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Coefficients using a Generalized Sălăgean Operator . . . . . . . . . . . . . . . . . . . . . 93



Aurelian Cernea, On a Fractional Differential Inclusion with Boundary

Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
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Sălăgean Differential Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Alina Totoi, On Starlikeness of a Class of Integral Operators for

Meromorphic Starlike Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229

Tiberiu Trif, Asymptotic Behavior of Intermediate Points in Certain

Mean Value Theorems. II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .241
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A NOTE ON DIFFERENTIAL SUPERORDINATIONS USING
A MULTIPLIER TRANSFORMATION AND RUSCHEWEYH

DERIVATIVE

ALINA ALB LUPAŞ

Dedicated to Professor Grigore Ştefan Sălăgean on his 60th birthday

Abstract. In the present paper we define a new operator, by means of con-

volution product between Ruscheweyh operator and the multiplier trans-

formation I (m, λ, l). For functions f belonging to the class An we define

the differential operator IRm
λ,l : An → An,

IRm
λ,lf (z) := (I (m, λ, l) ∗Rm) f (z) ,

where An = {f ∈ H(U) : f(z) = z+an+1z
n+1 + . . . , z ∈ U} is the class of

normalized analytic functions. We study some differential superordinations

regarding the operator IRm
λ,l.

1. Introduction

Denote by U the unit disc of the complex plane U = {z ∈ C : |z| < 1} and

H(U) the space of holomorphic functions in U .

Let

A (p, n) = {f ∈ H(U) : f(z) = zp +
∞∑

j=p+n

ajz
j , z ∈ U},

with A (1, n) = An and

H[a, n] = {f ∈ H(U), f(z) = a+ anz
n + an+1z

n+1 + . . . , z ∈ U}

for a ∈ C and p, n ∈ N.
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If f and g are analytic functions in U , we say that f is superordinate to g,

written g ≺ f , if there is a function w analytic in U , with w(0) = 0, |w(z)| < 1, for

all z ∈ U such that g(z) = f(w(z)) for all z ∈ U . If f is univalent, then g ≺ f if and

only if f(0) = g(0) and g(U) ⊆ f(U).

Let ψ : C2 × U → C and h analytic in U . If p and ψ (p (z) , zp′ (z) ; z) are

univalent in U and satisfies the (first-order) differential superordination

h(z) ≺ ψ(p(z), zp′(z); z), z ∈ U, (1.1)

then p is called a solution of the differential superordination. The analytic function

q is called a subordinant of the solutions of the differential superordination, or more

simply a subordinant, if q ≺ p for all p satisfying (1.1).

An univalent subordinant q̃ that satisfies q ≺ q̃ for all subordinants q of (1.1)

is said to be the best subordinant of (1.1). The best subordinant is unique up to a

rotation of U .

Definition 1.1. [7] For f ∈ A(p, n), p, n ∈ N, m ∈ N∪{0}, λ, l ≥ 0, the operator

Ip (m,λ, l) f(z) is defined by the following infinite series

Ip (m,λ, l) f(z) := zp +
∞∑

j=p+n

(
p+ λ (j − 1) + l

p+ l

)m

ajz
j .

Remark 1.2. It follows from the above definition that

Ip (0, λ, l) f(z) = f(z),

(p+ l) Ip (m+ 1, λ, l) f(z) = [p(1− λ) + l] Ip (m,λ, l) f(z) + λz (Ip (m,λ, l) f(z))′ ,

z ∈ U.

Remark 1.3. If p = 1, we have A(1, n) = An, I1 (m,λ, l) f(z) = I (m,λ, l) and

(l + 1) I (m+ 1, λ, l) f(z) = [l + 1− λ] I (m,λ, l) f(z) + λz (I (m,λ, l) f(z))′ ,

z ∈ U.

Remark 1.4. If f ∈ An, f(z) = z +
∑∞

j=n+1 ajz
j , then

I (m,λ, l) f (z) = z +
∞∑

j=n+1

(
1 + λ (j − 1) + l

l + 1

)m

ajz
j , z ∈ U.
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A NOTE ON DIFFERENTIAL SUPERORDINATIONS

Remark 1.5. For l = 0, λ ≥ 0, the operator Dm
λ = I (m,λ, 0) was introduced

and studied by Al-Oboudi [6], which is reduced to the Sălăgean differential operator

Sm = I (m, 1, 0) [10] for λ = 1.

Definition 1.6. (Ruscheweyh [9]) For f ∈ An, m,n ∈ N, the operator Rm is defined

by Rm : An → An,

R0f (z) = f (z)

R1f (z) = zf ′ (z)

...

(m+ 1)Rm+1f (z) = z (Rmf (z))′ +mRmf (z) , z ∈ U.

Remark 1.7. If f ∈ An, f(z) = z +
∞∑

j=n+1

ajz
j , then

Rmf (z) = z +
∞∑

j=n+1

Cm
m+j−1ajz

j , z ∈ U.

Definition 1.8. [8] We denote byQ the set of functions that are analytic and injective

on U\E (f), where E (f) = {ζ ∈ ∂U : lim
z→ζ

f (z) = ∞}, and f ′ (ζ) 6= 0 for ζ ∈

∂U\E (f). The subclass of Q for which f (0) = a is denoted by Q (a).

We will use the following lemmas.

Lemma 1.9. (Miller and Mocanu [8]) Let h be a convex function with h(0) = a, and

let γ ∈ C\{0} be a complex number with Re γ ≥ 0. If p ∈ H[a, n]∩Q, p(z) + 1
γ zp

′(z)

is univalent in U and

h(z) ≺ p(z) +
1
γ
zp′(z), z ∈ U,

then

q(z) ≺ p(z), z ∈ U,

where

q(z) =
γ

nzγ/n

∫ z

0

h(t)tγ/n−1dt, z ∈ U.

The function q is convex and is the best subordinant.
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Lemma 1.10. (Miller and Mocanu [8]) Let q be a convex function in U and let

h(z) = q(z) +
1
γ
zq′(z), z ∈ U,

where Re γ ≥ 0.

If p ∈ H [a, n] ∩Q, p(z) + 1
γ zp

′(z) is univalent in U and

q(z) +
1
γ
zq′(z) ≺ p(z) +

1
γ
zp′ (z) , z ∈ U,

then

q(z) ≺ p(z), z ∈ U,

where

q(z) =
γ

nzγ/n

∫ z

0

h(t)tγ/n−1dt, z ∈ U.

The function q is the best subordinant.

2. Main results

Definition 2.1. ([4]) Let m,n, λ, l ∈ N. Denote by IRm
λ,l the operator given by

the Hadamard product (the convolution product) of the operator I (m,λ, l) and the

Ruscheweyh operator Rm, IRm
λ,l : An → An,

IRm
λ,lf (z) = (I (m,λ, l) ∗Rm) f (z) .

Remark 2.2. If f ∈ An, f(z) = z +
∞∑

j=n+1

ajz
j , then

IRm
λ,lf (z) = z +

∞∑
j=n+1

(
1 + λ (j − 1) + l

l + 1

)m

Cm
m+j−1a

2
jz

j , z ∈ U.

Remark 2.3. For l = 0, λ ≥ 0, we obtain the Hadamard product DRm
λ [1] of the

generalized Sălăgean operator Dm
λ and Ruscheweyh operator Rm.

For l = 0 and λ = 1, we obtain the Hadamard product SRm [5] of the

Sălăgean operator Sm and Ruscheweyh operator Rm.

Theorem 2.4. Let h be a convex function, h(0) = 1. Let m,n, λ, l ∈ N, f ∈ An and

suppose that

l + 1
[λ (l −m+ 2)− (l + 1)] z

·
[
(m+ 1) IRm+1

λ,l f (z)− (m− 2) IRm
λ,lf (z)

]
6
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+
(

1− l + 1
λ (l −m+ 2)− (l + 1)

)
− 2 (l + 1) (m− 1)− 2λm

λ (l −m+ 2)− (l + 1)

∫ z

0

IRm
λ,lf (t)− t

t2
dt

is univalent and
(
IRm

λ,lf (z)
)′
∈ H [1, n] ∩Q. If

h(z) ≺ l + 1
[λ (l −m+ 2)− (l + 1)] z

[
(m+ 1) IRm+1

λ,l f (z)− (m− 2) IRm
λ,lf (z)

]
(2.1)

+
(

1− l + 1
λ (l −m+ 2)− (l + 1)

)
− 2 (l + 1) (m− 1)− 2λm

λ (l −m+ 2)− (l + 1)

∫ z

0

IRm
λ,lf (t)− t

t2
dt,

z ∈ U, then

q(z) ≺
(
IRm

λ,lf (z)
)′
, z ∈ U,

where

q(z) =
λ (l −m+ 2)− (l + 1)

λ (l + 1)nz
λ(l−m+2)−(l+1)

λ(l+1)n

∫ z

0

h (t) t
λ(l−m−nl−n+2)−(l+1)

λ(l+1)n dt.

The function q is convex and it is the best subordinant.

Proof. With notation

p (z) =
(
IRm

λ,lf (z)
)′ = 1+

∞∑
j=n+1

(
1 + λ (j − 1) + l

l + 1

)m

Cm
m+j−1ja

2
jz

j−1 and p (0) = 1,

we obtain for f(z) = z +
∑∞

j=n+1 ajz
j ,

p (z) + zp′ (z) = 1 +
∞∑

j=n+1

(
1 + λ (j − 1) + l

l + 1

)m

Cm
m+j−1ja

2
jz

j−1

+
∞∑

j=n+1

(
1 + λ (j − 1) + l

l + 1

)m

Cm
m+j−1j (j − 1) a2

jz
j−1

=
1
z

(
m+ 1
λ

IRm+1
λ,l f (z)− m− 2

λ
IRm

λ,lf (z)
)

+
λ (m− 1)− (l + 1)

λ (l + 1)
(
IRm

λ,lf (z)
)′

+
(

1− m− 1
l + 1

− 2
λ

)
− 2 (l + 1) (m− 1)− 2λm

λ (l + 1)

∫ z

0

IRm
λ,lf (t)− t

t2
dt.

Therefore

p (z) +
λ (l + 1)

λ (l −m+ 2)− (l + 1)
zp′ (z)

=
l + 1

[λ (l −m+ 2)− (l + 1)] z

[
(m+ 1) IRm+1

λ,l f (z)− (m− 2) IRm
λ,lf (z)

]
+
(

1− l + 1
λ (l −m+ 2)− (l + 1)

)
− 2 (l + 1) (m− 1)− 2λm

λ (l −m+ 2)− (l + 1)

∫ z

0

IRm
λ,lf (t)− t

t2
dt.

7
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Then (2.1) becomes

h(z) ≺ p (z) +
λ (l + 1)

λ (l −m+ 2)− (l + 1)
zp′ (z) , z ∈ U.

By using Lemma 1.9 for γ = 1− m−1
l+1 − 1

λ , we have

q(z) ≺ p(z), z ∈ U, i.e. q(z) ≺
(
IRm

λ,lf (z)
)′
, z ∈ U,

where

q(z) =
λ (l −m+ 2)− (l + 1)

λ (l + 1)nz
λ(l−m+2)−(l+1)

λ(l+1)n

∫ z

0

h (t) t
λ(l−m−nl−n+2)−(l+1)

λ(l+1)n dt.

The function q is convex and it is the best subordinant. �

Corollary 2.5. [3] Let h be a convex function, h(0) = 1. Let λ ≥ 0, m, n ∈ N, f ∈ An

and suppose that

m+ 1
(mλ+ 1) z

DRm+1
λ f (z)− m (1− λ)

(mλ+ 1) z
DRm

λ f (z)

is univalent and (DRm
λ f (z))′ ∈ H [1, n] ∩Q. If

h(z) ≺ m+ 1
(mλ+ 1) z

DRm+1
λ f (z)− m (1− λ)

(mλ+ 1) z
DRm

λ f (z) , z ∈ U, (2.2)

then

q(z) ≺ (DRm
λ f (z))′ , z ∈ U,

where

q(z) =
mλ+ 1

nλz
mλ+1

nλ

∫ z

0

h (t) t
(m−n)λ+1

nλ dt.

The function q is convex and it is the best subordinant.

Corollary 2.6. [2] Let h be a convex function, h(0) = 1. Let m,n ∈ N, f ∈ An and

suppose that
1
z
SRm+1f (z) +

m

m+ 1
z (SRmf (z))′′

is univalent and (SRmf (z))′ ∈ H [1, n] ∩Q. If

h(z) ≺ 1
z
SRm+1f (z) +

m

m+ 1
z (SRmf (z))′′ , z ∈ U, (2.3)

then

q(z) ≺ (SRmf (z))′ , z ∈ U,

8
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where

q(z) =
1

nz
1
n

∫ z

0

h(t)t
1
n−1dt.

The function q is convex and it is the best subordinant.

Theorem 2.7. Let q be convex in U and let h be defined by

h (z) = q (z) +
λ (l + 1)

λ (l −m+ 2)− (l + 1)
zq′ (z) ,

m, n, λ, l ∈ N. If f ∈ An, suppose that

l + 1
[λ (l −m+ 2)− (l + 1)] z

[
(m+ 1) IRm+1

λ,l f (z)− (m− 2) IRm
λ,lf (z)

]
+
(

1− l + 1
λ (l −m+ 2)− (l + 1)

)
− 2 (l + 1) (m− 1)− 2λm

λ (l −m+ 2)− (l + 1)

∫ z

0

IRm
λ,lf (t)− t

t2
dt

is univalent,
(
IRm

λ,lf (z)
)′
∈ H [1, n]∩Q and satisfies the differential superordination

h(z) = q (z) +
λ (l + 1)

λ (l −m+ 2)− (l + 1)
zq′ (z) ≺ l + 1

[λ (l −m+ 2)− (l + 1)] z
· (2.4)

[
(m+ 1) IRm+1

λ,l f (z)− (m− 2) IRm
λ,lf (z)

]
+
(

1− l + 1
λ (l −m+ 2)− (l + 1)

)
−2 (l + 1) (m− 1)− 2λm
λ (l −m+ 2)− (l + 1)

∫ z

0

IRm
λ,lf (t)− t

t2
dt, z ∈ U,

then

q(z) ≺
(
IRm

λ,lf (z)
)′
, z ∈ U,

where

q(z) =
λ (l −m+ 2)− (l + 1)

λ (l + 1)nz
λ(l−m+2)−(l+1)

λ(l+1)n

∫ z

0

h (t) t
λ(l−m−nl−n+2)−(l+1)

λ(l+1)n dt.

The function q is the best subordinant.

Proof. Let

p (z) =
(
IRm

λ,lf (z)
)′ = 1 +

∞∑
j=n+1

(
1 + λ (j − 1) + l

l + 1

)m

Cm
m+j−1ja

2
jz

j−1.

Differentiating, we obtain

p (z) + zp′ (z) =
1
z

(
m+ 1
λ

IRm+1
λ,l f (z)− m− 2

λ
IRm

λ,lf (z)
)

+
λ (m− 1)− (l + 1)

λ (l + 1)
(
IRm

λ,lf (z)
)′ + (1− m− 1

l + 1
− 2
λ

)
9
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−2 (l + 1) (m− 1)− 2λm
λ (l + 1)

∫ z

0

IRm
λ,lf (t)− t

t2
dt

and

p (z) +
λ (l + 1)

λ (l −m+ 2)− (l + 1)
zp′ (z) =

l + 1
[λ (l −m+ 2)− (l + 1)] z

[
(m+ 1) IRm+1

λ,l f (z)− (m− 2) IRm
λ,lf (z)

]
+
(

1− l + 1
λ (l −m+ 2)− (l + 1)

)
−2 (l + 1) (m− 1)− 2λm
λ (l −m+ 2)− (l + 1)

∫ z

0

IRm
λ,lf (t)− t

t2
dt, z ∈ U

and (2.4) becomes

q(z) +
λ (l + 1)

λ (l −m+ 2)− (l + 1)
zq′(z) ≺ p(z) +

λ (l + 1)
λ (l −m+ 2)− (l + 1)

zp′ (z) , z ∈ U.

Using Lemma 1.10 for γ = 1− m−1
l+1 − 1

λ , we have q(z) ≺ p(z), z ∈ U, i.e.

q(z) =
λ (l −m+ 2)− (l + 1)

λ (l + 1)nz
λ(l−m+2)−(l+1)

λ(l+1)n

∫ z

0

h (t) t
λ(l−m−nl−n+2)−(l+1)

λ(l+1)n dt

≺
(
IRm

λ,lf (z)
)′ , z ∈ U,

and q is the best subordinant. �

Corollary 2.8. [3] Let q be convex in U and let h be defined by

h (z) = q (z) +
λ

mλ+ 1
zq′ (z) ,

λ ≥ 0, m, n ∈ N. If f ∈ An, suppose that

m+ 1
(mλ+ 1) z

DRm+1
λ f (z)− m (1− λ)

(mλ+ 1) z
DRm

λ f (z)

is univalent and (DRm
λ f (z))′ ∈ H [1, n]∩Q and satisfies the differential superordina-

tion

h(z) = q (z) +
λ

mλ+ 1
zq′ (z) ≺ m+ 1

(mλ+ 1) z
DRm+1

λ f (z)− m (1− λ)
(mλ+ 1) z

DRm
λ f (z) ,

(2.5)

z ∈ U, then

q(z) ≺ (DRm
λ f (z))′ , z ∈ U,

10
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where

q(z) =
mλ+ 1

nλz
mλ+1

nλ

∫ z

0

h (t) t
(m−n)λ+1

nλ dt.

The function q is the best subordinant.

Corollary 2.9. [2] Let q be convex in U and let h be defined by h (z) = q (z)+zq′ (z) .

If m,n ∈ N, f ∈ An, suppose that 1
zSR

m+1f (z) + m
m+1z (SRmf (z))′′ is univalent,

(SRmf (z))′ ∈ H [1, n] ∩Q and satisfies the differential superordination

h(z) = q (z) + zq′ (z) ≺ 1
z
SRm+1f (z) +

m

m+ 1
z (SRmf (z))′′ , z ∈ U, (2.6)

then

q(z) ≺ (SRmf (z))′ , z ∈ U,

where

q(z) =
1

nz
1
n

∫ z

0

h(t)t
1
n−1dt.

The function q is the best subordinant.

Theorem 2.10. Let h be a convex function, h(0) = 1. Let m,n, λ, l ∈ N, f ∈ An and

suppose that
(
IRm

λ,lf (z)
)′

is univalent and IRm
λ,lf(z)

z ∈ H [1, n] ∩Q. If

h(z) ≺
(
IRm

λ,lf (z)
)′
, z ∈ U, (2.7)

then

q(z) ≺
IRm

λ,lf (z)
z

, z ∈ U,

where

q(z) =
1

nz
1
n

∫ z

0

h(t)t
1
n−1dt.

The function q is convex and it is the best subordinant.

Proof. Consider

p (z) =
IRm

λ,lf (z)
z

=
z +

∑∞
j=n+1

(
1+λ(j−1)+l

l+1

)m

Cm
m+j−1a

2
jz

j

z

= 1 +
∞∑

j=n+1

(
1 + λ (j − 1) + l

l + 1

)m

Cm
m+j−1a

2
jz

j−1.

Evidently p ∈ H[1, n].

We have p (z) + zp′ (z) =
(
IRm

λ,lf (z)
)′

, z ∈ U .

11
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Then (2.7) becomes

h(z) ≺ p(z) + zp′(z), z ∈ U.

By using Lemma 1.9 for γ = 1, we have

q(z) ≺ p(z), z ∈ U, i.e. q(z) ≺
IRm

λ,lf (z)
z

, z ∈ U,

where q(z) = 1

nz
1
n

∫ z

0
h(t)t

1
n−1dt. The function q is convex and it is the best subordi-

nant. �

Corollary 2.11. [3] Let h be a convex function, h(0) = 1. Let λ ≥ 0, m, n ∈ N,

f ∈ An and suppose that (DRm
λ f (z))′ is univalent and DRm

λ f(z)
z ∈ H [1, n] ∩Q. If

h(z) ≺ (DRm
λ f (z))′ , z ∈ U, (2.8)

then

q(z) ≺ DRm
λ f (z)
z

, z ∈ U,

where

q(z) =
1

nz
1
n

∫ z

0

h(t)t
1
n−1dt.

The function q is convex and it is the best subordinant.

Corollary 2.12. [2] Let h be a convex function, h(0) = 1. Let m,n ∈ N, f ∈ An and

suppose that (SRmf (z))′ is univalent and SRmf(z)
z ∈ H [1, n] ∩Q. If

h(z) ≺ (SRmf (z))′ , z ∈ U, (2.9)

then

q(z) ≺ SRmf (z)
z

, z ∈ U,

where

q(z) =
1

nz
1
n

∫ z

0

h(t)t
1
n−1dt.

The function q is convex and it is the best subordinant.

12
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Theorem 2.13. Let q be convex in U and let h be defined by h (z) = q (z)+zq′ (z) . If

m,n, λ, l ∈ N, f ∈ An, suppose that
(
IRm

λ,lf (z)
)′

is univalent, IRm
λ,lf(z)

z ∈ H [1, n]∩Q

and satisfies the differential superordination

h(z) = q (z) + zq′ (z) ≺
(
IRm

λ,lf (z)
)′
, z ∈ U, (2.10)

then

q(z) ≺
IRm

λ,lf (z)
z

, z ∈ U,

where

q(z) =
1

nz
1
n

∫ z

0

h(t)t
1
n−1dt.

The function q is the best subordinant.

Proof. Let

p (z) =
IRm

λ,lf (z)
z

=
z +

∑∞
j=n+1

(
1+λ(j−1)+l

l+1

)m

Cm
m+j−1a

2
jz

j

z

= 1 +
∞∑

j=n+1

(
1 + λ (j − 1) + l

l + 1

)m

Cm
m+j−1a

2
jz

j−1.

Evidently p ∈ H[1, n].

Differentiating, we obtain p(z) + zp′(z) =
(
IRm

λ,lf (z)
)′
, z ∈ U and (2.10)

becomes

q(z) + zq′(z) ≺ p(z) + zp′ (z) , z ∈ U.

Using Lemma 1.10 for γ = 1, we have

q(z) ≺ p(z), z ∈ U, i.e. q(z) =
1

nz
1
n

∫ z

0

h(t)t
1
n−1dt ≺

IRm
λ,lf (z)
z

, z ∈ U,

and q is the best subordinant. �

Corollary 2.14. [3] Let q be convex in U and let h be defined by h (z) = q (z)+zq′ (z) .

If λ ≥ 0, m,n ∈ N, f ∈ An, suppose that (DRm
λ f (z))′ is univalent,

DRm
λ f (z)
z

∈ H [1, n] ∩Q

and satisfies the differential superordination

h(z) = q (z) + zq′ (z) ≺ (DRm
λ f (z))′ , z ∈ U, (2.11)

13
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then

q(z) ≺ DRm
λ f (z)
z

, z ∈ U,

where q(z) = 1

nz
1
n

∫ z

0
h(t)t

1
n−1dt. The function q is the best subordinant.

Corollary 2.15. [2] Let q be convex in U and let h be defined by h (z) = q (z)+zq′ (z) .

If m,n ∈ N, f ∈ An, suppose that (SRmf (z))′ is univalent, SRmf(z)
z ∈ H [1, n] ∩ Q

and satisfies the differential superordination

h(z) = q (z) + zq′ (z) ≺ (SRmf (z))′ , z ∈ U, (2.12)

then

q(z) ≺ SRmf (z)
z

, z ∈ U,

where

q(z) =
1

nz
1
n

∫ z

0

h(t)t
1
n−1dt.

The function q is the best subordinant.

Theorem 2.16. Let

h(z) =
1 + (2β − 1)z

1 + z

be a convex function in U , where 0 ≤ β < 1. Let m,n, λ, l ∈ N, f ∈ An and suppose

that
(
IRm

λ,lf (z)
)′

is univalent and

IRm
λ,lf (z)
z

∈ H [1, n] ∩Q.

If

h(z) ≺
(
IRm

λ,lf (z)
)′
, z ∈ U, (2.13)

then

q(z) ≺
IRm

λ,lf (z)
z

, z ∈ U,

where q is given by

q(z) = 2β − 1 +
2(1− β)
nz

1
n

∫ z

0

t
1
n−1

1 + t
dt, z ∈ U.

The function q is convex and it is the best subordinant.

14
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Proof. Following the same steps as in the proof of Theorem 2.10 and considering

p(z) =
IRm

λ,lf (z)
z

,

the differential superordination (2.13) becomes

h(z) =
1 + (2β − 1)z

1 + z
≺ p(z) + zp′(z), z ∈ U.

By using Lemma 1.9 for γ = 1, we have q(z) ≺ p(z), i.e.,

q(z) =
1

nz
1
n

∫ z

0

h (t) t
1
n−1dt =

1
nz

1
n

∫ z

0

t
1
n−1 1 + (2β − 1) t

1 + t
dt

= 2β − 1 +
2(1− β)
nz

1
n

∫ z

0

t
1
n−1

1 + t
dt ≺

IRm
λ,lf (z)
z

, z ∈ U.

The function q is convex and it is the best subordinant. �

Theorem 2.17. Let h be a convex function, h(0) = 1. Let m,n, λ, l ∈ N, f ∈ An and

suppose that
(

zIRm+1
λ,l f(z)

IRm
λ,lf(z)

)′
is univalent and

IRm+1
λ,l f(z)

IRm
λ,lf(z) ∈ H [1, n] ∩Q. If

h(z) ≺

(
zIRm+1

λ,l f (z)
IRm

λ,lf (z)

)′
, z ∈ U, (2.14)

then

q(z) ≺
IRm+1

λ,l f (z)
IRm

λ,lf (z)
, z ∈ U,

where

q(z) =
1

nz
1
n

∫ z

0

h (t) t
1
n−1dt.

The function q is convex and it is the best subordinant.

Proof. Consider

p (z) =
IRm+1

λ,l f (z)
IRm

λ,lf (z)
=
z +

∑∞
j=n+1

(
1+λ(j−1)+l

l+1

)m+1

Cm+1
m+j a

2
jz

j

z +
∑∞

j=n+1

(
1+λ(j−1)+l

l+1

)m

Cm
m+j−1a

2
jz

j

=
1 +

∑∞
j=n+1

(
1+λ(j−1)+l

l+1

)m+1

Cm+1
m+j a

2
jz

j−1

1 +
∑∞

j=n+1

(
1+λ(j−1)+l

l+1

)m

Cm
m+j−1a

2
jz

j−1
.

Evidently p ∈ H[1, n].

15
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We have

p′ (z) =

(
IRm+1

λ,l f (z)
)′

IRm
λ,lf (z)

− p (z) ·

(
IRm

λ,lf (z)
)′

IRm
λ,lf (z)

.

Then

p (z) + zp′ (z) =

(
zIRm+1

λ,l f (z)
IRm

λ,lf (z)

)′
.

Then (2.14) becomes

h(z) ≺ p(z) + zp′(z), z ∈ U.

By using Lemma 1.9 for γ = 1, we have

q(z) ≺ p(z), z ∈ U, i.e. q(z) ≺
IRm+1

λ,l f (z)
IRm

λ,lf (z)
, z ∈ U,

where

q(z) =
1

nz
1
n

∫ z

0

h (t) t
1
n−1dt.

The function q is convex and it is the best subordinant. �

Corollary 2.18. [3] Let h be a convex function, h(0) = 1. Let λ ≥ 0, m, n ∈ N,

f ∈ An and suppose that
(

zDRm+1
λ f(z)

DRm
λ f(z)

)′
is univalent and DRm+1

λ f(z)

DRm
λ f(z) ∈ H [1, n] ∩ Q.

If

h(z) ≺
(
zDRm+1

λ f (z)
DRm

λ f (z)

)′
, z ∈ U, (2.15)

then

q(z) ≺
DRm+1

λ f (z)
DRm

λ f (z)
, z ∈ U,

where

q(z) =
1

nz
1
n

∫ z

0

h (t) t
1
n−1dt.

The function q is convex and it is the best subordinant.

Corollary 2.19. [2] Let h be a convex function, h(0) = 1. Let m,n ∈ N, f ∈ An and

suppose that
(

zSRm+1f(z)
SRmf(z)

)′
is univalent and SRm+1f(z)

SRmf(z) ∈ H [1, n] ∩Q. If

h(z) ≺
(
zSRm+1f (z)
SRmf (z)

)′
, z ∈ U, (2.16)

16
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then

q(z) ≺ SRm+1f (z)
SRmf (z)

, z ∈ U,

where

q(z) =
1

nz
1
n

∫ z

0

h (t) t
1
n−1dt.

The function q is convex and it is the best subordinant.

Theorem 2.20. Let q be convex in U and let h be defined by h (z) = q (z) + zq′ (z) .

If m,n, λ, l ∈ N, f ∈ An, suppose that
(

zIRm+1
λ,l f(z)

IRm
λ,lf(z)

)′
is univalent,

IRm+1
λ,l f (z)

IRm
λ,lf (z)

∈ H [1, n] ∩Q

and satisfies the differential superordination

h(z) = q (z) + zq′ (z) ≺

(
zIRm+1

λ,l f (z)
IRm

λ,lf (z)

)′
, z ∈ U, (2.17)

then

q(z) ≺
IRm+1

λ,l f (z)
IRm

λ,lf (z)
, z ∈ U,

where

q(z) =
1

nz
1
n

∫ z

0

h (t) t
1
n−1dt.

The function q is the best subordinant.

Proof. Let

p (z) =
IRm+1

λ,l f (z)
IRm

λ,lf (z)
=
z +

∑∞
j=n+1

(
1+λ(j−1)+l

l+1

)m+1

Cm+1
m+j a

2
jz

j

z +
∑∞

j=n+1

(
1+λ(j−1)+l

l+1

)m

Cm
m+j−1a

2
jz

j

=
1 +

∑∞
j=n+1

(
1+λ(j−1)+l

l+1

)m+1

Cm+1
m+j a

2
jz

j−1

1 +
∑∞

j=n+1

(
1+λ(j−1)+l

l+1

)m

Cm
m+j−1a

2
jz

j−1
.

Evidently p ∈ H[1, n].

Differentiating, we obtain

p(z) + zp′(z) =

(
zIRm+1

λ,l f (z)
IRm

λ,lf (z)

)′
, z ∈ U

17
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and (2.17) becomes

q(z) + zq′(z) ≺ p(z) + zp′ (z) , z ∈ U.

Using Lemma 1.10 for γ = 1, we have

q(z) ≺ p(z), z ∈ U, i.e. q(z) =
1

nz
1
n

∫ z

0

h (t) t
1
n−1dt ≺

IRm+1
λ,l f (z)

IRm
λ,lf (z)

, z ∈ U,

and q is the best subordinant. �

Corollary 2.21. [3] Let q be convex in U and let h be defined by h (z) = q (z)+zq′ (z) .

If λ ≥ 0, m, n ∈ N, f ∈ An, suppose that
(

zDRm+1
λ f(z)

DRm
λ f(z)

)′
is univalent,

DRm+1
λ f (z)

DRm
λ f (z)

∈ H [1, n] ∩Q

and satisfies the differential superordination

h(z) = q (z) + zq′ (z) ≺
(
zDRm+1

λ f (z)
DRm

λ f (z)

)′
, z ∈ U, (2.18)

then

q(z) ≺
DRm+1

λ f (z)
DRm

λ f (z)
, z ∈ U,

where

q(z) =
1

nz
1
n

∫ z

0

h (t) t
1
n−1dt.

The function q is the best subordinant.

Corollary 2.22. [2] Let q be convex in U and let h be defined by h (z) = q (z)+zq′ (z) .

If m,n ∈ N, f ∈ An, suppose that
(

zSRm+1f(z)
SRmf(z)

)′
is univalent, SRm+1f(z)

SRmf(z) ∈ H [1, n]∩Q

and satisfies the differential superordination

h(z) = q (z) + zq′ (z) ≺
(
zSRm+1f (z)
SRmf (z)

)′
, z ∈ U, (2.19)

then

q(z) ≺ SRm+1f (z)
SRmf (z)

, z ∈ U,

where

q(z) =
1

nz
1
n

∫ z

0

h (t) t
1
n−1dt.

The function q is the best subordinant.

18
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Theorem 2.23. Let

h(z) =
1 + (2β − 1)z

1 + z

be a convex function in U , where 0 ≤ β < 1. Let m,n, λ, l ∈ N, f ∈ An and suppose

that
(

zIRm+1
λ,l f(z)

IRm
λ,lf(z)

)′
is univalent,

IRm+1
λ,l f(z)

IRm
λ,lf(z) ∈ H [1, n] ∩Q. If

h(z) ≺

(
zIRm+1

λ,l f (z)
IRm

λ,lf (z)

)′
, z ∈ U, (2.20)

then

q(z) ≺
IRm+1

λ,l f (z)
IRm

λ,lf (z)
, z ∈ U,

where q is given by

q(z) = 2β − 1 +
2(1− β)
nz

1
n

∫ z

0

t
1
n−1

1 + t
dt, z ∈ U.

The function q is convex and it is the best subordinant.

Proof. Following the same steps as in the proof of Theorem 2.17 and considering

p(z) =
IRm+1

λ,l f (z)
IRm

λ,lf (z)
,

the differential superordination (2.20) becomes

h(z) =
1 + (2β − 1)z

1 + z
≺ p(z) + zp′(z), z ∈ U.

By using Lemma 1.9 for γ = 1, we have q(z) ≺ p(z), i.e.,

q(z) =
1

nz
1
n

∫ z

0

h (t) t
1
n−1dt =

1
nz

1
n

∫ z

0

t
1
n−1 1 + (2β − 1) t

1 + t
dt

= 2β − 1 +
2(1− β)
nz

1
n

∫ z

0

t
1
n−1

1 + t
dt ≺

IRm+1
λ,l f (z)

IRm
λ,lf (z)

, z ∈ U.

The function q is convex and it is the best subordinant. �
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Ruscheweyh operators, Romai Journal, 1 (2010) (to appear).

[6] Al-Oboudi, F. M., On univalent functions defined by a generalized Sălăgean operator,
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VARIOUS PROPERTIES OF A CERTAIN CLASS
OF MULTIVALENT ANALYTIC FUNCTIONS

MOHAMED K. AOUF, ALI SHAMANDY, ADELA O. MOSTAFA, AND FATMA Z. EL-EMAM

Dedicated to Professor Grigore Ştefan Sălăgean on his 60th birthday

Abstract. By using the techniques of Briot-Bouquet differential subor-

dination, we study various properties and characteristics of the subclass

V λ
p,q,s(α1; β1; A, B) of multivalent analytic functions.

1. Introduction

Let A(p) denote the class of functions of the form:

f(z) = zp +
∞∑

k=1

ak+pz
k+p (p ∈ N = {1, 2, 3, ...}), (1.1)

which are analytic and p-valent in the open unit disk U = {z : z ∈ C and |z| < 1}. Let

Ω denote the class of bounded analytic functions satisfying ω(0) = 0 and |ω(z)| ≤ |z|

for z ∈ U. For functions f(z) ∈ A(p) given by (1.1) and g(z) ∈ A(p) defined by

g(z) = zp+
∞∑

k=1

bk+pz
k+p (p ∈ N), the Hadamard product (or convolution) of f(z) and

g(z) is given by

(f ∗ g)(z) = zp +
∞∑

k=1

ak+pbk+pz
k+p = (g ∗ f)(z).

For given arbitrary numbers A,B ( −1 ≤ B < A ≤ 1), we denote by P (A,B) the

class of functions of the form:

ϕ(z) = 1 + b1z + b2z
2 + ..., (1.2)

Received by the editors: 01.07.2010.
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which are analytic in U and satisfy the following condition:

ϕ(z) ≺ 1 +Az

1 +Bz
(z ∈ U).

(Here the symbol ≺ stands for subordination.) The class P (A,B) was investigated

by Janowski [11].

For a function f(z) ∈ A(p) given by (1.1), the generalized Bernardi-Libera-

Livingston integral operator Fδ,p is defined by (see [5])

Fδ,p(f)(z) =
δ + p

zδ

z∫
0

tδ−1f(t)dt

= zp +
∞∑

k=1

(
δ + p

δ + p+ k

)
ak+pz

k+p (δ > −p; z ∈ U). (1.3)

It readily follows from (1.3) that f ∈ A(p) ⇐⇒ Fδ,p ∈ A(p). Furthermore, we have

θm(z) = Fδm,p(Fδm−1,p...(Fδ1,p(z)))

= zp +
∞∑

k=1

 m∏
j=1

δj + p

δj + p+ k

 ak+pz
k+p (δj > −p; j = 1, ...,m). (1.4)

For complex parameters α1, ..., αq and β1, ..., βs (βj /∈ Z−0 ; Z−0 = {0,−1,−2, ...};

j = 1, ..., s,) the generalized hypergeometric function qFs(z) is defined (cf., e.g., [28])

as follows:

qFs(z) ≡q Fs(α1, ..., αq;β1, ..., βs; z) =
∞∑

k=0

(α1)k...(αq)k

(β1)k...(βs)k

zk

(1)k
(1.5)

(q ≤ s+ 1; q, s ∈ N0 = N ∪ {0}; z ∈ U),

where (x)k is the Pochhammer symbol defined (in terms of the Gamma function) by

(x)k =
Γ(x+ k)

Γ(x)
=

 x(x+ 1)...(x+ k − 1) (k ∈ N and x ∈ C)

1 (k = 0 and x ∈ C\{0}).

We note that the series (1.5) converges absolutely for z ∈ U and hence represents

an analytic function in the open unit disk U (see [29]). Corresponding to a function

Fp(α1, ..., αq, β1, ..., βs; z) defined by

Fp(α1, ..., αq;β1, ..., βs; z) = zp
qFs(α1, ..., αq;β1, ..., βs; z),
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Dziok and Srivastava [6] defined a linear operator Hp(α1, ..., αq;β1, ..., βs) : A(p) →

A(p) by the following Hadamard product:

Hp(α1, ..., αq;β1, ..., βs)f(z) = Fp(α1, ..., αq;β1, ..., βs; z) ∗ f(z),

(q ≤ s+ 1; q, s ∈ N0; z ∈ U).

If f ∈ A(p) is given by (1.1), then we have

Hp(α1, ..., αq;β1, ..., βs)f(z) = zp +
∞∑

k=1

Γkak+pz
k+p , (1.6)

where

Γk =
(α1)k...(αq)k

(β1)k...(βs)k(1)k
(k ∈ N).

For convenience, we write

Hp,q,s(α1;β1) = Hp(α1, ..., αq;β1, ..., βs).

It follows from (1.6) that

Hp,2,1(p, 1; p)f(z) = f(z), Hp,2,1(p+ 1, 1; p)f(z) =
zf

′
(z)
p

and

z(Hp,q,s(α1;β1)f(z))
′

= (β1 − 1)Hp,q,s(α1;β1 − 1)f(z)

+ (p+ 1− β1)Hp,q,s(α1;β1)f(z). (1.7)

The linear operator Hp,q,s(α1;β1) includes various other linear operators which were

considered in earlier works. In particular, for f ∈ A(p) we have the following obser-

vations:

(i) H1,2,1(a, b; c)f(z)= Ia,b
c f(z) (a, b ∈ C; c /∈ Z−0 ), where Ia,b

c is the linear

operator investigated by Hohlov [10];

(ii) Hp,2,1(n + p, 1; 1)f(z)= Dn+p−1f(z) (n > −p; p ∈ N), where Dn+p−1 is

the linear operator studied by Goel and Sohi [8]. In the case when p = 1,

Dnf(z) is the n− th Ruscheweyh derivative of f(z) (see [22]);
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(iii) Hp,2,1(δ + p, 1; δ + p + 1)f(z)= Fδ,p(f)(z) (δ > −p), where Fδ,p is the

generalized Bernardi–Libera–Livingston integral operator ([5]);

(iv) Hp,2,1(p+1, 1; p+1−µ)f(z)= Ω(µ,p)
z f(z) (−∞ < µ < p+1), where Ω(µ,p)

z

(−∞ < µ < p + 1) is the extended fractional differintegral operator (see

[20]), defined by

Ω(µ,p)
z f(z) = zp +

∞∑
k=1

Γ(k + p+ 1)Γ(p+ 1− µ)
Γ(p+ 1)Γ(k + p+ 1− µ)

ak+pz
k+p

=
Γ(p+ 1− µ)

Γ(p+ 1)
zµDµ

z f(z) (−∞ < µ < p+ 1),

where Dµ
z f(z) is, respectively, the fractional integral of f(z) of order −µ

when −∞ < µ < 0 and the fractional derivative of f(z) of order µ when

0 < µ < p+1 (see, for details [18], [19] and [20]). The fractional differential

operator Ω(µ,p)
z with 0 ≤ µ < 1 was investigated by Srivastava and Aouf

[27].

(v) Hp,2,1(a, 1; c)f(z)= Lp(a; c)f(z) (a ∈ R; c ∈ R\Z−0 ), where Lp(a; c) is the

linear operator studied by Saitoh [24] which yields the operator L(a; c)f(z)

introduced by Carlson and Shaffer [3] for p = 1;

(vi) H1,2,1(µ, 1;λ+ 1)f(z)= Iλ,µf(z) (λ > −1;µ > 0), where Iλ,µ is the Choi–

Saigo–Srivastava operator [5];

(vii) Hp,2,1(p + 1, 1;n + p)f(z)= In,pf(z) (n > −p; p ∈ N), where In,p is the

Noor integral operator of (n+ p− 1)− th order , studied by Liu and Noor

[15];

(viii) Hp,2,1(λ+ p, c; a)f(z)= Iλ
p (a; c)f(z) (a, c ∈ R\Z−0 ;λ > −p), where Iλ

p (a; c)

is the Cho–Kwon–Srivastava operator [4].

Now, by making use of the Dziok–Srivastava operator Hp,q,s(α1;β1), we in-

troduce a subclass of functions in A(p) as follows.
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Definition 1.1. A function f(z) ∈ A(p) is said to be in the class V λ
p(α1, ..., αq;

β1, ..., βs;A,B) ((αj > 0; j = 1, ..., q), (βj /∈ Z−0 ; j = 1, ..., s), β1 > 1, λ ≥ 0 and

−1 ≤ B < A ≤ 1), if and only if it satisfies

(1− λ)
Hp,q,s(α1;β1)f(z)

zp
+ λ

Hp,q,s(α1;β1 − 1)f(z)
zp

≺ 1 +Az

1 +Bz
. (1.8)

For convenience, we write V λ
p,q,s(α1;β1;A,B) = V λ

p(α1, .., αq;β1, .., βs;A,B).

We note that

(i) V 1
1,2,1(2, 1; 2; 1− 2α,−1) = R(α) (0 ≤ α < 1) [7];

(ii) V 1
p,2,1(p+ 1, 1; p+ 1; 1, 1

M − 1) = Sp(M) (M > 1
2 ) [26];

(iii) V 1
1,2,1(2, 1; 2; 2αβ − 1, 2β − 1) = R1(α, β) (0 ≤ α < 1, 0 < β ≤ 1) [16];

(iv) V 1
1,2,1(2, 1; 2; (2α− 1)β, β) = R(α, β) (0 ≤ α < 1, 0 < β ≤ 1) [12];

(v) V 1
1,2,1(n+ 2, 1; 2;A,B) = Vn(A,B) (n > −1) [14];

(vi) V 1
1,2,1(n+2, 1; 2;B+(A−B)(1−α), B) = Vn(A,B, α) (n > −1; 0 ≤ α < 1)

[2];

(vii) V λ
p,2,1(p+1, 1, p+1−µ;β(1−(2α/p)),−β) = V λ

p(µ, α, β); where V λ
p(µ, α, β)

denotes the class of functions f (z) ∈ A(p) satisfying the condition:∣∣∣∣∣ (1− λ)Ω(µ,p)
z f(z) + λΩ(1+µ,p)

z f(z)− zp

(1− λ)Ω(µ,p)
z f(z) + λΩ(1+µ,p)

z f(z) + (1− (2α/p))zp

∣∣∣∣∣ < β (z ∈ U),

where 0 ≤ µ < 1, 0 ≤ α < p, p ∈ N and 0 < β ≤ 1;

(viii) V λ
p,q,s(α1;β1; 1,

1
M −1) = V λ

p,q,s(α1;β1;M) (M > 1
2 ), where V λ

p,q,s(α1;β1;

M) denotes the class of functions f (z) ∈ A(p) satisfying the condition:∣∣∣∣[(1− λ)
Hp,q,s(α1;β1)f(z)

zp
+ λ

Hp,q,s(α1;β1 − 1)f(z)
zp

]
−M

∣∣∣∣ < M

(M >
1
2
; z ∈ U);

(ix) V 1
p,2,1(p+1, 1; p+2−µ; 1, 1

M −1) = V p(µ,M) (M > 1
2 ;−∞ < µ < p+1),

where V p(µ,M) denotes the class of functions f (z) ∈ A(p) satisfying the

condition:∣∣∣∣∣Ω(µ,p)
z f(z)
zp

−M

∣∣∣∣∣ < M (M >
1
2
;−∞ < µ < p+ 1; z ∈ U).

25



MOHAMED K. AOUF, ALI SHAMANDY, ADELA O. MOSTAFA, AND FATMA Z. EL-EMAM

2. Preliminaries

To prove our main results, we need the following lemmas.

Lemma 2.1. [9] Let the function h(z) be analytic and convex (univalent) in U with

h(0) = 1 and let the function φ(z) given by (1.2) be analytic in U. If

φ(z) +
zφ

′
(z)
γ

≺ h(z) (Re(γ) ≥ 0; γ 6= 0),

then

φ(z) ≺ ψ(z) =
γ

zγ

z∫
0

tγ−1h(t)dt ≺ h(z) ,

and ψ(z) is the best dominant.

Lemma 2.2. [25] Let Φ(z) be analytic in U with

Φ(0) = 1 and Re(Φ(z)) >
1
2

(z ∈ U).

Then, for any function F (z) analytic in U, (Φ∗F )(U) is contained in the convex hull

of F (U).

Lemma 2.3. [29] For real or complex numbers a, b and c (c 6= 0,−1,−2, ...), we have

1∫
0

tb−1(1− t)c−b−1(1− zt)−a
dt =

Γ(b)Γ(c− b)
Γ(c) 2F1(a,b;c;z) (Re (c)>Re (b)>0);

(2.1)

and

2F1(a, b; c; z) = (1− z)−a
2F1(a, c− b; c;

z

z − 1
). (2.2)

Lemma 2.4. [13] Let ω(z) =
∞∑

k=1

dkz
k ∈ Ω, if ν is a complex number, then

∣∣d2 − νd2
1

∣∣ ≤ max{1, |υ|}. (2.3)

Equation (2.3) may be attend with the functions ω(z) = z and ω(z) = z2, respectively,

for |υ| ≥ 1 and |υ| < 1.
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3. Main results

Otherwise unless mention throughout this paper, we assume that −1 ≤ B <

A ≤ 1, λ > 0, p ∈ N, β1 > 1 and z ∈ U .

Theorem 3.1. Let the function f defined by (1 .1 ) be in the class V λ
p,q,s(α1; β1;A,B).

Then

Hp,q,s(α1;β1)f(z)
zp

≺ Q(z) ≺ 1 +Az

1 +Bz
, (3.1)

where

Q(z) =


A
B +

(
1− A

B

)
(1 +Bz)−1

2F1

(
1, 1; β1−1

λ + 1; Bz
Bz+1

)
(B 6= 0)

1 + β1−1
β1−1+λAz (B = 0),

is the best dominant of (3 .1 ). Furthermore,

Re
{
Hp,q,s(α1;β1)f(z)

zp

}
> η(λ, β1, A,B), (3.2)

where

η(λ, β1, A,B) =


A
B +

(
1− A

B

)
(1−B)−1

2F1

(
1, 1; β1−1

λ + 1; B
B−1

)
(B 6= 0)

1− β1−1
β1−1+λA (B = 0).

The estimate in (3 .2 ) is best possible.

Proof. Setting

φ(z) =
Hp,q,s(α1;β1)f(z)

zp
. (3.3)

Then φ(z) is of the form (1.2) and is analytic in U. Differentiating (3.3), and using

identity (1.7) in the resulting equation, we have

(1− λ)
Hp,q,s(α1;β1)f(z)

zp
+ λ

Hp,q,s(α1;β1 − 1)f(z)
zp

= φ(z) +
λzφ

′
(z)

β1 − 1

≺ 1 +Az

1 +Bz
.
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Now, by using Lemma 2.1 for γ = β1−1
λ , we deduce that

φ(z) ≺ Q(z) =
β1 − 1
λ

z−
β1−1

λ

z∫
0

t
β1−1

λ −1(
1 +At

1 +Bt
)dt

=


A
B +

(
1− A

B

)
(1 +Bz)−1

2F1

(
1, 1; β1−1

λ + 1; Bz
Bz+1

)
(B 6= 0)

1 + β1−1
β1−1+λAz (B = 0),

by change of variables followed by using the identities (2.1) and (2.2) (with a = 1,

b = β1−1
λ and c = b + 1). This proves the assertion (3.1) of Theorem 3.1. Next, to

prove (3.2), it suffices to show that

inf
|z|<1

{Re(Q(z))} = Q(−1). (3.4)

For |z| ≤ r < 1, we have

Re
{

1 +Az

1 +Bz

}
≥ 1−Ar

1−Br
.

