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A NOTE ON DIFFERENTIAL SUPERORDINATIONS USING
A MULTIPLIER TRANSFORMATION AND RUSCHEWEYH
DERIVATIVE

ALINA ALB LUPAS

Dedicated to Professor Grigore Stefan Sdldgean on his 60" birthday

Abstract. In the present paper we define a new operator, by means of con-
volution product between Ruscheweyh operator and the multiplier trans-
formation I (m, A, l). For functions f belonging to the class A, we define

the differential operator IRY'; : An — An,

where A, = {f € H({U) : f(2) = z+ant12" ™ +..., 2 € U} is the class of
normalized analytic functions. We study some differential superordinations

regarding the operator IR};.

1. Introduction

Denote by U the unit disc of the complex plane U = {z € C : |z| < 1} and
H(U) the space of holomorphic functions in U.
Let
Alpn) ={feHU): fz)=2"+ Y a;27, 2€U},

j=p+n

with A (1,n) = A,, and
Hla,n] = {f e HU), f(z) =a+anz" +apn 12" +..., 2€ U}
for a € C and p,n € N.

Received by the editors: 26.04.2010.
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Key words and phrases. Differential superordination, convex function, best subordinant, differential

operator.
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If f and g are analytic functions in U, we say that f is superordinate to g,
written g < f, if there is a function w analytic in U, with w(0) = 0, |w(2)| < 1, for
all z € U such that g(z) = f(w(z)) for all z € U. If f is univalent, then g < f if and
only if £(0) = g(0) and g(U) C F(U).

Let 1 : C> x U — C and h analytic in U. If p and ¥ (p(2),2p’ (2);2) are

univalent in U and satisfies the (first-order) differential superordination

h(z) < Y(p(2), 2p'(2);2), 2 €U, (1.1)

then p is called a solution of the differential superordination. The analytic function
q is called a subordinant of the solutions of the differential superordination, or more
simply a subordinant, if ¢ < p for all p satisfying (1.1).

An univalent subordinant ¢ that satisfies ¢ < ¢ for all subordinants ¢ of (1.1)
is said to be the best subordinant of (1.1). The best subordinant is unique up to a

rotation of U.

Definition 1.1. [7] For f € A(p,n), p,n € N, m € NU{0}, A\, > 0, the operator
I, (m, A\, 1) f(2) is defined by the following infinite series

I (m, A1) f(2) = 2P + Z (p—’_)‘]_l)—’_l) a;2’.

Jj=p+n P+ ¢
Remark 1.2. It follows from the above definition that
IP (07 Aa l) f(Z) = f(2>7
p+D L (m+1L,N)f(z)=pQ =X+ L (m,\I f(z)+ Xz (L, (m, A1) f(z))/,
zeU.
Remark 1.3. If p = 1, we have A(1,n) = A,, I (m,\,1) f(2) = I (m, A1) and
I+ DI (m+1,0N0)f(2)=[1+1=NT(m\I) f(z)+ 2T (m,\1) f(2),
zeU.
Remark 1.4. If f € A, f(z) =2+ Z;in“ ajz7, then

= (1 -1 :
I(m,\1)f(z) =2+ Z <+>\l‘71)+l> a;z?, z € U.
Jj=n-+1 +
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Remark 1.5. For | = 0, A > 0, the operator DY = I(m,\,0) was introduced
and studied by Al-Oboudi [6], which is reduced to the Siligean differential operator
S™ =1 (m,1,0) [10] for A = 1.

Definition 1.6. (Ruscheweyh [9]) For f € A,,, m,n € N, the operator R™ is defined
by R™: A, — A,,

Rf(z) = f(2)
R'f(z) = zf'(2)

(m+1)R™ M f(z) = 2(R™f(2))+mR"f(2), zcU.

Remark 1.7. If f € A, f(z) =2+ Z a;2’, then

j=n+1
e .
R"f(z)=2+ Z Chyj1aiz?, 2 €U.

Jj=n-+1
Definition 1.8. [8] We denote by @ the set of functions that are analytic and injective
on U\E (f), where E(f) = {¢ € 0U : linéf (2) = oo}, and f'(¢) # 0 for ¢ €
OU\E (f). The subclass of @) for which f(0) = a is denoted by Q (a).

We will use the following lemmas.

Lemma 1.9. (Miller and Mocanu [8]) Let h be a convex function with h(0) = a, and
let v € C\{0} be a complex number with Re v > 0. If p € Hla,n]NQ, p(z) + %zp'(z)

18 univalent in U and

then

where

g(z) = —1 Wt/ =dt, 2 € U.
nz’)’/n 0

The function q is convex and is the best subordinant.
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Lemma 1.10. (Miller and Mocanu [8]) Let q be a convex function in U and let
1
h(z) = q(z) + ;ZQ'(Z), zeU,
where Re v > 0.
IfpeHla,n|NQ, p(z) + %zp'(z) s univalent in U and
1 / 1 /
q(z) + e (2) < p(2) + P (2), =ze€U,
then

q9(z) <p(2), zeU,

where

g(z) = 2 / WO/, € UL

nz"//n

The function q is the best subordinant.

2. Main results

Definition 2.1. ([4]) Let m,n,A\,l € N. Denote by IR}’ the operator given by
the Hadamard product (the convolution product) of the operator I (m,\,l) and the
Ruscheweyh operator R™, IRY" : A, — Ay,

IR, f (2) = (T (m. A1)+ B™) £ (2).

Remark 2.2. If f € A, f(z) =z + Z a;z J. then

j=n+1
o
1+A(G—-1)+1 m
—Z+ Z (H‘].) C mtj— 1CLZJ ze U

j=n+1
Remark 2.3. For | = 0, A > 0, we obtain the Hadamard product DRY" [1] of the
generalized Salagean operator DY and Ruscheweyh operator R™.
For I = 0 and A = 1, we obtain the Hadamard product SR™ [5] of the
Salagean operator S™ and Ruscheweyh operator R™.
Theorem 2.4. Let h be a convex function, h(0) = 1. Let m,n,\,l € N, f € A, and
suppose that

I+1
DN—m+2) - (+1)]=z

Nm + 1) IRT F (2) — (m - 2) IR, f (z)]
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I+1 2(l+1)(m1)2Am/ZIR&’fzf(t)—tdt

+(1_)\(l—m+2)—(1+1))_ AIl—-m+2)—(1+1)

!
is univalent and (IRgrflf (z)) eH[LnNQ. If

2

l+1 m 1 m

I+1 2(l+1)(m—1)—2xm [* IR, f(t) —t
+<1_)\(l—m+2)—(l+1)>_ A(l—m+2)—(l+1)/0 ok
z € U, then
a(z) < (IRY.f(2)",  z€U,
where

A (l —m+2)—(+ 1) z A(l=m—nl—n+2)—(I+1)
o s [ (O R g
A(l+1)nz” >@Fon

The function q is convex and it is the best subordinant.

Proof. With notation

oo

T+ A )+1 m 1
ple) = UK _H];ﬂ(m) O yajad= ™ and p(0) = 1,

we obtain for f(z) =2+ 372, . a;27,

~ (1+A(G—1)+1
p(z) +2p (2 —1+Z ( l+1> ) Cmy i ja2e !
j=n+1
> 1+ Ay +1
p> (z+1)> Cryg1d (G =D a2
j=n-+1

=L (R 0 - s )+ 2SS g )

+<_m—1 2)_2(1+1)(m—1)—2)\m ZIR;",lf(t)—tdt

I+1 A A(I+1)
Therefore
A+ D) ,
p(z)+ /\(l—m+2)—(l—|—1)Zp (2)
- [)\(l—m—i;r)l— (I+1)]z [(m+1)IRt\rfl+1f(z)* (m*2)IR7£1f(Z)

I+1
+<1_)\(l—m+2)—(l+l)>_ Al—m+2)—(1+1)

2y IO
0 t2 .
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Then (2.1) becomes

A(l+1)
Ai—m+2)—(+1)

h(z) <p(z) + 2p' (2), zeU.

By using Lemma 1.9 for v =1 — ?11 — X? we have

q(z) <p(z), zeU ie q(z)=< (IRTJf (z))/, zeU,

where
A (l —m+ 2) — (l + 1) z A(l=m—nl—n+2)—(i+1)
q(z) = N(i—mt2)—(+1) / h(t)t AE)n dt
A(l+1)nz »@Fon
The function ¢ is convex and it is the best subordinant. O

Corollary 2.5. [3] Let h be a convez function, h(0) = 1. Let A\ > 0, m,n €N, f € A,
and suppose that

m+1
(mA+1)z

m(1l—=M\)

DRy f (2) — mD N (2)

is univalent and (DRY f (2)) € H[1,n]N Q. If

h(z) < ﬁmﬂ”“ £(2) - MDRT F(),  zeU. (22)
then
q(z) < (DR f (2)),  ze€U,
where

mA =+ 1 (m n)>\+1
q( = T mat1 / h dt.
nAz

The function q is convex and it is the best subordinant.

Corollary 2.6. [2] Let h be a convex function, h(0) = 1. Let m,n € N, f € A,, and

suppose that
m

s (SR f(2)"

is univalent and (SR™f (2)) € H[1,n]N Q. If

SRS (2) +

m
m—+1

h(z) < %sm+1 F(2)+ Z(SR™f(2))", zel, (2.3)

then
q(z) < (SR™f(2)), =z€eUl,
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where

q(z) = L /O h(t)tn~1dt.

nzw
The function q is convexr and it is the best subordinant.

Theorem 2.7. Let q be convex in U and let h be defined by

B A+ 1)
M) =)+ S —as

m,n,\,l € N. If f € A,,, suppose that

[+1
DNi—m+2) —(+1)z

)zq’ (2),

[(m+ 1) TR F (2) = (m = 2) TRY, f (2)]

dt

I+1 2(1+1)(m—1)—2xm [*IRY,f(t)—t
+(1_>\(lm+2)(l+1)>_ )\(l—m+2)—(l+1)/ 2

I
is univalent, (IRT’lf (z)) € H[1,n]NQ and satisfies the differential superordination

B A(l+1) I+1
h('z)_q(z)+x(z—m+2>_(z+1) T Ry e Y
[(m+1)mm+1f() (m —2) IR}, (1 l_mf;)l (l+1)>

2(1+1)(m—1)—2xm IRTI (t
_A(l—m+2)—(l+1)/0 2el,
then
q(2) < (IR f(2))", z€U.
where

A (l —-—m+ 2) - (l + 1) z A(l—m—nl—n+2)—(I+1)
?) = PSS / h(t)t NGaE dt

A(l+ 1) nz™ *xaFon
The function q is the best subordinant.

Proof. Let
= (1A —1)+1 - o
p(z)= IRV f(2) =1+ Y ( l+1) ) m o jaei L,
j=n-+1
Differentiating, we obtain
m+1__. m-2__
p+ o ()= (R ) - PR )
Am—1)—(+1) m—1 2
1= - _ =
M A(l+1) (RS S () + I+1 A
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204+ 1) (m—1)—2xm [FIRTf(1) —t

t
AL+ 1) 0 2 d

and
A(l+1) o
Ni—mry—arn P B =

p(z) +

[+1
DNl—m+2) —(+1)z

+(1)\(l—mi—+2)1—(l+1))

[(m+ 1) TR F (2) = (m = 2) TR3 f (2)

2 -1)— =IRY f(t)—t
20+ 1) (m—1) 2/\m/ it (1) it 2 e U
ANl—m+2)—(+1) Jy 2
and (2.4) becomes
A(l+1) , A(l+1) ,
S v sy s s A G Sl vy iy S A GO R
Using Lemma 1.10 forfyzl—’l”T_ll—%,we have ¢(z) < p(z), z € U, i.e.

A (l —m+ 2) — (l + 1) # A(l=m—nl—n+2)—(1+1)
?) = P EE) / h(t)t AR dt

A(l+ 1) nz™ 0D

= (I ;\rtlf (Z))la Z € U7
and ¢ is the best subordinant. O

Corollary 2.8. [3] Let q be convex in U and let h be defined by

A /
M) =a @)+ e (2),
A>0,m,neN. If f e A,, suppose that
m+1 m—+1 _ m(l_)‘) m
g0 PR - ) PR ()

is univalent and (DRY' f (2))" € H[1,n]NQ and satisfies the differential superordina-

tion
A - A
hE) = 0(:) 4 oo () < g DR () ot - DRYT (),
(2.5)
z € U, then

q(z) < (DRYf (). z€el,
10
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where

m/\—|—1 (m n))\+1
q(z) = mHl/ h(t dt.
nAz na

The function q is the best subordinant.

Corollary 2.9. [2] Let q be convex in U and let h be defined by h (z) = q (z)+24' (2).
If m,n €N, f € A,, suppose that LSR™ 1 f () + a2 (SR™f (2))" is univalent,
(SR™f (2)) € H[1,n] N Q and satisfies the differential superordination

M) = a(a) + 2 (2) <SSR () + s (SRPF (), €U, (26)
then
q9(z) < (SR™f(2)), z€U,
where

1 [ ,
=— / h(t)t=tdt.
nzn Jo

The function q is the best subordinant.

Theorem 2.10. Let h be a convex function, h(0) = 1. Let m,n,\,l € N, f € A,, and
/ m
suppose that (IR’/{flf (z)) is univalent and M eH[L,nNQ. If

h(z) < (IR, f (), =z€eU, (2.7)
then
IR, f (2
q(z) < %(), zeU,
where

q(z) = L /0 h(t)tn~1dt.

nzw
The function q is convexr and it is the best subordinant.

Proof. Consider

00 14N —1)+1 m .
(2) IRY,f (2) _ *F 2jmnis (%) Crrj105%
P ()= =

z z

(1N +1 "
S 2 (m) Crigs1s2
Evidently p € HI[1,n].
!
We have p (z) + zp’ (z) = (IR’/{flf(zD ,z€U.

11
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Then (2.7) becomes
h(z) < p(z) +2p'(z), z€U.

By using Lemma 1.9 for v = 1, we have

IRY, f (2
q(z) < p(z), zeU, ie q(z)=< %(), zeU,

where ¢(z) = —1¢ [ h(t)t=~1dt. The function g is convex and it is the best subordi-

nzmn

nant. O

Corollary 2.11. [3] Let h be a convex function, h(0) = 1. Let A > 0, m,n € N,
f € A, and suppose that (DRY" f (2))" is univalent and w eH[L,nNQ. If

h(z) < (DRYf (2))", z€U, (2.8)
then
q(z) < Dﬂ#f(z), zeU,
where

o(z) = — /0 h(#)tE Lt

1
nzmn
The function q is convex and it is the best subordinant.

Corollary 2.12. [2] Let h be a convez function, h(0) = 1. Let m,n € N, f € A, and
suppose that (SR™f (2)) is univalent and w eH[L,nNQ. If

h(z) < (SR™f(2)), =zeU, (2.9)
then
q(z) < SR#JC(Z), zeU,
where

g(z) = = /0 h(t)EEdt.

1
nzmn
The function q is convex and it is the best subordinant.

12
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Theorem 2.13. Let q be convez in U and let h be defined by h(z) = q(2)+2¢ (). If

m,n, A\l €N, f € A,, suppose that (IRKflf( )) is univalent, M e H[l,n]NQ
and satisfies the differential superordination
h(z) = q(2) +2¢' () < (IR f (2))',  ze€U, (2.10)
then
IRV f (2
q(z) < 7’\’5( )7 zeU,
where
1 z 1
q(2) = — / h(t)t=1dt.
nzw Jo
The function q is the best subordinant.
Proof. Let
AG—1)+1 m
RS () 4 S (B2 O a2
p(z) = =
z z
(oo}
1+A(G -1 +1 m 2_j—1
= 1+ Z <l_|_1) Cm+] 1aj2'7 .
j=n+1

Evidently p € H[1,n].
!/
Differentiating, we obtain p(z) + 2p/(z) = (IR;\’flf(z)) , z € U and (2.10)
becomes

q(2) +2¢'(2) = p(z) + 2p" (2), z€U.

Using Lemma 1.10 for v = 1, we have

1 z i IRV, f (2
_ / h(t)t=—dt < 7A’;f( ),z ev,
0

nzmn

q(z) < p(z),z €U, ie.

and ¢ is the best subordinant. O

Corollary 2.14. [3] Let g be convez in U and let h be defined by h (2) = q (2)+2q" (2).
If x>0, m,neN, feA,, suppose that (DR} f () is univalent,
%f(z) eH[L,nNQ
and satisfies the differential superordination
h(z) =q(2) + 2¢' (2) < (DRYf (2)), zeU, (2.11)
13
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then
DR f (2)

q(Z) < f’ A U,

where q(z) = —Lr [7 h(t)t=—'dt. The function q is the best subordinant.

nzmn

Corollary 2.15. [2] Let q be convex in U and let h be defined by h (z) = q (z)+2¢' (2).
If m,n €N, f € A,, suppose that (SR™f (2)) is univalent, % eH[L,nNQ

and satisfies the differential superordination

h(z) = q(2) + 2 (2) < (SR™f (2)), z€T, (2.12)
then
a(2) < SR%“Z), zel,
where

o(z) = — /0 h(#)tELdt.

nzw
The function q is the best subordinant.

Theorem 2.16. Let

h(z) = 1—|—(12i;1)z

be a convex function in U, where 0 < 3 < 1. Let m,n,\,l € N, f € A, and suppose
/
that (IRgflf (z)) is univalent and

IRY™, f (2

%() eH[Ln]NQ.
If

h(z) < (IR, f (), =2€U, (2.13)
then
IR’"L z
o)< 2O Ly
where q is given by
2(1—B) (7wt
q(z) =26 -1+ — /0 1+tdt, zeU

The function q is convex and it is the best subordinant.

14
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Proof. Following the same steps as in the proof of Theorem 2.10 and considering

L IO

z
the differential superordination (2.13) becomes

1+ (26 -1)z

/
T+ p(2)+ 2p'(2), z€U.

h(z) =

By using Lemma 1.9 for v = 1, we have ¢(z) < p(z), i.e

1 Z 1 z 1 26 — 1)t
q(z) = — / h(t)t%—ldt:ﬁ/ t%_lL)dt
0 0

nzn nzw 1+t
2(1 — Z w1 IR f (2
—28 -1+ ( 1ﬁ)/ dt < ”f(), zeU.
nzn o 1+1 z
The function ¢ is convex and it is the best subordinant. O

Theorem 2.17. Let h be a convex function, h(0) = 1. Let m,n,\,l €N, f € A,, and

2 m—+1 2 4 m+1 P
suppose that (M) 18 univalent and I;ﬁg,'nif((z)) eHI[L,nNQ. If
Al ALl

IR (2))
hiz) < | ————1 , zeU, 2.14
(2) (IR%M (2.14)
then
IRV (2)
q(2) < —55——, z €U,
(2) IRV, f (2)
where

a(z) = L /Ozh(t)ti—ldt.

nzn

The function q is convex and it is the best subordinant.

Proof. Consider

m+1
14+ 1)+1 41
IRf\fflJrlf () =+ ZJ 1 ( E{H ) C$+7 jZJ

p(z) = =
IR f (2 IHAG-=D)+I m 2
Al (2) z—&—zj 1 | C’m+] 105 27
+1
LEAG=1)+\™ m+1.2 j-1
o 1 +Z] =n+1 ( l+1 ) m+g ]Z
S 14+X(j—1)+1 m m 1
1+Zj:n+1( [T ) Civy 10327

Evidently p € H[1,n].
15
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We have
! I
» (1851 (=) o (1851 ()
)= "—Fmmsy P TTm oy
IR f (2) IR, f (2)
Then
I
ARV (2)
p()+20 (2) = | —52———| -
B+ ( TR T ()
Then (2.14) becomes
h(z) < p(z) +2p'(z), z€eU.
By using Lemma 1.9 for v = 1, we have
O <p) sl e qo) < BIO oy
q(z) < plz), zelU, 1ie q2)<—F5—F—, 2€U,
IRV f (2)
where
1 # 14
q(z) = — h(t)t» = dt.
nzn» Jo
The function ¢ is convex and it is the best subordinant. O

Corollary 2.18. [3] Let h be a convex function, h(0) = 1. Let A > 0, m,n € N,

m+1 / m
f € Ay, and suppose that (%) 18 univalent and %}{if) e H[l,n]NQ.
If
2DRI f (2) '
h(z <(A), s el 2.15
then
DRI (2)
—_—— U.
q(z) < DRYT () zeU,
where

1 # 1,
nzn» Jo
The function q is convex and it is the best subordinant.

Corollary 2.19. [2] Let h be a convex function, h(0) = 1. Let m,n € N, f € A, and

m ! m
suppose that (%) 18 univalent and %;{z()z) eH[L,nNQ. If

2SR™HLf (2))'
16
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then
SR f (2)

q(z) < W7

zeU,

where

a(z) = - /Ozh(mi—ldt.

nzn

The function q is convex and it is the best subordinant.

Theorem 2.20. Let g be conver in U and let h be deﬁned by h(z) =q(2)+ 2¢ (2).

m+1
Ifm,n,\1leN, feA,, suppose that <W> is univalent,
AL

IR f (2)
IRy, f (2)

and satisfies the differential superordination

eH[L,nNQ

, ARV ()
hz) = q(2) + 2q (2) < W ,  z€U, (2.17)
then »
IR;’fl (2
Q(z) < W, z € U,
where

a(z) = ll/ozh(mi—ldt.

nzn

The function q is the best subordinant.

Proof. Let
14X (j—1)+1 +1
) TRy f (2) 2+ 3 n+1( li—l ) C;mnﬂ ajz!
p Z) = =
IR™ 1+ (j—1)+1
xaf (2) 2+ 35 n+1( EJH) ) Conpjo10377
1AG-D+ ™!
B 1+Z;in+l ( 511 ) ) Cz_tjlaizﬂ !
o 1+A(G—1)+l m
1+E;in+1( li—l) ) m+J 145 520~ 1

Evidently p € H[1,n].

Differentiating, we obtain

2IR™F! '
7)7‘7;[ /() ,zeU
IR f (2)

p(z) +2'(2) = (

17
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and (2.17) becomes
q9(2) +2¢'(2) <p(2) +2p' (2), z€U.

Using Lemma 1.10 for v = 1, we have
IR (2)
IRy f (2)

and q is the best subordinant. O

q(z) <p(z), z€U, ie q(z)=— / h(t)t=tdt < , zeU,
0

Corollary 2.21. [3] Let g be convez in U and let h be defined by h (2) = q (2)+2q’ (2).

m+1 /
IfA>0,mneN, feA,, suppose that (%) is univalent,
A

DR f (2)

DRIT(2) eH[L,n]NQ

and satisfies the differential superordination

m+1 /
h(z) = q(2) + 24’ (2) = (W) . z€U, (2.18)
then .
DRI £ (2)
q(z) < W, zeU,
where

1 ? 1
o) = — [ e
nz» Jo

The function q is the best subordinant.

Corollary 2.22. [2] Let q be convex in U and let h be defined by h (z) = q (2)+zq' (2).

Ifm,n e N, f € A,, suppose that (%) is univalent, %}(fi;) € HI[L,n]NQ

and satisfies the differential superordination

_ , SRS (2)
h(z) = q(2) + 2¢' (2) < (SR"f(z)) ,  zeU, (2.19)
then
SR (2)
q(z) < W7 zeU,
where
_ [ 1
q(z) = nz%/o h(t)t=""dt.

The function q is the best subordinant.

18
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Theorem 2.23. Let

:1—|—(25—1)z

h(z) 12

be a convex function in U, where 0 < 8 < 1. Let m,n,\,l € N, f € A, and suppose
RPN\ L TR £(2)
that (IRZ”IJ(Z) is univalent, W eH[,nNQ. If

ARV ()
then
IRTf (2)
q(Z) =< W’ z € U,

where q is given by

2(1-09) / !
=928 -1+ dt, z€ U.
alz) =28 P

The function q is convexr and it is the best subordinant.

Proof. Following the same steps as in the proof of Theorem 2.17 and considering

IR3f (2)

p(z) = TR ()

the differential superordination (2.20) becomes

_1+(28-1)2

h(z) T2

<p(z)+2p'(2), ze€U.

By using Lemma 1.9 for v = 1, we have ¢(z) < p(z), i.e.,

1 z 1 z 1 98 — 1)t
e e
0 0

nzn nzn 1+t

2(1 — z il IR™ 1 f (2
=28-1+ ( 1ﬁ)/ < =t f(), zeU.
nzn o 1+t IR)\’lf(Z)
The function ¢ is convex and it is the best subordinant. O
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VARIOUS PROPERTIES OF A CERTAIN CLASS
OF MULTIVALENT ANALYTIC FUNCTIONS

MOHAMED K. AOUF, ALI SHAMANDY, ADELA O. MOSTAFA, AND FATMA Z. EL-EMAM

Dedicated to Professor Grigore Stefan Sdldgean on his 60" birthday

Abstract. By using the techniques of Briot-Bouquet differential subor-
dination, we study various properties and characteristics of the subclass

Vp/\,q,s(au B1; A, B) of multivalent analytic functions.

1. Introduction

Let A(p) denote the class of functions of the form:

f(z) :zp—&—iakerzk"'p (peN=1{1,2,3,...}), (1.1)
k=1

which are analytic and p-valent in the open unit disk U = {z: z € C and |z| < 1}. Let
Q denote the class of bounded analytic functions satisfying w(0) = 0 and |w(z)| < ||
for z € U. For functions f(z) € A(p) given by (1.1) and g(z) € A(p) defined by
g(z) = 2P+ i br+p2" TP (p € N), the Hadamard product (or convolution) of f(z) and

k=1
g(z) is given by

(f*9)(2) = 22 + Y aripbrip2™7 = (9% £)(2).
k=1
For given arbitrary numbers A,B ( —1 < B < A < 1), we denote by P(A, B) the

class of functions of the form:

0(2) =14+ b1z +bo2? + ..., (1.2)

Received by the editors: 01.07.2010.
2000 Mathematics Subject Classification. 30C45.
Key words and phrases. Differential subordination, Hadamard product, multivalent functions, Dziok-

Srivastava operator.
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which are analytic in U and satisfy the following condition:

14+ Az

p(2) < 1+ Bz

(z€U).

(Here the symbol < stands for subordination.) The class P(A, B) was investigated
by Janowski [11].

For a function f(z) € A(p) given by (1.1), the generalized Bernardi-Libera-
Livingston integral operator Fj, is defined by (see [5])

Fop(f)(z) = / 1 f ()t

oo

= zp+z<5+ +k>akﬂ,z P (6>—-pzel). (1.3)

It readily follows from (1.3) that f € A(p) <= Fs, € A(p). Furthermore, we have

Om(2) = Fs,0p(Fs,0 1 pe(F51,p(2)))

m

d; +p k+ o
—zp+z ]1;[5 +p+k aptpz P (65 > —p; j=1,....,m). (1.4)

For complex parameters ai,...,aq and By,...,0, (8; & Zg; Zy = {0,—1,-2,...};
j=1,...,s,) the generalized hypergeometric function ,F;(z) is defined (cf., e.g., [28])

as follows:

> z
qu(Z) Eq Es(alamaaq;ﬂla'" 517 Z 1N (15)

= (B1)k-- s)k (D
(g<s+1;q,s e Ng=NU{0};2 €U),
where (z), is the Pochhammer symbol defined (in terms of the Gamma function) by
CT(@+k) ) z@+l).(z+k-1) (keNand z € C)
@ = P(z) 1 (k=0 and z € C\{0}).

We note that the series (1.5) converges absolutely for z € U and hence represents
an analytic function in the open unit disk U (see [29]). Corresponding to a function

Fpla,...,aq, B, ..., Bg; z) defined by

fp(alw'vaq;ﬁlv 76@72) =2 qES(alv "'aaq;ﬁla "'5/85;2)7
22
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Dziok and Srivastava [6] defined a linear operator Hy(ax1, ..., oq; By, .., B,) + A(p) —
A(p) by the following Hadamard product:

Hp(ala '-'aaq;ﬁh 755).]0(2:) = fp(ala ‘”7aq;/617 "'755;2) * f(z)a

(¢<s+1;q,s € Ng;z €U).

If f € A(p) is given by (1.1), then we have

Hp(ala cey aq;ﬂh 7ﬂ9)f(z) =2 + Zrkak+]?zk+p ) (16)
k=1
where
(al)k...(aq)k

P = BB (D

(k e N).
For convenience, we write
Hp,q,s(al;ﬁl) = Hp(ah '-~7aq;617 765,)

Tt follows from (1.6) that

Hyo1(p, 1;p)f(2) = f(2), Hpo1(p+1,1;p)f(2) =

and

’

Z(Hp,q,s(aﬁﬁl)f(z)) = (B1— 1)Hp,q7s(041§ B —1)f(2)
+ (p+1-051)Hpgs(a1;61)f(2) (L.7)

The linear operator Hp, 4 s(a1; 81) includes various other linear operators which were
considered in earlier works. In particular, for f € A(p) we have the following obser-

vations:

(i) Hiaa(a,bie)f(z)= I2bf(2) (a,b € C;c ¢ Zg ), where I®? is the linear

operator investigated by Hohlov [10];
(ll) Hp,2,1(n +pa 15 1)f(Z): Dnerilf(Z) (TL > —p;p € N)7 where Dn“l’p*l is

the linear operator studied by Goel and Sohi [8]. In the case when p =1,
D™ f(z) is the n — th Ruscheweyh derivative of f(z) (see [22]);

23
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(i) Hp2,1(0 +p,1;6 +p+ 1) f(2)= Fs5,(f)(2) (6 > —p), where Fj, is the

generalized Bernardi-Libera—Livingston integral operator ([5]);

(iv) Hpo1(p+1,1;p+1—p)f(2)= Qg“’p)f(z) (—oo < p < p+1), where QP

(—oo < p < p+1) is the extended fractional differintegral operator (see
[20]), defined by

Dk+p+D(p+1—p)
qu,p)f(z) — E Fp—l—l Grpiic )k+pzk+p
= ——ZMDV — 1
T+l - Ff(z) (oo<p<p+1),

where D¥ f(z) is, respectively, the fractional integral of f(z) of order —u

when —oo < p < 0 and the fractional derivative of f(z) of order y when

0 < p < p+1 (see, for details [18], [19] and [20]). The fractional differential

operator Qg” P)
[27].

(v) Hpoi(a,l;¢)f(2)= Lp(a;c)f(2) (e € Rjc € R\Z; ), where Ly(a;c) is the

with 0 < u < 1 was investigated by Srivastava and Aouf

linear operator studied by Saitoh [24] which yields the operator L(a;c) f(z)
introduced by Carlson and Shaffer [3] for p = 1;
(vi) Hig1(, LA+ 1) f(2)= 1\, f(2) (A > —1;u > 0), where I , is the Choi-

Saigo—Srivastava operator [5];

(vil) Hpo1(p+ 1,1;n 4+ p)f(2)= Lnpf(2) (n > —p;p € N), where I, , is the

Noor integral operator of (n+p— 1) —th order , studied by Liu and Noor
[15];
(viil) Hp21(A+p,c;a)f(z)= L) (a;¢)f(z) (a,¢c € R\Zg ;A > —p), where I, (a;c)

is the Cho-Kwon-Srivastava operator [4].
Now, by making use of the Dziok—Srivastava operator H, , s(c1; 3;), we in-
troduce a subclass of functions in A(p) as follows.
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Definition 1.1. A function f(z) € A(p) is said to be in the class V;‘(al,...,aq;
By Bs; AB) (o > 055 =1,..,q9), (B; ¢ Zg; j=1,...,8), B1 > 1, A >0 and
—1 < B < A<1), if and only if it satisfies

(1_)\)Hp,q,s<a1§ﬁ1)f( )+)\ D.q,8 (al,ﬁl —1)f( ) . 14+ Az

2P 2P 14+ Bz

(1.8)

For convenience, we write Vp as(a1; B3 A, B) = V;‘(al, o 0q; B, B A B).
We note that
(i) 121(2,1,2,1 2a,—1)=R(a) (0<a<1)][7);
(i) Viga(p+1,Lip+ 151, — 1) = S,(M) (M > 1) [26];
(i) V121(2 ;2208 1,28 —1) = Ri(a, ) (0<a<1,0<pB<1)[16];
) Viaa(2,1:2 (20— 1)8,8) = R(@,8) (0<a<1,0<8<1) [12]
) Via1(n+2,1,2;A,B) =V, (A, B) (n> 1) [14];
) Via1(n42,1;2; B+(A-B)(1-a),B) = V,(A,B,a) (n>-1,0<a<1)
[2];
(vii) V;’z’l(p—i—l, 1,p+1—p; 8(1—(2a/p)), =) = V;\(,u, a, 3); where V;}(,u, a, f)
denotes the class of functions f (z) € A(p) satisfying the condition:
(1= 0P f(2) + 200 f(z) — 27
(1= NQUP f(2) + 2T £(2) + (1 = (2a/p)) 27
where 0 < u<1,0<a<p,peNand 0< g <1;
(Vlll) V;\,q,s(al; 61; 13 ﬁfl) Vz);q e(al; ﬂl; M) (M > %)7 where V;i\,q,s(al;ﬁl;
M) denotes the class of functions f (z) € A(p) satistying the condition:

‘ {(1 _ )\)Hp,q,s(()‘zl;ﬂl)f(z) + )\Hp,q,s(aﬁfpl - 1)f(z)] _ M’ <M

<p (zel),

1
5;26(]);

(i) Vpor(p+1,L5p+2— 51, 37 —1) = Vy(u, M) (M > 33 —00 < pu < p+1),
where V (11, M) denotes the class of functions f (z) € A(p) satisfying the

(M >

condition:

Q) f(2)

zp

1
—-M| <M (M>§;—oo<u<p+1;z€U).
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2. Preliminaries

To prove our main results, we need the following lemmas.

Lemma 2.1. [9] Let the function h(z) be analytic and convex (univalent) in U with

h(0) =1 and let the function ¢(z) given by (1.2) be analytic in U. If

24 (2)

¢(2) + 5

< h(z) (Re(y) = 0; v#0),

then

Y

I\

(=) < h(z) = L / P h(#)dt < h(z) |
0

and (z) is the best dominant.

Lemma 2.2. [25] Let ®(z) be analytic in U with

®0)=1 and Re(®(2)) > = (z€U).

DN | =

Then, for any function F(z) analytic in U, (P« F)(U) is contained in the convex hull
of F(U).

Lemma 2.3. [29] For real or complex numbers a,b and ¢ (¢ #0,—1,-2,...), we have

NG . :
T oFy (a,b;c;z) (Re (¢)>Re (b)>0);

(2.1)

1
/tb—1(1 — )T )t =
0

and

z

oF1(a,b;¢2) = (1 — 2)7% oFy(a,c — b; ¢ 1
2 —

). (2.2)

Lemma 2.4. [13] Let w(z) = 3. dpz* € Q, if v is a complex number, then
k=1

|dy — Vdﬂ < max{1, |v|}. (2.3)

2 respectively,

Equation (2.3) may be attend with the functions w(z) = z and w(z) = z
for |v] > 1 and |v| < 1.
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3. Main results

Otherwise unless mention throughout this paper, we assume that —1 < B <

A<L,A>0,peN, 3, >1land z € U.

Theorem 3.1. Let the function f defined by (1.1) be in the class V
Then

Qaq; ﬁlaAaB)

pqs(

Hyq.5(01:8,) f(2) 1+ Az
PSS < Q) < g (3.1)
where
0(e) 44+ (1-3)0+B) R (LT +15425) (B£0)
1+ ﬂﬁlliAAz (B=0),

is the best dominant of (3.1). Furthermore,

Re { Hp,q,s(a;;ﬁl)f(z)} > n(\ By, A, B), (3.2)
where
AL (1-4Y1-B)1,F 1151—1+1’7 B+£0
770\751,1473): B (ﬁll )( ) 2 1( B 1) ( f )
1-5154 (B=0)

The estimate in (3.2) is best possible.
Proof. Setting
Hpq,s(ou; 81) f(2) )

zp

¢(z) =

(3.3)

Then ¢(z) is of the form (1.2) and is analytic in U. Differentiating (3.3), and using

identity (1.7) in the resulting equation, we have

Hpgs(a1;81)f(2) |\ Hpgs(a; 8, —1)f(z) _ Az¢ (2)
(1—N)—=2=— AR = )+ 5
1+ Az
1+ Bz
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Now, by using Lemma 2.1 for v =

z

B =1 s [ om ) 1+ AL
6z < Q=1 /t» (gt
0
- 0eB A (LA 1) (BAO)
1+ 52542 (B =0),

by change of variables followed by using the identities (2.1) and (2.2) (with a = 1,
b= % and ¢ = b+ 1). This proves the assertion (3.1) of Theorem 3.1. Next, to
prove (3.2), it suffices to show that

inf {Re(Q(2))} = Q(~1). (3.4)

|z]<1

For |z| <r < 1, we have

14+ Bz 1—Br’
Setting
1+ Asz B, —1
= <s<
o5,2) = T and dus) (0<s<1),
we get
1
Q(2) 9(s, z)dp(s)
0
so that
1
Asr
= Q- < )
Re(Q() = [ 1= dn(s) = Q1) (el <7 <)
0

Letting 7 — 17 in the above inequality, we obtain the assertion (3.4). The result in

(3.2) is best possible as the function Q(z) is the best dominant of (3.1). O

Corollary 3.2. For 0 < Ao < A1, we have

VoL (13813 A,B) C V22 (o3 By A, B).

p.q,s p,q,s

Proof. Let f € qug(al;ﬂﬁAaB)-
28
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Then by Theorem 3.1, we have f € VpO

lg.s(a1; 815 A, B). Since

(1 _ )\2)Hp1qas(a1;6l)f(z) + /\2 Hp,q,s(a1§ ﬁl - 1)f(Z)
2P zP
— <1 _ )‘2> Hpq,s(0u; 1) f(2)
)\1 zb
A H, ,s(a ;ﬂ )f(Z) H, ,s(a ;ﬁ —1)f(2)
+£{(1—A1) A s }
1+ Az
1+ Bz’
we see that f € V;}fq,s(al;ﬂl;A, B). 0

Taking/\:s:agzl,q:2,a1:p—i—l,ﬂl:n—i—p,A:l—%aand
B = —1 in Theorem 3.1, we get the following corollary.
Corollary 3.3. Let the function f given by (1.1)satisfy

Re{jn_l’pf(z)}>(; (0<a<p; n>-—p).

zP

Re{ln’pf(z)} > 2y (1_a> {2F1 (1,1;p+n;1> —1}.
zP p P 2

The result is best possible.

