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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LIV, Number 3, September 2009

FIXED POINT THEORY FOR MULTIVALUED GENERALIZED
CONTRACTION ON A SET WITH TWO b-METRICS

MONICA BORICEANU

Abstract. The purpose of this paper is to present some fixed point results

for multivalued generalized contraction on a set with two b-metrics. The

data dependence and the well-posedness of the fixed point problem are

also discussed.

1. Introduction

The concept of b-metric space was introduced by Czerwik in [2]. Since then

several papers deal with fixed point theory for singelvalued and multivalued operators

in b-metric spaces (see [1], [2], [7]). In the first part of the paper we will present a fixed

point theorem for Ćirić-type multivalued operator on b-metric space endowed with two

b-metrics. Then, a strict fixed point result for multivalued generalized contraction in

b-metric spaces is proved. The last part contains several conditions under which the

fixed point problem for a multivalued operator in a b-metric space is well-posed and

a data dependence result is given.

2. Preliminaries and auxiliary results

The aim of this section is to present some notions and symbols used in the

paper.

We will first give the definition of a b-metric space.
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Definition 2.1 (Czerwik [2]) Let X be a set and let s ≥ 1 be a given real number.

A function d : X ×X → R+ is said to be a b-metric if and only if for all x, y, z ∈ X

the following conditions are satisfied:

1. d(x, y) = 0 if and only if x = y;

2. d(x, y) = d(y, x);

3. d(x, z) ≤ s[d(x, y) + d(y, z)].

A pair (X, d) is called a b-metric space.

We give next some examples of b-metric spaces.

Example 2.2 (Berinde see [1])

The space lp(0 < p < 1),

lp = {(xn) ⊂ R|
∞∑

n=1

|xn|p < ∞},

together with the function d : lp × lp → R,

d(x, y) = (
∞∑

n=1

|xn − yn|p)1/p,

where x = (xn), y = (yn) ∈ lp is a b-metric space.

By an elementary calculation we obtain: d(x, z) ≤ 21/p[d(x, y) + d(y, z)].

Hence a = 21/p > 1.

Example 2.3 (Berinde see[1])

The space Lp(0 < p < 1) of all real functions x(t), t ∈ [0, 1] such that:∫ 1

0

|x(t)|pdt,∞,

is a b-metric space if we take

d(x, y) = (
∫ 1

0

|x(t)− y(t)|pdt)1/p, for each x, y ∈ Lp,

The constant a is as in the previous example 21/p.

We continue by presenting the notions of convergence, compactness, closed-

ness and completeness in a b-metric space.

Definition 2.4 Let (X, d) be a b-metric space. Then a sequence (xn)n∈N in X is

called:

4



FIXED POINT THEORY FOR MULTIVALUED GENERALIZED CONTRACTION

(a) Cauchy if and only if for all ε > 0 there exists n(ε) ∈ N such that for each

n, m ≥ n(ε) we have d(xn, xm) < ε.

(b) convergent if and only if there exists x ∈ X such that for all ε > 0 there

exists n(ε) ∈ N such that for all n ≥ n(ε) we have d(xn, x) < ε. In this

case we write lim
n→∞

xn = x.

Remark 2.5

1. The sequence (xn)n∈N is Cauchy if and only if lim
n→∞

d(xn, xn+p) = 0, for

all p ∈ N∗.

2. The sequence (xn)n∈N is convergent to x ∈ X if and only if lim
n→∞

d(xn, x) =

0.

Definition 2.6

1. Let (X, d) be a b-metric space. Then a subset Y ⊂ X is called

(i) compact if and only if for every sequence of elements of Y there

exists a subsequence that converges to an element of Y .

(ii) closed if and only if for each sequence (xn)n∈N in Y which

converges to an element x, we have x ∈ Y.

2. The b-metric space is complete if every Cauchy sequence converges.

We consider next the following families of subsets of a b-metric space (X, d):

P (X) := {Y ∈ P(X)| Y 6= ∅};

Pb(X) := {Y ∈ P (X)| diam(Y ) < ∞},

where

diam : P (X) → R+ ∪ {∞}, diam(Y ) = sup{d(a, b), a, b ∈ Y }

is the generalized diameter functional;

Pcp(X) := {Y ∈ P (X)| Y is compact};

Pcl(X) := {Y ∈ P (X)| Y is closed};

Pb,cl(X) := Pb(X) ∩ Pcl(X)
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We will introduce the following generalized functionals on a b-metric space

(X, d). Some of them were defined in [2].

1. D : P (X)× P (X) → R+ ∪ {+∞},

D(A,B) = inf{d(a, b)|a ∈ A, b ∈ B},

for any A,B ⊂ X.

D is called the gap functional between A and B. In particular, if

x0 ∈ X then D(x0, B) := D({x0}, B).

2. δ : P (X)× P (X) → R+ ∪ {+∞},

δ(A,B) = sup{d(a, b)| a ∈ A, b ∈ B}.

3. ρ : P (X)× P (X) → R+ ∪ {+∞},

ρ(A,B) = sup{D(a,B)|a ∈ A},

for any A,B ⊂ X.

ρ is called the (generalized) excess functional.

4. H : P (X)× P (X) → R+ ∪ {+∞},

H(A,B) = max
{

sup
x∈A

D(x,B), sup
y∈B

D(A, y)
}

,

for any A,B ⊂ X.

H is the (generalized) Pompeiu-Hausdorff functional.

Let (X, d) be a b-metric space. If F : X → P (X) is a multivalued operator,

we denote by FixF the fixed point set of F , i.e. Fix(F ) := {x ∈ X|x ∈ F (x)} and

by SFixF the strict fixed point set of F , i.e. SFixF := {x ∈ X|{x} = F (x)}.

Lemma 2.7 [4] Let (X, d) be a b-metric space and let A,B ∈ P (X). We suppose that

there exists η ∈ R, η > 0 such that:

(i) for each a ∈ A there is b ∈ B such that d(a, b) ≤ η;

(ii) for each b ∈ B there is a ∈ A such that d(a, b) ≤ η.

Then

H(A,B) ≤ η.
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Lemma 2.8 [4] Let (X, d) be a b-metric space and let A ∈ P (X) and x ∈ X. Then

D(x,A) = 0 if and only if x ∈ Ā.

The following results are useful for some of the proofs in the paper.

Lemma 2.9 (Czerwik [2]) Let (X, d) be a b-metric space. Then

D(x,A) ≤ s[d(x, y) + D(y, A)], for all x, y ∈ X, A ⊂ X.

Lemma 2.10 (Czerwik [2]) Let (X, d) be a b-metric space and let {xk}n
k=0 ⊂ X.

Then:

d(xn, x0) ≤ sd(x0, x1) + ... + sn−1d(xn−2, xn−1) + sn−1d(xn−1, xn).

Lemma 2.11 (Czerwik [2]) Let (X, d) be a b-metric space and for all A,B,C ∈ X

we have:

H(A,C) ≤ s[H(A,B) + H(B,C)].

Lemma 2.12 (Czerwik [2])

(1) Let (X, d) be a b-metric space and A,B ∈ Pcl(X). Then for each α > 0

and for all b ∈ B there exists a ∈ A such that:

d(a, b) ≤ H(A,B) + α;

(2) Let (X, d) be a b-metric space and A,B ∈ Pcp(X). Then for all b ∈ B

there exists a ∈ A such that:

d(a, b) ≤ sH(A,B).

3. Main results

The fist main result of this paper is a fixed point theorem.

Theorem 3.1 Let X be a nonempty set, d and ρ two b-metrics on X with constants

t > 1 and respectively s > 1 and let F : X → P (X) a multivalued operator. We

suppose that:

(i) (X, d) is a complete b-metric space;

(ii) There exists c > 0 such that d(x, y) ≤ c · ρ(x, y), for all x, y ∈ X;

(iii) F : (X, d) → (P (X),Hd) is closed;
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(iv) There exists 0 ≤ α < 1
s such that

Hρ(F (x), F (y)) ≤ αMF
ρ (x, y),

for all x, y ∈ X, where

MF
ρ (x, y) = max

{
ρ(x, y), Dρ(x, F (x)), Dρ(y, F (y)),

1
2

[Dρ(x, F (y)) + Dρ(y, F (x))]
}

.

Then we have:

1. FixF 6= ∅;

2. For all x ∈ X and each y ∈ F (x) there exists (xn)n∈N such that:

(a) x0 = x, x1 = y;

(b) xn+1 ∈ F (xn);

(c) d(xn, x∗) → 0, as n →∞ where x∗ ∈ F (x∗);

Proof. Let 1 < q < 1
sα be arbitrary. For arbitrary x0 ∈ X and for x1 ∈ F (x0) there

exists x2 ∈ F (x1) such that:

ρ(x1, x2) ≤ qHρ(F (x0), F (x1)) ≤ qαMF
ρ (x0, x1).

So we have

ρ(x1, x2)≤qα·max

{
ρ(x0, x1),Dρ(x0, F (x0)),D(x1, F (x1)),

1

2
[Dρ(x0, F (x1))+Dρ(x1, F (x0))]

}
.

Suppose that the max = ρ(x0, x1). Then we have

ρ(x1, x2) ≤ qαρ(x0, x1).

Suppose that the max = Dρ(x0, F (x0)). Then we have

ρ(x1, x2) ≤ qαDρ(x0, F (x0)) ≤ qαρ(x0, x1).

Suppose that the max = Dρ(x1, F (x1)). Then we have

ρ(x1, x2) ≤ qαDρ(x1, F (x1)) ≤ qαρ(x1, x2).

So ρ(x1, x2) = 0 and thus x1 ∈ FixF.
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Suppose that the max = 1
2 [Dρ(x0, F (x1)) + Dρ(x1, F (x0))]. Then we have

ρ(x1, x2) ≤ qα
1
2
Dρ(x0, F (x1)) ≤ qα

1
2
ρ(x0, x2)) ≤

qα

2
s[ρ(x0, x1) + ρ(x1, x2)].

So we have ρ(x1, x2) ≤ qαs
2−qαsρ(x0, x1).

For x2 ∈ F (x1) there exists x3 ∈ F (x2) such that:

ρ(x2, x3) ≤ qHρ(F (x1), F (x2)) ≤ qαMF
ρ ρ(x1, x2)

Suppose that the max = ρ(x1, x2). Then we have

ρ(x2, x3) ≤ qαρ(x1, x2) ≤ (qα)2ρ(x0, x1).

Suppose that the max = Dρ(x1, F (x1)). Then we have

ρ(x2, x3) ≤ qαDρ(x1, F (x1)) ≤ qαρ(x1, x2) ≤ (qα)2ρ(x0, x1).

Suppose that the max = Dρ(x2, F (x2)). Then we have

ρ(x2, x3) ≤ qαDρ(x2, F (x2)) ≤ qαρ(x2, x3).

So ρ(x2, x3) = 0 and thus x2 ∈ FixF.

Suppose that the max = 1
2 [Dρ(x1, F (x2)) + Dρ(x2, F (x1))]. Then we have

ρ(x1, x2) ≤ qα
1
2
Dρ(x1, F (x2)) ≤ qα

1
2
ρ(x1, x3)) ≤

qα

2
s[ρ(x1, x2) + ρ(x2, x3)].

So we have

ρ(x2, x3) ≤
qαs

2− qαs
ρ(x1, x2) ≤ [

qαs

2− qαs
]2ρ(x0, x1).

We can construct by induction a sequence (xn)n∈N such that

ρ(xn, xn+1) ≤ max{(qα)n, [
qαs

2− qαs
]n}ρ(x0, x1), for all n ∈ N.

We will prove next that the sequence (xn)n∈N is Cauchy, by estimating

ρ(xn, xn+p).
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We consider first that the maximum is (qα)n. So we have:

ρ(xn, xn+p) ≤ sρ(xn, xn+1) + s2ρ(xn+1, xn+2) + ...+

+ sp−1ρ(xn+p−2, xn+p−1) + sp−1ρ(xn+p−1, xn+p)

≤ s(qα)nρ(x0, x1) + s2(qα)n+1ρ(x0, x1) + ...+

+ sp−1(qα)n+p−2ρ(x0, x1) + sp−1(qα)n+p−1ρ(x0, x1)

= s(qα)nρ(x0, x1)[1 + sqα + ... + (sqα)p−2 + sp−2(qα)p−1]

≤ s(qα)nρ(x0, x1)[1 + sqα + ... + (sqα)p−2 + sp−1(qα)p−1]

= s(qα)nρ(x0, x1)
1− (sqα)p

1− sqα
.

But 1 < q < 1
sα . Hence we obtain that:

ρ(xn, xn+p) ≤ s(qα)nρ(x0, x1)
1− (sqα)p

1− sqα
→ 0,

as n →∞. So (xn)n∈N is Cauchy and xn → x ∈ X.

We consider now the maximum A := [ qαs
2−qαs ]n. So we have:

ρ(xn, xn+p) ≤ sρ(xn, xn+1) + s2ρ(xn+1, xn+2) + ...+

+ sp−1ρ(xn+p−2, xn+p−1) + sp−1ρ(xn+p−1, xn+p)

≤ sAnρ(x0, x1) + s2An+1ρ(x0, x1) + ...+

+ sp−1An+p−2ρ(x0, x1) + sp−1An+p−1ρ(x0, x1)

= sAnρ(x0, x1)[1 + sA + ... + (sA)p−2 + sp−2Ap−1]

≤ sAnρ(x0, x1)[1 + sA + ... + (sA)p−2 + sp−1Ap−1]

= sAnρ(x0, x1)
1− (sA)p

1− sA
.

But 1 < q < 1
sα and we obtain that:

ρ(xn, xn+p) ≤ sAnρ(x0, x1)
1− (sA)p

1− sA
→ 0,

as n →∞. So (xn)n∈N is Cauchy in (X, ρ).
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From (ii) it follows that the sequence is Cauchy in (X, d). Denote by x∗ ∈ X

the limit of the sequence. From (i) and (iii) we get that d(xn, x∗) → 0, as n → ∞

where x∗ ∈ F (x∗). The proof is complete. �

For the next results let us denote

NF
ρ (x, y) = max

{
ρ(x, y), Dρ(y, F (y)),

1
2

[Dρ(x, F (y)) + Dρ(y, F (x))]
}

.

The second main result of this paper is:

Theorem 3.2 Let X be a nonempty set, d and ρ two b-metrics on X with constants

t > 1 and respectively s > 1 and let F : X → P (X) a multivalued operator. We

suppose that:

(i) (X, d) is a complete b-metric space;

(ii) There exists c > 0 such that d(x, y) ≤ c · ρ(x, y), for all x, y ∈ X;

(iii) F : (X, d) → (P (X),Hd) is closed;

(iv) There exists 0 ≤ α < 1
s such that

Hρ(F (x), F (y)) ≤ αNF
ρ (x, y),

for all x, y ∈ X;

(v) SFixF 6= ∅.

Then we have:

1. FixF = SFixF = {x∗};

2. Hρ(Fn(x), x∗) ≤ αnρ(x, x∗), for all n ∈ N and for each x ∈ X;

3. ρ(x, x∗) ≤ s
1−sαHρ(x, F (x)), for all x ∈ X;

4. The fixed point problem is well-posed for F with respect to Dρ and with

respect to Hρ, too.

Proof. 1. We suppose that x∗ ∈ SFixF. Let y ∈ SFixF. Then we have

ρ(x∗, y) = Hρ(F (x∗), F (y))

≤ α ·max{ρ(x∗, y), Dρ(y, F (y)),
1
2
[Dρ(x∗, F (y)) + Dρ(y, F (x∗))]}

≤ α ·max{ρ(x∗, y),
1
2
[ρ(x∗, y) + ρ(y, x∗)]} = αρ(x∗, y),

11
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for all x ∈ X. So we have that ρ(x∗, y) = 0 and in conclusion x∗ = y.

2. We take in the condition (iv) y = x∗. Then we have:

Hρ(F (x), F (x∗)) ≤α ·max{ρ(x, x∗), Dρ(x∗, F (x∗)),
1
2
[Dρ(x, F (x∗)) + Dρ(x∗, F (x))]}

= α ·max{ρ(x, x∗),
1
2
[Dρ(x, F (x∗)) + Dρ(x∗, F (x))]}.

If the maximum is ρ(x, x∗) we have that Hρ(F (x), x∗) ≤ αρ(x, x∗).

If the maximum is 1
2 [Dρ(x, F (x∗)) + Dρ(x∗, F (x))] we have that

Hρ(F (x), x∗) ≤ α

2
[Dρ(x, F (x∗)) + Dρ(x∗, F (x))]

=
α

2
[Dρ(x, F (x∗)) + Hρ(F (x∗), F (x))]

≤ α

2
[ρ(x, F (x∗)) + Hρ(F (x∗), F (x))].

So we obtain Hρ(F (x∗), F (x)) ≤ α
2−αρ(x, x∗).

We take now max{α, α
2−α} = α and obtain Hρ(F (x∗), F (x)) ≤ αρ(x, x∗), for

all x ∈ X.

By induction we obtain

Hρ(Fn(x), x∗) ≤ αnρ(x, x∗), for all x ∈ X.

Consider now y∗ ∈ FixF. Then ρ(y∗, x∗) ≤ Hρ(F (y∗), x∗) ≤ αnρ(y∗, x∗) →

0, as n →∞. Hence y∗ = x∗.

3. ρ(x, x∗) ≤ s[Hρ(x, F (x)) + Hρ(F (x), x∗)] ≤ sHρ(x, F (x)) + sαρ(x, x∗).

So we obtain

ρ(x, x∗) ≤ s

1− sα
Hρ(x, F (x)).

4. Let (xn) be such that Dρ(xn, F (xn)) → 0, as n →∞. We will prove that

ρ(xn, x∗) → 0, as n →∞.

Estimating ρ(xn, x∗) we have

ρ(xn, x∗) ≤ s[ρ(xn, yn) + Dρ(yn, F (x∗))] ≤ s[ρ(xn, yn) + Hρ(F (xn), F (x∗))],

for all yn ∈ F (xn) and for each n ∈ N.

12



FIXED POINT THEORY FOR MULTIVALUED GENERALIZED CONTRACTION

Taking inf
yn∈F (xn)

we obtain

ρ(xn, x∗) ≤ s[D(xn, F (xn)) + H(F (xn), F (x∗))] ≤ sD(xn, F (xn)) + sαρ(xn, x∗).

Hence we have ρ(xn, x∗) ≤ s
1−sαD(xn, F (xn)) → as n →∞. So xn → x∗. �

We will next give a data dependence result.

Theorem 3.3 Let X be a nonempty set, d and ρ two b-metrics on X with constants

t > 1 and respectively s > 1 and let F, T : X → P (X) two multivalued operators. We

suppose that:

(i) (X, d) is a complete b-metric space;

(ii) There exists c > 0 such that d(x, y) ≤ c · ρ(x, y), for all x, y ∈ X;

(iii) F : (X, d) → (P (X),Hd) is closed;

(iv) There exists 0 ≤ α < 1
s such that

Hρ(F (x), F (y)) ≤ αNT
ρ (x, y),

for all x, y ∈ X;

(v) SFixF 6= ∅;

(vi) FixT 6= ∅;

(vii) There exists η > 0 such that Hρ(F (x), T (x)) ≤ η, for all x ∈ X.

Then

Hρ(FixF, F ixT ) ≤ sη

1− sα
.

Proof. Let x∗ ∈ SFixF and y∗ ∈ FixT. We have that

ρ(y∗, x∗) ≤ Hρ(T (y∗), x∗) ≤ s[Hρ(T (y∗), F (y∗)) + Hρ(F (y∗), x∗)]

≤ s[η + Hρ(F (y∗), F (x∗))] ≤ s[η + αρ(y∗, x∗)].

Hence we have ρ(y∗, x∗) ≤ sη
1−sα . �
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[3] Petruşel, A., Rus, I.A., Fixed point theoy for multivalued operators on a set with two

metrics, Fixed Point Theory, 8(2007), 97-104.
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FIRST ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS
WITH STATE-DEPENDENT MODIFIED ARGUMENT

EDITH EGRI AND IOAN A. RUS

Abstract. The aim of our paper is to investigate the Cauchy problem

constituting from the first order functional differential equation with state-

dependent modified argument of the following form

x′(t) = f(t, x(t), x(g(t, x(t)))), t ∈ [a, b],

where x ∈ C([a − h, b], [a − h, b]) ∩ C1([a, b], [a − h, b]), h > 0, and the

associated generalized initial value x|[a−h,a] = ϕ. We look for the solutions

of the mentioned problem and deal with its properties, searching conditions

for its existence and uniqueness, studying the data dependence: continuity,

Lipschitz-continuity and differentiability regarding a parameter.

1. Introduction

Functional differential equations with state dependent modified argument was

considered by numerous researchers, as they play an important role in applications.

From the numerous works, which are related to functional differential equations, it

is worth to mention V. R. Petuhov [12], R. D. Driver [3], R. J. Oberg [11], G. M.

Dunkel [4], L. E. Elsgoltz and S. B. Norkin [7], B. Rzepecki [13], J. K. Hale [8], F.

Hartung and J. Turi [9], V. Kalmanovskii and A. Myshkis [10], A. Buică [1]. For the

application of the Picard operator’s technique see I. A. Rus [14], [15], M. A. Şerban

[16], E. Egri and I. A. Rus [6], E. Egri [5]. Some other results on iterative functional
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differential equations can be found in K. Wang [18], J. G. Si and S. S. Cheng [17], S.

S. Cheng, J. G. Si and X. P. Wang [2].

The purpose of this paper is to study the following problem

x′(t) = f(t, x(t), x(g(t, x(t)))), t ∈ [a, b], (1)

x|[a−h,a] = ϕ, (2)

with x ∈ C([a− h, b], [a− h, b]) ∩ C1([a, b], [a− h, b]).

We suppose that

(C1) h > 0;

(C2) f ∈ C([a, b]× [a− h, b]2, R);

(C3) g ∈ C([a, b]× [a− h, b], [a− h, b]);

(C4) ϕ ∈ C([a− h, a], [a− h, b]);

(C5) there exists Lf > 0 such that

|f(t, u1, u2)− f(t, v1, v2)| ≤ Lf (|u1 − v1|+ |u2 − v2|),

∀t ∈ [a, b], ui, vi ∈ [a− h, b], i = 1, 2;

(C6) there exists Lg > 0 such that

|g(t, u)− g(t, v)| ≤ Lg|u− v|,

∀t ∈ [a, b], u, v ∈ [a− h, b].

Realize that the problem (1)+(2) is equivalent with the following fixed point

equation

x(t) =


ϕ(t), t ∈ [a− h, a],

ϕ(a) +
∫ t

a

f(s, x(s), x(g(s, x(s)))) ds, t ∈ [a, b],
(3)

where x ∈ C([a− h, b], [a− h, b]).
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2. Existence

Observe that the set C([a − h, b], R) can be endowed with the Chebyshev

norm

‖x‖C = max
t∈[a−h,b]

|x(t)|.

Henceforth we consider on the set C([a− h, b], [a− h, b]) the metric induced

by this norm.

Regarding our problem we define the following operator

A : C([a− h, b], [a− h, b]) → C([a− h, b], R),

where

A(x)(t) := the right hand side of (3). (4)

In this manner we obtained the fixed point equation x = A(x), which hereafter will

be the subject of our research. Denote by FA the fixed point set of the operator A.

Remark that the set C([a − h, b], R) along with the Chebyshev norm, ‖ · ‖C

constitutes a Banach space.

We have our first result.

Theorem 2.1. We suppose that

(i) the conditions (C1)− (C4) are satisfied;

(ii) mf ,Mf ∈ R are such that

(1) mf ≤ f(t, u1, u2) ≤ Mf , ∀ t ∈ [a, b], ui ∈ [a− h, b], i = 1, 2;

(2) a ≤ h + ϕ(a) + min{0,mf (b− a)};

(3) b ≥ ϕ(a) + max{0,Mf (b− a)}.

Then the problem (1) + (2) has at least a solution.

Proof . To justify the existence of the solution we will apply Schauder’s theorem.

For this purpose, to have a self-mapping operator, it is necessary to have satisfied

the invariance property of the set C([a − h, b], [a − h, b]) for the operator A : C([a −

h, b], [a− h, b]) → C([a− h, b], R). Therefore, it must hold the conclusion

x(t) ∈ [a− h, b] =⇒ A(x)(t) ∈ [a− h, b], ∀t ∈ [a− h, b].
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Taking into consideration the assumption (C4), for t ∈ [a−h, a] the condition

above is realized. Moreover, from the definition of the operator A we have

min
t∈[a,b]

A(x)(t) = ϕ(a) + min{0,mf (b− a)},

max
t∈[a,b]

A(x)(t) = ϕ(a) + max{0,Mf (b− a)}.

In this case we obtain

a− h ≤ A(x)(t) ≤ b, ∀t ∈ [a, b],

if the relations

a− h ≤ min
t∈[a,b]

A(x)(t), max
t∈[a,b]

A(x)(t) ≤ b

are true. But these are fulfilled by the condition (ii). Therefore, it is right to consider

the self-mapping operator

A : C([a− h, b], [a− h, b]) → C([a− h, b], [a− h, b]).

Observe that the operator A is completely continuous, since the subset

C([a− h, b], [a− h, b])⊂C([a− h, b], R)

is bounded, convex and closed, and what is more, the family of functions A(C([a −

h, b], [a−h, b])) is relatively compact. Consequently, it can be applied Schauder’s fixed

point theorem. Therefore, we have FA 6= ∅, or equivalently, the problem (1) + (2) has

at least a solution.

3. Existence and uniqueness

To study the existence and uniqueness of the solution of the Cauchy problem

(1) + (2), take an arbitrary positive number L and construct the set

CL([a− h, b], [a− h, b]) :=

{x ∈ C([a− h, b], [a− h, b])| |x(t1)− x(t2)| ≤ L|t1 − t2|,∀ t1, t2 ∈ [a− h, b]}.
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Notice that the subset CL([a−h, b], [a−h, b]) ⊂ C([a−h, b], R) can be endowed

with the Chebyshev metric defined by

‖x− y‖C := max
t∈[a−h,b]

(|x(t)− y(t)|) , (5)

and in this manner we obtain a complete metric space.

We have:

Theorem 3.1. Consider the Cauchy problem (1) + (2) and suppose that

(i) the conditions (C1)− (C6) are satisfied;

(ii) ϕ ∈ CL([a− h, a], [a− h, b]);

(iii) mf ,Mf ∈ R are such that

(1) mf ≤ f(t, u1, u2) ≤ Mf , ∀ t ∈ [a, b], ui ∈ [a− h, b], i = 1, 2;

(2) a ≤ h + ϕ(a) + min{0,mf (b− a)};

(3) b ≥ ϕ(a) + max{0,Mf (b− a)};

(iv) max{|Mf |, |mf |} ≤ L;

(v) Lf (b− a)(2 + LLg) < 1.

Then the problem (1) + (2) has in CL([a− h, b], [a− h, b]) a unique solution.

Proof . Consider the operator

A : CL([a− h, b], [a− h, b]) → C([a− h, b], R)

given by (4). We want to apply the contraction principle for this operator. Therefore,

first admit that A is self-mapping. Since all the conditions of the existence theorem

hold, we have

a− h ≤ A(x)(t) ≤ b, when a− h ≤ x(t) ≤ b,

for all t ∈ [a− h, b]. Moreover, from the condition (ii), if t1, t2 ∈ [a− h, a], we obtain

|A(x)(t1)−A(x)(t2)| = |ϕ(t1)− ϕ(t2)| ≤ L|t1 − t2|.

On the other hand, if t1, t2 ∈ [a, b], due to (iv), we have

|A(x)(t1)−A(x)(t2)| =
∣∣∣∣∫ t2

t1

f(s, x(s), x(g(s, x(s)))) ds

∣∣∣∣ ≤
≤ max{|mf |, |Mf |}|t1 − t2| ≤ L|t1 − t2|,
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which involves that the operator A is L-Lipschitz. Accordingly, we have A(x) ∈

CL([a− h, b], [a− h, b]) for all x ∈ CL([a− h, b], [a− h, b]).

Henceforward concede that from the condition (v) the operator A is an LA-

contraction, with

LA := Lf (b− a)(2 + LLg).

Indeed, for all t ∈ [a − h, a] we have |A(x1)(t) − A(x2)(t)| = 0. Furthermore, for

t ∈ [a, b] we successively get

|A(x1)(t)−A(x2)(t)| =

=
∣∣∣∣∫ t

a

[f(s, x1(s), x1(g(s, x1(s))))− f(s, x2(s), x2(g(s, x2(s))))] ds

∣∣∣∣ ≤
≤

∫ t

a

|f(s, x1(s), x1(g(s, x1(s))))− f(s, x2(s), x2(g(s, x2(s))))|ds ≤

≤Lf

∫ t

a

[
|x1(s)− x2(s)|+ |x1(g(s, x1(s)))− x2(g(s, x2(s)))|

]
ds ≤

≤Lf (b− a)‖x1 − x2‖C+

+Lf

∫ t

a

[
|x1(g(s, x1(s)))−x1(g(s, x2(s)))|+|x1(g(s, x2(s)))−x2(g(s, x2(s)))|

]
ds ≤

≤Lf (b− a)‖x1 − x2‖C + Lf

∫ t

a

[
L · |g(s, x1(s))− g(s, x2(s))|+ ‖x1 − x2‖C

]
ds ≤

≤2Lf (b− a)‖x1 − x2‖C + LLf

∫ t

a

|g(s, x1(s))− g(s, x2(s))|ds ≤

≤2Lf (b− a)‖x1 − x2‖C + LLf

∫ t

a

Lg|x1(s)− x2(s)|ds ≤

≤
[
2Lf (b− a) + LLfLg(b− a)

]
‖x1 − x2‖C ,

and it follows that

||A(x1)−A(x2)||C ≤ LA||x1 − x2||C , LA = Lf (b− a)(2 + LLg).

From the condition (vi) we have LA < 1, consequently the operator A is an

LA-contraction. By applying the contraction principle the operator A has a unique

fixed point, i.e. the problem (1)+(2) has in CL([a−h, b], [a−h, b]) a unique solution.
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4. Data dependence: continuity

In order to study the continuous dependence of the fixed points we will use

the following result:

Lemma 4.1. (I. A. Rus [15]) Let (X, d) be a complete metric space and

A,B : X → X

two operators. We suppose that

(i) the operator A is a γ-contraction;

(ii) FB 6= ∅;

(iii) there exists η > 0 such that

d(A(x), B(x)) ≤ η, ∀ x ∈ X.

Then, if FA = {x∗A} and x∗B ∈ FB , we have

d(x∗A, x∗B) ≤ η

1− γ
.

Now, let fi and ϕi as in Theorem 3.1. For i = 1, 2 we consider the following

two Cauchy problems

x′(t) = fi(t, x(t), x(g(t, x(t)))), t ∈ [a, b], (6)

x|[a−h,a] = ϕi. (7)

We assign to the problems (6) + (7) the operators

Ai : CL([a− h, b], [a− h, b]) → CL([a− h, b], [a− h, b]),

given by

Ai(x)(t) :=


ϕi(t), t ∈ [a− h, a],

ϕi(a) +
∫ t

a

fi(s, x(s), x(g(s, x(s)))) ds, t ∈ [a, b],
(8)

i = 1, 2. From Theorem 3.1 the operators A1 and A2 are contractions. We will denote

by x∗1, x
∗
2 their unique fixed points.

Then, accordingly to Lemma 4.1 we have the result as follows.
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Theorem 4.1. We suppose the conditions of Theorem 3.1 concerning to the problems

(6) + (7) are satisfied and, moreover,

(i) there exists η1 such that

|ϕ1(t)− ϕ2(t)| ≤ η1, ∀ t ∈ [a− h, a]

(ii) there exists η2 > 0 such that

|f1(t, u1, u2)− f2(t, u1, u2)| ≤ η2, ∀ t ∈ [a, b], ∀ui ∈ [a− h, b], i = 1, 2.

Then the following estimation holds:

‖x∗1 − x∗2‖C ≤ η1 + η2(b− a)
1− Lf (b− a)(2 + LLg)

,

where Lf = max{Lf1 , Lf2} and Lg = max{Lg1 , Lg2}.

Proof. Observe that, since the assumptions of Theorem 3.1 are realized, the operators

Ai (i = 1, 2) given by (8) are LAi
-contractions with

LAi
:= Lfi

(b− a)(2 + LLgi
).

Consider t ∈ [a− h, a]. From the condition (ii) it follows that

‖A1(x)−A2(x)‖C ≤ η1 ≤ η1 + η2(b− a).

On the other hand, for t ∈ [a, b], we obtain

|A1(x)(t)−A2(x)(t)| ≤

≤ |ϕ1(a)−ϕ2(a)|+
∫ t

a

|f1(s, x(s), x(g(s, x(s))))−f2(s, x(s), x(g(s, x(s)))) ds| ≤

≤ η1 + η2(b− a).

Consequently,

‖A1(x)−A2(x)‖C ≤ η1 + η2(b− a), ∀x ∈ CL([a− h, b], [a− h, b]).

Now, the proof follows from Lemma 4.1.
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5. Data dependence on parameter: Lipschitz-continuity

In this section we will use the following abstract result:

Lemma 5.1. Let (X, d) be a complete metric space, J ⊂ R and A : X × J → X an

operator. We suppose that:

(i) ∃α ∈]0, 1[ such that

d
(
A(x1, λ), A(x2, λ)

)
≤ αd(x1, x2), ∀x1, x2 ∈ X, λ ∈ J ;

(ii) ∃ l > 0 such that

d
(
A(x, λ1), A(x, λ2)

)
≤ l|λ1 − λ2|, ∀x ∈ X, λ1, λ2 ∈ J.

Then

(a) ∀λ ∈ J, the operator A(·, λ) : X → X has a unique fixed point, x∗(λ) ∈ X;

(b) d(x∗(λ1), x∗(λ2)) ≤
l

1− α
|λ1 − λ2|, ∀λ1, λ2 ∈ J.

Proof . Evidently, from the condition (i) the operator A(·, λ) is a contraction. There-

fore, the fixed point equation A(x, λ) = x has a unique solution x∗(λ) ∈ X, corre-

sponding to an arbitrary value λ ∈ J. Moreover, for λ1, λ2 ∈ J we have

d(x∗(λ1), x∗(λ2)) = d(A(x∗(λ1), λ1), A(x∗(λ2), λ2)) ≤

≤ d(A(x∗(λ1), λ1), A(x∗(λ1), λ2)) + d(A(x∗(λ1), λ2), A(x∗(λ2), λ2)) ≤

≤ l|λ1 − λ2|+ α · d(x∗(λ1), x∗(λ2)),

and consequently

d(x∗(λ1), x∗(λ2)) ≤
l

1− α
|λ1 − λ2|.

Accordingly, we have the proof.

Now we consider the problem x′(t) = f(t, x(t), x(g(x, t)), λ), t ∈ [a, b], λ ∈ J ,

x(t) = ϕ(t, λ), t ∈ [a− h, a], λ ∈ J, h > 0,

(9)
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and, for L > 0, the corresponding operator A, given as follows:

A : CL([a− h, b], [a− h, b])× J → CL([a− h, b], [a− h, b])× J,

A(x, λ) :=


ϕ(t, λ), t ∈ [a− h, a], λ ∈ J ;

ϕ(a, λ) +
∫ t

a

f(s, x(s), x(g(s, x(s))), λ)ds, t ∈ [a, b], λ ∈ J.

