ε : H1(Ω)d → H and Div : H1 → H are the deformation and divergence

operators, respectively, defined by

ε(u) = (εij(u)), εij(u) =
1
2
(ui,j + uj,i), Div σ = (σi j, j).

Here and below, the indices i and j run between 1 to d, the summation convention

over repeated indices is used and the index that follows a comma indicates a partial

derivative with respect to the corresponding component of the independent variable.

The spaces H, H1(Ω)d, H and H1 are real Hilbert spaces endowed with the canonical

inner products given by

(u,v)H =
∫

Ω

u . v dx ∀u,v ∈ H,

(u,v)H1(Ω)d =
∫

Ω

u . v dx +
∫

Ω

∇u . ∇v dx ∀u,v ∈ H1(Ω)d,

where

∇v = (vi,j) ∀v ∈ H1(Ω)d,

(σ, τ)H =
∫

Ω

σ . τ dx ∀σ, τ ∈ H,

(σ, τ)H1 = (σ, τ)H + (Div σ,Div τ)H ∀ σ, τ ∈ H1.

The associated norms on the spaces H, H1(Ω)d, H and H1 are denoted by | . |H ,

| . |H1(Ω)d , | . |H and | . |H1respectively. Let HΓ = H
1
2 (Γ)d and let γ : H1(Ω)d →

HΓ be the trace map. For every element v ∈ H1(Ω)d, we also use the notation v

to denote the trace γv of v on Γ and we denote by vν and vτ the normal and the

tangential components of v on the boundary Γ given by

vν = v . ν, vτ = v − vνν. (2.1)

Similarly, for a regular (say C1) tensor field σ : Ω → Sd we define its normal and

tangential components by

σν = (σν) . ν, στ = σν − σνν, (2.2)

and we recall that the following Green’s formulas hold:

(σ, ε(v))H + (Div σ,v)H =
∫

Γ

σν . v da ∀v ∈ H1(Ω)d. (2.3)
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(D,∇ϕ)H + (div D, ϕ)L2(Ω) =
∫

Γ

D . ν ϕ da ∀ϕ ∈ H1(Ω). (2.4)

Finally, for any real Hilbert space X, we use the classical notation for the spaces

Lp(0, T ;X) and W k,p(0, T ;X), where 1 ≤ p ≤ +∞ and k ≥ 1. We denote by

C(0, T ;X) and C1(0, T ;X) the space of continuous and continuously differentiable

functions from [0, T ] to X, respectively, with the norms

| f |C(0,T ;X)= max
t∈[0,T ]

| f(t) |X ,

| f |C1(0,T ;X)= max
t∈[0,T ]

| f(t) |X + max
t∈[0,T ]

|
.

f(t) |X ,

respectively. Moreover, we use the dot above to indicate the derivative with respect

to the time variable and, for a real number r, we use r+ to represent its positive part,

that is r+ = max{0, r}. For the convenience of the reader, we recall the following

version of the classical theorem of Cauchy-Lipschitz (see, e.g., [20]).

Theorem 2.1. Assume that (X, | . |X) is a real Banach space and T > 0. Let F (t, .) :

X → X be an operator defined a.e. on (0, T ) satisfying the following conditions:

1- There exists a constant LF > 0 such that

| F (t, x)− F (t, y) |X≤ LF | x− y |X ∀x, y ∈ X, a.e. t ∈ (0, T ) .

2- There exists p ≥ 1 such that t 7−→ F (t, x) ∈ Lp(0, T ;X) ∀x ∈ X.

Then for any x0 ∈ X, there exists a unique function x ∈ W 1, p(0, T ;X) such

that

.
x(t) = F (t, x(t)) a.e. t ∈ (0, T ) ,

x(0) = x0.

Theorem 2.1 will be used in section 4 to prove the unique solvability of the

intermediate problem involving the bonding field.

Moreover, if X1 and X2 are real Hilbert spaces then X1 × X2 denotes the

product Hilbert space endowed with the canonical inner product (., .)X1×X2 .
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3. Mechanical and variational formulations

We describe the model for the process, we present its variational formulation.

The physical setting is the following. An electro-elastic body occupies a bounded

domain Ω ⊂ Rd (d = 2, 3) with outer Lipschitz surface Γ. The body is submitted to

the action of body forces of density f0 and volume electric charges of density q0. It is

also submitted to mechanical and electric constraint on the boundary. We consider a

partition of Γ into three disjoint measurable parts Γ1, Γ2 and Γ3, on one hand, and

on two measurable parts Γa and Γb, on the other hand, such that meas (Γ1) > 0 and

meas (Γa) > 0. Let T > 0 and let [0, T ] be the time interval of interest. The body is

clamped on Γ1 × (0, T ), so the displacement field vanishes there. A surface tractions

of density f2 act on Γ2 × (0, T ) and a body force of density f0 acts in Ω× (0, T ) . We

also assume that the electrical potential vanishes on Γa× (0, T ) and a surface electric

charge of density q2 is prescribed on Γb× (0, T ). The body is in adhesive contact with

an obstacle, or foundation, over the contact surface Γ3. We suppose that the body

forces and tractions vary slowly in time, and therefore, the accelerations in the system

may be neglected. Neglecting the inertial terms in the equation of motion leads to

a quasistatic approach of the process. We denote by u the displacement field, by σ

the stress tensor field and by ε(u) the linearized strain tensor. We use a piezoelectric

constitutive law given by

σ = A(ε(u))− E∗E(ϕ),

D =Eε(u) + BE(ϕ),

these relations represent the electro-viscoelastic constitutive law of the material which

A is a given nonlinear function, E(ϕ) = −∇ϕ is the electric field, E = (eijk) represents

the third order piezoelectric tensor, E∗ is its transposed and is given by E∗ = (e∗ijk),

where e∗ijk = ekij and B denotes the electric permitivitty tensor.

