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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LIV, Number 4, December 2009

BERNSTEIN-TYPE OPERATORS ON TETRAHEDRONS

PETRU BLAGA, TEODORA CĂTINAŞ, AND GHEORGHE COMAN

Abstract. The aim of the paper is to construct Bernstein-type operators

on tetrahedron with all straight edges and on tetrahedron with three curved

edges defined by some given functions. We study the interpolation prop-

erties, the approximation accuracy (degree of exactness, precision set) and

the remainder of the corresponding approximation formulas. The accuracy

is also illustrated by numerical examples.

1. Introduction

In some previous papers were constructed and applied some interpolation

operators on triangle with one curved edge respectively on tetrahedron with straight

edges ([1, 6, 7, 8, 9, 12]), as well as Bernstein-type operators on triangle with all

straight edges, respectively on triangle with one curved edge ([4, 5]). There were

studied the interpolation properties and the accuracy of these operators respectively

the remainders of the corresponding approximation formulas.

The order of an approximation operator P is given by the degree of exactness

(dex(P )) and by the precision set (pres(P )). Remind that dex (P ) = r if Pf = f

for all f ∈ Pn
r and there exists g ∈ Pn

r+1 such that Pg 6= g, where Pn
r denotes the

space of polynomials in n variables of global degree at most r. The precision set of

an approximation operator is the set of all monomials for which the approximation is

exact [2].

Received by the editors: 01.09.2009.
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Key words and phrases. Bernstein operator, product operator, Boolean sum operator, approximation
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PETRU BLAGA, TEODORA CĂTINAŞ, AND GHEORGHE COMAN

The goal of this paper is to study Bernstein-type operators on tetrahedrons

with straight edges respectively with three curved edges given by functions.

2. Bernstein-type operators on tetrahedrons with straight edges

By affine invariance it is sufficient to consider only the standard tetrahedron

Th with vertices V0 = (0, 0, 0), V1 = (h, 0, 0), V2 = (0, h, 0) and V3 = (0, 0, h), with

three edges τ1, τ2, τ3 along the coordinate axes and with the edges Γ1, Γ2, Γ3 (opposite

to the vertex V0). Also, one denotes by σ012, σ013, σ023 and σ123 the tetrahedron faces

from the planes V0V1V2, V0V1V3, V0V2V3 and V1V2V3 respectively (see the left side of

Figure 1).
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Figure 1. Tetrahedron with straight edges

Let Πi, i = 1, 2, 3, be the parallel planes to the tetrahedron faces that intersect

the tetrahedron edges in three points and Ti, i = 1, 2, 3, be the triangles in which the

planes Πi, i = 1, 2, 3, intersect the tetrahedron faces respectively (see the right side

of Figure 1).

2.1. Univariate operators. On each triangle one defines two Bernstein-type oper-

ators.

Remark 1. We shall study, in detail, only the Bernstein-type operators on the tri-

angle T1. For the triangles T2 and T3 there are obtained analogous results.
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Let us consider the triangle T1 (see Figure 2).

(0,0,z) (x,0,z) (h−z,0,z)

(0,y,z)

(0,h−z,z)

(h−y−z,y,z)

(x,h−x−z,z)

Figure 2. Triangle T1

For the uniform partitions

∆x
m =

{(

i
h − y − z

m
, y, z

)

∣

∣

∣
i = 0, m

}

and

∆y
n =

{(

x, j
h − x − z

n
, z

)

∣

∣

∣
j = 0, n

}

,

of the intervals [(0, y, z) , (h − y − z, y, z)] [(x, 0, z) , (x, h − x − z, z)] respectively, one

considers the Bernstein-type operators Bxy
m and Byx

n defined by

(Bxy
m F ) (x, y, z) =

m
∑

i=0

pm,i (x, y, z)F

(

i
h − y − z

m
, y, z

)

with

pm,i (x, y, z) =

(

m

i

) (

x

h − y − z

)i (

1 − x

h − y − z

)m−i

and

(Byx
n F ) (x, y, z) =

n
∑

j=0

qn,j (x, y, z)F

(

x, j
h − x − z

n
, z

)

with
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qn,j (x, y, z) =

(

n

j

) (

y

h − x − z

)j (

1 − y

h − x − z

)n−j

,

where F is a real-valued function defined on Th.

Theorem 2.1. If F : Th → R then:

(i) Bxy
m F = F on σ023 ∪ σ123,

Byx
n F = F on σ013 ∪ σ123;

(ii) dex (Bxy
m ) = dex (Byx

n ) = 1;

(iii) pres (Bxy
m ) =

{

xiyjzk
∣

∣ i = 0, 1; j, k ∈ N
}

,

pres (Byx
n ) =

{

xiyjzk
∣

∣ j = 0, 1; i, k ∈ N
}

;

(iv) (Bxy
m e2jk) (x, y, z) =

[

x2 +
x (h − x − y − z)

m

]

yjzk,

(Byx
n ei2k) (x, y, z) =

[

y2 +
y (h − x − y − z)

n

]

xizk, i, j, k ∈ N.

Proof. The relations

pm,i (0, y, z) =















1, for i = 0,

0, for i > 0;

pm,i (h − y − z, y, z) =















1, for i = m,

0, for i < m;

(1)

respectively

qn,j (x, 0, z) =















1, for j = 0,

0, for j > 0;

qn,j (x, h − x − z, z) =















1, for j = n,

0, for j < n;

(2)

imply that

(Bxy
m F ) (0, y, z) = F (0, y, z) ,

(Bxy
m F ) (h − y − z, y, z) = F (h − y − z, y, z) ,
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and

(Byx
n F ) (x, 0, y) = F (x, 0, z) ,

(Byx
n F ) (x, h − x − z, z) = F (x, h − x − z, z) ,

i.e., the interpolation properties (i). Regarding the approximation accuracy, we have

(Bxy
m e000) (x, y, z)=

m
∑

i=0

pm,i (x, y, z) = 1,

(Bxy
m e100) (x, y, z)=

m
∑

i=0

(

m

i

)(

x

h−y−z

)i(

1− x

h−y−z

)m−i
i (h − y−z)

m

=x

m−1
∑

i=0

(

m−1

i

) (

x

h−y−z

)i (

1− x

h−y−z

)m−1−i

=x,

(Bxy
m e200) (x, y, z)=

m
∑

i=0

(

m

i

)(

x

h−y−z

)i(

1− x

h−y−z

)m−i

i2
(

h−y−z

m

)2

=

(

h−y−z

m

)2 m
∑

i=2

(

m

i

) (

x

h−y−z

)i (

1− x

h−y−z

)m−i

+
x (h−y−z)

m

=
m−1

m
x2 +

x (h−y−z)

m
=x2 +

x (h−x−y −z)

m
,

(Bxy
m eijk) (x, y, z)=yjzk (Bxy

m ei00) (x, y, z) , i = 0, 1, 2, j, k ∈ N,

respectively

(Byx
n e000) (x, y, z) =

n
∑

j=0

qn,j (x, y, z) = 1,

(Byx
n e010) (x, y, z) = y,

(Byx
n ei2k) (x, y, z) = y2 +

y (h − x−y −z)

n
,

(Byx
n eijk) (x, y, z) = xizk (Byx

n e0j0) (x, y, z) , j = 0, 1, 2, i, k ∈ N,

that are proved in the same way, which imply (ii)-(iv). �

Let

F = Bxy
m F + Rxy

m F

be the approximation formula generated by the operator Bxy
m .
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Theorem 2.2. If F (�, y, z) ∈ C [0, h − y − z] then

∣

∣

∣
(Rxy

m F ) (x, y, z)
∣

∣

∣
6

(

1 +
h

2δ
√

m

)

ω (F (�, y, z) ; δ) , y + z 6 h,

where ω (F (�, y, z) ; δ) is the modulus of continuity of the function F with regard to

the variable x.

Moreover, if δ = 1/
√

m then

∣

∣

∣
(Rxy

m F ) (x, y, z)
∣

∣

∣
6

(

1 +
h

2

)

ω

(

F (�, y, z) ;
1√
m

)

. (3)

Proof. We have

∣

∣

∣
(Rxy

m F ) (x, y, z)
∣

∣

∣
6

m
∑

i=0

pm,i (x, y, z)

∣

∣

∣

∣

F (x, y, z) − F

(

i
h− y − z

m
, y, z

)∣

∣

∣

∣

6

m
∑

i=0

pm,i (x, y, z)

(

1

δ

∣

∣

∣

∣

x − i
h − y − z

m

∣

∣

∣

∣

+ 1

)

ω (F (�, y, z) ; δ)

6

[

1 +
1

δ

( m
∑

i=0

pm,i (x, y, z)

(

x − i
h − y − z

m

)2)1/2]

ω (F (�, y, z) ; δ)

6

[

1 +
1

δ

√

x (h − x − y − z)

m

]

ω (F (�, y, z) ; δ) .

Since,

max
T1

[

x (h − x − y − z)
]

6
h2

4
, z ∈ [0, h] , (4)

we have
∣

∣

∣
(Rxy

m F ) (x, y, z)
∣

∣

∣
6

(

1 +
h

2δ
√

m

)

ω (F (�, y, z) ; δ)

respectively (for δ = 1/
√

m)

∣

∣

∣
(Rxy

m F ) (x, y, z)
∣

∣

∣
6

(

1 +
h

2

)

ω

(

F (�, y, z) ;
1√
m

)

. �

We also have

∣

∣

∣
(Ryx

n F ) (x, y, z)
∣

∣

∣
6

(

1 +
h

2

)

ω

(

F (x, �, z) ;
1√
n

)

. (5)

Theorem 2.3. If F (�, y, z) ∈ C2 [0, h] then

(Rxy
m F ) (x, y, z) = −x (h − x − y − z)

2m
F (2,0,0) (ξ, y, z) ,

8
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for 0 6 ξ 6 h − y − z; y, z ∈ [0, h] , and

∣

∣

∣
(Rxy

m F ) (x, y, z)
∣

∣

∣
6

h2

8m
M200F, (6)

where

MijkF = max
Th

∣

∣F (i,j,k) (x, y, z)
∣

∣.

Proof. Since dex (Bxy
m ) = 1, by Peano’s kernel theorem, follows that

(Rxy
m F ) (x, y, z) =

∫ h−y−z

0

K200 (x, y, z; s)F (2,0,0) (s, y, z)ds,

where the kernel

K200 (x, y, z; s) = (x − s)+ −
m

∑

i=0

pm,i (x, y, z)

(

i
h − y − z

m
− s

)

+

does not change the sign
(

K200 (x, y, z; s) 6 0, s ∈ [0, h − y − z]
)

. By mean value

theorem, one obtains

(Rxy
m F ) (x, y, z) = F (2,0,0) (ξ, y, z)

∫ h−y−z

0

K200 (x, y, z; s)ds

= −x (h−x−y−z)

2m
F (2,0,0) (ξ, y, z) , 0 6 ξ 6 h − y − z.

Now, the inequality of (4) implies (6). �

Remark 2. On the same way it is proved the evaluations of the remainder in the

formula

F = Byx
n F + Ryx

n F

i.e., for F (x, �, z) ∈ C [0, h− x − z]

∣

∣

∣
(Ryx

n F ) (x, y, z)
∣

∣

∣
6

(

1 +
h

2

)

ω

(

F (x, �, z) ;
1√
n

)

(7)

respectively, for F (x, �, z) ∈ C2 [0, h]

∣

∣

∣
(Ryx

n F ) (x, y, z)
∣

∣

∣
6

h2

8n
M020F (8)

on Th.

9
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2.2. Product operators. Let P 1
mn = Bxy

m Byx
n and Q1

nm = Byx
n Bxy

m be the products

of the operators Bxy
m and Byx

n .

We have

(

P 1
mnF

)

(x, y, z) =

m
∑

i=0

n
∑

j=0

pm,i (x, y, z) qn,j

(

i
h − y − z

m
, y, z

)

×

× F

(

i
h − y − z

m
, j

(m − i) (h − z) + iy

mn
, z

)

,

respectively

(

Q1
nmF

)

(x, y, z) =
m

∑

i=0

n
∑

j=0

pm,i

(

x, j
h − x − z

n
, z

)

qn,j (x, y, z)×

× F

(

i
(n − j) (h − z) + jx

mn
, j

h − x − z

n
, z

)

.

Theorem 2.4. If F is a real-valued function defined on Th then

P 1
mnF = F (9)

and

Q1
nmF = F (10)

on τ3 ∪ σ123.

Proof. Taking into account (1) and (2), one obtains

(

P 1
mnF

)

(0, 0, z) = F (0, 0, z) ,

(

P 1
mnF

)

(h − y − z, y, z) = F (h − y − z, y, z) ,

respectively

(

Q1
nmF

)

(0, 0, z) = F (0, 0, z) ,

(

Q1
nmF

)

(h − y − z, y, z) = F (h − y − z, y, z) ,

for all y, z ∈ [0, h]. �

For the approximation error of the operators P 1
mn and Q1

nm, we have the

following theorem.

10
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Theorem 2.5. If F (�, �, z) ∈ C ([0, h] × [0, h]) then

∣

∣

(

F − P 1
mnF

)

(x, y, z)
∣

∣ 6 (1 + h)ω

(

F (�, �, z) ;
1√
m

,
1√
n

)

(11)

and

∣

∣

(

F − Q1
nmF

)

(x, y, z)
∣

∣ 6 (1 + h)ω

(

F (�, �, z) ;
1√
m

,
1√
n

)

(12)

on Th.

Proof. We have

∣

∣

(

F − P 1
mnF

)

(x, y, z)
∣

∣ 6

[

1

δ1

m
∑

i=0

n
∑

j=0

pm,i (x, y, z) qn,j

(

i
h − y − z

m
, y, z

)

×

×
∣

∣

∣

∣

x − i
h − y − z

m

∣

∣

∣

∣

+
1

δ1

m
∑

i=0

n
∑

j=0

pm,i (x, y, z) qn,j

(

i
h − y − z

m
, y, z

)

×

×
∣

∣

∣

∣

y − j
(m − i) (h − z) + iy

mn

∣

∣

∣

∣

+

m
∑

i=0

n
∑

j=0

pm,i (x, y, z) qn,j

(

i
h − y − z

m
, y, z

)]

ω (F (�, �, z) ; δ1, δ2)

6

(

1

δ1

√

x (h−x−y−z)

m
+

1

δ2

√

y (h−x−y−z)

n
+ 1

)

ω (F (�, �, z) ; δ1, δ2) .

As,

x (h − x − y − z) 6
(h − y − z)

2

4
on [0, h − y − z] ,

y (h − x − y − z) 6
(h − x − z)

2

4
on [0, h − x − z] ,

one obtains

∣

∣

(

F − P 1
mnF

)

(x, y, z)
∣

∣ 6

(

1

δ1

h−y−z

2
√

m
+

1

δ2

h−x−z

2
√

n
+1

)

ω (F (�, �, z) ; δ1, δ2)

6

(

1

δ1

h

2
√

m
+

1

δ2

h

2
√

n
+ 1

)

ω (F (�, �, z) ; δ1, δ2) .

Now, for δ1 = 1/
√

m and δ2 = 1/
√

n, one obtains (11). The inequality (12) is proved

in the same way. �

11
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2.3. Boolean sum operators. Let

S1
mn := Bxy

m ⊕ Byx
n = Bxy

m + Byx
n − Bxy

m Byx
n (13)

and

T 1
nm := Byx

n ⊕ Bxy
m = Byx

n + Bxy
m − Byx

n Bxy
m (14)

be the Boolean sums of the operators Bxy
m and Byx

n .

Theorem 2.6. If F is a real-valued function defined on Th then

S1
mnF = F and T 1

nmF = F

on σ013 ∪ σ023 ∪ σ123.

Proof. We have:

(Bxy
m F ) (0, y, z) = F (0, y, z) ,

(

P 1
mnF

)

(0, y, z) = (Byx
n F ) (0, y, z)

which imply that

S1
mnF = F on σ023;

(Byx
n F ) (x, 0, z) = F (x, 0, z) ,

(

P 1
mnF

)

(x, 0, z) = (Bxy
m F ) (x, 0, z)

which imply that

S1
mnF = F on σ013;

and

Bxy
m F = F, Byx

n F = F, P 1
mnF = F, on σ123

which imply that

S1
mnF = F on σ123.

Analogously, it is proved that T 1
nmF = F on σ013 ∪ σ023 ∪ σ123. �

Theorem 2.7. If F ∈ C (Th) then

∣

∣

(

F − S1
mnF

)

(x, y, z)
∣

∣ 6

(

1 +
h

2

)

ω

(

F (�, y, z) ;
1√
m

)

+

+

(

1 +
h

2

)

ω

(

F (x, �, z) ;
1√
n

)

+ (1 + h)ω

(

F (�, �, z) ;
1√
m

,
1√
n

)

on Th.

12
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Proof. From the identity

F − S1
mnF = (F − Bxy

m F ) + (F − Byx
n F ) −

(

F − P 1
mnF

)

one obtains

∣

∣

(

F − S1
mnF

)

(x, y, z)
∣

∣ 6
∣

∣(Rxy
m F ) (x, y, z)

∣

∣ +
∣

∣(Ryx
n F ) (x, y, z)

∣

∣

+
∣

∣

(

F − P 1
mnF

)

(x, y, z)
∣

∣

and from (3), (5), (11), the proof follows. �

Remark 3. The same inequality is obtained for the error
(

F−T 1
nmF

)

(x, y, z) using

instead of (11) the inequality (12).

3. Bernstein-type operators on tetrahedrons with three curved edges

One considers, also, the standard tetrahedron Th with vertices V0 = (0, 0, 0),

V1 = (h, 0, 0), V2 = (0, h, 0) and V3 = (0, 0, h), with three straight edges τ1, τ2, τ3

along the coordinate axes and with three curved edges γ1, γ2, γ3 (opposite to the

vertex V0), defined, respectively, by the one-to-one functions fi and gi, where gi is

the inverse of the function fi, i = 1, 2, 3. Also, one denotes by s012, s013, s023 and the

tetrahedron faces from the planes V0V1V2, V0V1V3, V0V2V3 and V1V2V3 respectively,

by s123 the curved faced (opposite to the vertex V0) (see the left side of Figure 3) and

by ti, i = 1, 2, 3, the triangles with one curved edge in which the planes Πi, i = 1, 2, 3,

intersect the faces of the tetrahedron Th, respectively (see left side of Figure 3).

Next, one considers the particular case when the face s123 is on the sphere

x2 + y2 + z2 = h2, i.e., fi (u) =
√

h2 − u2 and gi (v) =
√

h2 − v2, i = 1, 2, 3 (see right

side of Figure 3)

3.1. Univariate operators. One each triangle ti, i = 1, 2, 3, one defines two

Bernstein-type operators.

We discuss here only on the triangle t1 (Figure 4).

We have

(Bxy
m F ) (x, y, z) =

m
∑

i=0

pm,i (x, y, z)F

(

i

√

h2 − y2 − z2

m
, y, z

)

13
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V
2

γ
3

τ
2

s
023

γ
1

V
3

V
0

s
012

τ
3

s
013

τ 1

γ
2

V
1

V
2

(0,y,(h2−y2)1/2)

(0,(h2−z2)1/2,z)

t
2

(0,y,0)

((h2−y2)1/2,y,0)

(0,0,z)

V
3

V
0

t
1

(x,(h2−x2)1/2,0)

t
3

(x,0,0)
V

1

((h2−z2)1/2,0,z)

(x,0,(h2−x2)1/2)

Figure 3. Tetrahedron with three curved edges

(0,0,z) (x,0,z) ((h2−z2)1/2,0,z)

(0,y,z)

(0,(h2−z2)1/2,z)

((h2−y2−z2)1/2,y,z)

(x,(h2−x2−z2)1/2,z)

Figure 4. Triangle t1

and

(Byx
n F ) (x, y, z) =

n
∑

j=0

qn,j (x, y, z)F

(

x, j

√
h2 − x2 − z2

n
, z

)

with

pm,i (x, y, z) =

(

m

i

)(

x
√

h2 − y2 − z2

)i(

1 − x
√

h2 − y2 − z2

)m−i

,

14
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respectively

qn,j (x, y, z) =

(

n

j

)(

y√
h2 − x2 − z2

)j(

1 − x√
h2 − x2 − z2

)n−j

,

where F is a real-valued function defined on Th.

Following the way used in the Section 2 one can prove the corresponding

theorems:

Theorem 3.1. If F : Th → R then:

(i’) Bxy
m F = F on s023 ∪ s123,

Byx
n F = F on s013 ∪ s123;

(ii’) dex (Bxy
m ) = dex (Byx

n ) = 1;

(iii’) pres (Bxy
m ) =

{

xiyjzk
∣

∣ i = 0, 1; j, k ∈ N
}

,

pres (Byx
n ) =

{

xiyjzk
∣

∣ j = 0, 1; i, k ∈ N
}

;

(iv’) (Bxy
m e2jk) (x, y, z) =

[

x2 +
x
(
√

h2 − y2 − z2 − x
)

m

]

xizk,

(Byx
n ei2k) (x, y, z) =

[

y2 +
y
(√

h2 − x2 − z2 − y
)

n

]

xizk, i, j, k ∈ N.

Let

F = Bxy
m F + Rxy

m F

be the approximation formula generated by the operator Bxy
m .

Theorem 3.2. If F (�, y, z) ∈ C
[

0,
√

h2 − y2 − z2
]

then

∣

∣

∣
(Rxy

m F ) (x, y, z)
∣

∣

∣
6

(

1 +
h

2δ
√

m

)

ω (F (�, y, z) ; δ) , y + z 6 h,

respectively
∣

∣

∣
(Rxy

m F ) (x, y, z)
∣

∣

∣
6

(

1 +
h

2

)

ω

(

F (�, y, z) ;
1√
m

)

.

Theorem 3.3. If F (�, y, z) ∈ C2 [0, h] then

∣

∣

∣
(Rxy

m F ) (x, y, z)
∣

∣

∣
= −

x
(

√

h2 − y2 − z2 − x
)

2m
F (2,0,0) (ξ, y, z) ,

for 0 6 ξ 6
√

h2 − y2 − z2, y, z ∈ [0, h], and

∣

∣

∣
(Rxy

m F ) (x, y, z)
∣

∣

∣
6

h2

8m
M200F.
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Remark 4. Analogous results take place for the remainder in the approximation

formula

F = Byx
n F + Ryx

n F.

3.2. Product operators. Let Pmn = Bxy
m Byx

n and Qnm = Byx
n Bxy

m be the products

of the operators Bxy
m and Byx

n , i.e.,

(PmnF ) (x, y, z) =

m
∑

i=0

n
∑

j=0

pm,i (x, y, z) qn,j

(

i

√

h2 − y2 − z2

m
, y, z

)

×

× F

(

i

√

h2 − y2 − z2

m
, j

√

(m2 − i2) (h2 − z2) + i2y2

mn
, z

)

,

respectively

(QnmF ) (x, y, z) =
m

∑

i=0

n
∑

j=0

pm,i

(

x, j

√
h2 − x2 − z2

n
, z

)

qn,j (x, y, z)×

× F

(

i

√

(n2 − j2) (h2 − z2) + j2x2

mn
, j

√
h2 − x2 − z2

n
, z

)

.

Theorem 3.4. If F : Th → R then

PmnF = F and QnmF = F on τ3 ∪ s123.

Theorem 3.5. If F (�, �, z) ∈ C ([0, h] × [0, h]), then

∣

∣(F − PmnF ) (x, y, z)
∣

∣ 6 (1 + h)ω

(

F (�, �, z) ;
1√
m

,
1√
n

)

and

∣

∣(F − QnmF ) (x, y, z)
∣

∣ 6 (1 + h)ω

(

F (�, �, z) ;
1√
m

,
1√
n

)

.

3.3. Boolean sum operators. If Smn = Bxy
m ⊕ Byx

n and Tnm = Byx
n ⊕ Bxy

m are the

Boolean sums of the operators Bxy
m and Byx

n , then we have:

Theorem 3.6. If F : Th → R then

SmnF = F and TnmF = F on s013 ∪ s023 ∪ s123.
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Theorem 3.7. If F ∈ C (Th) then

∣

∣(F − SmnF ) (x, y, z)
∣

∣ 6

(

1 +
h

2

)

ω

(

F (�, y, z) ;
1√
m

)

+

(

1 +
h

2

)

ω

(

F (x, �, z) ;
1√
n

)

+
(

1 + h
)

ω

(

F (�, �, z) ;
1√
m

,
1√
n

)

,

and a similar inequality holds for the error F − TnmF .
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LIV, Number 4, December 2009

SUBORDINATION CHAINS AND QUASICONFORMAL
EXTENSIONS OF HOLOMORPHIC MAPPINGS IN Cn

PAULA CURT

Abstract. Let B be the unit ball in Cn with respect to the Euclidean

norm. In this paper, by using the method of subordination chains, we

obtain a sufficient condition for a normalized quasiregular mapping f to

be extended to a quasiconformal homeomorphism of R2n onto itself.

1. Introduction and preliminaries

J.A. Pfaltzgraff [12] proved that if 0 ≤ q < 1 and f ∈ H(B) is a quasiregular

mapping, which satisfies the condition

(1− ‖z‖2)‖[Df(z)]−1D2f(z)(z, ·)‖ ≤ q, z ∈ B,

then f is biholomorphic on B and extends to a quasiconformal homeomorphism of

R2n onto itself.

The problem of quasiconformal extensions for quasiregular holomorphic map-

pings on the unit ball in Cn has been studied by H. Hamada and G. Kohr [11], P.

Curt [5], P. Curt and G. Kohr [7], [8], [9].

In this paper we shall generalize the results due to J.A. Pfaltzgraff [12], P.

Curt [5].

Let Cn denote the space of n-complex variables z = (z1, . . . , zn) with the

usual inner product 〈z, w〉 =
n∑

i=1

ziwi and Euclidean norm ‖z‖ = 〈z, z〉1/2. Let B

denote the open unit ball in Cn and let U be the unit disc in C.

Received by the editors: 11.10.2008.

2000 Mathematics Subject Classification. Primary 32H, Secondary 30C45.

Key words and phrases. Loewner chains, quasiregular mapping, quasiconformal mapping.
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Let H(Ω) be the set of holomorphic mappings from a domain Ω in Cn into

Cn. If f ∈ H(B), let Jf (z) = det Df(z) be the complex jacobian determinant of f at

z. Also let L(Cn) be the space of continuous linear mappings from Cn into Cn with

the standard operator norm

‖A‖ = sup{‖Az‖ : ‖z‖ = 1},

and let I be the identity in L(Cn). A mapping f ∈ H(B) is said to be normalized if

f(0) = 0 and Df(0) = I.

We say that a mapping f ∈ H(B) is K-quasiregular, K ≥ 1, if

‖Df(z)‖n ≤ K|detDf(z)|, z ∈ B.

A mapping f ∈ H(B) is called quasiregular if f is K-quasiregular for some

K ≥ 1. It is well known that quasiregular holomorphic mappings are locally biholo-

morphic.

Definition 1.1. Let G and G′ be domains in Rm. A homeomorphism f : G → G′

is said to be K-quasiconformal if it is differentiable a.e., ACL (absolutely continuous

on lines) and

‖Df(z)‖m ≤ K|det Df(x)| a.e. x ∈ G,

where Df(x) denotes the real Jacobian matrix of f and K is a constant.

Note that a K-quasiregular biholomorphic mapping is K2-quasiconformal.

If f, g ∈ H(B), we say that f is subordinate to g (and write f ≺ g) if there

exists a Schwarz mapping v (i.e. v ∈ H(B) and ‖v(z)‖ ≤ ‖z‖, z ∈ B) such that

f(z) = g(v(z)), z ∈ B.

Definition 1.2. A mapping L : B × [0,∞) → Cn is called a subordination chain if

the following conditions hold:

(i) L(0, t) = 0 and L(·, t) ∈ H(B) for t ≥ 0;

(ii) L(·, s) ≺ L(·, t) for 0 ≤ s ≤ t < ∞.

If L(z, t) is a subordination chain such that L(·, t) is biholomorphic on B for

t ∈ [0,∞), then we say that L(z, t) is a univalent subordination chain (or a Loewner

chain).
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If L(z, t) is a univalent subordination chain such that DL(0, t) = etI, we say

that L(z, t) is a normalized Loewner chain.

An important role in our discussion is played by the n-dimensional version of

the class of holomorphic functions on the unit disc with positive real part

N = {h ∈ H(B) : h(0) = 0, Re 〈h(z), z〉 > 0, z ∈ B \ {0}}

M = {h ∈ N , Dh(0) = I}.

The authors ([10, Theorem 1.10]) and [6, Theorem 2.3]) proved that nor-

malized univalent subordination chains satisfy the generalized Loewner differential

equation. Using an elementary change of variable, it is not difficult to reformulate the

mentioned result in the case of normalized subordination chains L(z, t) = a(t)z + . . . ,

where a : [0,∞) → C, a ∈ C1([0,∞)), a(0) = 1, and a(t) →∞ as t →∞.

Theorem 1.1. Let L(z, t) : B × [0,∞) → Cn be a Loewner chain such that L(z, t) =

a(t)z + . . . , where a ∈ C1([0,∞)), a(0) = 1, and lim
n→∞

|a(t)| = ∞. Then there exists

a mapping h = h(z, t) : B × [0,∞) → Cn such that h(·, t) ∈ N for t ≥ 0, h(z, ·) is

measurable on [0,∞) for z ∈ B, and

∂L

∂z
(z, t) = DL(z, t)h(z, t), a.e. t ≥ 0, z ∈ B.

Recently P. Curt and G. Kohr [9] proved the following result.

Theorem 1.2. Let L(z, t) : B × [0,∞) → Cn, L(z, t) = a(t)z + . . . , be a Loewner

chain such that a(·) ∈ C1[0,∞), a(0) = 1 and lim
t→∞

|a(t)| = ∞. Assume that the

following conditions hold:

(i) There exists K > 0 such that L(·, t) is K-quasiregular for each t ≥ 0.

(ii) There exist some constants M > 0 and α ∈ [0, 1) such that

‖DL(z, t)‖ ≤ M |a(t)|
(1− ‖z‖)α

, z ∈ B, t ∈ [0,∞).

(iii) There exists a sequence {tm}m∈N, tm > 0, lim
m→∞

tm = ∞, and a mapping

F ∈ H(B) such that

lim
m→∞

L(z, tm)
a(tm)

= F (z)

locally uniformly on B.

21



PAULA CURT

Further, assume that the mapping h(z, t) defined by Theorem 2 satisfies the

following conditions:

(iv) There exists a constant C > 0 such that

C‖z‖2 ≤ R〈h(z, t), z〉, z ∈ B, t ∈ [0,∞).

(v) There exists a constant C1 > 0 such that

‖h(z, t)‖ ≤ C1, z ∈ B, t ∈ [0,∞).

Then f = L(·, 0) extends to a quasiconformal homeomorphism of R2n onto

itself.

In this paper we obtain a sufficient condition for a normalized quasiregu-

lar holomorphic mapping on B, which can be embedded as the first element of a

nonnormalized univalent subordination chain, to be extended to a quasiconformal

homeomorphism of R2n onto itself.

2. Main results

Theorem 2.1. Let f, g ∈ H(B) be such that f(0) = g(0) = 0, Df(0) = Dg(0) = I

and g is quasiregular in B. Also let a ≥ 2. If there is q ∈ [0, 1) such that 1 − 2
α
≤

q <
2
α

,

2
α

∥∥∥[Dg(z)]−1Df(z)− α

2
I
∥∥∥ ≤ q < 1 (2.1)

and
2
α

∥∥∥‖z‖α{[Dg(z)]−1Df(z)− I} (2.2)

+(1− ‖z‖α)[Dg(z)]−1D2g(z)(z, ·) +
(
1− α

2

)
I
∥∥∥ ≤ q < 1, z ∈ B,

then f extends to a quasiconformal homeomorphism of R2n onto itself.

Proof. We shall show that the conditions (2.1) and (2.2) enable us to embed f as

the initial element f(z) = L(z, 0) of a suitable subordination chain.

We define

L(z, t) = f(e−tz) + (eαt − 1)e−tDf(ze−t)(z), t ∈ [0,∞), z ∈ B. (2.3)
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In [4] the authors proved that the mapping L defined by (2.3) is a subordi-

nation chain. In the same paper the authors showed that the subordination chain

defined by (2.3) satisfies the generalized Loewner equation where the mapping h is

defined by:

h(z, t) = [I − E(z, t)]−1[I + E(z, t)](z), q ∈ B, t ∈ [0,∞) (2.4)

and the mapping E : B × [0,∞) → L(Cn) is defined by

E(z, t) = − 2
α

e−αt{[Dg(ze−t)]−1Df(ze−t)− I} (2.5)

− 2
α

(1− e−αt)[Dg(ze−t)]−1D2g(ze−t)(ze−t, ·)− I

(
2
α
− 1

)
.

Further, we shall show that ‖E(z, t)‖ ≤ q for all (z, t) ∈ B × [0,∞).

We have

‖E(z, 0)‖ =
2
α

∥∥∥[Dg(z)]−1Df(z)− α

2
I
∥∥∥ ≤ q < 1, z ∈ B,

by the condition (2.1). Next, fix t ∈ (0,∞). In view of the maximum principle for

holomorphic mappings into complex Banach spaces, we obtain that

‖E(z, t)‖ ≤ max
‖w‖=1

‖E(w, t)‖

=
2
α

max
‖w‖=1

∥∥∥‖we−t‖α[Dg(we−t)]−1[Df(we−t)− In]

+(1− ‖we−t‖α)[Dg(we−t)]−1D2g(we−t)(we−t, ·) + I
(
1− α

2

) ∥∥∥, z ∈ B.

Hence, we deduce from the condition (2.2) that

‖E(z, t)‖ ≤ q < 1, z ∈ Bn.

Therefore

‖E(z, t)‖ ≤ q < 1, z ∈ B, t ∈ [0,∞)

and hence I − E(z, t) is an invertible linear operator.

Further calculations show that

∂L(z, t)
∂t

=
α

2
e(α−1)tDg(ze−t)[I + E(z, t)](z) (2.6)

= DL(z, t)[I − E(z, t)]−1[I + E(z, t)](z)
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= DL(z, t)h(z, t), t ∈ [0,∞), z ∈ B.

On the other hand, taking into account the conditions (i) and (ii) in the

hypothesis, we deduce that

(1− ‖z‖α)‖[Dg(z)]−1D2g(z)(z, ·)‖ (2.7)

≤ q · α

2
+ ‖z‖α · α

2
· q + (1− ‖z‖α)

(α

2
− 1

)
= ‖z‖α

(
q
α

2
− α

2
+ 1

)
+ q

α

2
+

α

2
− 1

≤ max
x∈[0,1]

{
x

(
q
α

2
− α

2
+ 1

)
+ q

α

2
+

α

2
− 1

}
= max

{
q
α

2
+

α

2
− 1, qα

}
= qα = 2β, z ∈ B,

where β =
qα

2
< 1. Since α ≥ 2, we deduce from the above relation that

(1− ‖z‖2)‖[Dg(z)]−1D2g(z)(z, ·)‖ ≤ 2β, β ≤ ‖z‖ < 1.

From (2.6), by using a similar argument with that used in the proof of The-

orem 2.1 [9] we obtain that there exists M > 0 such that

|det Dg(z)| ≤ M

(1− ‖z‖)nβ
, z ∈ B, (2.8)

and hence

‖Dg(z)‖ ≤ L

(1− ‖z‖)β
. (2.9)

It remains to prove that the mappings L(·, t), t ≥ 0 are quasiregular. For the

subordination chain defined by (2.3) we have

DL(z, t) = e(α−1)t α

2
Dg(ze−t)[I − E(z, t)], z ∈ B, t ≥ 0

where L = n
√

ML.

Since g is a quasiregular holomorphic mapping and the following inequality

holds

1− q ≤ ‖I − E(z, t)‖ ≤ 1 + q, z ∈ B, t ≥ 0

we easily obtain

‖DL(z, t)‖ ≤ α

2
e(α−1)t(1 + q)

L

(1− ‖z‖)β
(2.10)
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=
L∗a(t)

(1− ‖z‖)β
, z ∈ B, t ∈ [0,∞).

On the other hand, we have

‖DL(z, t)‖n ≤
(α

2

)n

en(α−1)t‖Dg(ze−t)‖n(1 + q)n (2.11)

≤
(α

2

)n

en(α−1)tK|det Dg(ze−t)|(1 + q)n

≤
(

1 + q

1− q

)n

K|detDL(z, t)|, z ∈ B, t ≥ 0.

Since the conditions of Theorem 1.2 are satisfied we obtain that the function

f(z) = L(z, ·) admits a quasiconformal extension defined on R2n.

