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Alexandru Kristály and Csaba Varga, Variational-Hemivariational
Inequalities on Unbounded Domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Hamid Benseridi and Mourad Dilmi, On the Regularity of Solutions
of a Boundary Value Problem using Decomposition and Localization
Techniques in a Corner . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Denisa Fericean, Simple Criteria for Starlikeness of Order β . . . . . . . . . . . . . . . . . 107
Basem A. Frasin and Abu-Saleem Ahmad, The Order of Convexity of

Two Integral Operators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Raed Hatamleh, Ahmad Qazza and Mohammad Al-Hawari,

An Inversion of one Class of Integral Operator by L. A. Sakhnovich’s
Operator Identity Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
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VARIATIONAL-HEMIVARIATIONAL INEQUALITIES
ON UNBOUNDED DOMAINS

ALEXANDRU KRISTÁLY AND CSABA VARGA

Abstract. This paper is a survey about hemivariational and variational-

hemivariational inequalities defined on unbounded domains motivated by

certain non-smooth phenomena appearing in Mathematical Physics. The

paper contains various results obtained by the authors in the last few years.

It is divided into six sections: the first section is a short introduction; in

the second section we present some critical points results for locally Lips-

chitz functions; the third section is dedicated to Motreanu-Panagiotopoulos

functionals; in the fourth section we provide some existence results for

hemivariational inequalities; in the fifth section we give a multiplicity result

for a special class of hemivariational inequalities; and in the last section we

give some applications to hemivariational and variational-hemivariational

inequalities.

1. Introduction

The study of variational inequalities began in the sixties with the pioneering
work of Lions and Stampacchia [35]. The connection of this theory with the notion of
the subdifferential of a convex function was achieved by Moreau [43], who introduced
the notion of convex superpotentials which permitted the formulation and study in
the weak form of a wide ranging class of complicated problems in Mechanics and
Engineering (see Duvaut and Lions [12]). All the inequality problems studied in that
period were related to convex energy functions and therefore were linked with the no-
tion of monotonicity. Motivated by some problems from mechanics, Panagiotopoulos
introduced in [50, 51] the notion of nonconvex superpotential by using the generalized
gradient of Clarke. Due to the lack of convexity, new types of variational expressions
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were obtained; these are the so-called Hemivariational Inequalities. The hemivari-
ational inequalities appears as a generalization of the variational inequalities, but
actually they are much more general than these ones, because they are not equivalent
to minimum problems. They are no longer connected with monotonicity, but since
the main ingredient of their study is based on the notion of Clarke subdifferential of a
locally Lipschitz funtion, the theory of hemivariational inequalities appears as a new
field of Non-smooth Analysis. For a comprehensive treatment of the hemivariational
inequality problems we refer to the monographs Naniewicz and Panagiotopoulos [48]
(based on pseudomonotonicity), Motreanu and Panagiotopoulos [46], Motreanu and
Rădulescu [47] (based on compactness arguments). In the above works (and in refer-
ences therein) there are studied elliptic problems on bounded domains.

In this paper we treat hemivariational and variational-hemivariational in-
equalities problems on unbounded domains based on the authors’ results in the last
few years. Note that in the unbounded case the problem is more delicate, due to
the lack of compactness in the Sobolev embeddings. First, some old and new results
are recalled from critical points theory for locally Lipschitz functions and Motreanu-
Panagiotopoulos functionals see [9], [44], [45], [33], [28], [38], [46], [47], [29] with
applications to hemivariational and variational-hemivariational inequalities, see [66],
[11], [28], [36], [30], [31], [27], [29]. Then, we present for locally Lipschitz functions the
Mountain Pass Theorem (MPT) of ”zero altitude”, the version of MPT which satisfies
the Cerami condition, and a version of the three critical points theorem of Ricceri [58].
In the third section we present some critical points results as well as the principle of
symmetric criticality for Motreanu-Panagiotopoulos functionals. In the fourth section
we give some existence results for a general class of hemivariational inequalities. In
section five we prove a multiplicity result for a particular class of hemivariational
inequalities while the last section is dedicated to various applications.

2. Critical points results for locally Lipschitz functions

In this section we present some critical points results for locally Lipschitz
functions. These results appear in the papers of Motreanu, Varga [44], [45], Kristály,
Motreanu and Varga [33] and Kristály, Marzantowicz and Varga [28].

2.1. Elements of nonsmooth analysis. Let (X, ‖ · ‖) a real Banach space and
U ⊂ X an open subset. We denote by 〈·, ·〉 the duality mapping between X? and X.

Definition 2.1. A function f : X → R is locally Lipschitz if, for every x ∈ X,
there exist a neighborhood U of x and a constant L > 0 such that

|f(y)− f(z)| ≤ L‖y − z‖ for all y, z ∈ U.
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Although it is not necessarily differentiable in the classical sense, a locally
Lipschitz function admits a derivative, defined as follows:

Definition 2.2. The generalized directional derivative of f at the point x ∈ X
in the direction y ∈ X is

f◦(x; y) = lim sup
z→x, τ→0+

f(z + τy)− f(z)
τ

.

The generalized gradient of f at x ∈ X is the set

∂f(x) = {x? ∈ X? : 〈x?, y〉 ≤ f◦(x; y) for all y ∈ X}.

For all x ∈ X, the functional f◦(x, ·) is subadditive and positively homo-
geneous: thus, due to the Hahn-Banach theorem, the set ∂f(x) is nonempty. The
next Lemma resumes the main properties of the generalized derivatives, which will
be useful in the sequel:

Lemma 2.3. Let f, g : X → R be locally Lipschitz functions. Then,

(f1) f◦(x; y) = max{〈ξ, y〉 : ξ ∈ ∂f(x)};
(f2) (f + g)◦(x; y) ≤ f◦(x; y) + g◦(x; y);
(f3) (−f)◦(x; y) = f◦(x;−y).
(f4) The function (x, y) 7→ Φ◦(x; y) is upper semicontinuous.

This notion extends both that of Gâteux derivative, and that of directional
derivative for convex functionals. In particular:

Lemma 2.4. Let f : X → R be a convex, continuous, Gâteaux differentiable func-
tional. Then, f is locally Lipschitz and

〈f ′(x), y〉 = f◦(x; y) for all x, y ∈ X.

The next definition generalizes the notion of critical point to the non-smooth
context:

Proposition 2.5. The function λf (u) = inf
w∈∂f(u)

||w||X? is well defined and is lower

semicontinuous, i.e. lim inf
u→u0

λf (u) ≥ λf (u0).

Definition 2.6. Let f : X → R be a locally Lipschitz function. We say that u ∈ X
is a critical point (in the sense of Chang) of f , if λf (u) = 0, which is equivalent with
the fact that 0 ∈ ∂f(u).

Remark 2.7. A point u ∈ X is critical point of f if f◦(x; y) ≥ 0 for all y ∈ X.

Remark 2.8. Note that every local extremum of f is a critical point of f in the sense
above.
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Throughout in this paper we use the following notations for the locally Lip-
schitz function f : X → R and a number c ∈ R:

fc = {u ∈ X : f(u) ≤ c};

fc = {u ∈ X : f(u) ≥ c};

Kc = {u ∈ X : λf (u) = 0, f(u) = c};

(Kc)δ = {u ∈ X : d(u,Kc) < δ};

(Kc)c
δ = X \ (Kc)δ.

In the sequel we introduce the notion of Palais-Smale condition.

Definition 2.9. We say that the locally Lipschitz function f : X → R satisfies the
Palais-Smale condition at the level c (shortly, (PS)c), if every sequence {xn} ⊂ X

with f(xn) → c, and λf (xn) → 0 when n→∞, contains a convergent subsequence in
X. If we replace the condition f(xn) → c with {f(xn)} is bounded we say that the
function f satisfies the (PS) condition.

Remark 2.10. The (PS) condition has the following equivalent formulation: The
function h satisfies the Palais-Smale condition, if every sequence {xn} in X such that

(PS1): {f(xn)} bounded;
(PS2): there exists a sequence {εn} in ]0,+∞[ with εn → 0 such that
f◦(xn; y − xn) + εn‖y − xn‖ ≥ 0 for all y ∈ X, n ∈ N

admits a convergent subsequence.

The following variant of Palais-Smale condition is an extension to the locally
Lipschitz case of the one introduced by Ghoussoub and Preiss [20]. We consider a
locally Lipschitz function f : X → R, a real number c ∈ R and a subset B ⊂ X.

Definition 2.11. We say that the locally Lipschitz function f satisfies the Palais-
Smale condition around B at level c (shortly, (PS)B,c), if every sequence {xn} ⊂ X

with f(xn) → c, dist(xn, B) → 0 and λf (xn) → 0 when n→∞, contains a convergent
subsequence in X.

In particular, we put (PS)c = (PS)X,c and simply (PS) if (PS)c holds for
every c ∈ R.

For a fixed B ⊆ X and a fixed number δ > 0, we denote the closed δ-
neighborhood of B by Nδ(B), that is,

Nδ(B) = {x ∈ X : dist(x,B) ≤ δ}.
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Definition 2.12. A generalized normalized pseudo-gradient vector field of the locally
Lipschitz f : X → R with respect to a subset B ⊂ X and a number c ∈ R is a locally
Lipschitz mapping v : Nδ(B) ∩ f−1[c − δ, c + δ] → X with some δ > 0, such that
||v(x)|| ≤ 1 and

〈y∗, v(x)〉 > 1
2

inf
x∈domv

λf (x) > 0

for all y∗ ∈ ∂f(x) and x ∈ domv := Nδ(B) ∩ f−1[c− δ, c+ δ].

The existence of a generalized normalized pseudo-gradient vector field in the
sense of Definition 2.12 is given by the result below. For the proof, see Motreanu-
Varga [45].

Lemma 2.13. (Motreanu-Varga [45]) Let f : X → R be a locally Lipschitz function,
c ∈ R and a closed subset B of X, such that (PS)B,c is satisfied together with B ∩
Kc(f) = ∅ and B ⊂ fc. Then there exists δ > 0 and a generalized normalized
pseudo-gradient vector field v : Nδ(B) ∩ f−1[c− δ, c+ δ] → X of f with respect to B
and c.

The following deformation result has been proved by Motreanu and Varga [45].

Theorem 2.14. (Motreanu-Varga [45]) Let f : X → R be a locally Lipschitz func-
tional, c ∈ R and a closed subset B of X provided on has (PS)B,c, B ∩ Kc(f) =
∅ and B ⊂ fc. Let v be a generalized normalized pseudo-gradient vector field of f with
respect to B and c. Then for every ε > 0 there exist an ε ∈ (0, ε) and a number δ < c

such that for each closed subset A of X with A ∩B = ∅ and A ⊂ fc−εA
, where

εA := min(ε, εd(A,B)), (2.1)

and d(A,B) := inf{‖x − y‖ : x ∈ A, y ∈ B}, there is a continuous mapping ηA :
R×X → X with the properties below

(i) ηA(·, x) is the solution of the vector field VA = −ϕAv with the initial
condition x ∈ X for some locally Lipschitz function ϕA : X → [0, 1] whose
support is contained in the set (X \A);

(ii) ηA(t, x) = x for all t ∈ R and x ∈ A ∪ fc−ε ∪ fc+ε;
(iii) for every δ ≤ d ≤ c one has ηA(1, B ∩ fd) ⊂ fd−ε.

Proof. Let us note that the existence of a normalized generalized pseudo-gradient
vector field v : N3δ1(B) ∩ f−1[c − 3ε1, c + 3ε1] → X of f with respect to B and c

is assured by Lemma 2.13, for some constants δ1 > 0 and ε1 > 0. Consequently, a
constant, σ1 > 0 can be found such that

〈y∗, v(x)〉 > 1
2
σ1, ∀y∗ ∈ ∂f(x), x ∈ N3δ1(B) ∩ fc−3ε1 ∩ fc+3ε1 . (2.2)
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We claim that the result of Theorem 2.14 holds for every ε > 0 with

ε < min{ε, ε1,
1
2
σ1,

1
2
σ1δ1}. (2.3)

In order to check the claim in (2.3) let us fix two locally Lipschitz functions ϕ, ψ :
X → [0, 1] satisfying

ϕ = 1 on Nδ1(B) ∩ fc+ε1 ∩ fc−ε1 ;

ϕ = 0 on X \ (N2δ1(B) ∩ fc+2ε1 ∩ fc−2ε1);

ψ = 0 on fc−ε ∪ fc+ε;

ψ = 1 on fc+ε0 ∩ fc−ε0 ,

for some ε0 with
ε < ε0 < min(ε, ε1). (2.4)

Then we are able to construct the locally Lipschitz vector field V : X → X

by setting

V (x) =

{
−δ1ϕ(x)ψ(x)v(x), ∀x ∈ N3δ1(B) ∩ fc−3ε1 ∩ fc+3ε1 ,

0, otherwise.
(2.5)

Using (2.5) we see that the vector field V is locally Lipschitz and bounded, namely

‖V (x)‖ ≤ δ1, x ∈ X. (2.6)

From (2.2), (2.5) and (2.6) we derive

−〈y∗, V (x)〉 = δ1〈y∗, v(x)〉 ≥
1
2
δ1σ1, ∀x ∈ Nδ1(B)∩fc−ε0∩fc+ε0 , y∗ ∈ ∂f(x). (2.7)

In view of (2.6) we may consider the global flow γ : R×X → X of V defined
by (2.5), i.e.

dγ

dt
(t, x) = V (γ(t, x)), ∀(t, x) ∈ R×X,

γ(0, x) = x, ∀x ∈ X.

In the next we set
B1 := γ([0, 1])×B). (2.8)

We notice that B1 in (2.8) is a closed subset of X. To see this let yn =
γ(tn, xn) ∈ B1 be a sequence with tn ∈ [0, 1], xn ∈ B and yn → y in X. Passing to a
subsequence we can suppose that tn → t ∈ [0, 1] in R. Putting un = γ(t, xn) we get

‖un − yn‖ = ‖γ(t, xn)− γ(tn, xn)‖ = ‖
∫ t

tn

d

dt
γ(τ, xn)dτ‖ ≤ δ1|tn − t|,

where (2.6) has been used. Since un → y in X, it turns out that xn → γ(−t, y) ∈ B.
Finally, we obtain y = γ(t, γ(−t, y)) ∈ B1 which establishes the closedness of B1.
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The next step is to justify that f(γ(t, x)) is a decreasing function of t ∈ R, for
each x ∈ X. Toward this, by applying Lebourg’s mean value theorem and the chain
rule for generalized gradients we infer for arbitrary real numbers t > t0 the following
inclusions

f(t, x)− f(t0, x) ∈ ∂t(f(γ(t, x)))
∣∣∣
t=τ

⊂ ∂f(γ(τ, x))
dγ

dt
(τ, x)(t− t0) = ∂f(γ(τ, x))V (γ(τ, x))(t− t0)

with some τ ∈ (t0, t), where the notation ∂t stands for the generalized gradient with
respect to t. By (2.2) and (2.5) we derive that f(t, x) ≤ f(t0, x). Now we prove the
relation

A ∩B1 = ∅. (2.9)

To check (2.9), we admit by contradiction that there exist x0 ∈ B and t0 ∈
[0, 1] provided γ(t0, x0) ∈ A. Since A and B are disjoint we have necesarilly that
t0 > 0.

From the relations A ⊂ fc−εA
and B ⊂ fc we deduce

c− εA ≤ f(γ(t0, x0)) ≤ f(γ(t, x0)) ≤ f(x0) ≤ c, ∀t ∈ [0, t0]. (2.10)

It turns out that

γ(t, x0) ∈ Nδ1(B) ∩ fc ∩ fc−εA
, ∀t ∈ [0, t0].

On the other hand from (2.6) we infer the estimate

d(A,B) ≤ ‖γ(t0, x0)− x0‖ = ‖
∫ t0

0

V (γ(s, x0))ds‖ ≤ δ1t0.

If we denote h(t) = f(γ(t, x0)), then h is a locally Lipschitz function, and (2.5), (2.7)
allow to write

h′(s) ≤ max{〈y∗, dγ
ds

(s, x)〉 : y∗ ∈ ∂f(γ(s, x))}

= max{〈y∗, V (γ(s, x))〉 : y∗ ∈ ∂f(γ(s, x))} ≤ −1
2
δ1σ1

for a.e. s ∈ [0, t0]. Therefore, by virtue of (2.3), we have the following estimate

f(γ(t0, x0))− f(x0) = h(t0)− h(0) =
∫ t0

0

h′(s)ds ≤

−1
2
δ1σ1t0 < −δ1εt0 ≤ −εd(A,B) ≤ −εA. (2.11)

The contradiction between (2.10) and (2.11) shows that the property (2.9) is actually
true. Taking into account (2.9) there is a locally Lipschitz function ψA : X → R
veryfying ψA = 0 on a neighborhood of A and ψA = 1 on B1. Then we define the
homotopy ηA : R×X → X as being the global flow of the vector field VA = ψAV . The

9
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assertion (i) is clear from the construction of ηA because one can take ϕA = −δ1ψAϕψ.
Assertion (ii) follows easily because VA = 0 on A ∪ fc−ε ∪ fc+ε. We show that (iii) is
valid for δ = c+ ε− ε0 with ε described in (2.3) and ε0 in (2.4). To this end we argue
by contradiction. Suppose that for some d ∈ [δ, c] there exists x ∈ B ∩ fd such that

f(ηA(1, x)) > d− ε. (2.12)

Using the fact that ψA = 1 on B1 we deduce

ηA(t, x) = γ(t, x) ∈ Nδ1(B) ∩ fd ∩ fd−ε, ∀t ∈ [0, 1].

Then a reasoning similar to the one in (2.11) can be carried out to write

f(ηA(1, x))− f(x) ≤ −1
2
δ1σ1 < −ε.

This contradicts the relation (2.12) because f(x) ≤ d. The proof of the assertion (iii)
is complete. �

In this section we present a general minimax principle for locally Lipschitz
functions. This result appears in the paper of Motreanu and Varga [45].

Theorem 2.15. (Motreanu-Varga [45]) Let f : X → R be a locally Lipschitz func-
tional and B ⊆ X a closed set such that c := inf

B
f > −∞ and f satisfies (PS)B,c.

Let M be a nonempty family of subsets M of X such that

c = inf
M∈M

sup
x∈M

f(x). (2.13)

Assume that for a generalized normalized pseudo-gradient vector field v̂ of f
with respect to B and c the following hypothesis holds

(H) for each set M ∈ M and each number ε > 0 with f |M < c + ε there exists a
closed subset A of X with f |A ≤ c+ εA (see (2.1)), and A∩B = ∅ such that for each
locally Lipschitz function ϕA : X → [0, 1] with supp ϕA ⊂ (X \A)∩ supp v̂ the global
flow ξA of ϕAv̂ satisfies ξA(1,M) ∩B 6= ∅.

Then the assertions below are true

(i) c = inf
B
f is attained;

(ii) Kc(f) \A 6= ∅ for each set A entering (H);
(iii) Kc(f) ∩B 6= ∅.

Proof. The assertions (i) and (ii) are direct consequences of the property (iii). The
proof of (iii) is achieved arguing by contradiction. Accordingly, we supposeK−c(−f)∩
B = ∅. By hypothesis we know that B ⊂ (−f)−c, so Theorem 2.14 can be applied for
−f and −c (in place of f and c, respectively). Thus Theorem 2.14 yields an ε > 0 with
the properties there stated. Then from the minimax description of c, by means of M,
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we obtain the existence of a set M ∈M satisfying f |M < c+ ε. Corresponding to M ,
assumption (H) allows to find a closed set A ⊂ X \B which satisfies A ⊂ (−f)−c−εA

and the linking property formulated in (H). Theorem 2.14 gives rise to the deformation
ηA ∈ C(R×X,X) which verifies ηA(1, B ∩ (−f)−c) ⊂ (−f)−c−ε. This reads as

ηA(1, B) ⊂ fc+ε. (2.14)

By Theorem 2.14 and assumption (H) it is seen that

ξA(t, x) = ηA(−t, x), (2.15)

for all (t, x) ∈ R×X. As shown in (H) one has the intersection property

ξ(1,M) ∩B 6= ∅.

Combining with (2.15) it turns out

ηA(1, B) ∩M 6= ∅.

Taking into account (2.13) we obtain the existence of some point x0 ∈M with f(x0) ≥
c+ ε. This contradicts the choice of the set M . �

Corollary 2.16. (Motreanu-Varga [45]) Let f : X → R be a locally Lipschitz func-
tional satisfying (PS) and let a family M of subsets M of X be such that c defined
by (2.13) is a real number. Assume that the hypothesis below holds

(H’) for each M ∈ M there exists a closed set A in X with f |A < c such that for
every homeomorphism h of X with h|A = idA one has h(M) ∩ fc 6= ∅.

Then c in (2.13) is a critical value of f and Kc(f) ∩A = ∅ for every A in (H’).

Proof. We consider the global flow ξA (see (2.14)) and we apply Theorem 2.15 with
B = fc. It is clear that (H’) implies (H) because A ⊂ M \ B and ξA(1, ·) is a
homeomorphism of X with ξA(1, ·) = id on A. Then Theorem 2.15 concludes the
proof. �

Theorem 2.15 is suitable for applications to multiple linking problems.

Definition 2.17. Let Q,Q0 be closed subsets of X, with Q0 6= ∅, Q0 ⊂ Q, and let S
be a subset of X such that Q0 ∩ S = ∅. We say that the pair (Q,Q0) links with S if
for each mapping g ∈ C(Q,X) with g|Q0 = id|Q0 one has g(Q) ∩ S 6= ∅.
Corollary 2.18. (Motreanu-Varga [45]) Given the subsets Q, Q0, S of the real Ba-
nach space X we assume that (Q,Q0) links with S in X in the sense above. Let
f : X → R be a locally Lipschitz functional such that sup

Q
f < ∞ and, for some

number α ∈ R+,
Q0 ⊂ fα, S ⊂ fα.

11
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Then assuming that for the minimax value

c = inf
g∈Γ

sup
x∈Q

f(g(x)),

where

Γ = {g ∈ C(Q,X) : g|Q0 = id|Q0},

(PS)S,c is satisfied, the following properties hold

(i) c ≥ α;
(ii) Kc(f) \Q0 6= ∅;
(iii) Kc(f) ∩ S 6= ∅ if c = α.

Proof. Since the case α < c follows immediately we discuss only the situation where
α = c. The conclusion is readily obtained from Theorem 2.15 by choosing M =
{g(Q) : g ∈ Γ} and B = S. �

A direct consequence of this corollary is the following.

Corollary 2.19. (Mountain pass theorem; zero altitude) Let f : X → R be a lo-
cally Lipschitz function on a Banach space satisfying (PS)c for every c ∈ R and the
conditions:

(i) f(x) ≥ α ≥ f(0) for all ||x|| = ρ where α and ρ > 0 are constants;
(ii) there is e ∈ X with ||e|| > ρ and f(e) ≤ α.

Then the number

c = inf
g∈Γ

max
u∈[0,e]

f(g(u)),

where [0, e] is the closed line segment in X joining 0 and e and

Γ = {g ∈ C([0, e], X) : g(0) = 0, g(e) = e},

is a critical value of f with c ≥ α.

Proof. It is sufficient to take in Corollary 2.18 the following choices Q = [0, e], Q0 =
{0, e} and S = {x ∈ X : ||x|| = ρ }. �

A direct consequence of the above corollary is locally Lipschitz version of
Pucci-Serrin Mountain Pass theorem, see [52].

Theorem 2.20. Let X be a Banach space, h : X → R a locally Lipschitz functional,
satisfying the Palais-Smale condition, x and y two local minima of h. Then, h has a
critical point in X different from x and y.

In the next we prove a common generalization of some results of Chang [9]
and Kourogenis-Papageorgiou [23]. For this see the paper of Kristály-Motreanu-Varga
[33]. Let us consider f : X → R to be a locally Lipschitz function.

12
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Definition 2.21. We say that f satisfies the (C)-condition at level c (in short (C)c)
if every sequence {xn} ⊂ X such that f(xn) → c and (1 + ‖xn‖)λf (xn) → 0 has a
convergent subsequence.

It is clear that (PS)c implies (C)c. Our approach is based on the following
idea. We consider a globally Lipschitz functional ϕ : X → R such that ϕ(x) ≥ 1,∀x ∈
X (or, ϕ(x) ≥ α, for some α > 0).

Definition 2.22. We say that the function f satisfies the (ϕ − C)-condition at
level c (in short, (ϕ − C)c) if every sequence {xn} ⊂ X such that f(xn) → c and
ϕ(xn)λf (xn) → 0 has a convergent subsequence.

The (ϕ−C)c-condition contains the (PS)c and (C)c compactness conditions,
respectively. Indeed if ϕ ≡ 1 we get the (PS)c-condition and if ϕ(x) = 1 + ‖x‖ we
have the (C)c-condition.

We need the following result in order to obtain the existence of a suitable
locally Lipschitz vector field.

Lemma 2.23. (Kristály-Motreanu-Varga [33]) Let X be a Banach space and let f :
X → R be a locally Lipschitz function satisfying the (ϕ − C)c-condition, where ϕ :
X → R is a globally Lipschitz function such that ϕ(x) ≥ 1, ∀x ∈ X. Then for each
δ > 0 there exist constants γ, ε > 0 and a locally Lipschitz vector field

v : f−1([c− ε, c+ ε]) ∩ (Kc)c
δ → X

such that for each x ∈ f−1([c− ε, c+ ε]) ∩ (Kc)c
δ one has

||v(x)|| ≤ ϕ(x) (2.16)

〈y∗, v(x)〉 ≥ γ

2
for all y∗ ∈ ∂f(x). (2.17)

In the sequel we shall prove a very general deformation result which unifies
several results of this kind it appears in the paper of Kristály, Motreanu and Varga
[33].

Theorem 2.24. (Kristály-Motreanu-Varga [33]) Let f : X → R be a locally Lipschitz
function on the Banach space X satisfying the (ϕ− C)c-condition, with c ∈ R and a
globally Lipschitz function ϕ : X → R with Lipschitz constant L > 0 and ϕ(x) ≥ 1,
∀ x ∈ X. Then for every ε0 > 0 and every neighborhood U of Kc (if Kc = ∅,
then we choose U = ∅) there exist a number 0 < ε < ε0 and a continuous function
η : X × [0, 1] → X, such that for every (x, t) ∈ X × [0, 1] we have:

(a) ‖η(x, t)− x‖ ≤ ϕ(x)teLt;
(b) η(x, t) = x for every x /∈ f−1([c− ε0, c+ ε0]) and t ∈ [0, 1];
(c) f(η(x, t)) ≤ f(x);

13
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(d) η(x, t) 6= x⇒ f(η(x, t)) < f(x).
(e) η(fc+ε, 1) ⊂ fc−ε ∪ U ;
(f) η(fc+ε \ U, 1) ⊂ fc−ε.

Proof. Fix ε0 > 0 and a neighborhood U of Kc. From the compactness of Kc

we can find δ > 0 such that (Kc)3δ ⊆ U . Moreover, the proof of Lemma 2.23
guarantees the existence of γ > 0 and 0 < ε < ε0 such that ϕ(x)λf (x) ≥ γ for all
x ∈ f−1([c− ε, c+ ε]) ∩ (Kc)c

δ. We consider the following two closed sets:

A = {x ∈ X : |f(x)− c| ≥ ε} ∪ (Kc)δ (2.18)

B = {x ∈ X : |f(x)− c| ≤ ε

2
} ∩ (Kc)c

2δ. (2.19)

Because A ∩ B = ∅ there exists a locally Lipschitz function ψ : X → [0, 1] such that
ψ = 0 on a closed neighborhood of A, say Ã, disjoint of B, ψ|B = 1 and 0 ≤ ψ ≤ 1.

For instance, we can take ψ(x) = d(x, Ã)
d(x, Ã) + d(x,B)

, ∀ x ∈ X.

Let V : X → X be defined by

V (x) =

{
−ψ(x) · v(x), x ∈ f−1([c− ε, c+ ε]) ∩ (Kc)c

δ;
0, otherwise,

(2.20)

where v(x) is constructed in Lemma 2.23. The vector field V is locally Lipschitz and
by the same lemma, for x ∈ f−1([c− ε, c+ ε]) ∩ (Kc)c

δ we have

‖V (x)‖ = ψ(x) · ‖v(x)‖ ≤ ϕ(x) (2.21)

〈y∗, V (x)〉 = −ψ(x) · 〈y∗, v(x)〉 ≤ −ψ(x)
γ

2
, ∀y∗ ∈ ∂f(x). (2.22)

Since V is locally Lipschitz and ‖V (x)‖ ≤ ϕ(0)+L‖x‖, the following Cauchy problem:{
η̇(x, t) = V (η(x, t)) a.e. on [0, 1]
η(x, 0) = x

(2.23)

has a unique solution η(x, ·) on R, for each x ∈ X. By (2.21) we have that:

‖η(x, t)− x‖ ≤
∫ t

0

‖V (η(x, s))‖ds ≤
∫ t

0

ϕ(η(x, s))ds =

=
∫ t

0

[ϕ(η(x, s))− ϕ(x)]ds+
∫ t

0

ϕ(x)ds ≤

≤ L ·
∫ t

0

‖η(x, s)− x‖ds+ ϕ(x)t.

Using Gronwall’s inequality we get ‖η(x, t)− x‖ ≤ ϕ(x)t · eLt, therefore the assertion
(a) is proved. If x /∈ f−1([c− ε, c+ ε]), then x ∈ A, so ψ(x) = 0. By (2.20) it follows
that V (x) = 0 and from (2.23) we obtain that η(x, t) = x, for each t ∈ [0, 1]. This
yields (b).

14
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Next, for a fixed x ∈ X, let us consider the function hx : [0, 1] → R given by
hx(t) = f(η(x, t)). Using the chain rule we have

d

dt
hx(t) ≤ max

{
〈y∗, d

dt
η(x, t)〉 : y∗ ∈ ∂f(η(x, t))

}
=

= max
{
〈y∗, V (η(x, t))〉 : y∗ ∈ ∂f(η(x, t))

}
a.e. on [0, 1].

Therefore, taking into account (2.22), we infer

d

dt
hx(t) ≤ −ψ(η(x, t))

γ

2
≤ 0 if η(x, t) ∈ f−1([c− ε, c+ ε]) ∩ (Kc)c

δ, (2.24)

and clearly, by (2.20)

d

dt
hx(t) ≤ 0, if η(x, t) /∈ f−1([c− ε, c+ ε]) ∩ (Kc)c

δ.

Hence property (c) holds true.
In order to prove property (d), suppose that η(x, t) 6= x. First, we show that

η(x, s) ∈ f−1([c− ε̄, c+ ε̄]) ∩ (Kc)c
δ , ∀s ∈ [0, t]. (2.25)

On the contrary, there would exist s0 ∈ [0, t] such that η(x, s0) ∈ A. This implies that
V (η(x, s0)) = 0. Using the uniqueness of solution to the Cauchy problem formed by
the equation in (2.23) and the initial condition with the initial value η(x, s0), we see
that

η(x, τ + s0) = η(x, s0), ∀τ ∈ R.

Letting τ = t − s0 and τ = −s0 one obtains η(x, t) = x, which contradicts our
assumption. Thus the claim in (2.25) is true.

Using (2.24) and (2.25) it follows that

f(x)− f(η(x, t)) = −
∫ t

0

d

ds
hx(s) ds ≥ γ

2

∫ t

0

ψ(η(x, s))ds. (2.26)

We show that there is s ∈ [0, t] such that

ψ(η(x, s)) 6= 0. (2.27)

For, otherwise, if ψ(η(x, s)) = 0, ∀s ∈ [0, t], then V (η(x, s)) = 0, ∀s ∈ [0, t]. By (2.23),
we get that η(x, ·) is constant on [0, t], which contradicts η(x, t) 6= x. It results that
(2.27) is valid. Since ψ ≥ 0, from (2.26) and (2.27) we infer that f(η(x, t)) < f(x),
which proves assertion (d).

We show now assertion (e). Let ρ > 0 such that (Kc)3δ ⊂ B(0, ρ). We choose

0 < ε ≤ min
{
ε̄

2
,
γ

4
,
δγ

8
e−L(ϕ(0) + Lρ)−1

}
. (2.28)
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We argue by contradiction. Let x ∈ fc+ε such that f(η(x, 1)) > c−ε and η(x, 1) /∈ U .
Since, by (c), f(η(x, t)) ≤ f(x) ≤ c+ ε and f(η(x, t)) ≥ f(η(x, 1)) for each t ∈ [0, 1],
we get

c− ε < f(η(x, t)) ≤ c+ ε, ∀t ∈ [0, 1]. (2.29)

We claim that

η({x} × [0, 1]) ∩ (Kc)2δ 6= ∅. (2.30)

Suppose that (2.30) does not hold. This means that

η({x} × [0, 1]) ∩ (Kc)2δ = ∅. (2.31)

First, we show that

η(x, t) ∈ B, ∀t ∈ [0, 1]. (2.32)

The fact that η(x, t) ∈ f−1([c − ε̄
2 , c + ε̄

2 ]) follows from (2.28) and (2.29). By (2.31)
one has that η(x, t) ∈ (Kc)c

2δ. Consequently, from (2.19) we conclude that (2.32) is
established. On the basis of (2.32) and (2.24) we may write

f(x)− f(η(x, 1)) = hx(0)− hx(1) = −
∫ 1

0

d

dt
hx(t)dt ≥

∫ 1

0

γ

2
ψ(η(x, t))dt.

Then, combining (2.32) and the definition of ψ it is clear that

f(x)− f(η(x, 1)) ≥ γ

2
. (2.33)

On the other hand, from (2.29) we obtain that

f(x)− f(η(x, 1)) < 2ε. (2.34)

From (2.33) and (2.34) we get γ
2 < 2ε, which contradicts (2.28). This justifies (2.30).

The next step in the proof is to show that there exist 0 ≤ t1 < t2 ≤ 1 such
that

dist(η(x, t1),Kc) = 2δ, dist(η(x, t2),Kc) = 3δ (2.35)

and

2δ < dist(η(x, t),Kc) < 3δ, ∀t1 < t < t2. (2.36)

Denote g(t) = dist(η(x, t),Kc), ∀t ∈ [0, 1]. In view of (2.30) we have that {t ∈ [0, 1] :
g(t) ≤ 2δ} 6= ∅. Thus it is permitted to consider

t1 = sup{t ∈ [0, 1] : g(t) ≤ 2δ}.

Since it is known that (Kc)3δ ⊂ U and η(x, 1) /∈ U , we derive that η(x, 1) /∈ (Kc)3δ.
This means that g(1) ≥ 3δ. Since g(t1) ≤ 2δ it is necessary to have t1 < 1. The
definition of t1 implies g(t) > 2δ for all t ∈ (t1, 1] (which is the first inequality in
(2.36)). Letting t ↓ t1 we deduce that g(t1) ≥ 2δ. We obtain that g(t1) = 2δ, so
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the first part in (2.35) is proved. Taking into account that g(1) ≥ 3δ, we see that
{t ∈ [t1, 1] : g(t) ≥ 3δ} is nonempty. Then we can define

t2 = inf{t ∈ [t1, 1] : g(t) ≥ 3δ}.

Since g(t2) ≥ 3δ and g(t1) = 2δ it is clear that t1 < t2. By the definition of t2 we
have that g(t) < 3δ for all t1 ≤ t < t2, so (2.36) holds. In addition, letting t ↑ t2, we
get g(t2) = 3δ, so (2.35) holds, too.

Let us show that

t2 − t1 <
4ε
γ
. (2.37)

From (2.36) it follows that η(x, t) /∈ (Kc)2δ, ∀t ∈ [t1, t2], while (2.29) and (2.28) imply
η(x, t) ∈ f−1([c− ε̄

2 , c+ ε̄
2 ]), ∀t ∈ [t1, t2]. The definition of the set B in (2.19) yields

η(x, t) ∈ B, ∀t ∈ [t1, t2].

Using the definition of ψ, (2.24) and (2.29) we see that

γ

2
(t2 − t1) =

γ

2

∫ t2

t1

ψ(η(x, t))dt ≤ −
∫ t2

t1

d

dt
hx(t)dt

= hx(t1)− hx(t2) = f(η(x, t1))− f(η(x, t2)) < 2ε.

Therefore (2.37) is proved.
We need the following inequality

‖η(x, t2)− η(x, t1)‖ ≥ δ. (2.38)

To check (2.38) consider a point v ∈ Kc so that

dist(η(x, t1),Kc) = ‖η(x, t1)− v‖ = 2δ.

Here the compactness of Kc and the first part in (2.35) have been used. Then, on the
basis of the second part in (2.35) we can write

‖η(x, t2)− η(x, t1)‖ ≥ ‖η(x, t2)− v‖ − ‖η(x, t1)− v‖ ≥ 3δ − 2δ = δ.

Therefore (2.38) holds.
Using (2.23), (2.21) and the Lipschtzianess of ϕ we can write

‖η(x, t2)− η(x, t1)‖ ≤
∫ t2

t1

‖V (η(x, s))‖ds ≤
∫ t2

t1

ϕ(η(x, s))ds

=
∫ t2

t1

[ϕ(η(x, s))− ϕ(η(x, t1))]ds+ ϕ(η(x, t1))(t2 − t1)

≤
∫ t2

t1

L‖η(x, s)− η(x, t1)‖ds+ ϕ(η(x, t1))(t2 − t1). (2.39)

17
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By (2.39) and Gronwall’s inequality we get

‖η(x, t2)− η(x, t1)‖ ≤ ϕ(η(x, t1))(t2 − t1)eL(t2−t1). (2.40)

From (2.38), (2.40), (2.37) and the Lipschtzianess of ϕ we deduce that

δ ≤ ‖η(x, t2)− η(x, t1)‖ <
4ε
γ
eLϕ(η(x, t1))

≤ 4ε
γ
eL(ϕ(0) + L‖η(x, t1)‖). (2.41)

In view of (2.35) and the choice of ρ to satisfy (Kc)3δ ⊂ B(0, ρ) we have η(x, t1) ∈
(Kc)3δ ⊂ B(0, ρ). This property and (2.28) yield from (2.41) that

δ ≤ 4ε
γ
eL(ϕ(0) + Lρ) ≤ δ

2
,

which is a contradiction. This proves (e).
In order to show (f), since (Kc)3δ ⊂ U it is enough to prove that

η(fc+ε \ (Kc)3δ, 1) ⊂ fc−ε. (2.42)

Let us denote
C = (fc+ε \ fc−ε) ∩ (Kc)c

3δ .

To check (2.42), we note that it is sufficient to verify that

η(x, 1) ∈ fc−ε, ∀x ∈ C, (2.43)

because for x ∈ fc−ε we have f(η(x, 1)) ≤ f(x) ≤ c − ε, due to the nondecreasing
monotonicity of f(η(x, ·)).

To show (2.43), denote

D = (fc+ε \ fc−ε) ∩ (Kc)c
5
2 δ .

First, we verify that

∀x ∈ C, ∃ tx ∈ (0,
4ε
γ

] such that η(x, tx) /∈ D. (2.44)

To this end, we prove the inclusion below

{t > 0 : η(x, τ) ∈ D, ∀τ ∈ [0, t]} ⊂ (0,
4ε
γ

), ∀x ∈ C. (2.45)

Indeed, if η(x, τ) is in D ⊂ B, ∀τ ∈ [0, t], we have ψ(η(x, τ)) = 1, ∀τ ∈ [0, t].
Therefore, by (2.24), we have d

dτ hx(τ) ≤ −γ
2 , ∀τ ∈ [0, t]. From this and (2.29) we

obtain

2ε > hx(0)− hx(t) = −
∫ t

0

d

dτ
hx(τ)dτ ≥ γ

2
t,

so t < 4ε
γ . Thus (2.45) is satisfied.
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We are now in the position to prove (2.44). We proceed arguing by contradic-
tion. Assuming that there exist x ∈ C such that η(x, t) ∈ D, ∀t ∈ (0, 4ε

γ ] , by (2.45),
we arrive at the contradiction

4ε
γ
∈ {t > 0 : η(x, τ) ∈ D, ∀τ ∈ [0, t]} ⊂ (0,

4ε
γ

),

which proves (2.44).
Let us show that for every x ∈ C, it is true that

η({x} × [0, 1]) ∩ (Kc) 5
2 δ 6= ∅ ⇒ ∃ t0 ∈ (0, t3] such that η(x, t0) ∈ fc−ε, (2.46)

with

t3 = inf{t ∈ [0, 1] : dist(η(x, t),Kc) ≤
5
2
δ},

where the set {t ∈ [0, 1] : dist(η(x, t),Kc) ≤ 5
2δ} is nonempty in view of (2.36).

If (2.46) were not true it would exist x ∈ C with η({x} × [0, 1]) ∩ (Kc) 5
2 δ 6= ∅ and

f(η(x, t)) > c − ε, ∀t ∈ [0, t3]. Hence η(x, t) ∈ D, ∀t ∈ [0, t3]. This follows from the
definition of t3 and since x ∈ C. The inclusion in (2.45) implies that

t3 <
4ε
γ
. (2.47)

Introduce

t4 = sup{t ∈ [0, t3] : dist(η(x, t),Kc) ≥ 3δ}.

Since x ∈ C, then x ∈ (Kc)c
3δ , thus the set {t ∈ [0, t3] : dist(η(x, t),Kc) ≥ 3δ} is

nonempty. By the definitions of t3 and t4 it follows that

η(x, t) ∈ (fc+ε \ fc−ε) ∩ ((Kc)3δ \ (Kc) 5
2 δ), ∀t ∈ [t4, t3].

We remark that

‖η(x, t3)− η(x, t4)‖ ≥
δ

2
. (2.48)

Indeed, by the definition of t4 we have

‖η(x, t3)− η(x, t4)‖ ≥ ‖η(x, t4)− v‖ − ‖η(x, t3)− v‖

≥ 3δ − ‖η(x, t3)− v‖, ∀v ∈ Kc.

This leads to

‖η(x, t3)− η(x, t4)‖ ≥ 3δ − dist(η(x, t3),Kc) = 3δ − 5
2
δ =

δ

2
,

so (2.48) is verified.
Using (2.23), (2.21) and the Lipschtzianess of ϕ we can write

‖η(x, t3)− η(x, t4)‖ ≤
∫ t3

t4

‖V (η(x, s))‖ds ≤
∫ t3

t4

ϕ(η(x, s))ds
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=
∫ t3

t4

[ϕ(η(x, s))− ϕ(η(x, t4))]ds+ ϕ(η(x, t4))(t3 − t4)

≤
∫ t3

t4

L‖η(x, s)− η(x, t4)‖ds+ ϕ(η(x, t4))(t3 − t4).

By Gronwall’s inequality we get

‖η(x, t3)− η(x, t4)‖ ≤ ϕ(η(x, t4))(t3 − t4)eL(t3−t4). (2.49)

Using (2.48), (2.49), the Lipschitzianess of ϕ, the inclusion (Kc)3δ ⊂ B(0, ρ) and
(2.47), we have that

δ

2
≤ ‖η(x, t3)− η(x, t4)‖ ≤ eL(t3−t4)ϕ(η(x, t4))(t3 − t4)

≤ eL(ϕ(0) + L‖η(x, t4)‖)t3 < eL(ϕ(0) + Lρ)
4ε
γ
.

This contradicts the choice of ε in (2.28), therefore (2.46) is true.
In order to complete the proof of (f), let x ∈ C. From (2.44), there exists

tx ∈ (0, 4ε
γ ] such that η(x, tx) /∈ D. This means that

η(x, tx) ∈ (X \ fc+ε) ∪ fc−ε ∪ (Kc) 5
2 δ .

On the other hand, η(x, tx) ∈ fc+ε since, as x ∈ C, f(η(x, tx)) ≤ f(x) ≤ c + ε.
Consequently, we deduce that η(x, tx) ∈ fc−ε ∪ (Kc) 5

2 δ . Two cases arise:
1) η(x, tx) ∈ fc−ε;
2) η(x, tx) ∈ (Kc) 5

2 δ .
In case 1) we have directly that

f(η(x, 1)) ≤ f(η(x, tx)) ≤ c− ε,

which ensures the desired conclusion.
It remains to treat case 2). In this situation, we make use of property

(2.46). Therefore, we find t0 ∈ (0, t3] such that η(x, t0) ∈ fc−ε. Thus we may
write f(η(x, 1)) ≤ f(η(x, t0)) ≤ c− ε. The proof is complete. �

Remark 2.25. If we choose ϕ(x) = 1 or ϕ(x) = 1 + ‖x‖ then we obtain the defor-
mation lemmas of Chang [9] and Kourogenis-Papageorgiou [24], respectively.

In the next we present a a general linking type result for locally Lipschitz
functions which satisfy the generalized (ϕ−C)c condition. Let X be a Banach space
and A,C ⊆ X two sets.

Definition 2.26. We say that C links A, if A ∩ C = ∅, and C is not contractible in
X \A.
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Theorem 2.27. (Kristály-Motreanu-Varga [33]) If A,C ⊆ X are nonempty, A is
closed, C links A, ΓC is the set of all contractions of C, and f : X → R is a locally
Lipschitz which satisfies the (ϕ− C)c-condition with

c = inf
h∈ΓC

sup
[0,1]×C

f ◦ h <∞ and sup
x∈C

f(x) ≤ inf
x∈A

f(x),

then c ≥ inf
x∈A

f(x) and c is a critical value of f . Moreover, if c = inf
x∈A

f(x), then there

exists x ∈ A such that x ∈ Kc.

Proof. Since by hypothesis C links A, for every h ∈ ΓC we have h([0, 1]×C) 6= ∅. So
we infer that c ≥ inf

x∈A
f(x).

First we assume that inf
x∈A

f(x) < c. Suppose that Kc = ∅. Let U = ∅ and let

ε > 0 and η : [0, 1]×X → X be as in Theorem 2.24. Also from the definition of c, we
can find h ∈ ΓC such that

f(h(t, x)) ≤ c+ ε for all t ∈ [0, 1] and x ∈ C. (2.50)

Let H : [0, 1]× C → X defined by

H(t, x) =


η(2t, x), if 0 ≤ t ≤ 1

2

η(1, h(2t− 1, x)), if
1
2
≤ t ≤ 1.

It is easy to check that H ∈ ΓC and from d) and c) of Theorem 2.24 we
obtain that for every x ∈ C we have

f(H(t, x)) = f(η(2t, x)) ≤ f(x) ≤ sup
x∈C

f(x) < c, if t ∈
[
0,

1
2

]

f(H(t, x)) = f(η(1, h(2t− 1, x))) ≤ c− ε < c, if t ∈
[
1
2
, 1
]

and from (2.50) we get

h(t, x) ∈ fc+ε for every t ∈ [0, 1].

So we have contradicted the definition of c. This proves that Kc 6= ∅, when
c > inf

x∈A
f(x).

Next assume that c = inf
x∈A

f(x). We need to show that Kc ∩A 6= ∅. Suppose

the contrary and let U be a neighborhood of Kc with U ∩ A = ∅. Let ε > 0 and
η : [0, 1]×X → X be as in Theorem 2.24. As before let h ∈ ΓC such that f(h(t, x)) ≤
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c+ ε for all (t, x) ∈ [0, 1]× C. Then we define H : [0, 1]× C → X by

H(t, x) =


η(2t, x), if 0 ≤ t ≤ 1

2

η(1, h(2t− 1, x)), if
1
2
≤ t ≤ 1.

Again, we have H ∈ ΓC . From Theorem 2.24 follows that for all 0 ≤ t ≤ 1
2

and all x ∈ C, we have

η(2t, x) = x or f(η(2t, x)) < f(x) ≤ inf
x∈A

f(x) = c

which implies

η(2t, x) ∈ CXA for all t ∈
[
0,

1
2

]
and all x ∈ C.

For all t ∈
[
1
2
, 1
]

and all x ∈ C, we have from d) Theorem 2.24

η(1, h(2t− 1, x)) ⊆ fc−ε ∪ U

while (fc−ε ∪ U) ∩A = ∅.
So H is a contraction of C in X \A, which is a contradiction. This completely

proves the theorem. �

In the next we prove a variant of Mountain Pass Theorem.

Theorem 2.28. (Kristály-Motreanu-Varga [33]) Let X be a Banach space, f : X → R
be a locally Lipschitz function and ϕ : X → R a globally Lipschitz function such that
ϕ(x) ≥ 1, ∀ x ∈ X. Suppose that there exist x1 ∈ X and r > 0 such that ‖x1‖ > r

and
(i) max{f(0), f(x1)} ≤ inf{f(x) : ‖x‖ = r}
(ii) the function f satisfies the (ϕ− C)c-condition (c ∈ R), where

c = inf
γ∈Γ

max
t∈[0,1]

f(γ(t)),

with

Γ = {γ ∈ C([0, 1], X) : γ(0) = 0, γ(1) = x1}.

Then the minimax value c in (ii) is a critical value of f . Moreover, if c = inf{f(x) :
‖x‖ = r}, there exist a critical point x of f with f(x) = c and ‖x‖ = r.

Proof. We will apply Theorem 2.27 with A = {x ∈ X : ‖x‖ = r} and C = {0, x1}.
Clearly C links A and c <∞. Let γ ∈ Γ and define

h(t, x) =

{
γ(t), if x = 0
x1, if x = x1
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Then h ∈ ΓC . Therefore

inf
h∈ΓC

sup
[0,1]×C

f(h(t, x)) ≤ f(h(t, x)) ≤ c. (2.51)

On the other hand, if h ∈ ΓC , then

γ(t) =


h(2t, 0), if t ∈

[
0,

1
2

]

h(2− 2t, x1), if t ∈
[
1
2
, 1
]

belongs to Γ and so
inf

h∈ΓC

sup
[0,1]×C

f(h(t, x)) ≥ c. (2.52)

By (2.51) and (2.52) we have

c = inf
h∈ΓC

sup
[0,1]×C

f(h(t, x))

and so we can apply Theorem 2.27 and finish the proof. �

2.2. Multiple critical points results. In this subsection we present a generaliza-
tion of the three critical points theorem of Ricceri [58] to locally Lipschitz functions
which appears in the paper of Kristály-Marzantowicz-Varga [28]. To do this, we first
recall a topological result of Ricceri [59].

Theorem 2.29. (Ricceri [59, Theorem 4]) Let X be a real, reflexive Banach space,
let Λ ⊆ R be an interval, and let ϕ : X ×Λ → R be a function satisfying the following
conditions:

1. ϕ(x, ·) is concave in Λ for all x ∈ X;
2. ϕ(·, λ) is continuous, coercive and sequentially weakly lower semicontinu-

ous in X for all λ ∈ Λ;
3. β1 := sup

λ∈Λ
inf

x∈X
ϕ(x, λ) < inf

x∈X
sup
λ∈Λ

ϕ(x, λ) =: β2.

Then, for each σ > β1 there exists a non-empty open set Λ0 ⊂ Λ with the follow-
ing property: for every λ ∈ Λ0 and every sequentially weakly lower semicontinuous
function Φ : X → R, there exists µ0 > 0 such that, for each µ ∈]0, µ0[, the function
ϕ(·, λ) + µΦ(·) has at least two local minima lying in the set {x ∈ X : ϕ(x, λ) < σ}.

The main result of this subsection is the following.

Theorem 2.30. (Kristály-Marzantowicz-Varga [28]) Let (X, ‖ · ‖) be a real reflexive
Banach space and X̃i (i = 1, 2) be two Banach spaces such that the embeddings X ↪→
X̃i are compact. Let Λ be a real interval, h : [0,∞) → [0,∞) be a non-decreasing
convex function, and let Φi : X̃i → R (i = 1, 2) be two locally Lipschitz functions such
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that Eλ,µ = h(‖ · ‖) + λΦ1 + µg ◦Φ2 restricted to X satisfies the (PS)c-condition for
every c ∈ R, λ ∈ Λ, µ ∈ [0, |λ|+ 1] and g ∈ Gτ , τ ≥ 0. Assume that h(‖ · ‖) + λΦ1 is
coercive on X for all λ ∈ Λ and that there exists ρ ∈ R such that

sup
λ∈Λ

inf
x∈X

[h(‖x‖) + λ(Φ1(x) + ρ)] < inf
x∈X

sup
λ∈Λ

[h(‖x‖) + λ(Φ1(x) + ρ)]. (2.53)

Then, there exist a non-empty open set A ⊂ Λ and r > 0 with the property that for
every λ ∈ A there exists µ0 ∈]0, |λ|+ 1] such that, for each µ ∈ [0, µ0] the functional
Eλ,µ = h(‖ · ‖) + λΦ1 + µΦ2 has at least three critical points in X whose norms are
less than r.

Proof. Since h is a non-decreasing convex function, X 3 x 7→ h(‖x‖) is also convex;
thus, h(‖ · ‖) is sequentially weakly lower semicontinuous on X, see H. Brézis [7,
Corollaire III.8]. From the fact that the embeddings X ↪→ X̃i (i = 1, 2) are compact
and Φi : X̃i → R (i = 1, 2) are locally Lipschitz functions, it follows that the function
Eλ,µ as well as ϕ : X × Λ → R (in the first variable) given by

ϕ(x, λ) = h(‖x‖) + λ(Φ1(x) + ρ)

are sequentially weakly lower semicontinuous on X.
The function ϕ satisfies the hypotheses of Theorem 2.29. Fix σ > sup

Λ
inf
X
ϕ

and consider a nonempty open set Λ0 with the property expressed in Theorem 2.29.
Let A = [a, b] ⊂ Λ0.

Fix λ ∈ [a, b]; then, for every τ ≥ 0 and gτ ∈ Gτ , there exists µτ > 0 such
that, for any µ ∈]0, µτ [, the functional Eτ

λ,µ = h(‖ · ‖) + λΦ1 + µgτ ◦ Φ2 restricted to
X has two local minima, say xτ

1 , x
τ
2 , lying in the set {x ∈ X : ϕ(x, λ) < σ}.

Note that⋃
λ∈[a,b]

{x ∈ X : ϕ(x, λ) < σ} ⊂ {x ∈ X : h(‖x‖) + aΦ1(x) < σ − aρ}

∪{x ∈ X : h(‖x‖) + bΦ1(x) < σ − bρ}.

Because the function h(‖ · ‖) + λΦ1 is coercive on X, the set on the right-side is
bounded. Consequently, there is some η > 0, such that⋃

λ∈[a,b]

{x ∈ X : ϕ(x, λ) < σ} ⊂ Bη, (2.54)

where Bη = {x ∈ X : ‖x‖ < η}. Therefore,

xτ
1 , x

τ
2 ∈ Bη.
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Now, set c? = sup
t∈[0,η]

h(t) + max{|a|, |b|} sup
Bη

|Φ1| and fix r > η large enough such that

for any λ ∈ [a, b] to have

{x ∈ X : h(‖x‖) + λΦ1(x) ≤ c? + 2} ⊂ Br. (2.55)

Let r? = sup
Br

|Φ2| and correspondingly, fix a function g = gr∗ ∈ Gr∗ . Let us define

µ0 = min{|λ|+1, 1
1+sup |g|}. Since the functional Eλ,µ = Er∗

λ,µ = h(‖·‖)+λΦ1+µgr∗◦Φ2

restricted to X satisfies the (PS)c condition for every c ∈ R, µ ∈ [0, µ0], and x1 =
xr∗

1 , x2 = xr∗

2 are local minima of Eλ,µ, we may apply Corollary 2.19, obtaining that

cλ,µ = inf
γ∈Γ

max
s∈[0,1]

Eλ,µ(γ(s)) ≥ max{Eλ,µ(x1), Eλ,µ(x2)} (2.56)

is a critical value for Eλ,µ, where Γ is the family of continuous paths γ : [0, 1] → X

joining x1 and x2. Therefore, there exists x3 ∈ X such that

cλ,µ = Eλ,µ(x3) and 0 ∈ ∂Eλ,µ(x3).

If we consider the path γ ∈ Γ given by γ(s) = x1 + s(x2 − x1) ⊂ Bηwe have

h(‖x3‖) + λΦ1(x3) = Eλ,µ(x3)− µg(Φ2(x3))

= cλ,µ − µg(Φ2(x3))

≤ sup
s∈[0,1]

(h(‖γ(s)‖) + λΦ1(γ(s)) + µg(Φ2(γ(s))))− µg(Φ2(x3))

≤ sup
t∈[0,η]

h(t) + max{|a|, |b|} sup
Bη

|Φ1|+ 2µ0 sup |g|

≤ c? + 2.

From (2.55) it follows that x3 ∈ Br. Therefore, xi, i = 1, 2, 3 are critical points
for Eλ,µ, all belonging to the ball Br. It remains to prove that these elements are
critical points not only for Eλ,µ but also for Eλ,µ = h(‖ · ‖) + λΦ1 + µΦ2. Let x = xi,
i ∈ {1, 2, 3}. Since x ∈ Br, we have that |Φ2(x)| ≤ r∗. Note that g(t) = t on [−r∗, r∗];
thus, g(Φ2(x)) = Φ2(x). Consequently, on the open set Br the functionals Eλ,µ and
Eλ,µ coincide, which completes the proof.

At the end of this section we recall the following non-smooth version of Ricceri
[62, Theorem 2.5] which is proved by Marano and Motreanu [37].