Then

Putting n = 1 in Corollary 3.3, we have the following corollary.

Corollary 3.4. If f € A(p) satisfies

Re{f/(zl)}>a (0<a<p),

2P

Re{fz(j)} >%+ <1—;‘> {2F1 <1,1;p+ 1;2) —1}.

The result is best possible.

then

Remark 3.5. The above result improves the corresponding result of Saitoh [23,

Corollary 2].

Theorem 3.6. Let f(z) € Vg7q7s(o¢1;ﬂ1;A,B), then the function Fs, defined by
(1.3) satisfies

Hp,q’S(aU ﬂl)Fé,p(z) = 1+ Az

19 <175, (3.5)

zP
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where
A A — . . Bz
o) = 24+(1-2)1+Bz)"! Ry <1,1,p—|—(5+1,BZ+1) (B #0)
+6 —
14 s Az (B =0),

and q(z) is the best dominant of (3.5). Furthermore,

Re{Hp’q’S(%zfl)Fg’p(z)} >¢(0,p, A, B) (3.6)
where
s+(1-40-B)7" : . _B_
£(6,p, A, B) = B+(1+5 B)(l B)™' 3 F (1,1,p—|—5+17B_1> (B #0)
1_pi5+1A (B=0).

The estimate in (3.6) is best possible.

Proof. Let

Hy g1, 81)F5 p(2)
2P '

¢(2) = (3.7)

Then ¢(z) is analytic in U with ¢(0) = 1. Differentiating (3.7) and using the identity

2(Hp,q,s(a1; ﬂl)Fé,p(Z))/ = (0 +p)Hp,q,s(a1; 81) f(2) — 6Hp q,s(a1; B1) Fs p(2) (3.8)
in the resulting equation, we obtain

20 (2)  Hpgo(a;6)f(z) 1+ Az
T E— “iye. BEY)

¢(z)
Now, by using Lemma 2.1 for v = § + p, we deduce that

1—|—At)

d(z) <q(z) = (0 +p)2*(5+p) /t5+p71 (1 e
0

The assertions (3.5) and (3.6) can now be deduced on the same lines that used in

Theorem 3.1. This completes the proof of Theorem 3.6. g
Taking A = 1 — 27& (0 < a < p) and B = —1 in Theorem 3.6, we get the

following corollary.
Corollary 3.7. If f € A(p) satisfies
Re { Hy q.5(a1;81) f(2)

o
por }>p (0 < a<p),
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then

Re{Hp’q’s(al;fl)F5’p(z)} 2 (1 - a) {2F1 <1,1;P+6+1;1> - 1}.
z D D 2

The result is best possible.

Taking s=as=1,¢g=2, a1 =p+land g, =p+1—p(—co<pu<p+1)

in Corollary 3.7, we get the following corollary.

Corollary 3.8. If f € A(p) satisfies
Q(Zmp)
Re {f(z) } >

0<a<p—o<pu<p+t+l),

=R

zP

WP, 1
Re{é’p(z)} >2 4 (1—0‘> {2F1 (1,1;p+6+1;) —1}.
zP P p 2

The result is best possible.

then

Corollary 3.9. Under the hypothesis of Corollary 3.7, the function 0,,(2) defined by
(1.4)satisfies

)

Re{Hp,q,S(aUﬁﬂem('z)} > Pm

2P D

where py = a and

1 .
pj == ,0.7-_1 + (p— ,0]-_1 ) {2F1 (1, 1,p+ (S-F 1, 2) — 1} (j = 1,2,...,m).

The result is best possible.
Taking s =as =1,g=2, a1 =p+1and 3; =n+p (n> —p) in Corollary
3.7, we have the following corollary.

Corollary 3.10. If f € A(p) satisfies

I,
Re{m}>a (0§05<p)7
zP D
then
I, ,F 1
RQ{W‘SJ’(Z)} >9+(1_g ){2F1 (1,1;p—|—5+1;) _1}_
zP P P 2

The result is the best possible.
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Putting n = 0 in Corollary 3.10, we have the following corollary which in

turn improves the corresponding result of Fukui et al. [7] for p = 1.

Corollary 3.11. If f € A(p) satisfies

then

Fs»(2) 1
Re{ pr-1 }>a+(p—a){2F1 (171;p+5+1;2> —1}.

The result is best possible.

Theorem 3.12. For f € A(p), we have

fevl (ai;B8;3A,B) s Fg _p1p € VD, (a1;8; A, B).

p.q,s p,q,s

Proof. Using identity (3.8) and

Z(prq,S(O‘l; 51)F5,p(z))/ = (B — 1)Hp7q75(0ll§ B — 1)F5,p(z)
+(p+1- 51)Hp,q,8(a1§ 51)F5,p(z),

for 6 = 8, —p — 1, we deduce that

Hp,q,s(aﬁﬂl)f(z) = Hp,qw(al? B — 1)F61—p—1,p(z)

and the assertion of Theorem 3.12 follows by using the definition of the class
V;’q7s(a1;ﬁ1;A7B). O

Theorem 3.13. If the function f(z) given by (1.1) belongs to the class Vl),‘7q’5(a1;
61;A7B)7 then

(A= DB)(B1 = Di+1(B2)k--(Bs)k (L (k> 1). (3.9)

a <
e S G T AR (@ lag)e s
The estimate is sharp.

Proof. Sincef(z) € V)

p,q,s(
Hp,q,s(al;ﬂl)f(z) + )\HP»QvS(al;ﬂl — l)f(Z) :p(z) (310)

2P zP

al;ﬂl;AvB)a then

(1=2)
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where p(z) = 1+ 3 ppz® € P(A, B). Substituting the power series expansion of
k=1

H,4s(a1;81)f(2), Hpqs(a1; 6, —1)f(2) and p(z) in (3.10) and equating the coeffi-

cients of z* on the both sides of the resulting equation, we obtain

(By =1+ M) (an)i(og)e
(B1 = Disr Bk (B k! 7 Pk

Using the well-known [1] coefficient estimates

(k>1). (3.11)

in (3.11), we get the required result (3.9). The estimate in (3.9) is sharp for the
functions fi(z) defined by

(1— /\)Hp,q,s'(aﬁﬁl)fk(z) + )\Hp,q,s'(041§ﬂ1 — 1) fr(2) _ 1+ Az* (k > 1).

2P zP " 14 Bzk -

Clearly, fr(z) € V), s(a1; 85 A, B) for each k > 1. It is easy to see that the functions

fx(2) have the series expansion

(A= B)(By = Vi1 (Bo) k- (B)e Wik ke
(By — 1+ Ne)(ar) ... (crq)n o

show that the estimates in (3.9) are sharp. O

fu(z) =22 +

Taking A = A =s=ay =1,¢=2, a1 =p+land f; =p+2—pu
(oo < p<p+1), B= 4 —1(M > 1)in Theorem 3.13, we have the following

corollary.

Corollary 3.14. If the function f(z) given by (1.1) belongs to the class V,(u, M),

then
M -1)(p+1—pk
M(p+ 1)

|ak4p| < (k> 1).

The estimate is sharp.

Theorem 3.15. Let f given by (1.1) belongs to the class V7, (a1;51; A, B) and

P.4,s
¢ be any complex number. Then
2(A — B)(B1 — 1)3(B3)2---(8)2
|ap2 —Cap ] < G142 (0 (00
(81 =1)2 By.-B,(A= B)(B1 =1+ 2M) (1 £+ 1)...(ag +1) ‘
2a1..0q (B +1)..(Bs +1)(B) — 1+ )2

B+¢

.max{l,

(3.12)
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The estimate in (3.12) is sharp.
Proof. From (1.8), we deduce that

Hp-,q,s(aﬁ B1)f(2) Hp,q,s(OKl% B —1)f(2)

(1-\) = +A - —1
— |:A _ B {(1 _ )\) HPaQ,S(aZl;ﬂl)f(Z) + )\HpalJ,s(al;ﬁ)l _ 1)f(2) }:| OJ(Z), (313)

where w(z) = Y wiz® is analytic in U and satisfies |w(z)| < |2| for z € U. Substituting
k=1
the power series expansion of Hy, 4 s(cv1; 81)f(2), Hp,q.s(a1; 68, —1)f(2) and w(z) in

3.13), and equating the coefficients of z and 22, we get
q g g

_ (A=B)(B1 —1)2 By,
W TR TN arag OV (3.14)
s = 2A=B)(By —1)s (By)2---(Bs)2
e (B, — 142X (a1)2...(0rg)2

From (3.14) and (3.15), we have

lapss — Cayy| = 2(A = B)(B1 — 1)3(B2)2---(B)
P2 Pl (By — 14 2X)(a1)2.-(rg)2

(wg — Bw?). (3.15)

2 |we — vwi, (3.16)

where

(81 —1)2 By..B,(A=B)(B; — 14+ 2X\)(aq + 1)...(aq + 1)
201...aq (B +1)..(By+1)(By — 1+ N)? '

Now, by using (2.3) in (3.16), we get the required result. The result (3.12) is sharp

v=B+(

as the estimate (2.3) is sharp. O

Taking A = A =s=a3 =1,¢g =2, a1 =p+1land f; =p+2—pu
(oo < p<p+1), B=+—1(M > 1)in Theorem 3.15, we have the following
corollary.

Corollary 3.16. Let f, given by (1.1), belongs to the class V,(u, M), and ¢ be any

complex number. Then

2M —1)(p+1—p)2
M(p+1)2

. max {1, ‘ ! &M +< (QMM(;)J(FP;)F(?J(rp;—lu) . ‘} '

‘ap-i-z - Cai-i-I‘ < (

The estimate is sharp.
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Theorem 3.17. Let f € V) (a1;81; A, B) and g € A(p) with Re{%} > 1 forz e

P45
U. Then the function h = f x g belongs to the class V;‘ﬁqu(al;ﬁl; A, B).
Proof. We can write

(1-X\) Hyq,5(0; B1)h(2) + /\Hp,q,S(a1§61 — Dh(2)

2P 2P

_ {(1 N )\) HP»Q’S(O‘UIBI)J"(Z) + )\Hp,q,s(al;ﬂl - 1)f(2) } " g(z)

= 5 . (3.17)

Since Re{%} > 1in U and f € V) (a1;61; 4, B), it follows from (3.17) and

p.q,s

Lemma 2.2 that h € V;"q_’s(al,ﬂl; A, B). The proof is completed. d

Corollary 3.18. Let f € V), (ay1,81; A, B) and g € A(p) satisfy

pP,q,s

Re{(1_u)g(z)+u9'(z) }> 3-25F (1,12 +1;1/2)
2{2- F(L1L;2+1;1/2)}

o P (u>0;z€U). (3.18)

Then fxg eV, (a1;8; A, B).

Proof. From Theorem 3.1 (forq=2,s=1, 01 =8, =p+1,aa =1, A= pu >0,
2 F1 (1,15 41;1/2)—1

A= Ry (T SRy OIS and B = —1), condition (3.18) implies
LB
1
Re {g(z)} > —.
zP 2
Using this, it follows from Theorem 3.17 that f x g € V;7q75(a1; B1; A, B). O

Theorem 3.19. If each of the functions f(z) given by (1.1) and g(z) = 2P +

(oo}
kZ b+p2*tP belongs to the class V;‘)q’s(al;ﬁl;A,B), then so does the function
=1

h(z) = (1 = M) Hp,q.s(1; 81)(f % 9)(2) + AHp,g.s(a1; 81 = 1)(f * 9)(2).
Proof. Since f € V2 .(ay;8;; A, B), it follow by (3.13) that

Dp,q,s

‘(1 o /\) Hp,q,S(aZl;ﬁl)f(Z) + )\Hp,q,s(aﬁg)l - 1)f(z) _ 1’
< ‘A B {(1 -yl B |\ Hpalc1iBy = 1>f<z>} |

which is equivalent to

’(1 ~yHras(@:0)f () |\ Hygaloni b = DI ()

zP 2P

—f’ <n (z€U), (3.19)
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where
1-AB A-B
&= 52 and 7= Tk
It is known [17] that if G(z) = 3 gr2" is analytic in U and |G(z)| < E, then
k=0
> lgnl* < B2 (3.20)
k=0

Applying (3.20) to (3.19), we get

— 1+ M) (an)k(ag)r ) >
*Z{ By~ D G- (ﬁsmm} awpl” <

that is, that

S (B 1M @)klas |2, o (A= B)?

z:l{ - 1 k+1 (ﬁQ)k (ﬁs)k(l)k} |ak+p| < 1-_RB2 (321)
Similarly,

[ (By — 1+ M) (ar)g...(og)k (A— B

;{(51 = Di41(B2) k- (B5)k(L)k } brp|” < q_5 (3.22)

Now, for |z| = r < 1, by applying Cauchy-Schwarz inequality, we find that

Hyqu(01:80)R(:) | Hpaol0iBy = Dh(:)

zP 2P

(B — 1+ M) (a)ke(ag)k ) k
+Z{ By — Diepr (Ba) k(B } ThtpVktp?

N S B (A :
s(mere @Z{wl—lmm ot KL

2

\(1—A> ¢

2

oo

— 14 Xk)(
Z { ((/61 (g ak+pbk+p2

= L (81 = Dl 52 k(B )k (1)

1/2
2 = B L+ AR @)k (e 1P 2o
sUmeiezi =g [Z{wll)m(ﬂg)k B } ks ] |

i{ (By = 1+ Ak) (1) k(e }2|bk 2
= = Di41(Bo) k- ﬂék )k o

1
o [ (Br = L+ Ak)(an)k(ag)k
Z{ (By = st (Ba)x- (ﬂsml)k} ol ]

_|_

+
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2
i{ (B1 — 14 Ak)(a1)k---(og)r } b2 7
= | (81 = Di+1(Bo)k--(B)e (L o

1/2
TN S o Vo (S (A A GO
<-gP+201-9 Lz_jl{(ﬁl_1)k+1(52)k“_(ﬁs)k<1)k} |k+p|] |

il : b4l
B1 = Di+1(B2)k- (59 ( )k

= { (B, — 14 M) ()
= U

S o .
S e} ot
<a-gr+a0-oYDF L U=DL
(PN QPR U
by using (3.22) and (3.23).

Thus, again with the aid of (3.20), we have h € V) (o1, 8;; A, B). O

Theorem 3.20. Let f € V2

n—1
g, (@15 815 A, B) and Sy (z) = ZpJszl aptpz" P (n > 2).

Then for z € U, we have

“tP(Hp g5 (a1 B1)Sn(t))dt
Re fo (Hp.q, (jl B1)Sn(t)) > (N, By, A, B),
where n(X, 81, A, B) is defined as in Theorem 3.1.
Proof. Singh and Singh [25] proved that
— 1
{ Z } 5 (€U (3.23)
k=1
Writing
fo t7P( Hyp.q.s (a1; B1)Sn(t))dt _ H,, s(a; By)f 2_:
z zP Pt

and making use of (3.23), Theorem 3.1 and Lemma 2.2, the assertion of the theorem
follows at once. O
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Remark 3.21. By taking ¢ =2, s =1, a1 =a (a>0), as =1 and 8, = c (¢ > 1;

¢ ¢ Zy) in our results, we obtain the results obtained by Patel and Sahoo [21].
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STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume LV, Number 3, September 2010

ON ORDER OF CONVOLUTION CONSISTENCE
OF THE ANALYTIC FUNCTIONS

URSZULA BEDNARZ AND JANUSZ SOKOL

Dedicated to Professor Grigore Stefan Sdldgean on his 60" birthday

Abstract. In this paper we consider the convolution of certain classes
of analytic functions. We discuss when it is in a given class. By means
of the Salagean integral operator we define a constant S which describes
a measure of convolution consistence of three classes. We shall examine
some special families for which we can determine the order of convolution

consistence.

1. Introduction

Let H denote the class of analytic functions in the unit discU = {z : |z] < 1}
on the complex plane C. Let A denote the subclass of H consisting of functions
normalized by f(0) = 0, f/(0) = 1 and let S C A denote the class of functions
univalent in /. Everywhere in this paper z € U unless we make a note. A function f

maps U onto a starlike domain with respect to wy = 0 if and only if

2f'(2)
%e[ ) } >0 (zel). (1.1)

It is well known that if an analytic function f satisfies (1.1) and f(0) =0, f'(0) # 0,
then f is univalent and starlike in Y.

A set F is said to be convex if and only if it is starlike with respect to each
of its points, that is if and only if the linear segment joining any two points of E lies

Received by the editors: 25.04.2010.
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Key words and phrases. Hadamard product, integral convolution, k-starlike functions, k-uniformly convex
functions, order of convolution consistence, Salagean integral operator, starlike functions, convex

functions, functions with positive real part.
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entirely in E. Let f be analytic and univalent in &//. Then f maps U onto a convex

domain E if and only if

2f"(2)
f'(2)

Such a function f is said to be convex in U (or briefly convex). The set of all functions

Re {H ] >0 (zel). (1.2)

f € A that are starlike univalent in &/ will be denoted by S7. The set of all functions
f € A that are convex univalent in U/ by CV. Recall that the Hadamard product or

convolution of two power series

f(2) —z—|—Zanz and g¢(z —z—i—anz

n=2

is defined as
(f*g _Z+Zanbnz

and the integral convolution is defined by

It is well known [10] that if f,g € CV, then f*x g € CV while if f,g € ST, then fxg
may not be in S7 and even may fail to be univalent. To examine deeply this problem

let us consider the Saldgean integral operator (see [12]) Z° : A — A, s € R, such that

oo oo a
=7° g anz" :E Lan.
nS
n=1

n=1

Now, one can ask if exists there a number s € R such that
I°(fxg) € ST Vf,geST.

The answer there is in Theorem 2.1 below. This problem may be consider more
generally for other classes of functions when the Salagean integral operator is defined

on H as follows
o0 oo a
TS n n — n._n
(ao + 7;:1 Ap?2 ) ag + 7;:1 s z
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Definition 1.1. Let X, Y and Z be subsets of H. We say that the three (X,), Z)
is S—closed under convolution if there exists a number S = S(X, Y, Z) such that
SX,V,2) = min{seR:Z°(fxg)€eZ VfeX Vge)} (1.3)
= min{seR:Z°(XxY)C Z},
where 7° denote the Salagean integral operator. The number S(X,), Z) is called the

order of convolution consistence the three (X,), Z). It would be called the Salagean

number.

2. Main results

We shall examine some special families for which we can determine the order
of convolution consistence. First we shall restrict our attention to the classes of

starlike and convex functions.

Theorem 2.1. The order of convolution consistence of the class ST is equal to 1:
S(87T,87,58T7)=1. (2.1)

Proof. It is well known [10] that ST ® ST = ST and Z'(f * g) = f ® g. Thus if
f,g € ST, then Z'(f x g) € ST. This means that S(S7,S87,ST) < 1. If we consider
the functions f,g € ST such that

then

f % g Zn2 s,
The coefficients of the functions in the class ST cannot be greater than n. If we want
that n2=% < n, then s > 1. Therefore we deduce that S(S7,S87,S87) = 1. O
Theorem 2.2. We have the following orders of convolution consistence

(i) S(CV,CV,8T) = —

)
(il) S(CV,87,87) =0,
(iii) S(ST,87.CV) =2,
(iv) S(Cv,Cv,CV) =0
(v) S(CV,8T,CV) =1.
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Proof. (i) It is well known [10] that CV « ST = ST. Let f,g € CV. Then z¢' € ST
and Z7H(f % g)(2) = f(2) x (2¢'(2)) € ST, so S(CV,CV,ST) < —1. If

z

f(z) = 9(2) = ecy,

1—=z2

then
I°(fxg) = ansz”.
n=1

Because the coeflicients of the functions in the class S7 cannot be greater than n

we obtain the condition n~°% < n. Therefore we deduce that s > —1 and then

S(CV,CV,S8T) = —1.

The proofs of (ii) — (v) run as the proof of (i). O
To find the order of convolution consistence of other classes let us recall the

classes of k-uniformly convex and of k-starlike functions:

k-UCY = {feS:iRe [1+ZJ{,/;S)} >k ZJ{,/;S) . (zel; O<k:<oo)},
k-ST := {feS:%e[ZJ{;S)} >k ZJ{;S) 1|, (zeu; O§k<oo)}.

The class k-UCY was introduced by Kanas and Wisniowska [5], where its geometric
definition and connections with the conic domains were considered. The class k-UCV
was defined pure geometrically as a subclass of univalent functions, that map each
circular arc contained in the unit disk ¢ with a center ¢, |{] <k (0 < k < 00), onto a
convex arc. The notion of k-uniformly convex function is a natural extension of the
classical convexity. Observe that, if £ = 0 then the center £ is the origin and the class
k-UCVY reduces to the class of convex univalent functions CV. Moreover for k = 1
corresponds to the class of uniformly convex functions UCV introduced by Goodman
[2] and studied extensively by Rgnning [9] and independently by Ma and Minda [8].
The class k-S7 is related to the class k-UUCV by means of the well-known Alexander
equivalence between the usual classes of convex CV and starlike S7 functions (see
also the works [4, 6, 7, 8, 9] for further developments involving each of the classes
k-UCV and k-ST). Moreover, in [1] the authors studied the properties of the integral

convolution of the neighborhoods of these classes. To start examine the order of
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convolution consistence connected with the classes k-UUCV and k-S7T we need recall

some basic results about these classes. Let us denote (see [4])

. 2
78;2303;’;)) for 0<k<1
Pk)=3{ & for k=1 , (2.2)
2 for k>1

VE(118) (B2 —D)K2(2)
where t € (0,1) is determined by k = cosh(wK'(t)/[4K(¢t)]), K is the Legendre’s
complete Elliptic integral of the first kind

! dz
£ = [~ =

and K'(t) = K(v/1 — t2) is the complementary integral of IC(¢). Let Q) be a domain
such that 1 € Q; and

O ={w=u+iv: v>=k@u—-1>+k%}, 0<k<oo.

The domain € is elliptic for £ > 1, hyperbolic when 0 < k& < 1, parabolic when
k =1, and a right half-plane when k& = 0. If p,, is an analytic function with p,(0) =1
which maps the unit disc U conformally onto the region §y, then P (k) = p,(0).
Py (k) is strictly decreasing function of the variable k and its values are included in

the interval (0, 2].

Lemma 2.3. (see [4]) Let 0 < k < 0o and let f € k-ST be of the form

f2) =2+ an(k)z" (2] <1),

then
(P (k) 1y

lan (k)| < (n_ 1)! )

n=23,...,
where (), is the Pochhammer symbol defined by

1 (n=0)

(Mn =
AA+1) ..o A+n=1) (n € N).

For k = 0 the estimates are sharp; otherwise only the bound on |az(k)| is sharp.

45



URSZULA BEDNARZ AND JANUSZ SOKOL

Lemma 2.4. (see [4]) Let 0 < k < oo and let f € k-UCV be of the form

2)=z+ Y an(k)2" (|2 < 1),
n=2

then

Py (k
|a””«(k)|§%7 7122,37... ’
n.

where Py (k) is given in (2.2). For k =0 the estimates are sharp; otherwise only the
bound on |as (k)| is sharp.
Theorem 2.5. The following inequalities hold true
(i) logy Pi(k) < S(k-ST,k-ST,k-8ST) <1,
(ii) 14 logy Pri(k) < S(k-ST,k-ST,k-UCV) < 2,
(i) S(k-ST,CV,k-UCY) =1,
) S(k-ST,CV,k-ST) =0,
) S(kE-UCV,CV,k-UCY) =0,

(iv

(v
whenever there exist the above orders of convolution consistence.
Proof. (i) In [4] it was proved that if f,g € k-S7T then f ® g € k-ST so I'(f x g) =
f®g € k-ST. Therefore S(k-ST,k-ST,k-ST) < 1, whenever it there exist. Suppose
that

f(z):g(z):zexp/zw dt = 2+ Py(k)22 + -, (2.3)

where Pj(k) is given in (2.2). Theon f,9 € k-ST and by Lemma 2.3 for the second
coeflicient we have

Py (k) Py (k)
2’

Therefore we deduce that S(k-ST,k-ST,k-ST) > log, Pi(k). Notice that Py (k) is

I°(f xg) € k-ST = < Pi(k) < Pi(k) < 2°

strictly decreasing function of the variable k and its values are included in the interval
(0,2].

(ii) This proof runs as the previous proof.

(iii) Let f € k-ST and g € CV. Then [4] f ® g € k-UCV so I*(f * g) € k-UCV, hence
S(CV,CV,8T) < 1. If f is given as in (2.3) and g(z) = z/(1 — z) € CV, then by

Lemma 2.4
Pi(k) _ Pi(k)

7 ;
(f*xg) € B-UCY = 57 5
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Therefore S(k-ST,CV, k-UCY) =1
(iv), (v) Those proofs run as the previous proof. O

Lemma 2.6. (see [11]) Let F' and G be in CV. Then
f=F and g<G = [fxg=<FxG. (2.4)
Let us consider for o < 1 the class of functions:
P(a) ={p: 2p(z) € A and Re [p(z)] > «a for z € U}.

Lemma 2.7. If h € P(a) and h(z) = 1+ a1z + agz® + - - -, then the function

H(z)=1+ i %"zn (z € U) (2.5)
satisfies
H(z)<1-2(1-a)log(l—=2) (z€lU) (2.6)

and belongs to the class P(1 + 2(a — 1) log2).

Proof. Tt is well known that the function
oo Zn
gz) = ~log(l-2) =3 = (zeu)
n=1

belongs to the class CV of convex univalent functions so g(z) + 1 is convex univalent

too. Thus as in (2.4) we have

2) < Hl—2a)z —2a)z
g(z) +1<g(z) +1 ’

Therefore we can write

h(z) * (g(2) +1) 1+ %”z"

=< 1+ =202 (11:2204)2* * (1 —log(1 —2))

= [1+20—a)(z+2%+ )] * (1 —log(1l — z))
= 1-2(1-a)log(l—2). (2.7)

The function

1+ (1-20)z

H(z) T

x(1—log(1—2))=1-2(1—a)log(l—2) (z€U)
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is convex univalent as a convolution of convex univalent functions and is typically—real

so the geometric properties of the image of H(U/) show that
min {ReH (z) : |2| <1} = H(-1) =1+ 2(a — 1) log 2.
Therefore from (2.7) we obtain that H € P(1 + 2(a — 1) log2). O
Lemma 2.8. [13] Ifa <1,b <1, and f € P(a), g € P(b) for z €U, then
Re[(fxg)(2)] > ¢ for zelU,
were c=1—2(1 —a)(1 —b).
Theorem 2.9. If S(P(a), P(a),P(d)) there exists, then
(i) p < S(P(e), P(a), P(9)) < 1,
log(2log 2
where § =1 —4(1 — a)?log?2, u=— % —0.732...
(if) S(P(a), P(B),P(7)) =0,
where v =1—2(1 — a)(1 - 3),
(iii) 1+ log, L=2U=2) < §(P(a)
(

P(B),P(7)) <0,
where’y<1—2(1—o¢) 1-7).

Proof. (i) Let g € P(a) and let

z)=z+ Z bp2".
n=2
Let h, H be given as in Lemma 2.7. Therefore we have H € P(v), where
vy=142(a—1)log2.

Further, by Lemma 2.8 we have
1 . > anbn B
I (gxh)(z) = 1+;7n 2" =g(z) x H(z)

€ Pl-2(1-a)(1-7))

= P(1—4(1-a)log2), (2.8)
so S(P(a),P(a),P(6)) < 1. Suppose that

h(z)=g(z) =1+2(1—0a)) 2" €Pla
n=1
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It is known that if 1 + a1z + -+ € P(9), then |a,| < 2(1 — §). Therefore, examining
the second coefficients we get

4(1 — a)?

T*(g+ h) € P(O) = =,

<2(4(1 — a)?log2) &

! <2° e s>1 1
s> logy ——
2log2 — g2210g2

and we can see that S(P(a), P(a),P(d)) > p, where = —% =—0.732....
For the proof of (ii) notice that by Lemma 2.8 if f € P(a) and g € P(5),

then Z°(f x g) € P(y)). This means that S(P(a),P(3),P(y)) < 0. If

) = 1+21-a)3 2" € Pla)

n=1
9(z) = 1+2(1-p8)) 2" €P(B), (2.9)
n=1
then for the second coefficient we have
41— ao)(1 = B)

°(f+9) € P(v) = S21-7)e2° 21

5
Therefore we deduce that S(P(«), P(8), P(v)) = 0.

In order to prove (iii) notice that by Lemma 2.8 if f € P(«) and g € P(f),
then

I°(fxg) € P(1—2(1—a)(1—3)) S P().

This means that S(P(«), P(3),P(y)) <0. If f € P(a) and g € P(B) are given as in

(2.9), then for the second coefficient we have

41— a)(1 -5

(1-a)(1—-5)
> :

*(f+xg) € P(v) = T—~

<21 —7) 257t >

Thus we see that

1+ 1og, LU < (pa). P(9). P)
Note that if v <1 —2(1 — a)(1 — 3), then
1+ log, w <0

1—x
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STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume LV, Number 3, September 2010

BERNSTEIN TYPE OPERATORS ON A SQUARE
WITH ONE AND TWO CURVED SIDES

PETRU BLAGA, TEODORA CATINAS AND GHEORGHE COMAN

Dedicated to Professor Grigore Stefan Sdldgean on his 60" birthday

Abstract. We construct some Bernstein-type operators on a square with
one and two curved sides, their product and Boolean sum. We study their
interpolation properties, the orders of accuracy and the remainders of the
corresponding approximation formulas. Finally, we give some numerical

examples.

1. Introduction

Approximation operators on polygonal domains with some curved sides have
important applications especially in finite element method for differential equations
with given boundary conditions and in computer aided geometric design. Such oper-
ators were considered in the papers [14], [15], [13], [2], [5], [19]. Lately, such problems
were studied in [11], [12] using interpolation operators, and in the papers [7], [8], [9],
using Bernstein-type operators.

The aim of this paper is to introduce some Bernstein-type operators on a
square with one curved side and, respectively, with two curved sides. We study three
main aspects of the constructed operators: the interpolation properties, the orders of
accuracy and the remainders of the corresponding approximation formulas.

Using the interpolation properties of such operators, it can be constructed

blending function interpolants, which exactly matches function on some sides of a

Received by the editors: 04.05.2010.
2000 Mathematics Subject Classification. 41A05, 41A25, 41A80.

Key words and phrases. triangle, curve side, interpolation operators, remainders.
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V,(0.h) (x.h) V,(h,h)
r3
r
F2 4
0y) ) (9).y)
r1
V,(0,0) (x,0) V,(h,0)

Ficure 1. The square Dy,.

rectangular region. Important applications of these blending functions are in finite el-
ement method for differential equations problems with Dirichlet boundary conditions

or for construction of surfaces which satisfy some given conditions.

2. Bernstein type operators on a square with one curved side

Let Dy, be the square with one curved side having the vertices V3 = (0,0),
Vo = (h,0), V5 = (h,h) and V4 = (0,h), three straight sides T'y, T's, along the
coordinate axes and I's parallel to axis Ox, and the curved side I'y which is defined

by the function g, such that g(h) = ¢g(0) = h (See Figure 1).

2.1. Univariate operators. Let F' be a real-valued function defined on D} and
(0,9), (9(y),y), respectively, (z,0), (z,h) be the points in which the parallel lines to
the coordinate axes, passing through the point (x,y) € Dy, intersect the sides I's, Ty,
respectively 'y and T's. We consider the uniform partitions of the intervals [0, g(y)]
and [0,h], y € [0,A] :

Ar ={£g(y)| i=0,m}

and

Ap={%h| j=0n}
and the Bernstein-type operators By, and BY defined by
(Bo,F) (2,y) =Y pm.i (2,9) F (9(),v) , (2.1)
i=0
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with
m - % z m—1t
Pt (@3) = (Z) i) -] 22)
respectively,
(BYF) (x,y) = anj (x,y) F (x, Lh) (2.3)
j=0
with

s r) = () (0 0=

Remark 2.1. In Figures 2 and 3 we plot the points (+g¢(y),y), i = 0,m and respec-

K2
m

tively, (z, %h)7 j=0,n,z,y €0,h], form =5 and n = 6.
v, V3 V4 V3
AN
\
|
|
/
T
1 V2 V1 V2
Figure 2. Points Figure 3. Points
(m9®),y), i =0,m. (x,Zh), j=0,n.

Theorem 2.2. If F' is a real-valued function defined on Dy, then:
(i) B2 F =F on Ty UTy,
(i) BYF = F on Ty UT,
and
(iii) (BZei;) (z,y) = 'y, i=0,1;j€N;
(Byesj) (w,y) = {a + ety j e n;
(iv) (Byey) (z,y) ==y, i€N; j=0,1;
(BYesn) (z,y) = o [yQ + @] , 1eN.

Proof. The interpolation properties (i) and (ii) follow by the relations:

1, fori =0,
Pm.,i (07?]) =
0, for i >0,
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and
0, for v < m,
pm,i (g(y)a y) =
1, for i = m,

respectively, by

1, for j =0,
n,j(x,0)) =
0, for 5 >0,
and
0, for j < n,
qn,](x7h) =
1, for j =n.

Regarding the properties (iii), we get
(B;Jr:leij> (l‘,y) :yj(BfﬁeiO>(x7y>7 j EN

and

(Brcoo) (2,9) = D pm.i (@) = 1,
=0

Brew(r,y) = me,i (%, 9) m9(y)
i=0

=0
m—1
X X
BN R
gy 9(y)

Bfex(z,y) = me,i (2,9) [g(y)]

- ('S (V)0 [s] -] e
_m=la W) e 2le) — 4]
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Properties (iv) are proved in the same way. O

Remark 2.3. The interpolation properties of BY ' and BYF are illustrated in Fig-
ures 4 and 5. The bold sides indicate the interpolation sets.

V,(0,h) V,(h,h) V,(0.,h

r2 4
r, ‘
V,(0,0) V,(h,0) V,(0,0) V,(h,0)
Figure 4. Interpolation Figure 5. Interpolation
domain for B} F. domain for By F.

We consider the approximation formula

F=B?

m

F + R%,F.

Theorem 2.4. If F(-,y) € C[0,9(y)], y € [0, h], then

| (R, F) (@) | < [1+ 59| w(F(,y)i0), v eoh],
and
[(ReF) (@) | < (1+ 7%= ) w(F(p):0), v € [0,h],
where w(F(+,y);0) is the modulus of continuity of the function F with regard to the

variable x and

M= : 2.4
Jnax l9(y)| (24)

Moreover, if 6 = 1/\/m then
| (R F) (@) < 1+ F) w(F(y) =), y€[0,h]. (2.5)

Proof. By (BZeo0)(x,y) = 1, it follows that

m

| (B2 F) @) < Y pm(a.y)|[Flay) - FGEL, )|
=0
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Using the inequality
[Fla.y) - FGE2,y)| < (3o =i | +1) w(F(,y):0)

one obtains

|(Ry, F)(@,y)| < ipm,i(%y) (% ‘x - z%‘ + 1) W(F(-y);0)
i=0
( .m Dmi(Z,y) (1’ - i%)z)lm]w(F(.?y); 5)

< [1 "
=0

SR

= [1+% %} W(F(-y):9).

Since,

it follows that

(R ), y)| < 1+ S| w(F(,9)50) < (1+ 5252 ) w(F (- y)50),

with M given in (2.4). For § = one obtains (2.5). O

\/77
Theorem 2.5. If F(-,y) € C?[0,4(y)] then

(R ) ) = DI pe0 e ) for g e 0.g(0),

and
M2
R:LF < My F
|(REF)(x,y)| < o, M20
where M is given in (2.4) and
M;; F = max ’F(i’j)(x7y)’ .
Dy,

Proof. Taking into account that the operator B}, reproduces the polynomials of first
degree, i.e., dex(BZ) = 1, by Peano’s theorem (see, e.g., [17]), it follows
9(y)
(Ry F)(z,y) = Kooz, y; s)F 9 (s,y)ds,
0
where .
Koo(z,y;8) = (x — 8)4 — me7i(m,y) (2% — s)+.
i=0
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For a given v € {1,...,m} one denotes by K%,(x,y;-) the restriction of the kernel

Koo (z,y;-) to the interval [(y - 1)%7 VM] ,l.e.,

m

KZVO(x7y; ) $—8+—melmy (g(y) )

whence,

‘/E*S*mez(ay)(g(y)*s)a s<uw
Kio(z,y;8) = m
= > pmi(@,y) (Z% —8)7 s> .

It follows that K%,(x,y;s) <0, for s > x. For s < z we have

Ky (,y3 9) —x—s—zpmmy{ ]+mexy[ s ).
As,
E:muwy i 5| —a s,
it follows that

K3o(7,y;8) mez z,y) [ aw) _ ] 0.

So, K¥y(x,y;-) <0, for any v € {1, ...,m}7 ie., Koo(z,y;s) <0, for s € [0, g(y)].
By mean value theorem, one obtains

9(y)
(R% F)(z,y) = F*O(,y) Kyo(z,y;s)ds, 0<E<g(y).
0

Since,
9(y) _
Kool, s 5)ds = 22— 9W)]
0 2m
and
lz[z —gW)]l _ ¢*(y) _ M?
= < — 0,h
ogglggi(y) 2m sm —sm’ Y € 1[0, h]
the conclusion follows. O

Remark 2.6. Analogous results are obtained for the remainder of the formula

F = BYF + RYF,
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ie., for F(z,-) € C[0, h] we have
(R @ p)| < (14 55 ) w(F(@,);8),  Fla,) € Cl0,A]

and
(REF) ()| < (1+5)w (F(x’.); ﬁ)

respectively, for F(z,-) € C?[0, h] we have
(R F) @, y) = i FOD @), 0 (0,0

and

h2
|(RZF)(I73J)| < §M02F7 (z,y) € Dy.