Observe that:

a) if f = g and α = 2 we obtain Theorem 3.1 of [12],

b) if α = 2 we obtain Theorem 2.1 of [5].
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LIV, Number 4, December 2009

ON APPLICATIONS OF THE REPRODUCING KERNEL METHOD
FOR CONSTRUCTION OF CUBATURE FORMULAS

EMIL A. DANCIU

Abstract. In this paper we use the method of Reproducing Kernel and

Gegenbauer polynomials for constructing cubature formulas on the unit

ball Bd, and on the standard simplex. Also we study the relation between

interpolation polynomials based on the zeros of quasi-orthogonal Cheby-

shev polynomials and the nodes of near minimal degree cubature formulas.

1. Introduction

1) The Reproducing Kernel of a Hilbert space of functions

One calls reproducing Kernel of the Hilbert space H of functions defined on

D, real valued (D ⊂ Rd), a function K = K(x, y) : D × D → R, which verifies the

following conditions

i) K(·, y) ∈ H, for any fixed y ∈ D,

ii) < f, K(·, y) > = f(y), ∀f ∈ H.

It is known that in the Hilbert space H are stated the following results.

Theorem 1.1. If the Hilbert space H has a Reproducing Kernel, then this kernel is

unique and symmetric with respect to its arguments.

Theorem 1.2. If L is a linear and bounded functional defined on the Hilbert space

H, which has a Reproducing Kernel, then the representation function corresponding

to L is g(x) = Ly[K(x, y)].

Received by the editors: 05.01.2009.

2000 Mathematics Subject Classification. 41A25, 41A36, 65D32.

Key words and phrases. Reproducing Kernel, cubature formulas, Gegenbauer polynomials on simplex,

on ball.
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We consider now, H = Pd
n the space of all polynomials of degree at most n,

and D ⊂ Rd.

It is known that dimPd
n(D) =

(
n+d

d

)
, if and only if int(D) 6= ∅.

Let f ∈ Pd
n be a polynomial of degree exact n, and we denote

µ = µ(d, n) =
(

n + d

d

)
=

(n + d)!
n!d!

.

It was shown that the number of terms in the representation of the polynomial f

is equal to µ(d, n) and this number represents the number of the monomials in the

expression of f = f(x).

Let W = W (x) : D → R+
0 , (D ⊂ Rd), be a weight function.

Theorem 1.3. For a given region (domain) D, D ⊂ Rd and a given weight function

W = W (x) : D → R+
0 , exists and are unique r(d, n) = µ(d, n − 1) = (n−1+d)!

(n−1)!d!

orthogonal polynomials of degree n, which are linearly independent.

Let now, {ei(x)}∞i=0, be the monomials which are ordered increasing, and for

the same degree for certain terms, we use the lexicographic order.

So, the set {ei(x)}, i = 1, µ(d, n) represents all the monomials of degree at

most n.

By applying the Gram-Schmidt orthonormalization process, we can obtain

an orthonormalized set with respect to the scalar product

(f, g) = I(f · g) =
∫

D

f(x)g(x)W (x)dx. (1.1)

2) The Gegenbauer (ultraspherical) orthogonal polynomials

We present now, some of the properties of Gegenbauer polynomials, which

play an important role in the applications of the cubature formulas theory by using

the Reproducing Kernel method.

The Gegenbauer polynomials are usually defined by the following generating

function:

(1− 2tz + z2)−λ =
∞∑

n=0

C(λ)
n (t)zn, (1.2)

where |z| < 1, |t| ≤ 1, λ > 0.
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ON APPLICATIONS OF THE REPRODUCING KERNEL METHOD

The coefficients C
(λ)
n (t) are algebraic polynomials of degree n which are called

the Gegenbauer polynomials associated with λ. One can prove that the family of poly-

nomials {C(λ)
n }∞n=0 is a complete orthogonal system for the weighted space L2(I, W ),

I = [−1, 1], W (t) = Wλ(t) := (1− t2)λ− 1
2 , and we have∫

[−1,1]

C(λ)
n (t)C(λ)

m (t)W (t)dt =

 0, m 6= n

γn,λ = π1/2(2λ)nΓ(λ+1/2)
(n+λ)n!Γ(λ) , m = n

where we use (a)λ, the Pockhammer symbol,

(a)0 := 0, (a)n := a(a + 1) . . . (a + n− 1) = Γ(a + n)/Γ(a).

Also we have,

C(λ)
n (−t) = (−1)nC(λ)

n (t), C(λ)
n (1) =

(2λ)n
n!

and C
(λ)
0 = 1. (1.3)

The Gegenbauer polynomials can also be defined by the well known Ro-

drigues’s formula (see [7] Szegö)

C(λ)
n (t) = (−1)nαn,λ(1− t2)−λ+ 1

2
dn

dtn
[(1− t2)n+λ− 1

2 ]

where,

αn,λ =
(2λ)n

n!2n(λ + 1
2 )n

.

It is known that there exists the following identity which relates Gegenbauer

polynomials with different weights

dk

dtk
C(λ)

n (t) = 2k(λ)kC
(λ+k)
n−k , k = 1, 2, . . . n. (1.4)

For λ = 1/2, we can obtain the Legendre polynomial

Pn(t) =
(−1)n

2nn!
dn

dtn
[(1− t2)n] = C(1/2)

n (t)

and for λ = 1 we obtain the Chebyshev polynomial of second kind Un,

Un =
sin[(n + 1)arccost]√

1− t2
= C(1)

n (t).

Also, we can obtain the Chebyshev polynomial of the first kind

Tn(t) := cos(narccost) = C(0)
n ,
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by considering C
(0)
n associated with the weight function W0(t) = (1− t2)−1/2.

We can also consider the Gegenbauer polynomials C
(λ)
n , for λ < 0, λ ∈ Z−

namely,

C(λ)
n (t) := α(1− t2)−λ+ 1

2
dn

dtn
[
(1− t2)n+λ− 1

2
]
, λ < 0

where α is an constant independent of t and we can write the identity

dk

dtk
C(λ)

n (t) = cC
(λ+k)
n−k (t), k = 1, 2 . . . , n,

where c is independent of t.

3) The relation between Cubature Formulas and the Reproducing Kernels

The Reproducing Kernel method was first used by I.PMysovskikh ([3]) and

later studied by Möller ([2]).

Let a given weight function W = W (x) be defined on a subset D ⊂ Rd. Then,

a cubature formula is a linear combination of function values on some points, that

approximates
∫

D
f(x)W (x)dx.

Let Id[f ] =
∫

D
f(x)W (x)dx, f ∈ C(D), D ⊂ Rd for which the moments

Id[xα], α ∈ Nd exists and W=W(x) is nonnegative.

We say that the cubature formula has the degree of exactness m, if it yields

the exact value of the integrals for any function f ∈ Pd
m, which is a polynomials of

degree at most m.

We denote the space of polynomials of degree at most n by Pd
n.

Let

{Pn
k : 1 ≤ k ≤ r(d, n)} , 0 ≤ n < ∞,

(where r(d, n) = µ(d, n− 1) =
(
d+n−1

d

)
), denote a sequence of orthonormal polynomi-

als of degree n with respect to the inner product (1.1), which are linearly independent,

where the superscript n means that Pn
k ∈ Pd

n and let denote by Pn = (Pn
1 , . . . , Pn

r(d,n)),

the vector of all these polynomials.
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The n − th Reproducing Kernel Kn(x, y) of the Hilbert space H = Pd
n is

defined by:

Kn(x, y) =
n∑

k=0

PT
k (x)Pk(y) =

n∑
k=0

r(d,k)∑
j=1

P k
j (x)P k

j (y), ∀ x, y ∈ Rd. (1.5)

The method of Reproducing Kernel requires to choose d points: a(1), . . . ,

a(d) ∈ Rd, such that the hypersurfaces H1, . . . Hd, where Hi is the surface defined by

Hi = {x ∈ Rd : Kn(x, a(i)) = 0}, intersect at nd points. The points a(1), . . . , a(d) are

chosen as follows.

For a(1) we choose any point that is not a common zero of the polynomial

set Pn. If the points a(1), . . . , a(r−1) have been chosen, then we choose a(r) ∈
r−1⋂
k=1

Hk,

and a(r) may be any point of this set, which is not a common zero of Pn.

We assume that the infinity is not a common point of H1, . . . ,Hd.

We present now the following results.

a) The Method of Reproducing Kernel

If H1, . . . ,Hd defined by a(1), . . . , a(d), intersect at nd distinct points:

{x(i), i = 1, nd}, then there is a cubature formula of degree 2n,

Qn(f) =
d∑

i=1

λif(a(i)) +
nd∑

j=1

µjf(x(j)), ∀f ∈ Pd
2n, (1.6)

where λi = 1/Kn(a(i), a(i)).

If the weight function W = W (x) is centrally symmetric, that is, W = W (x)

and its support set D satisfy ∀x ∈ D ⇒ −x ∈ D, W (−x) = W (x), then there is a

modified method of Reproducing Kernel due to Möller ([2]).

Let K̃n denote:

K̃n(x, y) =
n∑

k=0

′r(d,k)∑
j=0

′

P k
j (x)P k

j (y), ∀x, y ∈ Rd, (1.7)

where
∑′ means that the summation is taken over those j so that the corresponding

P k
j has the same parity as n. We choose the points a(i) as before except that we

replace Hi by the hypersurface H̃i defined by H̃i = {x ∈ Rd : K̃n(x, a(i)) = 0} and
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we suppose that the infinity is not a common point of H̃1. . . . , H̃d. Then we have, if

W = W (x) is centrally symmetric on D ⊂ Rd.

b) The Modified method of Reproducing Kernel

If H̃1, . . . , H̃d defined by a(1), . . . , a(d) intersect at nd distinct points: {x(i),

i = 1, nd}, then there is a cubature formula of degree 2n + 1,

Qn(f) =
d∑

i=1

λi[f(a(i)) + f(−a(i))]/2 +
nd∑

j=1

µjf(x(j)), ∀f ∈ Pd
2n+1, (1.8)

where λi = 1/K̃n(a(i), a(i)).

If d = 2, then the method requires to choose two points a(1) and a(2) so that

the polynomial surface K̃n(x, a(1)) and K̃n(x, a(2)) have n2 common zeros.

In the paper [12] Y. Xu was presented a compact formula of the Reproducing

Kernel for the Jacobi type weight functions on the unit ball and on the standard

simplex.

The method of Reproducing Kernel yields cubature formulas of degree 2n+1

or 2n with nd + dn or nd + dn − 1 nodes, which is greater than the theoretic lower

bound for the number of nodes.

2. Cubature formulas on the unit ball using the reproducing kernel method

Let x, y ∈ Rd and we use the following notations:

< x, y >= x1y1 + · · ·+ xdyd, the usual Euclidian inner product,

|x|2 =‖ x ‖2 =< x, x >, the Euclidian norm.

We consider cubature formulas on the unit ball Bd = {x ∈ Rd : ‖ x ‖≤ 1},

with respect to the normalized weight function

Wµ(x) = wµ(1− ‖ x ‖2)µ− 1
2 , µ ≥ 0, x ∈ Bd, (2.1)

where wµ is a constant chosen so that the integral
∫

Bd Wµ(x)dx = 1, and we have

wµ =
2

ωd−1

Γ(µ + d+1
2 )

Γ(µ + 1
2 )Γ(d

2 )
=

Γ(µ + d+1
2 )

πd/2Γ(µ + 1
2 )

,

where ωd−1 = 2πd/2/Γ(d/2) is the surface area of the unit sphere in Rd.

32



ON APPLICATIONS OF THE REPRODUCING KERNEL METHOD

Let Kn(., .) be the n−th Reproducing Kernel with respect to weight function

Wµ. In [12] is presented the following compact formula for the representation of this

kernel.

Kn(Wµ;x, y) = cµ

∫ 1

−1

[
C

(µ+ d+1
2 )

n (< x, y > +
√

1− ‖ x ‖2
√

1− ‖ y ‖2 t)+ (2.2)

+C
(µ+ d+1

2 )
n−1 (< x, y > +

√
1− ‖ x ‖2

√
1− ‖ y ‖2 t)

]
(1− t2)µ−1dt,

where cµ = 1/
∫ 1

−1
(1 − t2)µ−1dt and C

(λ)
n is the Gegenbauer polynomial of degree n

defined by the generating function (1.2), which have the property

C(λ)
n (−t) = (−1)nC(λ)

n (t).

If we take in consideration the expressions: Kn(Wµ;x, y)±Kn(Wµ;x,−y) for n being

even and odd, respectively then it follows from the formula (1.5) and (1.7) that the

modified Reproducing Kernel function K̃n(Wµ; ...) is given by the formula

K̃n(Wµ;x, y) = cµ

∫ 1

−1

C
(µ+ d+1

2 )
n (< x, y > +

√
1− ‖ x ‖2

√
1− ‖ y ‖2 t)(1− t2)µ−1dt.

(2.3)

For µ → 0, in (2.2) and (2.3), one can use the limit

lim
µ→0

cµ

∫ 1

−1

f(t)(1− t2)µ−1dt =
f(1) + f(−1)

2
. (2.4)

In the case µ = 1
2 , we have: W1/2(x) = d/ωd−1.

If µ = 0 we have: W0(x) = w0(1− ‖ x ‖)−1/2 and we obtain:

K̃n(W0;x, y) =
1
2

[
C(3/2)

n (< x, y > +
√

1− ‖ x ‖2
√

1− ‖ y ‖2)+ (2.5)

+C(3/2)
n (< x, y > −

√
1− ‖ x ‖2

√
1− ‖ y ‖2)

]
.

If we consider ‖ a ‖= 1, we have

K̃n(Wµ;x, a) = C(µ+(d+1)/2)
n (< x, a >). (2.6)

In this case, if ‖ a ‖= 1 then a is not a common zero of the polynomial set

Pn, because that Pn has no common zeros if n is even, and it has only origin as

common zero if n is odd.
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2.1 The construction of a family of cubature formulas on Bd by using the

Gegenbauer polynomials

One can use the properties of the Gegenbauer polynomial C
(λ)
n (t), λ = µ +

(d + 1)/2, that all its zeros are inside (−1, 1), and we denote these zeros by:

−1 < t1,n < t2,n < · · · < tn,n < 1, where λ = µ + (d + 1)/2.

It is known that these zeros are symmetric with respect to the origin, that

is, they satisfy the relation ti,n = −tn−(i−1),n. So, in [12] was given the following

strategy to choose the points a(1), . . . , a(d) as follows.

Let n be fixed and let t∗,n be a fixed zero of C
(µ+(d+1)/2)
n (t), and let define:

a(1) = (1, 0, . . . , 0), a(k) = (b1, . . . , bk−1,
√

1− b2
1 − · · · − b2

k−1, 0, . . . , 0),

0 ≤ k ≤ d, where the components b1, . . . , bd−1 are determined inductively by the

conditions: < a(k), a(k+1) > = t∗,n, which is equivalent with

b2
1 + · · ·+ b2

k−1 +
√

1− b2
1 − · · · − b2

k−1 bk = t∗,n, k = 1, d− 1,

from which are obtained:

b1 = t∗,n, b2 = (t∗,n − b2
1)/

√
1− b2

1, . . . , and we have bk ≤
√

1− b2
1 − · · · − b2

k−1,

because t∗,n < 1, hence a(k+1) is well defined. It follows that

k⋂
i=1

Hk = {x ∈ Rd :< x, a(1) >= ti1,n, . . . , < x, a(k) >= tik,n, 1 ≤ i1, . . . , ik ≤ n}

for k = 2, d. If we assume that a(k) ∈ H1

⋂
· · ·

⋂
Hk−1, and we require that a(k+1) ∈⋂k

i=1 Hi, one observe that a(2) = (t∗,n,
√

1− t2∗,n, 0, . . . , 0) ∈ H1.

Inductively, if we assume that a(k) ∈
⋂k−1

i=1 Hi, that is

< a(i), a(k) >= t∗,n, 1 ≤ i ≤ k − 1.

Since a(k+1) satisfies < a(k), a(k+1) >= t∗,n it follows that:

< a(i), a(k+1) >= t∗,n, i = 1, k,

that is a(k+1) ∈ H1

⋂
· · ·

⋂
Hk.
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One can observe that H1

⋂
· · ·

⋂
Hd contains nd distinct points, which are

given by the relations:

< x, a(1) > = ti1,n, . . . , < x, a(d) > = tid,n, 1 ≤ i1, . . . , id ≤ n. (2.7)

Theorem 2.1. Let a(1), . . . , a(d) be defined as above and let Hk be the surface

defined by Hk = {x ∈ Rd : K̃n(Wµ;x, a(k)) = 0}. Then the modified method of the

Reproducing Kernel yields, a cubature formula of degree 2n+1, based on a(1), . . . , a(d)

and the nd distinct points determined by (2.7) and have the form

Qn(f) =
d∑

i=1

λi[f(a(i)) + f(−a(i))]/2 +
nd∑

j=1

µjf(x(j)), ∀f ∈ Pd
2n+1, (2.8)

where λi = 1/K̃n(a(i), a(i)).

We obtain by using (2.6) that

λi = 1/K̃n(Wµ; a(i), a(i)) = 1/C(µ+(d+1)/2)
n (1) = 1/

(
n + 2µ + d

n

)
. (2.9)

For fixed d and n, the others weights µj in (2.8) can be determined by solving a linear

system of equations.

From the fact that in definition of a(k), if we use the condition

< a(k−1), a(k) >= t∗,n,

we remark that one can choose t∗,n to be any zero of the polynomial C
(µ+(d+1)/2)
n (t)

and we can get many different formulas from this method.

Remark 2.1. When n is an odd integer, then C
(µ+(d+1)/2)
n is an odd polynomial,

and it follows that t = 0 is a zero of this polynomial.

If we take t∗,n = 0 in the definition of a(k) in the above construction, then

we obtain: a(1) = e1, . . . , a
(d) = ed, where {ei, i = 1, d} is the standard basis of Rd,

that is, e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , ed = (0, . . . , 0, 1).

But from (2.6) it follows that

K̃n(Wµ;x, ek) = C(µ+(d+1)/2)
n (xk), k = 1, d
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and we observe that the nd intersection points of H1

⋂
· · ·

⋂
Hd, namely {x(i), i =

1, nd}, are the tensor product of the zeros obtained from (2.7).

Let n be an odd integer and let t1,n, . . . , tn,n be the zeros of C
(µ+(d+1)/2)
n (t).

Then there is a cubature of degree 2n + 1 on Bd of the form:∫
Bd

f(x)Wµ(x)dx =
1n + 2µ + d

n


n∑

k=1

[
f(ek) + f(−ek)

]
/2+ (2.10)

+
n∑

k1=1

· · ·
n∑

kd=1

µk1,...,kd
f(tk1,n, . . . , tkd,n), ∀f ∈ Pd

2n+1.

The weights µj in the formula (2.10) can be computed by solving a linear

system equations for a given n and d.

In the case d = 2, we can consider the polynomials lk,n defined by:

lk,n =
n∏

i=1,i 6=k

x− ti,n
tk,n − ti,n

=
C

(µ+(d+1)/2)
n (t)

(2µ + d + 1)Cµ+(d+3)/2)
n−1 (tk,n)(x− tk,n)

,

which are the fundamental interpolation polynomials based on the zeros of

C
(µ+(d+1)/2)
n (t) which satisfies the interpolation conditions: lk,n(tj,n) = δk,j , by using

(1.4).

One observe that the polynomial lk1,n(x1)lk2,n(x2)(1 − x2
1 − x2

2) is of degree

2(n− 1) + 2 = 2n, then it will be integrated exactly by the cubature formula (2.10),

and from the interpolation property of lk,n we will obtain the values of the weights

are

µk1,k2 =
∫

B2
lk1,n(x1)lk2,n(x2)(1− x2

1 − x2
2)Wµ(x1, x2)dx1dx2.

The formula (2.10) uses the tensor product of nodes of an one variable quad-

rature rule. The points {t1,n, . . . , tn,n} are nodes of a Gaussian quadrature formula of

degree 2n−1 on [−1, 1] for the measure: W (x) = (1−x2)µ+d/2dx on [−1, 1]. Moreover,

{−1, t1,n, . . . , tn,n, 1} form the nodes of a Gauss − Lobatto type quadrature formula

of degree 2n + 1,∫ 1

−1

f(x)(1− x2)µ+d/2dx = Af(−1) +
n∑

k=1

λkf(tk,n) + Af(1), ∀f ∈ P1
2n+1. (2.11)
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The tensor product of {−1, t1,n, ..., tn,n, 1}, can be used as nodes in the fol-

lowing product formula of degree 2n + 1 for the product weight function:

W (x) =
d∏

k=1

(1− xk)µ+d/2 on [−1, 1]d,

∫
[−1,1]d

f(x)
d∏

k=1

(1− xk)µ+d/2dx =
n+1∑
k1=0

· · ·
n+1∑
kd=0

λk1 . . . λkd
f(tk1,n, . . . , tkd,n), (2.12)

for ∀f ∈ Pd
2n+1, where t0,n = −1, tn+1,n = 1 and λ0 = λn+1 = A.

It was showed that some nodes of the cubature formulas constructed above

can lie outside of the unit ball Bd. But we can choose different values a(k) in order

to construct formulas with all nodes inside of Bd.

2.2 Samples of cubature formulas of lower degree with nodes inside Bd

We use the modified method of the Reproducing Kernel to construct cubature

formulas of lower degree with nodes inside Bd.

a. Formulas of degree 5

We choose a(1) = (0, 0, . . . , 0) the origin of Rd and we define a(k+1), 1 ≤ k ≤

d− 1 by

a(k+1) = (
√

1
2µ + d + 3

, . . . ,

√
1

2µ + d + 3
,

√
d + 3− k

2µ + d + 3
, 0 . . . , 0) (2.13)

which has d− k zero components.

From the properties of the Gegenbauer polynomials [7], we have:

C
(λ)
2 (t) = λ[2(λ + 1)t2 − 1], for n = 2,

where λ = µ + (d + 1)/2, and follows that

K̃2(Wµ;x, y) = λ

[
(2µ+d+3) < x, y >2 +(2µ+d+3)(1−|x|2)(1−|y|2)/(2µ+1)−1

]
.

(2.14)

If we take, a(1) = (0, . . . , 0), it follows from the formula of K̃2(Wµ;x, y) that

H1 = {x : K2(x, a(1)) = 0} = {x : |x|2 = (d + 2)/(2µ + d + 3)} and we require that

the chosen point a(k+1) from (2.13), belongs to Hk and we obtain:

K̃2(Wµ;x, ak+1) = (µ +
d + 1

2
)
[
x2

1 + · · ·+ x2
k−1 + (d + 3− k)x2

k − ‖x‖2
]
,
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from which we obtain a(k+1) ∈
k⋂

i=1

Hi and

d⋂
i=1

Hi = {(±
√

1
2µ + d + 3

, . . . ,±
√

1
2µ + d + 3

,±
√

3
2µ + d + 3

)} (2.15)

Thus,
d⋂

i=1

Hi has the 2d intersection points obtained from (2.15).

Now we can apply the modified Reproducing Kernel method, from which one

results that the nodes of the cubature formula are {a(i), i = 1, d} from (2.13) and

(x(j), j = 1, 2d) from (2.15) and these nodes generates a cubature formula of degree

5 on Bd of the form (2.8). Using the formula of K̃2(Wµ;x, y) one get the coefficients

of the formula for this choice of the nodes a(k+1), if we consider n = 2

λ1 = 1/K̃2(Wµ; 0, 0) =
2(2µ + 1)

(2µ + d + 1)(d + 2)
, (2.16)

λk+1 = 1/K̃2(Wµ; ak+1, ak+1) =
2(2µ + d + 3)

(2µ + d + 1)(d + 2− k)(d + 3− k)
, k = 2, d.

Then there exists the weights µξ such that the following cubature formula is

of degree 5 for Wµ on Bd [12].∫
Bd

f(x)Wµ(x)dx =
2(2µ + 1)

(2µ + d + 1)(d + 2)
f(0)

+
2µ + d + 3
2µ + d + 1

d−1∑
k=1

f(a(k+1)) + f(−a(k+1))
(d + 2− k)(d + 3− k)

+
∑

ξ∈{−1,1}d

µξf

(
ξ1

√
1

2µ + d + 3
, . . . , ξd−1

√
1

2µ + d + 3
, ξd

√
3

2µ + d + 3

)
. (2.17)

In this formula the weights µξ, ξ = (ξ1, . . . , ξd) ∈ {−1, 1}d can be determined

by the condition that the formula must be exact for polynomials of degree 5.

In the case of d = 2, we have the explicit formula∫
B2

f(x)Wµ(x)dx =
2(2µ + 1)
4(2µ + 3)

f(0) +
2µ + 5

12(2µ + 3)
[
f(2/

√
2µ + 5, 0) (2.18)

+f(−2/
√

2µ + 5, 0)
]
+

2µ + 5
12(2µ + 3)

∑
f(±1/

√
2µ + 5,±

√
3/

√
2µ + 5).
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The formula on Bd uses N = 2d + 2d − 1 nodes. According with Möller’s

lower bound [2], the cubature formula of degree 5 must have at least N∗ ≥ d(d+1)+1

nodes, then the formula (2.18) which have N = 22 + 2 · 2− 1 = 7 is minimal.

For d = 3, the cubature formula on B3, which was constructed by using (2.10)

in [12], have N = 13 nodes and is minimal; for d = 5, N = 25 + 2 · 5− 1 = 41 nodes

which is more that the lower bound of N∗ = 5(5 + 1) + 1 = 31.

Finally we obtain the formula (2.17). To determine the other coefficients, one

can require that the formula be exact for the polynomials of degree at most 5.

For d = 3, we can choose f(x) to be the test functions x1, x1x2, x2
1, x1x2x3.

For the case of d > 3, it is useful the following formula for the nonzero

moments of the weight function Wµ = Wµ(x) ([12])∫
Bd

x2k1
1 . . . x2kd

d Wµ(x)dx =
Γ(µ + (d + 1)/2) Γ(k1 + 1/2) . . . Γ(kd + 1/2)

πd/2Γ(µ + (d + 1)/2 + k1 + · · ·+ kd)
.

3. Cubature formulas on the triangle using the reproducing kernel method

We consider now, cubature formulas on the triangle using the compact for-

mula in [12], for a family of weight functions on a d-dimensional simplex.We use the fol-

lowing notations: x ∈ Rd, |x|1 = |x1|+· · ·+|xd|, the l1 norm of x, |α|1 = α1+· · ·+αd,

the length of multiindex α ∈ Nd and the standard simplex:

T d = {x ∈ Rd : x1 ≥ 0, . . . , xd ≥ 0, 1− |x|1 ≥ 0}.

We remark that, for d = 2 we have T 2 which is the triangle with vertices

(0, 0), (1, 0) and (0, 1).

In [12] was found the compact formula for the Reproducing Kernel with

respect to the weight function:

Wα(x) = wαx
α1−1/2
1 . . . x

αd−1/2
d (1− |x|1)αd+1−1/2, αi ≥ 0, (3.1)

where wα is the normalization constant such that
∫

T d Wα(x)dx = 1 , namely,

wα =
Γ(|α|1 + (d + 1)/2)

Γ(α1 + 1/2) . . .Γ(αd+1 + 1/2)
.

39



EMIL A. DANCIU

Then the reproducing Kernel Kn(Wα) given in terms of Gegenbauer polyno-

mials, has the expression [12]:

Kn(Wα;x, y) =
∫

[−1,1]d+1
C

(|α|1+(d+1)/2)
2n (

√
x1y1 t1 + · · ·+√

xd+1yd+1 td+1). (3.2)

.
d+1∏
i=1

cαi(1− t2i )
αi−1dt,

where

x, y ∈ T d, xd+1 = 1− |x|1, yd+1 = 1− |y|1,

and we use limit (2.4) in the case when have one αi = 0.

If we take y = ei = (0, . . . 0, 1, 0, . . . 0), the i-th element of the standard basis,

with the i-th component =1, of Rd, 1 ≤ i ≤ d, then we have the following explicit

formula:

Kn(Wα;x, ei) = Aα,iP
(|α|1+d/2−αi,αi−1/2)
n (2xi − 1)

where

Aα,i = C
(|α|1+(d+1)/2)
2n (0)/P (|α|1+d/2−αi,αi−1/2)

n (−1)

(see [12]).

This formula was derived in [14] from (3.2) using a product formula for Jacobi

polynomials.

We observe that, ei is not a common zero of Pn. This follows from the

expression of PT
n (x)Pn(y) =

∑
k Pn

k (x)Pn
k (y).

Let d = 2 and α1 = α2 = α3 = 1/2. Then the weight function Wα becomes

a multiple of unit weight function, denoted by W1/2, and we have: W1/2(x) = 2.

In this case, the Reproducing Kernel takes the form:

Kn(W1/2;x, y) =
1
π3

∫
[−1,1]3

C
(3)
2n (

√
x1y1t1 +

√
x2y2t2 +

√
x3y3t3)

3∏
i=1

(1− t2i )
−1/2dt

For α = 0, we have W0(x) = (x1x2x3)−1/2/2π.

In [11] was shown that any cubature formula for W0 with all nodes inside

T 2 corresponds to a cubature formula on a sphere S2. In this case, the Reproducing
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Kernel can be represented in the following simple form:

Kn(W0;x, y) =
1
4

∑
C

(3/2)
2n (

√
x1y1 ±

√
x2y2 ±

√
x3y3),

where the sum is over all possible sign changes, and this formula follows from (3.2)

by taking limits (2.4).

Samples of cubature formulas on the triangle

For n = 2, we have the following explicit formula for Kn(W1/2;x, y)

K2(W1/2;x, y) = 6(1− 10(x1y1 + x2y2 + x3y3) + 60(x1x2y1y2 + x1x3y1y3+

+x2x3y2y3) + 15(x2
1y

2
1 + x2

2y
2
2 + x2

3y
2
3)).

If we take a(1) = (1, 0), one obtain that K2(W1/2, x, (1, 0)) has two zeros,

z1 = (5−
√

10)/15, z2 = (5 +
√

10)/15.

From this fact, it follows that K2(W1/2, x, (1, 0)) and K2(W1/2, x, (z1, 0)) have 4 dis-

tinct common zeros:(
(5−

√
10)/15, (70− 7

√
10±

√
10(233− 62

√
10)/90

)
(

(5 +
√

10)/15, (30− 3
√

10±
√

3(110− 20
√

10)/90
)

.

4. The construction of cubature formulas by using the Chebyshev

orthogonal polynomials and the reproducing kernel method

Let us consider, the Chebyshev polynomial of degree n,

T ∗
n(x) = cosnθ, x = cosθ,

that is

T ∗
n(x) = cos(narcosx).

The zeros of T ∗
n are xk = (2k−1)π

2n , k = 1, n, and T ∗
n are orthogonal with respect to

the Chebyshev weight function w1(x) = (1− x2)−1/2 on [−1, 1].
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The zeros of T ∗
n can be selected as the nodes of the Gaussian quadrature

formula with respect to w(x) and these zeros can be used to construct a compact

interpolation formula. Let we denote the classical Chebyshev weight of the first kind

w1(x) =
1
π

1√
1− x2

, x ∈ (−1, 1)

Then the orthonormal polynomials with respect to w1 are

T0(x) = 1, Tk(x) =
√

2coskθ, k ≥ 1, x = cosθ and
∫ 1

−1

w1(x)dx = 1.

Next, we can consider the product Chebyshev weight function on [−1, 1]2 defined by

W (2)(x, y) = w1(x)w1(y) =
1
π2

1√
1− x2

1√
1− y2

, (x, y) ∈ [−1, 1]2. (4.1)

One can verify that the polynomials defined by

Pn
k (x, y) = Tn−k(x)Tk(y), k = 0, n, n ∈ N0, (4.2)

where Pn
k is of degree exactly n are orthogonal with respect to W (2)(x, y).

In [10] was established the following relations. If we denote Pn =

(Pn
0 , ..., Pn

n )T , n ∈ N0, the vector of the polynomials of degree exactly n in (4.2)

and the matrices,

An,1 =
1
2


1 0 0 . . . 0

0 1 0 . . . 0
...

...
. . .

...

0 0 . . .
√

2 0

 , An,2 =
1
2


0

√
2 0 . . . 0

0 0 1 . . . 0
...

...
. . .

...

0 0 . . . . . . 1

 ,

it can be verified that product Chebyshev polynomials satisfy the three-term relation

xiPn(x) = An,iPn+1(x) + AT
n−1,iPn−1(x), i = 1, 2, x = (x1, x2) or x = (x, y) (4.3)

For x, y ∈ R2, the Reproducing Kernel of the product Chebyshev polynomials is

defined by

Kn(x, y) =
n−1∑
k=0

k∑
j=0

P k
j (x)P k

j (y) =
n−1∑
k=0

PT
k (x)Pk(y)

and PT
n (x)Pn(y) = Kn(x, y)−Kn−1(x, y).
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If one consider x = (cosθ1, cosθ2), y = (cosϕ1, cosϕ2), then we have the

compact formula [10].

Kn(x, y) = Dn(θ1 + ϕ1, θ2 + ϕ2) + Dn(θ1 + ϕ1, θ2 − ϕ2) + Dn(θ1 − ϕ1, θ2 + ϕ2)

+Dn(θ1 − ϕ1, θ2 − ϕ2),

where the function Dn has the form

Dn(θ1, θ2) =
1
2

cos(n− 1
2 )θ1cos

θ1
2 − cos(n− 1

2 )θ2cos
θ2
2

cosθ1 − cosθ2
.

One can use these formulas in order to obtain a compact formula for the Lagrange

interpolation, which will be used to construct a cubature formula of degree 2n − 1

with respect to W (2)(x, y) of the form

In(f) =
∫

[−1,1]2
f(x, y)W (2)(x, y)dxdy ' Qn(f), (4.4)

where Qn(f) =
N∑

k=0

λkf(xk), λk > 0, xk ∈ R2, so that we have

In(P ) = Qn(P ), ∀P ∈ P2
2n−1.

According to a general result of Möller for centrally symmetric weight func-

tions, for example one can consider W (2)(x, y) = w1(x)w1(y), the number of nodes in

the cubature formula satisfies

N ≥ dimP2
n−1 + [n/2] =

(
n + 1

2

)
+ [n/2].

Let consider zk be the points zk = zk,n = coskπ
n , k = 0, n.

In [10] was stated, based on the three-term recurrence relation (4.3), that a

cubature formula exists when the following matrix equations in the variable V are

solvable

An−1,1(V V T − I)AT
n−1,2 = An−1,2(V V T − I)AT

n−1,1 (4.5)

and V T AT
n−1,1An−1,2V = V T AT

n−1,2An−1,1V,

where V is a matrix of size (n + 1)× σ, σ = [n/2] or σ = [n/2] + 1.
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If n = 2m in [10] was showed that a solution of (4.5) is

Tn−(k−1)(x)Tk−1(y)− Tk−1(x)Tn−(k−1)(y), 1 ≤ k ≤ n/2 + 1, (4.6)

which corresponds to (A), and if n = 2m− 1, a solution of (4.5) is

Tn−(k−1)(x)Tk−1(y)− Tk−1(x)Tn−(k−1)(y), 1 ≤ k ≤ (n + 1)/2, (4.7)

corresponds to (B).

If a cubature formula exists, we can consider the Lagrange interpolation prob-

lem based on the nodes of the cubature formula which consists in construction of a

unique polynomial which is the solution of the problem to determining P = P (x) so

that P (xk) = f(xk), k = 1, N.

In [8], was proved that one can consider the subspace

V2
n = P2

n−1

⋃
span{V +Pn},

where V + is the unique Moore-Penrose generalized inverse of V , and in our case we

have V with full rank and we have V + = (V T V )−1V T .

For (x, y) ∈ R2, was used the following expression of the Reproducing Kernel

K∗
n(x, y) = Kn(x, y) + [V +Pn(x)]T V +Pn(y). (4.8)

Using a modified Christoffel-Darboux formula, was showed in [10] that K∗
n(xk, xj) = 0

for k 6= j and K∗
n(xk, xk) 6= 0.

Finally, it follows that

(Lnf)(x) =
N∑

k=1

K∗
n(x, xk)

K∗
n(xk, xk)

f(xk) (4.9)

and we have ∫
[−1,1]2

(Lnf)(x)W0(x)dx =
N∑

k=1

λkf(xk) = In(f).

From the condition on P k
j and the definition of K∗

n(·, ·) it follows that the

coefficients in the cubature formula are given by the expression λk = 1/K∗
n(xk, xk)

If n = 2m, the interpolation nodes are

x2i,2j+1 = (z2i, z2j+1), i = 0,m, j = 0,m− 1 (4.10)
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x2i+1,2j = (z2i+1, z2j), i = 0,m− 1, j = 0,m.

From (4.7) and the expression of K∗
n(x, y) one can obtain

K∗
n(x, xk,l) =

1
2
[Kn(x, xk,l) + Kn−1(x, xk,l)]−

1
2
(−1)k[Tn(x)− Tn(y)].

Finally, one can obtain

K∗
n(x0,2j+1, x0,2j+1) = n2, K∗

n(x2i,2j+1, x2i,2j+1) = n2/2,

K∗
n(x2i+1,0, x2i+1,0) = n2, K∗

n(x2i+1,2j , x2i+1,2j) = n2/2, i > 0, j > 0.