To simplify the notation, we do not indicate explicitely the dependence of

various functions on the variables x ∈ Ω ∪ Γ and t ∈ [0, T ] . Then, the classical

formulation of the mechanical problem of piezoelectric material, frictionless, adhesive

contact may be stated as follows.
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Problem P . Find a displacement field u : Ω × [0, T ] → Rd and a stress field

σ : Ω × [0, T ] → Sd , an electric potential field ϕ : Ω × [0, T ] → R, an electric

displacement field D : Ω × [0, T ] → Rd and a bonding field α : Γ3 × [0, T ] → R such

that

σ = A(ε(u)) + E∗ ∇ϕ in Ω× (0, T ) , (3.1)

D =Eε(u)−B ∇ϕ in Ω× (0, T ) , (3.2)

Div σ + f0 = 0 in Ω× (0, T ) , (3.3)

div D = q0 in Ω× (0, T ) , (3.4)

u = 0 on Γ1 × (0, T ) , (3.5)

σν = f2 on Γ2 × (0, T ) , (3.6)

−σ ν = p ν(uν)− γνα2R ν(uν) on Γ3 × (0, T ) , (3.7)

−στ = pτ (α)Rτ (uτ ) on Γ3 × (0, T ) , (3.8)

.
α = −(α(γν(R ν(uν))2 + γτ | R τ (uτ ) |2 )− εa)+ on Γ3 × (0, T ) , (3.9)

α(0) = α0 on Γ3, (3.10)

ϕ = 0 on Γa × (0, T ) , (3.11)

D . ν = q2 on Γb × (0, T ) . (3.12)

First, (3.1) and (3.2) represent the electro-elastic constitutive law described

above. Equations (3.3) and (3.4) represent the equilibrium equations for the stress

and electric-displacement fields while (3.5) and (3.6) are the displacement and traction

boundary condition, respectively. Condition (3.7) represents the normal compliance

conditions with adhesion where γν is a given adhesion coefficient and pν is a given

positive function which will be described below. In this condition the interpenetra-

bility between the body and the foundation is allowed, that is uν can be positive on

Γ3. The contribution of the adhesive to the normal traction is represented by the

term γνα2R ν(uν), the adhesive traction is tensile and is proportional, with propor-

tionality coefficient γν , to the square of the intensity of adhesion and to the normal
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displacement, but as long as it does not exceed the bond length L. The maximal

tensile traction is γνL. Rν is the truncation operator defined by

Rν(s) =


L if s < −L,

−s if − L ≤ s ≤ 0,

0 if s > 0.

Here L > 0 is the characteristic length of the bond, beyond which it does

not offer any additional traction. The introduction of the operator Rν , together with

the operator Rτ defined below, is motivated by mathematical arguments but it is not

restrictive for physical point of view, since no restriction on the size of the parameter

L is made in what follows. Condition (3.8) represents the adhesive contact condition

on the tangential plane, in which pτ is a given function and Rτ is the truncation

operator given by

Rτ (v) =

 v if | v | ≤ L,

L v
|v| if | v | > L.

This condition shows that the shear on the contact surface depends on the

bonding field and on the tangential displacement, but as long as it does not exceed

the bond length L. The frictional tangential traction is assumed to be much smaller

than the adhesive one and, therefore, omitted.

Next, the equation (3.9) represents the ordinary differential equation which

describes the evolution of the bonding field and it was already used in [3], see also

[15, 16] for more details. Here, besides γν , two new adhesion coefficients are involved,

γτ and εa. Notice that in this model once debonding occurs bonding cannot be

reestablished since, as it follows from (3.9),
.
α ≤ 0. Finally, (3.10) represents the initial

condition in which α0 is the given initial bonding field, (3.11) and (3.12) represent the

electric boundary conditions. To obtain the variational formulation of the problem

(3.1)-(3.12), we introduce for the bonding field the set

Z = {θ ∈ L∞(Γ3) / 0 ≤ θ ≤ 1 a.e. on Γ3} ,
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and for the displacement field we need the closed subspace of H1(Ω)d defined by

V =
{
v ∈ H1(Ω)d / v = 0 on Γ1

}
.

Since meas (Γ1) > 0, Korn’s inequality holds and there exists a constant Ck > 0,

that depends only on Ω and Γ1, such that

| ε(v) |H≥ Ck | v |H1(Ω)d ∀v ∈ V.

A proof of Korn’s inequality may be found in [11, p.79]. On the space V we consider

the inner product and the associated norm given by

(u,v)V = (ε(u), ε(v))H, | v |V =| ε(v) |H ∀u,v ∈ V. (3.13)

It follows that | . |H1(Ω)d and | . |V are equivalent norms on V and therefore

(V, | . |V ) is a real Hilbert space. Moreover, by the Sobolev trace theorem and (3.13),

there exists a constant C0 > 0, depending only on Ω, Γ1 and Γ3 such that

| v |L2(Γ3)d≤ C0 | v |V ∀v ∈ V. (3.14)

We also introduce the spaces

W =
{
φ ∈ H1(Ω) / φ = 0 on Γa

}
,

W =
{
D = (Di) / Di ∈ L2(Ω), div D ∈ L2(Ω)

}
,

where div D = (Di,i). The spaces W and W are real Hilbert spaces with the inner

products

(ϕ, φ)W =
∫

Ω

∇ϕ.∇φ dx,

(D,E)W =
∫

Ω

D.E dx +
∫

Ω

div D.div E dx.

The associated norms will be denoted by | . |W and | . |W , respectively. Notice also

that, since meas(Γa) > 0, the following Friedrichs-Poincaré inequality holds:

| ∇φ |L2(Ω)d≥ CF | φ |H1(Ω) ∀φ ∈ W, (3.15)

where CF > 0 is a constant which depends only on Ω and Γa.
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In the study of the mechanical problem (3.1)-(3.12), we assume that the

constitutive function A : Ω× Sd → Sd satisfies



(a) There exists a constant LA > 0 Such that

| A(x, ε1)−A(x, ε2) |≤ LA | ε1 − ε2 | ∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(b) There exists a constant mA > 0 Such that

(A(x, ε1)−A(x, ε2)).(ε1 − ε2) ≥ mA | ε1 − ε2 |2 ∀ε1, ε2 ∈ Sd, a.e. x ∈ Ω.