Theorem 2.31. (Marano-Motreanu, [37, Theorem 1.1]) Let (X, ‖·‖) be a reflexive real
Banach space, and X̃ another real Banach spaces such that X is compactly embedded
into X̃. Let Φ : X̃ → R and Ψ : X → R be two locally Lipschitz functions, such that
Ψ is weakly sequentially lower semicontinuous and coercive. For every ρ > infX Ψ,
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put

ϕ(ρ) = inf
u∈Ψ−1(]−∞,ρ[)

Φ(u)− inf
v∈(Ψ−1(]−∞,ρ[))w

Φ(v)

ρ−Ψ(u)
, (2.57)

where (Ψ−1(]−∞, ρ[))w is the closure of Ψ−1(] −∞, ρ[) in the weak topology. Fur-
thermore, set

γ := lim inf
ρ→+∞

ϕ(ρ), δ := lim inf
ρ→(infX Ψ)+

ϕ(ρ). (2.58)

Then, the following conclusions hold.

(A) If γ < +∞ then, for every λ > γ, either
(A1) Φ + λΨ possesses a global minimum, or
(A2) there is a sequence {un} of critical points of Φ + λΨ such that

limn→+∞Ψ(un) = +∞.

(B) If δ < +∞ then, for every λ > δ, either
(B1) Φ + λΨ possesses a local minimum, which is also a global minimum

of Ψ, or
(B2) there is a sequence {un} of pairwise distinct critical points of Φ+λΨ,

with limn→+∞Ψ(un) = infX Ψ, weakly converging to a global mini-
mum of Ψ.

3. Motreanu-Panagiotopoulos functionals

In this section we present some results from the critical point theory for
Motreanu-Panagiotopoulos type functionals. For details we refer the reader to the
monographs of Motreanu-Panagiotopoulos [46], Motreanu-Rădulescu [47], Gasinski-
Papageorgiou [18] and the papers of Marano and Motreamu [38], [37]. At the end
of this section we present the Principle of Symmetric Criticality for this class of
functionals following the paper of Kristály-Varga-Varga [29].

3.1. Critical point results. Let I = h + ψ, with h : X → R locally Lipschitz and
ψ : X → (−∞,+∞] convex, proper (i.e., ψ 6≡ +∞), and lower semicontinuous. I is a
Motreanu-Panagiotopoulos type functional, see [46, Chapter 3 ].

Definition 3.1. ([46, Definition 3.1]) An element u ∈ X is said to be a critical point
of I = h+ ψ, if

h0(u; v − u) + ψ(v)− ψ(u) ≥ 0,∀v ∈ X.

In this case, I(u) is a critical value of I.

We have the following result, see Gasinski-Papgeourgiu [18], Remark 2.3.1.
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Proposition 3.2. An element u ∈ X is a critical point of I = h+ ψ, if and only if
0 ∈ ∂h(u) + ∂ψ(u), where ∂ψ(u) denotes the subdifferential of the convex function ψ

at u, i.e.

∂ψ(u) = {x∗ ∈ X∗ : ψ(v)− ψ(u) ≥ 〈x∗, v − u〉X for every v ∈ X}.

Definition 3.3. ([46, Definition 3.2]) The functional I = h+ ψ is said to satisfy the
Palais-Smale condition at level c ∈ R (shortly , (PS )c), if every sequence (un) from X

satisfying I(un) → c and

h0(un; v − un) + ψ(v)− ψ(un) ≥ −εn‖v − un‖,∀v ∈ X,

for a sequence (εn) in [0,∞) with εn → 0, contains a convergent subsequence. If (PS)c

is verified for all c ∈ R, I is said to satisfy the Palais-Smale condition (shortly ,(PS)).

The next result is a non-smooth version of the Mountain Pass Theorem, see Corollary
3.2 from [46].

Theorem 3.4. (Motreanu-Panagiotopoulos [46]) Assume that the functional I : X →
(−∞,+∞] defined by I = h+ ψ, satisfies (PS), I(0) = 0, and

(i) there exist constants α > 0 and ρ > 0, such that I(u) ≥ α for all ||u|| = ρ;
(ii) there exists e ∈ X, with ||e|| > ρ and I(e) ≤ 0.

Then, the number

c = inf
f∈Γ

sup
t∈[0,1]

I(f(t)),

where

Γ = {f ∈ C([0, 1], X) : f(0) = 0, f(1) = e },

is a critical value of I with c ≥ α.

In the next we present the three critical points theorem of Ricceri [55] for
Motreanu-Panagiotopoulos functionals. This result was proved by Marano and Motre-
anu [38, Theorem B].

Let h1, h2 : X → R be locally Lipschitz functions, and let ψ1 : X →]−∞,+∞]
be a convex, proper, lower semicontinuous function. Then the function h1 +ψ1 +λh2

is a Motreanu-Panagiotopoulos type functional for every λ ∈ R.

Theorem 3.5. (Marano-Motreanu [38]) Suppose that (X, || · ||) is a separable and
reflexive Banach space. Let I1 = h1 + ψ1, I2 = h2, and let Λ ⊆ R be an interval. We
assume that:

(a1) h1 is weakly sequentially lower semicontinuous and h2 is weakly sequen-
tially continuous;
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(a2) for every λ ∈ Λ the function I1 + λI2 fulfils (PS)c, c ∈ R, and

lim
||u||→+∞

(I1(u) + λI2(u)) = +∞;

(a3) there exists a continuous concave function h : Λ → R satisfying

sup
λ∈Λ

inf
u∈X

(I1(u) + λI2(u) + h(λ)) < inf
u∈X

sup
λ∈Λ

(I1(u) + λI2(u) + h(λ)).

Then, there exists an open interval Λ0 ⊂ Λ, such that for each λ ∈ Λ0 the function
I1 + λI2 has at least three critical points in X.

3.2. Principle of Symmetric Criticality. We now prove the Principle of Symmet-
ric Criticality for Motreanu-Panagiotopoulos functionals. This result simultaneously
generalizes the Principle of Symmetric Criticality in its standard form, see Palais [49]
for smooth functionals; the result of Krawcewicz and Marzantowicz [25] for locally
Lipschitz functions; and the result of Kobayashi and Ôtani [22] for Szulkin-type func-
tionals. The results of this subsection is contained in the paper of Kristály, Varga
and Varga [29].

Let G be a topological group which acts linearly on X, i.e., the action G ×
X → X : [g, u] 7→ gu is continuous and for every g ∈ G, the map u 7→ gu is
linear. The group G induces an action of the same type on the dual space X∗ defined
by 〈gx∗, u〉X = 〈x∗, g−1u〉X for every g ∈ G, u ∈ X and x∗ ∈ X∗. A function
h : X → R∪ {+∞} is G−invariant if h(gu) = h(u) for every g ∈ G and u ∈ X. A set
K ⊆ X (or K ⊆ X∗) is G−invariant if gK = {gu : u ∈ K} ⊆ K for every g ∈ G. Let

Σ = {u ∈ X : gu = u for every g ∈ G}

the fixed point set of X under G.
Now we recall some facts from [22]. Let

Φ(X) = {ψ : X → R ∪ {∞} : ψ is convex, proper, lower semicontinuous};

ΦG(X) = {ψ ∈ Φ(X) : ψ is G− invariant};

ΓG(X∗) = {K ⊆ X∗ : K is G− invariant, weak∗−closed, convex}.

Proposition 3.6. ([22, Theorem 3.16]) Assume that a compact group G acts linearly
on a reflexiv Banach space X. Then for every K ∈ ΓG(X∗) and ψ ∈ ΦG(X) one has

K|Σ ∩ ∂(ψ|Σ)(u) 6= ∅ ⇒ K ∩ ∂ψ(u) 6= ∅, u ∈ Σ, (3.1)

where K|Σ = {x∗|Σ : x∗ ∈ K} with 〈x∗|Σ, u〉Σ = 〈x∗, u〉X , u ∈ Σ.
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Let A : X → X be the averaging operator over G, defined by

Au =
∫

G

gudµ(g), u ∈ X, (3.2)

where µ is the normalized Haar measure on G. The relation (3.2) can reads as follows

〈x∗, Au〉X =
∫

G

〈x∗, gu〉Xdµ(g), u ∈ X, x∗ ∈ X∗. (3.3)

It is easy to verify that A is a continuous linear projection from X to Σ and for
every G-invariant closed convex set K ⊆ X we have A(K) ⊆ K. The adjoint operator
A∗ : Σ∗ → X∗ of A : X → Σ is defined by

〈A∗w∗, z〉X = 〈w∗, Az〉Σ, z ∈ X, w∗ ∈ Σ∗. (3.4)

Lemma 3.7. Let h : X → R be a G-invariant locally Lipschitz function and u ∈ Σ.
Then

(a) ∂(h|Σ)(u) ⊆ ∂h(u)|Σ.
(b) ∂h(u) ∈ ΓG(X∗).

Proof. (a) Let us fix w∗ ∈ ∂(h|Σ)(u). Then by definition, one has

〈w∗, v〉Σ ≤ (h|Σ)0(u; v) for every v ∈ Σ.

First, a simple estimation shows that (h|Σ)0(u; v) ≤ h0(u; v) for every v ∈ Σ. Thus,
applying the above inequality for v = Az ∈ Σ with z ∈ X arbitrarily fixed, by (3.4)
one has

〈A∗w∗, z〉X = 〈w∗, Az〉Σ ≤ h0(u;Az). (3.5)

Using [10, Proposition 2.1.2 (b)] and (3.3), we get

h0(u;Az) = max{〈x∗, Az〉X : x∗ ∈ ∂h(u)}

= max{
∫

G

〈x∗, gz〉Xdµ(g) : x∗ ∈ ∂h(u)}

≤
∫

G

h0(u; gz)dµ(g) =
∫

G

h0(g−1u; z)dµ(g) =
∫

G

h0(u; z)dµ(g)

= h0(u; z).

Combining this relation with (3.5), we conclude that A∗w∗ ∈ ∂h(u). Since w∗ =
A∗w∗|Σ, we obtain that w∗ ∈ ∂h(u)|Σ, completing the proof of (a).

(b) Since ∂h(u) is a nonempty, convex and weak∗-compact subset of X∗

(see [10, Proposition 2.1.2 (a)]), it is enough to prove that ∂h(u) is G-invariant, i.e.,
g∂h(u) ⊆ ∂h(u) for every g ∈ G. To this end, let us fix g ∈ G and x∗ ∈ ∂h(u). Then,
for every z ∈ X we have

〈gx∗, z〉X = 〈x∗, g−1z〉X ≤ h0(u; g−1z) = h0(gu; z) = h0(u; z),
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i.e., gx∗ ∈ ∂h(u). �

Theorem 3.8. (Kristály-Varga-Varga [29]) Let X be a reflexiv Banach space and
I = h + ψ : X → R ∪ {+∞} be a Motreanu-Panagiotopoulos type functional. If a
compact group G acts linearly on X, and the functionals h and ψ are G−invariant,
then every critical point of I|Σ is also a critical point of I.

Proof. Let u ∈ Σ be a critical point of I|Σ. Thanks to Proposition 3.2 one has
0 ∈ ∂(h|Σ)(u) + ∂(ψ|Σ)(u). Moreover, due to Lemma 3.7(a) we have

∅ 6= −∂(h|Σ)(u) ∩ ∂(ψ|Σ)(u) ⊆ −∂h(u)|Σ ∩ ∂(ψ|Σ)(u).

By choosing K = ∂h(u) in Proposition 3.6 and taking into account Lemma 3.7(b),
relation (3.1) implies that ∅ 6= −∂h(u)∩∂ψ(u). Thus, in particular 0 ∈ ∂h(u)+∂ψ(u),
i.e., u is indeed a critical point of I. �

A direct consequence of this theorem is the following proved by Krawcewicz
and Marzantowicz [25].

Remark 3.9. (Krawcewicz-Marzantowicz [25]) Let f : X → R be a G-invariant
locally Lipschitz function and u ∈ XG a fixed point. Then u ∈ XG is a critical point
of f if and only if u is a critical point of fG = f |XG : XG → R.

4. Application to hemivaritional inequalities

4.1. Formulation of the problem. In this section we prove some existence results
for a general class of hemivariational inequalities. These results appear in the paper
of Kristály [27] and Dályai-Varga [11].

Let (X, ‖·‖) be a real, separable, reflexive Banach space, and let (X?, ‖·‖?) be
its dual. We consider Ω ⊂ RN an unbounded domain. Also assume that the inclusion
X ↪→ Ll(Ω) is continuous with the embedding constants C(l), where l ∈ [p, p?] (p ≥
2, p? = Np

N−p ).
Let us denote by ‖ · ‖l the norm of Ll(Ω). In this section we suppose that the

following condition holds:

(CE): X is compactly embedded in Lr(Ω) for some r ∈ [p, p?[

Let A : X → X? be a potential operator with the potential a : X → R, i.e. a
is Gâteaux differentiable and

lim
t→0

a(u+ tv)− a(u)
t

= 〈A(u), v〉,

for every u, v ∈ X. Here 〈·, ·〉 denotes the duality pairing between X? and X. For a
potential we always assume that a(0) = 0. We suppose that A : X → X? satisfies the
following properties:
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• A is hemicontinuous, i.e. A is continuous on line segments in X and X?

equipped with the weak topology.
• A is homogeneous of degree p − 1, i.e. for every u ∈ X and t > 0 we

have A(tu) = tp−1A(u). Consequently, for a homogeneous hemicontinuous
operator of degree p− 1, we have a(u) = 1

p 〈A(u), u〉.
• A : X → X? is a strongly monotone operator, i.e. there exists a function
κ : [0,∞) → [0,∞) which is positive on (0,∞) and limt→∞ κ(t) = ∞ and
such that for all u, v ∈ X,

〈A(u)−A(v), u− v〉 ≥ κ(‖u− v‖)‖u− v‖ .

Let f : Ω × R → R be a measurable function which satisfies the following
growth condition:

(F1) |f(x, s)| ≤ c(|s|p−1 + |s|r−1), for a.e. x ∈ Ω, for all s ∈ R

Let F : Ω× R → R be the function defined by

F (x, u) =
∫ u

0

f(x, s)ds, for a.e. x ∈ Ω, ∀s ∈ R. (4.1)

For a.e. x ∈ Ω and for every u, v ∈ R, we have:

|F (x, u)− F (x, v)| ≤ c1|u− v|
(
|u|p−1 + |v|p−1 + |u|r−1 + |v|r−1

)
, (4.2)

where c1 is a constant which depends only of u and v. Therefore, the function F (x, ·)
is locally Lipschitz and we can define the partial Clarke derivative, i.e.

F 0
2 (x, u;w) = lim sup

y→u, t→0+

F (x, y + tw)− F (x, y)
t

, (4.3)

for every u,w ∈ R and for a.e. x ∈ R.
Now, we formulate the hemivariational inequality problem that will be studied

in the next:
Find u ∈ X such that

〈Au, v〉+
∫

Ω

F 0
2 (x, u(x);−v(x))dx ≥ 0, ∀ v ∈ X. (4.4)

To study the existence of solutions of the problem (4.4) we introduce the
energy functional Ψ : X → R defined by

Ψ(u) = a(u)− Φ(u),

where a(u) = 1
p 〈A(u), u〉 and Φ(u) =

∫
Ω
F (x, u(x))dx.

Remark 4.1. In Proposition 4.6 we will prove that the critical points of the functional
Ψ are solution of the problem (4.4).

31
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To study the existence of the critical point of the function Ψ is necessary to
impose some conditions on the function f :

(F2) There exists α > p, λ ∈ [0, κ(1)(α−p)
Cp(p) [ and a continuous function g : R →

R+, such that for a.e. x ∈ RN and for all u ∈ R we have

αF (x, u) + F 0
2 (x, u;−u) ≤ g(u), (4.5)

where lim|u|→∞ g(u)/|u|p = λ.
(F2’) There exists α ∈ (max{p, p? r−p

p?−p}, p
?) and a constant C > 0 such that for

a.e. x ∈ Ω and for all u ∈ R we have

−C|u|α ≥ F (x, u) +
1
p
F 0

2 (x, u;−u). (4.6)

Next, we impose further assumptions on f . First we define two functions by

f(x, s) = lim
δ→0+

essinf{f(x, t) : |t− s| < δ},

f(x, s) = lim
δ→0+

esssup{f(x, t) : |t− s| < δ},

for every s ∈ R and for a.e. x ∈ Ω. It is clear that the function f(x, ·) is lower
semicontinuous and f(x, ·) is upper semicontinuous. The following hypothesis on f

was introduced by Chang [9].

(F3) The functions f, f are N -measurable, i.e. for every measurable function
u : Ω → R the functions x 7→ f(x, u(x)), x 7→ f(x, u(x)) are measurable.

(F4) For every ε > 0, there exists c(ε) > 0 such that for a.e. x ∈ Ω and for
every s ∈ R we have

|f(x, s)| ≤ ε|s|p−1 + c(ε)|s|r−1.

(F5) For the α ∈ (p, p?) from condition (F2), there exists a c? > 0 such that for
a.e. x ∈ Ω and for all s ∈ R we have

F (x, u) ≥ c?(|u|α − |u|p).

Remark 4.2. We observe that if we impose the following condition on f ,

(F4’) limε→0+ esssup{ |f(x,s)|
|s|p : (x, s) ∈ Ω× (−ε, ε)} = 0,

then this condition with (F1) imply (F4).

4.2. Some basic lemmas. Before to study the hemivariational inequality (4.4) we
prove some auxiliary lemmas. The results of this subsection appear in the paper of
Dályai-Varga [11]. So, we consider the function Φ : X → R by

Φ(u) =
∫

Ω

F (x, u(x))dx, ∀u ∈ X, (4.7)
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where F (x, u) =
∫ u

0
f(x, s)ds, for a.e. x ∈ Ω, ∀s ∈ R..

Remark 4.3. For simplicity we denote h(u) = c|u|p−1 and in the next two results
we use only that the function h is monotone increasing, convex and h(0) = 0.

The following results appears in the paper of Kristály [27] and Dályai-Varga
[11].

Proposition 4.4. The function Φ : X → R, defined by Φ(u) =
∫
Ω
F (x, u(x))dx is

locally Lipschitz on bounded sets of X.

Proof. For every u, v ∈ X, with ‖u‖, ‖v‖ < r, we have

‖Φ(u)− Φ(v)‖

≤
∫

Ω

|F (x, u(x))− F (x, v(x))|dx

≤ c1

∫
Ω

|u(x)− v(x)|[h(|u(x)|) + h(|v(x)|)]

≤ c2
( ∫

Ω

|u(x)− v(x)|p
)1/p[( ∫

Ω

(h(|u(x)|)p′dx
)1/p′ +

( ∫
Ω

(h(|v(x)|)p′dx
)1/p′]

≤ c2‖u− v‖p[‖h(|u|)‖p′ + ‖h(|v|)‖p′)

≤ C(u, v)‖u− v‖,

where 1
p + 1

p′ = 1 and we used the Hölder inequality, the subadditivity of the norm
‖ · ‖p′ and the fact that the inclusion X ↪→ Lp(Ω) is continuous. We observe that
C(u, v) is a constant which depends only of u and v. �

Proposition 4.5. (Kristály [27] and Dályai-Varga [11]) If condition (F1) holds, then
for every u, v ∈ X, we have

Φ0(u; v) ≤
∫

Ω

F 0
2 (x, u(x); v(x))dx. (4.8)

Proof. It is sufficient to prove the proposition for the function f , which satisfies only
the growth condition |f(x, s)| ≤ c|u|p−1 from Remark 4.3. Let us fix the elements
u, v ∈ X. The function F (x, ·) is locally Lipschitz and therefore continuous. Thus
F 0

2 (x, u(x); v(x)) can be expressed as the upper limit of
(
F (x, y+ tv(x))−F (x, y)

)
/t,

where t → 0+ takes rational values and y → u(x) takes values in a countable subset
of R. Therefore, the map x → F 0

2 (x, u(x); v(x)) is measurable as the “countable
limsup” of measurable functions in x. From condition (F1) we get that the function
x→ F 0

2 (x, u(x); v(x)) is from L1(RN ).
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Using the fact that the Banach space X is separable, there exists a sequence
wn ∈ X with ‖wn − u‖ → 0 and a real number sequence tn → 0+, such that

Φ0(u, v) = lim
n→∞

Φ(wn + tnv)− Φ(wn)
tn

. (4.9)

Since the inclusion X ↪→ Lp(RN ) is continuous, we get ‖wn − u‖p → 0. Using [7,
Theorem IV.9], there exists a subsequence of (wn) denoted in the same way, such that
wn(x) → u(x) a.e. x ∈ RN . Now, let ϕn : RN → R ∪ {+∞} be the function defined
by

ϕn(x) = −F (x,wn(x) + tnv(x))− F (x,wn(x))
tn

+ c1|v(x)|[h(|wn(x) + tnv(x)|) + h(|wn(x)|)].

We see that the the functions ϕn are measurable and non-negative. If we apply
Fatou’s lemma, we get∫

Ω

lim inf
n→∞

ϕn(x)dx ≤ lim inf
n→∞

∫
Ω

ϕn(x)dx.

This inequality is equivalent to∫
Ω

lim sup
n→∞

[−ϕn(x)]dx ≥ lim sup
n→∞

∫
Ω

[−ϕn(x)]dx. (4.10)

For simplicity in the calculus we introduce the following notation:

(i) ϕ1
n(x) = F (x,wn(x)+tnv(x))−F (x,wn(x))

tn
;

(ii) ϕ2
n(x) = c1|v(x)|[h(|wn(x) + tnv(x)|) + h(|wn(x)|)].

With these notation, we have ϕn(x) = −ϕ1
n(x) + ϕ2

n(x).
Now we prove the existence of limit b = limn→∞

∫
Ω
ϕ2

n(x)dx. Using the facts
that the inclusion X ↪→ Lp(Ω) is continuous and ‖wn − u‖ → 0, we get ‖wn − u‖p →
0. Using [7, Theorem IV.9], there exist a positive function g ∈ Lp(Ω), such that
|wn(x)| ≤ g(x) a.e. x ∈ Ω. Considering that the function h is monotone increasing,
we get

|ϕ2
n(x)| ≤ c1|v(x)|[h(g(x) + |v(x)|) + h(g(x))], a.e. x ∈ Ω.

Moreover, ϕ2
n(x) → 2c1|v(x)|h(|u(x)|) for a.e. x ∈ Ω. Thus, using the Lebesque

dominated convergence theorem, we have

b = lim
n→∞

∫
Ω

ϕ2
n(x)dx =

∫
Ω

2c1|v(x)|h(|u(x)|)dx. (4.11)

If we denote by I1 = lim supn→∞
∫
Ω
[−ϕn(x)]dx, then using (4.9) and (4.11), we have

I1 = lim sup
n→∞

∫
Ω

[−ϕn(x)]dx = Φ0(u; v)− b. (4.12)
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Next we estimate the expression I2 =
∫
Ω

lim supn→∞[−ϕn(x)]dx. We have the in-
equality ∫

Ω

lim sup
n→∞

[ϕ1
n(x)]dx−

∫
Ω

lim
n→∞

ϕ2
n(x)dx ≥ I2. (4.13)

Using the fact that wn(x) → u(x) a.e. x ∈ Ω and tn → 0+, we get∫
Ω

lim
n→∞

ϕ2
n(x)dx = 2c1

∫
Ω

|v(x)|h(|u(x)|)dx.

On the other hand,∫
Ω

lim sup
n→∞

ϕ1
n(x)dx ≤

∫
Ω

lim sup
y→u(x), t→0+

F (x, y + tv(x))− F (x, y)
t

dx

=
∫

Ω

F 0
2 (x, u(x); v(x))dx.

Using relations (4.10), (4.12), (4.13) and the above estimates, we obtain the desired
result. �

Now we prove that the critical points of the function Ψ : X → R defined by
Ψ(u) = a(u)− Φ(u) are solutions of problem (4.4).

Proposition 4.6. If 0 ∈ ∂Ψ(u), then u solves the problem (4.4).

Proof. Because 0 ∈ ∂Ψ(u), we have Ψ0(u; v) ≥ 0 for every v ∈ X. Using the
Proposition 4.5 and a property of Clarke derivative we obtain

0 ≤ Ψ0(u; v) ≤ 〈u, v〉+ (−Φ)0(u; v)

= 〈A(u), v〉+ Φ0(u;−v)

≤ 〈A(u), v〉+
∫

RN

F 0
2 (x, u(x),−v(x))dx,

for every v ∈ X. �

4.3. The Palais-Smale and Cerami compactness conditions. In this subsection
we study the situation when the function Ψ satisfies the (PS)c and (CPS)c conditions.
We have the following result.

Proposition 4.7. Let (un) ⊂ X be a (PS)c sequence for the function Ψ : X → R.
If the conditions (F1) and (F2) are fulfilled, then the sequence (un) is bounded in X.

Proof. Because (un) ⊂ X is a (PS)c sequence for the function Ψ, we have Ψ(un) → c

and λΨ(un) → 0. From the condition Ψ(un) → c we get c+1 ≥ Ψ(un) for sufficiently
large n ∈ N.

Because λΨ(un) → 0, ‖un‖ ≥ ‖un‖λΨ(un) for every sufficiently large n ∈ N.
From the definition of λΨ(un) results the existence of an element z?

un
∈ ∂Ψ(un), such
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that λΨ(un) = ‖z?
un
‖?. For every v ∈ X, we have |z?

un
(v)| ≤ ‖z?

un
‖?‖v‖, therefore

‖z?
un
‖?‖v‖ ≥ −z?

un
(v). If we take v = un, then ‖z?

un
‖?‖un‖ ≥ −z?

un
(un).

Using the properties Ψ0(u, v) = max{z?(v) : z? ∈ ∂Ψ(u) } for every v ∈ X,
we have −z?(v) ≥ −Ψ0(u, v) for all z? ∈ ∂Ψ(u) and v ∈ X. If we take u = v = un

and z? = z?
un

, we get −z?
un

(un) ≥ −Ψ0(un, un). Therefore, for every α > 0, we have

1
α
‖un‖ ≥

1
α
‖z?

un
‖?‖un‖ ≥ − 1

α
Ψ0(un, un).

When we add the above inequality with c+ 1 ≥ Ψ(un), we obtain

c+ 1 +
1
α
‖un‖ ≥ Ψ(un)− 1

α
Ψ0(un;un).

Using the above inequality, Ψ0(u, v) ≤ 〈A(u), v〉+ Φ0(u,−v), and Proposition 4.5 we
get

c+ 1 +
1
α
‖un‖

≥ Ψ(un)− 1
α

Ψ0(un;un)

=
1
p
〈A(un), un〉 − Φ(un)− 1

α

(
〈A(un), un〉+ Φ0(un;−un)

)
≥ (

1
p
− 1
α

)〈A(un), un〉 −
∫

Ω

[
F (x, un(x)) +

1
α
F 0

2 (x, un(x);−un(x))
]
dx

≥ (
1
p
− 1
α

)〈A(un), un〉 −
1
α

∫
Ω

g(un(x))dx.

The relation lim|u|→∞
g(u)
|u|p = λ assures the existence of a constant M , such that∫

Ω
g(un(x))dx ≤ M + λ

∫
Ω
|un(x)|pdx. We use again that the inclusion X ↪→ Lp(Ω)

is continuous, that a(u) = 1
p 〈A(u), u〉 and that

a(u) = ‖u‖p〈A(
u

‖u‖
),

u

‖u‖
〉 ≥ κ(1)‖u‖p,

to obtain

c+ 1 + ‖un‖ ≥ (
1
p
− 1
α

)〈A(un), un〉 −
λCp(p)
α

‖un‖p − M

α

≥ κ(1)(α− p)− λCp(p)
α

‖un‖p − M

α
.

From the above inequality, it results that the sequence (un) is bounded. �

Proposition 4.8. If conditions (F1), (F2’) and (F4) hold, then every (CPS)c(c > 0)
sequence (un) ⊂ X for the function Ψ : X → R is bounded in X.
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Proof. Let (un) ⊂ X be a (CPS)c (c > 0) sequence for the function Ψ, i.e. Ψ(un) → c

and (1 + ‖un‖)λΨ(un) → 0. From (1 + ‖un‖)λΨ(un) → 0, we get ‖un‖λΨ(un) → 0
and λΨ(un) → 0. As in Proposition 4.7, there exists z?

un
∈ ∂Ψ(un) such that

1
p
‖z?

un
‖?‖un‖ ≥ −Ψ0(un;

1
p
un).

From this inequality, Proposition 4.5, condition (F2’) and the property Ψ0(u; v) ≤
〈Au, v〉+ Φ0(u;−v) we get

c+ 1 ≥ Ψ(un)− 1
p
Ψ0(un;un)

≥ a(un)− Φ(un)− 1
p

[
〈Aun, un〉+ Φ0(un;−un)

]
≥ −

∫
Ω

[
F (x, un(x)) +

1
p
F 0

2 (x, un(x);−un(x))
]
dx

≥ C‖un‖α
α.

Therefore, the sequence (un) is bounded in Lα(Ω). From the condition (F4) follows
that, for every ε > 0, there exists c(ε) > 0, such that for a.e. x ∈ RN ,

F (x, u(x)) ≤ ε

p
|u(x)|p +

c(ε)
r
|u(x)|r.

After integration, we obtain

Φ(u) ≤ ε

p
‖u‖p

p +
c(ε)
r
‖u‖r

r.

Using the above inequality, the expression of Ψ, and ‖u‖p ≤ C(p)‖u‖, we obtain

κ(1)− εCp(p)
p

‖u‖p ≤ Ψ(u) +
c(ε)
r
‖u‖r

r ≤ c+ 1 + ‖u‖r
r.

Now, we study the behaviour of the sequence (‖un‖r). We have the following two
cases:

(i) If r = α, then it is easy to see that the sequence (‖un‖r) is bounded in R.
(ii) If r ∈ (α, p?) and α > p? r−p

p?−p , then we have

‖u‖r
r ≤ ‖u‖(1−s)α

α · ‖u‖sp?

p? ,

where r = (1− s)α+ sp?, s ∈ (0, 1).

Using the inequality ‖u‖sp?

p? ≤ Csp?

(p)‖u‖sp?

, we obtain

κ(1)− εCp(p)
p

‖u‖p ≤ c+ 1 +
c(ε)
r
‖u‖(1−s)α

α ‖u‖sp?

. (4.14)
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ALEXANDRU KRISTÁLY AND CSABA VARGA

When in the inequality (4.14) we take ε ∈
(
0, κ(1)

Cp(p)

)
and use b), we obtain that the

sequence (un) is bounded in X. �

The main result of this section is as follows.

Theorem 4.9. (Dályai-Varga [11])

1. If the conditions (CE),(F1)-(F4) hold, then Ψ satisfies the (PS)c condition
for every c ∈ R.

2. If the conditions (CE),(F1), (F2’), (F3), and (F4) hold, then Ψ satisfies
the (CPS)c condition for every c > 0.

Proof. Let (un) ⊂ X be a (PS)c(c ∈ R) or a (CPS)c(c > 0) sequence for the function
Ψ(un). Using Propositions 4.7, 4.8 it follows that the sequence (un) is a bounded in
X. Because X is reflexive Banach space follows the existence of an element u ∈ X,
such that un ⇀ u weakly in X. Because the inclusions X ↪→ Lr(RN ) is compact, we
have that un → u strongly in Lr(RN ).

Next we estimate the expressions I1
n = Ψ0(un;un−u) and I2

n = Ψ0(u;u−un).
First we estimate the expression I2

n = Ψ0(u;u − un). We know that Ψ0(u; v) =
max{z?(v) : z? ∈ ∂Ψ(u)}, ∀ v ∈ X. Therefore, there exists z?

u ∈ ∂Ψ(u), such that
Ψ0(u; v) = z?

u(v) for all v ∈ X. From the above relation and from the fact that
un ⇀ u weakly in X, we get Ψ0(u;u− un) = z?

u(u− un) → 0.
Now, we estimate the expression I1

n = Ψ0(un;un − u). From λΨ(un) → 0
follows the existence of a positive real numbers sequence µn → 0, such that
Ψ0(un, un − u) + µn‖un − u‖ ≥ 0.

Now, we estimate the expression In = Φ0(un;u−un)+Φ◦(u;u−un). For the
simplicity in calculus we introduce the notations h1(s) = |s|p−1 and h2(s) = |s|r. For
this we observe that if we use the continuity of the functions h1 and h2, the condition
(F4) implies that for every ε > 0, there exists a c(ε) > 0 such that

max
{
|f(x, s)|, |f(x, s)|

}
≤ εh1(s) + c(ε)h2(s), (4.15)

for a.e. x ∈ RN and for all s ∈ R. Using this relation and Proposition 4.5, we have

In = Φ0(un;u− un) + Φ(u;u− un)

≤
∫

Ω

[
F 0

2 (x, un(x);un(x)− u(x)) + F 0
2 (x, u(x);u(x)− un(x))

]
dx

≤
∫

Ω

[
f(x, un(x))(un(x)− u(x)) + f(x, u(x))(u(x)− un(x))

]
dx

≤ 2ε
∫

Ω

[h1(u(x)) + h1(un(x))] |un(x)− u(x)|dx

+2cε
∫

Ω

[(h2(u(x)) + h2(un(x))] |un(x)− u(x)|dx.
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Using Hölder inequality and that the inclusion X ↪→ Lp(Ω) is continuous, we get

In ≤ 2εC(p)‖un − u‖(‖h1(u)‖p′ + ‖h1(un)‖p′)

+ 2c(ε)‖un − u‖r(‖h2(u)‖r′ + ‖h2(un)‖r′),

where 1
p + 1

p′ = 1 and 1
r + 1

r′ = 1. Using the fact that the inclusion X ↪→ Lr(Ω) is
compact, we get that ‖un − u‖r → 0 as n → ∞. For ε → 0+ and n → ∞ we obtain
that In → 0.

Finally, we use the inequality Ψ0(u; v) ≤ 〈A(u), v〉+ Φ0(u;−v). If we replace
v with −v, we get Ψ0(u,−v) ≤ −〈A(u), v〉+Φ0(u; v), therefore 〈A(u), v〉 ≤ Φ0(u; v)−
Ψ0(u,−v).

In the above inequality we replace u and v by u = un, v = u − un then
u = u, v = un − u and we get

〈A(un), u− un〉 ≤ Φ0(un, u− un)−Ψ0(un;un − u),

〈A(u), un − u〉 ≤ Φ0(u, un − u)−Ψ0(u, u− un).

Adding these relations, we have the following key inequality:

‖un − u‖κ(un − u) ≤ 〈A(un − u), un − u〉

≤
[
Φ0(un;u− un) + Φ(u;u− un)

]
−Ψ0(un;un − u)−Ψ0(u;u− un) = In − I1

n − I2
n.

Using the above relation and the estimations of In, I1
n and I2

n, we obtain

‖un − u‖κ(un − u) ≤ In + µn‖un − u‖ − z?
u(un − u).

If n→∞, from the above inequality we obtain the assertion of the theorem. �

4.4. Existence result. The main result of this subsection is the following.

Theorem 4.10. (Dályai-Varga [11])

1. If conditions (CE),(F1)-(F5) hold, then problem (4.4) has a nontrivial
solution.

2. If conditions (CE), (F1),(F2’), (F3), and (F4) hold, then problem (4.4)
has a nontrivial solution.

Proof. Using (1) in Theorem 4.9, and conditions (F1)-(F4), it follows that the func-
tional Ψ(u) = 1

p 〈A(u), u〉 − Φ(u) satisfies the (PS)c condition for every c ∈ R. From
Corollary 2.19 we verify the following geometric hypotheses:

∃α, ρ > 0, such that Ψ(u) ≥ β on Bρ(0) = {u ∈ X : ‖u‖ = ρ}, (4.16)

Ψ(0) = 0 and there exists v ∈ H \Bρ(0) such that Ψ(v) ≤ 0. (4.17)
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For the proof of relation (4.16), we use the relation (F4), i.e. |f(x, s)| ≤
ε|s|p−1 + c(ε)|s|r−1. Integrating this inequality and using that the inclusions X ↪→
Lp(RN ), X ↪→ Lr(RN ) are continuous, we get that

Ψ(u) ≥ κ(1)− εC(p)
p

〈A(u), u〉 − 1
r
c(ε)C(r)‖u‖r

r

≥ κ(1)− εC(p)
p

‖u‖p − 1
r
c(ε)C(r)‖u‖r.

The right member of the inequality is a function χ : R+ → R of the form χ(t) =
Atp − Btr, where A = κ(1)−εC(p)

p , B = 1
r c(ε)C(r). The function χ attains its global

maximum in the point tM = ( pA
rB )

1
r−p . When we take ρ = tM and β ∈]0, χ(tM )], it is

easy to see that the condition (4.16) is fulfilled.
From (F5) we have Ψ(u) ≤ 1

p 〈A(u), u〉+c?‖u‖p
p−c?‖u‖α

α. If we fix an element
v ∈ H \ {0} and in place of u we put tv, then we have

Ψ(tv) ≤ (
1
p
〈A(v), v〉+ c?‖v‖p

p)t
p − c?tα‖v‖α

α.

From this we see that if t is large enough, tv /∈ Bρ(0) and Ψ(tv) < 0. So, the condition
(4.17) is satisfied and Corollary 2.19 assures the existence of a nontrivial critical point
of Ψ.

Now when we use (2) in Theorem 4.9, from conditions (F1), (F2’), (F3), and
(F4), we get that the function Ψ satisfies the condition (CPS)c for every c > 0. Now,
we use Theorem 2.28, which assures the existence of a nontrivial critical point for the
function Ψ. It is sufficient to prove only the relation (4.17), because (4.16) is proved
in the same way.

To prove the relation (4.17) we fix an element u ∈ X and we define the
function h : (0,+∞) → R by h(t) = 1

tF (x, t1/pu)−C p
α−p t

α
p−1|u|α. The function h is

locally Lipschitz. We fix a number t > 1, and from the Lebourg’s main value theorem
follows the existence of an element τ ∈ (1, t) such that

h(t)− h(1) ∈ ∂th(τ)(t− 1),

where ∂t denotes the generalized gradient of Clarke with respect to t ∈ R. From the
Chain Rules we have

∂tF (x, t1/pu) ⊂ 1
p
∂F (x, t1/pu)t

1
p−1u.

Also we have

∂th(t) ⊂ − 1
t2
F (x, t1/pu) +

1
t
∂F (x, t1/pu)t

1
p−1u− Ct

α
p−2|u|α.
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Therefore,

h(t)− h(1) ⊂ ∂th(τ)(t− 1)

⊂ − 1
t2

[
F (x, t1/pu)− t1/pu∂F (x, t1/pu) + C|t1/pu|α

]
(t− 1).

Using the relation (F2’), we obtain that h(t) ≥ h(1) ; therefore,

1
t
F (x, t1/pu)− C

p

α− p
t

α
p−1|u|α ≥ F (x, u)− C

p

α− p
|u|α.

From this inequality, we get

F (x, t1/p) ≥ tF (x, u) + C
p

α− p
[tα/p − t]|u|α, (4.18)

for every t > 1 and u ∈ R. Let us fix an element u0 ∈ X \ {0}; then for every t > 1,
we have

Ψ(t1/pu0) =
1
p
〈A(t1/pu0), t1/pu0〉 −

∫
RN

F (x, t1/pu0(x))dx

≤ t

p
〈Au0, u0〉 − t

∫
RN

F (x, u0(x))dx− C
p

α− p
[tα/p − t]‖u0‖α

α.

If t is sufficiently large, then for v0 = t1/pu0 we have Ψ(v0) ≤ 0. This ends
the proof. �

In general the inclusion X ↪→ Lr(Ω) is not compact and we impose some
invariant properties. So, let G be the compact topological group O(N) or a subgroup
of O(N). We suppose that G acts continuously and linear isometrically on the Banach
space X. We denote by

XG = {u ∈ H : gx = x for all g ∈ G}

the fixed point set of the action G on X. It is well known that XG is a closed subspace
of X. In several applications the condition (CE) is replaced by the condition

(CEG) The embeddings XG ↪→ Lr(RN ) are compact (p < r < p?).

We suppose that the potential a : X → R of the operator A : X → X? is
G-invariant and the next condition for the function f : RN × R → R holds:

(F6) For a.e. x ∈ RN and for every g ∈ G, s ∈ R we have f(gx, s) = f(x, s).

If we use the Principle of Symmetric Criticality for locally Lipschitz functions, see
Remark 3.9, from the above theorem we obtain the following corollary, which is useful
in the applications.

Corollary 4.11. We suppose that the potential a : X → R is G-invariant and (F6)
is satisfied. Then the following assertions hold.
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(a) If the conditions (CEG),(F1)-(F5) are fulfilled, then problem (4.4) has a
nontrivial solution.

(b) If the conditions (CEG), (F1), (F2’), F3), and (F4) are fulfilled, then
problem (4.4) has a nontrivial solution.

5. A multiplicity result for hemivariational inequalities

In this section we state a multiplicity result for a particular hemivariational
inequality. These results appear in the paper of Faraci, Iannizzotto, Lisei and Varga
[15]. Let Ω ⊂ RN (N ≥ 2) be an unbounded domain with smooth boundary ∂Ω,
p ∈]1, N [ be a real number. Throughout in this section X denotes a separable,
uniformly convex Banach space with strictly convex topological dual; moreover, we
assume that the condition (CE) holds. In the sequel, X will denote a (real) Banach
space (with norm ‖ · ‖) and X? its topological dual (with norm ‖ · ‖?); by 〈·, ·〉 we will
denote the duality pairing between X? and X.

The next Lemma introduces the duality mapping on the space X, related to
the weight function t→ tp−1:

Lemma 5.1. ([8], Propositions 2.2.2, 2.2.4) Let X be a Banach space with strictly
convex dual, p > 1 a real number. Then, there exists a mapping A : X → X? such
that for all x ∈ X

(DM1): ‖A(x)‖? = ‖x‖p−1;
(DM2): 〈A(x), x〉 = ‖A(x)‖?‖x‖.

Moreover, for all x, y ∈ X

〈A(x)−A(y), x− y〉 ≥
(
‖x‖p−1 − ‖y‖p−1

)
(‖x‖ − ‖y‖).

The functional x→ ‖x‖p

p
is Gâteaux differentiable with derivative A.

Let F : R → R be a locally Lipschitz, non-zero function such that F (0) = 0
and

(F ): there exist k > 0, q ∈]0, p − 1[ such that |ξ| ≤ k|s|q for all s ∈ R,
ξ ∈ ∂F (s).

Let b : Ω → R be a non-negative, not zero function such that

(b): b ∈ L1(Ω) ∩ L∞(Ω) ∩ Lν(Ω), where ν =
r

r − (q + 1)
.

The problem studied in this section is the following.
Find u0 ∈ X, λ > 0 such that

(Pλ) 〈A(u− u0), v〉+ λ

∫
Ω

b(x)F ◦(u(x);−v(x))dx ≥ 0 for all v ∈ X
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Our approach to problem (Pλ) is variational. Given u0 ∈ X and λ > 0, the
energy functional I : X → R associated to the problem (Pλ) is defined by

I(u) =
‖u− u0‖p

p
− λJ(u).

As in Proposition 4.6 follows that the critical points of I are solutions of the problem
(Pλ).

Let us define the functional J : X → R by

J(u) =
∫

Ω

b(x)F (u(x))dx

for all u ∈ X.

Lemma 5.2. The functional J is well-defined, locally Lipschitz, sequentially weakly
continuous and satisfies

J◦(u; v) ≤
∫

Ω

b(x)F ◦(u(x); v(x))dx for all u, v ∈ X.

Proof. In the same way as in Proposition 4.4 follows that J is locally Lipschitz and
from Proposition 4.5 follows the inequality. We prove now that J is sequentially
weakly continuous: let {un} be a sequence in X, weakly convergent to some ū ∈ X.
Due to condition (CE), there is a subsequence, still denoted by {un}, such that
‖un − ū‖r → 0; then, by well-known results, we may assume that un → ū a.e. in Ω
and there exists a positive function g ∈ Lr(Ω) such that |un(x)| ≤ g(x) for all n ∈ N
and almost all x ∈ Ω. By the Lebesgue Theorem, {J(un)} tends to J(ū). �

Before to prove the main result of this section we recall two results.

Theorem 5.3. ([60, Theorem 1 and Remark 1]) Let X be a topological space, Λ a
real interval, and f : X × Λ → R a function satisfying the following conditions:

(A1) for every x ∈ X, the function f(x, ·) is quasi-concave and continuous;
(A2) for every λ ∈ Λ, the function f(·, λ) is lower semicontinuous and each of

its local minima is a global minimum;
(A3) there exist ρ0 > supΛ infX f and λ0 ∈ Λ such that {x ∈ X : f(x, λ0) ≤

ρ0} is compact.

Then,

sup
Λ

inf
X
f = inf

X
sup
Λ
f.

Theorem 5.4. ([65, Theorem 2], [13, Lemma 1]) Let X be a uniformly convex Banach
space, with strictly convex topological dual, M a sequentially weakly closed, non-convex
subset of X.
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ALEXANDRU KRISTÁLY AND CSABA VARGA

Then, for any convex, dense subset S of X, there exists x0 ∈ S such that the set

{y ∈M : ‖y − x0‖ = d(x0,M)}

has at least two points.

The main result of this section is the following and appear in the paper of
Faraci, Iannizzotto, Lisei, and Varga [15].

Theorem 5.5. (Faraci-Iannizzotto-Lisei-Varga [15]) Let Ω ⊂ RN be an unbounded
domain with smooth boundary ∂Ω (N ≥ 2), p ∈]1, N [ be a real number, X be a sepa-
rable, uniformly convex Banach space with strictly convex topological dual, satisfying
(E). Let F : R → R be a locally Lipschitz, non-zero function satisfying F (0) = 0 and
(F ), b : Ω → R be a non-negative, not zero function satisfying (b).

Then, for every σ ∈] infX J, supX J [ and every u0 ∈ J−1(]−∞, σ[) one of the
following conditions is true:

(B1) there exists λ > 0 such that the problem (Pλ) has at least three solutions
in X;

(B2) there exists v ∈ J−1(σ) such that, for all u ∈ J−1([σ,+∞[), u 6= v,

‖u− u0‖ > ‖v − u0‖.

Proof. Fix σ and u0 as in the thesis, and assume that (B1) does not hold: we shall
prove that (B2) is true.

Putting Λ = [0,+∞[ and endowing X with the weak topology, we define the
function f : X × Λ → R by

f(u, λ) =
‖u− u0‖p

p
+ λ(σ − J(u)),

which satisfies all the hypotheses of Theorem 5.3. Indeed, conditions (A1), (A3) are
trivial.

In examining condition (A2), let λ ≥ 0 be fixed: we first observe that, by
Lemma 5.2, the functional f(·, λ) is sequentially weakly lower semicontinuous (l.s.c.).

Moreover, f(·, λ) is coercive: indeed, for all u ∈ X we have

f(u, λ) ≥ ‖u‖p

(
‖u− u0‖p

p ‖u‖p
− λ k cq+1

r ‖b‖ν‖u‖(q+1)−p

)
+ λσ,

and the latter goes to +∞ as ‖u‖ → +∞. As a consequence of the Eberlein-Smulyan
theorem, the outcome is that f(·, λ) is weakly l.s.c..

We need to check that every local minimum of f(·, λ) is a global minimum.
Arguing by contradiction, suppose that f(·, λ) admits a local, non global minimum;
besides, being coercive, it has a global minimum too, that is, it has two strong local
minima.
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We now prove that f(·, λ) fulfills the Palais-Smale condition: let {un} be a
sequence satisfying (PS1), (PS2). From (PS1), together with the coercivity of f(·, λ),
it follows that {un} is bounded, hence we can find a subsequence, which we still denote
{un}, weakly convergent to a point ū ∈ X. By condition (CE) we can choose {un}
to be convergent to ū with respect to the norm of Lr(Ω).

Fix ε > 0. As the sequence {εn} from (PS2) tends to 0, for n ∈ N big enough
we have

εn‖un − ū‖ < ε

2
,

so, from (PS2) and Lemma 5.2 it follows

0 ≤ f◦(un, λ; ū− un) +
ε

2

≤ 〈A(un − u0), ū− un〉+ λ

∫
Ω

b(x)F ◦(un(x);un(x)− ū(x))dx+
ε

2

(f◦(·, λ; ·) denotes the generalized directional derivative of the locally Lipschitz func-
tional f(·, λ)). Moreover, for n big enough∣∣∣∣∫

Ω

b(x)F ◦(un(x);un(x)− ū(x))dx
∣∣∣∣ ≤ k

∫
Ω

b(x)|un(x)|q|un(x)− ū(x)|dx

≤ k cqr‖b‖ν‖un‖q‖un − ū‖r <
ε

2λ
.

Hence

〈A(un − u0), un − ū〉 < ε

for n ∈ N big enough. On the other hand, 〈A(ū−u0), un − ū〉 tends to zero as n goes
to infinity. From the previous computations, it follows that

lim sup
n

〈A(un − u0)−A(ū− u0), un − ū〉 ≤ 0. (5.1)

Applying Lemma 5.1, we obtain that

〈A(un − u0)−A(ū− u0), un − ū〉

≥
(
‖un − u0‖p−1 − ‖ū− u0‖p−1

)
(‖un − u0‖ − ‖ū− u0‖) ≥ 0.

From the previous inequality and (5.1), we deduce that ‖un − u0‖ → ‖ū − u0‖ and
this, together with the weak convergence, implies that {un} tends to ū in X: that is,
the Palais-Smale condition is fulfilled.

Then, we can apply Theorem 2.20, deducing that f(·, λ) (or equivalently the
energy functional I) admits a third critical point: by Proposition 4.6, the inequal-
ity (Pλ) should have at least three solutions in X, against our assumption. Thus,
condition (A2) is fulfilled.
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Now Theorem 5.3 assures that

sup
λ∈Λ

inf
u∈X

f(u, λ) = inf
u∈X

sup
λ∈Λ

f(u, λ) =: α. (5.2)

Notice that the function λ→ infu∈X f(u, λ) is upper semicontinuous in Λ, and tends
to −∞ as λ → +∞ (since σ < supX J): hence, it attains its supremum in λ? ∈ Λ,
that is

α = inf
u∈X

(
‖u− u0‖p

p
+ λ?(σ − J(u))

)
. (5.3)

The infimum in the right hand side of (5.2) is easily determined as

α = inf
u∈J−1([σ,+∞[)

‖u− u0‖p

p
=
‖v − u0‖p

p

for some v ∈ J−1([σ,+∞[).
It is easily seen that v ∈ J−1(σ). Hence

α = inf
u∈J−1(σ)

‖u− u0‖p

p
(in particular α > 0). (5.4)

By (5.3) and (5.4) it follows that

inf
u∈X

(
‖u− u0‖p

p
− λ?J(u)

)
= inf

u∈J−1(σ)

(
‖u− u0‖p

p
− λ?J(u)

)
. (5.5)

We deduce that λ? > 0: if λ? = 0, indeed, (5.5) would become α = 0, against (5.4).
Now we can prove (B2). Arguing by contradiction, let w ∈ J−1([σ,+∞[)\{v}

be such that ‖w−u0‖ = ‖v−u0‖. As above, we have that w ∈ J−1(σ), and so both w
and v are global minima of the functional I (for λ = λ?) over J−1(σ), hence, by (5.5),
over X. Thus, applying Theorem 2.20, we obtain that I has at least three critical
points, against the assumption that (B1) does not hold (recall that λ? is positive).
This concludes the proof. �

In the next Corollary, the alternative of Theorem 5.5 is resolved, under a very
general assumption on the functional J , and so we are led to a multiplicity result for
the hemivariational inequality (Pλ) (for suitable data u0, λ).

Corollary 5.6. (Faraci-Iannizzotto-Lisei-Varga [15]) Let Ω, p, X, F , b be as in
Theorem 5.5 and let S be a convex, dense subset of X. Moreover, let J−1([σ,+∞[)
be not convex for some σ ∈] infX J, supX J [.
Then, there exist u0 ∈ J−1(] −∞, σ[) ∩ S and λ > 0 such that problem (Pλ) admits
at least three solutions in X.

Proof. Since J is sequentially weakly continuous (Lemma 5.2), the set M =
J−1([σ,+∞[) is sequentially weakly closed.
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By Theorem 5.4 we get that, for some u0 ∈ S, there exist two distinct points
v1, v2 ∈M satisfying

‖v1 − u0‖ = ‖v2 − u0‖ = dist(u0,M).

Clearly u0 /∈M , that is, J(u0) < σ. In the framework of Theorem 5.5, condition (B2)
is false, so (B1) must be true: there exists λ > 0 such that (Pλ) has at least three
solutions in X. �

6. Applications

6.1. Existence results for a particular hemivariational inequality. In this
subsection we give some concrete applications of Theorem 4.10. In the first two
examples we suppose that X is a Hilbert space with the inner product 〈·, ·〉.

Let f : RN ×R → R be a measurable function as in the section 4, i.e. satisfies
the conditions (F1), (F2), (F’2) and (F3)-(F5).

Application 1. We consider the function V ∈ C(RN ,R) which satisfies the
following conditions:

(a) V (x) > 0 for all x ∈ RN

(b) V (x) → +∞ as |x| → +∞.

Let X be the Hilbert space defined by

X = {u ∈ H1(RN ) :
∫

(|∇u(x)|2 + V (x)|u(x)|2)dx <∞},

with the inner product

〈u, v〉 =
∫

(∇u∇v + V (x)uv)dx.

It is well known that if the conditions (a) and (b) are fulfilled then the inclusion
X ↪→ L2(RN ) is compact, see [17], therefore the condition (CE) is satisfied.

Now we formulate the problem.
Find a positive u ∈ X such that for every v ∈ X we have∫

RN

(∇u∇v + V (x)uv)dx+
∫

RN

F 0
2 (x, u(x);−v(x))dx ≥ 0. (6.1)

We have the following result.

Corollary 6.1. 1. If conditions (F1)-(F5) and (a)-(b) hold, then problem
(6.1) has a nontrivial positive solution.

2. If conditions (F1),(F2’), (F3), (F4) and (a)-(b) hold, then problem (6.1)
has a nontrivial positive solution.
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Proof. We replace the function f by f+ : RN × R → R defined by

f+(x, u) =

f(x, u) if u ≥ 0;

0, if u < 0
(6.2)

and use (2) in Theorem 4.10. �

Application 2. Now, we consider Au := −4 u+ |x|2u for u ∈ D(A), where

D(A) := {u ∈ L2(RN ) : Au ∈ L2(RN )}.

Here | · | denotes the Euclidian norm of RN . In this case the Hilbert space X is defined
by

X = { u ∈ L2(RN ) :
∫

RN

(|∇u|2 + |x|2u2)dx <∞},

with the inner product

〈u, v〉 =
∫

RN

(∇u∇v + |x|2uv)dx.

The inclusion X ↪→ Ls(RN ) is compact for s ∈ [2, 2N
N−2 ), see Kavian [21, Exercise 20,

pp. 278]. Therefore, the condition (CE) is satisfied.
Now, we formulate the next problem.
Find a positive u ∈ X such that for every v ∈ X we have∫

RN

(∇u∇v + |x|2uv)dx+
∫

RN

F 0
2 (x, u(x);−v(x))dx ≥ 0. (6.3)

Corollary 6.2. 1. If conditions (F1)-(F5) hold, then problem (6.3) has a
positive solution.

2. If conditions (F1),(F2’), (F3), and (F4) hold, then problem (6.3) has a
positive solution.

Application 3. In this example we suppose that G is a subgroup of the
group O(N). Let Ω be an unbounded domain in RN with smooth boundary ∂Ω, and
the elements of G leave Ω invariant, i.e. g(Ω) = Ω for every g ∈ G. We suppose that
Ω is compatible with G, see the book of Willem [67, Definition 1.22]. The action of
G on X = W 1,p

0 (Ω) is defined by

gu(x) := u(g−1x).

The subspace of invariant function XG is defined by

XG := {u ∈ X : gu = u, ∀g ∈ G }.

The norm on X is defined by

‖u‖ =
(∫

Ω

(|∇u|p + |u|p)dx
)1/p

.
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If Ω is compatible with G, then the embeddings X ↪→ Ls(Ω), with p < s < p? are
compact, see the paper of Kobayashi and Otani [22]. Therefore the condition (CEG)
is satisfied.

We consider the potential a : X → R defined by a(u) = 1
p‖u‖

p. This function
is G-invariant because the action of G is isometric on X. The Gateaux differential
A : X → X? of the function a : X → R is given by

〈Au, v〉 =
∫

Ω

(
|∇u|p−2∇u∇v + |u|p−2uv

)
dx.

The operator A is homogeneous of degree p−1 and strongly monotone, because p ≥ 2.
Now, we formulate the following problem.
Find u ∈ X \ {0} such that for every v ∈ X we have∫

Ω

(
|∇u|p−2∇u∇v + |u|p−2uv

)
dx+

∫
Ω

F 0
2 (x, u(x);−v(x))dx ≥ 0. (6.4)

We have the following result.

Corollary 6.3. (a) If conditions (F1)-(F6) are fulfilled, then problem (6.4)
has a nontrivial symmetric solution.

(b) If conditions (F1), (F2’), (F3), (F4) and (F6) are fulfilled, then problem
(6.4) has a nontrivial symmetric solution.