2.2. Product operators. Let P, = BZ BY, respectively, Q,, = BYB} be the
products of the operators B¥, and BY.
We have
m n
(PonF) (@,9) =Y > P (#,9) dn,j (Z% y) F(Z%J%)
i=0 j=0
respectively,
m n h
(Q@umF) (2,9)=> > pmii (2. 52) anj (,y) F(#Q(]Z)J%)-
i=0 j=0
Remark 2.7. The nodes of the operators P,,,, respectively @, are given in Figures

6 and 7 and they are in domain [0, M] x [0, h], with M given (2.4).

TN

Y

]

]

]

V /T

Figure 6. The nodes of Figure 7. The nodes of
P’mn- Qnm~

Theorem 2.8. If F' is a real-valued function defined on Dy, then:
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() (PnnF)(Vi) = F(Vi), i=1,..,4
(i) (QumE)(V3) =F(V;), i=1,..,4.
Proof. The proof follows by a straightforward computation. O
Let us consider now the approximation formula

F=P,,F+R F,

where RP

+n 18 the remainder operator.

Theorem 2.9. If F € C(]0, M] x [0, h]) then

M h
|(REuF) )| < (145 45 ) (Fim i)« for (o) € D
where M is given in (2.4).

Proof. We have

(R F [%ZZ 2, Y)4n,; (5 9W),y) | — H9(y))|
P (@, Y)an; (59(y),y) [y — Lh|
=0

+
S|~
Ms :

7

0
o

(@,9)an.; (%g(y%y)]w(F;éhéa).
Since,

Zzpm,i(may)qn,j (%g(y)ay) |l’ - #g(y” S %a

i=0 j=0

SN il y)ang (E9w),y) |y — Lh| < /L=
i=0 j=0

Z me,i(‘ra y)qn,j (%g(y)a y) = 13

i=0 j=0

it follows that

’(Rin )z, y)’ <1+61 \/z[g(y 1 \/y(h y)) (F;51,05).

But
2

M h2
z[g(y) — 2] < — and ylh —y] < T
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with M given in (2.4), whence

1 1
(R ) ()] < (1 5t —%) w(F;61,02)

and
M h 1 1
R F <(1+—=—+= Fi—,— .
| (R )($7y)|_< + 3 +2)w( ’m’ﬁ)
O
Remark 2.10. An analogous inequality can be obtained for the error RY F =
F— Qan
2.3. Boolean sum operators. We consider the Boolean sums of the operators By,
and BY, i.e.,
Smn = By, ® BY = B + BY — B, BY,
respectively,

Ty = BY & B, = BY + B, — BYB®.

Theorem 2.11. If F is a real-valued function defined on Dy, then

SmnF‘BDh, = F|6Dh

and
Tan|3Dh = F|6Dh . (26)

Proof. The proof follows by a straightforward computation. O

For the remainder of the Boolean sum approximation formula,
F = SynF + RS F,

we have the following result.

Theorem 2.12. If F € C([0, M] x [0, h]) then

(R F) (@, y)| <(1

with M given in (2.4).
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Proof. The identity
F—-SwwF=F—-B)F+F—BYF —(F — P,,F)
implies that
(R F) (@, y)| < [ (BLF) (2,9)] + | (BUF(2,y)| + [(Ry, F) (2, y)]

and the conclusion follows. O

Remark 2.13. An analogous inequality can be obtained for the error
R F =F —Ty,F.

3. Bernstein type operators on a square with two curved sides

Let Dy, be the square with the same vertices as in the previous case, Vi =
(0,0), Vo = (h,0), V3 = (h,h) and V; = (0, h), two straight sides I';, Iy, along the
coordinate axes and two curved sides I's and T'y, defined by the function f, with
f(0) = f(h) = h, respectively by the function g, such that g(0) = g(h) = h. (See
Figure 8).

v,0.h) V()

Vl(O, ) o Vz(h,O)

Figure 8. The square Dy,

3.1. Univariate operators. Let F be a real-valued function defined on Dj, and
(0,9), (9(y),y), respectively, (x,0), (z, f(x)) be the points in which the parallel lines
to the coordinate axes, passing through the point (x,y) € Dy, intersect the sides T's,
Iy, respectively I'y and f‘g.

For the uniform partitions of the intervals [0, g(y)] and [0, f(x)] :
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and
Ay ={1f(x)| j=0n}
we consider the Bernstein-type operators:
(BLF) (2,9) =Y pm.i (2,9) F (£9(0),v) , (3.1)
i=0

as in the previous case, with p,, ;, ¢ = 0,m, given in (2.2), and

(BLF) .y qu z,y) F (2, L f(x)) (3.2)

with

Gn (2,9) = (?) () (- 75)""

g

Remark 3.1. In Figures 9 and 10 we plot the points (=-g(y),y), ¢ = 0,m and

J
‘n

respectively, (z (), 5=0,n, form =5 and n = 6.

\

\ 4 V,

4

E\“\——"/ :
w<

4 v, v, ¢ ’ v,
Figure 9. Points Figure 10. Points
(29(). ), i =0,m. (2, Lf(2)), 5 =0n.

Remark 3.2. The operator B, and the remainder of the approximation formula,
Ry F = F — BP F, are studied in Section 2.1.
In a similar way we can prove the following results for Bg{
Theorem 3.3. If F is a real-valued function defined on Dy, then:
(i) BYF = F on T, UTs3,
(i) (Blei) (e,y) =iy, i €Nij = 0,15
(ii) (B eig) (x,y) = 2 {y2 + W} , ieN.
Remark 3.4. The interpolation properties of B%F are illustrated in Figure 11.
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v,0, “V,n.0)

Figure 11. Interpolation domain for B%F .

Also, similarly with the results in Section 2.1, we can prove the following
results for RYF = F — BYF.

Theorem 3.5. If F(z,-) € C[0, f(z)], z € [0,9(y)] then we have

(L F) ()] < (14 £E2 ) w(F(@,);0),  Fla,) € Clo,

and
[(REF)(z,y)] < (14 F)w (F(x, SE %ﬁ) .
If F(z,-) € C?0, f(x)] we have

(RYF)(z,y) = LTI pOD (@ ) pe o, f(z)]

and
- N2 .
‘(RZF)(%y)’ < 8_nM02F7 (.'1,'7y) EDh7
where
N = max x)|. 3.3
e |f(a) (33)
3.2. Product operators. Denote by = B,@Bg, respectively, Qnm = BgB;fl the

products of the operators B, and Bg

We have
(PmnF) Zme ,9) Gn,j (759(),y) F(%g(yx Ly (%g(y)> )
i=0 j=0
respectively,
(QunF) (. V=35 bt (22 2 7()) o (2,0) F (£9(27@),Lf@).
=0 j=0
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Remark 3.6. The nodes of the operators P,,, respectively Qnn are given in Figures
12 and 13 and they are in domain [0, M] x [0, N], with M and N given in (2.4) and
(3.3).

=<
<
<
"5

V. ¢ ¢ V.
1 v, 1 v,

Figure 12. The nodes Figure 13. The nodes
of ]Smn. of Qnm.
Theorem 3.7. If F is a real-valued function defined on Dy, we have:
i) (PunF)(Vi) = F(Vi),  i=1,...4;
(i) (QunF)(Vi)) =F(Vi), i=1,...4;
(iii) | (]:meF) ()| <@+ %+ Hw (F; \/—%7 ﬁ) , for (x,y) € Dy, where
RP F=F—P,.F and M is given in (2.4) and N is given in (3.3). An
analogous inequality can be obtained for Rng =F — Qum.

Proof. The proof is similarly with the proof of Theorem 2.9. O

3.3. Boolean sum operators. Let S, := B2 @ BY and T,,,, = BY © B%, be the
Boolean sum of the operators BZ and BY.

If F is a real-valued function defined on D, then we have
SmnF |8Dh - F|3ﬁh,
and
Tan ’aﬁh - F‘BD,I, .
For the remainder RS, F = F — S,,,F we have:
(RS F)w,y)| <+ Egw (Feop) ) + (104 H)w (Fle, ) &)
M N 11 -
+ (1‘1‘7""‘7)“}(}?7%7\/_5)7 (l’,y)ED}“
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with M given in (2.4) and N given in (3.3).
An analogous result can be obtained for the remainder RZ F = F — T, F.

Example 3.8. We consider the function:
Gentle:  F(z,y) = 5 exp[—3¢ ((z —0.5)2 4 (y — 0.5)?)], (3.4)

that is generally used in the literature, (see, e.g., [16]). In Figures 14 and 15 we plot
the graphs of F, BY F, PynF, SmnF, PynF, SpunF, on Dy, and respectively on Dy,

considering h =1,m =5, n = 6.

Graph of F on Dy,. Graph of BY F on Dy,.

Graph of P, F on Dy,. Graph of Sy, F' on Dy,

Figure 14. Graphs for domain Dj,.
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Graph of F on Dj,.

Graph of ]SmnF on Dh. Graph of S'mnF on Dh.

Figure 15. Graphs for domain Dj,.
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CERTAIN CLASS OF ) STARLIKE HARMONIC FUNCTIONS
ASSOCIATED WITH A CONVOLUTION STRUCTURE

DANIEL BREAZ, GANGADHARAN MURUGUSUNDARAMOORTHY, AND KALLIYAPAN
VIJAYA

Dedicated to Professor Grigore Stefan Sdldgean on his 60" birthday

Abstract. Making use of a convolution structure, we introduce a new class
of complex valued harmonic functions which are orientation preserving and
univalent in the open unit disc. Among the results presented in this paper
include the coefficient bounds, distortion inequality and covering property,
extreme points and certain inclusion results for this generalized class of

functions.

1. Introduction and preliminaries

A continuous function f = u+iv is a complex- valued harmonic function in a
complex domain G if both v and v are real and harmonic in G. In any simply-connected
domain D C G, we can write f = h + g, where h and ¢ are analytic in D. We call h
the analytic part and g the co-analytic part of f. A necessary and sufficient condition
for f to be locally univalent and orientation preserving in D is that |h/'(2)] > |¢'(2)]
in D (see [2]).

Denote by H the family of functions

f=h+3 (1.1)
which are harmonic, univalent and orientation preserving in the open unit disc U =
{z : |z| < 1} so that f is normalized by f(0) = f/(0)—1 = 0. Thus, for f = h+g € H,

Received by the editors: 02.03.2010.
2000 Mathematics Subject Classification. 30C45, 30C50.

Key words and phrases. Harmonic univalent functions, distortion bounds, extreme points, convolution,

inclusion property.
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the functions h and g analytic & can be expressed in the following forms:

h(z) =2+ an2", g(z) = buz" (0< by < 1),
n=2 n=1
and f(z) is then given by
F2) =2+ anz"+ > bpzm (0< by <1). (1.2)
n=2 n=1

We note that the family H of orientation preserving, normalized harmonic univalent
functions reduces to the well known class S of normalized univalent functions if the
co-analytic part of f is identically zero, i.e. ¢ = 0.

For functions f € H given by (1.1) and F € H given by
F(z) =H(2) + G(z) =2+ »_ Ap2" + > _ Bn2", (1.3)
n=2 n=1

we recall the Hadamard product (or convolution) of f and F' by

(fxF)(2)=2z+ Z anAnz"™ + Z bpBnz" (z €U). (1.4)
n=2 n=1

In terms of the Hadamard product (or convolution), we choose F as a fixed function
in H such that (f = F')(z) exists for any f € H, and for various choices of F' we
get different linear operators which have been studied in recent past. To illustrate
some of these cases which arise from the convolution structure (1.4), we consider the
following examples.

(1) If
F(z) :z—i—ZUn(al) z”—&—Zan(al) z" (1.5)

and o, (a)is defined by

OT'(a1 + A1(n—1))...T(ap + Ap(n — 1))
n—DIT(B1 + Bi(n—1))...T(B; + By(n—1))

on(ar) = ( (1.6)

where O is given by

0= (H F(am)> (H F(ﬁm)> (1.7)

m=0
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and then the convolution (1.4)gives the Wright’s generalized hypergeometric function

(see [13])

P\IIQ[(ah Al)a ceey (OépaAp); (617 Bl)7 RN (ﬁtp Bq); Z} =p \I}q[(anvAn)l,p(/an Bn)l,q§ Z]

is defined by

quq[(am An)1,p(Bns Bn)l,q; z]

oo P q o
= Z { H F(am + 'flAm)} { H F(ﬂm +Tle)} % (Z € U)
n=0 \m=1 ’

m=1
which was initially studied by Murugusundaramoorthy (see [9]).
2) If A, = 1(m =1,....,p) and B,, = 1(m = 1,...,q), then we have the

following obvious relationship
F(z)=z+Y Tpz"+ Y Inz", (1.8)
n=2 n=1

where

(al)n,1 N (ap)n,1 1

(B)n-1---(Bg)n-1 (n—1)"

then the convolution (1.4) gives the Dziok—Srivastava operator (see [4]):

r, =

A(ala T 7ap;/617' o »ﬁq;z)f(z) = Hg(ahﬂl)f(z)y

where oy, -+, ap; B1,- -, By are positive real numbers, p < ¢+ 1;p,¢ € NU{0}, and

(), denotes the familiar Pochhammer symbol (or shifted factorial).

Remark 1.1. When p =1,¢ = 1,01 = a,as = 1; 81 = ¢, then (1.8) corresponds to
the operator due to Carlson-Shaffer operator(see [1]) given by

L(a,c)f(z) = (f * F)(2),

where
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Remark 1.2. When p = 1,¢ =0;a1 = n+ 1,as = 1; 51 = 1, then (1.8) yields the
Ruscheweyh derivative operator (see [7]) givenD* f(z) := (f * F)(z) where

e k+n—1 i k+n—1
F(z)=z+ g 2"+ g z". (1.10)
n=2 n=1

n—1 n—1

which was initially studied by Jahangiri et al.(see [7]).
(3) Lastly, if D' f(z) = f * F where

F(z)zz—i—inlz"—i—(—l)linl?” (1>0), (1.11)
n=2 n=1

which was initially studied by Jahangiri et al.(see [8]).
For the purpose of this paper, we introduce here a subclass of H denoted by
S (F; A7) which involves the convolution (1.3) and consist of all functions of the

form (1.1) satisfying the inequality:

Equivalently

Re - S —
{ (L= N[h(2) * H(2) + g(2) * G(2)] + Alz(g9(2) = H(2))' — 2(g(2) * G(2))']

where z e U, 0 < A < 1.
Also denote Ty (F; A, y) = Su(F; A, v) [T where T3 the subfamily of H

consisting of harmonic functions f = h + g of the form

f(2) :z—Zanz"—Fanz” (0<b; <1). (1.14)
n=2 n=1

called the class of harmonic functions with negative coeflicients (see [11])

We deem it proper to mention below some of the function classes which
emerge from the function class Sy (F’; A, ) defined above. Indeed, we observe that if
we specialize the function F' by means of (1.5) to (1.11), and denote the correspond-
ing reducible classes of functions of Sy (F;7), respectively, by WP(X,7v), GF(A,7)
LEAY), Rk, A7), QA ) and S(I, A, 7).
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It is of special interest because for suitable choices of F' from (1.6) we can
define the following subclasses:
(i) If F is given by (1.5) we have (f * F')(z) = WP[a1]f(2) hence we define a class
WE(A, ) satisfying the criteria

AW ()’
fe { TENATIOE: Az(wqp[aﬂf(z))'} =1

where WP [a,] is the Wright’s generalized operator on harmonic functions (see [9]) .
(ii) If F' is given by (1.8) we have (f * F')(2) = HF[a1]f(2) hence we define a class
GP(A,v) satisfying the criteria

2(HP[aa] ()
e { TEAIOE: AZ(Hé’[al]f(Z))’} =7

where HP[a1] is the Dziok - Srivastava operator (see [4]).
(ili) H?([a,1;¢]) = L(a,c)f(2), hence we define a class L£2(), v)satisfying the criteria
2L(a,c)f(2))’ }
R >
‘ { (1= VL@ )f () + (L@ ) f =) [ =
where L(a, ¢) is the Carlson - Shaffer operator (see [1]).
(iv) H?([k + 1,1;1]) = D*f(z), hence we define a class R(k,\,7) satisfying the

criteria

2(D*f(2))
>
e { 3y 4 o >
where D f(2)(k > —1) is the Ruscheweyh derivative operator (see [10]) (also see [7]).
(v) H2([2,1;2 — p]) = Q£ f(2) we define another class Q(), ) satisfying the condition

QL (2))
e { =N (z) + Azmzf(z))'} .

given by
QUf(z) =T(2—p)HDEf(2); (0< p<1),
where Q¥ is the Srivastava-Owa fractional derivative operator (see [12]).
(vi) If F is given by (1.11), we haveD!f(z) = (f * F)(z), hence we define a
class S(I, \,v) satisfying the criteria

(D' (2))
e { - NDf() + Az(le(z»'} =7
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where D!f(2); (I € N = 0,1,2,3,) is the Saligean derivative operator for harmonic
functions (see [8]).

Motivated by the earlier works of (see [5, 8, 13]) on the subject of harmonic
functions, in this paper we obtain a sufficient coefficient condition for functions f
given by (1.2) to be in the class Sy (F; A, 7). It is shown that this coefficient condition
is necessary also for functions belonging to the class 73 (F; A, ). Further, distortion
results and extreme points for functions in 75 (F'; \,7) are also obtained.

For the sake of brevity we denote the corresponding coefficient of F' as C,

throughout our study unless otherwise stated.

2. Coefficient bounds

In our first theorem, we obtain a sufficient coefficient condition for harmonic

functions in Sy (F; A, 7).

Theorem 2.1. Let f = h+g be given by (1.2). If

Z {n—v—'y)\(n— 1)|an| n n+4v—yA(n+ 1)|bn|:| C. <2 2.1)
L=y L=y

n=1
where a; =1 and 0 < v < 1, then f € Sy (F; A, 7).
Proof. 'We first show that if (2.1) holds for the coefficients of f = h+ g, the required

condition (2.1) is satisfied. From (1.13) we can write

. { 2(h(z) * H(2)) = =(9(2) » G)) } -
A

(1 =XN)[h(2) * H(z) + g(2) * G(2)] + Alz(9(2) * H(2))" — 2(g(2) * G(2))’]

() >

A(2) = zh(2) * H(2)) = 2(g(2) * G(2)) = 2+ »_ nCnanz" — Y  nCpbnz"
and

B(z) = (1= N)[h(2) = H(2) + g(2) * G(2)] + Az(9(2) * H(2)) = 2(g(2) = G(2))']

=z+ Y (1=A4+nNCranz"+ > (1 —X—n\)Cpbz".
n=2 n=1
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Using the fact that Re {w} > v if and only if |1 — v+ w| > |1 + v — w|, it suffices to show
that

[A(z) + (1 =) B(2)| = |A(z) — (1 +7)B(2)[ 2 0. (2:2)

Substituting for A(z) and B(z) in (2.2), we get

|A(2) + (1 =7)B(2)| = |A(2) = (1 +7)B(2)|

—|(27)z+i[(n+1 )(1A+m)]cnanz”§1[n(17)(1A+m)]cnbn |
7z+in— (1 +7)( 1—/\—|—n)\)Cnanz"—i[n—O—(1+7)(1—)\—|—n)\)]Cn5n2"|
> (2—W)|Z|—g;[n+(1—7)(1—A+n>\)Cn|an|Z|n—g[n—(l—v)(l—k—m)]cnbnl |2["
=72 —g[n— (L+7)1 = A+nN)]Cnlan| |2]" —g[n+(1+7)(1—>\—n/\)](/‘nlbn |2["
> (1 |z|{ Eif[ A=l ) g 220Dy, | cn|z|"—1}
22(1”{272 {n—’Y;i)\Fy(n—l)mn'Jrn-l-vzz):y(n—l)wn@ cn}.

The above expression is non negative by (2.1), and so f € Sy (F; A, 7). a

The harmonic function

where Z || + Z |yn| = 1 shows that the coefficient bound given by (2.1) is sharp.
The funct1ons of the form (2.3) are in Sy (F; A, ~y) because

Z ( n—7- '7>\( )]Cn|an| + [n+7_1’yi(:_ 1)]Cn|bn>

S el + S el = 2.
n=2 n=1

Next theorem establishes that such coefficient bounds cannot be improved
further.
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Theorem 2.2. Fora; =1 and0<~y<1, f=h+7€ Tu(F;\~) if and only if

[n—~— -1 — -1
1—7 1—7

n=1
Proof.  Since Ty (F; \,7y) C Sy (F; A7), we only need to prove the ”only if” part
of the theorem. To this end, for functions f of the form (1.14), we notice that the
condition

Re { 2(h(z) x H(2))' = 2(g(z) * G(2))/ }m
(1= N[h(z) * H(z) + 9(z) * G(2)] + Az(g(2) * H(2)) — 2(g(2) * G(2))]

Equivalently,
1-=y)z— Y [n—v—9A(n —1)]|Crhanz" — > [n+v —yA(n —1)]Cpb,Z"
Re n=2 — — n=1 20
2= Y (1= X+n\)Chanz®+ 3 (1 — X —n\)C,b, 2"
n=2 n=1

The above required condition must hold for all values of z in U. Upon choosing the

values of z on the positive real axis where 0 < z = r < 1, we must have

1= = X In—7=9(n—1]Cranr™ ™" = 3 [n 47 = yA(n — 1)]Crbpr™
n=2 _ oonzl > 0. (25)
1= > (A =XA4+nN)Chanr 14+ 3 (1 =X —=nA\)Cpb,rn1
n=1

n=2

If the condition (2.4) does not hold, then the numerator in (2.5) is negative for r sufficiently
close to 1. Hence, there exist zo = 7 in (0,1) for which the quotient of (2.5) is negative.
This contradicts the required condition for f € T3((F; \,~y). This completes the proof of the

theorem. O

3. Distortion bounds and extreme points

The following theorem gives the distortion bounds for functions in T3, (F; A, )

which yields a covering result for the class T3 (F; A, 7).

Theorem 3.1. Let f € Ty (F; A, 7). Then for |z| =r < 1, we have

1 1—7 147 9
1 b — — . <
(b= 2 (2 - ) < 1562
< (1+b)r+— - by ) 2.
s (tbrs (2—7—7A 2—y—7A 1>T
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Proof. We only prove the right hand inequality. Taking the absolute value of f(z),

we obtain

[f(2) =2+ Z anz"™ + ZE,LE”
n=2

n=1

< (L4 bo)lzl + ) (an +ba)l2]"

n=2

<A+b)r+ Y (an +by)r?

n=2
1-7) ((Q’Y’Y)\)Cz (2—7—7N)Cs > 2
< (14 by)r + a, + b, | r
(1+81) (2—7—7A)Cz,;2 (1=) (1=7)
(1—y)1 1+~ 2
< _
_(1+b1)7"+(2_’y_7>\)02 1 1—’yb1 /s
1 1—~ 14~ 9
< — - .
_(1+b1)7’+02 (2—’)/—'7)\ 2_7_7)\b1>r

The proof of the left hand inequality follows on lines similar to that of the
right hand side inequality. O

The covering result follows from the left hand inequality given in Theorem 3.1.

Corollary 3.2. If f(z) € T (F; A, 7), then

_ 20, — 11— [(1+M)Cs — 1]y 2C; —1—[(1+N)Cs + 1]y
{w'm - 2—7=7NC2 - 2= —=N)C2 |b1‘} <1

Proof. Using the left hand inequality of Theorem 3.1 and letting r — 1, we prove

that
1 1—x 1+7
U=h-g (2—7—7/\ 2—7—7Ab1)
1
:(1*51)*m[1*’7*(1+7)51]
(A =0)G2—y =) -0 -1+ T+)h
Ca(2=7=7A)
_ 202—1—[(14—)\)02—1}’7_ 20 — 1 —[(14+ N)C2 + 1]y
_{ 2—7-7NC, (2—7—=7NCs b1|} <O
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Next we determine the extreme points of closed convex hulls of T3 (F; A, )
denoted by clcoT (F; A, 7).
Theorem 3.3. A function f(z) € T (F; N\, ) if and only if

:Z (Xnhn(2) + Yngn(2))

where
B (2) = 2 hn(2) Lo " (> 2)
zZ)=2z,hp(z) =2 — z3 n = az),
! ’ [n—v—~A(n—1)]|C,
_ L—v =n.
92 = 2 o )0,
(n>2),) (Xp+Y,) =1, X, >0and Y, >0.
n=1

In particular, the extreme points of Ty (F; A7) are {h,} and {g,}.

Proof. First, we note that for f as in the theorem above, we may write

f(Z) = Z (th ( ) + Yngn( ))
B oo L o 1_7 B
- T; Ko+ ¥n) nz:? wln = — A= 1)]Cy "

o0
Y*TL
;n—i—'y vAn—l)]C "
Then
in[n—y—vA(n—l)]Cnm |+in[n+7—7)\(n—1)}0n|b |
n=2 1 v n=1 1—’}/
=2 Xat) Ya
=2 n=1
=1-X, <1,

and so f(z) € clecoTy (F; N, 7).
Conversely, suppose that f(z) € clcoTy(F; A, 7). Setting
nln —~y —yA(n —1)]|C,

Xn = T—~ lan], (0< X, <1,n>2)
Yn:n[n+7 17 (n-1)C bul, (0<Y, <1,n>1)
-7
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and X; =1— > X, — Y Y,. Therefore ,f(z) can be rewritten as

n=2 n=1

o0 o0
z)=z— Z anz™ + Zgnfn
n=2 n=1
o0

— 1_7 z"
_Z_nz::z[n 7 =A(n - 1)]C Lt +Zn+v w\n—l)]C Iz
:Z+Z(hn( _ZX +Zgn _Z

n=2
:z{l—ZX ZY}+Zh )X, +Zgn

Z 2) + Yogn(2)),

as required. O

4. Inclusion results

Now we show that 73 (F;A,7) is closed under convex combinations of its

member and also closed under the convolution product.
Theorem 4.1. The family T (F; \,7y) is closed under conver combinations.

Proof. Fori=1,2,..., suppose that f; € Ty (F; \,7) where

o0 oo
z)=z— E a; n2" + E binZ".

n=2 n=2
Then, by Theorem 2.2
2 nn—vy—y\(n— n—|—'y 7)\(71—1)}0
bin <1 (4.1)
D 3 )

o0
For > t; =1, 0 <t; <1, the convex combination of f; may be written as
i=1

itifi(z) :z—z (Ztam> z”+z (Zt bm>

n=2
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Using the inequality (2.4), we obtain

= nln — Aln — = nln —An—=1)]C, [
3 nn -~ 177 D] <Ztam> +3 [n+v 177; ) (thn>

n=2 n=1 i=1
B > . > nln—v—~vA(n —1)]C, . > nn+vy—vx(n—1)]C, .
_ztz(z LR AL,
1=1 n=2 n=1
St
i=1
and therefore Y t;f; € Tr(F; X, 7). O

=1

Now, we will examine the closure properties of the class 73(F'; \,7) under
the generalized Bernardi-Libera-Livingston integral operatorL.(f) which is defined
by

c+1
ZC

Lo(f) = /tc L)t e > —1.

0
Theorem 4.2. Let f(z) € T (F; N\, ). Then L.(f(2)) € Tr(F; N, 7)

Proof. From the representation of L.(f(z)), it follows that

Lo(f) =< jtc-l () + 9(0)] at.

¢
0

_ C;;l O/t° 1<t—nzza t”)dt—i—/ (Zb t") dt

0
oo oo
c+1 n c+1
= — —_— b n-

Using the inequality (2.4), we get

> n[n—fy—'y/\(n—l)](c+1|a D+n+777>\(n—1)(c+1‘b )
1—x c+n " 1—x c+n " "

Il
-

n

NE

< <n[n’yfy)\(n1)]|an+n+’y’y>\(n1)bn>c

d 1—7 1-—

(1 =), since f(2) € Tp(F; A, 7).

3
Il

<

[\~

Hence by Theorem 2.2, L.(f(2)) € T (F; A\, 7). O
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Concluding remarks. For suitable choices of F(z), as we pointed out the

S1(F; A\, 7) contains, various function class defined by linear operators such as the

Carlson-Shaffer operator, the Ruscheweyh derivative operator, the Saldgean opera-

tor,

the fractional derivative operator, and so on. When A = 0 the various results

presented in this paper would provide interesting extensions and generalizations of

those considered earlier for simpler harmonic function classes(see [7, 8, 9]. The details

involved in the derivations of such specializations of the results presented in this paper

are fairly straight- forward, hence omitted.
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ONE-SIDED CLEAN RINGS

GRIGORE CALUGAREANU

Dedicated to Professor Grigore Stefan Sdldgean on his 60" birthday

Abstract. Replacing units by one-sided units in the definition of clean
rings (and modules), new classes of rings (and modules) are defined and

studied, generalizing most of the properties known in the clean case.

1. Introduction

For a ring with identity, we denote by U(R) the units, U;(R) and U, (R) the
left respectively right invertible elements of R (shortly, right-units or left-units), and
by N(R) the nilpotent elements.

An element in a ring R is right (or left) clean if it is a sum of an idempotent
and a right (respectively left) unit. A ring R is right clean if all its elements are right
clean and it is left clean if R°P is right clean. Moreover, it is one-sided clean if each
element is left or right clean. These classes are included in the class of almost clean
rings considered by McGovern ([8]: every element is a sum of a non-zero divisor and
an idempotent) and studied further (in the commutative case) by Ahn and D. D.
Anderson ([1]).

Further, a ring R is weakly right exchange if for every element a € R there are
two orthogonal idempotents f, f with f € aR, f’ € (1 — a)R, such that f + f' = 1.

In this paper the main results are the following

o Let e =e € R be such that eRe and (1 —e)R(1 — e) are both right clean

rings. Then R is a right clean ring.

Received by the editors: 01.03.2010.
2000 Mathematics Subject Classification. 16L30, 16U60, 16D60.

Key words and phrases. Right clean, weakly right exchange rings and modules.
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o Any ring R = U;(R) UU,(R) U N(R) is both right and left clean.

o Any right clean ring is weakly right exchange.
and,

e A ring R is weakly right exchange if and only if for every a € R there
are elements b,c € R such that bab =b, ¢(1 —a)c =¢, ab(l —a)c =0 =
(1 —a)cab.

Finally results on strongly respectively weakly one-sided clean rings are given.

2. Right clean rings

In the sequel we will merely state our results for right clean rings, but most
of them have a left or one-sided analogue.

Obviously Dedekind finite (and in particular abelian or commutative) one-
sided clean rings are (strongly) clean.

The following is immediate from definitions

Lemma 2.1. (i) Every homomorphic image of a right clean ring is right clean.

(i1) A direct product of rings [[ R; is right clean if and only if each R; is right

clean.
The next result is elementary. We supply a proof for later reference.
ol ) . A C
Proposition 2.2. Let A, B be rings, ACp a bimodule and R = . Then
0 B
R is right clean if and only if A and B are right clean.
a ¢
Proof. 1If R is right clean, the maps f: R — A, f =aand g: R —
0 b
a c¢
B, g = b are ring epimorphisms, and so A, B are right clean by (i),
0 b

previous Lemma.

a c
Conversely, let € R. Then there are u, € Uj(A), e, = €2 € A with
0 b

a = ug + e, and a similar decomposition for b. Suppose v,u, = 1 = vpup. Clearly
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- 2 -
a c U c e 0 e 0 e 0
= ¢ + ¢ where “ = ¢ and
0 b 0 Up 0 €p 0 €p 0 €p
Ug € Vg —VaClp U, ¢
€ U;(R). Indeed, is a left inverse for . O
0 Up 0 (U 0 Up

f-{emark 2.3. This property fails for one-sided clean rings A and B.

Proposition 2.4. Let ¢ = e € R be such that eRe and (1 — e)R(1 — €) are both

right clean rings. Then R is a right clean ring.

a T
Proof. Using the Pierce decomposition of the ring R, let € R =
Yy
eRe eR(1—e) .
For wvju = e and a = f + u in eRe, viv =
(1—e)Re (1—e)R(1—c¢)
. a l‘ .
l—eand b —yuyz = g+ v in (1 —e)R(1 — e), decomposes into
y b
[0 u x . . .
+ and all we need is a left inverse for the latter. But this
0 g Yy v+ yux
) e —uix up 0 e 0 U] + UL TUIYU]  —ULTU]
is = g
0 1-—e 0 »m —yu; l—e —V1YUy U1

By induction, we have
Theorem 2.5. If 1 = e;+ex+...+e, in a ring R where e; are orthogonal idempotents
and each e;Re; is right clean, then R is right clean.

Hence
Corollary 2.6. If R is right clean then so is the matriz ring M, (R).

As in the clean case, we were not able to prove that corner rings (even full)
of right (or left or one-sided) clean rings have the same property.

Only recently, classes of rings defined by equalities like: R = U(R) U Id(R)
or, R=U(R)UId(R) U —Id(R) (here Id(R) denotes the idempotent elements of R),
have received a great deal of attention (see [2] and [1] for the commutative case). In
a similar vein, examples of right clean rings are provided by the next Proposition.
Proposition 2.7. Any ring R = U;(R) UU,(R) U N(R) is both right and left clean.
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Proof. We first show that every right unit is right clean. Let a € Uj(R) and
ba = 1. Then e = ab is an idempotent, so is 1 — e, and using the decomposition
a=(1-e)+ (a+ (e —1)) we have to find a left inverse for a + (e — 1). But this is
ebe + (e — 1) since (ebe+ (e —1))(a+ (e —1)) = ebea+ea—a+0+1—e =1 (because
ebea = abbaba = ab = e).

Coming back to the proof of the Proposition, if a € N(R) it is well-known
that 1 —a =wu € U(R) and so a = 1 — u is even strongly clean. If a € U;(R) UU,.(R)

we just use the previous result and its left analogue. O

Remark 2.8. 1) In general (a + (e — 1))(ebe + (e — 1)) = 1 fails (equivalently
(e—1)(b+1)=0).

2) A slightly larger class is suggested by the following example which can be
found in David Arnold’s 1982 book ([3]): ” In the endomorphism ring of a torsion-free
strongly indecomposable Abelian group of finite rank, every element is a monomor-
phism (i.e., a non-zero divisor) or nilpotent”.

3) Recently, H. Chen (see [5]) has proved that regular one-sided unit-regular
rings are (though he does not consider this notion) exactly one-sided clean. So these

are also examples for the notion we deal with.

3. Right clean modules

For the sake of completeness we first restate some results given in [4]: let

f,e € S =FEnd(Mg) with €2 = ¢, A = kere and B = ime.

Proposition 3.1. f — e is a monomorphism if and only if the restrictions f|a,
(1= f)|p are monomorphisms and fAN (1 — f)B =0.

f — e is an epimorphism if and only if and fA+ (1 — f)B= M.
Lemma 3.2. f —e is a unit in S if and only if the restrictions fla, (1 — f)|p are
monomorphisms and fA® (1 — f)B= M.

Observe that the (double) restriction (for the domain - we use | and for the

—_~—

codomain - we use”) ?|VA :A— fAand (1—f)|p: B — (1 — f)B are always

onto, so fla, (1 — f)|p are monomorphisms if and only if m and (1 — f)|p are
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isomorphisms. If fAN(1—f)B =0, then u = ﬂ;@(l —f)lp: A®B — fA®(1-f)B
is an isomorphism too (the codomain sum is direct, but not necessarily equal to M).

Therefore, our analogues are

Lemma 3.3. Let f,e € S = End(Mg) with €2 = e, A = kere and B = ime. Then
f—e € Ul(S) if and only if the restrictions fla, (1 — f)|p are monomorphisms,

fAN (1= f)B =0 and the monomorphism f|vA ® (1 - f)lp €S has a left inverse in
S.

Proposition 3.4. An element f € End(MRg) is right clean if and only if there is a
R-module decomposition M = A @ B such that the restrictions fla, (1 — f)|p are

monomorphisms, fAN(1— f)B =0 and the monomorphism ﬂ;@ 1-0)p: M—
M has a left inverse in End(MEg).

Remark 3.5. 1) Due to Theorem 2.5, finite direct sums of right clean modules are
right clean.
2) Using Lemma 2.1, if Mp = A® B and Hompg(A, B) = 0, then M is right

clean if and only if A, B are right clean.

4. Weakly exchange rings

A ring is called (right) exchange (or suitable in [10]) if for every equation
a + a’ = 1 there are idempotents ¢ € aR and ¢’ € a’R such that e + ¢’ = 1.

Since these idempotents are complementary, they must be orthogonal (and
commute).

Recall that an idempotent e € R is isomorphic to 1 if and only if there are
elements u,v € R with vu = 1 and e = uv (equivalently, eR = R as right R-modules).
If e # 1, such a ring is not Dedekind finite.

We define weakly right exchange rings R by the conditions: for every equation
a+ a’ = 1 there are two orthogonal idempotents f, f with f € aR, f' € o’R, such
that f + f' = 1 (obviously, since the idempotents f, f’ are orthogonal, their sum is
also an idempotent).
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According to the above definition, there are elements u,v € R with vu = 1

and f+ [ = uv.
Remark 4.1. We must require these two idempotents to be orthogonal. Indeed, if
we require only vu = 1 and f+ f' = wv (ie., f+ f' = 1), then f+ f’ is an idempotent
(uwvuv = wv) and this implies f + f' = (f + )2 = ff' + f'f + f + f' and so only
ff' + f'f =0 (so not orthogonal nor commuting).

We can naturally associate with these (orthogonal but not necessarily com-
plementary) idempotents two complementary idempotents, two by two isomorphic,
namely vfu and v [ u.