(c) The mapping x → A(x, ε) is Lebesgue measurable on Ω for any ε ∈ Sd.

(d) The mapping x → A(x,0) belongs to H.

(3.16)

The operator B = (Bij): Ω× Rd → Rd satisfies



(a) B(x,E) = (bij(x)Ej) ∀E = (Ei) ∈ Rd, a.e.x ∈ Ω.

(b) bij = bji , bij ∈ L∞(Ω), 1 ≤ i, j ≤ d.

(c) There exists a constant mB > 0 such that BE.E ≥ mB | E |2

∀E = (Ei) ∈ Rd, a.e. in Ω.

(3.17)

The operator E : Ω× Sd → Rd satisfies

 (a) E =(ei j k ), ei j k ∈ L∞(Ω), 1 ≤ i, j, k ≤ d.

(b) E(x)σ.τ = σ. E∗(x)τ ∀σ, τ ∈Sd, a.e. in Ω.

(3.18)

The normal compliance function pν : Γ3 × R → R+ satisfies



(a) There exists a constant Lν > 0 such that

| pν(x, r1)− pν(x, r2) |≤ Lτ | r1 − r2 | ∀r1, r2 ∈ R, a.e. x ∈ Γ3.

(b) (pν(x, r1)− pν(x, r2))(r1 − r2) ≥ 0 ∀r1, r2 ∈ R, a.e. x ∈ Γ3.

(c) The mapping x → pν(x, r) is measurable on Γ3, for any r ∈ R.

(d) pν(x, r) = 0 for all r ≤ 0, a.e. x ∈ Γ3.

(3.19)
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The tangential contact function pτ : Γ3 × R → R+ satisfies

(a) There exists a constant Lτ > 0 such that

| pτ (x, d1)− pτ (x, d2) |≤ Lτ | d1 − d2 | ∀d1, d2 ∈ R, a.e. x ∈ Γ3.

(b) There exists Mτ > 0 such that | pτ (x, d) |≤ Mτ ∀d ∈ R, a.e. x ∈ Γ3.

(c) The mapping x → pτ (x, d) is measurable on Γ3, for any d ∈ R.

(d) The mapping x → pτ (x, 0) ∈ L2(Γ3).
(3.20)

We also suppose that the body forces and surface tractions have the regularity

f0 ∈ W 1,∞(0, T ;L2(Ω)d), f2 ∈ W 1,∞(0, T ;L2(Γ2)d), (3.21)

q0 ∈ W 1,∞(0, T ;L2(Ω)), q2 ∈ W 1,∞(0, T ;L2(Γb)). (3.22)

The adhesion coefficients satisfy

γν , γτ , εa ∈ L∞(Γ3), γν , γτ , εa ≥ 0 a.e. on Γ3. (3.23)

The initial bonding field satisfies

α0 ∈ Z. (3.24)

Next, we denote by f : [0, T ] → V the function defined by

(f(t),v)V =
∫

Ω

f0(t) . v dx +
∫

Γ2

f2(t) . v da ∀v ∈ V, t ∈ [0, T ] , (3.25)

and we denote by q: [0, T ] → W the function defined by

(q(t), φ)W =
∫

Ω

q0(t) . φ dx −
∫

Γb

q2(t) . φ da ∀φ ∈ W, t ∈ [0, T ] . (3.26)

Next, we denote by jad : L∞(Γ3)× V × V → R the adhesion functional defined by

jad(α,u,v) =
∫

Γ3

(−γνα2R ν(uν) vν + pτ (α)Rτ (u τ ) .vτ ) da. (3.27)

In addition to the functional (3.27), we need the normal compliance functional

jnc(u,v) =
∫

Γ3

pν(uν)vν da. (3.28)
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Keeping in mind (3.19)-(3.20), we observe that the integrals (3.27) and (3.28) are well

defined and we note that conditions (3.21)-(3.22) imply

f ∈ W 1,∞(0, T ;V ), q ∈ W 1,∞(0, T ;W ). (3.29)

Using standard arguments we obtain the variational formulation of the mechanical

problem (3.1)-(3.12).

Problem PV. Find a displacement field u : [0, T ] → V , an electric potential

field ϕ : [0, T ] → W and a bonding field α : [0, T ] → L∞ (Γ3) such that

(Aε(u(t)), ε(v))H + (E∗∇ϕ(t), ε(v))H + jad(α(t),u(t),v)

+jnc(u(t),v) = (f(t),v)V ∀v ∈ V, t ∈ (0, T ) , (3.30)

(B∇ϕ(t),∇φ)L2(Ω)d−(Eε(u(t)),∇φ)L2(Ω)d = (q(t), φ)W ∀φ ∈ W, t ∈ (0, T ) , (3.31)

.
α(t) = −(α(t)(γν(R ν(uν(t)))2 + γτ | R τ (uτ (t)) |2 )− εa)+ a.e. t ∈ (0, T ) , (3.32)

α(0) = α0. (3.33)

The existence of the unique solution of problem PV is stated and proved in the next

section.

Remark 3.1. We note that, in problem P and in problem PV, we do not need to

impose explicitly the restriction 0 ≤ α ≤ 1. Indeed, equation (3.32) guarantees that

α(x, t) ≤ α0(x) and, therefore, assumption (3.24) shows that α(x, t) ≤ 1 for t ≥ 0,

a.e. x ∈ Γ3. On the other hand, if α(x, t0) = 0 at time t0, then it follows from (3.32)

that
.
α(x, t) = 0 for all t ≥ t0 and therefore, α(x, t) = 0 for all t ≥ t0, a.e. x ∈ Γ3.

We conclude that 0 ≤ α(x, t) ≤ 1 for all t ∈ [0, T ], a.e. x ∈ Γ3.

