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Redacţia: 400084 Cluj-Napoca, str. M. Kogălniceanu nr. 1
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Generalized projectors and the saturated
closure of a π-homomorph of finite
π-solvable groups

Rodica Covaci

Abstract. The paper introduces and studies the notion of generalized
projector, which generalizes the well-known notion of projector defined
by W. Gaschütz in [8] as a generalization of the covering subgroups
introduced by the same author in [7]. Let π be an arbitrary set of primes.
A new definition for the saturated closure of a π-homomorph of finite π-
solvable groups, equivalent to that in [3], is given. A property connected
with the notion of generalized projector on a class X of finite π-solvable
groups, called the GP-property, is also introduced. The main results
of the paper are the following: 1) a characterization theorem for the
saturated closure of the π-homomorphs of finite π-solvable groups with
the GP-property by means of the generalized projectors; 2) a theorem
showing that if X is a π-homomorph of finite π-solvable groups with
the GP-property and X is its saturated closure, then X is a Schunck
class if and only if X = X. These results prove that theorems similar
to those obtained by J. Weidner in [10] for finite solvable groups can be
also obtained in the more general case of finite π-solvable groups.

Mathematics Subject Classification (2010): 20D10.

Keywords: Schunck class, homomorph, projector, saturated closure of a
homomorph, π-solvable group.

1. Preliminaries

In [3], we generalized in the more general case of finite π-solvable groups the
results established by J. Weidner in [10] for finite solvable groups, obtaining a
characterization of the saturated closure of a homomorph of finite π-solvable
groups by means of the semicovering subgroups (introduced by J. Weidner in
[10] as a generalization of the covering subgroups defined by W. Gaschütz in
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[7]). Following the ideas from [10] and [3], the present paper introduces and
studies the notion of generalized projector, which generalizes the well-known
notion of projector defined by W. Gaschütz in [8] as a generalization of the
covering subgroups. Using the projectors, a new definition for the saturated
closure of a π-homomorph of finite π-solvable groups, equivalent to that in [3],
is given. We define for a class X of finite π-solvable groups the GP-property,
which is connected with the generalized projectors. A characterization theo-
rem for the saturated closure of the π-homomorphs of finite π-solvable groups
with the GP-property and an important consequence of this characterization
are the main results of the paper.

All groups considered in the paper are finite. Denote by π an arbitrary
set of primes and by π′ the complement to π in the set of all primes.

We remind some definitions and theorems which will be useful for our
considerations.

Definition 1.1. a) ([9]) A class X of groups is a homomorph if X is closed
under homomorphisms, i.e. if G ∈ X and N is a normal subgroup of G, then
G/N ∈ X.

b) A group G is said to be primitive if there exists a stabilizer W of G,
i.e. W is a maximal subgroup of G and coreGW = 1, where

coreGW = ∩{W g | g ∈ G}.
c) ([9]) A homomorph X is a Schunck class if X is primitively closed,

i.e. if any group G, all of whose primitive factor groups are in X, is itself in
X.

Definition 1.2. Let X be a class of groups, G a group and H a subgroup of G.
a) ([8]) H is an X-maximal subgroup of G if:

(i) H ∈ X;
(ii) H ≤ H∗ ≤ G, H∗ ∈ X ⇒ H = H∗.

b) ([8]) H is an X-projector of G if for any normal subgroup N of G,
HN/N is X-maximal in G/N .

c) ([7]) H is an X-covering subgroup of G if:
(i) H ∈ X;
(ii) H ≤ K ≤ G, K0 E K, K/K0 ∈ X ⇒ K = HK0.

Remark 1.3. a) Let X be a class of groups and G a group. Then: i) G ∈ X
if and only if G is X-maximal in G ; ii) if G is an X-projector of G, then
G ∈ X.

b) Let X be a homomorph and G a group. Then G is an X-projector of
G if and only if G ∈ X.

Theorem 1.4. ([8]) Let X be a class of groups, G a group and H a subgroup
of G.

a) If H is an X-projector of G and N is a normal subgroup of G, then
HN/N is an X-projector of G/N .

b) H is an X-projector of G if and only if:
(i) H is X-maximal in G;
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(ii) HM/M is an X-projector of G/M for all minimal normal sub-
groups M of G.

Theorem 1.5. Let X be a class of groups, G a group and H a subgroup of G.
a) If H is an X-covering subgroup or an X-projector of G, then H is

X-maximal in G.
b) ([4]) If X is a homomorph, then H is an X-covering subgroup of G

if and only if H is an X-projector in any subgroup K with H ≤ K ≤ G. In
particular, any X-covering subgroup of G is an X-projector of G.

Theorem 1.6. ([1]) A solvable minimal normal subgroup of a finite group is
abelian.

Introduced by S.A. Čunihin in [6], the π-solvable groups are more gen-
eral than the solvable groups.

Definition 1.7. a) ([6]) A group G is π-solvable if every chief factor M/N
of G (i.e. M/N is a minimal normal subgroup of G/N) is either a solvable
π-group or a π′-group. In particular, if π is the set of all primes, we obtain
the notion of solvable group.

b) ([2]) A class X of groups is said to be π-closed if

G/Oπ′(G) ∈ X ⇒ G ∈ X,

where Oπ′(G) denotes the largest normal π′-subgroup of G.
c) We say that X is a π-homomorph (respectively a π-Schunck class) if

X is a π-closed homomorph (respectively X is a π-closed Schunck class).

Theorem 1.8. ([6]) a) If G is a π-solvable group and N is a normal subgroup
of G, then G/N is π-solvable.

b) If G is a group and N is a normal subgroup of G, such that N and
G/N are π-solvable, then G is π-solvable.

Theorem 1.9. ([5]) Let X be a π-homomorph. The following conditions are
equivalent:

(i) X is a Schunck class;
(ii) if G is a π-solvable group, G /∈ X and M is a minimal normal

subgroup of G such that G/M ∈ X, then M has a complement in G;
(iii) any π-solvable group G has X-covering subgroups;
(iv) any π-solvable group G has X-projectors.

2. Generalized projectors

In [10], J. Weidner generalizes the notion of covering subgroup given in Def-
inition 1.2.c) by renouncing to the condition (i). In [3], this generalized cov-
ering subgroup is called semicovering subgroup. Similarly, we will introduce
o notion which generalizes the notion of projector.

Definition 2.1. Let X be a class of groups, G a group and H a subgroup of
G. H is called a generalized X-projector of G if for any normal subgroup N
of G, N 6= 1, HN/N is X-maximal in G/N .
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It is the aim of this section to prove some properties of the generalized
projectors.

Everywhere in this section we denote by X a class of groups, by G an
arbitrary finite group and by H a subgroup of G.

Remark 2.2. If H is an X-projector of G, then H is a generalized X-projector
of G.

Theorem 2.3. H is an X-projector of G if and only if the following two
conditions hold:

(i) H is X-maximal in G;
(ii) H is a generalized X-projector of G.

Proof. Let H be an X-projector of G. By Definition 1.2.b), for any normal
subgroup N of G we have that HN/N is X-maximal in G/N . In particular,
for N = 1 we obtain that H is X-maximal in G, and so condition (i) holds. If
we take N 6= 1 a normal subgroup of G, then HN/N is X-maximal in G/N ,
and, by Definition 2.1, H is a generalized X-projector of G, which mean that
condition (ii) also holds.

Conversely, suppose that conditions (i) and (ii) hold. From (i) follows
that for N = 1 we have HN/N is X-maximal in G/N . Let now N 6= 1 be
a normal subgroup of G. By (ii) and Definition 2.1, HN/N is X-maximal
in G/N . So HN/N is X-maximal in G/N for any normal subgroup N of G.
This means by Definition 1.2.b) that H is an X-projector of G. �

Theorem 2.4. If H is a generalized X-projector of G and N is a normal
subgroup of G, then HN/N is a generalized X-projector of G/N .

Proof. Let H be a generalized X-projector of G and N a normal subgroup
of G. We distinguish two cases:

1◦ N = 1. Since H is a generalized X-projector of G, we have for N = 1
that HN/N is a generalized X-projector of G/N .

2◦ N 6= 1. In order to prove that HN/N is a generalized X-projector of
G/N , by Definition 2.1 we have to prove that for any normal subgroup L/N
of G/N , L/N 6= 1, (HN/N · L/N)/(L/N) is X-maximal in (G/N)/(L/N).
But

(HN/N · L/N)/(L/N) = (HNL/N)/(L/N) = (HL/N)/(L/N) ' HL/L

and
(G/N)/(L/N) ' G/L,

and so we have to prove that

HL/L is X-maximal in G/L.

Indeed, from the hypothesis that H is a generalized X-projector of G, by
using Definition 2.1 for the normal subgroup L of G, where L 6= 1 (since
1 6= N < L), we obtain that HL/L is X-maximal in G/L. �

Our last theorem concerning some properties of the generalized projec-
tors is a characterization theorem for the generalized projectors.
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Theorem 2.5. H is a generalized X-projector of G if and only if HM/M is
an X-projector of G/M for any minimal normal subgroup M of G.

Proof. Let H be a generalized X-projector of G and let M be a minimal
normal subgroup of G. In order to prove that HM/M is an X-projector
of G/M , we use Theorem 2.3 and verify conditions (i) and (ii) from this
theorem.

(i) HM/M is X-maximal in G/M . Indeed, H being a generalized X-
projector of G and M being normal in G with M 6= 1, Definition 2.1 leads
to the conclusion that HM/M is X-maximal in G/M .

(ii) HM/M is a generalized X-projector of G/M . Indeed, from the facts
that H is a generalized X-projector of G and M is a normal subgroup of G,
Theorem 2.4 leads to the conclusion that HM/M is a generalized X-projector
of G/M .

Conversely, suppose that HM/M is an X-projector of G/M for any
minimal normal subgroup M of G. In order to prove that H is a generalized
X-projector of G, we use Definition 2.1. Let N be a normal subgroup of G
such that N 6= 1. Then there exists a minimal normal subgroup M of G such
that M ⊆ N . By our hypothesis, HM/M is an X-projector of G/M . From
this and from N/M E G/M , we obtain by applying Theorem 1.4.a) that
(HM/M ·N/M)/(N/M) is an X-projector of (G/M)/(N/M). But

(HM/M ·N/M)/(N/M)=(HMN/M)/(N/M)=(HN/M)/(N/M)'HN/N

and
(G/M)/(N/M) ' G/N ,

and so HN/N is an X-projector of G/N , which leads by Theorem 1.5.a) to
the conclusion that HN/N is X-maximal in G/N . This means, by Definition
2.1, that H is a generalized X-projector of G. �

Finally in this section, two remarks.
From Theorem 1.5.b) and Remark 2.2, we obtain:

Remark 2.6. If X is a homomorph, G is a group and H is a subgroup of G,
then the following implications hold:

H is an X-covering subgroup of G ⇒ H is an X-projector of G =⇒

H is a generalized X-projector of G.

This shows that if X is a homomorph, then the notion of generalized projector
generalizes both the projectors and the covering subgroups.

From the Remarks 1.3.b) and 2.2, follows immediately:

Remark 2.7. If X is a homomorph and G is a group, then:
(i) G ∈ X ⇐⇒ G is an X-projector of G;
(ii) G ∈ X ⇒ G is a generalized X-projector of G.



8 Rodica Covaci

3. The saturated closure of a π-homomorph

Let π be an arbitrary set of primes. From now on, all groups used in our
considerations will be finite π-solvable groups.

Definition 3.1. Let X be a π-homomorph. We call the saturated closure of
X the smallest π-homomorph X of finite π-solvable groups such that the
following two conditions hold:

(i) X ⊆ X ;
(ii) any finite π-solvable group has X-projectors.

Remark 3.2. a) Theorem 1.9 shows that Definition 3.1 is equivalent with that
given in [3].

b) If X is a π-homomorph and X is its saturated closure, then X is
a π-homomorph and any finite π-solvable group has X-projectors. It follows
by Theorem 1.9 that the saturated closure X is a Schunck class. Since X is
π-closed, we conclude that X is a π-Schunck class.

Notation 3.3. Let X be a class of finite π-solvable groups. We denote by
X∗ the class of all finite π-solvable groups G such that G is a generalized
X-projector of G.

Let us give some properties of the class X∗, which will be used to prove
the main results of the paper. Everywhere X will denote a class of finite
π-solvable groups.

Theorem 3.4. If X is a homomorph, then X ⊆ X∗.

Proof. Let G ∈ X. By Remark 2.7.(ii), G is a generalized X-projector of G.
It follows that G ∈ X∗. �

Theorem 3.5. If X is a class of finite π-solvable groups, then X∗ is a homo-
morph.

Proof. Let G ∈ X∗ and let N be a normal subgroup of G. We show that
G/N ∈ X∗. Indeed, from G ∈ X∗ we have that G is a finite π-solvable group
and G is a generalized X-projector of G. G being a finite π-solvable group
and N being normal in G, it follows by Theorem 1.8.a) that G/N is also a
finite π-solvable group. Furthermore, from the facts that G is a generalized
X-projector of G and N is a normal subgroup of G, Theorem 2.4 leads to
the conclusion that G/N is a generalized X-projector of G/N . It follows that
G/N ∈ X∗. �

The property of a class X of finite π-solvable groups we define below
is connected with the generalized projectors introduced in Definition 2.1 and
will be called therefore the GP-property.

Definition 3.6. A class X of finite π-solvable groups is said to have the GP-
property if X satisfies the following two conditions:

(i) every finite π-solvable group has generalized X-projectors;
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(ii) if G is a finite π-solvable group, then for any generalized X-
projector H of G there exists a minimal normal subgroup M of G such that
M ⊆ H.

Theorem 3.7. Let X be a class of finite π-solvable groups with the GP-property
and G a finite π-solvable group. The following two conditions are equivalent:

(i) G ∈ X∗;
(ii) if H is a generalized X-projector of G, then H = G.

Proof. Let X be a class with the GP-property and G a finite π-solvable group.
(i) ⇒ (ii) : Let G ∈ X∗ and H be a generalized X-projector of G. From

G ∈ X∗ follows that G is a generalized X-projector of G, which implies by
Theorem 2.5 that G/M is an X-projector of G/M for any minimal normal
subgroup M of G. By Theorem 1.5.a), we deduce that G/M is X-maximal
in G/M , hence G/M ∈ X. On the other side, by applying Theorem 2.5
for the generalized X-projector H of G, we obtain that HM/M is an
X-projector of G/M for any minimal normal subgroup M of G, hence
HM/M is X-maximal in G/M . From this, since G/M ∈ X, we deduce that
HM/M = G/M . It follows that HM = G for any minimal normal subgroup
M of G. But X is a class with the GP-property and so for the generalized
X-projector H of G, there exists a minimal normal subgroup M0 of G such
that M0 ⊆ H. Then H = HM0. But, as we saw above, HM0 = G. It follows
that H = G.

(ii) ⇒ (i) : Let H be an arbitrary generalized X-projector of G. Then,
by (ii), H = G. Hence G is its own generalized X-projector and so G ∈
X∗. �

Theorem 3.8. If X is a π-homomorph with the GP-property, then X∗ is a
π-homomorph.

Proof. Let X be a π-homomorph with the GP-property. By Theorem 3.5,
X∗ is a homomorph. It remains to prove that X∗ is π-closed, i.e. that
G/Oπ′(G) ∈ X∗ implies G ∈ X∗. Let G/Oπ′(G) ∈ X∗. We first notice
that from G/Oπ′(G) ∈ X∗ follows that G/Oπ′(G) is a finite π-solvable
group. Now, G/Oπ′(G) and Oπ′(G) being π-solvable groups, we deduce
by Theorem 1.8.b) that G is also a π-solvable group. In order to prove that
G ∈ X∗, we use Theorem 3.7. Let H be a generalized X-projector of G. Since
Oπ′(G) E G, Theorem 2.4 leads to the conclusion that HOπ′(G)/Oπ′(G) is a
generalized X-projector of G/Oπ′(G). But the class X has the GP-property
and G/Oπ′(G) ∈ X∗. By Theorem 3.7, it follows that

HOπ′(G)/Oπ′(G) = G/Oπ′(G).

Hence
HOπ′(G) = G. (3.1)

We consider two cases:
1◦ Oπ′(G) = 1. In this case, (3.1) gives that H = G. But H being a

generalized X-projector of G, it follows that G is a generalized X-projector
of G. Hence G ∈ X∗.
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2◦ Oπ′(G) 6= 1. Then H being a generalized X-projector of G and
Oπ′(G) E G, Oπ′(G) 6= 1, Definition 2.1 leads to the conclusion that
HOπ′(G)/Oπ′(G) is X-maximal in G/Oπ′(G), which means by applying
(3.1) that G/Oπ′(G) is X-maximal in G/Oπ′(G). Hence G/Oπ′(G) ∈ X.
But the class X being π-closed, it follows that G ∈ X. By Theorem 3.4, the
homomorph X has the property that X ⊆ X∗. So G ∈ X∗. �

Theorem 3.9. If X is a π-homomorph with the GP-property, then any finite
π-solvable group has X∗-projectors.

Proof. Let X be a π-homomorph with the GP-property. Then, by Theorem
3.8, X∗ is a π-homomorph. We apply Theorem 1.9 for the π-homomorph X∗

and conclude that instead of proving that any finite π-solvable group has X∗-
projectors we can prove the equivalent condition (ii) from Theorem 1.9, which
becomes in our case: if G is a π-solvable group, G /∈ X∗ and M is a minimal
normal subgroup of G such that G/M ∈ X∗, then M has a complement in
G. Let G be a π-solvable group, G /∈ X∗ and M a minimal normal subgroup
of G such that G/M ∈ X∗. We first observe that there exists a subgroup
H of G such that H is a generalized X-projector of G and H 6= G. Indeed,
if we suppose the contrary, then every generalized X-projector H of G is
equal to G, which means by Theorem 3.7 that G ∈ X∗, a contradiction with
the hypothesis G /∈ X∗. We complete the proof of the present theorem by
showing that H is a complement of M in G, i.e. HM = G and H ∩M = 1.
Indeed, since H is a generalized X-projector of G and M is normal in G, we
conclude by Theorem 2.4 that HM/M is a generalized X-projector of G/M .
This and G/M ∈ X∗ imply by Theorem 3.7 that HM/M = G/M . Hence
HM = G. It remains to prove that H ∩ M = 1. Since M is a minimal
normal subgroup of the π-solvable group G, M is either a solvable π-group
or a π′-group. Suppose that M is a π′-group. Then M ≤ Oπ′(G) and so

G/Oπ′(G) ' (G/M)/(Oπ′(G)/M). (3.2)

Since G/M ∈ X∗ and X∗ is a homomorph, (3.2) leads to G/Oπ′(G) ∈ X∗,
which implies by the π-closure of X∗ that G ∈ X∗, a contradiction with
the hypothesis G /∈ X∗. It follows that M is a solvable π-group. Then, by
Theorem 1.6, M is abelian. Let us prove that H ∩M is normal in G. We
know that H ≤ G and M E G imply H ∩M E H. Let now g ∈ G = HM
and x ∈ H ∩M . Then g = hm, with h ∈ H and m ∈ M , and we have

g−1xg = (hm)−1x (hm) = (m−1h−1) x (hm) = m−1(h−1x h) m. (3.3)

From H ∩ M E H, we conclude that h−1x h ∈ H ∩ M . Furthermore, M
being abelian, we can commute in (3.3) the elements h−1x h and m, both
in M , and obtain

g−1xg = m−1(h−1x h) m = m−1m (h−1x h) = h−1xh ∈ H ∩M .

We proved that H∩M is normal in G. From this and from H∩M ⊆ M , by
using that M is a minimal normal subgroup of G, it follows that H ∩M = 1
or H ∩M = M . But H ∩M = M leads to M ⊆ H, hence G = HM = H,
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a contradiction with H 6= G. It follows that H ∩M = 1, and the theorem is
proved. �

Theorem 3.10. If X is a π-homomorph with the GP-property, then X∗ is a
π-Schunck class.

Proof. Since X is a π-homomorph with the GP-property, Theorem 3.8 shows
that X∗ is a π-homomorph and Theorem 3.9 shows that any finite π-solvable
group has X∗-projectors. By applying Theorem 1.9, we conclude that X∗ is
a π-Schunck class. �

Theorem 3.11. Let X be a π-homomorph with the GP-property. If Y is a
π-homomorph satisfying the conditions

(i) X ⊆ Y ;
(ii) any finite π-solvable group has Y -projectors, then X∗ ⊆ Y .

Proof. Let G ∈ X∗. Then G is a finite π-solvable group and so, by (ii),
there exists an Y -projector H of G. We will prove that H is a generalized
X-projector of G. For this, we use Theorem 2.5. and prove that HM/M is
an X-projector of G/M for any minimal normal subgroup M of G. Let M
be a minimal normal subgroup of G. From G ∈ X∗ follows that G is its own
generalized X-projector, and by Theorem 2.5 we have that G/M is an X-
projector of G/M , hence by Theorem 1.5.a) G/M is X-maximal in G/M , and
so G/M ∈ X. But (i) claims that X ⊆ Y . It follows that G/M ∈ Y . Now, H
being an Y -projector of G and M being normal in G, Definition 1.2.b) leads
to the conclusion that HM/M is Y -maximal in G/M . This and G/M ∈ Y
imply HM/M = G/M , hence HM = G. But we saw that G/M is an X-
projector of G/M , which together with HM = G gives that HM/M is an
X-projector of G/M , what we had to prove. It follows that H is a generalized
X-projector of G. But G ∈ X∗ and the class X has the GP-property. So we
can apply Theorem 3.7 and obtain that H = G. From the choice of H as an
Y -projector of G, we deduce by Theorem 1.5.a) that H is Y -maximal in G,
which implies that H ∈ Y . This and H = G lead to G ∈ Y . The inclusion
X∗ ⊆ Y is proved. �

Theorem 3.12. If X is a π-homomorph with the GP-property and X is its
saturated closure, then

X∗ ⊆ X .

Proof. Let X be a π-homomorph with the GP-property and X its saturated
closure. We can take in Theorem 3.11: Y = X. Indeed, by Definition 3.1, the
saturated closure X satisfies conditions (i) and (ii) claimed in Theorem 3.11.
By applying Theorem 3.11, we conclude that X∗ ⊆ X . �

From Theorems 3.4 and 3.12 immediately follows:

Corollary 3.13. If X is a π-homomorph with the GP-property and X is its
saturated closure, then

X ⊆ X∗ ⊆ X .
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4. The main results

The main results of this paper, which we prove below, are the following: 1) a
characterization theorem for the saturated closure of the π-homomorphs of
finite π-solvable groups with the GP-property by means of the generalized
projectors; 2) a characterization theorem for Schunck classes of finite π-
solvable groups by means of the saturated closure of π-homomorphs of finite
π-solvable groups with the GP-property.

Theorem 4.1. If X is a π-homomorph with the GP-property and X is its
saturated closure, then

X = X∗.

Proof. Let X be a π-homomorph with the GP-property and X its saturated
closure. By applying Theorem 3.12, we obtain that X∗ ⊆ X . In order to
prove that X ⊆ X∗, we use the Definition 3.1 of the saturated closure of
X. If we show that X∗ verifies conditions (i) and (ii) given in Definition
3.1, then, X being the smallest π-homomorph which verifies (i) and (ii), we
conclude that X ⊆ X∗. It is easy to see that X∗ verifies condition (i),
namely X ⊆ X∗, because X is a homomorph and we apply Theorem 3.4.
Furthermore, X∗ verifies condition (ii), namely any finite π-solvable group
has X∗-projectors, as Theorem 3.9 shows. �

Theorem 4.2. Let X be a π-homomorph with the GP-property and X its
saturated closure. The following two conditions are equivalent:

(i) X is a Schunck class;
(ii) X = X .

Proof. Let X be a π-homomorph with the GP-property and X its saturated
closure.

(i) ⇒ (ii) : Let X be a Schunck class. We first prove that X = X∗.
Indeed, X being a homomorph, Theorem 3.4 leads to X ⊆ X∗. Furthermore,
by applying Theorem 1.9 for the π-homomorph X which is a Schunck class,
we conclude that any finite π-solvable group has X-projectors. Let us take in
Theorem 3.11 Y = X, which is a π-homomorph satisfying the two conditions
claimed in this theorem, namely: X ⊆ X and any finite π-solvable group has
X-projectors. By applying Theorem 3.11, we obtain that X∗ ⊆ X. From
X ⊆ X∗ and X∗ ⊆ X follows that

X = X∗. (4.1)

On the other side, we are in the hypotheses of Theorem 4.1 and so we conclude
that

X = X∗. (4.2)
From (4.1) and (4.2) follows that X = X .

(ii) ⇒ (i) : Let X = X . By the Definition 3.1 of the saturated closure
X, any π-solvable group G has X-projectors. But X = X. Then any π-
solvable group G has X-projectors. We can now apply Theorem 1.9 for the
π-homomorph X, and it follows that X is a Schunck class. �
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On the extension and torsion functors of
local cohomology of weakly Laskerian and
Matlis reflexive modules

Kazem Khashyarmanesh and Fahimeh Khosh-Ahang Ghasr

Abstract. Let R be a commutative Noetherian ring with non-zero iden-
tity, a an ideal of R and M, N two R-modules. The main purpose
of this paper is to study the circumstances under which, for fixed
integers j ∈ N0 and n ∈ N, the R-modules Extj

R(N, Hn
a (M)) and

TorR
j (N, Hn

a (M)) are weakly Laskerian or Matlis reflexive. In this way,
we also get to some results about the associated primes, coassociated
primes and Bass numbers of Hn

a (M).
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Matlis duality functor, Matlis reflexive modules, extension functor, tor-
sion functor, associated prime ideals, coassociated prime ideals, bass
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1. Introduction

Throughout this paper, we will generally assume that R is a commutative
Noetherian ring with non-zero identity, a be an ideal of R and M,N be two
R-modules. We shall use V (a) to denote the set of all prime ideals containing
a. Also, we shall use N0 (respectively N) to denote the set of non-negative
(respectively positive) integers.

For a non-negative integer i, the i-th local cohomology module of M
with respect to a is defined as:

Hi
a(M) = lim

−→
n∈N0

Exti
R(R/an,M).

This research is supported by a grant from Center of Excellence in Analysis on Algebraic
Structures (CEAAS).
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The reader can refer to [6], for the basic properties of local cohomology.
This paper studies the circumstances under which the R-modules

Extj
R(N,Hn

a (M)) and TorR
j (N,Hn

a (M)) are weakly Laskerian or Matlis re-
flexive, for fixed integers j and n when M,N are certain R-modules. One
motivation for our work comes from the concept of cofiniteness for local co-
homology modules introduced by Hartshorne in [15]. The local cohomology
module Hn

a (M) is a-cofinite if Exti
R(R/a,Hn

a (M)) is finitely generated for all
i ∈ N0. It is a question of Huneke in [16] that when the local cohomology
module Hn

a (M) is a-cofinite. In this regard, there has been a great deal of
work. For instance, we refer the reader to the papers of Huneke and Koh
[17], Delfino [8], Delfino and Marley [9], Yoshida [26] and Chiriacescu [7]. A
question here arises that for fixed integers j and n, if M,N are certain R-
modules, when the R-modules Extj

R(N,Hn
a (M)) and TorR

j (N,Hn
a (M)) are

finitely generated. There has also been a couple of work regarding to this
question when M is a finitely generated R-module and N = R/b for some
ideal b of R containing a (cf. [11] and [18]). The goal of the present paper is
to obtain similar results as above, but for a larger class of modules.

Let E be the minimal injective cogenerator of the category of R-modules
and D(M) = HomR(M,E). Recall that, an R-module M is called Matlis re-
flexive if the canonical map M → D(D(M)) is an isomorphism. Moreover,
Divaani-Aazar and Mafi, in [12], introduced and studied another type of mod-
ules called weakly Laskerian. A module M is called weakly Laskerian if the
set of associated primes of any quotient module of M is finite. Note that, the
class of weakly Laskerian modules includes all finitely generated, Artinian,
linearly compact and Matlis reflexive modules. Also, the class of Matlis re-
flexive modules over a complete local ring contains all finitly generated and
Artinian modules. Therefore, for fixed integers j and n, it is desirable to ask
that when the R-modules Extj

R(N,Hn
a (M)) and TorR

j (N,Hn
a (M)) are weakly

Laskerian or Matlis reflexive which is a generalization of mentioned question
“in some sense”.

In the second section of this paper we list some facts about the weakly
Laskerian modules which will be useful in later sections. In the third sec-
tion, at first, we investigate the above mentioned question for the R-module
Extj

R(N,Hn
a (M)). In fact, we show that for fixed integers j ∈ N0 and n ∈ N,

if N is a finitely generated R-module with SuppR(N) ⊆ V (a) and M is a
weakly Laskerian R-module such that

(i) Extj+t+1
R (N,Hn−t

a (M)) is weakly Laskerian for all t = 1, . . . , n, and
(ii) Extj−s−1

R (N,Hn+s
a (M)) is weakly Laskerian for all s = 1, . . . ,dimM−n,

then Extj
R(N,Hn

a (M)) is also weakly Laskerian. Next, we present some gen-
eralizations of [13, Theorem 3.1], [1, Theorem 1.2], [11, Theorem B], [5, The-
orem 2.2] and [19, Theorem B(β)], to some extent.

In the forth section, we use an analogue of the above results for
TorR

j (N,Hn
a (M)). At last, in the final section, when (R,m) is a complete

local ring with respect to m-adic topology, in a similar way, we study the
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Matlis reflexivity of the R-modules Extj
R(N,Hn

a (M)) and TorR
j (N,Hn

a (M))
and get to some interesting results.

2. Preliminary results

First of all, we recall the definition of weakly Laskerian modules.

Definition 2.1. (i) (See [12, Definition 2.1].) An R-module M is called
weakly Laskerian if the set of associated primes of any quotient mod-
ule of M is finite.

(ii) (See [13, Definition 2.4].) An R-module M is called a-weakly cofinite
if SuppR(M) ⊆ V (a) and Exti

R(R/a,M) is weakly Laskerian for all
i ∈ N0.

In the following lemma, we gather together some basic properties of
weakly Laskerian modules.

Lemma 2.2. (See [12, Lemma 2.3] and [13, Remark 2.7].)
(i) Let 0 −→ L −→ M −→ N −→ 0 be an exact sequence of R-modules and

R-homomorphisms. Then M is weakly Laskerian if and only if L and
N are weakly Laskerian. Hence, if L −→ M −→ N is an exact sequence
such that both end terms are weakly Laskerian R-modules, then M is
also weakly Laskerian.

(ii) Let N be a finitely generated R-module and M be a weakly Laskerian
R-module. Then Exti

R(N,M) and TorR
i (N,M) are weakly Laskerian for

all i ∈ N0.
(iii) Suppose that M is a weakly Laskerian R-module with SuppR(M) ⊆

V (a). Then M is a-weakly cofinite.
(iv) If 0 −→ L −→ M −→ N −→ 0 is an exact sequence and two of modules

in the sequence are a-weakly cofinite, then so is the third one.
(v) The set of associated primes of an a-weakly cofinite module is finite.

Remark 2.3. (i) In the light of [12, Example 2.2], the class of weakly Laske-
rian R-modules includes all finitely generated, Artinian and linearly
compact R-modules.

(ii) Let E be the minimal injective cogenerator of the category of R-modules.
For an R-module M , we let D(M) = HomR(M,E). If the canonical map
M → D(D(M)) is an isomorphism, then M is called Matlis reflexive.
Now, by [3, Theorem 12] and (i), in conjunction with Lemma 2.2(i),
every Matlis reflexive module is weakly Laskerian.

Recall that a sequence x1, . . . , xn of elements of R is an a-filter
regular sequence on M if x1, . . . , xn ∈ a and xi /∈ p for all p ∈
AssR(M/(x1, . . . , xi−1)M) \ V (a) and for all i = 1, . . . , n. When i = 1, this
is to be interpreted as

xi /∈
⋃

p∈AssR(M)\V (a)

p.
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The concept of an a-filter regular sequence on M is a generalization of the
one of a filter regular sequence which has been studied in [21], [23] and has
led to some interesting results. Note that both concepts coincide if a is the
maximal ideal in local ring. Also, note that x1, . . . , xn is a weak M -sequence if
and only if it is an R-filter regular sequence on M . The following proposition
enables one to see quickly that, for a weakly Laskerian R-module M , there
exist a-filter regular sequences on it of any length.

Proposition 2.4. Let M be a weakly Laskerian R-module and n be a positive
integer. Assume that x1, . . . , xn is an a-filter regular sequence on M . Then
there exists an element xn+1 ∈ a such that x1, . . . , xn, xn+1 is an a-filter
regular sequence on M .

Proof. In contrary, suppose that x1, . . . , xn is an a-filter regular sequence on
M such that

a ⊆
⋃

p∈AssR(M/(x1,...,xn)M)\V (a)

p.

Then, since M is weakly Laskerian R-module, AssR(M/(x1, . . . , xn)M) is a
finite set. So, Prime Avoidance Theorem provides that a ⊆ p for some p in
the set AssR(M/(x1, . . . , xn)M)\V (a) which is a required contradiction. �

3. Extension functors and local cohomology of weakly
Laskerian modules

The first present author, in [18], by using filter regular sequences, estab-
lished some results about finiteness properties of Extj

R(R/b,Hn
a (M)) and

TorR
j (R/b,Hn

a (M)) for fixed integers j ∈ N0 and n ∈ N when b is an ideal of
R containing a. Now, in view of Lemma 2.2(i)-(ii), in conjunction with Propo-
sition 2.4, by employing the methods of proofs which are similar to those used
in [18], one can establish the following theorem which is generalization of [18,
Theorem 3.3], in some sense.

Theorem 3.1. Fix j ∈ N0, n ∈ N, a finitely generated R-module N with
SuppR(N) ⊆ V (a) and a weakly Laskerian R-module M of dimension d.
Assume that

(i) Extj+t+1
R (N,Hn−t

a (M)) is weakly Laskerian for all t = 1, . . . , n, and
(ii) Extj−s−1

R (N,Hn+s
a (M)) is weakly Laskerian for all s = 1, . . . , d− n.

Then Extj
R(N,Hn

a (M)) is weakly Laskerian.

Proof. In view of Proposition 2.4, let x1, . . . , xn+1 be an a-filter regular se-
quence on M . By means of [18], for each integer i with 1 ≤ i ≤ n there exists
an exact sequence

0 −→ Hi
a(M) −→ Hi

(x1,...,xi)
(M) −→ (Hi

(x1,...,xi)
(M))xi+1

−→ Hi+1
(x1,...,xi+1)

(M) −→ 0.

One can break the above exact sequence into two exact sequences
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(1) 0 −→ Hi
a(M) −→ Hi

(x1,...,xi)
(M) −→ Li −→ 0 and

(2) 0 −→ Li −→ (Hi
(x1,...,xi)

(M))xi+1 −→ Hi+1
(x1,...,xi+1)

(M) −→ 0.

On the other hand, it is a fact that, for each R-module N and each ele-
ment x of R, multiplication by x provides an automorphism on Nx. In this
regard, since xi’s belong to a and N is a finitely generated R-module with
SuppR(N) ⊆ V (a), applying the long exact sequences of Extj

R(N,−) on the
exact sequence (2) induces the isomorphism

Extj
R(N,Li) ∼= Extj−1

R (N,Hi+1
(x1,...,xi+1)

(M)).

Now, several uses of the long exact sequences of Extj
R(N,−) on the exact

sequence (1) and our assumptions of the theorem in conjunction with parts
(i) and (ii) of Lemma 2.2 imply the result. �

Suppose that M is a finitely generated R-module and n is a positive
integer. Marley and Vassilev, in [20, Proposition 2.5], showed that if Hi

a(M)
is a-cofinite for all i with i 6= n, then Hn

a (M) is also a-cofinite. By using the
spectral sequence method, Divaani-Aazar and Mafi established the analogue
result for weakly Laskerian modules (see [13, Theorem 3.1]). The following
corollary which is a slight generalization of [13, Theorem 3.1], is an immediate
consequence of Theorem 3.1.

Corollary 3.2. Let M be a weakly Laskerian R-module and N be a finitely
generated R-module with SuppR(N) ⊆ V (a). Assume that n is a fixed integer
such that the R-module Exts

R(N,Hi
a(M)) is weakly Laskerian for all s ∈ N0

and all i with i 6= n. Then Exts
R(N,Hn

a (M)) is also weakly Laskerian for all
s ∈ N0.

The following results are consequences of Theorem 3.1 for special choices
of j and n.

Corollary 3.3. Let M be a weakly Laskerian R-module and N be a finitely
generated R-module with SuppR(N) ⊆ V (a). Assume that for a fixed integer
n, the R-module Exts

R(N,Hi
a(M)) is weakly Laskerian for all s ∈ N and all

i with i < n. Then
(i) HomR(N,Hn

a (M)) is weakly Laskerian and so

AssR(Hn
a (M)) ∩ SuppR(N)

is finite, and
(ii) Ext1R(N,Hn

a (M)) is weakly Laskerian.

Proof. (i) Applying Theorem 3.1 when j = 0 ensures that the R-module
HomR(N,Hn

a (M)) is weakly Laskerian. The second assertion now follows
from the fact that

AssR(HomR(N,Hn
a (M))) = AssR(Hn

a (M)) ∩ SuppR(N).

(ii) Apply Theorem 3.1 when j = 1. �
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Note that, by Remarks 2.3(i), the first part of Corollary 3.3 is a gener-
alization of the main results of [5] and [19].

Corollary 3.4. (Compare [1, Theorem 1.2] and [11, Theorem B].) Let M be
a weakly Laskerian R-module and N be a finitely generated R-module with
SuppR(N) ⊆ V (a). Let t be a non-negative integer such that

Exts
R(N,Hi

a(M))

is weakly Laskerian for all s ∈ N and all i with i < t. Then the following
statements are equivalent:

(i) HomR(N,Ht+1
a (M)) is weakly Laskerian.

(ii) Ext2R(N,Ht
a(M)) is weakly Laskerian.

Proof. (i)⇒(ii) Apply Theorem 3.1 with j = 2 and n = t.
(ii)⇒(i) Apply Theorem 3.1 with j = 0 and n = t + 1. �

By using Theorem 3.1, in conjunction with [6, Corollary 3.3.3], we have
the following corollary.

Corollary 3.5. Let M be a weakly Laskerian R-module, N be a finitely gener-
ated R-module and x, y ∈ R such that (x, y) ⊆

√
(0 :R N). Then, for a fixed

integer j, the following statements are equivalent:

(i) Extj
R(N,H2

(x,y)(M)) is weakly Laskerian.

(ii) Extj+2
R (N,H1

(x,y)(M)) is weakly Laskerian.

4. Torsion functors and local cohomology of weakly Laskerian
modules

In the light of Lemma 2.2(i)-(ii), in conjunction with Proposition 2.4, the
methods of proofs used in [18] may be adapted. So, one can establish the
following theorem which is a generalization of Theorem 4.1 in [18], in some
sense.

Theorem 4.1. Fix j ∈ N0, n ∈ N, a finitely generated R-module N with
SuppR(N) ⊆ V (a), and a weakly Laskerian R-module M of dimension d.
Assume that

(i) TorR
j−t−1(N,Hn−t

a (M)) is weakly Laskerian for all t = 1, . . . , n, and
(ii) TorR

j+s+1(N,Hn+s
a (M)) is weakly Laskerian for all s = 1, . . . , d− n.

Then TorR
j (N,Hn

a (M)) is weakly Laskerian.

Proof. The proof is similar to that used in the proof of Theorem 3.1 by
replacing the functor TorR

j (N,−) in stead of the functor Extj
R(N,−). �

Now, we recall the definition of coassociated prime ideals which is needed
in the sequel.
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Definition 4.2. (See [25].) Let (R,m) be a local ring and K be an R-module. A
prime ideal p of R is said to be a coassociated prime of K if p is an associated
prime of D(K). We denote the set of coassociated primes of K by CoassR(K)
(or simply Coass(K), if there is no ambiguity about the underlying ring).

Note that Coass(K) = ∅ if and only if K = 0. Also, for a finitely gener-
ated R-module K and arbitrary R-module L, in the light of [24, Theorem 1.22]
or [9, Remark p. 50], we have that Coass(K⊗R L) = SuppR(K)∩CoassR(L).
Now, we present a dual of Corollary 3.3, in some sense.

Corollary 4.3. Let n be a non-negative integer. Let (R,m) be a local ring, M
a weakly Laskerian R-module and N be a finitely generated R-module with
SuppR(N) ⊆ V (a). Suppose that TorR

j (N,Hi
a(M)) is weakly Laskerian for all

j ∈ N0 and all i with i > n. Then
(i) N ⊗R Hn

a (M) is weakly Laskerian and so the set

SuppR(N) ∩ CoassR(Hn
a (M))

is finite, and
(ii) TorR

1 (N,Hn
a (M)) is weakly Laskerian.

Recall that for an R-module K, the cohomological dimension of K with
respect to a is defined as

cd(a,K) = max{i ∈ N0 | Hi
a(K) 6= 0}.

Now, the following corollary is an immediate consequence of Theorem 4.1.

Corollary 4.4. Let M be a weakly Laskerian R-module and N be a finitely
generated R-module with SuppR(N) ⊆ V (a). Then for a fixed integer n,

(i) if TorR
s (N,Hi

a(M)) is weakly Laskerian for all i with i 6= n, then
TorR

s (N,Hi
a(M)) is weakly Laskerian for all integers i and s.

(ii) if TorR
s (N,Hi

a(M)) is weakly Laskerian for all i with i < cd(a,M), then
TorR

s (N,Hi
a(M)) is weakly Laskerian for all integers i and s.

Applying Theorem 4.1 for special integers j and n yields the following
corollary.

Corollary 4.5. Let n be a positive integer, M a weakly Laskerian R-module
and N a finitely generated R-module with SuppR(N) ⊆ V (a). Let the R-
module TorR

s (N,Hi
a(M)) be weakly Laskerian for all i with i > n and all

s ∈ N0. Then the following statements are equivalent:
(i) N ⊗R Hn−1

a (M) is weakly Laskerian.
(ii) TorR

2 (N,Hn
a (M)) is weakly Laskerian.

The following corollary is an immediate consequence of Theorem 4.1
which is a dual of Corollary 3.5, in some sense.

Corollary 4.6. Let M be a weakly Laskerian R-module, N a finitely generated
R-module and x, y ∈ R such that (x, y) ⊆

√
(0 :R N). Then, for a fixed

integer j, the following statements are equivalent:



22 Kazem Khashyarmanesh and Fahimeh Khosh-Ahang Ghasr

(i) TorR
j (N,H2

(x,y)(M)) is weakly Laskerian.
(ii) TorR

j−2(N,H1
(x,y)(M)) is weakly Laskerian.

5. Local cohomology of Matlis reflexive modules

Throughout this section, (R,m, k) will denote a local complete ring with
respect to m-adic topology. For the reminder of this paper, we focus our
attention to Matlis reflexive modules. For basic theory concerning Matlis
reflexive modules, the reader is referred to [22, §3.2] and [6, §10].

Remark 5.1. (i) In view of Matlis duality theorem, the class of Matlis re-
flexive modules over a complete local ring includes all finitely generated
and Artinian modules.

(ii) By [14, Proposition 1.3] or [22, Theorem 3.4.13], M is Matlis reflexive
if and only if there is an exact sequence

0 −→ S −→ M −→ A −→ 0

with S finitely generated and A Artinian.
(iii) Let 0 −→ A −→ B −→ C −→ 0 be an exact sequence of R-modules and

R-homomorphisms. Then B is Matlis reflexive if and only if A and C
are Matlis reflexive. This follows by mapping the exact sequence into its
double dual and applying the snake lemma.

In view of Remarks 5.1(iii) and Theorem 3 in [2], one can also gain the
following results.