Setting

g(s, z) =
1 +Asz

1 +Bsz
and dµ(s) =

β1 − 1
λ

s
β1−1

λ −1ds (0 ≤ s ≤ 1),

we get

Q(z) =

1∫
0

g(s, z)dµ(s),

so that

Re{Q(z)} ≥
1∫

0

1−Asr

1−Bsr
dµ(s) = Q(−r) (|z| ≤ r < 1).

Letting r → 1− in the above inequality, we obtain the assertion (3.4). The result in

(3.2) is best possible as the function Q(z) is the best dominant of (3.1). �

Corollary 3.2. For 0 < λ2 < λ1, we have

V λ1
p,q,s(α1;β1;A,B) ⊂ V λ2

p,q,s(α1;β1;A,B).

Proof. Let f ∈ V λ1
p,q,s(α1;β1;A,B).
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Then by Theorem 3.1, we have f ∈ V 0
p,q,s(α1;β1;A,B). Since

(1− λ2)
Hp,q,s(α1;β1)f(z)

zp
+ λ2

Hp,q,s(α1;β1 − 1)f(z)
zp

=
(

1− λ2

λ1

)
Hp,q,s(α1;β1)f(z)

zp

+
λ2

λ1

{
(1− λ1)

Hp,q,s(α1;β1)f(z)
zp

+ λ1
Hp,q,s(α1;β1 − 1)f(z)

zp

}
≺ 1 +Az

1 +Bz
,

we see that f ∈ V λ2
p,q,s(α1;β1;A,B). �

Taking λ = s = α2 = 1, q = 2, α1 = p + 1, β1 = n + p, A = 1 − 2α
p and

B = −1 in Theorem 3.1, we get the following corollary.

Corollary 3.3. Let the function f given by (1 .1 )satisfy

Re
{
In−1,pf(z)

zp

}
>
α

p
(0 ≤ α < p; n > −p).

Then

Re
{
In,pf(z)
zp

}
>
α

p
+

(
1− α

p

) {
2F1

(
1, 1; p+ n;

1
2

)
− 1

}
.

The result is best possible.

Putting n = 1 in Corollary 3.3, we have the following corollary.

Corollary 3.4. If f ∈ A(p) satisfies

Re

{
f
′
(z)

zp−1

}
> α (0 ≤ α < p),

then

Re
{
f(z)
zp

}
>
α

p
+

(
1− α

p

) {
2F1

(
1, 1; p+ 1;

1
2

)
− 1

}
.

The result is best possible.

Remark 3.5. The above result improves the corresponding result of Saitoh [23,

Corollary 2].

Theorem 3.6. Let f(z) ∈ V 0
p,q,s(α1;β1;A,B), then the function Fδ,p defined by

(1 .3 ) satisfies
Hp,q,s(α1;β1)Fδ,p(z)

zp
≺ q(z) ≺ 1 +Az

1 +Bz
, (3.5)
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where

q(z) =


A
B +

(
1− A

B

)
(1 +Bz)−1

2F1

(
1, 1; p+ δ + 1; Bz

Bz+1

)
(B 6= 0)

1 + p+δ
p+δ+1Az (B = 0),

and q(z) is the best dominant of (3 .5 ). Furthermore,

Re
{
Hp,q,s(α1, β1)Fδ,p(z)

zp

}
> ξ(δ, p, A,B) , (3.6)

where

ξ(δ, p, A,B) =


A
B +

(
1− A

B

)
(1−B)−1

2F1

(
1, 1; p+ δ + 1; B

B−1

)
(B 6= 0)

1− p+δ
p+δ+1A (B = 0).

The estimate in (3.6) is best possible.

Proof. Let

φ(z) =
Hp,q,s(α1, β1)Fδ,p(z)

zp
. (3.7)

Then φ(z) is analytic in U with φ(0) = 1. Differentiating (3.7) and using the identity

z(Hp,q,s(α1;β1)Fδ,p(z))
′
= (δ + p)Hp,q,s(α1;β1)f(z)− δHp,q,s(α1;β1)Fδ,p(z) (3.8)

in the resulting equation, we obtain

φ(z) +
zφ

′
(z)

δ + p
=
Hp,q,s(α1;β1)f(z)

zp
≺ 1 +Az

1 +Bz
(z ∈ U).

Now, by using Lemma 2.1 for γ = δ + p, we deduce that

φ(z) ≺ q(z) = (δ + p)z−(δ+p)

z∫
0

tδ+p−1

(
1 +At

1 +Bt

)
dt.

The assertions (3.5) and (3.6) can now be deduced on the same lines that used in

Theorem 3.1. This completes the proof of Theorem 3.6. �

Taking A = 1 − 2α
p (0 ≤ α < p) and B = −1 in Theorem 3.6, we get the

following corollary.

Corollary 3.7. If f ∈ A(p) satisfies

Re
{
Hp,q,s(α1;β1)f(z)

zp

}
>
α

p
(0 ≤ α < p),
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then

Re
{
Hp,q,s(α1;β1)Fδ,p(z)

zp

}
>
α

p
+

(
1− α

p

) {
2F1

(
1, 1; p+ δ + 1;

1
2

)
− 1

}
.

The result is best possible.

Taking s = α2 = 1, q = 2, α1 = p+ 1 and β1 = p+ 1− µ (−∞ < µ < p+ 1)

in Corollary 3.7, we get the following corollary.

Corollary 3.8. If f ∈ A(p) satisfies

Re

{
Ω(µ,p)

z f(z)
zp

}
>
α

p
(0 ≤ α < p;−∞ < µ < p+ 1),

then

Re

{
Ω(µ,p)

z Fδ,p(z)
zp

}
>
α

p
+

(
1− α

p

) {
2F1

(
1, 1; p+ δ + 1;

1
2

)
− 1

}
.

The result is best possible.

Corollary 3.9. Under the hypothesis of Corollary 3.7, the function θm(z) defined by

(1 .4 )satisfies

Re
{
Hp,q,s(α1;β1)θm(z)

zp

}
>
ρm

p
,

where ρ0 = α and

ρj = ρj−1 + (p− ρj−1 )
{

2F1

(
1, 1; p+ δ + 1;

1
2

)
− 1

}
(j = 1, 2, ...,m).

The result is best possible.

Taking s = α2 = 1, q = 2, α1 = p+ 1 and β1 = n+ p (n > −p) in Corollary

3.7, we have the following corollary.

Corollary 3.10. If f ∈ A(p) satisfies

Re
{
In,pf(z)
zp

}
>
α

p
(0 ≤ α < p),

then

Re
{
In,pFδ,p(z)

zp

}
>
α

p
+ (1− α

p
)
{

2F1

(
1, 1; p+ δ + 1;

1
2

)
− 1

}
.

The result is the best possible.
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Putting n = 0 in Corollary 3.10, we have the following corollary which in

turn improves the corresponding result of Fukui et al. [7] for p = 1.

Corollary 3.11. If f ∈ A(p) satisfies

Re

{
f
′
(z)

zp−1

}
> α (0 ≤ α < p),

then

Re

{
F

′

δ,p(z)
zp−1

}
> α+ (p− α )

{
2F1

(
1, 1; p+ δ + 1;

1
2

)
− 1

}
.

The result is best possible.

Theorem 3.12. For f ∈ A(p), we have

f ∈ V 0
p,q,s(α1;β1;A,B) ⇔ Fβ1−p−1,p ∈ V 1

p,q,s(α1;β1;A,B).

Proof. Using identity (3.8) and

z(Hp,q,s(α1;β1)Fδ,p(z))
′
= (β1 − 1)Hp,q,s(α1;β1 − 1)Fδ,p(z)

+(p+ 1− β1)Hp,q,s(α1;β1)Fδ,p(z),

for δ = β1 − p− 1, we deduce that

Hp,q,s(α1;β1)f(z) = Hp,q,s(α1;β1 − 1)Fβ1−p−1,p(z)

and the assertion of Theorem 3.12 follows by using the definition of the class

V λ
p,q,s(α1;β1;A,B). �

Theorem 3.13. If the function f(z) given by (1 .1 ) belongs to the class V λ
p,q,s(α1;

β1;A,B), then

|ak+p| ≤
(A−B)(β1 − 1)k+1(β2)k...(βs)k(1)k

(β1 − 1 + λk)(α1)k...(αq)k
(k ≥ 1). (3.9)

The estimate is sharp.

Proof. Sincef(z) ∈ V λ
p,q,s(α1;β1;A,B), then

(1− λ)
Hp,q,s(α1;β1)f(z)

zp
+ λ

Hp,q,s(α1;β1 − 1)f(z)
zp

= p(z), (3.10)

32



VARIOUS PROPERTIES OF A CERTAIN CLASS OF MULTIVALENT ANALYTIC FUNCTIONS

where p(z) = 1 +
∞∑

k=1

pkz
k ∈ P (A,B). Substituting the power series expansion of

Hp,q,s(α1;β1)f(z), Hp,q,s(α1;β1 − 1)f(z) and p(z) in (3.10) and equating the coeffi-

cients of zk on the both sides of the resulting equation, we obtain

(β1 − 1 + λk)(α1)k...(αq)k

(β1 − 1)k+1(β2)k...(βs)kk!
ak+p = pk (k ≥ 1). (3.11)

Using the well-known [1] coefficient estimates

|pk| ≤ A−B (k ≥ 1),

in (3.11), we get the required result (3.9). The estimate in (3.9) is sharp for the

functions fk(z) defined by

(1− λ)
Hp,q,s(α1;β1)fk(z)

zp
+ λ

Hp,q,s(α1;β1 − 1)fk(z)
zp

=
1 +Azk

1 +Bzk
(k ≥ 1).

Clearly, fk(z) ∈ V λ
p,q,s(α1;β1;A,B) for each k ≥ 1. It is easy to see that the functions

fk(z) have the series expansion

fk(z) = zp +
(A−B)(β1 − 1)k+1(β2)k...(βs)k (1)k

(β1 − 1 + λk)(α1)k...(αq)k
zk+p + ... ,

show that the estimates in (3.9) are sharp. �

Taking A = λ = s = α2 = 1, q = 2, α1 = p + 1 and β1 = p + 2 − µ

(−∞ < µ < p + 1), B = 1
M − 1 (M > 1

2 ) in Theorem 3.13, we have the following

corollary.

Corollary 3.14. If the function f(z) given by (1 .1 ) belongs to the class V p(µ,M),

then

|ak+p| ≤
(2M − 1)(p+ 1− µ)k

M(p+ 1)k
(k ≥ 1).

The estimate is sharp.

Theorem 3.15. Let f given by (1 .1 ) belongs to the class V λ
p,q,s(α1;β1;A,B) and

ζ be any complex number. Then∣∣ap+2 − ζa2
p+1

∣∣ ≤ 2(A−B)(β1 − 1)3(β2)2...(βs)2
(β1 − 1 + 2λ)(α1)2...(αq)2

.

.max
{

1,
∣∣∣∣B + ζ

(β1 − 1)2 β2...βs(A−B)(β1 − 1 + 2λ)(α1 + 1)...(αq + 1)
2α1...αq (β1 + 1)...(βs + 1)(β1 − 1 + λ)2

∣∣∣∣} .

(3.12)
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The estimate in (3 .12 ) is sharp.

Proof. From (1.8), we deduce that

(1− λ)
Hp,q,s(α1;β1)f(z)

zp
+ λ

Hp,q,s(α1;β1 − 1)f(z)
zp

− 1

=
[
A−B

{
(1− λ)

Hp,q,s(α1;β1)f(z)
zp

+ λ
Hp,q,s(α1;β1 − 1)f(z)

zp

}]
ω(z), (3.13)

where ω(z) =
∞∑

k=1

ωkz
k is analytic in U and satisfies |ω(z)| ≤ |z| for z ∈ U. Substituting

the power series expansion of Hp,q,s(α1;β1)f(z), Hp,q,s(α1;β1 − 1)f(z) and ω(z) in

(3.13), and equating the coefficients of z and z2, we get

ap+1 =
(A−B)(β1 − 1)2 β2...βs

(β1 − 1 + λ) α1...αq
ω1, (3.14)

ap+2 =
2(A−B)(β1 − 1)3 (β2)2...(βs)2

(β1 − 1 + 2λ) (α1)2...(αq)2
(ω2 −Bω2

1). (3.15)

From (3.14) and (3.15), we have∣∣ap+2 − ζa2
p+1

∣∣ =
2(A−B)(β1 − 1)3(β2)2...(βs)2

(β1 − 1 + 2λ)(α1)2...(αq)2

∣∣ω2 − υω2
1

∣∣ , (3.16)

where

υ = B + ζ
(β1 − 1)2 β2...βs(A−B)(β1 − 1 + 2λ)(α1 + 1)...(αq + 1)

2α1...αq (β1 + 1)...(βs + 1)(β1 − 1 + λ)2
.

Now, by using (2.3) in (3.16), we get the required result. The result (3.12) is sharp

as the estimate (2.3) is sharp. �

Taking A = λ = s = α2 = 1, q = 2, α1 = p + 1 and β1 = p + 2 − µ

(−∞ < µ < p + 1), B = 1
M − 1 (M > 1

2 ) in Theorem 3.15, we have the following

corollary.

Corollary 3.16. Let f, given by (1 .1 ), belongs to the class V p(µ,M), and ζ be any

complex number. Then∣∣ap+2 − ζa2
p+1

∣∣ ≤ (2M − 1)(p+ 1− µ)2
M(p+ 1)2

.

.max
{

1,
∣∣∣∣1−M

M
+ ζ

(2M − 1)(p+ 2)(p+ 1− µ)
M(p+ 1)(p+ 2− µ)

∣∣∣∣} .

The estimate is sharp.
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Theorem 3.17. Let f ∈ V λ
p,q,s(α1;β1;A,B) and g ∈ A(p) with Re{ g(z)

zp } > 1
2 for z ∈

U. Then the function h = f ∗ g belongs to the class V λ
p,q,s(α1;β1;A,B).

Proof. We can write

(1− λ)
Hp,q,s(α1;β1)h(z)

zp
+ λ

Hp,q,s(α1;β1 − 1)h(z)
zp

=
{

(1− λ)
Hp,q,s(α1;β1)f(z)

zp
+ λ

Hp,q,s(α1;β1 − 1)f(z)
zp

}
∗ g(z)
zp

. (3.17)

Since Re{ g(z)
zp } > 1

2 in U and f ∈ V λ
p,q,s(α1;β1;A,B), it follows from (3.17) and

Lemma 2.2 that h ∈ V λ
p,q,s(α1, β1;A,B). The proof is completed. �

Corollary 3.18. Let f ∈ V λ
p,q,s(α1, β1;A,B) and g ∈ A(p) satisfy

Re

{
(1− µ)

g(z)
zp

+ µ
g
′
(z)

pzp−1

}
>

3− 2 2F1(1, 1; p
µ + 1; 1/2)

2
{

2−2 F1(1, 1; p
µ + 1; 1/2)

} (µ > 0; z ∈ U). (3.18)

Then f ∗ g ∈ V λ
p,q,s(α1;β1;A,B).

Proof. From Theorem 3.1 (for q = 2, s = 1, α1 = β1 = p + 1, α2 = 1, λ = µ > 0,

A = 2F1(1,1; p
µ +1;1/2)−1

2−2F1(1,1; p
µ +1;1/2) , and B = −1), condition (3.18) implies

Re
{
g(z)
zp

}
>

1
2
.

Using this, it follows from Theorem 3.17 that f ∗ g ∈ V λ
p,q,s(α1;β1;A,B). �

Theorem 3.19. If each of the functions f(z) given by (1 .1 ) and g(z) = zp +
∞∑

k=1

bk+pz
k+p belongs to the class V λ

p,q,s(α1;β1;A,B), then so does the function

h(z) = (1− λ)Hp,q,s(α1;β1)(f ∗ g)(z) + λHp,q,s(α1;β1 − 1)(f ∗ g)(z).

Proof. Since f ∈ V λ
p,q,s(α1;β1;A,B), it follow by (3.13) that∣∣∣∣(1− λ)
Hp,q,s(α1;β1)f(z)

zp
+ λ

Hp,q,s(α1;β1 − 1)f(z)
zp

− 1
∣∣∣∣

<

∣∣∣∣A−B

{
(1− λ)

Hp,q,s(α1;β1)f(z)
zp

+ λ
Hp,q,s(α1;β1 − 1)f(z)

zp

}∣∣∣∣ ,
which is equivalent to∣∣∣∣(1− λ)

Hp,q,s(α1;β1)f(z)
zp

+ λ
Hp,q,s(α1;β1 − 1)f(z)

zp
− ξ

∣∣∣∣ < η (z ∈ U), (3.19)
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where

ξ =
1−AB

1−B2
and η =

A−B

1−B2
.

It is known [17] that if G(z) =
∞∑

k=0

gkz
k is analytic in U and |G(z)| ≤ E, then

∞∑
k=0

|gk|2 ≤ E2. (3.20)

Applying (3.20) to (3.19), we get

(1− ξ)2 +
∞∑

k=1

{
(β1 − 1 + λk)(α1)k...(αq)k

(β1 − 1)k+1(β2)k...(βs)k(1)k

}2

|ak+p|2 < η2,

that is, that
∞∑

k=1

{
(β1 − 1 + λk)(α1)k...(αq)k

(β1 − 1)k+1(β2)k...(βs)k(1)k

}2

|ak+p|2 <
(A−B)2

1−B2
. (3.21)

Similarly,
∞∑

k=1

{
(β1 − 1 + λk)(α1)k...(αq)k

(β1 − 1)k+1(β2)k...(βs)k(1)k

}2

|bk+p|2 <
(A−B)2

1−B2
. (3.22)

Now, for |z| = r < 1, by applying Cauchy-Schwarz inequality, we find that∣∣∣∣(1− λ)
Hp,q,s(α1;β1)h(z)

zp
+ λ

Hp,q,s(α1;β1 − 1)h(z)
zp

− ξ

∣∣∣∣2

=

∣∣∣∣∣(1− ξ) +
∞∑

k=1

{
(β1 − 1 + λk)(α1)k...(αq)k

(β1 − 1)k+1(β2)k...(βs)k(1)k

}2

ak+pbk+pz
k

∣∣∣∣∣
2

≤ (1− ξ)2 + 2(1− ξ)
∞∑

k=1

{
(β1 − 1 + λk)(α1)k...(αq)k

(β1 − 1)k+1(β2)k...(βs)k(1)k

}2

|ak+p| |bk+p| rk

+

∣∣∣∣∣
∞∑

k=1

{
(β1 − 1 + λk)(α1)k...(αq)k

(β1 − 1)k+1(β2)k...(βs)k(1)k

}2

ak+pbk+pz
k

∣∣∣∣∣
2

≤ (1− ξ)2 + 2(1− ξ)

[ ∞∑
k=1

{
(β1 − 1 + λk)(α1)k...(αq)k

(β1 − 1)k+1(β2)k...(βs)k(1)k

}2

|ak+p|2 rk

]1/2

.

.

[ ∞∑
k=1

{
(β1 − 1 + λk)(α1)k...(αq)k

(β1 − 1)k+1(β2)k...(βs)k(1)k

}2

|bk+p|2 rk

]1/2

+

[ ∞∑
k=1

{
(β1 − 1 + λk)(α1)k...(αq)k

(β1 − 1)k+1(β2)k...(βs)k(1)k

}2

|ak+p|2 rk

]
.
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.

[ ∞∑
k=1

{
(β1 − 1 + λk)(α1)k...(αq)k

(β1 − 1)k+1(β2)k...(βs)k(1)k

}2

|bk+p|2 rk

]

≤ (1− ξ)2 + 2(1− ξ)

[ ∞∑
k=1

{
(β1 − 1 + λk)(α1)k...(αq)k

(β1 − 1)k+1(β2)k...(βs)k(1)k

}2

|ak+p|2
]1/2

.

.

[ ∞∑
k=1

{
(β1 − 1 + λk)(α1)k...(αq)k

(β1 − 1)k+1(β2)k...(βs)k(1)k

}2

|bk+p|2
]1/2

+

[ ∞∑
k=1

{
(β1 − 1 + λk)(α1)k...(αq)k

(β1 − 1)k+1(β2)k...(βs)k(1)k

}2

|ak+p|2
]
.

.

[ ∞∑
k=1

{
(β1 − 1 + λk)(α1)k...(αq)k

(β1 − 1)k+1(β2)k...(βs)k(1)k

}2

|bk+p|2
]

≤ (1− ξ)2 + 2(1− ξ)
(A−B)2

1−B2
+

(A−B)4

(1−B2)2

=
{
B(A−B)

1−B2

}2

+ 2
B(A−B)3

(1−B2)2
+

(A−B)4

(1−B2)2
< η2,

by using (3.22) and (3.23).

Thus, again with the aid of (3.20), we have h ∈ V λ
p,q,s(α1, β1; A,B). �

Theorem 3.20. Let f ∈ V λ
p,q,s(α1;β1;A,B) and Sn(z) = zp +

n−1∑
k=1

ak+pz
k+p (n ≥ 2).

Then for z ∈ U, we have

Re

[∫ z

0
t−p(Hp,q,s(α1;β1)Sn(t))dt

z

]
> η(λ, β1, A,B),

where η(λ, β1, A,B) is defined as in Theorem 3.1.

Proof. Singh and Singh [25] proved that

Re

{
1 +

n−1∑
k=1

zk

k + 1

}
>

1
2

(z ∈ U). (3.23)

Writing∫ z

0
t−p(Hp,q,s(α1;β1)Sn(t))dt

z
=
Hp,q,s(α1;β1)f(z)

zp
∗

{
1 +

n−1∑
k=1

zk

k + 1

}
and making use of (3.23), Theorem 3.1 and Lemma 2.2, the assertion of the theorem

follows at once. �
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Remark 3.21. By taking q = 2, s = 1, α1 = a (a > 0), α2 = 1 and β1 = c (c > 1;

c /∈ Z−0 ) in our results, we obtain the results obtained by Patel and Sahoo [21].
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sian), Izv. Vysšh. Učebn. Zaved. Mat., 10 (1978), 83-89.

[11] Janowski, Z., Some extremal problems for certain families of analytic functions, Ann.

Polon. Math., 28 (1973), 297-326.

[12] Juneja, O. P., Mogra, M. L., A class of univalent functions, Bull. Sci. Math., 103 (1979),

435-447.

[13] Keogh, F. R., Merkes, E. P., A coefficient inequality for certain classes of analytic

functions, Proc. Amer. Math. Soc., 20 (1969), 8-12.

38



VARIOUS PROPERTIES OF A CERTAIN CLASS OF MULTIVALENT ANALYTIC FUNCTIONS

[14] Kumar, V., On a new criterion for univalent functions, Demonstratio Math., 17 (1984),

no. 4, 875-886.

[15] Liu, J.-L., Noor, K. I., Some properties of Noor integral operator, J. Natur. Geom., 21

(2002), 81-90.

[16] Mogra, M. L., On a class of univalent functions whose derivatives have a positive real

part, Riv. Mat. Univ. Parma, 7 (1981), 163-172.

[17] Nehari, Z., Conformal Mapping, McGraw Hill, New York 1952.

[18] Owa, S., On the distortion theorems. I, Kyungpook Math. J., 18 (1978), 53-59.

[19] Owa, S., Srivastava, H. M., Univalent and starlike generalized hypergeometric functions,

Canad. J. Math., 39 (1987), 1057-1077.

[20] Patel, J., Mishra, A. K., On certain subclasses of multivalent functions associated with

an extended fractional differintegral operator, J. Math. Anal. Appl., 332 (2007), 109-122.

[21] Patel, J., Sahoo, P., Properties of a certain class of multivalent analytic functions,

Comput. Math. Appl., 46 (2003), 1633-1644.

[22] Ruscheweyh, S., New criteria for univalent functions, Proc. Amer. Math. Soc., 49

(1975), 109-115.

[23] Saitoh, H., Properties of certain analytic functions, Proc. Japan Acad., 65 (1989), 131-

134.

[24] Saitoh, H., A linear operator and its applications of first order differential subordina-

tions, Math. Japon., 44 (1996), 31-38.

[25] Singh, R., Singh, S., Convolution properties of a class of starlike functions, Proc. Amer.

Math. Soc., 106 (1989), 145-152.

[26] Sohi, N. S., A class of p-valent analytic functions, Indian J. Pure Appl. Math., 10

(1979), no. 7, 826-834.

[27] Srivastava, H. M., Aouf, M. K., A certain fractional derivative operator and its applica-

tions to a new class of analytic and multivalent functions with negative coefficients. I,

J. Math. Anal. Appl., 171 (1992) 1-13; II, J. Math. Anal. Appl., 192 (1995), 673-688.

[28] Srivastava, H. M., Karlsson, P. W., Multiple Gaussian Hypergeometric Series, Halsted

Press (Ellis Horwood, Chichester), John Wiley and Sons, New York, 1985.

[29] Whittaker, E. T., Watson, G. N., A course on modern analysis : An introduction to

the general theory of infinite processes and of analytic functions; With an account of

the principal transcendental functions, Fourth edition (reprinted), Cambridge University

Press, Cambridge, 1927.

39



MOHAMED K. AOUF, ALI SHAMANDY, ADELA O. MOSTAFA, AND FATMA Z. EL-EMAM

Faculty of Science, Mansoura University

Mansoura, 35516, Egypt

E-mail address: mkaouf127@yahoo.com

Faculty of Science, Mansoura University

Mansoura, 35516, Egypt

E-mail address: shamandy16@hotmail.com

Faculty of Science, Mansoura University

Mansoura, 35516, Egypt

E-mail address: adelaeg254@yahoo.com

Faculty of Science, Mansoura University

Mansoura, 35516, Egypt

E-mail address: fatma elemam@yahoo.com

40
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ON ORDER OF CONVOLUTION CONSISTENCE
OF THE ANALYTIC FUNCTIONS

URSZULA BEDNARZ AND JANUSZ SOKÓ L

Dedicated to Professor Grigore Ştefan Sălăgean on his 60th birthday

Abstract. In this paper we consider the convolution of certain classes

of analytic functions. We discuss when it is in a given class. By means

of the Sălăgean integral operator we define a constant S which describes

a measure of convolution consistence of three classes. We shall examine

some special families for which we can determine the order of convolution

consistence.

1. Introduction

Let H denote the class of analytic functions in the unit disc U = {z : |z| < 1}

on the complex plane C. Let A denote the subclass of H consisting of functions

normalized by f(0) = 0, f ′(0) = 1 and let S ⊂ A denote the class of functions

univalent in U . Everywhere in this paper z ∈ U unless we make a note. A function f

maps U onto a starlike domain with respect to w0 = 0 if and only if

Re

[
zf ′(z)
f(z)

]
> 0 (z ∈ U). (1.1)

It is well known that if an analytic function f satisfies (1.1) and f(0) = 0, f ′(0) 6= 0,

then f is univalent and starlike in U .

A set E is said to be convex if and only if it is starlike with respect to each

of its points, that is if and only if the linear segment joining any two points of E lies

Received by the editors: 25.04.2010.

2000 Mathematics Subject Classification. 30C45, 30C50, 30C55.

Key words and phrases. Hadamard product, integral convolution, k-starlike functions, k-uniformly convex

functions, order of convolution consistence, Sălăgean integral operator, starlike functions, convex

functions, functions with positive real part.
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entirely in E. Let f be analytic and univalent in U . Then f maps U onto a convex

domain E if and only if

Re

[
1 +

zf ′′(z)
f ′(z)

]
> 0 (z ∈ U). (1.2)

Such a function f is said to be convex in U (or briefly convex). The set of all functions

f ∈ A that are starlike univalent in U will be denoted by ST . The set of all functions

f ∈ A that are convex univalent in U by CV. Recall that the Hadamard product or

convolution of two power series

f(z) = z +
∞∑

n=2

anzn and g(z) = z +
∞∑

n=2

bnzn,

is defined as

(f ∗ g) (z) = z +
∞∑

n=2

anbnzn

and the integral convolution is defined by

(f ⊗ g) (z) = z +
∞∑

n=2

anbn

n
zn.

It is well known [10] that if f, g ∈ CV, then f ∗ g ∈ CV while if f, g ∈ ST , then f ∗ g

may not be in ST and even may fail to be univalent. To examine deeply this problem

let us consider the Sălăgean integral operator (see [12]) Is : A → A, s ∈ R, such that

Isf(z) = Is

( ∞∑
n=1

anzn

)
=

∞∑
n=1

an

ns
zn.

Now, one can ask if exists there a number s ∈ R such that

Is(f ∗ g) ∈ ST ∀f, g ∈ ST .

The answer there is in Theorem 2.1 below. This problem may be consider more

generally for other classes of functions when the Sălăgean integral operator is defined

on H as follows

Is

(
a0 +

∞∑
n=1

anzn

)
= a0 +

∞∑
n=1

an

ns
zn.
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Definition 1.1. Let X , Y and Z be subsets of H. We say that the three (X ,Y,Z)

is S–closed under convolution if there exists a number S = S(X ,Y,Z) such that

S(X ,Y,Z) = min {s ∈ R : Is(f ∗ g) ∈ Z ∀f ∈ X ∀g ∈ Y} (1.3)

= min {s ∈ R : Is(X ∗ Y) ⊆ Z} ,

where Is denote the Sălăgean integral operator. The number S(X ,Y,Z) is called the

order of convolution consistence the three (X ,Y,Z). It would be called the Sălăgean

number.

2. Main results

We shall examine some special families for which we can determine the order

of convolution consistence. First we shall restrict our attention to the classes of

starlike and convex functions.

Theorem 2.1. The order of convolution consistence of the class ST is equal to 1:

S(ST ,ST ,ST ) = 1. (2.1)

Proof. It is well known [10] that ST ⊗ ST = ST and I1(f ∗ g) = f ⊗ g. Thus if

f, g ∈ ST , then I1(f ∗ g) ∈ ST . This means that S(ST ,ST ,ST ) ≤ 1. If we consider

the functions f, g ∈ ST such that

f(z) = g(z) =
z

(1− z)2
(z ∈ U),

then

Is(f ∗ g) =
∞∑

n=1

n2−szn.

The coefficients of the functions in the class ST cannot be greater than n. If we want

that n2−s ≤ n, then s ≥ 1. Therefore we deduce that S(ST ,ST ,ST ) = 1. �

Theorem 2.2. We have the following orders of convolution consistence

(i) S(CV, CV,ST ) = −1,

(ii) S(CV,ST ,ST ) = 0,

(iii) S(ST ,ST , CV) = 2,

(iv) S(CV, CV, CV) = 0,

(v) S(CV,ST , CV) = 1.
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Proof. (i) It is well known [10] that CV ∗ ST = ST . Let f, g ∈ CV. Then zg′ ∈ ST

and I−1(f ∗ g)(z) = f(z) ∗ (zg′(z)) ∈ ST , so S(CV, CV,ST ) ≤ −1. If

f(z) = g(z) =
z

1− z
∈ CV,

then

Is(f ∗ g) =
∞∑

n=1

n−szn.

Because the coefficients of the functions in the class ST cannot be greater than n

we obtain the condition n−s ≤ n. Therefore we deduce that s ≥ −1 and then

S(CV, CV,ST ) = −1.

The proofs of (ii)− (v) run as the proof of (i). �

To find the order of convolution consistence of other classes let us recall the

classes of k-uniformly convex and of k-starlike functions:

k-UCV :=
{

f ∈ S : Re

[
1 +

zf ′′(z)
f ′(z)

]
> k

∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ , (z ∈ U ; 0 ≤ k < ∞)
}

,

k-ST :=
{

f ∈ S : Re

[
zf ′(z)
f(z)

]
> k

∣∣∣∣zf ′(z)
f(z)

− 1
∣∣∣∣ , (z ∈ U ; 0 ≤ k < ∞)

}
.

The class k-UCV was introduced by Kanas and Wísniowska [5], where its geometric

definition and connections with the conic domains were considered. The class k-UCV

was defined pure geometrically as a subclass of univalent functions, that map each

circular arc contained in the unit disk U with a center ξ, |ξ| ≤ k (0 ≤ k < ∞), onto a

convex arc. The notion of k-uniformly convex function is a natural extension of the

classical convexity. Observe that, if k = 0 then the center ξ is the origin and the class

k-UCV reduces to the class of convex univalent functions CV. Moreover for k = 1

corresponds to the class of uniformly convex functions UCV introduced by Goodman

[2] and studied extensively by Rønning [9] and independently by Ma and Minda [8].

The class k-ST is related to the class k-UCV by means of the well-known Alexander

equivalence between the usual classes of convex CV and starlike ST functions (see

also the works [4, 6, 7, 8, 9] for further developments involving each of the classes

k-UCV and k-ST ). Moreover, in [1] the authors studied the properties of the integral

convolution of the neighborhoods of these classes. To start examine the order of
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convolution consistence connected with the classes k-UCV and k-ST we need recall

some basic results about these classes. Let us denote (see [4])

P1(k) =


8(arccosk)2

π2(1−k2) for 0 ≤ k < 1
8

π2 for k = 1
π2

4
√

t(1+t)(k2−1)K2(t)
for k > 1

, (2.2)

where t ∈ (0, 1) is determined by k = cosh(πK′(t)/[4K(t)]), K is the Legendre’s

complete Elliptic integral of the first kind

K(t) =
∫ 1

0

dx√
(1− x2)(1− t2x2)

and K′(t) = K(
√

1− t2) is the complementary integral of K(t). Let Ωk be a domain

such that 1 ∈ Ωk and

∂Ωk =
{
w = u + iv : u2 = k2(u− 1)2 + k2v2

}
, 0 ≤ k < ∞.

The domain Ωk is elliptic for k > 1, hyperbolic when 0 < k < 1, parabolic when

k = 1, and a right half-plane when k = 0. If p̃α is an analytic function with p̃α(0) = 1

which maps the unit disc U conformally onto the region Ωk, then P1(k) = p̃ ′
α(0).

P1(k) is strictly decreasing function of the variable k and its values are included in

the interval (0, 2].

Lemma 2.3. (see [4]) Let 0 ≤ k < ∞ and let f ∈ k-ST be of the form

f(z) = z +
∞∑

n=2

an(k)zn (|z| < 1),

then

|an(k)| ≤
(P1(k))(n−1)

(n− 1)!
, n = 2, 3, . . . ,

where (λ)n is the Pochhammer symbol defined by

(λ)n =

 1 (n = 0)

λ(λ + 1) · . . . · (λ + n− 1) (n ∈ N).

For k = 0 the estimates are sharp; otherwise only the bound on |a2(k)| is sharp.
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Lemma 2.4. (see [4]) Let 0 ≤ k < ∞ and let f ∈ k-UCV be of the form

f(z) = z +
∞∑

n=2

an(k)zn (|z| < 1),

then

|an(k)| ≤
(P1(k))(n−1)

n!
, n = 2, 3, . . . ,

where P1(k) is given in (2.2). For k = 0 the estimates are sharp; otherwise only the

bound on |a2(k)| is sharp.

Theorem 2.5. The following inequalities hold true

(i) log2 P1(k) ≤ S(k-ST , k-ST , k-ST ) ≤ 1,

(ii) 1 + log2 P1(k) ≤ S(k-ST , k-ST , k-UCV) ≤ 2,

(iii) S(k-ST , CV, k-UCV) = 1,

(iv) S(k-ST , CV, k-ST ) = 0,

(v) S(k-UCV, CV, k-UCV) = 0,

whenever there exist the above orders of convolution consistence.

Proof. (i) In [4] it was proved that if f, g ∈ k-ST then f ⊗ g ∈ k-ST so I1(f ∗ g) =

f ⊗ g ∈ k-ST . Therefore S(k-ST , k-ST , k-ST ) ≤ 1, whenever it there exist. Suppose

that

f(z) = g(z) = z exp
∫ z

0

p̃α(t)− 1
t

dt = z + P1(k)z2 + · · · , (2.3)

where P1(k) is given in (2.2). Then f, g ∈ k-ST and by Lemma 2.3 for the second

coefficient we have

Is(f ∗ g) ∈ k-ST ⇒ P1(k)P1(k)
2s ≤ P1(k) ⇔ P1(k) ≤ 2s.

Therefore we deduce that S(k-ST , k-ST , k-ST ) ≥ log2 P1(k). Notice that P1(k) is

strictly decreasing function of the variable k and its values are included in the interval

(0, 2].

(ii) This proof runs as the previous proof.

(iii) Let f ∈ k-ST and g ∈ CV. Then [4] f ⊗ g ∈ k-UCV so I1(f ∗ g) ∈ k-UCV, hence

S(CV, CV,ST ) ≤ 1. If f is given as in (2.3) and g(z) = z/(1 − z) ∈ CV, then by

Lemma 2.4

Is(f ∗ g) ∈ k-UCV ⇒ P1(k)
2s ≤ P1(k)

2
⇔ s ≥ 1.
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Therefore S(k-ST , CV, k-UCV) = 1

(iv), (v) Those proofs run as the previous proof. �

Lemma 2.6. (see [11]) Let F and G be in CV. Then

f ≺ F and g ≺ G ⇒ f ∗ g ≺ F ∗G. (2.4)

Let us consider for α < 1 the class of functions:

P(α) = {p : zp(z) ∈ A and Re [p(z)] > α for z ∈ U} .

Lemma 2.7. If h ∈ P(α) and h(z) = 1 + a1z + a2z
2 + · · · , then the function

H(z) = 1 +
∞∑

n=1

an

n
zn (z ∈ U) (2.5)

satisfies

H(z) ≺ 1− 2(1− α) log(1− z) (z ∈ U) (2.6)

and belongs to the class P(1 + 2(α− 1) log 2).

Proof. It is well known that the function

g(z) = − log(1− z) =
∞∑

n=1

zn

n
(z ∈ U)

belongs to the class CV of convex univalent functions so g(z) + 1 is convex univalent

too. Thus as in (2.4) we have h(z) ≺ 1+(1−2α)z
1−z

g(z) + 1 ≺ g(z) + 1
⇒ h(z) ∗ (g(z) + 1) ≺ 1 + (1− 2α)z

1− z
∗ (g(z) + 1) ,

Therefore we can write

h(z) ∗ (g(z) + 1) = 1 +
∞∑

n=1

an

n
zn

≺ 1 + (1− 2α)z
1− z

∗ (1− log(1− z))

=
[
1 + 2(1− α)(z + z2 + · · · )

]
∗ (1− log(1− z))

= 1− 2(1− α) log(1− z). (2.7)

The function

H(z) =
1 + (1− 2α)z

1− z
∗ (1− log(1− z)) = 1− 2(1− α) log(1− z) (z ∈ U)
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is convex univalent as a convolution of convex univalent functions and is typically–real

so the geometric properties of the image of H(U) show that

min {ReH(z) : |z| < 1} = H(−1) = 1 + 2(α− 1) log 2.

Therefore from (2.7) we obtain that H ∈ P(1 + 2(α− 1) log 2). �

Lemma 2.8. [13] If a ≤ 1, b ≤ 1, and f ∈ P(a), g ∈ P(b) for z ∈ U , then

Re[(f ∗ g)(z)] > c for z ∈ U ,

were c = 1− 2(1− a)(1− b).

Theorem 2.9. If S(P(α),P(α),P(δ)) there exists, then

(i) µ ≤ S(P(α),P(α),P(δ)) ≤ 1,

where δ = 1− 4(1− α)2 log 2, µ = − log(2 log 2)
log 2 = −0.732 . . . ,

(ii) S(P(α),P(β),P(γ)) = 0,

where γ = 1− 2(1− α)(1− β),

(iii) 1 + log2
(1−α)(1−β)

1−γ ≤ S(P(α),P(β),P(γ)) ≤ 0,

where γ < 1− 2(1− α)(1− β).

Proof. (i) Let g ∈ P(α) and let

g(z) = z +
∞∑

n=2

bnzn.

Let h, H be given as in Lemma 2.7. Therefore we have H ∈ P(γ), where

γ = 1 + 2(α− 1) log 2.

Further, by Lemma 2.8 we have

I1(g ∗ h)(z) = 1 +
∞∑

n=1

anbn

n
zn = g(z) ∗H(z)

∈ P(1− 2(1− α)(1− γ))

= P(1− 4(1− α)2 log 2), (2.8)

so S(P(α),P(α),P(δ)) ≤ 1. Suppose that

h(z) = g(z) = 1 + 2(1− α)
∞∑

n=1

zn ∈ P(α).
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It is known that if 1 + a1z + · · · ∈ P(δ), then |an| ≤ 2(1 − δ). Therefore, examining

the second coefficients we get

Is(g ∗ h) ∈ P(δ) ⇒ 4(1− α)2

2s
≤ 2(4(1− α)2 log 2) ⇔ 1

2 log 2
≤ 2s ⇔ s > log2

1
2 log 2

and we can see that S(P(α),P(α),P(δ)) ≥ µ, where µ = − log(2 log 2)
log 2 = −0.732 . . ..

For the proof of (ii) notice that by Lemma 2.8 if f ∈ P(α) and g ∈ P(β),

then I0(f ∗ g) ∈ P(γ)). This means that S(P(α),P(β),P(γ)) ≤ 0. If

f(z) = 1 + 2(1− α)
∞∑

n=1

zn ∈ P(α)

g(z) = 1 + 2(1− β)
∞∑

n=1

zn ∈ P(β), (2.9)

then for the second coefficient we have

Is(f ∗ g) ∈ P(γ) ⇒ 4(1− α)(1− β)
2s ≤ 2(1− γ) ⇔ 2s ≥ 1.

Therefore we deduce that S(P(α),P(β),P(γ)) = 0.

In order to prove (iii) notice that by Lemma 2.8 if f ∈ P(α) and g ∈ P(β),

then

I0(f ∗ g) ∈ P(1− 2(1− α)(1− β)) ⊆ P(γ).

This means that S(P(α),P(β),P(γ)) ≤ 0. If f ∈ P(α) and g ∈ P(β) are given as in

(2.9), then for the second coefficient we have

Is(f ∗ g) ∈ P(γ) ⇒ 4(1− α)(1− β)
2s ≤ 2(1− γ) ⇔ 2s−1 ≥ (1− α)(1− β)

1− γ
.

Thus we see that

1 + log2

(1− α)(1− β)
1− γ

≤ S(P(α),P(β),P(γ)).

Note that if γ < 1− 2(1− α)(1− β), then

1 + log2

(1− α)(1− β)
1− γ

< 0.

�
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BERNSTEIN TYPE OPERATORS ON A SQUARE

WITH ONE AND TWO CURVED SIDES

PETRU BLAGA, TEODORA CĂTINAŞ AND GHEORGHE COMAN

Dedicated to Professor Grigore Ştefan Sălăgean on his 60th birthday

Abstract. We construct some Bernstein-type operators on a square with

one and two curved sides, their product and Boolean sum. We study their

interpolation properties, the orders of accuracy and the remainders of the

corresponding approximation formulas. Finally, we give some numerical

examples.

1. Introduction

Approximation operators on polygonal domains with some curved sides have

important applications especially in finite element method for differential equations

with given boundary conditions and in computer aided geometric design. Such oper-

ators were considered in the papers [14], [15], [13], [2], [5], [19]. Lately, such problems

were studied in [11], [12] using interpolation operators, and in the papers [7], [8], [9],

using Bernstein-type operators.

The aim of this paper is to introduce some Bernstein-type operators on a

square with one curved side and, respectively, with two curved sides. We study three

main aspects of the constructed operators: the interpolation properties, the orders of

accuracy and the remainders of the corresponding approximation formulas.

Using the interpolation properties of such operators, it can be constructed

blending function interpolants, which exactly matches function on some sides of a

Received by the editors: 04.05.2010.

2000 Mathematics Subject Classification. 41A05, 41A25, 41A80.
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Figure 1. The square Dh.

rectangular region. Important applications of these blending functions are in finite el-

ement method for differential equations problems with Dirichlet boundary conditions

or for construction of surfaces which satisfy some given conditions.

2. Bernstein type operators on a square with one curved side

Let Dh be the square with one curved side having the vertices V1 = (0, 0),

V2 = (h, 0), V3 = (h, h) and V4 = (0, h), three straight sides Γ1, Γ2, along the

coordinate axes and Γ3 parallel to axis Ox, and the curved side Γ4 which is defined

by the function g, such that g(h) = g(0) = h (See Figure 1).

2.1. Univariate operators. Let F be a real-valued function defined on Dh and

(0, y), (g(y), y), respectively, (x, 0), (x, h) be the points in which the parallel lines to

the coordinate axes, passing through the point (x, y) ∈ Dh, intersect the sides Γ2, Γ4,

respectively Γ1 and Γ3. We consider the uniform partitions of the intervals [0, g(y)]

and [0, h], y ∈ [0, h] :

∆x
m =

{

i
mg(y)

∣

∣ i = 0, m
}

and

∆y
n =

{

j
nh

∣

∣ j = 0, n
}

and the Bernstein-type operators Bx
m and By

n defined by

(Bx
mF ) (x, y) =

m
∑

i=0

pm,i (x, y) F
(

i
mg(y), y

)

, (2.1)
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with

pm,i (x, y) =

(

m

i

)

[

x
g(y)

]i [

1 − x
g(y)

]m−i

, (2.2)

respectively,

(By
nF ) (x, y) =

n
∑

j=0

qn,j (x, y)F
(

x, j
nh

)

(2.3)

with

qn,j (x, y) =

(

n

j

)

(

y
h

)j (

1 − y
h

)n−j
.

Remark 2.1. In Figures 2 and 3 we plot the points ( i
mg(y), y), i = 0, m and respec-

tively, (x, j
nh), j = 0, n, x, y ∈ [0, h], for m = 5 and n = 6.

V
1 V

2

V
3

V
4

Figure 2. Points

( i
mg(y), y), i = 0, m.

V
1

V
2

V
3

V
4

Figure 3. Points

(x, j
nh), j = 0, n.

Theorem 2.2. If F is a real-valued function defined on Dh then:

(i) Bx
mF = F on Γ2 ∪ Γ4,

(ii) By
nF = F on Γ1 ∪ Γ3,

and

(iii) (Bx
meij) (x, y) = xiyj , i = 0, 1; j ∈ N;

(Bx
me2j) (x, y) =

{

x2 + x[g(y)−x]
m

}

yj , j ∈ N;

(iv) (By
neij) (x, y) = xiyj , i ∈ N; j = 0, 1;

(By
nei2) (x, y) = xi

[

y2 + y(h−y)
n

]

, i ∈ N.

Proof. The interpolation properties (i) and (ii) follow by the relations:

pm,i (0, y) =







1, for i = 0,

0, for i > 0,
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and

pm,i (g(y), y) =







0, for i < m,

1, for i = m,

respectively, by

qn,j(x, 0)) =







1, for j = 0,

0, for j > 0,

and

qn,j(x, h) =







0, for j < n,

1, for j = n.

Regarding the properties (iii), we get

(Bx
meij) (x, y) = yj(Bx

mei0)(x, y), j ∈ N

and

(Bx
me00) (x, y) =

m
∑

i=0

pm,i (x, y) = 1,

Bx
me10(x, y) =

m
∑

i=0

pm,i (x, y) i
mg(y)

=

m
∑

i=0

(

m

i

)

(

x
g(y)

)i (

1 − x
g(y)

)m−i
i
mg(y)

= x
m−1
∑

i=0

(

m − 1

i

)

[

x
g(y)

]i [

1 − x
g(y)

]m−i−1

= x

[

x

g(y)
+ 1 − x

g(y)

]m−1

= x,

Bx
me20(x, y) =

m
∑

i=0

pm,i (x, y)
[

i
mg(y)

]2

=

m
∑

i=0

(

m

i

)

(

x
g(y)

)i (

1 − x
g(y)

)m−i

i2
[

g(y)
m

]2

=
[

g(y)
m

]2 m
∑

i=0

(

m

i

)

i(i − 1)
[

x
g(y)

]i [

1 − x
g(y)

]m−i

+ xg(y)
m

=
m − 1

m
x2 +

g(y)

m
x = x2 +

x[g(y) − x]

m
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Properties (iv) are proved in the same way. �

Remark 2.3. The interpolation properties of Bx
mF and By

nF are illustrated in Fig-

ures 4 and 5. The bold sides indicate the interpolation sets.
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Figure 4. Interpolation

domain for Bx
mF.
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Figure 5. Interpolation

domain for Bn
y F.

We consider the approximation formula

F = Bx
mF + Rx

mF.

Theorem 2.4. If F (·, y) ∈ C[0, g(y)], y ∈ [0, h], then

∣

∣ (Rx
mF )(x, y)

∣

∣ ≤
[

1 + g(y)
2δ

√
m

]

ω(F (·, y); δ), y ∈ [0, h],

and

∣

∣ (Rx
mF )(x, y)

∣

∣ ≤
(

1 + M
2δ

√
m

)

ω(F (·, y); δ), y ∈ [0, h],

where ω(F (·, y); δ) is the modulus of continuity of the function F with regard to the

variable x and

M = max
0≤y≤h

|g(y)|. (2.4)

Moreover, if δ = 1/
√

m then

∣

∣ (Rx
mF ) (x, y)

∣

∣ ≤
(

1 + M
2

)

ω(F (·, y); 1√
m

), y ∈ [0, h]. (2.5)

Proof. By (Bx
me00)(x, y) = 1, it follows that

∣

∣ (Rx
mF ) (x, y)

∣

∣ ≤
m

∑

i=0

pm,i(x, y)
∣

∣

∣
F (x, y) − F (i g(y)

m , y)
∣

∣

∣
.
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Using the inequality

∣

∣

∣
F (x, y) − F (i g(y)

m , y)
∣

∣

∣
≤

(

1
δ

∣

∣

∣
x − i g(y)

m

∣

∣

∣
+ 1

)

ω(F (·, y); δ)

one obtains

|(Rx
mF )(x, y)| ≤

m
∑

i=0

pm,i(x, y)
(

1
δ

∣

∣

∣
x − i g(y)

m

∣

∣

∣
+ 1

)

ω(F (·, y); δ)

≤
[

1 +
1

δ

(

m
∑

i=0

pm,i(x, y)
(

x − i g(y)
m

)2
)1/2

]

ω(F (·, y); δ)

=

[

1 +
1

δ

√

x(g(y)−x)
m

]

ω(F (·, y); δ).