6.2. Multiplicity results for some hemivariational inequalities. In this sub-
section we state a multiplicity result for a particular hemivariational inequality as
application of Corollary 5.6. Let Ω ⊂ RN (N ≥ 2) be an unbounded domain with
smooth boundary ∂Ω, p ∈]1, N [ be a real number. As in Section 5, let F : R → R be
a locally Lipschitz, non-zero function such that F (0) = 0 and

(F ): there exist k > 0, q ∈]0, p − 1[ such that |ξ| ≤ k|s|q for all s ∈ R,
ξ ∈ ∂F (s).

Let b : Ω → R be a non-negative, not zero function such that

(b): b ∈ L1(Ω) ∩ L∞(Ω) ∩ Lν(Ω), where ν =
r

r − (q + 1)
.

We suppose that F is not a quasi-concave function, that is:

(C): there exists ρ ∈] infR F, supR F [ such that F−1([ρ,+∞[) is not convex.

6.2.1. First application. Let V : Ω → R be a continuous potential satisfying the
following conditions:

(V1) infΩ V > 0;
(V2) for every M > 0 the set {x ∈ Ω : V (x) ≤M} has finite Lebesgue measure
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(note that in particular, condition (V2) is fulfilled whenever V is coercive). We intro-
duce the space

X =
{
u ∈W 1,p(Ω) :

∫
Ω

(|∇u(x)|p + V (x)|u(x)|p)dx <∞
}

endowed with the norm

‖u‖ =
(∫

Ω

(|∇u(x)|p + V (x)|u(x)|p)dx
) 1

p

.

With the definitions above, for all u0 ∈ X, λ > 0, our problem (Pλ) reads as follows:∫
Ω

(|∇(u(x)− u0(x))|p−2∇(u(x)− u0(x)) · ∇v(x)

+V (x)|u(x)− u0(x)|p−2(u(x)− u0(x))v(x))dx

+λ
∫

Ω

b(x)F ◦(u(x);−v(x))dx ≥ 0 for all v ∈ X.

We can state the following multiplicity result:

Corollary 6.4. Let Ω, p, V , X be as above; F , b be as in Theorem 5.5 (with ν =
p/(p− (q+1)) in condition (b)); S be a convex, dense subset of X. Moreover, assume
that condition (C) is satisfied. Then, there exist u0 ∈ S and λ > 0 such that the
problem (Pλ) admits at least three solutions in X.

Proof. We observe that X is a separable, uniformly convex Banach space with strictly
convex topological dual, and that C∞c (Ω) ⊂ X; moreover, the conditions (V1), (V2)
guarantee that the space X is compactly embedded in Lp(Ω) (see [4] for the case
p = 2), so condition (E) is satisfied with r = p. Since b is not zero, there exist a point
x0 ∈ Ω and R > 0 such that

b1 =
∫

B

b(x)dx > 0,

where B is the open ball centered in x0 with radius R, contained in Ω.
By condition (C), we can assume, without loss of generality, that there exist

real numbers s1 < s2 < s3 such that F (s1), F (s3) > ρ, F (s2) < ρ. Now we prove that
the functional J admits a non-convex superlevel set. Choose ε > 0, R1 > R with

‖b‖∞Mmeas(A) < ε < b1|F (si)− ρ| (i = 1, 2, 3),

where A = {x ∈ Ω : R < |x− x0| < R1} and M = max{|F (t)| : |t| ≤ |si|, i = 1, 2, 3}.
There exists u1 ∈ C∞c (Ω) such that

u1(x) =

{
s1 if x ∈ B
0 if x ∈ Ω \ (A ∪B)
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and ‖u1‖∞ = |s1|; define, also, u2, u3 ∈ C∞c (Ω) by putting u2 = (s2/s1)u1, u3 =
(s3/s1)u1 (we assume s1 6= 0). Thus,

J(u1) =
∫

B

b(x)F (s1)dx+
∫

A

b(x)F (u1(x))dx

≥ b1F (s1)−M‖b‖∞meas(A)

≥ b1F (s1)− ε

> b1ρ.

Analogously, we get

J(u2) < b1ρ, J(u3) > b1ρ.

Then, since u2 lies on the segment joining u1 and u3, it is proved that J−1([b1ρ,+∞[)
is not convex. An application of Corollary 5.6 yields the existence of a function
u0 ∈ J−1(]−∞, b1ρ[)∩ S and λ > 0 such that (Pλ) has at least three solutions in X.
�

Example 6.5. In this example we prove the existence of a continuous function g :
RN → R and a positive λ such that the equation

(Eλ) −∆u+ V (x)u = λb(x)H(u− 1)(lnu− 1) + g(x) in RN

(where V is a positive and coercive potential and H is the Heaviside function) admits
at least three solutions in H2(RN ) More precisely, let V : RN → R be a continuous,
positive and coercive function, X be as above with p = 2 < N , b be as in Theorem
5.5. Recall that the Heaviside function H : R → R is defined by

H(s) =

{
0 if s ≤ 0
1 if s > 0

,

and put

f(s) = H(s− 1)(ln s− 1) for all s ∈ R

(with obvious meaning for s ≤ 0). We denote, for all s ∈ R,

f−(s) = lim
δ→0+

inf
|t−s|<δ

f(t), f+(s) = lim
δ→0+

sup
|t−s|<δ

f(t).

Following Chang [9], for all continuous g : RN → R and λ > 0, by a weak solution of
(Eλ) we mean a function u ∈ H2(RN ) such that, for almost every x ∈ RN ,

−∆u(x) + V (x)u(x) ∈ g(x) + λb(x)[f−(u(x)), f+(u(x))]. (6.5)

It is easily seen that the function F : R → R defined by

F (s) =
∫ s

0

f(t)dt
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is locally Lipschitz and satisfies the condition (F ) with arbitrary q ∈]0, 1[ for k big
enough; moreover, for all ρ ∈]2−e, 0] the set F−1([ρ,+∞[) is not convex, so condition
(C) is fulfilled. Taking S = C∞c (RN ), we can apply Corollary 6.4: thus, we find u0 ∈ S
and λ > 0 such that the hemivariational inequality∫

RN

(∇(u(x)− u0(x)) · ∇v(x) + V (x)(u(x)− u0(x))v(x)) dx+

+λ
∫

RN

b(x)F ◦(u(x);−v(x))dx ≥ 0 for all v ∈ X

admits at least three solutions in X. Let u be one of these: by standard regularity
results, we get u ∈ H1

0 (RN )∩H2(RN ); arguing as in [9], we find that u satisfies (6.5)
with

g(x) = −∆u0(x) + V (x)u0(x) for all x ∈ RN .

Thus, (Eλ) has at least three weak solutions.

6.2.2. Second application. Here we give an application of Corollary 5.6 combined with
the Principle of Symmetric Criticality for locally Lipschitz functions. Let Ω be an
unbounded domain in RN (N > 2) with smooth boundary, such that 0 ∈ Ω, and G

be a closed subgroup of O(N) which leaves Ω invariant, i.e. g(Ω) = Ω for all g ∈ G.
We assume that Ω is compatible with G, that is, there exists r > 0 such that

m(x, r,G) →∞ as dist(x,Ω) ≤ r, |x| → ∞,

where

m(x, r,G) = sup {n ∈ N : ∃ g1, g2, · · · gn ∈ G s.t. B(gix, r) ∩B(gjx, r) = ∅ if i 6= j} .

We consider the space X = W 1,p
0 (Ω) endowed with the norm

‖u‖ =
(∫

Ω

(|∇u(x)|p + |u(x)|p)dx
) 1

p

.

Our problem is the following: For u0 ∈ X, λ > 0, find u ∈ X such that∫
Ω

(|∇(u(x)− u0(x))|p−2∇(u(x)− u0(x)) · ∇v(x)

+|u(x)− u0(x)|p−2(u(x)− u0(x))v(x))dx

+λ
∫

Ω

b(x)F ◦(u(x);−v(x))dx ≥ 0 for all v ∈ X.

We define the action of the group G over the space X as follows:

gu(x) = u(g−1x) for all g ∈ G, u ∈ X,x ∈ Ω.

We observe that G acts linearly and isometrically on X, i.e., the action G×X → X

which maps (g, u) into gu is continuous and, for every g ∈ G, the map u → gu is
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linear and ||gu|| = ||u|| for every u ∈ X. The group G induces an action of the same
type on the dual space X? defined by 〈gu?, u〉 = 〈u?, g−1u〉 for every g ∈ G, u ∈ X

and u? ∈ X?.

We introduce the set

XG = {u ∈ X : gu = u for all g ∈ G}

of the fixed points of X under the action of G, and observe that XG is a Banach space
(which inherits all the properties of X), whose dual coincides with the fixed point set
of X? under the action of G, denoted (XG)?. From [22, Proposition 4.2], follows that
XG is compactly embedded in Lr(Ω) for all r ∈]p, p?[.

We have the following result.

Corollary 6.6. Let Ω, p, X, G be as above, S be a convex, dense subset of XG.
Let F be as in Theorem 5.5 and satisfying condition (C). Also, let b : Ω → R be
a non-negative, G-invariant function (that is, b(gx) = b(x) for all g ∈ G, x ∈ Ω)
satisfying condition (b) and such that∫

B

b(x)dx > 0 (B = B(0, R) for some R > 0 small enough).

Then, there exist u0 ∈ S and λ > 0 such that the problem (Pλ) admits at least three
solutions lying in XG.

Proof. We are going to apply Corollary 5.6 to the space XG and to the functional
J |XG : first, we note that XG is separable and uniformly convex, and that (XG)?

is strictly convex (as a subspace of X?); moreover, the space XG satisfies condition
(CEG) for any r ∈]p, p?[.

In order to see that J |XG admits a non-convex superlevel set, we argue as
in the proof of Corollary 6.4, putting x0 = 0 and choosing the functions u1, u2, u3 ∈
C∞c (Ω) radially symmetric (so, in particular, lying in XG).

Thus, by Corollary 5.6 , there exist u0 ∈ S and λ > 0 such that the energy
functional I|XG has at least three critical points in XG.

Now we prove that I is G-invariant onX. Let g ∈ G and u ∈ X; recalling that
u0 ∈ XG, G acts isometrically over X and b is G-invariant, we obtain the following
equalities:

I(gu) =
1
p
‖gu− u0‖p −

∫
Ω

b(x)F (gu(x))dx

=
1
p
‖g(u− u0)‖p −

∫
Ω

b(x)F (u(g−1x))dx

=
1
p
‖u− u0‖p −

∫
Ω

b(y)F (u(y))dy = I(u).
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Then, applying Theorem 6.13, we deduce that the critical points of I|XG are actually
critical points of I. We can conclude that problem (Pλ) has at least three symmetric
solutions. �

Next we give an example, in order to highlight the generality of our hypothe-
ses:

Example 6.7. Put N = 3 and define the unbounded domain

Ω = {(x1, x2, x3) ∈ R3 : |x3| < x2
1 + x2

2 + 1}.

Then, consider the closed subgroup of O(3) defined by G = O(2)×{id}, whose action
on X = W 1,p

0 (Ω) (1 < p < N) is expressed as follows: for all g = (g̃, id) ∈ G, and for
all u ∈ X, (x1, x2, x3) ∈ Ω we set

gu(x1, x2, x3) = u(g̃−1(x1, x2), x3).

It is easily seen that Ω is G-invariant and compatible with G, and that the subspace
XG of the fixed points of X under the action of G is the set of all u ∈ X with a
cylindric symmetry, that is,

u(x1, x2, x3) = u(y1, y2, x3) if x2
1 + x2

2 = y2
1 + y2

1 .

Let q ∈]0, p− 1[ be a real number, F : R → R be defined by

F (s) = 1−
∣∣|s|q+1 − 1

∣∣ for all s ∈ R.

It is easily seen that F is a locally Lipschitz function, satisfying F (0) = 0 and condi-
tions (F ) (with k = q + 1) and (C) (for all ρ ∈]0, 1]).

Moreover, we consider a non-negative function b : Ω → R, having a cylin-
dric symmetry and satisfying condition (b) and we assume that b is positive in a
neighborhood of 0.

In such a setting, Corollary 6.6 applies: thus, there exist u0 ∈ XG, λ > 0 such
that the hemivariational inequality (Pλ) admits at least three solutions, and each of
them has a cylindric symmetry.

6.3. Some differential inclusion problems in RN . In this subsection we give
two applications for some differential inclusions problems. The first application is a
differential inclusion problem with two parameters. This result appears in the paper
of Kristály, Marzantowicz and Varga [28].

Let p > 2 and F : R → R be a locally Lipschitz function such that

(F̃1) lim
t→0

max{|ξ| : ξ ∈ ∂F (t)}
|t|p−1 = 0;

(F̃2) lim sup
|t|→+∞

F (t)
|t|p

≤ 0;
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(F̃3) There exists t̃ ∈ R such that F (t̃) > 0, and F (0) = 0.
Here we study the differential inclusion problem

(P̃λ,µ)

{
−4pu+ |u|p−2u ∈ λα(x)∂F (u(x)) + µβ(x)∂G(u(x)) on RN ,

u(x) → 0 as |x| → ∞,

where p > N ≥ 2, the numbers λ, µ are positive, and G : R → R is any locally
Lipschitz function. Furthermore, we assume that β ∈ L1(RN ) is any function, and
(α̃) α ∈ L1(RN ) ∩ L∞loc(RN ), α ≥ 0, and supR>0 essinf |x|≤Rα(x) > 0.

The functional space where our solutions are going to be sought is the usual
Sobolev space W 1,p(RN ), endowed with the norm

‖u‖ =
(∫

RN

|∇u(x)|p +
∫

RN

|u(x)|p
)1/p

.

Definition 6.8. We say that u ∈ W 1,p(RN ) is a solution of problem (P̃λ,µ), if there
exist ξF (x) ∈ ∂F (u(x)) and ξG(x) ∈ ∂G(u(x)) for almost every x ∈ RN such that for
all v ∈W 1,p(RN ) we have∫

RN

(|∇u|p−2∇u∇v + |u|p−2uv)dx = λ

∫
RN

α(x)ξF vdx+ µ

∫
RN

β(x)ξGvdx. (6.6)

Remark 6.9. (a) The terms in the right hand side of (6.6) are well-defined. Indeed,
due to Morrey’s embedding theorem, i.e., W 1,p(RN ) ↪→ L∞(RN ) is continuous (p >
N), we have u ∈ L∞(RN ). Thus, there exists a compact interval I ⊂ R such that
u(x) ∈ I for a.e. x ∈ RN . Since the set-valued mapping ∂F is upper-semicontinuous,
the set ∂F (I) ⊂ R is bounded; let CF = sup |∂F (I)|. Therefore,

|
∫

RN

α(x)ξF vdx| ≤ CF ‖α‖L1‖v‖∞ <∞.

Similar argument holds for the function G.
(b) Since p > N , any element u ∈ W 1,p(RN ) is homoclinic, i.e., u(x) → 0 as

|x| → ∞, see Brézis [7, Théorème IX.12].

Remark 6.10. An upper bound for the embedding constant c∞ of W 1,p(RN ) ↪→
L∞(RN ), is 2p(p−N)−1 (see [7]), i.e. c∞ ≤ 2p(p−N)−1.

Remark 6.11. Every function u ∈ W 1,p(RN ) (p > N) admits a continuous repre-
sentation, see [7, p. 166]; in the sequel, we will replace u by this element.

Note that no hypothesis on the growth of G is assumed; therefore, the last
term in (P̃λ,µ) may have an arbitrary growth. However, assumption (α̃) together
with (F̃3) guarantee the existence of non-trivial solutions for (P̃λ,µ). The embedding
W 1,p(RN ) ↪→ L∞(RN ) is continuous (due to Morrey’s theorem (p > N)), bit it is not
compact. We overcome this gap by introducing the subspace of radially symmetric
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functions of W 1,p(RN ). The action of the orthogonal group O(N) on W 1,p(RN ) can
be defined by (gu)(x) = u(g−1x), for every g ∈ O(N), u ∈ W 1,p(RN ), x ∈ RN . It
is clear that this group acts linearly and isometrically; in particular ‖gu‖ = ‖u‖ for
every g ∈ O(N) and u ∈W 1,p(RN ).

We denote by

W 1,p
rad(RN ) = {u ∈W 1,p(RN ) : gu = u for all g ∈ O(N)},

the subspace of radially symmetric functions of W 1,p(RN ).
We have the following result, which is contained in the paper of Kristály [30].

Proposition 6.12. ( Kristály [30] ) The embedding W 1,p
rad(RN ) ↪→ L∞(RN ) is compact

whenever 2 ≤ N < p <∞.

Proof. Let un be a bounded sequence in W 1,p
rad(RN ). Up to a subsequence, un ⇀ u in

W 1,p
rad(RN ) for some u ∈W 1,p

rad(RN ). Let ρ > 0 be an arbitrarily fixed number. Due to
the radially symmetric properties of u and un, we have

‖un − u‖W 1,p(BN (g1y,ρ)) = ‖un − u‖W 1,p(BN (g2y,ρ)) (6.7)

for every g1, g2 ∈ O(N) and y ∈ RN . For a fixed y ∈ RN , we can define

m(y, ρ) = sup{n ∈ N : ∃gi ∈ O(N), i ∈ {1, ..., n} such that

BN (giy, ρ) ∩BN (gjy, ρ) = ∅, ∀ i 6= j}.

By virtue of (6.7), for every y ∈ RN and n ∈ N, we have

‖un − u‖W 1,p(BN (y,ρ)) ≤
‖un − u‖W 1,p

m(y, ρ)
≤

supn∈N ‖un‖W1,p + ‖u‖W 1,p

m(y, ρ)
.

The right hand side does not depend on n, and m(y, ρ) → +∞ whenever |y| → +∞
(ρ is kept fixed, and N ≥ 2). Thus, for every ε > 0 there exists Rε > 0 such that for
every y ∈ RN with |y| ≥ Rε one has

‖un − u‖W 1,p(BN (y,ρ)) < ε(2Sρ)−1 for every n ∈ N, (6.8)

where Sρ > 0 is the embedding constant of W 1,p(BN (0, ρ)) ↪→ C0(BN [0, ρ]). More-
over, we observe that the embedding constant for W 1,p(BN (y, ρ)) ↪→ C0(BN [y, ρ])
can be chosen Sρ as well, independent of the position of the point y ∈ RN . This fact
can be concluded either by a simple translation of the functions u ∈ W 1,p(BN (y, ρ))
into BN (0, ρ), i.e. ũ(·) = u(· − y) ∈ W 1,p(BN (0, ρ)) (thus ‖u‖W 1,p(BN (y,ρ)) =
‖ũ‖W 1,p(BN (0,ρ)) and ‖u‖C0(BN [y,ρ]) = ‖ũ‖C0(BN [0,ρ])); or, by the invariance with re-
spect to rigid motions of the cone property of the balls BN (y, ρ) when ρ is kept fixed.
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Thus, in view of (6.8), one has that

sup
|y|≥Rε

‖un − u‖C0(BN [y,ρ]) ≤ ε/2 for every n ∈ N. (6.9)

On the other hand, since un ⇀ u in W 1,p
rad(RN ), then in particular, by Rellich theorem

it follows that un → u in C0(BN [0, Rε]), i.e., there exists nε ∈ N such that

‖un − u‖C0(BN [0,Rε]) < ε for every n ≥ nε. (6.10)

Combining (6.9) with (6.10), one concludes that ‖un − u‖L∞ < ε for every n ≥ nε,

i.e., un → u in L∞(RN ). This ends the proof. �

An alternate proof of Proposition 6.12. Lions [34, Lemme II.1] provided us with
a Strauss-type estimation (see [63]) for radially symmetric functions of W 1,p(RN );
namely, for every u ∈W 1,p

rad(RN ) we have

|u(x)| ≤ p1/p(AreaSN−1)−1/p‖u‖W 1,p |x|(1−N)/p, x 6= 0, (6.11)

where SN−1 is the N -dimensional unit sphere.
Now, let {un} be a sequence in W 1,p

rad(RN ) which converges weakly to some
u ∈W 1,p

rad(RN ). By applying inequality (6.11) for un−u, and taking into account that
‖un − u‖W 1,p is bounded, and N ≥ 2, then for every ε > 0 there exists Rε > 0 such
that

‖un − u‖L∞(|x|≥Rε) ≤ C|Rε|(1−N)/p < ε, ∀n ∈ N,

where C > 0 does not depend on n. The rest is similar as above. �

Let Φ1,Φ2 : L∞(RN ) → R be defined by

Φ1(u) = −
∫

RN

α(x)F (u(x))dx and Φ2(u) = −
∫

RN

β(x)G(u(x))dx.

Since α, β ∈ L1(RN ), the functionals Φ1,Φ2 are well-defined and locally Lipschitz,
see Clarke [10, p. 79-81]. Moreover, we have

∂Φ1(u) ⊆ −
∫

RN

α(x)∂F (u(x))dx, ∂Φ2(u) ⊆ −
∫

RN

β(x)∂G(u(x))dx.

The energy functional Eλ,µ : W 1,p(RN ) → R associated to problem (P̃λ,µ), is given by

Eλ,µ(u) =
1
p
‖u‖p + λΦ1(u) + µΦ2(u), u ∈W 1,p(RN ).

It is clear that the critical points of the functional Eλ,µ are solutions of the problem
(P̃λ,µ) in the sense of Definition 6.8.

Since α, β are radially symmetric, then Eλ,µ is O(N)-invariant, i.e. Eλ,µ(gu) =
Eλ,µ(u) for every g ∈ O(N) and u ∈W 1,p(RN ). Therefore, we may apply a non-smooth
version of the principle of symmetric criticality, proved by Krawcewicz-Marzantowicz
[25], for locally Lipschitz functions, see Remark 3.9.
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Proposition 6.13. Any critical point of Erad
λ,µ = Eλ,µ|W 1,p

rad (RN ) will be also a critical
point of Eλ,µ.

In the proof of the main result we use, the following result.

Proposition 6.14. limt→0+
inf{Φ1(u): u∈W 1,p

rad (RN ), ‖u‖p<pt}
t = 0.

Proof. Due to (F̃1), for every ε > 0 there exists δ(ε) > 0 such that

|ξ| ≤ ε|t|p−1, ∀t ∈ [−δ(ε), δ(ε)], ∀ξ ∈ ∂F (t). (6.12)

For any 0 < t ≤ 1
p

(
δ(ε)
c∞

)p

define the set

St = { u ∈W 1,p
rad(RN ) : ‖u‖p < pt},

where c∞ > 0 denotes the best constant in the embedding W 1,p(RN ) ↪→ L∞(RN ).
Note that u ∈ St implies that ‖u‖∞ ≤ δ(ε); indeed, we have ‖u‖∞ ≤ c∞‖u‖ <

c∞(pt)1/p ≤ δ(ε). Fix u ∈ St; for a.e. x ∈ RN , Lebourg’s mean value theorem and
(6.12) imply the existence of ξx ∈ ∂F (θxu(x)) for some 0 < θx < 1 such that

F (u(x)) = F (u(x))− F (0) = ξxu(x) ≤ |ξx| · |u(x)| ≤ ε|u(x)|p.

Consequently, for every u ∈ St we have

Φ1(u) = −
∫

RN

α(x)F (u(x))dx ≥ −ε
∫

RN

α(x)|u(x)|pdx

≥ −ε‖α‖L1‖u‖p
∞ ≥ −ε‖α‖L1cp∞‖u‖p

≥ −ε‖α‖L1cp∞pt.

Therefore, for every 0 < t ≤ 1
p

(
δ(ε)
c∞

)p

we have

0 ≥ infu∈St Φ1(u)
t

≥ −ε‖α‖L1cp∞p.

Since ε > 0 is arbitrary, we obtain the required limit. �

The main result of this subsection appear in the paper Kristály, Marzantowicz
and Varga [28].

Theorem 6.15. (Kristály-Marzantowicz-Varga [28]) Assume that p > N ≥ 2. Let
α, β ∈ L1(RN ) be two radial functions, α fulfilling (α̃), and let F,G : R → R be two
locally Lipschitz functions, F satisfying the conditions (F̃1)-(F̃3).Then there exists a
non-degenerate compact interval [a, b] ⊂]0,+∞[ and a number r̃ > 0, such that for
every λ ∈ [a, b] there exists µ0 ∈]0, λ + 1] such that for each µ ∈ [0, µ0], the problem
(P̃λ,µ) has at least three distinct, radially symmetric solutions with L∞-norms less
than r̃.
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Proof. We are going to apply Theorem 2.30 by choosing X = W 1,p
rad(RN ), X̃1 = X̃2 =

L∞(RN ), Λ = [0,+∞), h(t) = tp/p, t ≥ 0.
Fix g ∈ Gτ (τ ≥ 0), λ ∈ Λ, µ ∈ [0, λ + 1], and c ∈ R. We prove that the

functional Eλ,µ : W 1,p
rad(RN ) → R given by

Eλ,µ(u) =
1
p
‖u‖p + λΦ1(u) + µ(g ◦ Φ2)(u), u ∈W 1,p

rad(RN ),

satisfies the (PS)c condition.
Note first that the function 1

p‖ · ‖
p + λΦ1 is coercive on W 1,p

rad(RN ). To prove
this, let 0 < ε < (p‖α‖1c

p
∞λ)−1. Then, on account of (F̃2), there exists δ(ε) > 0 such

that

F (t) ≤ ε|t|p, ∀|t| > δ(ε).

Consequently, for every u ∈W 1,p
rad(RN ) we have

Φ1(u) = −
∫

RN

α(x)F (u(x))dx

= −
∫
{x∈RN :|u(x)|>δ(ε)}

α(x)F (u(x))dx−
∫
{x∈RN :|u(x)|≤δ(ε)}

α(x)F (u(x))dx

≥ −ε
∫
{x∈RN :|u(x)|>δ(ε)}

α(x)|u(x)|pdx− max
|t|≤δ(ε)

|F (t)|
∫
{x∈RN :|u(x)|≤δ(ε)}

α(x)dx

≥ −ε‖α‖L1cp∞‖u‖p − ‖α‖L1 max
|t|≤δ(ε)

|F (t)|.

Now, we have

1
p
‖u‖p + λΦ1(u) ≥

(
1
p
− ελ‖α‖L1cp∞

)
‖u‖p − λ‖α‖L1 max

|t|≤δ(ε)
|F (t)|,

which clearly implies the coercivity of 1
p‖ · ‖

p + λΦ1.
As an immediate consequence, the functional Eλ,µ is also coercive on

W 1,p
rad(RN ). Therefore, it is enough to consider a bounded sequence {un} ⊂W 1,p

rad(RN )
such that

E◦λ,µ(un; v − un) ≥ −εn‖v − un‖ for all v ∈W 1,p
rad(RN ), (6.13)

where {εn} is a positive sequence such that εn → 0. Since the sequence {un} is
bounded in W 1,p

rad(RN ), one can find an element u ∈ W 1,p
rad(RN ) such that un ⇀ u

weakly in W 1,p
rad(RN ), and un → u strongly in L∞(RN ), due to Proposition 6.12.

Due to Proposition 2.3 for every u, v ∈W 1,p
rad(RN ) we have

E◦λ,µ(u; v) ≤
∫

RN

(|∇u|p−2∇u∇v + |u|p−2uv) + λΦ◦1(u; v) + µ(g ◦ Φ2)◦(u; v). (6.14)
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Put v = u in (6.13) and apply relation (6.14) for the pairs (u, v) = (un, u−un)
and (u, v) = (u, un − u), we have that

In ≤ εn‖u− un‖ − E◦λ,µ(u;un − u) + λ[Φ◦1(un;u− un) + Φ◦1(u;un − u)]

+µ[(g ◦ Φ2)◦(un;u− un) + (g ◦ Φ2)◦(u;un − u)],

where

In
not.=

∫
RN

(|∇un|p−2∇un − |∇u|p−2∇u)(∇un −∇u)

+
∫

RN

(|un|p−2un − |u|p−2u)(un − u).

Since {un} is bounded in W 1,p
rad(RN ), we have that limn→∞ εn‖u − un‖ = 0. Fixing

z∗ ∈ ∂E◦λ,µ(u) arbitrarily, we have 〈z∗, un−u〉 ≤ E◦λ,µ(u;un−u). Since un ⇀ u weakly
in W 1,p

rad(RN ), we have that lim infn→∞E◦λ,µ(u;un−u) ≥ 0. The functions Φ◦1(·; ·) and
(g ◦Φ2)◦(·; ·) are upper semicontinuous functions on L∞(RN ). Since un → u strongly
in L∞(RN ), the upper limit of the last four terms is less or equal than 0 as n →∞,
see Proposition 2.3 (f4).
Consequently,

lim sup
n→∞

In ≤ 0. (6.15)

Since |t − s|p ≤ (|t|p−2t − |s|p−2s)(t − s) for every t, s ∈ Rm (m ∈ N) we infer that
‖un−u‖p ≤ In. The last inequality combined with (6.15) leads to the fact that un → u

strongly in W 1,p
rad(RN ), as claimed.

It remains to prove relation (2.53) from Theorem 2.30. First, we construct
the function u0 ∈W 1,p

rad(RN ) such that Φ1(u0) < 0.
On account of (α̃), one can fix R > 0 such that αR = essinf |x|≤Rα(x) > 0.

For σ ∈]0, 1[ define the function

wσ(x) =


0, if x ∈ RN \BN (0, R);
t̃, if x ∈ BN (0, σR);

t̃
R(1−σ) (R− |x|), if x ∈ BN (0, R) \BN (0, σR),

where BN (0, r) denotes the N−dimensional open ball with center 0 and radius r > 0,
and t̃ comes from (F̃3). Since α ∈ L∞loc(RN ), then M(α,R) = supx∈BN (0,R) α(x) <∞.

A simple estimate shows that

−Φ1(wσ) ≥ ωNR
N [αRF (t̃)σN −M(α,R) max

|t|≤|t̃|
|F (t)|(1− σN )].

When σ → 1, the right hand side is strictly positive; choosing σ0 close enough to 1,
for u0 = wσ0 we have Φ1(u0) < 0.
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Let us define the function for every t > 0 by

β(t) = inf{Φ1(u) : u ∈W 1,p
rad(RN ),

‖u‖p

p
< t}.

We have that β(t) ≤ 0, for t > 0, and Proposition 6.14 yields that

lim
t→0+

β(t)
t

= 0. (6.16)

We consider the u0 ∈ W 1,p
rad(RN ), for wchich Φ1(u0) < 0. Therefore it is possible to

choose a number η > 0 such that

0 < η < −Φ1(u0)
[
‖u0‖p

p

]−1

.

By (6.16) we get the existence of a number t0 ∈ (0, ‖u0‖p

p ) such that −β(t0) < ηt0.
Thus

β(t0) >
[
‖u0‖p

p

]−1

Φ1(u0)t0. (6.17)

Due to the choice of t0 and using (6.17), we conclude that there exists ρ0 > 0 such
that

−β(t0) < ρ0 < −Φ1(u0)
[
‖u0‖p

p

]−1

t0 < −Φ1(u0). (6.18)

Define now the function ϕ : W 1,p
rad(RN )× I → R by

ϕ(u, λ) =
‖u‖p

p
+ λΦ1(u) + λρ0,

where I = [0,+∞). We prove that the function ϕ satisfies the inequality

sup
λ∈I

inf
u∈W 1,p

rad (RN ))
ϕ(u, λ) < inf

u∈W 1,p
rad (RN )

sup
λ∈I

ϕ(u, λ). (6.19)

The function

I 3 λ 7→ inf
u∈W 1,p

rad (RN )

[
‖u‖p

p
+ λ(ρ0 + Φ1(u))

]
is obviously upper semicontinuous on I. It follows from (6.18) that

lim
λ→+∞

inf
u∈W 1,p

rad (RN )
ϕ(u, λ) ≤ lim

λ→+∞

[
‖u0‖p

p
+ λ(ρ0 + Φ1(u0))

]
= −∞.

Thus we find an element λ ∈ I such that

sup
λ∈I

inf
u∈W 1,p

rad (RN )
ϕ(u, λ) = inf

u∈W 1,p
rad (RN )

[
‖u‖p

p
+ λ(ρ0 + Φ1(u))

]
. (6.20)
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Since −β(t0) < ρ0, it follows from the definition of β that for all u ∈W 1,p
rad(RN ) with

‖u‖p

p < t0 we have −Φ1(u) < ρ0. Hence

t0 ≤ inf{‖u‖
p

p
: u ∈W 1,p

rad(RN ), −Φ1(u) ≥ ρ0 }. (6.21)

On the other hand,

inf
u∈W 1,p

rad (RN )
sup
λ∈I

ϕ(u, λ) = inf
u∈W 1,p

rad (RN )

[
‖u‖p

p
+ sup

λ∈I
(λ(ρ0 + Φ1(u)))

]
= inf

u∈W 1,p
rad (RN )

{
‖u‖p

p
: −Φ1(u) ≥ ρ0

}
.

Thus inequality (6.21) is equivalent to

t0 ≤ inf
u∈W 1,p

rad (RN )
sup
λ∈I

ϕ(u, λ). (6.22)

We consider two cases. First, when 0 ≤ λ < t0
ρ0

, then we have that

inf
u∈W 1,p

rad (RN )

[
‖u‖p

p
+ λ(ρ0 + Φ1(u))

]
≤ ϕ(0, λ) = λρ0 < t0.

Combining this inequality with (6.20) and (6.22) we obtain (6.19).
Now, if t0ρ0

≤ λ, then from (6.17) and (6.18), it follows that

inf
u∈W 1,p

rad (RN )

[
‖u‖p

p
+ λ(ρ0 + Φ1(u))

]
≤ ‖u0‖p

p
+ λ(ρ0 + Φ1(u0))

≤ ‖u0‖p

p
+
t0
ρ0

(ρ0 + Φ1(u0)) < t0.

It remains to apply again (6.20) and (6.22), which concludes the proof of (6.19).
Due to Theorem 2.30, there exist a non-empty open set A ⊂ Λ and r > 0

with the property that for every λ ∈ A there exists µ0 ∈]0, λ+ 1] such that, for each
µ ∈ [0, µ0] the functional Erad

λ,µ = 1
p‖ · ‖

p + λΦ1 + µΦ2 defined on W 1,p
rad(RN ) has at

least three critical points in W 1,p
rad(RN ) whose ‖ · ‖-norms are less than r. Applying

Proposition 6.13, the critical points of Erad
λ,µ are also critical points of Eλ,µ, thus, radially

weak solutions of problem (P̃λ,µ). Due to the embedding W 1,p(RN ) ↪→ L∞(RN ), if
r̃ = c∞r, then the L∞-norms of these elements are less than r̃ which concludes our
proof. �

The second problem studied in this subsection is the following differential
inclusion problem:

(DI)

{
−4pu+ |u|p−2u ∈ α(x)∂F (u(x)), x ∈ RN ,

u ∈W 1,p(RN ),
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where 2 ≤ N < p < +∞, α ∈ L1(RN )∩L∞(RN ) is radially symmetric, and ∂F stands
for the generalized gradient of a locally Lipschitz function F : R → R. By a solution
of (DI) it will be understood an element u ∈ W 1,p(RN ) for which there corresponds
a mapping RN 3 x 7→ ζx with ζx ∈ ∂F (u(x)) for almost every x ∈ RN having
the property that for every v ∈ W 1,p(RN ), the function x 7→ α(x)ζxv(x) belongs to
L1(RN ) and ∫

RN

(|∇u|p−2∇u∇v + |u|p−2uv)dx =
∫

RN

α(x)ζxv(x)dx. (6.23)

Under suitable oscillatory assumptions on the potential F at zero or at in-
finity, we show the existence of infinitely many, radially symmetric solutions of (DI).
These results appear in the paper of Kristály [30].

For l = 0 or l = +∞, set

Fl := lim sup
|ρ|→l

F (ρ)
|ρ|p

. (6.24)

Problem (DI) will be studied in the following four cases:

• 0 < Fl < +∞, whenever l = 0 or l = +∞ and
• Fl = +∞, whenever l = 0 or l = +∞.

In the next in this subsection we assume that:

(H) • F : R → R is locally Lipschitz, F (0) = 0, and F (s) ≥ 0, ∀s ∈ R;
• α ∈ L1(RN ) ∩ L∞(RN ) is radially symmetric, and α(x) ≥ 0, ∀x ∈ RN .

Let F : L∞(RN ) → R be a function defined by

F(u) =
∫

RN

α(x)F (u(x))dx.

Since F is continuous and α ∈ L1(RN ), we easily seen that F is well-defined. More-
over, if we fix a u ∈ L∞(RN ) arbitrarily, there exists ku ∈ L1(RN ) such that for every
x ∈ RN and vi ∈ R with |vi − u(x)| < 1, (i ∈ {1, 2}) one has

|α(x)F (v1)− α(x)F (v2)| ≤ ku(x)|v1 − v2|.

Indeed, if we fix some small open intervals Ij (j ∈ J), such that F |Ij
is Lipschitz

function (with Lipschitz constant Lj > 0) and [−‖u‖L∞ − 1, ‖u‖L∞ + 1] ⊂ ∪j∈JIj ,

then we choose ku = αmaxj∈J Lj . (Here, without losing the generality, we supposed
that cardJ < +∞.) Thus, we are in the position to apply Theorem 2.7.3 from [10,
p. 80]; namely, F is a locally Lipschitz function on L∞(RN ) and for every closed
subspace E of L∞(RN ) we have

∂(F|E)(u) ⊆
∫

RN

α(x)∂F (u(x))dx, for every u ∈ E, (6.25)
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where F|E stands for the restriction of F to E. The interpretation of (6.25) is as follows
(see also [10]): For every ζ ∈ ∂(F|E)(u) there corresponds a mapping RN 3 x 7→ ζx

such that ζx ∈ ∂F (u(x)) for almost every x ∈ RN having the property that for every
v ∈ E the function x 7→ α(x)ζxv(x) belongs to L1(RN ) and

〈ζ, v〉E =
∫

RN

α(x)ζxv(x)dx.

Now, let E : W 1,p(RN ) → R be the energy functional associated to our
problem (DI), i.e., for every u ∈W 1,p(RN ) set

E(u) =
1
p
‖u‖p

W 1,p −F(u).

It is clear that E is locally Lipschitz on W 1,p(RN ) and we have

Proposition 6.16. Any critical point u ∈W 1,p(RN ) of E is a solution of (DI).

Proof. Combining 0 ∈ ∂E(u) = −4pu + |u|p−2u − ∂(F|W 1,p(RN ))(u) with the inter-
pretation of (6.25), the desired requirement yields, see (6.23). �

Since α is radially symmetric, then E is O(N)-invariant, i.e. E(gu) = E(u)
for every g ∈ O(N) and u ∈W 1,p(RN ), we are in the position to apply the Principle
of Symmetric Criticality for locally Lipschitz functions, see Remark 3.9. Therefore
we have

Proposition 6.17. Any critical point of Er = E|W 1,p
rad (RN ) will be also a critical point

of E .

Remark 6.18. In view of Propositions 6.16 and 6.17, it is enough to find critical
points of Er in order to guarantee solutions for (DI). This fact will be carried out by
means of Theorem 2.31, setting

X := W 1,p
rad(RN ), X̃ := L∞(RN ), Φ := −F , and Ψ := ‖ · ‖p

r , (6.26)

where the notation ‖ · ‖r stands for the restriction of ‖ · ‖W 1,p into W 1,p
rad(RN ). A few

assumptions are already verified. Indeed, the embedding X ↪→ X̃ is compact (cf.
Theorem 6.12), Φ = −F is locally Lipschitz, while Ψ = ‖ · ‖p

r is of class C1 (thus,
locally Lipschitz as well), coercive and weakly sequentially lower semicontinuous (see
[7, Proposition III.5]). Moreover, Er ≡ Φ|W 1,p

rad (RN ) + 1
pΨ. According to (6.26), the

function ϕ (defined in (2.57)) becomes

ϕ(ρ) = inf
‖u‖p

r<ρ

sup‖v‖p
r≤ρ F(v)−F(u)
ρ− ‖u‖p

r
, ρ > 0. (6.27)

The investigation of the numbers γ and δ (defined in (2.58)), as well as the cases (A)
and (B) from Theorem 2.31 constitute the objective of the next.

64



VARIATIONAL-HEMIVARIATIONAL INEQUALITIES ON UNBOUNDED DOMAINS

Theorem 6.19. (A. Kristály [30]; The case 0 < Fl < +∞) Let l = 0 or l = +∞,

and let 2 ≤ N < p < +∞. Let F : R → R and α : RN → R be two functions which
satisfy the hypotheses (H) and 0 < Fl < +∞. Assume that ‖α‖L∞Fl > 2Np−1 and
there exists a number βl ∈]2N (pFl)−1, ‖α‖L∞ [ such that

2
(2−NpβlFl − 1)1/p

< sup{r : meas(BN (0, r) \ α−1(]βl,+∞[)) = 0}. (6.28)

Assume further that there are sequences {ak} and {bk} in ]0,+∞[ with ak < bk,

limk→+∞ bk = l, limk→+∞
bk

ak
= +∞ such that

sup{sign(s)ξ : ξ ∈ ∂F (s), |s| ∈]ak, bk[} ≤ 0. (6.29)

Then, problem (DI) possesses a sequence {un} of solutions which are radially sym-
metric and

lim
n→+∞

‖un‖W 1,p = l.

In addition, if F (s) = 0 for every s ∈]−∞, 0[, then the elements un are non-negative.

Proof. Since limk→+∞ bk = +∞, instead of the sequence {bk}, we may consider a
non-decreasing subsequence of it, denoted again by {bk}. Fix an s ∈ R such that
|s| ∈]ak, bk]. By using Lebourg’s mean value theorem (see [10, Theorem 2.3.7]), there
exists θ ∈]0, 1[ and ξθ ∈ ∂F (θs+ (1− θ)sign(s)ak) such that

F (s)− F (sign(s)ak) = ξθ(s− sign(s)ak) = sign(s)ξθ(|s| − ak)

= sign(θs+ (1− θ)sign(s)ak)ξθ(|s| − ak).

According now to (6.29), we obtain that F (s) ≤ F (sign(s)ak) for every s ∈ R com-
plying with |s| ∈]ak, bk]. In particular, we are led to max[−ak,ak] F = max[−bk,bk] F

for every k ∈ N. Therefore, one can fix a ρk ∈ [−ak, ak] such that

F (ρk) = max
[−ak,ak]

F = max
[−bk,bk]

F. (6.30)

Moreover, since {bk} is non-decreasing, the sequence {|ρk|} can be chosen non-
decreasingly as well. In view of (6.28) we can choose a number µ such that

2
(2−Npβ∞F∞ − 1)1/p

< µ < (6.31)

< sup{r : meas(BN (0, r) \ α−1(]β∞,+∞[)) = 0}.

In particular, one has

α(x) > β∞, for a.e. x ∈ BN (0, µ). (6.32)
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For every k ∈ N we define

uk(x) =


0, if x ∈ RN \BN (0, µ);
ρk, if x ∈ BN (0, µ

2 );
2ρk

µ (µ− |x|), if x ∈ BN (0, µ) \BN (0, µ
2 ).

(6.33)

It is easy to see that uk belongs to W 1,p(RN ) and it is radially symmetric.
Thus, uk ∈ W 1,p

rad(RN ). Let ρk = ( bk

c∞
)p, where c∞ is the embedding constant of

W 1,p(RN ) ↪→ L∞(RN ).
Claim 1. There exists a k0 ∈ N such that ‖uk‖p

r < ρk, for every k > k0.

Since limk→+∞
bk

ak
= +∞, there exists a k0 ∈ N such that

bk
ak

> c∞(µNωNK(p,N, µ))1/p, for every k > k0, (6.34)

where ωN denotes the volume of the N -dimensional unit ball and

K(p,N, µ) :=
2p

µp

(
1− 1

2N

)
+ 1. (6.35)

Thus, for every k > k0 one has

‖uk‖p
r =

∫
RN

|∇uk|pdx+
∫

RN

|uk|pdx

≤
(

2|ρk|
µ

)p

(volBN (0, µ)− volBN (0,
µ

2
)) + |ρk|pvolBN (0, µ)

= |ρk|pµNωNK(p,N, µ) ≤ ap
kµ

NωNK(p,N, µ)

< (
bk
c∞

)p = ρk,

which proves Claim 1.
Now, let ϕ from (6.27) and γ = lim infρ→+∞ ϕ(ρ) defined in (2.58).

Claim 2. γ = 0.
By definition, γ ≥ 0. Suppose that γ > 0. Since limk→+∞

ρk

|ρk|p
= +∞, there

is a number k1 ∈ N such that for every k > k1 we have

ρk

|ρk|p
>

2
γ

(F∞ + 1)(‖α‖L1 − β∞µ
NωN ) + µNωNK(p,N, µ), (6.36)

where µ is an arbitrary fixed number complying with

0 < µ < min

{(
‖α‖L1

β∞ωN

)1/N

,
µ

2

}
. (6.37)
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Moreover, since |ρk| → +∞ as k → +∞ (otherwise we would have F∞ = 0), by the
definition of F∞, see (6.24), there exists a k2 ∈ N such that

F (ρk)
|ρk|p

< F∞ + 1, for every k > k2. (6.38)

Now, let v ∈ W 1,p
rad(RN ) arbitrarily fixed with ‖v‖p

r ≤ ρk. Due to the continuous
embedding W 1,p(RN ) ↪→ L∞(RN ), we have ‖v‖p

L∞ ≤ cp∞ρk = bpk. Therefore, one has

sup
x∈RN

|v(x)| ≤ bk.

In view of (6.30), we obtain

F (v(x)) ≤ max
[−bk,bk]

F = F (ρk), for every x ∈ RN . (6.39)

Hence, for every k > max{k0, k1, k2}, one has

sup
‖v‖p

r≤ρk

F(v) − F(uk)

= sup
‖v‖p

r≤ρk

∫
RN

α(x)F (v(x))dx−
∫

RN

α(x)F (uk(x))dx

≤ F (ρk)‖α‖L1 −
∫

BN (0,µ)

α(x)F (uk(x))dx

≤ F (ρk)(‖α‖L1 − β∞µ
NωN )

≤ (F∞ + 1)|ρk|p(‖α‖L1 − β∞µ
NωN )

≤ γ

2
(ρk − |ρk|pµNωNK(p,N, µ))

≤ γ

2
(ρk − ‖uk‖p

r).

Since ‖uk‖p
r < ρk (cf. Claim 1), and ρk → +∞ as k → +∞, we obtain

γ = lim inf
ρ→+∞

ϕ(ρ) ≤ lim inf
k→+∞

ϕ(ρk) ≤ lim inf
k→+∞

sup‖v‖p
r≤ρk

F(v)−F(uk)
ρk − ‖uk‖p

r
≤ γ

2
,

contradiction. This proves Claim 2.
Claim 3. Er is not bounded below on W 1,p

rad(RN ).
By (6.31), we find a number ε∞ such that

0 < ε∞ < F∞ − 2N

pβ∞

((
2
µ

)p

+ 1
)
. (6.40)

In particular, for every k ∈ N, sup|ρ|≥k
F (ρ)
|ρ|p > F∞ − ε∞. Therefore, we can fix ρ̃k

with |ρ̃k| ≥ k such that
F (ρ̃k)
|ρ̃k|p

> F∞ − ε∞. (6.41)
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Now, define wk ∈ W 1,p
rad(RN ) in the same way as uk, see (6.33), replacing ρk by ρ̃k.

We obtain
Er(wk) =

1
p
‖wk‖p

r −F(wk)

≤ 1
p
|ρ̃k|pµNωNK(p,N, µ)−

∫
BN (0, µ

2 )

α(x)F (wk(x))dx

≤ 1
p
|ρ̃k|pµNωNK(p,N, µ)− (F∞ − ε∞)|ρ̃k|pβ∞ωN

(µ
2

)N

= |ρ̃k|pµNωN

(
1
p
K(p,N, µ)− 1

2N
(F∞ − ε∞)β∞

)
< −1

p
|ρ̃k|pωN

(
2
µ

)p−N

.

Since |ρ̃k| → +∞ as k → +∞, we obtain limk→+∞ Er(wk) = −∞, which ends the
proof of Claim 3.

The case 0 < F∞ < +∞. It is enough to apply Remark 6.18. Indeed, since
γ = 0 (cf. Claim 2) and the function Er ≡ −F|W 1,p

rad (RN ) + 1
p‖ · ‖

p
r is not bounded

below (cf. Claim 3), the alternative (A1) from Theorem 2.31, applied to λ = 1
p , is

excluded. Thus, there exists a sequence {un} ⊂ W 1,p
rad(RN ) of critical points of Er

with limn→+∞ ‖un‖r = +∞.

Now, let us suppose that F (s) = 0 for every s ∈] − ∞, 0[, and let u be a
solution of (DI). Denote S = {x ∈ RN : u(x) < 0}, and assume that S 6= ∅. In virtue
of Remark 6.11, the set S is open. Define uS : RN → R by uS = min{u, 0}. Applying
(6.23) for v := uS ∈W 1,p(RN ) and taking into account that ζx ∈ ∂F (u(x)) = {0} for
every x ∈ S, one has

0 =
∫

RN

(|∇u|p−2∇u∇uS + |u|p−2uuS)dx =
∫

S

(|∇u|p + |u|p)dx = ‖u‖p
W 1,p(S),

which contradicts the choice of the set S. This ends the proof in this case.

Remark 6.20. A closer inspection of the proof allows us to replace hypothesis (6.28)
by a weaker, but a more technical condition. More specifically, it is enough to require
that p‖α‖L∞Fl > 1, and instead of (6.28), put

sup
M

{
Nβl

− 1
(1− σ)(pβlFlσN − 1)1/p

}
> 0, (6.42)

where

M = {(σ, βl) : σ ∈](p‖α‖L∞Fl)−1/N , 1[, βl ∈](pFlσ
N )−1, ‖α‖L∞ [}

and
Nβl

= sup{r : meas(BN (0, r) \ α−1(]βl,+∞[)) = 0}.

Now, in the construction of the functions wk we replace the radius µ
2 of the ball by

σµ, where σ is chosen according to (6.42).
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The case 0 < F0 < +∞. The proof works similarly as in the case 0 < F∞ <

+∞ and we will show only the differences. The sequence {ρk} defined as above,
converges now to 0, while the same holds for {ρk}. Instead of Claim 2, we can prove
that δ = lim infρ→0+ ϕ(ρ) = 0. Since 0 is the unique global minimum of Ψ = ‖ · ‖p

r , it
would be enough to show that 0 is not a local minimum of Er ≡ −F|W 1,p

rad (RN ) +
1
p‖·‖

p
r ,

in order to exclude alternative (B1) from Theorem 2.31. To this end, we fix ρ̃k with
|ρ̃k| ≤ 1

k such that
F (ρ̃k)
|ρ̃k|p

> F0 − ε0,

where ε0 is fixed in a similar manner as in (6.40), replacing β∞, F∞ by β0, F0,

respectively. If we take wk as in case 0 < F∞ < +∞, then it is clear that {wk} strongly
converges now to 0 in W 1,p

rad(RN ), while Er(wk) < − 1
p |ρ̃k|pωN (2/µ)p−N

< 0 = Er(0).
Thus, 0 is not a local minimum of Er. So, there exists a sequence {un} ⊂ W 1,p

rad(RN )
of critical points of Er such that limn→+∞ ‖un‖r = 0 = infW 1,p

rad (RN ) Ψ. This concludes
completely the proof of Theorem 6.19.

In the next result we trait the case when the function F has oscillation at
infinity. We have the following result.

Theorem 6.21. (A. Kristály [30]; The case Fl = +∞) Let l = 0 or l = +∞, and let
2 ≤ N < p < +∞. Let F : R → R and α : RN → R be two functions which satisfy (H)
and Fl = +∞. Assume that ‖α‖L∞ > 0, and there exist µ > 0 and βl ∈]0, ‖α‖L∞ [
such that

meas(BN (0, µ) \ α−1(]βl,+∞[)) = 0, (6.43)

and there are sequences {ak} and {bk} in ]0,+∞[ with ak < bk, limk→+∞ bk = l,

limk→+∞
bk

ak
= +∞ such that

sup{sign(s)ξ : ξ ∈ ∂F (s), |s| ∈]ak, bk[} ≤ 0,

and

lim sup
k→+∞

max[−ak,ak] F

bpk
< (pcp∞‖α‖L1)−1, (6.44)

where c∞ is the embedding constant of W 1,p(RN ) ↪→ L∞(RN ). Then the conclusions
of Theorem 6.19 hold.

Proof. The case F∞ = +∞. Due to (6.43),

α(x) > β∞, for a.e. x ∈ BN (0, µ). (6.45)

Let ρk and ρk as in the proof of Theorem 6.19, as well as uk, defined this time by
means of µ > 0 from (6.45).

Claim 1’. There exists a k0 ∈ N such that ‖uk‖p
r < ρk, for every k > k0.

The proof is similarly as in the proof of Theorem 6.19.
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Claim 2’. γ < 1
p .

Note that F (ρk) = max[−ak,ak] F, cf. (6.30). Since |ρk| ≤ ak, then
limk→+∞

|ρk|
bk

= 0. Combining this fact with (6.44), and choosing ε > 0 sufficiently
small, one has

lim sup
k→+∞

F (ρk) + |ρk|pµNωNp
−1‖α‖−1

L1K(p,N, µ)
bpk

< ((p+ ε)cp∞‖α‖L1)−1,

whereK(p,N, µ) is from (6.35). According to the above inequality, there exists k3 ∈ N
such that for every k > k3 we readily have

F (ρk)‖α‖L1 ≤ (p+ ε)−1c−p
∞ bpk − p−1|ρk|pµNωNK(p,N, µ)

≤ 1
p+ ε

(
ρk −

p+ ε

p
‖uk‖p

r

)
<

1
p+ ε

(ρk − ‖uk‖p
r) .

Thus, for every k > k3, one has

sup
‖v‖p

r≤ρk

F(v)−F(uk) < F (ρk)‖α‖L1 <
1

p+ ε
(ρk − ‖uk‖p

r) .

Hence γ ≤ 1
p+ε <

1
p , which concludes the proof of Claim 2’.

Claim 3’. Er is not bounded below on W 1,p
rad(RN ).

Since F∞ = +∞, for an arbitrarily large number M > 0, we can fix ρ̃k with
|ρ̃k| ≥ k such that

F (ρ̃k)
|ρ̃k|p

> M. (6.46)

Define wk ∈W 1,p
rad(RN ) as in (6.33), putting ρ̃k instead of ρk. We obtain

Er(wk) =
1
p
‖wk‖p

r −F(wk)

≤ 1
p
µNωN |ρ̃k|pK(p,N, µ)−

∫
BN (0, µ

2 )

α(x)F (wk(x))dx

≤ |ρ̃k|pµNωN

(
1
p
K(p,N, µ)− 1

2N
Mβ∞

)
.

Since |ρ̃k| → +∞ as k → +∞, and M is large enough we obtain that

lim
k→+∞

Er(wk) = −∞.

The proof of Claim 3’ is concluded.
Proof concluded. Since γ < 1

p (cf. Claim 2’), we can apply Theorem 2.31 (A)
for λ = 1

p . The rest is the same as in Theorem 6.19.
The case F0 = +∞.

We follow the line of F∞ = +∞. The sequences {ρk}, {ρk} are defined as
above; they converge to 0. Let µ > 0 be as in (6.45), replacing β∞ by β0. Instead of
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Claim 2’, we may prove that δ = lim infρ→0+ ϕ(ρ) < 1
p . Now, we are in the position to

apply Theorem 2.31 (B) with λ = 1
p . Since F0 = +∞, for an arbitrarily large number

M > 0, we may choose ρ̃k with |ρ̃k| ≤ 1
k such that

F (ρ̃k)
|ρ̃k|p

> M.

Define wk ∈ W 1,p
rad(RN ) by means of ρ̃k as above. It is clear that {wk} strongly

converges to 0 in W 1,p
rad(RN ) while

Er(wk) ≤ |ρ̃k|pµNωN

(
1
p
K(p,N, µ)− 1

2N
Mβ0

)
< 0 = Er(0).

Consequently, in spite of the fact that 0 is the unique global minimum of Ψ = ‖ · ‖p
r ,

it is not a local minimum of Er; thus, (B1) can be excluded. The rest is the same as
in the proof of Theorem 6.19. This completes the proof of Theorem 6.21.

In the next we give some example. We suppose that 2 ≤ N < p < +∞.

Example 6.22. Let F : R → R be defined by

F (s) =
2N+p+3

p
|s|p max{0, sin ln(ln(|s|+ 1) + 1)},

and α : RN → R by

α(x) =
1

(1 + |x|N )2
. (6.47)

Then (DI) has an unbounded sequence of radially symmetric solutions.
Proof. The functions F and α clearly fulfill (H). Moreover, F∞ = 2N+p+3

p . Since
‖α‖L∞ = 1, we may fix β∞ = 1/4 which verifies (6.28). For every k ∈ N let

ak = ee(2k−1)π−1 − 1 and bk = ee2kπ−1 − 1.