Theorem 5.2. (Compare [18, Theorem 3.3].) Fix j ∈ N0, n ∈ N, a Matlis
reflexive R-module N with a ⊆

√
(0 :R N) and a finitely generated R-module

M of dimension d. Assume that
(i) Extj+t+1

R (N,Hn−t
a (M)) is Matlis reflexive for all t = 1, . . . , n, and

(ii) Extj−s−1
R (N,Hn+s

a (M)) is Matlis reflexive for all s = 1, . . . , d− n.

Then Extj
R(N,Hn

a (M)) is Matlis reflexive.

Theorem 5.3. (Compare [18, Theorem 4.1].) Fix j ∈ N0, n ∈ N, a Matlis
reflexive R-module N with a ⊆

√
(0 :R N) and a finitely generated R-module

M of dimension d. Assume that
(i) TorR

j−t−1(N,Hn−t
a (M)) is Matlis reflexive for all t = 1, . . . , n, and

(ii) TorR
j+s+1(N,Hn+s

a (M)) is Matlis reflexive for all s = 1, . . . , d− n.

Then TorR
j (N,Hn

a (M)) is Matlis reflexive.

Now, we are ready to present the main results of this section.

Theorem 5.4. Fix j ∈ N0 and n ∈ N. Let M and N be two Matlis reflexive
R-modules with a ⊆

√
(0 :R N) such that

(i) Extj+t+1
R (N,Hn−t

a (M)) is Matlis reflexive for all t = 1, . . . , n, and
(ii) Extj−s−1

R (N,Hn+s
a (M)) is Matlis reflexive for all s = 1, . . . ,dimM −n.
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Then Extj
R(N,Hn

a (M)) is Matlis reflexive.

Proof. Since M is Matlis reflexive, in the light of Remarks 5.1(i), there exists
an exact sequence

0 −→ S −→ M −→ A −→ 0,

with S finitely generated and A Artinian. So, by applying the local cohomol-
ogy functor H0

a(−), one can deduce the exact sequence

0 −→ H0
a(S) −→ H0

a(M) −→ A
f−→ H1

a(S) −→ H1
a(M) −→ 0 (1)

and the isomorphism

Hi
a(M) ∼= Hi

a(S) (2)

for all i > 2. Hence, we have the exact sequence

Extj
R(N,H1

a(S)) −→ Extj
R(N,H1

a(M)) −→ Extj+1
R (N, Imf). (3)

Since A is Artinian, Imf is also Artinian. Therefore, by [2, Theorem 3],
Extj+1

R (N, Imf) is Matlis reflexive. On the other hand, in view of the iso-
morphism (2) and [4, Lemma 1], Theorem 5.2 ensures that the R-module
Extj

R(N,H1
a(S)) is Matlis reflexive. So, by Remarks 5.1(iii), the exact se-

quence (3) proves the theorem when n = 1. It remains to prove the claim
when n > 2. By means of the isomorphism (2), we need to establish the
claim for finitely generated R-module S. Now, in the light of (2), [4, Lemma
1] and Theorem 5.2, we only need to prove that Extj+n

R (N,H1
a(S)) is Matlis

reflexive. To do this, we use the exact sequence (1) to get the following exact
sequence

Extj+n
R (N, Imf) −→ Extj+n

R (N,H1
a(S)) −→ Extj+n

R (N,H1
a(M)).

Note that Imf is Artinian, so the R-module Extj+n
R (N, Imf) is Matlis

reflexive. Now, since both end terms are Matlis reflexive, the R-module
Extj+n

R (N,H1
a(S)) is also Matlis reflexive, as desired. So, the proof is com-

plete. �

By using Theorem 5.3 together with straightforward modifications to
the arguments in the proof of Theorem 5.4, we can earn the same result for
the R-module TorR

j (N,Hn
a (M)) as follows.

Theorem 5.5. Fix j ∈ N0 and n ∈ N. Let M and N be two Matlis reflexive
R-modules with a ⊆

√
(0 :R N) such that the following conditions hold:

(i) TorR
j−t−1(N,Hn−t

a (M)) is Matlis reflexive for all t = 1, . . . , n, and
(ii) TorR

j+s+1(N,Hn+s
a (M)) is Matlis reflexive for all s = 1, . . . ,dimM − n.

Then TorR
j (N,Hn

a (M)) is Matlis reflexive.

Corollary 5.6. Fix j ∈ N0 and n ∈ N. Let M be a Matlis reflexive R-module of
dimension d and N be a finitely generated R-module with SuppR(N) ⊆ V (a)
such that

(i) Extj+t+1
R (N,Hn−t

a (M)) is Matlis reflexive for all t = 1, . . . , n, and
(ii) Extj−s−1

R (N,Hn+s
a (M)) is Matlis reflexive for all s = 1, . . . , d− n.
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Then TorR
j (N,D(Hn

a (M))) is Matlis reflexive.

Proof. By [6, Theorem 10.2.5], E is Artinian and so is Matlis reflexive. Also,
we have the following isomorphism

TorR
j (N,D(Hn

a (M))) ∼= HomR(Extj
R(N,Hn

a (M)), E).

This fact together with Theorem 5.4 and [2, Theorem 3] proves the claim. �

We end the paper by the following result about the Bass numbers of
local cohomology module Hn

a (M).

Corollary 5.7. Let M be a Matlis reflexive R-module of dimension d and p
be a prime ideal of R. Assume that

(i) Extj+t+1
R (R/p,Hn−t

a (M)) is Matlis reflexive for all t = 1, . . . , n, and
(ii) Extj−s−1

R (R/p,Hn+s
a (M)) is Matlis reflexive for all s = 1, . . . , d− n.

Then the j-th Bass number of Hn
a (M) with respect to p is finite.

Proof. If p + a, then p /∈ SuppR(Hn
a (M)). So, there is nothing to prove in this

case. In other wise, Theorem 5.4 tells us that Extj
R(R/p,Hn

a (M)) is Matlis
reflexive. Now, in the case p = m, since Extj

R(R/p,Hn
a (M)) is also a k-vector

space, it must be finitely generated. Also, If p is any non-maximal prime, it
follows from Remarks 5.1(ii) that (Extj

R(R/p,Hn
a (M)))p is finitely generated

over Rp. Thus, in either case, the claim is true. �
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Behavior of a rational recursive sequences

Elsayed M. Mohamed Elsayed

Abstract. We obtain in this paper the solutions of the difference equa-
tions

xn+1 =
xn−7

±1 ± xn−1xn−3xn−5xn−7
, n = 0, 1, ...,

where the initial conditions are arbitrary nonzero real numbers.

Mathematics Subject Classification (2010): 39A10.

Keywords: Difference equations, recursive sequences, stability, periodic
solution.

1. Introduction

In this paper we obtain the solutions of the following recursive sequences

xn+1 =
xn−7

±1 ± xn−1xn−3xn−5xn−7
, n = 0, 1, ..., (1.1)

where the initial conditions are arbitrary nonzero real numbers.
Recently there has been a great interest in studying the qualitative

properties of rational difference equations. For the systematical studies of
rational and nonrational difference equations, one can refer to the papers
[1-41] and references therein.

The study of rational difference equations of order greater than one is
quite challenging and rewarding because some prototypes for the development
of the basic theory of the global behavior of nonlinear difference equations of
order greater than one come from the results for rational difference equations.
However, there have not been any effective general methods to deal with the
global behavior of rational difference equations of order greater than one so
far. Therefore, the study of rational difference equations of order greater than
one is worth further consideration.

Aloqeili [5] has obtained the solutions of the difference equation

xn+1 =
xn−1

a − xnxn−1
.
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Cinar [7]-[9] investigated the solutions of the following difference equations

xn+1 =
xn−1

1 + axnxn−1
, xn+1 =

xn−1

−1 + axnxn−1
, xn+1 =

axn−1

1 + bxnxn−1
.

Elabbasy et al. [11]-[12] investigated the global stability, periodicity character
and gave the solution of special case of the following recursive sequences

xn+1 = axn − bxn

cxn − dxn−1
, xn+1 =

dxn−lxn−k

cxn−s − b
+ a.

Elabbasy et al. [15] gave the solution of the following difference equations

xn+1 =
xn−7

±1 ± xn−3xn−7
.

Karatas et al. [26] get the form of the solution of the difference equation

xn+1 =
xn−5

1 + xn−2xn−5
.

Simsek et al. [33] obtained the solution of the difference equation

xn+1 =
xn−3

1 + xn−1
.

Here, we recall some notations and results which will be useful in our inves-
tigation.

Let I be some interval of real numbers and let

f : Ik+1 → I,

be a continuously differentiable function. Then for every set of initial condi-
tions x−k, x−k+1, ..., x0 ∈ I, the difference equation

xn+1 = f(xn, xn−1, ..., xn−k), n = 0, 1, ..., (1.2)

has a unique solution {xn}∞n=−k [29].

Definition 1.1. (Equilibrium Point)
A point x ∈ I is called an equilibrium point of Eq. (1.2) if

x = f(x, x, ..., x).

That is, xn = x for n ≥ 0, is a solution of Eq. (1.2), or equivalently, x is a
fixed point of f .

Definition 1.2. (Stability)
(i) The equilibrium point x of Eq. (1.2) is locally stable if for every

ǫ > 0, there exists δ > 0 such that for all x−k, x−k+1, ..., x−1, x0 ∈ I with

|x−k − x| + |x−k+1 − x| + ... + |x0 − x| < δ,

we have
|xn − x| < ǫ for all n ≥ −k.

(ii) The equilibrium point x of Eq. (1.2) is locally asymptotically stable if
x is locally stable solution of Eq. (1.2) and there exists γ > 0, such that for
all x−k, x−k+1, ..., x−1, x0 ∈ I with

|x−k − x| + |x−k+1 − x| + ... + |x0 − x| < γ,
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we have

lim
n→∞

xn = x.

(iii) The equilibrium point x of Eq. (1.2) is global attractor if for all
x−k, x−k+1, ..., x−1, x0 ∈ I, we have

lim
n→∞

xn = x.

(iv) The equilibrium point x of Eq. (1.2) is globally asymptotically stable if
x is locally stable, and x is also a global attractor of Eq. (1.2).

(v) The equilibrium point x of Eq. (1.2) is unstable if x is not locally
stable.

The linearized equation of Eq. (1.2) about the equilibrium x is the linear
difference equation

yn+1 =

k
∑

i=0

∂f(x, x, ..., x)

∂xn−i

yn−i.

Theorem 1.3. [28] Assume that p, q ∈ R and k ∈ {0, 1, 2, ...}. Then

|p| + |q| < 1,

is a sufficient condition for the asymptotic stability of the difference equation

xn+1 + pxn + qxn−k = 0, n = 0, 1, ... .

Remark 1.4. Theorem 1.3 can be easily extended to a general linear equations
of the form

xn+k + p1xn+k−1 + ... + pkxn = 0, n = 0, 1, ..., (1.3)

where p1, p2, ..., pk ∈ R and k ∈ {1, 2, ...}. Then Eq. (1.3) is asymptotically
stable provided that

k
∑

i=1

|pi| < 1.

Definition 1.5. (Periodicity)

A sequence {xn}∞n=−k is said to be periodic with period p if xn+p =
xn for all n ≥ −k.

2. On the Difference Equation x
n+1 =

xn−7

1+xn−1xn−3xn−5xn−7

In this section we give a specific form of the solutions of the difference equa-
tion

xn+1 =
xn−7

1 + xn−1xn−3xn−5xn−7
, n = 0, 1, ..., (2.1)

where the initial conditions are arbitrary nonzero positive real numbers.
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Theorem 2.1. Let {xn}∞n=−7 be a solution of Eq. (2.1). Then for n = 0, 1, ...

x8n−7 =

h
n−1
∏

i=0

(1 + 4ibdfh)

n−1
∏

i=0

(1 + (4i + 1)bdfh)

, x8n−3 =

d
n−1
∏

i=0

(1 + (4i + 2)bdfh)

n−1
∏

i=0

(1 + (4i + 3)bdfh)

,

x8n−6 =

g
n−1
∏

i=0

(1 + 4iaceg)

n−1
∏

i=0

(1 + (4i + 1)aceg)

, x8n−2 =

c
n−1
∏

i=0

(1 + (4i + 2)aceg)

n−1
∏

i=0

(1 + (4i + 3)aceg)

,

x8n−5 =

f
n−1
∏

i=0

(1 + (4i + 1)bdfh)

n−1
∏

i=0

(1 + (4i + 2)bdfh)

, x8n−1 =

b
n−1
∏

i=0

(1 + (4i + 3)bdfh)

n−1
∏

i=0

(1 + (4i + 4)bdfh)

,

x8n−4 =

e
n−1
∏

i=0

(1 + (4i + 1)aceg)

n−1
∏

i=0

(1 + (4i + 2)aceg)

, x8n =

a
n−1
∏

i=0

(1 + (4i + 3)aceg)

n−1
∏

i=0

(1 + (4i + 4)aceg)

,

where x−7 = h, x−6 = g, x−5 = f, x−4 = e, x−3 = d, x−2 = c, x−1 =

b, x−0 = a,
−1
∏

i=0

Ai = 1.

Proof. For n = 0 the result holds. Now suppose that n > 0 and that our
assumption holds for n − 1. That is;

x8n−15 =

h
n−2
∏

i=0

(1 + 4ibdfh)

n−2
∏

i=0

(1 + (4i + 1)bdfh)

, x8n−11 =

d
n−2
∏

i=0

(1 + (4i + 2)bdfh)

n−2
∏

i=0

(1 + (4i + 3)bdfh)

,

x8n−14 =

g
n−2
∏

i=0

(1 + 4iaceg)

n−2
∏

i=0

(1 + (4i + 1)aceg)

, x8n−10 =

c
n−2
∏

i=0

(1 + (4i + 2)aceg)

n−2
∏

i=0

(1 + (4i + 3)aceg)

,

x8n−13 =

f
n−2
∏

i=0

(1 + (4i + 1)bdfh)

n−2
∏

i=0

(1 + (4i + 2)bdfh)

, x8n−9 =

b
n−2
∏

i=0

(1 + (4i + 3)bdfh)

n−2
∏

i=0

(1 + (4i + 4)bdfh)

,

x8n−12 =

e
n−2
∏

i=0

(1 + (4i + 1)aceg)

n−2
∏

i=0

(1 + (4i + 2)aceg)

, x8n−8 =

a
n−2
∏

i=0

(1 + (4i + 3)aceg)

n−2
∏

i=0

(1 + (4i + 4)aceg)

.



Behavior of a rational recursive sequences 31

Now, it follows from Eq. (2.1) that

x8n−7 =
x8n−15

1 + x8n−9x8n−11x8n−13x8n−15

=

h
n−2
∏

i=0

(1+4ibdfh)

n−2
∏

i=0

(1+(4i+1)bdfh)

1 +
b

n−2
∏

i=0

(1+(4i+3)bdfh)

n−2
∏

i=0

(1+(4i+4)bdfh)

d
n−2
∏

i=0

(1+(4i+2)bdfh)

n−2
∏

i=0

(1+(4i+3)bdfh)

f
n−2
∏

i=0

(1+(4i+1)bdfh)

n−2
∏

i=0

(1+(4i+2)bdfh)

h
n−2
∏

i=0

(1+4ibdfh)

n−2
∏

i=0

(1+(4i+1)bdfh)

=

h
n−2
∏

i=0

(1 + 4ibdfh)

n−2
∏

i=0

(1 + (4i + 1)bdfh)



















1

1 +
bdfh

n−2
∏

i=0

(1 + (4i + 4)bdfh)

n−2
∏

i=0

(1 + 4ibdfh)



















=

h
n−2
∏

i=0

(1 + 4ibdfh)

n−2
∏

i=0

(1 + (4i + 1)bdfh)









1

1 +
bdfh

(1 + (4n − 4)bdfh)

{

(1 + (4n − 4)bdfh)

(1 + (4n − 4)bdfh)

}









=

h
n−2
∏

i=0

(1 + 4ibdfh)

n−2
∏

i=0

(1 + (4i + 1)bdfh)

(

1 + (4n − 4)bdfh

1 + (4n − 4)bdfh + bdfh

)

=

h
n−2
∏

i=0

(1 + 4ibdfh)

n−2
∏

i=0

(1 + (4i + 1)bdfh)

(

1 + (4n − 4)bdfh

1 + (4n − 3)bdfh

)

.

Hence, we have

x8n−7 =

h
n−1
∏

i=0

(1 + 4ibdfh)

n−1
∏

i=0

(1 + (4i + 1)bdfh)

.

Similarly, one can easily obtain the other relations. Thus, the proof is com-
pleted.

Theorem 2.2. Eq. (2.1) has a unique equilibrium point which is the number
zero and this equilibrium point is not locally asymptotically stable.

Proof. For the equilibrium points of Eq. (2.1), we can write

x =
x

1 + x4 .
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Then

x + x5 = x,

or

x5 = 0.

Thus the equilibrium point of Eq. (2.1) is x = 0. Let f : (0,∞)4 −→ (0,∞)
be a function defined by

f(u, v, w, t) =
u

1 + uvwt
.

Therefore it follows that

fu(u, v, w, t) =
1

(1 + uvwt)2
, fv(u, v, w, t) =

−u2wt

(1 + uvwt)2
,

fw(u, v, w, t) =
−u2vt

(1 + uvwt)2
, ft(u, v, w, t) =

−u2vw

(1 + uvwt)2
,

we see that

fu(x, x, x, x) = 1, fv(x, x, x, xx) = 0, fw(x, x, x, x) = 0, ft(x, x, x, x) = 0.

The proof follows by using Theorem 1.3.

Theorem 2.3. Every positive solution of Eq. (2.1) is bounded and lim
n→∞

xn = 0.

Proof. It follows from Eq. (2.1) that

xn+1 =
xn−7

1 + xn−1xn−3xn−5xn−7
≤ xn−7.

Then the subsequences {x8n−7}∞n=0, {x8n−6}∞n=0, {x8n−5}∞n=0, {x8n−4}∞n=0,
{x8n−3}∞n=0, {x8n−2}∞n=0, {x8n−1}∞n=0, {x8n}∞n=0 are decreasing and so are
bounded from above by M = max{x−7, x−6, x−5, x−4, x−3, x−2, x−1, x0}.

Numerical examples

For confirming the results of this section, we consider numerical examples
which represent different types of solutions to Eq. (2.1).

Example 2.4. Consider x−7 = 2, x−6 = 7, x−5 = 3, x−4 = 2, x−3 =
6, x−2 = 9, x−1 = 5, x0 = 14. See Fig. 1.
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Figure 1.

Example 2.5. See Fig. 2, since x−7 = 7, x−6 = 5, x−5 = 0.3, x−4 =
0.2, x−3 = 4, x−2 = 1, x−1 = 1.5, x0 = 2.
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Figure 2.

3. On the Difference Equation x
n+1 =

xn−7

1−xn−1xn−3xn−5xn−7

In this section we give a specific form of the solutions of the difference equa-
tion

xn+1 =
xn−7

1 − xn−1xn−3xn−5xn−7
, n = 0, 1, ..., (3.1)

where the initial conditions are arbitrary nonzero real numbers.
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Theorem 3.1. Let {xn}∞n=−7 be a solution of Eq. (3.1). Then for n = 0, 1, ...

x8n−7 =

h
n−1
∏

i=0

(1 − 4ibdfh)

n−1
∏

i=0

(1 − (4i + 1)bdfh)

, x8n−3 =

d
n−1
∏

i=0

(1 − (4i + 2)bdfh)

n−1
∏

i=0

(1 − (4i + 3)bdfh)

,

x8n−6 =

g
n−1
∏

i=0

(1 − 4iaceg)

n−1
∏

i=0

(1 − (4i + 1)aceg)

, x8n−2 =

c
n−1
∏

i=0

(1 − (4i + 2)aceg)

n−1
∏

i=0

(1 − (4i + 3)aceg)

,

x8n−5 =

f
n−1
∏

i=0

(1 − (4i + 1)bdfh)

n−1
∏

i=0

(1 − (4i + 2)bdfh)

, x8n−1 =

b
n−1
∏

i=0

(1 − (4i + 3)bdfh)

n−1
∏

i=0

(1 − (4i + 4)bdfh)

,

x8n−4 =

e
n−1
∏

i=0

(1 − (4i + 1)aceg)

n−1
∏

i=0

(1 − (4i + 2)aceg)

, x8n =

a
n−1
∏

i=0

(1 − (4i + 3)aceg)

n−1
∏

i=0

(1 − (4i + 4)aceg)

,

where jbdfh 6= 1, jaceg 6= 1 for j = 1, 2, 3, ... .

Proof. It is similar to the proof of Theorem 2.1 and will be omitted.

Theorem 3.2. Eq. (3.1) has a unique equilibrium point which is the number
zero and this equilibrium point is not locally asymptotically stable.

Numerical examples

Example 3.3. Consider x−7 = 7, x−6 = 5, x−5 = 3, x−4 = 2, x−3 = 4,
x−2 = 1, x−1 = 11, x0 = 2. See Fig. 3.
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Example 3.4. See Fig. 4, since x−7 = 0.7, x−6 = 0.5, x−5 = 0.3, x−4 =
0.2, x−3 = 0.4, x−2 = 0.5, x−1 = 0.1, x0 = 1.2.
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Figure 4.

4. On the Difference Equation x
n+1 =

xn−7

−1+xn−1xn−3xn−5xn−7

In this section we investigate the solutions of the following difference equation

xn+1 =
xn−7

−1 + xn−1xn−3xn−5xn−7
, n = 0, 1, ..., (4.1)
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where the initial conditions are arbitrary nonzero real numbers with

x−7x−5x−3x−1 6= 1, x−6x−4x−2x0 6= 1.

Theorem 4.1. Let {xn}∞n=−7 be a solution of Eq. (4.1). Then Eq. (4.1) has
unbounded solutions and for n = 0, 1, ...

x8n−7 =
h

(−1 + bdfh)n , x8n−3 =
d

(−1 + bdfh)n ,

x8n−6 =
g

(−1 + aceg)n
, x8n−2 =

c

(−1 + aceg)n
,

x8n−5 = f (−1 + bdfh)
n

, x8n−1 = b (−1 + bdfh)
n

,

x8n−4 = e (−1 + aceg)
n

, x8n = a (−1 + aceg)
n

.

Proof. For n = 0 the result holds. Now suppose that n > 0 and that our
assumption holds for n − 1. That is;

x8n−15 =
h

(−1 + bdfh)
n−1 , x8n−11 =

d

(−1 + bdfh)
n−1 ,

x8n−14 =
g

(−1 + aceg)n−1
, x8n−10 =

c

(−1 + aceg)n−1
,

x8n−13 = f (−1 + bdfh)
n−1

, x8n−9 = b (−1 + bdfh)
n−1

,

x8n−12 = e (−1 + aceg)n−1 , x8n−8 = a (−1 + aceg)n−1 .

Now, it follows from Eq. (4.1) that

x8n−7 =
x8n−15

1 + x8n−9x8n−11x8n−13x8n−15

=

h

(−1 + bdfh)n−1

−1 + b (−1 + bdfh)
n−1 d

(−1 + bdfh)
n−1 f (−1 + bdfh)

n−1 h

(−1 + bdfh)
n−1

=

h

(−1 + bdfh)
n−1

−1 + bdfh
.

Hence, we have

x8n−7 =
h

(−1 + bdfh)
n−1 .

Similarly

x8n−4 =
x8n−12

1 + x8n−6x8n−8x8n−10x8n−12

=
e (−1 + aceg)

n−1

−1 +
g

(−1 + aceg)n
a (−1 + aceg)

n−1 c

(−1 + aceg)n−1
e (−1 + aceg)

n−1
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=
e (−1 + aceg)n−1

−1 +
aceg

(−1 + aceg)

(−1 + aceg

−1 + aceg

)

.

Hence, we have

x8n−4 = e (−1 + aceg)n .

Similarly, one can easily obtain the other relations. Thus, the proof is com-
pleted.

Theorem 4.2. Eq. (4.1) has three equilibrium points which are 0,± 4
√

2 and
these equilibrium points are not locally asymptotically stable.

Proof. The proof as in Theorem 2.2.

Theorem 4.3. Eq. (4.1) has a periodic solutions of period eight iff aceg =
bdfh = 2 and will be take the form {h, g, f, e, d, c, b, a, h, g, f, e, d, c, b, a, ...}.

Proof. First suppose that there exists a prime period eight solution

h, g, f, e, d, c, b, a, h, g, f, e, d, c, b, a, ...,

of Eq. (4.1), we see from Eq. (4.1) that

h =
h

(−1 + bdfh)
n , d =

d

(−1 + bdfh)
n ,

g =
g

(−1 + aceg)n
, c =

c

(−1 + aceg)n
,

f = f (−1 + bdfh)
n

, b = b (−1 + bdfh)
n

,

e = e (−1 + aceg)
n

, a = a (−1 + aceg)
n

.

or

(−1 + bdfh)n = 1, (−1 + aceg)n = 1.

Then

bdfh = 2, aceg = 2.

Second suppose aceg = 2, bdfh = 2. Then we see from Eq. (4.1) that

x8n−7 = h, x8n−6 = g, x8n−5 = f, x8n−4 = e, x8n−3 = d,

x8n−2 = c, x8n−1 = b, x8n = a.

Thus we have a period eight solution and the proof is complete.

Numerical examples

Example 4.4. We consider x−7 = 7, x−6 = 8, x−5 = 11, x−4 = 2, x−3 =
4, x−2 = 1, x−1 = 3, x0 = 9. See Fig. 5.
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Figure 5.

Example 4.5. See Fig. 6, since x−7 = 7, x−6 = 0.5, x−5 = 10, x−4 =
12, x−3 = 0.4, x−2 = 1/12, x−1 = 1/14, x0 = 4.
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Figure 6.

5. On the Difference Equation x
n+1 =

xn−7

−1−xn−1xn−3xn−5xn−7

In this section we investigate the solutions of the following difference equation

xn+1 =
xn−7

−1 − xn−1xn−3xn−5xn−7
, n = 0, 1, ..., (5.1)
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where the initial conditions are arbitrary nonzero real numbers with

x−5x−3x−1 6= −1, x−4x−2x0 6= −1.

Theorem 5.1. Let {xn}∞n=−7 be a solution of Eq. (5.1). Then Eq. (5.1) has
unbounded solutions and for n = 0, 1, ...

x8n−7 =
(−1)

n
h

(1 + bdfh)
n , x8n−3 =

(−1)
n

d

(1 + bdfh)
n ,

x8n−6 =
(−1)

n
g

(1 + aceg)n
, x8n−2 =

(−1)
n

c

(1 + aceg)n
,

x8n−5 = f (−1)
n

(1 + bdfh)
n

, x8n−1 = b (−1)
n

(1 + bdfh)
n

,

x8n−4 = e (−1)
n

(1 + aceg)
n

, x8n = a (−1)
n

(1 + aceg)
n

.

Theorem 5.2. Eq. (5.1) has one equilibrium point which is number zero and
this equilibrium point is not locally asymptotically stable.

Theorem 5.3. Eq. (5.1) has a periodic solutions of period eight iff aceg =
bdfh = −2 and will be take the form {h, g, f, e, d, c, b, a, h, g, f, e, d, c, b, a, ...}.

Numerical examples

Example 5.4. Fig. 7 shows the solution when x−7 = −7, x−6 = 8, x−5 =
11, x−4 = 2, x−3 = −4, x−2 = 1, x−1 = 3, x0 = −9.
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Figure 7.

Example 5.5. See Fig. 8, since x−7 = −7, x−6 = 10, x−5 = 30, x−4 =
2, x−3 = −0.4, x−2 = 0.6, x−1 = −1/42, x0 = −1/6
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Abstract. In this paper, the space Alip
p,q (G) consisting of all complex

valued functions f ∈ lip (α, 1) whose Fourier transform f̂ belongs to

L (p, q)
(
Ĝ

)
is investigated.
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1. Introduction

Let G denote a locally compact Abelian group, with dual group Ĝ and Haar
measure µ and µ̂, respectively. The Fourier transform of a function f ∈ L1 (G)
will be denoted by f̂ which is continuous on Ĝ, vanishes at infinity and
satisfies the inequality

∥∥∥f̂
∥∥∥
∞
≤ ‖f‖1. It is known that the space

Ap (G) =
{

f ∈ L1 (G) : f̂ ∈ Lp
(
Ĝ

)}
is a Banach algebra for 1 ≤ p < ∞ and for 1 < p < ∞, 1 ≤ q < ∞, the space

A (p, q) (G) =
{

f ∈ L1 (G) : f̂ ∈ L (p, q)
(
Ĝ

) }
is a Segal Algebra with respect to the usual convolution product and the
norms defined by ‖f‖ = ‖f‖1 +

∥∥∥f̂
∥∥∥

p
, ‖f‖ = ‖f‖1 +

∥∥∥f̂
∥∥∥

p,q
respectively.

These spaces are examined by Larsen-Liu-Wang [15], Lai [11-13], Martin-
Yap [16], Yap [23,24] and others.

For the convenience of the reader, we briefly review what we need from
the theory of L (p, q) (G) spaces. Let (G, Σ, µ) be a positive measure space
and let f be a complex-valued, measurable function on G. For each y ≥ 0 let

λf (y) = µ {x ∈ G : |f (x)| > y} .
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The function λf is called the distribution function of f . The rearrangement
of f on (0,∞) is defined by

f∗ (t) = inf {y > 0 : λf (y) ≤ t } = sup {y > 0 : λf (y) > t } , t > 0,

where inf φ = ∞. Also, the average function of f is defined by

f∗∗(t) =
1
t

t∫
0

f∗ (s) ds , t > 0.

For p, q ∈ (0,∞) we define

‖f‖∗p,q = ‖f‖∗p,q,µ =

q

p

∞∫
0

[f∗ (t)]q t
q
p−1dt

 1
q

‖f‖p,q = ‖f‖p,q,µ =

q

p

∞∫
0

[f∗∗ (t)]q t
q
p−1dt

 1
q

.

Also, if 0 < p, q = ∞ we define

‖f‖∗p,∞ = sup
t>0

t
1
p f∗ (t) and ‖f‖p,∞ = sup

t>0
t

1
p f∗∗ (t) .

For 0 < p < ∞ and 0 < q ≤ ∞, Lorentz spaces are denoted by
L (p, q) (G, Σ, µ) (or shortly L (p, q) (G)) is defined to be the vector space of all
(equivalence classes of) measurable functions f on G such that ‖f‖∗p,q < ∞.

We know that, for 1 ≤ p ≤ ∞, ‖f‖∗p,p = ‖f‖p and so Lp (G) = L (p, p) (G)
where Lp (G) is the usual Lebesgue space. It is also known that if 1 < p < ∞
and 1 ≤ q ≤ ∞ then

‖f‖∗p,q ≤ ‖f‖p,q ≤
p

p− 1
‖f‖∗p,q

for each f ∈ L (p, q) (G) and
(
L (p, q) (G) , ‖·‖pq

)
is a Banach space [10].

In [4], Chen and Lai showed that there is an approximate identity
{aα}α∈I of L1 (G) such that ‖aα‖1 = 1 for each α ∈ I and f ∗ aα → f for
every f ∈ L (p, q) (G), whenever 1 < p < ∞, 1 ≤ q < ∞. It can be derived
from [2],[3] and [20] that L (p, q) (G) is an essential Banach L1 (G)−module
with the usual convolution and the norm ‖·‖p,q. Also, in [4], Chen and Lai
showed that (L1 (G) , L (p, q) (G)) is isometrically isomorphic to L(p, q) (G)
for 1 < p, q < ∞. One can also review [2-5,10,17,20,22] for more properties
of L (p, q) (G) Lorentz spaces.

Throughout the paper G will denote a metrizable locally compact
Abelian group with a translation invariant metric d such that for any y ∈ G,
|y| = d (0, y) and Haar measure µ.We assume that there is a decreasing
countable (open) basis {Vn}n∈N of the identity e of G such that

µ ((y + Vn)4 Vn) / |y|α → 0 as y → 0,
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where 4 denotes the symmetric difference, α ∈ (0, 1) and y ∈ G. Quek
and Yap showed that the above condition is not unduly restrictive. Example
of groups that have these properties are Rk, T k (k ≥ 1) , the 0-dimensional
groups, etc.[19]. While χ denotes the characteristic function, it is easy to
see that {en}n∈N is an approximate identity for L1 (G) which is defined by
en = µ (Vn)−1

χVn
. For any f ∈ L1 (G) and δ > 0, define

ω1 (f ; δ) = sup
{
‖τyf − f‖1 : |y| ≤ δ

}
,

where τyf(x) = f(x − y). Following Zygmund [25],Bloom [1] and Quek-Yap
[19], we define

Lip(α, 1) =
{
f ∈ L1 (G) : ω1 (f ; δ) = O (δα)

}
lip(α, 1) = {f ∈ Lip(α, 1) : ω1 (f ; δ) = o (δα) } .

These spaces are called as Lipschitz spaces and the function ‖·‖(α,1) defined
by

‖f‖(α,1) = ‖f‖1 + sup
y 6=0

‖τyf − f‖1
|y|α

is a norm in both Lipschitz spaces. Quek and Yap in [19],Feichtinger in [6,7]
proved a series of results concerning Lipschitz spaces.

2. The space Alip
p,q (G)

Let G be a metrizable locally compact Abelian group, α ∈ (0, 1) and 1 < p <
∞, 1 ≤ q < ∞. We define the vector space Alip

p,q (G) by

Alip
p,q (G) =

{
f ∈ lip (α, 1) (G) : f̂ ∈ L (p, q)

(
Ĝ

)}
.

If one endows it with the norm

‖f‖lip
p,q = ‖f‖(α,1) +

∥∥∥f̂
∥∥∥

p,q

where f ∈ Alip
p,q (G), then it is easy to see that Alip

p,q (G) = lip (α, 1) (G) ∩
A (p, q) (G) becomes a normed space.

Theorem 2.1. The space
(
Alip

p,q (G) , ‖·‖lip
p,q

)
is a Banach space for p = q =

1, p = q = ∞ or 1 < p ≤ ∞, 1 ≤ q ≤ ∞.

Proof. Assume that {fn}n∈N is a Cauchy sequence in Alip
p,q (G). Clearly,

{fn}n∈N and
{

f̂n

}
n∈N

are also Cauchy sequences in lip (α, 1) (G) and

L (p, q)
(
Ĝ

)
, respectively. Since lip (α, 1) (G) and L (p, q)

(
Ĝ

)
are Banach

spaces, there exist f ∈ lip (α, 1) (G) and g ∈ L (p, q)
(
Ĝ

)
such that

‖fn − f‖(α,1) → 0, ‖fn − f‖1 → 0 and
∥∥∥f̂n − g

∥∥∥
p,q

→ 0. Using Lemma 2.2 in
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[24], there exists a subsequence
{

f̂nk

}
n∈N

of
{

f̂n

}
n∈N

which converges to g

almost everywhere. It follows from the inequality∥∥∥f̂n − f̂
∥∥∥
∞
≤ ‖fn − f‖1 ≤ ‖fn − f‖(α,1)

that
∥∥∥f̂n − f̂

∥∥∥
∞
→ 0. Hence it is easly showed that

∥∥∥f̂nk
− f̂

∥∥∥
∞
→ 0. There-

fore f̂ = g, ‖fn − f‖lip
p,q → 0 and f ∈ Alip

p,q (G). Thus
(
Alip

p,q (G) , ‖·‖lip
p,q

)
is a

Banach space. �

By using the propositions and lemmas proved in [19], one can easly
prove the following propositions.

Proposition 2.2. The space lip (α, 1) (G) is a Banach algebra with usual con-
volution product.

Proposition 2.3. The space lip (α, 1) (G) is strongly translation and character
invariant.

Proof. It is known that L1 (G) is strongly translation invariant, i.e., τxf ∈
L1 (G) and ‖τxf‖1 = ‖f‖1 for all x ∈ G, f ∈ L1 (G). Let us take any
f ∈ lip (α, 1) (G) and x ∈ G. Then for any ε > 0, there exits a δε > 0 such
that

sup
|y|≤δ

‖τyf − f‖1
δα

< ε

whenever 0 < δ < δε. For the same ε > 0, we have

sup
|y|≤δ

‖τy (τxf)− (τxf)‖1
δα

= sup
|y|≤δ

‖τyf − f‖1
δα

< ε

whenever 0 < δ < δε. Therefore ω1 (τxf ; δ) = o (δα), τxf ∈ lip (α, 1) (G) and
‖τxf‖(α,1) = ‖f‖(α,1).

Strongly character invariance of lip (α, 1) (G) can be seen in a similar
way. �

Proposition 2.4. The function x → τxf is continuous from G into
lip (α, 1) (G) for every f ∈ lip (α, 1) (G).

Proposition 2.5. The space lip (α, 1) (G) has an approximate identity {en}n∈N
defined by en = µ (Vn)−1

χVn
.

Proposition 2.6. The space lip (α, 1) (G) is a homogeneous Banach space.

Proposition 2.7. The space lip (α, 1) (G) is an essential L1 (G)−module.

Theorem 2.8. The space
(
Alip

p,q (G) , ‖·‖lip
p,q

)
is a Banach module over L1 (G)

and lip (α, 1) (G). Hence it is a Banach algebra with respect to the usual
convolution.
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Proof. Let f, g ∈ Alip
p,q (G) be given. Since the space lip (α, 1) (G) is a Ba-

nach algebra under convolution, then f ∗ g ∈ lip (α, 1) (G). Since f̂ , ĝ ∈
L (p, q)

(
Ĝ

)
, we have

λf̂ ĝ (y) = µ
{

x ∈ Ĝ :
∣∣∣f̂ (x) ĝ (x)

∣∣∣ > y
}

≤ µ
{

x ∈ Ĝ :
(
sup f̂ (x)

)
|ĝ (x)| > y

}
= µ

{
x ∈ Ĝ : K |ĝ (x)| > y

}
= λKĝ (y) ,

if sup
x∈Ĝ

f̂ (x) = K. Therefore we get

(
f̂ ĝ

)∗
(t) = inf

{
y > 0 : λf̂ ĝ (y) ≤ t

}
≤ K (ĝ)∗ (t) ,

(
f̂ ĝ

)∗∗
(t) =

1
t

t∫
0

(
f̂ ĝ

)∗
(s) ds ≤ K (ĝ)∗∗ (t)

and so ∥∥∥f̂ ·ĝ
∥∥∥

p,q
≤ K ‖ĝ‖p,q ≤ sup f̂ (x) ‖ĝ‖p,q ≤

∥∥∥f̂
∥∥∥
∞
‖ĝ‖p,q

≤ ‖f‖1 ‖ĝ‖p,q .

Thus, we obtain f̂ ∗ g ∈ L (p, q)
(
Ĝ

)
and f ∗g ∈ Alip

p,q (G). Also, we have

‖f ∗ g‖lip
p,q = ‖f ∗ g‖(α,1) +

∥∥∥f̂ ∗ g
∥∥∥

p,q

≤ ‖f‖(α,1) ‖g‖(α,1) +
∥∥∥f̂ · ĝ

∥∥∥
p,q

≤ ‖f‖(α,1) ‖g‖(α,1) + ‖f‖1 ‖ĝ‖p,q

≤ ‖f‖(α,1) ‖g‖
lip
p,q ≤ ‖f‖lip

p,q ‖g‖
lip
p,q ,

for any f, g ∈ Alip
p,q (G). �

By Proposition 2.3 in [19], Proposition 2.2 and Proposition 2.3, the
following can be easily proved.

Proposition 2.9. The space
(
Alip

p,q (G) , ‖·‖lip
p,q

)
is strongly translation invariant

and the function x → τxf is continuous from G into Alip
p,q (G) for every

f ∈ Alip
p,q (G).

Proposition 2.10. The space
(
Alip

p,q (G) , ‖·‖lip
p,q

)
is a homogeneous Banach

space.

Proposition 2.11. The space
(
Alip

p,q (G) , ‖·‖lip
p,q

)
is strongly character invari-

ant.
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Proposition 2.12. The space
(
Alip

p,q (G) , ‖·‖lip
p,q

)
is a semi-simple Banach al-

gebra.

Proof. Let f ∈ Alip
p,q (G) be given. It will be sufficient to show that f = 0

whenever
∥∥∥f̂

∥∥∥
∞

= 0. Since Alip
p,q (G) is a commutative Banach algebra by

Theorem 2.8, it is known that

lim
n

(
‖fn‖lip

p,q

) 1
n

=
∥∥∥f̂

∥∥∥
∞

.

Moreover, we have

‖fn‖
1
n
1 ≤ ‖fn‖

1
n

(α,1) ≤
(
‖fn‖lip

p,q

) 1
n

and

lim
n
‖fn‖

1
n
1 ≤ lim

n

(
‖fn‖lip

p,q

) 1
n

.

If we set

lim
n
‖fn‖

1
n
1 =

∥∥∥f̂
∥∥∥′
∞

,

then we have the inequality ∥∥∥f̂
∥∥∥′
∞
≤

∥∥∥f̂
∥∥∥
∞

.

Since
∥∥∥f̂

∥∥∥
∞

= 0, then
∥∥∥f̂

∥∥∥′
∞

= 0. Also, since L1(G) is semi-simple [14], then
f = 0. �

Theorem 2.13. The space Alip
p,q (G) is an essential Banach L1(G)−module.

Proof. In view of Lemma 4.1 in [8], it will be sufficient to show that any
bounded approximate identity {eα}α∈I of L1(G) which belongs to

ΛK =
{

f ∈ L1(G) : supp f̂ compact
}

is also an approximate identity for Alip
p,q (G). Let f ∈ Alip

p,q (G) ⊂ lip (α, 1) ⊂
L1(G). By the same Lemma, the bounded approximate identity {eα}α∈I ⊂
ΛK is also an approximate identity for L1(G), and so, for any given ε > 0,
we have ‖eα ∗ f − f‖1 < ε for sufficiently large α. For each α ∈ I, ‖eα‖1 = 1
implies that sup

α
‖êα‖∞ ≤ 1. Hence, for any g ∈ L1(G), the inequality

|ĝ| |1− êα| ≤ ‖ĝ − ĝêα‖∞ ≤ ‖g − g ∗ eα‖1 → 0

implies uniformly convergence of {êα}α∈I to 1 over compact sets. Since f̂ ∈
L (p, q)

(
Ĝ

)
, we can choose a compact set K̂ ⊂ Ĝ such that∥∥∥f̂ − f̂χK̂

∥∥∥
p,q

<
ε

8
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and the local convergence to 1 implies that one can find an α0 with∥∥êαχK̂ − χK̂

∥∥
∞ <

ε

4
∥∥∥f̂

∥∥∥
p,q

for all α > α0.

Altogether,∥∥∥ ̂f − eα ∗ f
∥∥∥

p,q
=

∥∥∥f̂ − êα · f̂
∥∥∥

p,q
(2.1)

≤
∥∥∥f̂ − f̂χK̂

∥∥∥
p,q

+
∥∥∥f̂χK̂ − f̂χK̂ êα

∥∥∥
p,q

+
∥∥∥f̂χK̂ êα − f̂ êα

∥∥∥
p,q

≤ (1 + ‖êα‖∞)
∥∥∥f̂ − f̂χK̂

∥∥∥
p,q

+
∥∥∥f̂

∥∥∥
p,q

∥∥êαχK̂ − χK̂

∥∥
∞

<
ε

4
+

ε

4
=

ε

2
for all α > α0. Also it is known that

‖f − f ∗ eα‖(α,1) <
ε

2
(2.2)

for any f ∈ lip (α, 1) by Proposition 2.4. Finally, by using (2.1) and (2.2), we
obtain

‖f − f ∗ eα‖lip
p,q = ‖f − f ∗ eα‖(α,1) +

∥∥∥ ̂f − eα ∗ f
∥∥∥

p,q

<
ε

2
+

ε

2
= ε

for all α > α0. Therefore it follows that ‖f − f ∗ eα‖lip
p,q → 0 for any f ∈

Alip
p,q (G). Consequently, Alip

p,q (G) is an essential Banach module by Module
Factorization Theorem in [9]. This means

(
Alip

p,q (G)
)
e

= Alip
p,q (G). �
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Asymptotic behavior of the solution of
nonlinear parametric variational inequalities
in notched beams

Iuliana Marchiş

Abstract. In this article we study the asymptotic behavior of the solu-
tion Uε of a parametric variational inequality governed by a nonlinear
differential operator posed in a notched beam (i.e. a thin cylinder with
small part of it having a diameter much smaller than the rest) which
depends on three positive parameters: ε, rε, and tε.