Dofutvfu=o(f+ fu=vuvu=vu=1

2) (vfu)? =vfuvfu=vf(f+ f)fu=vfu (and so is vf'u)

3) vfu = f and vf'u = f": indeed, vfu = (vfu)? = vfuvfu = wwfuvf =
(f + f)F(f + J)f = f, and similarly, vf'u = f.

Remark 4.2. Related to lifting idempotents, since f € aR and f’ € (1 —a)R, all we

can check is
f-af+[)=Q0-a)f —af €(a—a*)R.
Obviously, if v is a unit, f + f/ = 1 and f —a € (a — a®)R shows that
idempotents can be lifted.
Theorem 4.3. Any right clean ring is weakly right exchange.

Proof. 1If a = u + e with €2 = ¢ and vu = 1 (but not necessarily uv = 1), since

(uev)?

= uevuev = uev, we consider the idempotent
' = uev.
Similarly, (u(1 — e)v)? = u(1 — e)vu(l — e)v = u(1 — €)v and we denote

f=u(l—-e)v=uv — uev.

Take b =ww + (1 —a)v = (1 —e)v and ¢ = wv — av = —ev. Then ab = f,
(I1—a)ce= f"andso f € aR and f' € (1 —a)R.
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Thus ff' = f'f = 0 (these idempotents are orthogonal) and the sum f+ f' =
wv (is an idempotent) isomorphic with 1.

Moreover vfu = 1 —e is idempotent (and f, f are isomorphic to complemen-
tary idempotents: f =1 —e, and [’ X e). O
Remark 4.4. In a right clean ring the following is also true:

(a) We have bf = b (i.e., bab = b) and bf’ = 0 and similarly c¢f’ = ¢ (i.e.,
c¢(l—a)e=c) and ¢f =0. We also have f'u = (1 — f)u and vf’ =v(1 — f).

(b) As in the clean initial case, ¢ = b+v, and a®> —a = (a— 1+ f)u = (a— f')u,
and since this relation cannot be solved for f —1+a or for f' —a (in order to obtain
f—14aor f'—ain (a —a?)R), idempotents cannot be lifted modulo any right (or
left) ideal.

Actually, since f € aR and f’ € (1 — a)R, all we can check is

f-alf+f)=0-a)f —af €(a—a’)R.

(c) Obviously, if u is a unit, f + f' =1 and f — a € (a — a®)R shows that

idempotents can be lifted.

It is well-known that exchange rings were ring theoretic described by Monk

(see [9]). Here is the characterization for weakly right exchange rings.

Theorem 4.5. A ring R is weakly right exchange if and only if for every a € R there
are elements b,c € R such that bab = b, ¢(1 —a)c = ¢, ab(l —a)e =0 = (1 — a)cab.

Proof. If R is weakly right exchange, take orthogonal idempotents f = at € aR and
f'=({1—=a)s € (1 —a)R. Then b = tat satisfies bab = b, ab = f and ¢ = s(1 — a)s
satisfies ¢(1 — a)e = ¢ and f' = (1 — a)e. Since f, f’ are orthogonal, we also have
ab(l1—a)c=0= (1—a)eca and (1 —ab)(1 —a)c+ab=(1—f)f' + f=f+ f'is (an
idempotent) isomorphic to 1.

Conversely, f = ab and f' = (1 — a)c are readily checked to be orthogonal
idempotents and f+ f' = (1 —ab)(1 —a)c+ ab is (an idempotent) isomorphic to 1. O

Similarly (right exchange and left exchange properties are equivalent), an
open problem remains: are weakly right exchange rings also weakly left exchange?
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5. Strongly one-sided clean rings

All the above one-sided clean notions have corresponding strongly versions.
Unlike the strongly clean version, here ue = eu does not imply v~'e = eu™!.

Therefore R is strongly right clean if it is right clean, ue = eu and ve = ev.

Proposition 5.1. Let €2 = e € R. An element a € eRe is strongly right clean in R

if and only if a is strongly right clean in eRe.

Proof. First notice that if a € eRe then a(l —e) = (1 —e)a =0 and so a = ae =
ea = eae.

If a = g + u is strongly right clean in R, then (g + u)(1 — e) = 0 implies
l—e = —vg(l—e) = —gv(1—e) and so (by left multiplication with g) g(1—¢) = 1—e.
Thus (using also (1 — e)a = 0) eg = ge. Therefore eg = ege = ge is an idempotent in
eRe. Since a and g commute with e, so is u = a — g. Hence eu = eue = ue has eve
as left inverse in eRe. Finally, a = eae = e(g+u)e = ege + eue is strongly right clean
in eRe.

Conversely, if @ = f + v is strongly right clean in eRe with fv = vf, f? =
f € eRe and w € eRe, wv = e then a = (a — u) + u is strongly right clean in R as
w+ (1 —e)is a left inverse for u =v+ (1 —e) and a —u = f + (1 — e) is idempotent
(sum of two orthogonal idempotents). O
Remark 5.2. The converse does not use ev = ve from our definition.

Corollary 5.3. Corner rings of strongly right clean rings are strongly right clean.

Further, strongly right clean is not a Morita invariant property. The example
given in [11], i.e. the localization Z) can be used in order to disprove: R strongly

right clean implies M, (R) strongly right clean.

6. Weakly left-clean rings

We can get even closer to almost clean rings by weakening our right clean
elements as follows: an element a € R is weakly left-clean if it is the sum of an
idempotent e and a left nonzero-divisor (or left cancellable element) u of R, and a
ring is weakly left-clean if all its elements share this property.
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Remark 6.1. For regular rings, right clean and weakly left-clean coincide (Ex. 1.4,
7).

In this setting, the weak left-clean modules are characterized by Proposition
4.4 in [4].

However, since images of non-zero divisors may not be non-zero divisors,
properties for such rings are worse, compared with the right clean rings.

Direct products of weakly left-clean rings are weakly left-clean.

Homomorphic images of weakly left-clean rings may not be weakly left-clean.

Thus, (see Lemma 2.1) if A, B are rings, aCp a bimodule and R =
A C

0 B
clean.

, then R weakly left-clean generally does not imply A and B weakly left-

Nevertheless, the converse is true:

Proposition 6.2. If A, B are weakly left-clean rings and 4Cp is a bimodule then

A C | .
R = is also weakly left-clean.
0 B
Proof.  With the notations in the proof of Lemma 2.1, if u,, up are left non-zero
Uy C
divisors, so is in R.
0 Up

x
Indeed, it is readily checked that matrices of the type Y with left
0

non-zero divisors x and z, are left non-zero divisors in R. O
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CONVOLUTIONS OF UNIVALENT FUNCTIONS WITH NEGATIVE
COEFFICIENTS USING A GENERALIZED SALAGEAN OPERATOR

ADRIANA CATAS

Dedicated to Professor Grigore Stefan Sdldgean on his 60" birthday

Abstract. The object of this paper is to derive several interesting prop-
erties of the class 7;(n,v,a, A) consisting of analytic and univalent func-
tions with negative coefficients. Integral operators and modified Hadamard
products of several functions belonging to the class 7;(n, v, a, A) are stud-

ied.

1. Introduction and definitions

Let N denote the set of nonnegative integers {0,1,2,...,n,...}, N* = N\ {0}

and let N;, j € N*, be the class of functions of the form

fE)=z2- Y a¥, a>0k>j+1, (1.1)
k=j+1

which are analytic in the open unit disc U = {z € C: |z| < 1}.
We define the following generalized Saldgean operator which has been intro-

duced by Al-Oboudi in [1]

Df(z) = f(2) (1.2)
Dif(2) = (1= N f(2) + Azf'(2) = Daf(2), A>0 (1.3)
DX f(2) = DA(DYT f(2)). (1.4)

Received by the editors: 26.04.2010.
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Key words and phrases. Analytic function, univalent function, generalized Saldgean operator, negative

coefficients, modified Hadamard product, integral operator.
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If f is given by (1.1), then (1.2), (1.3) and (1.4) yield to a convolution with

the functions
o0

b A) =z— Y [+ (k= 1A"2F
k=j+1
M) = o\« f(2) =2— Y c(n,N)z"
k=j+1
where
ce(mA) =1+ (k—1DA", A>0,n=01,2,... (1.5)

When A =1 we get Sdlagean differential operator [8].
Definition 1.1. [6] Let o,y € [0,1), n € N, j € N*. A function f belonging to N, is

said to be in the class 7;(n,v, a, ) if and only if

Dy f(2)/D3f(2) N
VDY f(2)/DYf(2) 41—y~

Re zeU. (1.6)

Remark 1.2. The class 7;(n,v, o, A) is a generalization of the subclasses

i) 71(0,0,,1) = T*(a) and 71(1,0,,1) = C(«) defined and studied by
Silverman [10] (these classes are the class of starlike functions of order « with negative
coefficients and the class of convex functions of order a with negative coeflicients
respectively);

ii) 7;(0,0,, 1) and 7;(1,0, o, 1) studied by Chatterjea [4] and Srivastava et
al. [11];

iii) 71(n,0,,1) = 7 (n, «) studied by Hur and Oh [7];
iv) 71(0,7v,,1) = T(y,0) and T1(1,7,,1) = C(v,«) studied by Altintas
and Owa [2];

v) T1(n, v, a, 1) studied by Aouf and Cho [3], [5].

Theorem 1.3. [6] Let the function f be defined by (1.1). Then f belongs to the class
Ti(n,v, o, A) if and only if

SR+ k=DA {1+ (k-DA—all + (k= DA}ax <1 —a.  (L.7)
k=j+1
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The result is sharp and the extremal functions are

11—«
00 B oy s VP Gy e e s v WA L

with k> j + 1.

2. Main results

Let the functions f; be defined for i =1,2,...,m, by
z)=z— Z almzk, ar; >0, jeN* zeUl. (2.1)
k=j+1
Theorem 2.1. Let the functions f; defined by (2.1) be in the class T;(n,~, o, ), for
everyi=1,2,...,m. Then the functions h defined by

=Y e, 20 (2:2)
=1

where
m

> di=1, (2.3)

=1

is also in the same class T;(n,vy, a, \).

Proof. According to the definition of h, we can write

h(z) =z - Z (Zdakz>

_]+1
Further, since f; are in the class 7;(n,v, o, A) for every ¢ =1,2,...,m we get
> e N1+ (k= DA —a[l+y(k— DAtap; <1 -a,
k=j+1

where ¢ (n, ) is given by (1.5).

Hence we can see that

i k({14 (k—DA—a[l +~(k (Zd am) =

k=j+1
= d; Z (M {1+ (kE—DA—a[l+~v(k—DA}ag,; | <
i=1 k=j+1
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(1-a« i

which implies that h is in T;(n, vy, a, A). O

Theorem 2.2. Let the function f defined by (1.1) be in the class T;(n,v, o, A) and
let ¢ be any real number such that ¢ > —1. Then the function F defined by

P(z) = <1 /0 ==L F(t)dt (2.4)

ZC
also belongs to the class Tj(n,v,a, A).
Proof. From the representation (2.4) it follows that
2)=2z— Z b z*
k=j+1

where

Therefore, we get

Y el V{14 (k= DA —all +4(k = DA}y =
k=j+1
= 3 Cr(n — — — C+1 a
_k;l e (n, M){1+ (B —1)A [1+~(k—=1)N} (c+l<;> <

< i {1+ (k= DA —al +9(k—1)A}tar <1 -
k=j+1

Hence, by Theorem 1.3, F' € T;(n,v, a, A). O
Theorem 2.3. Let ¢ be a real number such that ¢ > —1. If the function F belongs to
the class T;(n,~y,a, X) then the function f defined by (2.4) is univalent in |z| < R*,

where

Rt — i | € Denn V{1 + (k= DA — ol +5(k = DE]} T
ok (1—a)(c+k)k

(2.5)

and ci(n, A) is given by (1.5). The result is sharp.
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Proof. Let

o
F(z)=z— Z apz®,  ap > 0.
k=j+1

It follows from (2.4) that

floy = ZUETEN 5 Gaype

c+1

In order to obtain the required result, it is sufficient to show that

|f'(z) — 1| < 1 whenever |z| < R*.

Now,
> k(e+k) N
/ k—1
|f(z) -1 < Z ﬁaﬂz\ :
k=j+1
Thus, |f'(z) =1 < 1if
o k(c+k) k—1
1. 2.
Z et 1 alz|"7 < (2.6)

k=j+1

But, from Theorem 1.3 we have

i eu(n, {1+ (k= DA — afl +y(k — 1)A]}ak <1 (2.7)

M) l1-—a
Hence, by using (2.7), (2.6) will be satisfied if

k(c+k) 21 < ck(m {1+ (K — DA —a[l +v(k — 1)A]}

c+1

l1—«

that is

1

(c+ Deg(n, N1+ (E—DA—a[l+~y(k—1A]}]*T
(1—a)k(c+k) '

Therefore, f is univalent in |z| < R*.

2| <

The sharpness follows if we take

(1—-a)(c+k) &

fi(z) =2 — (c+ Dek(n, {1+ (k— DA — a1 +~y(k — 1)/\]}Z

k>j+1, ck(n,A) is given by (1.5). O
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Let the functions f;, (i = 1,2) be defined by (2.1). The modified Hadamard
product of fi and f5 is defined here by
oo
fixfa(z)=2— Z ap1ag 22", (2.8)
k=j+1
Theorem 2.4. Let the function fi defined by (2.1) be in the class T;(n,~y,a, X) and
the function fo defined by (2.1) be in the class T;(n,v,3,X). Then fi * fa belongs to
the class Tj(n,~, 6, \) where

6= 6(”7770476’ )‘) = (29)

A =71 =) = B)
(L4 NI+ A — a1+ N[+ Aj = B(L+ 7N = (L + 701 —a)(1 = B)

The result is best possible for the functions

-, l-a j+1
L&) == e Taa s A s (2.10)
and
fa(2) =2 — 1 -0 i+l (2.11)

(L4 A =B+ jA)](1 +jA)"
Proof. Employing the technique used earlier by Schild and Silverman [9], we need

to find the largest J such that
i cr(my {1+ (k= DA = §[L +~v(k — 1)A]}

' 1-% ag1ak2 < 1.
k=j+1
Since
Z ck(n,)\){l—l—(k—l)/\—a[l—l—”y(k—l)/\}}akl <1 (2.12)
- 11—« ’
k=j+1
and
> 1 —DA-g[1 -1
- 1-p ’
k=j+1
by the Cauchy-Schwarz inequality, we have
Z ek (n, VA, a, \ E)B(v, B, M k) - Jag 1are < 1 (2.14)
k=j+1
where
Ay, o A k) = 1+ (k—DA—a[l+~(k—1)}

l1—«
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and
1+ (k—DA=B[1+~(k—-1)A]
1-0 ’

B(v, B8, k) =
Thus it is sufficient to show that

(1— 5)\/A('y,a,)\; k)B(v, 8, \; k)
Vak a2 < T4+ (k—DX=06[1+~(k—-1))

Note that

1
Ck(n7 >‘) \/A(’% «, )‘7 k)B(Vv 67 )‘7 k) .

Consequently, we need only to prove that

Vagiags <

1 . (1=9)VAM, o, X k) B(1, 3, A k)
e A A o N BO AR 1+ (o= DA— o[+ 5(k— DA

which is equivalent to

Ak =10 =71 =a)(1 =)

O B % k) B N ) — L (k= DA — @) (1 = )
where
Baly, N k) =1+ (k — 1)A — a[l +y(k — 1)A] (2.15)
and
Es(y, A\ k) =1+ (k— 1)\ — B[1+~(k — 1A (2.16)

If we denote
S(”?Waaaﬂa)\; k) = (217)

L Ak~ 1)(1 —3)(1 —a)(1 - )
ex(m. N Ea(7, X F)Es (7. 3 £) — [1+ 7k~ DA(1 — a)(1 — )

one obtains that S(n,v,a, 3, A\, k) is an increasing function of k, k > j + 1. Letting

k=j+11in (2.17), we obtain
6 < S(n,y,a,8,A5 +1).

This completes the proof of Theorem 2.4. O
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Theorem 2.5. Let the function f;, (i = 1,2) defined by (2.1) be in the class
T;(n,v,a, X). Then fi* fa(z) belongs to the class T;(n,~, 3, \) where

B = B(n775 «, A) = (218)

JA1 —a)*(1 —7)
L+ + A = a(l + AP = (1= ) (1 +95A)°
The result is sharp.

Proof. Employing the technique used earlier by Schild and Silverman [9], we need
to find the largest § such that

o0

> e N1+ (k= DA = BlL+9(k — DA }agare <1 - 8.
k=j+1

The proof is the same as in the previous theorem.

Finally, by taking the functions f;, given by

-« . )
MO = e a0 S B

we can see that the result is sharp. 0
Corollary 2.6. For fi; and fs as in Theorem 2.4, the function
h(z)=z— Z NIRRT (2.20)
k=j+1
belongs to the class Tj(n,v,a, A). The result is sharp.

Proof. This result follows from the Cauchy-Schwarz inequality. It is sharp for the

same function as in Theorem 2.4. O

Corollary 2.7. Let the functions f;, (i = 1,2,3) defined by (2.1) be in the class
Ti(n,v,a,A). Then fi* fo* f3 belongs to the class T;(n,v,n, X) where

n=mn(n,v, o) = (2.21)

JAL = a)*(1 =)
(L4522 1+ G2 = a(l+ AP = (L+ 7 A) (1 — o)

The result is best possible for the functions

1—« ;
(2) =2 — It i=1,2,3. 2.22
S T P ey o)) ey 2
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Proof. From Theorem 2.5 one obtains that fi * fo belongs to the class 7;(n,~, 8, \)
where (3 is given by (2.18). By using Theorem 2.4 we get f1 * fo * f3 belongs to the
class 7;(n,~y,n, ) where
n=n(n,v,o B, =
AA=71(A -1 -p)
(L+ 0" Ea(y, Aj + DEg(v, A j + 1) — (L+9jA) (1 — a)(1 - B)
and Eo(v,A;j + 1), Eg(y, A;j + 1) are given as in (2.15) and (2.16).

Hence, Corollary 2.7 follows at once. O

Theorem 2.8. Let the function f;, (i = 1,2) defined by (2.1) be in the class
T;(n,v,c, X). Then the function

hz)=z— Y (a1 +ai,)?", (2.23)
k=j+1
belongs to the class Tj(n,~,n, \) where
n=mnn,v,aA) = (2.24)

2jA(1 — a)?(1 —1)
(L4071 + A —a(T+ 95012 —2(1 — a)2(1 +vjA)
The result is sharp for the functions f;, (i = 1,2) defined by (2.19).

Proof. By virtue of Theorem 1.3, one obtains

20 Ter(n, {1+ (k= DA —a[l + Ak — 1)]}]°
k?;jk A 0}, <

i ce(n, {1+ (B — DX — afl +v(k — 1A}

1 —«

IA

agi| <1, i=1,2.
k=j+1
It follows that

5 1[ck(n,/\){l—i—(kz—1)/\—a[1+7(k—1))\]}} (

, 11—«
k=j+1

Therefore, we need to find the largest 1 such that
e (n ML+ (k — DA = nlL+(k — D]} _
1—n9 -
_1 [ck(n, M1+ (k=D —afl +~(k— 1))\]}} 2
-2

l—«
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that is
e VA RN 2SE) 32([11 1?(2(1:)1;](}12 172)(1 )Pt Ak — DA
Since
F(n,v,a, A k) =
L 2(1 = )?(k = (1 =)

(NI + (k— DX —a[l + 7k — DA — 21 — a)2[1 +~(k — DA]

is an increasing function of k, (k > j + 1) we get
n< F(n,v,o,\j+1)

and Theorem 2.8 follows at once.
Theorem 2.9. Let the function
A =2= > a2, ap1>0
k=j+1
be in the class T;(n,v, o, \) and

fa(2) = 2 — Z |ak,2

k=j+1

2"

with |ag 2| < 1. Then fi * fo belongs to the class T;j(n,v, o, A).

Proof. Since

Z ek, {1+ (k= 1DA —a[l +v(k — DA Hak,10k,2] =
k=j+1
= > e N{1+ (k= 1A —all +y(k — DA }ag|arz| <
k=j+1

< i (M A{1+(k-—DA—a[l+~y(k—DA}ar1 <1—«
k=j+1

by Theorem 1.3, one obtains that fi * fo belongs to the class 7;(n, v, a, A).
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ON A FRACTIONAL DIFFERENTIAL INCLUSION
WITH BOUNDARY CONDITIONS

AURELIAN CERNEA

Abstract. We prove a Filippov type existence theorem for solutions of
a fractional differential inclusion defined by a nonconvex set-valued map
with Dirichlet boundary conditions. The method consists in application of
the contraction principle in the space of selections of the set-valued map

instead of the space of solutions.

1. Introduction

In this note we study the following problem

—D%x(t) € F(t,z(t)) a.e. ([0,1]),

where a € (1,2], D“ is the standard Riemann-Liouville fractional derivative and

F:I xR — P(R) is a set-valued map.

Differential equations with fractional order have recently proved to be strong

tools in the modelling of many physical phenomena; for a complete bibliography on

this topic we refer to [23]. As a consequence there was an intensive development of

the theory of differential equations of fractional order ([2, 15, 20, 22, 24] etc.).

The study of fractional differential inclusions was initiated by El-Sayed and

Ibrahim ([16]). Very recently several qualitative results for fractional differential in-

clusions were obtained in [3, 18].

Received by the editors: 04.10.2008.
2000 Mathematics Subject Classification. 34A60, 47TH10.

Key words and phrases. Differential inclusion, fractional derivative, boundary value problem, fixed point,

contractive set-valued map.
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The present note is motivated by a recent paper of Ouahab ([23]) where
several existence results concerning problem (1.1)-(1.2) are obtained. The aim of
our paper is to provide an additional existence result for problem (1.1)-(1.2). More
exactly, we prove a Filippov type result concerning the existence of solutions to the
boundary value problem (1.1)-(1.2). We recall that for a differential inclusion defined
by a lipschitzian set-valued map with nonconvex values, Filippov’s theorem ([17])
consists in proving the existence of a solution starting from a given ”quasi” or ”almost”
solution. Moreover, the result provides an estimation between the ”quasi” solution
and the solution obtained.

Our approach is different from the ones in [23] and consists in the application
of the set-valued contraction principle in the space of selections of the set-valued map
instead of the space of solutions. We note that the idea of applying the set-valued
contraction principle due to Covitz and Nadler ([14]) in the space of derivatives of
the solutions belongs to Tallos ([19], [25]) and it was already used for similar results
obtained for other classes of differential inclusions ([5-13]).

The paper is organized as follows: in Section 2 we present the notations,
definitions and the preliminary results to be used in the sequel and in Section 3 we

prove the main result.

2. Preliminaries

In this short section we sum up some basic facts that we are going to use
later.

Let (X,d) be a metric space and consider a set valued map T on X with
nonempty closed values in X. T is said to be a X\ -contraction if there exists 0 < A < 1

such that:

dp(T(x),T(y)) < Md(x,y) VYr,ye X,

where dy(.,.) denotes the Pompeiu-Hausdorff distance. Recall that the Pompeiu-
Hausdorff distance of the closed subsets A, B C X is defined by

di(A, B) = max{d*(A, B),d*(B, A)}, d*(A,B) = sup{d(a, B);a € A},
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where d(z, B) = inf ecp d(z, y).

If X is complete, then every set valued contraction has a fixed point, i.e. a
point z € X such that z € T(z) ([14]).

We denote by Fix(T) the set of all fixed points of the set-valued map T.
Obviously, Fiz(T') is closed.

Proposition 2.1. ([21]) Let X be a complete metric space and suppose that Ty, Ts

are \-contractions with closed values in X. Then

— sup d(T1(2), T»(2)).
zeX

Let I := [0, 1], denote by C(I, R) the Banach space of all continuous functions
from I to R and by L!'(I,R) we denote the Banach space of Lebegue integrable
functions u(.) : I — R endowed with the norm ||u||; = fol |u(t)|dt.

Definition 2.2. a) The fractional integral of order a > 0 of a Lebesgue integrable
function f(.) : (0,00) — R is defined by

t s a—1
50 = [ i s

provided the right-hand side is pointwise defined on (0,00) and I'(.) is the (Euler’s)
Gamma function.

b) The fractional derivative of order o > 0 of a continuous function f(.) :

(0,00) — R is defined by

dc:l{‘gt) - I‘(nl_ a) (i)n/ot(t —s)" L f(s)ds,

where n = [a] + 1, provided the right-hand side is pointwise defined on (0, c0).

Definition 2.3. A function z(.) € C(I,R) is called a solution of problem (1.1)-(1.2)
if there exists a function v(.) € L'(I,R) with v(t) € F(¢,2(t)), a.e. (I) such that
—D%x(t) = v(t), a.e. (I) and conditions (1.2) are satisfied.

We need the following result ([1]).
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Lemma 2.4. ([1]) Let f(.) : [0,1] — R be continuous. Then x(.) is the unique

solution of the boundary value problem

Dx(t)+ f(t) =0 tel, (2.1)
2(0) = z(1) =0, (2.2)

if and only if )
2(t) = /0 G(t, 5)f(s)ds, (2.3)

whe7e
G yS) 1= =< -
I(a) [t(l—s)]a 1, Zf 0<t<s<l.

Note that |G(t,s)| < ﬁ Vi, s eI

In the sequel we assume the following conditions on F.
Hypothesis 2.5. i) F'(.,.) : I xR — P(R) has nonempty closed values and for every
x € R F(.,x) is measurable.

ii) There exists L(.) € L*(I,R) such that for almost all t € I,F(t,-) is L(t)-

Lipschitz in the sense that
dy(F(t,z), F(t,y)) < L(t)lx —y| V z,y eR

and d(0, F'(t,0)) < L(t) a.e. (I).

3. The main result

We are able now to prove our main result.

Theorem 3.1. Assume that Hypothesis 2.5 is satisfied and ﬁHLHl <1. Lety(.) €
C(I,R) be such that there exists q(.) € L*(I,R) with d(—Dy(t),
Ft,y(®) < at), a-e. (), y(0) = y(1) = 0.

Then for every e > 0 there exists x(.) a solution of (1.1)-(1.2) satisfying for
allt el

o) =900 < gz, a0+ (31)

(@) = 2[[Lh
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Proof. For u(.) € L*(I,R) define the following set valued maps:
1
M, (t) = F(t,/ G(t,s)u(s)ds), tel,
0

T(u) ={¢(.) € L"(I,R); ¢(t) € My,(t) a.e. (1)}
It follows from the definition and Lemma 2.4 that z(.) is a solution of (1.1)-
(1.2) if and only if —D*z(.) is a fixed point of T'(.).
We shall prove first that T'(u) is nonempty and closed for every u € L' (I, R).
The fact that the set valued map M, (.) is measurable is well known. For example the
map t — fol G(t, s)u(s)ds can be approximated by step functions and we can apply
Theorem III. 40 in [4]. Since the values of F' are closed with the measurable selection

theorem (Theorem IIL.6 in [4]) we infer that M, (.) admits a measurable selection ¢.

One has
1
60| < d(0.F(4.0))+ din(F(1.0). o, | Gt s)us)ds) <

1
< L(¥) <1 + F(Qa)/o |u(s)|ds) ,
which shows that ¢ € L*(I,R) and T'(u) is nonempty.

On the other hand, the set T'(u) is also closed. Indeed, if ¢, € T'(u) and
|| — @|]1 — O then we can pass to a subsequence ¢,, such that ¢, (t) — ¢(¢) for
a.e. t € I, and we find that ¢ € T'(u).

We show next that T'(.) is a contraction on L' (I, R).

Let u,v € L'(I,R) be given, ¢ € T(u) and let § > 0. Consider the following

+a}.

From Proposition I11.4 in [4], H(.) is measurable and from Hypothesis 2.5 ii)

set-valued map:

/0 G(t, 5)(uls) — v(s))ds

H(®) = M, (1) n {x ER: [0(1) — 2| < L(1)

H(.) has nonempty closed values. Therefore, there exists ¢(.) a measurable selection
of H(.). It follows that ¢ € T'(v) and according with the definition of the norm we
have

o=l = | o) — (o)l < / L ( / et ) uts) —v<s>|ds) dt+

0
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/6dt /(/ Gts)|dt> \u(s)—v(s)|ds+5§%HLHlHu—le—i—&

Since § > 0 was chosen arbitrary, we deduce that

2
d(¢,T(v)) < mHLH 1f|u —vl[1.
Replacing u by v we obtain
2
du (T (u), T(v)) < mI\LII 1l[u =],

thus 7'(.) is a contraction on L!(I,R).

We consider next the following set-valued maps

Fi(t,xz) = F(t,x) + q(¢)[-1,1], (t,x) eI xR,

ML) = Fl(t,/o1 G(t,s)u(s)ds), tel, wu()eL'(I,R),

Ti(u) = {y() € L'(I,R); ¥(t) € My(t) ae. (I)}.

Obviously, Fi(.,.) satisfies Hypothesis 2.5.
Repeating the previous step of the proof we obtain that T} is also a F HL| |1-
contraction on L!(I,R) with closed nonempty values.

We prove next the following estimate
it (T(w), Ty (u)) < /O a0t (3.2)
Let ¢ € T(u),6 > 0 and define
Hi(t)= My(t)n{z € R; [o(t) — z| < q(t) + 0}

With the same arguments used for the set valued map H(.), we deduce that
H,(.) is measurable with nonempty closed values. Hence let ¢(.) be a measurable

selection of Hy(.). It follows that 1 € T1(u) and one has

6 ¢||1—/ 6(t) |dt</0 [q(t)+6]dt§/0 a6) + 6.

Since 9§ is arbitrary, as above we obtain (3.2).
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We apply Proposition 2.1 and we infer that

1
dpy(Fia(T), Fia(T)) < —+— / g(b)dt.
g X

Since —D®y(.) € Fixz(T}) it follows that there exists u(.) € Fiz(T) such that

for any € > 0

1 /1 I'a)e
=Py lhes 1 Ea)HLnl , A

We define z(t fo s)ds, t € I and we have

() — y(t)] < / IG(t, 5)lu(s) + D*y(s)|ds <

lu+Dylls < = lally +=,

2 2
~ I(a) (a) = 2[[L]x
which completes the proof. 0
Remark 3.2. The assumption in Theorem 3.1 is satisfied, in particular, for y(.) =
0 and therefore, via Hypothesis 2.5, with ¢(.) = L(.). In this case, Theorem 3.1
provides an existence result for problem (1.1)-(1.2) together with a priori bounds for

the solution. More precisely, the estimate (3.1) becomes in this case

2||L
lz(t)] < F(a)H—2||1L||1 +e, Vel (3.3)
In [23] among other existence results for problem (1.1)-(1.2) it is obtained in Theorem
4.9 the existence of solutions by applying, as usual in the study of the existence of
solutions using fixed points, the contraction principle in the space of solutions. This
approach does not allows to obtain an estimate as in (3.3).

On the other hand, in [23], Theorem 6.2, another Filippov type result for
problem (1.1)-(1.2) is provided. Its proof follows Filippov’s ideas and uses Kuratowsky
and Ryll-Nardjewski selection theorem (e.g., [4]). More exactly, if the assumptions
in Theorem 3.1 are satisfied then there exists xz(.) € C(I,R) a solution of problem
(1.1)-(1.2) such that, for all t € I

w 16]lgl
o) = 900 < s lolh + T

L1 (3-4)
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We note that in our approach we obtain a ”pointwise” estimate from a norm estimate

and in general the estimates in (3.1) and (3.4) are not comparable. However, in

particular cases the estimate in (3.1) is better that the one in (3.4). If the function

q(.) € L' (I, R) satisfies fol q(t)dt > 7”;@, than if we take in (3.1)

o — Hlall1[|L1L (4]]l[ — T'(a))
(@) ((e) = 2[[L] 1)

we obtain (3.4).
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SOME PROPERTIES OF A NEW CLASS OF CERTAIN ANALYTIC
FUNCTIONS OF COMPLEX ORDER

LUMINITA-IOANA COTIRLA

Dedicated to Professor Grigore Stefan Sdldgean on his 60" birthday

Abstract. In this paper we introduce a new class, F,(b, M) of certain
analytic functions. For this class we determine sufficient condition in terms
of coefficients, coefficient estimate, and maximization theorem concerning

the coefficients.

1. Introduction and preliminaries

Let A be the class of functions f of the form
f(2) :z+Zakzk (1.1)
k=2
which are analytic and univalent in the open unit disk
U={zeC:|z| <1}
For n a positive integer and a € C, let
Hla,n]={feH: f(z)=a+apnz"+...}.

We use 2 to denote the class of functions w(z) in U satisfying the conditions w(0) = 0
and |w(z)| < 1for z € U.

For a function f(z) in A, we define

I°f(2) = f(2); (1.2)

Received by the editors: 16.12.2009.
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P =116 = [ s (1.3)
and
I"f(z) = I(I""'f(2)), (€U and neN={1,2,3.}). (1.4)

The integral operator I"™ was introduced by Saldgean in [8]. We note that,
for a function f € A of the form (1.1)

I"f(z) =z + Zk‘"akzk, (z€eUmneN).
k=2

In [1], [2], [3], [4], [7] and others papers, are introduced and studied cer-
tain subclasses of analitic functions defined by Sélagean operator defined in [8]. Re-
cently,in[5], [6] are studied some class of analytic functions defined by the integral
operator defined in [8].

With the help of the integral operator I", we say that a function f(z) be-
longing to A is in the class F, (b, M) if and only if

‘2(%-1)“—1\4 <M, (1.5)

where M > %, z € U and b # 0 is complex number.
We shall need in this paper the following lemma:

Lemma 1.1. [4] Let w(z) = chzk € Q if u is any complex number, then
k=1

lea — nc3| < maz{L, |u]) (L6)

2 and

for any complex p. Equality in (1.6) may be attained for the functions w(z) = z
w(z) = z for |u] < 1 and |u| > 1, respectively.
We know from [3] that f(z) € H,(b, M) if and only if for z € U
I"f(z) _ 1+ [b(l+m)—mlw(z)

Int1f(z2) 1 —muw(z) ’
where m =1 — 47, (M > 3) and w(z) € (.
The purpose of the present paper is to determine sufficient condition in terms
of coefficients for function belong to F, (b, M), coefficient estimate, and maximization
of |ag — pa?| on the class F, (b, M) for complex value of p.
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2. Main results

Theorem 2.1. Let the function f(z) be defined by (1.1). If

(- he e - D cpoemy, e

k=2

holds, then f(z) belongs to F,,(b, M), wherem =1— 2L (M > ).
Proof. Suppose that the inequality (2.1) holds. Then we have for z € U

11 f(2) = I f(2)] = b(1 + m) " f(2) +m(I" f(2) = I"F f(2))]

=1 = ar =1 1. .
_ Zk—n(l—%)akz —|b(1+m) {eran_Hz }erzkn(lk)akz

k=2 k=2 k=2

=1 1 | b(1 4 m) lak|
<N = (1-2> kb -y 1- -
_kz_:zk”< k>|ak|r {b( +m)|r kZZQ ’ +m ( k) T "

=i,§llaklr’“{<l—;> +'b(12m>+m(1—]1>’} — [b(1 +m)|r.

Letting » — —1, then we have

117 f(2) = "L (2)] = b1+ m) " f(2) + m(I7" f(2) = 1" f(2))]

zé{(l_;)+‘“1km+m(1_;) }];|akr’f—|b<1+m>|so,

by (2.1). Hence, it follows that

I"f(z) 4
M) <1l, zeU
I ) :
b(1 +m) + m{ el — 1}
Letting
"f(z) ¢
In+1f(z)
w(z) = .
b(L+m) + m{pFzrpy — 1}

then w(0) = 0, w(z) is analytic in |z| < 1 and |w(z)| < 1. Hence, we have

I"f(2) _ 1+ [b(1+m) — m]w(z)
It f(z) 1 —mw(z)

1 1
U M > i,w(z) €Q,

, m=1-—

and this shows that f(z) belongs to F, (b, M).
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Theorem 2.2. Let the function f(z)defined by (1.1)be in the class F, (b, M), z € U.
a) For

2m (1 - k) Re{b} > (1 _ ;)2 (1= m) — [b2(1 +m),

let
2m (1 — 1) Re{b
N: ;n( k) 6{} :1733'3.7_]—
(1—%)" (1 =m)—[p]2(1 +m)
Then
] 1+m k—2
o < ey T+ (7)) (22
J" C k=2
forj=2.3,... N +2; and
N+3
1 b(1+m) k—2
la;] < i 11 +( )m' (2.3)
La-Hiv+ |k k
for j > N + 2.
b) If
1 2
om (1= ) Re(w) < (1= 1) (1= m) = PO+ m),
then
|aj|§<}+17m)|1b|, forj > 2, (2.4)
F1-5

a7 (M > 1) andb+#0 complex.
Proof. Since f(z) € F, (b, M), from

where m =1 —

) 14 B m) — mu(s)
Int1f(2) 1 —mw(z) ’

where m=1— 4, (M > 1) and w(z) € Q, we have that

o0

1 1 b 1 [b(1+m) 1 )
Z o <1 /4;) arz” =w(z) {z(l +m)b +kZ:2 o [ ’ +m |1 IR
The equality (2.5) can be written in the form

ikl (1—) apz +dez

k=2 k=2
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_ {b(l +m)z+iék1n [b(lzm) +m (1 - ;)} akzk}w(Z),

where d;’s are some appropriates complex numbers. Then since |w(z)| < 1, we have

i,j (1—> apz" + Z 2| < (2.6)

k= k=j+1

j—1
1 [b(14+m) 1 &
b(1+m)z+;kn{k+m<lk>}akz .