Since,

max
0≤x≤g(y)

[

x(g(y) − x)
]

= g2(y)
4 ,

it follows that

∣

∣(Rx
mF )(x, y)

∣

∣ ≤
[

1 + g(y)
2δ

√
m

]

ω(F (·, y); δ) ≤
(

1 + M
2δ

√
m

)

ω(F (·, y); δ),

with M given in (2.4). For δ = 1√
m

, one obtains (2.5). �

Theorem 2.5. If F (·, y) ∈ C2[0, g(y)] then

(Rx
mF )(x, y) =

x[x − g(y)]

2m
F (2,0)(ξ, y), for ξ ∈ [0, g(y)],

and
∣

∣(Rx
mF )(x, y)

∣

∣ ≤ M2

8m
M20F

where M is given in (2.4) and

MijF = max
Dh

∣

∣

∣
F (i,j)(x, y)

∣

∣

∣
.

Proof. Taking into account that the operator Bx
m reproduces the polynomials of first

degree, i.e., dex(Bx
m) = 1, by Peano’s theorem (see, e.g., [17]), it follows

(Rx
mF )(x, y) =

∫ g(y)

0

K20(x, y; s)F (2,0)(s, y)ds,

where

K20(x, y; s) = (x − s)+ −
m

∑

i=0

pm,i(x, y)
(

i g(y)
m − s

)

+
.
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For a given ν ∈ {1, ..., m} one denotes by Kν
20(x, y; ·) the restriction of the kernel

K20(x, y; ·) to the interval
[

(ν − 1)g(y)
m , ν g(y)

m

]

, i.e.,

Kν
20(x, y; ν) = (x − s)+ −

m
∑

i=ν

pm,i(x, y)
(

i g(y)
m − s

)

,

whence,

Kν
20(x, y; s) =















x − s −
m
∑

i=ν

pm,i(x, y)
(

i g(y)
m − s

)

, s < x

−
m
∑

i=ν

pm,i(x, y)
(

i g(y)
m − s

)

, s ≥ x.

It follows that Kν
20(x, y; s) ≤ 0, for s ≥ x. For s < x we have

Kν
20(x, y; s) = x − s −

m
∑

i=0

pm,i(x, y)
[

i g(y)
m − s

]

+
ν−1
∑

i=0

pm,i(x, y)
[

i g(y)
m − s

]

.

As,
m

∑

i=0

pm,i(x, y)
[

i g(y)
m − s

]

= x − s,

it follows that

Kν
20(x, y; s) =

ν−1
∑

i=0

pm,i(x, y)
[

i g(y)
m − s

]

≤ 0.

So, Kν
20(x, y; ·) ≤ 0, for any ν ∈ {1, ..., m}, i.e., K20(x, y; s) ≤ 0, for s ∈ [0, g(y)].

By mean value theorem, one obtains

(Rx
mF )(x, y) = F (2,0)(ξ, y)

∫ g(y)

0

K20(x, y; s)ds, 0 ≤ ξ ≤ g(y).

Since,
∫ g(y)

0

K20(x, y; s)ds =
x[x − g(y)]

2m

and

max
0≤x≤g(y)

|x[x − g(y)]|
2m

=
g2(y)

8m
≤ M2

8m
, y ∈ [0, h]

the conclusion follows. �

Remark 2.6. Analogous results are obtained for the remainder of the formula

F = By
nF + Ry

nF,
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i.e., for F (x, ·) ∈ C[0, h] we have

∣

∣(Ry
nF )(x, y)

∣

∣ ≤
(

1 + h
2δ

√
n

)

ω(F (x, ·); δ), F (x, ·) ∈ C[0, h]

and
∣

∣(Ry
nF )(x, y)

∣

∣ ≤
(

1 + h
2

)

ω
(

F (x, ·); 1√
n

)

respectively, for F (x, ·) ∈ C2[0, h] we have

(Ry
nF )(x, y) = y[y−f(x)]

2n F (0,2)(x, η), η ∈ [0, h]

and
∣

∣(Ry
nF )(x, y)

∣

∣ ≤ h2

8n
M02F, (x, y) ∈ Dh.

2.2. Product operators. Let Pmn = Bx
mBy

n, respectively, Qnm = By
nBx

m be the

products of the operators Bx
m and By

n.

We have

(PmnF ) (x, y)=

m
∑

i=0

n
∑

j=0

pm,i (x, y) qn,j

(

i g(y)
m , y

)

F
(

i g(y)
m , j h

n

)

,

respectively,

(QnmF ) (x, y)=

m
∑

i=0

n
∑

j=0

pm,i

(

x, j h
n

)

qn,j (x, y) F
(

i
mg(j

h

n
), j h

n

)

.

Remark 2.7. The nodes of the operators Pmn, respectively Qnm are given in Figures

6 and 7 and they are in domain [0, M ]× [0, h], with M given (2.4).

V
1

V
2

V
3

V
4

Figure 6. The nodes of

Pmn.

V
1 V

2

V
3

V
4

Figure 7. The nodes of

Qnm.

Theorem 2.8. If F is a real-valued function defined on Dh then:
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(i) (PmnF )(Vi) = F (Vi), i = 1, ..., 4;

(ii) (QnmF )(Vi) = F (Vi), i = 1, ..., 4.

Proof. The proof follows by a straightforward computation. �

Let us consider now the approximation formula

F = PmnF + RP
mnF,

where RP
mn is the remainder operator.

Theorem 2.9. If F ∈ C([0, M ] × [0, h]) then

∣

∣

(

RP
mnF

)

(x, y)
∣

∣ ≤
(

1 +
M

2
+

h

2

)

ω
(

F ; 1√
m

, 1√
n

)

, for (x, y) ∈ Dh,

where M is given in (2.4).

Proof. We have

∣

∣(RP
mnF )(x, y)

∣

∣ ≤
[

1

δ1

m
∑

i=0

n
∑

j=0

pm,i(x, y)qn,j

(

i
mg(y), y

)
∣

∣x − i
mg(y)

∣

∣

+
1

δ2

m
∑

i=0

n
∑

j=0

pm,i(x, y)qn,j

(

i
mg(y), y

) ∣

∣y − j
nh

∣

∣

+

m
∑

i=0

n
∑

j=0

pm,i(x, y)qn,j

(

i
mg(y), y

)

]

ω(F ; δ1, δ2).

Since,

m
∑

i=0

n
∑

j=0

pm,i(x, y)qn,j

(

i
mg(y), y

)
∣

∣x − i
mg(y)

∣

∣ ≤
√

x(g(y)−x)
m ,

m
∑

i=0

n
∑

j=0

pm,i(x, y)qn,j

(

i
mg(y), y

) ∣

∣y − j
nh

∣

∣ ≤
√

y(h−y)
n ,

m
∑

i=0

n
∑

j=0

pm,i(x, y)qn,j

(

i
mg(y), y

)

= 1,

it follows that

∣

∣(RP
mnF )(x, y)

∣

∣ ≤
(

1 +
1

δ1

√

x[g(y)−x]
m +

1

δ2

√

y(h−y)
n

)

ω(F ; δ1, δ2).

But

x[g(y) − x] ≤ M2

4
and y[h − y] ≤ h2

4
,
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with M given in (2.4), whence

∣

∣(RP
mnF )(x, y)

∣

∣ ≤
(

1 +
1

δ1

M
2
√

m
+

1

δ2

h
2
√

n

)

ω(F ; δ1, δ2)

and
∣

∣(RP
mnF )(x, y)

∣

∣ ≤
(

1 +
M

2
+

h

2

)

ω

(

F ;
1√
m

,
1√
n

)

.

�

Remark 2.10. An analogous inequality can be obtained for the error RQ
nmF =

F − QnmF.

2.3. Boolean sum operators. We consider the Boolean sums of the operators Bx
m

and By
n, i.e.,

Smn := Bx
m ⊕ By

n = Bx
m + By

n − Bx
mBy

n,

respectively,

Tnm := By
n ⊕ Bx

m = By
n + Bx

m − By
nBx

m.

Theorem 2.11. If F is a real-valued function defined on Dh then

SmnF |∂Dh
= F |∂Dh

and

TnmF |∂Dh
= F |∂Dh

. (2.6)

Proof. The proof follows by a straightforward computation. �

For the remainder of the Boolean sum approximation formula,

F = SmnF + RS
mnF,

we have the following result.

Theorem 2.12. If F ∈ C([0, M ] × [0, h]) then

∣

∣(RS
mnF )(x, y)

∣

∣ ≤(1 + M
2 )ω(F (·, y); 1√

m
) + (1 + h

2 )ω(F (x, ·); 1√
n
)

+

(

1 +
M

2
+

h

2

)

ω(F ; 1√
m

, 1√
n
), (x, y) ∈ Dh,

with M given in (2.4).
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Proof. The identity

F − SmnF = F − Bx
mF + F − By

nF − (F − PmnF )

implies that

∣

∣(RS
mnF )(x, y)

∣

∣ ≤
∣

∣ (Rx
mF ) (x, y)

∣

∣ +
∣

∣ (Ry
nF (x, y)

∣

∣ +
∣

∣(RP
mnF )(x, y)

∣

∣

and the conclusion follows. �

Remark 2.13. An analogous inequality can be obtained for the error

RT
nmF = F − TnmF.

3. Bernstein type operators on a square with two curved sides

Let D̃h be the square with the same vertices as in the previous case, V1 =

(0, 0), V2 = (h, 0), V3 = (h, h) and V4 = (0, h), two straight sides Γ1, Γ2, along the

coordinate axes and two curved sides Γ̃3 and Γ4, defined by the function f, with

f(0) = f(h) = h, respectively by the function g, such that g(0) = g(h) = h. (See

Figure 8).

V
4
(0,h) V

3
(h,h)

V
2
(h,0)V

1
(0,0)

Γ2

Γ1

Γ4

Γ̃3

Figure 8. The square D̃h.

3.1. Univariate operators. Let F be a real-valued function defined on D̃h and

(0, y), (g(y), y), respectively, (x, 0), (x, f(x)) be the points in which the parallel lines

to the coordinate axes, passing through the point (x, y) ∈ D̃h, intersect the sides Γ2,

Γ4, respectively Γ1 and Γ̃3.

For the uniform partitions of the intervals [0, g(y)] and [0, f(x)] :

∆x
m =

{

i
mg(y)

∣

∣ i = 0, m
}
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and

∆y
n =

{

j
nf(x)

∣

∣ j = 0, n
}

we consider the Bernstein-type operators:

(Bx
mF ) (x, y) =

m
∑

i=0

pm,i (x, y) F
(

i
mg(y), y

)

, (3.1)

as in the previous case, with pm,i, i = 0, m, given in (2.2), and

(

B̃y
nF

)

(x, y) =

n
∑

j=0

q̃n,j (x, y)F
(

x, j
nf(x)

)

(3.2)

with

q̃n,j (x, y) =

(

n

j

)

(

y
f(x)

)j (

1 − y
f(x)

)n−j

.

Remark 3.1. In Figures 9 and 10 we plot the points ( i
mg(y), y), i = 0, m and

respectively, (x, j
nf(x)), j = 0, n, for m = 5 and n = 6.

V
1 V

2

V
3

V
4

Figure 9. Points

( i
mg(y), y), i = 0, m.

V
1 V

2

V
3

V
4

Figure 10. Points

(x, j
nf(x)), j = 0, n.

Remark 3.2. The operator Bx
m and the remainder of the approximation formula,

Rx
mF = F − Bx

mF, are studied in Section 2.1.

In a similar way we can prove the following results for B̃y
n.

Theorem 3.3. If F is a real-valued function defined on D̃h then:

(i) B̃y
nF = F on Γ1 ∪ Γ̃3,

(ii)
(

B̃y
neij

)

(x, y) = xiyj, i ∈ N; j = 0, 1;

(iii)
(

B̃y
nei2

)

(x, y) = xi
{

y2 + y[f(x)−y]
n

}

, i ∈ N.

Remark 3.4. The interpolation properties of B̃y
nF are illustrated in Figure 11.
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V
4
(0,h) V

3
(h,h)

V
2
(h,0)V

1
(0,0)

Γ2

Γ1

Γ4

Γ̃3

Figure 11. Interpolation domain for B̃y
nF.

Also, similarly with the results in Section 2.1, we can prove the following

results for R̃y
nF = F − B̃y

nF .

Theorem 3.5. If F (x, ·) ∈ C[0, f(x)], x ∈ [0, g(y)] then we have

∣

∣(R̃y
nF )(x, y)

∣

∣ ≤
(

1 + f(x)
2δ

√
n

)

ω(F (x, ·); δ), F (x, ·) ∈ C[0, h]

and
∣

∣(R̃y
nF )(x, y)

∣

∣ ≤
(

1 + N
2

)

ω
(

F (x, ·); 1√
n

)

.

If F (x, ·) ∈ C2[0, f(x)] we have

(R̃y
nF )(x, y) = y[y−f(x)]

2n F (0,2)(x, η), η ∈ [0, f(x)]

and
∣

∣(R̃y
nF )(x, y)

∣

∣ ≤ N2

8n
M02F, (x, y) ∈ D̃h,

where

N = max
0≤x≤g(y)

|f(x)|. (3.3)

3.2. Product operators. Denote by P̃mn = Bx
mB̃y

n, respectively, Q̃nm = B̃y
nBx

m the

products of the operators Bx
m and B̃y

n.

We have

(

P̃mnF
)

(x, y)=

m
∑

i=0

n
∑

j=0

pm,i (x, y) q̃n,j

(

i
mg(y), y

)

F
(

i
mg(y), j

nf

(

i

m
g(y)

)

)

,

respectively,

(

Q̃nmF
)

(x, y)=

m
∑

i=0

n
∑

j=0

pm,i

(

x, j
nf(x)

)

q̃n,j (x, y)F
(

i
mg

(

j
nf(x)

)

, j
nf(x)

)

.
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Remark 3.6. The nodes of the operators P̃mn, respectively Q̃nm are given in Figures

12 and 13 and they are in domain [0, M ] × [0, N ], with M and N given in (2.4) and

(3.3).

V
1 V

2

V
3

V
4

Figure 12. The nodes

of P̃mn.

V
1 V

2

V
3

V
4

Figure 13. The nodes

of Q̃nm.

Theorem 3.7. If F is a real-valued function defined on D̃h we have:

(i) (P̃mnF )(Vi) = F (Vi), i = 1, ..., 4;

(ii) (Q̃nmF )(Vi) = F (Vi), i = 1, ..., 4;

(iii)
∣

∣

(

R̃P
mnF

)

(x, y)
∣

∣ ≤ (1 + M
2 + N

2 )ω
(

F ; 1√
m

, 1√
n

)

, for (x, y) ∈ D̃h, where

R̃P
mnF = F − P̃mnF and M is given in (2.4) and N is given in (3.3). An

analogous inequality can be obtained for R̃Q
nmF = F − Q̃nm.

Proof. The proof is similarly with the proof of Theorem 2.9. �

3.3. Boolean sum operators. Let S̃mn := Bx
m ⊕ B̃y

n and T̃nm = B̃y
n ⊕ Bx

m be the

Boolean sum of the operators Bx
m and B̃y

n.

If F is a real-valued function defined on D̃h then we have

S̃mnF
∣

∣

∂D̃h
= F

∣

∣

∂D̃h

and

T̃nmF
∣

∣

∂D̃h
= F

∣

∣

∂D̃h

.

For the remainder R̃S
mnF = F − S̃mnF we have:

∣

∣(R̃S
mnF )(x, y)

∣

∣ ≤(1 + M
2 )ω

(

F (·, y); 1√
m

)

+ (1 + N
2 )ω

(

F (x, ·); 1√
n

)

+

(

1 +
M

2
+

N

2

)

ω
(

F ; 1√
m

, 1√
n

)

, (x, y) ∈ D̃h,

64



BERNSTEIN TYPE OPERATORS ON A SQUARE WITH ONE AND TWO CURVED SIDES

with M given in (2.4) and N given in (3.3).

An analogous result can be obtained for the remainder R̃T
nmF = F − T̃nmF .

Example 3.8. We consider the function:

Gentle: F (x, y) = 1
3 exp[− 81

16

(

(x − 0.5)2 + (y − 0.5)2
)

], (3.4)

that is generally used in the literature, (see, e.g., [16]). In Figures 14 and 15 we plot

the graphs of F, Bx
mF, PmnF, SmnF , P̃mnF , S̃mnF , on Dh, and respectively on D̃h,

considering h = 1, m = 5, n = 6.

0

0.2

0.4

0.6

0.8

1

1.2

1.4
0

0.2
0.4

0.6
0.8

1
1.2

1.4

0

0.1

0.2

0.3

0.4

Graph of F on Dh.

0

0.5

1

1.5
0

0.2
0.4

0.6
0.8

1
1.2

1.4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Graph of Bx
mF on Dh.

0

0.5

1

1.5
0

0.2
0.4

0.6
0.8

1
1.2

1.4

0

0.05

0.1

0.15

0.2

0.25

Graph of PmnF on Dh.

0

0.5

1

1.5
0

0.2
0.4

0.6
0.8

1
1.2

1.4

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Graph of SmnF on Dh.

Figure 14. Graphs for domain Dh.
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CERTAIN CLASS OF λ STARLIKE HARMONIC FUNCTIONS
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Dedicated to Professor Grigore Ştefan Sălăgean on his 60th birthday

Abstract. Making use of a convolution structure, we introduce a new class

of complex valued harmonic functions which are orientation preserving and

univalent in the open unit disc. Among the results presented in this paper

include the coefficient bounds, distortion inequality and covering property,

extreme points and certain inclusion results for this generalized class of

functions.

1. Introduction and preliminaries

A continuous function f = u+ iv is a complex- valued harmonic function in a

complex domain G if both u and v are real and harmonic in G. In any simply-connected

domain D ⊂ G, we can write f = h + g, where h and g are analytic in D. We call h

the analytic part and g the co-analytic part of f. A necessary and sufficient condition

for f to be locally univalent and orientation preserving in D is that |h′(z)| > |g′(z)|

in D (see [2]).

Denote by H the family of functions

f = h + g (1.1)

which are harmonic, univalent and orientation preserving in the open unit disc U =

{z : |z| < 1} so that f is normalized by f(0) = f ′(0)−1 = 0. Thus, for f = h+g ∈ H,
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the functions h and g analytic U can be expressed in the following forms:

h(z) = z +
∞∑

n=2

anzn, g(z) =
∞∑

n=1

bnzn (0 ≤ b1 < 1),

and f(z) is then given by

f(z) = z +
∞∑

n=2

anzn +
∞∑

n=1

bnzn (0 ≤ b1 < 1). (1.2)

We note that the family H of orientation preserving, normalized harmonic univalent

functions reduces to the well known class S of normalized univalent functions if the

co-analytic part of f is identically zero, i.e. g ≡ 0.

For functions f ∈ H given by (1.1) and F ∈ H given by

F (z) = H(z) + G(z) = z +
∞∑

n=2

Anzn +
∞∑

n=1

Bnzn, (1.3)

we recall the Hadamard product (or convolution) of f and F by

(f ∗ F )(z) = z +
∞∑

n=2

anAnzn +
∞∑

n=1

bnBnzn (z ∈ U). (1.4)

In terms of the Hadamard product (or convolution), we choose F as a fixed function

in H such that (f ∗ F )(z) exists for any f ∈ H, and for various choices of F we

get different linear operators which have been studied in recent past. To illustrate

some of these cases which arise from the convolution structure (1.4), we consider the

following examples.

(1) If

F (z) = z +
∞∑

n=2

σn(α1) zn +
∞∑

n=1

σn(α1) zn (1.5)

and σn(α1)is defined by

σn(α1) =
ΘΓ(α1 + A1(n− 1)) . . .Γ(αp + Ap(n− 1))

(n− 1)!Γ(β1 + B1(n− 1)) . . .Γ(βq + Bq(n− 1))
. (1.6)

where Θ is given by

Θ =

(
p∏

m=0

Γ(αm)

)−1( q∏
m=0

Γ(βm)

)
(1.7)
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and then the convolution (1.4)gives the Wright’s generalized hypergeometric function

(see [13])

pΨq[(α1, A1), . . . , (αp, Ap); (β1, B1), . . . , (βq, Bq); z] =p Ψq[(αn, An)1,p(βn, Bn)1,q; z]

is defined by

pΨq[(αn, An)1,p(βn, Bn)1,q; z]

=
∞∑

n=0

{
p∏

m=1

Γ(αm + nAm)

}{
q∏

m=1

Γ(βm + nBm)

}−1
zm

n!
(z ∈ U)

which was initially studied by Murugusundaramoorthy (see [9]).

(2) If Am = 1(m = 1, ..., p) and Bm = 1(m = 1, ..., q), then we have the

following obvious relationship

F (z) = z +
∞∑

n=2

Γnzn +
∞∑

n=1

Γnzn, (1.8)

where

Γn =
(α1)n−1 . . . (αp)n−1

(β1)n−1 . . . (βq)n−1

1
(n− 1)!

,

then the convolution (1.4) gives the Dziok–Srivastava operator (see [4]):

Λ(α1, · · · , αp;β1, · · · , βq; z)f(z) ≡ Hp
q(α1, β1)f(z),

where α1, · · · , αp; β1, · · · , βq are positive real numbers, p ≤ q + 1; p, q ∈ N∪ {0} , and

(α)n denotes the familiar Pochhammer symbol (or shifted factorial).

Remark 1.1. When p = 1, q = 1;α1 = a, α2 = 1;β1 = c, then (1.8) corresponds to

the operator due to Carlson-Shaffer operator(see [1]) given by

L(a, c)f(z) := (f ∗ F )(z),

where

F (z) := z +
∞∑

n=2

(a)n−1

(c)n−1
zn +

∞∑
n=1

(a)n−1

(c)n−1
zn (c 6= 0,−1,−2, · · · ). (1.9)
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Remark 1.2. When p = 1, q = 0;α1 = n + 1, α2 = 1;β1 = 1, then (1.8) yields the

Ruscheweyh derivative operator (see [7]) givenDkf(z) := (f ∗ F )(z) where

F (z) = z +
∞∑

n=2

 k + n− 1

n− 1

 zn +
∞∑

n=1

 k + n− 1

n− 1

 zn. (1.10)

which was initially studied by Jahangiri et al.(see [7]).

(3) Lastly, if Dlf(z) = f ∗ F where

F (z) = z +
∞∑

n=2

nlzn + (−1)l
∞∑

n=1

nlzn ( l ≥ 0) , (1.11)

which was initially studied by Jahangiri et al.(see [8]).

For the purpose of this paper, we introduce here a subclass of H denoted by

SH(F ;λ, γ) which involves the convolution (1.3) and consist of all functions of the

form (1.1) satisfying the inequality:

Re
{

z(f(z) ∗ F (z))′

(1− λ)(f(z) ∗ F (z)) + λz(f(z) ∗ F (z))′

}
≥ γ (1.12)

Equivalently

Re

{
z(h(z) ∗H(z))′ − z(g(z) ∗G(z))′

(1− λ)[h(z) ∗H(z) + g(z) ∗G(z)] + λ[z(g(z) ∗H(z))′ − z(g(z) ∗G(z))′]

}
≥ γ

(1.13)

where z ∈ U , 0 ≤ λ ≤ 1.

Also denote TH(F ;λ, γ) = SH(F ;λ, γ)
⋂
TH where TH the subfamily of H

consisting of harmonic functions f = h + g of the form

f(z) = z −
∞∑

n=2

anzn +
∞∑

n=1

bnzn (0 ≤ b1 < 1). (1.14)

called the class of harmonic functions with negative coefficients (see [11])

We deem it proper to mention below some of the function classes which

emerge from the function class SH(F ;λ, γ) defined above. Indeed, we observe that if

we specialize the function F by means of (1.5) to (1.11), and denote the correspond-

ing reducible classes of functions of SH(F ; γ), respectively, by Wp
q (λ, γ), Gp

q (λ, γ)

La
c (λ, γ), R(k, λ, γ), Ω(λ, γ) and S(l, λ, γ).
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It is of special interest because for suitable choices of F from (1.6) we can

define the following subclasses:

(i) If F is given by (1.5) we have (f ∗ F )(z) = W p
q [α1]f(z) hence we define a class

Wp
q (λ, γ) satisfying the criteria

Re
{

z(W p
q [α1]f(z))′

(1− λ)W p
q [α1]f(z) + λz(W p

q [α1]f(z))′

}
≥ γ

where W p
q [α1] is the Wright’s generalized operator on harmonic functions (see [9]) .

(ii) If F is given by (1.8) we have (f ∗ F )(z) = Hp
q [α1]f(z) hence we define a class

Gp
q (λ, γ) satisfying the criteria

Re
{

z(Hp
q [α1]f(z))′

(1− λ)Hp
q [α1]f(z) + λz(Hp

q [α1]f(z))′

}
≥ γ

where Hp
q [α1] is the Dziok - Srivastava operator (see [4]).

(iii) H2
1 ([a, 1; c]) = L(a, c)f(z), hence we define a class La

c (λ, γ)satisfying the criteria

Re
{

zL(a, c)f(z))′

(1− λ)L(a, c)f(z) + λz(L(a, c)f(z))′

}
≥ γ

where L(a, c) is the Carlson - Shaffer operator (see [1]).

(iv) H2
1 ([k + 1, 1; 1]) = Dkf(z), hence we define a class R(k, λ, γ) satisfying the

criteria

Re
{

z(Dkf(z))′

(1− λ)Dkf(z) + λz(Dkf(z))′

}
≥ γ

where Dkf(z)(k > −1) is the Ruscheweyh derivative operator (see [10]) (also see [7]).

(v) H2
1 ([2, 1; 2−µ]) = Ωµ

z f(z) we define another class Ω(λ, γ) satisfying the condition

Re
{

z(Ωµ
z f(z))′

(1− λ)Ωµ
z f(z) + λz(Ωµ

z f(z))′

}
≥ γ

given by

Ωµ
z f(z) = Γ(2− µ)zµDµ

z f(z); (0 ≤ µ < 1),

where Ωµ
z is the Srivastava-Owa fractional derivative operator (see [12]).

(vi) If F is given by (1.11), we haveDlf(z) = (f ∗ F )(z), hence we define a

class S(l, λ, γ) satisfying the criteria

Re
{

z(Dlf(z))′

(1− λ)Dlf(z) + λz(Dlf(z))′

}
≥ γ
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where Dlf(z); (l ∈ N = 0, 1, 2, 3,) is the Sălăgean derivative operator for harmonic

functions (see [8]).

Motivated by the earlier works of (see [5, 8, 13]) on the subject of harmonic

functions, in this paper we obtain a sufficient coefficient condition for functions f

given by (1.2) to be in the class SH(F ;λ, γ). It is shown that this coefficient condition

is necessary also for functions belonging to the class TH(F ;λ, γ). Further, distortion

results and extreme points for functions in TH(F ;λ, γ) are also obtained.

For the sake of brevity we denote the corresponding coefficient of F as Cn

throughout our study unless otherwise stated.

2. Coefficient bounds

In our first theorem, we obtain a sufficient coefficient condition for harmonic

functions in SH(F ;λ, γ).

Theorem 2.1. Let f = h + g be given by (1.2). If

∞∑
n=1

[
n− γ − γλ(n− 1)

1− γ
|an|+

n + γ − γλ(n + 1)
1− γ

|bn|
]

Cn ≤ 2 (2.1)

where a1 = 1 and 0 ≤ γ < 1, then f ∈ SH(F ;λ, γ).

Proof. We first show that if (2.1) holds for the coefficients of f = h+ g, the required

condition (2.1) is satisfied. From (1.13) we can write

Re

{
z(h(z) ∗H(z))′ − z(g(z) ∗G(z))′

(1− λ)[h(z) ∗H(z) + g(z) ∗G(z)] + λ[z(g(z) ∗H(z))′ − z(g(z) ∗G(z))′]

}
≥ γ

= Re
A(z)

B(z)
≥ γ

where

A(z) = zh(z) ∗H(z))′ − z(g(z) ∗G(z))′ = z +

∞∑
n=2

nCnanzn −
∞∑

n=1

nCnbnzn

and

B(z) = (1− λ)[h(z) ∗H(z) + g(z) ∗G(z)] + λ[z(g(z) ∗H(z))′ − z(g(z) ∗G(z))′]

= z +

∞∑
n=2

(1− λ + nλ)Cnanzn +

∞∑
n=1

(1− λ− nλ)Cnbnzn.
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Using the fact that Re {w} ≥ γ if and only if |1 − γ + w| ≥ |1 + γ − w|, it suffices to show

that

|A(z) + (1− γ)B(z)| − |A(z)− (1 + γ)B(z)| ≥ 0. (2.2)

Substituting for A(z) and B(z) in (2.2), we get

|A(z) + (1− γ)B(z)| − |A(z)− (1 + γ)B(z)|

= |(2− γ)z +

∞∑
n=2

[(n + 1− γ)(1− λ + nλ)]Cnanzn −
∞∑

n=1

[n− (1− γ)(1− λ + nλ)]Cnbn zn|

−| − γz +

∞∑
n=2

[n− (1 + γ)(1− λ + nλ)Cnanzn −
∞∑

n=1

[n + (1 + γ)(1− λ + nλ)]Cnbnzn|

≥ (2−γ)|z|−
∞∑

n=2

[n+(1−γ)(1−λ+nλ)Cn|an||z|n −
∞∑

n=1

[n− (1−γ)(1−λ−nλ)]Cn|bn| |z|n

−γ|z| −
∞∑

n=2

[n− (1 + γ)(1− λ + nλ)]Cn|an| |z|n −
∞∑

n=1

[n + (1 + γ)(1− λ− nλ)]Cn|bn| |z|n

≥ 2(1− γ)|z|

{
2−

∞∑
n=1

[
n− γ − γλ(n− 1)

1− γ
|an|+

n + γ − γλ(n− 1)

1− γ
|bn|
]

Cn|z|n−1

}

≥ 2(1− γ)

{
2−

∞∑
n=1

[
n− γ − γλ(n− 1)

1− γ
|an|+

n + γ − γλ(n− 1)

1− γ
|bn|
]

Cn

}
.

The above expression is non negative by (2.1), and so f ∈ SH(F ; λ, γ). �

The harmonic function

f(z) = z+
∞∑

n=2

1− γ

[n− γ − γλ(n− 1)]Cn
xnzn +

∞∑
n=1

1− γ

[n + γ − γλ(n− 1)]Cn
yn(z)n (2.3)

where
∞∑

n=2
|xn|+

∞∑
n=1

|yn| = 1 shows that the coefficient bound given by (2.1) is sharp.

The functions of the form (2.3) are in SH(F ;λ, γ) because

∞∑
n=1

(
[n− γ − γλ(n− 1)]Cn

1− γ
|an|+

[n + γ − γλ(n− 1)]Cn

1− γ
|bn|
)

=1 +
∞∑

n=2

|xn|+
∞∑

n=1

|yn| = 2.

Next theorem establishes that such coefficient bounds cannot be improved

further.
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Theorem 2.2. For a1 = 1 and 0 ≤ γ < 1, f = h + g ∈ TH(F ;λ, γ) if and only if

∞∑
n=1

[
n− γ − γλ(n− 1)

1− γ
|an|+

n + γ − γλ(n− 1)
1− γ

|bn|
]

Cn ≤ 2. (2.4)

Proof. Since TH(F ;λ, γ) ⊂ SH(F ;λ, γ), we only need to prove the ”only if” part

of the theorem. To this end, for functions f of the form (1.14), we notice that the

condition

Re

{
z(h(z) ∗H(z))′ − z(g(z) ∗G(z))′

(1− λ)[h(z) ∗H(z) + g(z) ∗G(z)] + λ[z(g(z) ∗H(z))′ − z(g(z) ∗G(z))′]

}
≥ γ

Equivalently,

Re


(1− γ)z −

∞∑
n=2

[n− γ − γλ(n− 1)]Cnanzn −
∞∑

n=1
[n + γ − γλ(n− 1)]Cnbnzn

z −
∞∑

n=2
(1− λ + nλ)Cnanzn +

∞∑
n=1

(1− λ− nλ)Cnbnzn

≥0.

The above required condition must hold for all values of z in U. Upon choosing the

values of z on the positive real axis where 0 ≤ z = r < 1, we must have

(1− γ)−
∞∑

n=2

[n− γ − γλ(n− 1)]Cnanrn−1 −
∞∑

n=1

[n + γ − γλ(n− 1)]Cnbnrn−1

1−
∞∑

n=2

(1− λ + nλ)Cnanrn−1 +
∞∑

n=1

(1− λ− nλ)Cnbnrn−1

≥ 0. (2.5)

If the condition (2.4) does not hold, then the numerator in (2.5) is negative for r sufficiently

close to 1. Hence, there exist z0 = r0 in (0,1) for which the quotient of (2.5) is negative.

This contradicts the required condition for f ∈ TH(F ; λ, γ). This completes the proof of the

theorem. �

3. Distortion bounds and extreme points

The following theorem gives the distortion bounds for functions in TH(F ;λ, γ)

which yields a covering result for the class TH(F ;λ, γ).

Theorem 3.1. Let f ∈ TH(F ;λ, γ). Then for |z| = r < 1, we have

(1− b1)r −
1
C2

(
1− γ

2− γ − γλ
− 1 + γ

2− γ − γλ
b1

)
r2 ≤ |f(z)|

≤ (1 + b1)r +
1
C2

(
1− γ

2− γ − γλ
− 1 + γ

2− γ − γλ
b1

)
r2.
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Proof. We only prove the right hand inequality. Taking the absolute value of f(z),

we obtain

|f(z)| =

∣∣∣∣∣z +
∞∑

n=2

anzn +
∞∑

n=1

bnzn

∣∣∣∣∣
≤ (1 + b1)|z|+

∞∑
n=2

(an + bn)|z|n

≤ (1 + b1)r +
∞∑

n=2

(an + bn)r2

≤ (1+ b1)r +
(1− γ)

(2− γ − γλ)C2

∞∑
n=2

(
(2− γ − γλ)C2

(1− γ)
an +

(2− γ − γλ)C2

(1− γ)
bn

)
r2

≤ (1 + b1)r +
(1− γ)1

(2− γ − γλ)C2

(
1− 1 + γ

1− γ
b1

)
r2

≤ (1 + b1)r +
1
C2

(
1− γ

2− γ − γλ
− 1 + γ

2− γ − γλ
b1

)
r2.

The proof of the left hand inequality follows on lines similar to that of the

right hand side inequality. �

The covering result follows from the left hand inequality given in Theorem 3.1.

Corollary 3.2. If f(z) ∈ TH(F ;λ, γ), then{
w : |w| < 2C2 − 1− [(1 + λ)C2 − 1]γ

(2− γ − γλ)C2
− 2C2 − 1− [(1 + λ)C2 + 1]γ

(2− γ − γλ)C2
|b1|
}
⊂ f(U).

Proof. Using the left hand inequality of Theorem 3.1 and letting r → 1, we prove

that

(1− b1)−
1
C2

(
1− γ

2− γ − γλ
− 1 + γ

2− γ − γλ
b1

)
= (1− b1)−

1
C2(2− γ − γλ)

[1− γ − (1 + γ)b1]

=
(1− b1)C2(2− γ − γλ)− (1− γ) + (1 + γ)b1

C2(2− γ − γλ)

=
{

2C2 − 1− [(1 + λ)C2 − 1]γ
(2− γ − γλ)C2

− 2C2 − 1− [(1 + λ)C2 + 1]γ
(2− γ − γλ)C2

|b1|
}
⊂ f(U).

�
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Next we determine the extreme points of closed convex hulls of TH(F ;λ, γ)

denoted by clcoTH(F ;λ, γ).

Theorem 3.3. A function f(z) ∈ TH(F ;λ, γ) if and only if

f(z) =
∞∑

n=1

(Xnhn(z) + Yngn(z))

where

h1(z) = z, hn(z) = z − 1− γ

[n− γ − γλ(n− 1)]Cn
zn; (n ≥ 2),

gn(z) = z +
1− γ

[n + γ − γλ(n− 1)]Cn
zn;

(n ≥ 2),
∞∑

n=1

(Xn + Yn) = 1, Xn ≥ 0 and Yn ≥ 0.

In particular, the extreme points of TH(F ;λ, γ) are {hn} and {gn}.

Proof. First, we note that for f as in the theorem above, we may write

f(z) =
∞∑

n=1

(Xnhn(z) + Yngn(z))

=
∞∑

n=1

(Xn + Yn)z −
∞∑

n=2

1− γ

n[n− γ − γλ(n− 1)]Cn
Xnzn

+
∞∑

n=1

1− γ

[n + γ − γλ(n− 1)]Cn
Ynzn

Then
∞∑

n=2

n[n− γ − γλ(n− 1)]Cn

1− γ
|an|+

∞∑
n=1

n[n + γ − γλ(n− 1)]Cn

1− γ
|bn|

=
∞∑

n=2

Xn +
∞∑

n=1

Yn

= 1−X1 ≤ 1,

and so f(z) ∈ clcoTH(F ;λ, γ).

Conversely, suppose that f(z) ∈ clcoTH(F ;λ, γ). Setting

Xn =
n[n− γ − γλ(n− 1)]Cn

1− γ
|an|, (0 ≤ Xn ≤ 1, n ≥ 2)

Yn =
n[n + γ − γλ(n− 1)]Cn

1− γ
|bn|, (0 ≤ Yn ≤ 1, n ≥ 1)
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and X1 = 1−
∞∑

n=2
Xn −

∞∑
n=1

Yn. Therefore ,f(z) can be rewritten as

f(z) = z −
∞∑

n=2

anzn +
∞∑

n=1

bnzn

= z −
∞∑

n=2

1− γ

[n− γ − γλ(n− 1)]Cn
Xnzn +

∞∑
n=1

1− γ

[n + γ − γλ(n− 1)]Cn
Ynzn

= z +
∞∑

n=2

(hn(z)− z)Xn +
∞∑

n=1

(gn(z)− z)Yn

= z{1−
∞∑

n=2

Xn −
∞∑

n=1

Yn}+
∞∑

n=2

hn(z)Xn +
∞∑

n=1

gn(z)Yn

=
∞∑

n=1

(Xnhn(z) + Yngn(z)),

as required. �

4. Inclusion results

Now we show that TH(F ;λ, γ) is closed under convex combinations of its

member and also closed under the convolution product.

Theorem 4.1. The family TH(F ;λ, γ) is closed under convex combinations.

Proof. For i = 1, 2, . . . , suppose that fi ∈ TH(F ;λ, γ) where

fi(z) = z −
∞∑

n=2

ai,nzn +
∞∑

n=2

bi,nzn.

Then, by Theorem 2.2

∞∑
n=2

n[n− γ − γλ(n− 1)]Cn

(1− γ)
ai,n +

∞∑
n=1

n[n + γ − γλ(n− 1)]Cn

(1− γ)
bi,n ≤ 1. (4.1)

For
∞∑

i=1

ti = 1, 0 ≤ ti ≤ 1, the convex combination of fi may be written as

∞∑
i=1

tifi(z) = z −
∞∑

n=2

( ∞∑
i=1

tiai,n

)
zn +

∞∑
n=1

( ∞∑
i=1

tibi,n

)
zn.
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Using the inequality (2.4), we obtain

∞∑
n=2

n[n− γ − γλ(n− 1)]Cn

1− γ

(
∞∑

i=1

tiai,n

)
+

∞∑
n=1

n[n + γ − γλ(n− 1)]Cn

1− γ

(
∞∑

i=1

tibi,n

)

=

∞∑
i=1

ti

(
∞∑

n=2

n[n− γ − γλ(n− 1)]Cn

1− γ
ai,n +

∞∑
n=1

n[n + γ − γλ(n− 1)]Cn

1− γ
bi,n

)

≤
∞∑

i=1

ti = 1,

and therefore
∞∑

i=1

tifi ∈ TH(F ; λ, γ). �

Now, we will examine the closure properties of the class TH(F ;λ, γ) under

the generalized Bernardi-Libera-Livingston integral operatorLc(f) which is defined

by

Lc(f) =
c + 1
zc

z∫
0

tc−1f(t)dt, c > −1.

Theorem 4.2. Let f(z) ∈ TH(F ;λ, γ). Then Lc(f(z)) ∈ TH(F ;λ, γ)

Proof. From the representation of Lc(f(z)), it follows that

Lc(f) =
c + 1
zc

z∫
0

tc−1
[
h(t) + g(t)

]
dt.

=
c + 1
zc

 z∫
0

tc−1

(
t−

∞∑
n=2

antn

)
dt +

z∫
0

tc−1

( ∞∑
n=1

bntn

)
dt


= z −

∞∑
n=2

c + 1
c + n

anzn +
∞∑

n=1

c + 1
c + n

bnzn.

Using the inequality (2.4), we get

∞∑
n=1

(
n[n− γ − γλ(n− 1)]

1− γ
(
c + 1
c + n

|an|) +
n + γ − γλ(n− 1)

1− γ
(
c + 1
c + n

|bn|)
)

Cn

≤
∞∑

n=1

(
n[n− γ − γλ(n− 1)]

1− γ
|an|+

n + γ − γλ(n− 1)
1− γ

|bn|
)

Cn

≤ 2(1− γ), since f(z) ∈ TH(F ;λ, γ).

Hence by Theorem 2.2, Lc(f(z)) ∈ TH(F ;λ, γ). �
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Concluding remarks. For suitable choices of F (z), as we pointed out the

SH(F ;λ, γ) contains, various function class defined by linear operators such as the

Carlson-Shaffer operator, the Ruscheweyh derivative operator, the Sălăgean opera-

tor, the fractional derivative operator, and so on. When λ = 0 the various results

presented in this paper would provide interesting extensions and generalizations of

those considered earlier for simpler harmonic function classes(see [7, 8, 9]. The details

involved in the derivations of such specializations of the results presented in this paper

are fairly straight- forward, hence omitted.
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STUDIA UNIV. “BABEŞ–BOLYAI”, MATHEMATICA, Volume LV, Number 3, September 2010

ONE-SIDED CLEAN RINGS

GRIGORE CĂLUGĂREANU

Dedicated to Professor Grigore Ştefan Sălăgean on his 60th birthday

Abstract. Replacing units by one-sided units in the definition of clean

rings (and modules), new classes of rings (and modules) are defined and

studied, generalizing most of the properties known in the clean case.

1. Introduction

For a ring with identity, we denote by U(R) the units, Ul(R) and Ur(R) the

left respectively right invertible elements of R (shortly, right-units or left-units), and

by N(R) the nilpotent elements.

An element in a ring R is right (or left) clean if it is a sum of an idempotent

and a right (respectively left) unit. A ring R is right clean if all its elements are right

clean and it is left clean if Rop is right clean. Moreover, it is one-sided clean if each

element is left or right clean. These classes are included in the class of almost clean

rings considered by McGovern ([8]: every element is a sum of a non-zero divisor and

an idempotent) and studied further (in the commutative case) by Ahn and D. D.

Anderson ([1]).

Further, a ring R is weakly right exchange if for every element a ∈ R there are

two orthogonal idempotents f, f ′ with f ∈ aR, f ′ ∈ (1− a)R, such that f + f ′ ∼= 1.

In this paper the main results are the following

• Let e2 = e ∈ R be such that eRe and (1− e)R(1− e) are both right clean

rings. Then R is a right clean ring.

Received by the editors: 01.03.2010.

2000 Mathematics Subject Classification. 16L30, 16U60, 16D60.

Key words and phrases. Right clean, weakly right exchange rings and modules.
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• Any ring R = Ul(R) ∪ Ur(R) ∪N(R) is both right and left clean.

• Any right clean ring is weakly right exchange.

and,

• A ring R is weakly right exchange if and only if for every a ∈ R there

are elements b, c ∈ R such that bab = b, c(1 − a)c = c, ab(1 − a)c = 0 =

(1− a)cab.

Finally results on strongly respectively weakly one-sided clean rings are given.

2. Right clean rings

In the sequel we will merely state our results for right clean rings, but most

of them have a left or one-sided analogue.

Obviously Dedekind finite (and in particular abelian or commutative) one-

sided clean rings are (strongly) clean.

The following is immediate from definitions

Lemma 2.1. (i) Every homomorphic image of a right clean ring is right clean.

(ii) A direct product of rings
∏

Ri is right clean if and only if each Ri is right

clean.

The next result is elementary. We supply a proof for later reference.

Proposition 2.2. Let A, B be rings, ACB a bimodule and R =

 A C

0 B

. Then

R is right clean if and only if A and B are right clean.

Proof. If R is right clean, the maps f : R −→ A, f

 a c

0 b

 = a and g : R −→

B, g

 a c

0 b

 = b are ring epimorphisms, and so A,B are right clean by (i),

previous Lemma.

Conversely, let

 a c

0 b

 ∈ R. Then there are ua ∈ Ul(A), ea = e2
a ∈ A with

a = ua + ea and a similar decomposition for b. Suppose vaua = 1 = vbub. Clearly
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0 b

 =

 ua c

0 ub

 +

 ea 0

0 eb

 where

 ea 0

0 eb

2

=

 ea 0

0 eb

 and ua c

0 ub

 ∈ Ul(R). Indeed,

 va −vacvb

0 vb

 is a left inverse for

 ua c

0 ub

. �

Remark 2.3. This property fails for one-sided clean rings A and B.

Proposition 2.4. Let e2 = e ∈ R be such that eRe and (1 − e)R(1 − e) are both

right clean rings. Then R is a right clean ring.

Proof. Using the Pierce decomposition of the ring R, let

 a x

y b

 ∈ R = eRe eR(1− e)

(1− e)Re (1− e)R(1− e)

. For u1u = e and a = f + u in eRe, v1v =

1 − e and b − yu1x = g + v in (1 − e)R(1 − e),

 a x

y b

 decomposes into f 0

0 g

+

 u x

y v + yu1x

 and all we need is a left inverse for the latter. But this

is

 e −u1x

0 1− e

 u1 0

0 v1

 e 0

−yu1 1− e

 =

 u1 + u1xv1yu1 −u1xv1

−v1yu1 v1

. �

By induction, we have

Theorem 2.5. If 1 = e1+e2+...+en in a ring R where ei are orthogonal idempotents

and each eiRei is right clean, then R is right clean.

Hence

Corollary 2.6. If R is right clean then so is the matrix ring Mn(R).

As in the clean case, we were not able to prove that corner rings (even full)

of right (or left or one-sided) clean rings have the same property.

Only recently, classes of rings defined by equalities like: R = U(R) ∪ Id(R)

or, R = U(R) ∪ Id(R) ∪ −Id(R) (here Id(R) denotes the idempotent elements of R),

have received a great deal of attention (see [2] and [1] for the commutative case). In

a similar vein, examples of right clean rings are provided by the next Proposition.

Proposition 2.7. Any ring R = Ul(R) ∪ Ur(R) ∪N(R) is both right and left clean.
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Proof. We first show that every right unit is right clean. Let a ∈ Ul(R) and

ba = 1. Then e = ab is an idempotent, so is 1 − e, and using the decomposition

a = (1 − e) + (a + (e − 1)) we have to find a left inverse for a + (e − 1). But this is

ebe+(e− 1) since (ebe+(e− 1))(a+(e− 1)) = ebea+ ea− a+0+1− e = 1 (because

ebea = abbaba = ab = e).

Coming back to the proof of the Proposition, if a ∈ N(R) it is well-known

that 1− a = u ∈ U(R) and so a = 1− u is even strongly clean. If a ∈ Ul(R) ∪ Ur(R)

we just use the previous result and its left analogue. �

Remark 2.8. 1) In general (a + (e − 1))(ebe + (e − 1)) = 1 fails (equivalently

(e− 1)(b + 1) = 0).

2) A slightly larger class is suggested by the following example which can be

found in David Arnold’s 1982 book ([3]): ” In the endomorphism ring of a torsion-free

strongly indecomposable Abelian group of finite rank, every element is a monomor-

phism (i.e., a non-zero divisor) or nilpotent”.

3) Recently, H. Chen (see [5]) has proved that regular one-sided unit-regular

rings are (though he does not consider this notion) exactly one-sided clean. So these

are also examples for the notion we deal with.

3. Right clean modules

For the sake of completeness we first restate some results given in [4]: let

f, e ∈ S = End(MR) with e2 = e, A = ker e and B = ime.

Proposition 3.1. f − e is a monomorphism if and only if the restrictions f |A,

(1− f)|B are monomorphisms and fA ∩ (1− f)B = 0.

f − e is an epimorphism if and only if and fA + (1− f)B = M .

Lemma 3.2. f − e is a unit in S if and only if the restrictions f |A, (1 − f)|B are

monomorphisms and fA⊕ (1− f)B = M .

Observe that the (double) restriction (for the domain - we use | and for the

codomain - we use˜ ) f̃ |A : A −→ fA and ˜(1− f)|B : B −→ (1 − f)B are always

onto, so f |A, (1 − f)|B are monomorphisms if and only if f̃ |A and ˜(1− f)|B are
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isomorphisms. If fA∩(1−f)B = 0, then u = f̃ |A⊕ ˜(1− f)|B : A⊕B −→ fA⊕(1−f)B

is an isomorphism too (the codomain sum is direct, but not necessarily equal to M).