If ak ≤ |s| ≤ bk, then (2k − 1)π ≤ ln(ln(|s|+ 1) + 1) ≤ 2kπ, thus F (s) = 0 for every
s ∈ R complying with ak ≤ |s| ≤ bk. So, ∂F (s) = {0} for every |s| ∈]ak, bk[ and (6.29)
is verified. Thus, all the assumptions of Theorem 6.19 are satisfied. �

Example 6.23. Fix σ ∈ R. Let F : R → R be defined by

F (s) =

{
8N+1

p sp−σ max{0, sin ln ln 1
s}, s ∈]0, e−1[;

0, s /∈]0, e−1[,

and let α : RN → R be as in (6.47). Then, for every σ ∈ [0,min{p− 1, p(1− e−π)}[,
(DI) admits a sequence of non-negative, radially symmetric solutions which strongly
converges to 0 in W 1,p(RN ).
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Proof. Since σ < p − 1, (H) is verified. We distinguish two cases: σ = 0, and
σ ∈]0,min{p− 1, p(1− e−π)}[.

Case 1. σ = 0. We have F0 = 8N+1

p . If we choose β0 = (1+2N )−2, this clearly
verifies (6.28). For every k ∈ N set

ak = e−e2kπ

and bk = e−e(2k−1)π

. (6.48)

For every s ∈ [ak, bk], one has (2k − 1)π ≤ ln ln 1
s ≤ 2kπ; thus F (s) = 0. So, ∂F (s) =

{0} for every s ∈]ak, bk[ and (6.29) is verified. Now, we apply Theorem 6.19.
Case 2. σ ∈]0,min{p− 1, p(1− e−π)}[. We have F0 = +∞. In order to verify

(6.43), we fix for instance β0 = (1 + 2N )−2 and µ = 2. Take {ak} and {bk} in the
same way as in (6.48). The inequality in (6.44) becomes obvious since

lim sup
k→+∞

max[−ak,ak] F

bpk
≤ 8N+1

p
lim sup
k→+∞

ap−σ
k

bpk
=

=
8N+1

p
lim

k→+∞
e[p−eπ(p−σ)]e(2k−1)π

= 0.

Therefore, we may apply Theorem 6.21. �

Example 6.24. Let {ak} and {bk} be two sequences such that a1 = 1, b1 = 2 and
ak = kk, bk = kk+1 for every k ≥ 2. Define, for every s ∈ R the function

f(s) =

{
bp

k+1−bp
k

ak+1−bk
, if s ∈ [bk, ak+1[;

0, otherwise.

Then the problem{
−4pu+ |u|p−2u ∈ σ

(1+|x|N )2
[f(u(x)), f(u(x))], x ∈ RN ,

u ∈W 1,p(RN ),

possesses an unbounded sequence of non-negative, radially symmetric solutions when-
ever 0 < σ< N

p

(
p−N
2p

)p

(AreaSN−1)−1.

Proof. Let F (s) =
∫ s

0
f(t)dt. Since the function f is locally (essentially) bounded, F

is locally Lipschitz. A more explicit expression of F is

F (s) =


bpk − bp1 +

bp
k+1−bp

k

ak+1−bk
(s− bk), if s ∈ [bk, ak+1[;

bpk − bp1, if s ∈ [ak, bk[;
0, otherwise.

An easy calculation shows, as we expect, that ∂F (s) = [f(s), f(s)] for every s ∈ R.
Taking α(x) = σ

(1+|x|N )2
, (H) is verified, and ‖α‖L1 = σ

N AreaSN−1. Moreover,

F∞ = lim sup
|s|→+∞

F (s)
|s|p

≥ lim
k→+∞

F (ak)
ap

k

= lim
k→+∞

bpk − bp1
ap

k

= +∞.
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Choosing µ = 1 and β∞ = σ/4, (6.43) is verified, while (6.29) becomes trivial. Since
max[−ak,ak] F = F (ak) = bpk − bp1, relation (6.44) reduces to pcp∞‖α‖L1 < 1 which is
fulfilled due to the choice of σ and to Remark 6.10. It remains to apply Theorem
6.21. �

6.4. An application to variational-hemivariational inequalities. In this sub-
section we give two applications of the Principle of Symmetric Criticality for
Motreanu-Panagiotopulos functionals. These results appear in the paper of Lisei
and Varga [36].

First we formulate the problem. For this let F : RL × RM × R → R be
a Carathéodory function, which is locally Lipschitz in the second variable (the real
variable) and satisfies the following conditions:
(F1) F (z, 0) = 0 for all z ∈ RL ×RM and there exist c1 > 0 and r ∈]p, p?[ such that

|ξ| ≤ c1(|s|p−1 + |s|r−1), ∀ξ ∈ ∂F (z, s), (z, s) ∈ RL × RM × R.

We denoted by ∂F (z, s) the generalized gradient of F (z, ·) at the point s ∈ R and

p? = (L+M)p
L+M − p is the critical Sobolev exponent.

Let a : RL×RM → R (L ≥ 2) be a nonnegative continuous function satisfying
the following assumptions:

(A1) a(x, y) ≥ a0 > 0 if |(x, y)| ≥ R for a large R > 0;
(A2) a(x, y) → +∞, when |y| → +∞ uniformly for x ∈ RL;
(A3) a(x, y) = a(x′, y) for all x, x′ ∈ RL with |x| = |x′| and all y ∈ RM .

Consider the following subspaces of W 1,p(RL × RM )

Ẽ = {u ∈W 1,p(RL × RM ) : u(x, y) = u(x′, y) ∀ x, x′ ∈ RL, |x| = |x′|,∀y ∈ RM},

E = {u ∈W 1,p(RL × RM ) :
∫

RL+M

a(z)|u(z)|pdz <∞},

Ea = Ẽ ∩ E = {u ∈ Ẽ :
∫

RL+M

a(z)|u(z)|pdz <∞},

endowed with the norm

‖u‖p =
∫

RL+M

|∇u(z)|pdz +
∫

RL+M

a(z)|u(z)|pdz

and the closed convex cone K = {v ∈ E : v ≥ 0 a.e. in RL × RM}.
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The aim of this subsection is to study the following eigenvalue problem (Pλ):
For λ > 0 find u ∈ K such that∫

RL+M

|∇u(z)|p−2∇u(z)(∇v(z)−∇u(z))dz +
∫

RL+M

a(z)up−1(z)(v(z)− u(z))dz

+ λ

∫
RL+M

F 0(z, u(z); v(z)− u(z))dz ≥ 0

for all v ∈ K, where F 0(z, s; t) is the generalized directional derivative of F (z, ·) at
the point s in the direction t.

Let Iλ : E →]−∞,+∞] be defined by

Iλ(u) =
1
p
||u||p − λF(u) + ψK(u),

where ψK(u) denotes the indicator function of the closed convex cone K,i.e.

ψK(u) =

{
0, if x ∈ K

+∞, otherwise.

Clearly ψK is convex and lower-semicontinuous on E.
Now we rewrite problem (Pλ) by using the duality map. By Theorem 3.5

from [1] it follows that E is a separable, reflexive and uniform convex Banach space.
We denote by E? its dual. Let A : E → E? the duality mapping corresponding to
the weight function ϕ : [0,+∞[→ [0,+∞[ defined by ϕ(t) = tp−1, where p ∈]1,+∞[.
It is well known that the duality mapping J satisfies the following conditions:

||Au||? = ϕ(||u||) and 〈Au, u〉 = ||Au||?||u|| for all u ∈ E.

Moreover, the functional χ : E → R defined by χ(u) = 1
p ||u||

p is convex and Gateaux
differentiable on E, and dχ = A. The problem (Pλ) can be reformulated in the
following way: For λ > 0 find u ∈ K such that

〈Au, v − u〉+ λ

∫
RL+M

F 0(z, u(z); v(z)− u(z))dx ≥ 0

for every v ∈ K.

Lemma 6.25. Fix λ > 0 arbitrary. Every critical point u ∈ E of the functional Iλ

is a solution of the problem (Pλ).

Proof. Since u ∈ E is a critical point of the functional Iλ, one has

〈Au, v − u〉+ λ(−F)0(u; v − u) + ψK(v)− ψK(u) ≥ 0

for every v ∈ E. From Proposition 4.5 we obtain

〈Au, v − u〉+ λ

∫
RL+M

F 0(z, u(z);u(z)− v(z))dz + ψK(v)− ψK(u) ≥ 0
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for every v ∈ E.
Therefore u ∈ K and for every v ∈ K we have

〈Au, v − u〉+ λ

∫
RL+M

F 0(z, u(z);u(z)− v(z))dz ≥ 0. �

Let a : RL × RM → R (L ≥ 2) be a function, which satisfy the assumptions
(A1), (A2), (A3). We consider the following subspaces of W 1,p(RL × RM )

Ẽ = {u ∈W 1,p(RL × RM ) : u(x, y) = u(x′, y) ∀ x, x′ ∈ RL, |x| = |x′|,∀y ∈ RM},

E = {u ∈W 1,p(RL × RM ) :
∫

RL+M

a(z)|u(z)|pdz <∞},

Ea = Ẽ ∩ E = {u ∈ Ẽ :
∫

RL+M

a(z)|u(z)|pdz <∞}

endowed with the norm

‖u‖p =
∫

RL+M

|∇u(z)|pdz +
∫

RL+M

a(z)|u(z)|pdz.

The next result is proved by de Morais Filho, Souto, Marcos Do [42] and is a very
useful tool in our investigations.

Theorem 6.26. If (A1), (A2) and (A3) hold, then the Banach space Ea is continu-
ously embedded in Ls(RL×RM ), if p ≤ s ≤ p∗, and compactly embedded if p < s < p∗.

We have,

‖u‖s ≤ C(s)‖u‖ for each u ∈ Ea,

where ‖ · ‖s is the norm in Ls(RL × RM ) and C(s) > 0 is the embedding constant.
Let

G =

{
g : E → E : g(v) = v ◦

(
R 0
0 IdRM

)
, R ∈ O(RL)

}
,

where O(RL) is the set of all rotations on RL and IdRM denotes the M ×M identity
matrix. The elements of G leave RL+M invariant, i.e. g(RL+M ) = RL+M for all
g ∈ G.

The action of G over E is defined by

(gu)(z) = u(g−1z), g ∈ G, u ∈ E, a.e. z ∈ RL+M .

As usual we shall write gu in place of π(g)u.
A function u defined on RL+M is said to be G-invariant, if

u(gz) = u(z), ∀ g ∈ G, a.e. z ∈ RL+M .
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Then u ∈ E is G-invariant if and only if u ∈ Σ, where

Σ := Ea = Ẽ ∩ E.

We observe that the norm

‖u‖ =
{∫

RL+M

(|∇u(z)|p + a(z)|u(z)|p)dz
} 1

p

is G-invariant.
In order to study our problem we give the assumptions on the nonlinear

function F . We assume that F : RL×RM ×R → R is a Carathéodory function, which
is locally Lipschitz in the second variable, satisfying condition (F1) and moreover:

(F2) lim
s→0

max{|ξ| : ξ ∈ ∂F (z, s)}
|s|p−1 = 0 uniformly for every z ∈ RL+M .

(F3)There exists ν > p such that

νF (z, s) + F 0(z, s;−s) ≤ 0, ∀(z, s) ∈ RL+M × R.

(F4) There exists r > 0 such that

inf{F (z, s) : (z, |s|) ∈ RL+M × [r,∞)} > 0.

Remark 6.27. a) If F : RL+M × R → R satisfies (F1) and (F2), then for every
ε > 0, there exists c(ε) > 0 such that

i) |ξ| ≤ ε|s|p−1 + c(ε)|s|r−1, ∀ ξ ∈ ∂F (z, s), (z, s) ∈ RL+M × R;
ii) |F (z, s)| ≤ ε|s|p + c(ε)|s|r, ∀ (z, s) ∈ RL+M × R.

b) If F : RL+M × R → R satisfies (F1), (F3) and (F4), then there exist c2, c3 > 0
and ν ∈]p, p?[ such that

F (z, s) ≥ c2|s|ν − c3|s|p.

To study the existence of the solutions of problem (Pλ), it is sufficient to
prove the existence of critical points of the functional Iλ (see Lemma 6.25).

We have the following result, which appear in the paper of Lisei-Varga [36].

Theorem 6.28. (Lisei-Varga [36]) Let F : RL × RM × R → R be a function, which
satisfies (F1)-(F4) and F (·, s) is G-invariant for every s ∈ R. Then for every λ > 0
problem (Pλ) has a nontrivial positive solution.

Before to prove this result we introduce some notations and we prove some
auxiliary results. We have that the cone K is G-invariant, it follows that ψK is G-
invariant. Taking into account that the action of G is linear and isometric on E, we
deduce that the function χ(u) = 1

p ||u||
p is G-invariant. The function F is also G-

invariant, because F (·, s) is G-invariant for every s ∈ R. If we apply Theorem 3.8, it
is sufficient to prove that the functional IΣ := Iλ

∣∣∣
Σ

has critical points, which implies
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that the functional Iλ has critical points, which are solutions for problem (Pλ). We
introduce the following notations:

|| · ||Σ = || · ||
∣∣∣
Σ
, FΣ = F

∣∣∣
Σ
, ψΣ = ψK

∣∣∣
Σ

and the restricted duality map AΣ : Σ → Σ∗ with AΣ = A
∣∣∣
Σ
. Therefore we have

IΣ(u) =
1
p
||u||pΣ − λFΣ(u) + ψΣ(u).

In the next we verify that the conditions of Theorem 3.4 are satisfied by the functional
IΣ.

Proposition 6.29. If F : RL ×RM ×R → R verifies the conditions (F1)-(F3) and
F (·, s), s ∈ R is G- invariant, then IΣ satisfies the (PS) condition, for every λ > 0.

Proof. Let λ > 0 and c ∈ R be some fixed numbers and let (un) ⊂ Σ be a sequence
such that

IΣ(un) =
1
p
||un||pΣ − λFΣ(un) + ψΣ(un) → c (6.49)

and for every v ∈ Σ we have

〈AΣun, v−un〉+λ
∫

RL+M

F 0(z, un(z);un(z)−v(z))dz+ψΣ(v)−ψΣ(un) ≥ −εn||v−un||Σ,

(6.50)
for a sequence (εn) in [0,+∞[ with εn → 0.

By (6.49) one concludes that (un) ⊂ K ∩ Σ. Setting v = 2un in (6.50), we
obtain

〈AΣun, un〉+ λ

∫
RL+M

F 0(z, un(z);−un(z))dz ≥ −εn||un||Σ. (6.51)

By (6.49) one has for large n ∈ N that

c+ 1 ≥ 1
p
||un||pΣ − λFΣ(un). (6.52)

We multiply inequality (6.51) with ν−1 and use Proposition 4.5 to obtain

εn
||un||Σ
ν

≥ −〈AΣun, un〉
ν

− λ

ν

∫
RL+M

F 0(z, un(z);−un(z))dz. (6.53)

Adding the inequalities (6.52) and (6.53), and using (F3) we get

c+ 1 +
εn

ν
||un||Σ ≥

(
1
p
− 1
ν

)
||un||pΣ

− λ

∫
RL+M

[F (z, un(z)) +
1
ν
F 0(z, un(z);−un(z))]dz

≥
(

1
p
− 1
ν

)
||un||pΣ.

77
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From this, we get that the sequence (un) ⊂ K∩Σ is bounded. Because E is reflexive,
it follows that Σ is reflexive too and there exists an element u ∈ Σ such that un ⇀ u

weakly. Since K ∩ Σ is closed and convex, we get u ∈ K ∩ Σ. Moreover, from (6.50)
with v = u we obtain

〈AΣun, u− un〉+ λ

∫
RL+M

F 0(z, un(z);un(z)− u(z))dz ≥ −εn||un − u||Σ. (6.54)

From this we get

〈AΣun, un − u〉 ≤ λ

∫
RL+M

F 0(z, un(z);un(z)− u(z))dz + εn||un − u||Σ

≤ λ

∫
RL+M

max{ξn(z)(un(z)− u(z)) : ξn(z) ∈ ∂F (z, un(z))}dz + εn||un − u||Σ

≤ λ

∫
RL+M

(
ε|un(z)|p−1 + c(ε)|un(z)|r−1

)
|un(z)− u(z)|dz + εn||un − u||Σ.

Hence, by Hölder’s inequality and the fact that the inclusion Σ ↪→ Lp(RL+M ) is
continuous (see Theorem 6.26), we obtain

〈AΣun, un−u〉 ≤ λεC(p)||un−u||Σ||un||p−1
p +λc(ε)||un−u||r||un||r−1

r +εn||un−u||Σ.

Moreover, the inclusion Σ ↪→ Lr(RL+M ) is compact for r ∈]p, p∗[ (see Theorem 6.26),
therefore ||un − u||r → 0 as n → +∞. For ε → 0+ and n → +∞ we obtain that
lim sup
n→+∞

〈AΣun, un − u〉 ≤ 0. Finally, since the duality operator JΣ has the (S+)

property we obtain un → u in K, because K is closed. �

Proposition 6.30. If F : RL × RM × R → R verifies (F1)-(F4) and F (·, s) is
G-invariant for every s ∈ R, then for every λ > 0 the following assertions are true:

i) there exist constants αλ > 0 and ρλ > 0 such that IΣ(u) ≥ αλ for all
||u||Σ = ρλ;

ii) there exists eλ ∈ K with ||eλ|| > ρλ and IΣ(eλ) ≤ 0.

Proof. From Remark 6.27 and from the fact that the embedding Σ ↪→ Ll(RL+M ) is
continuous for l ∈ [p, p?], it follows that

FΣ(u) ≤ εCp(p)||u||pΣ + c(ε)Cr(r)||u||rΣ,

for every u ∈ Σ. It is suffices to restrict our attention to elements u which belong to
K ∩ Σ, otherwise IΣ(u) will be +∞, i.e. i) holds trivially.

Let λ > 0 be arbitrary. We choose ε ∈]0, 1
pλCp(p) [ and for u ∈ K∩Σ we have

IΣ(u) =
1
p
||u||pΣ − λFΣ(u) ≥

(
1
p
− λεCp(p)

)
||u||pΣ − λc(ε)Cr(r)||u||rΣ.
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We denote by M = 1
p − λεCp(p) and N = λc(ε)Cr(r) and we consider the function

g : R+ → R given by g(t) = Mtp −Ntr. The function g attains its global maximum

in the point tλ =
(
pM
rN

) 1
r−p

. If we take ρλ = tλ and αλ ∈]0, g(tλ)[, the condition i)
is fulfilled.

To prove ii) from b) Remark 6.27 we observe that for every u ∈ K ∩ Σ we
have

IΣ(u) ≤ 1
p
||u||pΣ + λc3C

p(p)||u||pΣ − λc2||u||νν .

If we fix an element v ∈ (K ∩ Σ) \ {0} and in place of u we put tv, then we
have

IΣ(tv) ≤
(

1
p

+ λc3C
p(p)

)
||v||pΣt

p − λc2||v||ννtν .

From this we see that if t is large enough, then ||tv||Σ > ρλ and IΣ(tv) < 0. If we
take eλ = tv we obtain the desired results. �

Proof of Theorem 6.28. Now we prove that the conditions of Theorem 3.4 are satisfied
by the functional IΣ. Because F (z, 0) = 0, it follows that

IΣ(0) =
∫

RL+M

F (z, 0)dz = 0.

From Proposition 6.29 we get that IΣ satisfies the (PS) condition. Proposition 6.30
implies that IΣ satisfies the conditions (i) and (ii) from Theorem 3.4, hence the
number

cλ = inf
f∈Γ

sup
t∈[0,1]

IΣ(f(t)),

where

Γλ = {f ∈ C([0, 1],Σ) : f(0) = 0, f(1) = eλ },

is a critical value of IΣ with cλ ≥ αλ. �

In the next we replace (F3) and (F4) with the following two conditions
(F ′3) There exist q ∈]0, p[, ν ∈ [p, p?], α ∈ L

ν
ν−q (RL+M ), β ∈ L1(RL+M ) such that

F (z, s) ≤ α(z)|s|q + β(z)

for all s ∈ R and a.e. z ∈ RL+M ;

(F ′4) There exists u0 ∈ K such that
∫

RL+M

F (z, u0(z))dz > 0.

We have the following result.

Theorem 6.31. (Lisei-Varga [36]) Let F : RL × RM × R → R be a function which
satisfies (F1),(F2), (F

′
3), (F

′
4) and F (·, s) is G-invariant for all s ∈ R. Then

there exists an open interval Λ0 ⊂ Λ such that for each λ ∈ Λ0 problem (Pλ) has at
least three distinct solutions which are axially symmetric.
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To prove Theorem 6.31 we combine Theorem 3.5 with Theorem 3.8. First we
consider the functional f : E × Λ →] −∞,+∞] given by f(u, λ) = I1(u) + λI2(u),
where

I1(u) =
1
p
||u||p + ψK(u), I2(u) = −F(u) = −

∫
RL+M

F (z, u(z))dz.

As in Lemma 6.25 we have that every critical point of the function f = I1 + λI2

is a solution of problem (Pλ). Using Theorem 3.8 it is sufficient to prove that the
functional fΣ =

(
I1 +λI2

)∣∣∣
Σ

satisfies conditions from Theorem 3.5, where we choose
h1,Ψ1, h2 : Σ → R

h1(u) =
1
p
||u||pΣ, Ψ1(u) = ψΣ(u), h2(u) = −FΣ(u) = −

∫
RL+M

F (z, u(z))dz, u ∈ Σ,

and take

I1 = h1 + Ψ1, I2 = h2.

First we prove that (a1) holds.

Proposition 6.32. If F : RL×RM ×R → R verifies the conditions (F1) and (F2),
then h1 is weakly sequentially lower semicontinuous and h2 is weakly sequentially
continuous.

Proof. The weakly sequentially lower semicontinuity of h1 = 1
p || · ||

p
Σ is standard

(every convex lower semicontinuous function is sequentially lower semicontinuous, see
e.g. [7]).

In order to prove the weakly sequentially continuity of h2 we assume that (un)
is a sequence in Σ such that un ⇀ u (in Σ). We will prove that FΣ(un) → FΣ(u).

By Lebourg’s Mean Value Theorem (see [10]) it follows that there exist θn ∈
[0, 1] and vn ∈ ∂FΣ(u+ θn(un − u)) such that

FΣ(un)−FΣ(u) = 〈vn, un − u〉.

We denote wn = u+θn(un−u). Using the definition of F0
Σ, Proposition 4.5 it follows

that

FΣ(un)−FΣ(u) ≤ (FΣ)0(wn;un − u) ≤
∫

RL+M

F ◦(z, wn(z);un(z)− u(z))dz

=
∫

RL+M

max
{
〈v(z), un(z)− u(z)〉 : v ∈ ∂F (z, wn(z))

}
.

Now we use Remark 6.27 to get

FΣ(un)−FΣ(u) ≤
∫

RL+M

(
ε|wn(z)|p−1 + c(ε)|wn(z)|r−1

)
|un(z)− u(z)|dz.
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We use Hölder’s inequality and the fact that the inclusion Σ ↪→ Lp(RL+M ) is contin-
uous (see Theorem 6.26) to obtain

FΣ(un)−FΣ(u) ≤ εC(p)‖un − u‖Σ‖wn‖p−1
p + c(ε)C(r)‖un − u‖r‖wn‖r−1

r . (6.55)

Now we use the same ideas as before for −FΣ and find the existence of τn ∈ [0, 1] and
v̂n ∈ ∂(−FΣ)(u+ τn(un − u)) such that

FΣ(u)−FΣ(un) = 〈v̂n, un − u〉.

We denote ŵn = u+ τn(un − u). Using the definition of −F0
Σ, and properties of the

generalized gradient (see [10]), it follows that

FΣ(u)−FΣ(un) ≤ (−FΣ)0(ŵn;un − u) = (FΣ)0(ŵn;u− un).

Analogously to (6.55) we get

FΣ(u)−FΣ(un) ≤ εC(p)‖un − u‖Σ‖ŵn‖p−1
p + c(ε)C(r)‖un − u‖r‖ŵn‖r−1

r . (6.56)

Using (6.55) and (6.56) we have

|FΣ(un)−FΣ(u)| ≤ εC(p)‖un − u‖Σ(‖wn‖p−1
p (6.57)

+‖ŵn‖p−1
p ) + c(ε)C(r)‖un − u‖r(‖wn‖r−1

r + ‖ŵn‖r−1
r ).

The inclusion Σ ↪→ Lr(RL+M ) is compact for r ∈]p, p∗[ (see Theorem 6.26), then we
get that ||un−u||r → 0 as n→ +∞, while the sequences (wn) and (ŵn) are bounded
in the ‖ · ‖p and ‖ · ‖r norms. Then in (6.57) we get FΣ(un) → FΣ(u). Hence h2 is
weakly sequentially continuous. �

Proof of Theorem 6.31. For this let u ∈ K ∩ Σ, from condition (F
′
3) and from the

fact that the embedding Σ ↪→ Lν(RL+M ) is continuous and q < p it follows that

fΣ(u, λ) ≥ 1
p
||u||pΣ − λ

∫
RL+M

α(z)|u(z)|qdz − λ

∫
RL+M

β(z)dz

≥ 1
p
||u||pΣ − λ||α|| ν

ν−q
||u||qν − λ||β||1

≥ 1
p
||u||pΣ − λ||α|| ν

ν−q
Cq(q)||u||qΣ − λ||β||1.

Therefore, if ||u||Σ → +∞, we have fΣ(u, λ) → +∞. Let (un) ⊂ K ∩ Σ be a
sequence such that

fΣ(un, λ) → c (6.58)

and for every v ∈ Σ we have

〈AΣun, v−un〉+λ
∫

RL+M

F 0(z, un(z);un(z)−v(z))dz+ψΣ(v)−ψΣ(un) ≥ −εn||v−un||Σ,

(6.59)
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ALEXANDRU KRISTÁLY AND CSABA VARGA

for a sequence (εn) in [0,+∞[ with εn → 0. From (6.58) follows that the sequence
(un) is bounded in K∩Σ and as in Proposition 6.29 we get that there exists an element
u ∈ K ∩ Σ such that un → u. Let us define the function

g(t) = sup
{
FΣ(u) :

1
p
||u||pΣ ≤ t

}
.

Using ii) from Remark 6.27 and the fact that the inclusion Σ ↪→ Ll(RL+M ), l ∈ [p, p?]
is continuous, it follows that

g(t) ≤ εCp(p)t+ c(ε)Cr(r)t
r
p . (6.60)

On the other hand g(t) ≥ 0 for each t > 0, then from the above relation we get

lim
t→0+

g(t)
t

= 0. (6.61)

By (F
′
4) it is clear that u0 6= 0 (since F(0) = 0). Therefore it is possible to choose a

number η such that

0 < η < FΣ(u0)
[
1
p
||u0||pΣ

]−1

.

From lim
t→0+

g(t)
t

= 0 it follows the existence of a number t0 ∈
]
0, 1p ||u0||pΣ

[
such that g(t0) < ηt0. Thus

g(t0) <
[
1
p
||u0||pΣ

]−1

FΣ(u0)t0.

Let ρ0 > 0 such that

g(t0) < ρ0 <

[
1
p
||u0||pΣ

]−1

FΣ(u0)t0. (6.62)

Due to the choice of t0 and (6.62) we have

ρ0 < FΣ(u0). (6.63)

Define h : Λ = [0,+∞[→ R by h(λ) = ρ0λ. We prove that the function h

satisfies the inequality

sup
λ∈Λ

inf
u∈K∩Σ

(fΣ(u, λ) + h(λ)) < inf
u∈K∩Σ

sup
λ∈Λ

(fΣ(u, λ) + h(λ)).

The function

Λ 3 λ 7→ inf
u∈K∩Σ

[
1
p
||u||pΣ + λ(ρ0 −FΣ(u))

]
is obviously upper semicontinuous on Λ.
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From (6.63) it follows that

lim
λ→+∞

inf
u∈K∩Σ

[fΣ(u, λ) + ρ0λ] ≤ lim
λ→+∞

[
1
p
||u0||pΣ + λ(ρ0 −FΣ(u0))

]
= −∞. (6.64)

Thus we find an element λ ∈ Λ such that

sup
λ∈Λ

inf
u∈K∩Σ

(fΣ(u, λ) + ρ0λ) = inf
u∈K∩Σ

[
1
p
||u||pΣ + λ(ρ0 −FΣ(u))

]
. (6.65)

From g(t0) < ρ0 it follows that for all u ∈ Σ with 1
p ||u||

p
Σ ≤ t0, we have FΣ(u) < ρ0.

Hence

t0 ≤ inf
{

1
p
||u||pΣ : FΣ(u) ≥ ρ0

}
. (6.66)

On the other hand,

inf
u∈K∩Σ

sup
λ∈Λ

(fΣ(u, λ) + ρ0λ) = inf
u∈K∩Σ

[
1
p
||u||pΣ + sup

λ∈Λ
(λ(ρ0 −FΣ(u)))

]
= inf

{
1
p
||u||pΣ : FΣ(u) ≥ ρ0

}
.

Thus (6.66) is equivalent with

t0 ≤ inf
u∈K∩Σ

sup
λ∈Λ

[fΣ(u, λ) + ρ0λ]. (6.67)

There are two distinct cases:
(I) If 0 ≤ λ < t0

ρ0
, we have

inf
u∈K∩Σ

[
1
p
||u||pΣ + λ(ρ0 −FΣ(u))

]
≤ fΣ(0, λ) = λρ0 < t0.

Combining the above inequality with (6.65) and (6.67) we obtain the inequal-
ity from (a2) Theorem 3.5.
(II) If t0ρ0

≤ λ, then from ρ0 < FΣ(u0) and (6.62) it follows

inf
u∈K∩Σ

[
1
p
||u||pΣ + λ(ρ0 −FΣ(u))

]
≤ 1

p
||u0||pΣ + λ(ρ0 −FΣ(u0))

≤ 1
p
||u0||pΣ +

t0
ρ0

(ρ0 −FΣ(u0)) < t0.

Theorem 3.5 implies that there exists an open interval Λ0 ⊂ Λ, such that for
each λ ∈ Λ0, the function fΣ(·, λ) has at least three critical points in K∩Σ. Therefore,
problem (Pλ) has at least three distinct solutions for every λ ∈ Λ0. This ends the
proof. �

We conclude this subsection with two examples for which Theorem 6.28 and
6.31 can be applied.
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Example 6.33. Let k ∈ R, k > 1. We define the sequence of real numbers (An) by
A0 = 0, and

An =
1
1k

+
1
2k

+
1
3k

+ · · ·+ 1
nk
, n ≥ 1.

Let r > p > 2. We consider the functions f, F : R → R given respectively by

f(s) = s|s|p−2(|s|r−p +An) for s ∈]− n− 1,−n] ∪ [n, n+ 1[, n ∈ N,

F (u) =

u∫
0

f(s)ds for u ∈]− n− 1,−n] ∪ [n, n+ 1[, n ∈ N.

Clearly F satisfies (F1), (F2), (F3) and (F4), hence owing to Theorem 6.28 problem
(Pλ) has a nontrivial positive solution.

Example 6.34. Let A : RL → R be a continuous, nonnegative, not identically zero,
axially symmetric function with compact support in RL. We consider F : RL×RM ×
R → R defined by

F ((x, y), s) = A(x) min{sr, |s|q} for (x, y) ∈ RL × RM , s ∈ R,

where r ∈
]
p,

(L+M)p
L+M − p

[
is an odd number and q ∈]0, p[. The function F satisfies

the assumptions (F1), (F2), (F ′3) and (F ′4) and F (·, s) is G-invariant for all s ∈ R.
Theorem 6.31 implies that there exists an open interval Λ0 ⊂ Λ such that for each
λ ∈ Λ0 problem (Pλ) has at least three distinct solutions which are axially symmetric.
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[21] O. Kavian, Introduction à la Théorie des Point Critique et Applications aux Proble’emes

Elliptique, Springer Verlag, 1995.
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ON THE REGULARITY OF SOLUTIONS OF A BOUNDARY
VALUE PROBLEM USING DECOMPOSITION AND

LOCALIZATION TECHNIQUES IN A CORNER

HAMID BENSERIDI AND MOURAD DILMI

Abstract. The subject of this work is the study of the singular behaviour

of solutions for the Lamé system with Dirichlet, mixed and Neumann con-

ditions in a bounded domain. A technique of localization of the problem

in a corner is presented. The method is an adaptation of that of Kon-

dratiev [8] extended to the weighted Sobolev spaces. This method have

been considered by many authors.

1. Introduction

Questions of existence and uniqueness have been considered in Grisvard [6]
for the Lamé system in the classical framework of weighted Sobolev spaces with weight
in a polygon. The Sobolev spaces with double weight have been introduced in Dauge
[3] for the Stokes system in a polygon.

In [1], Benseridi and Dilmi have used the complex Fourier transform with
respect to the first variable in an infinite sector for a class of double weighted Sobolev
spaces, to study problems of existence, unicity, regularity, and singularity of solutions
of the Lamé system.

In their paper, Benseridi and Merouani [2], have studied some transmission
problems related to the Lamé system in a polyhedron for a class of double weighted
Sobolev spaces. They have given an explicit description of singularities of the vari-
ational solutions for the homogeneous case, by the same they have shown that the
singular behaviour of the solutions is governed by a sequence of transcendental equa-
tions.

Here, we give an extension for some results previously obtained by the above
mentioned authors. This paper is organized as follows: In section 1 we give some
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basic tools and properties related to the weighted Sobolev spaces which will be useful
for the next. Section 2 is concerned with the notations and the formulation of our
problem (P1), while section 3, we study the regularity of the weak solution of the
mixed problem (P1) by using the technique of localization in a corner and this is done
by means of the weighted Sobolev spaces. The solution is expressed as a some of a
regular and a singular part. Finally, we state our main result by giving an explicit
calculus of the singular functions that appear in the singular part of the solutions
of the three problems (Dirichlet, Neumann and mixed). To do this, we compute the
eigenvalues and the corresponding eigenvectors.

2. Overview on the weighted Sobolev spaces

In this section we give some basic tools and properties related to the weighted
Sobolev spaces which will be useful in the next.

In what follows Ω is an infinite plane-sector of an opening ω

Ω = {(x, y) : x + iy = reiθ , r > 0, 0 < θ < ω}.

B is the strip defined by: B = R×]0 , ω[, θ0, θ∞ are two reals: θ0 ≤ θ∞.

Definition 2.1. Let Ω be an open bounded set of Rn with closure Ω, and boundary
Γ. Let ρ ∈ C∞ (Rn) , ρ > 0 on Ω, ρ = 0 on Γ and gradiant(ρ) is nonnull on Γ. For
a positive integer l, α and p two real numbers such that p > 1, W l,p

α (Ω) is the Banach
space of the distributions u on Ω such that ραDβu ∈ Lp (Ω) , for |β| ≤ l, equipped
with the norm

‖u‖W l,p
α (Ω) =

∑
|β|≤l

∥∥ραDβu
∥∥p

Lp(Ω)

 1
p

.

Definition 2.2. Let s ∈ N, we define the space V s(B) by

V s(B) ={u ∈ L2(B) / (1 + ξ2)
k
2 u ∈ L2(R Hs−k(]0, ω[) ), k = 0, ..., s}.

V s(B) is a Hilbert space for which the scalar product is given by

〈u, v〉 =
s∑

k=0

∫ ∫
B

(1 + ξ2)k
∣∣Ds−k

θ u
∣∣ ∣∣Ds−k

θ v
∣∣ dθdξ.

Lemma 2.3. ([5, 8]). Let η1, η2 ∈ R such that, η1 ≤ η2. If f ∈ L2
η1,η2

(B) , then

1) ∀η ∈ [η1, η2] , eη tf ∈ L2 (B) , and
∥∥eη tf

∥∥
L2(B)

≤ ‖f‖L2
η1,η2

(B) ;

2) ∀η ∈ ]η1, η2[ , eη tf ∈ L1 (B) , and
∥∥eη tf

∥∥
L1(B)

≤ c ‖f‖L2
η1,η2

(B) .
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Definition 2.4. We denote by T the partial Fourier transform with respect to the
first variable on B, then

T (f) (ϕ, θ) = T
(
eη tf

)
(ξ, θ), with ϕ = ξ + iη,

where T (eη tf) denotes the real Fourier transform of eη tf with respect to the first
variable.

Clearly f admits a complex Fourier transform, if and only if, eη tf admits a
real Fourier transform.

For simplicity we write: T (f) (ϕ, θ) = f̂ (ϕ, θ).

Property 2.5. Let f ∈ Hs
η1,η2

(B), then, for every k, j ∈ N such that k + j ≤ s, we
have

T

(
∂k+j f

∂ tk ∂ θj

)
= (iϕ)k ∂j

∂θj
T (f) (ϕ, θ), (i2 = −1),

for every ϕ in C and Imϕ ∈ [η1, η2].

3. Notations and formulation of the problem

Ω denotes an homogeneous body, elastic and isotrope, occupying a bounded
domain of R2 with a polygonal rectilignal boundary Γ = ∪

j∈J
Γj , where Γj are open

piecewise lines. {J1, J2} is a partition of J , sj will be the origin of Γj+1, and sj+1 its
extremity according to the usual orientation.

The opening of the angle formed by Γj and Γj+1 towards the interior of Ω
will be denoted ωj , with 0 < ωj < 2π for all j ∈ J. Ω then defined is consequently
an open bounded domain with Lipschitz boundary. All results on this kind of domain
are valid here.

It is more convenient to work at the origin with polar coordinates. Therefore
by a translation first and then by a rotation, we can bring back sj , Γj , Γj+1 to O,

OX, Oω (ω is the angle formed by OX and Oω towards the interior of Ω).
Our interest is to study the properties of regularity for a weak solution of the

following mixed problem (Dirichlet-Neumann)
µ∆u + (λ + µ)∇ (divu) = f in Ω
u = 0 on ∪

j∈J1
Γj

σ (u) .τ = 0 on ∪
j∈J2

Γj

(P1)

where λ and µ are the elasticity coefficients with λ > 0 and λ + µ ≥ 0, (u),
(f) designate respectively the displacement vector and the density of external powers.
σ denote the stress tensor with σ = (σhk), h, k = 1, 2. The σhk elements are given by
the Hooke’s law
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σhk(u) = 2µεhk(u) + λ div(u)δhk,

where εhk(u) = 1
2 (∂kuh + ∂huk) the symmetric deformation velocity tensor. τ is the

normal vector.

Definition 3.1. We denote by V the closure of the set{
v ∈ C∞ (Ω)2 , v/Γj = 0 for every j ∈ J1

}
in H1 (Ω)2 .

In order to define a weak solution, we introduce a symmetric bilinear form on V 2 by
considering the scalar product of system (P1) . More explicitly

l : V 2 −→ R

(u, v) 7−→ l (u, v) = −
∫
Ω

2∑
h=1

2∑
k=1

σhk (u) εhk (v) dx.

Definition 3.2. The function u ∈ V is a weak solution for problem (P1) if

l (u, v) =
∫
Ω

2∑
h=1

fhvhdx, ∀v ∈ V.

There is no particular problem to apply the variational method for the res-
olution of (P1) because the Korn inequality is still valid in a polygon, moreover it is
known that there exists a unique weak solution u ∈ V, if the bilinear form is bounded
in V 2 and coercive. These conditions are verified if mes ( ∪

j∈J1
Γj) > 0. When it is the

Neumann problem (J1 = ∅), we suppose that the necessary condition of existence is

verified, the orthogonality of the rigid displacements data, i.e.
∫
Ω

2∑
h=1

fhvhdx = 0, for

every v of the form v(x, y) = (a + cy, b− cx), with a, b, c arbitrary reals.

4. Localization of the problem in a corner

The analysis of the existence, the unicity and the regularity for the boundary
value problem (P1) is more developed when the domain Ω is sufficiently smooth. Many
results has been obtained by many authors. The principal regularity is in the interior
of the domain Ω and on Γ/ ∪

j∈J
Vj , where Vj is a closed neighbourhood of a vertex sj .

(sj), j ∈ J, are called singular points.
In the sequel, we only envisage the singular behaviour of the solution of (P1)

in a neighbourhood of a singular point, then we transpose the results to the weak
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solution; for this aim we consider the function ρ (r) such that

0 ≤ ρ (r) ≤ 1, ρ (r) ∈ C∞ (]0, ω[)

ρ (r) =

{
1 , if 0 ≤ r ≤ δ

0 , if r ≥ 2δ
,

where δ is the smallest positive real for which no singular point of Γ is in the circle
{x : |x| ≤ 3δ}. We denote by K an infinite plane sector.

We set w = ρu, the problem (P1) will be

µ4 w + (λ + µ)5 (divw) = F in K (4.1),
w = 0, on Γ0 ∪ Γω (4.2),

or{
w = 0 on Γ0 and σ (w) .τ = 0 , on Γω (4.3),
σ (w) .τ = 0 on Γ0 ∪ Γω (4.4),

(P2)

where F is depending on f, ρ and u.
Since we are interested with the solution in a neighbourhood of the vertex

(ρ = 1) , we can suppose for simplicity, that F is an arbitrary given data (which does
not depend on the solution u ). Under this hypothesis, we have F = ρf .

5. The regularity in the weighted Sobolev spaces

This section is concerned with the decomposition of the solution in a reg-
ular part and a singular part. We denote by A(Dx) the differential operator for
system (4.1)

A(Dx) =

(
(λ + 2µ) ∂2

∂x2 + µ ∂2

∂y2 (λ + µ) ∂2

∂x∂y

(λ + µ) ∂2

∂x∂y (λ + 2µ) ∂2

∂y2 + µ ∂2

∂x2

)
,

and B(Dx) the boundary operator (4.2), (4.3), (4.4).
For (4.4) we have

B(Dx) =

(
(2µ + λ)τ1

∂
∂x + µτ2

∂
∂y λτ1

∂
∂y + µτ2

∂
∂x

µτ1
∂
∂y + λτ2

∂
∂x µτ1

∂
∂x + (2µ + λ)τ2

∂
∂y

)
.

Let a(Dx) = [A(Dx), B(Dx)] be the operator defined by

a(Dx) : H2
β,β(K)2 −→ L2

β,β(K)2 ×H
2−m− 1

2
β,β (Γ0)2 ×H

2−m− 1
2

β,β (Γω)2,

where m represents the order of the trace operator, m = 0 for the Dirichlet condition
and m = 1 for the Neumann condition.
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By passing to the polar coordinates, and we apply the complex Fourier trans-
form with respect to the first variable, the boundary value problem a (DX) w = F

will be

a(z,Dθ)ŵ = F̂ ,

where

a(z,Dθ) = [A(z,Dθ), B(z,Dθ)] : H2 (]0, ω[)2 −→ L2 (]0, ω[)2 × C2 × C2,

with A(z,Dθ) = (Ahk), i2 = −1 and

A11 = −µz2 + (λ + µ)
((

−z2

2
− iz

)
cos 2θ − −z2

2

)
+

(λ + µ) (1− iz) sin 2θ
d

dθ
+
(

µ + (λ + µ)
(

1
2
− 1

2
cos 2θ

))
d2

dθ2
.

A12 = A21 = (λ + µ)
((

−z2

2
− iz

)
sin 2θ + (iz − 1) cos 2θ

d

dθ
− 1

2
d2

dθ2

)
.

A22 = −µz2 + (λ + µ)
((

z2

2
+ iz

)
cos 2θ − z2

2

)
+

(λ + µ) (iz − 1) sin 2θ
d

dθ
+ (λ + µ)

(
1
2

+
1
2

cos 2θ

)
d2

dθ2
.

B(z,Dθ) is the boundary operator.
For condition (4.2) and θ = 0, we get

B(z,Dθ) =

 d

dθ
iz

2νiz 2(1− ν)
d

dθ

 ,

where

ν =
λ

2 (λ + µ)
.

Definition 5.1. The complex number z = z0 is called an eigenvalue of a(z,Dθ) if
there exists a nontrivial solution e0 (z0, θ) ∈ H2 (]0, ω[)2 for the equation

a(z,Dθ)e (z, θ) |z=z0 = 0.

e0 (z0, θ) is called the eigenvector of a(z,Dθ) corresponding to z0. The function
e1 (z0, θ) is an associated vector to z0 if

−i
da(z,Dθ)

dz
|z=z0 e0 (z0, θ) + a(z0, Dθ)e1 (z0, θ) = 0.

Theorem 5.2. The operator A(Dx) is an isomorphism if and only if a(z,Dθ) has no
eigenvalue with imaginary part β − 1.
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Theorem 5.3. Let θ0, θ∞ two reals such that θ0 ≤ θ∞ . We suppose that the operator
a(z,Dθ) has no eigenvalue on the lines R + i(θ0 − 1), R + i(θ∞ − 1), then for every
F ∈ L2

θ0,θ∞
(K)2 the solution w ∈ H2

θ∞,θ∞
(K)2 of problem (P2) is written in the

following form

w(r, θ) =
N∑

l=1

Il∑
σ=1

δσ l∑
k=0

Cσklu
(σ)
k,l (r, θ) + V (r, θ),

where V ∈ H2
θ0,θ0

(K)2, z1, z2, .., zN are the eigenvalues of a(z,Dθ) such that θ0 − 1 ≤
Imzl ≤ θ∞ − 1,

Il = dim
(
span

{
e0
1 (z0, θ) , e0

2 (z0, θ) , ...
})

,

δσ l =

{
1, if an associated vector exists for zland e0 (z0, θ) ,

0, otherwise.

Cσkl are constants,

u
(σ)
k,l (r, θ) = rizl

k∑
s=0

(log r)sek−s
σ (zl, θ)

are called singular functions.

Proof. See A. M. Sandig, U. Richter, R. Sandig [10]. �

We consider a weak solution u ∈ V of problem (P1).

Lemma 5.4. Let f ∈ L2
1+ε ,1+ε(Ω)2, where ε is a small positive real, then

ρu ∈ H2
1+ε ,1+ε(K)2.

Proof. We consider a sequence of domains Ωh, h = 1, 2, ... where Ωh = Ω∩Rh, with

Rh =
{

x :
δ

2h+1
≤ |x| ≤ δ

2h

}
.

For δ̂ = 2δ, we consider the function ρ̂(r) such that

ρ̂(r) ∈ C∞ (]0,∞[) , 0 ≤ ρ̂(r) ≤ 1

ρ̂(r) =

{
1 if 0 ≤ r ≤ δ̂

0 if r ≥ 2δ̂

we have

∪
h
Ωh = K0 ⊂ K.

The standard theorems of regularity give, for |γ| = 2

∫∫
Ωh

|Dγu|2 dx ≤ c


∫∫

Ωh−1∪ Ωh∪ Ωh+1

|f |2 dx +
∫∫

Ωh−1∪ Ωh∪ Ωh+1

r−4 |u|2 dx

 . (5.1)
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Multiplying by (
δ̂

2h
)2(1+ε) , we obtain∫∫

Ωh

r2(1+ε) |Dγu|2 dx ≤ c(
∫∫

Ωh−1∪ Ωh∪ Ωh+1

r2(1+ε) |f |2 dx +

+
∫∫

Ωh−1∪ Ωh∪ Ωh+1

r2(−1+ε) |u|2 dx)

and by summing with respect to h, from 0 to ∞, the inequality (5.1 ) becomes

∫∫
K0

r2(1+ε) |Dγu|2 dx ≤ c


∫∫
K0

r2(1+ε) |f |2 dx +
∫∫
K0

r2(−1+ε) |u|2 dx

 .

Clearly ∫∫
K0

r2(−1+ε) |u|2 dx =
∫∫
K0

r2(−1+ε) |ρu|2 dx.

Now, passing to polar coordinates and using Hardy inequality, we get
∞∫
0

|f(t)|2 t(ε′−2)dt ≤
(

2
|ε′ − 1|

)2
∞∫
0

|f ′(t)|2 tε
′
dt,

for ε′ > 1 and lim
t→∞

f(t) = 0. We get for u(r, θ) = u(x, y)

∫∫
K0

r−2+2ε+1 |ρ̂u|2 drdθ ≤
ω∫
0

∞∫
0

r−2+2ε+1 |ρ̂u|2 drdθ

≤
ω∫
0

(
2
2ε

)2
∞∫
0

r2ε

∣∣∣∣ ∂

∂r
ρ̂u

∣∣∣∣2 rdrdθ ≤ c

∫∫
Ω ∩ sup p η̂

r2ε |u|2 dx

+c

∫∫
Ω ∩ sup p η̂

r2ε(|gradiantu1|2 + |gradiantu2|2)dx ≤ c ‖u‖H1(Ω)2 .

For |γ| = 2 we have∫∫
K0

r2(1+ε) |Dγρu|2 dx ≤ c
∑

|γ′|≤ 2

∫∫
K0

r2(1+ε)
∣∣∣Dγ′ρu

∣∣∣2 dx,

therefore, ρu ∈ H2
1+ε ,1+ε(K)2. �

We can now give the following theorem.
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Theorem 5.5. ([10]) Let u ∈ V a weak solution of problem (P1). Let ε a real positive
small number such that the operator a(z,Dθ) has no eigenvalue with imaginary part
ε or (−1). We suppose that ρf ∈ L2 (K)2 , then

ρ2u(r, θ) = ρ
N∑

l=1

Il∑
σ=1

δσ l∑
k=0

Cσklu
(σ)
k,l (r, θ) + ρV (r, θ),

where ρV ∈ H2(K)2.

6. Computation of the singular functions

Our goal is to compute the functions u
(σ)
k,l (r, θ) for the three problems (Dirich-

let, Neumann, and mixed). To do this, we have to know the eigenvalues zl of a(z,Dθ),
the corresponding eigenvectors, and the associated vectors.

6.1. Dirichlet problem.

Lemma 6.1. If zl is an eigenvalue of a(z,Dθ), for the angle ω, ω /∈ {π, 2π}, we get
Il = 1 and

e0
1(zl, θ) = C3(zl)Y3(zl, θ) + C4(zl)Y4(zl, θ),

where

Y3(zl, θ) =

(
− cosh(zlθ) + cosh(zl + 2i)θ

(1− 2(3−4ν)
izl

)i sinh(zlθ)− i sinh(zl + 2i)θ

)
.

Y4(zl, θ) =

(
−(1 + 2(3−4ν)

izl
)i sinh(zlθ) + i sinh(zl + 2i)θ

− cosh(zlθ) + cosh(zl + 2i)θ

)
.

C3(zl) = − cosh(zlω) + cosh(zl + 2i)ω.

C4(zl) = −
(

1− 2(3− 4ν)
izl

)i sinh(zlω

)
+ i sinh(zl + 2i)ω.

For ω = π or ω = 2π we have

zl = −il or zl = − il
2 , l = 1, 2, ...

For the two cases Il = 2 and e0
1(zl, θ) = Y3(zl, θ), e0

2(zl, θ) = Y4(zl, θ) are two eigen-
vectors linearly independent.
Proof. Note that the eigenvectors of a(z,Dθ) are the zeros of the transcendental
function D1(z) defined by

D1(z) = 4 sin2 ω +
(

2(3−4ν)
iz

)2

sinh2(zω).
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The general solution for the equation A(z,Dθ)e (z, θ) = 0 is given by

e (z, θ) = C1(z)

(
cosh(zθ)
−i sinh(zθ)

)
+ C2(z)

(
i sinh(zθ)
cosh(zθ)

)
+

C3(z)

(
cosh(z + 2i)θ

−i sinh(z + 2i)θ − 2(3−4ν)
iz i sinh(zθ)

)
+

C4(z)

(
i sinh(z + 2i)θ

cosh(z + 2i)θ + 2(3−4ν)
iz cosh(zθ)

)
.

The condition B(zl, Dθ)e (zl, θ) = 0 for θ = 0 shows that C1(zl) = −C3(zl) and
C2(zl) = −C4(zl)(1 + 2(3−4ν)

izl
). From the condition B(zl, Dθ)e (zl, θ) = 0 for θ = ω, it

comes that M(zl, ω)C(zl) = 0, where

M(zl, ω) =

(
− cosh(zlω) −(1 + 2(3−4ν)

izl
)i sinh(zlω)

− 2(3−4ν)
izl

i sinh(zlω) − cosh(zlω)

)
+(

cosh(zl + 2i)ω i sinh(zl + 2i)ω
0 i cosh(zl + 2i)ω

)
,

C(z) =

(
C3(zl)
C4(zl)

)
.

The determinant of the matrix M(zl, ω) is equal to D1(zl) which is null, we can then
choose C3(zl), C4(zl) such that

C4(zl) = −(1− 2(3− 4ν)
izl

)i sinh(zlω) + i sinh(zl + 2i)ω,

C3(zl) = − cosh(zlω) + cosh(zl + 2i)ω.

Replacing C3(zl), C4(zl) by their values in the expression of solution e (z, θ), we obtain

e0
1(zl, θ) = C3(zl)Y3(zl, θ) + C4(zl)Y4(zl, θ).

Now if ω = π or ω = 2π, the rank of the matrix of the system which results
from the boundary condition B(zl, Dθ)e (zl, θ) = 0 for θ = 0, θ = ω, is equal to 2,
consequently Il = 2 , we can choose C3(zl) = 0, C4(zl) = 1 or C3(zl) = 1, C4(zl) = 0,
which proves that e0

1(zl, θ), e0
2(zl, θ) are the linearly independant eigenvectors. �

Remark 6.2. For z = 0 we have D1 (0) = 2− 2 cos 2ω − 4 (3− 4ν)2 ω2, then D1 (0)
is null if and only if ω = 0, consequently z = 0 is not an eigenvalue of a(z,Dθ).

In the sequel, we are going to study the correlation between the order of mul-
tiplicity of an eigenvalue zl of the operator a(z,Dθ) and the existence of an associated
vector. For this, we denote by m(zl) the order of multiplicity of zl.

The two following propositions are similar to [10].
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Proposition 6.3. Denote by m(zl) the order of multiplicity of (zl), then

m(zl) =
Il∑

σ=1
(δσl + 1) ≥ Il.

Proposition 6.4. If m(zl) = 2 and Il = 1, then there exists an associated unique
vector and if ω = π or ω = 2π if there is any associated vector.

Lemma 6.5. Suppose that

(H)


tanh(zlω) = ωzl,(

sinω

ω

)2

= [(3− 4ν) cosh(zlω)]2 ,

sinh(zlω) cosh(zlω) is nonnull.

Then m(zl) = 2 and moreover the associated vector to the eigenvalue zl is

e1
1(zl, θ) = −i

de0
1(z, θ)
dz

∣∣∣
z=zl

,

e0
1(zl, θ) is the eigenvector as defined in Lemma 6.1 by substituting zl by z.

Proof. The hypothesis (H) is verified if and only if

D1(zl) = 0 and D′
1(zl) = 0.

Then m(zl) = 2; which insures the existence of an associated vector.
We know that the associated vectors are the solutions of the equation

−i
da(z,Dθ)

dz

∣∣∣
z=zl

e0
1 (zl, θ) + a(zl, Dθ)e1

1 (zl, θ) = 0 (6.1)

i.e., for z = zl

−i
dA(z,Dθ)

dz
e0
1 (z, θ) + A(z,Dθ)e1

1 (z, θ) = 0 (6.2)

and

−i
dB(z, θ)

dz
+ B(z,Dθ)e1

1 (z, θ) = 0 for θ = 0, θ = ω.

A(z,Dθ)e0
1 (z, θ) = 0, for all z in a neighbourhood of zl, then

d

dz

[
A(z,Dθ)e0

1 (z, θ)
]

= 0.

But
d

dz

[
A(z,Dθ)e0

1 (z, θ)
]

= A(z,Dθ)
de0

1 (z, θ)
dz

+
dA(z,Dθ)

dz
e0
1 (z, θ) . (6.3)

We multiply (6.2) by i, and then we compare it with (6.3) , we find

e1
1(zl, θ) = −i

de0
1(z, θ)
dz

∣∣∣
z=zl

.

In a similar way we prove that θ = 0

−i
dB(z,Dθ)

dz

∣∣∣
z=zl

+ B(zl, Dθ)e1
1 (zl, θ) = 0.

For θ = ω, we have
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B(z,Dθ)e0
1(z, θ) =

(
D1(zl)

0

)
,

then
dB(z,Dθ)e0

1(z, θ)
dz

∣∣∣
z=zl

=

(
D′

1(zl)
0

)
.

On the other hand
dB(z,Dθ)e0

1(z, θ)
dz

∣∣∣
z=zl

=
dB(z,Dθ)

dz

∣∣∣
z=zl

e0
1(zl, θ) + B(zl, Dθ)

de0
1(zl, θ)
dz

∣∣∣
z=zl

= i

[
−i

dB(z,Dθ)
dz

∣∣∣
z=zl

+ B(zl, Dθ)e1
1 (zl, θ)

]
= 0.

The proof is complete. �

The following theorem gives a summary for the results concerning the singular
functions.

Theorem 6.6. The singular functions of the weak solution u ∈ V of the Dirichlet
problem are given as follows:
(1) If ω /∈ {π, 2π}and zl is a simple nonnull zero of D1(z), then there exists a unique
singular function

u
(1)
0,l (r, θ) = rizle0

1 (zl, θ).

(2) If ω /∈ {π, 2π} and zl is a nonnull double zero of D1(z), then there exist two
singular functions

u
(1)
0,l (r, θ) = rizle0

1 (zl, θ) ,

u
(1)
1,l (r, θ) = rizl

[
e1
1(zl, θ) + (log r)e0

1 (zl, θ)
]
.

(3) If ω = π, then zl = −il, l = 1, 2, ...

u
(1)
0,l (r, θ) = rle0

1 (zl, θ) ,

u
(2)
0,l (r, θ) = rle0

2 (zl, θ) .