Squaring both sides of (2.6) and integrating round |z| = r < 1,we get, after

taking the limit with r — 1

L e R < (1 e
(L= 2l < () (27)

(1+m) 1\|? 1\? )
e () (g e
Now there may be following two cases:

(a) Let

2m(k — 1) Re{b} - (k=120 -m) (L+m)p]?
k2 k2 k2 '

Suppose that j < n+ 2.Then for j = 2, (2.7) gives
laz| < (14 m)[p[2"+!

which gives (2.2) for j = 2. We establish (2.2), by mathematical induction. Suppose
(2.2)is valid for k = 2,3,...,j — 1. Then it follows from (2.7)

2
1 1
e (1-7) ol <

ﬁ b(1+m)+(k;2)m
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Thus, we get

1 J
Jaj| < L(l_l)IH A A

Jr 77 k=2

b(1+m)+<k—2>m"

which completes the proof of (2.2). Next, we suppose j > N + 2. Then (2.7) gives

N+2

T S (L,

N+2 2 2
1 b(1+m 1 1
S (1+m)2|b\2+ E k}2n {‘(k‘) +m <]. — k‘) — (1 — k?> }|ak|2.
k=2

On substituting upper estimates for as, as, ..., a2 obtained above, and sim-

plifying, we obtain (2.3).
(b) Let

om (1= ) mety = (1 1) (- m) - e mp

then it follows from (2.7)

1 1N 20712 -

(17 ) gl < (+m)7pls, (> 2)
J J

which prove (2.4).

Theorem 2.3. If a function f(z) defined by (1.1) is in the class F,(b, M) and p is

any complex number, then

3n+1
|ag — pa3| < 5 |b(1 +m)maz{l,|d[} (2.8)
where
b(14+m) m
d= W[22”+4u — 3t — 5 (2.9)

The result is sharp.
Proof. Since f(z) € Fp (b, M), we have

[b(1 4+ m) — m|I"*1f(z) + mI" f(z)
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o~ @1 (L
Z k-nz (1 k>
k=2

> ak p_1 1 > ak p_1 b(l +m) 1

2k 1— = 2k S A 1— =

2 ( k:) 2 { o k
= k= 1+ 5= 2.10
b1+ m) “ b(1+ m) (2.10)

Now compare the coefficients of z and 2z? on both sides of (2.10). Thus we obtain

ag = 2"1b(1 + m)e; (2.11)
and
nH1p(1 b(1
a3:3(—|—m){c2+ {(—i—rrl)+m] cf} (2.12)
2 2 2
Hence
n+1
az — pai = 5 b(1 +m){cy — cd}, (2.13)
where
b(l4+m), o m
— 2 n+4, _ agn+l -
d 9.3n+1 [ p—=3"" 2
Taking modulus both sides in (2.13), we have
n+1
jas — pa] < X o1 +-m)| e — e} (2.14)

Using Lemma 1.1.in (2.14), we have

n+1
2

3
|as — pa3| < b(1 + m)[maz{1,|d|}.

Finally, the assertion (2.8) of Theorem 2.3. is sharp in view of the fact that the
assertion (1.6) of Lemma 1.1 is sharp.
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CLASSES OF MEROMORPHIC FUNCTIONS DEFINED
BY THE EXTENDED SALAGEAN OPERATOR

JACEK DZIOK

Dedicated to Professor Grigore Stefan Sdldgean on his 60" birthday

Abstract. In the paper, we define classes of meromorphic functions, in
terms of the extended Saldgean operator. By using Jack’s Lemma and the
Briot-Bouquet differential subordination we obtain some inclusion relations

for defined classes.

1. Introduction

Let A denote the class of functions which are analytic in U := U(1), where
U(R) :={z:|z| < R}, 0 < R < 1. By Q we denote the class of the Schwarz functions,

i.e. the class of functions w € A, such that
w(0)=0, wz)|<1 (z€l).

For complex parameters 3,7 and functions h € A, w € Q, we consider the first-order

differential equation of the form

a(2) + Wy — (how) (=), a0)=h(0)=1. (L1)

If there exist a function w € Q, such that the function ¢ € A is a solution of the

Cauchy problem (1.1) then we write
2¢'(2)
q(z) + ———— < h(2). 1.2
() + oty < he) (12)
The expression (1.2) is a first-order differential subordination and it is called the

Briot-Bouquet differential subordination.
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More general, we say that a function f € A is subordinate to a function

F € A, and write f(z) < F(z), if and only if there exists a function w € €, such that
fR)=(Fow)(z) (z€lU).

Moreover, we say that f is subordinate to F'in U(R), if f(Rz) < F(Rz). We shall

write
f(z) <R F(?)
in this case. In particular, if F' is univalent in &/ we have the following equivalence
(ct. [5]):
f(z) < F(z) < f(0)=F(0) and f(U) C F(U).

Let M denote the class of functions f of the form

RREESE S -,
n=1

which are analytic in D = U\ {0} . By f * g we denote the Hadamard product ( or
convolution) of f, g €M, defined by

(fxg)(2)= (Z anz"> * (Z bnz”> = Z anbnz™.

n=—1 n=-—1 n=—1

Let A\,o be positive real numbers. Motivated by the Salagean operator [6]

we consider the linear operator D2 : M — M defined by

DM f(2) = (f=h,,)(2),

where
e’} A
1 n+o+1
hxo = — _— " D).
ro(2) Z+n§_lﬁ( ZE) s e

It is closely related to Cho and Srivastava operator [1] (see also [7]) and the
multiplier transformations studied by Flett [3].

For a function f € M we have

2 [D)f(2)] = oDXT f(2) — (1 +0) D) f(2). (1.4)
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A function f € A of the form
oo
flz)=2"+ Z anz" (2 €U(r))
n=p+1

is said to be p -valently starlike in U(r) if and only if

(e

>>0 (zelU(r); 0<r<1).

Note that all functions p-valently starlike in 2(r) are p-valent in U(r). In particular

we have
f(z)#0 (zeU(r)\{0}).

Let h be a function convex in U/ with
h(0) =1, Reh(z) >0 (z€lU) (1.5)

and let ¢ be a complex number. We denote by V(t, A\, o;h) the class of functions
f € M satisfying the following condition:

z [(1 —t) Dg‘f(z) + th‘Hf(z)] =< h(z), (1.6)

in terms of subordination.
Moreover we define the class W(t, A, o; h) of functions f € M satisfying the

following condition:

(1—t) D+ f(2) + D52 f ()
(1 =) D)f(2) + D5 f(2)

< h(z). (1.7)

In particular for real constants A, B, —1 < A < B <1, we denote

1+ Az
V(t,A,O’,A,B) - V<t’)\’0’1—‘rBZ),

1+ Az
W(t,)\,U,A,B) == W(t’)\’o—71—|—B2;>

In the paper we present some inclusion relations for the defined classes.
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2. Main results

We shall need some lemmas.

Lemma 2.1. [4] Let w be a nonconstant function analytic in U(r) with w(0) = 0.

If

lw(z0)] = max {|w(z)[; |2] <20} (20 €U(r)),

then there exists a real number k (k > 1), such that

zow' (20) = kw(zo).

We shall need also a modified result of Eenigenburg, Miller, Mocanu and

Reade [2] (see also [5]).

Lemma 2.2. Let h be a conver function in U, with

Re[fh(z) +v] >0 (z€U)

If a function q satisfies the Briot-Bouquet differential subordination (1.2) in U(R),

i.e
2q' (2
o) + G <ahz),
then
a(z) =g h(2).
Making use of above lemmas, we get the following two theorem.
Theorem 2.3.

V(t,A\+m,o;h) CV(t, A\ o;h) (meN).

Proof. Tt is clear that it is sufficient to prove the theorem for m = 1. Let a function

f belong to the class V(t,A + 1,0;h) or equivalently
z [(1 —t) Dé‘“f(z) + tD3‘+2f(z)] =< h(2).
It is sufficient to verify the condition (1.6). The function
a(2) =z [(1 =) D3f(2) + tD; " f(2)]

is analytic in & and ¢(0) = 1. Taking the derivative of (2.2) we get

/

q'(»)

N

2[(1 =) D f(2) + D32 f(2)] = a(2) +
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Thus by (2.1) we have

o)+ 25 e
Lemma 2.2 now yields
q(z) < h(2).
Thus by (2.2) f € V(t,\,0;h) and this proves Theorem 2.3. O

Theorem 2.4.
W(t,\+m,o;h) CW(t, A\, o;h) (m € N).
Proof. Tt is clear that it is sufficient to prove the theorem for m = 1. Let a function
f belong to the class W(t, A+1,0; h) or equivalently
(1—) Dy f(2) + D+ f(2)

< h(z). 2.4
A0 Dy f) 103 ) =y

It is sufficient to verify the condition (1.7). If we put
R=sup{r: (1—-t)D)f(2) +tD) T f(2) #0, 0 < |2| <7}, (2.5)

then the function
) (1—t) D31 f(2) + D% f(2)
Z) =
T A=) D)) + D)
is analytic in U(R) and ¢(0) = 1. Taking the logarithmic derivative of (2.6) and

(2.6)

applying (1.4) we get
(1 —t) D3*2f(2) +tD3* f(2) 2q'(2)

() D> 1(2) + D2 () =q(z) + q(2) (z€U(R)). (2.7)
Thus by (2.4) we have
o)+ 5 <nne)
Lemma 2.2 now yields
() < h(2) (2.

By (2.6) it suffices to verify that R = 1. Let p be the positive integer such that p > o
and let
F(z)=2"" [1—t) D) f(z) +tDy T f(2)] (2 €U).
Then by (1.4), (2.6) and (2.8) we have
2F' () (1—t) Dy*f(2) +tD; 2 f(2)

o

F(z) 7 (-t D (z) + DA f(2)

+p—o0 <goh(z)+p—o.
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Thus by (1.5) we obtain

2F' (2)
F(z)
It means, that F' is p-valently starlike in U (R) and consequently it is p-valent in

Re >0 (z€U(R)).

U(R). Thus we see that F' can not vanish on |z| = R if R < 1. Hence by (2.5) we have
R =1 and the proof of Theorem 2.4 is complete. O

Putting h(z) = iigi in Theorems 2.2 and 2.3 we obtain the following two

corollaries:

Corollary 2.5.

V(t,A+m,0;A,B) CV(t, N\ o;A,B) (meN).
Corollary 2.6.

W(t,\+m,o; A, B) CW(t,\,0;A,B) (meN).

Using Lemma 2.1 we show the following sufficient conditions for functions to
belong to the class W(t, A\, 0; A, B).
Theorem 2.7. Let o, )\, A, B be real numbers, and let

c>0, A2>0, - 1<A<B<1,B—A>2AB. (2.9)

If a function f € M satisfies the inequality

(1—1t) DM2f(2) +tDI3f(2) (B—A)(1+0—0A)—2AB
o) s -1l < (zel),
(1=t) D57 f(2) +tD57° f(2) o(1+B)(1-A)
(2.10)
then f belongs to the class W (t,\,0; A, B) .
Proof. Let a function f belong to the class M. Putting
14+ Aw(z
o) = Tz cum) (2.11)

in (2.7), we obtain
(1—t) DX f(2) +tD) T3 f(z) 1+ Aw(2) 1 < Axw'(z)  Bauw'(2) >
(1—t) DX f(2) +tDa2f(z) 1+ Bw(z) o \14+Aw(z) 1+ Buw(z)/)’
Consequently, we have

Fz) =w(z) { ?Z/((j)) (1 n ;4410(2) 1T gw(z)) T fB_wféz) } o (212)

128



CLASSES OF MEROMORPHIC FUNCTIONS

where o i
_ (A=) D3 f(2) +tD; T f(2)
Fle)= (1—1) Do f(2) + D52 f(2) '

By (1.7), (2.6) and (2.11) it is sufficient to verify that w is analytic in &/ and

lw(z)| <1 (z€lU).
Now, suppose that there exists a point zg € U(R), such that
lw(zo)] =1, Jw(z)| <1 (|2 <z0l).
Then, applying Lemma 2.1, we can write
zow' (20) = kw(zo), w(zo) =€ (k>1).
Combining these with (2.12), we obtain

[F'(20)] =

E —A n B n B—-A
o \1+4+ Ae?® 1+ Bet 1+ Be®

ko A, B L B-A
o \154e¢® "1+ Be® ) "1 B’

Y%

Thus, by (2.9) we have
k —A B B-A
> 2
[Fo)l 2 a<1—A+1+B>+1+B
(B-A)(1+0—-0A)—2AB
- o(l+B)(1-A)

Since this result contradicts (2.10) we conclude that w is the analytic function in U(R)
and |w(z)| <1 (z € U (R)). Applying the same methods as in the proof of Theorem
2.4 we obtain R = 1, which completes the proof of Theorem 2.7. g

Putting t =0, A =2a—1 and B =1 in Corollaries 2.5 and 2.6 and Theorem
2.7 we obtain following relationships for the operator D) .
Corollary 2.8. Let 0 < a < 1 and m € N. If a function f € M satisfies the
inequality

Re (2D)T"f(2)) > a (2 €D),
then
Re (:D2f(2)) >a (2 €D).
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Corollary 2.9. Let 0 < a < 1 and m € N. If a function f € M satisfies the

inequality
DY (2)
e{ DY) } >a (z€D),
then .
D3 f(z)

Corollary 2.10. Let0 < «a <2/3. If a function f € M satisfies the inequality

DM2f(2) 2 —3a

2 1 <1- —_— e€D),

Brg i< i-er sy e
then

D>‘+1f(z)
Red 22—+ % > e D).
A\ st} 7o <D
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SOME SUBCLASSES OF MEROMORPHICALLY UNIVALENT
FUNCTIONS
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Dedicated to Professor Grigore Stefan Sdldgean on his 60" birthday

Abstract. Making use of certain linear operator, we introduce two novel
subclasses 3, (A, B,\) and 377 (A, B,\) of meromorphically univalent
functions in the punctured disc U*. The main object of this paper is to
investigate the various important properties and characteristics of these
subclasses of meromorphically univalent functions. We extend the famil-
iar concept of neighborhoods of analytic functions to these subclasses of
meromorphically univalent functions. We also derive many result for the

Hadamard products of functions belonging to the class Z;n(a, By, A).

1. Introduction

Let Y denote the class of functions of the form:
f(z) = 1 + iakzk (1.1)
. . .
k=0
which are analytic and univalent in the punctured disc
U*={z:2€Cand 0 < |z| <1} =U\{0}

and which have a simple pole at the origin with residue one there. Define a linear

operator as follows:
D°f(2) = f(2),

Received by the editors: 25.04.2010.

2000 Mathematics Subject Classification. 30C45, 33C50.
Key words and phrases. Linear operator, Hadamard product, meromorphically univalent functions,

neighborhoods.
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sz]EZ) D(D'f(2)),
and (in general)
D"f(z) = % - i(k‘+2)"akzk
k=0
_EZDE) 2Dn;f<) (feSineN={1,2,.}) (1.2)

The linear operator D" was considered by Uralegaddi and Somanath [15].
Let

Fun(2) = (1=N)D" f(2)+A2(D" £(2)) (f € 3 3m € No = NU{0}; 0 < A < %), (1.3)

so that, obviously,

oo

1—2\ 1
Fyn() = ="+ > (e +2)"[1 + Ak — 1)]agz"(n € No; 0 < A < 3, (14
k=0
it is easily verified that
2F) 0 (2) = Fang1(2) — 2Fan(2). (1.5)

For a function f(z) € ). ,we say that f(z) is a member of the class
Y. (A, B, ) if the function F) ,,(z) defined by (1.3) satisfies the inequality:

22Fy ,(2) + (1 —2X)
B2?Fy ,,(2) + (1 —2)) A

<1 (zeU"), (1.6)

where (and throughout this paper) the parameters A, B, A\,p and n are constrained

as follows:
1
71§A<B§1,0<B§1,0§)\<§;p€N and n € Ny. (1.7)

Furthermore, we say that a function f(z) € Z;’n(A,B, A) whenever f(z) is
of the form [cf. Equation (1.1)]:

1 o0
=;+Z\ak\zk (k>p;peN). (1.8)

We note that:
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(i) 35020y = 1)3, (27 = 1)B,0) =3 (@, 8,7) (0<a<1;0< <5 <y < 1)
(Cho et al. [6]);

(i) X7 o((2ay=1)8, (2v-1)8,0) =3 (0, 3,7) (0<a<1;0<f <3 <y <)
(Cho et al. [5]);

(iii) >3 o(=A,=B,0) =3 ,(A,B)(-1<B<A<1;-1<B<0) (Cho [4]);

(iv) Zp o(B,AN) = QT (p;0;1,1,A,B,\) = Q" (p, A, B, \) (Joshi et al. [9]).

Also we note that:

(V) Z;,n((QCV’Y - 1)67 (27 - 1)53 /\) = Z;,n(aa 8.7, )‘)

22Fy ,(2) + (1—2X)
{fez (27 = 1)22Fy () + (1 = 20)(2ya — 1) <h
(z€U*;O§Oz<1;O<ﬂ§1;;§'y§1;0§)\<;;n€N0)}; (1.9)
2*(D"f(2))
{fez & - D20 E) + a-1| <
(€U, O<a<10<ﬁ<1%§7<1 neNO)} (1.10)

2. Inclusion properties of the class ) (A, B,\)
We begin by recalling the following result (Jack’s lemma), which we shall
apply in proving our first theorem.

Lemma 2.1. [8] Let the (nonconstant) function w(z) be analytic in U with w(0) =

0. If lw(z)| attains its mazimum value on the circle |z| =r < 1 at a point zg € U, then

’

zow (20) = yw(z0), (2.1)

where v is a real and v > 1.

Theorem 2.2. The following inclusion property holds true for the class ), (A, B, \)

ZnH(A, B,)\) C ZH(A, B, ) (n € Np). (2.2)
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Proof. Let f(z) € 32, ,,(A, B,\) and suppose that

(1= 2)\)(1 + Aw(z))

2 ’
F =
z )\,n(z) 1 +Bw(z) 9

(2.3)

where the function w(z) is either analytic or meromorphic in U, with w(0) = 0. Then,

by using (1.5) and (2.3), we have

2Fy i (2) = —(1-2))

(2.4)

1+ Aw(z) (A—B)zw (z)]
14+ Bw(z) (14 Bw(z))?

We claim that |w(z)| < 1 for z € U . Otherwith there exists a point zyp € U such

that |7|na‘:r‘ |w(z)| = |w(zo)| = 1. Applying Jack’s lemma, we have
z|<]|z0

20w (20) = yw(zo)(y > 1). Writing w(zo) = (0 < § < 27) and putting z = 2 in

(2.4), we get

A 2
ZgFA7n+1(ZO) +(1-2))

B22F,, . (20) + (1—20)A

,n+1
14y + B — 14 B(1 —7)e?|?
1+ B(1 —y)et®|”
2(1 - B?) +2y(1 + B? + 2B cos
_ ) +2v(1 + '+2 cow)za 2.5)
1+ B(1—7)e”|
which obviously contradicts our hypothesis that f(z) € >-, ., (A, B, A). Thus we must

have |w(z)| < 1 (2 € U),so from (2.3), we conclude that f(z) € > (A, B, ), which

evidently completes the proof of Theorem 1.

Theorem 2.3. Let « be a compler number such that Re(a) > 0.1If f(z) €
> (A, B, \), then the function G ,(z) given by

z

o (07
Gan(z) = — /t Fy o (t)dt (2.6)
0
is also in the same class Yy, (A, B, \).
Proof. From (2.6), we have
2G\ 1 (2) = aF\n(2) — (@ + 1)Gan(2). (2.7)

Put
(1 - 20)(1 + Aw(2))
1+ Bw(z) ’

2G) ,(2) = -
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where w(z) is either analytic or meromorphic in U with w(0) = 0. Then , by using

(2.7) and (2.8), we have

14+ Aw(z)  (A— B)zw (2)
2

ZQF/I\"(Z) =-(1-2) 1+ Bw(z)  a(l+ Bw(z))

(2.9)
The remaining part of the proof is similar to that of Theorem 1 and so is omitted.

3. Properties of the class Z;,n(AvaA)
Theorem 3.1. Let f(z) € E; be given by (1.8). Then f(z) € an(A B, ) if and
only if
> k(k+2)"[1+ Ak = D](1+ B) Jax| < (B — A)(1—2)), (3.1)
k=p

where the parameters A, B,n and X\ are constrained as in (1.7).

Proof. Let f(z) € 32, (A, B, ) be given by (1.8). Then , from (1.8) and (1.6), we

have
22F ,(2) + (1—2))
B22F (z) + (1 - 2))A
S k(4 2)"[1 4+ A(k — 1)] |ag| 251
- h=p - <1 (zeU"). (32)
(B—A)(1—2)\) =B S k(k+2)"[1 + A(k — 1)] |ag| 25+

k=p
Since |Re(z)| < |z| (z € C), we have

i k(k +2)"[1 + Xk — 1)] |ax| 281

Re =p _ <1 (33)
(B—A)1—2\) — B Y k(k +2)"[1 + A(k — 1)] |ag| 26+
k=p

Choose values of z on the real axis so that zzF:\n(z) is real. Upon clearing the
denominator in (3.3) and letting z — 1~ through real values we obtain (3.1).

In order to prove the converse, we assume that the inequality (3.1) holds true.
then, if we let z € OU, we find from (1.8) and (3.1) that

BZQF;\’n(z) +(1-2)A
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S (k4 2)"[1+ Ak — 1)] |ax|

k=p
S =
(B—A)(1—-2X)—B > k(k+2)"[1+ Ak —1)]|ax]|
k=p
<l(z€edU={z:z€Cand |z|] =1}). (3.4)

Hence, by the maximum modulus theorem, we have f(z) € Z;n(A, B, ).

Corollary 3.2. If the function f(z) defined by (1.8) is in the class Z;JL(A, B, \), then
(B—A)(1-2X)
< > p . )
ol < TETra k- jas ) k2 ppeNinelNo), (3.5)
with equality for the function
1 B—A)(1-2\
flz)=-+ ( I ) 2% (k>p;peN;neNy). (3.6)

z  k(k+2)"[1+Ak—-1)](1+B)
Putting A = (2ya—1)8and B=(2y-1)8 (0<a<1,0<f <1land 3 <
~v < 1) in Theorem 2.3, we obtain:

Corollary 3.3. A function f(z) defined by (1.8) is in the class Z;,n(a,ﬂ,’y,)\) if
and only if

> k(k+2)" 1+ Ak — DJ(1+28y — 8) lax <2871 —20)(1—a).  (3.7)
k=p
Next we prove the following growth and distortion properties for the class
Z;,n (A7 B7 )\) :
Theorem 3.4. If a function f(z) defined by (1.8) is in the class Y, (A, B, ), then

ol (p— DB = A)(1 =2} oL L —(mt)) | pm)
{ T o= m)Gp+ ) AP - D11 B) } ) ’f *

m (p _ 1)'(3 — A) rP 1 Tf(m 1)
S{!+@—mMrMVD+Mw4NO+m +} : 38)

(0< |zl =r < 1;p e N;m,n € Ng;m < p).

The result is sharp for the function f(z) given by

1 (B—A)(1-2)) » .
Jz)=—+ DL USR] (p € N; n € Ny). (3.9)
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Proof. In view of Theorem 2.3, we have

+2)"[1+ Mp —1)](1+ B) & = .
plp+2)" pfp I )gk!|ak|§§k(k+2) 1+ Ak — D)1+ B) |ay]

< (B-A)(1 -2,

which yields

= pl(B — A)(1 —2))
2 el < T - D+ B

(p e N;n eNp). (3.10)
Now, by differentiating both sides of (1.8) m times with respect to z, we have
)! |ak| z )

(p € N;m,n € Ng;m < p), (3.11)

— k!
(m) = (—=1)™m! —(m+1) k—m

and Theorem 3.1 follows easily from (3.10) and (3.11).

Finally, it is easy to see that the bounds in (3.8) are attained for the function
f(2) given by (3.9).

By the same way as in the proof given by Cho et al. [5] , we have the radii of
meromorphically starlikeness of order ¢(0 < ¢ < 1) and meromorphically convexity

of order ¢(0 < ¢ < 1) for functions in the class Z;’n(A, B,)).

Theorem 3.5. Let the function f(z) defined by (1.8) be in the class Z;,n(ABQ\),
then, we have
(i) f(z) is meromorphically starlike of order ¢(0 < ¢ < 1) in the disc |z| <

r1, that is,

2 (2) <o
Re{ ) }>¢> (|2 <rm;0< 9 < 1), (3.12)

where )
RS CCS LY IR
= (B—A)(1-2\)(k+2—¢) '
(i) f(z) is meromorphically convexr of order (0 < ¢ < 1) in the disc |z] <

(3.13)

r9, that 1s,

"

2f (2)
f'(2)

Re{—(1+ )}>¢ (|2 <r2;0< @ < 1), (3.14)
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where
1

o — inf {(k+2)"[1 +A(k-1)](1+B)1 - ¢)}k+1
7 k> (B=—A) (1 =2\ (k+2—9¢) '

Each of these results is sharp for the function f(z) given by (3.6).

(3.15)

4. Neighborhoods and partial sums

Following the earlier works (based upon the familiar concept of neighborhoods
of analytic functions) by Goodman [7] and Ruscheweyh [13], and (more recently) by
Altintas et al. ([1], [2] and [3]) , Liu [10] and Liu and Srivastava ([11] and [12]), we
begin by introducing here the §— neighborhood of a function f(z) € > of the form
(1.1) by means of the definition given below:

Ns(f) = {g € Z 2 g(2) :§+Zbkzk and
k=0

= k(k+2)"[1+ Ak —1)])(1+|B))
— <
2 (B— A)(1—2)) lar = bl <0,
k=0
1
(—1§A<B§1,0§)\<2,5>O,p€N,nEN0)}. (4.1)

Making use of the definition (4.1), we now prove Theorem 6 below:
Theorem 4.1. Let the function f(z) defined by (1.1) be in the class ), (A, B,\). If
f(2) satisfies the following condition:

% €Y (AB.) (c€Cld <5.6>0),
then

Ns(f)© Y (ABA). (4.3)
Proof. 1t is easily seen from (1.6) that g(z) € >, (A, B, ) if and only if for any

complex number o with |o| = 1,

G, (2) + (1—2))
Bz2G ,(2) + (1 - 2))A

#o (z€U), (4.4)

which is equivalent to
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which, for convenience,

1 o0

k
2) == Crz
) ZJrkZZOk

1 N Zk(E+2)"[1+ Xk —-1)])1-0B) ,

AR (B = A) 1= 2)) (4.6)
From (4.6), we have
k(k " Ak — B
o] < FUEE 2)(]3[1—+A)((1 _12%1 18D g<x< %;n € No). (4.7)
Now , if f(2) = % + io: arz® € Y satisfies the condition (4.2), then (4.5) yields
k=0
’ (/ Zi?(z) >0 (z€U;é>0). (4.8)
By letting
o) =2+ Dbt € Ny(), (49)
k=0
so that
ECREIRCT) ST
k=0
= k(k+2)"[1+ Ak —1)](1+|B))
Z:;) (B - A)(1-2)) b = ai
0 (z€U;0>0). (4.10)

Thus we have (4.5), and hence also (4.4) for any o € C such that |o| = 1, which implies
that g(z) € >, (A, B, A). This evidently proves the assertion (4.3) of Theorem 6.

We now define the d—neighborhood of a function f(2) € > of the form
(1.8) as follows:

Nf(D={9e X o) =2+ 3 Il
k=p

ok k+2 [1+AFk—1)](1+B)
—A)(1—2)\)

[1bx| = lax|| <6,
k=0

(-1<A<B<1;0< A< = 5>0p€Nn€N0)} (4.11)

Making use of the definition (4.11), we now prove Theorem 3.4 below:
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Theorem 4.2. Let the function f(z) defined by (1.8) be in the class Z;,H(A,B,)\),
1
71§A<B§1,0<B§1,0§/\<i,pGNandnENg, then

_pt1

NP(f) Y, (ABA) (6=

). (4.12)

The result is sharp .

Proof. Making use the same method as in the proof of Theorem 6, we can show that

[cf. Eq. (4.6)]

1 = kE+2)"[1+ Ak -1 -0B) ,

(B — A)(1 —2)) (4.13)

1
Thus under the hypothesis —1< A< B<1,0< B<1,0<)A< §,p€Nandn€
No, if f(2) € 32, ,,41(A, B, A) is given by (1.8), we obtain

(f*h)(z) _ 1+0°c |a|2k+1
1 &= k(k+2)" T 1+ Ak —1)](1 + B)
21_p+2kz:p (B—A)(1—2)) ol

which in view of Theorem 2.3, yields

(f*hz(z) S 1 :p+1:5
2~ p+2 p+2

The remaing part of the proof of Theorem 3.4 is similar to that of Theorem 6, and
we skip the details involved.

To show the sharpness, we consider the functions f(z) and g(z) given by

1 (B — A)(1—2)) » .
fz) =~ P Tl Y ki ZmH(A,B,A) (4.14)
and
1 (B-A)(1-2))
9E) =¥ I A - D0+ B)
(B — A)(1—2)\)5 » (415)

p(p+2)"[1+Ap-DJ(L+B) |~
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p+l
p+2
hand, we find from Theorem 2.3 that g(z) is not in the class > (A, B, ).

where § > § = . Clearly, the function g(z) belongs to N;(f). On the other

Thus the proof of Theorem 3.4 is completed.

Next we prove the following result.

Theorem 4.3. Let f(z) € > be given by (1.1) and define the partial sums s1(z) and

sm(z) as follows:

s1(z) = % and sm(z) = % + : arz® (m e N\{1}). (4.16)
k=0
Suppose also that
> k(k+2)"[1+ Ak —1)](1+|B])
I;Jdk|ak|§1 (dk— (B—A)(1 -2\ ) (4.17)
Then we have
(1) f(z) € 32, (A, B, A),
(i) Re { SJ:(ZQ)} >1-— F— (z€U; meN) (4.18)
and
(i7i)Re { s}n(iz)) } > 1 i";j:nl_l (zeU; meN). (4.19)

The estimates in (4.18) and (4.19) are sharp for eachm € N.

Proof. (i) It is not difficult to see that
2 te ZH(A,B,/\) (n € Np).
Thus, from Theorem 6 and the hypothesis (4.17) of Theorem 3.5, we have
Ni(z™1 ¢ ZH(A, B,\) (neNp), (4.20)

which shows that f(z) € Y, (A4, B, \) as asserted by Theorem 3.5.
(ii) For the coefficients dj, given by(4.17), it is not difficult to verify that

dk+1 >dp >1 (k € N) (421)
141



RABHA M. EL-ASHWAH

Therefore, we have

m—2 oo oo
S larl+dmor > larl < dilar] <1,
k=0 k=m—1 k=0

where we have used the hypothesis (4.17) again.
By setting

1 —m—
h1(z)dm_1{f(gj))<1d >}1+ k 21 ,
Sm (2 m— m-
! 1+ a2kl
k=0
and applying (4.22), we find that
dm—1 32 |axl
h — —m—
st R
z m— o0
1 2-2 % x| —dmr 3ol
k=0 k=m-—1
which readily yields the assertion (4.18) of Theorem 3.5. If we take
1 mel
f(Z) - ; - dm—17
then
f(z):lf SEN as z — 17,
Sm dm,1 m—1

which shows that the bound in (4.18) is the best possible for each n € N.

(iii) Just as in Part (ii) above, if we put

he(2) =1 +dpm_1) (S?((Z)) 1 —?—7721;11>

(M +dm1) > apzkt!
—1_ k=m-—1
14+ Y agzktt
k=0

and make use of (4.22), we can deduce that

1) Atdn) S ol

ho(2)+1]— m=2 &
2(2) 22 - (1= dr) 3 il
k=0

k=m—1

<1 (2€U),

which leads us immediately to the assertion (4.19) of Theorem 3.5.
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The bound in (4.19) is sharp for each m € N,with the extremal function
f(2) given by (4.25). The proof of Theorem 3.5 is thus completed.

5. Convolution properties

For the functions
1 o k.
== : i=1,2;p e N), 5.1
s E_ lagj| 2% (j p€N) (5.1)

we dnote by (f1 * f2)(2) the Hadamard product (or convolution ) of the functions
fi(z and f2(2), that is,

(f1* f2)(z *+Z|ak1||ak2|2 (5.2)

Theorem 5.1. Let the functions f;(z)(j = 1,2) defined by (5.1) be in the
class Z;’n(a,ﬁ,%)\). Then (f1* f2)(2) € Z;’n(é,ﬁ,%)\), where

1 26v(1 —22)(1 — a)?
T D I A - VI +287 — B) (53)

The result is sharp for the functions

. l Zﬂ’y(l —2/\)(1 —Oé) »
fi(z) = . + p(p+2)"[1+ Ap—1D](1+28y—75)

Proof. Employing the technique used earlier by Schild and Silverman [14], we need

P(j=12peN;neNy). (54)

to find the largest 0 such that

ik(/«ﬁ) [L+ Ak = D] +26y - B)
267v(1 = 2))(1 = 9)

|lak1]lag2| <1 (5.5)

k=p
for () €5, 8,5, N = 1,2). Since [;(2) €125 (@ 5,7, 1) (j = 1,2) , we read-
ily see that

L Ek(k+2)"[1+ Mk —1))(1+28y-0)
Z 267(1 —20)(1 — a)

lari| <1 (j=1,2). (5.6)
k=p

Therefore, by the Cauchy-Schwarz inequality , we obtain

3 k(k + 2)n2[;;u(1A(_k2—A)1()1] (_1 ;)267 =5 fiaallara] < 1. (5.7)

k=p
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This implies that we need only to show that

lak1|lak2l _ v/lak1| a2
?1—5]32 S Ta-a  *=zp (5:8)

or , equivalently , that

Ik laxsl < ((11_2’) k> p). (5.9)

Hence, by the inequality (5.7), it is sufficient to prove that
26y(1 = 2))(1 - ) _ -9

k(k+2)"1+Ak—1]1+28y-08) — (1—a) (k>p). (5.10)
It follows from (5.10) that
bsi- 220, (k> p). (5.11)

- E(k+2)"[14+ Ak —1)](1+ 28y —PB)
Now, defining the function ¢(k) by

2
elk) =1- 70 2)3[617&(/@2?%](102 6 —p *kzp- (12
We see that ¢(k) is an increasing function of k. Therefore , we conclude that
20y(1—20)(1 — )?
Cp(p+2)R L+ AR - DI+ 287 - B)’

which evidently completes the proof of Theorem 4.1.

d<opp) =1 (5.13)

Using arguments similar to those in the proof of Theorem 4.1, we obtain the
following result.
Theorem 5.2. Let the function fi(2) defined by (5.1) be in the class 3 (a, 3,7, \).
Suppose also that the function fo(z) defined by (5.1) be in the class Z;n(g,ﬂ,%)\).
Then (f1 = f2)(z) € Z;’n(f,ﬁ,% A), where
20y(1 =201 — )(1 = ()

e AR -l 25y B o1
The result is sharp for the functions f;(2)(j =1,2) given by
filz) = E + 267(1 = 2)(1 = a) 2P (p e Nyn € Ny), (5.15)

z  p+2)"[1+ Xp—1)](1+28y - f)

_ 26~(1 = 2))(1 = ¢)
z  pl+2)"[1+Mp—1D](1+28y - p)

2P (p € Nyn € Np). (5.16)
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Theorem 5.3. Let the functions f;(2)(j = 1,2) defined by (5.1) be in the class

Z;’n(mﬁ,% A). Then the function h(z) defined by
1 o0
HE) = 14 Dl + o)
=p

belongs to the class Z;n(r,ﬁ,'y, A), where

B 46y(1 = 20)(1 — a)?
plp+2)"[1+Xp—1)](1+26y—-06)

This result is sharp for the functions f;(z)(j = 1,2) given already by (5.4).

Proof. Noting that

Z {k(k+2)"[1+ Ak — D](1 + 28y — B)}*
287(1 - 2))(1 — a)]®

2
|ag, ;1

Bk +2)"[1+ A(k — D](1 + 28y — 5)
= (kzzp 2571 — 20)(1 —a)

for f](z) € Z;,n(aaﬂa77>\)(j - 1,2),We have

i {k(k +2)"[1 + A(k — D)](1 + 28y — 8)}”

P 2[267(1 - 2))(1 - a))”
Therefore, we have to find the largest 7 such that
L k(R 2" AG = D]+ 28y — )

lak,;)* <1 (j =1,2),

(\ak,1|2 + |ak,2|2) <1.

(1-7)~ 4571 —20)(1 — a)? (k >p),
that is, that
46v(1 =201 - a)?
T=1- k(k+2)7[1+ Xk — 1D](1 428y — B) (k= p).
Now, defining a function ¥(k) by
(k) =1- 46y(1 =201 — a)? (k > p).

k(k+2)"[1 + Mk — 1)](1 + 267 — 3)

We observe that ¥(k) is an increasing function of k. We thus conclude that

4By(1 = 20)(1 — @)?
pp+2)"[1+Ap— 1)1 +26y—8)’

which completes the proof of Theorem 4.3.

T<¥(p) =

Putting n = A = 0 in Theorem 4.3, we obtain:

(5.17)

(5.18)

(5.19)

(5.20)

(5.21)

(5.22)

(5.23)

(5.24)
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Corollary 5.4. Let the functions f;j(z)(j = 1,2) defined by (5.1) be in the
class Z;(a,ﬁ,v). Then the function h(z) defined by (5.17) belongs to the class

>0 (7,8,7), where

_ A8 —a)®
r=1 PSR (5.25)

The result is sharp.

Remark 5.5. The result obtained by Cho et al. ([5] and [6]) is not correct. The

correct result is given by Corollary 3.
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ORDER OF CLOSE-TO-CONVEXITY FOR ANALYTIC FUNCTIONS
OF COMPLEX ORDER

BASEM A. FRASIN

Dedicated to Professor Grigore Stefan Sdldgean on his 60" birthday

Abstract. The aim of this paper is to find the order of close-to-convexity

for certain analytic functions of complex order.

1. Introduction and definitions

Let A denote the class of functions of the form:
o0
f(2) :z—l—Zanz” (1.1)
n=2

which are analytic in the open unit disk & = {z : |z| < 1}. A function f(z) in A is
said to be starlike function of complex order y(y € C—{0}), if and only if

Re{l—&-i (ZJ{&S) —1)} >0,  (zelU). (1.2)

We denote by S(7y) the class of all such functions. Also, a function f(z) in A is said

to be convex function of complex order v(y € C—{0}), that is, f € C(v), if and only
if
12f"(2)
Req1+ —
{ v ')
The class S(vy) was introduced by Nasr and Aouf [7] and the class C(y) was

introduced by Wiatrowski [15] and considered in[6] (see also [5], [10], [13] and [2]).