(10)

Based upon Lemma 5.1 we have the next result:

Theorem 5.1. We suppose that

(i) f ∈ C([a, b]× [a− h, b]2 × J, R);

(ii) g ∈ C([a, b]× [a− h, b], [a− h, b]);

(iii) ϕ ∈ CL([a− h, a], [a− h, b])× J, and ∃lϕ > 0 such that

|ϕ(t, λ1)− ϕ(t, λ2)| ≤ lϕ;

(iv) there exists Lf > 0 such that

|f(t, u1, u2, λ)− f(t, v1, v2, λ)| ≤ Lf (|u1 − v1|+ |u2 − v2|),

∀t ∈ [a, b], ui, vi ∈ [a− h, b], λ ∈ J, i = 1, 2;

(v) there exists Lf > 0 such that

|f(t, u, v, λ1)− f(t, u, v, λ2)| ≤ lf |λ1 − λ2|,

∀t ∈ [a, b], u, v ∈ [a− h, b], λi ∈ J, i = 1, 2;

(vi) there exists Lg > 0 such that

|g(t, u)− g(t, v)| ≤ Lg|u− v|,

∀t ∈ [a, b], u, v ∈ [a− h, b];

(vii) Lf (b− a)[2 + LLg] < 1.

Then

(a) ∀λ ∈ J, the operator A(·, λ) : X → X defined by (10) has a unique fixed

point, x∗(λ) ∈ X;
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(b) ‖x∗(λ1), x∗(λ2)‖C ≤
lϕ + lf (b− a)

1− Lf (b− a)[2 + LLg]
|λ1 − λ2|, ∀λ1, λ2 ∈ J.

Proof . From the proof of Theorem 3.1, for all t ∈ [a, b] we have

|A(x1, λ)(t)−A(x2, λ)(t)| =

=
∣∣∣∣∫ t

a

f(s, x1(s), x1(g(s, x1(s))), λ)ds−
∫ t

a

f(s, x2(s), x2(g(s, x2(s))), λ)ds

∣∣∣∣ ≤
≤Lf (b− a)[2 + LLg]‖x1 − x2‖C ,

and taking α := Lf (b− a)[2 + LLg], due to the condition (vi), the first assumption of

Lemma 5.1 is satisfied.

Furthermore, for t ∈ [a− h, a], we have:

|A(x, λ1)−A(x, λ2)| = |ϕ(t, λ1)− ϕ(t, λ2)| ≤ lϕ|λ1 − λ2|.

On the other hand, if t ∈ [a, b], we obtain:

|A(x, λ1)−A(x, λ2)| ≤ |ϕ(a, λ1)− ϕ(a, λ2)|+

+
∫ t

a

|f(s, x(s), x(g(s, x(s))), λ1)− f(s, x(s), x(g(s, x(s))), λ2)|ds ≤

≤lϕ|λ1 − λ2|+ lf (b− a)|λ1 − λ2| = [lϕ + lf (b− a)]|λ1 − λ2|.

One can be observe that l := lϕ + lf (b − a) has the same property as the one from

Lemma 5.1.

Consequently, the proof is complete.

6. Data dependence: differentiability

Henceforward we will need the following result, which is very useful for prov-

ing solutions of operatorial equations to be differentiable with respect to parameters.

Theorem 6.1 (Fibre contraction principle (I. A. Rus [14])). Let (X, d) and (Y, ρ) be

two metric spaces and

A : X × Y → X × Y, (B : X → X, C : X × Y → Y ),

A(x, y) = (B(x), C(x, y))
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a triangular operator.

We suppose that

(i) (Y, ρ) is a complete metric space;

(ii) the operator B is a Picard operator;

(iii) there exists LC ∈ [0, 1[ such that C(x, ·) : Y → Y is an LC-contraction,

for all x ∈ X;

(iv) if (x∗, y∗) ∈ FA, then C(·, y∗) is continuous in x∗.

Then the operator A is a Picard operator.

For some applications of the fibre contraction principle see I. A. Rus [15], E.

Egri and I. A. Rus [6], E. Egri [5].

Consider the following problem with parameter:

x′(t;λ) = f(t, x(t;λ), x(g(t, x(t;λ));λ);λ), t ∈ [a, b], (11)

x(t;λ) = ϕ(t;λ), t ∈ [a− h, a], (12)

with λ ∈ J ⊂ R a compact subset.

We have:

Theorem 6.2. Suppose that we have satisfied the conditions below:

(P1) h > 0, J ⊂ R, a compact interval;

(P2) ϕ(t, ·) ∈ C1(J, R), for all t ∈ [a− h, a];

ϕ(·, λ) ∈ C1
L([a− h, a], [a− h, a]), and

ϕ′(a, λ) = f(a, ϕ(a;λ), ϕ(g(a, ϕ(a;λ));λ);λ);

(P3) f ∈ C1([a, b]× [a− h, b]2 × J, R);

g ∈ C([a, b]× [a− h, b], [a− h, b]);

(P4) there exists Lf > 0 such that∣∣∣∣∣∣
∂f(t, u1, u2;λ)

∂ui

∣∣∣∣∣∣ ≤ Lf ,

for all t ∈ [a, b], ui ∈ [a− h, b], i = 1, 2, λ ∈ J ;

(P5) mf ,Mf ∈ R are such that

(1) mf ≤ f(t, u1, u2;λ) ≤ Mf , ∀ t ∈ [a, b], u1, u2 ∈ [a− h, b], λ ∈ J ;
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(2) a ≤ h + ϕ(a;λ) + min{0,mf (b− a)};

(3) b ≥ ϕ(a;λ) + max{0,Mf (b− a)};

(P6) max{|mf |, |Mf |} ≤ L;

(P7) Lf (b− a)(2 + LLg) < 1.

Then

(1) the problem (11) + (12) has in CL([a − h, b], [a − h, b]) a unique solution,

x∗(·, λ);

(2) x∗(t, ·) ∈ C1(J, R), ∀t ∈ [a− h, b].

Proof . Since we are in the conditions of Theorem 3.1, we certainly have that the

problem (11)+(12) has in CL([a−h, b], [a−h, b]) a unique solution, x∗(·, λ). Therefore,

statement (1) from the theorem is satisfied.

To justify the affirmation (2), first observe that the problem (11) + (12) is

equivalent with the following fixed point equation

x(t;λ) =


ϕ(t;λ), t ∈ [a− h, a], λ ∈ J,

ϕ(a;λ) +
∫ t

a

f(t, x(t;λ), x(g(t, x(t;λ));λ);λ) ds, t ∈ [a, b], λ ∈ J.

(13)

We try to fit in the fibre contraction principle. For this purpose we consider

the operator

B : CL([a− h, b]× J, [a− h, b]) → CL([a− h, b]× J, [a− h, b]),

where

B(x)(t;λ) := the right hand side of (13).

From the proof of the existence and uniqueness theorem 3.1 this operator

is well-defined. We denote by X its domain (codomain). Observe that the set X

endowed with the Chebyshev metric

dC(x, y) = max
t,λ

|x(t;λ)− y(t;λ)|, for all x, y ∈ X,

is a Banach space.
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From the contraction principle, in the conditions of the theorem, the operator

B is a Picard operator with FB = {x∗}.

We consider the subset X1 ⊂ X,

X1 :=

x ∈ X

∣∣∣∣∣∣
∂x

∂t
∈ C([a− h, b]× J, R)

 .

Remark that x∗ ∈ X1, B(X1) ⊂ X1 and B : X1 → X1 is Picard operator. Thus, B

fulfills (ii) from the fibre contraction theorem.

Let Y := C([a − h, b] × J, R). We want to prove that there exists
∂x∗

∂λ
and,

moreover,
∂x∗

∂λ
∈ Y. If we suppose that there exists

∂x∗

∂λ
, then from (13) we have

∂x∗(t;λ)
∂λ

=
∂ϕ(a;λ)

∂λ
+

∫ t

a

∂f(s, x∗(s;λ), x∗(g(s, x∗(s;λ));λ);λ)
∂u1

· ∂x∗(s;λ)
∂λ

ds+

+
∫ t

a

∂f(s, x∗(s;λ), x∗(g(s, x∗(s;λ));λ);λ)
∂u2

· ∂x∗(g(s, x∗(s;λ));λ)
∂t

· ∂g(s, x∗(s;λ))
∂v

·

· ∂x∗(s;λ)
∂λ

ds +
∫ t

a

∂f(s, x∗(s;λ), x∗(g(s, x∗(s;λ));λ);λ)
∂u2

· ∂x∗(g(s, x∗(s;λ));λ)
∂λ

ds+

+
∫ t

a

∂f(s, x∗(s;λ), x∗(x∗(s;λ);λ);λ)
∂λ

ds, t ∈ [a, b], λ ∈ J.

The obtained relation suggests us to consider the operator

C : X1 × Y → Y

(x, y) 7→ C(x, y)

defined by

C(x, y)(t;λ) :=
∂ϕ(a;λ)

∂λ
+

∫ t

a

∂f(s, x(s;λ), x(g(s, x(s;λ));λ);λ)
∂u1

· y(s;λ) ds+

+
∫ t

a

∂f(s, x(s;λ), x(g(s, x(s;λ));λ);λ)
∂u2

· ∂x(g(s, x(s;λ));λ)
∂t

· ∂g(s, x(s;λ))
∂v

·

· y(s;λ)ds +
∫ t

a

∂f(s, x(s;λ), x(g(s, x(s;λ));λ);λ)
∂u2

· ∂x(g(s, x(s;λ));λ)
∂λ

ds+

+
∫ t

a

∂f(s, x(s;λ), x(g(x(s;λ));λ);λ)
∂λ

ds, t ∈ [a, b], λ ∈ J.
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and

C(x, y)(t, λ) :=
∂ϕ(t;λ)

∂λ
, for t ∈ [a1, a], λ ∈ J.

In this way we can consider the triangular operator

A : X1 × Y → X1 × Y

(x, y) 7→ (B(x), C(x, y)).

As we have seen earlier, B : X1 → X1 is a Picard operator. Realize that

C(x, ·) : Y → Y is a contraction on [a, b]. Indeed, we have

|C(x, y1)(t;λ)− C(x, y2)(t;λ)| =∣∣∣∣∫ t

a

∂f(s, x(s;λ), x(g(s, x(s;λ));λ);λ)
∂u1

·
[
y1(s;λ)− y2(s;λ)

]
ds+

+
∫ t

a

∂f(s, x(s;λ), x(g(s, x(s;λ));λ);λ)
∂u2

· ∂x(g(s, x(s;λ));λ)
∂t

· ∂g(s, x(s;λ))
∂v

·

·
[
y1(s;λ)− y2(s;λ)

]
ds

∣∣ ≤
≤ Lf

∫ t

a

∣∣∣∣1 +
∂x(g(s, x(s;λ));λ)

∂t
· ∂g(s, x(s;λ))

∂v

∣∣∣∣ · |y1(s;λ)− y2(s;λ)|ds ≤

≤ Lf (1 + LLg)
∫ t

a

|y1(s;λ)− y2(s;λ)|ds ≤

≤ Lf (1 + LLg)(b− a)||y1 − y2||C ≤

≤ Lf (b− a)(2 + LLg)||y1 − y2||C .

In this way we got

||C(x, y1)− C(x, y2)||C ≤ LC · ||y1 − y2||C , with LC := Lf (b− a)(2 + LLg).

So, we are in the condition of the fibre contraction principle, and consequently,

A is a Picard operator, i.e. the sequences defined by

xn+1 := B(xn),

yn+1 := C(xn, yn), n ∈ N

converges uniformly (with respect to t ∈ [a − h, b], λ ∈ J) to the unique fixed point

of the operator A, (x∗, y∗) ∈ FA, for all x0, y0 ∈ C([a− h, b]× J, [a− h, b]).
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Taking x0 = 0, y0 =
∂x0

∂λ
= 0, we get y1 =

∂x1

∂λ
. By induction it can be

proved that yn =
∂xn

∂λ
, ∀ n ∈ N. So,

xn
unif.−→ x∗ as n →∞,

∂xn

∂λ

unif.−→ y∗ as n →∞.

From these, using a theorem of Weierstrass we have that x∗ is differentiable

and
∂x∗

∂λ
= y∗ ∈ Y.

7. Example

To check our results consider the following Cauchy problem

x′(t) =
1
5

[
x

(
1
6
[t + x(t)]

)
− 1

6
x(t)− 1

24
t

]
+

1
2
, t ∈ [0, 2], (14)

x(t) = t, t ∈ [−1, 0]. (15)

We look for the solution x ∈ C([−1, 2], [−1, 2]) ∩ C1([0, 2], [−1, 2]) of the

problem (14)+(15). For this purpose we apply Theorem 2.1. First observe that we

have a = 0, b = 2, h = 1, ϕ(t) = t, and

g(t, u) =
1
6
(t + u), for all t ∈ [0, 2], u ∈ [−1, 2],

f(t, u1, u2) =
1
5

[
u2 −

1
6
u1 −

1
24

t

]
+

1
2
, for all t ∈ [0, 2], u1, u2 ∈ [−1, 2],

with

mf =
13
60

, Mf =
14
15

, Lf =
1
5
, Lg =

1
6
.

Since all the conditions of Theorem 2.1 are fulfilled, the problem (14)+(15)

has in C([−1, 2], [−1, 2]) at least a solution. Moreover, considering
1
2
≤ L < 3, due to

Theorem3.1, this solution is unique on the set CL([−1, 2], [−1, 2]), and it is the limit

of the sequence (xn)n≥0 of successive approximation, given by the recursive relation

xn+1 =


t, t ∈ [−1, 0],∫ t

0

{
1
5

[
xn

(
1
6
[s + xn(s)]

)
− 1

6
xn(s)− 1

24
s

]
+

1
2

}
ds, t ∈ [0, 2],
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Doing some calculations with Maple, it seems that the sequence of successive

approximation is convergent to the function x(t) =
t

2
. Indeed, this is the unique

solution of the problem, since it satisfies the functional differential equation (14).
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FIXED POINT THEOREMS FOR MULTIVALUED WEAK
CONTRACTIONS

ALEXANDRU-DARIUS FILIP AND PETRA TÜNDE PETRU

Abstract. The purpose of this work is to present some fixed point results

for the so-called multivalued weak contractions. Our results are extensions

of the theorems given by M. Berinde and V. Berinde in [1] and by C. Chifu

and G. Petruşel in [2].

1. Preliminaries

Let us recall first some standard notations and terminologies which are used

throughout the paper. For the following notions we consider the context of a metric

space (X, d).

We denote by
∼
B(x0, r) the closed ball centered in x0 ∈ X with radius r > 0,

i.e.,
∼
B(x0, r) = {x ∈ X| d(x, x0) ≤ r}.

Let P(X) be the set of all nonempty subsets of X. We also denote:

P (X) := {Y ∈ P(X)| Y 6= ∅};Pb(X) := {Y ∈ P (X)| Y is bounded };

Pcl(X) := {Y ∈ P (X)| Y is closed }.

Let us define the gap functional between A and B by

Dd : P (X)× P (X) → R+ ∪ {+∞}, Dd(A,B) = inf{d(a, b) | a ∈ A, b ∈ B}
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(in particular, if x0 ∈ X then Dd(x0, B) := Dd({x0}, B)) and the (generalized)

Pompeiu-Hausdorff functional

Hd : P (X)× P (X) → R+ ∪ {+∞}, Hd(A,B) = max{sup
a∈A

Dd(a,B), sup
b∈B

Dd(A, b)}.

If T : X → P (X) is a multivalued operator, then x ∈ X is called fixed point

for T if and only if x ∈ T (x) and strict fixed point if and only if T (x) = {x}. The set

Fix(T ) := {x ∈ X|x ∈ T (x)} is called the fixed point set of T and SFix(T ) := {x ∈

X|{x} = T (x)} is the strict fixed point set of T .

If X is a metric space, then the multivalued operator T : X → P (X) is said

to be closed if and only if its graph Graph(F ) := {(x, y) ∈ X × X : y ∈ F (x)} is a

closed subset of X ×X.

Let (X, d) be a metric space and T : X → P (X) be a multivalued operator.

T is said to be a multivalued weak contraction or multivalued (θ, L)-weak contraction

(see [1]) if and only if there exists θ ∈]0, 1[ and L ≥ 0 such that

H(T (x), T (y)) ≤ θ · d(x, y) + L ·D(y, T (x)), for all x, y ∈ X.

The aim of this article is to extend some fixed point results for multivalued

weak-contractions given by M. Berinde and V. Berinde in [1] and by C. Chifu and

G. Petruşel in [2]. Our results are also in connection to some other theorems in this

field, see [3], [5].

2. Main results

Our first result is a local one and it extends the theorem given by M. Berinde

and V. Berinde in [1], to the case of a metric space endowed with two metrics.

Theorem 1. Let X be a nonempty set, ρ and d two metrics on X, x0 ∈ X, r > 0

and T :
∼
Bρ(x0, r) → P (X) be a multivalued operator.We suppose that:

(i) (X, d) is a complete metric space;

(ii) there exists c > 0 such that d(x, y) ≤ c · ρ(x, y), for each x, y ∈
∼
Bρ(x0, r);

(iii) T : (
∼
Bρ(x0, r), d) → (P (X),Hd) is closed;

(iv) T is a multivalued (θ, L)-weak contraction with respect to ρ;
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(v) Dρ(x0, T (x0)) < (1− θ)r.

Then we have:

(a) Fix(T ) 6= ∅;

(b) there exists a sequence (xn)n∈N ⊂
∼
Bρ(x0, r) such that:

(b1) xn+1 ∈ T (xn), n ∈ N;

(b2) xn
d→ x∗ ∈ Fix(T ), as n→∞;

(b3) d(xn, x
∗) ≤ c · θn · r, for each n ∈ N.

Proof . By (v), we have that there exists x1 ∈ T (x0)such that

ρ(x0, x1) < (1− θ)r. (1)

Since T is a (θ, L)-weak contraction we have that

Hρ(T (x0), T (x1)) ≤ θ · ρ(x0, x1) + L ·Dρ(x1, T (x0)) = θ · ρ(x0, x1) < θ · (1− θ) · r.

Thus, for x1 ∈ T (x0) there exists x2 ∈ T (x1) such that

ρ(x1, x2) < θ · (1− θ) · r. (2)

By (1) and (2) we obtain that

ρ(x0, x2) ≤ ρ(x0, x1) + ρ(x1, x2) < (1− θ) · r + θ · (1− θ) · r = (1− θ2)r.

Hence x2 ∈
∼
Bρ(x0, r).

Proceeding inductively, we can construct a sequence (xn)n∈N ⊂
∼
Bρ(x0, r)

having the following properties

xn+1 ∈ T (xn), n ∈ N, (3)

ρ(xn, xn+1) < θn · (1− θ) · r. (4)

We want to prove that (xn)n∈N is a Cauchy sequence. Let p ∈ N. Then we have

ρ(xn, xn+p) ≤ ρ(xn, xn+1) + ...+ ρ(xn+p−1, xn+p)

< θn · (1− θ) · r · (1 + θ + ...+ θp−1)

= θn · r · (1− θp).
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Letting n→∞, since θ ∈]0, 1[, we have that ρ(xn, xn+p) → 0. Thus (xn)n∈N

is a Cauchy sequence with respect to the metric ρ. By (ii) we have that (xn)n∈N

is a Cauchy sequence with respect to the metric d, too. Since (X, d) is a complete

metric space, there exists x∗ ∈ X such that xn
d→ x∗ as n → ∞. It remains to

show that x∗ ∈ Fix(T ). Since Graph(T ) is closed with respect to (X, d) we get that

x∗ ∈ Fix(T ).

We already proved that ρ(xn, xn+p) < θn · r · (1− θp), By (ii), we have that

there exists c > 0 such that d(xn, xn+p) ≤ c · ρ(xn, xn+p) < c · θn · r · (1− θp). Letting

p→∞ we obtain that d(xn, x
∗) ≤ c · θn · r, for each n ∈ N.

We can state the above result on a set endowed with one metric.

Theorem 2. Let (X, d) be a complete metric space, x0 ∈ X, r > 0 and

T :
∼
B(x0, r) → P (X) a multivalued (θ, L)-weak contraction. We assume that

D(x0, T (x0)) < (1− θ)r.

Then we have:

(a) Fix(T ) 6= ∅;

(b) there exists a sequence (xn)n∈N ⊂
∼
Bρ(x0, r) such that:

(b1) xn+1 ∈ T (xn), n ∈ N;

(b2) xn
d→ x∗ ∈ Fix(T ), as n→∞;

(b3) d(xn, x
∗) ≤ θn · r, for each n ∈ N.

In what follows we continue with a global version of Theorem 1 for multivalued

(θ, L)-weak contractions on a set with two metrics.

Theorem 3. Let X be a nonempty set, ρ and d twp metrics on X and T : X → P (X)

a multivalued operator.We suppose that

(i) (X, d) is a complete metric space;

(ii) there exists c > 0 such that d(x, y) ≤ c · ρ(x, y), for each x, y ∈ X;

(iii) T : (X, d) → (P (X),Hd) is closed;

(iv) T is a multivalued (θ, L)-weak contraction.

Then we have:
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(a) Fix(T ) 6= ∅;

(b) there exists a sequence (xn)n∈N ⊂ X such that:

(b1) xn+1 ∈ T (xn), n ∈ N;

(b2) xn
d→ x∗ ∈ Fix(T ), as n→∞.

Proof . Fix x0 ∈ X, choose r > 0 such that Dρ(x0, T (x0)) < (1−θ)r. The conclusion

follows from Theorem 1.

The following homotopy result extends some results given by M. Berinde, V.

Berinde in [1] and C. Chifu, G. Petruşel in [2].

Theorem 4. Let (X, d) be a complete metric space and U be an open subset of X. Let

G : U × [0, 1] → P (X) be a multivalued operator such that the following assumptions

are satisfied:

(i) x /∈ G(x, t), for each x ∈ ∂U and each t ∈ [0, 1];

(ii) G(·, t) : U → P (X) is a (θ, L)-weak contraction, for each t ∈ [0, 1];

(iii) there exists a continuous, increasing function ψ : [0, 1] → R such that

H(G(x, t), G(x, s)) ≤ |ψ(t)− ψ(s)|, for all x ∈ U ;

(iv) G : U × [0, 1] → P (X) is closed.

Then G(·, 0) has a fixed point if and only if G(·, 1) has a fixed point.

Proof . Suppose that z ∈ Fix(G(·, 0)). From (i) we have that z ∈ U . We define the

following set:

E := {(x, t) ∈ U × [0, 1]|x ∈ G(x, t)}.

Since (z, 0) ∈ E, we have that E 6= ∅ . We introduce a partial order on E defined by:

(x, t) ≤ (y, s) if and only if t ≤ s and d(x, y) ≤ 2
1− θ

[ψ(s)− ψ(t)].

Let M be a totally ordered subset of E, t∗ := sup{t |(x, t) ∈M} and

(xn, tn)n∈N∗ ⊂ M be a sequence such that (xn, tn) ≤ (xn+1, tn+1) and tn → t∗ as

n→∞. Then

d(xm, xn) ≤ 2
1− θ

[ψ(tm)− ψ(tn)], for each m,n ∈ N∗, m > n.
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Letting m,n→ +∞ we obtain that d(xm, xn) → 0, thus (xn)n∈N∗ is a Cauchy

sequence. Denote by x∗ ∈ X its limit. Since xn ∈ G(xn, tn), n ∈ N∗ and G is closed,

we have that x∗ ∈ G(x∗, t∗). From (i) we obtain that x∗ ∈ U , so (x∗, t∗) ∈ E.

From the fact that M is totally ordered we have that (x, t) ≤ (x∗, t∗), for

each (x, t) ∈M . Thus (x∗, t∗) is an upper bound of M . We can apply Zorn’s Lemma,

so E admits a maximal element (x0, t0) ∈ E. We want to prove that t0 = 1.

Suppose that t0 < 1. Let r > 0 and t ∈]t0, 1] such that B(x0, r) ⊂ U and

r := 2
1−θ [ψ(t)− ψ(t0)]. Then we have

D(x0, G(x0, t)) ≤ D(x0, G(x0, t0)) +H(G(x0, t0), G(x0, t))

≤ ψ(t)− ψ(t0) =
(1− θ) · r

2
< (1− θ) · r.

Since
∼
B(x0, r) ⊂ U , the multivalued operator G(·, t) :

∼
B(x0, r) → Pcl(X) satisfies

the assumptions of Theorem 1 for all t ∈ [0, 1]. Hence there exists x ∈
∼
B(x0, r)

such that x ∈ G(x, t). Thus, by (i), we get that (x, t) ∈ E. Since d(x0, x) ≤ r =
2

1−θ [ψ(t) − ψ(t0)], we have that (x0, t0, ) < (x, t), which is a contradiction with the

maximality of (x0, t0). Thus t0 = 1.

Conversely, if G(·, 1) has a fixed point, by a similar approach we can obtain

that G(·, 0) has a fixed point too.

In 2006 A. Petruşel and I. A. Rus (see [4]) extended the notion of well-posed

fixed point problem from singlevalued to multivalued operators, as follows.

Definition 1. (A. Petruşel, I. A. Rus, [4]) Let (X, d) be a metric space, Y ⊂ P (X)

and T : Y → Pcl(X) be a multivalued operator. The fixed point problem is well-posed

for T with respect to D iff:

(a) Fix(T ) = {x∗};

(b) If xn ∈ Y , n ∈ N and D(xn, T (xn)) → 0 as n → ∞, then xn → x∗, as

n→∞.

The following result is a well-posed fixed point theorem for multivalued (θ, L)-

weak contractions on a set endowed with one metric.
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Theorem 5. Let (X, d) be a complete metric space T : X → Pcl(X) is a multivalued

(θ, L)-weak contraction with θ + L < 1. Suppose that SFix(T ) 6= ∅. Then the fixed

point problem is well-posed for T with respect to D.

Proof . First we want to prove that Fix(T ) = SFix(T ) = {x∗}. Let x∗ ∈ SFix(T ).

Clearly SFix(T ) ⊂ Fix(T ). Thus, we only have to prove that Fix(T ) = {x∗}. Let

x ∈ Fix(T ) with x∗ 6= x. Then

d(x∗, x) = D(T (x∗), x) ≤ H(T (x∗), T (x))

≤ θ · d(x∗, x) + L ·D(x, T (x∗))

= θ · d(x∗, x) + L · d(x, x∗) = (θ + L) · d(x, x∗).

Since θ + L < 1 this is a contradiction, which proves that Fix(T ) = {x∗} and hence

Fix(T ) = SFix(T ) = {x∗}.

Let x∗ ∈ SFix(T ). Suppose D(xn, T (xn)) → 0, as n→∞. Let (xn)n∈N and

(yn)n∈N be two sequences such that yn ∈ T (xn). Then we have

d(xn, x
∗) ≤ d(xn, yn) + d(yn, x

∗) = d(xn, yn) +D(yn, T (x∗))

≤ d(xn, yn) +H(T (xn), T (x∗)).

Taking the infimum over yn ∈ T (xn) we have

d(xn, x
∗) ≤ D(xn, T (xn)) +H(T (xn), T (x∗))

≤ D(xn, T (xn)) + θd(xn, x
∗) + LD(xn, T (x∗))

= D(xn, T (xn)) + θd(xn, x
∗) + Ld(xn, x

∗).

Thus (1− θ − L)d(xn, x) ≤ D(xn, T (xn)). Since θ + L < 1, we have that

d(xn, x
∗) ≤ 1

1− θ − L
D(xn, T (xn)) → 0 as n→∞.

Remark 1. The above result give rise to the following open question: in which con-

ditions the fixed point problem for (θ, L)-weak contractions is well-posed with respect

to D, where θ ∈]0, 1[ and L ≥ 0 (i.e., for θ + L ≥ 1, too).
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Remark 2. It is also an open problem in the case of (θ, L)-weak contraction, in which

conditions takes place the following implication

SFix(T ) 6= ∅ ⇒ Fix(T ) = SFix(T ) = {x∗}.
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STRONG AND CONVERSE FENCHEL DUALITY FOR VECTOR
OPTIMIZATION PROBLEMS IN LOCALLY CONVEX SPACES
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Abstract. In relation to the vector optimization problem v-minx∈X(f +

g ◦ A)(x), with f, g proper and cone-convex functions and A : X → Y

a linear continuous operator between separated locally convex spaces, we

define a general vector Fenchel-type dual problem. For the primal-dual

pair we prove weak, and under appropriate regularity conditions, strong

and converse duality. In the particular case when the image space is Rm

we compare the new dual with two other duals, whose definitions were

inspired from [9] and [10], respectively. The sets of Pareto efficient ele-

ments of the image sets of their feasible sets through the corresponding

objective functions prove to be equal, despite the fact that among the

image sets of the problems, strict inclusion usually holds. This equality

allows us to derive weak, strong and converse duality results for the later

two dual problems, from the corresponding results of the first mentioned

one. Our results could be implemented in various practical areas, since

they provide sufficient conditions for the existence of optimal solutions for

vector optimization problems defined on very general spaces. They can be

used in medical areas, for example in the study of chronical diseases and

in oncology.
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1. Introduction

Vector optimization problems have generated a great deal of interest during

the last years, not only from a theoretical point of view, but also from a practical

one, due to their applicability in different fields, such as economics, engineering and

lately in medical areas. In general, when dealing with scalar optimization problems,

the duality theory proves to be an important tool for giving dual characterizations

of the optimal solutions of a primal problem. Similar characterizations can also be

given for vector optimization problems.

An overview on the literature dedicated to this field shows that the general

interest has been centered on vector problems having inequality constraints and on

an extension of the classical Lagrange duality approach. We recall in this direction

the concepts developed by Mond and Weir in [23], [24] (whose formulation is based

on optimality conditions which follow from the scalar Lagrange duality). Tanino,

Nakayama and Sawaragi examined in [21] the duality for vector optimization in finite

dimensional spaces, using perturbations, which led them also to Lagrange-type duals.

They extended Rockafellar’s fully developed theory from [19] for scalar optimization

to the vector case. In Jahn’s paper [16] the Lagrange dual appears explicitly in the

formulation of the feasible set of the multiobjective dual.

Another approach is due to Boţ and Wanka, who, in [8] constructed a vector

dual using the Fenchel-Lagrange dual for scalar optimization problems, introduced by

the authors in [3], [6], [7].

With respect to the vector duality based on Fenchel’s duality concept, the

bibliography is not very rich. We mention in this direction the works of Breckner and

Kolumbán [10] and [11], continued by Breckner in [12], [13], Gerstewitz and Göpfert

[15], Malivert [18] as well as the recent paper of Boţ, Dumitru (Grad) and Wanka [9].

In relation to the vector optimization problem v-minx∈X(f + g ◦A)(x), with

f, g proper and cone-convex functions and A : X → Y a linear continuous operator

between separated locally convex spaces, we define a general vector Fenchel-type dual

problem. For this dual pairs of problems we prove weak, and under appropriate,
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quite general regularity conditions, strong and converse duality. In the particular

case when the image space is Rm, we compare the new dual with two other duals,

whose definitions were inspired from [9] and [10], respectively. Their sets of optimal

solutions prove to be equal, despite the fact among the image sets of the problems,

strict inclusion usually holds. This equality allows us to derive weak, strong and

converse duality results for the later two dual problems, from the corresponding results

of the first mentioned one.

The paper is organized as it follows. In Section 2 we recall some elements of

convex analysis which are used later on. Using the formulation of the scalarized dual,

we define in Section 3, the new vector dual problem. For it, we prove weak, strong and

converse duality. In order to be able to understand the position of our dual, among

other duals given in the literature, we present another Fenchel-type dual problems

inspired by Breckner and Kolumbán’s paper [11]. Weak, strong and converse duality

for the later problem can be proved, using the corresponding theorems for the initial

treated problems. Section 4 contains a further comparison, to a third dual problem,

this time inspired from Boţ, Dumitru (Grad) and Wanka, (cf. [9]). The image sets

of the three duals are tightly connected, as it is proved. Moreover, we illustrate by

some examples that in general these inclusions are strict. Finally, we show that even

though this happens, the sets of the maximal elements of the image sets of the feasible

sets through the corresponding objective functions coincide.

The practical applicability of our results is vast, since they provide, among

others, sufficient conditions for the existence of optimal solutions for a large area of

optimization problems, in both finite and infinite dimensional spaces. Such results

could be successfully applied in the study of chronical diseases, oncology, economy

and the list could continue.

2. Preliminaries

Let X be a real separated locally convex space, and let X∗ be its topological

dual. By 〈x∗, x〉 we understand the value of the linear continuous functional x∗ ∈ X∗

at x ∈ X.
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Given a function f : X → R := R ∪ {±∞}, its domain is the set

dom f := {x ∈ X : f(x) < +∞}.

We call f proper if dom f 6= ∅ and f(x) > −∞ for all x ∈ X. The conjugate function

associated with f is f∗ : X∗ → R defined by

f∗(x∗) := sup
x∈X

{〈x∗, x〉 − f(x)} for all x∗ ∈ X∗.

The function f is said to be convex if

f(λx + (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all x, y ∈ X and all λ ∈ [0, 1].

Given a nonempty convex cone C ⊆ X, we denote by

C+ := {x∗ ∈ X∗ : 〈x∗, x〉 ≥ 0 for all x ∈ C}

its dual cone and by

C+0 := {x∗ ∈ X∗ : 〈x∗, x〉 > 0 for all x ∈ C\{0}}

the quasi-interior of the dual cone. The convex cone C induces on X a partial

ordering defined by x 5C y (denoted also by y =C x) if y − x ∈ C for all x, y ∈ X. If

y − x ∈ C \ {0} we use the notation x ≤C y (denoted also by y ≥C x).

There are notions referring to extended real-valued functions that can be

generalized to functions taking values in infinite dimensional spaces. Thus, let Y be

another real separated locally convex space partially ordered by the nonempty convex

cone K. To Y we attach a greatest element ∞Y with respect to 5K , which does not

belong to Y . Moreover, we set Y • := Y ∪ {∞K} and consider on Y • the following

operations: y +∞K = ∞K , t · ∞K = ∞K and 〈λ,∞K〉 = +∞ for all y ∈ Y , t ≥ 0

and λ ∈ K+.

For a function F : X → Y • its domain is defined by

dom F := {x ∈ X : F (x) ∈ Y }.
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If dom(F ) 6= ∅, then F is said to be proper. The most common extension of the

classical convexity of an extended real-valued function to a vector-valued function is

the notion of cone-convexity. Thus, F is said to be K − convex if

F (tx + (1− t)y) ≤K tF (x) + (1− t)F (y)

for all x, y ∈ X and all t ∈ [0, 1].

For each λ ∈ K+ we consider the function (λ F ) : X → R defined by

(λ F )(x) = 〈λ, F (x)〉 for all x ∈ X. In literature there are known several generaliza-

tions of the lower semicontinuity of extended real-valued functions to vector-valued

functions. Here we mention one of them. The function F is said to be star-K lower

semicontinuous if, for each λ ∈ K+, the function (λ F ) is lower semicontinuous.

If U is a nonempty subset of X we denote by linU its linear hull and by

cone U := ∪λ≥0λU its conic hull. The algebraic interior associated with U is the set

core U := {u ∈ U : ∀x ∈ X,∃δ > 0 s.t. ∀λ ∈ [0, δ] : u + λx ∈ U}.