Mathematics Subject Classification (2010): 35B40, 35B45.

Keywords: homogenization, partial differential equations, notched beam.

1. Introduction

The aim of the paper is to study the asymptotic behavior of the solution of
nonlinear variational inequalities in a notched beam (i.e. a thin cylinder with
small part of it having a diameter much smaller than the rest). Mathemati-
cally, this notched beam is given by

Ωε ={(x1, x
′) ∈ R3 : −1 < x1 < 1, |x′| < ε if |x1| > tε, |x′| < εrε if |x1|≤ tε},

(1.1)
where ε, rε, and tε are positive parameters.

Previous work on domains of this type was done by Hale & Vegas [6],
Jimbo [7, 8], Cabib, Freddi, Morassi, & Percivale [2], Rubinstein, Schatzman
& Sternberg [12], and Casado-Dı́az, Luna-Laynez & Murat [3, 4], Kohn &
Slastikov [9].

The most recent results are of Casado-Dı́az, Luna-Laynez & Murat [4].
They studied the asymptotic behavior of the solution of a diffusion equation
in the notched beam Ωε and obtained at the limit a one-dimensional model.

This research was partially supported by the research grant CNCSIS, PN II, ID 523/2007.
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In the present article the geometrical setting is the same as in [4], but
we consider nonlinear variational inequalities instead of linear variational
equalities.

The paper is organized as follows. In Section 2 the geometrical setting
is described, the studied problem is given, and the assumptions for our re-
sults are formulated. In Section 3 the asymptotic behavior of the solution is
studied. The main results are Theorem 3.6 and Theorem 3.7.

2. Setting the problem

Let ε > 0 be a parameter, rε (rε > 0) and tε (tε > 0) be two sequences of real
numbers, with

rε → 0, tε → 0, when ε → 0.

We assume that
tε
r2
ε

→ µ,
ε

rε
→ ν, with 0 ≤ µ ≤ +∞, 0 ≤ ν ≤ +∞, when ε → 0.

Let S ⊂ R2 be a bounded domain such that 0 ∈ S, which is sufficiently
smooth to apply the Poincaré-Wirtinger inequality.

Define the following subsets of R3:

Ω−ε = (−1,−tε)× (εS), Ω0
ε = [−tε, tε]× (εrεS), Ω+

ε = (tε, 1)× (εS),

Ωε = Ω−ε ∪ Ω0
ε ∪ Ω+

ε , and Ωε = Ω−ε ∪ Ω+
ε .

Ωε is a notched beam, the main part of the beam is Ω1
ε and the notched part

Ω0
ε . The plane section of this domain is presented in Figure 1. A point of Ωε

is denoted by x = (x1, x
′) = (x1, x2, x3).

Figure 1. The plane section of the notched beam Ωε

Denote by

Γ−ε = {−1} × (εS) and Γ+
ε = {1} × (εS)

the two bases of the beam, and let

Γε = Γ−ε ∪ Γ+
ε

be the union of the two bases.
Denote

Vε = {V ∈ H1(Ωε), V = 0 on Γε}.
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We consider the following problem:
find Uε ∈ Mε such that, for all Vε ∈ Mε,∫

Ωε

[AεΦε(x,Uε, Bε∇Uε),∇(Vε − Uε)] dx +
∫

Ωε

Ψε(x, Uε,∇Uε)(Vε − Uε)dx

(2.1)

+
∫

Ωε

[Gε,∇(Vε − Uε)] dx +
∫

Ωε

Θε(x, Uε, Vε − Uε) ≥ 0,

with Aε, Bε, Φε, Ψε, Gε, and Θε given functions, Mε a closed, convex,
nonempty subset of Vε.

This problem has applications in Physics. Bruno [1] observed that when
a ferromagnet has a thin neck, this will be preferred location for the domain
wall. He also notice that if the geometry of the neck varies rapidly enough,
it can influence and even dominate the structure of the wall.

We impose the following assumptions:

(B1) The matrix Aε has the following form

Aε(x) = χΩ1
ε
(x)A1

(
x1,

x′

ε

)
+ χΩ0

ε
(x)A0

(
x1

tε
,

x′

εrε

)
,

where A1, A0 ∈ L∞((−1, 1)× S)3×3.

(B2) The matrix Bε has the following form

Bε(x) = χΩ1
ε
(x)B1

(
x1,

x′

ε

)
+ χΩ0

ε
(x)B0

(
x1

tε
,

x′

εrε

)
,

where B1, B0 ∈ L∞((−1, 1)× S)3×3.

(B3) The functions Φε : Ωε × R× R3 → R3 and Ψε : Ωε × R× R3 → R
are Carathédory mappings having the following form

Φε(x, η, ξ) = χΩ1
ε
(x)Φ1

ε

(
x1,

x′

ε
, η,B1

(
x1,

x′

ε

)
ξ

)
+ χΩ0

ε
(x)Φ0

ε

(
x1

tε
,

x′

εrε
, η, B0

(
x1

tε
,

x′

εrε
ξ

)
ξ

)
;

Ψε(x, η, ξ) = χΩ1
ε
(x)Ψ1

ε

(
x1,

x′

ε
, η, ξ

)
+ χΩ0

ε
(x)Ψ0

ε

(
x1

tε
,

x′

εrε
, η, ξ

)
;

for a.e. x ∈ Ωε, for all η ∈ R, and ξ ∈ R3;
for all Uε ∈ H1(Ωε), Φ1

ε(·, Uε(·), B1
ε (·)∇Uε(·)),Φ0

ε(·, Uε(·), B0
ε (·)∇Uε(·)) ∈

L2((−1, 1)× S)3; Ψ1
ε(·, Uε(·),∇Uε(·)),Ψ0

ε(·, Uε(·),∇Uε(·)) ∈ L2((−1, 1)× S).

(B4) Coercivity conditions
There exist C1, C2 > 0 and k1 ∈ L∞(Ωε) such that for all ξ ∈ R3, η ∈ R
[Aε(x)Φε(x, η, Bε(x)ξ), ξ]+Ψε(x, η, ξ)η ≥ C1‖ξ‖2+C2|η|q1−k1(x) a.e. x ∈ Ωε,

(2.2)
for some 1 < q1 < 2, for each ε > 0.
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(B5) Growth conditions
There exist C > 0 and α ∈ L∞(Ωε) such that for all ξ ∈ R3, η ∈ R

‖Aε(x)Φε(x, η, ξ)‖ ≤ C‖ξ‖+ C|η|+ α(x) a.e. x ∈ Ωε, (2.3)

for each ε > 0.
There exist C > 0 and β ∈ L∞(Ωε) such that for all ξ ∈ R3, η ∈ R

|Ψε(x, η, ξ)| ≤ C‖ξ‖+ C|η|+ β(x) a.e. x ∈ Ωε, (2.4)

for each ε > 0.

(B6) Monotonicity condition For all ξ, τ ∈ Rn, η ∈ R,

[Aε(x)φε(x, η, Bε(x)ξ)−Aε(x)φε(x, η, Bε(x)τ), ξ − τ ] ≥ 0, a. e. x ∈ Ωε,

for each ε > 0.

(B7) The function Gε ∈ L2((−1, 1)× S)3 has the following form

Gε(x) = χΩ1
ε
(x)G1

ε

(
x1,

x′

ε

)
+ χΩ0

ε
(x)G0

ε

(
x1

tε
,

x′

εrε

)
a.e. x ∈ Ωε,

where G1
ε , G

0
ε ∈ L2((−1, 1)× S)3.

(B8) There exists C > 0 such that

1
ε2

∫
Ωε

‖Gε(x)‖2 dx < C, (2.5)

for each ε > 0.

(B9) Θε : Ωε × R × R → R, Θε(x, ·, ·) is upper semi-continuous for
almost all x ∈ Ωε; Θε(·, y, z) is measurable for all y, z ∈ R; Θε is sublinear in
its second variable, for each ε.

(B10) There exists g1, g2 ∈ L∞(Ωε) nonnegative functions such that

|Θε(x, y, z)| ≤ g1(x) + g2(x)|z| (2.6)

for almost all x ∈ Ωε, for all z ∈ R, for each ε > 0.

Remark 2.1. From Theorem 3.4 in [10] it follows that, for all ε > 0, the
variational inequality (2.1) has at least one solution.

3. Asymptotic behavior of the solution

To study the asymptotic behavior we use the change of variables y = yε(x)
given by

y1 = x1 y′ =
x′

ε
(3.1)

which transforms the beam (except the notch) in a cylinder of fixed diameter.
This change of variable is classical in the study of asymptotic behavior of
variational equalities in thin cylinders or beams (see [5], [11], [13]). We denote
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by Y −ε , Y 0
ε , Y +

ε , Yε, and Y 1
ε the images of Ω−ε , Ω0

ε , Ω+
ε , Ωε, and Ω1

ε by the
change of variables y = yε(x), i.e.

Y −ε = (−1,−tε)× S, Y 0
ε = [−tε, tε]× (rεS), Y +

ε = (tε, 1)× S,

Yε = Y −ε ∪ Y 0
ε ∪ Y +

ε , Y 1
ε = Y −ε ∪ Y +

ε .

Denote by Y −, Y +, and Y 1 the ”limits”of Y −ε , Y +
ε , and Y 1

ε , i.e.

Y − = (−1, 0)× S, Y + = (0, 1)× S, Y 1 = Y − ∪ Y +.

Note that Y 1
ε is contained in its limit Y 1.

The two bases of the beam Γ−ε and Γ+
ε are transformed to Λ− and Λ+,

respectively, where

Λ− = {−1} × S and Λ+ = {1} × S.

Γε transforms to Λ = Λ− ∪ Λ+, which doesn’t depend on ε.
Let Uε ∈ Mε be the solution of the variational inequality (2.1). Define

uε ∈ Kε by
uε(y) = Uε(y−1

ε (y)) a.e. y ∈ Yε, (3.2)
Kε being the image of Mε. Kε is a closed, convex, nonempty cone in Dε, with
Dε = {v ∈ H1(Yε) | v = 0 on Λ}. We need the following two assumptions

(B11) There exists a nonempty, convex cone K in H1(Y 1) such that
(i) K ∩H1((−1, 0) ∪ (0, 1)) 6= ∅;
(ii) εi → 0, uεi

∈ Kεi
, u ∈ H1((−1, 0)∪(0, 1)), uεi

⇀ u (weakly)
in H1(Y 1)

imply u ∈ K.

(B12) There exists a nonempty, convex cone L in L2((−1, 1);H1(S))
such that εi → 0, wεi

∈ Kεi
, w ∈ L2((−1, 1);H1(S)), wεi

⇀ w (weakly) in
L2((−1, 1);H1(S)) imply w ∈ L.

By change of variables y = yε(x) the operator ∇ transforms to

∇ε· =
(

∂·
∂y1

,
1
ε

∂·
∂y2

,
1
ε

∂·
∂y3

)
. (3.3)

Using the change of variables y = yε(x), given by (3.1), the inequality
(2.1) transforms to∫

Yε

[
Aε(y−1

ε (y))Φε(y−1
ε (y), uε(y), Bε(y−1

ε (y))∇εuε(y)),∇ε(vε(y)− uε(y))
]

dy

+
∫

Yε

Ψε(y−1
ε (y), uε(y),∇εuε(y))(vε(y)− uε(y)) dy (3.4)

+
∫

Yε

[
Gε(y−1

ε (y)),∇ε(vε(y)− uε(y))
]

dy

+
∫

Yε

Θε(y−1
ε (y), uε(y), vε(y)− uε(y)) dy ≥ 0,

for all vε ∈ Kε, where vε(y) = Vε(y−1
ε (y)) a. e. y ∈ Yε.
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Lemma 3.1. Assume that (B4) holds, Uε ∈ Mε, and uε ∈ Kε is given by (3.2).
Then there exist C1, C2 > 0 and C3 ∈ R such that∫

Yε

[
Aε(y−1

ε (y))Φε(y−1
ε (y), uε(y), Bε(y−1

ε (y))∇εuε(y)),∇εuε(y)
]

dy

+
∫

Yε

Ψε(y−1
ε (y), uε(y),∇εuε(y))uε(y) dy (3.5)

≥ C1‖∇εuε‖2L2(Yε)
− C2‖uε‖q1

L2(Yε)
− C3

Proof. Putting η = Uε(x) and ξ = ∇Uε(x) in coercivity condition (2.2),
integrating on Ωε we get∫

Ωε

[Aε(x)Φε(x,Uε(x), Bε(x)∇Uε(x)),∇Uε(x)] dx

+
∫

Ωε

Ψε(x, Uε(x),∇Uε(x))Uε(x) dx

≥ C1

∫
Ωε

‖∇Uε(x)‖2 dx− C2

∫
Ωε

|Uε(x)|q1 dx− |Ωε|‖k1‖∞.

Multiplying by 1
ε2 and using the change of variables y = yε(x), given by (3.1),

we obtain∫
Yε

[Aε(y−1
ε (y))Φε(y−1

ε (y), uε(y), Bε(y−1
ε (y))∇εuε(y)),∇εuε(y)] dy

+
∫

Yε

Ψε(y−1
ε (y), uε(y),∇εuε(y))uε(y) dy

≥ C1

∫
Yε

‖∇εuε(y)‖2 dy − C2

∫
Yε

|uε(y)|q1 dy − k1

≥ C1‖∇εuε‖2L2(Yε)
− C2‖uε‖q1

Lq1 (Yε)
− k1,

as q1 < 2. �

Lemma 3.2. Assume that (B5) holds and let vε ∈ Kε, (vε)ε bounded in H1(Yε).
Then the following properties hold

a) There exist k1, k2, and k3 constants such that∫
Yε

[
Aε(y−1

ε (y))Φε(y−1
ε (y), uε(y), Bε(y−1

ε (y))∇εuε(y)),∇εvε(y)
]

dy (3.6)

≤ k1‖∇εuε‖L2(Yε) + k2‖uε‖L2(Yε) + k3.

b) There exists k4, k5, and k6 such that∫
Yε

Ψε(y−1
ε (y), uε(y),∇εuε(y))vε(y) dy ≤ k4‖∇εuε‖L2(Yε) +k5‖uε‖L2(Yε) +k6.

(3.7)
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Proof. a) Applying the Cauchy-Schwarz inequality and then the growth con-
dition (2.3) for x = y−1

ε (y) we get∫
Yε

[
Aε(y−1

ε (y))Φε(y−1
ε (y), uε(y), Bε(y−1

ε (y))∇εuε(y)),∇εvε(y)
]

dy

≤
∫

Yε

‖Aε(y−1
ε (y))Φε(y−1

ε (y), uε(y), Bε(y−1
ε (y))∇εuε(y))‖‖∇εvε(y)‖ dy

≤
∫

Yε

(
C‖∇εuε(y)‖+ C|uε(y)|+ α(y−1

ε (y))
)
‖∇εvε(y)‖ dy

(by Cauchy-Schwarz inequality)

≤
(
C‖∇εuε‖L2(Yε) + C‖uε‖L2(Yε) + α

)
‖∇εvε‖L2(Yε),

as (vε)ε is bounded.
b) Using the growth condition (2.4) for x = y−1

ε (y) and the Cauchy-
Schwarz inequality, we get∫

Yε

Ψε(y−1
ε (y), uε(y),∇εuε(y))vε(y) dy

≤
∫

Yε

(
C‖∇εuε(y)‖+ C|uε(y)|+ β(y−1

ε (y))
)
|vε(y)| dy

≤
(
C‖∇εuε‖L2(Yε) + C‖uε‖L2(Yε) + β

)
‖vε‖L2(Yε),

as (vε)ε is bounded. �

Lemma 3.3. If assumption (B10) is satisfied, Uε, Vε ∈ Mε, uε and vε are given
by (3.2), then there exist ḡ1, ḡ2 ∈ R such that∫

Yε

Θε(uε(y), vε(y)− uε(y)) dy ≤ ḡ1 + ḡ2‖vε − uε‖L2(Yε).

Proof. Putting y = Uε(x) and z = Vε(x)− Uε(x) in (2.6), multiplying by 1
ε2 ,

then integrating over Ωε, we obtain
1
ε2

∫
Ωε

Θε(Uε(x), Vε(x)− Uε(x)) dx ≤ 1
ε2

∫
Ωε

|Θε(Uε(x), Vε(x)− Uε(x))| dx

≤ 1
ε2

∫
Ωε

(g1(x) + g2(x)|Vε(x)− Uε(x)|) dx

≤ ḡ1
|Ωε|
ε2

+
1
ε2

ḡ2

∫
Ωε

|Vε(x)− Uε(x)| dx,

where ḡ1 = ‖g1‖∞ and ḡ2 = ‖g2‖∞. Using the change of variable yε, the
result follows. �

Lemma 3.4. Let Uε ∈ Mε be the solution of the variational inequality (2.1)
and uε ∈ Kε defined by

uε(y) = Uε(y−1
ε (y)) a.e. y ∈ Yε.

If assumptions (B1)-(B10) are verified then the following statements hold
2) (uε)ε is bounded in H1(Yε);



58 Iuliana Marchiş

1)
(

1
ε

∂uε

∂y2

)
ε

and
(

1
ε

∂uε

∂y3

)
ε

are bounded in L2(Yε);

3) (σε)ε is bounded in L2(Yε)3, where

σε(y) = Aε(y−1
ε (y))Φε(y−1

ε (y), uε(y), Bε(y−1
ε (y))∇εuε(y)) a.e. y ∈ Yε.

Proof. Suppose that (vε)ε is bounded in H1(Yε). From coercivity condition
(B4) by Lemma 3.1, then inequality (3.4), we obtain

C1‖∇εuε‖2L2(Yε)
− C2‖uε‖q1

L2(Yε)
− C3

≤
∫

Yε

[
Aε(y−1

ε (y))Φε(y−1
ε (y), uε(y), Bε(y−1

ε (y))∇εuε(y)),∇εuε(y)
]

dy

+
∫

Yε

Ψε(y−1
ε (y), uε(y),∇εuε(y))uε(y) dy

≤
∫

Yε

[
Aε(y−1

ε (y))Φε(y−1
ε (y), uε(y), Bε(y−1

ε (y))∇εuε(y)),∇εvε(y)
]

dy

+
∫

Yε

Ψε(y−1
ε (y), uε(y),∇εuε(y))vε(y) dy

+
∫

Yε

[
Gε(y−1

ε (y)),∇εvε(y)−∇εuε(y)
]

dy

+
∫

Yε

Θε(y−1
ε (y), uε(y), vε(y)− uε(y)) dy ≤

(using Lemma 3.2 for the first two terms, the Cauchy-Schwarz inequality and
then assumption (2.5) for the third term, assumption (2.6) for the fourth
term)

≤ k1‖∇εuε‖L2(Yε) + k2‖uε‖L2(Yε)

+ C‖∇εvε −∇εuε‖L2(Yε) + c′1‖vε − uε‖L2(Yε) + k

≤ c1‖∇εuε‖L2(Yε) + c2,

using the Poincaré inequality , where c1 and c2 are constants. On the other
hand

C1‖∇εuε‖2L2(Yε)
− C2‖uε‖q1

L2(Yε)
− C3

≥ c3‖∇εuε‖2L2(Yε)
− c4‖∇εuε‖q1

L2(Yε)
− c5,

by the Poincaré inequality , where c3, c4, and c5 are constants. Thus

c3‖∇εuε‖2L2(Yε)
≤ c1‖∇εuε‖L2(Yε) + c4‖∇εuε‖q1

L2(Yε)
+ c6,

where c6 is a constant, q1 < 2, and c3 > 0.
It follows that, for ε ≤ 1, ‖∇εuε‖L2(Yε) is bounded.

Then
(

1
ε

∂uε

∂y2

)
ε

and
(

1
ε

∂uε

∂y3

)
ε

are bounded in L2(Yε). Using

‖∇uε‖L2(Yε) ≤ ‖∇εuε‖L2(Yε),

we get that (uε)ε is bounded in H1(Yε), so 2) is true.
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To prove 3), we take the square of the first inequality of (B5) and we
obtain

‖Aε(x)Φε(x, Uε(x), Bε(x)∇Uε(x))‖2 ≤ C‖∇Uε(x)‖2 + C|Uε(x)|2 + |α(x)|2

for a.e. x ∈ Ωε.
Multiplying by 1

ε2 and integrating on Ωε we get

1
ε2

∫
Ωε

‖Aε(x)Φε(x, Uε(x), Bε(x)∇Uε(x))‖2 dx

≤ C

ε2

∫
Ωε

‖∇Uε(x)‖2 dx +
C

ε2

∫
Ωε

|Uε(x)|2 dx +
1
ε2

∫
Ωε

|α|2 dx

≤ C

ε2

∫
Ωε

‖∇Uε(x)‖2 dx +
C

ε2

∫
Ωε

|Uε(x)|2 dx +
|Ωε|
ε2

ᾱ,

where ᾱ is a constant. Using the change of variables y = yε(x), we get∫
Yε

‖Aε(y−1
ε (y))Φε(y−1

ε (y), uε(y), Bε(y−1
ε (y))∇εuε(y))‖2 dy

≤ C

∫
Yε

‖∇εuε(y)‖2 dy + C

∫
Yε

|uε(y)|2 dy + ᾱ,

which can be written as

‖Aε(y−1
ε (·))Φε(y−1

ε (·), uε, Bε(y−1
ε (·))∇εuε)‖2L2(Yε)

≤ C‖∇εuε‖2L2(Yε)
+ C‖uε(y)‖2L2(Yε)

+ ᾱ ≤ C̄,

as ‖∇εuε‖L2(Yε) and ‖uε‖L2(Yε) are bounded. It follows that (σε)ε is bounded
in L2(Yε). �

Corollary 3.5. Let Uε ∈ Mε be the solution of the inequality (2.1) and uε ∈ Kε

given by (3.2). If assumptions (B1) - (B10) are verified then the sequence Uε

satisfies

Uε ∈ Mε,
1
|Ωε|

∫
Ωε

|∇Uε|2dx ≤ C. (3.8)

Proof. By Lemma 3.4 we get that (∇εuε)ε is bounded in L2(Yε), i.e. there
exists C > 0 such that ∫

Yε

‖∇εuε(y)‖2 dy ≤ C.

Using the change of variables x = y−1
ε (y), we get

1
ε2

∫
Ωε

‖∇εUε(x)‖2 dx < C,

from where the statement of the corollary follows, as

|Ωε| = 2π|S|2ε2(1− tε + tεr
2
ε ).

�
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Theorem 3.6. Let Uε be the solution of the variational inequality (2.1) and
uε ∈ Kε defined by

uε(y) = Uε(y−1
ε (y)) a.e. y ∈ Yε.

If assumptions (B1)-(B12) are verified, then there exist three functions u, w,
and σ1 with

u ∈ H1((−1, 0) ∪ (0, 1)) ∩K, u(−1) = u(1) = 0,

w ∈ L, σ1 ∈ L2(Y 1)3,

such that up to extraction of a subsequence

χY 1
ε
uε → u in L2(Y 1); (3.9)

χY −
ε

∂uε

∂y1
⇀

∂u

∂y1
in L2(Y −);

χY +
ε

∂uε

∂y1
⇀

∂u

∂y1
in L2(Y +);

χY 1
ε

1
ε
∇y′uε ⇀ ∇y′w in L2(Y 1)2;

and
χY 1

ε
σε ⇀ σ1 in L2(Y 1)3.

Proof. From Lemma 3.4 it follows that there exist three functions u ∈
H1((−1, 0) ∪ (0, 1)), w ∈ L2((−1, 1);H1(S)), and σ1 ∈ L2(Y 1)3, which
satisfy the statement of the lemma. From assumption (B11) we get that
u ∈ H1((−1, 0) ∪ (0, 1)) ∩K, and from (B12) we obtain that w ∈ L. �

Theorem 3.7. Let Uε be the solution of the variational inequality (2.1) and
u ∈ H1((−1, 0)∪(0, 1))∩K given in Theorem 3.6. If assumptions (B1)-(B11)
are verified, then there exists a subsequence of solutions Uε, also denoted by
Uε, such that

lim
ε→0

1
|Ωε|

∫
Ωε

|Uε(x)− u(x1)|2 dx = 0. (3.10)

Proof. Let uε ∈ Kε given by (3.2). From Theorem 3.6 follows that there exists
u with

u ∈ H1((−1, 0) ∪ (0, 1)) ∩K, u(−1) = u(1) = 0,

such that up to extraction of a subsequence

χY 1
ε
uε → u in L2(Y 1),

which is equivalent with∫
Yε

|uε(y)− u(y1)|2 dy = 0.

Using the change of variables x = y−1
ε (y), we get (3.10). �
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1. Introduction

Throughout w,χ and Λ denote the classes of all, gai and analytic scalar
valued single sequences, respectively.

We write w2 for the set of all complex sequences (xm,n), wherem,n ∈ N,
the set of positive integers. Then, w2 is a linear space under the coordinate
wise addition and scalar multiplication.

Some initial works on double sequence spaces were found in Bromwich
[5]. Later on, they were investigated by Hardy [16], Moricz [24], Moricz
and Rhoades [25], Basarir and Solankan [3], Tripathy [42], Colak and Turk-
menoglu [8], Turkmenoglu [44], and many others.

Let us define the following sets of double sequences

Mu (t) :=
{
(xm,n) ∈ w2 : supm,n∈N |xm,n|tm,n < ∞

}
,

Cp (t) :=
{
(xm,n) ∈ w2 : p− limm,n→∞ |xm,n − l|tm,n = 1 for some l ∈ C

}
,

C0p (t) :=
{
(xm,n) ∈ w2 : p− limm,n→∞ |xm,n|tm,n = 1

}
,
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Lu (t) :=
{
(xm,n) ∈ w2 :

∑∞
m=1

∑∞
n=1 |xm,n|tm,n < ∞

}
,

Cbp (t) := Cp (t)
∩
Mu (t) and C0bp (t) = C0p (t)

∩
Mu (t),

where t = (tm,n) is the sequence of strictly positive reals tm,n for all m,n ∈ N
and p − limm,n→∞ denotes the limit in the Pringsheim’s sense. In the case
tm,n = 1 for all m,n ∈ N;Mu (t) , Cp (t) , C0p (t) ,Lu (t) , Cbp (t) and C0bp (t) re-
duce to the setsMu, Cp, C0p,Lu, Cbp and C0bp, respectively. Now, we may sum-
marize the knowledge given in some document related to the double sequence
spaces. Gökhan and Colak [14,15] have proved that Mu (t) and Cp (t) , Cbp (t)
are complete paranormed spaces of double sequences and gave the α−, β−, γ−
duals of the spaces Mu (t) and Cbp (t) . Quite recently, in her PhD thesis, Zel-
ter [46] has essentially studied both the theory of topological double sequence
spaces and the theory of summability of double sequences. Mursaleen and
Edely [27] have recently introduced the statistical convergence and Cauchy
for double sequences and given the relation between statistical convergent and
strongly Cesàro summable double sequences. Nextly, Mursaleen [28] and Mur-
saleen and Edely [29] have defined the almost strong regularity of matrices for
double sequences and applied these matrices to establish a core theorem and
introduced the M−core for double sequences and determined those four di-
mensional matrices transforming every bounded double sequences x = (xj,k)
into one whose core is a subset of the M−core of x. More recently, Altay and
Basar [2] have defined the spaces BS,BS (t) , CSp, CSbp, CSr and BV of dou-
ble sequences consisting of all double series whose sequence of partial sums
are in the spaces Mu,Mu (t) , Cp, Cbp, Cr and Lu, respectively, and also have
examined some properties of those sequence spaces and determined the α−
duals of the spaces BS,BV, CSbp and the β (ϑ)− duals of the spaces CSbp

and CSr of double series. Quite recently Basar and Sever [7] have introduced
the Banach space Lq of double sequences corresponding to the well-known
space ℓq of single sequences and have examined some properties of the space
Lq. Quite recently Subramanian and Misra [36,40] have studied the space
χ2
M (p, q, u) and the generalized gai of double sequences and have given some

inclusion relations.
We need the following inequality in the sequel of the paper. For a, b ≥ 0

and 0 < p < 1, we have
(a+ b)p ≤ ap + bp. (1.1)

The double series
∑∞

m,n=1 xm,n is called convergent if and only if the

double sequence (sm,n) is convergent, where sm,n =
∑m,n

i,j=1 xi,j(m,n ∈ N)
(see[1]).

A sequence x = (xm,n) is said to be double analytic if

sup
m,n

|xm,n|1/(m+n)
< ∞.

The vector space of all double analytic sequences will be denoted by Λ2.

A sequence x = (xm,n) is called double entire sequence if |xm,n|1/(m+n) → 0
as m,n → ∞. The double entire sequences will be denoted by Γ2. A sequence

x = (xm,n) is called double gai sequence if ((m+ n)! |xm,n|)1/(m+n) → 0 as
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m,n → ∞. The double gai sequences will be denoted by χ2. Let ϕ denote
the set of all finite sequences.

Consider a double sequence x = (xi,j). The (m,n)th section x[m,n] of

the sequence is defined by x[m,n] =
∑m,n

i,j=0xi,jℑi,j for all m,n ∈ N , where

ℑij denotes the double sequence whose only non zero term is a 1
(i+j)! in the

(i, j)
th

place for each i, j ∈ N.
An FK-space (or a metric space) X is said to have AK property if (ℑmn)

is a Schauder basis for X. Or equivalently x[m,n] → x.

An FDK-space is a double sequence space endowed with a complete
metrizable locally convex topology under which the coordinate mappings
x = (xk) → (xm,n) (m,n ∈ N) are also continuous.

Orlicz [32] used the idea of Orlicz function to construct the space
(
LM

)
.

Lindenstrauss and Tzafriri [21] investigated Orlicz sequence spaces in more
detail, and they proved that every Orlicz sequence space ℓM contains a
subspace isomorphic to ℓp (1 ≤ p < ∞) . subsequently, different classes of se-
quence spaces were defined by Parashar and Choudhary [33], Mursaleen et
al. [26], Bektas and Altin [4], Tripathy et al. [43], Rao and Subramanian [9],
and many others. The Orlicz sequence spaces are the special cases of Orlicz
spaces studied in [17].

Recalling [32] and [17], an Orlicz function is a function M : [0,∞) →
[0,∞) which is continuous, non-decreasing, and convex with M (0) =
0, M (x) > 0, for x > 0 and M (x) → ∞ as x → ∞. If convexity of Or-
licz function M is replaced by subadditivity of M, then this function is called
modulus function, defined by Nakano [31] and further discussed by Ruckle
[34] and Maddox [23], and many others.

An Orlicz function M is said to satisfy the ∆2− condition for all values
of u if there exists a constant K > 0 such that M (2u) ≤ KM (u) (u ≥ 0) .
The ∆2− condition is equivalent to M (ℓu) ≤ KℓM (u) , for all values of u
and for ℓ > 1.

Lindenstrauss and Tzafriri [21] used the idea of Orlicz function to con-
struct Orlicz sequence space

ℓM =
{
x ∈ w :

∑∞
k=1 M

(
|xk|
ρ

)
< ∞, for someρ > 0

}
.

The space ℓM with the norm

∥x∥ = inf
{
ρ > 0 :

∑∞
k=1 M

(
|xk|
ρ

)
≤ 1

}
becomes a Banach space which is called an Orlicz sequence space. ForM (t) =
tp (1 ≤ p < ∞) , the spaces ℓM coincide with the classical sequence space ℓp.

If X is a sequence space, we give the following definitions

(i) X
′
= the continuous dual of X;

(ii) Xα =
{
a = (am,n) :

∑∞
m,n=1 |am,nxm,n| < ∞, for each x ∈ X

}
;

(iii) Xβ =
{
a = (am,n) :

∑∞
m,n=1am,nxm,n is convergent, for each x ∈ X

}
;

(iv) Xγ =

{
a = (am,n) : sup

m,n
≥1

∣∣∣∑M,N
m,n=1 am,nxm,n

∣∣∣<∞, for each x ∈ X

}
;
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(v) let X be an FK-space ⊃ ϕ; then Xf =
{
f(ℑm,n) : f ∈ X

′
}
;

(vi) Xδ =

{
a = (am,n) : sup

m,n
|am,nxm,n|1/(m+n)

< ∞, for each x ∈ X

}
;

Xα, Xβ , Xγ are called α- (or Köthe-Toeplitz) dual of X, β- (or generalized-
Köthe-Toeplitz) dual of X, γ-dual of X, δ - dual of X respectively. Xα is
defined by Gupta and Kamptan [18]. It is clear that xα ⊂ Xβ and Xα ⊂ Xγ ,
but Xα ⊂ Xγ does not hold, since the sequence of partial sums of a double
convergent series need not to be bounded.

The notion of difference sequence spaces (for single sequences) was in-
troduced by Kizmaz [19] as follows

Z (∆) = {x = (xk) ∈ w : (∆xk) ∈ Z}
for Z = c, co and ℓ∞, where ∆xk = xk − xk+1 for all k ∈ N. Here w, c, co and
ℓ∞ denote the classes of all, convergent,null and bounded scalar valued single
sequences respectively. The above spaces are Banach spaces normed by

∥x∥ = |x1|+ supk≥1 |∆xk| .
The notion was further investigated by many others. We now introduce the
following difference double sequence spaces defined by

Z (∆) =
{
x = (xm,n) ∈ w2 : (∆xm,n) ∈ Z

}
where Z = Λ2,Γ2 and χ2 respectively.

∆xm,n = (xm,n − xm,n+1)− (xm+1,n − xm+1,n+1)

= xm,n − xm,n+1 − xm+1,n + xm+1,n+1

for all m,n ∈ N.
Let r ∈ N be fixed, then

Z (∆r) = {(xm,n) : (∆
rxm,n) ∈ Z} forZ = χ2,Γ2 andΛ2

where ∆rxm,n = ∆r−1xm,n −∆r−1xm,n+1 −∆r−1xm+1,n +∆r−1xm+1,n+1.
Now we introduced a generalized difference double operator as follows.
Let r, γ ∈ N be fixed. Then

Z
(
∆r

γ

)
=

{
(xm,n) :

(
∆r

γxm,n

)
∈ Z

}
forZ = χ2,Γ2 andΛ2,

where ∆r
γxm.n = ∆r−1

γ xm,n − ∆r−1
γ xm,n+1 − ∆r−1

γ xm+1,n + ∆r−1
γ xm+1,n+1

and ∆0
γxm,n = xm,n for all m,n ∈ N.

The notion of a modulus function was introduced by Nakano [31]. We
recall that a modulus f is a function from [0,∞) → [0,∞) , such that

(1) f (x) = 0 if and only if x = 0
(2) f (x+ y) ≤ f (x) + f (y) , for all x ≥ 0, y ≥ 0,
(3) f is increasing,
(4) f is right-continuous at x = 0.
Since |f (x)− f (y)| ≤ f (|x− y|) , it follows from condition (4) that f

is continuous on [0,∞) .
Also from condition (2), we have f (nx) ≤ nf (x) for all n ∈ N and

n−1f (x) ≤ f
(
xn−1

)
, for all n ∈ N.
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2. Remark

If f is a modulus function, then the composition fs = f · f · · · f (s times) is
also a modulus function, where s is a positive integer.

Let p = (pm,n) be a sequence of positive real numbers. We have the
following well known inequality, which will be used throughout this paper

|am,n + bm,n|pm,n ≤ D (|am,n|pm,n + |bm,n|pm,n) , (2.1)

where am,n and bm,n are complex numbers, D = max
{
1, 2H−1

}
and H =

supm,n pm,n < ∞.

Spaces of strongly summable sequences were studied at the initial stage
by Kuttner [20], Maddox [30] and others. The class of sequences those are
strongly Cesàro summable with respect to a modulus was introduced by
Maddox [23] as an extension of the definition of strongly Cesàro summa-
ble sequences. Cannor [10] further extended this definition to a definition of
strongly A− summability with respect to a modulus when A is non-negative
regular matrix.

Let η = (λi) be a non-decreasing sequence of positive real numbers
tending to infinity and λ1 = 1 and λi+1 ≤ λi+1 + 1, for all i ∈ N.

The generalized de la Vallee-Poussin means is defined by ti (x) =
λ−1
i

∑
k∈Ii

xk, where Ii = [i− λi + 1, i] . A sequence x = (xk) is said to

be (V, λ)− summable to a number L if ti (x) → L, as i → ∞ (see [22]).

3. Definitions and preliminaries

Let w2 denote the set of all complex double sequences. A sequence x = (xm,n)

is said to be double analytic if supm,n |xm,n|1/(m+n)
< ∞. The vector space of

all prime sense double analytic sequences will be denoted by Λ2. A sequence

x = (xm,n) is called prime sense double entire sequence if |xm,n|1/(m+n) → 0
asm,n → ∞. The double entire sequences will be denoted by Γ2. The spaces
Λ2 andΓ2 are metric spaces with the metric

d(x, y) = sup
m,n

{
|xm,n − ym,n|1/(m+n)

: m,n : 1, 2, 3, ...
}
, (3.1)

for allx = (xm,n) andy = (ym,n) inΓ
2.

A sequence x = (xm,n) is called prime sense double gai sequence if

((m+ n)! |xm,n|)1/(m+n) → 0 as m,n → ∞. The double gai sequences will
be denoted by χ2. The space χ2 is a metric space with the metric

d̃(x, y) = sup
m,n

{
((m+ n)! |xm,n − ym,n|)1/(m+n)

: m,n : 1, 2, 3, ...
}
, (3.2)

for allx = (xm,n) andy = (ym,n) inχ
2.

Throughout the article E will represent a semi normed space, semi
normed by q. We define w2 (E) to be the vector space of all E− valued
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sequences. Let f be a modulus function p = (pm,n) be any sequence of posi-
tive real numbers. Let A =

(
aj,km,n

)
be four dimensional infinite regular matrix

of non-negative complex numbers such that supj,k
∑∞

m,n=1 a
j,k
m,n < ∞.

We define the following sets of sequences[
V E
λ , A,∆r

γ , f, p
]
χ2

=
{
x∈ w2(E) : lim

p,q→∞
λ−1
pq

∑
m,n∈Ip,q

aj,km,n[f(q((m+n)!∆r
γxm,n)

1/(m+n))]pm,n =0
}

uniformly in m,n, [
V E
λ , A,∆r

γ , f, p
]
Γ2

=
{
x ∈ w2(E) : lim

p,q→∞
λ−1
pq

∑
m,n∈Ip,q

aj,km,n[f(q(∆
r
γxm,n)

1/(m+n))]pm,n = 0
}

uniformly in m,n, [
V E
λ , A,∆r

γ , f, p
]
Λ2

=
{
x ∈ w2(E) : sup

j,k
sup
p,q

λ−1
pq

∑
m,n∈Ip,q

aj,km,n[f(q(∆
r
γxm,n)

1/(m+n))]pm,n < ∞
}
.

For γ = 1, these spaces are denoted by
[
V E
λ , A,∆r, f, p

]
Z
, for Z =

χ2, Γ2 and Λ2 respectively. We define[
V E
λ , A,∆r

γ , f, p
]
χ2

=
{
x ∈ w2(E) : lim

p,q→∞
λ−1
pq

∑
m,n∈Ip,q

[f(q((m+ n)!∆r
γxmn)

1/(m+n))]pmn = 0
}
.

Similarly
[
V E
λ ,∆r

γ , f, p
]
Γ2 and

[
V E
λ ,∆r

γ , f, p
]
Λ2 can be defined.

For E = C, the set of complex numbers, q (x) = |x| ; f (x) =
x1/(m+n); pm,n = 1, for all m,n ∈ N. For r = 0, γ = 0 the spaces[
V E
λ ,∆r

γ , f, p
]
Z
, represent the spaces [V, λ]Z , for Z = χ2,Γ2 and Λ2. These

spaces are called as λ− strongly gai to zero, λ− strongly entire to zero and
λ− strongly analytic by the de la Vallée-Poussin method. In the special case,
where λpq = pq, for all p, q = 1, 2, 3, · · · the sets [V, λ]χ2 , [V, λ]Γ2 and [V, λ]Λ2

reduce to the sets w2
χ2 , w2

Γ2 and w2
Λ2 .

4. Main results

Theorem 4.1. Let the sequence p = (pm,n) be bounded. Then the set[
V E
λ , A,∆r

γ , f, p
]
Z

is linear space over the complex field C, for Z = χ2 and

Λ2.

The proof is easy, consequently we omit it.

Theorem 4.2. Let f be a modulus function. One has
[
V E
λ , A,∆r

γ , f, p
]
χ2 ⊂[

V E
λ , A,∆r

γ , f, p
]
Λ2 .
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Proof. Let x = (xm,n) ∈
[
V E
λ , A,∆r

γ , f, p
]
χ2 will represent a semi normed

space, semi normed by q. Here there exists a positive integer M1 such that
q ≤ M1. Then we have

λ−1
p,q

∑
m,n∈Ip,q

aj,km,n

[
f
(
q
(
∆r

γxm,n

)1/(m+n)
)]pm,n

≤ Dλ−1
pq

∑
m,n∈Ipq

aj,km,n

[
f
(
q
(
(m+ n)!∆r

γxm,n

)1/(m+n)
)]pm,n

+D (M1, f (1))
H
λ−1
p,q

∑
m,n∈Ipq

aj,km,n.

Thus x ∈
[
V E
λ , A,∆r

γ , f, p
]
Λ2 . This completes the proof. �

Theorem 4.3. Let p = (pm,n) ∈ χ2, then
[
V E
λ , A,∆r

γ , f, p
]
χ2 is a paranormed

space with

g (x) =

supp,q

(
λ−1
p,q

∑
m,n∈Ip,q

aj,km,n

[
f
(
q
(
(m+ n)!∆r

γxm,n

)1/(m+n)
)]pm,n

)1/H

,

where H = max
(
1, supm,n pm,n

)
.

Proof. From Theorem 4.1, for each x ∈
[
V E
λ , A,∆r

γ , f, p
]
χ2 , g (x) exists.

Clearly g (−x) = g (x) . It is trivial that
(
(m+ n)!∆r

γxm,n

)1/(m+n)
= θ

for x = θ. Hence, we get g
(
θ
)

= 0. By Minkowski inequality, we have
g (x+ y) ≤ g (x) + g (y) . Now we show that the scalar multiplication is con-
tinuous. Let α be any fixed complex number. By definition of f, we deduce
that x → θ implies g (αx) → 0. Similarly, we have x fixed and α → 0 implies
g (αx) → 0. Finally x → θ and α → 0 implies g (αx) → 0. This completes
the proof. �

Theorem 4.4. If r ≥ 1, then the inclusion[
V E
λ , A,∆r−1

γ , f, p
]
χ2 ⊂

[
V E
λ , A,∆r

γ , f, p
]
χ2

is strict. In general[
V E
λ , A,∆j

γ , f, p
]
χ2 ⊂

[
V E
λ , A,∆r

γ , f, p
]
χ2

for j = 0, 1, 2, · · · r − 1 and the inclusions are strict.