If n = 2m− 1, the interpolation nodes are

x2i,2j = (z2i, z2j), i, j = 0,m− 1

x2i+1,2j+1 = (z2i+1, z2j+1), i, j = 0,m− 1,

from which, was derived

K∗
n(x, xk,l) =

1
2
[Kn(x, xk,l) + Kn−1(x, xk,l)]−

1
2
(−1)k[Tn(x) + Tn(y)],

from which was obtained

K∗
n(x2i,2j , x2i,2j) =


n2/2, if 0 < i, j ≤ m− 1

n2, if i = 0 or j = 0, i + j > 0

2n2, if i = j = 0,

K∗
n(x2i+1,2j+1, x2i+1,2j+1) =


n2/2, if 0 ≤ i, j < m− 1

n2, if i = m− 1 or j = m− 1, i + j < 2m− 2

2n2, if i = j = m− 1.

In [14] was proved the mean convergence of Lagrange interpolation formula corre-

sponding to the weight function W (2)(x, y) and by integrating this formula one can

arrive to the following cubature formulas

Based on the nodes (xi, xj), we obtain the cubature formulas:
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A) For n = 2m,

(A)
1
π2

∫ 1

−1

∫ 1

−1

f(x, y)
dxdy

√
1− x2

√
1− y2

=
2
n2

n
2∑

i=0

′′ n
2−1∑
j=0

f(z2i, z2j+1)+

+
2
n2

n
2−1∑
i=0

n
2∑

j=0

′′

f(z2i+1, z2j),∀f ∈ P2
2n−1

B) For n = 2m− 1,

(B)
1
π2

∫ 1

−1

∫ 1

−1

f(x, y)
dxdy

√
1− x2

√
1− y2

=
2
n2

n−1
2∑

i=0

n−1
2∑

j=0

f(z2i, z2j)+

+
2
n2

n−1
2∑

i=0

n−1
2∑

j=0

f(zn−2i, zn−2j),∀f ∈ P2
2n−1,

where Σ′ means that the first term in summation is halved.
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OPTIMIZATION PROBLEMS AND η-APPROXIMATED
OPTIMIZATION PROBLEMS

DOREL I. DUCA AND EUGENIA DUCA

Abstract. In this paper, a so-called η-approximated optimization problem

(Ref. [1] and [3]) associated to an optimization problem is considered.

The equivalence between the saddle points of the lagrangian of the η-

approxiated optimization problem and optimal solutions of the original

optimization problem is established.

1. Introduction

We consider the optimization problem

min f (x)

s.t. x ∈ X

gi (x) 5 0, i ∈ {1, ...,m},

(P )

where X is a subset of Rn and f, g1, ..., gm : X → R are functions.

Let

F (P ) := {x ∈ X : gi (x) 5 0, i ∈ {1, ...,m}}

denote the set of all feasible solutions of Problem (P ) .

For solving optimization problem (P ) , there are various manners to approach.

One of these manners is that for Problem (P ) one attaches another optimization

problem, problem whose solutions give us the (information about) optimal solutions

of the initial problem (P ).
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Assuming that X is open, and that f and g are differentiable on X, Man-

gasarian (Ref. [11]) attached to Problem (P ) and the point x0 ∈ X, the problem

min f
(
x0

)
+

〈
u,∇f

(
x0

)〉
s.t. u ∈ Rn

g
(
x0

)
+

[
∇g

(
x0

)]
(u) 5 0.

He took the dual of this linear optimization problem and then considered x0 to be a

variable in X. This last problem is precisely the classical dual of the nonlinear opti-

mization problem, introduced in a different way by Wolfe (Ref. [13]) and investigated

extensively (see, for example Ref. [10]). Connections between optimal solutions of

the dual and the primal are known (see, for example Ref. [10]).

The above process is repeated but taking nonlinear instead of linear approx-

imation of f and g around some fixed x0 ∈ X and taking the dual of the resulting

optimization problem. One takes the dual of this nonlinear optimization problem and

then one considers x0 be a variable in X. One obtains the so called higher-order

dual problem of Problem (P ). In Ref. [11], there are given connections between the

optimal solutions of higher-order dual and initial problem (P ) . D.I. Duca (Ref. [7])

used this idea for optimization problems in complex space.

Another idea came from Antczak (Ref. [3], [2], [1]), who attached to Problem

(P ) and the point x0 ∈ X, the following problem

min f
(
x0

)
+

〈
∇f

(
x0

)
, η (x)

〉
s.t. x ∈ X

g
(
x0

)
+

[
∇g

(
x0

)]
(η (x)) 5 0,

(Pη

(
x0

)
)

where η = ηx0 : X → X is a function. He studied the connections between the saddle

points of Problem
(
Pη

(
x0

))
and optimal solutions of Problem (P ) .

We attach to Problem (P ) , the Lagrange function (or the lagrangian) L :

X × Rm
+ → R defined by

L (x, v) := f (x) + 〈v, g (x)〉 , for all (x, v) ∈ X × Rm
+ ,

where g = (g1, ..., gm) .
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Definition 1. We say that
(
x0, v0

)
∈ X × Rm

+ is a saddle point of the lagrangian L

(or of Problem (P )) if

L
(
x0, v

)
5 L

(
x0, v0

)
5 L

(
x, v0

)
, for all (x, v) ∈ X × Rm

+ .

The saddle points of the lagrangian L of Problem (P ) have been studied by

many authors (see for example Ref. [10], [4] and others). A fundamental result of

optimization theory is that, in certain conditions, the point x0 is an optimal solution

of Problem (P ) if and only if there exists a point v0 ∈ Rm
+ such that

(
x0, v0

)
is a

saddle point of its lagrangian.

More precisely, we have the following results, results which play an important

role in optimization theory and economics.

Theorem 2. If
(
x0, v0

)
∈ X × Rm

+ is a saddle point of the lagrangian L of Problem

(P ) then x0 is an optimal solution of Problem (P ) .

Proof. See, for example, Ref. [10]. �

Theorem 3. Let x0 be an optimal solution of Problem (P ) . Assume that f, g1, ..., gm

are convex at x0 and a suitable constraint qualification (CQ, Ref. [10]) is satisfied

at x0. Then there exists a point v0 ∈ Rm
+ such that

(
x0, v0

)
is a saddle point of the

lagrangian of Problem (P ) .

Proof. See, for example, Ref. [10]. �

In the last few years, attempts have been made to weaken the convexity

hypotheses and thus to explore the existence of optimality conditions applicability.

Various classes of generalized convex functions have been suggested for the purpose

of weakening the convexity limitation in this result. Among these, the concept of an

invex function proposed by Hanson (Ref. [9]) has received more attention. The name

of invex (invariant convex) function was given by Craven (Ref. [6])

Definition 4. Let X be a subset of Rn, x0 be an interior point of X, f : X → R be

a differentiable function at x0 and η = ηx0 : X → Rn be a function. We say that f is

invex at x0 with respect to η if

f (x)− f
(
x0

)
=

〈
∇f

(
x0

)
, η (x)

〉
, for all x ∈ X. (1)
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Hanson defined invex functions which allow the use of the Kuhn-Tucker con-

ditions as sufficient conditions for optimality in constrained optimization problems.

Later, Martin (Ref. [12]) proved that invexity hypotheses are not only sufficient but

also necessary when using the Kuhn-Tucker optimality conditions for unconstrained

optimization problems.

After the works of Hanson and Craven, other types of differentiable functions

have appeared with the intent of generalizing invex function from different points of

view.

Ben-Israel and Mond (Ref. [5]) defined the so-called pseudoinvex functions,

generalizing pseudoconvex functions in the same way that invex functions generalize

convex functions.

Definition 5. Let X be a subset of Rn, x0 be an interior point of X, η = ηx0 : X →

Rn, and f : X → R be a differentiable function at x0. We say that f is pseudoinvex

at x0 with respect to η if, for each x ∈ X with the property that〈
∇f

(
x0

)
, η (x)

〉
= 0,

we have

f (x) = f
(
x0

)
.

Definition 6. Let X be a subset of Rn, x0 be an interior point of X, η = ηx0 : X →

Rn, and f : X → R be a differentiable function at x0. We say that f is quasiinvex at

x0 with respect to η if, for each x ∈ X with the property that

f (x) 5 f
(
x0

)
,

we have 〈
∇f

(
x0

)
, η (x)

〉
5 0.

Remark 7. Note that, in general, there exists no unique function η such that the

function f is invex, respectively pseudoinvex and quasiinvex at the point x0 ∈ X.

Indeed, the function f : R → R defined by

f (x) = exp x, for all x ∈ R,
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is invex at x0 = 0 with respect to the function η : R → R defined by

η (x) = x− x0 = x, for all x ∈ R.

Also, the function f is invex at x0 = 0 with respect to the function η : R → R

defined by

η (x) = x +
x2

2
+

x3

6
, for all x ∈ R.

And also, the function f is invex at x0 with respect to the function η : R → R

defined by

η (x) = x− 2, for all x ∈ R.

In this paper, in more general hypotheses that in Ref. [3], the equivalence be-

tween the saddle points of the lagrangian of the η-approximated optimization problem

and optimal solutions of the original optimization problem is established.

2. η−approximated optimization problem

In what follows x0 is an interior point of X, and f and g are differentiable

at x0.

For the function η = ηx0 : X → Rn, we attach to Problem (P ) the

optimization problem
(
Pη

(
x0

))
, called η-approximated at x0 of Problem (P ) .

Remark 8. If X = Rn and η (x) = x− x0, for all x ∈ X, then Problem
(
Pη

(
x0

))
is

linear.

Let

F
(
Pη

(
x0

))
:= {x ∈ X : gi

(
x0

)
+

〈
∇gi

(
x0

)
, η (x)

〉
5 0, i ∈ {1, ...,m}},

denote the set of all feasible solutions of Problem
(
Pη

(
x0

))
.

The lagrangian of Problem
(
Pη

(
x0

))
will be denoted by Lη, i.e. Lη : X ×

Rm
+ → R is defined by

Lη (x, v) := f
(
x0

)
+

〈
∇f

(
x0

)
, η (x)

〉
+

〈
v, g

(
x0

)〉
+

〈
v,

[
∇g

(
x0

)]
(η (x))

〉
,

for all (x, v) ∈ X × Rm
+ .
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Example 9. Let us consider the optimization problem

min f (x) = exp x

s.t. x ∈ X = R

g1 (x) = x2 − x 5 0.

(P )

We have that F
(
P

)
= [0, 1] and x0 = 0 is the unique optimal solution of Problem(

P
)
.

The functions f and g1 are invex at x0 = 0 with respect to the function

η = ηx0 : R → R defined by

η (x) = x, for all x ∈ R.

Then the η-approximated optimization problem is

min (1 + x)

s.t. x ∈ X = R

− x 5 0,

(P η

(
x0

)
)

which has the optimal solution x0 = 0.

On the other hand, the lagrangian Lη of Problem
(
P η

(
x0

))
is defined by

Lη (x, v) = 1 + x− vx, for all (x, v) ∈ R× R+.

Obviously,
(
x0, v0

)
= (0, 1) is a saddle point of the lagrangian Lη.

In this section we show the equivalence between saddle points of the la-

grangian Lη, of Problem
(
Pη

(
x0

))
, and optimal solutions of Problem

(
Pη

(
x0

))
.

By Theorem 2, the following saddle point theorem follows:

Theorem 10. If
(
x0, v0

)
∈ X×Rm

+ is a saddle point of the lagrangian Lη of Problem(
Pη

(
x0

))
, then x0 is an optimal solution of Problem

(
Pη

(
x0

))
.

Remark 11. We established Theorem 10, without any assumption about the functions

involved in Problem
(
Pη

(
x0

))
.

In order to prove that if x0 ∈ X is an optimal solution of Problem
(
Pη

(
x0

))
,

then there exists a point v0 ∈ Rm
+ such that

(
x0, v0

)
is a saddle point of the lagrangian
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of Problem
(
Pη

(
x0

))
, let us denote by F,G1, ..., Gm : X → R the functions defined

by

F (x) := f
(
x0

)
+

〈
∇f

(
x0

)
, η (x)

〉
,

Gi (x) := gi

(
x0

)
+

〈
∇gi

(
x0

)
, η (x)

〉
, i ∈ {1, ...,m},

for all x ∈ X.

Obviously, Problem
(
Pη

(
x0

))
can be written as

minF (x)

s.t. x ∈ X

Gi (x) 5 0, i ∈ {1, ...,m}.

Now, we can state the converse theorem of Theorem 10.

Theorem 12. Let x0 ∈ X be an optimal solution of Problem
(
Pη

(
x0

))
, µ = µx0 :

X → Rn be a function. Assume that η : X → Rn is differentiable at x0, the functions

F,G1, ..., Gm : X → R are invex at x0 with respect to µ and a suitable constraint

qualification (CQ, Ref [10]) is satisfied at x0. Then there exists a point v0 ∈ Rm
+ such

that
(
x0, v0

)
is a saddle point of Problem

(
Pη

(
x0

))
.

Proof. Let G = (G1, ..., Gm) . In view of Karush-Kuhn-Tucker theorem, there exists

a point v0 ∈ Rm
+ such that

∇F
(
x0

)
+

[
∇G

(
x0

)]T (
v0

)
= 0, (2)

〈
v0, G

(
x0

)〉
= 0, (3)

i.e.

∇f
(
x0

)
+

〈
v0,

[
∇g

(
x0

)] (
∇η

(
x0

))〉
= 0,〈

v0, g
(
x0

)
+

[
∇g

(
x0

)] (
η

(
x0

))〉
= 0.

The functions F, G1, ..., Gm are invex at x0 with respect to µ, then, for each

x ∈ X, we have

F (x)− F
(
x0

)
=

〈
∇F

(
x0

)
, µ (x)

〉
, (4)

Gi (x)−Gi

(
x0

)
=

〈
∇Gi

(
x0

)
, µ (x)

〉
, i ∈ {1, ...,m}. (5)
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Since v0 ∈ Rm
+ , by (5) , we obtain〈

v0, G (x)
〉
−

〈
v0, G

(
x0

)〉
=

〈
v0,

[
∇G

(
x0

)]
(µ (x))

〉
, for all x ∈ X. (6)

Then, for each x ∈ X,

Lη

(
x, v0

)
− Lη

(
x0, v0

)
=

= F (x) +
〈
v0, G (x)

〉
− F

(
x0

)
−

〈
v0, G

(
x0

)〉
= (by (4) , and (6))

=
〈
∇F

(
x0

)
, µ (x)

〉
+

〈
v0,

[
∇G

(
x0

)]
(µ (x))

〉
=

=
〈
∇F

(
x0

)
+

[
∇G

(
x0

)]T (
v0

)
, µ (x)

〉
= (by (2))

= 0.

Consequently, the second inequality in the definition of saddle point is satis-

fied.

In order to prove the first inequality of the definition of saddle point, let

v ∈ Rm
+ . Then

Lη

(
x0, v0

)
− Lη

(
x0, v

)
=

=
〈
v0, G

(
x0

)〉
−

〈
v,G

(
x0

)〉
= (by (3))

= −
〈
v,G

(
x0

)〉
=

= 0,

because G
(
x0

)
5 0 �

3. Equivalence between saddle points of η-approximated problem and of

the original problem

In this section we will prove the equivalence between the original op-

timization problem (P ) and its associated η-approximated optimization problem(
Pη

(
x0

))
. We establish the results where one assumes that the function η = ηx0

satisfies only the condition η
(
x0

)
= 0.

In Ref. [1] one proves the following statement:
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Theorem 13. Let x0 be a feasible solution of Problem (P ) . We assume that f and

g are invex at x0 on F (P ) with respect to η = ηx0 : X → Rn satisfying the condition

η
(
x0

)
= 0. If

(
x0, v0

)
∈ F (P )×Rm

+ is a saddle point of the η-approximated optimiza-

tion problem
(
Pη

(
x0

))
, then x0 is an optimal solution of the original optimization

problem (P ) .

This theorem is true in more general hypotheses.

If x0 is a feasible solution of Problem (P ) , then

I
(
x0

)
= {i ∈ {1, ...,m} : gi

(
x0

)
= 0}

denote the indices of the active restrictions at x0.

The following statement is true

Theorem 14. Let x0 ∈ X, η = ηx0 : X → Rn such that η
(
x0

)
= 0, f : X → R be

pseudoinvex at x0 with respect to η and g1, ..., gm : X → R such that gi, i ∈ I
(
x0

)
are quasiinvex at x0 with respect to η.

If
(
x0, v0

)
∈ X × Rm

+ is a saddle point of the lagrangian Lη of Problem(
Pη

(
x0

))
, then x0 is an optimal solution of the original problem (P ) .

Proof. The point
(
x0, v0

)
∈ X×Rm

+ is a saddle point of the lagrangian Lη of Problem(
Pη

(
x0

))
; then

Lη

(
x0, v

)
5 Lη

(
x0, v0

)
, for all v ∈ Rm

+ ,

i.e. (
v − v0

)
g

(
x0

)
5 0, for all v ∈ Rm

+ , (7)

because η
(
x0

)
= 0.

Let i ∈ {1, ...,m}, and ei = (0, ..., 1, ..., 0) ∈ Rm be the i-th unit vector of

Rm. Then, for v = ei + v0 ∈ Rm
+ , relation (7) becomes gi

(
x0

)
5 0. Hence

gi

(
x0

)
5 0, for all i ∈ {1, ...,m}.

Consequently,

x0 ∈ F (P ) .
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If follows that 〈
v0, g

(
x0

)〉
5 0, (8)

because v0 ∈ Rm
+ . But, from (7) we deduce〈

v0, g
(
x0

)〉
= 0, (9)

because v = 0 ∈ Rm
+ .

Thus, by (8) and (9) 〈
v0, g

(
x0

)〉
= 0. (10)

From (10) it follows that

v0
i = 0, for all i ∈ {1, ...,m}\I

(
x0

)
. (11)

On the other hand, from

Lη

(
x0, v0

)
5 Lη

(
x, v0

)
, for all x ∈ X,

we deduce that〈
∇f

(
x0

)
, η (x)

〉
+

〈
v0,

[
∇g

(
x0

)]
(η (x))

〉
= 0, for all x ∈ X. (12)

In order to prove that x0 is an optimal solution of Problem (P ) , let x ∈ F (P ) .

Then

gi (x) 5 0, for all i ∈ {1, ...,m}.

Let i ∈ I
(
x0

)
. Since

gi (x)− gi

(
x0

)
= gi (x) 5 0,

and gi is quasiinvex at x0 with respect to η, we have〈
∇gi

(
x0

)
, η (x)

〉
5 0,

hence

v0
i

〈
∇gi

(
x0

)
, η (x)

〉
5 0,

because v0
i = 0. Then 〈

v0,
[
∇g

(
x0

)]
(η (x))

〉
5 0, (13)
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because v0
i = 0, for all i ∈ {1, ...,m}\I

(
x0

)
.

From (12) and (13) it follows that

〈
∇f

(
x0

)
, η (x)

〉
= −

〈
v0,

[
∇g

(
x0

)]
(η (x))

〉
= 0. (14)

But, the function f is pseudoinvex at x0 with respect to η, and then, by (14) ,

we deduce that

f (x) = f
(
x0

)
.

Consequently, x0 is an optimal solution of the original problem (P ) . The theorem is

proved. �

Remark 15. If the functions f, g1, ..., gm are invex at x0 with respect to η, then

the hypotheses that f is pseudoinvex at x0 with respect to η and gi, i ∈ I
(
x0

)
are

quasiinvex at x0 with respect to η are satisfied.

Remark 16. The assumption that the function η satisfies the condition η
(
x0

)
= 0 is

essential in order to have the equivalence between the saddle points of the lagrangian

Lη of Problem
(
Pη

(
x0

))
, and the optimal solutions of the original problem (P ) . (see

Example 3.4 from Ref. [1])

Now, we show that, if x0 is an optimal solution of the original problem (P ) ,

then under certain conditions, there exists a point v0 ∈ Rm
+ such that

(
x0, v0

)
is a

saddle point of the η-approximated problem
(
Pη

(
x0

))
.

More exactly, the following statement is true:

Theorem 17. Let x0 ∈ X be an optimal solution of the original problem (P ) and

assume that a suitable constraint qualification is satisfied at x0 (CQ in Ref. [10]). If

the function η = ηx0 : X → Rn satisfies:

(i)
〈
∇f

(
x0

)
, η

(
x0

)〉
5 0;

(ii) g
(
x0

)
+

[
∇g

(
x0

)] (
η

(
x0

))
5 0 (i.e. x0 ∈ F

(
Pη

(
x0

)
)
)
,

then there exists a point v0 ∈ Rm
+ such that

(
x0, v0

)
is a saddle point of the lagrangian

Lη of the η-approximated problem
(
Pη

(
x0

))
.
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Proof. Since x0 is an optimal solution of Problem (P ) , and some suitable constraint

qualification at x0 is satisfied, by Karush-Kuhn-Tucker’ Theorem, there exists a point

v0 ∈ Rm
+ such that

∇f
(
x0

)
+

[
∇g

(
x0

)]T (
v0

)
= 0, (15)

〈
v0, g

(
x0

)〉
= 0. (16)

Let x ∈ X. Then, from (15) , we have

Lη

(
x, v0

)
− Lη

(
x0, v0

)
=

〈
∇f

(
x0

)
+

[
∇g

(
x0

)]T (
v0

)
, η

(
x0

)〉
= 0.

Consequently, the second inequality from the saddle point definition is true.

In order to prove the first inequality from the saddle point definition, let

v ∈ Rm
+ . Then

Lη

(
x0, v0

)
− Lη

(
x0, v

)
=

=
〈
v0, g

(
x0

)〉
−

〈
v, g

(
x0

)〉
+

〈
v0,

[
∇g

(
x0

)] (
η

(
x0

))〉
−

〈
v,

[
∇g

(
x0

)] (
η

(
x0

))〉
=

= −
〈
v, g

(
x0

)〉
+

〈
η

(
x0

)
,
[
∇g

(
x0

)]T (
v0

)〉
−

〈
v,

[
∇g

(
x0

)] (
η

(
x0

))〉
=

= −
〈
v, g

(
x0

)〉
−

〈
∇f

(
x0

)
, η

(
x0

)〉
−

〈
v,

[
∇g

(
x0

)] (
η

(
x0

))〉
=

= −
〈
∇f

(
x0

)
, η

(
x0

)〉
−

〈
v, g

(
x0

)
+

[
∇g

(
x0

)] (
η

(
x0

))〉
=

= −
〈
∇f

(
x0

)
, η

(
x0

)〉
=

= 0.

Consequently,
(
x0, v0

)
is a saddle point of the lagrangian of Problem(

Pη

(
x0

))
. �

Remark 18. If η
(
x0

)
= 0, then the hypotheses (i) and (ii) from Theorem 17 are

satisfied.

Remark 19. If f, g1, ..., gm are invex at x0 with respect to η, then the hypotheses (i)

and (ii) from Theorem 17 are satisfied.
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Remark 20. The hypothesis that the original problem (P ) satisfies a suitable con-

straint qualification at x0 is essential. Indeed, for the problem

min f (x) = x2

s.t. x ∈ X = R2

g1 (x) = x1 + x2
2 5 0,

g2 (x) = −x1 + x2
2 5 0,

(P̂ )

we have the set of all feasible solutions F
(
P̂

)
= {(0, 0)}, and hence x0 = (0, 0) is

the unique optimal solution. Let us remark that Problem
(
P̂

)
is convex, and then the

functions f, g1, g2 are invex at x0 = (0, 0) with respect to η : R2 → R2 defined by

η (x) = x, for all x ∈ R2.

In this case, the η-approximated optimization problem is

min x2

s.t. (x1, x2) ∈ R2

− x1 5 0,

x1 5 0.

(P̂η

(
x0

)
)

Thus, L̂η : R2 × R2
+ → R is defined by

L̂η (x, v) = x2 − v1x1 + v2x1, for all (x, v) = ((x1, x2) , (v1, v2)) ∈ R2 × R2
+,

and
(
x0, v0

)
, where v0 =

(
v0
1 , v0

2

)
= 0, is not a saddle point of the lagrangian of

Problem
(
P̂η

(
x0

))
.

4. Conclusions

In this paper one shows that the invexity hypotheses from paper [3] can be

weaker.
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THERMAL STRESSES IN A THIN POROUS PLATE

REMUS D. ENE AND ADARA M. BLAGA

Abstract. The thermal stresses that appear in a thin porous plate are

analized and numerical results are obtained with FreeFem++.

1. Introduction

The porous plates have been recently studied, in particular, the silicon thin

porous plates which are component parts of electronic engines (integrate circuits,

transistors) and are often used in nanotechnology.

An existence and uniqueness result for the problem with initial data and

boundary conditions was established by Bı̂rsan [1], using the logarithmic convexity

method. Kumar and Rani [6] determined an analytical solution for the equilibrium

equations for the generalized thermoelastic half-space with voids using the Laplace

and Fourier transforms.

In what follows, based on the representation theory, we shall establish an exis-

tence and uniqueness theorem, using the theory of semigroups [8]. In order to obtain

numerical results modeled with FreeFem++, it is necessary to give the variational

formulation of the limit problem (1.1).

We are interested to study the thermal effect on a thin porous plate (de-

formation and thermal stresses), not taking into account the chemical and physical

phenomena that appear under the action of the thermal field. In order to do that, we

need a representation theorem of the solution of the limit problem (1.1).

Received by the editors: 27.04.2009.

2000 Mathematics Subject Classification. 35J20, 37K05, 74A10, 74A15, 74A35.
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Consider a porous media having the form of a rectangular plate that fulfills a

domain B ⊂ R
3. The geometry of the plate is described with respect to an orthonor-

mal positively oriented frame Ox1x2x3, having the axis Ox1 and Ox2 in the median

plane Σ of the plate.

We shall reduce the study of the system to the 2-dimensional case (in the

median plane), using the micropolar theory of thermoelastic media introduced by

Eringen [3].

Following Lord and Shulman [7], Green and Lindsay [4] and Ieşan [5], the field

equations and constitutive relations in a generalized thermoelastic solid with voids,

without body forces, heat sources and extrinsic equilibrated body force are:


















(λ+ µ) ∂
∂xi

(div ū) + µ∆ui + b
∂φ
∂xi

− β ∂θ∂xi
+ ρ0f

∗
i = ρ0üi, i = 1, 3

α∆φ − b(div ū) − ξφ+mθ + ρ0l
∗ = ρ0χφ̈

T0[β(div ˙̄u) +mφ̇+ aθ̇] = k∆θ + ρ0S
∗

, (1.1)

on B×(0, t0), where by ū we denoted the displacement field, θ stands for the variation

of the absolute temperature, Φ is the change in volume fraction field, ρ0 is the density

of the medium, λ, µ are the Lame’s constants, k is the thermal conduction coefficient

and a, b, m, α, β, ξ are the constitutive coefficients.

Denote by fi = ρ0f
∗
i the density of the body forces. Assume that f̄ ∈

C0(B̄ × (0, t0)) and f̄ ∈ C2,1(B × (0, t0)). Then

f̄ = gradQ+ rotγ,

where Q, γ ∈ C2,1(B × (0, t0)) and div γ = 0. Assume that β 6= 0. Put

ū = gradΦ + rotψ. (1.2)

The first equation of the system (1.1) becomes

µ∆ū + (λ+ µ) grad(div ū) + b gradφ− β grad θ − ρ0
∂2ū

∂t2
= −f̄

⇐⇒ µ∆(gradΦ + rotψ) + (λ+ µ) grad(div(gradΦ + rotψ)) + b gradφ−

−β grad θ − ρ0
∂2

∂t2
(gradΦ + rotψ) = −(gradQ+ rotγ)
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⇐⇒ grad[(λ+ 2µ)∆Φ − ρ0Φ̈ + bφ− βθ +Q] + rot[µ∆φ− ρ0ψ̈ + γ] = 0.

The first equation of the system (1.1) is satisfied if we take

∆Φ − ρ0

λ+ 2µ

∂2Φ

∂t2
=

1

λ+ 2µ
(βθ − bφ−Q)

⇐⇒ (∆ − 1

c21

∂2

∂t2
)Φ =

1

λ+ 2µ
(βθ − bφ−Q), (1.3)

where c1 =

√

λ+ 2µ
ρ0

, and respectively,

∆ψ − ρ0

µ

∂2ψ

∂t2
= − 1

µ
γ

⇐⇒ (∆ − 1

c22

∂2

∂t2
)ψ = − 1

µ
γ,

where c2 =
√

µ
ρ0

.

We obtain

θ =
1

β
[(λ+ 2µ)(∆ − 1

c21

∂2

∂t2
)Φ + bψ +Q],

and respectively,

ψ =
1

b
[−(λ+ 2µ)(∆ − 1

c21

∂2

∂t2
)Φ + bθ −Q].

Replacing ū and θ in the last equation of the system (1.1) we get

T0[β
∂

∂t
div(gradΦ + rotψ) +mψ̇ +

α

β

∂

∂t
((λ + 2µ)(δ − 1

c21

∂2

∂t2
)Φ + bφ+Q)] =

=
k

β
∆((λ + 2µ)(δ − 1

c21

∂2

∂t2
)Φ + bφ+Q) + ρ0S

∗.

Multiplying this relation by
β

a(λ+ 2µ)
, it becomes

[(
k

a
∆ − ∂

∂t
)(∆ − 1

c21

∂2

∂t2
) − β2T0

aρ0c
2
1

∂

∂t
∆]Φ = −(

k

a
∆ − ∂

∂t
)Q− b

λ+ 2µ
[
k

a
∆−

−(1 +
mT0β

ab
)
∂

∂t
]φ− βρ0

a(λ+ 2µ)
S∗. (1.4)
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Replacing ū and φ in the second equation of the system (1.1) we get

α

b
∆[−(λ+2µ)(∆− 1

c21

∂2

∂t2
)Φ+βθ−Q]−b∆Φ− ξ

b
[−(λ+2µ)(∆− 1

c21

∂2

∂t2
)Φ+βθ−Q]+

+mΘ − ρ0χ

b

∂2

∂t2
[−(λ+ 2µ)(∆ − 1

c21

∂2

∂t2
)Φ + βθ −Q] = −ρ0l

∗.

Multiplying this relation by b
ρ0χ(λ+ 2µ)

, it becomes

[(
∂2

∂t2
− α

ρ0χ
∆)(∆ − 1

c21

∂2

∂t2
) − (

b2 − ξ(λ+ 2µ)

ρ0χ
∆ +

ξ

χ

∂2

∂t2
)]Φ =

1

λ+ 2µ
(β

∂2

∂t2
−

− αβ

ρ0χ
∆ + (ξβ − bm))θ +

1

λ+ 2µ
[− ∂2

∂t2
+

α

ρ0χ
∆ − ξ

ρ0χ
]Q− b

χ(λ+ 2µ)
l∗. (1.5)

Therefore, it holds a Deresiewicz [2] - Zorski [9] theorem:

Theorem 1.1. Let ū = gradφ+ rotψ and θ = 1
β

[(λ+ 2µ)(∆ − 1
c21

∂2

∂t2
)Φ + bψ +Q],

where Φ ∈ C4,4(B̄×(0, t0)) and ψ ∈ C3,2(B̄×(0, t0)) satisfy the relations (1.3), (1.4),

(1.5). Then ū, θ and ψ satisfy the system (1.1).

2. Existence and uniqueness

According to the micropolar theory of thermoelasticity for elastic media with

voids introduced by Eringen [3], we shall assume

ū(1) = (x3v1, x3v2, w)

ū(2) = grad(x3Φ)

φ = x3ψ, θ = x3T

where the functions v1, v2, w,Φ, ψ, T depend on x1, x2, t [(x1, x2) ∈ Σ, t ∈ T].

Using the representation theorem 1.1, the equilibrium equations can be re-

duced to the following systems:






















∂2v1
∂t2

− µ
ρ0

∆v1 = 0

∂2v2
∂t2

− µ
ρ0

∆v2 = 0

∂2w
∂t2

− µ
ρ0

∆w = 0

(2.1)
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and


















Φ̈ =
λ+ 2µ
ρ0

∆Φ + b
ρ0
ψ − β

ρ0
T

ψ̈ = α
ρ0χ∆ψ − b

ρ0
∆Φ − ξ

ρ0
ψ + m

ρ0
T

Ṫ = k
ρ0cl ∆T − βT0

ρ0cl ∆Φ̇ − mT0
ρ0cl ψ̇

. (2.2)

The last one can be decomposed into











































Φ̇ = ζ

ζ̇ =
λ+ 2µ
ρ0

∆Φ + b
ρ0
ψ − β

ρ0
T

ψ̇ = τ

τ̇ = α
ρ0χ∆ψ − b

ρ0
∆Φ − ξ

ρ0
ψ + m

ρ0
T

Ṫ = k
ρ0cl ∆T − βT0

ρ0cl ∆Φ̇ − mT0
ρ0cl ψ̇

(2.3)

which is equivalent to











































Φ̇ = ζ

ζ̇ − λ+ 2µ
ρ0

∆Φ = b
ρ0
ψ − β

ρ0
T

ψ̇ = τ

τ̇ − α
ρ0χ∆ψ + b

ρ0
∆Φ = − ξ

ρ0
ψ + m

ρ0
T

Ṫ − k
ρ0cl ∆T +

βT0
ρ0cl ∆Φ̇ = −mT0

ρ0cl ψ̇

. (2.4)

Write the system (2.2) as an evolution system of order 1 associated to a

strongly elliptic operator A on a Hilbert space.

Define D(A) := (H2(Σ)×H1(Σ))× (H2(Σ)×H1(Σ))×H2(Σ) =: V (Σ) and

for W = (Φ, ζ, ψ, τ, T )t ∈ D(A), let

AW := M∆W,

where M =























0 0 0 0 0

λ+ 2µ
ρ0

0 0 0 0

0 0 0 0 0

− b
ρ0

0 α
ρ0χ 0 0

0 −βT0
ρ0cl 0 0 k

ρ0cl























.

Denote by ||| · ||| the norm || · ||V (Σ) in the product space V (Σ).
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The system (2.4) is an evolution system associated to the operator −∆ [8]

and can be written in the operatorial form:

∂W

∂t
−AW = F̄ (t, x1, x2,W ), (2.5)

for F̄ (t, x1, x2,W ) := NW , where N =























0 1 0 0 0

0 0 b
ρ0

0 − β
ρ0

0 0 0 1 0

0 0 − ξ
ρ0

0 m
ρ0

0 0 0 −mT0
ρ0cl 0























.

Consider the initial data W (0, x1, x2) = W0(x1, x2) on Σ and the boundary

condition W (t, x1, x2) = 0 for (x1, x2) ∈ ∂Σ. Following Pazy [8] (chapters 7, 8), we

can state:

Proposition 2.1. Let Σ be a domain in R
2 with smooth boundary and F̄ =

(F1, F2, F3, F4, F5, F6) with every component continuous locally Lipschitz function of

all its arguments. Assume that there is some continuous functions ηi : R×R −→ R+,

1 ≤ i ≤ 5, such that

|Fi(t, x1, x2,W )| ≤ ηi(t, |||W |||), 1 ≤ i ≤ 5

and

|Fi(t, x1, x2,W1) − Fi(t, x1, x2,W2)| ≤ ηi(t, |||W1||| + |||W2|||), 1 ≤ i ≤ 5.

For every W0 ∈ (H2(Σ) ×H1
0 (Σ)) × ...× (H2(Σ) ×H1

0 (Σ)), the initial value problem







∂W
∂t

−AW = F̄ (t, x1, x2,W )

W (0, x1, x2) = W0(x1, x2) on Σ

i): has a unique solution W = (Φ, ζ, ψ, τ, T )t ∈ (H2(Σ)×L2(Σ))× (H2(Σ)×

L2(Σ)) ×H2(Σ), if Fi ∈ C∞
0 (Σ) for every 1 ≤ i ≤ 5;

ii): has a unique solution W = (Φ, ζ, ψ, τ, T )t ∈ V (Σ), if F̄ ∈ (H1(Σ) ×

L2(Σ)) × (H1(Σ) × L2(Σ)) ×H1(Σ).
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3. Numerical results

We shall give a numerical modeling and simulation for the thermal stress of

an elastic, thin, porous plate made up of magnesium, using FreeFem++.

Assume that the heat transport is realized by conduction as long as there

exists an internal thermic source whose temperature is constant.

Consider the following initial conditions:

S0 = 998 K - thermal source

T0 = 298 K - initial temperature of plate

Φ(x1, x2, 0) = 0

ψ(x1, x2, 0) = 1, 0011507 - porosity

The physical constants of the material and the parameters of voids can be

found in [6].

We shall model the case when the body forces are uniformly distributed

orthogonal to the median plane of the plate.

The dependence on temperature of the deformations, of the stresses and of

the change in volume fraction field are further showed.

One can notice that after a number of iterations, the plate reached a thermal

equilibrium state.