Below in this section α, α1, α2 denote elements of L2(Γ3) such that 0 ≤

α, α1, α2 ≤ 1 a.e. x ∈ Γ3, u1,u2 and v represent elements of V and C > 0 rep-

resents generic constants which may depend on Ω,Γ3,Γ3, pν , pτ , γν , γτ and L.

First, we note that the functional jad and jnc are linear with respect to the

last argument and, therefore,

jad(α,u,−v) = −jad(α,u,v), jnc(u,−v) = −jnc(u,v). (3.34)
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Next, using (3.27), the properties of the truncation operators Rν and Rτ as well as

assumption (3.20) on the function pτ , after some calculus we find

jad(α1,u1,u2−u1)+jad(α2,u2,u1−u2)

≤ C

∫
Γ3

|α1 − α2 || u1 − u2 | da,

and, by (3.14), we obtain

jad(α1,u1,u2−u1)+jad(α2,u2,u1−u2)

≤ C|α1 − α2 |L2(Γ3)| u1 − u2 |V . (3.35)

Similar computations, based on the Lipschitz continuity of Rν , Rτ and pτ show that

the following inequality also holds

| jad(α,u1,v)−jad(α,u2,v) | ≤ C | u1 − u2 |V | v |V . (3.36)

We take now α1 = α2 = α in (3.35) to deduce

jad(α,u1,u2−u1)+jad(α,u2,u1−u2) ≤ 0. (3.37)

Also, we take u1 = v and u2 = 0 in (3.36) then we use the equalities Rν(0) = 0,

Rτ (0) = 0 and (3.34) to obtain

jad(α,v,v) ≥ 0. (3.38)

Now, we use (3.28) to see that

| jnc(u1,v)−jnc(u2,v) | ≤
∫

Γ3

| pν(u1ν)− pν(u2ν) || vν | da,

and therefore (3.19) (a) and (3.14) imply

| jnc(u1,v)−jnc(u2,v) | ≤ C | u1 − u2 |V | v |V . (3.39)

We use again (3.28) to see that

jnc(u1,u2−u1)+jnc(u2,u1−u2) ≤
∫

Γ3

(pν(u1ν)− pν(u2ν))(u2ν − u1ν)da,

and therefore (3.19) (b) implies

jnc(u1,u2−u1)+jnc(u2,u1−u2) ≤ 0. (3.40)
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We take u1 = v and u2 = 0 in the previous inequality and use (3.19) (d) and (3.40)

to obtain

jnc(v,v) ≥0. (3.41)

Inequalities (3.35)-(3.41) and equality (3.34) will be used in various places in the rest

of the paper.

4. An existence and uniqueness result

Now, we propose our existence and uniqueness result.

Theorem 4.1. Assume that (3.16)-(3.24) hold. Then there exists a unique solution

{u,ϕ, α} to problem PV. Moreover, the solution satisfies

u ∈ W 1,∞(0, T ;V ), (4.1)

ϕ ∈ W 1,∞(0, T ;W ), (4.2)

α ∈ W 1,∞(0, T ;L∞(Γ3)). (4.3)

The functions u,ϕ, σ,D and α which satisfy (3.1)-(3.2) and (3.30)-(3.33) are

called a weak solution of the contact problem P.

We conclude that, under the assumptions (3.16)-(3.24), the mechanical prob-

lem (3.1)-(3.12) has a unique weak solution satisfying (4.1)-(4.3). The regularity of

the weak solution is given by (4.1)-(4.3) and, in term of stresses,

σ ∈ W 1,∞(0, T ;H1), (4.4)

D ∈ W 1,∞(0, T ;W). (4.5)

Indeed, it follows from (3.30) and (3.31) that Div σ(t) + f0(t) = 0, div D =

q0(t) for all t ∈ [0, T ] and therefore the regularity (4.1) and (4.2) of u and ϕ, combined

with (3.16)-(3.22) implies (4.4) and (4.5).

The proof of Theorem 4.1 is carried out in several steps that we prove in

what follows, everywhere in this section we suppose that assumptions of Theorem

4.1 hold, and we consider that C is a generic positive constant which depends on
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Ω,Γ1,Γ3, pν , pτ , γν , γτ and L and may change from place to place. Let Z denote the

closed subset of C(0, T ;L2(Γ3)) defined by

Z =
{
θ ∈ C(0, T ;L2(Γ3)) / θ(t) ∈ Z ∀t ∈ [0, T ] , θ(0) = α0

}
. (4.6)

Let α ∈ Z be given. In the first step we consider the following variational problem.

Problem PV α. Find a displacement field uα : [0, T ] → V , an electric potential

field ϕα : [0, T ] → W such that

(Aε(uα(t)), ε(v))H + (E∗∇ϕα(t), ε(v))H + jad(α(t),uα(t),v)

+jnc(uα(t),v) = (f(t),v)V ∀v ∈ V, t ∈ [0, T ] , (4.7)

(B∇ϕα(t),∇φ)L2(Ω)d − (Eε(uα(t)),∇φ)L2(Ω)d

= (q(t), φ)W ∀φ ∈ W, t ∈ (0, T ) . (4.8)

We have the following result for the problem.

Lemma 4.2. There exists a unique solution to problem PVα. The solution satisfies

(uα, ϕα) ∈ C(0, T ;V )× C(0, T ;W ).