When U is a convex set, then u ∈ core U if and only if cone(U − x) = X. In general,

we have intU ⊆ core U , where int U denotes the interior of U . When U is convex then

intU = core U if one of the following conditions is satisfied: intU 6= ∅; X is a Banach

space and U is closed; X is finite dimensional (cf. [20]). Further, by maintaining the

convexity assumption for U , one can define the strong quasi-relative interior of U ,

denoted by sqri U , as

sqriU := {u ∈ U : cone(U − u) is a closed linear subspace of X} (cf. [1]).

We notice that core U ⊆ sqriU . If X is finite dimensional, then sqriU = ri U , where

riU denotes the relative interior of the set U , i.e. the set of the interior points of U

relative to the affine hull of U .

3. Fenchel-Type Vector Duality

Let X, Y and V be real separated locally convex spaces, and let V be partially

ordered by a nonempty pointed convex cone K ⊆ V . We shall study the general vector
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optimization problem

(P ) v-min
x∈X

(f + g ◦A)(x),

where f : X → V • = V ∪ {∞K} and g : Y → V • are proper, K-convex functions and

A : X → Y is a linear continuous operator such that dom f ∩A−1(dom g) 6= ∅.

Due to the fact that the partial order induced on a vector space by a convex

cone is not total, several notions of optimal solutions for vector optimization problems

have been introduced during the years in the literature. For such definitions and their

properties we refer the reader to [17]. In this paper we work with Pareto-efficient and

properly efficient solutions. Particularly, for the problem (P ) we study the existence

of properly efficient solutions.

Definition 1. An element x ∈ X is a properly efficient solution to (P ) if there exists

v∗ ∈ K+0 such that

〈v∗, (f + g ◦A)(x)〉 ≤ 〈v∗, (f + g ◦A)(x)〉 for all x ∈ X.

Duality is an extremely used procedure in optimization. It consists in associ-

ating with a certain optimization problem, called primal problem, a new one, called

dual problem, whose solutions may characterize the optimal solutions of the primal

problem. In order to ensure strong and converse duality, respectively, certain regular-

ity conditions have to be imposed on the functions and sets involved in the definition

of the problems.

In this paper we treat three different types of dual problems associated with

the vector optimization problem (P ), for which which we prove weak, strong and

converse duality. Furthermore, we shall compare the image sets of the feasible sets

through the corresponding objective functions for the three problems.

The first dual associated with the primal vector optimization problem is

(D≤) v-max
(v∗,y∗,v)∈B≤

h≤(v∗, y∗, v),

where the feasible set is

B≤ = {(v∗, y∗, v) ∈ K+0 × Y ∗ × R : 〈v∗, v〉 ≤ −(v∗f)(−A∗y∗)− (v∗g)(y∗)},
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and the objective function is

h≤(v∗, y∗, v) = v.

For this new optimization problem, we are interested in investigating the

Pareto efficient solutions, defined below.

Definition 2. An element (v∗, y∗, v) ∈ B≤ is said to be an efficient (Pareto efficient)

solution to (D≤) if there exists no (v∗, y∗, v) ∈ B≤ such that

h≤(v∗, y∗, v) ≤K h≤(v∗, y∗, v).

As stated above, for a primal-dual pair of optimization problems, weak duality

must always hold, under general assumptions. This is the case for our problems, as

it is proved in the following theorem.

Theorem 1 (Weak Duality for (P )−(D≤)). There exist no x ∈ X and no (v∗, y∗, v) ∈

B≤ such that

(f + g ◦A)(x) ≤K h≤(v∗, y∗, v).

Proof . We proceed by contradiction, assuming that there exist x ∈ X and

(v∗, y∗, v) ∈ B≤ such that (f + g ◦ A)(x) ≤K h≤(v∗, y∗, v). This implies obviously

that x ∈ (dom f) ∩A−1(dom g). Due to the fact that v∗ ∈ K+0 it follows that

〈v∗, v〉 > 〈v∗, (f + g ◦A)(x)〉 ≥ inf
x∈X

{〈v∗, f(x)〉+ 〈v∗, (g ◦A)(x))〉} .

Moreover, from the weak duality theorem for the scalarized optimization problem on

the right hand side of the inequality above and its Fenchel dual, we have

inf
x∈X

{〈v∗, f(x)〉+ 〈v∗, (g ◦A)(x))〉} ≥ sup
y∗∈Y ∗

{−(v∗f)∗(−A∗y∗)− (v∗g)∗(y∗)}.

Combining the relations above, we obtain

〈v∗, v〉 > −(v∗f)∗(−A∗y∗)− (v∗g)∗(y∗),

which contradicts the fact that (v∗, y∗, v) ∈ B≤. Hence the conclusion of the theorem

holds.
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In order to ensure strong duality between the previously mentioned problems,

a regularity condition has to be fulfilled. It actually ensures the existence of strong

duality for the scalar optimization problem

(Pv∗) inf
x∈X

{(v∗f)(x) + (v∗g)(Ax)}

and its Fenchel dual problem

(Dv∗) sup
y∗∈Y ∗

{−(v∗f)∗(−A∗y∗)− (v∗g)∗(y∗)}

for all v∗ ∈ K+0. So, we are looking for sufficient conditions that are independent

from the choice of v∗ ∈ K+0.

The first regularity condition, which we mention at this point, is derived from

[14]. In the particular case of our problem it has the following formulation:

(RC1) ‖ ∃x0 ∈ dom f ∩A−1(dom g) such that g is continuous at A(x0).

When M ⊂ Y is a given set, we use the following notation:

A−1(M) := {x ∈ X : Ax ∈ M}.

In Fréchet spaces one can state the following regularity conditions for the primal-dual

pair (Pv∗)− (Dv∗):

(RC2)

∥∥∥∥∥∥∥∥∥
X and Y are Fréchet spaces,

f and g are star-K lower-semicontinuous,

and 0 ∈ sqri(dom g −A(dom f))

along with its stronger versions

(RC2′)

∥∥∥∥∥∥∥∥∥
X and Y are Fréchet spaces,

f and g are star-K lower-semicontinuous,

and 0 ∈ core(dom g −A(dom f))
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and

(RC2′′)

∥∥∥∥∥∥∥∥∥
X and Y are Fréchet spaces,

f and g are star-K lower-semicontinuous,

and 0 ∈ int(dom g −A(dom f)).

For more details with respect to these regularity conditions we refer the reader

to [2]. In the finite dimensional setting one can use the following regularity condition:

(RC3)

∥∥∥∥∥∥ dim(lin(dom g −A(dom f))) < +∞ and

ri(dom g) ∩ ri(A(dom f)) 6= ∅

which becomes in case X = Rn and Y = Rm

(RC4) ‖ ∃x′ ∈ ri(dom f) s.t. Ax′ ∈ ri(dom g) .

The condition (RC4) is the classical regularity condition for the scalar Fenchel duality

in finite dimensional spaces and has been stated by Rockafellar in [19].

A newly studied approach in giving sufficient conditions for strong duality is

the one employing closed cone constraint qualifications which turn out to be weaker

than the interior-type ones. For such conditions and their comparison to the interior-

type ones specified above, and others, we refer the reader to the paper by Boţ and

Wanka [5].

Theorem 2 (Strong Duality Theorem for (P ) − (D≤)). Assume that one of the

regularity conditions (RC1) − (RC3) is satisfied. If x ∈ X is a properly efficient

solution to (P ), then there exists an efficient solution (v∗, y∗, v) ∈ B≤ to (D≤) such

that (f + g ◦A)(x) = h≤(v∗, y∗, v) = v.

Proof . Due to the fact that x is a properly efficient solution to (D≤) we obtain that

x ∈ dom(f) ∩A−1(dom g) and that there exists a v∗ ∈ K+0 such that

〈v∗, (f + g ◦A)(x)〉 = inf
x∈X

{(v∗f)(x) + (v∗g)(Ax)}.

The functions (v∗f) and (v∗g) are proper and convex. The regularity assumption

guarantees the existence of strong duality for the scalarized optimization problem
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infx∈X{(v∗f)(x) + (v∗g)(Ax)} and its Fenchel dual. Thus there exists y∗ ∈ Y ∗ such

that

inf
x∈X

{(v∗f)(x) + (v∗g)(Ax)} = sup
y∗∈Y ∗

{−(v∗f)∗(−A∗y∗)− (v∗g)∗(y∗)} =

= −(v∗f)∗(−A∗y∗)− (v∗g)∗(y∗).

By defining v := (f + g ◦ A)(x) ∈ V we obtain that (v∗, y∗, v) ∈ B≤. Now we prove

that it is an efficient solution to (D≤).

Let us assume by contradiction that this is not the case. This implies the

existence of (v∗, y∗, v) ∈ B≤ such that v = (f + g ◦A)(x) ≤K v = h≤(v∗, y∗, v) which

is a contradiction to the weak duality theorem, Theorem 1.

The forthcoming result plays a crucial role in proving the converse duality

theorem.

Theorem 3. Assume that one of the regularity conditions (RC1)− (RC3) is satisfied

and that B≤ 6= ∅. Then

V \ cl
{
(f + g ◦A)

(
dom f ∩A−1(dom g)

)
+ K

}
⊆ core h≤(B≤).

Proof . Let η ∈ V \ cl
{
(f + g ◦A)

(
(dom f ∩A−1(dom g)

)
+ K

}
be arbitrarily cho-

sen. Due to the fact that f and g are K-convex functions, A is a linear continuous

operator and K is a convex cone, we see that the set

(f + g ◦A)
(
dom f ∩A−1(dom g)

)
+ K

is convex, thus cl
{
(f + g ◦A)

(
dom f ∩A−1(dom g) + K

)}
is a closed and convex set.

According to a separation theorem (see [25]), we obtain the existence of η∗ ∈ V ∗ \{0}

and α ∈ R such that

〈η∗, η〉 < α < 〈η∗, b〉,∀b ∈ cl
{
(f + g ◦A)

(
dom f ∩A−1(dom g)

)
+ K

}
. (1)

We prove that η∗ ∈ K+ \ {0}. Let us suppose by contradiction that there exists a

k ∈ K such that 〈η∗, k〉 < 0. This means that for a fixed x0 ∈ dom(f) ∩ A−1(dom g)

the inequality

α < 〈η∗, (f + g ◦A)(x0)〉+ 〈η∗, tk〉

50



STRONG AND CONVERSE FENCHEL VECTOR DUALITY IN LOCALLY CONVEX SPACES

holds for all t ≥ 0. Allowing now t → +∞, we obtain that α < −∞, which is obviously

a contradiction. Therefore, η∗ ∈ K+ \ {0}.

Due to the fact that B≤ 6= ∅, there exists (v∗, y∗, v) ∈ B≤, hence

〈v∗, v〉 ≤ −(v∗f)∗(−A∗y∗)− (v∗g)∗(y∗).

Applying the weak duality theorem for the scalarized problem

(Pv∗) inf
x∈X

〈v∗, (f + g ◦A)(x)〉

and its Fenchel dual, we have that

−(v∗f)∗(−A∗y∗)− (v∗g)∗(y∗) ≤ inf
x∈X

〈v∗, (f + g ◦A)(x)〉,

and hence

〈v∗, v〉 ≤ inf
x∈X

〈v∗, (f + g ◦A)(x)〉. (2)

For each s ∈ (0, 1) we have that

〈sv∗ + (1− s)η∗, η〉 = 〈η∗, η〉+ s(〈v∗, η〉 − 〈η∗, η〉) = α− γ + s(〈v∗, v〉 − α + γ) (3)

with γ := α− 〈η∗, η〉 > 0. Furthermore, from (1) and (2) we obtain

〈sv∗ + (1− s)η∗, b〉 ≥ s〈v∗, v〉+ (1− s)α = α + s(〈v∗, v〉 − α) (4)

for all b ∈ (f + g ◦A)(dom f ∩A−1(dom g)). Thus there exists s ∈ (0, 1), close enough

to 0, such that s(〈v∗, v〉 − α + γ) < 1
2γ and s(〈v∗, v〉 − α) > − 1

2γ. For the convex

combination obtained with the help of s it holds

v∗s := sv∗ + (1− s)η∗ ∈ sK+0 + (1− s)(K+ \ {0}) ⊆ K+0 + K+ ⊆ K+0.

Thus, using (3) and (4), we obtain

〈v∗s , η〉 < α− 1
2
γ < 〈v∗s , b〉,∀b ∈ (f + g ◦A)(dom f ∩A−1(dom g)).

From the hypothesis we know that one of the regularity conditions holds. Thus, from

the strong duality for the scalar optimization problems (Pv∗)− (Dv∗) there exists an
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optimal solution y∗ of the dual (Dv∗), therefore

〈v∗s , η〉 < inf
x∈X

〈v∗s , (f + g ◦A)(x)〉 = sup
z∗∈Y ∗

{−(v∗sf)∗(−A∗z∗)− (v∗sg)∗(z∗)}

= −(v∗sf)∗(−A∗y∗)− (v∗sg)∗(y∗).

This means that there exists ε > 0 such that

〈v∗s , η〉+ ε < −(v∗sf)∗(−A∗y∗)− (v∗sg)∗(y∗).

For all p ∈ V there exists δp > 0 such that 〈v∗s , δpp〉 < ε, and thus

〈v∗s , η + λp〉 ≤ 〈v∗s , η〉+ ε < {−(v∗sf)∗(−A∗y∗)− (v∗sg)∗(y∗)} ,∀λ ∈ [0, δp].

Hence (v∗, y∗, η + λp) ∈ B≤ for all λ ∈ [0, δp], and further η + λp ∈ h≤(B≤), guaran-

teeing that η ∈ core(B≤).

Theorem 4 (Converse Duality Theorem for (P ) − (D≤)). Assume that one of the

regularity conditions (RC1)− (RC3) is satisfied and the set

(f + g ◦A)(dom f ∩A−1(dom g)) + K

is closed. Then for each efficient solution (v∗, y∗, v) ∈ B≤ to (D≤) there exists a

properly efficient solution x ∈ X to (P ), such that

(f + g ◦A)(x) = h≤(v∗, y∗, v) = v.

Proof . First we show that v ∈ (f + g ◦A)(dom f ∩A−1(dom g))+K. Let us proceed

by contradiction. This would mean, by using Theorem 3, that v ∈ core h≤(B≤). Thus

for a k ∈ K \ {0} there exists λ > 0 such that vλ := v + λk ∈ h≤(B≤). Furthermore,

vλ − v = λk ∈ K \ {0} and hence vλ ≥K v, a contradiction to the efficiency of

v ∈ h≤(B≤).

Thus v ∈ (f + g ◦ A)(dom f ∩ A−1(dom g)) + K. But this means that there

exist x ∈ (dom f ∩A−1(dom g) and k ∈ K such that

v = (f + g ◦A)(x) + k.
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By assuming that k 6= 0 we would obtain that h≤(v∗, y∗, v) = v ≥K (f + g ◦ A)(x),

a contradiction to the weak duality statement of Theorem 1. Hence k = 0 and thus

v = (f +g ◦A)(x). Employing now the definition of B≤ and the weak duality theorem

which holds for the scalarized optimization problem (Pv∗), we obtain

〈v∗, (f + g ◦A)(x)〉 = 〈v∗, v〉 ≤ −(v∗f)∗(−A∗y∗)− (v∗g)∗(y∗)

≤ inf
x∈X

〈v∗, (f + g ◦A)(x)〉.

Therefore, x is a properly efficient solution to (P ).

The scalar Fenchel duality was involved for the first time in the definition of a

vector dual problem by Breckner and Kolumbán, in [10], in a very general framework.

Inspired by the approach introduced in this work, one gets the following dual vector

optimization problem associated with (P )

(DBK) v-max
(v∗,y∗,v)∈BBK

hBK(v∗, y∗, v),

where

BBK := {(v∗, y∗, v) ∈ K+0 × Y ∗ × V : 〈v∗, v〉 = −(v∗f)∗(−A∗y∗)− (v∗g)(y∗)}

and

hBK(v∗, y∗, v) = v.

Remark 1. As it can be easily observed from the definition, without any other addi-

tional assumptions, the following inclusion holds:

hBK(BBK) ⊆ h≤(B≤).

Theorem 5. The following equality holds:

v-max hBK(BBK) = v-max h≤(B≤).

Proof . ” ⊆ ” Let (v∗, y∗, v) ∈ BBK be such that v ∈ v-max(hBK(BBK)). Then

v ∈ h≤(B≤). We suppose that v 6∈ v-max(h≤(B≤)). This means that there exists

53



ANCA GRAD

(v∗0 , y∗0 , v0) ∈ B≤ such that v0 ≥K v. Due to the maximality of v in hBK(BBK) we

have that (v∗0 , y∗0 , v0) 6∈ BBK , therefore

〈v∗0 , v0〉 < −(v∗0f)∗(−A∗y∗0)− (v∗0g)∗(y∗0).

Consequently there exists a k ∈ K \ {0} and vk := v0 + k such that

〈v∗0 , vk〉 = −(v∗0f)∗(−A∗y∗0)− (v∗0g)∗(y∗0),

which means that (v∗0 , y∗0 , vk) ∈ BBK and vk ≥K v0. Since this is a contradiction to

the maximality of v0, v-max hBK(BBK) ⊆ v-max h≤(B≤).

” ⊇ ” By taking (v∗, y∗, v) ∈ B≤ such that v ∈ v-max h≤(B≤) we prove that

it belongs to v-max hBK(BBK). The first step is to prove that (v∗, y∗, v) ∈ BBK .

Assuming the contrary, one has

〈v∗, v〉 < −(v∗f)∗(−A∗y∗)− (v∗g)∗(y∗)

and there exists k ∈ K \ {0} such that vk := v + k satisfies

〈v∗, v〉 < 〈v∗, vk〉 = −(v∗f)∗(−A∗y∗)− (v∗g)∗(y∗).

Since (v∗, y∗, v) ∈ B≤ and vk ≥K v, we have a contradiction to the maximality of v.

Hence (v∗, y∗, v) ∈ BBK .

We further suppose that v 6∈ v-max hBK(BBK). This means actually that

there exists (v∗, y∗, v) ∈ BBK ⊆ B≤ such that v ≥K v, which is actually a contradic-

tion to the maximality of v ∈ h≤(B≤). Therefore, v ∈ v-max hBK(BBK).

Remark 2. In the proof of the previous theorem, no assumptions regarding the nature

of the functions and sets involved in the formulation of (P ) were made. This means

that the sets of efficient elements of h≤(B≤) and hBK(BBK) are always identical.

Using the weak, strong and converse duality theorems between the dual pair

of vector optimization problems (P ) and (D≤), similar results can be proved for the

primal-dual pair (P )− (DBK).

Theorem 6. The following statements are true:
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a) (Weak duality) There exist no x ∈ X and no (v∗, y∗, v) ∈ BBK such that

(f + g ◦A)(x) ≤K hBK(v∗, y∗, v).

b) (Strong duality) Let one of the regularity conditions (RC1) − (RC3) be

satisfied. If x ∈ X is a properly efficient solution to (P ), then there exists

an efficient solution (v∗, y∗, v) ∈ BBK to (DBK) such that

(f + g ◦A)(x) = hBK(v∗, y∗, v) = v.

c) (Converse duality) Let one of the regularity conditions (RC1)− (RC3) be

satisfied and let (f + g ◦ A)(dom f ∩ A−1(dom g)) + K be a closed set.

Then for each efficient solution (v∗, y∗, v) ∈ BBK to (DBK), there exists

a properly efficient solution x ∈ X to (P ), such that

(f + g ◦A)(x) = hBK(v∗, y∗, v) = v.

Proof . a) It follows from Remark 1 and Theorem 1.

b) It follows from Theorem 5 and Theorem 2.

c) It follows from Theorem 5 and Theorem 4.

When V := R and K := R+, one can identify V • with R∪ {+∞}. Assuming

that f : X → R ∪ {+∞} and g : Y → R ∪ {+∞} are proper and convex functions,

the primal problem becomes

(P ) inf
x∈X

(f + g ◦A)(x).

An element (v∗, y∗, v) ∈ B≤ if and only if v∗ > 0, y∗ ∈ Y ∗ and v ∈ R fulfill

v∗v ≤ −(v∗f)∗(−A∗y∗)− (v∗g)(y∗).

Using the characterization of the conjugate functions, we get that

(v∗f)∗(−A∗y∗) = v∗f∗(− 1
v∗

A∗y∗) and (v∗g)∗(y∗) = v∗g∗(
1
v∗

y∗).

Thus

v∗v ≤ −v∗f∗(− 1
v∗

A∗y∗)− v∗g∗(
1
v∗

y∗) ⇐⇒ v ≤ f∗(− 1
v∗

A∗y∗)− g∗(
1
v∗

y∗).
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The dual problem becomes

(D≤) sup
v∗>0,y∗∈Y ∗

{
−f∗(− 1

v∗
A∗y∗)− g∗(

1
v∗

y∗)
}

= sup
y∗∈Y ∗

{f∗(−A∗y∗)− g∗(y∗)}

which is exactly the classical scalar Fenchel dual problem to (PV ). The same con-

clusion applies when particularizing in an analogous manner the vector dual problem

(DVBK).

4. The case when V := Rm

In this section we focus our attention on the special case when V := Rm and

K := Rm
+ . In addition to the two dual problems studied before, we introduce a new

one, whose formulation was inspired from [9]. Nevertheless, a more particular case

was treated there, namely the one when X := Rn and Y := Rk.

The primal problem turns into

(P ) v-min
x∈X

(f(x) + (g ◦A)(x)),

where f and g are two vector functions such that

f = (f1, f2, ...fm)T and g = (g1, g2, ..., gm)T

with fi : X → R, gi : Y → R proper and convex functions for each i ∈ {1, ...,m}, and

A : X → Y is a linear continuous operator.

Furthermore, we assume that the following regularity condition is satisfied

(RCm)

∥∥∥∥∥∥∥
∃x′ ∈

m⋂
i=1

dom fi ∩A−1

(
m⋂

i=1

dom gi

)
such that

fi and gi are continuous at x′ for all i ∈ {1, ...,m}.

We consider the following dual optimization problem associated with (P ):

(DBGW ) v-max
(p,q,λ,t)∈BBGW

hBGW (p, q, λ, t),
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where

BBGW =



(p, q, λ, t) : p = (p1, ..., pm) ∈ (X∗)m,

q = (q1, ..., qm) ∈ (Y ∗)m

λ = (λ1, ..., λm) ∈ int Rm
+ ,

t = (t1, ..., tm) ∈ Rm,
m∑

i=1

λi (pi + A∗qi) = 0,
m∑

i=1

λiti = 0


,

and h is defined by

h (p, q, λ, t) = (h1 (p, q, λ, t) , ..., hm (p, q, λ, t)) ,

with

hi (p, q, λ, t) = −f∗i (pi)− g∗i (qi) + ti for all i ∈ {1, ...,m} .

Proposition 7. The following relations referring to the image sets of the three dual

problems hold:

a) hBK
(
BBK

)
⊆ hBGW

(
BBGW

)
∩ Rm;

b) hBGW
(
BBGW

)
∩ Rm ⊆ h≤

(
B≤
)
.

Proof . a) Let v ∈ hBK
(
BBK

)
. Then there exist v∗ ∈ int Rm

+ and y∗ ∈ Y ∗ such that

(v∗, y∗, v) ∈ BBK . Furthermore,

m∑
i=1

v∗i vi = −

(
m∑

i=1

v∗i fi

)∗
(−A∗y∗)−

(
m∑

i=1

v∗i gi

)∗
(y∗) .

Since (RCm) is fulfilled, we can apply the infimal convolution formula and obtain the

existence of pi ∈ X∗, qi ∈ Y ∗, i ∈ {1, ...,m} , such that

m∑
i=1

v∗i pi = −A∗y∗,
m∑

i=1

v∗i qi = y∗,

(
m∑

i=1

v∗i fi

)∗
(−A∗y∗) =

m∑
i=1

v∗i f∗i (pi) and

(
m∑

i=1

v∗i gi

)∗
(y∗) =

m∑
i=1

v∗i g∗i (qi) .

Moreover,
m∑

i=1

v∗i (pi + A∗qi) = 0. For more details on the the infimal convolution

formula and on the regularity conditions that ensure the equalities above we refer the

reader to [19] and [4]. Returning to our problem, we have that

57



ANCA GRAD

m∑
i=1

v∗i vi = −
m∑

i=1

v∗i f∗i (pi)−
m∑

i=1

v∗i g∗i (qi) .

For

ti := vi + f∗i (pi) + g∗i (qi) ∀i ∈ {1, ...,m},

it holds
m∑

i=1

v∗i ti =
m∑

i=1

v∗i vi +
m∑

i=1

v∗i f∗i (pi) +
m∑

i=1

v∗i g∗i (qi) = 0.

Then (p, q, v∗, t) ∈ BBGW and for all i ∈ {1, ...,m} , hi (p, q, v∗, t) = vi, thus v =

h (p, q, v∗, t) ∈ h
(
BBGW

)
∩ Rm. Hence

hBK
(
BBK

)
⊆ hBGW

(
BBGW

)
∩ Rm.

b) Let (p, q, λ, t) ∈ BBGW be such that h(p, q, λ, t) ∈ h(BBGW ) ∩ Rm. For

y∗ :=
m∑

i=1

λiqi and v := hBGW (p, q, λ, t) we have

m∑
i=1

λivi =
m∑

i=1

λihi (p, q, λ, t) =
m∑

i=1

λi

(
− f∗i (pi)− g∗i (qi) + ti

)

=
m∑

i=1

λi (−f∗i (pi)− g∗i (qi))

≤ sup

{
−

m∑
i=1

λif
∗
i (pi) :

m∑
i=1

λipi = −A∗y∗

}

+sup

{
−

m∑
i=1

λig
∗
i (qi) :

m∑
i=1

λiqi = y∗

}

≤ −

(
m∑

i=1

λifi

)∗
(−A∗y∗)−

(
m∑

i=1

λigi

)∗
(y∗) .

Hence (λ, y∗, v) ∈ B≤ and hBGW (p, q, λ, t) = v ∈ h≤
(
B≤
)
. Thus

hBGW
(
BBGW

)
∩ Rm ⊆ h≤

(
B≤
)
.
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In the following we give some examples which prove that the inclusions in

Proposition 7 are in general strict, i.e.

hBK
(
BBK

)
⊂
6=

hBGW
(
BBGW

)
∩ Rm ⊂

6=
h≤
(
B≤
)
.

Example 8. Consider X = Y = R, A(x) = x for all x ∈ R, and the functions

f, g : R → R2 given by

f (x) = (x− 1,−x− 1)T and g (x) = (x,−x)T for all x ∈ R.

We prove that hBGW
(
BBGW

)
∩ Rm ⊂

6=
h≤
(
B≤
)
.

Since

f∗1 (p) =

 1, if p = 1,

+∞, otherwise,
, f∗2 (p) =

 1, if p = −1,

+∞, otherwise,

g∗1 (p) =

 0, if p = 1,

+∞, otherwise,
, g∗2 (p) =

 0, if p = −1,

+∞, otherwise,

one has

(f1 + f2)
∗ (p) = inf {f∗1 (p1) + f∗2 (p2) : p1 + p2 = p} =

 2, if p = 0,

+∞, otherwise,

and

(g1 + g2)
∗ (p) = inf {g∗1 (p1) + g∗2 (p2) : p1 + p2 = p} =

 0, if p = 0,

+∞, otherwise.

For λ = (1, 1)T , p = 0 and d = (−2,−2)T we have

(λ, p, d) ∈ B≤ and d ∈ h≤
(
B≤
)

due to the fact that

λT d = −2− 2 = −4 < −2 = − (f1 + f2)
∗ (p)− (g1 + g2)

∗ (p) .

Next we show that d 6∈ hBGW
(
BBGW

)
. Let us suppose by contradiction that there

exists (p′, q′, λ′, t′) ∈ BBGW such that hBGW (p′, q′, λ′, t′) = d. This means

−f∗i (p′i)− g∗i (q′i) + t′i = 0 for i ∈ {1, 2} .
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Taking into account the values we got for the conjugate of the functions involved, the

equalities above hold only if

p′1 = 1, p′2 = −1, q′1 = 1 and q′2 = −1.

In this case,
2∑

i=1

λ′i (p′i + q′i) = 0, which meas that with this choice, we are still within

the set BBGW . We obtain thus

−1 + t′i = 0 for i ∈ {1, 2} , meaning that t′1 = t′2 = 1.

Since we have supposed that (p′, q′, λ′, t′) ∈ BBGW , λ′1 + λ′2 = 0 must hold. This is a

contradiction due to the fact that λ′ ∈ int R2
+.

Thus, for d = (−2,−2)T ∈ h≤
(
B≤
)
, there exists no (p′, q′, λ′, t′) ∈ BBGW

such that hBGW (p′, q′, λ′, t′) = d, which shows that h
(
BBGW

)
∩ Rm ⊂

6=
h≤
(
B≤
)
.

Example 9. Consider X = Y = R, A(x) = x for all x ∈ X, and the functions

f, g : R → R2 given by

f (x) =
(
2x2 − 1, x2

)T
and g (x) = (−2x,−x + 1)T for all x ∈ R.

We prove that hBK
(
BBK

)
⊂
6=

hBGW
(
BBGW

)
∩ Rm.

For p = (3, 0) , q = (−2,−1) , we have λ = (1, 1)T
, t =

(
3
8 ,− 3

8

)T
,

2∑
i=1

λi (pi + qi) = 0, and
2∑

i=1

λiti = 0. Thus (p, q, λ, t) ∈ BBGW . Applying the defi-

nition of the conjugate function, we calculate the following values:

f∗1 (3) = sup
x∈R

{
3x− 2x2 + 1

}
=

17
8

, f∗2 (0) = sup
x∈R

{
−x2

}
= 0,

g∗1 (−2) = sup
x∈R

{−2x + 2x} = 0, g∗2 (−1) = sup
x∈R

{−x + x− 1} = −1.

Hence

hBGW
1 (p, q, λ, t) = −17

8
− 0 +

3
8

= −14
8

, hBGW
2 (p, q, λ, t) = 0 + 1− 3

8
=

5
8
.

Now suppose that there exists (λ′, p′, d′) ∈ BBK such that

d′ = hBGW (p, q, λ, t) =
(
−14

8
,
5
8

)T

.
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Then

λ′T d′ = −

(
2∑

i=1

λ′ifi

)∗
(p′)−

(
2∑

i=1

λ′igi

)∗
(−p′) . (5)

But calculating the values of the conjugate functions we reach the conclusion that

−
(

2∑
i=1

λ′ifi

)∗
(p′)−

(
2∑

i=1

λ′igi

)∗
(−p′) =

= inf
x∈R

{
−p′x + x2 (2λ′1 + λ′2)− λ1

}
+ inf

x∈R
{x (p′ − 2λ′1 − λ′2) + λ′2}

= inf
x∈R

{
− (2λ′1 + λ′2)x + x2 (2λ′1 + λ′2)

}
− λ′1 + λ′2

= − 2λ′1+λ′2
4 − λ′1 + λ′2.

By (3) we obtain that

−14
8

λ′1 +
5
8
λ′2 = −2λ′1 + λ′2

4
− λ′1 + λ′2

which is equivalent to

−3 (2λ′1 + λ′2)
8

= −2λ′1 + λ′2
4

, i.e. 2λ′1 + λ′2 = 0,

obviously a contradiction to λ′ ∈ int R2
+. Therefore, for (p, q, λ, t) chosen as in

the beginning of the example, there exists no (λ′, p′, d′) ∈ BBK such that d′ =

hBGW (p, q, λ, t) . Hence hBK (BBK) ∩ Rm ⊂
6=

hBGW
(
BBGW

)
.

Below we prove that the sets of optimal solutions to (DBGW ) and (D≤)

coincide.

Theorem 10. The following equality holds:

v-max hBGW
(
BBGW

)
= v-maxh≤

(
B≤
)
.

Proof . ”v-max hBGW
(
BBGW

)
⊆ v-max h≤

(
B≤
)
” Let v ∈ v-max hBGW

(
BBGW

)
.

Since hBGW
(
BBGW

)
∩ Rm ⊆ h≤

(
B≤
)
, one has v ∈ h≤

(
B≤
)
. Let us suppose

by contradiction, that v 6∈ v-max h≤
(
B≤
)
. Then there exists v ∈ h≤

(
B≤
)
, with

(v∗, y∗, v) ∈ B≤, such that v ≤Rm
+

v. Then we have

〈v∗, v〉 < 〈v∗, v〉 ≤ − (v∗f)∗ (−A∗y∗)− (v∗g)∗ (y∗) .
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So, there exists ṽ such that v ≤Rm
+

ṽ (obviously, v ≤Rm
+

ṽ) for which

〈v∗, ṽ〉 = − (v∗f)∗ (−A∗y∗)− (v∗g)∗ (y∗) .

Thus we have obtained an element (v∗, y∗, ṽ) ∈ BBK . Since

hBK
(
BBK

)
⊆ hBGW

(
BBGW

)
∩ Rm,

it follows that ṽ ∈ hBGW
(
BBGW

)
, which contradicts the maximality of v in

hBGW (BBGW ). Therefore,

v-max hBGW
(
BBGW

)
⊆ v-max h≤

(
B≤
)
.

”v-max h≤
(
B≤
)
⊆ v-max hBGW

(
BBGW

)
” Let v ∈ v-max h≤

(
B≤
)
. By Theorem 5

it follows that v ∈ v-max hBK
(
BBK

)
. Since hBK

(
BBK

)
⊆ hBGW

(
BBGW

)
∩Rm, we

have further v ∈ hBGW
(
BBGW

)
. Let us suppose by contradiction that there exists

(p, q, λ, t) ∈ BBGW such that v ≤Rm
+

d := hBGW (p, q, λ, t). Since hBGW
(
BBGW

)
⊆

h≤
(
B≤
)
, one has d ∈ h≤

(
B≤
)
, but v ≤Rm

+
d which is a contradiction to the maxi-

mality of v. Therefore

v-max h≤
(
B≤
)
⊆ v-max hBGW

(
BBGW

)
.

As one can easily notice from Theorems 5 and 10 along with examples 8 and

9, the following equalities hold:

v-max hBK(BBK) = v-maxhBGW
(
BBGW

)
= v-maxh≤

(
B≤
)
,

even though

hBK
(
BBK

)
⊂
6=

hBGW
(
BBGW

)
∩ Rm ⊂

6=
h≤
(
B≤
)
.

Using the weak, strong and converse duality theorems between the dual pair

of the vector optimization problems (P ) and (D≤), similar results can be proved for

the dual pair (P ) and (DBGW ). Thus

Theorem 11. The following statements are true:
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a) (Weak duality) There exist no x ∈ X and no (p, q, λ, t) ∈ BBGW such that

(f + g ◦A)(x) ≤K hBGW (p, q, λ, t).

b) (Strong duality) If x ∈ X is a properly efficient solution to (P ), then there

exists an efficient solution (p, q, λ, t) ∈ BBGW to (DBGW ) such that

(f + g ◦A)(x) = hBGW (p, q, λ, t).

c) (Converse duality) If the set

(f + g ◦A)(dom f ∩A−1(dom g)) + K

is closed, then for each efficient solution (p, q, λ, t) ∈ BBGW to (DBGW )

there exists a properly efficient solution x ∈ X to (P ) such that

(f + g ◦A)(x) = hBGW (p, q, λ, t).