} > 0, (z €el). (1.3)

Received by the editors: 01.03.2010.

2000 Mathematics Subject Classification. 30C45.
Key words and phrases. Analytic, starlike and convex functions of complex order, close-to-convex

functions.
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We note that f(z) € C(v) © zf'(2) € S(y) and S(1— ) = S*(a), C(1 —a) =
C(a) where S*(a) and C(«) denote, respectively, the familiar classes of starlike and
convex functions of a real order a(0 < aw < 1) in U (see, for example, [14]).
A function f(z) in A is said to be close-to-convex of complex order v(vy €
C—{0}), and type ¢ € R if there exists a function g(z) belonging to S(y) such that
Re{l—ki('zg(lg) —1)}>5, (z €U). (1.4)
We denote by K(v,d) the subclass of A consisting of functions which are close-to-

convex of complex order v and type 8 in U. We note that the class K(1,0) is the class
of close-to-convex functions introduced by Kaplan [4] and Ozaki [11].
Pfaltzgraff et al.[12] have proved that if f(z) in A satisfies the condition
2 "(Z)>
Re 1+ >«
(56 (

then f(z) in the class S (and convex in at least one direction in U ). Furthermore,

1
5 <a<l), (1.5)

Cerebiez-Tarabicka et al. [1] have shown that if f(z) in A satisfies the condition

1 1 1
Re <1+ZJ{,(Z)) >-5  (3<a<l), (1.6)
then
Zf’(Z))
Re ( ) > 0, (z €el). (1.7)
Recently, Owa [9] proved that if f(z) in A satisfies the condition
2f"(2)
Re (1 + 70 > >0 (z el) (1.8)
then
z2f'(2) 3
Re( o) ) > (zel) (1.9)

where g(z) € S*(a/(a+ 1)), a > 0.
Also, Frasin and Oros [3] proved that if the function f(z) in A satisfies the

condition
() .
R <f’(z) ﬂ) >0 (zel) (1.10)
then
zf'(2) 1
Re(g(z) >>25_1 (z el) (1.11)
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where g(z) € S*and 1 < 8 < 3/2.
In order to show our results, we shall need the following lemma due to

Obradovi¢ et al.[8].

Lemma 1.1. Let f € S(b), b € C—{0}, and let a € C—{0} with 0 < 2ab < 1. Then

Re { (fiz)>} >972b (). (1.12)

2. Main results

With the aid of Lemma 1.1, we can prove the following result.

Theorem 2.1. If the functions f(z)and g(z) are in A and satisfies the conditions

Re{l + % (Z}c/,;ij))} S0 (zel), 2.1)
with 0 < 2ay <1, v =b/ (a+1); a,b € C—{0}; a # —1, and
Im<a—gl) §Oor[m<Z§(IS)> <0, (2.2)

then f(z) belongs to the class K(v,0), where

5=1+(2(3+‘?—1)Re<“;§1>.

Proof. 1f we define g(z) by

SRS e

then from the condition (2.1) and (2.3), we have g(z) € S(v), with vy =b/ (a +1). Tt

is easy to see that (2.3) implies

7= (42) (24
o)
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Applying Lemma 1.1 to g(z), we obtain
Re{l_'_a;rl(z;"(’i;)_l)} = Re{1+“zl<<g(;))a—1>}
ke Ly Re{(9<;> }
— Im { g(;) }
1+Re a+1 { (z }

1
> 1+ (2 Z2ay _ Re(a+ )

a+1
- 1+(2a+1—1 ( . )

This completes the proof of Theorem 2.1. O

v

Letting a = 1 in Theorem 2.1, we have

Corollary 2.2. If the function f € C(b) with 0 <b <2, then f € K(b/2,6), where

Letting b = 1 in Theorem 2.1, we have

Corollary 2.3. If the functions f(z)and g(z) are in A and satisfies the conditions

2f"(2)
Re {1+ e }>0 (z € U), (2.6)
with 0 <2ay<1,vy=1/ (a+1); a € C—{0}; a# —1, and
Im(a+1) <0 or Im (Z‘;(/S)) <0, (2.7)

then f(z) belongs to the class K(v,d), where
o=1+ (20%(11 —1) Re(a+1).

Letting b = 1 in Corollary 2.2 or a = 1 in Corollary 2.3, we have
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Corollary 2.4. Let the functions f(z)and g(z) be in A . If

Re {1 + zJ{,I;S)} >0 (zel), (2.8)
then
zf'(z) 1 .
Re( 0 > >3 (z€el), (2.9)

Therefore, if f(z) is convex in U then f(z) is close-to-convex of order 1/2 in U.
Letting b = a + 1 in in Theorem 2.1, we have

Corollary 2.5. Let the functions f(z)and g(z) be in A . If

Re{1+ai1 (i;&?)} >0 (zeU), (2.10)

where 0 < a < 1/2,then

N ELO U
R { e }>4a, (z eU). (2.11)

Letting a = 1/2 in Corollary 2.5, we have

Corollary 2.6. Let the functions f(z)and g(z) be in A . If

Re{1+§ (ZJ{,/;S))} >0 (zel), (2.12)

then

NEAON! .
R { e }> 5 (z €eU), (2.13)

That is, f(z) is close-to-convex of order 1/2 in U.
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STARLIKE FUNCTIONS WITH REGULAR REFRACTION
PROPERTY

PETRU T. MOCANU

Dedicated to Professor Grigore Stefan Sdldgean on his 60" birthday

Abstract. Let C : z = z(t),t € [a,b], be a smooth Jordan curve of the
class C? and let f be a complex univalent function of the class C' in a
domain which contains the curve C' together with its interior. Suppose
that the origin lies inside of C' and f(0) = 0. Let I' = f(C) and suppose
that IT" is starlike with respect to the origin. Let consider the radius vector
I_f from 0 to a point w € I' and let N be the outer normal to ' at the
point w = f[z(t)]. Let denote by w = (ﬁ, I_%)) the angle between N and
R and consider the vector V starting from w, such that sin ¥ = ysinw,
where ¥ = (ﬁ, 1_/) and < is a positive number. We say that the starlike
curve I' = f(C) has the regular refraction property, with index ~, iff the
argument of the vector Visan increasing function of ¢ € [a, b]. The concept
of regular refraction property was introduced in [2] and developed in [3],
(4], [5], [6] and [7]. We mention that this concept is closed to the concept
of a-convexity introduced in [1]. In this paper we continue to study this
geometric property by introducing the concept of regular refraction interval

of a given function. We also give a significant example.

1. Preliminaries

Let f an analytic and univalent function in a domain D and let C : z = 2(t),
t € [a,b], be a smooth Jordan curve of the class C2. Suppose that D contains the
curve C together with its interior and that the origin lies inside of C' and f(0) = 0.
Let T' = f(C) and suppose that T is starlike with respect to 0.
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Let ]_%) be the radius vector from 0 to a point w € I' and let N be the outer
normal to I" at the point w = f(z(t)). Let denote by w = (ﬁ, 1_%>) the angle between

— — . — .
N and R and let consider the vector V starting from w, such that
sin ¥ = vysinw, (1.1)

7 7 . oy
where ¥ = (N, V') and 7 is a positive number.
From the optical point of view, we remark that if I' separates two media of
— —
different refraction indices and if R and V' are the trajectories of the light in these

media (starling from the origin), then (1) is the well -known refraction law.

Definition 1.1. We say that the curve I' = f(C) has the regular refraction property
with index =, iff the argument of the vector V= ‘_/)(t)7 defined by (1) is an increasing
function of ¢ € [a, b], i.e.

d

%argV(t) > 0,t € [a,b)]. (1.2)

We also say, in this case, that the function f has the regular refraction property
on C:z=z(t).
Sometimes we are interesting to study the property of regular refraction only

on some arcs of the curve C.
2. Main results
N
If we let ¢ = arg f(z) and x = arg V, then we have
X=¢+tw—1.

If z = 2(t) and if we denote Z, X, ... the derivatives with respect to ¢, then we

have
X =@+ Fi,
where
Fo1— ~ cos w 1 ~
[1*72+’Y2COS2W}% V14 (1 —92)tan?w
and w = arg P, with |sinw| < % with
2f'(2)
P=- sz =z(t 2.1
S EaERE0 (21)
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The condition (1.2) becomes

P
[Py _ > .
\s[quLFP}_O,te[a,b], (2.2)
where
P 1
F=1- gkl —[sinw| < -, (2.3)
(1 =?)[P]* +v*(RP)?]2 v

with P given by (2.1).

Hence we deduce the following result.

Theorem 2.1. The function f has the reqular refraction property, with index v, on
the curve C : z = z(t),t € [a,b], if and only if the inequality (2.2) holds for all
t € la,b).

If we let f(z) = 2, then we have P = iZ,

F=1- ik : (2.4)
(A=) +22(32)%]2
and (2.2) becomes
1- F)sz + F%E >0,z = 2(t) (2.5)
where F' is given by (2.4), with |sinw| < %
Since the curvature of the curve C' at the point z = z(t) is given by
1 2
kE=k(t)=-—S-
(0 = 7797
the condition (2.5) can be rewritten as
Z\2 Z 2 £\213 27,
1(93) +{la-DE[ () -efikz0 o)

and we deduce

Theorem 2.2. The curve C : z = z(t),t € [a,b] has the regular refraction property
of index v > 0 if and only if the inequality (2.6) holds for all t € [a,b).

If C is convex then k£ > 0 and we deduce the following interesting result.
Corollary 2.3. If the smooth curve C is convex, then it has the regular refraction
property of any index v € [0, 1].
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If we let
Z|2 2\2
A=(1 —WQ)H +72(%f) ,
z z
then Theorem 2.2 can be rewritten as
Theorem 2.4. The curve C : z = z(t),t € [a,b] has the regular refraction property
of index 7y if and only if the following inequalities hold for all t € [a,b]:
(i) A <0;
N\ 2 . .
(i) 7(32) + [VA-19%|8: = 0.
Let f be analytic and univalent in the closed unit disc U, with f(0) = 0 and
f(0)=1.IfC=C,:ret €[0,2n],0 < r < 1, then we have

2f'(2)

P=rl) ="y

and Theorem 2.1 becomes

Theorem 2.5. The function f has the reqular refraction property of index vy on the
circle C,. if and only if

2p'(2)
R|p(:) + F(e7) = 55| 20, for a] =, (2.7)
where
()
p(z) 75 (2.8)
F(z,7)=1— 1Rp(2) i 2.9
) (1= 2)p() + 12(Rp(2))2] (29)
and
(1= )p(2) +72(Rp(2))* > 0. (2.10)

Definition 2.6. We say that the normalized analytic and univalent function f in the
unit disc belongs to the class RP(7), of functions with regular refraction property of
index ~ iff

RJI(f;2z,7) >0, forall z € U, (2.11)

J(f;2,7) = p(2) + F(z,7) ZZS),

with p and F given by (2.8), and (2.9) respectively, with condition (2.10).

(2.12)
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Let S* and K be respectively the class of starlike and convex functions in the
unit disc.

Also, let M () be the class of a-convex functions in U.

It is easy to prove the following main result:
Theorem 2.7. If f € RP(y),0 <~ <1 then f € S*.

Moreover
K CRP(y1) CRP(y) CS*, for0<ym <y <1

and

KCRP(1—a)CM(a), for0<a<1.

We also have
RP(y2) CRP(71) CS*, for 1 <y < 2.

An interesting extremal problem suggested by Theorem 2.7 is the following:

Given the function f, find the largest interval [yp,v1], with vo < 1 < 7, such
that f € RP(y), for all v € [yo,71]. We shall call this interval as the regular refraction
interval of the function f.

We illustrate this last problem by the following.
Example 2.8. Let

f(z) = zexp (%),z eU.

In this case we have
zp'(z)  nz"
p(z) 2427

1
p(z) = 5(2 + 2™) and

If z = e, then we have
cosnt=xz—1, with0 <z <2

and

p(:)? = 51+ 42), Rp(z) = 31+ 2),

Hence
v(1 4 )

VE(@,7)

F(z,y)=1-
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where
E(x,7) = 1+2(2 — 9%z + %%

Hence the inequality (2.7) becomes

1 Y1 +2z)\2zx—1
“(+z)+n(1- <0, for0 <z <2. 2.13
S0 +a)+n( ?(m))lﬂf or0 <z (2.13)

We remark that for v < 2 we have
E(z,v) >0, for z € [0,2].

For z = 0 we have 22=1 <y < 2, and for z = 2 we have v < 1+ 2.

From (2.13) we deduce

1 2n(2x + 2 —1) 2
— > 2 — [ ] }E(I)n s
72_1+4m{x( D | s s 5)r £1-2n ()
With%<l‘§2.

For n =1 we have

max_ ®q(z) = 0.25059...
z€ [%,2

and we deduce that the regular refraction interval of the function

z

f(z) = zexp (5)

is given by [%, 1.9976 - - - ]

For n = 2 we have

max_Po(z) = 0.2934...
elha
and we deduce that the regular refraction interval of the function

2,2

fz) = zexp ()

is given by [3,1.9123---].
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ON ARGUMENT PROPERTY
OF CERTAIN ANALYTIC FUNCTIONS

MAMORU NUNOKAWA AND ALPHA MAMADOU BAH

Dedicated to Professor Grigore Stefan Sdldgean on his 60" birthday

Abstract. In this paper we generalize the results of Libera and McGregor
concerning argument property of analytic functions. We use the result in
[3] to prove the following:
Theorem. Let - -

f(z) =2+ Z anz", g(z) =z + Z bn2"

n=p+K n=p+K
be analytic in A, f(z) #0 in 0 < |z| < 1, and suppose that for some a, 3

O<a<l1l,0<p8<])
f'(@)’ m ~1 208 -1 20
ar < —a+ Tan —Tan " —————
SIe) 2 1-p2 (1 - B2)V1+a?
/
mn A, and that J ((Z)) =< 1+ gz where < means subordination. Then we
p _
have
f(2)>} ™
ar <—-a n A
¢ (g<z> 2

1. Introduction

Let f and g be analytic in the unit disk A = {z : |z| <1} f(0) =g¢(0) =0, g
maps A onto a many sheeted domain which is starlike with respect to the origin, and
()
g'(2)

Re >0 inA.

Then Libera [1] proved

Re@>0 inA.

9(2)
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The essential ideas of the proof of the above result are the same as given by Sakaguchi
[6].

On the other hand, MacGregor [2] proved that for real 3,

f'(z)

R

> [ in A.

implies

M in
Reg(z) >0 A.

Ponnusamy and Karunakaran [4] generalized the above results as the following:
Theorem 1.1. Let a be a complex number satisfying Rea > 0 and 3 < 1. Let

—Zp+zan s _Zp—l-ZbZ

n=p+K n=p+K

are analytic in A for 1 <p, 1 < K and that g satisfies

Re<ag(z)) >3 in A

9'(2)
where

0<d< @.

p

If

(2) '(2)

Re{(la)g(z)Jrag/( )} >0 in A
Then
f(z) 28+ K6
Reg(z) 2T K3 n A.

Putting @ = 1 in Theorem 1.1, it follows that

Corollary 1.2. If

oo

f(z)=2P+ Z apz” , 1<p, 1<pK and g(z)=2"+ Z b 2"
n=p+K n=p+K

Re ) S5 ina
zg'(2)
where  0<§ < % then for (3 real
f'(z)
A
g’(z)) >0 in
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implies
f(z) 28+ K6
Reg(z) ” 3 + Ko

For a argument properties of analytic functions, Pommerenke [5] obtained the follow-

n A.

ing result. If f is analytic in A and h is convex in A and

arg(f’(z))‘ o 9T O<a<l)

W (2) 2
then

g (F21 ) | o
where

|z1] <1 and |z2] < 1.

2. Main theorem

In this short paper, we will obtain a generalization of Libera’s result by

applying Nunokawa’s result [3].

Lemma 2.1. Let p be analytic in A, p(0) =1, p(z) # 0 in A and suppose that there

exists a point zg € A such that

™
|argp(z0)| < o for |2] < |z

and
T
|arg p(z0)| = 504
where 0 < a.
Then we have
/
20p’ (20) —iKa
p(20)
where
K> 1 n 1 b (20) s
- - r -
25 a . when  argp(zg 2a
and
1 1
K< —3 (a—i— a) when  argp(zo) = —ga
where

aurgp(zo)é ==xia and 0<a
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Theorem 2.2. Let
oo
flz)=2z+ E anz"
n=2

be analytic in A f(z) #0 in 0<|z| <1,

g(z) =z + Z bpz"
n=2

be analytic in A and suppose

f'(2) m 1 2ap -1 203
sl )l < gt Tan g T e

in A  where O0<a<l, 0<pfB<1 and

zg'(2) L 148
g(z) 1-pz

where < means the subordination. Then we have

’arg (gg;)’ < ga in A.

Proof. Let us put

p(z) = ) p(0)=1
Then it follows that
FE) e
o) PO
() )
=r(z) (1 20 ) > '

If there exist a point zg, |20| < 1 such that
|arg p(z)| < ga for |z| < |zo]
and
|arg p(zo)| = ga
then from Lemma 2.1 we have

Zop/(zo)
p(20)

=iKa.
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From the hypothesis, we have the image of the circle A under the mapping w = }fgz
28

with radius 57 Applying the above

1432

is contained in the circle whose center is 1752

properties, for the case
™
argp(zo) = S,

we have

arg f'(z0) =argp(z9) + arg <1 +iaK 9(z0) )
g (20 9'(#0)
0K

1+ (p? —02)K?

> ga + Tan '6K — Tan~*

2
where p = “gljﬁé ), 6= 12_6“52 and then it follows that

2 — 0% =a%

Now let us put
oK

F(K) = Tan 'K — Tan™" , 1<K
L+ (p? —90?)K?
Then we have
) — O (B0 = P 55 - K (L (0~ K
14 02K2 (1+ (0% — 82)K?)3 1+ p?K2
_ 6 B §
1+62K2 (14 p2K2)\/1+ (p? — 02)K?
.
1+62K2 1+ p?K?
2 2
_ §(p* —6%) S50

(14 62K2)(1 4 p2K?)
This shows that F'(K) takes the minimum value at K = 1. Therefore we have
. f(z0) _ ™ an—1 208 Ton-1 203
9'(20) — 2 1—p? (1-B2)V1+a2

This contradicts the hypothesis and for the case argp(zo) = — 5, applying the same

method as the above, we have

f'(z0) (7‘(‘ 1 2ap 1 208 )
ar <—|za+Tan —Tan™' ————— | .
& 9/(20) 2 1—p? (1-32)V1+a2
This is also contradiction and it completes the proof. O
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A CONVEXITY PROPERTY FOR AN INTEGRAL OPERATOR F,,

GEORGIA IRINA OROS AND GHEORGHE OROS

Dedicated to Professor Grigore Stefan Sdldgean on his 60" birthday
Abstract. In this paper we define an integral operator denoted by Fy,,(z)
using the Ruscheweyh derivative of order n applied to the functions f;(z) €
A, i ={1,2,...,m}, z € U. We determine conditions on the functions

R" fi(z), where R" is the Ruscheweyh operator (Definition 1.1), in order

for Fi,.(z) to be convex.

1. Introduction and preliminaries
Let U be the unit disk of the complex plane:
U={zeC: |z| <1}
Let H(U) be the space of holomorphic functions in U. Also, let
Ay ={feHU), f(2) =2+ ap12" +..., 2€U}
with A; = A and

S={f€A: fisunivalent in U}.

Let
zf"(z)
f'(2)

denote the class of normalized convex functions of order a;, where 0 < o < 1,

K(a):{féA:Re +1>a,z€U}
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Key words and phrases. analytic function, univalent function, integral operator, convex function, starlike

function, differential operator.
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S*(a):{feA: Re Z]{;S) > a, zeU}

denote the class of starlike functions of order «, with 0 < a < 1, §*(0) = S*.

In the papers [9], [10], F. Ronning introduces two classes of univalent functions
denoted by SP and SP(«, ), respectively. The class SP consists of those functions
f € S which satisfy the condition

re 21 _ |21(2)
f(z) f(2)
The class SP(a,3), @ > 0, 8 € [0,1) consists of the functions f € S which

-1

, for all z € U. (1.1)

satisfy the condition

2f'(2) 2f'(z)
f(2) f(2)

In [12], the authors introduce the class denoted by SD(«, ) consisting of the

—(Oé'i‘ﬁ)‘SRe +a—0, forall z€ U. (1.2)

functions f € A which satisfy the inequality

THONNEIIE

Re ) 1)

- 1' + 8, (1.3)

for a >0 and 3 €[0,1).

Definition 1.1. (St. Ruscheweyh [11]). For f € A, n € NU {0}, let R™ be the
operator defined by R™": A — A

Rf(z) = f(2)
(n+ )R f(2) = 2[R"f(2)] + nR"f(z), z € U.

Remark 1.2. If fe A
f2)=z2+4) a;
j=2
then

(o)
R"f(z) =2+ ZCZH_lajzj, zeU,

Jj=1

with
R"f(0)=0 and [R"f(0)] =1.
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2. Main results

By using the Ruscheweyh differential operator (Definition 1.1) we introduce

the following integral operator.

Definition 2.1. Let n,m € NU {0}, i € {1,2,3,...,m}, a; € R with a;; > 0,

A" =Ax Ax---x A.
N——

m

We define the integral operator I : A™ — A

I(fl,f27"'7fm)( ) Fm (21)

[ A" [ } cev
- [ ;

where f;(z) € A, i€ {1,2,3,...,m} and R" is the Ruscheweyh differential operator
given by Definition 1.1.

Remark 2.2. (i) Forn=0,m=1, a1 =1, aa =a3 =+ =, =0,
Rf(z)=f(z) € A
and we obtain Alexander integral operator introduced in 1915 in [1]:

):/Oszf)dt, zeU.

(i) Frn=0,m=1, a1 =a€[0,1],aa =az =+ =a, =0, R0f(z) =
f(2) € S and we obtain the integral operator

I(z)/oz [fit)rdt, zeU

1
which was studied in several papers such as [6]. For a € C, |a| < 1 the operator was

1
studied in [4], [5] and for |o| < 3 in [8].
1
(iii)y Form =1, m =1, a3 = a € C, |af < 4a2:~~~:am20,

RYf(2) = zf'(2), z € U, f € S, and we obtain the integral operator

1) = [ (o
which was studied in [7].
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(iv) For n =0, m e NU{0}, a; > 0,4 € {1,2,...,m} we obtain the integral

operator defined by D. Breaz and N. Breaz in [3] given by

F(z) /O {fl(t)rl [fQ(t)]OQ... [fm(t)rm dt.

t t t

Property 2.3. Let m € NU{0}, i € {1,2,...,m}. If fi(2) € A then F,,(z) given by
(2.1) belongs to the class A.

Proof. From (2.1) we have

Fo(z) = /O :Rnfl(t)rl [wrm it

t t
r o0 o0
t+ > apat t+ > apmt®
k=2 k=2

:/ = T O = R
0 t t

=T 0o ay 0o Qm

= / 1+ Zak,ltkll T+ Zak,mtkll dt
0 [ k=2 k=2

z oo . oo tk

:/ <1+Z~ykt>dt:t’ +)

0 k=2 R — k

=Z+§:5ktk€A,

k=2

a1 Am

z
0

hence F,,,(z) € A. O

Definition 2.4. Let R(f) be the subclass of functions f € A which satisfy the
condition

Rew>ﬁ, 0<pg<l, zeU. (2.2)

R f(z)
Remark 2.5. (i) For n = 0, R(f) becomes the class of starlike functions of order 3
denoted by S*(5).

(ii) Forn = 0, 8 = 0, R(8) becomes R(0) = S*, the class of starlike functions.

Definition 2.6. Let K(8) C A™ = A x A x --- x A denote the subclass of functions
—_—

(f1, f2, -+, fm) € A™ which satisfy the condition

Re {1+%}>ﬂ, 8<1, zeU, (2.3)
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where F,,,(2) is given by (2.1).
Theorem 2.7. Let n,m € NU{0}, i € {1,2,...,m}, o; € R with a; > 0, 5; € R,
0<B;<1and Zai(ﬁi —1) > —1. If fi € R(B:) then F,,(z) € K(0) where F,, is

i=1
given by (4) and

=1 —i—Zaz(ﬁl - 1)
i=1

Proof. By differentiating (2.1), we obtain

Fl (2) = {R"J;l(z)r [Wrm, zel. (2.4)
Using (2.4) we obtain:
Log F),(2) = az1[Log R"f1(z) — Log 2] + -+~ + (2.5)

+ am[Log R" fin(z) — Log 2], ze€U.

By differentiating (2.5) we have

Fu)  [(RAGR) 1] (" fn(2)) 1
ro o e e g ol e
and after a short calculation we obtain
2P (2) 2R fi(2) 2(R" fm(2))'
EG YT RAG T R e) 27)
+1— (a1 4+ + an).
Since f; € R(f5;) we have
2y (2)] z(R" f1(2)) 2(R" fm(2))
Re {1 P (2) } = a1Re 7R"f1(z) + -4+ anRe 7R”fm(z)
+1—Zai >a1ﬁ1+-~-+amﬁm+1—zai
i=1 i=1
> Zazﬂl +1 —Zai >1 +ZC¥Z(52 — ].)
i=1 i=1 i=1
O

If f; € R(B) then Theorem 2.7 can be rewritten as the following:
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Corollary 2.8. Let n,m € NU{0}, i € {1,2,...,m}, oy € R with a; > 0, 8 € R,
B < 1. If fi € R(B) then Fp,(z) € K(§') where

I=1+B-1)> o
1=1

If 6 =0 and Z «; = 1 then Theorem 2.7 can be rewritten as the following:
i=1
Corollary 2.9. Let n,m € NU{0}, i € {1,2,...,m}, o; € R with a; > 0 and

Zai =1, and 8 =0. If f; € R(0) then F,,(z) € K.

i=1

Theorem 2.10. Let n,m € NU{0}, i € {1,2,...,m}, a; E R with 0 < o; < 1 and
Z% <1. IfR"f; € SP and

i=1

z(R" fi(2))'

then

where F,, is given by (4) and

1
Proof. Since R"™f; € SP, using (2.7) and (2.8) we have:
FRE)] o AHRUAG) (R fn(2))
Re [1+ Fr (2 )} = a1Re R fi(2) + -+ anRe R (%)
2(R"f1(2) 2(R" fm(2))'
“‘Z‘” Sl et R o e

+172a¢>172a¢+
i=1 i=1

S ().

1=1

m
If Z a; = 1 then Theorem 2.10 can be rewritten as the following:
i=1
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Corollary 2.11. Letn,m € NU{0}, i € {1,2,...,m}, a; € R with0 < a; < 1 and

Zai <1 — |;|) =1. If R"f; € SP then F,,(z) is a convez function.
i=1
1 1
Example 2.12. Let n e NU{0}, m =2, oy = 3 2= 3,
f1(2) =24 a22®,  fa(z) = 2+ be2”,

R"f1(2) = 24 (n 4 1)agz?, R"fo(2) = 2 + (n + 1)by2?,

1
where ag,bs €C, |ag| > —————, 2] > —————, z € U.
e 2 e - F)
Evaluate
z[z + (n+ 1)ag2?) ] (et Dasz
z[1 4+ (n + 1)asz| 14+ (n+Dagz
N S I e B
(14 (n+1)az|lz))?2 14 (n+1)asllz] — 2
z[z + (n+ 1)be2?] T2+ Dbez = (n+1)bez
2(1 4+ (n+ 1)be2?] 14 (n+ Dboz 1+ (n 4 1)byz
[P WPEE Dbl 1
1+ (n+Dbll2]]* 14 (n+1)[bolz] — 2

Using Theorem 2.10, we have
# 1
Fy(z) = / (14 (n 4 Dagt]2[1 4 (n + )bot]3dt € K (2) , zeU.
0

Theorem 2.13. Let n,m € NU{0}, i € {1,2,...,m}, a; € R with a; > 0, A € R
with A > 0, p € R with pu € 0,1) and (A—p+1) > a; < 1. IfR"f; € SP(X, ) then

F,, € K(w), where F,, is given by (4) and

m

wzl—()\—,u—i—l)Zai.
i=1
Proof. Since R"f; € SP(\, i), using (2.7) we have:
2 (2)] 2(B"f1(2) 2R fm(2))
Re [14 55| = ovme LG o oo
- 2(R"f1(2))
£ Yaz [ A 0] 0] s
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2(R" fm(2))'
R™ fn(2)

S e

()\+M)‘(>\M):|+1iai

=1-> ai(l—p+)=1-A-p+1)) o
i=1 i=1

O

If Z a;(A—p+1) =1 then Theorem 2.13 can be rewritten as the following:
i=1
Corollary 2.14. Let n,m € NU{0}, i € {1,2,...,m}, a; € R with a; > 0, A > 0,
pe[0,1) with (A= p+1)Y oy =1. If R"f; € SP(\, ) then Fp(2) € K.
i=1

Theorem 2.15. Let n,m € NU{0},i€ {1,2,...,m}, , €R, o; >0, y€R, v >0,
5 € (0,1) with (1— % —5) Y ai < 1. IfR"f; € SD(v,8) and
i=1

z(R" fi(2))' 1 .
W—1‘>4, zeU, ie€{l,2,3,...,m}, (2.9)

then F,, € K(&), where F,, is given by (4) and

5:1—(1—1—6)§ai.

Proof. Since R™f; € SD(v,46), using (10) and (12), we have

Re {1 + ZFT/'/L(Z)} = a1Re 7Z(R"f1(z))’ + -+ a,Re 7Z(R”fm(z))' +1-— Zai

F7,(2) R f1(2) R fon(2) 2
S{ClE o s T == aill KD ISR o
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If1- (1 - % — 5) iai = 0, then Theorem 2.15 can be rewritten as the
following. =
Corollary 2.16. Let n,m € NU{0}, ¢ € {1,2,3,...,m}, a; € R, o; > 0, v > 0,
§ € (0,1) with 1 — (1 - % —5) Em:ai =0. If R"f; € SD(v,6) and
i=1
Z(R"fi(2))
R f;(2)

then F,,(z) is convez.

1
T zeU, ie{l,2,...,m}

_1‘2

References

[1] Alexander, I. W., Functions which map the interior of the unit circle upon simple regions,
Ann. of Math., 17 (1915), 12-22.
[2] Breaz, D., Breaz, N., Two integral operators, Studia Univ. Babeg-Bolyai, Mathematica,
Cluj-Napoca, 3 (2002), 13-21.
[3] Breaz, D., A convezity property for an integral operator on the class Sp(3), General
Mathematics, 15 (2007), no. 2-3, 177-183.
[4] Kim, J. J., Merkes, E. P., On a integral of powers of spiral-like function, Kyungpook.
Math. J., 12 (1972), 249-253.
[5] Krzyk, J., Lewandowski, Z., On the integral of univalent functions, Bull. Acad. Polon.
Sc. Ser. Sci. Math. Astronom. Phys., 11 (1963), 447-458.
[6] Miller, S. S., Mocanu, P. T., Reade, M. O., Starlike integral operators, Pacific Journal
of Mathematics, 79(1)(1978), 157-168.
[7] Pascu, N. N., Pescar, V., On integral operators of Kim-Merkes and Pfaltzgraff, Mathe-
matica, Cluj-Napoca, 32(55) (1990), no. 2, 185-192.
[8] Pescar, V., On some integral operations which preserve the univalence, Punjab Univer-
sity Journal of Mathematics, 30 (1997), 1-10.
[9] Ronning, F., Uniformly convez functions and a corresponding class of starlike functions,
Proc. Amer. Math. Soc., 118(1) (1993), 190-196.
[10] Ronning, F., Integral representations of bounded starlike functions, Ann. Polon. Math.,
60(3) (1995), 289-297.
[11] Ruscheweyh, S., New criteria for univalent functions, Proc. Amer. Math. Soc., 49
(1975), 109-115.
[12] Sarangi, S. M., Univalent functions with positive coefficients, Tamkang J. Math., 25
(1994), 225-230.

177



GEORGIA IRINA OROS AND GHEORGHE OROS

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ORADEA

STR. UNIVERSITATII, No.1
410087 ORADEA, ROMANIA

E-mail address: georgia oros_ro@yahoo.co.uk

DEPARTMENT OF MATHEMATICS
UNIVERSITY OF ORADEA
STR. UNIVERSITATII, No.1

410087 ORADEA, ROMANIA

178



STUDIA UNIV. “BABES-BOLYAI”, MATHEMATICA, Volume LV, Number 3, September 2010

INJECTIVITY CRITERIA FOR C! FUNCTIONS DEFINED IN
NON-CONVEX DOMAINS

NICOLAE R. PASCU AND MIHAI N. PASCU

Dedicated to Professor Grigore Stefan Sdldgean on his 60" birthday

Abstract. In the present paper we obtain sufficient conditions for the
injectivity of functions of class C* defined in type ¢ convex domains. In
particular, we obtain some injectivity criteria for functions of class C*
defined in some simply and doubly connected domains, and we derive as a

corollary the well-known Ozaki-Nunokawa-Krzyz univalence criterion.

1. Preliminaries

We denote by B (zg,7) = {z € C:|z— 29| <r} the open disk centered at
zo € C of radius r > 0 and by U = B (0, 1) the unit disk in C.

In [4], the authors introduced the convezity constant K (D) of a planar do-
main D C C, as follows:
Definition 1.1 ([4]). For a domain D C C, we define the convexity constant of the

domain D by

. |a —b|
K(D)= inf sup
D) a(’lbibD'yeF(a,b;D) ()

where T'(a,b; D) is the family of all rectifiable arcs v C D with distinct endpoints a
and b, and [(y) denotes the length of ~.

The authors showed that in the class of simply connected domains, the con-
vexity constant K (D) characterizes the convexity of the domain D, in the following

sense:

Received by the editors: 26.04.2010.
2000 Mathematics Subject Classification. 30C55, 30C45, 52A30, 52A10.
Work supported by CNCSIS — UEFISCSU research grant PNII — IDEI 209/2007.
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Theorem 1.2 ([4]). The simply connected domain D C C is convex if and only if
K(D)=1.

Given two domains 2 C D C C, denote by Dg the domain

Do=D-Q={z€C:2€D, 2¢Q} (1.1)

Dq

FIGURE 1. The domain Do = D — Q.

In [4], the authors proposed the following conjecture:

Conjecture 1.3. If D and Q are convex domains with Q C D, the convexity constant

of the domain Do = D — Q is given by

N (]
K(DQ) - a,rl?elgﬂ l("}/ab) ’
a#b

where Yap denotes the shorter of the two arcs of the boundary 02 with endpoints a
and b.
They proved the validity of the above conjecture in the following cases:
1. If D ¢ Cis a domain and v C D is a Jordan arc which joins two points
z0 € D and wg € 9D, then K (D) = 0.
2. If D C C is a convex domain, zg € D and r > 0 are chosen such that
B(zo,7) C D, then K(Dp(,, ) = 2.
3. If D is a convex domain and z9 € D and r > 0 are chosen such that

S(z0,7) C D, then K(Dg(.yr)) = %, where

S(z0,1) = {z € C:|Re(z — 20)| < g, [Im(z — 20)| < g}
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denotes the interior of the square having zy as center of symmetry and

sides parallel to the coordinate axes, of length equal to r.

D

Z(),T)

FIGURE 2. The domains Dp(.or) = D — B (207) and Dg(,ry = D — S (207).

FIGURE 3. The domain Uy(z,q,8) = U — A (20, , 3).

4. The convexity constant of the domain Uy (.,.q,3) is given by

1, if 2 € [Oﬁl)
KEUa(zo,000) =y ars(cos)rars(e%20) T aday
sin 5 , if zg € (—l,cosi;ﬁ)
where

A(zo,a, B) = {20 + 7€ 17 >0, —arg(e” —2) <0 < arg (e’ —2)}

represents the angular region with vertex zy and opening angles o and f3.
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M. O. Reade ([5]) generalized the class of convex planar domains as follows:

Definition 1.4 ([5]). Let ¢ € [0, 7) be a real number. We say that the domain D C C
is a type ¢ convex domain if for any distinct points a,b € D there exists ¢ € D such

that the line segments [a, ], [¢,b] C D and

arg < . (1.2)

c—a

The family of type ¢ convex domains is denoted by C,.

FIGURE 4. A type ¢ convex domain D, ¢ € [0, 7).

Remark 1.5. Geometrically, condition (1.2) shows that the angle u = 7 — ach is less
than or equal to ¢ (see Figure 4).

It can be shown (see [4]) the following connection between type ¢ convex
domains and the convexity constant:
Lemma 1.6. If D € C,, is a type ¢ convex domain for some ¢ € [0,7), then K (D) >
cos £
Remark 1.7. The above lemma shows that if D is a type ¢ convex domain, the
convexity constant of D cannot be too small. In particular, if D C C is a convex

domain then it is also a type ¢ convex domain for ¢ = 0, and therefore from the

above lemma it follows that K (D) = 1.
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2. Univalence criteria for functions of class C'(D)
P. T. Mocanu ([2], p. 137) obtained the following univalence criterion for C'!

functions defined in type ¢ domains:

Theorem 2.1. Let D € Cy, ¢ € [0,7). If the function f € C' (D) satisfies one of

the two equivalent conditions

i) |arg fy (2)] < 5%, z € D, for any 6 € [0,27)

i) Re 21 — |1 2462 21C)

1
tan§> — 7

cos b1

,2z€ D,

then the function f is injective in D and Jf (z) >0, z € D.

Using the convexity constant of a domain, we can obtain a similar result as

follows:

Theorem 2.2. Let f : D C U — C be a C* function in the domain D € C,, for some
pel0,m). If

1 1
’Dg (m—;>’ §cos§, zeD, (2.1)

for all 6 € [0,27), where Dy is the operator defined on C functions by

_Of | 0p0f
Dof = 0z te 0z’

then the function f is injective in D.