Proof. Let t ∈ [0, T ] we consider the product space X = V × W with the inner

product:

(x, y)X = (u,v)V + (ϕ, φ)W ∀x = (u, ϕ), y = (v, φ) ∈ X, (4.9)

and the associated norm | . |X . Let At : X → X be the operator given by

(Atx, y)X = (Aε(u), ε(v))H + (B∇ϕ,∇φ)L2(Ω)d + (E∗∇ϕ, ε(v))H

−(Eε(u),∇φ)L2(Ω)d + jnc(u,v) + jad(α(t),u,v)

∀x = (u, ϕ), y = (v, φ) ∈ X. (4.10)

We consider the element F ∈ X given by

F = (f , q) ∈ X. (4.11)

We consider the following equivalence result the couple xα = (uα, ϕα) is a solution

to problem PV α if and only if

(Atxα(t), y)X = (F (t), y)X , ∀y ∈ X, t ∈ [0, T ] . (4.12)
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Indeed, let xα(t) = (uα(t), ϕα(t)) ∈ X be a solution to problem PV α and let y =

(v, φ) ∈ X. We add the equality (4.7) to (4.8) and we use (4.9)-(4.11) to obtain

(4.12). Conversely, let xα(t) = (uα(t), ϕα(t)) ∈ X be a solution to the quasivariational

inequality (4.12). We take y = (v, 0) ∈ X in (4.12) where v is an arbitrary element

of V and obtain (4.7), then we take y = (0, φ) in (4.12), where φ is an arbitrary

element of W , as a result we obtain (4.8). We use (3.13), (3.15), (3.16)-(3.18), (3.36)

and (3.39) to see that the operator At is strongly monotone and Lipschitz continuous,

it follows by standard results on elliptic variational inequalities that there exists a

unique element (uα(t), ϕα(t)) ∈ X which solves (4.7)-(4.8).

Now let us show that (uα, ϕα) ∈ C(0, T ;V )× C(0, T ;W ). We let t1, t2 ∈ [0, T ]

and use the notation uα(ti) = ui, α(ti) = αi, ϕα(ti) = ϕi, f(ti) = fi, q(ti) = qi and

xα(ti) = (uα(ti), ϕα(ti)) = xi for i = 1, 2. We use standard arguments in (4.7) and

(4.8) to find

(Aε(u1 − u2), ε(u1 − u2))H + (E∗∇(ϕ1 − ϕ2), ε(u1 − u2))H

= (f1 − f2,u1 − u2)V + jnc(u1,u2 − u1) + jnc(u2,u1 − u2)

+jad(α1,u1,u2 − u1) + jad(α2,u2,u1 − u2), (4.13)

(B∇(ϕ1 − ϕ2),∇(ϕ1 − ϕ2))L2(Ω)d − (Eε(u1 − u2),∇(ϕ1 − ϕ2))L2(Ω)d

= (q1 − q2, ϕ1 − ϕ2)W , (4.14)

and, by using the assumption (3.16)-(3.18) on A, B and E , the properties (3.35)

and (3.39) on the functional jad and jnc respectively and (3.14)-(3.15), we obtain

| u1 − u2 |V≤ C(| f1 − f2 |V + | q1 − q2 |W + | α1 − α2 |L2(Γ3)). (4.15)

| ϕ1 − ϕ2 |W≤ C(| u1 − u2 |V + | q1 − q2 |W ). (4.16)

The inequality (4.15) and the regularity of the functions f , q and α show that uα ∈

C(0, T ;V ). We use (4.16) and the regularity of the functions uα, q to show that

ϕα ∈ C(0, T ;W ). Thus we conclude the existence part in lemma 4.2 and we note that

the uniqueness of the solution follows from the unique solvability of (4.7) and (4.8)

at any t ∈ [0, T ] . �
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In the next step, we use the displacement field uα obtained in lemma 4.2 and

we consider the following initial-value problem.

Problem PV θ. Find the adhesion field θα : [0, T ] → L∞(Γ3) such that for

a.e. t ∈ (0, T )

.

θα(t) = −(θα(t)(γν(R ν(uαν(t)))2 + γτ | R τ (uατ (t)) |2 )− εa)+, (4.17)

θα(0) = α0. (4.18)

We have the following result.

Lemma 4.3. There exists a unique solution θα ∈ W 1,∞(0, T ;L∞(Γ3)) to problem

PVθ. Moreover, θα(t) ∈ Z for all t ∈ [0, T ] .

Proof. For the simplicity we suppress the dependence of various functions on Γ3,

and note that the equalities and inequalities below are valid a.e. on Γ3. Consider the

mapping Fα : [0, T ]× L∞(Γ3) → L∞(Γ3) defined by

Fα(t, θ) = −(θ(γν(R ν(uαν(t)))2 + γτ | R τ (uατ (t)) |2 )− εa)+, (4.19)

for all t ∈ [0, T ] and θ ∈ L∞(Γ3). It follows from the properties of the truncation op-

erator Rν and Rτ that Fα is Lipschitz continuous with respect to the second variable,

uniformly in time. Moreover, for all θ ∈ L∞(Γ3), the mapping t → Fα(t, θ) belongs

to L∞(0, T ;L∞(Γ3)). Thus using a version of Cauchy-Lipschitz theorem given in

Theorem 2.1 we deduce that there exists a unique function θα ∈ W 1,∞(0, T ;L∞(Γ3))

solution to the problem PV θ. Also, the arguments used in Remark 3.1 show that

0 ≤ θα(t) ≤ 1 for all t ∈ [0, T ], a.e. on Γ3. Therefore, from the definition of the set

Z, we find that θα(t) ∈ Z, which concludes the proof of the lemma. �

It follows from lemma 4.3 that for all α ∈ Z the solution θα of problem PV θ

belongs to Z. Therefore, we may consider the operator Λ : Z → Z given by

Λα = θα. (4.20)

We have the following result.

Lemma 4.4. There exists a unique element α∗ ∈ Z such that Λα∗ = α∗.
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Proof. We show that, for a positive integer m, the mapping Λm is a contraction

on Z. To this end, we suppose that α1 and α2 are two functions in Z and denote

uαi
= ui, and θαi

= θi the functions obtained in lemmas 4.4 and 4.5, respectively,

for α = αi, i = 1, 2. Let t ∈ [0, T ] . We use (4.7) and (4.8) and arguments similar to

those used in the proof of (4.15) to deduce that

| u1(t)− u2(t) |V≤ C | α1(t)− α2(t) |L2(Γ3), (4.21)

which implies∫ t

0

| u1(s)− u2(s) |V ds ≤ C

∫ t

0

| α1(s)− α2(s) |L2(Γ3) ds. (4.22)

On the other hand, from the Cauchy problem (4.17)-(4.18) we can write

θi(t) = α0 −
∫ t

0

(θi(s)(γν(Rν(uiν(s)))2 + γτ | Rτ (uiτ (s)) |2)− εa)+ ds, (4.23)

and then

| θ1(t)− θ2(t) |L2(Γ3)

≤ C

∫ t

0

| θ1(s)(Rν(u1ν(s)))2 − θ2(s)(Rν(u2ν(s)))2 |L2(Γ3) ds

≤ C

∫ t

0

| θ1(s) | Rτ (u1τ (s)) |2 −θ2(s) | Rτ (u2τ (s)) |2|L2(Γ3) ds.