The numerical results are presented in the nearby graphics.
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initial domain deformed domain: iteration 9 at moment: 0.009

initial domain deformed domain: iteration 9

IsoValue
303.311
313.933
324.555
335.177
345.799
356.421
367.043
377.665
388.287
398.909
409.531
420.153
430.775
441.397
452.019
462.641
473.263
483.885
494.507
505.129

absolute temperature: iteration 1 at moment: 0.001
IsoValue
303.673
315.018
326.364
337.709
349.055
360.4
371.746
383.091
394.437
405.782
417.128
428.473
439.819
451.164
462.51
473.855
485.2
496.546
507.891
519.237

absolute temperature: iteration 9 at moment: 0.009

absolute temperature: iteration 1 absolute temperature: iteration 9
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IsoValue
0.118048
0.163336
0.208623
0.25391
0.299198
0.344485
0.389772
0.435059
0.480347
0.525634
0.570921
0.616209
0.661496
0.706783
0.752071
0.797358
0.842645
0.887932
0.93322
0.978507

change in volume fraction field: iteration 1 at moment: 0.001
IsoValue
0.10052
0.146706
0.192892
0.239078
0.285265
0.331451
0.377637
0.423823
0.470009
0.516196
0.562382
0.608568
0.654754
0.70094
0.747127
0.793313
0.839499
0.885685
0.931871
0.978058

change in volume fraction field: iteration 9 at moment: 0.009

porosity: iteration 1 porosity: iteration 9

IsoValue
0.0275985
0.0827955
0.137993
0.19319
0.248387
0.303584
0.358781
0.413978
0.469175
0.524372
0.579569
0.634766
0.689963
0.74516
0.800357
0.855554
0.910751
0.965948
1.02114
1.07634

vertical displacement: iteration 1 at moment: 0.001
IsoValue
0.0294783
0.0884349
0.147392
0.206348
0.265305
0.324261
0.383218
0.442175
0.501131
0.560088
0.619044
0.678001
0.736958
0.795914
0.854871
0.913827
0.972784
1.03174
1.0907
1.14965

vertical displacement: iteration 9 at moment: 0.009

vertical displacement: iteration 1 vertical displacement: iteration 9

Final remarks

As the absolute temperature inside the plate is growing, the plate is deforming

more and more until it reaches the thermal equilibrium state.
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[5] Ieşan, D., Teoria termoelasticităţii, Editura Academiei Republicii Socialiste România,
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NEW ESTIMATE FOR THE NUMERICAL RADIUS OF A GIVEN
MATRIX AND BOUNDS FOR THE ZEROS OF POLYNOMIALS

MOHAMMAD AL-HAWARI

Abstract. In this paper we find new estimate for the numerical radius

of a given matrix, and we prove that, this estimate is better than any

estimate for the numerical radius. We present also new bounds for the

zero of polynomials by using new estimate for the numerical radius of a

companion matrix of a given polynomial and matrix inequalities.

1. Introduction

Numerical radii estimate of companion matrices have been invoked by Linden

(1999) [7] and Kittaneh [6]. Also, Kittaneh (2003) found that

w(A) ≤ 1
2
(‖A‖+ ‖A2‖ 1

2 ).

Also, we know that
1
2
‖A‖ ≤ w(A) ≤ ‖A‖.

In this paper, we find that

w(A) ≤ ‖A2‖ 1
2 ≤ 1

2

(
‖A‖+ ‖A2‖ 1

2

)
≤ ‖A‖,

whenever, A2does not converge to the zero matrix.

Also, if A2 = [0]n×n, then w(A) = 1
2‖A‖, and from the new estimate and

matrix inequalities we find new bounds for the zeros of polynomials.

In this work, let Mn(C) denote the algebra of all n× n complex matrices.

Definition 1.1 If A ∈ Mn(C), then

Received by the editors: 23.03.2009.
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(i) The spectral norm (or the operator norm) is defined by

‖A‖ = max {‖Ax‖ : ‖x‖ = 1} = max
{
‖Ax‖
‖x‖

: ‖x‖ 6= 0
}

.

(ii) The numerical radius of A is defined by

w(A) = max {|(Ax, x)| : x ∈ Cn, ‖x‖ = 1} .

(iii) The spectral radius of A is defined by

r(A) = max {|λ| : λ is an eigenvalue of A} .

Now, we list some known results as a background and reminder for the reader.

Theorem 1.1

(i) If A ∈ Mn(C), then 1
2 |A‖ ≤ w(A) ≤ ‖A‖ ( see e.g.[2]).

(ii) If A ∈ Mn(C), then w(A) ≤ 1
2 (‖A‖+ ‖A2‖ 1

2 ) (see e.g.[6]).

(iii) If A ∈ Mn(C), then there exists a unitary matrix U ∈ Mn(C) such that

A = U |A|, where |A| = (A∗A)
1
2 .

(iv) Let A = [aij ] ∈ Mn(C) be written in partitioned form as

A =

 Ã x

x∗ ann

 ,

where x ∈ Cn−1 and Ã ∈ Mn−1(C), then

det(A) = anndet(Ã)− x∗(adjÃ)x,

where adjÃ is the classical adjoint of Ã.(see e.g[4] ).

(v) Let A = [aij ] ∈ Mn(C) be partitioned as

A =

 A11 A12

A21 A22

 ,

where Aij is an ni × nj matrix for i, j = 1, 2, with n1 + n2 = n.

If

Ã =

 ‖A11‖ ‖A12‖

‖A21‖ ‖A22‖

 ,
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then

‖A‖ ≤ ‖Ã‖, r(A) ≤ r(Ã), and w(A) ≤ w(Ã).

2. Main results

In the following theorem, we find a new estimate for the numerical radius of

a given matrix.

Theorem 2.1 Let A ∈ Mn(C), then

(i) w(A) ≤ ‖A2‖ 1
2 ,if A2does not converge to the zero matrix.

(ii) w(A) = 1
2‖A‖,if A2is the zero matrix

Proof. (i) Let A = u |A| , for some unitary matrix u ∈ Mn(C).

Now,

w(A) = max {|(Ax, x)| : x ∈ Cn, ‖x‖ = 1} .

So

(Ax, x) = (u |A|x, x) = (|A|x, u∗x)

≤ (|A|x, x)
1
2 (|A|u∗x, u∗x)

1
2

≤ (|A|x, x)
1
2 (u |A|u∗x, x)

1
2

≤ (|A|x, x)
1
2 (|A∗|x, x)

1
2

≤ (x∗ |A|xx∗ |A∗|x)
1
2

≤ (x∗ |A| |A∗|x)
1
2

≤ (|A| |A∗|x, x)
1
2

≤ ‖|A| |A∗|‖
1
2 ,

since

S2
1 (|A| |A∗|) = S2

1

(
A2

)
,

where S2
1

(
A2

)
denotes the largest singular value of A2 and

S1

(
A2

)
= ‖A2‖.
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So we get

‖|A| |A∗|‖2 = ‖A2‖2 and ‖|A| |A∗|‖ = ‖A2‖,

hence

w(A) ≤ ‖A2‖ 1
2 . �

(ii) We know that

1
2
‖A‖ ≤ w(A), (1)

since A2 = [0]n×n , so

w(A) ≤ 1
2
(‖A‖+ ‖A2‖ 1

2 ) ≤ 1
2
‖A‖. (2)

From (1) and (2) we get the result. �

In Theorem 2.1, the estimate of the numerical radius is a uniform estimate,

because

w(A) ≤ ‖A2‖ 1
2 ≤ ‖A‖,

also, since

‖A2‖ 1
2 ≤ ‖A‖,

we have

w(A) ≤ ‖A2‖ 1
2 ≤ 1

2

(
‖A‖+ ‖A2‖ 1

2

)
.

Corollary 2.1 Since r(A) ≤ w(A), we get that,

r(A) ≤ ‖A2‖ 1
2 , if A2does not converge to the zero matrix.

Also,

r(A) ≤ 1
2
‖A‖, if A2is the zero matrix.

Corollary 2.2 If A ∈ Mn(C) is a normal matrix, then

r(A) = w(A) = ‖A2‖ 1
2 = ‖A‖.
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3. New bounds for the zeros of polynomials

In this section, we find new bounds for the zeros of the monic polynomials

p(z) = zn + anzn−1 + an−1z
n−2 + . . . + azz + a1 (3)

with complex coefficients a1, a2, a3, ..., an where, a1 6= 0 and n ≥ 3 by using numerical

radius, and matrix inequalities of the companion matrix

C(p) =



−an −an−1 · · · −a2 −a1

1 0 · · · 0 0

0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


. (4)

In [6] Kittaneh found ‖C2(p)‖,where

C2(p) =



a2
n − an−1 anan−1 − an−2 anan−2 − an−3 · · · ana1

−an −an−1 −an−2 · · · 0

1 0 0 · · · 0

0 1 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1 0


. (5)

And hence by using Theorem 2.1, we find new bounds for zeros of polynomials as in

the following theorem.

Theorem 3.1 If z is a zero of p(z) as in (3), then

|z| ≤
4

√
(δ + 1) [(δ + 1)2 + 4δ′]

1
2

2
,

where

δ =
1
2

[
(α + β) +

(
(α + β)2 + 4|γ|2

) 1
2
]
,

and

α =
n∑

j=1

|aj |2 , β =
n∑

j=1

|Lj |2 ,
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γ = −
n∑

j=1

Ljaj , Lj = anaj − aj−1

for j = 1, 2, . . . , n with a0 = 0,and

δ′ =
1
2

[
(α′ + β′) +

√
(α′ + β′)2 + 4|γ′|2

]
,

where

α′ =
n∑

j=3

|aj |2 , β′ =
n∑

j=3

|Lj |2 and γ′ = −
n∑

j=3

Ljaj .

Proof. Let C(p) be the companion matrix of p(z).Since C2(p) 6= [0]
n×n

,we have

wC(p) ≤
∥∥C2(p)

∥∥ 1
2 .

Kittaneh found
∥∥C2(p)

∥∥ in [6], and hence we get the result. �

Now since ∥∥C2(p)
∥∥ 1

2 ≤ 1
2

(
‖C(p)‖+

∥∥C2(p)
∥∥ 1

2
)

.

Therefore, the bound in Theorem 3.1, is better than Kittaneh bound in [6].

Kittaneh found new bound for the zeros of a polynomial p(z) by using matrix

inequality as in the following theorem.

Theorem 3.2 (see[5] ) If z is a zero of p(z) as in (3), then

|z| ≤ 1
2

(1 + |an|) +

√√√√√(1 + |an|)2 + 4

n−1∑
j=1

|aj |2
 1

2

 .

In the following theorem, we find new bounds for the zeros of p(z) by using

matrix inequalities.

Theorem 3.3. If z is any zero of p(z) as in (3), then

|z| ≤ 1
2

[
β +

√
β2 + 4 |a1|

]
,

where

β =


(
1 +

∑n
j=2 |aj |2

)
+

√(∑n
j=2 |aj |2 − 1

)2

+ 4 |a2|2

2


1
2

.
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Proof. Let C(p) be the companion matrix of p(z) as in (4). Then

C(p) =

 C11 C12

C21 C22

 ,

where

C11 =



−an −an−1 −an−2 · · · −a2

1 0 0 · · · 0

0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1 0


,

C12 =
[
−a1 0 0 · · · 0

]t

,

C21 =
[

0 0 0 · · · 1
]
,

C22 =
[

0
]
.

Known,

rC(p) ≤ r

 β |a1|

1 0

 .

By using (iv) in Theorem 1.2, we get

β = ‖C11‖ =


(
1 +

∑n
j=2 |aj |2

)
+

√(∑n
j=2 |aj |2 − 1

)2

+ 4 |a2|2

2


1
2

. �

That is, the desired result.

Acknowledgment. The author would like to thank the referee’s comments.
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FUNCTIONALS ON NORMED SEQUENCE SPACES AND UNIFORM
EXPONENTIAL INSTABILITY OF EVOLUTION OPERATORS

MIHAIL MEGAN AND LARISA BIRIŞ

Abstract. In this paper, we present necessary and sufficient conditions

for uniform exponential instability of evolution operators in Banach spaces.

Variants for uniform exponential instability of some well-known results due

to Datko, Neerven and Zabczyk are given. As consequences, some results

proved in [6] are obtained.

1. Introduction

One of the most remarkable result in stability theory of evolution operators

in Banach spaces has been obtained by Datko in [3]. An important generalization of

Datko’s result was proved by Rolewicz in [12]. A new and interesting idea has been

presented by Neerven in [9], where an unified treatment of the preceding results is

given and the exponential stability of C0-semigroups has been characterized in terms

of functionals on Banach function spaces. Some generalizations of these results for

the case of linear evolution operators have been presented in [1], [5] and [6].

In this paper, we shall present characterizations for exponential instability of linear

evolution operators in the spirit of Neerven’s approach. Thus we obtain the versions

of the theorems due to Datko, Zabczyck and Neerven for the case of exponential

instability. As consequences, we obtain some results presented in [6].

Received by the editors: 01.09.2009.
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2. Linear evolution operators

Let X be a Banach space. The norm on X and on the space B(X) of all

bounded linear operators from X into itself will be denoted by ‖.‖.

Let T be the set defined by

T = {(t, t0) ∈ R2
+ : t0 ≤ t}.

Definition 2.1. An application E : T → B(X) is called evolution operator on X, if

it satisfies the following conditions :

(i) E(t, t) = I (the identity operator on X);

(ii) E(t, s)E(s, t0) = E(t, t0), for all (t, s) ∈ T and (s, t0) ∈ T ;

(iii) there exist M,ω > 0 such that

‖E(t, t0)‖ ≤ Meω(t−t0), for all (t, t0) ∈ T.

Particular classes of evolution operators are given by:

Definition 2.2. An evolution operator E is said to be

(i) strongly measurable, if for every (t0, x) ∈ R+×X the mapping E(·, t0)x is

measurable;

(ii) injective, if for every (t, t0) ∈ R2
+ the linear operator E(t, t0) is injective.

(iii) uniformly exponentially instable, if there are N, ν > 0 such that

‖E(t, t0)x‖ ≥ Neν(t−t0)‖x‖, for all (t, t0, x) ∈ T ×X.

A characterization of the exponential instability property is given by:

Proposition 2.1. An evolution operator E is uniformly exponentially instable if and

only if there exists a nondecreasing sequence f : N → R∗+ = (0,∞) with lim
n→∞

f(n) =

∞ and

‖E(n + t0, t0)x‖ ≥ f(n)‖x‖, for all m,n ∈ N and x ∈ X.

Proof. Necessity is trivial.

Sufficiency. Let (t, t0) ∈ T and n ∈ N such that n ≤ t − t0 < n + 1. Then for every
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x ∈ X with ‖x‖ = 1, we have that

‖E(t, t0)x‖ = ‖E(t, t0 + n)E(t0 + n, t0)x‖ ≥ f(t− t0 − n)‖E(t0 + n, t0)x‖

≥ f(0)f(1)‖E(t0 + (n− 1), t0)x‖ ≥ · · · ≥ f(0)f(1)n‖x‖

= f(0)eνn‖x‖ ≥ Neν(n+1)‖x‖ ≥ Neν(t−t0)‖x‖,

where ν = lnf(1) > 0 and N = f(0)/f(1) > 0, which shows that E is uniformly

exponentially instable. �

3. Main results

Let S(R) the set of all real sequences. By S+(R) we denote the set of all

s ∈ S(R) with s(n) ≥ 0, for all n ∈ N.

Let F be the set of all functions F : S+(R) → [0,∞] with the properties:

(f1) if s1, s2 ∈ S+(R) with s1 ≤ s2 then F (s1) ≤ F (s2);

(f2) there exists α > 0 such that F (cχ{n}) ≥ αc, for all c > 0 and n ∈ N;

(f3) there exists f ∈ S+(R+) with lim
n→∞

f(n) = ∞ such that

F (cχ{0,...,n}) ≥ f(n), for all c > 0 and n ∈ N.

Here χA denotes the characteristic function of the set A.

For every injective evolution operator E and every x ∈ X with ‖x‖ = 1, we

associate the following sequences:

et0
x (n) =

1
‖E(n + t0, t0)x‖

, em,t0
x (n) = et0

x (m + n), vm,t0
x (n) =

em,t0
x (n)
et0
x (m)

,

for all m,n ∈ N.

Remark 3.1. If the evolution operator E is uniformly exponentially instable then

there exists F ∈ F with the properties:

(i) sup
‖x‖=1
t0≥0

F (et0
x ) < ∞;

(ii) there exists N > 0 such that F (em,t0
x ) ≤ Net0

x (m), for all m ∈ N, t0 ≥ 0

and x ∈ X with ‖x‖ = 1;

(iii) sup
‖x‖=1

(m,t0)∈N×R+

F (em,t0
x ) < ∞;
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(iv) sup
‖x‖=1

(m,t0)∈N×R+

F (vm,t0
x ) < ∞.

Indeed, if we consider the function F : S+(R) → [0,∞] defined by

F (s) =
∞∑

n=0

s(n)

then it is easy to verify that the uniformly exponentially instability property of E

implies the conditions (i), (ii), (iii) and (iv).

The main result of this paper is :

Proposition 3.1. An injective evolution operator E is uniformly exponentially in-

stable if and only if there is F ∈ F such that

sup
‖x‖=1
t0≥0

F (et0
x ) < ∞.

Proof. Necessity. It results from Remark 3.1.

Sufficiency. We observe that

et0
x =

∞∑
k=0

et0
x (k)χ{k} ≥

n∑
k=0

et0
x (k)χ{k} ≥ et0

x (n)χ{n}.

Let M = sup
‖x‖=1
t0≥0

F (et0
x ) < ∞. Using the hypothesis, we obtain that

M ≥ F (et0
x ) ≥ F (et0

x (n)χ{n}) ≥ α · et0
x (n),

and hence et0
x (n) ≤ M/α, for all t0 ≥ 0, n ∈ N and x ∈ X with ‖x‖ = 1.

The last inequality becomes

‖E(n + t0, t0)x‖ ≥
α

M
,

for all n ∈ N, t0 ≥ 0 and all ‖x‖ = 1.

This implies that

‖E(n + t0, k + t0)E(k + t0, t0)x‖ ≥
α

M
‖x‖, for all x ∈ X with ‖x‖ = 1,

and hence

‖E(n + t0, t0)x‖ ≥
α

M
‖E(k + t0, t0)x‖, for all k, n ∈ N, k ≤ n, t0 ≥ 0
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and x ∈ X with ‖x‖ = 1.

We have that

et0
x =

∞∑
k=0

et0
x (k)χ{k} ≥

n∑
k=0

et0
x (k)χ{k} ≥

α

M
et0
x (n)χ{0,...,n}.

It follows that

M ≥ F (et0
x ) ≥ α

M
et0
x (n)f(n)

and hence

‖E(n + t0, t0)x‖ ≥
α

M2
f(n), for all x ∈ X with ‖x‖ = 1.

By Proposition 2.1 it results that E is uniformly exponentially instable. �

Corollary 3.1. An injective evolution operator E is uniformly exponentially instable

if and only if there exist N > 0 and F ∈ F such that

F (em,t0
x ) ≤ Net0

x (m),

for all m ∈ N, t0 ≥ 0 and x ∈ X with ‖x‖ = 1.

Proof. Necessity. It results from Remark 3.1.

Sufficiency. We observe that

sup
‖x‖=1
t0≥0

F (et0
x ) = sup

‖x‖=1
t0≥0

F (e0,t0
x ) ≤ Net0

x (0) = N < ∞

and by Proposition 3.1 it follows that E is uniformly exponentially instable. �

Corollary 3.2. An injective evolution operator E is uniformly exponentially instable

if and only if there is F ∈ F such that

sup
‖x‖=1

(m,t0)∈N×R+

F (em,t0
x ) < ∞.

Proof. Necessity. It results from Remark 3.1.

Sufficiency. It results from Proposition 3.1 taking into account that

sup
‖x‖=1
t0≥0

F (et0
x ) = sup

‖x‖=1
t0≥0

F (e0,t0
x ) ≤ sup

‖x‖=1
(m,t0)∈N×R+

F (em,t0
x ) < ∞.

�
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Similarly, we obtain:

Corollary 3.3. An injective evolution operator E is uniformly exponentially instable

if and only if there is F ∈ F such that

sup
‖x‖=1

(m,t0)∈N×R+

F (vm,t0
x ) < ∞.

Remark 3.2. The preceding results are discrete versions of a Neerven’s theorem ([9])

for the case of instability property.

We shall denote by Φ the set of all nondecreasing functions ϕ : R+ → R+

with ϕ(0) = 0 and ϕ(t) > 0, for every t > 0.

Corollary 3.4. An injective evolution operator E is uniformly exponentially instable

if and only if there exists ϕ ∈ Φ such that

sup
‖x‖=1
t0≥0

∞∑
n=0

ϕ(et0
x (n)) < ∞.

Proof. Necessity. It is trivial for ϕ(t) = t.

Sufficiency. It results from Proposition 3.1 for

F (s) =
∞∑

n=0

ϕ(s(n)).

�

Remark 3.3. The preceding corollary extends a Zabczyk’s theorem ([13]) for the

case of exponential instability.

For the particular case ϕ(t) = tp, we obtain:

Corollary 3.5. An injective evolution operator E is uniformly exponentially instable

if and only if there exists p ∈ [1,∞) such that

sup
‖x‖=1
t0≥0

∞∑
n=0

[et0
x (n)]p < ∞.

Remark 3.4. Corollary 3.5 is a discrete version of Datko’s theorem ([3]) for the case

of exponential instability. It can be also considered as a variant for the exponential
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instability of a theorem proved by Przyluski and Rolewicz in [11] for the case of

exponential stability.

Let B(N) be the set of all normed sequence spaces B ([8]) with the properties:

(i) χ{0,...,n} ∈ B, for all n ∈ N;

(ii) lim
n→∞

|χ{0,...,n}|B = ∞;

(iii) there exists α > 0 such that |χ{n}|B ≥ α, for all n ∈ N.

Corollary 3.6. An injective evolution operator E is uniformly exponentially instable

if and only if there exists a normed sequence space B ∈ B(N) such that for every

x ∈ X with ‖x‖ = 1, we have that et0
x ∈ B and

sup
‖x‖=1
t0≥0

|et0
x |B < ∞.

Proof. Necessity. It is immediate for B = l1.

Sufficiency. Let F : S+(R) → [0,∞] be the function defined by

F (s) = sup
n∈N

|s · χ{0,...,n}|B .

It is easy to see that F ∈ F and

et0
x χ{0,...,n} ≤ et0

x , for all n ∈ N, t0 ≥ 0 and x ∈ X with ‖x‖ = 1.

Then

sup
‖x‖=1
t0≥0

F (et0
x ) ≤ sup

‖x‖=1
t0≥0

|et0
x |B < ∞.

By Proposition 3.1 it results that E is uniformly exponentially instable. �

Remark 3.5. The Corollary 3.6 is a discrete variant for exponential instability of

Theorem 3.1.5 from [8].

As a particular case, for the Banach sequence space

B = {s ∈ S+(R) : βs ∈ lp}

we obtain:
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Corollary 3.7. An injective evolution operator E is uniformly exponentially instable

if and only if there are p ∈ [1,∞) and β ∈ S+(R) with β > 0 and
∞∑

n=0
β(n) = ∞ such

that

sup
‖x‖=1
t0≥0

∞∑
n=0

βp(n)[et0
x (n)]p < ∞.

Remark 3.6. The preceding corollary is an extension of Corollary 3.1.6. from [8].
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LIV, Number 4, December 2009

ON A GENERAL CLASS OF BETA APPROXIMATING OPERATORS
OF SECOND KIND

VASILE MIHEŞAN

Abstract. We shall define a general linear transform, from which we ob-

tain as special case the beta second kind transform. We obtain several

positive linear operators as a special case of this beta second kind trans-

form. We apply the beta second kind transform to Baskakov’s operator

Bn and we obtain different generalization of it.

1. Introduction

In this paper we continue our earlier investigations [5], [6], [7], [8], [9], [10]

concerning to use Euler’s beta function for constructing linear positive operators.

Euler’s beta function is defined for p, q > 0 by the following formula

B(p, q) =
∫ ∞

0

up−1

(1 + u)p+q
du. (1.1)

The beta second kind transform of the function f is defined by the following

formula

Tp,qf =
1

B(p, q)

∫ ∞
0

up−1

(1 + u)p+q
f(u)du. (1.2)

We shall define a more general linear transform from which we obtain as

special case the beta second kind transform.

Let us denote by M [0,∞) the linear space of functions defined for t ≥ 0,

bounded and Lebesgue measurable in each interval [c, d], where 0 < c < d < ∞.

Received by the editors: 22.02.2008.

2000 Mathematics Subject Classification. 41A36.

Key words and phrases. Euler’s beta function, the beta second kind transform, positive linear operators.
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For a, b ∈ R we define the (a, b)-beta transform of a function f (see [5])

T (a,b)
p,q f =

1
B(p, q)

∫ ∞
0

up−1

(1 + u)p+q
f

(
ua

(1 + u)a+b

)
du, (1.3)

where B(·, ·) is the beta function (1.1) and f ∈ M [0,∞) such that T (a,b)
p,q |f | < ∞.

If we consider in (1.3) a + b = 0 we obtain the second kind transform of

function f ∈ M [0,∞)

T (a)
p,q = T (a,−a)

p,q f =
1

B(p, q)

∫ ∞
0

up−1

(1 + u)p+q
f(ua)du (1.4)

such that T
(a)
p,q |f | < ∞. Clearly T

(a)
p,q is a positive linear functional.

We shall consider here only the special case a = 1.

2. The beta second kind transform. Case a = 1

If we put in (1.4) a = 1 we obtain the beta second kind transform

Tp,qf = T (1)
p,q f =

1
B(p, q)

∫ ∞
0

up−1

(1 + u)p+q
f(u)du (2.1)

for f ∈ M [0,∞) such that Tp,q|f | < ∞ considered by D.D. Stancu [13] (see also [7]).

Remark. If a = −1 we obtain T
(−1)
p,q f = T

(1)
p,q f = Tp,qf (see [7]).

Theorem 2.1. [13] The moment of order k (1 ≤ k < q) of the functional Tp,q has

the following value

Tp,qek =
p(p + 1) . . . (p + k − 1)

(q − 1) . . . (q − k)
, 1 ≤ k < q. (2.2)

Consequently we obtain

Tp,qe1 =
p

q − 1
, Tp,qe2 =

p(p + 1)
(q − 1)(q − 2)

, q > 2. (2.3)

We impose that Tp,qe1 = e1, that is
p

q − 1
= x, or p =

β

α
x, q = 1 +

β

α
, x > 0,

α, β > 0 and we obtain the following linear positive operators

(T (α,β)f)(x) =
1

B

(
β

α
x, 1 +

β

α

) ∫ ∞
0

u
β
α−1

(1 + u)1+
β
α (x+1)

f(u)du. (2.4)
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Corollary 2.2. One has

T (α,β)((t− x)2;x) =
α

β − α
x(1 + x), β > α > 0. (2.5)

Proof. It is obtained from (2.3) for p =
β

α
x, q = 1 +

β

α
, p + q = 1 +

β

α
(1 + x).

(T (α,β)e2)(x) =
βx(βx + α)
β(β − α)

= x2 +
(

βx2 + αx

β − α
− x2

)
= x2 +

α(x + x2)
β − α

and

T (α,β)((t− x)2;x) =
α

β − α
x(1 + x). β > α > 0.

Special cases

1. Let T (α)
1 be the beta second kind operator defined by

(T (α)
1 f)(x) =

1

B

(
x

α
, 1 +

1
α

) ∫ ∞
0

u
x
α−1

(1 + u)
1+x

α +1
f(u)du. (2.6)

The operator (2.6) has been considered by Stancu [13] (see also [1], [2], [7],

[11]) and it is obtained by (2.4) if we choose in (2.4) β = 1 and α ∈ (0, 1).

Corollary 2.3. [7] One has

T (α)
1 ((t− x)2;x) =

α

1− α
x(1 + x), α ∈ (0, 1). (2.7)

For α =
1
n

we obtain

T (1/n)
1 ((t− x)2;x) =

x(1 + x)
n− 1

.

2. Another beta second kind operator it is obtained by (2.4) for β =
1

1 + x
,

β > α, x ∈
(

0,
1
α
− 1
)

, α ∈ (0, 1)

(T (α)
2 f)(x) =

1

B

(
x

α(1 + x)
, 1 +

1
α(1 + x)

) ∫ ∞
0

u
x

α(1+x)−1

(1 + u)
1
α +1

f(t)dt (2.8)

where f ∈ M [0,∞) such that T (α)
2 |f | < ∞, considered by J. Adell [2] (see also [7]).
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Corollary 2.4. [7] One has

T (α)
2 ((t− x)2;x) =

αx(1 + x)2

1− α(1 + x)
, x <

1
α
− 1.

For α = 1/n, n ∈ N we obtain

T (1/n)
2 ((t− x)2;x) =

x(1 + x)2

n− 1− x
, x < n− 1.

3. Let T (α)
3 be the operator defined by

(T (α)
3 f)(x) =

1

B

(
1
α

; 1 +
1

αx

) ∫ ∞
0

u
1
α−1

(1 + u)
1+x
αx +1

f(t)dt, (2.9)

x ∈
(

0,
1
α

)
, α ∈ (0, 1).

The operator (2.9) is obtained by (2.4) if we choose in (2.4) β =
1
x

.

Corollary 2.5. One has

T (α)
3 ((t− x)2;x) =

αx2(1 + x)
1− αx

, x <
1
α

.

For α = 1/n, n ∈ N we obtain

T (1/n)
3 ((t− x)2;x) =

x2(1 + x)
n− x

, x < n.

4. For β =
x

1 + x
> α, x ∈

(
α

1− α
,∞
)

, α ∈ (0, 1) we obtain by (2.4) the

following operator

(T (α)
4 f)(x) =

1

B

(
x2

α(1 + x)
, 1 +

x

α(1 + x)

) ∫ ∞
0

u
x2

α(1+x)−1

(1 + u)
x
α−1

f(u)du. (2.10)

Corollary 2.6. One has

T (α)
4 ((t− x)2;x) =

αx(1 + x)2

x− α(1 + x)
, x >

α

1− α
.

For α = 1/n, n ∈ N we obtain

T (1/n)
4 ((t− x)2;x) =

x(1 + x)2

(n− 1)x− 1
, x >

1
n− 1

.
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5. Let T (α)
5 be the operator

(T (α)
5 f)(x) =

1

B

(
1 + x

α
,
1 + x

αx
+ 1
) ∫ ∞

0

u
1+x

α −1

(1 + u)
(1+x)2

αx +1
f(u)du (2.11)

α ∈ (0, 1), α > 0. The operator (2.11) is obtained by (2.4) if we put in (2.4) β =
1 + x

x
.

Corollary 2.7. One has

T (α)
5 ((t− x)2;x) =

αx2(1 + x)
1 + (1− α)x

, x > 0.

For α = 1/n, n ∈ N,

T (1/n)
5 ((t− x)2;x) =

1
n(1 + x)− x

.

6. For β = x, x ∈ (α,∞), α ∈ (0, 1) we obtain by (2.4) the following operator

(T (α)
6 f)(x) =

1

B

(
x2

α
, 1 +

x

α

) ∫ ∞
0

u
x2
α −1

(1 + u)
x(1+x)

α +1
f(u)du (2.12)

Corollary 2.8. One has

T (α)
6 ((t− x)2;x) =

αx(1 + x)
x− α

, x > α.

For α = 1/n, n ∈ N we obtain

T (1/n)
6 ((t− x)2;x) =

x(1 + x)
nx− 1

, x >
1
n

.

7. Let T (α)
7 be the beta operator defined by

(T (α)
7 f)(x) =

1

B

(
x(1 + x)

α
, 1 +

1 + x

α

) ∫ ∞
0

u
x(1+x)

α −1

(1 + u)
(1+x)2

α +1
f(u)du (2.13)

α ∈ (0, 1), x > 0. The operator (2.13) is obtained by (2.4) if we put in (2.4) β = 1+x.

Corollary 2.9. One has

T (α)
7 ((t− x)2;x) =

αx(1 + x)
1− α + x

, x > 0.
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For α = 1/n we obtain

T (1/n)
7 ((t− x)2;x) =

x(1 + x)
nx + n− 1

.

8. Another beta second kind operator is obtained for β =
1

x(1 + x)
> α,

x ∈

(
0,

√
1 + 4/α− 1

2

)
, α ∈ (0, 1)

(T (α)
8 f)(x) =

1

B

(
1

α(1 + x)
,

1
αx(1 + x)

+ 1
) ∫ ∞

0

u
1

α(1+x)−1

(1 + u)
1

αx +1
f(u)du. (2.14)

Corollary 2.10. One has

T (α)
8 ((t− x)2;x) =

αx2(1 + x)2

1− αx(1 + x)
, x <

√
1 + 4/α− 1

2
.

For α = 1/n, n ∈ N we obtain

T (1/n)
8 ((t− x)2;x) =

x2(1 + x)2

n− x(1 + x)
, x(1 + x) < n.

9. For β = x(1 + x) > α, x ∈
(√

1 + 4α− 1
2

,∞
)

, α ∈ (0, 1) we obtain by

(2.4) the following operator

(T (α)
9 f)(x) =

1

B

(
x2(1 + x)

α
,
x(1 + x)

α
+ 1
) ∫ ∞

0

u
x2(1+x)

α −1

(1 + u)
x(1+x)2

α +1
f(u)du. (2.15)

Corollary 2.11. T (α)
9 ((t− x)2;x) =

αx(1 + x)
x(1 + x)− α

, x(1 + x) > α.

For α = 1/n, n ∈ N we obtain

T (1/n)
9 ((t− x)2;x) =

x(1 + x)
nx(1 + x)− 1

, nx(1 + x) > 1.
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3. The functional B
(p,q)
n f = Tp,q(Bnf)

Now let us apply the transform (2.1) to the Baskakov operator Bn, defined

by [3]

(Bnf)(x) =
∞∑

k=0

(
n + k − 1

k

)
xk

(1 + x)n+k
f

(
k

n

)
. (3.1)

Theorem 3.1. [7] The Tp,q transform of Bnf can be expressed by the following

formula

B(p,q)
n f = Tp,q(Bnf) =

∞∑
k=0

(
n + k − 1

k

)
(p)k(q)n

(p + q)n+k
f

(
k

n

)
(3.2)

where (a)m = a(a + 1) . . . (a + m− 1).

Theorem 3.2. [7] One has

B(p,q)
n e1 =

p

q − 1
, B(p,q)

n e2 =
p(p + 1)

(q − 1)(q − 2)
+

1
n
· p(p + q − 1)
(q − 1)(q − 2)

, q > 2. (3.3)

We impose that B
(p,q)
n e1 = e1, that is

p

q − 1
= x, or p =

β

α
x, q = 1 +

β

α
,

x > 0; α, β > 0, α < β and we obtain from Theorem 3.1 and Theorem 3.2 the

following results.

Corollary 3.3. One has

(B(α,β)
n f)(x) =

∞∑
k=0

(
n + k − 1

k

)
b
(α,β)
n,k (x)f

(
k

n

)
(3.4)

where

b
(α,β)
n,k (x) =

βx(βx + α) . . . (βx + (k − 1)α)(β + α)(β + 2α) . . . (β + nα)
(β(1 + x) + α)(β(1 + x) + 2α) . . . (β(1 + x) + (n + k)α)

.

Corollary 3.4. One has

(B(α,β)
n e1)(x) = x, (B(α,β)

n e2)(x) = x2 +
αn + β

β − α
· x(1 + x)

n

B(α,β)
n ((t− x)2;x) =

αn + β

β − α
· x(1 + x)

n
, β > α. (3.5)
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Special cases

1. If we put in (3.4) β = 1, α ∈ (0, 1), we obtain the operator considered by

D.D. Stancu [13] (see also [1], [7])

(C(α)
n f)(x) =

∞∑
k=0

(
n + k − 1

k

)
c
(α)
n,k(x)f

(
k

n

)
(3.6)

c
(α)
n,k =

x(x + α) . . . (x + (k − 1)α)(1 + α) . . . (1 + nα)
(1 + x + α)(1 + x + 2α) . . . (1 + x + (n + k)α)

Corollary 3.5. One has

C(α)
n ((t− x)2;x) =

1 + αn

1− α
· x(1 + x)

n
. (3.7)

For α = 1/n, n ∈ N, we obtain

C(1/n)
n ((t− x)2;x) =

2x(1 + x)
n− 1

.

2. Another operator it is obtained by (3.4) for β =
1

1 + x
, α ∈ (0, 1),

x ∈
(

0,
1
α
− 1
)

(D(α)
n f)(x) =

∞∑
k=0

(
n + k − 1

k

)
d
(α)
n,k(x)f

(
k

n

)
(3.8)

d
(α)
n,k(x) =

x(x + α(1 + x)) . . . (x + (k − 1)α(1 + x))(1 + α(1 + x) . . . (1 + nα(1 + x))
(1 + α)(1 + 2α) . . . (1 + (n + k)α)(1 + x)n+k

Corollary 3.6. One has

D(α)
n ((t− x)2;x) =

1 + nα(1 + x)
1− α(1 + x)

· x(1 + x)
n

, x ∈
(

0,
1
α
− 1
)

.