Proof . a) It follows from Proposition 7 b) and Theorem 1.

b) It follows from Theorem 10 and Theorem 2.

c) It follows from Theorem 10 and Theorem 4.

As it will be seen in the following example, Theorem 4, which was important

in the proof of the converse duality for dual (D≤), does not hold for the more particular

dual problems (DBK) and (DBGW ).

Example 12. Let X = Y = R and V := R2. Put A(x) = x for all x ∈ R and define

the functions f, g : R → R2 by

f(x) = (−3x + 7, 2x) and g(x) = (3x− 7,−2x),∀x ∈ R.

We show that R2 \ cl
(
(f + g)(R) + R2

+

)
6⊆ core hBGW (BBGW ) ∩ R2.

Under the above specified framework, dom f = dom g = R and the feasible

solution set of (DBGW ) is

BBGW =

 (p, q, λ, d) ∈ R2 × R2 × int R2
+ × R2 :

λ1(p1 + q1) + λ2(p2 + q2) = 0, λ1t1 + λ2t2 = 0


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and

hBGW (BBGW ) =


(−f∗1 (p1)− g∗1(q1) + t1,−f∗2 (p2)− g∗2(q2) + t2) :

(λ1, λ2) ∈ int R2
+,

λ1(p1 + q1) + λ2(p2 + q2) = 0, λ1t1 + λ2t2 = 0.


We start by noticing that

(f + g)(R) + R2
+ = R2

+ = cl((f + g)(R) + R2
+).

Furthermore

f∗1 (p) =

 −7, if p = 3,

+∞, otherwise,
and f∗2 (p) =

 0, if p = 2,

+∞, otherwise,

and

g∗1(q) =

 7, if q = 3,

+∞, otherwise,
and g∗2(p) =

 0, if q = −2,

+∞, otherwise.

Therefore

−f∗1 (p)− g∗1(q) + t =

 t, if p = −3, q = 3,

−∞, otherwise,

and

−f∗2 (p)− g∗2(q) + t =

 t, if p = 2, q = −21,

−∞, otherwise.

Hence

hBGW (BBGW ) =

 (t1, t2) ∈ R2 : (λ1, λ2) ∈ int R2,

λ1(−3 + 3) + λ2(2− 2) = 0, λ1t1 + λ2t2 = 0


=
{
(t1, t2) ∈ R2 : λ1t1 + λ2t2 = 0, λ1 > 0, λ2 > 0

}
.

Now let us fix v := (−1,−1), for which we have that v ∈ R2 \ cl((f + g)(R) + R2).

We notice that v 6∈ hBGW (BBGW ) ∩ R2. We prove this by contradiction. Assuming

that v ∈ hBGW (BBGW )∩R2 it follows that λ1(−1)+λ2(−1) = 0 with λ1 > 0, λ2 > 0,

which is obviously a contradiction.

So v 6∈ hBGW (BBGW ) ∩ R2, and hence it follows from Proposition 7 a) that

v 6∈ hBK(BBK). Nevertheless, from Theorem 3 it follows that v ∈ core h≤(B≤).
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The conclusion is that a direct converse duality proof for the case of problem

(DBGW ) would be more difficult, unless embedded in (D≤).

Acknowledgment. The author would like to gratefully thank Dr. Radu Ioan Boţ
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EXISTENCE AND DATA DEPENDENCE FOR MULTIVALUED
WEAKLY CONTRACTIVE OPERATORS

LILIANA GURAN

Abstract. The purpose of this paper is to study the data dependence

for the fixed point set of a multivalued weakly contractive operator with

respect to a w-distance in the sense of T. Suzuki and W. Takahashi. We

also give a fixed point result for a multivalued weakly ϕ-contraction on a

metric space endowed with a w-distance.

1. Introduction

Let (X, d) be a metric space. A singlevalued operator T from X into itself

is called r-contractive (see [2]) if there exists a real number r ∈ [0, 1) such that

d(T (x), T (y)) ≤ rd(x, y) for every x, y ∈ X. It is well know that if X is a complete

metric space then a contractive operator from x into itself has a unique fixed point

in X.

In 1996, the Japanese mathematicians O. Kada, T. Suzuki and W. Takahashi

introduced the concept of w-distance (see[2]) and discussed some properties of this

functional. Later on, T. Suzuki and W. Takahashi gave some fixed points results for

a new class of nonlinear operators, namely the so-called weakly contractive operators

(see[3]).

The purpose of this paper is to study the data dependence for the fixed point

set of a multivalued weakly contractive operator with respect to a w-distance in the

sense of T. Suzuki and W. Takahashi, see [3]. We also give a fixed point result for a
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multivalued weakly ϕ-contraction on a metric space endowed with a w-distance. For

connected results see [6], [4].

2. Preliminaries

Let (X, d) be a complete metric space. We will use the following notations

(see also [1], [5]).

P (X) - the set of all nonempty subsets of X ;

P(X) = P (X)
⋃
∅

Pcl(X) - the set of all nonempty closed subsets of X ;

Pb(X) - the set of all nonempty bounded subsets of X ;

Pb,cl(X) - the set of all nonempty bounded and closed subsets of X ;

We introduce now the following generalized functionals on a b-metric space

(X, d).

The gap functional:

(1) D : P(X)× P(X) → R+ ∪ {+∞}

D(A,B) =


inf{d(a, b)| a ∈ A, b ∈ B}, A 6= ∅ 6= B

0, A = ∅ = B

+∞, otherwise

In particular, if x0 ∈ X then D(x0, B) := D({x0}, B).

The excess generalized functional:

(2) ρ : P(X)× P(X) → R+ ∪ {+∞}

ρ(A,B) =


sup{D(a,B)| a ∈ A}, A 6= ∅ 6= B

0, A = ∅

+∞, B = ∅ 6= A

Pompeiu-Hausdorff generalized functional:

(3) H : P(X)× P(X) → R+ ∪ {+∞}
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H(A,B) =


max{ρ(A,B), ρ(B,A)}, A 6= ∅ 6= B

0, A = ∅ = B

+∞, othewise

Delta functional:

(4) δ : P(X)× P(X) → R+ ∪ {+∞}

δ(A,B) =


sup{d(a, b) : a ∈ A, b ∈ B}, A 6= ∅ 6= B

0, A = ∅ = B

+∞, othewise

In particular, δ(A) := δ(A,A) is the diameter of the set A.

It is known that (Pb,cl(X),H) is a complete metric space provided (X, d) is

a complete metric space.

We will denote by FixF := {x ∈ X | x ∈ F (x)}, the set of the fixed points

of F .

The concept of w-distance was introduced by O. Kada, T. Suzuki and W.

Takahashi (see[2]) as follows:

Let (X,d) be a metric space. Then, the functional w : X × X → [0,∞) is

called w-distance on X if the following axioms are satisfied :

1. w(x, z) ≤ w(x, y) + w(y, z), for any x, y, z ∈ X;

2. for any x ∈ X : w(x, ·) : X → [0,∞) is lower semicontinuous;

3. for any ε > 0, exists δ > 0 such that w(z, x) ≤ δ and w(z, y) ≤ δ implies

d(x, y) ≤ ε.

Let us give some examples of w-distance (see [2])

Example 2.1. Let (X, d) be a metric space . Then the metric ”d” is a w-distance

on X.

Example 2.2. Let X be a normed linear space with norm || · ||. Then the function

w : X×X → [0,∞) defined by w(x, y) = ||x||+ ||y|| for every x, y ∈ X is a w-distance.
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Example 2.3. Let (X,d) be a metric space and let g : X → X a continuous mapping.

Then the function w : X × Y → [0,∞) defined by:

w(x, y) = max{d(g(x), y), d(g(x), g(y))}

for every x, y ∈ X is a w-distance.

For the proof of the main results we need the following crucial result for

w-distance (see[3]).

Lemma 2.4.Let (X, d) be a metric space, and let w be a w-distance on X. Let (xn)

and (yn) be two sequences in X, let (αn), (βn) be sequences in [0,+∞[ converging to

zero and let x, y, z ∈ X. Then the following hold:

1. If w(xn, y) ≤ αn and w(xn, z) ≤ βn for any n ∈ N, then y = z.

2. If w(xn, yn) ≤ αn and w(xn, z) ≤ βn for any n ∈ N, then (yn) converges

to z.

3. If w(xn, xm) ≤ αn for any n, m ∈ N with m > n, then (xn) is a Cauchy

sequence.

4. If w(y, xn) ≤ αn for any n ∈ N, then (xn) is a Cauchy sequence.

3. Data dependence for w-contractive multivalued operators

In [3]. the definition of a weakly contractive multivalued operator is given,

as follows.

Definition 3.1. Let X be a metric space with metric d. A multivalued operator

T : X → P (X) is called weakly contractive or w-contractive if there exists a w-

distance w on X and r ∈ [0, 1) such that for any x1, x2 ∈ X and y1 ∈ T (x1) there is

y2 ∈ T (x2) with w(y1, y2) ≤ rw(x1, x2).

Then, in the same paper, T. Suzuki and W. Takahashi gave the following

fixed point result for a multivalued weakly contractive operator (see Theorem 1, [3]).

Theorem 3.2. Let X be a complete metric space and let T : X → P (X) be a w-

contractive multivalued operator such that for any x ∈ X, T (x) is a nonempty closed

subset of X. Then there exists x0 ∈ X such that x0 ∈ T (x0) and w(x0, x0) = 0.
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The main result of this section is the following data dependence theorem with

respect to the fixed point set of the above class of operators.

Theorem 3.3. Let (X, d) be a complete metric space, T1, T2 : X → Pcl(X) be two

w-contractive multivalued operators with ri ∈ [0, 1) with i = {1, 2}. Then the following

are true:

1. FixT1 6= ∅ 6= FixT2;

2. We suppose that there exists η > 0 such that for every u ∈ T1(x) there

exists v ∈ T2(x) such that w(u, v) ≤ η, (respectively for every v ∈ T2(x)

there exists u ∈ T1(x) such that w(v, u) ≤ η).

Then for every u∗ ∈ FixT1 there exists v∗ ∈ FixT2 such that

w(u∗, v∗) ≤ η
1−r , where r = ri for i = {1, 2};

(respectively for every v∗ ∈ FixT2 there exists u∗ ∈ FixT1 such that

w(v∗, u∗) ≤ η
1−r , where r = ri for i = {1, 2})

Proof. Let u0 ∈ FixT1, then u0 ∈ T1(u0). Using the hypothesis 2. we have that

there exists u1 ∈ T2(u0) such that w(u0, u1) ≤ η.

Since T1, T2 are weakly contractive with ri ∈ [0, 1) and i = {1, 2} we have

that for every u0, u1 ∈ X with u1 ∈ T2(u0) there exists u2 ∈ T2(u1) such that

w(u1, u2) ≤ rw(u0, u1)

For u1 ∈ X and u2 ∈ T2(u1) there exists u3 ∈ T2(u2) such that

w(u2, u3) ≤ rw(u1, u2) ≤ r2w(u0, u1)

By induction we obtain a sequence (un)n∈N ∈ X such that

(1) un+1 ∈ T2(un), for every n ∈ N;

(2) w(un, un+1) ≤ rnw(u0, u1)

For n, p ∈ N we have the inequality

w(un, un+p) ≤ w(un, un+1) + w(un+1, un+2) + · · ·+ w(un+p−1, un+p) ≤

< rnw(u0, u1) + rn+1w(u0, u1) + · · ·+ rn+p−1w(u0, u1) ≤

≤ rn

1−r w(u0, u1)
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By the Lemma 2.4.(3) we have that the sequence (un)n∈N is a Cauchy se-

quence. Since (X, d) is a complete metric space we have that there exists v∗ ∈ X such

that un
d→ v∗.

By the lower semicontinuity of w(x, ·) : X → [0,∞) we have

w(un, v∗) ≤ lim
p→∞

inf w(un, un+p) ≤
rn

1− r
w(u0, u1) (1)

For un−1, v
∗ ∈ X and un ∈ T2(un−1) there exists zn ∈ T2(v∗) such that,

using relation (1), we have

w(un, zn) ≤ rw(un−1, v
∗) ≤ rn−1

1− r
w(u0, u1) (2)

Applying Lemma 2.4.(2), from relations (1) and (2) we have that zn
d→ v∗.

Then, we know that zn ∈ T2(v∗) and zn
d→ v∗. In this case, by the closure

of T2 result that v∗ ∈ T2(v∗). Then, by w(un, v∗) ≤ rn

1−r w(u0, u1), with n ∈ N, for

n = 0 we obtain

w(u0, v
∗) ≤ 1

1− r
w(u0, u1) ≤

η

1− r

which completes the proof. �

4. Existence of fixed points for multivalued weakly ϕ-contractive operators

Let us define first, the notion of multivalued weakly ϕ-contractive operator.

Definition 4.1. Let (X, d) be a metric space and T : X → P (X) be a multivalued

operator. Then T is called weakly ϕ-contractive if there exists a w-distance on X and

a function ϕ : R+ → R+ such that for every x1, x2 and y1 ∈ T (x1) there is y2 ∈ T (x2)

with w(y1, y2) ≤ ϕ(w(x1, x2)).

The main result is the following result for weakly ϕ-contractive operators.

Theorem 4.2. Let (X, d) be a complete metric space, w : X×X → R+ a w-distance

on X, T : X → Pcl(X) be a multivalued operator and ϕ : R+ → R+ a function such

that are accomplish the following conditions:

1. T are weakly ϕ-contractive operator;
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2. The function ϕ is a monotone increasing function such that

σ(t) :=
∞∑

n=0

ϕn(t) < ∞, for every t ∈ R+ \ {0}.

Then there exists x∗ ∈ X such that x∗ ∈ T (x∗) and w(x∗, x∗) = 0.

Proof. First, we remark that condition (2) from hypothesis implies that ϕ(t) < t for

t < 0.

Fix x0 ∈ x; for x1 ∈ T (x0) there exists x2 ∈ T (x1) such that

w(x1, x2) ≤ ϕ(w(x0, x1)).

For x1 ∈ X and x2 ∈ T (x1) there exists x3 ∈ T (x2) such that

w(x2, x3) ≤ ϕ(w(x1, x2)) ≤ ϕ(ϕ(w(x0, x1))) = ϕ2(w(x0, x1)).

By induction we obtain a sequence (xn)n∈N ∈ X such that

(i) xn+1 ∈ T (xn), for n ∈ N;

(ii) w(xn, xn+1) ≤ ϕn(w(x0, x1)), for n ∈ N.

For n, p ∈ N we have

w(xn, xn+p) ≤ w(xn, xn+1) + w(xn+1, xn+2) + · · ·+ w(xn+p−1, xn+p) ≤

< ϕn(w(x0, x1)) + ϕn+1(w(x0, x1)) + · · ·+ ϕn+p−1(w(x0, x1)) ≤

≤
∞∑

n=k

ϕk(w(x0, x1)) ≤ σ(w(x0, x1)).

Letting n →∞ we have

lim
n→∞

w(xn, xn+p) ≤ lim
n→∞

σ(ϕn(w(x0, x1))) = 0.

By the Lemma 2.4.(3) we have that the sequence (xn)n∈N is a Cauchy se-

quence. Since (X, d) is a complete metric space then there exists x∗ ∈ X such that

lim
n→∞

xn = x∗.

For n, m ∈ N with m > n from the above inequality we have

w(xn, xm) ≤ σ(ϕn(w(x0, x1))).

Since (xm)m∈N converge to x∗ and w(xn, ·) is lower semicontinuous we have

w(xn, x∗) ≤ lim
m→∞

inf w(xn, xm) ≤ lim
m→∞

σ(ϕn(w(x0, x1))) ≤ σ(ϕn(w(x0, x1))).
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So, for every n ∈ N, w(xn, x∗) ≤ σ(ϕn(w(x0, x1)))

For x∗ ∈ X and xn ∈ T (xn−1) there exists un ∈ T (x∗) such that

w(xn, un) ≤ ϕ(w(xn−1, x
∗)) ≤ ϕ(σ(ϕn−1(w(x0, x1)))) < σ(ϕn−1(w(x0, x1)))

So, we know that:

w(xn, un) ≤ σ(ϕn−1(w(x0, x1)))

w(xn, x∗) ≤ σ(ϕn(w(x0, x1)))

Then, by the Lemma 2.4.(2), we obtain that un
d→ x∗. As un ∈ T (x∗) and

using the closure of T result that x∗ ∈ T (x∗).

For x∗ ∈ X and x∗ ∈ T (x∗), using the hypothesis (1), there exists z1 ∈ T (x∗)

such that

w(x∗, z1) ≤ ϕ(w(x∗, x∗)).

For x∗, z1 ∈ X and x∗ ∈ T (x∗) there exists z2 ∈ T (z1) such that

w(x∗, z2) ≤ ϕ(x∗, z1).

By induction we get a sequence (zn)n∈N ∈ X such that

(i) zn+1 ∈ T (zn), for every n ∈ N;

(ii) w(x∗, zn) ≤ ϕ(w(x∗, zn−1)), for every n ∈ N \ {0}.

Therefore we have

w(x∗, zn) ≤ ϕ(w(x∗, zn−1)) ≤ ϕ(ϕ(w(x∗, zn−2))) = ϕ2(w(x∗, zn−2)) ≤ · · · ≤

≤ ϕn(w(x∗, z1)) ≤ ϕn(w(x∗, x∗)).

Thus w(x∗, zn) ≤ ϕn(w(x∗, x∗)).

When n →∞, ϕn(w(x∗, x∗)) converge to 0. Thus, by the Lemma 2.4.(4) we

obtain that (zn)n∈N ∈ X is a Cauchy sequence in (X, d) and there exists z∗ ∈ X such

that zn
d→ z∗.

Since w(x∗, ·) is lower semicontinuous we have

0 ≤ w(x∗, z∗) ≤ lim
n→∞

inf w(x∗, zn) ≤ lim
n→∞

ϕn(w(x∗, x∗)) = 0.
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Then w(x∗, z∗) = 0.

So, by triangle inequality we have

w(xn, z∗) ≤ w(xn, x∗) + w(x∗, z∗) ≤ σ(ϕn(w(x0, x1))).

Since σ(ϕn(w(x0, x1))) converge to 0 when n →∞ we have

w(xn, z∗) ≤ σ(ϕn(w(x0, x1)))

w(xn, x∗) ≤ σ(ϕn(w(x0, x1)))

Using Lemma 2.4.(1) result that z∗ = x∗, then w(x∗, x∗) = 0. �
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A NOTE ON A GEOMETRIC CONSTRUCTION OF LARGE
CAYLEY GRAPHS OF GIVEN DEGREE AND DIAMETER

GYÖRGY KISS, ISTVÁN KOVÁCS, KLAVDIJA KUTNAR, JÁNOS RUFF, AND PRIMOŽ

ŠPARL

Abstract. An infinite series and some sporadic examples of large Cayley

graphs with given degree and diameter are constructed. The graphs arise

from arcs, caps and other objects of finite projective spaces.

A simple finite graph Γ is a (∆, D)-graph if it has maximum degree ∆, and

diameter at most D. The (∆, D)-problem (or degree/diameter problem) is to deter-

mine the largest possible number of vertices that Γ can have. Denoted this number

by n(∆, D), the well-known Moore bound states that n(∆, D) ≤ ∆(∆−1)D−2
∆−2 . This is

known to be attained only if either D = 1 and the graph is K∆+1, or D = 2 and

∆ = 1, 2, 3, 7 and perhaps 57. If in addition Γ is required to be vertex-transitive, then

the only known general lower bound is given as

n(∆, 2) ≥
⌊∆ + 2

2

⌋
·
⌈∆ + 2

2

⌉
. (1)

This is obtained by choosing Γ to be the Cayley graph Cay(Za × Zb, S), where a =

b∆+2
2 c, b = d∆+2

2 e, and S = { (x, 0), (0, y) | x ∈ Za\{0}, y ∈ Zb\{0} }. If ∆ = kD+m,

where k, m are integers and 0 ≤ m < D, then a straightforward generalization of this

construction results in a Cayley (∆, D)-graph of order⌊∆ + D

D

⌋D−m

·
⌈∆ + D

D

⌉m

. (2)
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Throughout this note we will refer these graphs as GCCG-graphs (General Construc-

tion from Cyclic Groups). For special values of the parameters, (1) and (2) have been

improved using various constructions. For more on the topic, we refer to [1, 8].

In this note we restrict our attention to the class of linear Cayley graphs. We

present some constructions where the resulting graphs improve the lower bounds (1)

and (2). For small number of vertices these are also compared to the known largest

vertex transitive graphs having the same degree and diameter.

Let V denote the n-dimensional vector space over the finite field Fq of q

elements, where q = pe for a prime p. For S ⊆ V such that 0 /∈ S, and S = −S :=

{−x | x ∈ S}, the Cayley graph Cay(V, S) is the graph having vertex-set V , and edges

{x, x + s}, x ∈ V , s ∈ S. To S we also refer as the connection set of the graph. A

Cayley graph Cay(V, S) is said to be linear, [6, pp. 243] if S = αS := {αx | x ∈ S}

for all nonzero scalars α ∈ Fq. In this case S ∪ {0} is a union of 1-dimensional

subspaces, and therefore, it can also be regarded as a point set in the projective space

PG(n−1, q). Conversely, any point set P in PG(n−1, q) gives rise to a linear Cayley

graph, namely the one having connection set {x ∈ V \ {0} | 〈x〉 ∈ P}. We denote

this graph by Γ(P). Given an arbitrary point set P in PG(n, q), 〈P〉 denotes the

projective subspace generated by the points in P, and
(P

k

)
(k ∈ N) is the set of all

subsets of P having cardinality k. The degree and diameter of linear Cayley graphs

are given in the next proposition.

Proposition 1. Let P be a set of k points in PG(n, q) with 〈P〉 = PG(n, q). Then

Γ(P) has qn+1 vertices, with degree k(q − 1), and with diameter

D = min
{

d | ∪X∈(Pd)〈X 〉 = PG(n, q)
}
. (3)

Proof. Let Γ = Γ(P). It is immediate from its definition that Γ has qn+1 vertices

and that its degree is equal to k(q − 1). Now let V denote the (n + 1)-dimensional

vector space over Fq. Being a Cayley graph, Γ is automatically vertex-transitive, and

so its diameter is the maximal distance δΓ(0, x) where 0 ∈ V , and x runs over V . By

δΓ we denote the usual distance function of Γ.
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Let x ∈ V \ {0}, and let P = 〈x〉 be the corresponding point in PG(n, q). It

can be seen that δΓ(0, x) = k where k is the minimal number of independent points

P1, . . . , Pk ∈ P such that P ∈ 〈P1, . . . , Pk〉. Now, (3) shows that δΓ(0, x) ≤ D for

every x ∈ V , in particular, the diameter of Γ is at most D.

On the other hand, by (3), there exists a Q ∈ PG(n, q) for which Q /∈

〈P1, . . . , PD−1〉 for any P1, . . . , PD−1 ∈ P. Thus if y is an element of V with 〈y〉 = Q,

then δΓ(0, y) ≥ D. Therefore, the diameter of Γ cannot be less than D, which

completes the proof. �

Once the number of vertices and the diameter for Γ(P) are fixed to be qn+1

and D, respectively, our task becomes to search for the smallest possible point set P

for which

∪X∈(PD)〈X 〉 = PG(n, q).

A point set having this property is called a (D-1)-saturating set.

The constructions

If D = 2, then a 1-saturating set P is a set of points of PG(n, q) such that

the union of lines joining pairs of points of P covers the whole space. Assume that

n = 2. If P contains k points, then the graph has degree k(q − 1) and the number

of vertices is q3. Hence this is better than the general lower bound (1) if and only if

q3 > (k(q − 1) + 2)2/4, which is equivalent to

2
√

q +
2

√
q + 1

> k. (4)

There are two known general constructions for 1-saturating sets in the plane: complete

arcs and double blocking sets of Baer subplanes.

If q is a square, and Π√q is a Baer subplane of PG(2, q), of order
√

q, then each

point of PG(2, q)\Π√q is incident with exactly one line of Π√q. A double blocking set

of a plane meets each line of the plane in at least two points. Hence a double blocking

set of Π√q is a 1-saturating set of PG(2, q). The cardinality of a double blocking set

79
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of Π√q is at least 2(
√

q + 4
√

q + 1). This is greater than the bound given in (4), hence

we cannot construct good graphs from these sets.

A complete k-arc K is a set of k points such that no three of them are

collinear, and there is no (k + 1)-arc containing K. Thus K is a 1-saturating set,

because if a point P would not be covered by the secants of K, then K ∪ {P} would

be a (k + 1)-arc. The cardinality of the smallest complete arc in PG(2, q) is denoted

by t2(2, q). For the known values of t2(2, q) we refer to [3]. The general lower bounds

are t2(2, q) >
√

2q + 1 for arbitrary q and t2(2, q) >
√

3q + 1/2 for q = pi, i = 1, 2, 3.

But unfortunately the known complete arcs have bigger cardinality. The inequality

t2(2, q) < 2
√

q +
2

√
q + 1

is satisfied only for q = 8, 9, 11 and 13. Table 1 gives the corresponding values of

t2(2, q) and the parameters of the graphs arising from these arcs.

q t2(2, q) D ∆ number of
⌊

∆+2
2

⌋
·
⌈

∆+2
2

⌉
.

vertices of Γ

8 6 2 42 512 484

9 6 2 48 729 625

11 7 2 70 1331 1296

13 8 2 96 2197 2116

Table 1

Besides complete arcs and double blocking sets of Baer subplanes another

class of small 1-saturating sets in PG(2, p) was examined by computer. These point

sets are contained in 3 concurrent lines. For small prime orders p = 11, 13, 17, 19, using

a simple back-track algorithm we found 1-saturating sets of this type with cardinality

10, 11, 13 and 14, respectively. The corresponding graphs do not improve the bound

in (1).

Now let n > 2. Then a set of k points such that no three of them are collinear

is called k-cap. A k-cap is complete, if it is not contained in any (k + 1)-cap. Hence
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complete caps in PG(n, q) are 1-saturating sets. For the sizes of the known complete

caps we refer to [7]. There is one infinite series which gives better graphs than the

GCCG-graphs. Due to Davydov and Drozhzhina-Labinskaya [5], for n = 2m− 1 > 7

there is a complete (27 · 2m−4 − 1)-cap in PG(n, 2). This gives a graph of degree

27 · 2m−4 − 1 and of order 22m. It has much more vertices than the corresponding

GCCG-graph, because

22m = 1024 · 22m−10 > 729 · 22m−10 + 27 · 2m−5 =
⌊27 · 2m−4 + 1

2

⌋
·
⌈27 · 2m−4 + 1

2

⌉
.

Hence we proved the following theorem.

Theorem 1. Let ∆ = 27 · 2m−4 − 1 and m > 7. Then

n(∆, 2) ≥ 256
729

(∆ + 1)2.

There are sporadic examples, too. For n = 3 and q = 2 there is a complete

5-cap in PG(3, 2). The corresponding graph has degree ∆ = 5 and the number of

vertices is n = 16. The best known graph of degree 5 and diameter 2 has 24 vertices,

and the best known Cayley graph has 18 vertices [2], so in this case there are bigger

graphs. For q = 3, 4 and 5 the smallest complete caps in PG(3, q) have 2(q+1) points.

The corresponding graphs have the same parameters as the GCCG-graphs.

For n = 4 and q = 2, 3, 4 there are complete caps in PG(4, q) with cardinalities

9, 11 and 20, respectively. For n = 5 and q = 2, 3 there are complete caps in PG(5, q)

with cardinalities 13 and 22. The corresponding graphs have more vertices than the

previously known examples. Table 2 gives the parameters of the graphs arising from

these caps.
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projective size of the D ∆ number of
⌊

∆+2
2

⌋
·
⌈

∆+2
2

⌉
.

space complete cap vertices of Γ

PG(4, 2) 9 2 9 32 30

PG(4, 3) 11 2 22 243 144

PG(4, 4) 20 2 60 1024 961

PG(5, 2) 13 2 13 64 56

PG(5, 3) 22 2 44 729 529

Table 2

In PG(3, q), q > 3, the smallest known 1-saturating set has 2q + 1 points [4].

Let π be a plane, Ω be an oval in π, P be a point of Ω, for q even let N ∈ π be the

nucleus of Ω, for q odd let N ∈ π be a point such that the line NP is the tangent to

Ω at P, and finally let ` be a line such that `∩π = {P}. Then it is easy to check that

(Ω ∪ ` ∪ {N}) \ {P} is a 1-saturating set in PG(3, q). The corresponding graph has

degree ∆ = 2q2 − q− 1, and the number of its vertices is q4 > (∆ +
√

∆/2 + 5/4)2/4.

Hence we proved the following theorem.

Theorem 2. Let q > 3 be a prime power and let ∆ = 2q2 − q − 1. Then

n(∆, 2) >
1
4

(
∆ +

√
∆
2

+
5
4

)2

.

Let `1 and `2 be two skew lines in PG(3, q). If P is any point not on `1 ∪ `2,

then the plane generated by P and `1 meets `2 in a unique point T2, and the line

PT2 meets `1 in a unique point T1. Hence the line T1T2 contains P, so the set of

points of `1∪ `2 is a 1-saturating set in PG(3, q). The corresponding graph has degree

∆ = 2(q2 − 1), and the number of its vertices is q4 =
(
(∆ + 2)/2

)2
. Hence this

construction gives graphs having the same parameters as the GCCG-graphs.

A straightforward generalization of the skew line construction is the following.

Let `1, `2, . . . , `m be a set of m lines whose union spans PG(2m− 1, q). Then the set

of points of ∪m
i=1`i is an (m − 1)-saturating set and the corresponding graph has

parameters D = m, ∆ = 2m(q2 − 1), and the number of its vertices is q2m. These

parameters are the same as the parameters of the GCCG-graphs.
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Another class of examples for (D−1)-saturating sets in PG(D, q) is the class

of complete arcs. These objects are generalizations of the planar arcs. A point set

K is a complete k-arc in PG(D, q) if no D points of K lie in a hyperplane, and there

is no (k + 1)-arc containing K. The corresponding graph has degree k(q − 1) and the

number of vertices is qD+1. Hence this is better than the known general lower bound

if and only if

qD+1 >

(
k(q − 1) + D

D

)D

, that is k <
D(q D

√
q − 1)

q − 1
. (5)

The typical examples for complete arcs are the normal rational curves, and almost

all of the known complete arcs are normal rational curves, or subsets of these curves.

There is only one known complete k-arc which satisfies (5). This is a normal rational

curve in PG(4, 3). The corresponding graph has degree ∆ = 15, diameter D = 3 and

the number of its vertices is 256.
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EXTRACTING FUZZY IF-THEN RULE BY USING THE

INFORMATION MATRIX TECHNIQUE WITH

QUASI-TRIANGULAR FUZZY NUMBERS

ZOLTÁN MAKÓ

Abstract. In the paper [7] C. Huang and C. Moraga suggested a new

method to extract fuzzy if-then rules from training data based on infor-

mation matrix technique with Gaussian membership function. In this pa-

per, we extend this method to the Archimedean t-normed space of quasi-

triangular fuzzy numbers.

1. Introduction

The core of a fuzzy controller is its set of fuzzy if-then rules. Today, fuzzy

control is increasingly seen as a universal approximator (H. B. Verbruggen and P. M.

Brujin, 1997) by the control community, and thus is strongly used for approximating

functions (D. Dubois and H. Prade, 1997).

A fuzzy system is a set of if-then fuzzy rules that maps inputs to outputs.

Each fuzzy rule defines a fuzzy patch in the input-output state space of the function.

A fuzzy patch is a fuzzy Cartesian product of if-part fuzzy set and then-part fuzzy set.

An additive fuzzy system approximates the function by covering its graph with fuzzy

patches (see Figure 1). C. Huang and C. Moraga in 2005 suggested a new method to

extract fuzzy if-then rules from training data based on information matrix technique

with Gaussian membership function. In this paper, we extend this method to the
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Archimedean t-normed space of quasi-triangular fuzzy numbers and we show that the

additive fuzzy system with quasi triangular fuzzy numbers is a function approximator.

2. The Archimedean fuzzy normed space of quasi-triangular fuzzy numbers

Triangular norms and co-norms were introduced by K. Menger (1942) and

studied first by B. Schweizer and A. Sklar (1961, 1963, 1983) to model distances in

probabilistic metric spaces. In fuzzy sets theory triangular norms and co-norms are

extensively used to model logical connection and and or. In fuzzy literatures, these

concepts were studied e. g. by E. Creţu (2001), J. Dombi (1982), D. Dubois and H.

Prade (1985), J. Fodor (1991, 1999), S. Jenei (1998, 1999, 2000, 2001, 2004), V. Radu

(1974, 1984, 1992 ).

Definition 2.1. The function N : [0, 1] → [0, 1] is a negation operation if:

(i) N (1) = 0 and N (0) = 1;

(ii) N is continuous and strictly decreasing;

(iii) N (N (x)) = x, for all x ∈ [0, 1] .

Definition 2.2. Let N be a negation operation. The mapping T : [0, 1]×[0, 1] → [0, 1]

is a triangular norm (briefly t-norm) if satisfies the properties:

Symmetry : T (x, y) = T (y, x) , ∀x, y ∈ [0, 1] ;

Associativity : T (T (x, y) , z) = T (x, T (y, z)) , ∀x, y, z ∈ [0, 1] ;

Monotonicity : T (x1, y1) ≤ T (x2, y2) ifx1 ≤ x2 and y1 ≤ y2;

One identity : T (x, 1) = x, ∀x ∈ [0, 1]

and the mapping S : [0, 1] × [0, 1] → [0, 1],

S (x, y) = N (T (N (x) , N (y)))

is a triangular co-norm (the dual of T given by N).

Definition 2.3. The t-norm T is Archimedean if T is continuous and T (x, x) < x,

for all x ∈ (0, 1).
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Definition 2.4. The t-norm T is called strict if T is strictly increasing in both

arguments.

Theorem 2.5 (C. H. Ling, 1965). Every Archimedean t-norm T is representable by

a continuous and decreasing function g : [0, 1] → [0, +∞] with g (1) = 0 and

T (x, y) = g[−1] (g (x) + g (y)) ,

where

g[−1] (x) =







g−1 (x) if 0 ≤ x < g (0) ,

0 if x ≥ g (0) .

If g1and g2 are the generator function of T , then there exist c > 0 such that g1 = cg2.

Remark 2.6. If the Archimedean t-norm T is strict, then g (0) = +∞ otherwise

g (0) = g0 < ∞.

Theorem 2.7 (E. Trillas, 1979). An application N : [0, 1] → [0, 1] is a negation if and

only if an increasing and continuous function e : [0, 1] → [0, 1] exists, with e (0) = 0,

e (1) = 1 such that N (x) = e−1 (1 − e (x)) , for all x ∈ [0, 1] .

Remark 2.8. The generator function of negation N (x) = 1−x is e (x) = x. Another

negation generator function is

eλ (x) =
ln (1 + λx)

ln (1 + λ)
,

where λ > −1, λ 6= 0.

Remark 2.9. Examples to t-norm are following:

• minim: min (x, y) = min {x, y} ;

• product: P (x, y) = xy, the generator function is g (x) = − lnx;

• weak: W (x, y) =







min {x, y} if max {x, y} = 1,

0 otherwise.