(4) If ω = 2π, then zl = − il
2 , l = 1, 2, ...

u
(1)
0,l (r, θ) = r

l
2 e0

1 (zl, θ) ,

u
(2)
0,l (r, θ) = r

l
2 e0

2 (zl, θ) .

Remark 6.7. Notice that in (1) and (2)

e0
1 (zl, θ) = C3(zl)Y3(zl, θ) + C4(zl)Y4(zl, θ),

and in (3) and (4)

e0
1 (zl, θ) = Y3(zl, θ), e0

2 (zl, θ) = Y4(zl, θ).
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6.2. The mixed problem. We have previously found the expression for the general
solution of equation A(z,Dθ)e (z, θ) = 0.

The Dirichlet-Neumann condition B(z,Dθ)e (z, θ) = 0 for θ = 0 and θ = ω

gives a system of Cramer of order 4 with determinant

D2(z) = −16µ
[
z2 sin2 ω + 4 (1− ν)2 + (3− 4ν) sinh2 (zω)

]
, ∀ z, z 6= 0.

Therefore the eigenvalues of the operator a(z,Dθ) are the zeros of the tran-
scendental equation

z2 sin2 ω + 4 (1− ν)2 + (3− 4ν) sinh2 (zω) = 0.

Remark 6.8. If z = 0, then the determinant D2 (0) is given by

D2(0) = 4(1− (3− 4ν)2)(λ + 2µ).

In this case there is no eigenvalue.

Lemma 6.9. If zl is a zero of D2 (z) then Il = 1 and

e0
1(zl, θ) = C3(zl)Y3(zl, θ) + C4(zl)Y4(zl, θ)

is an eigenvector, where

Y3(zl, θ) =

 (
−4(1−ν)

izl
− 1
)

cosh(zlω) + cosh(zl + 2i)ω(
−2(1−2ν)

izl
+ 1
)

i sinh(zlω)− i sinh(zl + 2i)ω

 ,

Y4(zl, θ) =

 (
−2(1−2ν)

izl
− 1
)

i sinh(zlω) + i sinh(zl + 2i)ω(
4(1−ν)

izl
− 1
)

cosh(zlω) + cosh(zl + 2i)ω

 ,

C3(zl) =
(

4(1− ν)
izl

− 1
)

cosh(zlω) + cosh(zl + 2i)ω,

C4(zl) =
(

2(1−2ν)
izl

− 1
)

i sinh(zlω) + i sinh(zl + 2i)ω.

Proof. The rank of the matrix of D2 (z) is equal to 3, consequently Il=1. We use the
same idea for the proof as in Lemma 6.1. We consider the general solution e(zl, θ) of
equation A(zl, Dθ)e (zl, θ) = 0, and we determine the constants C1(zl), C2(zl), C3(zl)
and C4(zl) such that they verify the boundary condition B(zl, Dθ)e (zl, θ) = 0 for
θ = 0 and θ = ω .
Finally, we obtain the result e0

1(zl, θ) = C3(zl)Y3(zl, θ) + C4(zl)Y4(zl, θ).
Now we seek for the associated vectors.

Lemma 6.10. Let zl be a zero of D2 (z) .

(1) If m (zl) = 2, then the associated vectors exist.
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(2) The equalities

(4ν − 3)
sinh(zlω) cosh(zlω)

zlω
=

sin2 ω

ω2
,

(zlω) sinh(zlω) cosh(zlω) = sinh2(zlω) +
4(1− ν)2

(3− 4ν)
,

are necessary and sufficient so that m (zl) = 2.

(3) The associated vectors are given by

e1
1(zl, θ) = −i

de0
1(z, θ)
dz

∣∣∣
z=zl

,

where e0
1(z, θ) is the eigenvector defined in the previous lemma by replacing zl by z.

Proof. (1) From proposition (1).
(2) The two equations are verified if and only if D2 (zl) = D′

2 (zl) = 0.
(3) The proof is similar to that of Lemma 6.5.
The following theorem is similar to Theorem 6.6 for the mixed problem.

Theorem 6.11. The singular functions of the weak solution u ∈ V for the mixed
problem have the following forms
(1) If zl is a simple zero of D2 (z) , then there exists only one singular function

u
(1)
0,l (r, θ) = rizle0

1 (zl, θ) .

(2) If zl is a double zero of D2 (z), then there exist two singular functions

u
(1)
0,l (r, θ) = rizle0

1 (zl, θ) ,

u
(1)
1,l (r, θ) = rizl

[
e1
1(zl, θ) + (log r)e0

1 (zl, θ)
]
,

where e0
1 (zl, θ) is the eigenvector defined in Lemma 6.9 and e1

1(zl, θ) is the associated
vector defined in Lemma 6.10.

6.3. Neumann problem. In this case we consider the boundary conditions of Neu-
mann B(z,Dθ)e (z, θ) = 0. These conditions give a system of four equations with
determinant is

D3(z) = −32µ2z2
[
−z2 sin2 ω + sinh2(zω)

]
, ∀ z, z 6= 0.

Therefore the boundary problem have a nontrivial solution, if and only if D3(z) = 0,

consequently the eigenvalues of the operator a(z,Dθ) are the zeros of D3(z).

Remark 6.12. For z = 0, we have D3(0) = 0 for all ω.

Lemma 6.13. (1) We suppose that zl is a zero of D3(z), zl /∈ {0,−i} , ω /∈ {π, 2π} ,

then Il = 1 and

e0
1(zl, θ) = C3(zl)Y3(zl, θ) + C4(zl)Y4(zl, θ)

102



ON THE REGULARITY OF SOLUTIONS OF A BOUNDARY VALUE PROBLEM

is an eigenvector, where

Y3(zl, θ) =

 (
−4(1−ν)

izl
− 1
)

cosh(zlω) + cosh(zl + 2i)ω(
−2(1−2ν)

izl
+ 1
)

i sinh(zlω)− i sinh(zl + 2i)ω

 ,

Y4(zl, θ) =

 (
−2(1−2ν)

izl
− 1
)

i sinh(zlω) + i sinh(zl + 2i)ω(
4(1−ν)

izl
− 1
)

cosh(zlω) + cosh(zl + 2i)ω

 ,

C3(zl) = µ(zl + 2i) sinh(zlω)− zl sinh(zl + 2i)ω,

C4(zl) = izl [cosh(zlω)− cosh(zl + 2i)ω] .

(2) The number zl = (−i) is an eigenvalue of a(z,Dθ) for all ω ∈ ]0, 2π] and its
eigenvector is

e0
1(−i, θ) =

(
sin θ

− cos θ

)
.

(3) If ω = π (resp. ω = 2π), then zl = −il (resp. zl = −il
2 ), l = 1, 2, ..., and Il = 2.

The eigenvectors are
(a) If zl = −i

e0
1(−i, θ) =

(
sin θ

− cos θ

)
, e0

2(−i, θ) = Y3(−i, θ).

(b) If zl is different from −i

e0
1(zl, θ) = Y4(zl, θ) , e0

2(zl, θ) = Y3(zl, θ).

Proof. (1) We consider the general solution e(z, θ) for the equation

A(z,Dθ)e(z, θ) = 0,

then using conditions B(zl, Dθ)e(zl, θ) = 0, for θ = 0 and θ = ω, we obtain (1).
(2) It is easy to check that zl = (−i) is a zero of D3(z) for all ω ∈ ]0, 2π[.

The boundary conditions B(zl, Dθ)e(zl, θ) = 0 for θ = 0, θ = ω give the
following system (

−4 sinω 0
0 0

)(
C3

C4

)
=

(
0
0

)
. (6.4)

We choose C3 = 0, C4 = −1
4(1−ν) , we obtain

e0
1(−i, θ) =

(
sin θ

− cos θ

)
.
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(3) When ω = π or ω = 2π, the matrix in (6.4) will be null, we can then choose
C3 = 1, C4 = 0 or C3 = 0, C4 = 1 thus (a). The proof of part (b) is similar to the
last part in Lemma 6.1.

The following lemma illustrates the correlation between the order of multi-
plicity of an eigenvalue and the existence of an associated vector.

Lemma 6.14. (1) If zl is different from −i, Il = 1 and m(zl) = 2, then there exists
an associated vector.
(2) The conditions

tanh(zlω) = tanh(zlω),

cosh2(zlω) =
sin2 ω

ω2
, zl 6= −i,

are necessary and sufficient to m(zl) = 2, and in this case the associated vectors are
given by

e1
1(zl, θ) = −i

de0
1(z, θ)
dz

∣∣∣
z=zl

,

where e0
1(z, θ) is the eigenvector defined in part (1) of the previous lemma by replacing

zl by z.

To prove this lemma, it suffices to compare with Lemma 6.5 and Lemma 6.10.
To close this section, we give a similar theorem as in 6.11 which corresponds

to the Neumann case.

Theorem 6.15. The singular functions of the weak solution u ∈ V/Im of the Neu-
mann problem are
(1) If ω /∈ {π, 2π} and zl is a simple zero of D3(z), then there exists a unique singular
function

u
(1)
0,l (r, θ) = rizle0

1 (zl, θ) .

(2) If ω /∈ {π, 2π} and zl is a double zero of D3(z), then there exist two singular
functions

u
(1)
0,l (r, θ) = rizle0

1 (zl, θ) ,

u
(1)
1,l (r, θ) = rizl

[
e1
1(zl, θ) + (log r)e0

1 (zl, θ)
]
.

(3) If ω = π, then zl = −il, l = 1, 2, ..., and

u
(1)
0,l (r, θ) = rle0

1 (−il, θ) ,

u
(2)
0,l (r, θ) = rle0

2 (−il, θ) .
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(4) If ω = 2π, then zl = −il
2 , l = 1, 2, ..., and

u
(1)
0,l (r, θ) = r

l
2 e0

1

(
−il

2
, θ

)
,

u
(2)
0,l (r, θ) = r

l
2 e0

2

(
−il

2
, θ

)
.

Remark 6.16. Note that
• In (1) and (2), e0

1 (zl, θ) = C3(zl)Y3(zl, θ) + C4(zl)Y4(zl, θ).
• In (3) and (4), e0

1 (zl, θ) = Y4(zl, θ) , e0
2 (zl, θ) = Y3(zl, θ).

• Im = span {(0, 1), (0, 1), (−x2, x1)} .
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SIMPLE CRITERIA FOR STARLIKENESS OF ORDER β

DENISA FERICEAN

Abstract. In this paper we obtain a new criterion for starlikeness of order

β for an analytic function f ∈ An. This criterion involves only the second

derivative of the given function and generalizes a well-known result due to

P. T. Mocanu.

1. Introduction

Let H = H(U) denote the class of functions analytic in the unit disc

U = {z ∈ C : |z| < 1}.

For n a positive integer and a ∈ C let

H[a, n] = {f ∈ H : f(z) = a + anzn + ...}.

Let An denote the class of functions

f(z) = z + an+1z
n+1 + ..., n ≥ 1

that are analytic on the unit disc and let A1 = A.
Let D be a domain in C. A function f : D → C is called univalent on D if

f ∈ H(D) and f is injective on D.
The analytic function f , with f(0) = 0 and f

′
(0) 6= 0 is starlike on U (i.e. f is

univalent on U and f(U) is starlike with respect to origin) if and only if <
[

zf
′
(z)

f(z)

]
> 0,

for z ∈ U .
An analytic function f with f(0) = 0 and f

′
(0) 6= 0 is starlike of order β,

β ≥ 0 if and only if <
[

zf
′
(z)

f(z)

]
> β, for z ∈ U , β ≥ 0.

Let denote S∗ and S∗(β) the subclasses of A consisting of functions f which
are starlike and starlike of order β.

Let D be a domain in C. A function f : D → is convex on D if f is univalent
on D and f(D) is a convex domain in C.

Received by the editors: 01.07.2009.

2000 Mathematics Subject Classification. 30C45.

Key words and phrases. Convex function, starlike function, subordination, univalent function.

107



DENISA FERICEAN

If f and g are analytic functions in U , then we say that f is subordinate to
g, written f ≺ g,or f(z) ≺ g(z), if there is a function w analytic in U with w(0) = 0,
|w(z)| < 1, for all z ∈ U such that f(z) = g[w(z)], for z ∈ U . If g is univalent, then
f ≺ g if and only if f(0) = g(0) and f(U) ⊂ g(U).

We shall use the following results to prove our main results.

Lemma 1.1. [8] Let h be a starlike function with h(0) = 0. If the function p ∈ H[a, n]
satisfies the differential subordination

zp′(z) ≺ h(z) (1.1)

then

p(z) ≺ q(z) = a +
1
n

∫ z

0

h(t)
t

dt.

Function q is the best (a,n)-dominant of subordination.

Lemma 1.2. [3] Let h be a convex function with h(0) = a and let γ ∈ C∗ with <γ ≥ 0.
If the function p ∈ H[a, n] and

p(z) +
1
γ

zp′(z) ≺ h(z) (1.2)

then
p(z) ≺ q(z) ≺ h(z)

where

q(z) =
γ

nz
γ
n

∫ 1

0

h(t)t
γ
n−1dt. (1.3)

Lemma 1.3. [4] Let be a function p ∈ H[a, n].

1. If Ψ ∈ Ψn{Ω, a} then

Ψ(p(z), zp′(z), z2p′′(z); z) ∈ Ω ⇒ < p(z) > 0, z ∈ U

2. If Ψ ∈ Ψn{Ω, a} then

< Ψ(p(z), zp′(z), z2p′′(z); z) > 0, z ∈ U ⇒ < p(z) > 0, z ∈ U

Lemma 1.4. [7] Let n be a positive integer and

αn =
n + 2
Cn

(1.4)

where

Cn = 2
[
1 +

n + 2
n

ln 2−
∫ 1

0

t
1
n

1 + t
dt

]
. (1.5)

If f ∈ An and
<

[
zf ′′(z)

]
> −αn, z ∈ U (1.6)

then f ∈ S∗.
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In this paper we obtain a new criterion for starlikeness of order β for an
analytic function f ∈ An. This criterion involves only the second derivative of the
given function and generalizes a well-known result due to P.T. Mocanu.

2. Main results

Theorem 2.1. Let n be a positive integer, β ∈ [0, 1
2 ] and

αn(β) :=
(n + 2)− (n + 4)β

2
[

n+2
n ln 2− n+4

n βln2− (1− β)
∫ 1

0
t

1
n

1+tdt + 1
] .

If f ∈ An and
<

[
zf”(z)

]
> −αn(β), z ∈ U, n ∈ N

then f ∈ S∗(β).

Proof. We will show first that f is univalent on U . From the definition of αn = αn(β)
we have that αn(β) > 0. If α ∈ [0, αn] the inequality <[zf ′′(z)] > −α, z ∈ U is
equivalent with the following subordination

zf ′′(z) ≺ − 2αz

1 + z
= h(z).

Since the function f is starlike and f ′ ∈ H[1, n] by applying Lemma 1.1 we
obtain that

f ′′(z) ≺ 1 +
1
n

∫ z

0

h(t)
t

dt = 1− 2α

n
log(1 + z) = q(z)

where the function q is convex.
Due to the fact that the function q is convex and has real coefficients we get

that:
<f ′(z) > γ = γ(α) = q(1) = 1− 2α

n
ln 2, z ∈ U. (2.1)

We prove the following inequality:

αn ≤
n

ln 4
. (2.2)

We have:

αn =
(n + 2)− (n + 4)β

2
[

n+2
n ln 2− n+4

n β ln 2− (1− β)
∫ 1

0
t

1
n

1+tdt + 1
]

≤ n + 2
2n+2

n ln 2
=

n

2 ln 2
=

n

ln 4
,

as desired.
Since αn ≤ n

ln 4 then

<f ′(z) > γ(α) ≥ 0, z ∈ U. (2.3)
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So f is univalent on U.
Next, we prove that f ∈ S∗(β). If

P (z) :=
f(z)

z
(2.4)

then P satisfies the differential subordination

zP ′(z) + P (z) = f ′(z) ≺ q(z).

From the previous relation, by using Lemma 1.2 for γ = 1 we obtain the
exact subordination P (z) ≺ Q(z), where the function Q is convex and is defined by

Q(z) =
1

nz
1
n

∫ z

0

q(t)t
1
n−1dt = 1− 2α

n2t
1
n

∫ 1

0

t
1
n−1log(1 + t)dt. (2.5)

Because the function Q is convex, from differential subordination P ≺ Q we
have that

< P (z) > δ = δ(α) = Q(1) = 1− 2α

n

[
ln 2−

∫ 1

0

t
1
n

1 + t
dt

]
. (2.6)

If we denote by

p(z) :=
zf ′(z)
f(z) − β

1− β
(2.7)

then

zf ′(z) = (1− β)p(z)f(z) + βf(z).

By differentiating the previous equality we get that:

zf ′′(z) + (1− β)f ′(z) = (1− β)p′(z)f(z) + (1− β)p(z)f ′(z)

and hence

zf ′′(z) + (1− β)f ′(z) =
f(z)

z

[
(1− β)zp′(z) + (1− β)p(z)

zf ′(z)
f(z)

]
.

The previous equality can also be written as

zf ′′(z) + (1− β)f ′(z) = P (z)[(1− β)zp′(z) + (1− β)2p2(z) + β(1− β)p(z)] (2.8)

where by P we denoted the function P (z) = f(z)
z .

Since

β(1− β)p(z)P (z) = βf ′(z)− β2P (z) (2.9)

the equality (2.8) becomes

zf ′′(z) + (1− 2β)f ′(z) = P (z)[(1− β)zp′(z) + (1− β)2p2(z)− β2]. (2.10)
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It is obvious that

<[zf ′′(z) + (1− 2β)f ′(z)] = <[zf ′′(z)] + (1− 2β)<f ′(z)

> −α + (1− 2β)γ(α). (2.11)

By using the first part of Lemma 1.3 and the inequality (2.11) we will show
that < p(z) > 0, z ∈ U.

In order to do that it is sufficient to show that the function

Ψ(r, s, z) = P (z)[(1− β)s + (1− β)2r2 − β2]

is an admissible function.
We have that

< Ψ(δi, σ, z) = <{P (z)[(1− β)σ − (1− β)2δ2 − β2]} =

= [(1− β)σ − (1− β)2δ2 − β2]< P (z)

≤ −α + (1− 2β)γ(z) (2.12)

By using Lemma 1.3 we want to show that < P (z) > 0, z ∈ U .
Since,

σ ≤ −n(1 + δ2)
2

, δ, σ ∈ R. (2.13)

Next, we will verify that 0 ≤ α ≤ αn,< P (z) > 0, z ∈ U. By using the relation
(2.13) we obtain that

[(1− β)σ − (1− β)2δ2 − β2]< P (z) ≤
[
− (1− β)n

2
(1 + δ2)− (1− β)2δ2 − β2

]
< P (z) = − (1− β)n

2
< P (z)−

[n(1− β)
2

δ2 + (1− β)2δ2 + β2
]

< P (z) ≤ − (1− β)n
2

< P (z) =
n(1− β)

2
[−< P (z)] ≤ −n(1− β)

2
δ(α).

In order that the relation (2.12) to be satisfied it is sufficient that the following
inequality to be true:

−n(1− β)
2

δ(z) ≤ −α + (1− 2β)γ(α).

If α ≤ α0 then the previous inequality is satisfied.
By using Lemma 1.3 and the relation (2.11) we obtain that < p(z) > 0, z ∈ U.

Hence, applying the analytical characterization for starlike functions of order
β we proved that f ∈ S∗(β).

If we take β = 0 in Lemma 2.1 we obtain a well-known result, due to P.T.
Mocanu [7].

Next, for n = 1, we obtain the following particular result.
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Corolarry 2.2. Let β ∈ [0, 1
2 ] and α1(β) := 3−5β

2[4 ln 2−6β ln 2+β] . If f ∈ A1 and
<

[
zf ′′(z)

]
> −α1(β), z ∈ U then f ∈ S∗(β).

Proof. We put n = 1 in the previous result and obtain:{
δ(1) = 1− 2α[ln 2−

∫ 1

0
t

1+tdt] = 1− 2α[2 ln 2− 1]
γ(1) = 1− 2α ln 2

We have that: {
δ(1) = 1− 2α[2 ln 2− 1]
γ(1) = 1− 2α ln 2

By using the following equality: − 1−β
2 δ(1) = −α + (1− 2β)γ(1) we obtain

−1− β

2
+ 2α(1− β) ln 2− α(1− β) = −α + 1− 2α ln 2− 2β + 4αβ ln 2

and hence
α =

3− 5β

2[4 ln 2− 6β ln 2 + β]
, α = α1(β)

where
α1(β) =

3− 5β

2[4 ln 2− 6β ln 2 + β]
≤ 1

2 ln 2
.
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THE ORDER OF CONVEXITY OF TWO INTEGRAL OPERATORS

BASEM A. FRASIN AND ABU-SALEEM AHMAD

Abstract. In this paper, we obtain the order of convexity of the integral

operators
∫ z

0

n∏
i=1

(
fi(t)

t

) 1
βi dt and

∫ z

0

(
tef(t)

)γ

dt , where fi and f satisfy

the condition

∣∣∣∣f ′(z)
(

z
f(z)

)µ

− 1

∣∣∣∣ < 1− α.

1. Introduction

Let A denote the class of functions of the form :

f(z) = z +
∞∑

n=2

anzn, (1.1)

which are analytic in the open unit disk U = {z : |z| < 1}. Further, by S we shall
denote the class of all functions in A which are univalent in U . A function f(z)
belonging to S is said to be starlike of order α if it satisfies

Re
(

zf ′(z)
f(z)

)
> α (z ∈ U) (1.2)

for some α(0 ≤ α < 1). We denote by S∗(α) the subclass of A consisting of functions
which are starlike of order α in U . Also, a function f(z) belonging to S is said to be
convex of order α if it satisfies

Re
(

1 +
zf ′′(z)
f ′(z)

)
> α (z ∈ U) (1.3)

for some α(0 ≤ α < 1). We denote by K(α) the subclass of A consisting of functions
which are convex of order α in U . A function f ∈ A is said to be in the class R(α)
iff

Re (f ′(z)) > α, (z ∈ U). (1.4)

It is well known that K(α) ⊂ S∗(α) ⊂ S.

Received by the editors: 13.03.2009.

2000 Mathematics Subject Classification. 30C45.

Key words and phrases. Analytic, convex and starlike functions, integral operator.

113



BASEM A. FRASIN AND ABU-SALEEM AHMAD

Very recently, Frasin and Jahangiri [4] define the family B(µ, α), µ ≥ 0, 0 ≤
α < 1 so that it consists of functions f ∈ A satisfying the condition∣∣∣∣∣f ′(z)

(
z

f(z)

)µ

− 1

∣∣∣∣∣ < 1− α (z ∈ U). (1.5)

The family B(µ, α) is a comprehensive class of analytic functions which in-
cludes various new classes of analytic univalent functions as well as some very well-
known ones. For example, B(1, α)≡S∗(α), and B(0, α)≡R(α). Another interesting
subclass is the special case B(2, α) ≡ B(α) which has been introduced by Frasin and
Darus [3](see also [1, 2]).

In this paper, we will obtain the order of convexity of the following integral
operators:

z∫
0

(
f1(t)

t

) 1
β1

. . .

(
fn(t)

t

) 1
βn

dt (1.6)

and
z∫

0

(
tef(t)

)γ

dt (1.7)

where the functions f1(t), f2(t), ..., fn(t) and f(t) are in B(µ, α).
In order to prove our main results, we recall the following lemma:

Lemma 1.1. (Schwarz Lemma). Let the analytic function f(z) be regular in the unit
disc U , with f(0) = 0. If |f(z)| ≤ 1, for all z ∈ U , then

|f(z)| ≤ |z| , for all z ∈ U

and equality holds only if f(z) = εz, where |ε| = 1.

2. Main results

Theorem 2.1. Let fi(z) ∈ A be in the class B(µ, α), µ ≥ 1, 0 ≤ α < 1 for all
i = 1, 2, · · · , n. If |fi(z)| ≤ M (M ≥ 1; z ∈ U) then the integral operator

z∫
0

n∏
i=1

(
fi(t)

t

) 1
βi

dt (2.1)

is in K(δ), where

δ = 1−
n∑

i=1

1
|βi|

(
(2− α)Mµ−1 + 1

)
(2.2)

and
n∑

i=1

1
|βi|
(
(2− α) Mµ−1 + 1

)
< 1, βi ∈ C− {0} for all i = 1, 2, · · · , n.

114



THE ORDER OF CONVEXITY OF TWO INTEGRAL OPERATORS

Proof. Define the function F (z) by

F (z) =

z∫
0

n∏
i=1

(
fi(t)

t

) 1
βi

dt

for fi(z) ∈ B(µ, α). Since

F ′(z) =
n∏

i=1

(
fi(z)

z

) 1
βi

we see that
zF ′′(z)
F ′(z)

=
n∑

i=1

1
βi

(
zf ′i(z)
fi(z)

− 1
)

. (2.3)

It follows from (2.3) that∣∣∣∣zF ′′(z)
F ′(z)

∣∣∣∣ ≤
n∑

i=1

1
|βi|

(∣∣∣∣zf ′i(z)
fi(z)

∣∣∣∣+ 1
)

=
n∑

i=1

1
|βi|

(∣∣∣∣f ′i(z)
(

z

fi(z)

)µ∣∣∣∣
∣∣∣∣∣
(

fi(z)
z

)µ−1
∣∣∣∣∣+ 1

)
. (2.4)

Since |fi(z)| ≤ M (z ∈ U), applying the Schwarz lemma, we have∣∣∣∣fi(z)
z

∣∣∣∣ ≤ M (z ∈ U).

Therefore, from (2.4), we obtain∣∣∣∣zF ′′(z)
F ′(z)

∣∣∣∣ ≤ n∑
i=1

1
|βi|

(∣∣∣∣f ′i(z)
(

z

fi(z)

)µ∣∣∣∣Mµ−1 + 1
)

. (2.5)

From (2.5) and (1.5), we see that∣∣∣∣zF ′′(z)
F ′(z)

∣∣∣∣ ≤
n∑

i=1

1
|βi|

((∣∣∣∣f ′i(z)
(

z

fi(z)

)µ

− 1
∣∣∣∣+ 1

)
Mµ−1 + 1

)

≤
n∑

i=1

1
|βi|

(
(2− α) Mµ−1 + 1

)
= 1− δ.

This completes the proof. �

Corollary 2.2. Let fi(z) ∈ A be in the class B(µ, α), µ ≥ 1, 0 ≤ α < 1
for all i = 1, 2, · · · , n. If |fi(z)| ≤ M (M ≥ 1; z ∈ U) then the integral

operator
z∫
0

n∏
i=1

(
fi(t)

t

)βi

dt is convex function in U , where

n∑
i=1

1
|βi|

= 1/
(
(2− α)Mµ−1 + 1

)
, βi ∈ C − {0}
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for all i = 1, 2, · · · , n.

Letting µ = 1 in Theorem 2.1, we have

Corollary 2.3. Let fi(z) ∈ A be in the class S∗(α), 0 ≤ α < 1 for all i = 1, 2, · · · , n.

If |fi(z)| ≤ M (M ≥ 1; z ∈ U) then the integral operator
∫ z

0

n∏
i=1

(
fi(t)

t

)βi

dt ∈ K(δ),

where

δ = 1−
n∑

i=1

1
|βi|

(3− α) (2.6)

where
n∑

i=1

1
|βi| (3− α) < 1, βi ∈ C− {0} for all i = 1, 2, · · · , n.

Letting n = 1 and α = δ = 0 in Corollary 2.3, we have

Corollary 2.4. Let f(z) ∈ A be starlike function in U . If |f(z)| ≤ M (M ≥ 1; z ∈

U) then the integral operator
∫ z

0

(
f(t)

t

) 1
β

dt is convex in U where |β| = 3, β ∈ C.

Theorem 2.5. Let f ∈ A be in the class B(µ, α), µ ≥ 0, 0 ≤ α < 1. If |f(z)| ≤
M (M ≥ 1; z ∈ U) then the integral operator

G(z) =

z∫
0

(
tef(t)

)γ

dt (2.7)

is in K(δ), where
δ = 1− |γ| ((2− α) Mµ + 1) (2.8)

and |γ| < 1
(2−α)Mµ+1 , γ ∈ C.

Proof. Let f ∈ A be in the class B(µ, α), µ ≥ 0, 0 ≤ α < 1. It follows from (2.7)
that

G′′(z)
G′(z)

= γ

(
1
z

+ f ′(z)
)

and hence ∣∣∣∣zG′′(z)
G′(z)

∣∣∣∣ = |γ| (|1 + zf ′(z)|)

≤ |γ|

(
1 +

∣∣∣∣f ′(z)
(

z

f(z)

)µ∣∣∣∣
∣∣∣∣∣
(

f(z)
z

)µ ∣∣∣∣∣ |z|
)

. (2.9)

Applying the Schwarz lemma once again, we have∣∣∣∣f(z)
z

∣∣∣∣ ≤ M (z ∈ U).

Therefore, from (2.9), we obtain∣∣∣∣zG′′(z)
G′(z)

∣∣∣∣ ≤ |γ|
(

1 +
∣∣∣∣f ′(z)

(
z

f(z)

)µ∣∣∣∣Mµ

)
(z ∈ U). (2.10)
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From (2.5) and (2.10), we see that∣∣∣∣zG′′(z)
G′(z)

∣∣∣∣ ≤ |γ| ((2− α) Mµ + 1)

= 1− δ.

�

Letting µ = 0, in Theorem 2.5, we have

Corollary 2.6. Let f ∈ A be in the class R(α), 0 ≤ α < 1. Then the integral
operator

∫ z

0

(
tef(t)

)γ
dt ∈ K(δ), where

δ = 1− |γ| (3− α) (2.11)

and |γ| < 1
3−α , γ ∈ C.

Letting µ = 1, in Theorem 2.5, we have

Corollary 2.7. Let f ∈ A be in the class S∗(α), 0 ≤ α < 1. If |f(z)| ≤ M (M ≥

1; z ∈ U) then the integral operator
z∫
0

(
tef(t)

)γ
dt ∈ K(δ), where

δ = 1− |γ| ((2− α)M + 1) (2.12)

and |γ| < 1
(2−α)M+1 , γ ∈ C.

Letting α = δ = 0 in Corollary2.7, we have

Corollary 2.8. Let f(z) ∈ A be starlike function in U . If |f(z)| ≤ M (M ≥ 1; z ∈ U)

then the integral operator
z∫
0

(
tef(t)

)γ
dt is convex in U where |γ| = 1

2M+1 , γ ∈ C.
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AN INVERSION OF ONE CLASS OF INTEGRAL OPERATOR
BY L. A. SAKHNOVICH’S OPERATOR IDENTITY METHOD

RAED HATAMLEH, AHMAD QAZZA, AND MOHAMMAD AL-HAWARI

Abstract. An inversion problem of integral operator in the form

Sf =
d3

dx3

ω∫
0

S(x, t)f(t)dt

under the condition that the kernel S(x, t) satisfies the equation

(∂3
x + ∂3

t )S(x, t) = 0

is investigated. It was proved that the operator A0S − SA∗
0 is finite if

A0 = J3, where Jf = i

x∫
0

f(t)dt. Presentation for the inverse operator

T = S−1 is obtained and it’s structure is studied.

1. Introduction

An inversion of some classes of the integral operators S is based on use of
operator identities in the form A0S−SA∗

0 or S−T0ST ∗
0 . The main idea of the operator

identity method lies in the fact, that, if the operator B = A0S−SA∗
0 is a projector on a

finite-dimensional subspace, then the inversion of the integral operator reduced to the
inversion on a finite number of specific functions, the number of function is equal to
the dimension of the finite-dimensional subspace, mentioned above. Thus, in general
case the inversion of the integral operator is reduced to the selection of the operator A0

and is determined by the finite number of partial solutions of corresponding integral
equation.

The concept, first, was realized by V. A. Ambartzumyan. However, as the
operator A0, for the integral equation with kernel, depending on the difference, he
used the operator of differentiation that leads to some difficulties in verification of
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the operator identity method. For the kernel, depending on the difference, L. A.
Sakhnovich [3] proposed to use

A0 = i

x∫
0

f(t)dt,

the integral operator acting in L2[0, ω] space.
The significant point here is the fact that the integral equation kernel, depending on
the difference, satisfies the equation

∂

∂x
S(x, t) = − ∂

∂t
S(x, t),

that allows to use the operator identity method effectively and to find the structure
of the inverse integral operator.
Later Sakhnovich’s idea was generalized in different directions [4]-[2].

The problem, concerning the inversion of the integral operator in the form

Sf =
d3

dx3

ω∫
0

S(x, t)f(t)dt,

is investigated in this article under the condition that the kernel S(x, t) satisfies the
equation

∂3

∂x3
S(x, t) +

∂3

∂t3
S(x, t) = 0.

It was proved that if the operator A0 is in the form

A0f = −i

x∫
0

y∫
0

z∫
0

f(t)dtdzdy = − i

2

x∫
0

(x− t)2f(t)dt,

then the operator

A0S − SA∗
0,

is finite-dimensional.
The representation of the inverse operator is obtained and it is structure is

investigated.

2. The operator identity

The general idea of this method can be summarized as follows. Consider an
operator kernel S such that, S(x, t) ∈ L2([0, ω] × [0, ω]) and satisfying the equation
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(Dx ±Dt)S(x, t) = 0, where Dx is differential or integro-differential operator. Then,
if

Sf = Dx

ω∫
0

S(x, t)f(t)dt

and the corresponding form of the operator A is chosen (often the operator D−1
x may

be used as operator A) so that A0S −SA0 is finite-dimensional. Then the evaluation
of the inverse operator S−1 is reduced to the inversion of the operator S on the finite
numbers of functions.

Currently, we suppose that,

f(x) ∈ L2[0, ω],

S(x, t) ∈ L2([0, ω]× [0, ω]),

and that

g(x) =

ω∫
0

f(t)S(x, t) dt,

is absolutely continuous on the segment [0, ω] .
Let

Jf = i

x∫
0

f(t)dt,

then

J∗f = −i

ω∫
x

f(t) dt, J2f =

x∫
0

(t− x) f(t) dt,

J∗2
f =

ω∫
x

(x− t) f(t) dt, J3f = − i
2

x∫
0

(x− t)2 f(t) dt, and

J∗3
f = i

2

ω∫
x

(x− t)2 f(t) dt.

Lemma 2.1. (On representation of a linear bounded operator in L2[0, ω] ) Any
bounded operator S ∈ [L2[0, ω]× L2[0, ω]] is representable in the form

Sf =
d3

dx3

ω∫
0

S(x, t)f(t)dt,

where S(x, t) ∈ L2[0, ω] at any fixed x.
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Proof. Consider the function

`x(t) =

{
(x−t)2

2 , when t ≤ x

0, when t > x.

Then for the scalar product we have

〈Sf, `x〉 =

x∫
0

(Sf)dt = 〈f, S∗`x〉 .

Let us denote S(x, t) by S∗`x at any fixed x.

Then

〈f, S∗`x〉 =

ω∫
0

S(x, t)f(t)dt.

On the other hand, denoting g(x) by Sf , we get

〈Sf, `x〉 = 〈g, `x〉 =
1
2

x∫
0

(x− t)2g(t)dt.

So that,

1
2

x∫
0

(x− t)2g(t)dt =

ω∫
0

S(x, t)g(t)dt.

And differentiating by x three times we get the representation

g(x) = Sf =
d3

dx3

ω∫
0

S(x, t)f(t)dt. �

Let Df = d
dxf(x), A0f = J3f. Consider the operator

Sf =
d3

dx3

ω∫
0

S(x, t)f(t)dt. (2.1)

Then the next theorem holds.

Theorem 2.2. For a bounded operator of the form (2.1) with the kernel S(x, t),
satisfying the equation (

D3
x + D3

t

)
S(x, t) = 0, (2.2)

there holds an equality (operator identity)

(A0S − SA∗
0) f = i

ω∫
0

f(t)(
x2

2
N ′′(t)− t2

2
M ′′(t) + xN ′(t)

−tM ′(x) + N(t)−M(x))dt, (2.3)
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where,

M(x) = S(x, 0), N(t) = S(0, t),
M ′

x(x) = S′
t(x, 0), N ′(t) = S′

t(0, t),
M ′′

x (x) = S′′
t (x, 0), N ′′(t) = S′′

t (0, t).

Proof. Integrating by parts and using the equation for the kernel we obtain

A0Sf = i

x∫
0

(
xt− x2

2
− t2

2

)
d3

dt3

ω∫
0

S(t, y)f(y)dydt

= i

ω∫
0

f(t)
(

x2

2
S′′

xx(0, t) + xS′
x(0, t) + S(0, t)− S(x, t)

)
dt.

Similarly,

SA∗
0f = i

d3

dx3

ω∫
0

 ω∫
t

(
y2

2
+

t2

2
− ty

)
f(y)dy

 S(x, t)dt

= i

ω∫
0

f(t)
(

t2

2
S′′

tt(x, 0) + tS′
t(x, 0)− S(x, t)

)
dt.

And subtracting the equalities obtained above and using (2.3) we get the
assertion of the Theorem 2.2. �

From the above Theorem it follows that the operator A0S−SA∗
0 maps L2[0, ω]

onto six-dimensional space, stretched on the functions

1, x,
x2

2
,M(x),M ′(x),M ′′(x).

Really,

(AS − SA∗
0)f = i

{(
f,N ′′

) x2

2
−

(
f,

t2

2

)
M ′′ +

(
f,N ′

)
x

−(f, t)M ′(x) +
(
f,N

)
1− (f, 1) M(x)

}
.

Corollary 2.3. If there exists a bounded operator T, which is the inverse to the
operator S, then the following equality holds

(TA0 −A∗
0T ) f = i

ω∫
0

f(t)
6∑

i=1

Mi(t)Ni(t)dt, (2.4)
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where,

S∗M1(t) = N ′′(x), SN1(t) = x2

2

S∗M2(t) = −x2

2 , SN2(t) = M ′′(x)
S∗M3(t) = N ′(x), SN3(t) = x

S∗M4(t) = −x, SN4(t) = M ′(x)
S∗M5(t) = N(x), SN5(t) = 1
S∗M6(t) = −1, SN6(t) = M(x).

(2.5)

Proof.

(TA0 −A∗
0T ) f = T (A0S − SA∗

0) Tf

= iT

ω∫
0

Tf
[x2

2
N ′′(t)− t2

2
M ′′(x) + xN ′(t)− tM ′(x) + N(t)−M(x)

]
dt

= iT
{(

Tf,N ′′
) x2

2
− (Tf,

t2

2
)M ′′ + (Tf,N ′)x− (Tf, t)M ′(x)

+(Tf,N)− (Tf, 1)M(x)
}

= iT
{(

f, T ∗N ′′
) x2

2
− (f, T ∗x2

2
)M ′′(x) + (f, T ∗N ′)x

−(f, T ∗x)M ′(x) + (f, T ∗N)− (f, T ∗1)M(x)
}

= iT

ω∫
0

f(t)
[
T ∗N ′′x

2

2
− T ∗x2

2
M ′′(x) + T ∗N ′x− T ∗xM ′(x)

+T ∗N − T ∗1M(x)
]
dt

= i

ω∫
0

f(t)
[
T

x2

2
T ∗N ′′ − TM ′′(x)T ∗x2

2
+ TxT ∗N ′

−TM ′(x)T ∗x + T1T ∗N − TM(x)T ∗1
]
dt

= i

ω∫
0

f(t)
6∑

i=1

Mi(t) Ni(t) dt. �
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3. Representation for the inverse operator

Let Nk(x), Mk(x) (k = 1, 6) be functions in L2[0, ω].
Let us introduce the function

Q(x, t) =
6∑

i=1

Mi(t)Ni(x), (3.1)

then

Qf =

ω∫
0

f(t)Q(x, t)dt.

Theorem 3.1. If a bounded operator T, acting in L2[0, ω], satisfies the operator
equation TA0 −A∗

0T = iQ, then

Tf =
d3

dx3

ω∫
0

f(t)
∂3

∂t3
Φ(x, t) dt, (3.2)

holds, where ∂3

∂t3 Φ(x, t) is the solution of the equation

∂3F (x, t)
∂x3

− ∂3F (x, t)
∂t3

=
∂6q(x, t)
∂t3∂x3

.

Proof. The operator T may be represented in the form

Tf =
d3

dx3

ω∫
0

f(t)F (x, t)dt.

The operator equation TA0 −A∗
0T = iQ means, that

i

ω∫
0

t∫
0

y∫
0

z∫
0

f(s)F (x, t)dsdzdydt + i

ω∫
x

ω∫
y

ω∫
x

ω∫
0

f(t)F (x, t)dtdsdzdy

= i

ω∫
0

f(t)q(x, t)dt.

Consequently,

∂3F (x, t)
∂x3

− ∂3F (x, t)
∂t3

=
∂6q(x, t)
∂t3∂x3

.

Then the solution is

F (x, t) = H(t, x, q(x, t)) =
∂3

∂t3
Φ(x, t). �
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4. Relation between Nk(x) and Mk(x)

Let us define the involution operator Uf by

Uf = f(ω − x).

Lemma 4.1. USU = S∗.

Proof. Let

g(x) ∈ C3 (0, ω) ,

g(0) = g(ω) = 0,

g′(0) = g′(ω) = 0,

g′′(0) = g′′(ω) = 0,

since

(Sf, g) =

ω∫
0

d3

dt3

ω∫
0

f(y)S(t, y)dyg(t)dt =


g(t) = U,

ω∫
0

f(y)S′′′
ttt(t, y)dy = V ′

t

g′(t) = U ′,

ω∫
0

f(y)S′′
tt(t, y)dy = V



= −

ω∫
0

ω∫
0

f(y)S′′
tt(t, y)dyg′(t)dt =


g′(t) = U,

ω∫
0

f(y)S′′
tt(t, y)dy = V ′

t

g′′(t) = U ′,

ω∫
0

f(y)S′
t(t, y)dy = V



=

ω∫
0

ω∫
0

f(y)S′
t(t, y)dyg′′(t)dt =


g′′(t) = U,

ω∫
0

f(y)S′
t(t, y)dy = V ′

t

g′′′(t) = U ′,

ω∫
0

f(y)S(t, y)dy = V



= −

ω∫
0

ω∫
0

f(y)S(t, y)dyg′′′(t)dt = −

ω∫
0

ω∫
0

f(y)S(t, y)g′′′(t)dtdy

= −

ω∫
0

f(y)

ω∫
0

S(t, y)g′′′(t)dtdy,
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it follows that

S∗g = −

ω∫
0

S(t, x)g′′′(t)dt =

[
S(t, x) = U, g′′′(t) = V ′

S′
t(t, x) = U ′

t , g′′(t) = V

]

=

ω∫
0

S′
t(t, x)g′′(t)dt =

[
S′

t(t, x) = U, g′′(t) = V ′

S′′
tt(t, x) = U ′

t , g′(t) = V

]

= −

ω∫
0

S′′
tt(t, x)g′(t)dt =

[
S′′

tt(t, x) = U, g′(t) = V ′

S′′′
ttt(t, x) = U ′

t , g(t) = V

]

=

ω∫
0

S′′′
ttt(t, x)g(t)dt = − d3

dx3

ω∫
0

g(t)S(t, x)dt.

Then it is easy to see, that

USUg = − d3

dx3

ω∫
0

g(t)S(t, x)dt. �

In what follows, for simplicity, we restrict our study to those solution of
equation for the kernel S(x, t) which depends only on the difference x − t. More
general case, require cumbersome computations while the reasoning is the same as for
the case when the kernel depends only on the difference.

Theorem 4.2. Suppose that there exists such Ni (i = 1, 6) from L2[0, ω] such that

SN1(t) = x2

2 ,

SN2(t) = M ′′(x),
SN3(t) = x,

SN4(t) = M ′(x),
SN5(t) = 1,

SN6(t) = M(x),

holds, then

S∗M1(t) = N ′′(t),
S∗M2(t) = −x2

2 ,

S∗M3(t) = N ′(t),
S∗M4(t) = −x,

S∗M5(t) = N(x),
S∗M6(t) = −1,
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are valid, where

M(x) = S(x), N(t) = S(−t),
M ′(x) = S′

t(x), N ′(t) = S′
x(−t),

M ′′(x) = S′′
tt(x), N ′′(t) = S′′

xx(−t),

and

M1(x) = N2(ω − x)− 1,

M2(x) = N1(ω − x) + ωN3(ω − x) + ω2

2 N6(ω − x),
M3(x) = ωN2(ω − x) + N4(ω − x) + x,

M4(x) = ωN5(ω − x)−N3(ω − x),

M5(x) = N6(ω − x)− (ω−x)2

2 + (ω2

2 + ω)(ωN2(ω − x) + N4(ω − x) + x),
M6(x) = −N5(ω − x).

Proof. By direct integration by parts we verify, that

S1 =
d3

dx3

ω∫
0

S(x− t)dt = −ωS′′
tt(x− ω) + S′

t(x− ω)− S′
t(x)

= −ωUN ′′(x)− UN ′(x)−M ′(x).

Similarly,

S
t2

2
=

d3

dx3

ω∫
0

t2

2
S(x− t)dt = −

ω∫
0

t2

2
S′′′

ttt(x− t)dt

= −ω2

2
UN ′′(x)− ωUN ′(x)− UN(x) + M(x).

That is

S1 = SN2 − UN ′′(x),

St = −SN4 − ωUN ′′(x)− UN ′(x),

S
t2

2
= −

(
ω2

2
+ ω

)
UN ′(x)− UN(x) + SN6.

Consequently,

UN ′′(x) = S[N2 − 1],

UN ′(x) = −S[t + N4]− ω
(
UN(x)

)′′
= S[ω − ωN2 −N4 − t],

UN(x) = S[N6 −
t2

2
]−

(
ω2

2
+ ω

) (
UN(x)

)′
= S

[
N6 −

t2

2
−

(
ω2

2
+ ω

)
(ω − ωN2 −N4 − t)

]
.
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Then,
1)

M1(x) = N2(ω − x)− 1,

M1(x) = U [N2(x)− 1] ,
US∗M1 = US∗U [N2 − 1] ,
US∗M1 = S [N2 − 1] ,
US∗M1 = UN ′′(x),
S∗M1 = N ′′(x).

2)

M2(x) =
[
N1(ω − x) + ωN3(ω − x) + ω2

2 N5(ω − x)
]

M2(x) = U
[
N1(x) + ωN3(x) + ω2

2 N5(x)
]

US∗M2 = US∗U
[
N1 + ωN3 + ω2

2 N5

]
US∗M2 = S

[
N1 + ωN3 + ω2

2 N5

]
US∗M2 = −x2+2xω−ω2

2

US∗M2 = − (ω−x)2

2

S∗M2 = −x2

2 .

3)

M3(x) = ωN2(ω − x) + N4(ω − x) + x

M3(x) = U [ω − ωN2(x)−N4(x)− x]
US∗M3 = US∗U [ω − ωN2 −N4 − t]
US∗M3 = S [ω − ωN2 −N4 − t]
US∗M3 = UN ′(x)
S∗M1 = N ′(x).

4)

M4(x) = ωN5(ω − x)−N3(ω − x)
M4(x) = U [ωN5(x)−N3(x)]
US∗M4 = US∗U [ωN5 −N3]
US∗M4 = S [ωN5 −N3]
US∗M4 = ω − x

S∗M4 = x.
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5)

M5(x) = N6(ω, t)− (ω−x)2

2 +
(

ω2

2 + ω
) (

ωN2(ω − x) + N4(ω − x) + x
)

M5(x) = U
[
N6(x)− x2

2 −
(

ω2

2 + ω
)

(ω − ωN2 −N4 − t)
]

US∗M5 = US∗U
[
N6 − t2

2 −
(

ω2

2 + ω
)

(ω − ωN2 −N4 − t)
]

US∗M5 = S
[
N6 − t2

2 −
(

ω2

2 + ω
)

(ω − ωN2 −N4 − t)
]

US∗M5 = UN(x)
S∗M5 = N(x).

6)
M6(x) = −N5(ω − x)
M6(x) = −UN5(x)
US∗M6 = −US∗UN5

US∗M6 = −SN5

S∗M6 = −1.

�

If the operator S is invertible then from formula (3.1) it follows that

Q(x, t) =
6∑

i=1

Mi(t)Ni(t)

= [N2(ω − t)− 1]N1(x) + [N1(ω − t) + ωN3(ω − t)

+
ω2

2
N6(ω − t)]N2(x) + [ωN2(ω − t) + N4(ω − t) + t]N3(x)

+ [ωN5(ω − t)−N3(ω − t)]N4(x) + [N6(ω − t)− (ω − t)2

2

+
(

ω2

2
+ ω

)
(ωN2(ω − t) + N4(ω − t) + t)]N5(x)

− [N5(ω − t)]N6(x).

Using Q(x, t) one may construct the operator T.

Thus to construct operator T = S−1 it is sufficiently to know it’s action upon

1, x,
x2

2
,M(x),M ′(x),M ′′(x).

Thus, a method, proposed by L. A. Sakhnovich, and it’s generalizations are
analogs of construction of the general solution for the linear differential equation by it’s
particular solutions.However, in the theory of differential equations there exist general
methods for solutions representation by partial solutions for any linear differential
equation with variable coefficients of any finite order, while it was not possible to
extend Sakhnovich’s method for linear integral equations with any arbitrary kernel,
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i.e, it was not possible to prove that the operator A0S − SA∗
0 is finite dimensional,

where Sf = Dx

ω∫
0

S(x, t)f(t)dt, and A0 = (Dx)−1
, such that f(x) ∈ L2[0, ω], Dx is

a linear integro-differential operator, and the kernel S(x, t) satisfies the equation

(Dx + Dt) S(x, t) = 0.

As it is obvious from the results obtained, Sakhnovich’s method can be ex-
tended to include a case where Dx is a general linear differential operator of the order
3 as in the form

Dx =
3∑

k=0

ak
dk

dxk
.

Sakhnovich’s method may be also applied when Dx = d4

dx4 .

References

[1] I. I. Kalmushevski, On the solution of some integral equations with kernels depending

on difference and sum of the arguments, (Russian), Differential Equations, 16(1980),

no. 5, 941-943.

[2] M. G. Kreine, On a New method of Linear Differential Equations of the First and the

Second Type, (Russian), Dokl. Acad. Nauk, 100(1955), 413-416.

[3] L. A. Sakhnovich, Equations with Difference Kernel on a Finite Interval, Russian Math

Surveys, 35(1980), no. 4, 81-152.

[4] L. A. Sakhnovich, Factorization Problems and Operator Kernel Identities, Russian

Math. Surveys, 41(1986), no. 1, 1-64.

[5] L. A. Sakhnovich, Integral Equations with Difference Kernel on Finite Intervals,
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THE RATE OF APPROXIMATION OF FUNCTIONS
IN AN INFINITE INTERVAL BY POSITIVE LINEAR OPERATORS

ADRIAN HOLHOŞ

Abstract. We obtain an estimation, in the uniform norm, of the rate of

the approximation by positive linear operators of functions defined on the

positive half line that have a finite limit at the infinity.

1. Introduction

Let us denote by C∗[0,∞), the Banach space of all real-valued continuous
functions on [0,∞) with the property that limx→∞ f(x) exists and is finite, endowed
with the uniform norm. In [2], it is proved the following theorem:

Theorem 1.1. If the sequence An : C∗[0,∞) → C∗[0,∞) of positive linear operators
satisfies the conditions

lim
n→∞

An(e−kt, x) = e−kx, k = 0, 1, 2,

uniformly in [0,∞), then
lim

n→∞
Anf(x) = f(x),

uniformly in [0,∞), for every f ∈ C∗[0,∞).

In [1], it is proved the above theorem in a more general setting. In the same
book, the authors give the results for the particular operators of Szász-Mirakjan, of
Baskakov and of Bernstein-Chlodovsky.

In the following, we obtain an estimation of the rate of convergence of op-
erators satisfying the conditions from the above theorem, first, in the general form
and then, for the particular cases presented above. For this estimation, we use the
following modulus of continuity:

ω∗(f, δ) = sup
x,t≥0

|e−x−e−t|≤δ

|f(x)− f(t)|,
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defined for every δ ≥ 0 and every function f ∈ C∗[0,∞). This modulus can be
expressed in terms of the usual modulus of continuity, by the relation:

ω∗(f, δ) = ω(f∗, δ),

where f∗ is the continuous function defined on [0, 1] by

f∗(x) =

{
f(− lnx), x ∈ (0, 1]
limt→∞ f(t), x = 0.

Remark 1.2. Because |e−t − e−x| ≤ |t− x|, for every t, x ≥ 0, we have for δ ≥ 0

ω(f, δ) ≤ ω∗(f, δ),

and because |e−t − e−x| = e−θ|t− x| ≥ e−M |t− x|, for every t, x ∈ [0,M ], we have

ω∗(f, δ) ≤ ω(f, eMδ) ≤ (1 + eM ) · ω(f, δ).

2. Main result

Theorem 2.1. If An : C∗[0,∞) → C∗[0,∞) is a sequence of positive linear operators
with

‖An1− 1‖∞ = an,

‖An(e−t, x)− e−x‖∞ = bn,∥∥An(e−2t, x)− e−2x
∥∥
∞ = cn,

where an, bn and cn tend to zero as n goes to the infinity, then

||Anf − f ||∞ ≤ ‖f‖∞ an + (2 + an) · ω∗
(
f,
√

an + 2bn + cn

)
,

for every function f ∈ C∗[0,∞).

Proof. Using the property of the usual modulus of continuity

|F (u)− F (v)| ≤
(

1 +
(u− v)2

δ2

)
ω(F, δ),

for the function F = f∗ and for u = e−t and v = e−x and using the relation f∗(e−t) =
f(t), we obtain

|f(t)− f(x)| ≤
(

1 +
(e−t − e−x)2

δ2

)
ω∗(f, δ).

Because

An((e−t−e−x)2, x) = [An(e−2t, x)−e−2x]−2e−x[An(e−t, x)−e−x]+e−2x[An(1, x)−1]
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we obtain

An(|f(t)− f(x)|, x) ≤
(

An(1, x) +
An((e−t − e−x)2, x)

δ2

)
ω∗(f, δ)

≤
(

1 + an +
an + 2bn + cn

δ2

)
ω∗(f, δ).

Choosing δ =
√

an + 2bn + cn and using the inequality

|Anf(x)− f(x)| ≤ |f(x)| · |An(1, x)− 1|+ An(|f(t)− f(x)|, x),

we obtain, in the uniform norm, the estimation stated in the theorem. �

Remark 2.2. Because all positive linear operators L can be modified to preserve
constant functions, L̃f = 1

L1Lf , we can take an = 0 in the theorem above and obtain:

||Anf − f ||∞ ≤ 2 · ω∗(f,
√

2bn + cn).

Remark 2.3. If we restrict ourselves on a compact interval [0,M ] and if we use the
Remark 1.2, we obtain an estimation using the usual modulus of continuity:

||Anf − f ||∞ ≤ C · ω
(
f,
√

2bn + cn

)
.

We have used the Korovkin subset
{

1, e−x, e−2x
}

for C∗[0,∞), but as sug-
gested in the article [3], we can use any other Korovkin subset for this space, such as
for example

{
1, x

1+x , x2

(1+x)2

}
. In this case we can introduce

ω#(f, δ) = sup
x,t≥0

| x
1+x−

t
1+t |≤δ

|f(x)− f(t)|,

defined for every δ ≥ 0 and every function f ∈ C∗[0,∞). This modulus can be
expressed in terms of the usual modulus of continuity, by the relation:

ω#(f, δ) = ω(f#, δ),

where f# is the continuous function defined on [0, 1] by

f#(x) =

{
f
(

x
1−x

)
, x ∈ [0, 1)

limt→∞ f(t), x = 1.

Because of
∣∣∣ x
1+x −

t
1+t

∣∣∣ ≤ |x− t|, where x, t ≥ 0, we have

ω(f, δ) ≤ ω#(f, δ),

and because
∣∣∣ x
1+x −

t
1+t

∣∣∣ ≥ |x−t|
(1+M)2 , for x, t ∈ [0,M ], we obtain

ω#(f, δ) ≤ ω(f, (1 + M)2δ) ≤ (1 + M)2 · ω(f, δ),

where M > 0, is an integer. We have the following
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Theorem 2.4. If An : C[0,∞) → C[0,∞) is a sequence of positive linear operators
which preserves linear functions and

sup
x≥0

|An(t2, x)− x2|
(1 + x)2

= dn,

is a sequence which tends to zero as n goes to the infinity, then

||Anf − f ||∞ ≤ 2 · ω#
(
f,
√

dn

)
,

for every function f ∈ C∗[0,∞).

Proof. Using the property of the usual modulus of continuity

|F (u)− F (v)| ≤
(

1 +
(u− v)2

δ2

)
ω(F, δ),

for the function F = f# and for u = t/(1+t) and v = x/(1+x) and using the relation
f#(t/(1 + t)) = f(t), we obtain

|f(t)− f(x)| ≤

[
1 +

1
δ2

(
t

1 + t
− x

1 + x

)2
]

ω#(f, δ) ≤
(

1 +
(t− x)2

δ2(1 + x)2

)
ω#(f, δ).