For α = 1/n, n ∈ N, we obtain

D(1/n)
n ((t− x)2;x) =

x(1 + x)(2 + x)
n− 1− x

, x ∈ (0, n− 1).

3. Let E
(α)
n be the operator defined by

(E(α)
n f)(x) =

∞∑
k=0

(
n + k − 1

k

)
e
(α)
n,k(x)f

(
k

n

)
(3.9)
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e
(α)
n,k(x) =

(1 + α)(1 + 2α) . . . (1 + (k − 1)α)(1 + αx) . . . (1 + nαx)
(1 + x + αx) . . . (1 + x + (n + k)αx)

· xk

α ∈ (0, 1), x ∈ (0, 1/α). This operator is obtained by (3.4) for β = 1/x.

Corollary 3.7. One has

E(α)
n ((t− x)2;x) =

αnx + 1
1− αx

· x(1 + x)
n

, x <
1
α

.

For α = 1/n, n ∈ N, we obtain

E(1/n)
n ((t− x)2;x) =

x(1 + x)2

n− x
, x < n.

4. For β =
x

1 + x
, α ∈ (0, 1), x >

α

1− α
we obtain by (3.4) the following

operator

(F (α)
n f)(x) =

∞∑
k=0

(
n + k − 1

k

)
f

(α)
n,k (x)f

(
k

n

)
(3.10)

f
(α)
n,k (x)=

x2(x2+α(1+x)) . . . (x2 + (k − 1)α(1 + x))(x + α(1 + x)) . . . (x+nα(1+x))
(x + α)(x + 2α) . . . (x + (n + k)α)(1 + x)n+k

Corollary 3.8. One has

F (α)
n ((t− x)2;x) =

αn(1 + x) + x

x− α(1 + x)
, x >

α

1− α
.

For α =
1
n

, n ∈ N, we obtain

F (1/n)
n ((t− x)2;x) =

x(1 + x)(1 + 2x)
(n− 1)x− 1

, x >
1

n− 1
.

5. Let G
(α)
n be the operator

(G(α)
n f)(x) =

∞∑
k=0

(
n + k − 1

k

)
g
(α)
n,k(x)f

(
k

n

)
(3.11)

g
(α)
n,k(x) =

(1 + x)(1 + x + α) . . . (1 + x + (k − 1)α)(1 + x + αx) . . . (1 + x + nαx)
((1 + x)2 + αx)((1 + x)2 + 2αx) . . . ((1 + x)2 + (n + k)αx)

·xk.

The operator (3.11) is obtained by (3.4) if we put in (3.4) β =
1 + x

x
,

α ∈ (0, 1), x > 0.
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Corollary 3.9. One has

G(α)
n ((t− x)2;x) =

αnx + 1 + x

1 + x− αx
· x(1 + x)

n
.

For α = 1/n, n ∈ N, we obtain

G(1/n)
n ((t− x)2;x) =

x(1 + x)(1 + 2x)
n + (n− 1)x

.

6. For β = x, α ∈ (0, 1), x ∈ (α,∞) we obtain by (3.4) the following operator

(H(α)
n f)(x) =

∞∑
k=0

(
n + k − 1

k

)
h

(α)
n,k(x)f

(
k

n

)
(3.12)

h
(α)
n,k(x) =

x2(x2 + α) . . . (x2 + (k − 1)α)(x + α)(x + 2α) . . . (x + nα)
(x(1 + x) + α) . . . (x(1 + x) + (n + k)α)

.

Corollary 3.10. One has

H(α)
n ((t− x)2;x) =

αn + x

x− α
· x(1 + x)

n
, x > α.

For α = 1/n, n ∈ N, we obtain

H(α)
n ((t− x)2;x) =

x(1 + x)2

nx− 1
, x >

1
n

.

7. Let K
(α)
n be the operator

(K(α)
n f)(x) =

∞∑
k=0

(
n + k − 1

k

)
k

(α)
n,k(x)f

(
k

n

)
(3.13)

k
(α)
n,k(x) =

x(1+x)(x(1 + x) + α) . . . (x(1 + x) + (k − 1)α)(1 + x + α) . . . (1 + x + nα)
((1 + x)2 + α)((1 + x)2 + 2α) . . . ((1 + x)2 + (n + k)α)

The operator K
(α)
n is obtained by (3.4) if we put in (3.4) β = 1+x, α ∈ (0, 1),

x ∈ (0,∞).

Corollary 3.11. One has

K(α)
n ((t− x)2;x) =

αn + x + 1
1 + x− α

· x(1 + x)
n

.

For α = 1/n, n ∈ N, we obtain

K(1/n)
n ((t− x)2;x) =

x(1 + x)(2 + x)
n(1 + x)− 1

.
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8. For β =
1

x(1 + x)
, α ∈ (0, 1), αx(1 + x) < 1 we obtain by (3.4) the

following operator

(L(α)
n f)(x) =

∞∑
k=0

(
n + k − 1

k

)
l
(α)
n,k(x)f

(
k

n

)
(3.14)

l
(α)
n,k(x) =

∞∑
k=0

(1 + α(1 + x)) . . . (1 + (k − 1)α(1 + x))(1 + αx(1 + x)) . . . (1 + nαx(1 + x))xk

(1 + αx)(1 + 2αx) . . . (1 + (n + k)αx)(1 + x)n+k

Corollary 3.12. One has

L(α)
n ((t− x)2;x) =

αnx(1 + x) + 1
1− αx(1 + x)

· x(1 + x)
n

, αx(1 + x) < 1.

For α = 1/n, n ∈ N, we obtain

L(1/n)
n ((t− x)2;x) =

x(1 + x)(1 + x(1 + x))
n− x(1 + x)

, x(1 + x) < n.

9. Another operator it is obtained for β = x(1 + x), α ∈ (0, 1), x(1 + x) > α.

(M (α)
n f)(x) =

∞∑
k=0

(
n + k − 1

k

)
m

(α)
n,k(x)f

(
k

n

)
(3.15)

m
(α)
n,k(x)=

x2(1+x)(x2(1+x)+α) . . . (x2(1 + x) + (k − 1)α)(x(1 + x) + α) . . . (x(1+x)+nα)

(x(1 + x)2 + α) . . . (x(1 + x)2 + (n + k)α)
.

Corollary 3.13. One has

M (α)
n ((t− x)2;x) =

αn + x(1 + x)
x(1 + x)− α

· x(1 + x)
n

, x(1 + x) > α.

For α = 1/n, n ∈ N, we obtain

M (1/n)
n ((t− x)2;x) =

x(1 + x)(1 + x(1 + x))
nx(1 + x)− 1

, nx(1 + x) > 1.
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[8] Miheşan, V., On a general class of Beta approximating operators of first kind, Studia
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ON THE CONVERGENCE RATES OF PICARD, MANN AND
ISHIKAWA ITERATIONS OF GENERALIZED CONTRACTIVE

OPERATORS

JOHNSON O. OLALERU

Abstract. The convergence rates of Picard, Mann and Ishikawa iterations

have been compared by several authors for a class of quasi-contractive

maps defined on an arbitrary closed convex subset of a Banach space (e.g.

[1], [3] and [10]). In this paper, a comparison of the convergence rates of

those iterations are studied for a more general class of operators called the

generalized contractive operators.

1. Introduction

Let X be a real Banach space, and C a nonempty convex subset of X. Let

T be a self map of C, and let po, xo, yo, zo ∈ C. The Picard iteration is defined by

pn+1 = Tpn. (1)

The Mann iteration (see [7]) is defined by

xn+1 = (1− αn)xn + αnTxn. (2)

The Ishikawa iteration (see [6]) is defined by

yn+1 = (1− αn)yn + αnTzn (3)

zn = (1− βn)yn + βnTyn (4)

where {αn} ⊂ (0, 1), {βn} ⊂ [0, 1).

Received by the editors: 01.10.2008.

2000 Mathematics Subject Classification. 47H10.

Key words and phrases. Fixed point, quasi-contraction, Picard iteration, Mann iteration, Ishikawa
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Definition 1. [18]. Let (X, d) be a metric space. T : X → X will be called a

Zamfirescu operator if there exist the real numbers a, b, c satisfying 0 < a < 1, 0 <

b, c < 1/2 such that for each pair x, y ∈ C, at least one of the following is true:

(i) d(Tx, Ty) ≤ ad(x, y);

(ii) d(Tx, Ty) ≤ b[d(x, Tx) + d(y, Ty)];

(iii) d(Tx, Ty) ≤ c[d(x, Ty) + d(y, Tx)].

Definition 2. [4]. Let T be a mapping of a metric space (X, d) into itself. A mapping

T is called a quasi− contraction if for some 0 ≤ k < 1 and all x, y ∈ X,

d(Tx, Ty) ≤ k.max{d(x, y); d(x, Tx); d(y, Ty); d(x, Ty); d(y, Tx)}. (5)

Clearly a Zamfirescu operator is a quasi-contraction map. Quasi-contraction

map is one of the most general contractive maps. For results on quasi-contraction

maps see [4-5],[14-15] and [17].

Definition 3. [8]. Let T be a mapping of a metric space (X, d) into itself. A

mapping T will be called a generalized contractive operator if for some 0 ≤ k < 1 and

all x, y ∈ X,

d(Tx, Ty) ≤ k.max{d(x, y); d(x, Tx); d(y, Ty); d(x, Ty) + d(y, Tx)}. (6)

A generalized contractive operator is more general than a quasi-contraction

as can be seen from the following example.

Example. [8]. Let X = R with the usual metric. Define T : X → X by Tx = x.

Clearly T is a generalized contractive operator. In fact, d(x, Ty)+d(y, Tx) = 2d(x, y),

d(Tx, Ty) = d(x, y). Let k = 3
4 . Then d(Tx, Ty) ≤ k{d(x, Ty) + d(y, Tx)}. However

T is not a quasicontraction.

The Ishikawa iteration and the Mann iteration converge to a fixed point of

T when T is a Zamfirescu operator defined on a closed convex set of a Banach space

(see [2], [9]). The Picard iteration converges faster than the Mann iteration [3] while

the Mann iteration converges faster than the Ishikawa iteration [1] when dealing

with the same class of Zamfirescu operators defined on a closed convex subset of a

Banach space. In [5] it was shown that the Ishikawa iteration converges to the fixed
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point of T when T is a quasi-contraction map defined on a closed convex set of a

Banach space. Also the Picard iteration converges faster to the fixed point of T than

the Mann iteration [10] while the Mann iteration converges faster than the Ishikawa

iteration [11] when T is a quasi-contraction. That answers the question posed in [3].

In this paper, we investigate the convergence rate of the Picard, Mann and Ishikawa

iteration when dealing with a more general class of operators called the generalized

contractive operators (6). It was proved that the Picard iteration converges to the

fixed point of T faster than the Mann iteration and the Mann iteration converges

faster than the Ishikawa iteration when T is a generalized contractive operator. It

should be noted that the Picard iteration converges to the fixed point of T when T is

a generalized contractive operator [13] while both the Ishikawa and consequently the

Mann iterations of this class of maps also converges to the fixed point of T [12].

The definitions and the methodology of Berinde [3], also used in [1] and [10],

will be adopted .

Definition 4. [3]. Let {an}n=∞
n=0 and {bn}n=∞

n=0 be two sequences of real numbers that

converge to a and b respectively, and assume there exists

l = lim
n→∞

|an − a|
|bn − b|

.

If l = 0, then we say that {an}n=∞
n=0 converges faster to a than {bn}n=∞

n=0 to b.

Definition 5. [3]. Let {un}n=∞
n=0 and {vn}n=∞

n=0 be two fixed point iteration procedures

that converge to the same fixed point p on a normed space X such that the error

estimates

‖un − p‖ ≤ an, n = 0, 1, 2, .... (7)

and

‖vn − p‖ ≤ bn, n = 0, 1, 2, .... (8)

are available, where {an}n=∞
n=0 and {bn}n=∞

n=0 are two sequences of positive numbers

(converging to zero). If {an}n=∞
n=0 converges faster than {bn}n=∞

n=0 , then we say that

{un}n=∞
n=0 converges faster to p than {vn}n=∞

n=0 .
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2. The main results

Theorem 1. Let K be a nonempty closed convex subset of a Banach space X and let

T : K → K be a generalized contractive operator (6). Then

1) T has a unique fixed point p in X;

2) The Picard iteration {pn} defined by Tpn = pn+1 converges to p for any

po ∈ K;

3) The Mann iteration {xn}, defined by xn+1 = (1−αn)xn+αnTxn, n=1,2,...

such that
∑

αn = ∞, converges strongly to p for any xo ∈ K;

4) The Picard iteration converges to p faster than Mann iteration.

Proof. For the proofs of 1) and 2) see ([13]). The Ishikawa iteration of T converges

to p [12]. By setting βn = 0 for all n, it is clear that the Mann iteration converges

too.

We now proof (4). Since T is a generalized contractive operator (6), then,

‖Ty − Tx‖ ≤ k max{‖y − x‖, ‖x− Tx‖, ‖y − Ty‖,

‖x− Ty‖+ ‖y − Tx‖}.

If ‖Ty − Tx‖ ≤ k‖y − Ty‖, then

‖Ty − Tx‖ ≤ k{‖y − x‖+ ‖x− Tx‖+ ‖Tx− Ty‖}

and so,

‖Ty − Tx‖ ≤ k

1− k
{‖y − x‖+ ‖x− Tx‖}. (9)

If ‖Ty − Tx‖ ≤ k{‖x− Ty‖+ ‖y − Tx‖}, then,

‖Ty − Tx‖ ≤ k{‖x− Tx‖+ ‖Tx− Ty‖+ ‖y − x‖+ ‖x− Tx‖}

which, after computing, gives

‖Tx− Ty‖ ≤ k

1− k
{‖y − x‖+ 2‖x− Tx‖}. (10)

Denote δ = max{k, k
1−k} = k

1−k . Then in view of (9) and (10), inequality (6) gives

‖Ty − Tx‖ ≤ δ{‖y − x‖+ 2‖x− Tx‖}. (11)
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Suppose p is a fixed point of T , then, if x = p and y = pn, from (11) we obtain

‖Tpn − p‖ ≤ δ‖pn − p‖. (12)

If we assume Picard approximation technique in (11) by assuming that Tpn = pn+1

for all n, we obtain

‖pn+1 − p‖ ≤ δ‖pn − p‖

which inductively gives

‖pn+1 − p‖ ≤ δn‖p1 − p‖, n ≥ 0. (13)

Following the same procedure in proving (10), it can be shown that

‖Tx− Ty‖ ≤ δ‖x− y‖+ 2δ‖y − Tx‖ (14)

for all x, y ∈ K where δ = k
1−k .

Let {xn}n=∞
n=0 be the Mann iteration as defined in the Theorem and xo ∈ K

arbitrary. Then

‖xn+1 − p‖ = ‖(1− αn)xn + αnTxn − (1− αn + αn)p)

= ‖(1− αn)(xn − p) + αn(Txn − p)‖

≤ (1− αn)‖xn − p‖+ αn‖Txn − p). (∗)

If x = p and y = xn in (14) we obtain

‖Txn − p‖ ≤ δ‖xn − p‖+ 2δ‖xn − p‖ = 3δ‖xn − p‖

and therefore by (*) we obtain

‖xn+1 − p‖ ≤ [1− αn + 3δαn]‖xn − p‖ ≤ [1 + 3δαn + δ]‖xn − p‖, n = 0, 1, 2, ..

which implies that

‖xn+1 − p‖ ≤
n∏

k=1

[[1 + 3δαk + δ]‖x1 − p‖, n = 0, 1, 2, ... . (15)

In order to compare {pn} and {xn} we must compare δn and
∏n

k=1[1 + 3δαk + δ].
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We first note that δ < 1 + 3δαk + δ for each k. Therefore δ
1+3δαk+δ < 1 for

each k. Hence

limn→∞
δn∏n

k=1[1 + 3δαk + δ]
→ 0.

This shows that the Picard iteration converges faster than the Mann iteration.

Corollary 1. [10]. Let K be a nonempty closed convex subset of a Banach space X

and let T : K → K be a quasi-contraction map (5). Then

1) T has a unique fixed point p in X;

2) The Picard iteration {pn} defined by Tpn = pn+1 converges to p for any

po ∈ K;

3) The Mann iteration {xn}, defined by xn+1 = (1−αn)xn+αnTxn, n=1,2,...

such that
∑

αn = ∞, converges strongly to p for any xo ∈ K;

4) The Picard iteration converges to p faster than Mann iteration.

Corollary 2. [3, Theorem 4]. Let X be a Banach space, K a closed convex subset of

X, and T : K → K a Zamfirescu operator. Then

1) T has a unique fixed point p in X;

2) The Picard iteration {pn} defined by Tpn = pn+1 converges to p for any

po ∈ K;

3) The Mann iteration {xn}, defined by xn+1 = (1−αn)xn+αnTxn, n=1,2,...

such that
∑

αn = ∞, converges strongly to p for any xo ∈ K ;

4) Picard iteration converges faster than Mann iteration.

Observe that Corollary 1 is more general than Corollary 2 which is the main

result in [3].

Theorem 2. Let K be a nonempty closed convex subset of a Banach space X and let

T : K → K be a generalized contraction map (6). Let {xn} and {yn} be the Mann

and Ishikawa iterations respectively defined by (2) and (3)-(4) for xo, yo ∈ K with

{αn} and {βn} real sequences such that 0 ≤ αn, βn ≤ 1 and
∑

αn = ∞. Then {xn}

and {yn} converge strongly to the unique fixed point of T , and moreover, the Mann

iteration converges to the fixed point of T faster than the Ishikawa iteration.
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Proof. The Ishikawa iteration (3)-(4) converges strongly to the unique fixed point

of T (e.g. see [12]). Consequently, if βn = 0 for all n, the Mann iteration converges

strongly to the unique fixed point of T . Since the fixed point of T is unique [13], then

both iterations must converge to the same fixed point which we denote by p.

It is not difficult to see that the quasi-contraction map satisfies the following

inequalities

‖Tx− Ty‖ ≤ δ{‖x− y‖+ 2‖x− Tx‖} (16)

‖Tx− Ty‖ ≤ δ{‖x− y‖+ 2‖y − Tx‖} (17)

for all x, y ∈ K where δ = max{k, k
1−k} = k

1−k .

Let {xn} be the Mann iteration associated with T , then, in view of (2), we

have

‖xn+1 − p‖ ≤ (1− αn)‖xn − p‖+ αn‖Txn − p‖. (18)

Suppose x = p and y = xn, (16) becomes

‖Txn − p‖ ≤ δ‖xn − p‖. (19)

In view of (18) and (19), we have

‖xn+1 − p‖ ≤ (1− αn)‖xn − p‖+ αnδ‖xn − p‖ = [1− αn(1− δ)]‖xn − p‖. (20)

Hence

‖xn+1 − p‖ ≤
n∏

k=1

[1− αk(1− δ)].‖x1 − p‖, n = 0, 1, 2, .... (21)

It is clear that

1− αk(1− δ) > 0 ∀ k = 0, 1, 2, .... (22)

Similarly, let {yn} be the Ishikawa iteration defined in (3)-(4), then, we have

‖yn+1 − p‖ ≤ (1− αn)‖yn − p‖+ αn‖Tzn − p‖. (23)

If x = p and y = zn in (17), we have

‖Tzn − p‖ ≤ δ‖zn − p‖+ 2δ‖zn − p‖ = 3δ‖zn − p‖. (24)
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If x = p and y = yn in (17), we have

‖Tyn − p‖ ≤ δ‖yn − p‖+ 2δ‖yn − p‖ = 3δ‖yn − p‖. (25)

We know by (4) that

‖zn − p‖ ≤ (1− βn)‖yn − p‖+ βn‖Tyn − p‖. (26)

In view of (23)-(26), we have

‖yn+1 − p‖ ≤ (1− αn)‖yn − p‖+ 3δαn‖zn − p‖

≤ (1− αn)‖yn − p‖+ 3δαn[(1− βn)‖yn − p‖

+ βn‖Tyn − p‖]

= (1− αn)‖yn − p‖+ 3δαn(1− βn)‖yn − p‖

+ 3δαnβn‖Tyn − p‖

= [(1− αn) + 3δαn(1− βn) + 9αnβnδ2]‖yn − p‖

= [1− αn(1− 3δ + 3βnδ − 9βnδ2)].‖yn − p‖

= [1− αn(1− 3δ)(1 + 3βnδ)].‖yn − p‖. (∗∗)

Since (1− 3δ)(1 + 3βnδ) < 1− 9δ2 ≤ 1, it is clear that

1− αn(1− 2δ)(1 + 2βnδ) > 0 ∀ n = 0, 1, 2, ... (27)

We consider the following two cases.

Case (1). Let δ ∈ (0, 1/3]. Hence

1− αn(1− 3δ)(1 + 3βnδ) ≤ 1 ∀ n = 0, 1, 2, ... (28)

(**) then becomes

‖yn+1 − p‖ ≤ ‖yn − p‖ ∀ n (29)

and hence

‖yn+1 − p‖ ≤ ‖y1 − p‖ ∀ n. (30)

If we compare the coefficients of (21) and (30), and using Definition 5 so that

an =
n∏

k=1

[1− αk(1− δ)] and bn = 1, (31)
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we have limn→∞(an/bn) = 0

Case (ii). Let δ > 1/3. In this case we have

1− αn(1− 3δ)(1 + 3βnδ) ≤ 1− αn(1− 9δ2) (32)

and so (**) becomes

‖yn+1 − p‖ ≤ [1− αn(1− 9δ2)]‖yn − p‖ ∀ n. (33)

Hence

‖yn+1 − p‖ ≤
n∏

k=1

[1− αk(1− 9δ2)]‖y1 − p‖. (34)

Comparing (21) and (34) and using Definition 5, we have

an =
n∏

k=1

[1− αk(1− δ)] and bn =
n∏

k=1

[1− αk(1− 9δ2)]. (35)

Clearly, an ≥ 0 and bn ≥ 0 ∀ n and an

bn
=

∏n
k=1

1−αk(1−δ)
1−αk(1−9δ2) . Also

min[1− αk(1− δ), k = 1, 2..n]
max[1− αk(1− 9δ), k = 1.2..n]

< 1.

Since
∏n

k=1
1−αk(1−δ)

1−αk(1−9δ2) < ( min[1−αk(1−δ), k=1,2....n]
max[1−αk(1−9δ), k=1,2....n] )

n then limn→∞
an

bn
= 0.

Therefore in both cases {an} converges faster than {bn} and hence the Mann

iteration converges faster than the Ishikawa iteration to the fixed point p of T .

In view of Theorems 1 and 2, we have the following results.

Corollary 3. Let K be a nonempty closed convex subset of a Banach space X and

let T : K → K be a generalized contractive map (6). Then

1) T has a unique fixed point p in X;

2) The Picard iteration {pn} defined by Tpn = pn+1 converges to p for any

po ∈ K;

3) The Picard iteration converges faster to the fixed point of T than Mann

iteration (2); and the Mann iteration converges faster than the Ishikawa iteration

(3)-(4).

Corollary 4. Let K be a nonempty closed convex subset of a Banach space X and

let T : K → K be a quasi-contraction (5). Then

1) T has a unique fixed point p in X;
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2) The Picard iteration {pn} defined by Tpn = pn+1 converges to p for any

po ∈ K;

3) The Picard iteration converges faster to the fixed point of T than Mann

iteration (2); and the Mann iteration converges faster than the Ishikawa iteration

(3)-(4).

Corollary 5. ([1],[3]). Let K be a nonempty closed convex subset of a Banach space

X and let T : K → K be a Zamfirescu operator. Then

1) T has a unique fixed point p in X;

2) The Picard iteration {pn} defined by Tpn = pn+1 converges to p for any

po ∈ K;

3) The Picard iteration converges faster to the fixed point of T than Mann

iteration; and the Mann iteration converges faster than the Ishikawa iteration (3)-(4).

Remarks. 1. The technique of our proofs is due to [3] and has been used by several

authors, e.g. see [16].

2. Ishikawa iteration has two parameters, {αn} and {βn}; the Mann iteration has only

one parameters {αn} while the Picard iteration has none. It appears that the more

the parameters for an iteration process, the slower the rate of convergence. At least

this is true in the case of Picard, Mann and the Ishikawa iterations when applied to

generalized contraction maps. It is therefore an open problem whether this conjecture

is true for other known iteration procedures and for a more general class of operators.

3. A generalized contraction map (see [14-15]) is a map satisfying the inequality

‖Tx− Ty‖ ≤ Q(M(x, y)), (36)

where Q is a real-valued function satisfying

(a) 0 < Q(s) < s for each s > 0 and Q(0) = 0,

(b) Q is non-decreasing on (0,∞),

(c) g(s) = s/(s−Q(s) is non-increasing on (0,∞),

M(x, y) = max{‖x− y‖, ‖x− Tx‖, ‖y − Ty‖, ‖x− Ty‖, ‖y − Tx‖}. (37)
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The Mann and the Ishikawa iterations are equivalent when dealing with

generalized contraction maps [15] i.e. if the Mann iteration converges to the fixed

point of T , then the Ishikawa iteration converges to the fixed point of T and if

the Ishikawa iteration converges, then the Mann iteration converges to the fixed

point of T . It is still an open problem as to which of the iterations converges

faster when T is a generalized contraction map. Suppose (37) is replaced with

M(x, y) = max{‖x − y‖, ‖x − Tx‖, ‖y − Ty‖, ‖x − Ty‖ + ‖y − Tx‖}, will the Mann

and the Ishikawa iterations still be equivalent? Will the Mann iteration still converge

faster than the Ishikawa iteration to the unique fixed point of T?
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ERROR BOUND FOR THE SOLUTION OF A POLYLOCAL

PROBLEM WITH A COMBINED METHOD

DANIEL N. POP

Abstract. Consider the problem:

−y
′′(t) + q(t)y(t) = r(t), t ∈ [a, b]

y(c) = α

y(d) = β, c, d ∈ (a, b).

The aim of this paper is to give an error bound for the solution of this

problem using a collocation with B-spline method combined with a Runge-

Kutta method. A numerical example is also given.

1. Introduction

Consider the problem:

−y′′(t) + q(t)y(t) = r(t), t ∈ [a, b] (1)

y(d) = α (2)

y(e) = β, d, e ∈ (a, b), d < e. (3)

where q, r ∈ C[a, b], α, β ∈ R. This is not a two-point boundary value problem (BVP),

since d, e ∈ (a, b).

Received by the editors: 16.02.2009.
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If the solution of the two-point boundary value problem

−y′′(t) + q(t)y(t) = r(t), t ∈ (d, e)

y(d) = α (4)

y(e) = β,

exists and it is unique, then the requirement y ∈ C2[a, b] assures the existence and

the uniqueness of (1)+(2)+(3).

We have two initial value problems on [a, d] and [e, b], respectively, and the

existence and the uniqueness for (4) assure existence and uniqueness of these problems.

It is possible to solve this problem by dividing it into the three above-mentioned

problems and to solve each of these problem separately.

This decomposition strategy allows us to solve the problem using a new com-

bined method (collocation + Runge-Kutta) and to give an error estimation.

2. Principles of the method

We decompose our problem into a two-point BVP:

−y′′(t) + q(t)y(t) = r(t), t ∈ (d, e) (5)

y(d) = α (6)

y(e) = β, (7)

and two initial value problems (IVP)

−y′′(t) + q(t)y(t) = r(t), t ∈ [a, d] (8)

y(d) = α (9)

y′(d) = α′ (10)
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and

−y′′(t) + q(t)y(t) = r(t), t ∈ [e, b] (11)

y(e) = β (12)

y′(e) = β′. (13)

The values of the differential y′ at d and e required for the solution of problems

(8)+(9)+(10) and (11)+(12)+(13) are approximated during the solution of the prob-

lem (5)+(6)+(7).

For the first problem we use a collocation method with nonuniform B-splines

of order k + 2, k ∈ N
∗ [1, 10, 3]. For properties of B-spline and basic algorithms see

[5].

Consider the mesh (see [2, 3])

∆ : d = x1 < x2 < · · · < xN < xN+1 = e, (14)

and the step sizes

hi := xi+1 − xi, i = 1, . . . , N.

The multiplicity of e and d is k + 2 and the inner points have the multiplicity k.

Within each subinterval we consider k points

ξi,j := xi + hiρj , j = 1, . . . , k, i = 1, . . . , N,

where

0 ≤ ρ1 < ρ2 < · · · < ρk ≤ 1,

are the roots of the kth Legendre’s orthogonal polynomial on [0, 1] [7, 8]. We add the

points d and e to the set of collocation points.

We shall choose the basis such that the following conditions hold:

(C1) the solution verifies the differential equation (1) at ξi,j ;

(C2) the solution verifies the conditions (2), (3).
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We need a basis having n = Nk + 2 cubic B-spline functions.

One renumbers the collocation points (ξk), such that the first point is d and

the last is e.

The form of solution is

y∆(t) =

n
∑

i=1

ciBi(t), (15)

where Bi(t) is the k + 2 order B-spline with knots xi, . . . , xi+k.

The conditions (C1) +(C2) yield a linear system Ac = γ, with n equations

and n unknowns (the coefficients ci, i = 1, . . . , n).

Its matrix is

A = [aij ]i,j=1,...,n ,

where

aij =



















−B′′
j (ξi) + q(ξi)Bj(ξi), for i = 2, ..., n− 1

Bj(d), for i = 1

Bj(e), for i = n.

(16)

The system matrix is banded with at most k +2 nonzero elements on each line (k +2

nonzero splines at each inner collocation point and only one four at d and e), since a

k+2 order B-splines is nonzero only on k+2 consecutive subintervals. The right-hand

side of the system is

γ = [α, r(ξ2), . . . , r(ξn−1), β]
T

.

The paper [9] gives a Maple implementation based on a different B-spline

basis.

For the solution of problems (8)+(9)+(10) and (11)+(12)+(13) we consider

a Runge-Kutta method with sufficiently high order. For the left IVP we consider

negative steps. The values α′ and β′ are obtained by differentiating the B-spline

solution of the BVP at points d and e, respectively.

3. Main result

Our estimation is inspired from [3, Chapter 5]. If the mesh is sufficiently

fine, the condition number of matrix A given by (16) is not too high and the order of
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Runge-Kutta method is sufficiently high we can obtain an acceptable upper bound of

error.

Theorem 1. Suppose there exists a p ≥ k ≥ 2 such that

(a) The linear problem (5) with boundary conditions (6)+(7) is well-posed,

that is, the equivalent problem




y′

y′′



 =





0 1

q(x) 0









y

y′



 +





0

−r(x)





has a condition number κk = cond(A) of moderate size, q, r ∈ Cp[a, b] ;

(b) The linear problem (5) with boundary conditions (6)+(7) has a unique

solution;

(c) The collocation points ρ1, . . . , ρk satisfy the orthogonality condition

∫ 1

0

Φ(t)

k
∏

ℓ=1

(t − ρℓ)dt = 0, Φ ∈ Pp−k, (p ≤ 2k),

where Pp−k is a set of polynomials at most degree p − k.

Then, for h = maxi=1,...,N hi sufficiently small, our method (col-

location+two Runge-Kutta) is stable with constant κkN and leads to a

unique solution y∆(x). Furthermore, at mesh points xi it holds

∣

∣

∣
y(j)(xi) − y

(j)
∆ (xi)

∣

∣

∣
= O(hp), j = 0, 1; i = 1, ..., N + 1, (17)

while, on the other hands, for i = 1, . . . , N, x ∈ [xi, xi+1]

∣

∣

∣
y(j)(x) − y

(j)
∆ (x)

∣

∣

∣
= O(hk+2−j

i ) + O(hp), j = 0, . . . , k + 1. (18)

Remark 2. The condition (c) means that (ρℓ) are the roots of kth Legendre polyno-

mial.

Proof. Using a result from [3, Theorem 5.140, page 253] we obtain the estimations

(17)+(18) for the BVP (5)+(6)+(7). The error obtained by approximating α′ and

β′ with y
′

∆(d) and y
′

∆(e) is O(hp), then, we use [7, Theorem 5.4.1, page 293]. If we

choose an embedded pair of Runge-Kutta method of order at least (p, p + 1), the

conditions in the hypothesis of theorem are fulfilled and the final error is O(hp). So,
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if the mesh is sufficiently fine, the embedded pair of Runge-Kutta methods does not

increase the order of error. �

Remark 3. The condition number may grow rapidly when h is small. The paper [2,

page 129] gives the following estimation

κ∆ ≈ K

N
∑

i=1

h−2
i max

j=1,...,N+1

∫ xi+1

xi

|G(xj , t)| dt,

where K is a generic constant and G is the Green’s function for the BVP problem.

4. Numerical examples

Our implementation is based on ideas from [5, 4]. We implement the method

in MATLAB1, using the Spline ToolboxTM 3 [6]. If d = a and e = b, our problem

becomes a classical BVP. If d = a or e = b, our problem is decomposed into a BVP

and one IVP. As a numerical example, we chose a problem with oscillatory solution:

−y′′(x) − 243y(x) = x, x ∈ [0, 1] (19)

y

(

1

4

)

=
1

243

sin
(

9
√

3
4

)

sin 9
√

3
− 1

972

y

(

3

4

)

=
1

243

sin
(

27
√

3
4

)

sin 9
√

3
− 1

324
.

If we chose k = 3, the order of spline will be 5, and p = 4. For the initial value

problems we choose the solver ode45 (order 4). The exact solution is

y(x) =
1

243

sin 9
√

3x

sin 9
√

3
− 1

243
x.

We plot the exact solution and approximate solution and the error in a semi-

logarithmic scale for n = 2 and k = 3 in Figures 1 and 2, respectively.

1MATLAB is a trademark of the MathWorks, Inc.
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Figure 1. Exact and approximate solution of (19)

The collocation matrix for the BVP is








































1.000 0 0 0 0 0 0 0

−301.782 187.397 −91.380 −35.996 −1.239 0 0 0

−63.187 −60.750 4.875 −92.343 −31.593 0 0 0

−2.477 −34.757 −91.380 36.506 −150.891 0 0 0

0 0 0 −150.891 36.506 −91.380 −34.757 −2.4779

0 0 0 −31.593 −92.343 4.875 −60.750 −63.1875

0 0 0 −1.239 −35.996 −91.380 187.397 −301.782

0 0 0 0 0 0 0 1.000









































and its condition number is κ∆ =2.5422e+003.
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Figure 2. Error plot for Example (19)

5. Conclusions

The error estimation does not depend on the number of collocation points.

Nevertheless, the Runge-Kutta method requires an order greater or equal to the order

of error for the derivatives at d and e. We can conclude collocation combined with

Runge-Kutta is an effective method for polylocal problem.
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ULAM STABILITY OF ORDINARY DIFFERENTIAL EQUATIONS

IOAN A. RUS

Abstract. In this paper we present four types of Ulam stability for

ordinary differential equations: Ulam-Hyers stability, generalized Ulam-

Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-

Rassias stability. Some examples and counterexamples are given.

1. Introduction

The basic statements of data dependence in the theory of ordinary differential

equations are the following (see for example [2], [5], [6], [8], [17], [20], [23], [24]):

monotony w.r.t. data, continuity w.r.t. data, differentiability w.r.t. parameters,

Liapunov stability, asymptotic behavior, structural stability, analiticity of solutions,

regularity of solutions, G-convergences. On the other hand, in the theory of functional

equations, there are some special kind of data dependence (see [9], [10], [4], [7], [3],

[18], [19]). There are some results of this type for some differential equations ([8],

[11], [12], [14]-[16]) and some integral equations ([13], [21] and [22]).

With these results in mind we shall present, in this paper, four types of Ulam

stability for ordinary differential equations: Ulam-Hyers stability, generalized Ulam-

Hyers stability, Ulam-Hyers-Rassias stability and generalized Ulam-Hyers-Rassias sta-

bility. Some examples and some counterexamples are given.
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2. General definitions and remarks

Let (B, | · |) be a (real or complex) Banach space, a ∈ R, b ∈ R, a < b ≤ +∞, ε

a positive real number, f : [a, b)×B → B be a continuous operator and ϕ : [a, b) → R+

be a continuous function. We consider the following differential equation

x′(t) = f(t, x(t)), ∀ t ∈ [a, b) (2.1)

and the following differential inequations

|y′(t)− f(t, y(t))| ≤ ε, ∀ t ∈ [a, b) (2.2)

|y′(t)− f(t, y(t))| ≤ ϕ(t), ∀ t ∈ [a, b) (2.3)

and

|y′(t)− f(t, y(t))| ≤ εϕ(t), t ∈ [a, b). (2.4)

Definition 2.1. The equation (2.1) is Ulam-Hyers stable if there exists a real number

cf > 0 such that for each ε > 0 and for each solution y ∈ C1([a, b), B) of (2.2) there

exists a solution x ∈ C1([a, b), B) of (2.1) with

|y(t)− x(t)| ≤ cfε, ∀ t ∈ [a, b).