Therefore, our analogues are

Lemma 3.3. Let f, e ∈ S = End(MR) with e2 = e, A = ker e and B = ime. Then

f − e ∈ Ul(S) if and only if the restrictions f |A, (1 − f)|B are monomorphisms,

fA ∩ (1− f)B = 0 and the monomorphism f̃ |A ⊕ ˜(1− f)|B ∈ S has a left inverse in

S.

Proposition 3.4. An element f ∈ End(MR) is right clean if and only if there is a

R-module decomposition M = A ⊕ B such that the restrictions f |A, (1 − f)|B are

monomorphisms, fA∩ (1−f)B = 0 and the monomorphism f̃ |A⊕ ˜(1− f)|B : M −→

M has a left inverse in End(MR).

Remark 3.5. 1) Due to Theorem 2.5, finite direct sums of right clean modules are

right clean.

2) Using Lemma 2.1, if MR = A⊕ B and HomR(A,B) = 0, then M is right

clean if and only if A, B are right clean.

4. Weakly exchange rings

A ring is called (right) exchange (or suitable in [10]) if for every equation

a + a′ = 1 there are idempotents e ∈ aR and e′ ∈ a′R such that e + e′ = 1.

Since these idempotents are complementary, they must be orthogonal (and

commute).

Recall that an idempotent e ∈ R is isomorphic to 1 if and only if there are

elements u, v ∈ R with vu = 1 and e = uv (equivalently, eR ∼= R as right R-modules).

If e 6= 1, such a ring is not Dedekind finite.

We define weakly right exchange rings R by the conditions: for every equation

a + a′ = 1 there are two orthogonal idempotents f, f ′ with f ∈ aR, f ′ ∈ a′R, such

that f + f ′ ∼= 1 (obviously, since the idempotents f, f ′ are orthogonal, their sum is

also an idempotent).
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According to the above definition, there are elements u, v ∈ R with vu = 1

and f + f ′ = uv.

Remark 4.1. We must require these two idempotents to be orthogonal. Indeed, if

we require only vu = 1 and f +f ′ = uv (i.e., f +f ′ ∼= 1), then f +f ′ is an idempotent

(uvuv = uv) and this implies f + f ′ = (f + f ′)2 = ff ′ + f ′f + f + f ′ and so only

ff ′ + f ′f = 0 (so not orthogonal nor commuting).

We can naturally associate with these (orthogonal but not necessarily com-

plementary) idempotents two complementary idempotents, two by two isomorphic,

namely vfu and vf ′u.

1) vfu + vf ′u = v(f + f ′)u = vuvu = vu = 1

2) (vfu)2 = vfuvfu = vf(f + f ′)fu = vfu (and so is vf ′u)

3) vfu ∼= f and vf ′u ∼= f ′: indeed, vfu = (vfu)2 = vf.uvfu ∼= uvfu.vf =

(f + f ′)f(f + f ′)f = f , and similarly, vf ′u ∼= f ′.

Remark 4.2. Related to lifting idempotents, since f ∈ aR and f ′ ∈ (1− a)R, all we

can check is

f − a(f + f ′) = (1− a)f − af ′ ∈ (a− a2)R.

Obviously, if u is a unit, f + f ′ = 1 and f − a ∈ (a − a2)R shows that

idempotents can be lifted.

Theorem 4.3. Any right clean ring is weakly right exchange.

Proof. If a = u + e with e2 = e and vu = 1 (but not necessarily uv = 1), since

(uev)2 = uevuev = uev, we consider the idempotent

f ′ = uev.

Similarly, (u(1− e)v)2 = u(1− e)vu(1− e)v = u(1− e)v and we denote

f = u(1− e)v = uv − uev.

Take b = uv + (1 − a)v = (1 − e)v and c = uv − av = −ev. Then ab = f ,

(1− a)c = f ′ and so f ∈ aR and f ′ ∈ (1− a)R.
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Thus ff ′ = f ′f = 0 (these idempotents are orthogonal) and the sum f +f ′ =

uv (is an idempotent) isomorphic with 1.

Moreover vfu = 1−e is idempotent (and f, f ′ are isomorphic to complemen-

tary idempotents: f ∼= 1− e, and f ′ ∼= e). �

Remark 4.4. In a right clean ring the following is also true:

(a) We have bf = b (i.e., bab = b) and bf ′ = 0 and similarly cf ′ = c (i.e.,

c(1− a)c = c) and cf = 0. We also have f ′u = (1− f)u and vf ′ = v(1− f).

(b) As in the clean initial case, c = b+v, and a2−a = (a−1+f)u = (a−f ′)u,

and since this relation cannot be solved for f − 1 + a or for f ′ − a (in order to obtain

f − 1 + a or f ′ − a in (a− a2)R), idempotents cannot be lifted modulo any right (or

left) ideal.

Actually, since f ∈ aR and f ′ ∈ (1− a)R, all we can check is

f − a(f + f ′) = (1− a)f − af ′ ∈ (a− a2)R.

(c) Obviously, if u is a unit, f + f ′ = 1 and f − a ∈ (a − a2)R shows that

idempotents can be lifted.

It is well-known that exchange rings were ring theoretic described by Monk

(see [9]). Here is the characterization for weakly right exchange rings.

Theorem 4.5. A ring R is weakly right exchange if and only if for every a ∈ R there

are elements b, c ∈ R such that bab = b, c(1− a)c = c, ab(1− a)c = 0 = (1− a)cab.

Proof. If R is weakly right exchange, take orthogonal idempotents f = at ∈ aR and

f ′ = (1 − a)s ∈ (1 − a)R. Then b = tat satisfies bab = b, ab = f and c = s(1 − a)s

satisfies c(1 − a)c = c and f ′ = (1 − a)c. Since f, f ′ are orthogonal, we also have

ab(1− a)c = 0 = (1− a)ca and (1− ab)(1− a)c + ab = (1− f)f ′ + f = f + f ′ is (an

idempotent) isomorphic to 1.

Conversely, f = ab and f ′ = (1 − a)c are readily checked to be orthogonal

idempotents and f + f ′ = (1−ab)(1−a)c+ab is (an idempotent) isomorphic to 1. �

Similarly (right exchange and left exchange properties are equivalent), an

open problem remains: are weakly right exchange rings also weakly left exchange?
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5. Strongly one-sided clean rings

All the above one-sided clean notions have corresponding strongly versions.

Unlike the strongly clean version, here ue = eu does not imply u−1e = eu−1.

Therefore R is strongly right clean if it is right clean, ue = eu and ve = ev.

Proposition 5.1. Let e2 = e ∈ R. An element a ∈ eRe is strongly right clean in R

if and only if a is strongly right clean in eRe.

Proof. First notice that if a ∈ eRe then a(1 − e) = (1 − e)a = 0 and so a = ae =

ea = eae.

If a = g + u is strongly right clean in R, then (g + u)(1 − e) = 0 implies

1−e = −vg(1−e) = −gv(1−e) and so (by left multiplication with g) g(1−e) = 1−e.

Thus (using also (1− e)a = 0) eg = ge. Therefore eg = ege = ge is an idempotent in

eRe. Since a and g commute with e, so is u = a − g. Hence eu = eue = ue has eve

as left inverse in eRe. Finally, a = eae = e(g +u)e = ege+ eue is strongly right clean

in eRe.

Conversely, if a = f + v is strongly right clean in eRe with fv = vf , f2 =

f ∈ eRe and w ∈ eRe, wv = e then a = (a − u) + u is strongly right clean in R as

w + (1− e) is a left inverse for u = v + (1− e) and a− u = f + (1− e) is idempotent

(sum of two orthogonal idempotents). �

Remark 5.2. The converse does not use ev = ve from our definition.

Corollary 5.3. Corner rings of strongly right clean rings are strongly right clean.

Further, strongly right clean is not a Morita invariant property. The example

given in [11], i.e. the localization Z(2) can be used in order to disprove: R strongly

right clean implies Mn(R) strongly right clean.

6. Weakly left-clean rings

We can get even closer to almost clean rings by weakening our right clean

elements as follows: an element a ∈ R is weakly left-clean if it is the sum of an

idempotent e and a left nonzero-divisor (or left cancellable element) u of R, and a

ring is weakly left-clean if all its elements share this property.
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Remark 6.1. For regular rings, right clean and weakly left-clean coincide (Ex. 1.4,

[7]).

In this setting, the weak left-clean modules are characterized by Proposition

4.4 in [4].

However, since images of non-zero divisors may not be non-zero divisors,

properties for such rings are worse, compared with the right clean rings.

Direct products of weakly left-clean rings are weakly left-clean.

Homomorphic images of weakly left-clean rings may not be weakly left-clean.

Thus, (see Lemma 2.1) if A, B are rings, ACB a bimodule and R = A C

0 B

, then R weakly left-clean generally does not imply A and B weakly left-

clean.

Nevertheless, the converse is true:

Proposition 6.2. If A, B are weakly left-clean rings and ACB is a bimodule then

R =

 A C

0 B

 is also weakly left-clean.

Proof. With the notations in the proof of Lemma 2.1, if ua, ub are left non-zero

divisors, so is

 ua c

0 ub

 in R.

Indeed, it is readily checked that matrices of the type

 x y

0 z

 with left

non-zero divisors x and z, are left non-zero divisors in R. �
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CONVOLUTIONS OF UNIVALENT FUNCTIONS WITH NEGATIVE
COEFFICIENTS USING A GENERALIZED SĂLĂGEAN OPERATOR

ADRIANA CĂTAŞ

Dedicated to Professor Grigore Ştefan Sălăgean on his 60th birthday

Abstract. The object of this paper is to derive several interesting prop-

erties of the class Tj(n, γ, α, λ) consisting of analytic and univalent func-

tions with negative coefficients. Integral operators and modified Hadamard

products of several functions belonging to the class Tj(n, γ, α, λ) are stud-

ied.

1. Introduction and definitions

Let N denote the set of nonnegative integers {0, 1, 2, . . . , n, . . . }, N∗ = N\{0}

and let Nj , j ∈ N∗, be the class of functions of the form

f(z) = z −
∞∑

k=j+1

akz
k, ak ≥ 0, k ≥ j + 1, (1.1)

which are analytic in the open unit disc U = {z ∈ C : |z| < 1}.

We define the following generalized Sălăgean operator which has been intro-

duced by Al-Oboudi in [1]

D0f(z) = f(z) (1.2)

D1
λf(z) = (1− λ)f(z) + λzf ′(z) = Dλf(z), λ > 0 (1.3)

Dn
λf(z) = Dλ(Dn−1

λ f(z)). (1.4)

Received by the editors: 26.04.2010.

2000 Mathematics Subject Classification. 30C45.

Key words and phrases. Analytic function, univalent function, generalized Sălăgean operator, negative

coefficients, modified Hadamard product, integral operator.
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If f is given by (1.1), then (1.2), (1.3) and (1.4) yield to a convolution with

the functions

ψ(n, λ) = z −
∞∑

k=j+1

[1 + (k − 1)λ]nzk

Dn
λf(z) = ψ(n, λ) ∗ f(z) = z −

∞∑
k=j+1

ck(n, λ)zk

where

ck(n, λ) = [1 + (k − 1)λ]n, λ ≥ 0, n = 0, 1, 2, . . . (1.5)

When λ = 1 we get Sălăgean differential operator [8].

Definition 1.1. [6] Let α, γ ∈ [0, 1), n ∈ N, j ∈ N∗. A function f belonging to Nj is

said to be in the class Tj(n, γ, α, λ) if and only if

Re
Dn+1

λ f(z)/Dn
λf(z)

γ(Dn+1
λ f(z)/Dn

λf(z)) + 1− γ
> α, z ∈ U. (1.6)

Remark 1.2. The class Tj(n, γ, α, λ) is a generalization of the subclasses

i) T1(0, 0, α, 1) = T ∗(α) and T1(1, 0, α, 1) = C(α) defined and studied by

Silverman [10] (these classes are the class of starlike functions of order α with negative

coefficients and the class of convex functions of order α with negative coefficients

respectively);

ii) Tj(0, 0, α, 1) and Tj(1, 0, α, 1) studied by Chatterjea [4] and Srivastava et

al. [11];

iii) T1(n, 0, α, 1) = T (n, α) studied by Hur and Oh [7];

iv) T1(0, γ, α, 1) = T (γ, α) and T1(1, γ, α, 1) = C(γ, α) studied by Altintaş

and Owa [2];

v) T1(n, γ, α, 1) studied by Aouf and Cho [3], [5].

Theorem 1.3. [6] Let the function f be defined by (1.1). Then f belongs to the class

Tj(n, γ, α, λ) if and only if

∞∑
k=j+1

[1 + (k − 1)λ]n{1 + (k − 1)λ− α[1 + γ(k − 1)λ]}ak ≤ 1− α. (1.7)
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The result is sharp and the extremal functions are

fk(z) = z − 1− α

[1 + (k − 1)λ]n{1 + (k − 1)λ− α[1 + γ(k − 1)λ]}
· zk (1.8)

with k ≥ j + 1.

2. Main results

Let the functions fi be defined for i = 1, 2, . . . ,m, by

fi(z) = z −
∞∑

k=j+1

ak,iz
k, ak,i ≥ 0, j ∈ N∗, z ∈ U. (2.1)

Theorem 2.1. Let the functions fi defined by (2.1) be in the class Tj(n, γ, α, λ), for

every i = 1, 2, . . . ,m. Then the functions h defined by

h(z) =
m∑

i=1

difi(z), di ≥ 0 (2.2)

where
m∑

i=1

di = 1, (2.3)

is also in the same class Tj(n, γ, α, λ).

Proof. According to the definition of h, we can write

h(z) = z −
∞∑

k=j+1

(
m∑

i=1

diak,i

)
zk.

Further, since fi are in the class Tj(n, γ, α, λ) for every i = 1, 2, . . . ,m we get

∞∑
k=j+1

ck(n, λ){1 + (k − 1)λ− α[1 + γ(k − 1)λ]}ak,i ≤ 1− α,

where ck(n, λ) is given by (1.5).

Hence we can see that
∞∑

k=j+1

ck(n, λ){1 + (k − 1)λ− α[1 + γ(k − 1)λ]}

(
m∑

i=1

diak,i

)
=

=
m∑

i=1

di

 ∞∑
k=j+1

ck(n, λ){1 + (k − 1)λ− α[1 + γ(k − 1)λ]}ak,i

 ≤
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≤ (1− α)
m∑

i=1

di = 1− α,

which implies that h is in Tj(n, γ, α, λ). �

Theorem 2.2. Let the function f defined by (1.1) be in the class Tj(n, γ, α, λ) and

let c be any real number such that c > −1. Then the function F defined by

F (z) =
c+ 1
zc

∫ z

0

tc−1f(t)dt (2.4)

also belongs to the class Tj(n, γ, α, λ).

Proof. From the representation (2.4) it follows that

F (z) = z −
∞∑

k=j+1

bkz
k

where

bk =
(
c+ 1
c+ k

)
ak.

Therefore, we get

∞∑
k=j+1

ck(n, λ){1 + (k − 1)λ− α[1 + γ(k − 1)λ]}bk =

=
∞∑

k=j+1

ck(n, λ){1 + (k − 1)λ− α[1 + γ(k − 1)λ]}
(
c+ 1
c+ k

)
ak ≤

≤
∞∑

k=j+1

ck(n, λ){1 + (k − 1)λ− α[1 + γ(k − 1)λ]}ak ≤ 1− α.

Hence, by Theorem 1.3, F ∈ Tj(n, γ, α, λ). �

Theorem 2.3. Let c be a real number such that c > −1. If the function F belongs to

the class Tj(n, γ, α, λ) then the function f defined by (2.4) is univalent in |z| < R∗,

where

R∗ = inf
k

[
(c+ 1)ck(n, λ){1 + (k − 1)λ− α[1 + γ(k − 1)k]}

(1− α)(c+ k)k

] 1
k−1

(2.5)

and ck(n, λ) is given by (1.5). The result is sharp.
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Proof. Let

F (z) = z −
∞∑

k=j+1

akz
k, ak ≥ 0.

It follows from (2.4) that

f(z) =
z1−c[zcF (z)]′

c+ 1
= z −

∞∑
k=j+1

(
c+ k

c+ 1

)
akz

k.

In order to obtain the required result, it is sufficient to show that

|f ′(z)− 1| < 1 whenever |z| < R∗.

Now,

|f ′(z)− 1| ≤
∞∑

k=j+1

k(c+ k)
c+ 1

ak|z|k−1.

Thus, |f ′(z)− 1| < 1 if

∞∑
k=j+1

k(c+ k)
c+ 1

ak|z|k−1 < 1. (2.6)

But, from Theorem 1.3 we have

∞∑
k=j+1

ck(n, λ){1 + (k − 1)λ− α[1 + γ(k − 1)λ]}
1− α

ak ≤ 1. (2.7)

Hence, by using (2.7), (2.6) will be satisfied if

k(c+ k)
c+ 1

|z|k−1 <
ck(n, λ){1 + (k − 1)λ− α[1 + γ(k − 1)λ]}

1− α

that is

|z| <
[
(c+ 1)ck(n, λ){1 + (k − 1)λ− α[1 + γ(k − 1)λ]}

(1− α)k(c+ k)

] 1
k−1

.

Therefore, f is univalent in |z| < R∗.

The sharpness follows if we take

fk(z) = z − (1− α)(c+ k)
(c+ 1)ck(n, λ){1 + (k − 1)λ− α[1 + γ(k − 1)λ]}

zk

k ≥ j + 1, ck(n, λ) is given by (1.5). �
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Let the functions fi, (i = 1, 2) be defined by (2.1). The modified Hadamard

product of f1 and f2 is defined here by

f1 ∗ f2(z) = z −
∞∑

k=j+1

ak,1ak,2z
k. (2.8)

Theorem 2.4. Let the function f1 defined by (2.1) be in the class Tj(n, γ, α, λ) and

the function f2 defined by (2.1) be in the class Tj(n, γ, β, λ). Then f1 ∗ f2 belongs to

the class Tj(n, γ, δ, λ) where

δ = δ(n, γ, α, β, λ) = (2.9)

= 1− jλ(1− γ)(1− α)(1− β)

(1 + jλ)n[1 + λj − α(1 + γjλ)][1 + λj − β(1 + γjλ)]− (1 + γjλ)(1− α)(1− β)
.

The result is best possible for the functions

f1(z) = z − 1− α

[1 + jλ− α(1 + jλγ)](1 + jλ)n
zj+1 (2.10)

and

f2(z) = z − 1− β

[1 + jλ− β(1 + jλγ)](1 + jλ)n
zj+1. (2.11)

Proof. Employing the technique used earlier by Schild and Silverman [9], we need

to find the largest δ such that
∞∑

k=j+1

ck(n, λ){1 + (k − 1)λ− δ[1 + γ(k − 1)λ]}
1− δ

ak,1ak,2 ≤ 1.

Since
∞∑

k=j+1

ck(n, λ){1 + (k − 1)λ− α[1 + γ(k − 1)λ]}
1− α

ak,1 ≤ 1 (2.12)

and
∞∑

k=j+1

ck(n, λ){1 + (k − 1)λ− β[1 + γ(k − 1)λ]}
1− β

ak,2 ≤ 1, (2.13)

by the Cauchy-Schwarz inequality, we have
∞∑

k=j+1

ck(n, λ)
√
A(γ, α, λ; k)B(γ, β, λ; k) · √ak,1ak,2 ≤ 1 (2.14)

where

A(γ, α, λ; k) =
1 + (k − 1)λ− α[1 + γ(k − 1)λ]

1− α
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and

B(γ, β, λ; k) =
1 + (k − 1)λ− β[1 + γ(k − 1)λ]

1− β
.

Thus it is sufficient to show that

√
ak,1ak,2 ≤

(1− δ)
√
A(γ, α, λ; k)B(γ, β, λ; k)

1 + (k − 1)λ− δ[1 + γ(k − 1)λ]
.

Note that

√
ak,1ak,2 ≤

1
ck(n, λ)

√
A(γ, α, λ, k)B(γ, β, λ, k)

.

Consequently, we need only to prove that

1
ck(n, λ)

√
A(γ, α, λ; k)B(γ, β, λ; k)

≤
(1− δ)

√
A(γ, α, λ; k)B(γ, β, λ; k)

1 + (k − 1)λ− δ[1 + γ(k − 1)λ]

which is equivalent to

δ ≤ 1− λ(k − 1)(1− γ)(1− α)(1− β)
ck(n, λ)Eα(γ, λ; k)Eβ(γ, λ; k)− [1 + γ(k − 1)λ](1− α)(1− β)

where

Eα(γ, λ; k) = 1 + (k − 1)λ− α[1 + γ(k − 1)λ] (2.15)

and

Eβ(γ, λ, k) = 1 + (k − 1)λ− β[1 + γ(k − 1)λ]. (2.16)

If we denote

S(n, γ, α, β, λ; k) = (2.17)

= 1− λ(k − 1)(1− γ)(1− α)(1− β)
ck(n, λ)Eα(γ, λ; k)Eβ(γ, λ; k)− [1 + γ(k − 1)λ](1− α)(1− β)

one obtains that S(n, γ, α, β, λ, k) is an increasing function of k, k ≥ j + 1. Letting

k = j + 1 in (2.17), we obtain

δ ≤ S(n, γ, α, β, λ; j + 1).

This completes the proof of Theorem 2.4. �

99



ADRIANA CĂTAŞ

Theorem 2.5. Let the function fi, (i = 1, 2) defined by (2.1) be in the class

Tj(n, γ, α, λ). Then f1 ∗ f2(z) belongs to the class Tj(n, γ, β, λ) where

β = β(n, γ, α, λ) = (2.18)

= 1− jλ(1− α)2(1− γ)
(1 + jλ)n[1 + jλ− α(1 + γjλ)]2 − (1− α)2(1 + γjλ)

.

The result is sharp.

Proof. Employing the technique used earlier by Schild and Silverman [9], we need

to find the largest β such that
∞∑

k=j+1

ck(n, λ){1 + (k − 1)λ− β[1 + γ(k − 1)λ]}ak,1ak,2 ≤ 1− β.

The proof is the same as in the previous theorem.

Finally, by taking the functions fi, given by

fi(z) = z − 1− α

[1 + jλ− α(1 + jλγ)](1 + jλ)n
zj+1, i = 1, 2 (2.19)

we can see that the result is sharp. �

Corollary 2.6. For f1 and f2 as in Theorem 2.4, the function

h(z) = z −
∞∑

k=j+1

√
ak,1ak,2z

k (2.20)

belongs to the class Tj(n, γ, α, λ). The result is sharp.

Proof. This result follows from the Cauchy-Schwarz inequality. It is sharp for the

same function as in Theorem 2.4. �

Corollary 2.7. Let the functions fi, (i = 1, 2, 3) defined by (2.1) be in the class

Tj(n, γ, α, λ). Then f1 ∗ f2 ∗ f3 belongs to the class Tj(n, γ, η, λ) where

η = η(n, γ, α, λ) = (2.21)

= 1− jλ(1− α)3(1− γ)
(1 + jλ)2n[1 + jλ− α(1 + γjλ)]3 − (1 + jγλ)(1− α)3

.

The result is best possible for the functions

fi(z) = z − 1− α

[1 + jλ− α(1 + jλγ)](1 + jλ)n
zj+1, i = 1, 2, 3. (2.22)
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Proof. From Theorem 2.5 one obtains that f1 ∗ f2 belongs to the class Tj(n, γ, β, λ)

where β is given by (2.18). By using Theorem 2.4 we get f1 ∗ f2 ∗ f3 belongs to the

class Tj(n, γ, η, λ) where

η = η(n, γ, α, β, λ) =

= 1− jλ(1− γ)(1− α)(1− β)
(1 + jλ)nEα(γ, λ; j + 1)Eβ(γ, λ; j + 1)− (1 + γjλ)(1− α)(1− β)

and Eα(γ, λ; j + 1), Eβ(γ, λ; j + 1) are given as in (2.15) and (2.16).

Hence, Corollary 2.7 follows at once. �

Theorem 2.8. Let the function fi, (i = 1, 2) defined by (2.1) be in the class

Tj(n, γ, α, λ). Then the function

h(z) = z −
∞∑

k=j+1

(a2
k,1 + a2

k,2)z
k, (2.23)

belongs to the class Tj(n, γ, η, λ) where

η = η(n, γ, α, λ) = (2.24)

= 1− 2jλ(1− α)2(1− γ)
(1 + jλ)n[1 + jλ− α(1 + γjλ)]2 − 2(1− α)2(1 + γjλ)

.

The result is sharp for the functions fi, (i = 1, 2) defined by (2.19).

Proof. By virtue of Theorem 1.3, one obtains
∞∑

k=j+1

[
ck(n, λ){1 + (k − 1)λ− α[1 + γλ(k − 1)]}

1− α

]2
a2

k,i ≤

≤

 ∞∑
k=j+1

ck(n, λ){1 + (k − 1)λ− α[1 + γ(k − 1)λ]}
1− α

ak,i

2

≤ 1, i = 1, 2.

It follows that
∞∑

k=j+1

1
2

[
ck(n, λ){1 + (k − 1)λ− α[1 + γ(k − 1)λ]}

1− α

]2
(a2

k,1 + a2
k,2) ≤ 1.

Therefore, we need to find the largest η such that

ck(n, λ){1 + (k − 1)λ− η[1 + γ(k − 1)λ]}
1− η

≤

≤ 1
2

[
ck(n, λ){1 + (k − 1)λ− α[1 + γ(k − 1)λ]}

1− α

]2
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that is

η≤ 1− 2λ(1− α)2(k − 1)(1− γ)

ck(n, λ){1 + (k − 1)λ− α[1 + γ(k − 1)λ]}2 − 2(1− α)2[1 + γ(k − 1)λ]
.

Since

F (n, γ, α, λ; k) =

= 1− 2λ(1− α)2(k − 1)(1− γ)

ck(n, λ){1 + (k − 1)λ− α[1 + γ(k − 1)λ]}2 − 2(1− α)2[1 + γ(k − 1)λ]

is an increasing function of k, (k ≥ j + 1) we get

η ≤ F (n, γ, α, λ; j + 1)

and Theorem 2.8 follows at once. �

Theorem 2.9. Let the function

f1(z) = z −
∞∑

k=j+1

ak,1z
k, ak,1 ≥ 0

be in the class Tj(n, γ, α, λ) and

f2(z) = z −
∞∑

k=j+1

|ak,2|zk,

with |ak,2| ≤ 1. Then f1 ∗ f2 belongs to the class Tj(n, γ, α, λ).

Proof. Since

∞∑
k=j+1

ck(n, λ){1 + (k − 1)λ− α[1 + γ(k − 1)λ]}|ak,1ak,2| =

=
∞∑

k=j+1

ck(n, λ){1 + (k − 1)λ− α[1 + γ(k − 1)λ]}ak,1|ak,2| ≤

≤
∞∑

k=j+1

ck(n, λ){1 + (k − 1)λ− α[1 + γ(k − 1)λ]}ak,1 ≤ 1− α

by Theorem 1.3, one obtains that f1 ∗ f2 belongs to the class Tj(n, γ, α, λ). �
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ON A FRACTIONAL DIFFERENTIAL INCLUSION
WITH BOUNDARY CONDITIONS

AURELIAN CERNEA

Abstract. We prove a Filippov type existence theorem for solutions of

a fractional differential inclusion defined by a nonconvex set-valued map

with Dirichlet boundary conditions. The method consists in application of

the contraction principle in the space of selections of the set-valued map

instead of the space of solutions.

1. Introduction

In this note we study the following problem

−Dαx(t) ∈ F (t, x(t)) a.e. ([0, 1]), (1.1)

x(0) = x(1) = 0, (1.2)

where α ∈ (1, 2], Dα is the standard Riemann-Liouville fractional derivative and

F : I ×R → P(R) is a set-valued map.

Differential equations with fractional order have recently proved to be strong

tools in the modelling of many physical phenomena; for a complete bibliography on

this topic we refer to [23]. As a consequence there was an intensive development of

the theory of differential equations of fractional order ([2, 15, 20, 22, 24] etc.).

The study of fractional differential inclusions was initiated by El-Sayed and

Ibrahim ([16]). Very recently several qualitative results for fractional differential in-

clusions were obtained in [3, 18].

Received by the editors: 04.10.2008.
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The present note is motivated by a recent paper of Ouahab ([23]) where

several existence results concerning problem (1.1)-(1.2) are obtained. The aim of

our paper is to provide an additional existence result for problem (1.1)-(1.2). More

exactly, we prove a Filippov type result concerning the existence of solutions to the

boundary value problem (1.1)-(1.2). We recall that for a differential inclusion defined

by a lipschitzian set-valued map with nonconvex values, Filippov’s theorem ([17])

consists in proving the existence of a solution starting from a given ”quasi” or ”almost”

solution. Moreover, the result provides an estimation between the ”quasi” solution

and the solution obtained.

Our approach is different from the ones in [23] and consists in the application

of the set-valued contraction principle in the space of selections of the set-valued map

instead of the space of solutions. We note that the idea of applying the set-valued

contraction principle due to Covitz and Nadler ([14]) in the space of derivatives of

the solutions belongs to Tallos ([19], [25]) and it was already used for similar results

obtained for other classes of differential inclusions ([5-13]).

The paper is organized as follows: in Section 2 we present the notations,

definitions and the preliminary results to be used in the sequel and in Section 3 we

prove the main result.

2. Preliminaries

In this short section we sum up some basic facts that we are going to use

later.

Let (X, d) be a metric space and consider a set valued map T on X with

nonempty closed values in X. T is said to be a λ -contraction if there exists 0 < λ < 1

such that:

dH(T (x), T (y)) ≤ λd(x, y) ∀x, y ∈ X,

where dH(., .) denotes the Pompeiu-Hausdorff distance. Recall that the Pompeiu-

Hausdorff distance of the closed subsets A,B ⊂ X is defined by

dH(A,B) = max{d∗(A,B), d∗(B,A)}, d∗(A,B) = sup{d(a,B); a ∈ A},
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where d(x,B) = infy∈B d(x, y).

If X is complete, then every set valued contraction has a fixed point, i.e. a

point z ∈ X such that z ∈ T (z) ([14]).

We denote by Fix(T ) the set of all fixed points of the set-valued map T .

Obviously, Fix(T ) is closed.

Proposition 2.1. ([21]) Let X be a complete metric space and suppose that T1, T2

are λ-contractions with closed values in X. Then

dH(Fix(T1), F ix(T2)) ≤
1

1− λ
sup
z∈X

d(T1(z), T2(z)).

Let I := [0, 1], denote by C(I,R) the Banach space of all continuous functions

from I to R and by L1(I,R) we denote the Banach space of Lebegue integrable

functions u(.) : I → R endowed with the norm ||u||1 =
∫ 1

0
|u(t)|dt.

Definition 2.2. a) The fractional integral of order α > 0 of a Lebesgue integrable

function f(.) : (0,∞) → R is defined by

Iα
0 f(t) =

∫ t

0

(t− s)α−1

Γ(α)
f(s)ds,

provided the right-hand side is pointwise defined on (0,∞) and Γ(.) is the (Euler’s)

Gamma function.

b) The fractional derivative of order α > 0 of a continuous function f(.) :

(0,∞) → R is defined by

dαf(t)
dtα

=
1

Γ(n− α)

(
d

dt

)n ∫ t

0

(t− s)−α+n−1f(s)ds,

where n = [α] + 1, provided the right-hand side is pointwise defined on (0,∞).

Definition 2.3. A function x(.) ∈ C(I,R) is called a solution of problem (1.1)-(1.2)

if there exists a function v(.) ∈ L1(I,R) with v(t) ∈ F (t, x(t)), a.e. (I) such that

−Dαx(t) = v(t), a.e. (I) and conditions (1.2) are satisfied.

We need the following result ([1]).
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Lemma 2.4. ([1]) Let f(.) : [0, 1] → R be continuous. Then x(.) is the unique

solution of the boundary value problem

Dαx(t) + f(t) = 0 t ∈ I, (2.1)

x(0) = x(1) = 0, (2.2)

if and only if

x(t) =
∫ 1

0

G(t, s)f(s)ds, (2.3)

where

G(t, s) :=
1

Γ(α)

 [t(1− s)]α−1 − (t− s)α−1, if 0 ≤ s < t ≤ 1,

[t(1− s)]α−1, if 0 ≤ t < s ≤ 1.

Note that |G(t, s)| ≤ 2
Γ(α) ∀t, s ∈ I.

In the sequel we assume the following conditions on F .

Hypothesis 2.5. i) F (., .) : I×R → P(R) has nonempty closed values and for every

x ∈ R F (., x) is measurable.

ii) There exists L(.) ∈ L1(I,R) such that for almost all t ∈ I, F (t, ·) is L(t)-

Lipschitz in the sense that

dH(F (t, x), F (t, y)) ≤ L(t)|x− y| ∀ x, y ∈ R

and d(0, F (t, 0)) ≤ L(t) a.e. (I).

3. The main result

We are able now to prove our main result.

Theorem 3.1. Assume that Hypothesis 2.5 is satisfied and 2
Γ(α) ||L||1 < 1. Let y(.) ∈

C(I,R) be such that there exists q(.) ∈ L1(I,R) with d(−Dαy(t),

F (t, y(t))) ≤ q(t), a.e. (I), y(0) = y(1) = 0.

Then for every ε > 0 there exists x(.) a solution of (1.1)-(1.2) satisfying for

all t ∈ I

|x(t)− y(t)| ≤ 2
Γ(α)− 2||L||1

∫ 1

0

q(t)dt+ ε. (3.1)
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Proof. For u(.) ∈ L1(I,R) define the following set valued maps:

Mu(t) = F (t,
∫ 1

0

G(t, s)u(s)ds), t ∈ I,

T (u) = {φ(.) ∈ L1(I,R); φ(t) ∈Mu(t) a.e. (I)}.

It follows from the definition and Lemma 2.4 that x(.) is a solution of (1.1)-

(1.2) if and only if −Dαx(.) is a fixed point of T (.).

We shall prove first that T (u) is nonempty and closed for every u ∈ L1(I,R).

The fact that the set valued map Mu(.) is measurable is well known. For example the

map t →
∫ 1

0
G(t, s)u(s)ds can be approximated by step functions and we can apply

Theorem III. 40 in [4]. Since the values of F are closed with the measurable selection

theorem (Theorem III.6 in [4]) we infer that Mu(.) admits a measurable selection φ.

One has

|φ(t)| ≤ d(0, F (t, 0)) + dH(F (t, 0), F (t,
∫ 1

0

G(t, s)u(s)ds) ≤

≤ L(t)
(

1 +
2

Γ(α)

∫ 1

0

|u(s)|ds
)
,

which shows that φ ∈ L1(I,R) and T (u) is nonempty.

On the other hand, the set T (u) is also closed. Indeed, if φn ∈ T (u) and

||φn − φ||1 → 0 then we can pass to a subsequence φnk
such that φnk

(t) → φ(t) for

a.e. t ∈ I, and we find that φ ∈ T (u).

We show next that T (.) is a contraction on L1(I,R).

Let u, v ∈ L1(I,R) be given, φ ∈ T (u) and let δ > 0. Consider the following

set-valued map:

H(t) = Mv(t) ∩
{
x ∈ R; |φ(t)− x| ≤ L(t)

∣∣∣∣∫ 1

0

G(t, s)(u(s)− v(s))ds
∣∣∣∣ + δ

}
.

From Proposition III.4 in [4], H(.) is measurable and from Hypothesis 2.5 ii)

H(.) has nonempty closed values. Therefore, there exists ψ(.) a measurable selection

of H(.). It follows that ψ ∈ T (v) and according with the definition of the norm we

have

||φ− ψ||1 =
∫ 1

0

|φ(t)− ψ(t)|dt ≤
∫ 1

0

L(t)
(∫ 1

0

|G(t, s)|.|u(s)− v(s)|ds
)
dt+
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0

δdt =
∫ 1

0

(∫ 1

0

L(t)|G(t, s)|dt
)
|u(s)− v(s)|ds+ δ ≤ 2

Γ(α)
||L||1||u− v||1 + δ.

Since δ > 0 was chosen arbitrary, we deduce that

d(φ, T (v)) ≤ 2
Γ(α)

||L||1||u− v||1.

Replacing u by v we obtain

dH(T (u), T (v)) ≤ 2
Γ(α)

||L||1||u− v||1,

thus T (.) is a contraction on L1(I,R).

We consider next the following set-valued maps

F1(t, x) = F (t, x) + q(t)[−1, 1], (t, x) ∈ I ×R,

M1
u(t) = F1(t,

∫ 1

0

G(t, s)u(s)ds), t ∈ I, u(.) ∈ L1(I,R),

T1(u) = {ψ(.) ∈ L1(I,R); ψ(t) ∈M1
u(t) a.e. (I)}.

Obviously, F1(., .) satisfies Hypothesis 2.5.

Repeating the previous step of the proof we obtain that T1 is also a 2
Γ(α) ||L||1-

contraction on L1(I,R) with closed nonempty values.

We prove next the following estimate

dH(T (u), T1(u)) ≤
∫ 1

0

q(t)dt. (3.2)

Let φ ∈ T (u), δ > 0 and define

H1(t) = M1
u(t) ∩ {z ∈ R; |φ(t)− z| ≤ q(t) + δ}.

With the same arguments used for the set valued map H(.), we deduce that

H1(.) is measurable with nonempty closed values. Hence let ψ(.) be a measurable

selection of H1(.). It follows that ψ ∈ T1(u) and one has

||φ− ψ||1 =
∫ 1

0

|φ(t)− ψ(t)|dt ≤
∫ 1

0

[q(t) + δ]dt ≤
∫ 1

0

q(t) + δ.

Since δ is arbitrary, as above we obtain (3.2).
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We apply Proposition 2.1 and we infer that

dH(Fix(T ), F ix(T1)) ≤
1

1− 2
Γ(α) ||L||1

∫ 1

0

q(t)dt.

Since −Dαy(.) ∈ Fix(T1) it follows that there exists u(.) ∈ Fix(T ) such that

for any ε > 0

|| −Dαy − u||1 ≤
1

1− 2
Γ(α) ||L||1

∫ 1

0

q(t)dt+
Γ(α)ε

2
.

We define x(t) =
∫ 1

0
G(t, s)u(s)ds, t ∈ I and we have

|x(t)− y(t)| ≤
∫ 1

0

|G(t, s)|.|u(s) +Dαy(s)|ds ≤

≤ 2
Γ(α)

||u+Dαy||1 ≤
2

Γ(α)− 2||L||1
||q||1 + ε,

which completes the proof. �

Remark 3.2. The assumption in Theorem 3.1 is satisfied, in particular, for y(.) =

0 and therefore, via Hypothesis 2.5, with q(.) = L(.). In this case, Theorem 3.1

provides an existence result for problem (1.1)-(1.2) together with a priori bounds for

the solution. More precisely, the estimate (3.1) becomes in this case

|x(t)| ≤ 2||L||1
Γ(α)− 2||L||1

+ ε, ∀t ∈ I (3.3)

In [23] among other existence results for problem (1.1)-(1.2) it is obtained in Theorem

4.9 the existence of solutions by applying, as usual in the study of the existence of

solutions using fixed points, the contraction principle in the space of solutions. This

approach does not allows to obtain an estimate as in (3.3).

On the other hand, in [23], Theorem 6.2, another Filippov type result for

problem (1.1)-(1.2) is provided. Its proof follows Filippov’s ideas and uses Kuratowsky

and Ryll-Nardjewski selection theorem (e.g., [4]). More exactly, if the assumptions

in Theorem 3.1 are satisfied then there exists x(.) ∈ C(I,R) a solution of problem

(1.1)-(1.2) such that, for all t ∈ I

|x(t)− y(t)| ≤ 2
Γ(α)

||q||1 +
16||q||31

Γ2(α)(Γ(α)− 2||L||1)
||L||1. (3.4)
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We note that in our approach we obtain a ”pointwise” estimate from a norm estimate

and in general the estimates in (3.1) and (3.4) are not comparable. However, in

particular cases the estimate in (3.1) is better that the one in (3.4). If the function

q(.) ∈ L1(I,R) satisfies
∫ 1

0
q(t)dt >

√
Γ(α)

2 , than if we take in (3.1)

ε =
4||q||1||L||1(4||q||21 − Γ(α))

Γ2(α)(Γ(α)− 2||L||1)

we obtain (3.4).
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SOME PROPERTIES OF A NEW CLASS OF CERTAIN ANALYTIC
FUNCTIONS OF COMPLEX ORDER

LUMINIŢA-IOANA COTÎRLĂ

Dedicated to Professor Grigore Ştefan Sălăgean on his 60th birthday

Abstract. In this paper we introduce a new class, Fn(b, M) of certain

analytic functions. For this class we determine sufficient condition in terms

of coefficients, coefficient estimate, and maximization theorem concerning

the coefficients.

1. Introduction and preliminaries

Let A be the class of functions f of the form

f(z) = z +
∞∑

k=2

akzk (1.1)

which are analytic and univalent in the open unit disk

U = {z ∈ C : |z| < 1}.

For n a positive integer and a ∈ C, let

H[a, n] = {f ∈ H : f(z) = a + anzn + . . . }.

We use Ω to denote the class of functions w(z) in U satisfying the conditions w(0) = 0

and |w(z)| < 1 for z ∈ U .

For a function f(z) in A, we define

I0f(z) = f(z); (1.2)
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I1f(z) = If(z) =
∫ z

0

f(t)t−1dt; (1.3)

and

Inf(z) = I(In−1f(z)), (z ∈ U and n ∈ N = {1, 2, 3, ...}). (1.4)

The integral operator In was introduced by Sălăgean in [8]. We note that,

for a function f ∈ A of the form (1.1)

Inf(z) = z +
∞∑

k=2

k−nakzk, (z ∈ U, n ∈ N).

In [1], [2], [3], [4], [7] and others papers, are introduced and studied cer-

tain subclasses of analitic functions defined by Sălăgean operator defined in [8]. Re-

cently,in[5], [6] are studied some class of analytic functions defined by the integral

operator defined in [8].

With the help of the integral operator In, we say that a function f(z) be-

longing to A is in the class Fn(b, M) if and only if∣∣∣∣1b (
Inf(z)

In+1f(z)
− 1) + 1−M

∣∣∣∣ < M, (1.5)

where M > 1
2 , z ∈ U and b 6= 0 is complex number.

We shall need in this paper the following lemma:

Lemma 1.1. [4] Let w(z) =
∞∑

k=1

ckzk ∈ Ω if µ is any complex number, then

|c2 − µc2
1| ≤ max{1, |µ|} (1.6)

for any complex µ. Equality in (1.6) may be attained for the functions w(z) = z2 and

w(z) = z for |µ| < 1 and |µ| ≥ 1, respectively.

We know from [3] that f(z) ∈ Hn(b, M) if and only if for z ∈ U

Inf(z)
In+1f(z)

=
1 + [b(1 + m)−m]w(z)

1−mw(z)
,

where m = 1− 1
M , (M > 1

2 ) and w(z) ∈ Ω.

The purpose of the present paper is to determine sufficient condition in terms

of coefficients for function belong to Fn(b, M), coefficient estimate, and maximization

of |a3 − µa2
2| on the class Fn(b, M) for complex value of µ.
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2. Main results

Theorem 2.1. Let the function f(z) be defined by (1.1). If

∞∑
k=2

{(
1− 1

k
) +

∣∣∣∣b(1 + m)
k

+ m(1− 1
k

)∣∣∣∣} |ak|
kn

≤ |b(1 + m)|, (2.1)

holds, then f(z) belongs to Fn(b, M), where m = 1− 1
M (M > 1

2 ).

Proof. Suppose that the inequality (2.1) holds. Then we have for z ∈ U

|Inf(z)− In+1f(z)| − |b(1 + m)In+1f(z) + m(Inf(z)− In+1f(z)|

=

∣∣∣∣∣
∞∑

k=2

1
kn

(1− 1
k

)akzk

∣∣∣∣∣−
∣∣∣∣∣b(1 + m)

{
z +

∞∑
k=2

ak

kn+1
zk

}
+ m

∞∑
k=2

1
kn

(1− 1
k

)akzk

∣∣∣∣∣
≤
∞∑

k=2

1
kn

(
1− 1

k

)
|ak|rk −

{
b(1 + m)|r −

∞∑
k=2

∣∣∣∣b(1 + m)
k

+ m

(
1− 1

k

)∣∣∣∣ |ak|
kn

rk

}

=
∞∑

k=2

1
kn
|ak|rk

{(
1− 1

k

)
+

∣∣∣∣b(1 + m)
k

+ m

(
1− 1

k

)∣∣∣∣}− |b(1 + m)|r.

Letting r → −1, then we have

|Inf(z)− In+1f(z)| − |b(1 + m)In+1f(z) + m(Inf(z)− In+1f(z)|

=
∞∑

k=2

{(
1− 1

k

)
+

∣∣∣∣b(1 + m)
k

+ m

(
1− 1

k

)∣∣∣∣} 1
kn
|ak|rk − |b(1 + m)| ≤ 0,

by (2.1). Hence, it follows that∣∣∣∣∣∣
Inf(z)

In+1f(z) − 1

b(1 + m) + m{ Inf(z)
In+1f(z) − 1}

∣∣∣∣∣∣ < 1, z ∈ U.

Letting

w(z) =
Inf(z)

In+1f(z) − 1

b(1 + m) + m{ Inf(z)
In+1f(z) − 1}

,

then w(0) = 0, w(z) is analytic in |z| < 1 and |w(z)| < 1. Hence, we have

Inf(z)
In+1f(z)

=
1 + [b(1 + m)−m]w(z)

1−mw(z)
, m = 1− 1

M
, M >

1
2
, w(z) ∈ Ω,

and this shows that f(z) belongs to Fn(b, M).
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Theorem 2.2. Let the function f(z)defined by (1.1)be in the class Fn(b, M), z ∈ U .

a) For

2m

(
1− 1

k

)
Re{b} >

(
1− 1

k

)2

(1−m)− |b|2(1 + m),

let

N =

[
2m

(
1− 1

k

)
Re{b}(

1− 1
k

)2 (1−m)− |b|2(1 + m)

]
, k = 1, 3, ..., j − 1.

Then

|aj | ≤
1

1
jn (1− 1

j )!

j∏
k=2

∣∣∣∣b(1 + m)
k

+
(

k − 2
k

)
m

∣∣∣∣ , (2.2)

for j = 2, 3, ..., N + 2; and

|aj | ≤
1

1
jn (1− 1

j )(N + 1)!

N+3∏
k=2

∣∣∣∣b(1 + m)
k

+
(

k − 2
k

)
m

∣∣∣∣ , (2.3)

for j > N + 2.

b) If

2m

(
1− 1

k

)
Re{b} ≤

(
1− 1

k

)2

(1−m)− |b|2(1 + m),

then

|aj | ≤
(1 + m)|b|
1
jn (1− 1

j )
, forj ≥ 2, (2.4)

where m = 1− 1
M (M > 1

2 ) and b 6= 0 complex.

Proof. Since f(z) ∈ Fn(b, M), from

Inf(z)
In+1f(z)

=
1 + [b(1 + m)−m]w(z)

1−mw(z)
,

where m = 1− 1
M (M > 1

2 ) and w(z) ∈ Ω, we have that

∞∑
k=2

1
kn

(
1− 1

k

)
akzk = w(z)

{
z(1 + m)b +

∞∑
k=2

1
kn

[
b(1 + m)

k
+ m

(
1− 1

k

)]
akzk

}
.

(2.5)

The equality (2.5) can be written in the form

j∑
k=2

1
kn

(
1− 1

k

)
akzk +

∞∑
k=2

dkzk =
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=

{
b(1 + m)z +

j−1∑
k=2

1
kn

[
b(1 + m)

k
+ m

(
1− 1

k

)]
akzk

}
w(z),

where dj ’s are some appropriates complex numbers. Then since |w(z)| < 1, we have∣∣∣∣∣∣
j∑

k=2

1
kn

(
1− 1

k

)
akzk +

∞∑
k=j+1

dkzk

∣∣∣∣∣∣ ≤ (2.6)

∣∣∣∣∣b(1 + m)z +
j−1∑
k=2

1
kn

[
b(1 + m)

k
+ m

(
1− 1

k

)]
akzk

∣∣∣∣∣ .

Squaring both sides of (2.6) and integrating round |z| = r < 1,we get, after

taking the limit with r → 1

1
j2n

(1− 1
j
)2|aj |2 ≤ (1 + m)2|b|2+ (2.7)

+
j−1∑
k=2

1
k2n

{∣∣∣∣b(1 + m)
k

+ m

(
1− 1

k

)∣∣∣∣2 − (
1− 1

k

)2
}
|ak|2.

Now there may be following two cases:

(a) Let

2m(k − 1)Re{b}
k2

>
(k − 1)2(1−m)

k2
− (1 + m)|b|2

k2
.