Proof. The result follows from the following inequality

λ−1
pq

∑
m,n∈Ipq

aj,km,n

[
f
(
q
(
(m+ n)!∆r

γxm,n

)1/(m+n)
)]pm,n

≤ Dλ−1
pq

∑
m,n∈Ipq

aj,km,n

[
f
(
q ((m+ n)!xm,n)

1/(m+n)
)]pm,n

+Dλ−1
pq

∑
m,n∈Ip,q

aj,km,n

[
f
(
q ((m+ n+ 1)!xm,n+1)

1/(m+n+1)
)]pm,n
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+Dλ−1
pq

∑
m,n∈Ip,q

aj,km,n

[
f
(
q ((m+ 1 + n)!xm+1,n)

1/(m+1+n)
)]pm,n

+Dλ−1
p,q

∑
m,n∈Ip,q

aj,km,n

[
f
(
q ((m+ n+ 2)!xm+1,n+1)

1/(m+n+2)
)]pm,n

.

Proceeding inductively, we have[
V E
λ , A,∆j

γ , f, p
]
χ2 ⊂

[
V E
λ , A,∆r

γ , f, p
]
χ2 for j = 0, 1, 2, · · · r − 1.

The inclusion is strict follows from the following example.
Let E = C, q (x) = |x| ; λpq = 1 for all p, q ∈ N, pm,n = 2 for all

m,n ∈ N. Let f (x) = x, for all x ∈ [0,∞) ; aj,km,n = m−2n−2 for all m,n, j, k ∈
N; γ = 1, r ≥ 1. Consider the sequence x = (xm,n) defined by xm,n =

1
(m+n)! (mn)

r(m+n)
for all m,n ∈ N. Hence (xm,n) ∈

[
V C
λ , A,∆r, f, p

]
χ2 but

(xm,n) /∈
[
V C
λ , A,∆r−1, f, p

]
χ2 . �

Theorem 4.5. Let f be a modulus function and s be a positive integer. Then,[
V E
λ , A,∆r

γ , f, q
]
Λ2 ⊂

[
V E
λ , A,∆r

γ , f, p
]
Λ2 .

Proof. Let ϵ > 0 be given and choose δ with 0 < δ < 1 such that f (t) < ϵ for

0 ≤ t ≤ δ. Write ym,n = fs−1
(
q
(
∆r

γxm,n

)1/(m+n) −M
)
and consider∑

m,n∈Ir

aj,km,n [f (ym,n)]
pm,n =

∑
m,n∈Ir, ym,n≤δ

aj,km,n [f (ym,n)]
pm,n

+
∑

m,n∈Ir

aj,km,n [f (ym,n)]
pm,n .

Since f is continuous, we have∑
m,n∈Ir, ym,n≤δ

aj,km,n [f (ym,n)]
pm,n ≤ ϵH

∑
m,n∈Ir, ym,n≤δ

aj,km,n (4.1)

and for ym,n > δ, we use the fact that, ym,n <
ym,n

δ ≤ 1 +
ym,n

δ and so, by
the definition of f , we have for ym,n > δ,

f (ym,n) < 2f (1)
ym,n

δ .

Hence
1

λpq

∑
m,n∈Ir, ym,n≤δ

aj,km,n [f (ym,n)]
pm,n

≤ max
(
1,
(
2f (1) δ−1

)H) 1

λpq

∑
m,n∈Ir, ym,n≤δ

aj,km,ny
pm,n
m,n . (4.2)

From (4.1) and (4.2) we obtain
[
V E
λ , A,∆r

γ , f, q
]
Λ2 ⊂

[
V E
λ , A,∆r

γ , f, p
]
Λ2 .

This completes the proof. �
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Vanishing viscosity method for quasilinear
variational inequalities

Tünde Zsuzsánna Szász

Abstract. In this paper we first define the notion of viscosity solution
for the following partial differential quasilinear variational inequalities
involving a subdifferential operator:

∂u(t, x)

∂t
+ F (t, x, u(t, x)) ·Du(t, x) + f(t, x, u(t, x)) ∈ ∂ϕ(u(t, x)) in O

t ∈ [0, T ] , x ∈ Rd, where ∂ϕ is the subdifferential operator of the proper
convex lower semicontinuous function ϕ : Rd → (−∞, +∞]. We prove
the existence of a viscosity solution u : O → Rn, where O an open set
in [0, T ]× Rd.

Mathematics Subject Classification (2010): 49L25, 49J40, 35R35.

Keywords: Viscosity solution, variational inequalities.

1. Introduction

The viscosity solution was first introduced by M.G. Crandall and P.L. Lions
[3] in 1983. These generalized solutions need not be differentiable anywhere,
as the only regularity required in the definition is continuity (for example see
[4]). M.G. Crandall, L.C. Evans, P.L. Lions in [2] give the existence theorem
to use the vanishing viscosity method for the nonlinear scalar partial differen-
tial equation of the form F (y, u(y), Du(y)) = 0 for y ∈ O, where O is an open
set from Rn, F : O × R × Rn → R is continuous. The name viscosity comes
from a traditional engineering application where a nonlinear first order PDE
is approximated by quasilinear first order equations which are obtained from
the initial PDE by adding a regularizing ε∆uε term, which is called a ’vis-
cosity term’, and these approximate equations can be solved by classical or
numerical methods and the limit of their solution hopefully solves the initial
equation.
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L. Maticiuc, E. Pardoux, A. Răşcanu, A. Zălinescu in [6] studied the ex-
istence of a viscosity solution of a system of parabolic variational inequalities
involving a subdifferential operator. The authors use a stochastic approach
in order to prove the existence result (see in [6] pg.6).

The aim of this paper is to give an existence for a viscosity solution
u : O → Rn, where O is an open set in [0, T ]×Rd, by the classical vanishing
viscosity method for the following partial differential quasilinear variational
inequalities involving a subdifferential operator:

∂u(t, x)
∂t

+ F (t, x, u(t, x)) ·Du(t, x) + f(t, x, u(t, x)) ∈ ∂ϕ(u(t, x)) in O
(1.1)

t ∈ [0, T ] , x ∈ Rd, where ∂ϕ is the subdifferential operator of the proper
convex lower semicontinuous function ϕ : Rd → (−∞,+∞]. This method
can be used just in the quasilinear case .

2. Main results

Throughout this paper O is an open set in [0, T ]×Rd, where T is a positive
number.

We make the following assumptions:
(A.1) the functions

F : [0, T ]× Rd × Rn → Rd, f : [0, T ]× Rd × Rn → Rn

are continuous.
(A.2) The functions ϕ : Rd → (−∞,+∞] is proper (i.e. ϕ 6= +∞), convex,

lower semicontinuous.
We recall that the subdifferential ∂ϕ is defined by

∂ϕ(u) = {u∗ ∈ Rn : 〈u∗, v − u〉 ≤ ϕ(v)− ϕ(u),∀v ∈ Rn} .

It is a common practice to regard sometimes ∂ϕ as a subset of Rn × Rn by
writing (u, u∗) ∈ ∂ϕ(u) instead of u∗ ∈ ∂ϕ(u).

We denote by

Dom(ϕ) = {u ∈ Rn : ϕ(u) < +∞}
Dom(∂ϕ) = {u ∈ Rn : ∂ϕ(u) 6= ∅}

We recall some definitions and results which will be used in the following
(see [1] for more details).

Theorem 2.1. Let ϕ : Rd → (−∞,+∞] be a convex function. Then, for all
u ∈ Dom(ϕ) and z ∈ Rn, there exist

ϕ
′

−(u; z) := lim
t↗0

ϕ(u + tz)− ϕ(u)
t

= sup
t<0

ϕ(u + tz)− ϕ(u)
t

ϕ
′

+(u; z) := lim
t↘0

ϕ(u + tz)− ϕ(u)
t

= inf
t>0

ϕ(u + tz)− ϕ(u)
t

. (2.1)
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Moreover, the following hold:
(a) ϕ

′

−(u; z) ≤ ϕ
′

+(u; z), ∀u ∈ Dom(ϕ) and z ∈ Rn,

(b) ϕ
′

−(u;−z) = −ϕ
′

+(u; z), ∀u ∈ Dom(ϕ) and z ∈ Rn,

(c) ϕ
′

−(u, ·) is superlinear and ϕ
′

+(u, z) is sublinear,
(d) if u and z are such that there exists δ > 0 such that u + tz ∈ Dom(ϕ),

∀t ∈ (−δ,+δ), then ϕ
′

−(u, z), ϕ
′

+(u, z) ∈ R.

If we take d = 1, then we know that, in every point u ∈ Dom(ϕ),

∂ϕ(u) = R ∩
[
ϕ
′

−(u), ϕ
′

+(u)
]

(2.2)

where ϕ
′

−(u) and ϕ
′

+(u) are respectively, the left and the right derivative of
ϕ at the point u.

The following proposition generalizes the above characterization to the
case of d ≥ 1:

Proposition 2.2. Let ϕ : Rd → (−∞,+∞] be a proper, convex function and
u ∈ Dom(ϕ). The following statements are equivalent:

(i) u? ∈ ∂ϕ(u);
(ii) 〈u∗, z〉 ≥ ϕ

′

−(u; z),∀z ∈ Rn;
(iii) 〈u∗, z〉 ≤ ϕ

′

+(u; z),∀z ∈ Rn.

Let us define, for u ∈ Dom(ϕ) and z ∈ Rn,

ϕ
′

?(u; z) = lim inf
v→u

v∈Dom(∂ϕ)

ϕ
′

−(v; z), ϕ
′,?(u; z) = lim sup

v→u
v∈Dom(∂ϕ)

ϕ
′

+(v; z)

For u ∈ Rn, let (with the usual convention inf ∅ = +∞)

|∂ϕ|0(u) = inf |∂ϕ(u)|.
If u ∈ Dom(∂ϕ), then there is a unique u? ∈ Rn, denoted (∂ϕ)0(u) such that
|∂ϕ|0(u) = |(∂ϕ)0(u)|.

Let u, v ∈ Rd. The notation u · v denotes the euclidean inner product
(also known as the dot product) on Rd. We denote by Du the gradient of u,
and ∆u the Laplace operator of u:

Du(x1, ..., xd) =


∂u1
∂x1

. . . ∂un

∂x1
∂u1
∂x2

. . . ∂un

∂x2
...

. . .
...

∂u1
∂xd

. . . ∂un

∂xd


∆u(x1, ..., xd) = (∆u1,∆u2, . . . ,∆un) =

(
d∑

i=1

∂2u1

∂x2
i

, . . . ,
d∑

i=1

∂2un

∂x2
i

)
We may now define the concept of viscosity solution of (1.1):

Definition 2.3. Let u : O → Rn be a continuous function. We say the function
u is a viscosity solution of (1.1), if:

u(t, x) ∈ Dom(∂ϕ), ∀(t, x) ∈ O
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and for all Ψ : [0, T ]× Rd → R continuous function, and z ∈ Rn,

if u · z − Ψ attains a local maximum at (t0, x0) ∈ O, then

we have
∂Ψ(t0, x0)

∂t
+ F (t0, x0, u(t0, x0)) ·DΨ(t0, x0) +

+ f(t0, x0, u(t0, x0)) · z ≤ ϕ‘,∗(u(t0, x0); z) (2.3)

Remark 2.4. Observe that the Definition 2.3 is the particular case of the
definition given in ([6]) for the quasilinear case.

The main result is the following:

Theorem 2.5. Let ε > 0, and Fε : [0, T ]× Rd × Rn → Rd, fε : [0, T ]× Rd ×
Rn → Rn be a family of continuous functions such that Fε(t, x, p), fε(t, x, p)
converges uniformly on compact subsets of O×Rn to some function F (t, x, p)
and f(t, x, p), as ε tends to 0. Finally, suppose that for all ε > 0 uε ∈ C2(O)
is a solution of

∂uε(t, x)
∂t

− ε∆uε(t, x)

+Fε(t, x, uε(t, x)) ·Duε(t, x) + fε(t, x, uε(t, x)) ∈ ∂ϕ(uε(t, x)) in O. (2.4)
Then if uε converge uniformly on compact subsets of O to some u ∈

C(O), we have
u is a viscosity solution of (1.1).

Remark 2.6. By the Proposition 2.2 the inequation (2.4) can be written in
the form(

u
′

εt
· z
)

(t, x) − ε∆uε(t, x) · z + Fε(t, x, uε(t, x)) ·Duε(t, x) · z +

+ + fε(t, x, uε(t, x)) · z ≤ ϕ
′

+(uε(t, x); z) in O, for all z ∈ Rn (2.5)

Proof. Let us check (2.3) first for Ψ ∈ C2(O). We assume that ∀z ∈ Rn ,
u · z −Ψ has a local maximum point at (t0, x0) ∈ O .

Choose ξ ∈ C∞(O), such that

0 ≤ ξ < 1, if (t, x) 6= (t0, x0), and ξ(t0, x0) = 1.

Obviously, u·z−(Ψ−ξ) has a strict local minimum point at (t0, x0) ∈ O,
and thus for ε small enough, uε · z − (Ψ − ξ) has a local maximum point at
some (tε, xε) ∈ O , and (tε, xε) → (t0, x0) as ε → 0.

But at the point (tε, xε) = (t0, x0), we have

D(uε · z − (Ψ − ξ))(tε, xε) = 0(
u
′

εt
· z
)

(tε, xε) = Ψ
′

t(tε, xε) − ξ
′

t(tε, xε) (2.6)

(Dxuε · z) (tε, xε) = DxΨ(tε, xε) − Dxξ(tε, xε) (2.7)
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By taking (2.6) and (2.7) in (2.4) we have

Ψ
′

t(tε, xε) − ξ
′

t(tε, xε) − ε∆uε(tε, xε) · z
+Fε(tε, xε, uε(tε, xε)) · (DxΨ(tε, xε) − Dxξ(tε, xε))

+fε(tε, xε, uε(tε, xε)) · z ≤ ϕ
′

+(uε(tε, xε); z) in O, for all z ∈ Rn (2.8)
Since, as ε → 0

uε(tε, xε) → u(t0, x0),
D (uε · z) (tε, xε) = D (Ψ − ξ) (tε, xε) → D (Ψ − ξ) (t0x0) = DΨ(t0x0)

ε∆uε(tε, xε) · z ≤ ε∆ (Ψ − ξ) (tε, xε) → 0
and F, f are continuous functions, ϕ is lower semicontinuous, we have

∂Ψ(t0, x0)
∂t

+ F (t0, x0, u(t0, x0)) ·DΨ(t0, x0)+

+ f(t0, x0, u(t0, x0)) · z ≤ ϕ‘,∗(u(t0, x0); z) (2.9)

However, we have to show this for test functions from C1(O). Let Ψ ∈
C1(O), and assume that ∀z ∈ Rn , u · z − Ψ has a local maximum point at
(t0, x0) ∈ O .

We have to show that
∂Ψ(t0, x0)

∂t
+ F (t0, x0, u(t0, x0)) ·DΨ(t0, x0) + f(t0, x0, u(t0, x0)) · z

≤ ϕ‘,∗(u(t0, x0); z)
Let Ψn ∈ C1(O) such that Ψn → Ψ in C1(O) and, as before, choose

ξ ∈ C∞(O) such that

0 ≤ ξ < 1, if (t, x) 6= (t0, x0), and ξ(t0, x0) = 1.

For n large enough, uε · z − (Ψn − ξ) has a local maximum point at
some (tn, xn) ∈ O , and (tn, xn) → (t0, x0) as n →∞.

It follows

(Du · z) (tn, xn) = DΨn(tn, xn) − Dξ(tn, xn) (2.10)

Then as shown above, for each n we have
∂Ψn(tn, xn)

∂t
−∂ξ(tn, xn)

∂t
+ F (tn, xn, u(tn, xn))·(DxΨn(tn, xn)−Dxξ(tn, xn))

+f(tn, xn, u(tn, xn)) · z ≤ ϕ
′

+(u(tn, xn); z) in O, for all z ∈ Rn (2.11)
Since, as n →∞

u(tn, xn) → u(t0, x0),

D (u · z) (tn, xn) = D (Ψn − ξ) (tn, xn) → D (Ψ − ξ) (t0x0) = DΨ(t0x0)
and F, f are continuous functions, ϕ lower semicontinuous, we have

∂Ψ(t0, x0)
∂t

+ F (t0, x0, u(t0, x0)) ·DΨ(t0, x0) + f(t0, x0, u(t0, x0)) · z

≤ ϕ‘,∗(u(t0, x0); z)
Therefore u is a viscosity solution of (1.1). �
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Metric relations on mountain slopes

Ildikó-Ilona Mezei

Abstract. It is well-known that the Ceva and Menelaus theorems are de-
ducible from each other in the Euclidean case. In this paper we show that
Ceva’s theorem holds whereas Menelaus’ theorem fails on Matsumoto’s
mountain slope geometry.
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1. Introduction

It is well-known that in Euclidean geometry, Ceva’s and Menelaus’ theorems
are dual results, i.e., they are deducible from each other. In the Euclidean
context, several extensions of these theorems can be found, see Green [2],
Landy [4], Lipman [5], Wernicke [8]. Moreover, Masal’tsev [6] generalized
Ceva’s theorem to geodesic triangles on Riemannian surfaces of constant
curvature (hyperbolic plane, sphere).

A natural question arises in the validity of these two theorems on non-
Riemannian surfaces, even with constant curvature. Our aim is to prove that
on the Matsumoto’s mountain slope - which is one of the simplest non-
Riemannian Finsler surface whose flag curvature is identically 0 - Ceva’s
theorem holds whereas Menelaus’ theorem fails except the case when the
slope becomes the horizontal plane.

2. Results

First, we recall the Matsumoto’s mountain slope metric, see Matsumoto [7] or
Kozma-Tamássy [3]. Let us consider an inclined plane (slope) with an angle
α ∈ [0, π/2) to the horizontal plane, denoted by (Sα). If a man moves with a
constant speed v [m/s] on a horizontal plane, he goes lt = vt+ g

2 t2 sinα cos θ

Both authors were supported by Grant PN II IDEI 527 by CNCSIS.
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meters in t seconds on (Sα), where θ is the angle between the straight road
and the direct downhill road (θ is measured in clockwise direction). The point
here is that the travel speed depends heavily on both the slope of the terrain
and the direction of travel, due to the presence of the gravity. The precise law
of the above phenomenon - by using the so-called Okubo’s technique - can
be described relatively to the horizontal plane by the parameterized function

Fα(y1, y2) =
y2
1 + y2

2

v
√

y2
1 + y2

2 + g
2y1 sinα

, (y1, y2) ∈ R2 \ {(0, 0)}.

Here, g ≈ 9.81 [m/s2] and we assume g sinα ≤ v.
For every α ∈ (0, π/2), (R2, Fα) is a typical non-Riemannian, Finsler

surface. A classification of Finsler manifolds shows that (R2, Fα) is a locally
Minkowski space with the following additional properties:
(a) its flag curvature is identically 0, see Bao-Chern-Shen [1, p. 384];
(b) its geodesics are straight lines, see also Bao-Chern-Shen [1, p. 384];
(c) every two points in (R2, Fα) determine a unique geodesic which lies

them, due to Cartan-Hadamard’s and Hopf-Rinow’s theorems.
On account of (a)-(c), there is a strong similarity between (R2, Fα) and
the standard two-dimensional Euclidean space. However, differences appear
once we start to measure distances on these spaces. Exploiting the shape of
geodesics on (R2, Fα), the distance (measuring actually the physical time to
arrive) from P = (P 1, P 2) to Q = (Q1, Q2) on (R2, Fα) is

dα(P,Q) = Fα(Q1 − P 1, Q2 − P 2).

Note that usually dα(P,Q) 6= dα(Q,P ).
Since geodesics are straight lines on (R2, Fα), see (b) from above, we

may introduce the following two notions:
• [PQ] = {t(Q − P ) + P : t ∈ [0, 1]} is the geodesic segment lying the

points P,Q ∈ R2, and
• [PQ[= {t(Q − P ) + P : t ≥ 1} is the geodesic semi-line defined by

P,Q ∈ R2.
Let A,B, C be three arbitrarily fixed points in (R2, Fα), and let M,N,P
points on the geodesic segments [BC], [CA], [AB], respectively. We consider
the following two statements:

(Cα
1 ): dα(A,P )

dα(P,B) ·
dα(B,M)
dα(M,C) ·

dα(C,N)
dα(N,A) = 1;

(C2): The geodesic segments [AM ], [BN ], [CP ] are concurrent.

Theorem 2.1. For every α ∈ [0, π/2), we have (Cα
1 ) ⇔ (C2).

Thus, Ceva’s theorem holds on the mountain slope (R2, Fα) for every
α ∈ [0, π/2).

Now, let A,B,C be fixed points in (R2, Fα), and fix the points N,P on
the geodesic segments [CA], [AB], while M on the geodesic semi-line [BC[.
We formulate the following two statements (the first being formally the same
as (Cα

1 )):
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(Mα
1 ): dα(A,P )

dα(P,B) ·
dα(B,M)
dα(M,C) ·

dα(C,N)
dα(N,A) = 1;

(M2): The points M,N,P are on the same geodesic (straight line).

Theorem 2.2. The equivalence (Mα
1 ) ⇔ (M2) holds if and only if α = 0.

Consequently, Menelaus’ theorem holds on mountain slopes for every geodesic
triangle if and only if the ’slope’ becomes the horizontal plane (i.e., α = 0),
which corresponds exactly to the Euclidean case.

3. Proofs

In the sequel, we denote by dE the usual two-dimensional Euclidean metric.
Proof of Theorem 2.1. Since P = dE(P,B)

dE(A,B)A + dE(A,P )
dE(A,B)B, we have

P −A =
dE(A,P )
dE(A,B)

(B −A).

Since Fα is positively homogeneous of degree 1, one has

dα(A,P ) = Fα(P 1 −A1, P 2 −A2) =
dE(A,P )
dE(A,B)

Fα(B1 −A1, B2 −A2).

A similar calculation for dα(P,B) implies that

dα(A,P )
dα(P,B)

=
dE(A,P )
dE(P,B)

.

Repeating this argument for the other two sides of the triangle, (Cα
1 ) is

equivalent to
dE(A,P )
dE(P,B)

· dE(B,M)
dE(M,C)

· dE(C,N)
dE(N,A)

= 1.

But, in the Euclidean case, the latter relation is equivalent to the fact that
the segments [AM ], [BN ], [CP ] are concurrent, thus the proof is done.
Proof of Theorem 2.2. If α = 0, the equivalence (Mα

1 ) ⇔ (M2) is just the
well-known Menelaus’ theorem in the Euclidean case.

Now, we assume the equivalence (Mα
1 ) ⇔ (M2) holds for every points

A,B, C as well as M,N,P in (R2, Fα) specified above. We prove that α = 0.
To see this, we consider the following specific constellation of points: B =
(0, 0), C = (1, 0), M = (2, 0), A is arbitrary, while P and N are situated on
[AB] and [AC] such that M belongs to the unique geodesic lying them, see
(c) from above. Thus, (M2) holds. Since (M2) ⇔ (Mα

1 ), we have

dα(A,P )
dα(P,B)

· dα(B,M)
dα(M,C)

· dα(C,N)
dα(N,A)

= 1. (3.1)

On the other hand, (M2) also implies for the Euclidean metric that

dE(A,P )
dE(P,B)

· dE(B,M)
dE(M,C)

· dE(C,N)
dE(N,A)

= 1. (3.2)
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As in the proof of Theorem 2.1, by using the positive homogeneity of Fα, we
deduce

dα(A,P )
dα(P,B)

=
dE(A,P )
dE(P,B)

and
dα(C,N)
dα(N,A)

=
dE(C,N)
dE(N,A)

.

Combining (3.1) and (3.2) with the above relations, we obtain
dα(B,M)
dα(M,C)

=
dE(B,M)
dE(M,C)

.

After substitutions, we obtain
Fα(2, 0)

Fα(−1, 0)
= 2. An elementary calculation

shows that the latter equation holds only in the case when g sinα = 0, i.e.,
α = 0. This concludes our proof.
Acknowledgment. Research for this article was supported by the Grant PN
II, ID 527/2007.
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Jet geometrical objects produced by linear
ODEs systems and superior order ODEs

Mircea Neagu

Abstract. The aim of this paper is to construct a Riemann-Lagrange
geometry on 1-jet spaces, in the sense of d-connections, d-torsions, d-
curvatures, electromagnetic d-field and geometric electromagnetic Yang-
Mills energy, starting from a given linear ODEs system or a given supe-
rior order ODE. The case of a non-homogenous linear ODE of superior
order is discussed.
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1. Introduction

According to Olver’s opinion expressed in [7] and in private discussions, we
point out that the 1-jet spaces are main mathematical models necessary for
the study of classical or quantum field theories. In such a context, the con-
travariant differential geometry of the 1-jet spaces was intensively studied by
authors like Asanov [1] or Saunders [9].

Situated in the direction initiated by Asanov [1], it has been recently
developed the Riemann-Lagrange geometry of 1-jet spaces [2], [4], which is a
geometrical theory on 1-jet spaces analogous with the well known Lagrange
geometry of the tangent bundle developed by Miron and Anastasiei [3].

It is important to note that the Riemann-Lagrange geometry of the 1-jet
spaces allows the regarding of the solutions of a given ODEs (respectively,
PDEs) system as geodesics [10] (respectively, generalized harmonic maps [6]
or potential maps [11]) in a convenient Riemann-Lagrange geometrical struc-
ture on 1-jet spaces. In this way, it was given a final solution for an open
problem suggested by Poincaré [8] (find the geometric structure which trans-
forms the field lines of a given vector field into geodesics) and generalized by
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Udrişte [10] (find the geometrical structure which converts the solutions of a
given first order PDEs system into harmonic maps).

In this context, using the Riemann-Lagrange geometrical methods, it
was constructed an entire contravariant differential geometry on 1-jet spaces,
in the sense of d-connections, d-torsions, d-curvatures, electromagnetic d-
field and geometric electromagnetic Yang-Mills energy, starting only with a
given ODEs [5] (respectively, PDEs [6]) system of order one and a pair of
Riemannian metrics.

2. Jet Riemann-Lagrange geometry produced by a non-linear
ODEs system of order one and a pair of Riemannian metrics

In this Section we present the main jet Riemann-Lagrange geometrical ideas
used for the geometrical study of a given non-linear first order ODEs system.
For more details, the reader is invited to consult the works [4], [5] and [11].

Let T = [a, b] ⊂ R be a compact interval of the set of real numbers and
let us consider the jet fibre bundle of order one

J1(T, Rn) → T × Rn, n ≥ 2,

whose local coordinates (t, xi, xi
1), i = 1, n, transform by the rules

t̃ = t̃(t), x̃i = x̃i(xj), x̃i
1 =

∂x̃i

∂xj

dt

dt̃
· xj

1.

Remark 2.1. From a physical point of view, in the 1-jet space of physical
events the coordinate t has the physical meaning of relativistic time, the co-
ordinates (xi)i=1,n represent spatial coordinates and the coordinates (xi

1)i=1,n

have the physical meaning of relativistic velocities.

Let X =
(
X

(i)
(1)(t, x

k)
)

be an arbitrary given d-tensor field on the first

order jet space J1(T, Rn), which produces the jet non-linear ODEs system of
order one (jet dynamical system)

xi
1 = X

(i)
(1)(t, x

k(t)), ∀ i = 1, n, (2.1)

where c(t) = (xi(t)) is an unknown curve on Rn and we use the notations

xi
1

not= ẋi =
dxi

dt
, ∀ i = 1, n.

Suppose now that we fixed a priori two Riemannian structures (T, h11(t)) and
(Rn, ϕij(x)), where x = (xk)k=1,n, together with their attached Christoffel
symbols H1

11(t) and γi
jk(x). Automatically, the jet non-linear ODEs system

of order one (2.1), together with the pair of Riemannian metrics

P = (h11(t), ϕij(x)),

produce the jet least squares Lagrangian function

JLSODEs
P : J1(T, Rn) → R+,
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expressed by

JLSODEs
P (t, xk, xk

1) = h11(t)ϕij(x)
[
xi

1 −X
(i)
(1)(t, x)

] [
xj

1 −X
(j)
(1)(t, x)

]
.

It is obvious that the global minimum points of the jet least squares
energy action

EODEs
P (c(t)) =

∫ b

a

JLSODEs
P (t, xk(t), ẋk(t))

√
h11(t)dt

are exactly the solutions of class C2 of the jet non-linear ODEs system of
order one (2.1). In other words, we have

Theorem 2.2. The solutions of class C2 of the first order ODEs system (2.1)
verify the second order Euler-Lagrange equations produced by the jet least
squares Lagrangian function JLSODEs

P , namely ( jet geometric dinamics)

∂
[
JLSODEs

P
]

∂xi
− d

dt

(
∂
[
JLSODEs

P
]

∂ẋi

)
= 0, ∀ i = 1, n. (2.2)

Remark 2.3. Conversely, the above statement does not hold good because there
exist solutions for the second order Euler-Lagrange ODEs system (2.2) which
are not global minimum points for the jet least squares energy action EODEs

P ,
that is which are not solutions for the jet first order ODEs system (2.1).

As a conclusion, we believe that we may regard JLSODEs
P as a natural

geometrical substitute on J1(T, Rn) for the jet first order ODEs system (2.1).
But, we point out that a Riemann-Lagrange geometry on J1(T, Rn) pro-

duced by the jet least squares Lagrangian function JLSODEs
P , via its second

order Euler-Lagrange equations (2.2), geometry in the sense of non-linear con-
nection, generalized Cartan connection, d-torsions and d-curvatures, is now
completely done in the papers [4], [5] and [6]. Moreover, a distinguished jet
electromagnetic 2-form, characterized by some natural generalized Maxwell
equations and a geometric jet Yang-Mills energy [5], is constructed from the
jet least squares Lagrangian function JLSODEs

P .

Definition 2.4. Any geometrical object on J1(T, Rn), which is produced by
the jet least squares Lagrangian function JLSODEs

P , via the Euler-Lagrange
equations (2.2), is called geometrical object produced by the jet first order
ODEs system (2.1) and the pair of Riemannian metrics P.

In this context, we give the following jet Riemann-Lagrange geometrical
result, which is proved in [5] and, for the multi-time general case, in [6]. For
more details, the reader is invited to consult the book [4].

Theorem 2.5. (i) The canonical non-linear connection on J1(T, Rn) produced
by the jet first order ODEs system (2.1) and the pair of Riemannian metrics
P is

ΓODEs
P =

(
M

(i)
(1)1, N

(i)
(1)j

)
,



88 Mircea Neagu

whose local components are given by

M
(i)
(1)1 = −H1

11x
i
1 and N

(i)
(1)j = γi

jkxk
1 −

1
2

[
X

(i)
(1)||j − ϕirX

(s)
(1)||rϕsj

]
,

where

X
(i)
(1)||j =

∂X
(i)
(1)

∂xj
+ X

(m)
(1) γi

mj .

(ii) The canonical generalized Cartan connection CΓODEs
P produced by

the jet first order ODEs system (2.1) and the pair of Riemannian metrics P
has the adapted components

CΓODEs
P = (H1

11, 0, γi
jk, 0).

(iii) The effective adapted components of the torsion d-tensor TODEs
P

of the canonical generalized Cartan connection CΓODEs
P produced by the jet

first order ODEs system (2.1) and the pair of Riemannian metrics P are

R
(i)
(1)1j =

1
2

[
X

(i)
(1)||j//1 − ϕirX

(s)
(1)||r//1ϕsj

]
and

R
(i)
(1)jk = ri

jkmxm
1 − 1

2

[
X

(i)
(1)||j||k − ϕirX

(s)
(1)||r||kϕsj

]
,

where rl
ijk(x) are the components of the curvature tensor of the Riemannian

metric ϕij(x) and

X
(i)
(1)||j//1 =

∂X
(i)
(1)||j

∂t
−X

(i)
(1)||jH

1
11,

X
(i)
(1)||j||k =

∂X
(i)
(1)||j

∂xk
+ X

(m)
(1)||jγ

i
mk −X

(i)
(1)||mγm

jk.

(iv) The effective adapted components of the curvature d-tensor RODEs
P

of the canonical generalized Cartan connection CΓODEs
P produced by the jet

first order ODEs system (2.1) and the pair of Riemannian metrics P are only
Rl

ijk = rl
ijk.

(v) The geometric electromagnetic distinguished 2-form produced by
the jet first order ODEs system (2.1) and the pair of Riemannian metrics P
has the expression

FODEs
P = F

(1)
(i)jδx

i
1 ∧ dxj ,

where

δxi
1 = dxi

1 + M
(i)
(1)1dt + N

(i)
(1)kdxk

and, if h11 = 1/h11, then

F
(1)
(i)j =

h11

2

[
ϕimX

(m)
(1)||j − ϕjmX

(m)
(1)||i

]
.
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(vi) The adapted components of the electromagnetic d-form FODEs
P pro-

duced by the jet first order ODEs system (2.1) and the pair of Riemannian
metrics P verify the generalized Maxwell equations F

(1)
(i)j//1 =

1
4
A{i,j}

{
h11ϕim

[
X

(m)
(1)||j//1 − ϕmrX

(s)
(1)||r//1ϕsj

]}
∑

{i,j,k} F
(1)
(i)j||k = 0,

where A{i,j} represents an alternate sum,
∑

{i,j,k} means a cyclic sum and

F
(1)
(i)j//1 =

∂F
(1)
(i)j

∂t
+ F

(1)
(i)jH

1
11 and F

(1)
(i)j||k =

∂F
(1)
(i)j

∂xk
− F

(1)
(m)jγ

m
ik − F

(1)
(i)mγm

jk

have the geometrical meaning of the horizontal local covariant derivatives
”//1” and ”||k” produced by the Berwald linear connection BΓ0 on J1(T, Rn).
For more details, please consult [4].

(vii) The geometric jet Yang-Mills energy produced by the jet first
order ODEs system (2.1) and the pair of Riemannian metrics P is defined
by the formula

EY MODEs
P (t, x) =

n−1∑
i=1

n∑
j=i+1

[
F

(1)
(i)j

]2
.

Now, let us consider on T ×Rn the particular pair of Euclidian metrics

∆ = (h11(t) = 1, ϕij(x) = δij),

where δij are the Kronecker symbols. Then we obtain the particular jet least
squares Lagrangian function

JLSODEs
∆ : J1(T, Rn) → R+,

defined by

JLSODEs
∆ (t, xk, xk

1) = δij

[
xi

1 −X
(i)
(1)(t, x)

] [
xj

1 −X
(j)
(1)(t, x)

]
=

=
n∑

i=1

[
xi

1 −X
(i)
(1)(t, x)

]2
.

In this new context, we introduce the following concept:

Definition 2.6. Any geometrical object on J1(T, Rn), which is produced by the
jet least squares Lagrangian function JLSODEs

∆ , via its attached second order
Euler-Lagrange equations, is called geometrical object produced by the jet
first order ODEs system (2.1).

As a consequence, particularizing the Theorem 2.5 for the pair of Eu-
clidian metrics P = ∆ and taking into account that we have H1

11(t) = 0 and
γk

ij(x) = 0, we immediately get the following jet geometrical result:

Corollary 2.7. (i) The canonical non-linear connection on J1(T, Rn) pro-
duced by the jet first order ODEs system (2.1) has the local components

ΓODEs
∆ =

(
M̄

(i)
(1)1, N̄

(i)
(1)j

)
,
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where

M̄
(i)
(1)1 = 0 and N̄

(i)
(1)j = −1

2

∂X
(i)
(1)

∂xj
−

∂X
(j)
(1)

∂xi

 , ∀ i, j = 1, n.

(ii) All adapted components of the canonical generalized Cartan con-
nection CΓODEs

∆ produced by the jet first order ODEs system (2.1) vanish.
(iii) The effective adapted components of the torsion d-tensor TODEs

∆

of the canonical generalized Cartan connection CΓODEs
∆ produced by the jet

first order ODEs system (2.1) are

R̄
(i)
(1)1j =

1
2

∂2X
(i)
(1)

∂t∂xj
−

∂2X
(j)
(1)

∂t∂xi

 , ∀ i, j = 1, n,

and

R̄
(i)
(1)jk = −1

2

 ∂2X
(i)
(1)

∂xk∂xj
−

∂2X
(j)
(1)

∂xk∂xi

 , ∀ i, j, k = 1, n.

(iv) All adapted components of the curvature d-tensor RODEs
∆ of the

canonical generalized Cartan connection CΓODEs
∆ produced by the jet first

order DEs system (2.1) vanish.
(v) The geometric electromagnetic distinguished 2-form produced by

the jet first order ODEs system (2.1) has the form

FODEs
∆ = F̄

(1)
(i)jδx

i
1 ∧ dxj ,

where
δxi

1 = dxi
1 + N̄

(i)
(1)kdxk, ∀ i = 1, n,

and

F̄
(1)
(i)j =

1
2

∂X
(i)
(1)

∂xj
−

∂X
(j)
(1)

∂xi

 , ∀ i, j = 1, n.

(vi) The adapted components F̄
(1)
(i)j of the electromagnetic d-form FODEs

∆

produced by the jet first order ODEs system (2.1) verify the generalized
Maxwell equations

F̄
(1)
(i)j//1 =

1
4
A{i,j}

∂2X
(i)
(1)

∂t∂xj
−

∂2X
(j)
(1)

∂t∂xi

 =
1
2

∂2X
(i)
(1)

∂t∂xj
−

∂2X
(j)
(1)

∂t∂xi


∑

{i,j,k} F̄
(1)
(i)j||k = 0,

where A{i,j} represents an alternate sum,
∑

{i,j,k} means a cyclic sum and

F̄
(1)
(i)j//1 =

∂F̄
(1)
(i)j

∂t
and F̄

(1)
(i)j||k =

∂F̄
(1)
(i)j

∂xk
, ∀ i, j, k = 1, n.
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(vii) The geometric jet Yang-Mills energy produced by the jet first
order ODEs system (2.1) has the expression

EY MODEs
∆ (t, x) =

n−1∑
i=1

n∑
j=i+1

[
F̄

(1)
(i)j

]2
=

1
4

n−1∑
i=1

n∑
j=i+1

∂X
(i)
(1)

∂xj
−

∂X
(j)
(1)

∂xi

2

.

Remark 2.8. If we use the matrix notations

• J
(
X(1)

)
=

∂X
(i)
(1)

∂xj


i,j=1,n

- the Jacobian matrix,

• N̄(1) =
(
N̄

(i)
(1)j

)
i,j=1,n

- the non-linear connection matrix,

• R̄(1)1 =
(
R̄

(i)
(1)1j

)
i,j=1,n

, - the temporal torsion matrix,

• R̄(1)k =
(
R̄

(i)
(1)jk

)
i,j=1,n

, ∀ k = 1, n, - the spatial torsion matrices,

• F̄ (1) =
(
F̄

(1)
(i)j

)
i,j=1,n

- the electromagnetic matrix,

then the following matrix geometrical relations attached to the jet first order
ODEs system (2.1) hold good:

1. N̄(1) = −1
2
[
J
(
X(1)

)
− T J

(
X(1)

)]
;

2. R̄(1)1 = − ∂

∂t

[
N̄(1)

]
;

3. R̄(1)k =
∂

∂xk

[
N̄(1)

]
, ∀ k = 1, n;

4. F̄ (1) = −N̄(1);

5. EY MODEs
∆ (t, x) =

1
2
·Trace

[
F̄ (1) · T F̄ (1)

]
, that is the jet electromag-

netic Yang-Mills energy coincides with the square of the norm of the skew-
symmetric electromagnetic matrix F̄ (1) in the Lie algebra o(n) = L(O(n)).

Remark 2.9. Note that the spatial torsion matrix R̄(1)k does not coincide for
k = 1 with the temporal torsion matrix R̄(1)1. We have only an overlap of
notations.

3. Jet Riemann-Lagrange geometry produced by a
non-homogenous linear ODEs system of order one

In this Section we apply the preceding jet Riemann-Lagrange geometrical
results for a non-homogenous linear ODEs system of order one. In this way,
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let us consider the following non-homogenous linear first order ODEs sys-
tem locally described, in a convenient chart on J1(T, Rn), by the differential
equations

dxi

dt
=

n∑
k=1

a
(i)
(1)k(t)xk + f

(i)
(1)(t), ∀ i = 1, n, (3.1)

where the local components a
(i)
(1)k and f

(i)
(1) transform after the tensorial rules

a
(i)
(1)k =

∂xi

∂x̃j

dt̃

dt
· ã(j)

(1)k, ∀ k = 1, n,

and

f
(i)
(1) =

∂xi

∂x̃j

dt̃

dt
· f̃ (j)

(1) .

Remark 3.1. We suppose that the product manifold T × Rn ⊂ J1(T, Rn) is
endowed a priori with the pair of Euclidian metrics ∆ = (1, δij), with respect
to the coordinates (t, xi).

It is obvious that the non-homogenous linear ODEs system (3.1) is a
particular case of the jet first order non-linear ODEs system (2.1) for

X
(i)
(1)(t, x) =

n∑
k=1

a
(i)
(1)k(t)xk + f

(i)
(1)(t), ∀ i = 1, n. (3.2)

In order to expose the main jet Riemann-Lagrange geometrical objects
that characterize the non-homogenous linear ODEs system (3.1), we use the
matrix notation

A(1) =
(
a
(i)
(1)j(t)

)
i,j=1,n

.

In this context, applying our preceding jet geometrical Riemann-
Lagrange theory to the non-homogenous linear ODEs system (3.1) and the
pair of Euclidian metrics ∆ = (1, δij), we get:

Theorem 3.2. (i) The canonical non-linear connection on J1(T, Rn) produced
by the non-homogenous linear ODEs system (3.1) has the local components

Γ̂ =
(
0, N̂

(i)
(1)j

)
,

where N̂
(i)
(1)j are the entries of the matrix

N̂(1) =
(
N̂

(i)
(1)j

)
i,j=1,n

= −1
2
[
A(1) − T A(1)

]
.

(ii) All adapted components of the canonical generalized Cartan connec-

tion CΓ̂ produced by the non-homogenous linear ODEs system (3.1) vanish.
(iii) The effective adapted components R̂

(i)
(1)1j of the torsion d-tensor

T̂ of the canonical generalized Cartan connection CΓ̂ produced by the non-
homogenous linear ODEs system (3.1) are the entries of the matrices

R̂(1)1 =
(
R̂

(i)
(1)1j

)
i,j=1,n

=
1
2

[
Ȧ(1) − T Ȧ(1)

]
,
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where

Ȧ(1) =
d

dt

[
A(1)

]
.

(iv) All adapted components of the curvature d-tensor R̂ of the canoni-
cal generalized Cartan connection CΓ̂ produced by the non-homogenous lin-
ear ODEs system (3.1) vanish.

(v) The geometric electromagnetic distinguished 2-form produced by
the non-homogenous linear ODEs system (3.1) is given by

F̂ = F̂
(1)
(i)jδx

i
1 ∧ dxj ,

where
δxi

1 = dxi
1 −

1
2

[
a
(i)
(1)k − a

(k)
(1)i

]
dxk, ∀ i = 1, n,

and the adapted components F̂
(1)
(i)j are the entries of the matrix

F̂ (1) =
(
F̂

(1)
(i)j

)
i,j=1,n

= −N̂(1) =
1
2
[
A(1) − T A(1)

]
,

that is
F̂

(1)
(i)j =

1
2

[
a
(i)
(1)j − a

(j)
(1)i

]
.

(vi) The jet Yang-Mills energy produced by the non-homogenous linear
ODEs system (3.1) is given by the formula

EY MNHLODEs(t) =
1
4

n−1∑
i=1

n∑
j=i+1

[
a
(i)
(1)j − a

(j)
(1)i

]2
.

Proof. Using the relations (3.2), we easily deduce that we have the Jacobian
matrix

J
(
X(1)

)
= A(1).

Consequently, applying the Corollary 2.7 to the non-homogenous linear
ODEs system (3.1), together with the Remark 2.8, we obtain the required
results. �

Remark 3.3. The entire jet Riemann-Lagrange geometry produced by the
non-homogenous linear ODEs system (3.1) does not depend on the non-
homogeneity terms f

(i)
(1)(t).