Proof. Let a,b € D, a # b be arbitrarily fixed distinct points.

Since D € C,,, by definition, there exists ¢ € D such that v = [a, ¢]U[c, b] C D.
Let v1(t) = a+tle —a), t € [0,1] and 2(t) = ¢+ t(b —¢), t € [0,1], be two
parametrizations of the line segments [a, ¢], respectively [c, b].
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where 0 = arg (b — ¢).
We obtain

and therefore using the hypothesis we have

i (- Dlze-4 Lo -l
1
f(2)

b [ |on (75 -2) ex @]

< b— 0S —
|C |C()S2+| |C 9

If f(a) = f (b), from the above inequality we obtain equivalent
b — al
L)

< |ab] (:osf7
2
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where v = [a, c] U [c, b].
Approximating now an arbitrary curve v € T (a,b; D) by a polygonal path
Yo = lag,c1] U ... U[en,b] C D and using an argument similar to the previous proof,

by passing to the limit we obtain:

h—
lb—a < |ab]| cos f,
L(v) 2
for any v € T (a, b; D), and therefore
-b
|2 — 9 < |ab| cos —,

which shows that

. la —b| la —b]
K (D)= inf sup < sup
) a,b€D yer(a,ppy () ver(app) (V)

¥
< |ab —.
<la \cos2

Since from Lemma 1.6 we have K (D) > cos £ > 0, we obtain
K (D) < |abl K (D),

which contradicts the hypothesis a,b € D C U (and therefore |ab| < 1).

The contradiction shows that the hypothesis f (a) = f (b) is false, and there-
fore we must have f (a) # f (b) for all a,b € D distinct, which shows that f is injective
in D, concluding the proof. (|

Following the proof of the above theorem it can be seen that we can replace
the right side of (2.1) by the larger constant K (D), thus obtaining the following more

general result:

Theorem 2.3. Let f : D C B(0,R) — C be a C* function in the domain D € C,,
for some p € [0, 7). If

(D) <R )

for all 0 € [0,27), where Dy is the operator defined on C* functions by
Dof = f.+ 6722'9]02;

then the function f is injective in D.
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Remark 2.4. Using the values of the convexity constants of the domains Dgq pre-
sented in Section 1, from the above theorem we obtain as corollaries sufficient con-
ditions for univalence for functions of class C! defined in some simply and doubly

connected domains.

Remark 2.5. In the particular case D = U, we have K (U) = 1, and Theorems 2.2
and 2.3 above become (in the case when f : U — C is a normalized analytic function

in U) the well-known Ozaki-Nunokawa-Krzyz univalence criterion (see [1], [3]).
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ON THE PROPERTIES OF A SUBCLASS OF ANALYTIC
FUNCTIONS

DORINA RADUCANU
Dedicated to Professor Grigore Stefan Sdldgean on his 60" birthday
Abstract. In this paper we consider a new class of analytic functions
defined by a generalized differential operator. Inclusion results, structural

formula, coefficient estimates and other properties of this class of functions

are obtained.

1. Introduction

Let A denote the class of functions f of the form
oo
f(2) :z—l—Zanz" (1.1)
n=2

which are analytic in the open unit disk U:={z € C: |z| < 1}.

The Hadamard product or convolution of the functions
flz)=2z+ Z anz™ and g(z) =z + Z bp2"
n=2 n=2

is given by

(f*g)(z):z+2anbnzn, zeU.
n=2

Let f € A. We consider the following differential operator introduced by
Réducanu and Orhan in [7):
D}, f(2) = f(2)
Djuf(2) = Dauf (2) = M2 [ (2) + (A = )2 f'(2) + (L = A+ p) f(2)
Received by the editors: 26.04.2010.

2000 Mathematics Subject Classification. 30C45.

Key words and phrases. Analytic functions, differential operator, structural formula, extreme points.
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DY (2) = Dy (DR 1(2)) (1.2)

where 0 < p < Aand m e N:={1,2,...}.
If the function f is given by (1.1), then from (1.2) we see that:

DY, f(2) =2+ Z Ap (A, p, m)anz" (1.3)
where
A iym) = [1+ Qan + A — ) (n — D™ (1.4)

If A =1 and p = 0, we get Saldgean differential operator [9] and if u = 0, we obtain
the differential operator defined by Al-Oboudi [1].

From (1.3) it follows that DY}, f(z) can be written in terms of convolution as

NS (2) = (f*9)(2) (1.5)
where
9(z) =2+ Z An (A, pm)2". (1.6)
n=2

Definition 1.1. We say that a function f € A is in the class RY} (a,v) if

%{(1—@)%(2)4—&( f\r;f(z))’} >v,2€U

fora>0,0<y<1,0<pu<Xand meNy:={0,1,2,...}.
Note that:

i. Rgu ,7) is the subclass of A consisting of functions with Rf’(z) > ~.
iR

(1

(1,7) is the class of functions investigated in [1].
iii. RY (1

(

,7) reduces to the class of functions considered in [8].

iv. RY s 7) is the class of functions studied by G. Chunyi and S. Owa in [4].

The main object of this paper is to present a systematic investigation for the
class R’;L(a,fy). In particular, for this class of functions we obtain some inclusion
results, structural formula, extreme points and other properties.
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2. Inclusion results

In order to prove our inclusion results we need the following lemmas.

Lemma 2.1. ([4]) Let « > 0 and v > 0. Let D(z) be a starlike function in U and let
N(z) be an analytic function in U such that N(0) = D(0) = 0 and N'(0) = D’(0) = 1.

If
GNE NG
D) YD)

v,z2€eU

then

N(z)
Lemma 2.2. ([6]) Let h(z) be a convex function in U and let A > 0. Suppose that
B(z) and C(z) are analytic in U with C(0) =0 and

C(z)
h'(0)

RB(z) > A+4 , z€ .

If p is an analytic function , with p(0) = h(0), which satisfies
AZ?p"(2) + B(2)2p'(2) + p(2) + C(2) < h(z), z€ U
then p(z) < h(z), z € U.
Note that the symbol 7 < ” stands for subordination.
Theorem 2.3. Leta>0,0<~v<1,0< u< X and m e Ny. Then
(@) € RL(0,7).

Proof. Suppose f € RKL(O‘W)‘ Then, from Definition 1.1, we have

DY (2)

z

w{(-a)

Consider N(z) = DY), f(z). Making use of (1.3) we have N(0) = 0 and N'(0) = 1.
Let D(z) = z. Since D(z) is starlike in U and D(0) = 0 = D’(0) — 1, from Lemma

Dm
%{’\Mz(z)}>7,z€U

which implies f € RY},(0,7). Thus RY, (a,v) C RY,(0,v) and the proof of the

+ oz(DZLf(z))’} >, 2€U.
2.1, we obtain

theorem is completed. O
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Theorem 2.4. Let 0 <3<, 0<y<1,0<pu<Xandm € Ny. Then

R (e, 7) € RL(B,7)-

Proof. If B =0, from Theorem 2.3, we have RTH(O(, v) C RTH(O,'y).
Let f € RY), (o, ) and assume 8 # 0. Then

(1-5) 2 gipg ey -

(5 -1) 2D s - P ooy s

5

Since f € R/\M(a,ﬂy), making use of Definition 1.1 and Theorem 2.3, we obtain

D31 (%)
z

w{-5) + ORI | -

d Kg _ 1) N A +§R{(1 _ a)%@ T o Tuf(z))’H

z

>ﬁ(a—1>7+5v=7.
a \p «

It follows that f € RY),(3,7) and thus, RY) (a,7) C RY,(3,7).

Another inclusion result is given in the next theorem.
Theorem 2.5. Leta>0,0<~v<1,0< u< X and m e Ny. Then
Ry (o,7) € RE ().

Proof. Suppose [ € Rf\"jl(oz,'y). Then

m—+1 Py
%{(1 e AN S }

z

which is equivalent to

m—+1
(1— a)w a(DZ\’L"’lf(z))’ <h(z),2z€U
where
h(z) = w L zel.

From (1.2), we have

DY f(2) = M2 DN, ()] + (A = )z[DEf ()] + (1= A+ )
190
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It follows that )
DY f(2)
S (D)
22 Dmf 2 "

( /\;; (2)) N

2D £(2))
HAM{@a)Mj”)+aM ﬂﬂ@ﬂ}

z

R(z):=(1-a)

=\ {(1 —a) a[ZQ(D}\"#f(z))”]’}

DY (2)

sa-aewfa-a +a(DRIE) ]

Denote
Ap z /
p(z) = (1fa)?+a( Lf(2), 2 €l (2.3)
Simple calculations show that
R(z) = Muz®p" (2) + (2 + X = p)zp (2) + p(2). (2.4)
Making use of (2.4), the differential subordination (2.1) becomes
M2?p" (2) + 2 4+ X — p)zp' (2) +p(2) < h(z), z € U.

It is easy to check that conditions of Lemma 2.2 with h(z) given by (2.2), p(z) given
by (2.3), A = Ay, B(z) =2 \p+ A — p and C(z) = 0 are satisfied. Thus, we obtain
p(z) < h(z) which implies that

DRI
8?{(1 - a)# —|—oz(DMf(z))’} >, zel.
Therefore, f € RY} (c,7) and the proof of our theorem is completed. O

3. Structural formula

In this section a structural formula, extreme points, coefficient bounds for

functions in Rf\nu(a, ) are given.

Theorem 3.1. A function f € A is in the class RTH(a,'y) if and only if it can be

expressed as

z+ZA O ]/C|_1

Z+2(1 -7 ZH = | dr(¢) (3.1)
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where w(¢) is the probability measure defined on the unit circle
T={CeC:[c|=1}.
Proof.  Definition 1.1 implies that f € RY} («,7) if and only if

DT f(z
(1 - ) 2ef® oDy f(2) —
I—vy

=p(z), z€U (3.2)

where p(z) belongs to the class P consisting of normalized analytic functions which
have positive real part in U.

From (3.2) we have

DT f(z) —~vz
(1- a)M +a[(DYLf(2)) =] = (1 - 7)p(2). (3.3)

z
If o # 0, multiplying both sides of (3.3) by éz%_l, we obtain
L _1/mm ! 11 1- v
[A7UDRI () = 72)] = 28 ().
Using Herglotz expression of functions in the class P, we have

[ w‘(z)—ryz)}’—za—ll‘”/lC L2 0).

Q@ =1 1—¢z

Integrating both sides of this equality we get

B m B # 371—7 1+ Cu
D3I =) = | [u o Cudmo] du

which is equivalent to

- 1 o [F a1+ Cu(l—2
)\,u,f(z):a/lc_l |:Zl O‘A (O 1€Mdu] d,u(C)

So we have
N (S
Dmf(z):/ z+2(1—~)¢ ————— 1 du(Q). 3.4
Al cl=1 ( ) 7;21+(77,71)Oé () ( )
From (1.5), (1.6) and (3.4) it follows that
= 2(1 d .
Z+ZA O\ m 1 /|C|=1 z+ CZlJr 1 1(¢)
Since this deductive process can be converse, we have proved our theorem. O
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Remark 3.2. If o = 0, the expression (3.1) is also true and it says that if f € A

(2)

Dm
satisfies R0 > v, then f can be expressed as
z

Z+§:A (A 1y m ]«A—l

Corollary 3.3. The extreme points of the class R;\"M(a,'y) are

24 2(1=7)¢ Y (¢2)" | du(Q).
n=2

fo(z) =z +2(1 —v><n§ T o DalA Gy 20 k=1 (35)

Proof. Denote

(DX f(2)e =z +2(1 =Ny =

n=2

1 +
Then, equality (3.4) can be written as
D%, 5= [ D FEdn)
Since probability measures {u} and class P are one-to-one it follows that the map
— [DY),f(2)]y is one-to-one and the assertion follows (see [5]). O
Making use of Corollary 3.3 we can obtain coefficients bounds for the functions

in the class RY, (o, 7).

Corollary 3.4. If f € RY} («,7), then

2(1—9)
1+ (n—1)a]A,(\ p,m)’ nz2

lan| <

The result is sharp.

Proof.  The coefficient bounds are maximized at an extreme point so, the result

follows from (3.5). O

Corollary 3.5. If f € RY, («,7), then for |z| =7 <1

- 1
()| >r =201 -~ ﬁ}:
n—2 7’L - 1 ]An(Aau7m>

lf(z)] <r+2(1 *V)TQZ 1+ (n— 1)014]An(>\ t,m)
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and
n

[1+ (n = 1)a]An(A, p,m)

M8

@)z 1=2(1=y)r

n=2

1+ (n—1)a]A, (A, p,m)

M8

[f'() < 1+2(1—y)r

3
||
N

4. Convolution property

In order to prove a convolution property for the class RY, (v, y) we need the
following result.
Lemma 4.1. ([10]) If p(z) is analytic in U, p(0) = 1 and Rp(z) > 3, then for any
analytic function F in U, the function F x p takes values in the convex hull of F(U).
Theorem 4.2. The class Rz\"u(oz,w) 1s closed under the convolution with a convex
function. That is, if f € RY,,(a,7) and g is convez in U, then f g € RY, (a,7).
Proof. It is known that, if g is a convex function in U, then

5"

Suppose that f € RTH(Q, v). Making use of the convolution properties, we have

Y SEARIE

z

w{[0- 02D 4oy sy 421

+a[D3’L(f*g)(Z)]’} -

z

Using Lemma 4.1, the result follows. O

Corollary 4.3. The class Rf\”u(a, ) is invariant under Bernardi integral operator [3]

defined by

F(f)(2) = 1:60/02 =1 f(t)dt , Re > 0.

Proof.  Assume f € RY, (a,7). It is easy to check that F.(f)(z) = (f * g)(z), where

oo

1+c¢
9(2) :Zn+6z".

n=1

Since the function g is convex (see [2]), the result follows by applying Theorem 4.2.

Therefore, F[RY;, (c,7)] C RY), (7). O
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STRONG DIFFERENTIAL SUBORDINATIONS OBTAINED
BY THE MEDIUM OF AN INTEGRAL OPERATOR

ROXANA SENDRUTIU

Dedicated to Professor Grigore Stefan Sdldgean on his 60" birthday

Abstract. The concept of differential subordination was introduced in [2]
by S. S. Miller and P. T .Mocanu and developed in [3], and the concept of
strong differential subordination was introduced in [1] by J. A. Antonino
and S. Romaquera and developed in [4], [5] by Georgia Irina Oros and
Gheorghe Oros. In this paper we define the class S;*(«a), and we study

strong differential subordination.

1. Introduction and preliminaries
Let U denote the unit disc of the complex plane :
U={z€C: |z|] <1}
and
U={z€C: |z| <1}

Let H(U x U) denote the class of analytic functions in U x U. In [4], the author has
defined the class

H[a,n] = {f e HUxT): f(2,¢) =a+an ()" +an1(¢)z" 4 2€ U, €U}
with ay(¢) holomorphic functions in U, k > n,
H,(U) = {f € H[a,n] : f(z,¢)univalent in U for all¢ € U},

Received by the editors: 10.05.2010.

2000 Mathematics Subject Classification. Primary 30C80, Secondary 30C45, 30A20.
Key words and phrases. Analytic function, differential subordination, strong differential subordination,

univalent function, convex function, dominant.
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ACn = {f GHC[G,TL] : f(ZaC) :Z+a2(<’)22++an(<)zn+ , 2 € UaC GU}
with A¢; = AC,

KQz{féHC[a,n]: RGM+1>O, zEU,forall(GU}.

f'(z,)

Definition 1.1. [4] Let H(z,(), f(2,¢) be analytic in U x U. The function f(z,()
is said to be strongly subordinate to H(z,({), or H(z,() is said to be strongly
superordinate to f(z,(), if there exists a function w analytic in U, w(0) = 0,
lw(2)| < 1, such that f(z,¢) = H[w(z),(], for all ¢ € U. In such a case we write
f(z,¢) =< H(2,¢), z€U(eU.

Remark 1.2. (i) If H(z,() is analytic in U x U and univalent in U for all ¢ € U,
Definition (1.1) is equivalent to £(0,¢) = HJ[0,(], for all ¢ € U and

f{UxU)cC HU xU).

(ii) If H(z,¢) = H(z) and f(z,() = f(z) then the strong subordination becomes the

usual notion of subordination.

Definition 1.3. [6] For f(z,() € A(,,, n € N*U{0}, we define the integral operator:
I": AC, — AC,

I°f(2,0) = f(2.)
(2,0 = ITf(z,0) = [; f(t, Ot dt

I"f(z,0) = II""f(2,¢)) (2€U,¢eD).
Property 1.4. For f(z,() € A(,, n € N* U {0}, with the integral operator I™ :
A¢,, — AC,, we have:

A (2, =1"f(2,0) (€U, Cel).

In order to prove the main results we use the following definitions and lemmas,
adapted to the class defined in [4]:
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Lemma 1.5. [2, 3] (Miller and Mocanu) Let h(z,() be a convex function, with
h(0,¢) = a and let v € C* be a complex number with Rey > 0. If p € H([a,n]

and

P21 0)+ —22/(2:6) << B(.0)
then

p(2:C) <= 9(2, Q) <= h(2,C),
where

g(z,¢) = i /O h(t,O)t»~dt (2 €U, ¢ eU).

nz—y/n

The function g is conver and is the best (a,n) dominant.

Lemma 1.6. [2, 3] (Miller and Mocanu) Let h(z,() be a convex function in U and
let

h(z,¢) = g(z,¢) + nazg'(2,¢), 2€U,CelU

where a > 0 and n is a positive integer. If

p(z, C) = 9(0’ C) +pn(C)Zn +pn+1(<)zn+1 R

is holomorphic in U x U and

p(z,¢) + azp'(z,¢) << h(z,(Q),

then
p(2,¢) =< 9g(z,¢)

and this result is sharp.

2. Main results
Definition 2.1. Let a > 1 and m,n € N. We denote by S} («) the set of functions
f € A(, that satisfy the inequality

Re[I"f(2,¢)] >a, 2€UCeU.
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Theorem 2.2. If « < 1, and m,n € N, then

Si'(@) € S(9),
where

n n

1 txfl
o(x) :/ dt.
) L+t

Proof. Let f(z,¢) € SI*(a). From Definition 2.1 we have

= bl G =20 - ¢+ 2mg (1)

and

Re[I™f(2,¢)] >a, z2€UCeU.
Using Property 1.4, we have
I"f(z,¢) = 2[I"* f(2,Q)), =2eUcel.

Differentiating (2.3), with respect to z, we obtain

[ f(2, Q) = ™ f (2, O + 2l f(2,Q)]", 2€U(el.

We denote by

p(z,0) = [I"f(2,Q)), 2€UCeU,p0,()=1eU.

Using (2.5), the relation (2.3) becomes
17 f(2, Q) =p(2,¢) + 20/ (2,),  2€UCeU
and replacing in (2.2), we obtain
Re[p(2,¢) + 20 (2,0)] >, 2€U €U

equivalent to

| $F a0

S = b= 0).

p(z,¢) +2p'(2,¢

Using Lemma 1.5, we obtain

p(2,¢) <= q(2,¢) << h(z,()
200
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where

ol @Oty 2(( o)
q(z,{)—nZ%/O T 7 tn T dt = 2« C—i-in o(x),

where o(z) is given by (2.1). The function ¢(z, ¢) is convex and is the best dominant.
With p(z,¢) << q(z,¢) and q(z, ¢) being convex, and the fact that the image of U x U

through g¢(z, () is symmetric with respect to the real axis, we deduce that

-

Re p(z,0) > g(1,¢) = 20— ¢ + 2 - a(%) — 5(a,¢yn) = 6, (2.8)

equivalent to
Re[I™ T f(2,Q)] >6, z2€U/CeU. (2.9)
Using Definition 2.1 we obtain f € S™+1(§). Since f € S™(a), we obtain that

S™(a) C STHL(5).

n

O

Theorem 2.3. Let h(z,() an analytic function from U x U, with h(0,() = 1,
R'(0,¢) # 0, ¢ € U, that satisfies inequality

zh''(z,() 1
Re[l + m] > —5.

If f(2,¢) € A(, and verify the strong differential subordination

[T f (2, Q) == h(z,0), (2.10)

then
[ (2,01 << g(2,0)
where
920 = / ht,Otrtdt, zeUceT.
et Jo

The function g is convex and is the best dominant.
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Proof. A simple application of the differential subordination technique [1, 2], shows
that the function g(z, () is convex. By using (2.6), the strong differential subordina-
tion (2.10) becomes

p(2,¢) +2p'(2,¢) <= (2, Q). (2.11)

Using Lemma 1.5, we have

p(z,¢) << 9g(2,¢) = —

1 # 1
1/h(t,g)trldt.
n Jo

Using (2.5), we obtain

1

nz

[ f (2,0 <<

1
n

/ h(t, C)t=~tdt.
0
O
Theorem 2.4. Let g(z,() be a convex function with g(0,{) = 1 and suppose that
h(z,¢) = g(2,¢) +2¢'(2,¢), z€UCeU.

If f(2,¢) € AC, and verify the strong differential subordination

[T f (2, Q) == h(z,0), (2.12)
then
(I f (2,01 << g(2, ).
Proof. By using (2.6), the strong differential subordination (2.12) becomes
p(z,¢) + 29/ (2,¢) <= 9(2,¢) + 24/ (2,¢) = h(z, ().
Using Lemma 1.6, we have

p(z,¢) << g(z,¢)

and using the notation (2.5), we obtain

[ f (2,01 << g(2,).
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Theorem 2.5. Let g(z,() be a convex function with g(0,{) = 1 and the function
h(z,¢), given by
h(z,¢) = g(2,¢) +nzg'(z,().

If f(2,¢) € AC, and verify the strong differential subordination

(1™ f(2,0))" =< h(z,(), (2.13)
then
% << 9(z,0).
Proof. We denote with
p(z,¢) = %(z() z€U,¢eU,p(0,¢)=1. (2.14)
Using (2.14), we obtain
I™f(2,¢) = 2p(2,¢), z€UCeU. (2.15)

Differentiating (2.15), with respect to z, we obtain
" f(z, Q) = p(2,¢) +2p'(2,(), z€UCeU. (2.16)
Using (2.16), the strong differential subordination (2.13) becomes
p(2,¢) + 2p'(2,¢) << g(z,¢) +nzg'(z, ).
Using Lemma 1.6, we have

p(z,¢) << g(z,C), i.e. % <= g(z,0).

Example 2.6. Let g(z, () be the function

1 200 — _
g(z,():%ﬁ, 2€eU,CelU,g(0,)=l,aeRa<1l. (2.17)
We verify that g(z,() is a convex function. Differentiating (2.17), with respect to z,
we obtain
29" (2,¢) 1-=z
Re | —=———=>+1| =Re > 0.
[ 9'(2.¢) 1+2
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From the Theorem (2.4), and using (2.17) we obtain that

14+ (2a—1)z(2+ 2)

h(Z,C) = g(Z,C) + Zg/(Z7C) = (1 ¥ 2)2 ,

For o« = 0 we obtain
1-¢z(2+2)
h(z,¢) = 12

We consider the function
22
Ty
9(z,¢) = 1 Z -
T3

By Theorem (2.4) we obtain that, the strong differential subordination

22
1=C=Cr  1-¢a(2+2)

Z == 2
1+2)2 (1+2)
1+

implies
z
TG 1
= <= .
1 + = 1 + z
2
Example 2.7. Let h(z,¢) be the function
M0 = S5, 2 UCeTh0.0 -1 (219)

Let g(z,() be a convex function with g(0,¢) =1 and

h(ZaC):g(27<)+Zg/(Z7C)a ZEUa<€U~

That implies

1 /7 1 (¢4t
=— [ h(t,Qdt=-[| —dt
o2 =1 [ meoi = [0
and
—2¢ 2¢
9(2,¢) = 7109(4 —2)+ ?ZOQ(C) - L
By Theorem (2.4) we obtain that, the strong differential subordination
2
C+=z oy C+z
2¢ — z (—=z
implies

_74Clog(2( —2z)+ %log(%) —1=<=< _7%109(4 —z)+ %ZOQ(C) -1

204
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AN APPLICATION OF MILLER AND MOCANU LEMMA

HITOSHI SHIRAISHI AND SHIGEYOSHI OWA

Dedicated to Professor Grigore Stefan Sdldgean on his 60" birthday

Abstract. Let H[a,n] be the class of functions f(z) = a + anz™ + ...
which are analytic in the open unit disk U. For f(z) € H[a,n], S. S. Miller
and P. T. Mocanu (J. Math. Anal. Appl. 65(1978), 289-305) have shown
Miller and Mocanu lemma which is the generalization of Jack lemma by
I. S. Jack (J. London Math. Soc. 3(1971), 469-474). Applying Miller and
Mocanu lemma, an interesting property for f(z) € H[a,n] and an example

are discussed.

1. Introduction

Let H[a,n] denote the class of functions f(z) of the form
f(z):aJrZakzk (n=1,2,3,...)
k=n

which are analytic in the open unit disk U= {z € C: |z| < 1}, where a € C. Jack [1]
has shown the result for analytic functions w(z) in U with w(0) = 0, which is called
Jack’s lemma. In 1978, Miller and Mocanu [2] have given the generalization theorem

for Jack’s lemma, which was called Miller and Mocanu lemma.

Lemma 1.1 (Miller and Mocanu lemma). Let f(z) € H[a,n] with f(z) # a. If there

ezists a point zg € U such that

max |f(2)| = |f(20)],

ESEN

Received by the editors: 26.04.2010.
2000 Mathematics Subject Classification. 30C45.
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then

2o f'(20)
f(20)

=m

and

"
ReZOf (ZO) +1 >

f'(z0) -

m,

where m 1is real and

UG —al o |f(zo)l ~lal
= "GP = 1ol = "|£ (o)l + Jal

If a = 0, then the above lemma becomes Jack’s lemma due to Jack [1].

\%

m

2. Main theorem

Applying Miller and Mocanu lemma, we derive
Theorem 2.1. Let f(z) € Hla,n] with f(z) # 0 for z € U. If there exists a point

zo € U such that

min |f(2)] = |f(20)],

ETREN

then
zof'(20)
fl0) " @1)
and
z0f" (20)

Re F(z0) +1=2-—m, (2.2)

where

la— f) o lal = 1f(z0)]
> >
TEMAR o) = Mal 1 £ (zo)|

Proof. We defined the function g(z) by

1
=7
n n+1 ( 1)
=ctcpz +epg1z +.. c= —
a
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Then, g(z) is analytic in U and ¢(0) = ¢ # 0. Furthermore, by the assumtion
of the theorem, |g(z)| takes its maximum value at z = z in the closed disk |z| < |zo].
It follows from this that

1 1
96 = 7y = T ) A 9k

EINEN

Therefore, applying Lemma 1.1 to g(z), we observe that

Zogl(zo) _ _Zof’(zo) _
9(20) f(z0)

which shows (2.1) and
1 1" !
Re209 (20) +1=Re (Zof (20) _ 220f (%)) +1

9'(20) f'(20) f(z0)
z0.f" (20)
=Re———+2m+1
f'(z0)
Zm
which implies (2.2), where
_ 2 _ 2 _
N e N ) N ' 11}
l9(z0)[? = Ic| |al? = |f(20)] la] +[f (z0)]
This completes the assertion of Theorem 2.1. O

Example 2.2. Let us consider the function f(z) given by

a -+ (ei arg(a) _ a) N

fe) =

= q+ e ¥e@n 4 grarg(a) 2n 4 (z € )

1
for some complex number a with |a| > 3
Then, f(z) maps the disk U, = {z: |z|] < r £ 1} onto the domain

et arg(a),,,Qn < n
1—r2n 12

1)~ (o

Thus, we know that there exists a point zg = re’= € U such that

,r,n

min |f(2)| = |f(20)| = |a|] —

|2I< 0] 1 —r2n
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For such a point zg, we obtain that

z0f"(20) nrht

o) A+rm(al—Q—larmy — "

where

n

nr
(1 +rm)(lal = (1 = af)r™)
Therefore, we get that

> 0.

Rezof”(zo) :nl—r”
1'(20) 1+rm

Furthermore, we obtain that

>0>-—-m.

la — f(z0)|? nrt nr®

) 2 (|a — (1 —a)r + ;W)

<m.

" =17 Go)l? ~ 2Jal+ (2a[— )r

Putting a with a real number in Example 2.2, we get Example 2.3.

Example 2.3. Let us consider the function

a+(1—a)z"
1—2m

f(z) =
=a+2"4+ 2" 4., (z€U)
1
for a > 3 Then, it follows that the function f(z) maps the disk U, onto the domain

,r.2n rn
0 (o 12| £

Thus, there exists a point zp = re*= € U such that

n

min | /(2)] = |f(z0)| = a — —

|2I<] 20 1 —r2n

For such a point zg, we obtain

z0f'(20) _ nr™ o
f(20) (L+r")(a— (L —a)rm)
where
m = nr” > 0.

()= (1= a)
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Therefore, we see that

" 1— g
Rem = nir >0>—m.
f'(20) L4rm
Moreover, we have that
la — f(z0)]? nr” nr"

=GR ™ 20 D (7 gy L) -
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DUALITY FOR HADAMARD PRODUCTS APPLIED TO CERTAIN
CONDITION FOR o-STARLIKENESS

JANUSZ SOKOL

Dedicated to Professor Grigore Stefan Sdldgean on his 60" birthday

Abstract. Let P(a,8), a > 0, B < 1, denote the class of all analytic
functions f in the unit disc with the normalization f(0) = 1, f’(0) = 1
and satisfying the condition

Rele'?('(2) + =2 () = B > 0, |s] <1

for some ¢ € R. In this paper we find conditions on «, 8 so that P(«, 8) C
S*(u), where p < 1 is given and S* (i) denote the class of starlike function
of order p. We take advantage of the Ruscheweh’s Duality theory.

1. Introduction

Let H denote the class of analytic functions in the open unit disc
U={z: |z| <1}

of the complex plane C. Everywhere in this paper z € U unless we make a note. We
say that f € H is convex when f(U) is a convex set. Let A denote the subclass of H
consisting of functions normalized by f(0) = 0, f/(0) = 1. For p < 1, by §*(u) we
denote the well known subclass of A consisting of starlike function of order u. As is
well known

f'(z)

S*(,u){feA: me[%} >y for z € U}

Received by the editors: 26.04.2010.
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functions, functions with positive real part, Gaussian hypergeometric function.
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S*(0) = 8* is the class of starlike functions which map U onto a starlike domain with

respect to the origin. For @ > 0 and 8 < 1 given, define

Pla, B) = {fGAZEQDGR s. t. Re {ew <f’(z)+;zf"(z)ﬂ>} >0,Z€U}.

In the geometric theory of function, a variety of sufficient conditions for starlikeness
have been considered. We refer to the monographs [4], [5] for details. In the present
work we tray to find conditions on «, 8 so that P(a,3) C S*(u), where p < 1 is
given. If f and g are analytic in U with f(2) = ap + a1z + a22® + ... and g(z) =
bo+b1z+b2z2+. .. then the Hadamard product (or convolution) of f and g is defined
by
(f *9)(2) = agbo + a1b1z + agbaz® + ...

The convolution has the algebraic properties of ordinary multiplication. In convolu-

tion theory, the concept of duality is central. For a set

vea={oat =1 e af

z
the dual set V* is defined as

Vi={geAy: (f*xg)(z)#0 for all feV,zeU}.

In this paper we use the powerful method of duality principle in geometric function
theory developed by Ruscheweyh [8]. The basic results of Ruscheweyh’s duality theory
one can find in the book [9]. The duality principle states that, under certain conditions
on V, the range of a continuous linear functional on V' equals the range of the same
linear functional on (V*)* = V**. This is a useful information since in many cases
of interest V** is much larger than V. Then by investigating the small set we can
get results about the large set. One such pair of the sets is described in the theorem

below.
Theorem 1.1. Let

(1-B)(1+x2)

V =
s {ﬁ—i_ 1+yz

|x|:|y|:1},ﬁ€R,ﬁ;fél.
Then

Vi*={geAy:Jp R such that Re[e'?(g(z) —B)] >0,2€U}.
214



DUALITY FOR HADAMARD PRODUCTS

Theorem 1.1 with 8 = 0 one can find in [9, p. 22]. Notice that if h € V3,

h(z) = B+ (1= B2 with |o] = |yl =1, F € R, §#1, then

h@)_1+(1ﬁ)<1z> =1+ (1-0)(1—e*) Y (y2)* (1.1)
k=1

1—-yz
for some 1 € R. A subset V' C Ay is said to be complete if it has the following
property:

feV=flzz) e VV|z| <1

Theorem 1.2. (Duality principle, see [8]) Let V. C Ay be compact and complete. If

A is a continuous linear functional on H, then
AV)=A(V*), @o(V)=co(V™).

The sets Vg and V;* in Theorem 1.1 are compact and complete. The following
Theorem 1.3 one can find in [9, p. 23] and in [10].

Theorem 1.3. (see [10]) Let f € A. Then f belongs to the class S*(u) of starlike
function of order u if and only if
e+2p—1
f(2) " 1+ 2(1;:”) z
z (1-22)

#£0 Vi]el=1 VzeUl.

2. Main results

Theorem 2.1. Suppose that o >0, f < 1, u < 1. Then P(a, 3) C S*(u) if and only

if
]_ —
Re [H(e; 2)] > *ﬁ Vel =1, V2eU, (2.1)
where
k(14¢e)+2(1 —p) 4
= . 2.2
H(2) aE: (k+1)(k+ ) : (2:2)

Proof. Let a function f be in the class P(a, 3). If we denote f'(z) + Z f"(2) = ga(2),
then we have g, € V™. If f(2) = > apz¥, a; =1, then
e

o0

P+ 2 =3 ML) e g

k=1
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SO
k—1

= b1 = az
= T = ga(3) Y
— = k(k—1+a)
and we obtain one-to-one correspondence between P(«, 3) and Vi*. Thus, by Theo-

rem 1.3, P(a, B) C §*(u) if and only if

%) k_1 + e+2p— 1Z

az 2(1—p) o
=1 . (2.
k(k_1+a)* (1_2)2 #0 v.g(xev ,V|E| ,VZEU (3)

goc(z) *
k=1

Let us consider for z € U the continuous linear functional A, : Ag — C, such that

oo _ e+2p—1
)\ * Z ! N 1+ 2(1—p) ©
kzlk —1+ 1_22

By Duality principle we have A.(V) = A.(V;*). Therefore (2.3) holds if and only if

1 + e+2p—1

e ] #0 24)

1+1-p01- eiw)izk] *

k=1

1+;(kz+1)(k‘+a)

for all ¢ € R, |e| =1, z € U. Using the properties of convolution we can reformulate
(2.4) as

a§§M1+a+2a—u) 2(1 — p)
—  (k+1)(k+a) (1—e¥)(1—0)

For ¢ € R the quantity on the right site of (2.5) takes its values on the line Rew =

zk;«é—

(2.5)

_1:7% so (2.5) is equivalent to (2.1) . O
Starlikeness of functions in P(«, ) has been investigated. For example we

have the reformulated version from [3].

Theorem 2.2. (see [3]) If f € P(a, B) and oo < 3 and B(a) be given by

Bla) [ttt —1)
1—5@)‘“4 P

then f € §*(0) and the value of B() is sharp.

t,

Note that Fournier and Ruscheweyh introduced in [3] the integral transform
Ww:A— A

such that
tz)

1
BnE = [ a0 a
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where A(t)is real valued integrable function satisfying the normalizing condition

/le(t) dt = 1.

This operator was introduced mainly to find conditions on A(¢) and 3 so that V) (f)
maps P(a, ) into S*(0), when o — oo. Recently Balasubramanian, Ponnusamy and
Prabhakaran in [2] and Ponnusamy and Rgnning in [7] extended this considerations
to find conditions on A(¢) and 3 such that Vy(f) is starlike of order p, (0 < p <1/2)
when f € P(a, ). For convexity of this integral transform see [1].

While Theorem 2.1 precisely answers when P(«, ) C S*(p) it is difficult
to answer when the condition (2.1) is satisfied in general. It seems that ReH (e;z2)

attains its minimum at z = —1 and € = 1 but it is hard to show.

Conjecture 2.3. Let f be given by (2.2). Then
min{ReH (e;2) : |e| =1, |z| <1} = H(1;-1).

In [11] we apply the general theory of differential subordinations to obtain sev-
eral weaker but simple sufficient conditions for p-starlikeness while Owa and Salagean
in [6] considered a sufficient condition and a necessary condition for starlikeness of
complex order of functions with negative coefficients. One can expressed the function
H(g; z) in terms of the Gaussian hypergeometric function

oo

a
Fi(a,b
2 1(04, 7CZ ZO ( kk' 5

where (z); denotes the Pochhammer symbol defined by
@) =z+D)(z+2)---(x+k—1) for k€N and (z)y=1.

Then for o # 1 we have

—k(l+e)+2(1—pn) 4
H(ez) = '
(g52) a; T 1a) z
ale+2u—1) & 2R 21 —p) —afe +1) o= az®
B l-—«a k:1k+1 l1-a k:1k+oz
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_ ale4+2u—1)[2F1(1,1,2;2) = 1]+ 201 — p) —ale + D] 2L, 0, + 15 2) — 1]

l-a
2p—1 20 — p) — 1
22(11—1)4‘0[(8%[;)2}71(1,1,2;2)4- ( “1)_2(” )R (Layat1:2)
2u—1)1 1 20 — p) — 1
:2(u—1)—|—a(€+ K )fln + (=) —alet )gFl(l,a,a—i—l;z).
l-a z 11—z l-a
We can rewrite the inequality (2.1) in the form
17 i +2(1 — p)Re iL (2.6)
a(l— — l<:+1 Ta) PP v Dk + o) '
ok
R Vie| =1, VzeU,
> fRe EZ k+1(k+ ) €] , VzeU,
thus we can see that (2.6) is satlsﬁed when
1—p = 2k = 2k
—— +Re | +2(1 — p)Re —_— 2.7
s ;<k+1><k+a> - |Y | @0
> Vz e U.