Suppose that j ≤ n + 2.Then for j = 2, (2.7) gives

|a2| ≤ (1 + m)|b|2n+1

which gives (2.2) for j = 2. We establish (2.2), by mathematical induction. Suppose

(2.2)is valid for k = 2, 3, ..., j − 1. Then it follows from (2.7)

1
j2n

(
1− 1

j

)2

|aj |2 ≤

(1 + m)2|b|2 +
j−1∑
k=2

1
k2n

{∣∣∣∣b(1 + m)
k

+ m

(
1− 1

k

)∣∣∣∣2 − (
1− 1

k

)2
}
×

× 1
1

k2n ((1− 1
k )!)2

k∏
p=2

∣∣∣∣b(1 + m)
k

+ m

(
p + 2

p

)∣∣∣∣2

=
1

((1− 1
j )!)2

j∏
k=2

∣∣∣∣b(1 + m)
k

+
(

k − 2
k

)
m

∣∣∣∣2 .
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Thus, we get

|aj | ≤
1

1
jn (1− 1

j )!

j∏
k=2

∣∣∣∣b(1 + m)
k

+
(

k − 2
k

)
m

∣∣∣∣ ,

which completes the proof of (2.2). Next, we suppose j > N + 2. Then (2.7) gives

1
j2n

(1− 1
j
)2|aj |2 ≤

≤ (1 + m)2|b|2 +
N+2∑
k=2

1
k2n

{∣∣∣∣b(1 + m)
k

+ m

(
1− 1

k

)∣∣∣∣2 − (
1− 1

k

)2
}
|ak|2+

+
j−1∑

k=N+3

1
k2n

{∣∣∣∣b(1 + m)
k

+ m

(
1− 1

k

)∣∣∣∣2 − (
1− 1

k

)2
}
|ak|2 ≤

≤ (1 + m)2|b|2 +
N+2∑
k=2

1
k2n

{∣∣∣∣b(1 + m)
k

+ m

(
1− 1

k

)∣∣∣∣2 − (
1− 1

k

)2
}
|ak|2.

On substituting upper estimates for a2, a3, ..., aN+2 obtained above, and sim-

plifying, we obtain (2.3).

(b) Let

2m

(
1− 1

k

)
Re{b} ≤

(
1− 1

k

)2

(1−m)− (1 + m)|b|2,

then it follows from (2.7)

1
j2n

(
1− 1

j

)2

|aj |2 ≤ (1 + m)2|b|2, (j ≥ 2)

which prove (2.4).

Theorem 2.3. If a function f(z) defined by (1.1) is in the class Fn(b, M) and µ is

any complex number, then

|a3 − µa2
2| ≤

3n+1

2
|b(1 + m)|max{1, |d|} (2.8)

where

d =
b(1 + m)
2 · 3n+1

[22n+4µ− 3n+1]− m

2
. (2.9)

The result is sharp.

Proof. Since f(z) ∈ Fn(b, M), we have

w(z) =
Inf(z)− In+1f(z)

[b(1 + m)−m]In+1f(z) + mInf(z)
=
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=

∞∑
k=2

ak

kn
zk−1

(
1− 1

k

)
b(1 + m) +

∞∑
k=2

ak

kn
zk−1

[
b(1 + m)

k
+ m

(
1− 1

k

)] =

=

∞∑
k=2

ak

kn
zk−1

(
1− 1

k

)
b(1 + m)

×

1 +

∞∑
k=2

ak

kn
zk−1

[
b(1 + m)

k
+ m

(
1− 1

k

)]
b(1 + m)

 . (2.10)

Now compare the coefficients of z and z2 on both sides of (2.10). Thus we obtain

a2 = 2n+1b(1 + m)c1 (2.11)

and

a3 =
3n+1b(1 + m)

2

{
c2 +

[
b(1 + m)

2
+

m

2

]
c2
1

}
. (2.12)

Hence

a3 − µa2
2 =

3n+1

2
b(1 + m){c2 − c2

1d}, (2.13)

where

d =
b(1 + m)
2 · 3n+1

[22n+4µ− 3n+1]− m

2
.

Taking modulus both sides in (2.13), we have

|a3 − µa2
2| ≤

3n+1

2
|b(1 + m)| · |c2 − dc2

1|. (2.14)

Using Lemma 1.1.in (2.14), we have

|a3 − µa2
2| ≤

3n+1

2
|b(1 + m)|max{1, |d|}.

Finally, the assertion (2.8) of Theorem 2.3. is sharp in view of the fact that the

assertion (1.6) of Lemma 1.1 is sharp.
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CLASSES OF MEROMORPHIC FUNCTIONS DEFINED
BY THE EXTENDED SĂLĂGEAN OPERATOR

JACEK DZIOK

Dedicated to Professor Grigore Ştefan Sălăgean on his 60th birthday

Abstract. In the paper, we define classes of meromorphic functions, in

terms of the extended Sălăgean operator. By using Jack’s Lemma and the

Briot-Bouquet differential subordination we obtain some inclusion relations

for defined classes.

1. Introduction

Let A denote the class of functions which are analytic in U := U(1), where

U(R) := {z : |z| < R}, 0 < R ≤ 1. By Ω we denote the class of the Schwarz functions,

i.e. the class of functions ω ∈ A, such that

ω(0) = 0, |ω(z)| < 1 (z ∈ U) .

For complex parameters β, γ and functions h ∈ A, ω ∈ Ω, we consider the first-order

differential equation of the form

q(z) +
zq′(z)

βq(z) + γ
= (h ◦ ω) (z), q(0) = h (0) = 1. (1.1)

If there exist a function ω ∈ Ω, such that the function q ∈ A is a solution of the

Cauchy problem (1.1) then we write

q(z) +
zq′(z)

βq(z) + γ
≺ h(z). (1.2)

The expression (1.2) is a first-order differential subordination and it is called the

Briot-Bouquet differential subordination.

Received by the editors: 01.05.2010.

2000 Mathematics Subject Classification. 30C45, 30C55.

Key words and phrases. meromorphic functions, differential subordination, Jack’s Lemma, Sălăgean

operator.
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More general, we say that a function f ∈ A is subordinate to a function

F ∈ A, and write f(z) ≺ F (z), if and only if there exists a function ω ∈ Ω, such that

f(z) = (F ◦ ω) (z) (z ∈ U) .

Moreover, we say that f is subordinate to F in U(R), if f(R z) ≺ F (R z). We shall

write

f(z) ≺R F (z)

in this case. In particular, if F is univalent in U we have the following equivalence

(cf. [5]):

f(z) ≺ F (z) ⇐⇒ f(0) = F (0) and f(U) ⊂ F (U).

Let M denote the class of functions f of the form

f(z) =
1
z

+
∞∑

n=1

anzn, (1.3)

which are analytic in D = U\ {0} . By f ∗ g we denote the Hadamard product ( or

convolution) of f, g ∈M, defined by

(f ∗ g) (z) =

( ∞∑
n=−1

anzn

)
∗

( ∞∑
n=−1

bnzn

)
:=

∞∑
n=−1

anbnzn.

Let λ, σ be positive real numbers. Motivated by the Sălăgean operator [6]

we consider the linear operator Dλ
σ : M→M defined by

Dλ
σf(z) =

(
f ∗ h

λ,σ

)
(z),

where

hλ,σ(z) =
1
z

+
∞∑

n=1

(
n + σ + 1

σ

)λ

zn (z ∈ D) .

It is closely related to Cho and Srivastava operator [1] (see also [7]) and the

multiplier transformations studied by Flett [3].

For a function f ∈M we have

z
[
Dλ

σf(z)
]′

= σDλ+1
σ f(z)− (1 + σ)Dλ

σf(z). (1.4)
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A function f ∈ A of the form

f(z) = zp +
∞∑

n=p+1

anzn (z ∈ U(r))

is said to be p -valently starlike in U(r) if and only if

R

(
zf ′(z)
f(z)

)
> 0 (z ∈ U(r); 0 < r ≤ 1).

Note that all functions p-valently starlike in U(r) are p-valent in U(r). In particular

we have

f (z) 6= 0 (z ∈ U(r)\ {0}) .

Let h be a function convex in U with

h(0) = 1, Re h (z) > 0 (z ∈ U) (1.5)

and let t be a complex number. We denote by V(t, λ, σ;h) the class of functions

f ∈M satisfying the following condition:

z
[
(1− t) Dλ

σf(z) + tDλ+1
σ f(z)

]
≺ h(z), (1.6)

in terms of subordination.

Moreover we define the class W(t, λ, σ;h) of functions f ∈ M satisfying the

following condition:

(1− t) Dλ+1
σ f(z) + tDλ+2

σ f(z)
(1− t) Dλ

σf(z) + tDλ+1
σ f(z)

≺ h(z). (1.7)

In particular for real constants A,B, −1 ≤ A < B ≤ 1, we denote

V (t, λ, σ;A,B) = V
(

t, λ, σ;
1 + Az

1 + Bz

)
,

W (t, λ, σ;A,B) = W
(

t, λ, σ;
1 + Az

1 + Bz

)
.

In the paper we present some inclusion relations for the defined classes.
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2. Main results

We shall need some lemmas.

Lemma 2.1. [4] Let w be a nonconstant function analytic in U(r) with w(0) = 0.

If

|w(z0)| = max {|w(z)| ; |z| ≤ |z0|} (z0 ∈ U(r)) ,

then there exists a real number k (k ≥ 1), such that

z0w
′(z0) = kw(z0).

We shall need also a modified result of Eenigenburg, Miller, Mocanu and

Reade [2] (see also [5]).

Lemma 2.2. Let h be a convex function in U, with

Re[βh(z) + γ] > 0 (z ∈ U)

If a function q satisfies the Briot-Bouquet differential subordination (1.2) in U(R),

i.e

q(z) +
zq′(z)

βq(z) + γ
≺R h(z),

then

q(z) ≺R h(z).

Making use of above lemmas, we get the following two theorem.

Theorem 2.3.

V(t, λ + m,σ;h) ⊂ V(t, λ, σ;h) (m ∈ N).

Proof. It is clear that it is sufficient to prove the theorem for m = 1. Let a function

f belong to the class V(t, λ + 1, σ;h) or equivalently

z
[
(1− t) Dλ+1

σ f(z) + tDλ+2
σ f(z)

]
≺ h(z). (2.1)

It is sufficient to verify the condition (1.6). The function

q(z) = z
[
(1− t) Dλ

σf(z) + tDλ+1
σ f(z)

]
(2.2)

is analytic in U and q(0) = 1. Taking the derivative of (2.2) we get

z
[
(1− t)Dλ+1

σ f(z) + tDλ+2
σ f(z)

]
= q(z) +

zq′(z)
σ

(z ∈ U) . (2.3)
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Thus by (2.1) we have

q(z) +
zq′(z)

σ
≺ h(z).

Lemma 2.2 now yields

q(z) ≺ h(z).

Thus by (2.2) f ∈ V(t, λ, σ;h) and this proves Theorem 2.3. �

Theorem 2.4.

W(t, λ+m,σ;h) ⊂ W(t, λ, σ;h) (m ∈ N).

Proof. It is clear that it is sufficient to prove the theorem for m = 1. Let a function

f belong to the class W(t, λ+1, σ;h) or equivalently

(1− t) Dλ+2
σ f(z) + tDλ+3

σ f(z)
(1− t) Dλ+1

σ f(z) + tDλ+2
σ f(z)

≺ h(z). (2.4)

It is sufficient to verify the condition (1.7). If we put

R = sup
{
r : (1− t) Dλ

σf(z) + tDλ+1
σ f(z) 6= 0, 0 < |z| < r

}
, (2.5)

then the function

q(z) =
(1− t) Dλ+1

σ f(z) + tDλ+2
σ f(z)

(1− t)Dλ
σf(z) + tDλ+1

σ f(z)
(2.6)

is analytic in U(R) and q(0) = 1. Taking the logarithmic derivative of (2.6) and

applying (1.4) we get

(1− t)Dλ+2
σ f(z) + tDλ+3

σ f(z)
(1− t)Dλ+1

σ f(z) + tDλ+2
σ f(z)

= q(z) +
zq′(z)
σq(z)

(z ∈ U(R)) . (2.7)

Thus by (2.4) we have

q(z) +
zq′(z)
σq(z)

≺R h(z).

Lemma 2.2 now yields

q(z) ≺R h(z). (2.8)

By (2.6) it suffices to verify that R = 1. Let p be the positive integer such that p > σ

and let

F (z) = zp+1
[
(1− t) Dλ

σf(z) + tDλ+1
σ f(z)

]
(z ∈ U) .

Then by (1.4), (2.6) and (2.8) we have

zF ′ (z)
F (z)

= σ
(1− t) Dλ+1

σ f(z) + tDλ+2
σ f(z)

(1− t) Dλ
σf(z) + tDλ+1

σ f(z)
+ p− σ ≺R σh(z) + p− σ.
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Thus by (1.5) we obtain

Re
zF ′ (z)
F (z)

> 0 (z ∈ U (R)) .

It means, that F is p-valently starlike in U(R) and consequently it is p-valent in

U(R). Thus we see that F can not vanish on |z| = R if R < 1. Hence by (2.5) we have

R = 1 and the proof of Theorem 2.4 is complete. �

Putting h(z) = 1+Az
1+Bz in Theorems 2.2 and 2.3 we obtain the following two

corollaries:

Corollary 2.5.

V(t, λ + m,σ;A,B) ⊂ V(t, λ, σ;A,B) (m ∈ N).

Corollary 2.6.

W(t, λ+m,σ;A,B) ⊂ W(t, λ, σ;A,B) (m ∈ N).

Using Lemma 2.1 we show the following sufficient conditions for functions to

belong to the class W(t, λ, σ;A,B).

Theorem 2.7. Let σ, λ,A,B be real numbers, and let

σ > 0, λ > 0, −1 ≤ A < B ≤ 1, B −A ≥ 2AB. (2.9)

If a function f ∈ M satisfies the inequality∣∣∣∣ (1− t)Dλ+2
σ f(z) + tDλ+3

σ f(z)
(1− t)Dλ+1

σ f(z) + tDλ+2
σ f(z)

− 1
∣∣∣∣ < (B −A) (1 + σ − σA)− 2AB

σ (1 + B) (1−A)
(z ∈ U) ,

(2.10)

then f belongs to the class W (t, λ, σ;A,B) .

Proof. Let a function f belong to the class M. Putting

q(z) =
1 + Aw(z)
1 + Bw(z)

(z ∈ U(R)) (2.11)

in (2.7), we obtain

(1− t)Dλ+2
σ f(z) + tDλ+3

σ f(z)
(1− t)Dλ+1

σ f(z) + tDλ+2
σ f(z)

=
1 + Aw(z)
1 + Bw(z)

+
1
σ

(
Azw′(z)

1 + Aw(z)
− Bzw′(z)

1 + Bw(z)

)
.

Consequently, we have

F (z) = w(z)
{

zw′(z)
σw(z)

(
A

1 + Aw(z)
− B

1 + Bw(z)

)
− B −A

1 + Bw(z)

}
, (2.12)
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where

F (z) =
(1− t) Dλ+2

σ f(z) + tDλ+3
σ f(z)

(1− t) Dλ+1
σ f(z) + tDλ+2

σ f(z)
− 1.

By (1.7), (2.6) and (2.11) it is sufficient to verify that w is analytic in U and

|w(z)| < 1 (z ∈ U).

Now, suppose that there exists a point z0 ∈ U(R), such that

|w(z0)| = 1, |w(z)| < 1 (|z| < |z0|).

Then, applying Lemma 2.1, we can write

z0w
′(z0) = kw(z0), w(z0) = eiθ (k ≥ 1).

Combining these with (2.12), we obtain

|F (z0)| =
∣∣∣∣kσ
(

−A

1 + Aeiθ
+

B

1 + Beiθ

)
+

B −A

1 + Beiθ

∣∣∣∣
≥ k

σ
Re
(

−A

1 + Aeiθ
+

B

1 + Beiθ

)
+

B −A

1 + B
.

Thus, by (2.9) we have

|F (z0)| ≥ k

σ

(
−A

1−A
+

B

1 + B

)
+

B −A

1 + B

≥ (B −A) (1 + σ − σA)− 2AB

σ (1 + B) (1−A)
.

Since this result contradicts (2.10) we conclude that w is the analytic function in U(R)

and |w(z)| < 1 (z ∈ U (R)). Applying the same methods as in the proof of Theorem

2.4 we obtain R = 1, which completes the proof of Theorem 2.7. �

Putting t = 0, A = 2α−1 and B = 1 in Corollaries 2.5 and 2.6 and Theorem

2.7 we obtain following relationships for the operator Dλ
σ .

Corollary 2.8. Let 0 ≤ α < 1 and m ∈ N. If a function f ∈ M satisfies the

inequality

Re
(
zDλ+m

σ f(z)
)

> α (z ∈ D) ,

then

Re
(
zDλ

σf(z)
)

> α (z ∈ D) .
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Corollary 2.9. Let 0 ≤ α < 1 and m ∈ N. If a function f ∈ M satisfies the

inequality

Re
{

Dλ+m+1
σ f(z)
Dλ+m

σ f(z)

}
> α (z ∈ D) ,

then

Re
{

Dλ+1
σ f(z)
Dλ

σf(z)

}
> α (z ∈ D) .

Corollary 2.10. Let 0 ≤ α ≤ 2/3. If a function f ∈ M satisfies the inequality

∣∣∣∣Dλ+2
σ f(z)

Dλ+1
σ f(z)

− 1
∣∣∣∣ < 1− α +

2− 3α

2σ(1− α)
(z ∈ D) ,

then

Re
{

Dλ+1
σ f(z)
Dλ

σf(z)

}
> a (z ∈ D) .
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SOME SUBCLASSES OF MEROMORPHICALLY UNIVALENT
FUNCTIONS
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Dedicated to Professor Grigore Ştefan Sălăgean on his 60th birthday

Abstract. Making use of certain linear operator, we introduce two novel

subclasses
∑

n(A, B, λ) and
∑∗

p,n(A, B, λ) of meromorphically univalent

functions in the punctured disc U∗. The main object of this paper is to

investigate the various important properties and characteristics of these

subclasses of meromorphically univalent functions. We extend the famil-

iar concept of neighborhoods of analytic functions to these subclasses of

meromorphically univalent functions. We also derive many result for the

Hadamard products of functions belonging to the class
∑∗

p,n(α, β, γ, λ).

1. Introduction

Let
∑

denote the class of functions of the form:

f(z) =
1
z

+
∞∑

k=0

akzk. (1.1)

which are analytic and univalent in the punctured disc

U∗ = {z : z ∈ C and 0 < |z| < 1} = U\{0}

and which have a simple pole at the origin with residue one there. Define a linear

operator as follows:

D0f(z) = f(z),

Received by the editors: 25.04.2010.

2000 Mathematics Subject Classification. 30C45, 33C50.

Key words and phrases. Linear operator, Hadamard product, meromorphically univalent functions,

neighborhoods.
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D1f(z) =
1
z

+
∞∑

k=0

(k + 2)akzk =
(z2f(z))

′

z
,

D2f(z) = D(D1f(z)),

and (in general)

Dnf(z) =
1
z

+
∞∑

k=0

(k + 2)nakzk

=
(z2Dn−1f(z))

′

z
(f ∈

∑
; n ∈ N = {1, 2, ...}). (1.2)

The linear operator Dn was considered by Uralegaddi and Somanath [15].

Let

Fλ,n(z) = (1−λ)Dnf(z)+λz(Dnf(z))
′
(f ∈

∑
;n ∈ N0 = N∪{0}; 0 ≤ λ <

1
2
), (1.3)

so that, obviously,

Fλ,n(z) =
1− 2λ

z
+

∞∑
k=0

(k + 2)n[1 + λ(k − 1)]akzk(n ∈ N0; 0 ≤ λ <
1
2
), (1.4)

it is easily verified that

zF
′

λ,n(z) = Fλ,n+1(z)− 2Fλ,n(z). (1.5)

For a function f(z) ∈
∑

,we say that f(z) is a member of the class∑
n(A,B, λ) if the function Fλ,n(z) defined by (1.3) satisfies the inequality:∣∣∣∣∣ z2F

′

λ,n(z) + (1− 2λ)
Bz2F

′
λ,n(z) + (1− 2λ)A

∣∣∣∣∣ < 1 (z ∈ U∗), (1.6)

where (and throughout this paper) the parameters A,B, λ, p and n are constrained

as follows:

−1 ≤ A < B ≤ 1, 0 < B ≤ 1 , 0 ≤ λ <
1
2
; p ∈ N and n ∈ N0. (1.7)

Furthermore, we say that a function f(z) ∈
∑∗

p,n(A,B, λ) whenever f(z) is

of the form [cf. Equation (1.1)]:

f(z) =
1
z

+
∞∑

k=p

|ak| zk (k ≥ p ; p ∈ N). (1.8)

We note that:
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(i)
∑∗

p,0((2αγ − 1)β, (2γ − 1)β, 0) =
∑

p(α, β, γ) (0 ≤ α < 1 ; 0 < β ≤ 1; 1
2 ≤ γ ≤ 1)

(Cho et al. [6]);

(ii)
∑∗

1,0((2αγ − 1)β, (2γ − 1)β, 0) =
∑

1(α, β, γ) (0 ≤ α < 1 ; 0 < β ≤ 1; 1
2 ≤ γ ≤ 1)

(Cho et al. [5]);

(iii)
∑∗

1,0(−A,−B, 0) =
∑

d(A,B)(−1 ≤ B < A ≤ 1 ; −1 ≤ B < 0) (Cho [4]);

(iv)
∑∗

p,0(B,A, λ) = Ω+(p; 0; 1, 1, A, B, λ) = Ω+(p, A,B, λ) (Joshi et al. [9]).

Also we note that:

(v)
∑∗

p,n((2αγ − 1)β, (2γ − 1)β, λ) =
∑∗

p,n(α, β, γ, λ)

=

{
f ∈

∑∗

p
:

∣∣∣∣∣ z2F
′

λ,n(z) + (1− 2λ)
(2γ − 1)z2F

′
λ,n(z) + (1− 2λ)(2γα− 1)

∣∣∣∣∣ < β,

(z ∈ U∗ ; 0 ≤ α < 1; 0 < β ≤ 1;
1
2
≤ γ ≤ 1; 0 ≤ λ <

1
2

; n ∈ N0)
}

; (1.9)

(vi)
∑∗

p,n((2αγ − 1)β, (2γ − 1)β, 0) =
∑∗

p,n(α, β, γ)

=

{
f ∈

∑∗

p
:

∣∣∣∣∣ z2(Dnf(z))
′
+ 1

(2γ − 1)z2(Dnf(z))′ + (2γα− 1)

∣∣∣∣∣ < β,

(z ∈ U∗ ; 0 ≤ α < 1; 0 < β ≤ 1;
1
2
≤ γ ≤ 1; n ∈ N0)

}
. (1.10)

2. Inclusion properties of the class
∑

n(A,B, λ)

We begin by recalling the following result (Jack’s lemma), which we shall

apply in proving our first theorem.

Lemma 2.1. [8] Let the (nonconstant) function w(z) be analytic in U with w(0) =

0 . If |w(z)| attains its maximum value on the circle |z| = r < 1 at a point z0 ∈ U, then

z0w
′
(z0) = γw(z0), (2.1)

where γ is a real and γ ≥ 1.

Theorem 2.2. The following inclusion property holds true for the class
∑

n(A,B, λ)∑
n+1

(A,B, λ) ⊂
∑

n
(A,B, λ) (n ∈ N0). (2.2)
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Proof. Let f(z) ∈
∑

n+1(A,B, λ) and suppose that

z2F
′

λ,n(z) = − (1− 2λ)(1 + Aw(z))
1 + Bw(z)

, (2.3)

where the function w(z) is either analytic or meromorphic in U , with w(0) = 0. Then,

by using (1.5) and (2.3), we have

z2F
′

λ,n+1(z) = −(1− 2λ)

[
1 + Aw(z)
1 + Bw(z)

+
(A−B)zw

′
(z)

(1 + Bw(z))2

]
. (2.4)

We claim that |w(z)| < 1 for z ∈ U . Otherwith there exists a point z0 ∈ U such

that max
|z|≤|z0|

|w(z)| = |w(z0)| = 1.Applying Jack’s lemma, we have

z0w
′
(z0) = γw(z0)(γ ≥ 1).Writing w(z0) = eiθ(0 ≤ θ ≤ 2π) and putting z = z0 in

(2.4), we get ∣∣∣∣∣ z2
0F

′

λ,n+1(z0) + (1− 2λ)
Bz2

0F
′
λ,n+1(z0) + (1− 2λ)A

∣∣∣∣∣
2

− 1

=

∣∣1 + γ + Beiθ
∣∣2 − ∣∣1 + B(1− γ)eiθ

∣∣2
|1 + B(1− γ)eiθ|2

=
γ2(1−B2) + 2γ(1 + B2 + 2B cos θ)

|1 + B(1− γ)eiθ|2
≥ 0, (2.5)

which obviously contradicts our hypothesis that f(z) ∈
∑

n+1(A,B, λ). Thus we must

have |w(z)| < 1 (z ∈ U), so from (2.3), we conclude that f(z) ∈
∑

n(A,B, λ),which

evidently completes the proof of Theorem 1.

Theorem 2.3. Let α be a complex number such that Re(α) > 0. If f(z) ∈∑
n(A,B, λ), then the function Gλ,n(z) given by

Gλ,n(z) =
α

zα+1

z∫
0

tαFλ,n(t)dt (2.6)

is also in the same class
∑

n(A,B, λ).

Proof. From (2.6), we have

zG
′

λ,n(z) = αFλ,n(z)− (α + 1)Gλ,n(z). (2.7)

Put

z2G
′

λ,n(z) = − (1− 2λ)(1 + Aw(z))
1 + Bw(z)

, (2.8)
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where w(z) is either analytic or meromorphic in U with w(0) = 0. Then , by using

(2.7) and (2.8), we have

z2F
′

λ,n(z) = −(1− 2λ)

[
1 + Aw(z)
1 + Bw(z)

+
(A−B)zw

′
(z)

α(1 + Bw(z))2

]
. (2.9)

The remaining part of the proof is similar to that of Theorem 1 and so is omitted.

3. Properties of the class
∑∗

p,n(A,B, λ)

Theorem 3.1. Let f(z) ∈
∑∗

p be given by (1.8). Then f(z) ∈
∑∗

p,n(A,B, λ) if and

only if
∞∑

k=p

k(k + 2)n[1 + λ(k − 1)](1 + B) |ak| ≤ (B −A)(1− 2λ), (3.1)

where the parameters A,B, n and λ are constrained as in (1.7).

Proof. Let f(z) ∈
∑∗

p,n(A,B, λ) be given by (1.8). Then , from (1.8) and (1.6), we

have ∣∣∣∣∣ z2F
′

λ,n(z) + (1− 2λ)
Bz2F

′
λ,n(z) + (1− 2λ)A

∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
∞∑

k=p

k(k + 2)n[1 + λ(k − 1)] |ak| zk+1

(B −A)(1− 2λ)−B
∞∑

k=p

k(k + 2)n[1 + λ(k − 1)] |ak| zk+1

∣∣∣∣∣∣∣∣ < 1 (z ∈ U∗). (3.2)

Since |Re(z)| ≤ |z| (z ∈ C), we have

Re


∞∑

k=p

k(k + 2)n[1 + λ(k − 1)] |ak| zk+1

(B −A)(1− 2λ)−B
∞∑

k=p

k(k + 2)n[1 + λ(k − 1)] |ak| zk+1

 < 1. (3.3)

Choose values of z on the real axis so that z2F
′

λ,n(z) is real. Upon clearing the

denominator in (3.3) and letting z → 1− through real values we obtain (3.1).

In order to prove the converse, we assume that the inequality (3.1) holds true.

then, if we let z ∈ ∂U, we find from (1.8) and (3.1) that∣∣∣∣∣ z2F
′

λ,n(z) + (1− 2λ)
Bz2F

′
λ,n(z) + (1− 2λ)A

∣∣∣∣∣
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≤

∞∑
k=p

k(k + 2)n[1 + λ(k − 1)] |ak|

(B −A)(1− 2λ)−B
∞∑

k=p

k(k + 2)n[1 + λ(k − 1)] |ak|

< 1(z ∈ ∂U = {z : z ∈ C and |z| = 1}). (3.4)

Hence, by the maximum modulus theorem, we have f(z) ∈
∑∗

p,n(A,B, λ).

Corollary 3.2. If the function f(z) defined by (1.8) is in the class
∑∗

p,n(A,B, λ), then

|ak| ≤
(B −A)(1− 2λ)

k(k + 2)n[1 + λ(k − 1)](1 + B)
(k ≥ p; p ∈ N;n ∈ N0), (3.5)

with equality for the function

f(z) =
1
z

+
(B −A)(1− 2λ)

k(k + 2)n[1 + λ(k − 1)](1 + B)
zk (k ≥ p; p ∈ N;n ∈ N0). (3.6)

Putting A = (2γα − 1)β and B = (2γ − 1)β (0 ≤ α < 1, 0 < β ≤ 1 and 1
2 ≤

γ ≤ 1) in Theorem 2.3, we obtain:

Corollary 3.3. A function f(z) defined by (1.8) is in the class
∑∗

p,n(α, β, γ, λ) if

and only if

∞∑
k=p

k(k + 2)n[1 + λ(k − 1)](1 + 2βγ − β) |ak| ≤ 2βγ(1− 2λ)(1− α). (3.7)

Next we prove the following growth and distortion properties for the class∑∗
p,n(A,B, λ) .

Theorem 3.4. If a function f(z) defined by (1.8) is in the class
∑∗

p,n(A,B, λ) , then{
m!− (p− 1)!(B −A)(1− 2λ)

(p−m!)(p + 2)n[1 + λ(p− 1)](1 + B)
rp+1

}
r−(m+1) ≤

∣∣∣f (m)(z)
∣∣∣

≤
{

m! +
(p− 1)!(B −A)

(p−m!)(p + 2)n[1 + λ(p− 1)](1 + B)
rp+1

}
r−(m+1) (3.8)

(0 < |z| = r < 1; p ∈ N;m,n ∈ N0;m < p).

The result is sharp for the function f(z) given by

f(z) =
1
z

+
(B −A)(1− 2λ)

p(p + 2)n[1 + λ(p− 1)](1 + B)
zp (p ∈ N; n ∈ N0). (3.9)
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Proof. In view of Theorem 2.3, we have

p(p + 2)n[1 + λ(p− 1)](1 + B)
p!

∞∑
k=p

k! |ak| ≤
∞∑

k=p

k(k + 2)n[1 + λ(k − 1)](1 + B) |ak|

≤ (B −A)(1− 2λ),

which yields
∞∑

k=p

k! |ak| ≤
p!(B −A)(1− 2λ)

p(p + 2)n[1 + λ(p− 1)](1 + B)
(p ∈ N; n ∈ N0). (3.10)

Now, by differentiating both sides of (1.8 ) m times with respect to z, we have

f (m)(z) = (−1)mm!z−(m+1) +
∞∑

k=p

k!
(k −m)!

|ak| zk−m,

(p ∈ N;m,n ∈ N0;m < p), (3.11)

and Theorem 3.1 follows easily from (3.10) and (3.11).

Finally, it is easy to see that the bounds in (3.8) are attained for the function

f(z) given by (3.9).

By the same way as in the proof given by Cho et al. [5] , we have the radii of

meromorphically starlikeness of order φ(0 ≤ φ < 1) and meromorphically convexity

of order φ(0 ≤ φ < 1) for functions in the class
∑∗

p,n(A,B, λ) .

Theorem 3.5. Let the function f(z) defined by (1.8) be in the class
∑∗

p,n(A,B, λ) ,

then, we have

(i) f(z) is meromorphically starlike of order φ(0 ≤ φ < 1) in the disc |z| <

r1, that is,

Re

{
−zf

′
(z)

f(z)

}
> φ (|z| < r1; 0 ≤ φ < 1), (3.12)

where

r1 = inf
k≥p

{
k(k + 2)n[1 + λ(k − 1)](1 + B)(1− φ)

(B −A)(1− 2λ)(k + 2− φ)

} 1
k + 1

. (3.13)

(ii) f(z) is meromorphically convex of order φ(0 ≤ φ < 1) in the disc |z| <

r2, that is,

Re

{
−(1 +

zf
′′
(z)

f ′(z)
)

}
> φ (|z| < r2 ; 0 ≤ φ < 1), (3.14)
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where

r2 = inf
k≥p

{
(k + 2)n[1 + λ(k − 1)](1 + B)(1− φ)

(B −A)(1− 2λ)(k + 2− φ)

} 1
k + 1

. (3.15)

Each of these results is sharp for the function f(z) given by (3.6).

4. Neighborhoods and partial sums

Following the earlier works (based upon the familiar concept of neighborhoods

of analytic functions) by Goodman [7] and Ruscheweyh [13], and (more recently) by

Altintas et al. ([1], [2] and [3]) , Liu [10] and Liu and Srivastava ([11] and [12]), we

begin by introducing here the δ−neighborhood of a function f(z) ∈
∑

of the form

(1.1) by means of the definition given below:

Nδ(f) =

{
g ∈

∑
: g(z) =

1
z

+
∞∑

k=0

bkzk and

∞∑
k=0

k(k + 2)n[1 + λ(k − 1)](1 + |B|)
(B −A)(1− 2λ)

|ak − bk| ≤ δ,

(−1 ≤ A < B ≤ 1, 0 ≤ λ <
1
2
, δ > 0, p ∈ N, n ∈ N0)

}
. (4.1)

Making use of the definition (4.1), we now prove Theorem 6 below:

Theorem 4.1. Let the function f(z) defined by (1.1) be in the class
∑

n(A,B, λ). If

f(z) satisfies the following condition:

f(z) + εz−1

1 + ε
∈

∑
n
(A,B, λ) (ε ∈ C, |ε| < δ, δ > 0),

then

Nδ(f) ⊂
∑

n
(A,B, λ). (4.3)

Proof. It is easily seen from (1.6) that g(z) ∈
∑

n(A,B, λ) if and only if for any

complex number σ with |σ| = 1,

z2G
′

λ,n(z) + (1− 2λ)
Bz2G

′
λ,n(z) + (1− 2λ)A

6= σ (z ∈ U), (4.4)

which is equivalent to

(g ∗ h)(z)
z−1

6= 0 (z ∈ U), (4.5)
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which, for convenience,

h(z) =
1
z

+
∞∑

k=0

ckzk

=
1
z

+
∞∑

k=0

k(k + 2)n[1 + λ(k − 1)](1− σB)
σ(B −A)(1− 2λ)

zk. (4.6)

From (4.6), we have

|ck| ≤
k(k + 2)n[1 + λ(k − 1)](1 + |B|)

(B −A)(1− 2λ)
(0 ≤ λ <

1
2

;n ∈ N0). (4.7)

Now , if f(z) =
1
z

+
∞∑

k=0

akzk ∈
∑

satisfies the condition (4.2), then (4.5) yields∣∣∣∣ (f ∗ h)(z)
z−1

∣∣∣∣ ≥ δ (z ∈ U ; δ > 0). (4.8)

By letting

g(z) =
1
z

+
∞∑

k=0

bkzk ∈ Nδ(f), (4.9)

so that ∣∣∣∣ [g(z)− f(z)] ∗ h(z)
z−1

∣∣∣∣ =

∣∣∣∣∣
∞∑

k=0

(bk − ak)ckzk+1

∣∣∣∣∣
≤ |z|

∞∑
k=0

k(k + 2)n[1 + λ(k − 1)](1 + |B|)
(B −A)(1− 2λ)

|bk − ak|

< δ (z ∈ U ; δ > 0). (4.10)

Thus we have (4.5), and hence also (4.4) for any σ ∈ C such that |σ| = 1,which implies

that g(z) ∈
∑

n(A,B, λ). This evidently proves the assertion (4.3) of Theorem 6.

We now define the δ−neighborhood of a function f(z) ∈
∑∗

p of the form

(1.8) as follows:

N+
δ (f) =

{
g ∈

∑∗

p
: g(z) =

1
z

+
∞∑

k=p

|bk| zk and

∞∑
k=0

k(k + 2)n[1 + λ(k − 1)](1 + B)
(B −A)(1− 2λ)

||bk| − |ak|| ≤ δ,

(−1 ≤ A < B ≤ 1 ; 0 ≤ λ <
1
2
; δ > 0; p ∈ N;n ∈ N0)

}
. (4.11)

Making use of the definition (4.11), we now prove Theorem 3.4 below:
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Theorem 4.2. Let the function f(z) defined by (1.8) be in the class
∑∗

p,n(A,B, λ),

−1 ≤ A < B ≤ 1, 0 < B ≤ 1, 0 ≤ λ <
1
2
, p ∈ N and n ∈ N0, then

N+
δ (f) ⊂

∑∗

p,n
(A,B, λ) (δ =

p + 1
p + 2

). (4.12)

The result is sharp .

Proof. Making use the same method as in the proof of Theorem 6, we can show that

[cf. Eq. (4.6)]

h(z) =
1
z

+
∞∑

k=p

ckzk

=
1
z

+
∞∑

k=0

k(k + 2)n[1 + λ(k − 1)](1− σB)
σ(B −A)(1− 2λ)

zk. (4.13)

Thus under the hypothesis −1 ≤ A < B ≤ 1 , 0 < B ≤ 1, 0 ≤ λ <
1
2

, p ∈ N and n ∈

N0, if f(z) ∈
∑∗

p,n+1(A,B, λ) is given by (1.8), we obtain∣∣∣∣ (f ∗ h)(z)
z−1

∣∣∣∣ =

∣∣∣∣∣∣1 +
∞∑

k=p

ck |ak| zk+1

∣∣∣∣∣∣
≥ 1− 1

p + 2

∞∑
k=p

k(k + 2)n+1[1 + λ(k − 1)](1 + B)
(B −A)(1− 2λ)

|ak| ,

which in view of Theorem 2.3, yields∣∣∣∣ (f ∗ h)(z)
z−1

∣∣∣∣ ≥ 1− 1
p + 2

=
p + 1
p + 2

= δ.

The remaing part of the proof of Theorem 3.4 is similar to that of Theorem 6, and

we skip the details involved.

To show the sharpness, we consider the functions f(z) and g(z) given by

f(z) =
1
z

+
(B −A)(1− 2λ)

p(p + 2)n+1[1 + λ(p− 1)](1 + B)
zp ∈

∑∗

p,n+1
(A,B, λ) (4.14)

and

g(z) =
1
z

+
[

(B −A)(1− 2λ)
p(p + 2)n+1[1 + λ(p− 1)](1 + B)

+

(B −A)(1− 2λ)δ
′

p(p + 2)n[1 + λ(p− 1)](1 + B)

]
zp, (4.15)
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where δ
′

> δ =
p + 1
p + 2

. Clearly, the function g(z) belongs to N+

δ
′ (f). On the other

hand, we find from Theorem 2.3 that g(z) is not in the class
∑∗

p,n(A,B, λ) .

Thus the proof of Theorem 3.4 is completed.

Next we prove the following result.

Theorem 4.3. Let f(z) ∈
∑

be given by (1.1) and define the partial sums s1(z) and

sm(z) as follows:

s1(z) =
1
z

and sm(z) =
1
z

+
m−2∑
k=0

akzk (m ∈ N\{1}). (4.16)

Suppose also that

∞∑
k=0

dk |ak| ≤ 1
(

dk =
k(k + 2)n[1 + λ(k − 1)](1 + |B|)

(B −A)(1− 2λ)

)
. (4.17)

Then we have

(i)f(z) ∈
∑

n(A,B, λ),

(ii) Re

{
f(z)
sm(z)

}
> 1− 1

dm−1
(z ∈ U ; m ∈ N) (4.18)

and

(iii)Re

{
sm(z)
f(z)

}
>

dm−1

1 + dm−1
(z ∈ U ; m ∈ N). (4.19)

The estimates in (4.18) and (4.19) are sharp for eachm ∈ N.

Proof. (i) It is not difficult to see that

z−1 ∈
∑

n
(A,B, λ) (n ∈ N0).

Thus, from Theorem 6 and the hypothesis (4.17) of Theorem 3.5, we have

N1(z−1) ⊂
∑

n
(A,B, λ) (n ∈ N0), (4.20)

which shows that f(z) ∈
∑

n(A,B, λ) as asserted by Theorem 3.5.

(ii) For the coefficients dk given by(4.17), it is not difficult to verify that

dk+1 > dk > 1 (k ∈ N). (4.21)
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Therefore, we have
m−2∑
k=0

|ak|+ dm−1

∞∑
k=m−1

|ak| ≤
∞∑

k=0

dk |ak| ≤ 1, (4.22)

where we have used the hypothesis (4.17) again.

By setting

h1(z) = dm−1

{
f(z)
sm(z)

−
(

1− 1
dm−1

)}
= 1 +

dm−1

∞∑
k=m−1

akzk+1

1 +
m−2∑
k=0

akzk+1

, (4.23)

and applying (4.22), we find that

∣∣∣∣h1(z)− 1
h1(z) + 1

∣∣∣∣ ≤ dm−1

∞∑
k=m−1

|ak|

2− 2
m−2∑
k=0

|ak| − dm−1

∞∑
k=m−1

|ak|
≤ 1 (z ∈ U), (4.24)

which readily yields the assertion (4.18) of Theorem 3.5. If we take

f(z) =
1
z
− zm−1

dm−1
, (4.25)

then
f(z)
sm

= 1− zm

dm−1
→ 1− 1

dm−1
as z → 1−,

which shows that the bound in (4.18) is the best possible for each n ∈ N.

(iii) Just as in Part (ii) above, if we put

h2(z) = (1 + dm−1)
(

sm(z)
f(z)

− dm−1

1 + dm−1

)

= 1−
(1 + dm−1)

∞∑
k=m−1

akzk+1

1 +
∞∑

k=0

akzk+1

, (4.26)

and make use of (4.22), we can deduce that

∣∣∣∣h2(z)− 1
h2(z) + 1

∣∣∣∣ ≤ (1 + dm−1)
∞∑

k=m−1

|ak|

2− 2
m−2∑
k=0

|ak| − (1− dm−1)
∞∑

k=m−1

|ak|
≤ 1 (z ∈ U),

which leads us immediately to the assertion (4.19) of Theorem 3.5.
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The bound in (4.19) is sharp for each m ∈ N,with the extremal function

f(z) given by (4.25). The proof of Theorem 3.5 is thus completed.

5. Convolution properties

For the functions

fj(z) =
1
z

+
∞∑

k=p

|ak,j | zk (j = 1, 2; p ∈ N), (5.1)

we dnote by (f1 ∗ f2)(z) the Hadamard product (or convolution ) of the functions

f1(z and f2(z), that is,

(f1 ∗ f2)(z) =
1
z

+
∞∑

k=p

|ak,1| |ak,2| zk. (5.2)

Theorem 5.1. Let the functions fj(z) (j = 1, 2) defined by (5.1) be in the

class
∑∗

p,n(α, β, γ, λ).Then (f1 ∗ f2)(z) ∈
∑∗

p,n(δ, β, γ, λ),where

δ = 1− 2βγ(1− 2λ)(1− α)2

p(p + 2)n[1 + λ(p− 1)](1 + 2βγ − β)
. (5.3)

The result is sharp for the functions

fj(z) =
1
z

+
2βγ(1− 2λ)(1− α)

p(p + 2)n[1 + λ(p− 1)](1 + 2βγ − β)
zp (j = 1, 2; p ∈ N;n ∈ N0). (5.4)

Proof. Employing the technique used earlier by Schild and Silverman [14], we need

to find the largest δ such that
∞∑

k=p

k(k + 2)n[1 + λ(k − 1)](1 + 2βγ − β)
2βγ(1− 2λ)(1− δ)

|ak,1| |ak,2| ≤ 1 (5.5)

for fj(z) ∈
∑∗

p,n(α, β, γ, λ)(j = 1, 2).Since fj(z) ∈
∑∗

p,n(α, β, γ, λ)(j = 1, 2) ,we read-

ily see that
∞∑

k=p

k(k + 2)n[1 + λ(k − 1)](1 + 2βγ − β)
2βγ(1− 2λ)(1− α)

|ak,j | ≤ 1 (j = 1, 2). (5.6)

Therefore, by the Cauchy-Schwarz inequality , we obtain
∞∑

k=p

k(k + 2)n[1 + λ(k − 1)](1 + 2βγ − β)
2βγ(1− 2λ)(1− α)

√
|ak,1| |ak,2| ≤ 1 . (5.7)
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This implies that we need only to show that

|ak,1| |ak,2|
(1− δ)

≤
√
|ak,1| |ak,2|
(1− α)

(k ≥ p) (5.8)

or , equivalently , that √
|ak,1| |ak,2| ≤

(1− δ)
(1− α)

(k ≥ p). (5.9)

Hence, by the inequality (5.7), it is sufficient to prove that

2βγ(1− 2λ)(1− α)
k(k + 2)n[1 + λ(k − 1)](1 + 2βγ − β)

≤ (1− δ)
(1− α)

(k ≥ p). (5.10)

It follows from (5.10) that

δ ≤ 1− 2βγ(1− 2λ)(1− α)2

k(k + 2)n[1 + λ(k − 1)](1 + 2βγ − β)
(k ≥ p). (5.11)

Now, defining the function ϕ(k) by

ϕ(k) = 1− 2βγ(1− 2λ)(1− α)2

k(k + 2)n[1 + λ(k − 1)](1 + 2βγ − β)
(k ≥ p). (5.12)

We see that ϕ(k) is an increasing function of k. Therefore , we conclude that

δ ≤ ϕ(p) = 1− 2βγ(1− 2λ)(1− α)2

p(p + 2)n[1 + λ(p− 1)](1 + 2βγ − β)
, (5.13)

which evidently completes the proof of Theorem 4.1.

Using arguments similar to those in the proof of Theorem 4.1, we obtain the

following result.

Theorem 5.2. Let the function f1(z) defined by (5.1) be in the class
∑∗

p,n(α, β, γ, λ) .

Suppose also that the function f2(z) defined by (5.1) be in the class
∑∗

p,n(ζ, β, γ, λ).

Then (f1 ∗ f2)(z) ∈
∑∗

p,n(ξ, β, γ, λ),where

ξ = 1− 2βγ(1− 2λ)(1− α)(1− ζ)
p(p + 2)n[1 + λ(p− 1)](1 + 2βγ − β)

. (5.14)

The result is sharp for the functions fj(z)(j = 1, 2) given by

f1(z) =
1
z

+
2βγ(1− 2λ)(1− α)

p(p + 2)n[1 + λ(p− 1)](1 + 2βγ − β)
zp (p ∈ N;n ∈ N0), (5.15)

and

f2(z) =
1
z

+
2βγ(1− 2λ)(1− ζ)

p(p + 2)n[1 + λ(p− 1)](1 + 2βγ − β)
zp (p ∈ N;n ∈ N0). (5.16)
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Theorem 5.3. Let the functions fj(z)(j = 1, 2) defined by (5.1) be in the class∑∗
p,n(α, β, γ, λ).Then the function h(z) defined by

h(z) =
1
z

+
∞∑

k=p

(|ak,1|2 + |ak,2|2)zk (5.17)

belongs to the class
∑∗

p,n(τ , β, γ, λ),where

τ = 1− 4βγ(1− 2λ)(1− α)2

p(p + 2)n[1 + λ(p− 1)](1 + 2βγ − β)
. (5.18)

This result is sharp for the functions fj(z)(j = 1, 2) given already by (5.4).

Proof. Noting that
∞∑

k=p

{k(k + 2)n[1 + λ(k − 1)](1 + 2βγ − β)}2

[2βγ(1− 2λ)(1− α)]2
|ak,j |2

≤ (
∞∑

k=p

k(k + 2)n[1 + λ(k − 1)](1 + 2βγ − β)
2βγ(1− 2λ)(1− α)

|ak,j |)2 ≤ 1 (j = 1, 2), (5.19)

for fj(z) ∈
∑∗

p,n(α, β, γ, λ)(j = 1, 2), we have

∞∑
k=p

{k(k + 2)n[1 + λ(k − 1)](1 + 2βγ − β)}2

2 [2βγ(1− 2λ)(1− α)]2
(|ak,1|2 + |ak,2|2) ≤ 1 . (5.20)

Therefore, we have to find the largest τ such that

1
(1− τ)

≤ k(k + 2)n[1 + λ(k − 1)](1 + 2βγ − β)
4βγ(1− 2λ)(1− α)2

(k ≥ p), (5.21)

that is, that

τ ≤ 1− 4βγ(1− 2λ)(1− α)2

k(k + 2)n[1 + λ(k − 1)](1 + 2βγ − β)
(k ≥ p). (5.22)

Now, defining a function Ψ(k) by

Ψ(k) = 1− 4βγ(1− 2λ)(1− α)2

k(k + 2)n[1 + λ(k − 1)](1 + 2βγ − β)
(k ≥ p). (5.23)

We observe that Ψ(k) is an increasing function of k. We thus conclude that

τ ≤ Ψ(p) = 1− 4βγ(1− 2λ)(1− α)2

p(p + 2)n[1 + λ(p− 1)](1 + 2βγ − β)
, (5.24)

which completes the proof of Theorem 4.3.

Putting n = λ = 0 in Theorem 4.3, we obtain:
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Corollary 5.4. Let the functions fj(z)(j = 1, 2) defined by (5.1) be in the

class
∑∗

p(α, β, γ ). Then the function h(z) defined by (5.17) belongs to the class∑∗
p(τ , β, γ), where

τ = 1− 4βγ(1− α)2

p(1 + 2βγ − β)
. (5.25)

The result is sharp.