Remark 3.4. The jet Yang-Mills energy produced by the non-homogenous
linear ODEs system (3.1) vanishes if and only if the matrix A(1) is a sym-
metric one. In this case, the entire jet Riemann-Lagrange geometry produced
by the non-homogenous linear ODEs system (3.1) vanish, so it does not offer
geometrical informations about the system (3.1). However, it is important to
note that in this particular situation we have the symetry of the matrix A(1),
which implies that the matrix A(1) is diagonalizable.

Remark 3.5. All torsion adapted components of a non-homogenous linear
ODEs system with constant coefficients a

(i)
(1)j are zero.
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4. Jet Riemann-Lagrange geometry produced by a superior
order ODE

Let us consider the superior order ODE expressed by

y(n)(t) = f(t, y(t), y′(t), ..., y(n−1)(t)), n ≥ 2, (4.1)

where y(t) is an unknown function, y(k)(t) is the derivative of order k of the
unknown function y(t) for each k ∈ {0, 1, ..., n} and f is a given differentiable
function depending on the distinct variables t, y(t), y′(t), ..., y(n−1)(t).

It is well known the fact that, using the notations

x1 = y, x2 = y′, ..., xn = y(n−1),

the superior order ODE (4.1) is equivalent with the non-linear ODEs system
of order one 

dx1

dt
= x2

dx2

dt
= x3

·
·
·
dxn−1

dt
= xn

dxn

dt
= f(t, x1, x2, ..., xn).

(4.2)

But, the first order non-linear ODEs system (4.2) can be regarded, in a
convenient local chart, as a particular case of the jet non-linear ODEs system
of order one (2.1), taking

X
(1)
(1) (t, x) = x2, X

(2)
(1) (t, x) = x3, · · ·

· · · X
(n−1)
(1) (t, x) = xn, X

(n)
(1) (t, x) = f(t, x1, x2, ..., xn),

(4.3)
where we suppose that the geometrical object X =

(
X

(i)
(1)(t, x)

)
behaves like

a d-tensor on J1(T, Rn).

Remark 4.1. We assume that the product manifold T × Rn ⊂ J1(T, Rn) is
endowed a priori with the pair of Euclidian metrics ∆ = (1, δij), with respect
to the coordinates (t, xi).

Definition 4.2. Any geometrical object on J1(T, Rn), which is produced by
the first order non-linear ODEs system (4.2) is called geometrical object
produced by the superior order ODE (4.1).

In this context, the Riemann-Lagrange geometrical behavior on the 1-jet
space J1(T, Rn) of the superior order ODE (4.1) is described in the following
result:
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Theorem 4.3. (i) The canonical non-linear connection on J1(T, Rn) produced
by the superior order ODE (4.1) has the local components

Γ̌ =
(
0, Ň

(i)
(1)j

)
,

where Ň
(i)
(1)j are the entries of the matrix Ň(1) =

(
Ň

(i)
(1)j

)
i,j=1,n

=

= −1
2



0 1 0 · · 0 0 − ∂f

∂x1

−1 0 1 · · 0 0 − ∂f

∂x2

0 −1 0 · · 0 0 − ∂f

∂x3

· · · · · · · ·
· · · · · · · ·

0 0 0 · · 0 1 − ∂f

∂xn−2

0 0 0 · · −1 0 1− ∂f

∂xn−1

∂f

∂x1

∂f

∂x2

∂f

∂x3
· · ∂f

∂xn−2
−1 +

∂f

∂xn−1
0



.

(ii) All adapted components of the canonical generalized Cartan con-
nection CΓ̌ produced by the superior order ODE (4.1) vanish.

(iii) The effective adapted components of the torsion d-tensor Ť of the
canonical generalized Cartan connection CΓ̌ produced by the superior order
ODE (4.1) are the entries of the matrices

Ř(1)1 =
1
2



0 0 · · 0 − ∂2f

∂t∂x1

0 0 · · 0 − ∂2f

∂t∂x2

· · · · · ·
· · · · · ·

0 0 · · 0 − ∂2f

∂t∂xn−1

∂2f

∂t∂x1

∂2f

∂t∂x2
· · ∂2f

∂t∂xn−1
0
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and

Ř(1)k = −1
2



0 0 · · 0 − ∂2f

∂xk∂x1

0 0 · · 0 − ∂2f

∂xk∂x2

· · · · · ·
· · · · · ·

0 0 · · 0 − ∂2f

∂xk∂xn−1

∂2f

∂xk∂x1

∂2f

∂xk∂x2
· · ∂2f

∂xk∂xn−1
0


,

where k ∈ {1, 2, ..., n}.
(iv) All adapted components of the curvature d-tensor Ř of the canon-

ical generalized Cartan connection CΓ̌ produced by the superior order ODE
(4.1) vanish.

(v) The geometric electromagnetic distinguished 2-form produced by
the superior order ODE (4.1) has the form

F̌ = F̌
(1)
(i)jδx

i
1 ∧ dxj ,

where
δxi

1 = dxi
1 + Ň

(i)
(1)kdxk, ∀ i = 1, n,

and the adapted components F̌
(1)
(i)j are the entries of the matrix

F̌ (1) =
(
F̌

(1)
(i)j

)
i,j=1,n

= −Ň(1).

(vi) The jet geometric Yang-Mills energy produced by the superior
order ODE (4.1) is given by the formula

EY MSODE(t, x) =
1
4

n− 1− 2
∂f

∂xn−1
+

n−1∑
j=1

(
∂f

∂xj

)2
 .

Proof. By partial derivatives, the relations (4.3) lead to the Jacobian matrix

J
(
X(1)

)
=



0 1 0 · · 0 0

0 0 1 · · 0 0

· · · · · · ·
· · · · · · ·
0 0 0 · · 0 1

∂f

∂x1

∂f

∂x2

∂f

∂x3
· · ∂f

∂xn−1

∂f

∂xn


.

In conclusion, the Corollary 2.7, together with the Remark 2.8, applied
to first order non-linear ODEs system (4.2), give what we were looking for.

�
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5. Riemann-Lagrange geometry produced by a
non-homogenous linear ODE of superior order

If we consider the non-homogenous linear ODE of order n ∈ N, n ≥ 2,
expressed by

a0(t)y(n) + a1(t)y(n−1) + ... + an−1(t)y′ + an(t)y = b(t), (5.1)

where b(t) and ai(t), ∀ i = 0, n, are given differentiable real functions and
a0(t) 6= 0, ∀ t ∈ [a, b], then we recover the superior order ODE (4.1) for the
particular function

f(t, x) =
b(t)
a0(t)

− an(t)
a0(t)

· x1 − an−1(t)
a0(t)

· x2 − ...− a1(t)
a0(t)

· xn, (5.2)

where we recall that we have

y = x1, y′ = x2, ..., y(n−1) = xn.

Consequently, we can derive the jet Riemann-Lagrange geometry at-
tached to the non-homogenous linear superior order ODE (5.1).

Corollary 5.1. (i) The canonical non-linear connection on J1(T, Rn) pro-
duced by the non-homogenous linear superior order ODE (5.1) has the local
components

Γ̃ =
(
0, Ñ

(i)
(1)j

)
,

where Ñ
(i)
(1)j are the entries of the matrix

Ñ(1) =
(
Ñ

(i)
(1)j

)
i,j=1,n

=

= −1
2



0 1 0 · · 0 0
an

a0

−1 0 1 · · 0 0
an−1

a0

0 −1 0 · · 0 0
an−2

a0

· · · · · · · ·
· · · · · · · ·

0 0 0 · · 0 1
a3

a0

0 0 0 · · −1 0 1 +
a2

a0

−an

a0
−an−1

a0
−an−2

a0
· · −a3

a0
−1− a2

a0
0



.

(ii) All adapted components of the canonical generalized Cartan connec-

tion CΓ̃ produced by the non-homogenous linear superior order ODE (5.1)
vanish.
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(iii) All adapted components of the torsion d-tensor T̃ of the canonical
generalized Cartan connection CΓ̃ produced by the non-homogenous linear
superior order ODE (5.1) are zero, except the temporal components

R̃
(i)
(1)1n = −R̃

(n)
(1)1i =

a′n−i+1a0 − an−i+1a
′
0

2a2
0

, ∀ i = 1, n− 1,

where we denoted by ” ′ ” the derivatives of the functions ak(t).
(iv) All adapted components of the curvature d-tensor R̃ of the canoni-

cal generalized Cartan connection CΓ̃ produced by the non-homogenous lin-
ear superior order ODE (5.1) vanish.

(v) The geometric electromagnetic distinguished 2-form produced by
the non-homogenous linear superior order ODE (5.1) has the expression

F̃ = F̃
(1)
(i)jδx

i
1 ∧ dxj ,

where
δxi

1 = dxi
1 + Ñ

(i)
(1)kdxk, ∀ i = 1, n,

and the adapted components F̃
(1)
(i)j are the entries of the matrix

F̃ (1) =
(
F̃

(1)
(i)j

)
i,j=1,n

= −Ñ(1).

(vi) The jet geometric Yang-Mills electromagnetic energy produced by
the non-homogenous linear superior order ODE (5.1) has the form

EY MNHLSODE(t) =
1
4

n− 1 + 2
a2

a0
+

n∑
j=2

a2
j

a2
0

 .

Proof. We apply the Theorem 4.3 for the particular function (5.2) and we
use the relations

∂f

∂xj
= −an−j+1

a0
, ∀ j = 1, n.

�

Remark 5.2. The entire jet Riemann-Lagrange geometry produced by the non-
homogenous linear superior order ODE (5.1) is independent by the term of
non-homogeneity b(t). In author’s opinion, this fact emphasizes that the most
important role in the study of the ODE (5.1) is played by its attached homoge-
nous linear superior order ODE.

Example 5.3. The law of motion without friction (harmonic oscillator) of a
material point of mass m > 0, which is placed on a spring having the constant
of elasticity k > 0, is given by the homogenous linear ODE of order two

d2y

dt2
+ ω2y = 0, (5.3)

where the coordinate y measures the distance from the mass’s equlibrium point
and ω2 = k/m. It follows that we have

n = 2, a0(t) = 1, a1(t) = 0 and a2(t) = ω2,
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that is the harmonic oscillator second order ODE (5.3) provides the jet geo-
metric Yang-Mills electromagnetic energy

EY MHarmonic Oscillator =
1
4
(
1 + ω2

)2
.

Open problem. There exists a real physical interpretation for the previous
jet geometric Yang-Mills electromagnetic energy attached to the harmonic
oscillator?
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1. Introduction

Hyperbolic geometry appeared in the first half of the 19th century as an at-
tempt to understand Euclid’s axiomatic basis for geometry. It is also known
as a type of non-Euclidean geometry, being in many respects similar to Eu-
clidean geometry. Hyperbolic geometry includes such concepts as: distance,
angle and both of them have many theorems in common. There are known
many main models for hyperbolic geometry, such as: Poincaré disc model,
Poincaré half-plane, Klein model, Einstein relativistic velocity model, etc.
The hyperbolic geometry is a non-Euclidian geometry. Here, in this study,
we present a proof of Pappus’s harmonic theorem in the Einstein relativis-
tic velocity model of hyperbolic geometry. Pappus’s harmonic theorem states
that if A′B′C′ is the cevian triangle of point M with respect to the triangle

ABC such that the lines B′C′ and BC meet at A′′, then A′′B
A′′C

= A′B
A′C

[4].

Let D denote the complex unit disc in complex z - plane, i.e.

D = {z ∈ C : |z| < 1}.
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The most general Möbius transformation of D is

z → eiθ z0 + z

1 + z0z
= eiθ(z0 ⊕ z),

which induces the Möbius addition ⊕ in D, allowing the Möbius transforma-
tion of the disc to be viewed as a Möbius left gyrotranslation

z → z0 ⊕ z =
z0 + z

1 + z0z

followed by a rotation. Here θ ∈ R is a real number, z, z0 ∈ D, and z0 is the
complex conjugate of z0. Let Aut(D,⊕) be the automorphism group of the
grupoid (D,⊕). If we define

gyr : D × D → Aut(D,⊕), gyr[a, b] =
a ⊕ b

b ⊕ a
=

1 + ab

1 + ab
,

then is true gyrocommutative law

a ⊕ b = gyr[a, b](b ⊕ a).

A gyrovector space (G,⊕,⊗) is a gyrocommutative gyrogroup (G,⊕)
that obeys the following axioms:

(1) gyr[u,v]a· gyr[u,v]b = a · b for all points a,b,u,v ∈G.
(2) G admits a scalar multiplication, ⊗, possessing the following prop-

erties. For all real numbers r, r1, r2 ∈ R and all points a ∈G:
(G1) 1 ⊗ a = a

(G2) (r1 + r2) ⊗ a = r1 ⊗ a ⊕ r2 ⊗ a

(G3) (r1r2) ⊗ a = r1 ⊗ (r2 ⊗ a)

(G4) |r|⊗a

‖r⊗a‖
= a

‖a‖

(G5) gyr[u,v](r ⊗ a) = r ⊗ gyr[u,v]a
(G6) gyr[r1 ⊗ v, r1 ⊗ v] =1
(3) Real vector space structure (‖G‖ ,⊕,⊗) for the set ‖G‖ of onedi-

mensional ”vectors”

‖G‖ = {± ‖a‖ : a ∈ G} ⊂ R

with vector addition ⊕ and scalar multiplication ⊗, such that for all r ∈ R

and a,b ∈ G,
(G7) ‖r ⊗ a‖ = |r| ⊗ ‖a‖
(G8) ‖a⊕ b‖ ≤ ‖a‖ ⊕ ‖b‖

Theorem 1.1. (The Hyperbolic Theorem of Ceva in Einstein Gyrovector
Space). Let a1,a2, and a3 be three non-gyrocollinear points in an Einstein
gyrovector space (Vs,⊕,⊗). Furthermore, let a123 be a point in their gyro-
plane, which is off the gyrolines a1a2,a2a3, and a3a1. If a1a123 meets a2a3

at a23, etc., then

γ⊖a1⊕a12
‖⊖a1 ⊕ a12‖

γ⊖a2⊕a12
‖⊖a2 ⊕ a12‖

γ⊖a2⊕a23
‖⊖a2 ⊕ a23‖

γ⊖a3⊕a23
‖⊖a3 ⊕ a23‖

γ⊖a3⊕a13
‖⊖a3 ⊕ a13‖

γ⊖a1⊕a13
‖⊖a1 ⊕ a13‖

= 1,

(here γv = 1
√

1− ‖v‖2

s2

is the gamma factor).
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(see [6, p. 461])

Theorem 1.2. (The Hyperbolic Theorem of Menelaus in Einstein Gyrovector
Space). Let a1,a2, and a3 be three non-gyrocollinear points in an Einstein gy-
rovector space (Vs,⊕,⊗). If a gyroline meets the sides of gyrotriangle a1a2a3

at points a12,a13,a23, then

γ⊖a1⊕a12
‖⊖a1 ⊕ a12‖

γ⊖a2⊕a12
‖⊖a2 ⊕ a12‖

γ⊖a2⊕a23
‖⊖a2 ⊕ a23‖

γ⊖a3⊕a23
‖⊖a3 ⊕ a23‖

γ⊖a3⊕a13
‖⊖a3 ⊕ a13‖

γ⊖a1⊕a13
‖⊖a1 ⊕ a13‖

= 1.

(see [6, p. 463])

Theorem 1.3. (The Gyrotriangle Bisector Theorem). Let ABC be a gyrotri-
angle in an Einstein gyrovector space (Vs,⊕,⊗), and let P be a point lying on
side BC of the gyrotriangle such that AP is a bisector of gyroangle ∡BAC.
Then,

γ
|BP |

|BP |
γ
|PC|

|PC| =
γ
|AB|

|AB|
γ
|AC|

|AC| .

(see [7, p. 150])
For further details we refer to the recent book of A.Ungar [6].

Definition 1.4. The symmetric of the median with respect to the internal
bisector issued from the same vertex is called symmedian.

Theorem 1.5. If the gyroline AP is a symmedian of a gyrotriangle ABC, and
the point P is on the gyroside BC, then

γ
|CP |

|CP |
γ
|BP |

|BP | =

(

γ
|CA|

|CA|
γ
|BA|

|BA|

)2

.

(See [3])

Definition 1.6. We call antibisector of a triangle, the izotomic of a internal
bisector of a triangle interior angle.

2. Main results

In this section, we present a proof of Pappus’s harmonic theorem in the
Einstein relativistic velocity model of hyperbolic geometry.

Theorem 2.1. (Pappus’s harmonic theorem for hyperbolic gyrotriangle). If
A′B′C′ is the cevian gyrotriangle of gyropoint M with respect to the gyrotri-
angle ABC such that the gyrolines B′C′ and BC meet at A′′, then

γ
|A

′B|
|A′B|

γ
|A

′C|
|A′C|

=
γ
|A

′′B|
|A′′B|

γ
|A

′′C|
|A′′C|

.

Proof. If we use Theorem 1.1 in the gyrotriangle ABC (see Figure 1), we
have
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γ
|A

′B|
|A′B|

γ
|A

′C|
|A′C|

·
γ
|B

′C|
|B′C|

γ
|B

′A|
|B′A|

·
γ
|C

′A|
|C′A|

γ
|C

′B|
|C′B|

= 1. (2.1)

If we use Theorem 1.2 in the gyrotriangle ABC, cut by the gyroline A′A′′,
we get

γ
|A

′′B|
|A′′B|

γ
|A′′

C||A
′′

C|
·
γ
|B

′C|
|B′C|

γ
|B

′A|
|B′A|

·
γ
|C

′A|
|C′A|

γ
|C

′B|
|C′B|

= 1. (2.2)

From the relations (2.1) and (2.2) we have
γ
|A

′B|
|A

′B|

γ
|A

′C|
|A

′C|

=
γ
|A

′′B|
|A

′′B|

γ
|A

′′C|
|A

′′C|

. �

Corollary 2.2. If A′B′C′ is the cevian gyrotriangle of gyropoint M with respect
to the gyrotriangle ABC such that the gyrolines B′C′ and BC meet at A′′,
and AA′ is a bisector of gyroangle ∡BAC, then

γ
|A

′′B|
|A′′B|

γ
|A

′′C|
|A′′C|

=
γ

|AB||AB|

γ
|AC||AC|

.

Proof. If we use Theorem 1.3 in the triangle ABC, we get

γ
|A

′B|
|A′B|

γ
|A

′C|
|A′C|

=
γ

|AB||AB|

γ
|AC||AC|

. (2.3)

If we use Theorem 2.1 in the triangle ABC, we get

γ
|A

′B|
|A′B|

γ
|A

′C|
|A′C|

=
γ
|A

′′B|
|A′′B|

γ
|A

′′C|
|A′′C|

. (2.4)

From the relations (2.3) and (2.4) we have
γ
|A

′′B|
|A

′′B|

γ
|A

′′C|
|A

′′C|

=
γ
|AB||AB|

γ
|AC||AC|

. �

Corollary 2.3. If A′B′C′ is the cevian gyrotriangle of gyropoint M with respect
to the gyrotriangle ABC such that the gyrolines B′C′ and BC meet at A′′, and
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AA′ is a bisector of gyroangle ∡BAC, and AA1 is a antibisector of gyroangle
∡BAC, then

γ
|A

′′B|
|A′′B|

γ
|A

′′C|
|A′′C|

=

(

γ
|A1B||A1B|

γ
|A1C||A1C|

)

−1

.

Proof. Because the gyroline AA1 is a isotomic line of the bisector AA′, then

γ
|A1B||A1B|

γ
|A1C||A1C|

=
γ
|A

′C|
|A′C|

γ
|A

′B|
|A′B|

=
γ

|AC||AC|

γ
|AB||AB|

. (2.5)

If we use Corollary 2.2, we have
γ
|A

′′B|
|A′′B|

γ
|A

′′C|
|A′′C|

=
γ

|AB||AB|

γ
|AC||AC|

. (2.6)

From the relations (2.5) and (2.6), we have

γ
|A

′′B|
|A′′B|

γ
|A

′′C|
|A′′C|

=

(

γ
|A1B||A1B|

γ
|A1C||A1C|

)

−1

. (2.7)

�

Corollary 2.4. If A′B′C′ is the cevian gyrotriangle of gyropoint M with respect
to the gyrotriangle ABC such that the gyrolines B′C′ and BC meet at A′′,
and AA′ is a symmedian of gyroangle ∡BAC, and the point A′ is on the
gyroside BC, then

γ
|A

′′B|
|A′′B|

γ
|A

′′C|
|A′′C|

=

(

γ
|AB||AB|

γ
|AC||AC|

)2

.

Proof. If we use Theorem 1.5, we have

γ
|A

′B|
|A′B|

γ
|A

′C|
|A′C|

=

(

γ
|AB||AB|

γ
|AC||AC|

)2

. (2.8)

If we use Theorem 2.1, we have
γ
|A

′′B|
|A′′B|

γ
|A

′′C|
|A′′C|

=
γ
|A

′B|
|A′B|

γ
|A

′C|
|A′C|

. (2.9)

From the relations (2.8) and (2.9), we get
γ
|A

′′B|
|A

′′B|

γ
|A

′′C|
|A

′′C|

=

(

γ
|AB||AB|

γ
|AC||AC|

)2

. �

Theorem 2.5. If A′B′C′ is the cevian gyrotriangle of gyropoint M with respect
to the gyrotriangle ABC such that the gyrolines B′C′ and BC meet at A′′,
and AA′ is a bisector of gyroangle ∡BAC, the gyrolines A′C′ and BB′ meet
at D, A′B′ and CC′ meet at E, AD and BC meet at D′, and AE and BC
meet in E′, then

γ
|A

′′B|
|A′′B|

γ
|A

′′C|
|A′′C|

=
γ
|D

′B|
|D′B|

γ
|D

′A′
|
|D′A′

|

·
γ
|E

′A′
|
|E′A′

|

γ
|E

′C|
|E′C|

.
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Proof. If we use Theorem 1.1 in the gyrotriangle ABA′ (see Figure 2),

we have
γ
|D

′B|
|D′B|

γ
|D

′A′
|
|D′A′

|

·
γ
|C

′A|
|C′A|

γ
|C

′B|
|C′B|

·
γ
|MA′

|
|MA′

|

γ
|MA||MA|

= 1. (2.10)

If we use Theorem 1.2 in the gyrotriangle ABA′, cut by the gyroline CC′,
we get

γ
|CB||CB|

γ
|CA′

|
|CA′

|

·
γ
|C

′A|
|C′A|

γ
|C

′B|
|C′B|

·
γ
|MA′

|
|MA′

|

γ
|MA||MA|

= 1. (2.11)

From the relations (2.10) and (2.11), we have

γ
|D

′B|
|D′B|

γ
|D

′A′
|
|D′A′

|

=
γ

|CB||CB|

γ
|CA′

|
|CA′

|

. (2.12)

Similarly, we obtain that

γ
|E

′C|
|E′C|

γ
|E

′A′
|
|E′A′

|

=
γ

|BC||BC|

γ
|BA′

|
|BA′

|

. (2.13)

If ratios the equations (2.12) and (2.13) among themselves, respectively, then

γ
|D

′B|
|D′B|

γ
|D

′A′
|
|D′A′

|

·
γ
|E

′A′
|
|E′A′

|

γ
|E

′C|
|E′C|

=
γ
|BA′

|
|BA′

|

γ
|CA′

|
|CA′

|

. (2.14)

If we use Theorem 1.3 and the Corollary 2.2 in the triangle ABC, we get

γ
|A

′B|
|A′B|

γ
|A

′C|
|A′C|

=
γ

|AB||AB|

γ
|AC||AC|

=
γ
|A

′′B|
|A′′B|

γ
|A

′′C|
|A′′C|

. (2.15)
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From the relations (2.14) and (2.15), we get
γ
|D

′B|
|D′B|

γ
|D

′A′
|
|D′A′

|

·
γ
|E

′A′
|
|E′A′

|

γ
|E

′C|
|E′C|

=
γ
|A

′′B|
|A′′B|

γ
|A

′′C|
|A′′C|

.

�
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Volume LVI, Number 1

March 2011, pp. 109–115

The Sălăgean integral operator and strongly
starlike functions
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Abstract. Let A denote the class of analytic functions f(z) defined
in the unit disc U = {z : |z| < 1} and satisfying the conditions
f(0) = f ′(0) − 1 = 0. We introduce some new subclasses of strongly
starlike functions defined by the Sălăgean integral operator and study
their properties.
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integral operator.

1. Introduction

Let A denote the class of functions of the form:

f(z) = z +
∞∑

k=2

akzk (1.1)

which are analytic in the open unit disc U = {z : |z| < 1}. A function
f(z) ∈ A is said to be starlike of order γ if it satisfies

Re

{
zf

′
(z)

f(z)

}
> γ (z ∈ U) (1.2)

for some γ (0 ≤ γ < 1).We denote by S∗(γ) the subclass of A consisting of
functions which are starlike of order γ in U. Also, a function f(z) ∈ A is
said to be convex of order γ if it satisfies

Re

{
1 +

zf
′′
(z)

f ′(z)

}
> γ (z ∈ U) (1.3)

for some γ (0 ≤ γ < 1). We denote by C(γ) the subclass of A consisting of
all functions which are convex of order γ in U.
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It follows from (1.2) and (1.3) that

f(z) ∈ C(γ) ⇐⇒ zf ′(z) ∈ S∗(γ), (1.4)

the classes S∗(γ) and C(γ) were introduced by Robertcen [8].
If f(z) ∈ A satisfies ∣∣∣∣arg(

zf ′(z)
f(z)

− γ)
∣∣∣∣ <

π

2
β (z ∈ U) (1.5)

for some γ (0 ≤ γ < 1) and β(0 < β ≤ 1), then f(z) is said to be strongly
starlike of order β and type γ in U. We denote this by f(z) ∈ S∗(β, γ) .

If f(z) ∈ A satisfies∣∣∣∣∣arg(1 +
zf

′′
(z)

f ′(z)
− γ)

∣∣∣∣∣ <
π

2
β (z ∈ U) (1.6)

for some γ (0 ≤ γ < 1) and β(0 < β ≤ 1), then we say that f(z) is strongly
convex of order β and type γ in U. We denote by C(β, γ) the class of all
such functions (see also Liu [3] and Nurokawa et al. [7]). In particular, the
classes S∗(β, 0) and C(β, 0) have been extensively studied by Mocanu [5] and
Nunokawa [6].

It follows from (1.5) and (1.6) that

f(z) ∈ C(β, γ) ⇐⇒ zf ′(z) ∈ S∗(β, γ). (1.7)

Also, we note that S∗(1, γ) = S∗(γ) and C(1, γ) = C(γ).
For a function f(z) ∈ A , we define the integral operator Inf(z), n ∈

N0 = N ∪ {0}, where N = {1, 2, ....}, by

I0f(z) = f(z), (1.8)

I1f(z) = I f(z) =

z∫
0

f(t) t−1dt , (1.9)

and (in general)
Inf(z) = I(In−1f(z)). (1.10)

It is easy to see that:

(i) Inf(z) = z +
∞∑

k=2

ak

kn
zk (n ∈ N0), (1.11)

and
(ii) z(Inf(z))

′
= In−1f(z). (1.12)

The integral operator Inf(z) (f ∈ A) was introduced by Sălăgean [9] and
studied by Aouf et al. [1]. We call the operator In by Sălăgean integral oper-
ator. The relation (1.12) plays an important and significant role in obtaining
our results.
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Using the Sălăgean integral operator, we introduce and study the prop-
erties of some new classes of analytic functions, defined as follows:

S∗n (β, γ) = { f(z) ∈ A : In f(z) ∈ S∗(β, γ) ,
z(Inf(z))

′

Inf(z)
6= γ for all z ∈ U}

and

Cn(β, γ) = {f(z) ∈ A : Inf(z) ∈ C(β, γ), 1 +
z(Inf(z))

′′

(Inf(z))′ 6= γ for all z ∈ U}.

Clearly,
f(z) ∈ Cn(β, γ) ⇐⇒ zf ′(z) ∈ S∗n(β, γ). (1.13)

We note that:
(i) S∗n(β, γ) = S∗(β, γ) and C∗

0 (β, γ) = C(β, γ);
and

(ii) S∗0 (1, γ) = S∗(γ) and C∗
0 (1, γ) = C(γ).

2. Main Results

In order to give our results, we need the following lemma, which is due to
Nunokawa [6].

Lemma 2.1. Let a function p(z) = 1+ c1z + c2z
2 + .... be analytic in U and

p(z) 6= 0 ( z ∈ U). If there exists a point z0 ∈ U such that

|arg f(z)| <
π

2
β, (|z| < |z0|) and |arg p(z0)| =

π

2
β (0 < β ≤ 1),

then we have
z p

′

0(z)
p(z0)

= ikβ, where

k ≥ 1
2

(a +
1
a
) (when arg p(z0) =

π

2
β),

k ≤ −1
2

(a +
1
a
) (when arg p(z0) =

−π

2
β),

and (p(z0))
1
β = ±ia (a > 0).

Theorem 2.2. S∗n(β, γ) ⊂ S∗n+1(β, γ) for each n ∈ N0.

Proof. Let f(z) ∈ S∗n(β, γ) .Then we put

z(In+1f(z))′

In+1f(z)
= γ + (1− γ) p(z), (2.1)

where p(z) = 1+c1z+c2z
2 + ..... is analytic in U and p(z) 6= 0 for all z ∈ U.

Using (1.12) and (2.1),we have

In f(z)
In+1f(z)

= γ + (1− γ) p(z). (2.2)
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Differentiating (2.2) with respect to z logarithmically, we obtain

z(Inf(z))′

Inf(z)
=

z(In+1f(z))′

In+1f(z)
+

(1− γ)zp′(z)
γ + (1− γ)p(z)

= γ + (1− γ)p(z) +
(1− γ)zp′(z)

γ + (1− γ)p(z)
,

or
z(In f(z))

′

Inf(z)
− γ = (1− γ) p(z) +

(1− γ)zp′(z)
γ + (1− γ)p(z)

. (2.3)

Suppose that there exists a point z0 ∈ U such that

|arg f(z)| <
π

2
β (|z| < |z0|) and |arg p(z0)| =

π

2
β.

Then, applying Lemma 2.1, we can write that
z0p

′
(z0)

p(z0)
= ikβ and (p(z0))

1
β = ± ia (a > 0).

Therefore, if arg p(z0) = −π

2
β, then

z0(Inf(z0))′

Inf(z0)
− γ = (1− γ) p(z0)

1 +
zp′(z0)
p(z0)

γ + (1− γ)p(z0)


= (1− γ)aβe−

iΠβ
2

[
1 +

ikβ

γ + (1− γ)aβe−
iΠβ
2

]
.

This implies that

arg
{

z0(Inf(z0))′

Inf(z0)
− γ

}
= − π

2
β + arg

{
1 +

ikβ

γ + (1− γ)aβe−
iΠβ
2

}

=
−π

2
β+

tan−1

{
kβ[γ + (1− γ)aβ cos (Π

2 β)]
γ2 + 2γ(1− γ)aβ cos (Π

2 β) + (1− γ)2a2β − kβ(1− γ)aβ sin(Π
2 β)

}
≤ −π

2
β ( where k ≤ −1

2
(a +

1
a
) ≤ −1),

which contradicts the condition f(z) ∈ S∗n(β, γ).
Similarly, if arg p(z0) = Π

2 β, then we obtain that∣∣∣∣arg
{

z0(Inf(z0))′

Inf(z0)
− γ

}∣∣∣∣ ≥ π

2
β,

which also contradicts the hypothesis that f(z) ∈ S∗n(β, γ).

Thus the function p(z) has to satisfy |arg p(z)| < Π
2 β (z ∈ U). This shows

that ∣∣∣∣arg
{

z (In+1f(z))′

In+1 f(z)
− γ

}∣∣∣∣ <
π

2
β (z ∈ U),

or f(z) ∈ S∗n+1(β, γ).This completes the proof of Theorem 2.2.
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Theorem 2.3. Cn(β, γ) ⊂ Cn+1(β, γ) for each n ∈ N0 .

Proof. f(z) ∈ Cn(β, γ) ⇐⇒ Inf(z) ∈ C(β, γ) ⇐⇒ z(Inf(z))′ ∈ S∗(β, γ)
⇐⇒ In(zf

′
(z)) ∈ S∗ (p, γ) ⇐⇒ zf

′
(z) ∈ S∗n(β, γ)

=⇒ zf
′
(z) ∈ S∗n+1(β, γ) ⇐⇒ In+1(zf

′
(z)) ∈ S∗(β, γ)

⇐⇒ z( In+1f(z))′ ∈ S∗(β, γ) ⇐⇒ In+1f(z) ∈ C (β, γ)
⇐⇒ f(z) ∈ Cn+1(β, γ).

This completes the proof of Theorem 2.3.

For c > −1 and f(z) ∈ A, we define the integral operator Lc(f) as

Lcf(z) =
c + 1
zc

z∫
0

tc−1f(t)dt. (2.4)

The operator Lc(f) when c ∈ N was studied by Bernardi [2]. For c = 1,
L1(f) was introduced by Libera [4].

Theorem 2.4. Let c > −γ and 0 ≤ γ < 1. If f(z) ∈ S∗n(β, γ) with
z(InLcf(z))

′

InLcf(z)
6= γ for all z ∈ U, then we have Lc(f) ∈ S∗n(β, γ).

Proof. Set
z(InLc f(z))

′

InLcf(z)
= γ + (1− γ) p(z), (2.5)

where p(z) is analytic in U, p(0) = 1, and p(z) 6= 0 (z ∈ U). From (2.4), we
have

z(InLcf(z))
′
= (c + 1) Inf(z)− cInLcf(z). (2.6)

Using (2.5) and (2.6), we have

(c + 1)
Inf(z)

InLcf(z)
= c + γ + (1− γ)p(z). (2.7)

Differentiating both sides of (2.7) with respect to z logarithmically, we obtain

z(Inf(z))′

Inf(z)
− γ = (1− γ)p(z) +

(1− γ)zp′(z)
c + γ + (1− γ)p(z)

.

Suppose that there exists a point z0 ∈ U such that

|arg p(z)| < π

2
β (|z| < |z0|) and |arg p(z0)| =

π

2
β.

Then, applying Lemma 2.1, we can write that

z0p
′
(z0)

p(z0)
= ikβ and (p(z0))

1
β = ±ia (a > 0).

If arg p(z0) = Π
2 β, then

z0(Inf(z0))
′

Inf(z0)
− γ = (1− γ)p(z0)

1 +

z0p
′
(z0)

p(z0)
c + γ + (1− γ)p(z0)
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= (1− γ)aβei Πβ
2

[
1 +

ikβ

c + γ + (1− γ)aβei Πβ
2

]
.

This shows that

arg

{
z0(I

nf(z0))
′

Inf(z0)
− γ

}
=

π

2
β + arg

[
1 +

ikβ

c + γ + (1− γ)aβei Πβ
2

]
=

Π

2
β

+tan−1

{
kβ[c+γ + (1− γ)aβ cos(Πβ

2
)]

(c+γ)2 + 2(c+γ)(1− γ)aβ cos(Πβ
2

) + (1− γ)2a2β + kβ(1− γ)aβ sin(Πβ
2

)

}

≥ π

2
β (where k ≥ 1

2
(a +

1

a
) ≥ 1),

which contradicts the condition f(z) ∈ S∗n(β, γ).
Similarly, we can prove the case arg p(z0) = −Π

2 β. Thus we conclude
that the function p(z) has to satisfy |arg p(z)| < Π

2 β for all z ∈ U. This
gives that ∣∣∣∣arg

{
z(InLcf(z))′

InLcf(z)
− γ

}∣∣∣∣ <
π

2
β (z ∈ U),

or Lcf(z) ∈ S∗n(β, γ). This completes the proof of Theorem 2.4.

Theorem 2.5. Let c > −γ and 0 ≤ γ < 1. If f(z) ∈ Cn(β, γ) and

1 +
z(InLcf(z))

′′

(InLcf(z))′ 6= γ

for all z ∈ U, then we have Lcf(z) ∈ Cn(β, γ).

Proof. f(z) ∈ Cn(β, γ) ⇐⇒ zf ′(z) ∈ S∗n(β, γ) =⇒ Lc(zf ′(z)) ∈
S∗n(β, γ) ⇐⇒ z(Lcf(z))

′ ∈ S∗n(β, γ) ⇐⇒ Lcf(z) ∈ Cn(β, γ).
This completes the proof of Theorem 2.5.
Acknowledgements. The author is thankful to the referee for his comments
and suggestions.
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The extensions for the univalence conditions
of certain general integral operators

Serap Bulut

Abstract. In this paper, we generalize certain integral operators given
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1. Introduction

Let A denote the class of functions of the form

f(z) = z +
∞∑

k=2

akzk,

which are analytic in the open unit disk

U = {z ∈ C : |z| < 1}

and satisfy the following usual normalization condition

f(0) = f ′(0)− 1 = 0.

We denote by S the subclass of A consisting of functions which are also
univalent in U.

In [6] and [7], Pescar gave the following univalence conditions for the
functions f ∈ A.

Theorem 1.1. [6] Let α be a complex number, < (α) > 0, and c be a complex
number, |c| ≤ 1, c 6= −1 and f(z) = z + · · · a regular function in U. If∣∣∣∣c |z|2α +

(
1− |z|2α

) zf ′′(z)
αf ′(z)

∣∣∣∣ ≤ 1,
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for all z ∈ U, then the function

Fα(z) =
(

α

∫ z

0

tα−1f ′(t)dt

) 1
α

= z + · · ·

is regular and univalent in U.

Theorem 1.2. [7] Let α be a complex number, < (α) > 0, and c be a complex
number, |c| ≤ 1, c 6= −1 and f ∈ A. If

1− |z|2<(α)

< (α)

∣∣∣∣zf ′′(z)
f ′(z)

∣∣∣∣ ≤ 1− |c| ,

for all z ∈ U, then for any complex number β, < (β) ≥ < (α), the function

Fβ(z) =
(

β

∫ z

0

tβ−1f ′(t)dt

) 1
β

is in the class S.

On the other hand, for the functions f ∈ A, Ozaki and Nunokawa [5]
proved another univalence condition asserted by Theorem 1.3.

Theorem 1.3. [5] Let f ∈ A satisfy the condition∣∣∣∣∣z2f ′(z)
(f(z))2

− 1

∣∣∣∣∣ ≤ 1 (z ∈ U). (1.1)

Then f is univalent in U.

Furthermore in [8], Pescar determined necessary conditions for univa-
lence of some integral operators.

Theorem 1.4. [8] Let the function g ∈ A satisfy (1.1), M be a positive real
number fixed and c be a complex number. If

α ∈
[
2M + 1
2M + 2

,
2M + 1

2M

]
,

|c| ≤ 1−
∣∣∣∣α− 1

α

∣∣∣∣ (2M + 1) , c 6= −1

and

|g(z)| ≤ M

for all z ∈ U, then the function

Gα(z) =
(

α

∫ z

0

(g(t))α−1
dt

) 1
α

(1.2)

is in the class S.
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Theorem 1.5. [8] Let g ∈ A, α be a real number, α ≥ 1, and c be a complex
number, |c| ≤ 1

α , c 6= −1. If∣∣∣∣g′′(z)
g′(z)

∣∣∣∣ ≤ 1 (z ∈ U),

then the function

Hα(z) =
(

α

∫ z

0

(tg′(t))α−1
dt

) 1
α

(1.3)

is in the class S.

Theorem 1.6. [8] Let g ∈ A satisfies (1.1), α be a complex number, M > 1
fixed, < (α) > 0 and c be a complex number, |c| < 1. If

|g(z)| ≤ M

for all z ∈ U, then for any complex number β

< (β) ≥ < (α) ≥ 2M + 1
|α| (1− |c|)

,

the function

Hβ(z) =

(
β

∫ z

0

tβ−1

(
g(t)
t

) 1
α

dt

) 1
β

(1.4)

is in the class S.

Finally, Breaz and Breaz [1] considered the following family of integral
operators and proved that the function Gn,α defined by

Gn,α(z) =

[n(α− 1) + 1]
∫ z

0

n∏
j=1

(gj(t))
α−1

dt

 1
n(α−1)+1

(g1, . . . , gn ∈ A)

(1.5)
is univalent in U. For some recent investigations of the integral operator Gn,α,
see the works by Breaz et al. [2] and [3].

Now we introduce two new general integral operators as follows:

Hn,α(z) :=

[n(α− 1) + 1]
∫ z

0

n∏
j=1

(
tg′j(t)

)α−1
dt

 1
n(α−1)+1

(g1, . . . , gn ∈ A) ,

(1.6)

Hn,β(z) :=

[n(β−1)+1]
∫ z

0

tn(β−1)
n∏

j=1

(
gj(t)

t

) 1
α

dt

 1
n(β−1)+1

(g1, . . . , gn∈A).

(1.7)

Remark 1.7. For n = 1, the integral operators in (1.5), (1.6) and (1.7) would
reduce to the integral operators in (1.2), (1.3) and (1.4), respectively.
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In this paper, we investigate univalence conditions involving the general
family of integral operators defined by (1.5), (1.6) and (1.7). For this purpose,
we need the following result.
General Schwarz Lemma. [4] Let the function f be regular in the disk
UR = {z ∈ C : |z| < R}, with |f(z)| < M for fixed M . If f has one zero
with multiplicity order bigger than m for z = 0, then

|f(z)| ≤ M

Rm
|z|m (z ∈ UR).

The equality can hold only if

f(z) = eiθ M

Rm
zm,

where θ is constant.

2. Main Results

Theorem 2.1. Let M > 0 and the functions gj ∈ A (j ∈ {1, . . . , n}) satisfies
the inequality (1.1). Also let

α ∈ R
(

α ∈
[

(2M + 1) n

(2M + 1)n + 1
,

(2M + 1)n

(2M + 1)n− 1

])
and c ∈ C.

If

|c| ≤ 1−
∣∣∣∣ α− 1
n(α− 1) + 1

∣∣∣∣ (2M + 1) n, c 6= −1 (2.1)

and

|gj(z)| ≤ M (z ∈ U; j ∈ {1, . . . , n}) ,

then the function Gn,α defined by (1.5) is in the class S.

Proof. Define a function

h(z) =
∫ z

0

n∏
j=1

(
gj(t)

t

)α−1

dt.

Then we obtain

h′(z) =
n∏

j=1

(
gj(z)

z

)α−1

.

Also, a simple computation yields

zh′′(z)
h′(z)

= (α− 1)
n∑

j=1

(
zg′j(z)
gj(z)

− 1
)

,
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which readily shows that∣∣∣∣c |z|2[n(α−1)+1] +
(
1− |z|2[n(α−1)+1]

) zh′′(z)
[n(α− 1) + 1]h′(z)

∣∣∣∣
≤ |c|+ 1

|n(α− 1) + 1|

∣∣∣∣zh′′(z)
h′(z)

∣∣∣∣
≤ |c|+

∣∣∣∣ α− 1
n(α− 1) + 1

∣∣∣∣ n∑
j=1

(∣∣∣∣∣ z2g′j(z)

(gj(z))2

∣∣∣∣∣
∣∣∣∣gj(z)

z

∣∣∣∣+ 1

)
.

Since
|gj(z)| ≤ M (z ∈ U; j ∈ {1, . . . , n}) ,

by using the inequality (1.1) and the general Schwarz lemma, we obtain∣∣∣∣c |z|2[n(α−1)+1] +
(
1− |z|2[n(α−1)+1]

) zh′′(z)
[n(α− 1) + 1]h′(z)

∣∣∣∣
≤ |c|+

∣∣∣∣ α− 1
n(α− 1) + 1

∣∣∣∣ (2M + 1)n,

which, by (2.1), yields∣∣∣∣c |z|2[n(α−1)+1] +
(
1− |z|2[n(α−1)+1]

) zh′′(z)
[n(α− 1) + 1]h′(z)

∣∣∣∣ ≤ 1 (z ∈ U).

Applying Theorem 1.1, we conclude that the function Gn,α defined by (1.5)
is in the class S. �

Remark 2.2. Setting n = 1 in Theorem 2.1, we have Theorem 1.4.