Using the definition of Rν and Rτ and writing θ1 = θ1 − θ2 + θ2, we get

| θ1(t)− θ2(t) |L2(Γ3)

≤ C(
∫ t

0

| θ1(s)− θ2(s) |L2(Γ3) ds +
∫ t

0

| u1(s)− u2(s) |L2(Γ3)d ds). (4.24)

Next, we apply Gronwall’s inequality to deduce

| θ1(t)− θ2(t) |L2(Γ3)≤ C

∫ t

0

| u1(s)− u2(s) |L2(Γ3)d ds. (4.25)

The relation (4.20), the estimate (4.25) and the relation (3.14) lead to

| Λα1(t)− Λα2(t) |L2(Γ3)≤ C

∫ t

0

| u1(s)− u2(s) |V ds. (4.26)

We now combine (4.22) and (4.26) and see that

| Λα1(t)− Λα2(t) |L2(Γ3)≤ C

∫ t

0

| α1(s)− α2(s) |L2(Γ3) ds, (4.27)
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and reiterating this inequality m times we obtain

| Λmα1 − Λmα2 |C(0,T ;L2(Γ3))≤
CmTm

m!
| α1 − α2 |C(0,T ;L2(Γ3)) . (4.28)

Recall that Z is a nonempty closed set in the Banach space C(0, T ;L2(Γ3)) and

note that (4.28) shows that for m sufficiently large the operator Λm : Z → Z is a

contraction. Then by the Banach fixed point theorem (see [16]) it follows that Λ has

a fixed point α∗ ∈ Z. �

Now, we have all the ingredients to prove Theorem 4.1.

Proof. Existence. Let α∗ ∈ Z be the fixed point of Λ and let (u∗, ϕ∗) be the solution

of problem PV α for α = α∗, i.e. u∗ = uα∗ , ϕ∗ = ϕα∗ . Arguments similar to those

used in the proof of (4.15) lead to

| u∗(t1)− u∗(t2) |V≤ C(| q(t1)− q(t2) |W

+ | f(t1)− f(t2) |V + | α∗(t1)− α∗(t2) |L2(Γ3)), (4.29)

| ϕ∗(t1)− ϕ∗(t2) |W≤ C(| u∗(t1)− u∗(t2) |V + | q(t1)− q(t2) |W ), (4.30)

for all t1, t2 ∈ [0, T ]. Since α∗ = θα∗ it follows from lemma 4.3 that α∗ ∈

W 1,∞(0, T ;L∞(Γ3)), the regularity of f and q given by (3.29) and the estimate (4.29)

imply that u∗ ∈ W 1,∞(0, T ;V ) and (4.30) implies that ϕ∗ ∈ W 1,∞(0, T ;W ). We con-

clude by (4.7), (4.8), (4.17) and (4.18) that (u∗, ϕ∗, α∗) is a solution of problem PV

and it satisfies (4.1)-(4.3).

Uniqueness. The uniqueness of the solution is a consequence of the uniqueness

of the fixed point of the operator Λ defined by (4.20).

Let (u, ϕ, α) be a solution of problem PV which satisfies (4.1)-(4.3). Using

arguments in remark 3.1 we deduce that α ∈ Z, moreover, it follows from (3.30)-(3.31)

that (u, ϕ) is a solution to problem PV α and since by lemma 4.2 this problem has a

unique solution denoted (uα, ϕα), we obtain

u = uα and ϕ = ϕα. (4.31)

We replace u by uα in (3.32) and use the initial condition (3.33) to see that α is a

solution to problem PV θ. Since by Lemma 4.3 this last problem has a unique solution

114



A PIEZOELECTRIC FRICTIONLESS CONTACT PROBLEM WITH ADHESION

denoted θα, we find

α = θα. (4.32)

We use now (4.20) and (4.32) to see that Λα = α, i.e. α is a fixed point of

the operator Λ. It follows now from lemma 4.4 that

α = α∗. (4.33)

The uniqueness part of the theorem is now a consequence of equalities (4.31),

(4.32) and (4.33). �
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LIV, Number 2, June 2009

ON THE STANCU TYPE LINEAR POSITIVE OPERATORS OF
APPROXIMATION CONSTRUCTED BY USING THE BETA AND

THE GAMMA FUNCTIONS

ELENA IULIA STOICA-LAZE

Abstract. The objective of this paper is to present some extensions of

several classes of Stancu type linear positive operators of approximation

by using the beta and the gamma functions.

Section 1 is devoted to consideration of the Stancu-Bernstein type

operator Sα
m, introduced in 1968 by D.D. Stancu in the paper [28] starting

from the Markov-Polya probability distribution.

In section 2 is considered the Stancu-Baskakov operator V α
m , de-

fined at (2.1) and (2.2). If α = 0 then we obtain the Baskakov operator

defined at (2.3).

Section 3 is devoted to the operator W α
m of Stancu, Meyer-König

and Zeller operator defined at (3.1) and (3.2) introduced γ in [22] by these

authors starting from the Pascal probability distribution.

In section 4 is presented and discussed the Stancu beta operators

of second-kind Lm, defined at (4.2), which was obtained by using Karl

Pearson type VI, bp,q, with positive parameters p and q.

1. The Stancu-Bernstein operator Sα
m

In the previous papers [32], [33], [34], professor D.D. Stancu has considered

probabilistic methods for construction and investigation of some linear positive oper-

ators useful in approximation theory of functions.