If the negation operation is N (x) = 1−x, then the dual of these t-norms are:

• maxim: max (x, y) = max {x, y} ;

• probability: SP (x, y) = x + y − xy;

• strong: SW (x, y) =







max {x, y} if min {x, y} = 0,

1 otherwise.
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Proposition 2.10. If T is a t-norm and S is the dual of T, then

W (x, y) ≤ T (x, y) ≤ min {x, y} ,

max {x, y} ≤ S (x, y) ≤ SW (x, y) ,

for all x, y ∈ [0, 1] .

The fuzzy set concept was introduced in mathematics by K. Menger in 1942

and reintroduced in the system theory by L. A. Zadeh in 1965. L. A. Zadeh has intro-

duced this notion to measure quantitatively the vagueness of the linguistic variable.

The basic idea was: if X is a set, then all A subsets of X can be identified with its char-

acteristic function χA : X → {0, 1}, χA (x) = 1 ⇔ x ∈ A and χA (x) = 0 ⇔ x /∈ A.

The notion of fuzzy set is another approach of the subset notion. There exist

continue and transitory situations in which we have to sugest that an element belongs

to a set at different levels. We indicate this fact with membership degree.

Definition 2.11. Let X be a set. A mapping µ : X → [0, 1] is called membership

function, and the set A = {(x, µ (x)) / x ∈ X} is called fuzzy set on X. The mem-

bership function of A is denoted by µA. The collection of all fuzzy sets on X we will

denote by F (X).

In order to use fuzzy sets and relations in any intelligent system we must

be able to perform set and arithmetic operations. In fuzzy theory the extension of

arithmetic operations to fuzzy sets was formulated by L.A. Zadeh in 1965.

The operations on F (X) are uniquely determined by T , N and the corre-

sponding operations of X by using the generalized t-norm based extension principle

(Z. Makó, 2006).

Definition 2.12. The triplet (F (X) , T, N) will be called fuzzy t-normed space.

By using t-norm based extension principle the Cartesian product of fuzzy sets

may be defined in the following way.
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Definition 2.13. The T -Cartesian product’s membership function of fuzzy sets Ai ∈
F (Xi) , i = 1, ..., n is defined as

µĀ (x1, x2, ..., xn) =

T
(

µA1 (x1) , T
(

µA2 (x2) , T
(

...T
(

µAn−1 (xn−1) , µAn
(xn)

)

...
)))

,

for all (x1, x2, ..., xn) ∈ X1 × X2 × ... × Xn.

The construction of membership function of fuzzy sets is an important prob-

lem in vagueness modeling. Theoretically, the shape of fuzzy sets must depend on the

applied triangular norm.

We noticed that, if the model constructed on the computer does not comply

the requests of the given problem, then we choose another norm. The membership

function must be defined in such a way that the change of the t-norm modifies the

shape of the fuzzy sets, but the calculus with them remains valid. This desideratum is

satisfied, for instance if the quasi-triangular fuzzy numbers introduced by M. Kovacs

in 1992 are used.

Let p ∈ [1, +∞] and g : [0, 1] → [0,∞] be a continuous, strictly decreasing

function with the boundary properties g (1) = 0 and lim
t→0

g (t) = g0 ≤ ∞. We define

the quasi-triangular fuzzy number in fuzzy t-normed space (F (R) , Tgp, N), where

Tgp (x, y) = g[−1]
(

(gp (x) + gp (y))
1
p

)

(1)

is an Archimedean t-norm generated by g and

N (x) =







1 − x if g0 = +∞,

g−1 (g0 − g (x)) if g0 ∈ R.
(2)

is a negation operation.
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Definition 2.14. The set of quasi-triangular fuzzy numbers is

Ng = {A ∈ F (R) / there is a ∈ R, d > 0 such that (3)

µA (x) = g[−1]

( |x − a|
d

)

for all x ∈ R

}

⋃

{A ∈ F (R) / there is a ∈ R such that

µA (x) = χ{a} (x) for all x ∈ R
}

,

where χA is characteristic function of the set A. The element of Ng will be called

quasi-triangular fuzzy number generated by g with center λ and spread d and we will

denote them with < λ, d > . The triplet (Ng, Tgp, N) is the Archimedean t-normed

space of quasi-triangular fuzzy numbers.

3. The information matrix

Let (xi, yi), i = 1, 2, . . . , n be observations of a given sample X . Let Aj ,

j = 1, 2, . . . p and Bk, k = 1, 2, . . . , q be fuzzy sets with membership functions µAj

and µBk
, respectively. Let U = {Aj | j = 1, 2, . . . p}; V = {Bk| k = 1, 2, . . . , q}. By

using the definition of Cartesian product (2.13) we get, that the membership value of

sample (xi, yi) in fuzzy set Aj × Bk is

rj,k(xi, yi) = T
(

µAj
(xi) , µBk

(yi)
)

.

This value is called information gain of (xi, yi) at Aj ×Bk with respect to the t-norm

T.

The R = (Rj,k)j=1,2,... p;k=1,2,...,q is called an information matrix of X on

U × V , where

Rj,k =

n
∑

i=1

rj,k(xi, yi).

4. Extracting fuzzy if–then rules

We extract fuzzy if–then rules according to the centre of the rows of an

information matrix. The method consists of the following steps:
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Step 1. We choose a number p ∈ [1, +∞] and a derivable generator function

g : [0, 1] → [0, +∞] of the Tgp norm with
1
∫

0

g (x) dx = ω ∈ R.

Step 2. We divide the illustrating space [a, b] × [m, M ] in p × q square with

grid points (uj , vk).

Step 3. Let Aj =< uj, hu > and Bk =< vk, hv > be quasi-triangular fuzzy

numbers with spread hu = 2 ∗ b−a
p−1 and hv = 2 ∗ M−m

q−1 , for all j = 0, 1, ..., p − 1,

k = 0, 1, ..., q − 1.

Step 4. We calculate the information gains:

r′j,k,i = Tgp

(

µAj
(xi) , µBk

(yi)
)

= g[−1]

(

[( |xi − uj|
hu

)p

+

( |yi − vk|
hv

)p]1/p
)

.

Step 5. We calculate the normalized information gains:

rj,k,i =
r′j,k,i

p
∑

j=1

q
∑

k=1

r′j,k,i

. (4)

Step 6. We calculate the normalized information matrix:

R =

















R1,1 R1,2 · · · R1,q

R2,1 R2,2 · · · R2,q

...
...

. . .
...

Rp,1 Rp,2 · · · Rp,q

















, (5)

where

Rj,k =
n
∑

i=1

rj,k,i. (6)

Step 7. We determine the centre of all rows in the normalized information

matrix R:

cj =

q
∑

k=1

Rj,k · vk

q
∑

k=1

Rj,k

. (7)

Step 8. Because each Bk is quasi-triangular fuzzy number, the then-part of

fuzzy if-then rules would have the same shape, hence the rule consequent is B̄j =<
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cj , hv > with membership function

µB̄j
(v) = g[−1]

( |v − cj |
hv

)

.

Therefore, we obtain following fuzzy if-then rules:

If x is < u1, hu > then y is < c1, hv >,

If x is < u2, hu > then y is < c2, hv >,
...

If x is < up, hu > then y is < cp, hv > .

An ”If x is < uj, hu > then y is < cj, hv >” rule is equivalent to the fuzzy

set Aj × B̄j with membership function

µAj×B̄j
(x, y) = Tgp

(

µAj
(x) , µB̄j

(y)
)

= g[−1]

(

[( |x − uj|
hu

)p

+

( |y − cj |
hv

)p]1/p
)

for all (x, y) ∈ R
2.

The graph of an Aj × B̄j fuzzy set is a fuzzy patch. The size of the patch reflects the

rule’s vagueness or uncertainty and cover the graph of the approximand function f

(See figure 1).

Step 9.The approximator function is

F (u) =

p
∑

j=1

cj · g[−1]
(

|u−uj |
hu

)

p
∑

j=1

g[−1]
(

|u−uj |
hv

)

.

Theorem 4.1. If f : [a, b] → R is continuous then F uniformly approximates the f

on [a, b] .

Proof . A standard additive system is a function system G : R
t → R

l with p fuzzy

rules ”If x is Aj then y is Bj” or the patch form Aj × Bj . The if-part fuzzy sets

Aj and the then-part fuzzy sets have membership function µAj
and µBj

. B. Kosko in
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1994 proof that the function

G (u) =

p
∑

j=1

wjµAj
(u)Sjcj

p
∑

j=1

wjµAj
(u)Sj

uniformly approximates the function f : X → R
l if X ⊂ R

t is compact and f

continuous, where wj is the rule weight, Sj is the volume (or area) of subgraph of Bj ,

and cj is the centroid of Bj .

Generally, the centroid of the quasi-triangular fuzzy number < λ, δ > is

c =

∫∞

−∞ yµ<λ,δ> (y) dy
∫∞

−∞ µ<λ,δ> (y) dy
= λ,

where

∫ ∞

−∞

yµ<λ,δ> (y) dy = 2λδω and area is S =

∫ ∞

−∞

µ<λ,δ> (y) dy = 2δω.

An additive fuzzy system with the same rule weight (w1 = w2 = ... = wp) and with

fuzzy sets Aj =< uj , hu >, B̄j =< cj , hv > is the following function approximator:

G (u) =

p
∑

j=1

wjg
[−1]

(

|u−uj |
hX

)

2hvωcj

p
∑

j=1

wjg[−1]
(

|u−uj |
hX

)

2hvω

=

p
∑

j=1

cjg
[−1]

(

|u−uj |
hX

)

p
∑

j=1

g[−1]
(

|u−uj |
hX

)

= F (u) .

Remark 4.2. 1. If we choose g : (0, 1] → [0,∞), g (t) =
√
− ln t and p = 2,

then the membership function of quasi-triangular fuzzy numbers < a, d >

is

µ (t) = e−
(t−a)2

d2 if d > 0, and µ (t) =







1 if t = a,

0 if t 6= a
if d = 0.
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and r′j,k,i = µAj
(xi) · µBk

(yi) . This is the information matrix technique

model with the normal diffusion function elaborated by C. Huang - C.

Moraga in 2005.

2. If we choose g : (0, 1] → [0,∞), g (t) = − ln t and p = 1, then the mem-

bership functions of quasi-triangular fuzzy numbers < a, d > is

µ (t) = e−
|t−a|

d if d > 0, and µ (t) =







1 if t = a,

0 if t 6= a
if d = 0.

and r′j,k,i = µAj
(xi) ·µBk

(yi) . This is the model with Laplace membership

function studied by S. Mitaim and B. Kosko in 2001.

Example 4.3. Let us use the information matrix technique to approach the following

nonlinear function:

f : [−6, 6] → R, f (x) = x sin x

by consider a sample with 121 values from [−6, 6]× [−6, 6] with uniform distribution

to be input values:

X = {(xi, yi) : xi = −6 + 0.1 ∗ i, yi = f (xi) , i = 0, 1, ..., 120} .

Step 1. Let g : [0, 1] → [0, 1], g (t) = 1 − t2 be the generator function and

p = 3 and

g[−1] (t) =







√
1 − t if t ∈ [0, 1] ,

0 else.

Step 2. We divide the illustrating space [−6, 6]× [−6, 6] in 50× 100 square with grid

points (uj , vk), where uj = −6+ j · hu

2 and vk = −6+ k · hv

2 , hu = 0.488, hv = 0.242,

j = 0, ..., 49, k = 0, ..., 99.

Step 3. In this case Aj =< uj, hu > and Bk =< vk, hv > with membership

functions

µAj
(t) =







√

1 − |t−uj |
hu

if t ∈ [uj − hu, uj + hu] ,

0 else,

µBk
(t) =







√

1 − |t−vk|
hv

if t ∈ [vk − hv, vk + hv] ,

0 else.
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Step 4. The information gains are:

r′j,k,i =















√

1 −
[

(

|xi−uj |
hu

)3

+
(

|yi−vk|
hv

)3
]1/3

if
(

|xi−uj |
hu

)3

+
(

|yi−vk|
hv

)3

≤ 1,

0 else.

We calculate the normalized information matrix by using the formulas (4), (5) and

(6).

Step 7. We calculate the centres of all rows in the normalized information

matrix by formula (7):

c = (−2.37,−2.90,−3.69,−4.33,−4.65,−4.64,−4.34,−3.83,−3.11,−2.28,

−1.42,−0.56, 0.19, 0.83, 0.30, 0.61, 0.74, 0.71, 0.55, 0.28,

0.97, 0.67, 0.38, 0.17, 0.06, 0.064, 0.17, 0.38, 0.67, 0.97,

1.28, 1.55, 1.71, 1.74, 1.61, 1.30, 0.83, 0.19,−0.56,−1.42,

−2.28,−3.11,−3.83,−4.34,−4.64,−4.65,−4.33,−3.69,−2.90,−2.37)
T

.

Step 8. The membership function of the then-part of fuzzy if-then rules are

µB̄j
(v) =







√

1 − |v−cj |
hv

if t ∈ [cj − hv, cj + hv] ,

0 else.

The membership function of Aj × B̄j fuzzy sets are

µAj×B̄j
(x, y) =















√

1 −
[

(

|x−uj |
hu

)3

+
(

|y−vk|
hv

)3
]1/3

if
(

|x−uj |
hu

)3

+
(

|y−vk|
hv

)3

≤ 1,

0 else.

for all (x, y) ∈ R
2. The graphs of these functions are patches on the figure 1.

Step 9. The approximator function of f is

F (x) =

p
∑

j=1

cj · g[−1]
(

|x−uj |
hu

)

p
∑

j=1

g[−1]
(

|x−uj |
hu

)

,
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Figure 1. The additive fuzzy system F approximates the function

f given in the example 4.3 by covering its graph with fuzzy patches.

On the figure the stars are the elemets of sample, the curve is the

graph of F and the pathces are the graph of fuzzy sets Aj × B̄j .

for all x ∈ [−6, 6] , where

g[−1]

( |x − uj |
hu

)

=







√

1 − |x−uj|
hu

if x ∈ [uj − hu, uj + hu] ,

0 else.
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MULTIPLE SOLUTIONS FOR A HOMOGENEOUS SEMILINEAR
ELLIPTIC PROBLEM IN DOUBLE WEIGHTED SOBOLEV SPACES

ILDIKÓ ILONA MEZEI AND TÜNDE KOVÁCS

Abstract. In this paper we obtain multiple solutions in double weighted

Sobolev spaces for an elliptic semilinear eigenvalue problem on unbounded

domain, with sublinear growth of the nonlinear term. In the proofs of the

main results we use variational methods and some recent theorems from

the theory of best approximation in Banach spaces, established by Ricceri

in [11] and Tsar’kov in [12].

1. Introduction

A link between the critical point theory and the theory of best approximation

was established recently by Ricceri in [11] and Tsar’kov in [12]. In the latter it is

proved that, given a continuously Gâteaux differentiable functional J defined over a

real Hilbert space X, for each real σ within the range of J and x0 ∈ J−1(] −∞, σ[)

either there exists λ > 0 such that the energy functional Eλ(x) = ||x−x0||2
2 − λJ(x)

admits at least three critical points, or the set J−1([σ,+∞[) has a unique point

minimizing the distance from x0. The alternative is then resolved. Supposing that

J admits non-convex superlevel set, and applying the results of [12], yields that the

energy functional Eλ has at least three critical points for suitable x0 ∈ X and λ > 0.

This abstract result has a natural application in the field of differential equations.
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The result of Ricceri was applied and extended by several authors: Kristály in

[4] study a Schrödinger equation in RN , Faracci and Iannizzotto in [2] study boundary

value problems involving the p-Laplacian on unbounded domain, Faracci, Iannizzotto,

Lisei, Varga in [3] give a multiplicity result in alternative form for a class of locally

Lipschitz functionals, defined on Banach spaces and applied to hemivariational in-

equalities on unbounded domain.

In this paper we consider a semilinear elliptic eigenvalue problem on un-

bounded domain and we apply a topological minimax result of Ricceri [10] to obtain

a similar theorem (in alternative form) with the result of Ricceri presented above.

Then, as a consequence of the obtained theorem, using the results of Tsar’kov [12],

we obtain three different solutions of the considered problem.

The main problem we are confronting, is the lack of compact embeddings of

Sobolev spaces. In general, if Ω is unbounded, W 1,p(Ω) (the space of all functions

u ∈ Lp(Ω), such that |∇u| ∈ Lp(Ω)) is not compactly embedded in any Lr(Ω). We will

overcome this difficulty by using the double weighted Sobolev space W 1,2(Ω; v0, v1)

with such weight functions v0, v1, w that W 1,2(Ω; v0, v1) can be embedded compactly

in Lp(Ω; w) (for p ∈ [2, 2∗[).

2. The problem and preliminaries

Let Ω ⊂ RN , (N ≥ 2) be an unbounded domain with smooth boundary ∂Ω.

For the positive measurable functions u and w, both defined in Ω, we define the

weighted p-norm (1 ≤ p < ∞) as

||u||p,Ω,w =
(∫

Ω

|u(x)|pw(x)dx

) 1
p

and denote by Lp(Ω;w) the space of all measurable functions u such that ||u||p,Ω,w is

finite. If p = +∞ we consider the Sobolev space

L∞(Ω) = {u : Ω → R | u is measurable, ∃C > 0 such that |u(x)| ≤ C a.e. in Ω}

endowed with the norm

||u||∞ = inf{C : |u(x)| ≤ C for a.e. x ∈ Ω}.
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The double weighted Sobolev space

W 1,p(Ω; v0, v1)

is defined as the space of all functions u ∈ Lp(Ω; v0) such that all derivatives ∂u
∂xi

belong to Lp(Ω; v1). The corresponding norm is defined by

||u||p,Ω,v0,v1 =
(∫

Ω

|∇u(x)|pv1(x) + |u(x)|pv0(x)dx

) 1
p

.

We are choosing our weight functions from the so-called Muckenhoupt class

Ap, which is defined as the set of all positive functions v in RN satisfying

1
|Q|

(∫
Ω

v dx

) 1
p

(∫
Ω

v−
1

p−1 dx

) p−1
p

≤ C̄, if 1 < p < ∞

1
|Q|

∫
Ω

v dx ≤ C̄ ess inf
x∈Q

v(x), if p = 1,

for all cubes Q ∈ RN and some C̄ > 0.

In this paper we always assume that the weight functions v0, v1, w are defined

on Ω, belong to Ap and are chosen such that the following condition holds:

(E) for p ∈ [2, 2∗[ the embedding W 1,2(Ω; v0, v1) ↪→ Lp(Ω; w) is compact.

Such weight functions there exist, see for example [7], [8].

The best embedding constant is denoted by Cp,Ω, i.e. we have the inequality

||u||p,Ω,w ≤ Cp,Ω||u||v0,v1 , for all u ∈ W 1,2(Ω; v0, v1) (1)

where we used the abbreviation ||u||v0,v1 = ||u||2,Ω,v0,v1 .

We define on W 1,2(Ω; v0, v1) a continuous bilinear form associated with the operator

A(u) = −∆u + b(x)u as

〈u, v〉A =
∫

Ω

(∇u∇v + b(x)uv)dx (2)

and the corresponding norm with

||u||2A = 〈u, u〉A =
∫

Ω

(|∇u(x)|2 + b(x)|u(x)|2)dx. (3)

Now, we define the Banach space

XA = {u ∈ W 1,2(Ω; v0, v1) : ||u||A < ∞}, (4)
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endowed with the norm || · ||A.

We consider the following problem

For a given u0 ∈ XA and λ > 0 find u ∈ XA such that

(Pλ)


−∆(u− u0) + b(x)(u− u0) = λα(x)f(u) in Ω

u = 0 on ∂Ω,

where f : R → R is a continuous function, α : Ω → R and b : Ω → R are a positive

and measurable functions.

By the weak solution to this problem we mean a function u ∈ XA, such that

for every v ∈ XA we have

〈u− u0, v〉A − λ

∫
Ω

α(x)f(u(x))v(x)dx = 0.

We will study the problem (Pλ) assuming that f is sublinear at the origin,

that is

(f) f(0) = 0 and there is a positive measurable function f0 : Ω → R satisfying

f0 ∈ L
p

p−1 (Ω, w
1

1−p ), f0(x) ≤ Cfw(x) for a.e. x ∈ Ω, where Cf is a positive

constant and there exists q ∈]0, 1[ such that

|f(s)| ≤ f0(x)|s|q, for every s ∈ R and every x ∈ Ω;

Furthermore we consider the following assumptions:

(K) ellipticity condition: there is a positive constant K, such that

||u||2A ≥ 2K||u||2v0,v1
, for every u ∈ W 1,2(Ω; v0, v1);

(α) α ∈ L1(Ω, w) ∩ L∞(Ω).

In the sequel we prove several lemmas needed later.

Lemma 2.1. L1(Ω;w) ∩ L∞(Ω) ⊆ Lr(Ω;w), for every r ≥ 1.
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Proof. Let u ∈ L1(Ω; w) ∩ L∞(Ω). Then, for every r ≥ 1 we have

||u||r,Ω,w =
(∫

Ω

|u(x)|rw(x)dx

) 1
r

=
(∫

Ω

|u(x)|r−1|u(x)|w(x)dx

) 1
r

≤

≤
(∫

Ω

||u||r−1
∞ |u(x)|w(x)dx

) 1
r

= ||u||
r−1

r∞ ||u||
1
r
1,w,

which means that ||u||r,Ω,w is finite, so u ∈ Lr(Ω;w). �

Notation. Let ν =
p

p− (q + 1)
and we denote by ν′ = p

q+1 its conjugate, that is
1
ν + 1

ν′ = 1. Using the Lemma 2.1 we have that

L1(Ω; w) ∩ L∞(Ω) ⊆ Lν(Ω;w),

so α ∈ Lν(Ω;w).

We define the funtional J : XA → R by

J(u) =
∫

Ω

α(x)F (u(x))dx,

where F (t) =
∫ t

0
f(s)ds.

The next lemma summarize the properties of the functional J .

Lemma 2.2. Let conditions (f), (K), (α) be satisfied.Then, the functional J is well

defined and it is sequentially weakly continuous.

Proof. From the assumption (f) we have

|F (u(x))| ≤
∫ u(x)

0

|f(s)|ds ≤ f0(x)
∫ u(x)

0

|s|qds ≤ f0(x)|u(x)|q+1. (5)

Then, using the conditions (f), (E) and the Hölder’s inequality, we get

|J(u)| =
∣∣∣∣∫

Ω

α(x)F (u(x))dx

∣∣∣∣ ≤ ∫
Ω

α(x)f0(x)|u(x)|q+1dx ≤

≤ Cf

∫
Ω

α(x)|u(x)|q+1w(x)dx ≤ Cf

∫
Ω

α(x)w(x)
1
ν |u(x)|q+1w(x)

1
ν′ dx ≤

≤ Cf

(∫
Ω

α(x)νw(x)dx

) 1
ν

(∫
Ω

|u(x)|ν
′(q+1)w(x)dx

) 1
ν′

=

= Cf ||α||ν,Ω,w

(∫
Ω

|u(x)|pw(x)dx

) q+1
p

= Cf ||α||ν,Ω,w||u||q+1
p,Ω,w ≤

≤ Cf ||α||ν,Ω,wCq+1
p,w ||u||q+1

v0,v1
≤ Cf ||α||ν,Ω,wCq+1

p,w (2K)−
q+1
2 ||u||q+1

A =
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= C||u||q+1
A ,

which means that the functional J is well defined over XA.

We prove now, that J is sequentially weakly continuous. Let {un} be a

sequence in XA, weakly convergent to some u ∈ XA. Then, by the embedding (E),

it follows that ||un − u||p,Ω,w → 0.

We use the following result: for all s ∈ (0,∞) there is a constant Cs > 0 such

that

(x + y)s ≤ Cs(xs + ys), for any x, y ∈ (0,∞). (6)

Applying the (6), the Hölder inequalities and the Mean Value Theorem, we

obtain

|J(un)− J(u)| =
∣∣∣∣∫

Ω

α(x)F (un(x))dx−
∫

Ω

α(x)F (u(x))dx

∣∣∣∣ ≤
≤

∫
Ω

α(x)|F (un(x))− F (u(x))|dx =

=
∫

Ω

α(x)|f((1− θ)un(x) + θu(x))||un(x)− u(x)|dx ≤

≤
∫

Ω

α(x)f0(x) |(1− θ)un(x) + θu(x)|q |un(x)− u(x)|dx ≤

≤
∫

Ω

α(x)f0(x) ((1− θ)|un(x)|q + θ|u(x)|q) |un(x)− u(x)|dx ≤

≤ Cf

∫
Ω

α(x)w(x)
1
ν (|un(x)|q + |u(x)|q) |un(x)− u(x)|w(x)

1
ν′ dx ≤

≤ Cf ||α||ν,Ω,w

(∫
Ω

(|un(x)|q + |u(x)|q)ν′ |un(x)− u(x)|ν
′
w(x)dx

) 1
ν′

=

= Cf ||α||ν,Ω,wC1·

·
[∫

Ω

(
|un(x)|

pq
q+1 + |u(x)|

pq
q+1

)
w(x)

q
q+1 (|un(x)− u(x)|p)

1
q+1 w(x)

1
q+1 dx

] 1
ν′

≤

≤ Cf ||α||ν,Ω,wC1

[(∫
Ω

|un(x)|pw(x)dx

) q
q+1

+
(∫

Ω

|u(x)|pw(x)dx

) q
q+1

] 1
ν′

·

·
(∫

Ω

|un(x)− u(x)|pw(x)dx

) 1
q+1 ·

1
ν′

=

= Cf ||α||ν,Ω,wC1

(
||un||

pq
q+1
p,Ω,w + ||u||

pq
q+1
p,Ω,w

) q+1
p

||un − u||p,Ω,w ≤

≤ Cf ||α||ν,Ω,wC1C2

(
||un||qp,Ω,w + ||u||qp,Ω,w

)
||un − u||p,Ω,w ≤
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≤ Cf ||α||ν,Ω,wC1C2C
q
p,w

(
||un||qv0,v1

+ ||u||qv0,v1

)
||un − u||p,Ω,w,

≤ Cf ||α||ν,Ω,wC1C2C
q
p,w(2K)

−q
2 (||un||qA + ||u||qA) ||un − u||p,Ω,w,

where θ ∈]0, 1[ is the constant from the Mean Value Theorem, C1, C2 are the constants

from the inequality (6) and K is the constant from the ellipticity condition (K).

Since {un} is weakly convergent to u ∈ XA, we can assume without loss of

generality that there exist a constant M > 0 such that

||un||A ≤ M and ||un − u||A ≤ M, for all n ∈ N.

Then we have

|J(un)− J(u)| ≤ ||α||ν,Ω,wCfC1C2C
q
p,w(2K)

−q
2 2Mq · ||un − u||p,Ω,w,

concluding that J(un) → J(u), whenever n →∞. �

Now, for a given u0 ∈ XA and for λ > 0, we can define the energy functional

Eλ : XA → R related to the problem (Pλ) by

Eλ(u) =
1
2
||u− u0||2A − λJ(u).

We observe, that for every v ∈ XA, we have

〈E ′λ(u), v〉A = 〈u− u0, v〉A − λ

∫
Ω

α(x)f(u(x))v(x)dx. (7)

Hence the critical points of the energy functional Eλ are exactly the weak

solutions of the problem (Pλ). Therefore, instead of looking for solutions of the

problem (Pλ), we are seeking for the critical points of Eλ.

In the next lemmas we prove two properties of the energy functional, namely

that Eλ is coercive and it satisfies the Palais-Smale condition, for every λ > 0.

Lemma 2.3. Let the conditions (f), (K), (α) be satisfied. Then the functional Eλ is

coercive, for every λ > 0.
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ILDIKÓ ILONA MEZEI AND TÜNDE KOVÁCS

Proof. Using again the Hölder’s inequality combined with the conditions (f) and

(E), we obtain

Eλ(u) =
1
2
||u− u0||2A − λ

∫
Ω

α(x)F (u(x))v(x)dx ≥

≥ 1
2
||u− u0||2A − λ

∫
Ω

α(x)f0(x)|u(x)|q+1dx ≥

≥ 1
2
||u− u0||2A − λCf

∫
Ω

α(x)w(x)
1
ν |u(x)|q+1w(x)

1
ν′ dx ≥

≥ 1
2
||u− u0||2A − λCf

(∫
Ω

α(x)νw(x)dx

) 1
ν

(∫
Ω

|u(x)|(q+1)ν′w(x)dx

) 1
ν′

=

=
1
2
||u− u0||2A − λCf ||α||ν,Ω,w||u||q+1

p,Ω,w ≥

≥ 1
2
||u− u0||2A − λCfCq+1

p,w ||α||ν,Ω,w||u||q+1
v0,v1

≥

≥ 1
2
||u− u0||2A − λCfCq+1

p,w ||α||ν,Ω,w(2K)
−q−1

2 ||u||q+1
A .

Therefore Eλ(u) →∞, whenever ||u||A →∞, since q + 1 < 2. �

Lemma 2.4. Assume that (f), (K), (α) are satisfied. Then Eλ satisfies the Palais-

Smale condition for every λ > 0.

Proof. Let {un} ⊂ XA be an arbitrary Palais-Smale sequence for Eλ, i.e.

(a) {Eλ(un)} is bounded;

(b) E ′λ(un) → 0, as n →∞.

We will prove that {un} contains a strongly convergent subsequence in XA.

From the coercivity of Eλ, it follows that {un} is bounded, hence we can find a

subsequence, which we still denote by {un}, weakly convergent to a point u ∈ XA.

Then by the embedding condition (E), {un} tends strongly to u in Lp(Ω;w), so

||un − u||p,Ω,w → 0, as n →∞.

Since the sequence from (b) tends to 0, for n ∈ N big enough, we have∣∣∣∣〈E ′λ(un),
un

||un||A
〉A

∣∣∣∣ ≤ ε,

or equivalently

|〈E ′λ(un), un〉A| ≤ ε||un||A.
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Then, by (7) we get

〈un − u0, un〉A − λ

∫
Ω

α(x)f(un(x))un(x)dx ≤ ε||un||A.

Rearranging the inequality and taking the absolute value, we obtain

|〈un − u0, un〉A| ≤ ε||un||A + λ

∫
Ω

α(x)|f(un(x))un(x)|dx.

After simple computations this inequality gives us

||un − u||2A ≤ |〈un − u0, un − u〉A|+ |〈u0 − u, un − u〉A| ≤

≤ |〈un, un − u〉A|+ |〈u, un − u〉A|+ 2|〈u0, un − u〉A| ≤

≤ 4ε||un − u||A + λ

∫
Ω

α(x)|f(un(x))(un(x)− u(x))|dx+

+λ

∫
Ω

α(x)|f(u(x))(un(x)− u(x))|dx + λ

∫
Ω

α(x)|f(u0(x))(un(x)− u(x))|dx.

Now, we will estimate the integrals from the above inequality using the in-

equalities of Hölder, the ellipticity condition (K) and the embedding condition (E).

The first integral can be estimated as follows∫
Ω

α(x)|f(un(x))(un(x)− u(x))|dx ≤

≤ Cf

∫
Ω

α(x)w(x)
1
ν |un(x)|q|un(x)− u(x)|w(x)

1
ν′ dx ≤

≤ Cf ||α||ν,Ω,w

(∫
Ω

|un(x)|qν′ |un(x)− u(x)|ν
′
w(x)dx

) 1
ν′

=

= Cf ||α||ν,Ω,w

(∫
Ω

(|un(x)|pw(x))
q

q+1 (|un(x)− u(x)|pw(x))
1

q+1 dx

) 1
ν′

≤

≤ Cf ||α||ν,Ω,w

[(∫
Ω

|un(x)|pw(x)dx

) q
q+1

(∫
Ω

|un(x)− u(x)|pw(x)dx

) 1
q+1

] q+1
p

=

= Cf ||α||ν,Ω,w||un||qp,Ω,w||un − u||p,Ω,w ≤

≤ Cf ||α||ν,Ω,wCq
p,w||un||qv0,v1

||un − u||p,Ω,w ≤

≤ Cf ||α||ν,Ω,wCq
p,w(2K)

−q
2 Mq||un − u||p,Ω,w

where in the last inequality we used that {un} is bounded, hence there is a constant

M > 0 such that ||un||A < M , ||u||A < M .
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Proceeding in the same manner for the other two integrals, we obtain:∫
Ω

α(x)|f(u(x))(un(x)− u(x))|dx ≤ Cf ||α||ν,Ω,wCq
p,w(2K)

−q
2 Mq||un − u||p,Ω,w∫

Ω

α(x)|f(u0(x))(un(x)− u(x))|dx ≤ Cf ||α||ν,Ω,wCq
p,w(2K)

−q
2 ||u0||qA||un − u||p,Ω,w.

Then, we have

||un − u||2A ≤ 4ε||un − u||A +

+λCf ||α||ν,Ω,wCq
p,w(2K)

−q
2 (2Mq + ||u0||qA)||un − u||p,Ω,w.

Since ε > 0 was arbitrarily choosen, ||un − u||A is bounded, ||u0||p,Ω,w is

finite (u0 being given) and ||un − u||p,Ω,w tends to 0 as n → ∞, we conclude that

||un − u||A → 0, whenever n →∞. �

We conclude this section by recalling two results which will be used in proofs

of the next section. The first one is a topological minimax theorem due to B. Ricceri:

Theorem 2.1. [10, Theorem 1 and Remark 1] Let X be a topological space, Γ a real

interval, and f : X × Γ → R a function satisfying the following conditions:

(A1) for every x ∈ X, the function f(x, ·) is quasi-concave and continuous;

(A2) for every λ ∈ Γ, the function f(·, λ) is lower semicontinuous and each of

its local minima is a global minimum;

(A3) there exist ρ0 > supΓ infX f and λ0 ∈ Γ such that {x ∈ X : f(x, λ0) ≤ ρ0}

is compact.

Then,

sup
Γ

inf
X

f = inf
X

sup
Γ

f.

The next result of Tsar’kov is from the theory of best approximation in

Banach spaces.

Theorem 2.2. [12, Theorem 2] Let X be an uniformly convex Banach space, with

strictly convex topological dual, M a sequentially weakly closed, non-convex subset of

X. Then, for any convex, dense subset S of X, there exists x0 ∈ S such that the set

{y ∈ M : ||y − x0|| = d(x0,M)}

contains at least two distinct points.
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3. Main result

The main theorem of our paper is the following

Theorem 3.1. Let Ω ⊆ RN be an unbounded domain with smooth boundary ∂Ω or

Ω = RN (N ≥ 2). Suppose that W 1,2(Ω; v0, v1) satisfies the embedding property (E)

and XA is the space defined by (4). Let f : R → R be a continuous function satisfying

the condition (f) and let α : Ω → R be a strictly positive function satisfying (α).

Then for every σ ∈] inf
XA

J, sup
XA

J [ and every u0 ∈ J−1(] − ∞, σ[), one of the

following assertions is true:

(B1) there exists λ > 0 such that the problem (Pλ) has at least three solutions

in XA;

(B2) there exists v ∈ J−1(σ) such that for all u ∈ J−1([σ,∞[), u 6= v,

||u− u0||A > ||v − u0||A.