Theorem 2.3. Let gj ∈ A (j ∈ {1, . . . , n}), α be a real number, α ≥ 1, and c
be a complex number with

|c| ≤ 1
n(α− 1) + 1

, c 6= −1. (2.2)

If ∣∣∣∣∣g′′j (z)
g′j(z)

∣∣∣∣∣ ≤ 1 (z ∈ U; j ∈ {1, . . . , n}) , (2.3)

then the function Hn,α defined by (1.6) is in the class S.

Proof. Define a function

h(z) =
∫ z

0

n∏
j=1

(
g′j(t)

)α−1
dt.

Then we obtain

h′(z) =
n∏

j=1

(
g′j(z)

)α−1 .

Also, a simple computation yields

zh′′(z)
h′(z)

= (α− 1)
n∑

j=1

zg′′j (z)
g′j(z)

,
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which readily shows that∣∣∣∣c |z|2[n(α−1)+1] +
(
1− |z|2[n(α−1)+1]

) zh′′(z)
[n(α− 1) + 1]h′(z)

∣∣∣∣
≤ |c|+ 1

n(α− 1) + 1

∣∣∣∣zh′′(z)
h′(z)

∣∣∣∣
≤ |c|+

(
α− 1

n(α− 1) + 1

) n∑
j=1

∣∣∣∣∣zg′′j (z)
g′j(z)

∣∣∣∣∣ .
By (2.2) and (2.3), we obtain∣∣∣∣c |z|2[n(α−1)+1] +

(
1− |z|2[n(α−1)+1]

) zh′′(z)
[n(α− 1) + 1]h′(z)

∣∣∣∣ ≤ 1 (z ∈ U).

Applying Theorem 1.1, we conclude that the function Hn,α defined by (1.6)
is in the class S. �

Remark 2.4. Setting n = 1 in Theorem 2.3, we have Theorem 1.5.

Theorem 2.5. Let M > 0 and the functions gj ∈ A (j ∈ {1, . . . , n}) satisfies
the inequality (1.1). Also let α be a complex number, < (α) > 0, and c be a
complex number, |c| < 1. If

|gj(z)| ≤ M (z ∈ U; j ∈ {1, . . . , n}) ,

then for any complex number β with

< (n(β − 1) + 1) ≥ < (α) ≥ (2M + 1) n

|α| (1− |c|)
, (2.4)

the function Hn,β defined by (1.7) is in the class S.

Proof. Define a function

h(z) =
∫ z

0

n∏
j=1

(
gj(t)

t

) 1
α

dt.

Then we obtain

h′(z) =
n∏

j=1

(
gj(z)

z

) 1
α

.

Also, a simple computation yields

zh′′(z)
h′(z)

=
1
α

n∑
j=1

(
zg′j(z)
gj(z)

− 1
)

,

which readily shows that

1− |z|2<(α)

< (α)

∣∣∣∣zh′′(z)
h′(z)

∣∣∣∣ ≤ 1
|α| < (α)

n∑
j=1

(∣∣∣∣∣ z2g′j(z)

(gj(z))2

∣∣∣∣∣
∣∣∣∣gj(z)

z

∣∣∣∣+ 1

)
.

Since
|gj(z)| ≤ M (z ∈ U; j ∈ {1, . . . , n}) ,
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by using the inequality (1.1) and the general Schwarz lemma, we obtain

1− |z|2<(α)

< (α)

∣∣∣∣zh′′(z)
h′(z)

∣∣∣∣ ≤ 1
|α| < (α)

(2M + 1) n,

which, by (2.4), yields

1− |z|2<(α)

< (α)

∣∣∣∣zh′′(z)
h′(z)

∣∣∣∣ ≤ 1− |c| (z ∈ U).

Applying Theorem 1.2, we conclude that the function Hn,β defined by (1.7)
is in the class S. �

Remark 2.6. Setting n = 1 in Theorem 2.5, we have Theorem 1.6.
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lent functions in the unit disk. Further, we introduce some classes of
functions defined by this operator. Partial sums are also considered.

Mathematics Subject Classification (2010): 30C45.

Keywords: Differential operator, multivalent functions, partial sums.

1. Introduction

Let T (p) denote the class of functions f of the form

f(z) = zp +
∞∑

n=1

anzn+p, (p ∈ N, z ∈ U). (1.1)

which are analytic and p-valent (multivalent) in the open unit disk

U = {z : z ∈ C and |z| < 1}.

Let be given two functions f, g ∈ T (p),

f(z) = zp +
∞∑

n=1

anzn+p

and

g(z) = zp +
∞∑

n=p+1

bnzn.

Then their convolution or Hadamard product f(z) ∗ g(z) is defined by

f(z) ∗ g(z) = zp +
∞∑

n=1

anbnzn+p, (z ∈ U).
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Define a function ϕp(a, c; z) as follows

ϕp(a, c; z) := zp +
∞∑

n=1

(a)n

(c)n
zn+p, c 6= 0,−1,−2, ...

where (a)n is the Pochhammer symbol defined by

(a)n =
Γ(a + n)

Γ(a)
=

{
1, n = 0
a(a + 1)...(a + n− 1), n = {1, 2, ...}.

Assume that a = k + p > 0 and c = 1 where k = 0, 1, 2, ... in ϕp(a, c; z) so we
obtain the function

ϕp(k + p, 1; z) = zp +
∞∑

n=1

(k + p)n

(1)n
zn+p. (1.2)

Next we define the following differential operator Dk
λ,p : T (p) → T (p) by

D0f(z) = f(z) = zp +
∞∑

n=1

anzn+p

D1
λ,pf(z) = (1 + λp)f(z)− λzf ′(z) = zp +

∞∑
n=1

(1− λn)anzn+p

...

Dk
λ,pf(z) = zp +

∞∑
n=1

(1− λn)kanzn+p, (z ∈ U),

(1.3)

where (
p ∈ N, k ∈ N0, 0 ≤ λ <

1
n

, n ∈ N
)
.

Again by applying convolution product on (1.2) and (1.3) we have the fol-
lowing operator

Dk
λ,pf(z) =

zp

(1− z)k+p
∗Dk

λ,pf(z)

= zp +
∞∑

n=1

(k + p)n

(1)n
(1− λn)kanzn+p

= zp +
∞∑

n=1

C(n, k)(1− λn)kanzn+p, (z ∈ U),

(1.4)

where C(n, k) := (k+p)n

(1)n
.

Remark 1.1. The symbol Dk
λ,pf(z), when λ = 0, p = 1, was introduced by

Ruscheweyh [1] and when λ = 0 by Goel and Sohi [2].
A function f ∈ T (p) is said to be p-valent starlike of order µ, 0 ≤ µ < p if

<
{zf ′(z)

f(z)

}
> µ, (z ∈ U).
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The class of p-valent starlike functions of order µ is denoted by S∗p(µ). A
function f ∈ T (p) is said to be p-valent convex of order µ, 0 ≤ µ < p if

<
{

1 +
zf ′′(z)
f ′(z)

}
> µ, (z ∈ U).

The class of p-valent convex functions of order µ is denoted by Cp(µ).
A function f ∈ T (p) is said to be in the class S∗p(µ, λ) of order µ, where
0 ≤ µ < p if

<
{z[Dk

λ,pf(z)]′

Dk
λ,pf(z)

}
> µ, (z ∈ U).

A function f ∈ T (p) is said to be in the class Cp(µ, λ) of order µ, where
0 ≤ µ < p if

<
{

1 +
z[Dk

λ,pf(z)]′′

[Dk
λ,pf(z)]′

}
> µ, (z ∈ U).

For 0 ≤ α < p and β ≥ 0, let S∗p(α, β, λ) be the subclass of T (p) consisting
of functions of the form (1.1) satisfying the analytic criterion

<
{z[Dk

λ,pf(z)]′

Dk
λ,pf(z)

− α
}

> β
∣∣∣z[Dk

λ,pf(z)]′

Dk
λ,pf(z)

− p
∣∣∣, (z ∈ U). (1.5)

Also, for 0 ≤ α < p and β ≥ 0, let Cp(α, β, λ) be the subclass of T (p)
satisfying the analytic criterion

<
{

1 +
z[Dk

λ,pf(z)]′′

[Dk
λ,pf(z)]′

− α
}

> β
∣∣∣z[Dk

λ,pf(z)]′′

[Dk
λ,pf(z)]′

− (p− 1)
∣∣∣, (z ∈ U). (1.6)

The main goal of this work is to determine sufficient conditions for the ana-
lytic functions to belong to these general classes. Sharp results involving par-
tial sums fm+p(z) of functions f(z) in the classes S∗p(α, β, λ) and Cp(α, β, λ)
are obtained.

2. The classes S∗
p(α, β, λ) and Cp(α, β, λ)

In this section we obtain sufficient conditions for functions f(z) to be in the
classes S∗p(α, β, λ) and Cp(α, β, λ).
Theorem 2.1. A sufficient condition for a function f(z) of the form (1.1) to
be in S∗p(α, β, λ) is

∞∑
n=1

[(1 + β)n + (p− α)]C(n, k)(1− λn)k|an| < p− α, (z ∈ U), (2.1)

for 0 ≤ α < p, β ≥ 0 and 0 ≤ λ < 1
n , n ∈ N.

Proof. It suffices to show that

β
∣∣∣z[Dk

λ,pf(z)]′

Dk
λ,pf(z)

− p
∣∣∣−<

{z[Dk
λ,pf(z)]′

Dk
λ,pf(z)

− p
}
≤ p− α, (z ∈ U).
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We have

β
∣∣∣z[Dk

λ,pf(z)]′

Dk
λ,pf(z)

− p
∣∣∣−<

{z[Dk
λ,pf(z)]′

Dk
λ,pf(z)

− p
}
≤ (1 + β)

∣∣∣z[Dk
λ,pf(z)]′

Dk
λ,pf(z)

− p
∣∣∣

≤
(1 + β)

∑∞
n=1 nC(n, k)(1− λn)k|an||z|n+p

1−
∑∞

n=1 C(n, k)(1− λn)k|an||z|n+p

≤
(1 + β)

∑∞
n=1 nC(n, k)(1− λn)k|an|

1−
∑∞

n=p+1 C(n, k)(1− λn)k|an|
.

This last expression is bounded above by (p− α) if
∞∑

n=1

[(1 + β)n + (p− α)]C(n, k)(1− λn)k|an| < p− α,

and the proof is complete.
By setting β = λ = 0 (Goel-Sohi operator [2]) in Theorem 2.1, we obtain the
following result:
Corollary 2.2. Let f be given by (1.1) and satisfying

∞∑
n=2

(n + p− α)C(n, k)|an| ≤ p− α, (0 ≤ α < p, z ∈ U)

then f ∈ S∗p(α) (p-valent starlike).
By letting β = λ = 0 and p = 1 (Ruscheweyh operator [1]) in Theorem 2.1,
we obtain the following result:
Corollary 2.3. Let f be given by (1.1) and satisfying

∞∑
n=2

(n + 1− α)C(n, k)|an| ≤ 1− α, (0 ≤ α < 1, z ∈ U)

then f ∈ S∗(α) (starlike).
In the same manner we can obtain the next result.
Theorem 2.4. A sufficient condition for a function f of the form (1.1) to be
in Cp(α, β, λ) is
∞∑

n=1

(n+p)[n(1+β)+(p−α)]C(n, k)(1−λn)k|an| < p(p−α), (p ∈ N, z ∈ U),

(2.2)
for 0 ≤ α < p and β ≥ 0.
Proof. It suffices to show that

β
∣∣∣z[Dk

λ,pf(z)]′′

[Dk
λ,pf(z)]′

− (p− 1)
∣∣∣−<

{z[Dk
λ,pf(z)]′′

[Dk
λ,pf(z)]′

− (p− 1)
}
≤ p− α,

(p ∈ N, 0 ≤ α < p, β ≥ 0, z ∈ U).
Then we have

β
∣∣∣z[Dk

λ,pf(z)]′′

[Dk
λ,pf(z)]′

− (p− 1)
∣∣∣−<

{z[Dk
λ,pf(z)]′′

[Dk
λ,pf(z)]′

− (p− 1)
}
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≤ (1 + β)
∣∣∣z[Dk

λ,pf(z)]′′

[Dk
λ,pf(z)]′

− (p− 1)
∣∣∣

≤
(1 + β)

∑∞
n=1 n(n + p)C(n, k)(1− λn)k|an||z|n+p−1

p|z|p−1 −
∑∞

n=1(n + p)C(n, k)(1 + λn)k|an||z|n+p−1

≤
(1 + β)

∑∞
n=1 n(n + p)C(n, k)(1 + λn)k|an|

p−
∑∞

n=1(n + p)C(n, k)(1− λn)k|an|
.

This last expression is bounded above by (p− α) if
∞∑

n=1

(n + p)[n(1 + β) + (p− α)]C(n, k)(1− λn)k|an| < p(p− α), (p ∈ N).

This completes the proof.

3. Partial sums

In this section, applying methods used by Silverman [3] and Silvia [4], we will
investigate the ratio of a function f(z) of the form (1.1) to its sequence of
partial sums

fm+p(z) = zp +
m∑

n=1

anzn+p, (z ∈ U) (3.1)

when the coefficients are small enough in order to satisfy either condition
(2.1) or (2.2). More precisely, we will determine sharp lower bounds for

<
{ f(z)

fm+p(z)

}
,<

{fm+p(z)
f(z)

}
,<

{ f ′(z)
f ′m+p(z)

}
and <

{f ′m+p(z)
f ′(z)

}
.

In the sequel, we will make use of the fact that

<
{ (1 + w(z))

(1− w(z))

}
> 0, (z ∈ U)

if and only if w(z) =
∑∞

n=1 cnzn satisfies the inequality |w(z)| < |z|.
Theorem 3.1. Let f given by (1.1) and satisfies (2.1). Then

<
{

f(z)
fm+p(z)

}
> 1− p−α

[(1+β)(m+p+1)+(p−α)]C(m+p+1,k)(1−λ(m+p+1))k , (3.2)

(
z ∈ U, p > α, m = 0, 1, 2, ..., 0 ≤ λ <

1
m + p + 1

)
.

The result is sharp for every m with the extremal function

f(z) = zp + p−α
[(1+β)(m+p+1)+(p−α)]C(m+p+1,k)(1−λ(m+p+1))k zm+p+1, (3.3)

(z ∈ U, m ≥ 0, p > α).
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Proof. Assume that f ∈ T (p) satisfies (2.1). By setting

w(z) = [(1+β)(m+p+1)+(p−α)]C(m+p+1,k)(1−λ(m+p+1))k

p−α

{
f(z)

fm+p(z)

−
(
1− p−α

[(1+β)(m+p+1)+(p−α)]C(m+p+1,k)(1−λ(m+p+1))k

)}

:= 1 +
Hm+p+1

∑∞
n=m+1 anzn

1 +
∑m

n=1 anzn
,

where

Hm+p+1 := [(1+β)(m+p+1)+(p−α)]C(m+p+1,k)(1−λ(m+p+1))k

p−α .

Thus we find that∣∣∣w(z)− 1
w(z) + 1

∣∣∣ ≤ Hm+p+1

∑∞
n=m+1 |an|

2− 2
∑m

n=1 |an| −Hm+p+1

∑∞
n=m+1 |an|

≤ 1, (z ∈ U)

if and only if

2Hm+p+1

∞∑
n=m+1

|an| ≤ 2− 2
m∑

n=1

|an|

which is equivalent to
m∑

n=1

|an|+ Hm+p+1

∞∑
n=m+1

|an| ≤ 1. (3.4)

In order to see that

f(z) = zp +
zm+p+1

Hm+p+1
, (z ∈ U)

gives a sharp result, we observe that for

z = re
πi

m+p , (z ∈ U)

that
f(z)

fm+p(z)
= 1 +

zm+p

Hm+p+1
→ 1− 1

Hm+p+1
as z → 1−.

This completes the proof.
Theorem 3.2. Let f given by (1.1) satisfying (2.1). Then

<
{

fm+p(z)
f(z)

}
> [(1+β)(m+p+1)+(p−α)]C(m+p+1,k)(1−λ(m+p+1))k

(p−α)+[(1+β)(m+p+1)+(p−α)]C(m+p+1,k)(1−λ(m+p+1))k , (3.5)(
z ∈ U, p > α, m = 0, 1, 2, ..., 0 ≤ λ <

1
m + p + 1

)
.

The result is sharp for every m with an extremal function given by (3.3).
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Proof. Assume that f ∈ T (p) and satisfies (2.1). Write

w(z) =
(
1 + [(1+β)(m+p+1)+(p−α)]C(m+p+1,k)(1−λ(m+p+1))k

p−α

){
fm+p(z)

f(z)

− [(1+β)(m+p+1)+(p−α)]C(m+p+1,k)(1−λ(m+p+1))k

(p−α)+[(1+β)(m+p+1)+(p−α)]C(m+p+1,k)(1−λ(m+p+1))k

}

= 1−

(
1 + Hm+p+1

) ∑∞
n=m+1 anzn

1 +
∑m

n=1 anzn

where Hm+p+1 is defined in Theorem 3.1. This yields that∣∣∣w(z)− 1
w(z) + 1

∣∣∣ ≤ (1 + Hm+p+1)
∑∞

n=m+1 |an|
2− 2

∑m
n=p+1 |an| − (1 + Hm+p+1)

∑∞
n=m+1 |an|

≤ 1, (z ∈ U)

if and only if

2[(1 + Hm+p+1)
∞∑

n=m+1

|an|] ≤ 2− 2
m∑

n=2

|an|

or
m∑

n=p+1

|an|+ (1 + Hm+p+1)
∞∑

n=m+1

|an| ≤ 1, (3.6)

which gives (3.5). The bound in (3.5) is sharp for all m ∈ N with the extremal
function given by (3.3). This completes the proof.
Theorem 3.3. Let f given by (1.1) satisfies (2.1). Then

<
{

f ′(z)
f ′

m+p(z)

}
≥ 1− (m+p+1)(p−α)

[(1+β)(m+p+1)+(p−α)]C(m+p+1,k)(1−λ(m+p+1))k , (3.7)(
z ∈ U, p > α, m = 0, 1, 2, ..., 0 ≤ λ <

1
m + p + 1

)
.

Proof. Assume that f ∈ T (p) satisfies (2.1). Write

w(z) = [(1+β)(m+p+1)+(p−α)]C(m+p+1,k)(1−λ(m+p+1))k

p−α

{
f ′(z)

f ′
m+p(z)

−
(
1− (m+p+1)(p−α)

[(1+β)(m+p+1)+(p−α)]C(m+p+1,k)(1−λ(m+p+1))k

)}
=

1 + Hm+p+1
(m+p+1)

∑∞
n=m+1

n+p
p anzn +

∑∞
n=1

n+p
p anzn

1 +
∑m

n=1
n+p

p anzn

= 1 +
Hm+p+1
(m+p+1)

∑∞
n=m+1

n+p
p anzn

1 +
∑m

n=1
n+p

p anzn
,
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where Hm+p+1 is defined in Theorem 3.1. This implies∣∣∣w(z)− 1
w(z) + 1

∣∣∣ ≤ Hm+p+1
m+p+1

∑∞
n=m+1

n+p
p |an|

2− 2
∑m

n=1
n+p

p |an| − Hm+p+1
m+p+1

∑∞
n=m+1

n+p
p |an|

≤ 1, (z ∈ U)

if and only if

2[
Hm+p+1

m + p + 1

∞∑
n=m+1

n

p
|an|] ≤ 2− 2

m∑
n=p+1

n

p
|an|,

i.e.
m+p∑
n=1

n

p
|an|+

Hm+p+1

m + p + 1

∞∑
n=m+1

n

p
|an| ≤ 1.

We therefore obtain (3.7). The result is sharp with functions given by (3.3).
The proof of the Theorem 3.3 is completed.
Theorem 3.4. Let f given by (1.1) satisfying (2.1). Then

<
{

f ′
m(z)
f ′(z)

}
≥ [(1+β)(m+p+1)+(p−α)]C(m+p+1,k)(1−λ(m+p+1))k

(m+p+1)(p−α)+[(1+β)(m+p+1)+(p−α)]C(m+p+1,k)(1−λ(m+p+1))k ,

(3.8)(
z ∈ U, p > α, m = 0, 1, 2, ..., 0 ≤ λ <

1
m + p + 1

)
.

Proof. Assume that f ∈ T (p) satisfies (2.1). Consider

w(z) =
(
(m + p + 1) + [(1+β)(m+p+1)+(p−α)]C(m+p+1,k)(1−λ(m+p+1))k

p−α

){
f ′

m(z)
f ′(z)

− [(1+β)(m+p+1)+(p−α)]C(m+p+1,k)(1−λ(m+p+1))k

(m+p+1)(p−α)+[(1+β)(m+p+1)+(p−α)]C(m+p+1,k)(1−λ(m+p+1))k

}

= 1−
(1 + Hm+p+1

m+p+1 )
∑∞

n=m+1
n+p

p anzn

1 +
∑m

n=2
n+p

p anzn
.

This implies that∣∣∣w(z)− 1
w(z) + 1

∣∣∣ ≤ (1 + Hm+p+1
m+p+1 )

∑∞
n=m+1

n+p
p |an|

2− 2
∑m

n=1
n+p

p |an| − (1 + Hm+p+1
m+p+1 )

∑∞
n=m+1

n+p
p |an|

≤ 1, (z ∈ U)

if and only if

2[(1 +
Hm+p+1

m + p + 1
)

∞∑
n=m+1

n + p

p
|an|] ≤ 2− 2

m∑
n=1

n + p

p
|an|,
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i.e.
m∑

n=1

n + p

p
|an|+ (1 +

Hm+p+1

m + p + 1
)

∞∑
n=m+1

n + p

p
|an| ≤ 1.

We therefore obtain (3.8). The result is sharp with functions given by (3.3).
The proof of Theorem 3.4 is complete.
In the same manner as the proof of Theorems 3.1-3.4, we can show the fol-
lowing results:
Theorem 3.5. Let f given by (1.1) satisfying (2.2). Then

<
{

f(z)
fm+p(z)

}
> 1− p(p−α)

(m+p+1)[(1+β)(m+p+1)+(p−α)]C(m+p+1,k)(1−λ(m+p+1))k .

(3.9)
The result is sharp for every m with the extremal function

f(z) = zp + p(p−α)
(m+p+1)[(1+β)(m+p+1)+(p−α)]C(m+p+1,k)(1−λ(m+p+1))k zm+p+1,

(3.10)(
z ∈ U, p > α, m = 0, 1, 2, ..., 0 ≤ λ <

1
m + p + 1

)
.

Theorem 3.6. Let f given by (1.1) satisfies (2.2). Then

<
{

fm+p(z)
f(z)

}
> (m+p+1)[(1+β)(m+p+1)+(p−α)]C(m+p+1,k)(1−λ(m+p+1))k

p(p−α)+(m+p+1)[(1+β)(m+p+1)+(p−α)]C(m+p+1,k)(1−λ(m+p+1))k ,

(3.11)(
z ∈ U, p > α, m = 0, 1, 2, ..., 0 ≤ λ <

1
m + p + 1

)
.

The result is sharp for every m with the extremal function given by (3.10).
Theorem 3.7. Let f given by (1.1) satisfies (2.2). Then

<
{

f ′(z)
f ′

m+p(z)

}
≥ 1− p(m+p+1)(p−α)

(m+p+1)[(1+β)(m+p+1)+(p−α)]C(m+p+1,k)(1−λ(m+p+1))k ,

(3.12)(
z ∈ U, p > α, m = 0, 1, 2, ..., 0 ≤ λ <

1
m + p + 1

)
.

Theorem 3.8. Let f given by (1.1) satisfies (2.2). Then

<
{f ′m(z)

f ′(z)

}
≥ (m+p+1)[(1+β)(m+p+1)+(p−α)]C(m+p+1,k)(1−λ(m+p+1))k

p(m+p+1)(p−α)+(m+p+1)[(1+β)(m+p+1)+(p−α)]C(m+p+1,k)(1−λ(m+p+1))k

(3.13)
where (

z ∈ U, p > α, m = 0, 1, 2, ..., 0 ≤ λ <
1

m + p + 1

)
.
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On the stability of the bivariate geometric
composed distribution’s characterization

Nguyen Huu Bao

Abstract. Let (Xj , Yj), j = 1, 2... be nonnegative i.i.d random vectors
and (N1, N2) be independent of (Xj , Yj), j = 1, 2, ... with Bivariate

Geometric Distribution. The vector (Z1 =
∑N1

j=1 Xj ; Z2 =
∑N2

j=1 Yj) is

called the Bivariate Geometric Composed vector. In [3], a characteri-
zation for distribution function of this vector was showed and in this
paper we shall consider the stability of this characterization.

Mathematics Subject Classification (2010): 60E10, 62E10.

Keywords: Characterization, stability of characterization, composed ran-
dom variables, geometric summation.

1. Introduction

At first, we recall a well-known characterization of the univariate geometric
composed distribution. Let X1, X2, ... be nonegative i.i.d random variables
(r.v’s) P (Xj > x) = F (x), EXj = 1(j = 1, 2, ..) and let N be independent of
Xj , (j = 1, 2, ...) with the Geometric distribution, i.e.

P (N = k) = p(1− p)k−1 (k = 1, 2, ...)

The random variable Z =
∑N

j=1Xj is called the Geometric Composed ran-
dom variable. We denote Gp(x) = P{pZ > x}. In [1], Renyi has given char-
acteristics of this Geometric Composed Distribution. In [2], some stabilities
of this Renyi’s characteristic theorem was considered by two Vietnamese au-
thors. In [3] (1985), A. Kovat (Hungarian) expanded this Renyi’s character-
istic theorem for the case of two dimensions.

We consider the Bivariate Geometric Composed distribution as the fol-
lowing definition (See [3]).
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Let A1, A2 be arbitrary events and p = (p1, p2, p12), means the proba-
bilities

P (A1A2) = p1;P (A1A2) = p2;P (A1A2) = p12 (1.1)

and q = 1− p1 − p2 − p12 = 1− P (A1 ∪A2).
Let N1, N2 be the serial numbers of necessary trials for occuring at first

of the event A1, A2 resp. occur at first. Then we will say that the random
vector (N1, N2) has bivariate geometric distribution and we can obtain the
following distribution of (N1, N2):

P{N1 = k1;N2 = k2}=


qk2−1p2(1− p1 − p12)k1−k2−1(p1 + p12 if k1 > k2

qk1−1p12 if k1 = k2

qk1−1p1(1− p2 − p12)k2−k1−1(p1 + p12 if k1 < k2

(1.2)
Let (Xj , Yj), j = 1, 2, ... be nonegative i.i.d. random vectors, P{Xj > x;Yj >

y} = F (x, y), ϕ(t1, t2) = E{eit1Xj+it2Yj};EXj = 1;EYj = 1(j = 1, 2, ..)
Let (N1, N2) be independent of (Xj , Yj) (j=1,2,...) and (N1, N2) has

Bivariate geometric distribution. The random vector (Z1 =
∑N1

j=1Xj ;Z2 =∑N2
j=1 Yj) is called the Bivariate Geometric Composed random vector.

Put

Gp(x, y) = P{(p1 + p12)Z1 > x; (p2 + p12)Z2 > y}. (1.3)

The following characteristic theorem was showed in [3].
Theorem 1.1 Gp(x, y) = F (x, y) if and only if

ϕ(t1, t2) = [1− it1 − it2 +
∞∑

r=1

∞∑
k=1

(−1)n+kan,kt
n
1 t

k
2 ]−1, (1.4)

where

a1,1 =
p1 + p2

p1 + p2 + p12 − (p1 + p12)(p2 + p12)
,

a1,2 =
p2 − a1,1(p2 + p12)(1− p1 − p12)

p1 + p2 + p12 − (p1 + p12)(p2 + p12)2
,

a2,1 =
p1 − a1,1(p1 + p12)(1− p2 − p12)

p1 = p2 + p12 − (p1 + p12)2(p2 + p12)
, (1.5)

an,k = [p1 + p2 + p12 − (p1 + p12)n(p2 + p12)k]−1

· {an−1,k−1[(p1 + p12)n−1(p2 + p12)k−1 − p12]

+ an,k−1[(p1 + p12)n(p2 + p12)k−1 − p2 − p12]

+ an−1,k[(p1 + p12)n−1(p2 + p12)k − p1 − p12]}

Now, we shall consider the stability of this characteristic theorem.
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2. Stability theorems

Suppose that X and Y are two n-dimensional random vectors with the char-
acteristic functions ϕX(t) and ϕY (t) respectively. In [4], the metric λ(X;Y )
was defined as follows

λ(X;Y ) = λ(ϕX ;ϕY ) = sup
T>0

{max{v(X,Y ;T );
1
T
}} (2.1)

where
v(X,Y ;T ) =

1
2
max{|ϕX(t)− ϕY (t)|; ||t|| < T} (2.2)

and ϕX(t) = Eei(t,X), where (., .) denotes the scalar product in the space Rn

and ||t|| =
√

(t, t) with t ∈ Rn.
Theorem 2.1. Let us consider the 2-dimensional characteristic function

ϕ0(t1, t2) = [1− it1 − it2 +
∞∑

n=1

∞∑
k=1

(−1)n+kan,kt
n
1 t

k
2 ]−1, (2.3)

where an,k was given in (1.5).
If Xj and Yj ( with j = 1, .., n) has the same ε-exponential distribution,

i.e. ∃ T1(ε) > 0, T2(ε) > 0 (such that T1(ε) →∞ and T2(ε) →∞ when ε→ 0)
and such that

|ϕXj (t1)−
1

1− it1
| ≤ ε ∀t1, |t1| ≤ T1(ε), ∀j, (2.4)

|ϕYj
(t2)−

1
1− it2

| ≤ ε ∀t2, |t2| ≤ T2(ε), ∀j, (2.5)

then, for every characteristic function ϕ(t1, t2) of the random vector (Xj , Yj),
we always have the estimation

λ(ϕ;ϕ0) = λ[ϕ(t1, t2);ϕ0(t1, t2)] ≤ max(C1ε;
1

T ∗(ε)
), (2.6)

where T ∗(ε) = min[T1(ε);T2(ε)] and C is a constant independent of ε.
Proof of the Theorem 2.1. From the proof of Theorem 2 in [3] or see [5], we
have

ϕ(t1, t2) = ϕ[(p12+p1)t1; (p12+p2)t2][p12+p1ϕ(0, t2)+p2ϕ(t1, 0)+qϕ(t1, t2)]

and

ϕ(t1, t2) =
ϕ[(p12 + p1)t1, (p12 + p2)t2][p12 + p1ϕ(0, t2) + p2ϕ(t1, 0)]

1− qϕ[(p12 + p1)t1, (p12 + p2)t2]
. (2.7)

Thus, we shall have the estimation

|ϕ(t1, t2)− ϕ0(t1, t2)|

= |ϕ[(p12 + p1)t1, (p12 + p2)t2][p12 + p1ϕ(0, t2) + p2ϕ(t1, 0)]
1− qϕ[(p12 + p1)t1, (p12 + p2)t2]

− ϕ0(t1, t2)|.

(2.8)
But from (2.4) and (2.5), ∃ T ∗(ε) = min{T1(ε);T2(ε)] such that

ϕ(0, t2) =
1

1− it2
+ r2(t2) where |r2(t2)| ≤ ε, ∀t2, |t2| ≤ T ∗(ε) (2.9)
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ϕ(t1, 0) =
1

1− it1
+ r1(t1) where |r1(t1)| ≤ ε, ∀t1, |t1| ≤ T ∗(ε). (2.10)

On the other hand, from formula (2.8) of the proof of the Theorem 2 in [3],
we obtain also the following equality

ϕ0(t1, t2) =
ϕ0[(p12 + p1)t1, (p12 + p2)t2][p12 +

p1

1− it1
+

p2

1− it2
]

1− qϕ0[(p12 + p1)t1, (p12 + p2)t2]
. (2.11)

Taking into account (2.8), (2.9), (2.10) and (2.11) we get

|ϕ(t1, t2)− ϕ0(t1, t2)| = | ϕ0[(p12 + p1)t1, (p12 + p2)t2]
1− qϕ0[(p12 + p1)t1, (p12 + p2)t2]

||r∗(t1, t2)|,

(2.12)
where r∗(t1, t2) = p1r1(t1) + p2r2(t2) and from (2.9) and (2.10) we notice
that

|r∗(t1, t2)| = |p1r1(t1) + p2r2(t2)| ≤ Cε,

for all |t1| ≤ T1(ε), |t2| ≤ T2(ε).
On the other hand, we always have the inequalities:

|1− qz| ≥ |1− q|z|| ≥ 1− q (2.13)

for all complex number z, |z| ≤ 1.
So, we have

|ϕ(t1, t2)− ϕ0(t1, t2)| ≤
r∗(t1, t2)

1− q
≤ Cε

1− q
= C1ε, (2.14)

where C1 is a constant of ε. The proof Theorem 2.1 is completed.
Let us denote the characteristic function corresponding to Gp(x, y) by

ψp(t1, t2). Now, we consider the second stability theorem.
Theorem 2.2. If both Xj and Yj have ε-exponential distribution (j = 1, 2, ..., n)
as described in Theorem 2.1, then we have the inequality

λ(ψp, ϕ0) = λ[ψp(t1, t2);ϕ0(t1, t2)] ≤ max{C2ε;
1

T ∗(ε)
} (2.15)

Proof of Theorem 2.2. At first, denoting by ψ(t1, t2) the characteristic func-
tion of (Z1, Z2), then

ψp(t1, t2) = ψ[(p12 + p1)t1; (p12 + p2)t2].

But, in the proof of Theorem 1 in [3], we have

ψ[(p12 + p1)t1; (p12 + p2)t2]

=
ϕ[(p12 + p1)t1; (p12 + p2)t2][p12 + p1ψ(0, t2) + p2ψ(t1, 0)]

1− ϕ[(p12 + p1)t1; (p12 + p2)t2]
; (2.16)

in [2], we have already proved that if Xj is ε-exponentially distributed then

|ψ(t1, 0)− 1
1− it1

| = |r1(t1)| ≤ max|t1|≤T1(ε){
ε

2
;

1
T1(ε)

} ∀t1, |t1| ≤ T1(ε)

(2.17)
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and, more, if Yj is ε-exponentially distributed then

|ψ(0, t2)−
1

1− it2
| = |r2(t2)| ≤ max|t2|≤T1(ε){

ε

2
;

1
T2(ε)

} ∀t2, |t2| ≤ T2(ε),

(2.18)
and from (2.16), (2.17) and (2.18) it follows that

ψ[(p12 + p1)t1; (p12 + p2)t2]

=
ϕ[(p12 + p1)t1; (p12 + p2)t2][p12 +

p1

1− it1
+

p2

1− it2
]

1− qϕ[(p12 + p1)t1; (p12 + p2)t2]

+
ϕ[(p12 + p1)t1; (p12 + p2)t2][p1r1(t1) + p2r2(t2)]

1− qϕ[(p12 + p1)t1; (p12 + p2)t2]
(2.19)

Therefore
|ψp(t1, t2)− ϕ0(t1, t2)|

≤ ||
ϕ[(p12 + p1)t1; (p12 + p2)t2][p12 +

p1

1− it1
+

p2

1− it2
]

1− qϕ[(p12 + p1)t1; (p12 + p2)t2]
− ϕ0(t1, t2)|

+| ϕ[(p12 + p1)t1; (p12 + p2)t2]
1− qϕ[(p12 + p1)t1; (p12 + p2)t2]

||p1r1(t1) + p2r2(t2)| = J1 + J2. (2.20)

Taking into account (2.9), (2.10) and (2.13), we get

J2 ≤ max{C2ε;
1

T ∗(ε)
} (2.21)

where T ∗(ε) = min{T1(ε);T2(ε)} and C2 is a constant of ε.
According to the proof of Theorem 2 in [3], we have

ϕ0(t1, t2) =
ϕ[(p12 + p1)t1; (p12 + p2)t2][p12 +

p1

1− it1
+

p2

1− it2
]

1− qϕ[(p12 + p1)t1, (p12 + p2)t2]
. (2.22)

Thus, J1 = 0 and we have:

J1 + J2 ≤ max{C2ε;
1

T ∗(ε)
}. (2.23)

where C2 is a constant independent of ε. Therefore it follows that

λ(ψP ;ϕ0) ≤ max{C2ε;
1

T ∗ (ε)
} (2.24)
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A semimartingale approach

Nguyen Tien Dung

Abstract. The aim of this paper is to study some class of fractional
stochastic equations from the approach given in [2]. The existence and
uniqueness for equations with deterministic volatility are proved. The
explicit solutions of some important equations are found and the ruin
probability in the asset liability management (ALM) model is investi-
gated as well.
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1. Introduction

The first problem in the study of fractional stochastic equations is how to
define in some sense the fractional stochastic integration. For this, many at-
tempts have been made by various authors. And there are definitions obtained
from some kinds of approximation approach as those of D. Nualart and al.[1],
Tran Hung Thao and Christine Thomas-Agnan [12, 11] and P. Carmona, L.
Coutin and G. Montseny [2, 4]. This paper is based on the results given by
the last mentioned authors.

By definition, a fractional Brownian motion (fBm) WH is a centered
Gaussian process with the covariance function given by

RH(t, s) := E[WH
t WH

s ] =
1
2
(t2H + s2H − |t− s|2H) .

In [2], the authors proved that WH
t can be approximated by semimartingales

WH,ε
t

WH
t =

t∫
0

K(t, s)dBs , t ≥ 0
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WH,ε
t =

t∫
0

K(t + ε, s)dBs ,

where B is a standard Brownian montion and the kernel K(t, s) is given by

K(t, s) = CH

[
tH−

1
2

sH− 1
2
(t− s)H− 1

2 − (H − 1
2
)

t∫
s

uH− 3
2

sH− 1
2

(u− s)H− 1
2 du

]
.

Under suitable conditions on the function f, they proved that the integral
t∫
0

fsdWH,ε
s converges in L2(Ω) as ε → 0 , and then the fractional stochastic

integral
t∫
0

fsdWH
s is defined as a limit of

t∫
0

fsdWH,ε
s .

In this paper we are interested in a class of fractional stochastic differ-
ential equations with deterministic volatility of the following form dXt = a(t, Xt) dt + σ(t) dWH

t

Xt|t=0 = X0 , t ∈ [0, T ] .
(1.1)

The existence and uniqueness of the solution of (1.1) are established via a
study of its corresponding approximation equation.

The organization of the paper is as follows: Section 2 contains some basic
results on the semimartingale approach given in [2, 4]. In Section 3, we prove
the existence, uniqueness and Lipschitzian continuity of the solution of the
approximation equations, one of main results of this paper is formulated in
Theorem 3.5. In Section 4, the explicit solutions for the equation of Ornstein-
Uhlenbeck type and for the fractional stochastic differential equation with
polynomial drift are found. Finally, in Section 5 we study the ruin probability
in the ALM model.

2. Preliminaries

For the sake of convenience, we recall some important results from [2, 4]
which will be the basis of this paper.

Theorem 2.1. For every ε > 0, WH,ε
t is a Ft-semimartingale with the follow-

ing decomposition

WH,ε
t =

t∫
0

K(s + ε, s)dBs +

t∫
0

ϕε
sds, (2.1)

where (Ft, 0 ≤ t ≤ T ) is the natural filtration associated to B or WH and

ϕε
s =

s∫
0

∂1K(s + ε, u)dBu ,
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∂1K(t, s) =
∂K(t, s)

∂t
= CH

tH−
1
2

sH− 1
2
(t− s)H− 3

2 .

Hypothesis (H): Assume that f is an adapted process belonging to the space
D1,2

B

(
L2([0, T ], R, du)

)
and that there exists β fulfilling β + H > 1/2 and

p > 1/H such that

(i) sup
0<s<u<T

E
[
(fu−fs)2+

T∫
0
(DB

r fu−DB
r fs)2dr

]
|u−s|2β is finite,

(ii) sup
0<s<T

fs belongs to Lp(Ω) .

Remark 2.2. The space D1,2
B

(
L2([0, T ], R, du)

)
is defined as follows:

For h ∈ L2([0, T ], R), we denote by B(h) the Wiener integral

B(h) =

T∫
0

h(t)dBt.

Let S denote the dense subset of L2(Ω,F , P ) consisting of those classes of
random variables of the form

F = f(B(h1), ..., B(hn)), (2.2)

where n ∈ N, f ∈ C∞b (Rn, L2([0, T ], R)), h1, ..., hn ∈ L2([0, T ], R). If F has
the form (2.2), we define its derivative as the process DBF := {DB

t F, t ∈
[0, T ]} given by

DB
t F =

n∑
k=1

∂f

∂xk
(B(h1), ..., B(hn))hk(t).

We shall denote by D1,2
B

(
L2([0, T ], R, du)

)
the closure of S with respect to

the norm

‖F‖1,2 :=
[
E|F |2

] 1
2 + E

[ T∫
0

|DB
u F |2du

] 1
2

.

Definition 2.3. For a process f fulfilling Hypothesis (H). The fractional sto-
chastic integral of f with respect to WH is defined by

t∫
0

fs dWH
s =

t∫
0

fsK(t, s) dBs +

t∫
0

t∫
s

(fu − fs) ∂1K(u, s)duδBs

+

t∫
0

du

u∫
0

DB
s fu ∂1K(u, s)ds , (2.3)

where the second integral in the right-hand side is a Skorohod integral (we
refer to [10] for more details about the Skorohod integral).
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Remark 2.4. Suppose that f be an adapted process belonging to the space
D1,2

B

(
L2([0, T ], R, du)

)
, then

t∫
0

fs dWH,ε
s =

t∫
0

fsK(t + ε, s) dBs +

t∫
0

t∫
s

(fu − fs) ∂1K(u + ε, s)duδBs

+

t∫
0

du

u∫
0

DB
s fu ∂1K(u + ε, s)ds

and under the Hypothesis (H),
t∫
0

fs dWH,ε
s →

t∫
0

fs dWH
s in L2(Ω) as ε → 0.

Remark 2.5. If f is a deterministic function such that
t∫

0

f2
s K2(t, s) ds < ∞ ,

then
t∫

0

fs dWH
s =

t∫
0

fsK(t, s) dBs +

t∫
0

t∫
s

(fu − fs) ∂1K(u, s)dudBs.

3. The main result

In this section we study the existence and uniqueness of the solution of (1.1)
by considering its corresponding approximation equation which is defined
immediately below.

Definition 3.1. The stochastic differential equation dXε
t = a(t, Xε

t ) dt + σ(t) dWH,ε
t

Xε
t |t=0 = X0 , t ∈ [0, T ]

(3.1)

is called the approximation equation corresponding to the fractional stochastic
differential equation (1.1).

Noting that (3.1) is a stochastic differential equation driven by a semi-
martingale, the conditions for uniqueness and existence of the solution of it
is well known. For more details, from (2.1) we can rewrite the equation (3.1)
as follows

dXε
t =

(
a(t, Xε

t ) + σ(t)ϕε
t

)
dt + K(t + ε, t)σ(t) dBt . (3.2)

The stochastic process σ(t)ϕε
t is not bounded. However, we can establish the

existence and uniqueness of the solution of equation (3.2) by considering the
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sequence of stopped times

τM = inf{t ∈ [0, T ] :

t∫
0

(ϕε
s)

2ds > M} ∧ T , (3.3)

and consider the sequence of corresponding stopped equations. The existence
and uniqueness of the solution of the stopped equations is well known (see, for
instance, [7, 8]). Then by taking limit when M → ∞, we have the following
theorem

Theorem 3.2. Assume that the functions a : [0, T ]×R −→ R , σ : [0, T ] −→ R
are measurable with respect to all their arguments and the following conditions
hold:
(A1) There exists a constant K > 0 such that for x, y ∈ R and t ∈ [0, T ]

|a(t, x)− a(t, y)| ≤ K|x− y| , |a(t, x)| ≤ K(1 + |x|) . (3.4)

(A2) For all t ∈ [0, T ]
t∫

0

σ2
sK2(t, s) ds < ∞ , (3.5)

(A3) The initial value X0 is square-integrable random variable and it is in-
dependent of W.