> GG
Pt (k+1)(k+a)
Conjecture 2.4. Let the function G be given by

G(z) =21+ «a) mz

k=1
Then the function zG'(z) is a convex function when —1 < a.
Note tat it is known that G is a convex while zG’ is a starlike function. With

this notation (2.7) becomes

W +Re2G'(2) + 2(1 — p)ReG(2) > |2G'(2)|Vz € U. (2.8)

If Conjecture 2.4 is true, then we have G'(—1) < ReG'(z) < G'(1) so for
(2.8)it suffices that

1—p —  k(-1)* > k
a(1—6)+;(k+1)(k+a ; k+1 T a) (29)
>kz:: k+a)

While (2.9) is not a necessary for (2.8) it still remains hard to verify.
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SOME STRONG DIFFERENTIAL SUBORDINATIONS OBTAINED
BY SALAGEAN DIFFERENTIAL OPERATOR

ADELA OLIMPIA TAUT

Dedicated to Professor Grigore Stefan Sdldgean on his 60" birthday

Abstract. S. S. Miller and P. T. Mocanu introduced the notion of dif-
ferential superordination as a dual concept of differential subordination .
The notion of strong differential subordination was introduced by J. A.
Antonino and S. Romaguera. By using the Salagean differential opera-
tor we introduce a class of holomorphic functions denoted by S7*(«), and

obtain some strong subordinations results.

1. Introduction and preliminaries

Denote by U the unit disc of the complex plane,
U={z€C; |z| <1} (1.1)

U={z€C; |z] <1} (1.2)

the closed unit disc of the complex plane.
In the paper [3], Georgia I. Oros defined the classes H(U x U) denote the

class of analytic functions in U x U,
A ={feHUXTU)| f(z.,{) =2+ a(()z" +..., z€ U, (U}, (1.3)
A ={feHUXU) | f(z.0) =2+ a1 ()" +..., z€U, €U}, (14)

Received by the editors: 01.03.2010.
2000 Mathematics Subject Classification. 30C80, 30C45, 30A20.

Key words and phrases. differential superordination, strong differential superordination, univalent

function, subordinant, best subordinant, differential operator.
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forn =1, A7 . = A7, with a(¢) holomorphic functions in U, k > 2,

H*[a,n, (] = {f € HUXU) | f(2,¢) = at+an(C)z"+ani1(()z" T +..., 2€ U, (€U}
(1.5)

where ay,(¢) holomorphic functions in U, k > n, and let

H.(U) = {f € H*[a,n,(] | f(2,¢) univalent in U for all ¢ € U}, (1.6)

2f"(2,€)

K* = {fG'H*[a,mC] | Re m

+1>0,z€Uf0rall(€U} (1.7)

the class of convex functions,

2f'(z,0)

S* = {fEH*[a,n,CHRe .0

>0, ze U forall ¢ € U} (1.8)

the class of starlike functions.

Definition 1.1. [4] Let f(z,¢), H(z,¢) analytic in U x U. The function f(z, () is said
to be strongly subordinate to H(z, (), or H(z, () is said to be strongly superordinate to
f(z,Q), if there exists a function w analytic in U, with w(0) = 0, and |w(z)| < 1 such
that f(2,¢) = H(w(z),¢) for all ¢ € U. In such a case we write f(z,() << H(z,(),
z€eU, (el.
Remark 1.2. [4] (i) Since f(z,() is analytic in U x U, for all ( € U and univalent
in U, for all ¢ € U, Definition 1.1 is equivalent to f(0,¢) = H(0,¢) for all ( € U and
f(UxU)cC HU xU,).

(ii) If H(z,¢) = H(z) and f(z,() = f(z) then strong subordination becomes
usual notion of subordination.
Lemma 1.3. [2, page 71] Let h(z,({) be a convex function with h(0,() = a for every
¢ €U and let v € C* be a complex number with Re v > 0. If p € H*[a,n,(] and

p(,€) + izp%zvo << h(z0) (1.9)

then p(z,¢) << q(z,¢) << h(z,{) where

9(2,0) = —2 / h(t, O)t0/m=14t, (1.10)
0

nzV/n
The function g(z,() is convex and is the best dominant.
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Lemma 1.4. [1] Let g(z,¢) be a convex function in U ,for all { € U and let

h(27C) zg(z,C)+nag'(z,C), (111)

where oo > 0 and n s a positive integer. If

p(2,0) = 9(0,¢) +pn(Q)2" + ...

is holomorphic in U, for all ¢ € U and

p(2,¢) + azp'(2,() << h(2,0) (1.12)
then

p(z,¢) << g(z,¢) (1.13)

and this result is sharp.

Definition 1.5. [5] For f € A%, n € N* U {0}, the operator S™f is defined by

S AL — A
S°f(2,¢) = £(2,€)
S'f(2,0) = 2f'(2,0)

S f(2,0) = 2[S" f(2,Q)], €U, ¢eU.
Remark 1.6. If f € A%,
F(z0) =2+ a;(0)
j=2

then

S f(z0) =2+ j"a;(Q)¥), z€U, (eU.
j=2
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2. Main results

Definition 2.1. If @ < 1 and m,n € N, let SI (a) denote the class of functions

[ € A}, which satisfy the inequality
Re [S"f(z,0)] > a. (2.1)
Theorem 2.2. If a <1 and m,n € N, then
Syt (a) € SIH(6) (2.2)

where

5—5(a,n,m)—(2a1)+1(2a1)1ﬁ(>,

n
1 tx—l
5(@:/0 T

Proof. Let f € S™ (). By using the properties of the operator S™ f(z, (), we have

ST f(2,¢) = 2[S™f(2,Q)), €U, (€. (2.4)
Differentiating (2.4) we obtain
[ (2,0 = [S™f(2,Q) +2[S™f(2,Q)]", 2€U, CeU. (2.5)
If we let p(z,¢) = [S™f(z,¢)], then
P'(z,0) = [S" (%)
and (2.5) becomes

[Sm_‘—lf(za C)]/ = p(zv C) + Zp/(Z, C) (26)

Since f € S™*!(«), by using Definition 2.1, we have

Re [p(z, ) +2p'(2, Q)] > a (2.7)
which is equivalent to
P Q) 2w (2,0) << TR DE e ) (28)

By using Lemma 1.3, we have

p(2,¢) << g(2,¢) << h(z,() (2.9)
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where

1 1-(2a—-1
2.0 = — [,
0

nzl/n 14t

The function g(z, () is convex and is the best dominant.

From p(z, () << g(,(), it results that
Re p(2,¢) > 6 = g(1,¢) = (o, n,m)
where

L', 14+ Q2a—1)t
1 S I L S

1+¢

141 14+t

n n 14+t

1 [ty 1/t 1—(2a-1
:(204_1)7/ tz—ldt_kf/ tﬁ_l.M
0 0

1 twl 1—(2a—1) [tta?
=2a—-1)—- d
(2a )n loJr n /01—|—t
n
1-(2a—-1 1
oy (1)
n n

from which we deduce that S™1(a) C S™(9).

_ 1/1#’{1. 14+ 2a— 1t + (2a —1) — (2a— 1)
0

:1/01ti_1[(2a—1)(t+1) 1—2a+1}dt

(2.10)

(2.11)

(2.12)

(2.13)

O

Theorem 2.3. Let g(z,() be a convex function g(0,¢) = 1 and let h(z, () be a function

such that

h(Z, C) = g(z, C) + zg'(z, C)

If f e A;C and verifies the strong differential subordination

[S™Hf(2, Q)1 == h(2,¢)

then
[S™ f(2, Q) == g(2, Q).

(2.14)

(2.15)

(2.16)
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Proof. From
ST (2,¢) = 2[S™f (2, Q) (2.17)
we obtain
[S™ (2,01 = [S™ f(2, Q) + 2[S™f(2,Q)]". (2.18)
If we let p(z,¢) = [S™f(z,()]’, then we obtain
[S™ 1 f (2, Q) = p(2,¢) + 29/ (2, €) (2.19)
and (2.15) becomes
p(2,¢) +2p'(2,¢) <= 9(2,¢) + 24/ (2,¢) = h(z, (). (2.20)
Using Lemma 1.4, we have

O
Theorem 2.4. Let h € H*[a,n, (], with h(0,{) = 1, A'(0,{) # 0 which verifies the

inequality

zh"(2,¢) 1

If f e A;C and verifies the strong differential subordination

[S™ T F(2, Q) << h(2,(), z€U (2.23)
then
[S™f(2, Q)] <= 9(2,), (2.24)
where
g(z,¢) = mll/n /Ozt(l/")lh(t,g)dt. (2.25)
The function g is convex and is the best dominant.
Proof. From
S (2,¢) = 2[S™ (2, Q)) (2.26)
we obtain
[S™H (2, Q) = [S™f(2,¢) + 2[S™ F(2,0)]"". (2.27)
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If we let p(z,¢) = [S™f(2,()]’, then we obtain

[Sm+1f(z7 C)]I = p(z, C) + Zp/(Z, C)
and (2.23) becomes
p(z,¢) + 21/ (2,¢) << h(2,0).

By using Lemma 1.3 we have

1 * 1_
pe0) <= 90 0) = — [ b O
nz 0
Theorem 2.5. Let g(z,¢) be a convex function with g(0,{) =1 and
h(z,¢) = 9(2,¢) + 29 (2, 0).
If | € A} and verifies the differential subordination

[S™f(2,Q)] << h(2,C), z€U, ¢CeU

then
% <=<g(z, ().
Proof. We let
p(z,() = %(Z’O, zeU, CeU,

we obtain
5™ f(z,¢) = zp(z, Q).
By differentiating, we obtain
[S™f(2,Q)) = p(2,¢) + 20/ (2,¢), z€U, (€U.
Then (2.32) becomes
p(2,€) + 29 (2,¢) =< h(2,¢) = g(2,() + 24/ (2, ).

Using Lemma 1.4 we have

p(z,¢) << 9g(z, Q).

(2.28)

(2.29)

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)
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ON STARLIKENESS OF A CLASS OF INTEGRAL OPERATORS
FOR MEROMORPHIC STARLIKE FUNCTIONS

ALINA TOTOI

Dedicated to Professor Grigore Stefan Sdldgean on his 60" birthday

Abstract. Let My be the class of meromorphic functions in U of the form

1 .
g(z) = ;+a0+a1z+~- ,z€U.For ®,¢o € H[1,1], ®(2)p(z) #0, z € U,
a,B,v,0 € C with 8 # 0 and g € My, we consider the integral operator

J3%. 5 K C My — Mo defined by
1
@, _ Y= B * fe 5—1 B .
55606 = | 255 [ e ta] e
The first result of this paper gives us the conditions for which Jj’; " will

be well-defined. Furthermore, we study the properties of a function G =

Js,~(g), where Jg , = Jéj;mv, when g € M{ (o, d). For the second result

1
we consider § < 0, v—3 > 0, a € [ao, 1), where ap = max { Bry+l oy

28 B
and we find the order of starlikeness of the class Jg ~ (M{ («)). For the third
result we consider 0 < a < 1, 0 < § < v and we find some conditions for
a, B, v and § = d(«, B,7) such that

Js.4[Mg () N Kp,] C Mg ().

1. Introduction and preliminaries

Let U = {z € C: |z| < 1} be the unit disc in the complex plane, U = U \ {0}
and H({U) ={f:U — C: f is holomorphic in U}.

We will also use the following notations:
Hla,n]={f c HU): f(2) = a+ apz" + apni12" ™ +...} for a € C, n € N*,
Ap={fcHU): f(2) = 2+ apns 12" + api02" 2 +...}, n € N¥,

Received by the editors: 26.04.2010.
2000 Mathematics Subject Classification. 30C45.

Key words and phrases. meromorphic starlike functions, integral operators.
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and for n = 1 we denote A; by A and this set is called the class of analytic functions
normalized at the origin.

Let S* be the class of normalized starlike functions on U, i.e.

._ na 2f(2)
S _{feA.Re ) >0,zeU}.

We denote by My the class of meromorphic functions in U of the form
1 .
g9(z) = ;+a0+alz+-~- ,z€eU.

Let

Mg = {geMO:Re [—Zjéiﬂ >0, ZEU}

be called the class of meromorphic starlike functions in U.

We note that if f is a normalized starlike function in U, then the function g = 1
belongs to the class M.

Fora <1,6 >1 let

M (@) = {g € My : Re [—Zgl(z)} >,z € U},

M (,8) = {g € My :a < Re [—Zé’ég)} <48, z¢€ U}.

Definition 1.1. [3, p.4], [4, p.45] Let f,g € H(U). We say that the function f is
subordinate to the function g, and we denote this by f(z) < g(z), if there is a function
w € H(U), with w(0) = 0 and |w(z)| < 1, z € U, such that

f(z) = glw(z)], z€ U.

Remark 1.2. If f(z) < g(z), then f(0) = g(0) and f(U) C ¢g(U).

Theorem 1.3. [3, p.4], [4, p.46] Let f,g € H(U) and let g be a univalent function
in U. Then f(z) < g(z) if and only if £(0) = g(0) and f(U) C g(U).
Definition 1.4. [3, p. 46], [4, p.228] Let ¢ € C with Rec > 0 and n € N*. We

consider

n 2Rec

le[1/1+ +Ime
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2C,z

il 5 then we will
—z

If the univalent function R : U — C is given by R(z) =
denote by R, the "Open Door” function, defined as

B z+b\ (z 4+ b)(1 + b2)
Ren(2) R<1+l_72> BT S

where b = R71(c).

Theorem 1.5. [3, Theorem 2.5c.] Let @, € H[1,n] with ®(z) # 0,¢(z) # 0, for
z €U. Let a,8,7v,0 € C with f # 0, a+ 3 = f+ v and Re(a+ 0) > 0. Let the
function f(2) =z + apy12" Tt + - € A, and suppose that

O
S CINE on ()

IfF*Iaﬂw;(f) is defined by

F) = 125,506 = | 2o [ st -tae] (L)
then F € A,, with ( ) #0,z €U, and
2F'(z)  29'(2)
Re [ﬁ Fl2) + () —&-7} >0,zeU.

All powers in (1.1) are principal ones.
Lemma 1.6. [3, Theorem 2.3i.], [4, p.209] Let ¢ : C2 x U — C be a function that
satisfies the condition
Rev(pi,o;2) <0, (1.2)
when p,oc € R, 0 < f%(lerQ), zeU,n>1.
Ifpe H[1,n] and

Rev(p(2),2p'(2);2) >0, zeU,
then
Rep(z) >0, zeU.
Theorem 1.7. [3, Theorem 3.2a.], [4, p.247] Let 8,7 € C, 8 # 0 and let h be a

convez function on U such that Re[Bh(z) ++] >0, z € U. If p € H[h(0),n] and

2p'(2)
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then p(z) < h(z).
Theorem 1.8. [5], [4, p.299](the order of starlikeness of the class I3 ,(S*(«)))
Let 8> 0, v+ B8 > 0 and consider the integral operator 1g . defined by

N e 0] g

—~v—1
If a € [a,1) where ap = max {ﬁ;ﬂ, —;}, then the order of starlikeness of

the class I (S*(c)) is given by

. _l v+ 05 _
d(as B,v) = 3 |:2F1(1,2ﬁ(1—a),’y+1+6§5) ’Y] )

where o ' represents the hypergeometric function.

2. Main results

Let @, € H[1,1] with ®(2)¢(z) #0, z € U and let o, 3,7, € C with 5 # 0.
The first result of this section is a corollary of Theorem 1.5 and gives us the conditions

for which the integral operator Jf’g’,y s I C My — Mo,

1

P _ ’Y_ﬁ ¢ o -1 7
Tans(9)(2) = {Z“I’(Z)/o /(O (2 Ladiele 2 N

is well-defined.
Theorem 2.1. Let ®,p € H[1,1] with ®(2)p(z) #£0, z € U. Let o, 3,7,8 € C with
B0#£0, a+~yv=0F+4+6 andRe(y—p) >0. If g € My and

20'(2) | 2/(2)
9@ ek

+6 < Rs—a1(2), (2.1)

then
'Y_ﬁ ? a 5—1 %
z'Y<I>(z)/0 g*()p(t)t dt] € My,

6() = 185,406 = |
with zG(z) #0, z € U, and

2G'(2)  29'(2)
Glz)  @(2)

Re [ﬁ +7}>0,26U.

All powers are chosen as principal ones.
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Proof. We denote a1 = —av, 1 = —f3, so we have v+ 3; = d+a1, and Re (v+031) > 0.
We remark that from (2.1) we have zg(z) # 0, z € U.
1
We know that g € My with zg(z) #0, z € U, if and only if f = 7 € A; with

2g/(2) _ =)
9(z) flz) 7
Using these new notations we obtain
2f'(2) | 2¢'(2)
e} +
LR e(2)
and applying Theorem 1.5 we have

f(2)

z

#0, z € U. It is also easy to see that zeU.

+6 < Rsyar,1(2), z€ U,

F(2) = I%%, | 5()() = [51 aal / f%(t)so(t)t“dt} YA

270(2)
with @ #0, z € U, and
z
2F'(z)  29'(2)
Re [ﬁl F(2) + B(2) +v| >0,ze€U.
Therefore, we have G(z) = % € My with 2G(z) # 0 and, because
z
2G'(z) 2F'(z)
S U
CENEEIORA

we also have
2G'(2) n 2@ (2)

R 0 U.
“em Tem T2 0eE
O
We next consider a special case of Theorem 2.1. If we let & = ¢ = 1,
a = (3,7 =0 and if we use the notation Js , instead of Jé:}tﬂm’ we obtain:
Corollary 2.2. Let 8,7 € C with $ #0 and Re(y— ) > 0. If g € My and
zg' ()
B +7 < Ry—5.1(2),
g(z) Y ,31( )
then
g :
6() = Tnato)e) = |2 [ rar) e (22
0
with zG(z) #0, z € U, and
2G'(z)
R 0 U.
o [5G +] e
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Remark 2.3. 1. Let us define the classes Kz, as
29'(2)
9(2)
From Corollary 2.2, we have Jg - : Kg, — My with 2J3,(9)(2) # 0, z € U, and
2J5,(9)(2)
Jp.4(9)(2)

KB,"/:{QGMO:’Y‘FQ ‘<R7—5,1(2),Z€U}.

Re {7—&—6 ]>O,zEU.

2. We denote

o , 29'(2)
Kﬁﬁ—{gEMo.Re |:')/+ﬂ g(z) :| >0,Z€U}.

Using the above corollary we have Jg ., (Kg) C Ks., 50 Js(Kgs) C
f(gy, where 3, v € C with 8 # 0 and Re (y — ) > 0.

3. Letﬁ<0’y€(Cw1thRe'y>Band%<a<1 Then, from

Js-(Ks.) C Kg., we deduce Jj (Mg () C Mg < 7)

It’s easy to see that from

_ z B ,
G(z) = [M/ t'y_lgﬁ(t)dt] ,z€eU,
2z 0
we obtain

w'(z)  __29'(2) 2G'(2)
v = Bp(2) 9(2) G(z)

Next we will study the properties of the image of a function g € Mj(a,d)

p(z) + , where p(z)=— zeU. (2.3)

through the integral operator Jg , defined by (2.2).

Theorem 2.4. Let >0, v € C and O§a<1<5§Re’y.

If g € M§(«,0), then G = Jg~(g) € Mg (e, 0).
Proof. 'We know that g € M («,0) is equivalent to

zg'(2)

9(2)

a<Re{— ]<5,ZEU,

7 g'(2)
9(2)
ey

!
Because § < R— we get Re [’Y + ﬁzg (2)
5 9(2)

obtain that G = Jg (g) € My, 2G(z) # 0, z € U, and Re [7 + 4

Rev—ﬂ5<Re[ }<Re’y—ﬂa,z€U, when 3> 0.

} > 0, z € U, and using Corollary 2.2, we
2G'(2)
G(z)

]>O,ZGU.
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From (2.3) we know that

W) e 0()
P G T e T P T gy
Since G € My with zG(z) # 0, z € U, we have p(z) = _2G) € H[1,1].

G(z)
It’s not difficult to see that there is a convex function ¢ on U such that ¢q(U) = {z €

C:a<Rez< ¢} and ¢(0) =1, so

g€ MS(O[,(S) = -

Now we have

zp'(z
p(z) Y —pﬁ(pz«Z)
We want to apply Theorem 1.7 to the above differential subordination, so we need to
see that Re[y — Bq(2)] >0,z € U.
Since B > 0, we obtain from « < Req(z) < §, z € U, that

< ¢q(z),with ¢ convex on U, ¢(0) = 1.

Rev— (36 < Re[y— Bq(z)] < Rey — fa, z € U.

R
Because § < % we have Re[y — Bq¢(2)] > 0, z € U, and using Theorem 1.7 we

obtain p(z) < ¢(z), which is equivalent to

2G'(2)
— . 2.4
o) " q(2), z € U, (2.4)
Since G € My, we get from (2.4) that G € M («, 9). O

Taking 6 =1 in the above theorem we obtain:

Corollary 2.5. Let y € C and 0 < a <1< 0 <Ren. If g € Mj(a,9), then

-1 z
G = J17'Y(g) = ’yz"/ /(; t'y_lg(t)dt € MO*(Oé,é)

Theorem 2.6. Let6<07'y€(:and%§a<l<5.

If g € M§(e,6), then G = Jg € Mi(a,9).
R
Proof.  From Remark 2.3 item 3., we have Jg . (M;(a)) C Mg (67>, hence

g
G = Jg~(9) € Mg (R;’y) Since G € Mj <R;'y>7 we have G € My and zG(z) #

2G'(2)
0,zeU,so— Gl € H[1,1].
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Because g € M («, ) and

_2G'(2)
G(2)

p(z) + 2P (2) :_zg’(z)7 where p(z) =

v = Bp(2) 9(2)
we will use the same idea as at the proof of Theorem 2.4. So, we have to see that
Re[y — Bq(z)] > 0, z € U, where ¢ is convex on U, ¢(0) = 1, ¢(U) = {z € C: a <
Rez < d} .

From Regq(z) > a, z € U, we obtain Rey— fReq(z) > Rey—af >0,z €U,
Whenaz%,ﬂ<0.

Applying Theorem 1.7 to the differential subordination

p(z) + % <q(2), z €T,
we obtain p(z) < ¢(z), which is equivalent to
zg(g) <q(2), z€ U (2.5)
Since G € My, we get from (2.5) that G € M (o, 9). O
Remark 2.7. If we consider 4 — oo in the above theorem, we obtain that for g <
0,v€C, 8 <Revyand %§a<1,

9 € Mg(a) = G = Js,(g) € Mg(a).

R
Definition 2.8. For a given number « € %, 1), where 3 <0,v€C, 8 <Ren,

we define the order of starlikeness of the class Js (M (a)) as the biggest number
= p(a; B,7) such that Jg (Mg () C Mg ().

Theorem 2.9. (the order of starlikeness of the class Jg.(Mj(«))) Let

B < 0,vy—pF >0 and let Jg~ be given by (2.2). If o € [ag,1), where ag =
1

max {ﬁ-FQ’YB—F, ;} , then the order of starlikeness of the class Ja (Mg () is given

by

1

u(a;ﬂ,v)=—5 il

[2F1(1,2ﬂ(a— 1),74_ 1 —ﬁ;%

where o represents the hypergeometric function.

)_7’
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1
Proof. We know that if g € My with zg(z) # 0, z € U, then — € A.
g
It’s not difficult to see that

Jﬂw(g) = ]_ﬂ:<;>

, 8 <0, g€ Mj().

1

Using the fact that g € M («) is equivalent to — € S*(a), we obtain from Theorem
)

1.8 that

I (5" (@)) € 5™(8(a; =5,7)),
=)
I8 (Mg (@) € Mg (6(a; =f,7))-
It’s easy to prove that d(o; —3,7) is the largest number p such that Jg (Mg (a)) C
Mg (p), so the order of starlikeness of the class Jg . (Mj())) is p(e;B,v) =
d(a; =3,7). O
Further we will find some conditions for «, 8, v and § = §(«, 3,7) such that
Tsl M5 () 1 K] € MG 9).

Theorem 2.10. Let 0 < a <1 and 0 < 8 <. Let’s denote
2y/2v(a—-1) 2 +a—-—a-1

Bl(aa’}/) = 2(a — 1)2 ’

o1(a, B,7y) = 20+ 27 +1-4/(1 Z;aﬁ —27)2 +8(y — ﬁ),

da(a, B,7) = 2o 42341 - VI 2520‘5 —28)>+8(8—7)
17> 5 and § < Bi(, ), then J 4 [M () 0 K] © Mg (61(0,8,7)).

1
Ifv < 1 or v > 8 , then Jg[Mg (o) N Ks.,] € M (6(a, 3,7)), where
8 5 Z ﬁ1(0[,'y)
5(ai B,7) = min{di (e, B,7), (e, 8,7)}- (2.6)

The operator Jg ~ is defined by (2.2).
Proof. We remark that (;(a, ) is a real number and it is the greatest root for the
equation
Ay =(1+2a8—28)2 +8(B—7) =4(a—1)?4*> +4B(a+1)+1—8y =0,
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hence As > 0, when 8 > 51 (a, 7).
It’s not difficult to see that

Bi(ay) 206 8y —D(a—1)>20e > %

We next verify that the number §1(«, 3,7) is less than 1. It’s obvious that
01 (e, B,7) is a real number since y— 3 > 0. Further we will use the notation d; instead
of 61 (e, B,7).

We have 6; < 1 if and only if

208 + 2y +1—48 < /(1 +2a83 — 27)2 +8(y — 3). (2.7)

If 2a8 + 2y + 1 — 48 < 0 then the inequality (2.7) is fulfilled.
If 2a8 + 27+ 1 —40 > 0, we use the square of the inequality (2.7) and after a simple
computation, we obtain that (2.7) is equivalent to (8 — v)(1 — &) < 0 which is true
for 8 < v and a € [0,1). Thus, we have §; < 1.
Since g € Kp,, with 8 < v, we have from Corollary 2.2 that 2G(2) = 2J5,,(9)(2) #
0, z € U. Now let us put

~2G'(2)

G(2)

where p € H(U) with p(0) = 1 and § < 1. We remark that the function p also depends

=(1-0)pz)+46, z€U, (2.8)

on J.
Using (2.8) and the logarithmic differential for (2.2), we obtain
() (1= 5)/(2)
9(2) v =B —(1=6)8p(2)’

Let us denote

zel.

—a=(1-0)p(z)+d—a+

(1—-96)zp'(2)
v =B —(1-0)8p(z)’

Y(p(z),2p'(2);2) = (1 = 8)p(z) + 6 —a + zeU.

zg'(2)
9(z)
Rev(p(2),2p'(2);2) >0, z € U.

Since g € M (), we have Re {— ] > @, o

To be able to use Lemma 1.6 we need to verify the condition (1.2) for n = 1.

1
ForpeR, z€ U and o < —5(1 + p?), we have

1
y—B6—(1—6)Bpi

Rey(ip,0;2) =0 —a+ (1 —d)oRe (2.9)
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(v —B5)(1 —d)o
(y—B9)% + (1 —0)23%p*

1
Because (y —80)(1 —d) >0 and o < —5(1 + p?), we obtain from (2.9) that

(v = Bd)(1-9)
(v = B86)% + (1 —06)22p?]

=0—a+

Rey(ip,0;2) <d—a— 5

Thus,
Re)(ip,0;2) < —%(A +Bp?), peR,
where
A = (y=pP0)[266% — (1427 +2a83)8 + 2oy + 1],
B = (1-0)[26%? - B(1+28+2a8)6 + 2a3* + 7],
D = 2[(y—pé)*+(1-19)*8p%] > 0.

If v > é and 0 < 8 < SB1(a,7), then Ay < 0, so B > 0 for every § € R. Moreover,
since 5 > 0, we have A > 0 when ¢ < §;(«, 3,7). Hence, the condition (1.2) is satisfied
for 6 < 01(er, 8,7) < 1 and applying Lemma 1.6 we obtain Rep(z) > 0, z € U, when
§ <61, 8,7)-

From (2.8) and Rep(lz) >0, z € U, when § < 61(av, B8,7), we get G € M (61(c, B3,7)).
Ify < % or v 8 and ¢ < 6(a, B3,7), where §(a, 3,7) is given by (2.6),

ﬁ Z ﬁl (O[, ,7)
then A > 0 and B > 0, therefore the condition (1.2) is satisfied. Applying Lemma

1.6 we obtain Rep(z) > 0, z € U, for all 6 < d(a, 5,7), so G € M (6(a, 8,7)). O
We see that if we consider, in the above theorem, the condition zG(z) =

z2Ja.5(9)(2) #0, z € U, we get:

Theorem 2.11. Let0 < a<1,0< <7, g € Mj(e) and G(z) = Ja,5(g)(2), where

the operator Jg  is defined by (2.2). Suppose that 2G(z) # 0, z € U. Let’s denote

2y/2v(a—-12+a—-a-1

Priesr) = 2(a — 1)2 )
2 27 +1—+/(1+2af —27)2+8(y —
Sy, o) = B2+ VA Zﬁaﬂ 1P 480 —5)
— _ 2 _
a(c, o) = 208+ 26+ 1 \/(1262aﬁ 287 +8(8—7)
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If v > é and B < Bi(a, ), then G € Mg (61(e, 3,7)).

If v <

1
> -
or 778 , then G € M (6(w, B,7)), where

ﬁ Z ﬁl(aa,y)
d(a, B,7) = min{d1 (e, 3,7), b2, B,7)}-

| —

The properties of the integral operator J; ,, were studied by many authors

in different papers, from which we remember [1], [2], [6], [7], [8]
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ASYMPTOTIC BEHAVIOR OF INTERMEDIATE POINTS
IN CERTAIN MEAN VALUE THEOREMS. II

TIBERIU TRIF

Dedicated to Professor Grigore Stefan Sdldgean on his 60" birthday

Abstract. The paper deals with the asymptotic behavior of the inter-
mediate points in the mean value theorems for integrals as the involved

interval shrinks to zero.

1. Introduction

Especially in the last two decades a great deal of work has been done in
connection with the asymptotic behavior of intermediate points in certain mean value
theorems (see, for instance, [1], [2], [3], [5], [9], [12], [13], [14]). The investigations
in this direction started with the paper by Azpeitia [3], dealing with the asymptotic
behavior of the intermediate point in the Lagrange-Taylor mean value theorem. A
significant step forward was realized by Abel [1], who obtained a complete asymptotic
expansion of the intermediate point in the Lagrange-Taylor mean value theorem when
the length of the involved interval approaches zero. Later, following Abel’s method of
proof, similar complete asymptotic expansions have been obtained by several authors
for other mean value theorems (Abel and Ivan [2] for the differential mean value
theorem of divided differences, Xu, Cui and Hu [13] for the differential mean value
theorem of divided differences with repetitions, Trif [12] for the Pawlikowska mean
value theorem).

The purpose of the present paper is to continue our investigations started in

[12]. But unlike the paper [12], here we deal with the asymptotic behavior of the

Received by the editors: 02.03.2010.
2000 Mathematics Subject Classification. 26A06.

Key words and phrases. mean value theorems for integrals, asymptotic approximations.
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intermediate points in the mean value theorems for integrals as the involved interval
shrinks to zero. For the reader’s convenience we recall first the two mean value
theorems for integrals.

Theorem 1.1 (first mean value theorem for integrals). If f : [a,b] — R is a contin-
uous function and g : [a,b] — [0,00) is a nonnegative Riemann integrable function,

then there is a number ¢ € [a,b] such that

/ F(0ate = 1(c) [ it

Corollary 1.2. If f : [a,b] — R is a continuous function, then there is a number

/f t)dt = f(c)(b— a).

Theorem 1.3 (second mean value theorem for integrals). If f : [a,b] — R is mono-

c € la,b] such that

tone and g : [a,b] — R is Riemann integrable on [a,b], then there is a number c € [a, b]

b c b
[ g = 1@ [ e+ 10 [ grar

The second mean value theorem for integrals is instrumental in theories like

such that

trigonometric series or Laplace transforms (see [8] for a proof and [11] for an interesting
application of Theorem 1.3).
If x € (a,b), then Theorem 1.1, Corollary 1.2 and Theorem 1.3 applied to the

interval [a, x] instead of [a, b] yield the existence of numbers ¢, € [a,b] as functions of

/ " Hg(t)dt = f(er) / " g, (L1)

/ "Wt = fen)e - a), (1.2)

x on (a,b) such that

and

/ " f(Dg(t)dt = f(a) / “ g(tdt + () / (e, (1.3)

T

respectively.
Zhang [14, Theorem 4] proved that the point ¢, in (1.2) satisfies
Cy — @ 1

lim =% = , 1.4
e s | (1.4)
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provided that f is continuous on [a, b] and n times differentiable at a with fU)(a) =0
(1<j<n—1)and f("(a) # 0. In the special case when n = 1, an earlier result
obtained by Jacobson [7] is recovered.

In section 2 of our paper we obtain a formula which is similar to (1.4), but
involves the asymptotic behavior of the point ¢, in the mean value formula (1.1). The
asymptotic behavior of the point ¢, in the mean value formula (1.3) is investigated

in section 3.

2. Asymptotic behavior of the intermediate point in the first mean value

theorem for integrals

In the proofs of the main results in this and the next section we need the

following

Lemma 2.1. If p is a nonnegative integer and w : [a,b] — R is a continuous function

such that w(t) — 0 as t \, a, then

/91 w(t)(t — a)Pdt = o((z — a)PT) (z \, a).

Proof . Indeed, for every x € (a,b) by Theorem 1.1 there exists ¢, € [a,z] such that

/I w(t)(t — a)Pdt = w(cy) /w(t aypdr = ) (4 _ gy,

p+1
Since w(c;) — 0 as x \, a, we obtain the conclusion. O

Theorem 2.2. Suppose that f, g : [a,b] — R are two functions satisfying the following

conditions:

(i) f is continuous on [a,b] and there is a positive integer n such that f
is n times differentiable at a with f9(a) = 0 for 1 < j < n —1 and
F(a) #0;

(i) g is nonnegative, Riemann integrable on [a,b] and there is a nonnegative
integer k such that g is k times differentiable at a with ¢ (a) = 0 for
0<j<k—1andg®(a)#0.
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Then the point ¢, in (1.1) satisfies

Cr — k+1
li =4{/—F. 2.1
:vlg}zx—a n+k+1 (2.1)

Proof. Without loosing the generality we may assume that f(a) = 0. Indeed, other-

wise we replace f by the function t € [a,b] — f(¢t) — f(a). Note that if ¢, satisfies

(1.1), then ¢, satisfies also

[ 60 = s@nata = (e - @) [ gltrar

By the Taylor expansions of f and g we have

() (g
) = 80 oy we-ay
o) = Lo eyt

where w and e are continuous functions on [a, b] satisfying w(t) — 0 and £(¢) — 0 as

t \, a. Therefore we have

) (g)a® (g
709t = TR DID (4 gy )0 -y,

where + is continuous on [a,b] and v(t) — 0 as ¢ \, a. By Lemma 2.1 we deduce that

@ ™ (@)a® (g
[ gt = A ot o -0 (22)

as x \, a. By Lemma 2.1 we have also

@ ) (q
/ g(t)dt = g9 ). (z — a)** + o((z — a)**h) (z\, a).

Since

") (q
f(Ca;) = fo) (€z — a)n + w(cm)(cw —a)"

and 0 < ¢, —a <z — a, it follows that

x ™ (g)a® (q
ftea) [ otar = ST (e, — ) o -0 (23)
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as x \, a. By (1.1), (2.2) and (2.3) we conclude that

F(@)g®(a)

G & e —a)”
™ (a)0® (g
A @ ol =0 ) (@)

Multiplying both sides by n! (k + 1)!(z — a)~HF+D /() (a)g*) (a)) we get

Cr — a n_ k+1
(x—a) —m+0(1) (z \ a),

whence the conclusion (2.1). O

Note that if g(t) = 1 for all ¢ € [a,b], then (ii) is satisfied for £k = 0. In
this case (1.1) becomes (1.2) and (2.1) becomes (1.4), i.e., we recover Zhang’s result

mentioned in the introduction as a special case of Theorem 2.2.

3. Asymptotic behavior of the intermediate point in the second mean value

theorem for integrals

Theorem 3.1. Suppose that f,g : [a,b] — R are two functions satisfying the following

conditions:

(i) f is monotone and there is a positive integer n such that f is n times
differentiable at a with f9)(a) =0 for 1 <j<n—1 and f™(a) #0;

(ii) g is Riemann integrable on [a,b] and there is a nonnegative integer k
such that g is k times differentiable at a with g9 (a) =0 for0 < j <k—1
and g® (a) # 0.

Then the point ¢, in (1.3) satisfies

lim Co 7@ g .
r—a T —a n+k+1

Proof. Note that (1.3) is equivalent to
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So, without loosing the generality we may assume that f(a) = 0 (otherwise we replace
f by the function ¢ € [a,b] — f(t) — f(a)). Under the assumption that f(a) = 0
equality (1.3) becomes

/wﬂﬂﬂﬂﬁ=f@ﬂ/mﬂﬂﬁ- (3.1)

T

By using the Taylor expansions of f and g and proceeding as in the proof of

Theorem 2.2 we deduce that (2.2) holds and that

@ ™ (q)a® (g
@) [ atae = L0 @ @ - (e -] 32

>

+o((z —a)"™) (@ \a).
By (3.1), (2.2) and (3.2) we conclude that

(n) a (k) a 1 1
fm&ﬁﬁﬁ)x_awkx—@“'—@z—w“]

_ (@)™ (a)
Tk (ntk+1)

Multiplying both sides by n! (k + 1)!(z — a)~ k0 /(M) (a)g*) (a)) we get

k+1
Ce — @ k+1
1-— = — 1
(222) —a e @),

(z = )" to((x —a)"™™) (2 \a).

whence the conclusion. O
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