Because
An(t− x)2, x) = An(t2, x)− x2

we obtain

|Anf(x)− f(x)| ≤ An(|f(t)− f(x)|, x) ≤
(

1 +
dn

δ2

)
ω#(f, δ).

Choosing δ =
√

dn we obtain, in the uniform norm, the estimation stated in the
theorem. �

3. Applications

In order to obtain particular results, we use the following

Lemma 3.1. For every x > 0 we have

e−xαn − e−x <
xn

2e
, for every n ≥ 1,

where αn = 1−e−xn

xn
and xn > 0, for every n ≥ 1.

Proof. First, let us notice that

max
x>0

xe−cx =
1
ec

, for every c > 0. (3.1)

Indeed, the point t = 1/c is a maximum point for f(t) = te−ct, t > 0.
Secondly, let us notice that 0 < an < 1, for every n ≥ 1. This is true, because

of the inequality 1− e−x < x, for x 6= 0.
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Next, using the inequalities between geometric, logarithmic and arithmetic
means

√
uv <

u− v

lnu− ln v
<

u + v

2
, for 0 < v < u,

for the values u = e−xαn > v = e−x > 0, we obtain

e−xαn − e−x <
e−xαn + e−x

2
· x(1− αn) =

1− αn

2
(
xe−xαn + xe−x

)
.

Using (3.1), we obtain

e−xαn − e−x ≤ 1− αn

2

(
1

eαn
+

1
e

)
=

1− α2
n

2eαn
.

It remain to prove that 1−α2
n

αn
< xn, which is a particular case of

1−
(

1−e−x

x

)2

1−e−x

x

< x, for x > 0.

This is equivalent with x2e−x + 2e−x − 1 − e−2x < 0, for x > 0, which is true by an
elementary calculus argument. �

Corollary 3.2. For the Szász-Mirakjan operators Mn : C∗[0,∞) → C∗[0,∞) defined
by

Mnf(x) = e−nx
∞∑

k=0

(nx)k

k!
f

(
k

n

)
,

we have for f ∈ C∗[0,∞), the estimations

||Mnf − f ||∞ ≤ 2 · ω∗
(

f,
1√
n

)
, n ≥ 1,

and

||Mnf − f ||∞ ≤ 2 · ω#

(
f,

1
2
√

n

)
, n ≥ 1.

Proof. We have Mn(1, x) = 1, so an = 0. We, also, have

Mn(e−λt, x) = e−λx 1−e−λ/n

λ/n ,

which gives, by Lemma 3.1

|Mn(e−λt, x)− e−λx| ≤ λ

2en
.

It follows that
bn ≤

1
2en

and cn ≤
1
en

, for n ≥ 1,

and because
an + 2bn + cn ≤

2
2en

+
1
en

≤ 1
n

, for n ≥ 1,

we obtain the estimation stated in the theorem.
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Because Mn(t, x) = x and Mn(t2, x) = x2 + x
n , we obtain

dn = sup
x≥0

|Mn(t2, x)− x2|
(1 + x)2

= sup
x≥0

x

n(1 + x)2
=

1
4n

.

�

Corollary 3.3. For the Baskakov operators Vn : C∗[0,∞) → C∗[0,∞) defined by

Vnf(x) =
∞∑

k=0

(
n + k − 1

k

)
xk

(1 + x)n+k
f

(
k

n

)
,

we have for f ∈ C∗[0,∞), the estimations

||Vnf − f ||∞ ≤ 2 · ω∗
(

f,
5

2
√

n

)
, n ≥ 2,

and

||Vnf − f ||∞ ≤ 2 · ω#

(
f,

1√
n

)
, n ≥ 1.

Proof. From the identity Vn(1, x) = 1, we deduce an = 0. Computing

Vn(e−λt, x) =
∞∑

k=0

(
−n

k

)
(−xe−λ/n)k(1 + x)−n−k =

(
−xe−λ/n + 1 + x

)−n

,

we obtain

|Vn(e−λt, x)− e−λx| = |[1 + x(1− e−λ/n)]−n − e−λx|

= e−λx
∣∣∣e−n ln(1+x(1−e−λ/n))+λx − 1

∣∣∣
≤

[
−n ln

(
1 + x(1− e−λ/n)

)
+ λx

]
· e−n ln(1+x(1−e−λ/n)),

where, we have used the inequality et − 1 ≤ tet for

t = −n ln
(
1 + x(1− e−λ/n)

)
+ λx ≥ −nx(1− e−λ/n) + λx ≥ −nx · λ

n
+ λx = 0.

Because ln(1 + t) ≥ t/(1 + t), for every t ≥ 0, we obtain

|Vn(e−λt, x)− e−λx| ≤ −nx(1− e−λ/n) + λx + λx2(1− e−λ/n)(
1 + x(1− e−λ/n)

)n+1

≤ −nx(1− e−λ/n) + λx + λx2(1− e−λ/n)

1 + (n + 1)x(1− e−λ/n) + n(n+1)
2 x2(1− e−λ/n)2

.

Because 1− e−λ/n ≥ λ/n− λ2/(2n2), we get from the above inequality

sup
x≥0

|Vn(e−λt, x)− e−λx| ≤ 2λ

n(n + 1)(1− e−λ/n)
.
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Using the same inequality, we obtain

bn = sup
x≥0

|Vn(e−t, x)− e−x| ≤ 2
n(n + 1)

(
1
n −

1
2n2

) ≤ 2
n

, for n ≥ 1

and using 1− e−2/n ≥ 2/n− 2/n2 + 4/(3n3)− 2/(3n4), we have

cn = sup
x≥0

|Vn(e−2t, x)− e−2x| ≤ 4
n(n + 1)

(
2
n −

2
n2 + 4

3n3 − 2
3n4

) =
h(n)

n
,

where h(t) = 6t4/((t + 1)(3t3 − 3t2 + 2t− 1)). Because

h′(t) =
6t3

(t + 1)2(3t3 − 3t2 + 2t− 1)
(−2t2 + 3t− 4) < 0, t ≥ 1,

we obtain h(n) ≤ h(2) = 32/15, for n ≥ 2. Finally, we obtain√
an + 2bn + cn ≤

1√
n

√
4 +

32
15

≤ 5
2
√

n
.

Because Vn(t, x) = x and Vn(t2, x) = x2 + x(1 + x)/n, we obtain

dn = sup
x≥0

|Vn(t2, x)− x2|
(1 + x)2

= sup
x≥0

x

n(1 + x)
=

1
n

.

�

Corollary 3.4. For the Bernstein-Chlodovsky operators Cn : C∗[0,∞) → C∗[0,∞)
defined by

Cnf(x) =
n∑

k=0

f

(
k

n
βn

)(
n

k

)(
x

βn

)k (
1− x

βn

)n−k

,

for 0 ≤ x ≤ βn and Cnf(x) = f(x), for x > βn, where βn is a sequence of positive
numbers such that

lim
n→∞

βn = ∞ and lim
n→∞

βn

n
= 0,

we have for f ∈ C∗[0,∞), the estimations

||Cnf − f ||∞ ≤ 2 · ω∗
(

f,

√
βn

n

)
, n ≥ 1,

and

||Cnf − f ||∞ ≤ 2 · ω#

(
f,

√
βn

4n

)
, n ≥ 1.

Proof. From the identity Cn(1, x) = 1, we deduce an = 0. Computing

Cn(e−λt, x) =
n∑

k=0

(
n

k

)(
x

βn
e−λβn/n

)k (
1− x

βn

)n−k

=
(

e−λβn/n x

βn
+ 1− x

βn

)n

,
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we obtain

|Cn(e−λt, x)− e−λx| =

∣∣∣∣∣
(

1− λx
1− e−λβn/n

λβn

)n

− e−λx

∣∣∣∣∣
=

∣∣∣en ln(1− x
βn

(1−e−λβn/n)) − e−λx
∣∣∣

≤ e−λx 1−e−λβn/n

λβn/n − e−λx,

because ln(1− t) ≤ −t, for every t ∈ (0, 1). Using Lemma 3.1, we obtain

|Cn(e−λt, x)− e−λx| ≤ λβn

2en
.

This gives the estimations

bn ≤
βn

2en
and cn ≤

βn

en
, so an + 2bn + cn ≤

βn

n
.

Because Cn(t, x) = x and Cn(t2, x) = x2 + x(βn−x)
n , we obtain

dn = sup
x≥0

|Cn(t2, x)− x2|
(1 + x)2

= sup
x∈[0,βn]

x(βn − x)
n(1 + x)2

=
β2

n

4n(1 + βn)
≤ βn

4n
.

�

Corollary 3.5. For the Bleimann-Butzer-Hahn operators Ln : C∗[0,∞) → C∗[0,∞)
defined by

Ln(f, x) =
n∑

k=0

(
n

k

)
xk(1 + x)−nf

(
k

n− k + 1

)
we have

‖Lnf − f‖∞ ≤ 2 · ω#

(
f,

2√
n + 1

)
, n ≥ 1, f ∈ C∗[0,∞).

Proof. For the proof, we use the argument from Theorem 2.1 for the test functions
xk/(x + 1)k instead of e−kx and the modulus ω# (f, δ) instead of ω∗ (f, δ).

Because Ln(1, x) = 1 we have an = ‖Ln1− 1‖∞ = 0. From the equalities
(see [5])

Ln

(
t

1 + t
, x

)
=

nx

(1 + n)(1 + x)

Ln

((
t

1 + t

)2

, x

)
=

n2x2

(1 + n)2(1 + x)2
+

nx

(1 + n)2(1 + x)2

we obtain

bn = sup
x≥0

∣∣∣∣Ln

(
t

1 + t
, x

)
− x

1 + x

∣∣∣∣ = 1
n + 1
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and

cn = sup
x≥0

∣∣∣∣∣Ln

((
t

1 + t

)2

, x

)
−
(

x

1 + x

)2
∣∣∣∣∣ = sup

x≥0

∣∣nx− x2(2n + 1)
∣∣

(1 + n)2(1 + x)2
.

After some computations cn = 2n+1
(n+1)2 , which gives

an + 2bn + cn ≤
4

n + 1
,

and so the corollary is proved. �

Remark 3.6. In the papers [5] and [4], it is defined the space Hw: for a function w

of the type of modulus of continuity, having the properties:
(i) w is non-negative increasing function on [0,∞),
(ii) limδ→0 w(δ) = 0,

the space Hw consists of all real-valued functions f defined on the semiaxis [0,∞),
satisfying the following condition:

|f(x)− f(y)| ≤ w

(∣∣∣∣ x

1 + x
− y

1 + y

∣∣∣∣) , for all x, y ≥ 0.

It is proved that Hw ⊂ C[0,∞) ∩ B[0,∞) and ‖Lnf − f‖∞ → 0, for f ∈ Hw. But,
let us notice that Hw ⊂ C∗[0,∞). Indeed, considering ϕ(x) = x/(1 − x), x ∈ [0, 1),
the inverse of the function t 7→ t/(1 + t) and considering f ∈ Hw, we have∣∣∣∣f ( u

1− u

)
− f

(
v

1− v

)∣∣∣∣ ≤ w(|u− v|), for all u, v ∈ [0, 1).

Using the property (ii) of w, we deduce that f ◦ ϕ is uniformly continuous on [0, 1).
From this, it follows that f ◦ϕ has finite limit at x = 1, which proves that f has finite
limit at infinity.

So, the result obtained in Corollary 3.5 for the space C∗[0,∞) is more general
than the results obtained in the papers mentioned above.

References

[1] F. Altomare, M. Campiti, Korovkin-Type Approximation Theory and its Applications,

De Gruyter Series Studies in Mathematics, Vol. 17, Walter de Gruyter & Co., Berlin,

New York, 1994.

[2] B. D. Boyanov, V. M. Veselinov, A note on the approximation of functions in an infinite

interval by linear positive operators, Bull. Math. Soc. Sci. Math. Roum., 14(62)(1970),

no. 1, 9-13.

[3] J. Bustamante, L. Morales de la Cruz, Korovkin Type Theorems for Weighted Approxi-

mation, Int. Journal of Math. Analysis, 1(2007), no. 26, 1273-1283.
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LV, Number 2, June 2010

ON A NEW SEQUENCE SPACE DEFINED
BY MUSIELAK-ORLICZ FUNCTIONS

VAKEEL A. KHAN

Abstract. In this paper we define a new sequence space m(M, φ, p), which

is a generalization of m(φ, p) (B. C. Tripathy and M. Sen [12]) by Musielak-

Orlicz functions. We study some of the properties of this space.

1. Introduction

An Orlicz function is a function M : [0,∞) → [0,∞), which is continuous,
non-decreasing and convex with M(0) = 0, M(x) > 0, for x > 0 and M(x) →
∞ as x→∞. If convexity of Orlicz function M is replaced by

M(x+ y) ≤M(x) +M(y)

then this function is called a modular function, defined and discussed by Nakano [10]
and Musielak [7] and others. It is well known that if M is a convex functions and
M(0) = 0, then M(λx) ≤ λM(x) for all λ with 0 < λ < 1 (see [1], [2], [9]).

Lindendstrauss and Tzafriri [5] used the idea of Orlicz function to construct
the sequence space

`M =

{
x = (xk) :

∞∑
k=1

M

(
|xk|
ρ

)
<∞ for some ρ > 0

}
.

The space `M with the norm

||x|| = inf{ρ > 0 :
∞∑
k=1

M

(
|xk|
ρ

)
≤ 1}

becomes a Banach space which is called an Orlicz sequence space. For M(x) = xp,
1 ≤ p <∞, the space `M coincides with the classical sequence space lp.

Received by the editors: 05.01.2009.

2000 Mathematics Subject Classification. 40A05, 46A45.

Key words and phrases. Symmetric space, normal space, completeness, Banach space, Orlicz-function,

Musielak-Orlicz function.
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A sequenceM = (Mk) of Orlicz functions is called a Musielak-Orlicz function
[See [3], [4], [6], [7]). In addition, a Musielak-Orlicz function N = (Nk) is called a
complementary function of a Musielak-Orlicz function M if

Nk(v) = sup{|v|u−Mk(u) : u ≥ 0}, k = 1, 2, · · ·

For a given Musielak-Orlicz function M, the Musielak-Orlicz sequence space
lM and its subspace hM are defined as follows:

lM := {x ∈ s : IM(cx) <∞ for some c > 0},

hM := {x ∈ s : IM(cx) <∞ for all c > 0},

where IM is a convex modular defined by

IM(x) =
∞∑
k=1

Mk(xk), x = (xk) ∈ lM.

We consider lM equipped with the Luxemburg norm

||x|| = inf{k > 0 : IM(
x

k
) ≤ 1},

or equipped with the Orlicz norm

||x||0 = inf{1
k

(1 + IM(kx)) : k > 0}.

If x = (xn) is a sequence, then S(x) denotes the set of all permutation of the
elements of (xn). A sequence space E is said to be symmetric if S(x) ⊂ E for all
x ∈ E. A sequence space E is said to be solid if (yn) ∈ E whenever (xn) ∈ E and
|yn| ≤ |xn| for all n ∈ N.

A BK-space is a Banach sequence space E in which the coordinate maps are
continuous, i.e. if (x(n)

k )k ∈ E, then

||(x(n)
k )− (xk)|| → 0 as n→∞

⇒ |(x(n)
k )− (xk)| → 0 as n→∞, for each fixed k.

Let C denote the space whose elements are finite sets of distinct positive
integers. Given any element σ of C, we denote by c(σ) the sequence {cn(σ)} which is
such that cn(σ) = 1 if n ∈ σ, cn(σ) = 0 otherwise. Further, let

Cs =

{
σ ∈ C :

∞∑
n=1

cn(σ) ≤ s

}
(cf.[8]),

be the set of those σ whose support has cardinality at most s. Throughout the paper
φn denotes a non-decreasing sequence of positive numbers such that nφn+1 ≤ (n+1)φn
for all n ∈ N.
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The space m(φ) is defined as follows (Sargent [11]):

m(φ) :=

{
x = (xk) ∈ ω : sup

s≥1
sup
σ∈Cs

1
φs

∑
k∈σ

|xk| <∞

}
.

The space m(φ, p) is defined as follows (B.C. Tripathy and M. Sen [12]):
For 1 ≤ p <∞,

m(φ, p) :=

x = (xk) ∈ ω : sup
s≥1

sup
σ∈Cs

1
φs

{∑
k∈σ

|xk|p
}1/p

<∞

 .

In this paper we introduce the space m(M, φ, p) as follows:
Let M = (Mk) be a Musielak-Orlicz function. We define the following se-

quence space

m(M, φ, p) :=

{
x = (xk) ∈ ω : sup

s≥1
sup
σ∈Cs

1

φs

{∑
k∈σ

[
Mk

(
|xk|
ρ

)]p
}1/p

<∞, for some ρ > 0

}
.

It is clear that if Mk(x) = x then m(M, φ, p) = m(φ, p).
Throughout ω, lp, l1, l∞ denote the spaces of all p-absolutely summable,

absolutely summable and bounded sequences respectively. N and C denotes the set
of all natural numbers and complex numbers, respectively.

2. Main results

Theorem 2.1. The space m(M, φ, p) is complete.

Proof. Let {x(n)} be a Cauchy sequence in m(M, φ, p). Then

sup
s≥1

sup
σ∈Cs

1
φs

{∑
i∈σ

[
Mi

(
|xi|
ρ

)]p}1/p

<∞,

for some ρ > 0 and for all n n = 1, 2, 3, · · · ).
For each ε > 0, there exists a positive integer n0 such that

||x(m) − x(n)||m(M,φ,p) < ε, for all m,n ≥ n0.

This implies that

sup
s≥1

sup
σ∈Cs

1
φs

{∑
i∈σ

[
Mi

(
|x(m)
i − x

(n)
i |

ρ

)]p}1/p

< ε, (2.1)

for some ρ > 0 and for all m,n ≥ n0.

Hence

|x(m)
i − x

(n)
i | < εφ1 for all m,n ≥ n0 and for all i ∈ N,
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showing that for each fixed i (1 ≤ i <∞), the sequence {x(n)
i } is a Cauchy sequence

in C.
Let x(n)

i → xi as n → ∞. We define x = (x1, x2, x3, · · · ). We need to show
that x ∈ m(M, φ, p) and x(n) → x.

From (2.1) we get, for each fixed s

∑
i∈σ

[
Mi

(
|x(m)
i − x

(n)
i |

ρ

)]p
< εpφs

p , for some ρ > 0, for all m,n ≥ n0 and σ ∈ Cs.

Taking n→∞ we get∑
i∈σ

[
Mi

(
|x(m)
i − x

(n)
i |

ρ

)]p
< εpφs

p , for some ρ > 0, for all m,n ≥ n0 and σ ∈ Cs.

This implies that

sup
s≥1

sup
σ∈Cs

1
φs

{∑
i∈σ

[
Mi

(
|x(m)
i − xi|
ρ

)]p}1/p

< ε, (2.2)

for some ρ > 0 and for all m,n ≥ n0.

⇒ x(n) − x ∈ m(M, φ, p), for all n ≥ n0.

Hence x = x(n0) + x− x(n0) ∈ m(M, φ, p) as m(M, φ, p) is a linear space.
From (2.2)

||x(n) − x||m(M,φ,p) < ε, for all n ≥ n0,

which implies that

||x(n) − x||m(M,φ,p) → 0, as n→∞.

Hence m(M, φ, p) (1 ≤ p <∞) is a Banach space.

Theorem 2.2. The space m(M, φ, p) is a BK-space.

Proof. Suppose that

||x(n) − x||m(M,φ,p) → 0 as n→∞.

For each ε > 0 there exists n0 ∈ N such that

||x(n) − x|| < ε for all n ≥ n0.

This implies that

sup
s≥1

sup
σ∈Cs

1
φs

{∑
k∈σ

[
Mk

(
|x(n)
k − xk|
ρ

)]p}1/p

< ε, for some ρ > 0 and for all n ≥ n0.
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Consequently

|x(n)
k − xk| < εφ1, for all n ≥ n0 and for all k.

So |x(n)
k − xk| → 0 as n→∞ and the proof is complete. �

Proposition 2.3. 1. The space m(M, φ, p) is a symmetric space. If x ∈ m(M, φ, p)
and v ∈ S(x), then ||v||m(M,φ,p) = ||x||m(M,φ,p).

2. The space m(M, φ, p) is a normal space.

Proposition 2.4. m(φ) ⊆ m(M, φ, p).

Proof. Suppose that x ∈ m(φ). Then

||x||m(φ) = sup
s≥1

sup
σ∈Cs

1
φs

{∑
n∈σ

|xn|

}
= K <∞.

Hence for each fixed s, ∑
n∈σ

|xn| ≤ Kφs, σ ∈ Cs.

This implies that{∑
n∈σ

[
Mn

(
|xn|
ρ

)]p}1/p

≤ Kφs, σ ∈ Cs, for some ρ > 0,

so that

sup
s≥1

sup
σ∈Cs

 1
φs

{∑
n∈σ

[
Mn

(
|xn|
ρ

)]p}1/p
 ≤ K, for some ρ > 0.

Thus x ∈ m(M, φ, p) and this completes the proof. �

Proposition 2.5. m(M, φ, p) ⊆ m(M, ψ, p) if and only if sup
s≥1

(φs

ψs
) <∞.

Proof.Let sup
s≥1

(φs

ψs
) = K <∞. Then φs ≤ Kψs. Now if (xk) ∈ m(M, φ, p), then

sup
s≥1

sup
σ∈Cs

 1
φs

{∑
n∈σ

[
Mn

(
|xn|
ρ

)]p}1/p
 <∞, for some ρ > 0 .

This implies that

sup
s≥1

sup
σ∈Cs

 1
Kψs

{∑
n∈σ

[
Mn

(
|xn|
ρ

)]p}1/p
 <∞, for some ρ > 0,

so that

||x||m(M,ψ,p) <∞.

Hence m(M, φ, p) ⊆ m(M, ψ, p).
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Conversely, suppose that m(M, φ, p) ⊆ m(M, ψ, p). We need to show that

sup
s≥1

(
φs
ψs

) = sup
s≥1

(ηs) <∞.

Let sup
s≥1

(ηs) = ∞. Then there exists a subsequence (ηsi) of (ηs) such that

lim
i→∞

(ηsi) = ∞.

Then for (xk) ∈ m(M, φ, p) we have

sup
s≥1

sup
σ∈Cs

 1
ψs

{∑
n∈σ

[
Mn

(
|xn|
ρ

)]p}1/p


≥ sup
si≥1

sup
σ∈Csi

ψsi

1
φsi

{∑
n∈σ

[
Mn

(
|xn|
ρ

)]p}1/p
 = ∞,

for some ρ > 0.
This implies that (xk) /∈ m(M, ψ, p), a contradiction which completes the

proof. �

Theorem 2.6. lp ⊆ m(M, φ, p) ⊂ l∞.

Proof. Since m(M, φ, p) = lp for Mk(x) = x and φn = 1, for all n ∈ N, it follows that
lp ⊆ m(M, φ, p).

Next, let x ∈ m(M, φ, p). Then

sup
s≥1

sup
σ∈Cs

 1
φs

{∑
n∈σ

[
Mn

(
|xn|
ρ

)]p}1/p
 = K <∞, for some ρ > 0.

This implies that

|xn| ≤ Kφ1, for all n ∈ N,

so that x ∈ l∞. Thus m(M, φ, p) ⊂ l∞.
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ALEXANDER TRANSFORM OF CLOSE-TO-CONVEX FUNCTIONS

PÁL AUREL KUPÁN AND RÓBERT SZÁSZ

Abstract. In this paper a result concerning the starlikeness of the im-

age of the Alexander Operator is deduced. The technique of differential

subordinations is used.

1. Introduction

Let U = {z ∈ C : |z| < 1 be the open unit disc of the complex plane.
We denote by A the class of analytic functions defined on the unit disc U

and having the form f(z) = z + a2z
2 + a3z

3 + . . . .

The subclass ofA consisting of functions for which the domain f(U) is starlike
with respect to 0, is called the class of starlike functions, and is denoted by S∗. An
analytic description of S∗ is

S∗ =
{

f ∈ A : Re
zf ′(z)
f(z)

> 0, (∀) z ∈ U

}
.

Let α ∈ [0, 1). The class of starlike functions of order α denoted by S∗(α), is defined
by the equality:

S∗(α) =
{

f ∈ A : Re
zf ′(z)
f(z)

> α, (∀) z ∈ U

}
.

Another subclass of A which we deal with, is defined by

C =
{

f ∈ A | (∃) g ∈ S∗ : Re
zf ′(z)
g(z)

> 0, z ∈ U

}
.

This is the class of close-to-convex functions.
We mention that C, S∗ and S∗(α) contain univalent functions.
The Operator of Alexander is defined by

F (z) = A(f)(z) =
∫ z

0

f(t)
t

dt. (1.1)

Received by the editors: 11.10.2009.
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In [3] it has been proved that A(C) 6⊂ S∗.

This result put the problem to determine suitable conditions which ensure
that subclasses of C are mapped by the Alexander operator to S∗.

In [2] (pg. 310-311), the authors proved the following theorem concerning
this question:

Theorem 1.1. Let A be the operator of Alexander defined by (1.1) and let g ∈ A
satisfy

Re
zg′(z)
g(z)

≥
∣∣∣∣Im z(zg′(z))′

g(z)

∣∣∣∣ , z ∈ U. (1.2)

If f ∈ A satisfies

Re
zf ′(z)
g(z)

> 0, z ∈ U,

then F = A(f) ∈ S∗.

We will prove another result regarding this problem. We will need the fol-
lowing definitions and lemmas in our work.

2. Preliminaries

The class P is defined by the equality:

P = {f |f analytic in U, f(0) = 1, and Ref(z) > 0, z ∈ U}.

Lemma 2.1. [1](The Herglotz formula) For every f ∈ P there exists a measure µ on
the interval [0, 2π] so that µ([0, 2π]) = 1 (a probability measure) and

f(z) =
∫ 2π

0

1 + ze−it

1− ze−it
dµ(t),

or in developed form

f(z) = 1 + 2
∞∑

n=1

∫ 2π

0

zne−indµ(t).

The converse of the theorem is also valid.

Lemma 2.2. [2] p.26 Let p(z) = a +
∞∑

k=n

akzk, p(z) 6≡ a and n ≥ 1. If z0 ∈ U and

Re p(z0) = min{Re p(z) : |z| ≤ |z0|},

then

(i) z0p
′(z0) ≤ −n

2
|p(z0)− a|2

Re (a− p(z0))
and

(ii) Re [z2
0p′′(z0)] + z0p

′(z0) ≤ 0.
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Lemma 2.3. If f, g ∈ A and

Re
[ 1
g′(z)

∫ 1

0

∫ 1

0

g′(uvz)
1 + uvze−it

1− uvze−it
dudv

]
≥ 0, z ∈ U, t ∈ R, (2.1)

then the inequality Re f ′(z)
g′(z) > 0, z ∈ U implies that

Re
F (z)
zg′(z)

> 0, z ∈ U, (2.2)

where F is defined by (1.1).

Proof. The developments

f(z) = z +
∞∑

n=2

anzn

g(z) = z +
∞∑

n=2

bnzn

hold for z ∈ U.

The conditions of the lemma imply f ′

g′ ∈ P and from the Herglotz formula it
follows that:

f ′(z)
g′(z)

= 1 + 2
∫ 2π

0

( ∞∑
n=1

zne−in

)
dµ(t), z ∈ U

for a suitable probability measure µ.

Denoting cn = 2
∫ 2π

0
e−indµ(t), we get:

f ′(z) = g′(z)(1 +
∞∑

n=1

cnzn)

= (1 +
∞∑

n=2

nbnzn−1)(1 +
∞∑

n=1

cnzn) = 1 +
∞∑

n=1

dnzn, (2.3)

f(z) = z +
∞∑

n=1

dn

n + 1
zn+1

and
F (z)

z
= 1 +

∞∑
n=1

dn

(n + 1)2
zn.

Thus we have
F (z)
zg′(z)

=
1

g′(z)

∫ 1

0

∫ 1

0

(
1 +

∞∑
n=1

dnunvnzn
)
dudv,

and according to (2.3), this is equivalent to

F (z)
zg′(z)

=
1

g′(z)

∫ 2π

0

∫ 1

0

∫ 1

0

g′(uvz)
1 + uvze−it

1− uvze−it
dudvdµ(t),
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and the proof is finished. �

Lemma 2.4. The following inequality holds:

1 + r4u2ρ2 − r2ρ2

√
(1 + u2)2 +

4u2ρ2(1− u2)2 sin2 α

(1− u2ρ2)2(1 + u2)2
cos(2θ + γ) ≥

1 + r4u2 − r2
√

1 + 6u2 + u4, ρ, u ∈ [0, 1]; θ, α ∈ R.

Proof. It is easily seen that:

1 + r4u2ρ2 − r2ρ2

√
(1 + u2)2 +

4u2ρ2(1− u2)2 sin2 α

(1− u2ρ2)2(1 + u2)2
cos(2θ + γ) ≥

1 + r4u2ρ2 − r2ρ2

√
(1 + u2)2 +

4u2ρ2(1− u2)2

(1− u2ρ2)2(1 + u2)2
(2.4)

Since

1 ≥ ρ2

and

−r4u2 + r2
√

1 + 6u2 + u4 ≥ −r4u2 + r2

√
(1 + u2)2 +

4u2ρ2(1− u2)2

(1− u2ρ2)2(1 + u2)2
≥ 0

r, u, ρ ∈ [0, 1]

it follows that

−r4u2 + r2
√

1 + 6u2 + u4 ≥ −r4u2ρ2 + r2ρ2

√
(1 + u2)2 +

4u2ρ2(1− u2)2

(1− u2ρ2)2(1 + u2)2

r, u, ρ ∈ [0, 1].

Thus

1 + r4u2ρ2 − r2ρ2

√
(1 + u2)2 +

4u2ρ2(1− u2)2

(1− u2ρ2)2(1 + u2)2
≥

1 + r4u2 − r2
√

1 + 6u2 + u4 r, u, ρ ∈ [0, 1]. (2.5)

The desiderated inequality follows by (2.4) and (2.5). �

3. Main result

Theorem 3.1. Let g ∈ A be a function having the property:

Re
g′(uz)
g′(z)

1 + uw

1− uw
> 0, for all u ∈ (0, 1) and z, w ∈ U, |z| = |w|. (3.1)
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Provided that f ∈ A, and the function h defined by h(z) = zg′(z) satisfies the inequal-
ity

Re
zf ′(z)
h(z)

> 0 z ∈ U, (3.2)

then F = A(f) ∈ S∗.

Proof. We differentiate twice the equality F (z) =
∫ z

0
f(t)

t and we get: zF ′′(z) +
F ′(z) = f ′(z). If we set p(z) = zF ′(z)

F (z) , then this equality can be rewritten as follows:

F (z)
zg′(z)

(zp′(z) + p2(z)) =
zf ′(z)
h(z)

.

The conditions of the theorem imply:

Re
[ F (z)
zg′(z)

(zp′(z) + p2(z))
]

> 0, for all z ∈ U. (3.3)

If the inequality Rep(z) > 0 does not hold for all z ∈ U, then according to Lemma 2
(in case of a = 1) there is a point z0 ∈ U and there are two real numbers x, y ∈ R
having the property:

p(z0) = ix

z0p
′(z0) = y ≤ −x2 + 1

2
.

Thus it follows that:

Re
[ F (z0)
z0g′(z0)

(z0p
′(z0) + p2(z0))

]
= Re

F (z0)
z0g′(z0)

(y − x2). (3.4)

Since Re f ′(z)
g′(z) = Re zf ′(z)

h(z) > 0, z ∈ U, Lemma 3 and condition (3.1) lead to the

inequality Re F (z)
zg′(z) > 0, z ∈ U. This inequality and (3.4) imply

Re
z0f

′(z0)
h(z0)

= Re
[ F (z0)
z0g′(z0)

(z0p
′(z0) + p2(z0))

]
≤ 0

which contradicts (3.3). The contradiction shows that Rep(z) > 0 for all z ∈ U , and
this is equivalent to F ∈ S∗. �

Corollary 3.2. If Re f ′(z)
ez > 0 for all z ∈ U, then A(f) ∈ S∗.

Proof. We apply Theorem 2 to prove this assertion. In case of g(z) = ez − 1, z = reiθ

and w = reiα, r ∈ (0, 1) the following equality holds:

Re
g′(uz)
g′(z)

1 + uw

1− uw
=

er(u−1) cos θ(1− u2r2)
1 + u2r2 − 2ur cos α

{
cos[r(1− u) sin θ] +

2ur sinα

1− u2r2
sin[r(1− u) sin θ]

}
(3.5)
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There is a real number v ∈ (−π
2 , π

2 ) having the property tan v = 2ur sin α
1−u2r2 . Therefore

the equality (3.5) can be rewritten in the following way:

Re
g′(uz)
g′(z)

1 + uw

1− uw
=

er(u−1) cos θ(1− u2r2)
(1 + u2r2 − 2ur cos α) cos v

cos[r(1− u) sin θ − v].

This means that in order to prove condition (3.1) of Theorem 2, we have to prove the
inequality: cos[r(1− u) sin θ − v] > 0, r, u ∈ (0, 1), α, θ ∈ R.

Since |r(1 − u) sin θ − v| = |r(1 − u) sin θ − arctan 2ur sin α
1−u2r2 | ≤ r(1− u) +

arctan 2ur
1−u2r2 < 1− u + arctan 2u

1−u2 , and ϕ′(u) = 1−u2

1+u2 > 0 where ϕ : (0, 1) →
R, ϕ(u) = 1− u + arctan 2u

1−u2 , the inequality follows |r(1 − u) sin θ − v| <

limu→1 ϕ(u) = π
2 .

Thus condition (3.1) also holds, and applying Theorem 2 the proof is done. �

Remark 3.3. In case of g(z) = ez − 1, it is easily seen that g ∈ A and h(z) =
zg′(z) = zez and Re

( zh′(z)
h(z)

)
= Re(1 + z) > 0, z ∈ U, consequently h ∈ S∗ holds.

Thus the differential inequality Re zf ′(z)
h(z) = Re f ′(z)

ez > 0, z ∈ U, defines a subclass of
C and this subclass is mapped by the Operator of Alexander in S∗.

Corollary 3.4. If 0 < r ≤
(
3− 8

1
2
) 1

4 = 0, 643... and

Re(1− r2z2)f ′(z) > 0, z ∈ U, (3.6)

then A(f) ∈ S∗.

Proof. We apply again Theorem 2 to prove this assertion. Let g : U → C be the
mapping defined by the equality: g(z) = 1

2r log 1+rz
1−rz , r ∈ (0, 1], and h(z) = zg′(z) =

z
1−r2z2 . We have to prove condition (3.1) in case of z = ρeiθ and w = ρeiα. The
following equalities hold:

Re
g′(uz)
g′(z)

1 + uw

1− uw
= Re

1− r2ρ2e2iθ

1− r2u2ρ2e2iθ

1 + uρeiα

1− uρeiα
=

(1− u2ρ2)[1 + r4u2ρ2 − r2ρ2(1 + u2) cos 2θ + 2 1−u2

1−u2ρ2 ur2ρ3 sin 2θ sinα]

|1− r2u2e2iθ|2|1− ueiα|2
. (3.7)

According to (3.7) condition (3.1) holds if and only if:

1 + r4u2ρ2 − r2ρ2(1 + u2) cos 2θ + 2
1− u2

1− u2ρ2
ur2ρ3 sin 2θ sinα ≥ 0,

ρ, u ∈ [0, 1]; θ, α ∈ R,

and this is equivalent to

1 + r4u2ρ2 − r2ρ2(1 + u2)
[
cos 2θ − 2

1− u2

(1− u2ρ2)(1 + u2)
uρ sin 2θ sinα

]
≥ 0,

ρ, u ∈ [0, 1]; θ, α ∈ R.

156



ALEXANDER TRANSFORM OF CLOSE-TO-CONVEX FUNCTIONS

Using the notation tan γ = 2uρ(1−u2) sin α
(1−u2ρ2)(1+u2) , γ ∈ (−π

2 , π
2 ) it can be rewritten as follows:

1 + r4u2ρ2 − r2ρ2

√
(1 + u2)2 +

4u2ρ2(1− u2)2 sin2 α

(1− u2ρ2)2(1 + u2)2
cos(2θ + γ) ≥ 0,

u, ρ ∈ [0, 1]; θ, α ∈ R. (3.8)

According to Lemma 4 we have:

1 + r4u2ρ2 − r2ρ2

√
(1 + u2)2 +

4u2ρ2(1− u2)2 sin2 α

(1− u2ρ2)2(1 + u2)2
cos(2θ + γ) ≥

1 + r4u2 − r2
√

1 + 6u2 + u4, ρ, u ∈ [0, 1]; θ, α ∈ R.

Inequality (3.8) holds provided that:

1 + r4u2 − r2
√

1 + 6u2 + u4 ≥ 0, u ∈ [0, 1].

The last inequality is equivalent to

1− r4 − 4r4u2 − r4(1− r4)u4 ≥ 0, u ∈ [0, 1],

which holds for all u ∈ [0, 1] if and only if:

1− 6r4 + r8 ≥ 0, r ∈ (0, 1]

and this leads to 0 < r ≤
(
3− 8

1
2
) 1

4 . �

Remark 3.5. 1. Since g, h ∈ A and

Re
zh′(z)
h(z)

= Re
1 + r2z2

1− r2z2
> 0, z ∈ U, r ∈ [0, 1],

follows that h ∈ S∗. Thus condition (3.6) defines a subclass of C.

2. It remains an interesting open question to determine the biggest r ∈ [0, 1]
for which the class of analytic functions defined by the conditions

f ∈ A, Re(1− r2z2)f ′(z) > 0, z ∈ U

is mapped in S∗, by the Alexander Operator.
3. Since Corollary 1 and Corollary 2 can not be proved using Theorem 1, we

may assert that Theorem 2 is independent from Theorem 1, in spite of the fact, that
the ideas of their proofs are analogous.
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DATA DEPENDENCE FOR SOME INTEGRAL EQUATIONS

ION MARIAN OLARU

Abstract. In the paper Integral equations, periodicity and fixed points,

published in Fixed Point Theory, 9(2008), No 1, 47-65 the author T.A.

Burton considered the equation

x(t) = g(t) +

t∫
−∞

K(t, s, x(s))ds.

In this paper we shall study the data dependence for this integral equations.

1. Introduction

Let (PT , ‖ ·‖) denote the Banach space of continuous scalar T−periodic func-
tions with the supremum norm.

We consider the equation

x(t) = g(t) +

t∫
−∞

K(t, s, x(s))ds, t ∈ R (1.1)

under the conditions:

(C1) there exists T > 0 such that

g(t + T ) = g(t), K(t + T, s + T, u) = K(t, s, u)

for all t, s, u ∈ R;

(C2) for all x ∈ PT we have that
(·)∫
−∞

K((·), s, x(s))ds ∈ PT

Now we define the operator

A : PT → PT ,

A(x)(t) = g(t) +

t∫
−∞

K(t, s, x(s))ds.
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In [1], T.A. Burton was considered the following conditions

(C3) there exists a function B(t, s) with
t∫

−∞
B(t, s) defined such that

|K(t, s, u)−K(t, s, v)| ≤ B(t, s)|u− v|,

for all −∞ < s ≤ t < ∞, u, v ∈ R;

(C4) there exists 0 < α < 1 such that
t∫

−∞
B(t, s) ≤ α.

Under conditions (C1) − (C4) we have that the operator A has a unique fixed point
x?

A, and An(x) → x?
A for n →∞ and for all x ∈ PT , so the operator A is Picard(I.A.

Rus [3])
The purpose of this article is to establish a Gronwall type lemma correspond-

ing to the equation (1.1) and also data dependence theorems, comparison theorems
for the solutions of the equation (1.1). More results about nonlinear integral equations
we find in [2].

2. A Gronwall type inequalities

We consider the following integral inequalities:

x(t) ≤ g(t) +

t∫
−∞

K(t, s, x(s))ds, t ∈ R (2.1)

x(t) ≥ g(t) +

t∫
−∞

K(t, s, x(s))ds t ∈ R. (2.2)

Throughout this section we use the following

Lemma 2.1. I.A. Rus [5] Let (X, d) be an ordered metric space and A : X → X be
such that:

(i) the operator A is Picard, with the set of fixed points FA = {x?
A};

(ii) the operator A is monotone increasing.

Then

(a) x ≤ A(x) implies x ≤ x?
A;

(b) x ≥ A(x) implies x ≥ x?
A;

We have

Theorem 2.2. We suppose that:

(i) the conditions (C1)− (C4) hold;
(ii) the operator K(t, s, ·) is monotone increasing, for all −∞ < s ≤ t < ∞.
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Then

(a) the equation (1.1) has a unique solution x?;
(b) for all solutions x ∈ PT of the inequality (2.1) we have that x ≤ x?;
(c) for all solutions x ∈ PT of the inequality (2.2) we have that x ≥ x?,

Proof. (a) We consider the operator

A : PT → PT ,

A(x)(t) = g(t) +
∫ t

−∞
K(t, s, x(s))ds.

T.A Burton [1] proves that the operator A is Picard operator, FA = {x?}.
(b)+(c) From the condition (ii) we obtain that A is an increasing operator.

Then, by Lemma 2.1 we have the conclusions.

3. A comparison result

Now we shall give a comparison result for the solution of the equation (1.1).
For this study we need the following abstract result ([5]).

Lemma 3.1. Let (X, d,≤) be an ordered metric space and A,B,C : X → X be such
that:

(i) A ≤ B ≤ C

(ii) A,B, C are Picard operators, FA = {x?
A}, FB = {x?

B}, FC = {x?
C};

(iii) the operator B is increasing.

Then

x?
A ≤ x?

B ≤ x?
C .

We consider the equations

(4)i x(t) = gi(t) +

t∫
−∞

K(t, s, x(s))ds, t ∈ R, i = 1, 3,

We have

Theorem 3.2. We consider the equation (4)i. We suppose that:

(i) gi and Ki, i = 1, 3, satisfy the condition (i) in Theorem 2.2;
(ii) g1(t) ≤ g2(t) ≤ g3(t) and K1(t, s, ·) ≤ K2(t, s, ·) ≤ K3(t, s, ·) for all

−∞ < s ≤ t < ∞;
(iii) K2(t, s, ·) is monotone increasing for all −∞ < s ≤ t < ∞.

Then
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(a) the equations (4)i have a unique solution x?
i ∈ PT , i = 1, 3

(b) x?
1 ≤ x?

2 ≤ x?
3.

Proof. (a) We consider the operator

Ai : PT → PT ,

Ai(x)(t) = gi(t) +
∫ t

−∞
Ki(t, s, x(s))ds, i = 1, 3.

The condition (i) from Theorem 2.2 implies that the operators Ai are Picard
with FAi

= {x?
i }, i = 1, 3.

(b) From the condition (ii) we have that A1 ≤ A2 ≤ A3 and from (iii)
we obtain that A2 is an increasing operator. Then, from Lemma 2.1 we have the
conclusion.

4. Data dependence: Continuity

Now we consider the equations

x(t) = g1(t) +

t∫
−∞

K1(t, s, x(s))ds, t ∈ R (4.1)

x(t) = g2(t) +

t∫
−∞

K2(t, s, x(s))ds, t ∈ R. (4.2)

We have

Theorem 4.1. We suppose that

(1) g1, g2,K1,K2 satisfy the conditions (i) in Theorem 2.2;
(2) there exists η1 > such that

|g1(t)− g2(t)| ≤ η1,

for all t ∈ R;
(ii) there exists a function η2(t, s) and η3 > 0 such that

t∫
−∞

η2(t, s)ds ≤ η3,

|K1(t, s, u)−K2(t, s, u)| ≤ η2(t, s),

for all −∞ < s ≤ t < ∞, u ∈ R.

Then

(a) the equations (4.1), (4.2) have a unique solution x?
1 respectively x?

2;

162



DATA DEPENDENCE FOR SOME INTEGRAL EQUATIONS

(b) ‖x?
1 − x?

2‖ ≤
η1+η3
1−α .

Proof. (a) We define the operators

Ai : PT → PT ,

Ai(x)(t) = gi(t) +

t∫
−∞

Ki(t, s, x(s))ds, i = 1, 2.

The condition (i) from Theorem 2.2 implies that the operators Ai are Picard with
FAi

= {x?
i }, i = 1, 2.

(b) Because

|A1(x)(t)−A2(x)(t)| ≤ |g1(t)− g2(t)|+
t∫

−∞

|K1(t, s, x(s))−K2(t, s, x(s))|ds ≤

≤ η1 +

t∫
−∞

η2(t, s)ds ≤ η1 + η3

for all x ∈ PT and t ∈ R, we obtain that

‖A1(x)−A2(x)‖ ≤ η1 + η3.

Now the proof follows from a well known abstract result( [3], [4]).

5. Smooth dependence on parameter

Next we consider the following integral equation

x(t) = g(t, λ) +

t∫
−∞

K(t, s, x(s), λ)ds, t ∈ R, λ ∈ J = [c, d] ⊂ R. (5.1)

Let (PT , ‖·‖) be the Banach space of continuous scalar T−periodic functions,
defined on R× J , with the supremum norm.

We assume that

(H1) g,K ∈ C1(R× J) and it verify the conditions (C1), (C2);
(H2) there exists a function B(t, s) such that

|∂K

∂u
(t, s, u, λ)| ≤ B(t, s),

for all −∞ < s ≤ t < ∞, u, v ∈ R, λ ∈ J ;

(H3)
t∫

−∞
B(t, s)ds is defined and

t∫
−∞

B(t, s)ds ≤ α < 1.
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We define the operator

B : PT → PT ,

B(x)(t, λ) = g(t, λ) +

t∫
−∞

K(t, s, x(s, λ), λ)ds.

It is clear that, in the conditions (H1)− (H3) the operator B is Picard oper-
ator. Let x?(·, λ) be the unique fixed point of the operator B. Then

x?(t, λ) = g(t, λ) +

t∫
−∞

K(t, s, x?(s, λ), λ)ds (5.2)

We suppose that there exists ∂x?

∂λ . Then from (5.2) we have that

∂x?

∂λ
(t, λ) =

∂g

∂λ
(t, λ) +

t∫
−∞

[
∂K

∂u
(t, s, x?(s, λ);λ)

∂x?(s, λ)
∂λ

+
∂K

∂λ
(t, s, x?(s, λ);λ)]ds

This relation suggest us to consider the following operator

C : PT × PT → PT ,

C(x, y)(t, λ) =
∂g

∂λ
(t, λ) +

t∫
−∞

[
∂K

∂u
(t, s, x(s, λ);λ)y(s, λ) +

∂K

∂λ
(t, s, x(s, λ);λ)]ds

In this way we have the triangular operator

A : PT × PT → PT × PT ,

A(x, y) = (B(x), C(x, y))

where B is a Picard operator and C(x, ·) : PT → PT is an α−contraction.
From the theorem of fiber contraction (see I.A. Rus [5],[6]) we have that the

operator A is Picard operator. So, the sequences

xn+1 = B(xn), n ∈ N

yn+1 = C(xn, yn), n ∈ N

converges uniformly to (x?, y?) ∈ FA, for all x0, y0 ∈ PT .

If we take x0 = 0, y0 = ∂x0
∂λ = 0 then y1 = ∂x1

∂λ and by induction we prove
that yn = ∂xn

∂λ , for all n ∈ N?.

Thus

xn → x?, uniform as by n →∞
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∂xn

∂λ
→ y?, uniform as by n →∞

These imply that there exists ∂x?

∂λ and ∂x?

∂λ = y?

From the above considerations, we have the following result

Theorem 5.1. We consider the integral equation (5.1) in the hypothesis (H1)−(H3).
Then

(i) the equation (5.1) has a unique solution x?(t, ·) ∈ PT ;
(ii) x?(t, ·) ∈ C1(J), for all t ∈ R.
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MIXED CONVECTION IN A VERTICAL CHANNEL SUBJECT

TO ROBIN BOUNDARY CONDITION

FLAVIUS PĂTRULESCU, TEODOR GROŞAN, AND ADRIAN VASILE LAR

Abstract. The steady mixed convection flow in a vertical channel is in-

vestigated for laminar and fully developed flow regime. In the modelling of

the heat transfer the viscous dissipation term was also considered. Tem-

perature on the right wall is assumed constant while a mixed boundary

condition (Robin boundary condition) is considered on the left wall. The

governing equations are expressed in non-dimensional form and then solved

both analytically and numerically. It was found that there is a decrease in

reversal flow with an increase in the mixed convection parameter.

1. Introduction

Heat transfer in channels occurs in many industrial processes and natural

phenomena. It has been, therefore, the subject of many detailed, mostly numerical

studies for different flow configurations. Most of the interest in this subject is due to

its practical applications, for example, in the design of cooling systems for electronic

devices and in the field of solar energy collection. Some of the published papers, such

as by Aung [1], Aung et al. [2], Aung and Worku [3, 4], Barletta [5, 6], and Boulama

and Galanis [7], are concerned with the evaluation of the temperature and velocity

profiles for the vertical parallel-flow fully developed regime. As is well known, heat

exchangers technology involves convective flows in vertical channels. In most cases,

these flows imply conditions of uniform heating of a channel, which can be modelled

either by uniform wall temperature (UWT) or uniform wall heat flux (UHF) thermal

boundary conditions. In the present paper, new types of boundary conditions are

considered. The right wall is kept at constant temperature while a convective heat

flux is considered on the left wall (see, Bejan[8]):
(

k
∂T

∂y

)

y=0

+ ha (Ta − T )y=0
= 0 (1.1)
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Figure 1. Geometry of the problem and the co-ordinate system

where k is the thermal conductivity, ha is the external heat transfer coefficient and

Ta is the external temperature (see Figure 1). This kind of boundary condition

is appropriate to express mathematically heat loosing in insullation problems. In

addition we have taken in account in this paper the effect of viscous dissipation, see

Barletta [9].

2. Basic equations

Consider a viscous and incompressible fluid, which steadily flows between two

infinite vertical and parallel plane walls. At the entrance of the channel the fluid has

an entrance velocity U0 parallel to the vertical axis of the channel. The geometry of

the problem, the boundary conditions, and the coordinate system are shown in Fig. 1.

The variation of density with temperature is given by the Boussinesq approximation

and the fluid rises in the duct driven by buoyancy forces and initial velocity. Hence,

the flow is due to difference in temperature and in the pressure gradient. The flow

being fully developed the following relations apply here v = 0, ∂v/∂y = 0 , ∂p/∂y = 0,

where v is the velocity in the transversal direction and p is the pressure. Thus, from

the continuity equation, we get ∂u/∂x = 0 so that the velocity component along x-

axis depends only by y, u = u(y). Based on the fact that the flow is fully developed we

can assume that the temperature T = T (y). Under these assumptions the momentum
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and energy equations for the flow and heat transfer have the following form:

ν
d2u

dy2
−

1

ρ

dp

dx
+ gβ (T − T0) = 0 (2.1)

α
d2T

dy2
+

ν

cp

(

du

dy

)2

= 0 (2.2)

subject to the boundary condition given by Eq. (1.1), noslip condition for for velocity

at the walls and constant temperature at the left wall:

u(0) = 0, u(L) = 0, T (L) = Tw (2.3)

where α is the thermal diffusivity of the viscous fluid, ρ is the fluid density and cp

is the specific heat at constant pressure. In the system (2.1) and (2.2) there is an

additional unknown, the gradient of pressure, dp/dx. In order to close the above

system subject to the boundary conditions (1.1) and (2.3) it is necessary to consider

the equation of the mass flux conservation:

U0 =
1

L

∫ L

0

u(y)dy (2.4)

where L is the channel width. Further, we introduce the following dimensionless

variables (see Pop and Ingham[10] or Kohr and Pop[11]):

U =
u

U0

, X =
xRe

L
, Y =

y

L
, θ =

T − T0

Tw − T0

, P =
L2

ρν2
p (2.5)

where Re = U0L/ν is the Reynolds number and T0 = (Ta + Tw)/2 is a characteristic

temperature. Using (2.5) in the equations (2.1)-(2.2), in the boundary conditions

(1.1) and (2.3) and in the mass flux conservation (2.4) we obtain:

d2U

dY 2
+ λθ − γ = 0 (2.6)

d2θ

dY 2
+ Br(

dU

dY
)2 = 0 (2.7)

U(0) = 0, U(1) = 0,

(

dθ

dY

)

Y =0

= κ(1 + θ)Y =0, θ(1) = 1 (2.8)

∫

1

0

U(Y )dY = 1; (2.9)

In Eqs. (2.6)-(2.9) γ is the pressure gradient in X direction, Br is the Brinkman

number, λ is the mixed convection parameter and κ is the convection heat transfer

parameter given by

γ =
dP

dX
, Br = PrEc =

µU2

0

k(Tw − T0)
, λ =

Gr

Re
=

gβ(Tw − T0)L
2

U0ν
, κ =

haL

k
(2.10)
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and Pr, Ec, Gr and Re are the Prandtl number, Eckert number, Grashoff number

and Reynolds number,respectively, defined as:

Pr =
ν

α
, Ec =

U2

0

cp(Tw − T0)
, Gr =

gβ(Tw − T0)L
3

ν2
, Re =

U0L

ν
(2.11)

The physical quantity of interest in this problem are the skin friction coeffi-

cient Cf and the Nusselt number Nu, which are defined as:

Cf =
µ

ρU2
0

(

du

dy

)

y=0,L

, Nu =

(

hfL

k

)

y=0,L

(2.12)

In Eq. (2.12) hf is the internal heat transfer coefficient which can be calculated from

the heat transfer balance at the wall:
(

k
∂T

∂n

)

wall

= hf (Twall − Tfluid)

where n is the normal to the wall. Using dimensionless variables (2.5) we obtain:

CfRe =

(

dU

dY

)

Y =0,1

, Nu|Y =0 = κ

(

θ(0) + 1

θ(0) − 1

)

, Nu|Y =1 = −

(

dθ
dY

)

Y =1

θ(0) − 1
(2.13)

3. Results and discussions

Equations (2.6) to (2.9) admit an analytical solution in two particular cases:

i) Case Br = 0

In this case the system (2.6) and (2.7) becomes:

d2U

dY 2
−

dP

dX
+ λθ = 0 (3.1)

d2θ

dY 2
= 0 (3.2)

subject to the boundary conditions (2.8). Further, from Eq. (3.1), (3.2) and condition

(2.9) we obtain

θ(Y ) =
2κ

1 + κ
Y +

1 − κ

1 + κ

U(Y ) = −
κλ

1 + κ

Y 3

3
+ (γ +

1 − κ

1 + κ
λ)

Y 2

2
+ (

κλ

3(1 + κ)
−

1

2
(γ +

1 − κ

1 + κ
))Y (3.3)

γ = −12 +
λ

1 + κ
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ii) Case λ = 0

For λ = 0 the forced convection only is considered. The system (2.6) and (2.7) takes

the following form:
d2U

dY 2
− γ = 0 (3.4)

d2θ

dY 2
+ Br(

dU

dY
)2 = 0 (3.5)

Taking in account that γ is constant, using the boundary conditions (2.8) and mass

flux conservation (2.9) we have:

U(Y ) = −6Y 2 + 6Y

θ(Y ) = −12BrY 4 + 24BrY 3 − 18BrY 2 +
2κ

1 + κ
(1 + 3Br)Y +

1 + 6Br − κ

1 + κ
(3.6)

γ = −12

Equations (2.6) and (2.7) subject to (2.8) and (2.9) were solved numerically

for different values of the parameters, λ, κ and Br (λ = 0, 100, 250, 500; κ = 0.01,

0.1, 1, 10; Br = 0, 0.001, 0.01, 0.025) using an implicit finite-difference method for

velocity and a Gauss-Seidel iteration for temperature. Dimensionless velocity profiles,

U(Y), and temperature profiles, θ(Y ), are presented in Figs. 2 to 7 for different values

of the above parameters. Analytical solutions ( λ= 0, Br = 0) are also presented on

figures with a circle marker.