Remark 5.5. The result obtained by Cho et al. ([5] and [6]) is not correct. The

correct result is given by Corollary 3.
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ORDER OF CLOSE-TO-CONVEXITY FOR ANALYTIC FUNCTIONS
OF COMPLEX ORDER

BASEM A. FRASIN

Dedicated to Professor Grigore Ştefan Sălăgean on his 60th birthday

Abstract. The aim of this paper is to find the order of close-to-convexity

for certain analytic functions of complex order.

1. Introduction and definitions

Let A denote the class of functions of the form:

f(z) = z +
∞∑

n=2

anzn (1.1)

which are analytic in the open unit disk U = {z : |z| < 1}. A function f(z) in A is

said to be starlike function of complex order γ(γ ∈ C−{0}), if and only if

Re
{

1 +
1
γ

(
zf ′(z)
f(z)

− 1
)}

> 0, (z ∈ U). (1.2)

We denote by S(γ) the class of all such functions. Also, a function f(z) in A is said

to be convex function of complex order γ(γ ∈ C−{0}), that is, f ∈ C(γ), if and only

if

Re
{

1 +
1
γ

zf ′′(z)
f ′(z)

}
> 0, (z ∈ U). (1.3)

The class S(γ) was introduced by Nasr and Aouf [7] and the class C(γ) was

introduced by Wiatrowski [15] and considered in[6] (see also [5], [10], [13] and [2]).

Received by the editors: 01.03.2010.

2000 Mathematics Subject Classification. 30C45.

Key words and phrases. Analytic, starlike and convex functions of complex order, close-to-convex

functions.
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We note that f(z) ∈ C(γ) ⇔ zf ′(z) ∈ S(γ) and S(1−α) = S∗(α), C(1−α) =

C(α) where S∗(α) and C(α) denote, respectively, the familiar classes of starlike and

convex functions of a real order α(0 ≤ α < 1) in U (see, for example, [14]).

A function f(z) in A is said to be close-to-convex of complex order γ(γ ∈

C−{0}), and type δ ∈ R if there exists a function g(z) belonging to S(γ) such that

Re
{

1 +
1
γ

(
zf ′(z)
g(z)

− 1
)}

> δ, (z ∈ U). (1.4)

We denote by K(γ, δ) the subclass of A consisting of functions which are close-to-

convex of complex order γ and type β in U . We note that the class K(1, 0) is the class

of close-to-convex functions introduced by Kaplan [4] and Ozaki [11].

Pfaltzgraff et al.[12] have proved that if f(z) in A satisfies the condition

Re
(

1 +
zf ′′(z)
f ′(z)

)
> α (

1
2
≤ α < 1), (1.5)

then f(z) in the class S (and convex in at least one direction in U ). Furthermore,

Cerebiez-Tarabicka et al. [1] have shown that if f(z) in A satisfies the condition

Re
(

1 +
zf ′′(z)
f ′(z)

)
> −1

2
(
1
2
≤ α < 1), (1.6)

then

Re
(

zf ′(z)
g(z)

)
> 0, (z ∈ U). (1.7)

Recently, Owa [9] proved that if f(z) in A satisfies the condition

Re
(

1 +
zf ′′(z)
f ′(z)

)
> 0 (z ∈ U) (1.8)

then

Re
(

zf ′(z)
g(z)

)
>

3
5

(z ∈ U) (1.9)

where g(z) ∈ S∗(α/(α + 1)), α ≥ 0.

Also, Frasin and Oros [3] proved that if the function f(z) in A satisfies the

condition

Re
(

zf ′′(z)
f ′(z)

− β

)
> 0 (z ∈ U) (1.10)

then

Re
(

zf ′(z)
g(z)

)
>

1
2β − 1

(z ∈ U) (1.11)
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where g(z) ∈ S∗and 1 < β ≤ 3/2.

In order to show our results, we shall need the following lemma due to

Obradovič et al.[8].

Lemma 1.1. Let f ∈ S(b), b ∈ C−{0}, and let a ∈ C−{0} with 0 < 2ab ≤ 1. Then

Re

{(
f(z)

z

)a}
> 2−2ab (z ∈ U). (1.12)

2. Main results

With the aid of Lemma 1.1, we can prove the following result.

Theorem 2.1. If the functions f(z)and g(z) are in A and satisfies the conditions

Re
{

1 +
1
b

(
zf ′′(z)
f ′(z)

)}
> 0 (z ∈ U), (2.1)

with 0 < 2aγ ≤ 1, γ = b/ (a + 1); a, b ∈ C−{0}; a 6= −1, and

Im
(

a + 1
b

)
≤ 0 or Im

(
zf ′(z)
g(z)

)
≤ 0, (2.2)

then f(z) belongs to the class K(γ, δ), where

δ = 1 +
(
2
−2ab
a+1 − 1

)
Re
(

a + 1
b

)
.

Proof. If we define g(z) by

1 +
a + 1

b

(
zg′(z)
g(z)

− 1
)

= 1 +
1
b

(
zf ′′(z)
f ′(z)

)
(2.3)

then from the condition (2.1) and (2.3), we have g(z) ∈ S(γ), with γ = b/ (a + 1). It

is easy to see that (2.3) implies

f ′(z) =
(

g(z)
z

)a+1

(2.4)

or

zf ′(z)
g(z)

=
(

g(z)
z

)a

(2.5)
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Applying Lemma 1.1 to g(z), we obtain

Re
{

1 +
a + 1

b

(
zf ′(z)
g(z)

− 1
)}

= Re

{
1 +

a + 1
b

((
g(z)
z

)a

− 1

)}

= 1 + Re
(

a + 1
b

)
Re

{(
g(z)
z

)a

− 1

}

− Im
(

a + 1
b

)
Im

{(
g(z)
z

)a

− 1

}

≥ 1 + Re
(

a + 1
b

)
Re

{(
g(z)
z

)a

− 1

}

> 1 +
(
2−2aγ − 1

)
Re
(

a + 1
b

)
= 1 +

(
2
−2ab
a+1 − 1

)
Re
(

a + 1
b

)
.

This completes the proof of Theorem 2.1. �

Letting a = 1 in Theorem 2.1, we have

Corollary 2.2. If the function f ∈ C(b) with 0 < b ≤ 2, then f ∈ K(b/2, δ), where

δ = 1 +
21−b − 2

b
.

Letting b = 1 in Theorem 2.1, we have

Corollary 2.3. If the functions f(z)and g(z) are in A and satisfies the conditions

Re
{

1 +
zf ′′(z)
f ′(z)

}
> 0 (z ∈ U), (2.6)

with 0 < 2aγ ≤ 1, γ = 1/ (a + 1); a ∈ C−{0}; a 6= −1, and

Im (a + 1) ≤ 0 or Im
(

zf ′(z)
g(z)

)
≤ 0, (2.7)

then f(z) belongs to the class K(γ, δ), where

δ = 1 +
(
2
−2a
a+1 − 1

)
Re (a + 1) .

Letting b = 1 in Corollary 2.2 or a = 1 in Corollary 2.3, we have
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Corollary 2.4. Let the functions f(z)and g(z) be in A . If

Re
{

1 +
zf ′′(z)
f ′(z)

}
> 0 (z ∈ U), (2.8)

then

Re
(

zf ′(z)
g(z)

)
>

1
2

(z ∈ U), (2.9)

Therefore, if f(z) is convex in U then f(z) is close-to-convex of order 1/2 in U .

Letting b = a + 1 in in Theorem 2.1, we have

Corollary 2.5. Let the functions f(z)and g(z) be in A . If

Re
{

1 +
1

a + 1

(
zf ′′(z)
f ′(z)

)}
> 0 (z ∈ U), (2.10)

where 0 < a ≤ 1/2,then

Re
{

zf ′(z)
g(z)

}
>

1
4a

, (z ∈ U). (2.11)

Letting a = 1/2 in Corollary 2.5, we have

Corollary 2.6. Let the functions f(z)and g(z) be in A . If

Re
{

1 +
2
3

(
zf ′′(z)
f ′(z)

)}
> 0 (z ∈ U), (2.12)

then

Re
{

zf ′(z)
g(z)

}
>

1
2
, (z ∈ U), (2.13)

That is, f(z) is close-to-convex of order 1/2 in U .
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STARLIKE FUNCTIONS WITH REGULAR REFRACTION
PROPERTY
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Dedicated to Professor Grigore Ştefan Sălăgean on his 60th birthday

Abstract. Let C : z = z(t), t ∈ [a, b], be a smooth Jordan curve of the

class C2 and let f be a complex univalent function of the class C1 in a

domain which contains the curve C together with its interior. Suppose

that the origin lies inside of C and f(0) = 0. Let Γ = f(C) and suppose

that Γ is starlike with respect to the origin. Let consider the radius vector
−→
R from 0 to a point w ∈ Γ and let

−→
N be the outer normal to Γ at the

point w = f [z(t)]. Let denote by ω = (
−→
N,
−→
R ) the angle between

−→
N and

−→
R and consider the vector

−→
V starting from w, such that sinΨ = γ sin ω,

where Ψ = (
−→
N,
−→
V ) and γ is a positive number. We say that the starlike

curve Γ = f(C) has the regular refraction property, with index γ, iff the

argument of the vector
−→
V is an increasing function of t ∈ [a, b]. The concept

of regular refraction property was introduced in [2] and developed in [3],

[4], [5], [6] and [7]. We mention that this concept is closed to the concept

of α-convexity introduced in [1]. In this paper we continue to study this

geometric property by introducing the concept of regular refraction interval

of a given function. We also give a significant example.

1. Preliminaries

Let f an analytic and univalent function in a domain D and let C : z = z(t),

t ∈ [a, b], be a smooth Jordan curve of the class C2. Suppose that D contains the

curve C together with its interior and that the origin lies inside of C and f(0) = 0.

Let Γ = f(C) and suppose that Γ is starlike with respect to 0.

Received by the editors: 02.03.2010.

2000 Mathematics Subject Classification. 30C45.
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Let
−→
R be the radius vector from 0 to a point w ∈ Γ and let

−→
N be the outer

normal to Γ at the point w = f(z(t)). Let denote by ω = (
−→
N,
−→
R ) the angle between

−→
N and

−→
R and let consider the vector

−→
V starting from w, such that

sinΨ = γ sinω, (1.1)

where Ψ = (
−→
N,
−→
V ) and γ is a positive number.

From the optical point of view, we remark that if Γ separates two media of

different refraction indices and if
−→
R and

−→
V are the trajectories of the light in these

media (starling from the origin), then (1) is the well -known refraction law.

Definition 1.1. We say that the curve Γ = f(C) has the regular refraction property

with index γ, iff the argument of the vector
−→
V =

−→
V (t), defined by (1) is an increasing

function of t ∈ [a, b], i.e.
d

dt
arg

−→
V (t) ≥ 0, t ∈ [a, b]. (1.2)

We also say, in this case, that the function f has the regular refraction property

on C : z = z(t).

Sometimes we are interesting to study the property of regular refraction only

on some arcs of the curve C.

2. Main results

If we let ϕ = arg f(z) and χ = arg
−→
V , then we have

χ = ϕ+ ω − ψ.

If z = z(t) and if we denote ż, χ̇, ... the derivatives with respect to t, then we

have

χ̇ = ϕ̇+ Fω̇,

where

F = 1− γ cosω
[1− γ2 + γ2 cos2 ω]

1
2

= 1− γ√
1 + (1− γ2) tan2 ω

and ω = argP , with | sinω| ≤ 1
γ with

P =
żf ′(z)
if(z)

, z = z(t). (2.1)
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The condition (1.2) becomes

=
[
iP + F

Ṗ

P

]
≥ 0, t ∈ [a, b], (2.2)

where

F = 1− γ<P
[(1− γ2)|P |2 + γ2(<P )2]

1
2
, | sinω| ≤ 1

γ
, (2.3)

with P given by (2.1).

Hence we deduce the following result.

Theorem 2.1. The function f has the regular refraction property, with index γ, on

the curve C : z = z(t), t ∈ [a, b], if and only if the inequality (2.2) holds for all

t ∈ [a, b].

If we let f(z) ≡ z, then we have P = i ż
z ,

F = 1−
γ= ż

z

[(1− γ2)| żz |2 + γ2(= ż
z )2]

1
2

(2.4)

and (2.2) becomes

(1− F )= ż
z

+ F= z̈
ż
≥ 0, z = z(t) (2.5)

where F is given by (2.4), with | sinω| ≤ 1
γ .

Since the curvature of the curve C at the point z = z(t) is given by

k = k(t) =
1
|ż|
= z̈
ż
,

the condition (2.5) can be rewritten as

γ
(
= ż
z

)2

+
{[

(1− γ2)
∣∣∣ ż
z

∣∣∣2 + γ2
(
= ż
z

)2] 1
2 − γ= ż

z

}
|ż|k ≥ 0 (2.6)

and we deduce

Theorem 2.2. The curve C : z = z(t), t ∈ [a, b] has the regular refraction property

of index γ ≥ 0 if and only if the inequality (2.6) holds for all t ∈ [a, b].

If C is convex then k ≥ 0 and we deduce the following interesting result.

Corollary 2.3. If the smooth curve C is convex, then it has the regular refraction

property of any index γ ∈ [0, 1].
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If we let

∆ = (1− γ2)
∣∣∣ ż
z

∣∣∣2 + γ2
(
= ż
z

)2

,

then Theorem 2.2 can be rewritten as

Theorem 2.4. The curve C : z = z(t), t ∈ [a, b] has the regular refraction property

of index γ if and only if the following inequalities hold for all t ∈ [a, b]:

(i) ∆ ≤ 0;

(ii) γ
(
= ż

z

)2

+
[√

∆− γ= ż
z

]
= z̈

ż ≥ 0.

Let f be analytic and univalent in the closed unit disc U , with f(0) = 0 and

f ′(0) = 1. If C = Cr : reit, t ∈ [0, 2π], 0 < r ≤ 1, then we have

P = p(z) =
zf ′(z)
f(z)

.

and Theorem 2.1 becomes

Theorem 2.5. The function f has the regular refraction property of index γ on the

circle Cr if and only if

<
[
p(z) + F (z, γ)

zp′(z)
p(z)

]
≥ 0, for |z| = r, (2.7)

where

p(z) =
zf ′(z)
f(z)

(2.8)

F (z, γ) = 1− γ<p(z)
[(1− γ2)|p(z)|2 + γ2(<p(z))2] 1

2
(2.9)

and

(1− γ2)|p(z)|2 + γ2(<p(z))2 ≥ 0. (2.10)

Definition 2.6. We say that the normalized analytic and univalent function f in the

unit disc belongs to the class RP(γ), of functions with regular refraction property of

index γ iff

<J(f ; z, γ) ≥ 0, for all z ∈ U, (2.11)

J(f ; z, γ) = p(z) + F (z, γ)
zp′(z)
p(z)

, (2.12)

with p and F given by (2.8), and (2.9) respectively, with condition (2.10).
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Let S∗ and K be respectively the class of starlike and convex functions in the

unit disc.

Also, let M(α) be the class of α-convex functions in U .

It is easy to prove the following main result:

Theorem 2.7. If f ∈ RP(γ), 0 ≤ γ ≤ 1 then f ∈ S∗.

Moreover

K ⊂ RP(γ1) ⊂ RP(γ2) ⊂ S∗, for 0 < γ1 < γ2 < 1

and

K ⊂ RP(1− α) ⊂M(α), for 0 < α < 1.

We also have

RP(γ2) ⊂ RP(γ1) ⊂ S∗, for 1 < γ1 < γ2.

An interesting extremal problem suggested by Theorem 2.7 is the following:

Given the function f , find the largest interval [γ0, γ1], with γ0 ≤ 1 ≤ γ1, such

that f ∈ RP(γ), for all γ ∈ [γ0, γ1]. We shall call this interval as the regular refraction

interval of the function f .

We illustrate this last problem by the following.

Example 2.8. Let

f(z) = z exp
( zn

2n

)
, z ∈ U.

In this case we have

p(z) =
1
2
(2 + zn) and

zp′(z)
p(z)

=
nzn

2 + zn
.

If z = eit, then we have

cosnt = x− 1, with 0 ≤ x ≤ 2

and

|p(z)|2 =
1
4
(1 + 4x),<p(z) =

1
2
(1 + x),<zp

′(z)
p(z)

= n
2x− 1
1 + 4x

.

Hence

F (z, γ) = 1− γ(1 + x)√
E(x, γ)

,
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where

E(x, γ) = 1 + 2(2− γ2)x+ γ2x2.

Hence the inequality (2.7) becomes

1
2
(1 + x) + n

(
1− γ(1 + x)√

E(x, γ)

)2x− 1
1 + 4x

≤ 0, for 0 ≤ x ≤ 2. (2.13)

We remark that for γ ≤ 2 we have

E(x, γ) ≥ 0, for x ∈ [0, 2].

For x = 0 we have 2n−1
2n ≤ γ < 2, and for x = 2 we have γ < 1 + 9

2n .

From (2.13) we deduce

1
γ2

≥ 1
1 + 4x

{
x(2− x) +

[ 2n(2x+ x− 1)
4x2 + (4n+ 5)x+ 1− 2n

]2}
≡ Φn(x),

with 1
2 < x ≤ 2.

For n = 1 we have

max
x∈

[
1
2 ,2

]Φ1(x) = 0.25059...

and we deduce that the regular refraction interval of the function

f(z) = z exp
(z

2

)
is given by

[
1
2 , 1.9976 · · ·

]
.

For n = 2 we have

max
x∈

[
1
2 ,2

]Φ2(x) = 0.2934...

and we deduce that the regular refraction interval of the function

f(z) = z exp
(z2

4

)
is given by

[
3
4 , 1.9123 · · ·

]
.
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ON ARGUMENT PROPERTY
OF CERTAIN ANALYTIC FUNCTIONS
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Dedicated to Professor Grigore Ştefan Sălăgean on his 60th birthday

Abstract. In this paper we generalize the results of Libera and McGregor

concerning argument property of analytic functions. We use the result in

[3] to prove the following:

Theorem. Let

f(z) = z +

∞∑
n=p+K

anzn, g(z) = z +

∞∑
n=p+K

bnzn

be analytic in ∆, f(z) 6= 0 in 0 < |z| < 1, and suppose that for some α, β

(0 < α < 1, 0 < β < 1)∣∣∣∣arg

(
f ′(z)

g′(z)

)∣∣∣∣ <
π

2
α + Tan−1 2αβ

1− β2
− Tan−1 2αβ

(1− β2)
√

1 + α2

in ∆, and that
g′(z)

zg(z)
≺ 1 + βz

1− βz
where ≺ means subordination. Then we

have ∣∣∣∣arg

(
f(z)

g(z)

)∣∣∣∣ <
π

2
α in ∆.

1. Introduction

Let f and g be analytic in the unit disk ∆ = {z : |z| < 1} f(0) = g(0) = 0, g

maps ∆ onto a many sheeted domain which is starlike with respect to the origin, and

Re
f ′(z)
g′(z)

> 0 in ∆ .

Then Libera [1] proved

Re
f(z)
g(z)

> 0 in ∆ .

Received by the editors: 26.04.2010.
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The essential ideas of the proof of the above result are the same as given by Sakaguchi

[6].

On the other hand, MacGregor [2] proved that for real β,

Re
f ′(z)
g′(z)

> β in ∆.

implies

Re
f(z)
g(z)

> β in ∆.

Ponnusamy and Karunakaran [4] generalized the above results as the following:

Theorem 1.1. Let α be a complex number satisfying Reα > 0 and β < 1. Let

f(z) = zp +
∞∑

n=p+K

anzn, g(z) = zp +
∞∑

n=p+K

bnzn

are analytic in ∆ for 1 ≤ p, 1 ≤ K and that g satisfies

Re
(

α
g(z)
g′(z)

)
> δ in ∆

where

0 ≤ δ <
Reα
p

.

If

Re
{

(1− α)
f(z)
g(z)

+ α
f ′(z)
g′(z)

}
> β in ∆.

Then

Re
f(z)
g(z)

>
2β + Kδ

2 + Kδ
in ∆.

Putting α = 1 in Theorem 1.1, it follows that

Corollary 1.2. If

f(z) = zp +
∞∑

n=p+K

anzn , 1 ≤ p, 1 ≤ pK and g(z) = zp +
∞∑

n=p+K

bnzn

are analytic in ∆ and g satisfies

Re
g(z)

zg′(z)
> δ in ∆

where 0 ≤ δ < 1
p then for β real

f ′(z)
g′(z)

) > β in ∆
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implies

Re
f(z)
g(z)

>
2β + Kδ

2 + Kδ
in ∆.

For a argument properties of analytic functions, Pommerenke [5] obtained the follow-

ing result. If f is analytic in ∆ and h is convex in ∆ and∣∣∣∣arg
(

f ′(z)
h′(z)

)∣∣∣∣ <
απ

2
(0 ≤ α ≤ 1)

then ∣∣∣∣arg
(

f(z2)− f(z1)
h(z2)− h(z1)

)∣∣∣∣ <
απ

2
where

|z1| < 1 and |z2| < 1.

2. Main theorem

In this short paper, we will obtain a generalization of Libera’s result by

applying Nunokawa’s result [3].

Lemma 2.1. Let p be analytic in ∆, p(0) = 1, p(z) 6= 0 in ∆ and suppose that there

exists a point z0 ∈ ∆ such that

| arg p(z0)| <
π

2
α for |z| < |z0|

and

| arg p(z0)| =
π

2
α

where 0 < α.

Then we have
z0p

′(z0)
p(z0)

= iKα

where

K ≥ 1
2

(
a +

1
a

)
when arg p(z0) =

π

2
α

and

K ≤ −1
2

(
a +

1
a

)
when arg p(z0) = −π

2
α

where

arg p(z0)
1
α = ±ia and 0 < a
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Theorem 2.2. Let

f(z) = z +
∞∑

n=2

anzn

be analytic in ∆ f(z) 6= 0 in 0 < |z| < 1 ,

g(z) = z +
∞∑

n=2

bnzn

be analytic in ∆ and suppose

| arg(
f ′(z)
g′(z)

)| < π

2
α + Tan−1 2αβ

1− β2
− Tan−1 2αβ

(1− β2)
√

1 + α2

in ∆ where 0 < α < 1, 0 < β < 1 and

zg′(z)
g(z)

≺ 1 + βz

1− βz

where ≺ means the subordination. Then we have∣∣∣∣arg
(

f(z)
g(z)

)∣∣∣∣ <
π

2
α in ∆.

Proof. Let us put

p(z) =
f(z)
g(z)

, p(0) = 1

Then it follows that
f ′(z)
g′(z)

= p(z) +
g(z)
g′(z)

p′(z)

= p(z)
(

1 +
g(z)

zg′(z)
.
zp′(z)
p(z)

)
.

If there exist a point z0, |z0| < 1 such that

| arg p(z)| < π

2
α for |z| < |z0|

and

| arg p(z0)| =
π

2
α

then from Lemma 2.1 we have

z0p
′(z0)

p(z0)
= iKα.
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From the hypothesis, we have the image of the circle ∆ under the mapping w = 1+βz
1−βz

is contained in the circle whose center is 1+β2

1−β2 with radius 2β
1−β2 . Applying the above

properties, for the case

arg p(z0) =
π

2
α,

we have

arg
f ′(z0)
g′(z0

= arg p(z0) + arg
(

1 + iαK
g(z0)
g′(z0)

)
≥ π

2
α + Tan−1δK − Tan−1 δK√

1 + (ρ2 − δ2)K2

where ρ = α(1+β2)
1−β2 , δ = 2αβ

1−β2 and then it follows that

ρ2 − δ2 = α2.

Now let us put

F(K) = Tan−1δK − Tan−1 δK√
1 + (ρ2 − δ2)K2

, 1 ≤ K.

Then we have

F′(K) =
δ

1 + δ2K2
−

(
δ(1− (ρ2 − δ2)K2)− δ(ρ2 − δ2)K2

(1 + (ρ2 − δ2)K2)
3
2

)
(1 + (ρ2 − δ2)K2)

1 + ρ2K2

=
δ

1 + δ2K2
− δ

(1 + ρ2K2)
√

1 + (ρ2 − δ2)K2

>
δ

1 + δ2K2
− δ

1 + ρ2K2

=
δ(ρ2 − δ2)

(1 + δ2K2)(1 + ρ2K2)
> 0.

This shows that F (K) takes the minimum value at K = 1. Therefore we have

arg
f ′(z0)
g′(z0)

≥ π

2
α + Tan−1 2αβ

1− β2
− Tan−1 2αβ

(1− β2)
√

1 + α2

This contradicts the hypothesis and for the case arg p(z0) = −π
2 α, applying the same

method as the above, we have

arg
f ′(z0)
g′(z0)

≤ −
(

π

2
α + Tan−1 2αβ

1− β2
− Tan−1 2αβ

(1− β2)
√

1 + α2

)
.

This is also contradiction and it completes the proof. �
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A CONVEXITY PROPERTY FOR AN INTEGRAL OPERATOR Fm

GEORGIA IRINA OROS AND GHEORGHE OROS

Dedicated to Professor Grigore Ştefan Sălăgean on his 60th birthday

Abstract. In this paper we define an integral operator denoted by Fm(z)

using the Ruscheweyh derivative of order n applied to the functions fi(z) ∈
A, i = {1, 2, . . . , m}, z ∈ U . We determine conditions on the functions

Rnfi(z), where Rn is the Ruscheweyh operator (Definition 1.1), in order

for Fm(z) to be convex.

1. Introduction and preliminaries

Let U be the unit disk of the complex plane:

U = {z ∈ C : |z| < 1}.

Let H(U) be the space of holomorphic functions in U . Also, let

An = {f ∈ H(U), f(z) = z + an+1z
n+1 + . . . , z ∈ U}

with A1 = A and

S = {f ∈ A : f is univalent in U}.

Let

K(α) =
{

f ∈ A : Re
zf ′′(z)
f ′(z)

+ 1 > α, z ∈ U

}
denote the class of normalized convex functions of order α, where 0 ≤ α < 1,

K(0) = K,

Received by the editors: 01.03.2010.

2000 Mathematics Subject Classification. 30C45, 30A20, 34A40.

Key words and phrases. analytic function, univalent function, integral operator, convex function, starlike

function, differential operator.
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S∗(α) =
{

f ∈ A : Re
zf ′(z)
f(z)

> α, z ∈ U

}
denote the class of starlike functions of order α, with 0 ≤ α < 1, S∗(0) = S∗.

In the papers [9], [10], F. Ronning introduces two classes of univalent functions

denoted by SP and SP (α, β), respectively. The class SP consists of those functions

f ∈ S which satisfy the condition

Re
zf ′(z)
f(z)

>

∣∣∣∣zf ′(z)
f(z)

− 1
∣∣∣∣ , for all z ∈ U. (1.1)

The class SP (α, β), α > 0, β ∈ [0, 1) consists of the functions f ∈ S which

satisfy the condition∣∣∣∣zf ′(z)
f(z)

− (α + β)
∣∣∣∣ ≤ Re

zf ′(z)
f(z)

+ α− β, for all z ∈ U. (1.2)

In [12], the authors introduce the class denoted by SD(α, β) consisting of the

functions f ∈ A which satisfy the inequality

Re
zf ′(z)
f(z)

> α

∣∣∣∣zf ′(z)
f(z)

− 1
∣∣∣∣+ β, (1.3)

for α ≥ 0 and β ∈ [0, 1).

Definition 1.1. (St. Ruscheweyh [11]). For f ∈ A, n ∈ N ∪ {0}, let Rn be the

operator defined by Rn : A → A

R0f(z) = f(z)

(n + 1)Rn+1f(z) = z[Rnf(z)]′ + nRnf(z), z ∈ U.

Remark 1.2. If f ∈ A

f(z) = z +
∞∑

j=2

ajz
j

then

Rnf(z) = z +
∞∑

j=1

Cn
n+j−1ajz

j , z ∈ U,

with

Rnf(0) = 0 and [Rnf(0)]′ = 1.

170



A CONVEXITY PROPERTY FOR AN INTEGRAL OPERATOR Fm

2. Main results

By using the Ruscheweyh differential operator (Definition 1.1) we introduce

the following integral operator.

Definition 2.1. Let n, m ∈ N ∪ {0}, i ∈ {1, 2, 3, . . . ,m}, αi ∈ R with αi ≥ 0,

Am = A×A× · · · ×A︸ ︷︷ ︸
m

.

We define the integral operator I : Am → A

I(f1, f2, . . . , fm)(z) = Fm(z) (2.1)

=
∫ z

0

[
Rnf1(t)

t

]α1

. . .

[
Rnfm(t)

t

]αm

dt, z ∈ U

where fi(z) ∈ A, i ∈ {1, 2, 3, . . . ,m} and Rn is the Ruscheweyh differential operator

given by Definition 1.1.

Remark 2.2. (i) For n = 0, m = 1, α1 = 1, α2 = α3 = · · · = αm = 0,

R0f(z) = f(z) ∈ A

and we obtain Alexander integral operator introduced in 1915 in [1]:

I(z) =
∫ z

0

f(t)
t

dt, z ∈ U.

(ii) For n = 0, m = 1, α1 = α ∈ [0, 1], α2 = α3 = · · · = αm = 0, R0f(z) =

f(z) ∈ S and we obtain the integral operator

I(z) =
∫ z

0

[
f(t)

t

]α

dt, z ∈ U

which was studied in several papers such as [6]. For α ∈ C, |α| ≤ 1
4

the operator was

studied in [4], [5] and for |α| ≤ 1
3

in [8].

(iii) For n = 1, m = 1, α1 = α ∈ C, |α| ≤ 1
4
, α2 = · · · = αm = 0,

R1f(z) = zf ′(z), z ∈ U , f ∈ S, and we obtain the integral operator

I(z) =
∫ z

0

[f ′(t)]αdt

which was studied in [7].
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(iv) For n = 0, m ∈ N ∪ {0}, αi > 0, i ∈ {1, 2, . . . ,m} we obtain the integral

operator defined by D. Breaz and N. Breaz in [3] given by

F (z) =
∫ z

0

[
f1(t)

t

]α1
[
f2(t)

t

]α2

. . .

[
fm(t)

t

]αm

dt.

Property 2.3. Let m ∈ N∪ {0}, i ∈ {1, 2, . . . ,m}. If fi(z) ∈ A then Fm(z) given by

(2.1) belongs to the class A.

Proof. From (2.1) we have

Fm(z) =
∫ z

0

[
Rnf1(t)

t

]α1

. . .

[
Rnfm(t)

t

]αm

dt

=
∫ z

0


t +

∞∑
k=2

ak,1t
k

t


α1

. . .


t +

∞∑
k=2

ak,mtk

t


αm

dt

=
∫ z

0

[
1 +

∞∑
k=2

ak,1t
k−1

]α1

. . .

[
1 +

∞∑
k=2

ak,mtk−1

]αm

dt

=
∫ z

0

(
1 +

∞∑
k=2

γkt

)
dt = t

∣∣∣z
0

+
∞∑

k=2

γk
tk

k

∣∣∣z
0

= z +
∞∑

k=2

δktk ∈ A,

hence Fm(z) ∈ A. �

Definition 2.4. Let R(β) be the subclass of functions f ∈ A which satisfy the

condition

Re
z[Rnf(z)]′

Rnf(z)
> β, 0 ≤ β < 1, z ∈ U. (2.2)

Remark 2.5. (i) For n = 0, R(β) becomes the class of starlike functions of order β

denoted by S∗(β).

(ii) For n = 0, β = 0, R(β) becomesR(0) = S∗, the class of starlike functions.

Definition 2.6. Let K(β) ⊂ Am = A×A× · · · ×A︸ ︷︷ ︸
m

denote the subclass of functions

(f1, f2, . . . , fm) ∈ Am which satisfy the condition

Re
[
1 +

zF ′′
m(z)

F ′
m(z)

]
> β, β < 1, z ∈ U, (2.3)
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where Fm(z) is given by (2.1).

Theorem 2.7. Let n, m ∈ N ∪ {0}, i ∈ {1, 2, . . . ,m}, αi ∈ R with αi ≥ 0, βi ∈ R,

0 ≤ βi < 1 and
m∑

i=1

αi(βi − 1) ≥ −1. If fi ∈ R(βi) then Fm(z) ∈ K(δ) where Fm is

given by (4) and

δ = 1 +
m∑

i=1

αi(βi − 1).

Proof. By differentiating (2.1), we obtain

F ′
m(z) =

[
Rnf1(z)

z

]α1

. . .

[
Rnfm(z)

z

]αm

, z ∈ U. (2.4)

Using (2.4) we obtain:

Log F ′
m(z) = α1[Log Rnf1(z)− Log z] + · · ·+ (2.5)

+ αm[Log Rnfm(z)− Log z], z ∈ U.

By differentiating (2.5) we have

F ′′
m(z)

F ′
m(z)

= α1

[
(Rnf1(z))′

Rnf1(z)
− 1

z

]
+ · · ·+ αm

[
(Rnfm(z))′

Rnfm(z)
− 1

z

]
(2.6)

and after a short calculation we obtain

1 +
zF ′′

m(z)
F ′

m(z)
= α1

z(Rnf1(z))′

Rnf1(z)
+ · · ·+ αm

z(Rnfm(z))′

Rnfm(z)
(2.7)

+1− (α1 + · · ·+ αm).

Since fi ∈ R(βi) we have

Re
[
1 +

zF ′′
m(z)

F ′
m(z)

]
= α1Re

z(Rnf1(z))′

Rnf1(z)
+ · · ·+ αmRe

z(Rnfm(z))′

Rnfm(z)

+1−
m∑

i=1

αi > α1β1 + · · ·+ αmβm + 1−
m∑

i=1

αi

>
m∑

i=1

αiβi + 1−
m∑

i=1

αi > 1 +
m∑

i=1

αi(βi − 1).

�

If fi ∈ R(β) then Theorem 2.7 can be rewritten as the following:
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Corollary 2.8. Let n, m ∈ N ∪ {0}, i ∈ {1, 2, . . . ,m}, αi ∈ R with αi ≥ 0, β ∈ R,

β < 1. If fi ∈ R(β) then Fm(z) ∈ K(δ′) where

δ′ = 1 + (β − 1)
m∑

i=1

αi.

If β = 0 and
m∑

i=1

αi = 1 then Theorem 2.7 can be rewritten as the following:

Corollary 2.9. Let n, m ∈ N ∪ {0}, i ∈ {1, 2, . . . ,m}, αi ∈ R with αi ≥ 0 and
m∑

i=1

αi = 1, and β = 0. If fi ∈ R(0) then Fm(z) ∈ K.

Theorem 2.10. Let n, m ∈ N ∪ {0}, i ∈ {1, 2, . . . ,m}, αi ∈ R with 0 ≤ αi < 1 and
m∑

i=1

αi

2
< 1. If Rnfi ∈ SP and

∣∣∣∣z(Rnfi(z))′

Rnfi(z)
− 1
∣∣∣∣ ≥ 1

2
, z ∈ U (2.8)

then

Fm(k) ∈ K(ω),

where Fm is given by (4) and

ω = 1−
m∑

i=1

αi

2
.

Proof. Since Rnfi ∈ SP , using (2.7) and (2.8) we have:

Re
[
1 +

zF ′′
m(z)

F ′
m(z)

]
= α1Re

z(Rnf1(z))′

Rnf1(z)
+ · · ·+ αmRe

z(Rnfm(z))′

Rnfm(z)

+1−
m∑

i=1

αi ≥ α1

∣∣∣∣z(Rnf1(z))′

Rnf1(z)
− 1
∣∣∣∣+ · · ·+ αm

∣∣∣∣z(Rnfm(z))′

Rnfm(z)
− 1
∣∣∣∣

+1−
m∑

i=1

αi > 1−
m∑

i=1

αi +
m∑

i=1

αi|z|
2

= 1−
m∑

i=1

αi

(
1− |z|

2

)
.

�

If
m∑

i=1

αi = 1 then Theorem 2.10 can be rewritten as the following:
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Corollary 2.11. Let n, m ∈ N ∪ {0}, i ∈ {1, 2, . . . ,m}, αi ∈ R with 0 ≤ αi < 1 and
m∑

i=1

αi

(
1− |z|

2

)
= 1. If Rnfi ∈ SP then Fm(z) is a convex function.

Example 2.12. Let n ∈ N ∪ {0}, m = 2, α1 =
1
2
, α2 =

1
3
,

f1(z) = z + a2z
2, f2(z) = z + b2z

2,

Rnf1(z) = z + (n + 1)a2z
2, Rnf2(z) = z + (n + 1)b2z

2,

where a2, b2 ∈ C, |a2| ≥
1

(n + 1)(2− |z|)
, |b2| ≥

1
(n + 1)(2− |z|)

, z ∈ U .

Evaluate ∣∣∣∣z[z + (n + 1)a2z
2]′

z[1 + (n + 1)a2z]
− 1
∣∣∣∣ = ∣∣∣∣ (n + 1)a2z

1 + (n + 1)a2z

∣∣∣∣
=

√
(n + 1)2|a2|2|z|

(1 + (n + 1)|a2||z|)2
=

(n + 1)|a2||z|
1 + (n + 1)|a2||z|

≥ 1
2∣∣∣∣z[z + (n + 1)b2z

2]′

z(1 + (n + 1)b2z2]
− 1
∣∣∣∣ = ∣∣∣∣1 + 2(n + 1)b2z

1 + (n + 1)b2z
− 1
∣∣∣∣ = ∣∣∣∣ (n + 1)b2z

1 + (n + 1)b2z

∣∣∣∣
=

√
(n + 1)2|b2|2|z|2

[1 + (n + 1)|b2||z|]2
=

(n + 1)|b2||z|
1 + (n + 1)|b2||z|

≥ 1
2

Using Theorem 2.10, we have

F2(z) =
∫ z

0

[1 + (n + 1)a2t]
1
2 [1 + (n + 1)b2t]

1
3 dt ∈ K

(
1
2

)
, z ∈ U.

Theorem 2.13. Let n, m ∈ N ∪ {0}, i ∈ {1, 2, . . . ,m}, αi ∈ R with αi ≥ 0, λ ∈ R

with λ > 0, µ ∈ R with µ ∈ [0, 1) and (λ−µ + 1)
m∑

i=1

αi ≤ 1. If Rnfi ∈ SP (λ, µ) then

Fm ∈ K(ω), where Fm is given by (4) and

ω = 1− (λ− µ + 1)
m∑

i=1

αi.

Proof. Since Rnfi ∈ SP (λ, µ), using (2.7) we have:

Re
[
1 +

zF ′′
m(z)

F ′
m(z)

]
= α1Re

z(Rnf1(z))′

Rnf1(z)
+ · · ·+ αmRe

z(Rnfm(z))′

Rnfm(z)

+1−
m∑

i=1

αi ≥ α1

[∣∣∣∣z(Rnf1(z))′

Rnf1(z)
− (λ + µ)

∣∣∣∣− (λ− µ)
]

+ · · ·+
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+αm

[∣∣∣∣z(Rnfm(z))′

Rnfm(z)
− (λ + µ)

∣∣∣∣− (λ− µ)
]

+ 1−
m∑

i=1

αi

≥
m∑

i=1

αi

[∣∣∣∣z(Rnfi(z))′

Rnf1(z)
− (λ + µ)

∣∣∣∣]− m∑
i=1

αi(λ− µ)

+1−
m∑

i=1

αi ≥ 1−
m∑

i=1

αi(λ− µ)−
m∑

i=1

αi

= 1−
m∑

i=1

αi(1− µ + 1) = 1− (λ− µ + 1)
m∑

i=1

αi.

�

If
m∑

i=1

αi(λ−µ+1) = 1 then Theorem 2.13 can be rewritten as the following:

Corollary 2.14. Let n, m ∈ N ∪ {0}, i ∈ {1, 2, . . . ,m}, αi ∈ R with αi ≥ 0, λ > 0,

µ ∈ [0, 1) with (λ− µ + 1)
m∑

i=1

αi = 1. If Rnfi ∈ SP (λ, µ) then Fm(z) ∈ K.

Theorem 2.15. Let n, m ∈ N∪{0}, i ∈ {1, 2, . . . ,m}, αi ∈ R, αi ≥ 0, γ ∈ R, γ ≥ 0,

δ ∈ (0, 1) with
(
1− γ

4
− δ
) m∑

i=1

αi < 1. If Rnfi ∈ SD(γ, δ) and

∣∣∣∣z(Rnfi(z))′

Rnfi(z)
− 1
∣∣∣∣ ≥ 1

4
, z ∈ U, i ∈ {1, 2, 3, . . . ,m}, (2.9)

then Fm ∈ K(ξ), where Fm is given by (4) and

ξ = 1−
(
1− γ

4
− δ
) m∑

i=1

αi.

Proof. Since Rnfi ∈ SD(γ, δ), using (10) and (12), we have

Re
[
1 +

zF ′′
m(z)

F ′
m(z)

]
= α1Re

z(Rnf1(z))′

Rnf1(z)
+ · · ·+ αmRe

z(Rnfm(z))′

Rnfm(z)
+ 1−

m∑
i=1

αi

≥ α1

[
γ

∣∣∣∣z(Rnf1(z))′

Rnf1(z)
− 1
∣∣∣∣+ δ

]
+ · · ·+ αm

[
γ

∣∣∣∣z(Rnfm(z))′

Rnfm(z)
− 1
∣∣∣∣+ δ

]
+ 1−

m∑
i=1

αi

≥ γ

[
α1

∣∣∣∣z(Rnf1(z))′

Rnf1(z)
− 1
∣∣∣∣+ · · ·+ αm

∣∣∣∣z(Rnfm(z))′

Rnfm(z)
− 1
∣∣∣∣]+ δ

m∑
i=1

αi + 1−
m∑

i=1

αi

≥ γ|z|
4

(α1

4
+ · · ·+ αm

4

)
+ δ

m∑
i=1

αi + 1−
m∑

i=1

αi

= 1−
(
1− γ

4
− δ
) m∑

i=1

αi. �
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If 1 −
(
1− γ

4
− δ
) m∑

i=1

αi = 0, then Theorem 2.15 can be rewritten as the

following.

Corollary 2.16. Let n, m ∈ N ∪ {0}, i ∈ {1, 2, 3, . . . ,m}, αi ∈ R, αi ≥ 0, γ ≥ 0,

δ ∈ (0, 1) with 1−
(
1− γ

4
− δ
) m∑

i=1

αi = 0. If Rnfi ∈ SD(γ, δ) and

∣∣∣∣z(Rnfi(z))′

Rnfi(z)
− 1
∣∣∣∣ ≥ 1

4
, z ∈ U, i ∈ {1, 2, . . . ,m}

then Fm(z) is convex.
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INJECTIVITY CRITERIA FOR C1 FUNCTIONS DEFINED IN

NON-CONVEX DOMAINS

NICOLAE R. PASCU AND MIHAI N. PASCU

Dedicated to Professor Grigore Ştefan Sălăgean on his 60th birthday

Abstract. In the present paper we obtain sufficient conditions for the

injectivity of functions of class C
1 defined in type ϕ convex domains. In

particular, we obtain some injectivity criteria for functions of class C
1

defined in some simply and doubly connected domains, and we derive as a

corollary the well-known Ozaki-Nunokawa-Krzyz univalence criterion.

1. Preliminaries

We denote by B (z0, r) = {z ∈ C : |z − z0| < r} the open disk centered at

z0 ∈ C of radius r > 0 and by U = B (0, 1) the unit disk in C.

In [4], the authors introduced the convexity constant K (D) of a planar do-

main D ⊂ C, as follows:

Definition 1.1 ([4]). For a domain D ⊂ C, we define the convexity constant of the

domain D by

K(D) = inf
a,b∈D
a6=b

sup
γ∈Γ(a,b;D)

|a − b|
l(γ)

,

where Γ(a, b; D) is the family of all rectifiable arcs γ ⊂ D with distinct endpoints a

and b, and l(γ) denotes the length of γ.

The authors showed that in the class of simply connected domains, the con-

vexity constant K (D) characterizes the convexity of the domain D, in the following

sense:

Received by the editors: 26.04.2010.
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Theorem 1.2 ([4]). The simply connected domain D ⊂ C is convex if and only if

K (D) = 1.

Given two domains Ω ⊂ D ⊂ C, denote by DΩ the domain

DΩ = D − Ω =
{

z ∈ C : z ∈ D, z /∈ Ω
}

(1.1)

DΩ

Ω

a

b

γab

Figure 1. The domain DΩ = D − Ω.

In [4], the authors proposed the following conjecture:

Conjecture 1.3. If D and Ω are convex domains with Ω ⊂ D, the convexity constant

of the domain DΩ = D − Ω is given by

K(DΩ) = min
a,b∈∂Ω

a6=b

|a − b|
l(γαb)

,

where γab denotes the shorter of the two arcs of the boundary ∂Ω with endpoints a

and b.

They proved the validity of the above conjecture in the following cases:

1. If D ⊂ C is a domain and γ ⊂ D is a Jordan arc which joins two points

z0 ∈ D and w0 ∈ ∂D, then K (Dγ) = 0.

2. If D ⊂ C is a convex domain, z0 ∈ D and r > 0 are chosen such that

B(z0, r) ⊂ D, then K(DB(z0,r)) = 2
π .

3. If D is a convex domain and z0 ∈ D and r > 0 are chosen such that

S(z0, r) ⊂ D, then K(DS(z0,r)) = 1
2 , where

S(z0, r) =
{

z ∈ C : |Re(z − z0)| <
r

2
, |Im(z − z0)| <

r

2

}

180



INJECTIVITY CRITERIA FOR C
1 FUNCTIONS DEFINED IN NON-CONVEX DOMAINS

denotes the interior of the square having z0 as center of symmetry and

sides parallel to the coordinate axes, of length equal to r.

DB(z0,r)

B(z0, r)

a b

DS(z0,r)

S(z0, r)

z0

r

baz0

Figure 2. The domains DB(z0r) = D − B (z0r) and DS(z0r) = D − S (z0r).

UA(z0,α,β)

eiα

eiβ

z0

Figure 3. The domain UA(z0,α,β) = U − A (z0, α, β).

4. The convexity constant of the domain UA(z0,α,β) is given by

K(UA(z0,α,β)) =











1, if z0 ∈
[

cos α+β

2

cos α−β

2

, 1
)

sin
arg(e

iα
−z0)+arg(e

iβ
−z0)

2 , if z0 ∈
(

−1,
cos α+β

2

cos α−β

2

) ,

where

A(z0, α, β) = {z0 + reiθ : r > 0, − arg
(

eiβ − z0

)

< θ < arg
(

eiα − z0

)

}

represents the angular region with vertex z0 and opening angles α and β.

181



NICOLAE R. PASCU AND MIHAI N. PASCU

M. O. Reade ([5]) generalized the class of convex planar domains as follows:

Definition 1.4 ([5]). Let ϕ ∈ [0, π) be a real number. We say that the domain D ⊂ C

is a type ϕ convex domain if for any distinct points a, b ∈ D there exists c ∈ D such

that the line segments [a, c] , [c, b] ⊂ D and

∣

∣

∣

∣

arg
b − c

c − a

∣

∣

∣

∣

≤ ϕ. (1.2)

The family of type ϕ convex domains is denoted by Cϕ.

a

c

b

u ≤ ϕ

D

γ1

γ2

Figure 4. A type ϕ convex domain D, ϕ ∈ [0, π).

Remark 1.5. Geometrically, condition (1.2) shows that the angle u = π− ̂acb is less

than or equal to ϕ (see Figure 4).

It can be shown (see [4]) the following connection between type ϕ convex

domains and the convexity constant:

Lemma 1.6. If D ∈ Cϕ is a type ϕ convex domain for some ϕ ∈ [0, π), then K (D) ≥
cos ϕ

2 .

Remark 1.7. The above lemma shows that if D is a type ϕ convex domain, the

convexity constant of D cannot be too small. In particular, if D ⊂ C is a convex

domain then it is also a type ϕ convex domain for ϕ = 0, and therefore from the

above lemma it follows that K (D) = 1.
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2. Univalence criteria for functions of class C1(D)

P. T. Mocanu ([2], p. 137) obtained the following univalence criterion for C1

functions defined in type ϕ domains:

Theorem 2.1. Let D ∈ Cϕ, ϕ ∈ [0, π). If the function f ∈ C1 (D) satisfies one of

the two equivalent conditions

i) |arg f ′
θ (z)| < π−ϕ

2 , z ∈ D, for any θ ∈ [0, 2π)

ii) Re ∂f(z)
∂z −

∣

∣

∣
Im ∂f(z)

∂z

∣

∣

∣
tan ϕ

2 > 1
cos ϕ

2

∣

∣

∣

∂f(z)
∂z̄

∣

∣

∣
, z ∈ D,

then the function f is injective in D and Jf (z) > 0, z ∈ D.

Using the convexity constant of a domain, we can obtain a similar result as

follows:

Theorem 2.2. Let f : D ⊂ U → C be a C1 function in the domain D ∈ Cϕ for some

ϕ ∈ [0, π). If

∣

∣

∣

∣

Dθ

(

1

f (z)
− 1

z

)∣

∣

∣

∣

≤ cos
ϕ

2
, z ∈ D, (2.1)

for all θ ∈ [0, 2π), where Dθ is the operator defined on C1 functions by

Dθf =
∂f

∂z
+ e−2iθ ∂f

∂z̄
,

then the function f is injective in D.

Proof. Let a, b ∈ D, a 6= b be arbitrarily fixed distinct points.

Since D ∈ Cϕ, by definition, there exists c ∈ D such that γ = [a, c]∪[c, b] ⊂ D.