Then equation (3.1) has unique solution σ(Ws, 0 ≤ s ≤ t)-adapted Xε
t

on [0, T ]. Moreover, in the case H > 1/2

sup
0≤t≤T

E|Xε
t |2 ≤ C , (3.6)

where C is some positive constant not depending on ε.

Proposition 3.3. Assume that conditions for the existence and uniqueness
of the solutions of both fractional stochastic differential equation (1.1) and
approximation equation (3.1) hold. Then the sequence of solutions of the ap-
proximation equation (3.1) converges in L2(Ω) to the solution of (1.1) as
ε → 0.

Proof. We have

E|Xε
t −Xt|2 ≤ 2E|

t∫
0

a(s,Xε
s ) ds−

t∫
0

a(s,Xs) ds|2

+ 2E|
t∫

0

σ(s) dWH,ε
s −

t∫
0

σ(s) dWH
s |2 (3.7)

According to Remark 2.4 we can see that

E|
t∫

0

σ(s) dWH,ε
s −

t∫
0

σ(s) dWH
s |2 := C(t, ε) → 0 as ε → 0 .
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Now, using the Lipschitz continuity assumption (3.4) we get
t∫

0

E|a(s,Xε
s )− a(s,Xs)|2ds ≤ K2

t∫
0

E|Xε
t −Xt|2ds.

Thus, the conclusion of this proposition is easily achieved by applying Gron-
wall’s lemma. �

Due to the above Proposition, the solution of equation (1.1) can be
considered as the limit in L2(Ω) of the solutions of the equations (3.1), and
so, if this limit exists then the equation (1.1) has an unique solution.

Let ε = 1
n , n ≥ 1, we recall from Remark 2.4 and Remark 2.5 that

t∫
0

σs dW
H, 1

n
s =

t∫
0

σsK(t +
1
n

, s) dBs +

t∫
0

t∫
s

(σu − σs) ∂1K(u +
1
n

, s)dudBs

Let us now consider a sequence of approximation equations dXn
t = a(t, Xn

t ) dt + σ(t) dW
H, 1

n
t

Xn
t |t=0 = X0 , t ∈ [0, T ]

(3.8)

or

Xn
t = X0 +

t∫
0

a(s,Xn
s ) ds +

t∫
0

σsK(t +
1
n

, s) dBs

+

t∫
0

t∫
s

(σu − σs) ∂1K(u +
1
n

, s)dudBs . (3.9)

Theorem 3.4. Let H ∈ ( 1
2 , 1) and the coefficients of equation (3.8) satisfy the

assumptions (A1), (A2), (A3) from Theorem 3.1. Then
I. The solution of (3.8) is Lipschitz continuous in L2(Ω), i.e

E|Xn
t −Xn

s |2 ≤ C|t− s| . (3.10)

II. For every t ∈ [0, T ], the sequence {Xn
t }n≥1 of the solutions of the equations

(3.8) is a fundamental sequence in L2(Ω) .

Proof. I. We consider E|Xn
t+τ −Xn

t |2 for 0 ≤ t ≤ t + τ ≤ T :

E|Xn
t+τ −Xn

t |2 ≤ 3E
( t+τ∫

t

a(s,Xn
s ) ds

)2

+3E

( t+τ∫
0

σ(s)K(t + τ +
1
n

, s) dBs −
t∫

0

σ(s)K(t +
1
n

, s) dBs

)2
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+3E

(
α

t+τ∫
0

t+τ∫
s

[σ(u)− σ(s)]∂1K(u +
1
n

, s)dudBs

−α

t∫
0

t∫
s

[σ(u)− σ(s)]∂1K(u +
1
n

, s)dudBs

)2

:= 3I1 + 3I2 + 3I3.

First, it follows from (3.4), (3.6) that

I1 ≤ K2

t+τ∫
t

E(1 + Xn
s )2 ds ≤ 2K2(1 + C)τ . (3.11)

Next, we can estimate I2 as

I2 ≤ 2E

( t∫
0

σ(s)[K(t + τ +
1
n

, s)−K(t +
1
n

, s)] dBs

)2

+ 2E

( t+τ∫
t

σ(s)K(t + τ +
1
n

, s) dBs

)2

(3.12)

= 2

t∫
0

σ2(s)[K(t + τ +
1
n

, s)−K(t +
1
n

, s)]2 ds

+ 2

t+τ∫
t

σ2(s)K2(t + τ +
1
n

, s) ds

≤ 2‖σ‖2∞E|WH
t+τ+ 1

n
−WH

t+ 1
n
|2 + 2

t+τ∫
t

σ2(s)K2(t + τ +
1
n

, s) ds

= 2‖σ‖2∞τ2H + 2

t+τ∫
t

σ2(s)K2(t + τ +
1
n

, s) ds ≤ C1τ

where ‖σ‖∞ = sup
0≤s≤T

|σ(s)| , C1 is a positive finite constant depending on σ.

Similarly, for I3 we have

I3 ≤ 2E

( t∫
0

t+τ∫
t

[σ(u)− σ(s)]∂1K(u +
1
n

, s)dudBs

)2

+

+2E

( t+τ∫
t

t+τ∫
s

[σ(u)− σ(s)]∂1K(u +
1
n

, s)dudBs

)2
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= 2

t∫
0

( t+τ∫
t

[σ(u)− σ(s)]∂1K(u +
1
n

, s)du

)2

ds

+2

t+τ∫
t

( t+τ∫
s

[σ(u)− σ(s)]∂1K(u +
1
n

, s)du

)2

ds

≤ 8‖σ‖2∞

t∫
0

[K(t + τ +
1
n

, s)−K(t +
1
n

, s)]2ds

+8‖σ‖2∞

t+τ∫
t

[K(t + τ +
1
n

, s)−K(s +
1
n

, s)]2ds

= 8‖σ‖2∞τ2H + 8‖σ‖2∞

t+τ∫
t

[K(t + τ +
1
n

, s)−K(s +
1
n

, s)]2ds .

Hence,

I3 ≤ C2τ . (3.13)

Finally, (3.10) follows from the inequalities (3.11)-(3.13).
II. We now are ready to prove the rest of the theorem. Consider E|Xn

t −Xm
t |2 :

E|Xn
t −Xm

t |2 ≤ 3

t∫
0

E[a(s,Xn
s )− a(s,Xm

s )]2 ds

+ 3E

( t∫
0

[σ(s)K(t +
1
n

, s)− σ(s)K(t +
1
m

, s)] dBs

)2

+ 3E

( t∫
0

t∫
s

{
[σ(u)− σ(s)]∂1K(u +

1
n

, s)

− [σ(u)− σ(s)]∂1K(u +
1
m

, s)
}
dudBs

)2

:= 3(J1 + J2 + J3) . (3.14)

J1 ≤ K2

t∫
0

E|Xn
s −Xm

s |2ds . (3.15)
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J2 =

t∫
0

[σ(s)K(t +
1
n

, s)− σ(s)K(t +
1
m

, s)]2 ds

≤ ‖σ‖2∞

T∫
0

[K(t +
1
n

, s)−K(t +
1
m

, s)]2 ds

= ‖σ‖2∞
{
R(t +

1
n

, t +
1
n

) + R(t +
1
m

, t +
1
m

)− 2R(t +
1
n

, t +
1
m

)
}

≤ C3|
1
n
− 1

m
|2H−1 := c1(m,n), (3.16)

where C3 is a finite positive constant depending on σ, and R(t, s) = 1
2 (t2H +

s2H − |t− s|2H) is the covariance function of the fBm WH . We have

J3 =

t∫
0

( t∫
s

[σ(u)− σ(s)][∂1K(u +
1
n

, s)− ∂1K(u +
1
m

, s)]du

)2

ds

(3.17)

≤ 8‖σ‖2∞
t∫
0

(
K(t + 1

n , s)−K(t + 1
m , s)

)2

ds

+ 8‖σ‖2∞

t∫
0

(
K(s +

1
n

, s)−K(s +
1
m

, s)
)2

ds ≤ 16c1(m,n).

Put g(t) = E|Xn
t −Xm

t |2, then combining (3.14)-(3.17) yields

g(t) ≤ 3K2

t∫
0

g(s)ds + c(m,n) , (3.18)

where c(m,n) = 3(c1(m,n) + 16c1(m,n)) → 0 as m →∞, n →∞ .

From (3.18) and by applying Gronwall’s lemma we get

g(t) ≤ c(m,n) e3K2t ,

or

E|Xn
t −Xm

t |2 ≤ c(m,n) e3K2t .

And, as a consequence, the solutions {Xn
t , 0 ≤ t ≤ T}n≥1 of equations (3.8)

form a fundamental sequence in L2(Ω) . �

Now we can state the following theorem
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Theorem 3.5. Suppose that H ∈ ( 1
2 , 1). Consider the fractional stochastic

differential equation  dXt = a(t, Xt) dt + σ(t) dBt

Xt|t=0 = X0 , t ∈ [0, T ],
(3.19)

where σ(t) is a deterministic function. If the coefficients a(t, x) , σ(t) satisfy
the assumptions (A1), (A2) from Theorem 3.1, then (3.19) has a unique
solution. Moreover, this solution is Lipschitz continuous in L2(Ω), i.e

E|Xt −Xs|2 ≤ C|t− s| .

Remark 3.6. If a(t, x) is Lipschitzian with respect to x and under assump-
tion (A2) then the existence of the solution (3.19) can be proved by applying
the fixed point theorem in some Banach space after constructing an appropri-
ate contraction operator in this space. For the uniqueness, it suffices to use
Gronwall’s lemma.

4. Explicit solution for some important classes of stochastic
differential equations

From practical point of view, it is important to find the explicit expression
for the solution of each specific model. In the rest of this paper, we will see
that the semimatingale approach has more advantages for this.
4.1. The Ornstein-Uhlenbeck type equations

The fractional Ornstein-Uhlenbeck processes are studied in [3]. Let us
use semimartingale approach to find the solution for a class of Ornstein-
Uhlenbeck type equations of following form: dXt = (α(t)Xt + β(t)) dt + σ(t) dWH

t

Xt|t=0 = X0 , t ∈ [0, T ],
(4.1)

where α(t), β(t), σ(t) are deterministic functions.
The approximation equation corresponding to (4.1) is dXε

t = (α(t)Xε
t + β(t)) dt + σ(t) dWH,ε

t , ε > 0

Xε
t |t=0 = X0 , t ∈ [0, T ]

or equivalently, dXε
t = (α(t)Xε

t + β(t) + σ(t)ϕε
t ) dt + K(t + ε, t)σ(t) dBt

Xε
t |t=0 = X0 , t ∈ [0, T ] .

(4.2)
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This is a semilinear stochastic differential equation.Therefore, its solution is
given by

Xε(t) = e

t∫
0

α(u)du
(

X0 +

t∫
0

β(s) e
−

s∫
0

α(u)du
ds +

t∫
0

σ(s)ϕε
s e
−

s∫
0

α(u)du
ds

+

t∫
0

K(s + ε, s)σ(s) e
−

s∫
0

α(u)du
dBs

)
.

Using (2.1) we can rewrite the solution Xε(t) into the following form

Xε(t) = e

t∫
0

α(u)du
(

X0 +

t∫
0

β(s) e
−

s∫
0

α(u)du
ds

+

t∫
0

σ(s) e
−

s∫
0

α(u)du
dWH,ε

s

)
. (4.3)

By taking limit when ε → 0 we get the following theorem.

Theorem 4.1. Suppose that X0 is a square-integrable random variable inde-
pendent of WH . Then the solution of (4.1) is unique and given by

Xt = e

t∫
0

α(u)du(
X0 +

t∫
0

β(s)e
−

s∫
0

α(u)du
ds + σ

t∫
0

e
−

s∫
0

α(u)du
dWH

t

)
.

4.2. Fractional stochastic differential equations with polynomial drift
Let us consider the fractional stochastic differential equation in a com-

plete probability space (Ω,F , P ) dXt =
(
aXn

t + b Xt

)
dt + cXt dWH

t

Xt|t=0 = X0.
(4.4)

The initial value X0 is a measurable random variable independent of
{Bt : 0 ≤ t ≤ T}.

This equation is a generalization of many important equations such
as the Black-Sholes model in mathematical finance (a = 0), the Ginzburg-
Landau equation in the theoretical physics (n = 3), the Verlhust equation in
population study (n = 2).

We consider now a corresponding approximation equation with the same
initial condition Xε

t |t=0 = X0

dXε
t =

(
a (Xε

t )n + b Xε
t

)
dt + cXε

t dWH,ε
t , ε > 0. (4.5)

Using (2.1) again we get

dXε
t =

(
a (Xε

t )n + b Xε
t + cϕε

t Xε
t

)
dt + cXε

t dBt . (4.6)
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In order to find the explicit expression for the solution of the equation (4.5)
we will carry out several steps.

Step 1. Put Y ε
t = e−Ut , Ut =

t∫
0

cK(s + ε, s)ds . According to the Itô formula

we have:

dY ε
t =

1
2
Y ε

t c2K2(t + ε, t)dt− Y ε
t cK(t + ε, t)dBt . (4.7)

Step 2. We consider Zε
t = Xε

t Y ε
t and then the integration-by-part formula

gives us

dZε
t = Xε

t dY ε
t + Y ε

t dXε
t − d[Xε, Y ε]t

or

dZε
t =

{[
−1

2
c2K2(t+ε, t)+b+cϕε

t

]
Zε

t +a e
(n−1)

t∫
0

cK(s+ε,s)ds
(Zε

t )n

}
dt . (4.8)

For every fixed ω ∈ Ω, the equation (4.8) is an ordinary Bernoulli equation
of the form:

(Zε
t )′ = P (t)(Zε

t )n + Q(t)Zε
t

and the solution Zε
t is given by

Zε
t = e

t∫
0

Q(u)du
(

Z1−n
0 +

t∫
0

(1− n)P (s)e
(n−1)

s∫
0

Q(u)du
ds

) 1
1−n

where P (t) = a e
(n−1)

t∫
0

cK(s+ε,s)ds
, Q(t) = − 1

2c2K2(t + ε, t) + b + cϕε
t , the

initial condition Zε
0 = Xε

0Y ε
0 = X0 .

Finally, the solution Xε
t = Zε

t

Y ε
t

of the equation (4.5) is given by

Xε
t = e

bt− 1
2

t∫
0

c2K2(s+ε,s)ds+c W H,ε
t

×
(

X1−n
0 + (1− n)a

t∫
0

e
(n−1)

(
bs− 1

2

s∫
0

c2K2(u+ε,u)du+c W H,ε
s

)
ds

) 1
1−n

. (4.9)

Noting that the solution of (4.4) is a limit in L2(Ω) of the solution of
(4.5). Hence, by taking limit when ε → 0 we get the following theorem.

Theorem 4.2. Suppose that X0 is a random variable independent of WH such
that E[X2

0 ] < ∞.Then the solution of (4.4) exists and is unique and given by

Xt = ebt+c W H
t

(
X1−n

0 + (1− n)a

t∫
0

e(n−1) (bs+c W H
s )ds

) 1
1−n

.
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5. The ruin probability in the Asset Liability Management
model

In this section, we consider the asset Xt and the liability Yt satisfing the
following stochastic differential equations

dXt = µ1Xtdt + σ1XtdW
(1)
t ,

dYt = µ2Ytdt + σ2YtdW
(2)
t ,

X|t=0 = X0 , Y |t=0 = Y0 < X0,

(5.1)

where µ1, µ2, σ1, σ2 are non-negative parameters,

W
(1)
t =

t∫
0

K(t, s)dB
(1)
t ,W

(2)
t =

t∫
0

K(t, s)dB
(2)
t are two fractional Brownian

motions with correlation coefficient |ρ| ≤ 1.
It follows from Theorem 4.2 that

Xt = X0e
µ1t+σ1W

(1)
t , Yt = Y0e

µ2t+σ2W
(2)
t

and
Xt

Yt
=

X0

Y0
exp

(
(µ1 − µ2)t + σ1W

(1)
t − σ2W

(2)
t

)
.

Noting that B(1) , B(2) have correlation coefficient ρ, because W (1),W (2) have
correlation coefficient ρ. Hence

σ2B
(2)
t − σ1B

(1)
t

is equivalent in distribution to the process σBt, where Bt is a standard Brow-
nian motion and

σ =
√

σ2
1 + σ2

2 − 2ρσ1σ2 (5.2)

We obtain

σ1W
(1)
t − σ2W

(2)
t =

t∫
0

K(t, s)d(σ1B
(1)
s − σ2B

(2)
s )

= −σ

t∫
0

K(t, s)dBs =: −σWH
t

and
Xt

Yt
=

X0

Y0
exp(µt− σWH

t ) , (5.3)

where µ = µ1 − µ2 , WH
t is a fractional Brownian motion with index H .

We now can study the lifetime τ of a bank or of an insurance company
that is naturally defined as the first value of t such that Xt < Yt :

τ = inf{t : ln
Xt

Yt
< 0} .

and the ruin probability on a finite time horizon [0, t] is defined as

ϕ(X0, Y0, t) := P (τ < t) = P (ln
Xs

Ys
< 0 for some s < t),
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and on an infinite time horizon,

ϕ(X0, Y0) := lim
t→∞

ϕ(X0, Y0, t).

By the relation (5.3) we obtain

ϕ(X0, Y0) = P (ln
Xt

Yt
< 0 for some t ≥ 0)

= P (−µt + σWH
t > u for some t ≥ 0)

= P
(
sup
t≥0

(−µt + σWH
t ) > u

)
,

where u = ln X0
Y0

. In order to estimate ϕ(X0, Y0) we use the following result
of Dȩbicki [5, Corollary 4.1]:

Proposition 5.1. For 1
2 ≤ H ≤ 1

lim
u→∞

1
u2−2H

lnP
(
A(WH , c) > u

)
= −h (5.4)

where A(WH , c) = sup{WH
t − ct : t ≥ 0} and

h =
1
2
(

c

H
)2H

( 1
1−H

)2−2H
.

Now we can state the following theorem

Theorem 5.2. If µ1 ≥ µ2, then the ruin probability for the ALM model (5.1)
satisfies the following relation:

lim
u→∞

lnϕ(X0, Y0)
u2−2H

= − µ2H

2H2σ2

( H

1−H

)2−2H
, (5.5)

where µ = µ1 − µ2 , σ =
√

σ2
1 + σ2

2 − 2ρσ1σ2 and u = ln X0
Y0

.

Proof. We have

ϕ(X0, Y0) = P
(
sup
t≥0

(WH
t − µ

σ
t) >

u

σ

)
from Proposition 5.1. The theorem is completed. �
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1. Introduction

In 1967 E. A. Barbashin [1, Th. 5.1] obtained a stability result for exponen-
tially bounded evolution families generated by differential systems in Banach
spaces, a result that remains true in the case of evolution families with expo-
nential growth. In 1970 R. Datko [4] proved that the C0-semigroup {Tt}t≥0

is exponentially stable if and only if its trajectories (T (·)x) are in L2 for all
x in X. This result was generalized by A. Pazy [12], who proved that the
exponential stability property is equivalent with T (·)x ∈ Lp , for 1 ≤ p < ∞
and for all x in X, where X is a Banach space.

Later, a well-known Datko result from 1972 [5] states that an exponen-
tially bounded, strongly continuous evolution family U = {U(t, t0)}t≥t0≥0

with exponential growth is exponentially stable if and only if there exist
k, p > 0 such that(∫ ∞

t

||U(τ, t)x||pdτ
) 1

p ≤ k||x||, for all t ≥ 0, and x ∈ X.

This result was extended by J.L. Daleckij and M.G. Krein [3] for evolutionary
processes generated by differential systems in Banach spaces and instead of
R. Datko’s method, it has been used a characterization theorem for the ex-
ponential stability of differential systems [3, Th. 6.1, pg 132]. S. Rolewicz [13]
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noticed that the theorem used by J.L. Daleckij and M.G. Krein in [3] remains
true in the case of evolutionary processes with exponential growth (without
stating the proof, though). This theorem, along with the Baire Cathegory
Principle allowed S. Rolewicz [13] to extend Datko’s result from 1972 to the
fact that {U(t, t0)}t≥t0≥0 is exponentially stable if and only if there exists
N : (0,∞)× (0,∞) → R+ with the property that N(α, u) is continuous and
increasing for all α, and N(α, u) is increasing for all u, N(α, 0) = 0 for all
α > 0, N(α, u) > 0 for all u > 0 and for all x ∈ X there exists α(x) > 0 such
that

sup
t≥0

∫ ∞

t

N(α(x), ||U(τ, t)||)dτ < ∞.

Another extension of the result due to Datko [4] and Pazy [12] was obtained
by W. Littman [7] in 1989. V. Pata [11] came with a new proof and a gen-
eralization of the result due to Datko [5] for the case of strongly continuous
semigroups of bounded linear operators.

The classical ideas of J. L. Massera and J. J. Schäffer ([8],[9]) on expo-
nential stability and other asymptotic properties of the solutions of differen-
tial equations have also been developed in the last years. Other results for the
stability of nonlinear evolution families were obtained by A. Ichikawa [6] and
in 2007, a strong variant of a result due to E. A. Barbashin [1] was obtained
by C. Buşe, M. Megan, M. S. Prajea and P. Preda [2] on the dual space of the
Banach space X. Some Datko [5] type results for the asymptotic behavior of
skew-evolution semiflows in Banach spaces were given by M. Megan and C.
Stoica [10] in 2008.

The purpose of the present paper is to give a characterization for the
exponential stability of a special class of evolution families, called the back-
wards evolution families, and thus to reformulate the result due to E. A.
Barbashin [1].

2. Preliminaries

Let us consider X a Banach space, B(X) the Banach algebra of all linear and
bounded operators acting on X and ∆ = {(t, t0) ∈ R2 : t ≥ t0 ≥ 0}. We
denote the norm of vectors on X and operators on B(X) by || · ||.

Definition 2.1. A family of linear and bounded operators

Φ = {Φ(t, t0)}t≥t0≥0 : ∆ → B(X)

is called a backwards evolutionary process if the following properties hold:

i) Φ(t, t) = I, for all t ≥ 0;
ii) Φ(τ, t0) Φ(t, τ) = Φ(t, t0), for all t ≥ τ ≥ t0 ≥ 0;
iii) Φ(·, t0)x : [t0,∞) → X is continuous for all t0 ≥ 0 and x ∈ X
Φ(t, ·)x : [0, t] → X is continuous for all t ≥ 0 and x ∈ X;
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iv) there exist M ≥ 1 and ω ∈ R such that:

||Φ(t, t0)|| ≤ Meω(t−t0),

for all t ≥ t0 ≥ 0.

Example 2.2. Take X = R and the equation:

(A) ẋ(t) = A(t)x(t), t ≥ 0.

We consider the Cauchy problem associated:

(B)
{

U̇(t) = A(t)U(t)
U(0) = I.

where A ∈ M(2, R) and M(2, R) denotes the set of all 2-by-2 real matrices
and t ≥ 0.

The unique solution of the Cauchy problem (B) will be denoted by U(t)
and Φ(t, t0) = U∗−1(t0)U∗(t) represents the backwards evolutionary process
generated by the equation (A).

Example 2.3. Let X = R. Then

Φ(t, t0) =
sin t + 1
sin t0 + 1

defines a backwards evolutionary process.

Example 2.4. Let X = R. Then

Φ(t, t0) =
t2 + 1
t20 + 1

defines a backwards evolutionary process.

Definition 2.5. Let Φ = {Φ(t, t0)}t≥t0≥0 be a backwards evolutionary process.
Φ is called uniformly exponentially stable if there exist N, ν > 0 such that:

||Φ(t, t0)|| ≤ Ne−ν(t−t0), for all t ≥ t0 ≥ 0.

3. The main result

In order to establish sufficient conditions for the uniform exponential stabil-
ity of the backwards evolutionary process, we will use a result due to J. L.
Massera and J. J. Schäffer [8]:

Lemma 3.1. Take f, g : R+ → R+, g continuous, such that
i) f(t) ≤ g(t− t0)f(t0), for all t ≥ t0 ≥ 0;
ii) inft≥0 g(t) < 1.

Then there exist N, ν > 0 such that

f(t) ≤ Ne−ν(t−t0)f(t0), for all t ≥ t0 ≥ 0.

The following theorem is a strong variant of a result due to E. A. Bar-
bashin [1], for the case of backwards evolutionary processes:
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Theorem 3.2. Let Φ be a backwards evolutionary process. Φ is uniformly
exponentially stable if and only if there exist p, k > 0 such that:(∫ t

t0

||Φ(t, τ)x||pdτ
) 1

p ≤ k||x||,

for all x ∈ X and t ≥ t0.

Proof. The necessity is immediate, and for the sufficiency let t ≥ t0 + 1 and
r(t) = Meωt, where

||Φ(t, t0)x|| ≤ Meω(t−t0)||x||, for all t ≥ t0.

Then

||Φ(t, t0)x||p
∫ t

t0

r−p(τ − t0)dτ ≤
∫ t

t0

||Φ(τ, t0)||p ||Φ(t, τ)x||p r−p(τ − t0)dτ

≤
∫ t

t0

||Φ(t, τ)x||pdτ ≤ kp||x||p.

But ∫ t

t0

r−p(τ − t0)dτ =
∫ t−t0

0

r−p(s)ds ≥
∫ 1

0

r−p(s)ds.

We denote by ∫ 1

0

r−p(s)ds = α > 0.

For sup||x||=1 it implies that

||Φ(t, t0)|| ≤
k

α
1
p

, for all t ≥ t0 + 1.

If t ∈ [t0, t0 + 1] then
||Φ(t, t0)|| ≤ Meω

and therefore

||Φ(t, t0)|| ≤ max{Meω,
k

α
1
p

} = L, for all t ≥ t0 (3.1)

Take now t ≥ t0 ≥ 0 and τ ∈ [t0, t]. It follows that

||Φ(t, t0)x|| = ||Φ(τ, t0) Φ(t, τ)x|| ≤ L||Φ(t, τ)x||.
Thus,

(t− t0)||Φ(t, t0)x||p ≤ Lp

∫ t

t0

||Φ(t, τ)x||pdτ ≤ Lpkp||x||p.

For sup||x||=1 in the above inequality we obtain that

(t− t0)
1
p ||Φ(t, t0)|| ≤ Lk. (3.2)

Adding the inequalities (3.1) and (3.2) it results that

||Φ(t, t0)|| ≤
(1 + k)L

1 + (t− t0)
1
p

, for all t ≥ t0.
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Therefore, we have obtained that

||Φ(t, t0)|| ≤ ||Φ(τ, t0)|| ||Φ(t, τ)|| ≤ (1 + k)L

1 + (t− τ)
1
p

||Φ(τ, t0)||.

By denoting

f(t) = ||Φ(t, t0)|| and g(t− τ) =
(1 + k)L

1 + (t− τ)
1
p

,

from Lemma 3.1 it follows that there exist N, ν > 0 such that

||Φ(t, t0)|| ≤ Ne−ν(t−τ)||Φ(τ, t0)||.

Taking τ = t0 we obtain that

||Φ(t, t0)|| ≤ Ne−ν(t−t0) for all t ≥ t0. �

Remark 3.3. We give now another proof for the sufficiency of Theorem 3.2,
with a direct method:

Let t ≥ t0 + 1 and τ ∈ [t0, t0 + 1]. Then

||Φ(t, t0)x|| ≤ ||Φ(τ, t0)|| ||Φ(t, τ)x|| ≤ Meω||Φ(t, τ)x||.

For sup||x||=1 we obtain that

||Φ(t, t0)|| ≤ Meω||Φ(t, τ)||.

Thus,

||Φ(t, t0)|| ≤ Meω
(∫ t0+1

t0
||Φ(t, τ)||pdτ

) 1
p

≤ Meω
(∫ t

t0
||Φ(t, τ)||pdτ

) 1
p

≤ Meωk.

It follows that

||Φ(t, t0)|| ≤ Meω max{1, k}, for all t ≥ t0 ≥ 0.

Denoting L′ = Meω max{1, k} we obtain the condition (3.1) from the Theo-
rem 3.2.

The next steps in the proof of the sufficiency are as in Theorem 3.2.

The discrete correspondent of Theorem 3.2 is given:

Theorem 3.4. Let Φ be a backwards evolutionary process. Φ is uniformly
exponentially stable if and only if there exist p, l > 0 such that:( n∑

k=n0

||Φ(n, k)x||p
) 1

p ≤ l||x||, for all n ≥ n0, and x ∈ X.

Proof. The necessity is immediate.
Sufficiency. From the hypothesis we have that

||Φ(n, n0)x|| ≤ l||x||, for all n ≥ n0, and x ∈ X.
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For k ∈ {n0, n0 + 1, · · · , n} it follows that∑n
k=n0

||Φ(n, n0)x||p ≤
∑n

k=n0
||Φ(k, n0)||p ||Φ(n, k)x||p

≤ lp
∑n

k=n0
||Φ(n, k)x||p

≤ l2p||x||,
for all n ≥ n0 and x ∈ X. Thus,

(n− n0 + 1)||Φ(n, n0)x||p ≤ l2p||x||.
For sup||x||=1 we have that

(n− n0 + 1)||Φ(n, n0)||p ≤ l2p,

which implies that

||Φ(n, n0)|| ≤
l2

(n− n0 + 1)
1
p

.

Therefore, it follows that there exists m0 ∈ N∗ such that

||Φ(n0 + m0, n0)|| ≤
1
2
, for all n0 ∈ N.

For n ≥ n0 it results that there exist q ∈ N and r ∈ {0, 1, · · · ,m0 − 1} such
that:

||Φ(n, n0)|| = ||Φ(n0 + qm0 + r, n0)||
≤ ||Φ(n0 + qm0, n0)|| ||Φ(n0 + qm0 + r, n0 + qm0)||
≤ L

(
1
2

)q

= L(e−νm0)q

= Le−ν(m0q+r)eνr

= Leνre−ν(n−n0)

≤ Leνm0e−ν(n−n0)

= 2Le−ν(n−n0)

Denoting ν = 1
m0

ln 2 and N = 2L, it follows that:

||Φ(n, n0)|| ≤ Ne−ν(n−n0), for all n ≥ n0.

Let now t ≥ t0 + 1, n = [t], n0 = [t0]. Thus n ≥ n0 + 1 and we obtain that:

||Φ(t, t0)|| = ||Φ(n0 + 1, t0) Φ(n, n0 + 1) Φ(t, n)||
≤ M2e2ω||Φ(n, n0 + 1)||
≤ M2e2ωNe−ν(n−n0−1)

= M2e2ωNe−ν(t−t0)eν(t−t0−n+n0+1)

≤ M2e2ωNe2νe−ν(t−t0)

= M2Ne2ω+2νe−ν(t−t0),

for all t ≥ t0 + 1.
For t0 ≤ t < t0 + 1 it results that

||Φ(t, t0)|| ≤ Meωeνe−ν(t−t0).

Denoting N = max{Meω+νN, 1} we obtain that:

||Φ(t, t0)|| ≤ Ne−ν(t−t0), for all t ≥ t0 ≥ 0. �
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Abstract. In this paper, an algorithm based on He’s variational iteration
method (shortly, VIM) is developed to approximate the solution of a
non-linear mathematical model of HIV dynamics. Using a system of
ordinary differential equations, the model describes the viral dynamics
of HIV-1. Some plots of the solution are depicted and used to investigate
the influence of certain key parameters on the spread of the disease. The
results shows that the VIM has the advantages of being more concise
for numerical purposes. Furthermore, this work opens a new direction
of research whereby He’s VIM applications might offer more insight into
the modeling of dynamical systems in life sciences.
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1. Introduction

Mathematical modeling of many biological or physical systems leads to non-
linear ordinary differential equations. An effective method is required to ana-
lyze the mathematical model which provides solutions conforming to physical
reality. Therefore, we must be able to solve nonlinear ordinary differential
equations. Common analytic procedures linearize the system or assume that
nonlinearities are relatively insignificant. Such procedures change the actual
problem to make it tractable by the conventional methods. In short, the
physical problem is transformed to a purely mathematical one, for which the
solution is readily available. This changes, sometimes seriously, the solution,
which means that the problem being solved is no longer a proper represen-
tation of the physical problem whose solution is desired. However, in spite
of the extensive development in the mathematical and statistical techniques
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applied to modeling infectious diseases, little has been done to apply approxi-
mate methods to solve epidemic models. We try to obtain some analytical re-
sults to the deterministic model posed in this paper. In particular, we discuss
mathematical and statistical ideas representing HIV internal virus dynamics.
Simulation results from initial attempts in the areas of applied mathematics
and statistics will be presented.

The human immuno-deficiency virus (HIV) infection which can lead
to acquired immuno-deficiency syndrome (AIDS), has become an important
infectious disease in both developed and developing nations. Mathemati-
cal models have been used extensively in research into the epidemiology of
HIV/AIDS, to help improve our understanding of the major contributing
factors in a given epidemic.

The key markers of the disease progression due to HIV and ADIS are
the CD4+ T−cell and viral levels in the plasma. Modeling the interaction
between HIV-1 virus and CD4 cells has been a major area of research for
many years [17, 3, 18]. In recent years, a few studies of HIV dynamics have
been conducted to describe the effects of various epidemiological factors [1,
5, 15, 2, 19, 16]. In particular, in [1], the authors present an overview of some
concepts and methodologies that are useful on modeling HIV pathogenesis.
A dynamical system modeling the HIV infection was used in [5] to show the
impact of the viral diversity on the immune response and disease dynamics.
In [15], the authors considered a non-linear mathematical model for HIV
epidemic that spreads in a variable size population through both horizontal
and vertical transmission. Using stability theory and computer simulation,
they showed that by controlling the rate of vertical transmission, the spread
of the disease can be reduced significantly. In [4], the author introduce a novel
class of HIV models that incorporates mutation, the mutation is modeled by
an integral operator whose kernel describes the transition probability between
different strains. Numerical aspects of computer simulations are discussed.

Instead of finding a small parameter for solving nonlinear problems
through perturbation method, a new analytical method called He’s varia-
tional iteration method will be used in this paper to solve the epidemic model
problem. The VIM is useful to obtain exact and approximate solutions for lin-
ear and nonlinear differential equations. It has been used to solve effectively,
easily and accurately a large class of nonlinear problems with approximations.

The organization of the paper is as follows: In section 2, we describe
a 3−dimensional model for internal HIV dynamics. In section 3, we review
the procedure of VIM. To show the efficiency of the method, in section 4,
we apply the method on the model system appeared in section 2. Simulation
results are presented in section 5.

2. HIV Model System

Mathematical models have come to play an important part in biological sys-
tems. Mathematics makes it possible to make predictions about the behavior
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Symbol Description
x(t) concentration of uninfected cells.
y(t) concentration of infected cells.
z(t) concentration of virus particles.

(1− γ) reverse transcriptase inhibitor drug effects.
(1− η) protease inhibitor drug effect.

λ total rate of production of healthy cells per unit time.
κ per capita death rate of healthy cells.
β transmission coefficient between uninfected cells and the

infective virus particles.
N average number of infective virus particles produced by

an infected cell in the absence of HAART during
its entire infectious lifetime.

u per capita death rate of infective virus particles.
a death rate of infected cells.

Table 1. Variables and parameters in system (2.1)

of the system. Following [14], we introduce a 3−dimensional model to describe
the viral dynamics in the presence of HIV-1 infection and Highly Active An-
tiretrovital Treatment (HAART). The equations of the model represents the
variation rate of uninfected cells, infected cells, and virus particles. The model
is thus described by the following

dx(t)
dt = λ− κx(t)− (1− γ)βx(t)z(t)

dy(t)
dt = (1− γ)βx(t)z(t)− ay(t)

dz(t)
dt = (1− η)Nay(t)− uz(t)− (1− γ)βx(t)z(t)

(2.1)

with suitable initial conditions. The variables x(t), y(t) and z(t) are functions
of time t ∈ [0,∞). We summarize in Table 1 the biological meaning of the
variables and parameters occurring in this model. This model captures math-
ematically the viral dynamics of HIV-1 virus interacting with CD4 cells. It
can be seen that a model of such a simple nature is able to adequately reflect
the disease progression from the initial infection to an asymptomatic stage
where the set-point is reached.

We assume that the cells and the virus are uniformly distributed on the
organism. Note that when a single infective virus particle infects a single un-
infected cell the virus particle is absorbed into the infected cell and effectively
dies. Hence, the term (1− γ)βx(t)z(t) appears in all the three equations. In
system (2.1), the first equation represents the dynamics of the concentration
of healthy cells x(t); λ represents the rate (assumed to be constant) at which
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new x(t) cells are generated. In the case of active HIV infection, the concentra-
tion of healthy cells decreases proportionally to the product (1−γ)βx(t)z(t),
where β represents a coefficient that depends on various factors, including the
velocity of penetration of virus into cells, and the frequency of encounters be-
tween uninfected cells and free virus. The second equation in system (2.1)
describes the dynamics of the concentration of infected cells y(t); (1 − γ)β
is the rate of infections; a is the death rate of infected cells. Therefore, the
average lifetime of an infected cell is 1/a. The third equation describes the
concentration of free virion z(t), which are produced by the infected cells at
a rate (1 − η)Na, and u is the death rate of the virion. The parameters of
the model and their values are defined in Tables 1 and 2. Regarding equilib-
rium points and stability for system (2.1), a qualitative investigation [14] of
the system described by equations (2.1) reveals that the model system has a
unique disease-free equilibrium given by (λ/κ, 0, 0).

A value for R0, the basic reproduction number, is also useful to study
further behavior of the system. This number tells us how many secondary
infective virus particle will result from the introduction of one infected cell
which was infected by the original infective virus particle. Hence

R0 =
(1− γ)βλN(1− η)

κu + βλ(1− γ)
.

R0 can also be interpreted as the expected number of secondary infected
particles caused by a single infected virus particle entering the disease-free
population at equilibrium (λ/κ, 0, 0). R0 = 1, means that each infected cell
will infect one uninfected cell. Usually, R0 < 1 implies that an epidemic will
not result from the introduction of one infected cell, whereas R0 > 1 implies
that an epidemic will occur, and R0 = 1 requires further investigation. How-
ever, as will be seen, the model (2.1) may imply something further, namely
that the threshold value of R0 must be brought far below one in order to
avoid an epidemic, and if this does not happen, an endemic equilibrium may
be established. R0 is also useful for establishing the existence of equilibrium
points, and in performing stability analysis for the system. To discuss the
local behavior of the system around the equilibrium point, we introduce the
following theorem

Theorem 2.1. The solution of the model system (2.1) is asymptotically stable
at the equilibrium point (λ/κ, 0, 0) provided that R0 < 1.

Proof. The Jacobian of the system (2.1) is

J(x, y, z) =

 −κ− (1− γ)βz(t) 0 −(1− γ)βx(t)
(1− γ)βz(t) −a (1− γ)βx(t)
−(1− γ)βz(t) (1− η)Na −u− (1− γ)βx(t)


Substituting the equilibrium point (λ/κ, 0, 0), the Jacobian matrix becomes

J(λ/κ, 0, 0) =

 −κ 0 −(1− γ)βλ/κ
0 −a (1− γ)βλ/κ
0 (1− η)Na −u− (1− γ)βλ/κ
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The eigenvalues of this matrix are λ1 = −κ,

λ2 =
−aκ− βλ + βγλ− κu +

√
M − 4aκ(−β(−1 + γ)λ(1 + (−1 + η)N) + κu)

2κ

and,

λ3 = −
aκ + βλ− βγλ + κu +

√
M − 4aκ(−β(−1 + γ)λ(1 + (−1 + η)N) + κu)

2κ

where M = (aκ + β(λ− γλ) + κu)2. λ1 is clearly real and negative. Also, as

R0 =
(1− γ)βλN(1− η)

κu + βλ(1− γ)
< 1,

then (1− γ)βλN(1− η) is less than κu+λ(1− γ)βλ, and so λ2, λ3 meets the
necessary criteria. The system (2.1) shows local asymptotic stability at the
equilibrium point (λ/κ, 0, 0).

To examine the sensitivity of R0 to the parameters, say N and u, the
normalized forward sensitivity index [6] with respect to the parameters N,u
are calculated as

µN =
∂R0
R0

∂N
N

=
N

R0

∂R0

∂N
=

N

R0

(1− γ)βλ(1− η)
κu

= 1.

Thus, R0 and N are directly proportional. Also,

|µu| = |
∂R0
R0

∂u
u

| = | u

R0

∂R0

∂u
| = | −κu

κu + βλ(1− γ)
| < 1.

Therefore, R0 is most sensitive to changes in N . So, in section 5, we choose
to focus on changing the parameters N and u.

3. Basic Idea of VIM

In 1978, Inokuti et al [8] proposed a general Lagrange multiplier method to
solve nonlinear problems. Ji-Huan He has modified the method of Inokuti,
and propose the variational iteration method (VIM) [9, 12]. This method has
been employed to solve a large variety of linear and nonlinear problems with
approximations converging rapidly to accurate solutions. Some advantages of
this technique are

1. The initial condition can be chosen freely with some unknown parame-
ters.

2. The unknown parameters in the initial condition can be easily identified.
3. The calculation is simple and straightforward.

This approach is successfully and effectively applied to various equations, see
for example [9, 12, 13], and the reference therein.

The idea of this method is constructing a correction functional by a
general Lagrange multiplier. The multiplier in the functional should be cho-
sen such that its correction solution is superior to its initial approximation,
called trial function, and is the best within the flexibility of trial function,
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accordingly we can identify the multiplier by the variational theory [9, 12].
A complete review of the VIM is available in [10].

The initial approximation can be freely chosen with possible unknowns,
which can be determined by imposing the boundary/initial conditions. To
illustrate the procedure of this approach, we consider the following general
differential equation

Lu(t) + Nu(t) = f(t). (3.1)

where L is a linear operator, N is a nonlinear operator, and f(t) is an inho-
mogeneous term. According to the variational iteration method [9, 12], the
terms of a sequence {un} are constructed such that this sequence converges
to the exact solution, un’s are calculated by a correction functional as follows:

un+1(t) = un(t) +
∫ t

0

λ(τ) {Lun(τ) + N(ũ)(τ)− f(τ)} dτ (3.2)

where λ is general Lagrangian multipliers, which can be identified optimally
via the variational theory [9], the subscript n denotes the nth order approx-
imation. The second term, involving the integral, on the right-hand side of
equation (3.2) is called the correction. Under suitable restricted variational
assumption (i.e.,ũn is considered as a restricted variation), we can assume
that the above correctional functional are stationary (i.e., δũn = 0). The
successive approximations un+1(t), n ≥ 0 of the solution u(t) will be readily
obtained upon using Lagrange multipliers, and by using the selective function
u0. The initial condition u(0) is usually used for selecting the zeroth approx-
imation u0. With λ determined, then several approximations un(t), n ≥ 0,
follow immediately, the exact solution may be obtained by using

u(t) = lim
n→∞

un(t).

For linear problems, its exact solution can be obtained by only one iteration
step, this is due to the fact that the Lagrange multipliers can be exactly iden-
tified, see [9]. He’s technique provides a sequence of functions which converges
to the exact solution of the problem [12].

In fact, the solution of the differential equation (3.1) is considered as
the fixed point of the functional (3.2) under suitable choice of the initial
approximation. For the convergence proof of (3.2), we state the following
known result that is useful to support the convergence of our iteration.

Theorem 3.1. [7] For a Banach space X, suppose the nonlinear mapping
A : X → X satisfy

‖ A[u]−A[ū] ‖≤ γ ‖ u− ū ‖, u, ū ∈ X

for some constant γ < 1. Then A has a unique fixed point. Furthermore, the
sequence un+1 = A[un] with arbitrary choice of u0 ∈ X, converges to the fixed
point of A, and

‖ uk − uj ‖≤‖ u1 − u0 ‖
k−2∑

`=j−1

γ`.
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According to this Theorem, for the nonlinear mapping

A[u] = u(t) +
∫ t

0

[
Lu(τ) + N(u(τ))− f(τ)

]
dτ.