The variation of the velocity U(Y ) and temperature θ(Y ) with the mixed

convection parameter λ is presented in Figs. 2 and 5.
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λ κ Br = 0 Br = 0.001 Br = 0.01

0 0.1 5.940594 5.940594 5.940594

1 5.940594 5.940594 5.940594

10 5.940594 5.940594 5.940594

100 0.1 4.470594 4.501963 4.799567

1 -2.144405 -2.134825 -2.047795

10 -8.759405 -8.784130 -9.001301

500 0.1 -1.409405 -1.27279 -0.125966

1 -34.484405 -32.905781 -25.265381

10 -67.559405 -68.912398 -68.791864

Table 1. Friction coefficient CfRe|Y =0

λ κ Br = 0 Br = 0.001 Br = 0.01

0 0.1 -5.940594 -5.940594 -5.940594

1 -5.940594 -5.940594 -5.940594

10 -5.940594 -5.940594 -5.940594

100 0.1 -7.410594 -7.370828 -6.999151

1 -14.025594 -13.992628 -13.700667

10 -20.640594 -20.606004 -20.288425

500 0.1 -13.290594 -13.053063 -11.199059

1 -46.365594 -43.025955 -27.986534

10 -79.440594 -74.606586 -42.694129

Table 2. Friction coefficient CfRe|Y =1
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λ κ Br = 0 Br = 0.001 Br = 0.01

0 0.1 -0.999999 -1.032983 -1.451739

1 -1.000000 -1.005839 -1.059969

10 -1.000000 -1.003203 -1.032116

100 0.1 -0.999999 -1.027827 -1.377468

1 -1.000000 -1.006256 -1.063425

10 -1.000000 -1.009053 -1.092552

500 0.1 -0.999999 -1.031473 -1.360956

1 -1.000000 -1.133834 -2.040945

10 -1.000000 -1.276971 -3.552673

Table 3. Nusselt number on the left wall Nu|Y =0

λ κ Br = 0 Br = 0.001 Br = 0.01

0 0.1 1.000000 0.967016 0.548260

1 1.000000 0.994160 0.940030

10 1.000000 0.996796 0.967883

100 0.1 1.000000 0.959813 0.498805

1 1.000000 0.981394 0.813917

10 0.999999 0.978624 0.787469

500 0.1 1.000000 0.906917 0.033431

1 1.000000 0.810584 -0.328300

10 0.999999 0.683490 -0.854004

Table 4. Nusselt number on the right wall Nu|Y =1
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A COLLOCATION METHOD USING CUBIC B-SPLINES

FUNCTIONS FOR SOLVING SECOND ORDER LINEAR VALUE

PROBLEMS WITH CONDITIONS INSIDE THE INTERVAL [0, 1]

DANIEL N. POP

Abstract. Consider the problem:

y
′′(x) − Q(x)y(x) = R(x), x ∈ [0, 1]

y(a) = α

y(b) = β, a, b ∈ (0, 1).

where Q(x),R(x) ∈ C[0, 1]; y ∈ C2[0, 1]. The aim of this paper is to present

an approximate solution of this problem based on cubic B-splines. The

approximate solution uses a mesh based on Legendre points.A numerical

solution is also given.

1. Introduction

Consider the problem(PVP):

y′′(x) − Q(x)y(x) = R(x), x ∈ [0, 1] (1.1)

y(a) = α

y(b) = β, a, b ∈ (0, 1).

where Q(x), R(x) ∈ C[0, 1]; y ∈ C2[0, 1], a, b, α, β ∈ R.This is not a two point bound-

ary value problem (BVP), since a, b ∈ (0, 1).

If the solution of the two-point boundary value problem (BVP):

y′′(x) − Q(x)y(x) = r(x), x ∈ [a, b]

y(a) = α (1.2)

y(b) = β,

exists and it is unique, then the requirement y ∈ C2[0, 1] assures the existence and

the uniqueness of (1.1).

Received by the editors: 10.11.2009.

2000 Mathematics Subject Classification. 65D07,65Dl10.
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I have two initial value problems on [0, a] and [b, 1], respectively, and the exis-

tence and the uniqueness for (1.2) assure existence and uniqueness of these problems.

It is possible to solve this problem by dividing it into the three above-mentioned prob-

lems and to solve each of these problem separately, but I am interested to a unitary

approach that solve it as a whole.

Remark 1.1. • If a = 0 and b = 1 the problem (PVP) becomes a classical (BVP).

• If a = 0 or b = 1 the problem (PVP) may be decomposed into an (BVP)

and one initial value problem(IVP).

Historical Note

In 1966, two researchers from Tiberiu Popoviciu Institute of Romanian Aca-

demy Cluj Napoca, D. Rı̂pianu and O. Aramă published a paper on polylocal problem

(see [10]).

2. Preliminaries

Consider a partition of [0, 1] like:

π : 0 = x0 < x1 < · · · < xN < xN+1 = 1, (2.1)

and the step sizes:

Hi := xi+1 − xi, i = 0, . . . , N. (2.2)

In each subinterval [xi, xi+1] we construct the collocation points as follows

ξij := xi + Hiρj ; i = 0, 1, ..., N, j = 0, 1, 2, ..., k, (2.3)

where

0 ≤ ρ0 < ρ1 < ρ2 < ... < ρk ≤ 1 (2.4)

are the roots of k-th Legendre polynomial on each subintervals:[xi, xi+1], i = 0, 1, ..., N

with the stepsize given by (2.2) (see [1] for more details). I insert the points a, b so I

obtained N(k+1)+2 points. One renumbers the collocation points such that the first

is ξ0 := x0 +H0ρ0 = 0, and the last is ξn+2 := xN +HNρk = 1, where n = N(K +1).

Therefore the partition of [0, 1] becomes:

∆ := 0 ≤ ξ0 < ξ1 < ... < ξn+2 = 1

We augment the above partition ∆ to form:

∆ : ξ−2 < ξ−1 < ξ0 = 0 < ξ1 < ... < ξn+2 = 1 < ξn+3 < ξn+4 (2.5)

where: ξl := a; ξl+p := b; 0 < l < n+1; 1 < l+p < n+2, ξ−1−ξ−2 = ξ0−ξ−1 = ξ1−ξ0,

ξn+4 − ξn+3 = ξn+3 − ξn+2 = ξn+2 − ξn+1.

Remark 2.1. If a = ξi or b = ξi+p, 1 ≤ i ≤ n− 2, 1 < p < n + 1− i we increment k.
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Notation 2.2.

Qi := Q(ξi) ; hi := ξi+1 − ξi; H := max
0≤ i≤ n+1

(ξi+1 − ξi); h := min
0≤ i≤n+1

(ξi+1 − ξi).

Definition 2.3. Given the meshpoint (2.5) I define the vector space:

S
(

∆
)

= {p(x) ∈ C2[0, 1] : p(x) is a cubic polynomial of each

subinterval [ξi−2 ,ξi+2], 0 ≤ i ≤ n + 2}.

dimS
(

∆
)

= n + 2 (numbers of subintervals, see [12, pp. 73])

Definition 2.4. For x ∈ R ; 0 ≤ i ≤ n, the cubic B-splines with the five knots: ξi−2,

ξi−1, ξ, ξ, ξ are given by:

Bi,3(x) =
x − ξ i−2

hi−2 + hi−1 + hi

Bi,2(x) +
ξ i+2 − x

hi+1 + hi + hi−1

Bi+1,2(x) (2.6)

where

Bi,0 =

{

1 if ξi−2 ≤ x < ξi−1

0 otherwise

Bi,2(x) =



























(x−ξ
i−2)

2

hi−2 (h
i−2+hi−1)

, if ξi−2 ≤ x ≤ ξi−1

(x−ξ
i−2)(ξi

−x)

hi−1(hi−1+hi−2)
+

(ξ
i +1−x)(x−ξ

i−1)

hi−1(h
i−1+hi)

, if ξi−1 ≤ x ≤ ξi

(ξi+1−x)
2

(hi−1+hi)hi

, if ξi ≤ x ≤ ξi+1

0 , otherwise .

We need a bases from S(∆) having (n+2) cubic B-splines.Our choice is based

on some special properties of cubic B-splines (see [11, pp.19-21] for details):

• The set

{Bi} i = 0, ..., n + 1 (2.7)

form a basis for S(∆).

•

{Bi} is positive on (ξi−2, ξi+2) and zero elsewhere. (2.8)

• {Bi} has local support (ξi−2, ξi+2) so computations using B-splines lead

to linear system of equations with banded matrices.

•
n+1
∑

i = 0

Bi,3(x) = 1 for every x ∈ [0, 1] (2.9)

I recall some results from matrix theory ([7, pp. 359-361], [8, pp. 50-55]):
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Figure 1. B-spline bases

Definition 2.5. A matrix A = [ai j ], i = 1, 2, ..., m, j = 1, 2, ..., n is called reducible

if there is a permutation that puts it into the form

˜A =

(

B 0

C D

)

,

where B and D are square matrices. Otherwise A is called irreducible.

Definition 2.6. A matrix A = [ai j ], i = 1, 2, ..., m, j = 1, 2, ..., n is called monotone

if Az ≥ 0 implies z ≥ 0.

Theorem 2.7. A square tridiagonal matrix A = [aij ] i, j = 1, 2, ..., n is irreducible

iff:

ai,i−1 6= 0 (i = 2, 3, ..., n) and ai,i+1 6= 0 (i = 1, 2, ..., n− 1)

and is reducible iff:

ai,i−1 = 0 or ai,i+1 = 0 for some i = 2, 3, ..., n

Theorem 2.8. A monotone matrix is nonsingular.

3. Main Results

3.1. Consistency of the method. I wish to find a approximate solution of the

problem (1.1) in the following form:

u
∆

(x) =
n+1
∑

i= 0

ciBi,3(x). (3.1)

where Bi,3(x) is a cubic B-splines with knots {ξi+k}
2

k = −2
.

Remark 3.1. My approximation method is inspired from ([3], chap. 2,5)
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I impose the conditions:

(c1) The approximate solution (3.1) verifies the differential equation (1.1) at

ξj , j = 1, ..., n + 2, j 6= l, j 6= l + p.

(c2) The solution verifies u
∆

(ξl) = α, u
∆

(ξl+p) = β (we recall that a =

ξl, b = ξl+p).

Conditions (c1) and (c2) yield to a linear system:

A · c = γ (3.2)

with (n + 2) equations and (n + 2) unknowns ci, i = 0, ..., n + 1.The system matrix

A is tridiagonal with 3 nonzero elements on each row.

We denote by:

fi(x) := B”i,3(x) − Q(x)Bi,3(x), i = 0, 1, ..., n + 1;

then

A =







fi(ξj); i ∈ {0, 1, 2..., n + 1}, j ∈ {1, 2, ..., n + 2}\{l, l + p}

Bi,3(ξl); i = l − 1, l, l + 1

Bi,3(ξl+p); i = l + p − 1, l + p, l + p + 1







The right hand side of (3.2) is:

γ = [R(ξ1), ..., R(ξl−1), α, R (ξl+1) , ..., R(ξl+p−1), β, R(ξl+p+1), ..., R(ξn+2)]

Lemma 3.2. (see [11, p. 23]) For each l > 0, and x ∈ [0, 1], we have Bi,l(x) ∈ C1[0, 1]

and

B′
i,l(x) = l

[

Bi,l−1(x)

ξi+l−2 − ξi−2

−
Bi+1,l−1(x)

ξi+l−1 − ξi−1

]

. (3.3)

First I prove the next lemmas:

Lemma 3.3. For each x ∈ [0, 1], Bi,3(x) ∈ C2[0, 1] and

B”

i,3(x)=3!

[

Bi,1(x)

(hi + hi−1 + hi−2)(hi−1 + hi−2)
− (3.4a)

−
Bi+1,1(x)(hi−2 + 2hi−1 + 2hi + hi+1)

(hi + hi−1)(hi + hi−1 + hi−2)(hi+1 + hi + hi−1)
+ (3.4b)

+
Bi+2,1(x)

(hi+1 + hi + hi−1)(hi + hi+1)

]

, (3.4c)

where

Bi,1(x) =











x−ξi−2

hi−2
, if ξi−2 ≤ x < ξi−1

ξi−x
hi−1

, if ξi−1 ≤ x < ξi

0, otherwise.
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Proof. For l = 3 we obtain from (3.3)

B′
i,3(x) = 3

[

Bi,2(x)

hi + hi−1 + hi−2

−
Bi+1,2(x)

(hi+1 + hi + hi−1

]

.

Then

B”

i,3(x) = 3

[

B′
i,2(x)

hi + hi−1 + hi−2

−
B′

i+1,2(x)

hi+1 + hi + hi−1

]

. (3.5)

Using again (3.3) for l = 2, it results:

B′
i,2(x) = 2

[

Bi,1(x)

hi−1 + hi−2

−
Bi+1,1(x)

hi + hi−1

]

, (3.6)

B′
i+1,2(x) = 2

[

Bi+1,1(x)

hi + hi−1

−
Bi+2,1(x)

hi+1 + hi

]

. (3.7)

By substituting (3.6) and (3.7) into (3.5), I obtain (3.4a), �

Lemma 3.4. For every i = 0, 1, ..., n + 1, it holds

h2

3H2
< Bi,3(ξi) <

H2

3h2
(3.8)

−
2

h2
< B′′

i,3(ξi) < −
2

H2
(3.9)

Proof. By substituting ξi into (2.6) I obtain:

Bi,3(ξi) =
1

(hi−1 + hi)

[

hi(hi−1 + hi−2)

(hi + hi−1 + hi−2)
+

hi−1(hi+1 + hi)

(hi + hi−1 + hi+1)

]

But since

h ≤ hi ≤ H, for every i = 0, 1, ..., n (3.10)

we obtain (3.8). Also substituting ξi into (3.4a) we have:

B′′
i,3(ξi) = −

1

(hi−1 + hi)

[

1

(hi + hi−1 + hi−2)
+

1

(hi + hi−1 + hi+1)

]

Using again (3.10), it results (3.9). �

Lemma 3.5. If Q(x) < −1 for all x ∈ [0, 1], then the elements of the matrix A are

strictly positive.

Proof. From (2.8)

Bi,3(ξl) > 0; i = l − 1, l, l + 1

Bi,3(ξl+p) > 0; i = l + p − 1, l + p, l + p + 1.
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Using (3.4a)

B′′
i,3(ξi−1) =

3!

(hi + hi−1 + hi−2)(hi−1 + hi−2)
> 0,

B′′
i,3(ξi+1) =

3!

(hi+1 + hi + hi−1)(hi + hi+1)
> 0

and:

Q(x) < 0, Bi,3(ξi−1) > 0, Bi,3(ξi+1) > 0 then fi(ξi−1) > 0, fi(ξi+1) > 0.

Also since

fi(ξi) = B′′
i,3(ξi) − Qi · Bi,3(ξi)

it follows:

If Qi <
B′′

i,3(ξi)

Bi,3(ξi)
< −

2

H2

3H2

h2
< −

1

h2
< −1; then for all i = 0, 1, 2, ..., n : fi(ξi) > 0

�

Lemma 3.6. If A = [ai,j ] is a square tridiagonal matrix with all elements strict

positive then A is monotone.

Proof. By hypothesis ai,i−1 > 0; ai,i > 0; ai,i+1 > 0 then, cf. Theorem 2.7, the

matrix A is irreducible, and moreover

ai,i−1 + ai,i + ai,i+1 > 0 (3.11)

Reductio ad absurdum.I assume that there exists a vector z with a negative

component zq < 0 but such Az ≥ 0. This assumption is equivalent to assuming

that A is not monotone.I shall show that this contradicts the assumption that A is

irreducible. Denote by W := {1, 2, ..., n} and e the vector whose components are all

1. Then from (3.11) we have

A · e > 0, A · e 6= 0. (3.12)

Since the sum of two nonnegative vectors is nonnegative, it follows that for 0 ≤ λ ≤ 1

λAz + (1 − λ)Ae = A[λz + (1 − λ)e] > 0 (3.13)

Consider the vector wλ = λz + (1 − λ)e as a function of λ.For λ = 0 all

components wλ are positive, namely +1. For λ = 1 there is a least one negative

component, namely zq, q ∈ W . The components of wλ are continuous functions of λ.

Since 0 ≤ λ ≤ 1, at least one component of wλ must pass thought the value 0. Let δ

the smallest value of λ such that wλ has a zero component (0 < δ < 1). Now let S

be a set of indices of zero components of wλ and let T = W − S. (By construction,
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S 6= Φ, T 6= Φ). For if all components of wλ were zero, then the vectors z and e

would be proportional:

e = −
δ

1 − δ
z, (3.14)

and from Az ≥ 0 it would followed that:

Ae = −
δ

1 − δ
Az ≤ 0

contradicting (3.12). By (3.13), Awδ ≥ 0, so in particular, if i ∈ S :

(Awδ)i =
∑

j∈T

ai jwδ j ≥ 0 (3.15)

by construction wδ j > 0, if j ∈ T. In view of ai,j > 0 if j ∈ T , (3.15) is thus possible

if ai,i−1 = ai,i = ai,i+1 = 0.Then A is reducible, contradicting our assumption, that

implies A is monotone. �

Theorem 3.7. If Q(x) < −1 the system(3.2) has a unique solution.

Proof. Using above lemmas the system matrix A is monotone. By Theorem 2.8 A

is nonsingular and moreover detA 6= 0. �

To solve the system (3.2), I use Crout Reduction for Tridiagonal Linear Sys-

tems Algorithm (see [5, pp. 336-340]). This algorithm requires only (5n − 4) mul-

tiplications/divisions and (3n − 3) addition/subtractions, and consequently it has

considerable computational advantages over the methods that do not consider the

tridiagonality of the matrix, especially for large values of n.

3.2. Error analysis. I recall ([2, pp. 58-62]):

Theorem 3.8. If the exact solution of (PVP) y(x) ∈ C2[0, 1], then there exists a

B-spline B(x) ∈ S(∆) determined locally as follows

max
ξi−2≤x≤ξi+2

|y(x) − Bi(x)| := ‖y − Bi‖[ξi−2,ξi+2]
≤ K · H2

1
·
∥

∥

∥
y(2)

∥

∥

∥

[ξi−2,ξi+2]

, (3.16)

where H1 := max{hi−2, hi−1, hi, hi+1} and K is a real constant independent of ∆

and y(x).

Since the points of ∆, except ξl = a and ξl+p = b are the roots of the kth

Legendre polynomial, the orthogonality relation

∫

1

0

ρ(t)

k
∏

j=1

(t − ρj)dt = 0

holds for all polynomials ρ(t) of degree q(2 ≤ q ≤ k), and then the superconvergence

occurs at the meshpoints:
∣

∣

∣
y(j)(ξi) − u

(j)

∆
(ξi)
∣

∣

∣
= O(Hk+q); 0 ≤ i ≤ n + 2, 0 ≤ j ≤ 1 (3.17)
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(see [1], [4]). I use as collocation points the Gaussian points taking q = k.Then the

superconvergence of my method at the meshpoints ξi, i ∈ {0, 1, 2, ..., n+ 2} \ {l, l + p}

is assured.
∣

∣

∣
y(j)(ξi) − u

(j)

∆
(ξi)
∣

∣

∣
= O(H2k); 0 ≤ i ≤ n + 2, 0 ≤ j ≤ 1

Since Q(x) ∈ C1[0, 1], then there exists N = max
0≤x≤1

|Q(x)| such that

∣

∣

∣
y′′(ξi) − u”

∆
(ξi)
∣

∣

∣
≤ N

∣

∣y(ξi) − u
∆

(ξi)
∣

∣ = N · O(H2k).

In ξl = a, ξl+p = b cf(3.16)

|y(ξl) − Bi(ξl)|[ξl−2,ξl+2]
≤ K1 · H

2 ·
∥

∥

∥
y(2)

∥

∥

∥

[ξl−2,ξl+2]

|y(ξl+p) − Bi(ξl+p)|[ξl+p−2,ξl+p+2]
≤ K1 · H

2 ·
∥

∥

∥
y(2)

∥

∥

∥

[ξl+p−2,ξl+p+2]

where K1, K2 are constants, independent of ∆ and y(x). It follows that my method

is superconvergent of order O(H2).

3.3. Numerical examples. I shall give one example. For this example, I plot the

approximate solution, error in semilogarithmic scale and I generate the execution

profile with the pair profile− showprofile, see ([6]).

I want to approximate the oscillating solution of the following problem:

Z ′′(t) − 50 · Z(t) = sin(t); 0 ≤ t ≤ 1 (3.18)

with conditions:

Z

(

1

6

)

=
1

49

− sin(5
√

2

6
) sin 1 + sin 1

6
sin(5

√
2)

sin(5
√

2)
(3.19)

Z

(

3

4

)

=
1

49

− sin(15
√

2

4
) sin 1 + sin 3

4
sin(5

√
2)

sin(5
√

2)

The exact solution provided by dsolve is:

Z(t) =
1

49

− sin(5
√

2t) sin 1 + sin t sin(5
√

2)

sin(5
√

2)

Since
∫

1

0

|Q(x)| dx > 4,

due to disconjugate criteria given by Lyapunov (1893), the problem (3.18) has an

oscillatory solution. I used Maple 8 to solve the problem exactly and to approximate

the solution, for n = 10 and k = 3. I obtained a very good approximation, but I must

increase the number of decimals with Maple command:

> Digits := 18;
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If I use a method based on orthogonal polynomials, for example first kind Chebyshev

polynomials, I observe that the B-spline method is faster and requires less memory.

The reason is that for the B-spline method the matrix of the system that provides

the coefficients is a band matrix with at most 3 nonzero elements per line, while

for Chebyshev method the matrix is dense. This example with oscillating solution

supports this conclusion (see for more details [9]).

Here are the profiles for the procedures genspline and genceb in the case of

oscillating solution to problem (3.18):

function depth calls time time bytes bytes

genspline 1 1 7.691 100.0 156424156 100.00

genceb 1 1 17115 100.0 156424156 100.00

The the graphs of approximate solution and the error in semilogarithmic scale

are given in Figure 2 and Figure 3, respectively.
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Figure 2. Approximate solution n = 10, k = 3
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Figure 3. Error plot, n = 10, k = 3
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[9] D. N. Pop, R. Tr̂ımbiţaş, A comparison between two collocation methods for linear

polylocal problems - a Computer Algebra based approach, International Conference in

Modelling and Development of Intelligent Systems, MDIS ’09, Sibiu.
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THE SOLVABILITY AND PROPERTIES OF SOLUTIONS OF ONE
WIENER-HOPF TYPE EQUATION IN THE SINGULAR CASE

ALEXANDRA SCHERBAKOVA

Abstract. The work defines the conditions of solvability of one integral

convolutional equation with degreely difference kernels in a singular case.

This type of integral equations was not studied earlier, and it turned out

that all methods used for the investigation of such equations with the

help of Riemann boundary problem at the real axis are not applied there.

The investigation of such type equations is based on the investigation of

the equivalent singular integral equation with the Cauchy type kernel at

the real axis in a singular case. It is determined that the equation is

not a Noetherian one. Besides, there are shown the number of the linear

independent solutions of the homogeneous equation and the number of

conditions of solvability for the heterogeneous equation in the singular case.

The general form of these conditions is also shown and there are determined

the spaces of solutions of the equation. Thus the convolutional equation

that wasn’t studied earlier is presented in this work and the theory of its

solvability in the singular case is built here. So some new and interesting

theoretical results are got in this paper.

The present work is devoted to studying the next Wiener-Hopf type integral
equation such as

Pm(x)ϕ(x) +
1√
2π

+∞∫
0

k(t, x− t)ϕ(t) dt = h(x), x ∈ R, (1.1)

where R is the real axis;

k(t, x− t) =
n∑

j=0

kj(x− t)tj ,

Received by the editors: 01.12.2009.

2000 Mathematics Subject Classification. 45E05, 45E10.

Key words and phrases. Integral convolutional equation, the number of the linear independent solutions,

singular integral equation, Cauchy type kernel, a Noetherian type equation, conditions of solvability,

index, spaces of solutions, singular case of solutions.
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and

Pm(x) =
m∑

k=0

Akx
k

is the known polynomial of degree m and kj(x) ∈ L, j = 1, n, h(x) ∈ L2 are known
functions.

The theory of solvability of Wiener-Hopf equations with difference kernels
was constructed in [2] and there were made quite wide assumptions concerning their
kernels and right parts. This theory was based on the investigation of the Riemann
boundary-value problem on the real axis, that was obtained with the help of the
Fourier transformation. But we can’t use methods from [2] to study the equation
(1.1), because the investigation of it with the help of the Fourier transformation goes
to the investigation of the Riemann differential boundary-value problem on the real
axis. The ordinary Wiener-Hopf equation was studied in details in [6], where the
conditions of solvability and some properties of solutions in the normal and singular
cases were determined. The number of the linear independent solutions and the
number of conditions of solvability for the both cases were also established there.
Now we are studying the Wiener-Hopf type equation with more complicated kernel.

Let D+ = {z ∈ C : Imz > 0} be an upper half plane and D− = {z ∈
C : Imz < 0} be a lower half plane of the complex plane C. According to the proper-
ties of the Fourier transformation [3], [2] the investigation of the equation (1.1) reduces
to the investigation of the following Riemann differential boundary-value problem m∑

k=0

Ak(−1)kΦ+(k)(x) +
n∑

j=0

(−1)j
Kj(x)Φ+(j)(x)

− Φ−(x) = H(x), x ∈ R, (1.2)

where Kj(x),H(x) are accordingly the Fourier transforms of functions kj(x), h(x),
j = 1, n. Φ+(p)(x) and Φ−(x) are the boundary values at R of functions Φ+(p)(z) and
Φ−(z) accordingly, where Φ+(z), Φ−(z) are unknown functions, which are analytical
in the domains D+ and D− accordingly. As all the transformations of the Riemann
differential boundary-value problem (1.2) and the equation (1.1) are identical, then
the problem (1.2) and the equation (1.1) are equivalent in such a sense that they are
simultaneously solvable or are not, and there is one and only one solution Φ±(x) of
the Riemann differential boundary-value problem (1.2) that corresponds to one and
only one solution ϕ(x) of the equation (1.1) and vice versa. The solutions of the
equation (1.1) are expressed over the solutions of the problem (1.2) by the formula

ϕ(x) =
1√
2π

∫
R

Φ+(t)e−ixt dt, x > 0. (1.3)
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We consider the functions Kj(x) ∈ H(r)
α , r ≥ 0, 0 < α ≤ 1, H(0)

α = Hα, j = 1, n and
the function H(x) ∈ L(r)

2 , r ≥ 0, L(0)
2 = L2. As functions kj(x) ∈ L, then accord-

ing to Riemann-Lebesgue theorem [3] lim
x→∞

Kj(x) = 0, j = 1, n. The investigation

of the equation (1.1) we will do basing on the investigation of the Riemann differ-
ential boundary-value problem (1.2). The investigation of the Riemann differential
boundary-value problem (1.2) reduces to the investigation of the singular integral
equation with Cauchy kernel at the real axis with the help of integral representations
for functions and derivatives of them built in [8]. Let construct functions Φ+(z) and
Φ−(z) such that they are analytic in the domains D+, D− respectively and decay at
infinity. Besides, the boundary values on R of functions Φ+(p)(z) and Φ−(z) satisfy
the following condition Φ+(p)(x),Φ−(x) ∈ L(r)

2 , r ≥ 0, p ≥ 0.These conditions satisfy
such functions as:

Φ±(z) = (2πı)−1
∫
R

P±(x, z)ρ(x) dx, z ∈ D±, (1.4)

where

P+(x, z) =
(−1)p(x + ı)−p

(p− 1)!

[
(x− z)p−1 ln

(
1− x + ı

z + ı

)
−

p−2∑
k=0

dp−k−2(x + ı)k+1(z + ı)p−k−2

]
,

x ∈ R, z ∈ D+;

P−(x, z) =
1

x− z

x ∈ R, z ∈ D−;

dp−k−2 = (−1)k+1
k∑

j=0

Cp−1−j
p−1 (k − j + 1)−1

,

where Cm
n are binomial coefficients and the function ln

[
1− x+ı

z+ı

]
is the main branch

(ln 1 = 0) of the logarithmic function in the complex plane with the cut that connects
such points as z = −ı and z = ∞, following the negative direction of the axis of
ordinate. It’s easy to verify, that defined by (1.4) functions Φ+(z) and Φ−(z) are the
unique analytic functions in domains D+, D− respectively. It is easy to verify that
the function ρ(x) ∈ L2 is defined uniquely by the functions Φ+(z) and Φ−(z) and
vice versa, so with the help of the given function ρ(x) ∈ L2 both functions Φ+(z) and
Φ−(z) are constructed uniquely. The following representations take place:

Φ+(p)(z) = (2πı)−1
∫
R

(z + ı)−p(x− z)−1ρ(x) dx, z ∈ D+,
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Φ−(z) = (2πı)−1
∫
R

(x− z)−1ρ(x) dx, z ∈ D−. (1.5)

We consider the case, when m = n. Using the properties [8] of partial derivatives of
functions P+(x, z) with respect to z and Sohotski formulas for derivatives from [1],
with the help of the representations (1.4), (1.5), we transform the Riemann differential
boundary-value problem (1.2) into the following singular integral equation

A(x)ρ(x) +B(x)(πı)−1
∫
R

(t− x)−1ρ(t) dt+ (Tρ)(x) = H(x), x ∈ R, (1.6)

where

A(x) = 0, 5(−1)m
{
[Am +Km(x)](x+ ı)−m + 1

}
,

B(x) = 0, 5(−1)m
{
[Am +Km(x)](x+ ı)−m − 1

}
, (1.7)

(Tρ)(x) =
∫
R

K(x, t)ρ(t) dt, x ∈ R, (1.8)

K(x, t) =
1

2πı

m−1∑
j=0

(−1)j [Aj +Kj(x)]
∂jP+(t, x)

∂xj
, (1.9)

and ∂jP+(t,x)
∂xj is a limiting value at R of the function ∂jP+(t,z)

∂zj , j = 0,m− 1.
Lemma 1.1. If functions Kj(x) ∈ H(r)

α , j = 1, n, then the operator T : L(r)
2 → L(r)

2 ,

r ≥ 0, defined by the formula (1.8) is a compact operator.
The proof of lemma follows from Frechet-Kolmogorov-Riesz criterion of com-

pactness of integral operators on the real axis in the space Lp, p > 1, the properties
of functions P±(x, z) follow from the results of the papers [8] and [9].

According to the work [4], the problem (1.2) and the singular integral equation
(1.6) are equivalent in such a sense that they are simultaneously solvable or are not,
and for the every solution ρ(x) of the equation (1.6) there exists may be an ununique
solution Φ±(x) of the problem (1.2) and vice versa. In order to make this solution to
be the unique one, it is necessary to set initial conditions for the problem (1.2). As its
solutions Φ±(x) are found in spaces of decaying at infinity functions, then according
to the properties of Cauchy type integral, solutions of the problem (1.2) are such
that Φ±(j)(∞) = 0, j = 0,m− 1, thus we obtain trivial initial conditions of (1.2)
and they are set automatically. So it follows that the Riemann differential boundary-
value problem (1.2) and the singular integral equation (1.6) are equivalent in such a
sense that they are simultaneously solvable or are not, and there is one and only one
solution ρ(x) of the equation (1.6) for the every solution Φ±(x) of the problem (1.2)
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and vice versa. By the force of formula (1.4), the solutions of the problem (1.2) are
expressed over solutions of the equation (1.6) according to the formula

Φ+(x) =
1√
2π

∫
R

P+(t, x)ρ(t) dt, x ∈ R, (1.10)

where p = m; P+(t, x) is the boundary value at x ∈ R of function P+(t, z), and ρ(x)
is the solution of the equation (1.6). As the equation (1.1) and the problem (1.2) are
equivalent, the problem (1.2) and the singular integral equation (1.6) are equivalent,
too, it follows that the equation (1.1) and the equation (1.6) are equivalent in such a
sense that they are simultaneously solvable or are not, and there is one and only one
solution ϕ(x) of the equation (1.1) for the every solution ρ(x) of the equation (1.6)
and vice versa. Thus the solutions of the equation (1.1) are expressed over solutions
of the equation (1.6) according to the formulas (1.10), (1.3). That is why the equation
(1.1) we will call Noetherian if the equation (1.6) is Noetherian.
Theorem 1.2. The equation (1.1) is not Noetherian.
Proof. According to the work [4] the equation (1.6) is Noetherian if and only if when
A(x) +B(x) 6= 0, A(x)−B(x) 6= 0 on x ∈ R. From the formula (1.7) it follows that

A(x) +B(x) = (−1)m[Am +Km(x)](x+ ı)−m,

A(x)−B(x) = 1.

So we have got that the function A(x)+B(x) possesses a zero at infinity of at least the
order m. It means that the equation (1.6) is not Noetherian. Then as the equations
(1.1) and (1.6) are equivalent, the equation (1.1) is not Noetherian, too.

The theorem is proved.
Let determine χ = −ind [Am +Km(x)].
Here we don’t study the case when A(x) + B(x) 6= 0 on R as this is the

normal case and the results of [6] for it remain correct if in Theorems 1.3 and 1.4 in
[6] we will study the function Am +Km(x) instead of Am +BmK(x).

Let’s study the singular case when the condition Am + Km(x) 6= 0 at R is
not executed. Then we suppose that the function Am + Km(x) goes to zero on the
real axis in such points as a1, a2, . . . , as with accordingly integer orders γ1, γ2, . . . , γs.
Then in virtue of [5] the following representation takes place

A(x) +B(x) = (x+ ı)−mM(x)
s∏

k=1

(
x− ak

x+ ı

)γk

, (1.11)

where the function M(x) 6= 0 on R, M(x) ∈ H(r)
α .
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Let

r0 = max{γ1, γ2, . . . , γs,m}, γ =
s∑

k=1

γk, χ = −indM(x). (1.12)

Theorem 1.3. Let the functions kj(x) ∈ L, h(x) ∈ L2; the functions Kj(x) ∈ H(r)
α ,

j = 1,m, H(x) ∈ L(r)
2 , r ≥ r0, where the number r0 is defined by the formula (1.12)

and the representations (1.11) take place, where M(x) 6= 0 on R.
If χ + m + γ ≤ 0, where the numbers χ, γ are defined by formulas (1.12), then the
homogeneous equation (1.1) has not less than |χ+m+γ| linear independent solutions;
the heterogeneous equation (1.1) is unconditionally solvable and its general solution
depends upon not less than |χ+m+ γ| arbitrary constants.
If χ+m+γ > 0, then generally speaking the heterogeneous equation (1.1) is unsolvable.
It will be solvable when not less than m+ γ + χ conditions of solvability∫

R

H(x)ψj(x)dx = 0, (1.13)

will be executed. Here H(x) is a right part of the equation (1.6), and ψj(x) are the
linear independent solutions of the homogeneous equation

A(x)ψ(x)− (πi)−1

∫
R

B(t)ψ(t)
t− x

dt+
∫
R

K(t, x)ψ(t)dt = 0,

allied to the equation (1.6), where A(x), B(x),K(x, t) are the coefficients and the
regular kernel of the singular integral equation (1.6).
Proof. According to [5], the index of the equation (1.6) is equal to −(χ + m + γ).
Then due to [4], if χ + m + γ ≤ 0, then the homogeneous equation (1.6) has not
less than |χ+m+γ| linear independent solutions; the heterogeneous equation (1.6) is
unconditionally solvable and its general solution depends upon not less than |χ+m+γ|
arbitrary constants. If χ + m + γ > 0, then due to [4], the heterogeneous equation
(1.6) is unsolvable. It will be solvable, when not less than m + γ + χ conditions of
solvability (1.13) will be executed. As the equations (1.1) and (1.6) are equivalent,
then the theorem is proved.
Theorem 1.4. Let the functions kj(x) ∈ L, h(x) ∈ L2; the functions Kj(x) ∈ H(r)

α ,
j = 1,m, H(x) ∈ L(r)

2 , r ≥ r0, where the number r0 is defined by the formula (1.12),
the representations (1.11) take place, where M(x) 6= 0 on R, and the equation (1.1)
is solvable. Then its solutions belong to the space L2[−r −m+ r0; 0], r ≥ r0.
Proof. According to [5], the solutions of the equation (1.6) ρ(x) ∈ L(r−r0)

2 , r ≥ r0.
Then in virtue of the representations (1.5) and the properties of the Cauchy type
integral the limit values Φ+(x) on R of the function Φ+(z) belong to the space L(r−r0)

2 .
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From the properties of Fourier transformation [2] we obtain that the solutions of the
equation (1.1) belong to the space L2[−r − m + r0; 0], r ≥ r0, and the theorem is
proved.

If the function Am + Km(x) goes to zero on the real axis R in the points
a1, a2, . . . , as with accordingly fractional orders γ1, γ2, . . . , γs, then the representation
(1.11) where M(x) 6= 0 at R and M(x) ∈ H(r)

α is also fulfilled. But for the numbers
γk, k = 1, s the following representation takes place:

γk = [γk] + {γk}, k = 0, s.

There [a] means the integer part, and {a} - the fractional part of the number a.
So here we will note

r0 = max{α1
′, ..., αs

′,m}, α =
s∑

k=1

αk
′, κ = −indM(x), (1.14)

αk
′ =

{
[γk], 0 < {γk} < 1

2

[γk] + 1, 1
2 < {γk} < 1, k = 0, s.

(1.15)

With such assumption the following theorem takes place.
Theorem 1.5. Let the functions kj(x) ∈ L, j = 1,m, h(x) ∈ L2 and the functions
Kj(x) ∈ H

(r)
α , j = 1,m, 0 < α 6 1, H(x) ∈ L

(r)
2 , r ≥ r0, where the number r0 is

defined by (1.14), (1.15) and the representation (1.11) takes place, where M(x) 6= 0
on R.
If χ + m + α ≤ 0, where the numbers χ, α are defined by formulas (1.14), then the
homogeneous equation (1.1) has not less than |χ+m+α| linear independent solutions;
the heterogeneous equation (1.1) is unconditionally solvable and its general solution
depends upon not less than |χ+m+ α| arbitrary constants.
If χ+m+α > 0, then generally speaking the heterogeneous equation (1.1) is unsolvable.
It will be a solvable one when not less than m+α+ χ conditions of solvability (1.13)
will be executed.
Proof. According to [5], [7] the index of the equation (1.6) is equal to −(χ+m+ α).
Then due to [4], if χ+m+ α ≤ 0, then the homogeneous equation (1.6) has not less
than |χ + m + α| linear independent solutions; the heterogeneous equation (1.6) is
unconditionally solvable and its general solution depends upon not less than |χ+m+α|
arbitrary constants. If χ + m + α > 0, then due to [4], the heterogeneous equation
(1.6) is unsolvable. It will be solvable, when not less than m + α + χ conditions of
solvability (1.13) will be executed. As the equations (1.1) and (1.6) are equivalent,
then the theorem is proved.
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Theorem 1.6. Let the functions kj(x) ∈ L, h(x) ∈ L2; the functions Kj(x) ∈ H(r)
α ,

j = 1,m, H(x) ∈ L(r)
2 , r ≥ r0, where the number r0 is defined by the formula (1.14),

the representations (1.11) take place, where M(x) 6= 0 on R, and the equation (1.1)
is solvable. Then its solutions belong to the space L2[−r −m+ r0; 0], r ≥ r0.

The proof of the Theorem 1.6 coincides with the proof of the theorem 3.
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ANALYSIS OF A BILATERAL CONTACT PROBLEM WITH
ADHESION AND FRICTION FOR ELASTIC MATERIALS

AREZKI TOUZALINE

Abstract. We consider a mathematical model which describes a contact

problem between a deformable body and a foundation. The contact is

bilateral and is modelled with Tresca’s friction law in which adhesion is

taken into account. The evolution of the bonding field is discribed by a

first order differential equation and the material’s behavior is modelled

with a nonlinear elastic constitutive law. We derive a variational formu-

lation of the mechanical problem and prove the existence and uniqueness

result of the weak solution. Moreover, we prove that the solution of the

contact problem can be obtained as the limit of the solution of a regular-

ized problem as the regularizaton parameter converges to 0. The proof is

based on arguments of time-dependent variational inequalities, differential

equations and Banach fixed point theorem.

1. Introduction

Contact problems involving deformable bodies are quite frequent in indus-
try as well as in daily life and play an important role in structural and mechanical
systems. Because of the importance of this process a considerable effort has been
made in its modelling and numerical simulations. A first study of frictional contact
problems within the framework of variational inequalities was made in [5]. Recently
a new book [18] was appeared such that the aim is to introduce the reader of the
theory of variational inequalities with analysis to the study of contact mechanics,
and, specifically, with study of antiplane contact problems with linearly elastic and
viscoelastic materials. The mathematical, mechanical and numerical state of the art
can be found in [15]. The frictional contact problem with normal compliance and
adhesion for elastic materials was studied in [11]. In this paper we study a model of
an elastic contact problem with Tresca’s friction law in which adhesion into contact
surfaces was taken into account. We recall that models for dynamic or quasistatic
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process of frictionless adhesive contact between a deformable body and a foundation
have been studied in [2, 3, 15, 16]. In [1] the unilateral quasistatic contact problem
with friction and adhesion was studied and an existence result for a friction coefficient
small enough was established. As in [7, 8] we use the bonding field as an additional
state variable β, defined on the contact surface of the boundary. The variable is re-
stricted to values 0 ≤ β ≤ 1, when β = 0 all the bonds are severed and there are
no active bonds; when β = 1 all the bonds are active; when 0 < β < 1 it measures
the fraction of active bonds and partial adhesion takes place. We refer the reader
to the extensive bibliography on the subject in [9, 12, 13, 14, 15, 16, 17] . In this work
we derive a variational formulation of the mechanical problem for which we prove
the existence of a unique weak solution, and obtain a partial regularity result for the
solution. Moreover, we study the behavior of the solution of a regularized problem as
the regularization parameter converges to 0.

The paper is structured as follows. In Section 2 we present some notations and give
the variational formulation. In Section 3 we state and prove our main existence and
uniqueness result, Theorem 2.1. Finally, in Section 4, we show that the regularized
problem admits a unique solution, Theorem 4.1, and prove a convergence result of
this problem, Theorem 4.2.

2. Problem statement and variational formulation

Let Ω ⊂ Rd; (d = 2, 3), be the domain occupied by a nonlinear elastic elastic
body. Ω is supposed to be open, bounded, with a sufficiently regular boundary Γ. Γ is
partitioned into three measurable parts Γ = Γ̄1 ∪ Γ̄2 ∪ Γ̄3 where Γ1,Γ2,Γ3 are disjoint
open sets and meas Γ1 > 0. The body is acted upon by a volume force of density ϕ1

on Ω and a surface traction of density ϕ2 on Γ2. On Γ3 the body is in bilateral and
adhesive contact with Tresca’s friction law with a foundation.
Thus, the classical formulation of the mechanical problem is written as follows.
Problem P1. Find a displacement field u : Ω × [0, T ] → Rd and a bonding field
β : Γ3 × [0, T ] → [0, 1] such that

divσ + ϕ1 = 0 in Ω× (0, T ) , (2.1)

σ = Fε (u) in Ω× (0, T ) , (2.2)

u = 0 on Γ1 × (0, T ) , (2.3)

σν = ϕ2 on Γ2 × (0, T ) , (2.4)
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uν = 0

∣∣στ + cτβ2Rτ (uτ )
∣∣ ≤ g

∣∣στ + cτβ2Rτ (uτ )
∣∣ < g =⇒ uτ = 0

∣∣στ + cτβ2Rτ (uτ )
∣∣ = g =⇒

∃λ ≥ 0 s.t. uτ = −λ
(
στ + cτβ2Rτ (uτ )

)



on Γ3 × (0, T ) , (2.5)

β̇ = −(cτβ |Rτ (uτ )|2 − εa)+ on Γ3 × (0, T ) , (2.6)

β (0) = β0 on Γ3. (2.7)

We denote by u the displacement field, σ the stress field and ε (u) the strain
tensor. Equation (2.1) represents the equilibrium equation. Equation (2.2) represents
the elastic constitutive law of the material in which F is a given nonlinear function.
Here and below a dot above a variable represents a time derivative. We recall that in
linear elasticity the stress tensor σ = (σij) is given by

σij = aijkhεkh (u) ,

where F = (aijkh) is the linear elasticity tensor, for i, j, k, h = 1, ..., d; (2.3) and
(2.4) are the displacement and traction boundary conditions, respectively, in which
ν denotes the unit outward normal vector on Γ and σν represents the Cauchy stress
vector. Condition (2.5) represents the bilateral contact with Tresca’s friction law in
which adhesion is taken into account. Here g is a friction bound and the parameters
cτ and εa are adhesion coefficients which may depend on x ∈ Γ3. As in [17], Rτ is a
truncation operator defined by

Rτ (v) =


v if |v| ≤ L

L
v

|v|
if |v| > L

,

where L > 0 is a characteristic length of the bonds. Equation (2.6) represents the
ordinary differential equation which describes the evolution of the bonding field and
it was already used in [17] where [s]+ = max (s, 0) ∀s ∈ R. Since β̇ ≤ 0 on Γ3×(0, T ),
once debonding occurs, bonding cannot be reestablished. Also we wish to make it
clear that from [11] it follows that the model does not allow for complete debonding
field in finite time. Finally, (2.7) represents the initial bonding field. We recall that

199



AREZKI TOUZALINE

the inner products and the corresponding norms on Rd and Sd are given by

u.v = uivi, |v| = (v.v)
1
2 ∀u, v ∈ Rd,

σ.τ = σijτij , |τ | = (τ.τ)
1
2 ∀σ, τ ∈ Sd,

where Sd is the space of second order symmetric tensors on Rd (d = 2, 3). Here and
below, the indices i and j run between 1 and d and the summation convention over
repeated indices is adopted. Now, to proceed with the variational formulation, we
need the following function spaces:

H =
(
L2 (Ω)

)d , H1 =
(
H1 (Ω)

)d , Q =
{
τ = (τij) ; τij = τji ∈ L2 (Ω)

}
,

Q1 = {σ ∈ Q; divσ ∈ H} .

Note that H and Q are real Hilbert spaces endowed with the respective canonical
inner products

〈u, v〉H =
∫

Ω

uividx, 〈σ, τ〉Q =
∫

Ω

σijτijdx.

The strain tensor is

ε (u) = (εij (u)) =
1
2

(ui,j + uj,i) ;

divσ = (σij,j) is the divergence of σ. For every element v ∈ H1 we denote by vν and
vτ the normal and the tangential components of v on the boundary Γ given by

vν = v.ν, vτ = v − vνν.

Similarly, for a regular function σ ∈ Q1, we define its normal and tangential compo-
nents by

σν = (σν) .ν, στ = σν − σνν

and we recall that the following Green’s formula holds:

〈σ, ε (v)〉Q + 〈divσ, v〉H =
∫

Γ

σν.vda ∀v ∈ H1,

where da is the surface measure element. Let V be the closed subspace of H1 defined
by

V = {v ∈ H1 : v = 0 on Γ1, vν = 0 on Γ3 } .

Since meas Γ1 > 0, the following Korn’s inequality holds [5],

‖ε (v)‖Q ≥ cΩ ‖v‖H1
∀v ∈ V, (2.8)

where the constant cΩ > 0 depends only on Ω and Γ1. We equip V with the inner
product

(u, v)V = 〈ε (u) , ε (v)〉Q
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and ‖.‖V is the associated norm. It follows from Korn’s inequality (2.8) that the
norms ‖.‖H1

and ‖.‖V are equivalent on V. Then (V, ‖.‖V ) is a real Hilbert space.
Moreover by Sobolev’s trace theorem, there exists dΩ > 0 which depends only on the
domain Ω, Γ1 and Γ3 such that

‖v‖(L2(Γ3))
d ≤ dΩ ‖v‖V ∀v ∈ V. (2.9)

For p ∈ [1,∞], we use the standard norm of Lp (0, T ;V ). We also use the Sobolev
space W 1,∞ (0, T ;V ) equipped with the norm

‖v‖W 1,∞(0,T ;V ) = ‖v‖L∞(0,T ;V ) + ‖v̇‖L∞(0,T ;V ) .

For every real Banach space (X, ‖.‖X) and T > 0 we use the notation C ([0, T ] ; X)
for the space of continuous functions from [0, T ] to X; recall that C ([0, T ] ; X) is a
real Banach space with the norm

‖x‖C([0,T ];X) = max
t∈[0,T ]

‖x (t)‖X .

We assume that the body forces and surface tractions have the regularity

ϕ1 ∈ W 1,∞ (0, T ;H) , ϕ2 ∈ W 1,∞
(
0, T ;

(
L2 (Γ2)

)d
)

(2.10)

and we denote by f (t) the element of V defined by

(f (t) , v)V =
∫

Ω

ϕ1 (t) .vdx +
∫

Γ2

ϕ2 (t) .vda ∀v ∈ V , for t ∈ [0, T ] . (2.11)

Using (2.10) and (2.11) yield

f ∈ W 1,∞ (0, T ;V ) .

Also we define the functional j : V → R+ by

j (v) =
∫

Γ3

g |vτ | da,

where g is assumed to satisfy

g ∈ L∞ (Γ3) , g ≥ 0 a.e. on Γ3. (2.12)
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In the study of Problem P1 we assume that the elasticity operator F satisfies

(a) F : Ω× Sd → Sd;

(b) there exists M > 0 such that
|F (x, ε1)− F (x, ε2)| ≤ M |ε1 − ε2| ,
for all ε1, ε2 in Sd, a.e. x in Ω;

(c) there exists m > 0 such that
(F (x, ε1)− F (x, ε2)) . (ε1 − ε2) ≥ m |ε1 − ε2|2 ,

for all ε1, ε2 in Sd, a.e. x in Ω;

(d) the mapping x → F (x, ε) is Lebesgue measurable on Ω,

for any ε in Sd;

(e) x → F (x, 0) ∈ Q.



(2.13)

As in [17] we assume that the adhesion coefficients cτ and εa satisfy the conditions

cτ , εa ∈ L∞ (Γ3) , cτ , εa ≥ 0, a.e.on Γ3. (2.14)

Next, we define the functional r : L2 (Γ3)× V × V → R by

r (β, u, v) =
∫

Γ3

cτβ2Rτ (uτ ) .vτda.

Finally, we assume that the initial data satisfy

β0 ∈ L2 (Γ3) ; 0 ≤ β0 ≤ 1, a.e. on Γ3, (2.15)

and we need the following set for the bonding field,

O =
{
θ : [0, T ] → L2 (Γ3) ; 0 ≤ θ (t) ≤ 1 ∀t ∈ [0, T ] , a.e. on Γ3

}
.

Now by assuming the solution to be sufficiently regular, we obtain by using Green’s
formula that the problem P1 has the following variational formulation.
Problem P2. Find a displacement field u ∈ W 1,∞ (0, T ; Ω) and a bonding field
β ∈ W 1,∞ (

0, T ;L2 (Γ3)
)
∩ O such that

〈Fε (u (t)) , ε (v)− ε(u (t))〉Q + j (v)− j (u (t))

+r (β (t) , u (t) , v − u (t)) ≥ (f (t) , v − u (t))V ∀ v ∈ V , t ∈ [0, T ] ,
(2.16)

β̇ (t) = −(cτβ (t) |Rτ (uτ (t))|2 − εa)+ a.e.t ∈ (0, T ) , (2.17)

β (0) = β0 on Γ3. (2.18)
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Our main result of this section, which will be established in the next is the following
theorem.
Theorem 2.1. Let T > 0 and assume (2.10), (2.12), (2.13), (2.14) and (2.15). Then
there exists a unique solution to Problem P2.

3. Existence and uniqueness result

The proof of Theorem 2.1 will be carried out in several steps. In the first
step, let k > 0 and consider the space

X =

{
β ∈ C

(
[0, T ] ; L2 (Γ3)

)
; sup
t∈[0,T ]

[
exp (−kt) ‖β (t)‖L2(Γ3)

]
< +∞

}
.

X is a Banach space for the norm

‖β‖X = sup
t∈[0,T ]

[
exp (−kt) ‖β (t)‖L2(Γ3)

]
,

which is equivalent for the standard norm ‖.‖C([0,T ];L2(Γ3))
, and for a given β ∈ X we

consider the following variational problem.
Problem P1β . Find uβ : [0, T ] → V such that

〈Fε (uβ (t))), ε (v)− ε(uβ (t))〉Q + j (v)− j (uβ (t))

+r (β (t) , uβ (t) , v − uβ (t)) ≥ (f (t) , v − uβ (t))V ∀ v ∈ V , t ∈ [0, T ] .
(3.1)

Lemma 3.1. There exists a unique solution to Problem P1β and it satisfies uβ ∈
C ([0, T ] ; V ).
Proof. Let t ∈ [0, T ] and let At : V → V be the operator given by

(Atv, w)V = 〈Fε (v) , ε (w)〉Q + r (β (t) , v, w) ∀v, w ∈ V.

Using (2.13) and the properties of Rτ (3.2) (see [15]) such that

|Rτ (uτ )| ≤ L, ∀u ∈ V ; |Rτ (a)−Rτ (b)| ≤ |a− b| , ∀a, b ∈ Rd,

(Rτ (uτ )−Rτ (vτ )) . (uτ − vτ ) ≥ 0, a.e. on Γ3, ∀u, v ∈ V,

(3.2)

it follows that At is a strongly monotone and Lipschitz continuous operator. The
functional j is a continuous semi-norm on V , then by a classical argument of elliptic
variational inequalities [18], we deduce that there exists a unique element uβ (t) ∈ V

which satisfies (3.1). Let now, t1, t2 ∈ [0, T ]. In inequality (3.1) written for t = t1,
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take w = uβ (t2) and also in the same inequality written for t = t2, take w = uβ (t1) .

We find after adding the resulting inequalities that

〈Fε (uβ (t1)))− Fε (uβ (t2)) , ε (uβ (t1))− ε(uβ (t2))〉Q ≤

r (β (t1) , uβ (t1) , uβ (t2)− uβ (t1)) + r (β (t2) , uβ (t2) , uβ (t1)− uβ (t2)) .

(3.3)

We have

r (β (t1) , uβ (t1) , uβ (t2)− uβ (t1)) + r (β (t2) , uβ (t2) , uβ (t1)− uβ (t2)) =

∫
Γ3

(cτβ2 (t1)− β2 (t2))Rτ (uτ (t1)) . (uβτ (t2)− uβτ (t1)) da

+
∫
Γ3

cτβ2 (t2) (Rτ (uτ (t2))−Rτ (uτ (t1))) . (uβτ (t1)− uβτ (t2)) da.

Using (3.2), (2.13) (c) and, (2.9) , it follows that exists a constant c1 > 0 such that

‖uβ (t1)− uβ (t2)‖V ≤

c1

(
‖f (t1)− f (t2)‖V + ‖β (t1)− β (t2)‖L2(Γ3)

)
.

(3.4)

As f ∈ C ([0, T ] ; V ) and β ∈ C
(
[0, T ] ; L2 (Γ3)

)
, then (3.4) implies that uβ ∈

C ([0, T ] ; V ) . �

Next, we consider the following problem.
Problem P2β . Find a bonding field β∗ : [0, T ] → L2 (Γ3) such that

β̇∗ (t) = −
(
cτβ∗ (t) |Rτ (uβ∗τ (t))|2 − εa

)
+

a.e. t ∈ (0, T ) , (3.5)

β∗ (0) = β0 on Γ3. (3.6)

We have the following result.
Lemma 3.2. There exists a unique solution to Problem P2β and it satisfies

β∗ ∈ W 1,∞ (
0, T ;L2 (Γ3)

)
∩ O.

Proof. We consider the mapping T : X → X given by

T β (t) = β0 −
∫ t

0

(cτβ (s) |Rτ (uβτ (s))|2 − εa)+ds,

where uβ is a solution of Problem P1β . Using that |Rτ (uβτ )| ≤ L, it follows that
there exists a constant c2 > 0 such that

‖T β1 (t)− T β2 (t)‖L2(Γ3)
≤ c2

∫ t

0
‖β1 (s)− β2 (s)‖L2(Γ3)

ds.
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Since ∫ t

0
‖β1 (s)− β2 (s)‖L2(Γ3)

ds =
∫ t

0
eks(e−ks ‖β1 (s)− β2 (s)‖L2(Γ3)

)ds

≤ ‖β1 − β2‖X

ekt

k
,

this inequality implies

e−kt ‖T β1 (t)− T β2 (t)‖L2(Γ3)
≤ c2

k
‖β1 − β2‖X ∀t ∈ [0, T ] ,

and then,

‖T β1 − T β2‖X ≤ c2

k
‖β1 − β2‖X . (3.7)

The inequality (3.7) shows that for k > c2, T is a contraction. Then we deduce, by
the Banach fixed point theorem that T has a unique fixed point β∗ which satisfies
(3.5) and (3.6). The regularity β∗ ∈ O is a consequence of (3.6) and (2.15), see [15,
16] for details. �

Now, we provide the existence of the solution of Theorem 2.1. Indeed, let β∗ be the
fixed point of T and let u∗ be the solution of Problem P1β for β = β∗, i-e., u∗ = uβ∗ .
Take v = u∗ (t2) in inequality (3.1) written for t = t1, and also take v = u∗ (t1) in the
same inequality written for t = t2 and adding the two inequalities, we obtain using
similar arguments to those in the proof of (3.4), that there exists a constant c3 > 0
such that

‖u∗ (t1)− u∗ (t2)‖V ≤

c3

(
‖β∗ (t1)− β∗ (t2)‖L2(Γ3)

+ ‖f (t1)− f (t2)‖V

)
∀t1, t2 ∈ [0, T ] .