Proof. Fix λ and u0 as in the statement of the theorem and assume that (B1) does

not hold. We shall prove that (B2) is true.

Choosing Λ = [0,∞) and endowing XA with the weak topology, we define

the function g : XA × Λ → R by

g(u, λ) =
||u− u0||2A

2
+ λ(σ − J(u)).

We show that all the hypotheses of Theorem 2.1 are satisfied.

(A1): It is trivial.

(A2): Let λ > 0 be fixed. By Lemma 2.2, the functional g(·, λ) is sequentially

weakly continuous. Moreover, g(·, λ) is coercive. Indeed, using Lemma 2.3, we have

the following inequality for all u ∈ XA

g(u, λ) ≥ 1
2
||u− u0||2A − λCfCq+1

p,w (2K)
−q−1

2 ||α||ν,Ω,w||u||q+1
A + λσ.

Since q+1 < 2, the right-hand side of the above inequality goes to +∞ as ||u||A →∞.

Then, as a consequence of the Eberlain-Smulian theorem, g(·, λ) is weakly

continuous.

It remains to check that every local minima of g(·, λ) is a global minimum.

Arguing by contradiction, we suppose that g(·, λ) has a local minimum, which is
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not global minimum. Besides, g(·, λ) being coercive and satisfying the Palais-Smale

condition (which results from Lemma 2.4), it has a global minimum too. Then using

the Eberlain-Smulian theorem, it follows that it has two strong local minima. Hence,

by the Mountain-Pass theorem (see [9]) results that g(·, λ) (or equivalently the energy

functional Eλ) admits a third critical point. Therefore the problem (Pλ) should have

at least three solutions in XA, against our assumption, that (B1) does not hold. Thus,

the condition (A2) is fulfilled.

(A3): We observe that there exists some u1 ∈ XA such that J(u1) > σ, so

sup
λ∈Λ

inf
u∈XA

g(u, λ) ≤ sup
λ∈Λ

g(u1, λ) =
||u1 − u0||A

2
< ∞,

hence (A3) is satisfied.

Now, Theorem 2.1 assures that

sup
λ∈Λ

inf
u∈XA

g(u, λ) = inf
u∈XA

sup
λ∈Λ

g(u, λ) := α. (8)

We observe, that the function λ 7→ infu∈XA
g(u, λ) tends to −∞ as λ → ∞

(since σ < supu∈XA
J(u)) and it is upper semicontinuous in Λ. Hence, it attains its

supremum in some λ̄ ∈ Λ, that is,

α = inf
u∈XA

g(u, λ̄) = inf
u∈XA

(
||u− u0||2A

2
+ λ̄(σ − J(u))

)
. (9)

We will determine the infimum in the right-hand side of (8). Since for any

u ∈ J−1(]−∞, σ[) we have supλ∈Λ g(u, λ) = ∞, it follows that

α = inf
u∈J−1([σ,∞[)

||u− u0||2A
2

.

Then, since the functional u 7→ ||u−u0||2A
2 is coercive and sequentially weakly lower

semicontinuous while the set J−1([σ,∞[) is sequentially weakly closed, there exists

v ∈ J−1([σ,∞[) such that it attains its infimum in v, that is

α =
||v − u0||2A

2
.

We can observe that v is actually belonging to J−1(σ), so we can write

α = inf
u∈J−1(σ)

||u− u0||2A
2

> 0, (10)

where the inequality is motivated by the choice of u0 in the assertion of the theorem.
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Combining (9) and (10) yields that

inf
u∈XA

(
||u− u0||2A

2
+ λ̄(σ − J(u))

)
= inf

u∈J−1(σ)

||u− u0||2A
2

, (11)

which became after a rearrangment of the equation

inf
u∈XA

(
||u− u0||2A

2
− J(u)

)
= inf

u∈J−1(σ)

(
||u− u0||2A

2
− λ̄σ

)
. (12)

Now, we prove that λ̄ > 0. Arguing by contradiction, we suppose that λ̄ = 0.

Then by (9) we get, that α = 0, against (10).

Finally, we prove (B2), namely we prove that v defined above is the only

point of J−1([σ,+∞[) minimizing the distance from u0. We argue by contradiction.

Let w ∈ J−1([σ,+∞[) be such that ||w−u0||A = ||v−u0||A and w is different

from v. As above, we have that w ∈ J−1(σ), so w and v are global minima of the

functional Eλ over J−1(σ) for λ = λ̄. Hence, by (12) both w and v are global minima

for Eλ over the all space XA. Thus, applying the mountain pass theorem again (see

[9]), we obtain that Eλ has at least three critical points, against the assumption that

(B1) does not hold (recall λ̄ is positive). This concludes the proof. �

In the next corollary the alternative of Theorem 3.1 is resolved, so we obtain

a multiplicity result for the problem (Pλ).

Corollary 1. Let Ω, f, α, XA be as in the Theorem 3.1 and let S be a con-

vex, dense subset of XA. Moreover, let J−1([σ,+∞[) be not convex for some

σ ∈] infXA
J, supXA

J [.

Then there exist u0 ∈ J−1(] −∞, σ[) ∩ S and λ > 0 such that the problem

(Pλ) admits at least tree solutions.

Proof. From Lemma 2.2, it follows that J is sequentially weakly continuous, hence

the set M = J−1(]σ,+∞[) is sequentially weakly closed. Since M is not convex, we

can apply the Theorem 2.2, which assures the existence of some u0 ∈ S, such that

the set {y ∈ M : ||y − u0||A = d(u0,M)} contains at least two distinct points. So,

there exist two different points v1, v2 ∈ M such that

||v1 − u0||A = ||v2 − u0||A = d(u0,M).
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Clearly u0 /∈ M , so u0 ∈ J−1(]−∞, σ[). Then the condition (B2) in Theorem 3.1 is

false, so (B1) must be true, which means that there exist λ > 0 such that (Pλ) has

at least three solutions in XA. �
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ABOUT CANONICAL FORMS
OF THE NOMOGRAPHIC FUNCTIONS

MARIA MIHOC

Abstract. This paper carries on the study of the functions of four vari-

ables in order to find the canonical forms (analogous to those of three

variables) as well as nomograms in space with coplanar points on which

the functions can be nomographically represented. We also build the nomo-

grams in space for the canonical forms found out by Kazangapov respec-

tively Wojtowicz. The factors of anamorphosis are examined.

The data in many physical, chemical, biological, tehnical experiments pre-

sented in tables with several entrances can by analyzed by performed computers.

However the reading of the data and the subsequent results can be difficult. There-

fore the use some simple ,,drawings”, in order to analyses the relations between these

data renders efficient employment of nomograms.

In [5]and [6] we are concerned with the study of nomographic functions of four

variables F (z1, z2, z3, z4), F : D ⊂ R4 → R, D = D1×D2×D3×D4, Di : ai ≤ zi ≤ bi,

i = 1, 4.

In the first one we have in view a classification of these functions according

to their rank with respect to the variables they depend on. In the second one we

analyze the nomograms in space with coplanar points, on which the functions can be

nomographically represented. These functions of four variables are of rank two with

respect to each of their variables.
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The study of these functions and of their corresponding equations (i.e. of the

forms F (z1, z2, z3, z4) = 0) is further performed by looking for their canonical forms

(analogous to those with three variables). We also have in view the nomographic

representation of these canonical forms, both by the compound plane nomograms

and the nomograms in space with coplanar points. We provide a classification of

these functions according to the genus of nomogram on which the equation (and also

the corresponding function) can be nomographically represented.

This study is also extended to the case of the functions of several variables (of

five-eight variables).We also attempt a study of the canonical forms for the equations

with four variables, founded by N.Kazangapov [3] and J. Wojtowics [8]. We will study

the anamorphosis factors which permit the writing of the function of several variables

by a determinant Massau of fourth order. We shell also analyze the number of these

determinants and, consequently, the corresponding nomograms in space with coplanar

points.

Definition 1. [5] The function F ≡ F (z1, z2, z3, z4) is called nomographic in space

if:

a) the rank of the function F with respect to each of its variables is at least

two;

b) there exist the functions Xi(z1), Yi(z2), Zi(z3), Ti(z4), i = 1, 4 so that:

F (z1, z2, z3, z4) ≡

∣∣∣∣∣∣∣∣∣∣∣∣

X1(z1) X2(z1) X3(z1) X4(z1)

Y1(z2) Y2(z2) Y3(z2) Y4(z2)

Z1(z3) Z2(z3) Z3(z3) Z4(z3)

T1(z4) T2(z4) T3(z4) T4(z4)

∣∣∣∣∣∣∣∣∣∣∣∣
, (1)

(i.e. F may be written in the form of determinant Massau of fourth order).

The definition of the rank of a function of four variables [5] is further gener-

alized for the functions of eight variables in order to nomographically represent this

function (as well of the equation which is attached to it) by a nomogram in space

with coplanar points and with binary nets.
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Let us consider the function of eight variables F (z1, z2, z3, ..., z8) where F :

E ⊂ R8 → R, E = E1 × E2 × ...× E8, ai ≤ zi ≤ bi, i = 1, 8.

Definition 2. The function with eighth variables F = F (z1, z2, ..., z8) is of rank

n with respect to the variables z1 and z5 if there exist the real functions of two

variables, Ui(z1, z5), i = 1, n , as well as, the real functions of six variables

Vi(z2, z3, z4, z6, z7, z8), i = 1, n so as to have:

F (z1, z2, ..., z8) ≡
n∑

i=1

Ui(z1, z5)Vi(z2, z3, z4, z6, z7, z8), (2)

where n is the greatest possible natural number for which the relation (2) occurs.

In a similar way, we can define the rank of the function F (z1, z2, ..., z8) with

respect to any pair of two variables zi, zj ; i, j = 1, 8, i < j.

The nomographic function of eight variables can also be defined according to

Definition l.

Definition 3. The function of eight variables F (z1, z2, ..., z8) is called nomographic

in space if:

1) the rank of the function F with respect to each pair of two variables zi, zj ;

i, j = 1, 8, i < j, is at least two;

2) there exist the functions Xi(z1, z5), Yi(z2, z6), Zi(z3, z7), Ti(z4, z8), i = 1, 4,

so that:

F (z1, z2, ..., z8) ≡

∣∣∣∣∣∣∣∣∣∣∣∣

X1(z1, z5) X2(z1, z5) X3(z1, z5) X4(z1, z5)

Y1(z2, z6) Y2(z2, z6) Y3(z2, z6) Y4(z2, z6)

Z1(z3, z7) Z2(z3, z7) Z3(z3, z7) Z4(z3, z7)

T1(z4, z8) T2(z4, z8) T3(z4, z8) T4(z4, z8)

∣∣∣∣∣∣∣∣∣∣∣∣
. (3)

This definition calls for writing the function F as a determinant Massau of

fourth order. This determinant contains only the functions of two variables in each

of its lines.

In particular, if z5, z6, z7, z8 are real constants, we obtain from (3) the form

(1). It is obvious that, if the number of variables in the pairs zi, zj ; i, j = 1, 8, i < j
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from (2) is reduced by a unit we can obtain the rank of function under study with

respect only to one variable (the remaining variable). Considering that one, two

or three from variables z5, z6, z7, z8 become real constants we can also obtain other

particular cases of the determinant (3).

The equation of Soreau can be solved by a nomogram, thanks to geometrically

imposed conditions; i.e. the condition of coplanarity of four points in space.

Definition 4. By a nomogram associated to a nomographic function we understand

the equation’s nomogram which is obtained by the equalization of respective function

with zero.

According to this definition, the nomographic representation of the function

F (which has been brought to the form (3)) is equivalent to the nomographic repre-

sentation of the Soreau equation associated to this function.

The equation Soreau associated to the function (3)

∣∣∣∣∣∣∣∣∣∣∣∣

X1(z1, z5) X2(z1, z5) X3(z1, z5) X4(z1, z5)

Y1(z2, z6) Y2(z2, z6) Y3(z2, z6) Y4(z2, z6)

Z1(z3, z7) Z2(z3, z7) Z3(z3, z7) Z4(z3, z7)

T1(z4, z8) T2(z4, z8) T3(z4, z8) T4(z4, z8)

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (4)

represents (after elementary transformations) the condition that the four points, from

the space R3, are situated in the same plane. This is possible, since according to the

Definition 2, a nomographic function of eight variables has at least the rank two with

respect to any from the pairs of the variables zi, zj ; i, j = 1, 8, i < j.

From the relation (4) we obtain:

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X1(z1, z5)
X5(z1, z5)

X2(z1, z5)
X5(z1, z5)

X3(z1, z5)
X5(z1, z5)

1

Y1(z2, z6)
Y5(z2, z6)

Y2(z2, z6)
Y5(z2, z6)

Y3(z2, z6)
Y5(z2, z6)

1

Z1(z3, z7)
Z5(z3, z7)

Z2(z3, z7)
Z5(z3, z7)

Z3(z3, z7)
Z5(z3, z7)

1

T1(z4, z8)
T5(z4, z8)

T2(z4, z8)
T5(z4, z8)

T3(z4, z8)
T5(z4, z8)

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (5)

116



ABOUT CANONICAL FORMS OF THE NOMOGRAPHIC FUNCTIONS

where the functions X5(z1, z5), Y5(z2, z6), Z5(z3, z7), T5(z4, z8) are the linear combina-

tions of the functions Xi, Yi, Zi, Ti, i = 1, 4 and a, b, c, d ∈ R , i.e.:

X5(z1, z5) ≡ aX1(z1, z5) + bX2(z1, z5) + cX3(z1, z5) + dX4(z1, z5)

Y5(z2, z6) ≡ aY1(z2, z6) + bY2(z2, z6) + cY3(z2, z6) + dY4(z2, z6)

Z5(z3, z7) ≡ aZ1(z3, z7) + bZ2(z3, z7) + cZ3(z3, z7) + dZ4(z3, z7)

T5(z4, z8) ≡ aT1(z4, z8) + bT2(z4, z8) + cT3(z4, z8) + dT4(z4, z8).

According to Definition 3 each of the above linear combinations has at least

two terms. Subsequently those four coplanar points will have the Cartesian coordi-

nates equal to:

(Pi) : x =
A1(zi, zi+4)
A5(zi, zi+4)

; y =
A2(zi, zi+4)
A5(zi, zi+4)

; z =
A3(zi, zi+4)
A5(zi, zi+4)

(6)

for i = 1, 4; and Aj(zi, zi+4) for j = 1, 2, 3, 5 successively take the values Xj(z1, z5),

Yj(z2, z6), Zj(z3, z7), Tj(z4, z8).

The points Pi are situated on the binary nets (zi, zi+4) for i = 1, 4 (i.e. on a

net consisting of two families of marked curves in space; one of them depends on the

parameter zi; the other on the parameters zi+4 (see Fig.1)

Figure 1
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These families are obtained by the elimination, for all points Pi, i = 1, 4, of

the parameters zi+4, respectively zi,from the equation (6). This way we found the

equations of two pairs of cylindrical surfaces for each i = 1, 4 :

Si
1(x, y, zi) = 0, Si

2(x, z, zi) = 0, (7)

Si
3(x, y, zi+4) = 0, Si

4(x, z, zi+4) = 0. (8)

The cylindrical surfaces (7) and(8) provide families of marked distorted curves

in space with the parameter zi (respectively zi+4) from the binary net (zi, zi+4).

Thus, a function of eight variables F (z1, z2, ..., z8), which can be written

in the form (3), is nomographically represented (like the equation associated to it,

F (z1, z2, ..., z8) = 0) by a nomogram in space with coplanar points. This nomogram

contains four binary nets (i.e. both of them consisting of two families of distorted

marked curves in space R3 (see Fig. 1).

The usage (or the ,,key” to its usage) of the nomogram from Fig.1 is simple:

given the values of the first seven variables of the equation (4) we can find with the

help of the first six of them, the coordinates of the three points in space, P1, P2,P3,

situated in three binary nets of the nomogram . The plane determinate by these three

points, intersects the curves marked z7 in a point P4 from the binary net (z7, z8). The

mark of the curve from the family having parameter z8, which passes through last

point P4, will given the value of the eighth variable of the equation.

If we written the function of four variables F (z1, z2, z3, z4) in the form (1) (and

also the equation F (z1, z2, z3, z4) = 0) than it can be represented by a nomogram with

coplanar points. The scales of the variables zi, i = 1, 4 are situated on the distorted

curves Ci, i = 1, 4 in R3, [4]. The usage of this nomogram is almost the same as the

usage of the one above, if we replace the binary net with the marked scales.

If the number of variables of the nomographic function varies between five

and eight, we also obtain a nomographic representation by a nomogram in space with

coplanar points. The nomogram has four marked elements and it consists of the

combinations including both marked scales and binary marked nets.
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M. d’Ocagne and R. Soreau have found the canonical forms for the equation

with three variables. M.Warmus [7] asserted seven main case for the nomographic

functions of three variables. In [1] we studied the connection between the canonical

forms and the main cases of Warmus.

A.N.Kazangapov [3] analyzed the canonical forms for the equations of four

variables of four nomographic order

A0f1f2f3f4 + A1f2f3f4 + A2f1f3f4 + A3f1f2f4 + A4f1f2f3+

+B12f1f2 + B13f1f3 + B14f1f4 + B23f2f3 + B24f2f4 + B34f3f4+

+C1f1 + C2f2 + C3f3 + C4f4 + D = 0,

(9)

where fi = fi(zi), i = 1, 4 and its coefficients are real numbers.

He found three canonical equations:

f1f2f3f4 − 1 = 0 (10)

f1 + f2 + f3 + f4 = 0 (11)

f1f2f3 + f1f2f4 + f1f3f4 + f2f3f4 = f1 + f2 + f3 + f4. (12)

Consequently for the functions of four variables of the rank two with respect

to each variable we have the following canonical forms :

F (z1, z2, z3, z4) ≡ X1Y1Z1T1 −X2Y2Z2T2, (13)

F (z1, z2, z3, z4) ≡ X1Y2Z2T2 + X2Y1Z2T2 + X2Y2Z1T2 + X2Y2Z2T1, (14)

F (z1, z2, z3, z4) ≡ X1Y1Z1T2 + X1Y1Z2T1 + X1Y2Z1T1 + X2Y1Z1T1

− X1Y2Z2T2 −X2Y1Z2T2 −X2Y2Z1T2 −X2Y2Z2T1,
(15)

where Xi = Xi(z1), Yi = Yi(z2), Zi = Zi(z3), Ti = Ti(z4), i = 1, 2.

We will study the nomograms in space by which the canonical equations

(10)-(12) (as well as the functions (13)-(15)) are represented.

1. a) In [6] we analysed the six distinct projective nomograms that corre-

spond to the equation (10) (and to function (13)). These nomograms are of genus

zero (all its scales are rectilinear). We also built the nomograms in space, which is a
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compound nomogram of two plane nomograms with alignment points. One of them

is situated in the plane X0Y, and another in Y0Z.

Since the variables of (10) are separated (so the Goursat condition is satisfied)

for this equation we can build a plane compound nomogram from two nomograms

with alignment points [4].

b) We can increase the genus of a nomogram that corresponds to (10) with

two-four units if we multiply this equation with an anamorphosis factor. In this way,

if the factor is fi−fj , i, j = 1, 4, i < j, we can build a space nomogram with coplanar

points of genus two, whose scales of variables zi and zj are situated on a quadratic

curve (a conic) and the other two scales on the straight lines (see Fig. 2).

Figure 2

For example, if i = 1 and j = 2, we have:

(f1 − f2)(f1f2f3f4 − 1) = 0 (16)

or

f1

[
f2 +

1
f2f3f4

]
− 1

f3f4
− f2

1 = 0. (17)
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With the notations

x = f2 +
1

f2f3f4
, y =

1
f3f4

, z =
1
f4

, (18)

we obtain the disjunction equations
fix −y −f2

i = 0, i = 1, 2

f3y −z = 0

f4z −1 = 0,

(19)

and, after the elementary transformations, the equation Soreau∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1
f1

1
f2
1

0 1

1
f2

1
f2
2

0 1

0 −f3 1 1

0 0
−f4

1− f4
1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (20)

In the case of building the nomogram for a concrete equation the modulus of

the scales and the dimensions of nomogram must necessarily appear.

Remark 1. By a convenient permutation of the variables in the anamorphosis factor

we can build other two scales on the curvilinear support.

In this case the canonical form of the function of four variables is

F (z1, z2, z3, z4) ≡ X2
1Y1Y2Z1T1 + X1X2[Y 2

2 Z2T2 − Y 2
1 Z1T1]−X2

2Y1Y2Z2T2.

(21)

The function is of rank three with respect to variables z1 and z2, and respec-

tively of rank two with z3 and z4.

c) For obtain the nomogram in space with coplanar points of genus three

subsequently, we must multiply the equation (10) by the anamorphosis factor (f1 −

f2)(f1 − f3)(f2 − f3) and get

f3
1 − f2

1

[
f2 + f3 +

1
f2f3f4

]
+ f1

[
f2f3 +

1
f3f4

+
1

f2f4

]
− 1

f4
= 0 (22)

By notations

x = f2 + f3 +
z

f2f3
; y = f2f3 +

f2 + f3

f2f3
z; z =

1
f4

, (23)
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we find, from (22), the equation of disjunction of the variables

f3
1 − f2

1 x + f1y − z = 0. (24)

By removing the f3 and f2 from (23), we find other two equations of disjunc-

tion, which together with the last one from (23) and with (24) give:∣∣∣∣∣∣∣∣∣∣∣∣

f1 f2
1 f3

1 1

f2 f2
2 f3

2 1

f3 f2
3 f3

3 1

0 0
1
f4

1

∣∣∣∣∣∣∣∣∣∣∣∣
= 0, (25)

where we multiply by −1 the second and fourth columns, then interchange the first

and third columns, and finally divide each of its lines by the elements of the last

column.

In this way the equation (10) (respectively (22)) is nomographically repre-

sented by a nomogram in space with coplanar points of genus three. The scales of

the variables zi, i = 1, 3 are on the curve (curve distorted in space) of the equations:

Y = X2 and Z = X3; while for the variable z4 there exists a straight line support.

Remark 2. We can choose scales on the curved support for any three variables of

(10) by a convenient change of the anamorphosis factor.

Therefore another canonical form for the function of four variables is:

F (z1, z2, z3, z4) ≡ X1X
2
2 [Y 2

1 Y2(Z3
1T1 − Z3

2T2) + Z2
1Z2(Y 3

2 T2 − Y 3
1 T1)]−

−X2
1X2[Y1Y

2
2 (Z3

1T1 − Z3
2T2) + Z1Z

2
2 (Y 3

2 T2 − Y 3
1 T1)]+

+Y1Y2Z1Z2(Y2Z1 − Y1Z2)(X3
1T1 −X3

2T2)

(26)

This function is of rank four with respect to variables zi, i = 1, 3 and of rank

two with respect to z4.

d) The nomogram in space with coplanar points of genus four for the equation

(10) is obtained by multiplying it by the factor (f1−f2)(f1−f3)(f1−f4)(f2−f3)(f2−

f4)(f3 − f4).
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We obtain

f4
1 + 1−

[
f2 + f3 + f4 +

1
f2f3f4

]
f3
1 + [f2f3 + f2f4 + f3f4+

+
1

f2f3
+

1
f2f4

+
1

f3f4

]
f2
1 −

[
1
f2

+
1
f3

+
1
f4

+ f2f3f4

]
f1 = 0.

(27)

With the substitutions

x =
1
f2

+
1
f3

+
1
f4

+ f2f3f4, z = f2 + f3 + f4 +
1

f2f3f4

y = f2f3 + f2f4 + f3f4 +
1

f2f3
+

1
f2f4

+
1

f3f4
,

(28)

we find the disjunction equations:

−fi x + f2
i y − f3

i z + f4
i + 1 = 0, i = 1, 4 (29)

and the equation Soreau ∣∣∣∣∣∣∣∣∣∣∣∣

f1 f2
1 f3

1 1 + f4
1

f2 f2
2 f3

2 1 + f4
2

f3 f2
3 f3

3 1 + f4
3

f4 f2
4 f3

4 1 + f4
4

∣∣∣∣∣∣∣∣∣∣∣∣
= 0. (30)

Therefore the equation (10) (respectively (27)) is nomographically repre-

sented by a nomogram in space with all its scales situated on a distorted curve in

space X4 + Y 4 −X2Y = 0 and Z(X4 + Y 4)−XY 3 = 0.

The corresponding nomographic function is of rank four with respect to all

its variables and have the canonical form

F (z1, z2, z3, z4) ≡

∣∣∣∣∣∣∣∣∣∣∣∣

X1X
3
2 X2

1X2
2 X3

1X2 X4
1 + X4

2

Y1Y
3
2 Y 2

1 Y 2
2 Y 3

1 Y2 Y 4
1 + Y 4

2

Z1Z
3
2 Z2

1Z2
2 Z3

1Z2 Z4
1 + Z4

2

T1T
3
2 T 2

1 T 2
2 T 3

1 T2 T 4
1 + T 4

2

∣∣∣∣∣∣∣∣∣∣∣∣
(31)

2. The equation (11) is obtain from (10) using the logarithmic function. The

function (14) will be nomographically represented by the same kind of nomograms in

space like as equation (10) (respectively the function (11)).

123



MARIA MIHOC

3. For the equation (12) brought to the form

(f1f2 + f1f3 + f2f3 − 1)f4 + f1f2f3 − f1 − f2 − f3 = 0 (32)

and with x = f1 + f2 + f3, y = f1f2 + f1f3 + f2f3, z = f1f2f3, we obtain the equation

Soreau ∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f2
1 f1

1
f1

1

f2
2 f2

1
f2

1

f2
3 f3

1
f3

1

−1
1
f4

− 1
f4

1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (33)

and the nomogram in space with three scales which lie on the distorted curve and one

scale on the straight line support.

The corresponding nomographic function is of rank four with respect to the

variable zi, i = 1, 3 and two with respect to z4. Its canonical form can be obtained

from (33)

4. J. Wojtovicz [8] found another canonical form

fi + fj = fkfm, i, j, k, m = 1, 4, i 6= j 6= k 6= m. (34)

With notation fi = x; fj = y; fk = z, we obtain the equation Soreau∣∣∣∣∣∣∣∣∣∣∣∣

0 0 fi 1

1 0 fj 1

0 1 fk 1
1

2− fm

fm

fm − 2
0 1

∣∣∣∣∣∣∣∣∣∣∣∣
= 0 (35)

and also the corresponding nomogram in space of genus zero (in fact the scale of

the variable zm has as support a degenerate quadratic curve: two straight lines of

equations X = 0 and 2X + Y − 1 = 0; only the last one of these being considerate as

a support).

The canonical forms is of rank two with respect to all its variables

F (zi, zj , zk, zm) ≡ X1Y2Z2T2 −X2(Y2Z1T1 − Y1Z2T2). (36)
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We can obtain other canonical forms for the equations (respectively functions)

of several variables by generalization those of four variables i.e.

F12(z1, z5)F26(z2, z6)F37(z3, z7)F48(z4, z8)− 1 = 0, (37)

F (z1, z2, ..., z8) ≡ X1(z1, z5)Y1(z2, z6)Z1(z3, z7)T1(z4, z8)−

−X2(z1, z5)Y2(z2, z6)Z2(z3, z7)T2(z4, z8).
(38)

They are nomographically represented by a nomogram in space with coplanar

points. These points are situated in four binary marked nets.
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ON THE DIVERGENCE OF THE PRODUCT QUADRATURE
PROCEDURES

ALEXANDRU IOAN MITREA

Abstract. The main result of this paper emphasizes the phenomenon

of the double condensation of singularities with respect to the product-

quadrature procedures associated to the spaces C and L1; some estima-

tions concerning the error of these procedures are given, too.

1. Introduction

Let us consider the Banach space C of all continuous functions f : [−1, 1] →

R, endowed with the uniform norm ‖ · ‖. Denote by L1 the Banach space of all

measurable functions (classes of functions) g : [−1, 1] → R so that |g| is Lebesgue

integrable on [−1, 1], endowed with the norm:

‖g‖1 =
∫ 1

−1

|g(x)|dx, g ∈ L1.

Let M = {xk
n : n ≥ 1; 1 ≤ k ≤ n} be a triangular node matrix, with

−1 ≤ x1
n < x2

n < x3
n < · · · < xn

n ≤ 1, ∀ n ≥ 1. For each integer n ≥ 1, denote by

Λn : [−1, 1] → R the Lebesgue function associated to the n-th row of M, i.e.

Λn(x) = Λn(M;x) =
n∑

k=1

|lkn(x)|, |x| ≤ 1,
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where lkn = lkn(M; ·), 1 ≤ k ≤ n, are the fundamental polynomials of Lagrange

interpolation with respect to the nodes xk
n, 1 ≤ k ≤ n. The real numbers

λn = λn(M) = ‖Λn‖, n ≥ 1

are known as Lebesgue constants.

Starting from these data, let us consider the product-quadrature procedures

described by the formulas∫ 1

−1

g(x)f(x)dx =
∫ 1

−1

g(x)Ln(f ;x)dx + Rn(f ; g), f ∈ C, g ∈ L1, n ≥ 1 (1.1)

where

Ln(f ;x) = Ln(M, f ;x) =
n∑

k=1

f(xk
n)lkn(x), n ≥ 1 (1.2)

are the Lagrange interpolation polynomials associated to the node matrix M and to

the function f , while Rn(f ; g), n ≥ 1, will be refered to as the errors of the product-

quadrature procedures described by (1.1).

Denoting by

ak
n : L1 → R, ak

n(g) =
∫ 1

−1

g(x)lkn(x)dx, n ≥ 1, 1 ≤ k ≤ n (1.3)

Dn : C × L1 → R, Dn(f ; g) =
n∑

k=1

f(xk
n)ak

n(g), n ≥ 1 (1.4)

A : C × L1 → R, A(f ; g) =
∫ 1

−1

g(x)f(x)dx, (1.5)

the product quadrature formulas (1.1) become:

A(f ; g) = Dn(f ; g) + Rn(f ; g), f ∈ C, g ∈ L1, n ≥ 1. (1.6)

Remark that the product-quadrature procedures described by (1.1) or (1.6)

are of interpolatory type with respect to the space C, i.e.:

A(P, g) = Dn(P, g), n ≥ 1, P ∈ Pn−1, g ∈ L1 (1.7)

where Pm is the space of all polynomials of degree at most m ∈ N.

I.H. Sloan and W.E. Smith, [7], have established important results concerning

the convergence of the product-quadrature procedures (1.6), for some node matrices
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M whose n-th rows consist of the roots of the orthogonal polynomials associated

to a weight-function w(x) satisfying given integral inequalities, particularly for some

Jacobi matrices M(α,β), α > −1, β > −1. Moreover, these authors proved the

existence of a pair (f0, g0) ∈ C × L1 so that the sequence (Dn(f0; g0))n≥1 does not

converge to A(f0, g0) in (1.6).

The aim of this paper is to establish the topological structure of the sets of

unbounded divergence in C and L1, corresponding to the product-quadrature proce-

dures described by (1.6). On this subject, remark the results obtained by I. Muntean

and S. Cobzaş for g(x) = 1, [1], [2].

2. Estimations concerning the norm of the functionals and operators

involved in the product quadrature procedures

2.1. Firstly, let us consider the functionals ak
n given by (1.3). It is clear that

ak
n are linear functionals for each n ≥ 1 and k ∈ {1, 2, 3, . . . , n}. On the other hand,

the inequality

|ak
n(g)| ≤ ‖lkn‖ · ‖g‖1 (2.1)

proves the continuity of ak
n and leads to the inequality

‖ak
n‖ ≤ ‖lkn‖ (2.2)

Conversely, let u ∈ [−1, 1] and h > 0 be given real numbers so that u + h ∈

[−1, 1]. Defining the function g0 ∈ L1 with ‖g0‖1 = 1 by:

g0(x) =

 1/h; u ≤ x ≤ u + h

0, otherwise
(2.3)

we deduce:

‖ak
n‖ = sup{|ak

n(g)| : g ∈ L1, ‖g‖1 ≤ 1} ≥ |ak
n(g0)|

=

∣∣∣∣∣ 1h
∫ u+h

u

lkn(x)dx

∣∣∣∣∣ , ∀ h > 0, ∀ u ∈ [−1, 1] with u + h ∈ [−1, 1],

which implies:

‖ak
n‖ ≥ lim

h↘0

∣∣∣∣∣ 1h
∫ u+h

u

lxn(x)dx

∣∣∣∣∣ = |lkn(u)|, ∀ u ∈ [−1, 1],
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so:

‖ak
n‖ ≥ ‖lkn‖ (2.4)

The relations (2.2) and (2.4) give:

‖ak
n‖ = ‖lkn‖ (2.5)

2.2. Further, let C∗ be the Banach space of all linear and continuous func-

tionals defined on C. Let us introduce the operators Tn : L1 → C∗, g 7→ Tng, g ∈ L1,

n ≥ 1, where

(Tng)(f) =
n∑

k=1

ak
n(g)f(xk

n), f ∈ C (2.6)

The linearity of the operators Tn, n ≥ 1, follows from the corresponding

property of the functionals ak
n, 1 ≤ k ≤ n. For each given n ≥ 1, Tn is a continuous

operator, too; indeed, the inequality

|(Tng)(f)| ≤

(
n∑

k=1

|ak
n(g)|

)
‖f‖

is valid for all f ∈ C and it implies:

‖Tng‖ ≤
n∑

k=1

|ak
n(g)|, ∀ n ≥ 1, ∀ g ∈ L1 (2.7)

Now, the relations (2.7) and (2.5) give:

‖Tng‖ ≤

(
n∑

k=1

‖lkn‖

)
‖g‖1,

which proves the continuity of Tn, n ≥ 1.

Now, let us establish the equality:

‖Tng‖ =
n∑

k=1

|ak
n(g)|, n ≥ 1. (2.8)

It remains to prove the converse inequality of (2.7). To this end, let consider

for each n ≥ 1, the function fn ∈ C, ‖fn‖ = 1, defined by:

fn(x) =


sign ak

n(g), if x ∈ {xk
n : 1 ≤ k ≤ n}

1, if x ∈ {−1, 1} \ {xk
n : 1 ≤ k ≤ n}

linear, otherwise
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We obtain, in accordance with (2.6):

‖Tng‖ = sup{|(Tng)(f)| : f ∈ C, ‖f‖ ≤ 1} ≥ |(Tng)(fn)| =
n∑

k=1

|ak
n(g)|;

so, the equality (2.8) is true.