First we mention that in 1968 he has introduced and investigated in [28] a

new parameter-dependent linear polynomial operator Sα
m of Bernstein type associated

Received by the editors: 01.12.2008.

2000 Mathematics Subject Classification. 41A10, 41A36, 65D10, 65Q05.
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to a function f ∈ C[0, 1], defined by the formula

(Sα
mf)(x) =

m∑
k=0

pα
m,k(x)f

(
k

m

)
, (1.1)

where α is a non negative parameter and wα
m,k is a polynomial which can be expressed

by means of the factorial power u(n,k) of the non-negative order n and increment h,

given by the formula

u(n,h) = u(u− h) . . . (u− (n− 1)h),

namely

pα
m,k(x) =

1
1(m,−α)

(
m

k

)
x(k,−α)(1− x)(m−k,−α). (1.2)

If α = 0 then this operator reduces to the classical operator Bm, introduced by

Bernstein in 1912 in the paper [7] by starting from the binomial Bernoulli distribution.

By using the Markov-Pólya probability distribution (introduced by A. Markov

[19] in 1917 and encountered in 1930 by G. Pólya [25] studying the contageous diseases.

We mention that at this distribution we can arrive by using the following urn model.

An urn contains a white balls and b black balls. One ball is drawn at random from

this urn and then it is returned together with a constant number of c identical balls

of the same color. This process is repeated m times. Denoting by Zj the one-zero

random variable, according as the j-th trial results in white or black, the probability

that the total number of white balls Z1 + · · · + Zm be equal with k (0 ≤ k ≤ m) is

given by

P (k;m,a, b, c) =
(

m

k

)
a(a + c) . . . (a + (k − 1)c)b(b + c) . . . (b + (m− k − 1)c)

(a + b)(a + b + c) . . . (a + b + (m− 1)c)
.

If we adopt the notations: x = a/(a + b), α = c/(a + b), and we hold

α a constant, allowing x to vary, we obtain the discrete probability distribution of

Markov-Pólya. We can see that the probability to have

Ym =
1
m

(Z1 + · · ·+ Zm) =
k

m

is given just by the formula

pα
m,k(x) =

(
m

k

)
x(k,−α)(1− x)(m−k,−α)

1(m,−α)
.
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If we assume that α > 0, then the operator Sα
m can be represented by means

of the formula

(Sα
mf)(x)

1

B

(
x

α
,
1− x

α

) ∫ 1

0

t
x
α (1− t)

1−x
α (Bmf)(t)dt, (1.3)

where B is the Euler (1707-1783) Beta function of the first kind, where

B(x, y) =
∫ 1

0

tx−1(1− t)y−1dt (x, y > 0).

This is a function of two variables x and y from R+.

Putting x = t/(1 + t) we obtain

B(x, y) =
∫ ∞

0

tx−1dt

(1 + t)x+y
.

The Beta function can be expressed by the Euler Gamma function Γ(u),

where u > 0 and

Γ(u) =
∫ ∞

0

tu−1e−udt.

Now let us make the remarks that

B(m,n) = (m− 1)!(n− 1)!/(m + n− 1)!, B

(
1
2
,
1
2

)
= π, Γ

(
1
2

)
=
√

π,

as can be seen in the books [9], [13].

Concerning the remainder of the approximation formula of the function f

by the operator of D.D. Stancu (1.3), we should mention that it can be represented

under the form

(Rα
mf)(x) = (Rα

me2)(x)(Dα
mf)(x),

where

(Rα
me2)(x) =

1 + αm

1 + α
· x(1− x)

m

and

(Dα
mf)(x) =

m−1∑
k=0

pα
m−1,k(x + α, 1− x + α)

[
x,

k

m
,
k + 1

m
; f

]
,

the brackets representing the symbol for divided differences.
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2. The Stancu-Baskakov operator V α
m

If one uses the generalization given by D.D. Stancu in the paper [29] for the

Fisher probability distribution

P (χ = k) = q(k;n, x) =
(

n + k − 1
k

)
xk

(1 + x)n+k
, (2.1)

namely

P (χ = k) =
(

m + k − 1
k

)B

(
1
α

+ m,
x

α
+ k

)
B

(
1
α

,
x

α

) ,

where α and x are positive numbers and B is the Euler beta function, then we obtain

the generalized Baskakov operator V α
m considered by D.D. Stancu [29], defined by the

formula

(V α
mf)(x) =

∞∑
k=0

vα
m,k(x)f

(
k

m

)
,

where x ∈ [0,∞) and

vα
m,k(x)=

(
m + k − 1

k

)
(1+α)(1 + 2α) . . . (1 + (m− 1)α)(x(x + α)) . . . (x + (k−1)α)

(1 + x)(1 + x + α) . . . (1 + x + (m + k − 1)α)
.

(2.2)

Since vα
m,0(0) = 1 and vα

m,k(0) = 0 if k ≥ 1 one observes that we always have

(V α
mf)(0) = f(0).

We notice that the fundamental polynomials vα
m,k can be expressed in a more

compact form by means of the notion of factorial powers, namely

vα
m,k(x) =

(
m + k − 1

k

)
1(m,−α)x(k,−α)

(1 + x)(m+k,−α)
.

The operator V α
m includes as a special case the Baskakov operator Qm, defined

by the following formula

(Qmf)(x) =
∞∑

k=0

(
m + k − 1

k

)
xk

(1 + x)m+k
f

(
k

m

)
, (2.3)

which can be constructed if one uses the form considered by Fisher [10] for the negative

binomial distribution.
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We further note that if α > 0 and x > 0 then one verifies directly that the

fundamental polynomials vα
m,k can also be represented in the following form

vα
m,α =

(
m + k − 1

k

)B

(
1
α

+ m,
x

α
+ k

)
B

(
1
α

,
x

α

) (2.4)

in terms of the Euler beta function B.