Definition 2.2. The equation (2.1) is generalized Ulam-Hyers stable if there exists

θf ∈ C(R+, R+), θf (0) = 0, such that for each solution y ∈ C1([a, b), B) of the

inequation (2.2) there exists a solution x ∈ C1([a, b), B) of the equation (2.1) with

|y(t)− x(t)| ≤ θf (ε), ∀ t ∈ [a, b).

Definition 2.3. The equation (2.1) is Ulam-Hyers-Rassias stable with respect to ϕ

if there exists cf,ϕ > 0 such that for each ε > 0 and for each solution y ∈ C1([a, b), B)

of (2.4) there exists a solution x ∈ C1([a, b), B) of (2.1) with

|y(t)− x(t)| ≤ cf,ϕεϕ(t), ∀ t ∈ [a, b).

Definition 2.4. The equation (2.1) is generalized Ulam-Hyers-Rassias stable with

respect to ϕ if there exists cf,ϕ > 0 such that for each solution y ∈ C1([a, b), B) of
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(2.3) there exists a solution x ∈ C1([a, b), B) of (2.1) with

|y(t)− x(t)| ≤ cf,ϕϕ(t), ∀ t ∈ [a, b).

Remark 2.1. A function y ∈ C1([a, b), B) is a solution of (2.2) if and only if there

exists a function g ∈ C([a, b), B) (which depend on y) such that

(i) |g(t)| ≤ ε, ∀ t ∈ [a, b)

(ii) y′(t) = f(t, y(t)) + g(t), ∀ t ∈ [a, b).

We have similar remarks for the inequations (2.3) and (2.4).

So, the Ulam stabilities of the differential equations are some special types of

data dependence of the solutions of differential equations.

Remark 2.2. If y ∈ C1([a, b), B) is a solution of the inequation (2.2), then y is a

solution of the following integral inequation∣∣∣∣y(t)− y(a)−
∫ t

a

f(s, y(s))ds

∣∣∣∣ ≤ (t− a)ε, ∀ t ∈ [a, b).

Indeed, by Remark 2.1 we have that

y′(t) = f(t, y(t)) + g(t), t ∈ [a, b).

This implies that

y(t) = y(a) +
∫ t

a

f(s, y(s))ds +
∫ t

a

g(s)ds, t ∈ [a, b).

From this it follows that∣∣∣∣y(t)− y(a)−
∫ t

a

f(s, y(s))ds

∣∣∣∣ ≤ ∣∣∣∣∫ t

a

g(s)ds

∣∣∣∣
≤

∫ t

a

|g(s)|ds ≤ ε(t− a).

We have similar remarks for the solutions of the inequations (2.3) and (2.4).

Remark 2.3. A solution of the inequation (2.2) is called an ε-solution of the equation

(2.1) (see for example [2], p. 94-95; [8], p. 14-18; [24], p. 233).

Remark 2.4. The case b < +∞ and the case b = +∞ are two distinct cases as the

following example shows.
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Example 2.1. We consider in the case B := R the equation

x′(t) = 0, t ∈ [a, b) (2.5)

and the inequation

|y′(t)| ≤ ε, t ∈ [a, b). (2.6)

Let y ∈ C1[a, b) be a solution of (2.6). Then there exists g ∈ C[a, b] such

that:

(i) |g(t)| ≤ ε, t ∈ [a, b)

(ii) y′(t) = g(t), t ∈ [a, b).

We have, for all c ∈ R,

|y(t)− c| ≤ |y(0)− c|+
∫ t

a

|g(s)|ds

≤ |y(0)− c|+ ε(t− a), t ∈ [a, b).

If we take c := y(0), then

|y(t)− y(0)| ≤ ε(t− a), t ∈ [a, b).

If b < +∞, then

|y(t)− y(0)| ≤ (b− a)ε.

So, the equation (2.5) is Ulam-Hyers stable.

Let b = +∞. The function y(t) = εt is a solution of the inequation (2.6) and

|y(t)− c| = |εt− c| → +∞ as t → +∞.

So, the equation (2.5) is not Ulam-Hyers stable on the interval [a,+∞).

Let us consider the inequation

|y′(t)| ≤ ϕ(t), t ∈ [a,+∞). (2.7)

Let y be a solution of (2.7) and x(t) = y(0), t ∈ [a,+∞) a solution of (2.5).

We have that

|y(t)− x(t)| = |y(t)− y(0)| ≤
∫ t

a

ϕ(s)ds, t ∈ [a,+∞).
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If there exists cϕ ∈ R+ such that∫ t

a

ϕ(s)ds ≤ cϕϕ(t), t ∈ [a,+∞)

then the equation (2.5) is generalized Ulam-Hyers-Rassias stable on [a,+∞) with

respect to ϕ.

Remark 2.5. For the Ulam-Hyers-Rassias stability of the differential equation

y′ − λy = 0

in a Banach space see [16]. For other results see [1], [11], [12], [14] and [15].

3. Generalized Ulam-Hyers-Rassias stability

Let us consider the equation (2.1) and the inequation (2.3) in the case b = ∞.

We suppose that:

(i) f ∈ C([a,+∞)×B, B) and ϕ ∈ C([a,+∞), R+) be an increasing function;

(ii) there exists lf ∈ L1[a,+∞) such that

|f(t, u)− f(t, v)| ≤ lf (t)|u− v|, ∀ u, v ∈ B, ∀ t ∈ [a,+∞);

(iii) there exists λϕ > 0 such that∫ t

a

ϕ(s)ds ≤ λϕϕ(t), ∀ t ∈ [0, a +∞).

We have

Theorem 3.1. In the conditions (i), (ii), (iii) the equation (2.1) (b = +∞) is

generalized Ulam-Hyers-Rassias stable.

Proof. Let y ∈ C1([a,+∞), B) be a solution of the inequation (2.3) (b = +∞).

Denote by x the unique solution of the Cauchy problem

x′(t) = f(t, x(t)), t ∈ [a,+∞)

x(a) = y(a).

We have that

x(t) = y(a) +
∫ t

a

f(s, x(s))ds, t ∈ [a,+∞)
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and ∣∣∣∣y(t)− y(a)−
∫ t

a

f(s, y(s))ds

∣∣∣∣ ≤ ∫ t

a

ϕ(s)ds ≤ λϕϕ(t), t ∈ [a,+∞).

From these relation it follows

|y(t)− x(t)| ≤
∣∣∣∣y(t)− y(a)−

∫ t

a

f(s, y(s))ds

∣∣∣∣
+

∫ t

a

|f(s, y(s))− f(s, x(s))|ds

≤ λϕϕ(t) +
∫ t

a

lf (s)|y(s)− x(s)|ds.

By a Gronwall lemma (see [22], [23], [5]) we have that

|y(t)− x(t)| ≤ λϕϕ(t)e
∫ t

a
lf (s)ds

≤ [λϕl
∫ +∞

a
lf (s)ds]ϕ(t) = cf,ϕϕ(t), t ∈ [a,+∞),

i.e. the equation (2.1) (b = +∞) is generalized Ulam-Hyers-Rassias stable.

Remark 3.1. For the case B := C see [13], [15].

Remark 3.2. If we take B a Banach space of sequences in K = R ∨ C

(C(K), C0(K), lp(K), . . . ) then we have some results for an infinite system of differen-

tial equations.

Remark 3.3. For the Ulam stability of some integral equations see [13] and [21].

Remark 3.4. If we have a differential equation of n-order in a Banach space B then

we reduce it to a differential equation of first order in the Banach space Bn. If the

order n is even we can use the Green function technique as the following example

shows.

For simplicity we shall consider the following second order differential equa-

tion

−x′′(t) = f(t, x(t)), t ∈ [a, b] (3.1)

where a < b < +∞ and f ∈ C([a, b]× R).
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Let us denote by G the Green function of the following boundary value prob-

lem (see [6], [17], [20], [23])

− y′′ = h(t)

y(a) = 0, y(b) = 0

The function G : [a, b]× [a, b] → R is defined by

G(t, s) :=


(s− a)(b− t)

b− a
if s ≤ t,

(t− a)(b− s)
b− a

if s ≥ t.

We have

Theorem 3.2. We suppose that:

(i) f ∈ C([a, b]× R);

(ii) there exists Lf > 0 such that

|f(t, u)− f(t, v)| ≤ Lf |u− v|, ∀ t ∈ [a, b], ∀ u, v ∈ R;

(iii) Lf
(b− a)2

4
< 1.

Then the equation (3.1) is Ulam-Hyers stable.

Proof. Let y ∈ C2[a, b] be a solution of the inequation

| − y′′ − f(t, y(t))| ≤ ε, ∀ t ∈ [a, b].

First of all we remark that y is a solution of the following inequation∣∣∣∣∣y(t)− t− a

b− a
y(b)− b− t

b− a
y(a)−

∫ b

a

G(t, s)f(s, y(s))ds

∣∣∣∣∣
≤ ε

[
t2

2
− a + b

2
t +

ab

2

]
, t ∈ [a, b].

Now we take x the solution of the following boundary value problem ([8], p.

186; [20], p. 99)

−x′′(t) = f(t, x(t)), t ∈ [a, b],

x(a) = y(a), x(b) = y(b).
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It is clear that

x(t) =
t− a

b− a
y(b) +

b− t

b− a
y(a) +

∫ b

a

G(t, s)f(s, x(s))ds, t ∈ [a, b]

and we estimate |y(t)− x(t)| in a similar way as in the proof of Theorem 3.1.
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COMPLETE SUBMANIFOLDS IN A HYPERBOLIC SPACE

SHICHANG SHU

Abstract. In this paper, we study n-dimensional (n ≥ 3) complete sub-

manifolds Mn in a hyperbolic space Hn+p(−1) with the scalar curvature

n(n − 1)R and the mean curvature H being linearly related. Suppose

that the normalized mean curvature vector field is parallel and the mean

curvature is positive and obtains its maximum on Mn. We prove that if

the squared norm ‖h‖2 of the second fundamental form of Mn satisfies

‖h‖2 ≤ nH2 +(BH)2, (p ≤ 2), and ‖h‖2 ≤ nH2 +(B̃H)2, (p ≥ 3), then Mn

is totally umbilical, or Mn is isometric to Sn−1(r)×H1(−1/(r2 + 1)) for

some r > 0, where BH and B̃H are denoted by (1.1) and (1.2), respectively.

1. Introduction

Let Mn+p
p (c) be a (n+p)-dimensional space form of constant curvature c, Mn

be an n-dimensional submanifold in Mn+p(c) with parallel mean curvature vector. If

c = 0, Cheng and Nonaka [3] obtained some intrinsic rigidity theorems of complete

submanifolds with parallel mean vector in Euclidean space Rn+p. If c > 0, Xu

[16] obtained the intrinsic rigidity theorems of these kind of submanifolds in a sphere

Sn+p(c)(c = 1). If c < 0, Yu [18] and Hu [10] proved some intrinsic rigidity theorems of

complete hypersurfaces with constant mean curvature in a hyperbolic space Hn+1(c)

Let Mn be an n-dimensional complete submanifold with constant normal-

ized scalar curvature in Mn+p(c). If c = 0, for hypersurfaces (p = 1), Cheng and

Received by the editors: 13.05.2008.

2000 Mathematics Subject Classification. 53C40, 53C42.

Key words and phrases. Submanifold, scalar curvature, mean curvature, hyperbolic space.

Project supported by NSF of Shaanxi Province (SJ08A31) and NSF of Shaanxi Educational Committee
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Yau [6] obtained an intrinsic rigidity theorem of these kind of hypersurfaces in Eu-

clidean space Rn+1, and for submanifolds (p > 1), Cheng [4] studied the problem

and obtained a rigidity and classification theorem. If c > 0, Li [10] proved a rigidity

and classification theorem of compact hypersurfaces with constant normalized scalar

curvature in a sphere Sn+1(c)(c = 1). As a generalization, Cheng [4] obtained a

rigidity and classification theorem of higher codimension compact submanifolds in

Sn+p(c)(c = 1). If c < 0, the authors [15] studied the submanifolds with constant

normalized scalar curvature in hyperbolic space Hn+p(c)(c = −1) and obtained some

rigidity and classification theorems.

It is well-know that the investigation on hypersurfaces with the scalar curva-

ture n(n−1)R and the mean curvature H being linearly related is also important and

interesting. Fox example, Cheng [5] and Li [11] obtained some characteristic theorems

of such space-like hypersurfaces in a de Sitter space and such compact hypersurfaces

in a unit sphere in terms of sectional curvature, respectively. It is natural and very

important to study n-dimensional submanifolds with the scalar curvature n(n− 1)R

and the mean curvature H being linearly related and with higher codimension in a

space form Mn+p(c). But there are few results about it. In this paper, we shall in-

vestigate n-dimensional complete submanifolds in a hyperbolic space Hn+p(−1) with

the scalar curvature and the mean curvature being linearly related. We shall prove

the following:

Main Theorem. Let Mn be a n-dimensional (n ≥ 3) complete submanifold

with n(n − 1)R = k′H, (H2 ≥ 1) in a hyperbolic space Hn+p(−1), where k′ is a

positive constant. Suppose that the normalized mean curvature vector field is parallel

and the mean curvature H is positive and obtains its maximum on Mn. If the norm

square ‖h‖2 of the second fundamental form of Mn satisfies

‖h‖2 ≤ nH2 + (B+
H)2, (p ≤ 2),

and

‖h‖2 ≤ nH2 + (B̃+
H)2, (p ≥ 3),

136



COMPLETE SUBMANIFOLDS IN A HYPERBOLIC SPACE

then Mn is totally umbilical, or Mn is isometric to Sn−1(r) × H1(−1/(r2 + 1)) for

some r > 0, where B+
H and B̃+

H are denoted by

B+
H = −1

2
(n− 2)

√
n

n− 1
H +

√
n3H2

4(n− 1)
− n, (1.1)

B̃+
H = −1

3
(n− 2)

√
n

n− 1
H +

1
3

√
n

n− 1
(n2 + 2n− 2)H2 − 6n. (1.2)

2. Preliminaries

Let Mn be a n-dimensional complete submanifold in a hyperbolic space

Hn+p(−1), we choose a local field of orthonormal frames e1, · · · , en+p in Hn+p(−1)

such that at each point of Mn, e1, · · · , en span the tangent space of Mn. Let

ω1, · · · , ωn+p be the dual frame field, then the structure equations of Hn+p(−1) are

given by

dωA = −
n+p∑
B=1

ωAB ∧ ωB , ωAB + ωBA = 0, (2.1)

dωAB = −
n+p∑
C=1

ωAC ∧ ωCB +
1
2

n+p∑
C,D=1

KABCDωC ∧ ωD, (2.2)

KABCD = −(δACδBD − δADδBC). (2.3)

Restricting these form to Mn, we have

ωα = 0, α = n + 1, · · · , n + p. (2.4)

ωαi
=

n∑
j=1

hα
ijωj , hα

ij = hα
ji, (2.5)

dωi = −
n∑

j=1

ωij ∧ ωj , ωij + ωji = 0, (2.6)

dωij = −
n∑

k=1

ωik ∧ ωkj +
1
2

n∑
k,l=1

Rijklωk ∧ ωl, (2.7)

Rijkl = −(δikδjl − δilδjk) +
n+p∑

α=n+1

(hα
ikhα

jl − hα
ilh

α
jk). (2.8)
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The normal curvature tensor Rαβij and Ricci curvature are

Rαβij =
n∑

l=1

(hα
ilh

β
lj − hα

jlh
β
li), (2.9)

Rjk = −(n− 1)δjk +
n+p∑

α=n+1

(
n∑

i=1

hα
iih

α
jk −

n∑
i=1

hα
ikhα

ji), (2.10)

n(n− 1)(R + 1) = n2H2 − ‖h‖2, (2.11)

where R is the normalized scalar curvature, H is the mean curvature of Mn, ‖h‖2 is

the squared norm of the second fundamental form of Mn. Define the first and second

covariant derivatives of hα
ij by

n∑
k=1

hα
ijkωk = dhα

ij −
n∑

k=1

hα
ikωkj −

n∑
k=1

hα
jkωki −

n+p∑
β=n+1

hβ
ijωβα, (2.12)

n∑
l=1

hα
ijklωl = dhα

ijk −
n∑

l=1

hα
ljkωli −

n∑
l=1

hα
ilkωlj −

n∑
l=1

hα
ijlωlk −

n+p∑
β=n+1

hβ
ijkωβα. (2.13)

The Codazzi equation and Ricci identities are

hα
ijk = hα

ikj = hα
jik, (2.14)

hα
ijkl − hα

ijlk =
n∑

m=1

hα
mjRmikl +

n∑
m=1

hα
imRmjkl +

n+p∑
β=n+1

hβ
ijRβαkl. (2.15)

The Laplacian of hα
ij is defined by ∆hα

ij =
n∑

k=1

hα
ijkk. From (2.14) and (2.15), we get

∆hα
ij =

n∑
k=1

hα
kkij +

n∑
k,m=1

hα
kmRmijk +

n∑
k,m=1

hα
miRmkjk +

n∑
k=1

n+p∑
β=n+1

hβ
kiRβαjk. (2.16)

Denote by ξ the mean curvature vector field. When ξ 6= 0, since we suppose H > 0,

en+1 = ξ
H is the normal vector field on Mn. We define S1 and S2 by

S1 =
n∑

i,j=1

(hn+1
ij −Hδij)2, S2 =

n+p∑
α=n+2

n∑
i,j=1

(hα
ij)

2. (2.17)

Obviously, we have

‖h‖2 = nH2 + S1 + S2. (2.18)
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By the definition of the mean curvature vector ξ, we have

nH =
n∑

i=1

hn+1
ii ,

n∑
i=1

hα
ii = 0, n + 2 ≤ α ≤ n + p. (2.19)

From (2.11), (2.17) and (2.18), we get

∆(n2H2) = ∆‖h‖2 + n(n− 1)∆R = ∆(trH2
n+1) + ∆S2 + n(n− 1)∆R. (2.20)

Hence, from (2.8), (2.9) and (2.16), by a direct and simple calculation we conclude

1
2
∆(trH2

n+1) =
n∑

i,j,k=1

(hn+1
ijk )2 +

n∑
i,j=1

hn+1
ij ∆hn+1

ij (2.21)

=
n∑

i,j,k=1

(hn+1
ijk )2 +

n∑
i,j=1

hn+1
ij (nH)ij − n

n∑
i,j=1

(hn+1
ij )2 − (

n∑
i,j=1

(hn+1
ij )2)2

+ nH
n∑

i,j,k=1

hn+1
ij hn+1

jk hn+1
ki + n2H2 −

n+p∑
β=n+2

{
n∑

i,j=1

(hn+1
ij −Hδij)h

β
ij}

2

+
n+p∑

β=n+2

{
n∑

i,j,k=1

[hn+1
ij hn+1

kj − (hn+1
ij )2](hβ

ik)2},

1
2
∆S2 =

n+p∑
α=n+2

n∑
i,j,k=1

(hα
ijk)2 +

n+p∑
α=n+2

n∑
i,j=1

hα
ij∆hα

ij (2.22)

=
n+p∑

α=n+2

n∑
i,j,k=1

(hα
ijk)2 − n

n+p∑
α=n+2

n∑
i,j=1

(hα
ij)

2 + nH

n+p∑
α=n+2

tr(Hn+1H
2
α)

−
n+p∑

α=n+2

[tr(Hn+1Hα)]2 −
n+p∑

α,β=n+2

N(HαHβ −HβHα)

−
n+p∑

α,β=n+2

[tr(HαHβ)]2 +
n+p∑

α=n+2

tr(Hn+1Hα)2 −
n+p∑

α=n+2

tr(H2
n+1H

2
α).

We need the following lemmas:

Lemma 2.1 ([12], [1]). Let µi, i = 1, · · · , n be real numbers, with
∑
i

µi = 0 and∑
i

µ2
i = β2 ≥ 0. Then

− n− 2√
n(n− 1)

β3 ≤
∑

i

µ3
i ≤

n− 2√
n(n− 1)

β3, (2.23)
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and equality holds if and only if either (n − 1) of the numbers µi are equal to

β/
√

n(n− 1) or (n− 1) of the numbers µi are equal to −β/
√

n(n− 1).

Lemma 2.2 ([14]). Let A,B be symmetric n × n matrices satisfying AB = BA,

and trA = trB = 0. Then

|trA2B| ≤ n− 2√
n(n− 1)

(trA2)(trB2)
1
2 . (2.24)

Lemma 2.3 ([4]). Let a1, · · · , an, bij(i, j = 1, 2, · · · , n) be real numbers satisfying∑n
i=1 ai = 0,

∑n
i=1 bii = 0,

∑n
i,j=1 b2

ij = b and bij = bji(i, j = 1, 2, · · · , n). Then

−(
n∑

i=1

biiai)2 +
n∑

i,j=1

b2
ijaiaj −

n∑
i,j=1

b2
ija

2
i ≥ −

n∑
i=1

a2
i b. (2.25)

Lemma 2.4 ([9]). Let A1, A2, · · · , Ap be (n×n) symmetric matrices (p ≥ 2). Denote

Sαβ = trAαA′
β , Sα = Sαα = N(Aα), S = S1 + · · ·+ Sp. Then

n∑
α,β=1

N(AαAβ −AβAα) +
p∑

α,β=1

S2
αβ ≤

3
2
S2, (2.26)

and the equality holds if and only if one of the following conditions hold: (1) A1 =

A2 = · · · = Ap = 0; (2) Only two of A1, · · · , Ap are different from zero. Assuming

A1 6= 0, A2 6= 0, A3 = · · · = Ap = 0. Then S11 = S22, and there exists (n × n)

orthogonal matrix T such that

TA1T
′ =

√
S11

2



1 0 0 · · · 0

0 −1 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · ·


, TA2T

′ =

√
S22

2



0 1 0 · · · 0

1 0 0 · · · 0

0 0 0 · · · 0
...

...
...

. . .
...

0 0 0 · · · 0


.

In order to represent our theorems, we need some notations, for details see

Lawson [8] and Ryan [13]. First we give a description of the real hyperbolic space

Hn+1(c) of constant curvature c(< 0).

For any two vectors x and y in Rn+2, we set

g(x, y) = x1y1 + · · ·+ xn+1yn+1 − xn+2yn+2,
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(Rn+2, g) is the so-called Minkowski space-time. Denote ρ =
√
−1/c. We define

Hn+1(c) = {x ∈ Rn+2 | g(x, x) = −ρ2, xn+2 > 0}.

Then Hn+1(c) is a simply-connected hypersurface of Rn+2. Hence, we obtain a model

of a real hyperbolic space.

We define

M1 ={x ∈ Hn+1(c) | x1 = 0},

M2 ={x ∈ Hn+1(c) | x1 = r > 0},

M3 ={x ∈ Hn+1(c) | xn+2 = xn+1 + ρ},

M4 ={x ∈ Hn+1(c) | x2
1 + · · ·+ x2

n+1 = r2 > 0},

M5 ={x ∈ Hn+1(c) | x2
1 + · · ·+ x2

k+1 = r2 > 0,

x2
k+2 + · · ·+ x2

n+1 − x2
n+2 = −ρ2 − r2}.

M1, · · · ,M5 are often called the standard examples of complete hypersurfaces in

Hn+1(c) with at most two distinct constant principal curvatures. It is obvious that

M1, · · · ,M4 are totally umbilical. In the sense of Chen [2], they are called the hyper-

spheres of Hn+1(c). M3 is called the horosphere and M4 the geodesic distance sphere

of Hn+1(c). Ryan [13] obtained the following:

Lemma 2.5 ([13]). Let Mn be a complete hypersurface in Hn+1(c). Suppose

that, under a suitable choice of a local orthonormal tangent frame field of TMn, the

shape operator over TMn is expressed as a matrix A. If Mn has at most two distinct

constant principal curvatures, then it is congruent to one of the following:

(1) M1. In this case, A = 0, and M1 is totally geodesic. Hence M1 is

isometric to Hn(c);

(2) M2. In this case, A = 1/ρ2√
1/ρ2+1/r2

In, where In denotes the identity matrix

of degree n, and M2 is isometric to Hn(−1/(r2 + ρ2));

(3) M3. In this case, A = 1
ρIn, and M3 is isometric to a Euclidean space Rn;

(4) M4. In this case, A =
√

1/r2 + 1/ρ2In,M4 is isometric to a round sphere

Sn(r) of radius r;
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(5) M5. In this case, A = λIk ⊕ µIn−k, where λ =
√

1/ρ2 + 1/r2, and

µ = 1/ρ2√
1/r2+1/ρ2

,M5 is isometric to Sk(r)×Hn−k(−1/(r2 + ρ2)).

3. Proof of main theorem

For a C2-function f defined on Mn, we defined its gradient and Hessian (fij)

by

df =
n∑

i=1

fiωi,
n∑

j=1

fijωj = dfi +
n∑

j=1

fjωji. (3.1)

Let T =
∑

Tijωi ⊗ ωj be a symmetric tensor on Mn defined by

Tij = nHδij − hn+1
ij . (3.2)

Follow Cheng-Yau [6], we introduce operator � associated to T acting on f by

�f =
n∑

i,j=1

Tijfij =
n∑

i,j=1

(nHδij − hn+1
ij )fij . (3.3)

By a simple calculation and from (2.20), we obtained

�(nH) =
n∑

i,j=1

(nHδij − hn+1
ij )(nH)ij (3.4)

=
1
2
∆(n2H2)− n2‖∇H‖2 −

n∑
i,j=1

hn+1
ij (nH)ij

=
1
2
n(n− 1)∆R +

1
2
∆(trH2

n+1) +
1
2
∆S2 − n2‖∇H‖2 −

n∑
i,j=1

hn+1
ij (nH)ij .

By making use of the similar method in [5], we prove the following:

Proposition 3.1. Let Mn be an n-dimensional submanifold in a hyperbolic space

Hn+p(−1) with n(n − 1)R = k′H(k′ = const. > 0). If the mean curvature H > 0,

then the operator

L = �− (k′/2n)∆

is elliptic.
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Proof. For a fixed α, we choose a orthonormal frame field {ej} at each point in Mn

so that hα
ij = λα

i δij . From (2.19), we have, for any i,

(nH−λn+1
i − k′/2n) =

∑
j

λn+1
j − λn+1

i

− (1/2)[−
∑
j,α

(λα
j )2 + n2H2 − n(n− 1)]/(nH)

≥
∑

j

λn+1
j − λn+1

i

− (1/2)[−
∑

j

(λn+1
j )2 + (

∑
j

λn+1
j )2 − n(n− 1)]/(nH)

=[(
∑

j

λn+1
j )2 − λn+1

i (
∑

j

λn+1
j )

− (1/2)
∑
l 6=j

λn+1
l λn+1

j + (1/2)n(n− 1)](nH)−1

=[
∑

j

(λn+1
j )2 + (1/2)

∑
l 6=j

λn+1
l λn+1

j

− λn+1
i (

∑
j

λn+1
j ) + (1/2)n(n− 1)](nH)−1

=[
∑
i 6=j

(λn+1
j )2 + (1/2)

∑
l 6=j

l,j 6=i

λn+1
l λn+1

j + (1/2)n(n− 1)](nH)−1

=(1/2)[
∑
j 6=i

(λn+1
j )2 + (

∑
j 6=i

λn+1
j )2 + n(n− 1)](nH)−1 > 0.

Thus, L is an elliptic operator. This completes the proof of Proposition 3.1.

Proposition 3.2. Let Mn be a n-dimensional submanifold in a hyperbolic space

Hn+p(−1) with n(n − 1)R = k′H, (k′ = const. > 0). If the mean curvature H > 0,

then

‖∇h‖2 ≥ n2‖∇H‖2.

Proof. Since H > 0, we have ‖h‖2 6= 0. In fact, if ‖h‖2 =
∑
i,α

(λα
i )2 = 0 at a point of

Mn, then λα
i = 0 for all i and α at this point. This implies that H = 0 at this point.

This is impossible.
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From (2.11) and n(n− 1)R = k′H, we have

k′∇iH = 2n2H∇iH − 2
∑
j,k,α

hα
kjh

α
kji,

(
1
2
k′ − n2H)∇iH = −

∑
j,k,α

hα
kjh

α
kji,

(
1
2
k′ − n2H)2‖∇H‖2 =

∑
i

(
∑
j,k,α

hα
kjh

α
kji)

2 ≤
∑
i,j,α

(hα
ij)

2
∑

i,j,k,α

(hα
ijk)2 = ‖h‖2‖∇h‖2.

Therefore, we have

‖∇h‖2 − n2‖∇H‖2 ≥[(
k′

2
− n2H)2 − n2‖h‖2]‖∇H‖2 1

‖h‖2

=[
(k′)2

4
+ n3(n− 1)]‖∇H‖2 1

‖h‖2
≥ 0.

This completes the proof of Proposition 3.2.

Proof of Main Theorem. By making use of the similar method in [4], we choose a

local orthonornmal frame field {e1, · · · , en} such that hn+1
ij = λiδij . Let µi = λi−H.

Then
n∑

n=1
µi = 0,

n∑
i=1

µ2
i =

n∑
i=1

λ2
i − nH2 = trH2

n+1 − nH2 = S1. By Lemma 2.1, we

get

nH

n∑
i,j,k=1

hn+1
ii hn+1

jk hn+1
ki =nH

n∑
i=1

λ3
i = 3nH2S1 + n2H4 + nH

n∑
i=1

µ3
i (3.5)

≥3nH2S1 + n2H4 − n(n− 2)√
n(n− 1)

H(S1)
3
2 .

From Lemma 2.3, we obtain

−
n+p∑

β=n+2

{
n∑

i,j=1

(hn+1
ij −Hδij)h

β
ij}

2 +
n+p∑

β=n+2

{
n∑

i,j,k=1

[hn+1
ij hn+1

kj − (hn+1
ij )2](hβ

ik)2} (3.6)

= −
n+p∑

β=n+2

{
n∑

i=1

(λi −H)hβ
ii}

2 +
n+p∑

β=n+2

{
n∑

i,k=1

(λiλk − λ2
i )(h

β
ik)2}

=
n+p∑

β=n+2

{−(
n∑

i=1

µih
β
ii)

2 +
n∑

i,k=1

(µiµk − µ2
i )(h

β
ik)2}

≥
n+p∑

β=n+2

{−
n∑

i=1

µ2
i

n∑
i,j=1

(hβ
ij)

2} = −S1S2.

144



COMPLETE SUBMANIFOLDS IN A HYPERBOLIC SPACE

Hence from (2.21), (3.5), (3.6) we have

1
2
∆(trH2

n+1) ≥
n∑

i,j,k=1

(hn+1
ijk )2 +

n∑
i,j=1

hn+1
ij (nH)ij − n

n∑
i=1

λ2
i − (

n∑
i=1

λ2
i )

2 (3.7)

+ n2H2 + 3nH2S1 + n2H4 − n(n− 2)√
n(n− 1)

H(S1)
3
2 − S1S2

=
n∑

i,j,k=1

(hn+1
ijk )2 +

n∑
i,j=1

hn+1
ij (nH)ij

+ S1{−n + nH2 − n(n− 2)√
n(n− 1)

H
√

S1 − S1 − S2}.

Let Mn be complete connect submanifold in Hn+p(−1) with positive mean

curvature. Suppose that the normalized mean curvature vector ξ
H is parallel in

T⊥Mn. If we choose en+1 = ξ
H , then ωαn+1 = 0, for all α. Consequently Rαn+1jk = 0.

From (2.9) we have
n∑

i=1

hα
ijh

n+1
ik =

n∑
i=1

hα
ikhn+1

ij . (3.8)

Hence, we obtain

HαHn+1 = Hn+1Hα. (3.9)

We set B = Hn+1−HI, (I is the unit matrix) then trB = 0, since trHα = 0(α > n+1).

By (3.9) we get for α > n + 1,HαB = BHα. By virtue of Lemma 2.2, we see that

|tr(H2
αB)| ≤ n− 2√

n(n− 1)
trH2

α

√
trB2, α > n + 1. (3.10)

Since

tr(H2
αB) = tr(H2

αHn+1)−HtrH2
α, α > n + 1, (3.11)

trB2 = trH2
n+1 − nH2 = S1. (3.12)

By (3.10), (3.11) and (3.12), we have

tr(H2
αHn+1) ≤ (H +

n− 2√
n(n− 1)

√
S1)trH2

α, (α > n + 1). (3.13)

From Lemma 2.4 and definition of S2

−
n+p∑

α,β=n+2

N(HαHβ −HβHα)−
n+p∑

α,β=n+2

[tr(HαHβ)]2 ≥ −3
2
S2

2 . (3.14)

145



SHICHANG SHU

When p = 2, we have

−
n+p∑

α,β=n+2

N(HαHβ −HβHα)−
n+p∑

α,β=n+2

[tr(HαHβ)]2 = −S2
2 . (3.15)

For a fixed α, n + 2 ≤ α ≤ n + p, we choose a local orthonormal frame field

{e1, · · · , en} such that hα
ij = λα

i δij . Thus, we have
n∑

i=1

λα
i = 0 and trH2

α =
n∑

i=1

(λα
i )2.

Let B = Hn+1 − HI = (bij). We have bij = bji(i, j = 1, 2, · · · , n),
n∑

i=1

bii = 0 and
n∑

i,j=1

b2
ij = S1. Since λα

i , bij(i, j = 1, 2, · · · , n) satisfy Lemma 2.3, from Lemma 2.3, we

get

−
n+p∑

α=n+2

[tr(Hn+1Hα)]2 +
n+p∑

α=n+2

tr(Hn+1Hα)2 −
n+p∑

α=n+2

tr(H2
n+1H

2
α) (3.16)

=
n+p∑

α=n+2

{−[tr((Hn+1 −HI)Hα)]2 + tr[(Hn+1 −HI)Hα]2 − tr[(Hn+1 −HI)2H2
α]}

=
n+p∑

α=n+2

{−[tr(BHα)]2 + tr(BHα)2 − tr(B2H2
α)}

=
n+p∑

α=n+2

{−(
n∑

i=1

biiλ
α
i )2 +

n∑
i=1

b2
ij(λ

α
i )2(λα

j )2 −
n∑

i=1

b2
ij(λ

α
i )2}

≥
n+p∑

α=n+2

[−
n∑

i=1

(λα
i )2

n∑
i,j=1

b2
ij ] = −S1

n+p∑
α=n+2

trH2
α = −S1S2.

Therefore, by (2.22), (3.13), (3.14) and (3.16), when p ≥ 3, we get

1
2
∆S2 ≥

n+p∑
α=n+2

n∑
i,j,k=1

(hα
ijk)2+S2{−n+nH2− n(n− 2)√

n(n− 1)
H

√
S1−S1−

3
2
S2}. (3.17)

When p = 2, from (2.22), (3.13), (3.15), (3.16), we have

1
2
∆S2 ≥

n+p∑
α=n+2

n∑
i,j,k=1

(hα
ijk)2 +S2{−n+nH2− n(n− 2)√

n(n− 1)
H

√
S1−S1−S2}. (3.18)
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Case 1. If p = 1, we have S2 = 0, S1 = ‖h‖2 − nH2. Therefore, by (3.4), (3.7) and

Proposition 3.2, we have

�(nH) =
1
2
n(n− 1)∆R + ‖∇h‖2 − n2‖∇H‖2 (3.19)

+ S1{−n + nH − n(n− 2)√
n(n− 1)

H
√

S1 − S1}

≥1
2
n(n− 1)∆R + ‖g‖2{−n + nH2 − n(n− 2)√

n(n− 1)
H‖g‖ − ‖g‖2},

where ‖g‖2 is a non-negative C2-function on Mn defined by ‖g‖2 = ‖h‖2 − nH2.

Therefore, from (3.19), we have

nLH =n[�H − (k′/2n)∆H] (3.20)

=�(nH)− (1/2)n(n− 1)∆R

≥‖g‖2{−n + nH2 − n(n− 2)√
n(n− 1)

H‖g‖ − ‖g‖2}

=‖g‖2PH(‖g‖),

where

PH(‖g‖) = −n + nH2 − n(n− 2)√
n(n− 1)

H‖g‖ − ‖g‖2. (3.21)

Since H2 ≥ 1, we know that PH(‖g‖) has two real roots B+
H and B−

H given by

B±
H = −1

2
(n− 2)

√
n

n− 1
H ±

√
n3H2

4(n− 1)
− n. (3.22)

Therefore, we know that

PH(‖g‖) = (‖g‖ −B−
H)(−‖g‖+ B+

H).