2.3. Finally, let us deduce the norm of the operator Tn, n ≥ 1. Taking into

account the relations (2.8) and (2.3), we have:

‖Tn‖ = sup

{
n∑

k=1

|ak
n(g)| : g ∈ L1, ‖g‖1 ≤ 1

}
≥

n∑
k=1

|ak
n(g0)|

=
n∑

k=1

∣∣∣∣∣ 1h
∫ u+h

u

lkn(x)dx

∣∣∣∣∣ , ∀ h > 0,

therefore:

‖Tn‖ ≥ lim
h↘0

n∑
k=1

∣∣∣∣∣ 1h
∫ u+h

u

lkn(x)dx

∣∣∣∣∣ =
n∑

k=1

|lkn(u)|, ∀ u ∈ [−1, 1]

which leads to the inequality

‖Tn‖ ≥ λn, ∀ n ≥ 1 (2.9)

Conversely, we obtain from (2.6) and (1.3), by using the classic equality

λn = sup{‖Ln(f ; ·)‖ : f ∈ C, ‖f‖ ≤ 1}, n ≥ 1, [6], [8], [3] :

‖Tng‖ = sup
{∣∣∣∣∫ 1

−1

g(x)Ln(f ;x)dx

∣∣∣∣ : f ∈ C, ‖f‖ ≤ 1
}

≤ ‖g‖1 · sup{‖Ln(f ; ·)‖ : f ∈ C, ‖f‖ ≤ 1} = λn‖g‖1,

which shows that the opposite inequality of (2.9) is also true; so, we have:

‖Tn‖ = λn, ∀ n ≥ 1. (2.10)

A lower bound of the Lebesgue constants λn, n ≥ 1, is given by Theorem of

Lozinski-Harsiladze, [6], [8], [3]:

λn ≥
2
π2

lnn, ∀ n ≥ 1. (2.11)
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3. Superdense unbounded divergence of the product quadrature

procedures

The main result of this paper is the following:

Theorem 3.1. Given a node matrix M in the interval [−1, 1], there exists a super-

dense set X0 in C so that for each f in X0 the set

Y0(f) = {g ∈ L1 : sup{|Dn(f ; g)| : n ≥ 1} = ∞}

is superdense in L1.

Proof. Firstly, we shall use the following principle of condensation of the singulari-

ties, deduced from [1, Theorem 5.4]:

If X is a Banach space, Y is a normed space and (An)n≥1 is a sequence of

continuous linear operators from X into Y so that the set of norms {‖An‖ : n ≥ 1}

is unbounded, then the set of singularities of the family {An : n ≥ 1}, i.e.

S(An) = {x ∈ X : sup{‖An(x)‖ : n ≥ 1} = ∞},

is superdense in X.

Take X = L1, Y = C∗ and An = Tn : L1 → C∗. The set {‖Tn‖ : n ≥ 1} is

unbounded, in accordance with (2.10) and (2.11); consequently, the set

S(Tn) = {g ∈ L1 : sup{‖Tng‖ : n ≥ 1} = ∞} (3.1)

is superdense in L1.

Next, let us apply the following principle of the double condensation of sin-

gularities [1], [2]:

Suppose that X is a Banach space, Y is a normed space and T is a nonvoid

separable complete metric space without isolated points.

Let {An : n ≥ 1} be a family of mappings of X × T into Y satisfying the

following conditions:

(i) For each t ∈ T and n ≥ 1, the operator At
n : X → Y , At

n(x) = An(x, t),

is linear and continuous.
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(ii) For each x ∈ X and n ≥ 1, the operator Ax
n : T → Y , Ax

n(t) = An(x, t),

is continuous.

(iii) There exists a dense set T0 in T so that

sup{‖At
n‖ : n ≥ 1} = ∞, ∀ t ∈ T0.

Then, there exists a superdense set X0 in X so that for each x ∈ X the set

Y0(x) = {t ∈ T : sup{‖An(x, t)‖ : n ≥ 1} = ∞}

is superdense in T .

Take X = (C, ‖ · ‖), T = (L1, ‖g‖1), Y = R and An = Dn : C × L1 → R,

n ≥ 1, see (1.4). Let us verify the validity of the previous hypotheses.

(i) We have:

Dg
n = Tng, g ∈ L1, n ≥ 1 (3.2)

The linearity of Dg
n follows from (2.6) and (1.3), while its continuity is a

consequence of (2.7).

(ii) Taking into account (2.1), we deduce

|Df
n| =

∣∣∣∣∣
n∑

k=1

ak
n(g)f(xk

n)

∣∣∣∣∣ ≤ ‖g‖1 · ‖f‖ ·
n∑

k=1

‖lkn‖,

which proves the continuity of the linear functional Df
n.

(iii) In accordance with (3.1) and (3.2) and taking T0 = S(Tn) we have:

sup{‖Dg
n‖ : n ≥ 1} = sup{‖Tng‖ : n ≥ 1} = ∞, ∀ g ∈ T0.

Now, let us apply the previous principle of the double condensation of singu-

larities, which completes the proof of this theorem.

Remark 3.2. A dual-type result with respect to the Theorem 3.1 is also true [3]:

Given a node matrix M in the interval [−1, 1], there exists a superdense set

X1 in L1 so that for each g ∈ X1 there exists a superdense set Y1(g) in C satisfying

the equality

lim sup
n→∞

|Dn(f ; g)| = ∞, for each g ∈ X1 and f ∈ Y1(g).
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4. Estimations for the error of the product-quadrature procedures

In accordance with (1.6) and (1.7), writing

|Rn(f ; g) = A(f − P ; g) + Dn(P − f ; g),

with an arbitrary P ∈ Pn−1, we deduce:

|Rn(f ; g)| ≤ |A(f − P ; g)|+ |Dn(f − P ; g)|. (4.1)

Let s ≥ 0 be an integer and denote by Cs the Banach space of all functions

f : [−1, 1] → R which are continuous together with their derivatives up to the order

s, endowed with the norm:

‖f‖(s) = ‖f (s)‖+
s−1∑
i=0

‖f (i)(0)|, if s ≥ 1

and ‖f‖(0) = ‖f‖.

It follows from the Theorem of Jackson [6], [8], [9], that there exist a polyno-

mial P ∈ Pn−1 and a positive number M which does not depend on n so that:

‖f (j) − P (j)‖ ≤ M

ns−j
ω

(
f (s);

1
n

)
, 0 ≤ j ≤ s, (4.2)

for sufficient large n ≥ 1, where ω(h; ·) is the modulus of continuity of a function

h ∈ C.

Now, we deduce for each i ∈ {0, 1, 2, 3, . . . , s}, see also [4]:

‖f − P‖(i) ≤
i∑

j=0

‖f (j) − P (j)‖ ≤ 2Mni−sω

(
f (s);

1
n

)
(4.3)

Taking Ag = A(·, g) : Cs → R, with a given g ∈ L1, we deduce from (4.1):

|Rn(f ; g)| ≤ ‖Ag‖ · ‖f − P‖(s) +

(
n∑

k=1

|ak
n(g)|

)
· ‖f − P‖ (4.4)

Next, combining (4.2), (4.3) and (4.4), we obtain:

|Rn(f, g)| ≤ M

(
2‖Ag‖+ n−s

n∑
k=1

|ak
n(g)|

)
ω

(
f (s);

1
n

)
(4.5)
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A simple exercise leads to the inequalities:

‖Ag‖ ≤ ‖g‖1,
n∑

k=1

|ak
n(g)| ≤ λn‖g‖1,

which, together with (4.5), give for each f ∈ Cs and g ∈ L1:

|Rn(f ; g)| ≤ M(2 + λn · n−s)‖g‖1 · ω
(

f (s);
1
n

)
. (4.6)

Denote by DL(C) the subset of C which consists of all functions f ∈ C

satisfying a Dini-Lipschitz condition

lim
δ↘0

ω(f ; δ) ln δ = 0.

We are in a position to prove the following statement.

Theorem 4.1. Suppose that M = MT is the Chebyshev node matrix, namely its

n-th row consists of the roots of the Chebyshev polynomial

Pn(x) = cos(n arccos x), n ≥ 1.

The product-quadrature procedures described by (1.6) are convergent for each

pair (f, g) ∈ DL(C)× L1 and for each pair (f, g) ∈ Cs × L1, if s ≥ 1.

Proof. If s = 0, we obtain from (4.6) and λn ∼ lnn, [5], [8], [3]:

|Rn(f ; g)| ≤ M(2 + lnn)‖g‖1 · ω
(

f ;
1
n

)
,

so

lim
n→∞

Rn(f ; g) = 0

for each f ∈ DL(C) and g ∈ L1. If s ≥ 1, remark that λnn−s ∼ n−s lnn and use

again (4.6).

References
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[2] Cobzaş, S. and Muntean, I., Superdense A.E. Unbounded Divergence of some Approxi-

mation Process of Analysis, Real Analysis Exchange, 25(1999/2000), 501-512.

[3] Mitrea, A.I., Convergence and Superdense Unbounded Divergence in Approximation

Theory, Transilvania Press (Cluj-Napoca), 1998.

135



ALEXANDRU IOAN MITREA

[4] Mitrea, A.I., On the convergence of a class of approximation procedures, PU.M.A., vol.

15, no.2-3(2005), 225-234.

[5] Natanson, G.I., Two-sided estimates for Lebesgue function of Lagrange interpolation pro-

cesses based on Jacobi nodes (Russian), Izv. Vyss. Ucebn. Zaved. Matematika, 11(1967),

67-74.

[6] Schönhage, A., Approximationstheorie, Berlin, Walter de Gruyter, 1971.

[7] Sloan, I.H., Smith W.E., Properties of interpolatory product integration rules, SIAM J.

Numer. Anal., 19(1982), 427-442.

[8] Szabados, J. and Vertesi, P., Interpolation of Functions, World Sci. Publ. Co., Singapore,

1990.
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LIV, Number 3, September 2009

CLOSEDNESS OF THE SOLUTION MAP FOR PARAMETRIC
VECTOR EQUILIBRIUM PROBLEMS

JÚLIA SALAMON

Abstract. The objective of this paper is to study the parametric vector

equilibrium problems governed by vector topologically pseudomonotone

maps. The main result gives sufficient conditions for closedness of the

solution map defined on the set of parameters.

1. Introduction

M. Bogdan and J. Kolumbán [5] gave sufficient conditions for closedness of

the solution map. They considered the parametric equilibrium problems governed

by topologically pseudomonotone maps depending on a parameter. In this paper we

generalize their result for parametric vector equilibrium problems.

Let (X, σ) be a Hausdorff topological space and let P (the set of parameters)

be another Hausdorff topological space. Let Z be a real topological vector space with

an ordering cone C, where C is a closed convex cone in Z with Int C 6= ∅ and C 6= Z.

We consider the following parametric vector equilibrium problem, in short

(V EP )p:

Find ap ∈ Dp such that

fp (ap, b) ∈ (− IntC)c
, ∀b ∈ Dp,

where Dp is a nonempty subset of X and fp : X ×X → Z is a given function.
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Denote by S (p) the set of the solutions for a fixed p. Suppose that S (p) 6= ∅,

for all p ∈ P . (For sufficient conditions for the existence of solutions see [6].)

The paper is organized as follows. In Section 2, we recall the notions of

the vector topological pseudomonotonicity and the Mosco convergence of the sets.

Section 3 is devoted to the closedness of the solution map for parametric vector

equilibrium problems. In the final section, we investigate the generalized Hadamard

well-posedness of parametric vector equilibrium problems.

2. Preliminaries

In this section, the notion of vector topologically pseudomonotone bifunctions

with values in Z is used. First the definition of the suprema and the infima of subsets

of Z are given. Following [1], for a subset A of Z the superior of A with respect to C

is defined by

SupA =
{
z ∈ Ā : A ∩ (z + IntC) = ∅

}
and the inferior of A with respect to C is defined by

Inf A =
{
z ∈ Ā : A ∩ (z − IntC) = ∅

}
.

Let (zi)i∈I be a net in Z. Let Ai = {zj : j ≥ i} for every i in the index set I.

The limit inferior of (zi) is given by

Liminf zi := Sup

(⋃
i∈I

Inf Ai

)
.

Similarly, the limit superior of (zi) is defined as

Limsup zi := Inf

(⋃
i∈I

SupAi

)
.

The next definition is a generalization of the vector topological pseudomono-

tonicity given by Chadli, Chiang and Huang in [6].

Definition 2.1. Let (X, σ) be a Hausdorff topological space, and let D be a nonempty

subset of X. A function f : D×D → Z is called vector topologically pseudomonotone

if for every b ∈ D, v ∈ IntC and for each net (ai)i∈I in D satisfying

ai
σ→ a ∈ D and Liminf f (ai, a) ∩ (− IntC) = ∅,
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there is i0 in the index set I such that

{f (aj , b) : j ≥ i} ⊂ f (a, b) + v − IntC

for all i ≥ i0.

Let us consider σ and τ two topologies on X. Suppose that τ is stronger than

σ on X.

For the parametric domains in (V EP )p we shall use the following type of

convergence, which is a slight generalization of Mosco’s convergence in [11].

Definition 2.2 ([5], Definition 2.2). Let Dp be subsets of X for all p ∈ P . The sets

Dp converge to Dp0 in the Mosco sense (Dp
M→ Dp0) as p → p0 if:

a) for every subnet (api)i∈I with api ∈ Dpi , pi → p0 and api

σ→ a imply

a ∈ Dp0 ;

b) for every a ∈ Dp0 , there exist ap ∈ Dp such that ap
τ→ a as p → p0.

3. Closedness of the solution map

This section is devoted to prove the closedness of the solution map for para-

metric vector equilibrium problems.

Theorem 3.1. Let X be a Hausdorff topological space with σ and τ two topologies,

where τ is stronger than σ. Let Dp be nonempty sets of X, and let p0 ∈ P be fixed.

Suppose that S (p) 6= ∅ for each p ∈ P and the following conditions hold:

i) Dp
M→ Dp0 ;

ii) For each net of elements (pi, api) ∈ GraphS, if pi → p0, api

σ→ a, bpi ∈

Dpi
, b ∈ Dp0 , and bpi

τ→ b there exists a subnet of (pi, api
)i∈I , denoted by

the same indexes, such that one of the following conditions applies

(C1)
(fpi

(api
, bpi

)− fp0 (api
, b))i∈I converge to an element

belonging to − IntC, when pi → p0

or

(C2)

(fpi
(api

, bpi
)− fp0 (api

, b))i∈I converge to an element

belonging to − ∂C, when pi → p0 and

(fpi (api , bpi)− fp0 (api , b))i∈I ∈ −C;
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iii) fp0 : X ×X → Z is vector topologically pseudomonotone.

Then the solution map p 7−→ S (p) is closed at p0, i.e. for each net of elements

(pi, api
) ∈ GraphS, pi → p0 and api

σ→ a imply (p0, a) ∈ GraphS.

Proof . Let (pi, api)i∈I be a net of elements (pi, api) ∈ GraphS i.e.

fpi
(api

, b) ∈ (− IntC)c
, ∀b ∈ Dpi

(1)

with pi → p0 and api

σ→ a. By the Mosco convergence of the sets Dp we get a ∈

Dp0 . Moreover there exists a net (bpi
)i∈I , bpi

∈ Dpi
such that bpi

τ→ a. From the

assumption ii) we obtain that there exists a subnet of (pi, api)i∈I , denoted by the

same indexes, such that

(fpi
(api

, bpi
)− fp0 (api

, a))i∈I converge to an element

belonging to − IntC, when pi → p0

(2)

or

(fpi
(api

, bpi
)− fp0 (api

, a))i∈I converge to an element

belonging to − ∂C, when pi → p0 and

(fpi
(api

, bpi
)− fp0 (api

, a))i∈I ∈ −C.

(3)

Since − IntC is an open cone, from (2) follows that there exists an index

j0 ∈ I such that

fpi
(api

, bpi
)− fp0 (api

, a) ∈ − IntC ⊂ −C, i ≥ j0. (4)

By replacing b with bpi
in (1) we get

fpi (api , bpi) ∈ (− IntC)c
. (5)

From (5), (3) and (4) we obtain that

fp0 (api
, a) ∈ (− IntC)c

, for i ≥ j0,

since (− IntC)c is closed, in both cases we have

Liminf fp0 (api
, a) ⊂ (− IntC)c for i ≥ j0.
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Now we can apply iii) and we obtain that for every b ∈ D and v ∈ IntC,

there exists j1 ∈ I such that

{fp0 (api , b) : i ≥ j} ⊂ fp0 (a, b) + v − IntC, ∀j ≥ j1. (6)

We have to prove that

fp0 (a, b) ∈ (− IntC)c
, ∀b ∈ Dp0 .

Assume the contrary, that there exists b ∈ Dp0 such that

fp0

(
a, b
)
∈ − IntC.

Let be fp0

(
a, b
)

= −v where v ∈ IntC. From (6) we obtain that there exists j1 ∈ I

such that {
fp0

(
api

, b
)

: i ≥ j
}
⊂ −v + v − IntC = − IntC, ∀j ≥ j1. (7)

Since b ∈ Dp0 from the Mosco convergence of the sets Dp, we have that there exists(
bpi

)
i∈I

⊂ Dpi
such that bpi

τ→ b. By using again ii), it follows that there exists a

subnet of (pi, api
)i∈I , denoted by the same indexes, such that

fpi

(
api

, bpi

)
− fp0

(
api

, b
)
∈ − IntC ⊂ −C, i ≥ j2, (8)

where we have used the same reasoning as before.

From (7) and (8) it follows

fpi

(
api , bpi

)
∈ − IntC, i ≥ sup {j1, j2} , (9)

but on other side (pi, api) ∈ GraphS, and

fpi

(
api , bpi

)
∈ (− IntC)c

which is a contradiction. Hence (p0, a) ∈ GraphS.

Remark 3.2. The assumption ii) of the Theorem 3.1 is weaker then the following

statement

ii′) For each net of elements (pi, api
) ∈ GraphS, if pi → p0, api

σ→ a,

bpi ∈ Dpi , b ∈ Dp0 ,and bpi

τ→ b then

Liminf (fpi (api , bpi)− fp0 (api , b)) ∩ (− IntC) 6= ∅.
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Indeed, first we prove that ii
′
) ⇒ ii).

For simplicity, we introduce the following notation

upi = fpi (api , bpi)− fp0 (api , b) .

From ii′) we obtain that for every i0 ∈ I we have

Liminf upi ∩ (− IntC) 6= ∅ where i ≥ i0.

Wherefrom it follows that there exists a point u from the limit points of net (upi)i∈I

such that for every neighborhood U of u we have

U ∩ [Liminf upi ∩ (− IntC)] 6= ∅. (10)

There are two cases to be distinguished:

Case 1. u ∈ Liminf upi ∩ (− IntC). Since u is a limit point of (upi) there

exists a subnet
(
upj

)
converging to u. So we have that u ∈ − IntC then the condition

(C1) in assumption ii) holds.

Case 2. u /∈ Liminf upi
∩ (− IntC). In this case we must have that u ∈ −∂C.

From (10) it follows that for every neighborhood U of u there exists an upi
∈ − IntC ⊂

−C such that upi
∈ U . This leads to the condition (C2) of the assumption ii).

These two assumptions are not equivalent, because there exist nets which

satisfy only the assumption ii). For example, let the net (upi)i∈I be defined by

upi = (2, 4 + 1/pi) for i ∈ I, where pi →∞ and the cone C is given by

C =
{
(a, b) ∈ R2 : b ≥ |2a|

}
.

This net has only one limit inferior point in the (2, 4) which is located on the boundary

of the C cone. Hence the assumption ii) holds, but the assumption ii′) fails.

Remark 3.3. The Theorem 3.1 does not imply the scalar case. The only exception

represents the following condition:

For each net of elements (pi, api) ∈ GraphS, if pi → p0, api

σ→ a, bpi ∈ Dpi ,

b ∈ Dp0 , and bpi

τ→ b there exists a subnet of (pi, api)i∈I , denoted by the same indexes,
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such that

(C3)
(fpi (api , bpi)− fp0 (api , b))i∈I converge to 0 and

(fpi (api , bpi)− fp0 (api , b))i∈I /∈ −C.

The following example confirms this statement.

Example 3.4. Let P = N ∪ {∞}, p0 = ∞ (∞ means +∞ from real analysis),

where we consider the topology induced by the metric given by d(m,n) = |1/m− 1/n|,

d(n,∞) = d(∞, n) = 1/n, for m,n ∈ N, and d(∞,∞) = 0. Let X = [0, 1]

where σ, τ are the natural topology, Z = R2, Dp = [0, 1], p ∈ P , the real vector

functions fp : [0, 1] × [0, 1] → R2. The ordering cone C is the third quadrant i.e.

C =
{
(a, b) ∈ R2 : a ≤ 0, b ≤ 0

}
.

Let fn(a, b) = (a− b− 1/n,−2a + 1), n ∈ N and

f∞(a, b) =

 (a− b,−a + 1) if a > 0

(b, 1) if a = 0
.

The f∞ is vector topologically pseudomonotone, and the condition (C3) holds.

We have (n, 1/n) ∈ GraphS for each n ∈ N, S (∞) = {1} so 0 /∈ S(∞). Hence S is

not closed at ∞.

M. Bogdan and J. Kolumbán [5] showed that the topological pseudomono-

tonicity and the assumption ii) are essential in scalar case.

If the (V EP )p is defined on constant domains, Dp = X for all p ∈ P , we can

omit the Mosco convergence. In this case condition ii) can be weakened to:

(C) For each net of elements (pi, api
) ∈ GraphS, if pi → p0, api

σ→ a, and

b ∈ X, there exists a subnet of (pi, api
)i∈I , denoted by the same indexes, such that

(fpi (api , b)− fp0 (api , b))i∈I converge to an element

belonging to − IntC, when pi → p0

or

(fpi
(api

, b)− fp0 (api
, b))i∈I converge to an element

belonging to − ∂C, when pi → p0 and

(fpi
(api

, b)− fp0 (api
, b))i∈I ∈ −C.
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Theorem 3.5. Let (X, σ) be a Hausdorff topological space and let p0 ∈ P be fixed.

Suppose that S(p) 6= ∅, for each p ∈ P , and

i) fp satisfies condition (C) at p0;

ii) fp0 : X ×X → Z is vector topologically pseudomonotone.

Then the solution map p 7−→ S(p) is closed at p0.

Proof . The proof is similar to the proof of the Theorem 3.1.

4. Hadamard well-posedness

Let us recall some classical definitions from set-valued analysis. Let X, Y

be topological spaces. The map T : X → 2Y is said to be upper semi-continuous

at u0 ∈ domT := {u ∈ X|T (u) 6= ∅} if for each neighborhood V of T (u0), there

exists a neighborhood U of u0 such that T (U) ⊂ V . The map T is considered to be

closed at u ∈ domT if for each net (ui)i∈I in domT , ui → u and each net (yi)i∈I ,

yi ∈ T (ui), with yi → y one has y ∈ T (u). The map T is said to be closed if its

graph GraphT = {(u, y) ∈ X × Y |y ∈ T (u)} is closed, namely if (ui, yi) ∈ GraphT ,

(ui, yi) → (u, y) then (u, y) ∈ GraphT .

Closedness and upper semi-continuity of a multifunction are closely related.

Proposition 4.1 ([3] Proposition 1.4.8, 1.4.9). i) If T : Y → 2X has closed

values and is upper semi-continuous then T is closed;

ii) If X is compact and T is closed at y ∈ Y then T is upper semi-continuous

at y ∈ Y .

Now we recall the notion of generalized Hadamard well-posedness.

Definition 4.2. The problem (V EP )p is said to be Hadamard well-posed (briefly H-

wp) at p0 ∈ P if S(p0) = {ap0} and for any ap ∈ S(p) one has ap
σ→ ap0 , as p → p0.

The problem (V EP )p is said to be generalized Hadamard well-posed (briefly gH-wp)

at p0 ∈ P if S(p0) 6= ∅ and for any ap ∈ S(p), if p → p0, (ap) must have a subsequence

σ−converging to an element of S(p0).

With the help of the next result we are able to establish the relationship

between upper semi-continuity and Hadamard well-posedness.
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Proposition 4.3 ([13] Theorem 2.2). Let X and Y be Hausdorff topological spaces

and T : Y → 2X be a set valued map. If T is upper semi-continuous at y ∈ Y and

T (y) is compact, then T is gH-wp at y. If more, T (y) = {x∗}, then T is H-wp at y.

In the following we prove that the solution map of (V EP )p has closed value

at p0.

Proposition 4.4. If Dp0 is closed with respect to the σ topology and fp0 : X×X → Z

is vector topologically pseudomonotone, then S (p0) is closed with respect to the σ

topology.

Proof . Let ai ∈ S (p0), with ai
σ→ a. Since Dp0 is closed with respect to the σ

topology, we have a ∈ Dp0 . From ai ∈ S (p0) it follows that

fp0 (ai, a) ∈ (− IntC)c
, ∀i ∈ I,

since (− IntC)c is closed, we get

Liminf fp0 (ai, a) ⊂ (− IntC)c
.

By using the vector topological pseudomonotonicity we obtain that for every b ∈ D

and v ∈ IntC there is j1 in the index set I such that

{fp0 (ai, b) : i ≥ j} ⊂ fp0 (a, b) + v − IntC, ∀j ≥ j1. (11)

We have to prove that a ∈ S (p0), i.e.

fp0 (a, b) ∈ (− IntC)c
, ∀b ∈ Dp0 .

Assume the contrary, that there exists b ∈ Dp0 such that

fp0

(
a, b
)
∈ − IntC.

Let fp0

(
a, b
)

= −v where v ∈ IntC. From (11) we obtain that{
fp0

(
ai, b

)
: i ≥ j

}
⊂ −v + v − IntC = − IntC, ∀j ≥ j1

which is a contradiction to ai ∈ S (p0). Thus a ∈ S (p0).

Now we can formulate the following result.
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Corollary 4.5. Let (X, σ) be a compact Hausdorff topological space and P be a

Hausdorff topological space. Let Dp be nonempty sets of X, and Dp0 be a closed

subset of X. Suppose that S (p) 6= ∅ for each p ∈ P and the following conditions hold:

i) Dp
M→ Dp0 ;

ii) For each net of elements (pi, api
) ∈ GraphS, if pi → p0, api

σ→ a, bpi
∈

Dpi
, b ∈ Dp0 , and bpi

τ→ b there exists a subnet of (pi, api
)i∈I , denoted by

the same indexes, such that

(fpi
(api

, bpi
)− fp0 (api

, b))i∈I converge to an element

belonging to − IntC, when pi → p0

or

(fpi
(api

, bpi
)− fp0 (api

, b))i∈I converge to an element

belonging to − ∂C, when pi → p0 and

(fpi
(api

, bpi
)− fp0 (api

, b))i∈I ∈ −C;

iii) fp0 : X ×X → Z is vector topologically pseudomonotone.

Then (V EP )p is generalized Hadamard well-posed at p0. Furthermore, if

S(p0) = {ap0} (a singleton), then (V EP )p is Hadamard well-posed at p0.

Proof . By Theorem 3.1 it follows that the solution map S is closed at p0. We may

use Proposition 4.1 ii) to state that S is upper semi-continuous at p0. The set S(p0) is

closed by Proposition 4.4, hence it is compact. The conclusion follows by Proposition

4.3.

We can obtain similar result in the case of constant domains.

Corollary 4.6. Let (X, σ) be a compact Hausdorff topological space. Let p0 ∈ P be

fixed and S(p) 6= ∅, for each p ∈ P . If the hypotheses of Theorem 3.5 are satisfied then

(V EP )p is generalized Hadamard well-posed at p0. Furthermore, if S(p0) = {ap0} (a

singleton), then (V EP )p is Hadamard well-posed at p0.
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THE CHARACTERS OF THE BLASCHKE-GROUP
OF THE ARITHMETIC FIELD

ILONA SIMON

Abstract. We consider a locally compact metric space, B with arithmetic

addition and multiplication, which is closely related to the usual multiplica-

tion of real numbers in the dyadic system. This results a non-Archimedian

local field, the so-called 2-adic local field. Some orthogonal series are stud-

ied with respect the inner product defined with the Haar-measure µ. The

Blaschke-functions defined on the 2-adic field, Ba(x) = x
•
+a

e
•
+a•x

form a com-

mutative group with respect to the function composition, the so-called

Blaschke-group. We shall determine the characters of this group. By

means of the exponential and tangent functions on the 2-adic field and the

characters of its additive group we can identify the desired characters. We

consider Fourier-series with respect to these characters and summability

questions are examined. A simple recursion leads to the FFT-algorithm,

the so-called Fast-Fourier Transform.

1. Introduction

According to Volovich[4] some non-Archimedean normed fields must be used

for a global space-time theory in order to unify both microscopic and macroscopic

physics. Some problems occured with the practical applications of the classical fields

R and C, because in sciences there are absolute limitations on measurements like Plank

time, Plank length, Plank mass, and also there is a problem with the Archimedean

axiom on the microscopic level. Volovich proposes to base physics on a coalition of

Received by the editors: 11.01.2007.

2000 Mathematics Subject Classification. 11F85, 43A40.

Key words and phrases. p-adic theory, local fields, character groups, (C,1)-summability, Fast-Fourier

Transform.

This paper was presented at the 7-th Joint Conference on Mathematics and Computer Science,

July 3-6, 2008, Cluj-Napoca, Romania.

149



ILONA SIMON

non-Archimedean normed fields and classical fields as R or C. The so-called p-adic

field is a suitable non-Archimedean normed field. As p→∞, many of the fundamental

functions of p-adic analysis approach their counterparts in classical analysis. Thus

p-adic analysis could provide a bridge from microscopic to macroscopic physics. The

simplest example of a p-adic field is the 2-adic field used in this paper.

Characters are very useful in numerous branches of mathematics, for example

in many cases are used Fourier-series with respect to characters.

Denote by A := {0, 1} the set of bits and by

B := {a = (aj , j ∈ Z) | aj ∈ A and lim
j→−∞

aj = 0} (1)

the set of bytes. The numbers aj are called the additive digits of a ∈ B. The zero

element of B is θ := (xj , j ∈ Z) where xj = 0 for j ∈ Z, that is, θ = (· · · , 0, 0, 0, · · · ).

The order of a byte x ∈ B is defined in the following way: For x 6= θ let π(x) = n if

and only if xn = 1 and xj = 0 for all j < n, furthermore set π(θ) = +∞. The norm

of a byte x is defined by

‖x‖ := 2−π(x) for x ∈ B \ {θ}, and ‖θ‖ := 0. (2)

The sets In(x) := {y ∈ B : yk = xk for k < n}, the so-called intervals in B of rank

n ∈ Z and center x are of basic importance. Set In := In(θ) = {x ∈ B : ‖x‖ 5 2−n}

for any n ∈ Z. The unit ball I := I0 can be identified with the set of sequences

I = {a = (aj , j ∈ N)| aj ∈ A} via the map (. . . , 0, 0, a0, a1, . . . ) 7→ (a0, a1, . . . ).

Furthermore S := {x ∈ B : ‖x‖ = 1} = {x ∈ B : π(x) = 0} = {x ∈ I : x0 = 1} is the

unit sphere of the field.

We will use the normalized Haar-measure on B, which satisfies µ(In(a)) :=

2−n. Some orthogonal series are studied with respect the inner product defined with

the Haar-measure µ by

〈f, g〉 :=
∫

I
f(x)g(x)dµ(x).
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Now, consider the 2-adic (or arithmetical) sum a
•
+ b of elements a = (an, n ∈

Z), b = (bn, n ∈ Z) ∈ B, defined by

a
•
+ b := (sn, n ∈ Z)

where the bits qn, sn ∈ A (n ∈ Z) are obtained recursively as follows:

qn = sn = 0 for n < m := min{π(a), π(b)},

and an + bn + qn−1 = 2qn + sn for n ≥ m.
(3)

The 2-adic (or arithmetical) product of a, b ∈ B is a • b := (pn, n ∈ Z), where

the sequences qn ∈ N and pn ∈ A (n ∈ Z) are defined recursively by

qn = pn = 0 (n < m := π(a) + π(b))

and
∞∑

j=−∞
ajbn−j + qn−1 = 2qn + pn (n ≥ m).

(4)

The reflection x− of a byte x = (xj , j ∈ Z) is defined by its additive digits:

(x−)j =

xj , for j 5 π(x)

1− xj , for j > π(x).

Note, that x− is the additive inverse of an x ∈ B.

The operations
•
+, • are commutative. Notice, that

π(a • b) = π(a) + π(b). (5)

Moreover, (B,
•
+, •) is a non-Archimedian normed field with respect the (2) norm, that

is,

‖x
•
+ y‖ ≤ max{‖x‖, ‖y‖}, ‖x • y‖ = ‖x‖ · ‖y‖ (6)

with equality if and only if ‖x‖ 6= ‖y‖ See [2]. The operations
•
+, • are continuous

with respect the metric introduced by the norm (2), that is, (B,
•
+, •) is a topological

field. (S, •) is a subgroup of (B, •).

We will use the following notation: a
•
− b := a

•
+ b−.

The multiplicative identity of B is the element e = e0 = (δn0, n ∈ Z), where

δnk is the Kronecker-symbol. Furthermore we will use the elements ek := (δnk, n ∈ Z)
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for some k ∈ Z. We can observe, that ek • em = ek+m for all k,m ∈ Z. In general,

multiplication by ek shifts bytes: ek • a = (an−k, n ∈ Z). We will represent infinite

products on this field by
∏∞

n=1
• αj := limn→∞(α1 • α2 • · · · • αn).

A character of a topological group (G,+) is a continuous function φ : G → C

which satisfies |φ(x)| = 1 and φ(x+ y) = φ(x)φ(y) for all x, y ∈ G.

2. The characters of the Blaschke-group

For x ∈ I and a ∈ I1 we have by (6) and (5) that e
•
− a •x 6= θ, thus e

•
− a •x

has a multiplicative inverse in B. For a ∈ I1 define the Blaschke function on I:

Ba(x) := (x
•
− a) • (e

•
− a • x)−1 =

x
•
− a

e
•
− a • x

. (x ∈ I) (7)

The Blaschke function Ba : I → I is a bijection for any a ∈ I1. The com-

position of two Blaschke-functions is also a Blaschke-function: Ba ◦ Bb = Bc where

c = a
•
+b

e
•
+a•b

is also in I1 for a, b ∈ I1. Thus the maps Ba (a ∈ I1) form a commutative

group with respect to the function composition. See[3]. We will call

B := {Ba, a ∈ I1} (8)

the Blashke-group of the field (I,
•
+, •).

We will determine the characters of the Blashke-group (B, ◦), where ◦ denotes

the function composition.

Using the notation x / y := x
•
+y

e
•
+x•y

(x, y ∈ I1), the map

B : (I1, /) → (B, ◦), a 7→ Ba

is an isomorphism, which is continuous, consequently it is useful if we define the

character group of (I1, /).

We already know the characters of (I1,
•
+) and for this reason it is suitable to

find a continuous isomorphism from (I1,
•
+) onto (I1, /), that is a function γ satisfying
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the equation

γ(x
•
+ y) =

γ(x)
•
+ γ(y)

e
•
+ γ(x) • γ(y)

. (x, y ∈ I1) (9)

This equation is the analogue of the function equation of the tangent function

on C, where the tangent function can be expressed by the exponential function in the

following way:

tan(x) =
exp(ix)− exp(−ix)
i(exp(ix) + exp(−ix))

=
exp(2ix)− 1
i(exp(2ix) + 1)

. (x ∈ C)

Furthermore, we will use the function ζ, expressed in the following infinite

product form:

ζ(x) :=
∞∏

j=1

• b
xj

j (x = (xj , j ∈ Z) ∈ I1) (10)

where

b1 := e
•
+ e2, bn := bn−1 • bn−1 (n ≥ 2). (11)

We will call the function ζ the (S, •)-valued exponential function on I1, which

is a continuous function satisfying the function-equation

ζ(x
•
+ y) = ζ(x) • ζ(y) (x, y ∈ I1). (12)

This function ζ satisfies indeed (12) on I1, which can be easily seen analogous to [2],

pp 59-60, where we find in a way different basis (bn, n ≥ 1). Since bn = e
•
+ cn (n ≥ 1)

with π(cn) = n+ 1, the function ζ has the following representation:

ζ(x) =
∞∏

j=1

• (e
•
+ cj)xj =

∞∏
j=1

• (e
•
+ xjcj). (13)

Let us denote S̃ := {x ∈ S : x1 = 0}. We can see as in Theorem 2 in [2] that

ζ is 1-1 and continuous from I1 onto S̃.