3. The Stancu Meyer-König and Zeller operator Wα
m

If we use a generalization given by D.D. Stancu [29] for the Pascal probability

distribution, then we can obtain the following general linear operator Wα
m, defined for

a function f bounded on the interval [0, 1] namely

(Wα
mf)(x) =

∞∑
k=0

wα
m,k(x)f

(
k

m + k

)
, (3.1)

where for 0 ≤ x < 1 we have

wα
m,k(x) =

(
m + k

k

)
x(k,−α)(1− x)(m+1,−α)

1(m+k+1,−α)

=
(

m + k

k

)
x(x + α) . . . (x + (k − 1)α)(1− x)(1− x + α) . . . (1− x + mα)

(1 + α)(1 + 2α) . . . (1 + (m + k)α)
.

One observes that if x = 0 then Wα
mf(0) = f(0), while if x = 1 it is convenient

to take

(Wα
mf) = lim

x↗1
(Wα

mf)(x) = f(1).

It is obvious to see that Wα
m includes as a special case (α = 0) the operator

of Meyer-König and Zeller [22] defined by

(Mmf)(x) =
∞∑

k=0

wm,k(x)f
(

k

m + k

)
, (3.2)

where

wm,k(x) =
(

m + k

k

)
xk(1− x)m+1

obtained by these authors by using the negative binomial probability distribution of

Pascal.
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In the paper [29] D.D. Stancu has given an integral representation of Wα
mf

by using the Beta transformation of the operator Mm defined at (3.2), which is valid

for α > 0 and 0 < x < 1 namely,

(Wα
mf)(x) =

1

B

(
x

α
,
1− x

α

) ∫ 1

0

t
x
α−1(1− t)

1−x
α (Mmf)(t)dt. (3.3)

Concerning this operator we want to mention that the paper [37] J. Swetits

and B. Wood referring to a probabilistic method in connection with the Markov-

Polya urn scheme, used by D.D. Stancu in [28] for constructing the operator Sα
m,

have presented a variation of the Pascal urn scheme.

It permits to give a probabilistic interpretation of the operator Mα
m.

By using the notation

wα
m,k(u, v) =

(
m + k

k

)
u(k,−α)v(m+1,−α)

(u + v)(m+1+k,−α)

and the second order divided differences of the function f , D.D. Stancu has evaluated

in the paper [33] the remainder term in the approximation formula of the function f :

f(x) = (Mα
mf)(x) + (Rα

mf)(x) (3.4)

by means of Mα
mf , namely

(Rα
mf)(x) = −x(1−x)

∞∑
k=0

(m+1+k)−1wα
m−1,k(x+α, 1−x+α)

[
x,

k

m + k
,

k + 1
m + 1 + k

; f
]

,

where the brackets represent the symbol for divided differences.

4. The Stancu beta operators of second kind

By starting from the beta distribution of second kind bp,q (with positive pa-

rameters), which belongs to Karl Pearson’s Type VI, one defines the beta second kind

transformation Tp,q of a function g : [0,∞) → R bounded and Lebesgue measurable

in every interval [a, b], where 0 < a < b < ∞ such that Tp,q|q| < ∞. The moment of

order r (1 ≤ r < q) of the functional Tp,q has the following value

νr(p, q) = Tp,qer =
p(p + 1) . . . (p + r − 1)

(q − 1)(q − 2) . . . (q − r)
. (4.1)
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If one applies this transformation to the image of a function f : [a,∞) → R

by the operator defined at (2.3) then we obtain the functional

F f
m(p, q) = Tp,q(Qmf),

given explicitly under the following form

F f
m(p, q) = Tp,q(Qmf)

=
m∑

k=0

(
m + k − 1

k

)
p(p + 1) . . . (p + q − 1)q(q + 1) . . . (q + m− 1)

(p + q)(p + q + 1) . . . (p + q + m + k − 1)
f

(
k

m

)
.

If we select p =
x

α
and q =

1
α

, where α > 0 then the preceding formulas

leads us to the parameter dependent operator Sα
m introduced in 1970 in the paper of

D.D. Stancu [29] (see also the paper [31] of the same author) as a generalization of

the Baskakov operator [6]. By using the factorial powers, with the step h = −α, it

can be expressed under the following compact form

(Lα
mf)(x) =

∞∑
k=0

(
m + k − 1

k

)
x[k,−α]1[m,−α]

(1 + x)[m+k,−α]
f

(
k

m

)
.

It should be noticed that the operator T x
α , 1

α
= Tα was used in the paper [5]

for obtaining the operator Lα
m by Adell and De la Cal.

Professor D.D. Stancu has introduced the new beta second kind approxima-

tion operator, defined by the formula

(Lmf)(x) = (Tmx,m+1f)(x) =
1

B(mx, m + 1)

∫ ∞
0

f(t)
tmx−1dt

(1 + t)mx+m+1
. (4.2)

Because

(Lme0)(x) =
∫ ∞

0

bmx,m+1(t)dt = 1

it follows that the operator Lm reproduces the linear functions.

It is easily seen that this operator is of Feller’s type but it is not an averaging

operator.

If we use an inequality established by D.D. Stancu in [35], one can find an

inequality given the order of approximation of the function f by means of Lmf ,
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namely

|f(x)− (Lmf)(x)| ≤ (1 +
√

x(x + 1))ω1

(
f ;

1√
m− 1

)
,

respectively

|f(x)− (Lmf)(x)| ≤ (1 + x(x + 1))ω2

(
f ;

1√
m− 1

)
where ωk(f, δ) represents the modulus of continuity of order k (k = 1, 2) of the

function f .

According to the Bohman-Korovkin convergence criterion we can deduce that

the sequence (Lmf) converges uniformly in [a, b] to the function f when m tends to

infinity.

In the paper [29] D.D. Stancu has established an inequality of Lorentz type

and an asymptotic formula of Voronovskaja type.

Ending this paper we mention that the operator of beta type of second kind

of D.D. Stancu is distinct from other beta operators considered earlier by Mülbach

[24], Lupaş [22], Upreti [38], Khan [14] and Adell [3].
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