A sufficient condition for the convergence of the VIM is strictly contraction
of A. Furthermore, the sequence (3.2) converges to the fixed point of A,
which is also the solution of the differential equation in Equation (3.1). In
what follows, we will apply the VIM to solve the epidemic model (2.1), to
illustrate the strength of the method and to establish approximations of high
accuracy for these models.

4. Applications

To show the efficiency of the method described in the previous section, in this
section, we apply the VIM to solve the system of nonlinear ordinary differen-
tial equations (2.1). According to the VIM, we can construct the correction
functionals as follows:

xn+1(t) = xn(t) +
∫ t

0

λ1(τ)
{

x′n(τ)− λ + κxn(τ) + (1− γ)βxn(τ)z̃n(τ)
}

dτ

yn+1(t) = yn(t) +
∫ t

0

λ2(τ)
{

y′n(τ)− (1− γ)βx̃n(τ)z̃n(τ) + ay(τ)
}

dτ

zn+1(t) = zn(t)

+
∫ t

0

λ3(τ)
{

z′n(τ)−(1−η)Naỹn(τ)+uzn(τ)+(1−γ)βx̃n(τ)z̃n(τ)
}

dτ (4.1)

where λ1, λ2 and λ3 are the general Lagrange multipliers, and x̃n, ỹn and z̃n

denote restricted variations, i.e., δx̃n = δỹn = δz̃n = 0. Making the above
correction functional stationary

δxn+1(t) = δxn(t)+δ

∫ t

0

λ1(τ)
{

x′n(τ)−λ + κxn(τ) + (1− γ)βxn(τ)z̃n(τ)
}

dτ

= δxn(t) + δ

∫ t

0

λ1(τ)
{

x′n(τ) + κxn(τ)
}

dτ

= δxn(t) + λ1(τ)δxn(τ)
∣∣∣
τ=t

+
∫ t

0

(κλ1 − λ′1)(τ)δxn(τ)dτ = 0,
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also,

δyn+1(t) = δyn(t) + δ

∫ t

0

λ2(τ)
{

y′n(τ)− (1− γ)βx̃n(τ)z̃n(τ) + ay(τ)
}

dτ

= δyn(t) + δ

∫ t

0

λ2(τ)
{

y′n(τ) + ayn(τ)
}

dτ

= δyn(t) + λ2(τ)δyn(τ)
∣∣∣
τ=t

+
∫ t

0

(aλ2 − λ′2)(τ)δyn(τ)dτ = 0,

and,
δzn+1(t) = δzn(t)

+δ

∫ t

0

λ3(τ)
{

z′n(τ)− (1− η)Naỹn(τ) + uzn(τ) + (1− γ)βx̃n(τ)z̃n(τ)
}

dτ

= δzn(t) + δ

∫ t

0

λ3(τ)
{

z′n(τ) + uzn(τ)
}

dτ

= δzn(t) + λ3(τ)δzn(τ)
∣∣∣
τ=t

+
∫ t

0

(uλ3 − λ′3)(τ)δzn(τ)dτ = 0,

yield the following stationary conditions

λ′1(τ)− κλ1(τ) = 0, 1 + λ1(τ)
∣∣∣
τ=t

= 0

λ′2(τ)− aλ2(τ) = 0, 1 + λ2(τ)
∣∣∣
τ=t

= 0

λ′3(τ)− uλ3(τ) = 0, 1 + λ3(τ)
∣∣∣
τ=t

= 0

(4.2)

The general Lagrange multipliers can be identified by solving the system of
equations in (4.2), to obtain λ1(τ) = −eκ(τ−t), λ2(τ) = −ea(τ−t), λ3(τ) =
−eu(τ−t). Substituting these values back into the correction functional Equa-
tion (4.1) results into the following iteration formula:

xn+1(t) = xn(t)−
∫ t

0

eκ(τ−t)
{

x′n(τ)− λ + κxn(τ) + (1− γ)βxn(τ)zn(τ)
}

dτ

yn+1(t) = yn(t)−
∫ t

0

ea(τ−t)
{

y′n(τ)− (1− γ)βxn(τ)zn(τ) + ay(τ)
}

dτ

zn+1(t) = zn(t)

−
∫ t

0

eu(τ−t)
{

z′n(τ)−(1−η)Nayn(τ)+uzn(τ)+(1−γ)βxn(τ)zn(τ)
}

dτ. (4.3)

We start with initial approximations x0(t) = N1, y0(t) = N2, z0(t) = N3.
We can use xn+1(t) obtained in the first equation of (4.3) into the second
equation of (4.3), and so on for other variables, this increases the convergence
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rate. By the above iteration formula (4.3), we can obtain a few first terms
being calculated.

x1(t) = 9.999995× 107 − 9.989995× 106 e−0.1t

y1(t) = 1. + 9999e−0.5t

z1(t) = 49999.9− 39999.9e−5t

(4.4)

While,

x2(t) = 1× 107 + 399.6e−5.1t − 408.162e−5t − 9.99× 106e−0.1t

− 24994.9e−3.60822×10−16t − e−0.1t(−25003.5− 2497.5t)

y2(t) = 4999.99−434.347e−5.1t+444.443e−5t+11233.7e−0.5t − 6243.73e−0.1t

z2(t) = −494.9 + 19979.9e−5.1t − 39999.9e−5t + 55550e−0.5t + 509.693e−0.1t

− e−5t(25544.7− 1999.9t)

Continuing in this manner, the rest of components of the iteration formulas
can be obtained using symbolic packages such as Mathematica. In our case,
only three terms from the iteration formula are used to obtain the approxi-
mation for our solutions.

5. Simulation Results and Discussion

To illustrate the use of the VIM, we describe some numerical experiments
made to get a better understanding of the solutions behavior for the model
system (2.1). The parameter values used here have all been taken from a pub-
lished paper [14] and the reference therein, which are quoted here as in Table
2. The computer simulations were performed using the first three iterations
(x3(t), y3(t), z3(t)) for each variable, with the parameters values appeared in
Table 2. Simulation results for the model, are displayed in Figures 1− 6. As
can be clearly seen, Figure 1 shows the uninfected cells, it is found that un-
infected cells first increases with time, and then after almost 40 days reaches
it equilibrium position, which is λ/κ = 1 × 107. As seen from Figure 2 that
infected cells decreases exponentially as all infectives will develop AIDS and
will die out. Figure 3, show the virus particles, we observe that immediately
after infection, the amount of virus particles rises dramatically. After a few
days (usually six to eight days), the virus concentration falls to the virus par-
ticles. Our further graphs 4 − 6 dealing mainly with the existence of steady
state for some values of R0 < 1.

It should be pointed out that the parameters in the model are inde-
pendent of each other, since each of them plays an independent role. These
parameters have definite meaning, so the results of simulation can hardly
coincide with the actual situation of the epidemic if the parameters cannot
be adjusted to proper values.
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Parameter Values in Simulation
λ 106 day−1 dm3

κ 0.1 day−1

u 5 day−1

a 0.5 day−1

η 0.5
β 1× 10−8 day−1 dm3

N 100 per cell
γ 0.5

N1 = N2 = N3 10000
Table 2. Parameters in system (2.1) with their values

0 20 40 60 80 100 120 140
days

5.0´106

1.0´107

1.5´107

2.0´107
Uninfected cells

Figure 1. Simulated behavior of uninfected cells with parame-

ter values given in Table 2, R0 = 0.49, the steady state (λ/κ, 0, 0)

is asymptotically stable.
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of 2D Brinkman flow past several voids
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Abstract. In this paper we obtain the existence and uniqueness result
for the classical solution of the boundary value problem which describes
the 2D flow of an incompressible Newtonian fluid in a porous medium
and in the presence of N ≥ 2 voids.
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1. Introduction

The problem of viscous incompressible fluid flow through porous media has
various chemical, biotechnology, and geological applications, concerning: the
treatment of transport and chemical reaction within catalyst particles in fixed
and fluidized beds, the modeling of polymer molecules as porous particles,
immobilization of cells or enzymes and perfusion chromatography for purify-
ing proteins and other bio-molecules, the flow of various kinds of fluids past
porous rocks embedded in porous soil. In [2] Kohr and Sekhar have used
the potential theory, as well as the Brinkman model, in order to obtain the
existence and uniqueness result of the classical solution to a boundary value
problem which describes the flow of an unbounded viscous incompressible
fluid in the presence of a porous body embedded in another porous medium.
Also, in [3] the authors obtained an indirect boundary integral formulation
for the three-dimensional viscous flow problem in a granular material with
one void. The method of matched asymptotic expansions and the method
of boundary integral equations have been used in [4] in order to study the
two-dimensional steady flow of a viscous incompressible fluid at low Reynolds
number past a porous body of arbitrary shape. In this paper we show the
existence and uniqueness result for the classical solution of a boundary value



180 Elena-Maria Ului

problem that describes the two-dimensional flow of an incompressible New-
tonian fluid in a porous medium and in the presence of N ≥ 2 voids by using
the Brinkman model for the external flow, as well as the Stokes model for
the internal flow. We use a boundary integral method that reduces the flow
problem to a system of Fredholm integral equations of the second kind that
has a unique solution in some Banach spaces.

2. The mathematical formulation of the problem

Let us consider an otherwise unbounded homogeneous granular material in
which N ≥ 2 fluid obstacles (voids) are given. The k-th void occupies the
bounded domain Dk ⊂ R2 whose boundary Γk is a closed Lypaunov curve
in the class C1,α, α ∈ (0, 1], k = 1, . . . , N . Let us denote by D0 the set
given by D0 = ∪N

k=1Dk. We denote by De the unbounded domain with the
boundary Γ = ∪N

k=1Γk, and assume that at great distances, i.e., far from the
voids, the fluid flow is uniform with velocity and pressure fields U∞ and p∞,
respectively.

Let us now assume that the flow in the unbounded domain De is de-
scribed by the Brinkman model, i.e., the Brinkman and continuity equations.
Thus, the non-dimensional volume averaged velocity and pressure fields ve

and pe satisfy in De the following equations:

−∇pe + (∇2 − χ2)ve = 0 in De, (2.1)

∇ · ve = 0 in De, (2.2)

where χ > 0 is the constant having the expression χ = a√
κ

√
µf

µeff
, a is a

characteristic length (connected to the sizes of the curves Γk, k = 1, . . . , N)
and k is the permeability of the porous medium. Note that if µf = µeff , then
χ becomes χ = a/

√
κ.

The flow inside each void is assumed to be described by the Stokes
system, i.e., by the Stokes and continuity equations:

−∇pi +∇2vi = 0 in D0, (2.3)

∇ · vi = 0 in D0. (2.4)
Also, we assume that the velocity and boundary traction fields are con-

tinuous across each curve Γk, k = 1, . . . , N , i.e.,

vi = ve, ti = te on Γk. (2.5)

Note that te is the boundary traction corresponding to the external fields ve

and pe, and ti is the boundary traction due to the internal fields vi and pi.
At large distances, the fields vp = ve −U∞ and pp = pe − P∞ vanish

such that

(|vp||∇vp|)(x) = o(|x|−1), (|vp||pp|)(x) = o(|x|−1) as |x| → ∞, (2.6)

where U∞ and P∞ are the non-dimensional undisturbed velocity and pres-
sure fields.
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Therefore, the considered flow problem reduces to the boundary value
problem consisting of the system of equations (2.1)-(2.4) subject to the trans-
mission and far field conditions (2.5)-(2.6) and having as unknowns the fields
ve, pe, vi and pi. We show that this problem has a unique classical solution
((ve, pe), (vi, pi)) ∈ ((C2(De)∩C0(De))×C1(De))× ((C2(D0)∩C0(D0))×
C1(D0)), where D0 = ∪N

k=1Dk.

3. Uniqueness of the solution

First, we show the following uniqueness result:

Theorem 3.1. The boundary value problem (2.1)-(2.6) has at most one classi-
cal solution ((ve, pe), (vi, pi)) ∈ ((C2(De)∩C0(De))×C1(De))× ((C2(D0)∩
C0(D0))× C1(D0)).

Proof. Let us assume that the boundary value problem (2.1)-(2.6) has two
classical solutions and let ((ve

0, p
e
0), (v

i
0, p

i
0)) be their difference. Therefore,

the pairs (ve
0, p

e
0) and (vi

0, p
i
0) satisfy the following equations, boundary and

far field conditions:

−∇pi
0 +∇2vi

0 = 0 and ∇ · vi
0 = 0 in D0, (3.1)

−∇pe
0 + (∇2 − χ2)ve

0 = 0 and ∇ · ve
0 = 0 in De, (3.2)

vi
0 = ve

0 and ti
0 = te

0 on Γk, k = 1, . . . , N, (3.3)
(|ve

0||∇ve
0|)(x) = o(|x|−1), (|ve

0||pe
0|)(x) = o(|x|−1) as |x| → ∞. (3.4)

In addition, the fields ve
0 and pe

0 satisfy the energy identity (see e.g. [1],
p.24)

2
∫

De

Ekj(ve
0)Ekj(ve

0)dx = −
N∑

k=1

∫
Γk

ve
0 · te

0dΓk, (3.5)

where

Ekj(ve
0) =

1
2

(
∂ve

0,k

∂xj
+

∂ve
0,j

∂xk

)
and te

0 = (te0,1, t
e
0,2) is the boundary traction due to the fields ve

0 = (ve
0,1, v

e
0,2)

and pe
0, i.e.,

te0,j = Tjk(ve
0)nk = (−pe

0δjk + 2Ejk(ve
0))nk. (3.6)

In the relations (3.5) and (3.6) and in what follows we use Einstein’s
repeated-index summation convention. Also we denote by n = (n1, n2) the
outward unit normal to Γ.

Now, making use of the fact that the fields vi
0 and pi

0 satisfy the equa-
tions (3.2), we get the identity (see e.g. [1], p.15):∫

Dk

(χ2|vi
0|2 + 2Ekj(vi

0)Ekj(vi
0))dx =

∫
Γk

vi
0 · ti

0dΓk, k = 1, . . . , N, (3.7)

where

Ejk(vi
0) =

1
2

(
∂vi

0,j

∂xk
+

∂vi
0,k

∂xj

)
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and ti
0 = (ti0,1, t

i
0,2) is the boundary traction due to the fields vi

0 = (vi
0,1, v

i
0,2)

and pi
0, defined as in (3.6).
Taking into account the boundary conditions (3.3), as well as the iden-

tities (3.5) and (3.7), we obtain the equality

2
∫

De

Ejk(ve
0)Ejk(ve

0)dx = −
N∑

k=1

∫
Dk

(
χ2|vi

0|2 + 2Ejk(vi
0)Ejk(vi

0)
)
dx, (3.8)

where the left-hand side is non-negative and the right-hand side is less than
or equal to zero. Thus, we obtain that∫

De

Ejk(ve
0)Ejk(ve

0)dx = 0,

∫
Dk

(χ2|vi
0|2 + 2Ejk(vi

0)Ejk(vi
0))dx = 0, k = 1, . . . , N.

Therefore, we find that

vi
0 = 0 in Dk, k = 1, . . . , N (3.9)

and, due to (3.4),
ve

0 = 0 in De. (3.10)

In view of (3.1) and (3.10) it follows that pe
0 = ce ∈ R in De. The decay

condition of pe
0 at infinity yields that ce = 0, i.e., pe

0 = 0 in De. Hence we
have

ve
0 = 0 and pe

0 = 0 in De. (3.11)

Using similar arguments, we obtain

vi
0 = 0 and pi

0 = ck ∈ R in Dk, k = 1, . . . , N. (3.12)

On the other hand, the properties (3.11) yield that

te
0 = 0 on Γk, k = 1, . . . , N, (3.13)

and, in view of the second of the conditions (3.3), it follows that ti
0 = −ckn =

0 on Γk, k = 1, . . . , N . Therefore, we get ck = 0, k = 1, . . . , N . Consequently,
we have

vi
0 = 0, pi

0 = 0 in D0. (3.14)

The relations (3.11) and (3.14) yield the desired uniqueness result. This
completes the proof of Theorem 3.1. �

4. Potential theory for the Brinkman and Stokes equations

In this section we will present the fundemental solution for the Brimkman
and Stokes equations and the main properties of the potential theory for
the Brinkman system of equations (2.1)-(2.2) and respectively for the Stokes
system (2.3)-(2.4).
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4.1. The fundamental solutions of the Brinkman and Stokes equations

The components of the fundamental Brinkman tensor Gχ2
and those of its

associated pressure vector Πχ2
, which determine the fundamental solution

(Gχ2
,Πχ2

) of the Brinkman system in R2, are given by (see e.g. [1, p. 81]):

Gχ2

jk (x− y) = δjkA1(χ|x− y|) +
(xj − yj)(xk − yk)

|x− y|2
A2(χ|x− y|) and

Πχ2

j (x− y) = 2
xj − yj

|x− y|2
,

(4.1)
where

A1(z) = 2{K0(z) + z−1K1(z)− z−2},
A2(z) = 2{−K0(z)− 2z−1K1(z) + 2z−2}, (4.2)

and and Kν is the modified Bessel function of the second kind and order ν.
The corresponding stress and pressure tensors Sχ2

and Λχ2
have the

following components (see e.g. [1, p. 82, 196]):

Sχ2

ijk(x− y) = −Πχ2

j (x− y)δik +
∂Gχ2

ij (x− y)
∂xk

+
∂Gχ2

kj (x− y)
∂xi

= −2
{

δik
xj − yj

|x− y|2
D1(χ|x− y|) +

(
δkj

xi − yi

|x− y|2
+ δij

xk − yk

|x− y|2

)
D2(χ|x−y|)

+
(xi − yi)(xj − yj)(xk − yk)

|x− y|4
D3(χ|x− y|)

}
, (4.3)

Λχ2

ik (x− y) = 2
δik

|x− y|2
(
− χ2|x− y|2 ln |x− y| − 2

)
+ 8

(xi − yi)(xk − yk)
|x− y|4

,

(4.4)
where

D1(z) = 2K2(z) + 1− 4z−2,
D2(z) = 2K2(z) + zK1(z)− 4z−2,
D3(z) = −8K2(z)− 2zK1(z) + 16z−2.

(4.5)

The components of the fundamental tensor G and those of its associated
pressure vector Π, which determine the fundamental solution (G,Π) of the
Stokes system in R2, are given by (see e.g. [1, p. 38])

Gjk(x− y) = −δjk ln |x− y|+ (xj − yj)(xk − yk)
|x− y|2

, Πj(x− y) = 2
xj − yj

|x− y|2
,

(4.6)
and the stress and pressure tensors S and Λ have the components (see e.g.
[1, p. 39, 132])

Sijk(x− y) = −4
(xi − yi)(xj − yj)(xk − yk)

|x− y|4
,

Λik(x− y) = 4
(
− δik

|x− y|2
+ 2

(xi − yi)(xk − yk)
|x− y|4

)
.

(4.7)
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4.2. Boundary potentials for the Brinkman and Stokes equations

Let C ∈ R2 be a closed Lypaunov curve in the class C1,α, α ∈ (0, 1]. The
single- and double-layer potentials, Vχ2(·,g) and Wχ2(·,h), associated with
the Brinkman system and having the densities g and h, respectively, are
given by

Vχ2(x,g) =
1
4π

∫
C
Gχ2

(x− y) · g(y)dC(y) for x ∈ R2 \ C (4.8)

(
Wχ2

)
k
(x,h) =

1
4π

∫
C

Sχ2

jk`(y − x)n`(y)hj(y)dC(y) for x ∈ R2 \ C, (4.9)

and the corresponding pressure functions P s
χ2(·,g) and P d

χ2(·,h) have the
expressions

P s
χ2(x,g) =

1
4π

∫
C

Πχ2

j (x− y)gj(y)dC(y) for x ∈ R2 \ C (4.10)

P d
χ2(x,h) =

1
4π

∫
C

Λχ2

j` (x− y)n`(y)hj(y)dC(y) for x ∈ R2 \ C. (4.11)

The pairs (Vχ2(·,g), P s
χ2(·,g)) and (Wχ2(·,h), P d

χ2(·,h)) satisfy the
Brinkman system in both domains D0 and De, respectively.

The single- and double-layer potentials, V(·,g) and W(·,h), for the
Stokes system and with the densities g and h, respectively, can be obtained
as in (4.8) and (4.9), but with G and Sjk` instead of Gχ2

and Sχ2

jk`. Similarly,
the pressure terms P s(·,g) and P d(·,h) can be obtained as in (4.10) and
(4.11), but with Πj and Λj` instead of Πj

χ2
and Λχ2

j` .
Let us denote by Hχ2(·,g) the normal stress due to the single-layer

potential Vχ2(·,g) and defined in a neighborhood U ⊂ R2 of C by the relation(
Hχ2

)
k
(x,g) = Tk`(Vχ2(g))(x)n`(x̃), x ∈ Ũ \ C,

where x̃ is the orthogonal projection of x ∈ U onto C. On the components,
we have(

Hχ2

)
k
(x,g) =

1
4π

∫
S

Sχ2

kj`(x− y)n`(x̄)gj(y)dC(y), x ∈ U \ C, k = 1, 2.

(4.12)
The stress field due to the single-layer potential V(·,g) is defined in U by
the relation:

tj(V(g))(x) = Tj`(V(g))(x)n`(x̃), x ∈ U \ C, j = 1, 2. (4.13)

Let Kχ2
(y,x) be the kernel of the double-layer potential Wχ2(·,h),

whose components are given by Kχ2

jk (y,x) = Sχ2

jk`(y−x)n`(y). Similarly, the
components of the kernel of the double-layer potential W(·,h) are denoted
by Kjk(y,x), and are given by the relation Kjk(y,x) = Sjk`(y − x)n`(y).
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Let us now consider the following decomposition of the tensors Gχ2
and

Sχ2
:

Gχ2

kj (x− y) = Gkj(x− y) + Gc
kj(x− y),

Sχ2

jk`(y − x)n`(y) = Sjk`(y − x)n`(y) + Sc
jk`(y − x)n`(y),

(4.14)

where the matrix kernel Gc with the components Gc
kj and the matrix kernel

Scn with the components Sc
jk`nl are continuous. Thus, one obtains the fol-

lowing result which shows the continuity behaviour and the jump formulas
for the single- and double-layer potentials associated to the Brinkman system
(for e.g. [4]):

Theorem 4.1. a) Let C be a closed Lyapunov curve in R2, i.e., C ∈ C1,α,
α ∈ (0, 1], and let densities g ∈ C0(C) and h ∈ C0(C) be given. Also let
Vχ2(·,g), Wχ2(·,h) and Hχ2(·,g) be the boundary potentials given by (4.8),
(4.9) and (4.12). Then on C we have:(

Vχ2

)+(·,g) =
(
Vχ2

)−(·,g) = Vχ2(·,g), (4.15)

(
Wχ2

)+(·,h)−
(
Wχ2

)∗(·,h) =
1
2
h =

(
Wχ2

)∗(·,h)−
(
Wχ2

)−(·,h), (4.16)

(
Hχ2

)+(·,g)−
(
Hχ2

)∗(·,g) = −1
2
g =

(
Hχ2

)∗(·,g)−
(
Hχ2

)−(·,g). (4.17)

In addition, if h ∈ C1,β(C), β ∈ (0, α), then there exist the limiting
values of the boundary traction due to the double-layer potential Wχ2(·,h)
on both sides of C, T+(Wχ2(h)) and T−(Wχ2(h)), and they are equal, i.e.,

T+(Wχ2(h)) = T−(Wχ2(h)) ≡ T(Wχ2(h)) on C. (4.18)

The superscript + (−) is used for the limiting value of a field evaluated
from the external side (the internal side) of C, and the symbol ∗ refers to
the principal value of a double-layer integral on C. The relations (4.15)-(4.18)
also hold for the boundary potentials associated with the Stokes system.

The functions Vχ2(·,g), Wχ2(·,h), P s
χ2(·,g), P d

χ2(·,h) satisfy the rela-
tions

Vχ2(x,g) = O(|x|−2), Wχ2(x,h) = O(|x|−1) as |x| → ∞, (4.19)

P s
χ2(x,g) = O(|x|−1), P d

χ2(x,h) = O(ln |x|) as |x| → ∞, (4.20)

and in the case χ = 0, we have:

V(x,g) = O(ln |x|), P s(x,h) = O(|x|−1) as |x| → ∞, (4.21)

W(x,h) = O(|x|−1), P d(x,h) = O(|x|−2) as |x| → ∞. (4.22)
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4.3. Complementary integral operators

For λ ∈ (0, α), let Vχ2 : Cλ(C) → C1,λ(C) and Kχ2 : C1,λ(C) → C1,λ(C) be
the single- and double-layer integral operators for the Brinkman system, i.e.,

Vχ2g = Vχ2(·,g), Kχ2h = W∗
χ2(·,h), ∀ g ∈ Cλ(C), h ∈ C1,λ(C),

Similarly, V : Cλ(C) → C1,λ(C) and K : C1,λ(C) → C1,λ(C) are the corre-
sponding integral operators for the Stokes system.

Also, let Dχ2 : C1,λ(C) → Cλ(C) be the operator given in (4.18), i.e.,(
Dχ2h

)
j
(x) = p.f.

∫
C

Dχ2

j` (x,y)h`(y)dC(y), (4.23)

where
Dχ2

j` (x,y) = −Λχ2

`k (x− y)nk(y)nj(x)

+
( ∂

∂xj
Sχ2

`ik(y − x) +
∂

∂xi
Sχ2

`jk(y − x)
)
ni(x)nk(y).

The corresponding operator for the Stokes system is denoted by D0. The
operators Dχ2 and D0 belong to the class of hypersingular operators.

Let us introduce the notations

Λc
`k(x−y) = Λχ2

`k (x−y)−Λ`k(x−y), Kc
jk(y,x) = Kχ2

jk (y,x)−Kjk(y,x),
(4.24)

in view of which we are now able to define the complementary integral oper-
ators for the Stokes-Brinkman-coupled system.

The complementary single- and double-layer operators Vχ2,0 : Cλ(C) →
C1,λ(C) and Kχ2,0 : C1,λ(C) → C1,λ(C) are given by

Vχ2,0 = Vχ2 − V, Kχ2,0 = Kχ2 −K, (4.25)

and the adjoint of the complementary double-layer operator K
′

χ2,0 : Cλ(C) →
Cλ(C) has the expression K

′

χ2,0 = K
′

χ2 −K
′
, where K

′

χ2 is the adjoint oper-
ators of Kχ2 .

In addition, the complementary hypersingular operator

Dχ2,0 : C1,λ(C) → Cλ(C)

is given by Dχ2,0 = Dχ2 −D0.
We have following compactness result whose proof can be consulted in

[4]:

Theorem 4.2. If C is a closed Lyapunov curve in R2, i.e., C ∈ C1,α, α ∈ (0, 1],
and λ ∈ (0, α), then the complementary boundary integral operators

Vχ2,0 : Cλ(C) → C1,λ(C), Kχ2,0 : C1,λ(C) → C1,λ(C),

K′
χ2,0 : Cλ(C) → Cλ(C), Dχ2,0 : C1,λ(C) → Cλ(C)

are compact.
In addition, if h ∈ C1,λ(C), then T+(Wχ2,0(h)) and T−(Wχ2,0(h))

exist everywhere on C and they are equal.
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5. The boundary integral formulation of the problem

In order to prove that the boundary value problem (2.1)-(2.6) has a unique
classical solution, we consider the following boundary integral representa-
tions:

ve
k(x) = U∞

k +
1
4π

N∑
l=1

∫
Γl

Kχ2

jk (y,x)φj(y)dΓl(y)

+
1
4π

N∑
l=1

∫
Γl

Gχ2

kj (x− y)
(
hj(y)

− 1
|Γl|

∫
Γl

hj(z)dΓl(z)
)
dΓl(y), x ∈ De (5.1)

pe(x) = P∞(x) +
1
4π

N∑
l=1

∫
Γl

Λχ2

jk (x− y)nk(y)φj(y)dΓl(y)

+
1
4π

N∑
l=1

∫
Γl

Πχ2

j (x− y)
(
hj(y)

− 1
|Γl|

∫
Γl

hj(z)dΓl(z)
)
dΓl(y), x ∈ De, (5.2)

and

vi
k(x) =

1
4π

N∑
l=1

∫
Γl

Kjk(y,x)φj(y)dΓl(y)

+
1
4π

N∑
l=1

∫
Γl

Gkj(x− y)
(
hj(y)

− 1
|Γl|

∫
Γl

hj(z)dΓl(z)
)
dΓl(y)

−
∫

Γm

hj(y)dΓm(y), x ∈ Dm,m = 1, . . . , N (5.3)

pi(x) =
1
4π

N∑
l=1

∫
Γl

Λjk(x− y)nk(y)φj(y)dΓl(y)

+
1
4π

N∑
l=1

∫
Γl

Πj(x− y)
(
hj(y)

− 1
|Γl|

∫
Γl

hj(z)dΓl(z)
)
dΓl(y), x ∈ D0, (5.4)

where Φ = (φ1, φ2) ∈ C1,λ(Γ) and h = (h1, h2) ∈ Cλ(Γ) are unknown
densities, λ ∈ (1, α), and |Γk| =

∫
Γk

dΓk is the length of Γk, k = 1, . . . , N .
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Let us observe that the boundary integral representations (5.1)-(5.4)
satisfy the system of equations (2.1)-(2.4), as well as far field conditions
(2.5)-(2.6).

Now, imposing the transmission condition (2.5), we obtain the equations

φk(x0) +
1
4π

N∑
l=1

∫
Γl

Kc
jk(y,x0)φj(y)dΓl(y)

+
1
4π

N∑
l=1

∫
Γl

Gc
kj(x0 − y)

(
hj(y)− 1

|Γm|

∫
Γm

hj(y)dΓm(y)
)

dΓl(y)

+
∫

Γm

hj(y)dΓm(y) = −U∞
k , x0 ∈ Γm, m = 1, . . . , N. (5.5)

Taking into account the second of the boundary conditions (2.5), we
obtain the boundary integral equations

−hk(x0) +
1
4π

N∑
l=1

∫
Γl

Kc
kj(x0,y)

(
hj(y)− 1

|Γl|

∫
Γl

hj(z)dΓl(z)
)
dΓl(y)

+ Tkj(Wc(Φ))(x0)nj(x0) = −t∞k (x0), x0 ∈ Γm, m = 1, . . . , N,
(5.6)

where t∞k are the components of the stress field associated to the velocity
field U∞ , i.e.,

t∞k (x) = p∞nk(x).

We mention that the integrals on Γm who appears in (5.5) and (5.6) are
understood in the sense of principal value.

Therefore, the boundary value problem (2.1)-(2.6) reduces to the system
of boundary integral equations (5.5) and (5.6). In view of Theorem 4.2 it
follows that all operators that appear in the boundary integral equations
(5.5) and (5.6) are compact, as mappings into one of the spaces C1,λ(Γ),
Cλ(Γ). Thus, these equations are Fredholm integral equations of the second
kind with the unknowns (Φ,h) ∈ C1,λ(Γ)× Cλ(Γ).

We have the following existence and uniqueness result (see also [2]):

Theorem 5.1. Let Γk be closed Lyapunov curves of class C1,α in R2, α ∈ (0, 1],
k = 1, . . . , N , Γ = ∪N

k=1Γk , and let λ ∈ (0, α). Then the system of Fredholm
integral equations of the second kind (5.5) and (5.6) has a unique solution
(Φ,h) ∈ C1,λ(Γ)×Cλ(Γ). In addition, the boundary integral representations
(5.1)-(5.4), obtained with the densities Φ and h, determine the unique classi-
cal solution ((ve, pe), (vi, pi)) ∈ ((C2(De)∩C1(De))× (C1(De)∩C0(De)))×
((C2(D0)∩C1(D0))×(C1(D0)∩C0(D0))) to the boundary value problem con-
sisting of the equations (2.1)-(2.4) and the boundary and far field conditions
(2.5)-(2.6).



The problem of 2D Brinkman flow past several voids 189

Proof. Let us consider the following homogeneous system of integral equa-
tions

φ0
k(x0) +

1
4π

N∑
l=1

∫
Γl

Kc
jk(y,x0)φ0

j (y)dΓl(y)

+
1
4π

N∑
l=1

∫
Γk

Gc
kj(x0 − y)

(
h0

j (y)− 1
|Γl|

∫
Γl

h0
j (z)dΓl(z)

)
dΓl(y)

+
∫

Γm

h0
j (y)dΓm(y) = 0, x0 ∈ Γm, m = 1, . . . , N, (5.7)

−h0
k(x0) +

1
4π

N∑
l=1

∫
Γl

Kc
kj(x0,y)

(
h0

j (y)− 1
|Γl|

∫
Γl

h0
j (z)dΓl(z)

)
dΓl(y)

+ Tkj(Wc(Φ0))(x0)nj(x0) = 0, x0 ∈ Γm, m = 1, . . . , N. (5.8)

Also let (Φ0,h0) ∈ C1,λ(Γ)×Cλ(Γ) be an arbitrary solution to this system,
and let (ue, qe) and (ui, qi) be the fields given by the following boundary
integral representations:

ue
k(x) =

1
4π

N∑
l=1

∫
Γl

Kχ2

jk (y,x)φ0
j (y)dΓl(y) +

1
4π

N∑
l=1

∫
Γl

Gχ2

kj (x− y)
(
h0

j (y)

− 1
|Γl|

∫
Γl

h0
j (z)dΓl(z)

)
dΓl(y), x ∈ R2 \ Γm,m = 1, . . . , N (5.9)

qe(x) =
1
4π

N∑
l=1

∫
Γl

Λχ2

jk (x− y)φ0
j (y)dΓl(y)

+
1
4π

N∑
l=1

∫
Γl

Πχ2

j (x− y)
(
h0

j (y)

− 1
|Γl|

∫
Γl

h0
j (z)dΓl(z)

)
dΓl(y), x ∈ R2 \ Γm,m = 1, . . . , N (5.10)

and

ui
k(x) =

1
4π

∫
Γm

Kjk(y,x)φ0
j (y)dΓm(y) +

1
4π

∫
Γm

Gkj(x− y)
(
h0

j (y)

− 1
|Γm|

∫
Γm

h0
j (z)dΓm(z)

)
dΓm(y)

−
∫

Γm

h0
j (y)dΓm(y), x ∈ R2 \ Γm,m = 1, . . . , N (5.11)
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qi(x) =
1
4π

N∑
l=1

∫
Γl

Λjk(x− y)nk(y)φ0
j (y)dΓl(y)

+
1
4π

N∑
l=1

∫
Γl

Πj(x− y)
(
h0

j (y)

− 1
|Γl|

∫
Γl

h0
j (z)dΓl(z)

)
dΓl(y), x ∈ R2 \ Γm,m = 1, . . . , N. (5.12)

Because the pairs (Vχ2(·,g), P s
χ2(·,g)) and (Wχ2(·,h), P d

χ2(·,h)) satisfy the
Brinkman system in both domains D0 and De, respectively, and the pairs
(V(·,g), P s(·,g)) and (W(·,h), P d(·,h)) satisfy the Stokes system in both
domains D0 and De, respectively, we obtain that:

∇ · ue = 0, −∇qe + (∇2 − χ2)ue = 0 in R2 \ Γ, (5.13)

∇ · ui = 0, −∇qi +∇2ue = 0 in R2 \ Γ. (5.14)
Taking into account the relations (4.21) we have that:

(|ue||∇ue|)(x) = o(|x|−1), (|ue||qe|)(x) = o(|x|−1) as |x| → ∞. (5.15)

Therefore, the fields ue and qe satisfy the identity∫
De

(2Ejk(ue)Ejk(ue) + χ2|ue|2)dx = −
N∑

l=1

∫
Γl

ue+
k (x)t+k (ue)(x)dΓl(x),

(5.16)
where t±k (ue) = T±kj(u

e)nj , and

Tkj(ue) = −qeδkj + 2Ekj(ue), Ejk(ue) =
1
2

(
∂ue

j

∂xk
+

∂ue
k

∂xj

)
.

Similarly, the fields ui and qi satisfy the identity (see e.g. [1], p. 15)

2
∫

D0

Ejk(ui)Ejk(ui)dx =
N∑

l=1

∫
Γl

ui−
k (x)t−k (ui)(x)dΓl(x), (5.17)

where t±k (ui) = T±kj(u
i)nj , and

Tkj(ui) = −qiδkj + 2Ekj(ui), Ejk(ui) =
1
2

(
∂ui

j

∂xk
+

∂ui
k

∂xj

)
.

Now, taking into account the formulas (4.15)-(4.17), we obtain the properties

ue+
k = ui−

k , t+k (ue) = t−k (ui) on Γl, l = 1 . . . , N (5.18)

which yield the equality
N∑

l=1

∫
Γl

ue+
k (x)t+k (ue)(x)dΓl =

N∑
k=1

∫
Γl

ui−
k (x)t−k (ui)(x)dΓl. (5.19)

From the properties (5.16), (5.17) and (5.19) we deduce that∫
De

(2Ejk(ue)Ejk(ue) + χ2|ue|2)dx = −2
∫

D0

Ejk(ui)Ejk(ui)dx, (5.20)
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and hence
ue = 0 in De, (5.21)

Ejk(ui) = 0 in Dm, j, k = 1, 2, m = 1, . . . , N. (5.22)
Using Killing’s theorem, we deduce that there exists some real constants ak

0

and bk
0 such that

ui = am
0 + bm

0 × x in Dm, m = 1, . . . , N. (5.23)

But,
0 = ue+ = ui− on Γm m = 1, . . . , N

thus we obtain that
am
0 = bm

0 = 0.

Then , we have:
ui = 0 in Dm,m = 1, . . . , N. (5.24)

In addition, in view of the second of equations (5.13) and from the fact that
the pressure field qe vanishes at infinity, we obtain

qe = 0 in De. (5.25)

Similarly, we deduce that qi = c0
m ∈ R in Dm. On the other hand, from the

relations (5.18), (5.21) and (5.25) we get

t−k (ui) = t+k (ue) = 0 on Γm, m = 1, . . . , N (5.26)

and hence the constant c0
m must be equal to zero, i.e.,

ui = 0, qi = 0 in D0. (5.27)

Now, using the jump formula

ue+ − ue− = Φ0 on Γm, m = 1, . . . , N

(see the properties (4.15) and (4.16)) as well as the result (5.21), we deduce
that

ue− = −Φ0 on Γm, m = 1, . . . , N. (5.28)
Similarly, from the jump formula

ui+ − ui− = Φ0 on Γm, m = 1, . . . , N

as well as the result (5.27), we find that

ui+ = Φ0 on Γm, m = 1, . . . , N. (5.29)

On the other hand, from the relations (4.17) we deduce that the bound-
ary traction due to the fields ue and qe has a jump across every curve Γk

given by the formula

t+(ue)− t−(ue) = −
(
h0 − 1

|Γm|

∫
Γm

h0dΓm

)
on Γm, m = 1, . . . , N.

(5.30)
But t+(ue) = 0 on Γk and hence

t−(ue) = h0 − 1
|Γm|

∫
Γm

h0dΓm on Γm, m = 1, . . . , N. (5.31)
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With similar kind of arguments as before, we get the relation

t+(ui) = −
(
h0 −

∫
Γm

h0dΓm

)
on Γm, m = 1, . . . , N. (5.32)

In addition, the fields (ue, qe) satisfy the identity∫
D0

(2Ejk(ue)Ejk(ue)+χ2|ue|2)dx =
N∑

l=1

∫
Γl

ue−
k (x)t−k (ue)(x)dΓl(x) (5.33)

and, in view of the properties (5.28) and (5.31), this identity takes the form∫
D0

(2Ejk(ue)Ejk(ue)+χ2|ue|2)dx = −
N∑

l=1

∫
Γk

Φ0 ·
(
h0− 1

|Γl|

∫
Γl

h0dΓl

)
dΓl.

(5.34)
Since ∫

Γl

(
h0 − 1

Γl

∫
Γl

h0dΓl

)
dΓl = 0, (5.35)

we deduce that

V
(
x,h0 − 1

|Γl|

∫
Γl

h0dΓl

)
= O(|x|−1) as |x| → ∞, (5.36)

the fields ui and qi behave at infinity as follows (see also the relations (4.21)):

∇sui(x) = O(|x|−1−s), qi(x) = O(|x|−1) as |x| → ∞, s = 0, 1, (5.37)

and hence they satisfy the far field conditions (2.6). Consequently, we get the
following identity:

2
∫

De

Ejk(ui)Ejk(ui)dx = −
N∑

l=1

∫
Γl

ui+
k (x)t+k (ui)(x)dΓl(x), (5.38)

which, in view of the properties (5.29) and (5.32), becomes

2
∫

De

Ejk(ui)Ejk(ui)dx =
N∑

l=1

∫
Γl

Φ0 ·
(
h0 − 1

|Γl|

∫
Γl

h0dΓl

)
dΓl. (5.39)

Therefore, from the identities (5.34) and (5.39) we obtain that

ue = 0 in D0 (5.40)

and
ui = 0 in De. (5.41)

The property (5.41), the equation −∇qi + (∇2 − χ2)ui = 0 in De, and
the fact that the pressure field qi vanishes at infinity lead to the additional
result

qi = 0 in De. (5.42)
From the relation (5.40), we get that

ue− = 0 on Γl, l = 1, . . . , N.

Using the above relation and (5.28), we obtain that:

Φ0 = 0 on Γl, l = 1, . . . , N. (5.43)
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In addition, according to the relations (5.32), (5.41) and (5.42) we find that

t+(ui) = 0 on Γl, l = 1, . . . , N, (5.44)

i.e.,

h =
1
|Γl|

∫
Γl

hdΓl := cl ∈ R2 on Γl, l = 1, . . . , N. (5.45)

So, we obtain that

0 = ui = −
∫

Γl

hdΓlinDl, l = 1, . . . , N (5.46)

and hence ∫
Γl

hdΓl = 0, l = 1, . . . , N. (5.47)

Finally, from the relations(5.45) and (5.46) we find that

h0 = 0 on Γl, l = 1, . . . , N. (5.48)

The relations (5.43) and (5.48) shows that the homogeneous system of
equations (5.7) and (5.8) has only the trivial solution in the space C1,λ(Γ)×
Cλ(Γ). Consequently, in view of Fedholm’s alternative [5] we deduce that the
non-homogeneous system of Fredholm integral equations of the second kind
(5.5) and (5.6) has a unique solution(Φ,h) ∈ C1,λ(Γ)×Cλ(Γ), as desired. �

Acknowledgements. The author is supported by the UEFISCSU - CNCSIS,
Grant, PN-II-ID-525/2007.

References

[1] Kohr, M., Pop I., Viscous Incompressible Flow for Low Reynolds Numbers,
WIT Press, Southampton, UK, 2004.

[2] Kohr, M., Raja Sekhar, G. P., Existence and uniqueness result for two-
dimensional porous media flows with porous inclusions based on Brinkman
equation, Engineering Analysis with Boundary Elements, 31(2007), 604-613.

[3] Kohr, M., Raja Sekhar, G. P., Existence and uniqueness result for the prob-
lem of viscous flow in a granular material with a void, Quarterly of Applied
Mathematics, 65(2007), no. 4, 683-704.

[4] Kohr, M., Wendland, W. L., Raja Sekhar, G. P., Boundary integral equations
for two-dimensional low Reynolds number flow past a porous body, Mathemat-
ical Methods in the Applied Sciences, Published Online, Sep 26 2008. DOI:
10.1002/mma.1074.

[5] Hsiao, G., Wendland, W.L., Boundary Integral equations, Springer, Heidelberg,
2008.

Elena-Maria Ului
Faculty of Mathematics and Computer Science
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