Let γ1(t) = a + t(c − a), t ∈ [0, 1] and γ2(t) = c + t(b − c), t ∈ [0, 1], be two

parametrizations of the line segments [a, c], respectively [c, b].
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We have:

1

f (c)
− 1

f (a)
−

(

1

c
− 1

a

)

=

=

∫ 1

0

d

dt

(

1

f (γ1 (t))
− 1

γ1 (t)

)

dt

=

∫ 1

0

∂

∂z

(

1

f (z)
− 1

z

)

(γ1 (t))
dγ1 (t)

dt
+

∂

∂z̄

(

1

f (z)
− 1

z

)

(γ1 (t))
dγ1 (t)

dt
dt

=

∫ 1

0

(c − a)
∂

∂z

(

1

f (z)
− 1

z

)

(γ1 (t)) + (c − a)
∂

∂z̄

(

1

f (z)
− 1

z

)

(γ1 (t)) dt

= (c − a)

∫ 1

0

Dθ1

(

1

f (z)
− 1

z

)

(γ1 (t)) dt,

where θ1 = arg (c − a), and similarly

1

f (b)
− 1

f (c)
−

(

1

b
− 1

c

)

= (b − c)

∫ 1

0

Dθ2

(

1

f (z)
− 1

z

)

(γ2 (t)) dt,

where θ2 = arg (b − c).

We obtain

1

f (b)
− 1

f (a)
−

(

1

b
− 1

a

)

=
1

f (b)
− 1

f (c)
−

(

1

b
− 1

c

)

+
1

f (c)
− 1

f (a)
−

(

1

c
− 1

a

)

= (c − a)

∫ 1

0

Dθ1

(

1

f (z)
− 1

z

)

(γ1 (t)) dt+

(c − b)

∫ 1

0

Dθ2

(

1

f (z)
− 1

z

)

(γ2 (t)) dt,

and therefore using the hypothesis we have
∣

∣

∣

∣

1

f (b)
− 1

f (a)
−

(

1

b
− 1

a

)∣

∣

∣

∣

≤ |c − a|
∫ 1

0

∣

∣

∣

∣

Dθ1

(

1

f (z)
− 1

z

)

(γ1 (t))

∣

∣

∣

∣

dt+

|b − c|
∫ 1

0

∣

∣

∣

∣

Dθ2

(

1

f (z)
− 1

z

)

(γ2 (t))

∣

∣

∣

∣

dt

≤ |c − a| cos
ϕ

2
+ |b − c| cos

ϕ

2

= l (γ) cos
ϕ

2
.

If f (a) = f (b), from the above inequality we obtain equivalent

|b − a|
l (γ)

≤ |ab| cos
ϕ

2
,
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where γ = [a, c] ∪ [c, b].

Approximating now an arbitrary curve γ ∈ Γ (a, b; D) by a polygonal path

γn = [a0, c1] ∪ . . . ∪ [cn, b] ⊂ D and using an argument similar to the previous proof,

by passing to the limit we obtain:

|b − a|
l (γ)

≤ |ab| cos
ϕ

2
,

for any γ ∈ Γ (a, b; D), and therefore

sup
γ∈Γ(a,b;D)

|a − b|
l(γ)

≤ |ab| cos
ϕ

2
,

which shows that

K (D) = inf
a,b∈D

sup
γ∈Γ(a,b;D)

|a − b|
l(γ)

≤ sup
γ∈Γ(a,b;D)

|a − b|
l(γ)

≤ |ab| cos
ϕ

2
.

Since from Lemma 1.6 we have K (D) ≥ cos ϕ
2 > 0, we obtain

K (D) ≤ |ab|K (D) ,

which contradicts the hypothesis a, b ∈ D ⊂ U (and therefore |ab| < 1).

The contradiction shows that the hypothesis f (a) = f (b) is false, and there-

fore we must have f (a) 6= f (b) for all a, b ∈ D distinct, which shows that f is injective

in D, concluding the proof. �

Following the proof of the above theorem it can be seen that we can replace

the right side of (2.1) by the larger constant K (D), thus obtaining the following more

general result:

Theorem 2.3. Let f : D ⊂ B (0, R) → C be a C1 function in the domain D ∈ Cϕ

for some ϕ ∈ [0, π). If
∣

∣

∣

∣

Dθ

(

1

f (z)
− 1

z

)
∣

∣

∣

∣

≤ K (D)

R2
, z ∈ D, (2.2)

for all θ ∈ [0, 2π), where Dθ is the operator defined on C1 functions by

Dθf = fz + e−2iθfz̄,

then the function f is injective in D.
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Remark 2.4. Using the values of the convexity constants of the domains DΩ pre-

sented in Section 1, from the above theorem we obtain as corollaries sufficient con-

ditions for univalence for functions of class C1 defined in some simply and doubly

connected domains.

Remark 2.5. In the particular case D = U , we have K (U) = 1, and Theorems 2.2

and 2.3 above become (in the case when f : U → C is a normalized analytic function

in U) the well-known Ozaki-Nunokawa-Krzyz univalence criterion (see [1], [3]).

References

[1] Krzyz, J. G., Convolution and quasiconformal extension, Comment. Math. Helv., 51

(1976), no. 1, 99-104.
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ON THE PROPERTIES OF A SUBCLASS OF ANALYTIC
FUNCTIONS

DORINA RĂDUCANU

Dedicated to Professor Grigore Ştefan Sălăgean on his 60th birthday

Abstract. In this paper we consider a new class of analytic functions

defined by a generalized differential operator. Inclusion results, structural

formula, coefficient estimates and other properties of this class of functions

are obtained.

1. Introduction

Let A denote the class of functions f of the form

f(z) = z +
∞∑

n=2

anzn (1.1)

which are analytic in the open unit disk U := {z ∈ C : |z| < 1}.

The Hadamard product or convolution of the functions

f(z) = z +
∞∑

n=2

anzn and g(z) = z +
∞∑

n=2

bnzn

is given by

(f ∗ g) (z) = z +
∞∑

n=2

anbnzn , z ∈ U.

Let f ∈ A. We consider the following differential operator introduced by

Răducanu and Orhan in [7]:

D0
λµf(z) = f(z)

D1
λµf(z) = Dλµf(z) = λµz2f ′′(z) + (λ− µ)zf ′(z) + (1− λ + µ)f(z)

Received by the editors: 26.04.2010.

2000 Mathematics Subject Classification. 30C45.

Key words and phrases. Analytic functions, differential operator, structural formula, extreme points.
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Dm
λµf(z) = Dλµ

(
Dm−1

λµ f(z)
)

(1.2)

where 0 ≤ µ ≤ λ and m ∈ N := {1, 2, . . .}.

If the function f is given by (1.1), then from (1.2) we see that:

Dm
λµf(z) = z +

∞∑
n=2

An(λ, µ, m)anzn (1.3)

where

An(λ, µ, m) = [1 + (λµn + λ− µ)(n− 1)]m . (1.4)

If λ = 1 and µ = 0, we get Sălăgean differential operator [9] and if µ = 0, we obtain

the differential operator defined by Al-Oboudi [1].

From (1.3) it follows that Dm
λµf(z) can be written in terms of convolution as

Dm
λµf(z) = (f ∗ g)(z) (1.5)

where

g(z) = z +
∞∑

n=2

An(λ, µ, m)zn. (1.6)

Definition 1.1. We say that a function f ∈ A is in the class Rm
λµ(α, γ) if

<
{

(1− α)
Dm

λµf(z)
z

+ α(Dm
λµf(z))′

}
> γ , z ∈ U

for α ≥ 0, 0 ≤ γ < 1, 0 ≤ µ ≤ λ and m ∈ N0 := {0, 1, 2, . . .}.

Note that:

i. R0
λµ(1, γ) is the subclass of A consisting of functions with <f ′(z) > γ.

ii. Rm
λ0(1, γ) is the class of functions investigated in [1].

iii. Rm
λµ(1, γ) reduces to the class of functions considered in [8].

iv. R0
λµ(α, γ) is the class of functions studied by G. Chunyi and S. Owa in [4].

The main object of this paper is to present a systematic investigation for the

class Rm
λµ(α, γ). In particular, for this class of functions we obtain some inclusion

results, structural formula, extreme points and other properties.

188



ON THE PROPERTIES OF A SUBCLASS OF ANALYTIC FUNCTIONS

2. Inclusion results

In order to prove our inclusion results we need the following lemmas.

Lemma 2.1. ([4]) Let α ≥ 0 and γ ≥ 0. Let D(z) be a starlike function in U and let

N(z) be an analytic function in U such that N(0) = D(0) = 0 and N ′(0) = D′(0) = 1.

If

<
[
(1− α)

N(z)
D(z)

+ α
N ′(z)
D′(z)

]
> γ , z ∈ U

then

<N(z)
D(z)

> γ , z ∈ U.

Lemma 2.2. ([6]) Let h(z) be a convex function in U and let A ≥ 0. Suppose that

B(z) and C(z) are analytic in U with C(0) = 0 and

<B(z) ≥ A + 4
∣∣∣∣C(z)
h′(0)

∣∣∣∣ , z ∈ U.

If p is an analytic function , with p(0) = h(0), which satisfies

Az2p′′(z) + B(z)zp′(z) + p(z) + C(z) ≺ h(z) , z ∈ U

then p(z) ≺ h(z), z ∈ U.

Note that the symbol ” ≺ ” stands for subordination.

Theorem 2.3. Let α ≥ 0, 0 ≤ γ < 1, 0 ≤ µ ≤ λ and m ∈ N0. Then

Rm
λµ(α, γ) ⊂ Rm

λµ(0, γ).

Proof. Suppose f ∈ Rm
λµ(α, γ). Then, from Definition 1.1, we have

<
{

(1− α)
Dm

λµf(z)
z

+ α(Dm
λµf(z))′

}
> γ , z ∈ U.

Consider N(z) = Dm
λµf(z). Making use of (1.3) we have N(0) = 0 and N ′(0) = 1.

Let D(z) = z. Since D(z) is starlike in U and D(0) = 0 = D′(0) − 1, from Lemma

2.1, we obtain

<
{

Dm
λµf(z)

z

}
> γ , z ∈ U

which implies f ∈ Rm
λµ(0, γ). Thus Rm

λµ(α, γ) ⊂ Rm
λµ(0, γ) and the proof of the

theorem is completed. �
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Theorem 2.4. Let 0 ≤ β < α, 0 ≤ γ < 1, 0 ≤ µ ≤ λ and m ∈ N0. Then

Rm
λµ(α, γ) ⊂ Rm

λµ(β, γ).

Proof. If β = 0, from Theorem 2.3, we have Rm
λµ(α, γ) ⊂ Rm

λµ(0, γ).

Let f ∈ Rm
λµ(α, γ) and assume β 6= 0. Then

(1− β)
Dm

λµf(z)
z

+ β(Dm
λµf(z))′ =

β

α

[(
α

β
− 1

)
Dm

λµf(z)
z

+ (1− α)
Dm

λµf(z)
z

+ α(Dm
λµf(z))′

]
.

Since f ∈ Rm
λµ(α, γ), making use of Definition 1.1 and Theorem 2.3, we obtain

<
{

(1− β)
Dm

λµf(z)
z

+ β(Dm
λµf(z))′

}
=

β

α

[(
α

β
− 1

)
<

Dm
λµf(z)

z
+ <

{
(1− α)

Dm
λµf(z)

z
+ α(Dm

λµf(z))′
}]

>
β

α

(
α

β
− 1

)
γ +

β

α
γ = γ.

It follows that f ∈ Rm
λµ(β, γ) and thus, Rm

λµ(α, γ) ⊂ Rm
λµ(β, γ). �

Another inclusion result is given in the next theorem.

Theorem 2.5. Let α ≥ 0, 0 ≤ γ < 1, 0 ≤ µ ≤ λ and m ∈ N0. Then

Rm+1
λµ (α, γ) ⊂ Rm

λµ(α, γ).

Proof. Suppose f ∈ Rm+1
λµ (α, γ). Then

<

{
(1− α)

Dm+1
λµ f(z)

z
+ α(Dm+1

λµ f(z))′
}

> γ

which is equivalent to

(1− α)
Dm+1

λµ f(z)
z

+ α(Dm+1
λµ f(z))′ ≺ h(z) , z ∈ U (2.1)

where

h(z) =
1 + (1− 2γ)z

1− z
, z ∈ U. (2.2)

From (1.2), we have

Dm+1
λµ f(z) = λµz2[Dm

λµf(z)]′′ + (λ− µ)z[Dm
λµf(z)]′ + (1− λ + µ)Dm

λµf(z).
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It follows that

R(z) := (1− α)
Dm+1

λµ f(z)
z

+ α(Dm+1
λµ f(z))′

= λµ

{
(1− α)

z2(Dm
λµf(z))′′

z
+ α[z2(Dm

λµf(z))′′]′
}

+(λ− µ)

{
(1− α)

z(Dm
λµf(z))′

z
+ α[z(Dm

λµf(z))′]′
}

+(1− λ + µ)
{

(1− α)
Dm

λµf(z)
z

+ α(Dm
λµf(z))′

}
.

Denote

p(z) = (1− α)
Dm

λµf(z)
z

+ α(Dm
λµf(z))′ , z ∈ U. (2.3)

Simple calculations show that

R(z) = λµz2p′′(z) + (2λµ + λ− µ)zp′(z) + p(z). (2.4)

Making use of (2.4), the differential subordination (2.1) becomes

λµz2p′′(z) + (2λµ + λ− µ)zp′(z) + p(z) ≺ h(z) , z ∈ U.

It is easy to check that conditions of Lemma 2.2 with h(z) given by (2.2), p(z) given

by (2.3), A = λµ, B(z) ≡ 2λµ + λ − µ and C(z) ≡ 0 are satisfied. Thus, we obtain

p(z) ≺ h(z) which implies that

<
{

(1− α)
Dm

λµf(z)
z

+ α(Dm
λµf(z))′

}
> γ , z ∈ U.

Therefore, f ∈ Rm
λµ(α, γ) and the proof of our theorem is completed. �

3. Structural formula

In this section a structural formula, extreme points, coefficient bounds for

functions in Rm
λµ(α, γ) are given.

Theorem 3.1. A function f ∈ A is in the class Rm
λµ(α, γ) if and only if it can be

expressed as

f(z) =

[
z +

∞∑
n=2

zn

An(λ, µ, m)

]
∗

∫
|ζ|=1

[
z + 2(1− γ)ζ̄

∞∑
n=2

(ζz)n

1 + (n− 1)α

]
dµ(ζ) (3.1)
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where µ(ζ) is the probability measure defined on the unit circle

T = {ζ ∈ C : |ζ| = 1} .

Proof. Definition 1.1 implies that f ∈ Rm
λµ(α, γ) if and only if

(1− α)Dm
λµf(z)

z + α(Dm
λµf(z))′ − γ

1− γ
= p(z) , z ∈ U (3.2)

where p(z) belongs to the class P consisting of normalized analytic functions which

have positive real part in U.

From (3.2) we have

(1− α)
Dm

λµf(z)− γz

z
+ α[(Dm

λµf(z))′ − γ] = (1− γ)p(z). (3.3)

If α 6= 0, multiplying both sides of (3.3) by 1
αz

1
α−1, we obtain[

z
1
α−1(Dm

λµf(z)− γz)
]′

= z
1
α−1 1− γ

α
p(z).

Using Herglotz expression of functions in the class P, we have[
z

1
α−1(Dm

λµf(z)− γz)
]′

= z
1
α−1 1− γ

α

∫
|ζ|=1

1 + ζz

1− ζz
dµ(ζ).

Integrating both sides of this equality we get

z
1
α−1(Dm

λµf(z)− γz) =
∫ z

0

[
u

1
α−1 1− γ

α

∫
|ζ|=1

1 + ζu

1− ζu
dµ(ζ)

]
du

which is equivalent to

Dm
λµf(z) =

1
α

∫
|ζ|=1

[
z1− 1

α

∫ z

0

u
1
α−1 1 + ζu(1− 2γ)

1− ζu
du

]
dµ(ζ).

So we have

Dm
λµf(z) =

∫
|ζ|=1

[
z + 2(1− γ)ζ̄

∞∑
n=2

(ζz)n

1 + (n− 1)α

]
dµ(ζ). (3.4)

From (1.5), (1.6) and (3.4) it follows that

f(z) =

[
z +

∞∑
n=2

zn

An(λ, µ, m)

]
∗

∫
|ζ|=1

[
z + 2(1− γ)ζ̄

∞∑
n=2

(ζz)n

1 + (n− 1)α

]
dµ(ζ).

Since this deductive process can be converse, we have proved our theorem. �
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Remark 3.2. If α = 0, the expression (3.1) is also true and it says that if f ∈ A

satisfies <
Dm

λµf(z)
z

> γ, then f can be expressed as

f(z) =

[
z +

∞∑
n=2

zn

An(λ, µ, m)

]
∗

∫
|ζ|=1

[
z + 2(1− γ)ζ̄

∞∑
n=2

(ζz)n

]
dµ(ζ).

Corollary 3.3. The extreme points of the class Rm
λµ(α, γ) are

fζ(z) = z + 2(1− γ)ζ̄
∞∑

n=2

(ζz)n

[1 + (n− 1)α]An(λ, µ, m)
, z ∈ U , |ζ| = 1. (3.5)

Proof. Denote

[Dm
λµf(z)]ζ = z + 2(1− γ)ζ̄

∞∑
n=2

(ζz)n

1 + (n− 1)α
.

Then, equality (3.4) can be written as

[Dm
λµf(z)]µ =

∫
|ζ|=1

[Dm
λµf(z)]ζdµ(ζ).

Since probability measures {µ} and class P are one-to-one it follows that the map

µ → [Dm
λµf(z)]µ is one-to-one and the assertion follows (see [5]). �

Making use of Corollary 3.3 we can obtain coefficients bounds for the functions

in the class Rm
λµ(α, γ).

Corollary 3.4. If f ∈ Rm
λµ(α, γ), then

|an| ≤
2(1− γ)

[1 + (n− 1)α]An(λ, µ, m)
, n ≥ 2.

The result is sharp.

Proof. The coefficient bounds are maximized at an extreme point so, the result

follows from (3.5). �

Corollary 3.5. If f ∈ Rm
λµ(α, γ), then for |z| = r < 1

|f(z)| ≥ r − 2(1− γ)r2
∞∑

n=2

1
[1 + (n− 1)α]An(λ, µ, m)

|f(z)| ≤ r + 2(1− γ)r2
∞∑

n=2

1
[1 + (n− 1)α]An(λ, µ, m)
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and

|f ′(z)| ≥ 1− 2(1− γ)r
∞∑

n=2

n

[1 + (n− 1)α]An(λ, µ, m)

|f ′(z)| ≤ 1 + 2(1− γ)r
∞∑

n=2

n

[1 + (n− 1)α]An(λ, µ, m)

4. Convolution property

In order to prove a convolution property for the class Rm
λµ(α, γ) we need the

following result.

Lemma 4.1. ([10]) If p(z) is analytic in U, p(0) = 1 and <p(z) > 1
2 , then for any

analytic function F in U, the function F ∗ p takes values in the convex hull of F (U).

Theorem 4.2. The class Rm
λµ(α, γ) is closed under the convolution with a convex

function. That is, if f ∈ Rm
λµ(α, γ) and g is convex in U, then f ∗ g ∈ Rm

λµ(α, γ).

Proof. It is known that, if g is a convex function in U, then

<g(z)
z

>
1
2
.

Suppose that f ∈ Rm
λµ(α, γ). Making use of the convolution properties, we have

<
{

(1− α)
Dm

λµ(f ∗ g)(z)
z

+ α[Dm
λµ(f ∗ g)(z)]′

}
=

<
{[

(1− α)
Dm

λµf(z)
z

+ α[Dm
λµf(z)]′

]
∗ g(z)

z

}
.

Using Lemma 4.1, the result follows. �

Corollary 4.3. The class Rm
λµ(α, γ) is invariant under Bernardi integral operator [3]

defined by

Fc(f)(z) =
1 + c

zc

∫ z

0

tc−1f(t)dt , <c > 0.

Proof. Assume f ∈ Rm
λµ(α, γ). It is easy to check that Fc(f)(z) = (f ∗ g)(z), where

g(z) =
∞∑

n=1

1 + c

n + c
zn.

Since the function g is convex (see [2]), the result follows by applying Theorem 4.2.

Therefore, Fc[Rm
λµ(α, γ)] ⊂ Rm

λµ(α, γ). �
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STRONG DIFFERENTIAL SUBORDINATIONS OBTAINED
BY THE MEDIUM OF AN INTEGRAL OPERATOR

ROXANA ŞENDRUŢIU

Dedicated to Professor Grigore Ştefan Sălăgean on his 60th birthday

Abstract. The concept of differential subordination was introduced in [2]

by S. S. Miller and P. T .Mocanu and developed in [3], and the concept of

strong differential subordination was introduced in [1] by J. A. Antonino

and S. Romaquera and developed in [4], [5] by Georgia Irina Oros and

Gheorghe Oros. In this paper we define the class Sm
n (α), and we study

strong differential subordination.

1. Introduction and preliminaries

Let U denote the unit disc of the complex plane :

U = {z ∈ C : |z| < 1}

and

U = {z ∈ C : |z| ≤ 1}.

Let H(U × U) denote the class of analytic functions in U × U . In [4], the author has

defined the class

Hζ[a, n] = {f ∈ H(U×U) : f(z, ζ) = a+an(ζ)zn +an+1(ζ)zn+1+ · · · , z ∈ U, ζ ∈ U}

with ak(ζ) holomorphic functions in U , k ≥ n,

Hn(U) = {f ∈ Hζ[a, n] : f(z, ζ) univalent in U for all ζ ∈ U},

Received by the editors: 10.05.2010.
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Key words and phrases. Analytic function, differential subordination, strong differential subordination,

univalent function, convex function, dominant.
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Aζn = {f ∈ Hζ[a, n] : f(z, ζ) = z + a2(ζ)z2 + · · ·+ an(ζ)zn + · · · , z ∈ U, ζ ∈ U}

with Aζ1 = Aζ,

Kζ =
{

f ∈ Hζ[a, n] : Re
zf ′′(z, ζ)
f ′(z, ζ)

+ 1 > 0, z ∈ U, for all ζ ∈ U

}
.

Definition 1.1. [4] Let H(z, ζ), f(z, ζ) be analytic in U × U . The function f(z, ζ)

is said to be strongly subordinate to H(z, ζ), or H(z, ζ) is said to be strongly

superordinate to f(z, ζ), if there exists a function ω analytic in U , ω(0) = 0,

|ω(z)| < 1, such that f(z, ζ) = H[ω(z), ζ], for all ζ ∈ U . In such a case we write

f(z, ζ) ≺≺ H(z, ζ), z ∈ U, ζ ∈ U.

Remark 1.2. (i) If H(z, ζ) is analytic in U × U and univalent in U for all ζ ∈ U ,

Definition (1.1) is equivalent to f(0, ζ) = H[0, ζ], for all ζ ∈ U and

f(U × U) ⊂ H(U × U).

(ii) If H(z, ζ) ≡ H(z) and f(z, ζ) ≡ f(z) then the strong subordination becomes the

usual notion of subordination.

Definition 1.3. [6] For f(z, ζ) ∈ Aζn, n ∈ N∗ ∪ {0}, we define the integral operator:

In : Aζn → Aζn

I0f(z, ζ) = f(z, ζ)

I1f(z, ζ) = If(z, ζ) =
∫ z

0
f(t, ζ)t−1dt

· · ·

Inf(z, ζ) = I(In−1f(z, ζ)) (z ∈ U, ζ ∈ U).

Property 1.4. For f(z, ζ) ∈ Aζn, n ∈ N∗ ∪ {0}, with the integral operator In :

Aζn → Aζn we have:

z[In+1f(z, ζ)]′ = Inf(z, ζ) (z ∈ U, ζ ∈ U).

In order to prove the main results we use the following definitions and lemmas,

adapted to the class defined in [4]:
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Lemma 1.5. [2, 3] (Miller and Mocanu) Let h(z, ζ) be a convex function, with

h(0, ζ) = a and let γ ∈ C∗ be a complex number with Re γ ≥ 0. If p ∈ Hζ[a, n]

and

p(z, ζ) +
1
γ

zp′(z, ζ) ≺≺ h(z, ζ)

then

p(z, ζ) ≺≺ g(z, ζ) ≺≺ h(z, ζ),

where

g(z, ζ) =
γ

nzγ/n

∫ z

0

h(t, ζ)t
γ
n−1dt (z ∈ U, ζ ∈ U).

The function g is convex and is the best (a,n) dominant.

Lemma 1.6. [2, 3] (Miller and Mocanu) Let h(z, ζ) be a convex function in U and

let

h(z, ζ) = g(z, ζ) + nαzg′(z, ζ), z ∈ U, ζ ∈ U

where α > 0 and n is a positive integer. If

p(z, ζ) = g(0, ζ) + pn(ζ)zn + pn+1(ζ)zn+1 + · · ·

is holomorphic in U × U and

p(z, ζ) + αzp′(z, ζ) ≺≺ h(z, ζ),

then

p(z, ζ) ≺≺ g(z, ζ)

and this result is sharp.

2. Main results

Definition 2.1. Let α > 1 and m,n ∈ N. We denote by Sm
n (α) the set of functions

f ∈ Aζn that satisfy the inequality

Re[Imf(z, ζ)]′ > α, z ∈ U, ζ ∈ U.

199



ROXANA ŞENDRUŢIU

Theorem 2.2. If α < 1, and m,n ∈ N, then

Sm
n (α) ⊂ Sm+1

n (δ),

where

δ = δ(α, ζ, n) = 2α− ζ +
2(ζ − α)

n
σ

(
1
n

)
and

σ(x) =
∫ 1

0

tx−1

1 + t
dt. (2.1)

Proof. Let f(z, ζ) ∈ Sm
n (α). From Definition 2.1 we have

Re[Imf(z, ζ)]′ > α, z ∈ U, ζ ∈ U. (2.2)

Using Property 1.4, we have

Imf(z, ζ) = z[Im+1f(z, ζ)]′, z ∈ U, ζ ∈ U. (2.3)

Differentiating (2.3), with respect to z, we obtain

[Imf(z, ζ)]′ = [Im+1f(z, ζ)]′ + z[Im+1f(z, ζ)]′′, z ∈ U, ζ ∈ U. (2.4)

We denote by

p(z, ζ) = [Im+1f(z, ζ)]′, z ∈ U, ζ ∈ U, p(0, ζ) = 1, ζ ∈ U. (2.5)

Using (2.5), the relation (2.3) becomes

[Imf(z, ζ)]′ = p(z, ζ) + zp′(z, ζ), z ∈ U, ζ ∈ U (2.6)

and replacing in (2.2), we obtain

Re[p(z, ζ) + zp′(z, ζ)] > α, z ∈ U, ζ ∈ U

equivalent to

p(z, ζ) + zp′(z, ζ) ≺≺ ζ + (2α− ζ)z
1 + z

= h(z, ζ). (2.7)

Using Lemma 1.5, we obtain

p(z, ζ) ≺≺ q(z, ζ) ≺≺ h(z, ζ)
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where

q(z, ζ) =
1

nz
1
n

∫ z

0

ζ + (2α− ζ)t
1 + t

t
1
n−1dt = 2α− ζ +

2(ζ − α)
n

σ(x),

where σ(x) is given by (2.1). The function q(z, ζ) is convex and is the best dominant.

With p(z, ζ) ≺≺ q(z, ζ) and q(z, ζ) being convex, and the fact that the image of U×U

through g(z, ζ) is symmetric with respect to the real axis, we deduce that

Re p(z, ζ) > g(1, ζ) = 2α− ζ +
2(ζ − α)

n
σ(

1
n

) = δ(α, ζ, n) = δ, (2.8)

equivalent to

Re[Im+1f(z, ζ)]′ > δ, z ∈ U, ζ ∈ U. (2.9)

Using Definition 2.1 we obtain f ∈ Sm+1
n (δ). Since f ∈ Sm

n (α), we obtain that

Sm
n (α) ⊂ Sm+1

n (δ).

�

Theorem 2.3. Let h(z, ζ) an analytic function from U × U , with h(0, ζ) = 1,

h′(0, ζ) 6= 0, ζ ∈ U , that satisfies inequality

Re[1 +
zh′′(z, ζ)
h′(z, ζ)

] > −1
2
.

If f(z, ζ) ∈ Aζn and verify the strong differential subordination

[Imf(z, ζ)]′ ≺≺ h(z, ζ), (2.10)

then

[Im+1f(z, ζ)]′ ≺≺ g(z, ζ)

where

g(z, ζ) =
1

nz
1
n

∫ z

0

h(t, ζ)t
1
n−1dt, z ∈ U, ζ ∈ U.

The function g is convex and is the best dominant.
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Proof. A simple application of the differential subordination technique [1, 2], shows

that the function g(z, ζ) is convex. By using (2.6), the strong differential subordina-

tion (2.10) becomes

p(z, ζ) + zp′(z, ζ) ≺≺ h(z, ζ). (2.11)

Using Lemma 1.5, we have

p(z, ζ) ≺≺ g(z, ζ) =
1

nz
1
n

∫ z

0

h(t, ζ)t
1
n−1dt.

Using (2.5), we obtain

[Im+1f(z, ζ)]′ ≺≺ 1
nz

1
n

∫ z

0

h(t, ζ)t
1
n−1dt.

�

Theorem 2.4. Let g(z, ζ) be a convex function with g(0, ζ) = 1 and suppose that

h(z, ζ) = g(z, ζ) + zg′(z, ζ), z ∈ U, ζ ∈ U.

If f(z, ζ) ∈ Aζn and verify the strong differential subordination

[Imf(z, ζ)]′ ≺≺ h(z, ζ), (2.12)

then

[Im+1f(z, ζ)]′ ≺≺ g(z, ζ).

Proof. By using (2.6), the strong differential subordination (2.12) becomes

p(z, ζ) + zp′(z, ζ) ≺≺ g(z, ζ) + zg′(z, ζ) ≡ h(z, ζ).

Using Lemma 1.6, we have

p(z, ζ) ≺≺ g(z, ζ)

and using the notation (2.5), we obtain

[Im+1f(z, ζ)]′ ≺≺ g(z, ζ).

�
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Theorem 2.5. Let g(z, ζ) be a convex function with g(0, ζ) = 1 and the function

h(z, ζ), given by

h(z, ζ) = g(z, ζ) + nzg′(z, ζ).

If f(z, ζ) ∈ Aζn and verify the strong differential subordination

[Imf(z, ζ)]′ ≺≺ h(z, ζ), (2.13)

then
Imf(z, ζ)

z
≺≺ g(z, ζ).

Proof. We denote with

p(z, ζ) =
Imf(z, ζ)

z
, z ∈ U, ζ ∈ U, p(0, ζ) = 1. (2.14)

Using (2.14), we obtain

Imf(z, ζ) = zp(z, ζ), z ∈ U, ζ ∈ U. (2.15)

Differentiating (2.15), with respect to z, we obtain

[Imf(z, ζ)]′ = p(z, ζ) + zp′(z, ζ), z ∈ U, ζ ∈ U. (2.16)

Using (2.16), the strong differential subordination (2.13) becomes

p(z, ζ) + zp′(z, ζ) ≺≺ g(z, ζ) + nzg′(z, ζ).

Using Lemma 1.6, we have

p(z, ζ) ≺≺ g(z, ζ), i.e.
Imf(z, ζ)

z
≺≺ g(z, ζ).

�

Example 2.6. Let g(z, ζ) be the function

g(z, ζ) =
1 + (2α− ζ)z

1 + z
, z ∈ U, ζ ∈ U, g(0, ζ) = 1, α ∈ R, α < 1. (2.17)

We verify that g(z, ζ) is a convex function. Differentiating (2.17), with respect to z,

we obtain

Re
[
zg′′(z, ζ)
g′(z, ζ)

+ 1
]

= Re
[
1− z

1 + z

]
> 0.
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From the Theorem (2.4), and using (2.17) we obtain that

h(z, ζ) = g(z, ζ) + zg′(z, ζ) =
1 + (2α− ζ)z(2 + z)

(1 + z)2
, z ∈ U, ζ ∈ U. (2.18)

For α = 0 we obtain

h(z, ζ) =
1− ζz(2 + z)

(1 + z)2
.

We consider the function

g(z, ζ) =
z − ζ

z2

2
1 +

z

2

.

By Theorem (2.4) we obtain that, the strong differential subordination

1− ζz − ζ
z2

4
(1 +

z

2
)2

≺≺ 1− ζz(2 + z)
(1 + z)2

implies
1− ζ

z

2
1 +

z

2

≺≺ 1− ζz

1 + z
.

Example 2.7. Let h(z, ζ) be the function

h(z, ζ) =
ζ + z

ζ − z
, z ∈ U, ζ ∈ U, h(0, ζ) = 1. (2.19)

Let g(z, ζ) be a convex function with g(0, ζ) = 1 and

h(z, ζ) = g(z, ζ) + zg′(z, ζ), z ∈ U, ζ ∈ U.

That implies

g(z, ζ) =
1
z

∫ z

0

h(t, ζ)dt =
1
z

∫ z

0

ζ + t

ζ − t
dt

and

g(z, ζ) =
−2ζ

z
log(ζ − z) +

2ζ

z
log(ζ)− 1.

By Theorem (2.4) we obtain that, the strong differential subordination

2ζ + z

2ζ − z
≺≺ ζ + z

ζ − z

implies

−4ζ

z
log(2ζ − z) +

4ζ

z
log(2ζ)− 1 ≺≺ −2ζ

z
log(ζ − z) +

2ζ

z
log(ζ)− 1.
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AN APPLICATION OF MILLER AND MOCANU LEMMA

HITOSHI SHIRAISHI AND SHIGEYOSHI OWA

Dedicated to Professor Grigore Ştefan Sălăgean on his 60th birthday

Abstract. Let H[a, n] be the class of functions f(z) = a + anzn + . . .

which are analytic in the open unit disk U. For f(z) ∈ H[a, n], S. S. Miller

and P. T. Mocanu (J. Math. Anal. Appl. 65(1978), 289-305) have shown

Miller and Mocanu lemma which is the generalization of Jack lemma by

I. S. Jack (J. London Math. Soc. 3(1971), 469-474). Applying Miller and

Mocanu lemma, an interesting property for f(z) ∈ H[a, n] and an example

are discussed.

1. Introduction

Let H[a, n] denote the class of functions f(z) of the form

f(z) = a +
∞∑

k=n

akzk (n = 1, 2, 3, . . .)

which are analytic in the open unit disk U = {z ∈ C : |z| < 1}, where a ∈ C. Jack [1]

has shown the result for analytic functions w(z) in U with w(0) = 0, which is called

Jack’s lemma. In 1978, Miller and Mocanu [2] have given the generalization theorem

for Jack’s lemma, which was called Miller and Mocanu lemma.

Lemma 1.1 (Miller and Mocanu lemma). Let f(z) ∈ H[a, n] with f(z) 6≡ a. If there

exists a point z0 ∈ U such that

max
|z|5|z0|

|f(z)| = |f(z0)|,

Received by the editors: 26.04.2010.
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then
z0f

′(z0)
f(z0)

= m

and

Re
z0f

′′(z0)
f ′(z0)

+ 1 = m,

where m is real and

m = n
|f(z0)− a|2

|f(z0)|2 − |a|2
= n

|f(z0)| − |a|
|f(z0)|+ |a|

.

If a = 0, then the above lemma becomes Jack’s lemma due to Jack [1].

2. Main theorem

Applying Miller and Mocanu lemma, we derive

Theorem 2.1. Let f(z) ∈ H[a, n] with f(z) 6= 0 for z ∈ U. If there exists a point

z0 ∈ U such that

min
|z|5|z0|

|f(z)| = |f(z0)|,

then
z0f

′(z0)
f(z0)

= −m (2.1)

and

Re
z0f

′′(z0)
f ′(z0)

+ 1 = −m, (2.2)

where

m = n
|a− f(z0)|2

|a|2 − |f(z0)|2
= n

|a| − |f(z0)|
|a|+ |f(z0)|

.

Proof. We defined the function g(z) by

g(z) =
1

f(z)

= c + cnzn + cn+1z
n+1 + . . .

(
c =

1
a

)
.
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Then, g(z) is analytic in U and g(0) = c 6= 0. Furthermore, by the assumtion

of the theorem, |g(z)| takes its maximum value at z = z0 in the closed disk |z| 5 |z0|.

It follows from this that

|g(z0)| =
1

|f(z0)|
=

1
min

|z|5|z0|
|f(z)|

= max
|z|5|z0|

|g(z)|.

Therefore, applying Lemma 1.1 to g(z), we observe that

z0g
′(z0)

g(z0)
= −z0f

′(z0)
f(z0)

= m

which shows (2.1) and

Re
z0g

′′(z0)
g′(z0)

+ 1 = Re
(

z0f
′′(z0)

f ′(z0)
− 2

z0f
′(z0)

f(z0)

)
+ 1

= Re
z0f

′′(z0)
f ′(z0)

+ 2m + 1

= m

which implies (2.2), where

m = n
|g(z0)− c|2

|g(z0)|2 − |c|2
= n

|a− f(z0)|2

|a|2 − |f(z0)|2
= n

|a| − |f(z0)|
|a|+ |f(z0)|

.

This completes the assertion of Theorem 2.1. �

Example 2.2. Let us consider the function f(z) given by

f(z) =
a +

(
ei arg(a) − a

)
zn

1− zn

= a + ei arg(a)zn + ei arg(a)z2n + . . . (z ∈ U)

for some complex number a with |a| > 1
2
.

Then, f(z) maps the disk Ur = {z : |z| < r 5 1} onto the domain∣∣∣∣f(z)−
(

a +
ei arg(a)r2n

1− r2n

)∣∣∣∣ 5
rn

1− r2n
.

Thus, we know that there exists a point z0 = rei π
n ∈ U such that

min
|z|5|z0|

|f(z)| = |f(z0)| = |a| − rn

1− r2n
.
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For such a point z0, we obtain that

z0f
′(z0)

f(z0)
= − nrn

(1 + rn)(|a| − (1− |a|)rn)
= −m

where

m =
nrn

(1 + rn)(|a| − (1− |a|)rn)
> 0.

Therefore, we get that

Re
z0f

′′(z0)
f ′(z0)

+ 1 = n
1− rn

1 + rn
> 0 > −m.

Furthermore, we obtain that

n
|a− f(z0)|2

|a|2 − |f(z0)|2
=

nrn

2|a|+ (2|a| − 1)rn
=

nrn

2
(
|a| − (1− |a|)rn +

1
2
rn

) < m.

Putting a with a real number in Example 2.2, we get Example 2.3.

Example 2.3. Let us consider the function

f(z) =
a + (1− a)zn

1− zn

= a + zn + z2n + . . . (z ∈ U)

for a >
1
2
. Then, it follows that the function f(z) maps the disk Ur onto the domain∣∣∣∣f(z)−

(
a +

r2n

1− r2n

)∣∣∣∣ 5
rn

1− r2n
.

Thus, there exists a point z0 = rei π
n ∈ U such that

min
|z|5|z0|

|f(z)| = |f(z0)| = a− rn

1− r2n
.

For such a point z0, we obtain

z0f
′(z0)

f(z0)
= − nrn

(1 + rn)(a− (1− a)rn)
= −m

where

m =
nrn

(1 + rn)(a− (1− a)rn)
> 0.
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Therefore, we see that

Re
z0f

′′(z0)
f ′(z0)

+ 1 = n
1− rn

1 + rn
> 0 > −m.

Moreover, we have that

n
|a− f(z0)|2

|a|2 − |f(z0)|2
=

nrn

2a + (2a− 1)rn
=

nrn

2
(

a− (1− a)rn +
1
2
rn

) < m.
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Abstract. Let P(α, β), α > 0, β < 1, denote the class of all analytic

functions f in the unit disc with the normalization f(0) = 1, f ′(0) = 1

and satisfying the condition

Re[eiϕ(f ′(z) +
1

α
zf ′′(z)− β)] > 0, |z| < 1

for some ϕ ∈ R. In this paper we find conditions on α, β so that P(α, β) ⊆
S∗(µ), where µ < 1 is given and S∗(µ) denote the class of starlike function

of order µ. We take advantage of the Ruscheweh’s Duality theory.

1. Introduction

Let H denote the class of analytic functions in the open unit disc

U = {z : |z| < 1}

of the complex plane C. Everywhere in this paper z ∈ U unless we make a note. We

say that f ∈ H is convex when f(U) is a convex set. Let A denote the subclass of H

consisting of functions normalized by f(0) = 0, f ′(0) = 1. For µ < 1, by S∗(µ) we

denote the well known subclass of A consisting of starlike function of order µ. As is

well known

S∗(µ) =
{
f ∈ A : Re

[
zf ′(z)
f(z)

]
> µ for z ∈ U

}

Received by the editors: 26.04.2010.
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S∗(0) = S∗ is the class of starlike functions which map U onto a starlike domain with

respect to the origin. For α > 0 and β < 1 given, define

P(α, β) =
{
f ∈ A : ∃ϕ ∈ R s. t. Re

[
eiϕ

(
f ′(z) +

1
α
zf ′′(z)− β

)]
> 0, z ∈ U

}
.

In the geometric theory of function, a variety of sufficient conditions for starlikeness

have been considered. We refer to the monographs [4], [5] for details. In the present

work we tray to find conditions on α, β so that P(α, β) ⊆ S∗(µ), where µ < 1 is

given. If f and g are analytic in U with f(z) = a0 + a1z + a2z
2 + . . . and g(z) =

b0 +b1z+b2z2 + . . . then the Hadamard product (or convolution) of f and g is defined

by

(f ∗ g)(z) = a0b0 + a1b1z + a2b2z
2 + . . . .

The convolution has the algebraic properties of ordinary multiplication. In convolu-

tion theory, the concept of duality is central. For a set

V ⊆ A0 =
{
g : g(z) =

f(z)
z

, f ∈ A
}

the dual set V ∗ is defined as

V ∗ = {g ∈ A0 : (f ∗ g)(z) 6= 0 for all f ∈ V, z ∈ U} .

In this paper we use the powerful method of duality principle in geometric function

theory developed by Ruscheweyh [8]. The basic results of Ruscheweyh’s duality theory

one can find in the book [9]. The duality principle states that, under certain conditions

on V , the range of a continuous linear functional on V equals the range of the same

linear functional on (V ∗)∗ = V ∗∗. This is a useful information since in many cases

of interest V ∗∗ is much larger than V . Then by investigating the small set we can

get results about the large set. One such pair of the sets is described in the theorem

below.

Theorem 1.1. Let

Vβ =
{
β +

(1− β)(1 + xz)
1 + yz

: |x| = |y| = 1
}
, β ∈ R, β 6= 1.

Then

V ∗∗β =
{
g ∈ A0 : ∃ϕ ∈ R such that Re

[
eiϕ (g(z)− β)

]
> 0, z ∈ U

}
.
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Theorem 1.1 with β = 0 one can find in [9, p. 22]. Notice that if h ∈ Vβ ,

h(z) = β + (1− β) 1+xz
1+yz with |x| = |y| = 1, β ∈ R, β 6= 1, then

h(z) = 1 + (1− β)
(

1− x

y

)
yz

1− yz
= 1 + (1− β)(1− eiψ)

∞∑
k=1

(yz)k (1.1)

for some ψ ∈ R. A subset V ⊆ A0 is said to be complete if it has the following

property:

f ∈ V ⇒ f(xz) ∈ V ∀|x| ≤ 1.

Theorem 1.2. (Duality principle, see [8]) Let V ⊆ A0 be compact and complete. If

λ is a continuous linear functional on H, then

λ(V ) = λ (V ∗∗) , co(V ) = co (V ∗∗) .

The sets Vβ and V ∗∗β in Theorem 1.1 are compact and complete. The following

Theorem 1.3 one can find in [9, p. 23] and in [10].

Theorem 1.3. (see [10]) Let f ∈ A. Then f belongs to the class S∗(µ) of starlike

function of order µ if and only if

f(z)
z

∗
1 + ε+2µ−1

2(1−µ) z

(1− z2)
6= 0 ∀ |ε| = 1, ∀ z ∈ U.

2. Main results

Theorem 2.1. Suppose that α > 0, β < 1, µ < 1. Then P(α, β) ⊆ S∗(µ) if and only

if

Re [H(ε; z)] > −1− µ

1− β
∀|ε| = 1, ∀z ∈ U, (2.1)

where

H(ε; z) = α
∞∑
k=1

k(1 + ε) + 2(1− µ)
(k + 1)(k + α)

zk. (2.2)

Proof. Let a function f be in the class P(α, β). If we denote f ′(z)+ z
αf

′′(z) = gα(z),

then we have gα ∈ V ∗∗β . If f(z) =
∞∑
k=1

akz
k, a1 = 1, then

f ′(z) +
z

α
f ′′(z) =

∞∑
k=1

k(k − 1 + α)
α

akz
k−1 = gα(z)
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so
f(z)
z

=
∞∑
k=1

akz
k−1 = gα(z) ∗

∞∑
k=1

αzk−1

k(k − 1 + α)
,

and we obtain one-to-one correspondence between P(α, β) and V ∗∗β . Thus, by Theo-

rem 1.3, P(α, β) ⊆ S∗(µ) if and only if

gα(z) ∗
∞∑
k=1

αzk−1

k(k − 1 + α)
∗

1 + ε+2µ−1
2(1−µ) z

(1− z)2
6= 0 ∀gα ∈ V ∗∗β , ∀ |ε| = 1,∀ z ∈ U. (2.3)

Let us consider for z ∈ U the continuous linear functional λz : A0 → C, such that

λz(h) := h(z) ∗
∞∑
k=1

αzk−1

k(k − 1 + α)
∗

1 + ε+2µ−1
2(1−µ) z

(1− z)2
,

By Duality principle we have λz(V ) = λz(V ∗∗β ). Therefore (2.3) holds if and only if[
1 + (1− β)(1− eiψ)

∞∑
k=1

zk

]
∗

[
1 +

∞∑
k=1

αzk

(k + 1)(k + α)

]
∗

[
1 + ε+2µ−1

2(1−µ) z

(1− z)2

]
6= 0 (2.4)

for all ψ ∈ R, |ε| = 1, z ∈ U . Using the properties of convolution we can reformulate

(2.4) as

α
∞∑
k=1

k(1 + ε) + 2(1− µ)
(k + 1)(k + α)

zk 6= − 2(1− µ)
(1− eiψ)(1− β)

. (2.5)

For ψ ∈ R the quantity on the right site of (2.5) takes its values on the line Rew =

− 1−µ
1−β so (2.5) is equivalent to (2.1) . �

Starlikeness of functions in P(α, β) has been investigated. For example we

have the reformulated version from [3].

Theorem 2.2. (see [3]) If f ∈ P(α, β) and α ≤ 3 and β(α) be given by

β(α)
1− β(α)

= α

∫ 1

0

tα−1(t− 1)
t+ 1

dt,

then f ∈ S∗(0) and the value of β(α) is sharp.

Note that Fournier and Ruscheweyh introduced in [3] the integral transform

Vλ : A → A

such that

Vλ(f)(z) =
∫ 1

0

λ(t)
f(tz)
t

dt,
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where λ(t)is real valued integrable function satisfying the normalizing condition∫ 1

0

λ(t) dt = 1.

This operator was introduced mainly to find conditions on λ(t) and β so that Vλ(f)

maps P(α, β) into S∗(0), when α→∞. Recently Balasubramanian, Ponnusamy and

Prabhakaran in [2] and Ponnusamy and Rønning in [7] extended this considerations

to find conditions on λ(t) and β such that Vλ(f) is starlike of order µ, (0 ≤ µ ≤ 1/2)

when f ∈ P(α, β). For convexity of this integral transform see [1].

While Theorem 2.1 precisely answers when P(α, β) ⊆ S∗(µ) it is difficult

to answer when the condition (2.1) is satisfied in general. It seems that ReH(ε; z)

attains its minimum at z = −1 and ε = 1 but it is hard to show.

Conjecture 2.3. Let f be given by (2.2). Then

min {ReH(ε; z) : |ε| = 1, |z| < 1} = H(1;−1).

In [11] we apply the general theory of differential subordinations to obtain sev-

eral weaker but simple sufficient conditions for µ-starlikeness while Owa and Sălăgean

in [6] considered a sufficient condition and a necessary condition for starlikeness of

complex order of functions with negative coefficients. One can expressed the function

H(ε; z) in terms of the Gaussian hypergeometric function

2F1(a, b, c; z) =
∞∑
k=0

(a)k(b)k
(c)kk!

zk,

where (x)k denotes the Pochhammer symbol defined by

(x)k = x(x+ 1)(x+ 2) · · · (x+ k − 1) for k ∈ N and (x)0 = 1.

Then for α 6= 1 we have

H(ε; z) = α
∞∑
k=1

k(1 + ε) + 2(1− µ)
(k + 1)(k + α)

zk

=
α(ε+ 2µ− 1)

1− α

∞∑
k=1

zk

k + 1
+

2(1− µ)− α(ε+ 1)
1− α

∞∑
k=1

αzk

k + α
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=
α(ε+ 2µ− 1) [2F1(1, 1, 2; z)− 1] + [2(1− µ)− α(ε+ 1)] [2F1(1, α, α+ 1; z)− 1]

1− α

= 2(µ− 1) +
α(ε+ 2µ− 1)

1− α
2F1(1, 1, 2; z) +

2(1− µ)− α(ε+ 1)
1− α

2F1(1, α, α+ 1; z)

= 2(µ− 1) +
α(ε+ 2µ− 1)

1− α

1
z

ln
1

1− z
+

2(1− µ)− α(ε+ 1)
1− α

2F1(1, α, α+ 1; z).