Now, we will call the function

γ(x) :=
ζ(x)

•
− e

ζ(x)
•
+ e

(x ∈ I1) (14)
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the tangent-like function on (I1,
•
+) and

tan(x) :=
ζ2(x)

•
− e

ζ2(x)
•
+ e

(x ∈ I1) (15)

the tangent function on (I1,
•
+).

Lemma 1. For any a, b ∈ B, x ∈ I1, and y ∈ I1 holds

a)
a
•
+ a

b
•
+ b

=
a

b

b) a
•
+ a = e1 • a

c) ζ2(x) = ζ(e1 • x)

d)
e
•
+ y

e
•
− y

∈ S̃,

(16)

where ζ2(x) = ζ(x) • ζ(x).

Proof. a) The relation holds, because a • (b
•
+ b) = b • (a

•
+ a) is satisfied by the

commutativity and distributivity of the operations.

b) Using the notations of the recursive definition for the addition
•
+, we have

(a
•
+ a)n = 0 if and only if qn−1 = 0. But qn−1 = 0 is equivalent with an−1 = 0,

which holds exactly when (e1•a)n = 0, because multiplication by e1 shifts a. Similarly

(a
•
+ a)n = 1 ⇔ qn−1 = 1 ⇔ an−1 = 1 ⇔ (e1 • a)n = 1.

c) It is a simple consequence of b) or directly: bj • bj = bj+1 (j ≥ 1),

thus using the commutativity and associativity of • we have ζ2(x) =
(∏∞

j=1
• b

xj

j

)
•(∏∞

j=1
• b

xj

j

)
=
∏∞

j=1
• b

xj

j+1 = ζ(e1 • x) (x ∈ I1)

d) It can be easily established, that for y = (0, y1, y2 . . .) ∈ I1 holds:

e
•
+ y = (1, y1, y2, y3, . . .)

and

e
•
− y = (1, y1, (y−)2, . . .) = e

•
+ y−.
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Applying the notation

e
•
+ y

e
•
− y

= z,

we can state first, that π(z) = π(e
•
+ y)− π(e

•
− y) = 0 that is, z ∈ S, and then

e
•
+ y = z • (e

•
− y).

Now, examining the 0th and the 1-st digits of the right and left side, we find that: 1 = z0 · 1

y1 = z0 · y1 + z1 · 1 ( mod 2)

which means, that z0 = 1 and z1 = 0, and so z ∈ S̃. Note, that z = e⇔ y = θ.

�

With Lemma 1 c) we can see, that the the tangent-like function γ is closely

related to tan: namely γ(x) = tan(e−1 • x) (x ∈ I1).

Theorem 1. The function γ is a continuous isomorphism from (I1,
•
+) onto (I1, /).

Proof.

γ(x) / γ(y) =
γ(x)

•
+ γ(y)

e
•
+ γ(x) • γ(y)

=

ζ(x)
•
−e

ζ(x)
•
+e

•
+ ζ(y)

•
−e

ζ(y)
•
+e

e
•
+ ζ(x)

•
−e

ζ(x)
•
+e

• ζ(y)
•
−e

ζ(y)
•
+e

=
ζ(x) • ζ(y)

•
+ ζ(x) • ζ(y)

•
− e

•
− e

ζ(x) • ζ(y)
•
+ ζ(x) • ζ(y)

•
+ e

•
+ e

=
ζ(x) • ζ(y)

•
− e

ζ(x) • ζ(y)
•
+ e

= γ(x
•
+ y)

where we used Lemma 1 a).

The function γ is a 1-1 map from (I1,
•
+) onto (I1, /). To see, that γ is a 1-1

map, we have from

ζ(x)
•
− e

ζ(x)
•
+ e

=
ζ(y)

•
− e

ζ(y)
•
+ e

the equation

ζ(x)
•
+ ζ(x) = ζ(y)

•
+ ζ(y).

155



ILONA SIMON

Taking in consideration, that f(a) := a
•
+ a is 1-1, satisfying a

•
+ a = e1 • a, we have

ζ(x) = ζ(y),

which gives that x = y.

To see, that for any y ∈ I1 there is an x ∈ I1 such that γ(x) = y, we have to

solve in x the equation:

ζ(x)
•
− e

ζ(x)
•
+ e

= y,

thus

ζ(x) =
e
•
+ y

e
•
− y

.

Now,

x = ζ−1

(
e
•
+ y

e
•
− y

)
.

Thus we proved that γ is onto if ζ−1
(

e
•
+y

e
•
−y

)
∈ I1 which holds in consequence of Lemma

1 d). Thus we proved that γ is an isomorphism from (I1,
•
+) onto (I1, /).

�

We consider ε(t) := exp(2πit) (t ∈ R). The characters of the group (I1,
•
+)

are given by the product system (vm,m ∈ P) generated by the functions

v2n(x) := ε
(xn

2
+
xn−1

22
+ · · ·+ x1

2n

)
(x = (0, x1, x2 . . .) ∈ I1, n ∈ P),

that is, the functions vm(x) =
∏∞

j=1(v2j (x))mj (m ∈ P). [2] Recall, that P is the set

of positive numbers, P := N \ {0}.

Theorem 2. The characters of the group (I1, /) are the functions

vn ◦ γ−1(n ∈ P).

Corollary 1. The characters of (B, ◦) are the functions

vn ◦ γ−1 ◦B−1(n ∈ P),
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where (B, ◦) denotes the Blaschke-group of the arithmetic field (I,
•
+, •), and B :

(I1, /) → (B, ◦) is the function a 7→ Ba.

3. Recursion

In (13) we used the notation bn = e
•
+ cn (n ≥ 1) where π(cn) = n+ 1, now

consider bn = e
•
+ en+1

•
+ dn (n ≥ 1) where π(dn) ≥ n + 2. Now the function ζ has

the following representation:

ζ(x) =
∞∏

j=1

• (e
•
+ ej+1

•
+ dj)xj =

∞∏
j=1

• (e
•
+ xjej+1

•
+ xjdj). (dj ∈ In+2)

Easy inductive arguments establish that ζ(x) is a simple recursion:

(ζ(x))n = xn−1 + f(x1, . . . , xn−2) (n ≥ 1) (17)

and (ζ(x))0 = 1. Thus z := ζ(x)
•
− e = (ζ(x)

•
+ e−) = (1, 0, ζ2, ζ3, . . .)

•
+

(1, 1, 1, 1, . . .) = (0, 0, ζ2, ζ3, ζ4, . . .) can also be written as a simple recursion:

zn = xn−1 + f(x1, . . . , xn−2) (n ≥ 2).

Analogous, t := ζ(x)
•
+ e = (1, 0, ζ2, ζ3, . . .)

•
+ (1, 0, 0, 0, . . .) = (0, 1, ζ2, ζ3, ζ4, . . .) as a

simple recursion:

tn = xn−1 + f(x1, . . . , xn−2) (n ≥ 2).

The multiplicative inverse element of t ∈ I1 is also a simple recursion:

(t−1)n = xn+1 + f(x1, . . . , xn)

for some function f . See[[2], pp. 39-40.]

Using (t−1)−1 = 1 and (γ(x))n = z2(t−1)n−2 + . . . + zn+1(t−1)−1 + qn−1 (

mod 2), follows that

(γ(x))n = xn + f(x1, . . . , xn−1). (18)

Denote with A the σ-algebra generated by the intervals In(a) (a ∈ I, n ∈ N).

Let µ(In(a)) .= 2−n be the measure of In(a). Extending this measure to A we get a

probability measure space (I,A, µ). Let An be the sub-σ-algebra of A generated by
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the intervals In(a) (a ∈ I). Let L(An) denote the set of An-measurable functions on

I. The conditional expectation of an f ∈ L1(I) with respect to An is of the form

(Enf)(x) =
1

µ(In(x))

∫
In(x)

fdµ.

A sequence of functions (fn, n ∈ N) is called a dyadic martingale if each fn

is An-measurable and

(Enfn+1) = fn (n ∈ N).

The sequence of martingale differences of fn (n ∈ N) is the sequence

φn
.= fn+1 − fn (n ∈ N).

We notice that every dyadic martingale difference sequence has the form φn =

rngn (n ∈ N) where (gn, n ∈ N) is a sequence of functions such that each gn is

An-measurable and (rn, n ∈ N) denotes the Rademacher system on I:

rn(x) .= (−1)xn (n ∈ N).

The martingale difference sequence (φn, n ∈ N) is called a unitary dyadic

martingale difference sequence or a UDMD sequence if |φn(x)| = 1 (n ∈ N). Thus

(φn, n ∈ N) is a UDMD sequence if and only if

φn = rngn, gn ∈ L(An), |gn| = 1 (n ∈ N). (19)

Let us call a system ψ = (ψm,m ∈ N) a UDMD product system if it is a

product system generated by a UDMD system, i.e., there is a UDMD system (φn, n ∈

N) such that for eachm ∈ N, with binary expansion is given bym =
∑∞

j=0mj2j (mj ∈

A, j ∈ N), the function ψm satisfies

ψm =
∞∏

j=0

φ
mj

j (m ∈ N).

By (18) the byte γ−1(x) can also be written by a simple recursion for any

x ∈ I1, therefore we have the following:

Corollary 2. The functions vn ◦ γ−1(n ∈ P), the characters of (I1, /) form a UDMD

product system.
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Proof. The (v2n ◦γ−1, n ∈ P) functions satisfy the requirements of a UDMD-system:

v2n (γ(x)) = ε
(

xn

2

)
g(x1, . . . , xn−1) = (−1)xng(x1, . . . , xn−1), with some g ∈ L(An),

and |g(x1, . . . , xn−1)| = 1.

�

As (vn ◦ γ−1, n ∈ P) is a UDMD product system, the discrete Fourier coeffi-

cients with respect this system can be computed with the Fast Fourier Algorithm.

4. (C,1) summability

By (18) γ : In(x) → In(γ(x)) is a bijection (x ∈ I1, n ∈ N), thus for any dyadic

interval E holds µ(t ∈ I1 : γ(t) ∈ E) = µ(E) and this follows for any E measurable sets

also. Therefore the variable transformation γ(x) is measure preserving. Consequently,

it holds ∫
I1
f ◦ γdµ =

∫
I1
fdµ. (20)

The Gamma-Fourier coefficients of an f ∈ L1(I1) are defined by

f̂γ(n) .=
∫

I1
f(x)vn(γ(x)−1)dµ(x) (n ∈ P).

We have by (20):

f̂γ(n) = f̂ ◦ γ(n), (21)

where f̂(n) are the well-known Fourier coefficients of an f ∈ L1(I). [1]

The Gamma-Fourier series of an f ∈ L1(I1) is the series

Sγf
.=
∞∑

k=0

f̂γ(k)vk ◦ γ−1,

and the n-th partial sums of the Gamma-Fourier series Sγ is

Sγ
nf

.=
n−1∑
k=0

f̂γ(k)vk ◦ γ−1 (n ∈ P).

It follows by (21) that

Sγ
nf = [Sn(f ◦ γ)] ◦ γ−1 (22)

where Sn is the well-known n-th partial sum of the Walsh-Fourier series. See[1] .
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If the Gamma-Cesaro (or (G − C, 1)) means of Sγf are defined by σ0f
.= 0

and

σγ
nf

.=
1
n

n∑
k=1

Sγ
kf, (n ∈ P)

then it follows by (22) that

σγ
nf(x) =

1
n

n∑
k=1

[Sk(f ◦ γ)] (γ−1(x)) = σn(f ◦ γ)(γ−1(x)). (23)

where σn means the well known n-th Cesaro mean of Sf . [1]

Now, we use the theorem of the (C, 1)-summability of the Walsh-Fourier series

on the field (I,
•
+, •) due to Gy. Gát [5]: lim

m→∞
(σmf)(x) = f(x) a.e. for any f ∈ L1(I).

Thus with (23) we have lim
n→∞

σγ
nf(x) = lim

n→∞
σn(f ◦ γ)(γ−1(x)) = (f ◦ γ ◦

γ−1)(x) = f(x) a.e. for any f ∈ L1(I1).

Theorem 3. On the field (I1,
•
+, •) holds lim

n→∞
σγ

nf(x) = f(x) a.e. for any f ∈ L1(I1).
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GRONWALL LEMMAS AND COMPARISON THEOREMS FOR THE
CAUCHY PROBLEM ASSOCIATED TO A SET DIFFERENTIAL

EQUATION

IOANA CAMELIA TIŞE

Abstract. Let Pcp,cv(Rn) be the family of all nonempty compact, convex

subset of Rn. We consider the following Cauchy problem:

(1)

 DHU = F (t, U), t ∈ J

U(t0) = U0

where U0 ∈ Pcp,cv(Rn), t0 ≥ 0, J = [t0, t0 + a], a > 0, and

F : J × Pcp,cv(Rn)→ Pcp,cv(Rn).

The purpose of the paper is to study the existence of a solution as well

as some comparison theorems and Gronwall type lemmas for the above

Cauchy problem.

1. Introduction

Let Rn be the real n-dimensional space and Pcp,cv(Rn) the family of all

nonempty compact, convex subset of Rn endowed with the Pompeiu-Hausdorff metric

H.

We consider the following Cauchy problem with respect to a set differential

equation:

(1)

 DHU = F (t, U), t ∈ J

U(t0) = U0
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where U0 ∈ Pcp,cv(Rn), t0 ≥ 0, J = [t0, t0 + a], a > 0,

F ∈ C(J × Pcp,cv(Rn), Pcp,cv(Rn)) and DH is the Hukuhara derivative of U .

A solution of (1) is a continuous function U : J → Pcp,cv(Rn) which satisfies

(1) for each t ∈ J.

The aim of the article is to study the existence of a solution as well as some

comparison theorems and Gronwall type lemmas for the above Cauchy problem.

The paper is organized as follows. The next section, Preliminaries, contains

some basic notations and notions used throughout the paper. The third section

presents some comparison theorems and Gronwall type lemmas for the above Cauchy

problem (1).

2. Preliminaries

The aim of this section is to present some notions and symbols used in the

paper.

Definition 1. U ∈ C1(J, Pcp,cv(Rn)) is a solution of the problem (1)⇐⇒ U satisfies

(1) for all t ∈ J.

Let us consider the following equations:

(2) U(t) = U0 +
∫ t

t0

DH(U(s))ds, t ∈ J,

(3) U(t) = U0 +
∫ t

t0

F (s, U(s))ds, t ∈ J.

Lemma 2. If U ∈ C1(J, Pcp,cv(Rn)), then (1) ⇐⇒ (2) ⇐⇒ (3).

We consider on C(J, Pcp,cv(Rn)) the metric HB
∗ defined by:

HB
∗ (U, V ) := max

t∈[t0,t0+a]
[H(U(t), V (t))e−τ(t−t0)], τ > 0.

The pair (C(J, Pcp,cv(Rn)),HB
∗ ) forms a complete metric space.

We consider on Pcp,cv(Rn) the order relation ≤m defined by:

U, V ∈ Pcp,cv(Rn) : U ≤m V ⇐⇒ U ⊆ V.
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Definition 3. The operator F (t, ·) : J×Pcp,cv(Rn) → Pcp,cv(Rn), is called increasing

if

A,B ∈ Pcp,cv(Rn), A ≤m B ⇒ F (t, A) ≤m F (t, B), for all t ∈ J.

Define on C(J, Pcp,cv(Rn)) an order relation ” ≤ ” defined by:

X, Y ∈ C(J, Pcp,cv(Rn)), X ≤ Y ⇔ X(t) ≤m Y (t), for all t ∈ J.

The space (C(J, Pcp,cv(Rn)),HB
∗ ,≤) being an ordered and complete metric

space is also an L-space (see[3]).

Let (X, d,≤) be a ordered metric space and T : X → X an operator.

We note: FT := {x ∈ X|Tx = x}the fixed point set of T;

(UF )T := {x ∈ X|Tx ≤ x} the upper fixed point set for T;

(LF )T := {x ∈ X|Tx ≥ x} the lower fixed point set for T.

Definition 4. ([4]) Let X be an L-space. Then, the operator T : X → X is a Picard

operator (PO) if

(i) FT = {x∗T };

(ii) Tnx → x∗T as n →∞, for all x ∈ X.

Definition 5. ([4]) Let X be an L-space. Then, the operator T : X → X is a weakly

Picard operator (WPO) if the sequence (Tnx)n∈N converges for all x ∈ X and the

limit (witch may depend on x) is a fixed point of T .

3. Main results

Theorem 6. We consider the problem (1) and F : J × Pcp,cv(Rn) −→ Pcp,cv(Rn) be

an operator.

Suppose that:

i) F is continuous on J × Pcp,cv(Rn) and U0 ∈ Pcp,cv(Rn);

ii) F (t, ·) is Lipschitz, i.e. there exists L ≥ 0

such that H(F (t, U), F (t, V )) ≤ LH(U, V ) for all U, V ∈ Pcp,cv(Rn) and t ∈ J .
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Then the problem (1) has a unique solution U∗ and U∗(t) = lim
n→∞

Un(t), where Un ∈

C(J, Pcp,cv(Rn)) is recurrently defined by the relation: Un+1(t) = U0 +
∫ t

t0
F (s, Un(s))ds, n ∈ N

U0 ∈ Pcp,cv(Rn).

Proof. Consider the operator: Γ : C(J, Pcp,cv(Rn)) → C(J, Pcp,cv(Rn)) where

ΓU(t) = U0 +
∫ t

t0

F (s, U(s))ds, t ∈ J.

We will verify the contraction condition for Γ.

H(Γ(U)(t),Γ(V )(t)) = H(U0 +
∫ t

t0

F (s, U(s))ds, U0

+
∫ t

t0

F (s, V (s))ds) ≤ H(U0, U0) + H(
∫ t

t0

F (s, U(s))ds,

∫ t

t0

F (s, V (s))ds)

≤
∫ t

t0

H(F (s, U(s)), F (s, V (s)))ds ≤
∫ t

t0

LH(U(s), V (s))ds =

= L

∫ t

t0

H(U(s), V (s))e−τ(s−t0)eτ(s−t0)ds ≤ LHB
∗ (U, V )

∫ t

t0

eτ(s−t0)ds =

=
L

τ
HB
∗ (U, V )(eτ(t−t0) − 1) ≤ L

τ
HB
∗ (U, V )eτ(t−t0),

then we have:

H(Γ(U)(t),Γ(V )(t))e−τ(t−t0) ≤ L

τ
HB
∗ (U, V ), for all t ∈ J.

Taking the maximum for t ∈ J , then we have:

HB
∗ (Γ(U),Γ(V )) ≤ L

τ
HB
∗ (U, V ), for all U, V ∈ C(J, Pcp,cv(Rn)), τ > 0.

Thus, the integral operator Γ is Lipschitz with constant LΓ = L
τ , τ > 0.

Choosing τ such as L
τ < 1, then Γ is an contraction and by contraction

principle the operator Γ has unique fixed point U∗. According to Lemma 2 then U∗

is the unique solution for the Cauchy problem. �

In what follows we will present the Abstract Gronwall Lemma:
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Lemma 7. (Abstract Gronwall Lemma [3]) Let (X, d,≤) be an ordered L-space and

T : X → X an operator. We suppose that:

(i) T is PO;

(ii) T is increasing.

Then (LF )T ≤ x∗T ≤ (UF )T , where x∗T is the unique fixed point of the operator T .

We will apply this abstract lemma to the Cauchy problem (1).

Theorem 8. Let the Cauchy problem

(1)

 DHU = F (t, U), t ∈ J

U(t0) = U0

where U0 ∈ Pcp,cv(Rn), t0 ≥ 0, J = [t0, t0 + a], a > 0.

Suppose that F (t, ·) is an L-Lipschitz increasing monotone operator for all t ∈ J. Then

we have:

(LS)(1) ≤ U∗ ≤ (US)(1)

where U∗ is the unique solution for problem (1) and (LS)(1) respectively (US)(1)

represents the set of lower solution respectively the set of upper solution for the problem

(1).

Proof. Let Γ : C(J, Pcp,cv(Rn)) −→ C(J, Pcp,cv(Rn))

ΓU(t) := U0 +
∫ t

t0

F (s, U(s))ds, t ∈ J.

Then we have:

i) By Theorem 6 we have that Γ as a contraction. We denote by U∗ ∈

C(J, Pcp,cv(Rn)) the unique fixed point. According to Lemma 2 we have that U∗ is

the unique solution for the Cauchy problem.

ii) We proved that Γ is increasing. Let U, V ∈ C(J, Pcp,cv(Rn)) with

U ≤ V ⇒ U(t) ≤m V (t), for all t ∈ J.

Since F (t, ·) is monotone we have F (t, U(t)) ≤ F (t, V (t)), for all t ∈ J.

Then

U0 +
∫ t

t0

F (s, U(s)) ≤ U0 +
∫ t

t0

F (s, V (s))ds, for all t ∈ J
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⇒ ΓU(t) ≤ ΓV (t), for all t ∈ J ⇒ ΓU ≤ ΓV.

So Γ is monotonously increasing and Picard. Be applying Lemma 7 we have:

(LF )Γ ≤ U∗ ≤ (UF )Γ.

Consequently (LF )Γ, (UF )Γ coincide to the set of the lower and upper solu-

tions for problem (1). �

In what follows an abstract comparison lemma will be presented.

Lemma 9. (Abstract Gronwall- comparison lemma [3]) Let (X, d,≤) be an ordered

L-space and T,Γ : X → X two operators. We suppose that:

(i) T and Γ are POs;

(ii) T is increasing;

(iii) T ≤ Γ.

Then x ≤ Tx ⇒ x ≤ x∗Γ.

We have the folowing theorem.

Theorem 10. Let as consider the following two Cauchy problems:

(1)

 DHU = F (t, U), t ∈ J

U(t0) = U0

(2)

 DHV = G(t, V ), t ∈ J

V (t0) = V 0

where U0, V 0 ∈ Pcp,cv(Rn), t0 ≥ 0, J = [t0, t0 + a], a > 0.

Suppose that:

i) F is continuous on J × Pcp,cv(Rn) and F (t, ·) is Lipschitz;

ii) G is continuous on J×Pcp,cv(Rn), V 0 ∈ Pcp,cv(Rn) and G(t, ·) is Lipschitz;

iii) F (t, ·) is increasing for all t ∈ J.

Then U ≤ ΓU =⇒ U ≤ V ∗ where V ∗ is the unique solution for the problem (2).

Proof. Since F (t, ·) is Lipschitz, there exists L ≥ 0 such that

H(F (t, U), F (t, V )) ≤ LH(U, V ), for all U, V ∈ Pcp,cv(Rn), t ∈ J.
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Since G(t, ·) is Lipschitz, there exists LG ≥ 0 such that

H(G(t, U), G(t, V )) ≤ LGH(U, V ), for all U, V ∈ Pcp,cv(Rn), t ∈ J.

By Theorem 8, Γ and T satisfy the contraction principle and we have that Γ

and T are Picard operators.

By iii) we have F (t, U) ⊂ G(t, U), for all U ∈ Pcp,cv(Rn), t ∈ J,

then U0 +
∫ t

t0

F (s, U(s))ds ≤ V 0 +
∫ t

t0

G(s, U(s))ds,

thus ΓU(t) ⊆ TU(t) =⇒ ΓU ≤ TU =⇒ Γ ≤ T.

By Lemma 9 the proof is complete. �

We recall the following abstract Gronwall lemma for the case of WPO.

Lemma 11. (Abstract Gronwall lemma [3]) Let (X, d,≤) be an ordered L-space and

T : X → X an operator. We suppose that

(i) T is WPO;

(ii) T is increasing.

Then

a) x ≤ Tx ⇒ x ≤ T∞x;

b) x ≥ Tx ⇒ x ≥ T∞x.

The basic result in the WPOs theory is the following:

Theorem 12. (Characterization theorem [4]) Let (X, d) be an L-space and f : X → X

be an operator. The operator f is WPO if and only if there exists a partition of X,

X =
⋃
γ∈Γ

Xγ such that:

(a) Xγ ∈ I(A), for all γ ∈ Γ;

(b) f to Xγ , f|Xγ
: Xγ → Xγ is PO for all γ ∈ Γ.

We will apply the above lemma to the Cauchy problem (1).

Theorem 13. Let us consider the Cauchy (1)

We suppose that:

i) F (t, .) is Lipschitz, for all t ∈ J ;

ii) F (t, .) is increasing, for all t ∈ J ;
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iii) F is continuous on J × Pcp,cv(Rn) and U0 ∈ Pcp,cv(Rn).

Then

i) U is a lower solution of the problem (1) ⇒ U ≤ U∗U ;

ii) U is a upper solution of the problem (1) ⇒ U ≥ U∗U

where U∗U is a solution for the problem (1) and U∗U (t) = lim
n→∞

Un(t) where Un ∈

C(J, Pcp,cv(Rn)) is recurrently defined by the relation: Un+1(t) = Un(t0) +
∫ t

t0
F (s, Un(s))ds, n ∈ N

U0 = U.

Proof. Let T : C(J, Pcp,cv(Rn)) → C(J, Pcp,cv(Rn)) defined by

TU(t) = U(t0) +
∫ t

t0

F (s, U(s))ds, for all t ∈ J.

According to Lemma 2 we have (1) ⇔ (2) ⇔ U = TU. Thus S(1) = FixT .

Let Z = C(J, Pcp,cv(Rn)) and Zγ = {U ∈ C(J, Pcp,cv(Rn))|U(t0) = γ}, γ ∈

R. Then Z =
⋃
γ∈R

Zγ is a partition of C(J, Pcp,cv(Rn)). Moreover Zγ ∈ I(T ) and Z is

a closed subset of C(J, Pcp,cv(Rn)) for all γ ∈ R.

Since F (t, .) : Z → Z is a L-Lipschitz for all t ∈ J. By Theorem 6 the operator

T|Zγ
is Picard for all γ ∈ R. Hence T is WPO (by the characterization Theorem 12).

In the above conditions the Cauchy problem (1) is equivalent with the fixed

point equation, TU = U , where the operator T is WPO.

Since F (t, ·) is monotone we have F (t, U(t)) ≤ F (t, V (t)), for all t ∈ J.

Then

U0 +
∫ t

t0

F (s, U(s)) ≤ U0 +
∫ t

t0

F (s, V (s))ds, for all t ∈ J

⇒ TU(t) ≤ TV (t), for all t ∈ J ⇒ TU ≤ TV.

Thus T is monotonously increasing and WPO. By applying Lemma 11 the

proof is complete. �
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BOOK REVIEWS

Advanced Courses in Mathematical Analysis, III, Proceedings of the Third
International School, JUan M. Delgado Sánchez and Tomás Domı́nguez Benavides
(Editors), World Scientific Publishers, London - Singapore 2008, xiv+194 pp,
ISBN:13 978-981-281-844-7 and 10-981-281-844-8.

Several Andalusian universities decided to organize an International Course
on Mathematical Analysis in Andalusia, a task that was achieved by the friendly
cooperation of several research groups in analysis and by the support of Spanish
National Government, of several universities and from several private companies as
well. The first course took place in Cádiz (2002), followed by the second in Granada
(2004). The success these courses had determined the organization of the third one
in La Rábida (Huelva) from 3 to 7 September, 2007. The aim of these courses is to
provide an extensive overview, by leading experts, of the research in various areas of
analysis -real analysis, complex analysis, functional analysis.

The present course was attended by more that 70 participants from various
countries, who had the opportunity to here eleven plenary lectures and to participate
to three seminars, delivered by invited distinguished mathematicians from all over the
world. The volume contains the written (and usually expanded) versions of the talks
and covers a lot of topics in various areas of mathematical analysis, applications to
economy, or history of mathematics (a nice paper by Beckenstein and Narici on the
life of E. Helly and the Hahn-Banach theorem). The eleven survey papers included
in this volume deal with topics as: Dynamics in one complex variable (M. Abate,
Univ. di Pisa), Bilinear Hilbert transform and multipliers (O. Blasco, Univ. de Va-
lencia), Functions whose translations generate L1(R) (J. Bruna, Univ. Autònoma
de Barcelona), Compactness and distances to function spaces (C. Angosto and B.
Cascales, Univ. de Murcia), Spaces of smooth functions (E. Harboure, Wayne State
Univ., Detroit), Domination by positive operators and singularity (F. L. Hernández,
Univ. Complut. de Madrid), The Hahn-Banach theorem and the sad life of E. Helly
(L. Narici and E. Beckenstein, St. John’s Univ., NY), Small subspaces of the space
Lp (E. Odell, Univ. of Texas, Austin), Hypercyclic operators (H. N. Salas, Univ. de
Puerto Rico), Operator spaces (B. M. Schreiber, Wayne State Univ., Detroit), Math-
ematics and markets - competitive equilibrium (A. Villar, Univ. Pablo de Olavide,
Sevilla), Ideals in F -algebras (W. Želazko, Mathematical Institute, Warszawa).
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By the survey papers on topics of current interest, written by mathematicians
with substantial contributions to the subject, this collection of papers will be very
useful to graduate students (post-graduate as well) desiring to learn about topics of
high research interest from leading experts.

S. Cobzaş

Ben Klemens, Modeling with Data. Tools and Techniques for Scientific

Computing, Princeton University Press, Princeton and Oxford, 2009, XIV+454 pp;
ISBN: 978-0-691-13414-0.

This book presents an original, cheap and powerful solution to the problem
of analysis of large data sets. The solution combines C language, data base query and
management, statistics and data visualization. The book intends to be an alternative
to classical statistical books: it does not separate descriptive and inferential statistics,
simple models are combined into more complex model in a hierarchical way and it is
computer oriented.

All software tools used by author are free and reliable: GNU C Compiler,
SQLite and MySQL, GNU Scientific Library (GSL), Gnuplot and Graphviz. Each
of them may be considered ugly for nonprofessional users. The way the author uses
them and the accessibility of presentation endows the user with a set of open and
unlimited tools to solve the difficult tasks of statistical data analysis.

The first part part of the book (six chapters) is devoted to computing. Chap-
ter 2 introduces the basics of C programming language. The next chapter is on data
bases and SQL query language, since working with large data sets is now more nec-
essary than ever. Chapter 4 presents matrices and vectors from GSL ad Apophenia
library, built upon the GSL. Computer graphics is the topic of Chapter 5. Gnuplot
interpreter assures a simple way to plot and portability. The last chapter of the first
part emphasizes the features of C language already presented and introduces data
structures like linked lists and binary trees.

The second part, Statistics, does not deals with very advanced concepts, but
their combination into a creative manner allow the modeling and handling of situa-
tions of arbitrary complexity. Chapter 7 treats numerical characteristics of samples
and classical probability distributions. Principal component analysis, ordinary least
squares and related methods, and multilevel modeling are the topics of Chapter 8.
The next chapter is devoted to Central Limit Theorem and hypothesis testing. Chap-
ter 10 introduce Maximum Likelihood Estimation and related statistical inferential
procedures. The last Chapter, 11, is devoted to Monte Carlo techniques, and related
subject like random number generation, bootstrapping and resampling.

Three appendices increase the readability of the book.
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The vision of the author is to present the things as a pipeline going from raw
data to a final publishable output; the pipe sections and filters assure different level
of abstractions which reach to a full program.

This book includes more than 80 working programs; they allow the readers to
explore the data, find out to what changes the procedure is robust and freely modify
the code.

The programs, and moreover, the ability to combine the tools into a fully-
functional pipeline are intended to be a natural alternative to sophisticated and ex-
pensive statistical softwares and packages.

The book is devoted mainly to the practitioner of Statistics, but is also use-
ful to mathematicians, computer scientists, researchers and students in the biology,
economics and social sciences.

Radu Tr̂ımbiţaş

Walter Roth, Operator-Valued Measures and Integrals of Cone-Valued

Functions, Lectures Notes in Mathematics, Vol. 1964, Springer-Verlag, Berlin -
Heidelberg, 2009, x+356 pp; ISBN: 978-3-540-87564-1, e-ISBN: 978-3-540-87565-1.

The theory of locally convex cones was developed by the author and K. Keimel
in a previous book, Ordered Cones and Approximation, Lecture Notes in Mathematics,
Vol. 1517, Springer-Verlag, Berlin 1992, as a general framework for Korovkin type
linear approximation theory. The aim of the present book is to use the theory of
locally convex cones for developing a very general and unified theory of integration
for extended real-valued, vector-valued, operator-valued and cone-valued countably
additive measures and functions.

A full locally convex cone is a cone P endowed with an order ≤ compatible
with the algebraic operations and a downward directed subset V of positive elements,
closed for addition and multiplication by strictly positive scalars, called an abstract
neighborhood system. An element v ∈ V determines upper and a lower neighborhoods
of any element a ∈ P given by v(a) = {b ∈ P : b ≤ a + v} and (a)v = {b ∈ P :
a ≤ b + v}, respectively, and a symmetric neighborhood vs(a) = v(a) ∩ (a)v. A
locally convex cone is a subcone (Q,V) of a full locally convex cone, not necessarily
containing the abstract neighborhood system V, equipped with the induced topologies
(upper, lower and symmetric). The cancellation law a + c = b + c ⇒ a = b need not
hold in the cone P. If it holds then P can be embedded in a vector space and,
conversely, every cone in a vector space is cancellative.

Based on powerful Hahn-Banach type extension and separation theorems for
additive and positively homogeneous functionals with respect to sublinear or super-
linear functionals, one can develop a theory of locally convex cones similar to that
of locally convex spaces: duality theory, weak topologies and a Mackey-Arens type
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theorem, Uniform Boundedness Principle and Open Mapping Theorem. This theory
is exposed in the first chapter of the book, Locally convex spaces, which partly has a
survey character, the proofs of some theorem being referred to the above mentioned
book of the author and K. Keimel.

The integration theory for cone-valued measures and functions is developed
in the second chapter of the book, Measures and integrals. The general theory. The
framework is that of two locally convex cones P and Q (the latter being supposed to
be a complete lattice cone), the cone L(P,Q) of additive and positively homogeneous
operators from P to Q, and a L(P,Q)-valued measure defined on a σ-field (or a σ-
ring) on a set X. The lattice completeness of Q allows to define integrals of measurable
P-valued functions as suprema of the integrals of measurable step P-valued functions.

The central result of the last chapter of the book, III, Measures on locally
compact spaces, is a very general Riesz type integral representation theorem for con-
tinuous linear operators from function cones over a locally compact space X into
a locally convex complete lattice cone Q, which contains as particular cases a lot of
known integral representations for compact and weakly compact operators on Banach
space-valued functions, as well as some new general cases. As a very special case, one
obtains also the classical spectral representation theorem for normal linear operators
on a complex Hilbert space.

As the author points out, a demanding topic, of great interest, but not in-
cluded in the book, is that of a Choquet-type representation theory within the general
framework of locally convex cones, which could be a subject for further investigation.

Providing a very general and nontrivial approach to integration theory, the
book is of interest for researchers in functional analysis, abstract integration theory
and its applications to integral representations of linear operators. It can be used also
for advanced post-graduate courses in functional analysis.

S. Cobzaş
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