Clearly, we know that ‖g‖ − B−
H > 0. From the assumption of Main Theorem, we

infer that PH(‖g‖) ≥ 0 on Mn. This implies that the right-hand side of (3.20) is

non-negative. From Proposition 3.1, we know that L is elliptic. Since H obtains its

maximum on Mn, from (3.20), we have H = const. on Mn. From (3.20) again, we

get ‖g‖2PH(‖g‖) = 0. Therefore, we have ‖g‖2 = 0 and Mn is totally umbilical, or

PH(‖g‖) = 0. In the latter case, we infer that the equalities hold in (3.20), (3.19)
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and (2.23) of Lemma 2.1. Therefore, we know that (n − 1) of the numbers λi − H

are equal to ‖g‖/
√

n(n− 1). This implies that Mn has (n − 1) principal curvatures

equal and constant. As H is constant, the other principal curvature is constant as

well. Therefore we know that Mn is isoparametric. From the result of Lemma 2.5,

Mn is isometric to Sn−1(r)×H1(−1/(r2 + 1)) for some r > 0.

Case 2. If p = 2, from (2.18), we have

S1 ≤ ‖h‖2 − nH2. (3.23)

From (3.4), (3.7), (3.18), (3.23), Proposition 3.2 and (2.18) we have

�(nH) ≥1
2
n(n− 1)∆R + (S1 + S2){−n + nH2 − n(n− 2)√

n(n− 1)
H

√
S1 − (S1 + S2)}

(3.24)

≥1
2
n(n− 1)∆R + ‖g‖2{−n + nH2 − n(n− 2)√

n(n− 1)
H‖g‖ − ‖g‖2},

where ‖g‖2 = ‖h‖2 − nH2.

Therefore, from (3.22), we have

nLH =�(nH)− (1/2)n(n− 1)∆R (3.25)

≥‖g‖2{−n + nH2 − n(n− 2)√
n(n− 1)

H‖g‖ − ‖g‖2}

=‖g‖2PH(‖g‖),

where PH(‖g‖) is denoted by (3.21). PH(‖g‖) has two real roots B+
H and B−

H denoted

by (3.22). Therefore, we know that

PH(‖g‖) = (‖g‖ −B−
H)(−‖g‖+ B+

H).

Since ‖g‖−B−
H > 0, from the assumption of Main Theorem, we infer that PH(‖g‖) ≥ 0

on Mn. This implies that the right-hand side of (3.25) is non-negative. By making use

of the same method in Case 1, we can obtain ‖g‖2PH(‖g‖) = 0. Therefore, we have

‖g‖2 = 0 and Mn is totally umbilical, or PH(‖g‖) = 0. If PH(‖g‖) = 0, we infer that

the equalities hold in (3.25), (3.24), (3.23) and (2.23) of Lemma 2.1. If the equality

holds in (3.23), we have S1 = ‖h‖2−nH2. This implies S2 = 0. Since en+1 is parallel
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on the normal bundle T⊥(Mn) of Mn, using the method of Yau [17], we know that

Mn lies in a totally geodesic submanifold Hn+1(−1) of Hn+p(−1). If the equality

holds in Lemma 2.1, by making use of the same assertion as in the proof of Case 1, we

infer that Mn has two distinct principal curvatures and is isoparametric. Therefore,

from Lemma 2.5, we know that Mn is isometric to Sn−1(r) × H1(−1/(r2 + 1)) for

some r > 0.

Case 3. If p ≥ 3, from (3.4),(3.7),(3.17),(3.23) and Proposition 3.2, we have

�(nH) ≥1
2
n(n− 1)∆R + (S1 + S2){−n + nH2 (3.26)

− n(n− 2)√
n(n− 1)

H
√

S1 − (S1 + S2)} −
1
2
S2

2

≥1
2
n(n− 1)∆R + (S1 + S2){−n + nH2

− n(n− 2)√
n(n− 1)

H
√

S1 − (S1 + S2)} −
1
2
(S1 + S2)2

≥1
2
n(n− 1)∆R + (S1 + S2){−n + nH2

− n(n− 2)√
n(n− 1)

H
√
‖h‖2 − nH2 − 3

2
(S1 + S2)}

=
1
2
n(n− 1)∆R + ‖g‖2{−n + nH2 − n(n− 2)√

n(n− 1)
H‖g‖ − 3

2
‖g‖2},

where ‖g‖2 = ‖h‖2 − nH2.

Therefore, we have

nLH =�(nH)− (1/2)n(n− 1)∆R (3.27)

≥‖g‖2{−n + nH2 − n(n− 2)√
n(n− 1)

H‖g‖ − 3
2
‖g‖2}

=
3
2
‖g‖2{2

3
(nH2 − n)− 2

3
n(n− 2)√
n(n− 1)

H‖g‖ − ‖g‖2}

=
3
2
‖g‖2QH(‖g‖),

where

QH(‖g‖) =
2
3
(nH2 − n)− 2

3
n(n− 2)√
n(n− 1)

H‖g‖ − ‖g‖2.
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Since H2 ≥ 1, we know that QH(‖g‖) has two real roots B̃+
H and B̃−

H given by

B̃±
H = −1

3
(n− 2)

√
n

n− 1
H ± 1

3

√
n

n− 1
(n2 + 2n− 2)H2 − 6n,

Therefore, we know that

QH(‖g‖) = (‖g‖ − B̃−
H)(−‖g‖+ B̃+

H).

Clearly, we know that ‖g‖ − B̃−
H > 0. From the assumption of Main Theorem, we

infer that QH(‖g‖) ≥ 0 on Mn. This implies that the right-hand side of (3.27) is

non-negative. From Proposition 3.1, we know that L is elliptic. Since H obtains its

maximum on Mn, from (3.27), we have H = const. on Mn. From (3.27) again, we

get ‖g‖2QH(‖g‖) = 0. Therefore, we have ‖g‖2 = 0 and Mn is totally umbilical, or

QH(‖g‖) = 0. If QH(‖g‖) = 0, we infer that the equalities hold in (3.27), (3.26) and

(3.23). Therefore, we know that

S1 = ‖h‖2 − nH2, S2 = S1 + S2.

From (2.18), this implies that S2 = 0 and S1 = 0. Therefore, we have ‖g‖2 =

‖h‖2 − nH2 = 0 on Mn and Mn is totally umbilical. This completes the proof of

Main Theorem.

References

[1] Alencar, H., do Carmo, M.P., Hypersurfaces with constant mean curvature in sphere,

Proc. Amer. Math. Soc., 120(1994), 1223-1229.

[2] Chen, B.Y., Totally mean curvature and submanifols of finite type, World Scientific,

Singapore, 1984.

[3] Cheng, Q.M., Nonaka, K., Complete submanifolds in Euclidean space with parallel mean

curvature vector, Manuscripta Math., 105(2001), 353-366.

[4] Cheng, Q.M., Submanifolds with constant scalar curvature, Proc. Royal Society Edin-

bergh, 132(2002), 1163-1183.

[5] Cheng, Q.M., Complete space-like hypersurfaces of a de Sitter space with r = kH, Mem.

Fac. Sci. Kyushu Univ., 44(1990), 67-77.

[6] Cheng, S.Y., Yau, S.T., Hypersurfaces with constant scalar curvature, Math. Ann.,

225(1977), 195-204.

150



COMPLETE SUBMANIFOLDS IN A HYPERBOLIC SPACE

[7] Hu, Z.J., Complete hypersurfaces with constant mean curvature and non-negative sec-

tional curvature, Proc. Amer. Math. Soc., 123(1995), 2835-2840.

[8] Lawson Jr., H.B., Local rigidity theorems for minimal hypersurfaces, Ann. of Math.,

89(1969), 187-197.

[9] Li, A.M., Li, J.M., An intrinsic rigidity theorem for minimal submanifolds in a sphere,

Arch. Math., 58(1992), 582-594.

[10] Li, H.Z., Hypersurfaces with constant scalar curvatrue in space forms, Math. Ann.,

305(1996), 665-672.

[11] Li, H.Z., Global rigidity theorems of hypersurfaces, Ark. Math., 35(1997), 327-351.

[12] Okumura, M., Hypersurfaces and a pinching problem on the second fundamental tensor,

Anner. J. Math., 96(1974), 207-213.

[13] Ryan, P.J., Hypersurfaces with parallel Ricci tensor, Osaka J. Math., 8(1971), 251-259.

[14] Santos, W., Submanifolds with parallel mean curvature vector in sphere, Tôhoku Math.
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INVERSE THEOREM FOR AN ITERATIVE COMBINATION
OF BERNSTEIN-DURRMEYER POLYNOMIALS

T. A. K. SINHA, VIJAY GUPTA, P. N. AGRAWAL, AND ASHA RAM GAIROLA

Abstract. The Bernstein-Durrmeyer polynomial

[Mn(f ; t) = (n + 1)

n∑
k=0

pn,k(t)

1∫
0

pn,k(u)f(u) du,

where pn,k(t) =

(
n

k

)
tk(1− t)n−k, t ∈ [0, 1] defined on LB [0, 1], the space

of bounded and integrable functions on [0, 1] were introduced by Durrmeyer

[5] and extensively studied by Derriennic [3] and other researchers (see

[1]-[3], [5], [6], [8]). It turns out that the order of approximation by these

operators is, at best, O(n−1) however smooth the function may be. In order

to improve the rate of approximation we consider an iterative combination

Tn,k(f ; t) of the operators Mn(f ; t). This technique was given by Micchelli

[9] who first used it to improve the order of approximation by Bernstein

polynomials Bn(f ; t). In the paper [1] some direct theorems in ordinary

and simultaneous approximation for the operators Tn,k(f ; t) in the uniform

norm, have been established. The paper [10] is a study of some direct

results in the Lp− approximation by the operators Tn,k(f ; t). The object

of the present paper is to study the corresponding inverse theorem in Lp−
approximation by the operators Tn,k(f ; t).

1. Introduction

For f ∈ Lp[0, 1], 1 6 p < ∞ the operators Mn can be expressed as

Mn(f ; t) =

1∫
0

Wn(u, t)f(u) du,

Received by the editors: 22.05.2008.
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where Wn(u, t) = (n + 1)
n∑

k=0

pn,k(t)pn,k(u) is the kernel of the operators.

For m ∈ N0 (the set of non-negative integers), the mth order moment for the

operators Mn is defined as

µn,m(t) = Mn ((u− t)m; t) .

The iterative combination Tn,k : Lp[0, 1] → C∞[0, 1] of the operators is defined as

Tn,k(f ; t) =
(
I − (I −Mn)k

)
(f ; t) =

k∑
r=1

(−1)r+1

(
k

r

)
Mr

n(f ; t), k ∈ N,

where M0
n ≡ I and Mr

n ≡ Mn(Mr−1
n ) for r ∈ N.

Throughout the present paper we assume that I = [0, 1] and Ij = [aj , bj ],

j = 1, 2, 3, 0 < a1 < a2 < a3 < b3 < b2 < b1 < 1 and by C we mean the positive

constant not necessarily the same at each occurrence.

In [10], we obtained following direct theorem:

Theorem 1. If p > 1, f ∈ Lp[0, 1]. Then for all n sufficiently large there holds

‖Tn,k(f ; .)− f‖Lp(I2) 6 Ck

(
ω2k

(
f,

1√
n

, p, I1.
)

+ n−k‖f‖Lp[0,1]

)
, (1.1)

where Ck is a constant independent of f and n.

Remark 1. From above theorem it follows that if ω2k(f, τ, p, I2) = O(τα) as τ → 0

then ‖Tn,k(f, .)− f‖Lp(I2) = O(n−α/2) as n →∞, where 0 < α < 2k.

The aim of this paper is to establish a corresponding local inverse theorem

for the operators Tn,k(f, t) in the Lp−norm i.e. the characterization of the class of

functions for which ‖Tn,k(f, .)− f‖Lp(I2) = O(n−α/2) as n →∞, where 0 < α < 2k.

Thus we prove the following theorem (inverse theorem):

Theorem 2. Let f ∈ Lp[0, 1], 1 6 p < ∞, 0 < α < 2k and ‖Tn,k(f, .) − f‖Lp(I1) =

O(n−α/2) as n →∞. Then, ω2k(f, τ, p, I2) = O(τα) as τ → 0.

2. Preliminaries

In this section we give some results which are useful in establishing our main

theorem.
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Lemma 1. [1] For the function µn,m(t), we have

µn,0(t) = 1, µn,1(t) =
(1− 2t)
(n + 2)

and for m > 1 there holds the recurrence relation

(n + m + 2)µn,m+1(t) = t(1− t)
{
µ′n,m(t) + 2mµn,m−1(t)

}
+ (m + 1)(1− 2t)µn,m(t).

Consequently,

(i) µn,m(t) is a polynomial in t of degree m;

(ii) for every t ∈ [0, 1], µn,m(t) = O
(
n[(m+1)/2]

)
, where [β] is the integer part

of β.

Lemma 2. [8]For the function pn,k(t), there holds the result

tr(1− t)rDr (pn,k(t)) =
∑

2i+j≤m
i,j≥0

ni(k − nt)jqi,j,r(t)pn,k(t),

where D ≡ d
dt and qi,j,r(t) are certain polynomials in t independent of n and k.

Lemma 3. [1] For k, l ∈ N, there holds Tn,k

(
(u− t)l; t

)
= O(n−k).

Lemma 4. If f ∈ Lp[0, 1] then there holds the estimate∥∥∥∥ dm

dtm
(
Tn,k(f ; •)

)∥∥∥∥
Lp[c,d]

6 C nm/2‖f‖Lp[0,1],

where [c, d] is any closed interval contained in (0, 1).

Proof. We have

dm

dtm
(
Mk

n(f ; t)
)

=
dm

dtm

1∫
0

Wn(u, t)Mk−1
n (f ;u) du

= (n + 1)
n∑

ν=0

pn,ν(t)
∑

2i+j≤m
i,j>0

ni (ν − nt)jqi,j,m(t)
(t(1− t))m

×
1∫

0

pn,ν(u)Mk−1
n (f ;u) du, (2.1)

Using Holder’s inequality for summation, we obtain

dm

dtm
(
Mk

n(f ; t)
)∣∣∣ 6 C(n + 1)

n∑
ν=0

∑
2i+j6m

i,j>0

pn,ν(t)ni|ν − nt|j
( 1∫

0

pn,ν(u) du
)1/q
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×

( 1∫
0

pn,ν(u)
∣∣Mk−1

n (f ;u)
∣∣p du

)1/p

6 C(n + 1)1−1/q
∑

2i+j6m
i,j>0

ni
( n∑

ν=0

pn,ν(t)|ν − nt|qj
)1/q

×

(
n∑

ν=0

pn,ν(t)

1∫
0

pn,ν(u)
∣∣Mk−1

n (f ;u)
∣∣p du

)1/p

6 C(n + 1)1/p
∑

2i+j6m
i,j>0

ni.nj/2

×

(
n∑

ν=0

pn,ν(t)

1∫
0

pn,ν(u)
∣∣Mk−1

n (f ;u)
∣∣p du

)1/p

(2.2)

Therefore, applying Fubini’s theorem, we get∥∥∥ dm

dtm
(
Mk

n(f ; t)
)∥∥∥

Lp[c,d]
6 C(n + 1)1/pnm/2×

( d∫
c

n∑
ν=0

pn,ν(t)

1∫
0

∣∣Mk−1
n (f ;u)

∣∣ppn,ν(u) du dt

)1/p

6 C(n + 1)1/pnm/2

{
n∑

ν=0

( d∫
c

pn,ν(t) dt

)
×

( 1∫
0

pn,ν(u)
∣∣Mk−1

n (f ;u)
∣∣p du

)}1/p

6 Cnm/2

{ 1∫
0

n∑
ν=0

pn,ν(u)
∣∣Mk−1

n (f ;u)
∣∣p du

}1/p

6 Cnm/2
∥∥Mk−1

n (f ;u)
∥∥

Lp[0,1]
6 Cnm/2‖f‖Lp[0,1]. (2.3)

Since Tn,k are linear combinations of the iterates Mn, and the r.h.s. in (2.3) is

independent of k, the lemma follows from (2.3). �

Lemma 5. If f ∈ Lp[0, 1] is such that f (m−1) ∈ AC(I) and f (m) ∈ Lp(I), then∥∥∥ dm

dtm
(
Tn,k(f ; •)

)∥∥∥
Lp[c,d]

6 M‖f (m)‖Lp[0,1],

where [c, d] ⊂ (0, 1).
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Proof. It is sufficient to find the estimate for dm

dtm

(
Mk

n(f ; •)
)
. Thus, we have

dm

dtm
(
Mr

n(f ; •)
)

=
dm

dtm
[
Mn

(
(Mk−1

n (f ;uk);u); t
)]

=
m−1∑
i=0

f (i)(t)
i!

dm

dtm
[
Mn

(
(Mk−1

n (uk − t)i;u); t
))]

+
1

(m− 1)!
dm

dtm

[
Mn

(
Mk−1

n

( uk∫
t

(uk − w)m−1f (m)(w) dw;u
)
; t
)]

The term inside the summation is polynomial of degree (m − 1) and hence vanish.

In order to estimate the second term we break the integral as follows. There exists a

non-negative integer r = r(n) such that r/
√

n 6 max|uk − t| 6 (r + 1)/
√

n. Hence,

we get

I =

1∫
0

Wn(uk, uk−1)|uk − t|m−1

∣∣∣∣∣
uk∫
t

∣∣f (m)(w)
∣∣ dw

∣∣∣∣∣ duk

6
r∑

l=0

{ t+ l+1√
n∫

t+ l√
n

Wn(uk, uk−1)|uk − t|m−1

t+ l+1√
n∫

t

∣∣f (m)(w)
∣∣ dw duk

+

t− l√
n∫

t− l+1√
n

Wn(uk, uk−1)|uk − t|m−1

t∫
t− l+1√

n

∣∣f (m)(w)
∣∣ dw duk

}
(2.4)

Now, |uk − t| > l/
√

n and

|uk − t|m+3 6
m+3∑
s=0

(
m + 3

s

)
|uk − uk−1|m+3−s|uk−1 − t|s

Hence a typical term of (2.4) is estimated as

6
m+3∑
r=0

t+ l+1√
n∫

t+ l√
n

Wn(uk, uk−1)|uk − uk−1|m+3−r|uk−1 − t|r

×
(

m + 3
r

)
n2

l4

t+ l+1√
n∫

t

∣∣f (m)(w)
∣∣ dw duk
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6
m+3∑
r=0

C
n2

l4
1

n(m+3−r)/2

t+ l+1√
n∫

t

∣∣f (m)(w)
∣∣ dw

Proceeding recursively we reach

dm

dtm

[ 1∫
0

Wn(u1, t)|u1 − t|s n2

l4
1

n(m+3−r)/2

( t+ l+1√
n∫

t

f (m)(w) dw

)
du1

]

= (n + 1)
∑

2i+j≤m
i,j>0

n∑
ν=0

niqi,j,m(t)(ν − nt)jpn,ν(t)

( 1∫
0

pn,ν(u1)|u1 − t|s du1

)

×n2

l4
1

n(m+3−r)/2

( t+ l+1√
n∫

t

∣∣f (m)(w)
∣∣ dw

)

Using Holder’s inequality and moment estimates for Mn, we obtain

∣∣∣∣∣ dm

dtm

[ 1∫
0

Wn(u1, t)|u1 − t|s n2

l4
1

n(m+3−r)/2

( t+ l+1√
n∫

t

f (m)(w) dw

)
du1

]∣∣∣∣∣
6 C

r∑
l=0

n2

l4
nm/2−s/2

n
m+3−s

2

( t+ l+1√
n∫

t

∣∣f (m)(w)
∣∣ dw

)

This implies∥∥∥∥ dm

dtm
Mk

n(f ; t)
∥∥∥∥

Lp[x′2,y′2]

6 C
r∑

l=0

1
l4

(l + 1)
∥∥f (m)

∥∥
Lp[0,1]

6 C
∥∥f (m)

∥∥
Lp[0,1]

This completes the proof of the lemma. �

3. Proof of the main theorem

Proof. We prove the theorem by induction on k.

When k = 1 the operator Tn,k becomes the well known Bernstein Durrmeyer

operator Mn for which we prove the inverse result. Thus, we prove that

‖Mn(f ; t)− f(t)‖Lp(I1)
= O

(
n−α/2

)
⇒ ω2 (f, τ, I2) = O (τα) ; 0 < α < 2.
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Let g ∈ C∞0 be such that supp g ∈ (a2, b2) with g(t) = 1 on I3. Further, let f̄ = fg.

Now,∥∥∆2
τ f̄(t)

∥∥
Lp(I3)

6
∥∥∆2

τ (f̄(t)−Mn(f̄ ; t))
∥∥

Lp(I3)
+
∥∥∆2

τMn(f̄ ; t)
∥∥

Lp(I3)
= I1+I2. (3.1)

In I1

(fg)(t)−Mn

(
f(u)

(
g(t) + (u− t)g′(t) + ...

)
; t
)

= g(t) (f(t)−Mn(f ; t))− g′(t)Mn (f(u)(u− t); t) + ... (3.2)

By hypothesis,

‖Mn(f ; t)− f(t)‖Lp(I1)
= O

(
n−α/2

)
. (3.3)

and by dual moment estimate,

‖Mn (f(u)(u− t); t))‖Lp(I1)
= ‖f‖/n1/2. (3.4)

Now

I2 =
∥∥∆2

τMn(f̄ ; t)
∥∥

Lp(I1)
≤ τ2

∥∥∥∥ d2

dt2
(
Mn(f̄ ; t)

)∥∥∥∥
Lp(I1)

≤ τ2

∥∥∥∥ d2

dt2
(
Mn(f̄ − f̄η; t)

)∥∥∥∥
Lp(I1)

+ τ2

∥∥∥∥ d2

dt2
(
Mn(f̄η; t)

)∥∥∥∥
Lp(I1)

≤ τ2

(
n ω2(η, f̄) +

1
η2

ω2(η, f̄)
)

(3.5)

∴ ω2(τ, f̄) ≤ M

n1/2
+ τ2

(
n +

1
η2

)
ω2(η, f̄)

⇒ ω1(τ, f̄) = O (τ |ln τ |) (3.6)

We use (3.6) in (3.2) and (3.3). Now,

Mn (f(u)(u− t); t)) = Mn ((f(u)− f(t))(u− t); t))

+ f(t)Mn((u− t); t)

≤ Mn

(
|u− t|2 |ln|u− t|| ; t

)
+ O

(
1
n

)
≤ Mn

(
|u− t|2−ε; t

)
+ O

(
1
n

)
= O

(
1

n1−ε

)
.
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From,(3.1),(3.2) and (3.3)

ω2(τ, f̄) ≤ O

(
M

n1−ε

)
+ τ2

(
n +

1
η2

)
ω2(η, f̄)

⇒ ω2(τ, f̄) = O
(
τ2−ε

)
.

Hence theorem is proved for k = 1.

Now, suppose it is true for a certain k i.e.

ω2k(f, τ, p, I2) = O(τα) (3.7)

Let

‖Tn,k+1(f, .)− f‖Lp(I1) = O(n−(α+2)/2) (3.8)

We will show that

ω2k+2(f, τ, p, I2) = O(τα+2)

Let a1 < x1 < x2 < x3 < a2 < b2 < y3 < y2 < y1 < b1 and g ∈ C∞0 be such that

supp g ∈ (x2, y2) with g(t) = 1 on [x3, y3]. Further, let f̄ = fg. Then we have∥∥∆2k+2
τ Tn,k+1(f̄ ; t)

∥∥
Lp[x2,y2]

6
∥∥∆2k+2

τ (f̄(t)− Tn,k+1(f̄ ; t))
∥∥

Lp[x2,y2]

+ τ2k+2

∥∥∥∥ d2k+2

dt2k+2

(
Tn,k+1(f̄ − f̄η,2k+2; t)

)∥∥∥∥
Lp[x′2,y′2]

+ τ2k+2

∥∥∥∥ d2k+2

dt2k+2

(
Tn,k+1(f̄η,2k+2; t)

)∥∥∥∥
Lp[x′2,y′2]

(3.9)

where x′2 = x2 and y′2 = y2 + (2k + 2)τ.

For the first term, we have the estimate∥∥∆2k+2
τ (f̄(t)− Tn,k+1(f̄ ; t))

∥∥
Lp[x2,y2]

6 C
∥∥f̄(t)− Tn,k+1(f̄ ; t))

∥∥
Lp[x′2,y′2]

6 C

∥∥∥∥∥f(t)g(t)− Tn,k+1

(
f(u)

[ ∞∑
i=0

g(i)(t)
i!

(u− t)i
]
; t

)∥∥∥∥∥
Lp[x′2,y′2]

6 C‖g‖Lp[x2,y2] ‖f(t)− Tn,k+1(f ; t)‖Lp[x′2,y′2]

+‖g′‖Lp[x′2,y′2]
‖Tn,k+1(f(u)(u− t); t)‖Lp[x′2,y′2]

+ . . . (3.10)

Using smoothness of f in second term of (3.10), we get
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∥∥

Lp[x′2,y′2]

6

∥∥∥∥∥
2k−1∑
i=0

f (i)(t)
i!

Tn,k+1

(
(u− t)i; t

)
+

1
(2k − 2)!

× Tn,k+1

(
(u− t)2k−1

∣∣∣∣∣
u∫

t

(
f (2k−1)(w)− f (2k−1)(t)

)
dw

∣∣∣∣∣; t)
∥∥∥∥∥

Lp[x′2,y′2]

6 O
( 1

nk+1

)
+ C

k∑
m=1

∥∥∥∥∥Mm
n

(
|u− t|2k−1 ×

×

∣∣∣∣∣
u∫

t

∣∣∣f (2k−1)(w)− f (2k−1)(t)
∣∣∣ dw

∣∣∣∣∣; t)
∥∥∥∥∥

Lp[x′2,y′2]

6 O
( 1

nk+1

)
+ C

∥∥∥∥∥Mn

(
|u− t|2k−1 ×

×

∣∣∣∣∣
u∫

t

∣∣∣f (2k−1)(w)− f (2k−1)(t)
∣∣∣ dw

∣∣∣∣∣; t)
∥∥∥∥∥

Lp[x′2,y′2]

(3.11)

Now, we have

I=

∣∣∣∣∣Mn

(
|u− t|2k−1

∣∣∣∣∣
u∫

t

∣∣∣f (2k−1)(w)− f (2k−1)(t)
∣∣∣ dw

∣∣∣∣∣; t)
∣∣∣∣∣
p

6
( 1∫

0

Wn(u, t) du
)1/p

( 1∫
0

Wn(u, t)

∣∣∣∣∣
u∫

t

∣∣∣f (2k−1)(w)− f (2k−1)(t)
∣∣∣ dw

∣∣∣∣∣
p

du

)

6

1∫
0

Wn(u, t)

∣∣∣∣∣
u∫

t

dw

∣∣∣∣∣
p/q∣∣∣∣∣

u∫
t

∣∣∣f (2k−1)(w)− f (2k−1)(t)
∣∣∣ dw

∣∣∣∣∣
p

6

1∫
0

Wn(u, t)|u− t|(2k−1)p+p/q

∣∣∣∣∣
u∫

t

∣∣∣f (2k−1)(w)− f (2k−1)(t)
∣∣∣ dw

∣∣∣∣∣ du (3.12)

Now, in order to estimate the quantity in the right, we divide the integral once

again as in Lemma 5 and use the moment estimates given in Lemma 1. Thus, from
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(3.12) we get the following

I 6
r∑

l=0

{ t+ l+1√
n∫

t+ l√
n

n2

l4
|u− t|4+(2k−1)p+p/qWn(u, t)

×

t+ l+1√
n∫

t

∣∣∣f (2k−1)(w)− f (2k−1)(t)
∣∣∣p dw du

+

t− l√
n∫

t− l+1√
n

n2

l4
|u− t|4+(2k−1)p+p/qWn(u, t)

×
t∫

t− l+1√
n

∣∣∣f (2k−1)(w)− f (2k−1)(t)
∣∣∣p dw du

}

6
r∑

l=0

C
n2

l4
1

n2+(2k−1)p/2+p/2q

( t+ l+1√
n∫

t

∣∣∣f (2k−1)(w)− f (2k−1)(t)
∣∣∣p dw

+

t∫
t− l+1√

n

∣∣∣f (2k−1)(w)− f (2k−1)(t)
∣∣∣p dw

)
(3.13)

Now,

y′2∫
x′2

t+ l+1√
n∫

t

∣∣∣f (2k−1)(w)− f (2k−1)(t)
∣∣∣p dw dt =

l+1√
n∫

0

y′2∫
x′2

∣∣∣f (2k−1)(x + t)− f (2k−1)(t)
∣∣∣p dx dt

=

y′2∫
x′2

1∫
0

∣∣∣f (2k−1)(x + t)− f (2k−1)(t)
∣∣∣pχ(x) dx dt 6

1∫
0

xθpχ(x) dx

(where χ is the characteristic function of [0, (l + 1)/
√

n])

=

1∫
0

y′2∫
x′2

∣∣∣f (2k−1)(x + t)− f (2k−1)(t)
∣∣∣pχ(x) dt dx 6 C

(l + 1)pθ+1

n
pθ+1

2

, (where 0 < θ < 1).

(3.14)

Combining (3.12),(3.13) and (3.14), we get
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(
|u− t|2k−1

u∫
t

∣∣∣f (2k−1)(w)− f (2k−1)(t)
∣∣∣ dw

∣∣∣∣∣; t)
∥∥∥∥∥

Lp[x′2,y′2]

6 C

{
r∑

l=0

n2

l4
1

n2+(2k−1)p/2+p/2q

(l + 1)pθ+1

n(pθ+1)/2

}1/p

6 C
(
n−(k+θ/2)

)
. (3.15)

Similarly the rest terms in (3.10) give the required order.

By (3.8), (3.11) and (3.15) we obtain the estimate

∥∥∆2k+2
τ (f̄(t)− Tn,k+1(f̄ ; t))

∥∥
Lp[x2,y2]

6 C

{
1

nk+1
+

1
nk+θ/2

}
6 C

1
nk+θ/2

. (3.16)

Combining (3.9), (3.16), Lemma 4 and Lemma 5 and in view of properties of the

Steklov means we get

∥∥∆2k+2
τ f̄(t)

∥∥
Lp[x2,y2]

6 C
1

nk+θ/2
+ τ2k+2

(
nk+1 +

1
η2k+2

)
ω2k+2(f̄ , η, [x2, y2])

Taking τ 6 r

ω2k+2(f̄ , r, [x2, y2]) = O
(
r2k+θ

)
(3.17)

This implies that f̄ (2k) exists and belongs to Lip θ. This is reiterated into second

term of (3.10) as

f(u) =
2k∑
i=0

f (i)(t)
i!

(u− t)i +
1

(2k − 1)!

u∫
t

(u− w)2k−1
(
f (2k−1)(w)− f (2k−1)(t)

)
dw

Thus we get ∥∥Tn,k+1(f(u)(u− t); t)
∥∥

Lp[x′2,y′2]
6

C

nk+1/2+θ/2

This implies ω2k+2(f̄ , r, p, [x2, y2]) = O(r2k+1+θ) which further implies

ω2k+2(f, τ, p, I2) = O(τ2k+1+θ).

Thus the theorem is completed by induction. �

163



T. A. K. SINHA, VIJAY GUPTA, P. N. AGRAWAL, AND ASHA RAM GAIROLA

Acknowledgement. The author (Asha Ram Gairola) is thankful to the “Council

of Scientific and Industrial Research”, New Delhi, India for financial support to

carry out the above work.

References

[1] Agrawal, P.N., Gairola, Asha Ram, On iterative combination of Bernstein-Durrmeyer

polynomials, Appl. Anal. Discrete Math., 1(2007), 1-11.

[2] Agrawal, P.N., Gupta, V., A saturation theorem for combinations of

Bernstein-Durrmeyer polynomials, Anal. Pol. Math. Vol. LVII, 2(1992), 157-164.

[3] Derriennic, M.M., Sur l’approximation de fonctions integrable sur [0, 1] par des

polynomes de Bernstein modifies, J. Approx. Theory, 31(1981), 325-343.

[4] Ditzian, Z., Ivanov, K., Bernstein-type operators and their derivatives, 56(1989), 72-90.

[5] Durrmeyer, J.L., Une Formule d’Inversion de la Transformee de Laplace: Applications

a la Theorie des Moments, These de 3e cycle, Faculte des Science de l’Universite de

Paris, 1967.

[6] Gonska, H.H., Xin-Long Zhou, A global inverse theorem on simultaneous

approximation by Bernstein-Durrmeyer operators, J. Approx. Theory, 67(1991),

284-302.

[7] Kasana, H.S., Agrawal, P.N., On sharp estimates and linear combinations of modified

Bernstein polynomials, Bull. Soc. Math. Belg. Ser. B 40(1)(1988), 61-71.

[8] Lorentz, G.G., Bernstein Polynomials, Toronto Press, Toronto, 1953.

[9] Micchelli, C.A., The saturation class and iterates of Bernstein polynomials, J.

Approx.Theory, 8(1973), 1-18.

[10] Sinha, T.A.K., Agrawal, P.N., Gairola, Asha Ram, On Lp-approximation by iterative

combination of Bernstein-Durrmeyer polynomials, under communication for

publication.

[11] Wood, B., Lp-approximation by linear combinations of integral Bernstein-type

operators, Anal. Numer. Theor. Approx., 13(1)(1984), 65-72.

164



INVERSE THEOREM FOR AN ITERATIVE COMBINATION

Department of Mathematics, S.M.D. College

Poonpoon, Patna (Bihar), India

E-mail address: ashok sinha12@sifymail.com

School of Applied Sciences

Netaji Subhas Institute of Technology

Sector 3 Dwarka, New Delhi 110045,India

E-mail address: vijay@nsit.ac.in

Department of Mathematics

Indian Institute of Technology

Roorkee-247667, India

E-mail address: pna iitr@yahoo.co.in

Department of Mathematics

Indian Institute of Technology

Roorkee-247667, India

E-mail address: ashagairola@yahoo.co.in

165
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ON THE USE OF ABEL-JENSEN TYPE COMBINATORIAL
FORMULAS FOR CONSTRUCTION AND INVESTIGATION OF

SOME ALGEBRAIC POLYNOMIAL OPERATORS OF
APPROXIMATION

DIMITRIE D. STANCU AND ELENA IULIA STOICA

Abstract. The aim of this paper is to present some Abel-Jensen type

combinatorial formulas useful for construction and investigation of some

algebraic polynomial linear positive operators of approximation of univari-

ate functions from the space C[0, 1].

In the first part of the paper we present the Abel generalization

(1.1) of the classical binomial formula. Then we mention the two Abel

type formulas (1.2) and (1.3), as well as the Vandermonde-Jensen formula

(1.5).

In the second section one extends to factorial powers the preceding

formulas. Then we establish the combinatorial identities (2.2)-(2.5), which

are used to give the basic polynomials, depending on two non-negative

parameters α and β.

In the third section we use these polynomials for construction

several linear positive operators, depending on four parameters, associated

to function f ∈ C[0, 1]. Some particular cases of these operators were

investigated by several authors mentioned at the end of the paper. Finally,

we want to mention that in the paper [10] of Cheney and Sharma was

proved that the operator Qn reproduces only the constant functions.

In the fourth section are investigated the approximation proper-

ties of the operator Qα,β
m , defined at (3.3). In the last section are given

evaluations of the remainder term of the approximation formula (5.1).

Received by the editors: 21.04.2009.

2000 Mathematics Subject Classification. 41A20, 41A25, 41A36, 65D32.

Key words and phrases. combinatorial formulas of Abel-Jensen type.
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1. Introduction

We start with the celebraten generalization of the Newton binomial formula,

given in 1826, by the outstanding mathematical genius represented by the Norwegian

Niels Henrik Abel [1], namely

(u + v)n =
n∑

k=0

(
n

k

)
u(u− kβ)k−1(v + kβ)n−k, (1.1)

where β is a non-negative parameter.

We mention also the Abel type formulas

(u + v + nβ)n =
n∑

k=0

(
n

k

)
u(u + kβ)k−1(v + (n− k)β)n−k, (1.2)

(u + v + nβ)n =
n∑

k=0

(
n

k

)
(u + kβ)kv(v + (n− k)β)n−k−1. (1.3)

Jensen [29] has obtained a new symmetrical identity of Abel

(u + v(u + v + nβ))n−1 =
n∑

k=0

(
n

k

)
u(u + kβ)k−1v(v + (n− k)β)n−k−1. (1.4)

In the paper [18] the American mathematician H.W. Gould gave the following

generalization of the Vandermonde formula(
u + v + nβ

n

)
=

n∑
k=0

(
u + kβ

k

)(
v + (n− k)β

n− k

)
v

v + (n− k)β
,

which can be written, by using the factorial powers, under the form

(u + v + nβ)[n] =
n∑

k=0

(
n

k

)
(u + kβ)[k]v(v + (n− k)β)[n−k−1].

The factorial power of a non-negative order n and increment h of u is defined

by the formula

u[n,h] = u(u− h) . . . (u− (n− 1)h), u[0,h] = 1.

When h = 1 we write u[n,1] = u[n].
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We shall also consider the generalized Vandermonde-Jensen formula

u + v

u + v + nβ

(
u + v + nβ

n

)
=

n∑
k=0

u

u + kβ

(
u + kβ

k

)
v

v + (n− k)β

(
v + (n− k)β

n− k

)
.