We can rewrite the inequality (2.1) in the form

1− µ

α(1− β)
+ Re

[ ∞∑
k=1

kzk

(k + 1)(k + α)

]
+ 2(1− µ)Re

[ ∞∑
k=1

zk

(k + 1)(k + α)

]
(2.6)

> Re

[
−ε

∞∑
k=1

kzk

(k + 1)(k + α)

]
∀|ε| = 1, ∀z ∈ U,

thus we can see that (2.6) is satisfied when

1− µ

α(1− β)
+ Re

[ ∞∑
k=1

kzk

(k + 1)(k + α)

]
+ 2(1− µ)Re

[ ∞∑
k=1

zk

(k + 1)(k + α)

]
(2.7)

>

∣∣∣∣∣
∞∑
k=1

kzk

(k + 1)(k + α)

∣∣∣∣∣ ∀z ∈ U.

Conjecture 2.4. Let the function G be given by

G(z) = 2(1 + α)
∞∑
k=1

1
(k + 1)(k + α)

zk

Then the function zG′(z) is a convex function when −1 < α.

Note tat it is known that G is a convex while zG′ is a starlike function. With

this notation (2.7) becomes

2(1 + α)(1− µ)
α(1− β)

+ RezG′(z) + 2(1− µ)ReG(z) > |zG′(z)|∀z ∈ U. (2.8)

If Conjecture 2.4 is true, then we have G′(−1) < ReG′(z) < G′(1) so for

(2.8)it suffices that

1− µ

α(1− β)
+

∞∑
k=1

k(−1)k

(k + 1)(k + α)
+ 2(1− µ)

∞∑
k=1

(−1)k

(k + 1)(k + α)
(2.9)

>
∞∑
k=1

k

(k + 1)(k + α)
.

While (2.9) is not a necessary for (2.8) it still remains hard to verify.
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SOME STRONG DIFFERENTIAL SUBORDINATIONS OBTAINED
BY SĂLĂGEAN DIFFERENTIAL OPERATOR

ADELA OLIMPIA TĂUT

Dedicated to Professor Grigore Ştefan Sălăgean on his 60th birthday

Abstract. S. S. Miller and P. T. Mocanu introduced the notion of dif-

ferential superordination as a dual concept of differential subordination .

The notion of strong differential subordination was introduced by J. A.

Antonino and S. Romaguera. By using the Sălăgean differential opera-

tor we introduce a class of holomorphic functions denoted by Sm
n (α), and

obtain some strong subordinations results.

1. Introduction and preliminaries

Denote by U the unit disc of the complex plane,

U = {z ∈ C; |z| < 1} (1.1)

U = {z ∈ C; |z| ≤ 1} (1.2)

the closed unit disc of the complex plane.

In the paper [3], Georgia I. Oros defined the classes H(U × U) denote the

class of analytic functions in U × U ,

A∗
ζ = {f ∈ H(U × U) | f(z, ζ) = z + a2(ζ)z2 + . . . , z ∈ U, ζ ∈ U}, (1.3)

A∗
nζ = {f ∈ H(U × U) | f(z, ζ) = z + an+1(ζ)zn+1 + . . . , z ∈ U, ζ ∈ U}, (1.4)

Received by the editors: 01.03.2010.

2000 Mathematics Subject Classification. 30C80, 30C45, 30A20.

Key words and phrases. differential superordination, strong differential superordination, univalent

function, subordinant, best subordinant, differential operator.

221



ADELA OLIMPIA TĂUT

for n = 1, A∗
nζ = A∗

ζ , with ak(ζ) holomorphic functions in U , k ≥ 2,

H∗[a, n, ζ] = {f ∈ H(U×U) | f(z, ζ) = a+an(ζ)zn+an+1(ζ)zn+1+. . . , z ∈ U, ζ ∈ U}

(1.5)

where ak(ζ) holomorphic functions in U , k ≥ n, and let

Hu(U) = {f ∈ H∗[a, n, ζ] | f(z, ζ) univalent in U for all ζ ∈ U}, (1.6)

K∗ =
{

f ∈ H∗[a, n, ζ] | Re
zf ′′(z, ζ)
f ′(z, ζ)

+ 1 > 0, z ∈ U for all ζ ∈ U

}
(1.7)

the class of convex functions,

S∗ =
{

f ∈ H∗[a, n, ζ] | Re
zf ′(z, ζ)
f(z, ζ)

> 0, z ∈ U for all ζ ∈ U

}
(1.8)

the class of starlike functions.

Definition 1.1. [4] Let f(z, ζ), H(z, ζ) analytic in U×U . The function f(z, ζ) is said

to be strongly subordinate to H(z, ζ), or H(z, ζ) is said to be strongly superordinate to

f(z, ζ), if there exists a function w analytic in U , with w(0) = 0, and |w(z)| < 1 such

that f(z, ζ) = H(w(z), ζ) for all ζ ∈ U . In such a case we write f(z, ζ) ≺≺ H(z, ζ),

z ∈ U , ζ ∈ U .

Remark 1.2. [4] (i) Since f(z, ζ) is analytic in U × U , for all ζ ∈ U and univalent

in U , for all ζ ∈ U , Definition 1.1 is equivalent to f(0, ζ) = H(0, ζ) for all ζ ∈ U and

f(U × U) ⊂ H(U × U).

(ii) If H(z, ζ) ≡ H(z) and f(z, ζ) ≡ f(z) then strong subordination becomes

usual notion of subordination.

Lemma 1.3. [2, page 71] Let h(z, ζ) be a convex function with h(0, ζ) = a for every

ζ ∈ U and let γ ∈ C∗ be a complex number with Re γ ≥ 0. If p ∈ H∗[a, n, ζ] and

p(z, ζ) +
1
γ

zp′(z, ζ) ≺≺ h(z, ζ) (1.9)

then p(z, ζ) ≺≺ q(z, ζ) ≺≺ h(z, ζ) where

g(z, ζ) =
γ

nzγ/n

∫ z

0

h(t, ζ)t(γ/n)−1dt. (1.10)

The function g(z, ζ) is convex and is the best dominant.
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Lemma 1.4. [1] Let g(z, ζ) be a convex function in U ,for all ζ ∈ U and let

h(z, ζ) = g(z, ζ) + nαg′(z, ζ), (1.11)

where α > 0 and n is a positive integer. If

p(z, ζ) = g(0, ζ) + pn(ζ)zn + . . .

is holomorphic in U , for all ζ ∈ U and

p(z, ζ) + αzp′(z, ζ) ≺≺ h(z, ζ) (1.12)

then

p(z, ζ) ≺≺ g(z, ζ) (1.13)

and this result is sharp.

Definition 1.5. [5] For f ∈ A∗
ζ , n ∈ N∗ ∪ {0}, the operator Snf is defined by

Sn : A∗
ζ → A∗

ζ

S0f(z, ζ) = f(z, ζ)

S1f(z, ζ) = zf ′(z, ζ)

. . .

Sn+1f(z, ζ) = z[Snf(z, ζ)]′, z ∈ U, ζ ∈ U.

Remark 1.6. If f ∈ A∗
ζ ,

f(z, ζ) = z +
∞∑

j=2

aj(ζ)zj

then

Snf(z, ζ) = z +
∞∑

j=2

jnaj(ζ)zj , z ∈ U, ζ ∈ U.
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2. Main results

Definition 2.1. If α < 1 and m,n ∈ N, let Sn
m(α) denote the class of functions

f ∈ A∗
nζ which satisfy the inequality

Re [Smf(z, ζ)]′ > α. (2.1)

Theorem 2.2. If α < 1 and m,n ∈ N, then

Sm+1
n (α) ⊂ Sm

n (δ) (2.2)

where

δ = δ(α, n,m) = (2α− 1) + 1− (2α− 1)
1
n

β

(
1
n

)
,

β(x) =
∫ 1

0

tx−1

1 + t
dt.

(2.3)

Proof. Let f ∈ Sm+1
n (α). By using the properties of the operator Smf(z, ζ), we have

Sm+1f(z, ζ) = z[Smf(z, ζ)]′, z ∈ U, ζ ∈ U. (2.4)

Differentiating (2.4) we obtain

[Sm+1f(z, ζ)]′ = [Smf(z, ζ)]′ + z[Smf(z, ζ)]′′, z ∈ U, ζ ∈ U. (2.5)

If we let p(z, ζ) = [Smf(z, ζ)]′, then

p′(z, ζ) = [Smf(z, ζ)]′′

and (2.5) becomes

[Sm+1f(z, ζ)]′ = p(z, ζ) + zp′(z, ζ). (2.6)

Since f ∈ Sm+1
n (α), by using Definition 2.1, we have

Re [p(z, ζ) + zp′(z, ζ)] > α (2.7)

which is equivalent to

p(z, ζ) + zp′(z, ζ) ≺≺ 1 + (2α− 1)z
1 + z

≡ h(z, ζ). (2.8)

By using Lemma 1.3, we have

p(z, ζ) ≺≺ g(z, ζ) ≺≺ h(z, ζ) (2.9)
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where

g(z, ζ) =
1

nz1/n

∫ z

0

1− (2α− 1)t
1 + t

t(1/n)−1dt. (2.10)

The function g(z, ζ) is convex and is the best dominant.

From p(z, ζ) ≺≺ g(z, ζ), it results that

Re p(z, ζ) > δ = g(1, ζ) = δ(α, n,m) (2.11)

where

g(1, ζ) =
1
n

∫ 1

0

t
1
n−1 · 1 + (2α− 1)t

1 + t
dt (2.12)

=
1
n

∫ 1

0

t
1
n−1 · 1 + (2α− 1)t + (2α− 1)− (2α− 1)

1 + t
dt

=
1
n

∫ 1

0

t
1
n−1

[
(2α− 1)(t + 1)

1 + t
+

1− 2α + 1
1 + t

]
dt

= (2α− 1)
1
n

∫ 1

0

t
1
n−1dt +

1
n

∫ 1

0

t
1
n−1 · 1− (2α− 1)

1 + t
dt

= (2α− 1)
1
n
· t

1
n

1
n

∣∣∣1
0

+
1− (2α− 1)

n

∫ 1

0

t
1
n−1

1 + t
dt

= (2α− 1) +
1− (2α− 1)

n
β

(
1
n

)
(2.13)

from which we deduce that Sm+1
n (α) ⊂ Sm

n (δ). �

Theorem 2.3. Let g(z, ζ) be a convex function g(0, ζ) = 1 and let h(z, ζ) be a function

such that

h(z, ζ) = g(z, ζ) + zg′(z, ζ). (2.14)

If f ∈ A∗
nζ and verifies the strong differential subordination

[Sm+1f(z, ζ)]′ ≺≺ h(z, ζ) (2.15)

then

[Smf(z, ζ)]′ ≺≺ g(z, ζ). (2.16)
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Proof. From

Sm+1f(z, ζ) = z[Smf(z, ζ)]′ (2.17)

we obtain

[Sm+1f(z, ζ)]′ = [Smf(z, ζ)]′ + z[Smf(z, ζ)]′′. (2.18)

If we let p(z, ζ) = [Smf(z, ζ)]′, then we obtain

[Sm+1f(z, ζ)]′ = p(z, ζ) + zp′(z, ζ) (2.19)

and (2.15) becomes

p(z, ζ) + zp′(z, ζ) ≺≺ g(z, ζ) + zg′(z, ζ) ≡ h(z, ζ). (2.20)

Using Lemma 1.4, we have

p(z, ζ) ≺≺ g(z, ζ), i.e., Smf(z, ζ) ≺≺ g(z, ζ). (2.21)

�

Theorem 2.4. Let h ∈ H∗[a, n, ζ], with h(0, ζ) = 1, h′(0, ζ) 6= 0 which verifies the

inequality

Re
[
1 +

zh′′(z, ζ)
h′(z, ζ)

]
> − 1

2(m + 1)
, m ≥ 0. (2.22)

If f ∈ A∗
nζ and verifies the strong differential subordination

[Sm+1f(z, ζ)]′ ≺≺ h(z, ζ), z ∈ U (2.23)

then

[Smf(z, ζ)]′ ≺≺ g(z, ζ), (2.24)

where

g(z, ζ) =
1

nz1/n

∫ z

0

t(1/n)−1h(t, ζ)dt. (2.25)

The function g is convex and is the best dominant.

Proof. From

Sm+1f(z, ζ) = z[Smf(z, ζ)]′ (2.26)

we obtain

[Sm+1f(z, ζ)]′ = [Smf(z, ζ]′ + z[Smf(z, ζ)]′′. (2.27)
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If we let p(z, ζ) = [Smf(z, ζ)]′, then we obtain

[Sm+1f(z, ζ)]′ = p(z, ζ) + zp′(z, ζ) (2.28)

and (2.23) becomes

p(z, ζ) + zp′(z, ζ) ≺≺ h(z, ζ). (2.29)

By using Lemma 1.3 we have

p(z, ζ) ≺≺ g(z, ζ) =
1

nz1/n

∫ z

0

h(t, ζ)t
1
n−1dt. (2.30)

�

Theorem 2.5. Let g(z, ζ) be a convex function with g(0, ζ) = 1 and

h(z, ζ) = g(z, ζ) + zg′(z, ζ). (2.31)

If f ∈ A∗
nζ and verifies the differential subordination

[Smf(z, ζ)]′ ≺≺ h(z, ζ), z ∈ U, ζ ∈ U (2.32)

then
Smf(z, ζ)

z
≺≺ g(z, ζ). (2.33)

Proof. We let

p(z, ζ) =
Smf(z, ζ)

z
, z ∈ U, ζ ∈ U,

we obtain

Smf(z, ζ) = zp(z, ζ). (2.34)

By differentiating, we obtain

[Smf(z, ζ)]′ = p(z, ζ) + zp′(z, ζ), z ∈ U, ζ ∈ U. (2.35)

Then (2.32) becomes

p(z, ζ) + zp′(z, ζ) ≺≺ h(z, ζ) = g(z, ζ) + zg′(z, ζ). (2.36)

Using Lemma 1.4 we have

p(z, ζ) ≺≺ g(z, ζ).

�
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ON STARLIKENESS OF A CLASS OF INTEGRAL OPERATORS
FOR MEROMORPHIC STARLIKE FUNCTIONS

ALINA TOTOI

Dedicated to Professor Grigore Ştefan Sălăgean on his 60th birthday

Abstract. Let M0 be the class of meromorphic functions in U̇ of the form

g(z) =
1

z
+α0 +α1z+ · · · , z ∈ U̇ . For Φ, ϕ ∈ H[1, 1], Φ(z)ϕ(z) 6= 0, z ∈ U ,

α, β, γ, δ ∈ C with β 6= 0 and g ∈ M0, we consider the integral operator

JΦ,ϕ
α,β,γ,δ : K ⊂ M0 → M0 defined by

JΦ,ϕ
α,β,γ,δ(g)(z) =

[
γ − β

zγΦ(z)

∫ z

0

gα(t)ϕ(t)tδ−1dt

] 1
β

, z ∈ U̇ .

The first result of this paper gives us the conditions for which JΦ,ϕ
α,β,γ,δ will

be well-defined. Furthermore, we study the properties of a function G =

Jβ,γ(g), where Jβ,γ = J1,1
β,β,γ,γ , when g ∈ M∗

0 (α, δ). For the second result

we consider β < 0, γ−β > 0, α ∈ [α0, 1), where α0 = max

{
β + γ + 1

2β
,
γ

β

}
and we find the order of starlikeness of the class Jβ,γ(M∗

0 (α)). For the third

result we consider 0 ≤ α < 1, 0 < β < γ and we find some conditions for

α, β, γ and δ = δ(α, β, γ) such that

Jβ,γ [M∗
0 (α) ∩Kβ,γ ] ⊂ M∗

0 (δ).

1. Introduction and preliminaries

Let U = {z ∈ C : |z| < 1} be the unit disc in the complex plane, U̇ = U \ {0}
and H(U) = {f : U → C : f is holomorphic in U}.

We will also use the following notations:

H[a, n] = {f ∈ H(U) : f(z) = a+ anz
n + an+1z

n+1 + . . .} for a ∈ C, n ∈ N∗,

An = {f ∈ H(U) : f(z) = z + an+1z
n+1 + an+2z

n+2 + . . .}, n ∈ N∗,

Received by the editors: 26.04.2010.
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and for n = 1 we denote A1 by A and this set is called the class of analytic functions

normalized at the origin.

Let S∗ be the class of normalized starlike functions on U , i.e.

S∗ =
{
f ∈ A : Re

zf ′(z)
f(z)

> 0, z ∈ U
}
.

We denote by M0 the class of meromorphic functions in U̇ of the form

g(z) =
1
z

+ α0 + α1z + · · · , z ∈ U̇ .

Let

M∗
0 =

{
g ∈M0 : Re

[
−zg

′(z)
g(z)

]
> 0, z ∈ U

}
be called the class of meromorphic starlike functions in U̇ .

We note that if f is a normalized starlike function in U , then the function g =
1
f

belongs to the class M∗
0 .

For α < 1, δ > 1 let

M∗
0 (α) =

{
g ∈M0 : Re

[
−zg

′(z)
g(z)

]
> α, z ∈ U

}
,

M∗
0 (α, δ) =

{
g ∈M0 : α < Re

[
−zg

′(z)
g(z)

]
< δ, z ∈ U

}
.

Definition 1.1. [3, p.4], [4, p.45] Let f, g ∈ H(U). We say that the function f is

subordinate to the function g, and we denote this by f(z) ≺ g(z), if there is a function

w ∈ H(U), with w(0) = 0 and |w(z)| < 1, z ∈ U, such that

f(z) = g[w(z)], z ∈ U.

Remark 1.2. If f(z) ≺ g(z), then f(0) = g(0) and f(U) ⊆ g(U).

Theorem 1.3. [3, p.4], [4, p.46] Let f, g ∈ H(U) and let g be a univalent function

in U . Then f(z) ≺ g(z) if and only if f(0) = g(0) and f(U) ⊆ g(U).

Definition 1.4. [3, p. 46], [4, p.228] Let c ∈ C with Re c > 0 and n ∈ N∗. We

consider

Cn = Cn(c) =
n

Re c

[
|c|
√

1 +
2Re c
n

+ Im c

]
.
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If the univalent function R : U → C is given by R(z) =
2Cnz

1− z2
, then we will

denote by Rc,n the ”Open Door” function, defined as

Rc,n(z) = R

(
z + b

1 + b̄z

)
= 2Cn

(z + b)(1 + b̄z)
(1 + b̄z)2 − (z + b)2

,

where b = R−1(c).

Theorem 1.5. [3, Theorem 2.5c.] Let Φ, ϕ ∈ H[1, n] with Φ(z) 6= 0, ϕ(z) 6= 0, for

z ∈ U . Let α, β, γ, δ ∈ C with β 6= 0, α + δ = β + γ and Re (α + δ) > 0. Let the

function f(z) = z + an+1z
n+1 + · · · ∈ An and suppose that

α
zf ′(z)
f(z)

+
zϕ′(z)
ϕ(z)

+ δ ≺ Rα+δ,n(z).

If F = IΦ,ϕ
α,β,γ,δ(f) is defined by

F (z) = IΦ,ϕ
α,β,γ,δ(f)(z) =

[
β + γ

zγΦ(z)

∫ z

0

fα(t)ϕ(t)tδ−1dt

] 1
β

, (1.1)

then F ∈ An with
F (z)
z

6= 0, z ∈ U, and

Re
[
β
zF ′(z)
F (z)

+
zΦ′(z)
Φ(z)

+ γ

]
> 0, z ∈ U.

All powers in (1.1) are principal ones.

Lemma 1.6. [3, Theorem 2.3i.], [4, p.209] Let ψ : C2 × U → C be a function that

satisfies the condition

Reψ(ρi, σ; z) ≤ 0 , (1.2)

when ρ, σ ∈ R,σ ≤ −n
2

(1 + ρ2), z ∈ U ,n ≥ 1.

If p ∈ H[1, n] and

Reψ(p(z), zp′(z); z) > 0, z ∈ U,

then

Re p(z) > 0, z ∈ U.

Theorem 1.7. [3, Theorem 3.2a.], [4, p.247] Let β, γ ∈ C, β 6= 0 and let h be a

convex function on U such that Re [βh(z) + γ] > 0, z ∈ U . If p ∈ H[h(0), n] and

p(z) +
zp′(z)

βp(z) + γ
≺ h(z),
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then p(z) ≺ h(z).

Theorem 1.8. [5], [4, p.299](the order of starlikeness of the class Iβ,γ(S∗(α)))

Let β > 0, γ + β > 0 and consider the integral operator Iβ,γ defined by

Iβ,γ(f)(z) =
[
γ + β

zγ

∫ z

0

tγ−1fβ(t)dt
] 1

β

.

If α ∈ [α0, 1) where α0 = max
{
β − γ − 1

2β
,−γ

β

}
, then the order of starlikeness of

the class Iβ,γ(S∗(α)) is given by

δ(α;β, γ) =
1
β

[
γ + β

2F1(1, 2β(1− α), γ + 1 + β; 1
2 )
− γ

]
,

where 2F1 represents the hypergeometric function.

2. Main results

Let Φ, ϕ ∈ H[1, 1] with Φ(z)ϕ(z) 6= 0, z ∈ U and let α, β, γ, δ ∈ C with β 6= 0.

The first result of this section is a corollary of Theorem 1.5 and gives us the conditions

for which the integral operator JΦ,ϕ
α,β,γ,δ : K ⊂M0 →M0,

JΦ,ϕ
α,β,γ,δ(g)(z) =

[
γ − β

zγΦ(z)

∫ z

0

gα(t)ϕ(t)tδ−1dt

] 1
β

,

is well-defined.

Theorem 2.1. Let Φ, ϕ ∈ H[1, 1] with Φ(z)ϕ(z) 6= 0, z ∈ U . Let α, β, γ, δ ∈ C with

β 6= 0, α+ γ = β + δ and Re (γ − β) > 0. If g ∈M0 and

α
zg′(z)
g(z)

+
zϕ′(z)
ϕ(z)

+ δ ≺ Rδ−α,1(z), (2.1)

then

G(z) = JΦ,ϕ
α,β,γ,δ(g)(z) =

[
γ − β

zγΦ(z)

∫ z

0

gα(t)ϕ(t)tδ−1dt

] 1
β

∈M0,

with zG(z) 6= 0, z ∈ U, and

Re
[
β
zG′(z)
G(z)

+
zΦ′(z)
Φ(z)

+ γ

]
> 0, z ∈ U.

All powers are chosen as principal ones.
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Proof. We denote α1 = −α, β1 = −β, so we have γ+β1 = δ+α1, and Re (γ+β1) > 0.

We remark that from (2.1) we have zg(z) 6= 0, z ∈ U.
We know that g ∈M0 with zg(z) 6= 0, z ∈ U , if and only if f =

1
g
∈ A1 with

f(z)
z

6= 0, z ∈ U. It is also easy to see that
zg′(z)
g(z)

= −zf
′(z)

f(z)
, z ∈ U.

Using these new notations we obtain

α1
zf ′(z)
f(z)

+
zϕ′(z)
ϕ(z)

+ δ ≺ Rδ+α1,1(z), z ∈ U,

and applying Theorem 1.5 we have

F (z) = IΦ,ϕ
α1,β1,γ,δ(f)(z) =

[
β1 + γ

zγΦ(z)

∫ z

0

fα1(t)ϕ(t)tδ−1dt

] 1
β1

∈ A1,

with
F (z)
z

6= 0, z ∈ U, and

Re
[
β1
zF ′(z)
F (z)

+
zΦ′(z)
Φ(z)

+ γ

]
> 0, z ∈ U.

Therefore, we have G(z) =
1

F (z)
∈M0 with zG(z) 6= 0 and, because

zG′(z)
G(z)

= −zF
′(z)

F (z)
, z ∈ U,

we also have

Re
[
β
zG′(z)
G(z)

+
zΦ′(z)
Φ(z)

+ γ

]
> 0, z ∈ U.

�

We next consider a special case of Theorem 2.1. If we let Φ ≡ ϕ ≡ 1,

α = β, γ = δ and if we use the notation Jβ,γ instead of J1,1
β,β,γ,γ , we obtain:

Corollary 2.2. Let β, γ ∈ C with β 6= 0 and Re (γ − β) > 0. If g ∈M0 and

β
zg′(z)
g(z)

+ γ ≺ Rγ−β,1(z),

then

G(z) = Jβ,γ(g)(z) =
[
γ − β

zγ

∫ z

0

gβ(t)tγ−1dt

] 1
β

∈M0, (2.2)

with zG(z) 6= 0, z ∈ U, and

Re
[
β
zG′(z)
G(z)

+ γ

]
> 0, z ∈ U.
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Remark 2.3. 1. Let us define the classes Kβ,γ as

Kβ,γ =
{
g ∈M0 : γ + β

zg′(z)
g(z)

≺ Rγ−β,1(z), z ∈ U
}
.

From Corollary 2.2, we have Jβ,γ : Kβ,γ →M0 with zJβ,γ(g)(z) 6= 0, z ∈ U, and

Re
[
γ + β

zJ ′β,γ(g)(z)
Jβ,γ(g)(z)

]
> 0, z ∈ U.

2. We denote

K̃β,γ =
{
g ∈M0 : Re

[
γ + β

zg′(z)
g(z)

]
> 0, z ∈ U

}
.

Using the above corollary we have Jβ,γ(Kβ,γ) ⊂ K̃β,γ , so Jβ,γ(K̃β,γ) ⊂
K̃β,γ , where β, γ ∈ C with β 6= 0 and Re (γ − β) > 0.

3. Let β < 0, γ ∈ C with Re γ > β and
Re γ
β

≤ α < 1. Then, from

Jβ,γ(K̃β,γ) ⊂ K̃β,γ , we deduce Jβ,γ(M∗
0 (α)) ⊂M∗

0

(
Re γ
β

)
.

It’s easy to see that from

G(z) =
[
γ − β

zγ

∫ z

0

tγ−1gβ(t)dt
] 1

β

, z ∈ U̇ ,

we obtain

p(z) +
zp′(z)

γ − βp(z)
= −zg

′(z)
g(z)

, where p(z) = −zG
′(z)

G(z)
, z ∈ U. (2.3)

Next we will study the properties of the image of a function g ∈ M∗
0 (α, δ)

through the integral operator Jβ,γ defined by (2.2).

Theorem 2.4. Let β > 0, γ ∈ C and 0 ≤ α < 1 < δ ≤ Re γ
β

.

If g ∈M∗
0 (α, δ), then G = Jβ,γ(g) ∈M∗

0 (α, δ).

Proof. We know that g ∈M∗
0 (α, δ) is equivalent to

α < Re
[
−zg

′(z)
g(z)

]
< δ, z ∈ U,

so,

Re γ − βδ < Re
[
γ + β

zg′(z)
g(z)

]
< Re γ − βα, z ∈ U, when β > 0.

Because δ ≤ Re γ
β

we get Re
[
γ + β

zg′(z)
g(z)

]
> 0, z ∈ U, and using Corollary 2.2, we

obtain that G = Jβ,γ(g) ∈M0, zG(z) 6= 0, z ∈ U, and Re
[
γ + β

zG′(z)
G(z)

]
> 0, z ∈ U .
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From (2.3) we know that

p(z) +
zp′(z)

γ − βp(z)
= −zg

′(z)
g(z)

, where p(z) = −zG
′(z)

G(z)
.

Since G ∈M0 with zG(z) 6= 0, z ∈ U, we have p(z) = −zG
′(z)

G(z)
∈ H[1, 1].

It’s not difficult to see that there is a convex function q on U such that q(U) = {z ∈
C : α < Re z < δ} and q(0) = 1, so

g ∈M∗
0 (α, δ) ⇒ −zg

′(z)
g(z)

≺ q(z).

Now we have

p(z) +
zp′(z)

γ − βp(z)
≺ q(z) ,with q convex on U, q(0) = 1.

We want to apply Theorem 1.7 to the above differential subordination, so we need to

see that Re [γ − βq(z)] > 0, z ∈ U .

Since β > 0, we obtain from α < Re q(z) < δ, z ∈ U, that

Re γ − βδ < Re [γ − βq(z)] < Re γ − βα, z ∈ U.

Because δ ≤ Re γ
β

we have Re [γ − βq(z)] > 0, z ∈ U, and using Theorem 1.7 we

obtain p(z) ≺ q(z), which is equivalent to

−zG
′(z)

G(z)
≺ q(z), z ∈ U. (2.4)

Since G ∈M0, we get from (2.4) that G ∈M∗
0 (α, δ). �

Taking β = 1 in the above theorem we obtain:

Corollary 2.5. Let γ ∈ C and 0 ≤ α < 1 < δ ≤ Re γ. If g ∈M∗
0 (α, δ), then

G = J1,γ(g) =
γ − 1
zγ

∫ z

0

tγ−1g(t)dt ∈M∗
0 (α, δ).

Theorem 2.6. Let β < 0, γ ∈ C and
Re γ
β

≤ α < 1 < δ.

If g ∈M∗
0 (α, δ), then G = Jβ,γ ∈M∗

0 (α, δ).

Proof. From Remark 2.3 item 3., we have Jβ,γ(M∗
0 (α)) ⊂ M∗

0

(
Re γ
β

)
, hence

G = Jβ,γ(g) ∈ M∗
0

(
Re γ
β

)
. Since G ∈ M∗

0

(
Re γ
β

)
, we have G ∈ M0 and zG(z) 6=

0, z ∈ U, so −zG
′(z)

G(z)
∈ H[1, 1].
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Because g ∈M∗
0 (α, δ) and

p(z) +
zp′(z)

γ − βp(z)
= −zg

′(z)
g(z)

, where p(z) = −zG
′(z)

G(z)
,

we will use the same idea as at the proof of Theorem 2.4. So, we have to see that

Re [γ − βq(z)] > 0, z ∈ U , where q is convex on U, q(0) = 1, q(U) = {z ∈ C : α <

Re z < δ} .

From Re q(z) > α, z ∈ U, we obtain Re γ−βRe q(z) > Re γ−αβ ≥ 0, z ∈ U ,

when α ≥ Re γ
β

, β < 0.

Applying Theorem 1.7 to the differential subordination

p(z) +
zp′(z)

γ − βp(z)
≺ q(z), z ∈ U,

we obtain p(z) ≺ q(z), which is equivalent to

−zG
′(z)

G(z)
≺ q(z), z ∈ U. (2.5)

Since G ∈M0, we get from (2.5) that G ∈M∗
0 (α, δ). �

Remark 2.7. If we consider δ → ∞ in the above theorem, we obtain that for β <

0, γ ∈ C, β < Re γ and
Re γ
β

≤ α < 1,

g ∈M∗
0 (α) ⇒ G = Jβ,γ(g) ∈M∗

0 (α).

Definition 2.8. For a given number α ∈
[
Re γ
β

, 1
)

, where β < 0, γ ∈ C, β < Re γ,

we define the order of starlikeness of the class Jβ,γ(M∗
0 (α)) as the biggest number

µ = µ(α;β, γ) such that Jβ,γ(M∗
0 (α)) ⊂M∗

0 (µ).

Theorem 2.9. (the order of starlikeness of the class Jβ,γ(M∗
0 (α))) Let

β < 0, γ − β > 0 and let Jβ,γ be given by (2.2). If α ∈ [α0, 1), where α0 =

max
{
β + γ + 1

2β
,
γ

β

}
, then the order of starlikeness of the class Jβ,γ(M∗

0 (α)) is given

by

µ(α;β, γ) = − 1
β

[
γ − β

2F1(1, 2β(α− 1), γ + 1− β; 1
2 )
− γ

]
,

where 2F1 represents the hypergeometric function.
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Proof. We know that if g ∈M0 with zg(z) 6= 0, z ∈ U, then
1
g
∈ A.

It’s not difficult to see that

Jβ,γ(g) =
1

I−β,γ

(
1
g

) , β < 0, g ∈M∗
0 (α).

Using the fact that g ∈ M∗
0 (α) is equivalent to

1
g
∈ S∗(α), we obtain from Theorem

1.8 that

I−β,γ(S∗(α)) ⊂ S∗(δ(α;−β, γ)),

so

Jβ,γ(M∗
0 (α)) ⊂M∗

0 (δ(α;−β, γ)).

It’s easy to prove that δ(α;−β, γ) is the largest number µ such that Jβ,γ(M∗
0 (α)) ⊂

M∗
0 (µ), so the order of starlikeness of the class Jβ,γ(M∗

0 (α))) is µ(α;β, γ) =

δ(α;−β, γ). �

Further we will find some conditions for α, β, γ and δ = δ(α, β, γ) such that

Jβ,γ [M∗
0 (α) ∩Kβ,γ ] ⊂M∗

0 (δ).

Theorem 2.10. Let 0 ≤ α < 1 and 0 < β < γ. Let’s denote

β1(α, γ) =
2
√

2γ(α− 1)2 + α− α− 1
2(α− 1)2

,

δ1(α, β, γ) =
2αβ + 2γ + 1−

√
(1 + 2αβ − 2γ)2 + 8(γ − β)

4β
,

δ2(α, β, γ) =
2αβ + 2β + 1−

√
(1 + 2αβ − 2β)2 + 8(β − γ)

4β
.

If γ >
1
8

and β < β1(α, γ), then Jβ,γ [M∗
0 (α) ∩Kβ,γ ] ⊂M∗

0 (δ1(α, β, γ)).

If γ ≤ 1
8

or

 γ >
1
8

β ≥ β1(α, γ)
, then Jβ,γ [M∗

0 (α) ∩Kβ,γ ] ⊂M∗
0 (δ(α, β, γ)), where

δ(α, β, γ) = min{δ1(α, β, γ), δ2(α, β, γ)}. (2.6)

The operator Jβ,γ is defined by (2.2).

Proof. We remark that β1(α, γ) is a real number and it is the greatest root for the

equation

∆2 = (1 + 2αβ − 2β)2 + 8(β − γ) = 4(α− 1)2β2 + 4β(α+ 1) + 1− 8γ = 0,
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hence ∆2 ≥ 0, when β ≥ β1(α, γ).

It’s not difficult to see that

β1(α, γ) ≥ 0 ⇔ (8γ − 1)(α− 1)2 ≥ 0 ⇔ γ ≥ 1
8
.

We next verify that the number δ1(α, β, γ) is less than 1. It’s obvious that

δ1(α, β, γ) is a real number since γ−β > 0. Further we will use the notation δ1 instead

of δ1(α, β, γ).

We have δ1 < 1 if and only if

2αβ + 2γ + 1− 4β <
√

(1 + 2αβ − 2γ)2 + 8(γ − β). (2.7)

If 2αβ + 2γ + 1− 4β < 0 then the inequality (2.7) is fulfilled.

If 2αβ + 2γ + 1− 4β ≥ 0, we use the square of the inequality (2.7) and after a simple

computation, we obtain that (2.7) is equivalent to (β − γ)(1 − α) < 0 which is true

for β < γ and α ∈ [0, 1). Thus, we have δ1 < 1.

Since g ∈ Kβ,γ , with β < γ, we have from Corollary 2.2 that zG(z) = zJβ,γ(g)(z) 6=
0, z ∈ U. Now let us put

−zG
′(z)

G(z)
= (1− δ)p(z) + δ, z ∈ U, (2.8)

where p ∈ H(U) with p(0) = 1 and δ < 1. We remark that the function p also depends

on δ.

Using (2.8) and the logarithmic differential for (2.2), we obtain

−zg
′(z)
g(z)

− α = (1− δ)p(z) + δ − α+
(1− δ)zp′(z)

γ − βδ − (1− δ)βp(z)
, z ∈ U.

Let us denote

ψ(p(z), zp′(z); z) = (1− δ)p(z) + δ − α+
(1− δ)zp′(z)

γ − βδ − (1− δ)βp(z)
, z ∈ U.

Since g ∈M∗
0 (α), we have Re

[
−zg

′(z)
g(z)

]
> α, so

Reψ(p(z), zp′(z); z) > 0, z ∈ U.

To be able to use Lemma 1.6 we need to verify the condition (1.2) for n = 1.

For ρ ∈ R, z ∈ U and σ ≤ −1
2
(1 + ρ2), we have

Reψ(iρ, σ; z) = δ − α+ (1− δ)σRe
1

γ − βδ − (1− δ)βρi
= (2.9)
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= δ − α+
(γ − βδ)(1− δ)σ

(γ − βδ)2 + (1− δ)2β2ρ2
.

Because (γ − βδ)(1− δ) > 0 and σ ≤ −1
2
(1 + ρ2), we obtain from (2.9) that

Reψ(iρ, σ; z) ≤ δ − α− (γ − βδ)(1− δ)
2[(γ − βδ)2 + (1− δ)2β2ρ2]

.

Thus,

Reψ(iρ, σ; z) ≤ − 1
D

(A+Bρ2), ρ ∈ R,

where
A = (γ − βδ)[2βδ2 − (1 + 2γ + 2αβ)δ + 2αγ + 1],

B = (1− δ)[2β2δ2 − β(1 + 2β + 2αβ)δ + 2αβ2 + γ],

D = 2[(γ − βδ)2 + (1− δ)2β2ρ2] > 0.

If γ >
1
8

and 0 < β < β1(α, γ), then ∆2 < 0, so B > 0 for every δ ∈ R. Moreover,

since β > 0, we have A ≥ 0 when δ ≤ δ1(α, β, γ). Hence, the condition (1.2) is satisfied

for δ ≤ δ1(α, β, γ) < 1 and applying Lemma 1.6 we obtain Re p(z) > 0, z ∈ U, when

δ ≤ δ1(α, β, γ).

From (2.8) and Re p(z) > 0, z ∈ U, when δ ≤ δ1(α, β, γ), we get G ∈M∗
0 (δ1(α, β, γ)).

If γ ≤ 1
8

or

 γ >
1
8

β ≥ β1(α, γ)
and δ ≤ δ(α, β, γ), where δ(α, β, γ) is given by (2.6),

then A ≥ 0 and B ≥ 0, therefore the condition (1.2) is satisfied. Applying Lemma

1.6 we obtain Re p(z) > 0, z ∈ U , for all δ ≤ δ(α, β, γ), so G ∈M∗
0 (δ(α, β, γ)). �

We see that if we consider, in the above theorem, the condition zG(z) =

zJα,β(g)(z) 6= 0, z ∈ U, we get:

Theorem 2.11. Let 0 ≤ α < 1, 0 < β < γ, g ∈M∗
0 (α) and G(z) = Jα,β(g)(z), where

the operator Jβ,γ is defined by (2.2). Suppose that zG(z) 6= 0, z ∈ U. Let’s denote

β1(α, γ) =
2
√

2γ(α− 1)2 + α− α− 1
2(α− 1)2

,

δ1(α, β, γ) =
2αβ + 2γ + 1−

√
(1 + 2αβ − 2γ)2 + 8(γ − β)

4β
,

δ2(α, β, γ) =
2αβ + 2β + 1−

√
(1 + 2αβ − 2β)2 + 8(β − γ)

4β
.
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If γ >
1
8

and β < β1(α, γ), then G ∈M∗
0 (δ1(α, β, γ)).

If γ ≤ 1
8

or

 γ >
1
8

β ≥ β1(α, γ)
, then G ∈M∗

0 (δ(α, β, γ)), where

δ(α, β, γ) = min{δ1(α, β, γ), δ2(α, β, γ)}.

The properties of the integral operator J1,γ , were studied by many authors

in different papers, from which we remember [1], [2], [6], [7], [8].
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ASYMPTOTIC BEHAVIOR OF INTERMEDIATE POINTS
IN CERTAIN MEAN VALUE THEOREMS. II

TIBERIU TRIF

Dedicated to Professor Grigore Ştefan Sălăgean on his 60th birthday

Abstract. The paper deals with the asymptotic behavior of the inter-

mediate points in the mean value theorems for integrals as the involved

interval shrinks to zero.

1. Introduction

Especially in the last two decades a great deal of work has been done in

connection with the asymptotic behavior of intermediate points in certain mean value

theorems (see, for instance, [1], [2], [3], [5], [9], [12], [13], [14]). The investigations

in this direction started with the paper by Azpeitia [3], dealing with the asymptotic

behavior of the intermediate point in the Lagrange-Taylor mean value theorem. A

significant step forward was realized by Abel [1], who obtained a complete asymptotic

expansion of the intermediate point in the Lagrange-Taylor mean value theorem when

the length of the involved interval approaches zero. Later, following Abel’s method of

proof, similar complete asymptotic expansions have been obtained by several authors

for other mean value theorems (Abel and Ivan [2] for the differential mean value

theorem of divided differences, Xu, Cui and Hu [13] for the differential mean value

theorem of divided differences with repetitions, Trif [12] for the Pawlikowska mean

value theorem).

The purpose of the present paper is to continue our investigations started in

[12]. But unlike the paper [12], here we deal with the asymptotic behavior of the

Received by the editors: 02.03.2010.
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intermediate points in the mean value theorems for integrals as the involved interval

shrinks to zero. For the reader’s convenience we recall first the two mean value

theorems for integrals.

Theorem 1.1 (first mean value theorem for integrals). If f : [a, b]→ R is a contin-

uous function and g : [a, b] → [0,∞) is a nonnegative Riemann integrable function,

then there is a number c ∈ [a, b] such that∫ b

a

f(t)g(t)dt = f(c)
∫ b

a

g(t)dt.

Corollary 1.2. If f : [a, b] → R is a continuous function, then there is a number

c ∈ [a, b] such that ∫ b

a

f(t)dt = f(c)(b− a).

Theorem 1.3 (second mean value theorem for integrals). If f : [a, b]→ R is mono-

tone and g : [a, b]→ R is Riemann integrable on [a, b], then there is a number c ∈ [a, b]

such that ∫ b

a

f(t)g(t)dt = f(a)
∫ c

a

g(t)dt + f(b)
∫ b

c

g(t)dt.

The second mean value theorem for integrals is instrumental in theories like

trigonometric series or Laplace transforms (see [8] for a proof and [11] for an interesting

application of Theorem 1.3).

If x ∈ (a, b), then Theorem 1.1, Corollary 1.2 and Theorem 1.3 applied to the

interval [a, x] instead of [a, b] yield the existence of numbers cx ∈ [a, b] as functions of

x on (a, b) such that ∫ x

a

f(t)g(t)dt = f(cx)
∫ x

a

g(t)dt, (1.1)∫ x

a

f(t)dt = f(cx)(x− a), (1.2)

and ∫ x

a

f(t)g(t)dt = f(a)
∫ cx

a

g(t)dt + f(x)
∫ x

cx

g(t)dt, (1.3)

respectively.

Zhang [14, Theorem 4] proved that the point cx in (1.2) satisfies

lim
x→a

cx − a

x− a
=

1
n
√

n + 1
, (1.4)
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provided that f is continuous on [a, b] and n times differentiable at a with f (j)(a) = 0

(1 ≤ j ≤ n − 1) and f (n)(a) 6= 0. In the special case when n = 1, an earlier result

obtained by Jacobson [7] is recovered.

In section 2 of our paper we obtain a formula which is similar to (1.4), but

involves the asymptotic behavior of the point cx in the mean value formula (1.1). The

asymptotic behavior of the point cx in the mean value formula (1.3) is investigated

in section 3.

2. Asymptotic behavior of the intermediate point in the first mean value

theorem for integrals

In the proofs of the main results in this and the next section we need the

following

Lemma 2.1. If p is a nonnegative integer and ω : [a, b]→ R is a continuous function

such that ω(t)→ 0 as t↘ a, then∫ x

a

ω(t)(t− a)pdt = o((x− a)p+1) (x↘ a).

Proof . Indeed, for every x ∈ (a, b) by Theorem 1.1 there exists cx ∈ [a, x] such that∫ x

a

ω(t)(t− a)pdt = ω(cx)
∫ x

a

(t− a)pdt =
ω(cx)
p + 1

(x− a)p+1.

Since ω(cx)→ 0 as x↘ a, we obtain the conclusion. �

Theorem 2.2. Suppose that f, g : [a, b]→ R are two functions satisfying the following

conditions:

(i) f is continuous on [a, b] and there is a positive integer n such that f

is n times differentiable at a with f (j)(a) = 0 for 1 ≤ j ≤ n − 1 and

f (n)(a) 6= 0;

(ii) g is nonnegative, Riemann integrable on [a, b] and there is a nonnegative

integer k such that g is k times differentiable at a with g(j)(a) = 0 for

0 ≤ j ≤ k − 1 and g(k)(a) 6= 0.
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Then the point cx in (1.1) satisfies

lim
x→a

cx − a

x− a
= n

√
k + 1

n + k + 1
. (2.1)

Proof . Without loosing the generality we may assume that f(a) = 0. Indeed, other-

wise we replace f by the function t ∈ [a, b] 7→ f(t) − f(a). Note that if cx satisfies

(1.1), then cx satisfies also∫ x

a

(f(t)− f(a))g(t)dt = (f(cx)− f(a))
∫ x

a

g(t)dt.

By the Taylor expansions of f and g we have

f(t) =
f (n)(a)

n!
(t− a)n + ω(t)(t− a)n,

g(t) =
g(k)(a)

k!
(t− a)k + ε(t)(t− a)k,

where ω and ε are continuous functions on [a, b] satisfying ω(t)→ 0 and ε(t)→ 0 as

t↘ a. Therefore we have

f(t)g(t) =
f (n)(a)g(k)(a)

n! k!
(t− a)n+k + γ(t)(t− a)n+k,

where γ is continuous on [a, b] and γ(t)→ 0 as t↘ a. By Lemma 2.1 we deduce that∫ x

a

f(t)g(t)dt =
f (n)(a)g(k)(a)

n! k! (n + k + 1)
(x− a)n+k+1 + o((x− a)n+k+1) (2.2)

as x↘ a. By Lemma 2.1 we have also∫ x

a

g(t)dt =
g(k)(a)
(k + 1)!

(x− a)k+1 + o((x− a)k+1) (x↘ a).

Since

f(cx) =
f (n)(a)

n!
(cx − a)n + ω(cx)(cx − a)n

and 0 ≤ cx − a ≤ x− a, it follows that

f(cx)
∫ x

a

g(t)dt =
f (n)(a)g(k)(a)

n! (k + 1)!
(x− a)k+1(cx − a)n + o((x− a)n+k+1) (2.3)
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as x↘ a. By (1.1), (2.2) and (2.3) we conclude that

f (n)(a)g(k)(a)
n! (k + 1)!

(x− a)k+1(cx − a)n

=
f (n)(a)g(k)(a)

n! k! (n + k + 1)
(x− a)n+k+1 + o((x− a)n+k+1) (x↘ a).

Multiplying both sides by n! (k + 1)!(x− a)−(n+k+1)/(f (n)(a)g(k)(a)) we get(
cx − a

x− a

)n

=
k + 1

n + k + 1
+ o(1) (x↘ a),

whence the conclusion (2.1). �

Note that if g(t) = 1 for all t ∈ [a, b], then (ii) is satisfied for k = 0. In

this case (1.1) becomes (1.2) and (2.1) becomes (1.4), i.e., we recover Zhang’s result

mentioned in the introduction as a special case of Theorem 2.2.

3. Asymptotic behavior of the intermediate point in the second mean value

theorem for integrals

Theorem 3.1. Suppose that f, g : [a, b]→ R are two functions satisfying the following

conditions:

(i) f is monotone and there is a positive integer n such that f is n times

differentiable at a with f (j)(a) = 0 for 1 ≤ j ≤ n− 1 and f (n)(a) 6= 0;

(ii) g is Riemann integrable on [a, b] and there is a nonnegative integer k

such that g is k times differentiable at a with g(j)(a) = 0 for 0 ≤ j ≤ k−1

and g(k)(a) 6= 0.

Then the point cx in (1.3) satisfies

lim
x→a

cx − a

x− a
= k+1

√
n

n + k + 1
.

Proof . Note that (1.3) is equivalent to∫ x

a

(f(t)− f(a))g(t)dt = (f(x)− f(a))
∫ x

cx

g(t)dt.
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So, without loosing the generality we may assume that f(a) = 0 (otherwise we replace

f by the function t ∈ [a, b] 7→ f(t) − f(a)). Under the assumption that f(a) = 0

equality (1.3) becomes ∫ x

a

f(t)g(t)dt = f(x)
∫ x

cx

g(t)dt. (3.1)

By using the Taylor expansions of f and g and proceeding as in the proof of

Theorem 2.2 we deduce that (2.2) holds and that

f(x)
∫ x

cx

g(t)dt =
f (n)(a)g(k)(a)

n! (k + 1)!
(x− a)n

[
(x− a)k+1 − (cx − a)k+1

]
(3.2)

+o((x− a)n+k+1) (x↘ a).

By (3.1), (2.2) and (3.2) we conclude that

f (n)(a)g(k)(a)
n! (k + 1)!

(x− a)n
[
(x− a)k+1 − (cx − a)k+1

]
=

f (n)(a)g(k)(a)
n! k! (n + k + 1)

(x− a)n+k+1 + o((x− a)n+k+1) (x↘ a).

Multiplying both sides by n! (k + 1)!(x− a)−(n+k+1)/(f (n)(a)g(k)(a)) we get

1−
(

cx − a

x− a

)k+1

=
k + 1

n + k + 1
+ o(1) (x↘ a),

whence the conclusion. �
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