(3.8)
Now, as Tβ∗ = β∗ we deduce from Lemma 3.2 that β∗ ∈ W 1,∞ (

0, T ;L2 (Γ3)
)

and
moreover as f ∈ W 1,∞ (0, T ;V ), then (3.8) implies that u∗ ∈ W 1,∞ (0, T ;V ). Thus,
we conclude by (3.1) , (3.5) and (3.6) that (u∗, β∗) is a solution to Problem P2. To
prove the uniqueness of the solution, suppose that (u, β) is a solution of Problem P2

which satisfies

(u, β) ∈ W 1,∞ (0, T ;V )×W 1,∞ (
0, T ;L2 (Γ3)

)
∩ O,

it follows that β ∈ O. Moreover, we deduce from (3.1) that u is a solution to Problem
P1β , and as by Lemma 3.1, this problem has a unique solution denoted by uβ , we get
u = uβ . Take u = uβ in (2.16) and use the initial condition (2.18), we deduce that β

is a solution of Problem P2β . Therefore, we obtain from Lemma 3.2 that β = β∗ and
we deduce that (u∗, β∗) is a unique solution to Problem P2. �
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4. The regularized problem

In this section we consider the frictional contact problem with adhesion in
the case when the contact condition (2.5) is replaced by the contact conditions

uδν = 0, σδτ = −cτβ2
δRτ (uδτ )− g

uδτ√
u2

δτ + δ2
, on Γ3 × (0, T ) , (4.1)

where δ > 0 is a regularization parameter. The friction law (4.1) describes situation
when slip appears for a small shear, this is the case when the contact surfaces are
lubricated by a thin layer or non-Newtonian fluid. Thus the regularized problem is
defined as follows.
Problem P1δ. Find a displacement field uδ : Ω × [0, T ] → Rd and a bonding field
βδ : Γ3 × [0, T ] → [0, 1] such that

divσ (uδ) + ϕ1 = 0 in Ω× (0, T ) , (4.2)

σ = Fε (uδ) in Ω× (0, T ) , (4.3)

uδ = 0 on Γ1 × (0, T ) , (4.4)

σν = ϕ2 on Γ2 × (0, T ) , (4.5)

uδν = 0, σδτ = −cτβ2
δRτ (uδτ )− g

uδτ√
u2

δτ + δ2

}
on Γ3 × (0, T ) , (4.6)

β̇δ = −(cτβδ |Rτ (uδτ )|2 − εa)+ on Γ3 × (0, T ) , (4.7)

βδ (0) = β0 on Γ3. (4.8)

As in [18] let us define the functional jδ : V → R by

jδ (v) =
∫

Γ3

g
(√

v2
τ + δ2 − δ

)
da,

then the problem (4.2)− (4.8) admits the following variational formulation.
Problem P2δ. Find (uδ, βδ) ∈ W 1,∞(0, T ;V )×W 1,∞ (

0, T ;L2 (Γ3))
)
∩ O such that

〈Fε (uδ (t)) , ε (v)− ε (uδ (t))〉Q + jδ (v)− jδ (uδ (t))

+r (βδ (t) , uδ (t) , v − uδ (t)) ≥ (f (t) , v − uδ (t))V ∀v ∈ V , t ∈ [0, T ] ,
(4.9)

β̇δ (t) = −(cτβδ (t) |Rτ (uδτ (t))|2 − εa)+ a.e. on (0, T ) , (4.10)

βδ (0) = β0 on Γ3. (4.11)

Now, our main is to study the behavior of the solution as δ → 0 and to prove
that in the limit we obtain the solution of Problem P2.
Theorem 4.1. Assume that (2.10), (2.12), (2.13), (2.14) and (2.15) hold. Then for
each δ > 0, there exists a unique solution to Problem P2δ.
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Proof. The proof of Theorem 4.1 is similar to the proof of Theorem 2.1 and it is
carried out in several steps. For this reason, we omit the details of the proof. The
steps are:
(i) For any β ∈ X we prove that there exists a unique uδ ∈ C ([0, T ] ; V ) such that

〈Fε (uδ (t)) , ε (v)− ε(uδ (t))〉Q + jδ(v)− jδ(uδ (t))

+r (β (t) , uδ (t) , v − uδ (t)) ≥ (f (t) , v − uδ (t))V ∀v ∈ V , t ∈ [0, T ] .
(4.12)

Indeed as the functional jδ is proper convex and lower semicontinous on V, (see [18]),
then using similar arguments to those in the proof of Lemma 3.1, we deduce (i).
(ii) There exists a unique βδ such that

βδ ∈ W 1,∞ (
0, T ;L2 (Γ3)

)
∩ O, (4.13)

β̇δ (t) = −(cτβδ (t) |Rτ (uδτ (t))|2 − εa)+ a.e. t ∈ (0, T ) , (4.14)

βδ (0) = β0. (4.15)

The proof of this step is based on Lemma 3.2.
(iii) Let βδ defined in (ii) and denote again by uδ the function obtained in step (i)
for β = βδ. Then, using (4.12)− (4.15) we see that (uδ, βδ) is the unique solution to
Problem P2δ and it satisfies

(uδ, βδ) ∈ W 1,∞ (0, T ;V )×W 1,∞ (
0, T ;L2 (Γ3)

)
∩ O.

We now study the convergence of the solution (uδ, βδ) as δ → 0.
Theorem 4.2. Assume that (2.10), (2.12), (2.13), (2.14) and (2.15) hold. Then we
have the following convergences:

lim
δ→0

‖uδ (t)− u (t)‖V = 0, for all t ∈ [0, T ] , (4.16)

lim
δ→0

‖βδ (t)− β (t)‖L2(Γ3)
= 0, for all t ∈ [0, T ] . (4.17)

The proof is carried out in several steps. In the first step, we show the following
lemma.
Lemma 4.3. For each t ∈ [0, T ], there exists ū (t) ∈ V such that after passing to a
subsequence still denoted (uδ (t)) we have

uδ (t) → ū (t) weakly in V as δ → 0. (4.18)

Proof. It is well known (see [18] ) that the inequality (4.9) is equivalent to the equality

〈Fε (uδ (t)) , ε (v)〉Q + (∇jδ (uδ (t)) , v)L2(Γ3)

+r (βδ (t) , uδ (t) , v) = (f (t) , v)V ∀v ∈ V , t ∈ [0, T ] ,
(4.19)
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where

(∇jδ (uδ (t)) , v)L2(Γ3)
=

∫
Γ3

g
uδτ (t) vτ√
uδτ (t)2 + δ2

da.

Take v = uδ (t) in (4.19), as

(∇jδ (uδ (t)) , (uδ (t)))L2(Γ3)
≥ 0, r (βδ (t) , uδ (t) , uδ (t)) ≥ 0,

then we get from (4.19) that

〈Fε (uδ (t)) , ε (uδ (t))〉Q ≤ (f (t) , uδ (t))V

and keeping, in mind (2.13) (c), it follows that there exists a constant C > 0 such that

‖uδ (t)‖V ≤ C
(
‖f (t)‖V + ‖F (0)‖Q

)
.

The sequence (uδ (t)) is bounded in V , then there exists ū (t) ∈ V and a subsequence
again denoted (uδ (t)) such that (4.18) holds. Let us now consider the auxiliary
problem.
Problem Pa. Find β : [0, T ] → L2 (Γ3) , such that

β̇ (t) = − (cτβ (t)) |Rτ (ūτ (t))|2 − εa)+, a.e. t ∈ (0, T ) ,

β (0) = β0.

Using similar arguments to those in the proof of Lemma 3.2, we have the following
result.
Lemma 4.4. Problem Pa has a unique solution which satisfies

β ∈ W 1,∞ (
0, T ;L2 (Γ3)

)
∩ O.

Next, we have the convergence result.
Lemma 4.5. Let β be the solution to Problem Pa, then we have

lim
δ→0

‖βδ (t)− β (t)‖L2(Γ3)
= 0, for all t ∈ [0, T ] . (4.20)

Proof. Using the properties of the operator Rτ , (see [15] ), it follows that there exists
a constant C1 > 0 such that

‖βδ (t)− β (t)‖L2(Γ3)
≤ C1

∫ t

0

‖uδτ (s)− ūτ (s)‖(L2(Γ3))
d ds. (4.21)

From (4.18) we deduce that uδτ (t) → ūτ (t) strongly in
(
L2 (Γ3)

)d, as δ → 0. On the
other hand using (2.9), we have

‖uδτ (t)− ūτ (t)‖(L2(Γ3))
d ≤ dΩ ‖uδ (t)− ū (t)‖V

≤ dΩ (‖f (t)‖V + ‖ū (t)‖V ) ,
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which implies that there exists a constant C2 > 0 such that

‖uδτ (t)− ūτ (t)‖(L2(Γ3))
d ≤ C2.

Then it follows from Lebesgue convergence theorem that

lim
δ→0

∫ t

0

‖uδτ (s)− ūτ (s)‖(L2(Γ3))
d ds = 0.

So we deduce from (4.21) that

‖βδ (t)− β (t)‖L2(Γ3)
→ 0 as δ → 0, for all t ∈ [0, T ] ,

and so (4.20) is proved.
Now it is necessary to show the following result.
Lemma 4.6. We have ū (t) = u (t) for all t ∈ [0, T ] .
Proof. Let t ∈ [0, T ]. We have (see [18] ),

|jδ(v)− j (v)| ≤ δ ‖g‖L∞(Γ3)
meas Γ3,

|jδ(uδ (t))− j (ū (t))| ≤ δ ‖g‖L∞(Γ3)
meas Γ3

+ ‖g‖L∞(Γ3)
‖uδτ (t)− ūτ (t)‖(L2(Γ3))

d .

(4.22)

It follows from (4.22), as δ → 0, that

jδ (v) → j (v) , for all v ∈ V, (4.23)

and

jδ (uδ (t)) → j (ū (t)) . (4.24)

On the other hand we have

r (βδ (t) , uδ (t) , v − uδ (t))

= r (βδ (t) , uδ (t) , v − uδ (t))− r (β (t) , uδ (t) , v − uδ (t))

+r (β (t) , uδ (t) , v − uδ (t))− r (β (t) , ū (t) , v − uδ (t))

+r (β (t) , ū (t) , ū (t)− uδ (t)) + r (β (t) , ū (t) , v − ū (t)) .

(4.25)
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Using that 0 ≤ β (t) ≤ 1, 0 ≤ βδ (t) ≤ 1, for all t ∈ [0, T ], and the properties of the
operator Rτ , we have as δ → 0,

r (βδ (t) , uδ (t) , v − uδ (t))− r (β (t) , uδ (t) , v − uδ (t)) → 0,

r (β (t) , uδ (t) , v − uδ (t))− r (β (t) , ū (t) , v − uδ (t)) → 0,

r (β (t) , ū (t) , ū (t)− uδ (t)) → 0.

(4.26)

So, we deduce from (4.25) and (4.26) that

r (βδ (t) , uδ (t) , v − uδ (t)) → r (β (t) , ū (t) , v − ū (t)) , as δ → 0. (4.27)

Therefore, using (4.23), (4.24), (4.27), and passing to the limit in (4.9) as δ → 0, we
obtain

〈Fε(ū (t)), ε (v)− ε(ū (t))〉Q + j (v)− j (ū (t))

+r (β (t) , ū (t) , v − ū (t)) ≥ (f (t) , v − ū (t))V ∀v ∈ V .
(4.28)

Take now v = u (t) in (4.28) and v = ū (t) in (2.16) and add them up, we obtain using
(2.13) (c) that

m ‖ū (t)− u (t)‖2V ≤ r (β (t) , ū (t) , u (t)− ū (t))+ r (β (t) , u (t) , ū (t)− u (t)) . (4.29)

So as

r (β (t) , ū (t) , u (t)− ū (t)) + r (β (t) , u (t) , ū (t)− u (t)) ≤ 0,

it follows from (4.29) that

ū (t) = u (t) . (4.30)

We have now all the ingredients to prove Theorem 4.2. Indeed, from (4.20) and
(4.30), we deduce immediatly (4.17) . To prove (4.16), take v = u (t) in (4.28) , and
using (2.13) (c), it follows

m ‖uδ (t)− u (t)‖2V ≤

jδ(u (t))− jδ(uδ (t)) + r (βδ (t) , uδ (t) , u (t)− uδ (t))

+ 〈Fε (u (t)) , ε (u (t)− uδ (t))〉Q + (f (t) , uδ (t)− u (t))V .

(4.31)
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Passing to the limit as δ → 0 in the previous inequality and using the convergences

jδ(u (t))− jδ(uδ (t)) → 0,

r (βδ (t) , uδ (t) , u (t)− uδ (t)) → 0,

〈Fε (u (t)) , ε (u (t)− uδ (t))〉Q + (f (t) , uδ (t)− u (t))V → 0,

we see immediately that (4.16) follows from (4.31) .
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SUBCLASSES OF HARMONIC FUNCTIONS BASED
ON GENERALIZED DERIVATIVE OPERATOR

KALIYAPAN VIJAYA AND KALIYAPAN UMA

Abstract. Making use of Salagean and Ruscheweyh derivative operator

we introduced a new class of complex-valued harmonic functions which

are orientation preserving, univalent and starlike functions. We investigate

the coefficient bounds, distortion inequalities, extreme points and inclusion

results for the generalized class of functions.

1. Introduction

A continuous function f = u+ iv is a complex-valued harmonic function in a
complex domain Ω if both u and v are real and harmonic in Ω. In any simply connected
domain D ⊂ Ω we can write f = h+ g where h and g are analytic in D. We call h the
analytic part and g the co-analytic part of f. A necessary and sufficient condition for
f to be locally univalent and orientation preserving in D is that |h′(z)| > |g′(z)| in D
(see [1]).

Denote by H the family of functions

f = h+ g (1.1)

which are harmonic univalent and orientation preserving in the open unit disc U =
{z : |z| < 1} so that f is normalized by f(0) = h(0) = fz(0) − 1 = 0. Thus,
for f = h + g ∈ H, we may express the analytic functions h and g in the forms

h(z) = z +
∞∑

n=2
anz

n and g(z) =
∞∑

n=1
bnz

n, (0 ≤ b1 < 1). Then

f(z) = z +
∞∑

n=2

anz
n +

∞∑
n=1

bnzn, |b1| < 1. (1.2)

We note that the family H of orientation preserving, normalized harmonic
univalent functions reduces to the well known class S of normalized univalent functions
if the co-analytic part of f = h+ g is identically zero that is g ≡ 0. Due to Silverman

Received by the editors: 16.02.2009.
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[6] we denote H the subclass of H consisting of functions of the form f = h+ g given
by

f(z) = z −
∞∑

n=2

anz
n +

∞∑
n=1

bnz
n, |b1| < 1, an, bn ≥ 0. (1.3)

In 1999 Jahangiri [2] introduced a subclass of H called the class of harmonic starlike
functions of order α denoted by SH(α) which consist of functions of the form (1.1)
and satisfying the inequality:

∂

∂θ
(arg(f(z)) > α (1.4)

Equivalently

Re

{
zh′(z)− zg′(z)
h(z) + g(z)

}
≥ α (1.5)

where z ∈ U .
Given two functions φ(z) = z +

∞∑
n=2

φnz
n and ψ(z) = z +

∞∑
n=2

ψnz
n in S

their Hadamard product or convolution is defined by (φ ∗ ψ)(z) = φ(z) ∗ ψ(z) =

z +
∞∑

n=2
φnψnz

n. Using the convolution, Ruscheweyh [5] introduced the derivative

operator

Dmφ(z) :=
z

(1− z)m−1
= z +

∞∑
n=2

(
m+ n− 1
n− 1

)
φnz

n, (z ∈ U, m > −1). (1.6)

Recently in [4] Jahangiri and etal. defined the Ruscheweyh derivative for harmonic
functions, as given below

Dmf(z) := z +
∞∑

n=2

(
m+ n− 1
n− 1

)
anz

n +
∞∑

n=1

(
m+ n− 1
n− 1

)
bnzn, (1.7)

which was initially studied for the class of harmonic starlike functions SH(α) in [4].
Further motivated by the works of Jahangiri et. al. [3] we define a new generalized
derivative operator on harmonic function f = h+ g in H as

Dm
k f(z) = Dm

k h(z) + (−1)kDm
k g(z), m > −1, and k ≥ 0 (1.8)

where

Dm
k h(z) = z +

∞∑
n=2

nkC(n,m)anz
n, Dm

k g(z) =
∞∑

n=1

nkC(n,m)bnzn,

and

C(n,m) =

(
n+m− 1
n− 1

)
.

214



SUBCLASSES OF HARMONIC FUNCTIONS BASED ON GENERALIZED DERIVATIVE OPERATOR

For 0 ≤ α < 1, we let HRm
k (λ, α) a subclass of H of the form f = h+ g given

by (1.2) and satisfying the analytic criteria

Re
{

z(Dm
k f(z))′

(1− λ)Dm
k f(z) + λz(Dm

k f(z))′

}
≥ α (1.9)

where 0 ≤ λ < 1, Dm
k f is given by (1.8) and z ∈ U. We also let HRm

k (λ, α) =
HRm

k (λ, α) ∩H.
We investigate the coefficient bounds,distortion inequalities, extreme points

and inclusion results for the generalized class HRm

k (λ, α)

The Class HRm
k (λ, α)

In our first theorem, we obtain a sufficient coefficient condition for harmonic
functions in HRm

k (λ, α).

Theorem 1.1. Let f = h+ g be given by (1.2). If
∞∑

n=1

nkC(n,m) [(n− α− αλ(n− 1))|an|+ (n+ α− αλ(n+ 1))|bn|] ≤ 2(1− α),

(1.10)
where a1 = 1 and 0 ≤ α < 1, then f ∈ HRm

k (λ, α).

Proof. We first show that if (1.10) holds for the coefficients of f = h+g, the required
condition (1.9) is satisfied. From (1.9) we can write

Re

{
z(Dm

k h(z))
′ − z(Dm

k g(z))′

(1− λ)(Dm
k h(z) +Dm

k g(z)) + λ(z(Dm
k h(z))′ − z(Dm

k g(z))′)

}
≥ α

= Re
A(z)
B(z)

≥ α,

where

A(z) = z(Dm
k h(z))

′ − z(Dm
k g(z))′

= z +
∞∑

n=2

nkC(n,m)anz
n −

∞∑
n=1

nkC(n,m)bnzn

and B(z) = (1− λ)(Dm
k h(z) +Dm

k g(z)) + λ(z(Dm
k h(z))

′ − z(Dm
k g(z))′ )

= z +
∞∑

n=2

nkC(n,m)(1− λ+ nλ)anz
n +

∞∑
n=1

nkC(n,m)(1− λ− nλ)bnzn.

Using the fact that Re {w} ≥ α if and only if |1− α+w| ≥ |1 + α−w|, it suffices to
show that

|A(z) + (1− α)B(z)| − |A(z)− (1 + α)B(z)| ≥ 0. (1.11)
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Substituting for A(z) and B(z) in (1.11), we get

|A(z) + (1− α)B(z)| − |A(z)− (1 + α)B(z)|

=| (2− α)z +
∞∑

n=2

nkC(n,m)[(n+ 1− α)(1− λ+ nλ)]anz
n

−
∞∑

n=1

nkC(n,m)[n− (1− α)(1− λ+ nλ)]bn zn |

− | −αz +
∞∑

n=2

nkC(n,m)[n− (1 + α)(1− λ+ nλ)anz
n

−
∞∑

n=1

nkC(n,m)[n+ (1 + α)(1− λ+ nλ)]bnzn |

≥ (2− α)|z| −
∞∑

n=2

nkC(n,m)[n+ (1− α)(1− λ+ nλ)|an||z|n

−
∞∑

n=1

nkC(n,m)[n− (1− α)(1− λ− nλ)]|bn| |z|n

−α|z| −
∞∑

n=2

nkC(n,m)[n− (1 + α)(1− λ+ nλ)]|an| |z|n

−
∞∑

n=1

nkC(n,m)[n+ (1 + α)(1− λ− nλ)]|bn| |z|n

≥ 2(1− α)|z|

{
2−

∞∑
n=1

nkC(n,m)
[
n− α− αλ(n− 1)

1− α
|an|

+
n+ α− αλ(n+ 1)

1− α
|bn|
]
|z|n−1

}

≥ 2(1− α)

{
2−

∞∑
n=1

nkC(n,m)
[
n− α− αλ(n− 1)

1− α
|an|+

n+ α− αλ(n+ 1)
1− α

|bn|
]}

.

The above expression is non negative by (1.10), and so f(z) ∈ HRm
k (λ, α). �

Corollary 1.2. Let f = h+ g be of the form (1.2) and satisfy the condition (1.10).
Then each Di(z), −1 < i ≤ m, is orientation preserving, harmonic univalent and
starlike of order α in U.
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Proof. Observe that nkC(n,m) is an increasing function of n. Therefore, by (1.10)
for each i, −1 < i ≤ m, we can write

∞∑
n=1

[(n− α− αλ(n− 1)]|an|+
∞∑

n=1

[n+ α− αλ(n+ 1)]|bn|ht]

≤
∞∑

n=1

C(n, i)[n− α− αλ(n− 1)]|an|+
∞∑

n=1

[n+ α− αλ(n+ 1)]|bn|

≤
∞∑

n=1

nkC(n,m)[n− α− αλ(n− 1)]|an|+ [n+ α− αλ(n+ 1)]|bn|

≤ 2(1− α).

Thus, by (1.10) each Di(z), −1 < i ≤ m, is orientation preserving, harmonic univalent
and starlike of order α in U.
The harmonic function

f(z) = z +
∞∑

n=2

1− α

nkC(n,m)[n− α− αλ(n− 1)]
xnz

n

+
∞∑

n=1

1− α

nkC(n,m)[n+ α− αλ(n+ 1)]
yn(z)n (1.7)

where
∞∑

n=2
|xn|+

∞∑
n=1

|yn| = 1 shows that the coefficient bound given by (1.10) is sharp.

The functions of the form (1.7) are in HRm
k (λ, α) because

∞∑
n=1

(
nkC(n,m)[n− α− αλ(n− 1)]

1− α
|an|+

nkC(n,m)[n+ α− αλ(n+ 1)]
1− α

|bn|
)

=1 +
∞∑

n=2

|xn|+
∞∑

n=1

|yn| = 2.

�

Next theorem establishes that such coefficient bounds cannot be improved
further.

Theorem 1.3. For a1 = 1 and 0 ≤ α < 1, f = h+ g ∈ HRm
k (λ, α) if and only if

∞∑
n=1

nkC(n,m) {[n− α− αλ(n− 1)]|an|+ [n+ α− αλ(n+ 1)]|bn|} ≤ 2(1−α). (1.8)

Proof. Since HRm

k (λ, α) ⊂ HRm
k (λ, α), we only need to prove the ”only if” part

of the theorem. To this end, for functions f of the form (1.3), we notice that the
condition

Re
{

z(Dm
k f(z))′

(1− λ)Dm
k f(z) + λz(Dm

k f(z))′

}
≥ α.
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Equivalently,

Re

 (1−α)z−
∞∑

n=2
[n−α−αλ(n−1)]nkC(n,m)anzn−

∞∑
n=1

[n+α−αλ(n+1)]nkC(n,m)bnzn

z−
∞∑

n=2
nkC(n,m)(1−λ+nλ)anzn+

∞∑
n=1

nkC(n,m)(1−λ−nλ)bnzn

 ≥ 0.

The above required condition must hold for all values of z in U. Upon choosing
the values of z on the positive real axis where 0 ≤ z = r < 1, we must have

(1−α)−
∞∑

n=2
[n−α−αλ(n−1)]nkC(n,m)anrn−1−

∞∑
n=1

[n+α−αλ(n+1)]nkC(n,m)bnrn−1

1−
∞∑

n=2
nkC(n,m)(1−λ+nλ)anrn−1+

∞∑
n=1

nkC(n,m)(1−λ−nλ)bnrn−1
≥ 0. (1.9)

If the condition (1.8) does not hold, then the numerator in (1.9) is negative
for r sufficiently close to 1. Hence, there exists z0 = r0 in (0,1) for which the quotient
of (1.9) is negative. This contradicts the required condition for f(z) ∈ HRm

k (λ, α).
This completes the proof of the theorem. �

Corollary 1.4. Let f = h + g be given by (1.3). Then Dif(z), −1 < i ≤ m is
orientation preserving, harmonic and starlike of order α, 0 ≤ α < 1, if and only if
the coefficient condition (1.8) holds.

Next we determine the extreme points of closed convex hulls of HRm
k (λ, α)

denoted by clcoHRm
k (λ, α).

Theorem 1.5. A function f(z) ∈ HRm
k (λ, α) if and only if

f(z) =
∞∑

n=1

(Xnhn(z) + Yngn(z)) ,

where

h1(z) = z, hn(z) = z − 1− α

nkC(n,m)[n− α− αλ(n− 1)]
zn; (n ≥ 2),

gn(z) = z +
1− α

nkC(n,m)[+α− αλ(n+ 1)]
zn; (n ≥ 2),

∞∑
n=1

(Xn + Yn) = 1, Xn ≥ 0 and Yn ≥ 0.

In particular, the extreme points of HRm
k (λ, α) are {hn} and {gn}.

Proof. First, we note that for f as in the theorem above, we may write

f(z) =
∞∑

n=1

(Xnhn(z) + Yngn(z))

=
∞∑

n=1

(Xn + Yn)z −
∞∑

n=2

1− α

nkC(n,m)[n− α− αλ(n− 1)]
Xnz

n
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+
∞∑

n=1

1− α

nkC(n,m)[n+ α− αλ(n+ 1)]
Ynz

n = z −
∞∑

n=2

Anz
n +

∞∑
n=1

Bnz
n,

where

An =
1− α

nkC(n,m)[n− α− αλ(n− 1)])
Xn,

and

Bn =
1− α

nkC(n,m)[n+ α− αλ(n+ 1)]
Yn.

Therefore
∞∑

n=2

nkC(n,m)[n− α− αλ(n− 1)]
1− α

An +
∞∑

n=1

nkC(n,m)[n+ α− αλ(n+ 1)]
1− α

Bn

=
∞∑

n=2

Xn +
∞∑

n=1

Yn = 1−X1 ≤ 1,

and hence f(z) ∈ clcoHRm
k (λ, α).

Conversely, suppose that f(z) ∈ clcoHRm
k (λ, α). Setting

Xn =
nkC(n,m)[n− α− αλ(n− 1)]

1− α
An, (n ≥ 2)

and

Yn =
nkC(n,m)[n+ α− αλ(n− 1)]

1− α
Bn, (n ≥ 1)

where
∞∑

n=1
(Xn + Yn) = 1. Then

f(z) = z −
∞∑

n=2

anz
n +

∞∑
n=1

bnz
n, an, bn ≥ 0.

= z −
∞∑

n=2

1− α

nkC(n,m)[n− α− αλ(n− 1)]
Xnz

n

+
∞∑

n=1

1− α

nkC(n,m)[n+ α− αλ(n− 1)]
Ynz

n

= z −
∞∑

n=2

(hn(z)− z)Xn +
∞∑

n=1

(gn(z)− z)Yn

=
∞∑

n=1

(Xnhn(z) + Yngn(z))

as required. �

The following theorem gives the distortion bounds for functions in RH(m,α)
which yields a covering result for the class HRm

k (λ, α).
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Theorem 1.6. Let f ∈ HRm
k (λ, α). Then for |z| = r < 1, we have

(1− b1)r −
1

2kC(2,m)

(
1− α

2− α− αλ
− 1 + α

2− α− αλ
b1

)
r2 ≤ |f(z)|

≤ (1 + b1)r +
1

2kC(2,m)

(
1− α

2− α− αλ
− 1 + α

2− α− αλ
b1

)
r2.

Proof. We only prove the right hand inequality. Taking the absolute value of f(z),
we obtain

|f(z)| =

∣∣∣∣∣z +
∞∑

n=2

anz
n +

∞∑
n=1

bnz
n

∣∣∣∣∣
=

∣∣∣∣∣z + b1 z +
∞∑

n=2

(anz
n + bnz

n)

∣∣∣∣∣
≤ (1 + b1)|z|+

∞∑
n=2

(an + bn)|z|n

≤ (1 + |b1|)r +
∞∑

n=2

(an + bn)rn

≤ (1 + b1)r +
∞∑

n=2

(an + bn)r2

≤ (1 + b1)r +
1− α

2kC(2,m)(2− α− αλ)
∞∑

n=2

(
2kC(2,m)(2− α− αλ)

1− α
an +

2kC(2,m)(2− α− αλ)
1− α

bn

)
r2

≤ (1 + b1)r +
1− α

2kC(2,m)(2− α− αλ)

(
1− 1 + α

1− α
b1

)
r2

≤ (1 + b1)r +
1

2kC(2,m)

(
1− α

2− α− αλ
− 1 + α

2− α− αλ
b1

)
r2.

�

The proof of the left hand inequality follows on lines similar to that of the
right hand side inequality.
The covering result follows from the left hand inequality given in Theorem 1.6.

Corollary 1.7. If f(z) ∈ HRm
k (λ, α). Then{

w : |w| < 2k+1C(2,m)− 1− ((1 + λ)2kC(2,m)− 1)α
2kC(2,m)(2− α− αλ)

−2k+1C(2,m)− 1− ((1 + λ)2kC(2,m)− 1)α
2kC(2,m)(2− α− αλ)

b1

}
⊂ f(U).
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Proof. Using the left hand inequality of Theorem 1.6 and letting r → 1, we prove
that

(1− b1)−
1

2kC(2,m)

(
1− α

2− α− αλ
− 1 + α

2− α− αλ
b1

)
= (1− b1)−

1
2kC(2,m)(2− α− αλ)

[1− α− (1 + α)b1]

=
(1− b1)2kC(2,m)(2− α− αλ)− (1− α) + (1 + α)b1

2kC(2,m)(2− α− αλ)

=
2kC(2,m)(2− α− αλ)− 2kC(2,m)(2− α− αλ)b1 − (1− α) + (1 + α)b1

2kC(2,m)(2− α− αλ)

=
2kC(2,m)(2− α− αλ)− 1 + α− [2kC(2,m)(2− α− αλ)− (1 + α)]b1

2kC(2,m)(2− α− αλ)

=
2k+1C(2,m)− 1− α[(1 + λ)2kC(2,m)− 1]

2kC(2,m)(2− α− αλ)

− [2C(2,m)− 1− α((1 + λ)C(2,m)− 1)]
2kC(2,m)(2− α− αλ)

b1 ⊂ f(U).

�

Now we show that HRm
k (λ, α) is closed under convex combinations of its

member and also closed under the convolution product.

Theorem 1.8. The family HRm
k (λ, α) is closed under convex combinations.

Proof. For i = 1, 2, . . . , suppose that fi ∈ HRm
k (λ, α) where

fi(z) = z −
∞∑

n=2

ai,nz
n +

∞∑
n=2

bi,nz
n.

Then, by Theorem 1.3
∞∑

n=2

nkC(n,m)[n− α− αλ(n− 1)]
(1− α)

ai,n +
∞∑

n=1

nkC(n,m)[n+ α− αλ(n+ 1)]
(1− α)

bi,n ≤ 1.

(1.10)

For
∞∑

i=1

ti, 0 ≤ ti ≤ 1, the convex combination of fi may be written as

∞∑
i=1

tifi(z) = z −
∞∑

n=2

( ∞∑
i=1

tiai,n

)
zn +

∞∑
n=1

( ∞∑
i=1

tibi,n

)
zn.

Using the inequality (1.8), we obtain

∞∑
n=2

nkC(n,m)[n− α− αλ(n− 1)]
(1− α)

( ∞∑
i=1

tiai,n

)
+
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+
∞∑

n=1

nkC(n,m)[n+ α− αλ(n+ 1)]
(1− α)

( ∞∑
i=1

tibi,n

)

=

∞∑
i=1

ti

(
∞∑

n=2

nkC(n, m)[n− α− αλ(n− 1)]

(1− α)
ai,n +

∞∑
n=1

nkC(n, m)[n + α− αλ(n + 1)]

(1− α)
bi,n

)

≤
∞∑

i=1

ti = 1,

and therefore
∞∑

i=1

tifi ∈ HRm
k (λ, α). �

Theorem 1.9. For 0 ≤ β ≤ α < 1, let f(z) ∈ HRm
k (λ, α) and F (z) ∈ HRm

k (λ, β).
Then f(z) ∗ F (z) ∈ HRm

k (λ, α)) ⊂ HRm
k (λ, β).

Proof. Let

f(z) = z −
∞∑

n=2

anz
n +

∞∑
n=1

bnz
n ∈ HRm

k (λ, α)

and

F (z) = z −
∞∑

n=2

Anz
n +

∞∑
n=1

Bnz
n ∈ HRm

k (λ, β).

Then f(z) ∗ F (z) is

f(z) ∗ F (z) = z −
∞∑

n=2

anAnz
n +

∞∑
n=1

bnBnz
n.

For f(z) ∗ F (z) ∈ HRm
k (λ, β) we note that |An| ≤ 1 and |Bn| ≤ 1.

Now by Theorem 1.3 we have
∞∑

n=2

nkC(n,m)[n− β − βλ(n− 1)]
1− β

|an| |An|

+
∞∑

n=1

nkC(n,m)[n+ β − βλ(n+ 1)]
1− β

|bn| |Bn|

≤
∞∑

n=2

nkC(n,m)[n− β − βλ(n− 1)]
1− β

|an|+
∞∑

n=1

nkC(n,m)[n+ β − βλ(n+ 1)]
1− β

|bn|

and since 0 ≤ β ≤ α < 1
∞∑

n=2

nkC(n,m)[n− α− αλ(n− 1)]
1− α

|an|+
∞∑

n=1

nkC(n,m)[n+ α− αλ(n+ 1)]
1− α

|bn| ≤ 1,

by Theorem 1.3 f(z) ∈ HRm
k (λ, α). Therefore

f(z) ∗ F (z) ∈ HRm
k (λ, α) ⊂ HRm

k (λ, β). �
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Concluding remarks. We observe that, if we specialize the parameter
λ = 0, for suitable choice of k = 0 and m = 0 ; m = 0 and k = 0 we obtain the
analogous results for the classes studied in [2, 3] and [4] respectively.
Acknowledgements. The authors would like to thank the referees for their valuable
suggestions. Also wish to record our thanks to Prof. G. Murugusundaramoorthy,
VIT UNIVERSITY, Vellore-632 014 for his suggestions and comments to improve the
results.
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A CLASS OF MULTIVALENT ANALYTIC FUNCTIONS INVOLVING
THE DZIOK-SRIVASTAVA OPERATOR

RI-GUANG XIANG, ZHI-GANG WANG, AND SHAO-MOU YUAN

Abstract. By making use of subordination between analytic functions

and the Dziok-Srivastava operator, we introduce a new subclass of multi-

valent analytic functions. Such results as inclusion relationship, integral

presentations and convolution properties for this function class are proved.

1. Introduction

Let Ap denote the class of functions of the form:

f(z) = zp +
∞∑

n=1

an+pz
n+p (p ∈ N := {1, 2, 3, . . .}), (1.1)

which are analytic in the open unit disk

U := {z : z ∈ C and |z| < 1}.

Let f, g ∈ Ap, where f is given by (1.1) and g is defined by

g(z) = zp +
∞∑

n=1

bn+pz
n+p.

Then the Hadamard product (or convolution) f ∗g of the functions f and g is defined
by

(f ∗ g)(z) := zp +
∞∑

n=1

an+pbn+pz
n+p =: (g ∗ f)(z).

For parameters

αj ∈ C (j = 1, . . . , l) and βj ∈ C \ Z−0 (Z−0 := {0,−1,−2, . . .}; j = 1, . . . ,m),

the generalized hypergeometric function

lFm(α1, . . . , αl;β1, . . . , βm; z)

Received by the editors: 07.04.2009.

2000 Mathematics Subject Classification. 30C45, 33C20.

Key words and phrases. Analytic functions, multivalent functions, subordination between analytic

functions, Hadamard product (or convolution), Dziok-Srivastava operator.
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is defined by the following infinite series:

lFm(α1, . . . , αl;β1, . . . , βm; z) :=
∞∑

n=0

(α1)n · · · (αl)n

(β1)n · · · (βm)n

zn

n!

(l 5 m + 1; l,m ∈ N0 := N ∪ {0}; z ∈ U),

where (λ)n is the Pochhammer symbol defined by

(λ)n :=


1, (n = 0),

λ(λ + 1) · · · (λ + n− 1), (n ∈ N).

Recently, Dziok and Srivastava [1] introduced a linear operator

Hp(α1, . . . , αl;β, . . . , βm) : Ap −→ Ap

defined by the following Hadamard product:

Hp(α1, . . . , αl;β1, . . . , βm)f(z) := [zp
lFm(α1, . . . , αl;β1, . . . , βm)] ∗ f(z) (1.2)

(l 5 m + 1; l,m ∈ N0; z ∈ U).

If f ∈ Ap is given by (1.1), then we have

Hp(α1, . . . , αl;β1, . . . , βm)f(z)= zp+
∞∑

n=1

(α1)n · · · (αl)n

(β1)n · · · (βm)n
an+p

zn+p

n!
(n ∈ N; z ∈ U).

In order to make the notation simple, we write

H l,m
p (αj) := Hp(α1, . . . , αj , . . . , αl; β1, . . . , βm)

(l 5 m + 1; l, m ∈ N0; j ∈ {1, 2, . . . , l}).

It is easily verified from the definition (1.2) that

z
(
H l,m

p (αj)f
)′

(z) = αjH
l,m
p (αj +1)f(z)−(αj−p)H l,m

p (αj)f(z) (f ∈ Ap). (1.3)

Let P denote the class of functions of the form:

p (z) = 1 +
∞∑

n=1

pnzn,

which are analytic and convex in U and satisfy the condition:

<(p (z)) > 0 (z ∈ U).

For two functions f and g, analytic in U, we say that the function f is
subordinate to g in U, and write

f(z) ≺ g(z) or f ≺ g,
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if there exists a Schwarz function ω, which is analytic in U with

ω(0) = 0 and |ω(z)| < 1 (z ∈ U)

such that
f(z) = g

(
ω(z)

)
(z ∈ U).

Throughout this paper, we assume that

p, k ∈ N, l, m ∈ N0, εk = exp
(

2πi

k

)
,

and

f l,m
p,k (αj ; z) =

1
k

k−1∑
ν=0

ε−νp
k

(
H l,m

p (αj)f
)
(εν

kz) = zp + · · · (f ∈ Ap). (1.4)

Clearly, for k = 1, we have

f l,m
p,1 (αj ; z) = H l,m

p (αj)f(z).

In a recent paper, Patel et al. [9] discussed the following subclass of multi-
valent analytic functions defined by Dziok-Srivastava operator H l,m

p (α1).

Definition 1.1. (See [9]) A function f ∈ Ap is said to be in the class Sl,m
p (α1;β;A,B)

if it satisfies the following subordination condition:

1
p− β

(
z
(
H l,m

p (α1)f
)′ (z)

H l,m
p (α1)f(z)

− β

)
≺ 1 + Az

1 + Bz
(0 5 β < p ; −1 5 B < A 5 1).

In 2007, Polatoǧlu et al. [8] introduced and investigated the following subclass
of the class Ap of p -valent analytic functions.

Definition 1.2. (See [8]) A function f ∈ Ap is said to be in the class Mp(α) if it
satisfies the following inequality:

<
(

zf ′(z)
f(z)

)
< α (α > p).

Motivated by the function classes Sl,m
p (α1;β;A,B) and Mp(α), by making

use of the operator H l,m
p (αj) and the above-mentioned principle of subordination

between analytic functions, we introduce and investigate the following subclass of the
class Ap of p -valent analytic functions.

Definition 1.3. A function f ∈ Ap is said to be in the class Ml,m
p,k (αj ;α;φ) if it

satisfies the following subordination condition:

1
α− p

(
α−

z
(
H l,m

p (αj)f
)′ (z)

f l,m
p,k (αj ; z)

)
≺ φ(z)

(
α = 0, α 6= p ; φ ∈ P; f l,m

p,k (αj ; z) 6= 0
)

.

(1.5)
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Remark 1.4. It is easy to see that, if we set

k = j = 1, 0 5 α < p and φ(z) =
1 + Az

1 + Bz
(−1 5 B < A 5 1)

in the class Ml,m
p,k (αj ;α;φ), then it reduces to the class Sl,m

p (α1;α;A,B). Further-
more, if we choose

l = 2, m = α1 = α2 = β1 = 1, α > p and φ(z) =
1 + z

1− z

in the class Ml,m
p,k (αj ;α;φ), then it reduces to the class M(k)

p (α). We observe that the

class M(1)
p (α) =: Mp(α) was discussed by Polatoǧlu et al. [8]. Moreover, the class

M(k)
1 (α) was considered recently by Wang et al. [12], the class M(1)

1 (α) was studied
earlier by Nishiwaki and Owa [4], Owa and Nishiwaki [5], Owa and Srivastava [6],
Srivastava and Attiya [10], Uralegaddi and Desai [11].

In this paper, we aim at proving such results as inclusion relationship, integral
presentations and convolution properties for the function class Ml,m

p,k (αj ;α;φ).

2. Preliminary results

In order to prove our main results, we need the following lemmas.

Lemma 2.1. (See [2, 3]) Let β, γ ∈ C. Suppose that ϕ is convex and univalent in U
with

ϕ(0) = 1 and <(βϕ(z) + γ) > 0.

If p is analytic in U with p(0) = 1, then the following subordination:

p(z) +
zp′(z)

βp(z) + γ
≺ ϕ(z)

implies that
p(z) ≺ ϕ(z).

Lemma 2.2. (See [7]) Let β, γ ∈ C. Suppose that ϕ is convex and univalent in U
with

ϕ(0) = 1 and <(βϕ(z) + γ) > 0.

Also let
q(z) ≺ ϕ(z).

If p ∈ P and satisfies the following subordination:

p(z) +
zp′(z)

βq(z) + γ
≺ ϕ(z),

then
p(z) ≺ ϕ(z).
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Lemma 2.3. Let f ∈Ml,m
p,k (αj ;α;φ). Then

1
α− p

α−
z
(
f l,m

p,k (αj ; z)
)′

f l,m
p,k (αj ; z)

 ≺ φ(z). (2.1)

Proof. By virtue of (1.4), we replace z by εν
kz (ν = 0, 1, 2, . . . , k − 1) in f l,m

p,k (αj ; z).
Then

f l,m
p,k (αj ; εν

kz) =
1
k

k−1∑
n=0

ε−np
k

(
H l,m

p (αj)f
)
(εn+ν

k z)

= ενp
k · 1

k

k−1∑
n=0

ε
−(n+ν)p
k

(
H l,m

p (αj)f
)
(εn+ν

k z)

= ενp
k f l,m

p,k (αj ; z).

(2.2)

Differentiating both sides of (1.4) with respect to z, we have

(
f l,m

p,k (αj ; z)
)′

=
1
k

k−1∑
ν=0

ε
−ν(p−1)
k

(
H l,m

p (αj)f
)′

(εν
kz). (2.3)

Thus, combining (2.2) and (2.3), we easily find that

1
α− p

α−
z
(
f l,m

p,k (αj ; z)
)′

f l,m
p,k (αj ; z)

 =
1

α− p

(
α− 1

k

k−1∑
ν=0

ε
−ν(p−1)
k z

(
H l,m

p (αj)f
)′ (εν

kz)

f l,m
p,k (αj ; z)

)

=
1

α− p

(
α− 1

k

k−1∑
ν=0

εν
kz
(
H l,m

p (αj)f
)′ (εν

kz)

f l,m
p,k (αj ; εν

kz)

)
.

(2.4)

Moreover, since f ∈Ml,m
p,k (αj ;α;φ), it follows that

1
α− p

(
α−

εν
kz
(
H l,m

p (αj)f
)′ (εν

kz)

f l,m
p,k (αj ; εν

kz)

)
≺ φ(z) (ν ∈ {0, 1, 2, . . . , k − 1}). (2.5)

Finally, by noting that φ is convex and univalent in U, from (2.4) and (2.5),
we conclude that the assertion (2.1) of Lemma 2.3 holds. �
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3. Properties of the function class Ml,m
p,k (αj ;α;φ)

We begin by stating the following inclusion relationship for the function class
Ml,m

p,k (αj ;α;φ).

Theorem 3.1. Let φ ∈ P with

<(α + αj − p + (p− α)φ(z)) > 0 (α = 0, α 6= p).

Then

Ml,m
p,k (αj + 1;α;φ) ⊂Ml,m

p,k (αj ;α;φ).

Proof. Making use of the relationships (1.3) and (1.4), we know that

z
(
f l,m

p,k (αj ; z)
)′

+ (αj − p)f l,m
p,k (αj ; z) =

αj

k

k−1∑
ν=0

ε−νp
k

(
H l,m

p (αj + 1)f
)
(εν

kz)

= αjf
l,m
p,k (αj + 1; z).

(3.1)

Let f ∈Ml,m
p,k (αj + 1;α;φ). Suppose also that

h(z) = z

(
f l,m

p,k (αj ; z)
zp

)1/(α−p)

(α = 0, α 6= p). (3.2)

Then h is analytic in U. By taking logarithmic differentiation in (3.2), it follows that

q(z) =
zh′(z)
h(z)

=
1

α− p

α−
z
(
f l,m

p,k (αj ; z)
)′

f l,m
p,k (αj ; z)

 (3.3)

is analytic in U with q(0) = 1. We now find from (3.1) and (3.3) that

α + αj − p + (p− α)q(z) = αj

f l,m
p,k (αj + 1; z)

f l,m
p,k (αj ; z)

. (3.4)

Differentiating both sides of (3.4) with respect to z logarithmically and using (3.3),
we have

q(z) +
zq′(z)

α + αj − p + (p− α)q(z)
=

1
α− p

α−
z
(
f l,m

p,k (αj + 1; z)
)′

f l,m
p,k (αj + 1; z)

 . (3.5)

From (3.5) and Lemma 2.3 (with αj replaced by αj + 1), we conclude that

q(z) +
zq′(z)

α + αj − p + (p− α)q(z)
≺ φ(z). (3.6)

Since

<(α + αj − p + (p− α)φ(z)) > 0,
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an application of Lemma 2.1 to (3.6) yields

q(z) =
1

α− p

α−
z
(
f l,m

p,k (αj ; z)
)′

f l,m
p,k (αj ; z)

 ≺ φ(z). (3.7)

We now suppose that

q1(z) =
1

α− p

(
α−

z
(
H l,m

p (αj)f
)′ (z)

f l,m
p,k (αj ; z)

)
. (3.8)

Then q1(z) is analytic in U with q1(0) = 1. It follows from (1.3) and (3.8) that

[(p− α)q1(z) + α]f l,m
p,k (αj ; z) = αjH

l,m
p (αj + 1)f(z)− (αj − p)H l,m

p (αj)f(z). (3.9)

Differentiating both sides of (3.9) with respect to z and using (3.8), we have

zq′1(z)+

αj − p +
z
(
f l,m

p,k (αj ; z)
)′

f l,m
p,k (αj ; z)

(q1(z) +
α

p− α

)
=

αj

p− α

z
(
H l,m

p (αj + 1)f
)′ (z)

f l,m
p,k (αj ; z)

.

(3.10)
We now easily find from (3.3), (3.4) and (3.10) that

q1(z) +
zq′1(z)

α + αj − p + (p− α)q(z)
=

1
α− p

(
α−

z
(
H l,m

p (αj + 1)f
)′ (z)

f l,m
p,k (αj + 1; z)

)
≺ φ(z).

(3.11)
Since

q(z) ≺ φ(z)

and

<(α + αj − p + (p− α)φ(z)) > 0,

it follows from (3.11) and Lemma 2.2 that

q1(z) =
1

α− p

(
α−

z
(
H l,m

p (αj)f
)′ (z)

f l,m
p,k (αj ; z)

)
≺ φ(z),

that is, that f ∈Ml,m
p,k (αj ;α;φ). This implies that

Ml,m
p,k (αj + 1;α;φ) ⊂Ml,m

p,k (αj ;α;φ).

The proof of Theorem 3.1 is thus completed. �

Next, we derive several integral representations for the function class
Ml,m

p,k (αj ;α;φ).
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Theorem 3.2. Let f ∈Ml,m
p,k (αj ;α;φ). Then

f l,m
p,k (αj ; z) = zp · exp

(
(p− α)

k

k−1∑
ν=0

∫ z

0

φ (ω(εν
kξ))− 1
ξ

dξ

)
, (3.12)

where f l,m
p,k (αj ; z) is defined by (1.4), ω is analytic in U with

ω(0) = 0 and |ω(z)| < 1 (z ∈ U).

Proof. Suppose that f ∈Ml,m
p,k (αj ;α;φ). We know that the subordination condition

(1.5) can be written as follows:

z
(
H l,m

p (αj)f
)′ (z)

f l,m
p,k (αj ; z)

= (p− α)φ (ω(z)) + α, (3.13)

where ω is analytic in U with

ω(0) = 0 and |ω(z)| < 1 (z ∈ U).

Replacing z by εν
kz (ν = 0, 1, 2, . . . , k − 1) in the equation (3.13), we observe that

(3.13) also holds, that is,

εν
kz
(
H l,m

p (αj)f
)′ (εν

kz)

f l,m
p,k (αj ; εν

kz)
= (p− α)φ (ω(εν

kz)) + α. (3.14)

We note that

f l,m
p,k (αj ; εν

kz) = ενp
k f l,m

p,k (αj ; z).

Thus, by letting ν = 0, 1, 2, . . . , k−1 in (3.14), successively, and summing the resulting
equations, we get

z
(
f l,m

p,k (αj ; z)
)′

f l,m
p,k (αj ; z)

=
(p− α)

k

k−1∑
ν=0

φ (ω(εν
kz)) + α. (3.15)

We next find from (3.15) that(
f l,m

p,k (αj ; z)
)′

f l,m
p,k (αj ; z)

− p

z
=

(p− α)
k

k−1∑
ν=0

φ (ω(εν
kz))− 1
z

, (3.16)

which, upon integration, yields

log

(
f l,m

p,k (αj ; z)
zp

)
=

(p− α)
k

k−1∑
ν=0

∫ z

0

φ (ω(εν
kξ))− 1
ξ

dξ. (3.17)

The assertion (3.12) of Theorem 3.2 can now easily be derived from (3.17). �
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Theorem 3.3. Let f ∈Ml,m
p,k (αj ;α;φ). Then

H l,m
p (αj)f(z)=

∫ z

0

ζp−1[(p−α)φ (ω(ζ))+α]·exp

(
(p− α)

k

k−1∑
ν=0

∫ ζ

0

φ (ω(εν
kξ))− 1
ξ

dξ

)
dζ,

(3.18)
where ω is analytic in U with

ω(0) = 0 and |ω(z)| < 1 (z ∈ U).

Proof. Suppose that f ∈Ml,m
p,k (αj ;α;φ). Then, by virtue of (3.12) and (3.13), we get

(
H l,m

p (αj)f
)′

(z) =
f l,m

p,k (αj ; z)
z

· [(p− α)φ (ω(z)) + α]

= zp−1[(p− α)φ (ω(z)) + α] · exp

(
(p− α)

k

k−1∑
ν=0

∫ z

0

φ (ω(εν
kξ))− 1
ξ

dξ

)
, (3.19)

which, upon integration of (3.19), leads us easily to the assertion (3.18) of Theorem
3.3. �

In view of Lemma 2.3 and Theorem 3.1, we get another integral representation
for the function class Ml,m

p,k (αj ;α;φ).

Theorem 3.4. Let f ∈Ml,m
p,k (αj ;α;φ). Then

H l,m
p (αj)f(z) =

∫ z

0

ζp−1[(p−α)φ
(
ω2(ζ)

)
+α] · exp

(
(p− α)

∫ ζ

0

φ
(
ω1(ξ)

)
− 1

ξ
dξ

)
dζ,

(3.20)
where ωt (t = 1, 2) are analytic in U with

ωt(0) = 0 and |ωt(z)| < 1 (z ∈ U; t = 1, 2).

Proof. Suppose that f ∈Ml,m
p,k (αj ;α;φ). We then find from (2.1) that

z
(
f l,m

p,k (αj ; z)
)′

f l,m
p,k (αj ; z)

= (p− α)φ (ω1(z)) + α, (3.21)

where ω1 is analytic in U and ω1(0) = 0. Thus, by similarly applying the method of
proof of Theorem 3.2, we find that

f l,m
p,k (αj ; z) = zp · exp

(
(p− α)

∫ z

0

φ
(
ω1(ξ)

)
− 1

ξ
dξ

)
. (3.22)
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It now follows from (3.13) and (3.22) that

(
H l,m

p (αj)f
)′

(z) =
f l,m

p,k (αj ; z)
z

· [(p− α)φ
(
ω2(z)

)
+ α]

= zp−1[(p− α)φ
(
ω2(z)

)
+ α] · exp

(
(p− α)

∫ z

0

φ
(
ω1(ξ)

)
− 1

ξ
dξ

)
,

(3.23)

where ωt (t = 1, 2) are analytic in U with

ωt(0) = 0 and |ωt(z)| < 1 (z ∈ U; t = 1, 2).

Upon integrating both sides of (3.23), we readily arrive at the assertion (3.20) of
Theorem 3.4. �

In the following we give some convolution properties for the function class
Ml,m

p,k (αj ;α;φ).

Theorem 3.5. Let f ∈Ml,m
p,k (αj ;α;φ). Then

f(z) =

[∫ z

0

ζp−1[(p− α)φ (ω(ζ)) + α] · exp

(
(p− α)

k

k−1∑
ν=0

∫ ζ

0

φ (ω(εν
kξ))− 1
ξ

dξ

)
dζ

]

∗

( ∞∑
n=0

n!(β1)n · · · (βm)n

(α1)n · · · (αj)n · · · (αl)n
zn+p

)
,

(3.24)

where ω is analytic in U with

ω(0) = 0 and |ω(z)| < 1 (z ∈ U).

Proof. In view of (1.2) and (3.18), we find that∫ z

0

ζp−1[(p− α)φ (ω(ζ)) + α] · exp

(
(p− α)

k

k−1∑
ν=0

∫ ζ

0

φ (ω(εν
kξ))− 1
ξ

dξ

)
dζ

= [zp
lFm(α1, . . . , αl;β1, . . . , βm)] ∗ f(z).

(3.25)

Thus, from (3.25), we easily get the assertion (3.24) of Theorem 3.5. �

Theorem 3.6. Let f ∈Ml,m
p,k (αj ;α;φ). Then

f(z) =

[∫ z

0

ζp−1[(p− α)φ
(
ω2(ζ)

)
+ α] · exp

(
(p− α)

∫ ζ

0

φ
(
ω1(ξ)

)
− 1

ξ
dξ

)
dζ

]

∗

( ∞∑
n=0

n!(β1)n · · · (βm)n

(α1)n · · · (αj)n · · · (αl)n
zn+p

)
,

(3.26)

234



A CLASS OF MULTIVALENT ANALYTIC FUNCTIONS

where ωt (t = 1, 2) are analytic in U with

ωt(0) = 0 and |ωt(z)| < 1 (z ∈ U; t = 1, 2).

Proof. By virtue of (1.2) and (3.20), we know that∫ z

0

ζp−1[(p− α)φ
(
ω2(ζ)

)
+ α] · exp

(
(p− α)

∫ ζ

0

φ
(
ω1(ξ)

)
− 1

ξ
dξ

)
dζ

= [zp
lFm(α1, . . . , αl;β1, . . . , βm)] ∗ f(z).

(3.27)

Thus, from (3.27), we easily arrive at the convolution property (3.26) asserted by
Theorem 3.6. �

Theorem 3.7. Let

f ∈ Ap and φ ∈ P.

Then f ∈Ml,m
p,k (αj ;α;φ) if and only if

1
z

{
f ∗

[(
pzp +

∞∑
n=1

(α1)n · · · (αj)n · · · (αl)n

(β1)n · · · (βm)n

n + p

n!
zn+p

)

−[(p− α)φ(eiθ) + α]

(
zp +

∞∑
n=1

(α1)n · · · (αj)n · · · (αl)n

(β1)n · · · (βm)n

1

n!
zn+p

)
∗

(
1

k

k−1∑
υ=0

zp

1 − ευz

)]}
6= 0

(3.28)

(z ∈ U; 0 5 θ < 2π).

Proof. Suppose that f ∈Ml,m
p,k (αj ;α;φ). Since

z
(
H l,m

p (αj)f
)′ (z)

f l,m
p,k (αj ; z)

≺ (p− α)φ(z) + α

is equivalent to

z
(
H l,m

p (αj)f
)′ (z)

f l,m
p,k (αj ; z)

6= (p− α)φ(eiθ) + α (z ∈ U; 0 5 θ < 2π), (3.29)

it is easy to see that the condition (3.29) can be written as follows:

1
z

{
z
(
H l,m

p (αj)f
)′

(z)− f l,m
p,k (αj ; z)[(p− α)φ(eiθ) + α]

}
6= 0 (z ∈ U; 0 5 θ < 2π).

(3.30)
On the other hand, we know from (1.2) that

z
(
H l,m

p (αj)f
)′

(z) =

(
pzp +

∞∑
n=1

(αj)n · · · (αj)n · · · (αl)n

(β1)n · · · (βm)n

n + p

n!
zn+p

)
∗ f(z). (3.31)
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Moreover, from the definition of f l,m
p,k (αj ; z), we have

f l,m
p,k (αj ; z) = H l,m

p (αj)f(z) ∗

(
1
k

k−1∑
υ=0

zp

1− ευz

)

=

(
zp +

∞∑
n=1

(α1)n · · · (αj)n · · · (αl)n

(β1)n · · · (βm)n

1
n!

zn+p

)
∗

(
1
k

k−1∑
υ=0

zp

1− ευz

)
∗ f(z).

(3.32)

Upon substituting (3.31) and (3.32) into (3.30), we easily deduce the convolution
property (3.28) asserted by Theorem 3.7. �

Remark 3.8. By specializing the parameters in Theorems 3.1-3.7, we can get sev-
eral interesting properties for some special function classes associated with the class
Ml,m

p,k (αj ;α;φ). Here, we choose to omit the details involved.
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