(1.5)

Jensen [29] has made the remark that formula (1.5) and the following formula(
u + v

n

)
=

n∑
k=0

u

u + kβ

(
u + kβ

k

)(
v − kβ

n− k

)
(1.6)

have been given earlier by I.G. Hagen [6] in 1891, but without demonstration.

These two formulas are particular cases of the more general formula

a(u + v − nβ) + bnu

u(u + v)(v − nβ)

(
u + v

n

)
=

n∑
k=0

a + bk

(u + kβ)(v − kβ)

(
u + kβ

k

)(
v − kβ

n− k

)
,

given by Hagen [6] without any proof.

Jensen [29] has given also the new and elegant identity

n∑
k=0

(
u + kβ

k

)(
v − kβ

n− k

)
=

n∑
k=0

(
u + v − k

n− k

)
βk, (1.7)

which can be seen in the book: ”Combinatorial Identities” [23] of H.W. Gould.

In order to prove the identity (1.7) we introduce first the following notation

G(u, v, n) =
n∑

k=0

(
u + kβ

k

)(
v − kβ

n− k

)
.

It is easy to see that we can write successively

G(u, v, n) =
n∑

k=0

(
u + kβ

k

)(
v − kβ

n− k

) {
u

u + kβ
+ β

k

u + kβ

}

=
n∑

k=0

u

u + kβ

(
u + kβ

k

)(
v − kβ

n− k

)

+ β
n∑

k=1

(
u− 1 + kβ

k − 1

)(
v − kβ

n− k

)
.

By using an identity (1.6) given in the paper of H.W. Gould ([18], pag. 71),

as well as the Vandermonde-type convolution (1.10) from the same paper, we are able
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to write the equality:
n∑

k=0

u

u + kβ

(
u + kβ

k

)(
v − kβ

n− k

)
=

(
u + v

n

)
,

so that we can obtain the relation

G(u, v, n) =
(

u + v

n

)
+ β

n−1∑
k=0

(
u− 1 + β + kβ

k

)(
v − β − kβ

n− 1− k

)
.

Consequently we can write the Jensen recurrence formula

G(u, v, n)− βG(u− 1 + β, v − β, n− 1) =
(

u + v

n

)
. (1.8)

By using this we are able to write

βG(u− 1 + β, v − β, n− 1)− β2G(u− 2 + 2β, v − 2β, n− 2) = β

(
u + v − 1

n− 1

)
and by successive application of (1.8) and summing the resulting relations we ulti-

mately obtain

G(u, v, n)− βrG(u− r + rβ, v − rβ, n− r) =
r−1∑
k=0

(
u + v − k

n− k

)
βk.

Letting r = n + 1 we find the relation (1.7), which we intended to prove.

Now we want to point out that the identity (1.7) is a counterpart for the

Abel-type series:
n∑

k=0

(u + kβ)k

k!
· (v − kβ)n−k

(n− k)!
=

n∑
k=0

(u + v)k

k!
· βn−k.

One way to prove this is to develop a recurrence relation, or to carry through

a limiting process, as was noted in the paper of Gould [18].

Ending this section we mention, with Gian-Carlo Rota and Ronald Mullin

([49], pag. 168 and 195), that the Abel polynomials

pn(x) = x(x− an)n−1

are the basic polynomials of the Abel operator EaD (here D is the differentiation

operator and Ea is the shift operator or the translation operator).

We have DEa = EaD : x(x− na)n−1 → nx(x− (n− 1)a)n−2.
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Finally, I consider that it is important to mention a generating relation from

the monograph of Boas and Buck ([6], pag. 34) for the general difference polynomials

ext =
∞∑

n=0

pn(x)
n!

[(et − 1)eβt]n,

where β is a real parameter.

For β = 0 we get the Newton binomial polynomials

pn(x) =
(

x

n

)
= x(x− 1) . . . (x− n + 1)/n!,

while for β = −1
2

we obtain the Stirling interpolation polynomials.

2. Extensions to factorial powers of the Abel-Jensen combinatorial

formulas

As we have mentioned above, we denote by u[n,h] the factorial power of order

n (n ≥ 0) and increment h of u, that is

u[n,h] = u(u− h) . . . (u− (n− 1)h), u[0,h] = 1, u[n,1] = u[n].

By extension to factorial powers the Abel combinatorial formula (1.1) we

obtain

(u + v)[n,h] =
n∑

k=0

(
n

k

)
u(u− kβ)[k−1,h](v + kβ)[n−k,h], (2.1)

where β is a non-negative parameter.

If we replace here h = −α, where α is a non-negative parameter, we get the

identity

(u + v)[n,−α] =
n∑

k=0

(
n

k

)
u(u− kβ)[k−1,−α](v + kβ)[n−k,−α].

Now we select u = x and v = 1− x and we obtain the important identity

n∑
k=0

(
n

k

)
x(x− kβ)[k−1,−α](1− x + kβ)[n−k,−α] = 1[n,−α]

= 1(1 + α)(1 + 2α) . . . (1 + (n− 1)α). (2.2)

171



DIMITRIE D. STANCU AND ELENA IULIA STOICA

By using the Abel-Jensen combinatorial formula (1.4) we are able to write

n∑
k=0

(
n

k

)
x(x + kβ)[k−1,−α](1− x)(1− x + (n− k)β) = (1 + nβ)[n−1,−α]. (2.3)

According to the combinatorial formula (1.2), we get the identity

n∑
k=0

(
n

k

)
x(x + kβ)[k−1,−α](1− x + (n− k)β)[n−k,−α] = (1 + nβ)[n,−α] (2.4)

while from (1.4) we obtain

n∑
k=0

(
n

k

)
(x + kβ)[k,−α](1− x)(1− x + (n− k)β)[n−k−1,−α] = (1 + nβ)[n,−α]. (2.5)

By using the combinatorial identities (2.2), (2.3), (2.4) and (2.5) we can

introduce the basic polynomials

sα,β
m,k(x) =

1
1[m,−α]

m∑
k=0

(
m

k

)
x(x− kβ)[k−1,−α](1− x + kβ)[m−k,−α]

qα,β
m,k(x) =

1
(1 + mβ)[m−1,−α]

m∑
k=0

(
m

k

)
x(x+kβ)[k−1,−α](1−x)(1−x+(n−k)β)[m−k,−α]

pα,β
m,k(x) =

1
(1 + mβ)[m,−α]

m∑
k=0

(
m

k

)
x(x + kβ)[k−1,−α](1− x + (m− k)β)[m−k,−α]

rα,β
m,k(x) =

1
(1 + mβ)[m,−α]

m∑
k=0

(
m

k

)
(x+kβ)[k,−α](1−x)(1−x+(m−k)β)[m−k−1,−α].
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3. Linear positive operators constructed by means of the basic polynomials

considered in the preceding section

For any function f ∈ C[0, 1] we construct linear positive operators, depending

on four parameters:

(Sα,β,γ,δ
m f)(x) =

m∑
k=0

sα,β
m,k(x)f

(
k + γ

m + δ

)
,

(Qα,β,γ,δ
m f)(x) =

m∑
k=0

qα,β
m,k(x)f

(
k + γ

m + δ

)
,

(Pα,β,γ,δ
m f)(x) =

m∑
k=0

pα,β
m,k(x)f

(
k + γ

m + δ

)
,

(Rα,β,γ,δf)(x) =
m∑

k=0

rα,β
m,k(x)f

(
k + γ

m + δ

)
,

(3.1)

where 0 ≤ γ ≤ δ.

In the case β = γ = δ = 0 these operators reduce to the Stancu operator Sα
m,

introduced and investigated in the paper [55]:

(Sα
mf)(x) =

m∑
k=0

sα
m,k(x)f

(
k

m

)
,

where

sα
m,k(x) =

(
m

k

)
x[k,−α](1− x)[m−k,−α]

1[m,−α]
.

This operator was further investigated and applied by several authors. B.

Della Vecchia [12], A. Di Lorenzo - M.R. Occorsio [13], F. Frenţiu [17], I. Horova and

Budikova [27], G. Mastroianni and G. Occorsio [40], [41], I.A. Rus [50], S. Toader [61]

and others.

If we select α = γ = δ = 0 then we arrive at the operators of Cheney and

Sharma [10] Pm and Qm.

For γ = δ = 0 the operator (3.1) becomes

(Qα,β
m f)(x) =

m∑
k=0

qα,β
m,k(x)f

(
k

m

)
, (3.2)
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where

qα,β
m,k(x) =

(
m

k

)
x(x + kβ)[k−1,−α](1− x)(1− x + (m− k)β)[m−k−1,−α]

(1 + mβ)[m−1,−α]
.

When α = 0 this operator will be the second operator of Cheney-Sharma

[10], defined by the formula

(Qmf)(x;β) =
m∑

k=0

qm,k(x;β)f
(

k

m

)
,

where

qm,k(x;β) =
(

m

k

)
x(x + kβ)k−1(1− x)(1− x + (m− k)β)m−1−k

(1 + mβ)m−1
.

It will be easy to prove that this operator is similar with the Bernstein oper-

ator Bm, and preserves the linear functions.

4. Convergence properties of the sequence (Qα,β
m )

For the convergence of the sequence of operators Qα,β
m , defined at (3.3), we

shall use the classical theorem of Bohman-Korovkin [7], [33], which can be stated as

follows:

If we have a sequence of linear positive operators Lm : C[a, b] → C[a, b] and we

have (Lmsk) converges uniformly to sk on [a, b] for k = 0, 1 and 2, where sk(x) = xk,

then the sequence (Lmf) converges uniformly to f on [a, b] for each f ∈ C[a, b]. In

our case [a, b] = [0, 1] and we have the operators Qm, defined at (3.3).

According to Abel-Jensen combinatorial formula (2.3) we can see that

Qα,β
m e0 = e0.

In the case of the next test function e1 we have

(Qα,β
m e1)(x) =

1
(1 + α + mβ)[m−1,−α]

(Zα,β
m e1)(x) (4.1)

where

(Zα,β
m e1)(x) =

m∑
k=1

k

m

(
m

k

)
x(x+α+kβ)[k−1,−α](1−x)(1−x+α+(m−k)β)[m−k−1,−α]
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=
m∑

k=1

(
m− 1
k − 1

)
x(x + α + kβ)[k−1,−α](1− x)(1− x + α + (m− k)β)[m−1−k,−α].

By changing the index of summation k − 1 = j, we get

(Zα,β
m e1)(x) = x

m−1∑
j=0

(
m− 1

j

)
(x+α+β+jβ)[j,−α](1−x)(1−x+(m−1−j)β)[m−2j,−α].

(4.2)

Now we shall use an extension to factorial powers of the Abel combinatorial

formula

(u + v + nβ)[n,h] =
n∑

k=0

(
n

k

)
(u + kβ)[k,h]v(v + (n− k)βh)[n−k−1,h]. (4.3)

We have to replace here n = m − 1, h = −α, u = x + α + β, v = 1 − x and

we arrive at the following identity

(1 + α + mβ)[m−1,−α]

=
m−1∑
k=0

(
m− 1

b

)
(x + α + β + bβ)[k,−α](1− x)(1− x + (m− k − 1)β)[m−2−k,−α].

According to (3.4), (3.5) and (3.6) we can write:

Qα,β
n e1 = e1.

Consequently, our operator reproduces the linear functions.

Going on to the next test function e2 we find that

(Qα,β
m e2)(x) =

1
m

m∑
k=1

[
k

m
+

k(k − 1)
m

]
qα,β
m,k(x)

=
1

m
(Qα,β

m e1)(x)+
1

m

m∑
k=2

(
m− 1

m− 2

)
x(x+α+kβ)[k−1,−α](1−x)(1−x+α+(m−k)β)[m−k−1,−α]

=
x

m
+

m− 1
m

m−2∑
j=0

(
m− 2

j

)
(x+α+2β+jβ)[j+1,−α](1−x+α+(m−2−j)β)[m−3−j,−α].

Now if we use again the extension to factorial powers of the Abel combina-

torial formula, we can see that Qα,β
m e2 tends uniformly to e2 on [0, 1], when m tends

to infinity.
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By applying the Bohman-Korovkin [7], [3]] convergence criterion we can state

the following result: if f ∈ C[0, 1] and the parameters α and β are non-negative and

depend on m such that α = α(m) → 0 and mβ(m) → 0, when m tends to infinity,

then the sequence (Qα,β
m f) converges uniformly to f on [0, 1].

5. Evaluations of the remainder term

Because the operator Qα,β
m reproduces the linear functions, we can state that

the approximation formula

f(x) = (Qα,β
m f)(x) + (Rα,β

m f)(x) (5.1)

has the degree of exactness N = 1.

Assuming that the function f has a continuous second derivative on the

interval [0, 1], we can represent the remainder of this formula under the following

integral form

(Rα,β
m f)(x) =

∫ 1

0

Gα,β
m (t;x)f ′′(t)dt, (5.2)

where

Gα,β
m (t;x) = (Rα,β

m ϕx)(t), ϕx(t) = (x− t)+ =
x− t + |x− t|

2
,

understanding that Rα,β
m operates on ϕx as a function of x.

The above integral representation of the remainder can be obtained if we

make use of the well-known theorem of Peano.

For the Peano kernel, associated to our operator, we have

Gα,β
m (t;x) = (x− t)+ −

m∑
k=0

qα,β
m,k(x)

(
k

m
− t

)
+

. (5.3)

In order to find an explicit expression of this kernel, we assume that x ∈
[
s− 1
m

,
s

m

]
and we can write

Gα,β
m (t;x) = x− t−

∑
qα,β
m,k(x)

(
k

m
− t

)
(5.4)

for t ∈
[
j − 1
m

,
j

m

]
, where 1 ≤ j ≤ s− 1.
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If we consider that t ∈
[
s− 1
m

,x

]
, then we obtain

Gα,β
m (t;x) = x− t−

∑
k≥s

qα,β
m,k(x)

(
k

m
− t

)
, (5.5)

while for t ∈
[
x,

s

m

]
we get

Gα,β
m (t;x) = −

∑
k≥s

qα,β
m,k(x)

(
k

m
− t

)
.

In the case t ∈
[
j − 1
m

,
j

m

]
, where j > s, we have

Gα,β
m (t;x) = −

∑
k≥j

qα,β
m,k(x)

(
k

m
− t

)
.

Because the degree of exactness of the formula (5.1) is one, by replacing

f(x) = x− t, the corresponding remainder vanishes and we obtain

x− t−
m∑

k=0

qα,β
m,k(x)

(
k

m
− t

)

=
j−1∑
k=0

qα,β
m,k(x)

(
k

m
− t

)
+

m∑
k=j

qα,β
m,k(x)

(
k

m
− t

)
.

Therefore we can write

x− t =
m∑

k=j

qα,β
m,k(x)

(
k

m
− t

)
= −

j−1∑
k=0

qα,β
m,k(x)

(
x− k

m

)
.

Consequently, the representation (5.4) can be replaced by

Gα,β
m (t;x) = −

j−1∑
k=0

qα,β
m,k(x)

(
t− k

m

)
,

if t ∈
[
j − 1
m

,
j

m

]
and 1 ≤ j ≤ s− 1, while (5.5) can be replaced by

Gα,β
m (t;x) =

s−1∑
k=0

qα,β
m,k(x)

(
t− k

m

)
,

when t ∈
[
s− 1
m

,x

]
.
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Because on the interval [0, 1] we have Gα,β
m (t;x) ≤ 0, we can apply the mean

value theorem to the integral and we obtain

(Rα,β
m f)(x) = f ′′(ξ)

∫ 1

0

Gα,β
m (t;x)dt, ξ ∈ (0, 1), (5.6)

under the hypothesis that f ∈ C2[0, 1].

If in the approximation formula

f(x) = (Qα,β
m f)(x) + f ′′(ξ)

∫ 1

0

Gα,β
m (t;x)dt

we replace f(x) = e2(x) = x2, we get∫ 1

0

Gα,β
m (t;x)dt =

1
2
[x2 − (Qα,β

m e2)(x)] =
1
2
(Rα,β

m e2)(x).

Consequently, we can see that the remainder of the approximation formula

(5.1) can be expressed under the following form

(Rα,β
m f)(x) =

1
2
(Rα,β

m e2)(x)f ′′(ξ), (5.7)

where 0 < ξ < 1.

Therefore we can state the following result:

If we have the function f ∈ C2[0, 1], then the remainder of the approximation

formula (5.1) can be represented under the integral form (5.6).

We mention that in the particular case α = β = 0, when Qm = Bm, the

corresponding approximation formula was established by D.D. Stancu in 1963 in the

paper [54].

Now we want to make the remark that because Qα
mf is interpolatory at both

sides of the basic interval [0, 1], it is clear that (Rα
me2)(x) had to contain the factor

x(x− 1).

Since Rmf 6= 0, if β = 0, for any convex function f of the first order, we can

apply a criterion of T. Popoviciu [46] and we can find that the remainder Rα
mf is of

a simple form. Therefore we can state the following result:

If the second-order divided differences of the function f are bounded on the

interval [0, 1], then there exist three distinct points tm,1, tm,2, tm,3 in the interval [0, 1],
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which might depend on f , such that the remainder of the approximation formula (5.1)

can be represented under the following form

(Rα
mf)(x) = (Rα

me2)(x)[tm,1, tm,2, tm,3; f ],

where the nodes are certain distinct points of the interval [0, 1].

It is clear that if f ∈ C2[0, 1] and we apply the mean-value theorem of divided

differences, then we can obtain formula (5.7).

In the case α = 0 we can see that we have

(Rmf)(x) =
x(x− 1)

2m
f ′′(ξ),

which represents the remainder in the case of the Bernstein approximation operator

Bm.

This result was obtained by D.D. Stancu in 1963 in the paper [54].
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LIV, Number 4, December 2009

BOOK REVIEWS

Charles Chidume, Geometric Properties of Banach Spaces and Nonlinear
Iterations, Lectures Notes in Mathematics, Vol. 1965, Springer-Verlag London
Limited, 2009, xvii+326 pp; ISBN: 978-1-84882-189-7, e-ISBN: 978-1-84882-190-3,
DOI: 10.1007/978-1-84882-190-3.

The classical Banach Contraction Principle asserts that every contraction
T on a complete metric space (X, ρ) has a unique fixed point x̄ and the Picard
iteration xn+1 = Txn, n ≥ 0, converges to x̄, for every x0 ∈ X. This result is no
longer true for nonexpansive mappings (i.e., such that ρ(Tx, Ty) ≤ ρ(x, y), x, y ∈ X),
even when X is a weakly compact subset of a Banach space E. The study of fixed
points for nonexpansive mappings defined on convex subsets of Banach spaces has
put in evidence strong connections to the geometric properties of the underlying
Banach space - normal structure, rotundity and smoothness properties characterized
in terms of various constants and moduli. Also, even if T has a fixed point, the Picard
iteration could not converge to the fixed point of T. By a clever modification of Picard
iteration, namely xn+1 = 1

2 (xn+Txn), n ≥ 0, Krasnoselki (1955) succeeded to obtain
convergence to the fixed point in some cases. Later extensions to Kransnoselski’s idea
were given by Mann (1953): xn+1 = (1 − αn)xn + αnTxn, n ≥ 0, (called also the
Krasnoselski-Mann iteration), and Ishikawa (1974): yn = (1−βn)xn+βnTxn, xn+1 =
(1− αn)xn + αnTyn, n ≥ 0. The hypotheses on (αn) in Mann iteration are: (i) αn ∈
(0, 1), limn αn = 0, and (ii)

∑∞
n=0 αn = ∞, with some similar conditions in

Ishikawa’s method.
The aim of the present book is to give an introduction to this very active area

of investigation. The basic results from the geometry of Banach spaces are presented
in the first five chapters of the book: 1. Some geometric properties of Banach spaces,
2. Smooth spaces, 3. Duality map in Banach spaces, 4. Inequalities in uniformly
convex spaces, and 5. Inequalities in uniformly smooth spaces.

The study of iterative procedures starts in Chapter 6. Iterative methods for
fixed points of nonexpansive mappings, and continues along the rest of the chapters
(there are 23) with topics as: descent methods for variational inequalities (in Ch. 7),
iterative procedures for zeros of generalized accretive operators (Chapters 8 and 9),
iterations for pseudo-contractive mappings (Chapters 10 to 12), iterative methods for
generalized nonexpansive mappings (Ch. 14), for families of nonexpansive mappings
(Chapters 15 to 17), for asymptotically nonexpansive mappings (Chapters 20 and
21) and for nonexpansive semigroups (Ch. 22). Chapter 13 is concerned with appli-
cations to Hammerstein integral equations while the last chapter, 23. Single-valued
accretive operators; Applications; Some open questions, is concerned with continuity
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conditions implying the single-valuedness of set-valued accretive operators with ap-
plications to differential inclusions. This chapter contains also some open problems
and recommendations for further reading.

Based on a rich bibliography (561 items) and including many original con-
tributions of the author, the book is of great help for graduate and postgraduate
students, as well as for researchers interested in fixed point theory, geometry of Ba-
nach spaces and numerical solution of various kinds of equations - operator differential
equations, differential inclusions,variational inequalities.

A good companion in reading it could be the recent book by V. Berinde,
Iterative Approximation of Fixed Points, LNM 1912, Springer, Berlin 2007, dealing
with similar topics, with emphasis on the Hilbert space setting. Together, these two
books cover a lot of the research work done in the last 20 years in the field of iterative
procedures for fixed points.

S. Cobzaş

Leon A. Takhtajan, Quantum mechanics for mathematicians, Graduate
Studies in Mathematics, Vol. 95, American Mathematical Society, Providence,
Rhode Island 2008,x+278 pp, ISBN:978-0-8218-4630-8

From the ancient times, the development of physics stimulated the research
in mathematics, leading to the discovery of new areas in mathematics. In this sense,
the most known is the creation by L. Schwartz and S. L. Sobolev of distribution
theory, as a response to some curious manipulation (at least for mathematicians) of
some strange functions, the best known being the Dirac delta function. Up to the
early 20th century classical physics, especially classical mechanics, was an integral
part of curricula for students in mathematics. The situation is totally different with
quantum physics, which uses very advanced mathematical tools, but has never been
a part of the curriculum of graduate students in mathematics. In trying to fill this
gap the author taught, for more that 14 years, a course on quantum mechanics for
students in mathematics at Stony Brook University. In fact, mathematics and physics
are strongly interconnected, some topics as, for instance, string theory being chapters
of mathematics and physics as well.

The inspiration for this course came for a similar one taught by L. D. Fad-
deev at Leningrad (now Sankt Petersburg) State University. The AMS published a
course by L. D. Faddeev, Elementary introduction to quantum field theory. Quantum
fields and strings: a course for mathematicians, AMS 1999, and the translation of an
another one: L. D. Faddeev and O. A. Yakubovskĭı, Lectures on Quantum Mechanics
for Mathematics Students with an appendix by Leon Takhtajan, AMS, 2009, orig-
inally published in Russian with Leningrad University Publishers, Leningard 1980.
The first part of the book is based mainly on these course, but using more advanced
mathematical tools, complete rigorous proofs and going beyond the topics presented
there.

The book is divided into two parts: 1. Foundations, and 2. Functional meth-
ods and supersymmetry. The first part starts with a chapter, 1. Classical mechanics,
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where the exposition follows the traditional line, starting with the Lagrangian formal-
ism and introducing the Hamiltonian through the Legendre transform as, for instance,
in the classical treatise by V. I. Arnold.

The study of quantum mechanics starts in Chapter 2. Basic principles of
quantum mechanics, based on the Dirac-von Neumann axioms: an infinite dimensional
separable complex Hilbert spaceH, called the space of states, the family of observables
formed of the space of self-adjoint operators on H, and the states S which are the
positive trace class operators M on H with Tr M = 1. Pure states are the projection
operators onto the one-dimensional spaces, all of the other states being called mixed
states.

The first part continues with Chapters 3. Schrödinger equation, and 4. Spin
and identical particles.

The second part contains the chapters 5. Path integral formulation of quan-
tum mechanics (the Feynman approach to quantum mechanics), 6. Integration in
function spaces (Wiener integration theory, the Feynman-Kac formula), 7. Fermion
systems (anticommutativity relations, Grassmann algebra), and 8. Supersymmetry.

There are a lot of problems spread throughout the book. Some of these
require to fill in some proofs, only sketched in the main text, while others refer
to supplementary topics, not treated in the main text. For these last ones, exact
references are given.

Each chapter ends with a section of Notes and references, containing biblio-
graphical references and recommendations for further reading.

The bibliography contains a list of carefully chosen monographs, both classi-
cal and modern, on mathematics and physics, survey papers and some fundamental
research papers, all being referred in the Notes section of the chapters.

By a cleaver selection of the material and the clear way of exposing it, the
book is recommended for graduate students in mathematics looking for applications
in physics, as well as for student in physics desiring to be acquainted, in a rigorous
but, at the same time, quick and accessible manner, with the basic mathematical tools
used in quantum mathematics. The devoted readers can follow the paths indicated
by the author in problems and notes, to acquire a master introduction to the area.

Radu Precup

Stephen Lynch, Dynamical Systems with Applications using
MATHEMATICAr, xvi+484 pp, Birkhäuser, Boston -Basel - Berlin, 2007,
ISBN-13: 978-0-8176-4482-6

The book is a good introduction to dynamical systems theory. In the first
part, after a short introduction to MATHEMATICAr, differential equations and dy-
namical systems are considered, with examples taken from mechanical systems, chem-
ical kinetics, electric circuits, interacting species and economics. The second part is
devoted to discrete dynamical systems, with many advanced examples from electro-
magnetic waves, optical resonators, chaos, fractals, neurodynamics.This book presents
an original, cheap and powerful solution to the problem of analysis of large data sets.
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The theory and applications are presented with the aid of the MATHEMATICAr

package. Throughout the book, MATHEMATICAr is viewed as a tool for solving
systems or producing exciting graphics. Each chapter contains a subsection with
”Mathematica Commands in Text Format”. The author suggests that the reader
should save the relevant example programs. These programs can then be edited ac-
cordingly when attempting to solve the exercises at the end of each chapter. The
solution combines C language, data base query and management, statistics and data
visualization. The text is aimed at graduate students and working scientists in vari-
ous branches of applied mathematics, natural sciences and engineering. The material
is intelligible to readers with a general mathematical background. Fine details and
theorems with proof are kept at a minimum. This book is informed by the research
interests of the author which are nonlinear ordinary differential equations, nonlin-
ear optics and fractals. Some chapters include recently published research articles
and provide a useful resource for open problems in nonlinear dynamical systems.The
book intends to be an alternative to classical statistical books: it does not separate
descriptive and inferential An efficient tutorial guide to MATHEMATICAr is in-
cluded. The knowledge of a computer language would be beneficial but not essential.
The MATHEMATICAr programs are kept as simple as possible and the author’s
experience has shown that this method of teaching using MATHEMATICAr works
well with computer laboratory class of small sizes.statistics, simple models are com-
bined into more complex model in a hierarchical way and it is computer oriented.
recommend ”Dynamical Systems with Applications using MATHEMATICAr” as a
good handbook for a diverse readership, for graduates and professionals in mathe-
matics, physics, science and engineering. This book could be considered as a new and
extended version of the following books, also written by the same author:

Dynamical Systems with Applications using MATLABr, ISBN 978-0-8176-
4321-8, and Dynamical Systems with Applications using MAPLE, ISBN 978-0-8176-
4150-4.

Damian Trif

Dean Corbae, Maxwell B. Stinchcombe and Juraj Zeman, An Introduc-
tion to Mathematical Analysis for Economic Theory and Econometrics,
Princeton University Press, Princeton and Oxford 2009, xxi+671 pp; ISBN: 978-0-
691-11867-3,

The book covers a broad spectrum of topics from analysis, functional anal-
ysis and measure theory, needed for economic theory and econometrics. Its aim is
to bridge the gap existing between the basic mathematical economics tools (calculus,
linear algebra, constrained optimization) and the advanced economics texts, as, for
instance, N. L. Stokey and R. E. Lucas, Recursive Methods in Economic Dynam-
ics, Harvard University Press, 1989, which assume a working knowledge of functional
analysis, measure theory and probability. In fact, one of the motivations to write
such a textbook comes from the difficulties encountered by the students of the one of
the authors to understand the above mentioned book. The present book contains a
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choice of topics from various areas of mathematics, as lattices, convex analysis, func-
tional analysis, measure theory, probability, that are widely used in economics and
econometrics. The book is self-contained in what concerns the mathematical part
- almost any theorem used in proving some result is itself proved as well. Another
feature of the book is the wealth of examples from economic theory and economics
(whose understanding requires an undergraduate basic ground in economics), provid-
ing intuition and motivation for grasping the difficult mathematical ideas developed
in the book.

The first part of this book (Chapters 1 to 6) was taught in the first-semester
Ph.D. core sequence at the University of Pittsburgh and the University of Texas. The
second part (Chapters 7 to 11) was taught as a graduate mathematical economics
class. Chapters 1 to 6 cover basic mathematics for economics: 1. Logic, 2. Set
theory (including lattices and Tarski’s fixed point theorem with application to stable
matchings), 3. The space of real numbers, 4. The finite-dimensional metric space of
real vectors, 5. Finite-dimensional convex analysis (dealing with finite dimensional
normed spaces, Kuhn-Tucker theorem, Lagrange multipliers, etc), and 6. Metric
spaces (with applications to the space of probabilistic distribution functions on R
equipped with Levy’s metric). The set of real numbers is introduced via equivalence
classes of Cauchy sequences of rational numbers. This construction as well as the
notion of completeness (with different meanings in different contexts) form the red
thread of the presentation along the book. The logic properties and set operations
are presented in parallel, as paradigms of the same idea.

The second part of the book contains the chapters: 7. Measure spaces and
probability (including convergence in distribution and Skorohod theorem), 8. The
Lp(Ω,F , P ) and `p spaces, p ∈ [1,∞] (with applications to regression analysis), 9.
Probabilities on metric spaces (Polish metric spaces, Polish measure spaces, stochas-
tic processes, a proof of the central limit theorem), 10. Infinite-dimensional convex
analysis (containing an introduction to topological vector spaces and locally con-
vex spaces, including compactness, Alaoglu-Bourbaki theorem, separation and Krein-
Milman theorem, Schauder fixed point theorem), and 11. Expanded spaces (dealing
with the basic constructions of nonstandard analysis).

Each chapter ends with a set of exercises and recommendation for further
reading. These refer mainly to books where the topics of the corresponding chapter
are treated at large.

By exposing in a self-contained, rigorous but accessible manner a lot of es-
sential results from analysis, functional analysis, measure theory and probability used
in economic theory and econometrics, the book is a very useful tool for students spe-
cializing in these disciplines. Even students in mathematics and researchers will find
the results collected by the authors very useful as well.

S. Cobzaş
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Wassim M. Haddad and Vijay Sekhar Chellaboina, Nonlinear Dynamical
Systems and Control, A Lyapunov-Based Approach Princeton University
Press, Princeton and Oxford 2008, xvi+948 pp; ISBN: ,

The book under review is a graduate-level textbook which presents and de-
velop an extensive treatment of stability analysis and control design of nonlinear
dynamical systems using the Lyapunov methods.

The book is structured in 14 chapters. The authors introduce the defini-
tion of dynamical systems and present a systematic development of the theory of
nonlinear differential equations. There are presented the qualitative theory of exis-
tence, uniqueness, continuous dependence of solutions on the initial conditions for
nonlinear differential equations, the stability theory for nonlinear dynamical systems
generated by these nonlinear differential equations, Lyapunov stability theorems for
time-invariant nonlinear dynamical systems, invariant set stability theorems, converse
Lyapunov theorems and Lyapunov instability theorems. A chapter in advanced sta-
bility theory is also included. There are described the partial stability, stability theory
for time-varying systems, Lagrange stability, boundedness and ultimate boundedness,
input-to-state stability, finite-time stability, semistability and stability theorems via
vector Lyapunov functions. The book continues with a chapter regarding the dissipa-
tive theory for nonlinear dynamical systems and a chapter regarding the stability and
optimality of feedback dynamical systems. The input -output technique for dynami-
cal systems is a tool used in the study of infinite-dimensional systems. The authors
present the concept of input-output stability and then establish connections between
input-output stability and Lyapunov stability. The nonlinear optimal control problem
and the stability and optimality results for backstepping control problems are given
in the next chapter. Extension to disturbance rejection and robust control of nonlin-
ear dynamical systems are presented. The last two chapters contain the discrete-time
extension of the aforementioned topics.

This book is an excellent textbook addressed to graduate students of applied
mathematics, control theorists and engineers studying the stability theory of dynam-
ical systems and controls. It is a rich source of materials for researchers interested in
systems theory.

Marcel-Adrian Şerban

Alexander H.W. Schmitt, Geometric Invariant Theory and Decorated
Principal Bundles, European Mathematical Society, 2008, 389 pp, ISBN 978-3-
03719-065-4.

Classifying the objects of a category is a fundamental mathematical problem
which allows, whenever it is solved, the control and the manipulation of the objects of
that category easily in various purposes. This type of problems is equally important
and difficult, in most of the important categories being obtained just partial results.
For instance the finitely generated Abelian groups, the one and two dimensional
compact manifolds are completely classified, all these results being now classical. For
topological categories, this problem might be even more difficult than it is for algebraic
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categories, due to some properties of objects and morphisms of algebraic nature, which
are rather absent in the case of the objects and morphisms of topological nature.
However, one can expect advances in the case of the topological categories, thanks
to Homotopy Theory and Algebraic Topology, whenever the classification problem
advances in the case of some algebraic categories.

The classification of algebraic varieties up to an isomorphism has two faces,
one of them consists in classifying the smooth or mildly singular complex projective
varieties up to an isomorphism and the second one consists in classifying all closed
subvarieties of a certain complex projective space up to projective equivalences. These
classification problems are either treated by means of various numerical invariants,
such as the Hilbert polynomial of polarized varieties or by means of moduli spaces (i.e.
algebraic varieties whose points are in natural one-to-one correspondence to the set
of isomorphism classes of objects with fixed numerical invariants), which generated
Mumford’s Geometric Invariant Theory as a tool to construct such moduli spaces.

In this book the author constructs more general moduli spaces for semistable
projective %-bumps of a given topological type as well as moduli spaces for semistable
affine pairs with prescribed topological type for the first component.

The book is structured in two large chapters with the following content:
The first chapter deals with Geometric Invariant Theory as developed by

Mumford and starts with actions of reductive linear groups on vector spaces or projec-
tive spaces. The reductivity of the groups GLn(C), SLn(C), GLn1(C)×· · ·×GLnl

(C)
is shown at the end of the first section. Next, one parameterizes the space of orbits of
an algebraic group action by affine algebraic varieties and formulate the basic proper-
ties of such quotients. In section 1.3 one studies the classification of projective hyper-
surfaces of degree d in the projective space Pn−1 up to projective equivalences, while
section 1.4 is devoted to the fundamental concepts of Geometric Invariant Theory,
which starts by studying good and geometric quotients and continues with lineariza-
tions of group actions. Finally, the last two sections of this first chapter deal with
the Hilbert-Mumford criterion and a certain refinement of it, on the existence of one
parameter subgroups λ : C∗ −→ G of some reductive group G, linearly represented,
such that limz→∞ λ(z) · ν = 0, for some special ν ∈ V . Another problem is the exis-
tence of such a one parameter subgroup with fastest possible convergence as well as
the uniqueness of such a subgroup.

The second chapter starts with an overview on principal bundles which is nec-
essary to state the classification problem developed within the rest of the chapter and
continues with a review on vector bundles on complex algebraic curves. The classifica-
tion of topological vector bundles on smooth projective curves and the Riemann-Roch
theorem for coherent sheaves are presented alongside a discussion on bounded families
of vector bundles. The classification problem is stated in terms of projective and affine
%-bumps/swamps, but is shown how the %-swamp describes a family of hypersurfaces
of degree d and an isomorphism is a relative version of projective equivalence, for
a particular choice of the representation, namely the general classification problem
specializes to the classification of some algebraic varieties. In section 2.4 one obtains,
by using decorated bundles, the moduli space of semistable principal G-bundles with
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connected reductive group structure. In section 2.5 one deals with the structure group
G := GLr1(C)×· · ·×GLrt(C) by choosing a faithfull representation χ : G −→ GL(W )
which allows to reduce the problem of constructing moduli spaces to the case of dec-
orated bundles. One also study the asymptotic behavior of the semistability concept
and specialize the abstract obtained results to some concrete situations which allows
to see a generalization of a well-known result by King on moduli spaces of quiver
representations. Therefore some steps towards the classification problems of prin-
cipal G bundles with arbitrary reductive group structure have been done and this
classification is finalized within the last section 2.7. The itinerary for this purpose
is similar to that exposed in previous sections for the classification problem of more
particular reductive structure groups, but developed at a superior level in which the
role of decorated bundles, for instance, is played by decorated pseudo-G-bundles.

The book is very well written and uses the powerful modern mathematical
languages of representations, bundles and schemes to treat a very important classi-
fication problem with serious implications to the classification problem of algebraic
varieties.

Cornel Pintea
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